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Zusammenfassung

Optimierungsprobleme tauchen in vielen praktischen Anwendungsbereichen
auf. Zu den einfachsten Problemen gehören lineare Optimierungsprobleme. Oft
reichen lineare Probleme allerdings zur Modellierung praktischer Anwendun-
gen nicht aus, sondern es muss die Ganzzahligkeit von Variablen gefordert
werden oder es tauchen nichtlineare Nebenbedingungen oder eine nichtlineare
Zielfunktion auf. Eine wichtige Problemklasse stellen hierbei quadratische Pro-
bleme dar, welche im Allgemeinen aber schwer zu lösen sind. Ein Ansatz, der
sich in den letzten Jahren entwickelt und verbreitet hat, besteht in der Umfor-
mulierung quadratischer Probleme in sogenannte kopositive Programme. Ko-
positive Programme sind lineare Optimierungsprobleme über dem Kegel der
kopositiven Matrizen

Cn = {A ∈ Rn×n : A = AT , xTAx ≥ 0 für alle x ∈ Rn, x ≥ 0},

oder dem Dualkegel, dem Kegel der vollständig positiven Matrizen

C∗n =
{ m∑
i=1

xix
T
i : xi ∈ Rn, xi ≥ 0 für alle i = 1, . . . ,m

}
.

Die Schwierigkeit dieser Probleme liegt in der Kegelbedingung. Aber nicht
nur das Optimieren über diesen Kegeln ist schwierig. Wie von Murty und
Kabadi (1987) und Dickinson und Gijben (2013) gezeigt ist es NP-schwer zu
testen, ob eine gegebene Matrix kopositiv oder vollständig positiv ist. Ein
besseres Verständnis dieser Kegel trägt daher zum besseren Verständnis und
zum Finden neuer Lösungsmethoden für quadratische Probleme bei.

Eine verbreitete Vorgehensweise bei der Betrachtung kopositiver Program-
me besteht darin, den kopositiven beziehungsweise den vollständig positiven
Kegel durch Approximationskegel zu ersetzen. Wenn die daraus resultieren-
den Probleme numerisch gelöst werden können, erlaubt dies die Berechnung
von Schranken für den gesuchten Optimalwert. In den letzten Jahren wurden
verschiedene Approximationen vorgestellt (Parrilo, 2000; Bomze and de Klerk,
2002; de Klerk and Pasechnik, 2002; Peña et al., 2007; Bundfuss and Dür,
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2009). Bei allen Ansätzen führt das Optimieren über den Approximationske-
geln zu linearen oder semidefiniten Programmen.

Die zweite grundsätzliche Vorgehensweise besteht in der Verwendung von
Schnittebenen. Ersetzt man den vollständig positiven Kegel in der Kegelbe-
dingung beispielsweise durch den positiv semidefiniten Kegel, führt dies zu
einer Relaxierung des Problems, die eine Schranke für den gesuchten Optimal-
wert liefert. Im Allgemeinen ist eine Optimallösung dieser Relaxierung jedoch
nicht vollständig positiv und das Hinzufügen einer Schnittebene, die diese Op-
timallösung vom vollständig positiven Kegel separiert, führt zu einer schärferen
Relaxierung und einer besseren Schranke.

In der vorliegenden Dissertation beschäftigen wir uns mit verschiedenen
Aspekten der kopositiven Optimierung. Wir führen zunächst die relevanten
Begriffe und Ergebnisse zum kopositiven und vollständig positiven Kegel so-
wie der kopositiven Optimierung ein. Dann zeigen wir, wie die Projektion einer
Matrix auf diese Kegel berechnet werden kann. Diese Projektionen werden im
Anschluss verwendet, um Faktorisierungen vollständig positiver Matrizen zu
berechnen. Eine zweite Anwendung besteht in der Berechnung von Schnitt-
ebenen für Optimierungsprobleme über dem vollständig positiven Kegel. Der
vorgestellte Ansatz ist der erste, mit dem eine beliebige nicht vollständig po-
sitive Matrix vom vollständig positiven Kegel separiert werden kann. Für Ma-
trizen, deren Graph dreiecksfrei ist, beschreiben wir eine alternative Methode
zur Berechnung von Schnittebenen, die diese besondere Struktur ausnutzt.
Schließlich betrachten wir kopositive und vollständig positive Programme, die
sich als Umformulierungen quadratischer Optimierungsprobleme ergeben. Da-
bei beschäftigen wir uns zunächst mit dem Standard-quadratischen Optimie-
rungsproblem. Wir untersuchen verschiedene Klassen von Zielfunktionen, für
die der Optimalwert des Problems durch das Lösen eines linearen oder semi-
definiten Programms bestimmt werden kann. Dies führt zu zwei Algorithmen
zum Lösen Standard-quadratischer Optimierungsprobleme. Die Algorithmen
werden anhand numerischer Beispiele illustriert und diskutiert. Die vorge-
stellten Methoden lassen sich nicht ohne Weiteres auf kopositive Formulie-
rungen von allgemeineren quadratischen Optimierungsproblemen übertragen.
Dies verdeutlichen wir anhand von Beispielen.
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Introduction

Copositive programming is concerned with the problem of optimizing a linear
function over the copositive cone

Cn = {A ∈ Rn×n : A = AT , xTAx ≥ 0 for all x ∈ Rn, x ≥ 0},

or its dual, the completely positive cone

C∗n =
{ m∑
i=1

xix
T
i : xi ∈ Rn, xi ≥ 0 for all i = 1, . . . ,m

}
.

It is an active field of research and has received a growing amount of attention in
recent years. This is because many combinatorial as well as quadratic problems
can be formulated as copositive optimization problems.

The concept of copositivity seems to go back to Motzkin (1952) who gave
a criterion for a quadratic form to be nonnegative over the nonnegative or-
thant. Since then, many copositivity criteria have been developed. However,
copositive programming is a relatively young field in mathematical optimiza-
tion. Quist et al. (1998) were the first to formulate optimization problems over
the copositive and completely positive cones in order to strengthen the posi-
tive semidefinite relaxation of quadratic programs. The first exact completely
positive representation of a quadratic program is due to Bomze et al. (2000)
who considered the standard quadratic optimization problem. Their result has
been generalized by Burer (2009) who showed that every nonconvex quadratic
optimization problem with continuous and binary variables can be written as a
linear problem over the completely positive cone. This includes many NP-hard
combinatorial problems such as the maximum clique problem, the quadratic
assignment problem and graph partitioning. The complexity of these problems
is then moved entirely to the cone constraint, showing that general copositive
programs are hard to solve. In fact, even checking whether a given matrix is
copositive or completely positive is an NP-hard problem (Murty and Kabadi,
1987; Dickinson and Gijben, 2013). A better understanding of the copositive
and the completely positive cone can therefore help in solving (certain classes
of) quadratic problems.
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Introduction

There are basically two approaches for solving copositive and completely
positive optimization problems. The first one uses (inner or outer) approxi-
mating cones. Replacing the copositive or the completely positive cone by a
tractable cone allows to compute a bound on the optimal value. An obvious
choice is to replace the copositive by the positive semidefinite cone. Better
bounds can be obtained by using a converging approximation hierarchy. The
first inner approximation hierarchy of the copositive cone has been introduced
by Parrilo (2000) and is based on sum-of-squares decompositions of polyno-
mials. Based on Parrilo’s results, Bomze and de Klerk (2002), de Klerk and
Pasechnik (2002) and Peña, Vera and Zuluaga (2007) developed similar hier-
archies. All have in common that optimizing over the approximating cones
amounts to solving linear or semidefinite programs. Bundfuss and Dür (2009)
introduced copositivity criteria which are based on simplicial partitions of the
standard simplex leading to an inner and outer approximation hierarchy of
the copositive as well as of the completely positive cone. As all cones in this
hierarchy are polyhedral, this leads to linear optimization problems.

The second approach is to use cutting planes in order to improve relax-
ations of completely positive optimization problems. Replacing the completely
positive cone by a tractable cone as the positive semidefinite cone leads to a
relaxation of the problem providing a bound on the optimal value. In general,
an optimal solution of this relaxation is not completely positive and adding a
cut, i.e., a linear constraint that separates the obtained solution from the com-
pletely positive cone, results in a tighter relaxation yielding a better bound.
Since Bomze, Locatelli and Tardella (2008) introduced the idea of using coposi-
tive cuts, several methods to compute such cutting planes have been developed.

We will consider several aspects of copositive programming. We start by
studying the problem of computing the projection of a given matrix onto the
copositive and the completely positive cone. We will see how these projections
can be used to compute factorizations of completely positive matrices. As a
second application, we use them to construct cutting planes to separate a ma-
trix from the completely positive cone. Besides the cuts based on copositive
projections, we will study another approach to separate a triangle-free doubly
nonnegative matrix from the completely positive cone. A special focus is on
copositive and completely positive programs that arise as reformulations of
quadratic optimization problems. Among those we start by studying the stan-
dard quadratic optimization problem. We will show that for several classes of
objective functions, the relaxation resulting from replacing the copositive or
the completely positive cone in the conic reformulation by a tractable cone is
exact. Based on these results, we develop two algorithms for solving standard
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Contributions

quadratic optimization problems. The methods presented cannot immediately
be adapted to general quadratic optimization problems. This is illustrated
with examples.

The thesis is organized as follows. We start in Chapter 1 by introducing basic
terminology from linear algebra and graph theory. In Chapter 2, the copositive
and the completely positive cone are defined, and criteria for copositivity and
complete positivity, and approximations of both cones are presented. Basic
terminology and results from conic optimization are introduced in Chapter 3.
After that, we concentrate on the special case of completely positive programs
and explain the relation of copositive and quadratic programming. Chapter 4
deals with the problem of projecting a matrix onto the copositive respectively
completely positive cone. Moreover, we show how these projections can be
used to compute factorizations of completely positive matrices. In Chapter 5,
we study the conic reformulation of the standard quadratic optimization prob-
lem in more detail. We show that for special classes of objective functions,
the optimal value can be obtained by solving a linear or semidefinite program.
Based on these results, we present two algorithms to solve standard quadratic
optimization problems and discuss numerical results. A focus is on the 5-
dimensional standard quadratic optimization problem. The chapter concludes
with a discussion of more general quadratic programs, in particular, of suf-
ficient conditions for relaxations of these to be exact. Chapter 6 deals with
the computation of copositive cuts. We first survey the literature about cut-
ting planes. Then we present two new approaches. The first one is based on
the copositive projections introduced in Chapter 4. The second one applies
to matrices that have a triangle-free graph. For both approaches numerical
results are discussed. We conclude with a short summary and state some open
questions arising from the results presented in the thesis.

Contributions

In the following, we state the main contributions of the thesis.

� Based on the inner and outer approximations of the copositive cone in-
troduced by Bundfuss and Dür (2009), we show how the projection of a
matrix onto the copositive cone can be computed. Using a decomposi-
tion theorem of Moreau, we also show how to project a matrix onto the
completely positive cone. These projections can be used to compute fac-
torizations of completely positive matrices. The presented method is the
first to compute factorizations of arbitrary matrices lying in the interior
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of the completely positive cone. The results are presented in Chapter 4
and were published in Sponsel and Dür (2012).

� Using the copositive projections from Chapter 4, we develop a method
to compute cutting planes to cut off an arbitrary matrix A /∈ C∗n from
the completely positive cone. This method is explained in Section 6.3.
Moreover, we illustrate the approach by computing cutting planes for the
semidefinite relaxation of some stable set problems. These results were
also published in Sponsel and Dür (2012).

� In Section 6.4, we present an approach to separate triangle-free doubly
nonnegative matrices from the completely positive cone. We compare the
resulting cuts to the ones introduced in Bomze et al. (2010a) since the
basic structure is quite similar. Moreover, we discuss numerical results
for some stable set problems. The results presented in this section are
prepared for publication in Berman et al. (2013).

� Extending the result of Anstreicher and Burer (2005) that every standard
quadratic optimization problem with a positive semidefinite matrix in the
objective function can be stated as a semidefinite program, we study more
classes for which the problem has an exact linear or positive semidefinite
representation. This leads to two algorithms to solve standard quadratic
optimization problems. We also study more general quadratic problems.
The results are presented in Chapter 5.
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1. Notation and preliminaries

In this chapter, we introduce some basic terminology from linear algebra and
graph theory that we will need later on.

1.1. Vectors and matrices

We denote scalars and vectors by lowercase letters and matrices by uppercase
letters. For x ∈ Rn, the relation x ≥ 0 is understood entrywise and we denote
the set of all nonnegative n-vectors by Rn+. The set of all n-vectors having only
positive entries is denoted Rn++. The i-th entry of a vector x ∈ Rn is referred
to as xi, and similarly, the entries of a matrix A ∈ Rm×n are referred to as Aij .
For D ∈ Rn×n and d ∈ Rn, let diag(D) denote the diagonal of D and denote
by Diag(d) the square diagonal matrix whose diagonal is d. Throughout the
thesis, let I denote the identity matrix, e the all-ones vector and E = eeT the
all-ones matrix. Furthermore, we denote by ei the i-th unit vector, i.e., ei is
the vector whose i-th entry is one and all other entries are zero. For A ∈ Rn×n,
let rank(A) be the rank of the matrix A and trace(A) its trace.

The inner product of two matrices A,B ∈ Rm×n is defined as

〈A,B〉 = trace(BTA) =
m∑
i=1

n∑
j=1

AijBij .

Note that for A ∈ Rn×n and x ∈ Rn, we have

xTAx = 〈A, xxT 〉. (1.1)

The Hadamard product of two matrices A,B ∈ Rm×n is the matrix A ◦B with
entries (A ◦ B)ij = AijBij . Observe that for symmetric matrices A,B,C ∈
Rn×n, we have

〈A ◦B,C〉 = 〈A,B ◦ C〉 = 〈A ◦ C,B〉. (1.2)

Let Sn denote the set of all symmetric n× n matrices, i.e.,

Sn =
{
A ∈ Rn×n : A = AT

}
.
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1. Notation and preliminaries

We define the set of (entrywise) nonnegative matrices as

Nn = {A ∈ Sn : Aij ≥ 0 for all i, j = 1, . . . , n}

and write A ≥ 0 if A is nonnegative.
The set of positive semidefinite matrices is defined as

S+
n =

{
A ∈ Sn : xTAx ≥ 0 for all x ∈ Rn

}
=

{
k∑
i=1

aia
T
i : ai ∈ Rn, i = 1, . . . , k

}
,

and the set of positive definite matrices is

S++
n =

{
A ∈ Sn : xTAx > 0 for all x 6= 0

}
.

We write A � 0 (A � 0) if A is positive (semi-)definite.
A matrix A ∈ Sn is reducible if there is a permutation matrix P such that

PAP T =

(
A1 0
0 A2

)
with symmetric matrices A1, A2. A matrix that is not reducible is said to be
irreducible. The spectral radius of a matrix A ∈ Rn×n is defined as

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

We will need the following result on the spectral radius of nonnegative (ir-
reducible) matrices, see Horn and Johnson (1985, Theorems 8.3.1 and 8.4.4).

Theorem 1.1.1 (Perron–Frobenius Theorem) If A ∈ Nn, then the spec-
tral radius ρ(A) is an eigenvalue of A, and A has a nonnegative eigenvector u
corresponding to ρ(A). If, in addition, A is irreducible, then there is a positive
vector u such that Au = ρ(A)u.

The eigenvalue ρ(A) of an irreducible nonnegative matrix A is called the Per-
ron root of A, and a positive eigenvector corresponding to the eigenvalue ρ(A)
is called a Perron vector of A.

Finally, we introduce some notation related to subsets of Rn. Let M ⊆ Rn.
We denote by

span(M) =

{
k∑
i=1

λixi : xi ∈M, λi ∈ R, i = 1, . . . , k

}

6



1.2. Graphs

the linear hull of M , by

aff(M) =

{
k∑
i=1

λixi : xi ∈M, λi ∈ R, i = 1, . . . , k,
k∑
i=1

λi = 1

}

the affine hull of M , and by

conv(M) =

{
k∑
i=1

λixi : xi ∈M, λi ≥ 0, i = 1, . . . , k,

k∑
i=1

λi = 1

}

the convex hull of M . Let int(M) denote the interior of M , relint(M) its
relative interior and cl(M) its closure. If M is convex, then x ∈ M is an
extreme point of M if

x = λy + (1− λ)z, y, z ∈M, 0 < λ < 1 ⇒ y = x = z.

A face of a closed convex set M is a subset F ⊆ M such that every closed
line segment conv({x, y}) in M with a relative interior point in F has both
endpoints u, v in F . Consequently, x ∈ M is an extreme point of M if it is a
zero-dimensional face of M .

1.2. Graphs

Let
(
V
2

)
denote the set of all 2-element subsets of a set V . In this thesis, we

only consider simple graphs G, i.e., G = (V,E) where V 6= ∅ is a finite set
and E ⊆

(
V
2

)
. The elements of V are called vertices and the elements of E

are called edges of the graph. We write V (G) to denote the vertex set of G
and E(G) to denote its edge set. Two vertices i, j ∈ V are called adjacent if
there is an edge {i, j} ∈ E. A graph G can be represented by its adjacency
matrix AG which is defined as

(AG)ij =

{
1, if {i, j} ∈ E(G)
0, else

.

Clearly, the adjacency matrix is symmetric and its diagonal is zero. Conversely,
given a matrix X ∈ Sn, we define the graph G(X) of X as the graph on the
vertices 1, . . . , n with i, j being adjacent if and only if i 6= j and Xij 6= 0.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a
bijection ϕ : V → V ′ such that i and j are adjacent in G if and only if ϕ(i)
and ϕ(j) are adjacent in G′.

7



1. Notation and preliminaries

The complementary graph of G = (V,E), denoted Ḡ, is the graph (V, Ē)
with Ē =

(
V
2

)
\ E.

A subgraph of G = (V,E) is a graph H = (V ′, E′) with V ′ ⊆ V and E′ ⊆(
V ′

2

)
∩ E. If E′ =

(
V ′

2

)
∩ E, we say that H is an induced subgraph of G or

that H is the subgraph of G induced by V ′.

A graph is bipartite if there is a partition of the vertex set V = V1 ∪ V2

with V1 ∩ V2 = ∅ such that no two vertices in V1 and no two vertices in V2 are
adjacent.

A graph is said to be complete if all of its vertices are pairwise adjacent.
The complete graph on n vertices is denoted by Kn. K3 is a triangle. A graph
that has no subgraph isomorphic to K3 is called triangle-free.

A cycle (of length n) or n-cycle, denoted Cn, is a graph (V,E) of the form

V = {1, 2, . . . , n} and E = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}.

We also write Cn = (1, 2, . . . , n, 1). A cycle of odd (even) length is called odd
(even) cycle. If a graph G has an induced subgraph which is isomorphic to Ck
for some k ≥ 4, then we refer to this subgraph as hole of G. Similarly, an
antihole is an induced subgraph isomorphic to C̄k for some k ≥ 4.

A path (of length n) is a graph (V,E) whose vertices can be ordered such
that

V = {1, . . . , n} and E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

We also write P = (1, 2, . . . , n) to denote a path from 1 to n. We define the
distance dG(i, j) of two vertices i, j in G as the length of a shortest path from i
to j. If no such path exists, we set dG(i, j) =∞. The diameter of G is defined
as the greatest distance between any two vertices in G.

A graph G = (V,E) is said to be connected if for any two vertices i, j ∈ V
there is a path from i to j. A maximal connected subgraph of G is called
component of G. A graph that is not connected has thus more than one
component. If a component consists of only one vertex, then this vertex is an
isolated vertex .

A clique in G is a subset V ′ ⊆ V such that the subgraph induced by V ′

is complete. The maximum size of a clique in G is called the clique number
of G and denoted by ω(G). The problem to compute the clique number of
a graph is called the maximum clique problem. Karp (1972) has shown that
this problem is NP -complete, so, unless P = NP , there is no algorithm that
returns a solution in a time that is polynomially bounded by the number of
vertices.
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1.2. Graphs

A stable set in G is a subset V ′ ⊆ V such that the vertices in V ′ are pair-
wise nonadjacent. The size of a maximum stable set in G is called stability
number of G and denoted by α(G). The problem of determining the stability
number of a graph is referred to as the stable set problem. Obviously, we have
ω(G) = α(Ḡ). The maximum clique problem is thus equivalent to computing
the stability number of the complementary graph.

A vertex coloring is a map c : V → C such that for any two adjacent vertices
i, j ∈ V we have c(i) 6= c(j). The smallest number k ∈ N such that there is
a vertex coloring c : V → C with |C| = k, where |C| denotes the number of
elements in C, is called chromatic number . We denote the chromatic number
of a graph G by χ(G). As for the maximum clique problem, computing the
chromatic number of a graph is NP -complete (Karp, 1972).

Since in a coloring all vertices in a clique have to be colored differently,
the chromatic number of a graph is bounded by its clique number, i.e., we
have ω(G) ≤ χ(G). A graph G is perfect if ω(H) = χ(H) for any induced
subgraph H of G. Chudnovsky, Robertson, Seymour and Thomas (2006) have
shown that a graph is perfect if and only if it does neither have an odd hole
nor an odd antihole. This characterization of perfect graphs is known as the
strong perfect graph theorem.

For more details and a thorough introduction to graph theory, we refer
to Diestel (2005). More information on the maximum clique problem and
perfect graphs can be found in Schrijver (2003).
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2. The copositive and the completely
positive cone

In this chapter, we introduce the copositive cone and its dual, the completely
positive cone. We start by giving some basic definitions and results on cones
in Section 2.1, before we consider the copositive cone in Section 2.2 and the
completely positive cone in Section 2.3. Finally, in Section 2.4, we introduce
approximations of these cones. More information on both cones can be found
in the survey papers (Ikramov and Savel’eva, 2000; Dür, 2010; Bomze, 2012;
Bomze et al., 2012) and references therein.

2.1. Cones

We will introduce some basic definitions and properties related to cones.

Definition 2.1.1 A set K ⊆ Rn is a cone if for every x ∈ K and α ≥ 0 we
have αx ∈ K.

The following result follows immediately from the definition.

Lemma 2.1.2 K is a convex cone if and only if for every x, y ∈ K and α, β ≥
0, αx+ βy ∈ K.

Obviously, the closure of a convex cone is also a convex cone. Moreover, the
intersection as well as the sum of two convex cones are again convex cones.

Definition 2.1.3 A convex cone K is pointed if K ∩ (−K) = {0}, and solid if
it has a nonempty interior. A closed convex cone that is pointed and solid is
called a proper cone.

For M ⊆ Rn, we denote by

cone(M) =

{
k∑
i=1

λixi : xi ∈M, λi ≥ 0, i = 1, . . . , k

}
the conic hull of M . It is the intersection of all convex cones containing M .
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2. The copositive and the completely positive cone

Definition 2.1.4 A convex cone K is a polyhedral cone if it is finitely gener-
ated, i.e., K = cone(M) for some finite set M .

Definition 2.1.5 Let x ∈ Rn. The ray generated by x is the set {αx : α ≥ 0}.
If K ⊆ Rn is a convex cone and x ∈ K, then the ray generated by x is contained
in K.

Definition 2.1.6 LetK be a closed convex cone and x ∈ K. The ray generated
by x is an extreme ray of K if

x = y + z, y, z ∈ K ⇒ y, z ∈ {αx : α ≥ 0}.

We denote the set of vectors generating extreme rays of K by Ext(K).

The following theorem is a version of Carathéodory’s theorem for convex
cones.

Theorem 2.1.7 Let K = cone(M) be a convex cone in Rn. Then every x ∈ K
can be represented as a nonnegative combination of at most n elements of M .

This is a well-known result. See for example Berman and Shaked-Monderer
(2003, Theorem 1.34). For the sake of completeness, we state the proof here.

Proof Let x ∈ K. Then x =
∑m

i=1 λixi for some x1, . . . , xm ∈ M and
λ1, . . . , λm > 0. If m > n, then x1, . . . , xm are linearly dependent. Hence
there exist coefficients µ1, . . . , µm ∈ R, not all zero, such that

∑m
i=1 µixi = 0.

We may assume that at least one µi is positive. Define a = min{λiµi : µi > 0}
and αi = λi − aµi, i = 1, . . . ,m. Note that by definition all coefficients αi are
nonnegative. Then

x =
m∑
i=1

λixi − 0 =
m∑
i=1

λixi − a
m∑
i=1

µixi =
m∑
i=1

(λi − aµi)xi =
m∑
i=1

αixi.

Since at least one coefficient αi is zero, this shows that x can be represented
as a nonnegative combination of less than m elements of M . �

We now define the dual of a set.

Definition 2.1.8 Let K ⊆ Rn. The set

K∗ = {y ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ K}

is called the dual of K. If K is a cone with K∗ = K, then K is said to be
self-dual .
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2.2. The copositive cone

The following theorem states some basic duality properties. For a proof see (Ben-
Israel, 1969, Theorem 1.3, Theorem 1.5 and Corollary 1.7).

Theorem 2.1.9 Let K, K1 and K2 be nonempty subsets of Rn. Then

(i) K∗ is a closed convex cone.

(ii) If K1 ⊆ K2, then K∗2 ⊆ K∗1.

(iii) K ⊆ K∗∗, and if K is a convex cone, then clK = K∗∗.

(iv) K∗1 ∩ K∗2 ⊆ (K1 +K2)∗, and if 0 ∈ K1 +K2, then (K1 +K2)∗ ⊆ K∗1 ∩ K∗2.

(v) If K1 and K2 are closed convex cones, then cl(K∗1 +K∗2) = (K1 ∩ K2)∗.

The interior of K∗ can be characterized as follows (cf. Berman (1973)).

Lemma 2.1.10 If K ⊆ Rn is a closed convex pointed cone, then

int(K∗) = {y ∈ K∗ : 〈x, y〉 > 0 for all x ∈ K \ {0}} .

Closely related to the dual is the concept of the polar cone.

Definition 2.1.11 The polar cone of a set K ⊆ Rn is the closed convex cone

K� = {y ∈ Rn : 〈y, x〉 ≤ 0 for all x ∈ K}.

From the definition, it is immediately clear that K� = −K∗.

2.2. The copositive cone

In this section, we consider the copositive cone. We start by defining K-
semidefiniteness which is a generalization of positive semidefiniteness and copos-
itivity.

Definition 2.2.1 Let K ⊆ Rn be a nonempty set. A matrix A ∈ Sn is called
K-semidefinite if

xTAx ≥ 0 for all x ∈ K.

If
xTAx > 0 for all x ∈ K, x 6= 0,

then A is called K-definite.
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2. The copositive and the completely positive cone

The set of all K-semidefinite matrices forms a cone that we denote by CK. The
dual of CK is given in the following lemma (cf. Eichfelder and Povh (2013,
Lemma 2 and Lemma 4)).

Lemma 2.2.2 Let K ⊆ Rn be nonempty. Then

C∗K = cl cone{xxT : x ∈ K} = conv{xxT : x ∈ cl coneK}.

For K = Rn, the cone CK is simply the cone of all positive semidefinite
matrices or the positive semidefinite cone, for short. We will be interested in
the case K = Rn+.

Definition 2.2.3 A matrix A ∈ Sn is copositive if

xTAx ≥ 0 for all x ∈ Rn+,

and strictly copositive if

xTAx > 0 for all x ∈ Rn+ \ {0}.

The copositive cone, denoted Cn, is the set of all copositive n×n matrices, i.e.,

Cn =
{
A ∈ Sn : xTAx ≥ 0 for all x ∈ Rn+

}
.

By Lemma 2.2.2, the dual of Cn is given by

C∗n = conv{xxT : x ∈ Rn+}

which is called the completely positive cone. In Section 2.3, we will study this
cone in more detail.

The following theorem states some basic properties of the copositive cone.

Theorem 2.2.4 (i) Cn is a proper cone.

(ii) Cn is nonpolyhedral (unless n = 1).

(iii) int(Cn) =
{
A ∈ Sn : xTAx > 0 for all x ∈ Rn+ \ {0}

}
.

For a proof of (i) see for example Berman and Shaked-Monderer (2003, Proposi-
tion 1.24). A proof of (ii) and (iii) can be found in Bundfuss (2009, Lemma 2.3).
However, for a better understanding of the copositive cone, we give proofs of
the three properties.
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2.2. The copositive cone

Proof (i): Let (Ai)i∈N be a sequence of copositive matrices with limi→∞Ai =
A. For any x ∈ Rn+, we have

xTAx = xT lim
i→∞

Aix = lim
i→∞

xTAix ≥ 0

by continuity of the quadratic form, hence A ∈ Cn showing that the
copositive cone is closed.

To show convexity, let A1, A2 ∈ Cn and 0 ≤ λ ≤ 1. For x ∈ Rn+, we have

xT (λA1 + (1− λ)A2)x = λxTA1x+ (1− λ)xTA2x ≥ 0.

Next, assume A ∈ Cn ∩ (−Cn). Then for all x ∈ Rn+, we have xTAx ≥ 0
and −xTAx ≥ 0 implying xTAx = 0. Taking x = ei shows that Aii =
0 for all i = 1, . . . , n. Furthermore, for x = ei + ej , i 6= j, we get
(ei+ ej)

TA(ei+ ej) = Aii+Aij +Aji+Ajj = 2Aij = 0 and thus Aij = 0.

Finally, to show that Cn has a nonempty interior, let B ∈ C∗n \ {0}.
Then B ≥ 0 and B 6= 0. We thus have 〈E,B〉 =

∑n
i,j=1Bij > 0.

By Lemma 2.1.10, E ∈ int(C∗∗n ), and by Theorem 2.1.9 (iii), C∗∗n = Cn
showing that the copositive matrix E lies in the interior of Cn.

(ii): We first show that C2 = S+
2 ∪N2. Obviously, we have S+

2 ∪N2 ⊆ C2. To
show the other inclusion, let A ∈ C2. If A /∈ N2, then A12 = A21 < 0 and

xTAx = A11x
2
1 +A22x

2
2 + 2A12x1x2 ≥ A11x

2
1 +A22x

2
2 + 2A12|x1||x2| ≥ 0

for all x ∈ R2 by copositivity of A. Thus, A is positive semidefinite.

As S+
2 ∪N2 is nonpolyhedral, which can be seen by illustrating this cone

(cf. Bundfuss (2009, Figure 2.1)), we have that C2 is nonpolyhedral. Now
assume that Cn is polyhedral for some n. Then

Cn ∩ {A ∈ Sn : Aij = 0 for all 2 < i, j ≤ n}

is polyhedral as well. But since this intersection is the cone C2 embed-
ded in a higher-dimensional space, it is nonpolyhedral contradicting the
assumption that Cn is polyhedral.

(iii): Let A ∈ int(Cn). For x ∈ Rn+, x 6= 0, we have xxT ∈ C∗n \ {0}. By
Lemma 2.1.10, we have xTAx = 〈A, xxT 〉> 0, showing that A is strictly
copositive.
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2. The copositive and the completely positive cone

Now let A be strictly copositive, and B ∈ C∗n \ {0}. Then B can be
written as B =

∑m
i=1 bib

T
i with bi ∈ Rn+ \ {0}. We thus have

〈A,B〉 =
〈
A,

m∑
i=1

bib
T
i

〉
=

m∑
i=1

〈A, bibTi 〉 =
m∑
i=1

bTi Abi > 0,

and by Lemma 2.1.10, A ∈ int(Cn). �

Furthermore, the copositive cone is invariant under permutation and scaling
with positive diagonal matrices.

Lemma 2.2.5 (i) Let P be a permutation matrix. Then A ∈ Sn is (strictly)
copositive if and only if PAP T is (strictly) copositive.

(ii) Let D = Diag(d) with d ∈ Rn++. Then A ∈ Sn is (strictly) copositive if
and only if DAD is (strictly) copositive.

Proof The statements follow immediately from the fact that Rn+ and Rn++ are
invariant under permutation and scaling, and from the definition of copositiv-
ity. �

It is easy to see that every nonnegative matrix is copositive. The same holds
for positive semidefinite matrices. We thus have

Nn + S+
n ⊆ Cn.

As we have seen in the proof of Theorem 2.2.4 (ii), C2 = N2∪S+
2 . For n = 3, 4,

we have Cn = Nn + S+
n (Diananda, 1962). For n ≥ 5, however, there are

copositive matrices that cannot be represented as the sum of a nonnegative
and a positive semidefinite matrix. An example is the well known Horn matrix

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 . (2.1)

The corresponding quadratic form can be written as

xTHx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)

= (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x3(x4 − x5).
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2.2. The copositive cone

Let x ∈ R5
+. By the first expression xTHx ≥ 0 if x5 ≥ x4, and the second

expression shows that xTHx ≥ 0 if x4 ≥ x5. Consequently, H is copositive. As
shown for example in Hall Jr. and Newman (1963), the Horn matrix cannot
be written as the sum of a nonnegative and a positive semidefinite matrix.

A matrix is said to be extreme copositive if it generates an extreme ray of
the copositive cone. The set of extreme copositive matrices is invariant under
permutation and scaling (see for example Dickinson (2013a, Theorem 8.20 iv)).

Theorem 2.2.6 Let P be a permutation matrix and D = Diag(d) with d ∈
Rn++. Then A ∈ Ext(Cn) if and only if PDADP T ∈ Ext(Cn).

For n ≤ 4, the extreme rays of Cn are the extreme rays of Nn + S+
n which

are characterized in the following theorem.

Theorem 2.2.7 (Hall Jr. and Newman (1963)) The extreme rays of Cn which
belong to Nn+S+

n are generated by eie
T
j , i, j = 1, . . . , n, and by aaT with a ∈ Rn

having both positive and negative entries.

For the characterization of the extreme rays of C5 we have to introduce the
Hildebrand matrices (Hildebrand, 2012)

T (ϕ) =


1 sinϕ4 − cos(ϕ4 + ϕ5) − cos(ϕ2 + ϕ3) sinϕ3

sinϕ4 1 sinϕ5 − cos(ϕ5 + ϕ1) − cos(ϕ3 + ϕ4)
− cos(ϕ4 + ϕ5) sinϕ5 1 sinϕ1 − cos(ϕ1 + ϕ2)
− cos(ϕ2 + ϕ3) − cos(ϕ5 + ϕ1) sinϕ1 1 sinϕ2

sinϕ3 − cos(ϕ3 + ϕ4) − cos(ϕ1 + ϕ2) sinϕ2 1



with ϕi > −π
2 , i = 1, . . . , 5, and

∑5
i=1 ϕi < −

3π
2 .

Theorem 2.2.8 (Hildebrand (2012, Theorem 3.1)) The extreme rays of C5 that
do not belong to N5 + S+

5 are generated by matrices of the form PDHDP T ,
where H denotes the Horn matrix, P is a permutation matrix and D = Diag(d)
with d ∈ R5

++, and by matrices of the form PDT (ϕ)DP T , where T (ϕ) is a
Hildebrand matrix.

For n > 5, the set of extreme rays Ext(Cn) is not fully known. A characteriza-
tion of the extreme rays whose entries are all 0, 1 or −1 and whose diagonal
entries are all 1 has been given in Hoffman and Pereira (1973) (see also The-
orem A.1). For an overview of results on extreme copositive matrices we refer
to Dickinson (2013a, Theorem 8.20).

A matrix A ∈ Sn that is not copositive can be copositive of order k for some
k < n, which is defined as follows.
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2. The copositive and the completely positive cone

Definition 2.2.9 A matrix A is called copositive of order k, if every principal
submatrix of A of order k is copositive. A is called copositive of exact order k
if it is copositive of order k but not of order k + 1.

We will need the following result about matrices that are copositive of exact
order n− 1.

Theorem 2.2.10 (Väliaho (1986, Theorem 3.8)) Let A ∈ Sn. If A is coposi-
tive of exact order n− 1, then A−1 ≤ 0.

2.2.1. Copositivity criteria

Although in some cases it is easy to see whether a matrix is copositive, for
example if the matrix is nonnegative or positive semidefinite, in general test-
ing copositivity is a co-NP-complete problem, i.e., the problem to test whether
a given matrix is not copositive is NP-complete (Murty and Kabadi, 1987).
However, there are many criteria for copositivity, but because testing copos-
itivity is a hard problem, these can in general not be checked in polynomial
time. We will now present some copositivity criteria that we will need in the
following chapters.

Many criteria are based on principal submatrices. We start with the follow-
ing result which follows immediately from the definition of copositivity.

Proposition 2.2.11 Every principal submatrix of a (strictly) copositive ma-
trix is (strictly) copositive. In particular, all diagonal entries of a (strictly)
copositive matrix are nonnegative (positive).

The next theorem gives a necessary and sufficient condition for copositivity
in terms of the eigenvalues and eigenvectors of the principal submatrices.

Theorem 2.2.12 (Kaplan (2000, Theorem 2)) Let A ∈ Sn. Then A is copos-
itive if and only if every principal submatrix of A has no positive eigenvector
associated with a negative eigenvalue.

We now consider a criterion which is similar to the Schur complement con-
dition for positive (semi-)definiteness, see Li and Feng (1993, Theorem 2).

Theorem 2.2.13 We consider the following partition of a matrix A ∈ Sn

A =

(
a bT

b C

)
,

where a ∈ R, b ∈ Rn−1, C ∈ Sn−1. The matrix A is copositive if and only if
each of the following holds:

18



2.2. The copositive cone

(i) a ≥ 0,

(ii) C is copositive,

(iii) Any x ≥ 0 with x 6= 0 and bTx ≤ 0 satisfies

xT (aC − bbT )x ≥ 0.

For b ≤ 0, the criterion can be reduced to the following.

Corollary 2.2.14 Under the assumptions of Theorem 2.2.13, let b ≤ 0. The
matrix A is copositive if and only if a ≥ 0 and aC − bbT is copositive.

The statement follows directly from Theorem 2.2.13. A proof can also be found
in Andersson et al. (1995, Theorem 2.1).

As stated in the following proposition, for matrices with a special struc-
ture, testing copositivity can be reduced to testing semidefiniteness (see for
example Ikramov and Savel’eva (2000, Theorem 4.21)).

Proposition 2.2.15 A matrix A ∈ Sn having only nonpositive off-diagonal
entries is copositive if and only if it is positive semidefinite.

Proof If A ∈ Sn is positive semidefinite, it clearly is copositive. To show the
converse, assume that A ∈ Cn has only nonpositive off-diagonal entries, and
let x ∈ Rn. Then

xTAx =
n∑
i=1

Aiix
2
i +

∑
i 6=j

Aijxixj ≥
n∑
i=1

Aiix
2
i +

∑
i 6=j

Aij |xi||xj | ≥ 0

by copositivity of A, showing that A is positive semidefinite. �

Finally, we present two results on copositivity regarding the Hadamard prod-
uct with rank one matrices (cf. Berman et al. (2013)). For the proofs, the
following notation will be useful. We denote by xa the vector such that

(xa)i =

{
x−1
i if xi 6= 0

0 if xi = 0,
(2.2)

and if x ≥ 0, then
√
x denotes the vector with (

√
x)i =

√
xi.

Moreover, note that for u ∈ Rn, combining (1.1) and (1.2) yields

xT (A◦uuT )x = 〈A◦uuT , xxT 〉 = 〈A, (u◦x)(u◦x)T 〉 = (u◦x)TA(u◦x). (2.3)

The following theorem gives a characterization of copositivity of a matrix A.
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2. The copositive and the completely positive cone

Theorem 2.2.16 Let A ∈ Sn. Then the following are equivalent:

(i) A ∈ Cn,

(ii) A ◦ uuT ∈ Cn for every nonnegative u ∈ Rn,

(iii) A ◦ uuT ∈ Cn for every positive u ∈ Rn,

(iv) There exists a positive u ∈ Rn such that A ◦ uuT ∈ Cn.

Proof Clearly, we only have to prove (i)⇒(ii) and (iv)⇒(i).
(i)⇒(ii): If A ∈ Cn and u is a nonnegative vector, then (2.3) implies that

xT (A ◦ uuT )x = (u ◦ x)TA(u ◦ x) ≥ 0,

for every nonnegative x ∈ Rn. That is, A ◦ uuT ∈ Cn.
(iv)⇒(i): If A ◦ uuT ∈ Cn for a positive u ∈ Rn, then

A = (A ◦ uuT ) ◦ (ua)(ua)T ∈ Cn,

since (i) implies (ii). �

The next theorem gives a similar characterization for extreme copositive
matrices.

Theorem 2.2.17 Let A ∈ Sn. Then the following are equivalent:

(i) A is an extreme copositive matrix,

(ii) A ◦ uuT is an extreme copositive matrix for every positive u ∈ Rn,

(iii) There exists a positive u ∈ Rn such that A◦uuT is an extreme copositive
matrix.

Proof If u ∈ Rn++ and D = Diag(u), then A◦uuT = DAD. So the equivalence
of (i), (ii) and (iii) is the known fact about preservation of extremality under
scaling by a positive diagonal matrix as stated in Theorem 2.2.6. �

Remark 2.2.18 Note that if u ≥ 0 and A is an extreme copositive matrix,
then A◦uuT may not be extreme. To see this, we consider the Horn matrix H
which is an extreme 5 × 5 matrix and has 2 × 2 principal submatrices of all
ones, which are not extreme in C2. For example, take the principal submatrix
on rows and columns 1 and 3. So if the entries 1 and 3 of u are equal to one,
and all other entries of u are zeros, then H ◦ uuT is not extreme.
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2.3. The completely positive cone

More copositivity criteria can be found in the survey paper on conditionally
definite matrices by Ikramov and Savel’eva (2000) and the references therein.
Bundfuss and Dür (2008) have introduced criteria that are based on simpli-
cial partitions of the standard simplex. These lead to inner and outer ap-
proximations of the copositive cone which we will present in Section 2.4.1.
Parrilo (2000) introduced sufficient copositivity conditions which are based on
sum-of-squares decompositions of polynomials, and which yield an approxima-
tion hierarchy that we present in Section 2.4.2. Bomze and Eichfelder (2013)
introduced copositivity criteria based on difference-of-convex decompositions.

2.3. The completely positive cone

We now study the dual of Cn, the completely positive cone, in more detail.

Definition 2.3.1 A matrix B ∈ Sn is completely positive if it can be written
as

B =
m∑
i=1

aia
T
i with ai ∈ Rn+. (2.4)

This representation is called rank one representation.

By defining A as the matrix whose i-th column is ai, we get the following
representation of B, which is equivalent to (2.4),

B = AAT with A ∈ Rn×m, A ≥ 0.

The set of all completely positive n×n matrices is denoted C∗n. This notation
will be justified in Theorem 2.3.5.

Like the copositive cone, the completely positive cone is invariant under
permutation and scaling.

Lemma 2.3.2 (i) Let P be a permutation matrix. Then A ∈ Sn is com-
pletely positive if and only if PAP T is completely positive.

(ii) Let D = Diag(d) with d ∈ Rn++. Then A ∈ Sn is completely positive if
and only if DAD is completely positive.

Proof As in the copositive case, the statement follows from the fact that Rn+
is invariant under permutation and scaling. �

The interior of the completely positive cone has first been characterized by
Dür and Still (2008). A less restrictive characterization has been found by
Dickinson.
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2. The copositive and the completely positive cone

Theorem 2.3.3 (Dickinson (2010, Theorem 3.5)) We have

int(C∗n) =
{ m∑
i=1

aia
T
i : a1 ∈ Rn++, ai ∈ Rn+ ∀i, span{a1, . . . , am} = Rn

}
= {AAT : rank(A) = n, A = [a|B], a ∈ Rn++, B ≥ 0}.

In contrast to the set of extreme rays of the copositive cone, which is not
completely known, the set of extreme rays of the completely positive cone has
a simple description.

Theorem 2.3.4 (Hall Jr. and Newman (1963, Theorem 3.1 (iii))) The extreme
rays of C∗n are the rank one matrices aaT with a ∈ Rn+ \ {0}.

The following theorem states some basic properties of C∗n.

Theorem 2.3.5 (i) C∗n is a proper cone.

(ii) C∗n is nonpolyhedral (unless n = 1).

(iii) Cn and C∗n are the duals of each other.

A proof of (i) can be found in Dickinson (2013a, Theorem 5.5). For proofs
of (ii) and (iii) see Berman and Shaked-Monderer (2003). However, for a
better understanding of the completely positive cone, we will give proofs here.

Proof (i): Convexity of C∗n is obvious from the definition. For a proof
of closedness we refer to Berman and Shaked-Monderer (2003, Theo-
rem 2.2). We have C∗n ⊆ Cn. As the copositive cone is pointed (cf. The-
orem 2.2.4 (i)), the same holds for the completely positive cone. By
Theorem 2.3.3, I + E lies in the interior of the completely positive cone
showing that C∗n is solid.

(ii): Statement (ii) follows from the fact that C∗n has infinitely many extreme
rays (cf. Theorem 2.3.4).

(iii): To avoid confusion during the proof, we denote the cone of all completely
positive n× n matrices by CPn for the moment. We want to show that
the copositive and the completely positive cone are the duals of each
other, i.e., CP∗n = Cn and C∗n = CPn.

By definition, A ∈ Cn if and only if 〈A, bbT 〉 = bTAb ≥ 0 for all b ∈ Rn+.
Since this is equivalent to 〈A,B〉 ≥ 0 for all B ∈ CPn, we have CP∗n = Cn.
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2.3. The completely positive cone

By Theorem 2.1.9 (iii), we then have CPn = cl(CPn) = (CP∗n)∗ = C∗n.
This result also justifies the notation of the completely positive cone
as C∗n. �

By Definition 2.3.1, it is immediately clear that every completely positive
matrix is nonnegative as well as positive semidefinite, i.e., we have

C∗n ⊆ S+
n ∩Nn.

A matrix that is both nonnegative and positive semidefinite is called doubly
nonnegative. We will denote the set of all doubly nonnegative n× n matrices
by Dn. Since S+

n and Nn are proper, self-dual cones (cf. Berman and Shaked-
Monderer (2003, Proposition 1.20 and 1.21)), we have by Theorem 2.1.9 (iv)
and (v) that Dn and S+

n +Nn are duals of each other. Consequently, for n ≤ 4,
we have

C∗n = S+
n ∩Nn,

whereas for n ≥ 5 strict inclusion holds.

Definition 2.3.6 The minimal number m for which B ∈ C∗n has a rank one
representation

B =
m∑
i=1

aia
T
i with ai ∈ Rn+

is called the cp-rank of B.

By a simple observation, cp-rank(B) ≥ rank(B). Whereas for matrices B ∈ C∗n
with rank(B) ≤ 2 or n ≤ 3, equality holds (cf. Berman and Shaked-Monderer
(2003, Theorem 3.1 and 3.2)), for matrices of higher rank or higher order, the
cp-rank can be greater than its rank. By Theorem 2.1.7, the cp-rank of a
matrix B ∈ C∗n can be bounded by cp-rank(B) ≤ 1

2n(n + 1). In Drew et al.
(1994), it is conjectured that an upper bound for the cp-rank is bn2/4c. For
more details on the cp-rank we refer to Berman and Shaked-Monderer (2003)
and Berman and Rothblum (2006).

2.3.1. Complete positivity criteria

Checking whether a given matrix is completely positive is an NP-hard prob-
lem (Dickinson and Gijben, 2013). For special cases, however, this can be done
in linear time (see Dickinson and Dür (2012) and the references therein). Most
criteria for complete positivity are based on properties of the graph associated
to the matrix (cf. Section 1.2) or on the structure of the matrix.
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2. The copositive and the completely positive cone

Similar to Proposition 2.2.11, we have the following result on principal sub-
matrices of completely positive matrices, see Berman and Shaked-Monderer
(2003, Proposition 2.4).

Proposition 2.3.7 Every principal submatrix of a completely positive matrix
is completely positive.

Another well-known property yielding a necessary condition for a matrix
with zeros on the diagonal to be completely positive is the following.

Proposition 2.3.8 Let B ∈ C∗n. If Bii = 0 for some i ∈ {1, . . . , n}, then
Bij = 0 for all j.

Proof Let B ∈ C∗n. Then B can be represented as B =
∑m

k=1 aka
T
k with

ak ∈ Rn+ for all k = 1, . . . ,m. If Bii = 0, then (ak)i = 0 for all k, and thus
Bij =

∑m
k=1(ak)i(ak)j = 0. �

The next result gives a necessary and sufficient condition for a matrix whose
associated graph is triangle-free to be completely positive. To state it, we have
to define the comparison matrix M(B) of a square matrix B. It is defined by

(M(B))ij =

{
|Bij | if i = j
−|Bij | if i 6= j.

Theorem 2.3.9 (Drew et al. (1994, Theorem 5)) If B ∈ Sn is nonnegative
and G(B) is triangle-free, then B is completely positive if and only if its com-
parison matrix can be represented as M(B) = αI−P with P ≥ 0 and α ≥ ρ(P ).

The following special case will be needed in Chapter 6.

Corollary 2.3.10 If B ∈ Nn with diag(B) = e has a triangle-free graph,
then B is completely positive if and only if ρ(B − I) ≤ 1.

Proof Since G(B) is triangle-free, Theorem 2.3.9 gives us that B ∈ C∗n if
and only if its comparison matrix M(B) can be written as M(B) = αI − P
with P ∈ Nn and α ≥ ρ(P ). In our case, we have

M(B) = I − (B − I),

which immediately gives the result. �

We now characterize complete positivity of a matrix B in terms of coposi-
tivity of the Hadamard product of B with copositive matrices.
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2.4. Approximations

Theorem 2.3.11 Let B ∈ Sn. The following are equivalent:

(i) B ∈ C∗n,

(ii) A ◦B ∈ Cn for every A ∈ Cn,

(iii) A ◦B ∈ Cn for every extreme copositive matrix A ∈ Cn,

(iv) A ◦ B ∈ Cn for every extreme copositive matrix A ∈ Cn each of whose
diagonal entries is either zero or one.

Proof It is sufficient to prove (i)⇒(ii) and (iv)⇒(i).

(i)⇒(ii): If B ∈ C∗n, then B =
∑m

i=1 uiu
T
i , where ui ∈ Rn is nonnegative for

all i. Then, for every A ∈ Cn, the matrix A ◦B =
∑m

i=1A ◦ uiuTi is copositive
as a sum of copositive matrices by Theorem 2.2.16.

(iv)⇒(i): Let A be an arbitrary extreme copositive matrix. Define d =
diag(A) and u =

√
da, where da is defined as in (2.2). Then A◦uuT ∈ Cn and all

its diagonal entries are either zero or one. Since by assumption (A◦uuT )◦B ∈
Cn, we get from Theorem 2.2.16 that A ◦ B = (A ◦ uuT ) ◦ B ◦

√
d
√
d
T ∈ Cn.

Consequently, 0 ≤ eT (A ◦ B)e = 〈B,A〉. Since A was an arbitrary extreme
copositive matrix, this means that B is in the dual cone of Cn, that is, B ∈ C∗n.�

Corollary 2.3.12 If B ∈ Dn, then B ∈ C∗n if and only if A ◦B ∈ Cn for every
(extreme) A ∈ Cn \ (S+

n +Nn).

Proof If A ∈ (S+
n + Nn), then clearly A ◦ B ∈ (S+

n + Nn). Hence B ∈ C∗n if
and only if A ◦ B ∈ Cn for every (extreme) copositive matrix which is not in
(S+
n +Nn). �

2.4. Approximations

As we have seen, the copositive and the completely positive cone are computa-
tionally not tractable. Therefore, one approach to solve optimization problems
over these cones consists in replacing the copositive respectively completely
positive cone by a sequence of tractable approximations which allows to ap-
proximate the optimal value. We will introduce two different approximation
schemes yielding inner and outer approximation hierarchies of the copositive
and the completely positive cone.
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2. The copositive and the completely positive cone

2.4.1. Approximations based on simplicial partitions

In this section, we present polyhedral inner and outer approximations of the
copositive and the completely positive cone which have been introduced in Bund-
fuss and Dür (2009). We will use these approximations to approximate the
solution of optimization problems over Cn, in particular the projection of an
arbitrary matrix onto the copositive cone as explained in Section 4.2.

2.4.1.1. Simplicial partitions

Since the approximations to be described here are based on simplicial partitions
of the standard simplex, we start with the definition of this concept.

Definition 2.4.1 Let k ≤ n. A k-simplex is the convex hull of k + 1 affinely
independent points in Rn.

The standard simplex

∆S = {x ∈ Rn+ : ‖x‖1 = 1}

is the convex hull of the n unit vectors e1, . . . , en ∈ Rn.

Definition 2.4.2 Let ∆ be a simplex in Rn. A family P = {∆1, . . . ,∆m} of
simplices satisfying

∆ =

m⋃
i=1

∆i and relint(∆i) ∩ relint(∆j) = ∅ for i 6= j

is called a simplicial partition of ∆. We denote by VP the set of all vertices of
simplices in P, and by EP the set of all edges of simplices in P.

We will now show how a simplicial partition can be generated. Let ∆ =
conv{v1, . . . , vn} and w ∈ ∆ \ {v1, . . . , vn}. Then

w =
n∑
i=1

λivi with λi ≥ 0, 1 ≤ i ≤ n, and
n∑
i=1

λi = 1.

For every i ∈ {1, . . . , n} with λi > 0, we obtain a subsimplex of ∆ by replac-
ing vi by w, i.e.,

∆i = conv{v1, . . . , vi−1, w, vi+1, . . . , vn}.
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2.4. Approximations

The subsimplices ∆i form a simplicial partition of ∆ (see Horst (1976, Lemma 1)).
A special case of this method is the bisection where w is chosen as the midpoint
of an edge of ∆.

Figure 2.1 illustrates the partitioning method on a small example. We con-
sider the simplex ∆ = conv{v1, v2, v3} and choose

w1 = 1
3v1 + 1

3v2 + 1
3v3 and w2 = 1

2v1 + 1
2v2.

For w1, one obtains the simplicial partition P = {∆1,∆2,∆3} with

∆1 = conv{w1, v2, v3},
∆2 = conv{v1, w1, v3},
∆3 = conv{v1, v2, w1}.

For the bisection point w2, the simplicial partition consists of the subsimplices

∆1 = conv{w2, v2, v3} and ∆2 = conv{v1, w2, v3}.

w1

v1 v2

v3

w2v1 v2

v3

Figure 2.1.: Simplicial partition

By the diameter δ(P) of a simplicial partition P, we mean the length of a
longest edge in EP , i.e.,

δ(P) = max
{u,v}∈EP

‖u− v‖2.

If we repeatedly subdivide subsimplices ∆i of ∆ such that the bisection point
is an almost arbitrary point on a longest edge, then we get a sequence (Pl)l of
simplicial partitions of ∆ with δ(Pl) → 0. For details see Horst (1997) or the
recent paper Dickinson (2013b).
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2. The copositive and the completely positive cone

2.4.1.2. Approximations of the copositive cone

We now define inner and outer approximations of the copositive cone.

Theorem 2.4.3 Let P be a simplicial partition of ∆S. The set

IP = {X ∈ Sn : vTXv ≥ 0 for all v ∈ VP ,
uTXv ≥ 0 for all {u, v} ∈ EP}

is an inner approximation of Cn, and the set

OP = {X ∈ Sn : vTXv ≥ 0 for all v ∈ VP}

is an outer approximation of Cn.

For a proof see Bundfuss and Dür (2009, Lemma 3.1 and Lemma 3.4).

It is easy to see that IP and OP are closed convex polyhedral cones. If
partitions Pl are constructed by successive bisection of subsimplices of ∆S , then
the approximations are nested, that is, we have IPl

⊆ IPl+1
and OPl

⊇ OPl+1

for all l ∈ N. Nested or not, the approximations converge towards Cn in the
following sense:

Theorem 2.4.4 Let (Pl)l be a sequence of simplicial partitions of ∆S with
δ(Pl)→ 0 as l→∞. Then we have

Cn = cl
(⋃
l∈N
IPl

)
and Cn =

⋂
l∈N
OPl

.

For a proof see Bundfuss and Dür (2009, Theorems 3.3 and 3.6).

2.4.1.3. Approximations of the completely positive cone

By Theorem 2.1.9, taking the dual of an inner approximation of the copositive
cone yields an outer approximation of the completely positive cone. Likewise,
the dual of an outer approximation of Cn is an inner approximation of C∗n. As
observed in Bundfuss and Dür (2009, Section 3.3), the dual cones of the inner
and outer approximations IP and OP of Cn can be described as

I∗P =

 ∑
{u,v}∈EP

λuv(uv
T + vuT ) +

∑
v∈VP

λvvv
T : λuv, λv ∈ R+


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2.4. Approximations

which is an outer approximation of C∗n, and as

O∗P =

∑
v∈VP

λvvv
T : λv ∈ R+


which is an inner approximation of C∗n.

Let (Pl)l again be a sequence of simplicial partitions of ∆S with δ(Pl)→ 0.
From Theorem 2.4.4 we get

C∗n =
⋂
l∈N
I∗Pl

and C∗n = cl

(⋃
l∈N
O∗Pl

)
.

2.4.1.4. Generalization of the approach

As described in Bundfuss (2009) and Sponsel et al. (2012), the approach can
be generalized to get better approximations of the copositive cone. We will
briefly present the underlying idea.

As a simplex ∆ is determined by its vertices, it can be represented by a ma-
trix V∆ whose columns are these vertices. V∆ is nonsingular and unique up to
a permutation of its columns. We refer to the set of all matrices corresponding
to simplices in a partition P as

M(P) = {V∆ : ∆ ∈ P}.

LetM⊂ Cn. Then we can define the following approximation hierarchy of the
copositive cone

KM,P = {A ∈ Sn : V TAV ∈M for all V ∈M(P)}.

Note that for M = Nn, these approximations equal the inner approxima-
tions IP introduced in Section 2.4.1.2.

In Sponsel et al. (2012, Theorem 2.1) it has been shown that KM,P ⊂ Cn for
anyM⊂ Cn and all partitions P of the standard simplex. Moreover, assuming
Nn ⊆M, we have

int(Cn) ⊂
⋃
ε>0

⋃
δ(P)<ε

KM,P

(see Sponsel et al. (2012, Theorem 2.2)).
An important issue that affects the quality of the approximations is the

choice of the set M. To get a good approximation KM,P , the set M should
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2. The copositive and the completely positive cone

be a good approximation of Cn. On the other hand, to keep KM,P tractable, it
should be computationally cheap to check membership ofM. Possible choices
of M as well as numerical results for testing copositivity using this approxi-
mation hierarchy are discussed in Sponsel et al. (2012).

2.4.2. Approximations based on polynomials

In this section, we introduce three inner approximation hierarchies of the copos-
itive cone which are based on polynomials. Optimizing over the cones of these
hierarchies can be done by solving linear or semidefinite programs.

For A ∈ Sn and x ∈ Rn, we define

PA(x) = (x ◦ x)TA(x ◦ x) =

n∑
i,j=1

Aijx
2
ix

2
j .

Since any nonnegative n-vector can be written as (x ◦ x)T = (x2
1, x

2
2, . . . , x

2
n)T

with x ∈ Rn, the matrix A is copositive if and only if PA(x) ≥ 0 for all
x ∈ Rn. A sufficient condition for the polynomial PA(x) to be nonnegative is
that it can be written as a sum of squares, i.e., PA(x) =

∑t
i=1 pi(x)2 where pi,

i = 1, . . . , t, are polynomial functions. Parrilo (2000) showed that PA(x) has a
sum of squares representation if and only if A ∈ S+

n +Nn, which is a sufficient
copositivity condition that we have already seen in Section 2.2.

Stronger sufficient copositivity conditions can be obtained by considering
the polynomials

P rA(x) = PA(x)

(
n∑
i=1

x2
i

)r
=

 n∑
i,j=1

Aijx
2
ix

2
j

( n∑
i=1

x2
i

)r
for r ≥ 0 integer. Parrilo (2000) showed that if P rA(x) has a sum of squares
decomposition, then P r+1

A (x) is also a sum of squares, and if P rA(x) is non-
negative for some r, then the same holds for PA(x). We thus get an inner
approximation hierarchy for the copositive cone by defining

Krn =

A ∈ Sn :

 n∑
i,j=1

Aijx
2
ix

2
j

( n∑
i=1

x2
i

)r
is a sum-of-squares

 .

As shown by Parrilo (2000), we have

S+
n +Nn = K0

n ⊆ K1
n ⊆ K2

n ⊆ . . . ⊆ Cn and cl
( ⋃
r∈N
Krn
)

= Cn.
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2.4. Approximations

The condition that a matrix lies in Krn can be checked by solving a system of
linear matrix inequalities (cf. Parrilo (2000)), and therefore, optimizing over Krn
amounts to solving a semidefinite program. But as the size of the matrix
variable grows quickly with r, current SDP-solvers can only handle problems
over Krn for small values of r.

We now consider the case r = 1 in more detail. By Parrilo (2000, Theo-
rem 5.2) and Bomze and de Klerk (2002, Theorem 2.3), a matrix A is in K1

n if
and only if there are matrices M1, . . . ,Mn ∈ Sn such that the following system
of linear matrix inequalities is fulfilled

A−M i � 0 , i = 1, . . . , n (2.5)

M i
ii = 0 , i = 1, . . . , n (2.6)

M i
jj + 2M j

ij = 0 , ∀ i 6= j (2.7)

M i
jk +M j

ik +Mk
ij ≥ 0 , ∀ i < j < k . (2.8)

For n = 5, Dickinson, Dür, Gijben and Hildebrand (2013) have shown that
every copositive matrix can be scaled such that the scaled matrix lies in K1

5,
i.e., we have the following.

Theorem 2.4.5 (Dickinson et al. (2013, Theorem 3.4)) Let A ∈ S5 and let
D ∈ S5 be a diagonal matrix with strictly positive diagonal entries such that
(DAD)ii ∈ {0, 1} for all 1 ≤ i ≤ 5. Then A ∈ C5 if and only if DAD ∈ K1

5.

Clearly, the same holds for scalings with (DAD)ii ∈ {0, k} for any k > 0.
This means that for any 5 × 5 matrix, copositivity can be checked by scaling
and testing if the scaled matrix lies in K1

5.
Based on Parrilo’s results, Bomze and de Klerk (2002) and de Klerk and

Pasechnik (2002) introduced the following approximation hierarchy

Crn =

A ∈ Sn :

 n∑
i,j=1

Aijx
2
ix

2
j

( n∑
i=1

x2
i

)r
has nonnegative coefficients

 ,

and showed that

Nn = C0
n ⊆ C1

n ⊆ C2
n ⊆ . . . ⊆ Cn and cl

( ⋃
r∈N
Crn
)

= Cn.

Obviously, these approximations are weaker, i.e., Crn ⊆ Krn for all r, but since
optimizing over Crn amounts to solving a linear program, these problems can
be solved more easily.
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2. The copositive and the completely positive cone

A third hierarchy has been introduced by Peña, Vera and Zuluaga (2007).
They define the following set of polynomials

Ern =

 ∑
β∈Nn,|β|=r

xβxT (Pβ +Nβ)x : Pβ ∈ S+
n , Nβ ∈ Nn


where for β ∈ Nn the notations |β| = β1 + . . . , βn and xβ = xβ11 . . . xβnn are
used. They show that the cones

Qrn =

{
A ∈ Sn : xTAx

(
n∑
i=1

x2
i

)r
∈ Ern

}

form an inner approximation hierarchy of the copositive cone, i.e.,

Q0
n ⊆ Q1

n ⊆ Q2
n ⊆ . . . ⊆ Cn and cl

( ⋃
r∈N
Qrn
)

= Cn.

Moreover, they show that Crn ⊆ Qrn ⊆ Krn for all r, and Qrn = Krn for r ∈ {0, 1}.
As for Krn, the condition that a matrix lies in Qrn can be checked by solving a
system of linear matrix inequalities which means that optimizing over Qrn can
be done by solving a semidefinite program.

By Theorem 2.1.9, taking the dual of an inner approximation of the coposi-
tive cone yields an outer approximation of the completely positive cone. In Dong
(2013) two outer approximation hierarchies of the completely positive cone are
constructed. The first one is a sequence of polyhedral cones, and the second
one is a sequence of cones represented by semidefinite constraints. Further-
more, Dong showed that the cones of the first hierarchy are the duals of Crn
and the cones of the second hierarchy are the duals of Qrn. For details we refer
to Dong (2013).
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3. Conic optimization

In this chapter we consider conic optimization problems, i.e., optimization
problems with a linear objective function, linear constraints and an additional
constraint that the variable lies in a cone K. In Section 3.1, we introduce the
basic terminology and state two duality results, before we consider the special
case of copositive programming in Section 3.2.

3.1. Conic optimization and duality

Let K ⊆ Rn be a closed convex cone. Let c ∈ Rn, ai ∈ Rn, i = 1, . . . ,m,
and bi ∈ R, i = 1, . . . ,m. We consider the following pair of conic optimization
problems

inf 〈c, x〉
s. t. 〈ai, x〉 = bi, i = 1, . . . ,m

x ∈ K,
(P)

sup 〈b, y〉
s. t. c−

∑m
i=1 yiai ∈ K∗

y ∈ Rm.
(D)

Problem (P) is referred to as the primal problem and (D) as the dual problem.
Special cases are linear programming when K = K∗ = Rn+, and semidefinite

programming when K = K∗ = S+
n ⊆ Rn×n, which we can identify with Rn2

.
The feasible set of (P), denoted Feas(P), is the set of all feasible solutions

of (P), i.e., the set of all x ∈ K that fulfill the equality constraints, and similarly,
the feasible set of (D) is the set of all y ∈ Rm with c−

∑m
i=1 yiai ∈ K∗. Let p̄

and d̄ denote the optimal values of (P) respectively (D), i.e.,

p̄ = inf{〈c, x〉 : 〈ai, x〉 = bi, i = 1, . . . ,m, and x ∈ K}

and

d̄ = sup{〈b, y〉 : c−
m∑
i=1

yiai ∈ K∗}.
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3. Conic optimization

An optimal solution of (P) is a feasible solution x̄ with 〈c, x̄〉 = p̄, and similarly,
an optimal solution of (D) is a feasible solution ȳ with 〈b, ȳ〉 = d̄. If the feasible
set of (P) is empty, we say that the problem is infeasible and set p̄ = ∞.
Likewise, if the constraints of (D) are infeasible, we set d̄ = −∞. If there are
feasible points xk of (P) with 〈c, xk〉 → −∞ as k → ∞ then p̄ = −∞ and we
say that the problem is unbounded. Similarly, problem (D) is unbounded if
there are feasible points yk with 〈b, yk〉 → ∞ as k →∞.

The following theorem states the well-known result that weak duality holds.

Theorem 3.1.1 (Weak Conic Duality Theorem) Let x be feasible for (P)
and y be feasible for (D). Then

〈c, x〉 ≥ 〈b, y〉.

Proof If x and y are feasible solutions of (P) respectively (D), then by duality

〈c, x〉 − 〈b, y〉 = 〈c, x〉 −
m∑
i=1

biyi = 〈c, x〉 −
m∑
i=1

〈ai, x〉yi =
〈
c−

m∑
i=1

yiai, x
〉
≥ 0.

�

Under additional assumptions, this result can be strengthened. We say
that x is a strictly feasible solution of (P) if x is feasible and lies in the interior
of K. Similarly, y is a strictly feasible solution of (D) if c−

∑m
i=1 yiai ∈ int(K∗).

Theorem 3.1.2 (Strong Conic Duality Theorem) If there exists a strictly
feasible solution of (P), and a feasible solution of (D), then p̄ = d̄ and the supre-
mum in (D) is attained. Similarly, if there exists a strictly feasible solution
of (D) and a feasible solution of (P), then p̄ = d̄ and the infimum in (P) is
attained.

For a proof we refer to Renegar (2001, Section 3.2).

3.2. Copositive programming

We now consider completely positive programs which are conic optimization
problems over the completely positive cone. These problems are closely related
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3.2. Copositive programming

to quadratic optimization problems. The first completely positive representa-
tion of a quadratic optimization problem is due to Bomze et al. (2000) who
studied the standard quadratic optimization problem

min xTQx
s. t. eTx = 1

x ≥ 0
(StQP)

with Q ∈ Sn. By nonnegativity of x, the linear constraint eTx = 1 can
equivalently be stated as (eTx)2 = xT eeTx = 1. The problem can thus be
written as

min 〈Q, xxT 〉
s. t. 〈E, xxT 〉 = 1

x ≥ 0.

Introducing the matrix variable X = xxT , we get

min 〈Q,X〉
s. t. 〈E,X〉 = 1

X = xxT

x ≥ 0.

Relaxing the rank one constraint yields the following completely positive pro-
gram

min 〈Q,X〉
s. t. 〈E,X〉 = 1

X ∈ C∗n.
(PC∗)

To show that this problem is not only a relaxation but an exact reformulation
of (StQP), we need the following characterization of the extreme points of the
feasible set of (PC∗).

Lemma 3.2.1 The extreme points of the feasible set of (PC∗) are exactly the
rank one matrices X = xxT with x ∈ ∆S.

This result has been shown in Bomze et al. (2000, Lemma 5). For the sake of
completeness, we state the proof here.

Proof Let X = xxT with x ∈ ∆S . Obviously, X ∈ Feas(PC∗). Assume by
contradiction, that X is not extreme, i.e., X = λY + (1 − λ)Z with Y,Z ∈
Feas(PC∗), Y, Z 6= X, and 0 < λ < 1. Choose an orthogonal basis {x1, . . . , xn}
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3. Conic optimization

of Rn with xn = x. Then

0 = (xTi x)2 = xTi (xxT )xi

= xTi (λY + (1− λ)Z)xi

= λxTi Y xi + (1− λ)xTi Zxi (3.1)

for all i < n. Since Y,Z are feasible for (PC∗) and thus positive semidefinite,
equation (3.1) implies that xTi Y xi = xTi Zxi = 0 for all i < n. Therefore, Y
and Z have rank one, whence Y = yyT and Z = zzT for some y, z ∈ Rn+. We
then obtain that xTi y = xTi z = 0 for all i < n which implies that Y and Z must
be multiples of X = xxT . By 〈E, Y 〉 = 〈E,Z〉 = 1, we then get Y = Z = X
and consequently, X is an extreme point of Feas(PC∗).

To show the converse, assume that X is an extreme point of Feas(PC∗). By
complete positivity, we have X =

∑m
i=1 λixix

T
i with xi ∈ Rn \ {0} and λi ≥ 0

for all i = 1, . . . ,m, and
∑m

i=1 λi = 1. By the linear constraint, we get

1 = 〈E,X〉 =

m∑
i=1

λi(e
Txi)

2. (3.2)

Since xi ∈ Rn+ \ {0} for i = 1, . . . ,m, we have eTxi > 0 for all i. We define
yi = 1

eT xi
xi. Then yi ∈ ∆S and Yi = yiy

T
i ∈ Feas(PC∗). Consequently,

X =
m∑
i=1

λixix
T
i =

m∑
i=1

λi(e
Txi)

2yiy
T
i =

m∑
i=1

λi(e
Txi)

2Yi

is a convex combination of matrices Yi ∈ Feas(PC∗). Note that by (3.2), the
sum of the coefficients is one. By assumption, X is an extreme point, whence
X = Y1 = . . . = Ym and X = y1y

T
1 with y1 ∈ ∆S . �

By linearity of the objective function in (PC∗), an optimal solution X̄ of this
problem is attained at an extreme point of the feasible set, and by Lemma 3.2.1,
this solution is a rank one matrix, i.e., X̄ = x̄x̄T with x̄ ∈ ∆S . Since 〈Q, X̄〉 =
x̄TQx̄ and x̄ is feasible for the standard quadratic optimization problem, this
shows that the relaxation (PC∗) is an exact reformulation of (StQP).

Burer (2009) generalized this result and showed that every optimization
problem with quadratic objective, linear constraints and continuous and binary
variables can equivalently be written as a linear problem over C∗n. He considered
the problem

min xTQx+ 2cTx
s. t. aTi x = bi, i = 1, . . . ,m

x ≥ 0
xj ∈ {0, 1} ∀j ∈ B,

(QP)
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3.2. Copositive programming

where x ∈ Rn and B ⊆ {1, . . . , n}. We assume Feas(QP ) 6= ∅. This setting
includes many NP-hard combinatorial problems.

We assume that for all x ≥ 0 with aTi x = bi, i = 1, . . . ,m, we have 0 ≤ xj ≤ 1
for all j ∈ B. Then the following equivalence result can be shown.

Theorem 3.2.2 (Burer (2009, Theorem 2.6)) The completely positive program

min 〈Q,X〉+ 2cTx
s. t. aTi x = bi, i = 1, . . . ,m

aTi Xai = b2i , i = 1, . . . ,m
xj = Xjj ∀j ∈ B(

1 xT

x X

)
∈ C∗n+1

(QPC∗)

is equivalent to (QP), i.e., it has the same optimal value, and if (x̄, X̄) is
optimal for (QPC∗) then x̄ is in the convex hull of optimal solutions of (QP).

Moreover, Burer showed that if

there is a y ∈ Rm such that

m∑
i=1

yiai ≥ 0,

m∑
i=1

yibi = 1, (3.3)

then x can be eliminated in (QPC∗).

Theorem 3.2.3 (Burer (2009, Theorem 3.1)) Suppose that (3.3) holds, and
define α =

∑m
i=1 yiai. Then

min 〈Q,X〉+ 2cTXα
s. t. aTi Xα = bi, i = 1, . . . ,m

aTi Xai = b2i , i = 1, . . . ,m
(Xα)j = Xjj ∀j ∈ B
αTXα = 1
X ∈ C∗n

(QPC∗ ’)

is equivalent to (QP), i.e., it has the same optimal value, and if X̄ is optimal
for (QPC∗), then X̄α is in the convex hull of optimal solutions of (QP).

Note that by reformulating (QP) as a linear optimization problem over the
completely positive cone, the complexity of the problem is shifted entirely
to the cone constraint. Therefore, a better understanding of the completely
positive cone helps in solving nonconvex quadratic problems.
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3. Conic optimization

The result generalizes earlier results on the completely positive reformulation
of the standard quadratic optimization problem (Bomze et al., 2000) presented
above, the maximum stable set problem (de Klerk and Pasechnik, 2002), the
quadratic assignment problem (Povh, 2006; Povh and Rendl, 2009), and the
graph 3-partitioning problem (Povh, 2006; Povh and Rendl, 2007).

We briefly return to the standard quadratic optimization problem. In the
setting of (QP), we have c = 0, a = e, b = 1 and B = ∅. For y = 1,
property (3.3) holds, and we have α = e. The completely positive reformulation
we get by applying Theorem 3.2.3, is equivalent to (PC∗).

Burer’s result has been extended to problems where the nonnegativity con-
straint on x is replaced by a constraint x ∈ K where K ⊆ Rn is a nonempty
closed (convex) set respectively a closed convex cone. The conic reformulation
is then a linear problem over the cone C∗K. For details we refer to Dickinson et
al. (2012) and Burer (2012). Another extension due to Burer and Dong (2012)
concerns nonconvex quadratically constrained programs.
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4. Copositive projection

We investigate the problem of projecting a matrix A ∈ Sn onto the copositive
cone Cn and the completely positive cone C∗n.

We start by explaining the algorithm to project onto Cn. Since an exact
projection is hard to compute, we project the matrix onto the inner and outer
approximations of Cn introduced in Section 2.4.1. As these approximations
converge to Cn, we can approximate the projection of A onto Cn with arbitrary
precision. We will deduce this statement from a more general result presented
in Section 4.1.

After that, we proceed to study projections onto C∗n which can be derived
through projections onto Cn via a decomposition theorem by Moreau.

Finally, in Section 4.4, we show how these projections can be used to compute
factorizations of completely positive matrices.

The results of this chapter were published in Sponsel and Dür (2012).

4.1. Optimization by approximation

In this section, we show how we can use approximations to solve optimization
problems over the intractable cones Cn and C∗n. The results in this section are
similar to those in Bundfuss and Dür (2009) where this was done for linear
problems. Here, we provide more general convergence results for nonlinear
problems. We will use these results in Section 4.2 and Section 4.3 for the
projection onto Cn and C∗n.

Let K be a closed convex cone in Rn with nonempty interior. We consider
the problem

min f(x)
s. t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . p
x ∈ K

(PF∩K)

with f, gi, hj : Rn → R continuous. To facilitate notation, denote by F the set
of points in Rn that fulfill the equality and inequality constraints in (PF∩K).
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4. Copositive projection

We assume that both the objective function f and the set F are convex. More-
over, we assume that (PF∩K) is bounded from below, i.e.,

fmin := inf{f(x) : x ∈ F ∩ K} > −∞.

Let (Il)l and (Ol)l be nested sequences of inner respectively outer approx-
imations of K such that for l → ∞ we have Il → K (in the sense that for all
x ∈ int(K) there is an L ∈ N such that x ∈ Il for all l ≥ L) and Ol → K (i.e.,⋂
l∈NOl = K).
The following theorem shows that we can approximate the optimal value

of (PF∩K) with arbitrary precision by minimizing f over a sequence of inner
approximations of K.

Theorem 4.1.1 Let (Il)l be a nested sequence of inner approximations of K
as described above. Assume that (PF∩K) has a strictly feasible point, i.e., a
point x̂ ∈ F ∩ int(K). Let fl := inf{f(x) : x ∈ F ∩ Il}. Then

lim
l→∞

fl = fmin.

If the optimal values fl are attained in the points xl, then any accumulation
point x̄ of the sequence (xl)l is a minimizer of (PF∩K), so fmin = f(x̄) is also
attained and x̄ is a global solution to (PF∩K).

Proof The inner approximation property implies fl ≥ fmin for all l ∈ N. The
sequence (fl)l is monotone and bounded whence the limit exists. Consequently,
liml→∞ fl ≥ fmin.

To see the converse, take an ε ∈ (0, 1) and a point yε ∈ F ∩ K with f(yε) ≤
fmin + ε. Define

zε = (1− ε)yε + εx̂.

By construction, zε ∈ int(K) ∩ F . By the assumptions of the theorem, for
each ε there exists an lε ∈ N such that zε ∈ Il for all l ≥ lε. It follows that

lim
l→∞

fl ≤ f(zε) ≤ (1− ε)[fmin + ε] + εf(x̂).

Letting ε→ 0, we arrive at lim
l→∞

fl ≤ fmin, as desired.

Now assume that the optimal values fl are attained in xl ∈ F ∩ Il, and
take an accumulation point x̄ along with a subsequence (xk)k converging to it.
Then we get from continuity of f that

f(x̄) = lim
k→∞

f(xk) = fmin,

so fmin = f(x̄) is attained and x̄ is a minimizer of (PF∩K). �
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4.1. Optimization by approximation

We get the same result for sequences of outer approximations.

Theorem 4.1.2 Let (Ol)l be a nested sequence of outer approximations of K
as described above. Let fl := inf{f(x) : x ∈ F ∩ Ol}. Then

lim
l→∞

fl = fmin.

If the optimal values fl are attained in the points xl, then any accumulation
point x̄ of the sequence (xl)l is a minimizer of (PF∩K), so fmin = f(x̄) is also
attained and x̄ is a global solution to (PF∩K).

Proof As before, we immediately get from the outer approximation property
that fl ≤ fmin for all l ∈ N. The sequence is monotone and bounded, so the
limit exists and we have

lim
l→∞

fl ≤ fmin. (4.1)

There exists a sequence of points ol ∈ F ∩ Ol with

lim
l→∞

f(ol) = lim
l→∞

fl.

Because of
⋂
l∈NOl = K, we have

dist(ol,F ∩ K) := inf
x∈F∩K

‖ol − x‖ → 0.

So there exists a sequence xl ∈ F ∩ K with liml→∞ ‖xl − ol‖ = 0, and, by
continuity of f , we have liml→∞[f(xl) − f(ol)] = 0. Clearly, all of these xl
fulfill fmin ≤ f(xl), so we get

0 = lim
l→∞

[f(xl)− f(ol)] ≥ lim
l→∞

[fmin − f(ol)] = fmin − lim
l→∞

fl.

Combined with (4.1), this gives fmin = liml→∞ fl, as desired. Note that this
also shows that liml→∞ fl > −∞, even if some of the fl = −∞.

If the optimal values fl are attained, similar reasoning as in the proof of
Theorem 4.1.1 ensures the result. �

Remark 4.1.3 Observe that the infimum in (PF∩K) and the auxiliary prob-
lems is not necessarily attained. For a thorough discussion of this see Bomze
et al. (2012). Even if the minima are attained, the sequences (xl)l with
xl ∈ Argminx∈F∩Il f(x) respectively xl ∈ Argminx∈F∩Ol

f(x) do not nec-
essarily have an accumulation point. Stronger assumptions can be imposed
which guarantee existence of the accumulation points and convergence of the
solutions.
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4. Copositive projection

We will use the results of this section for the projection onto the cones of
copositive and completely positive matrices. But note that Theorem 4.1.1 and
Theorem 4.1.2 do not only hold for cones but for any closed convex set K
having a point x̂ ∈ int(K).

4.2. Projection onto the copositive cone

The problem of projecting a matrix A ∈ Sn onto the copositive cone can be
formulated as

min ‖X −A‖
s. t. X ∈ Cn.

(PC)

Obviously, this is a special case of (PF∩K). We use the Frobenius norm, i.e.,

‖A‖ =
√∑n

i,j=1 |Aij |2, although our results can be generalized to arbitrary

strictly convex norms. So the problem has a unique solution which we denote
by pr(Cn, A).

4.2.1. The algorithm

As in Section 2.4.1.2, let (Pl)l be a sequence of simplicial partitions of ∆S and
let

IPl
= {X ∈ Sn : vTXv ≥ 0 for all v ∈ VPl

,

uTXv ≥ 0 for all {u, v} ∈ EPl
}

and

OPl
= {X ∈ Sn : vTXv ≥ 0 for all v ∈ VPl

}

be the corresponding inner respectively outer approximations of Cn. Further-
more, for a partition P, let pr(IP , A) and pr(OP , A) denote the projection
of A onto IP respectively OP . For a given ε > 0, we want to compute an
ε-optimal solution of (PC), i.e., a feasible solution pr(IP , A) which satisfies a
certain ε-optimality condition, like

‖pr(IP , A)−A‖ − ‖pr(OP , A)−A‖ < ε

for absolute, or
‖pr(IP , A)−A‖
‖pr(OP , A)−A‖

< 1 + ε
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4.2. Projection onto the copositive cone

for relative ε-optimality.
We start with P = {∆S} and project A onto the corresponding inner ap-

proximation of Cn. If pr(IP , A) = A, then pr(Cn, A) = A, so we can stop. Oth-
erwise, we project A onto the corresponding outer approximation. If pr(IP , A)
and pr(OP , A) satisfy the ε-optimality condition, then pr(IP , A) is an ε-optimal
solution of (PC) and we can stop. Otherwise, we refine our partition through
bisection and iterate. The procedure is stated in Algorithm 4.2.1.

Algorithm 4.2.1: Projection of a symmetric matrix A onto the copos-
itive cone.

Input: A ∈ Sn, ε > 0
1 P ← {∆S}
2 solve

min ‖X −A‖
s.t. X ∈ IP

(PIP )

let pr(IP , A) denote the solution of this problem
3 if pr(IP , A) = A then
4 STOP: pr(IP , A) = pr(Cn, A)
5 end
6 solve

min ‖X −A‖
s.t. X ∈ OP

(POP )

let pr(OP , A) denote the solution of this problem
7 if pr(IP , A) and pr(OP , A) fulfill the stopping criterion then
8 STOP: pr(IP , A) is an ε-optimal solution of (PC)
9 end

10 choose ∆ ∈ P
11 bisect ∆ = ∆1 ∪∆2

12 P ← P \ {∆} ∪ {∆1,∆2}
13 go to 2

Output: ε-optimal solution pr(IP , A)

In the described procedure, we repeatedly have to solve problems of the
form (PIP ) and (POP ). This can be done by reformulating these problems
as second order cone problems and using suitable interior point solvers. An
alternative option is to use active set methods (see for example Lawson and
Hanson (1974) and Arioli et al. (1984)). The advantage of active set algorithms
is that they are well suited for warm starts which is advantageous in our setting,
since in successive iterations the corresponding problems (PIP ) and (POP )
differ in a small number of constraints only. Furthermore, we have IPl

⊆ IPl+1

for all l ∈ N which means that in each iteration pr(IP , A) can be used as a
feasible starting point for problem (PIP ) in the next iteration.
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4. Copositive projection

For the outer approximations, pr(OPl
, A) in iteration l is feasible in the next

iteration if and only if it fulfills ωTl pr(OPl
, A)ωl ≥ 0 where ωl denotes the

bisection point of iteration l. In that case, pr(OPl
, A) is also optimal for the

next subproblem (POPl+1
). Otherwise, we can easily compute a new feasible

starting point. Let

Xλ = λ pr(IPl
, A) + (1− λ) pr(OPl

, A)

with 0 ≤ λ ≤ 1. Then, the matrix Xλ∗ with λ∗ = min{λ : ωTl Xλωl ≥ 0}
is feasible for problem (POPl+1

), which means that we can take it as starting
point.

There is some freedom in the algorithm concerning how an edge is selected
and bisected. This question as well as the problem of redundancies appearing in
the subproblems are discussed in Bundfuss and Dür (2009, Section 5). Similar
techniques can be used here.

4.2.1.1. Convergence of the algorithm

We can use Theorems 4.1.1 and 4.1.2 to prove convergence of the algorithm.
Note that the problems (PIP ) and (POP ) are projections onto closed convex
sets with a strictly convex norm. Therefore, each problem has a unique optimal
solution.

Theorem 4.2.1 Let (Pl)l be a sequence of simplicial partitions of ∆S with
δ(Pl) → 0 as l → ∞. Then pr(IPl

, A) → pr(Cn, A) and pr(OPl
, A) →

pr(Cn, A).

Proof We first show that the sequences (pr(IPl
, A))l and (pr(OPl

, A))l possess
accumulation points, and then we apply Theorems 4.1.1 and 4.1.2.

We have 0 ∈ IPl
and 0 ∈ OPl

for all l ∈ N, so 0 is a feasible solution of
all (PIPl ) and (POPl ). It follows that for all l ∈ N

‖pr(IPl
, A)−A‖ ≤ ‖0−A‖ = ‖A‖

and
‖pr(OPl

, A)−A‖ ≤ ‖0−A‖ = ‖A‖.

Hence, we have for all l ∈ N that

‖pr(IPl
, A)‖ = ‖pr(IPl

, A)−A+A‖ ≤ ‖pr(IPl
, A)−A‖︸ ︷︷ ︸
≤‖A‖

+‖A‖ ≤ 2‖A‖
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4.2. Projection onto the copositive cone

and similarly

‖pr(OPl
, A)‖ ≤ 2‖A‖.

Since IPl
⊆ Cn, the sequence (pr(IPl

, A))l lies in the compact set

{X ∈ Cn : ‖X‖ ≤ 2‖A‖} .

Likewise, since OPl+1
⊆ OPl

for all l, the sequence (pr(OPl
, A))l lies in the

compact set

{X ∈ OP0 : ‖X‖ ≤ 2‖A‖} .

Consequently, both sequences have accumulation points which we denote byXI
and XO, respectively. Theorems 4.1.1 and 4.1.2 imply that XI and XO are
global minimizers of (PC), and since this problem has a unique solution, it
follows that XI = pr(Cn, A) = XO. We therefore have liml→∞ pr(IPl

, A) =
pr(Cn, A) and liml→∞ pr(OPl

, A) = pr(Cn, A), as desired. �

4.2.1.2. Example

To illustrate the algorithm, we consider the following example

min ‖X −A‖

s. t.

〈(
2 1
1 2

)
, X

〉
= 2

X ∈ C2

(P)

with A =

(
0.6 −1.2
−1.2 1.6

)
. The feasible set, which is the same as in Bundfuss

and Dür (2009, Example 4.1), is displayed in Figure 4.1. Since we consider

Figure 4.1.: Feasible set of (P)

symmetric matrices, C2 is a cone in R3, i.e., we identify X ∈ C2 with the
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4. Copositive projection

vector (X11, X22, X12)T . The copositive cone consists of all points above the
multicolored surface. The feasible set, which is the set of all points that lie in
the intersection of the copositive cone with the hyperplane that comes from
the linear constraint, is thus two dimensional.

We now want to approximate the projection of A onto the feasible set of (P)
by applying Algorithm 4.2.1. Figure 4.2 shows the first iterations.

A

Student Version of MATLAB

A

Student Version of MATLAB

A

Student Version of MATLAB

Iteration 1 Iteration 2 Iteration 3

A

Student Version of MATLAB

A

Student Version of MATLAB

A

Student Version of MATLAB

Iteration 4 Iteration 5 Iteration 6

Figure 4.2.: Iterations of the projection algorithm

As before, the feasible set is the set of all points bounded by the black
curved line. The inner approximations are represented by the green solid line
and the outer approximations by the blue dashed line. The projections onto
the inner and outer approximations are marked by small green and blue circles.
Note that in the first iteration, A lies in the outer approximation whence the
projection onto the outer approximation equals A.

In Figure 4.2, the projection of A does not look like the orthogonal projec-
tion. This comes from the fact that for drawing the 2-dimensional picture we
mapped every matrix X of the feasible set onto the vector (X11, X22)T . The
off-diagonal entries of the matrices are not displayed but implicitly given by
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4.2. Projection onto the copositive cone

the linear constraint. However, the restriction of the mapping

(
X11 X12

X21 X22

)
7→
(
X11

X22

)

to the plane given by the linear constraint is not isometric. Therefore, we
computed an orthogonal basis of the plane given by the linear constraint in
order to determine an isometric mapping of this plane to R2. This basis is
given by the matrices

1√
5

(
φ −1
−1 1− φ

)
and

1√
5

(
φ −1
−1 1− φ

)

(where φ = (1 +
√

5)/2 is the golden ratio) and these were used to produce the
metrically faithful pictures in Figure 4.3.

A

Student Version of MATLAB

A

Student Version of MATLAB

A

Student Version of MATLAB

Iteration 1 Iteration 2 Iteration 3

A

Student Version of MATLAB

A

Student Version of MATLAB

A

Student Version of MATLAB

Iteration 4 Iteration 5 Iteration 6

Figure 4.3.: Iterations of the projection algorithm, metrically faithful
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4. Copositive projection

4.3. Projection onto the completely positive cone

Next, we study the problem of projecting a matrix A ∈ Sn onto the completely
positive cone C∗n. As in the copositive case, we can approximate this projection
by projecting A onto a sequence of inner and outer approximations of C∗n.
Again, let (Pl)l be a sequence of simplicial partitions of ∆S and let O∗Pl

and I∗Pl

be the corresponding inner and outer approximations of C∗n as introduced in
Section 2.4.1.3. Recall that they were defined as

I∗Pl
=

 ∑
{u,v}∈EPl

λuv(uv
T + vuT ) +

∑
v∈VPl

λvvv
T : λuv, λv ∈ R+


and

O∗Pl
=

 ∑
v∈VPl

λvvv
T : λv ∈ R+

 .

As in the previous section, for a partition P, we denote by pr(O∗P , A) and pr(I∗P , A)
the projection of A onto O∗P respectively I∗P .

Although both I∗P and O∗P are polyhedral cones, neither of them is given
by a set of defining inequalities but rather through an ”inner” description – in
contrast to the approximations IP and OP of the copositive cone. Therefore,
solving even a linear problem over I∗P or O∗P is not straightforward. However,
we can use a dual approach, and instead of projecting the matrix A directly
onto I∗P respectively O∗P , we can work with IP respectively OP . This approach
uses a decomposition theorem by Moreau (1962) for which we need the concept
of the polar cone K� introduced in Section 2.1.

Theorem 4.3.1 (Moreau) Let K be a closed convex cone in Rn. For x, x1, x2 ∈
Rn, the following are equivalent:

(i) x = x1 + x2 with x1 ∈ K, x2 ∈ K� and 〈x1, x2〉 = 0,

(ii) x1 = pr(K, x) and x2 = pr(K�, x).

The decomposition described in the theorem is illustrated in Figure 4.4.

For any closed convex cone K we have

pr(K,−x) = −pr(−K, x).
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4.4. Factorization of a completely positive matrix

K◦

K

x
0

pr(K, x)

pr(K◦, x)

Figure 4.4.: Illustration of Moreau’s decomposition theorem

(cf. Hiriart-Urruty and Lemaréchal (1993, Section III.3.2)). Combined with
C�n = −C∗n, this gives

pr(C∗n, A) = pr(Cn,−A) +A.

The same holds for the approximating cones, i.e.,

pr(I∗P , A) = pr(IP ,−A) +A (4.2)

and
pr(O∗P , A) = pr(OP ,−A) +A. (4.3)

If (Pl)l is a sequence of simplicial partitions of ∆S with δ(Pl) → 0 as l →
∞, then according to Theorem 4.2.1 we have pr(IPl

, A) → pr(Cn, A) and
pr(OPl

, A)→ pr(Cn, A). This implies

lim
l→∞

pr(I∗Pl
, A) = lim

l→∞
pr(IPl

,−A) +A = pr(Cn,−A) +A = pr(C∗n, A)

and

lim
l→∞

pr(O∗Pl
, A) = lim

l→∞
pr(OPl

,−A) +A = pr(Cn,−A) +A = pr(C∗n, A).

So instead of projecting A onto I∗P respectively O∗P we can project −A onto IP
respectively OP , which are again second order cone problems over cones given
by a set of defining inequalities.

4.4. Factorization of a completely positive matrix

To the best of our knowledge, no algorithm is known for the problem of finding
a factorization of a general completely positive matrix A = XXT . Jarre and
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4. Copositive projection

Schmallowsky (2009) present a heuristic algorithm which for a given matrix
A ∈ Sn determines a matrix X ∈ Nn such that either XXT = A proving that
A ∈ C∗n, or such that XXT is in some sense close to A. Bomze (2009) deals
with the question of how to extend the factorization of an n×n matrix A to a
factorization of an (n+1)×(n+1) matrix containing A as a principal submatrix.
Dickinson and Dür (2012) study special cases where complete positivity of a
matrix can be checked in linear time, and show how to compute a minimal
rank one representation if such a matrix is found to be completely positive.
While the first approach may stagnate, the second requires knowledge about
the factorization of a principal submatrix, and the third one requires a special
structure of the matrix, we will show how to use projections to compute a
factorization for any matrix A lying in the interior of C∗n. The basic idea is to
find an inner approximation O∗P of C∗n such that A ∈ O∗P , and then use the
definition of this O∗P to extract a factorization of A.

So consider an n × n completely positive matrix A. If pr(O∗P , A) = A for
some partition P of the standard simplex, then we have A ∈ O∗P and hence

A =
∑
v∈VP

λvvv
T with λv ∈ R+. (4.4)

Therefore, we can find a nonnegative factorization of A by computing a fea-
sible solution λv of (4.4). This can be done by solving a linear optimization
problem with an arbitrary (linear) objective function and (4.4) as constraints.
Obviously, we are interested in sparse solutions, i.e., we want as few nonzero
λv’s in (4.4) as possible. Now if the linear feasibility problem is solved with
the simplex algorithm, then the optimal solution λ̄ is a vertex of the feasible
region and at most 1

2n(n+ 1) of its entries are nonzero. It was shown in Li et
al. (2004) that in this case the number of nonzero coefficients can be reduced
to 1

2n(n+ 1)− 1. But even then, the factorization obtained by this procedure
is not necessarily minimal.

Assuming the approximations to be nested, if A ∈ int(C∗n) and (Pl)l is a
sequence of simplicial partitions of ∆S with δ(Pl)→ 0, then there is an L ∈ N
such that A ∈ O∗Pl

for all l ≥ L. So for matrices A ∈ int(C∗n), the procedure
described above is finite. For matrices on the boundary of C∗n, we may not
find an inner approximation O∗P with A ∈ O∗P , even after a large number of
iterations. Nevertheless our approach is a substantial progress, since it allows
(at least in theory) to find factorizations of arbitrary matrices in int(C∗n).
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4.4.1. An illustrative example

We now illustrate our method with a small example. The interior of the com-
pletely positive cone has been characterized in Dür and Still (2008) and Dick-
inson (2010), so we know how to construct a matrix A ∈ int(C∗n). Consider

A =


2 1 1 1 2
1 2 2 1 1
1 2 6 5 1
1 1 5 6 2
2 1 1 2 3

 .

Since A can be written as

A =


1
1
1
1
1




1
1
1
1
1


T

+


0
1
1
0
0




0
1
1
0
0


T

+


0
0
2
2
0




0
0
2
2
0


T

+


0
0
0
1
1




0
0
0
1
1


T

+


1
0
0
0
1




1
0
0
0
1


T

,

(4.5)
we have A ∈ int(C∗5) according to Theorem 2.3.3. Furthermore, the factoriza-
tion (4.5) is minimal. This also follows from Theorem 2.3.3.

We now construct a simplicial partition P of ∆S such that A ∈ O∗P , and then
we compute a factorization of A with respect to the vertices of this partition.
We do this by projecting the matrix onto a sequence of inner approximations
of C∗5 and we attempt to guide the partitioning through the results of the
projections.

We start by explaining the partitioning strategy. Observe the following:
Since A ∈ C∗5 ⊆ I∗P , we have pr(I∗P , A) = A. As long as A /∈ O∗P , we have that
pr(O∗P , A) 6= A = pr(I∗P , A). According to (4.2) and (4.3), this is equivalent to

pr(OP ,−A) 6= pr(IP ,−A). (4.6)

We claim that then pr(OP ,−A) /∈ IP . To see this, observe that IP ⊂ OP
implies

‖−A− pr(OP ,−A)‖ ≤ ‖−A− pr(IP ,−A)‖. (4.7)

Now assume by contradiction that pr(OP ,−A) ∈ IP . Then by optimality of
pr(IP ,−A) we have

‖−A− pr(OP ,−A)‖ ≥ ‖−A− pr(IP ,−A)‖. (4.8)
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4. Copositive projection

From (4.7) and (4.8) and uniqueness of the projection we get pr(OP ,−A) =
pr(IP ,−A) which is a contradiction to (4.6). Therefore, we have pr(OP ,−A) /∈
IP .

By the definition of IP and OP , this means that there exists a violating
edge, i.e., an edge {u, v} ∈ EP with

uT pr(OP ,−A)v < 0.

This suggests the following strategy to generate partitions: Starting with
P = {∆S}, after each projection of −A onto OP we refine the current par-
tition by bisecting a longest violating edge. We do this until we have found
a partition P with uT pr(OP ,−A)v ≥ 0 for all {u, v} ∈ EP , which is equiv-
alent to A ∈ O∗P . To see this, first observe that uT pr(OP ,−A)v ≥ 0 for all
{u, v} ∈ EP is equivalent to pr(OP ,−A) ∈ IP . By (4.7) and (4.8), the latter
is equivalent to pr(OP ,−A) = pr(IP ,−A). Applying (4.2) and (4.3), this can
be written as pr(O∗P , A) = pr(I∗P , A) = A whence A ∈ O∗P .

Strictly speaking, this partitioning strategy does not guarantee δ(Pl) → 0,
however it seems to work well in numerical tests.

We implemented our approach in Matlab and computed the projections with
SeDuMi (Sturm, 1999). For the feasibility problem (4.4) we used the Matlab
solver linprog. For our example, we obtained a partition with 102 vertices.
In the optimal solution of the feasibility problem (4.4), 15 of the coefficients λv
are nonzero. These nonzero coefficients and the corresponding vertices are

v1 =
(
0.0000 0.0000 0.5000 0.5000 0.0000

)
, λv1 = 13.2572,

v2 =
(
0.5000 0.0000 0.0000 0.0000 0.5000

)
, λv2 = 0.9799,

v3 =
(
0.2500 0.2500 0.2500 0.0000 0.2500

)
, λv3 = 3.6273,

v4 =
(
0.1250 0.1250 0.2500 0.2500 0.2500

)
, λv4 = 2.3089,

v5 =
(
0.0000 0.2500 0.5000 0.2500 0.0000

)
, λv5 = 3.6723,

v6 =
(
0.0000 0.0000 0.2500 0.5000 0.2500

)
, λv6 = 0.9664,

v7 =
(
0.5000 0.1250 0.1250 0.0000 0.2500

)
, λv7 = 3.2720,

v8 =
(
0.2500 0.3750 0.1250 0.0000 0.2500

)
, λv8 = 1.6844,

v9 =
(
0.0000 0.4375 0.3125 0.1250 0.1250

)
, λv9 = 1.9127,

v10 =
(
0.0625 0.1875 0.3750 0.3750 0.0000

)
, λv10 = 2.9066,

v11 =
(
0.1875 0.0000 0.0625 0.3750 0.3750

)
, λv11 = 9.3450,

v12 =
(
0.0000 0.1875 0.0625 0.3750 0.3750

)
, λv12 = 0.8167,
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v13 =
(
0.3750 0.1250 0.3750 0.0000 0.1250

)
, λv13 = 0.1880,

v14 =
(
0.1250 0.3750 0.3750 0.1250 0.0000

)
, λv14 = 4.1370,

v15 =
(
0.1875 0.1875 0.0625 0.1875 0.3750

)
, λv15 = 3.9257.

The obtained factorization A =
∑15

i=1 λviviv
T
i is very different from (4.5).

Not only does it need 15 factors instead of 5, it also uses different points
v ∈ ∆S . Only (scaled versions of) v1 and v2 can be found in the original
factorization (4.5).

It is possible to reconstruct the original factorization with the above pro-
cedure, but this needs prior knowledge of the desired result. The following
partitioning shows how this can be achieved: Start with the standard simplex
∆S = conv({e1, . . . , e5}) and successively construct the bisection points

w1 = 1
2(e2 + e3) =

(
0.00 0.50 0.50 0.00 0.00

)
,

w2 = 1
2(e3 + e4) =

(
0.00 0.00 0.50 0.50 0.00

)
,

w3 = 1
2(e4 + e5) =

(
0.00 0.00 0.00 0.50 0.50

)
,

w4 = 1
2(e1 + e5) =

(
0.50 0.00 0.00 0.00 0.50

)
,

w5 = 1
2(w1 + w3) =

(
0.00 0.25 0.25 0.25 0.25

)
,

w6 = 1
5e1 + 4

5w5 =
(
0.20 0.20 0.20 0.20 0.20

)
.

For the resulting partition P with 11 vertices it turns out that A ∈ O∗P , and
we get a factorization with only 5 nonzero coefficients:

A = 4w1w
T
1 + 16w2w

T
2 + 4w3w

T
3 + 4w4w

T
4 + 25w6w

T
6 .

This factorization corresponds to the factorization of A in (4.5). Adapting the
partitioning strategy in this way was possible since we know how A was con-
structed. Guiding the partitioning in an efficient way would be desirable since
the subdivision strategy has a crucial influence on the number of iterations.
For general matrices, however, finding a suitable partitioning strategy seems a
difficult problem.
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5. Standard quadratic optimization
problems

In this chapter, we study the standard quadratic optimization problem, which
will be introduced in Section 5.1. As we have seen in Section 3.2, the problem
can be reformulated as a completely positive respectively copositive program.
In Section 5.2, we show that for special classes of objective functions, the relax-
ation resulting from replacing the completely positive respectively copositive
cone in the conic reformulation by a tractable one is exact. Based on these
results, in Section 5.3, we construct two algorithms to solve standard quadratic
optimization problems.

Since for n ≤ 4, every copositive and completely positive program can be
reformulated as a positive semidefinite program, the smallest dimension where
hard instances appear is n = 5. In Section 5.4, we will consider this case in
more detail and try two different approaches to handle the problem. Finally,
in Section 5.5, we study more general quadratic programs.

5.1. The standard quadratic optimization problem

Recall that the standard quadratic optimization problem (StQP) consists of
minimizing a quadratic function over the standard simplex, i.e.,

min xTQx
s. t. eTx = 1

x ≥ 0,
(StQP)

where Q is a symmetric n× n matrix. In the following, we denote an optimal
solution of (StQP) by x̄ and the corresponding objective value by ȳ. Solv-
ing general standard quadratic optimization problems is an NP-hard problem.
This follows from the fact that the maximum clique problem can be written
as a standard quadratic optimization problem (cf. Bomze (1998)).

As stated for example in Bomze (1998), the standard quadratic optimization
problem is shift-invariant, i.e., we have the following.
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Lemma 5.1.1 The minimizers of (StQP) remain the same if Q is replaced by
Q+ cE, c ∈ R.

Proof Let x ∈ ∆S and c ∈ R. Then

xT (Q+ cE)x = xTQx+ cxT eeTx = xTQx+ c. �

We have seen in Section 3.2 that the standard quadratic optimization prob-
lem has an exact reformulation as a completely positive optimization problem.
This reformulation is of the form

min 〈Q,X〉
s. t. 〈E,X〉 = 1

X ∈ C∗n.
(PC∗)

The dual of problem (PC∗) is

max y
s. t. Q− yE ∈ Cn.

(PC)

Note that for y < min{Qij : i, j = 1, . . . , n} the matrix Q− yE is positive and
lies thus in the interior of Cn. Furthermore, the matrix B = 1

n2+n
(E + I) is

feasible for (PC∗), and by Theorem 2.3.3 we have B ∈ int(C∗n). By the strong
conic duality theorem (cf. Theorem 3.1.2), we thus know that the optimal
values of (PC∗) and (PC) are attained and equal (cf. Bomze et al. (2012)).

5.1.1. Optimal solutions

It is easy to see that any convex combination of matrices xxT , where x is an
optimal solution of (StQP), is optimal for (PC∗). We now assume that we
have an optimal solution X̄ of (PC∗) and want to derive an optimal solution
of (StQP).

Proposition 5.1.2 Let X̄ be an optimal solution of problem (PC∗). Then for
any factorization X̄ =

∑m
i=1 xix

T
i with xi ≥ 0, xi 6= 0 for all i = 1, . . . ,m, the

vector 1
eT xi

xi is an optimal solution of (StQP).

Proof Let X̄ be optimal for (PC∗). Then X̄ is completely positive which
means that it can be written as

X̄ =

m∑
i=1

xix
T
i (5.1)
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with xi ≥ 0, xi 6= 0 for all i = 1, . . . ,m. Furthermore, from the linear constraint
we get

〈E, X̄〉 =
m∑
i=1

(eTxi)
2 = 1. (5.2)

Defining zi = 1
eT xi

xi and µi = (eTxi)
2, i = 1, . . . ,m, we have

X̄ =

m∑
i=1

(eTxi)
2
( 1

eTxi
xi
)( 1

eTxi
xi
)T

=

m∑
i=1

µiziz
T
i . (5.3)

The coefficients µi are all positive and by (5.2) we have
∑m

i=1 µi = 1. Con-
sequently, X̄ is a convex combination of the matrices ziz

T
i , and by defini-

tion all vectors zi are feasible for (StQP). This means that zTi Qzi ≥ ȳ for all
i = 1, . . . ,m, where ȳ denotes the optimal value of (StQP).

We now want to show that the vectors zi are also all optimal. We assume by
contradiction that zj is not optimal for some j ∈ {1, . . . ,m}, i.e., zTj Qzj > ȳ.
Then

〈Q, X̄〉 =
∑
i 6=j

µi z
T
i Qzi︸ ︷︷ ︸
≥ȳ

+µj z
T
j Qzj︸ ︷︷ ︸
>ȳ

> (1− µj)ȳ + µj ȳ = ȳ

which contradicts optimality of X̄. Consequently, for any factorization X̄ =∑m
i=1 xix

T
i with xi ≥ 0, xi 6= 0, i = 1, . . . ,m, we have that the vectors 1

eT xi
xi

are optimal for (StQP). �

Note that, unless Q is a multiple of E, an optimal solution X̄ of (PC∗)
necessarily lies on the boundary of C∗n. Therefore, the procedure of Section 4.4
does not necessarily produce a factorization of X̄. Hence, it is not clear how
to compute the vectors xi respectively zi = 1

eT xi
xi.

In the special case of X̄ being of rank one, we have X̄ = xxT with x ≥ 0
and (eTx)2 = 1 implying eTx = 1. This means that the vector x lies in the
feasible set of (StQP), and since problem (PC∗) and (StQP) have the same
optimal value, it follows that x is also optimal for (StQP). We can compute x
by multiplying X̄ with the all-ones vector, i.e., we have X̄ = xxT with x ∈ ∆S

implying X̄e = xxT e = x. We have thus shown the following.

Proposition 5.1.3 If an optimal solution X̄ of (PC∗) is of rank one, then X̄e
is an optimal solution of (StQP).

Note that problem (PC∗) has at least one optimal solution of rank one: By
linearity of the objective function in (PC∗), an optimal solution X̄ of this
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problem is attained at an extreme point of the feasible set, and by Lemma 3.2.1,
this solution is a rank one matrix.

If, on the other hand, X̄ has rank r > 1, then for any factorization of
the form (5.1) we have m ≥ 2. We now want to analyze whether in that
case X̄e is still optimal for (StQP). As we have seen above, we can rewrite
any factorization of X̄ of the form (5.1) as convex combination of rank one
matrices ziz

T
i with zi ∈ ∆S as in (5.3). Therefore, we have

X̄e =
m∑
i=1

µiziz
T
i e =

m∑
i=1

µizi.

This shows that X̄e can be written as convex combination of vectors zi ∈ ∆S ,
i = 1, . . . ,m, and that X̄e is thus feasible for (StQP). Consequently, we have

(X̄e)TQ(X̄e) ≥ ȳ.

If the objective function of (StQP) is convex, we also have

(X̄e)TQ(X̄e) =
( r∑
i=1

µizi
)T
Q
( r∑
i=1

µizi
)
≤

r∑
i=1

µiz
T
i Qzi = 〈Q, X̄〉 = ȳ

and thus optimality of X̄e. This result is stated in the following proposition.

Proposition 5.1.4 If (StQP) has a convex objective function and X̄ is an
optimal solution of (PC∗), then X̄e is an optimal solution of (StQP).

If, however, the quadratic form is not convex, then in general X̄e is not
optimal for (StQP). To see this, we consider the 2 × 2 matrix Q = −I. Then
X̄ = 1

2I is an optimal solution of (PC∗) with ȳ = −1 but (X̄e)TQ(X̄e) = −1
2 >

ȳ which shows that X̄e is not optimal for (StQP).

5.2. Relaxations

Since standard quadratic optimization problems are hard to solve in general,
we study relaxations of the completely positive reformulation (PC∗) and the
copositive reformulation (PC) resulting from replacing C∗n respectively Cn by a
tractable cone. In Section 5.2.1 we consider special problem classes for which
such a relaxation can be shown to be exact and in Section 5.2.2, we show
under which conditions we can derive an optimal solution x̄ of (StQP) from an
optimal solution X̄ of an exact relaxation of (PC∗).
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5.2.1. Special classes of objective functions

Replacing Cn in problem (PC) by a tractable cone likeNn, S+
n or S+

n +Nn results
in a linear respectively semidefinite program providing a lower bound for the
original problem. Depending on properties of the matrix Q in the objective
function, we will exhibit cases when the solutions of these problems provide
not only bounds but give the exact optimal value of (PC) and thus of (StQP).
On the dual side, this corresponds to replacing the completely positive cone
in (PC∗) by Nn, S+

n respectively S+
n ∩Nn yielding a relaxation of the completely

positive program. By the conic duality theorem, if replacing the copositive cone
in (PC) by Nn, S+

n respectively S+
n +Nn results in an equivalent problem then

the corresponding dual problem is an exact relaxation of (PC∗).

5.2.1.1. Diagonal matrices

We assume that Q is a diagonal matrix with Q11 ≥ Q22 ≥ . . . ≥ Qnn. First we
consider the case Qnn ≤ 0.

Proposition 5.2.1 If Qnn ≤ 0, then Q− ȳE ∈ Nn.

Proof We will show that ȳ = Qnn. Clearly, ȳ ≤ Qnn since otherwise (Q −
ȳE)nn < 0 which contradicts copositivity of this matrix. On the other hand,
we have Qij ≥ Qnn for all 1 ≤ i, j ≤ n which implies Q − QnnE ∈ Nn ⊆ Cn.
Therefore, we have ȳ = Qnn. �

Remark 5.2.2 If Qnn = 0, we have Q−ȳE = Q which implies that the matrix
is positive semidefinite as well as nonnegative.

We now consider the case Qnn > 0. Note that in that case Q is positive
semidefinite which means that (StQP) is a convex optimization problem. The
following result is a special case of a result of Anstreicher and Burer (2005)
(cf. Proposition 5.2.7).

Proposition 5.2.3 If Qnn > 0, then Q− ȳE ∈ S+
n .

Proof Note that Q being a diagonal matrix with Q11 ≥ Q22 ≥ . . . ≥ Qnn > 0
implies that Q is nonnegative and thus copositive. Consequently, we have ȳ ≥ 0
implying that the copositive matrix Q− ȳE has only nonpositive off-diagonal
entries. By Proposition 2.2.15, we can conclude that the matrix is positive
semidefinite. �
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We now want to determine the optimal value ȳ. To this end, we will apply the
copositivity criterion of Theorem 2.2.13 to a sequence of principal submatrices
of Q−yE. Note that under the assumption of Q being a diagonal matrix with
Q11 ≥ Q22 ≥ . . . ≥ Qnn > 0, we have ȳ ≥ 0 and thus b = −ȳeT ≤ 0. We can
therefore apply the reduced criterion of Corollary 2.2.14 to show the following.

Proposition 5.2.4 If Q is a diagonal matrix with diagonal entries Q11 ≥
Q22 ≥ . . . , Qnn > 0, then the optimal value ȳ of (StQP) can be computed
recursively, i.e., we have ȳ = ȳ1, where ȳn = Qnn and ȳi = (ȳi+1Qii)/(ȳi+1 +
Qii) for i = n− 1, . . . , 1.

Proof For 1 ≤ i ≤ n, we denote by (Q − yE)(i) the submatrix of Q − yE
consisting of the rows and columns i, . . . , n and consider these matrices for
i = n, n − 1, . . . , 1. Furthermore, we denote by ȳi the maximum value of y
for which (Q − yE)(i) is copositive. Starting with (Q − yE)(n) = (Qnn − y),
we immediately get ȳn = Qnn. Applying Corollary 2.2.14 to the following
partitions of (Q− yE)(i), i = n− 1, . . . , 1,

(Q− yE)(i) =

(
Qii − y −yeT
−ye (Q− yE)(i+1)

)
,

we have that ȳi = min{Qii, ŷi}, where ŷi is the maximum value of y such that

(Qii − y)(Q− yE)(i+1) − y2E

is copositive. Note that for y = Qii we have

(Qii − y)(Q− yE)(i+1) − y2E = −y2E = −Q2
iiE

which is not copositive since by assumption Qii > 0. This shows that ŷi < Qii
and thus ȳi = ŷi. Moreover, for y < Qii we have 1

Qii−y > 0 which means that
copositivity of

(Qii − y)(Q− yE)(i+1) − y2E

is equivalent to copositivity of

(Q− yE)(i+1) − y2

Qii − y
E =

(
Q− y(Qii − y) + y2

Qii − y
E
)(i+1)

.

This matrix is copositive if

y(Qii − y) + y2

Qii − y
≤ ȳi+1
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which is equivalent to

y ≤ ȳi+1Qii
ȳi+1 +Qii

.

Since ŷi denotes the maximum value of y such that (Qii−y)(Q−yE)(i+1)−y2E
is copositive, we can conclude that

ŷi =
ȳi+1Qii
ȳi+1 +Qii

.

Therefore, we have

ȳi = min{Qii,
ȳi+1Qii
ȳi+1 +Qii

} =
ȳi+1Qii
ȳi+1 +Qii

.

Recursively, we get ȳ = ȳ1, where ȳn = Qnn and ȳi = (ȳi+1Qii)/(ȳi+1 + Qii)
for i = n− 1, . . . , 1. �

Remark 5.2.5 The same result can be obtained by applying the preprocessing
described in Bomze and Locatelli (2012, Section 3.1) which applies to standard
quadratic optimization problems with a separable objective function Q = D+
1
2(ceT + ecT ) where D is a diagonal matrix with 0 < Dii ≤ Djj for some i 6= j,
c ∈ Rn and ci = cj . In that case, the problem can be reduced to a standard
quadratic optimization problem with a separable objective function in Rn−1,
i.e., the problem can be rewritten as

min xT Q̃x
s. t. eTx = 1

x ≥ 0,

with Q̃ = D̃ + 1
2(c̃eT + ec̃T ) where c̃ = (ci, c

T
[i,j])

T and

D̃ =

(
DiiDjj

Dii+Djj
0

0 D[i,j]

)
,

with c[i,j] resulting from c by deleting the i-th and j-th entry and D[i,j] denoting
the principal submatrix of D resulting from deleting the i-th and j-th row and
column.

Since we have ci = 0 for all i ∈ {1, . . . , n}, the procedure can be applied
n − 1 times until we have a problem of dimension one and can immediately
deduce the optimal value.
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5.2.1.2. Positive semidefinite matrices

As stated in Anstreicher and Burer (2005), for positive semidefinite matrices
we have the following result.

Proposition 5.2.6 For Q ∈ S+
n problem (StQP) is equivalent to the Shor

relaxation
min 〈Q,X〉

s. t.

(
1 xT

x X

)
∈ S+

n+1

x ∈ ∆S .

(Shor)

Proof Let ȳ and ȳS denote the optimal solution values of (StQP) and (Shor)
respectively. An optimal solution x̄ of (StQP) gives a feasible solution (x,X)
of (Shor) by setting x = x̄ and X = x̄x̄T . Since the corresponding solution
value equals ȳ, we obviously have ȳS ≤ ȳ.

We now want to show that ȳ ≤ ȳS. To this let (x̄S, X̄S) denote an optimal
solution of (Shor). We assume by contradiction ȳS < ȳ which can equivalently
be written as 〈Q, X̄S− x̄x̄T 〉 < 0, thus 〈Q, X̄S−xxT 〉 < 0 for all x ∈ ∆S . Since
by assumption Q is positive semidefinite, this implies X̄S − xxT /∈ S+

n for all
x ∈ ∆S which contradicts feasibility of (x̄S, X̄S). Therefore we have ȳ ≤ ȳS

and thus equivalence of (StQP) and the Shor relaxation. �

We now want to consider the reformulation (PC) of the standard quadratic
optimization problem and the question if for Q ∈ S+

n we can replace Cn by
a computationally tractable cone. Anstreicher and Burer (2005) have shown
that for positive semidefinite Q, the relaxation resulting from replacing the
completely positive cone in (PC∗) by S+

n ∩ Nn is equivalent to (PC∗). Let
A = Q− yE for some y < min{Qij : i, j = 1, . . . , n} and let B = 1

n2+n
(E + I).

By Lemma 2.1.10, A is strictly feasible for the relaxation of (PC) resulting from
replacing Cn by S+

n +Nn, and B is strictly feasible for the doubly nonnegative
relaxation of (PC∗). We can thus apply the strong conic duality theorem to
conclude the following.

Proposition 5.2.7 If Q is positive semidefinite, then Q− ȳE ∈ S+
n +Nn.

We cannot reduce S+
n +Nn to one of the two cones S+

n or Nn, since in general
Q ∈ S+

n does neither imply Q − ȳE ∈ S+
n nor Q − ȳE ∈ Nn as the following

two examples show.
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Example 5.2.8 We consider the standard quadratic optimization problem
whose objective function is given by the matrix

Q =

(
5 2
2 1

)
∈ S++

2 .

The optimal solution of (StQP) is x̄ = (0, 1)T with objective function value
ȳ = 1. However, the matrix

Q− ȳE =

(
4 1
1 0

)
is not positive semidefinite.

Example 5.2.9 Consider the following positive definite matrix

Q =

(
2 −1
−1 2

)
∈ S++

2 .

The optimal solution of the corresponding (StQP) is x̄ = (0.5, 0.5)T with ob-
jective function value ȳ = 0.5. The matrix

Q− ȳE =

(
1.5 −1.5
−1.5 1.5

)
does not lie in the nonnegative cone.

Note that any completely positive matrix is positive semidefinite. There-
fore, the results of this section also apply to standard quadratic optimization
problems with Q ∈ C∗n.

5.2.1.3. Negative semidefinite matrices

If Q is negative semidefinite, then the associated quadratic form is a concave
function and by the following lemma, the optimal value of (StQP) is the lowest
entry of Q along the diagonal.

Lemma 5.2.10 The minimum of a concave function over a compact convex
set K is attained at an extreme point of K.

For a proof, see Rockafellar (1970, Corollary 32.3.1).
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Since the extreme points of the standard simplex are the vertices ei, i =
1, . . . , n, this means that

ȳ = min{Qii : i = 1, . . . , n},

and if j is such that Qjj = ȳ, then ej is an optimal solution. We deduce the
following result.

Proposition 5.2.11 If Q is negative semidefinite, then Q− ȳE ∈ Nn.

Proof Let Qii denote the lowest entry of Q along the diagonal implying ȳ =
Qii according to Lemma 5.2.10. Then Qkl ≥ Qii for all 1 ≤ k, l ≤ n, since
otherwise the quadratic form takes a positive value for x = ek − el which
contradicts the assumption that Q is negative semidefinite. Consequently, we
have Q− ȳE = Q−QiiE ∈ Nn. �

5.2.1.4. Interior matrices

A matrix Q ∈ Sn is said to be interior if the corresponding (StQP) has an
optimal solution x̄ which lies in the interior of the standard simplex, i.e., x̄
has no zero entries. The problem can have other optimal solutions having zero
entries. As in Johnson and Reams (2008), consider for example the matrix

Q =

 1 −1 1
−1 1 −1

1 −1 1

 .

Then the standard quadratic optimization problem with Q in the objective
function has (1

4 ,
1
2 ,

1
4)T as optimal solution which implies that the matrix is

interior, although the point (1
2 ,

1
2 , 0)T is also optimal.

We will use the following result about copositive interior matrices.

Lemma 5.2.12 (Johnson and Reams (2008, Corollary 2)) If a matrix is copos-
itive and interior, then it is positive semidefinite.

With this result we can prove the following.

Proposition 5.2.13 If Q is interior, then Q− ȳE ∈ S+
n .

Proof Let Q be interior. Then, by Lemma 5.1.1, the copositive matrix Q− ȳE
is also interior since it has the same minimizers as Q. Thus it is positive
semidefinite according to Lemma 5.2.12. �

Note that every diagonal matrix with Qnn > 0 is interior. Therefore, the
result is a generalization of Proposition 5.2.3.
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5.2.1.5. Rank one matrices

We consider the case that Q is a rank one matrix, i.e., Q = qqT for some
q ∈ Rn. Our treatment of this case differs from the other special cases de-
scribed before in the sense that we do not use reformulation (PC) but show
how problem (StQP) can be transformed into a linear program. To this end,
we take a look at the objective function. We want to minimize

xTQx = xT qqTx = (qTx)2.

The value of (qTx)2 is minimal if and only if |qTx| is minimal. To minimize
|qTx|, we introduce a variable z ∈ R and solve the following linear program

min z
s. t. z ≥ qTx

z ≥ −qTx
x ∈ ∆S .

(5.4)

If (x̄, z̄) is an optimal solution of (5.4), then x̄ is a minimizer of (StQP) and
the optimal value of (StQP) is z̄2 = (qT x̄)2 = x̄TQx̄.

5.2.1.6. Some other classes of objective functions

We want to consider some more special classes of objective functions. Since
standard quadratic optimization problems are shift invariant, we can perturb
every matrix Q such that it is nonnegative, i.e. we consider Q+ cE with c ≥
max{−Qij : i, j = 1, . . . , n}. This shows that assuming Q to be nonnegative is
no restriction.

For any cone K ( Cn there is a copositive matrix Q /∈ K, and we have
Q + cE ∈ Nn. This shows that for Q ∈ Nn replacing the copositive cone
in (PC) by a cone K ( Cn does not yield an exact reformulation of the problem.
Therefore, for Q ∈ Nn there is in general no exact reformulation of (PC∗)
resulting from replacing the completely positive cone by some tractable cone
K ) C∗n. Consequently, the same is true for a general matrix Q ∈ S+

n + Nn.
Since any nonnegative matrix is copositive, the same holds for Q ∈ Cn, i.e., for
Q ∈ Cn, there is in general no tractable exact reformulation of (PC∗).

We now consider the cones Krn of Parrilo’s approximation hierarchy (cf. Sec-
tion 2.4.2). By similar reasoning, we can show that if Q ∈ Krn, r ∈ N, replacing
the copositive cone in (PC) by Krn does not yield an exact reformulation of the
problem. For any r ∈ N, there is a copositive matrix Q which does not lie
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in Krn. The perturbed matrix Q + cE with c = max{−Qij : i, j = 1, . . . , n} is
nonnegative and is thus an element of Krn for all r ∈ N by

Q+ cE ∈ Nn ⊆ S+
n +Nn = K0

n ⊆ Krn for all r ∈ N.

This shows that we cannot replace the copositive cone in problem (PC) by Krn
since Q /∈ Krn.

5.2.2. Deriving an optimal solution for the standard quadratic
optimization problem

We have seen in Section 5.1.1 that if X̄ is an optimal solution of (PC∗) and the
quadratic form xTQx is convex on ∆S , then X̄e is optimal for (StQP). The
same holds for general instances if X̄ is of rank one. If replacing the completely
positive cone by a tractable cone yields an exact relaxation of (PC∗), this
means that solving this relaxation gives us the optimal value of (StQP). But
the corresponding optimal solution X̄ is not necessarily completely positive.
Therefore, the question arises if X̄e is feasible for (StQP), and under which
conditions it is also optimal.

In the following, we assume that X̄ is an optimal solution of

min 〈Q,X〉
s. t. 〈E,X〉 = 1

X ∈ S+
n ∩Nn

(PS+∩N )

and that (PS+∩N ) is an exact relaxation of (PC∗). As we have seen in Sec-
tion 5.2.1, this holds for example if Q is a diagonal matrix, an interior matrix,
or if it is positive or negative semidefinite.

First note that 〈E, X̄〉 = 1 is equivalent to eT (X̄e) = 1. Since X̄ is nonneg-
ative we have X̄e ≥ 0, and consequently, X̄e is feasible for (StQP).

We first consider the case that X̄ is a rank one matrix. Since X̄ is positive
semidefinite, we have X̄ = xxT for some x ∈ Rn. By nonnegativity of X̄, the
vector x is either nonnegative or nonpositive. Since the matrix xxT is the same
in both cases, we can assume x to be nonnegative. Consequently, X̄ is optimal
for (PC∗) and, as shown in Section 5.1.1, X̄e = x is optimal for (StQP). This
result is stated in the following proposition.

Proposition 5.2.14 Assume that (PS+∩N ) is an exact relaxation of (PC∗).
If an optimal solution X̄ of (PS+∩N ) is of rank one, then X̄e is an optimal
solution of (StQP).
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We now assume that X̄ has rank r ≥ 2. To analyze optimality of X̄e we will
use the following lemma (Tian, 2012, Theorem 50).

Lemma 5.2.15 Let A ∈ S++
n , b ∈ Rn and B = bbT . If a nonzero matrix

X ∈ Sn with rank(X) = r satisfies

〈A,X〉 ≤ 1

〈B,X〉 = 1

X ∈ S+
n ,

then there exists a decomposition X =
∑r

i=1 µixix
T
i with

∑r
i=1 µi = 1 and

µi > 0, xTi Axi ≤ 1, bTxi = 1 for all i = 1, . . . , r.

To apply the lemma we set b = e and B = eeT . Furthermore, we have to find
a matrix A ∈ S++

n such that adding 〈A,X〉 ≤ 1 to the constraints of (PS+∩N )
does not change the feasible set. Note that 〈E,X〉 = 1 and X ∈ Nn implies
〈I,X〉 ≤ 1. We can thus set A = I. Then by Lemma 5.2.15, there exists a
decomposition X̄ =

∑r
i=1 µixix

T
i with

∑r
i=1 µi = 1 and µi > 0, xTi Ixi ≤ 1,

eTxi = 1 for all i = 1, . . . , r, where r is the rank of X̄. Consequently, we have

X̄e =
r∑
i=1

µixix
T
i e =

r∑
i=1

µixi.

Since X̄e is feasible for (StQP), we have

(X̄e)TQ(X̄e) ≥ ȳ.

As in Section 5.1.1, if the objective function of (StQP) is convex, we also have

(X̄e)TQ(X̄e) =
( r∑
i=1

µixi
)T
Q
( r∑
i=1

µixi
)
≤

r∑
i=1

µix
T
i Qxi = 〈Q, X̄〉 = ȳ

and thus optimality of X̄e. This result is stated in the following proposition.

Proposition 5.2.16 Assume that (PS+∩N ) is an exact relaxation of (PC∗).
If (StQP) has a convex objective function and X̄ is an optimal solution of (PS+∩N ),
then X̄e is an optimal solution of (StQP).

If Q is positive semidefinite, then the corresponding quadratic form clearly
is convex. Note that this includes the special case of diagonal matrices having
no negative diagonal entry. We now want to show that we can also assume
convexity for Q being interior. As stated in Proposition 5.2.13, if Q is interior
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then Q− ȳE ∈ S+
n and the quadratic form xT (Q− ȳE)x is thus convex. Since

for x ∈ ∆S we have xT (Q − ȳE)x = xTQx − ȳ, it follows that the quadratic
form xTQx is convex on ∆S .

If the quadratic form is not convex, in particular if Q is a diagonal matrix
having a negative entry or if Q is negative semidefinite, then in general X̄e is
not optimal for (StQP) even if the relaxation (PS+∩N ) is exact. This follows
from the fact that even for X̄ being completely positive, X̄e is in general not
optimal for (StQP) (cf. Section 5.1.1).

5.3. Algorithms

In this section, we present two algorithms to solve standard quadratic op-
timization problems. Both are based on the idea to split the problem into
subproblems of smaller dimension. This process is iterated until the resulting
problems have a structure that allows to solve them. We will first explain
the algorithms in Section 5.3.1 and 5.3.2 and then apply them to some test
instances and compare the results in Section 5.3.4.

5.3.1. Algorithm 1

We present an algorithm to solve standard quadratic optimization problems
by subdividing the problem into subproblems with decreasing dimension. As
we have seen in Section 5.2.1.2 and 5.2.1.3, if the matrix Q is either positive
or negative semidefinite we can compute the optimal value of (StQP) by solv-
ing a semidefinite respectively linear program. If, in contrast, the matrix is
indefinite, we will first reformulate the problem. To this end, note that for
any feasible solution x we have xn = 1 −

∑n−1
i=1 xi. Using this property, we

reformulate the problem as follows

min x̃T Q̃x̃+ c̃T x̃+ d̃
s. t. eT x̃ ≤ 1

x̃ ≥ 0 ,

(StQP’)

where Q̃ is an (n − 1) × (n − 1) matrix, c̃ is a vector of dimension n − 1, d̃ is
a constant, and x̃ is a vector in Rn−1. We want to determine Q̃, c̃ and d̃ such
that (StQP’) and (StQP) are equivalent in the sense that they have the same
optimal value and such that x̃ is an optimal solution of (StQP’) if and only
if (x̃1, ..., x̃n−1, 1 −

∑n−1
i=1 x̃i)

T is an optimal solution of (StQP). To do so, we
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consider problem (StQP) and set xn = 1−
∑n−1

i=1 xi. We have

xTQx =
n−1∑
i,j=1

xixjQij +
n−1∑
j=1

xnxjQnj +
n−1∑
i=1

xnxiQin + x2
nQnn . (5.5)

Replacing xn by 1−
∑n−1

i=1 xi, we get

n−1∑
j=1

xnxjQnj =
n−1∑
j=1

(
1−

n−1∑
i=1

xi

)
xjQnj =

n−1∑
j=1

xjQnj −
n−1∑
i,j=1

xixjQnj ,

n−1∑
i=1

xnxiQin =

n−1∑
i=1

(
1−

n−1∑
j=1

xj

)
xiQin =

n−1∑
i=1

xiQin −
n−1∑
i,j=1

xixjQin

and

x2
nQnn =

(
1−

n−1∑
i=1

xi

)2
Qnn =

(
1− 2

n−1∑
i=1

xi +
( n−1∑
i=1

xi

)2)
Qnn

= Qnn − 2

n−1∑
i=1

xiQnn +

n−1∑
i,j=1

xixjQnn

Consequently, equation (5.5) can equivalently be written as

xTQx =
n−1∑
i=1,j

xixjQij +
n−1∑
j=1

xjQnj −
n−1∑
i,j=1

xixjQnj +
n−1∑
i=1

xiQin −
n−1∑
i,j=1

xixjQin

+Qnn − 2
n−1∑
i=1

xiQnn +
n−1∑
i,j=1

xixjQnn .

For x ∈ Feas(StQP) and x̃ ∈ Feas(StQP’), we thus have

xTQx = x̃T Q̃x̃+ c̃T x̃+ d̃

with

Q̃ij = Qij −Qin −Qnj +Qnn for i, j = 1, . . . , n− 1, (5.6)

c̃i = 2(Qni −Qnn) for i = 1, . . . , n− 1, (5.7)

d̃ = Qnn . (5.8)
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We consider problem (StQP’). If Q̃ is positive semidefinite, the problem is
convex and can be solved in polynomial time, for example by interior-point
methods (for details see Nesterov and Nemirovskii (1987)). If Q̃ is negative
semidefinite, then by Lemma 5.2.10, the minimum is achieved at an extreme
point of the feasible set and

ȳ = min{Q̃ii + c̃i + d̃ : i = 1, . . . , n− 1}.

Otherwise, if Q̃ is indefinite, we will use the following property to decrease the
dimension of the problem.

Proposition 5.3.1 (Tuy (1998, Proposition 3.18)) The minimum (or maxi-
mum) of an indefinite quadratic function on a compact set is attained at a
boundary point.

This means that at least one of the constraints in (StQP’) is active at the
optimal solution. By setting one of the constraints active at a time, we get n
subproblems of (StQP’): If the linear constraint is active we get

min x̃T Q̃x̃+ c̃T x̃+ d̃
s. t. eT x̃ = 1

x̃ ≥ 0 .

(5.9)

For the nonnegativity constraint, we get for each i = 1, . . . , n−1 a subproblem
of the following form

min x̃T Q̃x̃+ c̃T x̃+ d̃
s. t. eT x̃ ≤ 1

x̃ ≥ 0
x̃i = 0 .

The latter is equivalent to

min xT Q̃[i,i]x+ c̃T[i]x+ d̃

s. t. eTx ≤ 1
x ≥ 0 ,

(5.10)

where Q̃[i,i] denotes the principal submatrix of Q̃ resulting from deleting the
i-th row and column, c̃[i] is the vector c without the i-th entry and x is a vector
in Rn−2. We then get the optimal value ȳ of (StQP’) respectively (StQP) by
taking the minimum over the optimal values of (5.9) and (5.10).
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We now consider these subproblems in more detail. Since the feasible set of
problem (5.9) is the standard simplex in Rn−1, we can reformulate the problem
as

min x̃TMx̃
s. t. eT x̃ = 1

x̃ ≥ 0

with M = Q̃+ 1
2(c̃eT + ec̃T ) + d̃E. This is a standard quadratic optimization

problem in Rn−1 which means that we can again apply the described method
to solve it iteratively. Problem (5.10) is of the form (StQP’) and we can
either solve it directly if the matrix in the objective function is positive or
negative semidefinite, or we subdivide the problem into subproblems of smaller
dimension and iterate.

The described procedure is stated in Algorithm 5.3.1.

5.3.2. Algorithm 2

We present a similar algorithm to solve standard quadratic optimization prob-
lems which is also based on subdividing the problem into subproblems with
decreasing dimension. Again, if the matrix Q is either positive or negative
semidefinite, we can compute the optimal value of (StQP) by solving a semidef-
inite respectively linear program. If, on the other hand, the matrix is indefinite
then we will use the concept of interior matrices. Depending whether the ma-
trix is interior or not we either get the optimal value by solving a semidefinite
program or we can subdivide the problem into subproblems of smaller dimen-
sion. To check whether Q is interior, we will use the following characterization
due to Johnson and Reams (2008, Theorem 1).

Theorem 5.3.2 A matrix A ∈ Sn is interior if and only if (i) and (ii) hold.

(i) There exists u > 0, ‖u‖1 = 1, and µ ∈ R such that Au = µe.

(ii) yTAy ≥ 0 for all y ∈ Rn such that eT y = 0.

Note that (i) is numerically difficult to check because of the strict inequality
u > 0. We will show that we can reformulate property (i) in Theorem 5.3.2
such that it can be checked by solving a linear feasibility problem.

Lemma 5.3.3 The following are equivalent

(i) there exists u > 0, ‖u‖1 = 1, and µ ∈ R such that Au = µe;
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(i’) there exists v ∈ Rn, vi ≥ 1 for all i = 1, . . . , n, and η ∈ R such that
Av = ηe.

Algorithm 5.3.1: Computing the optimal value ȳ of (StQP).

Input: Q ∈ Sn
1 J1 ← {Q}
2 J2 ← ∅
3 ȳ ←∞
4 while J1 6= ∅ or J2 6= ∅ do
5 if J1 6= ∅ then
6 choose A ∈ J1, let k denote the number of rows of A
7 if A is positive semidefinite then
8 ŷ = max{y : A− yE ∈ S+

k +Nk}
9 ȳ ← min{ŷ, ȳ}

10 J1 ← J1 \ {A}
11 else if A is negative semidefinite then
12 ŷ = max{y : A− yE ∈ Nk}
13 ȳ ← min{ŷ, ȳ}
14 J1 ← J1 \ {A}
15 else

16 J2 ← J2 ∪ {(Ã, c̃, d̃)} with Q̃, c̃ and d̃ derived from A as in (5.6)-(5.8)
17 end

18 else
19 choose (A, c, d) ∈ J2, let k denote the number of rows of A
20 if A is positive semidefinite then
21 solve

min xTAx+ cTx+ d
s. t. eTx ≤ 1

x ≥ 0

22 denote the solution value by ŷ
23 ȳ ← min{ŷ, ȳ}
24 J2 ← J2 \ {(A, c, d)}
25 else if A is negative semidefinite then
26 ŷ = min{Aii + ci + di : i = 1, . . . , k}
27 ȳ = min{ŷ, ȳ}
28 J2 ← J2 \ {(A, c, d)}
29 else
30 J1 ← J1 ∪ {A+ 1

2
(ceT + ecT ) + dE}

31 J2 ← J2 ∪ {(A[1,1], c[1], d), (A[2,2], c[2], d), . . . , (A[k,k], c[k], d)}
32 end

33 end

34 end
Output: optimal solution value ȳ of (StQP)
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Proof Assume that property (i) holds, i.e., there exists u > 0, ‖u‖1 = 1,
and µ ∈ R such that Au = µe. Let umin = min{ui : i = 1, . . . , n} and set
v = 1

umin
u. Then vi ≥ 1 for all i = 1, . . . , n, and Av = 1

umin
Au = 1

umin
µe.

Setting η = 1
umin

µ, we get Av = ηe showing that (i’) holds.

Next we show that (i’) implies (i). To this assume that there exists v ∈ Rn,
vi ≥ 1 for all i = 1, . . . , n, and η ∈ R such that Av = ηe. Let u = 1

‖v‖1 v.

Then u > 0 and ‖u‖1 = 1. Furthermore, for µ = 1
‖v‖1 η we get Au = 1

‖v‖1Av =
1
‖v‖1 ηe = µe showing that (i) holds. �

If Q is indefinite, we first check if property (i’) of Lemma 5.3.3 holds. If
there is a v ∈ Rn and an η ∈ R fulfilling the conditions in (i’), we still have to
check property (ii) to know if Q is interior. Instead of doing this directly, we
solve the following semidefinite program which is a relaxation of (PC∗)

min 〈Q,X〉
s. t. 〈E,X〉 = 1

X ∈ S+
n .

(PS+)

By Proposition 5.2.13, ifQ is interior then (PS+) is an exact relaxation of (StQP)
and, in particular, it is bounded. Therefore, we can conclude that Q is not
interior if (PS+) is unbounded. Assuming that (i’) holds, this means that (ii)
has to be violated.

We now consider the case that (PS+) is bounded and want to show that
in that case the relaxation is exact, i.e., we get the optimal value ȳ of (PC∗)
respectively (StQP). To this we need the following lemma.

Lemma 5.3.4 If there exists y ∈ Rn, eT y = 0 such that yTQy < 0, then the
problem (PS+) in unbounded.

Proof Assume that there exists y ∈ Rn, eT y = 0 such that yTQy < 0. Let X
be feasible for (PS+). Then X + λyyT is feasible for (PS+) for all λ ≥ 0 and
〈Q,X+λyyT 〉 → −∞ as λ→∞ which shows that the problem is unbounded.�

Therefore, if the problem is bounded, we know by the result of Lemma 5.3.4
that property (ii) holds. Under the assumption that (i’) holds, this means that
the matrix Q is interior and, by Proposition 5.2.13, we get the optimal solution
value ȳ of (StQP) by solving problem (PS+).

If (i’) or (ii) is violated, we can conclude that the matrix is not interior which
means that the optimal solution x̄ of (StQP) has at least one zero entry. For
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each i = 1, . . . , n, we consider the subproblem

min xTQx
s. t. eTx = 1

x ≥ 0
xi = 0

which is equivalent to the following standard quadratic optimization problem
in Rn−1

min xTQ[i,i]x

s. t. eTx = 1
x ≥ 0 ,

where again Q[i,i] denotes the principal submatrix of Q resulting from deleting
the i-th row and column. Denoting the optimal value of each of these sub-
problems by ȳi, we get the optimal value ȳ of (StQP) by taking the minimum
over these values. As before, if the matrix Q[i,i] is either positive or negative
semidefinite we can compute ȳi by solving a semidefinite respectively linear
program. Otherwise the matrix is indefinite and we again check if it is inte-
rior. If it is, we solve the SDP-relaxation (PS+) to get the optimal solution
value. Otherwise, we subdivide the problem into subproblems of smaller di-
mension and iterate. The described procedure is stated in Algorithm 5.3.2.

5.3.2.1. An extension

In every iteration of Algorithm 5.3.2, if the matrix A in question is indefinite,
we first have to solve a linear feasibility problem and possibly a semidefinite
program to check if A is interior. To make the algorithm more efficient, we
want to reduce the number of semidefinite programs that have to be solved.
To this end, we consider perturbations of A of the form A + cE, c ∈ R, and
start with the following observation.

Lemma 5.3.5 Let A ∈ Sn and c ∈ R. Then A is interior if and only if A+cE
is interior.

Proof The statement follows immediately from the fact that for every c ∈ R
the matrix A+ cE has the same minimizers as A. �

We now set c = −min{Qij : i, j = 1, . . . , n}. As every matrix A ∈ J in the
algorithm is a principal submatrix of Q or equals Q, it follows that A+ cE is
nonnegative and thus copositive. By Lemma 5.2.12, every copositive interior
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Algorithm 5.3.2: Computing the optimal value ȳ of (StQP).

Input: Q ∈ Sn
1 J ← {Q}
2 ȳ ←∞
3 while J 6= ∅ do
4 choose A ∈ J , let k denote the number of rows of A
5 if A is positive semidefinite then
6 ŷ = max{y : A− yE ∈ S+

k +Nk}
7 ȳ ← min{ŷ, ȳ}
8 J ← J \ {A}
9 else if A is negative semidefinite then

10 ŷ = max{y : A− yE ∈ Nk}
11 ȳ ← min{ŷ, ȳ}
12 J ← J \ {A}
13 else

14 if ∃v ∈ Rk, vi ≥ 1 ∀i = 1, . . . , k, and η ∈ R such that Av = ηe then
15 solve

min 〈A,X〉
s. t. 〈E,X〉 = 1

X ∈ S+
k .

16 if the problem is unbounded then
17 J ← J \ {A} ∪ {A[1,1], A[2,2], . . . , A[k,k]}
18 go to 4

19 else
20 denote the solution value by ŷ
21 ȳ ← min{ŷ, ȳ}
22 J ← J \ {A}
23 end

24 end

25 end

26 end
Output: optimal solution value ȳ of (StQP)

matrix is positive semidefinite. We can therefore conclude that if A+ cE has
negative eigenvalues, then the matrix is not interior. By Lemma 5.3.5, this
implies that A is not interior either.

By applying the following lemma, we can even say more.

Lemma 5.3.6 Let A be a symmetric n × n matrix with eigenvalues λ1(A) ≥
λ2(A) ≥ . . . ≥ λn(A), and let A0 be a k × k principal submatrix of A. Then

λmin(A0) ≤ λk(A) (5.11)
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with λmin(A0) denoting the minimum eigenvalue of A0.

A proof can be found in Bernstein (2009, Corollary 8.4.6).

If the matrix A + cE has p negative eigenvalues λn−p+1, . . . , λn, then by
Lemma 5.3.6 every principal submatrix of A + cE of order k ≥ n − p + 1
has at least one negative eigenvalue implying that the corresponding principal
submatrix of A is not interior by the same reasoning as above.

Instead of checking for every indefinite matrix A ∈ J in the algorithm if it is
interior by solving the linear feasibility problem in line 14 and the semidefinite
program in line 15, we thus compute the eigenvalues of A+ cE. Let p denote
the number of negative eigenvalues. If p ≥ 1, then in line 17, we remove A
from the set J and add all principal submatrices of order n− p. If p = 0, we
cannot decide if A is interior or not as the following example shows. Let

Q1 =

(
4.25 1.25
1.25 0.25

)
and Q2 =

(
0 −2
−2 0

)
.

The matrices are both indefinite and the matrices Qk + ckE with

ck = −min{(Qk)ij : i, j = 1, 2},

k = 1, 2, have no negative eigenvalue, i.e., pk = 0 for k = 1, 2. The first
matrix Q1 is not interior whereas the second matrix Q2 is interior showing that
both cases can occur. Consequently, if p = 0, we have to check property (i)
and (ii) by solving the linear feasibility problem and the semidefinite program
in line 14 respectively line 15 of Algorithm 5.3.2 to decide if A is interior.

Nevertheless, if p ≥ 1, it is not necessary to check property (i) and (ii), and
if p > 1, when subdividing the problem into subproblems, the dimension can
even be decreased by more than one.

5.3.3. Computing an optimal solution of (StQP)

By slightly modifying Algorithm 5.3.1 and Algorithm 5.3.2, it is possible not
only to compute the optimal value of a standard quadratic optimization prob-
lem but also an optimal solution x̄.

We first consider the case where A is positive semidefinite or interior. If
we determine the optimal value ŷ of the subproblem by solving the doubly
nonnegative relaxation of (PC∗), which is exact for these cases, then according
to the results of Section 5.2.2, the vector X̂e, with X̂ denoting the optimal
solution of the doubly nonnegative program, is optimal for (StQP).
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If A is negative semidefinite, by Lemma 5.2.10, we have ŷ = min{Aii : i =
1, . . . , n} and ej with j chosen such that Ajj = ŷ, is an optimal solution of the
standard quadratic optimization problem with the matrix A in the objective
function.

For the subproblems with (A, c, d) ∈ J2 in Algorithm 5.3.1 positive or neg-
ative semidefinite, we also get an optimal solution x̂ for each subproblem.

This means that for every subproblem that is considered in the algorithms
we can compute an optimal solution x̂ and in the updating steps for the optimal
value ȳ, we can also update x̄ and thus compute an optimal solution of (StQP).

5.3.4. Numerical results

To illustrate the behavior of the algorithms presented in Section 5.3.1 and 5.3.2,
we apply them to some instances of the standard quadratic optimization prob-
lem taken from Bomze and de Klerk (2002).

The matrix in the objective function of the first test instance is

Q1 =


1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1


and the corresponding (StQP) has optimal value ȳ = 0.5.

The second instance is a standard quadratic optimization problem with

Q2 =



1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1


in the objective function and optimal value ȳ = 1

3 .
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The objective of the third example is to maximize the quadratic form xTQ3x
over the standard simplex with

Q3 =


14 15 16 0 0
15 14 12.5 22.5 15
16 12.5 10 26.5 16
0 22.5 26.5 0 0
0 15 16 0 14

 .

The optimal value of this instance is ȳ = 161
3 . We will transform this problem

to a minimization problem before solving it.

The last problem that we consider is a standard quadratic optimization
problem with

Q4 = Q̃− 0.1 rrT + 0.4012E

where

Q̃ =


0.82 −0.23 0.155 −0.013 −0.314
−0.23 0.484 0.346 0.197 0.592
0.155 0.346 0.298 0.143 0.419
−0.013 0.197 0.143 0.172 0.362
−0.314 0.592 0.419 0.362 0.916

 and r =


1.78
0.37
0.237
0.315
0.49

 .

The optimal value of this problem is ȳ = 0.4839.

We want to solve these instances with Algorithm 5.3.1 from Section 5.3.1 and
with both the basic and the extended version of Algorithm 5.3.2 described in
Section 5.3.2. To this end, we implemented the approaches in Matlab and used
Yalmip (Löfberg, 2004) and SeDuMi (Sturm, 1999) to solve the semidefinite
programs.

To decrease the number of quadratic programs that have to be solved, be-
fore adding an instance (A[i,i], c[i], d) to the set J2 in line 16 or line 31 of
Algorithm 5.3.1, we first check if this matrix is already in J2 or has been
in the set in some previous iteration, and only add it if this is not the case.
Moreover, we only add a matrix to J1 in line 30 of the algorithm, if it has not
been added to the set before. In Algorithm 5.3.2, we do the same check before
adding a principal submatrix to the set J in line 17.

The results can be found in Tables 5.1 to 5.3. Table 5.1 shows for every in-
stance the number of iterations and the number of times that a matrix A ∈ J1

respectively A ∈ J2 is positive or negative semidefinite. The number of times
that a matrix A is found to be positive or negative semidefinite is relatively
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small compared to the number of iterations. This means that in most itera-
tions, the considered matrix is indefinite and the problem is thus subdivided
into subproblems with smaller dimension.

A ∈ J1 A ∈ J2

Inst. # it. # A psd # A nsd # A psd # A nsd

Q1 20 3 0 5 0
Q2 3485 11 0 10 0
Q3 43 0 0 12 4
Q4 25 3 0 13 0

Table 5.1.: Results for Algorithm 5.3.1

Table 5.2 and Table 5.3 show for every instance the number of iterations, the
number of positive semidefinite matrices A, the number of negative semidefinite
matrices A and the number of times that the linear feasibility problem and the
semidefinite program had to be solved to check if A is interior.

Inst. # it. # A psd # A nsd # LP # SDP

Q1 13 5 0 8 1
Q2 2307 12 0 2295 243
Q3 27 0 6 21 14
Q4 20 14 0 6 0

Table 5.2.: Results for Algorithm 5.3.2

As in Table 5.1, for both versions of Algorithm 5.3.2, the number of iterations
is considerably higher than the number of times that the considered matrix is
positive or negative semidefinite which means that it is indefinite most of the
time.

Comparing the results of Table 5.1 and Table 5.2, we see that using the con-
cept of interior matrices allows to reduce the number of iterations. Another
substantial decrease of iterations as well as of the number of linear feasibility
problems and semidefinite programs is obtained by applying the extended ver-
sion of Algorithm 5.3.2. In Table 5.3, the number of linear and semidefinite
programs to check if the considered matrix A is interior is small compared to
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Inst. # it. # A psd # A nsd # LP # SDP

Q1 9 5 0 0 0
Q2 1586 12 0 1 1
Q3 22 0 6 6 6
Q4 20 14 0 0 0

Table 5.3.: Results for the extended version of Algorithm 5.3.2

the number of iterations. This comes from the fact that every time that A
is indefinite and p, the number of negative eigenvalues of A + cE, is at least
one, no linear or semidefinite program has to be solved. In these cases, the
matrix is removed from the set J and replaced by the principal submatrices
of order n− p. Moreover, these submatrices are only added to J if they have
not been added to the set before. It can thus happen that in some iterations
a matrix is removed from J without adding any of its principal submatrices.

As the results show, the number of iterations of both types of algorithms
quickly increases with growing dimension of the problem. On the other hand,
for the test instances, the number of convex quadratic, linear or semidefinite
programs that have to be solved is relatively small which seems promising.
Comparing Algorithm 5.3.2 with the extended version, the strategy of the
extended version already allows to notably decrease the number of iterations.
This comes from the fact that in that approach, when subdividing the problem
into subproblems, the dimension can often be reduced by more than one. But
to make the algorithm applicable to larger problems it is necessary to find
strategies to reduce the number of iterations even more.

5.4. Standard quadratic optimization problems in R5

For n ≤ 4, we have Cn = S+
n +Nn which means that we can compute the optimal

value of (StQP) by replacing the copositive cone in the reformulation (PC)
by S+

n + Nn or the completely positive cone in (PC∗) by S+
n ∩ Nn and solve

the resulting semidefinite program. For n ≥ 5, this does not hold anymore
and we now want to study different approaches to solve standard quadratic
optimization problems in R5 since this is the smallest dimension where hard
instances appear. Unfortunately, the approaches do not lead to a method for
solving standard quadratic optimization problems, reinforcing how hard it is
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to solve these problems even in small dimensions.

5.4.1. Reducing the dimension

Since copositive and completely positive programs in R4 can be reformulated
as semidefinite programs and then be solved, an obvious approach to solve
standard quadratic optimization problems in R5 is to consider the conic refor-
mulation (PC) or (PC∗) and to try to reduce the dimension of the problem. In
Section 5.3, we have already seen two algorithms that are based on the idea to
subdivide the problem into subproblems of smaller dimension. We now want
to describe another approach to reduce the dimension of the problem.

Considering the copositivity criterion of Theorem 2.2.13 for a matrix A ∈ Sn,
we see that the dimension of the matrices considered in the three conditions
is at most n − 1. Therefore, we consider reformulation (PC) of the standard
quadratic optimization problem and try to reduce the dimension of the problem
by applying this criterion. To solve (PC) we have to maximize y such that the
matrixQ−yE is copositive. Applying Theorem 2.2.13 to the following partition
of Q− yE

Q− yE =

(
a− y (b− ye)T
b− ye C − yE

)
with a ∈ R, b ∈ R4 and C ∈ S4, we get that Q − yE is copositive if and only
if each of the following is fulfilled:

(i) a− y ≥ 0,

(ii) C − yE is copositive,

(iii) Each x ≥ 0 with x 6= 0 and (b− ye)Tx ≤ 0 satisfies

xT
(
(a− y)(C − yE)− (b− ye)(b− ye)T

)
x ≥ 0. (5.12)

Let ȳ(i), ȳ(ii) respectively ȳ(iii) denote the maximum value of y such that prop-
erty (i), (ii) respectively (iii) is fulfilled. Then the optimal solution value of (PC)
is

ȳ = min{ȳ(i), ȳ(ii), ȳ(iii)}.

Obviously, the optimal value of the first property is ȳ(i) = a. The maxi-
mum value of y such that property (ii) holds can be determined by solving a
semidefinite program, since C − yE is a 4 × 4 matrix and thus copositive if
and only if it has a representation as the sum of a positive semidefinite and a
nonnegative matrix.
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We now consider the third property in more detail. First note that the
inequality in (5.12) is always fulfilled for x = 0. We can therefore rewrite (iii)
as

(iii’) Each x ≥ 0 with (b− ye)Tx ≤ 0 satisfies

xT
(
(a− y)(C − yE)− (b− ye)(b− ye)T

)
x ≥ 0.

This means that we want to maximize y such that the matrix

M(y) = (a− y)(C − yE)− (b− ye)(b− ye)T

= aC − yaE − yC + y2E − bbT + ybeT + yebT − y2E

= (aC − bbT )− y(C + aE − beT − ebT )

is K(y)-semidefinite with

K(y) = {x ∈ R4 : x ≥ 0, (b− ye)Tx ≤ 0}.

Note that this cone depends on y. By the following result, K-semidefiniteness
can be reduced to copositivity.

Lemma 5.4.1 (Eichfelder and Jahn (2008, Corollary 2.21)) Let K ⊆ Rn be a
polyhedral cone and let A ∈ Sn. Then there is a matrix K̄ ∈ Rn×s with

K = {x ∈ Rn : x = K̄u, u ∈ Rs+},

and A is K-semidefinite if and only if K̄TAK̄ is copositive.

For the sake of readability, in the following we will not distinguish between
an extreme ray and a vector generating this extreme ray.

Applying Lemma 5.4.1, we want to maximize y such that the matrix
K̄T
y M(y)K̄y is copositive. To do so, we first have to determine the matrix K̄y

which has the extreme rays of K(y) = {x ∈ R4 : x ≥ 0, (b − ye)Tx ≤ 0} as
columns.

To determine the extreme rays of K(y), we need the concept of adjacent
extreme rays. Two extreme rays u 6= v of a pointed polyhedral cone P are
called adjacent if the minimal face of P containing u and v contains no other
extreme rays. This can be characterized as follows, see Fukuda and Prodon
(1996, Proposition 7).
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Proposition 5.4.2 Let P = {x ∈ Rn : Ax ≤ 0}, where A is an m× n matrix
with rows aT1 , . . . , a

T
m and rank(A) = n. Two extreme rays u and v in P

are adjacent if and only if rank(AJ) = n − 2, where J = I(u) ∩ I(v) with
I(u) = {i : aTi u = 0}, I(v) = {i : aTi v = 0}, and AJ denotes the matrix with
rows aTj , j ∈ J .

We write K(y) as

K(y) = R4
+ ∩ {x ∈ R4 : (b− ye)Tx ≤ 0}

and first determine which of the extreme rays of P = R4
+ = {x ∈ R4 : Ax ≤ 0}

with A = −I are adjacent. The set of extreme rays of R4
+ is V = {e1, . . . , e4}

and for each extreme ray ei we have I(ei) = {1, . . . , 4} \ {i}. Consequently, we
have I(ei) ∩ I(ej) = {1, . . . , 4} \ {i, j} and |I(ei) ∩ I(ej)| = n− 2 for all i 6= j
implying that rank(AI(ei)∩I(ej)) = n− 2 for all i 6= j. By Proposition 5.4.2, all
extreme rays in V are adjacent.

Next, we use the following lemma to determine the extreme rays of K(y).

Lemma 5.4.3 Let P = {x ∈ Rn : Ax ≤ 0} with A ∈ Rm×n and rank(A) = n.
Let V be the set of extreme rays of P , and a ∈ Rn. Then

W = {v ∈ V : aT v ≤ 0}
∪ {(aTu)v − (aT v)u : u, v adjacent in V, aTu > 0, aT v < 0}

is the set of extreme rays of P ∩ {x ∈ Rn : aTx ≤ 0}.

A proof can be found in Fukuda and Prodon (1996, Lemma 8).
Applying Lemma 5.4.3, the set of extreme rays of

K(y) = R4
+ ∩ {x ∈ R4 : (b− ye)Tx ≤ 0}

is

W (y) = {ei : (b− ye)T ei ≤ 0}
∪ {((b− ye)T ei)ej − ((b− ye)T ej)ei : i 6= j, (b− ye)T ei > 0,

(b− ye)T ej < 0}
= {ei : bi ≤ y} ∪ {(bi − y)ej − (bj − y)ei : i 6= j, bi > y, bj < y}.

Clearly, the extreme rays of K(y) also depend on y. The number of extreme
rays depends on the signs of the entries of b − ye. If the vector b − ye has
three positive and one negative entry, or if it has two positive, one zero and
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one negative entry, or if it has one positive, two zero and one negative entry,
then K(y) has four extreme rays. If b− ye has one positive, one zero and two
negative entries, then K(y) has five extreme rays. And if b−ye has one positive
and three negative entries, or if it has two positive and two negative entries,
then K(y) has six extreme rays. Consequently, the matrix M(y) is of order
s = 4, s = 5 or s = 6.

For s = 4, the matrix K̄T
y M(y)K̄y is copositive if and only if it can be written

as the sum of a positive semidefinite and a nonnegative matrix. For s = 5 and
s = 6, copositivity is difficult to check. We will therefore reduce the dimension
of the matrices under consideration by applying Theorem 2.1.7.

Recall that our goal is to maximize y such that K̄T
y M(y)K̄y is copositive

or, equivalently, such that M(y) is K(y)-semidefinite. By definition, the ma-
trix M(y) is K(y)-semidefinite if xTM(y)x ≥ 0 for all x ∈ K(y), which is equiv-
alent to xTM(y)x ≥ 0 for all x ∈ K1∪ . . .∪Km, where {K1, . . . ,Km} is any par-
tition of K(y) such that Kj ⊆ K(y) for all j = 1, . . . ,m, and

⋃m
j=1Kj = K(y).

The latter means that M(y) is Kj-semidefinite for all j = 1, . . . ,m.

By Theorem 2.1.7, every x ∈ K(y) can be represented as a nonnegative com-
bination of at most four extreme rays of K(y). Therefore, every x ∈ K(y) lies
in some set Kj if we partition K(y) as follows: Let Kj = cone(Wj) where Wj ,
j = 1, . . . ,

(
s
4

)
, are the four-element subsets of the set of extreme rays of K(y).

Then the matrix M(y) is K(y)-semidefinite if and only if it is Kj-semidefinite
for all j = 1, . . . ,

(
s
4

)
. Denoting by K̄j the matrix having the extreme rays of Kj

as columns, this means that we want to determine the maximum value of y
such that K̄T

j M(y)K̄j is copositive for all j = 1, . . . ,
(
s
4

)
. As these are matrices

of order 4, copositivity of the matrices is equivalent to K̄T
j M(y)K̄j having a

representation as the sum of a positive semidefinite and a nonnegative matrix.
But note that not only M(y) but also the extreme rays of K(y) and thus the
matrices K̄j depend on y.

We have thus reduced the standard quadratic programming problem in R5

to the problem of maximizing y such that one or several 4 × 4 matrices are
copositive. The problem in this approach is that the dependence of the consid-
ered 4×4 matrices K̄T

j M(y)K̄j on y is not linear and hence, it is hard to solve

these programs. Moreover, also the number of matrices K̄T
j M(y)K̄j depends

on y.

For a fixed value of y, however, we can test copositivity of the matrices
K̄T
j M(y)K̄j , j =, . . . ,

(
s
4

)
, by solving a semidefinite program. This allows us to

compute bounds on ȳ.

Danninger (1990) presents a generalized version of this approach to check
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copositivity of symmetric n × n matrices. The reduction of dimension and
partitioning of cones is then iterated until small dimensions are reached such
that copositivity can be checked by applying known copositivity criteria.

5.4.2. Optimizing over K1
5

By Theorem 2.4.5, every copositive 5 × 5 matrix can be scaled into K1
5. This

means that for any 5 × 5 matrix, copositivity can be checked by scaling and
testing if the scaled matrix lies in K1

5. Therefore, we will try to reformulate
the copositive reformulation of the standard quadratic optimization problem
in R5 as a problem over the cone K1

5.
We want to maximize y such that the matrix Q− yE is copositive which is,

by Theorem 2.4.5, equivalent to the following problem

max y
s. t. D(Q− yE)D ∈ K1

5

D ∈ D ,
(PK1

5
)

where D denotes the set of diagonal matrices with strictly positive diagonal
entries, i.e.,

D = {Diag(d) : d ∈ Rn++} .
As we have seen in Section 2.4.2, testing if a matrix is in K1

n can be done by
solving the system of linear matrix inequalities (2.5)–(2.8). Consequently, the
matrix D(Q−yE)D is in K1

5 if and only if there are matrices M1, . . . ,M5 ∈ S5

such that

D(Q− yE)D −M i � 0 , i = 1, . . . , 5 (5.13)

M i
ii = 0 , i = 1, . . . , 5 (5.14)

M i
jj + 2M j

ij = 0 , ∀ i 6= j (5.15)

M i
jk +M j

ik +Mk
ij ≥ 0 , ∀ i < j < k . (5.16)

We want to reformulate this system by using the well known fact that the
positive semidefinite cone is invariant under scaling:

Lemma 5.4.4 Let D ∈ D. Then A ∈ S+
n if and only if DAD ∈ S+

n .

Proof Let D ∈ D, x ∈ Rn and y = D−1x. Note that the mapping x 7→ D−1x
is a bijection on Rn. Then

xTAx = (DD−1x)TA(DD−1x) = (Dy)TA(Dy) = yTDADy

showing the result. �
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For D ∈ D we also have D−1 ∈ D. Consequently, inequality (5.13) holds if and
only if

Q− yE −D−1M iD−1 � 0 for i = 1, . . . , 5 . (5.17)

Setting Zi = D−1M iD−1, i = 1, . . . , 5, inequality (5.17) can be written as

Q− yE − Zi � 0 for i = 1, . . . , 5 ,

and since di > 0, this is equivalent to

1
di
Q− y 1

di
E − 1

di
Zi � 0 for i = 1, . . . , 5 .

Considering (5.14), we have

M i
ii = 0 ⇔ 1

d2i
M i
ii = (D−1M iD−1)ii = Ziii = 0 ⇔ 1

di
Ziii = 0 .

For (5.15), we have

M i
jj + 2M j

ij = d2
jZ

i
jj + 2didjZ

j
ij = 0

⇔ 1
di
Zijj + 2 1

dj
Zjij = 0 .

Considering (5.16), we have

M i
jk +M j

ik +Mk
ij = djdkZ

i
jk + didkZ

i
ik + didjZ

k
ij ≥ 0

⇔ 1
di
Zijk + 1

dj
Zjik + 1

dk
Zkij ≥ 0 .

Setting W i = 1
di
Zi and pi = 1

di
, we can thus conclude that there are matrices

M1, . . . ,M5 ∈ S5 such that the system (5.13)-(5.16) holds if and only if there
are matrices W 1, . . . ,W 5 ∈ S5 such that

piQ− piyE −W i � 0 , i = 1, . . . , 5 (5.18)

W i
ii = 0 , i = 1, . . . , 5 (5.19)

W i
jj + 2W j

ij = 0 , ∀ i 6= j (5.20)

W i
jk +W j

ik +W k
ij ≥ 0 , ∀ i < j < k . (5.21)

Consequently, the matrix Q−yE is copositive if and only if there are scalars
p1, . . . , p5 > 0 such that the system (5.18)-(5.21) has a solution. The difficulty
appearing here lies in the fact that, for y considered as a variable that we want
to maximize, inequality (5.18) is not linear but bilinear. We thus get a bilinear
semidefinite optimization problem which is NP-hard (Toker and Özbay, 1995).
However, there exists software to solve nonlinear semidefinite programs, for
example PENNON (Koc̆vara and Stingl, 2008). But since this thesis is con-
cerned with linear conic problems only, we do not pursue this approach any
further.
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5.5. Quadratic programs

In this section, we study more general quadratic programs. We start with
quadratic programs with linear constraints and then consider single quadratic
constraint programs. In both cases, we first reformulate the problem as a
completely positive program. Then, in analogy to the results of Section 5.2,
we analyze if there are special cases where replacing the completely positive
cone by a tractable cone leads to an exact relaxation of the problem.

5.5.1. Quadratic program with linear constraints

The problem that we consider first is of the form

min xTQx
s. t. Ax = b

x ≥ 0 ,
(QP)

with A ∈ Rm×n and b ∈ Rm. We assume that A is nonzero since for A = 0
and b 6= 0 the problem is infeasible, whereas for A = 0 and b = 0 the problem
is equivalent to testing copositivity of Q. In that case, if the matrix Q is
copositive, the optimal value of (QP) is zero, and if Q is not copositive the
problem is unbounded.

Clearly this setting includes the standard quadratic optimization problem
as a special case. Moreover, it can easily be verified that quadratic problems
over polyhedral cones can be written in this form.

5.5.1.1. Reformulation as a standard quadratic optimization problem

We want to show that under the assumption that the feasible set of (QP) is
bounded we can reformulate the problem as a standard quadratic optimization
problem.

If the feasible set is bounded, it can be represented as the convex hull of its
vertices, i.e.,

Feas(QP) = {x ∈ Rn : Ax = b, x ≥ 0}
= conv{v1, . . . , vk}

with v1, . . . , vk denoting the vertices of Feas(QP). Every point x ∈ Feas(QP)
can then be written as a convex combination of the vertices, i.e.,

x =
k∑
i=1

λiv
i with λi ≥ 0,

k∑
i=1

λi = 1.
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Denoting by V the matrix with columns v1, . . . , vk, we can thus rewrite (QP)
as a standard quadratic program

min λT (V TQV )λ
s. t. eTλ = 1

λ ≥ 0 .

It is thus clear that all results of Section 5.2 can be applied here by con-
sidering properties of the matrix V TQV . If the matrix Q is positive respec-
tively negative semidefinite, then it can easily be shown that the same holds
for V TQV . In this case, the standard quadratic program can be solved in
polynomial time by replacing the copositive cone in the conic programming
formulation by a tractable cone as shown in Section 5.2.1. But in general the
representation of (QP) as standard quadratic optimization problem has higher
dimension than the original problem, and moreover, the vertices of Feas(QP)
have to be known. Therefore, it might be advantageous to consider other conic
reformulations of problem (QP).

5.5.1.2. Reformulation as a completely positive program and relaxations

We now want to consider a different conic reformulation of (QP) which is due to
Burer (2009). By Theorem 3.2.2, problem (QP) can be written in the following
form

min 〈Q,X〉
s. t. Ax = b

aTi Xai = b2i , i = 1, . . . ,m(
1 xT

x X

)
∈ C∗n+1,

(QPC∗)

where aTi denotes the i-th row of A. Replacing the completely positive cone by
the positive semidefinite cone, adding the constraint that x has to be nonneg-
ative and deleting the linear constraints on X leads to a generalized version of
the Shor relaxation from Section 5.2.1.2

min 〈Q,X〉

s. t.

(
1 xT

x X

)
∈ S+

n+1

Ax = b
x ≥ 0.

(QPShor)

For Q ∈ S+
n this relaxation is exact which can be proven in the same way as

for the standard quadratic optimization problem in Section 5.2.1.2. Moreover,
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if Q ∈ S+
n and (x̄, X̄) is an optimal solution of (QPShor) or (QPC∗), then x̄ is

an optimal solution of (QP): First note that(
1 x̄T

x̄ X̄

)
∈ S+

n+1

which implies that X̄ − x̄x̄T is positive semidefinite. Together with Q ∈ S+
n

we get 〈Q, X̄ − x̄x̄T 〉 ≥ 0 which is equivalent to x̄TQx̄ ≤ 〈Q, X̄〉. On the other
hand, (x̄, x̄x̄T ) is feasible for (QPShor) respectively (QPC∗), whence x̄TQx̄ ≥
〈Q, X̄〉. Therefore, we have x̄TQx̄ = 〈Q, X̄〉. Since the relaxation is exact for
Q ∈ S+

n , this implies that x̄ is an optimal solution of (QP).
If Q /∈ S+

n , then the generalized Shor relaxation (QPShor) is unbounded: If
Q /∈ S+

n , then there exists a matrix U ∈ S+
n with 〈Q,U〉 < 0. Let x ∈ Feas(QP).

Then (x, xxT + µU) ∈ Feas(QPShor) for all µ ≥ 0 and

〈Q, xxT + µU〉 = 〈Q, xxT 〉+ µ〈Q,U〉 → −∞ for µ→∞.

The problem is that there is too much freedom for the matrix X. To avoid
unboundedness of the problem, one has to add constraints to bound X, but in
general it is difficult to find such constraints that are valid for all (x, xxT ) with
x ∈ Feas(QP) in order to guarantee that the new problem is still a relaxation
of (QP).

Since (QPC∗) is an exact reformulation of (QP), it is clear that we can add
a nonnegativity constraint on X respectively replace the positive semidefinite
cone in (QPShor) by the doubly nonnegative cone. But this only guarantees
boundedness of the problem if Q is copositive. Otherwise, there is a non-
negative vector u with uTQu < 0. Let x be feasible for (QP). Then for all
µ ≥ 0, the point (x, xxT +µuuT ) is feasible for the doubly nonnegative version
of (QPShor) resulting from replacing the positive semidefinite cone in (QPShor)
by the doubly nonnegative cone. But as 〈Q, xxT + µuuT 〉 → −∞ for µ→∞,
this shows that the doubly nonnegative relaxation is unbounded if Q is not
copositive.

Considering reformulation (QPC∗), we see that other constraints that could
be added are aTi Xai = b2i , i = 1, . . . ,m, where aTi denotes the i-th row of A.

5.5.2. Single quadratic constraint program

The single quadratic constraint problem is of the following form

min xTQx
s. t. xTAx = b

x ≥ 0 ,
(SQC)
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5. Standard quadratic optimization problems

i.e., we want to minimize a quadratic function over the set of all nonnegative
vectors that satisfy a single quadratic constraint. The matrix A is assumed to
be strictly copositive and the vector b must be strictly positive. Preisig studied
this problem and showed that it can be reformulated as a copositive program,
see Preisig (1996, Theorem 3.5).

Theorem 5.5.1 Let ȳ denote the optimal value of (SQC) with A being strictly
copositive and b = 1. Then

ȳ = max{y : Q− yA ∈ Cn}.

The assumption that b = 1 can easily be generalized to any strictly positive
value. If we consider problem (SQC) and assume b > 0, then we can rewrite
the problem as follows

min xTQx
s. t. xT (1

bA)x = 1
x ≥ 0 .

According to Theorem 5.5.1, this problem is equivalent to

max{λ : Q− λ1
bB ∈ Cn}.

Setting y = λ
b , we get the following copositive reformulation of (SQC)

max by
s. t. Q− yA ∈ Cn

(SQCC)

with the corresponding dual problem

min 〈Q,X〉
s. t. 〈A,X〉 = b

X ∈ C∗n .
(SQCC∗)

We now want to show equivalence of the copositive and the completely posi-
tive reformulation of (SQC). By assumption, the matrix A is strictly copositive.
Consequently, for y < ȳ if b = 1, respectively for y < bȳ in the general case,
we have that Q − yA is strictly copositive. On the other hand, the matrix
X = b

nD, where D is the diagonal matrix with diagonal entries Dii = 1
Aii

for all i = 1, . . . , n, is feasible for (SQCC∗). Moreover, X lies in the interior
of the completely positive cone which can easily be seen by applying Theo-
rem 2.3.3. By the conic duality theorem (cf. Theorem 3.1.2), this implies that
the problems (SQCC) and (SQCC∗) are equivalent in the sense that they have
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the same optimal value. A more detailed proof to show equivalence of the
single quadratic constraint problem and its copositive and completely positive
reformulation can be found in Bundfuss (2009, Lemma 4.1).

As stated in Preisig (1996), Theorem 5.5.1 implies that the single quadratic
constraint problem is NP-complete. One algorithm that Preisig proposes to
determine ȳ is a bisection algorithm where a number of copositivity tests has
to be done. First, a lower bound yl and an upper bound yu are chosen such
that Q− ylA is strictly copositive and Q− yuA is not strictly copositive. Let
y = (yl + yu)/2. If Q − yA is strictly copositive, set yl = y, otherwise set
yu = y. If Q− yuA is copositive, or if yu− yl is below a chosen tolerance, then
let yopt = yu and stop. Otherwise iterate the procedure. The computed yopt is
greater or equal than the optimal value ȳ.

5.5.2.1. Relaxations

We have seen that the single quadratic constraint problem can be reformulated
as a completely positive program which is equivalent to the dual copositive pro-
gram, i.e., problem (SQC) is equivalent to the problems (SQCC∗) and (SQCC).
We now want to study if for special classes of matrices Q in the objective func-
tion, replacing the copositive respectively the completely positive cone in the
conic reformulations of (SQC) by a tractable cone leads to equivalent problems.

To do so, we first consider the following instance of a single quadratic con-
straint problem in R5 where Q = 6I, A = −H + 6I with H denoting the
Horn matrix, and b = 1. Note that A is strictly diagonally dominant which
implies that it is positive definite and thus strictly copositive. We now want
to maximize y such that the matrix Q − yA is copositive. For y = 1 we have
Q − yA = H ∈ C5. We can conclude that ȳ ≥ 1. On the other hand, for
y = 1 + k with k > 0, we have Q− yA = H − kA which is not copositive. This
can be seen by computing the value of xT (H − kA)x for x = (1, 1, 0, 0, 0)T

which is negative. Consequently, we have ȳ = 1. Since Q − ȳA = H does
not lie in S+

5 + N5, replacing the copositive cone in (SQCC) by the positive
semidefinite cone, the nonnegative cone or S+

5 + N5 does not yield an equiv-
alent problem. Since Q is a diagonal matrix with positive diagonal entries,
thus positive semidefinite as well as interior, this implies that for those classes
of matrices, replacing the completely positive cone in (SQCC∗) by the positive
semidefinite, the nonnegative or the doubly nonnegative cone does result in a
relaxation of the problem which is in general not exact.

We now consider an example with Q ∈ S5 being a diagonal matrix with
negative entries on the diagonal and thus being negative semidefinite. Let
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Q = −I, A = H + I which is strictly copositive, and b = 1. For y = −1 we
have Q − yA = H which is copositive. Since for y > −1 the quadratic form
xT (Q − yA)x takes a negative value for x = (1, 1, 0, 0, 0)T showing that the
matrix is not copositive, we have ȳ = −1. As in the first example, we have
Q − ȳA = H. Consequently, for negative semidefinite matrices, replacing the
copositive cone in (SQCC) by the nonnegative cone, the semidefinite cone or
S+
n +Nn respectively replacing the completely positive cone in (SQCC∗) by the

nonnegative, the positive semidefinite or the doubly nonnegative cone does not
result in an exact reformulation of the problem.

We conclude that in contrast to the standard quadratic optimization problem
which can be seen as a special case of the single quadratic constraint problem
(since for x ≥ 0 we have that eTx = 1 if and only if (eTx)2 = xTEx = 1),
for the general single quadratic constraint problem we could not find exact
relaxations of the completely positive reformulation (SQCC∗) for special classes
of matrices Q. The problem is that there is too much freedom for the matrix A
in the quadratic constraint.
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In this chapter, we study the problem of separating a doubly nonnegative
matrix which is not completely positive from the completely positive cone. In
other words, given X ∈ Dn \ C∗n, we want to find a copositive matrix K such
that 〈K,X〉 < 0.

In Section 6.1, we start by motivating the problem and we give a short
overview of existing separation procedures from the literature. We then sur-
vey the separation of 5 × 5 matrices in more detail in Section 6.2. In Sec-
tion 6.3, we present the first algorithm to separate an arbitrary matrix X /∈ C∗n
from the completely positive cone. This approach is based on (approximate)
projections onto the copositive cone as described in Chapter 4 and has been
published in Sponsel and Dür (2012). Finally, in Section 6.4, we show how
to separate doubly nonnegative matrices that have a triangle-free graph from
the completely positive cone. The results of that section are contained in the
preprint Berman et al. (2013).

6.1. Cutting planes for completely positive programs

As we have seen in Section 3.2, every optimization problem with quadratic
objective, linear constraints, and binary variables can equivalently be written
as a linear problem over C∗n. The completely positive cone in the resulting
optimization problem is often relaxed to a weaker but tractable cone like the
cone of doubly nonnegative matrices. Consider the completely positive problem

min 〈C,X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ C∗n
(PC∗)

and its doubly nonnegative relaxation

min 〈C,X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ Dn.
(PD)
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Solving this relaxation gives a lower bound on the optimal value of (PC∗).
Let X̄ denote the solution obtained by solving (PD). In general, X̄ is not
completely positive. Therefore, it is desirable to construct a cut that separates
this solution from the cone C∗n. We thus want to find a copositive matrix K
such that 〈K,X〉 < 0. Adding the linear constraint

〈K,X〉 ≥ 0 (6.1)

to (PD) yields a tighter relaxation of (PC∗) and a potentially improved bound
on its optimal value. Note that by duality, (6.1) holds for all X ∈ C∗n which
means that all feasible solutions of the original problem (PC∗) are still feasible
after adding the cut to (PD).

The idea of using copositive cuts was first introduced by Bomze, Locatelli
and Tardella (2008) and further applied to the maximum clique problem by
Bomze, Frommlet and Locatelli (2010a). We will describe the cuts from Bomze
et al. (2010a) in more detail when comparing them in Section 6.4.2.1 to the
cuts that we will introduce in Section 6.4.1.

Burer, Anstreicher and Dür (2009) characterize 5 × 5 extreme doubly non-
negative matrices which are not completely positive and show how to separate
such a matrix from the completely positive cone. Dong and Anstreicher (2013)
generalize this procedure to matrices X ∈ D5 \ C∗5 that have at least one off-
diagonal zero, and to larger matrices having block structure. Extending the
results of Burer et al. (2009) and Dong and Anstreicher (2013), Burer and
Dong (2013) establish the first full separation algorithm for 5 × 5 completely
positive matrices. We will present these approaches in more detail in Sec-
tion 6.2 where we consider the separation of 5×5 matrices from the completely
positive cone.

In contrast to the approaches that either apply only to one specific problem
or need a special structure of the considered matrix, we will show in Section 6.3
how an arbitrary matrix X /∈ C∗n can be separated from the cone of completely
positive matrices.

6.2. Separating 5× 5 matrices from the completely
positive cone

We first consider 5 × 5 matrices, since this is the smallest dimension where
Dn \ C∗n is nonempty. We start by giving an overview of separation procedures
from the literature, and then present a new approach from Berman et al.
(2013).
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Burer, Anstreicher and Dür (2009) show that 5 × 5 extreme doubly non-
negative matrices which are not completely positive can be characterized as
follows.

Theorem 6.2.1 (Burer et al. (2009, Corollary 1)) Let X ∈ D5. Then X ∈
Ext(D5) \ C∗5 if and only if rank(X) = 3 and X is cyclic, i.e., G(X) is a
5-cycle.

Another characterization is based on the fact that these matrices can be
represented as P TXP = DRRTD with P , D and R defined as in the following
theorem.

Theorem 6.2.2 (Burer et al. (2009, Theorem 3)) A matrix X ∈ S5 is ex-
treme doubly nonnegative but not completely positive if and only if there exists
a permutation matrix P , a diagonal matrix D with strictly positive diagonal
entries, and a 5× 3 matrix

R =


1 0 0
r21 r22 1
0 1 0
0 1 −r22

1 0 −r21

 (r21, r22 > 0)

such that P TXP = DRRTD.

Based on these results, Burer, Anstreicher and Dür (2009) show how to
separate such a matrix from the completely positive cone. To construct a cut,
the Horn matrix H as defined in (2.1) is used.

Theorem 6.2.3 (Burer et al. (2009, Lemma 4 and Theorem 8)) Let
X ∈ Ext(D5) be a cyclic matrix with rank(X) = 3, and let P TXP = DRRTD
be its representation provided by Theorem 6.2.2. Define u = −(P TXP ◦H)−1e
and K = P (H ◦ uuT )P T . Then u > 0 and the copositive matrix K is a cut
that separates X from the completely positive cone.

Dong and Anstreicher (2013) generalize this separation procedure to matri-
ces X ∈ D5 \ C∗5 having at least one off-diagonal zero. In the following, we
assume that X has the form

X =

X11 α1 α2

αT1 1 0
αT2 0 1

 (X11 ∈ D3)

which can always be achieved by applying an appropriate permutation and
scaling. Then we have the following.
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Theorem 6.2.4 (Dong and Anstreicher (2013, Theorem 6)) If X ∈ D5, then
X ∈ D5 \ C∗5 if and only if there is a matrix

K =

K11 β1 β2

βT1 γ1 0
βT2 0 γ2

 such that

(
K11 βi
βTi γi

)
∈ D∗4, i = 1, 2,

and 〈K,X〉 < 0.

In general, the matrix K is not copositive. But by slightly modifying K, we
get a copositive matrix that cuts off X.

Theorem 6.2.5 (Dong and Anstreicher (2013, Theorem 7)) Let X ∈ D5 \ C∗5
and let K satisfy the conditions of Theorem 6.2.4. Define

K(s) =

K11 β1 β2

βT1 γ1 s
βT2 s γ2

 .

Then 〈K(s), X〉 < 0 for any s, and K(s) ∈ C5 for s ≥ √γ1γ2.

As shown in Dong and Anstreicher (2013), the matrix K can be obtained
by numerically minimizing 〈K,X〉 such that K satisfies the conditions in The-
orem 6.2.4 and is normalized via 〈I,K〉 = 1 or a similar constraint. This
approach can be extended to larger matrices having block structure. For de-
tails see Dong and Anstreicher (2013).

Extending the results of Burer et al. (2009) and Dong and Anstreicher (2013),
Burer and Dong (2013) establish the first full separation algorithm for 5 × 5
completely positive matrices. Let

(C∗5)(1) =

{(
0 0
0 X

)
: X ∈ C∗4

}
and, for i = 2, . . . , 5, let (C∗5)(i) be the respective embedding of C∗4 in S5. That
is, (C∗5)(i) is the set of completely positive 5 × 5 matrices whose i-th row and
column are zero. Furthermore, for i = 1, . . . , 5, denote by X0

i an appropriate
embedding of I + 1

16E ∈ S4 into (C∗5 )(i), i.e., X0
i is the 5× 5 matrix whose i-th

row and column are zero and such that the principal submatrix resulting from
deleting the i-th row and column is I + 1

16E. Define X0 =
∑5

i=1
1
5X

0
i . Then,

the following theorem gives a separation algorithm for C∗5 , see Burer and Dong
(2013, Theorem 2 and Corollary 1).
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Theorem 6.2.6 Suppose X ∈ D5. Let ȳ denote the optimal value of

min
{
〈X,K〉 : K ∈ S5, K[i,i] ∈ D∗4 ∀i = 1, . . . , 5,

〈X0,K〉 ≤ 1, 〈XKX,E〉 ≥ 0
}
, (6.2)

where K[i,i] is the principal submatrix of K resulting from deleting the i-th row
and column. If ȳ ≥ 0, then X ∈ C∗5 . If, on the contrary, ȳ < 0, then X /∈ C∗5
and any optimal solution K of (6.2) is copositive and separates X from the
completely positive cone.

We now describe another approach (Berman et al., 2013). Suppose that X ∈
D5. Let H stand for either the Horn matrix or a Hildebrand matrix, or a suit-
able permutation of one of these matrices, and define B = X ◦H. Assume that
B /∈ Cn. Then according to Theorem 2.3.11, X /∈ C∗n. We next demonstrate
how to construct a cut in this case.

Since X ∈ D5, all principal 4× 4 submatrices of X are completely positive,
and hence all principal 4 × 4 submatrices of B are copositive. This means
that B is copositive of order 4. We thus have

B is not copositive ⇔ B is copositive of exact order 4.

From Theorem 2.2.10 we get that in this case B−1 ≤ 0 or equivalently −B−1 ≥
0. By Theorem 1.1.1, the spectral radius ρ of −B−1 is an eigenvalue of −B−1,
and the matrix has a nonnegative eigenvector u corresponding to ρ. Then u
is also an eigenvector of B corresponding to the negative eigenvalue λ = −1

ρ

of B. Define the matrix K := H ◦ uuT which is copositive according to Theo-
rem 2.2.16. Then

〈K,X〉 = 〈H ◦ uuT , X〉 = 〈uuT , X ◦H〉 = uT (X ◦H)u = uTBu = λuTu < 0,

which shows that K provides a cut as desired.

Although the approach is different, the basic structure of this cut is the same
as for the cuts in Theorem 6.2.3. As we have seen above, these cuts are also
of the form H ◦ uu with H denoting the Horn matrix. However, the vector u
is different from the one we use here. Also note that the construction in
Theorem 6.2.3 works for extreme doubly nonnegative matrices only, whereas
the procedure outlined above works for arbitrary 5 × 5 doubly nonnegative
matrices.
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6.3. Cutting planes based on copositive projection

Let (PC∗) be the completely positive program from Section 6.1 and let (PD)
be its doubly nonnegative relaxation. We will show in Section 6.3.1 that if the
optimal solution X̄ of (PD) is not completely positive, we can find a cutting
plane that separates X̄ from the set of feasible solutions of (PC∗) by project-
ing X̄ onto an outer approximation of C∗n. Adding the cut to (PD) results in
a tighter relaxation of the original problem and an improved lower bound on
its optimal value. In Section 6.3.2, we will apply the separation procedure to
some stable set problems and discuss the numerical results.

6.3.1. Constructing a cut

In the following, we assume that X̄ ∈ Dn \ C∗n. As we have seen in Section 4.3,
we can project X̄ onto an outer approximation I∗P of C∗n by projecting −X̄ on
the corresponding inner approximation IP of Cn, i.e.,

pr(I∗P , X̄) = pr(IP ,−X̄) + X̄. (6.3)

If X̄ /∈ C∗n, we can find an outer approximation I∗P of C∗n such that X̄ /∈ I∗P .
We will show that in this case the inequality〈

pr(IP ,−X̄), X
〉
≥ 0

cuts off X̄. To this end, we need the following proposition (Hiriart-Urruty and
Lemaréchal, 1993, Proposition III.3.1.3).

Proposition 6.3.1 Let K be a nonempty closed convex set in Rn. For all
x1, x2 ∈ Rn, we have

‖pr(K, x1)− pr(K, x2)‖2 ≤ 〈pr(K, x1)− pr(K, x2), x1 − x2〉 .

If 0 ∈ K, this proposition implies

‖pr(K, x)‖2 ≤ 〈pr(K, x), x〉 for all x ∈ Rn.

Consequently, we have
∥∥pr(IP ,−X̄)

∥∥2 ≤
〈

pr(IP ,−X̄),−X̄
〉

or equivalently〈
pr(IP ,−X̄), X̄

〉
≤ −

∥∥pr(IP ,−X̄)
∥∥2
. (6.4)
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From (6.3) we get

X̄ ∈ I∗P ⇔ pr(I∗P , X̄) = X̄ ⇔ pr(IP ,−X̄) = 0

and thus

X̄ ∈ I∗P ⇔ ‖pr(IP ,−X̄)‖2 = 0. (6.5)

Combining (6.4) and (6.5), we get〈
pr(IP ,−X̄), X̄

〉
< 0 for all X̄ /∈ I∗P .

On the other hand, the matrix pr(IP ,−X̄) is copositive by construction, which
means that we have〈

pr(IP ,−X̄), X
〉
≥ 0 for all X ∈ C∗n.

Therefore, we have shown the following result:

Theorem 6.3.2 Let X̄ /∈ C∗n and let I∗P be an outer approximation of C∗n such
that X̄ /∈ I∗P . Then the inequality〈

pr(IP ,−X̄), X
〉
≥ 0

is a cut which separates X̄ from the completely positive cone.

Consequently, if X̄ is the solution of the relaxation (PD) and I∗P is such that
X̄ /∈ I∗P , then the inequality 〈

pr(IP ,−X̄), X
〉
≥ 0

is a cut that separates X̄ from the feasible set of (PC∗).

6.3.2. Numerical results for some stable set problems

We will illustrate the separation procedure by discussing computational results
for some stable set problems. Let G be a graph and AG its adjacency matrix.
As shown in de Klerk and Pasechnik (2002), the problem of computing the
stability number α of G can be stated as a completely positive optimization
problem:

1

α
= min{〈I +AG, X〉 : 〈E,X〉 = 1, X ∈ C∗n}. (6.6)
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6. Cutting planes

Replacing C∗n by Dn results in a relaxation of the problem providing an upper
bound on α. This bound ϑ′ is called Lovász–Schrijver bound:

1

ϑ′
= min{〈I +AG, X〉 : 〈E,X〉 = 1, X ∈ Dn}. (6.7)

We consider the 5-cycle C5 and the graphs G8, G11, G14 and G17 from Peña
et al. (2007) for which ϑ′ 6= α implying that the solution matrix X̄ of (6.7) is not
completely positive. For each of the optimization problems associated to these
graphs, we want to find an outer approximation I∗P of C∗n such that X̄ /∈ I∗P .
According to Theorem 6.3.2, we can then compute a cut that separates X̄ from
the feasible set of (6.6).

As long as X̄ ∈ I∗P , the matrix can be written as

X̄ =
∑

{u,v}∈EP

λuv(uv
T + vuT ) +

∑
v∈VP

λvvv
T with λuv, λv ∈ R+. (6.8)

This leads to the following partitioning strategy: We start with the standard
simplex and compute a factorization of X̄ according to (6.8). If the problem is
feasible, we reorder all edges {u, v} such that the corresponding coefficients λuv
are in decreasing order, and bisect those edges with λuv ≥ p·max{ui,vi}∈EP λuivi
for some 0 ≤ p ≤ 1. We iterate the process of computing a factorization and
refining the partition until the factorization problem becomes infeasible which
means that X̄ /∈ I∗P . Then we project −X̄ onto IP , add the resulting cut
to (6.7) and compute a new bound on α. If the solution matrix of this new
problem is not completely positive we can repeat the procedure and compute
a cut that separates it from the feasible set of (6.6).

We implemented this approach in Matlab and used Yalmip (Löfberg, 2004)
and SeDuMi (Sturm, 1999) to solve the relaxations. To compute a feasible so-
lution of the factorization, we maximized the function

∑
{u,v}∈EP 〈I+AG, uv

T+

vuT 〉λuv and set the constant p to 0.95. The factorization as well as the pro-
jections were computed with SeDuMi. The resulting bounds on the stability
number after adding one and ten cuts computed by this method can be found
in Table 6.1. The numbers in parentheses indicate the total number of bi-
sections. Furthermore, for each graph, the stability number α, the Lovász–
Schrijver bound ϑ′ and the bounds ϑBFL from Bomze et al. (2010a), ϑDA∗

mean

from Dong and Anstreicher (2011) and ϑDA
mean from (Dong and Anstreicher,

2013) are given.1 Except for the graph G8, the number of bisections is very
small and the computed bounds after adding ten cuts are comparable to ϑDA∗

mean.

1While the author was in the process of finishing this thesis, the final version of the pa-
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6.3. Cutting planes based on copositive projection

Bound values after

G α ϑ′ ϑBFL ϑDA∗
mean ϑDA

mean 1 cut 10 cuts

C5 2 2.236 - - - 2.000 (5) 2.000 (5)
G8 3 3.468 3 3.078 3.078 3.461 (148) 3.452 (158)
G11 4 4.694 4.28 4.500 4.362 4.610 (11) 4.544 (23)
G14 5 5.916 5.485 5.722 5.585 5.825 (14) 5.758 (24)
G17 6 7.134 6.657 6.930 6.814 7.065 (17) 6.986 (28)

Table 6.1.: Results on different stable set problems

We tried a different subdivision procedure based on the objective function of
problem (6.7) which gives better results but needs significantly more bisections.
So we bounded the total number of bisections for each instance by 2000. The
strategy is to bisect all edges {u, v} for which the value of 〈I+AG, uv

T + vuT 〉
is minimal. We denote the set of these edges by ÊP . To restrict the number
of bisections, we then choose those edges for which uvT + vuT is close to X̄,
i.e., all edges {u, v} ∈ ÊP for which

‖X̄ − (uvT + vuT )‖ ≤ (1 + q)· min
{ui,vi}∈ÊP

‖X̄ − (uiv
T
i + viu

T
i )‖

for some q ≥ 0. We reorder these edges such that the values of ‖X̄ − (uvT +
vuT )‖ increase, and bisect. This bisection procedure is repeated until X̄ /∈ I∗P .
The computed bounds for q = 0.1 after adding one and ten cuts as well as the
corresponding number of bisections are shown in columns 4 and 5 of Table 6.2.
The results after adding ten cuts are better than for the first strategy. Espe-
cially for G11 this strategy works very well. For G8 the number of bisections is
even less than when using the first strategy but for all other examples it is sig-
nificantly larger. For G17 the bound on the number of bisections is exceeded,
so we did not get a result.

Since the first subdivision strategy only needs few bisections but the second
one gives better results, our last strategy is a mix of both. We start with

per (Dong and Anstreicher, 2013) appeared. Since the computed bounds differ from the
ones given in the preprint (Dong and Anstreicher, 2011), we decided to include both. In
contrast to the preprint, the final version of the paper contains several rounds of cuts, and
bounds after each round of cuts are given. We took ϑDA

mean to be the bound after the first
round of cuts since this bound seems to correspond best to the one given in the preprint.
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6. Cutting planes

Strategy 1 Strategy 2 Strategy 3

G 1 cut 10 cuts 1 cut 10 cuts 1 cut 10 cuts

C5 2.000 (5) 2.000 (5) 2.000 (5) 2.000 (13) 2.000 (10) 2.000 (47)
G8 3.461 (148) 3.452 (158) 3.427 (78) 3.176 (82) 3.454 (158) 3.213 (237)
G11 4.610 (11) 4.544 (23) 4.610 (39) 4.000 (147) 4.610 (15) 4.260 (141)
G14 5.825 (14) 5.758 (24) 5.825 (68) 5.683 (1197) 5.825 (18) 5.757 (721)
G17 7.065 (17) 6.986 (28) 7.065 (105) − 7.065 (24) 6.986 (1289)

Table 6.2.: Bound values for different subdivision strategies

the standard simplex and bisect edges {u, v} according to the first subdivision
strategy until X̄ /∈ I∗P . Then we bisect all edges {u, v} that meet the condi-
tion of the second strategy. After this subdivision procedure, we project −X̄
onto IP , add the resulting cut to (6.7) and compute a new bound on α. The
resulting bounds for p = 0.95 and q = 0.1 as well as the corresponding number
of bisections are shown in columns 6 and 7 of Table 6.2. Only for G8 and G11

do the resulting bounds lie between the ones of the first and second subdivision
strategy. For G14 and G17 the number of bisections is less than for the second
strategy. However, the resulting bounds for these two instances are not better
than those of the first strategy.

From the results in Table 6.2 it can be seen that the subdivision strategy
has a crucial influence on the quality of the bounds as well as on the num-
ber of bisections. There is a lot of freedom in how an edge is selected and
bisected which allows to adapt the approach to different problems and to ex-
ploit structural properties. However, it might not be easy to find the optimal
strategy.

In all test instances, our results are comparable though slightly weaker than
those obtained in Bomze et al. (2010a) and Dong and Anstreicher (2013). This
difference is due to the specific procedures used to obtain the cuts. The reader
may wonder why so much effort is put into improving bounds of the integer-
valued stability number by minor decimal places. As explained in Bomze et
al. (2010b), small improvements can be vital in the context of product graphs.

6.4. Cutting planes based on triangle-free subgraphs

We now show how to separate doubly nonnegative matrices that have a triangle-
free graph from the completely positive cone. The basic idea of the approach
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6.4. Cutting planes based on triangle-free subgraphs

presented in this section is stated in the following theorem.

Theorem 6.4.1 Let X ∈ Dn \ C∗n, and let K ∈ Cn be such that K ◦X /∈ Cn.
Then for every nonnegative u ∈ Rn such that uT (K ◦X)u < 0, the copositive
matrix K ◦ uuT is a cut separating X from the completely positive cone.

Proof Suppose that X ∈ Dn \ C∗n. By Theorem 2.3.11, there always exists
a copositive matrix K such that K ◦ X /∈ Cn. Now let u ≥ 0 be such that
uT (K ◦ X)u < 0. By Theorem 2.2.16, the matrix K ◦ uuT is copositive, and
we have

〈K ◦ uuT , X〉 = uT (K ◦X)u < 0. �

If K◦X /∈ Cn, as assumed in the theorem, then by Theorem 2.2.12, K◦X has
a principal submatrix having a positive eigenvector corresponding to a negative
eigenvalue. This shows that u can always be chosen as this eigenvector with
zeros added to get a vector in Rn.

The following property is obvious but useful, since it allows to construct
cutting planes based on submatrices instead of the entire matrix.

Lemma 6.4.2 Assume that K ∈ Cn is a copositive matrix that separates a
matrix X from C∗n. If A ∈ Rn×p and B ∈ Sp are arbitrary matrices, then the
copositive matrix(

K 0
0 0

)
is a cut that separates

(
X A
AT B

)
from C∗n+p.

Note in the situation of Lemma 6.4.2 it is desirable that K be extreme
copositive rather than just copositive, since an extreme matrix will provide a
supporting hyperplane and therefore a better (deeper) cut.

6.4.1. Separating a triangle-free doubly nonnegative matrix

Let X ∈ Dn. We may assume that X has only positive diagonal entries, since
otherwise the row and column corresponding to a zero diagonal entry would
be zero and we could base our cut on the nonzero submatrix. By applying a
suitable scaling if necessary we can also assume that diag(X) = e. Moreover,
we will assume that the matrices that we want to separate from the completely
positive cone are irreducible, since any reducible matrix can be written as a
block diagonal matrix and then the problem can be split into subproblems of
smaller dimension where each of the submatrices on the diagonal is considered
separately.
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6. Cutting planes

Now suppose that X has a triangle-free graph G(X). Note that irreducibility
of X is equivalent to G(X) being connected. By the assumptions made above,
X is representable as

X = I + C, (6.9)

where C is a matrix with zero diagonal and G(C) = G(X).
Assume that X ∈ Dn is of the form (6.9) but not completely positive. Then,

by Corollary 2.3.10, ρ(C) > 1. Let u denote the eigenvector of C corresponding
to the eigenvalue ρ(C). Since X is nonnegative and irreducible, we have u > 0
by Theorem 1.1.1. Recall that the comparison matrix of X is defined by

(M(X))ij =

{
|Xij | if i = j
−|Xij | if i 6= j.

We thus have M(X) = I − C and

uTM(X)u = uTu− uTCu = uTu(1− ρ(C)) < 0.

We next construct a copositive matrix A with the property that M(X) = X◦A.
It is given by

Aij =

{
−1 if {i, j} is an edge of G(X),

+1 else.
(6.10)

Note that by the following theorem, for n = 5, the only triangle-free graphG(X)
such that X ∈ Dn \ C∗n is the 5-cycle. Thus for n = 5, A equals (a permutation
of) the Horn matrix.

Theorem 6.4.3 (Berman and Shaked-Monderer (2003, Corollary 2.6)) Let G
be a graph. Then the following are equivalent:

(i) Every doubly nonnegative matrix X whose graph is G is completely pos-
itive.

(ii) G does not contain an odd cycle of length ≥ 5.

Let G−1(A) be the graph on n vertices with i 6= j being adjacent if and only
if Aij = −1. According to the following theorem, the matrix A is copositive.
If, in addition, the diameter of G−1(A) equals 2, then A is even extreme.

Theorem 6.4.4 (Haynsworth and Hoffman (1969, Theorem 3.1)) Let A ∈ Sn
be such that every entry is 1 or −1 and each diagonal entry is 1. Then
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6.4. Cutting planes based on triangle-free subgraphs

(i) A is copositive if and only if G−1(A) is triangle-free.

(ii) A is extreme copositive if and only if G−1(A) is triangle-free and of di-
ameter 2.

It is easy to see that indeed M(X) = X ◦A. With u as above, we derive

0 > uTM(X)u = uT (X ◦A)u = 〈uuT , X ◦A〉 = 〈A ◦ uuT , X〉. (6.11)

Since u > 0, the matrix K = A ◦ uuT is copositive, which combined with the
above gives that K is a cut that separates X from the completely positive
cone.

Cyclic graphs

Cyclic graphs are special triangle-free graphs. When a matrix X ∈ Dn of the
form (6.9) has a cyclic graph, then the above results can be strengthened. First
note that by Theorem 6.4.3, if G(X) is an even cycle, then X ∈ C∗n.

If G(X) is an odd cycle, then for n = 5 let H denote the Horn matrix,
and for n ≥ 7 let H denote the Hoffman–Pereira matrix. This matrix has
been introduced in Hoffman and Pereira (1973) for n = 7 but can easily be
generalized to other dimensions, see Appendix A.

By the same arguments as above, the matrix K := H ◦ uuT provides a cut
separating X from the completely positive cone. In this case, H is an extreme
copositive matrix. For n = 5, H is the Horn matrix which is extreme copositive,
and for n ≥ 7, H is a Hoffman–Pereira matrix. These matrices are also extreme
which can be seen by applying Hoffman and Pereira (1973, Theorem 4.1). For
a detailed proof see Appendix A. By Theorem 2.2.17, K is extreme as well, and
therefore provides a deeper cut than the matrix A constructed above would.

6.4.2. Numerical results for some stable set problems

We next illustrate the separation procedure by applying it to some instances
of the stable set problem. After stating the results, we compare them in Sec-
tion 6.4.2.1 and Section 6.4.2.2 to the results of other separation procedures.

We use the following conic reformulation of the stable set problem which is
due to de Klerk and Pasechnik (2002):

α = max{〈E,X〉 : 〈I,X〉 = 1, 〈AG, X〉 = 0, X ∈ C∗n}. (6.12)

As in Section 6.3.2, relaxing C∗n to Dn results in the Lovász–Schrijver bound:

ϑ′ = max{〈E,X〉 : 〈I,X〉 = 1, 〈AG, X〉 = 0, X ∈ Dn}. (6.13)
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6. Cutting planes

We consider some instances for which ϑ′ 6= α and try to get better bounds by
adding cuts to the doubly nonnegative relaxation. The cuts are computed as
described in Section 6.4.1.

Let X̄ denote the optimal solution we get by solving (6.13). If ϑ′ 6= α,
then X̄ ∈ Dn \ C∗n. We want to find cuts that separate X̄ from the feasible
set of (6.12). To do so, we determine all 5 × 5 principal submatrices of X̄
that have a connected triangle-free graph. Let Y denote such a submatrix.
In general, diag(Y ) 6= e as in (6.9). Therefore, we consider the scaled matrix
DYD, where D is a diagonal matrix with Dii = 1√

Yii
. Since Y is a doubly

nonnegative matrix having a triangle-free graph, the same holds for DYD.
Furthermore, DYD can be written as DYD = I + C, where C is a matrix
with zero diagonal and G(C) a triangle-free graph. Let ρ denote the spectral
radius of C and let u be the eigenvector of C corresponding to the eigenvalue ρ.
Let A be as in Section 6.4.1, i.e., for n = 5, the matrix A is the Horn matrix.
If ρ > 1, then according to (6.11), we have

0 > 〈A ◦ uuT , DY D〉 = 〈D(A ◦ uuT )D,Y 〉.

Therefore, D(A ◦ uuT )D defines a cut that separates Y from the completely
positive cone.

As in Section 6.3.2, we consider as test instances the 5-cycle C5 and the
graphs G8, G11, G14 and G17 from Peña et al. (2007). For every 5×5 principal
submatrix of the optimal solution X̄ of (6.13) that has a triangle-free graph,
we compute a cut. Note that for these instances none of the computed matri-
ces X̄ has a triangle-free subgraph of size greater than 5. We then solve the
doubly nonnegative relaxation after adding each of these cuts and after adding
all computed cuts. The results are shown in Table 6.3. We denote by ϑKmin

and ϑKmax the minimal respectively maximal bound we get by adding a single
cut to the doubly nonnegative relaxation (6.13), and ϑKall denotes the bound we
get after adding all computed cuts. The last column indicates the reduction
of the optimality gap when all cuts are added.

6.4.2.1. Comparison with cuts based on subgraphs with known clique
number

In this section, we compare our cuts to the ones introduced by Bomze, Fromm-
let and Locatelli (2010a), since the basic structure is quite similar. In Bomze
et al. (2010a), the maximum clique problem is considered and cuts are com-
puted to improve the bound resulting from solving the doubly nonnegative
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6.4. Cutting planes based on triangle-free subgraphs

Graph α ϑ′ ϑKmin ϑKmax ϑKall # cuts reduction

C5 2 2.236 2.0000 2.0000 2.0000 1 100%
G8 3 3.468 3.3992 3.3992 3.2163 4 54%
G11 4 4.694 4.6273 4.6672 4.4307 10 38%
G14 5 5.916 5.8533 5.8977 5.6460 20 29%
G17 6 7.134 7.0745 7.1227 6.8615 35 24%

Table 6.3.: Results on different stable set problems

relaxation of that problem. These cuts are based on subgraphs with known
clique number.

To make it easier to compare the results, we assume that we want to compute
the clique number ω of the complement of a graph G, i.e., that we want to
determine ω(Ḡ), which is equivalent to the problem of computing the stability
number α of G. As we have seen above (see (6.12)), the problem can be stated
as

ω(Ḡ) = α(G) = max{〈E,X〉 : 〈I,X〉 = 1, 〈AG, X〉 = 0, X ∈ C∗n}. (6.14)

Let ϑ′ denote the bound on α that we get by solving the doubly nonnegative
relaxation of (6.14). De Klerk and Pasechnik (2002, Corollary 2.4) have shown
that by simplifying and dualizing (6.14), the stable set problem can also be
stated as a copositive program

α(G) = min{λ : λ(I +AG)− E ∈ Cn}.

By I +AG = E −AḠ, we get

ω(Ḡ) = α(G) = min{λ : λ(E −AḠ)− E ∈ Cn}. (6.15)

The construction of cuts in Bomze et al. (2010a) is based on the observation
that for any optimal solution X̄ of the doubly nonnegative relaxation of (6.14),
we have X̄ij = 0 for all {i, j} ∈ E(G). This means that X̄ij > 0 implies i = j
or {i, j} ∈ E(Ḡ). The cuts introduced in Bomze et al. (2010a) are based on
subgraphs H of Ḡ with known clique number ω(H). According to (6.15), the
matrix ω(H)(E−AH)−E is copositive. Since ω(H) > 0, this implies that the
matrix

C ′H = (1− 1

ω(H)
)E −AH
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is copositive, and consequently also

CH =

(
C ′H 0
0 0

)
is copositive.

In Bomze et al. (2010a), a heuristic approach is used to find subgraphs H
of Ḡ with known clique number ω(H) such that the matrix CH is a cut that
separates X̄ from the feasible set of (6.14). For the computational results, sub-
graphs with clique number ω(H) = 2 or 3 are considered. We will concentrate
on the case that H is a subgraph with ω(H) = 2, i.e., H is a triangle-free
subgraph of Ḡ.

In the approach described in Section 6.4.1, we consider (scaled) submatrices
Y = I+C of X̄ that have a triangle-free graph G(C). Since X̄ij > 0 implies i =
j or {i, j} ∈ E(Ḡ), we can conclude that G(C) is a subgraph of Ḡ. Considering
the definition of A in (6.10), it becomes clear that the negative entries of the
cut correspond to the edges of G(C). The same holds for the cuts CH , i.e.,
the negative entries of CH correspond to the edges of H which is a subgraph
of Ḡ. Therefore, the basic structure of the cuts is the same in the sense that
the negative entries of the constructed matrices represent edges of a subgraph
of Ḡ. In Section 6.4.1, we consider triangle-free graphs which is a special case
of the cuts in Bomze et al. (2010a). The main difference is how the cuts are
constructed. While the entries of C ′H are either (1− 1

ω(H)) or − 1
ω(H) , the cut K

in Section 6.4.1 combines the basic matrix A with the eigenvector u.
Next, we compare both constructions. In order to do so, we consider the

same instances as before and compute cuts of the form CH for all 5×5 principal
submatrices of the optimal solution X̄ of the doubly nonnegative relaxation
of (6.14) that have a triangle-free graph H. As for the cuts K, we then add
these cuts to the doubly nonnegative relaxation and compute new bounds on
ω(Ḡ) = α(G). We denote by ϑHmin and ϑHmax the minimal respectively maximal
bound we get by adding a single cut, and by ϑHall the bound resulting from
adding all computed cuts. The results are shown in Table 6.4.

The results show that the bounds based on the cuts K from Section 6.4.1
are better than the bounds based on the cuts CH from Bomze et al. (2010a).
This comes from the fact that the construction of the cuts K is more specific.
The cuts K do not only reflect which entries of X̄ are positive but also the
entries of X̄ themselves play a role, in form of the eigenvector u. On the other
hand, the cuts in Bomze et al. (2010a) are more general since they also apply
to subgraphs with higher clique number, and the subgraphs do not have to
be induced subgraphs. Moreover, if those cuts are not restricted to triangle-
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Graph α ϑ′ ϑKmin ϑHmin ϑKmax ϑHmax ϑKall ϑHall

C5 2 2.236 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
G8 3 3.468 3.3992 3.4149 3.3992 3.4149 3.2163 3.2609
G11 4 4.694 4.6273 4.6508 4.6672 4.6712 4.4307 4.5097
G14 5 5.916 5.8533 5.8805 5.8977 5.9023 5.6460 5.7506
G17 6 7.134 7.0745 7.1038 7.1227 7.1263 6.8615 6.9843

Table 6.4.: Comparison with the cuts from Bomze et al. (2010a)

free subgraphs, then better bounds are obtained as the results in Bomze et al.
(2010a) show.

6.4.2.2. Comparison with other cutting planes

Finally, we want to compare our results to the results from Dong and An-
streicher (2013) and to the results presented in Section 6.3.2. For the sake of
completeness, we also include the results from Bomze et al. (2010a) although
these cuts have already been considered in Section 6.4.2.1. Furthermore, as in
Section 6.3.2, we also consider the results of Dong and Anstreicher (2011).

The different bounds are stated in Table 6.5. The bound from Bomze et
al. (2010a) is denoted by ϑBFL, the bound from Dong and Anstreicher (2011)
by ϑDA∗

mean, the bound from Dong and Anstreicher (2013) by ϑDA
mean, and ϑSD

denotes the bound from Section 6.3.2 when using the third subdivision strategy.

Note that ϑBFL is different from the bound ϑH presented in the previous
section. This is because for the computation of ϑH only triangle-free sub-
graphs were considered, whereas for the computation of ϑBFL also cuts based
on subgraphs with higher clique number are added to the doubly nonnegative
relaxation of (6.14).

As can be seen from the table, the bound ϑKall is comparable to the bounds
ϑDA∗

mean and ϑSD. For some of the instances the cuts from Dong and Anstreicher
(2011) and Section 6.3.2 give better results, whereas for other instances the
cuts introduced here yield a better bound. The results from Dong and An-
streicher (2013) are slightly better in all cases. The same holds for the results
from Bomze et al. (2010a), which comes from the fact that these cuts are more
general in the sense that they are not only based on triangle-free subgraphs
but also use subgraphs with clique number 3. Nevertheless, we have seen in
Section 6.4.2.1 that our construction gives better results when the underlying
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Graph α ϑ′ ϑKall ϑBFL ϑDA∗
mean ϑDA

mean ϑSD

G8 3 3.468 3.216 3.000 3.078 3.078 3.213
G11 4 4.694 4.431 4.280 4.500 4.362 4.260
G14 5 5.916 5.646 5.485 5.722 5.585 5.757
G17 6 7.134 6.862 6.657 6.930 6.814 6.986

Table 6.5.: Comparison with other cuts

subgraph is the same.
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We considered several aspects of copositive programming. In Chapter 4, we
showed how to project a matrix onto the copositive and the completely positive
cone. These projections can be used to compute factorizations of completely
positive matrices. To compute the copositive projections, we used inner and
outer approximations of the copositive cone that are based on simplicial parti-
tions of the standard simplex (cf. Bundfuss and Dür (2009)). There is a lot of
freedom in how the simplicial partition is refined. Since the subdivision strat-
egy has a crucial influence on the performance of the presented algorithms, it
would be desirable to guide the partitioning in an efficient way. Although this
seems to be a difficult problem, it could be worthwhile to study the influence
of the subdivision strategy in more detail.

In Chapter 5, we considered the conic reformulation of the standard quadratic
optimization problem. We showed that for several classes of objective func-
tions, the relaxation resulting from replacing the copositive or the completely
positive cone by a tractable cone is exact. These results lead to two algorithms
for solving standard quadratic optimization problems. In these algorithms,
the problem is repeatedly split into subproblems of smaller dimension. Conse-
quently, the number of iterations quickly increases with the problem size. For
one of the algorithms, we presented an extension that allows to considerably
reduce the number of iterations. However, it would be desirable to further
reduce the number of iterations in order to apply the algorithm to larger in-
stances. Therefore, a topic of further research is the inclusion of a bounding
procedure.

Another interesting question is how the presented algorithm performs when
it is applied to problems having a separable objective function, since for this
class Bomze and Locatelli (2012) developed an algorithm of worst-case com-
plexity O(n log n), whereas general standard quadratic optimization problems
are NP-hard.

In Chapter 6, we studied cutting planes to separate a matrix from the com-
pletely positive cone. Two new approaches were presented. In the first ap-
proach, we showed how the copositive projections introduced in Chapter 4 can
be used to compute cuts. It is an interesting open question how the approach
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Summary and outlook

can be adapted to different problems by exploiting structural properties.
Besides the cuts based on copositive projection, we showed how to separate

a triangle-free doubly nonnegative matrix from the completely positive cone.
We illustrated the method by applying it to some stable set problems in order
to improve the Lovász–Schrijver bound ϑ′. If ϑ′ 6= α for a graph G, then G
is not perfect which implies that it has an odd hole or antihole. We consider
an optimal solution X̄ of the semidefinite relaxation. There is a scaling D
such that DX̄D = I + X. G(X) is a subgraph of Ḡ since X̄ij > 0 implies
i = j or {i, j} ∈ EḠ. Consequently, if G has an odd antihole, then there is a
submatrix Y = I + C of DX̄D such that G(Y ) is triangle-free. In this case,
we can compute a cut as we have seen in Section 6.4. It is an open question
what can we conclude if G has an odd hole and if we can construct a cut in
that case.
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A. Hoffman–Pereira matrices

Let A denote the Hoffman–Pereira matrix. This matrix has been introduced
in Hoffman and Pereira (1973) for n = 7 and has the following form

A =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1


.

The matrix can easily be extended to higher dimensions by increasing the
number of diagonal bands of zeros. For odd n ≥ 7, we will call these matrices
(n × n) Hoffman–Pereira matrices. For n = 7, Hoffman and Pereira (1973)
showed that A is an extreme copositive matrix. We will show that the same
holds for every odd n ≥ 7.

We will use the terminology of Hoffman and Pereira (1973). Let E denote
the set of symmetric matrices in which every entry is 0, 1 or −1 and each
diagonal entry is 1. To each n × n matrix X ∈ E , we associate four graphs,
G−1(X), G0(X), G1(X) and L∗(X). The graph G−1(X) (respectively G0(X),
G1(X)) is a graph on n vertices with i 6= j being adjacent if and only if
Xij = −1 (respectively Xij = 0, Xij = 1). The vertices of L∗(X) are the edges
of G0(X) with two vertices being adjacent if and only if the corresponding
edges in G0(X) have a common vertex and the third edge of the associated
triangle is an edge in G−1(X).

To illustrate the definitions, the graphs associated to the matrix A are given
in Figure A.1.

Hoffman and Pereira used the following theorem to show that A is extreme
copositive.

Theorem A.1 (Hoffman and Pereira (1973, Theorem 4.1)) Let X ∈ E. Then
X is extreme copositive if and only if each of the following holds

(i) G−1(X) is connected and contains no triangles.
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A. Hoffman–Pereira matrices
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{1, 4}

{4, 7}

{3, 7}

{3, 6} {2, 6}

{2, 5}

{1, 5}

L∗(A)

Figure A.1.: G−1(A), G1(A), G0(A) and L∗(A)

(ii) G1(X) contains precisely those edges {i, j} where i and j are at distance 2
in G−1(X).

(iii) L∗(X) has no isolated vertices and no connected component that is bi-
partite.

Applying Theorem A.1, we want to show the following.

Theorem A.2 Let n ≥ 7 be odd. Then the n× n Hoffman–Pereira matrix is
extreme copositive.

Proof Let B be an n× n Hoffman–Pereira matrix for n ≥ 7 be odd. We will
check the conditions of Theorem A.1 to show that B is an extreme copositive
matrix.

(i): It is easy to see that G−1(B) is a cycle of length n, i.e., G−1(B) =
(1, 2, . . . , n, 1). Thus G−1(B) is connected and triangle-free.

(ii): The graph G1(B) is the n-cycle (1, 3, . . . , n − 2, n, 2, 4, . . . , n − 1, 1),
hence it contains precisely those edges that are at distance 2 in G−1(B).

(iii): The vertices of L∗(B) are the edges of G0(B), i.e., the set of vertices
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can be described as

V (L∗(B)) = {{i, j} : dG−1(B)(i, j) ≥ 3, i, j = 1, . . . , n}.

Two vertices {i, j} and {i′, j′} are adjacent if and only if(
i = i′ and {j, j′} ∈ E(G−1(B))

)
or

(
i = j′ and {j, i′} ∈ E(G−1(B))

)
or

(
j = i′ and {i, j′} ∈ E(G−1(B))

)
or

(
j = j′ and {i, i′} ∈ E(G−1(B))

)
.

From the description of the vertex and edge set, it can be seen that the
n-cycle

C =
(
{1, 4}, {1, 5}, . . . , {1, n− 2},
{2, n− 2}, {2, n− 1}, {3, n− 1}, {3, n}, {4, n}, {1, 4}

)
is a subgraph of L∗(B). For n = 7, the cycle contains all vertices of L∗(B)
showing the result.

For n ≥ 9, the graph has more vertices and we will first show that the other
vertices of L∗(B) are all connected to C. The vertices {2, 5}, {2, 6}, . . . , {2, n−
3} lie on a path which is connected to C since {2, n − 3} is adjacent to
{2, n − 2}. Similarly, the vertices {3, 6}, {3, 7}, . . . , {3, n − 2} and the ver-
tices {4, 7}, . . . , {4, n− 1} form paths, and {3, n− 2} is adjacent to {3, n− 1}
and {4, n − 1} is adjacent to {4, n}. Thus both paths are connected to the
cycle. The remaining vertices of the graph lie on the paths(

{5, 8}, {5, 9}, . . . , {5, n}
)

...(
{n− 4, n− 1}, {n− 4, n}

)(
{n− 3, n}

)
.

Since the end vertices of these paths form the path(
{5, n}, . . . , {n− 4, n}, {n− 3, n}

)
,

all vertices of these paths are connected, and since {5, 8} and {4, 8} are adja-
cent, the vertices are also all connected to C. Consequently, the graph L∗(B)
consists of only one component. Thus, the graph has no isolated vertices. Fur-
thermore, the only component of L∗(B) is not bipartite since it contains an
odd cycle. �
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Moreau, J.J. 1962. Décomposition orthogonale d’un espace hilbertien selon deux cônes
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Notation

Vectors

Rn+ Set of nonnegative real n-vectors.

Rn++ Set of positive real n-vectors.

e Vector of all-ones.

ei i-th unit vector.

diag(D) For D ∈ Rn×n, diag(D) is the vector d ∈ Rn with di = Dii,
i = 1, . . . , n.

Matrices

Cn Set of copositive n× n matrices.

C∗n Set of completely positive n× n matrices.

CK Set of K-semidefinite matrices.

Dn Set of doubly nonnegative n× n matrices

Nn Set of nonnegative symmetric n× n matrices.

Sn Set of symmetric n× n matrices.

S+
n Set of positive semidefinite symmetric n× n matrices.

S++
n Set of positive definite symmetric n× n matrices.

‖A‖ Frobenius norm of A, i.e., ‖A‖ =
√∑n

i,j=1|Aij |2.

〈A,B〉 Inner product of A,B ∈ Rm×n, i.e., 〈A,B〉 = trace(BTA).
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Notation

A ◦B Hadamard product of A,B ∈ Rm×n, i.e., A◦B is the matrix with
entries (A ◦B)ij = AijBij .

A ≥ 0 A is entrywise nonnegative (and symmetric).

A � 0 A is positive definite (and symmetric).

A � 0 A is positive semidefinite (and symmetric).

E Matrix of all-ones.

I Identity matrix.

M(A) Comparison matrix of A, page 20.

Diag(d) For d ∈ Rn, Diag(d) is the diagonal matrix D ∈ Rn×n with Dii =
di, i = 1, . . . , n.

rank(A) Rank of A.

trace(A) Trace of A.

ρ(A) Spectral radius of A.

Sets

aff(M) Affine hull of M .

cl(M) Closure of M .

cone(M) Conic hull of M .

conv(M) Convex hull of M .

int(M) Interior of M .

relint(M) Relative interior of M .

span(M) Linear hull of M .

Ext(K) Set of vectors generating extreme rays of the cone K.

K∗ Dual cone of K.

K� Polar cone of K.
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Notation

pr(K, x) Projection of x onto K.

Feas(P) Feasible set of problem (P).

Simplices

∆S Standard simplex.

P Simplicial partition.

δ(P) Diameter of P.

Graphs

α(G) Stability number of G.

χ(G) Chromatic number of G.

ω(G) Clique number of G.

ϑ′(G) Lovász–Schrijver bound for G, page 84.

AG Adjacency matrix of G.

Cn Cycle of length n.

dG(i, j) Distance of the vertices i, j in G.

E(G) Edge set of G.

G(X) Graph of the matrix X, page 7.

Kn Complete graph on n vertices.

V (G) Vertex set of G.

Ḡ Complementary graph of G.
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Index

adjacent extreme rays, 82

cone, 11
completely positive, 14
convex, 11
copositive, 14
dual, 12
pointed, 11
polar, 13
polyhedral, 12
proper, 11
self-dual, 12
solid, 11

Conic Duality Theorem, 34
conic optimization problem, 33

dual, 33
infeasible, 34
primal, 33

cp-rank, 23
cutting plane, 94

extreme point, 7

face, 7
feasible set, 33
Frobenius norm, 42

graph, 7
adjacency matrix, 7
bipartite, 8
clique, 8

clique number, 8
complementary graph, 8
complete, 8
component, 8
connected, 8
cycle, 8
n-cycle, 8
even, 8
odd, 8

diameter, 8
distance, 8
edges, 7

adjacent, 7
graph of a matrix, 7
isomorphic, 7
path, 8
perfect, 9

strong perfect graph theorem,
9

stable set, 9
stability number, 9

subgraph, 8
antihole, 8
hole, 8
induced, 8

triangle, 8
triangle-free, 8
vertex coloring, 9

chromatic number, 9
vertices, 7
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Index

isolated, 8

Hadamard product, 5

inner product, 5

Lovász–Schrijver bound, 100

matrix
K-definite, 13
K-semidefinite, 13
comparison, 24
completely positive, 21
copositive, 14

extreme, 17
of order k, 18

doubly nonnegative, 23
Hildebrand, 17
Hoffman–Pereira, 113
Horn, 16
irreducible, 6
nonnegative, 6
positive definite, 6
positive semidefinite, 6
reducible, 6
strictly copositive, 14
symmetric, 5

maximum clique problem, 8

optimal solution, 34
optimal value, 33

Perron root, 6
Perron vector, 6
Perron–Frobenius Theorem, 6

quadratic program with linear con-
straints, 87

rank one representation, 21
ray, 12

extreme, 12

simplex
k-simplex, 26
standard simplex, 26

simplicial partition, 26
bisection, 27
diameter, 27

single quadratic constraint program,
90

spectral radius, 6
standard quadratic optimization prob-

lem, 55
strictly feasible solution, 34

violating edge, 52
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