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Zusammenfassung

Diese Arbeit beschäftigt sich mit der globalen Ersatzmodellierung bei teuren, computerge-
stützen Simulationen. Die numerische Strömungssimulation hat sich zu einer entscheidenden
Schlüsseltechnologie im Flugzeugbau entwickelt. Jedoch ist insbesondere die Rechenzeit für
vollständige Simulationen ganzer Flugszenarien noch inakzeptabel hoch und kann nur durch
den Einsatz von Ersatzmodellen beherrscht werden. So sollen beispielsweise die aerodynami-
schen Beiwerte einer bestimmten Flügelgeometrie nicht nur für eine einzige Konfiguration,
sondern über eine ganze Spanne von verschiedenen Werten für Geschwindigkeit und Anstell-
winkel berechnet werden. Selbst auf modernen Hochleistungsrechnern sind hierbei Rechen-
zeiten von mehreren Tagen für eine einzige Simulation keine Seltenheit. Anstatt nun eine
Vielzahl an Simulationen für verschiedene Konfigurationen der Eingangsparameter durchzu-
führen, um das globale Verhalten einer Antwortfunktion unter Variation der Parameter zu
beschreiben, werden in der Ersatzmodellierung nur wenige, geschickt gewählte Auswertungen
in Stützststellen getätigt und interpoliert. Dadurch können hinreichend genaue Approxima-
tionen der unbekannten Antwortfunktion erzeugt werden, welche nur einen Bruchteil der
herkömmlichen Rechenzeit benötigen.
Mit Kriging können hochgradig nichtlineare, deterministische Funktionen basierend auf

beliebig verteilten Stützsstellen interpoliert werden. Durch die Modellierung über Korrelati-
onsfunktionen können unterschiedliche Sensitivitäten bezüglich der Eingangsparameter bei
der Antwortfunktion automatisch berücksichtigt werden. Sind über die reinen Auswertungen
der Antwortfunktion hinaus auch Gradienteninformationen erhältlich, beispielsweise durch
adjungierte Rechnungen, können diese in die Interpolation aufgenommen werden, um die
globale Approximationsgüte zu verbessern. Mit adaptiven Versuchsplänen lassen sich effizi-
entere Ersatzmodelle generieren. Im Gegensatz zu herkömmlichen nichtadaptiven, lediglich
raumfüllenden Verteilungen der Stützstellen werden sowohl das Ersatzmodell als auch der
Versuchsplan sequentiell generiert. Wissen über das Verhalten der Antwortfunktion kann
somit in die Wahl der Stützstellen einfließen, um eine problemspezifische Interpolation zu
generieren. Kritische Bereiche des Eingangsparameterbereichs, in denen beispielsweise große
Steigungen oder Krümmungen der Antwortfunktion auftreten, werden automatisch identi-
fiziert und dichter ausgewertet, um das Funktionsverhalten korrekt zu reproduzieren. Die
Anzahl der benötigten teuren Simulationen wird somit erheblich verringert.
Oft sind solche Antwortfunktionen nicht beliebiger Natur, sondern gehören einer größeren

Problemklasse an. So weisen die aerodynamischen Beiwertsfunktionen verschiedener Flügel-
geometrien strukturelle Ähnlichkeiten auf. In dieser Arbeit wird der Frage nachgegangen,
wie diese gemeinsamen Strukturen identifiziert und damit für neue Testfälle gewinnbringend
genutzt werden können. Zu einer Datenbank von Antwortfunktionen verschiedener Flügel-
geometrien wird mit Hilfe einer Hauptkomponentenanalyse ein generisches Ersatzmodell
definiert. Somit können charakteristische Strukturen der gemeinsamen Problemklasse ver-
wendet werden, um die Approximationsgüte für eine neue Flügelgeometrie zu verbessern.
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Bei der herkömmlichen Ersatzmodellierung ist trotz Fortschritten, beispielweise durch die
untersuchte adaptive Stützstellenauswahl, immer noch eine hohe Anzahl an Auswertungen
notwendig, um über einen breiten Bereich der Eingangsparameter eine global hohe Appro-
ximationsgenauigkeit zu erreichen. Bei der Validierung des neuartigen Ansatzes an praxis-
relevanten Testfällen zeigt sich, dass dieser deutlich effizientere Ersatzmodelle ermöglicht,
deren Approximationsfehler signifikant geringer als bei herkömmlichen Interpolationen aus-
fällt. Dadurch sind praxistaugliche Ersatzmodelle bereits für eine geringe Anzahl an teuren
Simulationen realisierbar.
Bisher wurden solche Interpolationsprobleme einzeln betrachtet. Der beschriebene Ansatz

ist somit innovativ hinsichtlich der Nutzung struktureller Ähnlichkeiten einer gemeinsamen
Problemklasse für die Ersatzmodellierung. Auf neuartige Weise werden Ansätze aus der ma-
thematischen Ersatzmodellierung, der Methoden unterschiedlicher Eindringtiefe, der statisti-
schen Versuchsplanung und insbesondere der Bildregistrierung und statistischer Bildanalyse
interdisziplinär verbunden. Dabei ist die Anwendbarkeit nicht nur auf die aerodynamische
Simulation beschränkt. Generische Ersatzmodelle können genutzt werden, wann immer teure
Simulationen einer größeren Problemklasse zuzuordnen sind, in der hinreichende strukturelle
Ähnlichkeiten vermutet werden.
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Abstract

In this thesis, global surrogate models for responses of expensive simulations are investi-
gated. Computational fluid dynamics (CFD) have become an indispensable tool in the
aircraft industry. But simulations of realistic aircraft configurations remain challenging and
computationally expensive despite the sustained advances in computing power. With the
demand for numerous simulations to describe the behavior of an output quantity over a
design space, the need for surrogate models arises. They are easy to evaluate and approx-
imate quantities of interest of a computer code. Only a few number of evaluations of the
simulation are stored for determining the behavior of the response over a whole range of the
input parameter domain.
The Kriging method is capable of interpolating highly nonlinear, deterministic functions

based on scattered datasets. Using correlation functions, distinct sensitivities of the re-
sponse with respect to the input parameters can be considered automatically. Kriging can
be extended to incorporate not only evaluations of the simulation, but also gradient informa-
tion, which is called gradient-enhanced Kriging. Adaptive sampling strategies can generate
more efficient surrogate models. Contrary to traditional one-stage approaches, the surrogate
model is built step-by-step. In every stage of an adaptive process, the current surrogate is
assessed in order to determine new sample locations, where the response is evaluated and
the new samples are added to the existing set of samples. In this way, the sampling strat-
egy learns about the behavior of the response and a problem-specific design is generated.
Critical regions of the input parameter space are identified automatically and sampled more
densely for reproducing the response’s behavior correctly. The number of required expensive
simulations is decreased considerably.
All these approaches treat the response itself more or less as an unknown output of a

black-box. A new approach is motivated by the assumption that for a predefined problem
class, the behavior of the response is not arbitrary, but rather related to other instances of
the mutual problem class. In CFD, for example, responses of aerodynamic coefficients share
structural similarities for different airfoil geometries. The goal is to identify the similarities
in a database of responses via principal component analysis and to use them for a generic
surrogate model. Characteristic structures of the problem class can be used for increasing
the approximation quality in new test cases. Traditional approaches still require a large
number of response evaluations, in order to achieve a globally high approximation quality.
Validating the generic surrogate model for industrial relevant test cases shows that they
generate efficient surrogates, which are more accurate than common interpolations. Thus
practical, i.e. affordable surrogates are possible already for moderate sample sizes.
So far, interpolation problems were regarded as separate problems. The new approach

uses the structural similarities of a mutual problem class innovatively for surrogate modeling.
Concepts from response surface methods, variable-fidelity modeling, design of experiments,
image registration and statistical shape analysis are connected in an interdisciplinary way.
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Generic surrogate modeling is not restricted to aerodynamic simulation. It can be applied,
whenever expensive simulations can be assigned to a larger problem class, in which structural
similarities are expected.
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1 Introduction

Multidisciplinary simulation and optimization have become key technologies in research and
engineering. Advances in mathematics and in computing power during the last decades
have allowed the numerical solution of increasingly complex systems. Computer experi-
ments simulate for instance physical models, which are often governed by partial differential
equations (PDEs). They can model input-output relationships, where some input param-
eters determine the response of a system. This can be for example the crashworthiness of
a construction element depending on design parameters like its diameter, the output of a
chemical system depending on conditions like the temperature, or aerodynamic coefficients
of a wing depending on flight conditions like the velocity.
Realistic models are generally challenging and computationally intensive. Still, single sim-

ulations are manageable with an appropriate computational and human effort. But when
the global behavior of an input-output relationship is sought, dense evaluations of a com-
puter experiment over the whole input parameter space are out of reach. With the demand
for numerous evaluations of the response, the need for surrogate models arises. Surrogate
models, also known as metamodels or response surface models, approximate the response of
a computer experiment based on the information contained in a set of previous computa-
tions for different input parameter configurations. They are significantly cheaper to evaluate
than the original response and provide insight into the behavior of the system. Usually, an
analytical closed-form representation is obtained, which enables the fast computation of ap-
proximate outputs for arbitrary inputs. Surrogate models are used for numerous purposes,
such as global approximation, optimization, target contour approximation, visualization,
uncertainty quantification, sensitivity analysis or statistical hypothesis testing. Methods for
selecting samples in the input parameter space, for which the true response is evaluated, are
called design of experiments (DOE). The choice of an appropriate surrogate model as well
as a carefully determined design are crucial and have to be customized to the research pur-
pose. Also, different types of outputs call for different surrogates and designs: the response
can be stochastic or deterministic, erratic or smooth, linear or highly nonlinear, discrete or
continuous.
This thesis is devoted to the global approximation of deterministic computer experiments.

The output is assumed to be at least continuous with respect to the inputs, but the rela-
tionship may be highly nonlinear. Besides these minimal assumptions, nothing is known
about the response up front and it is modeled as a black-box system. Two main objectives
can be distinguished in global approximation methods: accuracy and efficiency. In order to
describe the global behavior of a response correctly by the means of a surrogate model, gen-
erally a large number of expensive sample evaluations is required. Response surface methods
typically suffer from the curse of dimensionality, i.e. the number of samples for covering the
input parameter domain sufficiently dense grows exponentially with the dimension of the
input space. For the sake of efficiency, surrogate models as well as design strategies have to
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1 Introduction

be developed, which use as few samples as possible without sacrificing accuracy.
Adaptive sampling strategies are state-of-the-art for approximating highly nonlinear and

multimodal responses. The surrogate model is built sequentially. New samples for evaluating
the original response are determined in each step of an adaptive process, thus incorporating
information about the global behavior into the choice of the design. Error indicators like
cross-validation-based methods can automatically identify critical regions, where a refine-
ment of the design is required. This leads to an intelligent and customized distribution of
the samples in the input parameter domain and prevents wasting expensive evaluations in
areas where no additional information is needed.
Further enhancement of the approximation quality can be achieved by incorporating a

secondary response into the model, which contains information about the primary one. If
such auxiliary information is available at comparatively low costs, it can be used to predict
the global behavior of the true response efficiently. The additional information can for in-
stance consist of gradients obtained by adjoint computations, low-fidelity data by evaluating
a simpler model, by using a coarser mesh for the numerical solution of a PDE, or even by
using not fully converged solutions. Variable-fidelity modeling (VFM) is an active field of
research, containing a large variety of methods.
The outline of this work is as follows. In Chapter 2, several surrogate modeling tech-

niques are introduced. Starting with linear regression, which is a basis for understanding
further methods, also radial basis functions are discussed briefly. The chapter’s focus is
on the presentation of the Kriging and the gradient-enhanced Kriging method. Kriging
is capable of interpolating highly nonlinear, deterministic black-box functions by modeling
correlations, therefore also providing basic statistical information about the response and
an elementary error estimator. The gradient-enhanced version additionally uses derivative
information for improving the approximation quality. A detailed investigation of both meth-
ods is given and their characteristic properties are deduced profoundly. An emphasis is put
on suitable correlation models and on hyperparameter estimation, illustrated with examples
for analytical test cases.
Chapter 3 is devoted to the study of design of experiments strategies. A broad overview

on design concepts for globally accurate surrogates is presented. One-stage approaches as
well as adaptive strategies are covered. They are discussed especially regarding the concepts
of exploration and exploitation. In global surrogate modeling, exploration is understood
as placing the samples such that they spread evenly in the input parameter domain, leav-
ing no part of it uncovered. Exploitation on the other hand means in this context that
samples are chosen where a currently predicted approximation error is highest. One-stage
approaches determine all samples prior to evaluating the response, therefore they do not
have access to any information on its true behavior. They are merely exploration methods
aiming at space-filling designs. Since adaptive methods generate both the surrogate and the
design sequentially, intermediate surrogate models can be used for rough error indicators
and therefore to introduce an exploitation component. Three selected adaptive strategies
are elaborated in detail and their functioning is illustrated with analytical examples.
The design strategies are validated for aerodynamical test cases using Kriging and gradient-

enhanced Kriging in Chapter 4. The computational fluid dynamics (CFD) codes represent
expensive black-box functions, yielding highly nonlinear and multimodal responses. A dense
set of validation data allows the assessment of the global error performance. One-stage and
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adaptive approaches are compared and it is shown that mixed exploration & exploitation
strategies outperform pure exploration methods regarding global accuracy. They reduce the
number of expensive response evaluations required for a target accuracy and use the samples
efficiently. A comparison of the different distributions of the samples in the input parameter
space is given to back up the results. Additionally, the adaptive strategies are compared
to two theoretical sampling strategies, which make use of the validation data and can be
regarded as a best-case study. Finally, an extension of adaptive sampling strategies for com-
puter experiments with multiple responses is considered, providing an efficient framework
for the investigated test cases.
In Chapter 5, a new framework called generic surrogate modeling is introduced, which

represents the centerpiece of this work. The thorough derivation of this method includes a
detailed mathematical presentation of the involved concepts. Often, a computer experiment
is not treated as a single instance. Instead, it belongs to a larger problem class. This
approach is driven by the assumption that for such a predefined problem class the behavior
of a response is not arbitrary, but rather related to other instances of the mutual class.
Motivated by the concept of statistical shape models, in a first step the most important
features of a training database of responses are extracted by principal component analysis.
Then, each new test case of the problem class can be approximated by a generic surrogate
model, using only few evaluations of the response. Instead of directly interpolating the
samples, first the principal components of the training database are fitted to the new data
in a least squares sense. Based on this model, interpolation of the data is performed in
a variable-fidelity modeling framework. This new approach aims at a globally accurate
surrogate, which requires less samples than traditional methods. The global, generally highly
nonlinear trend is captured by the information contained in the training database and not
by massive evaluation of the response. It can be seen as a preprocessing, transferring online
costs to offline costs. Less of the expensive evaluations, which dominate the online costs,
are needed, while generating the database is seen as offline costs, since it can be stored and
used for numerous new test cases.
A numerical validation of generic surrogate modeling is presented in Chapter 6. Aero-

dynamic coefficients depending on flight conditions have already been investigated in the
previous chapters. Now it is demonstrated that a training database of responses of differ-
ent airfoil geometries constitutes a mutual problem class. These responses feature strong
structural similarities over the whole the input parameter domain and only few principal
components are required to represent the whole problem class adequately. In three distinct
test cases, i.e. for responses of three airfoil geometries, the generic surrogate models are com-
pared to Kriging and gradient-enhanced Kriging using one-stage and also adaptive designs.
It is shown that the proposed framework is a successful preprocessing for the interpolation.
Kriging and, depending on the test case, even gradient-enhanced Kriging are outperformed
regarding global accuracy and already a small number of samples is sufficient to reproduce
the global trend of the responses. An error indicator is introduced and validated, which
makes the new approach a reliable tool for global surrogate modeling.
This thesis concludes with a summary of the main results and an outlook to some open

work in Chapter 7.
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1 Introduction

Unless stated otherwise, all numerical results in this thesis were produced by a C-code on a
desktop computer with a 3.0 GHz Intel Core 2 Duo processor and 4 GB RAM. The methods
were implemented using the Surrogate-Modeling for Aero-Data Toolbox (SMART) developed
at DLR.
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2 Surrogate modeling

Surrogate models approximate responses of a computer experiment. The evaluation of the
computer experiment is assumed to be expensive and a surrogate model is a much simpler
model which can be evaluated cheaply. In the literature, surrogate models are also referred
to as approximation models, metamodels, response surface models, supervised learning or
emulators (whereas the computer experiment is called simulator).
The evaluation of the computer experiment yields a scalar response y ∈ R, which depends

on input parameters x = (x1, . . . , xd)> ∈ Ω ⊂ Rd. It is assumed to be a deterministic
black-box system, i.e. nothing is known about the global behavior of the response up front.
Also, no random error is included and multiple evaluations with the same input parameters
x will always produce the same response y(x). Mathematically, the response is an unknown
function

y : Ω→ R,
x 7→ y(x).

(2.1)

For this input-output relationship a surrogate ŷ : Ω → R is sought on an input parameter
domain Ω ⊂ Rd. The dimension of the input space is usually small (d < 10). In this thesis,
only scalar responses are discussed. For multivariate responses y ∈ Rd̃ (d̃ > 1) it is assumed
that a separate surrogate model is used for each dimension of the output parameter space.
The surrogate model is constructed from a set of evaluations of the computer experiment{

(x(i), yi)
}N
i=1

, yi = y(x(i)) (i = 1, . . . , N). (2.2)

The inputs X := {x(1), . . . , x(N)} ⊂ Ω are called samples and Y := (y1, . . . , yN )> ∈ RN
are called observations. In the following, superscripts are used to denote samples, while
subscripts are used to denote components of a vector, so x(i)

k ∈ R is the k-th component of
x(i) ∈ Rd. Because the scalar observations yi, depending on the samples x(i) (i = 1, . . . , N),
are assembled in the vector Y ∈ RN , which is made use of frequently, subscripts will be
used for them as well for convenience. It is assumed that x(i) 6= x(j) (∀i 6= j), since y(x)
is a deterministic function and identical data pairs (x(i), yi) = (x(j), yj) do not add any
supplementary information about y(x). The choice of X ⊂ Ω, also referred to as sampling,
will be the subject of Chap. 3, where several designs of experiments (DOE) are discussed.
The aim of this thesis is to present methods for global approximation, in other words

to construct surrogates ŷ(x) which are globally valid for y(x) in Ω ⊂ Rd. Other methods
like surrogate-based optimization methods on the contrary do not primarily aim at a good
approximation quality in the whole domain Ω. The choice of the surrogate model and the
design of experiments can strongly differ from global approximation methods. Optimization
methods will not be the subject of this thesis. In surrogate modeling for global approximation
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2 Surrogate modeling

of expensive computer experiments, two main objectives can be distinguished: accuracy and
efficiency. Clearly, ŷ(x) is supposed to be a good approximation to y(x) for every x ∈ Ω. But
for the sake of efficiency, one is interested to keep the number of evaluations N as small as
possible. Numerous evaluations that densely cover the input parameter domain Ω in order
to precisely describe the response’s behavior are computationally out of reach. Although
with an increase of N also the computational complexity of model generation is intensified,
the cost of constructing a surrogate from given data is negligible. The cost of one single
evaluation of the true response is assumed to exceed the cost of model building.
The main purpose of this chapter is the introduction of the Kriging method in Sect. 2.3,

which will be used for surrogate modeling throughout this thesis. An extension of this
method is gradient-enhanced Kriging (GEK), which is able to include sensitivity informa-
tion and is presented in Sect. 2.4. Two other techniques, linear regression and radial basis
functions, are reviewed in Sects. 2.1 and 2.2. Their discussion offers a better insight into the
functioning of the Kriging method.

2.1 Linear regression models

Linear regression models provide an easy-to-use method of constructing a surrogate. Their
use dates back over 200 years to Carl Friedrich Gauß and their statistical properties are well-
known. They can be applied in surrogate modeling, forecasting, uncertainty quantification
and hypothesis testing. Detailed introductions can be found in [8, 101, 42, 28].

2.1.1 Ordinary least squares

In linear regression models, the observed response values Y = (y1, . . . , yN )> (2.2) are as-
sumed to satisfy the equations

yi =
K∑
j=1

βjfj(x(i)) + zi (i = 1, . . . , N). (2.3)

fj : Rd → R are known functions with yet unknown coefficients βj (j = 1, . . . ,K). zi are
normally distributed random variables, which are uncorrelated and have zero expectation
and constant variance σ2

E [zi] = 0, Var [zi] = σ2 (i = 1, . . . , N), (2.4)

i.e. zi ∼ N (0, σ2). The most popular choice for the functions fj are polynomials, but the
model is not restricted to them. The surrogate model is defined by

ŷ(x) :=
K∑
j=1

βjfj(x)

=f(x)>β,
(2.5)

using β := (β1, . . . , βK)> ∈ RK and f(x) := (f1(x), . . . , fK(x))>, f : Rd → RK .
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2.1 Linear regression models

To be able to determine the coefficients βj from the observed data Y , at least as many
observations as unknowns are needed (N ≥ K). A design matrix

F :=
[
fj(x(i))

]N,K
i,j=1

∈ RN×K (2.6)

and a sum of squared differences (or errors)

SSD(β) :=
N∑
i=1

(
yi − f(x(i))>β

)2

=(Y − Fβ)>(Y − Fβ)
= ‖Y − Fβ‖22

(2.7)

are defined. β is determined by minimizing the SSD, so the surrogate model (2.5) is a linear
least squares fit to the observations Y .

Theorem 2.1. If F has full column rank K, the linear least squares problem

min
β∈RK

SSD(β) (2.8)

has a unique solution
β =

(
F>F

)−1
F>Y. (2.9)

Proof. The gradient and the Hessian of SSD(β) are

∇ SSD(β) = 2
(
F>Fβ − F>Y

)
, (2.10)

∇2 SSD(β) = 2 F>F. (2.11)

F>F is a positive definite symmetric matrix: Otherwise there existed a β 6= 0 satisfying
0 ≥ β>F>Fβ = ‖Fβ‖22, which is only possible for Fβ = 0. Because of the full column rank
of F this leads to β = 0, which is a contradiction. Necessary first order optimality conditions
are applied and ∇ SSD(β) = 0 is equivalent to β = (F>F )−1F>Y . The Hessian is positive
definite, so the second order sufficient condition is also fulfilled.

The condition of F having full column rank K is crucial. Linear independent functions
{f1, . . . , fK} (such as monomials) are only a necessary, but not sufficient condition. E.g.
due to a degenerated sampling X = {x(1), . . . , x(N)}, the rank of F can be smaller than K.
In the remainder of this thesis, linear independent functions and a full column rank of F
are assumed. For a discussion of problems with the rank of F see [8, 28] and for numerical
methods see [6].
Another interpretation of (2.9) is given. The matrix F+ := (F>F )−1F> ∈ RK×N is the

Moore-Penrose pseudo-inverse of F and satisfies F+F = IK , see [41]. Generally, the system
Fβ = Y is overdetermined, because N > K and a solution does not exist. β = F+Y then
minimizes the sum of squared errors ‖Fβ − Y ‖22 among all β ∈ RK . Note that the statistical
assumption about the errors zi (2.4) is not needed for the construction of the ordinary least
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2 Surrogate modeling

squares estimator ŷ(x) (2.5). But it is associated with the choice of the norm ‖·‖2, which
was used to measure the error. The next section will illustrate how other assumptions about
the errors zi can lead to other norms.

2.1.2 Generalized least squares

Analogously to the previous section, the generalized least squares model is defined by

yi =
K∑
j=1

βjfj(x(i)) + zi (i = 1, . . . , N) (2.12)

with the fj as in (2.3). Suppose now that the zi are random variables with zero ex-
pectation, but the assumption of uncorrelatedness or constant variance no longer holds.
Z := (z1, . . . , zN )> is a multivariate normally distributed random vector satisfying

E [Z] = 0 ∈ RN , Cov [Z,Z] = Σ ∈ RN×N , (2.13)

i.e. Z ∼ NN (0,Σ), where Σ is an arbitrary symmetric positive definite covariance matrix.
This general setting includes cases like Σ = diag

(
σ2

1, . . . , σ
2
N

)
(uncorrelated but different

variances, “heteroscedasticity”), Σ = σ2R with a correlation matrix R (constant variance
but correlated) or even the previous section’s setting Σ = σ2I. For the time being suppose
Σ to be known. The surrogate model is again defined by

ŷ(x) := f(x)>β. (2.14)

Under the assumptions (2.12)–(2.13), Y ∼ NN (Fβ,Σ) is a multivariate normally dis-
tributed vector. Maximum likelihood estimation is applied for determining β in (2.14), see
[8]. For a given vector of observations Y the likelihood function of β is

L(β|Y ) = (2π)−
N
2 (det Σ)−

1
2 exp

(
−1

2 (Y − Fβ)>Σ−1 (Y − Fβ)
)
. (2.15)

It will now be shown that for the general case (2.13) the ordinary linear least squares fit is
not an appropriate surrogate model.

Theorem 2.2. If F has full column rank K and the covariance matrix Σ is nonsingular,
the maximum likelihood problem

max
β∈RK

L(β|Y ) (2.16)

has a unique solution
β =

(
F>Σ−1F

)−1
F>Σ−1Y. (2.17)

Proof. Problem (2.16) is equivalent to minimizing the negative logarithm of the likelihood
function − logL(β|Y )

min
β∈RK

{
N

2 log(2π) + 1
2 log(det Σ) + 1

2 (Y − Fβ)>Σ−1 (Y − Fβ)
}
. (2.18)
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2.1 Linear regression models

The gradient and the Hessian of − logL(β|Y ) with respect to β are

∇ (− logL(β|Y )) = F>Σ−1Fβ − F>Σ−1Y, (2.19)
∇2 (− logL(β|Y )) = F>Σ−1F. (2.20)

F>Σ−1F is a positive definite symmetric matrix: Otherwise there existed a β 6= 0 sat-
isfying β>F>Σ−1Fβ ≤ 0. Since Σ is positive definite and symmetric, it has a Cholesky
decomposition Σ = LL>, where L is a lower triangular matrix with strictly positive diag-
onal entries. Using this in the inequality yields 0 ≥ β>F>L−>L−1Fβ = ‖Fβ‖2L−1 , where
‖·‖L−1 =

∥∥L−1 ·
∥∥

2. This is only possible for Fβ = 0 and because of the full column rank
of F this leads to β = 0, which is a contradiction. Now first and second order optimality
conditions can be applied: ∇ (− logL(β|Y )) = 0 is equivalent to β = (F>Σ−1F )−1F>Σ−1Y
and the Hessian is positive definite, from which the claim follows.

While the ordinary least squares method estimated β by minimizing the ‖·‖2-norm of
the errors Z = Y − F>β, the generalized least squares estimation for β minimizes the
‖·‖L−1-norm of Z

‖Y − Fβ‖2L−1 = (Y − Fβ)>Σ−1 (Y − Fβ) , (2.21)

where LL> = Σ. (2.21) is also called Mahalanobis distance of Y and Fβ, cf. [4]. This
formulation illustrates how ordinary least squares is a special case of generalized least squares.
If the assumption Z ∼ NN (0, σ2I) holds, minimizing (2.21) is equivalent to minimizing the
ordinary SSD(β) (2.7) and β in (2.17) is the same as in (2.9), as σ2 is canceled out. Another
instance is Z ∼ NN (0,diag

(
σ2

1, . . . , σ
2
N

)
), where the zi are uncorrelated but have different

variances σ2
i (“heteroscedasticity”). In this case, (2.17) is the solution of a weighted least

squares problem minβ∈RK
∑N
i=1 σ

−1
i (yi − f(x(i))>β)2.

2.1.3 Discussion

Linear regression models are now briefly reviewed for their appropriateness in global ap-
proximations of expensive deterministic computer experiments. They are applied in many
different fields of research, model generation is simple and computational costs are low. They
are capable of dealing with a large number of samples, as the cost of evaluating the surrogate
ŷ(x) is just O(N) and the cost for determining β is dominated by O(NK2) for ordinary least
squares (computation of F>F ) and by O(N3) for generalized least squares (inversion of Σ).
But besides the fact that large sample sizes N are not discussed within the scope of this
thesis due to the huge computational cost of one single evaluation of the response y(x), some
points which limit the capability of regression models deserve attention.

• For K < N , regression models are an approximation to the observed data Y and not
an interpolation. Supposing y(x) is deterministic and continuous in x, a surrogate
model should be accurate at least in the neighborhood of any sample x(i) ∈ X, which
can be achieved by interpolation rather than approximation.

• In deterministic computer experiments, no noise is included in the evaluation of y(x).
Thus, the surrogate model’s deviation ŷ(x) − y(x) from the true response has to be
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Figure 2.1: Ordinary least squares approximation ŷ(x) =
∑K
j=1 βjx

j−1 for K = 5 (underfitted) and
K = 6 (overfitted), y(x) = (6x− 2)2 sin(12x− 4).

seen as a systematic deviation rather than a random error and statistics based on the
random errors zi become meaningless or even impossible to compute, cf. [122, 85].

• In fact, regression models are only easy to use if the set of functions {f1, . . . , fK} is
already known. Since the surrogate model is solely defined by f(x)>β, ideally the
user would already have a strong hint about the behavior of the true response y(x)
and therefore about the choice of f , which would be contradictory to the concept of a
black-box model. Selecting a set of suitable functions from a larger admissible set is a
nontrivial task and just choosing the whole admissible set might not produce the best
result, as explained in the following argument.

• The authors of [41] pointed out that polynomial models are not suitable for modeling
the highly nonlinear responses, which often arise in engineering problems. To capture
a highly nonlinear behavior, many degrees of freedom K of the surrogate model are
needed. This often is related to the problem of underfitting vs. overfitting. Choosing
K too small results in a poor fit in terms of the SSD (2.7)/(2.21), while choosing K too
large reduces the SSD, but can produce unfavorable variations in undersampled regions
of Ω \X. The problem is highlighted with a one-dimensional example in Fig. 2.1. The
ordinary least squares approximation ŷ(x) = ∑K

j=1 βjx
j−1 to the N = 9 data points

is a poor approximation for K = 5, e.g. in the region around the global minimum.
Increasing the degrees of freedom by one to K = 6 reduces the SSD by about 50%
from 25.0 to 12.1, but doubles the total average error

∫ 1
0 |y(x) − ŷ(x)|dx from 1.1 to

2.3.

2.2 Radial basis functions
Before the Kriging method is introduced in the next section, radial basis functions (RBF)
are presented briefly. While the last section covered the topic of approximation of functions
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2.2 Radial basis functions

with a known or suspected structure, radial basis functions offer a method of interpolating
scattered data without prior information about the true response y(x). They are also used in
a broad field of applications like multivariate interpolation, image registration or meshfree
solution of PDEs. General introductions as well as theoretical discussions can be found
in [106, 9, 62, 35]. They can also be interpreted as a single-layer artificial neural network
(ANN), cf. [41].
The surrogate

ŷ(x) :=
N∑
i=1

wiR(‖x− x(i)‖) (2.22)

is defined by a weighted sum of radially symmetric functions

R : Rd → R,

x− x(i) 7→ R(‖x− x(i)‖)
(2.23)

with w := (w1, . . . , wN )> ∈ RN . The centers of these functions coincide with the sam-
ples x(i) (i = 1, . . . , N), but generally other centers c(i) 6= x(i) are possible. Usually, the
Euclidean distance ‖·‖2 is used. Similarly to the previous section, the surrogate is a linear
combination of basis functions, but instead of defining an optimization problem (2.8)/(2.18),
an interpolation condition

ŷ(x(i)) = yi (i = 1, . . . , N) (2.24)

is defined which determines the unknowns wi. The condition is equivalent to

Rw = Y, (2.25)

where R := [R(‖x(j)−x(i)‖)]N,Ni,j=1 ∈ RN×N is assumed to be nonsingular. Clearly, R becomes
singular for any x(i) = x(j) (i 6= j) due to equal lines and columns, so this case is excluded
by default. Conditions under which a radial basis function always generates a nonsingular
system matrix R and examples of such functions can e.g. be found in [9, 62, 147, 35], see
also Sect. 2.3.3.

Gaussian e−h
2

inverse multiquadric
(
1 + h2)− 1

2

multiquadric
(
1 + h2) 1

2

polyharmonic splines (k ∈ N) h2k−1

h2k log h

Table 2.1: Radial basis functions, h := ‖x− x(i)‖

Popular choices for radial basis functions are listed in Table 2.1. They can be subdivided in
local and global basis functions. Gaussian and inverse multiquadric basis functions are local
in the sense of R(h) → 0 (h → ∞), while multiquadric basis functions and polyharmonic
splines are global, i.e. R(h)→∞ (h→∞). This is not to be mistaken for global and local
surrogate models, as also a surrogate model based on local basis functions can be a globally
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Figure 2.2: RBF interpolation ŷ(x) using R(h) = |h|3, y(x) = (6x− 2)2 sin(12x− 4).

valid one. Figure 2.2 depicts an RBF interpolation of the data from the previous section’s
example (Fig. 2.1) with polyharmonic splines R(|x − x(i)|) = |x − x(i)|3. Contrary to the
ordinary least squares approximation, the RBF interpolation is able to capture the nonlinear
behavior of the response accurately.
There exist numerous enhancements of the basic method. h can be replaced by θh, where

θ > 0 is a scaling factor, adding more freedom to the model. An additional regression term
f(x)>β, e.g. polynomials of low order, can be included in the model (2.22), if a global trend
of y(x) is assumed. Finally, radial basis functions can also be used for approximation, either
by using less basis functions than samples and solving (2.25) only in a least squares sense,
or by regularizing R by R + εI, which can be used if the data is noisy. The surrogate then
acts as a smoothing approximation of Y instead of an interpolation.
A short presentation of radial basis functions was given. They are capable of interpolating

arbitrary observations Y of pairwise disjunct samples X without any statistical assumptions.
However, the fact that the basis functions are assumed radial may be inappropriate for the
use in surrogate modeling for computer experiments, because the response y(x) may have a
different sensitivity with respect to each input parameter xk (k = 1, . . . , d). This problem
can be avoided by using a different norm instead of the Euclidean distance ‖·‖2. In Kriging,
these sensitivities can be obtained automatically from the data. It will also be shown that,
under certain assumptions, interpolations with local radial basis functions are a special case
of the Kriging method.

2.3 Kriging

The Kriging method is named after the mining engineer Daniel Krige, who used this tech-
nique first in the 1950s for the prediction of ore concentration based on core samples [74],
and was further developed by Matheron [94]. Since then it has been widely applied in spatial
prediction and geostatistics, see [21] for an overview. The method can interpolate scattered
data by modeling spatial correlations. Nowadays, Kriging is a topic in many textbooks on
statistics for spatial data [61, 22, 146, 126, 15]. Since the 1980s it has also been applied in
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the interpolation of responses generated by deterministic computer experiments, introduced
by Sacks et al. [122], see also [26], and [73] for a more detailed discussion. A thorough
mathematical investigation can be found in the monograph [134]. It gained popularity in
surrogate modeling for expensive simulations and engineering problems and since the 2000s
it is discussed in textbooks in this field of research [123, 33, 112, 70, 41]. Recently, a review
on Kriging for computer experiments was given in [83].

2.3.1 Model assumptions

The main idea for a Kriging prediction ŷ(x) for y(x) is to use a weighted sum of the previous
evaluations Y = (y1, . . . , yN )>

ŷ(x) =
N∑
i=1

λi(x)yi (2.26)

with weights λ(x) := (λ1(x), . . . , λN (x))> ∈ RN depending on x. Intuitively, the influence of
yi on ŷ(x) should be large if x is close to x(i). But instead of using a rather simple approach
like inverse distance weighting, the Kriging method makes use of the underlying statistical
assumptions on the unknown response y(x). It is treated as a sum of a linear regression part
and a lack-of-fit term

y(x) =
K∑
j=1

βjfj(x) + z(x), x ∈ Ω ⊂ Rd, (2.27)

where fj(x) : Rd → R are known functions with coefficients βj ∈ R (j = 1, . . . ,K) simi-
larly to (2.3) and (2.12). But unlike linear regression approximation in Sect. 2.1, the error
z(x) : Rd → R is not assumed to be a random error or white noise. It is rather a system-
atic deviation from the linear model and captures the nonlinear behavior of y(x), which is
not described by ∑K

j=1 βjfj(x). z(x) is modeled as the realization of a Gaussian stochastic
process, i.e. any vector of a finite number of evaluations Z := (z(x(1)), . . . , z(x(N)))> ∈ RN
is multivariate normally distributed. Furthermore, the Gaussian process is assumed to be
second-order stationary, i.e. it has a constant mean function and a translational symmetric
autocovariance function, additionally satisfying

E [z(x)] = 0, Cov [z(x), z(x̃)] = σ2R(x̃− x) ∀x, x̃ ∈ Ω. (2.28)

σ2 > 0 is the process variance and Corr[z(x), z(x̃)] := R(x̃ − x) is a spatial autocorrelation
function. Any valid autocorrelation function must satisfy the conditions of symmetry and
nonnegative definiteness

R(x̃− x) = R(x− x̃) ∀x, x̃ ∈ Ω, (2.29)
N∑

i,j=1
wiwjR(x(j) − x(i)) ≥ 0 ∀

{
x(1), . . . , x(N)

}
⊂ Ω, w ∈ RN . (2.30)

Additionally, for the stationarity argument, the correlation function only depends on the
distance vector x̃ − x and not on the locations x and x̃ themselves. Assuming that z(x)
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and z(x̃) are strongly correlated when x and x̃ are close and just weakly correlated for a
large distance ‖x̃ − x‖, usually a correlation function is chosen that satisfies R(0) = 1 and
R(x̃− x) −→ 0 for ‖x̃− x‖ −→ ∞ for arbitrary norms ‖·‖ and therefore acts merely locally.
For the theory of stochastic processes the reader is referred to e.g. [109] and for Gaussian
process modeling to [112].
With z(x) being a stationary Gaussian process, y(x) also has the property of a Gaussian

process (generally nonstationary due to the non-constant mean) with

E [y(x)] = f(x)>β, Cov [y(x), y(x̃)] = σ2R(x̃− x) ∀x, x̃ ∈ Ω, (2.31)

using β := (β1, . . . , βK)> ∈ RK and f(x) := (f1(x), . . . , fK(x))>, f : Rd → RK as in
Sect. 2.1. Hence, Z and Y = Fβ + Z are both multivariate normally distributed

Y ∼ NN (Fβ, σ2R), (2.32)
Z ∼ NN (0, σ2R), (2.33)

where F := [fj(x(i))]N,Ki,j=1 ∈ RN×K is the regression matrix and R := [R(x(j) − x(i))]N,Ni,j=1 ∈
RN×N is the symmetric and positive definite correlation matrix. The symmetry is guaranteed
by (2.29), but for the positive definiteness formulation, (2.30) is replaced by

N∑
i,j=1

wiwjR(x(j) − x(i)) > 0 ∀x(i) 6= x(j) (i 6= j), w ∈ RN \ {0}, (2.34)

such that the existence of R−1 is ensured. Possible choices for valid correlation functions
and a continued discussion will be presented in Sect. 2.3.3.

2.3.2 The Kriging predictor

For the regression models in Sect. 2.1, the statistical assumptions (2.3) or (2.12) were
rather strong, because the surrogate model ŷ(x) was merely defined by the linear model∑K
j=1 βjfj(x). In Kriging however, surrogate modeling is not performed by choosing a so-

phisticated linear model, but rather by exploiting the capability of the Gaussian process to
interpolate arbitrary data. Therefore, Kriging also goes under the name of Gaussian process
prediction, see e.g. [112]. Based on the observed data Y , the properties of z(x) are used to
derive a best linear unbiased predictor (BLUP) ŷ(x) for the response y(x).

Definition 2.3 (Best linear unbiased prediction). A prediction ŷ(x) is a BLUP for
y(x) based on Y = (y1, . . . , yN )> if it is a linear combination of the entries

ŷ(x) =
N∑
i=1

λi(x)yi, (2.35)

which minimizes the mean squared error

MSE [ŷ(x)] := E
[
(ŷ(x)− y(x))2

]
(2.36)
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subject to the unbiasedness condition

E [ŷ(x)− y(x)] = 0 (2.37)

for all x ∈ Ω.

In the following theorem, a necessary and sufficient condition is derived for which the Krig-
ing predictor (2.26) is a BLUP and also an interpolator. Let r(x) := (R(x(i) − x))Ni=1 ∈ RN
identify a correlation vector for an arbitrary x ∈ Ω and all x(1), . . . , x(N). µ(x) ∈ RK is a
Lagrange variable and R, F , f(x), λ(x) are defined as in the previous section.

Theorem 2.4. Let x(i) 6= x(j) for i 6= j and F have full column rank K. Provided(
λ(x)
µ(x)

)
∈ RN+K is the solution of the linear system

[
R F
F> 0

](
λ(x)
µ(x)

)
=
(
r(x)
f(x)

)
, (2.38)

the Kriging predictor ŷ(x) = λ(x)>Y is a BLUP for y(x), x ∈ Ω.

Proof. The proof mainly follows the argumentation of [123]. For an arbitrary x ∈ Ω, a
solution of the constrained optimization problem

min
λ(x)∈RN

E
[(
λ(x)>Y − y(x)

)2
]

(2.39)

s. t. E
[
λ(x)>Y − y(x)

]
= 0 (2.40)

is sought. Exploiting E[z(x)] = 0, the unbiasedness condition (2.40) can be rewritten as

0 = E
[
λ(x)>Y − y(x)

]
= E

[
λ(x)>(Fβ + Z)− f(x)>β − z(x)

]
= λ(x)>Fβ + λ(x)> E[Z]− f(x)>β − E[z(x)]

=
(
F>λ(x)− f(x)

)>
β. (2.41)

This must hold for any β, so the unbiasedness condition holds for

F>λ(x)− f(x) = 0. (2.42)

With this identity, the error of the surrogate model can be rewritten as

λ(x)>Y − y(x) = λ(x)>(Fβ + Z)− f(x)>β − z(x)

=
(
F>λ(x)− f(x)

)>
β + λ(x)>Z − z(x)

= λ(x)>Z − z(x). (2.43)
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Hence, the MSE[ŷ(x)] reads

E
[(
λ(x)>Y − y(x)

)2
]

= E
[(
λ(x)>Z − z(x)

)2
]

= E
[
λ(x)>ZZ>λ(x)− 2λ(x)>Zz(x) + z(x)2

]
= σ2

(
λ(x)>Rλ(x)− 2λ(x)>r(x) + 1

)
. (2.44)

Now, a new optimization problem can be posed using (2.44) and (2.42), whose solution is
sufficient for (2.39)–(2.40):

min
λ(x)∈RN

1
2λ(x)>Rλ(x)− r(x)>λ(x) (2.45)

s. t. F>λ(x)− f(x) = 0. (2.46)

Introducing a Lagrange variable µ(x) ∈ RK , the corresponding Karush-Kuhn-Tucker system
(cf. [103]) reads [

R F
F> 0

](
λ(x)
µ(x)

)
=
(
r(x)
f(x)

)
. (2.47)

Since R is positive definite (for x(i) 6= x(j), i 6= j) and F has full column rank K, the system
matrix is nonsingular and (2.47) is a necessary and sufficient optimality condition for the
convex quadratic problem with linear constraints, again see [103].

From the condition (2.38) not only the BLUP property can be derived, but also the
interpolation property. Inserting any x(i) for x (i = 1, . . . , N), the right-hand side

(
r(x(i))
f(x(i))

)
becomes the i-th column of the system matrix

[
R F
F> 0

]
and

(
λ(x(i))
µ(x(i))

)
=
(
ei
0

)
is the solution,

where ei denotes the i-th unit vector. Then evaluating the surrogate in x(i)

ŷ(x(i)) = e>i Y = yi (2.48)

yields the correct response yi = y(x(i)).
Also, the MSE [ŷ(x)] can be written as

MSE [ŷ(x)] = σ2

1−
(
r(x)
f(x)

)> [
R F
F> 0

]−1(
r(x)
f(x)

) , (2.49)

cf. [122]. From this representation it is easy to derive MSE[ŷ(x(i))] = 0 (i = 1, . . . , N): the
right matrix vector product again yields ei, the i-th entry in the left vector is R(x(i)−x(i)) = 1
and the difference yields zero.
A short remark is given on the possibility to weaken the interpolation condition (2.48).

When the observed data is assumed to be noisy or even stochastic, interpolation might
not produce a suitable surrogate model. The Kriging method can be extended in order to
approximate the data instead of interpolating it. In geostatistics, this is known as “nugget-
effect”, see e.g. [146]. A smoothing approximation for the response evaluations Y can for
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instance be generated by regularizing the correlation matrix R + εI (ε > 0) [39, 110] or,
with a similar effect, by scaling the correlation function R̃(h) := (1− ε)R(h) for h 6= 0 while
still satisfying R̃(0) = 1 (ε ∈ (0, 1)) [124]. Since the responses investigated in this thesis are
assumed to be deterministic and sufficiently smooth, interpolation is the method of choice
and regularization is not applied.

Connection to radial basis functions

A more descriptive interpretation of the surrogate model is now presented. The expression
(2.26) can be expanded in the following way:

λ(x)>Y =
(
λ(x)
µ(x)

)>(
Y
0

)

=
(
r(x)
f(x)

)> [
R F
F> 0

]−1(
Y
0

)
. (2.50)

Instead of solving the linear equation (2.38) for λ(x) each time when the surrogate model
ŷ(x) = λ(x)>Y is evaluated, one only has to solve the linear equation[

R F
F> 0

](
w(r)

w(f)

)
=
(
Y
0

)
(2.51)

once with a numerical effort of O
(
(N +K)3). The solution

(
w(r)

w(f)

)
∈ RN+K is independent

of x ∈ Ω and depends only on the given data set X,Y . The surrogate model can be evaluated
in an arbitrary x ∈ Ω

ŷ(x) =
(
w(r)

w(f)

)>(
r(x)
f(x)

)
(2.52)

with the numerical effort of a scalar product O (N +K).

In the last formulation (2.52) the connection between the Kriging method and radial basis
functions method reveals. This property is sometimes referred to as duality of Kriging,
e.g. in [100]. The surrogate is a weighted sum of the correlation functions R(x(i) − x)
(i = 1, . . . , N) and the regression functions fj(x) (j = 1, . . . ,K), where the weights

(
w(r)

w(f)

)
satisfy an interpolation condition (and an additional unbiasedness condition) (2.51). The
correlation functions can be interpreted as local basis functions with centers x(i), satisfying
R(x(i) − x(i)) = 1 and R(x − x(i)) −→ 0 for ‖x(i) − x‖ −→ ∞. But contrary to radial basis
functions, R(x(i) − x) does not have to be radially symmetric around x(i), leaving more
freedom to the model, cf. Sect. 2.3.3.
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Connection to the model assumptions

In a second interpretation of the optimal weights λ(x) in (2.38), a connection between the
surrogate model ŷ(x) = λ(x)>Y (2.26) and the model assumption (2.27) is established.
Using a partitioned inversion formula (cf. [123])[

R F
F> 0

]−1

=
[
R−1 −R−1F (F>R−1F )−1F>R−1 R−1F (F>R−1F )−1

(F>R−1F )−1F>R−1 −(F>R−1F )−1

]
, (2.53)

the solution λ(x) and µ(x) of (2.38) can be read separately

µ(x) = (F>R−1F )−1
(
F>R−1r(x)− f(x)

)
, (2.54)

λ(x) = R−1 (r(x)− Fµ(x)) . (2.55)

Hence, the Kriging predictor can be rewritten in the following form:

ŷ(x) = λ(x)>Y
= (r(x)− Fµ(x))>R−1Y

= r(x)>R−1Y −
(
F>R−1r(x)− f(x)

)>
(F>R−1F )−1F>R−1Y︸ ︷︷ ︸

=:β

= f(x)>β + r(x)>R−1(Y − Fβ)
= f(x)>β + r(x)>R−1Z, (2.56)

where R−1Z = w(r) and β = w(f) correspond to the weights in (2.52). Thus, according
to the model assumption (2.27), the surrogate is a sum of a regression model f(x)>β with
a generalized least squares estimate β = (F>R−1F )−1F>R−1Y as in (2.17) and a second
term r(x)>R−1Z. This second term is a weighted sum of correlation functions R(x(i) − x)
and the weights are defined by an interpolation condition for the deviations Z from the
regression model. While the regression model (usually of low order) approximates the drift
or the global trend of the unknown response y(x), the second term captures the nonlinear
behavior of y(x) and “pulls” the surrogate ŷ(x) through the observed data Y based on the
statistical assumptions on the Gaussian process z(x), cf. [73].

Commonly, the linear model is kept small on purpose and often only a constant regression
term or monomials of order 1 are used. The simplest case K = 1, f1 ≡ 1, y(x) = β1 +z(x) is
called ordinary Kriging, whereas the more general case using low-order polynomials is called
universal Kriging. The author of [124] demonstrated that the influence of the regression
model on the quality of the Kriging prediction is negligible when interpolating an unknown
nonlinear function. If no global trend is known, ordinary Kriging suffices. In the remainder of
this thesis ordinary Kriging will be used for interpolation, but the universal Kriging notation
is maintained to emphasize that all methods can be applied to a general ∑K

j=1 fj(x)βj as
well.
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2.3 Kriging

2.3.3 Correlation functions

Before a Kriging predictor is generated, a correlation function R(x̃ − x) for z(x) has to
be specified. As identified in the previous section, the surrogate model ŷ(x) = λ(x)>Y =(
w(r)

w(f)

)> ( r(x)
f(x)

)
is a weighted sum of correlation functions ri(x) = R(x(i) − x) with centers

x(i) (i = 1, . . . , N) and the regression functions fj(x) (j = 1, . . . ,K). Hence, the analytical
properties of ŷ(x) are directly defined by R(x̃− x) and fj(x) (j = 1, . . . ,K). Therefore, the
choice of an appropriate correlation function becomes crucial.

In the following, let a family of correlation functions be parametrized by so-called hy-
perparameters θ = (θ1, . . . , θd)> ∈ Rd. A common restriction is to model the multivariate
R : Rd → R as a product of univariate correlation functions

R(x̃− x, θ) =
d∏

k=1
Rk (|x̃k − xk|, θk) . (2.57)

θk > 0 is usually a scaling factor, which controls the influence of an evaluation of the response
yi = y(x(i)) along the xk-axis, cf. Fig. 2.3. The θk can be chosen different for each dimension
k of the input parameter space Ω, so different sensitivities of the response y with respect
to each variable xk can be taken into account (k = 1, . . . , d), see Fig. 2.4. This leaves more
freedom to the surrogate model than radial basis functions do, where the basis functions
depend only on ‖x̃− x‖2.

It is also possible to model anisotropy. Not only scaling in each direction is permitted,
but also a rotation in the input space Rd by additional parameters θ̄. A rotation matrix Qθ̄
is multiplied to the argument x̃ − x and the correlation function becomes R(Qθ̄(x̃− x), θ).
For d = 2, a rotation angle θ̄1 has to be specified for the rotation matrix

Qθ̄1 =
[
cos θ̄1 − sin θ̄1
sin θ̄1 cos θ̄1

]
. (2.58)

For d = 3, the rotation matrix is obtained by multiplying the rotation matrices for the x1,2-,
x1,3- and x2,3-plane

Qθ̄1,θ̄2,θ̄3 =

cos θ̄3 − sin θ̄3 0
sin θ̄3 cos θ̄3 0

0 0 1


cos θ̄2 0 − sin θ̄2

0 1 0
sin θ̄2 0 cos θ̄2


1 0 0

0 cos θ̄1 − sin θ̄1
0 sin θ̄1 cos θ̄1

 . (2.59)

In geostatistics for instance, there is often little reason for the assumption that the direction
of a strong correlation coincides with the north-south-axis or the east-west-axis in spatial
modeling, cf. [146]. Then, rotation of the correlation axis can improve the approximation
quality. In computer experiments however, the input parameters xk (k = 1, . . . , d) generally
correspond to different physical inputs. The global influence of each xk is modeled by the
scaling factor θk and rotation is not applied. Also, for d > 3, modeling anisotropy becomes
challenging because of the growing number of the rotation parameters θ̄ yet to identify.
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Figure 2.3: Univariate correlation functions for θ = 0.5, 1.0, 2.0 (h := x̃− x).

Examples

Several popular choices for families of univariate correlation functions are now presented
and depicted in Fig. 2.3. For simplicity, a distance vector h := x̃− x is defined. The linear
correlation functions

R(x̃− x, θ) = max {1− θ |x̃− x| , 0} (2.60)

are C0(R)-functions, which are not differentiable in the origin and in |h| = 1
θ . Also, for

|h| ≥ 1
θ , z(x) and z(x̃) have zero correlation. This can be favored in applications where for a

sufficient distance of x and x̃, the responses y(x) and y(x̃) are assumed to behave distinctly.
In terms of the basis functions R(x(i) − x) this means a true local behavior, since they have
a finite support supp(R(x(i) − x)) = {x : |x− x(i)| < 1

θ} (i = 1, . . . , N).
A second example are the exponential correlation functions

R(x̃− x, θ) = exp {−θ |x̃− x|} . (2.61)

They are also C0(R), not differentiable in the origin and R(h) decreases fast for small h. In
contrast to the previous example, R(h) > 0 holds for all h ∈ R.
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Figure 2.4: A two-dimensional Gaussian correlation function for θ1 = 2, θ2 = 0.5.

A family of widely used functions are the Gaussian correlation functions

R(x̃− x, θ) = exp
{
−θ (x̃− x)2

}
, (2.62)

which are C∞(R) and therefore produce very smooth interpolations ŷ(x). Although this is
a desired quality in many applications, for responses with highly nonlinear (e.g. by large
gradients and curvature) or even erratic behavior, this can produce inappropriate interpo-
lations. Also, the correlation matrices based on the smooth Gaussian correlation functions
are known to be ill-conditioned in many cases, e.g. if θ is small or if any x(i), x(j) are close
(i, j = 1, . . . , N), see Fig. 2.5 and also [88, 30].

Cubic splines whose shapes resemble the Gaussian correlation functions are defined by

R(x̃− x, θ) =


1− 6 (θ|h|)2 + 6 (θ|h|)3 , 0 ≤ θ|h| < 0.5
2 (1− θ|h|)3 , 0.5 ≤ θ|h| < 1
0, 1 ≤ θ|h|

. (2.63)

They are twice continuously differentiable in R and have a finite support supp(R(h)) =
{h : |h| < 1

θ}. Unlike the Gaussian correlation functions, the correlation matrices based on
these cubic splines are well-conditioned, cf. Fig. 2.5.

The generalized exponential correlation functions

R(x̃− x, θ, p) = exp {−θ |x̃− x|p} (2.64)

have a second hyperparameter p ∈ (0, 2] which can also vary for the different dimensions k =
1, . . . , d of multivariate correlation functions R(h, θ, p) = ∏d

k=1 exp {−θk|hk|pk}. It defines
the smoothness of the correlation function and the model contains exponential correlation
functions (p = 1) as well as Gaussian correlation functions (p = 2).
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Figure 2.5: Condition number of a correlation matrix R ∈ R10×10 depending on θ for X =
{x(i) = i−1

10−1 , i = 1, . . . , 10}.

A necessary and sufficient condition for validness

Not any function R : Rd → R can be used as a correlation function. In this section, a
criterion for validness based on Fourier transformations is discussed.

Definition 2.5 ((strictly) positive definite functions). A function R : Rd → R is called
positive definite, if for arbitrary N ∈ N

N∑
i,j=1

wiwjR(x(j) − x(i)) ≥ 0 ∀x(1), . . . , x(N) ∈ Rd, w ∈ RN . (2.65)

It is called strictly positive definite, if

N∑
i,j=1

wiwjR(x(j) − x(i)) > 0 ∀x(i) 6= x(j) (i 6= j), w ∈ RN \ {0}. (2.66)

This is the classical terminology of definiteness for functions, which is not consistent with
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the terminology of definiteness for matrices. Therefore, in the literature sometimes “positive
semidefinite” is used for positive definite functions and “positive definite” for strictly positive
functions, e.g. in [35, 147]. Now any correlation function R(x̃−x) is required to be a positive
definite function, because any correlation matrix R = [R(x(j)−x(i))]N,Ni,j=1 ∈ RN×N has to be
positive semidefinite. Furthermore, any positive definite function R(h) satisfying R(0) = 1 is
a valid correlation function, because positive definiteness already implies e.g. R(h) ≤ R(0),
see [123]. A necessary and sufficient characterization of positive definite functions is given
by Bochner’s theorem, dating back to 1932, which is here presented in a real-valued version
of [134].
Theorem 2.6 (Bochner). A continuous function R : Rd → R is positive definite if and
only if it can be represented as the characteristic function of a positive finite measure S(·):

R(h) =
∫
Rd

exp{iω>h} dS(ω). (2.67)

Proof. A proof can be found in [44], Chap. IV, Sect. 2.

Since R(h) is real-valued and exp{iω>h} = cos(ω>h)+i sin(ω>h), S(·) has to be symmetric
such that the imaginary sine term under the integral vanishes. (2.67) then reduces to

R(h) =
∫
Rd

cos(ω>h) dS(ω). (2.68)

If S(·) has a density s(·), this reads

R(h) =
∫
Rd

cos(ω>h)s(ω) dω (2.69)

and the density function is the Fourier transform of R(h), cf. [134]:

s(ω) = 1
(2π)d

∫
Rd

exp{−iω>h}R(h) dh

= 1
(2π)d

∫
Rd

cos(ω>h)R(h) dh. (2.70)

Thus Bochner’s theorem contains both a method for constructing correlation functions based
on symmetric density functions as well as a method of checking if a given function is a valid
correlation function. If for a given R(h) the Fourier transform s(ω) exists and s(ω) ≥ 0,∫
Rd s(ω) dω < ∞, then R(h) can be represented as the characteristic function a positive
finite measure and therefore is a valid correlation function. For a product model correlation
function (2.57)

R(h) =
d∏

k=1
Rk(hk) (2.71)

it is sufficient that all one-dimensional Rk(hk) are positive definite (k = 1, . . . , d), since
products of positive definite functions are positive definite, see Sect. 2.3 in [134].
For Kriging (and also for local radial basis functions) positive definite functions are not

sufficient. For practical use, the correlation matrix R = [R(x(j) − x(i))]N,Ni,j=1 ∈ RN×N has
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Figure 2.6: Biquadratic spline correlation function for θ = 0.5, 1.0, 2.0.

to be nonsingular and therefore any correlation function is required to be strictly positive
definite. In [147], an extension of Bochner’s characterization on strictly positive definite
functions is given:

Theorem 2.7. A continuous function R : Rd → R, R ∈ L1(Rd) is strictly positive definite if
and only if R(h) is bounded and its Fourier transform is nonnegative and not equal to zero.

Proof. A proof is given in [147], Theorem 6.11.

Also, for the product model correlation function (2.57), it is sufficient that all one-
dimensional Rk(hk) are strictly positive definite (k = 1, . . . , d), since products of strictly
positive definite functions are strictly positive definite, again see [147] or a recent discussion
in [59]. The one-dimensional examples for correlation functions from the previous section
are all strictly positive definite functions, cf. [35, 123]
The criterion is now illustrated with an example. A cubic spline correlation function was

already introduced, cf. (2.63). It can be used as an approximation to the Gaussian correlation
function (2.62), but with a compact support and well-conditioned correlation matrices. It
is only twice continuously differentiable in R. Now suppose R(h) ∈ C3(R \ {0}) is required
(cf. Sect. 2.3.4). The biquadratic spline (Fig. 2.6)

R(x̃− x, θ) =


1− 15(θ|h|)2 + 35(θ|h|)3 − 195

8 (θ|h|)4, 0 ≤ θ|h| < 0.4
5
3 −

20
3 (θ|h|) + 10(θ|h|)2 − 20

3 (θ|h|)3 + 5
3(θ|h|)4, 0.4 ≤ θ|h| < 1

0, 1 ≤ θ|h|
(2.72)

is also an approximation to the Gaussian correlation function and it is twice continuously
differentiable in R and three times in R \ {0}. It is bounded, has a compact support and∫
RR(h, θ) dh <∞ for all θ > 0. Also, the Fourier transform s(ω) = 1

2π
∫
R cos(ωh)R(h, θ) dh

exists for all θ > 0 and ω ∈ R. Since both θ and ω act as a linear scaling parameter in h, it
is sufficient to show that s(ω) ≥ 0 ∀ω ∈ R for a single θ > 0. Then s(ω) ≥ 0 ∀ω ∈ R holds
for all θ > 0. Figure 2.7 shows the Fourier transform s(ω) of R(h, θ) for θ = 1, computed
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Figure 2.7: Fourier transform s(ω) of the biquadratic spline for θ = 1 and distribution function
S(ω) :=

∫ ω

−∞ s(ξ) dξ.

with symbolic integration using Mathematica. It is nonnegative, therefore the biquadratic
spline is a strictly positive definite function and also a valid correlation function.

2.3.4 Hyperparameter estimation

When a suitable correlation function R(h, θ) is chosen, the hyperparameters θ = (θ1, . . . , θd)
>

still have to be defined. For the correlation functions in the previous sections, the hyperpa-
rameters act as a scaling parameter in h. For the introduced functions, the scaling in hk is
proportional to 1

θk
, except for the Gaussian correlation function where it is proportional to√

1
θk

and the generalized exponential function where it is proportional to p

√
1
θk

(k = 1, . . . , d).
The Kriging predictor is defined by a weighted sum of the correlation functions R(x(i)−x, θ)
(i = 1, . . . , N) and the regression functions fj(x) (j = 1, . . . ,K). So not only the choice
of the correlation model, but also the hyperparameters θ have a great influence on the
approximation quality.
Again, the statistical properties of y(x) and therefore Y = (y1, . . . , yN )> can be exploited

to determine optimal hyperparameters θ, which suit the given data set X,Y best. The
process of adapting the hyperparameters to the data is often referred to as model fitting.
Note that for every θ ∈ Rd+, the Kriging predictor is an interpolator and the value of θ
affects ŷ(x) only in Ω\X. The N -dimensional vector of evaluations is multivariate normally
distributed Y ∼ NN (Fβ, σ2R(θ)), and the correlation matrix’s entries are depending on θ.
Maximum likelihood estimation is applied for finding the unknowns β ∈ RK , σ2 ∈ R+ and
θ ∈ Rd+, cf. also Sect. 2.1.2. The likelihood function reads

L(β, σ2, θ|Y ) = (2πσ2)−
N
2 (detR(θ))−

1
2 exp

(
− 1

2σ2 (Y − Fβ)>R(θ)−1(Y − Fβ)
)
. (2.73)

Maximizing the likelihood function L(β, σ2, θ|Y ) is equivalent to minimizing the negative
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logarithm of L(β, σ2, θ|Y )

−logL(β, σ2, θ|Y ) = N

2 log(2πσ2)+ 1
2 log(detR(θ))+ 1

2σ2 (Y −Fβ)>R(θ)−1(Y −Fβ). (2.74)

Its partial derivatives with respect to βj , σ2 and θk (j = 1, . . . ,K, k = 1, . . . , d) are

∂

∂βj
(− logL) = − 1

σ2

(
F>R(θ)−1 (Y − Fβ)

)
j
, (2.75)

∂

∂σ2 (− logL) = N

2σ2 −
1

2σ4 (Y − Fβ)>R(θ)−1(Y − Fβ), (2.76)

∂

∂θk
(− logL) = 1

2 trace
(
R(θ)−1∂R(θ)

∂θk

)
− 1

2σ2 (Y − Fβ)>R(θ)−1∂R(θ)
∂θk

R(θ)−1(Y − Fβ), (2.77)

where ∂R(θ)
∂θk

∈ RN×N is the component-wise derivative of the correlation matrix R(θ), cf. [73].
First order optimality conditions are then applied. The partial derivatives with respect to β
are zero if and only if

β∗ := β(θ) =
(
F>R(θ)−1F

)−1
F>R(θ)−1Y, (2.78)

where F>R(θ)−1F is a positive definite matrix (see Theorem 2.2). So, for any θ ∈ Rd+,
β∗ = β(θ) is the maximum likelihood estimate. It is equal to the generalized least squares
estimate in (2.56). The derivative with respect to σ2 is zero if and only if

σ2∗ := σ2(θ, β(θ)) = 1
N

(Y − Fβ(θ))>R(θ)−1 (Y − Fβ(θ)) . (2.79)

So, for any θ ∈ Rd+, the maximum likelihood estimate σ2∗ = σ2(θ, β(θ)) is also defined. The
target function − logL is highly nonlinear in θ, since it involves the correlation functions and
the inverse of the correlation matrix as well as the logarithm of its determinant. Therefore,
it is not possible to derive the maximum likelihood estimate θ∗ in an easy fashion like β∗
and σ2∗. Instead, numerical optimization is used to solve the problem

min
β∈RK ,σ2∈R+,θ∈Rd+

{
− logL(β, σ2, θ|Y )

}
. (2.80)

The maximum likelihood problem can be reduced by substituting β and σ2 by β∗ and σ2∗

in (2.74). The last summand is canceled down to a constant, leaving a reduced optimization
problem

min
θ∈Rd+

{
N log

(
σ2(θ, β(θ))

)
+ log (detR(θ))

}
, (2.81)

which is only depending on θ. Note that though β and σ2 are not needed explicitly for the
Kriging predictor ŷ(x), they have to be computed for the maximum likelihood estimation of
θ, either directly in (2.80) or implicitly in (2.81).

36



2.3 Kriging

When using a gradient-based optimization algorithm, formulation (2.81) can cause diffi-
culties because of the highly nonlinear implicit dependencies of θ in β(θ) and σ2(θ, β(θ)).
The nonlinearity of the target function in θ is even increased in comparison to the orig-
inal problem (2.80). This results in a complex computation of the derivatives due to an
exhaustive exploitation of the chain rule, see [140]. For this reason, it can be of advantage
to solve the original problem (2.80) instead. The additional variables σ2 and β cause no
severe increase in the complexity of a gradient-based numerical optimization method. σ2 is
always scalar and β has the size of the regression model K, which is usually kept small and
for ordinary Kriging K = 1. The target function in (2.80) has nice properties in β and σ2.
Not only do its partial derivatives with respect to β and σ2 have unique zeros. Examining
also the second order partial derivatives

∂2

∂β2 (− logL) = 1
σ2F

>R(θ)−1F, (2.82)

∂2

∂(σ2)2 (− logL) = − N

2σ4 + 1
σ6 (Y − Fβ)>R(θ)−1(Y − Fβ), (2.83)

it can easily be shown that − logL is quadratic and convex in β ∈ RK for any θ ∈ Rd+,
σ2 ∈ R+, and convex in σ2 ∈ (0, 2

N (Y − Fβ)>R(θ)−1(Y − Fβ)) for any θ ∈ Rd+, β ∈ RK .
The upper bound of this interval is close to 2σ2∗ if β is close to β∗.
Note that whichever approach is pursued, the partial derivatives of the objective function

with respect to θk contain partial derivatives of the correlation functions ∂
∂θk

Rk(hk, θk). To
ensure a smooth objective function, a family of correlation functions which is differentiable
with respect to θ > 0 should be chosen. This is e.g. not the case for the linear correlation
function R(h, θ) = max{1 − θ|h|, 0}, which is not differentiable in θ = 1

|h| . In this case the
objective function is not differentiable in{

θ ∈ Rd+ : θk = |x(j)
k − x

(i)
k |
−1, k = 1, . . . , d; i, j = 1, . . . , N

}
,

a set which consists of up to d ·
(N

2
)
hyperplanes of dimension (d − 1). However, all other

correlation functions presented in the previous section are differentiable with respect to
θ > 0.
A theoretical and numerical discussion of the maximum likelihood problem for spatial

covariance functions was given in [92], where several numerical procedures were suggested.
Since the introductory publication on computer experiments by Sacks et al. [122], the reduced
problem (2.81) is found often in the literature, e.g. [22, 134, 89, 123]. An alternative method
is to update β(θ) and σ2(θ, β(θ)) in every step of an iterative process and then do a descent
step in θ using the partial derivative (2.77), see [73]. Two main difficulties may arise when
solving the maximum likelihood problem numerically: possible monotonic behavior of the
target function and possible multiple local optima. The former was e.g. discussed in [124],
where for a one-dimensional test case no correlation between the y(x(i)) (i = 1, . . . , N) was
detected, i.e. the target function decreased monotonically in θ. This results in a large solution
θ∗ and a poor approximation quality of the surrogate model ŷ(x). A similar behavior has
recently been observed in [152], where the target function reached a constant plateau and
numerically no local optimum existed. However, these were cases with d = 1 and only
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a small number of samples N < 10. The authors of [112] emphasized that this behavior
is typical for few data points and for a larger N the target function is less shallow. The
latter difficulty of multiple local optima was e.g. investigated in [88, 112, 30]. Contrary to the
partial derivatives with respect to β and σ2, there is no guarantee that the partial derivatives
with respect to θk (2.77) have unique zeros or that the reduced likelihood problem (2.81) has
only one local minimum. Again, the authors of [112] pointed out that in practice, multiple
local optima do not pose a severe threat and for larger sample sizes N the global optimum
has a target value which differs vastly from the other local optimas’ target values.
The approach of using correlation functions and obtaining parameters by maximum like-

lihood estimation generally differs from the approach pursued in geostatistics. Classically,
in statistics for spatial data a variogram function

2γ(h) := Var [y(x+ h)− y(x)] , (2.84)

satisfying γ(0) = 0, γ(h) ≥ 0 and γ(−h) = γ(h), is utilized instead of a correlation function.
It describes the average deviation in the response values depending on the distance vector
h ∈ Rd. Typically, it is assumed to be radially symmetric around the origin and mono-
tonically increasing in ‖h‖. A variogram cloud is a point cloud in R2 of size

(N
2
)
defined

by {(
‖x(j) − x(i)‖, (y(x(j))− y(x(i)))2

)
, i < j

}
. (2.85)

A variogram function is then obtained by fitting a function from a suitable family of vari-
ogram functions to the variogram cloud. For this purpose, a least squares problem has to be
solved to determine the right parametrization of the variogram function. The connection to
correlation functions is given by the fact that by

γ(h) = σ2 (1−R(h)) (2.86)

a variogram function can be defined. More information can be found in geostatistical text-
books [22, 146, 126].

Examples

The subject of hyperparameter estimation is now illustrated with two examples. The first
one is a one-dimensional test function taken from [41]

y(x) = (6x− 2)2 sin(12x− 4), (2.87)

which is interpolated in Ω = [0, 1]. The influence of the hyperparameter θ on the approxima-
tion quality of ŷ(x) is now discussed. Figure 2.8 depicts interpolations for different values of
θ using the cubic correlation function. The N = 9 samples x(i) are distributed more densely
in the upper half of the interval in order to resolve the more erratic behavior of the function
more precisely. Recall that θ is a scaling factor in h for the correlation function. The larger
θ, the faster R(h, θ) decreases in h. For the cubic correlation function, R(h, θ) = 0 for all
h ≥ 1

θ holds. Since ŷ(x) is a weighted sum of the correlation functions R(x(i) − x, θ) with
centers in x(i) and a constant regression term (2.52), the response value y(x(i)) affects the
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Figure 2.8: Kriging interpolations ŷ(x) using the cubic spline correlation for different θ values,
y(x) = (6x− 2)2 sin(12x− 4).

surrogate model ŷ(x) only in the interval (x(i) − 1
θ , x

(i) + 1
θ ). θ∗ = 2.5 is the approximate

solution of the maximum likelihood problem (cf. Fig. 2.9). The corresponding surrogate
model is a good approximation for the original response, except for x ∈ (0, 0.25) where the
data X,Y does not contain enough information about y(x). In this region, no choice of θ
can produce a suitable approximation. Now on the one hand, if θ is chosen too small (e.g.
θ = 1.75), the correlation between the y(x(i)) (i = 1, . . . , N) is overestimated. This leads
to a large influence of the y(x(i)) on the behavior of ŷ(x), even for the x(i) which are far
away from a location x. In the region with few samples x ∈ [0, 0.5], unwanted variations
of ŷ(x) occur and the approximation quality suffers. On the other hand, if θ is chosen too
large (θ = 5.0), R(h, θ) decays too fast towards zero. Again, in regions with few samples
the approximation quality suffers. With an even larger θ = 10.0, also in the denser sampled
upper half interval, ŷ(x) is not a suitable approximation to y(x) anymore. Generally, for
any correlation function, which has θ as a scaling parameter in h, R(x(i) − x, θ)→ 1{0}(x)
holds for θ →∞, where 1{0} is the indicator function (1{0}(0) = 1, 1{0}(x) = 0 elsewhere).
Therefore, the correlation matrix becomes the identity matrix (R → I). Furthermore, for
any x 6= x(i) (i = 1, . . . , N), the surrogate converges to the regression term ŷ(x)→ f(x)>β,
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Figure 2.9: − logL for the data as in Fig. 2.8. Cubic spline correlation function. Left: reduced
problem. Right: original problem (fixed β, σ2).
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Figure 2.10: − logL for the data as in Fig. 2.8. Biquadratic spline correlation function. Left:
reduced problem. Right: original problem (fixed β, σ2).

cf. representation (2.56).
The maximum likelihood problem is also discussed. In Fig. 2.9, the target function of

the reduced likelihood problem (2.81) depending only on θ is plotted for θ ∈ [0.05, 8.0] as
well as the target function of the original problem − logL(θ, β, σ2|Y ), where β and σ2 are
kept fixed in β(θ∗) = 2.95 and σ2(θ∗, β(θ∗)) = 35.35. Clearly, both have the same global
optimal point θ∗ = 2.50. Both target functions tend to infinity for θ → 0 and converge to
a (not coinciding) constant for θ →∞, see [152] for a detailed discussion of the asymptotic
behavior. The reduced target function has two local minima left of the global optimum to
which a gradient based optimization algorithm will presumably converge if a starting point
is chosen too small. The target function of the full problem (2.80) for fixed β and σ2 also has
a local optimum left of the global one, but combined with a very steep ascend left of θ∗, so
numerical optimization methods will less likely converge to the local optimum instead to the
global one. Note that for the computation of this target function, the optimal solutions β∗
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2.3 Kriging

Figure 2.11: Kriging interpolation of the Branin test function.

and σ2∗ have already to be known, but a similar steep ascend left of the global optimum can
also be observed for other β and σ2. Contrary to the cubic correlation function, the target
functions for the biquadratic correlation function have only one optimum, see Fig. 2.10.
In a second example, the Branin test function

y(x1, x2) =
(
x2 −

5
4π2x

2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 (2.88)

is interpolated in Ω = [−5, 10]× [0, 15] using the cubic spline correlation function and a Latin
hypercube sampling of size N = 20 (see Sect. 3.1.3). For the interpolation and the maximum
likelihood problem, the x-data is transformed to Ω̃ = [0, 1]2 and retransformed afterwards.
In Fig. 2.11, the interpolation ŷ(x) and the original response y(x) are plotted. The target
functions of the reduced likelihood problem (2.81) and the original problem (2.80) are both
plotted for θ ∈ [0.05, 2.0]2 in Fig. 2.12. For the original problem, β(θ∗) = 1.27 · 102 and
σ2(θ∗, β(θ∗)) = 1.21·104 are kept fixed again. The optimal solution is θ∗ = (0.86, 0.49), which
indicates that the y(x(i)) are weaker correlated along the x1-axis and stronger correlated
along the x2-axis.
The reduced problem’s target function has altogether three local optima, one with θ1 > θ1

∗

and one with θ1 < θ1
∗. Numerical optimization methods starting in a large θ1 will most

likely converge to the first one. Starting in a θ close to zero, one will probably end up in the
second one. The original problem with fixed β and σ2 has only one optimum. Also, a very
steep ascend of the target function for θk → 0 (k = 1, 2) can be observed. However, there is
no guarantee that the full problem will not have multiple local optima (like observed with
the one-dimensional test function, cf. Fig. 2.9). But since nonlinearity is reduced and the
target function behaves less erratic, it seems beneficial to keep β and σ2 as variables in the
optimization problem. Furthermore, the numerical effort for any approach is dominated by
O(N3) for R(θ)−1 in every iteration, so the increase in the number of sought variables from
d to d+K+1 (here K = 1) is not a severe drawback. Further discussions on hyperparameter
tuning strategies can for instance be found in [139, 140]. A brief description of the algorithm
for maximum likelihood estimation used in this thesis is given in the numerical test cases
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Figure 2.12: − logL for the data as in Fig. 2.11. Cubic spline correlation function. Left: reduced
problem. Right: original problem (fixed β, σ2).

section 4.1.

2.4 Gradient-enhanced Kriging

When not only the evaluations of the response but also its derivatives with respect to the
input parameters are available, these can be used to improve the surrogate model. In Krig-
ing, the values of the surrogate model ŷ(x(i)) are defined by the evaluations of the response
in the samples y(x(i)) = yi (i = 1, . . . , N). If additionally the partial derivatives ∂

∂xl
ŷ(x(i))

are prescribed by the gradient information of the true response ∂
∂xl
y(x(i)) (i = 1, . . . , N ,

l = 1, . . . , d), an enhancement of the approximation quality is expected. Gradient informa-
tion can always be approximated by finite differences. But especially when the response is
based on the output of a computer experiment like a PDE solver, often the gradient can
be computed more efficiently using automatic differentiation [50] or adjoint computations,
see [91] for example. A comparison of Kriging and gradient-enhanced Kriging regarding
efficiency (i.e. the amount of effort invested for generating information) is given in Sect. 4.1.
The gradient-enhanced Kriging (GEK) method was introduced in [99]. First estimations of

the benefit of incorporating gradient information and of the computational costs of adjoint
computations were given. Early reviews can be found in [73] and [84]. The authors of
[17] interpreted the approach as a special case of Cokriging and used it for optimization
in an aerodynamic test case, see e.g. the geostatistical textbooks [22, 146] for Cokriging.
They also introduced a new indirect approach, which was also pursued in [86] and will be
explained in the following. In [81], gradients were generated by a discrete adjoint CFD solver
and adaptive sampling strategies for global approximation were compared for the gradient-
enhanced Kriging method. Recently, the method was used for uncertainty quantification in
aerodynamics [31] and in nuclear engineering [87], both exploiting the benefits of adjoint
computations. Applications in aerodynamic design optimization using adjoints can be found
in [79, 80, 150], while in the latter publication an extension to Hessian-enhanced Kriging
based on second-order derivatives was developed. Most recently, GEK was utilized in a
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variable fidelity-modeling framework for aero-loads prediction [54].

There are two main approaches of adding gradient information to the Kriging system:
a direct one and an indirect one. In the direct formulation, the partial derivatives are
incorporated by defining the surrogate model as a weighted sum of the response evaluations
and the derivative evaluations. The weights are determined by modeling correlations between
the response evaluations as well as the derivatives and solving an augmented linear system
instead of the conventional Kriging system (2.38). In the indirect formulation, a new data
pair (

x(i) + ∆xl · el, y(x(i)) + ∆xl ·
∂y(x(i))
∂xl

)
(2.89)

for every partial derivative can be generated by using a Taylor series expansion as an approx-
imation to the response value y(x(i) + ∆xlel), provided the evaluations y(x(i)) and ∂

∂xl
y(x(i))

in x(i) are given (i = 1, . . . , N , l = 1, . . . , d). In contrast to the direct formulation, no modi-
fication of the Kriging framework is necessary. Hence, the surrogate model can be computed
by any existing Kriging software which is at hand, once the additional samples (2.89) are
generated. The indirect formulation demands additional parameters ∆xl which have to be
tuned. Choosing ∆xl too large can produce poor approximations for y(x(i) + ∆xlel), while
a small ∆xl yields very close samples x(i), x(i) + ∆xlel, causing an ill-conditioned correlation
matrix R. In direct GEK, no additional parameters have to be determined. Both approaches
require an equal numerical effort and it has been observed that they often yield similar re-
sults, while direct GEK can be more accurate in some cases, cf. [17, 81, 150, 54]. Therefore,
in this thesis the direct approach will be pursued.

The gradient-enhanced Kriging predictor is now deduced in the same way as the Kriging
predictor in the last section by exploiting the properties of Gaussian processes. A detailed
derivation is presented for the case that for each evaluation of the response yi = y(x(i))
the whole gradient ∇y(x(i)) = ( ∂

∂x1
y(x(i)), . . . , ∂

∂xd
y(x(i)))> is available (i = 1, . . . , N). The

methodology can be extended to the case that arbitrary response and derivative evaluations
are available in samples which do not have to coincide, see e.g. [54]. But in the most practical
applications one does not have access to a partial derivative ∂

∂xl
y(x(i)) without knowing

the response y(x(i)). Its computation is needed for finite difference evaluations, automatic
differentiation or discrete adjoint computation. However, the approach is straightforward
from the one presented here and if not all derivatives are available for all x(i), the GEK
predictor can be evaluated by simply deleting the corresponding vector entries, rows and
columns in the involved matrices.

2.4.1 Model assumptions

Suppose for all samples x(i) (i = 1, . . . , N) the evaluations of the response y(x(i)) = yi and
also all partial derivatives ∂

∂xl
y(x(i)) (l = 1, . . . , d) are given. All data is assembled in a
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vector Y ∂ which is defined as follows:

Y ∂ :=
(
Y 0>, Y ∂1>, . . . , Y ∂d>

)>
∈ R(d+1)N , (2.90)

where Y 0 := (y1, . . . , yN )> ∈ RN

and Y ∂l :=
(
∂y(x(1))
∂xl

, . . . ,
∂y(x(N))
∂xl

)>
∈ RN (l = 1, . . . , d).

The GEK prediction ŷ(x) for y(x) is defined by a weighted sum of both the evaluations of
the response and the partial derivatives

ŷ(x) =
N∑
i=1

λ0
i (x)yi +

N∑
i=1

d∑
l=1

λ∂li (x)∂y(x(i))
∂xl

= λ∂(x)>Y ∂ (2.91)

with weights

λ∂(x) :=
(
λ0(x)>, λ∂1(x)>, . . . , λ∂d(x)>

)>
∈ R(d+1)N , (2.92)

where λ0(x) ∈ RN

and λ∂l(x) ∈ RN (l = 1, . . . , d),

depending on x ∈ Ω. Now statistical assumptions on the unknown response y(x) and
its derivatives ∂

∂xl
y(x) (l = 1, . . . , d) are used to determine the weights λ∂(x) ∈ R(d+1)N ,

for which the linear predictor ŷ(x) is unbiased and the mean squared error MSE[ŷ(x)] =
E[(ŷ(x)− y(x))2] is minimal (BLUP).

As in Kriging, the response is modeled by a linear regression term and a Gaussian process
z(x)

y(x) =
K∑
j=1

βjfj(x) + z(x), x ∈ Ω ⊂ Rd. (2.93)

Its partial derivatives then read

∂y(x)
∂xl

=
K∑
j=1

βj
∂fj(x)
∂xl

+ ∂z(x)
∂xl

, x ∈ Ω ⊂ Rd, l = 1, . . . , d. (2.94)

The properties of ∂
∂xl
z(x) are now discussed. Generally, any derivative z(a1,...,ad)(x) :=

∂Σak

∂x
a1
1 ...∂x

ad
d

z(x) defines a new Gaussian process, cf. [99]. The expectation and covariance of
z(x) were defined by E[z(x)] = 0, Cov[z(x), z(x̃)] = σ2R(h), h = x̃ − x, cf. (2.28). Since
E[z(x)] is constant in Ω (stationarity of z(x)),

E
[
∂z(x)
∂xl

]
= 0 ∀x ∈ Ω, l = 1, . . . , d (2.95)
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is deduced. If a product model (2.71) is used for the correlation functionR(h) = ∏d
k=1Rk(hk),

the covariance reads

Cov
[
z(a1,...,ad)(x), z(b1,...,bd)(x̃)

]
= σ2(−1)Σak

d∏
k=1

R
(ak+bk)
k (hk) ∀x, x̃ ∈ Ω, (2.96)

see [99]. From this representation, the covariances of the zeroth and first order partial
derivatives can be deduced:

Cov [z(x), z(x̃)] = σ2R(h) (2.97)

Cov
[
z(x), ∂z(x̃)

∂xl

]
= σ2 ∂

∂hl
R(h) (2.98)

Cov
[
∂z(x)
∂xl

, z(x̃),
]

= −σ2 ∂

∂hl
R(h) (2.99)

Cov
[
∂z(x)
∂xk

,
∂z(x̃)
∂xl

]
= −σ2 ∂2

∂hk∂hl
R(h), (2.100)

see [73] for example. The covariances (2.98)–(2.100) are also called cross-covariances, be-
cause they denote the covariance of two different stochastic processes. All covariances
are symmetric again, which can easily be shown using the symmetry properties of the
one-dimensional correlation function Rk(hk) = R(−hk), ∂

∂hk
R(hk) = − ∂

∂hk
R(−hk) and

∂2

∂h2
k
R(hk) = ∂2

∂h2
k
R(−hk), hk = x̃k − xk in the product model:

Cov
[
z(x), ∂z(x̃)

∂xl

]
= σ2 ∂

∂hl
R(h)

= −σ2 ∂

∂hl
R(−h)

= Cov
[
∂z(x̃)
∂xl

, z(x)
]
∀l, (2.101)

Cov
[
∂z(x)
∂xk

,
∂z(x̃)
∂xl

]
= −σ2 ∂2

∂hk∂hl
R(h)

= −σ2 ∂2

∂hl∂hk
R(−h)(−1)2

= Cov
[
∂z(x̃)
∂xl

,
∂z(x)
∂xk

]
∀l 6= k, (2.102)

Cov
[
∂z(x)
∂xl

,
∂z(x̃)
∂xl

]
= −σ2 ∂

2

∂h2
l

R(h)

= −σ2 ∂
2

∂h2
l

R(−h)

= Cov
[
∂z(x̃)
∂xl

,
∂z(x)
∂xl

]
∀l. (2.103)

Having discussed that both z(x) and all ∂
∂xl
z(x) (l = 1, . . . , d) are stationary Gaussian
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processes which are correlated with each other, yields now that both y(x) and all ∂
∂xl
y(x)

(l = 1, . . . , d) are (nonstationary) Gaussian processes. From equation (2.94) one concludes

E
[
∂y(x)
∂xl

]
=

K∑
j=1

βj
∂fj(x)
∂xl

∀x ∈ Ω. (2.104)

Since the addition of the first (deterministic) summand in (2.94) does not affect the covari-
ance, the covariance of ∂

∂xl
y(x) is the same as of ∂

∂xl
z(x) in (2.97)–(2.100). For given samples

X = {x(1), . . . , x(N)}, a vector Z∂ is defined analogously to Y ∂ in (2.90):

Z∂ :=
(
Z0>, Z∂1>, . . . , Z∂d

>)> ∈ R(d+1)N , (2.105)

where Z0 :=
(
z(x(1)), . . . , z(x(N))

)>
∈ RN

and Z∂l :=
(
∂z(x(1))
∂xl

, . . . ,
∂z(x(N))
∂xl

)>
∈ RN (l = 1, . . . , d).

Also, similarly

F ∂ :=
[
F 0> F ∂1> · · · F ∂d>

]>
∈ R(d+1)N×K , (2.106)

where F 0 :=
[
fj(x(i))

]N,K
i,j=1

∈ RN×K

and F ∂l :=
[
∂

∂xl
fj(x(i))

]N,K
i,j=1

∈ RN×K (l = 1, . . . ,K).

Furthermore, the symmetric correlation matrix of Z∂ is given by

R∂ :=


R00 R0∂1 · · · R0∂d

R0∂1> R∂1∂1 · · · R∂1∂d

...
... . . . ...

R0∂d> R∂d∂1 · · · R∂d∂d

 ∈ R(d+1)N×(d+1)N (2.107)

and the submatrices are defined as follows:

R00 :=
[
R(x(j) − x(i))

]N,N
i,j=1

∈ RN×N ,

R0∂l :=
[
∂

∂hl
R(x(j) − x(i))

]N,N
i,j=1

∈ RN×N (l = 1, . . . , d),

R∂l∂k :=
[
− ∂2

∂hl∂hk
R(x(j) − x(i))

]N,N
i,j=1

∈ RN×N (k, l = 1, . . . , d).

Eventually, after having defined all required expressions, one can write Y ∂ = F ∂β +Z∂ and
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both Y ∂ and Z∂ are multivariate normally distributed

Y ∂ ∼ N(d+1)N (F ∂β, σ2R∂), (2.108)
Z∂ ∼ N(d+1)N (0, σ2R∂). (2.109)

Also, the correlation matrix R∂ is assumed to be positive definite

w>R∂w > 0 ∀x(i) 6= x(j) (i 6= j), w ∈ R(d+1)N \ {0}, (2.110)

see Sect. 2.4.3 for a discussion on suitable correlation functions.

2.4.2 The GEK predictor

The following theorem provides a necessary and sufficient condition for the weights λ∂ , for
which the GEK predictor (2.91) is a best linear unbiased predictor (BLUP). It is deduced
analogously to the condition for the Kriging predictor in Theorem 2.4. Let r∂(x) ∈ R(d+1)N

be the correlation vector containing the correlations of y(x) and all y(x(i)) and ∂
∂xl
y(x(i))

(i = 1, . . . , N , l = 1, . . . , d):

r∂(x) :=
(
r0(x)>, r∂1(x)>, . . . , r∂d(x)>

)>
∈ R(d+1)N , (2.111)

where r0(x) :=
(
R(x(i) − x)

)N
i=1
∈ RN

and r∂l(x) :=
(
∂

∂hl
R(x(i) − x)

)N
i=1
∈ RN (l = 1, . . . , d).

All other expressions are defined as before.

Theorem 2.8. Let x(i) 6= x(j) for i 6= j and F ∂ have full column rank K. Provided
(
λ∂(x)
µ(x)

)
∈

R(d+1)N+K is the solution of the linear system[
R∂ F ∂

F ∂
> 0

](
λ∂(x)
µ(x)

)
=
(
r∂(x)
f(x)

)
, (2.112)

the GEK predictor ŷ(x) = λ∂(x)>Y ∂ is a BLUP for y(x), x ∈ Ω.

Proof. The proof is straightforward from the proof in the Kriging case. The GEK predictor
is BLUP for y(x) for arbitrary x ∈ Ω, if λ∂(x) is the solution of the constrained optimization
problem

min
λ∂(x)∈R(d+1)N

E
[(
λ∂(x)>Y ∂ − y(x)

)2
]

(2.113)

s. t. E
[
λ∂(x)>Y ∂ − y(x)

]
= 0. (2.114)
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Since E[z(x)] = 0 and E[Z∂ ] = 0, the unbiasedness condition (2.114) reads

0 = E
[
λ∂(x)>Y ∂ − y(x)

]
= E

[
λ∂(x)>(F ∂β + Z∂)− f(x)>β − z(x)

]
= λ∂(x)>F ∂β + λ∂(x)> E[Z∂ ]− f(x)>β − E[z(x)]

=
(
F ∂
>
λ∂(x)− f(x)

)>
β (2.115)

for all β ∈ RK , which yields
F ∂
>
λ∂(x)− f(x) = 0. (2.116)

Then, the error is rewritten as

ŷ(x)− y(x) = λ∂(x)>(F ∂β + Z∂)− f(x)>β − z(x)

=
(
F ∂
>
λ∂(x)− f(x)

)>
β + λ∂(x)>Z∂ − z(x)

= λ∂(x)>Z∂ − z(x). (2.117)

This identity and the covariance formulas (2.97)–(2.100) are exploited for the calculation of
the MSE[ŷ(x)]:

E
[(
λ∂(x)>Y ∂ − y(x)

)2
]

= E
[(
λ∂(x)>Z∂ − z(x)

)2
]

= E
[
λ∂(x)>Z∂Z∂>λ∂(x)− 2λ∂(x)>Z∂z(x) + z(x)2

]
= σ2

(
λ∂(x)>R∂λ∂(x)− 2λ∂(x)>r∂(x) + 1

)
. (2.118)

With the rewritten MSE[ŷ(x)] (2.118) and unbiasedness condition (2.116), the original prob-
lem (2.113)–(2.114) is equivalent to

min
λ∂(x)∈R(d+1)N

1
2λ

∂(x)>R∂λ∂(x)− r∂(x)>λ∂(x) (2.119)

s. t. F ∂
>
λ∂(x)− f(x) = 0. (2.120)

With a Lagrange variable µ(x) ∈ RK , the Karush-Kuhn-Tucker system for this convex and
quadratic optimization problem with linear constraints reads[

R∂ F ∂

F ∂
> 0

](
λ∂(x)
µ(x)

)
=
(
r∂(x)
f(x)

)
. (2.121)

By positive definiteness of R∂ and full column rank of F ∂ the nonsingularity of the system
matrix is guaranteed and (2.121) is a necessary and sufficient optimality condition, see
[103].
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2.4 Gradient-enhanced Kriging

Properties

Just like the Kriging predictor in (2.50), the GEK predictor can be expanded

λ∂(x)>Y ∂ =
(
λ∂(x)
µ(x)

)>(
Y ∂

0

)
=
(
r∂(x)
f(x)

)> [
R∂ F ∂

F ∂
> 0

]−1(
Y ∂

0

)
(2.122)

and the solution
(
w(r∂ )

w(f)

)
∈ R(d+1)N+K of the linear equation

[
R∂ F ∂

F ∂
> 0

](
w(r∂)

w(f)

)
=
(
Y ∂

0

)
(2.123)

is independent of x. For arbitrary x ∈ Ω, the GEK predictor can be evaluated at the cost of
a scalar product O ((d+ 1)N +K)

ŷ(x) =
(
w(r∂)

w(f)

)>(
r∂(x)
f(x)

)
. (2.124)

This is a weighted sum of R(x(i) − x), ∂
∂hl
R(x(i) − x) (l = 1, . . . , d; i = 1, . . . , N) and fj(x)

(j = 1, . . . ,K).
The GEK system (2.112) serves also as an interpolation condition both for all y(x(i)) and

all ∂
∂xl
y(x(i)) which is now shown. For the former, inserting any x(i) (i = 1, . . . , N) for x

into the equation yields(
r∂(x(i))

)
j

= R(x(j) − x(i)) =
[
R00

]
i,j

=
[
R00

]
j,i

=
[
R∂
]
j,i

and
(
r∂(x(i))

)
Nl+j

= ∂

∂hl
R(x(j) − x(i)) =

[
R0∂l

]
i,j

=
[
R0∂l>

]
j,i

=
[
R∂
]
Nl+j,i

for j = 1, . . . , N and l = 1, . . . , d, cf. the definition of the correlation matrix (2.107) and the
correlation vector (2.111). Also,

fj(x(i)) =
[
F 0
]
i,j

=
[
F ∂
]
i,j

=
[
F ∂
>]

j,i

holds for j = 1, . . . ,K. Thus, the right-hand side
(
r∂(x(j))
f(x(j))

)
in (2.112) is identical to the

i-th column (and row) of
[
R∂ F∂

F∂
> 0

]
and λ∂(x(i)) = ei, the i-th unit vector. Hence, the true

response yi is correctly interpolated in x(i)

ŷ(x(i)) = e>i Y
∂ = yi. (2.125)

For the verification of the interpolation property of the gradients, the partial derivatives
of the surrogate model

∂

∂xl
ŷ(x) =

(
w(r∂)

w(f)

)>( ∂
∂xl
r∂(x)

∂
∂xl
f(x)

)
=
(
Y ∂

0

)> [
R∂ F ∂

F ∂
> 0

]−1( ∂
∂xl
r∂(x)

∂
∂xl
f(x)

)
(2.126)
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2 Surrogate modeling

(l = 1, . . . , d) are calculated. Keeping in mind that ∂
∂hl

is the partial derivative with respect
to the l-th argument hl = x

(i)
l −xl of R(h), the chain rule has to be applied for the calculation

of ∂
∂xl

:

∂

∂xl

(
r∂(x)

)
j

= ∂

∂xl
R(x(j) − x)

= ∂

∂hl
R(x(j) − x) · ∂

∂xl
(x(j)
l − xl)

= − ∂

∂hl
R(x(j) − x) (j = 1, . . . , N)

and ∂

∂xl

(
r∂(x)

)
Nk+j

= ∂

∂xl

(
∂

∂hk
R(x(j) − x)

)
= ∂2

∂hl∂hk
R(x(j) − x) · ∂

∂xl
(x(j)
l − xl)

= − ∂2

∂hl∂hk
R(x(j) − x) (j = 1, . . . , N ; k = 1, . . . , d).

Now inserting any x(i) for x,

∂

∂xl

(
r∂(x(i))

)
j

= − ∂

∂hl
R(x(j) − x(i))

= ∂

∂hl
R(x(i) − x(j))

=
[
R0∂l

]
j,i

=
[
R∂
]
j,Nl+i

,

∂

∂xl

(
r∂(x(i))

)
Nk+j

= − ∂2

∂hl∂hk
R(x(j) − x(i))

= − ∂2

∂hl∂hk
R(x(i) − x(j)) · (−1)2

=
[
R∂k∂l

]
j,i

=
[
R∂
]
Nk+j,Nl+i

,

∂

∂xl

(
r∂(x(i))

)
Nl+j

= − ∂2

∂h2
l

R(x(j) − x(i))

= − ∂2

∂h2
l

R(x(i) − x(j))

=
[
R∂l∂l

]
j,i

=
[
R∂
]
Nl+j,Nl+i
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Figure 2.13: Kriging (left) and GEK (right) interpolations of y(x) = (6x− 2)2 sin(12x− 4).

(j = 1, . . . , N ; k = 1, . . . , d, k 6= l) . Also,

∂

∂xl
fj(x(i)) =

[
F ∂l

]
i,j

=
[
F ∂
]
Nl+i,j

=
[
F ∂
>]

j,Nl+i

for j = 1, . . . ,K, consequently
( ∂

∂xl
r∂(x(i))

∂
∂xl

f(x(i))

)
is identical to the Nl + i-th column (and row)

of
[
R∂ F∂

F∂
> 0

]
in (2.126). The partial derivative of the predictor in x(i)

∂

∂xl
ŷ(x(i)) = Y ∂>eNl+i = (Y ∂)Nl+i = ∂

∂xl
y(x(i)) (2.127)

yields the correct partial derivative of the response in x(i).

Example

The benefit of incorporating gradient information in the Kriging surrogate is highlighted
with a simple example. Again,

y(x) = (6x− 2)2 sin(12x− 4) (2.128)

from [41] serves as a one-dimensional test case. The function is interpolated with Kriging
and gradient-enhanced Kriging in Ω = [0, 1] based on only N = 5 equidistant samples.
As a correlation function, the biquadratic spline (2.72) is chosen. The hyperparameter
estimation yields θ = 1.30 in Kriging and θ = 1.45 in GEK. The results are depicted in
Fig. 2.13. While the Kriging interpolation is a poor surrogate with an average error of∫ 1

0 |y(x)− ŷ(x)|dx = 1.3, the GEK interpolation performs much better. The global behavior
is represented more accurately by interpolating the true response as well as matching the
gradients in the samples x(i) (i = 1, . . . , 5). The average error

∫ 1
0 |y(x)− ŷ(x)|dx = 0.4 is less

than a third of the Kriging error.
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2 Surrogate modeling

2.4.3 Correlation functions

In Sect. 2.3.3, the topic of correlation functions of stochastic processes for Kriging was
discussed. With the characterization by Fourier transformations, a necessary and sufficient
condition for the validness of R(h) was presented. Also, an extension of the condition was
given which not only guarantees the positive semidefiniteness, but actually the positive
definiteness of any corresponding correlation matrix R, which is sufficient for the solvability
of the Kriging equation (2.38). Within this section, requirements for correlation functions
for GEK are discussed, which are not straightforward from the Kriging case.

First of all, a univariate correlation function must be at least twice differentiable in R.
Though only first order derivatives of the response are considered, in the covariance formu-
lation (2.96) second order derivatives appear:

Cov
[
∂z(x)
∂xl

,
∂z(x̃)
∂xl

]
= −σ2R′′l (hl)

d∏
k=1
k 6=l

Rk(hk). (2.129)

The GEK predictor ŷ(x) (2.124) is a weighted sum of R(x(i)−x), ∂
∂xl
R(x(i)−x) (i = 1, . . . , N ;

l = 1, . . . , d) and fj(x) (j = 1, . . . ,K), so here only first order partial derivatives appear.
This implies that if ŷ(x) ∈ Cn(Rd) is desired, the univariate correlation function is required
to satisfy R(h) ∈ Cn+1(R).

For example, the first and second order derivatives of the biquadratic spline correlation
function (2.72) are

R′(h, θ) =


(
−30(θ|h|) + 105(θ|h|)2 − 195

2 (θ|h|)3
)
θ sgn(h), 0 ≤ θ|h| < 0.4(

−20
3 + 20(θ|h|)− 20(θ|h|)2 + 20

3 (θ|h|)3
)
θ sgn(h), 0.4 ≤ θ|h| < 1

0, 1 ≤ θ|h|
(2.130)

R′′(h, θ) =


(
−30 + 210(θ|h|)− 585

2 (θ|h|)2
)
θ2, 0 ≤ θ|h| < 0.4(

20− 40(θ|h|) + 20(θ|h|)2) θ2, 0.4 ≤ θ|h| < 1
0, 1 ≤ θ|h|

(2.131)

They are depicted for θ = 1 in Fig. 2.14. The correlation function satisfies R(h) ∈ C2(R)
and R(h) ∈ C3(R \ {0}) for all θ ∈ R+, so for the GEK predictor ŷ(x) ∈ C1(Rd) follows.

A second requirement for a valid correlation function is the positive semidefiniteness of the
correlation matrix R∂ (2.107) and, in order to ensure the existence of a solution of the GEK
system (2.112), even the positive definiteness. The topic of positive definiteness will not be
covered here but, exemplarily, an extension of the arguments for positive semidefiniteness
in the Kriging case to GEK is now presented. A Cokriging framework is used, i.e. the
response and its partial derivatives are each understood as a Gaussian process which possesses
an auto-correlation and cross-correlations. Let the d + 1 correlated Gaussian processes
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Figure 2.14: First and second derivative of the biquadratic spline correlation function, θ = 1.

{z(x), ∂
∂x1

z(x), . . . , ∂
∂xd

z(x)} be identified by {z0(x), z1(x), . . . , zd(x)} for simplicity. Then

E [zl(x)] = 0,
Cov [zl(x), zk(x̃)] = σ2Rkl(x̃− x) ∀x, x̃ ∈ Ω, k, l = 0, . . . , d,

cf. (2.95), and the Rkl(h) are defined by the direct and the cross-correlations (2.97)–(2.100).
The positive semidefiniteness of R∂ is then equivalent to

N∑
i,j=1

d∑
k,l=0

wNk+iwNl+jRkl(x(j) − x(i)) ≥ 0 ∀w ∈ R(d+1)N . (2.132)

Following Wackernagel [146], the validness of Rkl(h) (k, l = 0, . . . , d) as direct and cross-
correlation functions can be characterized by an extension of Bochner’s theorem by Cramér
[20]. Thus, Rkl(h) (k, l = 0, . . . , d) are valid correlation functions for {z0(x), z1(x), . . . , zd(x)}
(implying (2.132)), if and only if they have the spectral representation

Rkl(h) =
∫
Rd

exp{iω>h} dSkl(ω), (2.133)

where the Skl(ω) (k, l = 0, . . . , d) are spectral distribution functions, whose matrices of
increments [∆Skl(ω)]d,dk,l=0 ∈ C(d+1)×(d+1) are Hermitian and positive semidefinite for all
increments ∆ω ∈ Rd (with ∆Skl(ω) and ∆ω defined as in [149], Sect. 16). If the spectral
density functions skl(ω) exist, the condition is equivalent to [

∫
I skl(ω) dω]d,dk,l=0 ∈ C(d+1)×(d+1)

being a Hermitian positive semidefinite matrix for all d-dimensional intervals I := [a1, b1]×
. . .× [ad, bd] ⊂ Rd (ak < bk). This especially implies that all skk(w) are real and nonnegative
functions (k = 0, . . . , d), whereas the off-diagonal terms skl(ω) (k 6= l) can also be complex-
valued.
As in Sect. 2.3.3, this condition of positive semidefiniteness is now illustrated again with the

biquadratic spline correlation function (2.72) and its first and second derivative for d = 1, i.e.
its validness as a correlation function for {z0(x), z1(x)} = {z(x), z′(x)} is reviewed. Again,
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Figure 2.15: Eigenvalues of the matrix (2.134) depending on ω for the biquadratic spline correlation
function, θ = 1.

only the case θ = 1 is considered here without loss of generality. R(h), R′(h) and R′′(h)
are continuous, bounded and have a compact support. Generally, the case d = 1 yields
R00(h) = R(h), R01(h) = R′(h), R10(h) = −R′(h) and R11(h) = −R′′(h). Also, the former
condition is equivalent to the positive semidefiniteness of the Hermitian matrix assembled
by the density functions [

s00(ω) s01(ω)
s10(ω) s11(ω)

]
(2.134)

for all ω ∈ R (cf. [149], Sect. 15). Calculating the spectral densities as the Fourier transforms
of the (cross-) correlation functions (cf. Sect. 2.3.3)

skl(ω) = 1
2π

∫
R

exp{−iωh} Rkl(h) dh

and exploiting the symmetry properties R(h) = R(−h), R′(h) = −R′(−h) and R′′(h) =
R′′(−h) yields

s00(ω) = 1
2π

∫
R

exp{−iωh} R(h) dh = 1
π

∫ ∞
0

cos(ωh)R(h) dh,

s01(ω) = 1
2π

∫
R

exp{−iωh} R′(h) dh = − i
π

∫ ∞
0

sin(ωh)R′(h) dh,

s10(ω) = 1
2π

∫
R

exp{−iωh} (−R′(h)) dh = i

π

∫ ∞
0

sin(ωh)R′(h) dh,

s11(ω) = 1
2π

∫
R

exp{−iωh} (−R′′(h)) dh = − 1
π

∫ ∞
0

sin(ωh)R′′(h) dh.

So the matrix (2.134) is Hermitian for all ω. Figure 2.15 depicts its eigenvalues for ω ∈
[−100, 100], where the matrix entries were computed with symbolic integration using Math-
ematica. The largest eigenvalue is nonnegative and the smallest eigenvalue is equal to zero
for all ω up to the machine accuracy, thus the matrix (2.134) is positive semidefinite. Hence,
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2.4 Gradient-enhanced Kriging

the Rkl(h) (k, l = 0, 1) are valid direct and cross-correlation functions (2.97)–(2.100) for
{z0(x), z1(x)} = {z(x), z′(x)} and the correlation matrix R∂ is positive semidefinite.
A discussion of analytical properties of R(h), which guarantee the positive definiteness of

the (cross-) correlation matrix R∂ , lies beyond the scope of this thesis. For further informa-
tion, the reader is referred to discussions in [114, 146, 142, 57]. In this thesis’ test cases and
examples, and in all author’s applications of GEK using the biquadratic spline correlation
function, the correlation matrix R∂ ∈ R(d+1)N was in fact nonsingular for x(i) 6= x(j) (i 6= j,
i, j = 1, . . . , N).

2.4.4 Hyperparameter estimation
As in Kriging, after choosing a correlation function R(h, θ), the hyperparameters θ ∈ Rd+
have to be estimated. The observed data is assumed to be multivariate normally distributed
Y ∂ ∼ N(d+1)N (F ∂β, σ2R∂(θ)) with the correlation matrix depending on θ. Thus, maximum
likelihood estimation can be applied for the unknowns β ∈ RK , σ2 ∈ R+ and θ ∈ Rd+ by
maximizing

L(β, σ2, θ|Y ∂) = (2πσ2)−
(d+1)N

2 (detR∂(θ))−
1
2 exp

(
− 1

2σ2 (Y ∂ − F ∂β)>R∂(θ)−1(Y ∂ − F ∂β)
)

analogously to the Kriging case. In GEK, the entries of the correlation matrix R∂(θ) con-
sist of partial derivatives up to second order of R(h, θ) with respect to h. Thus, R∂(θ)
includes first and second order derivatives of the univariate Rk(hk, θk) with respect to hk,
cf. (2.96). Therefore, if a gradient-based optimization routine is used for determining θ,
not only Rk(hk, θk), but also R′k(hk, θk) and R′′k(hk, θk) have to be differentiable with re-
spect to θk > 0. For example, this is not the case for the cubic spline correlation func-
tion (2.63). The biquadratic spline correlation function (2.72), on the other hand, satisfies
Rk(hk, θk) ∈ C2(R×R+) and Rk(hk, θk) ∈ C3((R \ {0})×R+), which is easily proven to be
sufficient for the continuous differentiability of all entries of R∂ with respect to θ ∈ Rd+.
Figure 2.16 highlights the problem of insufficient smoothness for a one-dimensional ex-

ample (data as in Fig. 2.8). The objective function − logL, which is to be minimized, is
depicted for the GEK case using the cubic spline correlation function, both for the reduced
problem and for the original problem where β and σ2 are kept fixed in the optimum (cf.
Sect. 2.3.4). The objective is not differentiable in e.g. θ ≈ 2.4 and also has a local minimum
in this point. For a larger number N of samples, even more local minima occur in which
the objective function is not differentiable and an optimization algorithm will likely end up
in one of them. On the contrary, the biquadratic correlation function is smooth enough and
always produces a smooth objective function (see Fig. 2.17)
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Figure 2.16: − logL for the data as in Fig. 2.8. Cubic spline correlation function. Left: reduced
problem. Right: original problem (fixed β, σ2).
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Figure 2.17: − logL for the data as in Fig. 2.8. Biquadratic spline correlation function. Left:
reduced problem. Right: original problem (fixed β, σ2).
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3 Design of experiments

As design of experiments (DOE) one denotes the method of selecting the samples x(i) in
which the response y(x) is evaluated (i = 1, . . . , N). The set X = {x(1), . . . , x(N)} ⊂ Ω is
referred to as design or sampling. The evaluations of y(x) are assumed to be expensive.
Thus, dense computations, which describe the global behavior of the response accurately,
are out of reach due to limited computational resources. So for the performance of the
surrogate model ŷ(x), which is based on the sampling X of size N and the corresponding
evaluations Y = (y1, . . . , yN )>, there is a natural tradeoff between accuracy and efficiency.
As there are different goals in surrogate modeling, like global approximation, target region
approximation, optimization of an expensive target function or uncertainty quantification,
the design of experiments has to be chosen accordingly. This thesis aims at globally valid
surrogate models for expensive computer experiments and sampling strategies have to be
applied which use as few samples as possible without sacrificing accuracy.
Two classes of designs can be distinguished: one-stage approaches and adaptive designs.

In one-stage approaches, also called a-priori designs or input-based designs, all samples of
X are determined before the responses Y are evaluated and the surrogate model ŷ(x) is
generated. Since no information of the response is incorporated in the choice of X, these
approaches mainly aim at space-filling designs. Adaptive sampling strategies, also referred to
as a-posteriori designs, sequential designs or output-based designs, generate X successively.
Starting with an initial design, in each stage of the adaptive process a surrogate model is
generated based on the current design and assessed. Depending on some infill criterion, one
or more new samples are chosen, in which the response is evaluated and the samples and
evaluations are added to the current design. In this way, the sampling strategy learns about
the behavior of the response. Knowledge about y(x) can be integrated in the choice of the
samples X, such that a problem-specific design is generated.
In this chapter, only designs with pairwise disjunct samples are considered, i.e. x(i) 6= x(j)

for all i 6= j. Designs with multiple samples x(i) = x(j) can e.g. be used in regression
models for stochastic outputs. However, in this thesis only outputs of deterministic computer
experiments are investigated. Multiple samples do not add supplementary information to
the model, since y(x(i)) = y(x(j)) for x(i) = x(j). Note also that for Kriging and gradient-
enhanced Kriging, multiple samples produce equal rows and columns in the correlation
matrix R, which then becomes singular. Furthermore, the investigation is limited to sampling
strategies for hypercube input parameter domains Ω = [a1, b1]× . . .× [ad, bd] ⊂ Rd, which is
usually transformed to Ω = [0, 1]d without loss of generality.
The chapter is organized as follows. Section 3.1 is devoted to one-stage approaches and

gives a broad overview on space-filling designs, including factorial designs, distance-based
designs, Latin hypercube designs, low-discrepancy designs and also model-based designs,
which depend on the structure of the surrogate model for which they are generated. In
Sect. 3.2, adaptive sampling strategies are discussed, particularly regarding the concepts of
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exploration and exploitation. Three selected adaptive designs are introduced. They have
already been investigated in [117] and are also discussed in this thesis for the completeness
of the presentation. Additionally, a more profound review is given, including the illustration
of the selection criteria with academic test cases.

3.1 One-stage approaches

In this section, an overview on popular designs for deterministic computer experiments,
which use a one-stage approach, is presented. They cover design strategies which determine
X = {x(1), . . . , x(N)} ⊂ Ω before any observations y(x(i)) (i = 1, . . . , N) are computed. They
also go under the names of a-priori designs or, since y(x) has no influence on the selection of
X at all, input-based designs. The goal is to produce surrogate models which are globally
accurate. Without information on y(x), a design X therefore is expected to be space-filling,
i.e. the samples x(i) are evenly spread in the design space Ω. Several quantities, which
describe a measure of the space-filling quality, are presented in the remainder of this section.
Generally, among one-stage approaches, it can be differentiated between deterministic

and random designs as well as between model-based and model-independent approaches.
For model-independent designs, only knowledge about Ω and the number of samples N is
required. Model-based approaches additionally require information on the structure of the
surrogate model ŷ(x), which would be the regression matrix F ∈ RN×K and the correlation
matrix R ∈ RN×N in the Kriging case (cf. Sect. 2.3.1). The correlation matrix depends
not only on the design X, but also on the correlation function, namely the hyperparameters
θ ∈ Rd (2.57). Usually, they are determined by maximum likelihood estimation, a procedure
which requires both X and the evaluations Y = (y1, . . . , yN )> (cf. Sect. 2.3.4 and 2.4.4).
Unless the hyperparameters are known and kept fixed, model-based approaches are not
applicable in Kriging and gradient-enhanced Kriging.
Contrary to adaptive sampling strategies, which are able to learn about the behavior

of the yet unknown response y(x), one-stage approaches are independent of y(x) and can
therefore only produce generic designs. Evidently, for most responses y(x), problem-adapted
designs of some sample size N generally produce more accurate surrogate models than one-
stage approaches of the same sample size. This raises the question, why a-priori designs
are investigated at all and why not for each surrogate modeling problem a problem-specific
adaptive sampling strategy is used. First of all, they can be used for screening. Real
life applications can comprehend a high-dimensional input parameter space Ω ∈ Rd (e.g.
d ≥ 10), for which surrogate modeling becomes extremely challenging and computationally
expensive. Initial screening studies can be applied to identify redundant variables xk, which
have no or comparatively little influence on y(x) and can be removed from the model in
order to reduce the dimension of the problem. However, in the test cases of this work, all
variables are considered to be equally important and screening is not applied. Second, the
possibility that after determining X, all evaluations y(x(1)), . . . , y(x(N)) can be computed in
parallel, seems to create a huge benefit regarding wall clock time and efficiency. Adaptive
sampling strategies add only one or few new samples in every stage of the adaptive process,
such that only one or few evaluations can be computed simultaneously. But nowadays, codes
in practical applications excessively use parallel computing. Unless the performance of the
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computer experiment itself scales enormously bad with parallel computer architectures, there
is no need to make do with one-stage approaches. For a parallel computer architecture and
a given number of N samples, computing y(x(1)), . . . , y(x(N)) successively (with adaptively
chosen x(i)), while for each using full parallelization, means a more accurate surrogate model
compared to one-stage approaches, while the sacrifice in efficiency is marginal. Third, any
adaptive sampling strategy requires a (small) initial design, which is generated by a one-stage
approach. Very small initial designs may be suitable for a low number of input paramaters d,
but for higher-dimensional problems (e.g. d ≥ 5) the initial design should be chosen carefully
in order to produce reasonable surrogate models already in the first stages of the adaptive
process.
In this thesis, one-stage approaches are investigated for the following reasons. As stated

above, small a-priori designs are used as initial designs for adaptive sampling strategies.
Also, model-dependent one-stage approaches can be utilized to develop adaptive designs
by selecting a new sample based on a model-dependent infill criterion in every stage of
the adaptive design process. At last, one-stage approaches serve as a benchmark for the
performance of sequential sampling strategies: an adaptive sampling strategy should perform
at least as good as any one-stage design of the same sample size N .
A brief literature survey on one-stage designs is now presented. Designs for regression

models have been investigated before surrogate modeling for computer experiments was
introduced, see e.g. [18, 36, 7, 8]. Already in the first publications on the design and analysis
of computer experiments [122, 121, 26], different model-based one-stage approaches like
the entropy criterion, the integrated mean squared error (IMSE) criterion and the maximum
mean squared error (MMSE) criterion were discussed. In [65], maximin and minimax designs
were introduced. For Latin hypercube designs, which were introduced in [95], the authors
of [108, 136, 98] used several approaches like orthogonal arrays or the maximin criterion to
improve the design performance. The first publication on gradient-enhanced Kriging [99]
also contained a discussion of Latin hypercube designs, maximin designs and φp designs. A
detailed review of one-stage approaches for computer experiments was given in [73]. The
authors of [72] presented a computational investigation of low-discrepancy designs like the
Halton sequence or the Sobol sequence. Surveys on one-stage designs for different surrogate
modeling techniques can be found in [131, 132, 111, 64] and in the textbooks [123, 33]. In
[81], the performance of different designs was reviewed in an aerodynamical test case. The
author of [115] presented greedy algorithms for one-stage designs by subset selection from
large datasets. Recent reviews were given in [66, 60, 3]. Also recently, a survey on Latin
hypercube designs and a new algorithm for optimizing Latin hypercubes was presented in
[144], see also [23] for a comparative study and a Voronoi-tessellation-based strategy.

3.1.1 Factorial designs

Full factorial designs are probably the easiest approach of evenly distributing samples in a
d-dimensional hypercube Ω. The design consists of N = ∏d

k=1Nk points on a grid, where
the coordinates of the samples are xk = ik−1

Nk−1 (ik = 1, . . . , Nk, k = 1, . . . , d), see Fig. 3.1. If
there is no information on the influence of the input parameters xk on the black-box function
y(x), there is little need to choose different values for each Nk (k = 1, . . . , d) and the N = nd

points are distributed on a regular grid. The performance of full factorial designs is limited
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Full factorial design, N=25 Stratified random sampling, N=25

Figure 3.1: Full factorial design and stratified random sampling for Ω = [0, 1]2.

due to the following reasons. Though the design consists of nd samples in total, each variable
xk takes only n disjunct values. This also means that if a variable xk is removed from the
model, the design will collapse, i.e. only nd−1 disjunct samples will remain in the design
after the projection from Rd onto Rd−1. Another problem is the curse of dimensionality.
The total number of samples N = nd grows exponentially with the dimension d and for
larger numbers of input parameters, only very coarse grids are computationally affordable.
Furthermore, due to their method of construction, full factorial designs are not available for
arbitrary sample size N and they only exist for sample sizes of N = ∏d

k=1Nk, i.e. if N is
not a prime number.
In fractional factorial designs, particular samples from a full factorial design are deleted

in order to overcome the curse of dimensionality and to generate designs which perform
acceptably even in high-dimensional problems. They are mostly used for the screening of
variables and for the reduction of the number of samples in 2d-factorial designs. For instance,
if a computer experiment has 10 variables, already a full 210-factorial design consists of
1024 samples. In order to merely apply screening for eliminating redundant variables, 1024
expensive evaluations of the response y(x) are required, which is computationally out of
reach in most test cases. More information on fractional factorial designs can be found in
[8, 101, 132].
Stratified random samplings can overcome some of the problems associated with full facto-

rial designs. Instead of choosing the nd grid points as a design, the domain Ω is subdivided
into N = nd equal bins or strata [ i1−1

n , i1n ] × . . . × [ id−1
n , idn ] (ik = 1, . . . , n, k = 1, . . . , d).

From each bin a sample is randomly chosen. See Fig. 3.1 for an example. In this way,
each region of the input parameter space is represented in the design and each variable xk
generally takes more than the n values of the full factorial design. But, despite the stratifi-
cation, still comparatively large holes in the design are possible, while clustering of samples
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Minimax design, N=10 Maximin design, N=10

Figure 3.2: Minimax and maximin designs for Ω = [0, 1]2, Euclidean distance ‖·‖2.

can occur in other regions due to the random sampling. Particularly, two samples can be
picked arbitrarily close. This is a problem in Kriging and GEK models, since closely adja-
cent points produce two similar rows and columns in the correlation matrix R which then
becomes ill-conditioned. For further reading, see e.g. [95, 138, 119].

3.1.2 Distance-based designs

In [65], minimax and maximin distance designs were introduced as space-filling designs for
computer experiments. Both use distance-based quantities which assess the space-filling
quality of the design. Let

dist : Rd × Rd → R,
(x, x̃) 7→ dist(x, x̃)

(3.1)

be a metric on Rd and dist(x,X) := minx̃∈X dist(x, x̃) for any set X ⊂ Rd. A design X∗ is
a minimax design for Ω ⊂ Rd of size N , if the maximum distance of all points x ∈ Ω to the
design is minimal, i.e.

max
x∈Ω

dist(x,X∗) = min
X⊂Ω

#X=N

max
x∈Ω

dist(x,X). (3.2)

Thus the minimax design covers Ω with N closed balls Bε(x(i)) := {x : dist(x, x(i)) ≤ ε}
with the smallest ε > 0. This means that each x ∈ Ω lies within a distance of ε or less to
the closest x(i) ∈ X∗.
A design X∗ is called maximin design for Ω ⊂ Rd of size N , if the minimum distance of
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each pair x(i), x(j) ∈ X∗ (i 6= j) is maximal,

min
x(i),x(j)∈X∗

i 6=j

dist(x(i), x(j)) = max
X⊂Ω

#X=N

min
x(i),x(j)∈X

i 6=j

dist(x(i), x(j)). (3.3)

So for the maximin design, the samples are chosen such that the N open balls Bε(x(i)) :=
{x : dist(x, x(i)) < ε} are non overlapping (Bε(x(i)) ∩ Bε(x(j)) = ∅, i 6= j) and ε is maximal.
All samples have a distance of at least ε.
φp-designs are a generalization of maximin distance designs [99]. While in maximin de-

signs, only the minimum distance pair (x(i), x(j)) is considered and all other pairs are ne-
glected, φp-designs use an averaged distance function (p > 0)

φp(X) :=

 1(N
2
) N−1∑
i=1

∑
j>i

dist(x(i), x(j))−p
 1

p

, (3.4)

which considers all combinations x(i), x(j) ∈ X (j > i). A design X ⊂ Ω is then chosen such
that φp(X) is minimal. For any 0 < p < ∞, some mean value of the distances between all
samples of X ⊂ Ω is maximized, for instance the harmonic mean (p = 1). For p → ∞, the
design is a maximin design, see Sect. 5.3 in [123].
Finding an optimal distance-based design for a given N is a highly challenging task,

even in low-dimensional spaces. Minimax designs are related to covering problems and
maximin designs to packing problems in combinatorics. Often, for a given N there exist only
best-known results with the best yet known minimax score (maxx∈Ω dist(x,X)) or maximin
score (minx(i),x(j)∈X dist(x(i), x(j))). See for instance [97, 104, 105] for more information on
coverings and packings. Nevertheless, the three quantities minimax score (3.2), maximin
score (3.3) and φp (3.4) can be used to measure and compare the space-filling quality of any
design X, cf. Sect. 3.1.3.

3.1.3 Latin hypercube designs
The main idea behind Latin hypercube designs is to generate a stratified design X of size
N , in which each variable xk takes exactly N different, generally evenly distributed values
(k = 1, . . . , d). They were first introduced in [95]. Let the interval [0, 1] be partitioned into
the N subintervals Ij := [ j−1

N , jN ] (j = 1, . . . , N). Furthermore, let

πk : {1, . . . , N} → {1, . . . , N} ,
i 7→ πk(i)

(3.5)

be d random permutations of the numbers {1, . . . , N} (k = 1, . . . , d). A Latin hypercube
design then consists of N samples

x(i) ∈ Iπ1(i) × . . .× Iπd(i). (3.6)

The samples can be e.g. be chosen as the centers of the hypercubes Iπ1(i)×. . .×Iπd(i) or by ran-
dom sampling of the coordinates x(i)

k from the uniform distributions U(Iπk(i)) (i = 1, . . . , N ,
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degenerated Latin hypercube design, N=10 optimized Latin hypercube design, N=10

Figure 3.3: Latin hypercube designs for Ω = [0, 1]2. Left: degenerated (πk(i) = i), right: optimized
maximin score.

k = 1, . . . , d). Note again that, if the samples inside the hypercubes are chosen randomly,
two samples x(i), x(j) from adjacent hypercubes could become arbitrary close and cause an
ill-conditioned correlation matrix R. A Latin hypercube design ensures that every subin-
terval Ij ⊂ [0, 1] (j = 1, . . . , N) on the xk-axis (k = 1, . . . , d) is represented in the design
using N samples in total only. Full factorial designs and stratified random samplings on the
contrary need Nd samples for a complete representation of the intervals (cf. Sect. 3.1.1). By
their method of construction, Latin hypercube designs are also non collapsing. This espe-
cially means that if any variable xk is removed from the model, an existing design X ⊂ Rd
becomes a new Latin hypercube design X̃ ⊂ Rd−1 of the same size N after projection onto
Rd−1. For instance, after removing the variable xd (without loss of generality), the samples
of the new design satisfy x̃(i) ∈ Iπ1(i) × . . .× Iπd−1(i) (i = 1, . . . , N).

Due to the random permutations πk, it is still possible to produce bad designs which are
not space-filling at all and leave large regions of the input parameter space [0, 1]d uncovered.
For instance, consider a worst-case scenario where all permutations are the identity function
(πk(i) = i). Then, a degenerated design is produced which presumably will result in an
inaccurate surrogate model ŷ(x), see Fig. 3.3. In the last 20 years, efforts have been made
to improve the designs and to find optimized solutions within the class of Latin hypercube
designs. In [108, 136], orthogonal arrays were used to generate Latin hypercube designs,
in which all regions of the input parameter space [0, 1]d are evenly represented. Also, the
maximin score (3.3) and φp (3.4), respectively, were used in [98] in order to improve the
space-filling quality of the designs. A recent survey on improvement techniques and new
algorithms can be found in [144]. Figure 3.3 depicts a Latin hypercube design with an
optimized maximin score, generated by the Matlab function lhsdesign.

63



3 Design of experiments

Halton sequence, N=25 Halton sequence, N=50

Figure 3.4: Low-discrepancy designs based on the Halton sequence for Ω = [0, 1]2.

3.1.4 Low-discrepancy designs

In [102], a new indicator for the space-filling quality of a design X was introduced. Let
I := {I ⊂ Rd : I = [a1, b1] × . . . × [ad, bd], ak < bk} be the set of d-dimensional intervals
and Vol(I) denote the d-dimensional Lebesgue measure. Furthermore, let #X identify the
number of elements in a set X. Then, the discrepancy

DN (X) := sup
I∈I

I⊂[0,1]d

∣∣∣∣#(X ∩ I)
N

−Vol(I)
∣∣∣∣ (3.7)

of a design X for Ω = [0, 1]d of size N quantifies how much the distribution of X deviates
from the d-dimensional uniform distribution U([0, 1]d) on the unit hypercube. The expression
under the norm in (3.7) compares the ratio of Vol(I) and Vol([0, 1]d) = 1 to the ratio of the
number of samples in I and the total number of samples N . This implies that the lower the
discrepancy DN (X) ∈ (0, 1], the more evenly X is distributed in [0, 1]d.
Monte Carlo samplings of size N have a discrepancy of DN (X) = O( 1√

N
), see e.g. [102],

Sect. 1.2. In order to improve this convergence rate, low-discrepancy sequences were de-
veloped. Examples for such designs are the Hammersley set, the van der Corput sequence,
the Sobol sequence and the Halton sequence. While the samples of the Hammersley set
depend on N , elements of the Sobol sequence and the Halton sequence are independent of
the total number of samples N . Therefore they can also be used for sequential sampling, i.e.
for the refinement of an existing low-discrepancy design X, see Fig. 3.4 for Halton designs
generated by the Matlab function haltonset. Again, see [102] for the definition and a the-
oretical discussion of the mentioned designs. A computational investigation can be found in
[72]. Because of their good space-filling property, low-discrepancy designs have become more
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popular in surrogate modeling during the last decade, cf. [131, 123, 81]. Moreover, efforts
have been made to produce Latin hypercube designs which minimize a discrepancy score,
see e.g. [64, 33, 60].

3.1.5 Model-based designs

As the name suggests, the difference between model-based designs and the one-stage ap-
proaches in the previous sections is that they are not independent of the surrogate model
which they are used for. For Kriging and gradient-enhanced Kriging, this particularly
means that the correlation function R(h, θ) = ∏d

k=1Rk (|hk|, θk) (2.57) has to be known
a-priori, before a design X can be obtained. Typically, this is not the case because the
data Y = (y(x(1)), . . . , y(x(N)))> is not available in the design phase. After a sampling X
is determined, the responses Y are evaluated and the hyperparameters θ = (θ1, . . . , θd)> are
computed via maximum likelihood estimation using the data X and Y , cf. Sect. 2.3.4. Unless
the user does have a guess about the hyperparameters θ, e.g. by best-practice experience
from similar computer experiments, model-based criteria for the design of experiments are
not applicable in Kriging and gradient-enhanced Kriging.
Maximum entropy designs are based on a Bayesian approach. For the time being, let Ω be

a finite set of size M . Let the design X ⊂ Ω be a subset of size N < M and XC := Ω \X be
the complement of X in Ω. YX ∈ RN denotes the random vector containing all evaluations
in x ∈ X, analogously for YXC ∈ RM−N . Following the authors of [26] and [130], the
knowledge of y(x) in XC is embedded in the distribution of YXC |YX , which is defined as
a random vector conditional on YX . Then the design X should be chosen such that the
uncertainty in YXC |YX is minimized. The amount of uncertainty in a random vector Z can
be quantified by the entropy

H(Z) := EZ [− log pZ(Z)], (3.8)

where pZ denotes the probability density function. By a decomposition of H(YΩ) = H(YX)+
EYX [H(YXC |YX)], the authors of [130] deduced that minimizing the expected posterior en-
tropy EYX [H(YXC |YX)] is equivalent to maximizing the prior entropy H(YX). This, on
the other hand, is equivalent to maximizing det(R) · det(F>R−1F ) and, furthermore, to
maximizing only the determinant of the correlation matrix (2.34)

det(R), (3.9)

if β ∈ RK and σ2 ∈ R are assumed constant in the Kriging model (2.31). Since the correlation
matrix R ∈ RN×N depends on the design X as well as the hyperparameters θ, the maximum
entropy criterion is a model-based criterion.
Two other criteria make use of the predicted mean squared error (2.49)

MSE [ŷ(x)] = σ2

1−
(
r(x)
f(x)

)> [
R F
F> 0

]−1(
r(x)
f(x)

) (3.10)

of the surrogate model, cf. [122]. A design X of size N is integrated mean squared error
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optimal (IMSE-optimal), if it minimizes

1
σ2

∫
Ω

MSE[ŷ(x)] dx (3.11)

among all designs of size N , i.e. the average predicted error is minimal. The expression is
equal to ∫

Ω
dx− trace

[ R F
F> 0

]−1 ∫
Ω

[
r(x)r(x)> r(x)f(x)>
f(x)r(x)> f(x)f(x)>

]
dx

 ,
where the integral is taken component-wise. For rectangular domains Ω, a product correla-
tion model R(x̃− x) as in (2.57) and most simple regression models f(x), the integrals can
be computed as products of one-dimensional integrals, see e.g. Sect. 6.2.2 in [123]. A design
X of size N is maximum mean squared error optimal (MMSE-optimal), if it minimizes

max
x∈Ω

{ 1
σ2 MSE[ŷ(x)]

}
(3.12)

among all designs of size N , i.e. the maximum predicted error is minimal. Division by σ2

makes both expressions (3.11) and (3.12) independent of the process variance, still depending
on the design X and the hyperparameters θ, such that both criteria are also model-based
criteria.

Entropy designs, IMSE designs and MMSE designs are related to D-, A- and G-optimal
designs (in that order) for regression models (for the definition of the optimality criteria
see Sect. 8.2 in [101]). The authors of [123] showed in Sect. 6.2.2, that IMSE designs are
A-optimal and MMSE designs are G-optimal, if the stochastic process z(x) in the model
(2.27) is not a Gaussian process, but a white noise process. Also, for R = I, it is easily
deduced that maximizing det(R)·det(F>R−1F ) is the same as maximizing det(F>F ), which
is the classical maximum entropy approach for regression models and is called D-optimality.
Furthermore, in [65] asymptotics for entropy designs and MMSE designs were given. The
authors demonstrated that maximin designs (3.3) are asymptotically entropy-optimal and
minimax designs (3.2) are asymptotically MMSE-optimal, by taking the limit of a sequence
of correlation functions, for which R(x̃− x) = Corr[y(x), y(x̃)] converges to zero (x 6= x̃).

Finding optimal model-based designs is no trivial task and it involves solving a constrained
global optimization problem with N · d variables. Heuristics and approaches to the solution
can be found in [121, 122, 26, 73, 66]. But there is no workaround for the problem that in
model-based designs the hyperparameters θ have to be known up-front, which makes them
impractical for Kriging and gradient-enhanced-Kriging in most applications. However, if
adaptive design strategies are used instead of a one-stage approach, in each stage (Ni) of the
adaptive process, a current design X(Ni) of size Ni and the corresponding data Y (Ni) ∈ RNi
are available and also a preliminary surrogate model ŷ(Ni)(x). One of the model-based
criteria (3.9)–(3.12) can then be used to find the (Ni + 1)-th sample x(Ni+1), for which the
design X(Ni+1) = X(Ni) ∪ {x(Ni+1)} is optimal, cf. Sect. 3.2.1.
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Figure 3.5: Adaptive sampling strategy framework.

3.2 Adaptive designs

Adaptive sampling strategies are a viable alternative to one-stage approaches, which received
a growing attention during the last decade. Contrary to the a-priori designs in the last
section, in a-posteriori sampling, also called sequential, adaptive or output-based designs,
the design X as well as the surrogate model ŷ(x) is built step-by-step. Starting off with a
small initial design X(N0) of size N0 (e.g. determined by a one-stage approach), the response
y(x) is evaluated in all samples x ∈ X(N0) and an initial surrogate model ŷ(N0)(x) is built
based on the data X(N0) and Y (N0) ∈ RN0 . For Kriging and gradient-enhanced Kriging,
this involves the hyperparameter estimation and the solution of the linear Kriging system
(2.51)/(2.123). Then, in each stage Ni of the adaptive process, one or more new sample(s)
x ∈ Ω are chosen by some selection criterion. The criterion makes use of the information at
hand, which is included in the current surrogate model ŷ(Ni)(x). The sample(s) are added to
the current design, the response is evaluated in the new sample(s) and a new surrogate model
ŷ(Ni+1)(x) is built based on the augmented data X(Ni+1) and Y (Ni+1) ∈ RNi+1 including a
new hyperparamter estimation, cf. Fig. 3.5. The procedure can be iterated until a predefined
maximum number of samples Nmax is reached or until some error estimator falls below a
certain threshold. This also makes adaptive sampling strategies more flexible than one-stage
approaches, since the total number of samples does not have to be known in advance.
Thus, information about the true response y(x) is directly included in the process of

finding an optimal design X. The design is therefore both adapted to the specific test case
(by including the data Y during the adaptive process) as well as to the research goal (by
an appropriate criterion of selecting new samples). By creating a problem-adapted design,
a more intelligent distribution of the samples in the input parameter domain Ω ⊂ Rd is
pursued, for instance by a higher concentration of the samples in critical regions of Ω, which
are identified automatically. In this way, a reduction of the total number of samples Nmax
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is targeted compared to the space-filling designs of the one-stage approaches, which bear
the risk of wasting many samples on uncritical regions. For example, in surrogate modeling
for optimization, adding most samples in regions where the value of an objective function is
not improved is barely desired. Also, in global approximation, refining the design where the
approximation quality is already high does not produce a better surrogate model.
In adaptive sampling strategies for the global optimization of expensive black-box func-

tions, two main concepts can be distinguished: exploitation and exploration, cf. [41] for
instance. An update strategy based on pure exploitation would add a new sample x(N+1) =
arg minx∈Ω{ŷ(N)(x)} where the current surrogate objective ŷ(N)(x) is optimal. If this strat-
egy is to converge to the global optimum of the true response x∗ = arg minx∈Ω{y(x)}, the
surrogates ŷ(N)(x) (N = 1, 2, . . . ) have to be suitable global approximations. Otherwise
the iterates could converge to a local optimum. Further regions of Ω where ŷ(N)(x) >
minx∈Ω{ŷ(N)(x)} would be disregarded, though little is known there about the behavior of
the true response y(x). On the other hand, a pure exploration method would add a new
sample x(N+1) where the approximation error is assumed highest or where a space-filling
criterion from the previous sections can be improved. The approximation quality of ŷ(N)(x)
is improved globally in every stage N , but a large number of samples N could be required in
order that the global optimum of the surrogate arg minx∈Ω{ŷ(N)(x)} and the true response
arg minx∈Ω{y(x)} coincide. A balanced strategy between exploitation and exploration is
generally used in order to converge faster to the global optimum.
The concept of exploitation and exploration can roughly be adopted in global approxi-

mation methods. The target is to reduce the interpolation error, so an exploitation method
would place a new sample x(N+1) where a predicted error is highest. Using Kriging, the
error in ŷ(N+1)(x(N+1)) = y(x(N+1)) is set to zero. But using exploitation only, there might
be regions in the input parameter domain Ω where a low error is assumed, but in fact
again little is known about the true response y(x). For instance, if not enough samples are
distributed there, a peak in the true response might stay undetected. A pure exploration
method on the other hand would use a distance-based criterion in order to ensure that all
regions of the input parameter space are attended. But this again would merely produce
a space-filling design without any priorities for critical regions. These regions typically re-
quire a denser distribution of samples, e.g. for resolving large gradients, curvature or even
erratic behavior of the response y(x). Therefore, also in surrogate modeling for global ap-
proximation of black-box functions, a mixed strategy between exploitation and exploration
is assumed to be beneficial. It ensures not only the accuracy of the surrogate model, but
also an efficient usage of expensive response evaluations. Such strategies are both local and
global. They are local in the sense that samples are distributed more densely in critical
regions, global in the sense that other regions are not neglected either and they still produce
a space-filling design. Not using a single selection criterion, but multiple or mixed criteria
for the refinement of a design X has been the subject of recent studies, see e.g. [46, 23].
In this thesis, cross-validation methods are proposed as a local component of a refinement
criterion. They measure local errors by deleting the i-th sample from the surrogate model
and comparing the new prediction to the true response yi = y(x(i)) (i = 1, . . . , N), see
Sect. 3.2.2. As a global component, the mean squared error prediction MSE[ŷ(x)] (2.49) is
proposed. Its computation does not involve the response evaluations Y directly, but only
indirectly via the global hyperparameters θ in the correlation matrix and vector. Thus, the
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MSE is rather a distance-based quantification of the uncertainty in the prediction than a
local error estimator, see Sect. 3.2.1.
An algorithm for the efficient global optimization of expensive black-box functions (EGO)

based on an expected improvement criterion was presented in [67]. It received a lot of atten-
tion and reviews, enhancements and further investigations can be found in [125, 124, 123, 58,
40, 41]. Surveys on adaptive sampling strategies for optimization were given in [111, 39, 129].
Recent applications in aerodynamic optimization can be found in [79, 80, 150]. New studies
in reliability-based optimization were presented in [151, 30]. The use of adaptive sampling
strategies in global approximation methods for expensive computer experiments dates back
to the pioneering article [122], where the IMSE criterion was used for an adaptive refine-
ment. The authors of [107] also used a model-based criterion for updating Kriging surrogates
adaptively. In [63], a new cross-validation approach was introduced and was compared to
model-based and distance-based adaptive design, while in [71] jackknifing was used to esti-
mate the variance of cross-validation errors. New approaches in adaptive maximum entropy
designs were presented in [85, 34] by adjusting the entries of the correlation matrix according
to observed irregularities in the data Y . Adaptive designs based on decompositions of the in-
put parameter domain Ω were introduced in [11] and in [24]. In the former, a method called
adaptive gridding was developed for a regular partitioning, while in the latter a Voronoi
tessellation was used, see also [23, 25]. A sampling strategy for surrogate models based on
nonstationary Gaussian processes was developed in [49], which exploits the assumption that
the correlation structure is not global, but can vary in different parts of the input parameter
domain. Designs based on active learning were discussed in [16]. The authors of [90] investi-
gated optimal design extraction strategies based on a dense set of validation, compared the
distributions of the designs to local complexity and error estimators and discussed possible
new sampling strategies. For applications of adaptive sampling strategies in aerodynamic
test cases see for instance [81, 41, 49, 117].

3.2.1 MSE-based strategies

The MSE [ŷ(x)] (2.49) is a measurement of the uncertainty of the prediction, so it is quite
intuitive to use it as a selection criterion for adaptive sampling. It is zero in every x(i) ∈ X
and grows with distance to the existing samples. Expanding the expression

MSE [ŷ(x)] = σ2

1−
(
r(x)
f(x)

)> [
R F
F> 0

]−1(
r(x)
f(x)

)
= σ2

1−
(
r(x)
f(x)

)>(
λ(x)
µ(x)

)
= σ2

{
1− r(x)>λ(x)− f(x)>

(
F>R−1F

)−1 (
F>R−1r(x)− f(x)

)}
, (3.13)

it can be observed that it tends to σ2{1 + f(x)>(F>R−1F )−1f(x)} for dist(x,X) → ∞,
since r(x) = (R(x(i) − x))Ni=1 → 0. Its computation does not contain Y directly. Thus, for
any new sample x(N+1) ∈ Ω \ X(N), the mean squared error prediction for ŷ(N+1) can be
evaluated based on the data X(N) ∪{x(N+1)} only and without any knowledge of y(x(N+1)),
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Figure 3.6: Kriging interpolation of the Branin test function.

if σ2 and the hyperparameters θ of ŷ(N) are used.
Therefore, model-based criteria from Sect. 3.1.5 like the MMSE criterion and the IMSE cri-

terion can be applied in adaptive sampling. In an MMSE-based adaptive sampling strategy,
the new sample is obtained by

x(N+1) = arg min
x(N+1)∈Ω

{
max
x∈Ω

MSE[ŷ(N+1)(x)]
}
. (3.14)

It is the sample for which the new surrogate ŷ(N+1) has the lowest maximum MSE, provided
σ2 and θ are kept fixed. Analogously, an IMSE-based adaptive sampling strategy chooses

x(N+1) = arg min
x(N+1)∈Ω

{∫
Ω

MSE[ŷ(N+1)(x)] dx
}
, (3.15)

the sample for which the new surrogate ŷ(N+1) has the lowest integrated MSE. These
approaches have been proposed and investigated e.g. in [122, 63, 49].
A much simpler approach of selecting a new sample is determining

x(N+1) = arg max
x∈Ω

{
MSE[ŷ(N)(x)]

}
, (3.16)

the maximum of the predicted mean squared error of the current surrogate ŷ(N). Given the
fact that MSE[ŷ(N+1)(x(N+1))] = 0, choosing x(N+1) where MSE[ŷ(N)(x)] is largest will also
lead to a probably adequate decrease of the MMSE and the IMSE score of ŷ(N+1). Criterion
(3.16) is connected to maximum entropy designs (cf. Sect. 3.1.5). The authors of [63] proved
that (3.16) is equivalent to maximizing

det
{[

R r(x)
r(x)> 1

]}
· det

{[
F

f(x)>

]> [
R r(x)

r(x)> 1

]−1 [
F

f(x)>

]}
.

This, on the other hand, is the same as the maximization of the entropy of the dataset
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Figure 3.7: RMSE[ŷ(x)] (left) and |ŷ(x)− y(x)| (right) for the interpolation in Fig. 3.6.

X(N+1) = X(N) ∪ {x(N+1)}, if X(N) is kept fixed and x(N+1) is the only degree of freedom.
This adaptive sampling strategy was used e.g. in [93], a modified adaptive approach is found
in [34] and comparisons to other techniques were presented in [63, 81, 117].
The use of MSE-based sampling strategies for efficient global approximation is limited.

Since the evaluation of MSE[ŷ(x)] does not include the response Y directly, it has only a poor
performance as a local error indicator. Y rather has a globalized and indirect contribution
via the hyperparameters θ ∈ Rd in the correlation function. The following example illustrates
the issues with MSE-based approaches. Figure 3.6 shows a Kriging interpolation ŷ(x) of the
Branin function (2.88) based on an 4× 4 factorial design. Both the root mean squared error
RMSE[ŷ(x)] =

√
MSE[ŷ(x)] and the real error |ŷ(x) − y(x)| are depicted in Fig. 3.7. The

RMSE fails to uniquely identify the region where the real error is highest, which would be a
natural choice for a new sample for global approximation. Besides the zeros in the samples
X, both functions do not share any similarities in this test case. The RMSE is rather a
distance-based measure, in which the distance to the nearest samples x(i) ∈ X is weighted
by the correlation function R(x(i) − x, θ). Using the biquadratic spline correlation function
(2.72), the maximum likelihood hyperparameter estimation yields θ1 ≈ 2θ2 and the RMSE
grows approximately twice as fast in (x(i)

1 − x1)-direction as in (x(i)
2 − x2)-direction. Note

that the correlation length along the xk-axis is 1
θk
, i.e. Rk(x(i)

k − xk) = 0 for |x(i)
k − xk| ≥

1
θk

(cf. Figs. 2.4 and 2.6). Thus, selecting a new sample where the predicted RMSE is highest
primarily aims at a space-filling design. But compared to one-stage approaches, in every
stage of the sequential process the distance measure is based on the current surrogate model,
i.e. the current hyperparameters θ. Speaking in terms of this section’s introduction, it is a
pure exploration method.

3.2.2 Cross-validation-based strategies

In this section, cross-validation is introduced as an exploitation criterion for adaptive sam-
pling criteria in order to design a mixed strategy between exploration and exploitation.
Kriging and gradient-enhanced Kriging are interpolators of the data Y ∈ RN and an assess-
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ment of the approximation error in Ω \X based on RMSE performs poorly, see Sect. 3.2.1.
Cross-validation is a method of estimating error information of the surrogate model by com-
paring predictions based on a reduced dataset to the existing data Y ∈ RN . Let ŷ−i(x)
denote the Kriging predictor based on X \ {x(i)}. Keeping the hyperparameters θ of ŷ(x)
fixed, ŷ−i(x) can be computed by deleting the i-th column and row of the system matrix and
the i-th entries of the vectors in the Kriging equation (2.50). In gradient-enhanced Kriging,
all (kd + i)-th columns and rows of the system matrix in (2.122) are deleted (k = 0, . . . , d)
and all (kd + i)-th vector entries, respectively. The leave-one-out cross-validation error for
the sample x(i) is defined by

ei :=
∣∣∣ŷ−i(x(i))− yi

∣∣∣ (3.17)

and an error estimator can be evaluated by 1
N

∑N
i ei or 1

N

∑N
i e

2
i . Cross-validation has been

widely used as a global error measure and model assessment, see [67, 96, 93, 143, 47].
But for an adaptive sampling strategy a local error estimator is required, which can be

evaluated in arbitrary candidates x ∈ Ω. The cross-validation error ei measures the influence
of the data pair (x(i), yi) on the prediction ŷ(x). If ei is low, (x(i), yi) is redundant and no
additional samples are needed in the proximity of x(i). If, on the contrary, ei is high, (x(i), yi)
has an essential contribution to the performance of ŷ(x). This can indicate a critical region
with e.g. large gradients or high curvature in the response y(x). The concept of cross-
validation is extended to Ω in the following way:

e(x) := 1
N

N∑
i=1
|ŷ−i(x)− ŷ(x)| . (3.18)

Cleary, e(x(i)) = 1
N ei holds since ŷ−i(x) interpolates all yj in x(j) 6= x(i) as well as ŷ(x).

Now choosing x(N+1) where the predicted error e(x) is highest can be impractical, because
|ŷ−i(x)− ŷ(x)| tends to be highest in some x(i) and x(N+1) = arg maxx∈Ω e(x) is likely to
be close to or even identical with an existing x(i) ∈ X. In [63], e(x) was multiplied with
a minimum distance function dist(x,X), which guarantees the product to be zero in every
x(i) ∈ X, cf. (3.1). Then,

x(N+1) = arg max
x∈Ω
{e(x) dist(x,X)} (3.19)

was used as a selection criterion for an adaptive sampling strategy. In [81], the authors
multiplied e(x) with the root mean square error RMSE [ŷ(x)] =

√
MSE [ŷ(x)] and called the

criterion a mixed sample sensitivity error strategy. It is also zero in every x(i) ∈ X and

x(N+1) = arg max
x∈Ω
{e(x) RMSE [ŷ(x)]} (3.20)

was regarded the best method in that study on adaptive and nonadaptive sampling strategies.
Using the RMSE instead of the MSE increases the contribution of the exploitation component
e(x) compared to the exploration component MSE. See also [117] for a review of the method.
Criterion (3.20) is now illustrated with the example from the previous section, see Fig. 3.6

for the Kriging interpolation of the Branin function. Figure 3.8 depicts the RMSE, which
is a poor indicator for the real error |ŷ(x)− y(x)|. The cross-validation error e(x) identifies
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Figure 3.8: RMSE[ŷ(x)] (top left), real error |ŷ(x) − y(x)| (top right), cross-validation error e(x)
(bottom right) and mixed error indicator (bottom left) for the interpolation in Fig. 3.6.

the lower left corner as the source of the highest error, but is maximal in an already existing
sample x(i) ∈ X. Multiplying e(x) with the RMSE sets the error indicator to zero in all
existing samples, while the region with the highest real error is identified correctly.

3.2.3 Adaptive gridding

The methods from the previous sections have some limitations regarding efficiency. Even
if the evaluation of the computer experiment y(x) clearly dominates the cost of surrogate
model generation (e.g. solving the Kriging equation), finding a new sample x(N+1) ∈ Ω ⊂ Rd
can be a bottleneck in the adaptive process if the number of input parameters d is large.
Both MSE-based and cross-validation-based methods require the global optimization of a
target function over Ω. The evaluation of this functional is comparably cheap and if d
is small, in practice it can just be evaluated on a dense set of candidates for x(N+1) and
the candidate with the best score is chosen. After inverting the system matrices once, for
arbitrary x ∈ Rd the numerical effort of computing MSE[ŷ(x)] is O(N2) and for e(x) it is also
N · O(N − 1) = O(N2), for gradient-enhanced Kriging O(N2d2) and O(N2d), respectively.
If d is large, this procedure can become computationally out of reach. For example, consider
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an application with d = 6 variables and the candidates for a new x(N+1) are located on a
506-tensorgrid (or factorial design, see Sect. 3.1.1), then 1.5625 · 1010 evaluations of some
target function have to be computed.
Also, practitioners might be interested in adding more than one new sample per stage of

the adaptive process. If adding m new samples x(Nk+1), . . . , x(Nk+m) to the current design
X(Nk), the evaluations y(x(Nk+1)), . . . , y(x(Nk+m)) can be computed independently of each
other in parallel. If for instance the parallelization of a computer code for the evaluation
y(x) scales extremely poorly with the number of available processors mCPU, scheduling m
evaluations simultaneously, using mCPU

m processors each, can produce benefits regarding the
total wall-clock time.
In [11], a new method for adaptive sampling was introduced, which can overcome both of

these limitations. It combines a domain decomposition strategy with a local optimal design.
Both terms will be described in the following. Ω is assumed to be a hypercuboid, again
without loss of generality Ω = [0, 1]d. It is decomposed into equal-sized cells ζ. This is
accomplished by equidistant partitionings of the intervals Ij = [0, 1] on the xj-axis into the
nj closed intervals I1

j , . . . , I
nj
j (j = 1, . . . , d). Then

ζi1,...,id := Ii11 × . . .× I
id
d (3.21)

are defined and
Ω =

n1⋃
i1=1

. . .
nd⋃
id=1

ζi1,...,id (3.22)

holds. Clearly, the lengths of the intervals (and therefore the lengths of the cells’ edges)
are |Iij | = 1

nj
for every j = 1, . . . , d. What makes this gridding method adaptive (meaning

related to the current dataset) is now choosing the lengths of the cells’ edges |Iij | proportional
to the correlation length 1

θj
along the xj-axis, cf. Sect. 2.3.3. So |Ij |nj ∼

1
θj

which is equivalent
to nj ∼ θj |Ij | and nj can be chosen as

nj = bc θj |Ij |c (3.23)

with a constant c > 0, b·c denotes the floor-function. One ends up with Ω decomposed
into equal-sized cells ζ with pairwise disjunct interiors. The hyperparameters are updated
in every stage of the adaptive sampling routine, as are the lengths of the cells’ edges. The
correlation lengths 1

θj
describe the influence of the value yi = y(x(i)) in the region around

x(i) ∈ X. R(x(i) − x) is monotonically decreasing with growing distance |x(i)
j − xj | in xj-

direction. For instance, using the correlation functions with local support (2.60), (2.63) and
(2.72), R(x(i) − x) = 0 holds for all |x(i)

j − xj | > 1
θj
. This corresponds to having many cells

along axes with low correlation and few cells along axes with higher correlation, depending
on the data Y and therefore on the global behavior of the function y(x).
Now every cell ζ is assigned a cell prediction error ηζ by cross-validation (3.18). Let

Xζ := X ∩ ζ, then
ηζ := max

x(i)∈Xζ

∣∣∣ŷ−i(x(i))− yi
∣∣∣ (3.24)
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Figure 3.9: Cell errors ηζ (left) and |ŷ(x) − y(x)| (right) for the interpolation in Fig. 3.6. Red
squares depict the 5 new samples.

or, if Xζ = ∅, ηζ := ηmax. In [11], a target accuracy η∗ < ηmax was defined and one new
sample is added in every cell ζ with ηζ ≥ η∗. Alternatively, the n = ∏d

j=1 nj cells ζ1, . . . , ζn
can be sorted decreasingly by their cell prediction error η1 ≥ · · · ≥ ηn. Then, for a fixed
number m < n, in the m worst cells ζ1, . . . , ζm a new sample is added. The new samples
are obtained by a local optimal design. A maximum entropy criterion is chosen which is
equivalent to

x(Nk+i) = arg max
x∈ζi
{MSE[ŷ(x)]} (i = 1, . . . ,m), (3.25)

cf. Sect. 3.2.1. For the selection of any x(Nk+i) ∈ ζi, not only the current dataset X(Nk)

can be used for the computation of the MSE in (3.25), but also the previously selected ones
X(Nk) ∪ {x(Nk+1), . . . , x(Nk+i−1)}. Otherwise, if 2 adjacent cells ζi, ζj are identified with a
bad prediction error, criterion (3.25) could produce close or even identical x(Nk+i), x(Nk+j).
Finally, one ends up with X(Nk+1) = X(Nk) ∪ {x(Nk+1), . . . , x(Nk+m)}. Summing up, the
adaptive gridding method can be classified as a mixed strategy. The domain decomposition
adds an exploration component, while using cross-validation-based error estimators adds an
exploitation component to the strategy.
Again, the strategy is illustrated with the interpolation of the Branin function (Fig. 3.6).

The estimated hyperparameters for the Kriging interpolation are θ = (0.593, 0.273)> (after
transformation of Ω to [0, 1]2), indicating a weak correlation of y(x) along the x1-axis and
a stronger correlation along the x2-axis. Using c = 10 in (3.23) yields n1 = 5 and n2 = 2
numbers of cells per dimension. The cells ζ and the cross-validation-based predicted cell
errors ηζ (3.24) are depicted in Fig. 3.9, along with the m = 5 new samples (red). The
two cells in the middle do not contain any samples from the current design X(16), so a
maximum error ηmax := 1000.0 is assigned. In the 5 cells with the highest error ηζ , a new
sample is added each by finding the maximum MSE (3.25). Comparing the locations of the
new samples x(17), . . . , x(21) with the real error |ŷ(x)− y(x)|, one can observe that the main
sources of surrogate’s inaccuracy have been identified.
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4 Numerical investigation of sampling
strategies

In this chapter, sampling strategies for Kriging and gradient-enhanced Kriging surrogate
models are validated with numerical test cases. In Sect. 4.1, the aerodynamic test cases
are presented and numerical details of the surrogate models are discussed. Section 4.2
contains a comparison of three space-filling one-stage approaches: factorial designs, Latin
hypercube designs and low-discrepancy designs based on the Halton sequence. Additionally,
a comparison of Kriging and GEK regarding efficiency is given based on one-stage designs.
Section 4.3 is devoted to the investigation of the performance of three adaptive sampling
strategies, both in terms of accuracy and distribution of the samples in Ω. For providing
a more profound review of these strategies, they are compared to two theoretical sampling
strategies which make use of a dense set of validation data in Sect. 4.4. Based on these
results, an adaptive sampling strategy for vector-valued responses is discussed in Sect. 4.5.
Section 4.6 contains a summary of the most important results of this chapter.

4.1 Numerical test cases
In the aircraft industry, computational fluid dynamics (CFD) have become indispensable for
research and development. The airflow around a wing or a complete aircraft configuration can
be described by a system of nonlinear partial differential equations. The conservation laws of
mass, momentum and energy are known as the Navier-Stokes equations for the state variables
density, velocity and energy. If viscous forces are assumed negligible, a simplification is
given by the Euler equations for inviscid flow. Discretized versions of these equations can
be solved numerically by finite differences, finite volumes or finite elements approaches. For
a derivation of the equations and numerical methods see for instance [1, 37]. The German
Aerospace center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) developed the flow
solvers FLOWer [75] and TAU [127]. FLOWer is a finite volume solver for structured meshes,
while TAU is a finite volume solver for unstructured and hybrid meshes.
Following test cases will be investigated in this chapter. For the RAE2822 airfoil, the sta-

tionary 2d Euler equations are solved numerically with the FLOWer code using a structured
grid of 6369 points and a residual of 10−10, cf. Fig. 4.1. In a second test case, the station-
ary 2d Reynolds-averaged Navier-Stokes (RANS) equations are solved numerically using the
TAU code for an unstructured grid of 27874 points with a Reynolds number of 6.5 · 106, a
Spalart-Allmaras turbulence model and a residual of 10−6. The flow solvers are used as a
black-box which require the two input parameters Mach number Ma ∈ [0.1, 2.0] and angle
of attack α, α ∈ [−5◦,+10◦] in the Euler case, α ∈ [−5◦,+8◦] in the RANS case. Depending
on the input parameters x = (Ma, α), scalar responses are observed. The lift force FL, the
drag force FD and the moment FM (cf. Fig. 4.2) can be computed as integrals over the
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Figure 4.1: Zoom of a structured mesh around the RAE2822 airfoil and solution of the discretized
Euler equations with DLR FLOWer, pressure distribution for Mach 0.73, angle of attack
α = 2◦.
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Figure 4.2: Aerodynamic forces and moment on an airfoil.

airfoil’s surface based on the flow solution. The aerodynamic coefficients lift cl, drag cd and
pitching moment cm are their dimensionless quantities. See e.g. [2] for more information on
the aerodynamic coefficients or on aerodynamics in general.
A global representation for the scalar functions cl(Ma, α), cd(Ma, α) and cm(Ma, α) in

Ω is sought. On an AMD Opteron 6100 series computer with 2.3GHz processors, a single
evaluation of the response in the Euler case takes up to 5 minutes using one processor,
depending on the input parameter configuration x = (Ma, α). In the RANS case however,
the evaluation can take up to several hours of CPU time. The responses are assumed
to be deterministic. Moreover, the flow solutions converge for all x ∈ Ω and a certain
regularity of the responses is implied, i.e. y(x) ∈ C1(Ω). For the purpose of comparing
the performance of surrogate models regarding their design of experiments, a dense set of
validation data is produced. Figures 4.3 and 4.4 depict the responses based on a 50 × 50
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factorial design Ωval. In more complex real-life applications such as a three-dimensional
aircraft configuration with the CFD solver depending on several input parameters, said
dense evaluations are beyond the limits of tolerable computation time. But already in these
two-dimensional test cases depending on two input parameters Ma and α, the difficulties of
global approximations are revealed. The input parameter domain Ω covers the sub-, trans-
and supersonic flow regimes, where the flow solutions behave strongly different. This leads to
different characteristics of the response in different regions of the input parameter domain.
While the responses y(x) behave almost linear in the subsonic flow regime and resemble
some second order polynomials in the supersonic flow regime, this is not the case in the
transsonic flow regime. They behave strongly nonlinear and large gradients as well as large
curvature appear. Compared to the Euler case, the nonlinearity is even increased in the
RANS case and e.g. multiple local extrema appear for the cl and the cm response. Thus,
global surrogate modeling is challenging already for only two input parameters (d = 2). The
responses investigated in this chapter represent relevant test cases, which provide valuable
insights into the performance of sampling strategies for global surrogate modeling.

As surrogate models both Kriging and gradient-enhanced Kriging are considered. For
the purpose of this study, the partial derivatives required for GEK are computed by finite
difference approximations. Note that in more complex industrial applications this is hardly
practicable. The computation of the gradient in x(i) requires d additional costly evaluations
in x(i) + δek (ek denoting the k-th unit vector, k = 1, . . . , d), while the whole gradient can
often be accessed much more efficient by one adjoint computation [91, 45]. In the following,
let N denote the number of samples. For GEK, suppose in every x(i) the response y(x(i)) as
well as the partial derivatives with respect to the Mach number ∂

∂x1
y(x(i)) and to the angle

of attack ∂
∂x2

y(x(i)) are available. Hence, for GEK the total amount of information is 3N .
As a regression model in the Kriging model (2.27) just a constant term is chosen, i.e. K = 1,
f(x) := f1(x) ≡ 1. This is also known under the name of ordinary Kriging and usually
suffices for the interpolation of highly nonlinear functions, cf. Sect. 2.3.2. As a correlation
function, a biquadratic spline (2.72) is chosen. The popular Gaussian correlation function
(2.62) suffers from ill-conditioned correlation matrices. In this chapter’s test cases, already
for N > 50 singular matrices with respect to the machine accuracy could be observed when
using the Gaussian correlation. In Kriging, also cubic spline functions (2.63) and expo-
nential functions (2.64) were tested with results comparable to the biquadratic splines. In
GEK however, exponential functions are not applicable for p < 2. In R′′(h, θ) terms with
hp−2 appear and the second derivative has a singularity in h = 0, making it impossible to
compute the correlation matrix entries. The biquadratic spline function does not suffer from
such limitations. It produces positive definite correlation functions in Kriging and GEK
(cf. Sect. 2.3.3 and 2.4.3), which are well-conditioned due to its local support. It is also
smooth enough for the use in GEK and its corresponding likelihood function is continuously
differentiable (L(β, σ2, θ) ∈ C1(RK × R+ × Rd+), see Sect. 2.4.4). Regardless of the utilized
correlation function, the maximum likelihood problem (2.74) can be challenging to tackle.
Especially when the correlation lengths differ (e.g. θ1 � θ2), the target function can be ill-
conditioned in the optimum. The computational effort of evaluating the target function and
its derivatives is dominated by the inversion of R in each iteration, which is O(N3) with stan-
dard methods. As discussed in Sect. 2.3.4, the full problem minβ,σ2,θ

{
− logL(β, σ2, θ|Y )

}
is
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considered instead of a reduced formulation. It is solved numerically with a gradient-based
Quasi-Newton algorithm using a BFGS update formula for the approximation of the Hessian.
A trust region framework is utilized for step size control and for enforcing the constraints
σ2 > 0, θk > 0 (k = 1, . . . , d) [103]. The input parameter domain Ω is transformed to [0, 1]2
for robustness of the algorithm. The solution is generally found after 30–100 iterations. For
problems with up to N = 100 samples, the correlation matrix has a maximum size of 100 in
Kriging and 100 · (d+ 1) = 300 in GEK and the computation of the solution takes less than
one minute in the investigated test cases.
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Figure 4.3: Validation data in the Euler case.
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Figure 4.4: Validation data in the RANS case.
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4.2 One-stage approaches

4.2.1 Comparison of approximation quality

In a first study, the performance of one-stage designs for Kriging and gradient-enhanced Krig-
ing models for the global interpolation of the aerodynamic coefficients is investigated. Ex-
emplarily, factorial designs, optimized Latin hypercube designs and low-discrepancy designs
based on the Halton sequence are compared regarding the approximation quality of the corre-
sponding surrogate models. For the factorial designs, samplings of size N = 9, 16, 25, . . . , 100
are generated using a regular

√
N ×

√
N -grid in [0, 1]2. Pure distance-based design are not

considered because of the difficulties of finding an optimal design for arbitrary sample size
N . Instead, Latin hypercube (LHC) designs with an optimized maximin-score are used.
For N = 10, 20, 30, . . . , 100, 10 different designs each are generated by the Matlab function
lhsdesign. It offers the feature of maximizing the Latin hypercube design’s minimum dis-
tance between the samples. For the same sample sizes N as the Latin hypercube designs,
Halton designs are generated with the Matlab function haltonset. Model-based designs are
not considered for one-stage approaches because the Kriging model’s hyperparameters θ are
not available in the design phase.
For assessing the global approximation quality of the surrogate models, the Kriging and

GEK interpolations are compared to the validation data on Ωval. A relative averaged error
η1, a relative root mean squared error η2 and a relative maximum error η∞ are defined by

η1 := 1
σ

1
#Ωval

∑
x∈Ωval

|ŷ(x)− y(x)| , (4.1)

η2 := 1
σ

 1
#Ωval

∑
x∈Ωval

(ŷ(x)− y(x))2

 1
2

, (4.2)

η∞ := 1
σ

max
x∈Ωval

|ŷ(x)− y(x)| . (4.3)

Here, σ denotes the standard deviation of the validation data set {y(x)}x∈Ωval

σ :=

 1
#Ωval − 1

∑
x∈Ωval

(y(x)− y)2

 1
2

, (4.4)

where its mean is
y := 1

#Ωval

∑
x∈Ωval

y(x). (4.5)

The relative root mean squared errors η2 (4.2) for the Kriging and GEK interpolations of
the lift cl(Ma, α), the drag cd(Ma, α) and the pitching moment cm(Ma, α) are depicted in
Fig. 4.6 for the Euler case and in Fig. 4.7 for the RANS case. The average LHC performance
is computed as the mean of the 10 LHC designs which are considered for each sample size
N . Except for the Halton designs, the samplings are not nested, i.e. X(N1) 6⊂ X(N2) for
N1 < N2. But typically, a higher approximation quality is expected with a larger sample
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Figure 4.5: Interpolations of cl(Ma, α) based on a Halton design, N = 50.

size N . This is not the case for the factorial designs in general. Compared to the other two
strategies, these designs produce the poorest interpolations in the investigated test cases.
Also, the error η2 is not necessarily reduced for larger sample sizes. For instance, in most
cases the error for N = 100 is is only slightly lower or even higher than for N = 50, although
double the amount of information is used for ŷ(x). For the Latin hypercube designs, generally
an improvement of the average approximation quality can be observed with growing sample
size N . The corresponding surrogates also mostly perform second-best. For N < 50, in
most cases, the errors η2 are comparable to the Halton designs’ errors. For N > 50, the
surrogate models based on the Halton designs are most accurate and outperform both the
LHC and the factorial designs. These results mainly reproduce numerical results found in
the literature. In other applications low-discrepancy designs also proved to be superior to
Latin hypercube designs, cf. [68, 131, 81, 60].
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Figure 4.6: Root mean squared error η2 for interpolation of FLOWer Euler responses.
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Figure 4.7: Root mean squared error η2 for interpolation of TAU RANS responses.
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4.2.2 Benefits of GEK
A brief comparison of Kriging and gradient-enhanced Kriging regarding efficiency is now
presented on the basis of the investigated test cases. It can generally be observed that,
for a given design of size N , the GEK interpolation is more accurate than the Kriging
interpolation (Figs. 4.5–4.7). But obviously, in GEK more computational effort has to be
brought up for generating not only the evaluations y(x(i)), but also the gradient information
∂
∂xk

y(x(i)) (i = 1, . . . , N , k = 1, . . . , d). So for investigating the benefit of GEK compared
to Kriging, a review of the surrogate models’ accuracy vs. the numerical effort has to be
considered, instead of reviewing the accuracy vs. the number of samples N . In this section’s
interpolations the gradients ∇y(x(i)) = ( ∂

∂x1
y(x(i)), . . . , ∂

∂xd
y(x(i)))> are generated by finite

difference approximations, which means one additional expensive evaluation of the flow solver
y(x) per dimension k = 1, . . . , d. But if adjoints are used, the complete gradient∇y(x) can be
obtained by one additional adjoint computation regardless of the number of input parameters
d. A theoretical best case study is considered, which means that the use of adjoints is
assumed. For the investigated test cases suppose that, with twice as many computations
(flow solutions plus adjoint computations), three times the amount of information (responses
plus partial derivatives with respect to Ma and α) can be obtained. Once more, the numerical
effort of generating the surrogate model is neglected, because it is assumed to be insignificant
compared to the evaluation of the response. In Fig. 4.8, the interpolation error η2 (4.2) is
plotted vs. the number of computations for Kriging and GEK based on Halton designs.
The GEK data is the same as in Figs. 4.6 and 4.7, now with N samples corresponding
to 2N computations. The Kriging data is the same with N samples corresponding to N
computations and additional data for N = 110, 120, . . . , 200. The pictures clearly show that
the approximation quality is basically comparable for Kriging and GEK for the same amount
of numerical effort (assuming adjoint computations). However, taking the actual numerical
effort of these test cases as a basis, the numerical effort for GEK is 3N (finite differences)
instead of 2N (adjoints) and GEK is less efficient than Kriging. This two-dimensional survey
reveals that GEK cannot be more efficient than Kriging unless the gradient information is
obtained by adjoints or automatic differentiation. Also, the benefit of GEK using adjoints
compared to Kriging is assumed to grow with the number of input parameters d, since (d+1)
times the amount of information can be included in the GEK surrogate model using only
twice as many computations (response evaluations plus adjoints).
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Figure 4.8: Root mean squared error η2 vs. numerical effort for interpolations of FLOWer Euler
(left) and TAU RANS (right) responses based on Halton designs.
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4.3 Adaptive designs

This section is devoted to the study of the performance of adaptive sampling strategies for
Kriging and gradient-enhanced Kriging in the aerodynamic test cases. The accuracy of the
surrogates based on Halton designs from the previous section serves as a benchmark for
the adaptive strategies. The performance of three sequential designs is assessed and the
distribution of the samples is discussed. The maximum MSE strategy (3.16) is considered
exemplarily for the purely exploration-based MSE strategies. As a mixed strategy between
exploration and exploitation, the cross-validation-based sample sensitivity error (SSE) strat-
egy (3.20) is investigated. Adaptive gridding (ADG) is also a mixed strategy (3.25), except
that it is capable of adding multiple new samples in every stage of the adaptive process.
As an initial design X(N0), a 3 × 3 factorial design is chosen. Each sampling strategy then
adaptively adds samples until a maximum number of N = 100 samples is reached. For ap-
plying the selection criteria, in the MSE and the SSE method a global optimization problem
has to be solved and in the ADG method multiple localized optimization problems with
constraints have to be solved. These problems classically have numerous local optima and
global optimization is challenging. Instead of solving these demanding optimization prob-
lems numerically, a dense set of candidates Ωval is considered, from which the new sample
x(Nk+1) with the best selection criterion score is chosen. Note that in the SSE and the ADG
method using GEK, for performing cross-validation the reduced surrogate models ŷ−i(x)
are generated by not only deleting y(x(i)) from the data, but also the partial derivatives
∂
∂xk

y(x(i)) (i = 1, . . . , N , k = 1, . . . , d). In ADG, the number of new samples per stage is set
to m = 10. The factor for defining the number of cells nj per dimension in (3.23) is chosen
as c = 5. It is augmented if necessary to ensure that at least two cells per axis are defined
(nj ≥ 2) and that the total number of cells does not fall below the number of samples to
add (n = n1 · n2 ≥ m). The number of cells nj is proportional to the hyperparameter θj ,
so for other correlation functions (linear, exponential, Gaussian, cf. Sect. 2.3.3) other best
practice constants c have to be determined. In a similar study [117], the author of this thesis
compared adaptive sampling strategies to Latin hypercube designs and the remainder of this
section clarifies if they can also outperform the superior Halton designs and provides a more
comprehensive examination of the sampling distributions.

4.3.1 Comparison of approximation quality

The performance of the adaptive sampling strategies is now reviewed and compared to
nonadaptive Halton designs. In Figs. 4.9 and 4.10, the validation-data-based relative root
mean squared error η2 (4.2) is plotted for the Kriging and the GEK interpolations of the
aerodynamic functions in the Euler and in the RANS case. Comparing all relative error
levels, the lift responses can be approximated most accurately, while the interpolations of
the drag responses perform second-best and the moment responses seem to be most difficult
to interpolate. Also, the global approximation quality is generally higher in the Euler case
than in the RANS case, which is not a surprise, comparing the validation data for both test
cases (cf. Figs. 4.3 and 4.4). As expected, the error commonly decreases with increasing
sample size N . In some cases, the error η2 can increase when adding a new sample to the
interpolation. This may be due to a local variation of the new surrogate model’s behavior
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around the new sample x(Nk+1) or by a change of the global behavior of ŷ(Nk+1) compared to
ŷ(Nk) because the hyperparameters θ have changed. In most cases, the error is reduced again
after adding few more new samples. The error levels clearly indicate a hierarchy between
the three investigated adaptive sampling strategies. For the better part of the test cases, the
MSE-based surrogates perform poorest, while adaptive gridding performs second best and
the cross-validation-based SSE strategy produces the most accurate interpolations. After
some starting phase (N < Ñ) which can differ from case to case, this hierarchy holds for
most N > Ñ . The accuracy levels of the individual adaptive designs are reviewed in detail
in the following.
The interpolations defined by the pure exploration-based MSE strategy are more accurate

than the ones based on the nonadaptive Halton designs or perform at least comparable
in most cases for small sample sizes (e.g. for N < 50). For larger designs however, they
mostly cannot compete with the Halton sequence. When the maximum number of N =
100 samples is reached in the Euler case, the MSE-based surrogates have a larger error
than the nonadaptive benchmark (with one exception). In the RANS case, they perform
slightly better (also with one exception). Overall, in these two-dimensional test cases, it is
only recommended to use MSE-based designs for moderate sample sizes. For larger sample
sizes, the Halton sequence seems to provide a better space-filling quality than the MSE
method (cf. Sect. 4.3.2). Regarding efficiency, the nonadaptive Halton sequence seems more
profitable, because for any given sample size N , all evaluations Y can be computed in
parallel whereas for the MSE method all evaluations must be computed sequentially without
a notable improvement of the accuracy.
For the assessment of the (mixed exploration- and exploitation-based) adaptive gridding

strategy, one has to differentiate between its performance in the Euler and in the RANS
case. In the Euler case, it can outperform the Halton designs already for small sample sizes.
The approximation error generally decreases in each stage of the adaptive process after
adding m = 10 new samples. In the RANS case, the adaptive strategy’s advantage over
the nonadaptive Halton sequence is not that obvious. However, it mostly generates more
accurate surrogate models with one exception. In all other cases, after reaching its maximum
number of N = 99 samples, the approximation quality is higher or at least comparable to
the Halton design.
The (also mixed) sample sensitivity error strategy overall produces the best results. In

some cases, a small staring phase is required, after which its surrogate models outperform
the nonadaptive Halton designs as well as MSE designs and mostly all ADG designs. Except
for the cd response in the RANS case, the interpolations based on the SSE strategy are most
accurate for all N > Ñ for some case-dependent Ñ . Using not only an exploration compo-
nent in the selection criterion (RMSE[ŷ(x)]), but combining it with a cross-validation-based
exploitation criterion, which automatically identifies regions with a poor approximation qual-
ity, the method proves best in the aerodynamic test cases. Its accuracy outmatches not only
the nonadaptive benchmark, but also the pure exploration method (MSE) and the second
mixed strategy (ADG).
Some comments about the bad performance of adaptive sampling strategies for the cd

response in the RANS case are now given. Investigating the true response’s validation data
(Fig. 4.4), one can observe a very steep ridge at approximately Mach 0.9, which is steeper
than in the Euler case and may even not be differentiable. When error-based adaptive
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sampling strategies try to dissolve this strong curvature, many samples are added in the
area around Mach 0.9 (cf. the subsequent discussion of sample distributions). Also, the
hyperparameter estimation chooses a very large θ1, which is equivalent to a small correlation
length 1

θ1
, i.e. the influence of a response evaluation yi decreases rapidly along the Ma-

direction with growing distance to the corresponding sample x(i). If the correlation length
becomes too small, this can result in a poor interpolation quality in other areas with few
samples like the supersonic flow regime, cf. also Fig. 2.8 in the section on hyperparameters
2.3.4. This issue shows that the capacity of global surrogate models is limited. If the
response’s behavior differs strongly in different regions of the input parameter domain (e.g.
different levels of smoothness), a single surrogate model using global hyperparameters might
not be the right choice. It generally raises the question, if the response y satisfies the model
assumptions, particularly if z in y(x) = f(x)>β + z(x) is a stationary Gaussian process (cf.
Sect. 2.3.1). Stationarity means that the correlation function R(x, x̃) only depends on the
distance vector x̃ − x and not on the the positions x and x̃ in space. For approaches using
non-stationary covariance models, the reader is referred to [148, 48, 49]. While in the former
one a non-linear mapping of the input parameter space was used, in the latter two a treed
partitioning was applied to Ω and distinct stationary models were used in each partition.

91



4 Numerical investigation of sampling strategies

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler lift, KRI

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler lift, GEK

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler drag, KRI

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler drag, GEK

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler moment, KRI

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

0 20 40 60 80 100
10

−2

10
−1

10
0

Euler moment, GEK

N

e
rr

o
r 

η
2

 

 

HALTON

MSE

SSE

ADG

Figure 4.9: Root mean squared error η2 for interpolation of FLOWer Euler responses.
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Figure 4.10: Root mean squared error η2 for interpolation of TAU RANS responses.
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4.3.2 Comparison of sample distributions

For a more thorough investigation of the adaptive designs, the distribution of the samples
X in the input parameter domain Ω is discussed. Figures 4.11–4.16 depict the samplings for
all test cases combined with a contour line plot of the final surrogate model ŷ(x) based on
the particular design for N = 100 (N = 99 in ADG, respectively). The initial 3× 3 factorial
design is depicted in black squares, while the sequentially added samples are depicted in
colored lozenges which correspond to the color of previous section’s error plots.
The exploration-based MSE strategy (Figs. 4.11 and 4.12) aims at a space-filling design.

The samples are equally distributed in the sub-, trans- and supersonic flow regime without
any preference for previously identified critical transsonic region of the input parameter
domain. This is plausible, since the information on the unknown y(x) contained in the
evaluations Y is not involved locally in the selection criterion, but only globally via the
hyperparameters θ = (θ1, θ2), cf. Sect. 3.2.1. Of particular interest is the concentration of
samples on the upper and lower α-boundary of the input parameter domain, while only few
additional samples are located on the Ma-boundaries. The reason for this can be found in the
strong correlation of the evaluations along the α-axis, while they are only weakly correlated
along the Ma-axis ( 1

θ1
< 1

θ2
). In the Euler case for instance, more samples are located on

the α-boundaries in the design for cd than for cl, and even more for cm. This corresponds
to the hyperparameters’ ratio θ1

θ2
in Table 4.1: the higher the ratio, the more samples are

located on the α-boundaries. This behavior of a MSE-based strategy was also reported in
[107]. At first sight, this property seems reasonable. A strong correlation along an axis
indicates a linear behavior and, recalling that Kriging with local basis functions is rather
an interpolation than an extrapolation technique, covering the boundaries of the identified
axis with samples seems just appropriate. In a previous study [117], this was diagnosed as
a reason for outperforming the nonadaptive Latin hypercube designs. Comparing the MSE
designs to the nonadaptive Halton designs regarding accuracy, they can only compete for
smaller designs. For larger designs however, it seems that the distribution of samples in the
interior of Ω is too sparse or rather little intelligent. The Halton sequence, which is more
evenly distributed in whole Ω (cf. Sect. 3.1.4), then mostly produces more accurate surrogate
models.

θ1 θ2 ratio θ1
θ2

samples on αmin,max

cl 1.481 0.438 3.381 30
cd 2.062 0.399 5.168 35
cm 3.099 0.440 7.043 54

Table 4.1: Hyperparameters for Kriging interpolation based on MSE design, N = 100 (Euler case).

The samples of the sample sensitivity error strategy (Figs. 4.13 and 4.14) are concentrated
higher in and around the transsonic region, where the responses behave much less linear than
for smaller or higher Mach numbers. Nonetheless, the sub- and supersonic regions are not
neglected completely, but only provided with less samples. The concentration is generally
stronger in GEK than in Kriging, since the GEK surrogate model contains more information
on the behavior of y(x). Also, like in the MSE-based designs, many samples are added on the
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α-boundaries. Evidently, this is due to the influence of the RMSE component (exploration
component) in the selection criterion (3.20). But unlike the MSE strategy, the samples in the
interior of Ω are distributed more intelligent. Critical regions are identified automatically
due to the cross-validation component (exploitation component). This combination of a
local or exploitation component and a global or exploration component produces overall the
most accurate surrogate models (cf. Sect. 4.3.1).
The distribution of the adaptive gridding samples (Figs. 4.15 and 4.16) is similar to the SSE

strategy. Many samples are located on the boundaries of the α-axis, while in the interior of Ω,
generally a higher concentration of samples in the critical transsonic region can be observed.
In the RANS case, the concentration is less distinct than for the SSE strategy, but beyond
that no structural difference is detected. Using also both an exploration and an exploitation
component for selecting new samples, this characteristic is plausible. Nevertheless, the SSE
designs generally perform better. The difference is that the SSE strategy adds only one
sample per stage and not m = 10 at once. Adding multiple samples per stage can produce
benefits regarding efficiency (by parallel evaluation). But the sampling strategy cannot react
that precisely on changes of the N -th surrogate model ŷ(N)(x) as if adding just one instead of
m samples and possibly evaluations are wasted on uncritical regions of the input parameter
space.
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Figure 4.11: Sample distributions for MSE strategy, FLOWer Euler responses.
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Figure 4.12: Sample distributions for MSE strategy, TAU RANS responses.

97



4 Numerical investigation of sampling strategies

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler lift, KRI

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler lift, GEK

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler drag, KRI

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler drag, GEK

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler moment, KRI

0.5 1 1.5 2
−5

0

5

10

Mach

a
lp

h
a

Euler moment, GEK

Figure 4.13: Sample distributions for SSE strategy, FLOWer Euler responses.
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Figure 4.14: Sample distributions for SSE strategy, TAU RANS responses.
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Figure 4.15: Sample distributions for ADG strategy, FLOWer Euler responses.
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Figure 4.16: Sample distributions for ADG strategy, TAU RANS responses.
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4.4 Theoretical sampling strategies

In order to provide an assessment standard for the performance of the adaptive sampling
strategies, two new strategies are now introduced which avail themselves of the validation
data on Ωval, a 50× 50 factorial design on Ω. Since in real life applications only the current
data Y ∈ RN on X(N) (Y ∂ ∈ R(d+1)N for GEK, respectively) is available during the process
of model generation, they are only of theoretical interest. In the following, these strategies
are referred to as theoretical sampling strategies, while the previous approaches (MSE, SSE
and ADG) are referred to as practical sampling strategies. Probably the first approach which
comes in mind when sequentially adding samples from a set of validation data is comparing
the current surrogate model with the true response on Ωval in each step. A new sample is
added where the true error |ŷ(x)− y(x)| is highest,

x(N+1) = arg max
x∈Ωval

|ŷ(x)− y(x)| . (4.6)

After adding the evaluation y(x(N+1)) (and the gradient ∇y(x(N+1)) in GEK) and generating
a new surrogate, the error is set to zero in x(N+1) and also a global improvement, e.g. in
terms of the relative root mean squared error η2 (4.2), is expected. It will be denoted as
true error strategy (ERR) in the following.
A second approach chooses the new sample x(N+1) from Ωval such that η2 is actually

diminished. Let ŷ(N+1) (x |x∗) denote a Kriging surrogate model, which is based on X(N)

and one additional sample x∗ ∈ Ω \X(N). It is generated by adding y(x∗) (and ∇y(x∗) in
GEK) to the model and solving the Kriging system anew. Having access to the validation
data on Ωval and being able to evaluate an error functional like η2, the best possible choice
for adding one new sample is minimizing this error functional for ŷ(N+1) (x |x∗),

x(N+1) = arg min
x∗∈Ωval\X(N)

 ∑
x∈Ωval

(
ŷ(N+1) (x |x∗)− y(x)

)2
 . (4.7)

With this selection criterion, the new surrogate model ŷ(N+1)(x) based on the updated de-
sign X(N+1) = X(N) ∪ {x(N+1)} achieves the best possible improvement of global accuracy
in terms of the root mean squared error η2, when only considering Ωval as a finite set of
candidates. This strategy is referred to as maximum improvement strategy (IMPR). It is a
theoretical best case scenario for sequential designs when adding one sample per stage. It
does however not yield the best possible design X(Nmax) of size Nmax out of the finite set of
candidates Ωval. Though theoretically possible by generating surrogate models for all com-
binations of Nmax samples out of Ωval and assessing them by their error values, this is com-
putationally out of reach even for small examples. There exist

(#Ωval

Nmax

)
= #Ωval!

Nmax!·(#Ωval−Nmax)!
combinations and only for determining the best design of size Nmax = 10 out of a 10 × 10
grid validation design, already over 1.7 · 1013 surrogates would have to be generated and
assessed.
The performances of the theoretical sampling strategies (Figs. 4.17 and 4.18) as well as

the sample distributions (Figs. 4.19–4.22) are now discussed in order to draw more profound
conclusions on the previous results (Sects. 4.3.1 and 4.3.2). The true error strategy is able to
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outperform the practical sampling strategies in the Euler case after a small starting phase.
Still, the SSE strategy, which was identified as most accurate method in the previous sections,
can compete to a great extend. In the RANS case on the contrary, the true error method
fails for the most part. With few exceptions, the surrogates generated by the ERR strategy
are the least accurate ones.
In order to interpret these heterogeneous performances, the sample distributions are now

investigated. In the Euler case (Fig. 4.19), most samples are located in the critical transsonic
region as expected. There, the true responses feature large gradients and high curvature
and the largest errors appear. Also, many samples are located on the α-boundaries. These
features can also be observed for the SSE and the ADG strategies, which indicates that these
two mixed exploration and exploitation strategies correctly identify the most critical regions
of the input parameter space. In the RANS case (Fig. 4.20), in which the ERR strategy
produces inaccurate surrogates, the concentration of samples in the most critical regions is
much higher. For instance, a clustering of the samples in the transsonic region for high angle
of attack α can be observed for all responses. Other areas of Ω, where the true error is
indeed not maximal, but the surrogate is nevertheless inaccurate, stay disregarded by the
strategy. Also, the true responses y(x) behave not as smooth as in the Euler case, especially
in the transsonic region. Therefore, a lower correlation is detected by the hyperparameter
estimation (i.e. larger hyperparameters θ) when many samples are located in the highly
nonlinear areas. The consequence of large hyperparameters or, equivalently, low correlation
is a globally erratic behavior of the surrogate ŷ(x), also in regions where the true response
y(x) is in fact very smooth or almost linear. It can be concluded that for globally accurate
surrogate models, both highly concentrated clusters of samples in critical regions as well as
leaving vast regions undersampled, even if the response is linear in that area, is not desired.
Thus, rather mixed strategies, which have an exploitation and an exploration component,
are the method of choice.
The maximum improvement strategy generally imposes itself as a lower error boundary

for all practical sampling strategies as well as for the theoretical ERR strategy. Apart
from one exception (Kriging for cd in the Euler case), the surrogates based on the IMPR
strategy mainly are most accurate. Despite the selection of the new sample as a minimum
of the new surrogate’s error, η2 does not decrease in a few cases (e.g. GEK for cm in the
RANS case, N = 60). The reason is that for the construction of ŷ(N+1) (x |x∗) in (4.7), the
hyperparameters θ of ŷ(N)(x) are used, while after adding x(N+1) and constructing ŷ(N+1)(x),
they are estimated anew. Usually, the estimated hyperparameters change only slightly after
adding a new sample, but in some rare cases, this can be a source of error. After adding
few more new samples, the error diminishes again. In some cases, the SSE and the ADG
strategy can compete with the lower error boundary, proving that they are indeed powerful
adaptive sampling strategies.
Investigating the sample distributions of the IMPR method (Figs. 4.21 and 4.22), it is

noticeable that the samples are again concentrated both in the transsonic region and, to
some extend, also on the α-boundaries. It can be observed that the samples tend to build
clusters, especially in the transsonic region, which are less dense than the ones observed
for the ERR strategy. Also, their location seems to be rather random. These clusters can
establish a trend in their surroundings (in indirect GEK for instance, adjacent samples are
used to substitute gradient information, cf. Sect. 2.4). Instead of placing samples where the
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true error of the surrogate ŷ(N)(x) is highest, the information on ŷ(N+1)(x) is used for a
global reduction of the error η2. The samples are thus not necessarily placed where the true
response y(x) is most erratic, but in clusters in the neighborhood of these regions, such that
the response is correctly reproduced by the trend beyond the clusters’ locations. However,
any practical sampling strategy can only use the information contained in ŷ(N)(x) and is not
able to look one step ahead like the IMPR strategy does.
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Figure 4.17: Root mean squared error η2 for interpolation of FLOWer Euler responses.
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Figure 4.18: Root mean squared error η2 for interpolation of TAU RANS responses.
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Figure 4.19: Sample distributions for ERR strategy, FLOWer Euler responses.
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Figure 4.20: Sample distributions for ERR strategy, TAU RANS responses.
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Figure 4.21: Sample distributions for IMPR strategy, FLOWer Euler responses.
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Figure 4.22: Sample distributions for IMPR strategy, TAU RANS responses.
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4.5 A strategy for computer experiments with multiple responses

The previously investigated adaptive designs were developed for scalar-valued responses
y : Rd → R. But often a computer experiment yields a vector-valued response y : Rd → Rn
of dimension n. For each component y1, . . . , yn of the response a surrogate ŷ1, . . . , ŷn is
sought. In the aerodynamic test cases for instance, one evaluation of the flow solver yields
three aerodynamic coefficients y(x) = (cl(x), cd(x), cm(x))> ∈ R3, with x = (Ma, α)> ∈ R2.
Being able to compute all n quantities at once without additional costs, having n different
designs for ŷ1, . . . , ŷn certainly is not efficient. A naive approach would just use a space-
filling one-stage approach like a Halton design, which does neither depend on the responses
y1, . . . , yn nor on the surrogates ŷ1, . . . , ŷn. The previous sections demonstrated that adap-
tive sampling strategies (mixed exploration & exploitation) for scalar-valued responses are
capable of outperforming one-stage approaches, meaning more accurate surrogates using less
samples. In the following, an attempt is made to use such a mixed adaptive sampling strat-
egy for vector-valued responses as well. Little can be found in the literature on the topic
of sequential designs for multiple responses problems. In [85] for instance, a modified max-
imum entropy design, which is input- and output-based by adapting the correlation matrix
entries to a predicted error, was extended to vector-valued responses. An application of a
combined, MSE-based selection criterion for multiple responses was presented in [49]. In
[23], a Voronoi-tesselation of the input parameter domain was combined with a nonlinearity
measure and the maximum of these n measures for all responses was used as a selection
criterion.
The sample sensitivity error strategy (SSE) produced the overall best surrogates for the

scalar-valued test cases and it will now be extended to the vector-valued case. Each response
yk is now assigned a separate surrogate model ŷk, which for instance means that each surro-
gate has its own hyperparameters, but they all share one design X (k = 1, . . . , n). Let ek(x)
denote the cross-validation error as in (3.18) for the k-th surrogate and RMSE[ŷk(x)] be the
root mean squared error predictor for ŷk. Having distinct hyperparameters, the RMSE is in
fact a distinct function for each ŷk, otherwise they would only differ in constant factors σk,
cf. (3.10). For single-output responses, e(x) RMSE[ŷ(x)] is used as a selection criterion for
a new sample x(N+1) (3.20). It is nonnegative and equal to zero in each x(i) ∈ X(N). For
multiple-output responses, the geometric mean of ek(x) RMSE[ŷk(x)] (k = 1, . . . , n) can be
used as a combined selection criterion

x(N+1) = arg max
x∈Ω

{
n∏
k=1

(ek(x) RMSE [ŷk(x)])
1
n

}
. (4.8)

The geometric mean has the advantage of being independent of the particular scales of
each yk. The selection criterion represents a tradeoff between the different error indicators
ek(x) · RMSE[ŷk(x)] (k = 1, . . . , n) and chooses a new sample which is possibly not the
best choice for each surrogate alone, but a compromise for increasing the accuracy of all ŷk
collectively. In the investigated test cases, the responses cl, cd and cm share a mutual critical
region, the transsonic flow regime, due to the underlying physics of the flow equations. If
this is not the case for a vector-valued computer experiment, the geometrical mean might
be inappropriate. If ŷk’s error indicator is close to zero in some part of the input parameter
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domain, but ŷl’s error indicator has its maximum in this part for some l 6= k, still no sample
might be placed there in the whole adaptive process because the product stays close to zero.
Instead, a weighted arithmetic mean of the error indicators

x(N+1) = arg max
x∈Ω

{
1
n

n∑
k=1

( 1
σk
ek(x) RMSE [ŷk(x)]

)}
(4.9)

might be more suitable as a selection criterion, where σ2
k denote yk’s process variances (2.79).

Strategy (4.8) is applied to the aerodynamic test cases, generating a mutual adaptive
design X for the three responses cl, cd and cm. In the Euler case and in the RANS case,
Kriging and GEK interpolations are investigated. Figures 4.23 and 4.24 depict the error
η2 (4.2) for the multiple responses strategy against the performance of the SSE strategy
applied to each response individually (same data as in Sect. 4.3). Both strategies perform
comparable for the most part. Often, the combined strategy yields even more accurate
surrogates than the individual SSE strategies. Figs. 4.25 and 4.26 show the shared designs
in each column. Comparing the distributions of the samples, it can be observed that they
basically have the same features as the individually determined designs of Sect. 4.3. Many
samples are located on the boundaries of the α-axis, while in the interior of Ω, most samples
are concentrated in the transsonic region without totally neglecting the sub- and supersonic
region. The proposed mutual sequential sampling strategy (4.8) proves to work well in the
aerodynamic test cases. It can compete with the designs adapted to each single response
individually and therefore also outperforms the naive approach for vector-valued responses
of a nonadaptive one-stage Halton design.
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Figure 4.23: Root mean squared error η2 for interpolation of FLOWer Euler responses.
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Figure 4.24: Root mean squared error η2 for interpolation of TAU RANS responses.
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Figure 4.25: Sample distributions for the multiple responses strategy, FLOWer Euler.
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Figure 4.26: Sample distributions for the multiple responses strategy, TAU RANS.

116



4.6 Summary

4.6 Summary

Designs for efficient and globally accurate Kriging and gradient-enhanced Kriging surrogate
models were validated in this chapter. Aerodynamic responses based on Euler and RANS
computations were identified as test cases of sufficient complexity. Space-filling one-stage
approaches were investigated as well as adaptive sampling strategies.
Comparing one-stage approaches, designs based on a low-discrepancy Halton sequence

could clearly outperform factorial designs and optimized Latin hypercube designs regarding
global accuracy. This result was also observed in many test cases in the existing literature
[68, 131, 81, 60]. The Halton sequence’s accuracy then served as a benchmark for adaptive
designs.
As adaptive designs, especially mixed strategies containing an exploration (space-filling)

and an exploitation (error-based) component were focussed. Two mixed exploration & ex-
ploitation sampling strategies (SSE and ADG) were generally able to produce Kriging and
GEK surrogates of higher accuracy than the one-stage designs and a pure exploration strat-
egy (MSE). They provided a more efficient usage of the expensive evaluations of the response
and reduced the number of required samples. A comparison of the distributions of the sam-
ples in the input parameter domain backed up the results. The mean squared error prediction
was identified as a useful exploration criterion, while cross-validation methods served as a vi-
able exploitation component. Critical regions in the input parameter domain were identified
automatically and were provided with a higher concentration of samples, while other regions
were sampled coarser but were not neglected either. Other comparative studies came to sim-
ilar conclusions. In [46, 47], combined criteria were found to be a more reliable indicator for
the source of approximation error than single. In [23, 25], hybrid exploration & exploitation
methods generally outperformed pure exploration or exploitation methods regarding global
accuracy.
For gaining a deeper insight into optimal designs and for a more profound assessment of

the approximation error, also two theoretical sampling strategies were investigated which
make use of a dense set of validation data. They are therefore merely of academic interest.
The first one was a pure exploitation method, adding a sample where the true error is
highest in every stage. In the Euler case, it showed overall good results, but the hybrid
SSE strategy was able to keep up with its performance. In the RANS case however, the
method produced inaccurate approximations. The concentration of the samples in the input
parameter domain became too unbalanced, demonstrating that pure exploitation strategies
are generally not recommended for global approximation. A second strategy chose the next
sample by minimizing the approximation error of the next stage’s surrogate. In this best-case
study, an experimental lower error boundary could be established. Both mixed strategies
(SSE and ADG) could compete at least in some cases, proving that they are indeed powerful
sampling strategies.
Regarding efficiency, the SSE strategy was also enhanced for the use in test cases with

multiple responses. Distinct designs for each response are barely desired, if one evaluation
of the computer experiment yields all responses simultaneously. A mixed selection criterion
was proposed, which represents a balanced choice of the error indicators for the different
responses. It generally produced results similar to the SSE strategy for single-output re-
sponses, both regarding global accuracy and sample distributions, establishing the method
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as an efficient and powerful adaptive sampling strategy.
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In this chapter, a new surrogate modeling framework is introduced. Its purpose is to generate
a globally accurate surrogate with low computational effort, which can be accomplished by
using only few expensive function evaluations of y(x). Adaptive sampling strategies have
been investigated in the last two chapters. They reduce the number N of required samples
for a targeted accuracy by an intelligent distribution of the samples X = {x(1), . . . , x(N)}
in the input parameter domain Ω. However, the response y(x) is treated as a black-box
and common surrogate modeling techniques can only use the information contained in the
data pairs {(x(i), y(x(i)))}Ni=1. The new approach is motivated by the assumption that for
a predefined problem class, the behavior of the response y(x) is not arbitrary, but rather
related to other instances φ1(x), φ2(x), φ3(x), . . . of a mutual problem class. For example
in CFD, responses of aerodynamic coefficients, depending on the input parameters Mach
number and angle of attack, share structural similarities for different airfoil geometries.
To identify these structures, the concept of statistical shape models is applied, which uses
a principal component analysis to quantify modes of variation of a previously computed
training database {φ1, . . . , φM}. If functions of a problem class are accessible in form of such a
database, a new test case y of this function family can be approximated using only few costly
evaluations. Instead of directly interpolating the samples, first the principal components are
fitted to the data which then act as a generic surrogate model (GSM). Based on this model,
interpolation of the samples is performed with a variable-fidelity modeling method (VFM),
which combines the generic surrogate model with the actual evaluations in a data fusion
framework, cf. Fig. 5.1.
Concerning the computational effort, one has to differentiate between online costs and

offline costs. In Fig. 5.1, all steps on the left side are considered offline costs. They are
dominated by the numerical effort of generating a training database, whose elements are
globally accurate surrogate models themselves. This task can be seen as a general prepro-
cessing, meaning after the database has been generated and stored once, it can be used for
every new test case of the mutual problem class. The new approach transfers online costs
to offline costs by using the information contained in the training database for reproducing
the behavior of y(x) without the excessive use of expensive (online) response evaluations.
The global, generally highly nonlinear trend of the unknown response y(x) is captured by
the generic surrogate model. Still, the new surrogate modeling technique is flexible enough
to interpolate possible deviations of the evaluations y(x(i)) from the generic model.
This new concept combines and enhances different techniques emerging from a broad field

of disciplines, which are now presented with an overview on the existing literature. Using
secondary data for improving the approximation quality of a primary variable is state-of-
the-art in surrogate modeling for expensive simulations, both in global approximation and
in optimization. For instance, only few highly accurate but expensive (primary) evaluations
are augmented by many less accurate but cheaper (secondary) computations, which despite
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Figure 5.1: Generic surrogate modeling framework.

their inaccuracy are still able to reproduce the global trend of the primary response. Cok-
riging originates from geostatistics [22, 146] and enables the incorporation of any auxiliary
variable, which is correlated with the primary one. For instance, gradient-enhanced Kriging
(see Sect. 2.4) can be interpreted as a special case of Cokriging, where derivative informa-
tion serves as secondary data. In the last decade, Cokriging was also used for computer
experiments [69, 40, 39], see also [56, 55] for recent applications in aerodynamics. Other
variable-fidelity modeling methods (VFM) use bridge functions to correct the discrepancy
between data of low and high fidelity and date back almost as long as surrogate modeling
for computer experiments itself, see e.g. [12]. Nowadays they are also used in aerodynamics
[137, 116, 52, 82]. Recently, a new VFM method was developed [53], which overcomes the
difficulties of model building and robustness in Cokriging as well as the problems of accuracy
and missing mean squared error prediction in the correction-based VFM methods. While
statistical shape models [19, 29, 27] are popular in the fields of computer vision and (medi-
cal) image processing [43, 78, 128], to the author’s knowledge the generic surrogate modeling
approach represents the first attempt to use this technique in response surface methods for
global approximation of expensive computer experiments. Statistical shape analysis mainly
consists of a proper orthogonal decomposition (POD) of the training database, which is also
called principal component analysis (PCA) or Karhunen-Loève transformation, depending
on the context, and is used in various fields of research. POD was initially used for the
identification of coherent structures in turbulent flows, cf. [5, 133]. It has become a standard
method in reduced-order modeling (ROM) for dynamical systems [76, 145, 77, 120, 153].
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Another application of POD is the gappy POD method, which can be used for the recon-
struction of incomplete data. First introduced in [32] for partial image data, it is nowadays
also applied in CFD [10, 141]. In [51], gappy POD was compared to Kriging interpolation
for the reconstruction of incomplete flow fields. The generic surrogate modeling framework
was introduced by this thesis’ author in [118]. This chapter contains a detailed presenta-
tion of the method including illustrative examples, while the subsequent one is devoted to a
thorough numerical investigation involving new test cases.
The outline of this chapter is as follows. A database of surrogates for a predefined problem

class from aerodynamic simulation is introduced in Sect. 5.1 and the problem of establishing
a correspondence between the database elements is discussed. The concept of statistical
shape models as well as the POD method for L2-functions are presented in Sect. 5.2. In
Sect. 5.3, the gappy POD method is described and extended to the continuous case. It
is also explained how the gappy POD fit of the POD basis elements to some sample data
establishes a generic surrogate model. In Sect. 5.4, it is discussed how the generic surrogate
model approximation and the sample data are combined by a variable-fidelity modeling
interpolation.

5.1 Training database

5.1.1 Plain database

The test cases are now concretized for better understanding without loss of generality. The
goal is to generate surrogate models for scalar aerodynamic coefficients lift (cl), drag (cd)
and pitching moment (cm) for two-dimensional airfoil geometries, which depend on the
input parameters Mach number (Ma) and angle of attack (α), cf. Sect. 4.1. For every
input parameter configuration, the response can be evaluated by running a simulation with
a (computationally intensive) CFD solver. The responses of different airfoils are assumed
to constitute a mutual problem class and to share structural similarities, as illustrated in
Figs. 6.3–6.5. When already having generated surrogate models for several airfoil geometries,
theses similarities can be used to improve the quality of a surrogate model for a new instance
of this problem class.
A database of surrogate models φ1(x), . . . , φM (x) for the same problem class is considered

and the superscripts are omitted for simplicity (φi := φ̂i). In these test cases, each φi ∈ L2(Ω)
is the response of an aerodynamic coefficient (e.g. lift) depending on the input parameters x =
(Ma, α) for a particular airfoil geometry. So the database consists of previously computed
response surface functions corresponding toM different airfoils. Furthermore, each response
function is assumed to have a sufficient accuracy, i.e. it represents a globally valid surrogate
model in the domain of interest Ω ⊂ R2.

5.1.2 Aligned database and correspondence problem

In the fields of computer vision and image recognition, statistical shape models built from
a dataset of examples have been widely used, cf. [27]. After establishing correspondence
between the database functions by admissible transformations, also called alignment, a prin-
cipal component analysis is performed to identify the most important modes of variation.
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Often, Euclidean or similarity transformations are used to establish correspondence between
the images, see e.g. [19]. For an overview on image registration techniques and possible
transformations see [38, 135, 154].

As an admissible transformation the following one is defined, which is an affine transfor-
mation in each dimension of Ω ⊂ R2 and in the image space φj(Ω) ⊂ R:

x(qj) :=
(
x1(1 + qj1) + qj2
x2(1 + qj3) + qj4

)
, (5.1)

φj

(
x(qj), qj

)
:= φj

(
x(qj)

)
(1 + qj5) + qj6, (5.2)

parametrized by qj ∈ R6 (j = 1, . . . ,M). The transformation is chosen such that, for qj = 0,
φj (x(0), 0) = φj(x) holds. Note that this transformation was found to be suitable for the
investigated test cases, other problem classes could require other admissible transformations.
One function φ1(x) is defined as a reference, meaning no transformation is applied (q1 := 0).
For the other transformation parameters q2, . . . , qM ∈ R6 an optimization problem with
6(M − 1) unknowns has to be solved:

min
q2,...,qM

 1
M(M − 1)

M∑
j=1

∑
k>j

∫
Ω

(
φj
(
x(qj), qj

)
− φk

(
x(qk), qk

))2
dx+ δ

2

M∑
j=2

qj
>
qj

 . (5.3)

The solution minimizes the overall sum of squared differences, while for robustness a regu-
larization term is included, which guarantees that the transformation does not become too
large. The regularization parameter δ > 0 can be chosen in relation to the initial overall
sum of squared differences for qj = 0 (j = 1, . . . ,M), e.g.

δ := 10−1 · 1
M(M − 1)

M∑
j=1

∑
k>j

∫
Ω

(
φj
(
x(0), 0

)
− φk

(
x(0), 0

))2
dx. (5.4)

In this way the regularization is independent of the problem-specific level of the correspon-
dence error.

In Fig. 5.2, the alignment is illustrated with an example of two lift responses (cf. Sect. 6.1).
Structural similarities like the linear domain in the left half of Ω, the ridge on the right or
the local minimum on the lower right are aligned by the transformation, while structural
discrepancies like the shape of the local maximum on the upper left are preserved. The
nonlinear least squares problem (5.3) is solved by a Gauß-Newton algorithm [103]. Some
computational issues will now be addressed briefly. The integral in (5.3) is approximated by
a numerical quadrature ∫

Ω
f(x)dx ≈

n∑
i=1

wif(x(i)), (5.5)

e.g. with the x(i) as elements of a
√
n ×
√
n-tensorgrid and positive weights wi. With the
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Figure 5.2: Two lift responses φ1 (reference response, blue) and φ2 (red). Left: before alignment,
right: after alignment.

term

ei,j,k := √wi
(
φj
(
x(x(i), qj), qj

)
− φk

(
x(x(i), qk), qk

))
, (5.6)

e ∈ Rn
M(M−1)

2 , (5.7)

the first summand of (5.3) can be written in discretized form as a sum of squared differences

SSD(q) = 1
2

M∑
k=1

∑
j>k

n∑
i=1

e2
i,j,k. (5.8)

Then using
J := ∂e(q)

∂q
∈ Rn

M(M−1)
2 ×6(M−1), (5.9)

the Gauß-Newton algorithm requires the gradient and an approximation to the Hessian

∇q SSD(q) = J>e ∈ R6(M−1) (5.10)
∇2
q SSD(q) ≈ J>J ∈ R6(M−1)×6(M−1). (5.11)

Each entry of the symmetric matrix J>J is a dot product of length nM(M−1)
2 and there are

6(M−1)(6(M−1)+1)
2 entries to compute, so the algorithm can really benefit from parallelization.

Furthermore, the memory usage by storing the matrix J is O(nM3). Derivation of ei,j,k(q)
in (5.9) includes application of the chain rule

d

dqj
φj
(
x(x(i), qj), qj

)
= ∂

∂x
φj
(
x(x(i), qj), qj

)
· ∂
∂qj

x(x(i), qj) + ∂

∂qj
φj
(
x(x(i), qj), qj

)
(5.12)

and first-order derivatives ∂
∂xl
φj(x(x, qj), qj) of the database responses appear. Therefore,

the database functions have to satisfy φj ∈ C1(Ω). They are surrogate models themselves,
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so this can be guaranteed by an appropriate choice of their basis- or correlation functions,
cf. Sect. 2.3.3.

5.2 Proper orthogonal decomposition

Let L2(Ω,R) denote the Hilbert space of square-integrable, real-valued functions defined on
a bounded Ω ⊂ Rd. The inner product 〈f, g〉L2(Ω) =

∫
Ω f(x)g(x)dx and the norm ‖f‖2L2(Ω) =∫

Ω f(x)2dx are defined as usual for all f, g ∈ L2(Ω). For the dataset {φ1, . . . , φM} ⊂ L2(Ω), a
proper orthogonal decomposition (POD) is sought, which is also called principal component
analysis (PCA) or Karhunen-Loève transformation, see also [5] or [133]. Again, the super-
scripts are omitted for simplicity (φi := φ̂i, see (5.2)). Nonetheless, keep in mind that in this
chapter, all functions are surrogate models which have been aligned by admissible transfor-
mations, while the POD method applies for any {φi}Mi=1 ⊂ L2(Ω) as well. In PCA, significant
structures of the dataset are identified, which is realized by an orthogonal decomposition of
the covariance matrix

C(φ) :=
[
〈φi, φj〉L2(Ω)

]M,M

i,j=1
∈ RM×M . (5.13)

Often, mean-centered functions are considered, i.e. the proper orthogonal decomposition is
performed on {φ̌1, . . . , φ̌M}, φ̌i := φi− 1

M

∑M
k=1 φk [27]. This leads to a decomposition of the

space of variations from the mean instead of the space spanned by the functions themselves.
In the statistical shape model

1
M

M∑
k=1

φk +
L∑
j=1

ajψj , (5.14)

the principal components of variation ψj ∈ L2(Ω) from the mean are controlled by pa-
rameters aj ∈ R (j = 1, . . . , L). Proper orthogonal decompositions of both mean-centered
{φ̌1, . . . , φ̌M} and plain datasets {φ1, . . . , φM} have been investigated. In this thesis’ test
cases, mean-centering did not produce better results while increasing the complexity of al-
gorithmic implementation, thus in the remainder of this chapter the plain formulation is
used.
The POD method is now introduced for functions in Hilbert space, mainly following the

discussion of [145]. The M functions φi ∈ L2(Ω) (i = 1, . . . ,M) are assumed to be linear
independent and φ(x) := (φ1(x), . . . , φM (x)) ∈ R1×M is defined for all x ∈ Ω. For the POD
method, consider YM := span {φ1, . . . , φM} ⊂ L2(Ω) of dimension M . Let {ψ1, . . . , ψM}
be an orthonormal basis of YM . Clearly, when using the complete basis, every φi can be
represented by a linear combination of its elements

φi =
M∑
j=1
〈φi, ψj〉L2(Ω) ψj (i = 1, . . . ,M). (5.15)

But now a set of orthonormal functions {ψ1, . . . , ψL} ⊂ YM of lower dimension L ≤ M is
sought, which describes YM as good as possible, i.e. every φi ∈ YM can be approximated by
a linear combination of {ψ1, . . . , ψL} in an optimal way.
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Definition 5.1 (POD basis). For any L ≤ M , the solution {ψ1, . . . , ψL} ⊂ YM of the
optimization problem

min
ψ1,...,ψL∈YM

M∑
i=1

∥∥∥∥φi − L∑
j=1
〈φi, ψj〉L2(Ω) ψj

∥∥∥∥2

L2(Ω)

s. t. 〈ψi, ψj〉L2(Ω) = δij (i, j = 1, . . . , L)
(5.16)

is called POD basis of rank L.

Here, δij denotes the Kronecker delta. Expanding the norm in (5.16) and exploiting
〈ψi, ψj〉L2(Ω) = δij yields an equivalent formulation:

max
ψ1,...,ψL∈YM

M∑
i=1

L∑
j=1
〈φi, ψj〉2L2(Ω)

s. t. 〈ψi, ψj〉L2(Ω) = δij (i, j = 1, . . . , L).
(5.17)

For a given L ≤ M , the amount of YM ’s information contained in the POD basis is maxi-
mized.
In the following three theorems, the solution of (5.16) is derived. It can be expressed as

the solution of the eigenvalue problem for an operator C : L2(Ω)→ YM which is defined as
follows

Cψ :=
M∑
i=1
〈ψ, φi〉L2(Ω) φi. (5.18)

The existence of an orthonormal basis is guaranteed by the Hilbert-Schmidt theorem.
Theorem 5.2 (Hilbert-Schmidt). Let C : H → H be a bounded, compact, self-adjoint
operator on a real, separable Hilbert space H. Then there exists a complete orthonormal
basis {ψi}∞i=1 for H satisfying

Cψi = ωiψi and ωi −−−→
i→∞

0. (5.19)

Proof. A proof can be found in [113], Chap. VI, Sect. 5.

It can easily be shown that C in (5.18) satisfies the assumptions of Theorem 5.2, cf. [145].
By the construction of C, which is a mapping to the finite-dimensional YM ⊂ L2(Ω), there
exist M orthonormal eigenfunctions {ψ1, . . . , ψM} ⊂ YM corresponding to the real and
non-negative eigenvalues ω1, . . . , ωM . Also, span{ψ1, . . . , ψM} = YM which implies that
{ψ1, . . . , ψM} is an orthonormal basis for YM . Furthermore, ωi = 0 for all i > M , cf. [77].
Theorem 5.3. For the operator C : L2(Ω)→ YM as defined in (5.18) exist an orthonormal
basis {ψi}∞i=1 and a sequence of real, non-negative numbers {ωi}∞i=1 satisfying

Cψi = ωiψi, (5.20)
ω1 ≥ . . . ≥ ωM > 0, (5.21)
ωi = 0 (i > M). (5.22)
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Then for any L ≤M , {ψ1, . . . , ψL} ⊂ YM is the solution of (5.16).

Proof. The proof is given in [145].

Thus the POD basis of rank L is given by the first L eigenfunctions ψi of C corresponding
to the L largest eigenvalues ωi (i = 1, . . . , L). A finite approach for solving the eigenvalue
problem (5.20) is now deduced. A matrix

C :=
[
〈φi, φj〉L2(Ω)

]M,M

i,j=1
∈ RM×M (5.23)

is defined (cf. (5.13)), for which the eigenvalue problem can be solved easily.

Theorem 5.4. The orthonormal eigenfunctions {ψi}Mi=1 and the corresponding decreasing
eigenvalues {ωi}Mi=1 of C can be computed via the solution of the finite-dimensional eigenvalue
problem

Cvk = ωkv
k, vk ∈ RM (k = 1, . . . ,M). (5.24)

The eigenfunctions are given by

ψk = 1
√
ωk

M∑
i=1

vki φi (k = 1, . . . ,M). (5.25)

Proof. The proof follows the approach in [145] . Because ψk ∈ YM = span {φ1, . . . , φM}, the
following ansatz is made using coefficients κk ∈ R\{0}, vki ∈ R (k = 1, . . . ,M , i = 1, . . . ,M)

ψk = κk

M∑
i=1

vki φi (k = 1, . . . ,M). (5.26)

Inserting (5.26) into the eigensystem (5.20) yields

κk

M∑
j=1

(
M∑
i=1
〈φi, φj〉L2(Ω) v

k
i

)
φj = κk

M∑
j=1

(
ωkv

k
j

)
φj (k = 1, . . . ,M). (5.27)

Exploiting the linear independence of {φ1, . . . , φM}, this is equivalent to

M∑
i=1
〈φi, φj〉L2(Ω) v

k
i = ωkv

k
j (k = 1, . . . ,M, j = 1, . . . ,M). (5.28)

This is an eigenvalue problem for the matrix C = [〈φi, φj〉L2(Ω)]
M,M
i,j=1 ∈ RM×M

Cvk = ωkv
k, vk ∈ RM (k = 1, . . . ,M). (5.29)

Thus C : L2(Ω)→ YM and C ∈ RM×M have the same eigenvalues {ωi}Mi=1. Setting κk := 1√
ωk

for normalization in (5.26), the orthonormal eigenfunctions {ψi}Mi=1 of C can be computed
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5.2 Proper orthogonal decomposition

using the entries of the orthonormal eigenvectors of C as linear coefficients

ψk = 1
√
ωk

M∑
i=1

vki φi (k = 1, . . . ,M), (5.30)

from which the claim follows.

So for determining the POD basis {ψ1, . . . , ψL} of rank L, only the L eigenvectors vk ∈ RM
of C corresponding to the L largest eigenvalues ωk have to be computed. With notations
φ(x) := (φ1(x), . . . , φM (x)) ∈ R1×M , VL := [vki ]i,k ∈ RM×L andWL := diag(√ω1, . . . ,

√
ωL) ∈

RL×L one can also write

ψk(x) = 1
√
ωk
φ(x)vk (k = 1, . . . , L), (5.31)

ψ(x) := (ψ1(x), . . . , ψL(x)) = φ(x)VLW−1
L ∈ R1×L. (5.32)

When the database elements

φi =
M∑
j=1
〈φi, ψj〉L2(Ω) ψj ∈ Y

M (5.33)

are not represented with the full basis {ψ1, . . . , ψM}, but an approximation

φi ≈
L∑
j=1
〈φi, ψj〉L2(Ω) ψj ∈ Y

L (5.34)

is used which is a projection onto the subspace YL := span{ψ1, . . . , ψL} ⊂ YM , an approxi-
mation error is made. The total error can be expressed as the sum of the M − L remaining
eigenvalues of the truncated POD basis of rank L (cf. [145])

M∑
i=1

∥∥∥∥φi − L∑
j=1
〈φi, ψj〉L2(Ω) ψj

∥∥∥∥2

L2(Ω)
=

M∑
j=L+1

ωj . (5.35)

This can be used for a heuristic determination of the required number L of POD basis
elements. With ∑M

j=1 ωj often being referred to as energy of the system YM [76], L < M is
chosen such that the relative amount of energy contained in YL∑L

j=1 ωj∑M
j=1 ωj

(5.36)

satisfies at least a certain ratio. In reduced-order modeling (ROM), POD is used for reducing
the dimension L of the space of basis functions for computational reasons. In the statistical
shape analysis framework however, POD is applied for extracting only the most important
structures {ψ1, . . . , ψL} of the database {φ1, . . . , φM}, while the lesser important structures
{ψL+1, . . . , ψM} can be neglected.
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5 Generic surrogate modeling

5.3 Gappy POD in Hilbert spaces

The gappy POD method was initially introduced in [32] for reconstructing images of faces
from incomplete data. A mask function was used which set the greyscale of every pixel to zero
which was not part of the incomplete dataset. In [10], the gappy POD method was applied
to CFD problems for the first time and a selection vector was used to set the missing flow
solution vector’s entries to zero. A straightforward approach for applying this methodology
to L2(Ω) is now introduced, where the gappy data is given by function evaluations on a
discrete subset of Ω. Two cases are discussed, depending on which database is used for
POD: the gappy POD method for the plain database (cf. Sect. 5.1.1) and, based on this, a
gappy POD method for an aligned database (cf. Sect. 5.1.2).

5.3.1 Using the plain database

First, it is briefly illustrated how a “non gappy” function is approximated by the POD basis.
When approximating an arbitrary function y ∈ L2(Ω) (not necessarily y ∈ YM ) with the
POD basis, the solution of the optimization problem

min
a

(ψ)
1 ,...,a

(ψ)
L ∈R

1
2

∥∥∥∥y(x)−
L∑
j=1

a
(ψ)
j ψj(x)

∥∥∥∥2

L2(Ω)
(5.37)

is sought. This is a linear least squares problem and using optimality conditions and ex-
ploiting 〈ψi, ψj〉L2(Ω) = δij ,

a
(ψ)
j = 〈y, ψj〉L2(Ω) (j = 1, . . . , L) (5.38)

can be derived. The approximating function ỹ(x) := ∑L
j=1 a

(ψ)
j ψj(x) is a projection of y(x)

onto the subspace YL ⊂ YM ⊂ L2(Ω).
Now for the gappy POD method, suppose y(x) itself is unknown again and only a set of

N data pairs of evaluations {
(x(i), y(x(i)))

}N
i=1

, (5.39)

x(i) ∈ Ω ⊂ Rd, y(x(i)) ∈ R, x(i) 6= x(j) (i 6= j), (i = 1, . . . , N)

is available. Based on the data, a reconstruction of the unknown function y ∈ L2(Ω) is
sought. Assuming there is a strong relation between y and YM , y is approximated by a
ỹ ∈ YL. Similar to (5.37), an optimization problem is posed

min
a

(ψ)
1 ,...,a

(ψ)
L ∈R

1
2

N∑
i=1

(
y(x(i))−

L∑
j=1

a
(ψ)
j ψj(x(i))

)2
, (5.40)

which again is a linear least squares problem. Clearly, though the ψj are orthonormal in
L2(Ω), meaning 〈ψi, ψj〉L2(Ω) = δij , this is not the case anymore on a subset of Ω. Partic-
ularly, ∑N

k=1 ψi(x(k))ψj(x(k)) (i 6= j) is generally not equal to zero. Introducing the design
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5.3 Gappy POD in Hilbert spaces

matrix
Ψ :=

[
ψj(x(i))

]N,L
i=1,j=1

∈ RN×L, N ≥ L, rank Ψ = L. (5.41)

and Y := (y(x(i)), . . . , y(x(N)))> ∈ RN , the solution of (5.40) is given by the linear equation

Ψ>Ψa(ψ) = Ψ>Y, (5.42)

cf. Theorem 2.1.

Since every ψj (j = 1, . . . , L) is a linear combination of {φ1, . . . , φM}, a framework is
now derived for avoiding multiple redundant evaluations of φi(x) both while solving (5.42)
and also for evaluating ỹ(x) = ∑L

j=1 a
(ψ)
j ψj(x). Even if each φj(x) is a surrogate model,

depending on its complexity and L, M and N , the required evaluations can be a bottleneck
in the model generation. Defining

Φ :=
[
φj(x(i))

]N,M
i=1,j=1

∈ RN×M , (5.43)

analogously to (5.32) one obtains
Ψ = ΦVLW−1

L . (5.44)

Also, with (5.32) the approximating function reads

ỹ(x) =
L∑
j=1

a
(ψ)
j ψj(x)

= ψ(x)a(ψ)

= φ(x)VLW−1
L a(ψ)︸ ︷︷ ︸

:=a(φ)∈RM×1

, (5.45)

such that a closed form of ỹ(x) = φ(x)a(φ) = ∑M
j=1 a

(φ)
j φj(x) as a linear combination of

{φ1, . . . , φM} is derived.

5.3.2 Using an aligned database

If the database elements {φ1, . . . , φM} have been transformed by solving the correspondence
problem (5.3), the unknown function y(x) (i.e. its known evaluations {(x(i), y(x(i)))}Ni=1, re-
spectively) has to be allowed a transformation of the same class. At this point the task
is not finding an overall alignment, but fitting the POD basis to a fixed set of data pairs
{(x(i), y(x(i)))}Ni=1. So rather than transforming y(x), equivalently a transformation is ap-
plied to the approximating function ỹ(x), parametrized by p. The double bar indicates that
a second transformation is applied after the already known initial transformation of the
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5 Generic surrogate modeling

database functions by alignment (parametrized by q):

x(p) :=
(
x1(qj)(1 + p1) + p2
x2(qj)(1 + p3) + p4

)
(5.46)

=

(x1(1 + qj1) + qj2

)
(1 + p1) + p2(

x2(1 + qj3) + qj4

)
(1 + p3) + p4

 , (5.47)

φj

(
x(p), qj

)
:= φj (x(p)) (1 + qj5) + qj6, (5.48)

ỹ
(
x(p), p, a(ψ)

)
:= ỹ

(
x(p), a(ψ)

)
+ p5 (5.49)

= φ (x(p), q)VLW−1
L a(ψ) + p5. (5.50)

Here p does not contain a scaling parameter like qj in (5.2), because scaling is already
performed via a(ψ). The linear least squares problem (5.40) is then augmented by the
transformation parameters p ∈ R5 and again a regularization term is included:

min
a(ψ)∈RL,p∈R5

{
1
2

N∑
i=1

(
y(x(i))− ỹ

(
x

(i)(p), p, a(ψ)
))2

+ δ

2p
>p

}
. (5.51)

Together with the alignment of the database, (5.51) is a nonlinear enhancement of the com-
mon gappy POD method. This nonlinear least squares problem is solved by a Gauß-Newton
algorithm for a and p simultaneously. Unlike (5.3), this can be accomplished without com-
putational issues. Intuitively, an initial value for the algorithm is p = 0 (no transformation)
and its corresponding linear least squares solution a(ψ) = (Ψ>Ψ)−1Ψ>Y (5.42). The ap-
proximation ỹ(x(p), p, a(ψ)) to the unknown function y(x) ∈ L2(Ω) based on the data pairs
of evaluations {(x(i), y(x(i)))}Ni=1 and the function database {φ1, . . . , φM} is called generic
surrogate model (GSM).

It is now briefly clarified how this new approach is different from the usual application
of POD in numerical simulation and optimization, e.g. in CFD. In reduced-order modeling
(ROM) [76, 145], the structure of the underlying (PDE-) system is investigated and POD
is applied to a set of snapshots, which represent for instance spatial solutions for particular
points in time. The aim is to reduce the numerical effort by solving the system on a lower-
dimensional space spanned by the POD basis. Here, on the contrary, POD is used for
identifying the most important structures of the data set {φ1, . . . , φM} based on an approach
used in the field of statistical shape models. The database functions φi do not emerge
from different snapshots in time or another known parametrization. They are responses
based on RANS computations for different airfoil geometries, whose connection among each
other is unclear, except for the assumption that they share structural similarities. For the
new unknown response y ∈ L2(Ω) ⊃ YM = span {φ1, . . . , φM} only this assumption holds.
Therefore, classical error analysis [77, 13, 14] does not apply in this framework. Furthermore,
the only available information on y is given by the actual evaluations {(x(i), y(x(i)))}Ni=1.
The gappy POD approximation minimizes the error in the evaluations x(i) (5.51), while
the behavior of y(x) in Ω \ {x(1), . . . , x(N)} is generally unknown, except for the assumed
structural similarities with YM .
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5.4 Hierarchical Kriging

5.4 Hierarchical Kriging

In this section, the generic surrogate model will be extended from a least squares approxima-
tion to an interpolation method. The information contained in the data points is considered
as extremely valuable, especially since the evaluations of y(x(i)) are assumed computation-
ally very expensive. So a surrogate model should be as accurate as possible, particularly in
the proximity of any x(i), which can be realized by interpolation rather than approximation.
Therefore, a Kriging type data fusion method is introduced to generate an interpolation
model which uses the generic surrogate model as a global trend.
Variable-fidelity modeling (VFM) comprises methods for improving the approximation

quality of interpolating only few computationally expensive evaluations (high-fidelity) when
having access to secondary data. This secondary data may consist of cheaper computations
of a less accurate model (low-fidelity) or a second variable which is assumed to be correlated
with the primary variable. For instance in CFD, computations with a Navier-Stokes code are
regarded as high-fidelity data, while computations of the same problem with an Euler code
serve as low-fidelity data. In this approach, the generic surrogate model ỹ (5.50) is used as
the low-fidelity model to improve the interpolation quality of the (high-fidelity) evaluations
{(x(i), y(x(i)))}Ni=1. So far, two major VFM frameworks could be distinguished. Cokriging,
originally developed in geostatistics, establishes a relation between primary and auxiliary
variable by cross correlation [146]. Other VFM methods use an (additive, multiplicative or
hybrid) bridge function, which corrects the discrepancy between a lo-fi and a hi-fi surrogate
model [52]. Recently, a new robust VFM method was introduced [53], whose implementation
and computational complexity does not exceed the common Kriging method. It is called
hierarchical Kriging and the ansatz is a straightforward extension of the Kriging method
(Sect. 2.3).
In the Kriging model (2.27), the regression term is replaced by the lo-fi model (in this case

the generic surrogate model ỹ)

y(x) = βỹ (x(p), p, a) + z(x), x ∈ Ω ⊂ Rd, (5.52)

with β ∈ R, z(x) capturing the lack of fit like in (2.28). Analogously to (2.26), the hierarchical
Kriging predictor

ŷ(x) = λ(x)>Y (5.53)

is a weighted sum of Y = (y(x(1)), . . . , y(x(N)))>. Again, the weights λi(x) are determined
by solving a linear equation [

R F̃

F̃> 0

](
λ(x)
µ(x)

)
=
(
r(x)
f̃(x)

)
(5.54)

which minimizes the mean squared error subject to the unbiasedness constraint, see Theo-
rem 2.4. R, r(x), λ(x) and µ(x) are the same as in Theorem 2.4, while

F̃ :=
(
ỹ(x(i)(p), p, a)

)N
i=1
∈ RN , (5.55)

f̃(x) := ỹ (x(p), p, a) ∈ R (5.56)
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5 Generic surrogate modeling

Figure 5.3: The generic surrogate model ỹ (left) and the hierarchical Kriging predictor ŷ (right) for
N = 15 lift evaluations based on a LHC design.

replace the linear regression design matrix and f̃(x) contains the evaluation of the generic
surrogate model in x. Analogously, a closed form of the hierarchical Kriging predictor is
derived

ŷ(x) = λ(x)>Y =
(
r(x)
f̃(x)

)> [
R F̃

F̃> 0

]−1(
Y
0

)
(5.57)

or equivalently with β =
(
F̃>R−1F̃

)−1
F̃>R−1Y

ŷ(x) = βf̃(x) + r(x)>R−1
(
Y − βF̃

)
. (5.58)

Formulation (5.57) is more suitable for the implementation, because β does not need to
be computed explicitly and the solution of the linear system

[
R
F̃>

F̃
0

]−1 (
Y
0

)
only has to

be computed once since it is independent of x. It also turns out that, inserting any x(i)

(i = 1, . . . , N), the hierarchical Kriging predictor is an interpolator (ŷ(x(i)) = y(x(i))), cf.
Sect. 2.3.2. Formulation (5.58) demonstrates how the predictor works. Assuming that the
generic surrogate model fit ỹ approximates the data y(x(i)), β will be close to 1. The second
summand is a weighted sum of correlation functions which “pulls” the response towards the
exact evaluations y(x(i)). An example is given in Fig. 5.3. The generic surrogate model ỹ
already is a suitable approximation of the given data Y , with two exceptions in the upper
middle and the lower right, where the behavior of y(x) can not be reproduced exactly. The
hierarchical Kriging predictor however corrects these discrepancies and interpolates the data
correctly.
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6 Numerical investigation of generic
surrogate modeling

The generic surrogate modeling framework is now validated with numerical examples. In
Sect. 6.1, a training database for aerodynamic simulation is proposed and the alignment of
the database elements is discussed. The results of its proper orthogonal decomposition are
examined in Sect. 6.2. Three distinct test cases are introduced in Sect. 6.3. The performance
of hierarchical Kriging based on generic surrogate models is compared to common Kriging
and gradient-enhanced Kriging interpolations. In Sect. 6.4, an error indicator for generic
surrogate models is introduced, which can assess the suitability of GSM in the particular
test cases. A concluding summary is given in Sect. 6.5.

6.1 Training database for aerodynamic simulation

As in Chap. 4, the goal is to generate globally accurate surrogate models for aerodynamic
coefficients depending on the input parameters Mach number and angle of attack α. For
two-dimensional airfoil geometries, the 2d RANS equations can be solved numerically with
the TAU code to evaluate the responses lift, drag and pitching moment, cf. Sect. 4.1. Each
coefficient cl(Ma, α), cd(Ma, α), cm(Ma, α) constitutes a distinct problem class. Within each
of these problem classes, responses based on different airfoil geometries are assumed to
share structural similarities. For the numerical investigation of the new generic surrogate
modeling approach the following database is considered. 23 airfoils of the NACA four-digit
series are chosen, where the first digit varies within [3.0, 6.0], the second within [1.0, 6.0] and
the last two digits which determine the thickness are fixed at 12, see Fig. 6.1. In a previous
study [118], also the RAE2822 airfoil was included in the database. It is excluded now and
instead, the RAE2822 responses are considered an additional test case for investigating the
performance of GSM approximations in Sect. 6.3.
For each airfoil geometry, an accurate surrogate model for each problem class (cl(Ma, α),

cd(Ma, α), cm(Ma, α)) is computed in the reference domain Ω := [0.2, 0.9] × [−4◦,+12◦].
Note that if alignment of the database is considered (Sect. 5.1.2), the surrogates should be
accurate in a domain larger than the reference domain (e.g. Ω̃ := [0.1, 1.0] × [−6◦,+14◦])
due to possible translations (5.1) in the alignment process, see Fig. 6.2. For each airfoil,
400 CFD solutions are computed on a 20 × 20 factorial design which covers the domain Ω̃.
This sums up to 9200 CFD simulations for generating the database. Depending on the input
parameters (Ma, α), one flow solution takes from 30 minutes to over 3 hours of CPU time.
All computations can be performed independently from each other in parallel and using two
AMD Opteron 6100 architectures with 48 2.3GHz cores each, the generation of the databases
took approximately two weeks.
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NACA 3.0 1.0 1 2 NACA 3.0 3.5 1 2 NACA 3.0 6.0 1 2

NACA 4.5 1.0 1 2 NACA 4.5 3.5 1 2 NACA 4.5 6.0 1 2

NACA 6.0 1.0 1 2 NACA 6.0 3.5 1 2 NACA 6.0 6.0 1 2

Figure 6.1: Airfoil database, 9 examples from the NACA four-digit series.
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Figure 6.2: Reference domain Ω (red) and preimages of Ω (blue) for the transformations (5.1).

The plain responses {φ1, . . . , φ23} (without alignment) are depicted in Figs. 6.3–6.5.
Though emerging from different airfoil geometries, it is evident that there are mutual char-
acteristics. In the lift case, all responses show a linear behaviour for low Mach numbers,
there is a ridge reaching from the lower right to the upper left, followed by a broad valley in
the right half and also a local maximum and a local minimum appear near the right corners.
All drag responses show a constant behavior for low Mach numbers, a slow ascend in the
upper right half and a local maximum near the upper right corner. In the moment case,
the responses share a linear domain in the left part, a broad ridge in the upper middle, a
steep descent with a narrow valley in the upper right and a local maximum near the lower
right corner. But these shared structural similarities do not coincide exactly in their position
and level, and they also vary in shape. Given that, automatically identifying these mutual
characteristics by POD can be problematic, because the dataset {φ1, . . . , φ23} contains too
much variance. POD is a linear decomposition. If, for instance, two responses share a local
bump whose maximum does however not have the same coordinates, POD will detect it as
two distinct modes of variation, which is not desired. Therefore, the correspondence problem
(5.3) is solved and the mutual characteristics are aligned as well as possible by admissible
transformations (5.1)–(5.2), both in Ω and the image space φi(Ω). Since the transformations
merely are affine transformations in every dimension, the individual shapes of the respones φi
are preserved. The total variance of the dataset {φ1, . . . , φ23} is clearly reduced, cf. Fig. 6.6.
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Figure 6.3: Function database {φ1, . . . , φ23} for the cl case, no alignment.
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Figure 6.4: Function database {φ1, . . . , φ23} for the cd case, no alignment.
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6.1 Training database for aerodynamic simulation
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Figure 6.5: Function database {φ1, . . . , φ23} for the cm case, no alignment.
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Figure 6.6: Contour plots for all M = 23 responses before (left) and after alignment (5.1)–(5.2)
(right).
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6.2 POD basis
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Figure 6.7: Distributions of the M = 23 eigenvalues ωi for the plain and the aligned databases.

6.2 POD basis
Having generated the database ofM = 23 response functions φ1, . . . , φM , the proper orthog-
onal decomposition of Y = span{φ1, . . . , φM} is performed. The most influential structures
of the database are thus identified. The POD basis {ψ1, . . . , ψL} ⊂ YM is computed by
solving the eigenvalue problem for the matrix C = [〈φi, φj〉L2(Ω)]

M,M
i,j=1 ∈ RM×M and defining

ψk = 1√
ωk

∑M
i=1 v

k
i φi, where ωk and vk are the eigenvalues and orthonormal eigenvectors

(k = 1, . . . , L). The POD basis’ rank L, i.e. the number of POD basis elements, is de-
termined automatically. Using the approximation error formula (5.35), L is chosen as the
smallest integer that satisfies ∑L

j=1 ωj∑M
j=1 ωj

≥ 0.999. (6.1)

In this way, it is guaranteed that the POD basis {ψ1, . . . , ψL} contains at least 99.9% of
YM ’s total energy, cf. (5.36). Table 6.1 shows the number of required POD basis elements
for the three problem classes. Using an aligned database reduces the number by one in
each case, meaning that by aligning the characteristic features of the database functions
the total variation is reduced (cf. also Fig. 6.6). Figure 6.7 illustrates the rapid decay of
the eigenvalues, therefore already three to five POD basis elements are sufficient for (6.1) in
these test cases.

cl cd cm

plain database 4 4 5
aligned database 3 3 4

Table 6.1: Rank L of the POD basis.

Remember that approximative reconstructions of the database elements are given by linear
combinations ∑L

j=1 ajψj ∈ YL (plus additional nonlinear transformations, if alignment is
used). The properties of ψ1, ψ2 and ψ3 for aligned databases are depicted in Fig. 6.8.
Clearly, in all cases ψ1 is approximately a mean response of the database {φ1, . . . , φM}. In
the lift case, ψ2 controls the curvature from the lower right to the upper middle as well as
the shape of the ridge on the right boundary. ψ3 also affects the curvature in the middle and
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Figure 6.8: POD bases of rank L = 3 for aligned databases. Lift (left), drag (middle) and pitching
moment (right).

additionally has influence on the position of the local maximum in the upper right corner.
In the drag case, ψ2 essentially shapes the local maximum in the upper right corner and
ψ3 additionally molds the ascend in the right half. For the moment responses, ψ2 and ψ3
both form the ridge in the middle as well as the valley and the local extrema near the right
boundary.

6.3 Comparison of surrogate modeling approaches

With the POD basis {ψ1, . . . , ψL} it is now possible to compute a generic surrogate model
f̃(x) (5.56) and a hierarchical Kriging interpolation ŷHK(x) (5.57) for new test cases, i.e. for
responses y(x) of new airfoil geometries. The following test cases are investigated, which
will be referred to as test cases A, B and C.
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Figure 6.9: Validation data for test cases A, B and C.

A: NACA 4.500 3.500 1 2, an airfoil already contained in the database. The responses
y(x) based on this airfoil satisfy y ∈ YM = span{φ1, . . . , φM}.

B: NACA 3.375 2.875 1 2, an airfoil not contained in the database. However, due to
the mutual parametrization of the NACA airfoil geometries it is assumed that the
responses y are strongly related to YM .

C: RAE2822, not contained in the database. Neither does it belong to the family of the
database airfoils, so the connection of the responses y and YM remains unclear.

The RANS equations are solved numerically with the DLR TAU solver for each test case.
A set of validation data for the responses cl(Ma, α), cd(Ma, α), cm(Ma, α) is generated on a
40× 40 factorial design Ωval ⊂ Ω = [0.2, 0.9]× [−4◦,+12◦], see Fig. 6.9. With the validation
data, the relative root mean squared error η2 (4.2) of any surrogate model can be evaluated.
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6 Numerical investigation of generic surrogate modeling

In each test case, hierarchical Kriging interpolations based on generic surrogate models
are computed both for plain databases (HK plain) and aligned databases (HK aligned).
They are compared to common Kriging interpolations (KRI) and gradient-enhanced Kriging
interpolations (GEK). Note that in the GEK case, triple the amount of online information of
the actual response y(x) is contained in the surrogate (evaluations in the N samples X ⊂ Ω
plus partial derivatives w.r.t. each dimension). Hierarchical Kriging and common Kriging
use the same amount of online information, while in HK the global trend is assumed to
be captured by the offline information contained in the POD basis via the GSM. The four
surrogate models are compared regarding global accuracy using the error measure η2, based
both on one-stage designs as well as adaptive designs. As one-stage designs, Halton designs
of size N = 5, 10, 15, 20, . . . , 100 are used, cf. Sect. 3.1.4. When using adaptive sampling,
the SSE strategy is used for Kriging and GEK, cf. Sect. 3.2.2. It generally performed best
in the comparative study of sampling strategies in Chap. 4. Basically, any adaptive strategy
for Kriging can be applied in hierarchical Kriging as well. But it is possible to specify a
custom adaptive sampling strategy for variable-fidelity methods as proposed in [52]. In the
following, it is distinguished between the more accurate hierarchical Kriging ŷHK(x) and the
common Kriging interpolation ŷKRI(x). Assuming that both surrogate models will converge
to the true function y(x) with growing (maybe very large) number N of samples, a new
sample is added where the difference between both models is highest, i.e.

x(N+1) = arg max
x∈Ω
|ŷHK(x)− ŷKRI(x)| . (6.2)

Note that the difference is equal to zero in all existing samples x(i), because both surrogates
are interpolations.

The sample distributions of this strategy are depicted in Fig. 6.10 for HK based on aligned
databases, combined with contour line plots of the surrogates ŷHK(x) for N = 100. The
samples are highly concentrated in critical regions of the input parameter domain Ω where
the response has large gradients or curvature, i.e. around Ma = 0.9 for all responses or along
the ridge in the middle for the cl responses. Less critical regions like the almost linear region
for low Mach numbers are sampled coarser, but are not neglected either. Apparently, strategy
(6.2) is a mixed exploitation and exploration strategy and therefore uses the expensive
evaluations y(x(i)) efficiently without sacrificing accuracy, cf. Sect. 4.6. The results of this
comparative study depend on the investigated test case, see Figs. 6.11–6.13. Therefore they
will now be elaborated separately.

In test case A (Fig. 6.11), both HK surrogates clearly outperform KRI and GEK. The
benefit is largest for small sample sizes. If N is small, the global structural information of the
surrogate ŷHK(x) is mainly given by the POD basis and not by Y = (y(x(1)), . . . , y(x(N)))>.
With the true response y being an element of the database, apparently only few samples are
necessary such that it can be globally reproduced by the POD basis with adequate accuracy.
Despite the good level of accuracy already for small N , there is no further drastic improve-
ment with a larger number of samples as in KRI and GEK, especially for the non-adaptive
Halton designs. By adding more data points to the interpolation, only few information on
y(x) is added to the surrogate ŷHK(x) which is not already contained in the POD basis.
Comparing HK based on plain and on aligned databases, it can be observed that alignment
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Figure 6.10: Sample distributions for strategy (6.2) for HK based on aligned databases.

is redundant in test case A. Using an aligned database instead of the plain one does not
necessarily improve the approximation quality. In the drag case, it is even poorer. The
reason is that with the alignment, additional degrees of (nonlinear) freedom are added to
the surrogate modeling framework, while y actually is an element of the non-aligned YM .
In test case B (Fig. 6.12), the new HK approaches are also able to outperform the common

KRI interpolations. Only the GEK interpolations (which contain triple the amount of online
information) are more accurate for large N when using adaptive sampling strategies. As
already observed in test case A, HK interpolations are accurate already for moderate designs,
but increasing N does not improve the approximation quality significantly (e.g. N > 40).
This indicates that y is indeed strongly related to YM and the global trend can be accurately
reproduced by elements of YL, even with only a small number of samples. However, y is
not and element of the database as in test case A, but a new test case. So the aligned
HK interpolations generally perform better than HK based on the plain databases. By using
transformations in the gappy POD fitting, the generic surrogate model can be adapted to the
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6 Numerical investigation of generic surrogate modeling

data Y far better than by using merely a linear fit and the global behavior is approximated
even more precisely. Nevertheless, if the design is too small (e.g. N < 20 samples in adaptive
designs), HK based on aligned databases can produce inaccurate results. This is due to the
gappy POD problem (5.51) having too many degrees of freedom (= L+ 5) compared to the
number of conditions (= N). It results in the few evaluations Y being approximated very
closely by the GSM at the cost of an unfavorable behavior in the rest of the domain Ω \X,
also known as overfitting (cf. Sect. 2.1.3).
In test case C (Fig. 6.13), the results are a little different. The common KRI surrogates can

only be outperformed by HK for moderate sample sizes (N < 30–40). For larger sample sizes,
the accuracy of HK based on aligned databases is still comparable to the KRI performance,
while the HK based on plain databases is less accurate in most cases. GEK is generally
most accurate (using triple the amount of online information). Especially when applying
adaptive sampling, it performs significantly better than all other three surrogate modeling
strategies. Contrary to test cases A and B, the responses y /∈ YM cannot be reproduced
adequately with the POD basis. The global trend is not approximated as exact as in the
previous test cases, such that HK only has minor benefits compared to KRI (e.g. for small
N). Using an aligned database reduces the error significantly compared to HK with plain
databases. In this case, the additional degrees of freedom in the gappy POD fitting (5.51) to
the data Y help to improve the global accuracy. Also, contrary to the previous test cases, the
approximation quality of HK interpolations is improved greatly with growing sample size.
The global behavior is not captured merely by the POD basis, but also by the evaluations
Y , such that more samples add viable information to the surrogate ŷHK(x).
The advantage of hierarchical Kriging over common Kriging interpolations is exemplarily

depicted in Fig. 6.14 for test case B. Both Kriging and hierachical Kriging based on aligned
databases are shown interpolating a Halton design of moderate sample size N = 25. The
Kriging interpolations deviate from the validation data e.g. in the upper middle because
not enough samples are concentrated there. On the right boundary, they completely fail to
approximate the correct response. For the GSM-based HK interpolations, on the contrary,
the shape of the responses is reproduced exactly. Even in a region with no samples in
proximity like the upper right corner, the global trend is accurately captured by the database
information contained in the GSM.
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Figure 6.11: Root mean squared errors η2 for surrogate models in test case A.
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Figure 6.12: Root mean squared errors η2 for surrogate models in test case B.
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Figure 6.13: Root mean squared errors η2 for surrogate models in test case C.
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Figure 6.14: Kriging (left) and hierarchical Kriging (right) surrogate models for test case B based
on a Halton design, N = 25. Red: validation data.
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6.4 Assessment of the GSM approximation quality

As discussed in the previous section, the performance of the hierarchical Kriging interpola-
tions apparently depends on the test case. The higher the relation of the unknown response
y(x) and the space YM spanned by the database functions, the better GSM can approximate
y’s global trend and the more accurate HK can interpolate y. The amount of this relation,
i.e. the approximation quality of the GSM f̃ ∈ YL for y has to be quantified. This infor-
mation is needed online, in other words it has to be possible to decide whether GSM-based
HK is an appropriate choice of surrogate modeling for a certain test case during the pro-
cess of model generation. Therefore, only Y = (y(x(1)), . . . , y(x(N)))> can be used for the
assessment without validation data. The quantity

η̃2 :=


∑N
i=1

(
y(x(i))− f̃(x(i))

)2

∑N
i=1

(
y(x(i))− ȳ

)2


1
2

(6.3)

is defined as an error indicator for the goodness of fit, where the mean ȳ = 1
N

∑N
i=1 y(x(i))

of the entries of Y ∈ RN is defined as usual. (6.3) is the ratio of a root mean squared
error of the GSM f̃ to the standard deviation σ of Y ’s entries. The lower η̃2, the better
the approximation. The quantity is closely connected to the coefficient of determination
R2 := 1 − η̃2

2 in regression modeling (cf. [101], Sect. 4.2). In linear regression for instance,
partitioning of

N∑
i=1

(
y(x(i))− ȳ

)2
=

N∑
i=1

(
f̃(x(i))− y(x(i))

)2
+

N∑
i=1

(
f̃(x(i))− ȳ

)2
(6.4)

yields

R2 =
∑N
i=1

(
f̃(x(i))− ȳ

)2

∑N
i=1

(
y(x(i))− ȳ

)2 , (6.5)

so R2 describes the ratio of explained variance to the total variance.
The error indicator η̃2 is depicted for all HK interpolations in Figs. 6.15–6.17. It can be

observed that the goodness of fit is generally best in test case A, second best in test case B
and worst in test case C. In test case C for instance, the root mean squared approximation
error of the GSM is larger than 10% of the standard deviation σ (η̃2 > 0.1) for N > 20.
Comparing all error levels, η̃2 indeed turns out to be a measure for the practicability of GSM
for the particular test cases. Generally speaking, the GSM-based HK interpolation are able
to outperform common Kriging interpolations significantly when η̃2 < 0.1 is satisfied, cf.
Figs. 6.11–6.13. Furthermore, the values converge to a particular limit with growing N for
each surrogate in each test case (η̃2 → η̃∗2 (N → ∞)). The limit η̃∗2 can be interpreted as
an overall relative root mean squared error (in relation to the standard deviation) for the
approximation of y with a GSM f̃ ∈ YL. Note that even in test case A, where y ∈ YM holds,
the error does not tend to zero with growing sample size. By truncating the POD basis and
using only L < M basis elements, an approximation error is produced, cf. (5.35). For small
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N however, the error indicator has no explanatory power. In all cases, η̃2 is close to zero
while the actual error η2 is large, when N is small compared to the degrees of freedom in the
generic surrogate model (= L for plain, = L+ 5 for aligned databases). The few evaluations
y(x(i)) (i = 1, . . . , N) are approximated closely by f̃ (causing a small η̃2), while in Ω \ X
overfitting can be expected (causing a large η2), cf. Sect. 2.1.3.
Summing up, with η̃2 a reliable error indicator for the goodness of the GSM fit f̃ has

been presented. After a certain starting phase for small N , it rapidly converges to an overall
measure of the appropriateness of GSM for the function y. Error bounds can be defined in
terms of standard deviations and η̃2 can monitor if the bounds are maintained, while only
accessing online information Y without any validation data.
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Figure 6.15: Goodness of fit η̃2 for GSM in test case A.
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Figure 6.16: Goodness of fit η̃2 for GSM in test case B.
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Figure 6.17: Goodness of fit η̃2 for GSM in test case C.
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6.5 Summary

In this chapter, hierarchical Kriging based on generic surrogate models was validated with
numerical test cases. It was demonstrated that the aerodynamic coefficient responses based
on RANS solutions for two-dimensional airfoil geometries, depending on the Mach number
and the angle of attack α, each constitute a distinct problem class. Inside these classes lift,
drag and pitching moment, responses based on different airfoil geometries featured strong
structural similarities. The mutual structures were extracted by proper orthogonal decom-
position of the space spanned by a database of response functions. Prior alignment of the
database elements reduced the total variation while characteristic features were preserved.
In this way, the similarities could be identified even if their position in the input parameter
domain Ω did not exactly coincide. The number of POD basis elements, which contain the
most influential structures, was determined using an error formula for the truncated POD
basis. In the investigated test cases, only three to five elements were sufficient for accurately
describing the global behavior of all database functions.
The performance of hierarchical Kriging using the generic surrogate model as a global

trend depended on the test case, i.e. on the airfoil geometry, for which a surrogate model of
the aerodynamic coefficients is sought. Three distinct test cases were investigated. In test
case A, the airfoil was already contained in the database, therefore it was merely of academic
interest. A new airfoil not contained in the database was considered in test case B, which
came from the same family of parametrization as the database airfoils. The airfoil in test
case C was neither contained in the database nor did it come from the same parametrization
family. It turned out that the more a response y was related to the space YM spanned by the
database responses, the better the global trend could be approximated by the GSM and the
more HK interpolations could outperform common Kriging. Also, the more y deviated from
YM , the more important the alignment became, because it introduced additional degrees of
freedom to the gappy POD GSM fitting. While alignment was redundant in test case A, it
was necessary in test case C for competing with common Kriging interpolations.
The GSM framework was proven to be a successful preprocessing for the hierarchical

Kriging interpolations. In test cases A and B, already small sample sizes N were sufficient
to reproduce the global trend. Not only the Kriging interpolations were outperformed, but
also gradient-enhanced Kriging, which contained triple the amount of online information. In
test case C on the contrary, Kriging could only be outperformed by HK for moderate sample
sizes (N < 30–40). For larger designs however, it could at least compete. For assessing the
quality of the GSM approximations, an error indicator η̃2 was introduced. An admissible
error boundary could be defined in relation to the standard deviation σ of y. Both could
be evaluated online using only the data Y . In the investigated test cases, GSM-based HK
was able to outperform common Kriging significantly as long as the error indicator did not
exceed a threshold of 10%. Care had to be taken regarding the degrees of freedom of the
gappy POD approximation. If they were not significantly outnumbered by the samples,
overfitting could be expected (involving a small η̃2 while actually η2 was large).
Combined with the error indicator, the GSM framework was shown to be a reliable tool for

improving the Kriging approximation quality. It was demonstrated that globally accurate
surrogate models can be generated by reproducing the global trend of HK interpolations via
the GSM. In this way, a large amount of online costs, dominated by expensive evaluations
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of y(x), were transferred to offline costs. Less evaluations were necessary for achieving a
desired accuracy by using the information stored in the POD basis. For test cases with
more than d = 2 input parameters, the framework is expected to be even more beneficial.
Traditional surrogate models typically suffer from the curse of dimensionality. Even when
using adaptive sampling strategies, the designs have to be at least rudimentary space-filling
(exploration). For accurately describing the global behavior in higher dimensions, large
N become unavoidable, yet computationally extremely demanding. While the offline costs
of the GSM framework cannot escape the curse of dimensionality either (each database
function is a surrogate model as well), its online costs for model generation are still negligible
compared to the online costs of evaluating y(x) numerously.
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7 Conclusions

The aim of this thesis was the investigation of efficient and globally accurate surrogate
models for expensive simulations. For the sake of efficiency, the number of costly evaluations
has to be kept as small as possible without sacrificing accuracy. As test cases, aerodynamic
coefficients of airfoil geometries, depending on the input parameters Mach number and angle
of attack, were considered. The 2d Euler and RANS equations were solved numerically with
the CFD codes FLOWer and TAU. Since the resulting responses are highly nonlinear, global
surrogate modeling becomes challenging, even for a low-dimensional input parameter space.
The main contributions of this work are as follows. First, profound reviews of the Kriging
and the gradient-enhanced Kriging frameworks were given. Second, design of experiments
strategies were investigated, compared, and numerically validated with the aerodynamic test
cases. Third, a new approach was introduced, which uses information about the structural
behavior, extracted from a previously computed database of responses, to improve the global
approximation quality.
The background of Kriging and gradient-enhanced Kriging was investigated in detail.

They are suitable for the interpolation of highly nonlinear, deterministic black-box functions
such as the test cases. A special emphasis was put on the choice and the parameter estima-
tion of the correlation function. For the investigated test cases, splines were used as ansatz
functions for the interpolation, both in Kriging and in GEK. They were chosen because they
met the requirements of being sufficiently smooth, having a local support, and producing
well-conditioned positive definite correlation matrices. A gradient-based optimization rou-
tine was proposed to solve the maximum likelihood estimation for the hyperparameters. The
exact computation of the hyperparameters was crucial for modeling the different sensitivities
of the response with respect to each input parameter dimension correctly. If derivatives of
the response are available, they can be used to prescribe the correct gradient of the surrogate
model in the GEK framework and therefore to increase the accuracy of the approximating
function. A comparison of Kriging and GEK regarding accuracy vs. effort revealed that
GEK can only be used efficiently, if the gradient is computed independently of the number
of input parameters, i.e. by adjoints or automatic differentiation.
Using a suitable design of experiments strategy could improve the approximation qual-

ity significantly for a given budget of samples. Among space-filling one-stage designs, the
low-discrepancy Halton sequence could outperform other popular methods. Adaptive de-
signs were reviewed regarding the concepts of exploration and exploitation. In Kriging and
GEK, the MSE turned out to be a poor estimator of the true error, but a useful exploration
component for adaptive selection criteria. Cross-validation, on the other hand, was identi-
fied as an appropriate exploitation component. Mixed exploration & exploitation strategies
generally produced the most accurate surrogate models. Not only did they outperform the
nonadaptive one-stage designs and a pure exploration-based adaptive strategy, they also
produced more reliable surrogates than a theoretical pure exploitation method, which used
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the true error based on validation data. They excelled in an efficient use of the costly sam-
ples by generating designs, which were more densely concentrated in automatically identified
critical regions, while other regions of the input parameter domain were not neglected ei-
ther. Regarding efficiency, two additional approaches were proposed. One of the two mixed
strategies is suited for adding multiple samples per stage of the adaptive process, allowing
the computation in parallel completely independent of each other. For the other one, an
enhancement for problems with vector-valued responses was introduced. It uses a single,
balanced criterion for all outputs, generating a mutual design.
A new surrogate modeling framework called generic surrogate modeling was introduced.

It can be applied if a computer experiment is not treated as a single instance, but as an
element of a larger problem class. It was demonstrated that the aerodynamic coefficients
of different airfoil geometries constitute such a mutual problem class. Their responses of a
CFD solver share structural similarities over the whole input parameter domain. The most
important structures were extracted by proper orthogonal decomposition. For new test
cases, i.e. for responses of new airfoil geometries, this information was used to predict the
global trend in a variable-fidelity modeling framework. The new responses were interpolated
accurately using only few expensive evaluations. The approximation quality was generally
higher than in ordinary Kriging. A significant benefit was observed already for small sample
sizes, where the information extracted from the database was sufficient to reproduce the
global behavior. The higher the relation of the response and the training database was,
the better the new framework succeeded. For test cases closely related to the database,
even gradient-enhanced Kriging could be outperformed. To quantify the relationship of
the new response and the database, an error indicator was introduced, which is evaluated
using only the actual samples without validation data. While traditional methods required
a large amount of online costs for resolving the nonlinear global behavior, this new approach
transferred these costs to offline costs. For a predefined problem class, the database of
surrogates for different responses had only to be computed and stored once, and this offline
information could be used in each new test case.
A topic which lies beyond the scope of this thesis is (local) error estimation for surrogate

models. It was briefly demonstrated that the MSE, which was used in numerous applications
in the past, is actually not suited as a local error measure for the approximation of nonlinear
responses of deterministic computer experiments. Further investigation of cross-validation
or mixed approaches is required. In order to keep the number of evaluations as small as
possible, or even below a maximum budgeted number, reliable error estimation becomes
necessary to satisfy a certain target accuracy.
Regarding global surrogate modeling, some questions were raised about the appropriate-

ness of the stationarity assumption in the Kriging model, i.e. if a single correlation model
should be used for the whole input parameter domain. In the presence of different levels
of smoothness throughout this domain, automatically locating them could save even more
unnecessary expensive evaluations e.g. in linear regions, in addition to adaptive sampling.
Additional research can also be performed on the new approach of generic surrogate mod-

eling. Since it was successfully demonstrated that gradient information of the response
improves the approximation quality in GEK, it can be expected to enhance the hierarchical
Kriging approximation based on generic surrogate models as well. The GSM is treated as
the Kriging regression term in the hierarchical framework, and as long as it is continuously
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differentiable, GEK can also be applied in hierarchical Kriging. Also, the framework has to
be validated for other problem classes, especially for test cases with more than two input
parameters. With the capability of capturing the global trend using offline information, it
can be assumed to outperform traditional surrogate modeling techniques even more, the
higher the dimension of the input parameter space.
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