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Preface

Let '(D)f =
P1

n=0 'nf
(n) be a di�erential operator on the space of entire functions

H(C), induced by the entire function of exponential type '(z) =
P1

n=0 'nz
n. A fa-

mous result of G. Godefroy and J. H. Shapiro states that whenever ' is non-constant,

the corresponding di�erential operator admits universal functions (cf. [GS91, The-

orem 5.1]). It is known that the lowest rate of growth that these universal functions

can exhibit is closely related to the contour line

C' := fz 2 C : j'(z)j = 1g:

To be speci�c, if all 'n � 0 and j'(0)j < 1, universal functions for '(D) must be

at least of exponential type equal to � := dist(0; C') (cf. [BGB02]). From a result

in this thesis it turns out that, despite the di�erent growth conditions, universal

functions for di�erent di�erential operators can have similarities in their algebraic

structure. Precisely, for every '(D) induced by a non-constant ', there are universal

functions of the form f(z)e�z with � 2 C' and f a function of exponential type zero.

The main topic of this work is the study of universal and frequently universal func-

tions for di�erential operators and weighted shifts in the class of functions of ex-

ponential type. Our results provide information about the algebraic structure and

growth conditions with respect to di�erent rays. Some known results are extended

in this regard. Furthermore, we provide a connection between (frequently) universal

functions for di�erent di�erential operators: We show that they can be derived from

each other by means of a certain transform.

Our starting point is the consideration of a characteristic of functions of exponential

type that has not been considered in universality so far, namely, the conjugate

indicator diagram. This is a compact and convex set K(f) � C, corresponding to a
given entire function of exponential type f , which re�ects certain properties of f .



Firstly, the set K(f) reproduces the indicator function hf , meaning that

sup
u2K(f)

Re(ei�u) = hf (�) := lim sup
r!1

log jf(rei�)j
r

;

and thus provides information about the growth of f in every direction � 2 [0; 2�).

Secondly, the distribution of zeros of f with respect to their frequency in di�erent

sectors is closely related to the size and geometry of K(f). The latter becomes

relevant in the research of frequently universal functions.

In Section 3.3, we prove that every compact and convex set K that intersects C' is

the conjugate indicator diagram of a universal function for '(D) provided that ' is

non-constant. In particular, this shows that for every � 2 C' there is a universal

function of the form f(z)e�z with f of exponential type zero.

Things change in case of frequent universality. If f is a non-constant entire function

of exponential type whose zeros are distributed with positive lower density in the

direction of the real axis, then K(f) has some extension in the direction of the

imaginary axis. This immediately implies that a function with a singleton conjugate

indicator diagram cannot be frequently universal for the translation operator f 7!
f(� + 1). Inspired by this easy principle, we investigate advanced conditions for

the conjugate indicator diagram of these functions in Section 3.2. For instance, we

show that for every non-singleton line segment L of the imaginary axis there is a

frequently universal function f for the translation operator such that K(f) � L,

whereas this is impossible in case that L is some non-vertical line segment in the

plane.

In Section 3.6, some of these results are extended to general di�erential operators.

For instance, it is shown that every compact, convex set that contains a non-singleton

continuum of C' contains the conjugate indicator diagram of a frequently universal

function for '(D). Conversely, this property does not hold for singleton sets. The

essential tool in this context is the transform �', which is introduced in Section

3.5. This transform connects di�erent di�erential operators and carries over their

(frequently) universal functions.

The last chapter is devoted to the study of (frequently) universal functions for

weighted shift operators on H(C). These are operators mapping an entire functionP1
n=0 anz

n to
P1

n=0wn+1an+1z
n with a certain weight sequence (wn)n2N.



In a main result of this chapter, we show that (frequently) universal functions for

these operators can be derived from (frequently) universal functions for the di�eren-

tiation operator. This is easily proved due to a denseness result for the Hadamard

product, which is provided in Section 4.2.
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Chapter 1

Preliminaries

1.1 Cauchy Cycles

This section starts with some basic notations that we use throughout this thesis.

For a complex number z, the neighbourhood fw : jw � zj < "g with " > 0 shall

be denoted by U"(z). By D we mean the unit disc fz : jzj < 1g and by T the

unit circle fz : jzj = 1g in the complex plane. The extended plane C [ f1g is

denoted by C1 where we determine as usual 1
1 = 0 and 1

0
= 1. For M;L � C,

we set M + L := fz + w : z 2 M; w 2 Lg, M L := fzw : z 2 M; w 2 Lg,
M�1 := fw�1 : w 2 Mg, and conv(M) is the convex hull of M . Furthermore, the

interior of M is denoted by M�, and the closure of M is denoted by M . For the

linear hull of a family of vectors A, we write linspan(A). The intervall [z; w] of two

complex numbers z; w shall be the closed line segment that connects these numbers.

For a discrete set � � C, we set n(r) := n�(r) := #fw 2 � : jwj � rg.
Then

dens (�) := lim sup
k!1

n(r)

r

is the upper density of �, and

dens (�) := lim inf
k!1

n(r)

r

is the lower density of �. If the upper density and lower density coincide, the limit

dens(�) := lim
k!1

n(r)

r

3
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exists and dens(�) is called the density of �.

De�nition 1.1

(1) For an open set 
 � C1, we denote by H(
) the space of holomorphic func-

tions on 
. A function f is said to be holomorphic at in�nity if f(z�1) is

holomorphic at the origin. The space H(
) is endowed with the topology of

uniform convergence on compact subsets. H(
) is a Fréchet space.

(2) For an open set 
 � C, we denote by H0(
) the space of all functions holo-

morphic on 
 and vanishing at 1 if fz : jzj > Rg � 
 for some R > 0. This

space is endowed with the topology induced by H(
). As a closed subspace

of H(
), H0(
) is a Fréchet space.

(3) Let K be a compact subset of C, then A(K) shall be the space H(K�)\C(K)

endowed with the topology induced by the norm jjF jj := sup
z2K

jF (z)j. A(K) is

a Banach space.

Remark 1.2 Let 
 be an open subset of C. If fz : jzj > Rg � 
 for some

R > 0, Riemann's theorem on removable singularities implies that each f 2 H0(
)

is holomorphic at 1.

After this basic preliminaries, we come to the main objective of this section, namely,

the introduction of cycles and, in particular, of Cauchy cycles. This concept is also

used in [GE93].

De�nition 1.3

(1) Let  : [a; b] ! C be a piecewise continuously di�erentiable curve, then  is

called a path. Its range ([a; b]) is called the trace of  and shall be denoted

by jj. The path that passes through jj in the reverse direction is given by

�(t) := (a + b � t), t 2 [a; b]. If (a) = (b), then  is said to be a closed

path.

(2) The length of a path  is given by

Z b

a

j0(t)j dt
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and shall be denoted by len().

(3) For a closed path  and z 2 C n jj, we set

ind(z) :=
1

2�i

Z


1

� � z
d�

and call ind(z) the index of z with respect to .

The terminology in the next de�nition is taken from [Rud74].

De�nition 1.4

(1) Let 1; : : : ; n be a �nite family of closed paths. Then � := (1; : : : ; n) is

called a cycle. With �� we shall denote the cycle (�1 ; : : : ; 
�
n ). The trace of

� is given by j�j :=
nS
j=1

jjj.

(2) The integral of a function f 2 C(j�j) over a cycle � = (1; : : : ; n) is de�ned

by Z
�

f(�) d� :=
nX
j=1

Z
j

f(�) d�:

(3) The length of a cycle � = (1; : : : ; n) is given by

len(�) :=
nX
j=1

len(j):

(4) For a cycle � and z 2 C n j�j, we set

ind�(z) :=
1

2�i

Z
�

1

� � z
d�

and call ind�(z) the index of z with respect to �.

(5) Let � = (1; : : : ; n) be a cycle and ' 2 C1(j�j). Then ' � � is de�ned as

(' � 1; :::; ' � n). The union �[ ~� with another cycle ~� := (~1; : : : ; ~m) shall

be de�ned as (1; : : : ; n; ~1; : : : ; ~m).
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Remark 1.5 Let � be a cycle and f 2 C(j�j), then
Z
��

f(t) dt = �
Z
�

f(t) dt:

Theorem 1.6 Let 
 � C be some open set and f 2 H(
). If � is a cycle in 


that satis�es ind�(w) = 0 for all w 2 C n 
, then for all z 2 
 n j�j, the Cauchy

integral formula

f(z) ind�(z) =
1

2�i

Z
�

f(�)

� � z
d�

and Cauchy's integral theorem

0 =

Z
�

f(�) d�

are valid.

For the proof of this theorem, we refer to [Rud74, Theorem 10.35].

De�nition 1.7 Let 
 � C be an open set and K a compact subset of 
. A cycle

� = (1; : : : ; n) such that j�j � 
 nK and

ind�(z) =

8<
:1 , for all z 2 K

0 , for all z 2 C n 


is called a Cauchy cycle for K in 
.

Remark 1.8 In this thesis, we are mainly concerned with compact sets K � C

that are also convex. In this case, a Cauchy cycle for K in an open neighbourhood

of K can be chosen as a Jordan curve having positive orientation with respect to

the points in K.

Theorem 1.9 Let 
 be an open set in the complex plane and K a compact subset

of 
. Then there exists a Cauchy cycle for K in 
.

The above assertion is an immediate consequence of [Rud74, Theorem 13.5].

Henceforth, we say that ' 2 H(
) is univalent if ' maps one-to-one from 
 to '(
).

Proposition 1.10 Let 
 � C be an open set, ' 2 H(
) univalent and K � 


compact. If � is a Cauchy cycle for K in 
, then ' � � is a Cauchy cycle for '(K)

in '(
).
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Proof. Let f be a holomorphic function with a zero of order one at w. Then the

residue of f
0
=f at w is equal to one. For z = '(w) 2 '(K), we set f(�) :=

'(�)�'(w). Since ' is univalent, f has exactly one zero of order one in 
. With a

version of the residue theorem for cycles (cf.[Rud74, Theorem 10.42]), we have

1 =
1

2�i

Z
�

f
0
(�)

f(�)
d� =

1

2�i

Z
�

'
0
(�)

'(�)� '(w)
d�

=
1

2�i

Z
'��

1

w � z
dw = ind'��(z):

Now, let z 2 C n '(
). Then f(�) := '(�) � z has no zero in 
. Thus the above

reasoning shows that ind'��(z) = 0.

For holomorphic functions that vanish at in�nity, we obtain a Cauchy integral rep-

resentation for points located in the exterior of a cycle.

Lemma 1.11 Let K � C be a compact set, f 2 H0(C nK) and � a Cauchy cycle

for K in C. Then for z 2 C nK with ind�(z) = 0, we have

f(z) =
1

2�i

Z
�

f(�)

z � �
d�:

Proof. We choose " > 0 such that U"(z) \ K = ;. Then, with (t) = z + "eit,

t 2 [0; 2�], we obtain that ~� := � [ () is a Cauchy cycle for K [ fzg in C. For

every R > maxfjzj;maxfjwj : w 2 Kgg, the path R(t) := Reit, t 2 [0; 2�], is also a

Cauchy cycle for K [ fzg in C. Consequently, the index of every w 2 K [ fzg with
respect to (�R)[~� is zero. Taking into account that � 7! f(�)=(��z) is holomorphic

in C n (K [ fzg), Cauchy's integral theorem yields

1

2�i

Z
R

f(�)

� � z
d� =

1

2�i

Z
~�

f(�)

� � z
d�:

The function f is zero at in�nity, and thus the integral on the left hand side vanishes

for R going to in�nity. Since the equality holds for all R that are large enough,

we obtain that both integrals are equal to zero. Considering the Cauchy integral
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formula, this means

f(z) =
1

2�i

Z


f(�)

� � z
d� =

1

2�i

Z
�

f(�)

z � �
d�:

1.2 Functions of Exponential Type and the

Conjugate Indicator Diagram

In the following section, we introduce the basic terminology and some properties

of growth conditions for entire functions. Furthermore, we establish the indicator

function, the conjugate indicator diagram for functions of exponential type, and its

connection to growth via the support function.

Henceforth, Mf (r) denotes the maximum modulus, maxfjf(z)j : jzj = rg, of a
function f for r � 0.

De�nition 1.12 Let f be an entire function.

(1) Then

lim sup
r!1

log logMf (r)

log r
= �

is the order of f , and f is called a function of order �.

(2) If f is a function of �nite, positive order � and

lim sup
r!1

logMf (r)

r�
= �;

then � is the type of f . The function f is said to be a function of order � and

type � .

(3) Entire functions f that satisfy

lim sup
r!1

logMf (r)

r
= � <1;

are called functions of exponential type. In order to specify that the above

lim sup is equal to � , f is said to be a function of exponential type � .
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We assume that the Taylor expansion of an entire function f is given by

f(z) =
1X
n=0

an
n!
zn: (1.1)

Then the growth of the janj characterizes whether f is a function of exponential

type (see [Boa54] Theorem 2.2.10).

Proposition 1.13 The entire function f in (1.1) is a function of exponential type

� if and only if

lim sup
n!1

janj
1
n = � <1:

In the terms introduced in De�nition 1.12, the growth of an entire function is mea-

sured with respect to the maximum modulus. For the investigation of the growth

on single rays or in sectors, we introduce the well-known indicator function.

De�nition 1.14 (Indicator Function) Assume that f is a function of exponential

type. Then the indicator function hf : [0; 2�]! [�1;1) of f is de�ned by

hf (�) := lim sup
r!1

log jf(rei�)j
r

:

Let f be an entire function of exponential type. For a �xed � 2 T, the growth of f

in the direction of � can be estimated by means of its indicator function, and one

easily veri�es that the Laplace transform

B�f(z) := �

1Z
0

f(t�) e�zt� dt (1.2)

de�nes a holomorphic function in the half-space

W� := fz 2 C : Re(z�) > hf (arg(�))g: (1.3)

In [Mor94, pages 36-37], it is shown that for �1; �2 2 T the functions B�1f and B�2f
de�ned in (1.2) coincide on W�1 \W�2 . Now, gluing these functions, we obtain a

holomorphic function in
S
�2T

W� that vanishes at in�nity and that we denote by Bf .
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De�nition 1.15 (Borel Transform, Conjugate Indicator Diagram) Let f be an

entire function of exponential type. Then the corresponding function Bf is called

the Borel transform of f . The convex and closed set C n S
�2T

W� is the conjugate

indicator diagram of f and shall be denoted by K(f). The mapping f 7! Bf is the

Borel transform.

Theorem 1.16 Let f in (1.1) be an entire function of exponential type. Then Bf
is the analytic continuation of

1P
n=0

an
zn+1 to C nK(f).

A proof of this result can be found in many books about entire functions such as

[Boa54].

The conjugate indicator diagram of an entire function f of exponential type is empty

if and only if its Borel transform is holomorphic in C. Since Bf vanishes at in�nity,

this is equivalent to Bf � 0, and thus f � 0.

The next proposition summarizes some properties of the conjugate indicator dia-

gram, which can be found in [Boa54, pages 75-77].

Proposition 1.17 Let f; g be two functions of exponential type. Then the following

are valid:

(1) The conjugate indicator diagram of fg is contained in K(f)+K(g). If one of

these sets is a singleton, the conjugate indicator diagram of fg is equal to the

set K(f) +K(g).

(2) The conjugate indicator diagram of f + g is contained in conv(K(f) [K(g)).

(3) The function f is a function of exponential type � = maxfjuj : u 2 K(f)g.

(4) The conjugate indicator diagram of f 0 is contained in K(f).

Example 1.18

(1) The conjugate indicator diagram of f(z) = e�z is f�g, and f is a function of

exponential type j�j.

(2) The conjugate indicator diagram of f(z) = sin(z) = 1
2i
(eiz � e�iz) is [�i; i],

and f is a function of exponential type 1.
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(3) The conjugate indicator diagram of every entire function of order less than

one is contained in f0g.
As the half-spaces in (1.3) are de�ned by means of the indicator function, it is clear

that the union of all these half-spaces, respectively the conjugate indicator diagram,

re�ects the behaviour of the indicator function. In [Pól29], G. Pólya shows a useful

relation between the geometry of the conjugate indicator diagram and the indicator

function. The geometry of the conjugate indicator diagram becomes relevant via

the following function.

De�nition 1.19 Let K be a convex and compact subset of the complex plane.

Then the function

HK(z) := sup
u2K

Re(zu)

is the support function of K.

Theorem 1.20 Let f be a function of exponential type. Then

hf (�) = HK(f)(e
i�)

for all � 2 [0; 2�].

Contrary to the above de�nition of the support function, G. Pólya uses the sup-

port function k(�) := max
�
Re
�
ue�i�

�
: u 2 K

	
. The above result then states that

hf (�) = k(�) if K is the re�ection of the conjugate indicator diagram with respect

to the real axis (the indicator diagram). That is why the set we use is called �con-

jugate indicator diagram�. Our de�nition of the support function is more common

nowadays. It is also used in [BG95] and [Mor94].

We will now give some basic properties of the support function (cf. [BG95, Propo-

sition 1.3.14]).

Remark 1.21 For two non-empty, compact and convex subsets K;L of C, the

support function has the following properties:

(1) HK +HL = HK+L,

(2) HK(� z) = �HK(z) for � > 0,

(3) HK(�z + (1� �)w) � �HK(z) + (1� �)HK(w) for 0 < � < 1.
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(4) If K � L, then HK � HL.

Example 1.22

(1) If K = fz : jzj � rg, then HK(z) = rjzj.

(2) If K = fwg = fx+ iyg, then HK(z) = HK(jzj ei�) = jzj (x cos(�)� y sin(�)).

(3) If K = [�id; id] for d > 0, then HK(z) = HK(jzj ei�) = d jzjj sin(�)j.

(4) If K � C is some compact, convex set and ~K := K + �D, then H ~K(z) =

HK(z) + � jzj.

1.3 The Space Exp(K)

We introduce a topological vector space, namely Exp(K), that consists of functions

of exponential type having a conjugate indicator diagram contained in K. The

hypercyclicity and frequent hypercyclicity of operators acting on Exp(K) is a main

topic in this thesis.

We use the following notation: For any topological vector space X, the dual space

endowed with the strong topology is denoted by X�. For the action of a functional

� on a vector x, we write h�; xi.
In the previous section we introduced the Borel transform of an entire function of

exponential type via the Laplace transform in di�erent directions of the complex

plane. We shall now see that conversely, a function of exponential type can be

reconstructed by means of an integral formula via its Borel transform. This yields

the inverse of the Borel transform.

Theorem 1.23 (Pólya Representation) Let f be a function of exponential type,

then

f(z) =
1

2�i

Z
�

Bf(�) ez� d�

where � is a Cauchy cycle for K(f) in C.

We easily deduce the following.
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Proposition 1.24 Assume that f is a function of exponential type and K a com-

pact, convex subset of C. Then the conjugate indicator diagram of f is contained in

K if and only if for each " > 0 there is a constant C" such that

sup
z2C

jf(z)je�HK(z)�"jzj � C":

This result leads to the de�nition of a space of entire functions of exponential type.

De�nition 1.25 Let K be a compact and convex subset of C. Then Exp(K) is

the space of functions of exponential type that have a conjugate indicator diagram

that is contained in K. For f 2 Exp(K) and n 2 N, we de�ne

jjf jjK;n := sup
z2C

jf(z)je�HK(z)� 1
n
jzj:

Then jjf jjK;n is well de�ned by Proposition 1.24, and it is a norm on Exp(K). The

space Exp(K) shall be endowed with the topology induced by the sequence of norms

(jj � jjK;n)n2N.

Following [Mor94], we shall now formulate the topologies on our considered spaces

in terms of projective and inductive limits. This approach provides nice relations

between these topologies and the topologies of their dual spaces. A short introduc-

tion to this topic is given in Appendix A.

We consider a compact and convex set K � C. Then for some �xed n 2 N,

Expn(K) := ff 2 H(C) : jjf jjK;n <1g

is a Banach space with respect to the norm jj � jjK;n. The intersection of all these

Banach spaces generates Exp(K).

Proposition 1.26 Let K be a compact and convex subset of C. Then

Exp(K) = ProjLim(Expn(K) : n 2 N);

and the embeddings Expn(K) ,! Expn�1(K) are compact. Thus Exp(K) is an FS

space.
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Remark 1.27 In this thesis we will not make use of the Banach spaces Expn(K)

in our reasonings. Instead the following will be applied:

Let (Kn)n2N be a sequence of compact and convex subsets of C such thatK�
n � Kn+1

and
T
n2N

Kn = K. Then K is a compact, convex subset of C and

Exp(K) =
\
n2N

Exp(Kn):

Remark A.10 implies that this equality also holds in topological sense. That means,

the topology on Exp(K) is also induced by the norms (jj � jjKn;k)n;k2N. See also

Theorem A.8 to verify this equality.

Proposition 1.28 Let 
 be an open subset of C and (Kn)n2N an increasing se-

quence of compact sets such that
S
n2N

Kn = 
 and Kn � K�
n+1. Then

H(
) = ProjLim(A(Kn) : n 2 N);

and the restrictions F 7! F jKn�1 from A(Kn) to A(Kn�1) are compact. Thus H(
)

is an FS space.

Remark 1.29 Let 
 be an open subset of C. As a closed subspace of H(
), H0(
)

is an FS space (cf. Theorem A.13).

For simplicity, if f is a function of exponential type and K is a compact, convex set

containing K(f), we also denote the mapping f 7! Bf jCnK by B. With the above

introduced spaces, we obtain an isomorphism (cf. [Mor94, Theorem 2.5.1]).

Proposition 1.30 Assume that K is a convex and compact subset of C. Then the

Borel transform

B = BK : Exp(K)! H0(C nK)

is an isomorphism.

Remark 1.31 For a compact set K � C (possibly non-convex), it is clear that the

restriction F 7! F jCnconv(K) from H0(C nK) to H0(C n conv(K)) has dense image.

Hence B�1
conv(K)(F 7! F jCnconv(K)) : H0(C n K) ! Exp(conv(K)) has dense image.

The transform B�1
conv(K)(F 7! F jCnconv(K)) shall also be denoted by B�1K . The Pólya
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representation

B�1K F (z) =
1

2�i

Z
�

F (�) ez� d�

for F 2 H0(C nK) is valid for all Cauchy cycles � for K in C.

A germ of holomorphic functions on a set K � C is the collection of holomorphic

functions that coincide on some open neighbourhood of K. In terms of inductive

limits, one can endow the space of germs of holomorphic functions with a natural

topology.

De�nition 1.32 Let K be a compact subset of C and U(K) the collection of all

open neighbourhoods of K. We de�ne

H(K) := IndLim(H(
) : 
 2 U(K)):

The elements ['] 2 H(K) are called germs of holomorphic functions (on K).

Replacing U(K) by an appropriate sequence of bounded neigbourhoods and H(
)

by A(
), H(K) becomes a DFS space (cf. [Mor94, Theorem 1.5.5]).

Proposition 1.33 Let K be a compact subset of C and (Kn)n2N a decreasing

sequence of compact sets such that Kn+1 � K�
n and K =

T
n2N

Kn. Then

H(K) = IndLim(A(Kn) : n 2 N)

and the restrictions f 7! f jKn+1 from A(Kn) to A(Kn+1) are compact. Thus H(K)

is a DFS space.

An element ['] 2 H(K) can be considered as a family of representatives ('�)�2I ,

each of which is holomorphic on some open neighbourhood of K and each two of

which coincide on an open neighbourhood of K. Two elements ['1]; ['2] 2 H(K)

are equal if and only if a representative ' belongs to both ['1] and ['2].

In order to simplify the notation, we agree the following: An element ['] 2 H(K)

shall always be identi�ed with some of its representatives '. An open neighbourhood

of K that is a domain of holomorphy of ' is denoted by 
'.

De�nition 1.34 Let K be a compact subset of C. The elements of H�(K) are

called locally analytic functionals on K.
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Remark 1.35 According to Theorem A.11 and Proposition 1.33, H�(K) is an FS

space. If 
 � C is open, then H�(
) is a DFS space. The elements of H�(
) are

called analytic functionals (on 
).

For the sake of completeness, we introduce two further transforms that yield the

isomorphism of the spaces Exp(K), H0(C nK) and H�(K).

We consider a locally analytic functional � 2 H�(K), where K is some compact,

possibly non-convex, subset of C. Then the function F de�ned by

F (z) := C�(z) :=
�
�; � 7! 1

z � �

�

is an element of H0(C nK). The mapping

� 7! C�

is called the Cauchy-Hilbert transform. The function f de�ned by

f(z) := F�(z) :=


�; � 7! ez�

�
is an element of Exp(conv(K)), and the mapping

� 7! F�

is called the Fourier-Borel transform.

Proposition 1.36 Let K be a compact subset of C.

(1) The Cauchy-Hilbert transform

C : H�(K)! H0(C nK)

is an isomorphism.

(2) If K is convex, the Fourier-Borel transform

F : H�(K)! Exp(K)

is an isomorphism.
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For the proof of this result, we refer to [Mor94, Theorem 2.1.9, Theorem 2.5.2].

Remark 1.37 For H 2 H0(C nK), the locally analytic functional C�1H 2 H�(K)

is given by 
C�1H;'� = 1

2�i

Z
�

H(�)'(�) d�

where � is a Cauchy cycle for K in 
'.

To see this, let � 2 H�(K) be de�ned by the above integral. Then for z 2 C n 
',

we have ind�(z) = 0 and obtain

C�(z) =
�
�; � 7! 1

z � �

�
=

1

2�i

Z
�

H(�)

z � �
d� = H(z)

by Lemma 1.11.

According to Remark 1.37, the function H 2 H0(C nK) is mapped to a function of

Exp(K) by

F C�1H =
1

2�i

Z
�

H(�) ez� d�:

The right side of the above formula is equal to the Pólya representation (see Theorem

1.23) if H is regarded as the Borel transform of a function that belongs to Exp(K).

This shows B�1 = F C�1.
The below diagram abstracts the relation between the introduced transforms. Let

K � C be compact and convex. Then the diagram

H�(K) F // Exp(K)

Bxxppp
pp
pp
pp
pp

H0(C nK)

C�1
ffMMMMMMMMMM

is commutative and the mappings are isomorphisms.

By Theorem A.12, DFS-spaces are re�exive and thus H(K) is isomorphic to the

space (H(K)�)�. Since H0(CnK) and H�(K) are isomorphic, we have an description

of the functionals � 2 H�
0 (C nK) by means of the germs of holomorphic functions

on K. This relation is known as the Köthe duality (see [Köt53]).
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Theorem 1.38 (Köthe Duality) Let K be a compact, convex set in C and � 2
H�

0 (C nK). Then there is a germ ' 2 H(K) such that

h�; F i = 1

2�i

Z
�

'(�)F (�) d�

for all F 2 H0(C n K). Here � is a Cauchy cycle for K in 
'. As Exp(K) and

H0(C nK) are isomorphic via the Borel transform, any functional � 2 Exp�(K) is

represented by

h�; fi = 1

2�i

Z
�

'(�)Bf(�) d�

with ' and � as above.

The Köthe duality actually describes the dual-space of H(
) for arbitrary open sets


.

In many cases it will be convenient to consider H0(C nK�1) instead of H0(C nK).

For that purpose, we introduce the following transform: Let F 2 H0(C nK) where

K is some compact subset of C. Then the function

UF (z) := 1

z
F

�
1

z

�
(1.4)

is holomorphic in C nK�1 and vanishes at in�nity.

Proposition 1.39 Let K � C be compact. Then

U : H0(C nK)! H0(C nK�1)

de�ned by (1.4) is an isomorphism.

Proof. By de�nition, it is clear that U(F ) is an element of H0(C n K�1) and that

U is a bijective mapping. According to Remark 1.2, we can show the continuity in

the topology of uniform convergence on compact subsets of C1 nK and C1 nK�1,

respectively.

Let L be a compact subset of C1 n K. This is equivalent to the fact that L�1 is

a compact subset of C1 n K�1. Without loss of generality, we can assume that
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"D � L�1 for " > 0. For F 2 H0(C nK), we obtain

sup
jzj>"; z2L�1

jUF (z)j = sup
jzj>"; z2L�1

����1z
����
����F
�
1

z

����� � 1

"
sup
z2L

jF (z)j

and by the maximum principle

sup
jzj�"

jUF (z)j � sup
jzj="

jUF (z)j = sup
jzj="

����1zF
�
1

z

����� = sup
jzj= 1

"

1

"
jF (z)j � 1

"
sup
z2L

jF (z)j :

These two inequalities imply

sup
z2L�1

jUF (z)j � 1

"
sup
z2L

jF (z)j

and hence the continuity of U . The continuity of U�1 can be proved in the same

way.

Remark 1.40 Let f(z) =
1P
n=0

an
n!
zn be an entire function of exponential type � .

Then from Theorem (1.16) we have that

Bf(z) =
1X
n=0

an
zn+1

for jzj > � . Therefrom, it is easily seen that the function UBf 2 H0(C nK�1) has

the Taylor series expansion

UBf(z) =
1X
n=0

an z
n+1

for jzj < 1
�
. It will often be convenient to consider these power series representations

to verify identities: For the exponential function f(z) := e�z =
1P
n=0

�n

n!
zn with � 6= 0,

one immediatly deduces

Bf(z) = 1

z

1X
n=0

�n

zn
=

1

z � �
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and

UBf(z) =
1X
n=0

�nzn =
1

1� �z
:

Our last result of this section is about the generic size of the set of functions in

Exp(K) that have a conjugate indicator diagram that coincides with K.

A function is said to be exactly holomorphic in an open set 
 � C if for all z0 2 
 the

radius of convergence of the Taylor series of f with center z0 is equal to dist(z0; @
).

Theorem 1.41 (cf. [Nes05, Theorem 4.5]) Let 
 be a domain in C. Then the set

of functions of H(
) that are exactly holomorphic in 
 is a dense G�-set (i.e. a

countable intersection of open and dense sets) in H(
) .

Corollary 1.42 Let K � C be compact and convex. The set of functions of

Exp(K) whose conjugate indicator diagram equals K is residual in Exp(K).

Proof. The assertion is an immediate consequence of Theorem 1.41 and the fact that

Exp(K) and H0(C nK) are isomorphic.

1.4 Dense Subspaces of Exp(K)

In the investigation of hypercyclicity, it will be essential to have appropriate dense

subspaces. By means of the Borel transform and the transform U , we derive the

denseness of the polynomials and the linear hull of exponential functions in Exp(K)

from Runge's theorem under suitable conditions. At the end of this section, a general

denseness result is given.

Proposition 1.43 Let K be a compact and convex subset of C that contains the

origin. Then the polynomials are dense in Exp(K).

Proof. The space of polynomials shall be denoted by �. Consider the transform UB
from Exp(K) to H(C n K�1). For a given polynomial P (z) =

nP
k=0

akz
k, the Borel

transform is given by BP (z) =
nP

k=0

k!ak
zk+1 and thus UBP (z) =

nP
k=0

k!akz
k. We can

conclude that UB(�) = �. As K contains the origin, C nK�1 is simply connected,

and thus � is a dense subspace of H(C nK�1) by Runge's theorem. According to

Proposition 1.30 and Proposition 1.39, UB is an isomorphism and hence (UB)�1(�)
is also a dense subspace of Exp(K).
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For compact sets that do not necessarily contain the origin, the following result

provides a dense subspace of Exp(K).

Henceforth, the exponential function z 7! e�z is denoted by e�.

Proposition 1.44 Assume that K is a compact and convex subset of C. Then for

every � 2 K, the subspace fPe� : P polynomial g is dense in Exp(K).

Proof. For any polynomial P we haveK(Pe�) � f�g by Proposition 1.17 (1). Hence
fPe� : P polynomial g is a subspace of Exp(K).

For arbitrary f 2 Exp(K), n 2 N and " > 0, we have to �nd a polynomial P such

that kf � Pe�kK;n < ". Set g = f=e�, then g is an element of Exp(K � f�g) by
Proposition 1.17 (1). The set K�f�g contains the origin, and thus Proposition 1.43

implies the existence of a polynomial P such that kg � PkK�f�g;n < ". We obtain

kf � Pe�kK;n = sup
z2C

jg(z)� P (z)j je�zj e�HK(z)� 1
n
jzj

= sup
z2C

jg(z)� P (z)j e�HK(z)�Hf��g(z)� 1
n
jzj

= jg(z)� P (z)j e�HK�f�g(z)� 1
n
jzj (1.5)

= kg � PkK�f�g;n < ":

Remark 1.45

(1) The calculation in (1.5) shows that the mapping f 7! e�f is an isometric

isomorphism from Exp(K) to Exp(K + f�g).

(2) For two compact and convex sets K � ~K � C and � 2 K, the above proposi-

tion states that fPe� : P polynomialg is dense in Exp(K) and Exp( ~K). Thus

Exp(K) is continuously and densely embedded in Exp( ~K).

Proposition 1.46 Let 
 be a simply connected region in C. Then the functions

of Exp(f�g) are a dense subspace of H(
).

Proof. For a given f 2 H(
), an arbitrary " > 0 and a compact set L � 
, we have

to show that there exists a function h in Exp(f�g) such that sup
z2L

jf(z)� h(z)j < ".
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We set g = f=e�. Since 
 is simply connected, there is a polynomial P such that

sup
z2L

jg(z) � P (z)j < "
M

where M := sup
z2L

je�(z)j. The function h := Pe� belongs to

Exp(f�g) by Proposition 1.17 (1) and satis�es

sup
z2L

jf(z)� h(z)j = sup
z2L

jg(z)� P (z)jje�(z)j �M sup
z2L

jg(z)� P (z)j < ":

In [GS91], G. Godefroy and J. H. Shapiro prove, by an application of the Hahn-

Banach theorem and the Riesz representation theorem, the denseness of the linear

hull of fe� : � 2 Ag in H(C) for any A � C that has got an accumulation point.

We prove a similar result for Exp(K) by means of Runge's theorem.

Proposition 1.47 Let K be compact, convex subset of C and A � K an in�nite

set. Then linspanfe� : � 2 Ag is dense in Exp(K).

Proof. Without loss of generality, we may assume 0 =2 A. The functions R� with

� 2 A shall be de�ned by z 7! 1
z�� . By a variant of Runge's theorem (cf. [LR84,

Theorem 10.2]), linspanfR� : � 2 Ag is a dense subspace of H0(C n K). Remark

1.40 yields Be� = R�, and hence we have

linspanfe� : � 2 Ag = linspanfB�1R� : � 2 Ag:

Since the Borel transform B : Exp(K) ! H0(C nK) is an isomorphism, this shows

the assertion.

Replacing the exponential function e1 by a more general function of exponential

type with non-vanishing Taylor coe�cients, we shall now generalize the above result.

However, it is essential in the proof thatK contains the origin. At the end of Chapter

3, we will see that this condition is even necessary for that general case.

Theorem 1.48 Let f be an entire function of exponential type. We further assume

that K is a compact, convex subset of C containing the origin and A � C is a

bounded in�nite set such that f�(z) := f(�z) belongs to Exp(K) for all � 2 A.

Then linspanff� : � 2 Ag is dense in Exp(K) if and only if f (k)(0) 6= 0 for every

non-negative integer k.
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Proof. We set Y := linspanff�(z) : � 2 Ag. Since the convergence in the topology

of Exp(K) implies the convergence of the Taylor coe�cients, the density of Y ensures

that the Taylor coe�cients of f do not vanish.

Let � 2 Exp�(K) vanish on Y . We prove that � � 0, which implies the density of

Y by a standard application of the Hahn-Banach theorem.

Theorem 1.38 supplies an ! 2 H(K) that represents � by

h�; fi = 1

2�i

Z
�

!(�)Bf(�) d� (1.6)

where � is a Cauchy cycle for K in 
!. We show the existence of some connected

open set D, containing A and the origin, such that

K(f�) � 
! for all � 2 D: (1.7)

A simple observation using the equality HK(f)(�) = hf (arg(�)), � 2 T, (see Theorem
1.20) yields K(f�) = �K(f) for arbitrary � 2 C. Hence the condition f� 2 Exp(K)

implies AK(f) � K. As 0 2 K and K is convex, we obtain r �K(f) � K for all

r 2 [0; 1] and all � 2 A. The continuity of the multiplication and the compactness

of K(f) imply the existence of some open neighbourhood U(�; r) for each pair

(r; �) 2 [0; 1]�A such that U(�; r)K(f) � 
!. Now D :=
S
�2A

S
r2[0;1]

U(�; r) has the

claimed properties of (1.7).

Since A is assumed to be bounded and in�nite, it has an accumulation point. By

means of the power series representation of the Borel transform and the transform

U (see Remark 1.40), we immediately obtain

Bf�(�) =
UBf(�

�
)

�

for all � 2 C nK and � 2 C. Now, with (1.6),

a(�) := h�; f�i = 1

2�i

Z
�

!(�)Bf�(�) d� = 1

2�i

Z
�

!(�)

�
UBf

�
�

�

�
d�

de�nes a holomorphic function on D. The condition �jY � 0 means that a vanishes

on A, and since A has an accumulation point, the identity theorem yields a � 0.
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Consequently,

a(k)(�) =
1

2�i

Z
�

!(�)

�k+1
(UBf)(k)

�
�

�

�
d� = 0

for all � 2 D and every k 2 N [ f0g. With � = 0 this means

(UBf)(k)(0) 1

2�i

Z
�

!(�)

�k+1
d� = 0 (1.8)

for all k 2 N [ f0g. The assumption f (k)(0) 6= 0 for all k 2 N [ f0g is equivalent to
(UBf)(k)(0) 6= 0 for all k 2 N [ f0g as one can immediately see in the power series

representation of UBf . Consequently, equality (1.8) shows ! � 0 and that means

� � 0. This completes the proof.
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Hypercyclic Operators and Universal

Functions

2.1 Hypercyclicity

This section provides basic results of hypercyclic operators and universal functions.

For extensive surveys we refer to [GE99] and the recently published book [BM09].

In the following we denote the n-times iteration of an operator T by T n.

De�nition 2.1 Let X and Y be topological spaces and (Tn)n2N a sequence of

continuous mappings from X to Y . Then (Tn)n2N is called universal (from X to

Y ) if there is some x 2 X such that fTnx : n 2 Ng is dense in Y . The elements

generating such a dense sequence are called universal elements for (Tn)n2N (on Y ).

In this thesis we are mainly concerned with a special case of universality, namely

the hypercyclicity.

De�nition 2.2 Let X be a topological vector space and T : X ! X a continuous

operator.

(1) The operator T is said to be hypercyclic if there exists a vector x 2 X such

that the orbit fT nx : n 2 Ng is dense in X. The vectors generating a dense

orbit are called hypercyclic vectors (for T ).

(2) If there is an increasing sequence of positive integers (nk)k2N such that for

all subsequences (nkj)j2N there is a vector x 2 X generating a dense orbit

fT nkjx : j 2 Ng, then T is called hereditarily hypercyclic (with respect to

(nk)k2N).

25
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De�nition 2.3 If in De�nition 2.2 or De�nition 2.1 the space X consists of func-

tions, then the hypercyclic vectors for T or the universal elements for (Tn)n2N are

called universal functions (for T or (Tn)n2N, respectively).

The earliest and most famous examples of hypercyclic operators are the following:

Example 2.4

(1) For an � 2 C n f0g, the translation operator Te�f := f(�+ �) is a hypercyclic

operator on H(C).

(2) For a simply connected region 
 � C, the di�erentiation operator is hyper-

cyclic on H(
).

The �rst example is due to G. D. Birkho� [Bir29] and the second one is due to G.R.

MacLane [Mac52]. The hypercyclicity of these operators is shown as a consequence

of a more general theorem in the following chapter. Henceforth, we shall use the

notation Te� for the translation operator in the direction �.

By means of Baire's theorem, a short proof yields the following result:

Proposition 2.5

(1) Let X be a Baire space, Y a second-countable space and (Tn)n2N a sequence of

continuous mappings from X to Y such that for each pair of non-empty open

sets U � X and V � Y there exists an n 2 N with Tn(U) \ V 6= ;. Then

(Tn)n2N is universal from X to Y , and the set of universal vectors is a dense

G�-set in X (i.e. a countable intersection of open and dense sets of X).

(2) Let X be a separable F -space and T a continuous operator on X. Then T

is hypercyclic if and only if for each pair of non-empty open sets U; V � X

there is a positive integer n such that T n(U) \ V is non-empty. The set of

hypercyclic vectors is either empty or a dense G�-set in X.

For invertible operators the above characterization implies the following:

Proposition 2.6 Let X be a separable F -space and T : X ! X a continuous and

invertible operator. Then T is hypercyclic if and only if T�1 is hypercyclic.
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The characterization in Proposition 2.5 (2) builds the basis for the proof of the well-

known hypercyclicity criterion. This criterion is the most frequently used tool to

obtain hypercyclicity.

Theorem 2.7 (Hypercyclicity Criterion) Assume that X is a separable F -space

and T : X ! X a continuous operator. Let further X0, Y0 be two dense subsets of

X and (Sn)n2N a sequence of mappings Sn : Y0 ! X such that for an increasing

sequence (nk)k2N of positive integers the following hold:

(1) T nkx! 0 (k !1) for all x 2 X0;

(2) Snk(x)! 0 (k !1) for all x 2 Y0;

(3) T nkSnk(x)! x (k !1) for all x 2 Y0.

Then T is hypercyclic. In the case that (1); (2) and (3) are valid, T is said to satisfy

the hypercyclicity criterion (with respect to the sequence (nk)k2N).

In [BP99], J. Bés and A. Peris prove a useful characterization for operators that

satisfy the hypercyclicity criterion.

Theorem 2.8 (cf. [BP99, Theorem 2.3]) Let X be a separable F -space and T a

continuous operator on X. Then the following assertions are equivalent:

(i) T satis�es the hypercyclicity criterion.

(ii) T is hereditarily hypercyclic.

(iii) The direct sum T �T is hypercyclic on the product space X�X endowed with

the product topology.

The algebraic structure of the set of hypercyclic vectors is much investigated. Here

we only provide a result concerning the existence of a dense subspace of hypercyclic

vectors. The �rst versions of this result are shown in [Her91], [Bou93] and [Bés99].

The below generalization is due to J. Wengenroth [Wen03].

Theorem 2.9 Let X be a topological vector space and T : X ! X hypercyclic.

Then there exists a dense subspace M � X such that every x 2 M n f0g is a

hypercyclic vector for T .
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A remarkable result for the powers of hypercyclic operators on Banach spaces is due

to I. Ansari [Ans95]. The generalization to arbitrary topological vector spaces is

proved in [Wen03].

Theorem 2.10 (Ansari's Theorem) Let X be a topological vector space and T a

hypercyclic operator on X. Then for every n 2 N, T n is hypercyclic and the set of

hypercyclic vectors for T and T n coincide.

2.2 Frequently Hypercyclic Operators

In [BG06], F. Bayart and S. Grivaux introduce a stronger form of hypercyclicity,

namely the frequent hypercyclicity. Instead of requiring the orbit fT nx : n 2 Ng to
intersect every non-empty open set, they imposed a condition on the frequency of

recurrence to each non-empty open set.

In this section we introduce basic notations and some results for frequently hyper-

cyclic operators. For detailed information we refer to [BG06] and [BGE07].

We start with the de�nition of the generalization of frequent hypercyclicity, namely

the frequent universality, which is introduced in [BGE07].

De�nition 2.11 Let X; Y be topological spaces and (Tn)n2N a sequence of con-

tinuous mappings from X to Y . The sequence (Tn)n2N is called frequently universal

(from X to Y ) if there is some x 2 X such that for every non-empty open subset U

of Y

dens(fn 2 N : Tnx 2 Ug) > 0:

In this case, x is called a frequently universal element for (Tn)n2N (on Y ).

De�nition 2.12 Let X be a topological vector space and T : X ! X a continuous

operator. The operator T is called frequently hypercyclic if there is some x 2 X such

that for every non-empty open subset U of X

dens(fn 2 N : T nx 2 Ug) > 0:

In this case, x is called a frequently hypercyclic vector for T .

De�nition 2.13 If in De�nition 2.11 or De�nition 2.12 the space X consists of

functions, then the frequently hypercyclic vectors or frequently universal elements

are called frequently universal functions (for T or (Tn)n2N, respectively).
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Remark 2.14 Most of the classical hypercyclic operators, as the translation opera-

tors Te� (� 2 Cnf0g) or the di�erentiation operator, are also frequently hypercyclic.

But while the set of hypercyclic vectors on a separable F -space is a dense G�-set

(see Proposition 2.5 (2)), the set of frequently hypercyclic vectors is in most cases a

set of �rst category.

Ansari's theorem (see Theorem 2.10) still holds for frequently hypercyclic operators

(cf. [BM09, Theorem 6.30]).

Theorem 2.15 Let X be a topological vector space and T : X ! X frequently

hypercyclic. Then for every n 2 N, T n is frequently hypercyclic and the frequently

hypercyclic vectors for T and T n coincide.

A main result in [BG06] is a criterion for frequent hypercyclicity that has some sim-

ilarities with the hypercyclicity criterion. But the proofs of these criteria are totally

di�erent since for the result below, one cannot make use of the characterization in

Proposition 2.5.

Theorem 2.16 (Frequent Hypercyclicity Criterion) Let X be a separable F -space

and T : X ! X a continuous operator. Suppose there is a dense set Y0 � X and a

mapping S : Y0 ! Y0 such that:

(1)
1P
k=1

T kx is unconditionally convergent for every x 2 Y0;

(2)
1P
k=1

Skx is unconditionally convergent for every x 2 Y0;

(3) TS = id on Y0.

Then T is frequently hypercyclic.

An extension of this criterion to the case of frequent universality is proved by A.

Bonilla and K.-G. Grosse-Erdmann in [BGE09]. They used the following terminol-

ogy for their formulation: If X is an F-space, one can assume that its topology is

induced by an F-norm. This is a mapping jj � jj : X ! [0;1) so that, for all x; y 2 X
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and all scalars �,

jjxjj > 0 for x 6= 0;

jj�xjj � jjxjj for j�j � 1;

jj�xjj ! 0 as �! 0;

jjx+ yjj � jjxjj+ jjyjj:

A sequence (xn;k)k;n2N is said to converge unconditionally, uniformly in k 2 N in an

F-space if for every " > 0, there is a positive integer N such that for every �nite

F � N and all k 2 N 
X
n2F

xn;k

 < "

whenever f1; 2; :::; Ng \ F = ;.
Theorem 2.17 (Frequent Universality Criterion) Let X be an F-space, Y a sepa-

rable F-space and (Tn)n2N a sequence of continuous mappings from X to Y . Assume

there are a dense subset Y0 of Y and mappings Sn : Y0 ! X, n 2 N, such that:

(1)
kP

n=1

TkSk�ny converges unconditionally in Y , uniformly in k 2 N, for all y 2 Y0;

(2)
1P
n=1

TkSk+ny converges unconditionally in Y , uniformly in k 2 N, for all y 2 Y0;

(3)
1P
n=1

Sny converges unconditionally in X, for all y 2 Y0;

(4) TnSny ! y as n!1 for all y 2 Y0.

Then (Tn)n2N is frequently universal (from X to Y ).

As we are concerned with FS spaces, we can show the unconditional convergence

by means of the absolute convergence with respect to the norms that induce the

topology (cf. [BGE07]):

Remark 2.18 Let X be a Fréchet space and (jj � jjn)n2N a sequence of seminorms

de�ning the topology on X. If for a sequence (xk)k2N in X the series
1P
k=1

jjxkjjn

converges for all n 2 N, then
1P
k=1

xk converges unconditionally in X.
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2.3 Hypercyclicity on Exp(K)

The aim of this section is to establish two general results for hypercyclic operators

on Exp(K).

Proposition 2.19 Let K be a compact, convex subset of C and T a hypercyclic

operator on Exp(K). Then the set of universal functions (for T ) having a conjugate

indicator diagram that coincides with K is residual in Exp(K).

Proof. According to Proposition 2.5 (2) and Corollary 1.42, the set of universal

functions for T is a dense G�-set in Exp(K), and the set of functions having a

conjugate indicator diagram equal to K is residual in Exp(K). Consequently, their

intersection is still residual in Exp(K).

In [BFPW05], it is shown that, under some restrictions, the hypercyclicity on pro-

jective limits is implied by the hypercyclicity on the di�erent steps. Following the

idea from [BFPW05], we will show a similar result for universality. The restrictions

are adequately chosen for our needs and are much stronger than in [BFPW05].

We consider a sequence (En)n2N of Fréchet spaces with

En+1 � En and En+1 ,! En continuously for all n 2 N:

The space E :=
T
n2N

En shall be endowed with the topology induced by (jj � jjn;l)n;l2N
where (jj � jjn;l)l2N is the system of semi-norms inducing the topology on the spaces

En, i.e., E := ProjLim(En : n 2 N).

Proposition 2.20 Let X be a topological space and (En)n2N, E as above. We

assume that a sequence of continuous mappings (Tk : E1 ! X)k2N is such that for

all n 2 N the following holds: The mappings TkjEn : En ! X are continuous for all

k 2 N, and for each pair of non-empty open sets U � En and V � X there is some

k 2 N with TkjEn(U) \ V 6= ;. Then, if E is dense in each En, for every pair of

non-empty open sets U � E and V � X there is some k 2 N with TkjE(U)\V 6= ;.

Proof. Let V � X and U � E be non-empty and open. We can assume the

existence of a positive integer n and an open set W � En such that U = W \ E.

By assumption, W \ (TkjEn)�1(V ) 6= ; for some k 2 N. Using the denseness of E

in En, we can conclude that U intersects the open set W \ (TkjEn)�1(V ) and thus
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U \ (TkjE)�1(V ) 6= ;.

Corollary 2.21 Let K;K1; K2; ::: be non-empty, compact and convex subsets of

C such that K�
n � Kn+1 for all n 2 N and

T
n2N

Kn = K.

(1) Let X be a second-countable space and (Tk)k2N a sequence of continuous map-

pings from Exp(Kn) to X for all n 2 N. If for every n 2 N, the sequence

(Tk)k2N is such that for every pair of non-empty open sets U � En and V � X

there is an k 2 N such that Tk(U) \ V 6= ;, then (Tk)k2N is universal from

Exp(K) to X, and the set of universal elements for (Tk)k2N is a dense G�-set

in Exp(K).

(2) Let T be an operator mapping continuously from Exp(Kn) to Exp(Kn) for all

n 2 N. If T is hypercyclic on each Exp(Kn), then T is hypercyclic on Exp(K).

Proof. According to Remark 1.27, we have

Exp(K) =
\
n2N

Exp(Kn);

also in topological sense. For � 2 K, the subspace fe�P : P polynomialg � Exp(K)

is dense in Exp(Kn) for all n 2 N by Proposition 1.44. Hence Proposition 2.20

applies, and immediately shows (1) according to Proposition 2.5 (1).

In the case of (2), Proposition 2.20 and Proposition 2.5 (1) imply that for all n 2 N
the universal elements for (T n)n2N from Exp(K) to Exp(Kn) are a denseG�-set, UVn,

in Exp(K). The intersection of all sets UVn is still a dense G�-set in Exp(K), and

every vector of this intersection is obviously a hypercyclic vector for T on Exp(K).

Remark 2.22 For every non-empty, compact and convex set K � C, the space

Exp(K) is dense in H(C) (see Proposition 1.46). Consequently, if a continuous

operator T : Exp(K) ! Exp(K) can be extended to a continuous operator from

H(C) to H(C), the hypercyclicity on Exp(K) implies the hypercyclicity on H(C).



Chapter 3

Hypercyclic and Frequently

Hypercyclic Di�erential Operators

3.1 Introduction

As in many areas of analysis, di�erential operators are very extensively studied in the

�eld of hypercyclicity and universality. In this section we present some important

results that have been achieved in the study of universal and frequently universal

functions for di�erential operators. We focus on the research of growth conditions

of these functions. In the following chapters, some of these results are re�ned in

some respects.

The (frequent) universality and (frequent) hypercyclicity are to be understood with

respect to H(C) in this section.

Let '(z) =
1P
�=0

a�
�!
z� be an entire function of exponential type. Then for every

f 2 H(C), the series

'(D)f(z) :=
1X
�=0

a�f
(�)(z)

�!
(3.1)

converges uniformly on arbitrary compact subsets of C and hence represents an

entire function. Furthermore, by means of the Cauchy inequality, one easily proves

(see [GS91]) that

'(D) : H(C)! H(C)

33
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de�ned by (3.1) is a continuous operator. The operator '(D) is called the di�erential

operator induced by '.

Remark 3.1 Obviously, the di�erentiation operator is the di�erential operator

induced by '(z) = z. The translation operator Te� : H(C) ! H(C), f 7! f(� + �)

is also a di�erential operator: For ' = e� and f 2 H(C), we have

e1(D)f(z) =
1X
�=0

f (�)(z)

�!
�� =

1X
�=0

f (�)(z)

�!
(z + �� z)� = f(z + �) = Te�f(z):

The notation Te1 for the operator e1(D) will become clear in Section 3.3.

A characterization of di�erential operators for the case Cn is given by G. Godefroy

and J. H. Shapiro in [GS91]. We formulate this result for n = 1.

Proposition 3.2 (cf. [GS91, Proposition 5.2]) Let T be a continuous operator on

H(C), then the following are equivalent:

(i) T commutes with all translation operators Te�.

(ii) T commutes with the di�erentiation operator.

(iii) There is a complex Borel measure � with compact support such that

Tf(z) =

Z
C

f(z + w) d�(w):

(iv) There is an entire function ' of exponential type such that T = '(D).

The hypercyclicity of such operators is also proved by G. Godefroy and J. H. Shapiro.

Theorem 3.3 (cf. [GS91, Theorem 5.1]) Every di�erential operator that is not a

scalar multiple of the identity is hypercyclic on H(C).

Remark 3.1 implies that this theorem contains the classical results of G. D. Birkho�

and G. R. MacLane (cf. Example 2.4).

The �rst result concerning the possible rate of growth of universal functions for

di�erential operators is obtained by S. M. Duyos-Ruiz in [DR83] for the case of the

translation operator. He shows that universal functions for the translation operator
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Te� can have arbitrary small non-polynomial growth. In [CS91], K. C. Chan and J.

H. Shapiro extend this result to Hilbert spaces containing entire functions of small

growth. In both cases the growth of functions is measured via a comparison function.

This is an entire function a(z) =
1P
n=0

anz
n such that an > 0 and an+1=an ! 0 as n

tends to in�nity. If further (n+1)an+1=an is monotonically decreasing, a is called an

admissible comparison function. In [CS91], the hypercyclicity of Te� on the Hilbert

spaces

E2(a) :=

(
f 2 H(C) : jjf jj2a :=

1X
n=0

jfnj2
a2n

<1
)

is proved for every admissible comparison function a. Here fn are the Taylor coe�-

cients of f at the origin. It is also shown in [CS91] that f 2 E2(a) implies

sup
z2C

jf(z)j
a(jzj) <1: (3.2)

Consider a function q(r) : (0;1) ! (0;1) with q(r) ! 1 arbitrarily slow as

r !1. We set

m(n) := inf
1�r

rq(r)

2nrn
;

which is positive since rq(r)=2nrn tends to in�nity as r !1, and choose successively

0 < an < min

�
(n� 1) a2n�1

n an�2
;m(n)

�
:

Then a(z) :=
1P
n=0

anz
n is an admissible comparison function and (3.2) yields for

f 2 E2(a)

Mf (r) � Ca(r) = C
1X
n=0

anr
n � C

1X
n=0

rq(r)

2n
= 2C rq(r)

for all r > 1 and some C < 1. With these considerations we can formulate a

consequence of [CS91, Theorem 2.1] in the following way:

Theorem 3.4 Let q(r) be a positive function that tends to in�nity as r ! 1.

Then for every � 2 C n f0g, there exists a universal function f for Te� such that

Mf (r) = O(rq(r)) as r !1.
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For the case of the di�erentiation operator, K.-G. Grosse-Erdmann obtained a sharp

lower bound for universal functions.

Theorem 3.5 (cf. [GE90, Theorem (A), Theorem (B)]) There is no entire function

f that is universal for the di�erentiation operator and satis�es

Mf (r) = O

�
erp
r

�
as r !1.

For any q(r) : (0;1) ! (0;1) with q(r) ! 1 as r ! 1, there is a universal

function f for the di�erentiation operator that satis�es

Mf (r) = O

�
q(r)p
r
er
�

as r !1.

Concerning the rate of growth of universal functions for general di�erential opera-

tors, L. Bernal-González and A. Bonilla show:

Theorem 3.6 (cf. [BGB02, Corollary 2.4]) Let ' be an entire function of expo-

nential type with '(0) = 0 and � := dist('�1(T); 0). Then the following assertions

hold:

(1) For any d > � , there is a subspace M � Exp(dD) that is dense in H(C) and

that consists, except for zero, of universal functions for '(D).

(2) If j'(z)j = 1 on an in�nite subset of � T, then there exists a subspace M �
Exp(� D) that is dense in H(C) and that consists, except for zero, of universal

functions for '(D).

In [BGB02], also a negative result, similar to Theorem 3.5, is shown for general

di�erential operators.

Theorem 3.7 (cf. [BGB02, Corollary 2.2]) Let '(z) =
1P
n=0

cnz
n be an entire

function of exponential type with j'(0)j < 1 and set '�(z) :=
1P
n=0

jcnjzn. Then for

� := dist('�1� (T); 0), there is no entire function f that is universal for the di�erential

operator '(D) and satis�es

Mf (r) = O

�
e�rp
r

�
as r !1.
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Actually, L. Bernal-González and A. Bonilla prove more general results as they

consider sequences of di�erential operators that are not necessarily the iteration of

a single operator.

In [BGE06], A. Bonilla and K.-G. Grosse-Erdmann extend Theorem 3.6 to frequent

universality in a version for H(Cn). We give the formulation for the case n = 1.

Theorem 3.8 (cf. [BGE06, Theorem 3.4]) Let ' be a non-constant entire function

of exponential type. Then '(D) is frequently hypercyclic on H(C). Moreover, for

every d > � = dist('�1(T); 0) there is a function f 2 Exp(dD) that is frequently

universal for '(D).

For the case of the di�erentiation operator and the translation operator, this result

is re�ned in [BBGE10]. In this work, the growth is measured in terms of

Mp(f; r) :=

0
@ 1

2�

2�Z
0

jf(reit)jp dt
1
A

1
p

where 1 � p <1 and M1(f; r) := Mf (r).

Theorem 3.9 (cf. [BBGE10, Theorem 2.3]) For 1 � p � 1, let a := 1
2 maxf2;pg .

Then, for any q : (0;1)! (0;1) with q(r)!1 as r tends to in�nity, there exists

a frequently universal function f for the di�erentiation operator that satis�es

Mp(f; r) = O

�
q(r)

er

ra

�
as r !1.

Theorem 3.10 (cf. [BBGE10, Theorem 2.4]) For 1 � p � 1, let a := 1
2 minf2;pg .

Assume further that q : (0;1) ! (0;1) is any function such that q(r) ! 0 as r

tends to in�nity. Then there is no frequently universal function f for the di�erenti-

ation operator that satis�es

Mp(f; r) = O

�
q(r)

er

ra

�
as r !1.

Theorem 3.11 (cf. [BBGE10, Theorem 3.1 (b)]) Let q(r) : (0;1)! (0;1) with

lim inf
r!1

q(r) = 0. For any � 2 C n f0g, there is no frequently universal function f for

Te� such that

M1(f; r) = O
�
eq(r)r

�
as r !1.
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In particular, the last result implies the following.

Corollary 3.12 There is no f 2 Exp(f0g) that is a frequently universal function

for any translation operator Te� .

3.2 The Translation Operator

The main topic of this section is the conjugate indicator diagram of frequently uni-

versal functions for the translation operator Te1 . We provide conditions for compact,

convex sets K � C that admit or exclude the existence of such functions in Exp(K).

Furthermore, we consider additional restrictions on the rate of growth on the real

axis for universal and frequently universal functions for Te1 .

Our results below can be easily extended to arbitrary translation operators Te� .

The result of S. M. Duyos-Ruiz and its improvement due to K. C. Chan and J.

H. Shapiro provide the existence of universal functions for Te1 with arbitrary non-

polynomial growth. Considering only the growth in the direction of the real axis,

the universality of an entire function f for Te1 implies that jf j is unbounded on R.

We shall now investigate to what extent universal functions for Te1 can have an

arbitrary slow rate of growth on the real axis.

According to Theorem B.4, the only functions of exponential type zero that have

polynomial rate of growth on the real axis are the polynomials and are thus not

universal for Te1 . Hence we must allow at least arbitrarily small but positive expo-

nential type for our desired functions. Consequently, we are in the situation where

also frequent universality may be possible (cf. Theorem 3.8, Corollary 3.12).

Theorem 3.13 Let q : [0;1) ! [1;1) such that q(r) !1 as r tends to in�nity

and d > 0. Then for every increasing sequence (kl)l2N of positive integers that

satis�es

q(x) � lc for all x 2 [(1� �)kl; (1 + �)kl] =: Ikl (3.3)

for some c > 1 and � > 0, there exists a function f 2 Exp([�id; id]) that is frequently
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universal for (T kl
e1
)l2N on Exp([�id; id]) and such that

jf(x)j = O(q(jxj))

on the real axis.

Proof. We set K := [�id; id] and Y0 = linspan
�
f� : � 2 [�id

2
; id

2
]
	
where

f�(z) :=
(e�z � 1)2

z2
:

Then Y0 is dense in Exp(K) by Theorem 1.48, and K(f�) = K. Furthermore, let

E :=

�
f 2 Exp(K) : sup

x2R

jf(x)j
q(jxj) <1

�

be endowed with the topology induced by the norms (jj � jjn)n2N where

jjf jjn := jjf jjK;n + sup
x2R

jf(x)j
q(jxj) :

Then E is a Fréchet space.

We apply the frequent universality criterion (cf. Theorem 2.17) to the mappings

T kl
e1

: E ! Exp(K)

and

Skl : Exp(K)! E

with Skl := T kl
e�1

.

In a �rst step, it is shown that in condition (1) and (2) of this criterion, we have

absolute convergence for (kl)l2N = (k)k2N. Let n 2 N and � 2 [�id
2
; id

2
] be �xed.

Taking into account that � is purely imaginary, we obtain����e�(z+k) � 1
�2��� e�HK(z)� 1

2n
jzj � ���e2�z��+ 2 je�zj+ 1

�
e�HK(z)� 1

2n
jzj <1 (3.4)



Chapter 3 Hypercyclic and Frequently Hypercyclic Di�erential Operators 40

for all non-negative integers k. Hence

sup
jz+kj> k

2

jf�(z + k)j e�HK(z)� 1
n
jzj � sup

jz+kj> k
2

je�(z+k) � 1j2�
k
2

�2 e�HK(z)� 1
n
jzj = O

�
1

k2

�
:

(3.5)

Again from inequality (3.4), it follows that

sup
1�jz+kj� k

2

jf�(z + k)j e�HK(z)� 1
n
jzj

� sup
1�jz+kj� k

2

je�(z+k) � 1j2 e�HK(z)� 1
2n
jzj e�

1
2n
jzj = O

�
e�

k
4n

�
: (3.6)

Obviously,

sup
jz+kj�1

jf�(z + k)j e�HK(z)� 1
n
jzj � sup

jzj�1
jf�(z)j e� k�1

n = O
�
e�

k�1
n

�
: (3.7)

The estimations (3.5), (3.6) and (3.7) now yield

jjT k
e1
f�jjK;n = sup

z2C

����(e�(z+k) � 1)2

(z + k)2

���� e�HK(z)� 1
n
jzj = O

�
1

k2
+ e�

k
4n + e�

k�1
n

�
:

Thus the series
1P
k=1

jjT k
e1
f�jjK;n converges for every n 2 N. By Remark 2.18, this

yields the unconditional convergence of
1P
k=1

T k
e1
f� in Exp(K). The unconditional

convergence remains for every function f 2 Y0, and this implies that condition (1)

of the frequent universality criterion is satis�ed. With the same reasoning, one

obtains the unconditional convergence of
1P
k=1

T l
e1
Sk+lf in Exp(K) for all f 2 Y0.

This is condition (2) of the frequent universality criterion. Obviously, the similar

reasoning holds for all subsequences of (k)k2N. As condition (4) is obvious, there is

only (3) left to show.

On the real axis, the moduli of the functions f� are bounded. With assumption

(3.3), we obtain

sup
x2Ikl[�Ikl

jf�(x� kl)j
q(jxj) = O

�
1

lc

�
: (3.8)
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If x =2 Ikl [ �Ikl , then jx� klj > �kl and hence

sup
x2Rn(Ikl[�Ikl )

jf�(x� kl)j
q(jxj) � sup

x2Rn(Ikl[�Ikl )

je�(x�kl) � 1j2
(�kl)2

= O

�
1

k2l

�
: (3.9)

Combining (3.8) and (3.9), we have

1X
l=1

sup
x2R

jf�(x� kl)j
q(jxj) <1:

Together with the convergence of
1P
l=1

jjSklf�jjK;n for each n 2 N, which is shown in the

�rst part of the proof, this implies the convergence of
1P
l=1

jjSklf�jjn for every n 2 N.
According to Remark 2.18 and the de�nition of Y0, we obtain the unconditional

convergence of
1P
l=1

Sklf in E for every f 2 Y0. Now the frequent universality criterion

yields that (T kl
e1
)l2N is frequently universal from E to Exp(K).

Corollary 3.14 Let q : [0;1) ! [1;1) be such that q(r) ! 1 as r tends to

in�nity and a; b 2 R with a < b. Then there is an f 2 Exp([ia; ib]) that is universal

for Te1 on Exp([ia; ib]) and that satis�es

jf(x)j = O(q(jxj))

on the real axis.

Proof. We choose 0 < d < b � a. Since q tends to in�nity, we can �nd an

increasing sequence (kl)l2N of positive integers such that condition (3.3) holds.

Now Theorem 3.13 provides a g 2 Exp([�id; id]) that is frequently universal for

(T kl
e1
)l2N on Exp([�id; id]) and such that jg(x)j = O(q(jxj)) on R. In particu-

lar, this implies that g is universal for (T n
e1
)n2N on Exp([�id; id]). We choose

a suitable � 2 Q such that f := e2�i� g 2 Exp([ia; ib]). Note that f satis�es

jf(x)j = O(q(jxj)) on the real axis. There exists an m 2 N such that � km 2 N,
and hence e2�i�(z + km) = e2�i�(z+km) = e2�i�(z) for all k 2 N. We obtain that

(Tm
e1
)kf = e2�i� (T

m
e1
)kg
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holds for all k 2 N, and since g is also universal for Tm
e1

due to Ansari's theorem (cf.

Theorem 2.10), one easily veri�es that f is the desired function.

Corollary 3.15 Let a < b be real numbers. Then Te1 is frequently hypercyclic on

Exp([ia; ib]). Furthermore, for each c > 1 there is a frequently universal function

f 2 Exp([ia; ib]) for Te1 on Exp([ia; ib]) that satis�es

jf(x)j = O(jxjc)

on the real axis.

Proof. With q(x) := 1 + jxjc, condition (3.3) is satis�ed for the whole sequence

(kl)l2N = (k)k2N. Consequently, for arbitrary d > 0, Theorem 3.13 provides a

frequently universal function g 2 Exp([�id; id]) for Te1 on Exp([�id; id]) satisfying
the desired growth condition on R. Now, for some 0 < d < b � a and a suitable

choice of � 2 Q we have that f := e2�i� g 2 Exp([ia; ib]). Taking into account that

Ansari's theorem still holds for frequent hypercyclicity (cf. Theorem 2.15), a similar

reasoning as in the proof of Corollary 3.14 shows that f is frequently universal for

Te1 on Exp([ia; ib]).

The zeros of entire functions of exponential type are restricted with respect to their

frequency on di�erent rays and sectors. These restrictions are closely related to the

geometry of the conjugate indicator diagram. A positive lower density of the zeros

in the direction of the real axis requires some extension of the conjugate indicator

diagram in the direction of the imaginary axis. We have shown that such a condition

is already su�cient to allow frequent universality for the translation operator Te1 .

Our next aim is to �nd restrictions for the conjugate indicator diagram of a fre-

quently universal function for Te1 . For that purpose we make use of a classical

result (cf. Theorem B.3) that connects distributions of zeros and growth conditions

for holomorphic functions. This result leads to the following lemma.

Lemma 3.16 Let f be an entire function of exponential type and

c :=
1

2
maxfjIm(z)� Im(w)j : z; w 2 K(f)g:

We further assume that � = (rn e
i�
n )n2N � fz : j arg(z)j < g with 0 <  < �

2
is a
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sequence of zeros for f so that rn+1 � rn > � > 0 for all n 2 N. Then f � 0 if

d := dens(�) >
c

� cos()
:

Proof. We can assume that K(f) is located such that

supfIm(z) : z 2 K(f)g = c = supf�Im(z) : z 2 K(f)g

and K(f) � fz : Re(z) � 0g. Otherwise, consider the function e�f with a suitable

� 2 C. Then jf(z)j = O
�
e(c+")jzj

�
in fz : Re(z) � 0g for every " > 0.

We recall that n�(r) =: n(r) countes the rn that are less or equal than r. For a

given r > 0, we have

Z r

0

n(t)

t2
dt =

n(r)�1X
k=1

Z rk+1

rk

k

t2
dt+

Z r

rn(r)

n(t)

t2
dt

=

n(r)�1X
k=1

k

�
1

rk
� 1

rk+1

�
+
n(r)

rn(r)
� n(r)

r

=
X
rk<r

1

rk
� n(r)

r

and hence

X
rk<r

1

rk
�
Z r

0

n(t)

t2
dt: (3.10)

By assumption, we can �nd an r0 > 0 such that n(r)
r

> d� "1 >
c+"2

� cos()
for all r � r0

and some small "1; "2 > 0. With (3.10), we obtain

X
rk<r

1

rk
�
Z r0

0

n(t)

t2
dt+

Z r

r0

n(t)

t2
dt > M + (d� "1) log(r)

with some constant M . Since � is a sequence in the sector fz : j arg(z)j < g,
X
rk<r

cos(�k)

rk
� log(r)

c+ "2
�

> cos() (M + (d� "1) log(r))� log(r)
c+ "2
�

:
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By construction, this means

X
rn<r

cos(�k)

rk
� log(r)

c+ "2
�

!1 as r !1

and �nally implies that

exp

 X
rn<r

cos(�n)

rn

!
r�

c+"2
� !1

as r !1. Theorem B.3 yields f � 0.

Corollary 3.15 provides the existence of a frequently universal function f for Te1
on H(C) that is of exponential type and such that K(f) is a line segment on the

imaginary axis. We shall see that in this result it is essential that K(f) is a vertical

line segment.

Theorem 3.17 Let [w; v] be some non-vertical line segment in C, which means

Re(v) 6= Re(w). Then there is no frequently universal function f for Te1 on H(C)

that is of exponential type and that satis�es K(f) = [w; v].

Proof. Suppose that f is of exponential type with K(f) = [w; v], and f is frequently

universal for Te1 on H(C). Then we can �nd a sequence (�n)n2N of positive integers

that has positive lower density d and is such that

sup
jzj� 1

2

jf(z + �n)� zj < 1

2

for all n 2 N. Rouché's theorem implies that f has a zero ~�n in fz : jz � �nj < 1
2
g

for every positive integer n. Obviously, also dens((~�n)n2N) = d > 0.

Without loss of generality, let K(f) = frei� : r 2 [0; a]g with 0 � j�j < �
2
and

some a 2 [0;1). Otherwise, consider e�f with an appropriate � 2 C such that

K(e�f) = � + K(f) has the desired position. The rotation of the arguments of f

by an angle of �� causes the rotation of the conjugate indicator diagram by the

same angle. This can be easily deduced from the connection between the indicator

function and the conjugate indicator diagram (cf. Theorem 1.20). That means, for

g(z) := f(e�i�z) we have K(g) = e�i�K(f). Thus K(g) is a horizontal line segment
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and consequently,

maxfjIm(z)� Im(w)j : z; w 2 K(g)g = 0: (3.11)

Further, (ei�~�n)n2N is a sequence of zeros of g. Since j�j < �
2
, we can �nd some

 2 (j�j; �
2
) such that (ei�~�n)n�n0 is contained in the sector fz : arg(z) < g for

su�ciently large n0. According to the lower density of (~�n)n2N and (3.11), we obtain

a contradiction to Lemma 3.16.

Theorem 3.17 in particular excludes singleton conjugate indicator diagrams for fre-

quently universal functions for Te1 on H(C) (hence on Exp(K)).

Another restriction is given by the following result:

Theorem 3.18 Let K be a compact, convex subset of fz : Re(z) � 0g such that

K \ iR is a singleton. Then there is no frequently universal function f for Te1 on

H(C) that is of exponential type and that satis�es K(f) = K.

Proof. Assuming the contrary, we suppose that f is an entire function of exponential

type that is frequently universal for Te1 on H(C) and such that K(f) = K. Then

there exists a sequence (�n)n2N of positive integers with dens((�n)n2N) = d > 0 and

such that

max
jzj� 1

2

jf(z + �n)� zj < 1

4
: (3.12)

Let K1 := K(f) \ fz : Re(z) � �"g with " > 0 so small that

maxfjIm(z)� Im(w)j : z; w 2 K1g < 2�d: (3.13)

This is possible since the intersection of K(f) with the imaginary axis is a singleton.

According to Theorem B.1 or Corollary B.2, we can decompose Bf into the sum

H1 +H2 = Bf

where H1 2 H0(C n K1) and H2 2 H0(C n K2) with K2 := K(f) nK1. We set

h1 = B�1(H1) and h2 = B�1(H2). The set K2 is strictly contained in the left
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half-plane, and thus there are some � > 0 and C > 0 such that

jh2(z)j < Ce�� jzj

if Re(z) > 0. Now (3.12) yields

1

4
> max

jzj� 1
2

jf(z + �n)� zj = max
jzj� 1

2

jh1(z + �n) + h2(z + �n)� zj

> max
jzj� 1

2

jh1(z + �n)� zj � Ce��(�n�
1
2
) (3.14)

for all n 2 N. Since Ce��(�n� 1
2
) ! 0 as n tends to in�nity, (3.14) implies

max
jzj� 1

2

jh1(z + �n)� zj < 1

2

for n larger than some n0 2 N. Then h1 has, by Rouché's theorem, a zero ~�n in

fz : jz � �nj � 1
2
g for all n > n0. The sequence (~�n)n>n0 has the same lower density

as (�n)n2N, which is d. By (3.13), the conjugate indicator diagram K(h1) has an

extension in the direction of the imaginary axis less than 2�d, and for all  > 0 the

sequence (~�n)n>n0 is contained in the sector fz : j arg(z)j < g if n0 is su�ciently

large. This contradicts Lemma 3.16.

3.3 Generalized Di�erential Operators

For the di�erential operators '(D) introduced in Section (3.1), it is required that the

inducing function ' is of exponential type in order to ensure that '(D) is well-de�ned

on H(C). On Exp(K) we are concerned with functions that have a comparatively

low rate of growth. This allows us to de�ne such operators for more general func-

tions '.

We recall our convention that a ['] 2 H(K) is identi�ed with one of its represen-

tatives '. A domain of holomorphy of ' is denoted by 
'. In cases where K is

convex, we require that 
' is simply connected.

Di�erentiation of parameter integrals applied to the Pólya representation (cf. The-
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orem 1.23) yields

f
0

(z) =
1

2�i

Z
�

Bf(�) � e�z d�:

Inspired by this formula, we introduce a class of operators for entire functions of

exponential type. We replace the � caused by the di�erentiation in the above integral

by some adequate holomorphic function. Precisely, let f be an entire function of

exponential type and ' 2 H(K(f)). We de�ne

T'f(z) :=
1

2�i

Z
�

Bf(�)'(�) e�z d� (3.15)

where � is a Cauchy cycle for K(f) in 
'. This de�nition is obviously independent

from the choice of the Cauchy cycle.

Proposition 3.19 Let K be a compact, convex set in C and ' 2 H(K). Then

T' : Exp(K)! Exp(K)

de�ned by (3.15) is a continuous operator.

Proof. For a given positive integer n, we choose � such that j�j � 1
n
D +K. Then

Hconv(j�j) � HK+ 1
n
D
and that means (Re(�z) � HK(z) � n�1jzj) � 0 for all � 2 j�j

and all z 2 C (compare Remark 1.21(4) and Example 1.22(4)). Consequently,���e�z�HK(z)� 1
n
jzj
��� � 1 for all z 2 C and all � 2 j�j. As B : Exp(K)! H0(C nK) is an

isomorphism and j�j is compact in C nK, there is an m 2 N and a constant C > 0

such that supfjBf(�)j : � 2 j�jg � C kfkK;m. With M := 1
2�

R
�
j'(�)jd�, we now

obtain

kT'fkK;n = sup
z2C

���� 1

2�i

Z
�

'(�)Bf(�) e�z d�
���� e�HK(z)� 1

n
jzj

� sup
z2C

1

2�

Z
�

j'(�)j jBf(�)j
��� e�z�HK(z)� 1

n
jzj
��� d� �MC kfkK;m :

Remark 3.20

(1) Assume that K � C is compact, not necessarily convex, and ' 2 H(K). Then

the operator T' is de�ned on M := ff 2 Exp(conv(K)) : K(f) � Kg, and we
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can write

T'jM : M ! Exp(conv(K)):

(2) In the de�nition of T' in (3.15), let L � K(f) be such that Bf 2 H0(C n L).
Then one easily observes that the Cauchy cycle for K(f) in 
' can be reduced

to a Cauchy cycle for L in 
'.

Remark 3.21 The operators T' are a generalization of the di�erential operators

in Section 3.1:

(1) If '(z) =
1P
�=0

'�z
� is an entire function of exponential type and f 2 Exp(K),

then

T'f(z) =
1

2�i

Z
�

Bf(�)'(�) e�z d� =
1X
�=0

'�
2�i

Z
�

Bf(�) �� e�z d� =
1X
�=0

'�f
(�)(z):

Hence we have T' = '(D)jExp(K).

(2) If ' is represented by the power series
1P
�=0

'�(z�z0)� in an open neighbourhood
of K, then for f 2 Exp(K)

T'f(z) =
1X
�=0

'�
1

2�i

Z
�

Bf(�) (� � z0)
� e�z d�

=
1X
�=0

'�

�X
k=0

�
�

k

�
(�z0)��k 1

2�i

Z
�

Bf(�) �k e�z d�

=
1X
�=0

'�

�X
k=0

�
�

k

�
(�z0)��k f (k)(z):

Thus it is justi�ed to call these operators generalized di�erential operators.

Lemma 3.22 Let K be a compact, convex set in C, f 2 Exp(K) and ' 2 H(K).

Then for all h 2 H(
'), we have

Z
�

Bf(�)'(�)h(�) d� =
Z
�

BT'f(�)h(�) d�

where � is a Cauchy cycle for K in 
'.
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Proof. As a consequence of Proposition 1.47, E := linspanfe� : � 2 Cg is dense in

H(C). Since 
' is simply connected, Runge's theorem implies that E is dense in

H(
'). We consider the functional

h�; hi :=
Z
�

(Bf(�)'(�)� BT'f(�)) h(�) d�

on H(
'). With the Pólya representation for T'f , the following holds:

1

2�i

Z
�

BT'f(�) e�� d� = T'f(�) =
1

2�i

Z
�

Bf(�)'(�) e�� d�:

Hence h�; e�i = 0 for all � 2 C and consequently �jE = 0. As E is dense in H(
'),

we have � = 0.

Henceforth, a germ ' 2 H(K) is said to be zero-free if ' has no zeros in K. For a

zero-free ' 2 H(K), we always assume that 
' is so small that ' still has no zeros

in 
'.

Corollary 3.23 Under the assumptions of Proposition 3.19, the above lemma

immediately yields

(1)

T 2
'f(z) =

1

2�i

Z
�

BT'f(�)'(�) e�z d� = 1

2�i

Z
�

Bf(�)'2(�) e�z d�:

Hence, for every non-negative integer n, we have

T n
' f(z) =

1

2�i

Z
�

Bf(�)'n(�) e�z d�:

(2) If ' is zero-free, then 1
'
2 H(
') and

T 1
'
T'f(z) =

1

2�i

Z
�

BT'f(�)
'(�)

e�z d� =
1

2�i

Z
�

Bf(�) '(�)
'(�)

e�z d� = f(z):

Thus T' is invertible and T�1
' = T 1

'
.

Example 3.24

(1) In case that ' = e� for some � 2 C n f0g, Remark 3.21 yields Te� =

e�(D)jExp(K) for each compact and convex set K � C. As e�(D) induces
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the translation operator f 7! f(� + �) (see Remark 3.1), it is now clear why

we use the notation Te� for this operator.

The function e� is zero-free in C so that, by Corollary 3.23 (2), Te� is invertible

on Exp(K) for every compact and convex set K and its inverse is given by

Te�� .

(2) It is clear that Tid = id(D)jExp(K) = DjExp(K) for every K � C compact and

convex. Corollary 3.23 (2) implies that the di�erentiation operator is invertible

on Exp(K) if K does not contain the origin. In this case, we have

(D�1)kf(z) = T k
1
id

f(z) =
1

2�i

Z
�

Bf(�)
�k

e�z d�

for f 2 Exp(K).

(3) Let '(z) = ez�1, then T'f(z) is the well-known forward di�erence �(f)(z) =

f(z + 1)� f(z). The n-th iteration applied to an f 2 Exp(K) is given by

�n(f)(z) =
nX

k=0

�
n

k

�
(�1)n�kf(z + k):

(4) Let '(�) = 1
1�� , then T' is an invertible operator on Exp(K) for all compact

and convex sets K � C n f1g. For an f 2 Exp(K), we have

T k
'f(z) =

1

2�i

Z
�

B f(�)
(1� �)k

e�z d�:

IfK is contained in the unit disc, then '(z) =
1P
n=0

zn in an open neighbourhood

of K and thus

T'f(z) =
1X
n=0

f (n)(z)

for f 2 Exp(K).

Similar to Proposition 3.2, we have the following result for generalized di�erential

operators.
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Proposition 3.25 Let K be a compact, convex subset of C and T a continuous

operator on Exp(K). Then the following are equivalent:

(i) T commutes with the di�erentiation operator.

(ii) T commutes with all translation operators Te�.

(iii) There is a germ ' 2 H(K) such that T = T'.

Proof. We start with the implication (i)) (ii). Let f 2 Exp(K), then

TTe�f(z) = T

�
1

2�i

Z
�

Bf(�) e�(z+�) d�
�

=
1X
k=0

�k

k!
T

�
1

2�i

Z
�

Bf(�) �k e�z d�
�

=
1X
k=0

�k

k!
Tf (k)(z) =

1X
k=0

�k

k!
(Tf(z))(k) = Te�Tf(z):

For (ii) ) (iii), we consider � 2 Exp�(K) de�ned by h�; fi := Tf(0). Theorem

1.38 implies that � is represented by a germ ' 2 H(K) via

h�; fi = 1

2�i

Z
�

Bf(�)'(�) d�

where � is a Cauchy cycle for K in 
'. Since T commutes with all translation, we

obtain

Tf(z) = TezTf(0) =
1

2�i

Z
�

Bf(�)'(�) e�z d�

for all z 2 C.
In order to show the implication (iii) ) (i), we can assume that T = T' with

' 2 H(K). For f 2 Exp(K), Lemma 3.22 yields

DTf(z) = D

�
1

2�i

Z
�

Bf(�)'(�) e�z d�
�

=
1

2�i

Z
�

Bf(�)'(�) � e�z d�

=
1

2�i

Z
�

Bf 0

(�)'(�) e�z d� = Tf
0

(z):
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3.4 Hypercyclicity of Generalized Di�erential

Operators

In this section we give a characterization of the hypercyclicity of the operators T'
on Exp(K) depending on the location of K. This result provides detailed infor-

mation about the growth of universal functions with respect to particular half-rays

and sectors. In that sense some of the known results introduced in Section 3.1 are

extended.

In addition, it will turn out that for every hypercyclic generalized di�erential oper-

ator there always exist some universal functions of the form fe� with f 2 Exp(f0g)
and a certain � 2 C.

Theorem 3.26 Let K � C be compact, convex and ' 2 H(K) non-constant. Then

T' is hypercyclic on Exp(K) if and only if K \ '�1(T) 6= ;.

Proof. Firstly, assume that K � '�1(D). Let � be a Cauchy cycle for K in '�1(D).

Then sup
�2j�j

j'(�)j = � < 1, and hence for every f 2 Exp(K)

jT n
' f(0)j =

���� 1

2�i

Z
�

Bf(�)'n(�) d�
���� � �n

2�

Z
�

jBf(�)j d� ! 0

as n tends to in�nity. Consequently, T' cannot be hypercyclic on Exp(K).

In the next step, we assume K � '�1(C n D). Then ' 6= 0 in an open neighbour-

hood of K. Thus, by Corollary 3.23 (2), the operator T' is invertible on Exp(K)

and T�1
' = T 1

'
. Since 1='(K) � D, the above reasoning implies that T 1

'
cannot be

hypercyclic on Exp(K). Its inverse T' cannot be hypercyclic on Exp(K) by Propo-

sition 2.6.

Now let K � C be a compact and convex set such that '�1(T) \ K� 6= ;. We

de�ne W1 := '�1(D) \ K and W2 := '�1(C n D) \ K. Then the subspaces

X0 := linspanfe� : � 2 W1g and Y0 := linspanfe� : � 2 W2g are dense in Exp(K)

by Proposition 1.47. The Borel transform of e� is the Cauchy kernel � 7! 1=(� � �)

(compare Remark 1.40). Thus for all � 2 K, the Cauchy integral formula yields

T'e�(z) =
1

2�i

Z
�

Be�(�)'(�) e�z d� = 1

2�i

Z
�

'(�)

� � �
e�z d� = e�(z)'(�)
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implying that for each e� 2 X0 the iteration jjT k
'e�jjK;n = jje�jjK;n j'(�)jk tend to

zero. Consequently, for all f 2 X0,

T n
' f ! 0 (n!1): (3.16)

We de�ne S : Y0 ! Y0 as the linear extension of e� 7! '(�)�1e�. (Note that

j'(�)j > 1 by the de�nition of Y0.) Then for e� 2 Y0, the iteration jjSke�jjK;n =

jje�jjK;n j'(�)j�k converges to zero since j'(�)j > 1. Thus for all f 2 Y0, we have

Sn
'f ! 0 (3.17)

as n tends to in�nity. Finally, TSf = f , for all f 2 Y0, together with (3.16) and

(3.17) shows that the hypercyclicity criterion (Theorem 2.7) is satis�ed. This implies

the hypercyclicity of T on Exp(K).

For an arbitrary set K with K \ '�1(T) 6= ;, we choose a sequence of compact,

convex sets (Kn)n2N contained in 
' such that K�
n � Kn+1, the intersection of all

sets Kn equals K and K�
n \ '�1(T) 6= ;. Then the above reasoning implies the

hypercyclicity of T on Exp(Kn) for all n. The hypercyclicity of T on Exp(K) now

follows from Corollary 2.21 (2).

Remark 3.27 Consider a di�erential operator '(D) on H(C). From Remark 3.21

we know that '(D)jExp(K) = T' for every compact, convex set K � C. Let f be a

function of exponential type.

(1) In the �rst part of the above proof, we have shown that T n
' f(0)! 0 as n!1

whenever K(f) � '�1(D). This implies that f cannot be universal for '(D)

on H(C) in this case.

(2) Conversely, the above proof does not exclude the universality of f for '(D)

on H(C) if K(f) � '�1(C n D).
One can see that the non-hypercyclicity of T' on Exp(K) in case that K �
'�1(C n D) is closely related to the topology of Exp(K): Take ' = e1 and

K = f1g. If f 2 Exp(f1g) is not identical zero, there is some x 2 R such that
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jf(x)j > 0. Since Hf1g(z) = jzj cos(arg(z)), we obtain

jjT k
e1
f jjf1g;n = sup

z2C
jf(z + k)j e�H1(z)� 1

n
jzj � jf(x)j ejx�kj� 1

n
jx�kj

for all k > x. In the case that n > 1, the above estimation yields that

jjT k
e1
f jjf1g;n tends to in�nity as k !1 and hence excludes the universality of

f for Te1 on Exp(f1g).
Consequently, the question arises whether there is an entire function of expo-

nential type f that is universal for Te1 on H(C) and such that its conjugate

indicator diagram is contained in fz : Re(z) > 0g = e�11 (C n D).

(3) Let ' be non-constant. Theorem 2.9 implies that for each compact and convex

set K \ '�1(T) 6= ; there is a dense subspace M � Exp(K) (hence a dense

subspace of H(C)) such that each f 2M n f0g is universal for '(D).

Corollary 3.28 Let K be a compact, convex subset of C and ' 2 H(K) non-

constant.

(1) Theorem 3.26 yields the hypercyclicity of T' on Exp(f�g) for every � contained
in K \ '�1(T). Since all functions in Exp(f�g) are of the form fe� with

f 2 Exp(f0g), the universal functions for T' on Exp(f�g) are also of this

form. These functions are obviously still universal for T' on Exp(K).

(2) Proposition 2.19 in connection with Theorem 3.26 implies the following: For

every compact and convex set L � K that intersects '�1(T), there is an entire

function of exponential type f that is universal for T' on Exp(L) and such

that K(f) = L. The set of these functions is residual in Exp(L).

Example 3.29 The following assertions are immediate consequences of Theorem

3.26:

(1) For � 2 C n f0g, the translation operator Te� is hypercyclic on Exp(K) if and

only if K intersects the ray fi�� : � 2 Rg.

(2) For � 2 C n f0g, the operator �D is hypercyclic on Exp(K) if and only if K

intersects j�j�1T.
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We will go through an example showing that the above results have an interesting

interpretation for the isomorphic space H0(C n K�1). Consider the operator B :

H(
)! H(
) de�ned by

B F (z) :=

8<
:

F (z)�F (0)
z

; for z 6= 0

F
0
(0); for z = 0

where 
 is a connected open set containing the origin. In terms of power series, the

mapping B is given by
1X
n=0

anz
n 7!

1X
n=0

an+1z
n:

In [GS91], it is noted that B is not hypercyclic on H(C), and from criteria for

the hypercyclicity of weighted shift operators in [GE00b], it turns out that B is

hypercyclic on H(RD) if and only if R � 1. Due to the result for Exp(K) in

Theorem 3.26, we can derive the following.

Theorem 3.30 Let � 6= 0 be a complex number. Then the operator B is hypercyclic

on H0(C n f��1g) if and only if j�j = 1.

Proof. By means of Remark 1.40, it is easily seen that the diagram

Exp(f�g)
UB
��

D // Exp(f�g)

H0(C n f��1g) B
// H0(C n f��1g)

(UB)�1

OO

commutes. As UB is an isomorphism from Exp(f�g) to H0(Cnf��1g) (cf. Proposi-
tion 1.30, Proposition 1.39), the hypercyclicity of B on H0(C n f��1g) is equivalent
to the hypercyclicity of D on Exp(f�g). The assertion now follows from Theorem

3.26.

3.5 The Transform �'

We introduce a transform, namely �', that connects di�erent generalized di�erential

operators. At the end of this section, it will be easy to show that �' carries over
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(frequent) universality for these operators.

As in the de�nition of T' in (3.15), our starting point is the Pólya representation

f(z) =
1

2�i

Z
�

Bf(�) e�z d�

in which we now replace the � in the exponent: Let f be an entire function of

exponential type and ' 2 H(K(f)). We de�ne

�'f(z) :=
1

2�i

Z
�

Bf(�) e'(�)z d� (3.18)

where � is a Cauchy cycle for K(f) in 
'. This de�nition is independent from the

particular choice of the Cauchy cycle. If L � K(f) is such that Bf 2 H0(C n L),
one easily observes that � can be reduced to a Cauchy cycle for L in 
'.

Proposition 3.31 Let K be a compact, convex subset of C and ' 2 H(K) non-

constant. Then, for each f 2 Exp(K), the function �'f de�ned by (3.18) is an

entire function of exponential type with K(�'f) � conv('(K(f))). For every com-

pact and convex set L � C that contains conv('(K)),

�' : Exp(K)! Exp(L)

is a continuous operator that has dense image.

Proof. One immediately veri�es that �'f is an entire function.

We �x some positive integer n and choose � such that '(j�j) is contained in

conv('(K(f))) + 1
n
D. Then

Hconv('(j�)j)(z) � Hconv('(K(f)))+ 1
n
D
(z) = Hconv('(K(f)))(z) +

1

n
jzj
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(cf. Remark 1.21 (4), Example 1.22 (4)) and thus

jj�'f jjconv('(K(f)));n = sup
z2C

���� 1

2�i

Z
�

Bf(�) e'(�)zd�
���� e�Hconv('(K(f)))(z)� 1

n
jzj

� len(�)
2�

sup
�2j�j

jBf(�)jeHconv('(j�j))(z) e�Hconv('(K(f)))(z)� 1
n
jzj (3.19)

� len(�)
2�

sup
�2j�j

jBf(�)j <1:

As n was arbitrary, we have shown that K(�'f) is contained in conv('(K(f))),

which in particular implies that �'f is of exponential type.

For the second assertion, it is su�cient to consider �' : Exp(K)! Exp(conv('(K)))

because Exp(conv('(K))) is continuously and densely embedded in Exp(L) (cf. Re-

mark 1.45 (2)) and we have shown that �'(Exp(K)) � Exp(conv('(K))).

Taking into account that sup
�2j�j

jBf(�)j � C jjf jjK;m for some C <1 and m 2 N due

to the fact that B : Exp(K) ! H0(C nK) is an isomorphism, the continuity of �'

follows from (3.19) when K(f) is replaced by K.

It remains to show that �'(Exp(K)) is dense in Exp(conv('(K))). Therefore, let

K1; K2; ::: be a sequence of compact, convex sets in 
' such that K�
n � Kn+1 and

the intersection of all these sets is equal to K. One easily deduces that the Borel

transform of e� is given by � 7! 1
��� (cf. Remark 1.40). Inserting this in (3.18), the

Cauchy integral formula yields �'(e�) = e'(�) for all � in some Kn. Consequently,

for arbitrary n 2 N

�'(linspanfe� : � 2 Kng) = linspanfe'(�) : � 2 Kng � Exp(conv('(Kn)))

which implies that �' : Exp(Kn) ! Exp(conv('(Kn))) has dense image according

to Proposition 1.47 and the fact that ' is non-constant. Since Exp(K) is dense in

Exp(Kn), we obtain that �'(Exp(K)) is dense in Exp(conv('(Kn))).

Furthermore, we have

\
n2N

conv('(Kn)) = conv('(K))
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and hence \
n2N

Exp(conv('(Kn))) = Exp(conv('(K)));

also in topological sense by Remark 1.27. It is now obvious that �'(Exp(K)) is

dense in Exp(conv('(K))).

For the formulation of our next result, we shall introduce another convention for 
'.

If ' 2 H(K) is univalent on some open neighbourhood of K, we assume that 
' is

so small that ' is univalent on 
'. We recall that a holomorphic function ' 2 H(
)

(with 
 open) is called univalent if it maps one-to-one from 
 to '(
). A germ

' 2 H(K) is said to be univalent if ' is univalent on some open neighbourhood of

K.

We consider the transform

G'F (z) := 1

2�i

Z
�

F (�)

z � '(�)
d� (3.20)

for functions F 2 H0(C nK) with K � C compact and ' 2 H(K) univalent. Here

� shall be a Cauchy cycle for K in 
' such that ind'��(z) = 0. Note that ' �� is a

Cauchy cycle for '(K) in '(
') by Proposition 1.10. Then G' maps linearly from

H0(C nK) to H0(C n '(K)). It will turn out that G' is a H0(C nK)-version of �'.

The above integral transform is inspired by the work of R.C. Buck [Buc48], in which

functions of the form

G(z) =
1

2�i

Z
�

F (�)

1� z'(�)
d�

are considered for the investigation of integral-valued entire functions.

Proposition 3.32 Let K � C be compact and ' 2 H(K) univalent. Then

G' : H0(C nK)! H0(C n '(K))

de�ned by (3.20) satis�es the following assertions:

(1) G' is an isomorphism and its inverse G�1' is given by G'�1.

(2) If ~' 2 H('(K)) is univalent, then G ~' G' = G ~'�'.

Proof. The transform G' is well-de�ned: Let � and ~� be Cauchy cycles for K in


' with ind'��(z) = 0 and ind'�~�(z) = 0. Then the cycle ' � � [ ' � ~�� is such
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that ind'��['�~��(z) = 0 and ind'��['�~��(w) = 0 for all w =2 '(
') n '(K). Since

(F �'�1) ('�1)0=(z � id) is holomorphic in '(
') n ('(K)[ fzg), Cauchy's integral
theorem yields

1

2�i

Z
�

F (�)

z � '(�)
d� � 1

2�i

Z
~�

F (�)

z � '(�)
d�

=
1

2�i

Z
'��['�~��

(F � '�1)(w) ('�1)0(w)
z � w

dw = 0:

For an arbitrary compact set L � Cn'(K), we choose a Cauchy cycle � for K in 
'

such that '(j�j) \ L = ; and ind'��(z) = 0 for all z 2 L. Then for F 2 H0(C nK),

sup
z2L

jG'F (z)j � len(�)
2� dist(L; '(j�j)) sup

�2j�j
jF (�)j:

This implies the continuity of G'.
We turn now to the proof of (2). For z 2 C n ( ~' � '(K)), we choose a Cauchy cycle
~� for '(K) in 
 ~' \ '(
') such that ind ~'�~�(z) = 0. We further choose a Cauchy

cycle � for K in 
' with ind'��(w) = 0 for all w 2 j~�j. By Proposition 1.10,

' � � is a Cauchy cycle for '(K) in '(
') and '�1 � ~� is a Cauchy cycle for K in

'�1(
 ~' \ '(
')). Now, considering Lemma 1.11, we obtain

G ~' G'F (z) = G ~'

�
w 7! 1

2�i

Z
�

F (�)

w � '(�)
d�

�
(z)

=
1

2�i

Z
~�

1

z � ~'(w)

1

2�i

Z
�

F (�)

w � '(�)
d� dw

=
1

2�i

Z
~�

1

z � ~'(w)

1

2�i

Z
'��

F ('�1(t))
w � t

('�1)
0

(t) dt dw

=
1

2�i

Z
~�

F ('�1(w))
z � ~'(w)

('�1)
0

(w) dw

=
1

2�i

Z
'�1�~�

F (�)

z � ~' � '(�) ('
�1)

0

('(�))'
0

(�) d�

= G ~'�'F (z)
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for all F 2 H0(C nK).

From (2), we obtain G'�1 G' = G'�1�' = id and G' G'�1 = id. The continuity of G'�1

is shown by the �rst part of the proof when ' is replaced by '�1. This completes

the proof.

For the formulation of the next result we note that for L � C compact, possibly

non-convex, B�1L is de�ned in Remark 1.31.

Proposition 3.33 Let K be a compact, convex subset of C and ' 2 H(K) univa-

lent. Then the following two assertions hold:

(1) The transform �' is equal to B�1
'(K)G'BK.

(2) If '(K) is convex, then �' : Exp(K) ! Exp(conv('(K))) = Exp('(K)) is

an isomorphism. Its inverse is given by �'�1. In particular, �' is isomorphic

in case that K is a singleton.

The �rst assertion in the above result states that the diagram

H0(C nK)
G' // H0(C n '(K))

B�1
'(K)

��
Exp(K)

�'
//

BK
OO

Exp(conv('(K)))

commutes.

Proof. Let B be some open neighbourhood of K such that B is compact in 
'. We

choose a Cauchy cycle �1 for K in B and a Cauchy cycle �2 for '(B) in '(
').

Then ' � �1 is a Cauchy cycle for '(K) in '(B) by Proposition 1.10 and hence

ind'��1(w) = 0 for all w 2 j�2j � C n '(B). Furthermore, ind�2(�) = 1 for all � in

'(j�1j) � '(B). Now, applying the Cauchy integral formula and using the Pólya
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representation for B�1
'(K) (cf. Remark 1.31), we obtain

B�1
'(K)G'BKf(z) =

1

2�i

Z
�2

1

2�i

Z
�1

Bf(�)
w � '(�)

d� ewz dw

=
1

2�i

Z
�1

Bf(�) 1

2�i

Z
�2

ewz

w � '(�)
dw d�

=
1

2�i

Z
�1

Bf(�) e'(�)z d�

= �'f(z):

This proves the assertion in (1).

In the above diagram, BK and G' are isomorphisms by Proposition 1.30 and Propo-

sition 3.32 (1). Since in the case that '(K) is convex, the mapping B�1
'(K) is also an

isomorphism, we obtain that �' : Exp(K)! Exp('(K)) is an isomorphism due to

(1). With Proposition 3.32 (1), we have ��1
' = (B�1

'(K)G'BK)�1 = B�1K G'�1B'(K) =

�'�1 .

Remark 3.34 Let K be a compact, convex subset of C and ' 2 H(K) univalent.

Then Proposition 3.33 (1) implies that, for each f 2 Exp(K), we have B�'f 2
H0(C n '(K)).

Remark 3.35 In the situation of Proposition 3.33, let ~' 2 H('(K)) be univalent

and not necessarily ~' 2 H(conv('(K))). Then � ~'�' is de�ned while the iteration

� ~'�' is possibly not de�ned. In case that ' 2 H(conv('(K))) is univalent, we have

� ~'�' = � ~'�'

due to Proposition 3.32 (2) and Proposition 3.33 (1).

Let f be an entire function of exponential type and ' 2 H(K(f)). Interchanging

integration and di�erentiation yields

(�'f)
(n)(z) =

1

2�i

Z
�

Bf(�)'n(�) e'(�)z d�; (3.21)
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implying that the Taylor expansion of �'f at the origin is given by

�'f(z) =
1X
n=0

T n
' f(0)

n!
zn: (3.22)

According to our conventions, if ' 2 H(K(f)) is zero-free, then ' has no zero in


', and since K(f) is convex, 
' is simply connected. These conditions ensure the

existence of a logarithm function log' 2 H(
') for '. Then for each non-negative

integer n, we have

T n
e1
�log'f(0) = �log'f(n) =

1

2�i

Z
�

Bf(�) en log'(�)d�

=
1

2�i

Z
�

Bf(�)'n(�) d� = T n
' f(0): (3.23)

We shall extend (3.22) and (3.23) to a commutative property of �' and generalized

di�erential operators. The proof of this result is prepared by the following lemma.

Lemma 3.36 Let f be an entire function of exponential type and ' 2 H(K(f))

univalent. Then for each h 2 H('(
')), we have

1

2�i

Z
~�

B�'f(�)h(�) d� =
1

2�i

Z
~�

Bf('�1(�)) ('�1)0(�)h(�) d�

where ~� is a Cauchy cycle for '(K(f)) in '(
').

Proof. Note that, by Remark 3.34, B�'f 2 H0(C n '(K)). Consequently, the inte-

gral on the left hand side is well-de�ned. Further, this integral is independent of the

particular choice of the Cauchy cycle. Hence we can assume that ~� = ' � � with �

being a Cauchy cycle for K(f) in 
'. Considering the Pólya representation of �'f ,

we obtain

1

2�i

Z
'��

B�'f(�) e
�� d� = �'f(�) =

1

2�i

Z
�

Bf(w) e'(w)� dw

=
1

2�i

Z
'��

Bf('�1(�)) ('�1)0(�) e�� d�

for all � 2 C. Now, since '(
') is simply connected according to our assumptions,

a similar reasoning as in the proof of Lemma 3.22 yields the assertion.
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Proposition 3.37 Let K be a compact, convex subset of C and ' 2 H(K). Then

the following assertions hold:

(1) We have �' T' = D�'.

(2) Let ' be zero-free. Then for every logarithm function log' for ' on 
', we

have �log'T' = Te1�log'.

(3) Let ' be univalent. We further assume that ~K is a compact, convex subset of

C and ~' 2 H( ~K) is univalent onto some open neighbourhood of '(K) such

that ~'�1 � '(K) � ~K. Then we have � ~'�1�'T' = T ~'� ~'�1�'.

The above proposition states that, under the given conditions, the following dia-

grams commute:

(1)

Exp(K)
�' //

T'

��

Exp(conv('(K)))

D

��
Exp(K)

�'
// Exp(conv('(K)));

(2)

Exp(K)
�log' //

T'

��

Exp(conv(log'(K)))

Te1
��

Exp(K)
�log'

// Exp(conv(log'(K)));

(3)

Exp(K)
� ~'�1�' //

T'

��

Exp( ~K)

T ~'

��
Exp(K)

� ~'�1�'

// Exp( ~K):

Proof. In order to see (1), consider the Taylor expansion for �'f in (3.22) and

observe that

D

 1X
n=0

T n
' f(0)

n!
zn

!
=

1X
n=0

T n+1
' f(0)

n!
zn:
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Considering Lemma 3.22, we obtain

T n
e1
�log'f(z) =

1

2�i

Z
�

Bf(�) e(z+n) log'(�)d�

=
1

2�i

Z
�

Bf(�)'n(�) ez log'(�)d�

=
1

2�i

Z
�

BT n
' f(�) e

z log'(�)d�

= �log'T
n
' f(z):

With n = 1, this is the assertion in (2).

The conditions in (3) ensure that the operator T ~' is de�ned on � ~'�1�'(Exp(K)). Let

� be a Cauchy cycle of K in 
' such that ~'�1 �'(j�j) � 
 ~'. Then ~� := ~'�1 �' ��
is a Cauchy cycle for ~'�1 �'(K) in ~'�1 �'(
') due to Proposition 1.10. By Remark

3.34, B� ~'�'f 2 H0(C n ( ~'�1 � '(K))) for each f 2 Exp(K), showing that we can

use ~� to represent T ~'� ~'�'f (cf. Remark 3.20 (2)). For a given f 2 Exp(K), Lemma

3.36, substitution and Lemma 3.22, applied in this order, yield

T ~'� ~'�1�'f(z) =
1

2�i

Z
~�

B� ~'�1�'f(�) ~'(�) e
z�d�

=
1

2�i

Z
~�

Bf('�1 � ~'(�)) ('�1 � ~')
0

(�) ~'(�) ez�d�

=
1

2�i

Z
�

Bf(w)'(w) ez ~'�1�'(w)dw

=
1

2�i

Z
�

BT'f(w) ez ~'�1�'(w)dw

= � ~'�1�'T'f(z)

and we are done.



Chapter 3 Hypercyclic and Frequently Hypercyclic Di�erential Operators 65

Example 3.38 We shall apply (3.22) to the cases of Example 3.24:

(1) If ' = e1 and f 2 Exp(K) for some compact and convex set K � C, then

�e1 f(z) =
1X
n=0

T n
e1
f(0)

n!
zn =

1X
n=0

f(n)

n!
zn:

(2) For '(�) = ��1 and K � C n f0g compact and convex, we have

�' f(z) =
1X
n=0

T n
' f(0)

n!
zn =

1X
n=0

1

n!2�i

Z
�

Bf(�)
�n

d� zn

for all f 2 Exp(K).

(3) In the case that '(�) = e� � 1 and K � C is compact and convex, then

�' f(z) =
1X
n=0

�nf(0)

n!
zn =

1X
n=0

nP
k=0

�
n

k

�
(�1)n�kf(k)
n!

zn

for all f 2 Exp(K).

(4) If '(�) = 1
1�� and K is a compact and convex subset of C n f1g, then

�' f(z) =
1X
n=0

T n
' f(0)

n!
zn =

1X
n=0

1

n!2�i

Z
�

B f(�)
(1� �)n

d� zn

for all f 2 Exp(K).

By means of Proposition 3.37 and Proposition 3.31, we are now able to show that

�' carries over (frequent) universality for generalized di�erential operators.

Theorem 3.39 Let K be a compact, convex set in C and ' 2 H(K). We further

assume that f 2 Exp(K) is (frequently) universal for T' on Exp(K). Then the

following assertions hold:

(1) The function �'f is (frequently) universal for the di�erentiation operator on

Exp(L) for every compact, convex set L � C that contains conv('(K)).
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(2) Let ' be zero-free. Then for every logarithm function log' for ' on 
', the

function �log'f is (frequently) universal for Te1 on Exp(L) for every compact,

convex set L � C that contains conv(log'(K)).

(3) Let ' be univalent. We further assume that ~K is a compact, convex set in

C and ~' 2 H( ~K) is univalent onto some open neighbourhood of '(K) and

such that ~'�1 � '(K) � ~K. Then � ~'�1�'f is (frequently) universal for T ~' on

Exp(L) for every compact, convex set L � 
 ~' that contains conv( ~'�1 �'(K)).

Proof. Proposition 3.37 immediately yields that in the situation (1), (2) and (3) we

have

Dn�'f = �'T
n
' f for all n 2 N;

T n
e1
�log'f = �log'T

n
' f for all n 2 N and (3.24)

T n
~'� ~'�1�'f = � ~'�1�'T

n
' f for all n 2 N;

respectively.

Assuming that f is universal for T' on Exp(K), the continuity and denseness of the

image of �' (cf. Proposition 3.31) prove the assertions (1), (2) and (3) for the case

of universality.

Now let f be frequently universal for T' on Exp(K). We consider a non-empty

open set U � Exp(L). Then the preimage of U , with respect to the particular

transform, is a non-empty open set W � Exp(K) according to Proposition 3.31.

The assumption yields that the sequence I := fn 2 N : T n
' f 2 Wg has positive

lower density. With the identities in (3.24), we obtain that

Dn�'f 2 U; T n
e1
�log'f 2 U and T n

~'� ~'�1�'f 2 U

for each n 2 I in the cases (1), (2) and (3), respectively. Since U was arbitrary, this

shows the assertions (1), (2) and (3) for the case of frequent universality.
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3.6 Applications of �'

The main objective of this section is to extend some results from Section 3.2 to the

case of generalized di�erential operators. The transform �' will be the essential

tool that enables us to connect arbitrary generalized di�erential operators with the

translation operator Te1 . At the end of the section, we give, as another application

of �', the counterpart to Theorem 1.48 by showing that the condition 0 2 K is

necessary in this general situation.

In our �rst result, Corollary 3.15 is partly extended to generalized di�erential oper-

ators.

Theorem 3.40 Let K � C be a compact, convex set and ' 2 H(K) non-constant

such that '(K) contains some non-singleton continuum of T. Then T' is frequently

hypercyclic on Exp(K).

Proof. Our assumptions ensure the existence of a compact, convex set ~K � K

such that '( ~K) contains some non-singleton continuum of T and ' is univalent

as an element of H( ~K). We choose suitable real numbers a < b so that e[ia;ib] �
'( ~K). Now, Corollary 3.15 provides a frequently universal function f for Te1 on

Exp([ia; ib]), and, by Theorem 3.39 (3), we have that �'�1�e1f is frequently universal

for T' on Exp(K).

Example 3.41 We consider again the operators from Example 3.24. Let K be

a compact and convex subset of C. Theorem 3.26 and Theorem 3.40 imply the

following assertions:

(1) If K contains some non-singleton continuum of T, then D is frequently hyper-

cyclic on Exp(K).

(2) If 0 =2 K, then T�1
id = D�1 is hypercyclic on Exp(K) if and only if T\K 6= ;.

If K is in addition as in (1), then T�1
id = D�1 is frequently hypercyclic on

Exp(K).

(3) Let '(z) = ez�1, then the operator T'f(z) is the forward di�erence�(f)(z) =

f(z+1)�f(z) and T' is hypercyclic on Exp(K) if and only if K intersects fz :

jez�1j = 1g. If K contains some non-singleton continuum of fz : jez�1j = 1g,
T' is also frequently hypercyclic on Exp(K).
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(4) For '(�) = 1
1�� , the corresponding operator T' is de�ned on Exp(K) whenever

1 =2 K. For hypercyclicity it is necessary and su�cient that K intersects

T+1. The operator is frequently hypercyclic if K contains some non-singleton

continuum of T+ 1.

From Theorem 3.17, it turns out that a function of exponential type having a single-

ton conjugate indicator diagram cannot be frequently universal for Te1 on H(C). In

view of Theorem 3.40, the question arises if such a condition still holds for the case

of di�erential operators on H(C) or generalized di�erential operators on Exp(K).

Theorem 3.42 Let K be a compact, convex subset of C and ' 2 H(K).

(1) There is no frequently universal function for T' on Exp(K) that has a singleton

conjugate indicator diagram.

(2) If ' extends to an entire function of exponential type, then there is no entire

function of exponential type that is frequently universal for '(D) on H(C) and

that has a singleton conjugate indicator diagram.

Proof. We shall start with the proof of assertion (2). Assuming the contrary, we

suppose there is a function f of exponential type with K(f) = f�g that is frequently
universal for '(D) on H(C). Then ' is non-constant and j'(�)j � 1 because

otherwise '(D)nf(0) ! 0 for n tending to in�nity, as it turns out from the �rst

part of the proof of Theorem 3.26. Hence in some su�ciently small and simply

connected, open neighbourhood 
 of �, the function ~' := '='(�) is zero-free, which

implies the existence of a logarithm function log ~' for ~' on 
 with log ~'(�) = 0.

We set h := �log ~'f . Then K(h) = f0g by Proposition 3.31 and, according to (3.23)

applied to ~', we have

h(n) =
1

'(�)n
'(D)nf(0) for all n 2 N [ f0g: (3.25)

Let S be the sector fz : j arg(z)j � �
5
g n f0g. By the Casorati-Weierstrass theorem,

we can choose � 2 C such that '(�) is close enough to �'(�) to ensure that

'(�)

'(�)
S �

n
z : j arg(z)� �j � �

4

o
(3.26)
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and '(�) 6= 0. Now, according to the continuity of '(D) on H(C), for every " > 0,

there are some r > 0 and � > 0 such that for all g 2 H(C) that satisfy

sup
z2rD

jg(z)� e�(z)j < �; (3.27)

we have

j'(D)g(0)� '(D)e�(0)j = j'(D)g(0)� '(�)j < ":

We assume that �; " > 0 are so small that, whenever g satis�es (3.27), we have

g(0) 2 S and '(D)g(0) 2 '(�)S: (3.28)

Our assumption implies the existence of some sequence (nk)k2N of positive integers

with dens((nk)k2N) > 0 and such that sup
z2rD

j'(D)nkf(z) � e�(z)j < � for all k 2 N.
The interpolating property of h in (3.25) combined with (3.28) yields

h(nk) 2 1

'(�)nk
S and h(nk + 1) 2 '(�)

'(�)nk+1
S for all k 2 N: (3.29)

Condition (3.26) implies that the factor '(�)
'(�)

rotates S by an angle larger than �
2
.

Hence, from (3.29), it follows that for each k 2 N either Re(h) or Im(h) has a sign

change in [nk; nk +1]. The intermediate value theorem yields a sequence (wk)k2N of

positive numbers with wk 2 (nk; nk + 1) and

Re(h(wk)) Im(h(wk)) = 0 for all k 2 N: (3.30)

Assuming that the Taylor series of h is given by
1P
�=0

h�
�!
z� , we set h1(z) :=

1P
�=0

Re(h�)
�!

z�

and h2(z) :=
1P
�=0

Im(h�)
�!

z� . The functions h1; h2 are of exponential type zero due to

Proposition 1.13 and the fact that h is of exponential type zero. Thus h1h2 is a

function of exponential type zero (see Proposition 1.17 (1)), and since Re(h(x)) =

h1(x) and Im(h(x)) = h2(x) for every real x, h1h2(wk) = 0 for all k 2 N by (3.30).

Taking into account that (wk)k2N has obviously the same lower density as (nk)k2N,

we have a contradiction to Lemma 3.16.

To prove assertion (1), suppose that f 2 Exp(K) with K(f) := f�g is frequently
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universal for T' on Exp(K). Then �'f is frequently universal for the di�erentiation

operator on Exp(conv('(K))) (hence onH(C)) by Theorem 3.39 (1), andK(�'f) =

f'(�)g by Proposition 3.31. This contradicts statement (2).

Remark 3.43 Theorem 3.42 shows that frequently universal functions for gener-

alized di�erential operators cannot be of the form fe� with f 2 Exp(f0g). In partic-

ular, there is no entire function of exponential type zero that is frequently universal

for any generalized di�erential operator. On the other hand, for every non-constant

generalized di�erential operator, there are universal functions that have the above

form (compare Corollary 3.28 (1)).

We consider the special case Tid = D. Theorem 3.5 states that for any q(r) tending

to in�nity as r ! 1, there exists a universal function f for D (on H(C)) that

satis�es Mf (r) = O ((q(r)=
p
r)er) as r ! 1. Theorem 3.26 yields the existence of

universal functions for D having a �small� conjugate indicator diagram. However,

concerning the growth with respect to the maximum modulus, this theorem only

yields universal functions f for D that satisfy Mf (r) = O(e(1+")r) for every " > 0.

By means of the transform �' and Corollary 3.14, we shall now re�ne the result of

Theorem 3.26 for the case of the di�erentiation operator.

Theorem 3.44 Let L be some compact and convex subset of C that contains a

non-singleton continuum of T. Then, for every " > 0, there is an f 2 Exp(L) that

is universal for D on Exp(L) and that satis�es

Mf (r) = O(r
1
2
+" er) as r !1.

Proof. For a given " > 0, we show that

m(n) := min
r�1

er n! r
1
2
+"

rn n1+
"
2

!1 (3.31)

as n tends to in�nity.

The mapping r 7! er=rn is monotonically decreasing in (0; n), and, for all n 2 N, the
values en n!=nn+

1
2 are bounded from below by some positive constant M according
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to Stirling's formula. Thus, for 1 < r < n
2
, we have

er n! r
1
2
+"

rn n1+
"
2

� e
n
2 n!�

n
2

�n
n1+

"
2

=
e(log 2�

1
2
)n

n
1+"
2

en n!

nn+
1
2

> M
e(log 2�

1
2
)n

n
1+"
2

: (3.32)

The mapping r 7! er=rn attains its minimum in (1;1) for r = n. If r � n
2
, this

implies

er n! r
1
2
+"

rn n1+
"
2

� en n!

nn+
1
2

�
n
2

� 1
2
+"

n
1+"
2

�M

�
1

2

� 1
2
+"

n
"
2 : (3.33)

Now, the inequalities (3.32) and (3.33) yield (3.31). Consequently, we can �nd a

mapping q : (0;1) ! [1;1) increasing to in�nity and such that q(n) � m(n) for

all n that are larger than some positive integer n0.

Without loss of generality, we can assume that e[�id;id] � L for some d > 0. Corollary

3.14 provides a universal function g for Te1 on Exp([�id; id]) satisfying jg(x)j =
O(q(x)) on the real axis. According to Theorem 3.39 (1) and (3.22), the function

f := �e1g 2 Exp(conv(e[�id;id])) is universal for D on Exp(L) and f(z) =
1P
n=0

g(n)
n!
zn.

From the condition q(n) � m(n) for all n > n0, the de�nition of m(n) in (3.31), and

jg(n)j = O(q(n)), it follows that

Mf (r) � O(rn0) +
1X

n=n0+1

jg(n)j
n!

rn � O(rn0) + C2

1X
n=n0+1

m(n)

n!
rn

� O(rn0) +
1X

n=n0+1

er r
1
2
+" n!

rn n1+
"
2

rn

n!
� O(rn0) + er r

1
2
+"

1X
n=n0+1

1

n1+
"
2

= O(r
1
2
+" er):

As a last application of �', we give the counterpart to Theorem 1.48 by showing

that the condition 0 2 K in this result is necessary in the general case.

Theorem 3.45 Let f be an entire function of exponential type. Assume further

that K is a compact, convex subset of C such that 0 =2 K and A � C is an in�nite

set such that f�(z) := f(�z) belongs to Exp(K) for every � 2 A. Then the subspace
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linspanff� : � 2 Ag is dense in Exp(K) if and only if f is of the form f(z) = c e�z

with c; � 6= 0.

Proof. We set Y := linspanff�(z) : � 2 Ag. If f(z) = c e�z with c; � 6= 0, Proposi-

tion 1.47 states that Y is dense in Exp(K).

A simple observation using the equality in Theorem 1.20 yields

K(f�) = �K(f) (3.34)

for arbitrary � 2 C n f0g and K(f0) � f0g. Hence the condition f� 2 Exp(K)

implies AK(f) � K. Consequently, from the assumptions we can conclude that the

sets K(f) and A do not contain the origin. We �x some �0 2 A and set A0 := ��10 A.

Our assumptions further imply that the sets A0 and K are both contained in certain

half-spaces HA0 and HK that both do not contain the origin. Thus one can choose

a half-ray starting from the origin that does not intersect HA0 [HK , implying that

a suitable branch of the logarithm, which we denote by log in this proof, is de�ned

on K [ A0.

We set h� := �logf� for � 2 A. Then, according to Remark 3.35, �e1h� =

�e1�logf� = f� and hence, with (3.22), we have

f�(z) =
1X
n=0

f (n)(0)�n

n!
zn =

1X
n=0

h�(n)

n!
zn (3.35)

(see also Example 3.38 (1)). Consequently, setting ~� := log(�=�0), � 2 A, we obtain

h�(n) = h�0(n)

�
�

�0

�n

= h�0(n) e
~�n; n 2 N [ f0g: (3.36)

For every � 2 A, (3.34) implies that

K(e~� h�0) = conv

�
log

�
�

�0

�
+ log(K(f�0))

�
= conv(log(K(f�))) � conv(log(K));

which shows that e~� h�0 2 Exp(conv(log(K))) for all � 2 A. Considering (3.36), we

immediately observe that

�e1h� = �e1(e~�h�0) for all � 2 A: (3.37)
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Since e1 is univalent as an element ofH(conv(log(K))), the transform Ge1Bconv(log(K)) :

Exp(conv(log(K))) ! H0(C n L), where L := econv(log(K)), is well-de�ned and iso-

morphic due to Proposition 3.32 and Proposition 1.30. According to the identity

B�1L Ge1Bconv(log(K)) = �e1 (cf. Proposition 3.33 (1)), this shows the injectivity of

�e1 : Exp(conv(log(K)))! Exp(conv(L)) and hence, with (3.37), we obtain

h� = e~� h�0 (3.38)

for all � 2 A. The injectivity can also be deduced from Carlson's theorem (cf.

[Boa54, Theorem 9.2.1]). Now, if f is not of the form f(z) = c e�z with c; � 6= 0,

then h�0 is also not of this form and can further not be a constant. Otherwise, we

would obtain a contradiction to (3.35). Thus h�0 has at least one zero, z0 2 C. By
the identity (3.38), z0 is also a zero for all functions h�, implying that �log(Y ) =

linspanfh� : � 2 Ag is not dense in Exp(conv(log(K))). Since �log : Exp(K) !
Exp(conv(log(K))) has dense image, by Proposition 3.31, we have shown that Y is

not dense in Exp(K).



Chapter 4

Hypercyclic and Frequently

Hypercyclic Weighted Shifts

4.1 Introduction

In the year 1969 S. Rolewicz in [Rol69] proved the hypercyclicity of the operator

(a0; a1; a2; :::) 7! (�a1; �a2; :::) for � > 1 on `2. Besides the di�erentiation operator

and the translation operator on H(C), this is one of the earliest and best known

examples of hypercyclic operators. It was the starting point of the investigation of

hypercyclicity of so-called weighted shift operators. This is an operator mapping a

sequence (a0; a1; :::) to (w1a1; w2a2; :::) with a certain weight sequence (wn)n2N. The

hypercyclicity of these operators on `2 is characterized in a necessary and su�cient

way by H. Salas in [Sal95].

In our introduction to weighted shift operators, we follow the more general approach

of K.-G. Grosse-Erdmann who investigated the hypercyclicity of these operators on

topological sequence spaces.

A topological sequence space X is a linear subspace of KI that carries a vector space

topology such that the embedding X ! KI is continuous if KI is endowed with the

product topology. Here I is some countable index set. A space X is called an F-

sequence space, Fréchet sequence space or Banach sequence space if the topology on

X generates an F-space, Fréchet space or Banach space, respectively.

We use the abbreviation N0 for N [ f0g. Our introduction is restricted to sequence

spaces that are contained in KN0 .

74
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De�nition 4.1 Let X � KN0 be a topological sequence space. We call a sequence

w = (wn)n2N of non-zero scalars a weight sequence for X if for all (a0; a1; a2; :::) 2 X

the sequence (w1a1; w2a2; :::) is an element of X. The corresponding weighted shift

operator

(a0; a1; a2; :::) 7! (w1a1; w2a2; :::)

shall be denoted by Bw.

If X is an F-sequence space, weighted shift operators on X are always continuous,

as noted in [GE00a].

We recall that a sequence (vn)n2N0 in a topological vector space X is called a basis

for X if for all x 2 X there is a unique sequence (a0; a1; a2; :::) of scalars such that

lim
n!1

nP
j=0

ajvj = x in X.

Theorem 4.2 (cf. [GE00a, Theorem 1]) Let X � KN0 be an F-sequence space

such that the canonical unit vectors (un)n2N0 form a basis and w = (wn)n2N a weight

sequence for X. Then the weighted shift operator Bw is hypercyclic if and only if

there is an increasing sequence (nk)k2N of positive integers such that

 
nkY
�=1

w�

!�1

unk ! 0 as k !1

in X.

The space H(C) can be identi�ed with a subspace of CN0 by means of the Taylor

coe�cients, and a weighted shift operator on H(C) is then given by

1X
n=0

anz
n 7!

1X
n=0

wn+1an+1z
n: (4.1)

Obviously, a sequence w = (wn)n2N of non-zero complex numbers is a weight se-

quence for H(C) if and only if w satis�es

lim sup
n!1

jwnj 1n <1: (4.2)
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Since the monomials (z 7! zn)n2N0 are a basis of H(C), Theorem 4.2 applies to

operators that shift the Taylor coe�cients.

Corollary 4.3 (cf. [GE00a]) Let w = (wn)n2N be a weight sequence for H(C).

Then the weighted shift operator Bw is hypercyclic on H(C) if and only if there is

an increasing sequence of positive integers (nk)k2N such that

�����
nkY
�=1

w�

�����
1
nk

!1

for k tending to in�nity.

Example 4.4

(1) In case that w = (n)n2N, we have Bw = D. Corollary 4.3 immediately implies

the hypercyclicity of D on H(C).

(2) In case that w = (1)n2N, the corresponding weighted shift operator is given by

1X
n=0

anz
n 7!

1X
n=0

an+1z
n

and is thus equal to the operator B from Theorem 3.30. By Corollary 4.3,

Bw = B is not hypercyclic on H(C).

In [GE00b], K.-G. Grosse-Erdmann investigates the rate of growth of universal func-

tions for weighted shift operators on H(C). In the latter article, it is assumed that

a given weight sequence w = (wn)n2N is such that

lim
n!1

�����
nY

�=1

w�

�����
1
n

=1; (4.3)

implying that

f1(z) :=
1X
n=0

zn

w1w2 � � �wn

(4.4)
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is entire, where as usual
0Q

�=1

w� := 1. It turns out that the critical rate of growth of

universal functions for the corresponding weighted shift operator is closely related

to the maximum term of f1,

�(r) := �f1(r) = max
n2N

rn

jw1w2 � � �wnj (r > 0):

In order to obtain the sharpness of the critical rate of growth, the weak monotonic-

ity condition is introduced in [GE00b]. A sequence (wn)n2N of complex numbers

is said to satisfy the weak monotonicity condition if there exists an increasing se-

quence of positive integers (nk)k2N with sup
k2N

(nk+1 � nk) < 1 and such that the

geometric mean of jwmj; jwm+1j; :::; jwnk j is less or equal than the geometric mean of

jwnk+1j; jwnk+2j; :::; jwlj for any m � nk < l.

Theorem 4.5 (cf. [GE00b, Theorem 1, Theorem 2]) Let w = (wn)n2N be a weight

sequence for H(C) such that (4.3) holds. Then for every q : (0;1) ! (0;1) with

q(r)!1 as r !1, there is a universal function f for Bw (on H(C)) that satis�es

Mf (r) = O(q(r)�f1(r)) as r !1.

If, in addition, w satis�es the weak monotonicity condition, then there is no universal

function f for Bw (on H(C)) that satis�es

Mf (r) = O(�f1(r)) as r !1.

The spaces Exp(K) and H0(C n K�1) are isomorphic via the transform UB (cf.

Proposition 1.30, Proposition 1.39). This implies that (z 7! zn)n2N0 is a basis in

Exp(K) if and only if K is equal to � D for some � 2 [0;1).

Let � 2 [0;1) and w = (wn)n2N a sequence of non-zero complex numbers. Then w

is a weight sequence for Exp(� D) if and only if, for each f 2 Exp(� D), the function

1X
n=0

wn+1
f (n+1)(0)

(n+ 1)!
zn
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belongs to Exp(� D). According to Proposition 1.13, this is equivalent to the fact

that for all f 2 Exp(� D), we have

lim sup
n!1

����wn+1
f (n+1)(0)

(n+ 1)

����
1
n

� �:

With the above condition, it is easily seen that the following assertions hold:

If � 2 (0;1), then w is a weight sequence for Exp(� D) if and only if

lim sup
n!1

jwnj
1
n � 1: (4.5)

In case that � = 0, the sequence w is a weight sequence for Exp(� D) = Exp(f0g) if
and only if

lim sup
n!1

jwnj 1n <1: (4.6)

We shall now formulate the Exp(�D)-version of Theorem 4.2. Our formulation is

chosen to be consistent to later results for Exp(K) with more general sets K.

Corollary 4.6 For � 2 [0;1), let w = (wn)n2N be a weight sequence for Exp(�D).

Then Bw is hypercyclic on Exp(�D) if and only if for some increasing sequence

(nk)k2N of positive integers

f1;(nk)(z) :=
1X
k=0

znk

w1w2 � � �wnk

is of exponential type less or equal than � .

Proof. We �x some positive integer j. The function r 7! rn e�(�+
1
j
)r attains its

maximum in [0;1) at r = n=(� + 1
j
). This yields

 zn

w1w2 � � �wn


�D;j

= sup
0�r

rn

jw1w2 � � �wnj e
�(�+ 1

j
)r =

nn e�n

jw1w2 � � �wnj
�
� +

1

j

��n
:

Dividing this equation by n!p
2�n jw1 w2���wnj

�
� + 1

j

��n
and applying Stirling's formula,
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we obtain

 zn

w1w2 � � �wn


�D;j

 
n!

jw1w2 � � �wnj
1p
2 � n

�
� +

1

j

��n!�1

! 1

as n tends to in�nity. Thus, for an increasing sequence (nk)k2N of positive integers,

the norms
 znk

w1 w2���wnk


�D;j

converge to zero for all j 2 N if and only if

nk!

jw1w2 � � �wnk j
1p

2 � nk

�
� +

1

j

��nk
! 0

as k !1 for all j 2 N. This is the case if and only if

lim sup
k!1

�
nk!

jw1w2 � � �wnk j
� 1

nk � �

which is equivalent to the condition that f1;(nk) is of exponential type less or equal

than � (cf. Proposition 1.13). The result now follows from Theorem 4.2.

Theorem 4.7 (cf. [BGE07, Theorem 4.3]) Let X be an F-sequence space and

w = (wn)n2N a weight sequence for X. We further assume that the linear hull of the

canonical unit vectors (un)n2N0 is dense in X. If

1X
n=0

1

w1w2 � � �wn

un (4.7)

converges unconditionally in X, then Bw is frequently hypercyclic on X.

Applying Theorem 4.7 to Exp(� D) leads to the following result.

Corollary 4.8 For � 2 [0;1), let w = (wn)n2N be a weight sequence for Exp(�D).

If

f1(z) =
1X
n=0

1

w1w2 � � �wn

zn

is an entire function of exponential type less or equal than � , then the weighted shift

operator Bw is frequently hypercyclic on Exp(�D).

Proof. Our assumption yields that
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lim sup
n!1

�
n!

jw1w2 � � �wnj
� 1

n

� �

implying the unconditional convergence of

1X
n=0

UB
�

zn

w1w2 � � �wn

�
=

1X
n=0

n!

w1w2 � � �wn

zn

in H( 1
�
D). Since UB : Exp(�D) ! H( 1

�
D) is an isomorphism (cf. Proposition 1.30

and Proposition 1.39), this yields the unconditional convergence of

1X
n=0

1

w1 � � �wn

zn

in Exp(�D). Hence we can apply Theorem 4.7 to Bw.

Similarly to the above proof, one can apply UB for a shorter proof of Corollary 4.6.

Corollary 4.6 and Corollary 4.8 immediately yield that the di�erentiation operator

is frequently hypercyclic on Exp(� D) if and only if � � 1. Compared to the results

in the previous chapter (cf. Theorem 3.26, Theorem 3.40), this does not provide

detailed information about the conjugate indicator diagram of the (frequently) uni-

versal functions. This is because we were forced to assume circular sets K in order

to apply the sequence space criteria in Theorem 4.2 and Theorem 4.7.

It should be noted that in [GE00a], a more general criterion is proved for the uni-

versality of so-called weighted pseudo-shifts. There it is only required that the unit

sequences of the considered sequence spaces are OP-bases. This means that the

linear hull of the unit sequence (un)n2N is dense and the family of all coordinate

projections x 7! xnun is equicontinuous. This condition does not apply on Exp(K)

in general.

In the following, we extend the above results for weighted shift operators on Exp(K)

by means of a di�erent approach.
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4.2 The Hadamard Product on Exp(K)

Operators that map
1P
n=0

anz
n to

1P
n=0

wn+1an+1z
n can be regarded as a composition

of two mappings. The �rst mapping is the multiplication of the Taylor coe�cients

with the weight sequence, and the second one is the shift of the Taylor coe�cients.

The multiplication with the weight sequence is simply the Hadamard product of the

power series
1P
n=0

anz
n and

1P
n=0

wnz
n, where we set w0 = 1. For further investigations of

weighted shifts, we establish some properties of the Hadamard product on Exp(K).

For arbitrary power series
1P
n=0

anz
n and

1P
n=0

bnz
n having radius of convergence R1

and R2, respectively, it is obvious that
1P
n=0

anbnz
n has a radius of convergence at

least R1R2, and it can be shown that, under certain conditions, this function is

analytically continuable.

For two open sets 
1;
2 � C, both containing the origin, we set


1 � 
2 := C n ((C n 
1) � (C n 
1))

and


�
1 := (C n 
1)

�1 [ f0g:
Let f 2 H(
1) and g 2 H(
2), then their Hadamard product is de�ned by the

so-called Parseval integral

f � g(z) := 1

2�i

Z
�

f(�)

�
g

�
z

�

�
d� (4.8)

where � is a Cauchy cycle for z
�
2 in 
1. The Hadamard multiplication theorem

states that f � g is a function of H(
1 � 
2). A short proof of this result can be

found in [Mül92] or [GE93]. If f(z) =
1P
n=0

anz
n and g(z) =

1P
n=0

bnz
n near the origin,

a simple calculation yields that f �g is represented by
1P
n=0

anbnz
n in a neighbourhood

of the origin. Consequently, from the Hadamard multiplication theorem, one can

conclude that
1P
n=0

anbnz
n is analytically continuable to the component of 
1 � 
2

that contains the origin.

By means of the isomorphism of the spaces Exp(K) and H0(C nK), J. Müller,
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S. Naik and S. Ponnusamy prove the following.

Theorem 4.9 (cf. [MNP06, Theorem 2.1]) Let K be a compact, convex subset of

C and G 2 H0(C nL�1) with L � C compact. Then f �G 2 Exp(conv(LK)) for all

f 2 Exp(K).

From this result we later derive conditions ensuring that a given sequence is a weight

sequence for Exp(K).

Let us �rst motivate another integral representation for the Hadamard product of

entire functions of exponential type.

One easily observes that the Parseval integral (4.8) is a generalization of the Cauchy

integral, in which the Cauchy kernel is replaced by a more general holomorphic

function g. Besides the Cauchy integral formula, an entire function of exponential

type is representable by means of the Pólya representation (compare Theorem 1.23),

f(z) =
1

2�i

Z
�

Bf(�) ez� d�:

Similar to the Parseval integral, we now replace the exponential function in this

integral representation by another entire function g of exponential type by setting

Hgf(z) :=
1

2�i

Z
�

Bf(�) g(z�) d� (4.9)

where � is a Cauchy cycle for K(f) in C. This de�nition is obviously independent of

the particular choice of �. The integral formula in (4.9) is already used in [Buc47].

Theorem 4.10 Let K;L be compact, convex subsets of C and g 2 Exp(L). Then,

for every compact and convex set C � C that contains conv(K L), Hg in (4.9)

de�nes a continuous operator from Exp(K) to Exp(C) and

Hgf = f � UBg:

If, in addition, g is such that g(n)(0) 6= 0 for all n 2 N0 and 0 2 C, then Hg has

dense image in Exp(C).

Proof. From the previous chapter (cf. Remark 3.21), we know that

f (n)(0) = T n
idf(0) =

1

2�i

Z
�

Bf(�) �n d�
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for every non-negative integer n. With this identity, it follows that

Hgf(z) =
1

2�i

Z
�

Bf(�) g(z�) d� =
1X
n=0

g(n)(0) zn

n!

1

2�i

Z
�

Bf(�) �n d�

=
1X
n=0

g(n)(0) f (n)(0) zn

n!
= f � UBg(z): (4.10)

The above equality and Theorem 4.9 yield Hgf 2 Exp(conv(K L)).

We �x some positive integer j and choose a Cauchy cycle � for K in C being so close

to K that j�jL � C + 1
2j
D. Then, according to Remark (1.21) (4) and Example

(1.22) (4),

HL(�z) � HC(z) +
1

2j
jzj (4.11)

for all � 2 � and all z 2 C. Since g 2 Exp(L) and d := maxfj�j : � 2 j�jg > 0, we

have

jg(z)j = O
�
eHL(z)+

1
2jd

jzj
�
:

Together with (4.11), this implies

jg(�z)j �M1 e
HC(z)+

1
j
jzj; � 2 j�j; z 2 C; M1 <1: (4.12)

The continuity of the Borel transform implies the existence of an m 2 N and a

constant M2 such that sup
�2j�j

jBf(�)j � M2 jjf jjK;m. Combining this with (4.12), we

obtain

jjHgf jjC;j = sup
z2C

���� 1

2�i

Z
�

Bf(�) g(z�) d�
���� e�HC(z)� 1

j
jzj � len(�)

2�
M1M2 jjf jjK;m:

This proves the continuity of Hg. The linearity is obvious.

Now, let g be such that g(n)(0) 6= 0 for all n 2 N0 and 0 2 C. In a �rst case, we

assume that K� 6= ;. One easily veri�es the equation g(�z) = Hge�. Hence we can

deduce that Hg maps linspanfe� : � 2 Kg � Exp(K) to linspanfg(�z) : � 2 Kg,
which is dense in Exp(C) by Theorem 1.48.

In case that K� = ;, let (Kn)n2N be a sequence of compact, convex sets such that
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K�
n � Kn+1 and

T
n2N

Kn = K. Observing that the set conv((K L) [ f0g) equalsT
n2N

conv((Kn L) [ f0g) and considering Remark 1.27, we have that the equalities

Exp(K) =
\
n2N

Exp(Kn) and Exp(conv((K L)[f0g)) =
\
n2N

Exp(conv((Kn L)[f0g))

do also hold in the topological sense. The denseness of Hg(Exp(K)) in the space

Exp(conv(K L [ f0g)) now follows from the �rst case. According to Remark 1.45

(2), this also implies the density of Hg(Exp(K)) in Exp(C) .

4.3 Weighted Shifts on Exp(K)

In this section we will extend some results from Section 4.1. Our growth condition

is, as in Theorem 4.5 and Corollary 4.8, closely related to the growth of the function

f1(z) :=
1X
n=0

1

w1w2 � � �wn

zn: (4.13)

We assume that f1 is an entire function of exponential type. In our main result of

this section, we obtain an immediate relation between the conjugate indicator dia-

gram of f1 and the conjugate indicator diagram of (frequently) universal functions

for the corresponding weighted shift operator Bw.

Theorem 4.11 Let w := (wn)n2N be a weight sequence for H(C) such that f1

in (4.13) is an entire function of exponential type. We further assume that L is

a compact, convex subset of C and h 2 Exp(L) is (frequently) universal for D on

Exp(L). Then Hf1h 2 Exp(conv(LK(f1))) is (frequently) universal for Bw on H(C).

Proof. From Theorem 4.10, it turns out that f := Hf1h 2 Exp(conv(LK(f1))) and

Hf1h = h � UBf1.
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Let
1P
n=0

hn
n!
zn be the Taylor series expansion of h. Then we have

Hf1Dh(z) = Hf1

 1X
n=0

hn+1

n!
zn

!
=

1X
n=0

hn+1

w1w2 � � �wn

zn

= Bw

 1X
n=0

hn
w1w2 � � �wn

zn

!
= BwHf1h = Bwf;

implying that

Bk
wf = Hf1D

kh for all k 2 N0: (4.14)

We set C := conv(LK(f1) [ f0g) and consider the operator

Hf1 : Exp(L)! Exp(C):

Then, according to Theorem 4.10, the operator Hf1 is continuous and has dense

image. Now, if h is universal for D on Exp(L), meaning that (Dnh)n2N is dense in

Exp(L), (4.14) yields that (Bk
wf)k2N is dense in Exp(C) (hence in H(C)).

For the case of frequent universality, let U � Exp(C) be non-empty and open. Then

V := H�1
f1

(U) is non-empty and open in Exp(L). If h is frequently universal for D

on Exp(L), (4.14) yields that

fk 2 N : Dkh 2 V g = fk 2 N : Bk
wf 2 Ug

has positive lower density. This implies that f is frequently universal for Bw on

H(C) since U was arbitrary and Exp(C) is dense in H(C).

Corollary 4.12 Let w be a weight sequence for H(C) such that f1 in (4.13) is of

exponential type.

(1) For every � 2 T, there is a function f 2 Exp(�K(f1)) that is universal for Bw

on H(C).

(2) Let L � C be a compact and convex subset of C containing a non-singleton

continuum of T. Then there is a function f 2 Exp(conv(LK(f1))) that is

frequently universal for Bw on H(C).
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Proof. Theorem 3.26 and Theorem 3.40 imply the existence of a universal function

for D in Exp(f�g) and a frequently universal function for D in Exp(L), respectively.

The assertions now follow from Theorem 4.11.

Remark 4.13 The above results show that one can derive a (frequently) universal

function for Bw from a (frequently) universal function h for D by setting

f(z) :=
1X
n=0

Dnh(0)

w1 � � �wn

zn:

With the results from the previous chapter, we can extend this to generalized dif-

ferential operators:

Consider � 2 C and ' 2 H(f�g) non-constant such that j'(�)j = 1. Then T'

is hypercyclic on Exp(f�g) by Theorem 3.26. According to Theorem 3.39 (1), the

function

�'h(z) =
1X
n=0

T n
'h(0)

n!
zn

is universal for D on Exp(f'(�)g) whenever h is universal for T' on Exp(f�g). Now,
as above, the function

f(z) := Hf1�'h(z) =
1X
n=0

T n
'h(0)

w1w2 � � �wn

zn

is universal for Bw on H(C). In case that h is frequently universal for some T' on

some space Exp(L), we obtain a frequently universal function for Bw. In particular,

in case that ' = e1, the function

1X
n=0

h(n)

w1w2 � � �wn

zn

is (frequently) universal for Bw on H(C), provided that h is (frequently) universal

for Te1 on some space Exp(L).

In the following we restrict ourselves to the case that the weighted shift operators

Bw are self-mappings on Exp(K) for a suitable choice of K. In other words, we

consider sequences w that are weight sequences for Exp(K). For that purpose we
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introduce an integral representation for Bw.

Let w = (wn)n2N be a weight sequence for H(C). Then, according to the condition

in (4.2) and Proposition 1.13,

gw(z) :=
1X
n=0

wn+1

(n+ 1)!
zn (4.15)

is an entire function of exponential type. For an arbitrary f 2 Exp(K), we have,

similarly to (4.10),

1

2�i

Z
�

Bf(�) � gw(�z) d� =
1X
n=0

wn+1

(n+ 1)!
zn

1

2�i

Z
�

Bf(�) �n+1 d� (4.16)

=
1X
n=0

wn+1 f
(n+1)(0)

(n+ 1)!
zn = Bwf(z)

where � is a Cauchy cycle for K in C.

Proposition 4.14 Let w = (wn)n2N be a weight sequence for H(C) and gw as in

(4.15). Then, for any L � C compact and convex, the weighted shift operator Bw

maps continuously from Exp(L) to Exp(conv(LK(gw))).

Proof. The proof is similar to that of Theorem 4.10, using (4.16) instead of (4.10).

Remark 4.15 If K(gw) is contained in D, meaning that gw in (4.15) is of expo-

nential type less than 1, we have

lim sup
n!1

jwnj 1n < 1

by Proposition 1.13. In particular, we obtain

lim sup
n!1

jw1 � � �wnj 1n < 1:

By Corollary 4.3, this excludes the hypercyclicity of Bw on H(C).

Considering Proposition 4.14, one observes that Bk
w maps from Exp(K) to Exp(Ck)
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where C0 = K and Cl = conv(Cl�1K(gw)) for l = 1; :::; k.

Now the following assertions are obvious:

(A) If K(gw) = f1g, the weighted shift operator Bw is a self-mapping on Exp(K)

for every compact and convex set K.

(B) If K(gw) � [0; 1], the weighted shift operator Bw is a self-mapping on Exp(K)

whenever K is a compact, convex set that contains the origin.

The proof of our next result will rely on the proof of Theorem 4.11. Here it will be

necessary to require that 0 2 K in order to ensure that Hf1 has dense image (cf.

Theorem 4.10). Thus the restriction for gw in (B) is su�cient in our case.

Theorem 4.16 Let w = (wn)n2N be a weight sequence for H(C) such that f1 in

(4.13) is an entire function of exponential type and gw in (4.15) is a function in

Exp([0; 1]). Furthermore, let K be a compact and convex subset of C that contains

the origin.

(1) If �K(f1) � K for some � 2 T, then Bw is hypercyclic on Exp(K).

(2) If LK(f1) � K for some compact, convex set L that contains some non-

singleton continuum of T, then Bw is frequently hypercyclic on Exp(K).

Proof. From Proposition 4.14, it turns out that our assumptions in (1) and (2) imply

that Bw is a continuous self-mapping on Exp(K).

According to Theorem 4.10, we have that

Hf1 : Exp(f�g)! Exp(conv(�K(f1) [ f0g)) � Exp(K)

has dense image in (1), and

Hf1 : Exp(L)! Exp(conv(LK(f1) [ f0g)) � Exp(K)

has dense image in (2). Consequently, from the proof of Theorem 4.11, it turns

out that the universal and frequently universal functions for Bw on H(C) provided

by Corollary 4.12 are even universal and frequently universal for Bw on Exp(K),

respectively.
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Remark 4.17 In the situation (1) of the above theorem, the set of universal func-

tions for Bw that have a conjugate indicator diagram equal to K is residual in

Exp(K) due to Proposition 2.19.

The following example provides a large source for weighted shift operators that are

self-mappings on Exp(K) provided that K contains the origin.

Example 4.18 Let � be a �nite Borel measure with support in [0; 1]. Then its

Cauchy transform
R

1
��td�(t) de�nes a function F 2 H0(C n [0; 1]). We consider the

entire function g = B�1F 2 Exp([0; 1]). According to the Pólya representation (see

Theorem 1.23), g is represented by

g(z) =
1

2�i

Z
�

F (�) ez� d� =
1

2�i

Z
�

Z
[0;1]

1

� � t
d�(t) ez� d�

=

Z
[0;1]

1

2�i

Z
�

1

� � t
ez� d� d�(t) =

Z
[0;1]

etzd�(t);

where � is a Cauchy cycle for [0; 1] in C. Changing integration and di�erentiation

yields g(n)(0) =
R
[0;1]

tn d�(t) for every non-negative integer n. Now, if we set

wn := n g(n�1)(0) = n

Z
[0;1]

tn�1 d�(t) for all n 2 N; (4.17)

the function gw in (4.15) with w := (wn)n2N is equal to g. Note that, in case that

wn 6= 0 for all n 2 N, the sequence w is always a weight sequence for Exp(K)

provided that 0 2 K.

We discuss conditions of � that imply or exclude (frequent) hypercyclicity of the

weighted shift operator arising from w = (n
R
[0;1]

tn�1 d�(t))n2N.

(1) If � is the Dirac measure �1, we have
R
[0;1]

tn�1 d�(t) = 1 for all n 2 N.

Consequently, w = (n)n2N and the corresponding weighted shift Bw is simply

the ordinary di�erentiation operator. Note that in this case f1 = gw, where f1
is as in (4.13). Results for the (frequent) hypercyclicity of the di�erentiation

operator on Exp(K) are given in the previous chapter.

(2) In case that � has a �-density h 2 L1([0; 1]), where � is the one-dimensional
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Lebesgue measure, we obtain����
Z
[0;1]

tn�1 h(t) d�(t)

���� � jjhjj1
Z
[0;1]

tn�1 d�(t) = jjhjj1 1

n

for all n 2 N. Thus we have

lim sup
n!1

jw1w2 � � �wnj 1n � jjhjj1 <1;

according to (4.17). The corresponding weighted shift operator is not hyper-

cyclic on H(C) by Corollary 4.3.

(3) Let � be a �nite Borel measure with support in [0; 1 � "] for some " 2 (0; 1).

Then ����
Z
[0;1]

tn�1d�(t)

���� � j�([0; 1� "])j (1� ")n�1;

implying that we have

lim sup
n!1

jw1w2 � � �wnj 1n � j�([0; 1� "])j lim
n!1

�
n!(1� ")

n(n�1)
2

� 1
n

= 0:

Corollary 4.3 excludes the hypercyclicity of Bw on H(C).

(4) Let � be a �nite positive Borel measure on [0; 1] such that �(f1g) > 0. Then

0 < �(f1g) �
Z
[0;1]

tn�1 d�(t);

and we have

Mf1(r) =
1X
n=0

1

w1 � � �wn

rn �
1X
n=0

�(f1g)�n
n!

rn; r > 0;

which implies that f1 in (4.13) is a function of exponential type less or equal

than �(f1g)�1 (see Proposition 1.13). Theorem 4.16 now yields: The weighted

shift operator Bw is hypercyclic on Exp(K) whenever K contains the origin

and �K(f1) � K for some � 2 T. The frequent hypercyclicity on Exp(K)

is ensured when 0 2 K and LK(f1) � K for some L that contains a non-

singleton continuum of T. In particular, we obtain the frequent hypercyclicity
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of Bw on Exp(�(f1g)�1D).

Remark 4.19 In general, it is not easy to determine the conjugate indicator dia-

gram of the function f1 in the setting of Theorem 4.11 or Theorem 4.16. One way

to do this is �nding functions that interpolate the Taylor coe�cients of f1. For

instance, in case that there is a function h of exponential type such that

h(n) =
n!

w1 � � �wn

for all n 2 N0; (4.18)

then K(f1) � conv
�
eK(h)

�
. This is a direct consequence of Proposition 3.31 and the

property of �' in (3.22) applied to ' = e1.



Appendix A

Projective and Inductive Limits

We establish the general de�nition of projective and inductive limits in order to

classify the considered spaces in this thesis in that abstract terminology. It will turn

out that some useful functional analytic properties are always guaranteed for our

spaces.

This part of the appendix is an excerpt from [Mor94, pages 239-255].

In the following, we call (I;�) a directed set if � is an order on the set I and for

all �; � 2 I there is a  2 I such that � �  and � � .

Let (E� : � 2 I) be a collection of linear spaces, where I is a directed index set.

We assume that ��� : E� ! E� are linear mappings for all � � � from I such that

��� = id and �� � ��� = �� for  � � � �.

De�nition A.1 The above family
�
E�; �

�
� : � � �;�; � 2 I

�
is called a decreasing

family of linear spaces.

Theorem A.2 Let
�
E�; �

�
� : � � �;�; � 2 I

�
be a decreasing family of linear spaces.

Then there are a unique linear space E and mappings �� : E ! E� for all � 2 I

such that:

(1) ��� � �� = �� for all � � � from I.

(2) For any linear space Y and linear mappings f� : Y ! E� such that ����f� = f�

for all � � �, there is a unique linear mapping f : Y ! E with �� � f = f�

for all � 2 I.

De�nition A.3 The unique space E in Theorem A.2 is the projective limit of the

decreasing family, and the mappings �� are called the canonical mappings.

92
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Let (E� : � 2 I) be a collection of linear spaces, where I is a directed index set.

Assume that ��� : E� ! E� are linear mappings for all � � � from I such that

��� = id and �� � ��� = �� for � � � � .

De�nition A.4 The above family
�
E�; �

�
� : � � �;�; � 2 I

�
is called an increasing

family of linear spaces.

Theorem A.5 Let
�
E�; �

�
� : � � �;�; � 2 I

�
be an increasing family of linear spaces.

Then there are a unique linear space E and mappings �� : E� ! E for all � 2 I

such that:

(1) �� � ��� = �� for all � � �.

(2) For any linear space Y and linear mappings f� : E� ! Y such that f� = f�����
for all � � �, there is a unique linear mapping f : E ! Y with f� = f � ��
for all � 2 I.

De�nition A.6 The unique space E in Theorem A.5 is the inductive limit of the

increasing family. The mappings �� are called the canonical mappings.

In case that the linear spaces E� are endowed with a locally convex topology, the

projective and inductive limits are endowed with a topology in the following way.

De�nition A.7

(1) Let
�
E�; �

�
� : � � �; �; � 2 I

�
be a decreasing family of linear spaces where

each E� is endowed with a locally convex topology such that the mappings

��� are continuous. We endow the projective limit E with the weakest lo-

cally convex topology such that the canonical mappings are continuous. With

this topology, E is called the projective limit of
�
E�; �

�
� : � � �; �; � 2 I

�
in

the category of locally convex spaces. We write E = ProjLim(E�; �
�
� : � �

�; �; � 2 I) or shortly ProjLim(E� : � 2 I).

(2) Let
�
E�; �

�
� : � � �; �; � 2 I

�
be an increasing family of linear spaces where

each E� is endowed with a locally convex topology such that the mappings

��� are continuous. We endow the inductive limit E with the strongest locally

convex topology such that the canonical mappings are continuous. With this

topology, E is called the inductive limit topology of
�
E�; �

�
� : � � �; �; � 2 I

�
in the category of locally convex spaces. We write E = IndLim(E�; �

�
� : � �

�; �; � 2 I) or shortly IndLim(E� : � 2 I).
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Theorem A.8 Let E = ProjLim(E�; �
�
� : � � �; �; � 2 I) where the topology on

E� is induced by a system of seminorms fp�;� : � 2 I�g for each � 2 I. Then the

topology on E is induced by the system of seminorms fp�;� � �� : � 2 I; � 2 I�g.

In this thesis we are concerned with a special case of the above concept:

De�nition A.9

(1) Assume that (En : n 2 N) is a sequence of Banach spaces and (�nn+1 : En+1 !
En)n2N a sequence of linear and compact mappings. Then E = ProjLim(En :

n 2 N) (with respect to the mappings �nn+1) is called a Fréchet-Schwartz space

or shortly FS space.

(2) Assume that (En : n 2 N) is a sequence of Banach spaces and (�n+1
n :

En ! En+1)n2N is a sequence of linear and compact mappings. Then E =

IndLim(En : n 2 N) (with respect to the mappings �n+1
n ) is called a DFS

space.

Remark A.10 Note that di�erent decreasing or increasing families of locally con-

vex spaces can generate the same projective or inductive limit, respectively. Consider

the space Exp(K) from De�nition 1.25 and Theorem 1.26. If (Kn)n2N is a decreasing

family of compact and convex subsets of C such that K�
n � Kn+1 and

T
n2N

Kn = K,

then

Exp(K) = ProjLim(Expn(K) : n 2 N) = ProjLim(Exp(Kn) : n 2 N):

This is an immediate consequence of Theorem A.8.

Theorem A.11 The dual space of an FS space endowed with the strong topology

is a DFS space. Conversely, the strong dual of a DFS space is an FS space.

Theorem A.12 Every FS space and every DFS space is a Montel space. This

implies that these spaces are always re�exive.

Theorem A.13 Let M be a closed subspace of an FS space or a DFS space, then

M , endowed with the relative topology, is an FS space or a DFS spaces, respectively.



Appendix B

Results from Complex Analysis

We establish further results from complex analysis that are applied in this thesis:

The �rst theorem is due to N. Aronszajn (cf. [Aro35]). For a short proof, we refer

to [MW98].

Theorem B.1 Let 
1, 
2 be open sets in the extended plane and f 2 H(
1 \
2).

Then there are f1 2 H(
1) and f2 2 H(
2) such that (f1 + f2)j
1\
2 = f .

Corollary B.2 Let K be a compact subset of C and f 2 H0(CnK). Then for any

two compact sets K1, K2 with K1 [K2 = K, there are functions f1 2 H0(C nK1)

and f2 2 H0(C nK2) such that (f1 + f2)jCnK = f .

The next result, due to Q. I. Rahman [Rah69], is a generalization of Fuchs' theorem

(cf. [Boa54] Theorem 9.5.1).

Theorem B.3 (cf. [Rah69, Theorem 1]) Assume that f is holomorphic in some

open set that contains fRe(z) � 0g, and jf(z)j = O(ecjzj) for some c > 0. Let further

(�n = rn e
i�n)n2N be a sequence of zeros of f in fz : Re(z) > 0g ordered with respect

to their modulus and such that rn+1 � rn > � > 0 for all n 2 N. Then f � 0 if and

only if

lim sup
r!1

exp

� P
rn<r

cos(�n)
rn

�
r
c
�

=1:

Theorem B.4 (cf. [BG95, Corollary 4.1.16]) If f is a function of exponential type

zero that satis�es jf(n)j = O(jnjp) for some positive integer p, then f is a polynomial

of degree at most p.
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