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Abstract

In splitting theory of locally convex spaces we investigate evaluable characterizations of the
pairs (E, X) of locally convex spaces such that each exact sequence
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of locally convex spaces splits, i.e. either f has a continuous linear left inverse or g has a
continuous linear right inverse. In the thesis at hand we deal with splitting of short exact se-
quences of so-called PLH spaces, which are defined as projective limits of strongly reduced
spectra of strong duals of Fréchet-Hilbert spaces. This class of locally convex spaces contains
most of the spaces of interest for application in the theory of partial differential operators as
the space of Schwartz distributions 2’ (QQ), the space of real analytic functions <7 () and
various spaces of ultradifferentiable functions and ultradistributions, cf. [Dom04]. It also con-
tains non-Schwartz spaces as Z;, and the Blz"lf (Q) spaces that are not covered by the current
theory for PLS spaces, cf. e.g. [BD06, BDO8, Dom10]. We prove a complete characterizations
of the above problem in the case of X being a PLH space and E either being a Fréchet-Hilbert
space or a strong dual of one by conditions of type (T') respectively (7), cf. [Dom10], which
gives an answer to a variation of [BD06, problem (9.9)]. To this end, we establish the full ho-
mological toolbox of Yoneda Ext functors in exact categories for the category of PLH spaces
including the long exact sequence, which in particular involves a thorough discussion of the
proper concept of exactness. Furthermore, we exhibit the connection to the parameter depen-
dence problem via the Hilbert tensor product for hilbertizable locally convex spaces. We show
that the Hilbert tensor product of two PLH spaces is again a PLH space which in particular
proves the positive answer to Grothendieck’s probleme des topologies, cf. [Gro55]. In addi-
tion to that we give a complete characterization of the vanishing of proj' for tensorized PLH
spectra if one of the PLH spaces E and X meets some nuclearity assumptions. To apply our
results to concrete cases we establish sufficient conditions of (DN)-(QQ) type due to [BDO7],
and apply them to the parameter dependence problem for partial differential operators with
constant coefficients on B12°,ﬁ (€2) spaces as well as to the parameter dependence problem for
Z1,. Concluding we give a complete solution of all the problems under consideration for PLH
spaces of Kothe type.
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Zusammenfassung

Motiviert durch die Frage nach der Existenz von linearen und stetigen Losungsoperatoren zu
partiellen Differentialoperatoren mit konstanten Koeffizienten, beschéftigt sich die Splitting
Theorie lokalkonvexer Rdume mit der Charakterisierung der Raumpaare (£, X) lokalkonvexer
Riume, sodass jede kurze exakte Sequenz
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lokalkonvexer Rdume zerfdllt, d.h. entweder f eine lineare und stetige Linksinverse besitzt
oder, dquivalent, die Abbildung g eine lineare und stetige Rechtsinverse. In der vorliegen-
den Arbeit wird diese Fragestellung fiir die Kategorie sogenannter PLH Réume untersucht.
Alle fiir die Anwendung in der Losungstheorie von partiellen Differentialgleichungen nach
Hormander relevanten Riume der Funktionalanalysis, wie der Raum der Schwartz’schen Dis-
tributionen 2’ (QQ), der Raum der reell analytischen Funktionen .27 (Q2) und viele Raume ultra-
differenzierbarer Funktionen und Ultradistributionen sind dieser Kategorie zuzuordnen; er-
lauben also eine Darstellung als projektiver Limes eines stark reduzierten Spektrums von
starken Dualen von Fréchet-Hilbert Riumen. AufBerdem enthilt diese Kategorie auch viele
Beispiele von Funktionen- und Distibutionenrdumen, wie den &, und die B12°,i (Q) Riume,
die nicht Schwartz sind, also nicht von der aktuellen Theorie fiir PLS Rdaume, man vergleiche
beispielsweise [BD06, BD08, Dom10], erfasst werden. Wir geben eine vollstindige Charak-
terisierung mittels einer Bedingung vom Typ (7), vgl. [Dom10], fiir das Zerfallen aller Se-
quenzen (%) in PLH fiir Fréchet-Hilbert oder LH Rdume E und PLH Ridume X, was eine
Antwort auf eine Variation von [BD06, Problem (9.9)] gibt. Dazu werden alle homologischen
Methoden, insbesondere die lange exakte Kohomologie-Sequenz und die Verbindung von
Ext}, ,; und proj' fiir die Yoneda Ext Gruppen in Analogie zum PLS Raum Fall [Sie10] bere-
itgestellt. Insbesondere wird die Wahl der richtigen Exaktheitstruktur in PLH diskutiert. Uber
das Hilbert Tensor Produkt fiir hilbertisierbare lokalkonvexe Rdume stellen wir den Zusam-
menhang zu dem Problem der Parameterabhiingigkeit von Losungen her und weisen nach,
dass das Hilbert Tensor Produkt von zwei PLH Réaumen wieder ein PLH Raum ist. Dazu 16sen
wir insbesondere Grothendieck’s probleme des topologies, vgl. [Gro55], positiv fiir Fréchet-
Hilbert Rdume und das Hilbert Tensor Produkt. SchlieBlich geben wir eine vollstindige
Charakterisierung des Verschwindens von proj' fiir tensorierte PLH Spektren wieder mittels
einer Bedingung vom Typ (7,) im Falle, dass einer der beteiligten PLH Rédume gewissen Nuk-
learitdtsbedingungen geniigt. Um die charakterisierenden Bedingungen auf konkrete Fille an-
wenden zu konnen, weisen wir hinreichende Bedingungen vom Typ (DN)-(Q) fiir PLH Ridume
nach und wenden diese an sowohl auf das Problem der Parameterabhéngigkeit von Losungen
fiir partielle Differentialoperatoren mit konstanten Koeffizienten in Blz"; () Réumen, als auch
auf das Problem der Z;, Parameterabhingigkeit. SchlieBlich geben wir eine vollstindige
Charakterisierung aller behandelten Fragestellungen fiir das Beispiel der Kéthe PLH Réaume.
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1 Introduction

In splitting theory of locally convex spaces we investigate evaluable characterizations of the
pairs (E, X) of locally convex spaces such that each exact sequence

0—5X-5625E—0 (%)

of locally convex spaces splits, i.e. either f has a continuous linear left inverse or g has a
continuous linear right inverse. The notion of exactness is one of the aspects considered
in chapter 2, for now the reader may picture a linear continuous and surjective operator g
between locally convex spaces G and E with the continuous inclusion of X = g~! ({0}) via f
into the domain G.

Since the seventies of the last century this problem has been studied extensively in the con-
text of Fréchet and locally convex spaces and can be considered complete for these categories,
a short survey is given at the beginning of chapter 3. The problem that motivates investigating
splitting theory in other categories than those two occurs, when considering many classical
spaces of functional analysis that are important for the theory of partial differential equations.
This concerns particularly the space of Schwartz distributions 2’ (Q2), the space of real ana-
lytic functions .« (Q) and various spaces of ultradifferentiable functions and ultradistributions,
cf. [Dom04]. Those are far from metrizable, hence the classical theory for Fréchet spaces is
not applicable. Furthermore, the locally convex theory does not yield satisfactory results: We
simply do not know, whether each exact sequence

0— 7 (Q) -5 G- 2@ — 0

of locally convex spaces splits. This leads us to the quest for a suitable subcategory of the
locally convex spaces, i.e. a class that is on the one hand big enough to contain the function
and distribution spaces mentioned above but on the other hand small enough to yield reason-
able splitting results. The natural structure of the examples mentioned above — they all are
projective limits of (strongly reduced) spectra of complete separated LB spaces — provides
suggestions: Although it contains all of the non-metrizable examples, the category PLN of
projective limits of (strongly reduced) spectra of strong duals of nuclear Fréchet spaces does
not seem appropriate as it only contains strongly nuclear Fréchet spaces, leaving important
examples such as the space s of rapidly decreasing sequences unattended. This led to the
implementation of the category of so-called PLS spaces, i.e. projective limits of (strongly re-
duced) spectra of strong duals of Fréchet Schwartz spaces. Splitting theory in this category has
been subject to recent investigation and considerable results have been achieved under certain
assumptions about nuclearity and being Kothe PLS spaces, cf. e.g. [BD06, BD08, Dom10].
A more detailed survey will be given in the introductions of chapters 3 and 4. Nevertheless,
several spaces are not covered by the PLS space approach: In particular, the Fréchet-Hilbert
space 7y, of all € functions all the derivatives of which are in L, and the BY{ (©) spaces, cf.
[Hor05, chap. 10], as well as the PLH spaces of Kothe type. Furthermore, the question arises
whether the nuclearity assumptions or those about compactness can be omitted or softened,
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cf. [BDO6, problem (9.9)].

This leads us to the category PLH of projective limits of strongly reduced spectra of strong
duals of Fréchet-Hilbert spaces, a class of locally convex spaces that not only contains all the
spaces of interest for applications covered so far but also the new ones mentioned before. We
address the problem in four steps:

In chapter 2 we will establish the complete homological toolbox, in particular the long exact
sequence we had access to in splitting theory for Fréchet spaces via Retakh’s and Palamodov’s
approach, cf. [Pal72, Ret70, Pal71], also in the category of PLH spaces via the Yoneda Ext
functors. To this end we will follow Sieg’s approach [Siel0] using the theory of exact struc-
tures, cf. [Biih10]. Essential to this approach is the determination of a certain class of kernel-
cokernel pairs, which has to fulfill the technical requirements of an exact structure to facilitate
the homological toolbox. Here the main difference to PLS emerges: While Sieg proved [Siel0]
that the class of short topologically exact sequences is the maximal exact structure in PLS, the
category PLH is not subspacestable, which leads us to a significantly larger maximal exact
structure involving well-located subspaces in (2.2.17) and several delimiting examples as the
category of LB spaces, which we pick up alongside. This allows us to prove the isomorphy
of Extp;  and proj' in a certain spectrum of operator spaces under mild assumptions as local
splitting in (2.3.6) in analogy to [Siel0, ((5.2))]. Furthermore, we will prove in (2.2.18) that
being a PLH space is not a three-space property in the category of locally convex spaces, a
fact that remains unknown for PLS spaces. Finally we will establish the splitting theory for
the space of distributions in (2.3.7) in analogy to [Siel0, (5.3)], cf. [DV0Ob, WenO1] , i.e.
that Extp ;4 (E, X) vanishes for subspaces E and complete Hausdorff quotients X of 2’ (Q).
Note that we will show the results for the even larger class of PLS,, spaces, where we replace
“Hilbert space” in the definition of PLH by “reflexive Banach space”.

In chapter 3 we will prove a characterization of the vanishing of the first derivative of the
projective limit functor in the spectrum of operator spaces .2 := (L (E,Xn), X} *) for Fréchet-
Hilbert (3.4.5) or LH spaces E (3.5.4) and PLH spaces X if all spaces are deeply reduced. The
characterization is given in terms of some inequality preceded by a long sequence of quanti-
fiers, see conditions (7") and (T) in (3.2.1) and is achieved without any nuclearity assumptions,
thus giving an answer to a variation of [BDO06, problem (9.9)]. The long and technical proof
relies on duality: We will in fact characterize weak acyclicity for some LF spectrum of pro-
jective tensor products that is pre-dual to .. This characterization will use interpolation for
nuclear operators due to Domarski and Mastyto in [DMO07] in the variant (3.2.6) due to Vogt
[Vogl1], as well as a slightly enhanced characterization of condition (M) of Retakh essentially
due to Wengenroth [Wen95, Wen96]. The connection between Extp ;; (E, X) and proj' . in
the above situation that we established in 2 will allow us to use the characterizations obtained
to the vanishing of Exty, ;; (E, X). This generalizes Domarnski’s and Mastyto’s splitting result
for Fréchet-Hilbert spaces [DMO7] and constitutes the PLH analogons of the splitting results
for PLS spaces due to Bonet and Domariski [BD06, BDOS].

Chapter 4 is motivated by the following parameter dependence problem: Given a linear
partial differential equation with constant coefficients

P(D)u, = f,



1 Introduction

where the family (f;),., of distributions, ultradistributions, real analytic functions or ultra-
differentiable functions depends in a certain sense “nicely” on the parameter A € I, is there a
family of solutions (u,),; depending equally “nice” on the parameter A?

This research has its roots in an even more general setting, where for instance also P (D)
depends on A € [, cf. [Bro62, Tre62a, Tre62b, Man90, Man91, Man92], cf. [BD06, p. 563]
respectively [Dom10, p. 1 & 2] for details. The tensor product representation of various
function spaces, cf. [Sch58, Gro55, DF93, Var02, Var(07] connects this problem to the problem
of surjectivity of tensorized maps:

Given a locally convex space E and a quotient map g: ¥ — Z between locally convex
spaces Y and Z, under which conditions will the induced operator id; ®,q: E®,Y — E®,Z
be surjective for @ = ror a = &?

In the setting of projective spectra of LB spaces this question is closely connected to the
vanishing of proj' for tensorized spectra, which is subject to investigation in our PLH setting.
As even 6,®,¢, is not reflexive for a € {g,x}, cf. [MV97, (16.27)]. Hence, contrary to the
PLS situation, we can not expect the local tensor products Ey®,Xy, @ € {&,n} for two PLH
spaces E = proj (ET,E§) and X = proj (XN,XZ) to be ultrabornological, reflexive or even
an LH space. Thus we introduce the Hilbert tensor topology for hilbertizable locally convex
spaces. We start by defining the Hilbert tensor product not only on the tensor product of
two Hilbert spaces but directly on the tensor product of vector spaces that are equipped with
Hilbert seminorms, so-called semi-unitary spaces. This will allow for rather elegant proofs
when verifying in the second part of the chapter that the induced tensor topology 7, commutes
with the LH space structure, i.e. that the completed o tensor product of two LH spaces is the
LH space arising from the o tensor product of the two LH space spectra giving rise to the
original LH spaces in (4.2.9). This is the crucial step in demonstrating that 7, shows the same
compatibility concerning the PLH space structure as do the & and  topology towards the PLS
space structure, cf. [Pis10]. Other by-products will be the positive solution of Grothendieck’s
probleme des topologies, cf. [Gro55], for 7, and Fréchet-Hilbert spaces and the exactness
of the induced tensor product functor on the category of Fréchet-Hilbert spaces and on the
category of LH spaces. In the last part we will characterize the vanishing of proj' for the
tensorized spectrum of both a nuclear Fréchet space and a PLN space E with a PLH space X
under mild assumptions with our condition (7), thus proving Bonet and Domariski’s result
[BD0O6, BDOS, Dom10] in the category of PLH spaces. Note that since we can not interpolate
Hilbert-Schmidt operators in the spirit of (3.2.6), we can not forgo the nuclearity assumptions.

In the final chapter 5 of this thesis we want to consider concrete applications of the structure
theory established in the preceding chapters. In the first part we divide the condition (7) for
the pair (£, X) into two conditions of (DN)-(€2) type for PLH spaces on E and X respectively
and prove sufficiency in complete analogy to [Dom10]. These variants of the dual inter-
polation estimate (DIE) are due to Bonet and Domarnski [BDO7]. In the rest we consider the
examples mentioned at the beginning: We prove a result about parameter dependence of linear
partial differential operators with constant coefficients P (D) on Blzolf (2) and show that for el-
liptic partial differential operators P (D) on Blz",f (€2) admitting a continuous linear right inverse
is a lot more than having a parameter dependence for a PLN space E with (DIE) for big 6.
Considering ¥, and its strong dual, we prove that partial differential operators with constant
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coefficients on 2’ (Q) for open and convex subsets Q c R as well as surjective convolution
operators T, on 7, (Rd) have the corresponding parameter dependence. We conclude by giv-
ing a complete characterization of all the problems under consideration for Kothe PLH spaces
in terms of the matrices without any nuclearity assumptions.

Concerning functional analysis, we apply the standard notation, as used for example in
[K6t69, Kot79, MVIT], in particular for tensor norms and topological tensor products we ap-
ply notation as in [DF93] and concerning homological algebra, we refer to [Wen03, Siel0].
Presenting a self-contained thesis is rather out of the question considering the variety of tools
we utilize. Be that as it may, we try to limit the premises to reasonable fields: Chapter 2
requires a good acquaintance with homological methods as presented in [Wei94, chap. 1] con-
cerning the fundamentals, [Bou07, §7.5] regarding the Yoneda Ext groups, [Biih10] as to exact
structures and [Wen03, chap. 3] referring the functor proj and its derivatives. Chapters 3 and 4
assume insight in Retakh’s and Palamodov’s theory of regularity of LF spaces concerning the
conditions (M) and (M) respectively acyclicity and weak acyclicity, cf. [Pal72, Ret70, Pal71]
or [Vog92, Wen95] for a survey. Furthermore, a good understanding of the & and n tensor
product of locally convex spaces, cf. [K6t79], and a rudimentary acquaintance with nuclear-
ity, cf. [Pie72], is of advantage. Considering the last chapter, we refer to [Hor03, H6r05] for
background and context for the theory of partial differential equations.



2 Homological methods

From the 70’s to the 90’s of the 20th century splitting theory was primarily considered in
the context of Fréchet or locally convex spaces, i.e. in quasiabelian categories with many
injective objects. In a number of articles [Pal72, Ret70, Pal71] Retakh and Palamodov were
able to connect the splitting problem to the vanishing of the first derived functor Ext' (E, .)
of Hom (E, ). The latter in turn they linked to the vanishing of the first derivative of the
projective limit functor in certain spectra of operator spaces via the long exact sequence. As
Sieg elaborated in [Siel0, (3.1.5) & (3.1.6)], Palamodov’s approach to the derived functors
of Hom, cf. [Pal71] respectively [Wen03] for a survey, does not work in the category of PLS
spaces, since it is neither semi-abelian nor is it known, whether it does have enough injective
objects. Until rectified by Sieg [Siel10] in 2010 this circumstance lead to an ad-hoc definition
of the vanishing of Exty, ¢ via the splitting of short exact sequences, cf. e.g. [Wen03, (5.3)].
Hence the connection between the vanishing of Extp, ¢ and proj' — which allows for applicable
characterizations of splitting — had to be implemented manually, cf. [BD06, section 3] and
[BDO08, (3.4)]. In this chapter we will prove that Sieg’s methods to establish the long exact
sequence for the Yoneda Ext functor in exact categories can be applied to our categories of
interest — PLH and the even larger variant PLS,, — as well, although both are not stable with
respect to the formation of closed subspaces. We will start by recalling the categorical setting
and prove some auxiliary results in the category of Hausdorff locally convex spaces in section
2.1. Using the concept of well-located subspaces and some lifting properties for pushouts in
the category of Hausdorff locally convex spaces (LCS), we will determine the maximal exact
structure in the category of LB spaces in section 2.2. This leads us to the maximal exact
structures in PLS,, and PLH via the dual version of Grothendieck’s factorization theorem
due to Vogt [Vog89]. Based on the results in 2.2 we construct the Yoneda Ext groups in the
categories LH and PLH as well as in LS, and PLS,, in 2.3 and establish in (2.3.6) the splitting
results in these categories in complete analogy to the PLS case, cf. [Siel0, chap. 5]: We prove
that Ext' (E, X) = proj' (L (E,Xn), X} *) in PLS,, and PLH under the premise of local splitting
and the vanishing of proj' X. This result will be the key to apply the results of section 3 to
splitting theory. Concluding we will give a first application showing in (2.3.7) that the space
of Schwartz distributions 2’ (Q) plays the same role in PLS,, and PLH as does the space s
of rapidly decreasing sequences in the category of Fréchet(-Hilbert) spaces. More precise we
will transfer Sieg’s new proof with minor adaptions for a splitting theorem due to Wengenroth
[WenO1] for the space of distributions, which was itself an improvement of a result due to
Domanski and Vogt [DVO0Ob, (2.19) & (3.1)], to our categories.

2.1 Exact categories — notions and auxiliary results

Definition and Remark 2.1.1. Our vantage point is a pre-additive category, i.e. a category
with a zero object and an addition on each set of morphisms, endowing the sets with abelian
group structures, that makes the composition of morphisms biadditive. A pre-additive cat-
egory C is called additive if all finite biproducts exist, i.e. for every finite family of ob-
jects (Xy,...,X,) in C there is a an object [],;., X; = @lstn X; and there are morphisms
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wy,: Xy — ®1stnXJ and 7y, 1 []i<jcp Xj — Xk, 1 < k < nsuch that (ngan X;, (Jer)lskSn)
is a product of (Xi,...,X,) and (EBISJ.Sn X;, (ka)lskSn) is a coproduct of (Xi,...,X,). Such
an additive category C is called pre-abelian if every morphism in C has a kernel and a coker-
nel. An important property of pre-abelian categories is not only the existence of pullbacks and
pushouts but that we can even determine a convenient version of them:

e The pullback of a diagram S is given by the triple (P, py, ps) which consists of

Y—Z7
3
the kernel object P of the kernel k of the morphism (g, —s) : ¥ X § — Z together with
the two morphisms py = ny ok and pg = 7y o k.

e The pushout of a diagram X L yis given by the triple (Q, gy, gs) which consists of

N

S
the cokernel object Q of the cokernel ck of the morphism ( _f s) : X — Y X § together
with the two morphisms gy = ck owy and g5 = ck ows.

As all of the previous notions are defined by universal properties, they are only unique except
for canonical isomorphisms. Be that as it may, we will forgo long-winded formulations and
par abus we will speak about the kernel, the product, etc.

Definition and Remark 2.1.2. Let C be an additive category. A pair (f, g) of composable
morphisms in C is called a kernel-cokernel-pair if f is the kernel of g and g is the cokernel of
f. If a class & of kernel-cokernel pairs in C is fixed, then a morphism f: X — Y is called
an admissible kernel if there is a morphism g: ¥ — Z in C such that (f, g) is in &. Dually a
morphism g: Y — Z in C is called an admissible cokernel if there is a morphism f: X — Y
in C such that (f, g) is in &. A class & of kernel-cokernel-pairs in C is an exact structure if it
is closed under isomorphisms and the following hold:

(E0) 1idy is an admissible cokernel for all X € C.

(EQ)* 1idy is an admissible kernel for all X € C.

(E1) If allowed, the composition of two admissible cokernels is an admissible cokernel.
(E1)™ If allowed, the composition of two admissible kernels is an admissible kernel.

(E2) Forall X L Y Zin & the pushout X Loy exists for all morphisms s
s l/IY
S ¢
and gs is an admissible kernel.
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(E2)* Forall X EN Y5 Zin & the pullback P 25§ exists for all morphisms s

PYl ls
)7-:?>2Z
and pg is an admissible cokernel.

An exact category (C, E) is an additive category C together with an exact structure E. The
kernel-cokernel pairs in & are called short exact sequences. A pre-abelian category C is
quasi-abelian if and only if the maximal exact structure coincides with the class of all kernel-
cokernel pairs (see [SW11, (3.3)]). The definition of an exact category is self-dual, i.e. (C, &)
is an exact category if and only if (C*, E) is an exact category.

Given a pre-abelian category C we always have a minimal exact structure, i.e. an exact
structure that is contained in any other exact structure in C, the class of short exact sequences
that are split-exact, i.e. the class of kernel-cokernel pairs (f, g) in C such that g has a right
inverse (see [Biih10, Lemma (2.7) & Remark (2.8)]). In [SW11] Sieg and Wegner proved that
every pre-abelian category C admits an exact structure EC_ that is maximal in the sense that it

max

contains every other exact structure in C. To formulate their description of this maximal exact
structure we need the following notation:

Definition 2.1.3. Let C be a pre-abelian category.

i) A cokernel g: ¥ — Z in C is said to be semi-stable, if for every morphism s: § — Z
in C the morphism py in the pullback diagram P 2>~ is also a cokernel in C.

PYL ls
17-;?“25
i1) A kernel f: X — Y in C is said to be semi-stable if for every morphism s: X — S in

C the morphism g in the pushout diagram X Ly isalso akernel in C.

o

S 0@

Theorem 2.1.4. If C is a pre-abelian category, then the class E€, which consists of all kernel-
cokernel pairs (f, g) in C such that f is a semi-stable kernel and g is a semi-stable cokernel,
is an exact structure in C. Moreover, it is maximal in the sense that it contains any other exact
structure in C.

Proof. See [SW11, (3.3)]. m|

Remark 2.1.5. With (2.1.2) it is easy to verify that

(65" = e

max max

holds in any pre-abelian category C.
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Theorem (2.1.4) allows us to fix a distinguished exact structure in every pre-abelian cate-
gory:

Definition 2.1.6. We endow every pre-abelian category C with its maximal exact structure

&S obtaining the exact category (C, &« ) We call an element (f, g) (or X EA V/

ma max

f g . .
or0 > X->Y—>Z—> 0) of EC_ a short exact sequence of C objects or a sequence exact in

C.

Let us close this first part about exact categories with the following well-known pullback
and pushout constructions, which we will use frequently throughout the rest of this chapter.
The proof makes use of [RW77, Theorem 5]) and the axioms defining an exact structure (E£2)
respectively (E2)”, cf. (2.1.2), also see [Siel0, (2.1.2)].

Lemma 2.1.7. Let (C, E) be an exact category.

i)Ifg: Y — Zands: S — Z are morphisms in C and (P, py, ps) is their pullback, then
there is a morphism ¢: ker (g) — P making the diagram

ker(g) —=P-2+§

N

ker(g)TY—g>Z

commutative and being a kernel of ps.
If g: Y — Z is an admissible cokernel, then (¢, ps) is an element of E.

ii) If f: X — Y and s: X — S are morphisms in C and (Q, qy, qs) is their pushout, then
there is a morphism : Q — coker (f) making the diagram

Ly coker (f)

[¢
|o

N e coker (f)

e

v
-~

%)

commutative and being a cokernel of qs.

If f: X — Y is an admissible kernel, then (qs, ) is an element of &.

As a transition to the functional analytic part of this section let us consider Palamodov’s
notion of exactness, cf. [Pal71]:

Remark 2.1.8. Palamodov calls a sequence — X ER Y5 Z o of objects and morphisms
in a semi-abelian category C exact at Y if the image of f is a kernel of g and the coimage
of g is a cokernel of f and both morphisms are homomorphisms. In quasi-abelian categories



2 Homological methods

this notion coincides with our notion of exactness, cf. (2.3.1) i), as in those categories the
maximal exact structure coincides with the class of all kernel-cokernel pairs by definition.

f g . .
Thus we call a sequence X — Y — Z of vector spaces and linear maps a short algebraic exact
sequence if it is exact in the category VS of vector spaces, i.e. if f is injective, g is surjective

and f(X) = g7' ({0}). A sequence X i> Y Zof locally convex spaces (Ics) and linear and
continuous maps is called topologically exact if it is exact in the category LCS of Ics and linear
and continuous maps, i.e. if it is algebraically exact and all the maps involved are continuous
and open onto their ranges.

In 2.2 we will see on the one hand the well-known result, cf. [Wen03, (5.3)], that the maxi-
mal exact structure in the category of LS spaces coincides with the class of short topologically
exact sequences which in turn coincides with the class of short topologically exact sequences,
whereas on the other hand in the category of LS, spaces it coincides with the class of short
algebraically exact sequences, but contains the class of short topologically exact sequences as
a proper subclass. In the category of PLS,, spaces as well as in the category of LB spaces it is
both a proper subset of the short algebraically exact sequences and contains the short topolog-
ically exact sequences as a proper subset. Furthermore, various examples of subcategories of
LCS where the class of short topologically exact sequences is not even an exact structure can
be found in [DS12, section 5].

We start the second part of this section by recalling the basic well-known facts about pull-
backs and pushouts in (LCS) as they will be of great use when determining the maximal exact
structure in the category of LB spaces.

Remark 2.1.9. Given two vector spaces (or Ics or Hausdorff Ics) E and F, the biproduct of E
and F in VS (or LCS or m) is given by the product E X F of E and F in VS (or LCS or
(LTS)) together with the canonical projections 7z, mr and the canonical embeddings wg, wg.
Thus we can use (2.1.1) to determine the pullback and pushout in (LCS), cf. (2.1.7):

1) The pullback of a diagram S in (LCS) is given by the triple (P, py, ps), where

Y—Z7
8
P ={(y,r) e Y xXS: g(y) = s(r)}is endowed with the relative product topology and pg
and pg are the restrictions of the canonical projections. Furthermore, we have:

a) If g is surjective, then so is pg.

b) The kernel of pg in (LCS) is given by

¢: g ({0) — P x — (x,0).
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ii) The pushout of a diagram X Y in (LCS) is given by the triple (Q, gy, gs ), where

N

S
Q is the topological quotient ¥ X S/ (f, =) (X) and gy and gy are the compositions of the

quotient map g: ¥ X § — Q with the respective inclusions wy and wg. Furthermore,
we have:

a) If f has closed range, then so does gz .

b) The cokernel of gs in (LCS) is given by

v: 0 — Y50, 00 + (fo=9) () = y + F ().

As LB and all its subcategories we consider in this thesis are stable with respect to the
formation of Hausdorff quotients, they inherit cokernels from (LCS). As they are also stable
with respect to the formation of biproducts, only the kernels need special consideration. We
will have to endow the algebraic kernel of a linear and continuous map between LB spaces
with its associated ultrabornological topology to obtain the kernel in LB (see (2.2.3)). Thus
LB kernels carry a topology that is potentially finer than the relative topology. It turns out that
the “right” kernels to consider for the maximal exact structure are the well-located subspaces,
hence we provide convenient characterizations of being a weak isomorphism onto:

Proposition 2.1.10. Given a linear, continuous, and injective map f: (X,7) — (Y,R) be-
tween lcs, the following are equivalent:

i) The map f is a weak isomorphism onto its range.
ii) The transposed f': Y — X' is surjective.

iii) For any lcs S and any linear and continuous map s: (X,7) — S the graph of s is
closed in (X, f' (R)) x .

iv) iii) holds for § = K.
Proof.
“i) & ii)” Is a consequence of the Hahn-Banach Theorem.

“I) = iii)” The graph of s is closed in (X, 7) XS, hence itis closed in o (X, (X, 7)) xo (S, S’).
Now, if i) holds, we have iii), since the graph of s is absolutely convex and thus its
closure coincides with its weak closure.

“iii) = iv)” 1is trivial.

10
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“iv) = i)” Assuming that iv) holds but not i), we obtain a ® in (X, 7")" that is not continuous
with respect to £~ (R). Since @ is not the zero map, there is an x € X with ® (x) = 1,
and as the kernel of ® can not be closed in (X, f‘1 (R)), it is dense in (X, f -1 (R)). Hence

we obtain a net (x),; in X with x, — x in (X.f£'(®) and @ (x) = Oforallc € I, a
€

3
contradiction to iv).

O

Now we are ready to prove the necessary lifting results for pushout diagrams:

Lemma 2.1.11. Let (X,7) AN (Y, R) be a pushout diagram in (LCS), where f is injective

(5.8) ——0

with closed range. Then the following are equivalent:
i) The map qs is injective.
ii) The graph of s is closed in (X, f (R)) X S.
iii) The image (f,—s)(X) is closedin Y X S.
Proof.

“i) = ii)” Let (x),; be a net in X such that x, —> 0 in (X. £ (R) and s (x,) — rins.
Assuming that r # 0 = s(0), we obtain that (0, —r) = lil’}l (f(x),—s(x)) € (f,—s)(X),
LE

hence gg (r) = 0, but r # 0, which is not possible since gy 1s injective by assumption.
Hence r = 0 and we have ii).

“it) = iii)” Let (x,),; be a net in X such that f (x,) —I> yin Y and —s(x,) —I> rin §. Since
LE Le

the range of f is closed there is an x in X with y = f (x) and thus x, —I> xin (X, 1 (R))
Le

and 11) yields —s (x,) —I> —s(x)=r.
LE

“iii) = i)” Letr € § with g5 (r) = 0. Since then (0, r) € (f, —s) (X) = (f, —s) (X) holds, there
isan xin X with 0 = f(x) and r = —s(x). As f is injective we have x = 0, hence r = 0,
which yields 1).

O

2.2 The categories of PLS,, and PLH spaces

In this section we will provide the basic homological properties of the two subcategories PLS,,
and PLH of the category PLB of projective limits of strongly reduced spectra of LB spaces.
The two subcategories are generated by demanding the Banach spaces giving rise to the LB
space steps to be reflexive or even Hilbert spaces. We will show that they are pre-abelian

11
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categories — i.e. they are additive with kernels and cokernels — and compute the respective
maximal exact structure. Both will turn out to be significantly larger than the class of short
topologically exact sequences, which is the largest exact structure in the subcategories PLS
and PLN, that were under investigation until now (see [Siel0, (3.2.1)]). We will show that
the respective maximal exact structures consist of all kernel-cokernel pairs with surjective
cokernel. The discrepancy to the known examples of maximal exact structures originates
from the fact that both categories under consideration are not stable with respect to closed
subspaces, i.e. closed subspaces of PLS,, (or PLH) spaces endowed with the relative topology
do not need to be PLS,, (or PLH) spaces. Thus, to obtain the kernel of a linear and continuous
map between PLS,, (or PLH) spaces in the respective category, its algebraic kernel has to be
endowed with its associated PLS,, (or PLH) space topology. Having to deal with this problem
is what is new about the categories PLS,, and PLH. The fact that both categories are not stable
with respect to the formation of (Hausdorff) quotients can be dealt with in the same way as in
the PLS case — by taking the Hausdorff completion of the quotient.

The key to the solution of the continuity problems created by the association process is
connecting morphisms between PLS,, (or PLH) spaces to spectra of morphisms between the
spectra giving rise to the spaces involved, cf. (2.2.9), to be able to apply deWilde’s closed
graph theorem [MV97, (24.31)]. Hence we start by investigating the categories of the steps:

Definition 2.2.1. A locally convex Hausdorff space (X, 7") is an LB space if there is an em-
bedding spectrum of Banach spaces, i.e. a sequence (X)), of Banach spaces with linear and
norm-decreasing embeddings X, — X,;; (n € N), such that (X, 7") is the inductive limit of
the embedding spectra, i.e. X = |, X, endowed with the finest locally convex topology 7~
such that all inclusions X,, — (X, 7 ) (n € N) are continuous. Furthermore, X is called an

1) LSy, space if the spaces X, can be chosen to be reflexive,
i1) LH space if the spaces X, can be chosen as Hilbert spaces,
iii) LS space if the embeddings X,, — X,,,; can be chosen compact,

1v) LN space if the embeddings X,, < X+, can be chosen nuclear (n € N).

We collect the well-known basic properties of the respective categories in the following
remark:

Remark 2.2.2. i) Naming the full subcategories of (LCS) that correspond to the previous
definition accordingly, we obtain the following inclusions:
LH c LS, c LB
U U
LN c LS ,
since the category LS,, can also be described as the category of all LB spaces that
arise from weakly compact embedding spectra, which we obtain from the fact that

weakly compact operators between locally convex spaces factorize over reflexive Ba-
nach spaces, see [DFJP74, chap. 2].

12
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Two embedding spectra (X)), and (Y,),ar of Banach spaces are equivalent if there
are increasing sequences (k (1)), and (I (n)),ey of natural numbers with n < k(n) <
[(n) < k(n + 1) such that X;,) is continuously embedded into Y}, which in turn is con-
tinuously embedded into Xj,1). Grothendieck’s factorization theorem [MV97, (24.33)]
yields that two embedding spectra giving rise to the same LB (LS, LH,...) space are
equivalent, cf. [MV97, (24.35)]. Hence whenever considering properties of embedding
spectra that are passed on to equivalent embedding spectra we may and will identify
an LB space with its equivalence class of embedding spectra and write X = ind,cv X,
where (X),),ayv 18 one representative. If we deal with an LS,, space, we choose a repre-
sentative consisting of reflexive Banach spaces (respectively Hilbert spaces, when con-
sidering an LH or an LN space).

The factorization theorem and the universal property of locally convex inductive limits
[MV97, (24.7)] yields that we may assume that any linear and continuous operator f
between LB spaces E = ind,«y E, and F' = ind,y F, is induced by operators f, between
the Banach steps, 1.e. f, € L(E,, F,,) and f|g, = f,, n € N. This property will be of use
when constructing kernels and cokernels in LB in (2.2.3).

By [MVO97, (25.19)] LSy, spaces are regular. In complete analogy to [FW68, 26. 2.] this
does not only imply mere reflexivity of LS, spaces but even that the following dualities
hold. Note that the notion of a projective spectrum is defined in (2.2.7) and the duality
extends that of products and direct sums, cf. [MV97, (24.3)], when treating LB spaces
as quotients of direct sums, cf. [MV97, (24.8)].

a) Given an LS, space X = ind,qy X, the strong dual of X is given by the Fréchet
space arising from the projective spectrum of the strong duals X/, n € N.

b) Given a Fréchet space Y that arises as the projective limit of a reduced projective
spectrum of reflexive Banach spaces Y,, n € N, a so-called FS,, space, the strong
dual of Y is given by the LS,, space created by the strong duals ¥,, n € N.

As the transposed of a compact respectively nuclear operator between Banach spaces
is compact (nuclear) by Schauder’s theorem [MV97, (15.3)] respectively by [MV97,
(16.7) 2.], the dualities in a) and b) instantiate in the dual pairs LS, / FSy, LH /FH,
LS /FS,LN /FEN, where FH (FS, FN) denotes the category of Fréchet-Hilbert (Fréchet-
Schwartz, nuclear Fréchet) spaces.

By [MV97, (27.23) b)] there is an LH space X containing a closed subspace L such that
L endowed with the relative topology is not an LH space. But at least we have the fol-
lowing: It is a matter of mere calculation to show that LS,, spaces satisfy condition (M)
of Retakh, cf. [Ret70]. Thus, if L is a closed subspace of an LSy, space X = ind,cy X,
then the quotient spectrum (Xn/ Ln) , where L, = FXnX", is an LS, spectrum as

neN
well, hence it satisfies (M), therefore it is weakly acyclic by [Pal71], from which we

13
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obtain by [Ret70] that L is well-located in X, i.e. that L endowed with the associated
ultrabornological topology has the same dual as L endowed with the relative topology.

The determination of the kernels and cokernels in LB and the mentioned subcategories is
straightforward:

Lemma 2.2.3. Let C € {LN,LS,LH,LS,,,LB} and t: E — F be a linear and continuous
map between the C spaces E = ind,en E, and F = ind,en F,,. As C is stable under Hausdorff
quotients, the cokernel of t in C is given by the quotient map

F—= P = nd @ n F,)

i.e. C inherits cokernels from (LCS).
With the closed graph theorem we obtain that the kernel of t in C is given by the continuous
inclusion of the algebraic kernel of t endowed with its associated ultrabornological topology:

(" qop)” = ind (' (0N N E,) = E.

In C the product of E and F endowed with the product topology and the four standard maps
e, g, Wg, wr (cf. (2.1.1) and (2.1.6)) is a biproduct of E and F, as E X F = ind,en (E, X F},)
holds topologically. Thus C is pre-abelian.

Furthermore, it is easy to verify that t is a kernel in C iff it is injective with closed range and
a cokernel in C iff it is surjective.

Now we can determine the maximal exact structure in the category of LB spaces with help
of the description of the maximal exact structure of a pre-abelian category in (2.1.4) due to
Sieg and Wegner [SW11, Theorem (3.3)] and the inheritance properties in (2.1.11):

Proposition 2.2.4. The maximal exact structure E-B in the category LB consists of all kernel-
cokernel pairs (f,g) such that f is well-located. In other words: EB consists of all short

algebraically exact sequences 0 — X EA Y5250 of LB spaces such that f is a weak
isomorphism onto its range.

Proof. With (2.1.4) it is sufficient to prove that a kernel in LB is semi-stable iff it is well-
located and each cokernel is semi-stable.
Let f: X — Y be a kernel in LB, s: X — § be a linear and continuous map from X into

an LB space S and )j I, If be their pushout diagram in LB. The map gs is a kernel in LB
s qy
S0
iff it 1s injective with closed range. By (2.1.9) i1) a) g5 has closed range for any kernel f. By
(2.1.11) the injectivity of gs is equivalent to the graph of s being closed in the product of X
endowed with the topology of Y via f and S. As § is an arbitrary LB space, this is equivalent
to f being well-located by (2.1.10) iv).

14
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As a morphism in LB is a cokernel iff it is surjective, (2.1.9) i) a) yields that in every
pullback diagram P 2.5 inLB the morphism p; is a cokernel if g is a cokernel. Hence
S
Y — V4
all cokernels in LB are semi-stable and the proof is complete. O

As the categories LSy, and LH inherit kernels, cokernels and biproducts from LB and the
semi-stability of kernels and cokernels is not changed by the restriction to these two sub-
categories and closed subspaces of LSy, spaces are well-located by (2.2.2) v), the previous
proposition yields the following corollary:

Corollary 2.2.5. The restriction of E:B to LS,, respectively LH coincides with the respec-

max
LH

tive maximal exact structure E3v respectively EY. Hence the categories LS,, and LH are

max max*

quasi-abelian, i.e. both maximal exact structures consist of all kernel-cokernel pairs — in this
particular case even of all short algebraically exact sequences.

We have two exact structures in the category of LB spaces and the four mentioned subcat-
egories: the class of short topologically exact sequences (see [DS12, (3.3)]) and the maximal
exact structure. As Sieg proved in [Siel0], these two classes coincide in the category of LS
spaces, hence as well in the category of LN spaces. In the following, we will show that the
class of short topologically exact sequences is a proper subclass of the maximal exact structure
in the categories LH, LS,, and LB and discuss the “right” choice of the exact structure to work
with in LH and LS,,.

Remark 2.2.6. In order to be able to use our knowledge about splitting theory in the category
of Fréchet spaces respectively the four subcategories under consideration to control splitting
in the four subcategories of LB, cf. [VW80, Vog87, Fre96, FW96, Wen03, DMO07], we need
to extend the dualities of (2.2.2) iv) to the exact structures.

On the Fréchet side of the duality the exact structure is determined to be the class of short
topologically exact sequences by Palamodov’s approach, cf. (2.1.8). The quasinormability
of Fréchet Schwartz spaces (see e.g. [MV97, p. 313]) yields by [MV97, (26.12) & (26.13)]
that the dual sequences of short topologically exact sequences of Fréchet-Schwartz (nuclear
Fréchet) spaces are short topologically exact sequences of LS (LN) spaces. This duality does
not hold in the dual pairs LS, / FSy, and LH / FH: According to [MV97, (27.23) c)] forany 1 <
p < oo there is a Kothe matrix A and a linear and surjective map Q from the Kothe sequence
space A7 (A) to £7 such that the dual sequence of the short topologically exact sequence

0— 07 (10) > P (A) S " — 0

of Fréchet spaces is not topologically exact. Choosing p = 2 yields the claim and thus that
the class of short topologically exact sequences is a proper subclass of the maximal exact
structure in LH and LSy, hence it is not suitable for our investigation, unlike the maximal
exact structure:

15
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The “perfect” duality (2.2.2) iv) can be expressed with the duality functor D, which assigns
each locally convex space X its strong dual X’ and each linear and continuous operator f
between Ics its transposed operator f’ between the strong duals, cf. [Wen03, chap. 7]. (2.2.2)
iv) signifies that D coincides on each of the four subcategories of the Fréchet spaces and on
each of the four subcategories of the LB spaces with the -”-functor. Thus (2.1.5), the fact
that (SEM)OP = &C” holds in a pre-abelian category C, yields the desired duality of the exact
structures. We even could have used this fact to determine the four maximal exact structures.
We have chosen to give a direct description, as our proof is valid for LB and LF spaces as

well, in particular our proof is independent of the mentioned dualities.

Having established all the necessary notions and results in the categories of the steps, we
may start investigating the arising subcategories of PLB by recalling the concept of the locally
convex projective limit of a locally convex projective spectrum, cf. [Wen03, chap. 3]. This part
may seem exceptionally detailed compared to the discussion of LB spaces in (2.2.2), which is
due to the fact that the projective situation is more complicated than the inductive one when
considering equivalence of spectra; a dual variant of Grothendieck’s factorization theorem, cf.
(2.2.9), requires additional premises, hence more detailed investigation.

Definition and Remark 2.2.7. A locally convex projective spectrum 2 = (XN,XA";) con-
sists of a sequence (Xy)yey Of locally convex spaces and a family of continuous linear maps
X% Xy — Xy for M > N such that

1) X% =idy, (N € N)and
i) X o X = XX forall K> M > N.

A morphism (fy)yey between two locally convex projective spectra 2~ = (X N XAA,’I) and % =

(YN, YA";) consists of a sequence of linear and continuous maps fy: Xy — Yy such that fy o
X3 =YY o fu, ie. the diagram

XNLYN

N N

Xu == Yu

1s commutative, for all M > N.
The locally convex projective limit of a locally convex projective spectrum 2~ = (XN, Xﬁ)
is defined as

X = proj 2" = proj (XN,XAA;) = {(xN)NeN € 1—[ Xy: XN, (xns1) = xy forall N € N} ,

NeN

endowed with the relative product topology, i.e. the initial topology induced by the restrictions
of the canonical projections X~ : X,, — Xy (N € N). A morphism (fy)yoy between two
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locally convex projective spectra 2 = (XN,XAA;) and % = (YN, Y,{}’) induces a linear and
continuous map between the respective locally convex projective limits:

foo — proj (fN)NeN . proj Zxr — proj Y, (xy) — (fN (XN))NeN .

It is easy to verify that the rule, which assigns to each locally convex projective spectrum
its locally convex projective limit and each morphism between two locally convex projective
spectra the induced linear and continuous map between the respective locally convex projec-
tive limits, is a covariant functor acting on the category of locally convex projective spectra and
taking values in the category of locally convex spaces. Two locally convex projective spectra
2 = (XN,XIZ‘Vl) and ¥ = (YN, YA’\}) are called equivalent if there are increasing sequences
(K (N))yen and (L (N))yen of natural numbers with N < L(N) < K(N) < L(N + 1) and con-

tinuous linear maps ay: Xkw) — Yy and By : Yivy — Xkv-1) such that Syoay = ngx)_l)
and ay o Bys1 = Yf((j\\,’il), i.e. the diagram
xKW-1)
K(N)
XK(N) XK(N n———— -
Yive ™ Y T Y-
L(N+1) L(N)

commutes for all N > 2. If two locally convex projective spectra 2~ = (XN,XAN4) and

% = (YN, Y AA;) are equivalent, then their locally convex projective limits are topologically
isomorphic.

Quite a variety of reducedness conditions on locally convex projective spectra has been
established. Here, we only state the two basic forms needed for our purpose, later on, cf.
(3.2.3), we will consider another one. A locally convex projective spectrum 2~ = (XN, X A’\;) is
called

1) reduced if

v 3 VvV xy (XM)CXN(XK) )
NeN M>N K=M

i) strongly reduced if

N XV (oro (20
X (Xan) © X5 (proj (27)

By dropping all topologies and continuity demands we can consider the mere algebraic functor
proj, which is sufficient to calculate its right derivative in the sense of Palamodov (cf. [Wen03,
(3.1.4)]). As we will deal mainly with locally convex projective spectra and projective limits of
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those, we will just refer to projective spectra and projective limits meaning the locally convex
variant and mention explicitly when talking about merely algebraic projective constructions.

Finally it is possible to consider (locally convex) projective spectra that are not countable
(cf. [Wen03, chap. 4]), where we essentially replace sequences by families indexed over di-
rected sets. As we will need the uncountable projective limit functor only once — in (4.2.1) —
we only introduce the projective limit functor for countable spectra.

Now we are ready to define the category of PLB spaces and its subcategories:

Definition 2.2.8. A locally convex Hausdorff space (X, 7") is called a PLB space if there is a
strongly reduced projective spectrum (XN, X%)NeN of complete separated LB spaces — where
each Xy arises as the inductive limit of an embedding spectrum (Xy,),.; of Banach spaces
(N € N) — such that

X = X =: proj ind Xy,.
NeN neN

A PLB space E is called a
i) PLS,, space, if the spaces Xy can be chosen as LS, spaces,
i1) PLH space, if the spaces Xy can be chosen as LH spaces,
1i1) PLS space, if the spaces Xy can be chosen as LS spaces,
iv) PLN space, if the spaces Xy can be chosen as LN spaces (N € N).

Naming the corresponding full subcategories of the locally convex Hausdorff spaces accord-
ingly, we obtain by the following inclusions (2.2.2) 1):
PLH c PLS, c PLB
U U
PLN c PLS

As mentioned we need a dual variant of the factorization theorem that is due to Vogt [Vog89]
to expedite the investigation:

Proposition 2.2.9. Let (EN,E%) and (F N, F AN4) be two strongly reduced projective spectra
of complete separated LB spaces and t: proj (EN, E%) — proj (FN, FAI\,’I) be a linear and
continuous map. Then there is a subsequence (K (N))yen and a morphism of spectra (tkw)) yex
from (E K(N)s Eﬁ%) to (F ~, F %) such that t = proj (txw)) ye-

We will state and prove the following results in the category of PLS,, spaces. All of them
remain valid with the verbatim proofs if we replace PLS,, by PLH and LS,, by LH.

We start the analysis by determining the connection between PLS,, spaces and strongly
reduced projective spectra of LS, § spaces giving rise to them:

18
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Remark 2.2.10. 1) By (2.2.9) strongly reduced projective spectra of LS,, spaces, which

1i1)

we call from now on PLS,, spectra, giving rise to the same PLS,, space are equivalent.
Thus we may and will identify a PLS,, space X with the equivalence class of PLS,,
spectra giving rise to it whenever we consider properties of projective spectra that are
invariant under passing to equivalent spectra. In particular this involves the projective
limit and all its derivatives by [Wen03, (3.1.7)].

Given a PLS,, space X = proj (XN,X%), we may choose a PLS,, spectrum (XN,XZ)
giving rise to X such that the projections of X onto Xy have dense range:

By passing to a subsequence we may assume that Xy, (Xy.1) € X% (X)XN holds for
each N € N. We define

~ ———————Xy\Ub ~

Xy = (XJI\\;H (Xn+1) ) and X%H = Xxﬂlf(zvﬂ’
for every N € N. As passing to the associated ultrabornological topologies preserves
continuity of linear maps — i.e. it is functorial — the inclusion ay : Xy — Xy and the
linear map By: Xy — Xy-1,x — X5~ (x) are continuous and we have By o ay = X!
and ay o B+ = XN, for each N > 2. Thus (XN,XZ) and ()N(N,f(g"l) are equivalent
spectra of LS,, spaces and the projections from X to Xy have dense range as Xy is
a well-located subspace of Xy by (2.2.2) v). From now on, whenever working with
PLS,, spaces X = proj (XN,XZ) = PIojyey indyen Xy, we will always assume that the
projections XY have dense range.

Given a projective spectrum (XN, XAA;) of LS spaces that is not necessarily strongly re-
duced with projective limit X, we can always pass on to the associated strongly reduced
spectrum (}N(N,f(f“’l), where Xy is the closure of the projection of X onto Xy in Xy en-
dowed with the relative topology and the corresponding restrictions of the linking maps
X]]‘Vl Although the two spectra are generally not equivalent, the projective limits are
topologically the same, as we can work with the relative topologies. If the steps Xy are
LS, spaces we have to endow the closure of the projection of X to Xy in Xy with its
associated ultrabornological topology to obtain LS, spaces Xy. This is possibly strictly
finer than the relative topology. As closed subspaces of LS, spaces are well-located by
(2.2.5), we obtain that the projective limits are algebraically the same but proj (f( N» X%)
carries a potentially finer topology. As we need the factorization of operators over the
steps (2.2.9), we need to include the technical feature of strong reducedness in the defi-
nition of PLS,, spaces.

Now we can construct the kernel and cokernel in PLS,,:

Proposition 2.2.11. Let t: E — F be a linear and continuous map between PLS,, spaces
(E,T) = projyey indyen Ey,, and (F, S) = proj ey indyen Fy
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The kernel of t in PLS,, is given by the continuous inclusion of the algebraic kernel
of t, endowed with its associated PLS,, topology, into E. We denote this object by

(raon), .
sisting of the closures of the projections of the algebraic kernel of t to Ey (N € N)

. By definition, it is the PLS,, space arising from the PLS,, spectrum con-

endowed with their associated ultrabornological topology — the LS, spaces

 Eu\Uub
(Ef}’o (= ({0})) N) — and the corresponding restrictions of the linking maps E?).

ii) As in the category of PLS spaces, the cokernel of t in the category of PLS,, spaces is

Proof.

given by the Hausdorff completion of the quotient F/, (EY which arises as the projective
limit of the strongly reduced spectrum consisting of the LS,, spaces Fn|EN (1 ( E))FN
together with the maps induced by the linking maps FY).

i) The kernel of ¢ in the category of locally convex spaces is given by the inclusion
of (t‘l dqop,7 Nt ({0})) into E and it is clear that it arises as the projective limit of
the strongly reduced projective spectrum generated by the restrictions of the spectral
maps EY | to the closure of EX*! (t‘1 ({O})) in Ey.; endowed with the respective relative
topology induced by Ey,;. We obtain our spectrum by passing to the associated LS,
topologies. Thus the closed graph theorem implies that it is a well-defined projective
spectrum of LSy, spaces. As closed subspaces of LS,, spaces are well-located by (2.2.5),
it is strongly reduced because the closure of EY (t‘1 ({O})) in Ey is the same as its weak
closure which in turn remains unchanged by passing to the associated ultrabornological

topologies. Furthermore, we have the continuous identity map from (t‘] ({0}))PLS to

(t‘l qoh, 7 n¢t! ({O})). Let now s: S — E be a linear and continuous map from a

PLS,, space S = projyey (S NSV ) into E with t o s = 0. Then we have the unique

N+1
linear and continuous map A: S — (t‘l o), 7 ne! ({O})) induced by the locally

convex kernel of ¢ and it remains to show that 4: § — (t‘l ({O}))PLSW 1S continuous.
As A: § — E is continuous, by passing to a subsequence, we may assume by (2.2.9)
that it arises as a morphism of spectra (Ay)yey : (SN, S%H) — (EN, EII\\;H). As A(S) C
' ({0}), we obtain by construction that Ay (S y) is a subset of the closure of EY (t‘l ({0}))
in Ey. Thus again with the closed graph theorem A, remains continuous when passing
to the associated ultrabornological topologies and A = proj (dy)yey 1 continuous even

from S to (r‘ ({0}))

PLS,

Here we can essentially follow the proof for the category of PLS spaces in [SielO,
(3.1.3)]: For N € N we define Ay as the closure of F¥ (t (E)) in Fy, here endowed with
the relative topology, and A} | as the restriction of F}, to Ay, and the topological
inclusion iy of Ay into Fy. Furthermore, we define Yy as the topological quotient
Fy/ Ay Y ., as the map from Yy, to Yy induced by F¥ . | and the quotient map gy from

Fy to Yy (N €N). Then (AN,A% +1) is a strongly reduced spectrum of locally convex
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2 Homological methods

spaces, (Y N, YN, 1) is a strongly reduced spectrum of LS, spaces and we have a short
topologically exact sequence of projective spectra
) (iN)nen

_ (FN,FN

N+1) M) (YN’ YII\\7[+1) — 0.

0— (An.AY.

N

N+1) 1S strong-

The map proj (gn)yey 1S Open onto its range by [Wen03, (3.3.1)], as (A N-A
ly reduced, hence the map

Y — e (Y, Y, )y +1E) = (Y20 + Ay)

NeN NeN

is open onto its range as well. The space projyqy (Y N Yy +1) is a complete Hausdorft
space, since each Yy (N € N) is complete and Hausdorff. As j has dense range, it is a
version of the Hausdorff completion of Y, /@F . Thus it is an easy exercise to check
that it satisfies the universal property of the cokernel of f in PLS,,.

]

Corollary 2.2.12. The category PLS,, is pre-abelian.

Proof. As the product of two PLS,, spaces X = projyqy ind,en Xy, and Y = proj oy ind,en Y
is the PLS,, space X X Y = projycy indyen Xnn X Yau, (2.2.11) yields the assertion. m]

Remark 2.2.13. In (2.1.11) and (2.2.4) we discovered that the attribute “well-located” is cru-
cial concerning the lifting properties in pushout diagrams of pre-abelian categories. Although
we will not need this property in PLS,, to determine the maximal exact structure, we want to
remark, that the embeddings of closed subspaces of PLS,, spaces, endowed with their associ-
ated PLS,, topology, into the original PLS,, space are weak isomorphisms onto, as every linear
and continuous functional on a PLS,, space factorizes over a step and closed subspaces of LS,
spaces are well-located by (2.2.2) v).

Furthermore, we obtain with (2.2.11) i1) that complete Hausdorff quotients of PLS,, spaces
are again PLS,, spaces, a fact that is well-known for PLS and PLN spaces, see [DVOOb, (1.2)].

Before we can determine the maximal exact structure of PLS,,, we need to apprehend the
possibilities of localization and its limits:

Remark 2.2.14. Let again t: E — F be a linear and continuous map between PLS,, spaces
E = projyayind,en Ey,, and F' = projygg ind,en Fy,,. By passing to a subsequence we may
assume by (2.2.9) that there is a morphism of spectra (y)yey : (EN, Eﬁ,’ﬂ) — (FN, Fﬁfﬂ),
called localization of ¢, such that t = proj (fy)vay. We investigate the relation between the
projective limits of the spectra of local kernels respectively cokernels and the PLS,, kernels

respectively cokernels:

ub
1) For each N € N we have the kernel (t;,l ({O})) of ¢ty in LS,,. Together with the cor-

responding restrictions of the linking maps Ef\j ., these spaces generate the projective
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spectrum of local kernels of t. The projection of the kernel of 7 onto Ey is always a
subspace of the kernel of #y. Thus we obtain continuous inclusions of the steps giving
rise to the PLS,, kernel of ¢ into the local kernels. These induce a continuous inclusion
of the PLS,, kernel of ¢ into the projective limit of the local kernels. That inclusion is
even surjective as each sequence of elements of the kernels of #y which is an element of
E is already an element of the kernel of r. However, we do not know if this inclusion is
open, as we do not even know if the local inclusions are open onto their ranges. Thus
the projective limit of the local kernels induces a topology on the algebraic kernel of ¢
that is potentially finer than the associated PLS,, topology.

However if the spectrum of local kernels happens to be strongly reduced, then the two
topologies on the kernel of ¢ coincide, since then the construction (2.2.10) ii) of the
equivalent spectrum with dense projection images leads to the spectrum giving rise to
the PLS,, kernel of ¢, which is thus equivalent to the spectrum of local kernels.

ii) In contrast to that, a localization of the cokernel of 7 in PLS,, is possible: Foreach N € N
we have the cokernel F N/mF v of ty in LS,,. Together with the maps induced by
F 11\\//+1
assume dense projection images for E by (2.2.10) i1), the closures of the images of 7y
coincide with the closures of the projection of the image of # to Fy for all N € N. Thus
the spectrum of local cokernels and the spectrum giving rise to the PLS,, cokernel of z,

see (2.2.11) ii), are identical.

these spaces generate the projective spectrum of local cokernels of t. As we may

However bad the situation concerning the localization of kernels may be, in complete anal-
ogy to the PLS case, cf. [DVOOb, p. 64], a localization of kernel-cokernel pairs is possible in
PLS,, as the category of the steps, LSy, is quasi-abelian by (2.2.5):

Proposition 2.2.15. Let (f,g) be a kernel-cokernel pair in PLS,,. Then there are strongly
reduced spectra (XN, Xﬁ) , (YN, YAA}) , (ZN,ZA";) of LS,, spaces as well as morphisms of spec-
tra (fy)nen : (XN,XAA,;) — (YN, YAA;) and (gyn)yey (YN, Yﬁ) — (ZN,ZAA;) such that each
(fv, gn) is a kernel-cokernel pair in LSy, i.e. (fy,gn) € E5v (N € N), and (f, g) arises as the

max

projective limit of the sequence of spectra

(Ve (&N)men

0— (XN,XAA,][) — (YN, YAA,;) — (ZN,ZAA,’I) — 0.

Moreover, if (f(N, XAA,’,) , (f’ (% AA;) and (ZN, ZAA,;) are strongly reduced spectra of LS,, spaces
giving rise to X, Y and Z then we can either take (YN, Yﬁ) = (YN, YZ) or (XN, Xf‘vl) and (ZN, ZAA;)
as subsequences of (f( N> le&) and (ZN, Z%)

Proof. Let (YN, Y Z) be a strongly reduced spectrum of LS, spaces with proj (Y Ns YA’Z) =Y.
First using that f is a kernel of g and then that g is a cokernel of f we obtain by (2.2.11) and
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(2.2.14) ii) that (f, g) arises as the projective limit of the sequences
T AN Y .y
0— (YT ) & vy 5 Yl g (x,) — 0.

where fy is the inclusion and gy is the quotient map and the linking maps X% and ZJ) are the
maps induced by Y} (M > N). Denoting the first space of the sequence Xy and the last Zy
yields the first assertion.

If (XN, XZ) and (ZN, ZAA;) are strongly reduced spectra of LSy, spaces giving rise to X and Z,
these spectra are equivalent to (XN, Xﬁ) respectively (ZN, ZAA;) by (2.2.9). Thus by (2.2.7) we
obtain factorizations

XK(N)
T n gn
0 XN YN ZN 0
ZL(N)

Since the category LS, is quasi-abelian by (2.2.5), the middle row of the above diagram is
exact in LS, for each N € N. Hence we can use the pullback and pushout constructions
(2.1.7), cf. [DVOOD, p. 64] or Karidopoulou [Kar06, (1.1.39)] for details, to obtain a sequence
of spectra

0— (XK(N)’Xg((IZ))) — (YN, YAA,;) — (ZL(N)’ZZ(ZI‘\?)) — 0

giving rise to (f, g), in which each sequence of steps is exact in LSy,. O

Now we can determine the semi-stable kernels and cokernels in PLS,,, which leads to the
maximal exact structure of PLSy, by (2.1.4):

Proposition 2.2.16. i) In PLSy, every kernel is semi-stable.
ii) In PLSy, a cokernel is semi-stable if and only if it is surjective.
Proof. Let (f, g) be a kernel-cokernel pair in PLS, with corresponding localization (2.2.15):

(8Mnen

0 — (Xy. Xp) (W (Yw.7hy) —" (2w, 2Z)) — .

1) Let s: X — § be a linear and continuous map from X = proj (XN, X%) into any PLS,,
space S = proj (S NS %) By passing to a subsequence we may assume by (2.2.9)

that there is a morphism of spectra (sy)yey from (XN,XAA;) to (S NS AN/[) such that s =

23



2 Homological methods

proj (sy)yen- Denoting Y := proj (YN, YA’\;), the pushout of the diagram X ¥ in
S

PLS,, is given by the cokernel of the map (f,—s): X — Y X S, x — (f(x),—s(x)) in

PLS,,. By (2.2.14) ii) this cokernel is given by the projective limit of the local cokernels,

i.e. by the projective limit of the pushouts of the diagrams Xy My v in LS. These

le
Sw
pushouts are given by the triples (Qy, gy, gs,) from (2.1.9) ii). Then by (2.1.9) ii) b)

and (2.2.3) each g, is the kernel of

b O = e X SN ey ey — 2 = Y1y
v, rv) + (fv, =sn) (X)) = yv + fiv Xn) -

Thus gs := proj(gs,)yeay is the projective limit of the spectrum of the local kernels
(gs ) yay Of the map ¢ = proj (Yy)yeay- As the spectrum (S N> ﬁg) is strongly reduced,
gs 1s indeed the PLS,, kernel of by (2.2.14) 1), hence f is a semi-stable kernel.

If g is semi-stable, it has to be surjective by [Siel0, (2.2.3)]. Now let g be surjective and
s: S — Z be a linear and continuous map from a PLS, space S = proj (S N» Sﬁ;) to

Z = proj (ZN, ZZ) By passing to a subsequence we may assume by (2.2.9) that s arises
as the projective limit of a morphism of spectra (sy)yey from (S N> S 5‘\/4) to (ZN,ZZ).
Then the pullback of the diagram S in PLS,, is given by the triple (P, py, ps),
where P is the kernel of the map ¥ X S — Z,(y,r) — g(y) — s(r) in PLS,,, and py

and py are the restrictions of the respective projections to P. We have to show that pg is
a cokernel.

To prove (2.2.16) i) we have used the localized pushouts to show that gy is the projective
limit of local kernels. Then the strong reducedness of the spectrum of local kernels
yielded that g5 was indeed a kernel. Now we proceed inversely: We first show that the
spectrum of local pullbacks is strongly reduced, hence it gives rise to the PLS,, pullback
by (2.2.14) i). Then pg arises as the projective limit of some local cokernels which
makes it a cokernel.

Let now (Py, py,, Ps,) be the pullback of the local diagram Sy inLS,,ie.

lm

Y=g~ 2y

24



2 Homological methods

Py ={On,ry) : gy Oy) = sy (ry)D™ and Py, and pg, are the restrictions of the canon-
ical projections to Py. We show that for each N € N the restriction of the projection
PY: P — Py has dense range:

Let (yn,ry) be an element of Py and let Uy and Vy be 0-neighbourhoods in Yy re-
spectively Sy. We define Uy = 1Uy and Vy = Vy N s (gN(f]N)), which is a 0-
neighbourhood in S y as gy is a quotient map, hence open. As we may assume that S
has dense range by (2.2.10) ii), we can choose an element  in § with S¥ (r) — ry € Vy.
As g is surjective, there is an element y in ¥ with g (y) = s(r). Then we have by con-
struction that gy (YOJX (y) — yN) = Sy (Sf,vo (r) — rN) € gn (Z7N) holds. Thus Y (y) — yy is
an element of g,/ (gN (UN)) = Uy + g3 ({0}) = Uy + Xy. Since by construction we

have Xy = YV (X)YN c YN(X) + Uy, there is an x € X with YN (y) —yy — YV (x) €
2Uy = Uy. Now we define z := y — x and obtain that (z, 7) is an element of P, be-
cause g(2) = g(y) —g(x) = s(r) as x € X = g ' ({0}). Furthermore, we calculate
P () ~Oneri) = (Y8 @ = 3w, SE() =) = (YR (0) = Y2 () =y SE (1) = rv) €
Uy x Vy. Thus the spectrum of local pullbacks is indeed strongly reduced, hence it gives
rise to the PLS,, pullback of S by (2.2.14)1). By (2.1.9) 1) b) and (2.2.3) each

Y—Z7
8
Psy is the cokernel of the map ¢y : Xy — Py, xy — (xy,0). Thus ps = proj (ps, ) yen

is the cokernel of ¢ := proj (¢n)yey in PLS,, by (2.2.14) 11) and g is a semi-stable coker-
nel.

O

Theorem 2.2.17. The class EX5v, which consists of all kernel-cokernel pairs (f, g) in PLS,,
such that g is surjective, is the maximal exact structure in PLS,. The same is true in PLH.

Proof. By Sieg and Wegner’s characterization (2.1.4) the maximal exact structure of a pre-
abelian category consists of all kernel-cokernel pairs that consist of a semi-stable kernel and
a semi-stable cokernel. Thus the determination of semi-stable kernels and cokernels (2.2.16)
yields the assertion. O

Definition and Remark 2.2.18. When analyzing if the vanishing of Ext groups is passed
down to subcategories of the locally convex spaces, three-space properties are an important
tool. As we investigate categories whose exact structure differs from the short topologically
exact sequences, we recall the general concept of fully exact and exact subcategories:

Let (C, &) be an exact category.

i) A full subcategory C’ of an exact category (C, &) is called a fully exact subcategory of
(C, &) if for any short exact sequence

xLy5z
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in C, X and Z in C’ implies Y in C’. Then being a three-space property translates into
being a fully exact subcategory of LCS.

We do not know, whether the categories LSy, PLS,,, LS or PLS are fully exact subcate-
gories of LCS —i.e. if being an LS, LS,,, PLS or PLS,, space is a three-space property —
but we do know the following:

a) LH and PLH are not fully exact subcategories of LCS, as they are full subcate-
gories of the category of hilbertizable Ics by (4.2.6) 1), which is not a fully exact
subcategory of LCS. To see this, we consider the short exact sequence

0—x-1v=27z—0

of Banach spaces, which Enflo, Lindenstrauss and Pisier constructed in [ELP75],
where X and Z are Hilbert spaces but Y is not. Then Y is not a hilbertizable Ics.

b) LS, is a fully exact subcategory of PLS,,, the same is true for LH in PLH: Let
0—X-5Y-527Z-—0

be a short exact sequence of PLS,, spaces, where X and Z are LS,, spaces. By
(2.2.15) we have a commutative diagram

with rows that are exact in PLS,, and Y is an LSy, space. Thus the Five Lemma for
exact categories, cf. [Biih10, (3.2)], implies that Y. is an isomorphism, hence Y is
an LS,, space. The same proof shows the assertion for the pairing LH / PLH. Note,
that ii) is the complete analogon to the result by Sieg about the pairing LS / PLS,
cf. [Siel0, (5.1.3)].

ii) If we have an exact structure & on C’, then (C’, &) is called an exact subcategory of
(C, &) if the restriction of & to C’, referred to as & N C’, coincides with &’.

a) By (2.2.17) we know that LS,,, PLS,,, LH and PLH are not even exact subcate-
gories of LCS (or (LCS)), as the class of short topologically exact sequences —
although being an exact structure on all of the above categories by [DS12, (3.3) &
(3.6)] —1is a proper subclass of the maximal exact structure by (2.2.6), whereas Sieg
proved in [Siel0, (3.1.1) & (3.2.1)] that both LS and PLS are exact subcategories
of LCS.
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b) We conclude this section by showing that neither PLH nor PLS,;, is quasi-abelian

or even semiabelian, cf. [Siel0, ((3.1.5))]:

Any non-surjective linear partial differential operator with constant coefficients
P(D): 2'(Q) — 2’ (Q) on the space of Schwartz distributions over an open
subset Q C R that is surjective as an operator P (D) : €% (Q) — ¢ (Q) yields
a kernel 45 (Q) in 2’ (Q) with proj' A5 (Q) # 0 by [Wen03, (3.4.5)], hence the
cokernel of the embedding of .4, (2) into &’ (), which is given by the Haus-
dorff completion of the quotient Z’ (Q2)/ Ny () by (2.2.11) i), is not surjective by
[DVOODb, (1.4)]. Classical results of Malgrange [Mal56, Chapitre 1, Théoreme 4]
and Hormander [Hor62] reduce this problem to finding an open subset Q C R?
which is P-convex but not strongly P-convex. For d > 3 such pairs (P, Q) are easy
to find, see e.g. [Dom04, (3.5) a)]. Note that Kalmes showed in [Kal11] that this is
not possible for d = 2, thus solving an old conjecture of Tréve in the affirmative.
Using the above example to construct a morphism f in PLH such that the induced
morphism f from the coimage of f into its image in the canonical factorization
the same way as in [Siel0, (3.1.6)], we obtain that neither PLH nor PLS,, is even
semi-abelian.

2.3 Yoneda Ext functors and the long exact sequence in PLS,, / PLH

Thanks to Sieg’s, Wegner’s and Biihler’s work on exact structures [Biih10, Sie1l0, SW11], we
can establish the whole homological toolbox, in particular the long exact sequence (2.3.2), for
the Yoneda Ext groups, which leads us to the connection of Ext and proj and the splitting for
2’ (Q). We give an outline of Sieg’s approach, cf. [Siel0, chap. 4 & 5]:

Definition and Remark 2.3.1. Let (C, €) be an exact category.

1) A sequence

A: O—>Xi>Yk_1—>...—>Y1i>Yoi>Z—>O

in C s called exact (in C, with left end X and right end Z), if every morphism f; factorizes
as f; = myoe; for an admissible cokernel ¢;: Y; — [, and an admissible kernel m;: I, —
Y1, such that (my,e;_;) is in & for 0 < [ < k. The integer k is called the length of the
sequence.

1) Let

A: 0—=X —>Y ,—...—>Y —=Y  —7Z2 —0

be another exact sequence of length k in C. A morphism with fixed ends ®: A — A’
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between the exact sequences A and A’ of length & is a commutative diagram

A:0 X Yk—l Yk—2 Y1 Y() Z 0
T S S
A 0—X —Y  —Y — .. —=Y — V| —= 7 —0.

1i1) For Z and X in C we denote by E’é (Z, X) the exact sequences of length k with right end
Z and left end X. On E’é (Z, X) we define the following equivalence relation:

Two elements A and A’ of E’é (Z,X) are said to be equivalent, A ~ A’, if there is a
sequence A = Ay, Ay,...,A1,A; = A’ of elements of E’é (Z,X), such that for every
0 <i < 1—1 there is a morphism with fixed ends either from A; to A;;; or from A;;; to
A;. We define

Ext!, (Z, X) = B¢ (Z, X)/

and denote by [A] the equivalence class of A in Ext'é (Z,X).

iv) Using the pullback and pushout constructions (2.1.7) it is possible to endow the equiv-
alence classes Exté (Z, X) with an abelian group structure via the Baer sum and assign
each morphism 4: X — X’ in C a homomorphism of abelian groups Ext(k; Z,A):
Ext§ (Z, X) — Ext (Z, X), cf. [Siel0, (4.1.5)].

Then we have:

Theorem 2.3.2. Let (C, E) be an exact category and let E be an object of C. For each k > 1
the assignment

Ext5 (E, ) : C — (AB), X  Ext}. (E, X)
A - ExtS (E, Q)

is a covariant, additive, abelian-group-valued functor, which induces for every short exact
sequence )0 — X — Y — Z —> 0 a long exact sequence

0 — Hom(E,X) — Hom(E,Y) — Hom(E,Z) -
2 ExtL(E,X) — ExtL(E,Y) — Exti(E,2) -5
2 Bx2(E.X) — — Exttl(E,2) 25
S Bx(E,X) — Exti(EY) — Exth(E,2) -5
2 ExtE(E,X) —
Proof. See [Siel0, Theorem (4.1.1)]. O
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Remark 2.3.3. Using the concept of universal ¢ functors it is possible to show that if an exact
category (C, &) has enough injective objects, for all objects E in C the Ext’é (E, ) groups are
1isomorphic to the derived functors of Hom¢ (E, _) in the sense of Palamodov, cf. [Pal71] and
[Siel0, p. 36].

Proposition 2.3.4. Let (C,E) be an exact category.

i) For any short exact sequence
f g
0—X—>G—FE—0

in C the following are equivalent:
a) f has a left inverse.
b) g has a right inverse.

c) There is a commutative diagram

1

0—>X—(°)>X@E‘°i>E—>o

|

OXngE 0,

such that B is an isomorphism.

ii) For two objects X and E in C the following are equivalent:
a) Ext}(E,X) =0

b) Every exact sequence 0 — X i) G- E—0inCis split exact.

Proof. See [Siel0, (4.2.1) & (4.2.2)]. m|

With exactly the same proofs as in [SielO0, (5.1.6), (5.1.7) & (5.1.8)] we obtain the results
connecting ExtIISLSW and Ext’{sw respectively Ext ; and Ext} :

Proposition 2.3.5.

i) If X and E are LS,, spaces, then for all k € N there is an isomorphism of abelian groups
Extfs (E,X) = Exty g (E,X).

ii) Let X be an LSy, space, E = proj (EN,EﬂNl) be a PLSy, space and k € N. Then the
vanishing of all Ext’ﬁsw (En,X) (N € N) implies the vanishing of EX‘[{ELSW (E, X).
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iii) Let (Xy)yay be a sequence of LS, spaces and E = projyqy (EN, E%) be a PLSy, space.
Then the vanishing of all EX‘[’ESW (En,Xy) (M,N € N) implies the vanishing of
Extprs, (E, [Twa Ew)-

The statements remain valid if we replace PLS,, by PLH and LS, by LH.

By applying the long exact sequence (2.3.2) to the canonical resolution of a PLS space
X, Sieg established the same connection between Extf,LS (E,X) and pI’Ojl (L (E,Xy), XAA;*)
in [Siel0, (5.2)], which we are used to from the Fréchet setting (see e.g. [Wen03, (5.1.5)]).
Here XAA;* denotes as usual Homy cg (E, XAA;) The same proofs yield the same results in the
categories PLS,, and PLH. We just have to check, that under the correct assumption, i.e.
proj' (XN, XAA;) = 0, the canonical resolution of X is an exact sequence of PLS,, (respectively
PLH) spaces. Hence we recall:

Given a PLS,, space X = proj (XN, Xf‘vl) we define the map

Wy HXN — HXN, (XN new F (X%HXNH - XN)

NeN NeN

NeN *

As X is the kernel of Wy in PLS,, and (XN,XAA;) is strongly reduced, [Wen03, (3.3.1)] yields
that Wy is open onto its range. Since it has dense range, it is the cokernel of its kernel. Thus
the canonical resolution of X

oﬁanxNﬂan

NeN NeN

is an element of E’-S+ if and only if Wy is surjective. Since proj' (X " XA’Z) = [var Xv/im o9

by [Wen03, (3.1.4)], this is equivalent to the vanishing of proj' (XN,X%). Thus we arrive at
the analogons of [Siel0, (5.2.1) & (5.2.3)]:

Theorem 2.3.6. Let X = proj (XN, XZ) and E = proj (EN, E%) be two PLS,, spaces. Then we
have:

i) Ifproj' (Xy. Xiy) = 0 and Exty, s, (E,X) = 0, then proj' (L (E, Xy), X} ") = 0.
i) If
a) proj' (XN,XAA,’I) =0and
b) Extfsw (En,Xy) =0forall M,N e Nand all 1 <k < ko foraky € N,
then
@) Extll)LSW (E,X) = proj’ (L (E,Xy), XAN/F) and
B) Exty s (E,X) =0 forall2 <k < k.

The results remain true if we replace LS, by LH and PLS,, by PLH.
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2 Homological methods

Domarnski and Vogt [DV0OOb] respectively Wengenroth [WenO1] have proven with func-
tional analytic methods that the space of Schwartz distributions 2’ (Q) plays the same role in
the splitting theory of PLS spaces as the space of rapidly decreasing sequences s does in the
splitting theory for Fréchet spaces, i.e. if E is isomorphic to a closed subspace of &’ (Q2) and X
is isomorphic to a complete Hausdorff quotient of &’ (QQ), then Ext’liLS (E,X)=0forallk > 1.
Sieg has given a purely homological proof in [Siel0, (5.3.6)], that we can transfer with minor
adaptions to the categories PLS,, and PLH. We give an outline of the argumentation:

The sequence space representation 2’ (Q) = (s")" — which is due to Valdivia [Val78] and
(independently) Vogt [Vog83b] — and (2.3.6) ii) are used to show that ExtlliLSW (E,X) = 0 for
all k > 2. As (2.3.5) iii) yields that Extll,LSw (E, 7' (Q)) = 0, we obtain Extll,LSW (E,X) = 0by
applying the long exact sequence (2.3.2) to the (even) topologically exact sequence

0—921 Q) —>92Q)—>X—0,

which exists by [DVOODb, (2.1)].

To apply (2.3.6) ii) and (2.3.5) iii) we need to prove that proj' (XN, Xﬁ) =0 and
Extlﬁsw (Ey,Xy)=0= Ext’ﬁH (En, Xy) forall M, N,k > 1. The first statement is a consequence
of [DVOODb, (1.1)], since X is ultrabornological as a quotient of 2’ (QQ). In (2.2.6) we have seen
the duality of EL5v and v respectively X and EFY. Hence the same reasoning as in [Siel0,
(5.3.2)] yields that for two LSy, spaces X and E and any k > 1 the vanishing of Ext’ﬁsw (E,X)
is equivalent to the vanishing of Ext’lisw (X', E’) and the same holds in the dual pair LH / FH.
Thus, to obtain the second statement, we need to prove that Exts (E,X) and Exty (E, X)
vanish for all k > 1 for closed subspaces E of s and Hausdorff quotients X of s. The assertion
in the category of Fréchet spaces is yielded e.g. by [Wen03, (5.2.9) & (5.1.5)]. As being
a reflexive Banach space is a three-space property by [RD81, (4.3)], being an FS,, space is
a three-space property when we apply (2.2.15) to localize short exact sequences of Fréchet
spaces. Thus the same argument as in [Siel0, (5.3.4)], i.e. Yoneda Ext are inherited by fully
exact subcategories, cf. (2.2.18) 1), yields the assertion in FS,;.

The category of Fréchet-Hilbert spaces is not a fully exact subcategory of the category of
Fréchet spaces by (2.2.18) i) a). However the case k = 1 is contained in [MV97, (30.1)],
[Vog77a, (1.3)] and [VWSO0, (1.8)] (or [MV97, (31.5), (31.6), & (30.1)]) and the case k > 2 is
contained in [Vogl1]. Thus we arrive at

Theorem 2.3.7. If E and X are PLS,, spaces such that E is isomorphic to a closed subspace of
2" (Q) and X is isomorphic to a complete Hausdorff quotient of 2’ (Q), then Ext’;LSW (E,X) =

Oforallk > 1.
The statement remains valid if we replace PLS,, by PLH.
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3 Splitting theory

Splitting of short exact sequences has always been approached directly or indirectly by charac-
terizations of the vanishing of proj' for projective spectra of operator spaces, cf. e.g. [Wen03,
BDO06, BD08]. Theorem (2.3.6)ii) allows for the same in our situation. Given PLH spaces
E = proj (EN, El"vl) and X = proj (XN,XA",’[), we will consider the projective spectrum & :=

(Lb (E,Xy), X} *) If E and X are proper PLH spaces, the theory of webs has to be applied to

obtain conditions for the vanishing of proj' .. This has been investigated by Frerick, Kunkle
and Wengenroth in [FKWO03, Kun0O1]. Thus we will restrict ourselves to the cases where E is
either a Fréchet-Hilbert or an LH space, since then we will be able to access the vanishing of
proj' £ by using duality relations between the vanishing of proj' of spectra of LB spaces and
(weak) acyclicity of pre-dual LF spaces, which can in turn be described through variants of
the condition (M) of Retakh, cf. [Ret70], due to Palamodov [Pal71], Vogt [Vog92] and Wen-
genroth [Wen95, Wen96, Wen(03]. We will use an interpolation result due to Domarski and
Mastyto [DMO7, (3.1)] in Vogt’s variant [Vogl1, (1.1)] to translate those into applicable con-
ditions describing the interrelation of the defining seminorms by norm inequalities preceded
by a long sequence of quantifiers. This type of condition has a rather long tradition that was
initiated amongst others by Vogt in the mid 1970’s in the Fréchet space setting with a strong
emphasis on the functional analytic aspects [Vog77a, Vog77b, Vog87]. A first milestone was
the classical splitting result, the famous (DN)-(Q) splitting theorem due to Vogt and Wagner
[VWS80]. Under the premise of four so-called standard assumptions, one of the spaces E or X
being either a Kothe sequence space or nuclear, Vogt was able to give sufficient and necessary
conditions on the pair (E, X) for the splitting of each exact sequence

0—5X-5G625E—0 (%)

in [Vog87], where the sufficient condition had been proposed by Apiola [Api83]. A complete
characterization in the nuclear case was proven by Frerick [Fre96] and further results on suffi-
cient conditions in the general Fréchet setting were given by Frerick and Wengenroth [FW96]
and Wengenroth [Wen03] with a more pronounced emphasis on the homological aspects. Fi-
nally in 2007 Domariski and Mastyto were able to give a complete characterization of splitting
in the category of Fréchet-Hilbert spaces [DMO7]. The elegant formulation of the condition
(S) they used is due to Langenbruch [Lan04]. Their interpolation result for nuclear operators
[DMO7, (3.1)] was based on ideas from Ovchinnikov [Ovc98], a significantly shorter proof has
been presented by Vogt [Vogl1]. With this last characterization splitting theory for Fréchet-
Hilbert spaces can be considered rather complete. In [BD06, BDO8] Bonet and Domanski
presented characterizations of splitting of each exact sequence (x) of PLS spaces if E either
is a Fréchet-Schwartz or an LS space again under assumptions about nuclearity and being a
Kothe sequence space, that we will call successors of the four standard assumptions. Although
their conditions (G) / (G,) and (H) / (H,) coincide with our conditions (7T") / (T,), the methods
to prove characterizations are completely different, as theirs are based on nuclearity, hence
follow the general path of [Wen03, section 5.2], whilst ours follow Domanski, Mastyto and
Vogt, cf. [DMO07, Vogl1].
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3 Splitting theory

We start by organizing the well-known results about (pre-)duality and the vanishing of proj'
for PLH spaces together with the standard conditions in a first section:

3.1 Preliminary remarks

In general the well-known duality relation between the vanishing of proj' and weak acyclicity
reads as follows, cf. [Pal71], [Vog92, (4.1)] or [Wen03, p.110]:

Proposition 3.1.1. Let 77 = (H v, Hy! ) be an inductive spectrum of locally convex spaces and
let 7 = (H e (H fd )I) be the dual projective spectrum. Then 7 is weakly acyclic if and only
if proj' " = 0.

The following characterizations of acyclicity for LF spaces are due to Palamodov [Pal71]
and Vogt [Vog92] concerning “i) < ii)” and Wengenroth [Wen03, (6.4)] concerning “ii) <
iii)”, which is just [Wen95, (3.4)] in Langenbruch’s formulation of the quantifiers, cf. [Lan04].

Proposition 3.1.2. Let 77 = (H N, Hy ) be an inductive spectrum of Fréchet spaces. Then the
following are equivalent:

i) S is acyclic.

ii) J€ has property (M) of Retakh, i.e. there is an increasing sequence (Uy)yen of abso-
lutely convex 0-neighbourhoods Uy C Hy, N € N, such that

Y 4V Y 4 wnuycVv
NeN M>N K>M VeZ4(Hy) We(Hk)

iii) € has property (Q),, i.e.

Y 4V B Y 4 wnucvVv
NeN M>N K>M Ue%y(Hy) Ve (Hy) WeZo(Hg)

Regarding PLH spaces, this leads to variants of the condition (P5) for projective spectra of
regular LB spaces. Before we introduce those, we specify the general assumptions we may
impose on PLH spaces and the PLH spectra giving rise to them and fix some notation:

Remark 3.1.3. Let X = projy.y ind,en Xy, be a PLH space. By By, we refer to the closed
unit balls of the Hilbert spaces Xy, N,n € N. By multiplying the norms of the steps with the
continuity estimates of the respective inclusions, we may assume that By, is a subset of By 1
for all N, n € N. Furthermore, by applying a simple thinning procedure similar to the one used
in the proof of (3.2.4) ii), we may assume that Xf:,’ 1 (Bn+1,1) is a subset of By, for all n, N € N.
For any step N € N and any linear functional f € X}, we denote ||f|[y,, := sup |f (x)| € [0, co].

XEBNVH
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3 Splitting theory

Definition and Remark 3.1.4. A PLH space X = proj, ind,en Xy, has property
i) (P3)o if

VY 4 ¥V AV A XN (Bunm) CeByn+ XY (Bki),
NeN M>N K>M neN mz(r)l k2161
>0 >

which — by the bipolar theorem — is equivalent to its dual variant (P;)o:

() 1

* *

Yy 4 Vv 4V 34V
NeN M>N K>M neN m>n k>m feXl’v
e>0 >0

C<allflly, +e|(x) £

M, Kk

i) (P3)if

V 3 ¥V 3V 3 XY (Buw) Cc(Bya+ XY (Bra))-
NeN M>N K>M neN m>n er(r)l
c>

which — again by the bipolar theorem — is equivalent to its dual variant (P7):

NZN MgN K!M neEIN m\gn k% fe\;"qv ”(Xﬁ) f

(Il + |32 £

%k
K,k)'

First of all the question arises, whether the above conditions are linear topological invariants,

M,

1.e. if they are invariant under passing to equivalent spectra. The positive answer to this is
contained in (3.2.1) iii). Furthermore, by (3.1.2), the conditions (P3)o and (P})o are equivalent

to the dual LFH spectrum (X’ , (XII\\,’ -

Concerning the conditions (P3) and (P3) and weak acyclicity the situation is different. We only

)t) having condition (M) of Retakh or being acyclic.

know that weak acyclicity of (X]’\,, (Xxﬂ)’ ) implies the following condition (wQ) by [Vog92,
(2.3) b)]:

v 3 v 3 wn(x)) W ce(xd)wm,
NeN  M>N KM wea(x,)
ven(Xy) Vet (Xy) >0

which obviously implies (P}), thus also (P3). The other implication, i.e. the equivalence of
(wQ) and (wQ") remains a conjecture, cf. [Wen95, (5.3)]. Thus we have the implications

(P3)y © (P3)o = proj' X = 0 = (P3) © (P3).

If X is a PLS space, all of the above are equivalent by [Wen03, (3.2.18)]. This is not true for
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3 Splitting theory

PLH spaces, as there is even a Fréchet-Hilbert space X that is not quasinormable by [MV97,
(27.23)c)], hence it does not satisfy (P3)y by [MV97, (26.14)], whereas proj1 X always van-
ishes by [Wen03, (3.2.1)] as we may choose a reduced projective spectrum of Hilbert spaces
giving rise to X.

In the case of .Z, i.e. in the case of operator spectra, more detailed statements are possible.
First of all the pre-duality relation from (3.1.1) is given by projective tensor products via the
following relation, which is well-known:

Proposition 3.1.5. i) Let Y and Z be two Fréchet spaces. Then the map
p: (Y&,2) —L(%Z).foTr:(Yaym (Zozm f(®2)))
is an algebraic isomorphism.

ii) Given four Fréchet spaces Yy, Y1, Zy,Z, and linear and continuous operators
Yé Yy — Yl,Zéz Zy — 7, the following diagram commutes:

(1&,21) —~1L(1.2)

i@y
(Yo&:Zo) —~ L (Yo, Z{)) :

(%38:25)'

where @y, | are the maps defined in i) and Y, _denotes as usual Hom cs (Yé , Z(’)).

Proof. 1) The map ¢ is linear, well-defined and injective, which is guaranteed by the basic
properties of the 7 tensor product. Furthermore, ¢ is surjective as any separately contin-
uous bilinear form on a product of Fréchet spaces is jointly continuous by [K&t79, §40,

2, (1) (@]
ii) For f € (Y1®,Z,),y € Yy and zy € Z, we calculate

t*

oo ((1i8:22) (D) 00) @) = £ (Yoo ® Zhzo) = (Y22 (7)) (01 (D)) ) o)
O

This tensor product representation allows us to transform (weak) acyclicity of the pre-dual
spectra into evaluable conditions that we call (T,) respectively (T), cf. [Dom10, (5.2)], [BDO6,
(4.1)] and [BDOS, (3.1)]. In the following section we will introduce those conditions and the
notion of deep reducedness, which we will need to apply Vogt’s version (3.2.6) of Domanski’s
and Mastyto’s interpolation result [DMO7, (3.1)], which will be stated here as well, with all
the necessary technical requirements.
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3 Splitting theory

3.2 Remarks on the splitting conditions and deep reducedness.

Definition and Remark 3.2.1. Let 2" = (Xy. X)) and & = (Er,ET) be two PLH space
spectra, where Xy = ind,eyy Xy, and E7 = ind,en E7, N, T € N.

i) The pair (&, Z") satisfies the property
a) (T,) if the following holds:

vy 4 v 4V 4V

NeN M>N K>M neN m2n kxm feX},
TeN S>T R>S teN s2t r>s E’
e>0 >0 8¢
k

W, ) walely + e |(x) o] (ER)
oy 1, Dz ol < onn e+ o o, e o,
b) (T) if the following holds:

v 4 vV 4V 4V

NeN M>N K>M neN m2n kxm feXj,

TeN S>T R>S teN s2t r>s eE’

c>0

0 el =t o A, e o,

Jx) o, DY & = e (i et + (x2) £ (2 8]],.)-

ii) a) (T,)is equivalent to (T9):

v 4 v 4V 3V
NeN M=N K=M neN m=n kzm feX,
>0 c>0 gEE/

* k

o < Elfl lglie, + | (xX) £]| | (EY) ¢

ey 1], () e

Kk

b) (T) is equivalent to (79):

v 4 vV 4V 3V

NeN M>N K>M neN mzn kzm feX},
c>0 gEE’

< (It sl + ()

*

ED S

() 7

t %
By )
m||( M) § M,m K.k
Proof. We only prove ii)a).

Necessity: Let N € N be given. We chose M > N and § > T = N according to
(T.). Given K > M, := max{M,S}, we chose n,t € N for R = K. Given &€ > 0 and
t t
s = m = ny = max{n,t}, we define ¢; = H(X
L(ES s E;\/[(,,.v)

) Cy = ”(ES
MO L(X},\/I,m’xlllflq‘m) ’ MO
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M,R > S, we chose n,t for L(K),R. Givenm > n,s > t,& > 0 we define ¢; :

3 Splitting theory

and find k,r e Nandac > 0 for s = m and -=- Deﬁnlng ¢ = c1c;yc3, we obtain for any
feX,and g € E},

N t * N t * N t Z‘ *
”(XMO) f Mo.m H(EMO) § Mo,m = CICZH(X ) Mm“ § Ss
t
< vel(xy £ ” EL
1l v+ c | 4 (£8) ],
N ~NY I
< & il gl + < |(X%) £ [((EX) ],
Sufficiency: Let N,7 € N. We chose S = M > N, := max{N,T}. Given K,R > M,
we chose n = t € N for Ky := max{K,R}. Given m > n,s > tand ¢ > 0, we
t t t
define c|p = H xN ,Cy = ” E ,C3 == H X ,Cq4 =
(X%) X,0) Mol (e, £y,,) Ko/ L (e )
H X ‘ and find k = r > my := max {m, s} and cs > 0 for ==~ and m,. Defining
0/ L By ) e
¢ = c3c4¢s, we obtain for any f € X}, and g € E7,
A Ty || No N N\ (T Y ||
H(XM) M,m”(ES) g S,s < H X XNO) f M,mg (EM) (ENO) g M,mg
t * 7\ |
= c1Ch ” N" f Non (ENO) § N,t+
N * T *
Cs H (XNO) f Kok ‘(EKO) (ENO) g Kok
< vt + e O) A, E2Y o],
< ellfll gl + e | () ] [(ER) ],

The conditions (7;) and (7T') are passed on to equivalent spectra.

Proof. Again we only prove the assumption for (7). Furthermore, since the condition
is symmetric, it is sufficient to consider one equivalent PLH space spectrum. Thus let
ua = (Y N, Y M) where Yy = ind,en Yy, 1S @ PLH space spectrum that is equivalent to
2. First we show the following

Claim: If (L (N))yqy is a strictly increasing sequence of natural numbers and 2 =

(XL(N), Xé(%) is the induced PLH space spectrum, then (&, 2") satisfies (T,) iff so does

(8, 3&7):
Necessity: Given N,T € N, we chose M > L(N),S > T for L(N),T. Given K

\%

= 9 =

t .
H(X%@) and choose k > m,r > s,¢c, > 0 for m, s, ﬁ With ¢ = ¢;c; we

L(X} X hty
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3 Splitting theory

obtain for all f € X] .8 € E}.
* t *
X L) “ ET <e H L) H
H( L(M)) L(M),m S, ) Mm g S,s
L(N) \ _|I*
< &M Wl + | (K50 7], (2R o], 2

Sufficiency: Let N, T € N. We choose M > L(N),S > T for L(N),T.
Given K > M,R > S, we choose n, t for L(K),R. Givenm > n,s > t,& > 0, we define
l

and choose k > m,r > s,¢c3 > 0 for m, s and f Defining

= [(xi)

‘ ( Xi(N) )
C = H XL(K)) ., and ¢ = cac3, we obtain for all f € X}, g € E},
L(XKk XL(K) k)
N - L(N) R r\' I
H(XL(M) fHL(M)m ” s S ” L) XL(N)) ! L(M)um H(ES) 8lls.
t * t *
<2 e (=) <]
- ” L) fHL(N) lgllz., + s H( L(K)) f LK) k ( R) 8llk,
t
< Il lgli, + | (X¥) £ (ER) o] -

Now suppose that (&, 2°) has (T,). With what we have just shown, we may assume
that the equivalence of 2 and % instantiates in operators ay € L(Yy,Xy),Byv €
L (Xy.1, Yy) with ay OﬁN = XIQ/,+1 and,BN O N+l = YN+1’ N e N,

Let NyT e N. Wechoose M > N+ 1,S >T forN+1,T. Given K > M,R > S, we

choose n,t for K + 1, R. By the factorization theorem there is an integer n; > n such

that ¢; = ”,BNHL vy, X < oo. Given m > n,s > t,e > 0, again the factorization
N+1,n

2 mo 2 = [l
theorem prov1des 1ntegers m; > mgy = m such that ¢, al, LX)y, Yoy

choose k > my, r > 5,c4 > 0 for my, s and . Then there is an mteger ki > k such that

)<oo We

||ﬁK|| Ly, X, < co. Defining ¢ := czc3c4, we obtain for all f € Y}, g € E.
Kk, K+lk

t
(o I (O o (i ], un [(E) ..
< - ”ﬁNfl N,n ”g”Tt + €2C4 H XIA{/III K+1k H( )tg R,r
< e||f||N,, Istiz, +|(v2) 1], |1(E,€) gl
O

iv) Based on iii) and (2.2.2) ii), i.e. the fact that all strongly reduced PLH space spectra that
give rise to the same PLH space are equivalent, we may define all four properties for
pairs (E, X) of PLH spaces (instead of spectra).
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v) As X}, and E7 are dense in X}, and E7. forall N,T,kand r € N respectively, we may
replace in all four conditions the quant1ﬁer VfieXy, g€ E byVfeX,.g €k,

The following result connects (7)) and (T"), compare [Dom10, (5.2)“(2)=(3)].

Proposition 3.2.2. Let E = proj;oy indey E7, and X = projyey ind,en Xy, be PLH spaces
both non-trivial, i.e. both not the zero space. Then (T,) holds for (E, X) if and only if E and X
both satisfy (P3)o and (T') holds for the pair (E, X).

Proof. Necessity is trivial. Sufficiency: We assume (P})o in the forms

v 4 Vv 4 Vv 3V
NeN Ni>N K>N; meN mzny ki=m fGX/
8X>O cx>0

*

t
N * N
Jxn) A, = exlifii, +ex () ],
for X, and
v 4 v 4 Vv 3V
TeN T\2T R=T t1eN s2t; r12S geE’,
8E>0 CE>O
T * T
”(E g T1,s S CE ”g”T’tl + CE H(E ) R,
for E, as well as (T) for (E, X) in the form
vy 4 v 4 VvV 4V
NieN M>N; K>M ngeN m=ngy ko>m fe
TieN S>T; R>=S 1eN s=ty ro=s E’
co>0 8€ET,
Ny ¢ % T t * < N N “ Ny t * T t *
”(XM) f Mm “(ES ) § Ss €0 (”f”Nl’”O lgllz, ., + (XK) f K.ko (ER ) & Rro)

Now let N,T € N. We choose Ny > N, T, > T according to (P}), for E and X respectively.
Then we choose M > N;,S > T, according to (T') for Ny, T,. Given K > M,R > S, we
choose ny,#; € N according to (P3)y for K > Ny > N and R > T\ > T respectively, as well
as no, ty according to (T') for K > M > N;,R > S > T,. Given m > n = max {ng,n;},s >
t = max{t,t}, we choose kg > m,ry > s,co > 0 according to (T) for m > ny,s > t.

Given € > 0, we choose r; > s,cg > 1 according to (P3)y for E and s > fj,&p = Jeo

as well as k; > m,cx > 0 according to (P}) for X and m > ny,ex = ZCOLCE Denoting
k == max {ko, k1},r := max {ro, 1} and ¢ = ¢ (cxcg + 1), we obtain for all f € X}, g € E7,

(2) (£ o]

(E7) ¢

g

o, = o) () s

() £ |
)l )

o E5)

Mm

*

Co H(X/I\\//1 )l f

(*)

Ny,ng T1.t0 K ko R.ro
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If H(E;1 )t g ; - H(Eg)t g ; , we apply (P3)o for X to the first term and obtain
1,10 T
()< coex Wl |(E7) o), + coox [(68) 11, 27 ) o], +
- -
co ”(X%) f K ko (Eg) g R.ro
o ot ey o, s o AL RV ol o, Nl
< ellfll gl + < |(X) £ |(E2) ]|
If H(E;l )l g *T > H(EIZ)I g ; , we apply (P3)o for E to the first term and obtain
1,10 I
(%) < cose [ £l iz, + cocs | (XN) 71|, [\(ER) o] +
O T
Applying (P3), for X to the second term, we arrive at
(ex) <cos (XN 1, Ngli, + coceex 1, | (ER) ]|, + |
cvceex () 1], () el +en|(ex) A, (2R e,
<cok I1flly,, I8ll7, + coceex |1 flly, (E%)tg‘ ; +
1,10
COCECx (Xllg)tf Kk ‘ (Eg)lg re T €0 H(Xg)tf Kk H(E,g)tg Rr
<elflhva ity + ¢ |(x3) 7], ((E%) o], -
O

In order to establish the aspired splitting results, we need interpolation results for couples
of duals of the Hilbert space steps Xy, giving rise to X. As we do not have those at hand
for generalized couples, we need the injectivity of the transposed of the restrictions of the
connecting morphisms XAN4|XM,” and the inclusions Xy, < Xy.+1, M > N,n € N. Hence we
introduce the following property, see [Dom10, (5.1)]:

Definition and Remark 3.2.3. 1) A PLH space X is called deeply reduced, if there is a
PLH space spectrum (XN, XAN4) for X, such that the following hold:

v o3 v o3y g XY c XX

—X
NeN M>N K>M neN m>n k>m (2) XAA/II (XM,m) c XN,n N,k.
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If only (1) holds, X is called deeply reduced in columns, and if only (2) holds, it is called
deeply reduced in rows.

Deep reducedness in any of its forms is passed on to equivalent PLH space spectra:

Let X = proj (XN,XAA;) be a deeply reduced (in columns, in rows) PLH space and Y =

proj (YT, Y;) a PLH space such that the spectra (XN,XAI\;) and (YT, Yi) are equivalent.
Let T € N. By equivalence of spectra, see (2.2.7), we may chose N € N and a linear
and continuous operator y: Xy — Y7. Then we chose M > N according to the deep
reducedness of X and § > T and 8 € L (Y5, X)) with y o Xl"\; off = YST. Given R > S,
we choose again by equivalence an integer K > M and an operator @ € L (Xk, Yz) such
that X} = B o Y35 o a. By deep reducedness we choose n € N and with the factorization
theorem we choose an integer t € N with y (Xy,,) € Yr,. Given s > t, we choose in
the same way an integer m > n such that 8(Ys ;) C Xy, and choose an integer k > m
by deep reducedness. For k we choose r; > s with a(YXK,k) C Yg,, and r, > s with
¥ (Xnx) C Yr,,. We define r := max {r, r,} and obtain:

AN T.r, Y, Y7,
Y{ (¥Ys.) €y (XN X)) € v (X¥ X)) 0y (Xwa) ~ Y5 (V) 0y (Yr)

To see the other forms of deep reducedness, we just leave out the respective factor.

Now we verify that deep reducedness indeed yields the desired injectivity of the transposed,
compare [Dom10, (5.1)]:

Proposition 3.2.4. Let X = proj (X N> Xj‘vl) = Proj yey indyen Xy, be a PLH space.

i) If X is deeply reduced in rows, then there is an equivalent PLH space spectrum (YN, Y A’Z)

such that

V 3 v YN,mYNerl = YN,m+1 .

NeN neN m>n

ii) If X is even deeply reduced, we can choose (YN, Y Z) with i) and

——Ynm
VY o34 VY, v =Yu
NeN neN m>n

Proof. 1) As X is deeply reduced in rows, we have

v 3 v 3 XN X m C X nXN,k.
NeN M(N)=N m>n(N) k>m M(M)( MN)m) N,
n(N)eN
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For integers N,n € N we define:

YN,n =

{XN,,Z ,ifn<n(N),

——Xnn .
XN,n(N) . . ifn >n (N) .

endowed with the relative topology. Then Yy := ind, ey Yn,, is an LH space and defining
Yy = X¥ly,»M > N, as the restrictions of the spectral maps, the continuity of which
yields the closed graph theorem, we obtain a projective spectrum (YN, Y A’\;) of LH spaces
M)
linear and continuous from Xy to Yy for each N € N by assumption and again the
closed graph theorem. Since Yy is a subspace of Xy, N € N, the spectrum (Y N, Y Z) is

that is equivalent to (XN, XZ), since Yy is continuously embedded into Xy and X . is

strongly reduced, hence 1) holds.

By 1) we may assume that

XN k(N,m)

NEVN n(N?eN m>XN) k(N lg)>m Xll\\/]ﬂ (XN+1,m) C Xlltll+2 (XN+2,k(N,m))

and Xy, is dense in Xy .1, Where (k (N, m))y e may be chosen strictly increasing in
each component.

For N, m € N we define:

~ XN k(N,n(N))
. X3y (Xns2kvnivy) C XnaNavy >m<n(N),
N +—

~ XN k(Nm)
X2 Xns2kv.m) C XniNmy — sm=n(N).

Then Zy,, is continuously and densely embedded in Zy,,,; for all Nym € N, since
XN (Xns2kvnvy) 1s dense in all of those sets. Hence Zy := induen Zy,, is an LH
space and defining Z]AV/ = ]1\\,’ 1Zns1 € L(Zyys1,Zy), we obtain a PLH space spec-
trum that is equivalent to (XN,XA’\;), since Zy is continuously embedded into X, and
XY . is continuous from Xy, to Zy for each N € N by assumption and the closed
graph theorem. The spectrum (ZM,ZAA;) does not yet yield ii), since ZY, | (Zy+1,m) i8

N+1
v XN k(N+1,m) . . . . .
only a subset of Xy, (XN+34N+1.m)) , which might not be contained in Zy,,, since

k (N + 1, m) might be strictly greater that k (N, m). But as Xy, (Xy+2,,) is a dense subset

T EE——. § X
Of ZN (Z ) N k(N+1,m) _ XN (X ) Nk(N+1,m) 11 t d b t f h
N+1 LN+1m = Xy i3 (AN43kN+1,m) as well as it a dense subset of eac

Zy, for all v € N with k(N,v) > k(N + 1, m) by assumption, a thinning construction
also implying (3.1.3) leads to the following:

We define Y,,, = Z;,,, m € N and choose a strictly increasing sequence (I (m)),,en
of natural numbers such that k£ (2, m) < k (1,1, (m)) which yields that Zlezym is a dense

42



3 Splitting theory

subset of Y} ;) for all m € N. Hence we define

v, - {0} ,foralll <v</[ (1) and
27\ Zow , forallm,ve Nwithly m) <v <l (m+1).
Then Y>, is a dense subspace of Y5, for all v > [; (n(2)) and the spectra (Y3,),,; and

(Z3m) pery are obviously equivalent, hence Y5 := ind,ey Y2, = Z, and defining Y, = Z),
we obtain forallm >n(1)and [, (m) <v<li(m+1)

Yy (Ya,) = Z5 (Zowm) € Zigymy C Yoy

where all inclusions are dense. Now we start a recursion:

We choose a strictly increasing sequence (/; (m)),,ey of natural numbers such that
k(3,m) < k(2,1, (m)) for all m € N. Then we choose another strictly increasing se-
quence (s,),oy of natural numbers such that /; (s,) > I, (r) for all r € N and define

y { {0y , foralll <v < (n) and
3y =

Zs, ,forallr,y e Nwithl(s,) <v <l (841).

Then Y3, is a dense subset of Y3, for all v > [, (s,3)) and the spectra (Y3,) ., and
(Z3m) yery are obviously equivalent, hence Y3 := ind,ey Y3, = Z; and defining Y3 = Z3,
we obtain for all r € N with [, (r) > n(2)

Y. 32 (Ys,) = Z32 (Zs,) C Zosyir) C Zagyis,) = Yoo

Proceeding recursively we arrive at the PLH space spectrum (Y N, Y /"‘4'), which is equiva-

lent to (X N XAA,’I) and yields ii).
O

Our last statement about deep reducedness in this section involves examples taken from
[Dom10, p. 15].

Remark 3.2.5. The space of real analytic functions is deeply reduced, as well as the &, ()
for quasianalytic weights. Moreover, all Kothe type PLH spaces are deeply reduced, hence
.@(’w) (Q2) and &, (Q2) are deeply reduced for non-quasianalytic weights w. All these spaces
satisfy an even stronger condition, the dual interpolation estimate (DIE) in one variant. This

will be investigated in chapter 5.
Fréchet-Hilbert spaces are always deeply reduced and an LH space is deeply reduced if and

only if its strong dual is countably normed, cf. (3.4.1) 1).

Finally we state Vogt’s version [Vogl1, (1.1)] of Domarnski’s and Mastyto’s interpolation
result [DMO7, (3.1)] for the readers convenience:
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Theorem 3.2.6. Let a,8 > 0 and let (Fy, Fy) ,(Gy, G1) be two pairs of pre-Hilbert spaces and
F, G two pre-Hilbert spaces with F C FyN F1,G C Gy N Gy such that

Ixllr IVl < @ llxllg, [IYllg, +BIxlg, WG, forallx € F,y € G.

Then
lullre,c < @ llullpe,c, + Bllullp e forallue F ®,G.

Now we can start the investigation of the vanishing of proj' & in the three announced cases:

3.3 E is a Hilbert space

If E is a Hilbert space, the methodology to prove necessity differs significantly from the other
cases. Thus we treat it separately: If E is a finite dimensional Hilbert space, then proj' .%
vanishes if and only if proj' X vanishes. Thus (3.1.4) implies on the one hand that (7) is
sufficient and that (7') is necessary for the vanishing of proj' .# but on the other hand that
the other implications are either not true or out of reach. If E is of infinite dimension, we
prove a complete characterization. To prove necessity, we generalize [Wen03, (3.3.15)], which
characterizes under which circumstances X has (P5)o. In the Fréchet-Hilbert case Domanski
and Mastylo use a similar statement without giving a proof, cf. [DMO07, (4.1)], and Vogt uses
a dual statement (also without proof) in the proof of necessity [Vogl1, (4.2), “3.= 1.”]. To
prove sufficiency we use a condition due to Frerick and Wengenroth, cf. [FW96, (2.3)] in the
more elegant form of [Wen03, (3.2.14)].

Proposition 3.3.1. For a PLH space X = proj £ = proj (XN,XA’Z) withWo @ [lyen Xnv —

[Tvear X, (Xn)yer F (xN - X]’\‘,’ +1 (xN+1))N€N the following are equivalent:
i) X has (P3)o.
ii) Yo lifts bounded sets that span ;.

Proof. Since (P3)o and (P3)o are equivalent, [Wen03, (3.3.15)] yields that i) is equivalent
to ¥4 lifting bounded sets, which obviously implies ii). Hence it remains to show that if
X does not fulfill (P3)o, then there is a bounded subset B C []yeny Xy with ([B], pp) = 6,
that is not lifted by W,. To obtain such a set B, we construct a quotient spectrum % =
(Y N, Y Z) of 2 consisting of separable quotients Yy of Xy not fulfilling (P}),. We consider

the LFH spectrum 2~ = (XI’V, (XN )t), which does not fulfill condition (M) of Retakh. Not

N+1
having (M) is equivalent to either not fulfilling condition (wQ) or not being boundedly stable

by [Wen95, (3.8)]. ii) implies the surjectivity of ¥4 which characterizes the vanishing of
proj' 2" by [Wen03, (3.1.4)], which is equivalent to 2~ being weakly acyclic by (3.1.1). As
weak acyclicity implies condition (wQ) by [Vog92, (2.3) b)], 2" is not boundedly stable.
Hence there is a step Ny and a bounded subset Ay C Xy, such that for every M > N, there is

44



3 Splitting theory

a K (M) > M such that the topology of X}, is strictly finer on Ay than that of X} i.e. for

K(M)’

every M > Nj there is a sequence (ZEM))IEN in Ay which is convergent in X}, but not in Xj,.
We define
P
MY (A c X, N =N,
A= {d": 1€ N, M > No} and ¥y, := () a v N=No
{0} ,N < Ny.

Defining (Y f +1)[ as the restriction of (XN

NH)I to Y;

L+1» We obtain an LFH spectrum %’ =

(Y e (YZI\,V H)t) of separable subspaces of X}. As X} is the projective limit of the spectrum

induced by the sequence of Hilbert spaces (X;V’”)neN and the transposed of the inclusions

Xnn = Xnpe1,N,n € N, the spaces Y}, (N € N) are projective limits of sequences (Y;Vv”)neN
of separable subspaces of X}, ,n € N. Thus the strong dual Yy of Y}, is a separable quotient of
Xy as it is the inductive limit of the sequence (Y ,),qq of (strong) duals of ¥}, ,n € N. Hence
Y = (YN, Yﬁ), where Y¥ is the transposed of (YZ)I, is a quotient spectrum of 2", which is
dual to . Thus the same argument as before, just backwards, yields, that (P3)o does not hold
for %', as % is not boundedly stable by construction. Then [Wen03, (3.3.15)] guarantees a
bounded subset C C [[yay Y that is not lifted by W . Without loss of generality we may as-
sume that there is a strictly increasing sequence (n (N))yay of natural numbers and a sequence
of positive scalars (w,),a: such that C is the closed unit ball of the £,-sum of the sequence
(YN,n(N), Wy, ||-|I§,,,(N))N€N, cf. (4.2.5). Here ||-||X,,n denotes the quotient norm for N,n € N. Since
it is easy to verify that the £,-sum of separable Banach spaces is separable, C spans £,. Now
we lift C to the desired bounded subset B C []yay Xy, Which spans ¢, and does not lift with
respect to ¥ 5.

Denoting by gy: Xy — Yy (N € N) the quotient map and by Ey, Ex the {;-sums of
(YN,n(N),wn ”.llx’"(N))NeN and (XN,n(N),wn H.ll%’”(N))NeN respectively, we have induced quotient
maps (gn)yey © [vew Xv — [y Ynvoq: X — Y = proj#% and Q: Ex — Ey as well
as a commutative diagram

i \PO i
0 =X = HNGNXN er HNENXN < o EX

‘IL (gN)nen L (gN)vext l Ql

0—=X —— [Tyen YN&HN»EN Yy < Ey,

where iy, iy, jx and jy are the canonical inclusions, i.e. component-by-component, and ¥4
is the canonical map. As Ex and Ey are Hilbert spaces, there is a linear and continuous
right inverse R: Ey — Ex of Q. We define B := jx (R(C)). Then B is a bounded subset
of [[yenw Xn that spans £,. Assuming that B can be lifted by ¥4, we arrive at a bounded
subset A C [[yay Xy with Wy ((‘]N)NeN (A)) = (gn)nen (W2 (A)) = (gn)yen (Ux (R(C))) = B, a
contradiction, since (gy)yey (A) is a bounded subset of [[yey Y- O
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Theorem 3.3.2. Let E be Hilbert space of infinite dimension and X = projyey ind,en Xy, be
a PLH space. Denoting .£ = (L (E, Xy), Xﬁ*) the following holds:

proj1 Z =0ifand only if (E,X) satisfies (T:) (if and only if X satisfies (P3)o) .

Proof.

Necessity: Assuming that (T,) or equivalently (P3)y does not hold, (3.3.1) yields a bounded
subset B C [[yen Xy With ([B], pg) = ¢, that does not lift with respect to W4-. As the di-
mension of E is not finite, their is a quotient map 7: E — €, = ([B], pp) — [yay Xn- As
T (Bg) = B, T cannot lift with respect to ¥ 5. Hence proj1 Z # 0 by [Wen03, (3.1.4)], since
Yo [Iyew L(E, Xy) — [Inen L (E, Xy) is not surjective.

Sufficiency: As usual, we endow the steps L (E, Xy) of .Z with the associated ultrabornologi-
cal topology to the topology of convergence on all bounded subsets of E, which coincides with
the inductive limit topology L, (E, Xy) = ind,en L (E, Xy,,) =t Ly, N € N, cf. [Wen03, p.86].
Hence the system {W (Bg, By,,) : n € N}, where W (Bg, By,,) = {T € L(E,Xn,): T (Bg) C
By}, is a fundamental system of Banach discs in L, (E, Xy) by the factorization theorem for
all N € N. Thus (P3), in the form (P3), implies that the following condition holds for .Z:

Y 4V B Y q
NeN M>N K>M BeBI(Ly) ReBD(Ly) SeBD (L)

XNT(R)C B+ XN (S),

which is sufficient for the vanishing of proj' .Z by [Wen03, (3.2.14)]. O

3.4 E is a Fréchet-Hilbert space

We prove that the vanishing of proj' . is characterized by condition (T for the pair (E’, X) if
E is a proper Fréchet-Hilbert space. The analogon for a PLS space X and an FS space E in the
successors of the four standard cases can be found in [BD06, (4.1)]. The basic idea of the proof
is similar to that of the Fréchet-Hilbert case in [Vogl1]: Necessity needs a variant of [Vog87,
(3.3)] to guarantee (P3), for X, cf. (3.4.4), and as we need the interpolation theorem (3.2.6) to
prove sufficiency, we need X to be deeply reduced and E to be countably normed, which leads
to the following well-known definitions and a proof by cases, cf. [Vog87, Wen03, BD06]:

Definition and Remark 3.4.1. 1) A Fréchet-Hilbert space E is called countably normed
if there is a strongly reduced projective spectrum (Ey, E;) of Hilbert spaces giving rise
to E such that

dV 4 V EW®W=0=>E (=0 (%

veN u>v k>u xeEy

It is a well-known fact that this is equivalent to the existence of a strongly reduced rep-
resenting projective spectrum (F Vs F;) with injective spectral maps. Thus, we only give
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an outline of the proof: Necessity is obvious. Sufficiency: Let v be chosen according to
(%) and define F| := E,. Then we choose k > u = v + 1 according to () and define
F, = EVE,, endowed with the quotient topology and F % = E}|F,, which is injective by
construction. Proceeding recursively yields the assertion.

A PLH space X is called strict if there is a representing PLH space spectrum (XN, Xﬁ)
such that

V o4 V X¥Xy cXV¥Xg. (k%)
NeN M>N K>M

In complete analogy to (3.4.1) 1) this is equivalent to the existence of a representing
spectrum with surjective linking maps: Necessity is obvious. Sufficiency: For every
N € N we choose M (N) > N according to (x*) and define Yy = X M(N)XM(N) endowed
with the quotient topology. Furthermore, we define Y} | = X%((gil)lyw, obtaining a
PLH spectrum (Y N, Y AA;) yielding the assertion. Of course this characterization holds for
arbitrary projective spectra of locally convex spaces. Furthermore, this implies that strict
projective spectra of locally convex spaces (or vector spaces) 2 satisfy proj' 2~ = 0,
since the surjectivity of the linking maps implies the surjectivity of the canonical map

Proposition 3.4.2. Let X be a PLH space and let E be a Fréchet-Hilbert space such that
(E’, X) satisfies condition (T,). If E is not countably normed, then X is strict.

Proof. Given N € N, we choose M > N according to (7,), as well as n,v € N for every
K > M. As E is not countably normed, we may choose u > v according to the negation of
(3.4.1) 1). Given m > n, we choose k > m,k > puand ¢ > O form > n,u > vand e =1

according to (T,). Again with (3.4.1) i) we choose an x € E, with E} (x) # 0 and E (x) =

As (T;) holds for all x € E, as well by (3.2.1) v), the following holds for all f € Xj:

* |

o || x|
y

el
f
el o, i

Il

(CEORI W Il(Xz)’f

IIfIINn

Bl
= ey [,

Hence the bipolar theorem yields that

XXy = ) XNBum < ) eX¥Brx  X{XY,

meN keN
c>0
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e.g. X is strict. O

Proposition 3.4.3. Let X = proj (XN,XANl) be a PLH space, E a Fréchet-Hilbert space and
L= (L (E,Xy), XZ*) If X is strict, then so is ZL.

Proof. As usual, we endow the steps L (E, Xy) of .Z with the associated bornological topology
to the topology of convergence on all bounded subsets of E, which coincides with the inductive
limit topology L, (E, Xy) = ind, ,en L (E,, Xy,,) = Ly, N € N, cf. [Wen03, p.86]. Hence the
system {W (B,, By,,) : n,v € N}, where W (B,,By,,) = {T € L(E,,Xy,): T (B,) C By,},is a
fundamental system of Banach discs in Ly by the factorization theorem for all N € N. Given
N € N we choose M > N such that X)) X), C X¥Xg for all K > M. Then the factorization
theorem yields for any m € N an integer k > m and a constant ¢ > 0 such that X} By, C
cX¥ By, hence XN (W (B,, Bu)) € XX (W (B,,cBgy)) for all v € N. Thus XV (Ly) C
XN*(Lg), i.e. & is strict. O

The following result is a variant of a construction due to Vogt, cf. proof of [Vog87, (3.3)],
which will allow us to forgo condition (P}), for X in the splitting result (3.4.5).

Proposition 3.4.4. Let E = proj (EV, E;) be a non-normable Fréchet-Hilbert space and X =

Projyey ind,en Xy, a PLH space such that (E’, X) satisfies condition (T'). Then X satisfies the
condition (P})o.

Proof. To begin with, we prove the following:

YV 3V Jo<|Ex| <d|Ex .
veN u>v 6>0 xeE v K

For every v € N there is a ¢ > v such that the seminorms |E§o (-)||y and ||E‘@.‘o (-)”ﬂ are not
equivalent on E, since E is not normable. Furthermore, for every ¢ > O there is an x € E such
that 0 ||Eff<, (x)||# > | E?, (x)| ,» since E} is continuous. We may assume additionally | EY, (x)”v >
0, since presuming that | EY, (x)||v > (0 implies 6 ||E‘o‘0 (x)||# < | EY. (x)||v for all x € E, we arrive
at the openness of E}, since the restricted projection E’, has dense range, a contradiction to
the assumption.o

Since E is a Fréchet-Hilbert space, we may write condition (7) for (E’, X) in the following
form:

v 4 v 4V 4V
NeN M=N K>M neN mzn kxm feX),
VEN uzv k2p "\ cp

co>0

ey #], I Coll, < oIt

EZ, (%)

)

Now let N € N. We choose M > N according to (T'), as well as n,v € N for given K > M.
Then we choose y > v according to (x). Given m > n,& > 0, we choose k > m,k > u,co > 0

) ol s
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according to (7)) and x € E according to (%) for ¢ := % Thus, defining ¢ = —Ci)||zlszg;ﬁ”K’ we
obtain for all f € X, H
: - [lEA
t t
e coe ESA],

smefaam+wmﬁ3fﬁmgm—

< &llflly, +c||(x2) 7|,
which is (P}), for X. O

The following theorem gives an answer to a variation of [BD06, problem (9.9)]:

Theorem 3.4.5. Let X = projyey induen Xy, be a deeply reduced PLH space and E = proj .
E, a non-normable Fréchet-Hilbert space. Then the following are equivalent:

i) proj' £ =0.
ii) (E’, X) satisfies (T,).

iii) (E’, X) satisfies (T).

Proof. According to (3.1.5) the LF spectrum 7 := (HN, Hﬁ“) = (E@,,X,’V, idg &, (XIAV’H)Z) is

pre-dual to .Z. Let us check quickly that the operators idg ®, (XN )t are injective: First of

N+1
all, as X3, has dense range by (2.2.10) ii), its transposed (X;:,’ H)t is injective. Furthermore,
since the spaces E, X}, and X}, are Fréchet-Hilbert spaces, i.e. complete with approximation
property by [Ko6t79, §43, 1. (3)], the respective projective tensor products coincide with the
respective spaces of bilinear mappings by [Kot79, §43, 2. (12)]. Thus the unique extension
of idg ®, (XII\\/’ . l)t to the completion is injective. Hence with (3.1.1) the vanishing of proj' .Z is
equivalent to the weak acyclicity of .77.

Necessity of (T'): As in (3.1.4), 57 has property (wQ), which implies by exchange of quanti-
fiers the following condition:

v 3 v 3 v A  HEWU)NWccHE (V).
NeN M>N K>M Uey(Hy) Vey(Hy) WeZ(Hg)
c>0

Since H; = proj,y E/®,X., for every L € N by [Ko6t79, §41, 6. (3)] and 7r(y® g; EZ’XL,) =
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Il ||g||21 forall L,le Nandye€ E;, g € XLI by [DF93, 3.2 (3)], this implies

v 4 VvV 3 VvV 3TV
NeN M=N K>M neN mzn kzm feX),
c>0 xeE

It 7 (E%, (0 ® f; Ey Xp,) < 1 and 7 (E{;, e (x) (:E. X}(,k) <1,
t
then n(Eg We(XY) (H; EmXMm) <c

which is condition (T¢) for (E’, X), hence (T') holds for (E’, X) by (3.2.1) ii) b).

(T) implies (T,): Since E is not normable, X satisfies condition (P3)y by (3.4.4). If E’ is an
LH space the second case in the proof of (3.2.2) is not possible, hence we have (T) for (E’, X)
with (3.2.2).

Sufficiency: If E is not countably normed, then X is strict by (3.4.2), hence so is .Z with
(3.4.3), which implies proj1 % = 0by (3.4.1) ii). Thus we may assume by (3.4.1) that E is
the projective limit of a (strongly reduced) spectrum (EV, E;) of Hilbert spaces with injective
spectral maps. First of all, in complete analogy to the proof of necessity, just backwards,
condition (7,) in the form (3.2.1) v), i.e.

Yy 4 Vv a3V 4 V
NeN M>N K>M neN mzn k>m feX’
veN u=v k>u E

e>0 >0 *€

v
E/x

) 7,0 ey o[ e

corresponds exactly to the norm inequality, that is the equivalent of condition (Q), for JZ:

v 4 Vv = v d HSW)NWcHE W),
NeN M>N K>M UeZ(Hy) VeZy(Hy) WeZy(Hg)

though only for elementary tensors x® f € E,®X), . To deduce from that the norm inequality
for all elements of the tensor product E,&,X, v We need Vogt's interpolation result (3.2.6).
This is where we need E to be countably normed and X to be deeply reduced: We define

Fo = Xy,.F| = X}, and F := (X;Vk, X]’:g)[(-)Hju ), as well as Gy := E,,G, := E, and
G = (EK, E; (-)||ﬂ) and @ = &, = c. Since X is deeply reduced in rows, F = X, is a
subspace of Fjy = X}, and since X is deeply reduced in columns, F'is a subspace of F = X ,.

Furthermore, the deep reducedness of X implies that F is a pre-Hilbert space and F as well
as F are injectively and continuously embedded into X}, hence we have a Hilbert couple
(Fy, Fy) with F c Fy N F,. At length, since E is countably normed, (Gy, G) is a Hilbert
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3 Splitting theory

couple (which is even ordered) and G € Gy N G;. Hence (3.2.6) yields that the desired norm
inequality holds for all u € E, ®, X}, ,. Since the inclusions E,&®,X},, < Z are continuous for

Z¢e {Eﬂ®ﬂXl’w’m, E,@: X, ,» EK®,TX;(J(}, the desired inequality holds for all u € E,®,X], , which

yields (Q), for .7, which hence is acyclic by (3.1.2). Since acyclicity implies weak acyclicity,
(3.1.1) gives the conclusion. O

Together with (2.3.6) ii) the previous theorem (3.4.5) and (3.3.2) yield the following split-
ting result that generalizes Domariski’s and Mastyto’s splitting result for Fréchet-Hilbert spa-
ces [DMO7, (4.2)]:

Corollary 3.4.6. Let E = proj (EV, E;) be a Fréchet-Hilbert space and X = proj (XN,X%)
be a deeply reduced PLH space with proj' X = 0. If EXtiH (E,,Xy) = 0 for all v,N €
N, then EXtII,LH (E,X) = 0 if and only if the pair (E’, X) has property (T,). Furthermore,
Extf 4 (E,X) = 0forall k > 2.

Our proof of sufficiency of (T,) for splitting in (3.4.5) depends heavily on X being deeply
reduced, as otherwise we can not interpolate. Although general necessity statements are not
possible, we can show the following:

Remark 3.4.7. If E is a countably normed Fréchet-Hilbert space and X is a PLH space such
that (E’, X) satisfies (T,), then either X is deeply reduced in columns or E is a Hilbert space.
Note that in the latter case proj' .2 = 0 by (3.3.2):
LetK>M>N,k>m>n,k>u>v,e>0andc > 0 be given by (7,) and its quantifiers.
If X is not deeply reduced in columns, there is an f € X}, such that H(Xﬁ)t f H;m does not

vanish but ”(Xg)t f H;k does. Then (T,) yields, that for all u > v and for all x € E we have

CL |[x]l,, hence E is a Hilbert space.
lCany's

M,m

Il <

3.5 E is an LH space

If E is a proper LH space, the situation is more complex than in the Fréchet-Hilbert case: First
of all, as we want to use methods for proj' of spectra of separated LB spaces, we have to con-
sider the spectrum % := (L (En,Xy), EN o XI) *) instead of .. We start by establishing the

connection between proj' . and proj' %~ with the help of Grothendieck’s spectral sequences.
A similar result in the PLS context has been proven by Bonet and Domariski in [BDO0S, (3.4)]
with functional analytic methods and without the assumption of local splitting.

Proposition 3.5.1. Let X = proj (XN, Xf‘vl) be a PLH space and E = ind (E,, E}) an LH space.
Considering the induced projective spectra of operator spaces £ = (L (E,Xy), X%*), Ly =
(L(E,.Xy). E}.).N € Nand % = (L(Ey.Xy), EN o X)), we obtain

i) If proj' # =0, then proj' £ = 0.
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3 Splitting theory

ii) If proj' Ly = 0 for all N € N, then proj' # = proj' Z.

Proof. Since % is the diagonal spectrum of the double tower H = (L (E,,XN), EY, o XAN/F),
hence equivalent to A, since for M > N, u=>v,L:=max{M,u}, K := min{N, v} the diagram

EL oxK®
L(E., X;) —=L(Ek, Xk)

L(E,. XM)EFXN;*L (Ey, Xn)

commutes, the vector spaces proj* J# and proj* .# are isomorphic for each k > 0 by [Wen03,
(4.1.7)]. The application of Grothendieck’s spectral sequence, “proj' of a double tower”, see
e.g. [Wei94, (5.8.7)], yields an exact sequence of vector spaces

0 — proj' proj £y — proj' # —s projproj' £, — 0,

which yields the assertions since proj %y = .Z. O

Another problem is, that, in general, we can not expect condition (7) to characterize the
vanishing of proj' J#". As the following, rather trivial, example shows, even very nice spaces
E can exhibit very bad behavior regarding characterizing conditions:

Example 3.5.2. Let E = ¢ = @VGN K” and X = proj (XN,XAA;) a Fréchet-Hilbert space with

proj1 (XN,XAA;) = 0 that is not quasinormable, cf. [MV97, (27.33)]. Since, as a direct sum of
finite dimensional Hilbert spaces, E is a projective object in the category of LH spaces (even
in LCS), we have Ext{,; (E,Xy) = 0,N € N, hence 0 = Extp,; (E, X) = proj' & = proj' #
by (2.3.6) ii) and (3.5.1). However, the pair (E’, X) can not have property (7), since X does
not have property (P})o by [MV97, (26.14)].

Of course, if E contains a complemented copy of £,, then the vanishing of proj' .# implies
(P3)o for X:

Remark 3.5.3. If X = proj &~ = proj (XN,XA]\,’,) is a PLH space and E = ind,ey E, is an LH
space that contains a complemented copy of £, such that proj' . = 0, then X has (P3)o:

We use (3.3.1) to prove the claim: Without loss of generality we may assume E; = ¢, with
continuous projection P: E — E;. Let B be a bounded subset of [ ] yey Xy that spans £, = Ej.
Then P is a linear and continuous operator from E to ([B], pg) — [y Xn, hence there is a
linear and continuous operator R: E —> []yey Xy With W4 o R = P, as proj' .Z = 0. Thus
R (By,) is alifting of B with respect to ¥ 5 and (3.3.1) yields the conclusion.

In general, we can neither renounce the acyclicity of E nor condition (P5)y of X for the
characterization. Even characterizing condition (P}), for special spaces E, as the dual §” of
the space s of rapidly decreasing sequences, that does not contain a complemented copy of ¢5,
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but is rather nice in any other sense, as nuclearity, separability etc., seems to be out of reach.
However, we are able to prove the following analogon of the characterization of the vanishing
of proj' . in the PLS setting [BDO0S, (3.1)]:

Theorem 3.5.4. Let E = (E,, E)) an LH space and X = proj (XN, XAN4) a deeply reduced PLH
space. If E is acyclic and X has (P})o, then proj' # vanishes if and only if the condition
(T,) holds for the pair (E’, X) if and only if the condition (T) holds for the pair (E’, X). Here
A = (L(Ey,Xy), EN o X}"), ¢f. (35.1).
Proof. The proof is very similar to that of (3.4.5):

According to (3.1.5), = (Hy, H)"') := (EN®,,X' ,ENTI®, (ngﬁ)’) is an LF spectrum
with injective linking maps that is pre-dual to .#". Hence with (3.1.1) the vanishing of proj' .#

is equivalent to the weak acyclicity of 7.
Necessity of (T'): In complete analogy to the proof of necessity in (3.4.5) we have that (E’, X)

has property (T):
Since Hy = proj,; Ex®: X}, ,» by [K6t79, §41, 6. (3)], exchanging quantifiers in condition
(wQ) implies the following condition

v 4 Vv 13 VvV 4V

NeN M=N K>M neN mzn kxzm feX),
c>0 x€Eyn

t
If 7 (x® fiEy.Xj,) < 1 and (Eg ()@ (X¥) () EK,X;Q,{) <1,
then 7 (EI’? x)® (XA]\,’,)t (f); Eum, X[,Wm) <c,

which is condition (7¢) for (E’, X), which is equivalent to (T') by (3.2.1) i) b). As E is acyclic,
E’ satisfies (P5)y by (3.1.4).

(T) implies (T,): is (3.2.2).

Sufficiency of (T,): Exactly as in the proof of sufficiency of (3.4.5) we see that condition (7,)
in the form (3.2.1) v) corresponds exactly to the norm inequality, that correlates to condition
(Q), for o7, though only for elementary tensors x ® f € EV®X1'V,,€. The same application of
the interpolation result (3.2.6) yields that this inequality holds for all elements of the tensor
product E, ®; X}, and again the continuity of the respective inclusions yields the inequality
for all u € EV®ﬂX1’V’k. Hence (Q), holds for .7#, which implies (M) by (3.1.2), hence J7 is
acyclic. Thus proj' .#" = 0 by (3.1.1). O

Together with (2.3.6) ii) the previous theorem (3.5.4) and (3.5.1) yield the following split-
ting result:
Corollary 3.5.5. Let E = ind (E,, EY)) be an LH space and X = proj (X Ns XAA;) a deeply reduced
PLH space with proj1 X = 0 and (P3)o such that ExtiH (E,Xy) =0 forall N € N. Then the
following characterizations hold:
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i) If X has at least one step Xy, with infinite dimension, then ExtllgLH (E,X) =0 if and only
if the pair (E’, X) has property (T,). Furthermore, Ext’f)LH (E,X)=0forallk > 2.

ii) If all Xy are of finite dimension and E is acyclic, then ExtllaLH (E,X) = 0 if and only if
the pair (E’, X) has property (T,) and in addition Ext’{,LH (E,X)=0forallk > 2.

Proof. First of all the vanishing of the local Ext groups Ext{ (E, Xy),N € N, is equivalent
to the vanishing of the dual Ext groups ExtllzH (XI’\,, E’) ,N € N, by (2.2.6), which in turn is
equivalent to the vanishing of proj' 2y by (2.3.6), where .Z}, = (L (X;V,E;) , (E‘V‘)'*) Us-
ing a simple duality argument, this is equivalent to the vanishing of proj' %y, where %y =
(L(E,,Xy), E},). Thus the vanishing of the local Ext groups is exactly the requirement we
need for (3.5.1), hence (3.5.4) yields the assertion, as the vanishing of ExtéH (XI’VO, E’) ,NeN,
yields the acyclicity of E with (3.4.6) for (3.5.5) 1). O

As in section 3.4, the proof of sufficiency of (7,) for splitting in (3.5.4) depends heavily
on X being deeply reduced, as otherwise we can not interpolate. Although general necessity
statements are not possible, the following holds in complete analogy to (3.4.7):

Remark 3.5.6. If E is an LH space and X is a PLH space such that (E’, X) satisfies (), then
either X is deeply reduced in rows or E is a strict LH space.
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4 The Hilbert tensor product

Locally convex tensor products were introduced and studied extensively by A. Grothendieck
[Gro55] in the fifties of the past century. One of the many reasons for the prominence of
this area is the tensor product representation of many spaces of vector valued functions as
the space of vector valued distributions, cf. [Sch58], and the spaces of holomorphic, real
analytic or smooth functions, cf. [Dom11], which connects the parameter dependence problem
for linear partial differential operators with constant coefficients to the problem under which
conditions the tensorized operator remains surjective when extended to the completed tensor
product. In this context the vanishing of proj' for tensorized spectra of PLS and PLN (or
FN) spaces has been studied by Domarski and Bonet and a complete characterization with a
large variety of applications is given in [BD06, BD0O7, BD08, Dom10, Dom11]. Due to its
rather complex structure, the space of real analytic functions received particular interest i.a.
by Bonet, Domariski, Frerick and Vogt, cf. [Vog75, Vog83a, BD98, DV00a, BDO1, BDVO02,
DFVO03, Vog04, Dom10].

In order to implement such a theory for PLH spaces, we can not limit ourselves to the & or
7 tensor product as even £,®,¢, is not reflexive for a € {&, n}, cf. [MV97, (16.27)]. Hence,
contrary to the PLS situation, we can not expect the local tensor products Exy®, Xy, @ € {&, 1}
for two PLH spaces E = proj (ET, EST) and X = proj (X N> XAA,’I) to be ultrabornological, reflexive
or even an LH space. For positive results in this direction the premises are very restrictive, cf.
[Hol80]. Hence the results for the vanishing of proj' for projective spectra of separated LB
spaces are not applicable in the context of neither the & nor the 7 tensor product. Thus, our
first aim is to establish a suitable tensor topology 7 on the tensor product of two hilbertizable
lcs E and F —i.e. Ics with fundamental systems of Hilbert seminorms (see [MV97, p. 344]) —
creating a hilbertizable Ics E ®, F, which is in a certain sense compatible with the PLH space
structure, see (4.2.14), as the € and & topologies are compatible with the PLS space structure,
cf. [Pis10, p. 158].

In contrast to the standard method to define a tensor topology for locally convex spaces,
cf. [DF93, chap. 35], we will define in section 4.1 a Hilbert tensor seminorm directly on the
tensor products of the local seminormed spaces and prove that it is finitely generated and both
injective and projective. In section 4.2 we define the corresponding tensor topology 7 and
prove that it is compatible with the LH space structure to establish the announced compatibility
with the PLH space structure, which will in fact involve the positive solution of Grothendieck’s
probléme des topologies for the tensor topology 7. Moreover, we will prove a surjectivity
criterion for tensorized operators and the tensor topology 7. Based on the results of section
4.2 we will investigate the vanishing of proj' for tensorized spectra of PLH spaces in section
4.3. To begin with we establish the traditional connection between surjectivity of tensorized
operators and the vanishing of proj' for tensorized spectra. Then we prove that the vanishing
of proj' is passed on from PLH spaces to the o tensor product with Hilbert spaces. Finally we
characterize the vanishing of proj' for the tensorized spectrum of both a nuclear Fréchet space
and a PLN space E and a PLH space X under mild assumptions with our condition (7), thus
proving Bonet and Domariski’s result [BD06, BD08, Dom10] in the category of PLH spaces
and generalizing Varol’s result [Var02, (4.2.2)]. Since we only have interpolation in the sense
of (3.2.6) for nuclear operators we can not forgo nuclearity.
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4 The Hilbert tensor product

4.1 Semi-unitary spaces

Given two Banach spaces E and F, there is a variety of reasonable tensor norms on the tensor
product E ® F (see e.g. [DF93]), the € norm being the smallest, the 7 norm the largest of
those norms. This variety creates the problem of finding the “right” tensor norm to deal with
for specific applications. As mentioned in the introduction of this chapter, we are interested
in a semi-scalar product on the tensor product of semi-unitary spaces, i.e. spaces carrying
semi-scalar products.

Given two semi-unitary spaces E and F, the problem of finding the “right” semi-scalar
product on E ® F is much simpler, as a semi-scalar product on £ ® F, which is induced by
the semi-scalar products on E and F, is uniquely determined. Concerning a scalar product on
the tensor product of two Hilbert spaces, this is a well-known fact (see e.g. [Mur90, Theorem
(6.3.1)]); we just need some minor adaptions to prove the analogon for semi-unitary spaces,
compare [Bou87, TVS V.25 §3 No. 1 & No. 2]:

Proposition 4.1.1. Given semi-unitary spaces E and F, there is a unique semi-scalar product
(*s)o on E® F, such that

(X1 ®@Yy1, X2 ®@Yy2); = (X1, X2)E V1, Y2)F (%)

holds for all x,,x, € E and y,,y, € F.

Proof. The proof of the existence and uniqueness of such a sesqui-linear form (-, -), is the
same as in [Mur90, Theorem (6.3.1)]:

Given two elements x € E and y € F, we denote by 7, and 7, the induced conjugate linear
forms 7, (x') == (x,x")r (x" € E) and 7, (/) :=(y,y")r () € F) on E and F respectively. Then
there is a unique linear map M from E ® F to the space of conjugate linear forms on £ ® F
that realizes the tensor product of the induced conjugate linear forms on elementary tensors,
e M(x®y) =71, ®7,forall x € E and y € F. Then it is easy to check that

(e (E®F)Y — K, (2,7) = M(2) ()

is a sesqui-linear form on E ® F satisfying (4.1.1) (%). The uniqueness is obvious.

It remains to show that (-, -),- is positive semi-definite. Here we have to adjust Murphy’s proof:
Given an element z = 3}/, x;®y; € E®F, we have to show that(z, z); = X ;- {Xi, X )EVi» Y r
> (. Considering the subspaces E, := span{xy,..., x,} and F, := span{yy,...,y,} of E respec-
tively F, it is sufficient to calculate the above sum in the finite dimensional semi-unitary spaces
E. and F,. Now we choose a basis (e, ...,e,) of F, such that ||ek||% = |lellr (1 <k <m)and
(er,epyr = 0if k # [. Then there are x/,...,x;, € E_, such that z = Iy X, ® ¢; and we obtain:

2 2
el = 0.

4
Xk

(@D = ) (5o Xlen e = )
k=1
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We use (4.1.1) to define the tensor seminorm o for semi-unitary spaces:

Definition and Remark 4.1.2. i) For two semi-unitary spaces E and F we define the ten-

sor seminorm o as 0 (z; E, F) = /{(z,2), for z € E® F. If no confusion concerning the
spaces E and F is possible, we will just write o (z). Furthermore, we denote by E ®, F
the o tensor product of E and F equipped with this seminorm and by E®, F, as usual,
its Hausdorff completion, also called the completed o tensor product.

The proof of (4.1.1) implies that (-, -), is an inner product if £ and F are pre-Hilbert
spaces and that the Hausdorfl space associated to E ®, F is the o tensor product of the
Hausdorff spaces associated to E respectively F if E and F are semi-unitary spaces.

By construction the transposition map x ® y — y ® x is an isometric isomorphism from
E®, F to F ®, E; 1.e. o is symmetric for semi-unitary spaces E and F.

In the theory of C*-algebras the so-called Hilbert tensor product is introduced via a
universal property involving weak Hilbert-Schmidt mappings (see e.g. [KR83, (2.6)]).
As we won’t need the tensor product of more than two spaces, we are content with the
above formulation.

In the following, we will establish the natural realization of E®, F as the space of Hilbert-
Schmidt operators S, (E’, F) from E’ to F if E and F are Hilbert spaces, and prove the metric
mapping property of o. For the general theory of Hilbert-Schmidt operators, we refer to
[MV97, chap. 11, §16].

Remark 4.1.3. i) Let £ and F be Hilbert spaces.

a) The space ¥ (E’, F) of weak-*-continuous finite rank operators from E’ to F to-
gether with ®: EX F — F (E',F),(x,y) = x®y: E' — F,u = u(x)yisa
realization of E ® F by [Jar81, (15.3), 6.]. Thus, if we can show that (4.1.1) (%)
holds for the Hilbert-Schmidt scalar product {z'", z®),, of two rank 1 operators
2V = XDy and z? = xP®y?, we have proven that the space S, (E’, F) of
Hilbert-Schmidt operators together with ® is a realization of E®,F. The scalar
product in question is given by the trace of the nuclear operator (g(z))* oz €
N (E',E):

<§(1)’§(2)>v2 = trp ((5(2))* o g(l)) — Z <((§(2))* o g(l)) u, ut>E,

el

for any orthonormal basis (u,),c; of E’. Using the antilinear Riesz identification
of E and E’ and by choosing a suitable basis (u,),; of E’, we arrive at (4.1.1)
(%). Whenever we want to treat elements z of E®, F as operators, we will write
z € E®,F. This yields a useful representation of the elements of EQ, F:
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b) Given an element z of the completed o tensor product of two Hilbert spaces E and
F, there are orthonormal systems (i) and (Yi)ey in E” and F respectively, and
a decreasing {,-series ()i With positive entries such that

[e9)

z(u) = Z silu, upypy, forallu € E'.
k=1

Again the antilinear Riesz identification of E and E’ yields an orthonormal system
(X )rery I E corresponding to (uy )iy such that

(o)

zZ= Zskxk@)yk

k=1

in E®,F. The norm of z is then given by o (z; E, F) = [|(si)rentlly, = A/ Zkent St
The properties of the Hilbert tensor product of maps can be proven in the same way as for the
& product:

i) Given maps S € L(E,G) and T € L(F, H) between semi-unitary spaces E, F,G and H,
we have the usual linear map S ®7 from E®F to GRH. Using the notation S ®, T for the
map S ®7T: EQ, F — G®, H, we will show the metric mapping property of o, i.e. that
IS ®, T < |IS||||7|] holds. As linear and continuous maps between seminormed spaces
factor uniquely and isometrically over the associated normed spaces, we can restrict
ourselves to pre-Hilbert spaces E, F, G and H. We consider the continuous extensions
to the (HausdorfF) completions S € L (E G) and T € L (F , I:I) Using the realization of
the completed o tensor product from above, we obtain:

(§®UT)z:To§OS~[forallz€E®UF, (%)

and thus ||S ®, T|| = ||§ Q0 T” < ||§|| ||T|| = |IS||||T|. Denoting as usual the continuous
extension of § ®, T to E®,F by S&®,T, we obtain that S®,T is injective whenever S
and T are injective and E and F are Hilbert spaces as (%) extends to the completion.

Having established o as a Hilbert seminorm on the tensor product of two semi-unitary
spaces that is a reasonable tensor norm for pre-Hilbert spaces, we will prove in the rest of
this section that the o tensor product respects isometric inclusions and metric surjections for
semi-unitary spaces, and the completed o tensor product does the same for Hilbert spaces.
The preservation of isometric inclusions won’t be problematic, whereas concerning the metric
surjections, we need the following lemma:

Lemma 4.1.4. Let g: F — G be a metric surjection with closed kernel between semi-unitary
spaces. Furthermore, let G be of finite dimension. Then for every € > O there is a linear and
continuous right inverse R, of g with ||R.|| < 1 + &.
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Proof. Let1 > & > 0. There is a finite dimensional subspace L, of F such that g (Ly) = G. As
q (@F) = {0}, we may assume that L, equipped with the relative topology of F, is Hausdorff.
As Ly and G are Hausdorff spaces of finite dimension, the restriction ¢|;,: Ly — G 1is open,
which implies that g (U,,) is open as well, where U, is the relative open unit ball for any

subspace L of F. As g(Ur) D Ug D (1 — &) B and q(@F) = {0}, the system

{q (Upr) : Lis a finite dimensional subspace of F' with Ly C L and @F NL= {O}}

is an open cover of the compact set (1 — €) Bg. Thus we obtain a finite dimensional separated
subspace L of F such that ¢ (U;) D (1 — ¢) Bg. Endowing G with the norm topology of the
gauge functional p of the set ¢ (U.), we obtain a Hilbert space (G, p) that is isometrically
isomorphic to a closed subspace H of the Hilbert space L. With the orthogonal projection
from L to H we have a linear and continuous right inverse R, of ¢g|,: L — G with norm 1
with respect to G equipped with p. We compute

1 1 1
IR,y = —— sup [IRLWIl, < sup IR, Wy < 1 sup IR, Wl = 1%

I = &yeq-e8 ~ Eyeq(Up) — €yeB, 1
Defining R, as the composition of the inclusion of L into F with R, completes the proof. O

The following example shows that the previous lemma (4.1.4) is sharp:

Example 4.1.5. There is a pre-Hilbert space F and a metric surjection g: F — K such that
there is no linear and continuous right inverse R of ¢ with ||R|| = 1. In particular, there is no
projection from F to the kernel of ¢ with norm 1.

Proof. Let F be the space of continuous (real or complex valued) functions on the interval
[-1, 1] endowed with the L,-norm and ¢: F — K, f — f[ o1l fdA. Then F is a pre-Hilbert
space and ¢ is continuous, as g (f) = {f, x[0.1)L, for all f € F. g is even a metric surjection,
as g (Ur) = Ux holds. Assuming there is a linear and continuous right inverse R of g with
|IR|]| = 1, we obtain a function fy € F with R (1) = uf, for all u € K. Furthermore, we have

1/2
I=(goR)(1)= foddand 1 = |IR (DI, = (f |f0|2d/1) :
[

[0,1] -1,1]

Thus the Cauchy-Schwarz inequality holds for f; and y[o1; with equality, which implies that
the equivalence classes of f; and y|o; are linearly dependent in L, ([—1, 1]). This is not pos-
sible as there is no continuous function on the interval [—1, 1] that differs from y/;; only on a
zero set. O

Now we are ready to prove:
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Proposition 4.1.6. i) The o tensor product respects metric inclusions and metric surjec-
tions for semi-unitary spaces.

ii) The completed o tensor product respects metric inclusions and metric surjections for
Hilbert spaces.

Proof. 1) Let E be a semi-unitary space and
0—H LN F-5G6G—0

a short algebraically exact sequence of semi-unitary spaces, where i is a metric inclusion
and g a metric surjection.

As the o tensor product is symmetric, cf. (4.1.2) iii), it is sufficient to prove, that idg ® i
is a metric inclusion and idg ®,¢ is a metric surjection.

We start with idg ®,i:
Ifz=237_,x®y: € E®, H is given, we can compute

T@GEHY = )Y (X Gy = ) D (o e (0051 0)e

k=1 =1 k=1 =1
= o ((idg ®,i) (2) ; E, F)* .

Now we will first use (4.1.4) to show that idg ®,¢ is a metric surjection whenever the
kernel H of g is closed in F. Let H be closed. We need to prove that idz ®,¢ (Ugs, ) and
Uge,c have the same gauge functional. The metric mapping property of o, cf. (4.1.3)
i1), yields the inclusion

idg ®,q (Uge,r) C Ugs, 6,

from which we obtain a corresponding inequality of the gauge functionals. To prove the
other inequality let E, and G, be finite dimensional subspaces of E and G respectively.
We define F := ¢"' (G}),q1 = qlr,, H, = kerq; = HN F; and i; := i|g,. Then

0— H -5 F 56 —0

is a topologically exact sequence of semi-unitary spaces, i; is a metric inclusion and ¢,
is a metric surjection. Furthermore, since H is closed in F, G is Hausdorft, hence G is
a finite dimensional Hilbert space and H, is closed in F;. Thus (4.1.4) yields for every
& > 0 a linear and continuous right inverse R, of g; with ||R,|| < 1 + &, and we obtain:

Ug,e,6, = ((idg, ®-q1) o (idg, ®:R;)) (Uk,e,6,) C (1 + &) (idg, ®-q1) (Uk,e,F,) -
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Since € > 0 is arbitrary, we have

. " E®,G
Urie,i € [ |(1+8) (ide, ®41) (Usie,r,) € (e @rq) (Ure,r) -

>0

As we have proven in the first part of (4.1.6) 1) that the o~ tensor product respects metric
inclusions, we obtain:

Ugs,c = U {Uk,6,G1: E| C E,G| C G finite dimensional subspaces}

E®,G

C (idg ®rq) (Uge,r)

which yields the assertion for closed subspaces.

If H is not closed, we consider the exact sequence
O—)ITI—i>F—q>F/ﬁ—>O,

where i is the metric inclusion of the closure of H into F and g is the corresponding
quotient map. Then £/77 is a version of the Hausdorff space associated to G, hence the
map ¢: G — F/g, g (x) » g (x) is a metric surjection with linear and continuous right
inverse with norm 1. Considering the following commutative diagram

idg ®q

E®,F E®,G
idg ®gql %
E®, F|g ;

we have forz € E®, F:

o ((idg ®:4) (2): E. G) = o (((idg ®,¢) © (idr ®,9)) (2): E. F/ )
o ((d:®,9) () E. F/)

inf{o(z; E,F) : z—7 € ker (idg ®,9)}
inf{o(z; E,F) : z—7 € ker (iIdg ®,9)} ,

since idg ®,¢ has a linear and continuous right inverse with norm 1, idg ®,¢ is a metric
surjection, as we have proven in the first part, and E ®, H is dense in E ®, H. Thus
1dg ®,¢q 1s a quotient map and the proof of 1) is complete.

is shown analogously to 1):

The preservation of metric inclusions is proven with the representation of the elements
of EQ,H in (4.1.3) i) b). The proof of the preservation of metric surjections of the
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4 The Hilbert tensor product

completed o tensor product becomes much easier since we can work with the linear and
continuous right inverse mappings with norm 1 of the quotient maps instead of using
(4.1.4) as we are dealing with closed subspaces only.

O

Remark 4.1.7. 1) o is finitely generated and co-finitely generated, i.e.:

iii)

E ®- F=E®,F=E com F for all Hilbert spaces E and F,

where

o (zE,F) =
inf{o(z;G,H) : G C E,H C F finite dimensional subspaces with z € G ® H}

and
o (zE,F) = sup {0’ (z; E/q, F/H) : G C E, H C Fco-finite dimensional subspaces}
forallze EQF.

Harksen has shown analogous results for finitely generated tensor norms « on the cat-
egory of normed spaces in [Har82, (1.16) & (1.19)]. His proof involves the theory
of the dual tensor norm o’ and the (to @) associated co-finitely generated tensor norm
a. Using the concept of tensorized seminorms (see [Har82, p. 357]) and some auxil-
iary lemmata ([Har82, (2.4) & (2.5)]) about quotient seminorms and metric surjections
between seminormed spaces, he is able to prove the analogon of (4.1.6) 1) for metric sur-
jections between seminormed spaces in [Har82, (2.6)]. A sorrow analysis of his proofs
shows that they are valid for the o tensor product as well. However, we have chosen to
give direct proofs.

As Varol has shown in [Var02, Var07], it is well possible to approach problems concern-
ing tensor norms in a homological manner. Indeed, we could endow the categories of
semi-unitary spaces, pre-Hilbert spaces and Hilbert spaces with natural exact structures
and investigate the preservation properties under consideration in (4.1.6) in context of
some kind of metric exactness of the tensor product functors idz ®,- and idg &, on the
respective categories. Since chapter 4.1 is more a means to an end for a part of this the-
sis to establish the tensor topology 7, on the category of PLH spaces, we have chosen
to provide the needed statements in a conventional functional analytic way.

4.2 Hilbertizable locally convex spaces

Given two hilbertizable locally convex spaces E and F' with corresponding fundamental sys-
tems of Hilbert seminorms # and R respectively, we endow E ® F with the locally convex
topology 7, induced by the directed system of Hilbert seminorms (p ®. r),, yepxg> Where
p®,r(-):=0c(;(E,p),(F,r)), obtaining the hilbertizable locally convex space E ®, F. It is
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4 The Hilbert tensor product

easy to see that this construction is independent of the choice of the fundamental systems of
seminorms. As usual, we denote the Hausdorff completion of E ®, F with E®, F.

A very similar construction of the extension of a finitely generated tensor norm « for normed
spaces to a tensor topology 7, on the tensor product of two locally convex spaces was intro-
duced by Harksen in his dissertation in 1979 ([Har79], see also [Har82] and [DF93, chap. 35]).
As he was dealing with tensor norms for normed spaces only, he needs the concept of fen-
sorized seminorms (see [Har82, p. 357]), which involves dealing with the kernels of the
seminorms. We can avoid this onerosity as we managed to define o directly for the tensor
product of semi-unitary spaces in (4.1.2).

Given linear and continuous maps S € L(E,G) and T € L (F, H) between hilbertizable
locally convex spaces E and G respectively F' and H, we have the linearisation § ®, T: E ®,
F — G Q®, H of S X T, which is easily seen to be continuous, and denote its extension to the
completion by S&®,T. We expand the notation of (4.1.2) ii) and will speak of the (completed)
o tensor product on the category of hilbertizable Ics. Now we show that S®,T is injective
whenever E, F, G, and H are complete and S and 7T are injective:

Proposition 4.2.1. Let E, F,G and H be complete hilbertizable Ics, S € L(E,G) and T €
L (F, H) injective operators. Then S®,T is injective.

Proof. Let (plz)lelz be a corresponding fundamental system of seminorms and (Z,,Z}), ., be
the corresponding projective spectra of local Hilbert spaces for Z € {E, F,G, H}. As the &-
product respects reduced projective limits [K6t79, §44. 5. (5)] and the projective limit functor

is left exact by [Wen03, (3.1.3)], we have the following commutative diagram:

D~ ~ S&T .~ D~
projE, Q. F,, — EQ, F — GQ,H projG,,®,H,,
(Lg,LF) (tGtn)

proj(aE,lF)j lproj(nc,l,,)
proj E, eF,, —— EsF —'~ GeH projG,.eH,), ,
(LELF) (tGotH)

where i, ,, and i, are the canonical (injective) inclusions of the Hilbert tensor product into
the e-product for ¢z € I;,Z € {E, F, G, H}. Then the injectivity of SeT implies the injectivity
of S®,T. O

Before we turn our attention to the completed o tensor product of two PLH spaces, we
expand (4.1.6) to the category of hilbertizable Ics:

Corollary 4.2.2.

i) a) The o tensor product respects topological subspaces of hilbertizable Ics.

b) The completed o tensor product respects closed topological subspaces in the cat-
egory of complete hilbertizable Ics.

ii) The o tensor product respects open mappings for hilbertizable Ics.
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4 The Hilbert tensor product

Proof. The statements for the not completed case, (4.2.2) i) a) and ii), are direct consequences
of the seminorm-wise statements that are yielded by (4.1.6) i). Considering the injectivity of
the linearisation of the inclusions in (4.2.2) 1) b), we have to apply (4.2.1), the proof of which
together with (4.1.6) ii) yields that the inclusion is not only continuous but also topological.

O

Remark 4.2.3. The question whether the extension to the completion of the tensor product of
two quotient maps between complete hilbertizable Ics is again surjective remains unattended
in (4.2.2). The reason is rather simple: We can not prove general statements as (4.1.6). Be
that as it may, in the following we will determine some classes of spaces that allow a positive
answer, as the category of Fréchet-Hilbert spaces and the class of LH spaces. Furthermore,
we will start investigating the even larger class of PLH spaces in section (4.3). To be able to
apply the o tensor product to the mentioned spaces we prove the necessary stability properties
of the category hLLCS of hilbertizable Ics.

Proposition 4.2.4. i) The category hLCS is stable with respect to the formation of
a) subspaces,
b) quotients,
c) arbitrary products and
d) countable direct sums.

ii) For any set I the space @LE , K is hilbertizable if and only if the set I is countable. Thus
hLLCS is not stable with respect to the formation of arbitrary direct sums.

Proof. i) a) and b) are true, since the restriction of a Hilbert seminorm to a subspace
and every quotient seminorm of a Hilbert seminorm are again Hilbert seminorms.

A fundamental system of seminorms for the product of a family (E,),; of hilberti-
zable Ics E, with fundamental systems of Hilbert seminorms cs (E,) (¢ € I) is given
e.g. by the family

{max{(p,on')(),t€E}: ECI,|E|<oo,p, €cs(E,) forallt € E.},

where 7 denotes as usual the canonical projection on the ¢-th component for ev-
ery t € I, see e.g. [MV97, remark on p. 276]. Each of those maximum semi-
norms is equivalent to the usual Hilbert sum of the family of Hilbert seminorms
((p, o m,) (+)) - since the set E is finite. This yields c).

d) requires a detailed proof:

Let (E,),a: be a sequence of hilbertizable Ics E, with fundamental system of
Hilbert seminorms cs (E,) for each n € N. Then by [MV97, definition on p. 276]
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4 The Hilbert tensor product

a fundamental system of seminorms for @n o En 1s given by the family
{@ E, 3> (6,0 — Z Pn (X))t p € cs(E,) foralln e N.}.
neN neN

Furthermore, it is easy to see that for every sequence A = (1,,),ey € [0, 00)" and
every sequence of Hilbert seminorms p = (p,),an € [ e €8 (E,) the map

1/2
||(xn)neN”p,/{ = (Z /lnpn (xn)z]

neN

is a continuous Hilbert seminorm on P
geometrical series, we prove that

{n-nm cpe]]esE,ael0, oo)N}

e En- Using the usual trick with the

neN

is a fundamental system of seminorms for @n av En: Let p () = Xen (P 0 ) (),
where 77, is the canonical projection from the direct sum to the n-th component,
be a continuous seminorm on @neN E,. Defining A, = (2")* for every n € N, we
obtain that p(-) < ||, since for every (x,),ey € @neN E,,|Ixl,, < 1 implies
Pn (%,)* < 5, hence p (x) = Xy pa () < 1.

ii) Part 1) d) yields that EB[ ; K is hilbertizable if I is countable. We show that if the set
1 is uncountable, there is not even a fundamental system of seminorms on P _, K that
imply reflexivity: Assuming the opposite, we obtain a seminorm |[|-|| on @LE[ K such
that (@LE[ K, ||-||) is reflexive and Y,/ |x| < ||lx|| for all x = (x),; € P, K. Since
I = Unavik € I: |le ]| < N} is uncountable — where e, denotes as usual the «-th unit
vector (6,,),c; in €D, K for every k € I — we obtain a positive number R > 1 and an
infinite subset J of I such that |le,|| < R for all k € J. Regarding @Le , K as a subspace
of @Le , K via the natural embedding, we obtain for every x = (x,),c; € @LE , K that

§ X€,

eJ

< > bullledl < Rl

eJ

Il = D el < el =

e

holds. Hence ¢; (J) is reflexive, which is false even for countable infinite sets J, see e.g.
[MV97, (7.10)].
O

Dual to (4.2.4) 1) we have
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4 The Hilbert tensor product

Remark 4.2.5. i) If E is a lcs with a fundamental system of bounded sets (fsb) which

111)

consists of Hilbert discs and F is a closed subspace of E, then F has an fsb consisting
of Hilbert discs, too, since the gauge functional of the intersection of a Hilbert disc B
(in E) with a closed subspace F of E is the restriction of the gauge functional of B to
the intersection of the linear span of B with F, which is a closed subspace of ([B], pp),
since F is closed in E.

If (E,),qy 1s a sequence of Ics that have fsb’s consisting of Hilbert discs, then [ ], Ex
has an fsb consisting of Hilbert discs: Given a sequence (4,),ay of strictly positive
numbers and any sequence B = (B,),qy of Hilbert discs B, in E,, (n € N), we equip the
space

E/I,B = {X = (xn)neN € l_l En: Z /1an” (xn)z < OO}

neN neN

. 1/2 ..
with the norm ||x]|, 5 = (ZneN AnPs, (x,,)z) ,x € E,p. Then it is easy to check that
E, g 1s a Hilbert space and its closed unit ball B, s is a bounded subset of [ [,y E, as it
is contained in [[,e \%Bn. We prove that the set

{Bw: 1e (0,00, Be n HD (E,,)},

neN

where 7 % (E,) denotes the set of all Hilbert discs in E,, (n € N), is an fsb of [],c Ex:
If C is a bounded subset of [ [,y En, then for each n € N there is a positive scalar y,, and
a Hilbert disc B, € s# % (E,), such that E" (C )E" is contained in u,B,. Now we define
A, = lﬂn and B = (B,),y, obtaining a Hilbert space E, 5 whose closed unit ball B, g

2)1
contains C by construction.

For any set I the space [],; K has an fsb consisting of Hilbert discs if and only if 7 is
countable. The “if” part is just an application of ii). If / is not countable, then it contains
an uncountable subset J with cardinality smaller then the smallest inaccessible cardinal
and we may assume / = J. As [].,;K is ultrabornological by [Ko6t79, §35, 7., (8)],
given any fsb % of Banach discs, it arises as the inductive limit of all the Banach spaces
spanned by the discs B € Z. Thus the strong dual of [],; K — the direct sum @LE ;K
— arises as projective limit of all the dual Banach spaces [B]’, B € 4. Hence if [[,; K
has an fsb consisting of Hilbert discs, then @[ K is hilbertizable, a contradiction to
(4.2.4) ii).

An easy consequence of (4.2.4) i) and (4.2.5) is the following corollary that allows us to
apply 7, to PLH spaces and yields that PLH spaces allow for fsb’s of Hilbert discs:

Corollary 4.2.6. i) PLH spaces are hilbertizable.
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4 The Hilbert tensor product

ii) PLH spaces have fundamental systems of bounded sets consisting of Hilbert discs.

Proof. 1) A PLH space E is the projective limit of a strongly reduced projective spectrum
(E N> E%) of LH spaces Ey, i.e. Ey = ind,ey Ey,, 1s the inductive limit of an embedding
spectrum (Ey ), of Hilbert spaces, cf. (2.2.8) ii), (2.2.1) ii) and (2.2.7). Denoting for
every N € N with Zy: @n ar XNn — induey Ey,, the summation map, we obtain by
[MVO7, (24.8)] that Ey is topologically isomorphic to the quotient @neN Enn/ier I
hence it is hilbertizable by (4.2.4) 1) d) and 1) b). As E is topologically isomorphic to a
(closed) subspace of [[yey Ew, it is hilbertizable by (4.2.4) 1) ¢) and 1) a).

i1) Let £ = projygy (EN,E%) be a PLH space. As in every LH space Ey = ind,ey En,

the sequence (By,,), o Of the closed unit balls of the steps Ey,, (n € N) are an fsb by
[MV97, (25.19) 2.], (4.2.5) 1) and ii) yield the assertion.

O

We start our investigation with the class of LH spaces by showing that the completed o
tensor product of two LH spaces is the LH space created by the completed o tensor product of
the corresponding embedding spectra, which can be assumed to be an embedding spectrum,
since the completed o tensor product preserves injectivity of linear and continuous operators
between Hilbert spaces by (4.1.6) i1). We will divide the proof in three steps. At first we
will attend the (uncompleted) o tensor product of direct sums, which will be a matter of mere
calculation and has been done by Harksen in [Har82, (2.10)]. Then we will use that the not
completed o tensor product preserves quotient maps between hilbertizable Ics (4.2.2) ii) to
transfer the isomorphism obtained for direct sums to the (not completed) o tensor product of
LH spaces. Again this has been done by Harksen in [Har82, (2.11) a)] for finitely generated
tensor norms for normed spaces. To obtain the desired statement for the completed o tensor
product of LH spaces, we will need the following Lemma, which is a consequence of a result
due to Palamodov (see [Pal71, (4.2)], also [Wen03, (2.2.2)]).

Lemma 4.2.7. Let (X, X)), and (Y., Y)) _.os
X and Y respectively, and let (f,),c; be a morphism between the spectra — i.e. for each 1 € I a
linear and continuous map f,: X, — Y, such that for each 1 < k € I we have f, o X =Y} o f,

be two inductive spectra with inductive limits

— such that each f, is a topological isomorphism onto its dense range. Then the induced linear
map f: X — Y is a topological isomorphism onto its dense range.

Proof. Let (X, (Xf")tel) and (Y (Yf")ﬂ) be the inductive limits of the given spectra, i.e. X is a
lcs with linear and continuous operators X;°: X, — X such that for each Ics Z and each family
of maps (7,),c; € [l.e;L(X,,Z) such that T, o X = T, for each ¢« < k € I we have a unique
linear and continuous map 7: X — Z with 7 o X* = T, for all « € I. With this universal
property we obtain a unique linear and continuous map f: X — Y such that fo X* = Y™ o f,
for all ¢ € I. Since X = span{X>® (X,) : ¢ € I} (see e.g. [Kot69, §19, 1.]) f is injective and has
dense range.

To see the isomorphy of f, we use a consequence of the Bipolar theorem due to Palamodov
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[Pal71, (4.2)] (also see [Wen03, (2.2.2)]), which yields that f is a homomorphism if the map
[ L (Y, {’;j) — L (X, {’;;) ,f*(T)y=To fforall T € L(Y, é’;}) is surjective for all sets M.

Let now M be an arbitrary set and 7' be a linear and continuous map from Y to £};. Since
for any ¢ € I the composition T o X, is linear and continuous, there is a unique S, € L (K, 53‘})
with §, o f, = T, o X*. Considering the following commutative diagram

X, Y,

)y ye
X o X &) Yo Y
X Ye
Se

X Y, ,

we have fort < ke I:
SKoYLKofL:SKofKoXLK:ToX;:OoXZ‘:ToXL‘X’,

Thus the universal property of Y yields a unique linear and continuous map S : ¥ — £ such
that S o ¥;° = §, forall ¢ € I. Finally we compute S o foX* =S oY o f, =S8, 0f, =T o X7,
obtaining the desired property S o f =T. O

Now we prove the announced statements for the not completed o tensor product:

Proposition 4.2.8. Let E be a hilbertizable Ics that has the countable neighbourhood property
(c.n.p.), i.e. for any sequence (p,),cy 0f continuous seminorms on E there is a sequence A of
positive numbers and a continuous seminorm p on E such that p, < A,p for all n € N. Then
the following hold:

i) The map @: @neN (E®, F,) — E ®, @neN F, that is induced by the natural inclu-
sions EQ, F,, — E ®, @neN F,,n €N, is a topological isomorphism for any sequence
(Fp)uen of Hilbert spaces (see [Har82, (2.10)] for the same result for the inverse map).

ii) The map ¥: ind,ey (E Q, F,) — E ®, ind,en F, that is induced by the natural in-
clusions E ®, F,, — E ®, ind,cn F,,,n € N, is a topological isomorphism for any LH
space F = ind, o F), (see [Har82, (2.11) a)] for tensor topologies T, induced by right-
projective tensor norms ).

Proof. i) The universal property of the locally convex direct sum yields that the map
no ky no  kn
o: Dieory—Eo DRSS ert o 35 wa (0,
neN neN n=1 j=1 n=1 j=1
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is continuous. Furthermore, ® is an algebraic isomorphism as we have the inverse map

o Ee, D F. — P (Ee, F).

neN neN J

k k
58 (V) 0 [ X® y,-,,,]
=1

Jj=1 neN

Before we prove the continuity of ®~!, we observe that ® maps the image of the natural
inclusion of E ®, F; into @%N (E ®, F,) onto the image of the natural inclusion of
E ®, F;into E ®, @neN F, for any k € N. Thus we obtain the following estimate for
continuous seminorms p and g, (n € N) on E respectively F, (n € N):

(P ® qr) (z1) < [P R [Z qn]] (D (z)) forall z € E ®, @ F,and all k € N, (%)

neN neN

where ),y g, 1s the point wise summation of the seminorms (g,),oy, since (Fi, g) is
topologically complemented in (@neN Fo, 2 en qn) with projection that has norm 1 for
all k e N.

Let now ),y P ®» 1, be a defining seminorm on @HGN E ®, F, and let A and p be
chosen for (p,), oy according to the c.n.p. of E, i.e. p, < A,p for all n € N. Defining
qn = 2"A,1, (n € N), we obtain with () the following estimate forz € @, (E ®, F,):

(Z Pn®s rn] @< D (4p) 8 1) (@) = D27 (p &y (2'1) (22)

neN neN neN
< Z 2™ [p R [Z qu] (®(2) = [p Qo (Z qk]] (P ().
neN keN keN

Since p ®, (Yiew gx) is a defining seminorm on E ®, P ren Frs We can complete the
proof by applying the above estimate to @' (z),z € E®, P ., F

neN © 1

The universal property of the locally convex inductive limit implies that ¥ is continuous
and it is easy to verify that it is an algebraic isomorphism. To show that ¥ is open,
we denote by X and 2 the continuous and open summation maps from @neN E®, F,
respectively @n oy P onto the inductive limits ind,ay (E ®, F,) respectively ind,ey F,
and we obtain the commutative diagram

@D (Ee, F)—~E® DF,
neN neN

zl 3 lidg&r}:p

ind (E®, F,) —E®, ind F,,.
neN neN

Let U = X(V) be a typical 0-neighbourhood of ind,qy (E ®, F,), where V is a O-
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neighborhood in EBn ar (E ®; F,). Then the first part, (4.2.8) 1), yields that @ (V) is
open in £ ®, EBneN F,. As X is open, (4.2.2) ii) implies that idg ®,XF is open as well.
Thus ¥ (U) = (idg ®,2F) (O (V)) is open and we have proven the assertion.

O

Theorem 4.2.9. Given two LH spaces E = ind,ey E,, and F = ind,en F,,, we have
ind (E,&,F,) = E&,F
neN

topologically.

Proof. As T, is symmetric, a twofold application of (4.2.8) ii) yields that for LH spaces
E = ind,en E, and F = ind,en F,, the map W r from ind,en (E, ®, F,) to E ®, F induced by
the inclusions E, ®, F, — E ®, F (n € N) — consult as usual (4.2.2) 1) b) for injectivity — is
a topological isomorphism since E and F; (k € N) have the c.n.p. as LB spaces by [PCB87,
(8.3.5)]. By (4.2.7) ind,ay (E, ®, F,) is a dense topological subspace of ind,cy (E,&,F,),
which is an LH space, as by (4.1.3) ii) the induced maps E,®,F, — E,.1®,F,, are injective.
Thus ind,ey (E,®,F,) is complete, hence ‘PE}F can be extended to a topological isomorphism
from E®, F to ind,cy (E,®,F)). m|

Now we will prove a series of corollaries, the first of which is the positive solution of
Grothendieck’s probleme des topologies for Fréchet-Hilbert spaces and the tensor topology
7 . To prove this, we need some auxiliary remarks about duality:

Remark 4.2.10. i) If E and F are semi-unitary spaces, then the strong dual of the o tensor
product of E and F is isometrically isomorphic to the completed o tensor product of the
strong duals of E and F extending the duality

(x®@y, X' @YYy =(x,xY{(y,y),x€e E,xX € E',ye F,y €eF,

since we have:

(E®, F) = (E®,F) 2 E®,F = E®,F 2 E'®,F = E'®,F,
* *

where the stars stand for the (map induced by the) respective antilinear isometric Riesz
identification of a Hilbert space with its strong dual.

ii) From (4.2.9) we deduce easily that (4.2.10) i) also holds for two Fréchet-Hilbert spaces
E = proj, E, and F' = proj, . F,, as we have

(E®,F) = (proj,c Ex®oF,) = indey (E,&,F,) = ind,ay (E/®,F")
= (ind,en E)) &, (ind,e F)) = E'®, F.
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Now we turn our attention to Grothendieck’s probleme des topologies: For bounded subsets
B C E and C C F of Fréchet spaces E and F the closure of I'(B® C) in E®,F is a bounded
subset of E®,F. In his thesis [Gro55] Grothendieck asked whether every bounded subset
of EQ,F is contained in such a set. In general, this problem, which is called Grothendieck’s
probléme des topologies, has a negative solution as Taskinen showed in [Tas86], whereas it has
a positive solution for Fréchet-Hilbert spaces as Grothendieck stated in his thesis and Kiirsten
proved in [Kiir91]. We prove the following formulation of the problem for Fréchet-Hilbert
spaces and the tensor topology 7

Corollary 4.2.11. Given Fréchet-Hilbert spaces E = proj,., E,, and F = proj,. F, and a
Hilbert space Z with continuous inclusion i: Z — E®,F, there are Hilbert spaces X and Y
with continuous inclusions X — E and Y — F such that we have continuous inclusions

7 < X&,Y (— E®,F).

Proof. Let E, F,Z and i be given as above. Then the transposed of i is a linear and continuous
map from (E®,F)’ to the Hilbert space Z’, hence i’ factorizes over a local Hilbert space of
(E®,F). As (E®,F)  equals E'®,F’ topologically by (4.2.10) ii), there are two local Hilbert
spaces X of E’ and Y of F’ with the canonical linear and continuous maps with dense range
wy: E' — X and wy: F’ —> Y and a linear and continuous map j from X&,Y to Z’ such
that i = j o (wWx®,wy), i.e. the following diagram commutes:

wx®;wy

(E@,F) —— E'&, F' X&,Y L7

l't

As E®, F equals (E'®,F’) and (X®,Y) equals X'®,Y’ topologically (again by (4.2.10) i)
and 1i)), we obtain the continuous inclusions

. - t®0’ 1 -
=g J X'&, yre Sy E®,F,

where j' is injective, because j has dense range, which is true since i has dense range, and
wy®,w), is injective with (4.2.1) as v, and ), are injective. Thus the claim is valid. O

(4.2.9) and (4.2.2) yield preliminary positive results for the surjectivity problem:

Remark 4.2.12. Given complete hilbertizable Ics E, Y and Z and a quotient map q: ¥ — Z,
the induced operator idg ®,¢ is a quotient map if

1) E,Y,Z are LH spaces as 7 respects LH spaces by (4.2.9) and quotient maps between
Hilbert spaces by (4.1.6) ii), because

E®0'Z = indneN En®0'Zn = indneN En®(rQn (Yn) = indneN En®(r indneN dn (Yn) = E®0'q (Y) s
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where E = ind,en E,,, Y, = ind,en Yy, Z = ind,e Z, and g,,: Y, — Z, is the (surjective)
restriction of g to Y, (with values in Z,, cf. (2.2.3) for detailed explanation).

E. Y, Z are Fréchet-Hilbert spaces as idz ®,¢ is open with (4.2.2), hence idg ®,q is al-
most open, thus open by the Schauder Lemma ([MV97, (3.9))).

As mentioned in (4.1.7) iii), the o tensor product can also be approached from a homologi-
cal point of view:

Remark 4.2.13. Given a hilbertizable locally convex space E, we have the tensor product

functor idg ®,-, that acts on the category of hilbertizable Ics and takes values in the same
category. We can easily prove the following:

i)

If E = ind,y E, is an LH space, then idg ®,- is an exact functor from LH to LH as
for any short exact sequence 0 — ind,cy X, — ind,en Y, — ind,enZ, — 0 of
LH spaces (cf. (2.2.5) for the canonical exact structure on LH) the tensorized sequence
arises by (4.2.9) as inductive limit of the tensorized sequences of the steps

0— E,®X, — E,,Y, — E,®,Z, — 0 (n € N)

that are topologically exact as the completed o tensor product respects closed subspaces
and quotients of Hilbert spaces by (4.1.6) 1) a) and ii). Thus the tensorized sequence is
again exact in LH by (2.2.5) and the construction of kernels and cokernels in LH (cf.
(2.2.3)).

If E = proj,. E, is a Fréchet-Hilbert space, then idg &, is an exact functor from the
category of Fréchet-Hilbert spaces FH into itself, as for any short exact sequence 0 —
Proj,cy Xn — Proj,ay Yn — proj,ayZ, — 0 of FH spaces the tensorized sequence
arises by definition as projective limit of the local tensorized sequences

0— E,®X, — ER,Y, — E,&,Z, — 0 (neN),

that are topologically exact as the completed o tensor product respects closed subspaces
and quotients of Hilbert spaces by (4.1.6) i) a) and ii). Thus the tensorized sequence
is again exact in FH as the completed o tensor product respects closed subspaces of
complete hilbertizable lcs and Hausdorff quotients of Fréchet-Hilbert spaces by (4.2.2)
i) a) and (4.2.12) ii).

Since it is well-known that FH is quasi-abelian and has many injective objects — Hilbert spaces

are easily seen to be injective objects in FH — cf. [DMO07, Vogl1], we can construct the right
derivative of the tensor product functor idg ®,- on FH in the sense of Palamodov (see e.g.
[WenO03, section 2.1]) for any Fréchet-Hilbert space E, if we consider it as a functor taking
values in the category VS of vector spaces. As usual, we denote the derivative with Tor! (E, -).
Then the exactness of idg &, yields, that Tor(lr (E, -) vanishes, see [Var02, (2.1.14)].
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4 The Hilbert tensor product

From the general theory about the € and 7 tensor product [K6t79, §41 and §44] we know that
those tensor topologies are compatible with the PLS space structure in the following sense:

For a € {g,} the completed « tensor product of two PLS spaces is the PLS space arising
from the a tensor product of the spectra giving rise to the original PLS spaces. Now we will
deduce from (4.2.9) that the same is true for PLH spaces and the tensor topology 7

Corollary 4.2.14. Given two PLH spaces

E = prOJ(md (Enn), E) proj(EN,Eﬁ‘Vl)

NeN NeN

and
F = pI‘OJ(lIld (Fya), F) proj(FN,FZ)

NeN NeN

the following isomorphies hold topologically:

EQ®,F = proj (EN®(,FN, E%&,FN) = proj (md (Ena®sFnn) s EM®(TFN).
(D) "NeN ) NeN

Furthermore, the spectra on the right-hand side are strongly reduced, i.e. E®,F is a PLH

space.

Proof. By construction 7, respects projective limits of hilbertizable Ics, i.e. the completed o
tensor product of two hilbertizable (possibly uncountable) projective limits is the projective
limit created by the completed o tensor product of the corresponding projective spectra (see
e.g. [Har82, (2.8)]). Thus (1) holds. (2) is given by (4.2.9). Since the tensor norm o respects
dense subspaces, so does 7. Thus the projective spectrum arising from two strongly reduced
projective spectra by applying 7 is strongly reduced. m|

Considering the surjectivity problem of (4.2.3) for PLH spaces we need to impose further
assumptions to obtain positive results even for Hilbert spaces E. In the PLS space situation the
property lifting of bounded subsets of the quotient map under consideration seems to be the
key property. In our situation the lifting of local cy- or local £,-sequences seems to be more
fitting, as quotient maps between Fréchet-Hilbert spaces always have this property because
Fréchet spaces always have the strict Mackey condition (see [PCB87, (5.1.30)]), whereas those
quotient maps do not need to lift bounded sets, cf. (2.2.6) for a counterexample. We start with
a proper definition:

Definition and Remark 4.2.15. Let g: Y — Z be a linear and continuous operator between
hilbertizable Ics Y and Z.

1) The operator g lifts local co- (respectively local {,-sequences) if for all Hilbert spaces
G with continuous inclusion G < Z and every (Zi)iey € ¢o (G) (respectively ¢, (G))
there is a Hilbert space H with continuous inclusion H < Y and a sequence (Vi) €
co (H) (respectively ¢, (H)) such that gy, = z; for all k € N.
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4 The Hilbert tensor product

i1) If g lifts local cy-sequences then g lifts local ¢,-sequences: Let G be a Hilbert space

with continuous inclusion G — Z and (z)en € > (G). Then there is a monotonically

2
lIzkl

-4 < 00,
Yk

decreasing zero sequence (y),y Of strictly positive numbers such that ).y
As we may assume without loss of generality that each z; is not zero, we may define
= ”;Z—Tlczk and obtain that (z;).e € ¢o (G) . Hence the hypothesis yields a Hilbert space
H with continuous inclusion H — Y and a sequence (i) € co (H) such that gy, = 7

for all k € N. We define y; := e for all k € N and obtain on the one hand gy; = z

T oon
2
for all k € N and on the other hand } ;4 ||yk||%{ = DkeN ”Z;# ||ﬁ||i,, which is finite by
k
choice of (yx)iae and since (Vi)iay € co (H) C € (H). Thus (Vi) € €2 (H) and the
proof is complete.

Now we can prove the announced result:

Proposition 4.2.16. Let g: Y — Z be an open operator between PLH spaces Y and Z that
lifts local ¢,-sequences. Then idg ®,q: E®,Y — E®,Z is surjective for every Hilbert space
E.

Proof. Let (p,),.; be a fundamental system of seminorms of Z and (Y,, Y! be the corre-

L K)LSKEI
sponding projective spectra of Hilbert spaces, i.e. Z = projyey induen Zy,, = proj,; (Y, Y2).
Now let z be an element of E®,Z. This space is isomorphic to proj,.; E®,Y, = projya EQ-Zy
= Projyay ind,eny E®,Zy,, by definition of 7, respectively by (4.2.14), and is a subspace of
EeZ by (4.2.1). Using as usual z as notation to emphasize z being a linear operator from E’ to
Z, we have for all N € N: zy = Z{z = ZN 0 z = z,, € indye S2 (E’, Zy,,) by (4.2.9). Thus for
all N € N there is an n(N) € N such that Zy € S2 (E’, Zynvy)- Hence there is an orthonormal
system (ONS) (ex)ien in E” such that z vanishes on the orthogonal complement of (ex )¢y in £’
since countable unions of countable sets are countable. We define (g ),y as the family of the
images of (ex)en under z. Then the characterization of Hilbert-Schmidt operators via square

summability of images of orthonormal bases [MV97, (16.8)] yields that

ev = D128 @l = <[ Iz )]

keN keN

2
N,n(N)

is finite for each N € N.

Thus we have an ¢, (Zy))-sequence (Zi! (gk))keN that lifts separately to £ (Yy,)) for
each N € N, since the local quotient maps gy: Yy — Zy giving rise to g, cf. (2.2.15), even
lift bounded sets as LH spaces are regular. To obtain a simultaneous lifting, we need to use
the concept of vector valued sequence spaces: Given a Ics X with fundamental system of

seminorms cs (X), we define

6 (X) = {(vrar € X1 (p (6))yar € 6o for all p € cs (X))
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4 The Hilbert tensor product

and for any absolutely convex subset C of X:
£ (C) = {(xierr € L2 (X) N ICT": (pe () )gers € Bry} -

In this terminology we have that for each N € N the sequence (Zg (gk))kEN is an element of
& (enBn.avy), where By vy denotes the closed unit ball of Zy ). As the gauge functional of
the preimage of a set equals the composition of the gauge functional of the set with the map,

Le.
— N
p(Zé!)_I(CNBN,n(N)) (Z) - pCNBN,n(N) (Zoo (Z))

forallz € Zand N € N, and since Y, 0z € S, (E’,Y,) for all « € I, we have

(&rer € ﬂfz ((Zg)_l (CNBN,n(N)))-

NeN

The crucial step for the simultaneous lifting of the sequence (gx);¢y to Y is the application of
[Fre94, (5.3)], which provides

)e2((72)" (evBuwon)) < llall, 2 (ﬂ ~ ()" (cNBN,nW)))

NeN NeN

for any ¢,-sequence @ = (ay)yean- Choosing @ in By, e.g. the geometric series, the right-hand
side equals ¢, (H Nett By uany 0 Z) and since the bounded subset []yey 5-Byaw N Z of Z
is contained in a Hilbert disc B C Z by (4.2.6) ii), we obtain a Hilbert space G = [B] with
continuous inclusion G — Z and that (gy),¢y 1s an ¢, (G)-sequence. Now the hypothesis yields
a Hilbert space H with continuous inclusion H < Y and a ¢, (H)-sequence (i), such that
qfr = g for all kK € N. Thus we may define y to be the unique linear and continuous operator
from E’ to H that fulfills y (e;) = f; for all k € N and vanishes on the orthogonal complement
of the family {e;: k € N} in E’. Then by [MV97, (16.8)] y is a Hilbert-Schmidt operator from
E’ to G and there is a corresponding element y in E®,Y since Y., oyeS,(E',Y)by [MVI7,
(16.7) 3.] that satisfies g (y) = z since g o y = z by construction. - O

4.3 The vanishing of proj' for tensorized PLH space spectra

We start our investigation by establishing the connection to the problem of surjectivity of
tensorized operators. The analogous results for PLS spaces and the € product can be found in
[Dom10, (4.5)].

Proposition 4.3.1. Let

0—bX-H5Y-1Hz-—50 (%)
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4 The Hilbert tensor product

be a short exact sequence of PLH spaces (cf. (2.2.17)) and E = projycy (E N> E%) be a PLH
space. If proj' (E N X, idENéaXﬁ) = 0, then the tensorized map idg ®,q: EQ,Y — E®,Z

is surjective. If proj' (E N&®y Yy, idp, &Y Z) = 0, the condition is also necessary.

Proof. By (2.2.15) the sequence (x) arises as the projective limit of a sequence of short exact

sequences 0 — Xy N Yy LN Zy — 0 (N € N) of LH spaces. As the tensorized sequences

idEN Ryin - ldEN ®rgn

00— EN®U'XN — EN®0'YN —> EN® ZN — 0 (N € N)

are exact sequences of LH spaces by (4.2.13) ii), and give rise to the tensorized sequence

idg &1 ide ®rq

0 — E®,X — E®,Y — E®,Z,

where idg ®,i is a kernel of idg ®,¢ in PLH by (4.2.14) and (4.2.2) i) b), the long exact
sequence of the projective limit functor (e.g. [Wen03, (3.1.5)]) yields the existence of an alge-
braically exact sequence
ol - idg ®,
0 — E®, x % E®,Y ng@) wZ — proj' (Ex®,Xy) —
NeN
- pl‘Ojl (EN®0'YN) — Projl (EN®0'ZN) B 0,
NeN NeN

which yields the assertion. O

We prepare the proof of the most simple case, where X is a PLH space with proj' X = 0 and
E is a Hilbert space. To this end we need the following result, a condition characterizing the
vanishing of proj' for spectra of regular LB spaces that we can tensorize with a Hilbert space.
The proof of the following proposition is contained in [Wen03, (3.2.17) & (3.2.18)]. As we
change the assumptions on the sequence of Banach discs (By)yey, We state the proof.

Proposition 4.3.2. Let X = projyqy (XN, XAA,’,) be a projective limit of regular LB spaces Xy =
ind,eiy Xy, and let (By)new € [ yvar BY (Xy). Then the following are equivalent:

p Y A YV XVXy c X¥Xk + By.
NeN M>N K>M

ii) (XN, ) is reducedand ¥ 1 Y B XAA/]IA C X]]gD +cBy.
NeN M>N  K>M  DeABP(Xk)
AG@@(XM) >0

iii) (XN,XN)ZS reducedand Y 1 ¥V 3 XV wXmm C XN Xk + [Byl.
NeN M>N K>1]§[ k>m
me

Furthermore, the existence of a sequence (By)yey € [ yey BY (Xy) such that XN 1Byt C By
holds for all N € N together with one of the properties i) — iii) is equivalent to the vanishing

of proj’ (XN, XA]‘;)
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4 The Hilbert tensor product

Proof. “i) = ii)” 1) implies reducedness and the second condition is a consequence of the
factorization theorem: Let K > M > N be chosen according to i) and R € BY (Xy).
Then X}, is continuous as an operator from [R] to Xy and by assumption its image is
contained in |, (X%X k1 + [BN]). As (XQX K1+ [BN]) carries the quotient topology for
all K > N,l € N, hence is a Banach space since X,A(’XK,, carries the quotient topol-
ogy as well, we may apply the factorization theorem and obtain an integer k such that
X3 ([R]) € X¥Xkx + [By], where the inclusion is continuous with the closed graph
theorem. This yields i1). Also see [Wen03, (3.2.17)].

X
“ii) > i)” Let M > N be chosen according to ii) and K > M such that XIZ(”XK - XﬁlXL "

for all L > K. For every L > K and for every m € N there is a ¢,, > 0 such that
X3 (cmBum) € XVX1 + By. Hence X)) U C XX, + By, where U = T (U et CnBuim)-
Thus we arrive at X§ Xx = X3 X¥ Xx c XJ) (X%XL + U) C X¥X, + By which is i). Also
see [Wen03, (3.2.18), 3. = 2.].

“i) © 1ii)” is then obvious.
The additional statement is precisely the theorem of Retakh and Palamodov, cf. [Wen03,
(3.2.9)]. O

Now we can prove the following characterization, which is the extension of [BD98, Lemma
33] from PLN to PLH.

Theorem 4.3.3. Let X = projyoy £, where & = (XN, XAA;) be a PLH space. Then proj' 2 =
0 if and only if proj' (E®UXN, idg ®0X11‘V4) = 0 for any Hilbert space E.

Proof. Let proj' 2 = 0. We use the characterization of the vanishing of proj' 2~ with
the additional statement of (4.3.2) to obtain a sequence (By)yey € [Iyew BZ (Xy) with
X]’\\,’HBNH C By for all N € N such that (4.3.2) iii) holds and choose K > M > N and
k > m accordingly.

To be able to tensorize this condition with the Hilbert space E, we need to ensure that the

spaces [By] can be assumed to be Hilbert:

Claim 1: For each N € N the set By can be chosen as Hilbert disc.

Proof of Claim 1: We recall the necessary parts of the proof of [Wen03, (3.2.9)]:

In each step Xy the family (nBy ), of multiples of the unit balls By, of Xy, is a fundamental
system of bounded sets covering Xy. Hence the Baire argument [Wen03, (3.2.6)] yields the
existence of a subsequence (n(J)),qy of the natural numbers such that each set By can be
chosen as

M (Xl{/)_l (n (J) Binep) -

N
J=1
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Each of those sets is a Hilbert disc, since [Wen03, (3.2.10)] remains true if we replace “Banach
disc” by “Hilbert disc”, which we prove with the next Claim. ¢

Claim 2: Let f: X — Y be a continuous linear map between separated Ics and let A C X and
B C Y be Hilbert discs. Then f (A) + Band A N f~! (B) are again Hilbert discs.

Proof of Claim 2: The sequence
0— [An s (B)] - [A1x [B] -5 [f (4) + B] — 0,

where i(x) = (x,—f(x)) and g (x,y) = f(x) +y, is topologically exact and all spaces are
separated. Hence the claim is valid since closed subspaces and Hausdorff quotients of Hilbert
spaces are again Hilbert spaces. ©

Thus we arrive at a sequence of Hilbert spaces (E®, [By])yey the unit balls of which are
decreasing, i.e.:

(ide ®XN.1) (Brs,isy.1) € Bra, sy (N €N,

since o has the metric mapping property by (4.1.3) ii). To compute the tensorized condition
properly, we need a last ingredient:

Claim 3: If F, G and H are Hilbert spaces such that G and H embed into the same vector space
V,then ¢ (x® (y + 7)) := x®y + x®z induces an isometric isomorphism ¥ from F®, (G + H)
to FQ,G + FQ,H.

Proof of Claim 3: We consider the commutative diagram

F&, (G x H) —2- F&,G x F&, H

| |

F&, (G + H)—>F&,G + F&,H,

where @ is the natural isomorphism (given by (4.2.8) 1)), and the morphisms in the columns
are the tensorized quotient map on the left and the natural quotient map on the right. Thus the
claim is valid since o respects metric surjections by (4.1.6) ii). ¢

Now we can complete the proof: As the inclusion
Xy Xyt = Xg Xxx + [By]

is continuous and o respects inclusions, metric surjections and sums of Hilbert spaces by
(4.1.6) ii) and claim 3, we obtain the continuous tensorized inclusion, hence condition (4.3.2)
iii) for the tensorized spectrum (E@UXN, idg ®(,XZ). As this spectrum is even strongly reduced
(cf. (4.2.14)) the additional statement of (4.3.2) yields proj1 E®,X = 0. The other implication
can easily be seen through the characterization of the vanishing of proj' 2" by the surjectivity
of the map ¥ 4, cf. [Wen03, (3.1.4)]. O
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To forgo condition (P;), for X in the characterization of the vanishing of proj' the tensorized
spectrum in case of a PLN space E, we need to extend (3.4.4):

Proposition 4.3.4. Let X = projygy ind,en Xy, and E = proj;oq ind,en E7, two PLH spaces
such that E is deeply reduced and (E, X) satisfies (T). Then either X satisfies (P}) or E is a
Fréchet-Hilbert space.

Proof. First we assume that the following holds:

14 vV 4V do< *<5HETt*
TeN ST s21 >0 geEy lglz ( S) Ells.
te

(%)

We show that then X satisfies (P3)o: Let N € N. We choose T € N according to (x) and
M > N,S > T according to (T'). Given K > M, we choose n,t € N for K and S + 1 according

to (T') and s > t with (x). For any m > n we choose k > m,r > s and ¢; > 0 according to

(%,.)'s] .
IHH(SE% Then (T)

=
S,s

(T). Given € > 0 we find by (x) a g € E}, for ¢ := ﬁ and define ¢ := ¢

grants for all f € X} :

*

* H(Egﬂ)tg

Kk H(Eg)tg

S+1,r

*

[ I . x5
( M) Mm ! N. (EST)Ig g 1 ( K)

<ellfily, + < |(x¥) 1]

S,s

which is (P})o for X. Now if (%) does not hold, then we have

V. 3V 3V Eiterligly, =0or |(EF) g|. < Lilglh, .m0
TeN SZIRZTE s>t 6>0 geE?, 8lir: ( S) 8 S5 O 8l
te

Since E is deeply reduced, we may assume by (3.2.4) that E. is a dense subspace of E7., for

all T,t € N. Hence (x*) yields that the restriction (Eg)t of (EST)I to E7., is continuous from
E’T’t to E. If we choose § > T, € N for any T € N according to (x*)and R > §, s € N for §
by (%%) we have a commutative diagram

E/

R
)

()

, (ED)' , (£5)
E;C > E K
ET,t E ,8

hence E’ is an LH space. Thus it has a countable fundamental system of bounded sets, i.e
E is metrizable. Since E is complete and hilbertizable by (4.2.6) 1), it is a Fréchet-Hilbert

’
N
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space. O

Now we are ready to characterize the vanishing of proj' for tensorized PLH space spectra
ate least if one of them is a PLN space. For two PLH spaces X = projyq, ind,en Xy, and

E = proj oy ind,ey E7, we define the projective spectra &, = (EN®(,XN, Eﬁ@aXA’\;) and the
inductive spectra of Fréchet spaces 7, = (EJ’V@QX]’V, (E% H)t ®q (X% +1)t) for @ € {n, 0, ¢}

Note that the operators (Ej:,’ H)t Ry (Xj:,’ +1)t are indeed injective for N € N and « € {r, 0, &}: For
a = ¢ this is [K6t79, §44. 4. (5)], for @ = o this is (4.2.1) and for a = 7 this is shown with the
same argument as in the proof of (3.4.5). The next result generalizes [Var02, 4.2/4.3] as well
as [Dom10, (5.2)] partially.

Theorem 4.3.5. Let E = proj;.yind,ay Er; be a PLN space with proj' E = 0 and X =
Projyeay indyen Xy, be a PLH space, both deeply reduced. Then &, = P, = P, = &
and proj' & = 0 if and only if the pair (E,X) satisfies (T,;) if and only if the pair (E, X)
satisfies (T).

Proof. Since Ey is nuclear as the strong dual of a nuclear Fréchet space by [Pie72, (4.3.3)
Theorem], the three projective spectra &, @ € {r, o, &€} coincide by [Pie72, (7.3.3) Theorem].
In complete analogy the three inductive spectra 7, a € {r, o, &} coincide as well. Since 7,
is pre-dual to 2, by (4.2.10) ii), (3.1.1) yields that proj' & vanishes if and only if /% is
weakly acyclic. If E is an LN space, the acyclicity of .7, is characterized by (E, X) satisfying
(T,) respectively (T) by (3.4.5). Hence we may assume that E is not an LN space.

Necessity of (T): If 77, is weakly acyclic, we can prove just as in (3.4.5) via condition (wQ)
that (£, X) satisfies (7).

(T) implies (T,): Since E is not an LN space, X satisfies (P})o by (4.3.4). As proj' E = 0 by
assumption, E satisfies (P5)o by [WenO03, (3.2.18)], hence (E, X) satisfies (T) by (3.2.2).
Sufficiency of (T,): Let K > M > N,k > m > n,c > 0,& > 0 be given by 7 in the formulation
(T, cf. (3.2.1) ii) a). Just as in (3.4.5) we use the nuclear interpolation of (3.2.6) on the

PR
Fy =X, and F := (X' (X%) (')HMm), as well as Gy = E .G = Ey,

o ’
spaces Fp = X N '

N.n?
and G = (E;\l,k’ H(E%)t (~)H; ) and the continuity of the inclusions E;V,ké),rX]’\,,k — 7,7 €
{F®,G, Fi®,G;,i =0,1} to obtain from (T?) condition (Q), for %, which implies acyclicity
by (3.1.2). O

As LN spaces are strongly nuclear by [Jar81, 21.8.6] and this property is inherited by arbi-
trary products and subspaces by [Jar81, (21.1)], PLN spaces are even strongly nuclear. Thus
only strongly nuclear Fréchet spaces can be endowed with a PLN structure, since there are
nuclear Fréchet-spaces that are not strongly nuclear, e.g. the space s of rapidly decreasing se-
quences by [Jar81, (21.8.3) a)]. Thus we have to distinguish the case E being a nuclear Fréchet
space, cf. [Pis10, p. 155].

Theorem 4.3.6. Let E = proj (E N> E%) be an FN space and X = proj gy inden Xy, a deeply
reduced PLH space that satisfies (P3)o. Then the three projective spectra &y, &, and &, are
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equivalent and proj' P, vanishes if and only if the pair (E, X) satisfies condition (T,) if and
only if the pair (E, X) satisfies condition (T).

Proof. As E is nuclear, we may assume the linking maps E} | to be nuclear for all N € N. As
nuclear mappings are integral by [Pie72, (4.1.5) Proposition], for every local Hilbert space G
of Xy the maps El’\\,’Jr1 ®idg are continuous from Ey,; ®. G to Ey ®, G by [DF93, (35.5)], hence
the extension of EIIX .1 ®idy,, to the completion is continuous from E N+1®:Xy to Ex®, Xy, N €
N. Thus all three spectra are equivalent. As for each N € N the transposed of E} | is nuclear
(again by [Pie72, (4.3.3) Theorem]), the same argument as above yields the equivalence of all
three inductive spectra .77, 7, and .7,. Now, since Ex®, Xy is reflexive by (4.2.10) ii) for all
N € N, the LFH spectrum 7, is pre-dual to the PLH spectrum Z,. Hence (3.1.1) yields that
proj' &, vanishes if and only if 7%, is weakly acyclic. Since .7, and .7, are equivalent, .77,
is weakly acyclic if and only if J7 is weakly acyclic by [Vog92, (1.3)]. Thus we have shown
that proj' &2, vanishes if and only if 77, is weakly acyclic. In (3.5.4) we have proven that if
E’ is acyclic, which is the same as E being quasinormable by [MV97, (26.14)] and (3.1.2),
then the weak acyclicity of .77, is equivalent to (E”, X) satisfying (T) respectively (T). As E
is nuclear, hence Schwartz and reflexive by (2.2.2) iv), this yields the assertion. O

Combining these results with the splitting results (3.4.6) and (3.5.5), we arrive at the fol-
lowing characterizations:

Corollary 4.3.7. Let E be an LN space and X = proj (XN, le&) be a deeply reduced PLH space
with proj1 X = 0 and (P3)y such that ExtiH (E,Xy) =0 forall N € N. Then ExtllgLH (E,X)=0
if and only if proj' E'&,X = 0. The same is true for an LH space E and a PLN space X.

Corollary 4.3.8. Let E = proj (EV, E/Vl) be a nuclear Fréchet space and X = proj (XN,XAA;) be
a deeply reduced PLH space with proj1 X =0 I ExtiH (E,,Xy) = 0 forall vyN € N then
Extl . (E,X) = 0 if and only if proj' E'®,X = 0. The same is true for a Fréchet-Hilbert space

E and a PLN space X.

Combining the proofs of (3.4.7) and (3.5.6) we arrive at the following statement about
necessity of deep reducedness, cf. [Dom10, (5.4)]:

Proposition 4.3.9. If a pair (E, X) of PLH spaces satifies (T,) then either X is strict or E is
deeply reduced in rows and either E is deeply reduced in columns or X is a Fréchet-Hilbert
space.
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The most prominent application of splitting theory are of course linear partial differential
operators P (D) as the classical examples of the Laplace operator Au = }'_ 0*u/ (9x§ (which is
elliptic), the heat operator du/dt— Au (which is parabolic), and the wave operator 8*u/0t* — Au
(which is hyperbolic). The motivation for splitting theory then reads as follows:

Considering real world applications even under the assumption of surjectivity of P (D) a
continuative question arises: data in nature can not be conceived as rigidly fixed since the
mere process of measuring them involves small errors. Therefore a mathematical problem
can not be considered as realistically corresponding to physical phenomena unless a small
variation of the given data leads to a small change in the solution.

Hence the existence of continuous solution operators is of importance, which corresponds
to the splitting of the corresponding exact sequence

P(D)
0— ker(P(D)) >G — E — 0.

Here the domain G of P (D) — the setting in which we consider P (D) — plays an important
role, motivating not only the analysis of various spaces of smooth, holomorphic, real analytic
or ultradifferentiable functions but also various spaces of distributions and ultradistributions,
cf. (5.1.3). Most of these spaces are either nuclear Fréchet or PLN spaces, hence are cov-
ered by the current approach of splitting theory and the parameter dependence problem for
PLS spaces under the successors of the four standard assumptions. In this final chapter we
want to consider applications of the structure theory established for spaces that are not PLS.
To achieve this, we divide in the first section the condition (7) for the pair (E, X) into two
conditions of (DN)-(Q) type for PLH spaces on E and X respectively and prove sufficiency
in complete analogy to [Dom10]. This includes the analogon of the famous (DN)-(Q2) split-
ting result for Fréchet-Hilbert spaces, e.g. [MV97, (30.1)] in PLH. Note that these variants of
the dual interpolation estimate (DIE) are due to Bonet and Domarnski in [BDO07] in the PLS
framework. In the remaining sections we consider three examples: The Fréchet-Hilbert spaces
B12°,f (Q) of all distributions that locally behave like B, but are unrestricted at infinity or the
boundary, the space 7, of all ¢ functions all of whose derivatives are L, functions, its dual
9, and the Kothe PLH spaces. A splitting theory for the Blz",f (Q) spaces has been established
by Hermanns [Her0O5] and real analytic parameter dependence has been characterized by Vogt
[Vog04]. We extend Vogt’s results and show that for elliptic partial differential operators P (D)
on Blz"f( () admitting a continuous linear right inverse is a lot more than having a parameter
dependence for a PLN space E with (DIE) for big §. Concerning Z;, and its strong dual,
we prove that partial differential operators with constant coefficients on %’ (Q2) for open and
convex Q C R as well as surjective convolution operators T, on .@(’w) (Rd) have the corre-
sponding parameter dependence. We conclude by giving a complete characterization of all
the problems under consideration for Kéthe PLH spaces in terms of the matrices without any
nuclearity assumptions.
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5.1 (DN)-(Q2) type conditions for PLH spaces

However complicated the characterizing condition (7,) established in the preceding sections
may seem, it proves to be evaluable in practice. To this end, Bonet and Domariski introduced

the PLS variants (PQ), (Pﬁ), (PA) and (PA) of the Fréchet space conditions (DN) (or rather
its dual variant (A), cf. [Vog75]) and (€2) in [BD06, BD08] and proved corresponding splitting
results for PLS spaces under the successors of the four standard assumptions. In [BDO07]
they introduced a new condition, the dual interpolation estimate, henceforth (DIE), in three
variants — for small, big and all 8 —, unifying the other four conditions mentioned above. In the
following, we will transfer the PLS space results from [BD06, BD07, BDO08, Pis10] regarding
(DIE) to the category of PLH spaces, thus proving the analogon of the famous (DN)-(Q)
splitting result for Fréchet-Hilbert spaces, e.g. [MV97, (30.1)] also for PLH spaces. We start
by defining the conditions, cf. [BD07, p. 433]:

Definition 5.1.1. A PLH space X = projycy ind,en Xy, satisfies the dual interpolation esti-
mate (DIE) for small 6 if the following holds:

v 4 v 4V 4 VvV 4V

NeN M>N K>M neN m>n 0<6,<1 0<6<6, k2161 fexy,
c>

oy Al <o) AL )

Replacing the quantifier Y by Y, we arrive at (DIE) for big 6 and if we have the
0<6<0, 6,<6<1
estimate even for all 0 < 6 < 1, then X has (DIE).

k >k

M, K.k

We collect the connections to the Fréchet space conditions (DN) and (€2) as well as to the
(PA), (PQ) variants in the following remark. As it is meant for experts, we will not explicitly
state the definition of the other conditions. The proof of the former connection is mere writing
down the conditions, the proofs of the latter ones uses the characterization (5.1.5), cf. [BDO06,
(5.1)], [BDO07, (1.1)] and [Pis10, 1. & 2.].

Remark 5.1.2. 1) A Fréchet-Hilbert space E has (DIE_) for big 6 iff it has () and it has
(DIE) (or equivalently (DIE) for small 6) iff it has (ﬁ).

i1) An LH space E has (DIE) (or equivalently (DIE) for big 0) iff its strong dual E” has
(DN) and it has (DIE) for small 6 iff its strong dual E” has (DN).

iii) A PLH space X has (DIE) iff it has (PA) and (Pa).

iv) A PLH space X has (DIE) for small 6 iff it has (PA) and (Pﬁ).

v) A PLH space X has (DIE) for big 6 iff it has (PA) and (PQ).
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Before we prove the announced characterization, we compile examples of well-known
spaces having or not having variants of (DIE), cf. [BD07, (1.1), (2.1), (2.2)] and [Pis10,
1.]:

Remark 5.1.3. i) The space 2’ (Q) of Schwartz distributions has (DIE).
ii) The space .7’ of tempered distributions has (DIE).
111) The space & () of distributions with compact support has no form of (DI/FE).
iv) The space ], (€) of ultradistributions of Beurling type has (DIE).

v) If Q is an open and convex subset of R4, then kernels of linear PDOs with constant
coefficients on 2’ (Q) have (DIE) for big 6.

vi) The space &,y (€2) of quasianalytic functions of Roumieu type has (DIE) for small 6 if
Q is open and convex and if w satisfies:

AY AVoWlz+ W) < Weiw () + cs.

c1t W=l ¢ z

vii) In the non-quasianalytic case &, (€2) has (DIE) for small 6.

viii) The space .« (Q) of real analytic functions has (DIE) for small 6.

The mentioned characterization (5.1.5) of (DIE) is based on a simple inequality for real
numbers, the proof of which in turn involves the calculation of the minimum of a real-valued
function, cf. [MV97, (29.13)]. Even though this might seem rather trivial, we want to execute
the proof as it constitutes the fundament of the rest of the section:

Lemma 5.1.4. For every y > 0 there is ¢ > 0 such that with 6 = % the following holds for
all a,b and r > 0:

1
ca"™ b’ < ra+ —b.
r
Proof. Leta,band y > 0 and ¢: (0,00) — R,r = r’a + }b. We calculate the first two
derivatives of ¢ to ¢’ (r) = yr’la - r]—zb and ¢ (r) = y(y— 1) 2a + r%b for all r > 0.

1
Furthermore, ¢’ (r) vanishes exactly in ry = (%)V“ and

y+1-3

b\7 b \™
go”(ro):y(y—l)(—) a+2(—) b >0,
ya ya
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hence ¢ reaches its minimum in ry with value

= Y - [ S D e
(,0 (ro) = fyy+1 b7+l a y+l 4 «yy+l b y+1 ay+l

_ (y7 1 i) gl P
=y +yrl)a b,

Now characterizing (DIE) remains an easy task, cf. [Pis10, 3.]:
Proposition 5.1.5. For a PLH space X = projy ind,en Xy, the following are equivalent:
i) X has (DIE) for small 6,
ii)
v 4 v 4 v 4 VvV 4V V

NeN M>N K>M neN m>n y,>0 0<y<y, erél r>0 feX},
c>

() 7

*

t %
< (o) o], + s,
o=y A+ i,

iii)

vy 4 v 4V 4 Vv 4V

NeN M>N K>M neN m>n y,>0 0<y<y, k21(7)1 r>0
c>

XN By € ¢ (P X¥Byy + 1By,).

Replacing the quantifier Y by Y, we obtain (DIE) for big 6 and if the statements
O<y<y,  v2v
hold for all y > 0 we have (DIE).

Proof. Applying Lemma (5.1.4) to a := H(Xg)t f”;k and b = ||f|ly,, using that the function

Y % is monotonously increasing on the interval (0, o) and an application of the Bipolar
theorem yield the assertions. O

These characterizations are very useful to compare (DIE) with our conditions of type (P3):
Corollary 5.1.6. For PLH spaces X = projyqy ind,ey Xy, any form of (DIE) implies (P})o.

Also concluding our splitting condition (7) from (DIE) in any form is an easy task by
. to|I* toI* .
applying (5.1.4) to a := “(X,]}’) fHKk H(Eg) g‘ . and b := gl cf. [Dom10, (5.6)]:

Corollary 5.1.7. Let E = proj;oy indsey E7, and X = projygy ind,en Xy, be two PLH spaces
that satisfy the same form of (DIE). Then the pair (E, X) satisfies (T).

85



5 Applications

Deep reducedness is also a consequence of any form of (DIE), cf. [Pis10, 8.]:

Corollary 5.1.8. PLH spaces X = projyqy ind,en X, satisfying any form of (DIE) are deeply
reduced.

Proof. Let K > M > N,k > m > n and vy, > 0,c > 0 be chosen according to (5.1.5) iii). Then
we have

XV By C cr X% Biy + EBN,,, for all » > 0,
r
which yields on the one hand

< XNk
XoyBum © [ ) er" By + Xnn € Xy

r>0

1.e., X is deeply reduced in rows, and on the other hand

k

c Xn,
N N N
XBun © [\ X{Xki+ ~Brx © XpXes

r>0
i.e., X is deeply reduced in columns. O

The previous corollaries together with the splitting results (3.4.6) and (3.5.5) yield the gen-
eralization of the famous (DN)-(Q) splitting result to the category of PLH spaces, cf. [BD06,
(5.5)] and [BDOS, (4.1)] for the PLS analogons:

Theorem 5.1.9. Let X be a PLH space and E either a Fréchet-Hilbert space or an LH space
such that E' and X satisfy the same form of (DIE). Then Extp 4 (E,X) = 0 if all the local
Ext groups Ext; y; (Er, Xy) vanish if E is FH, respectively BExt{ , (E, Xy) = 0 if E is LH, for all
N, T € N.

In the theory for partial differential equations results about the regularity of solutions are
important. One way to classify regularity is the behavior of the Fourier transform #& of a
distribution or function at infinity. When we ask for which weight function £ it is true that
kit is p-integrable, we arrive at the spaces B, x, cf. [Hor05, (10.1)], which will be the basic
modules for our hilbertizable but non-nuclear function respectively distribution spaces 7,
and By (Q):

A positive function k on R? is called a temperate weight function if there are C > 0 and
N € N such that

k(€+n) < (1+CIgM) k@) forall £, e R?

and by #" we denote the set of all those functions. For 1 < p < co we define B, to be the
(Banach) space of temperate distributions u € . such that it € L\ (Rd) and kit € L, (Rd),
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equipped with the norm

Qm7 kil . 1< p< oo,
el g 2= 4 ’
Ikl . p = oo,

5.2 Parameter dependence of P (D) in B'2°,7< (Q) spaces

For 1 < p < oo and an open subset Q C R? we denote by B;’Z (Q) the space of all distributions
u € 2'(Q) that locally behave like B, but are unrestricted at infinity or the boundary, i.e.
u-¢ € B, forall ¢ € 7 (Q), obtaining by [Hor05, (10.1.26)] a Fréchet space with continuous
inclusions

E*(Q) = BYL(Q) > 7' (Q).
Given a polynomial P in d variables with degree m € N, we define

P = (Z 0°P@)F| & e R

lalsm

and obtain by [H6r05, (10.6.7)] that for 1 < p < oo and a P-convex open subset Q C RY we
have a short exact sequence of Fréchet spaces

ocC P(D) ocC
0 — A, 5t () — BYS, () — B (Q) — 0 (%)

where A, 5 (Q) is the kernel of P (D) on Bf‘},k (©Q). In his thesis [Her05, Theorem A &
B] Hermanns extended the sequence space representation Bll",cC () = [lien ' due to Vogt
[Vog83b] to 1 < p < oo and proved for p = 1,2 that each exact sequence (x) splits iff
N, b (Q) is a quojection.

In [Vog04, (3.3)] Vogt proved the following result about real analytic parameter depen-
dence: Given an open subset T C R? or a coherent subvariety 7 c R? with dim (T) > 1, the
induced operator

P(D)®.idur): By, () &.o/ (T) — B} (Q) &/ (T)

P,

is surjective if and only if .4/, 5, (€2) satisfies (Q), which is almost never fulfilled if P is elliptic
and Q is convex except in the case d = 1, cf. [Vog06, Theorem 3].
We are able to contribute the following

Corollary 5.2.1. Let E be a PLN space. Then in the above situation

P(D)&,ids: B, (Q)8.E — BYS () &,E
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is surjective whenever either

i) E has (DIE) for big 0 and N, p, (Q) satisfies (), or

ii) E has (DIE) for small 6 and N, p; (Q) satisfies (3).

Proof. The pair (Q/I/zypk Q) ,E) satisfies (T,) in both cases by (5.1.7) and both spaces are
deeply reduced by (5.1.8). Hence (4.3.5) yields that proj1 N o (Q)®:E = 0, which char-
acterizes the surjectivity of P (D)®,idg by (4.3.1) since with the same argument as above

proj' BYS, (Q)&E vanishes. O

In particular, the case (5.2.1) i) contains the Schwartz distributions 2’ (QQ), the ultradistri-
butions of Beurling type & (€2), the tempered distributions .%”, the germs of holomorphic
functions over a one-point set .77 ({0}) (cf. [BD06, p. 331] and &’ (K) for a compact subset
K c R” with non-void interior, cf. [MV97, (31.10)]. The second case (5.2.1) ii) contains the
space of ultradifferentiable functions of Roumieu type &, (€2) for a quasianalytic weight with
condition (5.1.3) vi) or any non-quasianalytic weight.

The case P being an elliptic polynomial shows that having parameter dependence for a
space E with (DIE) for big 6, i.e. the situation in which (5.2.1) i) holds is much less than
admitting a continuous linear right inverse:

Example 5.2.2. Let p = 2,d > 1 and P be an elliptic polynomial. First of all by [Hor05,
(10.8.2)] every open subset 2 C R”" is P-convex, hence we have an exact sequence (x).
By [Hor03, (4.4.2)] the topol_ogical kernels of P (D) in €% (Q) and 2’ (Q) coincide. Hence

N b () does never satisfy (ﬁ) but always satisfies (€2) by [Vog83a, (2.5)]. Thus the sequence

(%) never splits as being a quojection trivially implies satisfying (Q) whereas

P(D)®,idg: B

2,Pk (Q) ®8E — Blz(?]i (Q) ®5E

is surjective for all PLN spaces E with (DIE) for big 6. That the kernel of P (D) satisfies
(Q) was also shown by Frerick and Kalmes, who proved in [FK10, Corollary 3] that in the
above situation the augmented operator P* (D) is surjective on &2’ (2 X R). This is equivalent
to (PQ) for the kernel of P (D) by [BDO06, (8.3)], which yields the assertion considering that
(PQ) coincides with (Q) for Fréchet spaces. Note that this is not true for hypoelliptic operators
and n > 3 as Kalmes proved in [Kal12].

5.3 7, parameter dependence

Choosing the weight function & (¢§) = (1 + |§|2)s/2,§ € RYs € Rand p = 2, we arrive
at the well-known Sobolev spaces H,) = Byy,, cf. [Hor05, (10.1.2) & (7.9)]. The Sobolev
Embedding Theorem [MV97, (14.16)] yields that the space Z;, = (.o H(y) 1s the space of
all €>-functions f on R? with D®f € L, for all a € Ng, endowed with the seminorms induced
by the embeddings into Hy), k € N. Thus Z,, is a Fréchet-Hilbert space containing the space
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€. of ¢*-functions with compact support as a dense subspace. It satisfies (DN) as well as
(Q) but is not nuclear since it is not even Montel by [MV97, (31.15)].

Results as in (5.2) are not of great use since if the kernel of a surjective operator 7" in &,
satisfies (€2), then 7" admits a linear and continuous right inverse by [MV97, 30.1], which in
turn implies the surjectivity of the tensorized operator T®, idg for every Ics E on its own.

However, it seems reasonable to consider 7, and its dual .@iz = indgeny H(_y) as a form of
parameter dependence in analogy to € (Q), 77 (Q) or s (K) parameter dependence, which
leads to the following corollary:

Corollary 5.3.1. i) Let P(D) : 2" (Q) — 2’ (Q) be a linear partial differential operator
with constant coefficients on the space of Schwartz distributions over an open and con-
vex subset Q C R?. Then the tensorized operators P (D) &, id% and P (D) ®, idgi2 are
surjective.

ii) Let T,: .@(’w) (Rd) — .@(’w) (Rd) be a surjective convolution operator on the space of
ultradistributions of Beurling type for an ultradistribution u of compact support. Then
the tensorized operators T,®, idg, and T,8. id@iz are surjective.

Proof. As ,, and its strong dual satisty (DIE) for big 6 by (5.1.2), the completed & tensor
product with PLN spaces that satisfy (DIE) for big 6 as well yields proj' = 0 by (5.1.7) and
(4.3.5). Thus (4.3.1) yields the claim if the kernel of both P (D) and T, satisfy (DIE) for big
6. For P (D) this is (5.1.3) v) and considering 7, we consult [BDO06, (8.5)] to obtain (P€2) and
[BDO8, (5.7)] to obtain (PA) which yield (DIE) for big 6 by (5.1.2) v). O

5.4 Kothe PLH spaces
Following [DV00a, p.189], we define Kothe PLB spaces, also see [Dom04, (1.7)]:

Definition and Remark 5.4.1. 1) A scalar matrix A = (a.,-; N,n)
matrix if the following holds:

. is called a Kothe PLB-
J-N,neN

a) forall j € N there is an N € N such that a;.y, > 0 for all n € N,
b) forall j, N,n € N we have a;y.1, > ajn, and

c) forall j,N,n € N wehave a1 < ajnp.

i1) A Kothe PLB space E, (A) for a Kéthe PLB-matrix A and 1 < p < oo is defined to be

E,(A) = {x = (xj)jeN e KV: NZN neEIN ||x||§€1l = H(xfaﬂ’\”")j

endowed with its natural PLB topology E, (A) = projyey EIIY (A), where

EN (A) = indas E)" (A),
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EN(A) = {x = (1), €E™: Y, < oo} and Iy = {j € N: ajn, > 0 forall n € N).
elN »

ii1) Given a a Kothe PLB-matrix Aand 1 < p < o0, E, (A) is a deeply reduced PLB space as
the family (ey)ye;, of all unit vectors e; := (6,(, j)jeIN is a basis in every E,IY "(A),N,n e N.
The sequence (Iy)yay satisfies Iy C Iy,;, N € N because of i) b) and covers N by 1)
a). Thus the linking maps EY (A) : E)f (A) — E}) (A) are given by the restrictions of
the canonical projections from K™ to K/¥ for all M > N. If no confusion concerning
the Kothe matrix A is possible, we omit it. E, (A) is a PLS space if lim 22 = ( by

n—oo aj:Nn
[MV97, (27.8)] and a PLN space if }, - Ll < oo,
jeN GpNn

This type of spaces is worth investigating not only because their structure is easy to handle,
but also as they appear commonly in applications:

Remark 5.4.2. 1) By [DVO0O0a, (2.1)] for every PLN space E with an equicontinuous basis
there is a Kothe PLB matrix A (not depending on p) such that E = E,, (A).

i1) Many spaces as for example the non-quasianalytic Roumieu classes &, and spaces
of Beurling ultradistributions &, are isomorphic to Kéthe PLB spaces, cf. [Vog83b,
Val78].

iii) The kernels of surjective convolution operators on @(’w) (R), &y (R) or &y (1 - 1,10
are even PLS power series spaces, i.e. Kothe PLB spaces with special matrices A, cf.
[BDO8, p. 578]. Splitting theory for the latter ones has been investigated in [Kun01] by
Kunkle.

We give some simple characterizations of our regularity properties of type (P3) and (DIE).
Please note the duality to Vogt’s discourse [Vog92, section 5] about LF sequence spaces and
the properties (Q) and (wQ), which are just (P3) and (P5), in the old formulation of the quan-
tifiers.

Proposition 5.4.3. Let 1 < p < co. A Kéthe PLB space E, (A) satisfies

i) (P)ifandontyif ¥ 4 ¥ 4 ¥ 7 V <4<
NeN M>N K>M neN m>n k>m JEIN ajMm aj:Nn Kok
c>0

ii) (P3)o if and only if Y 3 Y 4V 4 V '1 < a<8 i aAC .
NeN M>N K>M neN m>n k>m jely M JiNon Kk
e>0 >0

iii) (DIE) if and only if 1-6 0
Vo3 ¥V 3V OV 3V ()T (L),

NeN M>N K>M neN m>n 0<0<1 k>m jely @M 4jKk @y
c>0
As usual, replacing the quantifier ¥o<g<; by do<g,<1Vo<o<o, we arrive at (DIE) for small

0 and replacing it by dy<g,<1Vg,<0<1, we obtain (DIE) for big 6.
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Proof. The proof of the assertions is basically straightforward calculation. We give the main
ideas. To see necessity, we apply the conditions to the functionals induced by the unit vectors
ej, j € Iy. For sufficiency we calculate the terms appearing in the inequalities of the conditions.
LetS >T,seNand f € E; (A)’. We denote f; = f(ej) , J € Ir, use the Holder conjugate
q of p, ie. %n + é = 1 with the common agreement = := 0, and obtain with the duality of
weighted sequence spaces, cf. [MV97, (27.13)]:

2y Al =sup [ (2 )| x e 1) < 1}

=sup{Z( 1 fj)(ajz&sxf)

ety \4jiS.s
J
ajs.s ) jery

Applying the inequalities involving the entries of the Kothe PLB matrix component-wise
yields sufficiency since ¢, are normal Banach sequence spaces for all 1 < r < oo, cf. [Fre94,
(2.2)]. O

'fpSI}

: a;. x-)
H( JiS.sAj jelr

&

Enhancing the proof of sufficiency in the last proposition (5.4.3) slightly, we can compute a
convenient characterization of the conditions (7)) and (7T") for Kéthe PLB spaces:

Proposition 5.4.4. Let 1 < p < co. Two Kéthe PLB space E, (A) and E, (B) satisfy
i) (T,) if and only if

Vv 3 v 3V 3V e
NEN M=N K>M nelN m>n ksm iely “hnbistn = Givabina = Gixibiis
>0 c>0 jEJN

ii) (T) if and only if

v 4 ¥V 4 Y 1V T —<—<_4_°<_
NeN MEN K=M neN mzn kzm icly “Monbittn = dinabina = digibiss
C>0 ]EJN

where Iy = {i € N : agn, > 0 foralln € N}, Jy = {j € N: bjy, >0 foralln e N},N e N.

Proof. As in (5.4.3) the proof is basically straight forward calculation. We give the main idea.
For necessity, we again apply the conditions to the functionals induced by the unit vectors
e;,1 € Iy and e}, j € Jy. For sufficiency, we calculate the terms appearing in the inequalities of
the conditions. Let S > T, s €N, f € E] (A)', g € E] (B)’ and g be the Holder conjugate of p.
Furthermore, let I = {i(v) : v € N} and J7 = {j(u) : u € N} be countings of I7 respectively
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Jr, which we may assume to be infinite. Then we have

1
o)
diss Jierrlle,

{22 )2

1 ai;S,s =1

r ()=

(CEVE W CIDF

( ; )
g.
bjs.s ! jelr

8w
(y),S,s

S,s

)

1/q

ES)
N —

1/q

[ee)

=ZZ

v=1 p=1

Jiw8&iv-jw
AiGuy;s.sDion)- juy:s s

which allows us to apply the inequalities involving the entries of the Kothe PLB matrix
component-wise yielding sufficiency. O

Choosing p = 2, we obtain the Kéthe PLH spaces, which allow for a complete characteriza-
tion of the vanishing of proj' of ¢ tensorized spectra, since the unit vectors ¢;, i € N, allow for
common orthogonal systems which enable us to interpolate Hilbert-Schmidt operators. Note
that under mild assumptions, cf. e.g. (3.4.4) and (4.3.4), only one of the two matrices has to
satisfy (P3)o.

Theorem 5.4.5. Let A and B be two Kéthe PLB matrices that satisfy (P3)o.
Then proj' E, (A)&,E, (B) = 0 if and only if

YV 3 Y 3V IV 1< e o
NeN M>N K>M neN m>n k>m lEIN ai;MmD j;Mm Ai;:NnDj;N,n ai;K kD j:K k
e>0 >0 jeJy

if and only if

vV 3V IV IV L _<c_c 4 _c
NeN M>N K>M neN m>n k>m icly “Mnoitm — GiNnbin - GLRADSKK
c>0 jEJN

Proof. By (5.4.4) the two conditions are equivalent to (7) respectively (T) for the pair
(E> (A), E, (B)) which are equivalent by (3.2.2) since both spaces satisfy (P})o. For the rest of
the proof we use the same notation as in (4.3.5) and (4.3.6), i.e.

P, =(E) (4)&E) (B),E); ()& E} (B)) and
A= ((EY @) &0 (EY B)) (BN, W) &0 (BN, B) ).

The second condition is necessary for the vanishing of proj' 22, in analogy to e.g. (4.3.5).
Indeed, the vanishing of proj' &, is equivalent to /%, being weakly acyclic by (3.1.1) as

the steps of &2, are reflexive by (4.2.10) ii). Hence .77, satisfies (wQ) by [Vog92, (2.3) b)]
which yields (T') for the pair (E, (A), E; (B)) by exchanging the quantifiers and applying to
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elementary tensors. Again similar to the proof of (4.3.5) the first condition implies even the
acyclicity of JZ,: (T,) implies (Q), for elementary tensors. To obtain the norm inequality
for all tensors of the completed o tensor product, we only need interpolation in the sense of
(3.2.6) for Hilbert-Schmidt operators, which is trivial if we have common orthogonal bases.
Indeed, let @, > 0 and (Fy, F),(Go, G;) be two pairs of pre-Hilbert spaces and F,G two
pre-Hilbert spaces with F c FoN F,G € Gy N Gy such that F" and G are of countably infinite,
but without loss of generality infinite, dimension and bases (x;),qy in F and (y j)jeN in G that
are orthogonal with regard to each of the three respective scalar products. Furthermore, let

Ixllz Yl < e lixllg, IVll, +BlIxlF, Iyllg, forallx € F,y € G.
Since all norms are equivalent on R?, this yields in particular
X7 IMlG < 202 11Xz, IVl + 28° lIxlIZ, lIyllz, forall x € F,y € G. (%)

Now letz = )72, 4,x, ® y, € F ® G. By Parseval’s equation and (x) we obtain

T (@ F,G)? = ) AL Il Iyl

v=1

<207 Y AP I, g, +28° > 1P Il i,
v=1 v=1
= 20?0 (z; Fo, Go)* + 2a°0 (3, F1,Gy ),

i.e. we have interpolation with the loss of V2. By (5.4) ii) we may apply this result to our
interpolation problem for Kothe PLH spaces, which completes the proof.
O
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