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Abstract

In splitting theory of locally convex spaces we investigate evaluable characterizations of the
pairs (E, X) of locally convex spaces such that each exact sequence

0 −→ X
f
−→ G

g
−→ E −→ 0 (?)

of locally convex spaces splits, i.e. either f has a continuous linear left inverse or g has a
continuous linear right inverse. In the thesis at hand we deal with splitting of short exact se-
quences of so-called PLH spaces, which are defined as projective limits of strongly reduced
spectra of strong duals of Fréchet-Hilbert spaces. This class of locally convex spaces contains
most of the spaces of interest for application in the theory of partial differential operators as
the space of Schwartz distributions D ′ (Ω), the space of real analytic functions A (Ω) and
various spaces of ultradifferentiable functions and ultradistributions, cf. [Dom04]. It also con-
tains non-Schwartz spaces as DL2 and the Bloc

2,k (Ω) spaces that are not covered by the current
theory for PLS spaces, cf. e.g. [BD06, BD08, Dom10]. We prove a complete characterizations
of the above problem in the case of X being a PLH space and E either being a Fréchet-Hilbert
space or a strong dual of one by conditions of type (T ) respectively (Tε), cf. [Dom10], which
gives an answer to a variation of [BD06, problem (9.9)]. To this end, we establish the full ho-
mological toolbox of Yoneda Ext functors in exact categories for the category of PLH spaces
including the long exact sequence, which in particular involves a thorough discussion of the
proper concept of exactness. Furthermore, we exhibit the connection to the parameter depen-
dence problem via the Hilbert tensor product for hilbertizable locally convex spaces. We show
that the Hilbert tensor product of two PLH spaces is again a PLH space which in particular
proves the positive answer to Grothendieck’s problème des topologies, cf. [Gro55]. In addi-
tion to that we give a complete characterization of the vanishing of proj1 for tensorized PLH
spectra if one of the PLH spaces E and X meets some nuclearity assumptions. To apply our
results to concrete cases we establish sufficient conditions of (DN)-(Ω) type due to [BD07],
and apply them to the parameter dependence problem for partial differential operators with
constant coefficients on Bloc

2,k (Ω) spaces as well as to the parameter dependence problem for
DL2 . Concluding we give a complete solution of all the problems under consideration for PLH
spaces of Köthe type.
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Zusammenfassung

Motiviert durch die Frage nach der Existenz von linearen und stetigen Lösungsoperatoren zu
partiellen Differentialoperatoren mit konstanten Koeffizienten, beschäftigt sich die Splitting
Theorie lokalkonvexer Räume mit der Charakterisierung der Raumpaare (E, X) lokalkonvexer
Räume, sodass jede kurze exakte Sequenz

0 −→ X
f
−→ G

g
−→ E −→ 0 (?)

lokalkonvexer Räume zerfällt, d.h. entweder f eine lineare und stetige Linksinverse besitzt
oder, äquivalent, die Abbildung g eine lineare und stetige Rechtsinverse. In der vorliegen-
den Arbeit wird diese Fragestellung für die Kategorie sogenannter PLH Räume untersucht.
Alle für die Anwendung in der Lösungstheorie von partiellen Differentialgleichungen nach
Hörmander relevanten Räume der Funktionalanalysis, wie der Raum der Schwartz’schen Dis-
tributionen D ′ (Ω), der Raum der reell analytischen Funktionen A (Ω) und viele Räume ultra-
differenzierbarer Funktionen und Ultradistributionen sind dieser Kategorie zuzuordnen; er-
lauben also eine Darstellung als projektiver Limes eines stark reduzierten Spektrums von
starken Dualen von Fréchet-Hilbert Räumen. Außerdem enthält diese Kategorie auch viele
Beispiele von Funktionen- und Distibutionenräumen, wie den DL2 und die Bloc

2,k (Ω) Räume,
die nicht Schwartz sind, also nicht von der aktuellen Theorie für PLS Räume, man vergleiche
beispielsweise [BD06, BD08, Dom10], erfasst werden. Wir geben eine vollständige Charak-
terisierung mittels einer Bedingung vom Typ (Tε), vgl. [Dom10], für das Zerfallen aller Se-
quenzen (?) in PLH für Fréchet-Hilbert oder LH Räume E und PLH Räume X, was eine
Antwort auf eine Variation von [BD06, Problem (9.9)] gibt. Dazu werden alle homologischen
Methoden, insbesondere die lange exakte Kohomologie-Sequenz und die Verbindung von
Ext1

PLH und proj1 für die Yoneda Ext Gruppen in Analogie zum PLS Raum Fall [Sie10] bere-
itgestellt. Insbesondere wird die Wahl der richtigen Exaktheitstruktur in PLH diskutiert. Über
das Hilbert Tensor Produkt für hilbertisierbare lokalkonvexe Räume stellen wir den Zusam-
menhang zu dem Problem der Parameterabhängigkeit von Lösungen her und weisen nach,
dass das Hilbert Tensor Produkt von zwei PLH Räumen wieder ein PLH Raum ist. Dazu lösen
wir insbesondere Grothendieck’s problème des topologies, vgl. [Gro55], positiv für Fréchet-
Hilbert Räume und das Hilbert Tensor Produkt. Schließlich geben wir eine vollständige
Charakterisierung des Verschwindens von proj1 für tensorierte PLH Spektren wieder mittels
einer Bedingung vom Typ (Tε) im Falle, dass einer der beteiligten PLH Räume gewissen Nuk-
learitätsbedingungen genügt. Um die charakterisierenden Bedingungen auf konkrete Fälle an-
wenden zu können, weisen wir hinreichende Bedingungen vom Typ (DN)-(Ω) für PLH Räume
nach und wenden diese an sowohl auf das Problem der Parameterabhängigkeit von Lösungen
für partielle Differentialoperatoren mit konstanten Koeffizienten in Bloc

2,k (Ω) Räumen, als auch
auf das Problem der DL2 Parameterabhängigkeit. Schließlich geben wir eine vollständige
Charakterisierung aller behandelten Fragestellungen für das Beispiel der Köthe PLH Räume.
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1 Introduction

In splitting theory of locally convex spaces we investigate evaluable characterizations of the
pairs (E, X) of locally convex spaces such that each exact sequence

0 −→ X
f
−→ G

g
−→ E −→ 0 (?)

of locally convex spaces splits, i.e. either f has a continuous linear left inverse or g has a
continuous linear right inverse. The notion of exactness is one of the aspects considered
in chapter 2, for now the reader may picture a linear continuous and surjective operator g
between locally convex spaces G and E with the continuous inclusion of X = g−1 ({0}) via f
into the domain G.

Since the seventies of the last century this problem has been studied extensively in the con-
text of Fréchet and locally convex spaces and can be considered complete for these categories,
a short survey is given at the beginning of chapter 3. The problem that motivates investigating
splitting theory in other categories than those two occurs, when considering many classical
spaces of functional analysis that are important for the theory of partial differential equations.
This concerns particularly the space of Schwartz distributions D ′ (Ω), the space of real ana-
lytic functions A (Ω) and various spaces of ultradifferentiable functions and ultradistributions,
cf. [Dom04]. Those are far from metrizable, hence the classical theory for Fréchet spaces is
not applicable. Furthermore, the locally convex theory does not yield satisfactory results: We
simply do not know, whether each exact sequence

0 −→ D ′ (Ω)
f
−→ G

g
−→ D ′ (Ω) −→ 0

of locally convex spaces splits. This leads us to the quest for a suitable subcategory of the
locally convex spaces, i.e. a class that is on the one hand big enough to contain the function
and distribution spaces mentioned above but on the other hand small enough to yield reason-
able splitting results. The natural structure of the examples mentioned above – they all are
projective limits of (strongly reduced) spectra of complete separated LB spaces – provides
suggestions: Although it contains all of the non-metrizable examples, the category PLN of
projective limits of (strongly reduced) spectra of strong duals of nuclear Fréchet spaces does
not seem appropriate as it only contains strongly nuclear Fréchet spaces, leaving important
examples such as the space s of rapidly decreasing sequences unattended. This led to the
implementation of the category of so-called PLS spaces, i.e. projective limits of (strongly re-
duced) spectra of strong duals of Fréchet Schwartz spaces. Splitting theory in this category has
been subject to recent investigation and considerable results have been achieved under certain
assumptions about nuclearity and being Köthe PLS spaces, cf. e.g. [BD06, BD08, Dom10].
A more detailed survey will be given in the introductions of chapters 3 and 4. Nevertheless,
several spaces are not covered by the PLS space approach: In particular, the Fréchet-Hilbert
space DL2 of all C∞ functions all the derivatives of which are in L2 and the Bloc

2,k (Ω) spaces, cf.
[Hör05, chap. 10], as well as the PLH spaces of Köthe type. Furthermore, the question arises
whether the nuclearity assumptions or those about compactness can be omitted or softened,
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1 Introduction

cf. [BD06, problem (9.9)].
This leads us to the category PLH of projective limits of strongly reduced spectra of strong

duals of Fréchet-Hilbert spaces, a class of locally convex spaces that not only contains all the
spaces of interest for applications covered so far but also the new ones mentioned before. We
address the problem in four steps:

In chapter 2 we will establish the complete homological toolbox, in particular the long exact
sequence we had access to in splitting theory for Fréchet spaces via Retakh’s and Palamodov’s
approach, cf. [Pal72, Ret70, Pal71], also in the category of PLH spaces via the Yoneda Ext
functors. To this end we will follow Sieg’s approach [Sie10] using the theory of exact struc-
tures, cf. [Büh10]. Essential to this approach is the determination of a certain class of kernel-
cokernel pairs, which has to fulfill the technical requirements of an exact structure to facilitate
the homological toolbox. Here the main difference to PLS emerges: While Sieg proved [Sie10]
that the class of short topologically exact sequences is the maximal exact structure in PLS, the
category PLH is not subspacestable, which leads us to a significantly larger maximal exact
structure involving well-located subspaces in (2.2.17) and several delimiting examples as the
category of LB spaces, which we pick up alongside. This allows us to prove the isomorphy
of Ext1

PLH and proj1 in a certain spectrum of operator spaces under mild assumptions as local
splitting in (2.3.6) in analogy to [Sie10, ((5.2))]. Furthermore, we will prove in (2.2.18) that
being a PLH space is not a three-space property in the category of locally convex spaces, a
fact that remains unknown for PLS spaces. Finally we will establish the splitting theory for
the space of distributions in (2.3.7) in analogy to [Sie10, (5.3)], cf. [DV00b, Wen01] , i.e.
that Ext1

PLH (E, X) vanishes for subspaces E and complete Hausdorff quotients X of D ′ (Ω).
Note that we will show the results for the even larger class of PLSw spaces, where we replace
“Hilbert space” in the definition of PLH by “reflexive Banach space”.

In chapter 3 we will prove a characterization of the vanishing of the first derivative of the
projective limit functor in the spectrum of operator spaces L B

(
L (E, XN) , XN

M
∗
)

for Fréchet-
Hilbert (3.4.5) or LH spaces E (3.5.4) and PLH spaces X if all spaces are deeply reduced. The
characterization is given in terms of some inequality preceded by a long sequence of quanti-
fiers, see conditions (T ) and (Tε) in (3.2.1) and is achieved without any nuclearity assumptions,
thus giving an answer to a variation of [BD06, problem (9.9)]. The long and technical proof
relies on duality: We will in fact characterize weak acyclicity for some LF spectrum of pro-
jective tensor products that is pre-dual to L . This characterization will use interpolation for
nuclear operators due to Domański and Mastyło in [DM07] in the variant (3.2.6) due to Vogt
[Vog11], as well as a slightly enhanced characterization of condition (M) of Retakh essentially
due to Wengenroth [Wen95, Wen96]. The connection between Ext1

PLH (E, X) and proj1 L in
the above situation that we established in 2 will allow us to use the characterizations obtained
to the vanishing of Ext1

PLH (E, X). This generalizes Domański’s and Mastyło’s splitting result
for Fréchet-Hilbert spaces [DM07] and constitutes the PLH analogons of the splitting results
for PLS spaces due to Bonet and Domański [BD06, BD08].

Chapter 4 is motivated by the following parameter dependence problem: Given a linear
partial differential equation with constant coefficients

P (D) uλ = fλ,

2



1 Introduction

where the family ( fλ)λ∈I of distributions, ultradistributions, real analytic functions or ultra-
differentiable functions depends in a certain sense “nicely” on the parameter λ ∈ I, is there a
family of solutions (uλ)λ∈I depending equally “nice” on the parameter λ?

This research has its roots in an even more general setting, where for instance also P (D)
depends on λ ∈ I, cf. [Bro62, Trè62a, Trè62b, Man90, Man91, Man92], cf. [BD06, p. 563]
respectively [Dom10, p. 1 & 2] for details. The tensor product representation of various
function spaces, cf. [Sch58, Gro55, DF93, Var02, Var07] connects this problem to the problem
of surjectivity of tensorized maps:

Given a locally convex space E and a quotient map q : Y −→ Z between locally convex
spaces Y and Z, under which conditions will the induced operator idE ⊗̃αq : E⊗̃αY −→ E⊗̃αZ
be surjective for α = π or α = ε?

In the setting of projective spectra of LB spaces this question is closely connected to the
vanishing of proj1 for tensorized spectra, which is subject to investigation in our PLH setting.
As even `2⊗̃α`2 is not reflexive for α ∈ {ε, π}, cf. [MV97, (16.27)]. Hence, contrary to the
PLS situation, we can not expect the local tensor products EN⊗̃αXN , α ∈ {ε, π} for two PLH
spaces E = proj

(
ET , ET

S

)
and X = proj

(
XN , XN

M

)
to be ultrabornological, reflexive or even

an LH space. Thus we introduce the Hilbert tensor topology for hilbertizable locally convex
spaces. We start by defining the Hilbert tensor product not only on the tensor product of
two Hilbert spaces but directly on the tensor product of vector spaces that are equipped with
Hilbert seminorms, so-called semi-unitary spaces. This will allow for rather elegant proofs
when verifying in the second part of the chapter that the induced tensor topologyTσ commutes
with the LH space structure, i.e. that the completed σ tensor product of two LH spaces is the
LH space arising from the σ tensor product of the two LH space spectra giving rise to the
original LH spaces in (4.2.9). This is the crucial step in demonstrating that Tσ shows the same
compatibility concerning the PLH space structure as do the ε and π topology towards the PLS
space structure, cf. [Pis10]. Other by-products will be the positive solution of Grothendieck’s
problème des topologies, cf. [Gro55], for Tσ and Fréchet-Hilbert spaces and the exactness
of the induced tensor product functor on the category of Fréchet-Hilbert spaces and on the
category of LH spaces. In the last part we will characterize the vanishing of proj1 for the
tensorized spectrum of both a nuclear Fréchet space and a PLN space E with a PLH space X
under mild assumptions with our condition (Tε), thus proving Bonet and Domański’s result
[BD06, BD08, Dom10] in the category of PLH spaces. Note that since we can not interpolate
Hilbert-Schmidt operators in the spirit of (3.2.6), we can not forgo the nuclearity assumptions.

In the final chapter 5 of this thesis we want to consider concrete applications of the structure
theory established in the preceding chapters. In the first part we divide the condition (Tε) for
the pair (E, X) into two conditions of (DN)-(Ω) type for PLH spaces on E and X respectively
and prove sufficiency in complete analogy to [Dom10]. These variants of the dual inter-
polation estimate (DIE) are due to Bonet and Domański [BD07]. In the rest we consider the
examples mentioned at the beginning: We prove a result about parameter dependence of linear
partial differential operators with constant coefficients P (D) on Bloc

2,κ (Ω) and show that for el-
liptic partial differential operators P (D) on Bloc

2,κ (Ω) admitting a continuous linear right inverse
is a lot more than having a parameter dependence for a PLN space E with (DIE) for big θ.
Considering DL2 and its strong dual, we prove that partial differential operators with constant
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1 Introduction

coefficients on D ′ (Ω) for open and convex subsets Ω ⊂ Rd as well as surjective convolution
operators Tµ on D ′(ω)

(
Rd

)
have the corresponding parameter dependence. We conclude by giv-

ing a complete characterization of all the problems under consideration for Köthe PLH spaces
in terms of the matrices without any nuclearity assumptions.

Concerning functional analysis, we apply the standard notation, as used for example in
[Köt69, Köt79, MV97], in particular for tensor norms and topological tensor products we ap-
ply notation as in [DF93] and concerning homological algebra, we refer to [Wen03, Sie10].
Presenting a self-contained thesis is rather out of the question considering the variety of tools
we utilize. Be that as it may, we try to limit the premises to reasonable fields: Chapter 2
requires a good acquaintance with homological methods as presented in [Wei94, chap. 1] con-
cerning the fundamentals, [Bou07, §7.5] regarding the Yoneda Ext groups, [Büh10] as to exact
structures and [Wen03, chap. 3] referring the functor proj and its derivatives. Chapters 3 and 4
assume insight in Retakh’s and Palamodov’s theory of regularity of LF spaces concerning the
conditions (M) and (M0) respectively acyclicity and weak acyclicity, cf. [Pal72, Ret70, Pal71]
or [Vog92, Wen95] for a survey. Furthermore, a good understanding of the ε and π tensor
product of locally convex spaces, cf. [Köt79], and a rudimentary acquaintance with nuclear-
ity, cf. [Pie72], is of advantage. Considering the last chapter, we refer to [Hör03, Hör05] for
background and context for the theory of partial differential equations.
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2 Homological methods

From the 70’s to the 90’s of the 20th century splitting theory was primarily considered in
the context of Fréchet or locally convex spaces, i.e. in quasiabelian categories with many
injective objects. In a number of articles [Pal72, Ret70, Pal71] Retakh and Palamodov were
able to connect the splitting problem to the vanishing of the first derived functor Ext1 (E, )
of Hom (E, ). The latter in turn they linked to the vanishing of the first derivative of the
projective limit functor in certain spectra of operator spaces via the long exact sequence. As
Sieg elaborated in [Sie10, (3.1.5) & (3.1.6)], Palamodov’s approach to the derived functors
of Hom, cf. [Pal71] respectively [Wen03] for a survey, does not work in the category of PLS
spaces, since it is neither semi-abelian nor is it known, whether it does have enough injective
objects. Until rectified by Sieg [Sie10] in 2010 this circumstance lead to an ad-hoc definition
of the vanishing of Ext1

PLS via the splitting of short exact sequences, cf. e.g. [Wen03, (5.3)].
Hence the connection between the vanishing of Ext1

PLS and proj1 – which allows for applicable
characterizations of splitting – had to be implemented manually, cf. [BD06, section 3] and
[BD08, (3.4)]. In this chapter we will prove that Sieg’s methods to establish the long exact
sequence for the Yoneda Ext functor in exact categories can be applied to our categories of
interest – PLH and the even larger variant PLSw – as well, although both are not stable with
respect to the formation of closed subspaces. We will start by recalling the categorical setting
and prove some auxiliary results in the category of Hausdorff locally convex spaces in section
2.1. Using the concept of well-located subspaces and some lifting properties for pushouts in
the category of Hausdorff locally convex spaces (LCS), we will determine the maximal exact
structure in the category of LB spaces in section 2.2. This leads us to the maximal exact
structures in PLSw and PLH via the dual version of Grothendieck’s factorization theorem
due to Vogt [Vog89]. Based on the results in 2.2 we construct the Yoneda Ext groups in the
categories LH and PLH as well as in LSw and PLSw in 2.3 and establish in (2.3.6) the splitting
results in these categories in complete analogy to the PLS case, cf. [Sie10, chap. 5]: We prove
that Ext1 (E, X) = proj1

(
L (E, XN) , XN

M
∗
)

in PLSw and PLH under the premise of local splitting
and the vanishing of proj1 X. This result will be the key to apply the results of section 3 to
splitting theory. Concluding we will give a first application showing in (2.3.7) that the space
of Schwartz distributions D ′ (Ω) plays the same role in PLSw and PLH as does the space s
of rapidly decreasing sequences in the category of Fréchet(-Hilbert) spaces. More precise we
will transfer Sieg’s new proof with minor adaptions for a splitting theorem due to Wengenroth
[Wen01] for the space of distributions, which was itself an improvement of a result due to
Domański and Vogt [DV00b, (2.19) & (3.1)], to our categories.

2.1 Exact categories – notions and auxiliary results

Definition and Remark 2.1.1. Our vantage point is a pre-additive category, i.e. a category
with a zero object and an addition on each set of morphisms, endowing the sets with abelian
group structures, that makes the composition of morphisms biadditive. A pre-additive cat-
egory C is called additive if all finite biproducts exist, i.e. for every finite family of ob-
jects (X1, . . . , Xn) in C there is a an object

∏
1≤ j≤n X j =

⊕
1≤ j≤n X j and there are morphisms

5



2 Homological methods

ωXk : Xk −→
⊕

1≤ j≤n X j and πXk :
∏

1≤ j≤n X j −→ Xk, 1 ≤ k ≤ n such that
(∏

1≤ j≤n X j,
(
πXk

)
1≤k≤n

)
is a product of (X1, . . . , Xn) and

(⊕
1≤ j≤n X j,

(
ωXk

)
1≤k≤n

)
is a coproduct of (X1, . . . , Xn). Such

an additive category C is called pre-abelian if every morphism in C has a kernel and a coker-
nel. An important property of pre-abelian categories is not only the existence of pullbacks and
pushouts but that we can even determine a convenient version of them:

• The pullback of a diagram S
s��

Y g
// Z

is given by the triple (P, pY , pS ) which consists of

the kernel object P of the kernel k of the morphism (g,−s) : Y × S −→ Z together with
the two morphisms pY = πY ◦ k and pS = πS ◦ k.

• The pushout of a diagram X
f //

s
��

Y

S

is given by the triple (Q, qY , qS ) which consists of

the cokernel object Q of the cokernel ck of the morphism
( f
−s

)
: X −→ Y × S together

with the two morphisms qY = ck ◦ωY and qS = ck ◦ωS .

As all of the previous notions are defined by universal properties, they are only unique except
for canonical isomorphisms. Be that as it may, we will forgo long-winded formulations and
par abus we will speak about the kernel, the product, etc.

Definition and Remark 2.1.2. Let C be an additive category. A pair ( f , g) of composable
morphisms in C is called a kernel-cokernel-pair if f is the kernel of g and g is the cokernel of
f . If a class E of kernel-cokernel pairs in C is fixed, then a morphism f : X −→ Y is called
an admissible kernel if there is a morphism g : Y −→ Z in C such that ( f , g) is in E. Dually a
morphism g : Y −→ Z in C is called an admissible cokernel if there is a morphism f : X −→ Y
in C such that ( f , g) is in E. A class E of kernel-cokernel-pairs in C is an exact structure if it
is closed under isomorphisms and the following hold:

(E0) idX is an admissible cokernel for all X ∈ C.

(E0)op idX is an admissible kernel for all X ∈ C.

(E1) If allowed, the composition of two admissible cokernels is an admissible cokernel.

(E1)op If allowed, the composition of two admissible kernels is an admissible kernel.

(E2) For all X
f
−→ Y

g
−→ Z in E the pushout X

f //

s
��

Y
qY��

S qS
// Q

exists for all morphisms s

and qS is an admissible kernel.

6



2 Homological methods

(E2)op For all X
f
−→ Y

g
−→ Z in E the pullback P

pS //

pY ��

S
s��

Y g
// Z

exists for all morphisms s

and pS is an admissible cokernel.

An exact category (C,E) is an additive category C together with an exact structure E. The
kernel-cokernel pairs in E are called short exact sequences. A pre-abelian category C is
quasi-abelian if and only if the maximal exact structure coincides with the class of all kernel-
cokernel pairs (see [SW11, (3.3)]). The definition of an exact category is self-dual, i.e. (C,E)
is an exact category if and only if (Cop,Eop) is an exact category.

Given a pre-abelian category C we always have a minimal exact structure, i.e. an exact
structure that is contained in any other exact structure in C, the class of short exact sequences
that are split-exact, i.e. the class of kernel-cokernel pairs ( f , g) in C such that g has a right
inverse (see [Büh10, Lemma (2.7) & Remark (2.8)]). In [SW11] Sieg and Wegner proved that
every pre-abelian category C admits an exact structure ECmax that is maximal in the sense that it
contains every other exact structure in C. To formulate their description of this maximal exact
structure we need the following notation:

Definition 2.1.3. Let C be a pre-abelian category.

i) A cokernel g : Y −→ Z in C is said to be semi-stable, if for every morphism s : S −→ Z
in C the morphism pS in the pullback diagram P

pS //

pY ��

S
s��

Y g
// Z

is also a cokernel in C.

ii) A kernel f : X −→ Y in C is said to be semi-stable if for every morphism s : X −→ S in

C the morphism qS in the pushout diagram X
f //

s
��

Y
qY��

S qS
// Q

is also a kernel in C.

Theorem 2.1.4. If C is a pre-abelian category, then the class ECmax, which consists of all kernel-
cokernel pairs ( f , g) in C such that f is a semi-stable kernel and g is a semi-stable cokernel,
is an exact structure in C. Moreover, it is maximal in the sense that it contains any other exact
structure in C.

Proof. See [SW11, (3.3)]. �

Remark 2.1.5. With (2.1.2) it is easy to verify that(
ECmax

)op
= EC

op

max

holds in any pre-abelian category C.
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Theorem (2.1.4) allows us to fix a distinguished exact structure in every pre-abelian cate-
gory:

Definition 2.1.6. We endow every pre-abelian category C with its maximal exact structure

ECmax obtaining the exact category
(
C,ECmax

)
. We call an element ( f , g)

(
or X

f
−→ Y

g
−→ Z

or 0 → X
f
−→ Y

g
−→ Z → 0

)
of ECmax a short exact sequence of C objects or a sequence exact in

C.

Let us close this first part about exact categories with the following well-known pullback
and pushout constructions, which we will use frequently throughout the rest of this chapter.
The proof makes use of [RW77, Theorem 5]) and the axioms defining an exact structure (E2)
respectively (E2)op, cf. (2.1.2), also see [Sie10, (2.1.2)].

Lemma 2.1.7. Let (C,E) be an exact category.

i) If g : Y −→ Z and s : S −→ Z are morphisms in C and (P, pY , pS ) is their pullback, then
there is a morphism ϕ : ker (g) −→ P making the diagram

ker (g)
ϕ // P

pY

��

pS // S

s
��

ker (g)
kg

// Y g
// Z

commutative and being a kernel of pS .

If g : Y −→ Z is an admissible cokernel, then (ϕ, pS ) is an element of E.

ii) If f : X −→ Y and s : X −→ S are morphisms in C and (Q, qY , qS ) is their pushout, then
there is a morphism ψ : Q −→ coker ( f ) making the diagram

X
f //

s
��

Y
ck f //

qY

��

coker ( f )

S qS
// Q

ψ
// coker ( f )

commutative and being a cokernel of qS .

If f : X −→ Y is an admissible kernel, then (qS , ψ) is an element of E.

As a transition to the functional analytic part of this section let us consider Palamodov’s
notion of exactness, cf. [Pal71]:

Remark 2.1.8. Palamodov calls a sequence → X
f
−→ Y

g
−→ Z → of objects and morphisms

in a semi-abelian category C exact at Y if the image of f is a kernel of g and the coimage
of g is a cokernel of f and both morphisms are homomorphisms. In quasi-abelian categories

8
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this notion coincides with our notion of exactness, cf. (2.3.1) i), as in those categories the
maximal exact structure coincides with the class of all kernel-cokernel pairs by definition.

Thus we call a sequence X
f
−→ Y

g
−→ Z of vector spaces and linear maps a short algebraic exact

sequence if it is exact in the category VS of vector spaces, i.e. if f is injective, g is surjective

and f (X) = g−1 ({0}). A sequence X
f
−→ Y

g
−→ Z of locally convex spaces (lcs) and linear and

continuous maps is called topologically exact if it is exact in the category LCS of lcs and linear
and continuous maps, i.e. if it is algebraically exact and all the maps involved are continuous
and open onto their ranges.

In 2.2 we will see on the one hand the well-known result, cf. [Wen03, (5.3)], that the maxi-
mal exact structure in the category of LS spaces coincides with the class of short topologically
exact sequences which in turn coincides with the class of short topologically exact sequences,
whereas on the other hand in the category of LSw spaces it coincides with the class of short
algebraically exact sequences, but contains the class of short topologically exact sequences as
a proper subclass. In the category of PLSw spaces as well as in the category of LB spaces it is
both a proper subset of the short algebraically exact sequences and contains the short topolog-
ically exact sequences as a proper subset. Furthermore, various examples of subcategories of
LCS where the class of short topologically exact sequences is not even an exact structure can
be found in [DS12, section 5].

We start the second part of this section by recalling the basic well-known facts about pull-
backs and pushouts in (LCS) as they will be of great use when determining the maximal exact
structure in the category of LB spaces.

Remark 2.1.9. Given two vector spaces (or lcs or Hausdorff lcs) E and F, the biproduct of E
and F in VS (or LCS or (LCS)) is given by the product E × F of E and F in VS (or LCS or
(LCS)) together with the canonical projections πE, πF and the canonical embeddings ωE, ωF .
Thus we can use (2.1.1) to determine the pullback and pushout in (LCS), cf. (2.1.7):

i) The pullback of a diagram S
s
��

Y g
// Z

in (LCS) is given by the triple (P, pY , pS ), where

P B {(y, r) ∈ Y × S : g (y) = s (r)} is endowed with the relative product topology and pE

and pG are the restrictions of the canonical projections. Furthermore, we have:

a) If g is surjective, then so is pS .

b) The kernel of pS in (LCS) is given by

ϕ : g−1 ({0}) −→ P, x 7−→ (x, 0) .

9
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ii) The pushout of a diagram X
f //

s
��

Y

S

in (LCS) is given by the triple (Q, qY , qS ), where

Q is the topological quotient Y × S /
( f ,−s) (X) and qY and qS are the compositions of the

quotient map q : Y × S −→ Q with the respective inclusions ωY and ωS . Furthermore,
we have:

a) If f has closed range, then so does qS .

b) The cokernel of qS in (LCS) is given by

ψ : Q −→ Y/
f (X), (y, r) + ( f ,−s) (X) 7−→ y + f (X).

.

As LB and all its subcategories we consider in this thesis are stable with respect to the
formation of Hausdorff quotients, they inherit cokernels from (LCS). As they are also stable
with respect to the formation of biproducts, only the kernels need special consideration. We
will have to endow the algebraic kernel of a linear and continuous map between LB spaces
with its associated ultrabornological topology to obtain the kernel in LB (see (2.2.3)). Thus
LB kernels carry a topology that is potentially finer than the relative topology. It turns out that
the “right” kernels to consider for the maximal exact structure are the well-located subspaces,
hence we provide convenient characterizations of being a weak isomorphism onto:

Proposition 2.1.10. Given a linear, continuous, and injective map f : (X,T ) −→ (Y,R) be-
tween lcs, the following are equivalent:

i) The map f is a weak isomorphism onto its range.

ii) The transposed f t : Y ′ −→ X′ is surjective.

iii) For any lcs S and any linear and continuous map s : (X,T ) −→ S the graph of s is
closed in

(
X, f −1 (R)

)
× S .

iv) iii) holds for S = K.

Proof.

“i)⇔ ii)” Is a consequence of the Hahn-Banach Theorem.

“i)⇒ iii)” The graph of s is closed in (X,T )×S , hence it is closed in σ
(
X, (X,T )′

)
×σ (S , S ′).

Now, if i) holds, we have iii), since the graph of s is absolutely convex and thus its
closure coincides with its weak closure.

“iii)⇒ iv)” is trivial.

10
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“iv)⇒ i)” Assuming that iv) holds but not i), we obtain a Φ in (X,T )′ that is not continuous
with respect to f −1 (R). Since Φ is not the zero map, there is an x ∈ X with Φ (x) = 1,
and as the kernel of Φ can not be closed in

(
X, f −1 (R)

)
, it is dense in

(
X, f −1 (R)

)
. Hence

we obtain a net (xι)ι∈I in X with xι −→
ι∈I

x in
(
X, f −1 (R)

)
and Φ (xι) = 0 for all ι ∈ I, a

contradiction to iv).
�

Now we are ready to prove the necessary lifting results for pushout diagrams:

Lemma 2.1.11. Let (X,T )
f //

s
��

(Y,R)

qY

��
(S ,S) qS

// Q

be a pushout diagram in (LCS), where f is injective

with closed range. Then the following are equivalent:

i) The map qS is injective.

ii) The graph of s is closed in
(
X, f −1 (R)

)
× S .

iii) The image ( f ,−s) (X) is closed in Y × S .

Proof.

“i)⇒ ii)” Let (xι)ι∈I be a net in X such that xι −→
ι∈I

0 in
(
X, f −1 (R)

)
and s (xι) −→

ι∈I
r in S .

Assuming that r , 0 = s (0), we obtain that (0,−r) = lim
ι∈I

( f (xι) ,−s (xι)) ∈ ( f ,−s) (X),
hence qS (r) = 0, but r , 0, which is not possible since qS is injective by assumption.
Hence r = 0 and we have ii).

“ii)⇒ iii)” Let (xι)ι∈I be a net in X such that f (xι) −→
ι∈I

y in Y and −s (xι) −→
ι∈I

r in S . Since

the range of f is closed there is an x in X with y = f (x) and thus xι −→
ι∈I

x in
(
X, f −1 (R)

)
and ii) yields −s (xι) −→

ι∈I
−s (x) = r.

“iii)⇒ i)” Let r ∈ S with qS (r) = 0. Since then (0, r) ∈ ( f ,−s) (X) = ( f ,−s) (X) holds, there
is an x in X with 0 = f (x) and r = −s (x). As f is injective we have x = 0, hence r = 0,
which yields i).

�

2.2 The categories of PLSw and PLH spaces

In this section we will provide the basic homological properties of the two subcategories PLSw

and PLH of the category PLB of projective limits of strongly reduced spectra of LB spaces.
The two subcategories are generated by demanding the Banach spaces giving rise to the LB
space steps to be reflexive or even Hilbert spaces. We will show that they are pre-abelian
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categories – i.e. they are additive with kernels and cokernels – and compute the respective
maximal exact structure. Both will turn out to be significantly larger than the class of short
topologically exact sequences, which is the largest exact structure in the subcategories PLS
and PLN, that were under investigation until now (see [Sie10, (3.2.1)]). We will show that
the respective maximal exact structures consist of all kernel-cokernel pairs with surjective
cokernel. The discrepancy to the known examples of maximal exact structures originates
from the fact that both categories under consideration are not stable with respect to closed
subspaces, i.e. closed subspaces of PLSw (or PLH) spaces endowed with the relative topology
do not need to be PLSw (or PLH) spaces. Thus, to obtain the kernel of a linear and continuous
map between PLSw (or PLH) spaces in the respective category, its algebraic kernel has to be
endowed with its associated PLSw (or PLH) space topology. Having to deal with this problem
is what is new about the categories PLSw and PLH. The fact that both categories are not stable
with respect to the formation of (Hausdorff) quotients can be dealt with in the same way as in
the PLS case – by taking the Hausdorff completion of the quotient.

The key to the solution of the continuity problems created by the association process is
connecting morphisms between PLSw (or PLH) spaces to spectra of morphisms between the
spectra giving rise to the spaces involved, cf. (2.2.9), to be able to apply deWilde’s closed
graph theorem [MV97, (24.31)]. Hence we start by investigating the categories of the steps:

Definition 2.2.1. A locally convex Hausdorff space (X,T ) is an LB space if there is an em-
bedding spectrum of Banach spaces, i.e. a sequence (Xn)n∈N of Banach spaces with linear and
norm-decreasing embeddings Xn ↪→ Xn+1 (n ∈ N), such that (X,T ) is the inductive limit of
the embedding spectra, i.e. X =

⋃
n∈N Xn endowed with the finest locally convex topology T

such that all inclusions Xn ↪→ (X,T ) (n ∈ N) are continuous. Furthermore, X is called an

i) LSw space if the spaces Xn can be chosen to be reflexive,

ii) LH space if the spaces Xn can be chosen as Hilbert spaces,

iii) LS space if the embeddings Xn ↪→ Xn+1 can be chosen compact,

iv) LN space if the embeddings Xn ↪→ Xn+1 can be chosen nuclear (n ∈ N).

We collect the well-known basic properties of the respective categories in the following
remark:

Remark 2.2.2. i) Naming the full subcategories of (LCS) that correspond to the previous
definition accordingly, we obtain the following inclusions:

LH ⊂ LSw ⊂ LB
∪ ∪

LN ⊂ LS ,

since the category LSw can also be described as the category of all LB spaces that
arise from weakly compact embedding spectra, which we obtain from the fact that
weakly compact operators between locally convex spaces factorize over reflexive Ba-
nach spaces, see [DFJP74, chap. 2].
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ii) Two embedding spectra (Xn)n∈N and (Yn)n∈N of Banach spaces are equivalent if there
are increasing sequences (k (n))n∈N and (l (n))n∈N of natural numbers with n ≤ k (n) ≤
l (n) ≤ k (n + 1) such that Xk(n) is continuously embedded into Yl(n), which in turn is con-
tinuously embedded into Xk(n+1). Grothendieck’s factorization theorem [MV97, (24.33)]
yields that two embedding spectra giving rise to the same LB (LSw,LH, . . .) space are
equivalent, cf. [MV97, (24.35)]. Hence whenever considering properties of embedding
spectra that are passed on to equivalent embedding spectra we may and will identify
an LB space with its equivalence class of embedding spectra and write X = indn∈N Xn,
where (Xn)n∈N is one representative. If we deal with an LSw space, we choose a repre-
sentative consisting of reflexive Banach spaces (respectively Hilbert spaces, when con-
sidering an LH or an LN space).

iii) The factorization theorem and the universal property of locally convex inductive limits
[MV97, (24.7)] yields that we may assume that any linear and continuous operator f
between LB spaces E = indn∈N En and F = indn∈N Fn is induced by operators fn between
the Banach steps, i.e. fn ∈ L (En, Fn) and f |En = fn, n ∈ N. This property will be of use
when constructing kernels and cokernels in LB in (2.2.3).

iv) By [MV97, (25.19)] LSw spaces are regular. In complete analogy to [FW68, 26. 2.] this
does not only imply mere reflexivity of LSw spaces but even that the following dualities
hold. Note that the notion of a projective spectrum is defined in (2.2.7) and the duality
extends that of products and direct sums, cf. [MV97, (24.3)], when treating LB spaces
as quotients of direct sums, cf. [MV97, (24.8)].

a) Given an LSw space X = indn∈N Xn, the strong dual of X is given by the Fréchet
space arising from the projective spectrum of the strong duals X′n, n ∈ N.

b) Given a Fréchet space Y that arises as the projective limit of a reduced projective
spectrum of reflexive Banach spaces Yn, n ∈ N, a so-called FSw space, the strong
dual of Y is given by the LSw space created by the strong duals Y ′n, n ∈ N.

As the transposed of a compact respectively nuclear operator between Banach spaces
is compact (nuclear) by Schauder’s theorem [MV97, (15.3)] respectively by [MV97,
(16.7) 2.], the dualities in a) and b) instantiate in the dual pairs LSw /FSw,LH /FH,
LS /FS,LN /FN, where FH (FS,FN) denotes the category of Fréchet-Hilbert (Fréchet-
Schwartz, nuclear Fréchet) spaces.

v) By [MV97, (27.23) b)] there is an LH space X containing a closed subspace L such that
L endowed with the relative topology is not an LH space. But at least we have the fol-
lowing: It is a matter of mere calculation to show that LSw spaces satisfy condition (M0)
of Retakh, cf. [Ret70]. Thus, if L is a closed subspace of an LSw space X = indn∈N Xn,
then the quotient spectrum

(
Xn

/
Ln

)
n∈N

, where Ln B L ∩ Xn
Xn , is an LSw spectrum as

well, hence it satisfies (M0), therefore it is weakly acyclic by [Pal71], from which we
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obtain by [Ret70] that L is well-located in X, i.e. that L endowed with the associated
ultrabornological topology has the same dual as L endowed with the relative topology.

The determination of the kernels and cokernels in LB and the mentioned subcategories is
straightforward:

Lemma 2.2.3. Let C ∈ {LN,LS,LH,LSw,LB} and t : E −→ F be a linear and continuous
map between the C spaces E = indn∈N En and F = indn∈N Fn. As C is stable under Hausdorff
quotients, the cokernel of t in C is given by the quotient map

F −→ F/
t (E) = ind

n∈N
Fn

/(
t (E) ∩ Fn

),
i.e. C inherits cokernels from (LCS).

With the closed graph theorem we obtain that the kernel of t in C is given by the continuous
inclusion of the algebraic kernel of t endowed with its associated ultrabornological topology:(

t−1 ({0})
)ub

= ind
n∈N

(
t−1 ({0}) ∩ En

)
↪→ E.

In C the product of E and F endowed with the product topology and the four standard maps
πE, πF , ωE, ωF (cf. (2.1.1) and (2.1.6)) is a biproduct of E and F, as E × F = indn∈N (En × Fn)
holds topologically. Thus C is pre-abelian.

Furthermore, it is easy to verify that t is a kernel in C iff it is injective with closed range and
a cokernel in C iff it is surjective.

Now we can determine the maximal exact structure in the category of LB spaces with help
of the description of the maximal exact structure of a pre-abelian category in (2.1.4) due to
Sieg and Wegner [SW11, Theorem (3.3)] and the inheritance properties in (2.1.11):

Proposition 2.2.4. The maximal exact structure ELB
max in the category LB consists of all kernel-

cokernel pairs ( f , g) such that f is well-located. In other words: ELB
max consists of all short

algebraically exact sequences 0 → X
f
−→ Y

g
−→ Z → 0 of LB spaces such that f is a weak

isomorphism onto its range.

Proof. With (2.1.4) it is sufficient to prove that a kernel in LB is semi-stable iff it is well-
located and each cokernel is semi-stable.

Let f : X −→ Y be a kernel in LB, s : X −→ S be a linear and continuous map from X into

an LB space S and X
f //

s
��

Y
qY��

S qS
// Q

be their pushout diagram in LB. The map qS is a kernel in LB

iff it is injective with closed range. By (2.1.9) ii) a) qS has closed range for any kernel f . By
(2.1.11) the injectivity of qS is equivalent to the graph of s being closed in the product of X
endowed with the topology of Y via f and S . As S is an arbitrary LB space, this is equivalent
to f being well-located by (2.1.10) iv).
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As a morphism in LB is a cokernel iff it is surjective, (2.1.9) i) a) yields that in every
pullback diagram P

pS //

pY

��

S
s
��

Y g
// Z

in LB the morphism pS is a cokernel if g is a cokernel. Hence

all cokernels in LB are semi-stable and the proof is complete. �

As the categories LSw and LH inherit kernels, cokernels and biproducts from LB and the
semi-stability of kernels and cokernels is not changed by the restriction to these two sub-
categories and closed subspaces of LSw spaces are well-located by (2.2.2) v), the previous
proposition yields the following corollary:

Corollary 2.2.5. The restriction of ELB
max to LSw respectively LH coincides with the respec-

tive maximal exact structure ELSw
max respectively ELH

max . Hence the categories LSw and LH are
quasi-abelian, i.e. both maximal exact structures consist of all kernel-cokernel pairs – in this
particular case even of all short algebraically exact sequences.

We have two exact structures in the category of LB spaces and the four mentioned subcat-
egories: the class of short topologically exact sequences (see [DS12, (3.3)]) and the maximal
exact structure. As Sieg proved in [Sie10], these two classes coincide in the category of LS
spaces, hence as well in the category of LN spaces. In the following, we will show that the
class of short topologically exact sequences is a proper subclass of the maximal exact structure
in the categories LH, LSw and LB and discuss the “right” choice of the exact structure to work
with in LH and LSw.

Remark 2.2.6. In order to be able to use our knowledge about splitting theory in the category
of Fréchet spaces respectively the four subcategories under consideration to control splitting
in the four subcategories of LB, cf. [VW80, Vog87, Fre96, FW96, Wen03, DM07], we need
to extend the dualities of (2.2.2) iv) to the exact structures.

On the Fréchet side of the duality the exact structure is determined to be the class of short
topologically exact sequences by Palamodov’s approach, cf. (2.1.8). The quasinormability
of Fréchet Schwartz spaces (see e.g. [MV97, p. 313]) yields by [MV97, (26.12) & (26.13)]
that the dual sequences of short topologically exact sequences of Fréchet-Schwartz (nuclear
Fréchet) spaces are short topologically exact sequences of LS (LN) spaces. This duality does
not hold in the dual pairs LSw /FSw and LH /FH: According to [MV97, (27.23) c)] for any 1 ≤
p < ∞ there is a Köthe matrix A and a linear and surjective map Q from the Köthe sequence
space λp (A) to `p such that the dual sequence of the short topologically exact sequence

0 −→ Q−1 ({0})
I
↪→ λp (A)

Q
−→ `p −→ 0

of Fréchet spaces is not topologically exact. Choosing p = 2 yields the claim and thus that
the class of short topologically exact sequences is a proper subclass of the maximal exact
structure in LH and LSw, hence it is not suitable for our investigation, unlike the maximal
exact structure:
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The “perfect” duality (2.2.2) iv) can be expressed with the duality functor D, which assigns
each locally convex space X its strong dual X′ and each linear and continuous operator f
between lcs its transposed operator f t between the strong duals, cf. [Wen03, chap. 7]. (2.2.2)
iv) signifies that D coincides on each of the four subcategories of the Fréchet spaces and on
each of the four subcategories of the LB spaces with the ·op-functor. Thus (2.1.5), the fact
that

(
ECmax

)op
= EC

op

max holds in a pre-abelian category C, yields the desired duality of the exact
structures. We even could have used this fact to determine the four maximal exact structures.
We have chosen to give a direct description, as our proof is valid for LB and LF spaces as
well, in particular our proof is independent of the mentioned dualities.

Having established all the necessary notions and results in the categories of the steps, we
may start investigating the arising subcategories of PLB by recalling the concept of the locally
convex projective limit of a locally convex projective spectrum, cf. [Wen03, chap. 3]. This part
may seem exceptionally detailed compared to the discussion of LB spaces in (2.2.2), which is
due to the fact that the projective situation is more complicated than the inductive one when
considering equivalence of spectra; a dual variant of Grothendieck’s factorization theorem, cf.
(2.2.9), requires additional premises, hence more detailed investigation.

Definition and Remark 2.2.7. A locally convex projective spectrum X =
(
XN , XN

M

)
con-

sists of a sequence (XN)N∈N of locally convex spaces and a family of continuous linear maps
XN

M : XM −→ XN for M ≥ N such that

i) XN
N = idXN (N ∈ N) and

ii) XN
M ◦ XM

K = XN
K for all K ≥ M ≥ N.

A morphism ( fN)N∈N between two locally convex projective spectra X =
(
XN , XN

M

)
and Y =(

YN ,YN
M

)
consists of a sequence of linear and continuous maps fN : XN −→ YN such that fN ◦

XN
M = YN

M ◦ fM, i.e. the diagram

XN
fN // YN

XM

XN
M

OO

fM

// YM

YN
M

OO

is commutative, for all M ≥ N.
The locally convex projective limit of a locally convex projective spectrum X =

(
XN , XN

M

)
is defined as

X∞ B proj X B proj
(
XN , XN

M

)
B

(xN)N∈N ∈
∏
N∈N

XN : XN
N+1 (xN+1) = xN for all N ∈ N

 ,
endowed with the relative product topology, i.e. the initial topology induced by the restrictions
of the canonical projections XN

∞ : X∞ −→ XN (N ∈ N). A morphism ( fN)N∈N between two
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locally convex projective spectra X =
(
XN , XN

M

)
and Y =

(
YN ,YN

M

)
induces a linear and

continuous map between the respective locally convex projective limits:

f∞ B proj ( fN)N∈N : proj X −→ proj Y , (xN) 7−→ ( fN (xN))N∈N .

It is easy to verify that the rule, which assigns to each locally convex projective spectrum
its locally convex projective limit and each morphism between two locally convex projective
spectra the induced linear and continuous map between the respective locally convex projec-
tive limits, is a covariant functor acting on the category of locally convex projective spectra and
taking values in the category of locally convex spaces. Two locally convex projective spectra
X =

(
XN , XN

M

)
and Y =

(
YN ,YN

M

)
are called equivalent if there are increasing sequences

(K (N))N∈N and (L (N))N∈N of natural numbers with N ≤ L (N) ≤ K (N) ≤ L (N + 1) and con-
tinuous linear maps αN : XK(N) −→ YL(N) and βN : YL(N) −→ XK(N−1) such that βN ◦αN = XK(N−1)

K(N)

and αN ◦ βN+1 = YL(N)
L(N+1), i.e. the diagram

. . . // XK(N)

αN ##

XK(N−1)
K(N) // XK(N−1)

αN−1 %%

// . . .

YL(N+1)

βN+1

::

YL(N)
L(N+1)

// YL(N)

βN

::

YL(N−1)
L(N)

// YL(N−1)

commutes for all N ≥ 2. If two locally convex projective spectra X =
(
XN , XN

M

)
and

Y =
(
YN ,YN

M

)
are equivalent, then their locally convex projective limits are topologically

isomorphic.
Quite a variety of reducedness conditions on locally convex projective spectra has been

established. Here, we only state the two basic forms needed for our purpose, later on, cf.
(3.2.3), we will consider another one. A locally convex projective spectrum X =

(
XN , XN

M

)
is

called

i) reduced if

∀
N∈N

∃
M≥N

∀
K≥M

XN
M (XM) ⊂ XN

K (XK)
XN
,

ii) strongly reduced if

∀
N∈N

∃
M≥N

XN
M (XM) ⊂ XN

∞

(
proj (X )

)XN
.

By dropping all topologies and continuity demands we can consider the mere algebraic functor
proj, which is sufficient to calculate its right derivative in the sense of Palamodov (cf. [Wen03,
(3.1.4)]). As we will deal mainly with locally convex projective spectra and projective limits of
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those, we will just refer to projective spectra and projective limits meaning the locally convex
variant and mention explicitly when talking about merely algebraic projective constructions.

Finally it is possible to consider (locally convex) projective spectra that are not countable
(cf. [Wen03, chap. 4]), where we essentially replace sequences by families indexed over di-
rected sets. As we will need the uncountable projective limit functor only once – in (4.2.1) –
we only introduce the projective limit functor for countable spectra.

Now we are ready to define the category of PLB spaces and its subcategories:

Definition 2.2.8. A locally convex Hausdorff space (X,T ) is called a PLB space if there is a
strongly reduced projective spectrum

(
XN , XN

M

)
N∈N

of complete separated LB spaces – where
each XN arises as the inductive limit of an embedding spectrum

(
XN,n

)
n∈N of Banach spaces

(N ∈ N) – such that

X = X∞ C proj
N∈N

ind
n∈N

XN,n.

A PLB space E is called a

i) PLSw space, if the spaces XN can be chosen as LSw spaces,

ii) PLH space, if the spaces XN can be chosen as LH spaces,

iii) PLS space, if the spaces XN can be chosen as LS spaces,

iv) PLN space, if the spaces XN can be chosen as LN spaces (N ∈ N).

Naming the corresponding full subcategories of the locally convex Hausdorff spaces accord-
ingly, we obtain by the following inclusions (2.2.2) i):

PLH ⊂ PLSw ⊂ PLB
∪ ∪

PLN ⊂ PLS .

As mentioned we need a dual variant of the factorization theorem that is due to Vogt [Vog89]
to expedite the investigation:

Proposition 2.2.9. Let
(
EN , EN

M

)
and

(
FN , FN

M

)
be two strongly reduced projective spectra

of complete separated LB spaces and t : proj
(
EN , EN

M

)
−→ proj

(
FN , FN

M

)
be a linear and

continuous map. Then there is a subsequence (K (N))N∈N and a morphism of spectra
(
tK(N)

)
N∈N

from
(
EK(N), E

K(N)
K(M)

)
to

(
FN , FN

M

)
such that t = proj

(
tK(N)

)
N∈N.

We will state and prove the following results in the category of PLSw spaces. All of them
remain valid with the verbatim proofs if we replace PLSw by PLH and LSw by LH.

We start the analysis by determining the connection between PLSw spaces and strongly
reduced projective spectra of LSw § spaces giving rise to them:

18
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Remark 2.2.10. i) By (2.2.9) strongly reduced projective spectra of LSw spaces, which
we call from now on PLSw spectra, giving rise to the same PLSw space are equivalent.
Thus we may and will identify a PLSw space X with the equivalence class of PLSw

spectra giving rise to it whenever we consider properties of projective spectra that are
invariant under passing to equivalent spectra. In particular this involves the projective
limit and all its derivatives by [Wen03, (3.1.7)].

ii) Given a PLSw space X = proj
(
XN , XN

M

)
, we may choose a PLSw spectrum

(
X̃N , X̃N

M

)
giving rise to X such that the projections of X onto X̃N have dense range:

By passing to a subsequence we may assume that XN
N+1 (XN+1) ⊂ XN

∞ (X)
XN

holds for
each N ∈ N. We define

X̃N B
(
XN

N+1 (XN+1)
XN

)ub
and X̃N

N+1 B XN
N+1|X̃N+1

,

for every N ∈ N. As passing to the associated ultrabornological topologies preserves
continuity of linear maps – i.e. it is functorial – the inclusion αN : X̃N ↪→ XN and the
linear map βN : XN −→ X̃N−1, x 7→ XN−1

N (x) are continuous and we have βN ◦ αN = X̃N−1
N

and αN ◦ βN+1 = XN
N+1 for each N ≥ 2. Thus

(
XN , XN

M

)
and

(
X̃N , X̃N

M

)
are equivalent

spectra of LSw spaces and the projections from X to X̃N have dense range as X̃N is
a well-located subspace of XN by (2.2.2) v). From now on, whenever working with
PLSw spaces X = proj

(
XN , XN

M

)
= projN∈N indn∈N XN,n, we will always assume that the

projections XN
∞ have dense range.

iii) Given a projective spectrum
(
XN , XN

M

)
of LS spaces that is not necessarily strongly re-

duced with projective limit X, we can always pass on to the associated strongly reduced
spectrum

(
X̃N , X̃N

M

)
, where X̃N is the closure of the projection of X onto XN in XN en-

dowed with the relative topology and the corresponding restrictions of the linking maps
X̃N

M. Although the two spectra are generally not equivalent, the projective limits are
topologically the same, as we can work with the relative topologies. If the steps XN are
LSw spaces we have to endow the closure of the projection of X to XN in XN with its
associated ultrabornological topology to obtain LSw spaces X̃N . This is possibly strictly
finer than the relative topology. As closed subspaces of LSw spaces are well-located by
(2.2.5), we obtain that the projective limits are algebraically the same but proj

(
X̃N , X̃N

M

)
carries a potentially finer topology. As we need the factorization of operators over the
steps (2.2.9), we need to include the technical feature of strong reducedness in the defi-
nition of PLSw spaces.

Now we can construct the kernel and cokernel in PLSw:

Proposition 2.2.11. Let t : E −→ F be a linear and continuous map between PLSw spaces
(E,T ) = projN∈N indn∈N EN,n and (F,S) = projN∈N indn∈N FN,n.
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i) The kernel of t in PLSw is given by the continuous inclusion of the algebraic kernel
of t, endowed with its associated PLSw topology, into E. We denote this object by(
t−1 ({0})

)
PLSw

. By definition, it is the PLSw space arising from the PLSw spectrum con-
sisting of the closures of the projections of the algebraic kernel of t to EN (N ∈ N)
endowed with their associated ultrabornological topology – the LSw spaces(
EN
∞

(
t−1 ({0})

)EN
)ub

– and the corresponding restrictions of the linking maps EN
M.

ii) As in the category of PLS spaces, the cokernel of t in the category of PLSw spaces is
given by the Hausdorff completion of the quotient F/

t (E), which arises as the projective
limit of the strongly reduced spectrum consisting of the LSw spaces FN

/
FN
∞ (t (E))

FN

together with the maps induced by the linking maps FN
M.

Proof. i) The kernel of t in the category of locally convex spaces is given by the inclusion
of

(
t−1 ({0}) ,T ∩ t−1 ({0})

)
into E and it is clear that it arises as the projective limit of

the strongly reduced projective spectrum generated by the restrictions of the spectral
maps EN

N+1 to the closure of EN+1
∞

(
t−1 ({0})

)
in EN+1 endowed with the respective relative

topology induced by EN+1. We obtain our spectrum by passing to the associated LSw

topologies. Thus the closed graph theorem implies that it is a well-defined projective
spectrum of LSw spaces. As closed subspaces of LSw spaces are well-located by (2.2.5),
it is strongly reduced because the closure of EN

∞

(
t−1 ({0})

)
in EN is the same as its weak

closure which in turn remains unchanged by passing to the associated ultrabornological
topologies. Furthermore, we have the continuous identity map from

(
t−1 ({0})

)
PLSw

to(
t−1 ({0}) ,T ∩ t−1 ({0})

)
. Let now s : S −→ E be a linear and continuous map from a

PLSw space S = projN∈N

(
S N , S N

N+1

)
into E with t ◦ s = 0. Then we have the unique

linear and continuous map λ : S −→
(
t−1 ({0}) ,T ∩ t−1 ({0})

)
induced by the locally

convex kernel of t and it remains to show that λ : S −→
(
t−1 ({0})

)
PLSw

is continuous.
As λ : S −→ E is continuous, by passing to a subsequence, we may assume by (2.2.9)
that it arises as a morphism of spectra (λN)N∈N :

(
S N , S N

N+1

)
−→

(
EN , EN

N+1

)
. As λ (S ) ⊂

t−1 ({0}), we obtain by construction that λN (S N) is a subset of the closure of EN
∞

(
t−1 ({0})

)
in EN . Thus again with the closed graph theorem λN remains continuous when passing
to the associated ultrabornological topologies and λ = proj (λN)N∈N is continuous even
from S to

(
t−1 ({0})

)
PLSw

.

ii) Here we can essentially follow the proof for the category of PLS spaces in [Sie10,
(3.1.3)]: For N ∈ N we define AN as the closure of FN

∞ (t (E)) in FN , here endowed with
the relative topology, and AN

N+1 as the restriction of FN
N+1 to AN+1 and the topological

inclusion iN of AN into FN . Furthermore, we define YN as the topological quotient
FN

/
AN

, YN
N+1 as the map from YN+1 to YN induced by FN

N+1 and the quotient map qN from

FN to YN (N ∈ N). Then
(
AN , AN

N+1

)
is a strongly reduced spectrum of locally convex
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spaces,
(
YN ,YN

N+1

)
is a strongly reduced spectrum of LSw spaces and we have a short

topologically exact sequence of projective spectra

0 −→
(
AN , AN

N+1

) (iN )N∈N
−−−−−→

(
FN , FN

N+1

) (qN )N∈N
−−−−−→

(
YN ,YN

N+1

)
−→ 0.

The map proj (qN)N∈N is open onto its range by [Wen03, (3.3.1)], as
(
AN , AN

N+1

)
is strong-

ly reduced, hence the map

j : Y/
t (E)

F −→ proj
N∈N

(
YN ,YN

N+1

)
, y + t (E)

F
7→

(
YN
∞ (y) + AN

)
N∈N

is open onto its range as well. The space projN∈N

(
YN ,YN

N+1

)
is a complete Hausdorff

space, since each YN (N ∈ N) is complete and Hausdorff. As j has dense range, it is a
version of the Hausdorff completion of Y/

t (E)
F . Thus it is an easy exercise to check

that it satisfies the universal property of the cokernel of f in PLSw.
�

Corollary 2.2.12. The category PLSw is pre-abelian.

Proof. As the product of two PLSw spaces X = projN∈N indn∈N XN,n and Y = projN∈N indn∈N YN,n

is the PLSw space X × Y = projN∈N indn∈N XN,n × YN,n, (2.2.11) yields the assertion. �

Remark 2.2.13. In (2.1.11) and (2.2.4) we discovered that the attribute “well-located” is cru-
cial concerning the lifting properties in pushout diagrams of pre-abelian categories. Although
we will not need this property in PLSw to determine the maximal exact structure, we want to
remark, that the embeddings of closed subspaces of PLSw spaces, endowed with their associ-
ated PLSw topology, into the original PLSw space are weak isomorphisms onto, as every linear
and continuous functional on a PLSw space factorizes over a step and closed subspaces of LSw

spaces are well-located by (2.2.2) v).
Furthermore, we obtain with (2.2.11) ii) that complete Hausdorff quotients of PLSw spaces

are again PLSw spaces, a fact that is well-known for PLS and PLN spaces, see [DV00b, (1.2)].

Before we can determine the maximal exact structure of PLSw, we need to apprehend the
possibilities of localization and its limits:

Remark 2.2.14. Let again t : E −→ F be a linear and continuous map between PLSw spaces
E = projN∈N indn∈N EN,n and F = projN∈N indn∈N FN,n. By passing to a subsequence we may
assume by (2.2.9) that there is a morphism of spectra (tN)N∈N :

(
EN , EN

N+1

)
−→

(
FN , FN

N+1

)
,

called localization of t, such that t = proj (tN)N∈N. We investigate the relation between the
projective limits of the spectra of local kernels respectively cokernels and the PLSw kernels
respectively cokernels:

i) For each N ∈ N we have the kernel
(
t−1
N ({0})

)ub
of tN in LSw. Together with the cor-

responding restrictions of the linking maps EN
N+1 these spaces generate the projective
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spectrum of local kernels of t. The projection of the kernel of t onto EN is always a
subspace of the kernel of tN . Thus we obtain continuous inclusions of the steps giving
rise to the PLSw kernel of t into the local kernels. These induce a continuous inclusion
of the PLSw kernel of t into the projective limit of the local kernels. That inclusion is
even surjective as each sequence of elements of the kernels of tN which is an element of
E is already an element of the kernel of t. However, we do not know if this inclusion is
open, as we do not even know if the local inclusions are open onto their ranges. Thus
the projective limit of the local kernels induces a topology on the algebraic kernel of t
that is potentially finer than the associated PLSw topology.

However if the spectrum of local kernels happens to be strongly reduced, then the two
topologies on the kernel of t coincide, since then the construction (2.2.10) ii) of the
equivalent spectrum with dense projection images leads to the spectrum giving rise to
the PLSw kernel of t, which is thus equivalent to the spectrum of local kernels.

ii) In contrast to that, a localization of the cokernel of t in PLSw is possible: For each N ∈ N
we have the cokernel FN

/
tN (EN)

FN of tN in LSw. Together with the maps induced by
FN

N+1 these spaces generate the projective spectrum of local cokernels of t. As we may
assume dense projection images for E by (2.2.10) ii), the closures of the images of tN

coincide with the closures of the projection of the image of t to FN for all N ∈ N. Thus
the spectrum of local cokernels and the spectrum giving rise to the PLSw cokernel of t,
see (2.2.11) ii), are identical.

However bad the situation concerning the localization of kernels may be, in complete anal-
ogy to the PLS case, cf. [DV00b, p. 64], a localization of kernel-cokernel pairs is possible in
PLSw, as the category of the steps, LSw, is quasi-abelian by (2.2.5):

Proposition 2.2.15. Let ( f , g) be a kernel-cokernel pair in PLSw. Then there are strongly
reduced spectra

(
XN , XN

M

)
,
(
YN ,YN

M

)
,
(
ZN ,ZN

M

)
of LSw spaces as well as morphisms of spec-

tra ( fN)N∈N :
(
XN , XN

M

)
−→

(
YN ,YN

M

)
and (gN)N∈N :

(
YN ,YN

M

)
−→

(
ZN ,ZN

M

)
such that each

( fN , gN) is a kernel-cokernel pair in LSw, i.e. ( fN , gN) ∈ ELSw
max (N ∈ N), and ( f , g) arises as the

projective limit of the sequence of spectra

0 −→
(
XN , XN

M

) ( fN )N∈N
−→

(
YN ,YN

M

) (gN )N∈N
−→

(
ZN ,ZN

M

)
−→ 0.

Moreover, if
(
X̃N , X̃N

M

)
,
(
ỸN , ỸN

M

)
and

(
Z̃N , Z̃N

M

)
are strongly reduced spectra of LSw spaces

giving rise to X,Y and Z then we can either take
(
YN ,YN

M

)
=

(
ỸN , ỸN

M

)
or

(
XN , XN

M

)
and

(
ZN ,ZN

M

)
as subsequences of

(
X̃N , X̃N

M

)
and

(
Z̃N , Z̃N

M

)
.

Proof. Let
(
YN ,YN

M

)
be a strongly reduced spectrum of LSw spaces with proj

(
YN ,YN

M

)
= Y .

First using that f is a kernel of g and then that g is a cokernel of f we obtain by (2.2.11) and
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(2.2.14) ii) that ( f , g) arises as the projective limit of the sequences

0 −→
(
YN
∞

(
g−1 ({0})

)YN
)ub fN

↪→ YN
gN
−→ YN

/
fN (XN) −→ 0,

where fN is the inclusion and gN is the quotient map and the linking maps XN
M and ZN

M are the
maps induced by YN

M (M ≥ N). Denoting the first space of the sequence XN and the last ZN

yields the first assertion.
If

(
X̃N , X̃N

M

)
and

(
Z̃N , Z̃N

M

)
are strongly reduced spectra of LSw spaces giving rise to X and Z,

these spectra are equivalent to
(
XN , XN

M

)
respectively

(
ZN ,ZN

M

)
by (2.2.9). Thus by (2.2.7) we

obtain factorizations

X̃K(N)

0 // XN

OO

fN // YN
gN // ZN

// 0.

Z̃L(N)

OO

Since the category LSw is quasi-abelian by (2.2.5), the middle row of the above diagram is
exact in LSw for each N ∈ N. Hence we can use the pullback and pushout constructions
(2.1.7), cf. [DV00b, p. 64] or Karidopoulou [Kar06, (1.1.39)] for details, to obtain a sequence
of spectra

0 −→
(
X̃K(N), X̃

K(N)
K(M)

)
−→

(
YN ,YN

M

)
−→

(
Z̃L(N), Z̃

L(N)
L(M)

)
−→ 0

giving rise to ( f , g), in which each sequence of steps is exact in LSw. �

Now we can determine the semi-stable kernels and cokernels in PLSw, which leads to the
maximal exact structure of PLSw by (2.1.4):

Proposition 2.2.16. i) In PLSw every kernel is semi-stable.

ii) In PLSw a cokernel is semi-stable if and only if it is surjective.

Proof. Let ( f , g) be a kernel-cokernel pair in PLSw with corresponding localization (2.2.15):

0 −→
(
XN , XN

M

) ( fN )N∈N
−→

(
YN ,YN

M

) (gN )N∈N
−→

(
ZN ,ZN

M

)
−→ 0.

i) Let s : X −→ S be a linear and continuous map from X = proj
(
XN , XN

M

)
into any PLSw

space S = proj
(
S N , S N

M

)
. By passing to a subsequence we may assume by (2.2.9)

that there is a morphism of spectra (sN)N∈N from
(
XN , XN

M

)
to

(
S N , S N

M

)
such that s =
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proj (sN)N∈N. Denoting Y B proj
(
YN ,YN

M

)
, the pushout of the diagram X

f //

s
��

Y

S

in

PLSw is given by the cokernel of the map ( f ,−s) : X −→ Y × S , x 7→ ( f (x) ,−s (x)) in
PLSw. By (2.2.14) ii) this cokernel is given by the projective limit of the local cokernels,

i.e. by the projective limit of the pushouts of the diagrams XN
fN //

sN

��

YN

S N

in LSw. These

pushouts are given by the triples
(
QN , qYN , qS N

)
from (2.1.9) ii). Then by (2.1.9) ii) b)

and (2.2.3) each qS N is the kernel of

ψN : QN = YN × S N
/
( fN ,−sN) (XN) −→ ZN = YN

/
fN (XN),

(yN , rN) + ( fN ,−sN) (XN) 7−→ yN + fN (XN) .

Thus qS B proj
(
qS N

)
N∈N is the projective limit of the spectrum of the local kernels(

qS N

)
N∈N of the map ψ B proj (ψN)N∈N. As the spectrum

(
S N , S N

M

)
is strongly reduced,

qS is indeed the PLSw kernel of ψ by (2.2.14) i), hence f is a semi-stable kernel.

ii) If g is semi-stable, it has to be surjective by [Sie10, (2.2.3)]. Now let g be surjective and
s : S −→ Z be a linear and continuous map from a PLSw space S = proj

(
S N , S N

M

)
to

Z = proj
(
ZN ,ZN

M

)
. By passing to a subsequence we may assume by (2.2.9) that s arises

as the projective limit of a morphism of spectra (sN)N∈N from
(
S N , S N

M

)
to

(
ZN ,ZN

M

)
.

Then the pullback of the diagram S
s
��

Y g
// Z

in PLSw is given by the triple (P, pY , pS ),

where P is the kernel of the map Y × S −→ Z, (y, r) 7−→ g (y) − s (r) in PLSw, and pY

and pS are the restrictions of the respective projections to P. We have to show that pS is
a cokernel.

To prove (2.2.16) i) we have used the localized pushouts to show that qS is the projective
limit of local kernels. Then the strong reducedness of the spectrum of local kernels
yielded that qS was indeed a kernel. Now we proceed inversely: We first show that the
spectrum of local pullbacks is strongly reduced, hence it gives rise to the PLSw pullback
by (2.2.14) i). Then pS arises as the projective limit of some local cokernels which
makes it a cokernel.

Let now
(
PN , pYN , pS N

)
be the pullback of the local diagram S N

sN

��
YN gN

// ZN

in LSw, i.e.
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PN = ({(yN , rN) : gN (yN) = sN (rN)})ub and pYN and pS N are the restrictions of the canon-
ical projections to PN . We show that for each N ∈ N the restriction of the projection
PN
∞ : P −→ PN has dense range:

Let (yN , rN) be an element of PN and let UN and VN be 0-neighbourhoods in YN re-
spectively S N . We define ŨN B 1

2UN and ṼN B VN ∩ s−1
N

(
gN

(
ŨN

))
, which is a 0-

neighbourhood in S N as gN is a quotient map, hence open. As we may assume that S N
∞

has dense range by (2.2.10) ii), we can choose an element r in S with S N
∞ (r) − rN ∈ ṼN .

As g is surjective, there is an element y in Y with g (y) = s (r). Then we have by con-
struction that gN

(
YN
∞ (y) − yN

)
= sN

(
S N
∞ (r) − rN

)
∈ gN

(
ŨN

)
holds. Thus YN

∞ (y) − yN is

an element of g−1
N

(
gN

(
ŨN

))
= ŨN + g−1

N ({0}) = ŨN + XN . Since by construction we

have XN = YN
∞ (X)

YN
⊂ YN

∞ (X) + ŨN , there is an x ∈ X with YN
∞ (y) − yN − YN

∞ (x) ∈
2ŨN = UN . Now we define z B y − x and obtain that (z, r) is an element of P, be-
cause g (z) = g (y) − g (x) = s (r) as x ∈ X = g−1 ({0}). Furthermore, we calculate
PN
∞ ((z, r))− (yN , rN) =

(
YN
∞ (z) − yN , S N

∞ (r) − rN

)
=

(
YN
∞ (y) − YN

∞ (x) − yN , S N
∞ (r) − rN

)
∈

UN×VN . Thus the spectrum of local pullbacks is indeed strongly reduced, hence it gives
rise to the PLSw pullback of S

s
��

Y g
// Z

by (2.2.14) i). By (2.1.9) i) b) and (2.2.3) each

pS N is the cokernel of the map ϕN : XN −→ PN , xN 7−→ (xN , 0). Thus pS = proj
(
pS N

)
N∈N

is the cokernel of ϕ B proj (ϕN)N∈N in PLSw by (2.2.14) ii) and g is a semi-stable coker-
nel.

�

Theorem 2.2.17. The class EPLSw
max , which consists of all kernel-cokernel pairs ( f , g) in PLSw

such that g is surjective, is the maximal exact structure in PLSw. The same is true in PLH.

Proof. By Sieg and Wegner’s characterization (2.1.4) the maximal exact structure of a pre-
abelian category consists of all kernel-cokernel pairs that consist of a semi-stable kernel and
a semi-stable cokernel. Thus the determination of semi-stable kernels and cokernels (2.2.16)
yields the assertion. �

Definition and Remark 2.2.18. When analyzing if the vanishing of Ext groups is passed
down to subcategories of the locally convex spaces, three-space properties are an important
tool. As we investigate categories whose exact structure differs from the short topologically
exact sequences, we recall the general concept of fully exact and exact subcategories:

Let (C,E) be an exact category.

i) A full subcategory C′ of an exact category (C,E) is called a fully exact subcategory of
(C,E) if for any short exact sequence

X
f
−→ Y

g
−→ Z
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in C, X and Z in C′ implies Y in C′. Then being a three-space property translates into
being a fully exact subcategory of LCS.

We do not know, whether the categories LSw,PLSw,LS or PLS are fully exact subcate-
gories of LCS – i.e. if being an LS,LSw,PLS or PLSw space is a three-space property –
but we do know the following:

a) LH and PLH are not fully exact subcategories of LCS, as they are full subcate-
gories of the category of hilbertizable lcs by (4.2.6) i), which is not a fully exact
subcategory of LCS. To see this, we consider the short exact sequence

0 −→ X
f
−→ Y

g
−→ Z −→ 0

of Banach spaces, which Enflo, Lindenstrauss and Pisier constructed in [ELP75],
where X and Z are Hilbert spaces but Y is not. Then Y is not a hilbertizable lcs.

b) LSw is a fully exact subcategory of PLSw, the same is true for LH in PLH: Let

0 −→ X
f
−→ Y

g
−→ Z −→ 0

be a short exact sequence of PLSw spaces, where X and Z are LSw spaces. By
(2.2.15) we have a commutative diagram

0 // X
f // Y

g //

Y1
∞

��

Z // 0

0 // X
f1
// Y1 g1

// Z // 0

with rows that are exact in PLSw and Y1 is an LSw space. Thus the Five Lemma for
exact categories, cf. [Büh10, (3.2)], implies that Y1

∞ is an isomorphism, hence Y is
an LSw space. The same proof shows the assertion for the pairing LH /PLH. Note,
that ii) is the complete analogon to the result by Sieg about the pairing LS /PLS,
cf. [Sie10, (5.1.3)].

ii) If we have an exact structure E′ on C′, then (C′,E′) is called an exact subcategory of
(C,E) if the restriction of E to C′, referred to as E ∩ C′, coincides with E′.

a) By (2.2.17) we know that LSw,PLSw,LH and PLH are not even exact subcate-
gories of LCS (or (LCS)), as the class of short topologically exact sequences –
although being an exact structure on all of the above categories by [DS12, (3.3) &
(3.6)] – is a proper subclass of the maximal exact structure by (2.2.6), whereas Sieg
proved in [Sie10, (3.1.1) & (3.2.1)] that both LS and PLS are exact subcategories
of LCS.
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b) We conclude this section by showing that neither PLH nor PLSw is quasi-abelian
or even semiabelian, cf. [Sie10, ((3.1.5))]:

Any non-surjective linear partial differential operator with constant coefficients
P (D) : D ′ (Ω) −→ D ′ (Ω) on the space of Schwartz distributions over an open
subset Ω ⊂ Rd that is surjective as an operator P (D) : C∞ (Ω) −→ C∞ (Ω) yields
a kernel NP (Ω) in D ′ (Ω) with proj1 NP (Ω) , 0 by [Wen03, (3.4.5)], hence the
cokernel of the embedding of Np (Ω) into D ′ (Ω), which is given by the Haus-
dorff completion of the quotient D ′ (Ω)/NP (Ω) by (2.2.11) ii), is not surjective by
[DV00b, (1.4)]. Classical results of Malgrange [Mal56, Chapitre 1, Théorème 4]
and Hörmander [Hör62] reduce this problem to finding an open subset Ω ⊂ Rd

which is P-convex but not strongly P-convex. For d ≥ 3 such pairs (P,Ω) are easy
to find, see e.g. [Dom04, (3.5) a)]. Note that Kalmes showed in [Kal11] that this is
not possible for d = 2, thus solving an old conjecture of Trève in the affirmative.
Using the above example to construct a morphism f in PLH such that the induced
morphism f̃ from the coimage of f into its image in the canonical factorization
the same way as in [Sie10, (3.1.6)], we obtain that neither PLH nor PLSw is even
semi-abelian.

2.3 Yoneda Ext functors and the long exact sequence in PLSw / PLH

Thanks to Sieg’s, Wegner’s and Bühler’s work on exact structures [Büh10, Sie10, SW11], we
can establish the whole homological toolbox, in particular the long exact sequence (2.3.2), for
the Yoneda Ext groups, which leads us to the connection of Ext and proj and the splitting for
D ′ (Ω). We give an outline of Sieg’s approach, cf. [Sie10, chap. 4 & 5]:

Definition and Remark 2.3.1. Let (C,E) be an exact category.

i) A sequence

A : 0 −→ X
fk
−→ Yk−1 −→ . . . −→ Y1

f1
−→ Y0

f0
−→ Z −→ 0

in C is called exact (in C, with left end X and right end Z), if every morphism fl factorizes
as fl = ml◦el for an admissible cokernel el : Yl −→ Il and an admissible kernel ml : Il −→

Yl−1, such that (ml, el−1) is in E for 0 ≤ l ≤ k. The integer k is called the length of the
sequence.

ii) Let

A′ : 0 −→ X′ −→ Y ′k−1 −→ . . . −→ Y ′1 −→ Y ′0 −→ Z′ −→ 0

be another exact sequence of length k in C. A morphism with fixed ends Φ : A −→ A′
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between the exact sequences A and A′ of length k is a commutative diagram

A : 0 // X // Yk−1
//

Φk−1

��

Yk−2
//

Φk−2

��

. . . // Y1
//

Φ1

��

Y0
//

Φ0

��

Z // 0

A′ : 0 // X′ // Y ′k−1
// Y ′k−2

// . . . // Y ′1 // Y ′0 // Z′ // 0.

iii) For Z and X in C we denote by Ek
C (Z, X) the exact sequences of length k with right end

Z and left end X. On Ek
C (Z, X) we define the following equivalence relation:

Two elements A and A′ of Ek
C (Z, X) are said to be equivalent, A ∼ A′, if there is a

sequence A = A0, A1, . . . , Al−1, Al = A′ of elements of Ek
C (Z, X), such that for every

0 ≤ i ≤ l − 1 there is a morphism with fixed ends either from Ai to Ai+1 or from Ai+1 to
Ai. We define

Extk
C (Z, X) = Ek

C (Z, X)/
∼

and denote by [A]C the equivalence class of A in Extk
C (Z, X).

iv) Using the pullback and pushout constructions (2.1.7) it is possible to endow the equiv-
alence classes Extk

C (Z, X) with an abelian group structure via the Baer sum and assign
each morphism λ : X −→ X′ in C a homomorphism of abelian groups Extk

C (Z, λ) :
Extk

C (Z, X) −→ Extk
C (Z, X′), cf. [Sie10, (4.1.5)].

Then we have:

Theorem 2.3.2. Let (C,E) be an exact category and let E be an object of C. For each k ≥ 1
the assignment

Extk
C (E, ) : C −→ (AB) , X 7→ Extk

C (E, X)

λ 7→ Extk
C (E, λ)

is a covariant, additive, abelian-group-valued functor, which induces for every short exact
sequence 0 −→ X −→ Y −→ Z −→ 0 a long exact sequence

0 −→ Hom (E, X) −→ Hom (E,Y) −→ Hom (E,Z)
δ0
−→

δ0
−→ Ext1

C (E, X) −→ Ext1
C (E,Y) −→ Ext1

C (E,Z)
δ1
−→

δ1
−→ Ext2

C (E, X) −→ . . . −→ Extk−1
C (E,Z)

δk−1
−→

δk−1
−→ Extk

C (E, X) −→ Extk
C (E,Y) −→ Extk

C (E,Z)
δk
−→

δk
−→ Extk+1

C (E, X) −→ . . . .

Proof. See [Sie10, Theorem (4.1.1)]. �
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Remark 2.3.3. Using the concept of universal δ functors it is possible to show that if an exact
category (C,E) has enough injective objects, for all objects E in C the Extk

C (E, ) groups are
isomorphic to the derived functors of HomC (E, ) in the sense of Palamodov, cf. [Pal71] and
[Sie10, p. 36].

Proposition 2.3.4. Let (C,E) be an exact category.

i) For any short exact sequence

0 −→ X
f
−→ G

g
−→ E −→ 0

in C the following are equivalent:

a) f has a left inverse.

b) g has a right inverse.

c) There is a commutative diagram

0 // X

(1
0

)
// X ⊕ E

β

��

(0,1) // E // 0

0 // X
f
// G g

// E // 0,

such that β is an isomorphism.

ii) For two objects X and E in C the following are equivalent:

a) Ext1
C (E, X) = 0

b) Every exact sequence 0 −→ X
f
−→ G

g
−→ E −→ 0 in C is split exact.

Proof. See [Sie10, (4.2.1) & (4.2.2)]. �

With exactly the same proofs as in [Sie10, (5.1.6), (5.1.7) & (5.1.8)] we obtain the results
connecting Extk

PLSw
and Extk

LSw
respectively Extk

PLH and Extk
LH:

Proposition 2.3.5.

i) If X and E are LSw spaces, then for all k ∈ N there is an isomorphism of abelian groups
Extk

LSw
(E, X) � Extk

PLSw
(E, X).

ii) Let X be an LSw space, E = proj
(
EN , EN

M

)
be a PLSw space and k ∈ N. Then the

vanishing of all Extk
LSw

(EN , X) (N ∈ N) implies the vanishing of Extk
PLSw

(E, X).
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iii) Let (XN)N∈N be a sequence of LSw spaces and E = projN∈N

(
EN , EN

M

)
be a PLSw space.

Then the vanishing of all Extk
LSw

(EN , XM) (M,N ∈ N) implies the vanishing of
Extk

PLSw

(
E,

∏
N∈N EN

)
.

The statements remain valid if we replace PLSw by PLH and LSw by LH.

By applying the long exact sequence (2.3.2) to the canonical resolution of a PLS space
X, Sieg established the same connection between Ext1

PLS (E, X) and proj1
(
L (E, XN) , XN

M
∗
)

in [Sie10, (5.2)], which we are used to from the Fréchet setting (see e.g. [Wen03, (5.1.5)]).
Here XN

M
∗ denotes as usual HomLCS

(
E, XN

M

)
. The same proofs yield the same results in the

categories PLSw and PLH. We just have to check, that under the correct assumption, i.e.
proj1

(
XN , XN

M

)
= 0, the canonical resolution of X is an exact sequence of PLSw (respectively

PLH) spaces. Hence we recall:
Given a PLSw space X = proj

(
XN , XN

M

)
we define the map

ΨX :
∏
N∈N

XN −→
∏
N∈N

XN , (xN)N∈N 7−→
(
XN

N+1xN+1 − xN

)
N∈N

.

As X is the kernel of ΨX in PLSw and
(
XN , XN

M

)
is strongly reduced, [Wen03, (3.3.1)] yields

that ΨX is open onto its range. Since it has dense range, it is the cokernel of its kernel. Thus
the canonical resolution of X

0 −→ X ↪→
∏
N∈N

XN
ΨX
−→

∏
N∈N

XN

is an element of EPLSw
max if and only if ΨX is surjective. Since proj1

(
XN , XN

M

)
=

∏
N∈N XN

/
im (ΨX)

by [Wen03, (3.1.4)], this is equivalent to the vanishing of proj1
(
XN , XN

M

)
. Thus we arrive at

the analogons of [Sie10, (5.2.1) & (5.2.3)]:

Theorem 2.3.6. Let X = proj
(
XN , XN

M

)
and E = proj

(
EN , EN

M

)
be two PLSw spaces. Then we

have:

i) If proj1
(
XN , XN

M

)
= 0 and Ext1

PLSw
(E, X) = 0, then proj1

(
L (E, XN) , XN

M
∗
)

= 0.

ii) If

a) proj1
(
XN , XN

M

)
= 0 and

b) Extk
LSw

(EN , XM) = 0 for all M,N ∈ N and all 1 ≤ k ≤ k0 for a k0 ∈ N,

then

α) Ext1
PLSw

(E, X) = proj1
(
L (E, XN) , XN

M
∗
)

and

β) Extk
PLSw

(E, X) = 0 for all 2 ≤ k ≤ k0.

The results remain true if we replace LSw by LH and PLSw by PLH.
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Domański and Vogt [DV00b] respectively Wengenroth [Wen01] have proven with func-
tional analytic methods that the space of Schwartz distributions D ′ (Ω) plays the same role in
the splitting theory of PLS spaces as the space of rapidly decreasing sequences s does in the
splitting theory for Fréchet spaces, i.e. if E is isomorphic to a closed subspace of D ′ (Ω) and X
is isomorphic to a complete Hausdorff quotient of D ′ (Ω), then Extk

PLS (E, X) = 0 for all k ≥ 1.
Sieg has given a purely homological proof in [Sie10, (5.3.6)], that we can transfer with minor
adaptions to the categories PLSw and PLH. We give an outline of the argumentation:

The sequence space representation D ′ (Ω) = (s′)N – which is due to Valdivia [Val78] and
(independently) Vogt [Vog83b] – and (2.3.6) ii) are used to show that Extk

PLSw
(E, X) = 0 for

all k ≥ 2. As (2.3.5) iii) yields that Ext1
PLSw

(E,D ′ (Ω)) = 0, we obtain Ext1
PLSw

(E, X) = 0 by
applying the long exact sequence (2.3.2) to the (even) topologically exact sequence

0 −→ D ′ (Ω) −→ D ′ (Ω) −→ X −→ 0,

which exists by [DV00b, (2.1)].
To apply (2.3.6) ii) and (2.3.5) iii) we need to prove that proj1

(
XN , XN

M

)
= 0 and

Extk
LSw

(EN , XM) = 0 = Extk
LH (EN , XM) for all M,N, k ≥ 1. The first statement is a consequence

of [DV00b, (1.1)], since X is ultrabornological as a quotient of D ′ (Ω). In (2.2.6) we have seen
the duality of ELSw

max and EFSw
max respectively ELH

max and EFH
max. Hence the same reasoning as in [Sie10,

(5.3.2)] yields that for two LSw spaces X and E and any k ≥ 1 the vanishing of Extk
LSw

(E, X)
is equivalent to the vanishing of Extk

FSw
(X′, E′) and the same holds in the dual pair LH / FH.

Thus, to obtain the second statement, we need to prove that Extk
FSw

(E, X) and Extk
FH (E, X)

vanish for all k ≥ 1 for closed subspaces E of s and Hausdorff quotients X of s. The assertion
in the category of Fréchet spaces is yielded e.g. by [Wen03, (5.2.9) & (5.1.5)]. As being
a reflexive Banach space is a three-space property by [RD81, (4.3)], being an FSw space is
a three-space property when we apply (2.2.15) to localize short exact sequences of Fréchet
spaces. Thus the same argument as in [Sie10, (5.3.4)], i.e. Yoneda Ext are inherited by fully
exact subcategories, cf. (2.2.18) i), yields the assertion in FSw.

The category of Fréchet-Hilbert spaces is not a fully exact subcategory of the category of
Fréchet spaces by (2.2.18) i) a). However the case k = 1 is contained in [MV97, (30.1)],
[Vog77a, (1.3)] and [VW80, (1.8)] (or [MV97, (31.5), (31.6), & (30.1)]) and the case k ≥ 2 is
contained in [Vog11]. Thus we arrive at

Theorem 2.3.7. If E and X are PLSw spaces such that E is isomorphic to a closed subspace of
D ′ (Ω) and X is isomorphic to a complete Hausdorff quotient of D ′ (Ω), then Extk

PLSw
(E, X) =

0 for all k ≥ 1.
The statement remains valid if we replace PLSw by PLH.
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Splitting of short exact sequences has always been approached directly or indirectly by charac-
terizations of the vanishing of proj1 for projective spectra of operator spaces, cf. e.g. [Wen03,
BD06, BD08]. Theorem (2.3.6)ii) allows for the same in our situation. Given PLH spaces
E = proj

(
EN , EN

M

)
and X = proj

(
XN , XN

M

)
, we will consider the projective spectrum L B(

Lb (E, XN) , XN
M
∗
)
. If E and X are proper PLH spaces, the theory of webs has to be applied to

obtain conditions for the vanishing of proj1 L . This has been investigated by Frerick, Kunkle
and Wengenroth in [FKW03, Kun01]. Thus we will restrict ourselves to the cases where E is
either a Fréchet-Hilbert or an LH space, since then we will be able to access the vanishing of
proj1 L by using duality relations between the vanishing of proj1 of spectra of LB spaces and
(weak) acyclicity of pre-dual LF spaces, which can in turn be described through variants of
the condition (M) of Retakh, cf. [Ret70], due to Palamodov [Pal71], Vogt [Vog92] and Wen-
genroth [Wen95, Wen96, Wen03]. We will use an interpolation result due to Domański and
Mastyło [DM07, (3.1)] in Vogt’s variant [Vog11, (1.1)] to translate those into applicable con-
ditions describing the interrelation of the defining seminorms by norm inequalities preceded
by a long sequence of quantifiers. This type of condition has a rather long tradition that was
initiated amongst others by Vogt in the mid 1970’s in the Fréchet space setting with a strong
emphasis on the functional analytic aspects [Vog77a, Vog77b, Vog87]. A first milestone was
the classical splitting result, the famous (DN)-(Ω) splitting theorem due to Vogt and Wagner
[VW80]. Under the premise of four so-called standard assumptions, one of the spaces E or X
being either a Köthe sequence space or nuclear, Vogt was able to give sufficient and necessary
conditions on the pair (E, X) for the splitting of each exact sequence

0 −→ X
f
−→ G

g
−→ E −→ 0 (?)

in [Vog87], where the sufficient condition had been proposed by Apiola [Api83]. A complete
characterization in the nuclear case was proven by Frerick [Fre96] and further results on suffi-
cient conditions in the general Fréchet setting were given by Frerick and Wengenroth [FW96]
and Wengenroth [Wen03] with a more pronounced emphasis on the homological aspects. Fi-
nally in 2007 Domański and Mastyło were able to give a complete characterization of splitting
in the category of Fréchet-Hilbert spaces [DM07]. The elegant formulation of the condition
(S ) they used is due to Langenbruch [Lan04]. Their interpolation result for nuclear operators
[DM07, (3.1)] was based on ideas from Ovchinnikov [Ovc98], a significantly shorter proof has
been presented by Vogt [Vog11]. With this last characterization splitting theory for Fréchet-
Hilbert spaces can be considered rather complete. In [BD06, BD08] Bonet and Domański
presented characterizations of splitting of each exact sequence (?) of PLS spaces if E either
is a Fréchet-Schwartz or an LS space again under assumptions about nuclearity and being a
Köthe sequence space, that we will call successors of the four standard assumptions. Although
their conditions (G) / (Gε) and (H) / (Hε) coincide with our conditions (T ) / (Tε), the methods
to prove characterizations are completely different, as theirs are based on nuclearity, hence
follow the general path of [Wen03, section 5.2], whilst ours follow Domański, Mastyło and
Vogt, cf. [DM07, Vog11].
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We start by organizing the well-known results about (pre-)duality and the vanishing of proj1

for PLH spaces together with the standard conditions in a first section:

3.1 Preliminary remarks

In general the well-known duality relation between the vanishing of proj1 and weak acyclicity
reads as follows, cf. [Pal71], [Vog92, (4.1)] or [Wen03, p.110]:

Proposition 3.1.1. Let H =
(
HN ,HM

N

)
be an inductive spectrum of locally convex spaces and

let H ′ =

(
H′N ,

(
HM

N

)t
)

be the dual projective spectrum. Then H is weakly acyclic if and only

if proj1 H ′ = 0.

The following characterizations of acyclicity for LF spaces are due to Palamodov [Pal71]
and Vogt [Vog92] concerning “i) ⇔ ii)” and Wengenroth [Wen03, (6.4)] concerning “ii) ⇔
iii)”, which is just [Wen95, (3.4)] in Langenbruch’s formulation of the quantifiers, cf. [Lan04].

Proposition 3.1.2. Let H =
(
HN ,HM

N

)
be an inductive spectrum of Fréchet spaces. Then the

following are equivalent:

i) H is acyclic.

ii) H has property (M) of Retakh, i.e. there is an increasing sequence (UN)N∈N of abso-
lutely convex 0-neighbourhoods UN ⊂ HN ,N ∈ N, such that

∀
N∈N

∃
M≥N

∀
K≥M

∀
V∈U0(HM)

∃
W∈U0(HK )

W ∩ UN ⊂ V.

iii) H has property (Q)0, i.e.

∀
N∈N

∃
M≥N

∀
K≥M

∃
U∈U0(HN )

∀
V∈U0(HM)

∃
W∈U0(HK )

W ∩ U ⊂ V.

Regarding PLH spaces, this leads to variants of the condition (P3) for projective spectra of
regular LB spaces. Before we introduce those, we specify the general assumptions we may
impose on PLH spaces and the PLH spectra giving rise to them and fix some notation:

Remark 3.1.3. Let X = projN∈N indn∈N XN,n be a PLH space. By BN,n we refer to the closed
unit balls of the Hilbert spaces XN,n, N, n ∈ N. By multiplying the norms of the steps with the
continuity estimates of the respective inclusions, we may assume that BN,n is a subset of BN,n+1

for all N, n ∈ N. Furthermore, by applying a simple thinning procedure similar to the one used
in the proof of (3.2.4) ii), we may assume that XN

N+1
(
BN+1,n

)
is a subset of BN,n for all n,N ∈ N.

For any step N ∈ N and any linear functional f ∈ X′N we denote ‖ f ‖∗N,n B sup
x∈BN,n

| f (x) | ∈ [0,∞].
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Definition and Remark 3.1.4. A PLH space X = projN∈N indn∈N XN,n has property

i) (P3)0 if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

XN
M

(
BM,m

)
⊂ εBN,n + cXN

K
(
BK,k

)
,

which – by the bipolar theorem – is equivalent to its dual variant (P∗3)0:

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

∀
f∈X′N

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
≤ ε ‖ f ‖∗N,n + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k
.

ii) (P3) if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

XN
M

(
BM,m

)
⊂ c

(
BN,n + XN

K
(
BK,k

))
,

which – again by the bipolar theorem – is equivalent to its dual variant (P∗3):

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

∀
f∈X′N

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
≤ c

(
‖ f ‖∗N,n +

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

)
.

First of all the question arises, whether the above conditions are linear topological invariants,
i.e. if they are invariant under passing to equivalent spectra. The positive answer to this is
contained in (3.2.1) iii). Furthermore, by (3.1.2), the conditions (P3)0 and (P∗3)0 are equivalent

to the dual LFH spectrum
(
X′N ,

(
XN

N+1

)t
)

having condition (M) of Retakh or being acyclic.
Concerning the conditions (P3) and (P∗3) and weak acyclicity the situation is different. We only

know that weak acyclicity of
(
X′N ,

(
XN

N+1

)t
)

implies the following condition (wQ) by [Vog92,
(2.3) b)]:

∀
N∈N

∃
M≥N

U∈U0(X′N)
∀

K≥M
V∈U0(X′M)

∃
W∈U0(X′L)

c>0

W ∩
(
XN

K

)t
(U) ⊂ c

(
XM

K

)t
(V) ,

which obviously implies (P∗3), thus also (P3). The other implication, i.e. the equivalence of
(wQ) and (wQ∗) remains a conjecture, cf. [Wen95, (5.3)]. Thus we have the implications

(P3)0 ⇔ (P∗3)0 ⇒ proj1 X = 0⇒ (P∗3)⇔ (P3).

If X is a PLS space, all of the above are equivalent by [Wen03, (3.2.18)]. This is not true for
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PLH spaces, as there is even a Fréchet-Hilbert space X that is not quasinormable by [MV97,
(27.23)c)], hence it does not satisfy (P3)0 by [MV97, (26.14)], whereas proj1 X always van-
ishes by [Wen03, (3.2.1)] as we may choose a reduced projective spectrum of Hilbert spaces
giving rise to X.

In the case of L , i.e. in the case of operator spectra, more detailed statements are possible.
First of all the pre-duality relation from (3.1.1) is given by projective tensor products via the
following relation, which is well-known:

Proposition 3.1.5. i) Let Y and Z be two Fréchet spaces. Then the map

ϕ :
(
Y⊗̃πZ

)′
−→ L

(
Y,Z′

)
, f 7→ T f :

(
Y 3 y 7→

(
Z 3 z 7→ f (y ⊗ z)

))
is an algebraic isomorphism.

ii) Given four Fréchet spaces Y0,Y1,Z0,Z1 and linear and continuous operators
Y1

0 : Y0 −→ Y1,Z1
0 : Z0 −→ Z1, the following diagram commutes:(

Y1⊗̃πZ1
)′

(Y1
0 ⊗̃πZ1

0)
t

��

ϕ1 // L
(
Y1,Z′1

)
Y1

0 ∗◦ (Z1
0)

t ∗

��(
Y0⊗̃πZ0

)′
ϕ0
// L

(
Y0,Z′0

)
,

where ϕ0, ϕ1 are the maps defined in i) and Y1
0 ∗ denotes as usual HomLCS

(
Y1

0 ,Z
′
0

)
.

Proof. i) The map ϕ is linear, well-defined and injective, which is guaranteed by the basic
properties of the π tensor product. Furthermore, ϕ is surjective as any separately contin-
uous bilinear form on a product of Fréchet spaces is jointly continuous by [Köt79, §40,
2, (1) (a)].

ii) For f ∈
(
Y1⊗̃πZ1

)′ , y0 ∈ Y0 and z0 ∈ Z0 we calculate

ϕ0

((
Y1

0 ⊗̃πZ
1
0

)t
( f )

)
(y0) (z0) = f

(
Y1

0 y0 ⊗ Z1
0z0

)
=

(
Y1

0 ∗ ◦
(
Z1

0

)t ∗
) (
ϕ1 ( f )

)
(y0) (z0) .

�

This tensor product representation allows us to transform (weak) acyclicity of the pre-dual
spectra into evaluable conditions that we call (Tε) respectively (T ), cf. [Dom10, (5.2)], [BD06,
(4.1)] and [BD08, (3.1)]. In the following section we will introduce those conditions and the
notion of deep reducedness, which we will need to apply Vogt’s version (3.2.6) of Domański’s
and Mastyło’s interpolation result [DM07, (3.1)], which will be stated here as well, with all
the necessary technical requirements.
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3.2 Remarks on the splitting conditions and deep reducedness.

Definition and Remark 3.2.1. Let X =
(
XN , XN

M

)
and E =

(
ET , ET

S

)
be two PLH space

spectra, where XN = indn∈N XN,n and ET = indt∈N ET,t, N,T ∈ N.

i) The pair (E,X ) satisfies the property

a) (Tε) if the following holds:

∀
N∈N
T∈N

∃
M≥N
S≥T

∀
K≥M
R≥S

∃
n∈N
t∈N

∀
m≥n
s≥t
ε>0

∃
k≥m
r≥s
c>0

∀
f∈X′N
g∈E′T∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
≤ ε ‖ f ‖∗N,n ‖g‖

∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
f
∥∥∥∥∗

R,r
.

b) (T ) if the following holds:

∀
N∈N
T∈N

∃
M≥N
S≥T

∀
K≥M
R≥S

∃
n∈N
t∈N

∀
m≥n
s≥t

∃
k≥m
r≥s
c>0

∀
f∈X′N
g∈E′T∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
≤ c

(
‖ f ‖∗N,n ‖g‖

∗
T,t +

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

)
.

ii) a) (Tε) is equivalent to (T d
ε ):

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

∀
f∈X′N
g∈E′N∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(EN
M

)t
g
∥∥∥∥∗

M,m
≤ ε ‖ f ‖∗N,n ‖g‖

∗
N,n + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(EN
K

)t
g
∥∥∥∥∗

K,k
.

b) (T ) is equivalent to (T d):

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

∀
f∈X′N
g∈E′N∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(EN
M

)t
g
∥∥∥∥∗

M,m
≤ c

(
‖ f ‖∗N,n ‖g‖

∗
N,n +

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(EN
K

)t
g
∥∥∥∥∗

K,k

)
.

Proof. We only prove ii)a).

Necessity: Let N ∈ N be given. We chose M ≥ N and S ≥ T = N according to
(Tε). Given K ≥ M0 B max {M, S }, we chose n, t ∈ N for R = K. Given ε > 0 and
s = m ≥ n0 B max {n, t}, we define c1 B

∥∥∥∥(XM
M0

)t∥∥∥∥
L
(
X′M,m,X

′
M0 ,m

) , c2 B
∥∥∥∥(ES

M0

)t∥∥∥∥
L
(
E′S ,s,E

′
M0 ,s

)
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and find k, r ∈ N and a c > 0 for s = m and ε
c1c2

. Defining c B c1c2c3, we obtain for any
f ∈ X′N and g ∈ E′N∥∥∥∥(XN

M0

)t
f
∥∥∥∥∗

M0,m

∥∥∥∥(EN
M0

)t
g
∥∥∥∥∗

M0,m
≤ c1c2

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

≤ ε ‖ f ‖∗N,n ‖g‖
∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

≤ ε ‖ f ‖∗N,n0
‖g‖∗N,n0

+ c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(EN
K

)t
g
∥∥∥∥∗

K,k0
.

Sufficiency: Let N,T ∈ N. We chose S = M ≥ N0 B max {N,T }. Given K,R ≥ M,
we chose n = t ∈ N for K0 B max {K,R}. Given m ≥ n, s ≥ t and ε > 0, we
define c1 B

∥∥∥∥(XN
N0

)t∥∥∥∥
L
(
X′N,n,X

′
N0 ,n

) , c2 B
∥∥∥∥(ET

N0

)t∥∥∥∥
L
(
E′T,n,E

′
N0 ,n

) , c3 B
∥∥∥∥(XK

K0

)t∥∥∥∥
L
(
X′K,k ,E

′
K0 ,k

) , c4 B∥∥∥∥(ER
K0

)t∥∥∥∥
L
(
E′R,k ,E

′
K0 ,k

) and find k = r ≥ m0 B max {m, s} and c5 > 0 for ε
c1c2

and m0. Defining

c B c3c4c5, we obtain for any f ∈ X′N and g ∈ E′T∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
≤

∥∥∥∥(XN0
M

)t (
XN

N0

)t
f
∥∥∥∥∗

M,m0

∥∥∥∥(EN0
M

)t (
ET

N0

)t
g
∥∥∥∥∗

M,m0

≤
ε

c1c2

∥∥∥∥(XN
N0

)t
f
∥∥∥∥∗

N,n

∥∥∥∥(ET
N0

)t
g
∥∥∥∥∗

N,t
+

c5

∥∥∥∥(XN0
K0

)t (
XN

N0

)t
f
∥∥∥∥∗

K0,k

∥∥∥∥(EN0
K0

)t (
ET

N0

)t
g
∥∥∥∥∗

K0,k

≤ ε ‖ f ‖∗N,n ‖g‖
∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.

�

iii) The conditions (Tε) and (T ) are passed on to equivalent spectra.

Proof. Again we only prove the assumption for (Tε). Furthermore, since the condition
is symmetric, it is sufficient to consider one equivalent PLH space spectrum. Thus let
Y =

(
YN ,YN

M

)
, where YN = indn∈N YN,n, is a PLH space spectrum that is equivalent to

X . First we show the following

Claim: If (L (N))N∈N is a strictly increasing sequence of natural numbers and X̃ =(
XL(N), X

L(N)
L(M)

)
is the induced PLH space spectrum, then (E,X ) satisfies (Tε) iff so does(

E, X̃
)
:

Necessity: Given N,T ∈ N, we chose M ≥ L (N) , S ≥ T for L (N) ,T . Given K ≥
M,R ≥ S , we chose n, t for L (K) ,R. Given m ≥ n, s ≥ t, ε > 0 we define c1 B∥∥∥∥(XM

L(M)

)t∥∥∥∥
L
(
X′M,m,X

′
L(M),m

) and choose k ≥ m, r ≥ s, c2 > 0 for m, s, εc1
. With c B c1c2 we
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obtain for all f ∈ X′L(N), g ∈ E′T∥∥∥∥(XL(N)
L(M)

)t
f
∥∥∥∥∗

L(M),m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
≤ c1

∥∥∥∥(XL(N)
M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

≤ ε ‖ f ‖∗L(N),n ‖g‖
∗
T,t + c

∥∥∥∥(XL(N)
L(K)

)t
f
∥∥∥∥∗

L(K),k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.�

Sufficiency: Let N,T ∈ N. We choose M ≥ L (N) , S ≥ T for L (N) ,T .
Given K ≥ M,R ≥ S , we choose n, t for L (K) ,R. Given m ≥ n, s ≥ t, ε > 0, we define
c1 B

∥∥∥∥(XN
L(N)

)t∥∥∥∥
L
(
X′N,n,X

′
L(N),n

) and choose k ≥ m, r ≥ s, c3 > 0 for m, s and ε
c1

. Defining

c2 B
∥∥∥∥(XK

L(K)

)t∥∥∥∥
L
(
X′K,k ,X

′
L(K),k

) and c B c2c3, we obtain for all f ∈ X′N , g ∈ E′T

∥∥∥∥(XN
L(M)

)t
f
∥∥∥∥∗

L(M),m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
=

∥∥∥∥(XL(N)
L(M)

)t (
XN

L(N)

)t
f
∥∥∥∥∗

L(M),m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

≤
ε

c1

∥∥∥∥(XN
L(N)

)t
f
∥∥∥∥∗

L(N),n
‖g‖∗T,t + c3

∥∥∥∥(XN
L(K)

)t
f
∥∥∥∥∗

L(K),k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

≤ ε ‖ f ‖∗N,n ‖g‖
∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.�

Now suppose that (E,X ) has (Tε). With what we have just shown, we may assume
that the equivalence of X and Y instantiates in operators αN ∈ L (YN , XN) , βN ∈

L (XN+1,YN) with αN ◦ βN = XN
N+1 and βN ◦ αN+1 = YN

N+1, N ∈ N.

Let N,T ∈ N. We choose M ≥ N + 1, S ≥ T for N + 1,T . Given K ≥ M,R ≥ S , we
choose n, t for K + 1,R. By the factorization theorem there is an integer n1 ≥ n such
that c1 B

∥∥∥βt
N

∥∥∥
L
(
Y′N,n1

,X′N+1,n

) < ∞. Given m ≥ n, s ≥ t, ε > 0, again the factorization

theorem provides integers m1 ≥ m0 ≥ m such that c2 B
∥∥∥αt

M

∥∥∥
L
(
X′M,m0

,Y′M,m1

) < ∞. We
choose k ≥ m0, r ≥ s, c4 > 0 for m0, s and ε

c1c2
. Then there is an integer k1 ≥ k such that

c3 B
∥∥∥βt

K

∥∥∥
L
(
Y′K,k1

,X′K+1,k

) < ∞. Defining c B c2c3c4, we obtain for all f ∈ Y ′N , g ∈ E′T∥∥∥∥(YN
M

)t
f
∥∥∥∥∗

M,m1

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
=

∥∥∥∥αt
M

(
XN+1

M

)t
βt

N f
∥∥∥∥∗

M,m1

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

≤
ε

c1

∥∥∥βt
N f

∥∥∥∗
N,n
‖g‖∗T,t + c2c4

∥∥∥∥(XN+1
K+1

)t
βt

N f
∥∥∥∥∗

K+1,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

≤ ε ‖ f ‖∗N,n1
‖g‖∗T,t + c

∥∥∥∥(YN
K

)t
f
∥∥∥∥∗

K,k1

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.

�

iv) Based on iii) and (2.2.2) ii), i.e. the fact that all strongly reduced PLH space spectra that
give rise to the same PLH space are equivalent, we may define all four properties for
pairs (E, X) of PLH spaces (instead of spectra).
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v) As X′N and E′T are dense in X′N,k and E′T,r for all N,T, k and r ∈ N respectively, we may
replace in all four conditions the quantifier ∀ f ∈ X′N , g ∈ E′T by ∀ f ∈ X′N,k, g ∈ E′T,r.

The following result connects (Tε) and (T ), compare [Dom10, (5.2)“(2)⇒(3)”].

Proposition 3.2.2. Let E = projT∈N indt∈N ET,t and X = projN∈N indn∈N XN,n be PLH spaces
both non-trivial, i.e. both not the zero space. Then (Tε) holds for (E, X) if and only if E and X
both satisfy (P∗3)0 and (T ) holds for the pair (E, X).

Proof. Necessity is trivial. Sufficiency: We assume (P∗3)0 in the forms

∀
N∈N

∃
N1≥N

∀
K≥N1

∃
n1∈N

∀
m≥n1
εX>0

∃
k1≥m
cX>0

∀
f∈X′N∥∥∥∥(XN

N1

)t
f
∥∥∥∥∗

N1,m
≤ εX ‖ f ‖∗N,n1

+ cX

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k1

for X, and

∀
T∈N

∃
T1≥T

∀
R≥T1

∃
t1∈N

∀
s≥t1
εE>0

∃
r1≥s
cE>0

∀
g∈E′T∥∥∥∥(ET

T1

)t
g
∥∥∥∥∗

T1,s
≤ εE ‖g‖∗T,t1 + cE

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r1

for E, as well as (T ) for (E, X) in the form

∀
N1∈N
T1∈N

∃
M≥N1
S≥T1

∀
K≥M
R≥S

∃
n0∈N
t0∈N

∀
m≥n0
s≥t0

∃
k0≥m
r0≥s
c0>0

∀
f∈X′N1
g∈E′T1∥∥∥∥(XN1

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET1
S

)t
g
∥∥∥∥∗

S ,s
≤ c0

(
‖ f ‖∗N1,n0

‖g‖∗T1,t0 +
∥∥∥∥(XN1

K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(ET1
R

)t
g
∥∥∥∥∗

R,r0

)
.

Now let N,T ∈ N. We choose N1 ≥ N,T1 ≥ T according to (P∗3)0 for E and X respectively.
Then we choose M ≥ N1, S ≥ T1 according to (T ) for N1,T1. Given K ≥ M,R ≥ S , we
choose n1, t1 ∈ N according to (P∗3)0 for K ≥ N1 ≥ N and R ≥ T1 ≥ T respectively, as well
as n0, t0 according to (T ) for K ≥ M ≥ N1,R ≥ S ≥ T1. Given m ≥ n B max {n0, n1} , s ≥
t B max {t0, t1}, we choose k0 ≥ m, r0 ≥ s, c0 > 0 according to (T ) for m ≥ n0, s ≥ t0.
Given ε > 0, we choose r1 ≥ s, cE ≥ 1 according to (P∗3)0 for E and s ≥ t1, εE B ε

2c0
,

as well as k1 ≥ m, cX > 0 according to (P∗3)0 for X and m ≥ n1, εX B ε
2c0cE

. Denoting
k B max {k0, k1} , r B max {r0, r1} and c B c0 (cXcE + 1), we obtain for all f ∈ X′N , g ∈ E′T∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
=

∥∥∥∥(XN1
M

)t (
XN

N1

)t
f
∥∥∥∥∗

M,m

∥∥∥∥(ET1
S

)t (
ET

T1

)t
g
∥∥∥∥∗

S ,s
≤

c0

∥∥∥∥(XN
N1

)t
f
∥∥∥∥∗

N1,n0

∥∥∥∥(ET
T1

)t
g
∥∥∥∥∗

T1,t0
+ c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r0
C (?) .
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If
∥∥∥∥(ET

T1

)t
g
∥∥∥∥∗

T1,t0
≤

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
, we apply (P∗3)0 for X to the first term and obtain

(?) ≤ c0εX ‖ f ‖∗N,n1

∥∥∥∥(ET
T1

)t
g
∥∥∥∥∗

T1,t0
+ c0cX

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k1

∥∥∥∥(ET
T1

)t
g
∥∥∥∥∗

T1,t0
+

c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r0

≤ ε ‖ f ‖∗N,n
∥∥∥∥(ET

T1

)t
g
∥∥∥∥∗

T1,t
+ c0cX

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
+ c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

≤ ε ‖ f ‖∗N,n ‖g‖
∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.

If
∥∥∥∥(ET

T1

)t
g
∥∥∥∥∗

T1,t0
>

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
, we apply (P∗3)0 for E to the first term and obtain

(?) ≤ c0εE

∥∥∥XN
N1

f
∥∥∥∗

N1,n0
‖g‖∗T,t1 + c0cE

∥∥∥∥(XN
N1

)t
f
∥∥∥∥∗

N1,n0

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r1
+

c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r0
C (??) .

Applying (P∗3)0 for X to the second term, we arrive at

(??) ≤c0εE

∥∥∥∥(XN
N1

)t
f
∥∥∥∥∗

N1,n0
‖g‖∗T,t1 + c0cEεX ‖ f ‖∗N,n1

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r1
+

c0cEcX

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k1

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r1
+ c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k0

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r0

≤c0εE ‖ f ‖∗N,n ‖g‖
∗
T,t + c0cEεX ‖ f ‖∗N,n

∥∥∥∥(ET
T1

)t
g
∥∥∥∥∗

T1,t0
+

c0cEcX

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
+ c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r

≤ε ‖ f ‖∗N,n ‖g‖
∗
T,t + c

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
.

�

In order to establish the aspired splitting results, we need interpolation results for couples
of duals of the Hilbert space steps XN,n giving rise to X. As we do not have those at hand
for generalized couples, we need the injectivity of the transposed of the restrictions of the
connecting morphisms XN

M |XM,n and the inclusions XN,n ↪→ XN,n+1, M ≥ N, n ∈ N. Hence we
introduce the following property, see [Dom10, (5.1)]:

Definition and Remark 3.2.3. i) A PLH space X is called deeply reduced, if there is a
PLH space spectrum

(
XN , XN

M

)
for X, such that the following hold:

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m

(1) XN
M

(
XM,m

)
⊂ XN

K
(
XK,k

)XN,k
,

(2) XN
M

(
XM,m

)
⊂ XN,n

XN,k .
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3 Splitting theory

If only (1) holds, X is called deeply reduced in columns, and if only (2) holds, it is called
deeply reduced in rows.

ii) Deep reducedness in any of its forms is passed on to equivalent PLH space spectra:

Let X = proj
(
XN , XN

M

)
be a deeply reduced (in columns, in rows) PLH space and Y =

proj
(
YT ,YS

T

)
a PLH space such that the spectra

(
XN , XN

M

)
and

(
YT ,YS

T

)
are equivalent.

Let T ∈ N. By equivalence of spectra, see (2.2.7), we may chose N ∈ N and a linear
and continuous operator γ : XN −→ YT . Then we chose M ≥ N according to the deep
reducedness of X and S ≥ T and β ∈ L (YS , XM) with γ ◦ XN

M ◦ β = YT
S . Given R ≥ S ,

we choose again by equivalence an integer K ≥ M and an operator α ∈ L (XK ,YR) such
that XM

K = β ◦ YS
R ◦ α. By deep reducedness we choose n ∈ N and with the factorization

theorem we choose an integer t ∈ N with γ
(
XN,n

)
⊂ YT,t. Given s ≥ t, we choose in

the same way an integer m ≥ n such that β
(
YS ,s

)
⊂ XM,m and choose an integer k ≥ m

by deep reducedness. For k we choose r1 ≥ s with α
(
YXK,k

)
⊂ YR,r1 and r2 ≥ s with

γ
(
XN,k

)
⊂ YT,r2 . We define r B max {r1, r2} and obtain:

YT
S
(
YS ,s

)
⊂ γ

(
XN

M
(
XM,m

))
⊂ γ

(
XN

K
(
XK,k

))Yt,r2

∩ γ
(
XN,n

)YT,r2

⊂ YT
R
(
YR,r

)YT,r
∩ γ

(
YT,t

)YT,r
.

To see the other forms of deep reducedness, we just leave out the respective factor.

Now we verify that deep reducedness indeed yields the desired injectivity of the transposed,
compare [Dom10, (5.1)]:

Proposition 3.2.4. Let X = proj
(
XN , XN

M

)
= projN∈N indn∈N XN,n be a PLH space.

i) If X is deeply reduced in rows, then there is an equivalent PLH space spectrum
(
YN ,YN

M

)
such that

∀
N∈N

∃
n∈N
∀

m≥n
YN,m

YN,m+1
= YN,m+1.

ii) If X is even deeply reduced, we can choose
(
YN ,YN

M

)
with i) and

∀
N∈N

∃
n∈N
∀

m≥n
YN

N+1
(
YN+1,m

)YN,m
= YN,m.

Proof. i) As X is deeply reduced in rows, we have

∀
N∈N

∃
M(N)≥N
n(N)∈N

∀
m≥n(N)

∃
k≥m

XN
M(M)

(
XM(N),m

)
⊂ XN,n

XN,k .
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3 Splitting theory

For integers N, n ∈ N we define:

YN,n B

 XN,n , if n < n (N) ,

XN,n(N)
XN,n

, if n ≥ n (N) ,

endowed with the relative topology. Then YN B indn∈N YN,n is an LH space and defining
YN

M B XN
M |YM ,M ≥ N, as the restrictions of the spectral maps, the continuity of which

yields the closed graph theorem, we obtain a projective spectrum
(
YN ,YN

M

)
of LH spaces

that is equivalent to
(
XN , XN

M

)
, since YN is continuously embedded into XN and XN

M(N) is
linear and continuous from XM(N) to YN for each N ∈ N by assumption and again the
closed graph theorem. Since YN is a subspace of XN ,N ∈ N, the spectrum

(
YN ,YN

M

)
is

strongly reduced, hence i) holds.

ii) By i) we may assume that

∀
N∈N

∃
n(N)∈N

∀
m≥n(N)

∃
k(N,m)≥m

XN
N+1

(
XN+1,m

)
⊂ XN

N+2
(
XN+2,k(N,m)

)XN,k(N,m)

and XN,m is dense in XN,m+1, where (k (N,m))N,m∈N may be chosen strictly increasing in
each component.

For N,m ∈ N we define:

ZN,m B


XN

N+2
(
XN+2,k(N,n(N))

)XN,k(N,n(N))
⊂ XN,k(N,n(N)) ,m < n (N) ,

XN
N+2

(
XN+2,k(N,m)

)XN,k(N,m)
⊂ XN,k(N,m) ,m ≥ n (N) .

Then ZN,m is continuously and densely embedded in ZN,m+1 for all N,m ∈ N, since
XN

N+2
(
XN+2,k(N,n(N))

)
is dense in all of those sets. Hence ZN B indm∈N ZN,m is an LH

space and defining ZN
N+1 B XN

N+1|ZN+1 ∈ L (ZN+1,ZN), we obtain a PLH space spec-
trum that is equivalent to

(
XN , XN

M

)
, since ZN is continuously embedded into XN and

XN
N+1 is continuous from XN+1 to ZN for each N ∈ N by assumption and the closed

graph theorem. The spectrum
(
ZM,ZN

M

)
does not yet yield ii), since ZN

N+1
(
ZN+1,m

)
is

only a subset of XN
N+3

(
XN+3,k(N+1,m)

)XN,k(N+1,m)
, which might not be contained in ZN,m, since

k (N + 1,m) might be strictly greater that k (N,m). But as XN
N+2

(
XN+2,m

)
is a dense subset

of ZN
N+1

(
ZN+1,m

)XN,k(N+1,m)
= XN

N+3
(
XN+3,k(N+1,m)

)XN,k(N+1,m)
as well as it a dense subset of each

ZN,ν for all ν ∈ N with k (N, ν) > k (N + 1,m) by assumption, a thinning construction
also implying (3.1.3) leads to the following:

We define Y1,m B Z1,m, m ∈ N and choose a strictly increasing sequence (l1 (m))m∈N

of natural numbers such that k (2,m) ≤ k (1, l1 (m)) which yields that Z1
2Z2,m is a dense
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3 Splitting theory

subset of Y1,l1(m) for all m ∈ N. Hence we define

Y2,v B

{
{0} , for all 1 ≤ ν < l1 (1) and

Z2,m , for all m, ν ∈ N with l1 (m) ≤ ν < l1 (m + 1) .

Then Y2,ν is a dense subspace of Y2,ν+1 for all ν ≥ l1 (n (2)) and the spectra
(
Y2,ν

)
ν∈N and(

Z2,m
)

m∈N are obviously equivalent, hence Y2 B indν∈N Y2,ν = Z2 and defining Y1
2 B Z1

2 ,
we obtain for all m ≥ n (1) and l1 (m) ≤ ν < l1 (m + 1)

Y1
2
(
Y2,ν

)
= Z1

2
(
Z2,m

)
⊂ Z1,l1(m) ⊂ Y1,ν,

where all inclusions are dense. Now we start a recursion:

We choose a strictly increasing sequence (l2 (m))m∈N of natural numbers such that
k (3,m) ≤ k (2, l2 (m)) for all m ∈ N. Then we choose another strictly increasing se-
quence (sr)r∈N of natural numbers such that l1 (sr) ≥ l2 (r) for all r ∈ N and define

Y3,v B

{
{0} , for all 1 ≤ ν < l1 (n1) and

Z3,r , for all r, ν ∈ N with l1 (sr) ≤ ν < l1 (sr+1) .

Then Y3,ν is a dense subset of Y3,ν+1 for all ν ≥ l1
(
sn(3)

)
and the spectra

(
Y3,ν

)
ν∈N and(

Z3,m
)

m∈N are obviously equivalent, hence Y3 B indν∈N Y3,ν = Z3 and defining Y2
3 B Z2

3 ,
we obtain for all r ∈ N with l2 (r) ≥ n (2)

Y2
3
(
Y3,ν

)
= Z2

3
(
Z3,r

)
⊂ Z2,l2(r) ⊂ Z2,l1(sr) = Y2,ν.

Proceeding recursively we arrive at the PLH space spectrum
(
YN ,YN

M

)
, which is equiva-

lent to
(
XN , XN

M

)
and yields ii).

�

Our last statement about deep reducedness in this section involves examples taken from
[Dom10, p. 15].

Remark 3.2.5. The space of real analytic functions is deeply reduced, as well as the Eω (Ω)
for quasianalytic weights. Moreover, all Köthe type PLH spaces are deeply reduced, hence
D ′(ω) (Ω) and Eω (Ω) are deeply reduced for non-quasianalytic weights ω. All these spaces
satisfy an even stronger condition, the dual interpolation estimate (DIE) in one variant. This
will be investigated in chapter 5.

Fréchet-Hilbert spaces are always deeply reduced and an LH space is deeply reduced if and
only if its strong dual is countably normed, cf. (3.4.1) i).

Finally we state Vogt’s version [Vog11, (1.1)] of Domański’s and Mastyło’s interpolation
result [DM07, (3.1)] for the readers convenience:
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3 Splitting theory

Theorem 3.2.6. Let α, β > 0 and let (F0, F1) , (G0,G1) be two pairs of pre-Hilbert spaces and
F,G two pre-Hilbert spaces with F ⊂ F0 ∩ F1,G ⊂ G0 ∩G1 such that

‖x‖F ‖y‖G ≤ α ‖x‖F0 ‖y‖G0
+ β ‖x‖F1 ‖y‖G1

for all x ∈ F, y ∈ G.

Then

‖u‖F⊗πG ≤ α ‖u‖F0⊗πG0 + β ‖u‖F1⊗πG1 for all u ∈ F ⊗π G.

Now we can start the investigation of the vanishing of proj1 L in the three announced cases:

3.3 E is a Hilbert space

If E is a Hilbert space, the methodology to prove necessity differs significantly from the other
cases. Thus we treat it separately: If E is a finite dimensional Hilbert space, then proj1 L
vanishes if and only if proj1 X vanishes. Thus (3.1.4) implies on the one hand that (Tε) is
sufficient and that (T ) is necessary for the vanishing of proj1 L but on the other hand that
the other implications are either not true or out of reach. If E is of infinite dimension, we
prove a complete characterization. To prove necessity, we generalize [Wen03, (3.3.15)], which
characterizes under which circumstances X has (P∗3)0. In the Fréchet-Hilbert case Domański
and Mastyło use a similar statement without giving a proof, cf. [DM07, (4.1)], and Vogt uses
a dual statement (also without proof) in the proof of necessity [Vog11, (4.2), “3.⇒ 1.”]. To
prove sufficiency we use a condition due to Frerick and Wengenroth, cf. [FW96, (2.3)] in the
more elegant form of [Wen03, (3.2.14)].

Proposition 3.3.1. For a PLH space X = proj X = proj
(
XN , XN

M

)
with ΨX :

∏
N∈N XN −→∏

N∈N XN , (xN)N∈N 7→
(
xN − XN

N+1 (xN+1)
)

N∈N
the following are equivalent:

i) X has (P∗3)0.

ii) ΨX lifts bounded sets that span `2.

Proof. Since (P3)0 and (P∗3)0 are equivalent, [Wen03, (3.3.15)] yields that i) is equivalent
to ΨX lifting bounded sets, which obviously implies ii). Hence it remains to show that if
X does not fulfill (P∗3)0, then there is a bounded subset B ⊂

∏
N∈N XN with ([B] , pB) � `2

that is not lifted by ΨX . To obtain such a set B, we construct a quotient spectrum Y =(
YN ,YN

M

)
of X consisting of separable quotients YN of XN not fulfilling (P∗3)0. We consider

the LFH spectrum X ′ =

(
X′N ,

(
XN

N+1

)t
)
, which does not fulfill condition (M) of Retakh. Not

having (M) is equivalent to either not fulfilling condition (wQ) or not being boundedly stable
by [Wen95, (3.8)]. ii) implies the surjectivity of ΨX which characterizes the vanishing of
proj1 X by [Wen03, (3.1.4)], which is equivalent to X being weakly acyclic by (3.1.1). As
weak acyclicity implies condition (wQ) by [Vog92, (2.3) b)], X is not boundedly stable.
Hence there is a step N0 and a bounded subset A0 ⊂ XN0 such that for every M ≥ N0 there is
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3 Splitting theory

a K (M) ≥ M such that the topology of X′M is strictly finer on A0 than that of X′K(M), i.e. for
every M ≥ N0 there is a sequence

(
z(M)

l

)
l∈N

in A0 which is convergent in X′K(M) but not in X′M.
We define

A B
{
z(M)

l : l ∈ N,M ≥ N0

}
and Y ′N B


(
XN0

N

)t
([A])

X′N
⊂ X′N ,N ≥ N0

{0} ,N < N0.

Defining
(
YN

N+1

)t
as the restriction of

(
XN

N+1

)t
to Y ′N+1, we obtain an LFH spectrum Y ′ =(

Y ′N ,
(
YN

N+1

)t
)

of separable subspaces of X′N . As X′N is the projective limit of the spectrum

induced by the sequence of Hilbert spaces
(
X′N,n

)
n∈N

and the transposed of the inclusions

XN,n ↪→ XN,n+1,N, n ∈ N, the spaces Y ′N (N ∈ N) are projective limits of sequences
(
Y ′N,n

)
n∈N

of separable subspaces of X′N,n, n ∈ N. Thus the strong dual YN of Y ′N is a separable quotient of
XN as it is the inductive limit of the sequence

(
YN,n

)
n∈N of (strong) duals of Y ′N,n, n ∈ N. Hence

Y B
(
YN ,YN

M

)
, where YN

M is the transposed of
(
YN

M

)t
, is a quotient spectrum of X , which is

dual to Y ′. Thus the same argument as before, just backwards, yields, that (P∗3)0 does not hold
for Y , as Y ′ is not boundedly stable by construction. Then [Wen03, (3.3.15)] guarantees a
bounded subset C ⊂

∏
N∈N YN that is not lifted by ΨY . Without loss of generality we may as-

sume that there is a strictly increasing sequence (n (N))N∈N of natural numbers and a sequence
of positive scalars (ωn)n∈N such that C is the closed unit ball of the `2-sum of the sequence(
YN,n(N), ωn ‖·‖

Y
N,n(N)

)
N∈N

, cf. (4.2.5). Here ‖·‖YN,n denotes the quotient norm for N, n ∈ N. Since
it is easy to verify that the `2-sum of separable Banach spaces is separable, C spans `2. Now
we lift C to the desired bounded subset B ⊂

∏
N∈N XN , which spans `2 and does not lift with

respect to ΨX .
Denoting by qN : XN −→ YN (N ∈ N) the quotient map and by EY , EX the `2-sums of(

YN,n(N), ωn ‖·‖
Y
N,n(N)

)
N∈N

and
(
XN,n(N), ωn ‖·‖

X
N,n(N)

)
N∈N

respectively, we have induced quotient
maps (qN)N∈N :

∏
N∈N XN −→

∏
N∈N YN , q : X −→ Y B proj Y and Q : EX −→ EY as well

as a commutative diagram

0 // X
iX //

q
��

∏
N∈N XN

ΨX //

(qN )N∈N
��

∏
N∈N XN

(qN )N∈N
��

EX
jXoo

Q
��

0 // X
iY //∏

N∈N YN
ΨY //∏

N∈N YN EY ,
jYoo

where iX, iY , jX and jY are the canonical inclusions, i.e. component-by-component, and ΨY

is the canonical map. As EX and EY are Hilbert spaces, there is a linear and continuous
right inverse R : EY −→ EX of Q. We define B B jX (R (C)). Then B is a bounded subset
of

∏
N∈N XN that spans `2. Assuming that B can be lifted by ΨX , we arrive at a bounded

subset A ⊂
∏

N∈N XN with ΨY
(
(qN)N∈N (A)

)
= (qN)N∈N (ΨX (A)) = (qN)N∈N ( jX (R (C))) = B, a

contradiction, since (qN)N∈N (A) is a bounded subset of
∏

N∈N YN . �
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Theorem 3.3.2. Let E be Hilbert space of infinite dimension and X = projN∈N indn∈N XN,n be
a PLH space. Denoting L B

(
L (E, XN) , XN

M
∗
)
, the following holds:

proj1 L = 0 if and only if (E, X) satisfies (Tε)
(
if and only if X satisfies (P∗3)0

)
.

Proof.
Necessity: Assuming that (Tε) or equivalently (P∗3)0 does not hold, (3.3.1) yields a bounded
subset B ⊂

∏
N∈N XN with ([B] , pB) � `2 that does not lift with respect to ΨX . As the di-

mension of E is not finite, their is a quotient map T : E −→ `2 � ([B] , pB) ↪→
∏

N∈N XN . As
T (BE) = B, T cannot lift with respect to ΨX . Hence proj1 L , 0 by [Wen03, (3.1.4)], since
ΨL :

∏
N∈N L (E, XN) −→

∏
N∈N L (E, XN) is not surjective.

Sufficiency: As usual, we endow the steps L (E, XN) of L with the associated ultrabornologi-
cal topology to the topology of convergence on all bounded subsets of E, which coincides with
the inductive limit topology Lb (E, XN) = indn∈N L

(
E, XN,n

)
C LN ,N ∈ N , cf. [Wen03, p.86].

Hence the system
{
W

(
BE, BN,n

)
: n ∈ N

}
, where W

(
BE, BN,n

)
B

{
T ∈ L

(
E, XN,n

)
: T (BE) ⊂

BN,n
}
, is a fundamental system of Banach discs in Lb (E, XN) by the factorization theorem for

all N ∈ N. Thus (P∗3)0 in the form (P3)0 implies that the following condition holds for L :

∀
N∈N

∃
M≥N

∀
K≥M

∃
B∈BD(LN )

∀
R∈BD(LM)

∃
S∈BD(LK )

XN
M
∗ (R) ⊂ B + XN

K
∗ (S ) ,

which is sufficient for the vanishing of proj1 L by [Wen03, (3.2.14)]. �

3.4 E is a Fréchet-Hilbert space

We prove that the vanishing of proj1 L is characterized by condition (Tε) for the pair (E′, X) if
E is a proper Fréchet-Hilbert space. The analogon for a PLS space X and an FS space E in the
successors of the four standard cases can be found in [BD06, (4.1)]. The basic idea of the proof
is similar to that of the Fréchet-Hilbert case in [Vog11]: Necessity needs a variant of [Vog87,
(3.3)] to guarantee (P∗3)0 for X, cf. (3.4.4), and as we need the interpolation theorem (3.2.6) to
prove sufficiency, we need X to be deeply reduced and E to be countably normed, which leads
to the following well-known definitions and a proof by cases, cf. [Vog87, Wen03, BD06]:

Definition and Remark 3.4.1. i) A Fréchet-Hilbert space E is called countably normed
if there is a strongly reduced projective spectrum

(
Eν, Eν

µ

)
of Hilbert spaces giving rise

to E such that

∃
ν∈N
∀
µ≥ν
∃
κ≥µ
∀

x∈Eκ
Eν
κ (x) = 0⇒ Eµ

κ (x) = 0. (?)

It is a well-known fact that this is equivalent to the existence of a strongly reduced rep-
resenting projective spectrum

(
Fν, Fν

µ

)
with injective spectral maps. Thus, we only give
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an outline of the proof: Necessity is obvious. Sufficiency: Let ν be chosen according to
(?) and define F1 B Eν. Then we choose κ ≥ µ B ν + 1 according to (?) and define
F2 B Eµ

κEκ, endowed with the quotient topology and F1
2 B Eν

µ|F2 , which is injective by
construction. Proceeding recursively yields the assertion.

ii) A PLH space X is called strict if there is a representing PLH space spectrum
(
XN , XN

M

)
such that

∀
N∈N

∃
M≥N

∀
K≥M

XN
MXM ⊂ XN

K XK . (??)

In complete analogy to (3.4.1) i) this is equivalent to the existence of a representing
spectrum with surjective linking maps: Necessity is obvious. Sufficiency: For every
N ∈ N we choose M (N) ≥ N according to (??) and define YN B XN

M(N)XM(N) endowed
with the quotient topology. Furthermore, we define YN

N+1 B XM(N)
M(N+1)|YN+1 , obtaining a

PLH spectrum
(
YN ,YN

M

)
yielding the assertion. Of course this characterization holds for

arbitrary projective spectra of locally convex spaces. Furthermore, this implies that strict
projective spectra of locally convex spaces (or vector spaces) X satisfy proj1 X = 0,
since the surjectivity of the linking maps implies the surjectivity of the canonical map
ΨX .

Proposition 3.4.2. Let X be a PLH space and let E be a Fréchet-Hilbert space such that
(E′, X) satisfies condition (Tε). If E is not countably normed, then X is strict.

Proof. Given N ∈ N, we choose M ≥ N according to (Tε), as well as n, ν ∈ N for every
K ≥ M. As E is not countably normed, we may choose µ ≥ ν according to the negation of
(3.4.1) i). Given m ≥ n, we choose k ≥ m, κ ≥ µ and c > 0 for m ≥ n, µ ≥ ν and ε B 1
according to (Tε). Again with (3.4.1) i) we choose an x ∈ Eκ with Eµ

κ (x) , 0 and Eν
κ (x) = 0.

As (Tε) holds for all x ∈ Eκ as well by (3.2.1) v), the following holds for all f ∈ X′N:

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
=

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m

∥∥∥Eµ
κ x

∥∥∥
µ∥∥∥Eµ

κ x
∥∥∥
µ

≤ ‖ f ‖∗N,n

∥∥∥Eν
κ x

∥∥∥
ν∥∥∥Eµ

κ x
∥∥∥
µ

+ c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k

‖x‖κ∥∥∥Eµ
κ x

∥∥∥
µ

= c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k

‖x‖κ∥∥∥Eµ
κ x

∥∥∥
µ

.

Hence the bipolar theorem yields that

XN
MXM =

⋃
m∈N

XN
MBM,m ⊂

⋃
k∈N
c>0

cXN
K BK,k ⊂ XN

K XN
K ,
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e.g. X is strict. �

Proposition 3.4.3. Let X = proj
(
XN , XN

M

)
be a PLH space, E a Fréchet-Hilbert space and

L B
(
L (E, XN) , XN

M
∗
)
. If X is strict, then so is L .

Proof. As usual, we endow the steps L (E, XN) of L with the associated bornological topology
to the topology of convergence on all bounded subsets of E, which coincides with the inductive
limit topology Lb (E, XN) = indν,n∈N L

(
Eν, XN,n

)
C LN ,N ∈ N , cf. [Wen03, p.86]. Hence the

system
{
W

(
Bν, BN,n

)
: n, ν ∈ N

}
, where W

(
Bν, BN,n

)
B

{
T ∈ L

(
Eν, XN,n

)
: T (Bν) ⊂ BN,n

}
, is a

fundamental system of Banach discs in LN by the factorization theorem for all N ∈ N. Given
N ∈ N we choose M ≥ N such that XN

MXM ⊂ XN
K XK for all K ≥ M. Then the factorization

theorem yields for any m ∈ N an integer k ≥ m and a constant c > 0 such that XN
MBM,m ⊂

cXN
K BK,k, hence XN

M
∗ (W (

Bν, BM,m
))
⊂ XN

K
∗ (W (

Bν, cBK,k
))

for all ν ∈ N. Thus XN
M
∗ (LM) ⊂

XN
K
∗ (LK), i.e. L is strict. �

The following result is a variant of a construction due to Vogt, cf. proof of [Vog87, (3.3)],
which will allow us to forgo condition (P∗3)0 for X in the splitting result (3.4.5).

Proposition 3.4.4. Let E = proj
(
Eν, Eν

µ

)
be a non-normable Fréchet-Hilbert space and X =

projN∈N indn∈N XN,n a PLH space such that (E′, X) satisfies condition (T ). Then X satisfies the
condition (P∗3)0.

Proof. To begin with, we prove the following:

∀
ν∈N
∃
µ≥ν
∀
δ>0
∃

x∈E
0 <

∥∥∥Eν
∞x

∥∥∥
ν
≤ δ

∥∥∥Eµ
∞x

∥∥∥
µ
. (?)

For every ν ∈ N there is a µ ≥ ν such that the seminorms
∥∥∥Eν
∞ (·)

∥∥∥
ν

and
∥∥∥Eµ
∞ (·)

∥∥∥
µ

are not
equivalent on E, since E is not normable. Furthermore, for every δ > 0 there is an x ∈ E such
that δ

∥∥∥Eµ
∞ (x)

∥∥∥
µ
>

∥∥∥Eν
∞ (x)

∥∥∥
ν
, since Eν

µ is continuous. We may assume additionally
∥∥∥Eν
∞ (x)

∥∥∥
ν
>

0, since presuming that
∥∥∥Eν
∞ (x)

∥∥∥
ν
> 0 implies δ

∥∥∥Eµ
∞ (x)

∥∥∥
µ
≤

∥∥∥Eν
∞ (x)

∥∥∥
ν

for all x ∈ E, we arrive
at the openness of Eν

µ, since the restricted projection Eµ
∞ has dense range, a contradiction to

the assumption.�
Since E is a Fréchet-Hilbert space, we may write condition (T ) for (E′, X) in the following

form:

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
ν∈N

∀
m≥n
µ≥ν

∃
k≥m
κ≥µ
c0>0

∀
f∈X′N
x∈E∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥Eµ
∞ (x)

∥∥∥
µ
≤ c0

(
‖ f ‖∗N,n

∥∥∥Eν
∞ (x)

∥∥∥
ν

+
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k

∥∥∥Eκ
∞ (x)

∥∥∥
κ

)
.

Now let N ∈ N. We choose M ≥ N according to (T ), as well as n, ν ∈ N for given K ≥ M.
Then we choose µ ≥ ν according to (?). Given m ≥ n, ε > 0, we choose k ≥ m, κ ≥ µ, c0 > 0
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according to (T ) and x ∈ E according to (?) for δ B ε
c0

. Thus, defining c B
c0‖Eκ

∞x‖κ
‖E

µ
∞x‖µ

, we

obtain for all f ∈ X′N

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
=

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m

∥∥∥Eµ
∞x

∥∥∥
µ∥∥∥Eµ

∞x
∥∥∥
µ

≤ c0 ‖ f ‖∗N,n

∥∥∥Eν
∞x

∥∥∥
ν∥∥∥Eµ

∞x
∥∥∥
µ

+ c0

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥Eκ
∞x

∥∥∥
κ∥∥∥Eµ

∞x
∥∥∥
µ

≤ ε ‖ f ‖∗N,n + c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k
,

which is (P∗3)0 for X. �

The following theorem gives an answer to a variation of [BD06, problem (9.9)]:

Theorem 3.4.5. Let X = projN∈N indn∈N XN,n be a deeply reduced PLH space and E = projν∈N
Eν a non-normable Fréchet-Hilbert space. Then the following are equivalent:

i) proj1 L = 0.

ii) (E′, X) satisfies (Tε).

iii) (E′, X) satisfies (T ).

Proof. According to (3.1.5) the LF spectrum H B
(
HN ,HN+1

N

)
B

(
E⊗̃πX′N , idE ⊗̃π

(
XN

N+1

)t
)

is

pre-dual to L . Let us check quickly that the operators idE ⊗π

(
XN

N+1

)t
are injective: First of

all, as XN
N+1 has dense range by (2.2.10) ii), its transposed

(
XN

N+1

)t
is injective. Furthermore,

since the spaces E, X′N and X′N+1 are Fréchet-Hilbert spaces, i.e. complete with approximation
property by [Köt79, §43, 1. (3)], the respective projective tensor products coincide with the
respective spaces of bilinear mappings by [Köt79, §43, 2. (12)]. Thus the unique extension
of idE ⊗π

(
XN

N+1

)t
to the completion is injective. Hence with (3.1.1) the vanishing of proj1 L is

equivalent to the weak acyclicity of H .
Necessity of (T ): As in (3.1.4), H has property (wQ), which implies by exchange of quanti-
fiers the following condition:

∀
N∈N

∃
M≥N

∀
K≥M

∃
U∈U0(HN )

∀
V∈U0(HM)

∃
W∈U0(HK )

c>0

HK
N (U) ∩W ⊂ cHK

M (V) .

Since HL = projl∈N El⊗̃πXL,l for every L ∈ N by [Köt79, §41, 6. (3)] and π
(
y ⊗ g; El, X′L,l

)
=
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‖y‖l ‖g‖
∗
L,l for all L, l ∈ N and y ∈ El, g ∈ X′L,l by [DF93, 3.2 (3)], this implies

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N

∀
m≥n
∃

k≥m
c>0

∀
f∈X′N
x∈E

If π
(
En
∞ (x) ⊗ f ; En, X′N,n

)
≤ 1 and π

(
Ek
∞ (x) ⊗

(
XN

K

)t
( f ) ; Ek, X′K,k

)
≤ 1,

then π
(
Em
∞ (x) ⊗

(
XN

M

)t
( f ) ; Em, X′M,m

)
≤ c,

which is condition (T d) for (E′, X), hence (T ) holds for (E′, X) by (3.2.1) ii) b).
(T ) implies (Tε): Since E is not normable, X satisfies condition (P∗3)0 by (3.4.4). If E′ is an
LH space the second case in the proof of (3.2.2) is not possible, hence we have (Tε) for (E′, X)
with (3.2.2).
Sufficiency: If E is not countably normed, then X is strict by (3.4.2), hence so is L with
(3.4.3), which implies proj1 L = 0 by (3.4.1) ii). Thus we may assume by (3.4.1) that E is
the projective limit of a (strongly reduced) spectrum

(
Eν, Eν

µ

)
of Hilbert spaces with injective

spectral maps. First of all, in complete analogy to the proof of necessity, just backwards,
condition (Tε) in the form (3.2.1) v), i.e.

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
ν∈N

∀
m≥n
µ≥ν
ε>0

∃
k≥m
κ≥µ
c>0

∀
f∈X′N,k
x∈Eκ∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m

∥∥∥Eµ
κ x

∥∥∥
µ
≤ ε ‖ f ‖∗N,n

∥∥∥Eν
κ x

∥∥∥
ν

+ c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k
‖x‖κ,

corresponds exactly to the norm inequality, that is the equivalent of condition (Q)0 for H :

∀
N∈N

∃
M≥N

∀
K≥M

∃
U∈U0(HN )

∀
V∈U0(HM)

∃
W∈U0(HK )

HK
N (U) ∩W ⊂ HK

M (V) ,

though only for elementary tensors x ⊗ f ∈ Eκ⊗̃X′N,k. To deduce from that the norm inequality
for all elements of the tensor product Eκ⊗̃πX′N,k, we need Vogt’s interpolation result (3.2.6).
This is where we need E to be countably normed and X to be deeply reduced: We define

F0 B X′N,n, F1 B X′K,k and F B
(
X′N,k,

∥∥∥∥(XN
M

)t
(·)

∥∥∥∥∗
M,m

)
, as well as G0 B Eν,G1 B Eκ and

G B
(
Eκ,

∥∥∥Eν
µ (·)

∥∥∥
µ

)
and α B ε, β B c. Since X is deeply reduced in rows, F = X′N,k is a

subspace of F0 = X′N,n and since X is deeply reduced in columns, F is a subspace of F1 = X′K,k.
Furthermore, the deep reducedness of X implies that F is a pre-Hilbert space and F0 as well
as F1 are injectively and continuously embedded into X′K,n, hence we have a Hilbert couple
(F0, F1) with F ⊂ F0 ∩ F1. At length, since E is countably normed, (G0,G1) is a Hilbert
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couple (which is even ordered) and G ⊂ G0 ∩G1. Hence (3.2.6) yields that the desired norm
inequality holds for all u ∈ Eκ ⊗π X′N,k. Since the inclusions Eκ⊗̃πX′N,k ↪→ Z are continuous for
Z ∈

{
Eµ⊗̃πX′M,m, Eν⊗̃πX′N,n, Eκ⊗̃πX′K,k

}
, the desired inequality holds for all u ∈ Eκ⊗̃πX′N,k, which

yields (Q)0 for H , which hence is acyclic by (3.1.2). Since acyclicity implies weak acyclicity,
(3.1.1) gives the conclusion. �

Together with (2.3.6) ii) the previous theorem (3.4.5) and (3.3.2) yield the following split-
ting result that generalizes Domański’s and Mastyło’s splitting result for Fréchet-Hilbert spa-
ces [DM07, (4.2)]:

Corollary 3.4.6. Let E = proj
(
Eν, Eν

µ

)
be a Fréchet-Hilbert space and X = proj

(
XN , XN

M

)
be a deeply reduced PLH space with proj1 X = 0. If Ext1

LH (Eν, XN) = 0 for all ν,N ∈

N, then Ext1
PLH (E, X) = 0 if and only if the pair (E′, X) has property (Tε). Furthermore,

Extk
PLH (E, X) = 0 for all k ≥ 2.

Our proof of sufficiency of (Tε) for splitting in (3.4.5) depends heavily on X being deeply
reduced, as otherwise we can not interpolate. Although general necessity statements are not
possible, we can show the following:

Remark 3.4.7. If E is a countably normed Fréchet-Hilbert space and X is a PLH space such
that (E′, X) satisfies (Tε), then either X is deeply reduced in columns or E is a Hilbert space.
Note that in the latter case proj1 L = 0 by (3.3.2):

Let K ≥ M ≥ N, k ≥ m ≥ n, κ ≥ µ ≥ ν, ε > 0 and c > 0 be given by (Tε) and its quantifiers.
If X is not deeply reduced in columns, there is an f ∈ X′N,k such that

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
does not

vanish but
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k
does. Then (Tε) yields, that for all µ ≥ ν and for all x ∈ E we have

‖x‖µ ≤ c
‖ f ‖∗N,n∥∥∥∥(XN
M)t

f
∥∥∥∥∗

M,m

‖x‖ν, hence E is a Hilbert space.

3.5 E is an LH space

If E is a proper LH space, the situation is more complex than in the Fréchet-Hilbert case: First
of all, as we want to use methods for proj1 of spectra of separated LB spaces, we have to con-
sider the spectrum K B

(
L (EN , XN) , EM

N ∗ ◦ XN
M
∗
)

instead of L . We start by establishing the
connection between proj1 L and proj1 K with the help of Grothendieck’s spectral sequences.
A similar result in the PLS context has been proven by Bonet and Domański in [BD08, (3.4)]
with functional analytic methods and without the assumption of local splitting.

Proposition 3.5.1. Let X = proj
(
XN , XN

M

)
be a PLH space and E = ind

(
Eν, E

µ
ν

)
an LH space.

Considering the induced projective spectra of operator spaces L B
(
L (E, XN) , XN

M
∗
)
, LN B(

L (Eν, XN) , Eµ
ν ∗

)
,N ∈ N and K B

(
L (EN , XN) , EM

N ∗ ◦ XN
M
∗
)
, we obtain

i) If proj1 K = 0, then proj1 L = 0.
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ii) If proj1 LN = 0 for all N ∈ N, then proj1 K � proj1 L .

Proof. Since K is the diagonal spectrum of the double tower ˜K B
(
L (Eν, XN) , Eµ

ν ∗ ◦ XN
M
∗
)
,

hence equivalent to ˜K , since for M ≥ N, µ ≥ ν, L B max {M, µ} ,K B min {N, ν} the diagram

L (EL, XL)
EL

K ∗◦XK
L
∗

//

EL
µ ∗
◦XM

L
∗

��
	

L (EK , XK)

L
(
Eµ, XM

)
Eµ
ν ∗◦XN

M
∗
// L (Eν, XN)

EK
ν ∗◦XK

N
∗

OO

commutes, the vector spaces projk K and projk ˜K are isomorphic for each k ≥ 0 by [Wen03,
(4.1.7)]. The application of Grothendieck’s spectral sequence, “proj1 of a double tower”, see
e.g. [Wei94, (5.8.7)], yields an exact sequence of vector spaces

0 −→ proj1 proj LN −→ proj1 ˜K −→ proj proj1 Ln −→ 0,

which yields the assertions since proj LN = L . �

Another problem is, that, in general, we can not expect condition (Tε) to characterize the
vanishing of proj1 K . As the following, rather trivial, example shows, even very nice spaces
E can exhibit very bad behavior regarding characterizing conditions:

Example 3.5.2. Let E = ϕ =
⊕

ν∈N
Kν and X = proj

(
XN , XN

M

)
a Fréchet-Hilbert space with

proj1
(
XN , XN

M

)
= 0 that is not quasinormable, cf. [MV97, (27.33)]. Since, as a direct sum of

finite dimensional Hilbert spaces, E is a projective object in the category of LH spaces (even
in LCS), we have Ext1

LH (E, XN) = 0,N ∈ N, hence 0 = Ext1
PLH (E, X) = proj1 L = proj1 K

by (2.3.6) ii) and (3.5.1). However, the pair (E′, X) can not have property (Tε), since X does
not have property (P∗3)0 by [MV97, (26.14)].

Of course, if E contains a complemented copy of `2, then the vanishing of proj1 L implies
(P∗3)0 for X:

Remark 3.5.3. If X = proj X = proj
(
XN , XN

M

)
is a PLH space and E = indν∈N Eν is an LH

space that contains a complemented copy of `2 such that proj1 L = 0, then X has (P∗3)0:
We use (3.3.1) to prove the claim: Without loss of generality we may assume E1 = `2 with

continuous projection P : E −→ E1. Let B be a bounded subset of
∏

N∈N XN that spans `2 � E1.
Then P is a linear and continuous operator from E to ([B] , pB) ↪→

∏
N∈N XN , hence there is a

linear and continuous operator R : E −→
∏

N∈N XN with ΨX ◦ R = P, as proj1 L = 0. Thus
R

(
B`2

)
is a lifting of B with respect to ΨX and (3.3.1) yields the conclusion.

In general, we can neither renounce the acyclicity of E nor condition (P∗3)0 of X for the
characterization. Even characterizing condition (P∗3)0 for special spaces E, as the dual S ′ of
the space s of rapidly decreasing sequences, that does not contain a complemented copy of `2,
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but is rather nice in any other sense, as nuclearity, separability etc., seems to be out of reach.
However, we are able to prove the following analogon of the characterization of the vanishing
of proj1 K in the PLS setting [BD08, (3.1)]:

Theorem 3.5.4. Let E =
(
Eν, E

µ
ν

)
an LH space and X = proj

(
XN , XN

M

)
a deeply reduced PLH

space. If E is acyclic and X has (P∗3)0, then proj1 K vanishes if and only if the condition
(Tε) holds for the pair (E′, X) if and only if the condition (T ) holds for the pair (E′, X). Here
K =

(
L (EN , XN) , EM

N ∗ ◦ XN
M
∗
)
, cf. (3.5.1).

Proof. The proof is very similar to that of (3.4.5):

According to (3.1.5), H B
(
HN ,HN+1

N

)
B

(
EN⊗̃πX′N , E

N+1
N ⊗̃π

(
XN

N+1

)t
)

is an LF spectrum

with injective linking maps that is pre-dual to K . Hence with (3.1.1) the vanishing of proj1 K

is equivalent to the weak acyclicity of H .
Necessity of (T ): In complete analogy to the proof of necessity in (3.4.5) we have that (E′, X)
has property (T ):

Since HN = projn∈N EN⊗̃πX′N,n, by [Köt79, §41, 6. (3)], exchanging quantifiers in condition
(wQ) implies the following condition

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N

∀
m≥n
∃

k≥m
c>0

∀
f∈X′N
x∈EN

If π
(
x ⊗ f ; EN , X′N,n

)
≤ 1 and π

(
EK

N (x) ⊗
(
XN

K

)t
( f ) ; EK , X′K,k

)
≤ 1,

then π
(
EM

K (x) ⊗
(
XN

M

)t
( f ) ; EM, X′M,m

)
≤ c,

which is condition (T d) for (E′, X), which is equivalent to (T ) by (3.2.1) ii) b). As E is acyclic,
E′ satisfies (P∗3)0 by (3.1.4).
(T ) implies (Tε): is (3.2.2).
Sufficiency of (Tε): Exactly as in the proof of sufficiency of (3.4.5) we see that condition (Tε)
in the form (3.2.1) v) corresponds exactly to the norm inequality, that correlates to condition
(Q)0 for H , though only for elementary tensors x ⊗ f ∈ Eν⊗̃X′N,k. The same application of
the interpolation result (3.2.6) yields that this inequality holds for all elements of the tensor
product Eν ⊗π X′N,k and again the continuity of the respective inclusions yields the inequality
for all u ∈ Eν⊗̃πX′N,k. Hence (Q)0 holds for H , which implies (M) by (3.1.2), hence H is
acyclic. Thus proj1 K = 0 by (3.1.1). �

Together with (2.3.6) ii) the previous theorem (3.5.4) and (3.5.1) yield the following split-
ting result:

Corollary 3.5.5. Let E = ind
(
Eν, E

µ
ν

)
be an LH space and X = proj

(
XN , XN

M

)
a deeply reduced

PLH space with proj1 X = 0 and (P∗3)0 such that Ext1
LH (E, XN) = 0 for all N ∈ N. Then the

following characterizations hold:
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3 Splitting theory

i) If X has at least one step XN0 with infinite dimension, then Ext1
PLH (E, X) = 0 if and only

if the pair (E′, X) has property (Tε). Furthermore, Extk
PLH (E, X) = 0 for all k ≥ 2.

ii) If all XN are of finite dimension and E is acyclic, then Ext1
PLH (E, X) = 0 if and only if

the pair (E′, X) has property (Tε) and in addition Extk
PLH (E, X) = 0 for all k ≥ 2.

Proof. First of all the vanishing of the local Ext groups Ext1
LH (E, XN) ,N ∈ N, is equivalent

to the vanishing of the dual Ext groups Ext1
FH

(
X′N , E

′
)
,N ∈ N, by (2.2.6), which in turn is

equivalent to the vanishing of proj1 L ′
N by (2.3.6), where L ′

N =
(
L

(
X′N , E

′
ν

)
,
(
Eµ
ν

)t ∗
)
. Us-

ing a simple duality argument, this is equivalent to the vanishing of proj1 LN , where LN =(
L (Eν, XN) , Eµ

ν ∗

)
. Thus the vanishing of the local Ext groups is exactly the requirement we

need for (3.5.1), hence (3.5.4) yields the assertion, as the vanishing of Ext1
FH

(
X′N0

, E′
)
,N ∈ N,

yields the acyclicity of E with (3.4.6) for (3.5.5) i). �

As in section 3.4, the proof of sufficiency of (Tε) for splitting in (3.5.4) depends heavily
on X being deeply reduced, as otherwise we can not interpolate. Although general necessity
statements are not possible, the following holds in complete analogy to (3.4.7):

Remark 3.5.6. If E is an LH space and X is a PLH space such that (E′, X) satisfies (Tε), then
either X is deeply reduced in rows or E is a strict LH space.

54



4 The Hilbert tensor product

Locally convex tensor products were introduced and studied extensively by A. Grothendieck
[Gro55] in the fifties of the past century. One of the many reasons for the prominence of
this area is the tensor product representation of many spaces of vector valued functions as
the space of vector valued distributions, cf. [Sch58], and the spaces of holomorphic, real
analytic or smooth functions, cf. [Dom11], which connects the parameter dependence problem
for linear partial differential operators with constant coefficients to the problem under which
conditions the tensorized operator remains surjective when extended to the completed tensor
product. In this context the vanishing of proj1 for tensorized spectra of PLS and PLN (or
FN) spaces has been studied by Domański and Bonet and a complete characterization with a
large variety of applications is given in [BD06, BD07, BD08, Dom10, Dom11]. Due to its
rather complex structure, the space of real analytic functions received particular interest i.a.
by Bonet, Domański, Frerick and Vogt, cf. [Vog75, Vog83a, BD98, DV00a, BD01, BDV02,
DFV03, Vog04, Dom10].

In order to implement such a theory for PLH spaces, we can not limit ourselves to the ε or
π tensor product as even `2⊗̃α`2 is not reflexive for α ∈ {ε, π}, cf. [MV97, (16.27)]. Hence,
contrary to the PLS situation, we can not expect the local tensor products EN⊗̃αXN , α ∈ {ε, π}
for two PLH spaces E = proj

(
ET , ET

S

)
and X = proj

(
XN , XN

M

)
to be ultrabornological, reflexive

or even an LH space. For positive results in this direction the premises are very restrictive, cf.
[Hol80]. Hence the results for the vanishing of proj1 for projective spectra of separated LB
spaces are not applicable in the context of neither the ε nor the π tensor product. Thus, our
first aim is to establish a suitable tensor topology Tσ on the tensor product of two hilbertizable
lcs E and F – i.e. lcs with fundamental systems of Hilbert seminorms (see [MV97, p. 344]) –
creating a hilbertizable lcs E ⊗σ F, which is in a certain sense compatible with the PLH space
structure, see (4.2.14), as the ε and π topologies are compatible with the PLS space structure,
cf. [Pis10, p. 158].

In contrast to the standard method to define a tensor topology for locally convex spaces,
cf. [DF93, chap. 35], we will define in section 4.1 a Hilbert tensor seminorm directly on the
tensor products of the local seminormed spaces and prove that it is finitely generated and both
injective and projective. In section 4.2 we define the corresponding tensor topology Tσ and
prove that it is compatible with the LH space structure to establish the announced compatibility
with the PLH space structure, which will in fact involve the positive solution of Grothendieck’s
problème des topologies for the tensor topology Tσ. Moreover, we will prove a surjectivity
criterion for tensorized operators and the tensor topology Tσ. Based on the results of section
4.2 we will investigate the vanishing of proj1 for tensorized spectra of PLH spaces in section
4.3. To begin with we establish the traditional connection between surjectivity of tensorized
operators and the vanishing of proj1 for tensorized spectra. Then we prove that the vanishing
of proj1 is passed on from PLH spaces to the σ tensor product with Hilbert spaces. Finally we
characterize the vanishing of proj1 for the tensorized spectrum of both a nuclear Fréchet space
and a PLN space E and a PLH space X under mild assumptions with our condition (Tε), thus
proving Bonet and Domański’s result [BD06, BD08, Dom10] in the category of PLH spaces
and generalizing Varol’s result [Var02, (4.2.2)]. Since we only have interpolation in the sense
of (3.2.6) for nuclear operators we can not forgo nuclearity.
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4 The Hilbert tensor product

4.1 Semi-unitary spaces

Given two Banach spaces E and F, there is a variety of reasonable tensor norms on the tensor
product E ⊗ F (see e.g. [DF93]), the ε norm being the smallest, the π norm the largest of
those norms. This variety creates the problem of finding the “right” tensor norm to deal with
for specific applications. As mentioned in the introduction of this chapter, we are interested
in a semi-scalar product on the tensor product of semi-unitary spaces, i.e. spaces carrying
semi-scalar products.

Given two semi-unitary spaces E and F, the problem of finding the “right” semi-scalar
product on E ⊗ F is much simpler, as a semi-scalar product on E ⊗ F, which is induced by
the semi-scalar products on E and F, is uniquely determined. Concerning a scalar product on
the tensor product of two Hilbert spaces, this is a well-known fact (see e.g. [Mur90, Theorem
(6.3.1)]); we just need some minor adaptions to prove the analogon for semi-unitary spaces,
compare [Bou87, TVS V.25 §3 No. 1 & No. 2]:

Proposition 4.1.1. Given semi-unitary spaces E and F, there is a unique semi-scalar product
〈·, ·〉σ on E ⊗ F, such that

〈x1 ⊗ y1, x2 ⊗ y2〉σ = 〈x1, x2〉E 〈y1, y2〉F (?)

holds for all x1, x2 ∈ E and y1, y2 ∈ F.

Proof. The proof of the existence and uniqueness of such a sesqui-linear form 〈·, ·〉σ is the
same as in [Mur90, Theorem (6.3.1)]:
Given two elements x ∈ E and y ∈ F, we denote by τx and τy the induced conjugate linear
forms τx (x′) B 〈x, x′〉E (x′ ∈ E) and τy (y′) B 〈y, y′〉F (y′ ∈ F) on E and F respectively. Then
there is a unique linear map M from E ⊗ F to the space of conjugate linear forms on E ⊗ F
that realizes the tensor product of the induced conjugate linear forms on elementary tensors,
i.e. M (x ⊗ y) = τx ⊗ τy for all x ∈ E and y ∈ F. Then it is easy to check that

〈·, ·〉σ : (E ⊗ F)2
−→ K,

(
z, z′

)
7→ M (z)

(
z′
)

is a sesqui-linear form on E ⊗ F satisfying (4.1.1) (?). The uniqueness is obvious.
It remains to show that 〈·, ·〉σ is positive semi-definite. Here we have to adjust Murphy’s proof:
Given an element z =

∑n
i=1 xi⊗yi ∈ E⊗F, we have to show that 〈z, z〉σ =

∑n
i, j=1〈xi, x j〉E〈yi, y j〉F

≥ 0. Considering the subspaces Ez B span {x1, . . . , xn} and Fz B span {y1, . . . , yn} of E respec-
tively F, it is sufficient to calculate the above sum in the finite dimensional semi-unitary spaces
Ez and Fz. Now we choose a basis (e1, . . . , em) of Fz such that ‖ek‖

2
F = ‖ek‖F (1 ≤ k ≤ m) and

〈ek, el〉F = 0 if k , l. Then there are x′1, . . . , x
′
m ∈ Ez, such that z =

∑n
k=1 x′k ⊗ ek and we obtain:

〈z, z〉σ =

m∑
k=1

〈x′k, x
′
k〉E〈ek, ek〉F =

∑∥∥∥x′k
∥∥∥2

E
‖ek‖

2
F ≥ 0.

�
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4 The Hilbert tensor product

We use (4.1.1) to define the tensor seminorm σ for semi-unitary spaces:

Definition and Remark 4.1.2. i) For two semi-unitary spaces E and F we define the ten-
sor seminorm σ as σ (z; E, F) B

√
〈z, z〉σ for z ∈ E ⊗ F. If no confusion concerning the

spaces E and F is possible, we will just write σ (z). Furthermore, we denote by E ⊗σ F
the σ tensor product of E and F equipped with this seminorm and by E⊗̃σF, as usual,
its Hausdorff completion, also called the completed σ tensor product.

ii) The proof of (4.1.1) implies that 〈·, ·〉σ is an inner product if E and F are pre-Hilbert
spaces and that the Hausdorff space associated to E ⊗σ F is the σ tensor product of the
Hausdorff spaces associated to E respectively F if E and F are semi-unitary spaces.

iii) By construction the transposition map x ⊗ y 7→ y ⊗ x is an isometric isomorphism from
E ⊗σ F to F ⊗σ E; i.e. σ is symmetric for semi-unitary spaces E and F.

iv) In the theory of C∗-algebras the so-called Hilbert tensor product is introduced via a
universal property involving weak Hilbert-Schmidt mappings (see e.g. [KR83, (2.6)]).
As we won’t need the tensor product of more than two spaces, we are content with the
above formulation.

In the following, we will establish the natural realization of E⊗̃σF as the space of Hilbert-
Schmidt operators S 2 (E′, F) from E′ to F if E and F are Hilbert spaces, and prove the metric
mapping property of σ. For the general theory of Hilbert-Schmidt operators, we refer to
[MV97, chap. III, §16].

Remark 4.1.3. i) Let E and F be Hilbert spaces.

a) The space F (E′, F) of weak-*-continuous finite rank operators from E′ to F to-
gether with ⊗ : E × F −→ F (E′, F) , (x, y) 7→ x⊗y : E′ −→ F, u 7→ u (x) y is a
realization of E ⊗ F by [Jar81, (15.3), 6.]. Thus, if we can show that (4.1.1) (?)
holds for the Hilbert-Schmidt scalar product 〈z(1), z(2)〉ν2 of two rank 1 operators
z(1) = x(1)⊗y(1) and z(2) = x(2)⊗y(2), we have proven that the space S 2 (E′, F) of
Hilbert-Schmidt operators together with ⊗ is a realization of E⊗̃σF. The scalar
product in question is given by the trace of the nuclear operator

(
z(2)

)∗
◦ z(1) ∈

N (E′, E′):

〈z(1), z(2)
〉ν2 = trE’

((
z(2)

)∗
◦ z(1)

)
=

∑
ι∈I

〈((
z(2)

)∗
◦ z(1)

)
uι, uι

〉
E′

for any orthonormal basis (uι)ι∈I of E′. Using the antilinear Riesz identification
of E and E′ and by choosing a suitable basis (uι)ι∈I of E′, we arrive at (4.1.1)
(?). Whenever we want to treat elements z of E⊗̃σF as operators, we will write
z ∈ E⊗̃σF. This yields a useful representation of the elements of E⊗̃σF:

57



4 The Hilbert tensor product

b) Given an element z of the completed σ tensor product of two Hilbert spaces E and
F, there are orthonormal systems (uk)k∈N and (yk)k∈N in E′ and F respectively, and
a decreasing `2-series (sk)k∈N with positive entries such that

z (u) =

∞∑
k=1

sk〈u, uk〉E′yk for all u ∈ E′.

Again the antilinear Riesz identification of E and E′ yields an orthonormal system
(xk)k∈N in E corresponding to (uk)k∈N such that

z =

∞∑
k=1

skxk ⊗ yk

in E⊗̃σF. The norm of z is then given by σ (z; E, F) = ‖(sk)k∈N‖`2
=

√∑
k∈N s2

k .

The properties of the Hilbert tensor product of maps can be proven in the same way as for the
ε product:

ii) Given maps S ∈ L (E,G) and T ∈ L (F,H) between semi-unitary spaces E, F,G and H,
we have the usual linear map S ⊗T from E⊗F to G⊗H. Using the notation S ⊗σT for the
map S ⊗T : E⊗σF −→ G⊗σH, we will show the metric mapping property of σ, i.e. that
‖S ⊗σ T‖ ≤ ‖S ‖‖T‖ holds. As linear and continuous maps between seminormed spaces
factor uniquely and isometrically over the associated normed spaces, we can restrict
ourselves to pre-Hilbert spaces E, F,G and H. We consider the continuous extensions
to the (Hausdorff) completions S̃ ∈ L

(
Ẽ, G̃

)
and T̃ ∈ L

(
F̃, H̃

)
. Using the realization of

the completed σ tensor product from above, we obtain:(
S̃ ⊗σ T̃

)
z = T̃ ◦ z ◦ S̃ t for all z ∈ Ẽ ⊗σ F̃, (?)

and thus ‖S ⊗σ T‖ =
∥∥∥S̃ ⊗σ T̃

∥∥∥ ≤ ∥∥∥S̃
∥∥∥ ∥∥∥T̃

∥∥∥ = ‖S ‖ ‖T‖. Denoting as usual the continuous
extension of S ⊗σ T to E⊗̃σF by S ⊗̃σT , we obtain that S ⊗̃σT is injective whenever S
and T are injective and E and F are Hilbert spaces as (?) extends to the completion.

Having established σ as a Hilbert seminorm on the tensor product of two semi-unitary
spaces that is a reasonable tensor norm for pre-Hilbert spaces, we will prove in the rest of
this section that the σ tensor product respects isometric inclusions and metric surjections for
semi-unitary spaces, and the completed σ tensor product does the same for Hilbert spaces.
The preservation of isometric inclusions won’t be problematic, whereas concerning the metric
surjections, we need the following lemma:

Lemma 4.1.4. Let q : F −→ G be a metric surjection with closed kernel between semi-unitary
spaces. Furthermore, let G be of finite dimension. Then for every ε > 0 there is a linear and
continuous right inverse Rε of q with ‖Rε‖ ≤ 1 + ε.
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4 The Hilbert tensor product

Proof. Let 1 > ε > 0. There is a finite dimensional subspace L0 of F such that q (L0) = G. As

q
(
{0}

F
)

= {0}, we may assume that L0, equipped with the relative topology of F, is Hausdorff.
As L0 and G are Hausdorff spaces of finite dimension, the restriction q|L0 : L0 −→ G is open,
which implies that q

(
UL0

)
is open as well, where UL is the relative open unit ball for any

subspace L of F. As q (UF) ⊃ UG ⊃ (1 − ε) BG and q
(
{0}

F
)

= {0}, the system

{
q (UL) : L is a finite dimensional subspace of F with L0 ⊂ L and {0}

F
∩ L = {0}

}
is an open cover of the compact set (1 − ε) BG. Thus we obtain a finite dimensional separated
subspace L of F such that q (UL) ⊃ (1 − ε) BG. Endowing G with the norm topology of the
gauge functional p of the set q (UL), we obtain a Hilbert space (G, p) that is isometrically
isomorphic to a closed subspace H of the Hilbert space L. With the orthogonal projection
from L to H we have a linear and continuous right inverse RL of q|L : L −→ G with norm 1
with respect to G equipped with p. We compute

‖RL‖L(G,L) =
1

1 − ε
sup

y∈(1−ε)BG

‖RL (y)‖L ≤
1

1 − ε
sup

y∈q(UL)
‖RL (y)‖L ≤

1
1 − ε

sup
y∈Bp

‖RL (y)‖L =
1

1 − ε
.

Defining Rε as the composition of the inclusion of L into F with RL completes the proof. �

The following example shows that the previous lemma (4.1.4) is sharp:

Example 4.1.5. There is a pre-Hilbert space F and a metric surjection q : F −→ K such that
there is no linear and continuous right inverse R of q with ‖R‖ = 1. In particular, there is no
projection from F to the kernel of q with norm 1.

Proof. Let F be the space of continuous (real or complex valued) functions on the interval
[−1, 1] endowed with the L2-norm and q : F −→ K, f 7→

∫
[0,1]

f dλ. Then F is a pre-Hilbert
space and q is continuous, as q ( f ) = 〈 f , χ[0,1]〉L2 for all f ∈ F. q is even a metric surjection,
as q (UF) = UK holds. Assuming there is a linear and continuous right inverse R of q with
‖R‖ = 1, we obtain a function f0 ∈ F with R (µ) = µ f0 for all µ ∈ K. Furthermore, we have

1 = (q ◦ R) (1) =

∫
[0,1]

f0dλ and 1 = ‖R (1)‖L2 =

(∫
[−1,1]
| f0|

2dλ
)1/2

.

Thus the Cauchy-Schwarz inequality holds for f0 and χ[0,1] with equality, which implies that
the equivalence classes of f0 and χ[0,1] are linearly dependent in L2 ([−1, 1]). This is not pos-
sible as there is no continuous function on the interval [−1, 1] that differs from χ[0,1] only on a
zero set. �

Now we are ready to prove:
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4 The Hilbert tensor product

Proposition 4.1.6. i) The σ tensor product respects metric inclusions and metric surjec-
tions for semi-unitary spaces.

ii) The completed σ tensor product respects metric inclusions and metric surjections for
Hilbert spaces.

Proof. i) Let E be a semi-unitary space and

0 −→ H
i
−→ F

q
−→ G −→ 0

a short algebraically exact sequence of semi-unitary spaces, where i is a metric inclusion
and q a metric surjection.

As the σ tensor product is symmetric, cf. (4.1.2) iii), it is sufficient to prove, that idE ⊗σi
is a metric inclusion and idE ⊗σq is a metric surjection.

We start with idE ⊗σi:
If z =

∑n
k=1 xk ⊗ yk ∈ E ⊗σ H is given, we can compute

σ (z; E,H)2 =

n∑
k=1

n∑
l=1

〈xk, xl〉E 〈yk, yl〉H =

n∑
k=1

n∑
l=1

〈xk, xl〉E 〈i (yk) , i (yl)〉F

= σ ((idE ⊗σi) (z) ; E, F)2 .

Now we will first use (4.1.4) to show that idE ⊗σq is a metric surjection whenever the
kernel H of q is closed in F. Let H be closed. We need to prove that idE ⊗σq

(
UE⊗σF

)
and

UE⊗σG have the same gauge functional. The metric mapping property of σ, cf. (4.1.3)
ii), yields the inclusion

idE ⊗σq
(
UE⊗σF

)
⊂ UE⊗σG,

from which we obtain a corresponding inequality of the gauge functionals. To prove the
other inequality let E1 and G1 be finite dimensional subspaces of E and G respectively.
We define F1 B q−1 (G1) , q1 B q|F1 ,H1 B ker q1 = H ∩ F1 and i1 B i|G1 . Then

0 −→ H1
i1
−→ F1

q1
−→ G1 −→ 0

is a topologically exact sequence of semi-unitary spaces, i1 is a metric inclusion and q1

is a metric surjection. Furthermore, since H is closed in F, G is Hausdorff, hence G1 is
a finite dimensional Hilbert space and H1 is closed in F1. Thus (4.1.4) yields for every
ε > 0 a linear and continuous right inverse Rε of q1 with ‖Rε‖ ≤ 1 + ε, and we obtain:

UE1⊗σG1 =
((

idE1 ⊗σq1
)
◦
(
idE1 ⊗σRε

)) (
UE1⊗σG1

)
⊂ (1 + ε)

(
idE1 ⊗σq1

) (
UE1⊗σF1

)
.
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Since ε > 0 is arbitrary, we have

UE1⊗σG1 ⊂
⋂
ε>0

(1 + ε)
(
idE1 ⊗σq1

) (
UE1⊗σF1

)
⊂ (idE ⊗σq)

(
UE⊗σF

)E⊗σG
.

As we have proven in the first part of (4.1.6) i) that the σ tensor product respects metric
inclusions, we obtain:

UE⊗σG =
⋃{

UE1⊗σG1 : E1 ⊂ E,G1 ⊂ G finite dimensional subspaces
}

⊂ (idE ⊗σq)
(
UE⊗σF

)E⊗σG
,

which yields the assertion for closed subspaces.

If H is not closed, we consider the exact sequence

0 −→ H
i
−→ F

q
−→ F/

H −→ 0,

where i is the metric inclusion of the closure of H into F and q is the corresponding
quotient map. Then F/

H is a version of the Hausdorff space associated to G, hence the
map ϕ : G −→ F/

H, q (x) 7→ q (x) is a metric surjection with linear and continuous right
inverse with norm 1. Considering the following commutative diagram

E ⊗σ F

idE ⊗σq
��

idE ⊗σq // E ⊗σ G

idE ⊗σϕxx
E ⊗σ F/

H ,

we have for z ∈ E ⊗σ F:

σ ((idE ⊗σq) (z) ; E,G) = σ
(
((idE ⊗σϕ) ◦ (idE ⊗σq)) (z) ; E, F

/
H

)
= σ

(
(idE ⊗σq) (z) ; E, F

/
H

)
= inf {σ (z; E, F) : z − z ∈ ker (idE ⊗σq)}

= inf {σ (z; E, F) : z − z ∈ ker (idE ⊗σq)} ,

since idE ⊗σϕ has a linear and continuous right inverse with norm 1, idE ⊗σq is a metric
surjection, as we have proven in the first part, and E ⊗σ H is dense in E ⊗σ H. Thus
idE ⊗σq is a quotient map and the proof of i) is complete.

ii) is shown analogously to i):

The preservation of metric inclusions is proven with the representation of the elements
of E⊗̃σH in (4.1.3) i) b). The proof of the preservation of metric surjections of the
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completed σ tensor product becomes much easier since we can work with the linear and
continuous right inverse mappings with norm 1 of the quotient maps instead of using
(4.1.4) as we are dealing with closed subspaces only.

�

Remark 4.1.7. i) σ is finitely generated and co-finitely generated, i.e.:

E ⊗→
σ

F = E ⊗σ F = E ⊗←
σ

F for all Hilbert spaces E and F,

where
→
σ (z; E, F) B

inf
{
σ (z; G,H) : G ⊂ E,H ⊂ F finite dimensional subspaces with z ∈ G ⊗ H

}
and
←
σ (z; E, F) B sup

{
σ

(
z; E/

G, F
/
H

)
: G ⊂ E,H ⊂ Fco-finite dimensional subspaces

}
for all z ∈ E ⊗ F.

ii) Harksen has shown analogous results for finitely generated tensor norms α on the cat-
egory of normed spaces in [Har82, (1.16) & (1.19)]. His proof involves the theory
of the dual tensor norm α′ and the (to α) associated co-finitely generated tensor norm
α̃. Using the concept of tensorized seminorms (see [Har82, p. 357]) and some auxil-
iary lemmata ([Har82, (2.4) & (2.5)]) about quotient seminorms and metric surjections
between seminormed spaces, he is able to prove the analogon of (4.1.6) i) for metric sur-
jections between seminormed spaces in [Har82, (2.6)]. A sorrow analysis of his proofs
shows that they are valid for the σ tensor product as well. However, we have chosen to
give direct proofs.

iii) As Varol has shown in [Var02, Var07], it is well possible to approach problems concern-
ing tensor norms in a homological manner. Indeed, we could endow the categories of
semi-unitary spaces, pre-Hilbert spaces and Hilbert spaces with natural exact structures
and investigate the preservation properties under consideration in (4.1.6) in context of
some kind of metric exactness of the tensor product functors idE ⊗σ· and idE ⊗̃σ· on the
respective categories. Since chapter 4.1 is more a means to an end for a part of this the-
sis to establish the tensor topology Tσ on the category of PLH spaces, we have chosen
to provide the needed statements in a conventional functional analytic way.

4.2 Hilbertizable locally convex spaces

Given two hilbertizable locally convex spaces E and F with corresponding fundamental sys-
tems of Hilbert seminorms P and R respectively, we endow E ⊗ F with the locally convex
topology Tσ induced by the directed system of Hilbert seminorms (p ⊗σ r)(p,r)∈P×R, where
p ⊗σ r (·) B σ (· ; (E, p) , (F, r)), obtaining the hilbertizable locally convex space E ⊗σ F. It is
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4 The Hilbert tensor product

easy to see that this construction is independent of the choice of the fundamental systems of
seminorms. As usual, we denote the Hausdorff completion of E ⊗σ F with E⊗̃σF.

A very similar construction of the extension of a finitely generated tensor norm α for normed
spaces to a tensor topology Tα on the tensor product of two locally convex spaces was intro-
duced by Harksen in his dissertation in 1979 ([Har79], see also [Har82] and [DF93, chap. 35]).
As he was dealing with tensor norms for normed spaces only, he needs the concept of ten-
sorized seminorms (see [Har82, p. 357]), which involves dealing with the kernels of the
seminorms. We can avoid this onerosity as we managed to define σ directly for the tensor
product of semi-unitary spaces in (4.1.2).

Given linear and continuous maps S ∈ L (E,G) and T ∈ L (F,H) between hilbertizable
locally convex spaces E and G respectively F and H, we have the linearisation S ⊗σ T : E ⊗σ
F −→ G ⊗σ H of S × T , which is easily seen to be continuous, and denote its extension to the
completion by S ⊗̃σT . We expand the notation of (4.1.2) ii) and will speak of the (completed)
σ tensor product on the category of hilbertizable lcs. Now we show that S ⊗̃σT is injective
whenever E, F, G, and H are complete and S and T are injective:

Proposition 4.2.1. Let E, F,G and H be complete hilbertizable lcs, S ∈ L (E,G) and T ∈
L (F,H) injective operators. Then S ⊗̃σT is injective.

Proof. Let
(
pZ
ι

)
ι∈IZ

be a corresponding fundamental system of seminorms and
(
Zι,Zι

κ

)
ι≤κ∈IZ

be
the corresponding projective spectra of local Hilbert spaces for Z ∈ {E, F,G,H}. As the ε-
product respects reduced projective limits [Köt79, §44. 5. (5)] and the projective limit functor
is left exact by [Wen03, (3.1.3)], we have the following commutative diagram:

proj
(ιE ,ιF )

EιE ⊗̃σFιF

proj(iιE ,ιF )
��

E⊗̃σF
S ⊗̃σT // G⊗̃σH proj

(ιG ,ιH)
GιG ⊗̃σHιH

proj(iιG ,ιH )
��

proj
(ιE ,ιF )

EιEεFιF EεF S εT // GεH proj
(ιG ,ιH)

GιGεHιH ,

where iιE ,ιF and iιG ,ιH are the canonical (injective) inclusions of the Hilbert tensor product into
the ε-product for ιZ ∈ IZ,Z ∈ {E, F,G,H}. Then the injectivity of S εT implies the injectivity
of S ⊗̃σT . �

Before we turn our attention to the completed σ tensor product of two PLH spaces, we
expand (4.1.6) to the category of hilbertizable lcs:

Corollary 4.2.2.

i) a) The σ tensor product respects topological subspaces of hilbertizable lcs.

b) The completed σ tensor product respects closed topological subspaces in the cat-
egory of complete hilbertizable lcs.

ii) The σ tensor product respects open mappings for hilbertizable lcs.
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4 The Hilbert tensor product

Proof. The statements for the not completed case, (4.2.2) i) a) and ii), are direct consequences
of the seminorm-wise statements that are yielded by (4.1.6) i). Considering the injectivity of
the linearisation of the inclusions in (4.2.2) i) b), we have to apply (4.2.1), the proof of which
together with (4.1.6) ii) yields that the inclusion is not only continuous but also topological.

�

Remark 4.2.3. The question whether the extension to the completion of the tensor product of
two quotient maps between complete hilbertizable lcs is again surjective remains unattended
in (4.2.2). The reason is rather simple: We can not prove general statements as (4.1.6). Be
that as it may, in the following we will determine some classes of spaces that allow a positive
answer, as the category of Fréchet-Hilbert spaces and the class of LH spaces. Furthermore,
we will start investigating the even larger class of PLH spaces in section (4.3). To be able to
apply the σ tensor product to the mentioned spaces we prove the necessary stability properties
of the category hLCS of hilbertizable lcs.

Proposition 4.2.4. i) The category hLCS is stable with respect to the formation of

a) subspaces,

b) quotients,

c) arbitrary products and

d) countable direct sums.

ii) For any set I the space
⊕

ι∈I K is hilbertizable if and only if the set I is countable. Thus
hLCS is not stable with respect to the formation of arbitrary direct sums.

Proof. i) a) and b) are true, since the restriction of a Hilbert seminorm to a subspace
and every quotient seminorm of a Hilbert seminorm are again Hilbert seminorms.

A fundamental system of seminorms for the product of a family (Eι)ι∈I of hilberti-
zable lcs Eι with fundamental systems of Hilbert seminorms cs (Eι) (ι ∈ I) is given
e.g. by the family{

max
{(

pι ◦ πι∞
)

(·) , ι ∈ E
}

: E ⊂ I, |E| < ∞, pι ∈ cs (Eι) for all ι ∈ E.
}
,

where πι∞ denotes as usual the canonical projection on the ι-th component for ev-
ery ι ∈ I, see e.g. [MV97, remark on p. 276]. Each of those maximum semi-
norms is equivalent to the usual Hilbert sum of the family of Hilbert seminorms((

pι ◦ πι∞
)

(·)
)
ι∈E, since the set E is finite. This yields c).

d) requires a detailed proof:

Let (En)n∈N be a sequence of hilbertizable lcs En with fundamental system of
Hilbert seminorms cs (En) for each n ∈ N. Then by [MV97, definition on p. 276]
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4 The Hilbert tensor product

a fundamental system of seminorms for
⊕

n∈N En is given by the family⊕
n∈N

En 3 (xn)n∈N 7−→
∑
n∈N

pn (xn) : pn ∈ cs (En) for all n ∈ N.

 .
Furthermore, it is easy to see that for every sequence λ = (λn)n∈N ∈ [0,∞)N and
every sequence of Hilbert seminorms p = (pn)n∈N ∈

∏
n∈N cs (En) the map

‖(xn)n∈N‖p,λ B

∑
n∈N

λn pn (xn)2

1/2

is a continuous Hilbert seminorm on
⊕

n∈N En. Using the usual trick with the
geometrical series, we prove that‖·‖p,λ : p ∈

∏
n∈N

cs (En) , λ ∈ [0,∞)N


is a fundamental system of seminorms for
⊕

n∈N En: Let p (·) =
∑

n∈N
(
pn ◦ π

n
∞

)
(·),

where πn
∞ is the canonical projection from the direct sum to the n-th component,

be a continuous seminorm on
⊕

n∈N En. Defining λn = (2n)2 for every n ∈ N, we
obtain that p (·) ≤ ‖·‖p,λ, since for every (xn)n∈N ∈

⊕
n∈N En, ‖x‖p,λ ≤ 1 implies

pn (xn)2
≤ 1

(2n)2 , hence p (x) =
∑

n∈N pn (xn) ≤ 1.

ii) Part i) d) yields that
⊕

ι∈I K is hilbertizable if I is countable. We show that if the set
I is uncountable, there is not even a fundamental system of seminorms on

⊕
ι∈I K that

imply reflexivity: Assuming the opposite, we obtain a seminorm ‖·‖ on
⊕

ι∈I K such
that

(⊕
ι∈I K, ‖·‖

)
is reflexive and

∑
ι∈I |xι| ≤ ‖x‖ for all x = (xι)ι∈I ∈

⊕
ι∈I K. Since

I =
⋃

N∈N {κ ∈ I : ‖eκ‖ ≤ N} is uncountable – where eκ denotes as usual the κ-th unit
vector

(
δκ,ι

)
ι∈I in

⊕
ι∈I K for every κ ∈ I – we obtain a positive number R ≥ 1 and an

infinite subset J of I such that ‖eκ‖ ≤ R for all κ ∈ J. Regarding
⊕

ι∈J K as a subspace
of

⊕
ι∈I K via the natural embedding, we obtain for every x = (xι)ι∈J ∈

⊕
ι∈J K that

‖x‖`1(J) =
∑
ι∈J

|xι| ≤ ‖x‖ =

∥∥∥∥∥∥∥∑
ι∈J

xιeι

∥∥∥∥∥∥∥ ≤∑
ι∈J

|xι| ‖eι‖ ≤ R ‖x‖`1(J)

holds. Hence `1 (J) is reflexive, which is false even for countable infinite sets J, see e.g.
[MV97, (7.10)].

�

Dual to (4.2.4) i) we have
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4 The Hilbert tensor product

Remark 4.2.5. i) If E is a lcs with a fundamental system of bounded sets (fsb) which
consists of Hilbert discs and F is a closed subspace of E, then F has an fsb consisting
of Hilbert discs, too, since the gauge functional of the intersection of a Hilbert disc B
(in E) with a closed subspace F of E is the restriction of the gauge functional of B to
the intersection of the linear span of B with F, which is a closed subspace of ([B], pB),
since F is closed in E.

ii) If (En)n∈N is a sequence of lcs that have fsb’s consisting of Hilbert discs, then
∏

n∈N En

has an fsb consisting of Hilbert discs: Given a sequence (λn)n∈N of strictly positive
numbers and any sequence B = (Bn)n∈N of Hilbert discs Bn in En (n ∈ N), we equip the
space

Eλ,B B

x = (xn)n∈N ∈
∏
n∈N

En :
∑
n∈N

λn pBn (xn)2 < ∞


with the norm ‖x‖λ,B B

(∑
n∈N λn pBn (xn)2

)1/2
, x ∈ Eλ,B. Then it is easy to check that

Eλ,B is a Hilbert space and its closed unit ball Bλ,B is a bounded subset of
∏

n∈N En as it
is contained in

∏
n∈N

1
√
λn

Bn. We prove that the setBλ,B : λ ∈ (0,∞)N , B ∈
∏
n∈N

H D (En)

 ,
where H D (En) denotes the set of all Hilbert discs in En (n ∈ N), is an fsb of

∏
n∈N En:

If C is a bounded subset of
∏

n∈N En, then for each n ∈ N there is a positive scalar µn and
a Hilbert disc Bn ∈ H D (En), such that En

∞ (C)
En

is contained in µnBn. Now we define
λn B

1
2nµn

and B B (Bn)n∈N, obtaining a Hilbert space Eλ,B whose closed unit ball Bλ,B

contains C by construction.

iii) For any set I the space
∏

ι∈I K has an fsb consisting of Hilbert discs if and only if I is
countable. The “if” part is just an application of ii). If I is not countable, then it contains
an uncountable subset J with cardinality smaller then the smallest inaccessible cardinal
and we may assume I = J. As

∏
ι∈J K is ultrabornological by [Köt79, §35, 7., (8)],

given any fsb B of Banach discs, it arises as the inductive limit of all the Banach spaces
spanned by the discs B ∈ B. Thus the strong dual of

∏
ι∈J K – the direct sum

⊕
ι∈J K

– arises as projective limit of all the dual Banach spaces [B]′, B ∈ B. Hence if
∏

ι∈J K

has an fsb consisting of Hilbert discs, then
⊕

ι∈J K is hilbertizable, a contradiction to
(4.2.4) ii).

An easy consequence of (4.2.4) i) and (4.2.5) is the following corollary that allows us to
apply Tσ to PLH spaces and yields that PLH spaces allow for fsb’s of Hilbert discs:

Corollary 4.2.6. i) PLH spaces are hilbertizable.
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4 The Hilbert tensor product

ii) PLH spaces have fundamental systems of bounded sets consisting of Hilbert discs.

Proof. i) A PLH space E is the projective limit of a strongly reduced projective spectrum(
EN , EN

M

)
of LH spaces EN , i.e. EN = indn∈N EN,n is the inductive limit of an embedding

spectrum
(
EN,n

)
n∈N of Hilbert spaces, cf. (2.2.8) ii), (2.2.1) ii) and (2.2.7). Denoting for

every N ∈ N with ΣN :
⊕

n∈N XN,n −→ indn∈N EN,n the summation map, we obtain by
[MV97, (24.8)] that EN is topologically isomorphic to the quotient

⊕
n∈N EN,n

/
ker ΣN

,
hence it is hilbertizable by (4.2.4) i) d) and i) b). As E is topologically isomorphic to a
(closed) subspace of

∏
N∈N EN , it is hilbertizable by (4.2.4) i) c) and i) a).

ii) Let E = projN∈N

(
EN , EN

M

)
be a PLH space. As in every LH space EN = indn∈N EN,n

the sequence
(
BN,n

)
n∈N of the closed unit balls of the steps EN,n (n ∈ N) are an fsb by

[MV97, (25.19) 2.], (4.2.5) i) and ii) yield the assertion.
�

We start our investigation with the class of LH spaces by showing that the completed σ
tensor product of two LH spaces is the LH space created by the completed σ tensor product of
the corresponding embedding spectra, which can be assumed to be an embedding spectrum,
since the completed σ tensor product preserves injectivity of linear and continuous operators
between Hilbert spaces by (4.1.6) ii). We will divide the proof in three steps. At first we
will attend the (uncompleted) σ tensor product of direct sums, which will be a matter of mere
calculation and has been done by Harksen in [Har82, (2.10)]. Then we will use that the not
completed σ tensor product preserves quotient maps between hilbertizable lcs (4.2.2) ii) to
transfer the isomorphism obtained for direct sums to the (not completed) σ tensor product of
LH spaces. Again this has been done by Harksen in [Har82, (2.11) a)] for finitely generated
tensor norms for normed spaces. To obtain the desired statement for the completed σ tensor
product of LH spaces, we will need the following Lemma, which is a consequence of a result
due to Palamodov (see [Pal71, (4.2)], also [Wen03, (2.2.2)]).

Lemma 4.2.7. Let
(
Xι, Xκ

ι

)
ι≤κ∈I and

(
Yι,Yκ

ι

)
ι≤κ∈I be two inductive spectra with inductive limits

X and Y respectively, and let ( fι)ι∈I be a morphism between the spectra – i.e. for each ι ∈ I a
linear and continuous map fι : Xι −→ Yι such that for each ι ≤ κ ∈ I we have fκ ◦ Xκ

ι = Yκ
ι ◦ fι

– such that each fι is a topological isomorphism onto its dense range. Then the induced linear
map f : X −→ Y is a topological isomorphism onto its dense range.

Proof. Let
(
X,

(
X∞ι

)
ι∈I

)
and

(
Y,

(
Y∞ι

)
ι∈I

)
be the inductive limits of the given spectra, i.e. X is a

lcs with linear and continuous operators X∞ι : Xι −→ X such that for each lcs Z and each family
of maps (Tι)ι∈I ∈

∏
ι∈I L (Xι,Z) such that Tκ ◦ Xκ

ι = Tι for each ι ≤ κ ∈ I we have a unique
linear and continuous map T : X −→ Z with T ◦ X∞ι = Tι for all ι ∈ I. With this universal
property we obtain a unique linear and continuous map f : X −→ Y such that f ◦X∞ι = Y∞ι ◦ fι
for all ι ∈ I. Since X = span

{
X∞ι (Xι) : ι ∈ I

}
(see e.g. [Köt69, §19, 1.]) f is injective and has

dense range.
To see the isomorphy of f , we use a consequence of the Bipolar theorem due to Palamodov
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[Pal71, (4.2)] (also see [Wen03, (2.2.2)]), which yields that f is a homomorphism if the map
f ∗ : L

(
Y, `∞M

)
−→ L

(
X, `∞M

)
, f ∗ (T ) B T ◦ f for all T ∈ L

(
Y, `∞M

)
is surjective for all sets M.

Let now M be an arbitrary set and T be a linear and continuous map from Y to `∞M. Since
for any ι ∈ I the composition T ◦ X∞ι is linear and continuous, there is a unique S ι ∈ L

(
Yι, `∞M

)
with S ι ◦ fι = Tι ◦ X∞ι . Considering the following commutative diagram

Xι
X∞ι

��

fι //

Xκ
ι

��

Yι

Yκι

��

Y∞ι

��
X � � � Y

Xκ

X∞κ

__

fκ // Yκ
Y∞κ

??

,

we have for ι ≤ κ ∈ I:

S κ ◦ Yκ
ι ◦ fι = S κ ◦ fκ ◦ Xκ

ι = T ◦ X∞κ ◦ Xκ
ι = T ◦ X∞ι .

Thus the universal property of Y yields a unique linear and continuous map S : Y −→ `∞M such
that S ◦ Y∞ι = S ι for all ι ∈ I. Finally we compute S ◦ f ◦ X∞ι = S ◦ Y∞ι ◦ fι = S ι ◦ fι = T ◦ X∞ι ,
obtaining the desired property S ◦ f = T . �

Now we prove the announced statements for the not completed σ tensor product:

Proposition 4.2.8. Let E be a hilbertizable lcs that has the countable neighbourhood property
(c.n.p.), i.e. for any sequence (pn)n∈N of continuous seminorms on E there is a sequence λ of
positive numbers and a continuous seminorm p on E such that pn ≤ λn p for all n ∈ N. Then
the following hold:

i) The map Φ :
⊕

n∈N (E ⊗σ Fn) −→ E ⊗σ
⊕

n∈N Fn that is induced by the natural inclu-
sions E ⊗σ Fn ↪→ E ⊗σ

⊕
n∈N Fn, n ∈ N, is a topological isomorphism for any sequence

(Fn)n∈N of Hilbert spaces (see [Har82, (2.10)] for the same result for the inverse map).

ii) The map Ψ : indn∈N (E ⊗σ Fn) −→ E ⊗σ indn∈N Fn that is induced by the natural in-
clusions E ⊗σ Fn ↪→ E ⊗σ indn∈N Fn, n ∈ N, is a topological isomorphism for any LH
space F = indn∈N Fn (see [Har82, (2.11) a)] for tensor topologies Tα induced by right-
projective tensor norms α).

Proof. i) The universal property of the locally convex direct sum yields that the map

Φ :
⊕
n∈N

(E ⊗σ Fn) −→ E ⊗σ
⊕
n∈N

Fn,

n0∑
n=1

kn∑
j=1

x(n)
j ⊗ y(n)

j 7−→

n0∑
n=1

kn∑
j=1

x(n)
j ⊗

(
y(n)

j · δn,l

)
l∈N
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is continuous. Furthermore, Φ is an algebraic isomorphism as we have the inverse map

Φ−1 : E ⊗σ
⊕

n∈N

Fn −→
⊕

n∈N

(E ⊗σ Fn) ,
k∑

j=1

x j ⊗
(
y j,n

)
n∈N
7→

 k∑
j=1

x j ⊗ y j,n


n∈N

.

Before we prove the continuity of Φ−1, we observe that Φ maps the image of the natural
inclusion of E ⊗σ Fk into

⊕
n∈N (E ⊗σ Fn) onto the image of the natural inclusion of

E ⊗σ Fk into E ⊗σ
⊕

n∈N Fn for any k ∈ N. Thus we obtain the following estimate for
continuous seminorms p and qn (n ∈ N) on E respectively Fn (n ∈ N):

(p ⊗σ qk) (zk) ≤

p ⊗σ

∑
n∈N

qn

 (Φ (z)) for all z ∈ E ⊗σ
⊕

n∈N

Fn and all k ∈ N, (?)

where
∑

n∈N qn is the point wise summation of the seminorms (qn)n∈N, since (Fk, qk) is
topologically complemented in

(⊕
n∈N Fn,

∑
n∈N qn

)
with projection that has norm 1 for

all k ∈ N.

Let now
∑

n∈N pn ⊗σ rn be a defining seminorm on
⊕

n∈N E ⊗σ Fn and let λ and p be
chosen for (pn)n∈N according to the c.n.p. of E, i.e. pn ≤ λn p for all n ∈ N. Defining
qn B 2nλnrn (n ∈ N), we obtain with (?) the following estimate for z ∈

⊕
n∈N (E ⊗σ Fn):∑

n∈N

pn ⊗σ rn

 (z) ≤
∑
n∈N

((λn p) ⊗σ rn) (zn) =
∑
n∈N

2−n (p ⊗σ (λn2nrn)) (zn)

≤
∑
n∈N

2−n

p ⊗σ

∑
k∈N

qk

 (Φ (z)) =

p ⊗σ

∑
k∈N

qk

 (Φ (z)) .

Since p ⊗σ
(∑

k∈N qk
)

is a defining seminorm on E ⊗σ
⊕

k∈N Fk, we can complete the
proof by applying the above estimate to Φ−1 (z) , z ∈ E ⊗σ

⊕
n∈N Fn.

ii) The universal property of the locally convex inductive limit implies that Ψ is continuous
and it is easy to verify that it is an algebraic isomorphism. To show that Ψ is open,
we denote by Σ and ΣF the continuous and open summation maps from

⊕
n∈N E ⊗σ Fn

respectively
⊕

n∈N Fn onto the inductive limits indn∈N (E ⊗σ Fn) respectively indn∈N Fn

and we obtain the commutative diagram⊕
n∈N

(E ⊗σ Fn)

Σ

��

Φ //

	

E ⊗σ
⊕
n∈N

Fn

idE⊗σΣF

��
ind
n∈N

(E ⊗σ Fn) Ψ // E ⊗σ ind
n∈N

Fn.

Let U = Σ (V) be a typical 0-neighbourhood of indn∈N (E ⊗σ Fn), where V is a 0-
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neighborhood in
⊕

n∈N (E ⊗σ Fn). Then the first part, (4.2.8) i), yields that Φ (V) is
open in E ⊗σ

⊕
n∈N Fn. As ΣF is open, (4.2.2) ii) implies that idE ⊗σΣF is open as well.

Thus Ψ (U) = (idE ⊗σΣF) (Φ (V)) is open and we have proven the assertion.
�

Theorem 4.2.9. Given two LH spaces E = indn∈N En and F = indn∈N Fn, we have

ind
n∈N

(
En⊗̃σFn

)
= E⊗̃σF

topologically.

Proof. As Tσ is symmetric, a twofold application of (4.2.8) ii) yields that for LH spaces
E = indn∈N En and F = indn∈N Fn the map ΨE,F from indn∈N (En ⊗σ Fn) to E ⊗σ F induced by
the inclusions En ⊗σ Fn ↪→ E ⊗σ F (n ∈ N) – consult as usual (4.2.2) i) b) for injectivity – is
a topological isomorphism since E and Fk (k ∈ N) have the c.n.p. as LB spaces by [PCB87,
(8.3.5)]. By (4.2.7) indn∈N (En ⊗σ Fn) is a dense topological subspace of indn∈N

(
En⊗̃σFn

)
,

which is an LH space, as by (4.1.3) ii) the induced maps En⊗̃σFn ↪→ En+1⊗̃σFn+1 are injective.
Thus indn∈N

(
En⊗̃σFn

)
is complete, hence Ψ−1

E,F can be extended to a topological isomorphism
from E⊗̃σF to indn∈N

(
En⊗̃σFn

)
. �

Now we will prove a series of corollaries, the first of which is the positive solution of
Grothendieck’s problème des topologies for Fréchet-Hilbert spaces and the tensor topology
Tσ. To prove this, we need some auxiliary remarks about duality:

Remark 4.2.10. i) If E and F are semi-unitary spaces, then the strong dual of the σ tensor
product of E and F is isometrically isomorphic to the completed σ tensor product of the
strong duals of E and F extending the duality

〈x ⊗ y, x′ ⊗ y′〉 = 〈x, x′〉 〈y, y′〉 , x ∈ E, x′ ∈ E′, y ∈ F, y′ ∈ F′,

since we have:

(E ⊗σ F)′ �
(
E⊗̃σF

)′ �
(?)

E⊗̃σF � Ẽ⊗̃σF̃ �
(?)

Ẽ′⊗̃σF̃′ � E′⊗̃σF′,

where the stars stand for the (map induced by the) respective antilinear isometric Riesz
identification of a Hilbert space with its strong dual.

ii) From (4.2.9) we deduce easily that (4.2.10) i) also holds for two Fréchet-Hilbert spaces
E = projn∈N En and F = projn∈N Fn, as we have(

E⊗̃σF
)′

=
(
projn∈N En⊗̃σFn

)′ � indn∈N
(
En⊗̃σFn

)′ � indn∈N
(
E′n⊗̃σF′n

)
�

(
indn∈N E′n

)
⊗̃σ

(
indn∈N F′n

)
� E′⊗̃σF′.
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Now we turn our attention to Grothendieck’s problème des topologies: For bounded subsets
B ⊂ E and C ⊂ F of Fréchet spaces E and F the closure of Γ (B ⊗C) in E⊗̃πF is a bounded
subset of E⊗̃πF. In his thesis [Gro55] Grothendieck asked whether every bounded subset
of E⊗̃πF is contained in such a set. In general, this problem, which is called Grothendieck’s
problème des topologies, has a negative solution as Taskinen showed in [Tas86], whereas it has
a positive solution for Fréchet-Hilbert spaces as Grothendieck stated in his thesis and Kürsten
proved in [Kür91]. We prove the following formulation of the problem for Fréchet-Hilbert
spaces and the tensor topology Tσ:

Corollary 4.2.11. Given Fréchet-Hilbert spaces E = projn∈N En, and F = projn∈N Fn and a
Hilbert space Z with continuous inclusion i : Z ↪→ E⊗̃σF, there are Hilbert spaces X and Y
with continuous inclusions X ↪→ E and Y ↪→ F such that we have continuous inclusions

Z ↪→ X⊗̃σY
(
↪→ E⊗̃σF

)
.

Proof. Let E, F,Z and i be given as above. Then the transposed of i is a linear and continuous
map from

(
E⊗̃σF

)′ to the Hilbert space Z′, hence it factorizes over a local Hilbert space of(
E⊗̃σF

)′. As
(
E⊗̃σF

)′ equals E′⊗̃σF′ topologically by (4.2.10) ii), there are two local Hilbert
spaces X of E′ and Y of F′ with the canonical linear and continuous maps with dense range
ωX : E′ −→ X and ωY : F′ −→ Y and a linear and continuous map j from X⊗̃σY to Z′ such
that it = j ◦

(
ωX⊗̃σωY

)
, i.e. the following diagram commutes:

(
E⊗̃σF

)′ E′⊗̃σF′

it

55
ωX ⊗̃σωY // X⊗̃σY

j // Z′

As E⊗̃σF equals
(
E′⊗̃σF′

)′ and
(
X⊗̃σY

)′ equals X′⊗̃σY ′ topologically (again by (4.2.10) i)
and ii)), we obtain the continuous inclusions

Z Z′′ �
� jt / X′⊗̃σY ′ �

� ωt
X ⊗̃σω

t
Y / E⊗̃σF,

where jt is injective, because j has dense range, which is true since it has dense range, and
ωt

X⊗̃σω
t
Y is injective with (4.2.1) as ωt

X and ωt
Y are injective. Thus the claim is valid. �

(4.2.9) and (4.2.2) yield preliminary positive results for the surjectivity problem:

Remark 4.2.12. Given complete hilbertizable lcs E,Y and Z and a quotient map q : Y −→ Z,
the induced operator idE ⊗̃σq is a quotient map if

i) E,Y,Z are LH spaces as Tσ respects LH spaces by (4.2.9) and quotient maps between
Hilbert spaces by (4.1.6) ii), because

E⊗̃σZ = indn∈N En⊗̃σZn = indn∈N En⊗̃σqn (Yn) = indn∈N En⊗̃σ indn∈N qn (Yn) = E⊗̃σq (Y) ,
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4 The Hilbert tensor product

where E = indn∈N En,Yn = indn∈N Yn,Z = indn∈N Zn and qn : Yn −→ Zn is the (surjective)
restriction of q to Yn (with values in Zn, cf. (2.2.3) for detailed explanation).

ii) E,Y,Z are Fréchet-Hilbert spaces as idE ⊗σq is open with (4.2.2), hence idE ⊗̃σq is al-
most open, thus open by the Schauder Lemma ([MV97, (3.9)]).

As mentioned in (4.1.7) iii), the σ tensor product can also be approached from a homologi-
cal point of view:

Remark 4.2.13. Given a hilbertizable locally convex space E, we have the tensor product
functor idE ⊗̃σ·, that acts on the category of hilbertizable lcs and takes values in the same
category. We can easily prove the following:

i) If E = indn∈N En is an LH space, then idE ⊗̃σ· is an exact functor from LH to LH as
for any short exact sequence 0 −→ indn∈N Xn −→ indn∈N Yn −→ indn∈N Zn −→ 0 of
LH spaces (cf. (2.2.5) for the canonical exact structure on LH) the tensorized sequence
arises by (4.2.9) as inductive limit of the tensorized sequences of the steps

0 −→ En⊗̃σXn −→ En⊗̃σYn −→ En⊗̃σZn −→ 0 (n ∈ N)

that are topologically exact as the completed σ tensor product respects closed subspaces
and quotients of Hilbert spaces by (4.1.6) i) a) and ii). Thus the tensorized sequence is
again exact in LH by (2.2.5) and the construction of kernels and cokernels in LH (cf.
(2.2.3)).

ii) If E = projn∈N En is a Fréchet-Hilbert space, then idE ⊗̃σ· is an exact functor from the
category of Fréchet-Hilbert spaces FH into itself, as for any short exact sequence 0 −→
projn∈N Xn −→ projn∈N Yn −→ projn∈N Zn −→ 0 of FH spaces the tensorized sequence
arises by definition as projective limit of the local tensorized sequences

0 −→ En⊗̃σXn −→ En⊗̃σYn −→ En⊗̃σZn −→ 0 (n ∈ N) ,

that are topologically exact as the completed σ tensor product respects closed subspaces
and quotients of Hilbert spaces by (4.1.6) i) a) and ii). Thus the tensorized sequence
is again exact in FH as the completed σ tensor product respects closed subspaces of
complete hilbertizable lcs and Hausdorff quotients of Fréchet-Hilbert spaces by (4.2.2)
i) a) and (4.2.12) ii).

Since it is well-known that FH is quasi-abelian and has many injective objects – Hilbert spaces
are easily seen to be injective objects in FH – cf. [DM07, Vog11], we can construct the right
derivative of the tensor product functor idE ⊗̃σ· on FH in the sense of Palamodov (see e.g.
[Wen03, section 2.1]) for any Fréchet-Hilbert space E, if we consider it as a functor taking
values in the category VS of vector spaces. As usual, we denote the derivative with Tor1

σ (E, ·).
Then the exactness of idE ⊗̃σ· yields, that Tor1

σ (E, ·) vanishes, see [Var02, (2.1.14)].
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4 The Hilbert tensor product

From the general theory about the ε and π tensor product [Köt79, §41 and §44] we know that
those tensor topologies are compatible with the PLS space structure in the following sense:

For α ∈ {ε, π} the completed α tensor product of two PLS spaces is the PLS space arising
from the α tensor product of the spectra giving rise to the original PLS spaces. Now we will
deduce from (4.2.9) that the same is true for PLH spaces and the tensor topology Tσ:

Corollary 4.2.14. Given two PLH spaces

E = proj
N∈N

(
ind
n∈N

(
EN,n

)
, EN

M

)
= proj

N∈N

(
EN , EN

M

)
and

F = proj
N∈N

(
ind
n∈N

(
FN,n

)
, FN

M

)
= proj

N∈N

(
FN , FN

M

)
the following isomorphies hold topologically:

E⊗̃σF �
(1)

proj
N∈N

(
EN⊗̃σFN , EN

M⊗̃σFN
M

)
�
(2)

proj
N∈N

(
ind
n∈N

(
EN,n⊗̃σFN,n

)
, EN

M⊗̃σFN
M

)
.

Furthermore, the spectra on the right-hand side are strongly reduced, i.e. E⊗̃σF is a PLH
space.

Proof. By construction Tσ respects projective limits of hilbertizable lcs, i.e. the completed σ
tensor product of two hilbertizable (possibly uncountable) projective limits is the projective
limit created by the completed σ tensor product of the corresponding projective spectra (see
e.g. [Har82, (2.8)]). Thus (1) holds. (2) is given by (4.2.9). Since the tensor norm σ respects
dense subspaces, so does Tσ. Thus the projective spectrum arising from two strongly reduced
projective spectra by applying Tσ is strongly reduced. �

Considering the surjectivity problem of (4.2.3) for PLH spaces we need to impose further
assumptions to obtain positive results even for Hilbert spaces E. In the PLS space situation the
property lifting of bounded subsets of the quotient map under consideration seems to be the
key property. In our situation the lifting of local c0- or local `2-sequences seems to be more
fitting, as quotient maps between Fréchet-Hilbert spaces always have this property because
Fréchet spaces always have the strict Mackey condition (see [PCB87, (5.1.30)]), whereas those
quotient maps do not need to lift bounded sets, cf. (2.2.6) for a counterexample. We start with
a proper definition:

Definition and Remark 4.2.15. Let q : Y −→ Z be a linear and continuous operator between
hilbertizable lcs Y and Z.

i) The operator q lifts local c0- (respectively local `2-sequences) if for all Hilbert spaces
G with continuous inclusion G ↪→ Z and every (zk)k∈N ∈ c0 (G)

(
respectively `2 (G)

)
there is a Hilbert space H with continuous inclusion H ↪→ Y and a sequence (yk)k∈N ∈

c0 (H)
(
respectively `2 (H)

)
such that qyk = zk for all k ∈ N.
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4 The Hilbert tensor product

ii) If q lifts local c0-sequences then q lifts local `2-sequences: Let G be a Hilbert space
with continuous inclusion G ↪→ Z and (zk)k∈N ∈ `2 (G). Then there is a monotonically
decreasing zero sequence (γk)k∈N of strictly positive numbers such that

∑
k∈N

‖zk‖
2
G

γ2
k
< ∞.

As we may assume without loss of generality that each zk is not zero, we may define
z̃k B

γk
‖zk‖G

zk and obtain that (z̃k)k∈N ∈ c0 (G) . Hence the hypothesis yields a Hilbert space
H with continuous inclusion H ↪→ Y and a sequence (ỹk)k∈N ∈ c0 (H) such that qỹk = z̃k

for all k ∈ N. We define yk B
‖zk‖G
γk

ỹk for all k ∈ N and obtain on the one hand qyk = zk

for all k ∈ N and on the other hand
∑

k∈N ‖yk‖
2
H =

∑
k∈N

‖zk‖
2
G

γ2
k
‖ỹk‖

2
H, which is finite by

choice of (γk)k∈N and since (ỹk)k∈N ∈ c0 (H) ⊂ `∞ (H). Thus (yk)k∈N ∈ `2 (H) and the
proof is complete.

Now we can prove the announced result:

Proposition 4.2.16. Let q : Y −→ Z be an open operator between PLH spaces Y and Z that
lifts local `2-sequences. Then idE ⊗̃σq : E⊗̃σY −→ E⊗̃σZ is surjective for every Hilbert space
E.

Proof. Let (pι)ι∈I be a fundamental system of seminorms of Z and
(
Yι,Y ι

κ

)
ι≤κ∈I be the corre-

sponding projective spectra of Hilbert spaces, i.e. Z = projN∈N indn∈N ZN,n = projι∈I
(
Yι,Y ι

κ

)
.

Now let z be an element of E⊗̃σZ. This space is isomorphic to projι∈I E⊗̃σYι = projN∈N E⊗̃σZN

= projN∈N indn∈N E⊗̃σZN,n by definition of Tσ respectively by (4.2.14), and is a subspace of
EεZ by (4.2.1). Using as usual z as notation to emphasize z being a linear operator from E′ to
Z, we have for all N ∈ N: zN B ZN

∞z = ZN
∞ ◦ z = zN ∈ indn∈N S 2

(
E′,ZN,n

)
by (4.2.9). Thus for

all N ∈ N there is an n (N) ∈ N such that zN ∈ S 2
(
E′,ZN,n(N)

)
. Hence there is an orthonormal

system (ONS) (ek)k∈N in E′ such that z vanishes on the orthogonal complement of (ek)k∈N in E′

since countable unions of countable sets are countable. We define (gk)k∈N as the family of the
images of (ek)k∈N under z. Then the characterization of Hilbert-Schmidt operators via square
summability of images of orthonormal bases [MV97, (16.8)] yields that

cN B

√∑
k∈N

∥∥∥ZN
∞ (gk)

∥∥∥2

N,n(N) =

√∑
k∈N

∥∥∥zN
(ek)

∥∥∥2

N,n(N)

is finite for each N ∈ N.
Thus we have an `2

(
ZN,n(N)

)
-sequence

(
ZN
∞ (gk)

)
k∈N

that lifts separately to `2
(
YN,n(N)

)
for

each N ∈ N, since the local quotient maps qN : YN −→ ZN giving rise to q, cf. (2.2.15), even
lift bounded sets as LH spaces are regular. To obtain a simultaneous lifting, we need to use
the concept of vector valued sequence spaces: Given a lcs X with fundamental system of
seminorms cs (X), we define

`2 (X) B
{
(xk)k∈N ∈ XN : (p (xk))k∈N ∈ `2 for all p ∈ cs (X)

}
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4 The Hilbert tensor product

and for any absolutely convex subset C of X:

`2 (C) B
{
(xk)k∈N ∈ `2 (X) ∩ [C]N : (pC (xk))k∈N ∈ B`2

}
.

In this terminology we have that for each N ∈ N the sequence
(
ZN
∞ (gk)

)
k∈N

is an element of
`2

(
cN BN,n(N)

)
, where BN,n(N) denotes the closed unit ball of ZN,n(N). As the gauge functional of

the preimage of a set equals the composition of the gauge functional of the set with the map,
i.e.

p(ZN
∞)−1(cN BN,n(N)) (z) = pcN BN,n(N)

(
ZN
∞ (z)

)
for all z ∈ Z and N ∈ N, and since Y ι

∞ ◦ z ∈ S 2 (E′,Yι) for all ι ∈ I, we have

(gk)k∈N ∈
⋂
N∈N

`2

((
ZN
∞

)−1 (
cN BN,n(N)

))
.

The crucial step for the simultaneous lifting of the sequence (gk)k∈N to Y is the application of
[Fre94, (5.3)], which provides

⋂
N∈N

`2

((
ZN
∞

)−1 (
cN BN,n(N)

))
⊂ ‖α‖`1 `2

⋂
N∈N

1
αN

(
ZN
∞

)−1 (
cN BN,n(N)

)
for any `1-sequence α = (αN)N∈N. Choosing α in B`1 , e.g. the geometric series, the right-hand
side equals `2

(∏
N∈N

cN
αN

BN,n(N) ∩ Z
)

and since the bounded subset
∏

N∈N
cN
αN

BN,n(N) ∩ Z of Z
is contained in a Hilbert disc B ⊂ Z by (4.2.6) ii), we obtain a Hilbert space G = [B] with
continuous inclusion G ↪→ Z and that (gk)k∈N is an `2 (G)-sequence. Now the hypothesis yields
a Hilbert space H with continuous inclusion H ↪→ Y and a `2 (H)-sequence ( fk)k∈N such that
q fk = gk for all k ∈ N. Thus we may define y to be the unique linear and continuous operator
from E′ to H that fulfills y (ek) = fk for all k ∈ N and vanishes on the orthogonal complement
of the family {ek : k ∈ N} in E′. Then by [MV97, (16.8)] y is a Hilbert-Schmidt operator from
E′ to G and there is a corresponding element y in E⊗̃σY since Y ι

∞ ◦ y ∈ S 2 (E′,Yι) by [MV97,
(16.7) 3.] that satisfies q (y) = z since q ◦ y = z by construction. �

4.3 The vanishing of proj1 for tensorized PLH space spectra

We start our investigation by establishing the connection to the problem of surjectivity of
tensorized operators. The analogous results for PLS spaces and the ε product can be found in
[Dom10, (4.5)].

Proposition 4.3.1. Let

0 −→ X
i
−→ Y

q
−→ Z −→ 0 (?)
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be a short exact sequence of PLH spaces (cf. (2.2.17)) and E = projN∈N

(
EN , EN

M

)
be a PLH

space. If proj1
(
EN⊗̃σXN , idEN ⊗̃σXN

M

)
= 0, then the tensorized map idE ⊗̃σq : E⊗̃σY −→ E⊗̃σZ

is surjective. If proj1
(
EN⊗̃σYN , idEN ⊗̃σYN

M

)
= 0, the condition is also necessary.

Proof. By (2.2.15) the sequence (?) arises as the projective limit of a sequence of short exact

sequences 0 −→ XN
iN
−→ YN

qN
−→ ZN −→ 0 (N ∈ N) of LH spaces. As the tensorized sequences

0 −→ EN⊗̃σXN
idEN ⊗̃σiN
−→ EN⊗̃σYN

idEN ⊗̃σqN
−→ EN⊗̃σZN −→ 0 (N ∈ N)

are exact sequences of LH spaces by (4.2.13) ii), and give rise to the tensorized sequence

0 −→ E⊗̃σX
idE ⊗̃σi
−→ E⊗̃σY

idE ⊗̃σq
−→ E⊗̃σZ,

where idE ⊗̃σi is a kernel of idE ⊗̃σq in PLH by (4.2.14) and (4.2.2) i) b), the long exact
sequence of the projective limit functor (e.g. [Wen03, (3.1.5)]) yields the existence of an alge-
braically exact sequence

0 −→ E⊗̃σX
idE ⊗̃σi
−→ E⊗̃σY

idE ⊗̃σq
−→ E⊗̃σZ −→ proj

N∈N

1 (
EN⊗̃σXN

)
−→

−→ proj
N∈N

1 (
EN⊗̃σYN

)
−→ proj

N∈N

1 (
EN⊗̃σZN

)
−→ 0,

which yields the assertion. �

We prepare the proof of the most simple case, where X is a PLH space with proj1 X = 0 and
E is a Hilbert space. To this end we need the following result, a condition characterizing the
vanishing of proj1 for spectra of regular LB spaces that we can tensorize with a Hilbert space.
The proof of the following proposition is contained in [Wen03, (3.2.17) & (3.2.18)]. As we
change the assumptions on the sequence of Banach discs (BN)N∈N, we state the proof.

Proposition 4.3.2. Let X = projN∈N

(
XN , XN

M

)
be a projective limit of regular LB spaces XN =

indn∈N XN,n and let (BN)N∈N ∈
∏

N∈NBD (XN). Then the following are equivalent:

i) ∀
N∈N

∃
M≥N

∀
K≥M

XN
MXM ⊂ XN

K XK + BN .

ii)
(
XN , XN

M

)
is reduced and ∀

N∈N
∃

M≥N
∀

K≥M
A∈BD(XM)

∃
D∈BD(XK )

c>0

XN
MA ⊂ XN

K D + cBN .

iii)
(
XN , XN

M

)
is reduced and ∀

N∈N
∃

M≥N
∀

K≥M
m∈N

∃
k≥m

XN
MXM,m ⊂ XN

K XK,k + [BN].

Furthermore, the existence of a sequence (BN)N∈N ∈
∏

N∈NBD (XN) such that XN
N+1BN+1 ⊂ BN

holds for all N ∈ N together with one of the properties i) – iii) is equivalent to the vanishing
of proj1

(
XN , XN

M

)
.
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Proof. “i)⇒ ii)” i) implies reducedness and the second condition is a consequence of the
factorization theorem: Let K ≥ M ≥ N be chosen according to i) and R ∈ BD (XM).
Then XN

M is continuous as an operator from [R] to XN and by assumption its image is
contained in

⋃
l∈N

(
XN

K XK,l + [BN]
)
. As

(
XN

K XK,l + [BN]
)

carries the quotient topology for
all K ≥ N, l ∈ N, hence is a Banach space since XN

K XK,l carries the quotient topol-
ogy as well, we may apply the factorization theorem and obtain an integer k such that
XN

M ([R]) ⊂ XN
K XK,k + [BN], where the inclusion is continuous with the closed graph

theorem. This yields ii). Also see [Wen03, (3.2.17)].

“ii)⇒ i)” Let M ≥ N be chosen according to ii) and K ≥ M such that XM
K XK ⊂ XM

L XL
XM

for all L ≥ K. For every L ≥ K and for every m ∈ N there is a cm > 0 such that
XN

M
(
cmBM,m

)
⊂ XN

L XL + BN . Hence XN
MU ⊂ XN

L XL + BN , where U = Γ
(⋃

m∈N cmBM,m
)
.

Thus we arrive at XN
K XK = XN

MXM
K XK ⊂ XN

M

(
XM

L XL + U
)
⊂ XN

L XL + BN which is i). Also
see [Wen03, (3.2.18), 3. ⇒ 2.].

“ii)⇔ iii)” is then obvious.
The additional statement is precisely the theorem of Retakh and Palamodov, cf. [Wen03,

(3.2.9)]. �

Now we can prove the following characterization, which is the extension of [BD98, Lemma
33] from PLN to PLH.

Theorem 4.3.3. Let X = projN∈NX , where X =
(
XN , XN

M

)
, be a PLH space. Then proj1 X =

0 if and only if proj1
(
E⊗̃σXN , idE ⊗̃σXN

M

)
= 0 for any Hilbert space E.

Proof. Let proj1 X = 0. We use the characterization of the vanishing of proj1 X with
the additional statement of (4.3.2) to obtain a sequence (BN)N∈N ∈

∏
N∈NBD (XN) with

XN
N+1BN+1 ⊂ BN for all N ∈ N such that (4.3.2) iii) holds and choose K ≥ M ≥ N and

k ≥ m accordingly.
To be able to tensorize this condition with the Hilbert space E, we need to ensure that the

spaces [BN] can be assumed to be Hilbert:

Claim 1: For each N ∈ N the set BN can be chosen as Hilbert disc.

Proof of Claim 1: We recall the necessary parts of the proof of [Wen03, (3.2.9)]:
In each step XN the family

(
nBN,n

)
n∈N of multiples of the unit balls BN,n of XN,n is a fundamental

system of bounded sets covering XN . Hence the Baire argument [Wen03, (3.2.6)] yields the
existence of a subsequence (n (J))J∈N of the natural numbers such that each set BN can be
chosen as

N⋂
J=1

(
XJ

N

)−1 (
n (J) BJ,n(J)

)
.
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4 The Hilbert tensor product

Each of those sets is a Hilbert disc, since [Wen03, (3.2.10)] remains true if we replace “Banach
disc” by “Hilbert disc”, which we prove with the next Claim. �

Claim 2: Let f : X −→ Y be a continuous linear map between separated lcs and let A ⊂ X and
B ⊂ Y be Hilbert discs. Then f (A) + B and A ∩ f −1 (B) are again Hilbert discs.

Proof of Claim 2: The sequence

0 −→
[
A ∩ f −1 (B)

] i
−→ [A] × [B]

q
−→

[
f (A) + B

]
−→ 0,

where i (x) = (x,− f (x)) and q (x, y) = f (x) + y, is topologically exact and all spaces are
separated. Hence the claim is valid since closed subspaces and Hausdorff quotients of Hilbert
spaces are again Hilbert spaces. �

Thus we arrive at a sequence of Hilbert spaces
(
E⊗̃σ [BN]

)
N∈N the unit balls of which are

decreasing, i.e.: (
idE ⊗̃σXN

N+1

) (
BE⊗̃σ[BN+1]

)
⊂ BE⊗̃σ[BN ] (N ∈ N) ,

since σ has the metric mapping property by (4.1.3) ii). To compute the tensorized condition
properly, we need a last ingredient:

Claim 3: If F,G and H are Hilbert spaces such that G and H embed into the same vector space
V , then ψ (x ⊗ (y + z)) B x⊗ y + x⊗ z induces an isometric isomorphism Ψ from F⊗̃σ (G + H)
to F⊗̃σG + F⊗̃σH.

Proof of Claim 3: We consider the commutative diagram

F⊗̃σ (G × H)

��

Φ // F⊗̃σG × F⊗̃σH

��
F⊗̃σ (G + H) Ψ // F⊗̃σG + F⊗̃σH,

where Φ is the natural isomorphism (given by (4.2.8) i)), and the morphisms in the columns
are the tensorized quotient map on the left and the natural quotient map on the right. Thus the
claim is valid since σ respects metric surjections by (4.1.6) ii). �

Now we can complete the proof: As the inclusion

XN
MXM,m ↪→ XN

K XK,k + [BN]

is continuous and σ respects inclusions, metric surjections and sums of Hilbert spaces by
(4.1.6) ii) and claim 3, we obtain the continuous tensorized inclusion, hence condition (4.3.2)
iii) for the tensorized spectrum

(
E⊗̃σXN , idE ⊗̃σXN

M

)
. As this spectrum is even strongly reduced

(cf. (4.2.14)) the additional statement of (4.3.2) yields proj1 E⊗̃σX = 0. The other implication
can easily be seen through the characterization of the vanishing of proj1 X by the surjectivity
of the map ΨX , cf. [Wen03, (3.1.4)]. �
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4 The Hilbert tensor product

To forgo condition (P∗3)0 for X in the characterization of the vanishing of proj1 the tensorized
spectrum in case of a PLN space E, we need to extend (3.4.4):

Proposition 4.3.4. Let X = projN∈N indn∈N XN,n and E = projT∈N indt∈N ET,t two PLH spaces
such that E is deeply reduced and (E, X) satisfies (T ). Then either X satisfies (P∗3)0 or E is a
Fréchet-Hilbert space.

Proof. First we assume that the following holds:

∃
T∈N

∀
S≥T
t∈N

∃
s≥t
∀
δ>0
∃

g∈E′T
0 < ‖g‖∗T,t < δ

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
. (?)

We show that then X satisfies (P∗3)0: Let N ∈ N. We choose T ∈ N according to (?) and
M ≥ N, S ≥ T according to (T ). Given K ≥ M, we choose n, t ∈ N for K and S + 1 according
to (T ) and s ≥ t with (?). For any m ≥ n we choose k ≥ m, r ≥ s and c1 > 0 according to

(T ). Given ε > 0 we find by (?) a g ∈ E′T for δ B ε
c1

and define c B c1

∥∥∥∥(ET
S +1)

t
g
∥∥∥∥∗

S +1,r∥∥∥∥(ET
S )t

g
∥∥∥∥∗

S ,s

. Then (T )

grants for all f ∈ X′N:

∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
≤c1 ‖ f ‖∗N,n

‖g‖∗T,t∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

+ c1

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ES
S +1

)t
g
∥∥∥∥∗

S +1,r∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s

≤ε ‖ f ‖∗N,n + c
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k
,

which is (P∗3)0 for X. Now if (?) does not hold, then we have

∀
T∈N

∃
S≥T
t∈N

∀
s≥t
∃
δ>0
∀

g∈E′T
Either ‖g‖∗T,t = 0 or

∥∥∥∥(ET
S

)t
g
∥∥∥∥∗

S ,s
≤ 1

δ
‖g‖∗T,t . (??)

Since E is deeply reduced, we may assume by (3.2.4) that E′T is a dense subspace of E′T,t for

all T, t ∈ N. Hence (??) yields that the restriction
(
ẼT

S

)t
of

(
ET

S

)t
to E′T,t is continuous from

E′T,t to E′S . If we choose S ≥ T, t ∈ N for any T ∈ N according to (??) and R ≥ S , s ∈ N for S
by (??) we have a commutative diagram

E′T
� � (ET

S )t

/
� p

 

E′S
� � (ES

R)t

/
� p

 

E′R

E′T,t
. � (ẼT

S )t

>

E′S ,s
. � (ẼS

R)t

=

,

hence E′ is an LH space. Thus it has a countable fundamental system of bounded sets, i.e
E is metrizable. Since E is complete and hilbertizable by (4.2.6) i), it is a Fréchet-Hilbert
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space. �

Now we are ready to characterize the vanishing of proj1 for tensorized PLH space spectra
ate least if one of them is a PLN space. For two PLH spaces X = projN∈N indn∈N XN,n and
E = projT∈N indt∈N ET,t we define the projective spectra Pα B

(
EN⊗̃αXN , EN

M⊗̃αXN
M

)
and the

inductive spectra of Fréchet spaces Hα B
(
E′N⊗̃αX′N ,

(
EN

N+1

)t
⊗̃α

(
XN

N+1

)t
)

for α ∈ {π, σ, ε}.

Note that the operators
(
EN

N+1

)t
⊗̃α

(
XN

N+1

)t
are indeed injective for N ∈ N and α ∈ {π, σ, ε}: For

α = ε this is [Köt79, §44. 4. (5)], for α = σ this is (4.2.1) and for α = π this is shown with the
same argument as in the proof of (3.4.5). The next result generalizes [Var02, 4.2/4.3] as well
as [Dom10, (5.2)] partially.

Theorem 4.3.5. Let E = projT∈N indt∈N ET,t be a PLN space with proj1 E = 0 and X =

projN∈N indn∈N XN,n be a PLH space, both deeply reduced. Then Pπ = Pσ = Pε C P

and proj1 P = 0 if and only if the pair (E, X) satisfies (Tε) if and only if the pair (E, X)
satisfies (T ).

Proof. Since EN is nuclear as the strong dual of a nuclear Fréchet space by [Pie72, (4.3.3)
Theorem], the three projective spectra Pα, α ∈ {π, σ, ε} coincide by [Pie72, (7.3.3) Theorem].
In complete analogy the three inductive spectra Hα, α ∈ {π, σ, ε} coincide as well. Since Hσ

is pre-dual to Pσ by (4.2.10) ii), (3.1.1) yields that proj1 P vanishes if and only if Hπ is
weakly acyclic. If E is an LN space, the acyclicity of Hπ is characterized by (E, X) satisfying
(Tε) respectively (T ) by (3.4.5). Hence we may assume that E is not an LN space.
Necessity of (T ): If Hπ is weakly acyclic, we can prove just as in (3.4.5) via condition (wQ)
that (E, X) satisfies (T ).
(T ) implies (Tε): Since E is not an LN space, X satisfies (P∗3)0 by (4.3.4). As proj1 E = 0 by
assumption, E satisfies (P∗3)0 by [Wen03, (3.2.18)], hence (E, X) satisfies (Tε) by (3.2.2).
Sufficiency of (Tε): Let K ≥ M ≥ N, k ≥ m ≥ n, c > 0, ε > 0 be given by Tε in the formulation
(T d

ε ), cf. (3.2.1) ii) a). Just as in (3.4.5) we use the nuclear interpolation of (3.2.6) on the

spaces F0 B X′N,n, F1 B X′K,k and F B
(
X′N,k,

∥∥∥∥(XN
M

)t
(·)

∥∥∥∥∗
M,m

)
, as well as G0 B E′N,n,G1 B E′K,k

and G B
(
E′N,k,

∥∥∥∥(EN
M

)t
(·)

∥∥∥∥∗
M,m

)
and the continuity of the inclusions E′N,k⊗̃πX′N,k ↪→ Z,Z ∈{

F⊗̃πG, Fi⊗̃πGi, i = 0, 1
}

to obtain from (T d
ε ) condition (Q)0 for Hπ which implies acyclicity

by (3.1.2). �

As LN spaces are strongly nuclear by [Jar81, 21.8.6] and this property is inherited by arbi-
trary products and subspaces by [Jar81, (21.1)], PLN spaces are even strongly nuclear. Thus
only strongly nuclear Fréchet spaces can be endowed with a PLN structure, since there are
nuclear Fréchet-spaces that are not strongly nuclear, e.g. the space s of rapidly decreasing se-
quences by [Jar81, (21.8.3) a)]. Thus we have to distinguish the case E being a nuclear Fréchet
space, cf. [Pis10, p. 155].

Theorem 4.3.6. Let E = proj
(
EN , EN

M

)
be an FN space and X = projN∈N indn∈N XN,n a deeply

reduced PLH space that satisfies (P∗3)0. Then the three projective spectra Pπ,Pσ and Pε are
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4 The Hilbert tensor product

equivalent and proj1 Pε vanishes if and only if the pair (E, X) satisfies condition (Tε) if and
only if the pair (E, X) satisfies condition (T ).

Proof. As E is nuclear, we may assume the linking maps EN
N+1 to be nuclear for all N ∈ N. As

nuclear mappings are integral by [Pie72, (4.1.5) Proposition], for every local Hilbert space G
of XN the maps EN

N+1⊗ idG are continuous from EN+1⊗εG to EN ⊗πG by [DF93, (35.5)], hence
the extension of EN

N+1 ⊗ idXN to the completion is continuous from EN+1⊗̃εXN to EN⊗̃πXN , N ∈
N. Thus all three spectra are equivalent. As for each N ∈ N the transposed of EN

N+1 is nuclear
(again by [Pie72, (4.3.3) Theorem]), the same argument as above yields the equivalence of all
three inductive spectra Hπ,Hσ and Hε. Now, since EN⊗̃σXN is reflexive by (4.2.10) ii) for all
N ∈ N, the LFH spectrum Hσ is pre-dual to the PLH spectrum Pσ. Hence (3.1.1) yields that
proj1 Pσ vanishes if and only if Hσ is weakly acyclic. Since Hπ and Hσ are equivalent, Hπ

is weakly acyclic if and only if Hσ is weakly acyclic by [Vog92, (1.3)]. Thus we have shown
that proj1 Pε vanishes if and only if Hπ is weakly acyclic. In (3.5.4) we have proven that if
E′ is acyclic, which is the same as E being quasinormable by [MV97, (26.14)] and (3.1.2),
then the weak acyclicity of Hπ is equivalent to (E′′, X) satisfying (Tε) respectively (T ). As E
is nuclear, hence Schwartz and reflexive by (2.2.2) iv), this yields the assertion. �

Combining these results with the splitting results (3.4.6) and (3.5.5), we arrive at the fol-
lowing characterizations:

Corollary 4.3.7. Let E be an LN space and X = proj
(
XN , XN

M

)
be a deeply reduced PLH space

with proj1 X = 0 and (P∗3)0 such that Ext1
LH (E, XN) = 0 for all N ∈ N. Then Ext1

PLH (E, X) = 0
if and only if proj1 E′⊗̃εX = 0. The same is true for an LH space E and a PLN space X.

Corollary 4.3.8. Let E = proj
(
Eν, Eν

µ

)
be a nuclear Fréchet space and X = proj

(
XN , XN

M

)
be

a deeply reduced PLH space with proj1 X = 0. If Ext1
LH (Eν, XN) = 0 for all ν,N ∈ N then

Ext1
PLH (E, X) = 0 if and only if proj1 E′⊗̃εX = 0. The same is true for a Fréchet-Hilbert space

E and a PLN space X.

Combining the proofs of (3.4.7) and (3.5.6) we arrive at the following statement about
necessity of deep reducedness, cf. [Dom10, (5.4)]:

Proposition 4.3.9. If a pair (E, X) of PLH spaces satifies (Tε) then either X is strict or E is
deeply reduced in rows and either E is deeply reduced in columns or X is a Fréchet-Hilbert
space.

81
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The most prominent application of splitting theory are of course linear partial differential
operators P (D) as the classical examples of the Laplace operator ∆u =

∑n
j=1 ∂

2u/∂x2
j (which is

elliptic), the heat operator ∂u/∂t−∆u (which is parabolic), and the wave operator ∂2u/∂t2−∆u
(which is hyperbolic). The motivation for splitting theory then reads as follows:

Considering real world applications even under the assumption of surjectivity of P (D) a
continuative question arises: data in nature can not be conceived as rigidly fixed since the
mere process of measuring them involves small errors. Therefore a mathematical problem
can not be considered as realistically corresponding to physical phenomena unless a small
variation of the given data leads to a small change in the solution.

Hence the existence of continuous solution operators is of importance, which corresponds
to the splitting of the corresponding exact sequence

0 −→ ker (P (D)) ↪→ G
P(D)
−→ E −→ 0.

Here the domain G of P (D) – the setting in which we consider P (D) – plays an important
role, motivating not only the analysis of various spaces of smooth, holomorphic, real analytic
or ultradifferentiable functions but also various spaces of distributions and ultradistributions,
cf. (5.1.3). Most of these spaces are either nuclear Fréchet or PLN spaces, hence are cov-
ered by the current approach of splitting theory and the parameter dependence problem for
PLS spaces under the successors of the four standard assumptions. In this final chapter we
want to consider applications of the structure theory established for spaces that are not PLS.
To achieve this, we divide in the first section the condition (Tε) for the pair (E, X) into two
conditions of (DN)-(Ω) type for PLH spaces on E and X respectively and prove sufficiency
in complete analogy to [Dom10]. This includes the analogon of the famous (DN)-(Ω) split-
ting result for Fréchet-Hilbert spaces, e.g. [MV97, (30.1)] in PLH. Note that these variants of
the dual interpolation estimate (DIE) are due to Bonet and Domański in [BD07] in the PLS
framework. In the remaining sections we consider three examples: The Fréchet-Hilbert spaces
Bloc

2,κ (Ω) of all distributions that locally behave like B2,κ but are unrestricted at infinity or the
boundary, the space DL2 of all C∞ functions all of whose derivatives are L2 functions, its dual
D ′L2

, and the Köthe PLH spaces. A splitting theory for the Bloc
2,κ (Ω) spaces has been established

by Hermanns [Her05] and real analytic parameter dependence has been characterized by Vogt
[Vog04]. We extend Vogt’s results and show that for elliptic partial differential operators P (D)
on Bloc

2,κ (Ω) admitting a continuous linear right inverse is a lot more than having a parameter
dependence for a PLN space E with (DIE) for big θ. Concerning DL2 and its strong dual,
we prove that partial differential operators with constant coefficients on D ′ (Ω) for open and
convex Ω ⊂ Rd as well as surjective convolution operators Tµ on D ′(ω)

(
Rd

)
have the corre-

sponding parameter dependence. We conclude by giving a complete characterization of all
the problems under consideration for Köthe PLH spaces in terms of the matrices without any
nuclearity assumptions.
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5.1 (DN)-(Ω) type conditions for PLH spaces

However complicated the characterizing condition (Tε) established in the preceding sections
may seem, it proves to be evaluable in practice. To this end, Bonet and Domański introduced

the PLS variants (PΩ) , (PΩ), (PA) and (PA) of the Fréchet space conditions (DN) (or rather
its dual variant (A), cf. [Vog75]) and (Ω) in [BD06, BD08] and proved corresponding splitting
results for PLS spaces under the successors of the four standard assumptions. In [BD07]
they introduced a new condition, the dual interpolation estimate, henceforth (DIE), in three
variants – for small, big and all θ –, unifying the other four conditions mentioned above. In the
following, we will transfer the PLS space results from [BD06, BD07, BD08, Pis10] regarding
(DIE) to the category of PLH spaces, thus proving the analogon of the famous (DN)-(Ω)
splitting result for Fréchet-Hilbert spaces, e.g. [MV97, (30.1)] also for PLH spaces. We start
by defining the conditions, cf. [BD07, p. 433]:

Definition 5.1.1. A PLH space X = projN∈N indn∈N XN,n satisfies the dual interpolation esti-
mate (DIE) for small θ if the following holds:

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

0<θ0<1
∀

0<θ≤θ0

∃
k≥m
c>0

∀
f∈X′N∥∥∥∥(XN

M

)t
f
∥∥∥∥∗

M,m
≤ c

(∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

)1−θ (
‖ f ‖∗N,n

)θ
.

Replacing the quantifier ∀
0<θ≤θ0

by ∀
θ0≤θ<1

, we arrive at (DIE) for big θ and if we have the

estimate even for all 0 < θ < 1, then X has (DIE).

We collect the connections to the Fréchet space conditions (DN) and (Ω) as well as to the
(PA) , (PΩ) variants in the following remark. As it is meant for experts, we will not explicitly
state the definition of the other conditions. The proof of the former connection is mere writing
down the conditions, the proofs of the latter ones uses the characterization (5.1.5), cf. [BD06,
(5.1)], [BD07, (1.1)] and [Pis10, 1. & 2.].

Remark 5.1.2. i) A Fréchet-Hilbert space E has (DIE) for big θ iff it has (Ω) and it has

(DIE) (or equivalently (DIE) for small θ) iff it has (Ω).

ii) An LH space E has (DIE) (or equivalently (DIE) for big θ) iff its strong dual E′ has
(DN) and it has (DIE) for small θ iff its strong dual E′ has (DN).

iii) A PLH space X has (DIE) iff it has (PA) and (PΩ).

iv) A PLH space X has (DIE) for small θ iff it has (PA) and (PΩ).

v) A PLH space X has (DIE) for big θ iff it has (PA) and (PΩ).
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Before we prove the announced characterization, we compile examples of well-known
spaces having or not having variants of (DIE), cf. [BD07, (1.1), (2.1), (2.2)] and [Pis10,
1.]:

Remark 5.1.3. i) The space D ′ (Ω) of Schwartz distributions has (DIE).

ii) The space S ′ of tempered distributions has (DIE).

iii) The space E′ (Ω) of distributions with compact support has no form of (DIE).

iv) The space D ′(ω) (Ω) of ultradistributions of Beurling type has (DIE).

v) If Ω is an open and convex subset of Rd, then kernels of linear PDOs with constant
coefficients on D ′ (Ω) have (DIE) for big θ.

vi) The space E{ω} (Ω) of quasianalytic functions of Roumieu type has (DIE) for small θ if
Ω is open and convex and if ω satisfies:

∃
c1
∀

W≥1
∃
c2
∀
z
ω (W |z| + W) ≤ Wc1ω (z) + c2.

vii) In the non-quasianalytic case E{ω} (Ω) has (DIE) for small θ.

viii) The space A (Ω) of real analytic functions has (DIE) for small θ.

The mentioned characterization (5.1.5) of (DIE) is based on a simple inequality for real
numbers, the proof of which in turn involves the calculation of the minimum of a real-valued
function, cf. [MV97, (29.13)]. Even though this might seem rather trivial, we want to execute
the proof as it constitutes the fundament of the rest of the section:

Lemma 5.1.4. For every γ > 0 there is c > 0 such that with θ B γ

γ+1 the following holds for
all a, b and r > 0:

ca1−θbθ ≤ rγa +
1
r

b.

Proof. Let a, b and γ > 0 and ϕ : (0,∞) −→ R, r 7→ rγa + 1
r b. We calculate the first two

derivatives of ϕ to ϕ′ (r) = γrγ−1a − 1
r2 b and ϕ′′ (r) = γ (γ − 1) rγ−2a + 2

r3 b for all r > 0.

Furthermore, ϕ′ (r) vanishes exactly in r0 =
(

b
γa

) 1
γ+1 and

ϕ′′ (r0) = γ (γ − 1)
(

b
γa

) γ+1−3
γ+1

a + 2
(

b
γa

) −3
γ+1

b > 0,

84



5 Applications

hence ϕ reaches its minimum in r0 with value

ϕ (r0) = γ
−γ
γ+1 b

γ
γ+1 a1− γ

γ+1 + γ
1
γ+1 b1− 1

γ+1 a
1
γ+1

=
(
γ
−γ
γ+1 + γ

1
γ+1

)
a1− γ

γ+1 b
γ
γ+1 .

�

Now characterizing (DIE) remains an easy task, cf. [Pis10, 3.]:

Proposition 5.1.5. For a PLH space X = projN∈N indn∈N XN,n the following are equivalent:

i) X has (DIE) for small θ,

ii)

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

γ0>0
∀

0<γ≤γ0

∃
k≥m
c>0

∀
r>0
∀

f∈X′N∥∥∥∥(XN
M

)t
f
∥∥∥∥∗

M,m
≤ c

(
rγ

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k
+ 1

r ‖ f ‖
∗
N,n

)
,

iii)

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

γ0>0
∀

0<γ≤γ0

∃
k≥m
c>0

∀
r>0

XN
MBM,m ⊂ c

(
rγXN

K BK,k + 1
r BN,n

)
.

Replacing the quantifier ∀
0<γ≤γ0

by ∀
γ≥γ0

, we obtain (DIE) for big θ and if the statements

hold for all γ > 0 we have (DIE).

Proof. Applying Lemma (5.1.4) to a B
∥∥∥∥(XN

K

)t
f
∥∥∥∥∗

K,k
and b B ‖ f ‖∗N,n, using that the function

γ 7→ γ

γ+1 is monotonously increasing on the interval (0,∞) and an application of the Bipolar
theorem yield the assertions. �

These characterizations are very useful to compare (DIE) with our conditions of type (P3):

Corollary 5.1.6. For PLH spaces X = projN∈N indn∈N XN,n any form of (DIE) implies (P∗3)0.

Also concluding our splitting condition (Tε) from (DIE) in any form is an easy task by
applying (5.1.4) to a B

∥∥∥∥(XN
K

)t
f
∥∥∥∥∗

K,k

∥∥∥∥(ET
R

)t
g
∥∥∥∥∗

R,r
and b B ‖g‖∗T,t, cf. [Dom10, (5.6)]:

Corollary 5.1.7. Let E = projT∈N indt∈N ET,t and X = projN∈N indn∈N XN,n be two PLH spaces
that satisfy the same form of (DIE). Then the pair (E, X) satisfies (Tε).
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Deep reducedness is also a consequence of any form of (DIE), cf. [Pis10, 8.]:

Corollary 5.1.8. PLH spaces X = projN∈N indn∈N XN,n satisfying any form of (DIE) are deeply
reduced.

Proof. Let K ≥ M ≥ N, k ≥ m ≥ n and γ0 > 0, c > 0 be chosen according to (5.1.5) iii). Then
we have

XN
MBM,m ⊂ crγ0 XN

K BK,k +
c
r

BN,n for all r > 0,

which yields on the one hand

XN
MBM,m ⊂

⋂
r>0

crγ0 BN,k + XN,n ⊂ XN,n
XN,k
,

i.e., X is deeply reduced in rows, and on the other hand

XN
MBM,m ⊂

⋂
r>0

XN
K XK,k +

c
r

BN,k ⊂ XN
K XK,k

XN,k
,

i.e., X is deeply reduced in columns. �

The previous corollaries together with the splitting results (3.4.6) and (3.5.5) yield the gen-
eralization of the famous (DN)-(Ω) splitting result to the category of PLH spaces, cf. [BD06,
(5.5)] and [BD08, (4.1)] for the PLS analogons:

Theorem 5.1.9. Let X be a PLH space and E either a Fréchet-Hilbert space or an LH space
such that E′ and X satisfy the same form of (DIE). Then Ext1

PLH (E, X) = 0 if all the local
Ext groups Ext1

LH (ET , XN) vanish if E is FH, respectively Ext1
LH (E, XN) = 0 if E is LH, for all

N,T ∈ N.

In the theory for partial differential equations results about the regularity of solutions are
important. One way to classify regularity is the behavior of the Fourier transform û of a
distribution or function at infinity. When we ask for which weight function k it is true that
kû is p-integrable, we arrive at the spaces Bp,k, cf. [Hör05, (10.1)], which will be the basic
modules for our hilbertizable but non-nuclear function respectively distribution spaces DL2

and Bloc
2,k (Ω):

A positive function k on Rd is called a temperate weight function if there are C > 0 and
N ∈ N such that

k (ξ + η) ≤
(
1 + C|ξ|N

)
k (η) for all ξ, η ∈ Rd

and by K we denote the set of all those functions. For 1 ≤ p ≤ ∞ we define Bp,k to be the
(Banach) space of temperate distributions u ∈ S ′ such that û ∈ Lloc

1

(
Rd

)
and kû ∈ Lp

(
Rd

)
,
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equipped with the norm

‖u‖p,k B

(2π)−
d
p ‖kû‖Lp

, 1 ≤ p < ∞,
‖kû‖L∞ , p = ∞.

5.2 Parameter dependence of P (D) in Bloc
2,k (Ω) spaces

For 1 ≤ p ≤ ∞ and an open subset Ω ⊂ Rd we denote by Bloc
p,k (Ω) the space of all distributions

u ∈ D ′ (Ω) that locally behave like Bp,k but are unrestricted at infinity or the boundary, i.e.
u ·ϕ ∈ Bp,k for all ϕ ∈ D (Ω), obtaining by [Hör05, (10.1.26)] a Fréchet space with continuous
inclusions

C∞ (Ω) ↪→ Bloc
p,k (Ω) ↪→ D ′ (Ω) .

Given a polynomial P in d variables with degree m ∈ N, we define

P̃ (ξ) B

∑
|α|≤m

|∂αP (ξ)|2


1
2

, ξ ∈ Rd

and obtain by [Hör05, (10.6.7)] that for 1 ≤ p < ∞ and a P-convex open subset Ω ⊂ Rd we
have a short exact sequence of Fréchet spaces

0 −→ Np,P̃k (Ω) −→ Bloc
p,P̃k (Ω)

P(D)
−→ Bloc

p,k (Ω) −→ 0 (?)

where Np,P̃k (Ω) is the kernel of P (D) on Bloc
p,P̃k (Ω). In his thesis [Her05, Theorem A &

B] Hermanns extended the sequence space representation Bloc
1,k (Ω) �

∏
k∈N `

1 due to Vogt
[Vog83b] to 1 ≤ p < ∞ and proved for p = 1, 2 that each exact sequence (?) splits iff
Np,P̃k (Ω) is a quojection.

In [Vog04, (3.3)] Vogt proved the following result about real analytic parameter depen-
dence: Given an open subset T ⊂ Rd or a coherent subvariety T ⊂ Rd with dim (T ) ≥ 1, the
induced operator

P (D) ⊗̃ε idA (T ) : Bloc
p,P̃k (Ω) ⊗̃εA (T ) −→ Bloc

p,k (Ω) ⊗̃εA (T )

is surjective if and only if Np,P̃k (Ω) satisfies (Ω), which is almost never fulfilled if P is elliptic
and Ω is convex except in the case d = 1, cf. [Vog06, Theorem 3].

We are able to contribute the following

Corollary 5.2.1. Let E be a PLN space. Then in the above situation

P (D) ⊗̃ε idE : Bloc
2,P̃k (Ω) ⊗̃εE −→ Bloc

2,k (Ω) ⊗̃εE
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is surjective whenever either

i) E has (DIE) for big θ and N2,P̃k (Ω) satisfies (Ω), or

ii) E has (DIE) for small θ and N2,P̃k (Ω) satisfies (Ω).

Proof. The pair
(
N2,P̃k (Ω) , E

)
satisfies (Tε) in both cases by (5.1.7) and both spaces are

deeply reduced by (5.1.8). Hence (4.3.5) yields that proj1 N2,P̃k (Ω) ⊗̃εE = 0, which char-
acterizes the surjectivity of P (D) ⊗̃ε idE by (4.3.1) since with the same argument as above
proj1 Bloc

2,P̃k
(Ω) ⊗̃εE vanishes. �

In particular, the case (5.2.1) i) contains the Schwartz distributions D ′ (Ω), the ultradistri-
butions of Beurling type D ′(ω) (Ω), the tempered distributions S ′, the germs of holomorphic
functions over a one-point set H ({0}) (cf. [BD06, p. 331] and D ′ (K) for a compact subset
K ⊂ Rn with non-void interior, cf. [MV97, (31.10)]. The second case (5.2.1) ii) contains the
space of ultradifferentiable functions of Roumieu type E{ω} (Ω) for a quasianalytic weight with
condition (5.1.3) vi) or any non-quasianalytic weight.

The case P being an elliptic polynomial shows that having parameter dependence for a
space E with (DIE) for big θ, i.e. the situation in which (5.2.1) i) holds is much less than
admitting a continuous linear right inverse:

Example 5.2.2. Let p = 2, d > 1 and P be an elliptic polynomial. First of all by [Hör05,
(10.8.2)] every open subset Ω ⊂ Rn is P-convex, hence we have an exact sequence (?).
By [Hör03, (4.4.2)] the topological kernels of P (D) in C∞ (Ω) and D ′ (Ω) coincide. Hence

N2,P̃k (Ω) does never satisfy (Ω) but always satisfies (Ω) by [Vog83a, (2.5)]. Thus the sequence

(?) never splits as being a quojection trivially implies satisfying (Ω) whereas

P (D) ⊗̃ε idE : Bloc
2,P̃k (Ω) ⊗̃εE −→ Bloc

2,k (Ω) ⊗̃εE

is surjective for all PLN spaces E with (DIE) for big θ. That the kernel of P (D) satisfies
(Ω) was also shown by Frerick and Kalmes, who proved in [FK10, Corollary 3] that in the
above situation the augmented operator P+ (D) is surjective on D ′ (Ω × R). This is equivalent
to (PΩ) for the kernel of P (D) by [BD06, (8.3)], which yields the assertion considering that
(PΩ) coincides with (Ω) for Fréchet spaces. Note that this is not true for hypoelliptic operators
and n ≥ 3 as Kalmes proved in [Kal12].

5.3 DL2 parameter dependence

Choosing the weight function ks (ξ) =
(
1 + |ξ|2

)s/2
, ξ ∈ Rd, s ∈ R and p = 2, we arrive

at the well-known Sobolev spaces H(s) = B2,ks , cf. [Hör05, (10.1.2) & (7.9)]. The Sobolev
Embedding Theorem [MV97, (14.16)] yields that the space DL2 B

⋂
s>0 H(s) is the space of

all C∞-functions f on Rd with Dα f ∈ L2 for all α ∈ Nd
0, endowed with the seminorms induced

by the embeddings into H(k), k ∈ N. Thus DL2 is a Fréchet-Hilbert space containing the space
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C∞c of C∞-functions with compact support as a dense subspace. It satisfies (DN) as well as
(Ω) but is not nuclear since it is not even Montel by [MV97, (31.15)].

Results as in (5.2) are not of great use since if the kernel of a surjective operator T in DL2

satisfies (Ω), then T admits a linear and continuous right inverse by [MV97, 30.1], which in
turn implies the surjectivity of the tensorized operator T ⊗̃ε idE for every lcs E on its own.

However, it seems reasonable to consider DL2 and its dual D ′L2
= indk∈N H(−k) as a form of

parameter dependence in analogy to C∞ (Ω) ,H (Ω) or H (K) parameter dependence, which
leads to the following corollary:

Corollary 5.3.1. i) Let P (D) : D ′ (Ω) −→ D ′ (Ω) be a linear partial differential operator
with constant coefficients on the space of Schwartz distributions over an open and con-
vex subset Ω ⊂ Rd. Then the tensorized operators P (D) ⊗̃ε idDL2

and P (D) ⊗̃ε idD ′L2
are

surjective.

ii) Let Tµ : D ′(ω)

(
Rd

)
−→ D ′(ω)

(
Rd

)
be a surjective convolution operator on the space of

ultradistributions of Beurling type for an ultradistribution µ of compact support. Then
the tensorized operators Tµ⊗̃ε idDL2

and Tµ⊗̃ε idD ′L2
are surjective.

Proof. As DL2 and its strong dual satisfy (DIE) for big θ by (5.1.2), the completed ε tensor
product with PLN spaces that satisfy (DIE) for big θ as well yields proj1 = 0 by (5.1.7) and
(4.3.5). Thus (4.3.1) yields the claim if the kernel of both P (D) and Tµ satisfy (DIE) for big
θ. For P (D) this is (5.1.3) v) and considering Tµ we consult [BD06, (8.5)] to obtain (PΩ) and
[BD08, (5.7)] to obtain (PA) which yield (DIE) for big θ by (5.1.2) v). �

5.4 Köthe PLH spaces

Following [DV00a, p.189], we define Köthe PLB spaces, also see [Dom04, (1.7)]:

Definition and Remark 5.4.1. i) A scalar matrix A =
(
a j;N,n

)
j,N,n∈N

is called a Köthe PLB-
matrix if the following holds:

a) for all j ∈ N there is an N ∈ N such that a j;N,n > 0 for all n ∈ N,

b) for all j,N, n ∈ N we have a j,N+1,n ≥ a j;N,n and

c) for all j,N, n ∈ N we have a j;N,n+1 ≤ a j,N,n.

ii) A Köthe PLB space Ep (A) for a Köthe PLB-matrix A and 1 ≤ p ≤ ∞ is defined to be

Ep (A) B
x =

(
x j

)
j∈N
∈ KN : ∀

N∈N
∃

n∈N
‖x‖(p)

N,n B
∥∥∥∥(x ja j;N,n

)
j∈IN

∥∥∥∥
`p
< ∞


endowed with its natural PLB topology Ep (A) = projN∈N EN

p (A), where

EN
p (A) = indn∈N EN,n

p (A) ,
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EN,n
p (A) =

{
x =

(
x j

)
j∈IN
∈ KIN : ‖x‖(p)

N,n < ∞
}

and IN B
{
j ∈ N : a j;N,n > 0 for all n ∈ N

}
.

iii) Given a a Köthe PLB-matrix A and 1 ≤ p ≤ ∞, Ep (A) is a deeply reduced PLB space as
the family (ek)k∈IN

of all unit vectors ek B
(
δk, j

)
j∈IN

is a basis in every EN,n
p (A) ,N, n ∈ N.

The sequence (IN)N∈N satisfies IN ⊂ IN+1,N ∈ N because of i) b) and covers N by i)
a). Thus the linking maps EN

M (A) : EM
p (A) −→ EN

p (A) are given by the restrictions of
the canonical projections from KIM to KIN for all M ≥ N. If no confusion concerning
the Köthe matrix A is possible, we omit it. Ep (A) is a PLS space if lim

n→∞

a j;N,n+1

a j;N,n
= 0 by

[MV97, (27.8)] and a PLN space if
∑
j∈N

a j;N,n+1

a j;N,n
< ∞.

This type of spaces is worth investigating not only because their structure is easy to handle,
but also as they appear commonly in applications:

Remark 5.4.2. i) By [DV00a, (2.1)] for every PLN space E with an equicontinuous basis
there is a Köthe PLB matrix A (not depending on p) such that E � Ep (A).

ii) Many spaces as for example the non-quasianalytic Roumieu classes E{ω} and spaces
of Beurling ultradistributions D ′(ω) are isomorphic to Köthe PLB spaces, cf. [Vog83b,
Val78].

iii) The kernels of surjective convolution operators on D ′(ω) (R), E{ω} (R) or E{ω} (] − 1, 1[)
are even PLS power series spaces, i.e. Köthe PLB spaces with special matrices A, cf.
[BD08, p. 578]. Splitting theory for the latter ones has been investigated in [Kun01] by
Kunkle.

We give some simple characterizations of our regularity properties of type (P3) and (DIE).
Please note the duality to Vogt’s discourse [Vog92, section 5] about LF sequence spaces and
the properties (Q) and (wQ), which are just (P∗3) and (P∗3)0 in the old formulation of the quan-
tifiers.

Proposition 5.4.3. Let 1 ≤ p < ∞. A Köthe PLB space Ep (A) satisfies

i) (P∗3) if and only if ∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

∀
j∈IN

1
a j;M,m

≤ c
a j;N,n

+ c
a j;K,k

.

ii) (P∗3)0 if and only if ∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

∀
j∈IN

1
a j;M,m

≤ ε
a j;N,n

+ c
a j;K,k

.

iii) (DIE) if and only if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∀

0<θ<1
∃

k≥m
c>0

∀
j∈IN

1
a j;M,m

≤ c
(

1
a j;K,k

)1−θ ( 1
a j;N,n

)θ
.

As usual, replacing the quantifier ∀0<θ<1 by ∃0<θ0<1∀0<θ≤θ0
, we arrive at (DIE) for small

θ and replacing it by ∃0<θ0<1∀θ0≤θ<1, we obtain (DIE) for big θ.
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Proof. The proof of the assertions is basically straightforward calculation. We give the main
ideas. To see necessity, we apply the conditions to the functionals induced by the unit vectors
e j, j ∈ IN . For sufficiency we calculate the terms appearing in the inequalities of the conditions.
Let S ≥ T, s ∈ N and f ∈ ET

p (A)′. We denote f j B f
(
e j

)
, j ∈ IT , use the Hölder conjugate

q of p, i.e. 1
p + 1

q = 1 with the common agreement 1
∞
B 0, and obtain with the duality of

weighted sequence spaces, cf. [MV97, (27.13)]:∥∥∥∥(ET
S

)t
f
∥∥∥∥(p)∗

S ,s
= sup

{∣∣∣∣ f (
ET

S (x)
)∣∣∣∣ : x ∈ KIS , ‖x‖(p)

S ,s ≤ 1
}

= sup


∣∣∣∣∣∣∣∑j∈IT

(
1

a j;S ,s
f j

) (
a j;S ,sx j

)∣∣∣∣∣∣∣ :
∥∥∥∥(a j;S ,sx j

)
j∈IT

∥∥∥∥
`p
≤ 1


=

∥∥∥∥∥∥∥
(

1
a j;S ,s

f j

)
j∈IT

∥∥∥∥∥∥∥`q

.

Applying the inequalities involving the entries of the Köthe PLB matrix component-wise
yields sufficiency since `r are normal Banach sequence spaces for all 1 ≤ r ≤ ∞, cf. [Fre94,
(2.2)]. �

Enhancing the proof of sufficiency in the last proposition (5.4.3) slightly, we can compute a
convenient characterization of the conditions (Tε) and (T ) for Köthe PLB spaces:

Proposition 5.4.4. Let 1 ≤ p < ∞. Two Köthe PLB space Ep (A) and Ep (B) satisfy

i) (Tε) if and only if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

∀
i∈IN
j∈JN

1
ai;M,mb j;M,m

≤ ε
ai;N,nb j;N,n

+ c
ai;K,kb j;K,k

,

ii) (T ) if and only if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

∀
i∈IN
j∈JN

1
ai;M,mb j;M,m

≤ c
ai;N,nb j;N,n

+ c
ai;K,kb j;K,k

,

where IN B
{
i ∈ N : ai;N,n > 0 for all n ∈ N

}
, JN B

{
j ∈ N : b j;N,n > 0 for all n ∈ N

}
,N ∈ N.

Proof. As in (5.4.3) the proof is basically straight forward calculation. We give the main idea.
For necessity, we again apply the conditions to the functionals induced by the unit vectors
ei, i ∈ IN and e j, j ∈ JN . For sufficiency, we calculate the terms appearing in the inequalities of
the conditions. Let S ≥ T, s ∈ N, f ∈ ET

p (A)′ , g ∈ ET
p (B)′ and q be the Hölder conjugate of p.

Furthermore, let IT = {i (ν) : ν ∈ N} and JT = { j (µ) : µ ∈ N} be countings of IT respectively

91



5 Applications

JT , which we may assume to be infinite. Then we have

∥∥∥∥(ET
S (A)

)t
f
∥∥∥∥(p)∗

S ,s

∥∥∥∥(ET
S (B)

)t
g
∥∥∥∥(p)∗

S ,s
=

∥∥∥∥∥∥
(

1
ai;S ,s

fi

)
i∈IT

∥∥∥∥∥∥
`q

∥∥∥∥∥∥∥
(

1
b j;S ,s

g j

)
j∈JT

∥∥∥∥∥∥∥`q

=


 ∞∑
ν=1

∣∣∣∣∣∣ fi(ν)

ai(ν);S ,s

∣∣∣∣∣∣q

 ∞∑
µ=1

∣∣∣∣∣∣ g j(µ)

b j(µ);S ,s

∣∣∣∣∣∣q



1/q

=

 ∞∑
ν=1

ν∑
µ=1

∣∣∣∣∣∣ fi(µ)gi(ν)− j(µ)

ai(µ);S ,sbi(ν)− j(µ);S ,s

∣∣∣∣∣∣q


1/q

,

which allows us to apply the inequalities involving the entries of the Köthe PLB matrix
component-wise yielding sufficiency. �

Choosing p = 2, we obtain the Köthe PLH spaces, which allow for a complete characteriza-
tion of the vanishing of proj1 of σ tensorized spectra, since the unit vectors ei, i ∈ N, allow for
common orthogonal systems which enable us to interpolate Hilbert-Schmidt operators. Note
that under mild assumptions, cf. e.g. (3.4.4) and (4.3.4), only one of the two matrices has to
satisfy (P∗3)0.

Theorem 5.4.5. Let A and B be two Köthe PLB matrices that satisfy (P∗3)0.
Then proj1 E2 (A) ⊗̃σE2 (B) = 0 if and only if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
ε>0

∃
k≥m
c>0

∀
i∈IN
j∈JN

1
ai;M,mb j;M,m

≤ ε
ai;N,nb j;N,n

+ c
ai;K,kb j;K,k

if and only if

∀
N∈N

∃
M≥N

∀
K≥M

∃
n∈N
∀

m≥n
∃

k≥m
c>0

∀
i∈IN
j∈JN

1
ai;M,mb j;M,m

≤ c
ai;N,nb j;N,n

+ c
ai;K,kb j;K,k

.

Proof. By (5.4.4) the two conditions are equivalent to (Tε) respectively (T ) for the pair
(E2 (A) , E2 (B)) which are equivalent by (3.2.2) since both spaces satisfy (P∗3)0. For the rest of
the proof we use the same notation as in (4.3.5) and (4.3.6), i.e.

Pσ B
(
EN

2 (A) ⊗̃σEN
2 (B) , EN

M (A) ⊗̃σEN
M (B)

)
and

Hσ B
((

EN
2 (A)

)′
⊗̃σ

(
EN

2 (B)
)′
,
(
EN

N+1 (A)
)t
⊗̃σ

(
EN

N+1 (B)
)t
)
.

The second condition is necessary for the vanishing of proj1 Pσ in analogy to e.g. (4.3.5).
Indeed, the vanishing of proj1 Pσ is equivalent to Hσ being weakly acyclic by (3.1.1) as
the steps of Pσ are reflexive by (4.2.10) ii). Hence Hσ satisfies (wQ) by [Vog92, (2.3) b)]
which yields (T ) for the pair (E2 (A) , E2 (B)) by exchanging the quantifiers and applying to
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elementary tensors. Again similar to the proof of (4.3.5) the first condition implies even the
acyclicity of Hσ: (Tε) implies (Q)0 for elementary tensors. To obtain the norm inequality
for all tensors of the completed σ tensor product, we only need interpolation in the sense of
(3.2.6) for Hilbert-Schmidt operators, which is trivial if we have common orthogonal bases.
Indeed, let α, β > 0 and (F0, F1) , (G0,G1) be two pairs of pre-Hilbert spaces and F,G two
pre-Hilbert spaces with F ⊂ F0 ∩ F1,G ⊂ G0 ∩G1 such that F and G are of countably infinite,
but without loss of generality infinite, dimension and bases (xi)i∈N in F and

(
y j

)
j∈N

in G that
are orthogonal with regard to each of the three respective scalar products. Furthermore, let

‖x‖F ‖y‖G ≤ α ‖x‖F0 ‖y‖G0
+ β ‖x‖F1 ‖y‖G1

for all x ∈ F, y ∈ G.

Since all norms are equivalent on R2, this yields in particular

‖x‖2F ‖y‖
2
G ≤ 2α2 ‖x‖2F0

‖y‖2G0
+ 2β2 ‖x‖2F1

‖y‖2G1
for all x ∈ F, y ∈ G. (?)

Now let z =
∑∞
ν=1 λνxν ⊗ yν ∈ F ⊗G. By Parseval’s equation and (?) we obtain

σ (z; F,G)2 =

∞∑
ν=1

|λν|
2
‖xν‖2F ‖yν‖

2
G

≤ 2α2
∞∑
ν=1

|λν|
2
‖xν‖2F0

‖yν‖2G0
+ 2β2

∞∑
ν=1

|λν|
2
‖xν‖2F1

‖yν‖2G1

= 2α2σ (z; F0,G0)2 + 2α2σ (z; F1,G1)2 ,

i.e. we have interpolation with the loss of
√

2. By (5.4) ii) we may apply this result to our
interpolation problem for Köthe PLH spaces, which completes the proof.

�
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Wuppertal, 2002.

[Var07] , On the derived tensor product functors for (DF)- and Fréchet spaces,
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