
Discontinuous Galerkin Approaches for
HPC Flow Simulations
on Stream Processors

Dissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Dem Fachbereich IV der Universität Trier
vorgelegt von

Martin Siebenborn

Trier, im Oktober 2013

Gutachter: Prof. Dr. Volker Schulz
Prof. Dr. Nicolas Gauger

Zusammenfassung

Gegenstand dieser Arbeit ist die Untersuchung der industriellen Anwendbarkeit von Grafik- und
Stream-Prozessoren auf dem Gebiet der Strömungssimulation. Zu diesem Zweck wird ein ex-
plizites Runge-Kutta diskontinuierliches Galerkin-Verfahren in beliebig hoher Ordnung komplett
für die spezielle Architektur von GPUs implementiert. Parallel dazu wird eine Implementierung
der selben Funktionalität für CPUs demonstriert und Vergleiche werden durchgeführt. Für die
CPU werden sowohl explizite Verfahren als auch etablierte, implizite Verfahren betrachtet. Es
werden dabei ebenfalls Code-Optimierungen für moderne Mehrkern-Prozessoren berücksichtigt,
wie z.B. OPENMP Parallelisierung.
Der Fokus dieser Arbeit liegt dabei auf der Simulation von nicht-viskosen, transsonischen

Strömungen über den ONERA M6 Testflügel. Für die Behandlung der daraus resultierenden
Unstetigkeiten in der Lösung wird eine Methode basierend auf künstlicher Viskosität auf ihre
Anwendbarkeit im Zeit-expliziten Verfahren untersucht. Besonders wird auf das Zusammenspiel
mit der speziellen Hardware der GPU eingegangen. Da dieser Ansatz der künstlichen Viskosität
sehr nah an der Simulation der Navier-Stokes Gleichungen ist, wird ebenfalls ein kurzer Exkurs
zu diesem Thema gegeben, der den Einsatz von GPU-beschleunigten Verfahren für viskose
Strömungen untersucht. Dabei baut diese Arbeit auf Untersuchen zum Einsatz von GPUs im
nodalen, diskontinuierlichen Galerkin-Verfahren für lineare hyperbolische Probleme auf. Dieser
Ansatz wird auf nicht-lineare Gleichungen erweitert, was den Einsatz von numerischer Quadratur
verlangt. Darüber hinaus werden isoparametrisch gekrümmte Elemente zur exakten Darstellung
komplexer Geometrien eingeführt. Ebenfalls werden Untersuchungen zur Implementierung der
diskreten Adjungierten angestellt.
Verfahren hoher Ordnung weisen eine große Sensitivität bezüglich der Darstellung von Geo-

metrien auf. Aus diesem Grund wird eine Methodik vorgestellt, die es ermöglicht, Objekte, deren
Oberfläche durch Polynome höherer Ordnung dargestellt werden, in einem DG-Gitter aufzulö-
sen. Dieser Ansatz beruht auf der Modellierung des Gitters als elastischer Festkörper mit Hilfe
der Gleichungen der linearen Elastizität. Hierzu wird ein Kleinste-Quadrate Minimierungspro-
blem gelöst, um die Differenz zwischen geradlinigem Gitter und tatsächlicher Geometrie zu
beschreiben. Dies wird dann als Randbedingung in der Gitterdeformation eingesetzt.
Die Sensitivität bezüglich der Darstellung der Geometrie wird am Ende der Arbeit nochmals

aufgegriffen im Zusammenhang mit der Formoptimierung des ONERA M6 Flügels. Ziel dabei
ist es, den Widerstand des Profils durch minimale Veränderungen der Form zu verkleinern.
Hierzu wird demonstriert, wie der unstetige Shape Gradient innerhalb der Gitterdeformierung
geglättet werden kann. Dabei wird ebenfalls ein Vergleich zur etablierten Laplace-Beltrami
Glättung anhand der Stokes Gleichungen durchgeführt.

III

Acknowledgments

First of all, I would like to express my gratitude to Prof. Dr. Volker Schulz for the inspiring
discussions and ongoing support. Not only the pleasant environment of his group at the Uni-
versity of Trier but also the chance to present my research on several international conferences
was very helpful for me to finish this thesis.
I would also like to thank Prof. Dr. Nicolas Gauger for the attendance of being the second

referee and for giving me many valuable advices for my research in the project meetings.
This work has been supported by the German Ministry for Education and Research (BMBF)

within the collaborative project “DGHPOPT: Diskontinuierliche Galerkin-Verfahren für den ro-
busten aerodynamischen Entwurf auf effizienten Rechnerarchitekturen in der Luftfahrt”1.

Moreover, I would like to thank all my colleagues from the mathematical department of
the University of Trier and especially the colleagues in the group of Prof. Schulz, namely Dr.
Benjamin Rosenbaum, Christina Schenk, Dr. Claudia Schillings, Dr. Stephan Schmidt, Roland
Stoffel, Dr. Christian Wagner and Heinz Zorn for creating such a nice work atmosphere, not only
at the university but also on excursions and conferences. I would also like to thank Sonja Barth,
Thomas Billen, Ulf Friedrich, David Schmitz, Marina Schneider, Dirk Thomas and Matthias
Wagner for many interesting discussions during coffee breaks and for proofreading this thesis.
Finally, I would like to thank my family, especially my parents Jutta and Rainer, and my

brother Bernhard, for supporting me in so many ways and encouraging me for this work.

Martin Siebenborn
Trier, 2013

1Discontinuous Galerkin Methods for Robust Aerodynamic Design on Efficient Hardware Architectures

V

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Scope of this Work . 3
1.3 Structure of this Work . 4

2 Basic Concepts 7
2.1 General Discontinuous Galerkin Formulation 7
2.2 Equations of Fluid Dynamics . 18
2.3 Temporal Discretization . 22
2.4 Shock Capturing . 24

3 Mesh Curvature Approach 29
3.1 Problems of Under-Resolved Geometries . 29
3.2 Mesh Curvature Based on Linear Elasticity . 31

4 GPU Implementation of Discontinuous Galerkin 41
4.1 Stream Processors and GPUs . 41

4.1.1 GPU Hardware Layout . 41
4.1.2 GPU Programming Model . 43
4.1.3 Performance Considerations . 46

4.2 Discontinuous Galerkin on Stream Processors 49
4.3 Numerical Tests of the GPU Algorithm . 55

4.3.1 Flow Simulations . 55
4.3.2 Performance Analysis . 61

4.4 Comparison to Conventional Algorithms . 65

5 Discrete Adjoint GPU Implementation 69
5.1 Introduction to Discrete Adjoint Approaches 69
5.2 GPU Implementation . 71

6 Shape Optimization Based on DG 77
6.1 A Short Introduction to Shape Calculus . 77
6.2 Higher Order Shape Optimization in Stokes Fluids 81
6.3 DG One Shot Shape Optimization in Euler Flows 89

7 Conclusion and Outlook 95
7.1 Summary . 95
7.2 Future Work . 96

VII

Chapter 1

Introduction

1.1 Motivation

In computational fluid dynamics (CFD), which has shown to be one of the driving forces in
numerical mathematics during the past few decades, there is a growing tendency towards higher
order methods nowadays. While CFD in its beginning was dominated by first and second order
accurate finite volume methods (FVM), the terminology “higher order” is commonly used for
discretization methods which are of third or higher order accuracy. However, most of the
production codes with industrial applications are still low order finite volume schemes. There
is yet an increasing demand for higher order codes, visible in the popularity of discontinuous
Galerkin (DG) methods, which are one famous representative of higher order methods. These
methods were first proposed in the early 1970s for the neutron transport equation in [1].
Especially in the field of fluid dynamics the DG method promises to enable a new level of
resolution of the underlying physical phenomena [2]. Direct numerical simulations (DNS) of
turbulent flows, for instance, are often mentioned in this context.
One common misunderstanding connected to higher order methods is that they are compu-

tationally more expensive than classical finite volume methods. This might stem from the fact
that the computational costs of discretizations are usually measured in the number of cells in
the underlying mesh. Clearly, with respect to this measure the DG method with higher order
polynomial reconstructions inside each cell is computationally more expensive than a finite vol-
ume discretization, which can be seen as a DG method with constant basis functions. However,
due to the richer local ansatz spaces, a higher order DG discretization needs far less elements
in the mesh to achieve the same resolution level. If the computational costs are thus measured
in the number of degrees of freedom instead of the number of elements, higher order methods
are not more expensive.
In [3] this is illustrated by an example. If the mesh size and time steps in a three dimensional

first order method are halved, the computational effort increases by a factor of about 16. Thus,
in order to reduce the discretization error by a factor of 4, the total computational costs are
256 times as high. In contrast, a second order accurate method shows only 16 times higher
costs, which can be continued to higher order methods.
Beside the opportunities coming with higher order DG methods, there are still issues which

are at least partially unsolved. In general, the numerical dissipation of higher order methods is
lower than in FVM, which affects the robustness and the time to reach steady state solutions.
The capturing of shocks, which likely arise in the solution of hyperbolic conservation laws, has
thus to be treated more carefully in higher order methods. Thanks to the Godunov theorem it
is known that higher order discretizations lead to problems in the vicinity of shocks. In finite

1

Chapter 1 Introduction

volume methods this issue is usually overcome by applying limiter methods to enforce stability
despite shocks. However, the construction of limiters in higher order methods is challenging and
computationally costly. Adding artificial viscosity to the hyperbolic equations, as investigated in
[4], has thus proven to be an adequate instrument in order to deal with shocks in the solution,
even if the shock is not aligned to element interfaces, but intersects the elements itself.
Another issue is connected directly to the high resolution of the spatial discretization, which

makes the method very sensitive with respect to the representation of geometries. While in the
low order FV method straight-sided grids are sufficient to resolve curved geometries, a higher
order DG method is able to resolve the arising kinks in the boundary approximation. Thus, the
geometry has to be resolved at least with polynomials of the same order as the DG scheme
itself. This is problematic since higher order mesh generators do not yet show the necessary
robustness for industrial applications. These two issues along with others make the DG method
a vivid field of study.
Another feature and advantage of higher order DG methods is that they bring more structure

into the problem. For a desired error tolerance it can be observed that increasing the polynomial
degree and decreasing the number of elements leads to a natural clustering of the unknown
variables. This is visible in the system matrix which shows a block-wise structure for higher
order DG methods. Moreover, this feature suggests the application of stream processors,
e.g. GPUs. In low order discretizations the unknowns are typically scattered throughout the
memory which affects the speedup that can be gained by GPUs. However, the natural ordering
of the degrees of freedom by the DG discretization allows GPUs to work in parallel on a
very fine level, which enables considerable speedups against sequential algorithms. Moreover,
as the terminology “discontinuous Galerkin” suggests, the loose coupling of elements through
numerical flux functions increases the number of independent operations which also supports
the parallelization on GPUs.
Especially the Runge-Kutta discontinuous Galerkin method (RKDG), as introduced in [5, 6,

7, 8, 9], is attractive for application on stream processors because of its explicit nature. First
experiments combining DG and GPUs are shown in [10] for a nodal DG scheme, as introduced
in [11], and the Maxwell equations. It is investigated how the performance gain of the GPU
against conventional CPU codes increases with increasing polynomial order. One major aspect
is that the memory alignment induced by the higher order, discontinuous basis functions leads
to a memory layout that allows for 100% coalesced access patterns on the GPU. These results
motivate the main topic of this work.
While there is much attention payed to the simulation of partial differential equations (PDE)

in high performance computing (HPC), solving the corresponding adjoint problems is not that
much in the focus. Especially in the field of PDE constraint optimal design and shape optimiza-
tion, adjoints play a decisive role [12]. Adjoint methods open up the opportunity to compute
sensitivities with respect to thousands of degrees of freedom, e.g. the triangulation of a shape,
within the effort of only one PDE solution. Usually, these sensitivities are obtained in a discrete
sense by applying automatic differentiation (AD) to the primal solver code. However, this is
not yet practical for GPUs because most of the performance tuning is lost in the source code
transformation of the AD tool.
In the field of shape optimization two major paradigms are followed. First, the shape can be

seen as parametrized for instance by splines and the optimization is then conducted with respect

2

1.2 Aim and Scope of this Work

to the control points. This approach usually leads to a high level of robustness. However, the
mapping of the boundary deformation into the volume discretization mesh also has to be derived,
which can be complicated. Another approach is based on so-called shape calculus as presented
in [13] which yields an analytical expression for the shape gradient and circumvents the problem
of deriving a mesh deformation tool. By the Hadamard theorem the shape optimization problem
can be restricted to gradient information which is based on the boundary of the shape only.
Especially in higher order discretizations this is a promising approach, since it is independent of
the discretization itself.
The analytical expression of the shape gradient in hand, the remaining question is how to

deform the shape in order to obtain an iterative optimization strategy. Moreover, the discrete
version of the shape gradient is not necessarily smooth such that it can be directly applied as a
deformation to the discretized boundary. One common approach, which is followed for example
in [14, 15], is to use a Laplace-Beltrami like operator to smooth the gradient information on the
surface. After that a mesh deformation tool is applied in order to obtain the deformed volume
discretization mesh. Here the sensitivity of higher order methods with respect to poorly resolved
geometries comes full circle, which forces the mesh deformation to be payed more attention
to. One major drawback of this approach is that there are parameters in the Laplace-Beltrami
operator which have to be specified. However, these degrees of freedom depend on the mesh,
which makes it a time consuming task to find appropriate smoothing parameters.

1.2 Aim and Scope of this Work

While both higher order discretization methods and graphics processing units are paid more and
more attention it is a natural question to ask how these two fit together. Thus, the aim of this
work is to investigate the potential of stream processors in the field of computational fluid dy-
namics. For this purpose, a GPU code for a Runge-Kutta discontinuous Galerkin discretization
of the Euler and Navier-Stokes equations with arbitrary polynomial degrees is developed within
this work.
A special focus is on comparisons to conventional algorithms which are optimized for x86

architectures using implicit time stepping methods. In particular, the speedup, which is gained
by the application of different hardware architectures, should be measured against the additional
programming effort. The underlying test case for the simulation is a transsonic flow over the
ONERA M6 wing which requires also the investigation of shock capturing techniques within
explicit time steppings. On the basis of the investigations of nodal discontinuous Galerkin
methods together with an GPU implementation for Maxwell’s equations [10], this work further
shows a GPU approach of the RKDG method for non-linear PDEs of fluid dynamics and enables
curved elements within the discretization. Also a new aspect is the treatment of the discrete
adjoint approach on GPUs, which is investigated on basis of the GPU code developed within
this work.
During the development of a GPU code for DG it turned out that the treatment of geometries

is of great importance within higher order methods. Thus, it is also investigated how geometric
information given by NURBS can be implemented into the GPU DG method. The final result
of this work is the combination of these building blocks in the field of shape optimization. Here
a drag reduction of the transsonic ONERA M6 test case is conducted using the higher order

3

Chapter 1 Introduction

mesh deformation tool for both the generation of new meshes and the smoothing of shape
gradients.

1.3 Structure of this Work

This work has the following structure: Chapter 2 gives an overview on the mathematical back-
ground of the discontinuous Galerkin method. First, the spatial DG discretization is presented
for the class of general hyperbolic conservation laws leading to a semidiscrete system of ODEs.
In particular, the choice of a polynomial basis and quadrature rules is discussed. After that
the equations of fluid dynamics, which are investigated within this work, are introduced and
some simplifications are explained. This work concentrates on the pure hyperbolic case of the
Euler equations but also one numerical test case is shown using the full set of Navier-Stokes
equations.
Then two different time stepping approaches are presented. On the one hand, an explicit

Runge-Kutta time stepping which will be implemented on the GPU and on the other hand a
backward Euler method which will be implemented for the CPU as a reference. This chapter
closes with a discussion of shock capturing techniques. In particular, it is shown how higher
order derivatives for artificial viscosity and the Navier-Stokes equations come into the DG
discretization.
Chapter 3 deals with the mesh generation for higher order DG methods. First, the problem of

under-resolved geometries is demonstrated within a common test framework, which motivates
the implementation of a higher order mesh generator for DG meshes. This mesh curvature
approach is based on linear elasticity deformations. These differential equations are used in order
to model the transport of curvature information given at the boundary into the discretization
mesh. For this purpose, the shape is assumed to be described by NURBS and the straight-sided
tetrahedra of the DG mesh are fitted to the spline representation by solving a non-linear least
squares problem with a Gauss-Newton method. This solution of a closest point problem is then
applied as a boundary condition in a finite element solver for the linear elasticity equations. The
resulting solution, which is also computed in a higher order FE basis, is used as an isoparametric
mapping for the DG elements.
After generating body fitted, curved grids with higher order boundary approximations, chap-

ter 4 turns to the main topic of this work, namely the implementation of a DG code for GPUs.
In the beginning of this chapter the GPU architecture and the CUDA programming model are
presented and best practice implementation guidelines are reviewed. In particular, differences
and similarities to conventional multicore CPUs are discussed. Then the parallelization of the
Runge-Kutta discontinuous Galerkin method is investigated for the application on a cluster of
multiple GPUs. This code is tested in some well-established fluid simulations with focus on
challenging inviscid, transsonic flows and also viscous Navier-Stokes flows. This is followed by a
performance analysis of the GPU code. For this purpose, a CPU code with the same function-
ality is implemented following the best practice performance guidelines for that architecture.
Further, the explicit GPU code is compared to an implicit CPU code, which reflects state of
the art solver techniques, where strengths and weaknesses of both approaches are pointed out.
In chapter 5 an explicit approach to compute the discrete adjoint of the Euler solver, presented

in chapter 4, is discussed. Particularly, this chapter deals with an efficient implementation of

4

1.3 Structure of this Work

the discrete adjoint method on GPUs. It is further discussed why standard approaches like
automatic differentiation are not applicable for GPUs. This chapter ends with a validation of the
discrete adjoint algorithm. For this purpose, the sensitivity of the drag functional with respect
to the angle of attack of the ONERA M6 wing is compared to finite difference approximations.
This work ends in chapter 6 with an outlook on shape optimization based on higher order

discretizations. In this chapter all methods and techniques of the preceding work are applied
in the field of shape optimization. First, the fundamentals of shape calculus and differential
geometry are shortly reviewed. This is followed by the presentation of a novel shape optimization
approach where the shape gradient is smoothed within the mesh deformation tool and not
by a separate smoothing step. This approach is compared to the classical Laplace-Beltrami
smoothing and advantages are pointed out in a simple shape optimization problem in a Stokes
flow. After that these techniques are applied to the shape optimization of the ONERA M6
wing in an Euler flow which concludes this work.
In chapter 7 the essential facts and achievements of this work are shortly summarized and

reviewed. After that an outlook is given on the topics which should be further investigated.

5

Chapter 2

Basic Concepts

In this chapter the discontinuous Galerkin method for hyperbolic problems is shortly introduced.
Especially the choice of numerical fluxes, a polynomial basis and cubature rules is discussed.
These building blocks are chosen such that they fit into the special programming model of
stream processors. Then the equations of fluid dynamics, which are considered within this
work, are shortly introduced. With the underlying PDEs in hand, the temporal discretization of
the semidiscrete system, which is obtained from the DG scheme, is discussed. Explicit as well
as implicit methods are presented and investigated with respect to GPU programming.
Since non-linear, hyperbolic PDEs likely have discontinuities in the solution, even with smooth

initial conditions, it is necessary to deal with stabilization techniques. For the purpose of this
work, a well-established artificial viscosity approach is reviewed at the end of this chapter.

2.1 General Discontinuous Galerkin Formulation

This works concentrates on the discontinuous Galerkin method for hyperbolic conservation laws
of the following form

∂U

∂t
+
∂F1(U)

∂x1
+ · · ·+

∂Fd(U)

∂xd
= 0 in (0, T]×Ω, (2.1)

U(0, x) = U0(x) x ∈ Ω. (2.2)

Here U : R × Rd → R
m, U (t, x) = (U1 (t, x) , . . . , Um (t, x))T denotes the vector of m

conserved variables at a point x in d-dimensional space and at time t and U0 : Rd → R
m

are initial conditions at time t = 0. The domain of interest is denoted by Ω ⊂ Rd and
could be arbitrarily shaped. Finally [0, T] is the time horizon of the PDE. The vector fields
Fi : Rm → R

m, which are non-linear in general, are usually referred to as flux vectors and
can be gathered introducing the tensor F : Rm → Rm×d , F (U) = (F1(U) . . . Fd(U)). In order
to complete the system, spatial boundary conditions are needed, which will be discussed later
since they depend on the physical background of the system (cf. section 2.2). The PDE can
then be written in the widely used compact notation

∂U

∂t
+∇ · F (U) = 0. (2.3)

In the equation above the scalar product with the Nabla operator denotes the divergence of
the tensor F . In many applications only the steady state solution is of interest which can be

7

Chapter 2 Basic Concepts

obtained by solving system (2.3) in time until ∂U∂t (t∞) ≈ 0 or by solving a discretized version
of the system

∇ · F (U) = 0 (2.4)

directly. In that case time does not have a physical meaning, but can be seen rather as a pseudo
time.
The systems (2.1), (2.3) and (2.4) are said to be hyperbolic if the matrix

F(U,W) =

d∑
i=1

Wi
∂Fi
∂U

(2.5)

has m real eigenvalues and, moreover, a complete set of linearly independent eigenvectors for
all W = (W1, . . . ,Wd)T ∈ Rd .
The discontinuous Galerkin finite element discretization is obtained by deriving a weak for-

mulation of (2.3) or (2.4), which is basically the same procedure as for continuous Galerkin
methods. First, the domain Ω is subdivided into a finite set of K disjoint, conforming elements
Ωk with Ω =

⋃K
k=1 Ωk . Second, the solution U is approximated by Uh in a space (Vh)m of

element-wise defined polynomials ψj : Ωk → R up to degree P . Thus, the global function
space Vh is defined in the following way

Vh =

K⊕
k=1

Vkh , Vkh = span{ψj : Ωk → R, j = 1, . . . , NP } (2.6)

where NP = (P+d)!
d!P ! is the number of polynomials needed to form a basis depending on the

spatial dimension d and the degree P . The difference to continuous finite element methods
is the double-valued state at the element interfaces, which will be addressed later in detail.
Thus, the global function space Vh is often referred to as a broken polynomial space. Equation
(2.3) is then multiplied by a local test function Φ ∈ (Vkh)m and integrated over each element k
leading to ∫

Ωk

[
∂Uh
∂t

+∇ · F (Uh)

]
ΦdΩ = 0. (2.7)

In order to obtain the weak discontinuous Galerkin formulation, integration by parts is applied
to the flux term which yields∫

Ωk

∂Uh
∂t

Φ dΩ = −
∫
∂Ωk

(
F (U−h , U

+
h)∗ · ~n

)
Φ dS +

∫
Ωk

F (Uh) · ∇ΦdΩ , ∀1 ≤ k ≤ K. (2.8)

In the first integral on the right hand side in equation (2.8) ∂Ωk denotes the surface of element
number k and ~n : ∂Ωk → Rd the outward pointing normal vector field. dΩ indicates integration
with respect to the three dimensional Lebesgue measure and dS two dimensional integration,
respectively. This notation is chosen in order to clearly distinguish between volume and surface
integrals. F (U−h , U

+
h)∗ is a so-called numerical flux function, which deals with the double-

valued state at the element interfaces. These numerical fluxes are well known from finite

8

2.1 General Discontinuous Galerkin Formulation

volume methods and will be discussed in section 2.2. Using the notation U−h and U+
h , it is

distinguished between the interior and exterior states at the interfaces of cell number k and its
neighboring cells.
The next step is the representation of the function space Vh. Here, it can be distinguished

between two characteristic discontinuous Galerkin schemes, namelymodal and nodal DG. In the
first one the polynomials ψj in Ωk are chosen to form an orthonormal basis with the following
property ∫

Ωk

ψiψjdΩ = δi j , ∀1 ≤ i , j ≤ NP (2.9)

where δi j is the Kronecker delta. The advantage of this basis choice is that calculating inner
products, as arising in the weak discontinuous Galerkin formulation (2.8), is straightforward as
long as the integrands can be represented properly in the polynomial space. Moreover, this
leads to diagonal mass matrices depending on the element shapes, which is attractive with
respect to computational effort.
In nodal DG methods the basis of Vh is formed by Lagrange polynomials li . In order to fulfill
the interpolation property, a set of NP distinct interpolation points {x i ∈ Ωk , i = 1, . . . , NP }
is chosen with the property li

(
x j
)

= δi j for all 1 ≤ i , j ≤ NP . The connection between the
two schemes can be established in the following sense. Let f : Ωk → R be a polynomial with
degree less or equal P and x ∈ Ωk . Then f (x) can be expressed in the two different bases as

f (x) =

NP∑
i=1

f̂iψi (x) =

NP∑
i=1

f (x i) li (x) . (2.10)

In the equation above the f̂ =
(
f̂1, . . . , f̂NP

)T
are called the modal expansion coefficients,

whereas the nodal expansion coefficients f =
(
f (x1) , . . . , f

(
xNp
))T are the function values

themselves at the set of interpolation points x i . Transferring this to the unknown function Uh
of the DG scheme means that the variables of the discretized equation (2.8) are either modal
expansion coefficients or the function values of Uh.
Introducing a Vandermonde matrix of the form Vi j = ψj (x i) for 1 ≤ i , j ≤ NP , these two
formulations can be linked with the following relation

f = V f̂ . (2.11)

Due to the interpolation property, V is regular. Moreover, the locality of the DG scheme, which
stems from the discontinuous basis functions, leads to element-wise defined Vandermonde
matrices, which are relatively small and dense operators. This feature allows to explicitly invert
V and switch between modal and nodal representations efficiently. In this work features from
both the nodal and the modal DG scheme will be relevant. Thus, it is obligatory to introduce an
orthonormal set of polynomials as well as a set of interpolation points with special properties.
Since the aim of this work is the implementation of a 3D discontinuous Galerkin code on

unstructured meshes, the dimension is fixed to d = 3 from now on. Furthermore, all Ωk are
chosen to be tetrahedra, curved or straight-sided. This choice is made because for domains
Ω with complex shapes mesh generators offer more flexibility and robustness using simplices

9

Chapter 2 Basic Concepts

Ψk(r) = x

Ψ−1
k (x) = r

z

y

x

t

s

r

Figure 2.1: Mapping from reference element T to physical element Ωk

as element type. It can now be proceeded as in standard FEM (finite element method) by
introducing a reference element. The physical elements in the discretization mesh are then
linked to the reference element by mapping functions. This concept offers the advantage that
polynomial basis, interpolation points and quadrature nodes have to be defined only once and
can be mapped into the individual elements.
For this purpose, it is useful to distinguish computational coordinates r = (r, s, t)T in the

reference element and physical coordinates x = (x, y , z)T in the elements Ωk . Assuming
that the discretization of Ω is reasonable, bijective and continuously differentiable functions
Ψk : T → Ωk for all 1 ≤ k ≤ K can be introduced which establish a link to the reference
tetrahedron

T = {−1 ≤ r, s, t ≤ 1 , r + s + t ≤ −1}. (2.12)

This is illustrated in figure 2.1. Together with the transformation formula, inner products of two
functions f , g : Ωk → R can then be traced back to integrations on the reference tetrahedron

(f , g)Ωk
=

∫
Ωk=Ψk(T)

f g dΩ =

∫
T

f (Ψk) g (Ψk) |det (DΨk)| dΩ. (2.13)

Here the Jacobi matrix of the mapping and its determinant often referred to as the Jacobian
are given by

DΨ =

xr xs xt
yr ys yt
zr zs zt

 and J = |det (DΨ)| . (2.14)

So far there are almost no restrictions on the mapping functions. However, it leads to interesting
simplifications to represent them in the same polynomial basis as the discontinuous Galerkin
scheme itself. This procedure is commonly referred to as isoparametric mapping and will be
addressed later.
The next step is the generation of a polynomial basis on the reference element T . This basis

should fulfill two properties, which are important for the further results of this work. First, the
basis polynomials should be orthonormal with respect to the inner product on the reference
element (cf. equation (2.9)) and second, the basis should be hierarchical. The orthonormality

10

2.1 General Discontinuous Galerkin Formulation

has great influence on the condition of the local mass and stiffness matrices and thereby affects
the solvability of the global system (cf. [16]).
Further the polynomial basis is said to be hierarchical if the following condition holds. Let
{ψ1, . . . , ψNP1

} and {φ1, . . . , φNP2
} be two bases on T for two polynomial degrees P1 < P2.

Then it holds

ψi ∈ {φ1, . . . , φNP2
} ∀1 ≤ i ≤ NP1

. (2.15)

This property will be used throughout this work for a P -enrichment procedure where calcula-
tions with higher polynomial degrees are preconditioned with lower ones in order to speed up
convergence and save time. Another application is to measure oscillations in the solution by
restricting it to the next lower polynomial degree and comparing these two functions. The
process of restriction is straightforward for bases as introduced above.
While there is much literature dealing with a variety of polynomial bases in 1D, the extension

to the multidimensional case is non-trivial. For elements like quadrilaterals in 2D or hexahedra
in 3D the so-called tensor product approach could be used where the multivariate polynomials
are formed as products of the 1D basis polynomials. For the tetrahedron the construction of
a hierarchical, orthonormal polynomial basis is demonstrated in [17]. Further discussions and
the proof of orthogonality can be found in [16]. At first, an orthonormal basis is set up for the
hexahedron [−1, 1]3 by forming a tensor product of 1D Jacobi polynomials. The hexahedron
is then collapsed to the standard tetrahedron T . This link is established by the following
coordinate transformation

T → [−1, 1]3, (ξ1, ξ2, ξ3)T 7→
(

2(1 + ξ1)

−ξ2 − ξ3
− 1,

2(1 + ξ2)

−1− ξ3
− 1, ξ3

)T
= (η1, η2, η3)T . (2.16)

A basis of polynomials up to order P is finally formed by

ψi jk(ξ1, ξ2, ξ3) = 2
√

2Φ
(0,0)
i (η1)(1− η2)iΦ

(2i+1,0)
j (η2)(1− η3)i+jΦ

(2i+2j+2,0)
k (η3) (2.17)

for 0 ≤ i , j, k ≤ P and i + j + k ≤ P . In the equation above Φ denotes the classical Jacobi
polynomial which can be efficiently calculated by the recurrence relation

ξΦ
(α,β)
n (ξ) = anΦ

(α,β)
n−1 (ξ)bnΦ

(α,β)
n (ξ) + an+1Φ

(α,β)
n+1 (ξ) (2.18)

for α, β > −1 and ξ ∈ [−1, 1]. The coefficients a and b are given by

an =
2

2n + α+ β

√
n(n + α+ β)(n + α)(n + β)

(2n + α+ β − 1)(2n + α+ β − 1)
(2.19)

and

bn = −
α2 − β2

(2n + α+ β)(2n + α+ β + 2)
. (2.20)

In order to start the recurrence, the two first Jacobi polynomials are set as initial values

Φ
(α,β)
0 (ξ) =

√
2−α−β−1

Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
, (2.21)

Φ
(α,β)
1 (ξ) =

1

2
Φ

(α,β)
0 (ξ)

√
α+ β + 3

(α+ 1)(β + 1)
((α+ β + 2)ξ + α− β). (2.22)

11

Chapter 2 Basic Concepts

A feature of the Jacobi polynomials is that their derivatives can also be represented in a recur-
rence

d

dξ
Φ

(α,β)
n (ξ) =

√
n(n + α+ β + 1)Φ

(α+1,β+1)
n−1 (ξ) (2.23)

and thus computed efficiently. Further details on these polynomials can be found in [18].
The next step is to choose a set of interpolation points in T in order to define the basis of

Lagrange polynomials. In literature there are several different approaches for constructing a
set of NP interpolation points for the tetrahedron. Further details can be found in [17, 19, 20].
Each set of NP distinct points would in principle lead to a uniquely defined basis of Lagrange
polynomials. However, the distribution has great influence on oscillations of the basis functions.
One major property and also a measure for the quality of interpolation points is the so-called
Lebesgue constant which is given by

Λ = max
r∈T

NP∑
i=1

|li(r)| (2.24)

where li are Lagrange basis polynomials uniquely defined on a set of {r i ∈ T , 1 ≤ i ≤ NP }
distinct points. Let f : T → R be a function on the reference element, fh the interpolation
with Lagrange polynomials and f ∗ the best approximating polynomial of degree P . Then the
following estimation holds

‖f − fh‖∞ = ‖f − f ∗ + f ∗ − fh‖∞ ≤ ‖f − f ∗‖∞ + ‖f ∗ − fh‖∞ ≤ (1 + Λ) ‖f − f ∗‖∞ . (2.25)

This inequality illustrates the impact of the interpolation points on the approximation property
of the polynomial basis. f is interpolated by fh at the points r i , but what happens in between
depends on how oscillatory the li are. Moreover, minimizing the Lebesgue constant is closely
related to maximizing the determinant of the Vandermonde matrix V in equation (2.11) as
described in [21]. This determinant plays a decisive role since explicit inversion of V by LU
decomposition is an essential part of the DG method considered here.
The importance of the interpolation points should however not be overemphasized as the

typical polynomial degree in this work will be P = 1, 2, 3, 4, 5. For this degrees the optimized
points mentioned above show only a small advantage over an equidistant set of interpolation
points for both the Lebesgue constant and the determinant of V . However, for degrees of 10

and greater it is demonstrated in [21] that V gets close to a singularity. For the purpose of this
work, the approach in [17] is used since it is connected to an explicit procedure to generate point
sets for arbitrary polynomial degrees. With the polynomial approximation of the PDE solution
in hand, it remains an open question how to approximate the integrals arising in equation (2.8).
The so-called nodal discontinuous Galerkin approach introduced in [21, 11] for the Maxwell
equations on unstructured, tetrahedral grids takes advantage of the orthogonality of the basis
functions and thus leads to a quadrature free calculation of the arising integrals. However,
this simplification only works for PDEs with polynomial flux functions and on straight-sided
elements which means that the transformation function (2.13) between the reference element
and the physical element is an affine mapping. In this case each point x ∈ Ωk can be mapped
to an r ∈ T by

Ψk(x) = Akx + bk = r , Ak ∈ R3×3, bk ∈ R3. (2.26)

12

2.1 General Discontinuous Galerkin Formulation

This is an interesting simplification since the Jacobian Jk = det(Ak) of the transformation Ψk

is element-wise constant and does not influence the integration. If the physical element is not
of this form, in particular in case of an isoparametric mapping where the transformation is also
a polynomial of degree P , the integration has to be dealt with carefully. The determinant of
the Jacobi matrix of the mapping is then not in the range of the basis polynomials anymore.
Moreover, the flux function F in equation (2.3) is most often not a polynomial. In particular,

the fluxes of the Euler equations, which are the subject of this work, are rational functions.
Thus, the integration of these parts has to be of higher order to at least minimize the additional
error.
The application of cubature rules (multidimensional quadrature) overcomes this issue since

the accuracy of integral approximations can be controlled by the number of evaluation nodes.
In general, cubature rules are specific for one element type (here the tetrahedron T) and
are defined by a set of NV cubature nodes {rVi ∈ T , 1 ≤ i ≤ NV} where the integrand is
evaluated and a set of weights {wV

i ∈ T , 1 ≤ i ≤ NV}. These rules are usually characterized
by the maximum degree of polynomials they are able to integrate exactly. The integral over
f : T → R is then approximated by a sum of the following form

∫
T

f dΩ ≈
NV∑
i=1

f (rVi)wV
i . (2.27)

Multidimensional cubature is different to one dimensional quadrature since there is no general-
ization of the one dimensional Gaussian quadrature known. In one dimension the interval is the
only connected and compact subset, whereas in two and more dimensions there is an infinite
variety of such shapes. This explains why cubature rules are specific for one element type.
Moreover, in one dimension Gaussian quadrature is known to be optimal in the sense that a
Gaussian rule with n points integrates polynomials of degree up to 2n − 1 exactly, whereas no
n-point rule is exact for polynomials of degree 2n. In multiple dimensions only upper and lower
bounds are known. An upper bound for the number of cubature nodes needed can be found
by considering tensor-product rules on structured elements. These are obtained by forming
products of the one dimensional Gaussian rules for the multidimensional unit cube. A lower
bound for cubature on simplices can be found in [22].
In order to distinguish between the three dimensional integration inside the tetrahedron and

the cubature rule for its surface, nodes and weights will be denoted by "V" and "S", respec-
tively. A survey of the cubature theory and analysis is given in [22] and an extensive list of
cubature rules is given in [23]. In order to derive a discrete approximation to the weak DG
formulation in equation (2.8), two different integrations have to be performed. On the one
hand, two three dimensional volume integrals have to be computed, which are cubatures over
a tetrahedron in this particular framework. For this purpose, the rules described in [24] are
applied. These cubature rules are found by combinatorial methods and are invariant under all
affine transformations of the tetrahedron onto itself.
On the other hand, the numerical flux function has to be integrated on the two dimensional

surface of the elements. For tetrahedral elements this means a cubature over the four triangles
forming its surface. For further considerations it is obligatory that the triangle cubature nodes
are symmetric since the computation of the numerical flux between two adjacent tetrahedral

13

Chapter 2 Basic Concepts

−1

0

1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) interpolation points

−1

0

1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) volume cubature points

−1

0

1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) surface cubature points

Figure 2.2: Different set of nodes inside the reference tetrahedron T

elements requires that the local U−h and remote state U+
h of the unknown function coincide at

the cubature points. Ensuring this symmetry, it only remains to check in which orientation two
neighboring elements are connected in order to define the assignment between local and remote
variables. As it is necessary for the flux integration first to interpolate the unknown variables
represented in the Lagrange basis to the surface cubature nodes, interpolation operators are
needed. Here, the usage of a symmetrical cubature rule allows to apply the same interpolation
for each element. This will be explained in more detail later in this section.
For the purpose of this work, the symmetric cubature rules for triangles described in [25] are

used. These rules are found utilizing methods from group theory and numerical optimization.
Nodes and weights are denoted by {rSi ∈ T , 1 ≤ i ≤ 4NS} and {wS

i ∈ T , 1 ≤ i ≤ 4NS}. The
total number of cubature nodes for the surface is 4NS since the nodes and weights for all four
surface triangles are collected in one vector.
Figure 2.2 visualizes the locations of interpolation, volume cubature and surface cubature

points inside the reference tetrahedron. Later in chapter 4 it will be discussed why it is important
to distinguish between these three sets of nodes with respect to computational efficiency on
the GPU.
The next step is to derive a discrete version of equation (2.8). In this section the right

hand side is discretized according to the discontinuous Galerkin scheme introduced so far. The
discretization of the time derivative will be addressed later in detail. Note that the local, discrete
operators are derived for a single PDE and not a system of equations, e.g. m = 5 in the Euler
case. If there are more than one equation, then it is assumed that the discrete operators are
extended and applied component-wise.
As mentioned earlier, it has to be decided how the unknown variable U is approximated by

the broken polynomial space (Vh)m defined in (2.6). Here, a vector Uk ∈ Rm·NP is chosen to
state the function values at the interpolation points {r i ∈ T , 1 ≤ i ≤ NP } in element number
k . The variables Uk can thus be seen as function values and as expansion coefficients in the
basis of Lagrange polynomials.
Since the Lagrange basis is not available in an explicit form but only defined over the orthonor-

14

2.1 General Discontinuous Galerkin Formulation

mal polynomials and relation (2.11), it will be an essential part to switch between these two basis
representations. Due to the broken polynomial space the Vandermonde matrix V ∈ RNP×NP is
a relatively small, dense operator. It is thus possible to explicitly invert V by LU decomposition
in an initial stage of the solver. The considerations concerning the interpolation points ensure
that V is regular. In order to interpolate Uh to the cubature points, the orthonormal polynomial
basis is evaluated in the following way

V Vij = ψj(r
V
i), 1 ≤ i ≤ NV , 1 ≤ j ≤ NP . (2.28)

Together with V −1 the volume cubature interpolation operator is obtained by

IV = V V V −1 ∈ RNV×NP . (2.29)

The same is done for the surface cubature points to obtain

V Sij = ψj(r
S
i), 1 ≤ i ≤ 4NS, 1 ≤ j ≤ NP (2.30)

and

IS = V SV −1 ∈ R4NS×NP . (2.31)

With this interpolation operator the left hand side of equation (2.8) can be discretized leading
to an element specific local mass matrix

M = ITV · diag(JVi w
V
i) · IV ∈ RNP×NP (2.32)

where diag(JVi w
V
i) is the matrix with entries (JVi w

V
i)i on the diagonal and zero otherwise. To

be precise M and JVi should be indexed with the element number k yet this is left out for clarity.
Since the transformation mapping is assumed to be non-linear and in particular not in the

range of the basis polynomials, the Jacobian J varies between the cubature nodes. The super-
script V indicates that the Jacobian evaluated at the cubature nodes is meant. In the case of
a straight-sided element, J is constant. As a consequence all non-curved elements share the
same local mass matrix up to a constant factor. This is an interesting fact with respect to
memory usage of the solver.
For the construction of the local stiffness matrices the partial derivatives of the polynomial

basis are needed. This is done by differentiating equation (2.17) and evaluating it at the volume
cubature points

(Vr)i j =
∂ψj(r)

∂r

∣∣∣∣
r=rVi

, (Vs)i j =
∂ψj(r)

∂s

∣∣∣∣
r=rVi

, (Vt)i j =
∂ψj(r)

∂t

∣∣∣∣
r=rVi

(2.33)

for 1 ≤ i ≤ NV and 1 ≤ j ≤ NP . Multiplying the Vandermonde matrices of the derivatives with
V −1 leads to differentiation operators for the reference element with respect to computational
coordinates

Dr = VrV
−1, Ds = VsV

−1, Dt = VtV
−1 ∈ RNV×NP . (2.34)

15

Chapter 2 Basic Concepts

In order to obtain the differentiation operators for the physical elements, the composition with
the element transformation mapping has to be considered. This is then derived with the chain
rule yielding

Sx = M−1
(
DTr diag(rVx,i) +DTs diag(sVx,i) +DTt diag(tVx,i)

)
diag(JVi w

V
i) ∈ RNP×NV

Sy = M−1
(
DTr diag(rVy,i) +DTs diag(sVy,i) +DTt diag(tVy,i)

)
diag(JVi w

V
i) ∈ RNP×NV

Sz = M−1
(
DTr diag(rVz,i) +DTs diag(sVz,i) +DTt diag(tVz,i)

)
diag(JVi w

V
i) ∈ RNP×NV .

(2.35)

Note that these three operators are multiplied with the inverse element mass matrix from the
left in order to separate the time derivative on the left hand side of equation (2.8). Finally, the
local mass matrices for the surface integration are given by

M∂Ω = M−1 · ITS · diag(JSi w
S
i) ∈ RNP×4NS (2.36)

and again the multiplication with the inverse mass matrix is already performed. Here the
superscript S indicates that the Jacobian is evaluated at the surface cubature nodes.
Up till now the Jacobian and with it the representation of the element curvature is not

specified yet. As mentioned earlier, choosing the elemental transformation mapping to be
representable within the same Lagrangian basis as the DG scheme itself offers a high amount
of flexibility. For the isoparametric mapping it is assumed that the transformation for each
element Ωk is given pointwise for the set of interpolation nodes. In section 3.2 an approach is
presented how this could be achieved. The inverse of the actual polynomial mapping Ψk (cf.
figure 2.1) is defined by the assignment of interpolation points in the reference element and in
the k-th physical element

{r i ∈ T , 1 ≤ i ≤ NP } 7→ {x i ∈ Ωk , 1 ≤ i ≤ NP }. (2.37)

Let X, Y, Z ∈ RNP be the vectors of the components of the nodes x i . Then the Jacobi matrix
of the inverse transformation evaluated at interpolation point number i is given by

(DΨ)i =

D̃r,iX D̃s,iX D̃t,iX

D̃r,iY D̃s,iY D̃t,iY

D̃r,iZ D̃s,iZ D̃t,iZ

 =

xr,i xs,i xt,i
yr,i ys,i yt,i
zr,i zs,i zt,i

 . (2.38)

In the equation above D̃·,i denotes the i-th row of the differentiation operator which evaluates
derivatives at interpolation points. D̃r ,D̃s ,D̃t are obtained in the same way as Dr ,Ds ,Dt with
the modification that in equations (2.33) and (2.34) derivatives are evaluated at interpolation
points. The partial derivatives given in (2.38) can be interpolated to the volume and surface
cubature nodes using the operators IV and IS.
After this interpolation the Jacobi matrices are inverted in order to retrieve the partial deriva-

tives of the inverse transformation mappings Ψ−1 needed in (2.35). Furthermore, the Jacobians
JVi and JSi at the volume and surface cubature nodes are then calculated. Note that the order
of interpolation and forming the determinant of the Jacobi matrices is not interchangeable
since the Jacobian is not in the range of the Lagrange polynomials in general. Plugging the
local operators introduced in this section into (2.8) finally leads to the semi discrete version of

16

2.1 General Discontinuous Galerkin Formulation

the weak discontinuous Galerkin formulation

∂Uk
∂t

=

3∑
m=1

Sk,xmFm (IV Uk)−M∂Ωk
H(U−k , U

+
k , ~n). (2.39)

Here H(U−k , U
+
k , ~n) is the implementation of a numerical flux function. With H, the flux between

cell number k and its adjacent cells is approximated. This flux depends on the local variables
interpolated to the surface cubature nodes U−k = ISUk and the remote variables from the
adjacent tetrahedra U+

k coinciding with the local ones. Note that the symmetry of the surface
cubature rule ensures that each component of U−k can be identified with one of U+

k resulting
in a permutation of the remote variables before the flux is evaluated.
The convergence analysis of the spatial DG scheme, as presented within this chapter, was

first conducted for linear PDEs in two dimensions. For the special case of the neutron transport
equation

µ · ∇u + ηu = S (2.40)

as introduced in [1] with S, u : Ω ⊂ R2 → R, µ ∈ R2 and η ∈ R in [26] a convergence order
of O(hP+1) was shown where P is the polynomial degree and h is the width of the elements.
This analysis was conducted on a rectangular grid with a tensor-product basis leading to an
estimate of the L2 error

‖u − uh‖L2(Ω) ≤ c1h
P+1 ‖u‖HP+2(Ω) (2.41)

assuming enough regularity in the solution u. Here the Hn(Ω)-norm is given by

‖u‖Hn(Ω) =

√√√√∑
|α|≤n

∥∥∥∥∂αu∂xα

∥∥∥∥2

L2(Ω)

(2.42)

in terms of a multi-index α. This result was extended in [27] to quasi-uniform triangulations,
which means that the angles within the triangles are bounded, obtaining an order of convergence
of O(hP+ 1

2) in the sense

‖u − uh‖L2(Ω) ≤ c2h
P+ 1

2 ‖u‖HP+1(Ω) . (2.43)

The convergence order of O(hP+1) could be validated later in [28] again for quasi-uniform
triangulations with the additional condition that element interfaces are not aligned with the
characteristic direction, i.e. | 〈µ, ~n〉 | > 0.
In the more recent article [29] the DG method is shown to have optimal convergence rates

of O(hP+1) for general non-linear, scalar conservation laws in multiple dimensions assuming
the use of upwind fluxes. In the case of non-smooth solutions, which may arise in general
conservation laws, the concept of higher order accuracy conflicts with the Godunov theorem
which will be discussed in section 2.4. This theorem states that a numerical method has to
be first order in the vicinity of discontinuities in the solution in order to preserve monotonicity.
Nevertheless, this case is further investigated in [7] and [8].

17

Chapter 2 Basic Concepts

2.2 Equations of Fluid Dynamics

In this section some representative equations of fluid dynamics are briefly introduced, namely
the Navier-Stokes equations and, as a special case, the Euler equations. Both of them are
investigated numerically within this work. In order not to go too deeply into the physical
meaning of these equations, a more mathematical point of view is chosen here. A detailed
survey of the derivation of the conservation laws can be found for instance in [30] or [31].
In this work a simplified version of the Navier-Stokes equations is considered, leaving out

the effect of heat diffusion and assuming a homogeneous viscosity, which does not depend on
density. Also external forces, e.g. gravity, are neglected. This system of equations describes
the motion of a compressible fluid in the three dimensional space and states the conservation of
mass, momentum and energy. The fluid is characterized by the quantities density ρ, the vector
of three velocities in terms of the Cartesian coordinates u = (u, v , w) and the total energy E.
These are the so-called primitive variables, whereas the differential equations are formulated in
terms of conservative variables. In the terminology of section 2.1 five conservative variables
are distinguished such that m = 5 and d = 3 leading to the unknown function

U : (0, T]×Ω→ R5, (t, x) 7→ (ρ, ρu, ρv , ρw, ρE). (2.44)

Here a more general formulation of equation (2.1) is chosen with additional viscous fluxes

∂U

∂t
+∇ · FC (U)−∇ · FD (U,∇U) = 0. (2.45)

Yet, section 2.4 will show that the building elements for a discrete version are already derived.
The superscripts C and D distinguish between fluxes describing the convective and viscous part
of the PDE. This system is commonly referred to as a convection-diffusion equation. In the
case of the Navier-Stokes equation as described above the convective fluxes are given by

FC(U) =


ρu ρv ρw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p

u(ρE + p) v(ρE + p) w(ρE + p)

 (2.46)

and the diffusive fluxes

FDj (U,∇U) =


0

τ1j

τ2j

τ3j

uτj1 + vτj2 + wτj3

 , j = 1, 2, 3. (2.47)

These fluxes depend on the stress tensor

τ = µ

(
∇u +∇uT −

2

3
(∇ · u)I

)
(2.48)

18

2.2 Equations of Fluid Dynamics

where ∇u denotes the Jacobi matrix of the velocity field, ∇ · u the divergence, I the 3 × 3

identity matrix and µ the viscosity of the fluid. If neglecting the diffusive fluxes or choosing the
viscosity µ = 0, the pure hyperbolic Euler equations are obtained which are the main component
of this work. System (2.45) with the convective (2.46) and diffusive (2.47) fluxes is still under-
determined since there are six unknowns in five equations. Thus, some assumptions on the
fluid have to be made for which the perfect gas assumption is chosen here linking the pressure
to the conservative variables

p = (γ − 1)

(
ρE −

u2 + v2 + w2

2ρ

)
. (2.49)

This assumption is reasonable for dry air at normal pressure and temperature and in that case
the adiabatic index is given by γ ≈ 1.4. In the case of a viscous flow the dimensionless Reynolds
number can be used in order to characterize different situations. It is given by

Re =
ρuL

µ
(2.50)

where u denotes the mean velocity of the obstacle relative to the fluid, µ the viscosity and L
a characteristic length which can be, e.g., the diameter of the obstacle. Roughly speaking, the
Reynolds number describes the ratio of inertial and viscous forces in the fluid. The lower the
Reynolds number the more viscous is the fluid. More details can be found in [30].
In section 2.1 the actual choice of spatial boundary conditions was left open since they

depend on the physical equations. The test cases in this work depend on two different types
of boundary conditions: on the one hand, a so-called farfield condition which models the fluid
entering or leaving the domain and on the other hand, boundary conditions describing the
interaction of the fluid with geometry, e.g. an airfoil. In the discontinuous Galerkin framework
boundary conditions are commonly imposed in a weak sense. This means, if a discretization
element is at a physical boundary and hence one face is not connected to a neighboring cell,
the remote state U+

h is set to a value representing the boundary condition. For this purpose,
the Jacobi matrices of the convection fluxes have to be introduced. These are given by

∂FC1
∂U

=


0 1 0 0 0

(γ − 1)H − u2 − a2 (3− γ)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0

u((γ − 2)H − a2) H − (γ − 1)u2 −(γ − 1)uv −(γ − 1)uw γu



∂FC2
∂U

=


0 0 1 0 0

−vu v u 0 0

(γ − 1)H − v2 − a2 −(γ − 1)u (3− γ)v −(γ − 1)w γ − 1

−vw 0 w v 0

v((γ − 2)H − a2) −(γ − 1)uv H − (γ − 1)v2 −(γ − 1)vw γv



∂FC3
∂U

=


0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

(γ − 1)H − w2 − a2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1

w((γ − 2)H − a2) −(γ − 1)uw −(γ − 1)vw H − (γ − 1)w2 γw


(2.51)

19

Chapter 2 Basic Concepts

in terms of the total enthalpy

H =
ρE + p

ρ
(2.52)

and the local speed of sound

a =

√
γp

ρ
=

√
(γ − 1)

[
H −

1

2
(u2 + v2 + w2)

]
. (2.53)

Let ~n be the outward pointing normal vector at the farfield boundary of the flow domain and

FC~n
′

=

3∑
i=1

nxi
∂FCi
∂U

(2.54)

the normal convective flux Jacobi matrix. Then four different flow situations can be distin-
guished depending on the eigenvalues of FC~n

′ which are given by

λ1 = 〈u, ~n〉 − a, λ2 = λ3 = λ4 = 〈u, ~n〉, λ5 = 〈u, ~n〉+ a, (2.55)

namely

• supersonic inflow if λi < 0, i = 1, . . . 5

• subsonic inflow if λi < 0, i = 1, . . . 4, λ5 > 0

• subsonic outflow if λi > 0, i = 2, . . . 5, λ1 < 0

• supersonic outflow if λi > 0, i = 1, . . . 5.

In the case of a supersonic inflow, information is only entering the domain, thus U+
h is set to

the freestream values (ρ∞, ρu∞, ρv∞, ρw∞, ρE∞). Here freestream denotes the state of the
fluid which is assumed to be in sufficiently large distance to the airfoil. At a supersonic outflow
boundary information is only leaving the domain, therefore U+

h = U−h is assumed.
For subsonic inflow conditions the first four conservative variables are taken from the freestream

state and the pressure is taken from inside the domain which determines the fifth conservative
variable. At a subsonic outflow boundary this situation reverses and four conservative variables
are taken from inside and the fifth is determined by the pressure calculated with the freestream
values according to (2.49).
The second boundary condition is the one on the obstacle in the flow field - the so-called wall

boundary. It is necessary to distinguish between inviscid and viscous flows. In the first case,
when the fluid is modeled by the Euler equations, there are no friction forces. This allows the
fluid to slip over walls such that only velocities tangent to the boundary are possible leading to
the condition 〈u, ~n〉 = 0 on the surface of the obstacle. This condition is weakly imposed by
setting U+

h according to U−h yet replacing the velocity such that the average velocity is zero in
normal direction

〈
1

2
(u+ + u−), ~n〉 = 0 (2.56)

20

2.2 Equations of Fluid Dynamics

which leads to

u+ = u− − 2〈u−, ~n〉~n. (2.57)

In the case of a viscous fluid modeled by the Navier-Stokes equations the fluid sticks to the
wall due to friction forces resulting in a no-slip boundary condition. This is realized by setting
u+ = 0 in U+

h .
The last step is the actual definition of the numerical flux function H(U−h , U

+
h , ~n) in equation

(2.39). Since the solution space is discontinuous, the normal component of the flux which is
integrated over the element surfaces (cf. equation (2.8)) is not uniquely defined. This problem
is also known from finite volume methods and is solved by so-called approximative Riemann
solvers. An extensive overview can be found in [32]. In [33] some of these numerical fluxes are
investigated in the context of the Runge-Kutta discontinuous Galerkin framework.
Although there is actually freedom in choosing the numerical flux function, two major prop-

erties have to be fulfilled for the discretization scheme to be reasonable. First, the numerical
flux H has to be consistent with the physical flux in the sense that

H(U−h , U
−
h , ~n) = FC(U−h) · ~n. (2.58)

And second, it has to be conservative leading to

H(U+
h , U

−
h , ~n) = −H(U−h , U

+
h ,−~n). (2.59)

Consider two elements Ωk1
and Ωk2

with the common edge e = ∂Ωk1
∩ ∂Ωk2

and the outer
normal vector field of ~n in Ωk1

on e. Then the outer normal vector field in Ωk2
on e is given

by −~n. In this context, property (2.59) has the meaning that exactly the amount of a quantity
which is leaving Ωk1

over e enters Ωk2
and vice versa. Without this condition the conservativity

of the global scheme could not be established.
For the purpose of this work, the local Lax-Friedrichs flux is chosen. It is given by

H(U−h , U
+
h , ~n) =

1

2

(
FC(U−h) + FC(U+

h)
)
· ~n +

1

2
A(U−h − U

+
h) (2.60)

with A the largest, absolute eigenvalue of the normal convective flux Jacobian matrix evaluated
for U+

h and U−h obtained by

A = max
{U+

h ,U
−
h }

∣∣∣λ(FC~n
′
)
∣∣∣ . (2.61)

Consistency can be verified by

H(U−h , U
−
h , ~n) =

1

2

(
FC(U−h) + FC(U−h)

)
· ~n +

1

2
A(U−h − U

−
h)

= FC(U−h) · ~n
(2.62)

and conservativity follows from

H(U+
h , U

−
h , ~n) =

1

2

(
FC(U+

h) + FC(U−h)
)
· ~n +

1

2
A(U+

h − U
−
h)

= −
[

1

2

(
FC(U−h) + FC(U+

h)
)
· (−~n) +

1

2
A(U−h − U

+
h)

]
= −H(U−h , U

+
h ,−~n).

(2.63)

21

Chapter 2 Basic Concepts

Roughly speaking, the flux (2.60) consists of two parts, namely a central flux which is stabilized
by an upwind part. This Lax-Friedrichs flux is often referred to in literature and is known to be
relatively stable due to its dissipative nature, which is important for the transsonic test cases
in this work.
The discretization discussed so far does only include the convective part of equations (2.45).

Extensions needed for the diffusive part are discussed in section 2.4 where the discretization of
higher order derivatives in the DG scheme is presented.

2.3 Temporal Discretization

The discontinuous Galerkin spatial discretization, as introduced in section 2.1, results in a
system of non-linear, coupled ODEs (ordinary differential equations). This procedure is referred
to as the method of lines. An alternative approach is to treat the time in the same way
as the spatial dimensions leading to the so-called space-time discontinuous Galerkin method
introduced for the Euler equations in [34]. One advantage of the method of lines is that the
theory of time integration schemes for ODEs can be applied to the resulting semi-discrete
system (2.39) without paying further attention to where the spatial discretization came from.
Since the DG method is designed to be of arbitrary order, the temporal discretization should also
be of higher order to prevent the loss of accuracy. Here two major classes of time integration
schemes can be distinguished. On the one hand, explicit schemes where the state in one time
step only depends on the previous one. On the other hand, implicit schemes where, in contrast,
the state in the following time step is computed by solving an implicit equation.
As discussed in section 2.1, the DG discretization leads to a very local method in the sense

that the update for one cell only depends on the states of the direct neighbors. In particular, it
only depends on the trace of the conserved variables on the common interface. Together with
an explicit time stepping scheme this leads to a method which can efficiently be parallelized as
investigated in [35]. This stems from the fact that the additional effort for the time integration
is roughly speaking a vector addition. In contrast, in implicit methods a non-linear system has
to be solved for each time step.
Since the aim of this work is to investigate the potential of DG methods on massively parallel

streaming processors, it concentrates on the class of explicit Runge-Kutta time integration
schemes. Denoting the spatial discretization including boundary conditions by an operator Nh
leads to the following system of ODEs

∂Uh
∂t

+Nh(t, Uh) = 0 (2.64)

where Uh can be thought of as the nodal values describing the solution in Vh (cf. section 2.1).
Applying a finite difference approximation to the temporal derivative with a step size of ∆t

results in the following system

Un+1
h − Unh

∆t
+Nh(tn, Unh) = 0 (2.65)

which yields the explicit time marching formula

Un+1
h = Unh − ∆tNh(tn, Unh) (2.66)

22

2.3 Temporal Discretization

with the initialization U0
h = Uh(t = 0). This is the so-called explicit Euler time stepping

scheme which is known to be stable only for a small ∆t. The range of feasible time steps can
be significantly enlarged by applying a Runge-Kutta method where the final time step Un+1

h

not only depends on Unh but also on a number of intermediate steps. The idea of Runge-
Kutta methods is to integrate (2.64) in time over the intervals [tn, tn+1] and apply higher order
integration rules to the integral

Sn =

tn+1∫
tn

Nh(t, Uh)dt, (2.67)

whereas in the explicit Euler method Sn is approximated by multiplying the state at tn with the
interval length ∆t. In general, explicit s-stage Runge-Kutta methods for the discretization of
ODEs have the following form

U
(1)
h = Nh (tn, Unh)

U
(i)
h = Nh

tn + ci∆t, U
n + ∆t

i−1∑
j=1

ai jU
(j)
h

 , i = 2, . . . s

Un+1
h = Unh + ∆t

s∑
j=1

bjU
(j)
h .

(2.68)

Here Unh denotes the current time step and Un+1
h the successive one. These methods can be

characterized by a so-called Butcher tableau

c1

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs .

(2.69)

This notation is introduced in [36], which gives a fundamental overview on this field. Usually
the coefficients a,b and c are derived such that the method fulfills a given order k which means
that the local truncation error is O(∆tk+1).
From the computational point of view such a method requires s times as much additional

memory as the conservative variables Uh since the intermediate states U(j) are all needed in
the final stage. For higher dimensional problems this memory consumption might be critical. A
solution for this issue is presented in [37] leading to the class of so-called low storage Runge-
Kutta methods. Here the algorithm is reformulated in the following way

dU
(j)
h = AjdU

(j−1)
h + ∆tNh

(
U

(j−1)
h

)
U

(j)
h = U

(j−1)
h + BjdU

(j)
h j = 1, . . . s

(2.70)

23

Chapter 2 Basic Concepts

where the coefficients A and B are derived from the original ones a,b and c in algorithm
(2.68). Furthermore, Nh is assumed not to be time-dependent. In that work A1 = 0 is chosen
such that the resulting Runge-Kutta method is self-starting. Note that the additional memory
consumption of (2.68) is independent of the number of stages s and is in particular only of the
size of Uh. However, the feature of low storage requirements does not come for free. In [37] a
five stage Runge-Kutta method is derived which is only fourth order accurate. Nevertheless, in
section 4.1 it will be discussed that low storage is more crucial than computational effort since
the stream processors taken into account are optimized that way.
An implicit time stepping scheme is obtained by evaluating Nh at the unknown state Un+1

h

in equation (2.66) which leads to the backward or implicit Euler scheme

Un+1
h = Unh − ∆tNh(tn+1, Un+1

h). (2.71)

This scheme is known to be A-stable, which usually allows for much larger time steps ∆t in
practice than explicit methods. However, the computationally attractive characteristics of an
explicit scheme are lost. In each time step the non-linear system (2.71) has to be solved, which
is commonly done by Newton’s method. Thus, it has to be dealt with several very large linear
systems for each time integration. In the present application obtaining the Jacobi matrix ∂Nh

∂Uh
,

which is the key part of Newton’s method, leads to additional programming and computational
effort. Another feature of the explicit method (2.66) is to be matrix free. Thus, the memory
requirement scales like O(N) where N is the number of interpolation points in the discretization.
In contrast, an implicit method usually requires ∂Nh

∂Uh
to be in memory leading to a requirement

which scales like O(N2). If the arising linear systems are solved with an iterative solver like
GMRES, the Jacobi matrix does not necessarily have to be in memory since only products with
this matrix are needed. However, incomplete LU factorization (ILU), which is probably the
most often applied family of preconditioners, is based on the matrix itself.
A third and different approach is based on the time-independent version of the hyperbolic

equations already presented in 2.4
∇ · F (U) = 0. (2.72)

Discretizing with the DG approach, presented in this chapter, leads to the non-linear equation

Ñh(Uh) = 0. (2.73)

This can be seen as the limit t →∞ of the backward Euler scheme. The difference between Ñh
andNh is that the multiplication with the inverse mass matrix is left out in the time-independent
case. This system of non-linear equations (2.73) is usually solved using Newton’s method.

2.4 Shock Capturing

A well known and intensively investigated phenomenon of hyperbolic equations such as (2.1) is
the presence of discontinuities (also called shocks) in the solution. Even if the initial condition U0

is smooth, regions with large gradients and also discontinuities may arise during time evolution.
In fluid dynamics this typically happens for large Mach numbers or for transsonic flows.
In the case of a transsonic flow the fluid enters the domain with a Mach number M < 1 and

then, due to interactions with obstacles, the Mach number increases to M > 1 and decreases

24

2.4 Shock Capturing

again. Two of such transsonic test cases are demonstrated in section 4.3.1. When representing
the solution U with polynomials, like in the discontinuous Galerkin method, spurious oscillations
may arise in the numerical approximation Uh in the regions of shocks. Due to the well known
Gibbs phenomenon, this issue is not necessarily resolvable with a grid refinement. Furthermore,
this becomes even worse for higher order approximations with increasing polynomial degree
P . The presence of such spurious oscillations is particularly critical in the case of the Euler
equations. In regions where there is low pressure or density in the solution, oscillations might
lead to negative or zero values which are not feasible. This problem is illustrated by the Godunov
theorem. Consider the one dimensional convection equation

∂U

∂t
+ c

∂U

∂x
= 0, x ∈ R (2.74)

with a convection speed c ∈ R and initial conditions U(x, 0) = U0(x) which is fulfilled by
U(x, t) = U0(x − ct). As a result the monotonicity of U0 with respect to x is fixed in time.
Roughly speaking, preserving monotonicity means that no new local maxima nor minima are
produced in the solution. Thus, a numerical discretization scheme should fulfill this condition,
which is in general not given due to the following theorem.

Godunov theorem: Linear one-step methods with second order spatial discretization for the
convection equation cannot preserve monotonicity if not

|c |
∆t

∆x
∈ N (2.75)

is satisfied.

A proof and further discussions can be found in [31]. The statement of the theorem con-
flicts with the concept of higher order polynomial basis functions inside the elements. Since
the basis functions are chosen to be discontinuous across element interfaces, a possible solu-
tion could be to align shocks in the solution with inter-element boundaries in the discretization
mesh. This is, however, not practical as shocks likely change their position during time. Since
the DG method can be seen as a generalization of the finite volume discretization method, it
is tempting to reuse stabilization techniques like slope limiters. These limiters are successfully
applied in FVM to reconstruct gradients of the solution and limit them to reasonable values.
For instance in [38, 9], slope limiters similar to the FVM ones are extended to the DG method.
A major drawback of this approach is a loss of accuracy since these techniques only work for
lower degrees of basis polynomials. In [39] limiters for higher order DG methods are presented
however the extension to a three dimensional solver would be challenging. Another disadvan-
tage of limiter methods is their dependency on the element geometry. Different element types
need different limiting procedures.
A completely different approach is to modify the differential equations (2.1) by adding a

small amount of artificial viscosity which yields

∂U

∂t
+∇ · F (U) +∇ ·

(
ε2∇U

)
= 0. (2.76)

Here ε : (0, T] × Ω → [0, εmax] is a function determining where there are large gradients and
shocks in the solution U. Due to the additional dissipation controlled by εmax, discontinuities

25

Chapter 2 Basic Concepts

are smeared out such that the solution is in the range of the polynomial basis functions again.
Hereby spurious oscillations are suppressed. Furthermore, by spreading its width, it is possible
to capture a shock within one element. In contrast, when decreasing the order of the numerical
method in the vicinity of shocks, it is necessary to drastically refine the grid in those regions.
This artificial viscosity approach is yet not for free. Since the basic DG scheme is not able to
handle higher order derivatives, equation (2.76) has to be rewritten as a system of first order
PDEs increasing the number of variables. This leads to

Q+ ε∇U = 0

∂U

∂t
+∇ · (F (U) + εQ) = 0

(2.77)

where Q : (0, T]×Ω→ Rm×3 is an auxiliary variable approximating the gradient of the solution
U. These equations are both discretized with the same DG scheme, introduced in section 2.1,
yielding

Qk,xm =Sk,xmIV εkUk −M∂Ωk

1

2

(
ε−k U

−
k + ε+

k U
+
k

)
nxm , m = 1, 2, 3

∂Uk
∂t

=

3∑
m=1

Sk,xm (Fm (IV Uk) + IV εkQk,xm)

−M∂Ωk

[
H
(
U−k , U

+
k , ~n

)
+

1

2

(
ε−k Q

−
k + ε+

k Q
+
k

)
· ~n
]
.

(2.78)

In the first equation nxm denotes the m-th component of the normal vector ~n and the same
applies for Qk,xm . Note that in (2.78) for the two new viscous fluxes a central flux is imple-
mented which is represented by the arithmetic averages of local and remote state. This is a
reasonable choice since diffusion does not have a preferred direction of propagation. Further
discussions on numerical fluxes for elliptic problems can be found in [40].
Similar to the derivation of the discrete version of the purely hyperbolic equations in (2.39),

the local states at surface cubature nodes are given by

ε−k = ISεk , Q−k = ISQk . (2.79)

The corresponding remote variables ε+
k and Q+

k are obtained in the same way like in section
2.1. With these additional variables the DG scheme is capable of dealing with diffusive terms.
Yet, ε has to be defined in some way. It is important that artificial diffusion is only added
near shocks and the equations remain unchanged in smooth regions of the domain. For this
purpose, a shock detector is presented in [4] which is slightly modified here in order to fit in
the GPU framework presented in chapter 4. Based on this, an element-wise constant viscosity
is assigned to each discretization cell. Like in this work, the authors use a representation of
the numerical solution Uh in a hierarchical, orthogonal basis. Then they compare the ratio of
modes with high and low frequencies in the solution.
Let uh be one component of the unknown variables Uh inside one element and û the vector

of modal expansion coefficients such that

uh =

NP∑
i=1

ûiψi , ũh =

NP−1∑
i=1

ûiψi . (2.80)

26

2.4 Shock Capturing

Here ũh is the solution where the modes with the highest frequencies - namely the polynomials
with degree P - are left out. This is straightforward due to the hierarchical basis polynomials.
For each element Ωk the following smoothness indicator is evaluated

Sk =
(uh − ũh, uh − ũh)Ωk

(uh, uh)Ωk

. (2.81)

Roughly speaking, this indicator is close to zero in regions where the solution is smooth and
increases where there are oscillations and large gradients. In order to obtain a discrete version
of the shock detector, a reduced Vandermonde matrix is used. This means that the columns in
V corresponding to the polynomials ψ with degree P are replaced by zero leading to a matrix
Vred. The projection onto the space of the polynomials up to degree P − 1 is then established
by the interpolation operator Ired = VredV

−1. Finally, the scalar products in equation (2.81)
are assembled by the matrices

Mk,red = ITredMkIred (2.82)

for the nominator and Mk for the denominator. Based on Sk , the viscosity is chosen to be
constant in element number k according to the following smooth function

εk =


0 if sk < s0 − κ
ε0
2

(
1 + sin π(sk−s0)

2κ

)
if s0 − κ ≤ sk ≤ s0 + κ

ε0 if sk > s0 + κ

(2.83)

where sk = |log10 Sk |. The constants s0 and κ are chosen empirically which might be challeng-
ing in practice. However, this approach is one of the most popular throughout literature. One
disadvantage of this method are the inter-element jumps in ε. The discontinuity of ε influences
the stability of the explicit time stepping and leads to a significantly smaller ∆t. This issue
is for example investigated in [41] with respect to an explicit time stepping scheme and an
approach is presented how to smooth viscosity and cancel out inter-element jumps. Another
approach dealing with PDE based artificial viscosity is presented in [42]. Additional equations
for the viscosity are added to the PDE system leading to a smooth viscosity, which results in a
computationally more expensive method.

27

Chapter 3

Mesh Curvature Approach

3.1 Problems of Under-Resolved Geometries

As mentioned in the introduction and during the derivation of the discontinuous Galerkin
scheme, one outstanding feature of this method is its arbitrarily high order in space. This re-
sults in a very high resolution of the method without extensive refinement of the discretization
mesh. However, this leads also to a major drawback. Potential deficiencies in the representa-
tion of geometric entities in the flow field are resolved within the solution, which may lead to
nonphysical behavior.
Moreover, since the state of the art discretization technique in computational fluid dynamics

over the past decades is the low order finite volume method, most available meshes consist of
straight-sided elements. It is thus tempting to reuse these grids in the context of higher order
discretizations such as the DG method. When representing a physically curved geometry with
straight-sided elements, there are kinks arising at the element interfaces on the surface. While
this is a sufficient representation for the constant basis functions in a finite volume method,
the higher order polynomials are able to resolve these kinks, which leads to a falsification of
the solution.
In the worst case of transsonic and supersonic flows small non-physical shocks appear on

each element interface, which probably crashes the solver. Thus, it is obligatory to introduce
curved elements into the discontinuous Galerkin discretization in order to enable a higher order
boundary representation. To be precise, the boundary should at least be resolved in the same
order as the basis functions to obtain reasonable solutions.
In the formal derivation of the DG discretization at the beginning of section 2.1 almost

no restrictions were made on the shape of the elements. Yet, for the purpose of this work,
the elements are chosen to be logically tetrahedra in order to use standard mesh generation
techniques. These tetrahedra are then curved with respect to polynomial mapping functions
Ψk , which are within the local ansatz space Vkh .
This issue is visualized in figure 3.1. A flow past a sphere with freestream Mach number

M∞ = 0.38 is simulated on both a mesh with straight-sided elements in the top image and
a mesh with isoparametric, curved elements in the bottom image. It can be seen that the
solver converged to a non-physical solution in the first case, although the mesh is drastically
refined (approximately 20 times as many elements), whereas in the second case a much better
solution is achieved on a coarser grid. Originally, this was investigated in detail in [43] for the
two dimensional flow over a sphere.
For many applications, and particularly industrial ones, the considered geometries are known

in an analytic form, e.g., by NURBS surfaces. However, this curvature information on its own

29

Chapter 3 Mesh Curvature Approach

Figure 3.1: Density distribution of a subsonic Euler flow past a sphere with P = 4 basis func-
tions. Disturbed solution on straight-sided elements (top) and isoparametric curved
elements (bottom).

30

3.2 Mesh Curvature Based on Linear Elasticity

Figure 3.2: Two dimensional curved elements on a physical boundary with displaced (filled) and
original (empty) interpolation nodes.

is not sufficient. In addition, the location of interpolation and cubature points in the layer of
cells covering the curved surface has to be corrected. Assuming that the mesh generator is able
to evaluate the analytical description of the surface, mesh nodes match up with the physical
geometry. However, this is not necessary for the approach proposed in this work. This situation
is visualized in figure 3.2 for a two dimensional curved discretization. The interpolation points
in the corner of the left and right triangle remain untouched, since the mesh generator has
placed them according to the curved boundary. Moreover, by only displacing the interpolation
points denoted by the filled circles, all nodes in the triangle in the middle keep their original
position. Thus, in two dimensions only the elements sharing an edge with the physical boundary
have to be curved.
This is much more complicated in three dimensions for tetrahedra. Here three different cases

can be distinguished. One tetrahedron could share a face with the boundary, or an edge or only
one node. This ends up with several layers of elements which have to be curved. Even more
attention has to be payed for anisotropic meshes, where curving the first layer of elements on
the boundary could result in overlappings with the following layers.
In both two and three dimensions one has to be careful that the displacement of interpolation

points is performed smoothly. It is crucial to avoid agglomerations of interpolation points, since
this affects the determinant of the Jacobian of Ψk resulting in a poor integration quality.

3.2 Mesh Curvature Based on Linear Elasticity

For the purpose of this work, a bounding box is put around the geometry marking an area in
which cells get curved instead of tracking cells adjacent to the boundary. This is visualized in
figure 3.3. Here the red box distinguishes between cells that are close to the geometry which
are allowed to be curved and the cells which may remain straight-sided.
The discretization mesh is modeled as embedded in some flexible material on which forces are

performed. These forces are chosen in a way such that the straight-sided boundary matches
the physical, curved geometry. By solving the linear elasticity equations with a continuous
finite element approach (FEM), this deformation of the boundary shape is transported into
the domain. Furthermore, deformations can then be evaluated at arbitrary points since they
are available in some finite element polynomial basis. The finite element method for the linear

31

Chapter 3 Mesh Curvature Approach

X
Y

Z
X

Y

Z

Figure 3.3: Bounding box (red) around ONERA M6 wing (yellow) marking the sub-mesh for
the linear elasticity solver. The blue and violet mesh in the background is the
triangulation of the symmetry wall where the airfoil is fixed.

elasticity and the discontinuous Galerkin scheme do thus not have to rely on the same set of
interpolation points. They can even be of different order.
In order to keep this process as cheap as possible, the affected cells within the bounding box

are extracted and the linear elasticity equations are solved on the resulting sub-mesh. A very
similar approach is presented in [44] leading to comparable results.
The governing equations of linear elasticity are given by

∇ · σ = f on Ωc (3.1)

where f denotes body forces acting on the solid, e.g. gravity, which are not present in this
model. Ωc ⊂ Ω is the subset of cells within the DG mesh Ω that are near the geometry and
have to be curved. In equation (3.1) σ denotes the stress tensor and is given by

σ = λTr(ε)I + 2µε. (3.2)

The stress tensor is defined in terms of the strain tensor

ε =
1

2
(∇u +∇uT). (3.3)

Here λ and µ denote the Lamé parameters, which can be expressed in terms of Young’s modulus
E and Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

. (3.4)

32

3.2 Mesh Curvature Based on Linear Elasticity

Furthermore, in equation (3.1) Tr(·) denotes the trace operator and I ∈ R3×3 is the identity
matrix. The unknown function u : Ωc → R3 describes the deformation the material performs
under given boundary conditions which will be discussed later.
For the purpose of curving the discretization mesh, it is not important that the parameters
E and ν describe the properties of a physical material. However, it is crucial to understand how
they influence the solution. Young’s modulus is a measure for the stiffness of the material.
Larger values for E result in smaller deformations. However, since f = 0 within this chapter,
E has no influence on the solution. Poisson’s ratio describes how much a material expands in
two coordinate directions when compressed in the third.
Before discussing the actual deformation, the parametrized surface has to be defined. This

surface is assumed to be based on non-uniform, rational B-splines (NURBS). A detailed survey
on the theory and application of splines can be found in [45]. Let (u0, . . . , um), 0 ≤ ui ≤ 1 be
the so-called knot vector with ui ≥ ui−1, 1 ≤ i ≤ m for a given number of control points n
and P ≥ 0. The i-th B-spline basis function of degree P with knot vector u is then given by

Ni ,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 else
, (3.5)

Ni ,P (u) =
u − ui
ui+p − ui

Ni ,P−1(u) +
ui+P+1 − u
ui+P+1 − ui+1

Ni+1,P−1(u). (3.6)

Further, the derivatives of the B-splines are obtained in a similar recursion

N ′i ,P (u) =
P

ui+p − ui
Ni ,P−1(u) +

P

ui+P+1 − ui+1
Ni+1,P−1(u) (3.7)

and can also be computed efficiently. In the evaluation of B-splines the term 0
0 may arise and

is typically set to 1 throughout literature.
If additionally n weights wi > 0, 1 ≤ i ≤ n are given, the NURBS basis functions can be

formed by

Ri ,P (u) =
Ni ,P (u)wi
n∑
j=0

Nj,P (u)wj

. (3.8)

Finally, for a set of control points q i = (xi , yi , zi) ∈ R3 the NURBS curve C : [0, 1] → R
3 is

given by

C(u) =

n∑
i=0

Ri ,P (u)q i . (3.9)

In a NURBS curve the partitioning of the knot vector determines which control point is influ-
encing the curve for a given u. The weights determine the overall influence of a control point
on the curve.
The two dimensional case of a NURBS surface is similar to the one dimensional case and is

obtained by a tensor product approach. Let Pu and Pv be the degrees in each parametrized
direction. Further nu and nv are the numbers of control points in each direction spanning the
grid q i ,j ∈ R3, 0 ≤ i ≤ nu and 0 ≤ j ≤ nv . With this grid a matrix of weights wi ,j is associated.
The knot vectors can then be defined by (u0, . . . , umu) and (v0, . . . , vmv) with mu = nu+Pu+1

33

Chapter 3 Mesh Curvature Approach

and mv = nv + Pv + 1 leading to the two dimensional NURBS surface S : [0, 1]2 → R3. This
is obtained by

S(u, v) =

nu∑
i=0

nv∑
j=0

Ri ,j(u, v)q i ,j (3.10)

where the tensor product of the NURBS is given by

Ri ,j(u, v) =
Ni ,Pu(u)Nj,Pv (v)wi ,j

nu∑
k=0

nv∑
l=0

Nk,Pu(u)Nl ,Pv (v)wk,l

. (3.11)

The partial derivatives are obtained by applying the quotient rule which yields

∂Ri ,j(u, v)

∂u
=

N ′i ,Pu(u)Nj,Pv (v)wi ,j
nu∑
k=0

nv∑
l=0

Nk,Pu(u)Nl ,Pv (v)wk,l(
nu∑
k=0

nv∑
l=0

Nk,Pu(u)Nl ,Pv (v)wk,l

)2

−
Ni ,Pu(u)Nj,Pv (v)wi ,j

nu∑
k=0

nv∑
l=0

N ′k,Pu(u)Nl ,Pv (v)wk,l(
nu∑
k=0

nv∑
l=0

Nk,Pu(u)Nl ,Pv (v)wk,l

)2 .

(3.12)

The derivative with respect to v is obtained in the same way. This yields the Jacobi matrix of
S as

JS(u, v) =

 nu∑
i=0

nv∑
j=0

∂Ri ,j(u, v)

∂u
q i ,j

nu∑
i=0

nv∑
j=0

∂Ri ,j(u, v)

∂v
q i ,j

 . (3.13)

Since this is the standard framework in computer-aided design (CAD) and widely used in
industrial applications, it can be assumed that a geometry is given as a NURBS surface.
In order to complete system (3.1), three different kinds of boundary conditions are added.

Two Dirichlet and one Neumann type boundary condition are used

u = g on ΓD1

u = 0 on ΓD2

∂u

∂~n
= 0 on ΓN .

(3.14)

In the situation of figure 3.3, ΓD1
is the yellow surface of the airfoil. This is the part of the

boundary which has to be curved in order to match with the physical geometry.
ΓD2

are the five surfaces of the red box in the foreground. Here the curvature is forced to
stop by the zero condition, which yields that all cells outside the red box remain untouched.
Furthermore, there will be no overlappings due to this conditions. The remaining Neumann
condition is active at the rear face of the bounding box. This condition only permits displace-
ments in tangential directions. By this, points on ΓN are able to slide within the plane, but
cannot leave it.

34

3.2 Mesh Curvature Based on Linear Elasticity

The next step is to analyze the distance between the actual surface given by S(u, v) in
equation (3.10) and the straight-sided tetrahedra in the discretization mesh. As mentioned
earlier, the mesh generator does not necessarily have to place the nodes of a surface tetrahedron
onto the spline S. The gap between the straight-sided tetrahedron and the spline is described
by the function g : ΓD1

→ R
3 in (3.14). This function is chosen according to the solution of

a closest point problem of the following form

min
(u,v)

f (u, v) :=
1

2
‖S(u, v)− x‖2

2

s.t. 0 ≤ u, v ≤ 1.

(3.15)

This non-linear least squares problem has to be solved for every x ∈ ΓD1
. To be precise, x

plays the role of the degrees of freedom of the finite element method on the boundary ΓD1
.

Assume that (u∗, v∗) is the unique, globally optimal solution of problem (3.15) for a given x .
Then g(x) = S(u∗, v∗)− x describes the displacement the point x on the polygonal boundary
ΓD1

has to perform in order to match with the curved geometry. It will be discussed later why
this very strong assumption of uniqueness in (3.15) is reasonable. Furthermore, it is essential
that the resulting mapping described by g is bijective. Otherwise, singularities may arise in the
curved mesh, which results in overlappings and zero-volume cells.
In order to solve the minimization problems in (3.15), the Gauss-Newton approach is applied.

The techniques and notations presented in [46] are closely followed for this purpose. In a
more general framework the function to be minimized is written in terms of a residual vector
r : Rn → Rm, r(u) = (r1(u), . . . , rm(u))T as

f (u) =
1

2
‖r(u)‖2

2 . (3.16)

Further, the Jacobi matrix of r is denoted by

Jr (u) =

∇r1(u)T

...
∇rm(u)T

 . (3.17)

Then the gradient of f can be formulated as

∇f (u) =

m∑
j=1

rj(u)∇rj(u) = Jr (u)T r(u) (3.18)

and the Hesse matrix as

∇2f (u) =

m∑
j=1

(
∇rj(u)∇rj(u)T + rj(u)∇2rj(u)

)
= Jr (u)T Jr (u) +

m∑
j=1

rj(u)∇2rj(u).

(3.19)

Due to the assumption of uniqueness, it is sufficient to consider the first-order necessary
conditions for optimality, which are given by finding a point u∗ which fulfills ∇f (u∗) = 0. This

35

Chapter 3 Mesh Curvature Approach

can be achieved by choosing a start vector u0 which is sufficiently close to u∗ and applying
Newton’s method

∇2f (uk)∆uk = −∇f (uk)

uk+1 = uk + ∆uk .
(3.20)

However, the evaluation of the Hesse matrix ∇2f is computationally costly. This leads to
the idea of the Gauss-Newton method where the second summand in (3.19) is omitted and
Jr (u)T Jr (u) is used as an approximation. In the vicinity of the stationary point u∗ this approxi-
mation is reasonable since the second order derivatives in (3.19) are weighted with the residual
function r which is close to zero. The modified version of equation (3.20) is then given by

Jr (uk)T Jr (uk)∆uk = −Jr (uk)r(uk)

uk+1 = uk + ∆uk .
(3.21)

For the purpose of problem (3.15), computational efficiency is of great importance. Although
the dimension of each minimization problem is low, there is a very large number of systems
that have to be solved depending on the grid and the order of the finite element method. In
this specific context the dimensions are given by n = 2 and m = 3. Furthermore, in algorithm
(3.21) it holds u = (u, v), r(u) = S(u, v) − x and Jr (u) = JS(u, v). Because of the low
dimension and the symmetry of the matrix in (3.21), these systems are explicitly solved by
Cholesky decomposition.
Since the NURBS surface is defined in the interval [0, 1]2, constraints on (u, v) have to be

fulfilled in (3.15). These so-called box constraints can be implemented into the Gauss-Newton
algorithm in the following way. Whenever (uk , vk) 6∈ [0, 1]2 holds, it is projected back into the
feasible space

(uk , vk)←


if uk < 0 : uk = 0

if uk > 1 : uk = 1

if vk < 0 : vk = 0

if vk > 1 : vk = 1 .

(3.22)

It should be remarked that there is no guarantee for this procedure to converge. Moreover, it is
not hard to construct examples where this projection does not lead to descent directions. This
is illustrated in [47] where a solution for this issue is discussed. However, in the special setting
of the closest point problem to a NURBS surface and additionally the geometries discussed
here, the projection is sufficient.
As mentioned earlier, it is a strong assumption that each optimization problem for a fixed x is

uniquely solvable and that algorithm (3.21) converges to the global minimum. At the following
examples it is presented how the global optimality is achieved. Closely connected to this is
the assumption that the resulting mapping, described by g, is bijective. Here the theoretical
background will not be discussed, yet it should be mentioned that for the test cases, presented
within this work, it is sufficient to place the nodes of the tetrahedral mesh on the spline S. A
further mesh refinement in the vicinity of large curvatures of S ensures the two conditions to
be fulfilled. This functionality is implemented in the open-source mesh generator GMSH [48]
which is used for all meshes within this work.
The resulting linear elasticity system is discretized and solved with the finite element toolbox

GETFEM++ [49]. For a reasonable solution the toolbox is configured with the same polynomial

36

3.2 Mesh Curvature Based on Linear Elasticity

Figure 3.4: Influence of linear elasticity curvature on surface-elements (colored) of the sphere
(gray). Initial mesh on the left and curved mesh on the right.

order like the DG scheme. A boundary approximation in more detail would not benefit lower
order DG discretizations. This solution is then exported and stored together with the mesh for
the DG flow solver. The GETFEM++ toolbox uses the Gauss-Newton solver as interpolation
function on ΓD1

and evaluates g at interpolation points on the boundary. Since the finite
element tool operates on the same tetrahedra like the DG scheme, the evaluation of the solution
is relatively cheap. For each element Ωk the finite element solution has to be evaluated at the
position of the interpolation points of the DG scheme {x i ∈ Ωk , 1 ≤ i ≤ NP }. If the finite
element solution was computed on a different mesh, the identification of x i with an element
Ωk would result in an expensive operation.
The lower image in figure 3.1 shows the curvature on the surface of the sphere with radius r

and centroid x0. Here the displacement can be described without the need of a parametrization
by

g(x) = x0 − x +
r

‖x − x0‖
x . (3.23)

In this case ν ≈ 0.5 is chosen for the linear elasticity equations. This leads to a smooth
deformation of the discretization mesh in all coordinate directions.
The visualization of the deformation inside the three dimensional mesh is difficult (cf. figure

3.4). Here the curvature process of the sphere is demonstrated. The straight-sided surface
triangulation of the sphere can be seen in the left figure painted in gray (similar to figure 3.1
but coarser). This surface is surrounded by a tetrahedral volume discretization. Some of these
elements are visualized as the straight-sided, colored tetrahedra on the top of the sphere. In
the figure on the right hand side it can be seen how the solution of the least squares fitting
and the elasticity equations deform the mesh. First, the surface does not have kinks anymore
and represents the actual sphere now. Second, the colored tetrahedra, which surround the
sphere, are also slightly curved. Moreover, this figure indicates that not only the first layer of
tetrahedra but also some elements in the neighborhood are affected by the curvature. This is
the major difference compared to the two dimensional situation in figure 3.2.
The next case gives more insight in the curvature process. Figure 3.5 shows the NACA0012

test case. Since the geometries in the NACA series are two dimensional, this grid is stretched

37

Chapter 3 Mesh Curvature Approach

Figure 3.5: NACA0012 airfoil, leading edge. Initial grid on the left, P = 4 curved elements on
the right.

Figure 3.6: ONERA M6 airfoil, top surface with leading edge. Initial geometry produced by the
mesh generator on the left. P = 4 curved cells around the physical geometry on
the right.

into the third coordinate direction as the solver developed for this work only supports tetrahedra.
The extend in z-direction is chosen to be 25% of the chord length of the airfoil. However, this
test case visualizes the deformation inside the grid at least partly. Here ν ≈ 0 is set such that
a deformation in the xy -plane does not result in displacements in z-direction. The front and
back plane of the mesh are chosen to be ΓN such that these walls are not deformed. In the
three test cases discussed so far, the degree of basis polynomials is chosen to be P = 4 in the
finite element solver, since the DG flow simulation throughout this work will mostly be of that
order.

Reviewing the NACA0012 and ONERA M6 case, it should be noted that the Gauss-Newton
algorithm for problem (3.15) does not necessarily converge to the global minimum. Assuming
a point x in the center of the upper surface of the ONERA M6 geometry and start values
(u0, v0) corresponding to a point S(u0, v0) near the center of the lower surface, the algorithm
(3.21) would converge to a S(u∗, v∗) near S(u0, v0). Due to the geometric simplicity of these

38

3.2 Mesh Curvature Based on Linear Elasticity

two test cases, it is sufficient to solve two least squares problems per node x : one with start
parameter corresponding approximately to a point in the center of the upper surface and one
with parameters referring to the center of the lower surface.
Although this process seems to be computationally expensive, the linear elasticity equations

only have to be solved once. As mentioned earlier, the solution of the finite element solver can
then be stored together with the straight-sided mesh and evaluated by the DG solver.
For discretizations based on quadrilaterals and hexahedra a different approach is chosen in

[50]. Here the curvature information is retrieved from additional points which are taken from a
refined mesh. This means that, e.g., every second point in the mesh is omitted and used for a
polynomial representation of the curvature. However, this approach needs a hierarchy of grids
and is not straightforward in unstructured discretizations.

39

Chapter 4

GPU Implementation of Discontinuous
Galerkin

At the beginning of this chapter the functionality of modern graphics processing units (GPUs)
is shortly introduced. For this purpose, the presentations in [51, 52, 53] are followed where
additional information can be found. In particular, GPUs are compared to classical central
processing units (CPUs) and the differences in the corresponding program paradigms are il-
lustrated. The strengths and weaknesses of each hardware model are also outlined and it is
discussed when to use GPUs or CPUs depending on the underlying problem. For a better under-
standing of GPU programming, the hardware and particularly the memory model is presented.
It is then explained why the discontinuous Galerkin method, as described in chapter 2, is at-
tractive for the implementation on GPUs and necessary building blocks for such an algorithm
are derived. With a parallel GPU/MPI algorithm in hand, several standard numerical test cases
are performed and investigated.
At the end of this chapter the discontinuous Galerkin GPU algorithm is compared to a

classical CPU code with the same functionality. In this comparison a special focus is on the
performance gain that can be achieved by applying GPUs. Furthermore, in a second test the
GPU algorithm is compared to a well-established, implicit approach for the CPU. Parts of this
chapter are already published in [54].

4.1 Stream Processors and GPUs

4.1.1 GPU Hardware Layout

The graphics processing unit (GPU), as the name suggests, was originally designed in the 1980’s
to assist the central processing unit (CPU) with two dimensional graphical computations. In
the 1990’s GPUs where extended by the ability to accelerate tasks like three dimensional
polygon rendering, texture mapping and lighting. Throughout this evolution the computer
games industry among others was the driving force for the development of faster GPUs. Since
there is a high degree of parallelism in graphical computations, the GPUs are conceptually
laid out with a large number of small computing cores and significantly larger bandwidth than
the CPU. The GPU faces millions of relatively small computations of the same type on huge
data sets. Thus, GPUs are designed to evaluate one single instruction on many data points
simultaneously. This concept is commonly referred to as the single instruction, multiple data
(SIMD) paradigm. In contrast, modern CPUs follow a multiple instruction, multiple data
(MIMD) approach yet on a much coarser level. This will be discussed later in more detail.

41

Chapter 4 GPU Implementation of Discontinuous Galerkin

Control

ALU ALU

ALUALU

Cache

DRAM DRAM

Figure 4.1: Schematic comparison of CPU (left) and GPU (right) hardware layout according
to [53]

For the first two decades the concept of GPUs was very static. Rendering graphics on the
GPU was divided in several stages which where dedicated to specific parts of the hardware.
Given a triangular surface which is to be rendered, the fixed-function graphics pipeline was
passed through containing tasks like vertex shading, transformation, lighting, rasterization and
finally putting the computed pixel into the frame buffer. The interaction between the system
and GPU was realized completely through graphics interfaces like Direct3D and OPENGL and
the control of the graphics pipeline was limited.
In 2001 the DirectX 8.0 standard was released which coincided with the development of a

programmable vertex and pixel shader on the GPU. The abilities to implement arbitrary code
were yet limited. All instructions had to be ported through a graphics application program-
ming interface (API) like OPENGL to the GPU. However, for the first time researchers from
various fields became interested in the enormous parallelism and computational power of the
GPUs. Especially in the fields of partial differential equations, attention was payed to these
developments.
The final step towards a universally applicable computing device was made in 2006 when

NVIDIA released the G80 chip. This hardware realizes the concept of unified shaders which
means that the stages of the graphics pipeline, as described above, are mapped to an array
of unified processors. Simultaneously NVIDIA released the CUDA (compute unified device ar-
chitecture) driver and toolkit, which is basically a C/C++ compiler and runtime environment.
This enables the developer to program the GPU in almost plain C/C++ code with some ex-
tensions. Through these extensions, the programmer is able to exploit his knowledge about
the underlying algorithm and define in which way parallelism of data and executions is handled.
Moreover, in the CUDA model arbitrary read and write accesses to the GPU memory are pos-
sible unlike through graphics APIs. Another important step is the ability of double precision
arithmetic supported in the CUDA architecture. Since for graphics calculations precision is not
of importance, the GPU manufacturers did not support double precision in the first place. Still
in the latest chip generation called Fermi there is a significant gap between single and double
precision performance.

42

4.1 Stream Processors and GPUs

The differences between CPUs and GPUs are schematically depicted in figure 4.1. Since these
two processors are designed for different tasks, the hardware architecture follows contrary design
philosophies. The CPU chip on the left is laid out for sequential code performance. Most parts
of the chip are dedicated to the control of the execution flow. In a program mainly consisting of
sequential operations, the CPU is able to break the order of executions whenever it is possible
in order to exploit parallelisms. However, this is usually limited to some extend for which reason
the number of execution units is significantly smaller than on the GPU side. Another design
consideration is the relatively large processor cache buffering data from the global RAM for
computations. The idea behind that is to exploit locality of data. On the one hand, data is
hold in cache over time for a potential reuse and on the other hand, spatial locality of data is
made use of by caching regions of memory. It could be summarized that, since CPUs have to
be applicable for all-purpose computations, they are not tuned for one specific kind of task.
On the right hand side of figure 4.1 the hardware of a GPU is outlined. Reviewing their

original purpose, GPUs are designed to load a large set of triangles from the RAM, do some
independent operations on them, and store the resulting pixel back into the RAM. Thus, the
GPU is laid out for small, independent operations. This can be found in the chip design
where the area dedicated to execution flow control is much smaller than on the CPU side
since operations are expected to be independent by definition. In contrast, most of the chip
area is dedicated to floating point operations and only small caches are provided. Another
important fact is the connection to the RAM which is much faster on the GPU side resulting
in higher memory bandwidth. The link between the global system RAM and the CPU has to
satisfy requirements for e.g. backward compatibility of operation systems or the input/output
of plugged devices, whereas the GPU is, to some extend, uncoupled from the main system and
has to serve only one purpose. Thus, it can be optimized for high bandwidth without regarding
compatibility and universality.
This classical point of view does yet not strictly hold for the presence and the future. Modern

CPUs are more and more turning into multi core processors since physical barriers do not allow
one core to run at arbitrary frequencies. Thus, it rather has to be distinguished between multi
core and many core hardware than between classical CPUs and GPUs and here the transition
is a smooth one.
To be more specific: The underlying hardware used throughout this work is the NVIDIA

Fermi GPU architecture. This design provides up to 16 so-called streaming multiprocessors
(SM) each featuring 32 cores, which leads to a total number of 512 CUDA processors. Each
of these processors has its own arithmetic logic unit (ALU) and a floating point unit (FPU).
A total amount of up to 6 GB RAM is supported. This architecture further provides 64 KB
memory per SM which can be configured to be both shared memory or L1 cache [52].

4.1.2 GPU Programming Model

In this section the CUDA architecture is briefly introduced. It has to be seen as one example for
a many core or stream processor computing approach, and most of the considerations within
this work would also apply for other architectures designed for massively parallel floating point
operations.
The CUDA architecture model on the coarsest level distinguishes between a host, denoting

43

Chapter 4 GPU Implementation of Discontinuous Galerkin

the CPU, with the global system RAM and multiple devices denoting the GPUs with their
attached RAM. Device and host are connected through the PCI express bus. From the pro-
gramming point of view, the devices are controlled from within threads that are running on the
host. In a typical CUDA program each host thread executes the following steps:

• Identify a device with this host and initialize the GPU.

• Allocate memory on the device and upload necessary data to the device.

• Make calls to CUDA kernel functions which execute on the device.

• Perform some asynchronous computations on the host.

• Wait for the device to finish and download the computed results to the host.

• Free the allocated memories on the device.

A major concept in the CUDA programming model are so-called kernel functions. They are
declared using the CUDA-specific keyword __global__. This function defines what all CUDA
threads are executing in parallel on the device. The keyword implies that the function is only
callable from the host using a special syntax. In contrast, the keyword __device__ declares a
function which is executed on the device and is only callable from within other devices or kernel
functions. The call of a kernel function uses an extension to the standard C language in order
to declare how many parallel threads have to be started and how they have to be organized.
Such calls typically have the following syntax: NameOfKernel <<< gridDim, blockDim >>>
(arguments).
The arguments between “<<<” and “>>>” symbols declare the numbering of the parallel

threads. In CUDA threads are organized in a hierarchic structure. On top there is a three
dimensional grid structure where each grid cell contains a block structure which is also three
dimensional. The elements of such a block are then the threads to be executed. The launch
of one CUDA kernel constructs one grid, and the elements (blocks) of the grid are all copies
of this kernel. Within the kernel function, or every other device function called in this context,
there are variables telling one thread its number and the number of the block it runs in. The
variables threadIdx.x, threadIdx.y and threadIdx.z give the location of a thread within
its block and blockIdx.x, blockIdx.y and blockIdx.z the location of the block within the
grid. The intent of this construction is the distribution of threads over the SMs. Threads of
one block are able to share data within the cache efficiently. This will be discussed later in more
detail. Another feature is the ability to synchronize the threads of a block by the command
_syncthreads(), which forces all calling threads to wait for the remaining ones. These aspects
of the CUDA model show some similarities to the MPI (massage passing interface) model, yet
on a much finer level. In CUDA the identification of threads is similar to the “rank” variable in
MPI.
From the hardware point of view, the SM gathers its threads in groups of 32 which are

called warps. A warp executes one common instruction at a time. Whenever the threads
within one warp are branched due to a data-dependent conditional statement in the code,
branches are executed serialized. This is important to keep in mind since it is crucial with
respect to performance. It should be remarked that the CUDA architecture follows a so-called

44

4.1 Stream Processors and GPUs

Block(0,0,0)

Shared Memory

Registers

Thread(0,0,0)

Registers

Thread(1,0,0)

Block(1,0,0)

Shared Memory

Registers

Thread(0,0,0)

Registers

Thread(1,0,0)

Grid

Host

Constant Memory

Global Memory

Figure 4.2: CUDA memory model according to [51]

SIMT (single instruction, multiple threads) model which slightly differs from the SIMD model.
While in SIMD models the width of the vector is exposed to the software, in the SIMT model
instructions specify the execution and branching behavior for a single thread.
Besides organization of parallel threads and optimization of instruction throughput, the mem-

ory management is very important in terms of high performance computing. Especially in the
world of GPUs and stream processors with their very high floating point performance, it is
crucial to feed the hundreds of computing cores with data. Without avoiding high latencies
and idle times due to misuse of the device memory, the GPU code will likely not perform better
than a conventional CPU code or even worse. Here two problem classes can be distinguished.
On the one hand, problems where arithmetic computations are dominant, and on the other
hand, problems which are dominated by memory operations. As an example for the first class
the rendering of fractal images or the Monte Carlo simulations could be seen. Problems where
there are pointwise independent, possibly arithmetic expensive operations with only few data
input and output. Here the GPU with its hundreds of lightweight processor cores, optimized for
floating point operations, shows very high speedups compared to a CPU. Moreover, in these
situations parallelism is straightforward and a programmer does not have to go too deeply into
the hardware specific optimization techniques. In contrast, solving PDEs in non-trivial domains
usually leads to discretizations on unstructured grids, like in this work, resulting in a mostly
memory dominated problem. In that case, the gained speedup against conventional CPU codes
crucially depends on the utilization of the different types of memory and the caching strategy.
In the CUDA architecture there are several different types of memories with different prop-

erties (cf. figure 4.2). The major one is the DRAM of the GPU, which is called the global
memory. In the NVIDIA Fermi architecture DRAM offers up to 6 GB space. This memory is

45

Chapter 4 GPU Implementation of Discontinuous Galerkin

comparable to the CPUs DRAM and is used in a similar fashion. The global memory is both
readable and writable to the CPU and the CUDA threads, but reading data from within CUDA
threads is connected to high latencies. It is common practice in GPU programs that the host
thread on the CPU allocates space in the global device memory and then copies all needed data
from the host memory to the device global DRAM. This is usually executed in an initial phase
of the application. The data transport is conduced over the PCI express bus and could be the
bottle neck for the performance which will be discussed later. A pointer to this allocated space
is then transferred to the GPU as an argument in the kernel call.
Similar to the global memory is the constant memory on the device. It is both readable

from the host and device but only writable from the host, as the name says. Constant memory
features lower latencies than global memory and is thus interesting for data which does not
change through the whole application and is used frequently. These two memories are persistent
for the live-time of the application.
In order to overcome the high latencies of global memory, the GPU features very fast on-chip

memory, namely registers and shared memory. Variables hold in the registers are visible only to
the owner thread and can be accessed very efficiently. This is where temporal variables, used
within the computations of one thread, are usually placed. On the Fermi architecture there is
additionally 64KB of fast memory which can either be configured as 48KB shared memory and
16KB L1 cache or 16KB shared memory and 48KB L1 cache.
The extensive use of this shared memory is essential for many applications. It is allocated

from within a device function and all threads of the owner block have read and write permission.
The shared memory is not only attractive because of the possibility to share and reuse data
within a thread block but also because of low latencies resulting in efficient data accesses.
Alternatively this on-chip memory is configured as L1 cache, which offers a great performance
gain against direct accesses to the DRAM. If one thread block spreads over more than one
warp, accesses to shared memory are handled by the warp scheduler and are not predictable for
the programmer. In that case the use of the barrier function _syncthreads() is obligatory in
order to guarantee proper behavior of the code. Both the shared memory and the registers are
persistent for the life-time of the owner block and thread, respectively.

4.1.3 Performance Considerations

With the methods presented in this section so far and a naive C code on the GPU there will
hardly be any performance gain against conventional CPU algorithms. As mentioned earlier,
performance heavily depends on the utilization of memory and caching strategies. There are
two critical aspects which have to be considered. First, the connection between host and
device. Since there are high latencies and a low bandwidth in these transactions through the
PCI express bus, they should be avoided whenever possible. In the ideal case a large block
of data is transferred to the device in an initial stage of the application. Arithmetic intensive
operations are performed on the device and at the end of the application a large block of
resulting data is transferred back to the host.
Otherwise it can be made use of so-called page-locked memory on the host. This is a

special type of memory the host thread allocates. It enables asynchronous data copies between
host and device, which means that transferring data can be overlapped with kernel calls and

46

4.1 Stream Processors and GPUs

computations on the device.
Another critical performance consideration is the connection to global memory. Since the

bandwidth to the DRAM of the device is comparatively low, global memory accesses should
be avoided whenever possible by applying the fast on-chip memory or the registers. Yet, at
least once data has to be loaded and stored to the DRAM. On Fermi architectures global
memory accesses are cached in L1 cache of the SM, which has a cache line width of 128
byte. Concurrent accesses of the threads of one warp (32 threads) are split into the number
of cache lines necessary to serve all accesses. If special alignment conditions are fulfilled, the
memory transactions of all threads of a warp are coalesced into one operation. Due to high
latencies to the global memory, coalescing is essential - not to say obligatory - in order to gain
a performance superior to conventional CPU codes. The choice of 128 byte cache line width
and the number of 32 threads indicates that GPUs are tuned for operations in single precision
resulting in 4-byte words. For the case of scattered data accesses the Fermi architecture also
allows to cache 32 byte segments into L2 cache. Yet, for the purpose of this work, the default
strategy is sufficient.
As mentioned earlier the alignment of memory accesses is important in order to get them

coalesced. The best layout is achieved when the threads within a warp request a block of
memory such that the starting address is a multiple of 128 byte. Misaligned or strided accesses
may result in a significant higher number of memory transactions. However, it is not necessary
that the threads follow a specific order. The mapping between the threads and the accessed
memory addresses can be arbitrarily permuted. For such aligned access patterns the vendor
reports bandwidth of up to 130 GB/s on the Fermi architecture which is significantly larger than
the bandwidth obtained between CPU and RAM. It is common practice to load data from the
global memory to shared memory in a block-wise fashion and then exploit the high bandwidth
and low latencies of the on-chip memory.
In order to enable simultaneous accesses of the threads of one block, shared memory is

divided into equally sized memory banks. Thus, for loads and stores, whose addresses fall
into n distinct memory banks, the achieved effective bandwidth is n times higher than the
bandwidth of one bank. If two threads request addresses within one bank, this leads to a
so-called bank conflict which is overcome by serialization of the accesses. In the underlying
hardware there are 32 banks, and shared memory is organized such that successive 32-bit words
fall into successive memory banks. Usually memory is requested as 32-bit words (e.g. float
or int) or larger, however, if e.g. 8-bit words (e.g. char) are requested per thread, one would
expect bank conflicts. Yet, the bank conflict is avoided by a so-called broadcast mechanism.
Since multiple threads access addresses within one word in one memory bank, this word is
broadcasted to all of these threads resulting in a single transaction. The case of 64-bit data
types (e.g. double) is treated specifically by the hardware. If 64-bit words are accessed such
that successive threads access successive words, there are no bank conflicts.
It is also a common situation that all threads of a block request the same address at a time.

This does not lead to bank conflicts due to the broadcast mechanism mentioned earlier and
results in only one transaction.
When dealing with problems arising in numerical mathematics, most of the involved opera-

tions are of linear algebra type. The parallelization of operations on dense matrices and vectors
perfectly fits into the CUDA programming model and high speedups can be achieved. Since

47

Chapter 4 GPU Implementation of Discontinuous Galerkin

most operations of this type have as many input as output variables, distributing work to the
CUDA threads mostly follows the one thread per input and output principle. This is more
complicated for reduction type operations such as summing up the elements of a vector or
forming L2 and L∞ norms, for instance.
The reduction is heavily memory dominated since there is usually only one operation per

element such as addition, maximum or minimum. Here typically a long vector of input data
is given, but the output is a single scalar, which makes it hard to keep as many threads of
the GPU busy as possible. Thus, this is a good example to see how parallelization on stream
processors works. Since the code developed for this work is based on an explicit time stepping
scheme, the calculation of norms, for instance the norm of the residual, is an essential building
block.

1 float *B;
2 int SIZE = ...;
3

4 // do something
5

6 float sum = 0;
7 for(int i=0; i<SIZE; i++)
8 {
9 sum += B[i];

10 }

Listing 4.1: Serial code example for reduction operation

Code example 4.1 shows a very simple and straightforward approach to compute the sum of
a vector written in the C language. This is the standard procedure on a single processor core.
Since the value of sum in each iteration depends on its predecessor, it is non-trivial to distribute
work over hundreds of threads. The best practice approach is illustrated in code example 4.2.
Here it is assumed that the length of the vector B_host is a multiple of the maximum CUDA
block size 512.
Lines 13-25 show the kernel function for the reduction with summation. First, a block of 512

elements is loaded from the global memory of the GPU into the shared memory since these
values will be read and updated multiple times. This operation is most efficient on the GPU
due to coalesced memory accesses. Then half of the threads of this block load the second
half of the values from shared memory and update the first half by summation. In the next
iteration this is performed by a quarter of the threads and so on until there is only one value
left. For this approach, it is assumed that the blocksize is a power of two, e.g. 512 in the
example. If not, the input vector could be padded with zeros up to the next larger power of
two. The operation >>= is a bitwise shift which is the most efficient variant to divide by two.
Shared memory accesses arising in this kernel are completely free of bank conflicts. Although
in this approach there are many idle threads due to the tree-like structure, in [53] bandwidths
are reported for a slightly optimized version of this kernel which are close to the theoretical
peak performance of the hardware.
At the end of the iteration u[0] contains the sum over the 512 elements. This sum is then

48

4.2 Discontinuous Galerkin on Stream Processors

1 float *B_host,*B_dev;
2 int SIZE = 2^N;
3 int BLOCKSIZE = 512;
4

5 // do something
6

7 cudaMemcpy(B_dev, B_host, SIZE*sizeof(float), cudaMemcpyHostToDevice);
8 dim3 grid(1,1,1);
9 dim3 block(BLOCKSIZE,1,1);

10 reduce_kernel <<<grid, block>>> (B_dev);
11 cudaMemcpy(B_host, output, 1*sizeof(float), cudaMemcpyDeviceToHost);
12

13 __global__ void reduce_kernel(float* B, float* output)
14 {
15 int tx = threadIdx.x;
16 __shared__ float u[BLOCKSIZE];
17 u[tx] = B[tx];
18

19 for(int stride = BLOCKSIZE/2; stride>0; stride>>=1)
20 {
21 if(tx < stride) u[tx] += u[tx + stride];
22 __syncthreads();
23 }
24 if(tx == 0) output[blockIDx.x] = u[0];
25 }

Listing 4.2: Example for a reduction operation on GPUs

written into the output field output at the position of the block index. This procedure enables
to apply the reduce kernel recursively in order to work on larger fields. Lines 7-11 illustrate
the preparation for the kernel invocation in line 10. Here the input field is copied to the GPU
and a grid containing one block is generated. After the kernel terminates, the first element in
output is copied back to the host memory.

4.2 Discontinuous Galerkin on Stream Processors

Reviewing the discontinuous Galerkin method as introduced in section 2.1, it turns out that
there is a lot of parallelism in the executions. The concept of higher order DG discretizations
offers structure to the discrete problem which is not present in lower order methods. Even on
unstructured grids a block-structured system matrix can be obtained. Yet, it is not straightfor-
ward how to compare a lower order discretization and a higher order one with respect to the
quality of the approximation. On the same underlying mesh the higher order method obviously
offers a richer ansatz space resulting in a higher resolution. However, especially in the unstruc-

49

Chapter 4 GPU Implementation of Discontinuous Galerkin

tured higher dimensional case, there are no precise estimations known of how many elements
are needed in a higher order discretization in order to reflect the approximation quality of a
lower order one on a finer grid. It is thus reasonable to compare different methods by the
degrees of freedom in the resulting discrete system and not by the number of elements.
Due to the higher order elements, the discontinuous Galerkin method defines an arrange-

ment and alignment of the degrees of freedom which is very close to the considerations made
in the previous section concerning the programming model for stream processors. The un-
known variables, namely the nodal values at the interpolation and cubature points belonging
to one higher order element, are naturally agglomerated in the memory. In contrast, a lower
order discretization, like the finite volume method with constant basis functions (according to
P = 0 DG), typically has only one variable per cell leading to a scattered memory layout on
unstructured grids, which hardly fits in the concept of stream processors. For example in [55]
a case study with the Euler equations on a GPU cluster is presented. However, it has to be
kept in mind that increasing the polynomial order and decreasing the number of discretization
elements leads to the boundary representation problem discussed in section 3.1.
In the DG method several levels of parallelism can be distinguished. On the coarsest level the

spatial domain can be partitioned like in the finite volume or finite element method. Partitioning
the mesh means that all elements are divided in groups and attached to the single compute
nodes. A typical procedure for this is to apply algorithms from graph theory, which is described
in [56] and gathered in the ParMetis toolbox. This tool is applied in the code underlying to
this work. In a first step the mesh is interpreted as a graph where discretization elements are
nodes and the adjacency list defines the edges in the graph. Then a p-way graph partitioning
is evaluated where p is the number of compute nodes in the cluster. The ParMetis toolbox
optimizes this partitioning with respect to load balancing and minimal cuts. This means that
each compute node is assigned an almost equal number of elements in order to avoid idle times.
Further, cuts between partitions are chosen such that the number of cut edges is as small as
possible since this minimizes communications between compute nodes, which is typically an
expensive operation.
Clearly the partitioning is not for free. Fluxes between elements attached to different compute

nodes have to be evaluated. With respect to this communication, the DG method is well
suited due to the double-valued states at element interfaces. As discussed earlier for the
flux computation and integration, only the traces of the unknown on common interfaces with
adjacent cells have to be known. As a consequence, only the values interpolated to the surface
cubature nodes have to be communicated to adjacent compute nodes and not the full set of
nodal values. This data transfer is processed through the message passing interface (MPI)
which is the standard approach. In [35] the parallelism on this level is intensively investigated.
On a second level of parallelism the update calculation for the cells can be processed simul-

taneously. In the explicit Runge-Kutta method applied here, the calculation of the non-linear
operator Nh in equation (2.64) and particularly in (2.39) and (2.78) is the most expensive task.
Due to the explicit nature of the time stepping, this calculation depends only on the function
state from the previous time step. Nh consists mainly of products with element-specific, dense
matrices allowing to handle all elements in parallel.
Furthermore, a third and very fine level of parallelism can be distinguished. Within one

element the non-linear flux functions FC and FD (cf. (2.46) and (2.47)) have to be evaluated

50

4.2 Discontinuous Galerkin on Stream Processors

per cubature-node. These arithmetic expensive computations, due to their rational nature,
can also be handled simultaneously. Moreover, this level of parallelism is the most interesting
one since with increasing polynomial order P the number of interpolation points increases with
O(P 3). Also the number of cubature points per element and per element-face drastically
increases due to the necessarily curved elements in the vicinity of boundaries.
Putting this together shows that the concept of the discontinuous Galerkin method perfectly

fits into the CUDA hardware and programming model as illustrated in section 4.1.2. Assuming
a cluster of p nodes each equipped with one GPU a p-way mesh partition is evaluated and
distributed to the GPUs. On each GPU a CUDA kernel is started which computes the right
hand side of equation (2.39) or (2.78). Roughly speaking, the kernel invocation generates a
grid containing as many blocks as there are elements in the mesh, and each block contains as
many threads as there are cubature nodes in the elements.
In order to maximize the bandwidth and the instruction throughput, the calculation of the

right hand side in element number k is split into volume contributions

Qk,xm ←Sk,xmIV εkUk (4.1)

Uk ←
3∑

m=1

Sk,xm (Fm (IV Uk) + IV εkQk,xm) (4.2)

and surface contributions

Qk,xm ←M∂Ωk

1

2

(
ε−k U

−
k + ε+

k U
+
k

)
nxm (4.3)

Uk ←M∂Ωk

[
H
(
U−k , U

+
k , ~n

)
+

1

2

(
ε−k Q

−
k + ε+

k Q
+
k

)
· ~n
]

(4.4)

resulting in four kernel functions. A fifth kernel interpolates the nodal values to the surface
quadrature nodes by evaluating the product of ISUk . Finally, a sixth kernel function performs
the inner products, needed for the evaluation of εk in (2.81), which works as illustrated in code
example 4.2. In order to coalesce the global memory accesses on the GPU, the memory has
to be aligned such that the address of the first value corresponding to each element is aligned
to a 128-byte segment. Thus, it is required that the unknown variables are stored in blocks of
16 in double precision and 32 in single precision, which is achieved by padding zeros to the end
of each field

Uk =
[

ρ0, ρ1, . . . , ρNP−1, 0, . . . , 0,

...
...

...
...

...

ρE0, ρE1, . . . , ρENP−1, 0, . . . , 0
]
.

︸ ︷︷ ︸
padding

(4.5)

The resulting blocksize for nodal values at interpolation points and volume/surface cubature
nodes in double precision is given by

bP =

⌈
NP + 15

16

⌉
, bS =

⌈
4NS + 15

16

⌉
, bV =

⌈
NV + 15

16

⌉
. (4.6)

51

Chapter 4 GPU Implementation of Discontinuous Galerkin

P 1 2 3 4 5
interpolation points (NP) 4 10 20 35 56

volume cubature points (NV) 5 15 35 70 126
surface cubature points (4 · NS) 4 · 4 4 · 7 4 · 12 4 · 16 4 · 25

Table 4.1: Number of interpolation and cubature nodes for different polynomial degrees

Table 4.1 shows the number of interpolation and cubature nodes which are used within this
work. The element-specific stiffness matrices Sx , Sy and Sz are also padded to a blocksize of
bP resulting in

Sx =
[

sx(0,0), sx(1,0), . . . , sx(NP−1,0), 0, . . . , 0,

sx(0,1), sx(1,1), . . . , sx(NP−1,1), 0, . . . , 0,
...

...
...

...
...

sx(0,NV−1), sx(1,NV −1), . . . , sx(NP−1,NV−1), 0, . . . , 0
]

︸ ︷︷ ︸
padding

(4.7)

and similarly the interpolation operator

IV =
[

ι(0,0), ι(1,0), . . . , ι(NV−1,0), 0, . . . , 0,

ι(0,1), ι(1,1), . . . , ι(NV−1,1), 0, . . . , 0,
...

...
...

...
...

ι(0,NP−1), ι(1,NP−1), . . . , ι(NV−1,NP−1), 0, . . . , 0
]
.︸ ︷︷ ︸

padding

(4.8)

These matrices are transposed in the global memory, which is important for the matrix vector
products and will be discussed later. Due to the quadrature approach usually NV > NP and
4NS > NP holds, meaning that there are more volume and surface cubature than interpolation
nodes. Thus, one thread per input and output cannot be applied. Here the calculation of the

pure hyperbolic volume contribution
3∑
l=1

Sk,xlFl (IV Uk) will be discussed as an example. The

other kernels and the extensions to the viscous fluxes work very similar and use mainly the
techniques presented here.
The kernel is launched generating a grid with a block for each element k with a total number

of bV threads which is the number of non-linear flux evaluations F . Let these threads be
denoted by {t0, . . . , tNV −1}. Further, two arrays of shared memory are allocated: U of size
m · bV where m is the number of equations (5 in the Euler case) and an array sum of size
m · bP . In a first step the unknown variables Uk are cached into the shared memory array
U. These memory accesses are coalesced due to the padding and the thread alignment which
is given by ti ρi for i = 0, . . . , bP − 1. The other unknown fields are loaded in the same
manner. Then each thread ti requests register variables I and S_1,. . . ,S_m. In I, ti successively

52

4.2 Discontinuous Galerkin on Stream Processors

loads ι(j,i), which is the j-th column of IV , multiplies with ρj , . . . , ρEj and adds the result to
S_1,. . . ,S_m. Hereby it is ensured that I is loaded coalesced from the global memory. These
values are kept in registers since they are used only once. Thus, the threads ti hold one column
of IV in registers and scale it with the unknown variables from shared memory. Note that all
threads simultaneously request the same shared memory address, which does not result in bank
conflicts and serialization due to the broadcast mechanism. At the end of this multiplication
the shared memory, holding the variables Uk , is overwritten with the values from the registers
of the threads holding IV Uk .
The next step is the evaluation of the divergence consisting of applying the non-linear flux

functions Fl and multiplying with the element-specific stiffness matrices Sl . Evaluating the
non-linear flux function is one of the key skills of stream processors where the gained speedup
of the GPU code mainly comes from. The multiplication with the stiffness matrices is similar to
the interpolation operation to the volume cubature nodes. However, each thread ti is equipped
with three registers, one for each of the three stiffness operators. This avoids that unknown
variables IV Uk have to be loaded from the shared memory three times. Since the number
of volume cubature nodes is in general much larger than the number of interpolation points,
there are too many threads for the matrix-multiplication scheme as described above. Thus, the
threads ti are distributed over

⌊
bV
bP

⌋
columns of Sx , Sy and Sz which can then be handled in

parallel. This results in
⌊
bV
bP

⌋
groups of bP threads holding partial sums of

3∑
l=1

Sk,xlFl (IV Uk).

Again the shared memory field U is used to store these partial sums which are then summed
up by the first t0, . . . , tbP−1 threads and finally stored back to the global memory into a field
holding the right hand side of (2.39).
The evaluation of the surface kernel is only different with respect to two aspects. First,

data is scattered through the global memory. The solution trace at surface cubature nodes
from adjacent elements is most likely located in other regions of the memory due to the
unstructured mesh. However, the unknown values, interpolated to surface cubature nodes, can
be organized in a field which is padded according to bS. By this it can be ensured that the values
corresponding to one face of the tetrahedron fall within one 128-byte segment and the memory
transaction is coalesced. Another difference to the volume kernel is the additional information
which is needed. For each cubature node on the surface it has to be known which node is the
coinciding partner. Due to the symmetric cubature rule for triangles, described in section 2.1, it
is ensured that this partner exists. Yet, the unstructured nature of the mesh allows a twist in the
connection between two adjacent tetrahedra. This results in several possible permutations in
the assignment of cubature nodes between two tetrahedral surface triangles. Further, for each
surface node the normal vector has to be known for the flux evaluation. Because of the curved
elements, the normal vector field varies between the nodes of one face of the tetrahedron. In
order to maintain coalesced memory patterns, this information is packed into one field which
is also padded according to bS.
The inner products for the shock detector (2.81) can be seen as a special case in which the

reduction operation follows a matrix-vector product. First, one component of the solution (here
ρ) is cached into a shared memory field U1. The size of the field is chosen to be the next greater
power of two and it is initialized with zeros for the reduction operation to work most efficiently.
This seems to be a wasting of memory, however NP is most often relatively small such that

53

Chapter 4 GPU Implementation of Discontinuous Galerkin

the next power of two is close. From within this field a copy into another shared memory field
U2 is performed. Then the matrix product with Mk,red is performed as described above and
the result is written back from the registers to U1. After that U1 is component-wise multiplied
with the ρ values from U2 and the reduction operation is performed on U1. The nominator of
Sk is then extracted from U1[0]. Again the ρ values from U2 are copied into U1 and in U2 the
product with Mk is evaluated. Finally, the resulting values in U2 are multiplied component-wise
with U1 and by the sum-reduction the denominator for Sk is obtained. This procedure seems
not to be straightforward in order to evaluate a mathematically simple expression like Sk , yet
data transfers to the device’s global memory are minimized by this.

Mesh partitioning

Evaluate mesh curvature according to
precomputed linear elasticity solution

Setup operators and transfer to GPU

Compute artificial viscosity ε

Interpolate values to quadrature nodes

Distribute nodes on proces-
sor cuts to adjacent processes

Interpolation to cubature
nodes and volume integration

Surface integration

Evaluate Runge-Kutta stage

2x

1

2

3

4

5

6

7

8

9

Node j

GPU j

Figure 4.3: Algorithm execution on one compute node

Figure 4.3 illustrates the overall execution cycle on a compute node with rank j to which GPU
number j is attached. The whole program mainly follows the paradigms presented in section
4.1.2. Since data transfers from and to the device are critical for the performance, the time
stepping is designed in order to completely work on the GPU. In step one each processor reads in

54

4.3 Numerical Tests of the GPU Algorithm

a part of the mesh file and the ParMetis library swaps elements between the compute nodes for
a better load balancing and minimal cuts. After that the straight-sided mesh is curved according
to the linear elasticity solution. In step three the element specific operators are composed as
derived in section 2.1. These operators are then transferred to the GPU and a workspace in the
global device memory is allocated. The steps 4-9 contain the Runge-Kutta time stepping and
run completely on the GPU without interaction to the main system. Yet, if the algorithm runs
on a cluster of multiple GPUs, unknown values, interpolated to the surface cubature nodes
on the processor cuts, have to be communicated in step 8. For this purpose, these values
have to be downloaded from the GPU, passed through MPI and uploaded to the device of
the adjacent process. This MPI communication does not consume additional time since the
kernel invocation in step 7 can be performed simultaneously. Thus, the MPI communication
time is hidden by the evaluation of the volume integrals. The feature of asynchronous data
copies was not yet available in CUDA when this work was started, which will be illustrated in
the performance analysis at the end of this chapter.
In the case of the artificial viscosity approach or the Navier-Stokes equations, which are both

of the form (2.78), the steps 4-8 have to be executed twice: once for the auxiliary variable Q
with kernel functions according to (4.1) and (4.3) and once for the actual solution U according
to equations (4.2) and (4.4). Finally, in step 9 the Runge-Kutta time step is evaluated which
is essentially done by adding two vectors leading to high efficiency on GPUs. Steps 4-9 are
repeated until the time integration has reached a desired final time or the norm of the computed
right hand side is below a specified tolerance. After that the computed solution is copied back
from the device to the RAM and can be post-processed. As mentioned earlier, the evaluation
of a norm is a critical task in a parallel application. In the situation of a cluster of GPUs a
norm has to be evaluated in two steps. First, each single GPU has to perform a reduction as
described in code example 4.2 and than MPI has to perform the reduction over each process.
This makes the evaluation of norms to a computationally expensive task. In order to overcome
this issue, the norm of the residual is not evaluated after each Runge-Kutta time step which
will be discussed in the next section.

4.3 Numerical Tests of the GPU Algorithm

4.3.1 Flow Simulations

In this section some representative numerical test cases are discussed. The techniques presented
in chapter 2 are applied within the GPU framework described in section 4.2. For this purpose,
the boundary and freestream conditions (ρ∞, ρu∞, ρv∞, ρw∞, ρE∞) have to be specified. The
∞ subscripts indicate that this state is assumed in an sufficiently large distance to the obstacle
in the flow. “Sufficiently large” in this context means that the numerical solution in the vicinity
of the obstacle is not disturbed by influences of the boundaries.
The flow condition is chosen according to the standard atmosphere at sea level published

by the International Civil Aviation Organization (ICAO) in 1976 which states a temperature of
15 ◦C, a pressure of p∞ = 101,325 Pa and a density of ρ∞ = 1.225 kg

m3 . From these values
the freestream condition can be derived by specifying a freestream Mach number M∞ and two
angles of attack α in the xy -plane and β in the xz-plane. Together with the adiabatic index

55

Chapter 4 GPU Implementation of Discontinuous Galerkin

(cf. section 2.2) the local speed of sound

a∞ =

√
γ
p∞
ρ∞

(4.9)

is obtained. From this the velocities in the three coordinate directions are given byu∞v∞
w∞

 = M∞a∞

cos(α) cos(β)

sin(α)

cos(β)

 . (4.10)

With these velocities a total enthalpy can be formulated as

H∞ =
a2
∞

γ − 1
+

1

2

(
u2
∞ + v2

∞ + w2
∞
)

(4.11)

which leads to the total energy

ρE∞ = ρ∞H∞ − p∞ (4.12)

completing the vector of freestream conserved variables. The initial condition to the hyperbolic
system (2.45) is then chosen constantly as U0 = (ρ∞, ρu∞, ρv∞, ρw∞, ρE∞). However, this
initialization leads to large gradients in the first iterations of the time stepping scheme in the
vicinity of the obstacle. Yet, it is the only information that can be predisposed.
Another building block of a computer-based simulation is the definition of a tolerance when

the simulation should stop. Since all test cases within this work, except one, are steady state
calculations, it is obligatory to define a point where no improvement towards the solution is
possible anymore. There are two different choices. First, the L2-norm of the right hand side in
equations (2.39) or (2.78) is considered. This scalar value is normalized by the value obtained
with the initial conditions U0

h and it is then compared to a specified tolerance. A second kind
of measure is to observe a representative target functional. In CFD the drag functional is
commonly used. This is an integrated quantity over the surface of an obstacle in a fluid flow
which will be specified in equation (5.19). If this value only differs up to a given tolerance
between two iterations, the simulation is stopped.
The first test case is the so-called NACA0012 airfoil which is a two dimensional shape out

of the NACA four digit series [57]. Since the element type chosen for the solver in this work
are tetrahedra, the two dimensional profile placed in the xy -plane is stretched in z-direction
resulting in a so-called staggered grid. The underlying geometry and mesh curvature is described
in section 3.2. On the left hand side of figure 4.4 a subsonic flow past the NACA0012 is
depicted. Here the freestream Mach number is chosen to beM∞ = 0.38 and the angle of attack
is α = 0◦ resulting in a symmetric density distribution due to the symmetric profile. Both, the
curvature and the DG scheme, are chosen to be P = 5 which leads to a total number of 143,752

nodes in the discretization. The number of degrees of freedom may appear surprisingly large for
a subsonic flow, however this is a three dimensional mesh and the polynomial degree is globally
constant. In general, the best numerical results are achieved using the same polynomial degree
in the linear elasticity solver as in the DG scheme. These computations are performed using
equation (2.39) for pure hyperbolic PDEs. The time stepping is executed until the normalized

56

4.3 Numerical Tests of the GPU Algorithm

L2-norm of the residual reached a tolerance of 10−8 after 81,000 time steps with an increment
of 4 · 10−4.
Figure 4.4 (b) shows a transsonic flow on the same NACA0012 geometry. The freestream

Mach number is chosen to be M∞ = 0.8 and an angle of attack α = 1.25◦ leading to a strong
shock on the upper surface and a weak shock on the lower surface. The time stepping converged
like in the subsonic case with a tolerance of 10−8 of the normalized L2-norm of the residual
after 209,000 iterations with ∆t = 8 · 10−5. For these computations the artificial viscosity
model in equation (2.78) is applied together with the shock detector (2.83). The detector is
configured with ε0 = 1.5 · 10−3, κ = 1.1 · 10−5 and s0 = −8 · 10−6 log10

(
1
P 4

)
. It should be

remarked that these constants where found experimentally. Moreover, this artificial viscosity
model is very sensitive with respect to the configuration of the shock detector. Whenever the
mesh is slightly modified in the test cases, a different set of constants has to be chosen. Yet,
this model is widely used throughout literature.
Figure 4.5 shows the underlying grid and the values of the shock detector on the front plane

of the staggered, three dimensional mesh. Together with P = 3 elements this leads to a total
number of 1,671,840 interpolation nodes. In this test case the artificial viscosity approach was
not sufficient to produce a sharp shock profile like in the original work [4]. A drastically refined
mesh and a lower degree of basis polynomials had to be chosen in order to avoid stability
problems which might stem from the explicit time stepping used within this work. Figure 4.6
shows the graph of the pressure coefficient Cp over the NACA0012 profile. Since the mesh
extends over 25% of the chord length in the third coordinate direction, the Cp curve is evaluated
at a slice through the center at 12.5%. Here it can be seen that despite the artificial viscosity
small oscillations arise in the vicinity of the strong shock on the upper surface of the profile.
These oscillations drastically increase on coarser meshes and lead to instabilities in the explicit
time stepping.

(a) Subsonic flow, M∞ = 0.38, α = 0◦ (b) Transsonic flow, M∞ = 0.8, α = 1.25◦

Figure 4.4: Flow past NACA0012 airfoil with P = 5 elements on the left and P = 3 elements
on the right, density distribution

57

Chapter 4 GPU Implementation of Discontinuous Galerkin

Figure 4.5: Artificial viscosity at front surface of three dimensional, stretched NACA0012 pro-
file, transsonic test case from figure 4.4(b), t →∞

x

cp

Figure 4.6: cp distribution over the NACA0012 airfoil

The next test case is the ONERA M6 wing which is a well-known and established test for
various numerical methods throughout literature. The original experiment and the geometry is
described in [58]. This is a transsonic flow with Mach number M∞ = 0.8395 and an angle of
attack α = 3.06◦ leading to a strong, so-called λ-shock wave (based on its shape) on the upper
surface. In the original experiment, the tip of the wing is a round closure, whereas here the
wing is simply cut off. This allows a straightforward NURBS representation of the geometry
and leads to much better results in the mesh generation process.
Figure 4.7 shows the density distribution on the upper surface of the ONERA M6 wing.

The black lines in the background visualize 40 equidistant isolines of the density in the interval
[0.65, 1.5]. In the computations this boundary is modeled as a symmetry wall which is realized
by U+

h = U−h . The artificial viscosity model is configured with ε0 = 3 · 10−3, κ = 1.5 · 10−5

58

4.3 Numerical Tests of the GPU Algorithm

and s0 = −8 · 10−6 log10

(
1
P 4

)
. The necessary amount of viscosity is significantly larger than in

the NACA0012 case which could be explained with the sharp edge at the tip of the wing. In
the numerical tests the shock detector usually had its maximum value at this position where
large gradients arise in the solution. The computations for this test case converged to a relative
residual of 10−8 after 512,000 iterations and a time increment of ∆t = 1 ·10−4. The underlying
mesh is sketched in figure 3.3 and consists of 74,997 elements leading to a total number of
1,499,940 interpolation points in the discretization.

Figure 4.7: Transsonic flow over ONERA M6 airfoil with P = 3 elements, density distribution,
40 isosurfaces at symmetry plane

The computations in this section can be accelerated by a so-called P-refinement or P-
enrichment technique. This means that the time stepping is started with low order polynomials
and the ansatz space is subsequently refined or enriched. The first iterations are performed
in a polynomial space with basis functions of degree P1, e.g. P1 = 1. On this level the time
stepping is executed until the norm of the residual has reached a specified tolerance. Then the
approximate solution is included into the next finer space with P2 = P1 + 1 polynomials and it is
again iterated until the tolerance is reached. This process is repeated up to a desired order Pn.
The transfer operation between two ansatz spaces with degrees Pl and Pl+1 is straightforward
since the polynomial bases {ψ1, . . . ψNPl } and {φ1, . . . φNPl+1

}, given in equation (2.17), are
chosen to be hierarchical as described in section 2.1. Thus, the solution on level Pl can be
directly embedded into a space with Pi+1 polynomials. Let {rPli ∈ T , i = 1, . . . , NPl} and
{rPl+1

i ∈ T , i = 1, . . . , NPl+1
} be two sets of interpolation points, one corresponding to the

Lagrange basis in the Pl space and one corresponding to the Pl+1 space. Further, let Uk

59

Chapter 4 GPU Implementation of Discontinuous Galerkin

denote the unknown, nodal variables in element number k and let

(V1)i ,j = ψj(r
Pl
i), 1 ≤ i , j ≤ NPl

(V2)i ,j = ψj(r
Pl+1

i), 1 ≤ j ≤ NPl , 1 ≤ i ≤ NPl+1

(4.13)

denote two Vandermonde matrices. The approximated solution on the finer level Ũk is given
by

Ũk = V2V
−1

1 Uk . (4.14)

This procedure offers two advantages in terms of acceleration. On the one hand, evaluations
on a coarser P -level are computationally cheaper than on the finer one since the number of
unknown values increases like O(P 3) in three spatial dimensions. With this the dimension of the
operators is smaller leading to less non-linear flux evaluations per element. Furthermore, the
accuracy of the cubature formulas does not have to be as precise since the degree of polynomials
under consideration is smaller. On the other hand, the time step for the Runge-Kutta time
integration scales like O(P−2) (cf. [21]). Thus, on a coarser polynomial level a larger, stable
time step can be chosen, which leads to a faster propagation in time since in the Euler flow
examples considered in this work only the steady state solution is of interest. The P -refinement
is demonstrated using the sphere test case presented in chapter 3. The underlying grid has a
total number of 25,956 tetrahedra of which 4,457 are designated to become curved elements.
The curvature is based on a P = 4 linear elasticity solution. This solution can then be evaluated
at the interpolation points of every DG scheme with degree lower or equal 4.
Table 4.2 shows the results for computations with a successive refinement from P = 2 to

P = 3 and P = 4 basis elements. Based on that relatively coarse grid, the P = 0 and P = 1

computations did not lead to reasonable results. Here two aspects can be observed. First, the
total number of iterations on the left hand side is significantly smaller than in the pure P = 4

computation. Especially the number of iterations on the computationally most expensive level
is only a third as large. Moreover, a decay in the maximum stable time steps between the
P -level can be observed. These two factors result in an overall run time for the P -refinement
strategy which is only halve of the run time for the plain algorithm. On each level it is iterated
until the normalized residual reaches a tolerance of 10−8. This residual is evaluated every
1,000 iterations to use the GPU most efficiently. The iteration counts and time steps in the
example of table 4.2 where found experimentally and turned out to be the best practice for
that particular test case.

P # iterations time step time
2 8,000 6e-3 105.8 s
3 10,000 2e-3 196.5 s
4 20,000 5e-4 650.0 s

38,000 952.3 s

P # iterations time step time
2
3
4 61,000 5e-4 1,982 s

61,000 1,982 s

Table 4.2: Subsonic flow past a sphere - steady state computation with (left) and without
p-refinement (right)

The last test case is a turbulent Navier-Stokes flow past a sphere as described in section 3.1
atM∞ = 0.3 with a low Reynolds number of Re = 300. In this computation the time-dependent

60

4.3 Numerical Tests of the GPU Algorithm

Figure 4.8: Magnitude of velocity, turbulent flow past a sphere, M∞ = 0.3, Re = 300

Navier-Stokes equations are solved directly for which reason this approach is called direct
numerical simulation (DNS). However, this approach is only possible for low Reynolds numbers
resulting in a moderate degree of turbulence. For flows with higher Reynolds numbers and
more turbulence, techniques like turbulence modeling have to be applied. Even the application
of super computers cannot resolve turbulence in complex flows with the DNS approach.
The underlying mesh in this test case consists of approximately 180,000 tetrahedra and is

refined in the wake region of the sphere. Together with a P = 3 polynomial discretization, the
total number of interpolation points is about 3,600,000. Figure 4.8 shows the magnitude of
the velocity on a slice of the xy -plane and figure 4.9 visualizes the generated turbulence. Here
an iso-surface in the density distribution of ρ = 1.213 is drawn in the wake of the sphere.

4.3.2 Performance Analysis

Whereas the previous sections show a proof of concept, this section concentrates on the per-
formance analysis. For a software developer it is important to know whether the additional
programming effort for the GPU is compensated by a speedup gained through the different
hardware architecture. The algorithm presented within this work is optimized for parallel com-
puting architectures rather than CPUs. Thus, a comparison of that algorithm implemented for
a GPU, on the one hand, and on the other for a CPU, is not representative. It gives yet an
estimation for which kind of numerical methods stream processors would fit and what speedup
could be gained. In contrast, in the next section the GPU-accelerated code is compared to a
conventional CPU code with optimized numerical methods.
As described in section 4.2, the developed GPU algorithm assumes a cluster where each

compute node is equipped with one GPU. Whether the system is a shared or distributed memory

61

Chapter 4 GPU Implementation of Discontinuous Galerkin

Figure 4.9: ρ = 1.213 iso-surface, Navier-Stokes flow past a sphere, M∞ = 0.3, Re = 300

model does not matter since the communication on top of the algorithm is performed through
MPI. In order not to leave resources unused, it turned out to be the best setting to have one
GPU per CPU core and not one per full CPU in the cluster since in a highly efficient GPU
algorithm the CPU should only carry out small tasks connected to the control flow.
For the purpose of this work, a system equipped with 8 Intel Xeon E5620 CPU cores clocked

at 2.4 GHz and 8 NVIDIA Tesla M2050 GPUs with CUDA 4.0 driver is utilized. Each of the
GPUs has 3 GB of global RAM. In order to measure the performance of the GPU-accelerated
code compared to a conventional CPU code, the same numerical scheme as described in chapter
2 is implemented for both hardware architectures. On the CPU side most of the matrix-vector
multiplications are implemented using optimized BLAS (basic linear algebra system) routines
and the flux evaluations are serialized in contrast to the GPU algorithm. In order to optimize
the code for the underlying Intel hardware, it is compiled with the Intel C compiler 12.0 and
the Intel Math Kernel Library (MKL) for the algebra. The maximum performance was achieved
by applying BLAS routines to the products with IV , IS and M∂Ω (cf. equation (2.39) and

(2.78)). In contrast, like in the GPU algorithm, the volume contribution
3∑
l=1

Sk,xlFl (IV Uk) is

merged into one matrix-vector product, which turned out to be significantly faster than three
separate BLAS calls. This could possibly be explained by a better CPU cache utilization and
data reuse. Whereas the GPU code generates one grid per kernel call in which each CUDA
block corresponds to one DG element, in the CPU algorithm there is an outer loop iterating
over all K elements. Inside this loop the CPU code performs steps 4-9 in figure 4.3.
As seen in the derivation of the GPU algorithm, the computations of the Runge-Kutta

updates of the DG elements do not depend on each other which also holds in the CPU version.
Thus, on the level of this outer loop a OPENMP parallelization can be applied in order to

62

4.3 Numerical Tests of the GPU Algorithm

R
un
ti
m
e

3.
52 8.
40 34
.0
1

P = 2
7.
96

21
.3
4

92
.8
8

P = 3

15
.7
2 54
.1
6

27
8.
92

P = 4

Figure 4.10: GPU and CPU runtimes on approximately 26,000 cells, 200 time steps, black:
GPU single precision, crosshatched: GPU double precision, hatched: OPENMP
parallel CPU

fully utilize the available hardware. Many articles report impressive GPU speedups, however
the authors are comparing their optimized parallel code with an non-optimal serial code only
running on one core of a CPU, which is not representative since almost all modern CPUs have
multiple cores. In the present case including the OPENMP directive #pragma omp parallel
for ordered schedule(dynamic) in front of the outer loop, iterating over all elements, is
sufficient to enable parallelization over all cores of the underlying CPU.
Figure 4.10 visualizes the runtimes needed for 200 Runge-Kutta time steps on the sphere

test case presented in section 3.1 with approximately 26,000 cells on one CPU and one GPU,
respectively. The Mach number is chosen as M∞ = 0.8 such that the shock detector and
artificial viscosity can be applied. This test inspects the most interesting polynomial degrees
with respect to CFD, P = 2, P = 3 and P = 4 where there are approximately 260k , 520k and
910k interpolation points in the scheme. Due to the strong non-linear nature of the Euler flux,
polynomial reconstructions of higher degrees are problematic and were often divergent in the
test cases.
The GPU algorithm is run in two settings: once with single precision arithmetic represented

by the black bars and once in double precision represented by the crosshatched bars. The
hatched bars show the runtimes for the CPU algorithm. Since the mesh is not changed, the
runtimes increase with higher polynomial degrees for the CPU and the GPU as well. This
stems from the larger number of nodal and cubature points in the scheme leading to more flux
evaluations. It can further be observed that the speedup of the GPU also increases with higher
polynomial degrees. Whereas the speedup for P = 2 is 4 in double precision and about 9.7 in
single precision, for P = 4 it grows to 5.2 and 18.3, respectively.
It is still an open question why the observed increment in single precision is significantly larger

than the gained speedup in double precision. It can possibly explained be by the limited amount
of shared memory which allows the GPU hardware to execute less CUDA blocks in parallel in
the double precision case. However, the gap between a speedup of factor 18.3 and 5.2 is caused
due to the hardware design. In the present GPU architecture the single precision instruction

63

Chapter 4 GPU Implementation of Discontinuous Galerkin

throughput is still significantly larger than in double precision. Yet, the manufacturers are
improving this issue. In the setting of figure 4.10 the CPU algorithm achieved a runtime of
1016.36 s without the OPENMP parallelization. Compared to 278.92 s in the parallel version,
this reflects the theoretical speedup that can be gained on a four core CPU like the Intel Xeon
E5620.

A natural question, which arises in this context, is how the GPU performs if the CPU code
is adapted in a one-to-one fashion using the cuBLAS library. In [59] the manufacturer reports
high speedups of the cuBLAS library against the Intel MKL for the most common BLAS calls.
However, these speedups are achieved for much larger matrices than the DG operators within
this work. The speedup moreover shrinks if a large number of small matrix-vector products is
considered like in the DG scheme. Thus, the GPU algorithm, as described above, shows to be
superior compared to cuBLAS since the latencies of a large number of kernel calls is overcome.
Additionally data reuse is enabled by exploiting the structure of the DG scheme which heavily
influences the GPU performance.

GPUs 1 2 4 6 8
cells 5,043 10,083 20,073 30,051 40,012

time 23.49 s 24.48 s 24.91 s 25.60 s 25.83 s
efficiency 100% 95.96% 94.30% 91.76% 90.94%

Table 4.3: Weak scaling over a cluster of 8 GPUs, P = 4 elements, 200 iterations

The next test deals with the weak scaling of the GPU algorithm on the level of MPI par-
allelism. For this purpose, the number of cells in the mesh is increased proportionally to the
number of GPUs in the parallel MPI framework. Table 4.3 shows the runtime results from 1 to
8 GPUs and the achieved efficiency. Here it can be observed that the weak scaling efficiency
obtained in this test is significantly worse than expected although the number of nodes in the
cluster is relatively small.

There might be two reasons for that. First, the GPU code does not yet utilize the feature
of computation and data overlapping available since CUDA 4.0. When executing on multiple
GPUs, in each stage of the Runge-Kutta time stepping unknown values from the process
interfaces have to be downloaded from the GPU, sent to adjacent nodes and uploaded to the
GPU again. In the present algorithm this means 5 data transfers per time step. The weak
scaling efficiency suggests that data transfers through the PCI express bus are a bottleneck in
this algorithm.

A second reason could be that the ratio between computational time on the GPU and data
transfer to other nodes in the cluster is not optimal for a GPU environment. This means that
the GPU evaluates its computations too fast compared to the time needed for data exchanges
through MPI.

64

4.4 Comparison to Conventional Algorithms

4.4 Comparison to Conventional Algorithms

In this section the explicit Runge-Kutta GPU algorithm is compared to classical, implicit dis-
continuous Galerkin approaches used in industrial applications. One major drawback of an
explicit time stepping is the small stability region which enforces small time steps. Steady
state simulations thus need significantly more iterations. In contrast, the weakness of implicit
methods is the larger amount of memory required to store Jacobi matrices or at least parts
of them. It is thus tempting to investigate whether the computational power of GPUs is able
to overcome the issue of smaller time steps. For this purpose, an implicit solver for the Euler
equations is developed which reflects the techniques used within the PADGE code [50] of the
DLR (Deutsches Zentrum für Luft und Raumfahrt).
One major building block of an implicit solver is an efficient procedure which sets up Jacobi

matrices of the discretization Nh and Ñh (cf. section 2.3). These are notations for the right
hand side of equation (2.39), once multiplied with the inverse mass matrix and once not. The
first one is needed for a backward Euler time stepping and the second one for Newton’s method.
Note that in this chapter the pure hyperbolic case is investigated neglecting the viscous fluxes.
The routine for the Jacobi matrix works similarly to the techniques which will be presented in
the next chapter and is not described in detail at this point.
Reviewing the backward Euler time stepping given in equation (2.71) the following non-linear

system
Un+1
h − Unh + ∆tNh(Un+1

h) = 0 (4.15)

has to be solved for each time step by Newton’s method. Thus, matrices of the following type
have to be assembled

JBE = I + ∆t
∂Nh
∂Uh

(Uh). (4.16)

In the case that the time-independent equations are solved with Newton’s method, the required
matrix is given by

JN =
∂Ñh
∂Uh

(Uh) = M
∂Nh
∂Uh

(Uh) (4.17)

where M is the blockdiagonal mass matrix which is given in terms of the local mass matrices
(2.32).
In order to guarantee scalability, the matrix assembly is designed for distributed memory

systems. As mentioned earlier in this chapter, a comparison between conventional hardware
and GPUs can only be representative if all cores of the CPU are busy and not only one. Thus,
the assembly routine utilizes graph partitioning and load balancing performed by the ParMetis
library like the explicit GPU code. This results in each core holding a partition of rows of the
Jacobi matrix (4.16) or (4.17). Communication is performed over the same MPI channels like
in the explicit code. The distributed linear systems are then solved with the PETSc library [60].
This library is one of the most widely used linear system solvers in HPC and is known for good
performance and scalability. In contrast to the previous section where the full computational
power of the four CPU cores is enabled by an OPENMP parallelization, in this section on each
core of the CPU one MPI process is launched.
Again, the test setting is a subsonic flow past a sphere like in figure 3.1 with M∞ = 0.38.

The underlying mesh consists of 8,117 tetrahedra of which 875 are curved according to chapter

65

Chapter 4 GPU Implementation of Discontinuous Galerkin

(a) 1 core (b) 4 cores (c) 8 cores

Figure 4.11: Non zero pattern of Jacobian matrix ∂Nh
∂Uh

influenced by the ParMetis reordering
and partitioning

3. This is a relatively coarse discretization however it has to be ensured that on the polynomial
level of P = 4 there is enough memory for the system matrix available.
Figure 4.11 visualizes the influence of the graph partitioning and reordering on the Jacobi

matrix ∂Nh
∂Uh

and similarly ∂Ñh
∂Uh

(Uh). Each dot in the figure is a DG block of size 35 · 5× 35 · 5
since this is a P = 4 computation. In (a) the matrix is assembled in a serial code and the
numbering is the same as the mesh generator has chosen. The agglomeration of blocks in the
first rows and columns indicates the region of curved cells, which is triangulated first by the
mesh generator. It can also be seen that in these rows and columns of the matrix there are
only a few off-diagonal blocks, which reflects the locality of the curved cells. In (b) and (c) the
mesh is distributed between 4 and 8 cores, respectively. Each process owns approximately 1/4

of the rows in (b) and 1/8 in (c) which stems from the load balancing. The simple renumbering
of cells in the mesh leads to a computationally much more attractive structure in the matrix
for multicore architectures.
The essential part of a Krylov subspace method is the efficient evaluation of matrix-vector

products and the evaluation of scalar products. Thus, in a distributed, parallel algorithm like
in the PETSc library, the fraction of elements, which are not in the diagonal blocks, heavily
influences the overall performance. Since the vector of unknowns is also distributed, each
off-diagonal block in the Jacobi matrix requires data exchanges through the message passing
interface, which is a potential bottleneck in parallel, linear solvers. This makes the application
of a graph partitioning algorithm mandatory.
Following the presentations in [50] the backward Euler time stepping is conducted by a

Newton-GMRES approach. Thus, the non-linear system is treated with Newton’s method
and the arising linear subproblems are solved with the standard GMRES solver in the PETSc
toolbox. The included restarted-GMRES algorithm is set up to store 50 vectors, which is found
to be a suitable choice. The preconditioner is chosen to be of ILU type. Although many articles
report a good performance of block-Jacobi preconditioners in the context of DG methods, ILU
leads to significantly smaller run times within the test case of this section. Yet, block-Jacobi

66

4.4 Comparison to Conventional Algorithms

P 1 2 3 4
∆t explicit 2e− 2 1e− 2 8e− 3 5e− 3

∆t implicit 2e + 2 6e− 2 2e− 2 1e− 2

∆t implicit (preconditioned) 2e− 1 8e− 2 6e− 2

Table 4.4: Time steps in the first iterations for the explicit GPU algorithm and the implicit
Euler method

is straightforward in terms of programming since the DG discretization naturally brings a block
structure into the system matrix.
Parallelization of ILU preconditioners is not a simple task since it is conceptually a serial

problem. However, the parallel ILU(p) preconditioner in the HYPRE library [61] which is derived
in [62] shows high efficiency and scalability even on very large linear systems. Within the present
test case the best practice setting for ILU is a level of fill of p = 1. More detailed information
on iterative methods and preconditioners can be found in [63].
Table 4.4 shows the maximum time step for the first iterations in the explicit GPU algorithm

and the backward Euler implicit method for different polynomial degrees. The explicit time
steps are chosen to be the largest feasible step. In contrast, the implicit ∆t is chosen such
that the arising systems (4.17) are solvable in reasonable time compared to the explicit time
steps. The condition number of JBE strongly depends on ∆t which is reflected in the number
of required GMRES iterations. Here it should be remarked that the number of iterations also
depends on other factors like the chosen preconditioner, the restart width of GMRES and of
course the tolerance in the residual. Thus, a comparison of explicit and implicit time stepping
can only be conducted in terms of best practice settings for the implicit solver.
In the present test case a relative tolerance of 10−5 and a maximum number of 1,000

iterations in the GMRES algorithm seems to be a reasonable choice. Moreover, the outer
Newton iteration is chosen to have a maximum number of 8 iterations and also a relative
tolerance of 10−5. The time steps in table 4.4 are chosen sufficiently small in order to fulfill
the conditions given above. This leads to the class of inexact Newton methods which is analyzed
for example in [64].
It can be further seen in table 4.4 that, apart from the P = 1 level, the implicit time steps

are not significantly larger than the explicit time steps. Thus, if one is interested in a P = 4

solution, the only reasonable approach seems to be a successive P -refinement starting with
the P = 1 level. The third row of table 4.4 shows the maximum implicit time steps after a
P -preconditioning. This means that the backward Euler method on level P is started with a
converged solution on level P − 1 which is included into the richer polynomial space thanks to
the hierarchical basis.
This issue is known since the application of implicit time integration schemes became popular

in fluid dynamics. It is already investigated in [65] where a strategy is proposed which controls
the magnitude of the time steps relative to the residual. The time steps shown in table 4.4
are certainly only valid for the first iterations. When the integration scheme proceeds towards
the solution, the implicit time steps greatly increase. Finally, in the vicinity of the solution the
time integration scheme switches to Newton’s methods and benefits from the locally quadratic

67

Chapter 4 GPU Implementation of Discontinuous Galerkin

convergence. In [65] it is thus suggested that the first iterations should mimic explicit time
steps with small ∆t. Then the backward Euler time integration starts increasing the time steps
and finally a few Newton steps lead to the solution.
Comparing the backward Euler method on four parallel processes with the explicit algorithm

on one GPU, it turns out that on each P -level approximately 6,000 explicit iterations could be
performed in the run time of one implicit step. Apart from the P = 1 level, where the implicit
time step is significantly larger than the explicit one, this is a considerable speedup. Of course,
this does only hold for the first iterations. While the implicit scheme allows larger time steps
after a few iterations, the explicit time step cannot be enlarged as much. Especially in the
vicinity of the solution the implicit scheme is superior to the explicit one. It thus turns out to
be the best strategy for this test case to start directly on the finest P -level with explicit time
steps until the full Newton step is computable.
In summary, it can be said that for this type of PDEs the explicit GPU time stepping can

be applied as an excellent preconditioner. One advantage over the implicit scheme is that the
simulation can be started directly on the finest P -level. Moreover, in the first few iterations,
where the implicit scheme has to act like an explicit time stepping, the computational perfor-
mance of the GPU can be utilized in order to reach the point where Newton steps are possible
much faster.

68

Chapter 5

Discrete Adjoint GPU Implementation

This chapter deals with discrete adjoint approaches providing a basis for optimizations of many
kinds. Here PDE constrained optimization is considered. This means that an objective function
is to be minimized which takes the solution of a PDE and control variables as input. The con-
trol variables may have an impact on the geometry of the domain or the physical phenomena
modeled by the PDE. Thus, in order to minimize the objective function, its sensitivities with
respect to the control variables and the whole solution process of the PDE have to be ana-
lyzed. Even one of the most simple and natural optimization techniques, the steepest descent
method, makes use of the gradient of the objective function with respect to the control vari-
ables. For a small number of control variables this gradient can be obtained by finite difference
approximation. However, this procedure leads to as many PDE evaluations as there are control
variables, which can be very problematic if for example the shape of the domain is considered
to be variable. In many cases this approach leads to a numerical effort which is absolutely
unrealistic. This issue can be overcome by so-called adjoint calculus.
For this purpose, the discrete adjoint approach is shortly introduced in this chapter. Then

it is discussed how the GPU algorithm developed so far can be applied in order to solve the
arising adjoint system, which is partly published in [66]. An introductory overview of the use of
adjoint approaches can be found for example in [67].

5.1 Introduction to Discrete Adjoint Approaches

Assuming the situation of chapter 2 where the solution of a system of m hyperbolic PDEs

is approximated on a mesh discretizing a domain Ω =
K⋃
k=1

Ωk with K discontinuous Galerkin

elements. In each of these elements the solution is represented in a polynomial space up to
degree P leading to m ·NP degrees of freedom in Uk and a total of N = K ·m ·NP degrees of
freedom in Uh. Further, a control variable α = (α1, . . . , αM) is introduced. Then a non-linear
function

Nh : RN ×RM → RN (5.1)

is formulated which represents the right hand side of the discontinuous Galerkin discretization
of the PDE and the boundary conditions. In contrast to section 2.3, here Nh has an additional
dependency on the control variable α. It is assumed that the discretization of the PDE is
fulfilled by a solution vector Uh which yields

Nh(Uh, α) = 0. (5.2)

69

Chapter 5 Discrete Adjoint GPU Implementation

This could for example be achieved by iterating a time stepping scheme until the steady state
solution is reached. Further, let

Jh : RN ×RM → R (5.3)

be an objective function depending on the solution of the PDE and the design variable. The
associated optimization problem then reads as

min
(Uh,α)

Jh(Uh, α)

s.t. Nh(Uh, α) = 0.
(5.4)

The gradient of J is given by

dJ
dα

=

(
dJ
dα1

, . . . ,
dJ
dαM

)
(5.5)

and is approximated by component-wise finite difference evaluations

dJ
dαi

=
J (Uh(α̃), α̃)− J (Uh(α), α)

δ
, i = 1, . . . ,M. (5.6)

In the equation above α̃ = α+ δei with ei = (0, . . . , 0, 1, 0, . . . , 0)T being the i-th unit vector
and δ > 0. Here Uh(α) clarifies the dependency of the solution on the design parameter. Thus,
for each component of the gradient one solution of the PDE has to be evaluated resulting in
a total number of M + 1 runs of the flow solver, which is impractical.
Another approach to evaluate sensitivities of the objective function with respect to the

solution is the discrete adjoint approach, which is for example derived in [12]. Partial derivatives
in the following presentations are evaluated at the approximated solution Uh, which is omitted
for clarity. First, the right hand side equation of the PDE discretization (5.2) is differentiated
with respect to αi for i = 1, . . . ,M which yields

∂Nh
∂Uh

dUh
dαi

+
∂Nh
∂αi

= 0. (5.7)

Assuming that ∂Nh
∂Uh

is regular it follows that

−
(
∂Nh
∂Uh

)−1 ∂Nh
∂αi

=
dUh
dαi

. (5.8)

Differentiating the objective function with respect to α leads to

dJh
dαi

=
∂Jh
∂Uh

dUh
dαi

+
∂Jh
∂αi

= −
∂Jh
∂Uh

(
∂Nh
∂Uh

)−1 ∂Nh
∂αi

+
∂Jh
∂αi

= λTh
∂Nh
∂αi

+
∂Jh
∂αi

.

(5.9)

70

5.2 GPU Implementation

Here λh is the solution of the so-called adjoint equation(
∂Nh
∂Uh

)T
λh = −

(
∂Jh
∂Uh

)T
. (5.10)

Once the linear system (5.10) is solved, each component evaluation of the gradient (5.9) comes
at the cost of one scalar product, which is very cheap compared to multiple flow solutions needed
for the finite difference approach.
The key point of this discrete adjoint approach is the evaluation of ∂Nh∂Uh

or alternatively the

evaluation of products like
(
∂Nh
∂Uh

)T
λh. In practice this task includes the differentiation of a

computer program, consisting of thousands of lines of code, which is in general unrealistic to do
by hand. Thus, a whole field of research deals with a technique called automatic or algorithmic
differentiation (AD). An extensive overview can be found for example in [68]. AD is based
on the idea that even the most complicated computer code is a concatenation of elementary
arithmetic operations. Thus, roughly speaking an iterated application of the chain rule yields
the differentiated code. This differentiation is realized by either a source code transformation
or operator overloading if supported by the underlying language. In general, the outcome of
an AD tool is a automatically generated computer code which represents the derivative. An
interesting result in this field is published in [69] where upper bounds for the number of floating
point operations in the automatic differentiated code compared to the original non-linear code
are given.
However, for the purpose of this work, techniques like AD cannot be applied. In the special

case of GPU programming it is not guaranteed that source code transformed via AD maintains
the performance optimization implemented in the primal solver. As presented in chapter 4, the
performance on GPUs is very sensitive for example with respect to memory patterns and the
optimized memory accesses are probably not maintained after applying a AD tool. Thus, in
the successive section a different approach is followed.

5.2 GPU Implementation

This section presents an approach to implement a discrete adjoint algorithm for the Euler
equations on GPUs. The underlying primal algorithm is the one derived in chapter 2 and
4. For this purpose, the focus is on maintaining most parts of the primal algorithm and the
performance optimizations therein. Without loss of generality α ∈ R is chosen to be a scalar
design parameter in this section. According to the primal variable Uh and the cell-wise variable
Uk , adjoint variables λh and λk of the same dimension are introduced. Furthermore, a pseudo
time is introduced like in the hyperbolic system (2.3) such that the same Runge-Kutta time
stepping can be applied in order to solve the adjoint equation

∂λh
∂t

= −
(
∂Nh
∂Uh

)T
λh −

(
∂Jh
∂α

)T
. (5.11)

A slightly different approach is described in [70] where also an adjoint version of the Runge-
Kutta time stepping is considered. This procedure ensures that the gradient of the objective
functional is obtained after as many steps as in the primal time stepping.

71

Chapter 5 Discrete Adjoint GPU Implementation

Comparing system (5.11) to the primal one

∂Uh
∂t

= −Nh(Uh) (5.12)

the key point is to replace the evaluation of the non-linear DG discretization with the evaluation
of the product with the transposed Jacobi matrix of Nh. Note that ∂Nh

∂Uh
is evaluated at the

steady state solution and is thus constant. Yet, for the purpose of a GPU application storing
the full Jacobi matrix has to be prevented in any case, not only because of the limited device
memory, but also to maintain the algorithm to be arithmetic dominated rather than memory

dominated. Thus, in the following the product of the transposed Jacobi matrix
(
∂Nh
∂Uh

)T
and the

adjoint variable λh is derived and implemented on the GPU. As seen in the previous sections,
most of the underlying, explicit discontinuous Galerkin scheme consists of small and dense
matrix vector multiplications and is thus uncritical with respect to differentiation. Further, the
viscous fluxes are also straightforward due to the linearity. Only the Lax-Friedrichs numerical
flux, which is given in (2.60), has to be revised. Replacing the maximum function in equation
(2.61) by the following expression

A =

∣∣∣∣λ(FC~n ′(1

2

(
U−h + U+

h

)))∣∣∣∣ =

∣∣∣∣12〈u− + u+, ~n〉
∣∣∣∣+ a

(
1

2

(
U−h + U+

h

))
(5.13)

brings more symmetry to the flux, which is essential for the GPU code to maintain its original
form. However, this simplification does not lead to noticeable effects on the convergence of
the numerical method. It does not even impact the maximum time step in the test cases of
section 4.3.1. Conservativity and consistency is clearly maintained.

A further simplification is to keep the viscosity parameter εh fixed throughout the pseudo
time stepping in (5.11) which spares the programmer the implementation of the derivative
of the shock detector (2.81). Furthermore, this seems to be a reasonable decision since the
steady state solution Uh is fixed during the adjoint time stepping and thus εh marks the troubled
cells where discontinuities arise in Uh. For a deeper insight it is worth repeating the cell-wise
independent operations for cell number k in the primal algorithm (2.78) which are given by

Qk,xm =Sk,xmIV εkUk −M∂Ωk

1

2

(
ε−k U

−
k + ε+

k U
+
k

)
nxm , m = 1, 2, 3

∂Uk
∂t

=

3∑
m=1

Sk,xm (Fm (IV Uk) + IV εkQk,xm)

−M∂Ωk

[
H
(
U−k , U

+
k , ~n

)
+

1

2

(
ε−k Q

−
k + ε+

k Q
+
k

)
· ~n
]
.

(5.14)

Differentiation with respect to Uk , transposing and multiplying with λk leads to the following

72

5.2 GPU Implementation

expression

Λk,xm =ITV εkUkSTk,xmλk −
1

2
ITS
(
ε−k λ

−
k − ε

+
k λ

+
k

)
nxm , m = 1, 2, 3

∂λk
∂t

=− ITV
3∑

m=1

[
∂Fm
∂Uk

T

(IV Uk)STk,xmλk + STk,xmεkΛk,xm

]

+ ITS

[
∂H

∂U−k

T

(U−k , U
+
k , ~n)(λ−k − λ

+
k)

+
1

2

(
ε−k Λ−k − ε

+
k Λ+

k

)
· ~n

]
−
∂Jk
∂α

T

(Uk).

(5.15)

In the system above Λk,xm are the auxiliary variables for the adjoint gradient according to Qk,xm .
∂Jk
∂α

T
(Uk) denotes the subvector of the gradient of the objective function with respect to the

variables belonging to the k-th element. This vector can be precomputed and transferred
to the device memory since it does not change throughout the time stepping. Further, the
interpolation to surface quadrature nodes of the adjoint gradient Λ and the adjoint variable λ
is not performed by multiplying with IS like in the primal system (2.78). The transposition of
the Jacobian matrix leads to a role reversal between interpolation and mass/stiffness matrices.
Thus, Λ−k = MT

∂Ωk
Λk and λ−k = MT

∂Ωk
λk replace Q−k = ISQk and U−k = ISUk . Variables

coming in from adjacent cells are treated in the same way. Moreover, the communication
channels from the primal system are untouched. This means the identification of surface
quadrature nodes from adjacent cells also holds for the adjoint algorithm. Most parts of the
GPU algorithm and particularly the MPI framework can thus be reused. This stems from the
fact thatMT

∂Ωk
and IS and further STk,xm and IS have the same dimension and can be exchanged

in the GPU kernels. The variables U−k and U+
k are not affected and are still interpolated by

multiplying them with IS. Yet, a major difference between the two systems is that the signs
of the normal vector fields switch. In the primal system the update of cell number k depends
on the outward pointing normal vector field. However, in the adjoint system the normal vector
fields of the adjacent cells are involved in the update calculation. The terms εkΛ+

k and ε+
k λ

+
k

are weighted with −1 in order to invert the normal vectors of cell number k which is then
equivalent to the normal vector from the adjacent cells.
The conservative nature of the numerical flux function H inducing symmetry to the compu-

tations between adjacent elements, as discussed in section 2.2, states

H(V,W, ~n) = −H(W, V,−~n). (5.16)

This property simplifies the evaluation of the transposed Jacobi matrix in (5.15). The evaluation
of the non-linear fluxes Fm in the primal system is replaced by the evaluation of the Jacobi
matrices of the fluxes, which are given in (2.46), and the multiplication with the adjoint variable.
Since this is a point-wise operation, it does not affect the overall structure of the algorithm.
Thus, the GPU algorithm for (5.15) mostly follows the execution cycle as described in figure

4.3 with the adjoint variable instead of the primal one. Since the steady state solution Uh
does not change throughout the adjoint time stepping it can be distributed through the MPI
interface in an initial stage of the adjoint simulation.

73

Chapter 5 Discrete Adjoint GPU Implementation

R
un
ti
m
e

8.
31 12
.6
6

P = 2

19
.5
6

22
.0
7

P = 3

54
.1
6

53
.6
8

P = 4

Figure 5.1: Comparison of primal (black) and adjoint (hatched) execution times on one GPU,
200 time steps on approximately 26,000 cells

One very critical issue with respect to GPU performance is the data alignment of the element-
wise DG operators. Although in the adjoint system (5.15) products with transposed operators
are involved, the matrix-vector operations as described in section 4.2 should be maintained.
Thus, the operators have to be transposed in the device memory as well. Without this step
memory accesses are not coalesced any more which critically affects the performance of the
GPU.
It certainly appears not to be intuitive to evaluate the Jacobi matrix in each time step

although this operator is constant and does not change. This approach however safes memory
which is limited on GPUs. In particular, the evaluations of ∂H

∂U−k

T
and ∂Fm

∂U

T
are constant, yet

they can be computed very efficiently in the cache of the GPU. Since computations on the
GPU are cheap compared to memory transactions, this approach is superior with respect to
performance. Storing these Jacobi matrices would result in an additional memory usage of 5×5

values for each of H,F1,F2 and F3 per quadrature node.
Figure 5.1 shows a comparison of run times of the primal and the adjoint algorithm for 200

time integration steps. The underlying test case is the flow past a sphere as described in section
3.1 with approximately 26,000 cells. The run times for the primal algorithm are the same as
in chart 4.10. The subsonic flow in this situation does not affect the run times of the primal
and adjoint algorithm since shock detector and artificial viscosity have to be globally applied no
matter if there are discontinuities in the solution or not. Here it can be observed that the run
times of the adjoint algorithm are slightly slower for low order polynomials yet approximately
as fast as in the primal algorithm for P = 4 elements.
In order to verify the adjoint GPU algorithm, a generic objective functional is once approx-

imated with finite differences and once with the discrete adjoint approach. For this purpose,
some non-dimensional characteristics are used in order to describe flow situations and airfoils.
The non-dimensional pressure coefficient is given by

Cp =
2(p − p∞)

γM2
∞p∞

(5.17)

74

5.2 GPU Implementation

in terms of the freestream conditions denoted by the subscript ∞. Then the lift coefficient CL
and drag coefficient CD are given by

CD =
1

Cref

∫
ΓW

Cp 〈(cos(α), 0, sin(α))T , ~n〉 dS (5.18)

and similarly by

CL =
1

Cref

∫
ΓW

Cp 〈(− sin(α), 0, cos(α))T , ~n〉 dS. (5.19)

In the equations above α denotes the angle of attack of the airfoil and Cref is a reference length
which is chosen to be the chord length in the case of an airfoil. Further, ΓW is the part of
the boundary of the domain where the solid wall condition is chosen. This is the airfoil itself.
In section 3.2 this part of the boundary is denoted by ΓD1

and is the region which is curved
according to a NURBS description. For the further computations it is an useful fact that

C′D(α) = CL(α) and C′L(α) = −CD(α). (5.20)

In order to verify the discrete adjoint GPU code, the ONERA M6 test case, as described in
section 4.3.1, is used. The design parameter is chosen to be the angle of attack and the
objective functional is the drag of the airfoil. Then three computations are performed. First,
the original test setting is executed with an angle of attack of α = 3.06◦ which converges
after 512,000 iterations with a relative norm of the residual of 10−8 resulting in a solution Uh.
Further, using Uh as an initial guess a second solution Ũh is computed with an angle of attack
of α̃ = 3.07◦.
Then the discrete adjoint time stepping is performed to obtain λh, which also converges to a

relative norm of the residual of 10−8 after 485,000 iterations. Plugging this into formula (5.9)
yields a derivative of dCDdα = 0.150427. The term ∂Nh

∂α can be evaluated easily since in the primal
solver only the free stream boundary conditions depend on the angle of attack. Moreover, ∂CD∂α
is given by the lift coefficient of the airfoil and does not require further computations.
The second solution Ũh is then used to compute a finite difference approximation to the

derivatives which yields dCD
dα = 0.150414. This shows that the discrete adjoint approximation

is close to the finite different approximation of the derivative of the drag coefficient. Further,
it can be seen as a validation of the GPU adjoint algorithm.

75

Chapter 6

Shape Optimization Based on DG

In this chapter the tools developed so far are combined and applied in the field of shape
optimization. At the end of this chapter the transsonic ONERA M6 test case is reviewed. The
aim is to apply very small modifications to the geometry of the wing in order to minimize the
drag, whereas the overall shape is mostly maintained. For this purpose, the primal and adjoint
Euler GPU solver, developed within this work, are used. Moreover, the mesh deformation tool,
described in chapter 3, is applied again to deform the shape and the whole discretization mesh.
The theory of shape calculus within this chapter mostly follows the two fundamental works in
this field [13, 71]. Additionally [72] gives an overview. The application of shape calculus to
aerodynamic problems can be found in [14, 15, 73]. First, the basics of shape optimization
needed for this work are shortly reviewed. After that the focus is on the application of higher
order discretization methods and particularly the discontinuous Galerkin method. It is discussed
how to deal with the difficulties arising from discontinuous basis functions and non-smooth
gradients.

6.1 A Short Introduction to Shape Calculus

In what follows shape optimization problems of the form

min
(U,Ω)

J (U,Ω)

s.t. c(U,Ω) = 0
(6.1)

are examined. According to the previous chapters Ω is a domain in which the underlying,
physical phenomena are simulated, c is a discretization of the PDE and U is the corresponding
solution. In the system above the domain Ω also plays the role of the control variable α from
the previous chapter.
In order to discuss a gradient-based optimization technique for problem (6.1), some basics

from differential geometry have to be introduced. The nomenclature in this chapter conflicts
with the one used in the preceding chapters in some points. While in the first part of this work
the dimension of the surrounding space is denoted by d (e.g. d = 3 for three dimensional flow
domains), in this chapter the surrounding space is denoted by Rn for the purpose of consistency
with the literature.
In the following let ∅ 6= M ⊂ Rn. If for each x ∈ M an open subset U(x) ⊂ Rn exists with

x ∈ U(x) and an injective C∞-mapping φ : Ũ → Rn with Ũ ⊂ Rd open and with a continuous
inverse mapping gx := φ−1 : φ(Ũ)→ Ũ such that

φ(Ũ) ⊂ U ∩M, (6.2)

77

Chapter 6 Shape Optimization Based on DG

M is called a d-dimensional C∞-submanifold of Rn.
φ is called a local parametrization describing the mapping of the parameter space in Rn to a

neighborhood of the point x in the submanifold M. Further, the inverse of the parametrization
together with the image of the parametrization (gx , φ(Ũ)) is called a chart.
Let Ω ⊂ Rn be a smooth domain of class Ck and let Γ := Ω̄ \Ω be the surface of Ω. Then

Γ is an (n − 1)-dimensional Ck -submanifold of Rn (cf. [13]). Assuming a point x ∈ Γ on the
surface of Ω, the structure of the submanifold yields a local parametrization φ and a parameter
ξ ∈ Rn−1 such that x = φ(ξ). Then the tangent space in x to Γ is denoted by TxΓ and is
given by

TxΓ := span{Dφ(ξ)e i , i = 1, . . . , n − 1} (6.3)

where e i = (

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)T denotes the i-th vector of the canonical basis inRn. Further,

the unit normal vector on Γ in x is given by

~n(x) =
Dφ(ξ)−T en

‖Dφ(ξ)−T en‖2

, (6.4)

which can be checked by forming the scalar product with an basis element of the tangent space〈
Dφ(ξ)e i , Dφ(ξ)−T en

〉
=
〈
e i , en

〉
= 0. (6.5)

With the geometric description of the shape in hand, the next step is to define differential
calculus within submanifolds as a preparation for shape optimization.
Let f : Ω → R be a continuously differentiable function for an (n − 1)-dimensional Ck -

submanifold Ω ⊂ Rn, then the tangential gradient is defined by the orthogonal projection of
the classical gradient onto the tangent space of the submanifold. For this purpose, it is assumed
that τ1, . . . , τn−1 form an orthonormal basis of the tangent space. Then the tangential gradient
is given by

∇Ωf =

n−1∑
i=1

∂f

∂τi
τi ∈ Rn−1. (6.6)

Let further V : Ω → R
n be a differentiable vector field. Then the tangential divergence of V

is similarly to the tangential gradient given by

divΩV =

n−1∑
i=1

〈
∂V

∂τi
, τi

〉
∈ R. (6.7)

Later in this chapter, the following property of the tangential divergence will be used

divΩV = divV − 〈DV ~n, ~n〉 . (6.8)

Furthermore, the curvature κ of the submanifold Ω is defined by the tangential divergence of
the unit normal vector field

κ := divΩ~n. (6.9)

The next step is the definition of deformations on the submanifold for the purpose of shape
optimization. Thus, in the following Ω is assumed to be a d-dimensional Ck -submanifold of

78

6.1 A Short Introduction to Shape Calculus

R
n. It should be remarked that in the practical examples in this chapter the dimension of the

submanifold Ω is also given by d = n and the Ck -submanifold Γ is of dimension n − 1. Like
in the previous chapters, Ω corresponds to the domain of the PDE, which is the surrounding
space of the airfoil. Thus, the boundary of Ω and especially the surface of the airfoil is denoted
by Γ and is assumed to be an n − 1-dimensional submanifold. Let Tt : Rn → R

n with t ∈ R
be a family of bijective mappings. Then the deformation of the submanifold Ω is defined by

Ωt := Tt(Ω) = {Tt(x) : x ∈ Ω}. (6.10)

The most natural choice of the deformation Tt is the so-called perturbation of identity. Let
V : Rn → Rn be a vector field, which should also be Ck . Then the deformation is given by

Tt(V) := Id + tV , Tt(V)(x) = x + tV (x) (6.11)

where Id is the identity mapping in Rn. The notation Tt(V)(x) clarifies the dependence of
the deformation on the vector field V and is used within this chapter in a comparable way to
directional derivatives.
An alternative approach of defining the deformation, often encountered in literature, is the

so-called speed method where V : R × Rn → R
n is not constant in time, but describes a

velocity field for the deformation such that x0 ∈ Ω moves according to

∂x

∂t
= V (t, x) , x(0) = x0. (6.12)

The advantage of this approach is that the direction of the deformation offers more flexibility
(cf. [71]). However, in this chapter the perturbation of identity is considered.
Before a gradient depending on a shape can be formulated, it has to be defined what the

differentiability of a shape means. The definition given in [13] is slightly technical and most of
the requirements therein only play a role in the derivation of the shape gradients used at the
end of this chapter. Yet, for the sake of completeness this formal definition is presented here.
LetD ⊂ Rn be open and Ω ⊂ D measurable. Further, let V be a vector field, as defined in the

speed method, such that V (·, x) is continuous for a small interval [0, ε] and V (t, ·) ∈ Dk(D,Rn),
where Dk denotes the set of k times continuously differentiable functions with compact support
in D. V is additionally defined to fulfill 〈V, ~n〉 = 0 on ∂D, which states that no deformations
over the boundary of D are allowed. Let P denote the power set and J : P(D) → R be a
scalar shape functional. The Eulerian derivative of J in direction V evaluated in Ω is then
defined as

dJ (Ω)(V) := lim
t↓0

J (Ωt)− J (Ω)

t
(6.13)

with the deformed domain
Ωt = Tt(V)(Ω). (6.14)

If there exists an Eulerian derivative dJ (Ω)(V) for all directions V and moreover the mapping
V 7→ dJ (Ω, V) is linear and continuous, J is called shape differentiable in Ω.
With these definitions a version of the so-called Hadamard theorem can be formulated. Let
J be shape differentiable and V ∈ Ck(D̄,Rn) be given similarly to the definitions above. Then
it holds

dJ (Ω)(V) = dJ (Γ)(〈V, ~n〉 ~n). (6.15)

79

Chapter 6 Shape Optimization Based on DG

A proof can be found in [13].
More precisely, the theorem states that equation (6.15) holds for all vector fields V that are

in the same equivalence class with respect to the quotient space

Q(D̄,Ω) = Ck(D̄,Rn)/F (Ω) (6.16)

with
F (Ω) =

{
V ∈ Ck(D̄,Rn) : 〈V, ~n〉 = 0 on ∂Ω

}
. (6.17)

This states that the tangential portion of the deformation vector field on the surface ∂Ω has
no impact on the derivative of the shape functional dJ (Ω)(V) in equation 6.15. Thus, on
the right hand side of the equation only the normal component 〈V, ~n〉~n appears, which is a
simplification of the original statement given in [13]. The presentations in [13, 72] are followed
further. A generic shape functional of the form

J (Ω) =

∫
Ω

f dΩ (6.18)

is considered.
Let again Ω ⊂ Rn be measurable, V ∈ Dk(Rn,Rn) a vector field and assume the shape

functional to be f ∈ W 1,1(Rn). Then it can be proven that the shape derivative of J is given
by

dJ (Ω)(V) =

∫
Γ

f 〈V, ~n〉 dS. (6.19)

Here W p,q(Ω) with p ∈ N0 and q ∈ N is the Sobolev space defined as the closure of C∞(Ω̄)

with respect to the following norm

‖f ‖W p,q(Ω) = q

√√√√∑
|α|≤p

∫
Ω

∣∣∣∣∂αf∂xα

∣∣∣∣q dΩ. (6.20)

Note that this is an extension to the definition given in (2.42). For shape functionals of the
form

J (Ω) =

∫
Γ

hdS, (6.21)

i.e. only depending on the boundary, the shape derivative is given by

dJ (Ω)(V) =

∫
Γ

〈V, ~n〉
(
∂h

∂~n
+ κh

)
dS. (6.22)

In order to prove the equation above, some additional assumptions have to be made. Let Γ be
the boundary of Ω such that Γ is a Ck -submanifold of dimension n − 1 of Rn. Further, it is
assumed that h ∈ W 2,1(Rn) and that ∂h

∂~n exists.
Together with this generic volume and surface shape functional, two different shape opti-

mization problems are considered in the subsequent sections. First, the minimization of energy

80

6.2 Higher Order Shape Optimization in Stokes Fluids

dissipation is investigated for Stokes flows. Here the objective functional is given by a volume
integral leading to a gradient of the form (6.19). This simple test case is used to acquire some
basic experiences with PDE constrained shape optimization based on higher order discretization
methods. As observed in chapter 3, it is essential that the smoothness of the boundary is main-
tained during an optimization process in order to guarantee stability and reasonable solutions
of the PDE.

With the experiences gained in the simple Stokes case a higher order shape optimization in
an Euler flow is investigated. The objective is the drag functional given in (5.19), which is a
surface integral. Thus, a gradient of the form (6.22) is applied. The shape gradients arising in
the subsequent sections are slightly more complicated than (6.22) and (6.19) since the PDE
constraint also has to be considered in form of the adjoint PDE solution. A derivation of the
shape sensitivities for Stokes and Euler equations can be found in [72].

6.2 Higher Order Shape Optimization in Stokes Fluids

In this section the Stokes equations are discussed. This simplified flow model is chosen in
order to investigate a method of smoothing the shape gradient such that it is applicable as a
deformation to the underlying discretization mesh. The mesh deformation tool presented in
chapter 3 takes the displacement information of the boundary as Dirichlet condition and deforms
the interior mesh according to a linear elasticity solution. However, the curvature information
comes from a spline interpolation and it can be assumed that it is smooth enough. The shape
gradient, in contrast, is not necessarily smooth and especially in the case of discontinuous basis
functions in the DG method an additional smoothing step is obligatory. Thus, an approach is
investigated in which the shape gradient is applied as Neumann boundary condition in the mesh
deformation tool. This means to interpret the shape gradient as a force on the boundary and
not as a prescribed deformation of the shape.

In literature the problem of non-smooth shape gradients is commonly treated by applying the
Laplace-Beltrami operator on the gradient in order to obtain smooth deformation information,
e.g. in [74]. This smoothed vector field is then applied as a prescribed deformation to the
boundary. After that the mesh is either deformed according to the techniques described in
chapter 3 or a mesh generator is used to obtain a new mesh for the deformed surface. In the
following presentations these two approaches are compared on the basis of a shape optimization
in a Stokes flow.

The Stokes equations are simplifications of the Navier-Stokes equations under the assumption
that inertial forces are negligible and viscous forces are dominant. This is a good approximation
for fluids at low velocities with large viscosity. Like in the Euler and Navier-Stokes flow in
chapter 4 let Ω be a subset of Rd with boundary Γ. First, two dimensional optimizations are
considered and then the three dimensional case is discussed, thus d = 2 and d = 3, respectively.
Again let u : Ω→ Rd denote the velocity field, p : Ω→ R the pressure of the fluid and µ the

81

Chapter 6 Shape Optimization Based on DG

viscosity. Then the Stokes equations are given by

∇p − µ∆u = 0 in Ω

∇ · u = 0 in Ω

u = 0 on Γwall and Γobs

u = u+ on Γin

p~n − µ
∂u

∂~n
= 0 on Γout

(6.23)

where Γwall is the part of the boundary describing the walls of the flow field, Γobs denotes the
boundary of the obstacle in the flow field and Γin and Γout is the inflow and outflow boundary,
respectively. The corresponding energy dissipation minimization problem is then given by

min
(u,p,Ω)

J (u, p,Ω) = µ

∫
Ω

d∑
i ,j=1

(
∂ui
∂xj

)2

dΩ. (6.24)

Additionally, for the optimization to be reasonable it is required that the volume of the obstacle
remains unchanged for all deformed shapes Ωt , which is given by

Vol(Ωt) =

∫
Ωt

1 dΩ
!

=

∫
Ω0

1 dΩ = Vol(Ω0) ∀t ≥ 0. (6.25)

This condition actually states that the volume of the flow field is constant, however inflow,
outflow and wall boundaries are considered as fixed in the optimization. Thus, the volume of
the obstacle represented by a hole in the discretization mesh is also forced to be constant.
This is an attractive test case in terms of shape optimization since it is intensively investigated

in [75] and also in [74] where theoretical results are presented. These results indicate that in
a two dimensional Stokes flow (6.23) the optimal shape with respect to condition (6.25) and
objective functional (6.24) must have a conical shaped leading and trailing edge with an angle
of 60◦.
The shape derivative of the energy dissipation functional subject to the Stokes equations is

then given by

dJ (u, p,Ω)(V) = −µ
∫

Γobs

〈V, ~n〉
d∑
i=1

(
∂u i
∂~n

)2

dS. (6.26)

Due to the self-adjoint nature of the Stokes PDE, this derivative does not depend on an adjoint
variable but only on the primal solution u. In the following let the shape gradient be denoted
by

s(u) = −µ
d∑
i=1

(
∂u i
∂~n

)2

. (6.27)

Then, like in classical gradient-based optimization approaches, the steepest descent direction
is chosen as the negative gradient. Thus, the deformation vector field V can be chosen as

V = −s · ~n on Γobs. (6.28)

82

6.2 Higher Order Shape Optimization in Stokes Fluids

The values of V in Ω \ Γobs are then given implicitly by the mesh deformation technique. The
next step is to include the volume constraint into the optimization. For this purpose, it is useful
to formulate the Lagrange function with multipliers λ1 and λ2

L(U,Ω, λ1, λ2) = J (U,Ω) + 〈λ1, c(U,Ω)〉+ 〈λ2, h(Ω)〉 (6.29)

where U = (u, p) denotes the vector of unknowns, c(U,Ω) = 0 denotes the PDE constraint
and h(Ω) = Vol(Ω) − Vol(Ω0) = 0 the volume constraint. Then the necessary optimality
condition connected to the volume constraint is given by

dL(U,Ω, λ2) =

∫
Γobs

〈V, ~n〉 s(u)dS + λ2

∫
Γobs

〈V, ~n〉 dS = 0, (6.30)

since the shape derivative of Vol(Ω) is obtained by applying (6.19), which results in the second
integral on the right hand side. From this it follows that after each gradient step in the
optimization the volume of the original obstacle has to be recovered by scaling the deformed
shape with a factor of λ2. This scaling factor is obtained from the Lagrange multiplier

λ2 = −
∫

Γobs
〈V, ~n〉 s(u)dS∫

Γobs
〈V, ~n〉 dS

. (6.31)

A Lagrange multiplier λ1 which is connected to the state variable of the PDE is not visible in
this formulation due to the self-adjoint nature of the Stokes problem.
In most situations, especially in higher order discontinuous Galerkin discretizations, the shape

gradient s is not smooth enough for a direct application to the shape. This would result in kinks
in the geometry leading to the effects visualized in figure 3.1. Thus, s has to be smoothed in
some way before deforming the shape. The classical approach is to apply the tangential Laplace
operator ∆Γ, often referred to as the Laplace-Beltrami operator, on s. In the terminology of this
chapter the Laplace-Beltrami operator can be obtained by applying the tangential divergence
to the tangential gradient

∆Γ = divΓ · ∇Γ. (6.32)

The actual smoothing is then conducted by inserting the shape gradient s as a source term
into the following PDE

(Id + ηLB∆Γ)s̃ = s (6.33)

where Id is the identity. The parameter ηLB > 0 is chosen in order to control how much the
shape gradient is diffused. In [72] it is moreover discussed that the application of (6.33) to the
shape gradient results in an approximation to the shape Hessian and thus brings higher order
derivative information into the optimization. This technique is shown to speed up convergence
significantly. In many applications the smoothed shape gradient s̃ is then used together with
the normal vector field in order to deform the surface of the obstacle. After that a mesh
generator is invoked which produces a discretization for the deformed domain Ωt . However, a
mesh deformation tool in hand as described in chapter 3, it is tempting to include the smoothing
into the mesh deformation and execute all at once.

83

Chapter 6 Shape Optimization Based on DG

For this purpose, a deformation vector field uD is introduced, which defines the displacement
of the mesh nodes in Ω. The shape gradient s is then interpreted as a force on the boundary
Γobs of the mesh and either the linear elasticity equations, already mentioned in (3.1),

∇ · σ = 0 in Ω (6.34)

or a component-wise Laplacian
η∆uD = 0 in Ω (6.35)

are solved with the following boundary conditions

uD = 0 on Γin,Γout,Γwall

∂uD
∂~n

= s~n on Γobs.
(6.36)

The major difference between (6.34) and (6.35) is that the component-wise Laplacian mesh
deformation does not include a coupling of the spatial dimensions. This is especially noticeable
in three dimensions where the linear elasticity approach leads to significantly better deformed
meshes.
In the following the Laplace-Beltrami and the Neumann approach are compared numerically

in the Stokes test case. The initial geometry is chosen to be a circle with diameter 1 around
the origin and the dimensions of the flow tunnel are set as x ∈ [−4, 6] and y ∈ [−3, 3]. In the
three dimensional case the flow tunnel is a cylinder with the same dimensions. Further, the
viscosity µ is set to 1. The inflow velocity in x-direction is chosen as

u+(x) = cos

(
‖x‖π
diam

)
, x ∈ Γin (6.37)

where diam denotes the diameter of the flow tunnel. The Stokes, linear elasticity, Laplace
and Laplace-Beltrami PDEs are assembled using the GETFEM toolbox like in chapter 3 with
a higher order finite element discretization. The resulting linear systems are solved using the
parallel LU solver MUMPS [76]. The results in the following presentations are obtained by a
third order finite element discretization.
The first test setting is the Laplace-Beltrami smoothing on two dimensional grids. One

iteration of this algorithm is then given by the following steps:

• Solve Stokes equations

• Evaluate the shape gradient s

• Solve Laplace-Beltrami equation and obtain smoothed gradient s̃

• Evaluate s̃ · ~n and place this as Dirichlet boundary in the mesh deformation and obtain a
deformation vector field D1

• Conduct a mesh deformation with 1 · ~n as Dirichlet boundary on Γobs in order to obtain
λ2 and a second deformation field D2

• The actual mesh deformation is then given by D = D1 + λ2D2

84

6.2 Higher Order Shape Optimization in Stokes Fluids

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
25

26

27

28

29

30

31

32

33

900 triangles
3600 triangles
14400 triangles
57600 triangles

Figure 6.1: First iterations of shape optimization based on Laplace-Beltrami smoothing and
Dirichlet boundary condition in linear elasticity mesh deformation on refined grids
for fixed ηLB

This approach is tested on four grids starting with 900 triangles which is successively refined up
to a grid with 57, 600 cells. For the Laplace-Beltrami smoothing to work properly two constants
have to be chosen. First, the diffusion coefficient ηLB which controls the smoothness of the
gradient and second, the step size of s̃~n has to be damped by a factor dLB. In the present
situation dLB = 10−2 shows to be sufficient for all grids in order not to introduce kinks or
discontinuities into the shape. For the test in figure 6.1 ηLB = 5 is chosen constantly. This
parameter shows to be sufficiently large on the coarse grid, but does not oversmooth the
gradient on the fine grid. The figure depicts the objective functional on four successively
refined grids. It can be seen that its development during the optimization depends on the grid.
Figure 6.2 visualizes the situation for the grid with 14,400 cells and a smoothing parameter

ηLB ∈ [1, 10]. Again, the convergence is mesh-dependent and the converged shapes vary
depending on ηLB, which cannot be seen in this figure.
The optimization is even more sensitive with respect to ηLB and dLB when switching from

two dimensions to three dimensions leading to a totally different set of adequate parameters.
Here the discretization is chosen such that the element density on the surface of the obstacle
is approximately comparable to the two dimensional case evaluated in figure 6.2. This leads
to a discretization with approximately 40,200 elements and a set of parameters of ηLB = 102

and dLB = 1. The optimization also works for other parameters, but these ones are chosen in
order to mimic a comparable convergence history.
The mesh deformation in the Laplace-Beltrami setting is conducted using either the linear

elasticity or the component-wise Laplacian approach. In this situation it makes no difference
for the shape but only for the interior of the mesh since the displacement described by the
smoothed shape gradient s̃ · ~n is applied as a Dirichlet boundary condition. Thus, the objective
function is not influenced by the choice of the mesh deformation approach.
One major drawback of the method described and tested above is the dependence of the

involved parameters on the mesh. This is even more visible in the Euler test case in the next

85

Chapter 6 Shape Optimization Based on DG

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
25

26

27

28

29

30

31

32

33

1E01
8E00
4E00
1E00

Figure 6.2: Same situation like in figure 6.1, mesh with 14,400 triangles and different Laplace-
Beltrami coefficients ηLB

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
24

26

28

30

32

900 triangles
3600 triangles
14400 triangles
57600 triangles

Figure 6.3: Mesh-independent trend of objective functional in shape optimization based on
Neumann boundary condition in component-wise Laplacian mesh deformation

86

6.2 Higher Order Shape Optimization in Stokes Fluids

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
24

26

28

30

32

900 triangles
3600 triangles
14400 triangles
57600 triangles

Figure 6.4: Mesh-independent trend of objective functional in shape optimization based on
Neumann boundary condition in linear elasticity mesh deformation

section.
As mentioned earlier, a different approach is to use the unmodified shape gradient s and

interpret it as a force s · ~n to the obstacles boundary. Hereby the shape gradient is implicitly
smoothed, which makes the additional step of solving the Laplace-Beltrami equations obsolete.
Figure 6.3 and 6.4 visualize this situation. The first figure shows a mesh deformation based on
a component-wise Laplacian and the second covers the linear elasticity based deformation. In
both situations the shape gradient is included as described in equation (6.36). For the Laplacian
η = 5 ·102 is chosen and in the linear elasticity equation Young’s modulus is chosen as E = 103

and Poisson’s ratio as ν = 0.3.
It can be seen that in both tests the convergence on all meshes is comparable without

adapting the parameters. Moreover, the optimal shapes on all meshes are comparable. It
should be remarked that the number of optimization steps is chosen to be about 80 in all tests
since in both the Neumann and the Laplace-Beltrami approach the step-size is a degree of
freedom. In the Neumann approach it is controlled implicitly by the material coefficients in
the linear elasticity equations or by the diffusion parameter in the Laplace equation. The most
interesting fact is that switching from two to three dimensions does not require changes in the
parameters or the code and does also lead to the same convergence after the same number of
iterations. Thus, it can be said, that this approach is truly mesh-independent.
The results of the optimizations can be seen in figure 6.5. Here the two dimensional shape

optimization is depicted, starting with the initial geometry on the left hand side and the optimal
shape on the right hand side. It can be seen that this shape is close to the optimal shape which is
theoretically investigated in [75]. Figure (a) and (b) show the effect of the linear elasticity mesh
deformation and (c) and (d) show the shapes with the Stokes solution. The three dimensional
case is covered in figure 6.6 which leads to very similar results.

87

Chapter 6 Shape Optimization Based on DG

(a) Initial mesh (b) Deformed mesh

(c) Initial geometry (d) Optimized geometry

Figure 6.5: Two dimensional shape optimization with respect to energy dissipation in a Stokes
flow, (a) and (b) visualize the mesh deformation, in (c) and (d) color denotes the
norm of the velocity field

(a) Initial geometry (b) Optimized geometry

Figure 6.6: Three dimensional shape optimization with respect to energy dissipation in a Stokes
flow, color denotes the norm of the velocity field on a slice through the center of
the flow field

88

6.3 DG One Shot Shape Optimization in Euler Flows

In summary, it can be observed that applying the shape gradient as a boundary force in
the mesh deformation brings two advantages. On the one hand, there is no need for an
additional smoothing step as outline with the Laplace-Beltrami operator. On the other hand,
the coefficients in the Laplace-Beltrami setting are mesh-dependent and have to be chosen
empirically, which can be a time consuming process. In contrast, the mesh deformation based
on Neumann boundary conditions showed to perform comparably on different meshes and even
in two and three dimensions in the present higher order FEM discretization of the Stokes
equations.

6.3 DG One Shot Shape Optimization in Euler Flows

In this section the techniques tested with Stokes flows in the previous section are applied to
a higher order Euler shape optimization. The aim is to introduce small deformations to the
ONERA M6 wing presented in chapter 4 in order to reduce the drag. Since this is a transsonic
flow configuration, on the upper surface of the airfoil there is a large shock in the solution
which induces drag. Thus, the overall drag can be reduced by smoothing out the shock which
is conducted by geometric deformations in these regions. The mesh deformation is again based
on the linear elasticity solver presented in chapter 3.
Since lift and drag functional, as introduced in equations (5.18) and (5.19), only differ in the

rotation vector which is multiplied with the pressure coefficient, a shape derivative for both can
be given in one formula. Moreover, due to the linear dependence of the pressure coefficient on
the pressure itself (cf. (5.17)), for an optimization with respect to lift or drag it is sufficient to
derive a gradient with respect to the following objective functional

J (U,Ω) =

∫
Γobs

〈pα, ~n〉 dS. (6.38)

Here pα is given by one of the following expressions

pdrag
α = p ·

cos(α)

0

sin(α)

 or plift
α = p ·

− sin(α)

0

cos(α)

 . (6.39)

The shape derivative depending on a vector field V is then given by

dJ (U,Ω)(V) =

∫
Γobs

〈V, ~n〉
[
∂pα
∂~n

~n − λUH
〈
∂u

∂~n
, ~n

〉
+ divΓ (pα − λUHu)

]
dS

=

∫
Γobs

〈V, ~n〉
[
∂pα
∂~n

~n − λUH
〈
∂u

∂~n
, ~n

〉
+ κ 〈pα, ~n〉

]

+ 〈pα − λUHu, d~n(V)〉 dS.

(6.40)

A derivation and proof can be found in [14].

89

Chapter 6 Shape Optimization Based on DG

In equation (6.40) UH denotes the vector of conserved variables (ρ, ρu, ρv , ρw, ρE) where
the last component ρE is replaced by ρH in terms of the enthalpy H. λ denotes the adjoint
variable which is computed according to the presentations in chapter 5 and the curvature of
the surface is given by κ. Finally, d~n(V) denotes the shape derivative of the normal vector field
in the direction of V . Like in the previous section Γobs denotes the mesh boundary representing
the surface of the obstacle. In the mesh deformation this is handled as a Neumann boundary
with the shape gradient as a force. Moreover, the symmetry wall where the wing is fixed is also
modeled by a Neumann boundary condition with zero flux. This allows discretization elements
to slide within the plane, but not to leave it. In the terminology of chapter 3 this boundary is
denoted by ΓN .
In contrast to the Stokes case here the artificial boundary, introduced by the bounding box

of the curved cells (cf. figure 3.3), plays the role of ΓD2
and states a zero Dirichlet condition

in the mesh deformation. Thus, the shape deformation only affects cells which are curved in
the original discretization mesh. This ensures that non-curved cells will remain straight-sided
throughout the whole optimization. Moreover, the PDE of the mesh deformation only has to
be solved within the marked volume which greatly reduces the costs.
For what follows in this chapter, the first one of the two equivalent formulations (6.40) is

used as the calculation of the tangential divergence as it is more convenient in the present
framework of the DG solver. Since the expression pα − λUHu not only exists on the boundary
Γobs, the classical divergence can be computed according to the DG scheme (2.8) by replacing
the Euler fluxes with central differences and then projecting onto the submanifold Γobs according
to formula (6.8). Thus, in the following the shape gradient is given by

s =

[
∂pα
∂~n

~n − λUH
〈
∂u

∂~n
, ~n

〉
+ divΓ (pα − λUHu)

]
. (6.41)

Like in the Stokes case, the optimization is again constrained by a fixed volume of the obstacle.

The optimization is then conducted in a one-shot sense. This terminology was first used
in [77] and describes an optimization approach where the intermediate state and adjoint vari-
able are not feasible during the iterations, but only in the converged solution. In the case
that the PDE and its adjoint are solved by iterative techniques, the solver is stopped when a
desired residual is reached and not after convergence to machine precision. Thus, state and
adjoint variable are not feasible during the iterations. By this approach the convergence of the
optimization can be greatly accelerated.
In the present case a similar strategy is applied. First, the discretized PDE and its adjoint are

once solved up to the residual described in sections 4.3.1 and 5.2. A relative residual of 10−8 is
reached after 512,000 iterations in the primal case and 485,000 in the adjoint case, respectively.
Then the first design update is conducted. After that the primal and adjoint solver are iterated
up to a relative residual of 10−3 which is reached after approximately 20,000 iterations in
each case. It should be remarked that both the primal and adjoint approximation, which were
calculated before the design update, are used as initial conditions after the update. Thus,
the solvers start with a much smaller absolute residual than in the case of a homogeneously
initialized flow field.
In order to maintain the outline of the wing, the shape gradient is slightly modified. Since

it is the aim to minimize the drag with respect to the shock on the upper surface, the shape

90

6.3 DG One Shot Shape Optimization in Euler Flows

Figure 6.7: Shape optimization of ONERA M6 wing with respect to drag, 10 % drag reduction
due to smoothing of the shock with minimal geometrical deformations and volume
constraints

0.3 0.4 0.5 0.6 0.7 0.8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Original ONERA M6
Optimized Geometry

Figure 6.8: Initial and optimized geometry of ONERA M6, cross-section at 0.5 of the span
width

91

Chapter 6 Shape Optimization Based on DG

gradient is weighted in the vicinity of the leading and trailing edge with zero. For this purpose,
a set of m planes

P i =
{
x̄ i , ~ni

}
, x̄ i , ~ni ∈ R3 ∀1 ≤ i ≤ m (6.42)

is assumed which describes the outline of the geometry. Here x̄ i is a point on the i-th plane
and ~ni the corresponding normal vector. For each node x on the surface Γobs the distance to
the closest plane can be measured in the Euclidean norm by

δ(x) = min
1≤i≤m

〈
x − x̄ i , ~ni

〉
. (6.43)

The normal vectors ~ni are chosen such that δ(x) is negative if x is outside the region which is
to be deformed and positive if it is inside. The shape gradient is now smoothly weighted if the
corresponding node is within a specified range r of one plane which is done by

s̃(x) = s(x) ·
1

2

[
sin

(
δ(x) · π
r

−
π

2

)
+

1

2

]
, ∀x ∈ Γobs : 0 ≤ δ(x) ≤ r. (6.44)

By applying equation (6.44) to the shape gradient s in a point x ∈ Γobs, the shape gradient is
weighted with a factor in [0, 1]. This factor depends on how close the point x is to the closest
plane P i . If x is inside the bounding box defined by the planes P i and if the minimum distance
is smaller than r , then the shape gradient is weighted by 1

2

[
sin
(
δ(x)·π
r − π

2

)
+ 1

2

]
. This term

is chosen as a smooth transition between 0 and 1 depending on the distance δ(x).
In the present case two planes are defined: one through the leading edge given by x̄1 =

(0, 0, 0)T , ~n1 = (0.866, 0,−0.5)T and one through the trailing edge given by x̄1 = (0.65, 0, 0)T ,
~n1 = (−0.966, 0, 0.2588)T . Furthermore, the range of the modification is chosen to be r =

0.01.
Figure 6.7 shows the effect of the shape deformation on the upper surface of the ONERA

M6 wing. Moreover, figure 6.8 visualizes a cross-section of the wing at 50% of the span width
where the y -dimension is stretched in order to visualize the geometry deformation. It can be
seen that the shock is smoothed out which leads to a reduction of the drag by 10% after 15
optimization steps. This reductions might appear slightly small, however it can be explained due
to the geometric restrictions that the leading and trailing edge are fixed. The shape gradient
shows its maximum values typically at the leading and trailing edge which indicates that the
drag is very sensitive with respect to these regions.
The computations are all performed with P = 3 basis functions. This includes the linear

elasticity solver for the initial curved geometry as well as the solver for the mesh deformation,
which is also based on the linear elasticity equations as described in the Stokes case in the
previous section. Although the GPU solver works in parallel on mesh partitions, it is not
ensured that the surface Γobs and the region of curved cells Ωc are also partitioned properly.
In the worst case the graph partitioning algorithm attaches all cells of Ωc and Γobs to one
processor. This issue is not further investigated within this work and the mesh curvature is
thus serialized on one processor, which is not critical with respect to runtime since Ωc only
contains a small fraction of the whole mesh. An example can be seen in the right picture of
figure 4.11 where the surface is distributed only over 4 out of 8 processors.
The shape optimization is conducted in the following steps:

92

6.3 DG One Shot Shape Optimization in Euler Flows

1. The DG solver is started with the straight-sided grid which is then partitioned.

2. The least squares problem is solved in order to fit the mesh to the NURBS representation.

3. Solution of the least squares problem is applied as Dirichlet boundary condition in the
elasticity FEM solver, which results in a deformation field D0.

4. An interpolation operator between the DG and FEM solution is set up based on the
straight-sided mesh.

5. Primal/adjoint solution and shape gradient are computed by the DG solver and the gra-
dient is then gathered in one process through MPI.

6. The shape gradient is interpolated at the nodes of the FEM discretization. The elements
of the FEM solver are then curved according to D0 and the linear elasticity equations
are solved with the interpolated shape gradient as Neumann force on Γobs which yields a
deformation field D1.

7. For the volume constraint the linear elasticity equations are solved once more with 1 · ~n
as Neumann boundary condition on Γobs resulting in a field D2.

8. The Lagrange multiplier λ2 (cf. section 6.2) is then obtained from the condition∫
Γobs

D1 · ~n dS − λ2

∫
Γobs

D2 · ~n dS = 0. (6.45)

9. The new geometry is then described by the deformation field D0 ← D1−λ2D2 +D0 and
it is proceeded with step 5.

It might sound surprising that the DG and the FEM solver are based on the straight-sided
mesh which is curved according to the accumulated deformation field in each iteration. How-
ever, this procedure shows to be more stable with respect to round off errors. If the grid itself is
modified in each optimization step, the discretization error of the linear elasticity FEM solution
leads to overlappings and diverging elements in the DG scheme after a few iterations.
Summarizing this novel shape optimization approach presented in sections 6.2 and 6.3, the

gradient smoothing and mesh deformation based on Neumann boundary conditions in the linear
elasticity equations lead to a very robust shape update even in higher order discretizations.
Clearly, this approach is much too expensive when applied in the simplified Stokes flow situation.
This stems from the fact, that in the solver framework used in section 6.2, the solution of the
Stokes equations is only halve as expensive as the shape update, since for the update the linear
elasticity equations have to be solved twice.
The situation is very different when applied in the non-linear Euler case. Despite the applica-

tion of optimized solver techniques, like the combination of explicit GPU time integration and
implicit methods, the additional costs for the mesh deformation do not significantly appear in
the overall runtime. This is moreover amplified by the fact that the mesh deformation tool only
acts on a small subset of cells Ωc ⊂ Ω. Thus, the shape optimization based on linear elasticity
mesh deformations with an gradient smoothing through Neumann boundary conditions is also
a computationally attractive approach.

93

Chapter 7

Conclusion and Outlook

7.1 Summary

The aim of this work was to investigate if GPU accelerated higher order discontinuous Galerkin
methods could make their way into industrial applications connected to computational fluid
dynamics. For this purpose, an explicit Runge-Kutta DG method was completely implemented
for the GPU. Simultaneously, an explicit and implicit DG code was implemented for the CPU
following well-established guidelines in order to estimate the speedup that can be gained by
the different hardware architecture. This includes an OPENMP parallelization for multicore
CPUs, which fully enables the computational abilities of the multiple cores of modern CPUs.
Comparing the explicit codes on both the GPU and the CPU, a GPU-speedup of up to 5 in
double precision and 18 in single precision arithmetic was achieved over the CPU. Whereas,
it turned out that the explicit RKDG method is not comparable to the backward Euler DG
method in a general framework. It showed to be best practice to apply the GPU-accelerated
RKDG code as a preconditioner within a backward Euler or Newton method for the present
subsonic Euler test case.
This work was focused on the simulation of a transsonic Euler flow over the ONERA M6

wing. Thus, shock capturing techniques had also to be investigated within an explicit time
stepping. Here an artificial viscosity approach showed to be robust and fits seamlessly in the
GPU framework. The implementation of this shock capturing tool is very close to a full Navier-
Stokes solver which was also implemented and shown within this work.
Since there are no algorithmic differentiation tools available yet, which maintain the code

optimizations made for the GPU hardware architecture, the RKDG method was derived by hand
in order to obtain a solver for the discrete adjoint problem of the Euler equations. The most
interesting result was that in the present DG scheme the discrete adjoint solver is very close
to the primal one from an algorithmic point of view. This allowed for comparable run times of
the adjoint and the primal code.
Another focus was on the treatment of curved geometries within the higher order DG dis-

cretization, which was not planned to investigate in the first place. However, simple test cases
had already shown that straight-sided elements induce major errors in the scheme due to artifi-
cial kinks arising in the geometry. In order to overcome this issue, techniques which are known
from mesh deformation approaches in shape optimization were adopted and used in order to
generate body-fitted higher order DG meshes.
At the end of this work all the techniques and codes derived so far where combined in order

to conduct a shape optimization of the ONERA M6 wing. Here the overall drag should be
reduced by smoothing out the shock on the upper surface of the wing. It turned out that the

95

Chapter 7 Conclusion and Outlook

shape gradient information obtained from the higher order DG discretization is not smooth
enough to apply directly to the shape as a deformation. For this purpose, the well-established
Laplace-Beltrami smoothing approach was compared to a shape optimization approach where
the shape gradient is interpreted as a force in the linear elasticity mesh deformation tool. This
was tested in a simplified Stokes flow and finally applied to the transsonic Euler case.
Summarizing the results of this work, it can be said that the use of higher order discretization

methods introduce some technical problems as shock capturing and geometry representation.
However, this work showed that the computational attractiveness, especially with respect to
stream processors, and high resolution potential outweighs the technical issues.

7.2 Future Work

This work mainly focused on the pure hyperbolic case of the Euler equations. Thus, it is a
natural question to ask how explicit schemes perform in viscous flows and if the speedups can
be maintained. As indicated in this work, the role of the GPU-accelerated explicit scheme could
be seen as a preconditioner in an implicit time stepping which could be further investigated.
Another field of vivid studies is connected to the isoparametric mappings within the dis-

cretization scheme. Curved elements in a higher order method are a powerful tool to resolve
complicated geometries. However, it has to be further investigated how the known curvature
of the physical geometry can be brought into the discretization mesh.
Finally, this work only covered empirical studies dealing with the smoothing approach of the

shape gradient by applying it as a force in the mesh deformation step. This should be further
investigated and especially some theoretical inside should be gained.

96

List of Figures

2.1 Mapping from reference element T to physical element Ωk 10
2.2 Different set of nodes inside the reference tetrahedron T 14

3.1 Density distribution of a subsonic Euler flow past a sphere with P = 4 basis
functions. Disturbed solution on straight-sided elements (top) and isoparamet-
ric curved elements (bottom). 30

3.2 Two dimensional curved elements on a physical boundary with displaced (filled)
and original (empty) interpolation nodes. 31

3.3 Bounding box (red) around ONERA M6 wing (yellow) marking the sub-mesh
for the linear elasticity solver. The blue and violet mesh in the background is
the triangulation of the symmetry wall where the airfoil is fixed. 32

3.4 Influence of linear elasticity curvature on surface-elements (colored) of the
sphere (gray). Initial mesh on the left and curved mesh on the right. 37

3.5 NACA0012 airfoil, leading edge. Initial grid on the left, P = 4 curved elements
on the right. 38

3.6 ONERA M6 airfoil, top surface with leading edge. Initial geometry produced
by the mesh generator on the left. P = 4 curved cells around the physical
geometry on the right. 38

4.1 Schematic comparison of CPU (left) and GPU (right) hardware layout according
to [53] . 42

4.2 CUDA memory model according to [51] . 45
4.3 Algorithm execution on one compute node . 54
4.4 Flow past NACA0012 airfoil with P = 5 elements on the left and P = 3

elements on the right, density distribution . 57
4.5 Artificial viscosity at front surface of three dimensional, stretched NACA0012

profile, transsonic test case from figure 4.4(b), t →∞ 58
4.6 cp distribution over the NACA0012 airfoil . 58
4.7 Transsonic flow over ONERA M6 airfoil with P = 3 elements, density distribu-

tion, 40 isosurfaces at symmetry plane . 59
4.8 Magnitude of velocity, turbulent flow past a sphere, M∞ = 0.3, Re = 300 . . . 61
4.9 ρ = 1.213 iso-surface, Navier-Stokes flow past a sphere, M∞ = 0.3, Re = 300 62
4.10 GPU and CPU runtimes on approximately 26,000 cells, 200 time steps, black:

GPU single precision, crosshatched: GPU double precision, hatched: OPENMP
parallel CPU . 63

4.11 Non zero pattern of Jacobian matrix ∂Nh
∂Uh

influenced by the ParMetis reordering
and partitioning . 66

97

List of Figures

5.1 Comparison of primal (black) and adjoint (hatched) execution times on one
GPU, 200 time steps on approximately 26,000 cells 74

6.1 First iterations of shape optimization based on Laplace-Beltrami smoothing and
Dirichlet boundary condition in linear elasticity mesh deformation on refined
grids for fixed ηLB . 85

6.2 Same situation like in figure 6.1, mesh with 14,400 triangles and different
Laplace-Beltrami coefficients ηLB . 86

6.3 Mesh-independent trend of objective functional in shape optimization based on
Neumann boundary condition in component-wise Laplacian mesh deformation . 86

6.4 Mesh-independent trend of objective functional in shape optimization based on
Neumann boundary condition in linear elasticity mesh deformation 87

6.5 Two dimensional shape optimization with respect to energy dissipation in a
Stokes flow, (a) and (b) visualize the mesh deformation, in (c) and (d) color
denotes the norm of the velocity field . 88

6.6 Three dimensional shape optimization with respect to energy dissipation in a
Stokes flow, color denotes the norm of the velocity field on a slice through the
center of the flow field . 88

6.7 Shape optimization of ONERA M6 wing with respect to drag, 10 % drag re-
duction due to smoothing of the shock with minimal geometrical deformations
and volume constraints . 91

6.8 Initial and optimized geometry of ONERA M6, cross-section at 0.5 of the span
width . 91

98

List of Tables

4.1 Number of interpolation and cubature nodes for different polynomial degrees . 52
4.2 Subsonic flow past a sphere - steady state computation with (left) and without

p-refinement (right) . 60
4.3 Weak scaling over a cluster of 8 GPUs, P = 4 elements, 200 iterations 64
4.4 Time steps in the first iterations for the explicit GPU algorithm and the implicit

Euler method . 67

99

Bibliography

[1] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation.
Los Alamos Report LA-UR-73-479, 1973.

[2] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier–Stokes equations. Journal of computational
physics, 131(2):267–279, 1997.

[3] Z.J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hart-
mann, K. Hillewaert, H.T. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, and
M. Visbal. High-order CFD methods: current status and perspective. International Jour-
nal for Numerical Methods in Fluids, 2013.

[4] P. O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods.
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 112, 2006.

[5] B. Cockburn and C. W. Shu. The Runge-Kutta local projection P1-discontinuous Galerkin
finite element method for scalar conservation laws. RAIRO, Modélisation Mathématique
et Analyse Numérique, 25:337–361, 1991.

[6] B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws II: general framework. Mathematics of Com-
putation, 52:411–435, 1989.

[7] B. Cockburn, S. Y. Lin, and C. W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: one-dimensional systems. Journal
of Computational Physics, 84:90–113, 1989.

[8] B. Cockburn, S. Hou, and C. W. Shu. The Runge-Kutta local projection discontinu-
ous Galerkin finite element method for conservation laws IV: the multidimensional case.
Mathematics of Computation, 54:545–581, 1990.

[9] B. Cockburn and C. W. Shu. The Runge-Kutta discontinuous Galerkin method for conser-
vation laws V: multidimensional systems. Journal of Computational Physics, 141:199–224,
1998.

[10] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. Journal of Computational Physics, 228:7863–7882, 2009.

[11] J. S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured grids: I.
time-domain solution of Maxwell’s equations. Journal of Computational Physics, 181:186–
221, 2002.

101

Bibliography

[12] M. B. Giles and N. A. Pierce. Adjoint equations in CFD: duality, boundary conditions and
solution behaviour. AIAA, 97:1850, 1997.

[13] J. Sokolowski and J.-P. Zolesio. Introduction to shape optimization. Springer, 1992.

[14] S. Schmidt, C. Ilic, V. Schulz, and N. Gauger. Airfoil design for compressible inviscid flow
based on shape calculus. Optimization and Engineering, 12(3):349–369, 2011.

[15] S. Schmidt, C. Ilic, V. Schulz, and N. Gauger. Three dimensional large scale aerodynamic
shape optimization based on shape calculus. In 41st AIAA Fluid Dynamics Conference
and Excibit, number AIAA 2011-3718, 2011.

[16] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for CFD. Oxford
University Press, USA, 1999.

[17] T. Warburton. An explicit construction of interpolation nodes on the simplex. Journal of
engineering mathematics, 56(3):247–262, 2006.

[18] G. Szegö. Orthogonal Polynomials, volume 23. American Mathematical Society, 1939.

[19] Q. Chen and I. Babuška. The optimal symmetrical points for polynomial interpolation of
real functions in the tetrahedron. Computer methods in applied mechanics and engineering,
137(1):89–94, 1996.

[20] J. S. Hesthaven and C. H. Teng. Stable spectral methods on tetrahedral elements. SIAM
Journal on Scientific Computing, 21(6):2352–2380, 2000.

[21] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. Springer, 2008.

[22] A. H. Stroud. Approximate calculation of multiple integrals, volume 431. Prentice-Hall
Englewood Cliffs, NJ, 1971.

[23] R. Cools and P. Rabinowitz. Monomial cubature rules since Stroud: A compilation. Journal
of Computational and Applied Mathematics, 48(3):309–326, 1993.

[24] A. Grundmann and H. M. Möller. Invariant integration formulas for the N-simplex by
combinatorial methods. SIAM Journal on Numerical Analysis, pages 282–290, 1978.

[25] S. Wandzura and H. Xiao. Symmetric quadrature rules on a triangle. Computers &
Mathematics with Applications, 45(12):1829–1840, 2003.

[26] P. Lesaint and P.A. Raviart. On a finite element method for solving the neutron transport
equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations,
pages 89–145. Academic Press, New York, 1974.

[27] C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a
scalar hyperbolic equation. Mathematics of computation, 46(173):1–26, 1986.

[28] G.R. Richter. An optimal-order error estimate for the discontinuous Galerkin method.
Mathematics of Computation, 50(181):75–88, 1988.

102

Bibliography

[29] Q. Zhang and C.W. Shu. Error estimates to smooth solutions of Runge–Kutta discontin-
uous Galerkin methods for scalar conservation laws. SIAM Journal on Numerical Analysis,
42(2):641–666, 2004.

[30] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Elsevier, 2001.

[31] P. Wesseling. Principles of computational fluid dynamics, volume 29. Springer, 2009.

[32] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical intro-
duction. Springer, 2009.

[33] J. Qiu, B. C. Khoo, and C. W. Shu. A numerical study for the performance of the
Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. Journal
of Computational Physics, 212(2):540–565, 2006.

[34] J. J. W. van der Vegt and H. van der Ven. Space–time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows: I. General
formulation. Journal of Computational Physics, 182(2):546–585, 2002.

[35] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel, adaptive finite element methods for
conservation laws. Applied Numerical Mathematics, 14:255 – 283, 1994.

[36] J. C. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and
general linear methods. Wiley-Interscience, 1987.

[37] M. H. Carpenter and C. A. Kennedy. Fourth-order 2n-storage Runge-Kutta schemes.
NASA Report TM, 109112, 1994.

[38] S. Tu and S. Aliabadi. A slope limiting procedure in discontinuous Galerkin finite element
method for gasdynamics applications. International Journal of Numerical Analysis and
Modeling, 2:163–178, 2005.

[39] L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Com-
putational Physics, 226(1):879–896, 2007.

[40] D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Discontinuous Galerkin methods for
elliptic problems. Lecture Notes in Computational Science and Engineering, 11:89–102,
2000.

[41] A. Klöckner, T. Warburton, and J. S. Hesthaven. Viscous shock capturing in a time-
explicit discontinuous Galerkin method. Mathematical Modelling of Natural Phenomena,
6(03):57–83, 2011.

[42] G. E. Barter and D. L. Darmofal. Shock capturing with PDE-based artificial viscosity
for DGFEM: Part I. formulation. Journal of Computational Physics, 229(5):1810–1827,
2010.

[43] F.Bassi and S. Rebay. A high-order discontinuous Galerkin finite element method solution
of the 2d Euler equations. Journal of Computational Physics, 138:251–285, 1997.

103

Bibliography

[44] P. O. Persson and J. Peraire. Curved mesh generation and mesh refinement using La-
grangian solid mechanics. Proceedings of the 47th AIAA Aerospace Sciences Meeting and
Exhibit, 2009.

[45] L. A. Piegl and W. Tiller. The NURBS book. Springer Verlag, 1997.

[46] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2006.

[47] D. P. Bertsekas. Projected Newton methods for optimization problems with simple con-
straints. SIAM Journal on Control and Optimization, 20(2):221–246, 1982.

[48] C. Geuzaine and J. F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in
pre-and post-processing facilities. International Journal for Numerical Methods in Engi-
neering, 79(11):1309–1331, 2009.

[49] Y. Renard and J. Pommier. Getfem finite element library. http://download.gna.org/
getfem/html/homepage/, June 2011.

[50] R. Hartmann, J. Held, T. Leicht, and F. Prill. Discontinuous Galerkin methods for
computational aerodynamics – 3D adaptive flow simulation with the DLR PADGE code.
Aerospace Science and Technology, 14(7):512–519, October 2010.

[51] D. B. Kirk and W. W. Hwu. Programming massively parallel processors: A hands-on
approach. Morgan Kaufmann, 2010.

[52] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA
whitepaper, 2009.

[53] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, October 2012.

[54] M. Siebenborn, V. Schulz, and S. Schmidt. A curved-element unstructured discontinuous
Galerkin method on GPUs for the Euler equations. Computing and Visualization in Science,
2013 (in print).

[55] M. Liebmann, C. Douglas, G. Haase, and Z. Horvath. Large scale simulations of the Euler
equations on GPU clusters. In Proceedings of DCABES 2010, Hongkong, pages 50–54.
IEEE Computer Society, 2010.

[56] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998.

[57] E. N. Jacobs, K. E. Ward, and R. M. Pinkerton. The characteristics of 78 related airfoil
sections from tests in the variable-density wind tunnel. 1933.

[58] V. Schmitt and F. Charpin. Pressure distributions on the ONERA-M6-wing at transonic
mach numbers. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138,
1979.

104

http://download.gna.org/getfem/html/homepage/
http://download.gna.org/getfem/html/homepage/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Bibliography

[59] NVIDIA. CUDA 5.0 Performance Report. http://developer.nvidia.com/, January
2013.

[60] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C.
McInnes, B. Smith, and H. Zhang. PETSc Users Manual Revision 3.4. Argonne National
Laboratory, 2013.

[61] R.D. Falgout and U.M. Yang. HYPRE: A library of high performance preconditioners. In
Computational Science—ICCS 2002, pages 632–641. Springer, 2002.

[62] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM Journal on Scientific Computing, 22(6):2194–2215, 2001.

[63] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, 2003.

[64] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM Journal
on Numerical analysis, 19(2):400–408, 1982.

[65] W. A. Mulder and B. van Leer. Experiments with implicit upwind methods for the Euler
equations. Journal of Computational Physics, 59(2):232–246, 1985.

[66] M. Siebenborn and V. Schulz. GPU accelerated discontinuous Galerkin for Euler equation
and its adjoint. In Simulation Series, volume 45, pages 15–21, 2013.

[67] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design. Flow,
turbulence and combustion, 65(3-4):393–415, 2000.

[68] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorith-
mic differentiation, volume 105. Society for Industrial and Applied Mathematics, 2008.

[69] A. Griewank. On automatic differentiation. Mathematical Programming: recent develop-
ments and applications, 6:83–107, 1989.

[70] M. B. Giles. On the use of Runge-Kutta time-marching and multigrid for the solution of
steady adjoint equation. Oxford University Computing Laboratory, 2000.

[71] J.-P. Zolesio and M. C. Delfour. Shapes and geometries. Analysis, differential calculus
and optimization, SIAM, Philadelphia, 2001.

[72] S. Schmidt. Efficient Large Scale Aerodynamic Design Based on Shape Calculus. PhD
thesis, University of Trier, Germany, 2010.

[73] A. Borzì and V. Schulz. Computational optimization of systems governed by partial dif-
ferential equations, volume 8. SIAM, 2012.

[74] B. Mohammadi and O. Pironneau. Applied shape optimization for fluids, volume 28.
Oxford University Press Oxford, 2001.

[75] O. Pironneau. On optimal shapes for Stokes flow. Journal of Fluid Mechanics, 70(2):331–
340, 1973.

105

http://developer.nvidia.com/

Bibliography

[76] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmet-
ric and unsymmetric solvers. Computer methods in applied mechanics and engineering,
184(2):501–520, 2000.

[77] S. Ta’asan, G. Kuruvila, and M. D. Salas. Aerodynamic design and optimization in one
shot. 30th Aerospace Sciences Meeting, Reno, NV, AIAA paper 92-0025, 1992.

106

	1 Introduction
	1.1 Motivation
	1.2 Aim and Scope of this Work
	1.3 Structure of this Work

	2 Basic Concepts
	2.1 General Discontinuous Galerkin Formulation
	2.2 Equations of Fluid Dynamics
	2.3 Temporal Discretization
	2.4 Shock Capturing

	3 Mesh Curvature Approach
	3.1 Problems of Under-Resolved Geometries
	3.2 Mesh Curvature Based on Linear Elasticity

	4 GPU Implementation of Discontinuous Galerkin
	4.1 Stream Processors and GPUs
	4.1.1 GPU Hardware Layout
	4.1.2 GPU Programming Model
	4.1.3 Performance Considerations

	4.2 Discontinuous Galerkin on Stream Processors
	4.3 Numerical Tests of the GPU Algorithm
	4.3.1 Flow Simulations
	4.3.2 Performance Analysis

	4.4 Comparison to Conventional Algorithms

	5 Discrete Adjoint GPU Implementation
	5.1 Introduction to Discrete Adjoint Approaches
	5.2 GPU Implementation

	6 Shape Optimization Based on DG
	6.1 A Short Introduction to Shape Calculus
	6.2 Higher Order Shape Optimization in Stokes Fluids
	6.3 DG One Shot Shape Optimization in Euler Flows

	7 Conclusion and Outlook
	7.1 Summary
	7.2 Future Work

