Suche   SiteMap
Home
A bis Z
BIB-KAT
Andere Bibliothekskataloge
Digitale Medien
Dokumentlieferung
Fachspezifische Informationen
Suchhilfen und Datenbanken
 
Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

Dissertation zugänglich unter
URN: urn:nbn:de:hbz:385-5721
URL: http://ubt.opus.hbz-nrw.de/volltexte/2010/572/


A Homological Approach to the Splitting Theory of PLS-spaces

Ein homologischer Zugang zur Splitting-Theorie von PLS-Räumen

Sieg, Dennis

pdf-Format:
Dokument 1.pdf (513 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Homologische Algebra , Distribution , Funktionalanalysis
Freie Schlagwörter (Englisch): homological algebra, functional analysis
MSC - Klassifikation: 46F05 , 18G50
Institut: Mathematik
Fakultät: Fachbereich 4
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Hauptberichter: Frerick, Leonhard (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 15.04.2010
Erstellungsjahr: 2010
Publikationsdatum: 29.04.2010
Kurzfassung auf Englisch: The subject of this thesis is a homological approach to the splitting theory of PLS-spaces, i.e. to the question for which topologically exact short sequences 0->X->Y->Z->0 of PLS-spaces X,Y,Z the right-hand map admits a right inverse. We show that the category (PLS) of PLS-spaces and continuous linear maps is an additive category in which every morphism admits a kernel and a cokernel, i.e. it is pre-abelian. However, we also show that it is neither quasi-abelian nor semi-abelian. As a foundation for our homological constructions we show the more general result that every pre-abelian category admits a largest exact structure in the sense of Quillen. In the pre-abelian category (PLS) this exact structure consists precisely of the topologically exact short sequences of PLS-spaces. Using a construction of Ext-functors due to Yoneda, we show that one can define for each PLS-space A and every natural number k the k-th abelian-group valued covariant and contravariant Ext-functors acting on the category (PLS) of PLS-spaces, which induce for every topologically exact short sequence of PLS-spaces a long exact sequence of abelian groups and group morphisms. These functors are studied in detail and we establish a connection between the Ext-functors of PLS-spaces and the Ext-functors for LS-spaces. Through this connection we arrive at an analogue of a result for Fréchet spaces which connects the first derived functor of the projective limit with the first Ext-functor and also gives sufficient conditions for the vanishing of the higher Ext-functors. Finally, we show that Ext^k(E,F) = 0 for a k greater or equal than 1, whenever E is a closed subspace and F is a Hausdorff-quotient of the space of distributions, which generalizes a result of Wengenroth that is itself a generalization of results due to Domanski and Vogt.
Kurzfassung auf Deutsch: In der vorliegenden Arbeit wird ein homologischer Ansatz für die Splittingtheorie von PLS-Räumen vorgestellt, die sich mit der Frage beschäftigt, für welche topologisch exakten kurzen Sequenzen 0->X->Y->Z->0 von PLS-Räumen X,Y,Z die rechts stehende Abbildung eine stetige lineare Rechtsinverse besitzt. Wir zeigen, dass die Kategorie (PLS) der PLS-Räume und stetigen linearen Abbildungen prä-abelsch ist, also jeder Morphismus in (PLS) sowohl einen Kern als auch einen Kokern besitzt. Gleichzeitig zeigen wir, dass diese Kategorie weder quasi-abelsch noch semi-abelsch ist. Um eine Grundlage für homologische Konstruktionen in (PLS) zu schaffen, zeigen wir das allgemeinere Ergebnis, dass jede prä-abelsche Kategorie eine maximale Exaktheitsstruktur im Sinne von Quillen besitzt. In der prä-abelschen Kategorie (PLS) besteht diese maximale Exaktheitsstruktur gerade aus den topologisch exakten kurzen Sequenzen von PLS-Räumen. Indem wir eine Konstruktion der Ext-Funktoren benutzen, die auf Yoneda zurückgeht, zeigen wir, wie für jeden PLS-Raum A und jede natürliche Zahl k ein additiver kovarianter Ext-Funktor und ein kontravarianter Ext-Funktor auf der Kategorie (PLS) mit Werten in den abelschen Gruppen derart definiert werden kann, dass jede topologisch exakte kurze Sequenz von PLS-Räumen eine lange exakte Sequenz von abelschen Gruppen und Gruppenhomomorphismen induziert. Wir untersuchen diese Funktoren im Detail und stellen eine Verbindung zwischen den Ext-Funktoren für die Kategorie (PLS) und den Ext-Funktoren für die Kategorie der LS-Räume her. Diese Verbindung erlaubt uns für PLS-Räume die Entsprechung eines Ergebnisses für Fréchet-Räume zu zeigen, welches den ersten Ext-Funktor mit der ersten Rechtsableitung des Proj-Funktors verbindet und zusätzlich hinreichende Bedingungen für das Verschwinden der höheren Ext-Funktoren angibt. Zum Abschluss zeigen wir Ext^k(E,F) = 0 für k größer oder gleich 1, falls E ein abgeschlossener Unterraum und F ein Hausdorff-Quotient des Raumes der Distributionen sind. Dies verallgemeinert ein Ergebnis von Wengenroth, welches selbst auf Resultaten von Domanski und Vogt beruht.

Home | Suchen | Veröffentlichen | Hilfe | Viewer