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Introduction

The question of solvability of a linear partial di�erential equation with constant
coe�cients in some open set X ⊆ Rd

P (D)u = f

is a classical problem. Depending on the properties of the right hand side f
this problem leads in a natural way to the question of surjectivity of P (D) on
various spaces of functions and distributions. Malgrange [25] proved in 1955 that
if the above equation has a distributional solution for every f ∈ C∞(X) then
there is always a solution u ∈ C∞(X). Moreover, Malgrange was able to give a
complete characterization of surjectivity of P (D) on C∞(X) by a certain kind
of geometric condition involving the adjoint P (−D) of P (D). P (D) is surjective
on C∞(X) if and only if X is P -convex for supports. Roughly speaking this
means that for compactly supported u ∈ C∞(X) the location of their support
is determined by the location of the support of P (−D)u. As is well-known, in
general surjectivity of the di�erential operator P (D) on C∞(X) does not imply
surjectivity on D ′(X) (see e.g. [13, Section 6]). In order to have surjectivity
on D ′(X) a second condition apart from P -convexity for supports has to be
satis�ed. As proved by Hörmander [13] in 1962, P (D) is surjective on D ′(X) if
and only if X is P -convex for supports as well as P -convex for singular supports.
The later means, roughly, that for compactly supported distributions u in X the
location of their singular support is determined by the location of the singular
support of P (−D)u. Despite the ingenious elegance of these characterizations,
in concrete examples it can be rather involved to verify their validity.

Although P -convexity for supports does not imply P -convexity for singular
supports in general, Trèves conjectured in [35, Problem 2, page 389] that in the
special case of a di�erential operator in two independent variables, i.e. when
X ⊆ R2, P -convexity for supports of X ⊆ R2 already implies P -convexity for
singular supports of X, or equivalently surjectivity of P (D) on C∞(X) implies
surjectivity on D ′(X).

Another problem concerning the notion of P -convexity for singular supports
considered in this treatise arises from the work of Bonet and Doma«ski. In
[5], Bonet and Doma«ski investigated the parameter dependence problem for
solutions of partial di�erential equations with constant coe�cients, that is the
problem whether for a given family (fλ) of distributions onX depending �nicely�
on a (real) parameter λ it is possible to solve

P (D)uλ = fλ

in such a way that the solution family (uλ) depends on the parameter in the
same way. Their results lead to the following problem [5, Problem 9.1]. Does
surjectivity of P (D) on D ′(X) imply surjectivity of the augmented operator
P+(D) on D ′(X × R), where P+(x1, . . . , xd+1) = P (x1, . . . , xd)? The moti-
vation of this problem will also be discussed in chapter 1. Clearly, one has to
investigate whether P -convexity for supports and singular supports of X implies
P+-convexity for supports and singular supports of X ×R. It will be shown in
chapter 1 that convexity for supports does not cause any problem. P -convexity
for supports of X always implies P+-convexity for supports of X × R. So, as
for Trèves' conjecture, the problem of Bonet and Doma«ski leads again to the



question if some open set, X × R in this case, is convex for singular supports
with respect to the polynomial P+.

Motivated by these two problems, we will prove su�cient conditions for P -
convexity for singular supports in chapter 2. Our main tool will be a deep
result about the continuation of di�erentiability for distributional solutions of
the di�erential equation P (D)u = 0 due to Hörmander [18, Section 11.3]. This
result involves the zeros of a certain function σP de�ned on the non-trivial
subspaces of Rd. After a careful analysis of this function in section 2.1 we give
su�cient conditions for P -convexity for singular supports in section 2.2. The
most important one of these conditions for our purposes is an exterior cone
condition for every boundary point of the set X under consideration. Although
this su�cient condition is far from being necessary in general, we show in section
2.3 that for certain sets X the exterior cone condition in fact characterizes
P -convexity for singular supports. Moreover, it will be shown in section 4.1
that in the two dimensional case the exterior cone condition characterizes P -
convexity for singular supports no matter the geometry of the open (connected)
set X ⊆ R2. Analogous conditions for P -convexity for supports will also be
proved in chapter 2.

In chapter 3 we turn our attention to the problem of Bonet and Doma«ski.
In section 3.1 we �rst present some results showing that for special classes of
di�erential operators (namely semi-elliptic di�erential operators and operators
of principal type) the problem has a positive solution if the underlying set X
satis�es certain geometrical properties. Furthermore, we give an alternative
proof of a result due to Vogt [39] stating that the problem of Bonet and Do-
ma«ski has a positive solution for every elliptic operator. However, in section
3.2 we present an example of a surjective di�erential operator P (D) on D ′(X)
for some open X ⊆ Rd, for arbitrary d ≥ 3, such that the augmented operator
P+(D) is not surjective on D ′(X×R). Thus, we solve the problem of Bonet and
Doma«ski in the negative. Moreover, the di�erential operator in this example is
even hypoelliptic so that it also answers a problem posed by Varol in [38, Section
3].

Additionally, it will be shown in section 4.2 that in the two dimensional case
the problem of Bonet and Doma«ski has a positive solution. But before we do
so, we prove in the a�rmative Trèves' conjecture in section 4.1. Moreover, using
results due to Langenbruch [23] about the continuation of ultradi�erentiability
of ultradistributional solutions u of Beurling type of the di�erential equation
P (D)u = 0 we prove an analogue result of Trèves' conjecture in the setting of
ultradistributions of Beurling type D ′(ω)(X) for non-quasianalytic weights ω in
section 4.3. These spaces of distributions generalize classical distributions by
allowing more �exible growth conditions for the Fourier transforms of the corre-
sponding test functions than the classical Paley-Wiener weights. In particular,
we prove that contrary to d ≥ 3 in the case of d = 2 surjectivity of P (D) on
D ′(ω)(X) does not depend on the speci�c weight function ω. These results of

chapter 4 complement results of Zampieri [44,45] who proved that, again in con-
trast to the case d ≥ 3, in two dimensions surjectivity of a di�erential operator
P (D) on C∞(X) is equivalent to surjectivity on the space of real analytic func-
tions A (X) on X. Contrary to d ≥ 3, there is a geometrical characterization
of surjectivity on C∞(X) due to Hörmander for X ⊆ R2 [18, Theorem 10.8.3]
which can easily be applied to concrete examples. Due to the equivalences of



the surjectivity of a di�erential operator on the various spaces of functions and
distributions mentioned above this characterization is now also applicable in all
the previously mentioned settings.

Throughout this treatise we will use standard notation from the theory of
linear partial di�erential operators and functional analysis. In particular, we
denote by E (X) the space C∞(X) equipped with its standard Fréchet space
topology. For any notion not explained explicitly, see [17,18] and/or [30].

It is a great pleasure for me to express my deep gratitude to Prof. Dr.
Leonhard Frerick and to Prof. Dr. Jochen Wengenroth not only for turning my
attention to the subject of this treatise but also for constant encouragement and
helpful discussions for quite a long time. Moreover, I want to thank Prof. Dr.
Michael Langenbruch for valueable hints concerning the literature and Prof. Dr.
Dietmar Vogt for interesting and stimulating discussions.
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1 The problem of surjectivity of augmented lin-

ear partial di�erential operators with constant

coe�cients

In this short chapter we will introduce one of the problems considered in this
treatise. Let P1 ∈ C[X1 . . . , Xd1 ], P2 ∈ C[X1, . . . , Xd2 ] be polynomials and
X ⊆ Rd1 as well as Y ⊆ Rd2 be open sets such that the di�erential operators

P1(D) : D ′(X)→ D ′(X), P2(D) : D ′(Y )→ D ′(Y )

are both surjective. It is a natural question whether

P1 ⊗ P2 : D ′(X × Y )→ D ′(X × Y )

is surjective again, where P1⊗P2 is the polynomial in d1 + d2 variables de�ned
as P1 ⊗ P2(x, y) = P1(x)P2(y).

D ′(X × Y ) and D ′(X)⊗̂εD ′(Y ), the complete ε-tensor product, are canon-
ically isomorphic as locally convex spaces (see e.g. [36, Theorem 51.7]) and for
this isomorphism we have

P1 ⊗ P2(D) = (P1(D)⊗ idY ) ◦ (idX ⊗ P2(D)),

where idX and idY denote the identity operator on D ′(X) and D ′(Y ), respec-
tively. Obviously, P1(D)⊗ idY and idX ⊗P2(D) commute so that the following
proposition is trivial.

Proposition 1.1. P1 ⊗ P2(D) is surjective on D ′(X × Y ) if and only if both
P1(D)⊗ idY and idX ⊗ P2(D) are surjective on D ′(X × Y ).

It turns out that as a model space for the above, it su�ces to investigate the
special case when Y = R which is a consequence of the next theorem proved
independently by Valdivia [37] and Vogt [40].

Theorem 1.2. For every open X ⊆ Rd we have D ′(X) ∼= (s′)N as locally convex
spaces, where s′ denotes the strong dual of the nuclear Fréchet space of rapidly
decreasing sequences. In particular, D ′(X) ∼= D ′(R).

As the tensor product is commutative modulo canonical isomorphism, by
the above P1 ⊗ P2(D) is surjective on D ′(X × Y ) if and only if both operators
P1(D) ⊗ idR and P2(D) ⊗ idR are surjective on D ′(X × R) and D ′(Y × R),
respectively. Moreover, if we denote for a polynomial P ∈ C[X1, . . . , Xd] by P

+

the polynomial de�ned as

P+(x1, . . . , xd+1) := P (x1, . . . , xd)

we have P (D) ⊗ idR = P+(D). We call the di�erential operator P+(D) the
augmented operator of P (D). With this notion, the original question leads in a
natural way to the following problem posed by Bonet and Doma«ski [5, Problem
9.1]:

Does surjectivity of a di�erential operator on D ′(X) imply surjectivity of the
augmented operator on D ′(X × R)?
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This question is also connected with the parameter dependence of solutions
of the di�erential equation

P (D)uλ = fλ,

see [5]. By the above considerations a positive answer to the problem of Bonet
and Doma«ski also implies the surjectivity of the vector valued operators

P (D) : D ′(X,D ′(Y ))→ D ′(X,D ′(Y )),

where Y ⊆ Rd′ is any non-empty open set.

There are various results about surjectivity of vector valued di�erential op-
erators. Just to mention a few, surjectivity of P (D) : D ′(X,F ) → D ′(X,F ),
where X is convex and F is a nuclear Fréchet space with the linear topological
invariant (Ω) is considered by Bonet and Doma«ski in [6, Section 5]. Examples
for such F are nuclear power series spaces Λr(α), see [30, Section 29]. The case
of F being a Banach space is treated in [4, Theorem 36]. Moreover, Doma«ski
investigates in [9] surjectivity of P (D) : D ′(X,A (U)) → D ′(X,A (U)), where
A (U) denotes the space of real analytic functions on a real analytic manifold
U .

Clearly, the problem of Bonet and Doma«ski has a positive solution when
the operator P (D) has a continuous linear right inverse R on D ′(X) for then
R ⊗ idR is a continuous linear right inverse of P+(D) on D ′(X × R). The
existence of such a right inverse has been characterized by Meise, Taylor, and
Vogt in [28] and [29] via the existence of shifted fundamental solutions with
additional properties. Moreover, as shown in [29], P (D) has a continuous linear
right inverse on D ′(X) if and only if P (D) has a continuous linear right inverse
on E (X). It was already shown by Grothendieck (see e.g. [36, Theorem 52.4])
that elliptic operators P (D) for d ≥ 2 never possess such a right inverse. More
generally, the same holds for hypoelliptic operators, as shown by Vogt [39], [41].

On the other hand, Bonet and Doma«ski proved in [5, Proposition 8.3] that
a positive solution of their problem is equivalent to the kernel of P (D) in D ′(X)
having (PΩ), a linear topological invariant introduced by them in [5]. As is well-
known, for hypoelliptic polynomials the kernel of P (D) in D(X) and in E (X)
coincide as locally convex spaces (this follows for example from [17, Theorem
4.4.2]), so that it is a nuclear Fréchet space and hence has property (PΩ) if and
only if it has the linear topological invariant (Ω). It has already been shown
by Vogt [39] that the kernel of any elliptic operator on E (X) has (Ω), where
X is an arbitrary open subset of Rd. Thus, in case of an elliptic operator the
problem of Bonet and Doma«ski has always a positive solution. Moreover, it is
well-known that for convex open sets X every di�erential operator which is not
identically zero is surjective on D ′(X). Because X×R is convex if this holds for
X the problem of Bonet and Doma«ski also has a positive solution for convex
sets.

By a classical result due to Hörmander [13] P (D) is surjective on D ′(X)
if and only if X is P (D)-convex for supports as well as for singular supports.
Since these notions will be important throughout the whole text we recall their
de�nition.

De�nition 1.3. Let X ⊆ Rd be open and let P ∈ C[X1, . . . , Xd] be a polyno-
mial.
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i) X is called P (D)-convex for supports if to every compact set K ⊆ X there
is another compact set L ⊆ X such that u ∈ E ′(X) and suppP (−D)u ⊆ K
implies suppu ⊆ L.

ii) X is called P (D)-convex for singular supports if to every compact set
K ⊆ X there is another compact set L ⊆ X such that u ∈ E ′(X) and
sing suppP (−D)u ⊆ K implies sing suppu ⊆ L.

It is well-known that for P (D)-convexity for supports it is enough to consider
u ∈ D(X) and that X is P (D)-convex for (singular) supports if and only if for
every u ∈ E ′(X) the distance of Xc to (sing)suppu coincides with the distance
to (sing)suppP (−D)u (see e.g. [18, Theorem 10.6.3 and Theorem 10.7.3]).

A di�erent characterization without the notions of convexity for (singular)
supports for the surjectivity of P (D) on D ′(X) in the spirit of [28], [29] via the
existence of shifted fundamental solutions with additional properties was given
only recently by Wengenroth [43]. Because his characterization of surjectivity
seems di�cult to apply in concrete situations, we will treat the problem of
Bonet and Doma«ski by using Hörmanders classical approach. Thus we are
interested in whether X × R is P+-convex for supports as well as P+-convex
for singular supports in case of X being P -convex for supports and P -convex
for singular supports. We will see immediately that P -convexity for supports
of X is passed on to P+-convexity for supports of X × R. Recall, that P (D)
is surjective on E (X) if and only if X is P -convex for supports, as was proved
by Malgrange [25]. For two locally convex spaces E and F we denote their
complete π-tensor product by E⊗̂πF .

Proposition 1.4. Let E and F be locally convex spaces, E complete, F 6= {0}.
Moreover let T : E → F be continuous and linear.

i) If T ⊗̂πidF : E⊗̂πF → E⊗̂πF is surjective the same holds for T .

ii) If E and F are Fréchet spaces and T is surjective the same holds for
T ⊗̂πidF .

Proof. i) Let y0 ∈ F\{0}. We denote by [y0] the subspace of F generated by
y0 and by P : F → [y0] the corresponding continuous projection. Clearly, via
Ψ(x) := x ⊗ y0 a topological isomorphism from E onto E ⊗π [y0] is de�ned,
so that E ⊗π [y0] is a closed subspace of E⊗̂πF by the completeness of E.
Moreover, E ⊗π [y0] is a complemented subspace of E⊗̂πF with continuous
projection idE⊗̂πP . Because the later commutes with the surjection T ⊗̂πidF
we obtain

T ⊗̂πidF (E ⊗π [y0]) = E ⊗π [y0].

As Ψ−1 ◦ (T ⊗̂πidF ) ◦Ψ = T the surjectivity of T follows.
ii) is a well-known result about the π-tensor product (see e.g. [36, Proposition

43.9]).

Using the nuclearity of E (X) (see e.g. [36, Corollary of Theorem 51.5], [30,
Example 28.9], or [12, Corollaire of Théorème 3]) and E (X)⊗̂εE (R) ∼= E (X×R)
(see e.g. [36, Theorem 51.6] or [12, Section 5]) as well as the nuclearity of D ′(X)
(see e.g. [36, Corollary of Theorem 51.5] or [12, Corollaire of Théorème 3]) and
D ′(X)⊗̂εD ′(R) ∼= D ′(X × R) proposition 1.4 immediately yields the following
result.
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Theorem 1.5. Let X ⊆ Rd be open and P ∈ C[X1, . . . , Xd].

i) P (D) is surjective on E (X) if and only if P+(D) is surjective on E (X×R).

ii) P (D) is surjective on D ′(X) if P+(D) is surjective on D ′(X × R).

Remark 1.6. It should be mentioned that proposition 1.4 immediately implies
that P1 ⊗ P2(D) is surjective on E (X × Y ) if and only if both operators P1(D)
and P2(D) are surjective on E (X) and E (Y ), respectively.

In order to solve the problem of Bonet and Doma«ski, some preparations
have to be made, which will be presented in the following chapters. It will be
shown in section 3.2 that contrary to theorem 1.5 i) in general surjectivity of
P (D) on D ′(X) does not imply surjectivity of the augmented operator P+(D)
on D ′(X ×R) (see also example 3.5). So in general the problem has a negative
solution. However, we will provide some special cases when the answer is positive
(see theorem 3.16 and theorem A at the beginning of chapter 4).
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2 Conditions for P-convexity

The main purpose of this chapter is to prove some su�cient conditions for
P -convexity for singular supports of an open subset X of Rd in section 2.2.
Moreover, we give some su�cient conditions for P -convexity for supports of X
as well. In the third section of this chapter we characterize these properties for
arbitrary polynomials and certain open subsets of Rd having a rather special
geometric form. As a starting point for all this, in the �rst section we consider a
result of Hörmander about the the continuation of di�erentiability from P (D)u
to u for distributions u ∈ D ′(X) with P (D)u = 0. This result involves a certain
function σP de�ned on the subspaces of Rd which we carefully analyse.

Apart from standard notation we use the following. For an a�ne subspace
V of Rd we denote by V ⊥ the orthogonal space of the subspace parallel to V .
In particular, for a hyperplane H = {x ∈ Rd; 〈x,N〉 = α} in Rd, where N ∈
Rd\{0} and α ∈ R we have that H⊥ is the one-dimensional subspace spanned
by N . Moreover, for x = (x1, . . . , xd+1) ∈ Rd+1 we set x′ = (x1, . . . , xd) ∈ Rd
and more generally, we write M ′ = {x′; x ∈ M} for a subset M of Rd+1. This
notation will be used throughout the whole text. Furthermore, a cone is always
assumed to be non-empty.

2.1 Continuation of di�erentiability

As is well-known (see e.g. [18, Theorem 10.7.3]) X is P -convex for singular
supports if and only if for every u ∈ E ′(X) the distance of sing suppP (−D)u
and sing suppu toXc coincide. Obviously sing suppP (−D)u is always contained
in sing suppu so the problem we consider is related to deriving bounds for
sing suppu by knowledge of sing suppP (−D)u. If E is a fundamental solution
of P̌ (where as usual P̌ (x) = P (−x)) we have u = P (−D)u ∗ E so that for the
wave front set WF (u) of u one has

WF (u) ⊆ {(x+ y, ξ); (x, ξ) ∈WF (P (−D)u) and (y, ξ) ∈WF (E)} (1)

(cf. [17, p. 270, Formula (8.2.16)]), where the wave front set of a distribution
v is a subset of Rd × Sd−1 whose projection onto Rd is precisely sing supp v.
Therefore, knowledge about WF (P (−D)u) as well as WF (E) will allow to
obtain bounds for sing suppu.

For every polynomial P there is a speci�c fundamental solution E(P ) for
which the location of its wave front set is well understood. This speci�c funda-
mental solution is given by

∀ϕ ∈ D(X) : 〈E(P ), ϕ〉 = (2π)−d
∫
Rd

dξ

∫
Cd

dζ ϕ̂(−ξ − ζ)
Φ(Pξ, ζ)

Pξ(ζ)
,

where ϕ̂ denotes the Fourier transform of ϕ, Pξ(x) = P (ξ + x) and Φ is a
certain function of polynomials Q and ζ ∈ Cd such that Φ(Q, ζ) vanishes "in a
controlled manner" if Q(ζ) = 0 (see [17, Section 7.3]).

The location of the wave front set of E(P ) is described by means of the so
called localizations at in�nity of P whose de�nition we want to recall. For a
polynomial P and ξ ∈ Rd we set Pξ(η) = P (η + ξ). We denote by L(P ) the set
of limits (in the unique Hausdor� linear topology on the space of polynomials
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of degree not exceeding degP , the degree of P ) of the normalized polynomials

η 7→ Pξ(η)

P̃ξ(0)

as ξ tends to in�nity, where P̃ξ(0) =
√∑

α |P
(α)
ξ (0)|2. More precisely, if N ∈

Rd\{0} then the set of limits where ξ tends to in�nity and ξ/|ξ| → N/|N | is
denoted by LN (P ). Hence, LN (P ) = LαN (P ) for every N ∈ Rd\{0}, α > 0, so
that we can assume without loss of generality that |N | = 1. Obviously, L(P )
as well as LN (P ) are closed subsets of the unit sphere of all polynomials in
d variables of degree not exceeding the degree of P , equipped with the norm
Q 7→ Q̃(0). The non-zero multiples of elements of L(P ) (resp. of LN (P )) are
called localizations of P at in�nity (resp. localizations of P at in�nity in direction

N). Clearly, Q ∈ LN (P̌ ) if and only if Q̌ ∈ L−N (P ).
We de�ne for a polynomial Q

Λ(Q) = {η ∈ Rd;∀ ξ ∈ Rd,∀ t ∈ R : Q(ξ + tη) = Q(ξ)},

which is obviously a subspace of Rd. Moreover, denote by Λ′(Q) the orthogonal
space of Λ(Q). Clearly, by an appropriate linear change of variables Q does
only depend on k variables where k = dimΛ′(Q). In particular, Q is constant
if and only if Λ′(Q) = {0} and by an application of the Tarski-Seidenberg
Theorem Hörmander provedN ∈ Λ(Q) if Q ∈ LN (P ) (see [18, Theorem 10.2.8]).
Therefore, Λ(Q) 6= {0} and hence Λ′(Q) 6= Rd for every Q ∈ L(P ).

By a result due to Hörmander (cf. [18, Theorem 10.2.11]) the wave front set
WF (E(P̌ )) of the above mentioned fundamental solution E(P̌ ) is contained in
the closure of the set

{(x,N) ∈ Rd × Sd−1; x ∈ Λ′(Q) for some Q ∈ LN (P̌ )}.

From this and equation (1) above it clearly follows that for u ∈ E ′(X) the non-
constant elements of L(P̌ ), or better the non-trivial subspaces Λ′(Q), are the
ones which may cause sing suppu to be much larger than sing suppP (−D)u.

De�ne for a polynomial Q, a subspace V of Rd, and t ≥ 1

Q̃V (ξ, t) = sup{|Q(ξ + η)|; η ∈ V, |η| ≤ t}

and
Q̃(ξ, t) = Q̃Rd(ξ, t).

Clearly, for every ξ ∈ Rd and t ≥ 1 Q̃V (ξ, t) is a continuous seminorm, while
Q̃(ξ, t) is a continuous norm depending continuously on ξ and t. If Q ∈ L(P̌ ) is
non-constant then

0 = inf
t≥1

Q̃Λ(Q)(0, t)

Q̃(0, t)
.

Moreover, since Q ∈ L(P̌ ) it follows that there is a sequence (ξn)n∈N in Rd

tending to in�nity such that Q = limn→∞ P̌ξn/
˜̌Pξn(0), hence

0 = inf
t≥1

Q̃Λ(Q)(0, t)

Q̃(0, t)
= inf
t≥1

lim
n→∞

˜̌PΛ(Q)(ξn, t)

˜̌P (ξn, t)
.
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De�ning for an arbitrary subspace V of Rd

σP̌ (V ) = inf
t≥1

lim inf
ξ→∞

˜̌PV (ξ, t)
˜̌P (ξ, t)

,

it follows immediately that σP̌ (V ) = σP (V ). Moreover, for y ∈ Rd we shall
simply write σP (y) instead of σP (span{y}).

Remark 2.1. a) Clearly, if V1 ⊆ V2 are subspaces of Rd it follows from the
de�nition that we have σP (V1) ≤ σP (V2).

b) Recall that a polynomial P is hypoelliptic if and only if all of its lo-
calizations at in�nity are constant (cf. proof of [18, Theorem 11.1.11]).
Therefore it follows that σP (V ) = 1 for every subspace V of Rd if P
is hypoelliptic. Moreover, observe that a polynomial P is hypoelliptic if
and only if the polynomial P̌ (ξ) = P (−ξ) is hypoelliptic (this follows e.g.
from [18, Theorem 11.1.11]) which together with [18, Corollary 11.3.3] and
the above observations gives the equivalence of the following properties of
a polynomial P .

i) Every open set X ⊆ Rd is P -convex for singular supports.

ii) P is hypoelliptic.

iii) σP (V ) 6= 0 for every subspace V of Rd.
iv) σP (y) 6= 0 for every y ∈ Rd\{0}.

c) Let V,W ⊆ Rd be two subspaces and

d(V,W ) = sup
x∈V,|x|=1

( inf
y∈W,|y|=1

|x− y|).

Then
|σP (V )− σP (W )| ≤ C max{d(V,W ), d(W,V )},

where C > 0 is a constant depending only on P (cf. [18, Section 11.3]).
Since for unit vectors N1, N2 ∈ Sd−1 we have

d(span{N1}, span{N2}) ≤ |N1 −N2|

it follows in particular that σP is a continuous function on the d-dimensional
unit sphere Sd−1.

The function σP is much more powerful than simply indicating the existence
of non-constant elements of L(P̌ ). The values of σP govern the possibility to
continue di�erentiability of zero solutions of P (D) across a hyperplane

H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R.

Let X ⊆ Rd be open, x0 ∈ X and N ∈ Sd−1 be such that σP (N) 6= 0. Then
there is a neighborhood U ⊆ X of x0 such that u ∈ E (U) whenever u ∈ D ′(X)
with P (D)u = 0 as well as u|X− ∈ E (X−), where X− = {x ∈ X; 〈x,N〉 <
〈x0, N〉}. This is only a very special case of the following deep theorem due to
Hörmander (cf. [18, Theorem 11.3.6]).
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Theorem 2.2. Let X be an open subset of Rd, x0 ∈ X and let φ1, . . . , φk ∈
C1(X) be real valued functions such that ∇φ1(x0), . . . ,∇φk(x0) are linearly in-
dependent. Assume that σP (W ) 6= 0 for the linear space W spanned by the
gradients ∇φ1(x0), . . . ,∇φk(x0) and set

X− = {x ∈ X; φj(x) < φj(x0) for some j = 1, . . . , k}.

If u ∈ D ′(X), P (D)u ∈ E (X) and u ∈ E (X−) then u ∈ E (U) in a neighborhood
U of x0 which is independent of u.

Some kind of converse of the above theorem is also true. Again it is due to
Hörmander (cf. [18, Theorem 11.3.1]).

Theorem 2.3. Let V be a linear subspace of Rd such that σP (V ⊥) = 0. For
every non-negative integer k one can �nd u ∈ Ck(Rd) with P (D)u = 0 and
sing suppu = V . More precisely, we can �nd u so that u 6= Ck+1(U) for any
open set U intersecting V .

As a consequence of the previous two deep results one obtains the following
corollary (see [18, Corollary 11.3.7]). This will be the starting point of deriving
su�cient conditions for P -convexity for singular supports.

Corollary 2.4. Let X1 ⊆ X2 be open convex sets in Rd and P (D) a di�erential
operator with constant coe�cients. Then the following conditions are equivalent:

i) Every solution u ∈ D ′(X2) of the equation P (D)u = 0 with u|X1 ∈ E (X1)
already belongs to E (X2).

ii) Every hyperplane H with σP (H⊥) = 0 which intersects X2 already inter-
sects X1.

One way we use σP (V ) is given by the following result which is a reformu-
lation of Corollary 2.4 from [10] more suitable for our aims.

Proposition 2.5. Let X1 ⊆ X2 be open and convex, and let P be a non-constant
polynomial. Then the following are equivalent:

i) Every u ∈ D ′(X2) satisfying P (D)u ∈ E (X2) as well as u|X1 ∈ E (X1)
already belongs to E (X2).

ii) Every hyperplane H with σP (H⊥) = 0 which intersects X2 already inter-
sects X1.

Proof. That i) implies ii) is just a special case of Corollary 2.4. Let u ∈ D ′(X2)
satisfy P (D)u ∈ E (X2) as well as u|X1

∈ E (X1). By the convexity of X2 we �nd
v ∈ E (X2) such that P (D)v = P (D)u. Therefore w := u− v ∈ D ′(X2) satis�es
P (D)w = 0 and w|X1 ∈ E (X1). Now if ii) holds it follows from Corollary 2.4
that w ∈ E (X2), thus u ∈ E (X2).

In order to apply the above proposition it is crucial to know the zeros of σP
on Sd−1, or more generally, to identify the subspaces V ⊆ Rd with σP (V ) = 0.
Since the very de�nition of σP seems not very appropriate to investigate this
question we give a di�erent representation of σP . At the beginning of this
section we have already indicated the connection between the localizations of P
at in�nity and the function σP . The next lemma strengthens this connection.
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Its usefulness will be shown in chapter 3 when dealing with a problem posed by
Bonet and Doma«ski as well as in chapter 4 where we will prove a conjecture
by Trèves.

Lemma 2.6. Let P be of degree m, P =
∑m
j=0 Pj with Pj being a homogeneous

polynomial of degree j, Pm the principal part of P .

i) For every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, t)

P̃ (ξ, t)
= inf
Q∈L(P )

Q̃V (0, t)

Q̃(0, t)
.

ii) Let N ∈ Sd−1 and Q ∈ LN (P ). If Pm(N) 6= 0 then Q is constant.

iii) If P is non-elliptic then for every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, t)

P̃ (ξ, t)
= inf
N∈Sd−1,Pm(N)=0

inf
Q∈LN (P )

Q̃V (0, t)

Q̃(0, t)
.

iv) With the convention that the in�mum taken over an empty subset of [0, 1]
equals 1 we have

σP (V ) = inf
t≥1

inf
N∈Sd−1,Pm(N)=0

inf
Q∈LN (P )

Q̃V (0, t)

Q̃(0, t)
.

Proof. i) Since for every subspace V and each t ≥ 1 the maps R 7→ R̃V (0, t)
are continuous seminorms on the space of all polynomials R in d variables and
because P̃V (ξ, t) = (P̃ξ)V (0, t) it follows immediately from the de�nition that

Q̃V (0, t)

Q̃(0, t)
≥ lim inf

ξ→∞

P̃V (ξ, t)

P̃ (ξ, t)

for every Q ∈ L(P ).
Moreover, if (ξn)n∈N tends to in�nity such that

lim inf
ξ→∞

P̃V (ξ, t)

P̃ (ξ, t)
= lim
n→∞

P̃V (ξn, t)

P̃ (ξn, t)
= lim
n→∞

(P̃ξn)V (0, t)

P̃ξn(0, t)

we can extract a subsequence of (ξn)n∈N which we again denote by (ξn)n∈N
such that the sequence of normalized polynomials Pξn/P̃ξn(0) converges in the
compact unit sphere of all polynomials in d variables of degree at most m. This
limit belongs to L(P ) and we get

lim inf
ξ→∞

P̃V (ξ, t)

P̃ (ξ, t)
≥ inf
Q∈L(P )

Q̃V (0, t)

Q̃(0, t)

completing the proof of i).
The proof of ii) is a consequence of Taylor's formula. For ξn ∈ Rd we have

Pξn(x) =
∑

0≤|α|≤j≤m

P
(α)
j (ξn)

α!
xα

= |ξn|m
 ∑

0≤j≤m

|ξn|j

|ξn|m
Pj(

ξn
|ξn|

) +
∑

0<|α|≤j≤m

|ξn|j−|α|

|ξn|mα!
P

(α)
j (

ξn
|ξn|

)xα

 .
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Moreover

P̃ξn(0) =

√√√√ ∑
0≤|α|≤m

|
m∑

j=|α|

P
(α)
j (ξn)|2

= |ξn|m
√√√√| m∑

j=0

Pj(
ξn
|ξn|

)
|ξn|j
|ξn|m

|2 +
∑

0<|α|≤m

|
m∑

j=|α|

P
(α)
j (

ξn
|ξn|

)
|ξn|j−|α|
|ξn|m

|2,

which implies that

lim
n→∞

Pξn(x)

P̃ξn(0)
=

Pm(N)

|Pm(N)|

for all x ∈ Rd if limn→∞
ξn
|ξn| = N . This proves ii).

iii) is an immediate consequence of i), ii), and lim infξ→∞ P̃V (ξ, t)/P̃ (ξ, t) ≤ 1
while iv) follows directly from iii).

When treating the problem of Bonet and Doma«ski from chapter 1 we will
be interested in the P+-convexity for singular supports of X×R. Of course, one
could simply use the function σP+ ignoring the fact that P+ does not depend
on the last variable as well as the special geometric form of X × R. Instead of
considering σP+ it will turn out to be more convenient to consider for a subspace
V of Rd

σ0
P (V ) := inf

t>1,ξ∈Rd
P̃V (ξ, t)/P̃ (ξ, t).

This function has already been used by Hörmander in [15, Section 5] to discuss
�Hölder estimates� for solutions of partial di�erential equations. The reason for
considering this quantity here is given by the following lemma from [10] which
reveals a �rst connection between σP+ and σ0

P . Again we write σ0
P (y) instead

of σ0
P (span{y}) for simplicity.

Lemma 2.7. Let P ∈ C[X1, . . . , Xd] and let πd : Rd+1 → Rd+1, πd(x) =
(x1, . . . , xd, 0). For a subspace W of Rd+1 we identify the subspace W ′ of Rd
and πd(W ). Then the following hold.

i) σP+(W ′ × {0}) = σP+(W ′ × R) = σ0
P (W ′).

ii) σP+(W ) = 0 if and only if σ0
P (W ′) = 0.

Proof. By de�nition we have for (ξ, η) ∈ Rd × R

P̃+
W ′×R((ξ, η), t) = sup{|P (ξ + x′)|; (x′, xd+1) ∈W ′ × R, |(x′, xd+1)| ≤ t}

= sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ t}
= P̃W ′(ξ, t) = P̃+

W ′×{0}((ξ, η), t).

In particular, this implies

P̃+((ξ, η), t) = P̃ (ξ, t).
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Hence

lim inf
(ξ,η)→∞

P̃+
W ′×R((ξ, η), t)

P̃+((ξ, η), t)
= sup

r>0
inf

|(ξ,η)|>r

P̃+
W ′×R((ξ, η), t)

P̃+((ξ, η), t)

= sup
r>0

inf
|(ξ,η)|>r

P̃W ′(ξ, t)

P̃ (ξ, t)

= inf
ξ∈Rd

P̃W ′(ξ, t)

P̃ (ξ, t)

as well as

lim inf
(ξ,η)→∞

P̃+
W ′×{0}((ξ, η), t)

P̃+((ξ, η), t)
= inf
ξ∈Rd

P̃W ′(ξ, t)

P̃ (ξ, t)

which gives

σP+(W ′ × R) = inf
t>1

lim inf
(ξ,η)→∞

P̃+
W ′×R((ξ, η), t)

P̃+((ξ, η), t)
= σ0

P (W ′),

as well as

σP+(W ′ × {0}) = σ0
P (W ′).

Thus i) is proved.

In order to prove ii) assume �rst that W is contained in the kernel of πd, i.e.
W ⊆ {0} × R. Then we have for (ξ, η) ∈ Rd × R

P̃+
W ((ξ, η), t) = sup{|P (ξ)|; (0, xd+1) ∈W, |xd+1| ≤ t} = |P (ξ)| = P̃W ′(ξ, t).

As in the proof of i) it then follows that

σP+(W ) = inf
t>1,ξ∈Rd

P̃W ′(ξ, t)

P̃ (ξ, t)
= σ0

P (W ′).

Hence, without loss of generality, letW * {0}×R. Then, by setting p1 := ‖Π|W ‖
we get p1 > 0 as well as

P̃+
W ((ξ, η), t) = sup{|P (ξ + x′)|; (x′, xd+1) ∈W, |(x′, xd+1)| ≤ t}

≤ sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ tp1}
= P̃W ′(ξ, tp1).

Now we distinguish two cases. If πd|W : W →W ′ is not injective we clearly have
{(0, y); y ∈ R} ⊆ W . Therefore, recalling that πd as an orthogonal projection
satis�es p1 = ‖πd|W ‖ ≤ ‖πd‖ ≤ 1

sup{|P (ξ+x′)|;x′ ∈W ′, |x′| ≤ tp1} = sup{|P (ξ+x′)|; (x′, xd+1) ∈W, |(x′, xd+1)| ≤ t}

because if x′0 ∈ W ′ with |x′0| ≤ tp1 is a point where the supremum on the left
hand side is attained then (x′0, 0) ∈W with |(x′0, 0)| ≤ t. Therefore

P̃W ′(ξ, tp1) = P̃+
W ((ξ, η), t).
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In case of πd|W : W →W ′ being injective (πd|W )−1 : W ′ →W is well-de�ned
and continuous and we get

P̃W ′(ξ, t ‖(Π|W )−1‖−1) = sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ t ‖(πd|W )−1‖−1}
≤ sup{|P (ξ + x′)|; (x′, xd+1) ∈W, |(x′, xd+1)| ≤ t}
= P̃+

W ((ξ, η), t).

Hence, in both cases there are p1, p2 > 0 such that

P̃W ′(ξ, tp2) ≤ P̃+
W ((ξ, η), t) ≤ P̃W ′(ξ, tp1)

for all ξ ∈ Rd, η ∈ R, t ≥ 1. Altogether this yields

inf
ξ∈Rd

P̃W ′(ξ, tp2)

P̃ (ξ, t)
≤ lim inf

(ξ,η)→∞

P̃+
W ((ξ, η), t)

P̃+((ξ, η), t)
≤ inf
ξ∈Rd

P̃W ′(ξ, tp1)

P̃ (ξ, t)
,

so that

inf
t≥1,ξ∈Rd

P̃W ′(ξ, tp2)

P̃ (ξ, t)
≤ σP+(W ) ≤ inf

t≥1,ξ∈Rd

P̃W ′(ξ, tp1)

P̃ (ξ, t)
. (2)

Now, as on the �nite dimensional vector space

{Q|W ′ ;Q ∈ C[X1, . . . , Xd],degQ ≤ degP}

all norms are equivalent, there are Cj > 0, j = 1, 2, such that for every Q ∈
C[X1, . . . , Xd] with degQ ≤ degP we have for j = 1, 2

1/Cj sup
x′∈W ′,|x′|≤pj

|Q(x′)| ≤ sup
x′∈W ′,|x′|≤1

|Q(x′)| ≤ Cj sup
x′∈W ′,|x′|≤pj

|Q(x′)|.

Since for arbitrary ξ ∈ Rd, and t > 1 the degree of the polynomial y 7→ P (ξ+ty)
equals that of P it follows that for j = 1, 2

1/Cj
P̃W ′(ξ, tpj)

P̃ (ξ, t)
≤ P̃W ′(ξ, t)

P̃ (ξ, t)
≤ Cj

P̃W ′(ξ, tpj)

P̃ (ξ, t)
(3)

for all ξ ∈ Rd and t > 1. Now ii) follows from the inequalities (2) and (3)
completing the proof of the lemma.

Lemma 2.7 will be used in the next two sections to give su�cient conditions,
respectively to give a characterization for certain sets X, of the P+-convexity
for singular supports of X ×R in terms of P and X. As an application of these
results it will be shown in example 3.5 that for the hypoelliptic polynomial in
two variables inducing the heat operator P (ξ1, ξ2) = iξ1 + ξ2

2 there are open
subsets X ⊆ R2 such that X ×R is not P+-convex for singular supports. As P
is hypoelliptic this set X is P -convex for singular supports. However, the set X
in this example is not P -convex for supports.
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2.2 Su�cient conditions for P-convexity

In this section we will mainly give su�cient conditions for P -convexity for sin-
gular supports. Moreover, we also present su�cient conditions for P -convexity
for supports. Part i) of theorem 2.9, a su�cient condition for P -convexity for
supports, is originally due to Tervo [34, Theorem 4.3]. We give a simpli�ed and
more transparent proof here. Moreover, our proof has the advantage that it can
easily be modi�ed in such a way as to give a similar su�cient conditions for
P -convexity for singular supports. We denote by B(0, r) the open ball about
the origin with radius r > 0. Recall that a hyperplane

H = {x ∈ Rd; 〈x,N〉 = α}

with N ∈ Sd−1, α ∈ R is called characteristic for a polynomial P if Pm(N) = 0,
where Pm is the principal part of P . The next well-known theorem will be used
several times in this section so we state it here for the reader's convenience (see
e.g. [17, Theorem 8.6.8]).

Theorem 2.8. Let X1 and X2 be open convex sets in Rd such that X1 ⊆ X2

and let P ∈ C[X1, . . . , Xd] be non-constant. Then the following are equivalent.

i) Every u ∈ D ′(X2) with P (D)u = 0 and u|X1
= 0 vanishes in X2.

ii) Every characteristic hyperplane for P which intersects X2 already inter-
sects X1.

It should be noted that in part iii) of the following theorem the P+-convexity
for singular supports of X × R is derived from properties of P and X rather
than from properties of P+ and X × R.

Theorem 2.9. Let X be an open, connected subset of Rd and let P ∈ C[X1, . . . , Xd]
be a non-constant polynomial with principal part Pm.

i) X is P -convex for supports if for every x ∈ ∂X and every r > 0 there
are convex sets C1 ⊆ C2 ⊆ Rd\X such that x ∈ C2, C1 ⊆ Rd\B(0, r), and
every characteristic hyperplane for P which intersects C2 also intersects
C1.

ii) X is P -convex for singular supports if for every x ∈ ∂X and every r > 0
there are convex sets C1 ⊆ C2 ⊆ Rd\X such that x ∈ C2, C1 ⊆ Rd\B(0, r),
and every hyperplane H with σP (H⊥) = 0 intersecting C2 already inter-
sects C1.

iii) X × R is P+-convex for singular supports if for every x ∈ ∂X and every
r > 0 there are convex sets C1 ⊆ C2 ⊆ Rd\X such that x ∈ C2, C1 ⊆
Rd\B(0, r), and every hyperplane H with σ0

P (H⊥) = 0 intersecting C2

already intersects C1.

Proof. In order to prove i) we �x u ∈ E ′(X) and set K := suppP (−D)u and
δ := dist(K,Xc). Moreover, set L := suppu and let r > δ be such that
L ⊆ B(0, r − δ). Let x ∈ ∂X be arbitrary and choose C1 and C2 according
to i) for x and r. Then Xj := B(0, δ) + Cj , j = 1, 2, are open convex sets.

Recall that by extending any compactly supported distribution by zero to
all of Rd we have E ′(X) ⊆ D ′(Rd) and thus E ′(X) ⊆ D ′(Rd) ⊆ D ′(Y ) for every
open subset Y ⊆ Rd.
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By choice of r we have u|X1
= 0 and X2 ∩ K = ∅ because of C2 ⊆ Rd\X

so that also P (−D)u|X2
= 0. Hence, by the hypothesis and theorem 2.8 we

conclude u|X2
= 0, in particular u vanishes in B(x, δ) and as x ∈ ∂X was

chosen arbitrarily

dist(suppu,Xc) ≥ δ = dist(suppP (−D)u,Xc)

follows. Since suppP (−D)u ⊆ suppu we have equality of the distances, thus X
is P -convex for supports by [18, Theorem 10.6.3].

Referring to proposition 2.5 instead of theorem 2.8 and replacing supports
by singular supports in the proof of part i) immediately gives ii).

In order to proof iii) we observe that with C1, C2 ⊆ Rd trivially C1 ×R and
C2 × R are convex, open, and non-empty. Assume that for some unit vector
from Rd+1 N = (N ′, Nd+1) ∈ Sd and α ∈ R the hyperplane

H = {x ∈ Rd+1; 〈x,N〉 = α}

satis�es σP+(N) = 0, H ∩ (C2 × R) 6= ∅ and H ∩ (C1 × R) = ∅. Without loss
of generality let C1 × R ⊆ {x ∈ Rd+1; 〈x,N〉 > α}. But this implies Nd+1 = 0
because otherwise we had

(x,
1

Nd+1
(α− 〈x,N ′〉) ∈ (C1 × R) ∩H

for any x ∈ C1. Thus, Nd+1 = 0 so that H = {x ∈ Rd; 〈x,N ′〉 = α} × R
implying H ′ ∩ C2 6= ∅ as well as H ′ ∩ C1 = ∅. By σP+(N) = 0 and lemma 2.7
ii) we conclude σ0

P (N ′) = 0.
Now, if (x, t) ∈ ∂X × R = ∂(X × R) and r > 0 are arbitrary let C1 and

C2 be as in iii) for x and r. From the hypothesis and what we have observed
above C1 ×R ⊆ C2 ×R are convex, (x, t) ∈ C2 ×R ⊆ Rd+1\(X ×R), C1 ×R ⊆
Rd+1\B(0, R) and every hyperplane H ∈ Rd+1 with σP+(H⊥) = 0 intersecting
C2×R also intersects C1×R. By ii) X ×R is therefore P+-convex for singular
supports.

In the above theorem, the condition that C1 ⊆ Rd\B(0, r) together with the
condition that certain hyperplanes intersecting C2 should also intersect C1 may
sometimes be hard to verify in concrete examples. Therefore we consider in the
sequel convex cones as special cases for C2 and we will see that in this case one
can give a su�cient condition for the convexity properties solely in terms of a
single convex set.

Recall that a cone C is called proper if it does not contain any a�ne subspace
of dimension one. Moreover, recall that for an open convex cone Γ ⊆ Rd its dual
cone is de�ned as

Γ◦ := {ξ ∈ Rd; ∀ y ∈ Γ : 〈y, ξ〉 ≥ 0}.

It is a closed proper convex cone in Rd. On the other hand, every closed proper
convex cone C in Rd is the dual cone of a unique open convex cone which is
given by

Γ := {y ∈ Rd; ∀ξ ∈ C\{0} : 〈y, ξ〉 > 0} = {y ∈ Rd; ∀ξ ∈ C ∩ Sd−1 : 〈y, ξ〉 > 0}.
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Γ is obviously a convex cone. To see that Rd\Γ is closed one uses the compact-
ness of C ∩ Sd−1 while the proof of C = Γ◦ can be done with the Hahn-Banach
Theorem (cf. [17, p. 257]). Therefore, we use the notation Γ◦ also for arbitrary
closed convex proper cones.

Before we continue to prove su�cient conditions for P -convexity we need
some more preparations. We begin with the following proposition containing
some elementary geometric results which will be useful in the sequel.

Proposition 2.10. a) If C ⊆ Rd is closed, convex, and unbounded, then for
every x ∈ C there is ω ∈ Sd−1 such that x+ tω ∈ C for every t ≥ 0.

b) Let Γ◦ 6= {0} be a closed proper convex cone in Rd and N ∈ Sd−1. For
c ∈ R let Hc := {x ∈ Rd; 〈x,N〉 = c}. Then the following are equivalent.

i) H0 ∩ Γ◦ = {0}.
ii) N ∈ Γ or −N ∈ Γ.

iii) If x ∈ Rd and Hc ∩ (x+ Γ◦) 6= ∅ then Hc ∩ (x+ Γ◦) is bounded.

iv) If x ∈ Hc then Hc ∩ (x+ Γ◦) = {x}.

Proof. a) Let x ∈ C. Replacing C by C − x we may assume without loss of
generality that x = 0. Let (xn)n∈N be a sequence in C with |xn| ≥ n for
all n ∈ N. Because 0 ∈ C we have xn/|xn| ∈ C for every n ∈ N. Passing
to a subsequence if necessary, we can assume that (xn/|xn|)n∈N converges to
ω ∈ Sd−1. For every t ≥ 0 we have t/|xn| < 1 for n su�ciently large, hence
txn/|xn| ∈ C. Since C is closed it follows that tω ∈ C.

b) By translating and changing c appropriately, we can assume throughout
the proof that x = 0. Obviously, i) is then equivalent to iv).

To show that i) implies ii) let

H+ := {x ∈ Rd; 〈x,N〉 > 0} and H− := {x ∈ Rd; 〈x,N〉 < 0}.

If H+ ∩ Γ◦ 6= ∅ then H− ∩ Γ◦ = ∅. Indeed, assume there are x 6= y in Γ◦ such
that 〈x,N〉 > 0 and 〈y,N〉 < 0. Convexity of Γ◦ together with H0 ∩ Γ◦ = {0}
imply the existence of λ ∈ (0, 1) such that λx + (1 − λ)y = 0, hence −x =
(1−λ)/λ y. Since Γ◦ is a cone and (1−λ)/λ > 0 it follows that −x ∈ Γ◦. Hence
{0} 6= span{x} ⊆ Γ◦ contradicting that Γ◦ is proper.

Analogously one shows that H− ∩ Γ◦ 6= ∅ implies H+ ∩ Γ◦ = ∅. Moreover,
assuming H+ ∩ Γ◦ = ∅ as well as H− ∩ Γ◦ = ∅ implies Γ◦ ⊆ H0. This yields
Γ◦ = {0} because of Γ◦ ∩H0 = {0}, contradicting Γ◦ 6= {0}.

Without loss of generality we therefore may assume that H+∩Γ◦ 6= ∅. From
the above we obtain Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 ≥ 0}. Since H0 ∩ Γ◦ = {0} it follows
that for all x ∈ Γ◦\{0} we have 〈x,N〉 > 0 which shows ii).

That ii) implies i) is trivial.
In order to show that iii) implies i) assume that H0 ∩Γ◦ 6= {0}. Then, there

is ω ∈ Sd−1 such that tω ∈ H0 ∩ Γ◦ for every t ≥ 0. If x ∈ Hc ∩ Γ◦ it follows
that x+ tω ∈ Hc. Moreover, because of x ∈ Γ◦ we have

∀ y ∈ Γ, t ≥ 0 : 〈y, x+ tω〉 = 〈y, x〉+ t〈y, ω〉 ≥ 0,

hence x+ tω ∈ Hc ∩ Γ◦ for all t ≥ 0 contradicting the boundedness of Hc ∩ Γ◦.
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To show that i) implies iii) assume that Hc∩Γ◦ 6= ∅ is unbounded. It follows
from a) that for x ∈ Hc ∩ Γ◦\{0} there is ω ∈ Sd−1 such that x+ tω ∈ Hc ∩ Γ◦

for all t ≥ 0. Thus
c = 〈x,N〉 = 〈x,N〉+ t〈ω,N〉,

i.e. ω ∈ H0, and
∀y ∈ Γ, t ≥ 0 : 0 ≤ 〈y, x+ tω〉.

Since Γ is a cone, this implies

∀y ∈ Γ, t ≥ 0, ε > 0 : 0 ≤ 〈εy, x+ t/ε ω〉 = ε〈y, x〉+ t〈y, ω〉.

The special case t := 〈y, x〉 gives

∀y ∈ Γ, ε > 0 : 0 ≤ (ε+ 〈y, ω〉)〈y, x〉.

Because x ∈ Γ◦\{0} we have 〈y, x〉 > 0 for every y ∈ Γ, so that the above
inequality yields 〈y, ω〉 ≥ 0 for all y ∈ Γ, thus ω ∈ Γ◦. We conclude that
ω ∈ H0 ∩ Γ◦ ∩ Sd−1 contradicting i).

With the aid of the above proposition and theorem 2.9 we can now prove
the next theorem.

Theorem 2.11. Let X be an open, connected subset of Rd and let P be a
non-constant polynomial with principal part Pm.

i) X is P -convex for supports if for every x ∈ ∂X there is an open convex
cone Γ 6= Rd such that (x+ Γ◦) ∩X = ∅ and Pm(y) 6= 0 for all y ∈ Γ.

ii) X is P -convex for singular supports if for every x ∈ ∂X there is an open
convex cone Γ 6= Rd such that (x + Γ◦) ∩ X = ∅ and σP (y) 6= 0 for all
y ∈ Γ.

iii) X ×R is P+-convex for singular supports if for every x ∈ ∂X there is an
open convex cone Γ 6= Rd such that (x + Γ◦) ∩X = ∅ and σ0

P (y) 6= 0 for
all y ∈ Γ.

Proof. We begin with a general observation. Let x ∈ Rd be arbitrary and let
Γ◦ 6= {0} be a closed proper convex cone in Rd. Moreover, let π be a supporting
hyperplane of C2 := x + Γ◦ with π ∩ (x + Γ◦) = {x0}. If r > 0 let π̃ be a
halfspace with boundary parallel to π such that C1 := (x+Γ◦)∩ π̃ ⊆ Rd\B(0, r)
is unbounded. From the choice of π it follows that C2\C1 is bounded.

Now, if H = {ξ ∈ Rd; 〈ξ,N〉 = α} is a hyperplane intersecting C2 then
by proposition 2.10 b) H ∩ C2 is unbounded if and only if {N,−N} ∩ Γ = ∅.
As C2\C1 is bounded we obtain that the hyperplane H intersecting C2 also
intersects C1 if and only if {N,−N} ∩ Γ = ∅.

In order to prove i) let x ∈ ∂X be arbitrary and let Γ be as in the hypothesis
of i). Setting C2 as above we have x ∈ C2 ⊆ Rd\X. For r > 0 arbitary let C1

be as above, too. Then C1 ⊆ Rd\B(0, r). Moreover, C1 ⊆ C2 are convex sets
and by hypothesis and the fact that Pm(N) 6= 0 if and only if Pm(−N) 6= 0 it
follows from the above observation that every characteristic hyperplane for P
which intersects C2 also intersects C1. From theorem 2.9 i) it follows that X is
P -convex for supports.

Taking into account that σP (y) = σP (−y) and σ0
P (y) = σ0

P (−y) for all
y ∈ Rd the proofs of ii) and iii) are obvious modi�cations of the above.
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We provide an alternative way to proof theorem 2.11 as was originally done
in [22]. This proof will involve two results which are interesting in their own
right, see propositions 2.12 and 2.15 below.

Proposition 2.12. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd, and
let P be a non-constant polynomial. If for X := x0 + Γ no hyperplane

H = {x ∈ Rd; 〈x,N〉 = α}

with σP (H⊥) = 0 intersects X only in x0, the following holds.
Each u ∈ D ′(X) with P (D)u ∈ E (X) which is C∞ outside a bounded subset

of X already belongs to E (X).

Proof. Let u ∈ D ′(X) satisfy P (D)u ∈ E (X) and assume that u is C∞ outside
a bounded subset of X. Since Γ is a proper cone, there is a hyperplane π
intersecting X only in x0. Let Hπ be a halfspace with boundary parallel to
π such that X1 := X ∩ Hπ 6= ∅ is unbounded and u|X1

∈ E (X1). Denoting
X2 := X we have convex sets X1 ⊆ X2 and by the hypothesis and proposition
2.10, each hyperplane H with σP (H⊥) = 0 and H ∩X2 6= ∅ already intersects
X1. Proposition 2.5 now gives u ∈ E (X).

In order to obtain an analogous result of the above for P+ and X × R only
involving properties of P and X we continue with some geometrical considera-
tions. Recall that for M ∈ Rd+1 and A ⊆ Rd+1 we write

M ′ = (M1, . . . ,Md) ∈ Rd and A′ = {ξ′; ξ ∈ A}.

Proposition 2.13. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd, and
N ∈ Sd−1 such that π := {x ∈ Rd; 〈x,N〉 = α} is a supporting hyperplane of
x0 + Γ intersecting x0 + Γ only in x0 and x0 + Γ ⊆ {x ∈ Rd; 〈x,N〉 > α}. For
β > α set X̃1 := {x ∈ x0+Γ; 〈x,N〉 > β}, X1 := X̃1×R, and X2 := (x0+Γ)×R.

If H = {x ∈ Rd+1; 〈x,M〉 = c} is a hyperplane with X2 ∩ H 6= ∅ as well
as X1 ∩ H = ∅ then the hyperplane Hx0 := {x ∈ Rd+1; 〈x,M〉 = 〈x0,M

′〉}
is a supporting hyperplane of X2 with Hx0

∩ X2 = {x0} × R and Md+1 = 0.
Moreover, H ′x0

= {x ∈ Rd; 〈x,M ′〉 = 〈x0,M
′〉} is a supporting hyperplane of

x0 + Γ such that H ′x0
∩ (x0 + Γ) = {x0}.

Proof. Without loss of generality, let x0 = 0. In this case, α = 0 andH0 contains
0. Suppose H0 is not a supporting hyperplane of X2. Because of 0 ∈ H0 ∩X2

this means that there are v, w ∈ X2 = Γ × R such that 〈v,M〉 < 0 < 〈w,M〉,
hence 〈x,M〉 < 0 < 〈y,M〉 for some x, y ∈ Γ× R.

Set R := (N, 0) ∈ Rd+1. Then |R| = 1 and because of

Γ ⊆ {v ∈ Rd; 〈v,N〉 > 0}

we have
X2 ⊆ {v ∈ Rd+1; 〈v,R〉 > 0}.

Therefore, λ1 := 〈x,R〉 > 0 as well as λ2 := 〈y,R〉 > 0. Since X2 is a cone we
have x1 := β+1

λ1
x, y1 := β+1

λ2
y ∈ X2 and from X1 = {v ∈ X2; 〈v,R〉 > β} we get

x1, y1 ∈ X1.
Because 〈x1,M〉 < 0 < 〈y1,M〉 it follows for some t > 1

〈tx1,M〉 < c < 〈ty1,M〉.
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Hence there is λ ∈ (0, 1) with

〈λtx1 + (1− λ)ty1,M〉 = c,

i.e. λtx1 + (1 − λ)ty1 ∈ H. Obviously, X1 is convex and for every x ∈ X1 and
t > 1 we have tx ∈ X1. Therefore we have λtx1 + (1 − λ)ty1 ∈ H ∩X1 which
contradicts our hypothesis.

So, H0 is a supporting hyperplane of X2 = Γ×R. This immediately implies
thatMd+1 = 0 and that H ′0 is a supporting hyperplane of Γ. Moreover,Md+1 =
0 implies that H ′ = {x ∈ Rd; 〈x,M ′〉 = c} intersects Γ but not X ′1 = X̃1.
Because Γ is a proper cone and Γ\X ′1 = {x ∈ Γ; 〈x,N〉 ≤ β} this implies that
H ′∩Γ is bounded. Since H ′0 is a supporting hyperplane of Γ this yields H ′0∩Γ =
{0} by proposition 2.10 b), hence H0 ∩X2 = (H ′0×R)∩ (Γ×R) = {0}×R.

Proposition 2.14. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd, and
let X1 and X2 be as in proposition 2.13. Moreover, let P be a non-constant
polynomial. Assume that no hyperplane H in Rd with σ0

P (H⊥) = 0 intersects
x0 + Γ only in x0.

Then for every hyperplane H in Rd+1 with H ∩X2 6= ∅ and σP+(H⊥) = 0
it follows that H ∩X1 6= ∅.

Proof. Let H = {x ∈ Rd+1; 〈x,M〉 = β} be a hyperplane with H ∩X2 6= ∅ but
H ∩X1 = ∅. We have to show that σP+(M) 6= 0.

From proposition 2.13 it follows that M = (M ′, 0) and that

H ′x0
= {x ∈ Rd; 〈x,M ′〉 = 〈x0,M

′〉}

is a supporting hyperplane of x0 + Γ with

H ′x0
∩ (x0 + Γ) = {x0}.

In particular, the hypothesis gives σ0
P (M ′) 6= 0. With lemma 2.7 we get

0 6= σ0
P (M ′) = σP+(span{M ′} × {0}) = σP+(M),

proving the proposition.

Now, we can prove an analogous result to proposition 2.12 for P+ and X×R
which only relies on properties of P and X.

Proposition 2.15. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd, and let
P ∈ C[X1, . . . , Xd] be a non-constant polynomial. Assume that no hyperplane
H in Rd with σ0

P (H⊥) = 0 intersects x0 + Γ only in x0.
Then, every u ∈ D ′((x0 + Γ)×R) with P+(D)u ∈ E ((x0 + Γ)×R) for which

there is a bounded subset B of x0 + Γ such that u is C∞ outside B ×R already
satis�es u ∈ E ((x0 + Γ)× R).

Proof. Without restriction, assume x0 = 0. Let u ∈ D ′(Γ×R) with P+(D)u ∈
E (Γ×R) and let B ⊆ Γ be bounded such that u|Γ\B×R ∈ E (Γ\B×R). Because

Γ is a proper cone in Rd there is a hyperplane H1 intersecting Γ only in 0. Let
X̃1 be the intersection of Γ with a halfspace whose boundary is parallel to H1

such that X̃1 is unbounded and B ⊆ Γ\X̃1.
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Let X1 := X̃1 × R, and X2 := Γ × R. Then X1 ⊆ X2 are open convex
subsets of Rd+1 and it follows from proposition 2.14 that for every hyperplane
H in Rd+1 with σP+(H⊥) = 0 and H ∩ X2 6= ∅ already H ∩ X1 6= ∅. Since
u ∈ D ′(X2), P+(D)u ∈ E (X2) and u|X1

∈ E (X1) it follows from proposition 2.5
that u ∈ E (X2).

We now give an alternative proof of theorem 2.11.

Alternative proof of theorem 2.11. Again, the alternative proofs of all three
parts are very similar, so we give the proof of part iii) and only sketch the proofs
of i) and ii).

In order to prove iii), let u ∈ E ′(X × R). We set K := sing suppP+(−D)u
and δ := dist(K,Xc × R). Let x0 ∈ ∂(X × R) = ∂X × R and let Γ be as
in the hypothesis for x′0 ∈ ∂X. Then (x0 + (Γ◦ × R)) ∩ (X × R) = ∅, thus
(x0 + y+ (Γ◦×R))∩K = ∅ for all y ∈ Rd+1 with |y| < δ. Therefore, for �xed y
with |y| < δ, there is an open proper convex cone Γ̃ in Rd with Γ̃ ⊃ Γ◦\{0} such
that (x0 + y+ (Γ̃×R))∩K = ∅. Hence, u ∈ E ′(X ×R) ⊆ D ′(x0 + y+ (Γ̃×R))
satis�es P+(−D)u ∈ E (x0 +y+(Γ̃×R)). We show that u ∈ E (x0 +y+(Γ̃×R))
by applying proposition 2.15.

Let H = {v ∈ Rd; 〈v,N〉 = α} be a hyperplane with σ0
P (N) = 0. As Γ̃

is a closed proper convex cone with non-empty interior, it is the dual cone of

some open proper convex cone Γ1. It follows from Γ◦1 = Γ̃ ⊃ Γ◦ that Γ1 ⊆ Γ.
Because σ0

P (N) = 0 it follows from the hypothesis on Γ that {N,−N} ∩ Γ = ∅,
hence {N,−N} ∩ Γ1 = ∅, so that by proposition 2.10 b) H does not intersect

x′0 + y′ + Γ̃ only in x′0 + y′. Now sing suppu is compact since u ∈ E ′(X × R).
Because

P+(−D)u ∈ E (x0 + y + (Γ̃× R)),

we have

u ∈ E (x0 + y + (Γ̃× R))

by proposition 2.15. Since x0 ∈ ∂X × R and y with |y| < δ were chosen
arbitrarily, it follows that

dist(sing suppu,Xc × R) ≥ δ = dist(sing suppP (−D)u,Xc × R),

which proves iii).
To prove ii) let u ∈ E ′(X). We set again K := sing suppP (−D)u and

δ := dist(K,Xc). Again, we have to show that dist(sing suppu,Xc) ≥ δ in
order to prove P -convexity for singular supports of X.

Let x0 ∈ ∂X and let Γ be as in the hypothesis for x0 ∈ ∂X. As above,
for y ∈ Rd with |y| < δ we �nd an open proper convex cone Γ̃ such that
u ∈ E ′(X) ⊆ D ′(x0+y+Γ̃) satis�es P (−D)u ∈ E (x0+y+Γ̃). Using proposition
2.12 instead of proposition 2.15 the proof of ii) is now completed exactly as the
one of iii).

In order to prove i), let u ∈ E ′(X), K := suppP (−D)u and δ := dist(K,Xc).
By [18, Theorem 10.6.3] one has to show dist(suppu,Xc) ≥ δ which is done as
in the proof of iii) and ii), respectively, by using [17, Corollary 8.6.11] instead
of proposition 2.12. �
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We close this section with yet another pair of su�cient conditions for P -
convexity for supports and singular supports. These will be used to give an
alternative proof of a result due to Vogt [39] stating that for elliptic P the
operator P+(D) is always surjective on D ′(X × R). For x, y ∈ Rd we de�ne

[x, y] = {γx+ (1− γ)y; γ ∈ [0, 1]}.

Moreover, for X ⊆ Rd open, x ∈ X, r ∈ Rd\{0}, we de�ne

λX(x, r) := sup{λ > 0; ∀ 0 ≤ µ < λ : [x, x+ µr] ⊆ X}.

In case of λX(x, r) =∞ we write [x, x+ λX(x, r)r] instead of

∪0<λ<λX(x,r)[x, x+ λr].

The next lemma gives a su�cient condition for P -convexity for supports.

Lemma 2.16. Let X be an open subset of Rd and let P be a non-zero polynomial
of degree m. Assume that for each compact subset K of X there is another
compact subset L of X such that for every x ∈ X\L one can �nd r ∈ {x ∈
Rd; Pm(x) = 0}⊥\{0} satisfying

[x0, x0 + λX(x0, r)r] ∩K = ∅.

Then X is P -convex for supports.

Proof. Let φ ∈ D(X) and K := suppP (−D)φ. Choose L for K as stated in the
hypothesis. For x0 ∈ X\L there is r ∈ {ξ ∈ Rd; Pm(ξ) = 0}⊥\{0} such that

[x0, x0 + λX(x0, r)r] ∩K = ∅.

From the compactness of suppφ it follows that there is λ ∈ (0, λX(x0, r)) with
x1 := x0 + λr /∈ suppφ. From the de�nition of λX(x0, r) we have [x0, x1] ⊆ X
and we can �nd ρ > 0 such that

X1 := B(x1, ρ) ⊆ X\suppφ and X2 := [x0, x1] +B(0, ρ) ⊆ X\K.

X1 ⊆ X2 are open and convex, and φ|X1
= 0 as well as P (−D)φ|X2

= 0. Let

H = {x ∈ Rd; 〈x,N〉 = α} be a characteristic hyperplane for P . If H intersects
X2 there are γ ∈ [0, 1], b ∈ B(0, ρ) satisfying

α = 〈γx0 + (1− γ)x1 + b,N〉 = 〈x0 + (1− γ)λr + b,N〉
= 〈x0 + b,N〉 = 〈x1 − λr + b,N〉 = 〈x1 + b,N〉

where we used r ∈ {ξ ∈ Rd; Pm(ξ) = 0}⊥. SoH already intersectsX1. Theorem
2.8 now gives φ|X2

= 0 so that x0 /∈ suppφ. Since x0 ∈ X\L was arbitrary it
follows suppφ ⊆ L proving the lemma.

In order to formulate a similar condition for P -convexity for singular sup-
ports we introduce for a non-zero polynomial P the subspace

SP := {y ∈ Rd; σP (y) = 0}⊥.

The non-zero elements r of SP are the directions which lie in every hyperplane
H = {x ∈ Rd; 〈x,N〉 = α} with σP (N) = 0. Hence, using these directions
and proposition 2.5 instead of theorem 2.8 the next lemma can be proved in a
very similar way to the previous one. Indeed, the proof is mutatis mutandis the
same. Nevertheless, we include it for the reader's convenience.
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Lemma 2.17. Let X be an open subset of Rd and let P be a non-zero polyno-
mial. Assume that for each compact subset K of X there is another compact
subset L of X such that for every x ∈ X\L one can �nd r ∈ SP \{0} with

[x, x+ λX(x, r)r] ∩K = ∅.

Then X is P -convex for singular supports.

Proof. Let u ∈ E ′(X) and K := sing suppP (−D)u. Choose L for K as stated
in the hypothesis. For a �xed x0 ∈ X\L we can �nd r ∈ SP \{0} with

[x0, x0 + λX(x0, r)r] ∩K = ∅.

The compactness of sing suppu implies that there is λ ∈ (0, λX(x0, r)) such that
x1 := x0 +λr /∈ sing suppu. Therefore, [x0, x1] ⊆ X and we can �nd ρ > 0 such
that X1 := B(x1, ρ) ⊆ X\sing suppu and

X2 := [x0, x1] +B(0, ρ) ⊆ X\K.

We will show that u|X2
∈ E (X2) implying x0 /∈ sing suppu. Since x0 ∈ X\L

was chosen arbitrarily this will show sing suppu ⊆ L proving P -convexity for
singular supports of X.

By de�nition of K we have P (−D)u|X2
∈ E (X2). Moreover, X1 is convex

and sing supp u|X2
⊆ X2\X1. To show that u|X2

∈ E (X2), let

H = {x ∈ Rd; 〈x,N〉 = α}

be a hyperplane with σP (N) = 0. Since r ∈ SP we have 〈r,N〉 = 0. If H
intersects X2 it follows exactly as in the proof of lemma 2.16 that H already
intersects X1. Now Corollary 2.5 gives u|X2

∈ E (X2) thus proving the lemma.

As {ξ ∈ Rd; Pm(ξ) = 0}⊥ as well as SP are subspaces the next proposition
might be helpful in applying lemma 2.16 and lemma 2.17.

Proposition 2.18. Let X ⊆ Rd be open and let M ⊆ Sd−1 be such that with
r ∈M also −r ∈M . Then the following condition i) implies ii).

i) For each x ∈ X there is r ∈ M such that dist(x,Xc) ≥ dist(y,Xc) for all
y ∈ [x, x+ λX(x, r)r]

ii) For each compact subset K of X there is a compact subset L of X such
that for any x ∈ X\L there is r ∈M satisfying [x, x+λX(x, r)r]∩K = ∅.

Proof. For m ∈ N let Xm := {x ∈ X; |x| < m, dist(x,Xc) > 1/m}. For K ⊆ X
compact choose m such that K ⊆ Xm and set L := Xm.

Fix x ∈ X\L and let r be as in i). If |x| > m either

{x+ λr;λ > 0} ⊆ Rd\B(0,m)

or
{x− λr;λ > 0} ⊆ Rd\B(0,m)

so that ii) follows with r or −r. If |x| ≤ m we have 1/m ≥ dist(x,Xc) ≥
dist(y,Xc) for every y ∈ [x, x+λX(x, r)r] because of x ∈ X\L, hence ii) follows
in this case, too.
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We close this section with an example showing that, in general, the su�cient
condition for P -convexity for singular supports from theorem 2.11 ii) is not
necessary. However, it will be shown in section 4.1 that in case of X being a
(connected) subset of R2 this su�cient condition is indeed necessary as well.

Example 2.19. Let 0 < r < R and de�ne

fr,R : R3 → R, f(x1, x2, x3) = (
√
x2

1 + x2
2 −R)2 + x2

3 − r2,

and

Tr,R := {x : fr,R(x) = 0}
= {((R+ r cosϕ) cosψ, (R+ r cosϕ) sinψ, r sinϕ) : ϕ,ψ ∈ R}

as well as

Vr,R := {x : fr,R(x) ≤ 0}
= {((R+ ρ cosϕ) cosψ, (R+ ρ cosϕ) sinψ, ρ sinϕ) : ϕ,ψ ∈ R, ρ ∈ [0, r]}.

Then, Tr,R = ∂Vr,R is the torus with inner radius R− r and outer radius R+ r.

Figure 1: Torus for r = 1 and R = 3

We �rst show that for the wave operator P (D) where P (ξ) = ξ2
1 + ξ2

2 − ξ2
3

the interior V ◦r,R of Vr,R is P -convex for singular supports whenever 2r < R.
The polynomial P is of real principal type, i.e. the principal part of P has real
coe�cients and ∇P (ξ) 6= 0 whenever P (ξ) = 0. Therefore, by [18, Theorem
10.8.9] it su�ces to show that the boundary distance satis�es the minimum
principle in any bicharacteristic line in order to prove P -convexity for singular
supports. So we have to show that

d : V ◦r,R → [0,∞), a 7→ dist(a,R3\V ◦r,R) = dist(a, Tr,R)

satis�es the minimum principle in any bicharacteristic line, i.e. for every x 6= 0
with P (x) = 0 and any a ∈ V ◦r,R the function

t 7→ d(a+ t∇P (x))

does not have a strict local minimum in the open set of those t ∈ R for which we
have a + t∇P (x) ∈ V ◦r,R. Since ∇P (x) = 2(x1, x2,−x3) we have P (∇P (x)) =
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4P (x) so that for a ∈ V ◦r,R the bicharacteristic lines through a are precisely the
sets of the form

{a+ tx : t ∈ R, x ∈ R3\{0}, P (x) = 0}.

Figure 2: The set {ξ ∈ R3; P (ξ) = 0} in a neighborhood of the origin

We have for each ϕ,ψ ∈ R and ρ ∈ [0, r)

dist (((R+ ρ cosϕ) cosψ, (R+ ρ cosϕ) sinψ, ρ sinϕ), Tr,R) = r − ρ.

If a ∈ V ◦r,R there are ϕ,ψ ∈ R and a unique ρ ∈ [0, r) such that

a = ((R+ ρ cosϕ) cosψ, (R+ ρ cosϕ), sinψ, ρ sinϕ) .

We want to express ρ in terms of |a|:

|a|2 = R2 + 2Rρ cosϕ+ ρ2

= R2 + 2R(|a′| −R) + ρ2

= ρ2 + 2R|a′| −R2,

where we used the relation ρ cosϕ = |a′| −R and where as usual a′ = (a1, a2) ∈
R2. So we obtain

ρ2 = a2
3 + (|a′| −R)2 = a2

3 + (|a′| −R)2.

Hence we have for a ∈ V ◦r,R

dist(a, Tr,R) = r −
√
a2

3 + (|a′| −R)2.

Now, given x 6= 0 with P (x) = 0 we have a + tx ∈ V ◦r,R for |t| su�ciently
small such that

da,x(t) := dist(a+ tx, Tr,R) = r −
√

(a3 + tx3)2 + (|a′ + tx′| −R)2
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is well-de�ned. Moreover, da,x(t) = da+t0x,x(t− t0) for all t0 ∈ R with a+ t0x ∈
V ◦r,R so that it su�ces to consider da,x in a neighborhood of t = 0.

Let (α, β) ⊆ R be an open intervall containing zero. Since

[0, r2)→∞, t 7→ r −
√
t

is strictly decreasing, it follows that da,x : (α, β) → R does not have a local
minimum if and only if

ga,x : (α, β)→ [0,∞), t 7→ (a3 + tx3)2 + (|a′ + tx′| −R)2

does not have a local maximum.
Because P (x) = 0 we have |x′|2 = x2

3 so that a straight forward calculation
gives

ga,x(t) = |a|2 + 2t〈a, x〉+ 2|x′|2t2 +R2 − 2R|a′ + tx′|,
thus for a′ 6= 0 we get

g′a,x(t) = 2〈a, x〉+ 4|x′|2t− 2R
〈a′, x′〉+ t|x′|2

|a′ + tx′|

and

g′′a,x(t) = 4|x′|2 − 2R
|x′|2|a′ + tx′|2 − (〈a′, x′〉+ t|x′|2)2

|a′ + tx′|3

=
2|x′|2|a′|2

|a′ + tx′|3

(
2
|a′ + tx′|3

|a′|2
−R(1− 〈 a

′

|a′|
,
x′

|x′|
〉2)

)
.

Using

R(1− 〈 a
′

|a′|
,
x′

|x′|
〉2) ∈ [0, R]

as well as 2|a′| ∈ (2(R− r), 2(R+ r)) it follows for 2r < R

g′′a,x(0) =
2|x′|2|a′|2

|a′|3

(
2|a′| −R(1− 〈 a

′

|a′|
,
x′

|x′|
〉2)

)
>

2|x′|2|a′|2

|a′|3
(2R− 2r −R) > 0.

so that ga,x is strictly convex in a neighborhood of t = 0 in case of a′ 6= 0 and
2r < R.

Moreover, in case of a′ = 0 we have g′′a,x(t) = 4|x′|2 > 0 so that in any
case ga,x is strictly convex in a neighborhood of t = 0 if 2r < R. Therefore,
replacing a by a + t0x and hence ga,x by ga+t0x,x if necessary, we obtain that
ga,x is strictly convex. Thus, ga,x has no local maximum so that da,x does not
have a local minimum.

We conclude that in case of 2r < R the boundary distance for V ◦r,R satis�es
the minimum principle in any bicharacteristic line which implies the P -convexity
for singular supports of V ◦r,R. It should be noted that by [18, Corollary 10.8.10]
P (D) is in fact surjective on D ′(V ◦r,R) whenever 2r < R.

Next we show that for the boundary point (R − r, 0, 0) of V ◦r,R there is no

open convex cone Γ 6= Rd such that

((R− r, 0, 0) + Γ◦) ∩ V ◦r,R = ∅ and σP (y) 6= 0 for all y ∈ Γ.
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In order to do so we observe that (−1, 0, 0) is the outer normal vector in (R −
r, 0, 0) with respect to V ◦r,R. This implies that for any closed convex cone C with
((R− r, 0, 0) + C) ∩ V ◦r,R = ∅ we must have

C ⊆ {x ∈ R3; ξ1 ≤ 0}.

Let Γ 6= Rd be an open convex cone with

((R− r, 0, 0) + Γ◦) ∩ V ◦r,R = ∅.

By the above we have Γ◦ ⊆ {x1 ≤ 0}. Moreover for every x ∈ Γ◦\{0} we have

∀ t > 0 : (
√

(R− r + tx1)2 + (tx2)2 −R)2 + (tx3)2 − r2 ≥ 0.

This implies x3 6= 0 because otherwise we had

∀ t > 0 : (
√

(R− r + tx1)2 + (tx2)2 −R)2 − r2 ≥ 0

which is equivalent to

∀ t > 0 :
√

(R− r + tx1)2 + (tx2)2 ≥ R+r or
√

(R− r + tx1)2 + (tx2)2 ≤ R−r.

But this holds if and only if

∀ t > 0 : 2(R− r)tx1 + t2|x′|2 ≥ 4rR or 2(R− r)tx1 + t2|x′|2 ≤ 0,

where as usual x′ = (x1, x2). x′ 6= 0 as x ∈ Γ◦\{0} and x3 = 0 so the above is
equivalent to

∀ t > 0 : (
x1(R− r)
|x′|

+ t|x′|)2 ≥ (
x1(R− r)
|x′|

)2 + 4rR

or (
x1(R− r)
|x′|

+ t|x′|)2 ≤ (
x1(R− r)
|x′|

)2.

Because x1 ≤ 0 there are always t > 0 for which none of the two above conditions
is satis�ed. Hence we must have x3 6= 0.

Because P and V ◦r,R are invariant under the transformation ξ 7→ (ξ1, ξ2,−ξ3)
we can assume without loss of generality that

Γ◦\ ⊆ {ξ1 ≤ 0} ∩ {ξ3 > 0}.

Herefrom and from

Γ = {ξ ∈ R3; 〈ξ, y〉 > 0 for all y ∈ Γ◦\{0}}

we conclude (−1, 0, 1) ∈ Γ. Because P (−1, 0, 1) = 0 we have σP (−1, 0, 1) = 0
by theorem 3.14 ii) so that the condition in theorem 2.11 ii) is not satis�ed for
the boundary point (R− r, 0, 0) of V ◦r,R.
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2.3 Characterizing P -convexity in the complement of closed

proper convex cones

In the previous section we gave su�cient criteria for the various P -convexity
conditions of an open set X. In this section we show that these su�cient criteria
are also necessary for arbitrary P in case of X being of a certain geometrical
form.

Recall that a real valued function f de�ned on a subset M of Rd is said to
satisfy the minimum principle in the closed subset F of Rd if for every compact
subset K ⊆ F ∩M it holds that

inf
x∈K

f(x) = inf
x∈∂FK

f(x),

where ∂FK denotes the boundary of K relative F . For a subset M of Rd let

dM : M → R, x 7→ dist(x,Rd\M)

be the Euclidean distance to its complement.
It is well-known that for an open subset X ⊆ Rd to be P -convex for supports

it is necessary that dX satis�es the minimum principle in every characteristic
hyperplane for P , see [18, Theorem 10.8.1]. Moreover, for the P -convexity for
singular supports of X it is necessary that dX satis�es the minimum principle
in every a�ne subspace V ⊆ Rd with σP (V ⊥) = 0, see [18, Corollary 11.3.2].

Having in mind theorem 2.11 it is no surprise that the next geometric result
will be helpful.

Proposition 2.20. Let Γ◦ 6= {0} be a closed proper convex cone in Rd and N ∈
Sd−1. Assume that dRd\Γ◦ satis�es the minimum principle in every hyperplane

Hc = {x ∈ Rd; 〈x,N〉 = c}, c ∈ R. Then {N,−N} ∩ Γ = ∅.

Proof. If {N,−N} ∩Γ 6= ∅ it follows from proposition 2.10 that H0 ∩Γ◦ = {0}.
Let c 6= 0 be arbitrary. We �rst show that Hc ∩ Γ◦ = ∅ if and only if

H−c ∩ Γ◦ 6= ∅. Indeed, if Hc ∩ Γ◦ = ∅ the convexity of Γ◦ implies that either
Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 < c} or Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 > c}. Without restriction we
only consider the �rst case. Since 0 ∈ Γ◦ we have 0 < c. Moreover, because Γ◦

is a cone, it follows for every x ∈ Γ◦\{0} and t > 0 that t〈x,N〉 < c. Obviously,
this implies 〈x,N〉 < 0 for every x ∈ Γ◦\{0}. Therefore, −c/〈x,N〉 > 0 so that
−c/〈x,N〉x ∈ Γ◦ for every x ∈ Γ◦\{0}. In particular, there is x ∈ Γ◦ ∩H−c.

On the other hand, let H−c∩Γ◦ 6= ∅. If Hc∩Γ◦ 6= ∅ it follows from c 6= 0 that
there are x, y ∈ Γ◦\{0} such that for some λ ∈ (0, 1) we have λx+(1−λ)y ∈ H0.
The convexity of Γ◦ together with H0 ∩ Γ◦ = {0} implies λx + (1 − λ)y = 0.
Therefore, −x ∈ Γ◦\{0} which contradicts the fact that Γ◦ is proper.

So, for arbitrary c 6= 0 we can therefore assume that Hc ∩ Γ◦ = ∅ as well
as H−c ∩ Γ◦ 6= ∅. Because of H0 ∩ Γ◦ = {0} it follows from proposition 2.10
that the non-empty set H−c ∩ Γ◦ is bounded. So there is R > |c| such that
H−c∩Γ◦ is contained in the closed R-ball B(0, R) about the origin. In particular,
K := Hc ∩BR(0) is a non-empty, compact subset of Hc ∩ Rd\Γ◦ with

inf
x∈K

dRd\Γ◦(x) = inf
x∈K

dist(x,Γ◦) ≤ inf
x∈K
|x| = |c|.

Obviously, x− cN ∈ H0 for all x ∈ Hc, so that

M := {x− cN ; x ∈ Hc ∩ ∂BR(0)} ⊆ H0
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is compact, and because R > |c|, M does not contain 0. Since H0\{0} ∩ Γ◦ = ∅
we obtain

δ := inf
v∈M

dist(v,Γ◦) > 0.

We have

∀x ∈ Hc, y ∈ Γ◦ : |x− y|2 = |(x− cN)− (y − cN)|2

= c2 + |(x− cN)− y|2 − 2c〈N, y〉.

Again, by the convexity of Γ◦ and Hc ∩ Γ◦ = ∅ we have either

Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 < c} or Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 > c}.

As we have seen above in the �rst case 〈x,N〉 < 0 for every x ∈ Γ◦\{0} as well
as 0 < c. Hence c〈N, y〉 ≤ 0 for all y ∈ Γ◦ if Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 < c}. In
the same way we conclude c〈N, y〉 ≤ 0 in case of Γ◦ ⊆ {x ∈ Rd; 〈x,N〉 > c}.
Therefore, c〈N, y〉 ≤ 0 for all y ∈ Γ◦ so that we get

∀x ∈ Hc, y ∈ Γ◦ : |x− y|2 ≥ c2 + |(x− cN)− y|2.

Hence,

inf
x∈∂HcK

dRd\Γ◦(x) = inf
x∈∂HcK

dist(x,Γ◦) = inf
x∈Hc∩∂BR(0)

dist(x,Γ◦)

≥ (c2 + inf
x∈Hc∩∂BR(0)

dist(x− cN,Γ◦)2)1/2

= (c2 + inf
v∈M

dist(v,Γ◦)2)1/2

= (c2 + δ2)1/2 > |c| ≥ inf
x∈K

distRd\Γ◦(x),

so that dRd\Γ◦ does not satisfy the minimum principle in Hc contradicting the
hypothesis.

Combining the previous proposition with theorem 2.11 gives the next result
which characterizes P -convexity in the complement of convex cones.

Theorem 2.21. Let Γ 6= Rd be an open convex cone in Rd and X := Rd\Γ◦.
Let P be a non-constant polynomial with principal part Pm.

i) X is P -convex for supports if and only if Pm(y) 6= 0 for all y ∈ Γ.

ii) X is P -convex for singular supports if and only if σP (y) 6= 0 for all y ∈ Γ.

iii) X ×R is P+-convex for singular supports if and only if σ0
P (y) 6= 0 for all

y ∈ Γ.

Proof. If X is P -convex for (singular) supports it follows that dX satis�es
the minimum principle in every hyperplane H = {x ∈ Rd; 〈x,N〉 = c} with
Pm(N) = 0 or σP (N) = 0, respectively. Hence, necessity of the conditions in
i) and ii) follow from 2.20. On the other hand, su�ciency of these conditions
follows immediately from theorem 2.11. Thus, i) and ii) are proved.

Finally, to prove iii) observe that by [18, Corollary 11.3.2] P+-convexity
for singular supports of X × R in particular implies that dX×R satis�es the
minimum principle in every a�ne subspace H = {x ∈ Rd; 〈x,N〉 = c} × {0}
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with 0 = σP+(span{N} × R) = σ0
P (N), where we used lemma 2.7. Hence, if

X×R is P+-convex for singular supports dX satis�es the minimum principle in
every hyperplane H = {x ∈ Rd; 〈x,N〉 = c} with σ0

P (N) = 0, so that σ0
P (y) 6= 0

for every y ∈ Γ due to proposition 2.20. This proves necessity in iii) while
su�ciency is again an immediate consequence of theorem 2.11.

As an immediate consequence we obtain the next result.

Corollary 2.22. Let X0 ⊆ Rd be open and convex and let Γ1,Γ2, . . . be a
sequence of open convex cones, all di�erent from Rd. Moreover, let x1, x2 . . .
be a sequence in X0. Denote by X the interior of X0 ∩

⋂∞
n=1(xn + Γ◦n)c and

assume that for every n ∈ N we have εn > 0 such that

Bεn(xn) ∩ (xn + Γ◦n)c ⊆ X. (4)

Then the following holds for a non-constant polynomial P .

i) X is P -convex for supports if and only if Pm(y) 6= 0 for every y ∈ ∪∞n=1Γn,
where Pm is the principal part of P .

ii) X is P -convex for singular supports if and only if σP (y) 6= 0 for every
y ∈ ∪∞n=1Γn.

iii) X × R is P+-convex for singular supports if and only if σ0
P (y) 6= 0 for

every y ∈ ∪∞n=1Γn.

Proof. Since for non-constant polynomials Q convex sets are Q-convex for (sin-
gular) supports and the interior of arbitrary intersections of Q-convex sets for
(singular) supports are again Q-convex for (singular) supports (cf. [18, Theo-
rems 10.6.4 and 10.7.4]) the su�ciency of the conditions follows from theorem
2.21.

We only prove necessity in iii) since the corresponding proofs for parts i) and
ii) are the same modulo obvious changes.

Let X × R be P+-convex for singular supports. Assume that there is j ∈ N
and y ∈ Γj such that σ0

P (y) = 0. Without restriction let |y| = 1. Then
H := {x ∈ Rd+1; 〈x, y〉 = 〈xj , y〉} is a hyperplane through xj with σ

0
P (H⊥) = 0

and H ∩ (xj + Γ◦j ) = {xj} by proposition 2.10. Without loss of generality we

can assume that xj + Γ◦j ⊆ {x ∈ Rd+1; 〈x, y〉 ≥ 〈xj , y〉}.
For c > 0 set Hc := {x ∈ Rd+1; 〈x, y〉 = 〈xj , y〉− c} and Kc := Hc ∩B2c(xj).

Then Kc 6= ∅ is compact and due to condition (4) we have

∀ 0 < c < εj/4 : Kc ⊆ X

as well as
inf
x∈Kc

dX(x) = inf
x∈Kc

dRd\(xj+Γ◦j )(x).

As in the proof of proposition 2.20 it follows that

inf
x∈Kc

dRd\(xj+Γ◦j )(x) = c < inf
x∈∂HcKc

dRd\(xj+Γ◦j )(x).

Hence by lemma 2.7 for 0 < c < ε/4 the a�ne subspace Hc × {0} of Rd+1

satis�es σP+((Hc × {0})⊥) = σ0
P (H⊥c ) = σ0

P (y) = 0 but for the compact subset
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Kc × {0} of (Hc × {0}) ∩ (X × R) we have

inf
x∈Kc×{0}

dX×R(x) = inf
x∈Kc

dX(x) = inf
x∈Kc

dRd\(xj+Γ◦j )(x) = c

< inf
x∈∂HcKc

dRd\(xj+Γ◦j )(x)

= inf
x∈∂Hc×{0}Kc×{0}

dX×R(x).

So the minimum principle for dX×R is not valid in Hc × {0} which contradicts
the P+-convexity for singular supports of X × R by [18, Corollary 11.3.2].

Remark 2.23. It should be noted that for su�ciency of the above conditions
instead of X0 being convex, in part i) one only needs X0 to be P -convex for
supports while in parts ii) and iii) it su�ces to let X0 be P -convex for singular
supports, respectively X0×R be P+-convex for singular supports. For necessity
of the above conditions, X0 can be arbitrary.

Example 2.24. Let d > 2 and P (x1, . . . , xd) = x2
1 − x2

2 − . . . − x2
d be the

polynomial inducing the wave operator. Moreover, let

Γ := {x ∈ Rd; xd > (x2
1 + . . .+ x2

d−1)1/2}.

Then Γ is an open convex cone with Γ◦ = Γ. Set X := Rd\Γ. Since no zero of
the principal part of P belongs to Γ it follows from theorem 2.21 i) that X is
P -convex for supports.

On the other hand, one easily checks that Q(ξ1, . . . , ξd) = (ξ1 − ξ2)/2 is a
localization of P at in�nity in direction 1/

√
2 (1, 1, 0, . . . , 0). Hence it follows

for ed = (0, . . . , 0, 1) that Q̃span{ed}(0, t) = 0 for every t ≥ 1 so that σP (ed) = 0
by lemma 2.6 iv). From ed ∈ Γ and theorem 2.21 ii) we conclude that X is not
P -convex for singular supports. Hence, the wave operator is surjective on E (X)
but not surjective D ′(X). It will be shown in chapter 4 that for this example
d > 2 is essential.
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3 Surjectivity of augmented linear partial di�er-

ential operators with constant coe�cients

In chapter 1 we already encountered the problem posed by Bonet and Do-
ma«ski [5, Problem 9.1] whether for a surjective di�erential operator P (D)
on D ′(X) its augmented operator P+(D) is surjective on D ′(X × R), where
P+(x1, . . . , xd+1) := P (x1, . . . , xd). In the �rst section of this chapter we give
some non-trivial examples of open sets X in Rd such that surjectivity of special
classes of operators P (D) on D ′(X) implies surjectivity of the augmented op-
erator P+(D) on D ′(X × R). That this implication is not true in general will
be shown in the second section of the present chapter thus answering the above
problem in the negative.

3.1 Some positive results

As proved by Bonet and Doma«ski in [5] for a surjective partial di�erential
operator

P (D) : D ′(X)→ D ′(X)

the augmented operator P+(D) is surjective on D ′(X × R) if and only if the
kernel of P (D) possesses the linear topological invariant (PΩ). Since for elliptic
polynomials P , or more general hypoelliptic P , the kernels of

P (D) : E (X)→ E (X) and P (D) : D ′(X)→ D ′(X)

coincide as locally convex spaces, it is a Fréchet-Schwartz space and therefore
it has (PΩ) if and only if it has the linear topological invariant (Ω). It was
proved by Vogt in [39] that the kernel of an elliptic operator always has (Ω).
As elliptic operators are always surjective it follows therefrom that P+(D) is
always surjective in case of P being elliptic.

As we have seen in section 2.2 it is possible to give su�cient conditions for
P+-convexity for singular supports of X × R in terms of P and X involving
the function σ0

P . So in order to investigate the above problem of Bonet and
Doma«ski it will be helpful to investigate the connection between σP and σ0

P .
Having at our disposal the alternative representation of σP given in lemma
2.6 this will be accomplished in the next lemma. Part iii) is [15, Lemma 6.1].
Part ii) in particular implies that for every non-elliptic polynomial P there is a
non-trivial subspace V ⊆ Rd such that σ0

P (V ) = 0.

Lemma 3.1. Let P ∈ C[X1, . . . , Xd] be a non-constant polynomial with princi-
pal part Pm and let V ⊆ Rd be a subspace.

i) σ0
P (V ) ≤ σP (V ).

ii) If V ⊆ {ξ ∈ Rd; Pm(ξ) = 0} then σ0
P (V ) = 0.

iii) σ0
P (V ) ≤ σ0

Pm
(V ).

Proof. i) is obvious from the de�nitions.

Obviously σ0
P (V ) ≤ P̃V (0,t)

P̃ (0,t)
for every t > 1. If P (ξ) =

∑
0≤|α|≤m cαξ

α with

cα 6= 0 for some α with |α| = m, we de�ne Pj(ξ) :=
∑
|α|=j cαξ

α, 0 ≤ j ≤ m.
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Thus, P (ξ) =
∑m
j=0 Pj(ξ), where each Pj is a homogeneous polynomial of degree

j and Pm is the principal part of P .
If V ⊆ {ξ ∈ Rd; Pm(ξ) = 0} it follows for t > 1

P̃V (0, t)

tm
= sup
x∈V,|x|≤t

|
m∑
j=0

1

tm
Pj(x)| = sup

x∈V,|x|≤1

|
m−1∑
j=0

1

tm−j
Pj(x)|.

Moreover, for t > 1 we have

P̃ (0, t) = tm sup
|x|≤1

|
m∑
j=0

1

tm−j
Pj(x)|,

so that

lim
t→∞

P̃V (0, t)

P̃ (0, t)
= 0

proving ii).
In order to show iii) we note that

P̃V (ξ, t) ≥ σ0
P (V )P̃ (ξ, t) (5)

for any ξ ∈ Rd, t ≥ 1. For any s ≥ 1 and any subspace W ⊆ Rd we have

P̃W (sξ, st) = sup
x∈W,|x|≤st

|P (sξ + x)| = sm sup
x∈W,|x|≤t

|Pm(ξ + x) +O(s−1)|.

Using this for W = V and W = Rd and inserting the results into inequality (5)
we obtain after division by sm

sup
x∈V,|x|≤t

|Pm(ξ + x) +O(s−1)| ≥ σ0
P (V ) sup

|x|≤t
|Pm(ξ + x) +O(s−1)|.

Letting s tend to in�nity yields

P̃mV (ξ, t) ≥ σ0
P (V )P̃m(ξ, t)

for every ξ ∈ Rd, t ≥ 1 which implies iii)

Next we consider special classes of polynomials to which we want to apply the
results from chapter 2 in order to examine surjectivity of augmented di�erential
operators. The notion of equal strength of operators will be used in several of
our considerations so that we recall the de�nition here.

For two polynomials P,Q ∈ C[X1, . . . , Xd] P is called stronger than Q (and
Q weaker than P ) if there is C > 0 such that

Q̃(ξ, 1) ≤ CP̃ (ξ, 1)

for every ξ ∈ Rd. We write Q ≺ P if P is stronger than Q. P and Q are called
equally strong if P is stronger than Q and vice versa. Moreover, we say that P
dominates Q and write Q ≺≺ P if

lim
t→∞

sup
ξ∈Rd

Q̃(ξ, t)

P̃ (ξ, t)
= 0.
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Obviously, P is stronger than Q whenever P dominates Q. Furthermore, P
and P + αQ are equally strong for every α ∈ C if and only if P dominates Q
by [18, Corollary 10.4.8].

The next theorem is the reason why these notions are important for our
concerns. Part i) is [18, Theorem 11.3.14].

Theorem 3.2. Let P and Q be equally strong polynomials and V ⊆ Rd a
subspace.

i) σP (V ) = 0 if and only if σQ(V ) = 0.

ii) σ0
P (V ) = 0 if and only if σ0

Q(V ) = 0.

Proof. For every R ∈ C[X1, . . . , Xd] we have

∀ ξ ∈ Rd+1 : R̃+(ξ, 1) = R̃(ξ′, 1),

where ξ′ = (ξ1, . . . , ξd) ∈ Rd. Thus, P+ is stronger than Q+ if P is stronger
than Q. By lemma 2.7 we have σ0

P (V ) = 0 if and only if σP+(V ×{0}) = 0 and
σ0
Q(V ) = 0 if and only if σQ+(V × {0}) = 0. Therefore, ii) follows from i).

Next we consider semi-elliptic polynomials. Recall that a polynomial P is
called semi-elliptic if it is possible to represent P as

P (ξ) =
∑

|α:m|≤1

aαξ
α

with P 0(ξ) :=
∑
|α:m|=1 aαξ

α 6= 0 for any ξ ∈ Rd\{0}. Herem = (m1, . . . ,md) ∈
Nd and |α : m| =

∑d
j=1 αj/mj . If P is an elliptic polynomial of degree m, it is

easily seen that P is semi-elliptic by taking mj = m for every 1 ≤ j ≤ d. On
the other hand, the polynomial P (ξ) = iξ1 + ξ2

2 + . . . + ξ2
d inducing the heat

operator is not elliptic but semi-elliptic (m1 = 1,m2 = . . . = md = 2).
In the next proposition we recall some obvious properties of semi-elliptic

polynomials. In fact, parts iii) and v) are taken from the proof of [18, Theorem
11.1.11]. We include its proof for the sake of completeness.

Proposition 3.3. Let P (ξ) =
∑
|α:m|≤1 aαξ

α be a semi-elliptic polynomial of

degree m, P 0(ξ) =
∑
|α:m|=1 aαξ

α. Then the following properties hold.

i) The degree m of P equals max1≤j≤dmj.

ii) The principal part Pm is a part of P 0, i.e. there is a polynomial R of degree
≤ m−1 such that P 0 = Pm+R and P (ξ)−Pm(ξ)−R(ξ) =

∑
|α:m|<1 aαξ

α.

iii) There is C > 0 such that
∑d
j=1 |ξj |mj ≤ C|P 0(ξ)| for every ξ ∈ Rd.

iv) Pm(x) = 0 for x ∈ Rd if and only if xj = 0 for every j with mj = m. In
particular, {ξ ∈ Rd; Pm(ξ) = 0} is a subspace of Rd.

v) For α with |α : m| ≤ 1 we have |ξα| ≤ 1 +
∑d
j=1 |ξj |mj .

vi) P 0 dominates P − P 0. In particular, P 0 and P are equally strong.
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Proof. In case of d = 1 part i) is trivial so let d > 1. Not every monomial
appearing in P 0 depends on ξ1, for if this was true then P

0(0, ξ2, . . . , ξd) = 0 for
every choice of ξ2, . . . , ξd ∈ R contradicting the semi-ellipticity of P . If d > 2
from these monomials independent of ξ1, not every monomial depends of ξ2 for
this would yield P 0(0, 0, ξ3, . . . , ξd) = 0 for all ξ3, . . . , ξd ∈ R again contradicting
the semi-ellipticity of P . Continuing in that way we �nally �nd a monomial in
P 0 which only depends on ξd. For the exponent α of this monomial we have,
since it is part of P 0, that 1 = |α : m| = αd/md. Because |α| ≤ m this gives
md ≤ m. In the same way we get mj ≤ m for every j = 1, . . . , d.

Now, for every α with |α| = m and aα 6= 0 we have 1 ≥ |α : m|. If m > mj

for some j with αj 6= 0 we get 1 ≥
∑ αl

ml
>
∑ αl

m contradicting |α| = m.
This shows m = maxmj and mj = m for every j such that there is α with
|α| = m, aα 6= 0, αj 6= 0 which implies i) and ii). Moreover, if α is the exponent
of a monomial in Pm we have mj = m for every j with αj 6= 0. Therefore,
Pm(x) = 0 if xj = 0 for every j with mj = m, i.e. this proves su�ciency in iv).

In order to prove iii) we observe that due to the semi-ellipticity of P and
the compactness of K := {ξ ∈ Rd;

∑
|ξj |mj = 1} there is some C > 0 such

that C|P 0(ξ)| ≥ 1 for every ξ ∈ K. For arbitrary ξ ∈ Rd\{0} we have 1 =∑
|t1/mj ξj |mj with t := (

∑
|ξj |mj )−1 so that

1 ≤ CP 0(t1/m1ξ1, . . . , t
1/mdξd) = C tP 0(ξ),

proving iii).

To prove necessity in iv), note that by iii) there is some C > 0 such that∑
|ξj |mj ≤ C|P 0(ξ)| for all ξ ∈ Rd. If Pm(x) = 0 it follows from the homogene-

ity of Pm and ii) that for l with ml = m and t > 0 su�ciently large

tm|xl|m ≤
d∑
j=1

|txj |mj ≤ C|P 0(tx)| ≤ C ′tm−1

which shows xl = 0.

In order to prove v), the trivial inequality |ξk|mk ≤
∑d
j=1 |ξj |mj implies for

α 6= 0 with |α : m| ≤ 1 that

|ξα| ≤
( d∑
j=1

|ξj |mj

)|α:m|
≤

d∑
j=1

|ξj |mj .

This proves v).

Finally, to prove vi) we set S := P − P 0. For ξ ∈ Rd we have for some
constant C1 > 0

|S(ξ)|2 ≤ C1

∑
|α:m|<1

|aα|2|ξα|2.

Without loss of generality, let m1 = m so that for t > 0 we have with iii) for
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some C > 0

P̃ 0(ξ, t)2 = sup
|η|<1

|P 0(ξ + tη)|2 ≥ C sup
|η|<1

(

d∑
j=1

|ξj + tηj |mj )2

≥ C2 sup
|η|<1

(

d∑
j=1

|ξj + tηj |2mj ) ≥ C3 sup
σ∈{−1,1}

(

d∑
j=2

ξ
2mj

j + (ξ1 + σt)2m)

≥ C4(

d∑
j=1

ξ2mj + t2m),

for suitable constants C2, C3, C4 > 0 independent of ξ and t.

From this and the fact that for α with |α : m| < 1 we have αl < ml ≤ m for
some l we get for t ≥ 1

|S(ξ)|2

P̃ 0(ξ, t)2
≤ C ′

∑
|α:m|<1

|aα|2
d∏
j=1

ξ
2αj

j∑d
k=1 ξ

2mk

k + t2m

≤ C ′
∑
|α:m|<1

|aα|2
ξ

2(ml−1)
l

ξ2ml

l + t2m

≤ C ′′
∑
|α:m|<1

|aα|2(t2m)−1/ml ≤ C ′′′t−2

where in the third inequality we used that

f : [0,∞)→ R, f(x) := x2ml−2/(x2ml + c)

for c > 0 is bounded by Mc−1/ml for some constant M .

It follows that

inf
t>1

( sup
ξ∈Rd

|S(ξ)|
P̃ 0(ξ, t)

) = 0

so that by [18, Theorem 10.4.6] P 0 dominates S. This proves v).

Theorem 3.4. Let P (ξ) =
∑
|α:m|≤1 aαξ

α be a semi-elliptic polynomial of de-

gree m on Rd and V a subspace of Rd. Then we have σ0
P (V ) = 0 if and only if

V is a subspace of {ξ ∈ Rd; Pm(ξ) = 0}.

Proof. By proposition 3.3 the polynomials P 0(ξ) =
∑
|α:m|=1 aαξ

α and P are

equally strong, thus σ0
P (V ) = 0 if and only if σ0

P 0(V ) = 0 by theorem 3.2 ii). If
V ⊆ {ξ ∈ Rd; Pm(ξ) = 0} it follows from lemma 3.1 ii) that σ0

P (V ) = 0 so that
we only have to show σ0

P 0(V ) > 0 if V is not contained in {ξ ∈ Rd; Pm(ξ) = 0}.
By proposition 3.3 iii) V is a subspace of {ξ ∈ Rd; Pm(ξ) = 0} if and only if

for each x ∈ V we have xj = 0 for every j with mj = m.

Assume there is x ∈ V such that xl 6= 0 for some l with ml = m. Without
loss of generality let |x| = 1. Then by proposition 3.3 iii) we have for suitable
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constants C,C ′ > 0

P̃ 0
V (ξ, t)2 ≥ sup

|λ|≤t
|P 0(ξ + λx)|2

≥ C sup
|λ|≤t

(

d∑
j=1

|ξj + λxj |mj )2

≥ C ′
d∑
j=1

((ξj + txj)
2mj + (ξj − txj)2mj )

≥ 2C ′

 d∑
j=1

ξ
2mj

j +

d∑
j=1

t2mjx
2mj

j


≥ 2C ′

 d∑
j=1

ξ
2mj

j + t2mx2m
l

 .

Since for α with |α : m| ≤ 1 we have |ξα| ≤ 1 +
∑d
j=1 |ξj |mj by proposition 3.3

v) we get for t ≥ 1 with suitable constants C ′′, C ′′′ > 0

P̃ 0(ξ, t)2 = sup
|y|≤t
|P 0(ξ + y)|2 ≤ C ′′

1 + sup
|y|≤t

(

d∑
j=1

|ξj + yj |mj )

2

≤ C ′′′(1 +

d∑
j=1

ξ
2mj

j + dt2m)

≤ C ′′′(

d∑
j=1

ξ
2mj

j + (d+ 1)t2m).

Observing that xl ≤ 1, these estimates give for some constant D > 0

P̃ 0
V (ξ, t)2

P̃ 0(ξ, t)2
≥ D

∑d
j=1 ξ

2mj

j + t2mx2m
l∑d

j=1 ξ
2mj

j + (d+ 1)t2m
≥ D x2m

l

d+ 1
> 0,

so σ0
P (V ) > 0. This �nishes the proof.

A di�erent proof of the above result can be found in [15, Theorem 6.8]. The
proof we presented here is taken from [10, Theorem 1]. As a �rst application of
theorem 3.4 we show that contrary to the case of P -convexity for supports, P -
convexity for singular supports of some open set X does not imply P+-convexity
for singular supports of X × R in general. This example is from [10].

Example 3.5. Consider P (ξ1, ξ2) = iξ1 + ξ2
2 , i.e. the heat polynomial in one

spatial dimension. Takingm = (1, 2), a(1,0) = i, a(0,2) = 1, and aα = 0 otherwise
it follows from

P (ξ) = P 0(ξ) =
∑

|α:m|=1

aαξ
α

that P is semi-elliptic hence hypoelliptic by [18, Theorem 11.1.11]. Therefore

X := R2\Γ◦,
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where Γ = {x ∈ R2;x1 < 0, |x1| > |x2|}, is P -convex for singular supports. It is
easily seen that Γ◦ = Γ. Since P2(1, 0) = 0 we conclude σ0

P ((−1, 0)) = 0 from
lemma 3.1 iv). As (−1, 0) ∈ Γ theorem 2.21 iii) implies that X × R is not P+-
convex for singular supports. However, by theorem 2.21 i) X is not P -convex
for supports.

Combining theorem 3.4, lemma 2.16, lemma 2.17, proposition 2.18, and
theorem 1.5 we obtain the following result from [10].

Theorem 3.6. Let X ⊆ Rd be open and let P be a non-zero polynomial with
principal part Pm. If for every x ∈ X there is r ∈ {ξ ∈ Rd; Pm(ξ) = 0}⊥\{0}
such dist(x, ∂X) ≥ dist(y, ∂X) for every y ∈ {x+ λr;λ ∈ (0, λX(x, r))} then X
is P -convex for supports.

Moreover, if additionally P is semi-elliptic then X × R is P+-convex for
singular supports, hence P (D) : D ′(X) → D ′(X) as well as P+(D) : D ′(X ×
R)→ D ′(X × R) are surjective.

As explained at the beginning of this section, as a consequence of results due
to Vogt [39] on the one hand and Bonet and Doma«ski [5] on the other hand,
P+(D) is surjective on D ′(X×R) whenever P is elliptic. Vogt's proof relied on
Grothendieck's duality theory and a generalization of Hadamard's Three Circles
Theorem to certain sheaves of real analytic functions. As an application of the
above theorem we will now give an alternative proof from [10] of the consequence
of Vogt's result.

Corollary 3.7. Let X ⊆ Rd be open and let P be an elliptic polynomial. Then
P+(D) is surjective on D ′(X × R).

Proof. This follows immediately from theorem 3.6 since elliptic polynomials are
semi-elliptic and {ξ ∈ Rd; Pm(ξ) = 0}⊥ = Rd.

After having dealt with semi-elliptic polynomials we now turn our attention
to homogeneous polynomials. Again we start with a simple observation.

Proposition 3.8. Let P be a homogenous polynomial and let V ⊆ Rd be a
subspace such that P vanishes on V . Then V ⊆ Λ(P ). In particular V ⊆ Λ(Q)
for every Q ∈ L(P ).

Proof. By an appropriate linear change of coordinates we may assume without
loss of generality that V = Rk×{0}d−k with k = dimV . Using the homogeneity
of P an easy induction on the degree m of P yields that ∂αP vanishes on V if
|α| < m or if |α| = m and α /∈ V ⊥ = {0}k × Rd−k. Since xk+1 = . . . xd = 0 for
every x ∈ V this implies

P (ξ + x) =
∑
α

∂αP (0)

α!
(ξ + x)α =

∑
|α|=m,α∈V ⊥

∂αP (0)

α!
ξα = P (ξ)

for every ξ ∈ Rd and x ∈ V . Hence V ⊆ Λ(P ) and therefore V ⊆ Λ(Q) for
every Q ∈ L(P ), too.

Lemma 3.9. Let P be a homogeneous polynomial and let V ⊆ Rd be a subspace.
Then the following are equivalent.

i) σP (V ) = 0.
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ii) σ0
P (V ) = 0.

Proof. Let m be the degree of P . Without loss of generality we may assume
that {0} 6= V . Assume that σP (V ) > 0. If P is not elliptic there is N ∈ Sd−1

such that P (nN) = 0 for every n ∈ N. It follows with [18, Theorem 11.1.3
Ia)] that P cannot be hypoelliptic, so there is a non-constant Q ∈ L(P ). With
lemma 2.6 we obtain

0 < σP (V ) ≤ inf
t≥1

Q̃V (0, t)

Q̃(0, t)
.

As Q is not constant we conclude that Q cannot be constant on V . Hence, P
does not vanish identically on V by proposition 3.8.

In case of P being elliptic it follows from the homogeneity of P that P (x) 6= 0
for every x ∈ V \{0}, in particular, P does not vanish identically on V .

Since P |V 6= 0 the same is true for Pξ for every ξ ∈ Rd. For otherwise we
had for any x ∈ V \{0} and every λ ∈ R

0 = P (ξ + λx) = λmP (x) +O(λm−1),

for λ→∞, so that P (x) = 0, i.e. P |V = 0. So for every ξ ∈ Rd we have

0 < P̃V (ξ, 1).

In particular, for every r > 0 there is some constant C(r) > 0 such that for
every |ξ| ≤ r

P̃V (ξ, 1) ≥ C(r)

since ξ 7→ P̃V (ξ, 1) is continuous. Hence

∀r > 0 ∃C(r) > 0 ∀ |ξ| ≤ r :
P̃V (ξ, 1)

P̃ (ξ, 1)
≥ C(r)

P̃ (0, r + 1)
> 0.

Now, as σP (V ) > 0 this immediately implies

0 < inf
ξ∈Rd

P̃V (ξ, 1)

P̃ (ξ, 1)
.

Using the homogeneity of P again we �nally conclude

σ0
P (V ) = inf

t≥1
inf
ξ∈Rd

P̃V (ξ, t)

P̃ (ξ, t)
= inf
t≥1

inf
ξ∈Rd

tmP̃V ( ξt , 1)

tmP̃ ( ξt , 1)
= inf
ξ∈Rd

P̃V (ξ, 1)

P̃ (ξ, 1)
> 0

so that ii) implies i). As i) implies ii) by lemma 3.1 i) the lemma is proved.

Recall that a polynomial P ∈ C[X1, . . . , Xd] of degree m with principal part
Pm is of principal type if ∇Pm(ξ) 6= 0 for all ξ ∈ {x ∈ Rd; Pm(x) = 0}. As
〈ξ,∇Pm(ξ)〉 = mPm(ξ) by Euler's identity for homogeneous functions, we then
have ∇Pm(ξ) 6= 0 for all ξ ∈ Rd\{0}. If moreover Pm has real coe�cients
then P is said to be of real principal type. As is well-known, for polynomials P
of principal type the principal part Pm and P are equally strong, see e.g. [18,
Theorem 10.4.10].

The next theorem generalizes one half of [15, Theorem 6.9].
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Theorem 3.10. Let P be a polynomial of degree m with principal part Pm and
let V ⊆ Rd be a subspace. If P and Pm are equally strong then σP (V ) = 0 if
and only if σ0

P (V ) = 0.

Proof. It follows from the hypothesis and theorem 3.2 i) that σP (V ) = 0 if and
only if σPm

(V ) = 0. By lemma 3.9 the latter is equivalent to σ0
Pm

(V ) = 0 which
in turn is equivalent to σ0

P (V ) = 0 by theorem 3.2 ii) and the hypothesis.

The above theorem applies in particular to polynomials of principal type.
For this reason as well as for notational convenience we introduce the following
notion.

De�nition 3.11. Let P ∈ C[X1, . . . , Xd] be of degree m with principal part
Pm. P is said to be of generalized principal type if P and Pm are equally strong.

Obviously, every polynomial of principal type is of generalized principal type.
More generally, if P is a polynomial acting along a subspace V and being of
principal type there, then P is of generalized principal type. Additionally, every
polynomial of degree 1 is of generalized principal type, or more general, every
homogeneous polynomial plus some constant term is.

We now examine the class of polynomials of principal type more closely.
Since by de�nition the characteristics of a polynomial of principal type are all
simple and since by lemma 2.6 ii) we know that for a non-constant localization
Q of P at in�nity its direction N has to be a characteristic vector of P we now
describe the localizations at in�nity in direction of a simple characteristic in the
next lemma. This is a speci�cation of [14, Example 1.4.4].

Lemma 3.12. For N ∈ Sd−1 we denote by ω(N) the set of all sequences (ξn)n∈N
in Rd tending to in�nity such that limn→∞ ξn/|ξn| = N . Moreover, let P be a
non-constant polynomial. We set

λ1(N) := {β ∈ C;∃ (ξn)n∈N ∈ ω(N) : β = lim
n→∞

|ξn|Pm(
ξn
|ξn|

)}

If N ∈ Sd−1 is a simple characteristic vector for P , then we have

{Q ∈ LN (P ); Q is not constant } =

{x 7→ β + Pm−1(N) + 〈∇Pm(N), x〉√
|β + Pm−1(N)|2 + |∇Pm(N)|2

; β ∈ λ1(N)}.

In particular, LN (P ) contains the set of non-constant polynomials

{Q ∈ C[X1, . . . , Xd]; Q(x) =
Pm−1(N) + 〈∇Pm(N), x〉√
|Pm−1(N)|2 + |∇Pm(N)|2

}.

Proof. We have for ξ, x ∈ Rd by Taylor's Theorem

Pξ(x) = Pm(ξ) + Pm−1(ξ) + Pm−2(ξ) + 〈∇Pm(ξ) +∇Pm−1(ξ), x〉

+
1

2
〈x,∇2Pm(ξ)x〉+O(|ξ|m−3) (6)

= Pm(ξ) + Pm−1(ξ) + 〈∇Pm(ξ), x〉+O(|ξ|m−2)
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as ξ →∞, uniformly for |x| bounded.
Moreover, with 1 = (1, . . . , 1) ∈ Rd

P̃ (ξ) =
(
|P (ξ)|2 + |∇P (ξ)|2 +

∑
2≤|α|≤m

|P (α)(ξ)|2
)1/2

=
(
|Pm(ξ) + Pm−1(ξ) +O(|ξ|m−2)|2 + |∇Pm(ξ) +O(|ξ|m−2)1|2

+O(|ξ|2m−4)
)1/2

= |ξ|m−1
(
| |ξ|Pm(

ξ

|ξ|
) + Pm−1(

ξ

|ξ|
) +O(|ξ|−1)|2 (7)

+|∇Pm(
ξ

|ξ|
) +O(|ξ|−1)1|2 +O(|ξ|−2)

)1/2

=: |ξ|m−1D1(ξ),

as ξ →∞.
Now, let N ∈ Sd−1 be a simple characteristic of P . Equations (6) and (7)

imply

P (x+ ξ)

P̃ξ(0)
=

1
|ξ|m−1P (x+ ξ)

D1(ξ)
(8)

=
|ξ|Pm( ξ

|ξ| ) + Pm−1( ξ
|ξ| ) +O(|ξ|−1) + 〈∇Pm( ξ

|ξ| ), x〉
D1(ξ)

for ξ → ∞, uniformly for bounded |x|. Hence, for any β ∈ λ1(N), by choosing
a corresponding (ξn)n∈N ∈ ω(N), the polynomial

Q(x) =
β + Pm−1(N) + 〈∇Pm(N), x〉√
|β + Pm−1(N)|2 + |∇Pm(N)|2

is contained in LN (P ).
On the other hand, let Q ∈ LN (P ) be a non-constant localization with

corresponding (ξn)n∈N ∈ ω(N). We �rst show that for every x ∈ Rd with
Q(x) 6= Q(0) we have 〈∇Pm(N), x〉 6= 0. For if there is x with Q(x) 6= Q(0)
such that 〈∇Pm(N), x〉 = 0 it follows with Taylor's Theorem

0 6= Q(x)−Q(0) = lim
n→∞

P (ξn + x)− P (ξn)

P̃ (ξn)

= lim
n→∞

〈∇Pm(ξn), x〉+O(|ξn|m−2)

|ξn|m−1D1(ξn)
(9)

= lim
n→∞

〈∇Pm( ξn
|ξn| ), x〉+O(|ξn|−1)

D1(ξn)
.

By assumption on x the numerator in the last line of the above expression con-
verges to zero so that (D1(ξn))n∈N cannot have a subsequence which is bounded
from below by some ε > 0. Therefore (D1(ξn))n∈N tends to zero. From the
de�nition of D1(ξn) we immediately obtain

0 = lim
n→∞

|∇Pm(
ξn
|ξn|

)| = |∇Pm(N)|,
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contradicting ∇Pm(N) 6= 0. Hence, if Q ∈ LN (P ) is not constant, we have
〈∇Pm(N), x〉 6= 0 for every x with Q(x) 6= Q(0).

For x with Q(x) 6= Q(0) we therefore obtain that the numerator in (9) con-
verges to 〈∇Pm(N), x〉 6= 0, so that again by (9) and the de�nition of D1(ξn) we
conclude that (D1(ξn))n∈N does not have any unbounded subsequence. There-
fore, by passing to a subsequence if necessary, we may assume that (D1(ξn))n∈N
converges in [0,∞) and that (|ξn|Pm(ξn/|ξn|))n∈N converges to some β ∈ C,
hence

lim
n→∞

D1(ξn) =
√
|β + Pm−1(N)|2 + |∇Pm(N)|2.

From this and equation (8)

Q(x) = lim
n→∞

Pξn(x)

P̃ξn(0)
=

β + Pm−1(N) + 〈∇Pm(N), x〉√
|β + Pm−1(N)|2 + |∇Pm(N)|2

�nally follows. Thus, every non-constant polynomial Q ∈ LN (P ) is of the
desired form. To �nish the proof we observe that choosing ξn = nN yields
0 ∈ λ1(N).

Remark 3.13. In general, nothing speci�c can be said about the set λ1(N).

For example, let P (x1, x2) = x1x2 and consider ηn := (
√

1− 1
n2 ,

1
n ). Then

|ηn| = 1 and (ηn) converges to the simple zero (1, 0) of P . For β > 0 arbitrary
and ξn := nβ ηn it follows

(ξn)n∈N ∈ ω
(
(1, 0)

)
and |ξn|P (

ξn
|ξn|

) = β

√
1− 1

n2
−→n→∞ β.

Moreover, considering ξn := en ηn we obtain limn→∞ |ξn|P ( ξn
|ξn| ) = ∞. One

easily checks that then the corresponding localization at in�nity is constant.

Lemma 3.12 will now be used to derive the following result. Part ii) corrects
a notational inaccuracy in [15, Theorem 6.9].

Theorem 3.14. Let P be a polynomial with principal part Pm and let V ⊆ Rd
be a subspace.

i) If N ∈ Sd−1 is a simple characteristic vector for P with

{Re∇Pm(N), Im∇Pm(N)} ⊆ V ⊥

then σP (V ) = 0.

ii) If P is of principal type then σP (V ) = 0 if and only if σ0
P (V ) = 0 if and

only if

{Re∇Pm(N), Im∇Pm(N)} ⊆ V ⊥ for some N ∈ Sd−1∩{ξ ∈ Rd; Pm(ξ) = 0}.

In particular, if P is of real principal type then σP (V ) = 0 if and only if
there is N ∈ {ξ ∈ Rd;Pm(ξ) = 0}\{0} with ∇Pm(N) ∈ V ⊥ which is the
case e.g. for V = span{N} for N 6= 0, Pm(N) = 0.
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Proof. By lemma 3.12 for every simply characteristic N ∈ Sd−1 there is a non-
constant Q ∈ LN (P ) of the form

Q(x) =
β + Pm−1(N) + 〈∇Pm(N), x〉√
|β + Pm−1(N)|2 + |∇Pm(N)|2

for some β ∈ λ1(N). Hence, if {Re∇Pm(N), Im∇Pm(N)} ⊆ V ⊥ it follows that
Q is constant in V but not constant in Rd. Therefore

inf
t≥1

Q̃V (0, t)

Q̃(0, t)
= 0,

thus σP (V ) = 0 by lemma 2.6. This proves i).

Now if P is of principal type it follows from theorem 3.10 and the remark
preceding it that σP (V ) = 0 if and only if σ0

P (V ) = 0. Moreover, if σP (V ) = 0
it follows from lemma 2.6 and lemma 3.12 i) that there are sequences (tn)n∈N
in [1,∞), (Nn)n∈N in Sd−1 ∩ {ξ ∈ Rd; Pm(ξ) = 0} and (βn)n∈N in C such that

0 = lim
n→∞

supx∈V,|x|≤tn |βn + Pm−1(Nn) + 〈∇Pm(Nn), x〉|
sup|x|≤tn |βn + Pm−1(Nn) + 〈∇Pm(Nn), x〉|

= lim
n→∞

supx∈V,|x|≤1 |
βn+Pm−1(Nn)

tn
+ 〈∇Pm(Nn), x〉|

sup|x|≤1 |
βn+Pm−1(Nn)

tn
+ 〈∇Pm(Nn), x〉|

, (10)

in particular, for suitable c > 0

0 = lim
n→∞

|βn+Pm−1(Nn)
tn

|

sup|x|≤1 |
βn+Pm−1(Nn)

tn
|+ c

,

as the (Nn)n∈N are unit vectors. We conclude

0 = lim
n→∞

βn + Pm−1(Nn)

tn
.

Choosing a converging subsequence of (Nn)n∈N with limit N we have N ∈
Sd−1 ∩ {ξ ∈ Rd; Pm(ξ) = 0} and equation (10) yields

0 =
supx∈V,|x|≤1 |〈∇Pm(N), x〉|

sup|x|≤1 |〈∇Pm(N), x〉|
=

supx∈V,|x|≤1 |〈∇Pm(N), x〉|
|∇Pm(N)|

so that

∀x ∈ V : 0 = 〈Re∇Pm(N), x〉+ i〈Im∇Pm(N), x〉

showing {Re∇Pm(N), Im∇Pm(N)} ⊆ V ⊥.
On the other hand, applying i) it follows that σP (V ) = 0 if

{Re∇Pm(N), Im∇Pm(N)} ⊆ V ⊥

for some N ∈ Sd−1 ∩ {ξ ∈ Rd; Pm(ξ) = 0}. This proves ii).
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As shown in the proof of [18, Theorem 10.4.5] there is a constant C depending
only on d and the maximal degree of the polynomials P1, and P2 such that for
all ξ ∈ Rd, t ≥ 1

1

C
P̃1(ξ, t)P̃2(ξ, t) ≤ P̃1P2(ξ, t) ≤ CP̃1(ξ, t)P̃2(ξ, t).

Herefrom follows immediately the next theorem which is [15, Theorem 6.7].

Theorem 3.15. For P1, P2 ∈ C[X1, . . . , Xd] and P (x) := P1(x)P2(x) the fol-
lowing hold for any subspace V ⊆ Rd.

i) σP (V ) = 0 if and only if σP1
(V ) = 0 or σP2

(V ) = 0.

ii) σ0
P (V ) = 0 if and only if σ0

P1
(V ) = 0 or σ0

P2
(V ) = 0.

As a consequence of the above theorem together with theorems 3.4 and 3.10
as well as the results of chapter 2 we obtain the following theorem giving fur-
ther su�cient conditions for the augmented operator of a surjective di�erential
operator to be surjective again. It will be seen in the next section that this
implication is not always true in general.

Theorem 3.16. Let X be an open subset of Rd and let the polynomials Q1, . . . , Qn
be semi-elliptic or of generalized principal type. Set P := Q1 · · ·Qn and denote
its principal part by Pm.

a) If for each x ∈ ∂X there is an open convex cone Γ 6= Rd such that (x +
Γ◦) ∩X = ∅ and Pm(y)σP (y) 6= 0 for all y ∈ Γ then

P (D) : D ′(X)→ D ′(X) as well as P+(D) : D ′(X × R)→ D ′(X × R)

are surjective.

b) Let X0 ⊆ Rd be open and convex and let Γ1,Γ2, . . . be a sequence of open
convex cones, all di�erent from Rd. Moreover, let x1, x2 . . . be a sequence
in X0. Denote by X the interior of X0∩

⋂∞
n=1(xn+Γ◦n)c and assume that

for every n ∈ N we have εn > 0 such that

Bεn(xn) ∩ (xn + Γ◦n)c ⊆ X.

Then the following are equivalent.

i) P (D) is surjective on D ′(X).

ii) P+(D) is surjective on D ′(X × R).

iii) Pm(y)σP (y) 6= 0 for all y ∈ ∪∞n=1Γn.

iv) σ0
P (y) 6= 0 for all y ∈ ∪∞n=1Γn.

Proof. The surjectivity of P (D) on D ′(X) in a) follows from the hypothesis and
theorem 2.11. Moreover, we obtain from theorem 3.15 together with theorem
3.4 and theorem 3.10 that the hypothesis in a) together with theorem 2.11 imply
the P+-convexity for singular supports of X × R. Thus a) follows since X × R
is also P -convex for supports by theorem 1.5.

In order to prove b) we observe that i) is equivalent to iii) by corollary 2.22.
It follows from theorem 3.15, theorem 3.4, and theorem 3.10 that iii) and iv) are
equivalent. Moreover, iii) and iv) together with corollary 2.22 imply ii). Finally,
ii) implies i) by theorem 1.5.
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3.2 A surjective di�erential operator on D ′(X) with non-

surjective augmented operator

In the previous section we gave some su�cient conditions on P as well as X
such that surjectivity of P (D) on D ′(X) implies surjectivity of the augmented
operator P+(D) on D ′(X × R). Moreover, it will be shown in section 4.2 that
this implication always holds in case of X ⊆ R2. However, in general P+(D)
need not inherit surjectivity from P (D) as will be shown in this section. This
answers in the negative a problem posed by Bonet and Doma«ski in [5, Problem
9.1]. The example presented in this section will appear in [20].

As a special case of lemma 3.12 i) we have the following proposition.

Proposition 3.17. Let P be a homogeneous polynomial of degree m and ξ ∈ Rd
with P (ξ) = 0 and ∇P (ξ) 6= 0. Then x 7→

∑d
j=1 ∂jP (ξ)xj = 〈∇P (ξ), x〉 is a

localization of P at in�nity.

In the example we now provide the polynomial P is hypoelliptic. Since for
hypoelliptic P the kernels of

P (D) : E (X)→ E (X) and P (D) : D ′(X)→ D ′(X)

coincide as locally convex spaces it is a Fréchet-Schwartz space. Hence it has
property (Ω) if and only if it has property (PΩ). By the explanations given in
chapter 1 the following theorem therefore also gives an example of a surjective
hypoelliptic di�erential operator

P (D) : E (X)→ E (X)

such that its kernel does not have property (Ω). Therefore it also solves an
open problem from Varol [38, Section 3]. This should be compared with Vogt's
classical result [39] that the kernel of an elliptic di�erential operators always has
(Ω).

Theorem 3.18. For any d ≥ 3 there are an open subset X ⊆ Rd and a hypoel-
liptic polynomial P ∈ C[X1, . . . , Xd] such that P (D) is surjective on D ′(X) but
P+(D) is not surjective on D ′(X × R). Therefore its kernel NP (X) does not
have (Ω).

Proof. Let Q be a homogeneous polynomial of real principal type of degree m
which is not elliptic and let x ∈ Rd, |x| = 1 such that Q(x) 6= 0 but σQ(x) = 0.
It will be shown in section 4.1 that we have to choose d ≥ 3 for this. For
example, take Q(ξ) = ξ2

1 − ξ2
2 − . . . − ξ2

d and x = ed = (0, . . . , 0, 1). Indeed, by
proposition 3.17 applied to Q and ξ = (1, 1, 0, . . . , 0) it follows that

x 7→ 〈∇Q(ξ), x〉 = 2x1 − 2x2

is a localization of Q at in�nity. Because 〈∇Q(ξ), ed〉 = 0 since d ≥ 3 we have
σQ(ed) = 0 by lemma 2.6 on the one hand and obviously Q(ed) 6= 0 on the other
hand.

By [18, Theorem 11.1.12] there is a polynomial R of degree 4m−2 such that

P (ξ) := Q(ξ)4 +R(ξ) (11)
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is a hypoelliptic polynomial of degree 4m. Clearly, for its principal part P4m we
have P4m = Q4 so P4m(x) = Q4(x) 6= 0. Moreover, we have

σ0
P (x) ≤ σ0

P4m
(x) = σ0

Q4(x) = (σ0
Q(x))4 ≤ (σQ(x))4 = 0, (12)

where we have used lemma 3.1 iii), the obvious fact that σ0
Pk(V ) = (σ0

P (V ))k

for any k ∈ N, and lemma 3.1 i).
Since P4m is homogeneous and P4m(x) 6= 0 there is an open proper convex

cone Γ 6= Rd with x ∈ Γ such that P4m(y) 6= 0 for every y ∈ Γ. If we set
X := Rd\Γ◦ it follows from theorem 2.21 i) that X is P -convex for supports.
Since P is hypoelliptic X is P -convex for singular supports as well. But because
x ∈ Γ and σ0

P (x) = 0 by inequality (12) X × R is not P+-convex for singular
supports by theorem 2.21 iii). Thus, for the hypoelliptic polynomial P in (11)

P (D) : D ′(X)→ D ′(X) is surjective

but
P+(D) : D ′(X × R)→ D ′(X × R) is not surjective.
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4 Linear partial di�erential operators with con-

stant coe�cients in two independent variables

A constant coe�cient linear partial di�erential operator P (D) can be considered
as an endomorphism on various spaces of functions or distributions de�ned on
an open subset X ⊆ Rd. It is well-known and no surprise that the question of
surjectivity of this endomorphism depends on the space of functions or distri-
butions under consideration. From results of Malgrange [25, Théorème 4] and
Hörmander [13, Theorem 3.10] it follows that surjectivity of P (D) on D ′(X)
implies surjectivity on E (X). On the other hand, it is well-known, that in gen-
eral surjectivity of P (D) on E (X) is not su�cient to guarantee surjectivity on
D ′(X), as remarked in [13, Section 6]. (A concrete example for this is given in
example 2.24.) Moreover, convexity of X is su�cient for P (D) to be surjective
on E (X), [25, Théorème 3], as well as on D ′(X), [26].

Proving a conjecture of De Giorgi and Cattabriga [8], it was shown by Pic-
cinini [33] that ∂2/∂x2

1 + ∂2/∂x2
2 is not surjective on the space A (Rd) of real

analytic functions on Rd for every d ≥ 3. In particular, convexity of X is not
su�cient for P (D) to be surjective on A (X). Moreover, one can consider P (D)
as an endomorphism on the space of ultradistributions of Beurling type D ′(ω)(X)
for a non-quasianalytic weight function ω. In this setting, it was shown by Lan-
genbruch [23, Example 3.13] that in general surjectivity of P (D) on D ′(ω)(X)
for �xed X depends explicitly on the weight function ω under consideration.

For all the above mentioned spaces of functions and distributions, charac-
terizations of surjectivity of the endomorphism P (D) are available, although
evaluating these conditions in concrete examples is not an easy task, in gen-
eral. While surjectivity of P (D) on E (X) and D ′(X) was characterized by
Malgrange in [25] and Hörmander in [13], respectively, a characterization of the
surjectivity of P (D) in the setting of ultradistributions of Beurling type has
been given by Björck [1]. Moreover, a characterization of surjectivity of P (D)
on A (X) by means of an application of the Projk-functors of Palamodov [31,32]
(see also Vogt [42]) is due to Langenbruch [24]. In case of a convex open set
X a di�erent characterization of surjectivity of P (D) on A (X) by means of a
Phragmén-Lindelö� condition valid on the complex variety of P was given by
Hörmander [16].

However, despite of the di�erences in the surjectivity on E (X) and A (X)
it was shown by Zampieri in [44, 45] that in case of d = 2 surjectivity of P (D)
on E (X) is equivalent to surjectivity on A (X). Moreover, Trèves conjectured
in [35, Problem 2, page 389] that for X ⊆ R2 surjectivity of P (D) on E (X)
implies surjectivity on D ′(X).

The content of the present chapter is to prove the following result stating
that all the above mentioned di�erences in the surjectivity of P (D) on the vari-
ous spaces of functions and distributions vanish in case of open subsets X of R2.

Theorem A. Let X ⊆ R2 be open and P ∈ C[X1, X2]. Then the following are
equivalent.

i) P (D) : E (X)→ E (X) is surjective.

ii) P (D) : A (X)→ A (X) is surjective.

iii) P (D) : D ′(X)→ D ′(X) is surjective.
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iv) P+(D) : D ′(X × R)→ D ′(X × R) is surjective.

v) P (D) : D ′(ω)(X) → D ′(ω)(X) is surjective for every non-quasianalytic
weight function ω.

vi) P (D) : D ′(ω)(X) → D ′(ω)(X) is surjective for some non-quasianalytic
weight function ω.

vii) The intersection of every connected component of X with any character-
istic line for P is convex.

Herein, the equivalence of i) and vii) is due to Hörmander (see e.g. [18,
Theorem 10.8.3]). As mentioned above, iii) always implies i) no matter the
dimension d. Moreover, as already stated above, the equivalence of i) and ii) is
due to Zampieri [44, Theorem 2]. The equivalence of i) and iii) proves in the
a�rmative Trèves' conjecture, while the su�ciency of iii) for iv) shows that,
again contrary to arbitrary dimension, the problem of Bonet and Doma«ski
introduced in chapter 1 (see [5, Problem 9.1]) has a positive solution in the two
dimensional case (compare with theorem 3.18). Note that iv) always implies iii)
by theorem 1.5, again in arbitrary dimension d. That vi) always implies i) was
shown by Björck in [1, Theorem 3.4.12] (see also the remark preceding theorem
4.11).

The aim of this chapter is to give proofs of the implications which are not yet
proved. To be more precise, in section 4.1 we will prove Trèves' conjecture, thus
showing that i) implies iii). Section 4.2 will be devoted to show that iii) implies
iv), while in section 4.3 we will deal with the remaining non-trivial implication
that i) su�ces for v) to hold. The content of this chapter has been published
in [21], [22], and [20].

4.1 On a conjecture of Trèves

Let X ⊆ R2 be open and P ∈ C[X1, X2]\{0} be of degree m. This section is
devoted to prove that surjectivity of P (D) on E (X) implies surjectivity of P (D)
on D ′(X), thus proving a conjecture of Trèves [35, Problem 2, page 389] and
showing that i) implies iii) in theorem A. As usual, we denote the principal part
of P by Pm. Applying the Fundamental Theorem of Algebra to the one-variable
polynomial z 7→ Pm(z, 1) of degree k ≤ m yields for ξ2 6= 0

Pm(ξ1, ξ2) = ξm2 Pm(
ξ1
ξ2
, 1) = ξm2 c

k∏
j=1

(
ξ1
ξ2
− αj) = cξm−k2

k∏
j=1

(ξ1 − αjξ2)

for some c ∈ C\{0}, αj ∈ C. In particular it follows that

{ξ ∈ S1; Pm(ξ) = 0}

is a �nite set. Therefore, the only characteristic surfaces for P are hyperplanes
and there are only a �nite number of them, up to translations. We call them
characteristic lines for obvious reasons.

In R2 P -convexity for supports of X is completely characterized by the
following theorem due to Hörmander (cf. [18, Theorem 10.8.3]). Recall that
for an elliptic polynomial P every open set is P -convex for supports (cf. [18,
Corollary 10.8.2]).
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Theorem 4.1. If P is non-elliptic then the following conditions on an open
connected set X ⊆ R2 are equivalent:

i) X is P -convex for supports.

ii) The intersection of X with any characteristic line is convex.

iii) Every x ∈ ∂X is the vertex of a closed proper convex cone C ⊆ R2\X
such that no characteristic line intersects C only at x.

By proposition 2.10 it follows that the above condition iii) is equivalent to

iii') For every x ∈ ∂X there is an open convex cone Γ such that (x+Γ◦)∩X = ∅
and Pm(y) 6= 0 for all y ∈ Γ.

Next, we want to prove a similar characterization for P -convexity for singular
supports of an open, connected set X ⊆ R2. The following lemma will be useful
not only in this task but also in proving that P -convexity for singular supports
of X ⊆ R2 follows from P -convexity for supports.

Lemma 4.2. For a non-constant polynomial P ∈ C[X1, X2] of degree m with
principal part Pm we have

{y ∈ R2\{0}; σP (y) = 0} ⊆ {y ∈ R2\{0}; Pm(y) = 0}.

In particular, {y ∈ S1; σP (y) = 0} is �nite.

Proof. As for a hypoelliptic polynomial P the function σP is constantly equal
to 1 we can assume without loss of generality that P is not hypoelliptic, hence
not elliptic.

As observed at the beginning of this section {N ∈ S1; Pm(N) = 0} is �nite.
Let us denote its elements by N1, . . . , Nl. For each 1 ≤ j ≤ l choose xj ∈ S1

orthogonal to Nj . Take an arbitrary, non-constant Q ∈ L(P ) which exists
because P is not hypoelliptic. By lemma 2.6 ii) there is 1 ≤ j ≤ l such that
Q ∈ LNj (P ). By [18, Theorem 10.2.8] we have Q(ξ + sNj) = Q(ξ) for any
ξ ∈ R2, s ∈ R. Hence Q(ξ) = Q(〈ξ, xj〉xj) for all ξ ∈ R2. De�ning

q : R→ C, s 7→ Q(sxj)

it follows that for �xed y ∈ S1

Q̃span{y}(0, t) = sup{|Q(λy)|; |λ| ≤ t} = sup{|Q(λ〈y, xj〉xj)|; |λ| ≤ t}
= sup{|q(λt〈y, xj〉)|; |λ| ≤ 1},

and because |xj | = 1 we also have

Q̃(0, t) = sup{|Q(ξ)|; ξ ∈ R2, |ξ| ≤ t} = sup{|Q(〈ξ, xj〉xj)|; ξ ∈ R2, |ξ| ≤ t}
= sup{|Q(λxj)|; |λ| ≤ t} = sup{|q(λt)|; |λ| ≤ 1}.

Since Q ∈ L(P ) it follows that q is a polynomial of degree at most m. Because
of the fact that on the �nite dimensional space of all polynomials in one variable
of degree at most m the norms sup|s|≤1 |p(s)| and

∑m
k=0 |p(k)(0)| are equivalent,

there is C > 0 such that

C sup
|s|≤1

|p(s)| ≥
m∑
k=0

|p(k)(0)| ≥ 1/C sup
|s|≤1

|p(s)|
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for all p ∈ C[X] with degree at most m. Applying this to the polynomials
s 7→ q(st) and s 7→ q(st〈y, xj〉) gives

Q̃span{y}(0, t)

Q̃(0, t)
≥

∑m
k=0 |q(k)(0)|tk|〈y, xj〉|k

C2
∑m
k=0 |q(k)(0)|tk

≥ |〈y, xj〉|m/C2,

where we used |〈y, xj〉| ≤ 1 in the last inequality. We conclude for every 1 ≤
j ≤ l

inf
Q∈LNj

(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ |〈y, xj〉|

m

C2
,

where C only depends on the degree m of P . It follows from lemma 2.6 iii) and
{N ∈ S1; Pm(N) = 0} = {N1, . . . , Nl} that for all t ≥ 1

lim inf
ξ→∞

P̃span{y}(ξ, t)

P̃ (ξ, t)
= min

1≤j≤l
inf

Q∈LNj
(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ min

1≤j≤l

|〈y, xj〉|m

C2
.

Therefore, if for y ∈ Rd\{0}

0 = σP (y) = inf
t≥1

lim inf
ξ→∞

P̃span{y}(ξ, t)

P̃ (ξ, t)

it follows that y is orthogonal to some xj , hence y is a non-zero multiple of Nj
which shows Pm(y) = 0.

As a �rst application of the above lemma we characterize P -convexity for
singular supports of open, connected X ⊆ R2 similar to the characterization of
P -convexity for supports in theorem 4.1. Its proof is mutatis mutandis identical
to that of theorem 4.1 but we include it for completeness' sake.

Theorem 4.3. For P ∈ C[X1, X2] and an open connected set X ⊆ R2 the
following are equivalent.

i) X is P -convex for singular supports.

ii) The intersection of X with every hyperplane H satisfying σP (H⊥) = 0 is
convex.

iii) For every x ∈ ∂X there is an open convex cone Γ 6= R2 with σP (y) 6= 0
for all y ∈ Γ and (x+ Γ◦) ∩X = ∅.

Proof. We �rst show that i) implies ii). It is enough to show that if (±1, 0) ∈ X
and σP ((0, 1)) = 0 (i.e. parallels to the x-axis are hyperplanesH with σP (H⊥) =
0), then I = [−1, 1] × {0} ⊆ X. We join (−1, 0) and (1, 0) by a polygon γ in
X without self-intersection, where we can assume that γ intersects the x1-axis
only at its end points. For if this is not the case we can decompose γ into several
polygons meeting the x1-axis only at the end points and treat them separately.
Then I and γ are the boundary of a connected and compact set C. We de�ne

Y = {y ∈ R; (x, y) ∈ C for some x ∈ R}

Y0 = {y ∈ Y ; (x, y) ∈ C ⇒ (x, y) ∈ X}.
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Y is a closed interval with non-empty interior and Y0 is not empty since the
end point of Y which is di�erent from 0 belongs to Y0. Since X is P -convex
for singular supports it follows from [18, Corollary 11.3.2] that dX satis�es the
minimum principle in the hyperplane R × {y} for arbitrary y ∈ R. Therefore,
if y ∈ Y0 then from the de�nition of Y0 (x, y) ∈ C implies (x, y) ∈ X so that
∅ 6= C ∩ (R × {y}) ⊆ X ∩ (R × {y}) is compact. Hence for y ∈ Y0 and x with
(x, y) ∈ C we have due to the minimum principle

dX(x, y) ≥ dX(C ∩ (R× {y})) = dX(∂C ∩ (R× {y})) ≥ dX(γ ∩ (R× {y}))
≥ dist(γ,Xc).

Because γ ⊆ X we have dist(γ,Xc) > 0, i.e. if y ∈ Y0 then (x, y) ∈ C implies
that the distance form (x, y) to Xc is bounded below by the positive constant
dist(γ,Xc). From this it follows that Y0 is closed in Y . Since X is open, Y0 is
also open in the interval Y . Because Y0 is not empty this implies Y = Y0, hence
0 ∈ Y = Y0, so that I = [−1, 1]× {0} ⊆ X.

Next, we prove that ii) implies iii). If x ∈ ∂X and H is a hyperplane through
x with σP (H⊥) = 0 then one half ray H1 of H bounded by x is contained in
Xc by ii). If there is another hyperplane I through x with σP (I⊥) = 0 such
that H1 ∩ I = {x} then one of its half rays I1 bounded by x is contained in
Xc by ii) and since X is connected it can be chosen so that the convex hull
Γ◦ of H1 and I1 is contained in Xc (and obviously is a proper convex cone by
H1 ∩ I = {x}). If there is a hyperplane K through x with σP (K⊥) = 0 and
with K ∩ Γ◦ = {x} we continue extending Γ◦ until there is no hyperplane L
with σP (L⊥) = 0 intersecting Γ◦ only in x. Observe that by lemma 4.2 this
procedure stops after a �nite number of extensions so that the resulting closed
convex cone is indeed proper! From proposition 2.10 it follows that for no y ∈ Γ
we have σP (y) = 0.

To �nish the proof, we show that iii) implies i). But this follows from theorem
2.11 ii) which itself was inspired by the proof of the corresponding implication
of [18, Theorem 10.8.3].

With the aid of theorem 4.1, lemma 4.2, and theorem 4.3 we give now a
proof of Trèves' conjecture.

Theorem 4.4. Let X ⊆ R2 be open and P ∈ C[X1, X2] be a non-constant
polynomial with principal part Pm. Then the following are equivalent.

i) P (D) : E (X)→ E (X) is surjective.

ii) P (D) : D ′(X)→ D ′(X) is surjective.

iii) The intersection of every characteristic line for P and any connected com-
ponent of X is convex.

iv) For every connected component X0 of X and every x ∈ ∂X0 there is an
open convex cone Γ such that (x + Γ◦) ∩ X0 = ∅ and Pm(y) 6= 0 for all
y ∈ Γ\{0}.

Proof. Without loss of generality, let X be connected. If P is elliptic i) and
ii) are always satis�ed. Moreover, in this case there is no characteristic line for
P so that iii) is also satis�ed. Choosing Γ = R2 in iv) we see that iv) is then
always satis�ed, too.
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We therefore assume that P is not elliptic. The equivalence of i), iii) and iv)
is theorem 4.1 and we only have to show that i) implies ii).

If P is hypoelliptic, X is P -convex for singular support so that i) and ii)
are equivalent. If P is not hypoelliptic it follows from the equivalence of i) and
iii) together with lemma 4.2 and theorem 4.3 that X is P -convex for singular
supports. So i) implies ii) and the proof is �nished.
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4.2 The augmented di�erential operator of a surjective

di�erential operator in two variables is again surjec-

tive

The purpose of this section is to prove that iii) implies iv) in theorem A, thus
showing that, contrary to dimension d ≥ 3, for open sets X ⊆ R2 the problem of
Bonet and Doma«ski on surjectivity of augmented di�erential operators posed
in [5, Problem 9.1] has a positive solution (compare with section 3.2).

So let X ⊆ R2 open and P ∈ C[X1, X2]. By theorem 1.5 we have to show
that P -convexity for supports and singular supports of X implies P+-convexity
for singular supports of X × R. Recall that even for d = 2 it has been shown
in example 3.5 that P -convexity for singular supports of X is not enough to
ensure P+-convexity for singular supports of X × R in general. Without loss
of generality we can assume that X is connected so that the same is true for
X × R. [1, Theorem 3.4.12]

As in the proof of Trèves' conjecture, it will follow from theorem 4.1 that
the su�cient condition given in theorem 2.11 iii) for X×R to be P+-convex for
singular supports is always satis�ed if X is P -convex for supports once we have
proved that σ0

P (y) = 0 implies Pm(y) = 0, where as usual Pm is the principal
part of P .

Lemma 4.5. Let P ∈ C[X1, X2] be a non-constant polynomial of degree m with
principal part Pm. Then we have

{y ∈ R2\{0}; σ0
P (y) = 0} ⊆ {y ∈ R2\{0}; Pm(y) = 0}.

In particular, {y ∈ S1; σ0
P (y) = 0} is �nite.

Proof. Let y be a unit vector in R2 such that Pm(y) 6= 0. Then 0 6= σP (y) by
lemma 4.2. We assume that σ0

P (y) = 0. Thus, denoting the span of y by [y],
there are sequences (ξn)n∈N in R2 and (tn)n∈N in [1,∞) such that

lim
n→∞

P̃[y](ξn, tn)

P̃ (ξn, tn)
.

If (ξn)n∈N is bounded, we can assume without restriction, that limn→∞ ξn = ξ.
Moreover, we can assume that (tn)n∈N is unbounded - and therefore tends to
in�nity without loss of generality. For if (tn)n∈N is bounded, without restriction
limn→∞ tn = t for some t ≥ 1, so that

0 = lim
n→∞

P̃[y](ξn, tn)

P̃ (ξn, tn)
=
P̃[y](ξ, t)

P̃ (ξ, t)
.

But this means that
0 = sup

|θ|≤t
|P (ξ + θy)|,

i.e. the polynomial P (ξ + sy) in s ∈ R is identically zero. Replacing ξn by ξ
and tn by n for each n ∈ N we have a bounded sequence (ξn)n∈N in R2 and a
sequence (tn)n∈N in [1,∞) tending to in�nity such that

0 = lim
n→∞

P̃[y](ξn, tn)

P̃ (ξn, tn)
.
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Since (ξn)n∈N is bounded and (tn)n∈N tends to in�nity, there is a constant
C > 0 such that sup|x|≤1

∑m
j=0 |Pj(

ξn
tn

+ x)| ≤ C, where P =
∑m
j=0 Pj with Pj

being homogeneous of degree j. Using that tn ≥ 1 we obtain

sup
|x|≤tn

|P (ξn + x)| ≤ sup
|x|≤1

m∑
j=0

tjn|Pj(
ξn
tn

+ x)| ≤ tmn C.

This gives

P̃[y](ξn, tn)

P̃ (ξn, tn)
≥ |P (ξn + tny)|

sup|x|≤tn |P (ξn + x)|

≥ t−mn |P (ξn + tny)|
C

=
|
∑m
j=0 t

j−m
n Pj(

ξn
tn

+ y)|
C

.

Since (ξn/tn)n∈N converges to zero due to the boundedness of (ξn)n∈N and the
fact that (tn)n∈N tends to in�nity, it follows that for every 0 ≤ j ≤ m we have

lim
n→∞

Pj(y + ξn/tn) = Pj(y).

Therefore, the right hand side of the above inequality converges to |Pm(y)|/C
while the left hand side converges to zero contradicting Pm(y) 6= 0.

So (ξn)n∈N has to be unbounded. It follows from [18, Proposition 10.2.10]
that for su�ciently large η ∈ R2 and t ≥ 1 we have

inf{
∑
α

|P
(α)
η (0)

P̃η(0)
−Q(α)(0)|t|α|;Q ∈ L(P )} ≤ C|η|−2b,

where C and b are positive constants. Thus, from the continuity of (ξ, t) 7→
P̃[y](ξ, t) and the equivalences of P̃[y](ξ, t) and

∑
j |〈D, y〉jP (ξ)|tj as well as

P̃ (ξ, t) and
∑
α |P (α)(ξ)|t|α|, for n su�ciently large there are Qn ∈ L(P ) with

|
P̃[y](ξn, tn)

P̃ (ξn, tn)
−
Q̃n [y](0, tn)

Q̃n(0, tn)
| < σP (y)/2

which implies

inf
t≥1

inf
Q∈L(P )

Q̃[y](0, t)

Q̃(0, t)
≤ lim sup

n→∞
|
P̃[y](ξn, tn)

P̃ (ξn, tn)
−
Q̃n[y](0, tn)

Q̃n(0, tn)
| ≤ σP (y)/2.

But by lemma 2.6 we have

inf
t≥1

inf
Q∈L(P )

Q̃[y](0, t)

Q̃(0, t)
= σP (y),

contradicting σP (y) > 0.

As an immediate consequence we obtain analogously to theorem 4.3 in sec-
tion 4.1 a characterization of when X × R is P+-convex for singular supports.
The proof is mutatis mutandis the same so that we omit it.
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Theorem 4.6. For P ∈ C[X1, X2] and an open connected set X ⊆ R2 the
following are equivalent.

i) X × R is P+-convex for singular supports.

ii) The intersection of X with every hyperplane H satisfying σ0
P (H⊥) = 0 is

convex.

iii) For every x ∈ ∂X there is an open convex cone Γ 6= R2 with σ0
P (y) 6= 0

for all y ∈ Γ and (x+ Γ◦) ∩X = ∅.

Moreover, combining the above theorem with theorem 4.1 and theorem 4.4
we obtain as in section 4.1 the following, proving that iii) implies iv) in theorem
A.

Theorem 4.7. Let X ⊆ R2 be open and P ∈ C[X1, X2]. If P (D) is surjective
on D ′(X) then P+(D) is surjective on D ′(X × R).
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4.3 Partial di�erential operators on non-quasianalytic ul-

tradistributions of Beurling type in two variables

The main purpose of the present section is to prove an adaption of Trèves'
conjecture to the setting of ultradistributions of Beurling type associated with
a non-quasianalytic weight function ω. Thus, we will show that in theorem A
condition i) implies v). Furthermore, we will give some results dealing with
P -convexity for ω-singular supports which are valid in arbitrary dimension.

Spaces of ultradistributions of Beurling type generalize classical distribu-
tions by allowing more �exible growth conditions for the Fourier transforms of
the corresponding test functions than the Paley-Wiener weights. We choose
the ultradistributional framework in the sense of Braun, Meise, and Taylor, as
introduced in [7]. We begin by recalling some well-known facts about ultradis-
tributions.

De�nition 4.8. A continuous increasing function ω : [0,∞)→ [0,∞) is called
a (non-quasianalytic) weight function if it satis�es the following properties

(α) there exists K ≥ 1 with ω(2t) ≤ K(1 + ω(t)) for all t ≥ 0,

(β)
∫∞

0
ω(t)
1+t2 dt <∞,

(γ) limt→∞
log t
ω(t) = 0,

(δ) ϕ = ω ◦ exp is convex.

ω is extended to Cd by setting ω(z) := ω(|z|). Since we are not dealing with
quasianalytic weight functions we simply speak of weight functions for brevity.

For K ⊆ Rd compact let

D(ω)(K) = {f ∈ E (Rd); supp f ⊆ K and∫
Rd

|f̂(x)| exp(λω(x)) dx <∞ for all λ ≥ 1}

be equipped with its natural Fréchet space topology, and D(ω)(X) =
⋃

D(ω)(K),

the union being taken over all compact subsets of the open subset X of Rd,
equipped with its natural (LF)-space topology. The elements of its dual space
D ′(ω)(X) are the ultradistributions of Beurling type.

The associated local space in the sense of Hörmander [18, Theorem 10.1.19]

E(ω)(X) = D(ω)(X)loc = {u ∈ D ′(ω)(X); ϕu ∈ D(ω)(X) for all ϕ ∈ D(ω)(X)}

is the space of ultradi�erentiable functions of Beurling type.

Remark 4.9. i) For each weight function ω we have limt→∞ ω(t)/t = 0 by the
remark following 1.3 of Meise, Taylor, and Vogt in [27].

ii) It is shown in [7] that condition (β) guarantees that D(ω)(X) 6= {0} and
that there are partitions of unity consisting of elements of D(ω)(X).

iii) By [7] we have

E(ω)(X) = {f ∈ E (X); for all k ∈ N and K ⊆ X,K compact

|f |k,K := sup
α∈Nd

0 ,x∈K
|f (α)(x)| exp

(
−kϕ∗

(
|α|
k

))
<∞},
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where ϕ∗(s) = sup{st− ϕ(t); t ≥ 0} is the Young conjugate of ϕ.
iv) For δ > 1 the function ω(t) = t1/δ is a weight function for which the cor-

responding class of ultradi�erentiable functions coincides with the small Gevrey
class

γδ(X) = {f ∈ E (X); ∀K ⊆ X,K compact ∀ C ≥ 1 : sup
x∈K,α∈Nd

0

|f (α)(x)|
α!δC |α|

<∞}.

De�nition 4.10. E(ω)(X) equipped with the seminorms

{| · |k,K : k ∈ N,K ⊆ X, K compact}

is a nuclear Fréchet space. Its dual E ′(ω)(X) is equal to the space of u ∈ D ′(ω)(X)
for which

suppu = Rd\
⋃
{B ⊆ Rd open; u(ϕ) = 0 for all ϕ ∈ D(ω)(B)}

is a compact subset of X.

The next theorem characterizes surjectivity of a di�erential operator on
spaces of ultradistributions of Beurling type which is due to Björck [1, The-
orem 3.4.12]. It should be noted that, although the weight functions considered
here are slightly more general than the ones used in [1] the theorem is valid.
More generally, complementing a result of Bonet, Galbis, and Meise [3], surjec-
tivity of convolution operators between spaces of ultradistributions of Beurling
type has been characterized by Frerick and Wengenroth in [11] and contains
the following theorem as a special case. The formulation in [11] uses the notion
of P -convexity for (ω)-supports instead of P -convexity for supports but these
coincide, as is easily seen (see e.g. [19, Remark 2.5 i)]).

Theorem 4.11. For X ⊆ Rd open, P ∈ C[X1, . . . , Xd] and a weight function
ω the following are equivalent.

i) P (D) : D ′(ω)(X)→ D ′(ω)(X) is surjective.

ii) X is P -convex for supports as well as P -convex for (ω)-singular supports.

Recall, that an open subset X of Rd is called P -convex for (ω)-singular
supports if for every compact subset K of X there is a compact subset L
of X such that for every u ∈ E ′(ω)(X) we have sing supp (ω)u ⊆ L whenever

sing supp (ω)P (−D)u ⊆ K.

Remark 4.12. If P is elliptic the same is obviously true for P̌ . Hence P (−D)
has a fundamental solution E which is analytic in Rd\{0}. Since analytic func-
tions are contained in E(ω)(X) for each weight function ω (cf. [7, Proposition
4.10]) we have in particular

ch(sing supp (ω)E) = ch(sing supp (ω)P (−D)δ0),

where ch(A) denotes the convex hull of a set A ⊆ Rd. By [2, Theorem 2.1] it
therefore follows for each open set X ⊆ Rd and every u ∈ D ′(ω)(X) that

sing supp (ω)P (−D)u = sing supp (ω)u.
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In particular, X is P -convex for (ω)-singular supports. This and the well-known
fact that every open subset X of Rd is P -convex for supports for elliptic P imply
by theorem 4.11 the surjectivity of

P (D) : D ′(ω)(X)→ D ′(ω)(X)

whenever P is elliptic.

As in the classical case, P -convexity for (ω)-singular supports is closely re-
lated to the continuation of (ω)-ultradi�erentiability of P (−D)u to u. Analo-
gously to the tools introduced by Hörmander in order to deal with the classical
case (see e.g. [18, Section 11.3] and section 2.1) Langenbruch introduced the fol-
lowing notions in [23]. For a polynomial P , a subspace V of Rd, and t > 0, ξ ∈ Rd
let

σP,(ω)(V ) := inf
t≥1

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
.

If we formally set ω ≡ 1, we obtain Hörmander's classical de�nition of σP (V ) as
studied in section 2.1. In order to simplify notation we write σP,(ω)(y) instead

of σP,(ω)(span{y}) for y ∈ Rd.
The next proposition is an immediate consequence of [23, Theorem 2.5] and

the ultradistributional analogue of the part of proposition 2.5 used in section
2.2.

Proposition 4.13. Let X1 ⊆ X2 be open convex subsets of Rd. Assume that ev-
ery hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R with σP,(ω)(N) = 0
which intersects X2 already intersects X1.

Then for every u ∈ D ′(ω)(X2) with P (D)u ∈ E(ω)(X2) as well as u|X1
∈

E(ω)(X1) we already have u ∈ E(ω)(X2).

Proof. Let u ∈ D ′(ω)(X2) satisfy P (D)u ∈ E(ω)(X2) and u|X1
∈ E(ω)(X1).

SinceX2 is convex it follows from the Theorem of supports (see e.g. [17, Theorem
4.3.3]) and [3, Theorem A] that there is v ∈ E(ω)(X2) such that P (D)v = P (D)u
so that w := u− v ∈ D ′(ω)(X2) satis�es P (D)w = 0 as well as w|X1

∈ E(ω)(X1).

Hence, by [23, Theorem 2.5] it follows that w ∈ E(ω)(X2) which proves the the-
orem. �

As in the classical case, when investigating P -convexity for (ω)-singular sup-
ports by means of the above proposition it is necessary to study the zeros of
σP,(ω) in S

d−1. In order to do so, recall the de�nition of ω-localizations of P at

in�nity, as introduced by Langenbruch in [23]. For a polynomial P and ξ ∈ Rd
we set

Pξ,ω(x) := P (ξ + ω(ξ)x)

which is again a polynomial of the same degree as P . The set of all limits in
C[X1, . . . , Xd] of the normalized polynomials

x 7→ Pξ,ω(x)

P̃ξ,ω(0)

as ξ tends to in�nity is denoted by Lω(P ). More precisely, if N ∈ Sd−1 then the
set of limits where ξ/|ξ| → N (with ξ tending to in�nity) is denoted by Lω,N (P ).



Di�erential operators in two variables 63

Obviously, Lω(P ) as well as Lω,N (P ) are closed subsets of the unit sphere of
all polynomials in d variables of degree not exceeding the degree of P , equipped
with the norm Q 7→ Q̃(0). The non-zero multiples of elements of Lω(P ) (resp.
of Lω,N (P )) are called ω-localizations of P at in�nity (resp. ω-localizations of

P at in�nity in direction N). Since ω(ξ) = ω(|ξ|), Q ∈ Lω,N (P̌ ) if and only if
Q̌ ∈ Lω,−N (P ). Again, if we formally set ω ≡ 1 we obtain the well-known set
L(P ) of localizations of P at in�nity (see Hörmander [18, De�nition 10.2.6] or
section 2.1).

For the classical case, i.e. if formally ω ≡ 1, the next result is lemma 2.6.
The proof is exactly the same as the one of 2.6 so that we omit it.

Lemma 4.14. Let P be of degree m with principal part Pm.

i) For every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= inf
Q∈Lω(P )

Q̃V (0, t)

Q̃(0, t)
.

ii) Let N ∈ Sd−1 and Q ∈ Lω,N (P ). If Pm(N) 6= 0 then Q is constant.

iii) If P is non-elliptic then for every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= inf
N∈Sd−1,Pm(N)=0

inf
Q∈Lω,N (P )

Q̃V (0, t)

Q̃(0, t)
.

iv) With the convention that the in�mum taken over an empty subset of [0, 1]
equals 1 we have

σP,(ω)(V ) = inf
t≥1

inf
N∈Sd−1,Pm(N)=0

inf
Q∈Lω,N (P )

Q̃V (0, t)

Q̃(0, t)
.

In case of ω ≡ 1 the corresponding result of the next proposition is due
to Hörmander [18, Theorem 10.2.8] and its proof uses the Tarski-Seidenberg
theorem. In our case, the proof is rather elementary.

Lemma 4.15. If Q ∈ Lω,N (P ) then N ∈ Λ(Q).

Proof. Since ω(ξ) = ω(|ξ|), by a linear change of coordinates we can assume
without loss of generality that N = e1 = (1, 0, . . . , 0). We denote the degree of
P bym. In case of P (e1) ≡ 0 we clearly have by Taylor's theorem that e1 ∈ Λ(P )
which clearly implies e1 ∈ Λ(Q) by the de�nition of Lω(P ).

Now, if P (e1) does not vanish identically it follows that P
(e1)
ξ,ω does not vanish

identically either, for every ξ ∈ Rd. Since P 7→
∑
α |P (α)(0)| is a norm on the

space of all polynomials in d variables, it follows that for every ξ ∈ Rd

0 6=
∑
α

|P (e1)
ξ,ω (0)| =

∑
α

|P (α+e1)(ξ)|ω(ξ)|α| =
∑

0≤|α|≤m−1

|P (α+e1)(ξ)|ω(ξ)|α|,
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because P has degree m. Hence, for every ξ ∈ Rd, t ∈ R we have by Taylor's
theorem

0 ≤ |P (e1)(ξ + ω(ξ)(x+ se1))|∑
α |P (α)(ξ)|ω(ξ)|α|

=
|
∑

0≤|α|≤m−1 P
(α+e1)(ξ)ω(ξ)|α| 1

α! (x+ se1)α|∑
α |P (α)(ξ)|ω(ξ)|α|

≤
∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)|α| 1
α! |(x+ se1)α|∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)1+|α|

≤
max0≤|α|≤m−1

1
α! |(x+ se1)α|

ω(ξ)
.

Since Q ∈ Lω(P ) there is (ξn)n∈N tending to in�nity such that

Q(x) = lim
n→∞

P (ξn + ω(ξn)x)

P̃ξn,ω(0)
.

In particular, we also have

Q(e1)(x) = lim
n→∞

P (e1)(ξn + ω(ξn)x)

P̃ξn,ω(0)
.

The space of all polynomials in d variables of degree not exceeding m being
�nite dimensional, all norms on it are equivalent. Therefore, by passing to a
subsequence of (ξn)n∈N if necessary, there is c > 0 such that for every x ∈ Rd
and s ∈ R

|Q(e1)(x+ se1)| = lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|
P̃ξn,ω(0)

≤ c lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|∑
α |P (α+e1)(ξn)|ω(ξn)|α|

≤ c lim
n→∞

max0≤|α|≤m−1
1
α! |(x+ se1)α|

ω(ξn)

= 0.

Hence, for each x ∈ Rd the polynomial qx : R → C, s 7→ Q(x + se1) satis�es
q′x(s) = Q(e1)(x+se1) = 0. Thus qx is constant which shows that e1 ∈ Λ(Q).

With the aid of the previous lemma we can prove the next result exactly as
lemma 4.2. Again we omit the proof.

Lemma 4.16. Let P ∈ C[X1, X2] be a non-constant polynomial with principal
part Pm. Then

{y ∈ R2\{0}; σP,(ω)(y) = 0} ⊆ {y ∈ R2\{0}; Pm(y) = 0}.

In particular, the set {y ∈ S1; σP,(ω)(y) = 0} is �nite.

Before we continue to discuss the two-dimensional case we provide a general
su�cient condition for P -convexity for (ω)-singular supports in arbitrary di-
mension similar to theorems 2.9 and 2.11. In order to do this, we �rst recall an
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analogue to the classical characterization of P -convexity for singular supports in
the context of ultradistributions of Beurling type which is due to Björck [1, The-
orem 3.4.2 and Theorem 3.4.4]. Again, although the weight functions considered
here are slightly more general than the ones in [1], the theorem is still valid in
our context (see also [19, Theorem 4.2]).

Theorem 4.17. i) If u ∈ E ′(ω)(R
d) then

ch(sing supp (ω)u) = ch(sing supp (ω)P (−D)u).

ii) For an open subset X of Rd the following are equivalent.

a) X is P -convex for (ω)-singular supports.

b) For each u ∈ E ′(ω)(X) one has

dist(sing supp (ω)u,X
c) = dist(sing supp (ω)P (−D)u,Xc).

From the above theorem it follows immediately that convex open sets are
P -convex for ω-singular supports (see [1, Corollary 3.4.3]). Moreover, as in the
classical case (cf. [18, Theorem 10.6.4 and/or Theorem 10.7.4]) it follows that the
interior of the intersection of any family of P -convex sets for ω-singular supports
(see [1, Theorem 3.4.5]) as well as the set of points having a neighborhood
contained in all but �nitely many members of a family of sets being P -convex
for ω-singular supports is again P -convex for ω-singular supports.

Using the characterization of P -convexity for (ω)-singular supports given in
4.17 ii) and theorem 4.13 we can prove part i) of the next theorem by exactly the
same kind of arguments as theorem 2.9 ii). Part ii) follows from i) as theorem
2.11 ii) follows from theorem 2.9 ii). Because the proofs are verbatim the same
we omit them.

Theorem 4.18. Let X ⊆ Rd be open and connected, P ∈ C[X1, . . . , Xd].

i) X is P -convex for (ω)-singular supports if for every x ∈ ∂X and any
r > 0 there are convex sets C1 ⊆ C2 ⊆ Rd\X such that x ∈ C2, C1 ⊆
Rd\B(0, r) and every hyperplane H with σP,(ω)(H

⊥) = 0 intersecting C2

already intersects C1.

ii) X is P -convex for (ω)-singular supports if for every x ∈ ∂X there is an
open convex cone Γ 6= Rd such that (x + Γ◦) ∩ X = ∅ and σP,(ω)(y) 6= 0
for all y ∈ Γ.

Now, changing the obvious in the proof of theorem 4.3 we obtain a charac-
terization of P -convexity for (ω)-singular supports of open subsets X ⊆ R2.

Theorem 4.19. For a non-constant polynomial P ∈ C[X1, X2] and an open
connected set X ⊆ R2 the following are equivalent.

i) X is P -convex for (ω)-singular supports.

ii) The intersection of X with every hyperplane H satisfying σP,(ω)(H
⊥) = 0

is convex.

iii) For every x ∈ ∂X there is an open convex cone Γ 6= R2 with σP,(ω)(y) 6= 0
for all y ∈ Γ and (x+ Γ◦) ∩X = ∅.
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As in section 4.1 we derive our next result from the above theorem, theorem
4.1 and the fact that P (D) is surjective on D ′(ω)(X) if and only if X is P -convex

for supports as well as P -convex for (ω)-singular supports.

Theorem 4.20. Let X ⊆ R2 be open and let P ∈ C[X1, X2] be a non-constant
polynomial. The following are equivalent.

i) P (D) : E (X)→ E (X) is surjective.

ii) P (D) : D ′(ω)(X) → D ′(ω)(X) is surjective for some non-quasianalytic
weight function ω.

iii) P (D) : D ′(ω)(X)→ D ′(ω)(X) is surjective for each non-quasianalytic weight
function ω.

iv) The intersection of every characteristic line with any connected component
of X is convex.

The next example shows that for d ≥ 3 an analogous result to the above
theorem is not true in general. See also Langenbruch [23, Example 3.13], where it
is even shown that surjectivity of P (D) on D ′(ω)(X) for d ≥ 3 depends explicitly
on the weight function ω in general.

Example 4.21. Let d > 2 and P (x1, . . . , xd) = x2
1 − x2

2 − . . . − x2
d. Moreover,

let Γ := {x ∈ Rd; xd > (x2
1 + . . . + x2

d−1)1/2}. Then Γ is an open convex cone

with Γ◦ = Γ. Set X := Rd\Γ. As seen in 2.24, X is P -convex for supports
but not P -convex for singular supports. Hence, P (D) is surjective on E (X) but
P (D) is not surjective on D ′(X).

Moreover, as in 2.24 one checks that Q(ξ) = (ξ1− ξ2)/
√

2 is a ω-localization
at in�nity in direction 1/

√
2(1, 1, 0, . . . , 0). It therefore follows from lemma 4.14

that

lim inf
ξ→∞

P̃span{ed}(ξ, ω(ξ))

P̃ (ξ, ω(ξ))
= 0

where ed = (0, . . . , 0, 1).
Setting H = {x ∈ Rd; 〈x, ed〉 = −1} and

K := H ∩ {x ∈ Rd; |x| ≤ 2}

it is easily seen that the distance of ∂X = ∂Γ to K is 1 while the distance of
∂Γ to ∂HK, i.e. to the boundary of K relative H, strictly increases 1. Hence, it
follows from [23, Corollary 2.7] that P (D) cannot be surjective on D ′(ω)(X).
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