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1. Introduction

Adaptive cluster sampling (ACS) design was proposed by (Thompson,
2012, p. 319) as a suitable sampling design for populations that are rare,
clustered, hidden or hard to reach. The design has the advantage of increasing
the number of observations observed during a survey. It also results in more
precise estimates of the population abundance or density for a given sample
size or cost (Thompson, 2012, p. 319). The design is thus in a better place to
inform management decisions on the conservation of rare, clustered, hidden or
hard to reach populations.

A number of variations of the ACS design exists in literature. Some are
briefly described in section (2.2), see Turk and Borkowski (2005) and Seber and
Salehi (2013) for further review. Some of the recent work in the area include
neighbourhood-free plots in the area of forestry (Yang et al., 2016), modeling
data (collected by ACS) design at the unit level (Gongalves and Moura, 2016),
combining the ACS and the inverse sampling (Salehi et al., 2015), the use of
two-stage design with complete allocation method (Moradi et al., 2014) and
the comparison of the performance of different adaptive designs (Brown et al.,
2013). Conditions under which the efficiency of the ACS design is increased
relative to the non-adaptive design can be found in Gabler (2007), Turk and
Borkowski (2005), Brown (2003), Thompson and Collins (2002) and Thompson
and Seber (1996) among others.

The ACS design has broad applications in humans, animals and plants. In
the context of animals Salehi et al. (2015) studies a variant of the ACS design
on crabs, Smith et al. (1995) evaluated the performance of the ACS design
on birds (Wintering waterfowl) using simulations based on real Waterfowl data,
Green et al. (2010) performed a strip ACS to detect waterbirds colonies, Kissling
et al. (2007) used systematic sampling design with ACS design to determine the
distribution and the abundance of rare birds (Kittlitz’s Murrelets) while Conners
and Schwager (2002) used the ACS design to determine the stock size of fish

(Rainbow smelt) using both simulations and field trial.
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In human, Thompson and Collins (2002) introduced the ACS design
targeting individuals with risk-related characters such as drug abusers and
people at high rick of contacting HIV/AIDS. In plants Roesch (1993) used the
ACS design to examine the pollution damage on trees. Yang et al. (2016)
introduced a variant of ACS on forestry, Talvitie et al. (2006) applied the ACS
design to assess damage on forest resulting from 2002 - 2003 drought in the
city of Helsinki in Finland. Acharya et al. (2000) assessed rare tree species in
Nepal using systematic ACS while Philippi (2005) used the ACS design to
estimate abundance of some herbaceous species. Other areas of applications of
the ACS design include soil pollution (Salehi et al., 2015)

This dissertation was motivated by a number of factors. These include the
need to have more efficient estimates for populations that are rare and
clustered. This entails the use of auxiliary information that is negatively
correlated with the study variable and the use of the model-based approach to
estimation. The other factor that motivated this dissertation is the cost of
sampling which is measured by the number of units in the final sample. This
consists of a combination of designs such as combining a stopping rule
criterion and observe clusters once. See below and chapter 6 for details.

Section 2 provides a brief review on the practices that are currently used in
surveying animals. The chapter also briefly reviews the ACS design and some
of its extensions that have been used in this dissertation. A number of issues
arise in the field implementation of the ACS design, this is also briefly covered
in the section.

The aim was thus to examine the ACS design under design-based and
model-based approaches. Within the design-based approach (chapter 3), three
variations of the ACS design are developed. The first one which is given in
section (3.1) is an extension of strip ACS proposed by (Thompson, 2012,
p. 339) to a stratified setting in which networks are truncated at stratum
boundaries. The proposed design is suitable for aerial or ship surveys.

Improvement of the efficiency of the ACS when there exist an auxiliary
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variable that is negatively correlated with the study variable is provided in
section (3.2). Finally, cost reduction while improving on the efficiency of the
ACS design is provided in section (3.3).

Model-based approaches provide more precise estimates than the
design-based approaches, when the assumed model holds. Hence, chapter 4
examines model-based ACS under finite population setting. The chapter
modeled data sampled through stratified strip ACS and predicted the
population total. This chapter is an improvement of the work by Rapley and
Welsh (2008) by incorporating an auxiliary information and by making use of
the stratified strip ACS design. The stratified strip ACS design is described in
section (3.1).

The above methods are compared using a simulation study in chapter 5.
Finally summary and outlook are provided in chapter 6 with a German version

in chapter 7.



2. Review of the literature

2.1 Current practices in animals’ surveys

Strip Sampling is an aerial survey technique in which the region under
investigation is divided into blocks of specified length and width. Then an
aircraft flies at straight lines north-south or east-west direction
(Norton-Griffiths, 1978, p. 22). The aircraft flies at constant height
(approximately 150 m) and speed (157 km/h) (Green et al., 2010) with
observers taking records. The method is common in surveying savanna wildlife
such as African elephant. It has also been applied by Green et al. (2010) in
birds that occupy open habitats.

Line transect is a ground technique in which the observer travels along lines
or transects at a constant speed and count animals on either sides of the transect
within a specified width. The method is common in African elephants and birds.
In elephants, it could either involve counting elephants direct (Hedges, 2012,
ch. 3) or their dung (Hedges, 2012, ch. 4). In birds, the transects are either
randomly or systematically distributed (Bibby et al., 1992, p. 66).

Point transect on the other hand involves the observer walking along
transects, making stops at specified points, and remain at the points for a
specified amount of time (between 2 - 20 minutes) while counting species
(Bibby et al., 1992, p. 95). The observation points are either randomly or
systematically distributed in the region under investigation.

Sometimes the above designs are combined with stratification. In surveying
rare birds, strategies that are used to improve the number of the targeted species
to be observed include; using point transect technique and increase the waiting
time at the observation points (Bibby et al., 1992, p. 102; Haselmayer and Quinn,
2000), repeat the counting process (Rosenstock et al., 2002) and undertaking an
ACS design (Green et al., 2010; Kissling et al., 2007; Thompson, 2012, p. 339).
This dissertation works at improving the number of species observed by using

the ACS design, improve gains in efficiency and lowering sampling costs.
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2.2 ACS design and its variants

The general idea behind the ACS design is first presented in this section
while some of its variations are presented in the sub-section. Under the ACS
design, the region of interest is partitioned into N non-overlapping units of
equal sizes. Each unit in the population is associated with an observed variable
of interest y;, i = 1,..., N. An initial sample of size n units is selected by any
of the probability sampling procedure. A condition or critical value is set before
sampling begins. In this dissertation, the pre-specified condition is the presence
of at least one animal in a selected unit i.e. C' = {y; : y; > 0}. If any of the
units selected in the initial sample meet the pre-specified condition, units in
the neighbourhood of the selected unit are added to the sample and observed.
If any of the added units meets the pre-specified condition, their neighboring
units are added to the sample and observed. The procedure continues until there
are no more units in the neighborhood that meet the pre-specified condition.
Neighborhood is defined by spatial proximity.

An initial unit together with its adaptively added units that meet the pre-
specified condition is called a network, units on the boundary of a network are
known as edge units (Thompson, 2012, p. 319). A network together with its
edge units forms a cluster. According to (Thompson, 2012, p. 319), an empty
unit is a network of size one. Figure 2.1 shows the idea behind the ACS design
on a region that is partitioned into N = 400 units. The units in the initial
sample are colored light gray, adaptively added units are dark gray and edge

units are colored black.
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= i [] Initial sampled units
* ¥ B Adaptively added units

- O B Edge units-without animal

- Animal

Fig. 2.1: Distribution of artificial
population in a region of
interest.

ACS without replacement of units

Let the population of units with observed variables be partitioned into K
distinct networks and let the initial sample of size n be selected by SRSWOR.
(Thompson, 2012, p. 319) modified the Horvitz-Thompson (HT) estimator to

obtain an unbiased estimator of the population mean

N K
Ly = % Doic1 ¥i = & Dy Yk that he gave as

1 & YiJ,

N kJk

= — E = 2.1

Hht =N 2o, 21)
k=1

where gy is the sum of y values in network k, Ji is an indicator variable that

takes the value one if the selected network is in the sample and zero otherwise

and «y is the probability that the initial sample intersect network k defined by

N—mk

n
ap=1-—~— 71 (2.2)
N

n

The variance of fip; is given by (Thompson, 2012, p. 319)
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1 & (. — ajag)
v(fint) = el ZZ%ZJI@'% (2.3)

where o, is the probability that the initial sample intersects both networks j

and k which (for j # k) is defined by

N —m; N —my N —m; —my
n n n
ajp=1— + — . (2.4)
N N N
n n n

in which m;, are the number of units in network k& and oy, = . The unbiased

estimator of v(jip) is

K K
(fine) = — 5 YiyndiJr(ogn — ajon) 25)
¢ N2 ¢ OOl Ol ' '
j=1k=1 IR

The population total is estimated by
The = N X fipy (2.6)

whose variance is

0(Fne) = N? x v(fing) (2.7)

and can unbiasedly be estimated by

O(The) = N2 X 0(fing) (2.8)

(Thompson, 2012, p. 319) also modified the Hansen-Hurwitz (HH) estimator
to obtain an unbiased estimator of the population mean and total when samples

are obtained without replacement which he gave as

X 1 n ) R
finn = > wyk, =N X finn (2.9)
k=1

respectively where wy, is the average of y values in the Ath network. The

variance of fipp, is given by (Thompson, 2012, p. 319)
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— s (W — 1y)?
v(ﬂhh):NNn Z( y]t,_qy) (2.10)

where p1,, is the population mean of the variable of interest. The variance of 74y,

is given by

'U(’]A'hh) = N2 X U([th) (211)

The unbiased estimator of the variance of the mean and total are (Thompson,

2012, p. 319)
S(n N —n <~ (wy — finn)?
() =~ D . (2.12)
k=1
and
0(Fhn) = N? X 0(finn) (2.13)
respectively.

ACS without replacement of cluster

Salehi and Seber (1997a) proposed an Adaptive Cluster Sampling with
Networks selected without replacement (ACS"™) design in which networks are
selected without replacement. In their proposed design, an initial unit ¢ is
selected at random. If the selected unit meets the pre-specified condition,
neighbouring units are added to the sample and observed. If any of the added
units meet the pre-specified condition, its neighbouring units are further added
to the sample and observed. The process continues until a boundary of edge
units (units that do not meet the pre-specified condition but were added in the
sample by virtue of being in the neighbourhood of units that meet the
pre-specified condition) is formed. The observed network is ”"removed” from
the population. A second unit is selected from the remaining units and an
adaptive search performed. The resulting network is "removed” from the
population and a third unit selected from the remaining units. The procedure

continues until n networks are observed.
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This procedure ensures that networks are observed only once as opposed to
the ACS without replacement of units (Thompson, 2012, p. 319) where network
or networks can be observed more than once. The selection mechanism proposed
by Salehi and Seber (1997a) has the advantage of savings on sampling costs as
the observer does not have to travel and observe a network(s) that has already
been observed. Even with this procedure, repeat observation of unit(s) can still

occur if (Dryver and Thompson, 2007):
1. An edge unit of more than one network is observed more than once.

2. A unit selected in the initial sample is an edge unit of an adjacent selected

network.

3. A unit that is already observed as an edge unit is selected in the subsequent

steps as an initial unit.

Fig. 2.2: A figure to display how unit(s) can be observed more than once.

Figure 2.2 shows when repeat observations can occur. To explain this,



2. Review of the literature 11

suppose that an initial sample of size n = 5 was selected by SRSWOR. Let the
selected units be the units with labels 1,...,5. The first unit selected does not
meet the pre-specified condition and so sampling stops. The second and the
third units selected meet the pre-specified condition, hence neighboring units
(dark gray) are continuously added to the sample and observed until a
boundary of units that do not meet the pre-specified condition (edge units
colored green) are observed. Next, the fourth and fifth units are selected but
like the first unit, they do not meet the pre-specified condition and so
sampling stops.

The green colored unit labeled ”b” is an edge unit for both the second and
the third network hence it was observed twice (first point above). The green
colored unit labeled ”1” was observed twice; first as a unit in the initial sample
and second as an edge unit of the second network (second point above). Finally,
the unit labeled ”4” which is colored green was also observed twice; as an edge
unit to the third network and later selected as a unit in the initial sample (third
point above). In this particular case, the cluster sizes in order of selection are
{1,12,17,1,1}. Note that the three green colored units with labels ”b”, 717
and 74" that were observed twice did not add any new information during the
second observation. They rather added cost as the observer will have to visit
them again.

Due to the above reasons, Dryver and Thompson (2007) proposed an
Adaptive Cluster Sampling with Clusters selected without replacement (ACS®)
design in which the entire cluster resulting from the selection of an initial unit
is "removed” from the population before selecting the next unit. Figure 2.3
shows the same population as in figure 2.2 with the 1%¢,27d 34 and 5*" initial
units in the same positions as in figure 2.2. Under the ACS® design, the first
unit is selected and "removed” from the population as a network/cluster of
size 1. The second unit is selected which leads to a cluster of size 11 is then
also "removed” from the population. This cluster does not include the unit

labeled ”1” since it had already been ”"removed” from the population. The
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Fig. 2.3: A figure to display the ACS without replacement of clusters (Dryver and
Thompson, 2007) in which units are observed only once.

third unit is selected and is removed from the population together with its
resulting cluster of size 16. This cluster does not include the edge unit labeled
”b” since it was removed following selection of the second unit. The previous
position of the fourth units (now labeled "a”) does not exist anymore and so
the fourth unit will be selected from the remaining units as shown. Finally,
the fifth unit maintains its position.

Comparing figure 2.2 and 2.3, units are clearly observed just once under the
ACS® design. Further, the ACS® design results in lower variance compared to
the ACS without replacement of units (Dryver and Thompson, 2007). The final
sample size is however not always lower; it depends on the succeeding units
selected.

Raj (1956) proposed an estimator that depends on the order of selection



2. Review of the literature 13

which is given as

n

N
TRa]—n Zi

i=1
zf:&, fori>2
b
i—1
=Tt (1-T
j=1

The variance of Trg; is given by (Raj, 1956)

0(Fraj) = — Z (2.14)

whose unbiased estimate is

! ) > (2 = raj)? (2.15)

2rei) = )
i=1

Dryver and Thompson (2007) modified the above Des Raj’s estimator to

obtain an unbiased estimator of the population total as

n
7A_Rajﬂcl'u,st = Z Cizg (216)
— 1 : n _ _ Ym .
where ¢; = — are weights such that Y\ ;¢; =1and z; = —. Fori =2,--- ,n
n D1

Z yk] ykz

JESi—1 pi

Mg

N - Zj65171 mk]
at step @ and s;_1 is the set of units (including adaptively added and edge units)

with p; = in which my; are the number of units in network k

observed up to step i — 1. Its unbiased estimator of the variance is (Dryver and

Thompson, 2007)

o IR )
v(TRaj.clust) = 7 Z(zz - TRaj.clust)2 (2]—7)
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ACS with a data-driven stopping rule

One of the challenges of the ACS design is the randomness of the final
sample size. A number of variations have been proposed to overcome this
challenge. These include stratification (Thompson, 2012, p. 353), order
statistics (Thompson, 1996), restricted ACS (Brown and Manly, 1998; Salehi
and Seber, 2002), inverse ACS (Christman and Lan, 2001) and stopping rule
(Su and Quinn II, 2003; Gattone and Di Battista, 2011).

The ACS with a data-driven stopping rule, that was proposed by Gattone
and Di Battista (2011) viewed ACS as a set of steps. The step r = 0 consists of
units selected in the initial sample. If any of these units satisfies the pre-specified
condition C', neighbouring units are added to the sample and observed. This
forms the first step of sampling » = 1. If any of the added units meet the
pre-specified condition C, their neighbouring units are added to the sample and
observed. This is the second step of sampling r = 2 and so on.

From the second step of sampling, neighbouring units will be added to the

sample if and only if (Gattone and Di Battista, 2011)

21— m;,l

or=¢ —+ i
7 S?(r—l) 1— #

(3

>1 (2.18)

is satisfied. s?(r)

is an estimate of the variance of the within networks (within
network variance) at the r-th step of the aggregative procedure and m! is the
number of units adaptively sampled after r steps from the i-th unit of the initial
sample. If C} is not verified then sampling is stopped, and the i-th network
is truncated at the (r-1)-th step. Units aggregated at the r-th step are units
that activate the stopping rule and they are considered as stopping edge units

(Gattone and Di Battista, 2011). The design however introduces bias to the

modified HH and HT estimators.
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Fig. 2.4: Plot of strip ACS with individual strips (PSU) along the x-axis and SSU
along the y-axis. The initial strips are colored light gray, adaptively added
units are colored dark gray and edge units colored black.

Strip adaptive cluster sampling

Strip ACS was proposed by (Thompson, 2012, p. 339) when conducting
aerial surveys of say walruses or polar bears or in ship surveys of whales. If an
animal is observed on a selected strip, neighboring units are observed and added
to the sample. The process continues until a boundary of edge units is reached.

Let N* be the number of strips or PSU such that each strip has M SSU.
Let n be the initial sample size (number of strips) selected and let N = N*M
be the total number of SSU in the population. Figure 2.4 shows a study region
with N* = 21 strips each with M = 21 SSU giving a total of N = 441 SSU.
An initial sample of size n = 3 is selected by SRSWOR. The selected units are
colored light gray, adaptively added unit dark gray while edge units are black.
The modified HT estimator is (Thompson, 2012, p. 339),
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K e,
. kJk
Tetrip = E = 2.19
strip 7‘[';; ( )
k=1
where Ji is an indicator variable that takes the value one if a selected network

is in the sample and zero otherwise, K is the number of distinct networks in the

population and 7} is the probability that the initial sample intersect network £

defined by

=l 7 (2.20)

in which b, are the number of PSU that intersect network k. The unbiased

estimator of the variance of 74yip is given by (Thompson, 2012, p. 339)

K K * *,_%
o Yy T (75, — mimk)
U(Tstrip) = Z Z T*kﬂ'*fﬂ'z (221)
j=1k=1 JrJ
where 77, is the probability that the initial sample intersects both networks j

and k defined by

N* — b, N* — by, N* — b — by, + bj
n n n

mhe=1- + - (2.22)
N* N* N*
n n n

in which b;;, are the number of PSU that intersect both networks j and k.

Stratified adaptive cluster sampling

(Thompson, 2012, p. 353) proposed an ACS design in which the initial sample
is selected by stratified random sampling. Consider a region that is partitioned
into H strata each with N, units such that the entire population has a total
of N = ZqH:1 N, units. For each unit 7 in stratum ¢, there is an associated

observed value y4; such that y, is the sum of the y-values in stratum ¢ and the
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total number of observations in the population is 7 = Zle Yq. 1f ng is the

sample size in stratum ¢, then the total sample size is n = Zle Ng.

I |
L]
Ll
[

" oy
LI‘-

Fig. 2.5: Ordinary Stratified ACS

Figure 2.5 shows a region with H = 4 strata each with N, = 100 units in
which an initial sample of size ny = 2 selected from each strata by SRSWOR.
Units selected in the initial sample are filled with light gray color. Adaptively
added units are filled in dark gray color while edge units are colored black.

To estimate the parameter of interest, (Thompson, 2012, p. 353) ignored
stratum boundaries and partitioned the entire population into K distinct
networks. Let y; be the sum of the y-values in the k-th network and aq; be
the number of units in stratum ¢ that intersect network k. (Thompson, 2012,
p. 353) modified the HT estimator to obtain an unbiased estimator of the

population total which is given by
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Tstrat Z yka (223)

whose unbiased estimator of the variance is

K K
Yiyrd; i (mje — mm8)
Tstrat Z Z (224)

=1 k=1 TikTjTE

where 7, is the probability that the initial sample intersect network k,

Ng — akq
H n
m=1- [ >t (2.25)
g=1 Nq
Nq

and 7, is the probability that the initial sample intersect both networks j and

k,

Nq —ajq Nq — arq Nq — agj — akq
H H H
Nq Nq Nq
! I I
q=1 Nq q=1 Nq q=1 Nq
Nq Nq Nq

(2.26)
in which apq and ajq are the number of units in strata ¢ intersecting network
j and k respectively. Jy is an indicator variable that takes the value one if the

k-th network is in the sample and 0 otherwise.

Allocation of samples strata

Under the classical stratified sampling design, the strategies used to
allocate sample sizes to different strata include equal allocation, optimal
allocation (Neyman, 1934) and optimal allocation with box-constraint (Gabler

et al., 2012; Miinnich et al., 2012). If n, is the sample size in stratum g, then
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ng with equal allocation is obtained as

nqz

SIE

Under optimal allocation (Neyman, 1934), if the aim is to minimize the
variance for a fixed total sample size then n, is obtained as

nWySy

= —F (2.27)
Zq:l W4Sq

Nq

where W, = % and S, is the stratum standard deviation. In practice, S, can
be estimated from a pilot survey or previous studies. In this research however,
Sq is calculated from the available population data.

Gabler et al. (2012) and Miinnich et al. (2012) proposed optimal allocation

with box-constraint method to optimize

H
min [[RRMSE.. (7)[|2 = > RRMSE(7<,>) (2.28)

q=1

such that Ly <n, < Uq, q=1,...,H

where Relative Root Mean Squared Error (RRMSE) is defined as

RRMSE(T

l «r .
OO
(#) = I - -

L, and U, are the lower and upper limits of the stratum sample size. Gabler
et al. (2012) and Miinnich et al. (2012) ensured that each strata had a sample size
that falls between pre-defined lower (L) and upper (Uy) limits while minimizing

the variance for a fixed total sample size.

2.3 Practical issues in implementing ACS

To the best of our knowledge, published work on real applications of the ACS

design is still relatively low. This is partly because the design is still relatively
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new and also because of some challenges faced when undertaking the design in
the field. Smith et al. (2004, p. 78) discussed some of the challenges and ways
to overcome them. Below is an updated brief discussion following their work.

Efficiency gain from using the ACS design requires some prior knowledge that
the population under study is rare and clustered. In fact the HH estimator with
the ACS design (equation (2.9)) is more efficient than the sample mean under
SRSWOR, when the within network variance is greater than the population
variance (Thompson, 2012, p. 319). Such knowledge can, however, be obtained
from previous studies on the targeted species or by conducting a pilot survey.

The randomness of the final sample size makes it difficult to determine the
cost and the time required for a survey prior to the actual survey. There are
strategies proposed in literature that can be used to reduce the final sample
size. Some of these strategies include two-stage ACS (Salehi and Seber,
1997b), restricted ACS in which networks are sampled until pre-defined final
sample size is reached (Brown and Manly, 1998), two-stage restricted ACS
(Rocco, 2008), use of a stopping rule (Gattone and Di Battista, 2011) and
making use of order statistics and a stopping rule (Su and Quinn II, 2003).
The use of stratification, truncate networks at stratum boundaries and use
different different critical values in each strata have also been proposed as
ways of limiting the final sample size (Brown and Manly, 1998; Conners and
Schwager, 2002). Restricted ACS is suitable when the cost of sampling is very
high or if there are logistical challenges such as the distance to be covered by
an aircraft before running out of fuel (Brown and Manly, 1998).

How to perform an adaptive search in the field may not be easy especially
during aerial or ship surveys. The question is the definition of the neighborhood
and how to fly the aircraft or ride the ship while observing neighboring units.
Green et al. (2010) defined neighborhood as the four adjacent units. The aircraft
is then flown in a squared pattern to survey neighboring units until no more
units meet the condition of interest. Taking a squared route instead of a circle

has the advantage of maintaining height of the aircraft and enable observers
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make observations on both sides of the aircraft as it turns (Green et al., 2010).

Conners and Schwager (2002) defined neighborhood as segments of the
transect that are parallel to the transect being surveyed. This makes field
survey easier as it is easier to move along straight transects. It however has the
disadvantage that more edge units are included in the sample hence increasing
the cost of survey. The other important thing is to keep truck of the units
already surveyed while observing neighboring units (Smith et al., 2004, p. 91).

Consider sampling of birds using point transect. The norm is that the
observer, on arrival at the specified point, starts counting directly or gives
time for birds to settle before counting begins. Suppose that the selected point
or unit meets the condition of interest and the observer is to move to the
neighboring unit. This movement may make some birds fly out to maybe
adjacent units. Defining neighborhood as the adjacent units is likely to lead to
double counting. Smith et al. (2004, p. 93) suggested defining neighborhood as
the units that are not directly adjacent to the surveyed unit. i.e neighboring
units are units that are | meters away from the observed unit. This would
work in surveying, say, rare breeding birds or birds that are not easily
detectable whose colonies are relatively large as to stretch to the defined
neighboring units.

The other challenges or factors that need to be put into consideration
during survey of animals in general include general flight planning, piloting
and observation.  Norton-Griffiths (1978, p: 29-64) gives details on the
practical issues to consider while designing and undertaking an aerial survey.
For imperfect detectability, see Thompson and Seber (1994) and Naddeo and
Pisani (2005).

2.4 Product method of estimation

Consider a population that is divided into N units and for each value y; of
the study variable, there is a value of the auxiliary variable z;, i =1,2,..., N.

The aim is to estimate the population total 7, of the variable of interest y, given
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that the population total 7, of the auxiliary variable x is known. Further, the
correlation between the study and the auxiliary variable is highly negative.
Consider drawing a sample of size n by SRSWOR. Let y and Z be the
estimator of the population mean of the study (u,) and the auxiliary (p,)
variable respectively. The usual product estimator of the population total 7, is

given by (Murthy, 1964)

#, = N x fip, where ji, = iﬁ (2.29)

xX

7p is biased and its bias is given by

) N(N —n) S,
B(#) = =
(Tp) " i
while its MSE is given by
N(N — _ _
MSE(7,) = NN =n) (52 4+ R*S2 4+ 2RS4y, (2.30)
with $2 = F5 Y0 - w82 = gY@ - )

N = ,
Say = ﬁ >im1 (@i — pa)(yi — py) and R = %
Let the coefficient of variation of the study y and the auxiliary x variable be
cvV, = i—y and CV, = ISTI respectively in which Sy is the standard deviation for
Y z

y and S, is the standard deviation for z. The MSE of the product estimator

can also be written as
MSE(f,) = N? i (CV,} + CV;} + 2p,,CV, CV,)

with pg, denoting the correlation coefficient between y and x. Murthy (1964)
analyzed the relative precision of the product estimator and showed that it is
more efficient than the sample mean if

__1CV
Prv =75 Cv,

(2.31)
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3.1 Stratified strip ACS: A case study in estimating

population total of African elephants

3.1.1 Introduction

African elephants are species of conservation concern. They are listed on
Appendix I of the Convention on International Trade in Endangered Species
(CITES) hence banning the international trade in ivory and other elephant
products. Due to their concern, the Elephant Programme was established in
Kenya in 1989 to protect the elephants in Kenya from becoming extinct caused
by poachers. Some of its tasks is to monitor population totals of the elephants,
their trend and carry out research. Elephants are both solitary and clustered
animals (Khaemba and Stein, 2000) which provides a justification to explore
the ACS design in the estimation of their totals.

In this chapter, strip ACS design proposed (Thompson, 2012, p. 339) is
extended to a stratified setting. The sampling process considered in this chapter
is sampling without replacement of clusters (Dryver and Thompson, 2007). The
estimator due to Raj (1956) is modified to produce unbiased estimates under
the proposed design. Simulations were carried out using artificial and real data.

The design and its proposed estimator is described in sub-sections (3.1.2) and
(3.1.3) respectively. Its efficiency comparison and cost function are presented in
sub-section (3.1.4). A small population example to demonstrate the calculation
of the estimates is presented in sub-section (3.1.5). A Monte-Carlo simulation
using artificial data is presented in sub-section (3.1.6) while simulations using
real data are presented in sub-section (3.1.7). Finally, comments on the results

are given in sub-section (3.1.8).

3.1.2 The design

Consider again figure 2.4 but now divided into H = 3 strata. Stratification

can be based on habitat type or administrative convenience. In each stratum,
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Fig. 3.1: Plot of stratified strip ACS with initial sampled strip colored light gray,
adaptively added units dark gray and edge units black.

the first strip is selected at random and an adaptive search performed. The
observed strip with its associated cluster(s) is "removed” from the population.
A second strip is selected from the remaining strips and an adaptive search
performed. Again, the observed strip with associated cluster(s) is "removed”
from the population. The procedure continues until n, strips are sampled in
each stratum.

In stratified ACS, (Thompson, 2012, p. 353) ignored stratum boundaries
during network formation. In this study, networks are truncated at stratum
boundaries. Figure 3.1 shows that the proposed design contributes to lower
sampling cost (measured in terms of final sample size) compared to the stratified
design proposed by (Thompson, 2012, p. 353) in which networks are allowed to
cross over stratum boundaries. The design further reduces sampling cost by

avoiding visiting units that have previously been observed.
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3.1.3 The modified Des Raj’s estimator

Maintaining notations in the review section, let H be the number of strata.
For each strata, let N be the number of strips or PSU, M the number of SSU
in each strip, N, the number of units and n, the sample size (number of strips)
such that Zle ng = n and Zle N, = N. Let my, be the network size and
wyq the average of y-values in network k of stratum g.

When clusters are selected without replacement, following Raj (1956), the

unbiased estimator of the population total is

H Mg
Fo= Fq Tg= Y cCqizgi (3.1)
q=1 =1
where
Zjes , Wqj 1
Zg = ————,  pg = — (3.2)
q pql q Nq

in which s4; are the SSU that are in the PSU that was selected at the first draw
in stratum g, pg1 is the probability of selecting a strip of size My, at the first
draw in stratum ¢ in which Mp; is the number of SSU in the selected PSU and

1
Cqi = Vi are weights such that >°1% ¢;; = 1. Fori =2,--- ,n
q

* *
M(”V—Mqi_1

D TE (3.3)

jEsi—1 Pqi

MM

where >, "' w,, represents the SSU values (in terms of network averages)

in the Ng-th strip that have not been observed at draw i. The probability py;

of selecting a strip of size M* at draw ¢ in stratum ¢ is given by
My,

Ng — Z; 2
with Mg, being the number of SSU, that have not been selected, in a strip that

Pqi (3.4)

is selected at draw i while Z;;ll tq; are the number of SSU (number of strips
and their adaptively added units including their edge units) observed up to i —1

draw.
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The variance of 3.1 is

3.1.4 Efficiency comparison

Let n* be the sample size from a SRSWOR design. For an adaptive strategy
to have a lower variance (when HH estimator is adopted) compared to the sample

mean of a SRSWOR, the following condition must be satisfied (Thompson, 2012,

p. 319):
n*—n N —n AL
—n o - 2
< i — 3.6
s OV Nn(N —1) ZZ(% w) (3:6)
k=1j=1
where wy, is the average of observations in network k i.e wy = m%c Z;’Z‘l Yis

my, is the network size, n is the initial sample size for the adaptive design and

2 Z]'\il(yi - My)z . . . .
o2 = ==—"" """ is the finite population variance.

Y N-1
Extending the above to the stratification, it implies that the stratified ACS
will have lower variance than the classical stratified random sampling of fixed

size n* if

(i — wrg)® g =1,...,H  (3.7)

i.e the stratified ACS design will result in lower variance compared to the
classical stratified random sampling if, in each stratum, the within network
variance is greater than the stratum population variance.

Consider a classical sampling design in which units are selected with

probability proportional to size and without replacement. Assuming that the
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sampling fraction is negligible, then (Salehi and Seber, 1997a; Chaudhuri and
Stenger, 2005, p. 29).

’l)(f'Raj) g ’U(7A'hh) (38)

The above relation applies under ACS™ (Salehi and Seber, 1997a). Further
note that the ACS® has lower variance compared to the ACS™ (Dryver and
Thompson, 2007). Hence the inequality given in (3.8) also holds under ACS®

design.

Cost function

During an aerial survey, temporary fuel stations can be distributed in the
study region. This is necessary to save on time and cost as the aircraft will
not have to travel to the base station to refuel (Norton-Griffiths, 1978, p. 48).

With this in mind, the cost equation under the proposed design is given by

H H
C= ZC‘I = Z(CO +cing + ca(vg — M) + czeq) (3.9)

g=1 g=1

where ¢q is a fixed cost, ¢; is the cost of surveying a strip selected in the initial
sample, ¢y is the cost of surveying the adaptively added units (that meet the
pre-specified condition) where v is the number of units in the initial sample and
the adaptively added units (excluding the edge units). Finally c3 is the cost
of surveying edge units in which e are the number of edge units. Note that
an empty unit that is selected in the initial sample is a network of size one

(Thompson, 2012, p. 319).

3.1.5 A small population example

In this sub-section, the computation of the estimates are illustrated in one
stratum using an artificial population that is presented in table 3.1. The same
procedure applies to remaining strata. On the left hand side of the table are the
counts in each unit while on the right hand side is the same data represented as

network averages.
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Yi Wy
1 2 3 41 1 2 3 4
80 3 8 017 3 8 0
0 4 2 117 4 2 1
5 5 60 21 5 5 8 2
6 2 8 100 6 2 80 80
1 0 1 41 1 0 1 4

Tab. 3.1: An artificial population with the number of animals in each unit y;
represented on the left hand side while the transformed population w; is
presented on the right hand side. Second row with numbers 1, 2, 3, 4 are
labels for each strip. Here Ny =4, My =5, Ng = 20, nqy = 2 and
C ={yi :y; > 50}.

In this particular stratum, there are N; = 4 strips each with M7 =5 SSU.
The total number of SSU in this stratum is N; = 20. Let the sample size n, be
2 strips and the condition to adaptively add neighboring units be C = {y; : y; >
50}. The population total of y is 434. Table 3.2 gives results over all possible
samples.

The table shows that z; is unbiased and this follows from selecting a strip of
size one. To further explain the calculation, suppose that the first strip selected
is that of column 3 and the second strip selected is that of column 2 whose

results are given in row 8 of table 3.2. Then p1, ps and p(s) are obtained as

_Ma
pl_N7q
5
20
P2:#
Nq_zj‘ ty;
- 3 3
T 20-10 10
p(s) =p1 X p2
5 3 3

20710 40
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in which p; represent the probability of selecting a strip of size 5 at the first
draw, po is the probability of selecting a strip of size 3 (remaining SSU in the
selected strip) at the second draw given that the third strip was selected at the
first draw and the probability of the specified sample is p(s). The estimate of

the population total is

Zjesql w‘]j
Zg = ———
pql
20
=(8+2+80+80+1) x =
= 684
M;i_M';
—_ w,
Zgp = Z Wi + =1 : q
jes Dqi

10
:(8+2—|—80+80+1+5+2+2+80+4)+(3+4+0)xg

287.33

n
. 1
Tq = Fq;qu x p(s)

684 +287.33 3

Xi
2 40
3

— 485.67 x =
10

= 36.43
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3.1.6 Simulation study

A range of rare and clustered artificial populations were generated using
Poisson Cluster Process (PCP) (Diggle, 2013, p. 101). In the PCP, first, the
number of parents (nop) are generated as a realization of a Poisson process with
mean A;. Parents are then randomly distributed within the region of interest.
Each parent has an average number of offsprings that are simulated according
to a Poisson process with mean \o. The variation of the locations of offsprings
relative to their parents is controlled by a parameter s.

The artificial populations were generated using R package Splancs
(Rowlingson and Diggle, 2015). The range of parameter values used were: nop
= M € {5, 10}, A2 € {50, 60, 80, 100, 120, 150}  and
s2 € {0.00025, 0.0005, 0.001}. The above populations were generated in a
region that was partitioned into N = 30 x 30 = 900 units. Some of the
simulated populations are given in figure (3.2).

For each population, R = 20,000 samples were drawn and estimates obtained
following the formula shown above. An initial sample of size n € {8,12} strips
was used. Samples were allocated to different strata using optimal allocation
(Neyman, 1934) and optimal allocation according to box-constraint (Gabler
et al., 2012; Minnich et al., 2012). The standard deviation in equation 2.27
was evaluated at the network level using the available population total in each
stratum. Table (3.3) presents the distribution of samples to different strata
under the two optimal allocation strategies. For the optimal allocation with
box-constraint, each stratum was set to have a minimum sample of size 2 and
the maximum sample size was set to the total number of strips in the particular
stratum.

From the table (table (3.3)), the method under Neyman allocation allocated
some strata with one or non samples. In which case the particular strata may
not be included in the variance estimation or its variance estimation may not

be direct. For this reason, optimal allocation (Neyman, 1934) was removed
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A1 =5, A, =50, s=0.00025

A =5,A, =100, s =0.001

A, =10, \, =50, s = 0.00025

>\1=10

wdg

e

‘.

Fig. 3.2: Simulated populations under different parameter setting.
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Neyman optimal | Box-constraint

noA A Sl@ G 9 G| @ ¢ 435 G
g 5 50 000025 1 1 6 O 2 2 2 2
10 8 0.00100 | 1 2 3 2|2 2 2 2

1o 5 50 000025 | 1 1 10 0| 2 2 6 2
10 80 0.00100 1 3 5 3 2 3 4 3

Tab. 3.3: Allocations of samples to different strata according to optimal (Neyman,
1934) and optimal according to box-constraint (Gabler et al., 2012)
allocations for some of the parameters considered and different initial
sample sizes. qi,...,qs represent the first, ..., fourth stratum respectively.

from the analysis and evaluation was performed under optimal allocation with
box-constraint.

The comparison was made with its non-adaptive counterpart (stratified strip
design). Under the non-adaptive design, the sample size was set by rounding
off the expected final sample size v* of the adaptive design. The evaluation
was performed using relative efficiency (RE) and the expected final sampling

fraction (fn). The RE and the fn were obtained as

>
—
>
~—

RE = )’ fn=

If RE > 1 it implies that the proposed strategy is efficient relative to its non-

(3.10)

>
>
=] %

adaptive counterpart.

Figure (3.3) shows results of the relative efficiency. From the figure, the
adaptive strategy has helped in the improvement in efficiency relative to non-
adaptive stratified strip design. Under the populations considered, the relative
efficiency increases with increase in the number of units in a network as well
as cluster size. This of course determines the within network variance. The
results of the expected final sampling fraction (figure (3.4)) shows that increasing

cluster size increases the final sampling effort.
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n=8 (120 units) ——

n=12 (180 units)

50 60 80 100 120 150
Il L Il Il Il L Il Il Il L
nop=5 nop=5 nop=5
s2 =0.00025 s2 = 0.0005 s2 =0.001

=20

3
8
o
5 nop = 10
3 s2 =0.00025
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o
15 o
10 o
5
Average number of units in each network
Fig. 3.3: Results of the relative efficiency for the different parameters and for the two

initial sample sizes considered.

n=8 (120 units)

n=12 (180 units)

50 60 80 100 120 150
L Il L L L Il L L L Il
nop =5 nop =5 nop =5
s2 = 0.00025 s2 = 0.0005 s2 =0.001

Expected final sampling fraction

nop =10 nop = 10 nop =10

s2 = 0.00025 s2 = 0.0005 s2 =0.001
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Fig. 3.4: Results of the expected final sampling fraction for the different parameters
and for the two initial sample sizes considered.
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Fig. 3.5: Distribution of the elephant population in which the region is divided into 4
strata. The strata are represented by thick boarder line. Map obtained
from Kenana et al. (2013b).

3.1.7 Simulations using real data

The proposed design was applied to a real data which was the distribution
and counts of elephants across Amboseli-West Kilimanjaro/Magadi-Natron
cross border landscape. The landscape covers parts of Kenya and Tanzania
between 1° 37" S and 3° 13’ S and between 35° 49’ E and 38° 00’ E covering
an area of 25,623 km?2. The data was obtained from an aerial survey that was
conducted in October (dry season) 2013. Details on how the survey was
conducted can be found in Kenana et al. (2013b).

A grid was laid on a map that was produced from the survey as shown in
figure 3.5 and an effort was made to determine the counts in each unit. The
region had N = 2,304 units such that there are 48 row and 48 columns. The
number of strata was H = 4, each stratum had N = 24 strips (PSU) and each
strip had My = 24 SSU. The number of SSU in each stratum is N, = 576. The
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initial sample size under ACS was n = 8 and 12 strips.

Strategies that were used to allocate samples sizes to different strata were
optimal (Neyman, 1934) and optimal allocation according to box-constraint
(Gabler et al., 2012; Miinnich et al., 2012) in which the stratum standard
deviation was evaluated at the network level. Table (3.4) shows distribution of
sample sizes to different strata. Like in the simulated data, optimal allocation
was omitted from the analysis. 10,000 sampling simulation were carried out.
For the non-adaptive stratified strip design, the sample size used was derived

by rounding off the expected final sample size under the ACS design.

Optimal Box-constraint

n|q g2 4¢3 g4 |91 g2 g3 (g4

1213 0 1 8| 2 2 2 6

Tab. 3.4: Allocation of samples to different strata for elephant population under the
proposed design

Results of the relative efficiency and the expected final sampling fraction
are given in table (3.5). From the table, the proposed design is more efficient
compared to the non adaptive stratified strip sampling. As expected, efficiency

increases with increase in the initial sample size.

n RE  E(fn)
8 (192 units) 1.354 0.101
12 (288 units) | 2.206  0.153

Tab. 3.5: Relative efficiency (RE) and expected final sampling fraction (E(fn)) for
the elephant data. RE and E(fn) are defined in equation (3.10).

3.1.8 Discussion

ACS is an efficient design when the population under study is rare and
clustered. Greater efficiency is achieved when there are few but relatively large
networks and the size of initial sample is close to the final sample (Brown, 2003).

The relatively large networks would ensure that condition (3.7) is satisfied.
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(Thompson, 2012, p. 353) ignored stratum boundaries when forming
networks.  In this study, the networks were truncated at the stratum
boundaries. Truncating the networks at the stratum boundaries helps in
maintaining the stratum boundaries from the design to the analysis stage. The
other advantage of this approach is that, in practice, if there exist field
stations, its easier and faster for each field station to conduct sampling and
perform estimation within its jurisdiction and later combine the results.

Also if the networks are truncated at stratum boundaries as opposed to
allowing networks to cross over boundaries i.e ignoring stratum boundaries as
proposed by (Thompson, 2012, p. 353), helps in reducing the final sample size
hence the sampling costs when there exists networks at boundaries.

When there are no networks that span over two or more strata, the proposed
stratification and the stratification due to (Thompson, 2012, p. 353) results in
equivalent results. The stratification due to (Thompson, 2012, p. 353) however
results in lower variances compared to the proposed stratification when there
exist networks that spread over at least two strata and with greater within
network variance.

When it comes to stratification, the decision to either use the proposed
approach and truncate the networks at the stratum boundaries or to follow
(Thompson, 2012, p. 353) and allow the networks to cross over the boundaries,
will depend on the level of precision desired and the amount of resources
available. The resources could be in terms of equipments required to carry out
the survey such as the number of light aircraft with their observation
equipments, time available and the number of field experts available for the
field survey.

The current study considers ordered samples that made use of the Des Raj
estimator. However, re-ordering the samples and making use of the Murthy
estimator (Murthy, 1957) results in more efficient estimates but computationally
intensive. Further research involves exploration on the use of re-ordered samples

in the analysis.
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3.2 ACS for negatively correlated data

3.2.1 Introduction

It is common for researchers to use auxiliary information that is cheaper to
obtain to improve on the efficiency of their estimators. The auxiliary information
could be obtained from satellite images, previous census or registers. Classical
estimators that make use of auxiliary information include ratio, regression and
product estimators. From the three, which estimator to use to achieve more
efficient estimates, depends on the correlation between the study variable y and
the auxiliary variable . Further, how far the regression line passes through the
neighborhood of the origin must also be considered.

The ratio estimator is efficient when the correlation between the study and
the auxiliary variable is highly positive and the regression line passes through
the neighborhood of the origin. The conditions for the product estimator are
similar to the ratio estimator but with the correlation being highly negative. The
regression estimator on the other hand is more efficient than the ratio or the
product estimator when the regression line passes away from the neighbourhood
of the origin. Otherwise, it is similar to the ratio or to the product estimator.

In the context of rare and clustered populations that make use of the ACS
design, Chutiman et al. (2013) studied the use of two auxiliary information under
a stratified setting. Chao (2004a) studied the use of auxiliary information that
is positively correlated with the variable of interest. He suggested a generalized
ratio estimator based on the modified HT estimator. Dryver and Chao (2007)
proposed a different type of ratio estimator that is based on the modified HH
estimator. Chao et al. (2011) and Lin and Chao (2014) used Rao-Blackwell
theorem to improve the efficiency of the ratio estimator under the ACS design.
Chao (2004b) proposed the regression estimator under ACS design. Chutiman
et al. (2013) gave a summary form of the ACS estimators in the presence of
auxiliary variable(s).

In this sub-section, the situation when there is a negative correlation between
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the study and the auxiliary variable is examined. Suppose that the abundance of
wildlife species and the average amount of rainfall represents the study and the
auxiliary variable respectively in an ecological or environmental study. Suppose
further that an average amount of 500mm of rainfall is adequate to ensure good
forage for the wildlife survival i.e the given park/area has approximately 1,500
animals of type A if the average amount of rainfall is 500mm. As the average
amount of rainfall increases, the abundance of wildlife will decrease from death
caused by lack of food (Prins, 1996, p. 12) or some get stuck in the mud.

A point to note in studies involving negative correlation between the study
and the auxiliary variable is that the point of origin is not always the literal
{0,0}. It is rather a known constant and the model is shifted accordingly. In
the example above, the point of origin is {500, 1500}. This sub-section proposes
two product estimators and their associated variance estimators under the ACS
design.

The proposed estimators are described in sub-section (3.2.2). Situations
in which the product ACS is efficient relative to the ACS and to the product
estimator under SRSWOR are presented in sub-section (3.2.3). An example
using a small population to demonstrate the calculation of the estimates is
presented in sub-section (3.2.4). A simulation study using artificial and real data
are presented in sub-sections (3.2.5) and (3.2.6) respectively. Some comments

on the results are finally given in sub-section (3.2.7).

3.2.2 Estimators

The product estimator due to Murthy (1964) is modified by incorporating
the modified HT and HH estimators that were proposed by (Thompson, 2012,
p. 319). The interest is to estimate the population total of the study variable
given that the auxiliary variable for all units in the sample and the population
total of auxiliary variable is available. Further there exists a negative correlation

between the study and the auxiliary variable.
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The product HH estimator

Let 7pny and 74, be the modified HH estimators of y and x respectively as
defined in equation (2.9). Further, let 7, be the population total for x, then the

product HH estimator is given by

. ThhyThhe
Fonh = ’""i’i’”‘ (3.11)
Lemma 1. The bias of Tpnn s
) B cov(i’hhw)
B(fphn) = ——*= (3.12)
xr

where cov(Tpn,,) is the covariance between x and y under the HH estimator

given by

N

Z(wyk - ,Uy)(ka - ,LLx)~ (3'13)

k=1

N(N —n) 1
n N -1

cov(Thh,,) =

The MSE of Ty to the first degree of approzimation is

(3.14)

MSE(Tpnn) =~ Ty2 (U(Thhy) O(Fhn,) + 2cov(7hh”y)) )

2 2
Ty T; TyTx

where v(Tpp,) and v(Thn,) are the variances of the HH estimator as defined in

(2.11).
Proof. The proofs for the bias and the MSE are provided in appendix A.1. O

The estimate of the bias and the MSE are, respectively

B(Tphn) = OV (hz,) (3.15)

and

u (3.16)

(7 (7 cov(7
J\TS\E(%phh) ~ 7'5 (7hn, ) v(;hhz) + 2— ( eh”‘)
Thh,, Thhy Thhy Thh,
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in which

n

Z(wyk — finn, ) (Wak — finn,)

k=1

N(N —n) 1
n n—1

cov(Thh,,) =

while 0(7nn,) and O(7php, ) are the unbiased variance estimators of v(75,) and
v(Thn, ) respectively whose formulas are given in equation (2.13).

Thompson and Seber (1996) and Dryver and Chao (2007) viewed ACS as
sampling without replacement of n networks with inclusion probability mx/~.

With this definition, lemma 2 provides an alternative formulation for the MSE.

Lemma 2. Let wyi,wya,...,wyn be the population network means of the y-
values and let wy1,Wys, ..., wen be the population network means of the x-
values. The MSE of Tpnn, to the first degree of approximation, is (Gattone
et al., 2016b)

N(N —n)

(%

where CV,y, and CV,,, are the coefficients of variations at the network level for

MSE(#pnn) =~ (CV2 +COV2 +2,owwcvacvwi)

n

Q

2
y
) ( V2 4 CV2 + 2pwzyCwaCsz) (3.17)

the variables y and x respectively and py,, is the correlation coefficient at the

network level
Proof. The proof for lemma 2 is provided in appendix A.2. O

The variance of 7,5 can be approximated by

N

TS >
(wyk + mek

n N 1 Pt

v(Tphn) ~

where R = @. This variance is estimated by
o

n

Z(wyk + Rppwer)?.
k=1

N(N —n) 1
n n—1

O(Tphn) ~
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finh,

Hhh,

in which -éhh =

The product HT estimator

The product HT estimator is given by

Thty Tht,

(3.18)

Tpht =
D T

where 7p¢, and 754, are the HT estimators of 7, and 7, respectively as defined

in equation (2.6).
Lemma 3. The bias of Tpn: s

cov(i’htwy)

Tx

B(Tpnt) = (3.19)

where cov(f'htwy) is the covariance between Tpy, and Tpg, given by

with Ajx = aji, — ajoy while y; is the sum of y-values in network j and xj; is
the sum of x-values in network k. Its MSE to the first degree of approximation
18

MSE(#pnt) = v(#ne,) + R*0(e,) + 2 Rcov(Pne,,,) (3.20)

-
where R = L while v(7,) and v(ne,) are the variances of the HT estimators
Tx :

defined in equation (2.7).

Proof. The proof is the same as that provided in appendix A.1 by replacing HH

with HT in the notation. O

Like in the product HH estimator above, the alternative formulation for the

MSE with HT estimator is

MSE (7o) ~ 72 (CVE, + CVi&_ +2n,, CVii, CVi, ) - (3.21)
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which can be estimated by

MSE(?A'pht) ~ @(%hty) + R}%t ﬁ(%htr) + 2Rht C/O\U(%htmy)

. Tht,,
where Rj; = —
Tht,

and ¢ov(7pe,,) is the unbiased estimator of cov(7y,,) given

by

K K X
. _ A 25 25Ty,
cov(The,,) = =

with Ajj, = W in which z is an indicator variable that takes the value 1
J
if the selected unit is in the sample and 0 otherwise. The variance of 7,,; can

be approximated by

K K
. (y; + Raj) (y; + R
o)~ 303 Ay i) Wi )

=1 k=1 &) Xk
whose estimate is
K K 5 ~
R < Zi; + Rux}) 2z (v + Rl
e ) B L R
j=1k=1 J

3.2.3 Efficiency comparisons

The product ACS estimators are theoretically compared in terms of efficiency
with respect to the standard ACS estimators (Thompson, 2012, p. 319) and
with respect to the product estimator under SRSWOR (Murthy, 1964). Since
the comparisons are based on the first order of approximation of the MSE of
the suggested estimators, a simulation study will be provided to support the

theoretical findings.

Comparisons with estimators under the standard ACS

The condition under which the proposed product estimator is more efficient
than the standard ACS (Thompson, 2012, p. 319) is analyzed Using equations
(3.17) and (2.11) , it follows that MSE(7prn) < v(Thn) (i.e the product
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estimator 7,5, is more efficient than the standard ACS estimator 75) when

N(N —n N(N —n
%uj (cvjy +OVE 4 2pryCwaCwa) < %Sﬁ (3.23)
Note that
Sa
ovz =
2 _ 2 A2
= Sy, = 1y CViy, (3.24)

Substituting equation (3.24) in equation (3.23), we have

N(N —n)
S (cvjy +CV2 + prmyCwaCVwm) <

N(N —n
NN 2 oy

2pw,, CVi,CVe, < —CV2.

1 oovz
Pwsy = 7 3 OV OV,
10V,
1OV, 2
Pusy, < =3 v, (3.25)

In a similar manner using equations (3.21) and (2.7), the product HT estimator
Tpht is more efficient than the standard ACS estimator 74, (i.e. MSE(Tpnt) <
v(Tnt)) if

1OV,
Pht 5 CVhty .

(3.26)

Relations 3.25 and 3.26 are similar to condition (2.31) which compares the
product estimator with the expansion estimator. However, conditions (3.25)
and (2.31) are more easily interpretable since they are directly linked to the
population values of y and x. This is true since p,,,, measures the correlation
between y and x at the network level while p,, measures the correlation at the
unit level. Similarly, CV,,, and CV,, are the coefficient of variations of the
population network values wgy and wy, while C'V, and C'V,, are the coefficient

of variations of the population unit values z and y.

For the product HT estimator, the correlation coefficient Pht,, and the
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coefficient of variations C’Vhty and CVp,, depend on the network totals y;" and
the inclusion probabilities «;. Hence, condition (3.26) also relates to the
correlation and the variation of x and y at the network level. We will now
focus on 73 but the same considerations hold also for 74,;.

In (3.25), if CV,, = 2CV,,,, the product HH estimator will always be less
efficient than the standard ACS estimator regardless the value of the correlation
Puw,,- 1f at the network level, y and x have the same coefficient of variation then
the product HH estimator is better than the standard ACS estimator if P, <
—0.5. As the variability of the x variable increases, more negative correlation
Puw,, is necessary to have the product HH estimator more efficient than the
standard ACS estimator. As the variability of the x variable decreases, less
negative correlation p,,,, is necessary to have the product HH estimator more
efficient than the standard ACS estimator. When, for example, CV,,, = 2CV,,,
then regardless of the correlation p,,,, the product HH estimator will always
be less efficient than the standard ACS estimator. When CV,, = 2CV,,_, then
Puw,, has to be less than —0.25 in order to have the HH product estimator more
efficient than the standard ACS estimator.

The use of the auxiliary variable would be recommended when the correlation
is present at the network level because this will transfer to the value of p,,,,. For
rare and clustered populations, it would be difficult to find a situation in which
CVy, < CVy,. The use of the ACS product estimator is recommended as long
as the study variable y has a negative correlation with the auxiliary variable x

at the network level and that the study variable y is rare and clustered.

Comparison with product estimator under SRSWOR

Another useful comparison is with the product estimator under SRSWOR
(Murthy, 1964). Writing the MSE of 7, given in equation (2.30) in terms of the

variances of y and x and the covariance between them, we have

MSE(%,) = v(7,) + R*v(#:) + 2 Rcov(7sy)-
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From (3.20) we have M SE(7pn:) < MSE(7), (i.e. Tpne is more efficient than

7p) when

v(The,) + R%v(%s,) + 2 Rcov(Tne,,) < v(fy) + R%v(%,) + 2 R cov(Tyy). (3.27)

or, equivalently when

CVZ +CVid +2pnt,, CVii, CVii, < OVQ(@,)+CV2(@)+2pwcv<%y)mg(@)).
3.28

A similar condition can be obtained for the product HH estimator 7ppp.
By recalling (3.14), we have that MSE(7pnn) < MSE(7,), (i.e. Tppn is more

efficient than 7,) when

v(#an,) + R20(n, ) + 2R cov(Ppn,,) < v(Fy) + R*v(7,) + 2R cov(fyy) (3.29)

or, equivalently, by noting that p,, = pnn,, when

zy

CVit, +CVi +2puw,, CVin, CViun, < ch(%y)+cv2(fw)+2pwyCV(%I)cx(/(fy)).
3.30

Thus the efficiency of the proposed product ACS estimators depends on the

conjoint effects of three factors:

e The efficiency of ACS vs SRSWOR for the y variable i.e v(7ps,) vs v(7y)

or v(Thn,) vs v(7y)

o The efficiency of ACS vs SRSWOR for the = variable i.e v(7ht,) vs v(7y)

or v(Tpn,) vs v(7)

e The size of the correlation at the network level, ppy,, or py,, and of the

correlation at the unit level, pg,.

These three factors interact with each other. Consider the situation in which
the population y values are rare and clustered so to have ACS more efficient

than SRSWOR. In such a case, we would have v(7y,,) < v(7) or, equivalently
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Unit ¢« Network ¢ ay Yi  Wyk Vi Ty Wek T
1 1 0.4 1 1 17 T 7
2 2 0.4 0 0 0 8 8§ 8
3 3 0.4 2 2 2 6 6 6
4 4 0.7 10 505 1,010 1 3 6
4 4 0.7 1,000 505 1,010 5 3 6

Tab. 3.6: y and = populations and quantities to compute the ACS estimators

CVthy < CV?(%,). In the presence of negative correlation between y and z,
the spread of the auxiliary variable may be such that the HT estimator 75,
is less efficient than 7, i.e. v(7he,) > v(7,). The final effect on the efficiency
of 7ppt over 7, will be positive if the efficiency gain of ACS over SRSWOR for
the y variable will overcome the efficiency loss of ACS over SRSWOR for the «
variable.

Finally, one has to consider the values of pp¢,, and p,,. Keeping the previous
two factors fixed, a higher correlation at the network level than at the unit level

will lead to a positive effect in terms of efliciency of 7, over 7.

3.2.4 A small population example

To shed light on the computations, two small populations of size N = 5
were considered. The populations are shown in Table 3.6 where the condition to
adaptively add adjacent units is C' = {y : y > 5}. The example is adapted from
Gattone et al. (2016b) in which the y values were obtained from (Thompson,
2012, p. 319) while the x values were generated such that the correlation at the
unit level is equal to pgy, = —0.09 and the correlation at the network level is
equal to py,, = —0.95. The population totals for y and = values are 1,013 and
27 respectively.

The population values are such that condition (2.31) is not satisfied since
10V,

pey = —0.09 is greater than —3 ove

= —0.11. Hence the product estimator
is not suitable for this population under SRSWOR. On the other hand, both

conditions (3.25) and (3.26) are satisfied (due to the high value of correlation
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at the network level) since p,,, = —0.95 is less than *%ngxﬁ = —0.16 and
Pht,, = —0.69 is less than ,%g%jz = —0.22. Hence the product ACS estimators
: Y

are useful for this population.

Table 3.7 lists the (g) = 10 possible samples of the ACS design when an initial
sample of size n = 2 is selected by SRSWOR. The estimators 7, 7o, Thn,, Thh,
Thtys Tht,s Tphh and Tppe were computed for each possible sample. The table
confirms the above analysis that the 7, is inefficient relative to SRSWOR for
this population while both 7,4+ and 7,5 are efficient relative to SRSWOR. From

the table, the most efficient estimator of 7, is the HH product estimator 7,4.
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3.2.5 Simulation study

Artificial populations were generated on a square region that was
partitioned into 30 x 30 = N = 900 units. The study variables y were
generated according to a PCP (Diggle, 2013, p. 101). In the PCP, first, the
number of parents (nop) are generated from a Poisson process with mean \;
and parents are randomly distributed within the study region. For each
parent, the number of offsprings are generated according to a Poisson process
with mean A;. The variation of the location of the offsprings relative to their
parents is controlled by the parameter s2. The parameters setting were
A€ {510}, X € {10, 20, 30, 40, 50, 60, 80, 100, 120, 150} and
s2 € {0.00025, 0.0005}. The variables were simulated using R package Splancs
(Rowlingson and Diggle, 2015).

The auxiliary variables x were simulated such that three levels of correlations
existed with the study variable at the network level; low (—0.3 < py,, < 0),
intermediate (—0.6 < pu,, < —0.3), and high (-0.9 < p,,, < —0.6). The
auxiliary variables were simulated using R package Ecodist (Goslee and Urban,
2007) with some modifications.

The combination of the above parameters enabled the examination of the
proposed estimators on populations with different degrees of rarity and
clusteredness; from rare and clustered populations to less rare and less
clustered populations and different levels of network correlation between = and
y. Some of the simulated population are shown on figure 3.6.

The initial sample size under the ACS design were n € {15, 65, 100}. Under
SRSWOR, the size of the sample was set to the expected final sample size of
the adaptive design. For each population, R = 50,000 samples were drawn and
the values of the estimators T,ht, Tphh, Tht, Thn and 7, computed.

Evaluation of the estimators was done using the relative efficiency and the

relative bias which were computed as follows:

e Relative efficiency of the product ACS estimators
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=-0.8

Fig. 3.6: Population distribution of the study (black %) and the auxiliary variable
(grey 4+) when clusters are more (first row) and less (second row) compact
and when the level of correlation is low (first column) and high (second
column).
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_ MSE(%) _ _MSE(%)
REpnt = 31550, 224 BEphh = 3755000

e Relative efficiency of standard ACS estimators

_ MsE@ _ MSE(%)
REp, = W(i,z) and REy;, = W(ihh)

e Relative efficiency of the product estimator under SRSWOR

MSE(7
RE, = f1spi55-

e Relative bias of the product ACS estimators
RByp = 100 x L 0 Ty

Ty

1 R Tphh;— Ty
RBynp = 100 x LR Tonnm

Ty

e Relative bias of the product estimator under SRSWOR

RB, =100 x LS Tni-T

Ty

Results of the relative efficiency under the product HT estimator when the
initial sample size is n = 15 and when the correlation between the study and
auxiliary variable is high are presented in figure 3.7. From the figure, the product
HT has higher efficiency gain compared to the standard HT estimator. The gain
in efficiency is higher for populations in which the number of clusters are few
(nop = 5) and the clusters are more compact (s2 = 0.00025). When the number
of clusters increases but clusters remain more compact, higher gain in efficiency
of the product HT estimator is achieved in populations in which the average
number of units in a network is less than 80. Populations with less compact
clusters (s2 = 0.0005) have less gain in efficiency of the product ACS relative to
the standard ACS design compared to populations with more compact clusters.

Figure (3.8) shows results of the product HH estimator. The figure shows
that the results are similar to the results under the HT estimator. However the
product HT estimator has higher efficiency gain compared to the product HH
estimator. This is shown in appendix (A.3).

Figure (A.1) in the appendix shows the relative efficiency of the HT estimator
for the different levels of correlation coefficient. The figures shows that the gain

in efficiency of the product HT over the standard HT increases with increase
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Fig. 3.7: Relative efficiency when HT is used for an initial sample of size n = 15 for
the different parameters when p,,, is highly negative
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Fig. 3.8: Relative efficiency from the product HH for an initial sample of size n = 15
for the different parameters when p.,, is highly negative
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Fig. 3.9: RB of the proposed product HT (left) and HH (right) for low (first row),
intermediary (second row) and high (third row) correlation; highly rare
(nop = 5) and less rare (nop = 10) and from more compact to less compact
clusters (from first to third column).

in the level of correlation coefficient. The same behavior can be seen with the
product HH estimator as shown in appendix (A.2).

Results of the relative bias of the product under ACS (HT and HH) and the
product under SRSWOR, when the level of correlation between the study and
the auxiliary variable is high for an initial sample of size n = 15 are presented in
figure (3.9). The figure shows that, in general, the product ACS has lower bias
compared to the product SRSWOR when the populations under study have few
clusters (nop = 5). Figure (A.4) in the appendix shows the relative bias for the
different levels of correlation coefficient when the initial sample is of size n =
15. The figure shows that the relative bias of the product ACS increases with
the increase in the level of negative correlation. On the other hand, the relative

bias decreases with increase in initial sample size (figure A.5).
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Unit level Network level

Variable cv.r Py Cv.T Pwg,
Oryx and temp -0.0014 -0.0432 | -0.0021 -0.0582
Wildbeest and temp | -0.0014 -0.0110 | -0.0031 -0.0236

Tab. 3.8: Values on the left (correlation coefficient) and the right (cv.r) hand side of
equations (2.31) and (3.25)

3.2.6 Simulations using real data

The performance of the proposed estimators was evaluated by performing
simulations using two real data sets. The data sets for the study variable were
the distribution and counts of oryx and wildbeest across Amboseli-West
Kilimanjaro/Magadi-Natron cross border landscape. The landscape covers
parts of Kenya and Tanzania between 1° 37" S and 3° 13’ S and between 35°
49’ E and 38° 00’ E covering an area of 25,623 km?2. The data were obtained
from an aerial survey that was conducted in October (dry season) 2013.
Details on how the survey was conducted can be found in Kenana et al.
(2013D).

A grid was laid on maps that were produced from the survey and effort was
made to determine the counts in each unit. The region was partitioned into N
= 2,304 units such that there are 48 row and 48 columns. Temperature was the
auxiliary data that was considered for each quadrant over the study area. This
data was obtained from R package raster (Hijmans, 2015).

The data sets were verified to see if they meet conditions (2.31), (3.25) and
(3.26) that are necessary for the efficiency of the product estimator under both
adaptive and non-adaptive design. Table 3.8 presents values of the left and
right hand side of the equations. From the table, both conditions are satisfied
for both data sets although the correlation is very weak. Gattone et al. (2016b)
presented data from a similar survey that was conducted in the year 2010 which
had relatively higher negative correlation.

Table 3.9 presents results of the relative efficiency and the relative bias.
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n | REyy REw REp, REw RE, | RByw RBy, RB,
30| 209 208 193 192 101 | -1.16 -0.61 0.26
X 50| 203 202 187 1.8 101 | -043 -0.50 1.80
S q00| 218 217 182 181 1.00| -L10  -119 -0.07
150 | 239 238 178 177 1.00| -006  -0.03 -1.04
200 | 261 261 179 178 1.00| -001  -0.18 -0.60
= 80| 306 305 255 253 100 | -0.01 002 039
€ 50| 299 299 220 219 1.00| -020 -0.23 -0.96
§ 100 | 449 450 234 233 1.00| 0.13 035 061
150 | 655 659 238 237 1.00| -006  0.06 -0.14
200 | 9.83 990 249 248 1.00| 007 046 -0.81

Tab. 3.9: Results of the relative efficiency (RE) and relative bias (RB) for different
initial sample sizes on the real data

The subscript p, ht and hh represent the product, HT and HH estimators
respectively. From the table, the proposed method has contributed to a slight

gain in efficiency compared to the standard ACS design.

3.2.7 Discussion

The simulations results are based on simulated data assuming varying
network level correlations. Network level correlation does not guarantee unit
level correlation, nor is unit level negative correlation required for the product
estimator under ACS. Thus if unit level correlation is very close to zero and
this is not the case on a network level then the ACS product estimators may
be appropriate whereas the SRSWOR product estimators are, in this case, not
appropriate. On the other hand if there exists a negative unit level correlation
and a positive network correlation, then the ACS product estimator is not
appropriate and the researcher should not use it. This can happen if the
auxiliary variable is rare and clustered and often found together with the
variable of interest. In this case it could be possible for the two variables to be
negatively correlated on a unit level but be positively correlated on a network

level. The researcher should be cautious of this scenario even if it is unlikely to
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occur. Ideally, the researcher would have an estimate or at least a concept for
the network level correlation from a prior study on the same attributes of
interest to determine if the product ACS estimator is the best estimator to
use. We note the product estimator with HH estimator under the ACS design

that was done by Chaudhury and Hanif (2015) and Chutiman et al. (2013).
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3.3 ACS with clusters selected without replacement and

stopping rule

3.3.1 Introduction

The current chapter extends the theoretical understanding of ACS by
considering the conjoint use of the without replacement selection of clusters
and a stopping rule in which the adaptive sampling phase is stopped whenever
the stopping rule is verified. We refer to the new design as ACS®®". The
design limits further the sampling effort in form of traveling expenses by
avoiding repeat observations (Dryver and Thompson, 2007) and by reducing
the final sample size (Gattone and Di Battista, 2011).

The focus is on the data-driven stopping rule that proposed by Gattone and
Di Battista (2011) to control the final sample size when prior knowledge of the
population structure is not available. The stopping rule alleviates the lack of
prior information and enlarges situations in which ACS could be more efficient
than conventional sampling designs (Gattone and Di Battista, 2011). However,
it introduces bias into the estimators.

Since samples are drawn one at a time, the Des Raj estimator is modified
to suit to the proposed design as shown in sub-section (3.3.2). A Monte-Carlo
simulation study using artificial data is given in sub-section (3.3.4). Simulations
to evaluate the performance of the proposed estimators using real wildlife data
is given in sub-section (3.3.5). Sub-section (3.3.6) provides some comments on

the results and suggests openings for future research.

3.3.2 The modified Raj’s estimator

Following the notations of Gattone et al. (2016a), let U be the i-th
truncated network whose size is m}’ and let ¥U¢ be the i-th truncated cluster.
An i-th truncated cluster contains an i-th truncated network and the stopping
edge units. The stopping edge units are units that activate the stopping rule

(Gattone and Di Battista, 2011).
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The modified Raj estimator for the population total is given by

pe—sr _ Ztc sr (331)

where
_ i
= (3.32)
1
and fori =2,---,n
i—1 w i—1
e =g+ e (13 (3.33)
j=1 Py j=1
with
m;’
p; = N
B= ) v
JEWY
b = Zjellf Yj
" i

where 7;” is the sum of the units in the i-th truncated network, ;. is an estimate

of the total in network j and f; = T:TJC .

J

The variance can be approximated by

n
var(7°7°") = Z r(t;T) +V (3.34)
that can be estimated by
var(7¢7°") = _ i(t?‘” e L 14 (3.35)
n(n—1) =" '
with
V=> ¢ (3.36)
i=1
in which

Cl =21 (337)
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and fori=1,---

where

with

i—1 i—1
2
=) %5+ (1= p (3.38)
j=1 P j=1

a= e S ) (3:39)

mi = JETE

B 1

yi = me Yj- (3-40)
[ jeqlc

V is the Des Raj’s estimator of the quantity vazl o? where o7 is the within-

network variance of the i-th network. The estimate of the variance is the sum

of two parts: the first part is equal to the estimate of the variance calculated

on the assumption that the network totals y; have been measured without

error while the second part is obtained from the networks total estimate itself

by substituting the estimated variances for the estimates of the totals of the

networks (Gattone et al., 2016a).

3.3.3 A small population example

In this sub-section, the design and estimation are demonstrated with a small

artificial population that is given in table (3.10). Let the initial sample be of size

n = 2 and the condition to adaptively add neighboring units be C' = {y : y > 0}.

0 0
2 0
10 0
22 1
2 0

Tab. 3.10: A small artificial population

Let the first unit to be selected be the unit whose value is 3 (the circled
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unit). At the first step of sampling, units with values 13 and 1 are included in
the sample. These units together with the initial unit are colored light gray. At
the second step of sampling, neighboring units with values {0,0,0,0, 3,10} are
added to the sample. These units are colored dark gray. The second step units
whose values are zero are the edge units.

Applying condition (2.18), we note that

1
82(1) Zjelllf’ (yj - 11)5 ))2
1

= m(ll)

= é((s —5.67)% + (13 — 5.67)% + (1 — 5.67)%)

27.56

where wgl) is the mean of values in the network associated with the first unit

(2

selected after the first step of sampling. s? is calculated in a similar manner.

Hence, we have

2(2) 1—

s mD 2089 1-—3
L = =0.5685 < 1 3.41
EO Rl g TRl (3.41)
"7741

hence the sampling stops at this step and units added at the second step whose
values meet the condition C' form the stopping edge units. In table (3.10), the
stopping rule edge units are the units whose values are {3,10}. Units selected
up to the first step of sampling form a truncated network (i.e units whose cells
are colored light gray).

Then the network together with its edge units and stopping rule edge units
are "removed” from the population and a second unit is selected at random
from the remaining units. Suppose the second unit selected is the second
circled unit with value 2. Though the unit meets the condition of interest,
note that the neighboring units had already been observed and ”removed”
from the population. Thus the second unit sampled is a network of size one
with no edge units.

To obtain the estimate of the population total, we proceed as follows: the
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number of units in the truncated networks and clusters are
my =3, my=1m{=9 m§=1

and f; is
3 1
=-=03333, fo=-=1.
fl 9 ’ f2 1

The probability of drawing the first and the second networks are

3 1
* = — = '12 * = — = . 4
P1= 5 0.12, p3 5 0.0

while the y-values in the truncated networks and clusters are
vy ={3,1,13}, v3 = {2}, v{ = {3,1,13,10,3,0,0,0,0}, y5 = {2}.

Hence the estimate of y-values in the truncated network ;. is

30
"~ 0.3333

Y.

2
=90.009, 2. = 1= 2.
Finally ¢°" is

17 2
167 = —— = 141.6667, t5°" = 90.009 + —— (1 — 0.12) = 134.009.
1 0.12 2 + 0.04( )

Thus the modified Des Raj estimate of the population total based on the selected

sample is given by

somor _ 1416667 2+ 134009 _ 137 8379

3.3.4 Simulation study

Monte-Carlo simulation of the proposed design was performed using a
range of rare and clustered artificial populations that were generated using

PCP (Diggle, 2013, p. 101). In the PCP, first, the number of parents are
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Fig. 3.10: Simulated population with first row s = 0.00025 and second row s =
0.0005. First, second and third columns are for Ay = 50, 80 and 150
respectively.

generated as a realization of a Poisson process with mean ;. Parents are then
randomly distributed within the region of interest. Each parent has an average
number of offsprings that are simulated according to a Poisson process with
mean Ay. The variation of the locations of offsprings relative to their parents
is controlled by a parameter s.

The populations were generated in R package splancs (Rowlingson and
Diggle,  2015) whose  parameters  setting  were )\ = 5
A2 € {50, 60, 80, 100, 120, 150} and s € {0.00025, 0.0005}. The above
populations were generated in a region that was partitioned into
N = 30 x 30 = 900 units. Some of the simulated populations are shown on
figure 3.10.

A varied initial samples of sizes n € {20, 30, 50, 100, 120} were considered
and 10,000 sampling simulations were performed on each population. For the
adaptive designs, the critical value was C = {y : y > 0}. The designs considered

for comparison were ACS“®" ACS® and stratified ACS. The stratified ACS had
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Fig. 3.11: Results of the relative efficiency for different initial sample sizes (across

columns) for more and less compact clusters (first and second rows
respectively). The different number of units in each network are
represented on the x-axis.

the region partitioned into two and three strata with networks truncated at
stratum boundaries. This is to achieve the limitation of the final sample size.

Evaluation was based on the relative efficiency of ACS®*" and ACS® versus
SRSWOR and on stratified ACS versus the classical stratified sampling. The
expected final sample size v was used to evaluate estimates under the non-
adaptive designs. The final sampling fraction fn = % of the ACS designs
was also evaluated. Finally, since the use of the stopping rule results in biased
estimates (Gattone and Di Battista, 2011; Su and Quinn II, 2003), the relative
bias under ACS“*" design was evaluated.

Figure (3.11) presents results of the relative efficiency. From the figure, the
proposed design helped in achieving gains in efficiency compared to the other
designs considered in this study. This gain in efficiency was observed across
all the populations considered with different cluster sizes and different cluster
compactness and for smaller initial sample sizes (n < 100).

Results of the expected final sampling fraction are shown in figure (3.12).



3. Design-based estimation 65

ACS™™ ACS® ----  ACS™ ——=  ACS™ -——
50 60 80 100 120 150 50 60 80 100 120 150
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s = 0.00025 s = 0.00025 s = 0.00025 s = 0.00025
n=20 n =30 n =50 n =100
i . - 025
\ /
B \ , o020
\ /,
g . N Py — 0.15
= /
S - \ / I 0.10
= \ , \ = 4
g’ ] w w r 0.05
g
é s = 0.0005 s = 0.0005 s = 0.0005 s =0.0005
= n =20 n =30 n =50 n =100
c
5 025 +
2
© 020 o \(//\ Al f
5 o5 SN/ N
0.10 | N L
2R~ IS o ==
0.05 Zso - | -
T T T T T T T T T T T T T T T T T T T T T T T T
50 60 80 100 120 150 50 60 80 100 120 150

Average number of units in each network

Fig. 3.12: Results of the expected final sampling fraction for different initial sample
sizes (across columns) for more and less compact clusters (first and second
rows respectively). The different number of units in each network are
represented on the x-axis.

From the figure, the proposed design achieved the reduction in the final sampling
fraction, for all populations considered, compared to the ACS® design. The
comparison in the reduction of the final sampling fraction between the proposed
design ACS®®" and the stratified ACS are similar especially for smaller initial
sample sizes n < 50. However, the proposed design reduced the final sample
size more when clusters are less compact and higher initial sample size used.
All populations considered had values of the absolute bias that was less than
25% (figure 3.13). The relative bias however increases with increase in the initial

sample size.

3.3.5 Simulations using real data

The proposed design was applied to three real data sets which were the
distribution and counts of hartebeest, elephants and oryx across Amboseli-West
Kilimanjaro/Magadi-Natron cross border landscape. The landscape covers parts

of Kenya and Tanzania between 1° 37" S and 3° 13’ S and between 35° 49" E



3. Design-based estimation 66

ACSC*S(
50 60 80 100 120 150 50 60 80 100 120 150
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s = 0.00025 s = 0.00025 s = 0.00025 s = 0.00025
n =20 n =30 n =50 n =100

— - 03

A4 I WO:O;

(2]
©
g
o s = 0.0005 s = 0.0005 s =0.0005 s = 0.0005
g n=20 n =30 n =50 n =100
o 03 - -
14
0.2 -
0.1 L
0.0 - f L
-0.1 + h‘~/\/' / -
-0.2 -
T T T T T T T T T T T T T T T T T T T T T T T T
50 60 80 100 120 150 50 60 80 100 120 150

Average number of units in each network

Fig. 3.13: Results of the relative bias for different initial sample sizes (across
columns) for more and less compact clusters (first and second rows
respectively). The different number of units in each network are
represented on the x-axis.

and 38° 00’ E covering an area of 25,623 km?. The data was obtained from an
aerial survey that was conducted in October (dry season) 2013. Details on how
the survey was conducted can be found in Kenana et al. (2013b). Figure 3.14
presents the distribution of two of the populations studied.

A grid was laid on maps that were produced from the survey as shown in
the figure and an effort was made to determine the counts in each unit. The
region had N = 2,304 units such that there were 48 rows and 48 columns. A
range of initial sample sizes (n € {30, 50, 100, 120, 150}) were used and for each
population 10,000 sampling simulations were done.

Figure 3.15 presents results of the relative efficiency for the three data sets
with different initial sample sizes. From the figure, the proposed design results
in gain in efficiency across the populations when the initial sample size is
small. Increasing the initial sample size decreases the gain in efficiency under
the proposed design. From the populations and the designs considered, the

ACS® results in higher gain in efficiency if the initial sample size is increased.
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Fig. 3.15: Results of the relative efficiency

These results are in agreement with results of the artificial populations that
were presented in sub-section (3.3.4).

Results on the expected final sampling fraction are shown on figure 3.16. The
figure shows that the proposed design has helped in limiting the expected final
sampling fraction relative to the ACS¢ design across the three real populations
considered. In comparison to the stratified ACS in which networks are truncated
at stratum boundaries, the reduction in the expected final sampling fraction
depends on the presence of networks that cross over stratum boundaries. When
the hartebeest data is partitioned into three strata, the largest network crosses
over two strata hence the stratification with three strata resulted in the lowest
expected final sampling fraction. This was not observed in the elephant and
oryx data.

Since ACS~*" is biased (Gattone et al., 2016a), table 3.11 presents results of
its relative bias for the three real data sets. The table shows that the absolute
bias decreases as the sample size increases for elephant and oryx data. The

opposite was observed with hartebeest data.
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Fig. 3.16: Results of the expected final sampling fraction.

n | Hartebeest Elephant  Oryx
30 -0.039 -0.142  -0.113
50 0.009 -0.110 -0.073

100 0.092 -0.022  -0.031
120 0.116 0.015 -0.020
150 0.151 0.051 -0.015

Tab. 3.11: Results of the relative bias under AC'S“™*" design

3.3.6 Discussion

A good sampling design is one that has lower mean squared error and lower
sampling cost among other factors. The current chapter aimed at achieving
these two factors. The proposed design with its proposed estimators helped in
improving the gains in efficiency as well as reducing the final sampling fraction.
The rate of improvement depends on the combination of the degree of rarity
and the cluster compactness which are general factors that determines efficiency

under the ACS design.
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Any variation of ACS to be considered to limit the sampling effort requires
the specification of some particular value. This specification requires prior
knowledge of the population characteristics (Gattone and Di Battista, 2011;
Gattone et al., 2016a). The proposed design achieved this limitation of the
sampling effort while increasing gains in efficiency without the need for prior
knowledge of the population characteristics.

As opposed to design-based sampling in general, the size of the initial sample
had a negative effect on the gain in efficiency under the proposed design. In that,
the efficiency decreases as the initial sample size increases; this could partly be
contributed by the relative bias. Although the absolute relative bias under both
simulated and real data was below 25%, this bias increases with increase in the
initial sample size under the artificial populations considered. With the real
data, this same scenario was observed with hartbeest data. The elephant and
oryx data had their biases decrease as the initial sample size increases.

Obtaining the bias analytically may not be direct since the truncated
network formed depends on the initial unit sampled (Gattone et al., 2016a).
This and the order of the bias however, deserves further investigation as it
may help in understanding the effect of the increase in the initial sample size
together with the population characteristics on the efficiency of the proposed

estimator.



4. Model-based estimation for rare and clustered
population with application to prediction of

population total of African elephants

4.1 Introduction

Rapley and Welsh (2008) modeled data collected through ACS, with an
initial sample selected by SRSWOR, in which networks are sampled without
replacement. Following their work, the current chapter models data collected
through stratified strip ACS design (that was described in section 3.1). The
sample selection mechanism is that of clusters selected without replacement
since it results in much lower sampling costs compared to sampling without
replacement of networks (Dryver and Thompson, 2007). The model is modified
by including auxiliary variable with an aim of improving the bias and the MSE.

In ACS studies that make use of auxiliary variable, Chao (2004b) set the
condition to adaptively add neighboring units to depend on the auxiliary
variable. In this study, one critical assumption is that the auxiliary variable
(that is known for all units in the population) has a high correlation with the
study variable at the network level. That is where the auxiliary variable is
more concentrated, the study variable is also more concentrated such that
C={y;:y; >c}t~=C*={x; : 2; > d}. Such an approximation assumption
has also been used by Salehi et al. (2015).

In this chapter, the interest is to predict the population total of African
elephants. Notations are described in section (4.2). Definition of the informative
and the non-informative sampling and its importance to the present chapter is
given in section (4.3). The proposed modified model is given in section (4.4).
Fitting of the model using the Bayesian approach is given in section (4.5).
Model-based and design-based simulations are given in sections (4.6) and (4.7)

respectively. Further comments are finally given in section (4.8).
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4.2 Notations

Let there be ¢ = 1,..., H strata. The data sampled in each stratum is
modeled separately and inference performed in each stratum. The predicted
population total is obtained by summing the predicted totals in each stratum.
For simplification of notations, the model presented below is for one stratum
and the same applies to the remaining strata.

Let the number of PSU be L such that each PSU has M SSU. The total
number of SSU in the study region is N = LM. It is assumed that all PSU
have the same number of SSU i.e all strips are of equal length. Denote the
number of units that meet the condition of interest (the number of non-empty
units in this case) by N,, the number of non-empty networks by K and the
number of units in each non-empty network by M), such that IV, = Zszl M.
Since an empty unit is a network of size one (Thompson, 2012, p. 319), there
are N — N, + K = A networks in the study region. Let the sum of the values
of the study and the auxiliary variables in each network be denoted by Y; and
X, respectively. Then Y = Zle Y, and X = Zszl X, are the total values for
the study and the auxiliary variables in the study region. The objective is to
predict the population total of the variable of interest in the study region. This

objective can be represented as

Y=yt Y ik

kes k¢s

4.3 Sample selection probability

A sampling mechanism is said to be non-informative about the parameter

O if (Valliant et al., 2000, p. 39; Chambers and Clark, 2012, p. 10)

p(s|Y; X;0) = p(s]X;0)
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otherwise, it is informative i.e a sampling mechanism is non-informative about
the finite population parameter © if the rule for selecting units in the sample
depends on the auxiliary variable. When the rule for selecting units in the
sample depends on the variable of interest, then the sampling mechanism is
said to be informative.

The ACS design is informative since units to be include in the sample depend
on the observed variable of interest (Gabler, 2007) i.e (Thompson and Seber,

1996, p. 52)
p(s]Y;0) # p(s)

Under informative sampling, to make inference on the population parameters
using the sampled data, the joint distribution of the model used to generate
the population data and the sample selection process is used. This is followed
by integrating (in the case of continuous outcomes) or summing (for discrete
outcomes) over units that are not in the sample (Chambers et al., 2012, p. 27;
Valliant et al., 2000, p. 39; Pfeffermann et al. (1998)).

With the above in mind and suppose that s = si,...,s, is the ordered

sample, then the conditional probability of selecting the ordered sample is

n Ms-
p(s|Ny, K, M) = H N—ny+r 11‘71
1 2=t %~ 2ok—o(Zs Tt €s))

where M are the number of SSU in a selected strip, z is the size of the j-th

(4.1)

network and e represents the number of edge units. The denominator represents
the sum of the sizes of all networks in the population minus the sum of the sizes
of the networks and the edge units (or the sizes of clusters) that are sampled
up to the previous step of sampling. Note that a unit that does not meet the

condition of interest is a network of size one (Thompson, 2012, p. 319).



4. Model-based estimation 74

4.4 The model

The population model under the ACS design that makes use of the auxiliary

information is presented below. The model takes the form

Ny|a ~ Truncated binomial(N, ), N, =1,...,N (4.2a)
K|N,, 6 ~ Truncated binomial(n,,0), K =1,...,n, (4.2b)

1

My|Ny, K ~ 1,, + Multinomial(n, — &, —1g),
K
K
My=1,....,ny — K, > My =n, (4.2¢)
k=1

Y5| Xk, K, My, A ~ independent truncated Poisson(\) (4.2d)

where A = my exp(Bo + f1Xk), with my, & = 1,...,k an offset. The
distributions given in equations (4.2a) - (4.2c) are the same as those from the
model provided by Rapley and Welsh (2008). The distribution in equation
(4.2d) is the modified version of the model of Rapley and Welsh (2008).

Let n be the size of the sample and s the ordered sample si,...,s;,.
Writing the variables in form of the sampled and the unsampled components,
we have Ny, = (Nyo, Ny1), K = (Ko, K1), M = (Mo, Mi1), Yo = (Yro, Yi1)
and X, = (Xko,Xk1) in which the sampled components are represented by
subscript 0 and the unsampled components represented by subscript 1.
Further denote the observed data variables as Dy = {Nyo, Ko, Mro, Yo, Xko}
while the unobserved as Dy = {Ny1, K1, Mg1, Y1, Xi1} so that D = {Dy, D1 }.
The vector of parameters is denoted by © = {«,0,A}. The likelihood for the

data which is the joint density of s and D conditional © is

f(s,D|©) = p(s|Ny, K, My,) f(D|O) (4.3)

which is given by



4. Model-based estimation 75

P(s, Ny, K, My, X}, Yi|a,0,\) =

N Otny(l 70[)N7ny
s tcany () (=0
Y ny 1—(1—a)N

() (ol ()

K

H (yk Aik—e):clo(A)A)))

The joint distribution of the observed variables Dy is obtained by summing
equation (4.3) or equation (4.4) over the non-sampled variables D;.

The above model is solved using the Bayesian approach in a manner that is
almost similar to (Rapley and Welsh, 2008). Prior information is incorporated
in the model and samples are drawn from the posterior distribution to obtain

population estimates. The joint posterior distribution is

P(O‘a&)“saNvaaMkanva) :p(S|Ny7K7Mk)X
I Ay T(an)T(b1)

) (P ) (R o -om) |

(ot () )]
13 (G —ewrm) p(»]

where A = my, exp(Bo + S12k), p(A) is a prior distribution on the parameter 3 =

(4.5)

{Bo, f1} and aq,as, by, bs are shape parameters of their respective distribution.

4.5 Fitting of the model

Gibbs sampler was used to obtain samples from the posterior distribution

given in equation (4.5) with the following steps.
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1. Use information from the auxiliary variable to set the initial values of

Ny1, K1, My and Yy
2. Draw « from the marginal distribution [a|N,]
3. Draw 6 from the marginal distribution [§|N,, K]
4. Draw 3 from the marginal distribution [3|K, My, Xk, Y]
5. Update A using A = my, exp(Bo + B1Xk)

6. Draw (Ny1, K1, M1, Yy1) from the marginal distribution

[Ny1, K1, M1, Y1 | Nyo, Ko, Mo, Xo, Yieos X1, o, 6, Al

7. Repeat steps 2 to 6 R number of iterations.

Drawing «

The marginal distribution of [a|N,] is given by the second term on the right
hand side of equation (4.5). We follow Rapley and Welsh (2008) by sampling
using Metropolis-Hastings in which the acceptance ratio is

f(a*|Nyo, Ny1)g(a|a)
f(a|Nyo, Ny1)g(a*|a)

ratio, = (4.6)

where

a*nyo+ny1+a171(1 _ a*)anyofnthblfl
1—(1—aN

f(a*|Ny07Ny1) =

is the distribution to be sampled from and

g(a”|a) ~ beta(nyg +ny1 +a1 — 1, N — nyo — ny1 + b1 — 1)

is the proposed distribution in which a* and « represent the proposed and the

previous value of a respectively.



4. Model-based estimation 77

Drawing 6

The marginal distribution of [§|N,, K] is given by the third term on the
right hand side of equation (4.5). We also follow Rapley and Welsh (2008) by

drawing samples using Metropolis-Hastings in which the acceptance ratio is

f(07|Nyo, Ny1, Ko, K1)q(607)

ratiog = 4T
‘ f(9|Ny0aNylaK07K1)Q(9*‘9) ( )
where
. 9*n0+n1+a271(1 _ 0*)"y0+ny17“07”1+b271
f(0 |]Vy()7 Nyl, KO, Kl) = 1— (1 _ 9*>ny0+’ny1
and

q(0%|0) ~ beta(ko + k1 + a2 — 1, nyo +ny1 — ko — K1 + by — 1)

with 8* and 0 being the proposed and the previous value of # respectively.

Drawing 3

The marginal distribution of [3| K, M}, Xk, yx| can be obtained from the last
term of equation (4.5). Since log-linear model has no conjugate prior (Hoff, 2009,
p. 173), a bivariate normal prior is assigned to the parameter 3. Metropolis is
used to draw samples with a bivariate normal as the proposed distribution. The

acceptance ratio is

f(I@*|K:0) ’{T7mk07m]tlvxk7yk07y21)
f(Blko, k1, mro, mit1, Xk, Yros Yr1)

ratiog = (4.8)

where
f(ﬂ*‘ﬁ;()a Hiamk())m;;l; Xkayk()a yZl) =

Ko+rK] Yk exp(—)\) 2 )
,CI;[I (yk!(l — eXp(—/\))> x H dnorm(ﬁj,07o2)‘

Jj=1
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Drawing Ny, K1, M1, Yia

The probability for the unsampled units at each step of sampling is

n

1
p(31|Ny7K7 Mk) H N n Ny1+Ko+kK i—1 (49)
=1 Z y0 TNyl 0 1 27 o O(sz _|_ esk)

The joint marginal distribution of the unsampled variables Ny, K;, My and

Ykl is

[Ny17 Kla Mk17 Yk‘1|Ny07 KO7 Mk(]7 Xk‘07 Yk?()vXkla CE,G, )\] =

N ny(l _a)N—ny
p(81|Ny7K7 Mk) X n (]MV) X p(a)x
Yy

( 9~ 1 I”;;-“) % p(8) x ((ny _ H)!kljl mk1ﬁ : (i)mk—1> )
ﬁ <ykAikiip<A)A>>) xP()

k=1

(4.10)

where p(«), p(), and p(X) are prior distributions as shown in equation (4.5).
An attempt was done to draw samples of Nyi, K1, My, and Y} separately.
This could not however guarantee the relation lelzl mp1 = Ny in all samples
drawn. Hence, Ny, K1, My and Yj; were drawn jointly as in Rapley and
Welsh (2008).

Splitting equation (4.10) in terms of the observed and the unobserved

variables, we have
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[Ny1, K1, Mi1, Yi1|Nyo, Ko, Mio, Xo, Yios X1, o, 6, Al
=p(s1|Ny, K, My)x
N! a0 (1 — )N 7o (1 — )"t
(nyo + ny1)! (N = nyo — ngr)! 1—(1—a)N
(nyo + ny1)! G091 (1 — @)wo—ro (1 — )rvr=r1
(ko + k1)l (nyo + ny1 — ko — K1)l 1—(1—@)rwotrn

rot+r1

Ko+kK1 1 1 poq tmp—1
X ((ny0+ny1—/€0—l€1)! H < )

mr — 1 \ K K
oy Mk 0t £1

Ko+r1 AV exp(_)\)
8 H <yk!(1 — exp(A))) x p(A) X p(a) x p(6)

k=1
(4.11)
On further simplification, equation (4.11) becomes
[Ny1, K1, My1, Y1 |Nyo, Ko, Mio, Xros Yio, Xk1, @, 0, Al
anyl (1 _ a)—nyl 9}@1 (1 _ e)nyl—nl
—p(s1|N,, K, M) x x
p( 1| Y k) (N — Nyo — nyl)' (KJO + nl)ll — (1 — 0)"y0+ny1 (412)
Kotk

1 1 1 kep me—lo Yk —
" H ( ) " H AYk exp(—A) .

bis my — 1 \ Ko + K1 bis ye!(1 — exp(—=A))

Metropolis-Hastings is used to draw sample from equation (4.12). The high
correlation at the network level between the study and the auxiliary variable
comes into play when constructing the proposed distribution. Figure 4.1 shows
distribution of artificial data of the study and the auxiliary variable under
different parameter settings. The correlation at the network level between the
study and the auxiliary variable was set to 0.6 < p < 0.9. The condition to
add neighboring units on the auxiliary variable was C* = {x; : x; > 2}. This
ensured that C = {y; : y; > 0} =~ C* = {x; : &; > 2} is satisfied. As the figure
portrays, with such high correlation, it becomes easier to use the auxiliary
information with the given critical value to determine the number of
non-empty units Ny, the number of non-empty networks K and the number of
units within each non-empty network Mj,.

With this information, NV, is generated by sampling from a discrete uniform

distribution centered on the previous value of Ny with support Ny; & 2 and
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a=0.075,0 =0.075 o =0.075,06 =0.125

Fig. 4.1: Population distribution of study (gray #) and auxiliary variables (black -)
with some values of @ and 6 that were used. « controls the number of non
empty units and 6 controls the number of groups of animals.
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Ny lies between the initial value of Ny, and the initial value of Ny; plus some
allowance, in this study, 5. i.e NJ}j < Ny < Nj; +5.

Given Ny, K, is also generated according to a discrete uniform distribution
centered on the previous value of Ky with support K1+ 2 and 1 < K; < Kll
where K11 is the initial value of K;. With N, and K; values obtained, My,

and Yj1 were generated as follows

1
M1 |Ny1, K1 ~ 1,, + Multinomial(ny — £1, —1g1)
. e

Yi1|Xk1, K1, Mg1, A ~ independent truncated Poisson(\) (4.13)

where A = my1 exp(Bo + B1Xk1). The proposed distribution is then

[Ny1, K1, Mi1, Yial,,,.op, =
o 1\ Zkes ™l zwk (<A
el (1) =

bis mr1 — 1)! = bis ye!(1 —exp(=X))
(4.14)
where C' is a constant. The acceptance ratio becomes
D) q(D
ratio = LP1D)a(D1) (4.15)

where

f(DT|D) . I:N;17 Kik7 M]:lvyk*l‘NyOaKOv Mk‘OvXkOa Yk:07Xk17a7 67 )\]
KT’ Ml:l’ Yk:*l]

Q(DT) [Ngl’ prop

defines the distribution to be sampled from divide by the proposed distribution
based on the current values of the random variables Ny, K1, My and Y. Upon

simplification, this gives
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= log (C) + IOg(p(Sl |Ny; K7 Mk))

1
+1lo
g ((N — nyo — 1) (ko + w7 (g — ﬁl)!>

ot dog (—2— ) 4 0g [ T §)(mi =)
lel g 1_ o g 1_ (1 _ 9)"90+”;1

*
Ky

(4.16)

Ko *

K
- E (my — Dlog(ko + k1) + E (my — 1)log——
kes ké¢s fo + Ky

where (N;‘l, K{, M}, YY) are the proposed values of the random variables.
On the other hand, the proposed distribution divide by the distribution to be
sampled from based on the previous values of the random variables Ny, K1, My

and Y)1 becomes

q(D1) [Ny1, K1, M, Yia]

prop

f(D1|D)  [Ny1, K1, Mi1, Y1 |Nyo, Ko, Mio, Xros Yo, Xi1, @, 0, Ay

which is

q(Dy)
f(D1|D)

1
=log (C) +log——mMM
8 (0) +log e N R )

+log (N = nyo — ny1)! (ko + K1) (17 — K1)!) (4.17)
+ny1lo 71 —« +lo L= (1 g)motmn
y1108 o & gr1 (1 — 0)(”1117’/"1)

* i(m’“ — Dlog(ko + 1) + i(mk —1)log (RO - m>

K
kes ks !

4.6 Simulation set-up and results

A range of artificial populations were simulated according to model (4.2)
with parameters «, 6 € {0.075,0.100,0.125} and 8 = (1, 0.03). This allowed for

the evaluation of the estimates under different population structure, from few
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to numerous clusters. Recall that a controls the number of non-empty units in
the study region and 6 controls the number of groups of animals. The auxiliary
variable was generated such that the correlation at the network level between
the study and the auxiliary variable was 6 < p < 9.

The study region was partitioned into 80 x 80 = N = 6400 units. The
number of strata considered was H = 4 such that each strata had L = 40 PSU
each with M = 40 SSU. The number of SSU in each strata was N, = 1600
units. An initial sample consisted of size n = 12 PSU (strips). Samples were
allocated to different strata by optimal allocation under box-constraint (Gabler
et al., 2012; Miinnich et al., 2012).

500 populations were simulated in each parameter setting and units drawn
according stratified strip ACS. R = 100,000 samples were drawn from the
posterior distribution, discarded the first 1,001 samples as ”burn in” and
thinned the chain by picking every 90—th sample. Convergence of the Markov
Chain Monte-Carlo (MCMC) was monitored using R package CODA.
Autocorrelation and trace plots for one of the samples in one of the strata are
presented in the appendix in figures B.4 and B.2 respectively. The model was

evaluated using the bias and the MSE obtained as

B(Y)

= 500
500 ¢
TR (Y; —Y5)°
MSE(Y) = —
) Z 500
7j=1
where }A’] is the predicted population total while Y; is the true population total.
Figure 4.2 shows a density plot of the predicted population total from the
posterior samples of one chain. Also shown in the figure is the true population
total and the 95% Highest Posterior Density (HPD) interval.
Box plots for the bias and the MSE are given in figure 4.3. From the figure,

the predicted bias increases with increase in the number of cluster (which is

controlled by the parameter #). The figure further shows that the bias decreases
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Fig. 4.2: Posterior density plot for the predicted population total for one population
in one of the strata. The solid line represents the true population value
while the dotted lines represent the 95% HPD interval.
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Fig. 4.3: Bias (first row) and MSE (second row) for different values of o and 6. «
controls the number of non-empty units and 6 controls the number of

groups of animals.
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as the number of non-empty units in the region increases (controlled by the
parameter «). In other words, the bias is low if the population has few clusters
(0 = 0.075) and each cluster has relatively large network size (v = 0.0125) and
vice-versa. Finally, the MSE increases with increase in both « and € i.e the

MSE increases as the number of clusters as well as cluster sizes increase.

a & 6 0 Bo Bo B B
0.075 0.079 0.075 0.080 1.000 0.999 0.300 0.303
0.075 0.079 0.100 0.099 1.000 1.010 0.300 0.288
0.075 0.078 0.125 0.120 1.000 1.019 0.300 0.276
0.100 0.103 0.075 0.075 1.000 0.985 0.300 0.323
0.100 0.102 0.100 0.096 1.000 1.000 0.300 0.302
0.100 0.102 0.125 0.118 1.000 1.011 0.300 0.286
0.125 0.128 0.075 0.072 1.000 0.978 0.300 0.338
0.125 0.127 0.100 0.094 1.000 0.994 0.300 0.311
0.125 0.126 0.125 0.116 1.000 1.005 0.300 0.295

Tab. 4.1: True versus estimated parameters for the artificial populations. « controls
the number of non-empty units, 6 controls the number of groups of animals
while Sy and $ is the intercept and the slope used to generate counts.

Table 4.1 presents results of the true and estimated parameters for the
simulated data. As the table shows, all parameters were estimated with values

close to their true values with an absolute bias not more than 4%.

4.7 Design-based simulation

The proposed model was evaluated by performing a design-based
simulation using elephant data. The study variable was the distribution and
counts of elephants across Amboseli-West Kilimanjaro/Magadi-Natron cross
border landscape. The landscape covers parts of Kenya and Tanzania between
1° 37" S and 3° 13’ S and between 35° 49" E and 38° 00’ E covering an area of
25,623 km?2. The data was obtained from an aerial survey that was conducted
in October (dry season) 2013. Data of the auxiliary variable was the

distribution and counts of elephants obtained from a similar survey covering
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the same area conducted in April (wet season) 2013. Details on how the two
surveys were conducted are found in Kenana et al. (2013b) and Kenana et al.
(2013a).

Maps produced from the two surveys on the distribution of the study and the
auxiliary variable are given in figure 4.4. A grid was laid on the maps as shown
in the figure and effort was made to determine the counts in each quadrant.

The region was divided into four strata as shown in the figure. 500 samples
each of size n = 12 were drawn from the data. Like in the model-based
simulation, samples were allocated to strata by optimal allocation according to
box-constraint. In each strata, the minimum and maximum sample size was
set to 2 and 24 (24 is the total number of strips in each strata) respectively.
Two parallel chains were ran with initial values given in table 4.2. For each
chain R = 100,000 draws were made from the posterior distributions,
discarded the first 1,001 draws and picked every 90-th draw. Diagnostics to
determine the convergence of the MCMC under the proposed model is

provided in appendix B.

Proposed Model RaW Model

Parameters | chain 1 chain 2 | chain 1 chain 2
o} 0.05 0.08 0.08 0.05
0 0.04 0.02 0.15 0.10
Bo 0.05 0.50 0.05 0.08
B1 0.02 0.30 0.04 0.03

Tab. 4.2: Initial values set for parameters in each model. RaW represents the model
due to Rapley and Welsh (2008) under stratified strip setting. « controls
the number of non-empty units, 6 controls the number of groups of animals
while 8y and f; is the intercept and the slope used to generate counts

Table 4.3 presents the correlation between the study variable (Elephant
distribution and counts obtained from October 2013 survey) and the auxiliary
variable (Elephant distribution and counts obtained from April 2013 survey)
for each strata. Also presented in the table is the total difference of the within

network variance relative to the stratum variance. Since all the differences are
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Fig. 4.4: Top panel: Distribution of the study variable (elephants) obtained from an
aerial survey that was conducted in October (dry season) 2013. Bottom
panel: Distribution of the auxiliary variable (elephants) obtained from an
aerial survey conducted in April (wet season) 2013. The first stratum is on
the top left, second stratum is on the top right, third and fourth strata on
bottom left and right respectively. Maps obtained from Kenana et al.
(2013b) and Kenana et al. (2013a) respectively.
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positive, the data is suitable for the ACS design.

Strata position | Correlation Difference
Strata 1 0.282 0.127
Strata 2 0.656 0.001
Strata 3 -0.006 0.002
Strata 4 -0.037 0.217

Tab. 4.3: Correlation at network level for different strata. Difference is the total
difference of the within network variance and the stratum variance of the
study variable.

A comparison was made between the proposed model and the model due to
Rapley and Welsh (2008) modified to the stratified strip design and maintaining
the order of the sampled units; herein denoted as RaW model. The comparison
was based on the bias and the MSE. Figure 4.5 presents the resulting box plots.
The high negative bias and the high MSE from the proposed model were greatly
attributed by the fourth strata whose correlation at the network level was -0.037
as seen in table 4.3. To clearly see this, box plots on the contribution of the
total bias and the total MSE by each stratum were constructed; these are shown
in figure 4.6. see more comments in the discussion.

A comparison was also made between the model-based and the
design-based estimates using the bias and the MSE. Estimates under the
design-based estimation were obtained following estimation procedure

presented in sub-section 3.1. These results are given in table 4.4

Type Bias MSE
Proposed Model -91.39  69,195.25
RaW Model 492.56 102,786.05
Design-based estimates 0.00 255,302.80

Tab. 4.4: Results of the comparison between model-based and design-based
estimates using the bias and the MSE.

From the table, the design-based estimator though unbiased, had the

highest MSE compared to the two model-based estimators. As already seen,
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the proposed model performed better in terms of lower MSE compared to the

RaW model.

4.8 Discussion

The current chapter extended the model due to Rapley and Welsh (2008)

by incorporating auxiliary information, making use of stratified strip ACS

(described in sub-section 3.1) and by sampling with clusters selected without

replacement. Results basing on the Bayesian approach using the artificial and

the real data showed that the proposed model has helped in efficiency gain of

the estimates. This however depends on a combination of the following factors:

1. The relationship between the within network variance and the population

variance in each stratum.

2. The correlation between the study and the auxiliary variable at the

network level



4. Model-based estimation

90

300 4 — I
250 4 ! 80000
i —
200 - 1 —o
: 60000 | __ —_
150 ! %
0 !
100 4 L— =% o 40000 !
50 - 4
! 20000 | 0
0- — ] = :
50 = o i
T T T T T T T T
5 P P 1 5 P s 1
o S o g o S o g
@ @ @ @ % @ @ @
5000 1 ° 1.2e+10 - °
4000 - 1.0e+10
3000 8.0e+09 -
2000 - ° 6.0e+09
1000 g 4.0e+09
04 === o —=&=— | 2.0e+09 o
o
-1000 T T T , 0.0e+00 T T T T
5 P g 1 5 P s !
o g © g o o o S
7 @ 7 @ % 7 7 @

Fig. 4.6: Box plots of the bias (first column) and MSE (second column) under the

RaW model (first row) and under the proposed model (second row) for each

stratum.
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3. The size of the initial sample relative to the final sample
Combining figure 4.6 and table 4.3, the following is noticed:

1. Under the ACS that does not make use of auxiliary information (RaW
model), efficiency gain (in each stratum) increases with increase in the
difference between the within network variance and the stratum variance.
This can be seen in the first row of figure 4.6 and third column of table

4.3.

2. When the auxiliary information is introduced to the model as in the
proposed model, efficiency gain depends further to the increase in
correlation level between the study and the auxiliary variable (second

row of figure 4.6 and second column of table 4.3).

In the simulations, the condition to adaptively add neighboring units was
set at C = {y; : y; > 0} = C* = {x; : z; > 2}. This means that the edge
units have observed y-values equals to 0 hence it does not make a difference by
modeling Yj in the networks only rather than in the cluster. If however, the
condition was set to, say, C' = {y; : y; > 1}, it is then necessary to model the
observed values in a cluster rather than in a network.

While Rapley and Welsh (2008) modeled the data collected by ACS design at
the network level, Gongalves and Moura (2016) instead modeled the data at the
unit level. They showed that modeling the data at the unit level provides gain
in efficiency as opposed to modeling at the network level. Extending the idea
of Gongalves and Moura (2016) by incorporating auxiliary information deserves
further exploration.

Another possibility involves the extension of the proposed model to the
problem of predicting population total of African elephants in all parks in
Kenya by achieving further gain in efficiency and ensuring lower sampling
costs.  This can be solved by employing small area estimation (SAE)
technique. The model, though, was applied to African elephants, can be

applied to other populations provided they meet the above requirements.



5. Comparison of methods

It has been shown in the previous chapters that the proposed strategies out
perform their non-adaptive counterparts. In this chapter, performance of the
above proposed strategies are compared through simulations using real
elephant data. The study and the auxiliary variable is the distribution and
counts of elephants surveyed in October (dry season) and April (wet season)
2013 respectively. The initial sample size is 192 units across the designs. The
methods are compared using Coefficient of Variation (CV), expected final
sample size and RB. We start by exploring the data taking note of conditions

that improve efficiency of the specified methods.

Stratified Strip ACS

The study region is partitioned into four strata with the standard deviation
for each stratum shown in table 5.1. The initial sample size translates to eight
strips. As the minimum sample size for each stratum is two, then each stratum

receives the same sample size as shown in the table.

strata sdq Ng
stratum 1 2.180 2.000
stratum 2 0.353 2.000
stratum 3 0.475 2.000
stratum 4 6.388  2.000

Tab. 5.1: Standard deviation and sample size allocated in each stratum

The application of optimal allocation according to box-constraint method
was similar to equal allocation since the overall sample size was small. Noting
that stratum standard deviations vary and with given sample sizes allocated to
each stratum, gains in efficiency are not expected to be high. In each stratum,
the variability within each network is higher than the stratum variability. Hence

the population is suitable for adaptive sampling.
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p cv.r
Unit level 0.559 -0.508
Network level 0.504 -0.471

Tab. 5.2: p is the correlation coefficient at the unit (first row) and network (second
row) level. cv.r is the right hand side of equation (3.25) (first row) and
(2.31) (second row)

ACS for negatively correlated data

Table 5.2 shows that the correlation coefficient at both the unit and the
network level is positive with moderate values. Further, the conditions on
equations (2.31) and (3.25) are both not fulfilled. For this population set, the
auxiliary variable will not improve gains in efficiency both under adaptive and
non-adaptive design i.e the product estimator under both adaptive and

non-adaptive is not suitable for this population set.

Results

Variability of the methods

Results of the CV are given in table 5.3. The table confirms the preliminary
findings above; both stratified strip ACS and ACS for negatively correlated data
are highly variable. For this particular population, the model-based estimation

was the least variable design. This is followed by the design with stopping rule.

StrtStrpD  Product.ht Product.hh  StopRule  StrtStrpM
0.792 0.515 0.778 0.428 0.251

Tab. 5.3: Results of the coefficient of variation under stratified strip ACS
(StrtStrpD), ACS for negatively correlated data with HT (Product.ht) and
with HH (Product.hh) estimator, ACS®*" (StopRule) and under
model-based estimation (StrtStrpM)

Bias of the methods

Results of the bias are given in table 5.4. From the table, the product HH

estimator and the estimator due to the stopping rule had much higher bias. As
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expected, the stratified strip ACS is unbiased.

StrtStrpD  Product.ht  Product.hh  StopRule StrtStrpM
0.000 0.038 0.098 0.090 -0.075

Tab. 5.4: Results of the relative bias under stratified strip ACS (StrtStrpD), ACS for
negatively correlated data with HT (Product.ht) and with HH
(Product.hh) estimator, ACS“*" (StopRule) and under model-based
estimation (StrtStrpM)

Expected final sample size

The cost of sampling under the studied methods is evaluated using the
expected final sample size. Figure 5.1 shows the distribution of the expected

final sample size across the proposed strategies.
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Fig. 5.1: Box plots showing distribution of the expected final sample size under the
design-based stratified strip ACS (StrtStrpD), the ACS for negatively
correlated data (Product), the ACS®®" (StopRule) and the model-based
stratified strip ACS (StrtStrpM).

The design that made use of the negative correlation did not employ any
techniques to reduce the final sample size. As explained under the specific sub-
sections, the use of stratification and truncating networks at stratum boundaries

helps in limiting the final sample size when there exists networks that cross over
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stratum boundaries. The use of the stopping rule is also a strategy to reduce the
final sample size. On the other hand, the use of without replacement of clusters
results in higher final sample size (but this depends on the population structure).
Hence the combination of the stopping rule and the without replacement of
cluster is a trade-off between lower MSE and higher final sample size compared

to the stopping rule of Gattone and Di Battista (2011).

Summary and conclusion

To summarize the chapter, a scatter plot of the estimated population total
against the final sample size for the proposed methods is given in figure 5.2.
The horizontal line is the true population total. The figure shows that the
StrtStrpM  (model-based stratified strip ACS labeled ”5”) that made use of
auxiliary information that is positively correlated with the variable of interest,
is the most preferable approach since its estimates of the population total are
closest to the true population value. It achieved this with a relatively lower
sampling cost as can be seen from its final sample size.

The figure further shows that the Product.ht and Product.hh (ACS for
negatively correlated data with both HT and HH estimators labeled 7”1”7 and
727 respectively) estimators is not desirable. Recall that this design achieves
gains in efficiency if the correlation between the study and the auxiliary
variable is highly negative at the network level. This was however, not
achieved from the preliminary investigation above.  Note the way the
distribution of their population estimates spread further away from the true
population value. Further their sampling cost is high due to the high values of
the final sample size. The product HH estimator is the least desirable in this
case.

Comparing the StrtStrpD (stratified strip ACS labeled ”4”) and the
StopRule (ACS“*" that employed a stopping rule and with clusters selected
without replacement labeled ”3”), first remember that these two designs do

not make use of auxiliary information but they use different mechanism to
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Fig. 5.2: Scatter plots for the distribution of the estimated population total against
the final sample size under the different proposed strategies. The labels 1
and 2 represent the ACS for negatively correlated data with HT
(Product.ht) and HH (Product.hh) estimators respectively. The labels 3,4
and 5 represent ACS“*" (StopRule), stratified strip ACS under design-based
(StrtStrpD) and model-based (StrtStrpM) respectively.

increase efficiency as well as reduce the sampling cost. The figure shows that
the former design, even though has lower cost in terms of the final sample size,
the spread of its estimated population total is higher compared to the latter.
The above analysis is similar for the estimates of the MSE of the estimated
population totals that is shown in figure 5.3.

Thus the choice of a specified design first depends on the characteristics of
the population under study in terms of the degree of rarity and clusteredness.
Further, if auxiliary variable is available, then the level of the correlation at
the network level and the direction too matters. Other factors that affect the
choice of a particular design include: if the aim is for the use of an unbiased
estimator(s), the level of variability of the estimator to be accommodated and
the amount of resources (such as budget, technical personnel, time and

equipments) available.
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Scatter plots for the distribution of the estimated MSE of the estimated
population total against the final sample size under the different proposed
strategies.The labels 1 and 2 represent the ACS for negatively correlated
data with HT (Product.ht) and HH (Product.hh) estimators respectively.
The labels 3,4 and 5 represent ACS®" (StopRule), stratified strip ACS
under design-based (StrtStrpD) and model-based (StrtStrpM) respectively.



6. Summary and outlook

This dissertation looked at both design-based and model-based estimation
for rare and clustered populations using the idea of the ACS design. The ACS
design (Thompson, 2012, p. 319) starts with an initial sample that is selected by
a probability sampling method. If any of the selected units meets a pre-specified
condition, its neighboring units are added to the sample and observed. If any
of the added units meets the pre-specified condition, its neighboring units are
further added to the sample and observed. The procedure continues until there
are no more units that meet the pre-specified condition. In this dissertation,
the pre-specified condition is the detection of at least one animal in a selected
unit.

In the design-based estimation, three estimators were proposed under three
specific design setting. The first design was stratified strip ACS design that is
suitable for aerial or ship surveys. This was a case study in estimating
population totals of African elephants. In this case, units/quadrant were
observed only once during an aerial survey. The Des Raj estimator (Raj, 1956)
was modified to obtain an unbiased estimate of the population total. The
design was evaluated using simulated data with different levels of rarity and
clusteredness. The design was also evaluated on real data of African elephants
that was obtained from an aerial census conducted in parts of Kenya and
Tanzania in October (dry season) 2013. In this study, the order in which the
samples were observed was maintained. Re-ordering the samples by making
use of the Murthy’s estimator (Murthy, 1957) can produce more efficient
estimates. Hence a possible extension of this study. The computation cost
resulting from the n! permutations in the Murthy’s estimator however, needs
to be put into consideration.

The second setting was when there exists an auxiliary variable that is
negatively correlated with the study variable. The Murthy’s estimator
(Murthy, 1964) was modified. Situations when the modified estimator is

preferable was given both in theory and simulations using simulated and two
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real data sets. The study variable for the real data sets was the distribution
and counts of oryx and wildbeest. This was obtained from an aerial census
that was conducted in parts of Kenya and Tanzania in October (dry season)
2013. Temperature was the auxiliary variable for two study wvariables.
Temperature data was obtained from R package raster. The modified
estimator provided more efficient estimates with lower bias compared to the
original Murthy’s estimator (Murthy, 1964). The modified estimator was also
more efficient compared to the modified HH and the modified HT estimators
of (Thompson, 2012, p. 319). In this study, one auxiliary variable is
considered. A fruitful area for future research would be to incorporate
multi-auxiliary information at the estimation phase of an ACS design. This
could, in principle, be done by using for instance a multivariate extension of
the product estimator (Singh, 1967) or by using the generalized regression
estimator (Sadrndal et al., 1992).

The third case under design-based estimation, studied the conjoint use of
the stopping rule (Gattone and Di Battista, 2011) and the use of the without
replacement of clusters (Dryver and Thompson, 2007). Each of these two
methods was proposed to reduce the sampling cost though the use of the
stopping rule results in biased estimates. Despite this bias, the new estimator
resulted in higher efficiency gain in comparison to the without replacement of
cluster design. It was also more efficient compared to the stratified design
which is known to reduce final sample size when networks are truncated at
stratum boundaries. The above evaluation was based on simulated and real
data. The real data was the distribution and counts of hartebeest, elephants
and oryx obtained in the same census as above. The bias attributed by the
stopping rule has not been evaluated analytically. This may not be direct since
the truncated network formed depends on the initial unit sampled (Gattone
et al., 2016a). This and the order of the bias however, deserves further
investigation as it may help in understanding the effect of the increase in the

initial sample size together with the population characteristics on the
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efficiency of the proposed estimator.

Chapter four modeled data that was obtained using the stratified strip ACS
(as described in sub-section (3.1)). This was an extension of the model of Rapley
and Welsh (2008) by modeling data that was obtained from a different design,
the introduction of an auxiliary variable and the use of the without replacement
of clusters mechanism. Ideally, model-based estimation does not depend on
the design or rather how the sample was obtained. This is however, not the
case if the design is informative; such as the ACS design. In this case, the
procedure that was used to obtain the sample was incorporated in the model.
Both model-based and design-based simulations were conducted using artificial
and real data. The study and the auxiliary variable for the real data was the
distribution and counts of elephants collected during an aerial census in parts
of Kenya and Tanzania in October (dry season) and April (wet season) 2013
respectively. Areas of possible future research include predicting the population
total of African elephants in all parks in Kenya. This can be achieved in an
economical and reliable way by using the theory of SAE.

Chapter five compared the different proposed strategies using the elephant
data. Again the study variable was the elephant data from October (dry season)
2013 and the auxiliary variable was the elephant data from April (wet season)
2013. The results show that the choice of particular strategy to use depends on
the characteristic of the population under study and the level and the direction
of the correlation between the study and the auxiliary variable (if present).

One general area of the ACS design that is still behind, is the
implementation of the design in the field especially on animal populations.
This is partly attributed by the challenges associated with the field
implementation, some of which were discussed in section 2.3. Green et al.
(2010) however, provides new insights in undertaking the ACS design during
an aerial survey such as how the aircraft should turn while surveying
neighboring units.

A key point throughout the dissertation is the reduction of cost during a
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survey which can be seen by the reduction in the number of units in the final
sample (through the use of stopping rule, use of stratification and truncating
networks at stratum boundaries) and ensuring that units are observed only once
(by using the without replacement of cluster sampling technique).

The cost of surveying an edge unit(s) is assumed to be low in which case
the efficiency of the ACS design relative to the non-adaptive design is achieved
(Thompson and Collins, 2002). This is however not the case in aerial surveys as
the aircraft flies at constant speed and height (Norton-Griffiths, 1978). Hence
the cost of surveying an edge unit is the same as the cost of surveying a unit that
meets the condition of interest. The without replacement of cluster technique
plays a greater role of reducing the cost of sampling in such surveys. Other key
points that motivated the sections in the dissertation include gains in efficiency
(in all sections) and practicability of the designs in the specific setting.

Even though the dissertation focused on animal populations, the methods
can as well be implemented in any population that is rare and clustered such as

in the study of forestry, plants, pollution, minerals and so on.



7. Zusammenfassung und Ausblick

In der vorliegenden Dissertation wurden sowohl design-, als auch
modellbasierte Schéatzverfahren fiir seltene wund gleichzeitig geclusterte
Populationen, unter Verwendung des ACS Designs, betrachtet. Das ACS
Design (Thompson, 2012, p. 319) beginnt mit einer, mittels Probability
Sampling, gezogenen Stichprobe. Falls eines der gezogenen Einheiten ein zuvor
spezifiziertes Kriterium erfiillt, werden dessen benachbarten Einheiten der
Stichprobe hinzugefiigt und beobachtet. Falls die neu hinzugefiigten Elemente
ebenfalls die zuvor festgelegte Bedingung erfiillen, werden deren angrenzenden
Einheiten ebenfalls zur Stichprobe hinzugefiigt. Dieses Vorgehen wird so lange
wiederholt, bis keines der ausgewahlten Elemente mehr dem Auswahlkriterium
entspricht. Im Rahmen der vorliegenden Dissertation ist das Auswahlkriterium
als das FErfassen von mindestens einem Tier, in der betrachteten Einheit,
definiert.

Im Kontext der designbasierten Schatzung wurden jeweils drei Schétzer
unter drei verschiedenen Designs untersucht. Das erste betrachtete Design ist
stratified strip ACS, welches fiir Schiffs- oder auch Lufterhebungen geeignet
ist.  Anwendung fand dieses Vorgehen beispielsweise im Rahmen einer
Fallstudie, welche den Totalwert afrikanischer Elefanten schétzte. In dieser
Studie wurde jede Unit bzw. jeder Quadrant nur ein einziges mal wahrend der
Lufterhebung beobachtet. Der Des Raj Schétzer Raj (1956) wurde modifiziert,
um unverzerrte Schétzer fiir den wahren Populationstotalwert zu erhalten. Die
Evaluation des Designs wurde anhand eines simulierten Datensatzes mit
unterschiedlichen Seltenheitsgraden und Clusterungsintensitaten durchgefiihrt.
Ferner wurde ein Datensatz mit realen Beobachtungen afrikanischer Elefanten
aus einem Luftzensus, welcher im Oktober (Trockenzeit) 2013 in Teilen Kenias
und Tansanias durchgefiihrt wurde, zur Bewertung herangezogen. In der
vorliegenden Studie wurde die Reihenfolge, in welcher die Stichproben
beobachtet wurden, nicht veréndert. Allerdings koénnen durch Neuordnung

und unter Verwendung des Murthy Schétzers (Murthy, 1957), effizientere
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Schétzwerte gewonnen werden - was eine denkbare Erweiterung dieser Arbeit
darstellt. Die zusétzliche Berechnungszeit, die durch die n! Permutation bei
der Verwendung des Murthy’s Schétzer entsteht, muss bei einer solchen
Uberlegung allerdings beriicksichtigt werden.

Im zweiten betrachteten Design wurde eine Hilfsvariable verwendet, welche
negativ mit der interessierenden Variable korreliert ist. Der Murthy Schatzer
(Murthy, 1964) wurde hierfiir modifiziert.  Situationen, in denen der
modifizierte Schéitzer zu bevorzugen ist wurden sowohl theoretisch, als auch
simulativ anhand synthetischer Daten und zwei realen Datenséitzen dargestellt.
Die Untersuchungsvariablen in den beiden realen Datensitzen waren jeweils
das ortliche Vorkommen und die Anzahl von Gnus und Oryx Antilopen. Auch
hier diente der Zensus aus Kenia und Tansania von 2013 als Datengrundlage.
In beiden Studien wurde die Temperatur als Hilfsvariable herangezogen. Die
Temperaturdaten wurden dem R Paket raster entnommen. Verglichen mit
dem Originalschitzer nach Murthy (Murthy, 1964) lieferte der modifizierte
Schétzer nicht nur effizientere Schétzwerte, sondern auch eine geringere
Verzerrung. Dariiber hinaus war der modifizierte Schitzer auch effizienter als
die modifizierten HH und HT Schétzer nach (Thompson, 2012, p. 319). Im
Rahmen dieser Arbeit wird lediglich eine Hilfsvariable betrachtet.  Ein
aussichtsreicher Bereich zukiinftiger Forschung wére es demnach, mehrere
Hilfsvariablen in der Schéatzphase eines ACS Designs zu beriicksichtigen. Dies
konnte grundsétzlich schon durch das Verwenden einer multivariaten
Erweiterung des Produkt Schéitzers (Singh, 1967) oder unter Zuhilfenahme des
verallgemeinerten Regressionsschétzers (Sdrndal et al., 1992) erreicht werden.

Der dritte, im designbasierten Kontext, betrachtete Fall untersuchte die
Verwendung eines Abbruchkriteriums (Gattone and Di Battista, 2011) in
Verbindung mit dem Nichtzurlicklegen gezogener Cluster (Dryver and
Thompson, 2007). Beide Methoden wurden jeweils entwickelt, um die
Erhebungskosten zu reduzieren - wenngleich die Verwendung des

Abbruchkriteriums zu verzerrten Ergebnissen fiithrt. Trotz dieser Verzerrung
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resultierte der neue Schétzer in einem groferen Effizienzzuwachs als das
alternative Design ohne Zurlicklegen. Gleichzeitig war er ebenfalls effizienter
als das stratifizierte Design, welches dafiir bekannt ist, die endgiiltige
Stichprobengréfle zu verringern, wenn Netzwerke an Stratumgrenzen
abgeschnitten werden. Die obige Evaluation basiert sowohl auf realen, wie
auch synthetischen Daten. Die realen Daten, sowie die Anzahl und das ortliche
Vorkommen von Elefanten und Oryx- und Kuhantilopen stammen aus dem
bereits erwahnten Zensus zur Bestimmung des Wildbestands in Kenia und
Tansania. Die Verzerrung, welche der Verwendung des Abbruchkriteriums
zuzuschreiben ist, wurde nicht analytisch quantifiziert. Dieses Vorgehen mag
nicht ganz korrekt sein, da das letztlich geformte, abgeschnittene Netzwerk
von der ersten gezogenen Einheit abhéngt (Gattone et al., 2016a). Weitere
Nachforschungen beziiglich der Groflenordnung der Verzerrungen sind daher
erforderlich. Ziel ist es den Effekt, welcher die Erhéhung der urspriinglichen
Stichprobengrofle in Verbindung mit den Populationscharakteristika auf die
Effizienz des vorgestellten Schétzers hat, besser nachvollziehen zu kénnen.

In Kapitel vier wurden Daten modelliert, welche anhand des stratified strip
ACS (Unterkapitel (3.1)) gewonnen wurden.  Dies stellt insofern eine
Erweiterung des Modells von Rapley and Welsh (2008) dar, als dass die Daten
anhand eines anderen als dem von den Autoren verwendeten Design modelliert
werden und zuséatzlich eine Hilfsvariable eingefiihrt wird. Im Idealfall hangt
die modellbasierte Schétzung nicht vom gewéhlten Design beziehungsweise der
Art wie die Stichprobe generiert wurde, ab. Dies trifft jedoch nicht zu, falls
das Design informativ ist - wie es beim ACS Design der Fall ist. Also wurde in
dieser Erweiterung die Vorgehensweise zur Stichprobengenerierung in das
Modell integriert. Sowohl modell- als auch designbasierte Simulationen wurden
mit realen und kiinstlichen Daten durchgefiihrt. Im Falle des
Wildbestandzens, wéare ein  potentiell denkbares Forschungsgebiet
beispielsweise die Schatzung eines Populationstotalwertes aller in kenianischen

Parks lebenden afrikanischen Elefanten. Dies kann iiber die Verwendung von
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SAE Methoden erreicht werden.

In Kapitel 5 wurden die verschiedenen vorgeschlagenen Strategien anhand
der Elefantendaten miteinander verglichen. Die Elefantendaten von Oktober
(Trockenzeit) 2013 waren erneut die Studienvariable, wéhrend die
Elefantendaten von April (Regenzeit) 2013 als Hilfsvariable fungierten. Die
Resultate zeigen, dass die Wahl einer spezifischen Strategie sowohl von den
Figenschaften der Studienpopulation, als auch von der Starke und der
Richtung der Korrelation zwischen der Studienvariable und der Hilfsvariable
abhéngt (falls vorhanden).

Ein Bereich des ACS Designs, in welchem immer noch Forschungsbedarf
besteht, ist die Anwendung im Feld, besonders in Hinblick auf
Tierpopulationen. Dieser Umstand kann nur zum Teil den Herausforderungen
im Bereich der Feldimplementierung zugeschrieben werden, wie sie zum Teil in
Kapitel 2.3 beschrieben wurden. Green et al. (2010) hingegen liefert neue
Erkenntnisse wie das ACS Design wéhrend einer Lufterhebung angewendet
werden kann - beispielsweise wie das Flugzeug sich drehen soll wahrend
benachbarte Einheiten erhoben werden.

Die Kostenreduktion im Rahmen einer Erhebung stellt einen Kernpunkt der
vorliegenden Dissertation dar. FEine solche ist an der verringerten Anzahl an
Elementen in der finalen Stichprobe zu erkennen. Dies wurde wiederum durch
die Verwendung eines Abbruchkriteriums, aber auch durch Stratifizierung und
der Begrenzung von Netzwerken an Stratumgrenzen erreicht. Ebenso lassen sich
die Kosten eines Surveys dadurch verringern, dass alle Einheiten nur ein einziges
Mal observiert werden (durch das Ziehen von Clustern ohne Zuriicklegen).

Die Kosten, eine Randeinheit zu erheben, werden als gering angenommen.
In diesem Fall ist das ACS Design effizienter als das nicht adaptive Design
(Thompson and Collins, 2002). Dieses Ergebnis trifft allerdings nicht fiir
Lufterhebungen zu. Da das Flugzeug mit einer konstanten Geschwindigkeit,
sowie Hohe fliegt, sind die Kosten eine Randeinheit zu erheben identisch mit

denen einer interessierenden Einheit (Norton-Griffiths, 1978). In solchen
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Erhebungen spielt das Ziehen von Clustern ohne Zuriickzulegen eine
wesentlich grofiere Rolle im Bereich der Kostenreduktion. Andere zentrale
Punkte, welche die Kapitel dieser Dissertation motivierten, sind
Effizienzzugewinne (in allen Kapiteln) und die Praktikabilitdt der Designs
unter den spezifischen Rahmenbedingungen.

Obwohl der Fokus der vorliegenden Arbeit auf dem Schétzen von
Tierpopulationen liegt, konnen die vorgestellten Methoden auch in allen
anderen Populationen umgesetzt werden, welche in kleiner Zahl und geclustert
vorkommen.  Als alternative Anwendungsfelder bieten sich demmach die
Forstwirtschaft, Pflanzen, Umweltverschmutzung, Mineralien und Ahnliches

al.
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A. Product Appendix

The proofs below are according Gattone et al. (2016b).

A.1 Derivation of Bias and MSE of product HH estimator

To obtain the bias, the variance and the MSE we write

fhh, — 1 N
eo = —2—2 = fipn, = pyleo +1)
Hy
“a= Mhhjii_’uz = finn, = pa(er +1)
then
O(finn, )v(finn, )
E(eo) = E(e1) =0, E(eoe1) = pnn,, :
Py K
v(finn,) v(finn,)

E(ef) 5 E(e]) = ——

12 (2

where v(finn,) and v(finn,) are the variances of the HH estimators given in

(2.10),
o = cov(finh,,)
hhay = = =
o(ftnn, )v(fnn, )
and
N
R N—-n 1
cov(finn,,) = Nn N —1 Z(wyk — py) (Wak — fia)-
k=1
The bias of fipnn is given by
B(fphn) = E(fiphn — piy)

= pyE[(1+eo)(1+er)—1]

= puyE(eo+e1 + eper)

v(ftnh, )v(finh, )
= HyPhhgy Y
y MUz
_ cov(finn,,) (A1)
[

while that of 7,5, becomes
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cov(Thh,,)

B(Tphn) = . (A.2)
Y
where
N
. N(N —n 1
cov(Thh,,) = ( - ) N1 Z(wyk — y) (Wak — fia)-
k=1

The MSE can be obtained by writing

MSE(/lphh) = E(ﬂ;ﬂhh_//fy)2

uiE(eg +e1 +eger)?

= /@E(eg + €2 + 2epeq + 2ele; + 2egel + ele?).

To the first order approximation, the MSE of fi,y, is

R

v([i 0 v ([ v ([
MSE(fiphn) = M§ < inn, ) + U(M};}“) + 2phh,, (inn, ) whhz))

Vé Py Py P

v([i v([i cov(fipn,
while the MSE of 7,4y, is
~ 2 U(fhhy) v('f_hhm) CO’U(%hhwy)
MSE(Tphh) ~ T, < Ty2 7’12/, +2 ToTa (A4)

A.2 Derivation of MSE(f,,) in terms of network

population values

Let wy1, wy2, . .., wyn be the population network means of the y-values with

N (wyif:“y)2
N-1

. 2 _ .
variance Swy = Zi:l and let wg1,Wwyo,...,w,Nn be the population

network means of the z-values with variance S2

Wy *

Furthermore, define the
covariance between these two network populations as Sy, = ﬁ Zi\;(wyl —
) (Wi — piz). The HH estimators fipp, and fipp, simply correspond to the
sample mean estimator applied to the transformed populations of y and =,

respectively (Thompson and Seber, 1996; Dryver and Chao, 2007). By noting
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that v(finn,) = J\][V_"SZW, v(finn,) = 2282 and v(fnn,,) = S52Sw,,, we can

rewrite A.3 as follows

¢

Nn By MRyl

N —n
o hE (CV2, 4 CVE 4 2pu,, OV, CVa, ) (A5)

R N-—-n Sz, S2? Sw,
MSE(fiphn) =~ 1 ( -+ +2y>

%

where CV,,, = ST;J, CV,, = % and py,, = Sfyigywz is the correlation at
network level between y and x. It follows that
. N—-n , 2 2
MSE (i) ~ =, (cvw +CV2 +2py. OV CVi ) (A.6)
n Y T Y Y T

A.3 Relative efficiency
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Fig. A.1: Relative efficiency when HT is used for an initial sample of size n = 15 for
the different parameters. Top plot is when py,,, is low but negative, middle
and bottom plots are for when pu,, is intermediate and highly negative
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Fig. A.3: Results of the relative efficiency between the product HT, the product HH
and the product SRSWOR for an initial sample of size n = 15 and a high
level of correlation coefficient.
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Fig. A.5: Relative bias when the initial sample of size n = 15, 65 and 100 (top,
middle and bottom plot respectively) for the different parameters and

different levels of correlation coefficient.



B. MCMC Diagnostics

The current appendix presents MCMC diagnostics for the artificial and the
real data. This is done by employing a combination of methods to determine if

the MCMC algorithms have converged and mixed well.

B.1 Gelman-Rubin convergence diagnostics

As already described in the chapter, two parallel chain were ran for the real
data. The Gelman-Rubin convergence diagnostics is such that, when j chains

are run with different starting values, the scale reduction factor is

\F \/ Total variance

Within variance

where the numerator is the total variance for the combined chain while the
denominator is the variance within each chain. If the MCMC chain has
converged, then \/E is approximately one. Figure B.1 shows the resulting

plots.

B.2 Autocorrelation of parameters

A plot of autocorrelation function is used to determine if the samples drawn
from the posterior distribution are independent. If the plot of autocorrelation
does not display any pattern, it implies that samples drawn maybe independent.
Figure B.4 shows Autocorrelation Function (ACF) plots for the artificial data
while figure B.5 shows ACF plots for the two parallel chains of the elephant data.
The two figures do not show any pattern implying that the samples drawn are

independent or simply there is absence of autocorrelation of parameters.

B.3 Trace Plots

Trace plots are the commonly used graphical techniques to monitor

convergence. Figure B.2 shows trace plots for the artificial data while figure
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Fig. B.1: Gelman-Rubin scale reduction factor plots.

B.3 shows trace plots for combined chains for the elephant data. The figures

shows that the algorithms may have converged and mixes well.

From the above, it can be concluded that samples drawn from the posterior

distributions maybe independent and that the chains may have converged and

mixed well; inferences can thus be drawn.
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Fig. B.2: Trace plots for the artificial data.
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Fig. B.5: Autocorrelation function for the elephant data.
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