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Chapter 1

Introduction

In this thesis, we study the convergence behavior of an efficient optimization method used for the

identification of parameters for underdetermined systems.

The research in this thesis is motivated by optimization problems arising from the estimation of

parameters in finance. In the following, we are especially concerned with the valuation of European

call options as well as neural networks used to forecasting stock market indices.

Assuming that an asset price satisfies the stochastic differential equation

dS = µ(S, t)Sdt+ σ(S, t)SdWt

with µ, σ : IR+ × [0, T̄ ] → IR are the drift and volatility term, respectively, andWt is a Brownian

motion, then the value of a European call optionC(K,T ) in dependence on the strike priceK and

the maturityT satisfies the parabolic differential equation

CT − 1
2σ(K,T )2K2CKK + (r(T )− d(T ))KCK + d(T )C = 0

subject to the initial condition

C(σ(·, ·);K, 0) = max(S −K, 0) ,

see Andersen and Brotherton–Ratcliffe [1] and Dupire [32]. The valuation of the European call

option according to this model requires information about the volatility parameterσ(K,T ) which

is not explicitly observable in the market. For small maturitiesT and strike pricesK that are

close to the current asset price, usually, the volatilityσ(K,T ) is computed implicitly from market

European call options. However, for the valuation of European call options with long maturities

or that are far out or in the money, this procedure does not work. In accordance with the

dependence of the European call price on the volatility parameterσ(K,T ), we will slightly change

the notation for this call value toC(σ(·, ·);K,T ). For the numerical solution of the problem, we

discretize the parabolic differential equation, i.e. the infinite dimensional functions are replaced by

finite dimensional approximations. In the following, letσ̄ and z(σ̄) be the finite dimensional

approximations of the volatility parameter and the call value, respectively. Then, we will estimate

the finite dimensional version of the unknown volatilityσ̄ by using market European call prices,
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2 1 Introduction

i.e. σ̄ will be adapted such that the model European call prices approximate the corresponding

counterparts in the market.

Moreover, we will examine an application of neural networks to forecasting stock market

indices. The nonlinear input–output map of a neural network can be described by a function

yl(w; t) = s wheret is the input,s is the output generated by the neural network andw is the

vector of weights and threshold values which are responsible for the adjustment of the neural

network to a particular problem. The identification of this parameter vectorw, which is also called

the training of the neural network, is carried out through a set of appropriate examples representing

the particular application.

Hence, both models can be described by a functiony(x, t) = s wheres represents the output

of the particular model which in each case depends nonlinearly onn unknown parameters

x = (x1 , . . . , xn)T ∈ IRn and the input datat. The unknown parameter vectorx will be

determined by using some given observations. If(ti , si), i = 1 , . . . , p , are the observed input–

output patterns and

ri(x) = y(x , ti)− si , i = 1 , . . . , p ,

is the discrepancy between the model evaluated at the parameter vectorx and the observations then

the identification of the parameters in each of these models can be posed as the nonlinear least–

squares problem

Minimize 1
2 ‖R(x)‖22

whereR : IRn → IRm is defined byR(x) = (r1(x), . . . , rp(x))T and‖ · ‖2 is the Euclidean norm.

In neural networks, the dimensionn depends on the number of neurons in each layer of the

network and on the number of layers. In general, this number tends to grow very quickly when

adding additional neurons, e.g. in the input layer. In the case that neural networks are used to

forecasting stock market indices, the amount of input data is very large since the behavior of stock

market indices is usually influenced by a variety of factors. Hence, many different time series can

be used to provide input data for the neural network such thatn becomes very large in this case. The

dimensionm of the range space ofR depends on the number of neurons in the output layer of the

neural network and the number of training patterns(ti , si), i = 1 , . . . , p . When sufficient data are

available, in particular in cases like time series, then this dimension also increases quickly, however,

not as fast asn gets large. Hence, in this case usuallyn � m such that the nonlinear least–squares

problem is underdetermined.

This relationship also holds for the nonlinear least–squares problem resulting from the

determination of the discretized volatility function̄σ in the European call price model. In this

thesis, we examine a model for the valuation of European call options where the volatility

parameterσ(K,T ) of the underlying asset is a real valued function defined on the rectangular

domain IR+ × [0 , T̄ ]. Hence, the dimensionn of the discrete version̄σ of the volatility

parameter depends on the discretization size of the grid approximatingIR+ × [0 , T̄ ] such that in

this problemn tends to grow very quickly, too. The dimensionm of the range space of the residual

function R depends on the number of market European call prices with the same underlying.

However, option prices are only quoted on an exchange for exercise prices at discrete intervals [107]
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and which are close to the current value of the underlying, i.e. at–the–market options. Furthermore,

on an exchange options are only traded for a small number of maturities. Therefore, the dimension

m usually is much smaller than the dimensionn of the parameter space, i.e.n� m.

In Chapter 2, we are concerned with the solution of underdetermined nonlinear least–squares

problems. For this class of problems, it is likely that their residual vectorR(x) at the solution is

fairly small. In this case, the Gauss–Newton method is a promising optimization method for the

solution of nonlinear least–squares problems [15], [25]. The Gauss–Newton method approximates

in each step the nonlinear residual vectorR(x) by an affine modelma(δx) = R(x) + J(x) δx such

that in each iteration the linear least–squares problem

Minimize 1
2 ‖J(x) δx+R(x)‖22 ,

or, equivalently, the linear system of equations

J(x)TJ(x) δx = −J(x)TR(x)

has to be solved whereJ(x) ∈ IRm×n is the Jacobian of the residual vectorR(x). As mentioned

above, we are concerned with problems where the dimension of the vectorx ∈ IRn is large.

Unfortunately,J(x) is not only large but also dense, so that it is impossible to store the matrix

J(x) or evenJ(x)TJ(x). Hence, we are not able to use direct methods for the solution of linear

systems in this case. However, in both models, we can evaluate the Jacobian applied to a vector

at a reasonable cost, i.e.J(x) δv or J(x)T δv is available, see for instance Sachs, Schulze [91] for

the evaluation of the Jacobian resulting form the neural network model. The structure of these

routines will be close to the ideas of automatic differentiation where the evaluation of the matrix–

vector productJ(x) δv respectiveJ(x)T δv is much cheaper than the computation ofJ(x) itself, see

for instance Griewank [46], Saarinen, Bramley and Cybenko [90]. Therefore, we are able to use an

iterative scheme to solve the linear least–squares subproblem in every iteration of the Gauss–Newton

method [7].

An overview of iterative methods for the solution of linear systems is given in [36] and for

the solution especially of linear least–squares problems can be found in [7] and the references cited

therein. The coefficient matrixJ(x)TJ(x) in the normal equation is symmetric. Thus, we will

use a method which exploits this structure like the conjugate gradient method, which is due to

Hestenes and Stiefel [56]. This method, that belongs to the Krylov subspace methods, computes

in each step an optimal approximation of the solution to the normal equation in the nested set of

Krylov subspaces. For the computation of these iterates, it is necessary to evaluate the matrix–

vector productsJ(x) δv andJ(x)T δv and to perform some additional3n + 2m multiplications.

The storage requirements are held constant over the process. Faber and Manteuffel showed that,

except for a few anomalies, there do not exist Krylov subspace methods for more general linear

systems that fulfil this optimality condition by keeping the work and storage requirements in each

of the iteration low and roughly constant at the same time [34], [35]. For example, in the GMRES

method, a Krylov subspace method for nonsymmetric linear systems, it is necessary to store an

orthogonal basis of the particular Krylov spaces which, in our case, can lead to storage problems

since the vectorx of the unknowns is very large. Moreover, the vectors in the basis can become
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nonorthogonal, especially whenJ(x) is ill–conditioned or many iterations are needed [64] which

may lead to inaccurate approximate solutions.

In this thesis, we will use the special version of the conjugate gradient method for the solution of

linear least–squares systems which is already presented in the original paper on conjugate gradients

by Hestenes and Stiefel [56]. In [80], this algorithm is denoted CGLS and in [36] it is called CGNR.

It is also possible to apply the version of the conjugate gradient method for general symmetric

positive definite systems to the normal equations which would result in an explicit formation of

the matrix–vector productJ(x)TJ(x) δv. However, the formation of the matrix–vector product

J(x)TJ(x) δv can lead to poor performance especially when the condition numberκ(J(x)) of J(x)
is large [8], i.e. when the system is ill–conditioned, since a small perturbation inJ(x)TJ(x), e.g.

by roundoff, may change the solution much more than perturbations of similar size inJ(x) itself

[7]. Furthermore, Björck shows in [7, Section 1.4] that in the case of a small residual at the solution

of the linear least–squares problem the condition number for the linear least–squares problem will

be smaller than the one for the normal equations, i.e. methods for the linear least–squares problem

usually will be more reliable than normal equations methods [18].

Moreover, note that the version of the conjugate gradient method for the solution of the linear

least–squares problem is equivalent to the LSQR method due to Paige and Saunders [80], a stable

method [8] based on the bidiagonalization procedure of Golub and Kahan [42].

An additional difficulty with the underdetermined linear least–squares problem is the fact that

its solution cannot be expected to be unique. However, if the initial approximation of the solution in

the conjugate gradient method is chosen properly, then the conjugate gradient method computes the

unique solution to the linear least–squares problem with minimal norm [54], [55], i.e. in this case

the iterates of the conjugate gradient method converge toδx∗ = −J(x)+R(x) with J(x)+ is the

Moore–Penrose inverse or pseudoinverse ofJ(x). This is the solution of the Gauss–Newton

subproblems which is desirable in the problems resulting from the formulation of the training

process in neural networks and the determination of the volatility functionσ̄ in the European call

price model.

In neural networks, the decision about sending a signal from one neuron to another depends on

the evaluation of a sigmoidal function [109], e.g. the logistic functionσ(r) = 1/(1 + e−2r) which

we will use in the model described in Chapter 4 of this thesis. For large arguments, i.e.|r| is large,

this function is almost constant. Hence, the residual function for the training of the neural network, a

composition of this activation function, does not change much if large weights are present such that

those are inefficient for the training of the neural network. Thus, in neural networks the solution to

the linear least–squares problem with minimal norm is desirable, since a small norm of the variable

means that each of the components of the variable, i.e. the weights in this case, are small, too.

In the European call price model, the volatility functionσ(K,T ) is supposed to be a sufficiently

smooth function. This smooth behavior of the volatility function is modelled in the discrete problem

formulation by restricting the size of the stepδσ̄ of the discrete version of the volatility function̄σ

according to a weighted norm, i.e.‖δσ̄‖D̄ =
√
〈δσ̄, D̄ δσ̄〉 with 〈·, ·〉 is the Euclidean inner product.

The weight matrixD̄ will be a slight modification of the discrete version of the differentiation

operator (note that we cannot use the exact discrete version of the differentiation operatorD because
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D has a nontrivial null space). Therefore, we want to generate a sequence of conjugate gradient

iterates which converge to a minimalD̄–norm solution. Since the matrix̄D is symmetric positive

definite, the square root̄D1/2 exists and

‖δσ̄‖2D̄ = 〈δσ̄, D̄ δσ̄〉 = 〈D̄1/2δσ̄, D̄1/2δσ̄〉 = ‖D̄1/2δσ̄‖22 .

Hence, a transformation of the variablesδy = D̄1/2δσ̄ leads to the Gauss–Newton subproblems

Minimize 1
2 ‖(J(σ̄) D̄−1/2) δy +R(σ̄)‖22 .

These transformed problems have the same structure than those when a preconditioner is introduced

into the conjugate gradient method. Thus, in the Gauss–Newton algorithm for the solution of the

nonlinear least–squares problem resulting from the determination of the discrete volatility function

σ̄ we will solve the linear least–squares subproblems with the preconditioned version of the

conjugate gradient method. The weight matrix̄D1/2 will take the role of the preconditioner.

However, note, that̄D1/2 is not a preconditioner in the original sense which is introduced to

accelerate the convergence of the algorithm but is established because of the given facts of the

underlying problem. Furthermore,̄D1/2 will be constant for the complete iteration process such that

a factorization ofD̄1/2 has to be computed only once at the beginning of the algorithm.

As we will see in the convergence analysis of the algorithm, the sequence of iterates generated

by the pure Gauss–Newton method will converge to a solution only when the initial iterate of the

algorithm is already a sufficiently “good” approximation of the solution. A larger convergence

region can be achieved by introducing a globalization technique such as a line search technique or a

trust–region strategy.

For the solution of the training problem in neural networks, a line search technique is used

in the Backpropagation algorithm; the traditional method for the training of neural networks that

uses steepest descent information. This means that the convergence of this method to a stationary

point, starting at an arbitrary starting point, is showed by introducing a certain step lengthλ [71],

[47] which, in the neural network context, is called the learning rate. Using a line search technique

in the Gauss–Newton method has the disadvantage that in case of a rank deficient Jacobian these

techniques always must include some estimation strategy for the rank of the Jacobian to compute a

reliable Gauss–Newton direction.

Hence, in this thesis we use a trust region strategy to implement a globalization strategy since

this strategy enforces a regularization of the Gauss–Newton subproblems when the Gauss–Newton

direction has bad descent properties. Thus, in every iteration of the Gauss–Newton method we solve

the restricted linear least–squares problems

Minimize 1
2 ‖J(x) δx+R(x)‖22 , s.t. ‖δx‖D̄ ≤ ∆ ,

see for instance Heinkenschloß [52]. Using the trust region strategy has the advantage that it can

be combined with the conjugate gradient solver [105], [98], i.e. the conjugate gradient method can

be used for the solution of the trust–region subproblems in each iteration of the Gauss–Newton

method. The resulting algorithm is closely related to the Levenberg–Marquardt method [69], [72].
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The global solution of the Gauss–Newton–Trust–Region subproblems is also the solution of the

Levenberg–Marquardt subproblems for a specialλ. The difficulty in the Levenberg–Marquardt

method consists just in the choice of this parameterλ. Moré presented in [75] an implementation of

the Levenberg–Marquardt method in a trust–region framework. The advantage of the trust–region

method in comparison with the Levenberg–Marquardt method is the self adapting procedure for the

size of the trust–region and, thus, for the size of the steps.

The requirements on the presented method are determined by the characteristics of the two

model problems; however, the results in the following two chapters in this thesis will be in a fairly

general setting to make the method applicable to a wide class of large scale underdetermined non-

linear least–squares problems. An important aspect for the efficient implementation of the proposed

algorithm in the case of large scale problems is the performance of the matrix–vector products

J(x)δv andJ(x)T δv. Later on, we will show how to make the training of neural networks and the

determination of the volatility function amenable to large scale optimization methods by exploiting

the particular problem structure inherited from each of the models and by providing subroutines for

an efficient evaluation ofJ(x)δv andJ(x)T δv.

As mentioned above, the global convergence of the presented algorithm follows from the

introduction of the trust–region strategy. The global convergence theory of the latter to a stationary

point is well established, see for example [82], [83], [84], [102], [76], [18]. A significant aspect in

the proof of the global convergence of trust–region methods is a sufficient model decrease in each

step of the algorithm. Steihaug shows in [98] that the iterates generated by the modified conjugate

gradient method satisfy this sufficient model decrease condition. At the beginning of Chapter 3,

we will outline the main ideas of the proof of the global convergence of the algorithm presented in

Chapter 2.

Usually, nonlinear least–squares problems are examined for overdetermined problems, i.e.

problems where the dimension of the range space of the residual vectorR is larger than the

dimension of the parameter vectorx. Thus, there are many papers on the convergence behavior

of Gauss–Newton methods applied to this class of problems; see for instance Deuflhard and Heindl

[30], Deuflhard and Apostolescu [29], Dennis and Schnabel [25], Schaback [93], and for the

inexact Gauss–Newton method, Dennis and Steihaug [26]. However, the area of underdetermined

least–squares problems has been studied less actively. Boggs shows in [11] the local convergence

of the Ben–Israel iteration combined with a step size control to a solution in the general case, i.e.

for overdetermined as well as for underdetermined problems. Furthermore, Bock [10] proves the

r–linear convergence of the exact Gauss–Newton method using the minimal norm solution of the

linear least–squares problems.

In Chapter 3, we analyze the local convergence properties of the inexact Gauss–Newton method

for a more general class of residual vectorsR. Since in general the JacobianJ(x) has a nontrivial

null space, the convergence rate of the iterates has to be considered in the orthogonal subspace of

the null space ofJ(x). When in each Gauss–Newton iteration an arbitrary solution of the Gauss–

Newton subproblem is chosen for the correction of the Gauss–Newton iterate, then we show that

this sequence converges q–linearly to a solution on the orthogonal complement of the null space

of J(x). This result holds also when the solution is computed inexactly. If the residual function



7

R is zero at the solution, then this sequence converges even q–quadratically to a solution on the

above mentioned subspace. Thus, these results also hold for the sequence generated by the above

described inexact Gauss–Newton method that computes a truncated minimal norm solution to the

linear Gauss–Newton subproblems in each iteration. Furthermore, we show that in the special case

of a overdetermined residual functionR with a full rank Jacobian these results reduce to the known

results in the literature. Finally, for a particular sequence of Gauss–Newton iterates which is

generated with a specific solution of the Gauss–Newton subproblems the q–linear convergence of the

iterates to a local solution of the nonlinear least–squares problem can be shown without restriction to

a specific subspace. However, this sequence can only chosen theoretically since information about

a minimizer of the nonlinear least–squares problem are necessary to construct this Gauss–Newton

sequence.

In the following chapters, we apply the proposed inexact Gauss–Newton method to two

underdetermined nonlinear least–squares problems arising in finance.

In the first application, we are concerned with neural networks applied in forecasting economic

data such as stock or stock index values. The question about the future development of the stock

market is equally interesting for experts as well as theorists. Because of the special economical

importance of the knowledge of the future market development, it is not surprising that a variety of

theories with corresponding analysis instruments were developed [87].

The stock market is characterized by its highly complex structure whose co–operation of the

variables is neither theoretically uniquely explainable nor empirically exactly describable [5].

Moreover, there exists a large variety of variables in the stock market which are not all obvious

and which change over time. Furthermore, there is evidence that also the interactions of these

variables change and that they are nonlinear [81]. Since neural networks are qualified to

simultaneously model a variety of influencing factors and their nonlinear interactions, they offer

a promising mathematical instrument in forecasting. The advantage of the application of neural

networks in forecasting is that the underlying function form which generates the data does not need

to be known in advance. The neural network rather tries to find this function during the learning

process [65].

However, we will see that complete freedom in the choice of the model is also not given if

neural networks are used. An important part in the determination of a first idea of the model plays

the choice of the data since the data set should be sufficiently large and representative concerning the

task of stock or index price forecasting so that the structure of the formation of prices can be marked.

Thus, the experts opinion regarding the explanation of the formation of prices and the valuation

approach for the calculation of prices will play an important role in the choice of the data. The two

main existing model classes in this context are the fundamental analysis and the technical analysis

[16]. The advantage of neural networks is that they can be assigned either to the technical or the

fundamental approach by feeding exclusively either technical oriented or fundamental oriented input

data into the neural network or they combine these two approaches by simultaneously analyzing

both variables which are assigned to the technical analysis and variables which are assigned to the

fundamental analysis in solely one computation.
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As mentioned above, the training process of the neural network, i.e. the determination of the

unknown weights and bias in the neural network, can be described by an underdetermined nonlinear

least–squares problem such that the proposed inexact Gauss–Newton method seems to be a

promising algorithms for its solution. If the training process is carried out until the error of the

outputs of the neural network and the target outputs in the training patterns is minimized, then the

neural network strives to perfectly map the presented data. However, the extracted structure can not

be used for a generalization since time series not only contain deterministic behavior but also a

certain portion of noise that should not be modelled by the network. To avoid this overfitting

behavior, we stop the inexact Gauss–Newton method by using the Stopped–Training method, a

method that determines the time during the learning process when the ability of generalization of

the network decreases.

A comparison of the training results of the proposed inexact Gauss–Newton method and the

backpropagation algorithm will show the efficiency of the former method. We will see that using the

inexact Gauss–Newton method for the solution of the nonlinear least–squares problem decreases the

computation time of the training process extremely. Moreover, the inexact Gauss–Newton method

enables the treatment of very large neural networks, even with half a million variables. This opens a

new area of application for neural networks. In addition, we give numerical results to illustrate the

relevance of the local convergence theorems. In particular, one can see that the projection of iterates

is needed to analyze the rate of convergence properly.

Furthermore, we examine the quality of the forecasts generated by the neural network. This will

be done by comparing the output computed by the network with the target output and by computing

the rate of right trends and the trading profit of a given trading strategy for the neural network.

We obtain some very promising results for applying neural networks to forecasting stock and index

values. However, these results also elucidate the time–consuming process of finding an optimal

network.

One disadvantage mentioned in connection with neural networks is that the knowledge found

during the training process is difficult to extract since it is distributed among the different weights

and biases of the neural network. We will show that it is possible to determine the sensitivities of

the optimal output of the neural network with regard to small variations of the various components

of the input vector. At the end of this chapter, we will compute these sensitivities for different neural

networks.

Finally, in the last chapter of this thesis, we are concerned with the valuation of European call

options. A well known model in this context is the Black–Scholes model [9] which assumes that the

underlying asset follows an one–factor diffusion process with constant drift and volatility parameters

and that the known risk–free interest rate and the dividend yield are constant, too. Using arbitrage–

free pricing techniques, it follows that in this case the European call price function is described by a

parabolic initial–value problem with constant coefficients. Moreover, since the parabolic differential

equation can be transformed to the one–dimensional heat–equation, there exists also an explicit

representation of the value of the European call option in the Black–Scholes model, the so–called

Black–Scholes formula. The only not directly in the market observable parameter in this formula

is the volatility which can be either estimated empirically from historical data or numerically by
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inverting the Black–Scholes formula to compute the volatility implied by an option price observed

in the market. Despite the widespread use of the Black–Scholes model in financial practice, it is

generally realized that the assumptions of the model are not all conforming to reality. The existence

of term structures in interest rates and dividends, for instance, indicates that these two parameters

are at least functions dependent on time. Furthermore, Rubinstein [88] empirically showed that the

Black–Scholes formula became increasingly unreliable over time and that the implied volatility of

market European call options varies for options with different strike prices. Moreover, Dupire [32]

exhibited a variation of the volatility also with respect to the maturity. The existence of this so–

called volatility smile or volatility skew indicates that the price process of the underlying asset does

not correspond to an one–factor diffusion process with constant drift and volatility parameter [1].

In financial practice, these deficiencies are overcome by managing tables of values for the

interest rate, the dividend yield and the volatility parameter belonging to different option

maturities and strike prices. Unfortunately, this approach works only for European call options

with short maturities and strike prices that are close to the current value of the underlying.

However, financial institutions also have an interest in volatility values that belong to options with

long maturities or strike prices that are not close to the current asset value since they might deal with

individual inquiries or because they might want to hedge older positions in their portfolio that were

held speculative so far. Moreover, this approach does not work for pricing of more complicated

options such as exotic options or options with early exercise features [1].

There exists a variety of approaches trying to be consistent with the volatility smile. Some of

these approaches, see for instance Merton [74], Hull and White [59], include an additional source

of risk which destroys the completeness of the model. However, Derman and Kani [27], Dupire

[32] and Rubinstein [88] have independently shown that an one–factor diffusion model for the asset

value in which the drift and the volatility term are deterministic functions dependent on the asset

value and the time is sufficiently rich to be consistent to most reasonable volatility smiles [67]. The

advantage of this model is that it maintains the completeness. Moreover, Dupire [32] has shown that

this volatility function can be extracted from market European call options when they are available

for all conceivable strike prices and maturities.

Since this one–factor diffusion model maintains completeness, arbitrage–free pricing

techniques can be used to show that the European call price functionC(σ(·, ·);S, t) satisfies the

following deterministic parabolic initial–value problem with nonconstant coefficients and with one

of the coefficients consisting of the deterministic volatility function:

Ct + 1
2 σ

2(S, t)S2CSS + (r(t)− d(t))S CS = r(t)C , (S, t) ∈ IR+ × (0 , T ]

C(σ(·, ·);S, T ) = max(S −K, 0) , S ∈ IR+ .

In the following we will call this model the extended Black–Scholes model because of its similarity

to the original Black–Scholes model. Moreover, Dupire [32] and Andersen and Brotherton-Ratcliffe

[1] have derived an additional model for European call options also consisting of a deterministic

parabolic initial–value problem by using the Feynman–Kac Theorem and the Kolmogorov forward
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equation:

CT − 1
2 σ

2(K,T )K2CKK + (r(T )− d(T ))K CK = − d(T )C ,

(K,T ) ∈ IR+ × (0 , T̄ ]

C(σ(·, ·);K, 0) = max(S −K, 0) , K ∈ IR+ .

This model can be thought as being dual to the first one since the variables in this model are given by

the strike priceK and the maturityT and the price of the underlyingS and the current timet are hold

fixed. Thus, we will call this second European call price model the dual extended Black–Scholes

model. The coefficients in this second model are again nonconstant with one coefficient containing

the volatility functionσ(K,T ) depending on the strike priceK and the maturityT which will be

designated as the instantaneous volatility function.

The second model contains the volatility values that correspond to European call options with

strike priceK and maturityT , i.e. the volatility values that are necessary to evaluate European call

options that are not traded in the market. Moreover, this second model has the advantage that a single

evaluation of the model establishes the values of European call options for all conceivable strike

prices and maturities for a fixed price of the underlyingS and the current timet. Thus, in this thesis

we will use the second model to determine the instantaneous volatility functionσ(K,T ) necessary

for a valuation of European call prices that is consistent with the market prices. This means that we

will adapt the instantaneous volatility function in the dual extended Black–Scholes equation such

that the model European call option values approximate their counterpart in the market. Thus, the

mathematical formulation of the construction of the instantaneous volatility function represents an

inverse problem with a system equation given by the dual extended Black–Scholes equation. These

problems are naturally ill–posed.

The existence and uniqueness of a solution to the dual extended Black–Scholes equation is

ensured by results given by Friedman [37] when the coefficients of the parabolic differential equation

are sufficiently smooth (i.e. satisfy certain Hölder conditions). For the numerical solution of this

initial–value problem, we are using a finite difference scheme. Since the numerical computations

can only be carried out on a finite domain, we have to introduce boundary conditions such that the

given initial–value problem is transformed into an initial–boundary value problem. The existence of

a unique solution to this latter problem follows again from results given by Friedman [37].

The convergence of the solution of the finite difference scheme to the solution of the initial–

boundary–value problem is derived by using the concepts of consistency and stability of the finite

difference scheme. A main tool in proving the consistency of finite difference schemes is Taylor’s

expansion which requires a certain smoothness of the solution to the initial–boundary–value

problem. However, for the given problem, this cannot be ensured since the initial condition in

the initial–boundary–value problem is continuous but not differentiable everywhere. Ladyženskaja,

Solonnikov, and Ural’ceva have shown in [66, IV, Theorem 5.2] that the smoothness of the solution

to the parabolic initial–boundary–value problem depends on the smoothness of its initial condition.

However, since the initial condition is evaluated at discrete points in the finite difference scheme, it

is also possible that these discrete points present an approximation of a function possessing more
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smoothness features such as a certain order of differentiability. Hence, we will examine the

consistency of the finite difference scheme with respect to a slightly perturbed initial–boundary–

value problem that coincides with the original initial–boundary–value problem except for the initial

condition which is exchanged with a sufficiently smooth approximation of the original initial

condition. The maximum principle then ensures that the difference between the solution of these

two initial–boundary–value problems is bounded by the maximal difference between the original

initial condition and its approximation. The examination of the consistency of the slightly perturbed

initial–boundary–value problem corresponds to the well–known ideas of consistency examinations

for finite difference schemes applied to parabolic differential equations. The stability of the finite

difference scheme is ensured under certain assumptions on the discrete coefficients of the parabolic

differential equation and on the discretization sizes of the spatial and the time variable which also

correspond to the known stability conditions for finite difference schemes for parabolic differential

equations. Using these two results, we will show that the order of convergence of the solution of

the finite difference scheme to the solution of the corresponding parabolic initial–boundary–value

problem depends on the order of accuracy of a sufficiently smooth approximation of the nonsmooth

initial condition of the original initial–boundary value problem. Moreover, we elucidate that similar

problems occur also in the convergence analysis when finite element methods are applied to the

solution of the initial–boundary–value problem.

Using a finite difference scheme for numerically solving the parabolic initial–boundary–value

problem, the functional form of the volatility parameter in the inverse problem can be replaced

by a finite dimensional approximation̄σ containing the values of the volatility function at the grid

points of the finite difference mesh. Thus, the infinite dimensional inverse problem is replaced

by a finite dimensional nonlinear least–squares problem. Because of the statements given above,

this nonlinear least–squares problem is underdetermined such that the ill–posedness of the infinite

dimensional inverse problem is carried over to its finite dimensional counterpart. For the solution

of this problem, we again apply the inexact Gauss–Newton algorithm. A regularization of the ill–

posedness of the problem is achieved because of the use of a trust–region strategy in the inexact

Gauss–Newton algorithm. Using the Euclidean norm in the definition of the trust–region prevents

the updates of the Gauss–Newton iterates from becoming too large. In the context of constructing

the instantaneous volatility function, however, one wishes to determine the volatility function so that

the dual extended Black–Scholes model approximates the values of the market European call options

and which shows the most smooth behavior. Thus, in this case the trust–region is defined using a

scaled norm with the scaling matrix given by a modified version of the discretized differentiation

operator.

At the end of this chapter, we present some computational experience with the inexact Gauss–

Newton method applied to the nonlinear least–squares problem describing the construction of the

instantaneous volatility function. In the first example, we demonstrate the behavior of the algorithm

by constructing the instantaneous volatility function for several synthetic European call options.

In this example, we suppose that the instantaneous volatility function is known. Then, the market

European call data are simulated by evaluating a set of European call options using a finite difference

scheme applied to the parabolic differential equation containing the exact instantaneous volatility
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function. A comparison of the constructed with the exact instantaneous volatility function shows that

the instantaneous volatility function is accurately approximated in regions where market European

call option data are located. Finally, we examine a more realistic example by using values of market

European DAX call options to approximate the instantaneous volatility function of the German stock

index DAX.



Chapter 2

An Iterative Inexact Gauss–Newton
Method

In this chapter, we are concerned with the solution of the large dimensional unconstrained nonlinear

least–squares problem

Minimize φ(x) = 1
2 ‖R(x)‖22 , x ∈ IRn

whereR : IRn → IRm andn is very large. In Section 2.1, we briefly introduce this class of problems

and discuss their special structure. We are especially interested in underdetermined systems, where

the number of variables is larger than the dimension of the range space, i.e.n > m. In this case,

it is not surprising thatR(x) at the solution is fairly small. Therefore, we use a Gauss–Newton

method for the solution of the nonlinear least–squares problem, which is described in Section 2.2.

In Subsection 2.2.1, we introduce the basic ideas of the Gauss–Newton Method. In Chapter 3, we

will show that the pure Gauss–Newton method converges only locally. To enlarge the region of

convergence, we combine the Gauss–Newton method with a trust–region strategy. In Section 2.2.2,

we describe the basic ideas of trust–region methods. In every step of the Gauss–Newton method

combined with a trust–region strategy, a constrained linear least–squares problem

Minimize ϕ(δx) = 1
2 ‖J(x) δx+R(x)‖22 subject to ‖δx‖D̄ ≤ ∆

has to be solved whereJ(x) ∈ IRm×n is the Jacobian of the residual vectorR(x). The JacobianJ(x)
in the applications of Chapters 4 and 5 are not only large but also dense. Since subroutines for the

evaluation of the matrix–vector productsJ(x) δv andJ(x)T δu are available for both applications,

we use an iterative scheme for the solution of these constrained linear least–squares problems. In

Subsection 2.2.3, we describe the modified [98] (truncated [18]) conjugate gradient method for the

solution of the trust–region subproblems which was derived by Toint [105] and Steihaug [98]. At

the end, we list the complete algorithm which we use for the solution of the nonlinear least–squares

problems. This is a fully iterative algorithm which takes into account the dimension and the structure

of the problems examined in Chapters 4 and 5 as well as their ill–posedness.

13
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2.1 The Nonlinear Least–Squares Problem

Nonlinear least–squares problems are a special class of minimization problems where the objective

functionφ has the special form

φ(x) = 1
2‖R(x)‖22 = 1

2

m∑
i=1

Ri(x)2 (2.1.1)

with R : IRn → IRm is defined by

R(x) = (R1(x) , R2(x) , . . . , Rm(x))T . (2.1.2)

The component functionsRi, i = 1, . . . ,m, are nonlinear real valued functions fromIRn to IR,

and we assume thatRi(x), i = 1, . . . ,m, are sufficiently smooth. We refer to each of theRi,

i = 1, . . . ,m, as a residual and toR as the residual vector.

The nonlinear least–squares problem often arises in the context of data–fitting applications

where one tries to fit a set of observation data with a model approximating the examined system. In

these applications, usually, some a priori information is available to describe the examined system

by a parameterized model. The unknown parameters of the model are then chosen such that the

model matches as close as possible the output of the system at various observation points. Letouti

be the output of the system at the observation pointyi, i = 1, . . . ,m. Furthermore, suppose that the

parameterized model of this system is described by the real functionz(x, y) which is nonlinear in

the unknown parametersx = (x1, x2, . . . , xn) ∈ IRn and wherey corresponds to the input variables

of the system. If we define theith residualRi as the difference between theith outputouti of the

examined system and the output of the model evaluated at theith observation pointyi, i = 1, . . . ,m,

Ri(x) = outi − z(x, yi)

then fitting the model to the data means to find a parameter vectorx such that the residual vectorR is

minimized in an appropriate norm. Adapting the parameter vectorx such that the sum of the squares

of the residualsRi(x), i = 1, . . . ,m, is minimized, i.e. the Euclidean norm ofR is minimized, is

equivalent to solving a nonlinear least–squares problem. It is possible to use also a different norm

for the measurement of the size of the residual vectorR. However, the choice of the Euclidean norm

is verified by statistical arguments when the errors are independently normally distributed. In this

case, the minimization of the Euclidean norm of the residual vectorR is equivalent to minimizing

the variance [4], [95].

Generally, we could use any algorithm for unconstrained minimization problems for the

solution of the nonlinear least–squares problem

Minimize φ(x) , x ∈ IRn (2.1.3)

with φ(x) defined as in (2.1.1). However, as the gradient and the Hessian ofφ(x) possess a certain

structure these structural properties should be exploited and special algorithms adjusted to nonlinear

least–squares problems should be used for their solution, see e.g. [21], [22], [85], [40, Section 4.7],

[23], [25, Chapter 10], [24], [7, Chapter 9], [79, Chapter 10].
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We define the Jacobian of the residual vectorR(x) = (R1(x) , . . . , Rm(x))T ∈ IRm by

J(x) =
(
∂Ri(x)
∂xj

)
i=1,...,m
j=1,...,n

∈ IRm×n

and the Hessian of theith residual functionRi(x) , i = 1 , . . . ,m, by

Hi(x) = ∇2Ri(x) =
(
∂2Ri(x)
∂xj ∂xk

)
j,k=1,...,n

∈ IRn×n , i = 1 , . . . ,m.

Then, the gradient and the Hessian ofφ(x) can be written as:

∇φ(x) = J(x)TR(x) ,

∇2φ(x) = J(x)TJ(x) +
m∑

i=1

Ri(x)Hi(x) .
(2.1.4)

Algorithms for the solution of nonlinear unconstrained minimization problems are based upon

the approximation of the nonlinear objective function by a quadratic model function. In the case

of the nonlinear least–squares problem (2.1.3), this quadratic model of the objective functionφ(x)
around a pointx is defined by

mq(x+ − x) = φ(x) + 〈∇φ(x), x+ − x〉+ 1
2 〈x+ − x,B (x+ − x)〉

= 1
2 ‖R(x)‖22 + 〈J(x)TR(x), x+ − x〉+ 1

2 〈x+ − x,B (x+ − x)〉
(2.1.5)

whereB is either the Hessian∇2φ(x) or some approximation of it. Note that the quadratic model

will be a good approximation of the objective function only in a small neighborhood of the point

x. The minimizerx+ of the quadratic modelmq(x+ − x) serves as the new approximation of the

solutionx∗ to the nonlinear least–squares problem (2.1.3). In case of a positive definite matrixB,

the minimizerx+ of (2.1.5) is the solution to the linear system of equations

B (x+ − x) = −J(x)TR(x) . (2.1.6)

If Newton’s method is used, thenB = ∇2φ(x) and the new approximationx+ of the solution

x∗ to (2.1.3) is given by (if∇2φ(x) is positive definite)

x+ = x−B−1J(x)TR(x)

= x−

(
J(x)TJ(x) +

m∑
i=1

Ri(x)Hi(x)

)−1

J(x)TR(x)

This method exhibits a fast local q–quadratic rate of convergence if standard assumptions are

fulfilled. However, to achieve this fast asymptotic convergence behavior it is necessary to compute

the second derivativesHi(x) of the residual functionsRi(x), i = 1, . . . ,m. Unfortunately, often

they are either too expensive or even impossible to obtain. Nonlinear least–squares problems

possess the special feature that the first part of the Hessian∇2φ(x) can be computed for free when

the JacobianJ(x) of the residualR(x) is known. Moreover, the first part of∇2φ(x) is often more

important than the second term which might be very small for points close to the solutionx∗,

especially whenR(x) is almost linear or very small at the solutionx∗. This argument is

considered in the Gauss–Newton method which we present in the next section.
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2.2 The Inexact Gauss–Newton Method

2.2.1 The Gauss–Newton Method

So far, we have characterized the nonlinear least–squares problem as a special case of an

unconstrained minimization problem. However, they are also conceptually close to the solution

of a system of nonlinear equations (whenm = n the nonlinear least–squares problem includes the

solution of a system of nonlinear equations as a special case) [25], [7]. In this case, a natural

approach for the solution of the nonlinear least–squares problem would be the approximation of the

residual vectorR(x) by the affine model

ma(x+ − x) = R(x) + J(x) (x+ − x) . (2.2.1)

and taking the solutionx+ of ma(x+ − x) = 0 as a new approximation of the solution to the

nonlinear problem. In the special case ofm = n, this is also the model usually used in algorithms

for the solution of systems of nonlinear equations. Since in the general casem 6= n we cannot

guarantee the existence of a solutionx+ − x to ma(x+ − x) = 0, a logical way is to find the

pointx+− x which minimizes the Euclidean norm of the affine model, i.e. the solution to the linear

least–squares problem

Minimize ϕ(δx) = 1
2 ‖R(x) + J(x) δx‖22 , δx ∈ IRn , (2.2.2)

with δx = x+ − x, see for instance Dennis and Schnabel [25, Chapter 10]. The resulting iterative

process in which in every iteration the linear least–squares problem (2.2.2) is solved is called the

Gauss–Newton method.

Since

1
2 ‖R(x) + J(x) δx‖22 = 1

2 〈R(x), R(x)〉+ 〈J(x)TR(x), δx〉+ 1
2 〈δx, J(x)TJ(x) δx〉

and‖ · ‖22 is a convex and differentiable function it follows thatδx is a solution of the linear least–

squares problem (2.2.2) if and only ifδx is also a solution of the normal equations

J(x)TJ(x) δx = −J(x)TR(x) (2.2.3)

(see e.g. [18]).

In the previous section, we have shown that the Newton iterate is the solution of the following

linear system of equations:(
J(x)TJ(x) +

m∑
i=1

Ri(x) Hi(x)

)
(x+ − x) = −J(x)TR(x) .

Since the linear least–squares problem (2.2.2) is equivalent to solving the normal equations (2.2.3),

the difference between Newton’s method and the Gauss–Newton method is that in the latter method,

the second order terms in the Hessian ofφ(x) are omitted. We will see in the next chapter that the

success of the Gauss–Newton method will depend on the importance of the omitted term
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∑m
i=1Ri(x)Hi(x) in the Hessian∇2φ(x). If, for instance, the residual functionsRi(x) are small

near the solutionx∗ then the second order term in the Hessian ofφ(x) is small and the approximation

J(x)TJ(x) of the Hessian ofφ(x) in the Gauss–Newton method is close to the Hessian∇2φ(x)
itself [15], [25]. If the residual vectorR(x∗) at the solutionx∗ is zero, then the Gauss–Newton

method even achieves similar good asymptotic convergence results than Newton’s method.

The applications in Chapters 4 and 5 are characterized by the fact that the number of the residual

functionsRi, i = 1, . . . ,m, is smaller than the number of variablesxj , j = 1, . . . , n, i.e. the systems

are underdetermined. Thus, it is not surprising that the residual functions in these cases tend to be

fairly small at the solutionx∗ such that the Gauss–Newton method seems to be a reliable method for

the solution of these nonlinear least–squares problems [15].

Since in the general casem 6= n the solution to the normal equations (2.2.3) is non–unique,

it is to be expected that this leads to numerical instabilities. To account for the local validity of the

affine modelma(δx) and the characteristics of the problems in Chapters 4 and 5 the solution of the

normal equations is taken with minimal norm. This solution is given by

δx = x+ − x = −J(x)+R(x) (2.2.4)

whereJ(x)+ is the Moore–Penrose inverse (or pseudoinverse) of the JacobianJ(x) of the residual

vectorR(x). In the following, we will refer to this direction as the Gauss–Newton direction. If

m > n and the JacobianJ(x) has full column rank, then the Moore–Penrose inverse is given by

J(x)+ = (J(x)TJ(x))−1J(x)T

and hence, in this special case the Gauss–Newton direction is given by (see e.g. [25, Section 10.2])

x+ − x = −(J(x)TJ(x))−1J(x)TR(x) .

In the following Lemma 2.2.1, we show that the Gauss–Newton direction is a descent

direction, i.e.−∇φ(x)TJ(x)+R(x) < 0, as long asx is not a critical point. Note that a pointx∗ is

called acritical point if x∗ satisfies the first–order necessary optimality condition for a minimizer, i.e.

in case of the nonlinear least–squares problem (2.1.3) a critical pointx∗ satisfies

∇φ(x∗) = J(x∗)TR(x∗) = 0 .

Lemma 2.2.1 Letx be not a critical point, i.e.J(x)TR(x) 6= 0. Then, the Gauss–Newton direction

δx = −J(x)+R(x) is a descent direction, i.e.∇φ(x)T δx < 0 .

Proof: For the proof of Lemma 2.2.1, we have to verify that (see (2.1.4) for the special form of

∇φ(x))
(J(x)TR(x))T (−J(x)+R(x)) = −R(x)TJ(x) J(x)+R(x) < 0

SinceJ(x)+ is the Moore–Penrose inverse ofJ(x) the following identities hold:

J(x)+ = J(x)+J(x) J(x)+ and J(x) J(x)+ = (J(x) J(x)+)T .
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Hence,

−R(x)TJ(x) J(x)+R(x) = −R(x)TJ(x) J(x)+J(x) J(x)+R(x)

= −R(x)T (J(x) J(x)+)TJ(x) J(x)+R(x)

= −(J(x) J(x)+R(x))TJ(x) J(x)+R(x)

= −‖J(x) J(x)+R(x)‖22

≤ 0

The identity of the null spaces ofJ(x)T and J(x)+, i.e. N (J(x)T ) = N (J(x)+)), yields

−J(x)+R(x) 6= 0 . Furthermore, the Gauss–Newton directionδx = −J(x)+R(x) is orthogonal

to the null spaceN (J(x)) of the JacobianJ(x), i.e. J(x)+R(x) ⊥ N (J(x)) such that

J(x) J(x)+R(x) 6= 0 . Thus,

∇φ(x)T δx = −‖J(x) J(x)+R(x)‖22 < 0 .

�

2.2.2 Globalization of the Algorithm: Introduction of a Trust–Region Strategy

We will show in Section 3.2 that the Gauss–Newton method converges only locally. In addition,

it is possible that for ill–posed problems the Gauss–Newton direction is almost orthogonal to the

negative gradient such that it might be a bad descent direction. Furthermore, the performance

of the Gauss–Newton method is highly sensitive to the estimate of the rank of the Jacobian, see

e.g. Gill, Murray and Wright [40, Example 4.11]. This results from the fact that the Moore–

Penrose inverse varies discontinuously when the rank of the matrix changes, see Wedin [106], Björck

[7, Section 1.4.2]. One way to deal with these difficulties is the introduction of a trust–region

strategy which yields a globalization of the overall algorithm as well as a regularization of the

iteration. A globalization of the algorithm might also be achieved by using a line search method.

However, in case of a rank deficient Jacobian, line search methods always must include some

estimation strategy for the rank of the Jacobian to compute a reliable Gauss–Newton direction

[7, Section 9.2.1]. This is not necessary when using a trust–region strategy since this method

enforces a regularization of the subproblem when the Gauss–Newton direction has bad descent

providing a self adapting procedure to handle the situation mentioned above.

The trust–region strategy consists in the introduction of a bound∆ on the size of the variable

vector in the quadratic Gauss–Newton subproblem. This bound also guarantees that the quadratic

approximation of the nonlinear least–squares problem will be restricted to a certain neighborhood

of the current iterate. Hence, we have to solve the problem

Minimize ϕi(δx) = 1
2 ‖R(xi) + J(xi) δx‖22 subject to ‖δx‖D̄ ≤ ∆ (2.2.5)

in each step of the algorithm, where‖δx‖D̄ =
√
〈x, D̄ x〉 with D̄ ∈ IRn×n is a symmetric positive

definite matrix. In the case when̄D = I, with I ∈ IRn×n is the n–dimensional identity matrix, this
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is just thè 2 norm. However, if the iteratesδxk are badly scaled numerical instabilities can occur. In

this case, the problem might be stabilized by introducing a scaling matrixD̄ (see e.g. Conn, Gould

and Toint [18, Section 6.7]). It is also possible that the choice of the norm in (2.2.5) results from

the characteristics of the specific problem (see for instance the application in Chapter 5). If the

resulting trust–region subproblems are formulated in the original variables, then they have the form

as in (2.2.5).

In the following, we examine the general case whereD̄ ∈ IRn×n is an arbitrary symmetric

positive definite matrix. Then, the basic trust–region strategy applied to the Gauss–Newton method

has the following structure (see for instance Conn, Gould, and Toint [18, Section 6.1]):

Algorithm 2.2.1 (Trust–Region Method)

Let an initial approximation x0 , and an initial trust-region

radius ∆0 ≤ ∆̄ be given and set 0 < a1 ≤ a2 < 1 , and 0 < γ3 ≤ γ4 < 1 ≤ γ5 .

Compute φ(x0) and set i = 0 .

1.) Find an approximate solution δxi to

Minimize ϕi(δx) = 1
2 ‖R(xi) + J(xi) δx‖22 s.t. ‖δx‖D̄ ≤ ∆i

2.) Compute φ(xi + δxi) and

ρi =
φ(xi)− φ(xi + δxi)
ϕi(0)− ϕi(δxi)

.

3.) Set

xi+1 =

{
xi + δxi , if ρi ≥ a1,

xi , otherwise.

4.) Determine

∆i+1 ∈


[
∆i , min{γ5 ∆i, ∆̄}

]
, if ρi ≥ a2 ,

[γ4 ∆i , ∆i] , ρi ∈ [a1 , a2) ,

[γ3 ∆i , γ4 ∆i] , ρi < a1

5.) If φ(xi+1) ≤ ε or ‖∇φ(xi+1)‖ = ‖J(xi+1)TR(xi+1)‖ ≤ ε stop,

else set i := i+ 1 and go to step 1.

Note thatφ(x) = 1
2 ‖R(x)‖22 is the objective function of the original nonlinear least–squares

problem. In Step 1 of this algorithm, we compute an approximate minimizer to our quadratic model
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problem. The minimization is restricted to the neighborhood of the current iteratexi where we can

trust the quadratic model function, i.e. where the quadratic model function approximates the original

objective function sufficiently good. We call the domain

Ui = { x ∈ IRn | x = xi + δx , ‖δx‖D̄ ≤ ∆i } (2.2.6)

the trust region and the value∆i the trust–region radius. In the second step the quotientρi is

computed which gives information about the ratio of the decrease in the objective functionφ(x) to

the decrease in the modelϕi(δx). If this quotient is sufficiently close to 1, i.e. the reduction predicted

by the model coincides with the reduction in the objective function then the trial step computed in

Step 1 is accepted (see Step 3). On the other side, if the reduction in the model does not estimate

the reduction in the objective function well enough, the trial step from Step 1 of Algorithm 2.2.1 is

rejected and the trust–region radius∆i is reduced in Step 4 of the routine in hopes that the quadratic

model can be trusted more in the smaller region.

Although we only need to compute an approximate solution to problem (2.2.5) in Step 1

of Algorithm 2.2.1, we firstly examine the global solution of (2.2.5) which is characterized in

the following Theorem 2.2.2 (see for instance Moré [76, Theorem 3.11], Conn, Gould and Toint

[18, Section 7.4])

Theorem 2.2.2 The vectorδxi is a global minimizer to the trust–region subproblem(2.2.5) if and

only if ‖δxi‖D̄ ≤ ∆ and

(J(xi)TJ(xi) + λi D̄)δxi = −J(xi)TR(xi) (2.2.7)

for someλi ≥ 0 andλi(‖δxi‖D̄ − ∆) = 0. Moreover, ifJ(xi)TJ(xi) + λi D̄ is positive definite

thenδxi is unique.

This theorem was independently proved by Gay [38] and Sorensen [97] and it is based on a

result by Goldfeld, Quandt and Trotter [41]. The representation (2.2.7) of the global solution is a

direct consequence from the first–order necessary optimality conditions for constrained optimization

(also known as the Karush–Kuhn–Tucker (KKT) conditions).

Theorem 2.2.2 also makes clear the close relationship between the Gauss–Newton method

combined with a trust–region strategy and the well–known Levenberg–Marquardt method [69], [72].

The difficulty in the Levenberg–Marquardt method is the choice of the parameterλi. Moré presented

in [75] an implementation of the Levenberg–Marquardt method (2.2.7) in a trust–region framework.

The advantage of the trust–region method in comparison with the Levenberg–Marquardt method is

the explicit control of the size of the steps.

Moreover, from Theorem 2.2.2 follows that either the minimizer of the unconstrained linear

least–squares problem (2.2.2) lies in the inside of the trust–region or the trust–region boundary

is active and the minimizer of the constrained linear least–squares problem (2.2.5) occurs on the

boundary.

Finally, (2.2.7) elucidates the regularization property of the trust–region strategy.
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2.2.3 Iterative Solution of the Trust–Region Subproblem

The central computation in Algorithm 2.2.1 is the calculation of the approximate solution to the

constrained linear least–squares problems in Step 1. To obtain global convergence of the Trust–

Region Method 2.2.1, it is necessary to guarantee a sufficient reduction in the modelϕi(δx), for

xi + δx ∈ Ui, see Conn, Gould, and Toint [18, Section 6.3]. We will see that the Cauchy point

already satisfies such a sufficient decrease condition.

Definition 2.2.3 Let δxsd
i be the steepest descent direction to the trust–region subproblem (2.2.5),

and letϑcp
i be the optimal solution to

min
ϑ>0

s(ϑ) = ϕ(−ϑ δxsd
i ) subject to ‖ϑ δxsd

i ‖D̄ ≤ ∆i

then

xcp
i = xi − ϑcp

i δxsd
i = xi + δxcp

i

is called the Cauchy point andδxcp
i the Cauchy direction.

The Cauchy direction has the advantage that it is cheap to compute; however, the repeated use

of this direction might result in a poor convergence behavior of the method. On the other side, the

global minimizer of the trust–region subproblem, which is characterized in Theorem 2.2.2, might

lead to an asymptotically fast rate of convergence but the computational effort of this point might

be very high (see Conn, Gould, and Toint [18, Sections 7.3 – 7.4] for finding the`2–norm and the

scaled̀ 2–norm model minimizer).

Since the dimension of the problems in Chapters 4 and 5 is very large, we are especially

interested in efficient solution methods for the trust–region subproblems. Additionally, we cannot

fall back upon a particular structure of the Jacobian appearing in the problems in Chapters 4 and 5

such that we have to suppose thatJ(x) is not only large but also dense. Thus, it is impossible to

store the matrixJ(x) or evenJ(x)TJ(x). However, for both applications we can make efficient

subroutines for the evaluation of the matrix–vector productsJ(x)δv andJ(x)T δu available (see

Lemma 4.2.1, Lemma 4.2.2 and Theorem 5.5.2, Theorem 5.5.3, respectively). A promising method

for the solution of the unconstrained version of the linear least–squares problem (2.2.2) that must

not knowJ(x) explicitly and which makes only use of the mentioned matrix–vector products is the

conjugate gradient method due to Hestenes and Stiefel [56] respective its preconditioned version. A

further benefit of the conjugate gradient method is that it converges to the minimal norm solution

of the unconstrained linear least–squares problem (2.2.2) if the starting element is chosen properly

(see e.g. Hestenes [54, Section 4], [55, p. 296]).

Toint [105] and Steihaug [98] modified the preconditioned conjugate gradient method so that it

is applicable to quadratic trust–region subproblems with a symmetric approximation of the

Hessian. This algorithm finds an approximate solution to the trust–region subproblem and generates

a compromise between the Cauchy direction and the global minimizer of the subproblem.
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Applying the conjugate gradient method to problem (2.2.5) with the trust–region being defined

using the Euclidean norm‖ · ‖2, i.e. D̄ = I, then the length of the iteratesδxk, i.e. ‖δxk‖2, is

strictly increasing withk, see Lemma 2.2.6. This characteristic ensures that the iterates will not

return in the trust–region if they have once left this area. Thus, the conjugate gradient method can be

stopped when the conjugate gradient iterates become too large (this will be one of the modifications

introduced in the algorithm presented by Toint [105] and Steihaug [98]). However, if the length

of the iterates is measured in thēD–norm‖ · ‖D̄, D̄ 6= I, this monotonicity characteristic is not

guaranteed when the conjugate gradient method is applied to problem (2.2.5). If we setz = D̄1/2δx,

then, problem (2.2.5) can be easily transformed to

Minimize ϕi(z) = 1
2 ‖R(xi) + J(xi) D̄−1/2z‖22 subject to ‖z‖2 ≤ ∆ (2.2.8)

such that theD̄–norm problem (2.2.5) is equivalent to a trust–region subproblem with the trust–

region being defined using the Euclidean norm. Now, applying the conjugate gradient method

to problem (2.2.8) and transforming the variables back to the variables of the original problem

(2.2.5), then yields the preconditioned version of the conjugate gradient method withD̄1/2 being the

preconditioner.

This modified [98] (truncated [18]) preconditioned conjugate gradient method presented by

Steihaug respective Toint has the following form:

Algorithm 2.2.2 (Modified Preconditioned Conjugate Gradient Method)

Set initially δx0 = 0, r0 = −R(x), solve D̄1/2p0 = −J(x)TR(x),

and set s0 = p0. Given ξ > 0 and ∆ > 0.

For k = 0, 1, 2, . . . , n do

1.) Solve D̄1/2 vk = pk

2.) Set ψk = ‖J(x) vk‖22
3.) If ψk = 0 set δxk+1 = δxk, and stop

Else continue with Step 4.

4.) Set αk = ‖sk‖22/ψk

5.) Set δxk+1 = δxk + αk vk

6.) If ‖δxk + αkvk‖D̄ ≥ ∆

compute τk > 0 so that ‖δxk + τkvk‖D̄ = ∆,

set δxk+1 = xk + τkvk, and stop

Else continue with Step 7.

7.) Set rk+1 = rk − αk J(x) vk

8.) Solve D̄1/2sk+1 = J(x)T rk+1
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Algorithm 2.2.2 (Modified Precond. Conjugate Gradient Method, cont.)

9.) If ‖sk+1‖2 ≤ ξ ‖J(x)TR(x)‖D̄, stop

10.) Set βk = ‖sk+1‖22/‖sk‖22
11.) Set pk+1 = sk+1 + βk pk

Note that in this algorithm, the first iterateδx1 is just the Cauchy direction since we set initially

δx0 = 0.

The single steps of Algorithm 2.2.2 are those of the preconditioned version of the conjugate

gradient method applied to linear least–squares problems withD̄1/2 chosen as the preconditioner,

see for instance Björck [7, Algorithm PCCGLS]. Since we are examining the general case of trust–

region subproblems with scaled̄D–norm trust–regions, we use the preconditioned version of the

conjugate gradient method, see Conn, Gould, and Toint [18, Section 6.7 and 7.4] and the statements

about the equivalence of the trust–region subproblems (2.2.5) and (2.2.8) for the connection of trust–

region scaling and preconditioning of the conjugate gradient iterations.

The modification in Algorithm 2.2.2 consists in the introduction of two further stopping criteria

to account for the applicability of the algorithm also to positive semidefinite systems and the

observance of the trust–region restriction. If in Step 3 of Algorithm 2.2.2 the directionvk lies in

the null space ofJ(x), i.e.ψk = 0, then the value of the modelϕ(δxk + α vk) stays constant along

this line since

ϕ(δxk + α vk) = 1
2 ‖R(x) + J(x) (δxk + α vk)‖22 = 1

2 ‖R(x) + J(x) δxk‖22 = ϕ(δxk) .

In this case, we setδxk+1 = δxk and stop the algorithm. It is also possible to compute the positive

root τk to ‖δxk + τk vk‖D̄ = ∆ to obtain an approximate solution on the boundary of the trust–

region; however, since the value ofϕ does not change along this line and we are not interested in

steps which are too large (see the arguments in Chapters 4 and 5) we terminate the algorithm with

the current iterate.

The following Lemma 2.2.4 shows that this stopping criteria is not necessary ifD̄1/2 = I, with

I is the identity matrix. In this case, it isvk = pk andJ(x) pk 6= 0 which is a simple consequence

of the formula forpk and the orthogonality of the range space ofJ(x)T to the null space ofJ(x).

Lemma 2.2.4 Let D̄1/2 = I and pk, k = 0, . . . , j, be generated in Step 11 of Algorithm 2.2.2.

Then,

J(x) pk 6= 0 for k = 0, . . . , j .
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Proof: From Step 11 of Algorithm 2.2.2 together with the initializationp0 = −J(x)TR(x), it

follows with D̄1/2 = I

pk = sk + βk−1 pk−1

= J(x)T rk + βk−1 (sk−1 + βk−2 pk−2)

= J(x)T rk +
k−1∑
i=0

k−1∏
j=i

βj

 J(x)T ri

= J(x)T

rk +
k−1∑
i=0

k−1∏
j=i

βj

 ri


and, thus,pk ∈ R(J(x)T ). Furthermore, it follows that

‖pk‖22 = ‖sk + βk−1 pk−1‖22

= ‖sk‖22 + β2
k−1 ‖pk−1‖22 + 2βk−1〈sk , pk−1〉

= ‖sk‖22 + β2
k−1 ‖pk−1‖22

On this occasion, we have used the orthogonality of the gradientsk and the conjugate directions

pk−1 in the conjugate gradient method, see for instance Conn, Gould, and Toint [18, Lemma 5.1.4].

Note that‖sk‖2 6= 0 since otherwise the Modified Preconditioned Conjugate Gradient Method 2.2.2

would have been stopped in a previous iteration (see Step 9 of Algorithm 2.2.2). Thus,pk 6= 0.

SinceR(J(x)T ) = N (J(x))⊥ it follows thatJ(x) pk 6= 0. �

Remark 2.2.5 Sinceδxk in step 5 of Algorithm 2.2.2 can be written as

δxk = δxk−1 + αk−1 vk−1 = δx0 +
k−1∑
i=0

αi vi

from Lemma 2.2.4 follows thatδxk ∈ R(J(x)T ) if the initial point δx0 lies in this space and if

D̄1/2 = I (see also [18, Theorem 5.3.1]).

The second stopping criterion occurs in Step 6 of the Algorithm 2.2.2. Here, we test if the new

iterate of the preconditioned conjugate gradient method stays within the trust–region. If the length

of the new iterate is larger than the trust–region radius, we compute a linear combination of the

current and the new iterate of the preconditioned conjugate gradient method which just reaches to

the boundary of the trust–region and stop the algorithm. The following lemma, which is proved by

Steihaug [98], ensures that subsequent iterates will not return in the interior of the trust–region if a

former iterate has left this region.

Lemma 2.2.6 Let δxk, k = 0, . . . , j, be the iterates generated by the Modified Preconditioned

Conjugate Gradient Algorithm 2.2.2, and letδx̂ be the terminating iterate of the algorithm. Then

the iteratesδxk, k = 0, . . . , j, satisfy the following two conditions:
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(a) The model functionϕ(δxk) is strictly decreasing fork = 0, . . . , j, and

ϕ(δx̂) ≤ ϕ(δxj) . (2.2.9)

(b) The length of the iterates‖δxk‖D̄ is strictly increasing fork = 0, . . . , j, and

‖δx̂‖D̄ ≥ ‖δxj‖D̄ . (2.2.10)

Thus, if Algorithm 2.2.2 has generated an iterate that lies on the boundary of the trust–region

it follows from Lemma 2.2.6 that the global minimizer of the modelϕi(δx) is not in the interior of

the trust–region.

Moreover, since the first iterate generated by the Modified Preconditioned Conjugate Gradient

Algorithm 2.2.2 is the Cauchy point, which already satisfies a necessary sufficient decrease

condition (see for instance Powell [84, Theorem 4]), and since every subsequent iterate of the

algorithm achieves a larger reduction of the model functionϕi(δx) according to Lemma 2.2.6(a),

it follows that every iterate generated by Algorithm 2.2.2 decreases the model function sufficiently.

This aspect will ensure the convergence of Algorithm 2.2.1 to a first–order critical point if Algorithm

2.2.2 is used for the solution of the trust–region subproblems (2.2.5) in Step 1 of Algorithm 2.2.1.

Next, we analyze the residualr̂ of the linear modelJ(x) δx+R(x) in the linear least–squares

problem which corresponds to the terminating pointδx̂ of the Algorithm 2.2.2. It is well known that

for rk+1 in Step 7 of Algorithm 2.2.2 it holds that (δxk+1 =
∑k

j=0 αjvj if δx0 = 0)

rk+1 = rk − αkJ(x)vk = r0 − J(x)
k∑

j=0

αjvj = −(R(x) + J(x) δxk+1) .

If the modified preconditioned conjugate gradient method 2.2.2 is stopped becauseψk = 0 (Step

3) or thek-th conjugate gradient iterateδxk violates the trust region bound (Step 6), then the same

relationship holds withαk = τk. Thus,

r̂ = −(J(x) δx̂+R(x)). (2.2.11)

If the Modified Preconditioned Conjugate Gradient Method 2.2.2 terminates neither in Step 3

nor in Step 6, then the following theorem gives information about the rate of convergence of the

residualsrk = J(x) δxk +R(x) which are computed in Step 7 of Algorithm 2.2.2.

Theorem 2.2.7 Let {δxk} be generated by Algorithm 2.2.2. Then, for the residuals

rk = J(x) δxk +R(x) computed in Step 7 of Algorithm 2.2.2, we have

‖rk − r∗‖2 ≤ min
p∈Pk

max
σ∈{σ1,...,σq}

p(σ2) ‖r0 − r∗‖2 (2.2.12)

wherer∗ = J(x) δx∗ + R(x), δx∗ = −J(x)+R(x), Pk is the set of polynomialsp of degreek or

less withp(0) = 1 andσ1 ≥ σ2 ≥ . . . ≥ σq are the singular values ofJ(x) D̄−1/2.
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(See e.g. Nachtigal, Reddy and Trefethen [77, Theorem 1] or Greenbaum [45].)

An error bound for the right side of the inequality in (2.2.12) is given by

‖rk − r∗‖2
‖r0 − r∗‖2

≤ min
p∈Pk

max
σ∈{σ1,...,σq}

p(σ2) ≤ 2

(
κ(J(x) D̄−1/2)− 1
κ(J(x) D̄−1/2) + 1

)k

(2.2.13)

whereκ(J(x) D̄−1/2) = σ1/σq is the condition number ofJ(x) D̄−1/2 (see for instance Greenbaum

[45, Theorem 3.1.1] or Conn, Gould and Toint [18, Theorem 5.1.8]).

The inequality in (2.2.13) shows that the convergence of the preconditioned conjugate gradient

method depends on the condition number of the matrixJ(x) D̄−1/2, i.e. the

convergence of the conjugate gradient method is slower if the condition number ofJ(x) D̄−1/2

is large. Furthermore, by choosing an appropriate polynomialp(σ) in (2.2.12) (see e.g. Kelley

[64, Section 2.2] or Björck [7, Section 7.4.2]) it follows that the reduction in the residuals will be

larger if the singular values ofJ(x) D̄−1/2 are clustered. Thus, an appropriate choice of a

preconditionerD̄−1/2 can yield an acceleration of the convergence of the preconditioned conjugate

gradient method.

However, note that the acceleration of the convergence is combined with an increase of the

computational cost. If̄D−1/2 6= I, then in each iteration of Algorithm 2.2.2 the linear systems

of equations in Steps 1 and 8 have to be solved. The cost for the solution of these linear systems

depends on the form of the preconditionerD̄−1/2. If D̄−1/2 is a diagonal matrix then the additional

effort consists in2n multiplications. In casēD−1/2 is a lower or an upper triangular matrix then

the linear system can be computed by forward or back substitution [43], respectively. However, if

D̄−1/2 has a more general structure, then the additional cost consists in factorizing the matrixD̄−1/2

and in solving the systems in Step 1 and 8 using this factorization. However, a wise choice of the

preconditioner may lead to a large reduction of the number of iterations in Algorithm 2.2.2 such

that the overall effort of the preconditioned version might be smaller than the effort for the version

without the preconditioner.

Unfortunately in general, it can be difficult to find an efficient preconditioner. In the problems

arising from the applications examined in Chapters 4 and 5, we have the difficulty that we do not

know the JacobianJ(x) explicitly and that we expect a dense structure of this matrix. Thus, we do

not have sufficient information to built an efficient preconditioner for these problems.

However, the problem formulation in Chapter 5 leads to a scaling of the iteratesδxk with a

modified discrete version of the differentiation operator. Although this scaling will not be a

preconditioning in the original sense we will use the preconditioned version of the conjugate

gradient method for the solution of the resulting linear least–squares problems.

Thus, the complete algorithm we will use for the solution of the nonlinear least–squares

problems appearing in Chapters 4 and 5 has the following form:
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Algorithm 2.2.3 (Inexact Gauss–Newton Method)

Let

an initial approximation x0 ,

an initial trust-region radius ∆0 ≤ ∆̄, and

an initial relative error ξ0 for the algorithm in

Step 1

be given and set 0 < a1 ≤ a2 < 1 , and 0 < γ3 ≤ γ4 < 1 ≤ γ5 .

Compute φ(x0) and R(x0) and set i = 0 .

1.) Use the Modified Preconditioned Conjugate Gradient

Algorithm 2.2.2 to find an approximate solution δxi

to

Minimize ϕi(δx) = 1
2 ‖R(xi) + J(xi) δx‖22

subject to ‖δx‖D̄ ≤ ∆i

with relative error ξi.

2.) Compute φ(xi + δxi)

ρi =
φ(xi)− φ(xi + δxi)
ϕi(0)− ϕi(δxi)

.

3.) Set

xi+1 =

{
xi + δxi , if ρi ≥ a1,

xi , otherwise.

4.) Determine

∆i+1 ∈


[
∆i , min{γ5 ∆i, ∆̄}

]
, if ρi ≥ a2 ,

[γ4 ∆i , ∆i] , ρi ∈ [a1 , a2) ,

[γ3 ∆i , γ4 ∆i] , ρi < a1

5.) Compute φ(xi+1) and R(xi+1) and update ξi+1.

If φ(xi+1) ≤ ε or ‖∇φ(xi+1)‖ = ‖J(xi+1)TR(xi+1)‖ ≤ ε stop,

else set i := i+ 1 and go to step 1.

The relative errorξi controls the accuracy of the approximate solution of the linear least–

squares subproblem. Since additional stopping criteria are integrated in the preconditioned

conjugate gradient method, the direction generated deviates from the original Gauss–Newton
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direction. Thus, we call the algorithm an inexact Gauss–Newton method.

At the beginning of the iteration process, it is not necessary to compute the approximate solution

in Step 1 of Algorithm 2.2.3 to a high accuracy. However, when the Gauss–Newton iterates approach

a critical point an increased accuracy is necessary to improve the asymptotical convergence behavior

(see Section 3.2).



Chapter 3

Convergence

In this chapter, we examine the global convergence as well as the local convergence rate of the

algorithm presented in Chapter 2. The global convergence of the inexact Gauss–Newton method

results from the introduction of the trust–region strategy into the algorithm. Since the global

convergence theory of trust–region methods is already well established we outline briefly the main

assumptions in Section 3.1, which are necessary to ensure the global convergence. There exists also

a variety of results about the local convergence behavior of the Gauss–Newton method. However, in

the analysis of the asymptotic rate of convergence, usually, it is assumed that the residual function

R(x) is overdetermined and that the JacobianJ(x) has full column rank. But, the applications we

treat in Chapters 4 and 5 are characterized by the fact that the dimension of the variable is much

larger than the dimension of the range space such that in these casesR(x) is underdetermined.

Therefore, in Section 3.2, we examine the local rate of convergence of the inexact Gauss–Newton

method for underdetermined as well as overdetermined systems.

3.1 Global Convergence of the Inexact Gauss–Newton Method

In the following, we examine if the sequence of iterates{xi} generated by Algorithm 2.2.3, starting

with an arbitrary initial elementx0, will converge to a limit pointx∗ that is a critical point to the

nonlinear least–squares problem, i. e. that satisfies

∇φ(x∗) = J(x∗)TR(x∗) = 0 .

The use of the trust–region strategy in the Gauss–Newton method ensures the global

convergence of the algorithm. The theory of the global convergence of trust–region methods is

already well established, see e. g. Powell [83], Powell [84], Thomas [102], Moré [76, Theorem

(4.14)]. In [18, Section 16.3] Conn, Gould and Toint present also convergence results of trust–

region methods applied to the nonlinear least–squares problem. Therefore, we give only a rough

sketch on the main aspects necessary to ensure the global convergence of the algorithm presented in

Chapter 2.

Firstly, we state the assumptions which have to be satisfied by the residual functionR(x) in the

nonlinear least–squares problem (2.1.3).

29
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Assumption 3.1.1 The functionR(x) is twice continuously differentiable onIRn.

Assumption 3.1.2 The functionR(x) = (R1(x) , . . . , Rm(x))T , its JacobianJ(x) and the Hessian

Hi(x) of the residualsRi(x), i = 1, . . . ,m are uniformly bounded, i. e. there exists a positive

constantK such that for allx ∈ IRn and for alli = 1, . . . ,m holds

‖R(x)‖2 ≤ K , ‖J(x)‖2 ≤ K , and ‖Hi(x)‖2 ≤ K .

The latter assumption is strong and will not be fulfilled in general by the residual functions

modelling the systems in Chapters 4 and 5. In the proof of the global convergence, it is sufficient

to assume that the Hessian‖∇2φ(x)‖2, and thus‖R(x)‖2, ‖J(x)‖2 and‖Hi(x)‖2, i = 1, . . . ,m,

are bounded for elements which lie between two successive iterates of the Inexact Gauss–Newton

Method 2.2.3, see Conn, Gould, and Toint [18, Section 16.3]. Hence, if the Gauss–Newton iterates

xi stay in a compact subset ofIRn the smoothness of the residual functionR ensures this weaker

condition automatically.

Note that the characteristics of the applications examined in Chapters 4 and 5 will guarantee

this boundedness of the iterates.

In neural networks, the output is computed by a repeated evaluation of so–called activation

functions. In Chapter 4, this activation function is given by the logistic function

σL(x) = 1/(1 + e−2x). For large arguments, i.e.|x| is large, this function is almost constant.

Thus, if large parameters are present in the neural network, its output will be almost constant

independently from the input data of the neural network which is an undesirable effect. Therefore,

in the context of neural networks, it is natural that the parameter vectorx stays in a compact region.

In Chapter 5, we are determining the volatility parameter in an extended Black–Scholes model

by approximating the theoretical computed European option prices and their market counterparts and

by simultaneously minimizing the variation of the volatility parameter. Since a certain size of the

volatility parameter is given by the market European option prices, the minimization of the variation

of the volatility parameter guarantees that the parameter vector will not get arbitrary large. Thus,

in this model, the affiliation of the Gauss–Newton iteratesxi to a compact region is also naturally

given by the characteristics of the examined problem.

An additional condition, that is necessary for the convergence theory of trust–region methods,

is a sufficient reduction of the model function within the trust regionUi (see (2.2.6) for its definition).

The descent direction which reduces the quadratic modelϕi(δx) in a small local neighborhood of

the current iteratexi at the fastest rate is the steepest descent directionδxsd
i of φ(x). The minimum

of the model along this direction within the trust region, i. e.

xcp
i = xi − ϑcp

i δx
sd
i with ϑcp

i = arg min
ϑ≥0

xi−ϑδxsd
i
∈Ui

ϕ(−ϑδxsd
i ) (3.1.1)

which is the Cauchy point (see Definition 2.2.3), is computed easily in the case of our quadratic

model. In Algorithm 2.2.3, this is just the first iterate computed by the Modified Preconditioned

Conjugate Gradient Method 2.2.2 in Step 1 of the former algorithm.
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This Cauchy point fulfills the following decrease condition (see Powell [84, Theorem 4] or

Conn, Gould, and Toint [18, Theorem 6.3.1]).

Lemma 3.1.1 Let the Cauchy pointxcp
i be given according to(3.1.1)and define

δxcp
i = − ϑcp

i δx
sd
i .

Then, the model functionϕi(δx) (see(2.2.2)for its definition) satisfies

ϕi(0)− ϕi(δx
cp
i ) ≥ 1

2‖J(xi)TR(xi)‖2 min
[
‖J(xi)TR(xi)‖2

qi
, νcp

i ∆i

]
(3.1.2)

where

qi = 1 + max
x∈Ui

‖J(x)TJ(x)‖2 ,

with the trust regionUi defined in(2.2.6), is an upper bound on the curvature of the model and where

νcp
i =

‖J(xi)TR(xi)‖2
‖J(xi)TR(xi)‖D̄

.

Moreover, from Lemma 2.2.6(a) follows for each iterateδxi
k generated in thekth iteration of

the Modified Preconditioned Conjugate Gradient Method 2.2.2 in theith iteration of the Inexact

Gauss–Newton Method 2.2.3 (see Steihaug [98])

ϕi(0)− ϕi(δxi
k) ≥ 1

2 ‖J(xi)TR(xi)‖2 min
[
‖J(xi)TR(xi)‖2

qi
, νcp

i ∆i

]
(3.1.3)

with qi andνcp
i defined as in Lemma 3.1.1. From this last condition also follows that the quotientρi

in Step 2 of Algorithm 2.2.3 is well–defined since (3.1.3) yields that

ϕi(δxi
k) < ϕ(0)

as long asJ(xi)TR(xi) 6= 0 andδxi
k 6= 0.

Then, the following theorem states the global convergence of the Inexact Gauss–Newton Method

2.2.3 presented in Chapter 2 (see for instance Conn, Gould, and Toint [18, Theorem 6.4.6]).

Theorem 3.1.2 Let Assumption 3.1.1 and Assumption 3.1.2 be satisfied. Then, for the sequence

{xi} generated by Algorithm 2.2.3 holds

lim
i→∞

J(xi)TR(xi) = 0 ,

i. e. the limit points of the sequence{xi} generated by the Inexact Gauss–Newton Algorithm

2.2.3 satisfy the first–order necessary optimality condition for the nonlinear least–squares problem

(2.1.3).
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3.2 Local Convergence Analysis of the Inexact Gauss–Newton Method

In this section, we examine the local convergence of the inexact Gauss–Newton method without

making a distinction between overdetermined and underdetermined residual functions.

The local convergence of the Gauss–Newton method has already been analyzed extensively,

see for example [15], [11], [30], [29], [50], [25], [10], [93], [26]; however, none of these results

make any statements about theq–convergence rate of the inexact Gauss–Newton method applied to

underdetermined residual vectorsR(x).
In the following subsection, firstly, we give an overview of already existing local convergence

analysis.

3.2.1 Known Local Convergence Results for the Gauss–Newton Method

We start with statements about the application of the Gauss–Newton method to the generally

examined class of overdetermined residual functionsR(x) whose JacobianJ(x) at the solution

x∗ has a full rank. Subsequently, we state results for an extended class of residual functions.

Brown and Dennis show in [15] that the Gauss–Newton method convergesq–linearly when

the residual vectorR : IRn → IRm in the nonlinear least–squares problem is overdetermined, i.e.

m ≥ n, and the JacobianJ(x) of R(x) at the solutionx∗ has a full column rank. If additionally,

the residual vectorR(x) is zero at the solutionx∗, then this method converges evenq–quadratically

(see Theorem 1 – 2, Corollary 1 – 2 and Remark 2 in [15] as well as Dennis and Schnabel, Theorem

10.2.1 and Corollary 10.2.2 in [25]). The discussion by Dennis and Schnabel in [25] makes clear

that the nonlinearity of the residual function and the size of the residual at the solution are important

quantities in the proof of these results. They remark that the speed of convergence depends on

these quantities in connection with the smallest eigenvalue ofJ(x∗)TJ(x∗). Moreover, if either

the relative nonlinearity or the relative residual size of the problem is too large, the Gauss–Newton

method may not converge at all.

The convergence results of Brown and Dennis have the disadvantage that they do not consider

the invariance of the Gauss–Newton sequence under unitary transformations (see e.g. Subsection

3.2.3). This aspect is considered by Häußler in [50]. He shows that for overdetermined residual

functions with rank(J(x∗)) = n the Gauss–Newton method convergesq–linearly orq–quadratically,

respectively, under assumptions which are also invariant under unitary transformations (see

Theorems 2.1, 2.5, and 2.7 in [50]).

Deuflhard and Apostolescu examine in [29] the Gauss–Newton method also for overdetermined

residual vectors; however, they drop the assumption about the full rank of the Jacobian at the

solution. They show under unitary invariant assumptions that the Gauss–Newton method converges

locally for adequate nonlinear least–squares problems if the norm minimal solution of the Gauss–

Newton subproblems is chosen for the correction of the Gauss–Newton iterates (see Theorem 1 in

[29]). On this occasion, they call a nonlinear least–squares problem adequate, if and only if, there

exists some convex neighborhood of the solutionx∗ so that

‖J(y)+
(
I − J(x) J(x)+

)
R(x)‖2 ≤ χ(x) ‖y − x‖2 with χ(x) ≤ χ < 1 (3.2.1)
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holds for all elementsx, y in this neighborhood. A combination of the critical point condition ofx∗,

i.e.J(x∗)TR(x∗) = J(x∗)+R(x∗) = 0, with the condition (3.2.1) yields

‖J(y)+R(x∗)‖2 ≤ χ(x∗) ‖y − x∗‖2

such that condition (3.2.1) can be interpreted as some kind of “small residual” condition on the

residual vectorR(x) [29]. The result of Deuflhard and Apostolescu does not contain any statements

about the rate of convergence of‖xk − x∗‖2, wherexk is thekth Gauss–Newton iterate.

The local convergence analyses of the Gauss–Newton method by Boggs [11], Deuflhard and

Heindl [30], and Bock [10] do not distinguish between overdetermined and underdetermined

residual vectorsR(x). Boggs proves in [11] the local convergence of the Gauss–Newton method

if the norm minimal solution of the Gauss–Newton subproblems is chosen for the update of the

Gauss–Newton iterates (see Theorem 3.2 in connection with his statements about the bounds on the

step size in [11]). This result is valid for residual functions whose JacobianJ(x) has a constant

rank andJ(x)TR(x) is Lipschitz continuous in a convex neighborhood of the solutionx∗ and if the

largest eigenvalue ofJ(x∗)TJ(x∗) is smaller than 2. If this last assumption on the largest eigenvalue

of J(x∗)TJ(x∗) is not satisfied, then he obtains the local convergence for a damped Gauss–Newton

method.

Deuflhard and Heindl present in [30] an unitary invariant convergence theorem for a class of

generalized Gauss–Newton methods. They prove under assumptions that are invariant under unitary

transformations the local convergence to a critical pointx∗ for this class of generalized Gauss–

Newton methods (see Theorem 4 in [30]). The ordinary Gauss–Newton method where the Gauss–

Newton iterates are updated by using the norm–minimal solution of the Gauss–Newton subproblems

is contained in this class. The critical condition in their result is again the condition (3.2.1).

Furthermore, Bock proves in [10] the r–linear convergence of the Gauss–Newton sequence if

the norm minimal solution of the Gauss–Newton subproblems is chosen for the correction of the

Gauss–Newton iterate (see Theorem 3.1.44 in [10]). He introduces a generalized inverse which

makes in his case an uniform treatment of constrained as well as unconstrained nonlinear least–

squares problems possible. The critical condition in his result is given by∥∥∥(J(y)(+) − J(x)(+)
)
Q(x)

∥∥∥
2
≤ χ(x) ‖y − x‖2 with χ(x) ≤ χ < 1

whereJ(x)(+) is a generalized inverse of the JacobianJ(x) andQ(x) is given by

Q(x) := R(x)− J(x) J(x)(+)R(x) =
(
I − J(x) J(x)(+)

)
R(x) .

If unconstrained nonlinear least–squares problems are treated, the generalized inverseJ(x)(+) of

the JacobianJ(x) in Bock’s examination is just the Moore–Penrose inverseJ(x)+ so that in this

case the above given condition is identical to condition (3.2.1) by Deuflhard and Heindl because of

the identityJ(x)+ (I − J(x) J(x)+) = 0.

Moreover, Dennis and Steihaug examined in [26] the convergence rate of an inexact version

of the Gauss–Newton method in the overdetermined, full rank case. Under similar assumptions as

Dennis and Schnabel, they showed that the inexact Gauss–Newton iterates converge at least
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q–linearly to the solution in a weighted norm (see Theorem 3.1 in [26]). The convergence of this

sequence, again, depends on the nonlinearity and the size of the residual of the problem.

Additionally, since the linear Gauss–Newton subproblems are only solved inexactly, the residuals of

the linearized problems, i.e.J(xi)T ri = J(xi)T (J(xi) δxi +R(xi)) , influence the convergence of

the iterates to a solution.

3.2.2 Difficulties in the Convergence Analysis of the Inexact Gauss–Newton Method
Applied to Underdetermined Problems

The results of theq–convergence rate of the Gauss–Newton method mentioned above cannot be

applied to our problem formulation because the nonlinear least–squares problems under

consideration are, in general, underdetermined.

As far as we know, there do not exist any results of theq–convergence rate of the Gauss–Newton

method applied to nonlinear least–squares problems with an underdetermined residual vectors.

In this case, the JacobianJ(x) of the residual functionR(x) has a nontrivial null space.

However, this implies the difficulty that the linear least–squares problems, which have to be solved

in every Gauss–Newton iteration, do not have unique solutions. The set of solutions of the linear

least–squares problem

Minimize 1
2 ‖J(xi) δx+R(xi)‖22 , δx ∈ IRn (3.2.2)

is given by

Si = {δxi ∈ IRn | δxi = −J(xi)+R(xi) + (I − J(xi)+J(xi)) z , z ∈ IRn}

whereJ(xi)+ is the Moore–Penrose inverse, also known as pseudoinverse, ofJ(xi). The first

term in the representation of the iteratesδxi in Si is the minimal norm solution to (3.2.2) which is

orthogonal to the null space ofJ(xi). Since(I − J(xi)+J(xi)) is the orthogonal projection onto

the null space ofJ(xi) the second term represents an arbitrary element in the null space ofJ(xi).
If iterative methods for the solution of the linear least–squares problem (3.2.2) are used in

combination with a trust–region method, then the linear least–squares problem (3.2.2) is solved

inexactly. Letδxi be the approximate solution to (3.2.2). Then, (2.2.11) implies that the residualri

satisfies

−J(xi)T ri = J(xi)T (J(xi) δxi +R(xi)) (3.2.3)

if the Modified Preconditioned Conjugate Gradient Method 2.2.2 is used for the solution of (3.2.2).

Since the linear system of equations (3.2.3) is equivalent to the linear least–squares problem

Minimize 1
2 ‖J(xi) δx+ (R(xi) + ri)‖22 , δx ∈ IRn

the set of solutions for the perturbed normal equations (3.2.3) is given by

S̃i = {δxi ∈ IRn | δxi = −J(xi)+(R(xi) + ri) + (I − J(xi)+J(xi)) z , z ∈ IRn} . (3.2.4)
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3.2.3 Local q–Convergence Analysis of an Arbitrary Inexact Gauss–Newton Itera-
tion

Firstly, we analyze the convergence behavior when in each Gauss–Newton iteration an arbitrary

element ofS̃i (3.2.4) is chosen for the correction of the Gauss–Newton iterate.

We start with proposing some conditions on the residual vectorR(x) and its Jacobian that will

be used in the following convergence Theorem 3.2.1.

Assumption 3.2.1 Let a real constant% ≥ 0 be given with

‖J(x)+(J(x+ t(x∗ − x))− J(x))(x− x∗)‖2
≤ % t ‖J(x)+J(x) (x− x∗)‖22 , t ∈ [0 , 1], (3.2.5)

for all x in a setΩ.

Assumption 3.2.2 Let a real constantχ ≥ 0 be given with

‖J(x)+J(x) (J(x)+ − J(x∗)+)R(x∗)‖2 ≤ χ ‖J(x)+J(x) (x− x∗)‖2 (3.2.6)

for all x in a setΩ.

When in each Gauss–Newton iteration the Gauss–Newton iterate is updated by using an

arbitrary element ofS̃i (3.2.4), then the new iterate is an arbitrary element in an affine linear

subspace, i.e.xi+1 ∈ yi + N (J(xi)) with yi = xi − J(xi)+(R(xi) + ri) andN (J(xi)) is the

null space ofJ(xi). Thus, it is only possible to obtain theq–linear convergence of the iterates on

the orthogonal complement of the null space of the Jacobian, i.e. on a linear subspace.

Theorem 3.2.1 Let R : IRn → IRm be continuously differentiable on an open and convex set

Ω ⊂ IRn. Furthermore, let the sequence

xi+1 = xi − J(xi)+R(xi)− (I − J(xi)+J(xi)) zi − J(xi)+ri , zi ∈ IRn (3.2.7)

with

‖J(xi)+ri‖2 ≤ ηi ‖J(xi)+J(xi) (xi − x∗)‖2 , 0 ≤ ηi ≤ η < 1 , (3.2.8)

andx0 ∈ IRn converge to a solutionx∗ ∈ Ω with J(x∗)TR(x∗) = 0 . Let the Assumptions 3.2.1

and 3.2.2 be satisfied for allx ∈ Ω with χ+ η < 1 .
Then there existsε > 0 such thatc := %ε

2 + χ + η < 1 and the sequence{xi} satisfies either

J(xi)TR(xi) = 0 for some finitei or

‖J(xi)+J(xi) (xi+1 − x∗)‖2 ≤

%
2 ‖J(xi)+J(xi) (xi − x∗)‖22 + (χ+ η) ‖J(xi)+J(xi) (xi − x∗)‖2

(3.2.9)
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and

‖J(xi)+J(xi) (xi+1 − x∗)‖2 ≤ c ‖J(xi)+J(xi) (xi − x∗)‖2 (3.2.10)

for sufficiently largei.

Proof: The proof follows by induction overi. Define ei := xi − x∗ and setRi := R(xi),
Ji := J(xi) , J+

i := J(xi)+ and chooseε so small thatN(x∗ , ε) ⊂ Ω and %ε
2 + χ+ η < 1.

Because of the identityN (J(x∗)T ) = N (J(x∗)+), J(x∗)TR(x∗) = 0 and the mean value theorem

ei+1 = ei − J+
i Ri − (I − J+

i Ji) zi − J+
i ri

= (I − J+
i Ji)(ei − zi)− J+

i (Ri −R∗ − Jiei)− (J+
i − J+

∗ )R∗ − J+
i ri

= (I − J+
i Ji)(ei − zi)− J+

i

1∫
0

(J(xi + t(x∗ − xi))− Ji) ei dt

− (J+
i − J+

∗ )R∗ − J+
i ri.

Since(I − J+
i Ji) is the orthogonal projection onto the null space ofJi and because the Moore–

Penrose inverseJi
+ fulfils the conditionJ+

i = J+
i Ji J

+
i , multiplication ofei+1 with the projection

J+
i Ji onto the range ofJT

i yields

J+
i Ji ei+1 = −

1∫
0

J+
i (J(xi + t(x∗ − xi))− Ji) ei dt − J+

i Ji (J+
i − J+

∗ )R∗ − J+
i ri .

Taking the Euclidean norm ofJ+
i Ji ei+1 yields

‖J+
i Ji ei+1‖2 ≤

1∫
0

‖J+
i (J(xi + t(x∗ − xi))− Ji) ei ‖2 dt

+ ‖J+
i Ji (J+

i − J+
∗ ) R∗ ‖2 + ‖J+

i ri‖2 .

With (3.2.5), (3.2.6), and (3.2.8) we obtain

‖J+
i Ji ei+1‖2 ≤ %

2 ‖J
+
i Ji ei‖22 + (χ+ η) ‖J+

i Ji ei‖2

≤
(%

2 ‖J
+
i Ji‖2 ‖ei‖2 + χ+ η

)
‖J+

i Ji ei‖2 .

Since by assumptionxi converges tox∗ there existsi0 = i0(ε) such thatxi ∈ N(x∗, ε) for all

i > i0 . Because‖J+
i Ji‖2 = 1 we have fori > i0

‖J+
i Ji ei+1‖2 ≤

(%ε
2 + χ+ η

)
‖J+

i Ji ei‖2
= c ‖J+

i Ji ei‖2

such that (3.2.9) and (3.2.10) are proved. �
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Note that the Gauss–Newton sequence (3.2.7) is invariant under unitary transformations of the

residual vectorR(x), i.e. the sequence generated according to formula (3.2.7) is the same if it is

applied toUR(x), with U ∈ IRm×m is a unitary matrix, or toR(x). This follows from (see for

instance Ben–Israel, Greville [6, Exercise 17(d)] for the validity of the equalityA+ = (ATA)+AT

for an arbitrary matrixA ∈ IRm×n):

((U R)′(x))+ = (U J(x))+

=
(
(U J(x))T (U J(x))

)+ (U J(x))T

=
(
J(x)TUTU J(x)

)+
J(x)TUT

=
(
J(x)TJ(x)

)+
J(x)TUT

= J(x)+UT

for all x ∈ Ω and any unitary matrixU ∈ IRm×m (see for instance [30]). Thus,

(U J(x))+U R(x) = J(x)+UTU R(x) = J(x)+R(x)

and forz ∈ IRn

(I − (U J(x))+U J(x)) z = (I − J(x)+UTU J(x)) z = (I − J(x)+J(x)) z .

Furthermore, for the residualr̄i of the linear least–squares problem

Minimize 1
2 ‖U J(xi) δx+ U R(xi)‖22 , δx ∈ IRn

when solved with the modified preconditioned conjugate gradient method 2.2.2 holds

r̄i = U J(xi)δxi + U R(xi) = U (J(xi)δxi +R(xi)) = U ri

such that

(U J(xi))+r̄i = J(xi)+UTU ri = J(xi)+ri .

Hence, any unitary transformation of the residual vectorR(x) will not affect the convergence

or divergence of the inexact Gauss–Newton sequence. This is reflected also by Theorem 3.2.1 since

the assumptions and the statements in Theorem 3.2.1 remain unaltered, whenR(x) is replaced

by U R(x) for any unitary matrixU ∈ IRm×m. Thus, Theorem 3.2.1 is invariant under unitary

transformations. This characteristic will also be valid for the other theorems and corollaries in this

section.

Since theq–linear convergence of the inexact Gauss–Newton sequence (3.2.7) in Theorem 3.2.1

is obtained only on the orthogonal complement of the null space of the Jacobian, it is natural that the

conditions on the residual vectorR(x) and the residualsri of the linear least–squares problems are

also restricted to this linear subspace. Note that this argument is considered in the Assumptions

3.2.1, 3.2.2, and (3.2.8) by the projection of both sides of each of these inequalities onto the

orthogonal complement of the null space of the JacobianJ(xi). Without these projections,

Assumptions 3.2.1 and 3.2.2 are similar to those given, for instance, by Deuflhard and Heindl [30]

or Bock [10], evaluated atx = x∗.
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Furthermore, the constantχ in Assumption 3.2.2 plays a crucial role in Theorem 3.2.1 since

χ must be less than1 to guarantee convergence of the sequence (3.2.7). Using the critical point

condition ofx∗, i.e.J(x∗)TR(x∗) = J(x∗)+R(x∗) = 0 and the identityJ(x)+ = J(x)+J(x) J(x)+

the left side in inequality (3.2.6) reduces to

‖J(x)+J(x) (J(x)+ − J(x∗)+) R(x∗)‖2
= ‖J(x)+J(x) J(x)+R(x∗)− J(x)+J(x) J(x∗)+R(x∗)‖2

= ‖J(x)+R(x∗)‖2

Thus, as one would expect, Theorem 3.2.1 also includes some kind of small residual condition on

the residual vectorR(x) at the solutionx∗ (see also Deuflhard and Apostolescu [29]). Moreover,

the following equality holds for the left side in inequality (3.2.6):

‖J(x)+J(x) (J(x)+ − J(x∗)+) R(x∗)‖2 = ‖J(x)+R(x∗)‖2

= ‖ (J(x)+ − J(x∗)+) R(x∗)‖2

This shows that Assumption 3.2.2 also can be interpreted as a combined measure of the continuity

of the Moore–Penrose inverse of the JacobianJ(x) and on the size of the residual vectorR(x) at

the solutionx∗. Hence, if the Lipschitz constant of the Moore–Penrose inverse ofJ(x) in a convex

neighborhood of the solutionx∗ is very small than Theorem 3.2.1 also holds for residual functions

R(x) with a larger size of the residual at the solutionx∗. If the residual functionR(x) is linear, the

size of the residual is even irrelevant for the convergence of the Gauss–Newton method. However,

note that a necessary condition for the continuity of the Moore–Penrose inverse of the Jacobian is

a constant rank of the JacobianJ(x) for all x in the specific neighborhood of the solutionx∗ (see

for instance Björck [7, Corollary 1.4.1]). Furthermore, Theorem 3.2.1 points out that the inexact

Gauss–Newton sequence (3.2.7) does not converge at all if one of these quantities is too large.

Inequality (3.2.8) in Theorem 3.2.1 controls the size of the residual of the linearized Gauss–

Newton subproblems. Note that (see for instance [6, Exercise 17(d)])

‖J(xi)+ri‖2 = ‖
(
J(xi)TJ(xi)

)+
J(xi)T ri‖2

≤ ‖
(
J(xi)TJ(xi)

)+ ‖2 ‖J(xi)T ri‖2

= ‖
(
J(xi)TJ(xi)

)
‖−1
2 ‖J(xi)T ri‖2

whereJ(xi)T ri = J(xi)T (J(xi) δxi +R(xi)) is the error made in the solution of the linearized

problem if for instance an iterative method is used for the solution of this problem. Therefore,

condition (3.2.8) can be interpreted as a relative measure on the size of the error in the solution of

the linearized problem in connection with the smallest singular value of the JacobianJ(xi).
If the nonlinear least–squares problem is a zero residual problem, i.e.R(x∗) = 0, it follows

from Assumption 3.2.2 that the constantχ in (3.2.6) is equal zero. If, in addition,ηi satisfies a

proper bound, then the following corollary is a direct consequence of Theorem 3.2.1.
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Corollary 3.2.2 Let the assumptions of Theorem 3.2.1 be satisfied. IfR(x∗) = 0 andηi in (3.2.8)

satisfies

ηi ≤ γ ‖J(xi)+J(xi) (xi − x∗) ‖2 ,

then there existsε > 0 such that the sequence{xi} satisfies eitherJ(xi)TR(xi) = 0 for some

finite i or

‖J(xi)+J(xi) (xi+1 − x∗)‖2 ≤
(%

2 + γ
)
‖J(xi)+J(xi) (xi − x∗)‖22 .

3.2.4 Local q–Convergence Analysis of the Inexact Gauss–Newton Iteration
Generated by the Proposed Algorithm

It is well known that the solution generated by the conjugate gradient method is the norm minimal

solution to the linear least–squares problem if only the starting elementδx0 is zero (see e.g. Hestenes

[54, Section 4], [55, p. 296]). Hence, if we setzi = 0 for i ∈ IN in (3.2.7) then the sequence (3.2.7)

of Theorem 3.2.1 corresponds to the sequence generated by the Inexact Gauss–Newton Algorithm

2.2.3. Hence, from Theorem 3.2.1 follows the next corollary.

Corollary 3.2.3 Let the assumptions of Theorem 3.2.1 be satisfied. Furthermore let the sequence

xi+1 = xi − J(xi)+R(xi)− J(xi)+ri , (3.2.11)

with x0 ∈ IRn converge to a solutionx∗ ∈ Ω with J(x∗)TR(x∗) = 0 .
Then there existsε > 0 such thatc := %ε

2 + χ + η < 1 and the sequence{xi} satisfies either

J(xi)TR(xi) = 0 for some finitei or

‖J(xi)+J(xi) (xi+1 − x∗)‖2 ≤

%
2 ‖J(xi)+J(xi) (xi − x∗)‖22 + (χ+ η) ‖J(xi)+J(xi) (xi − x∗)‖2

(3.2.12)

and

‖J(xi)+J(xi) (xi+1 − x∗)‖2 ≤ c ‖J(xi)+J(xi) (xi − x∗)‖2 (3.2.13)

for sufficiently largei.

3.2.5 Local q–Convergence Analysis of the Inexact Gauss–Newton Iteration for
Overdetermined Problems

In the case thatn ≤ m and rankJ(x∗) = n the Moore–Penrose inverse ofJ(xi) is given by

J(xi)+ = (J(xi)TJ(xi))−1J(xi)T

for xi ∈ N(x∗ , ε1). Then the orthogonal projection on the range space ofJ(xi)T satisfies

J(xi)+J(xi) = I, and thus, Assumptions 3.2.1 and 3.2.2 change to:
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Assumption 3.2.3 Let a real constant% ≥ 0 be given with

‖J(x)+(J(x+ t(x∗ − x))− J(x))(x− x∗)‖2 ≤ % t ‖x− x∗‖22 , t ∈ [0 , 1], (3.2.14)

for all x in a setΩ.

Assumption 3.2.4 Let a real constantχ ≥ 0 be given with

‖(J(x)+ − J(x∗)+)R(x∗)‖2 ≤ χ ‖x− x∗‖2 (3.2.15)

for all x in a setΩ.

Hence for overdetermined problems, we obtain the following corollary:

Corollary 3.2.4 LetR : IRn → IRm with n ≤ m be continuously differentiable on an open and

convex setΩ ⊂ IRn. Assume that there exists a solutionx∗ ∈ Ω with J(x∗)TR(x∗) = 0 and

rankJ(x∗) = n . Let the Assumptions 3.2.3 and 3.2.4 be satisfied for allx ∈ Ω . Assume that

χ < 1 .
Then there existsε, η > 0 such thatc := %ε

2 + η + χ < 1 and for allx0 ∈ N(x∗ , ε) the sequence

xi+1 = xi − (J(xi)TJ(xi))−1J(xi)T (R(xi) + ri)

with

‖J(xi)+ri‖2 ≤ ηi ‖xi − x∗‖2, 0 ≤ ηi ≤ η ,

either satisfiesJ(xi)TR(xi) = 0 for some finitei or converges tox∗ and

‖xi+1 − x∗‖2 ≤ %
2 ‖xi − x∗‖22 + (χ+ η) ‖xi − x∗‖2 ≤ c ‖xi − x∗‖2 .

Thus, in the full rank case withn ≤ m, Theorem 3.2.1 specializes to known results (see for

instance Dennis and Schnabel [25, Theorem 10.2.1], Häußler [50, Theorem 2.1] ).

Furthermore, note that in the overdetermined, full rank case Assumptions 3.2.1 and 3.2.3 are

identical to the assumptions of Theorem 2.1 of Häußler in [50] which examines theq–linear

convergence of the Gauss–Newton sequence with unitary invariant assumptions. Note that the

convergence theorem by Dennis and Schnabel is not invariant under unitary transformations so that

their conditions on the residual vectorR(x) are slightly different.

Moreover, Conn, Gould, and Toint show in [18, Theorem 16.1.4] that for overdetermined

problems the trust–region constraint in the Inexact Gauss–Newton Algorithm 2.2.3 is asymptotically

inactive and that the trust–region radius∆i is bounded away from zero if the residual vectorR(x)
at the solutionx∗ is zero and its JacobianJ(x∗) has full column rank. Since

‖J(xi)+ri‖2 = ‖(J(xi)TJ(xi))−1J(xi)T ri‖2
≤ ‖(J(xi)TJ(xi))‖−1

2 ‖J(xi)T ri‖2

in this case the size of the error toleranceηi is determined by the relative errorξi in the Modified

Preconditioned Conjugate Gradient Method 2.2.2 (see Step 9 of this algorithm) and by the smallest

eigenvalue ofJ(xi)TJ(xi) for i sufficiently large.
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3.2.6 Local q–Convergence Analysis of a Specific Inexact Gauss–Newton Iteration

In (3.2.10), the convergence rate is established for a sequence of projected iterates. For a particular

sequence{xi}∞i=0, which is generated with a specific solutionδxi ∈ S̃i of (3.2.2), theq–linear

convergence of the iterates without projection to a local solution of the nonlinear least–squares

problem can be shown. However, one should note that this sequence can only be chosen

theoretically. For the update of the iterates we need information about the distance of the current

iteratexi to the solutionx∗ which is usually unknown.

Theorem 3.2.5 Let R : IRn → IRm be continuously differentiable on an open and convex set

Ω ⊂ IRn. Assume that there exists a solutionx∗ ∈ Ω with J(x∗)TR(x∗) = 0 . Let the Assumptions

3.2.3 and 3.2.4 be satisfied for allx ∈ Ω . Assume thatχ < 1 .
Then, there existsε > 0 such thatc := %ε

2 + η + χ < 1 and for allx0 ∈ N(x∗ , ε) the sequence

xi+1 = xi − J(xi)+R(xi)− (I − J(xi)+J(xi)) (xi − x∗)− J(xi)+ri (3.2.16)

with

‖J(xi)+ri‖2 ≤ ηi ‖xi − x∗‖2, 0 ≤ ηi ≤ η , (3.2.17)

either satisfiesJ(xi)TR(xi) = 0 for some finitei or converges tox∗ and

‖xi+1 − x∗‖2 ≤ %
2 ‖xi − x∗‖22 + (χ+ η) ‖xi − x∗‖2 (3.2.18)

and

‖xi+1 − x∗‖2 ≤ c ‖xi − x∗‖2 . (3.2.19)

Proof: The proof is similar to that for Theorem 3.2.1, and hence, the statements (3.2.18) and (3.2.19)

are also proved by induction. Letei , Ri , Ji , J
+
i be defined like in the proof of Theorem 3.2.1 and

chooseε so small thatN(x∗ , ε) ⊂ Ω and %ε
2 + η + χ < 1.

Because of the identityN (JT
∗ ) = N (J+

∗ ) andJ(x∗)TR(x∗) = 0

ei+1 = ei − J+
i Ri − (I − J+

i Ji)ei − J+
i ri

= −J+
i (Ri −R∗ − Jiei)− (J+

i − J+
∗ )R∗ − J+

i ri .

Applying the mean value theorem and taking the Euclidean norm ofei+1, we obtain

‖ei+1‖2 ≤
1∫

0

‖J+
i (J(xi + t(x∗ − xi))− Ji) ei‖2 dt+ ‖(J+

i − J+
∗ ) R∗‖2 + ‖J+

i ri‖2 .

With (3.2.14), (3.2.15), and (3.2.17), we obtain

‖ei+1‖2 ≤ % ‖ei‖22

1∫
0

t dt+ χ ‖ei‖2 + η ‖ei‖2

= %
2 ‖ei‖

2
2 + (χ+ η) ‖ei‖2 ,
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which proves (3.2.18). Since‖ei‖2 ≤ ci ‖e0‖2 < ε, we have

‖ei+1‖2 ≤ (%ε
2 + χ+ η) ‖ei‖2 = c ‖ei‖2 ,

such that (3.2.19) also holds. �

In the case of a zero residual problem, i.e.R(x∗) = 0, we again obtain theq–quadratic

convergence of the sequence (3.2.16) to the solutionx∗ if ηi for i ∈ IN is sufficiently small.



Chapter 4

Forecasting with Neural Networks

After we have presented the algorithm and its convergence behavior, in the following two chapters

we apply the Inexact Gauss–Newton Algorithm 2.2.3 on nonlinear least–squares problems arising

from two different applications. In this chapter, we apply the inexact Gauss–Newton method on

the nonlinear least–squares problem resulting from the formulation of the training process of neural

networks. Furthermore, we examine the application of neural networks in financial forecasting.

We start this chapter by describing the structure of neural networks and their training process

in Section 4.1. In the following Section 4.2, we present subroutines for the evaluation of the

Jacobian and its transpose multiplied with a vector without storing the Jacobian explicitly. These two

evaluations are necessary in the modified conjugate gradient method which is used for the solution

of the Gauss–Newton subproblems in Algorithm 2.2.3. The solution of the nonlinear least–squares

problem corresponds to the training process of the neural network which carries out the adaption

of the neural network to the examined system. An often mentioned deficiency of neural networks

is that the knowledge of neural networks of the examined system can not be extracted. However,

in Section 4.3, we show how the sensitivity of the output of the neural network can be determined

concerning small changes of the different input data. This gives at least some information on the

influence of each of the input data on the output of the neural network. Finally, in Section 4.4, the

application of neural networks in forecasting the German stock index DAX are discussed together

with some numerical results.

4.1 Description of Neural Networks

Neural networks are information processing systems which orientate themselves by the structure

and the functioning of the human brain. However, we do not claim to reproduce the brain but the

natural model is to serve as a reference point, i.e. the special ability of learning capacity as well as

the capability of pattern recognition should be obtained [19]. Neural networks are composed of a

large number of uniform processing units. These processing units are the basic elements in a neural

network and are called the neurons.

In a neuron the information are processed according the following procedure, see also Figure

4.1. The incoming information (these are the inputs in Figure 4.1) into a neuron are combined

43
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OutputInputs

ȳ = σ(netin+ θ)
y3

W4

W2

W1
y1

y2

y4

W3

netin =
4∑

j=1

Wjyj

FIGURE 4.1: The structure of a neuron

by weighting each of the inputs and, subsequently, adding them up, i.e. building the valuenetin

in Figure 4.1. The decision whether this neuron gives a signal to the other neurons is based on a

comparison of the linear combination of the inputs with the bias, also known as the threshold, of the

neuron (which corresponds to the valueθ in Figure 4.1). If the sum of the linear combination of the

inputsnetin and the biasθ is larger than zero the neuron sends a signal to the other neurons, in the

opposite case it does not. This decision process of the neuron is modelled by a sigmoidal function

[109].

0

0.5

1

FIGURE 4.2: Heaviside functionσH(netin + θ)

0

0.5

1

FIGURE 4.3: Logistic functionσL(netin + θ)

with k = 1 (see (4.1.1))

A yes/no statement could be described by the Heaviside function (the unit step function), see

Figure 4.2,

σH(r) =

{
1 : r ≥ 0

0 : r < 0

However, the Heaviside function is not differentiable atr = 0 so we approximate this function by the

differentiable logistic functionσL, see (4.1.1). The function that models the decision process of the

neuron, is also called the transfer or activation function. Hence, the output of the neuron is generated

by transmitting the sum of the linear combination of the inputs and the bias, i.e.(netin+θ), through
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the transfer or activation functionσL. The output or response of the neuron is known as the activation

value, or in short, the activation of the neuron [39].

In a neural network these neurons are arranged in different layers (see Figure 4.4). The first

layer serves as the input layer which is fed with some given information. The neurons in this layer

(which are also called the source nodes, see [51]) only make the different information available to the

neural network but do not yet process the information. This takes place in the following layers, the

hidden layers of the neural network. The neurons in these layers process the information according

to the procedure described in the previous paragraph. Thus, only the insertion of the hidden layers

enables one to represent interactions between the inputs; and, hence, allows the network to also

model more complicated systems [39]. A neural network without a hidden layer is only able to map

linear relations of the values in the input layer [39]. The neurons in the final layer, the output layer,

of the neural network process the information for a last time; and, finally, generate the outputs of the

network.
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FIGURE 4.4: 3–4–2–feed–forward net

There exists a variety of different types of neural network architectures. For an overview see for

instance [78, Section 17.3]. In our examinations, we restrict our attention to feed–forward networks

(see Figure 4.4). These are networks which propagate the information through the network in a

forward direction, on a layer–by–layer basis [51]. Thus, in these networks only the neurons in

consecutive layers are connected. Finally, we suppose that the networks are fully connected, i.e. a

neuron in any layer of the network is connected to all the nodes/neurons in the previous layer [51].

In order to define a neural network in mathematical terms we introduce the following notation:

l + 1 number of layers,

nk number of neurons in layerk,

θk
i bias or threshold of neuroni in layerk,

yk
i activation value of neuroni in layerk,

W k
ij weight from neuronj in layerk − 1 to neuroni in layerk.
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In the following we set

θk =
(
θk
1 , . . . , θ

k
nk

)T
, k = 1, . . . , l ,

yk =
(
yk
1 , . . . , y

k
nk

)T
, k = 0, . . . , l ,

W k =
(
W k

1 , . . . ,W
k
nk−1

)
, k = 1, . . . , l ,

with W k
j = (W k

1,j , . . . ,W
k
nk,j)

T , j = 1, . . . , nk−1, such that these variables have the following

dimensions
θk ∈ IRnk , k = 1, . . . , l ,

yk ∈ IRnk , k = 0, . . . , l ,

W k ∈ IRnk×nk−1 , k = 1, . . . , l .

Let σL : IR → [0, 1] be the activation function modelling the decision process of each of the

neurons, e.g. the logistic function

σL(r) =
1

1 + e−kr
. (4.1.1)

Then the activation valueyk
i , which depends on the weights of the connections to the lower layer

k − 1, the activation values of the neurons in the previous layerk − 1 and the biasθk
i , is computed

by

yk
i = σL(

nk−1∑
j=1

W k
ij y

k−1
j + θk

i ) , i = 1, . . . , nk, k = 1, . . . , l .

Using matrix notation this can be rewritten in a more compact form with

σ : IRnk → IRnk , σ(x) := (σL(x1), . . . , σL(xnk
))T

as follows

yk = σ(W k yk−1 + θk) , k = 1, . . . , l . (4.1.2)

Note that theyk are defined recursively

yk = σ(W kyk−1 + θk) = σ(W k σ(W k−1yk−2 + θk−1) + θk)

= σ(W k σ(W k−1 . . . σ(W 1y0 + θ1) . . .+ θk−1) + θk) .
(4.1.3)

Thus, a neural network can also be viewed as a discretized dynamical system where the initial value

y0 is given.

The representation of the activation of the neurons in (4.1.3) shows that the output of the neural

network, i.e. the activation value of the neurons in layerl, depends on the weight matrices

W 1, . . . ,W l, the bias vectorsθ1, . . . , θl, and the initial valuey0, which we express in the following

by using the notationyl = yl(w; y0) with w defined as in (4.1.5). Thus, the knowledge of a neural

network is distributed among the weight matricesW 1, . . . ,W l and the bias vectorsθ1, . . . , θl [19].

Therefore, the adaption of a neural network to a certain problem structure is carried out by adjusting

these weights and biases. This will be done by presenting the network appropriate examples of

input–output patterns of the examined system. Let various inputstp and corresponding outputssp,
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p = 1, . . . , P , be given. Then, in order to learn to emulate the behavior of the system the weights

W k andθk, k = 1, . . . , l, have to be determined, depending on these inputstp in such a way that the

output of the neural networkyl(w; tp) of (4.1.3) is close to the prescribed outputssp, p = 1, . . . , P .

The closeness is described by a cost function, for example, the squared error of the neural network

output with regard to the target output [39]. During the adaption of the weights, the neural network

finds conformities in the presented data and maps them into its weight structure. Thus, the neural

network is able to implicitly map also unknown linear and nonlinear cause/effect relations such that

they are predestinated for problem classes where explicit modelling is not possible [19].

The process of the adaption of the weights is called the training of the neural network and leads

to the following optimization problem

Optimization Problem (NN)

Given patternstp ∈ IRn0 , sp ∈ IRnl , p = 1, . . . , P .

Findw = (W 1, . . . ,W l, θ1, . . . , θl), such that
P∑

p=1

1
2
‖yl(w; tp)− sp‖22 is minimized.

This is a nonlinear least squares problem with a total of

n0n1 + n1n2 + . . .+ nl−1nl + n1 + . . .+ nl

variables. Defining the map (cf. (4.1.6) forn andm)

R : IRn → IRm, R(w) = yl(w)− s (4.1.4)

with
yl(w) = (yl(w; t1), . . . , yl(w; tP )) ∈ IRm ,

s = (s1, . . . , sP ) ∈ IRm ,

w = (W 1, . . . ,W l, θ1, . . . , θl) ∈ IRn ,

(4.1.5)

and

m = P nl, n = n0n1 + n1n2 + . . .+ nl−1nl + n1 + . . .+ nl , (4.1.6)

we can use the Euclidean norm inIRm to rewrite the problem in a more compact way as

Minimize φ(w) =
1
2
‖R(w)‖22 , w ∈ IRn . (4.1.7)

When neural networks are applied to problems in finance, like forecasting stock or index values,

usually the number of patterns(tp, sp) available to train the network is much smaller than would be

needed to specify the associated dynamical system (e.g. Zimmermann [109]). Thus the number of

unknown weights and bias is often much larger than the number of training patterns, which means

thatn� m.
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For the adaption of the weights, i.e. for the solution of the optimization problem (4.1.7), a

so–called “learning algorithm” is used. The classical algorithm for training feed–forward neural

networks is the backpropagation algorithm which was popularized through the publication by

Rumelhart, Hinton and Williams [89]. This is a gradient–type method, for which convergence is

guaranteed by applying appropriate rules for the computation of the step size along the negative

gradient direction, see e.g. Grippo [47], Mangasarian and Solodov [71]. In this research we use a

different approach, and that is the Inexact Gauss–Newton Method 2.2.3 presented in Chapter 2 (see

Subsection 4.4.4 for a comparison of these two algorithms). In this algorithm in every iteration, we

solve the constrained linear least–squares problems

Minimize 1
2 ‖R(w) + J(w) δw‖22 subject to ‖δw‖2 ≤ ∆

with the Modified Conjugate Gradient Method 2.2.2 which requires the evaluation ofJ(w) δw as

well asJ(w)T δy. In the next section, we show how both of these matrix–vector products can be

computed without knowingJ(w) explicitly.

4.2 Evaluation of the Jacobian

We start this section with showing how the evaluation ofJ(w) δw can be achieved without saving

the matrixJ(w).
The main aspects in the derivation of this subroutine is the recursive definition of the activation

valuesyk, k = 1, . . . , l, in (4.1.3) and the use of the implicit function theorem. Let the function

e(y, w) be defined by

e(y, w) = (e11(y, w), . . . , e1P (y, w), . . . , el1(y, w), . . . , elP (y, w))T

with
y = (y1, . . . , yl) ∈ IRm̃ ,

yk = (yk
1 . . . , y

k
P ) ∈ IRPnk ,

w = (W 1, . . . ,W l, θ1, . . . , θl) ∈ IRn ,

(4.2.1)

yk
p is the activation of the neurons in layerk with input datatp, and

ekp(y, w) = yk
p − σ(W k yk−1

p + θk), k = 2, . . . , l, p = 1, . . . , P ,

e1p(y, w) = y1
p − σ(W 1 tp + θ1), p = 1, . . . , P ,

where

m̃ = P (n1 + . . .+ nl), n = n0n1 + n1n2 + . . .+ nl−1nl + n1 + . . .+ nl . (4.2.2)

In order to apply the implicit function theorem toe(y, w) = 0, we have to ensure that

e : IRn+m̃ → IRm̃ is continuously differentiable onIRn+m̃ and that for eachw ∈ IRn there
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exists an uniquey ∈ IRm̃ with e(y, w) = 0. Furthermore,ey(y, w) has to be invertible for all

(y, w) ∈ IRn+m̃.

In our case the continuous differentiability ofe(y, w) follows from the continuous

differentiability of σL and the unique solvability iny for a givenw is trivial because of the

iterative process (4.1.3) for computingy. The invertibility ofey can be seen as follows. Assume that

for someη ∈ IRm̃ we haveey(y, w) η = 0. This means

ηk
p − σ′(W kyk−1

p + θk)W kηk−1
p = 0, k = 2, . . . , l , and η1

p = 0 , p = 1, . . . , P .

From these equations we deduceη = 0. Since the assumptions of the implicit function theorem are

satisfied bye(y, w), it follows that there exists an unique continuous mapping

y : IRn → IRm̄

which is defined by

e(y(w), w) = 0 , for all w ∈ IRn ,

and, furthermore,y(·) is continuously differentiable and its derivative is given by

y′(w) = −ey(y(w), w)−1ew(y(w), w) , for all w ∈ IRn. (4.2.3)

Note, that the lastPnl rows ofy′(w) are justJ(w), i.e.J(w) = (yl)′(w), sincesp, p = 1, . . . , P ,

in the definition ofR(w) (see (4.1.4)) do not depend onw.

Although the number of variables is very large, each componentekp of e depends only on a

rather small number of variables, i.e. the Jacobian ofe is sparse. Especially, the partial derivative of

ewith respect toy has a nice structure. Sinceekp(y, w) only depends onyk−1
p andyk−1

p the derivative

ey(y(w), w) is a lower triangular matrix with identity matrices on the diagonal. Hence for obtaining

the derivative of the activation of the neurons in the last layer with respect tow we just have to solve

a triangular system of linear equations.

This aspect leads to the recursive computation of the matrix vector productJ(w) δw.

Lemma 4.2.1 Let w = (W 1, . . . ,W l, θ1, . . . , θl), δw = (δW 1, . . . , δW l, δθ1, . . . , δθl) ∈ IRn

and

yk
p = yk(w; tp) = σ(W k σ(W k−1 . . . σ(W 1tp + θ1) . . .+ θk−1) + θk) , p = 1, . . . , P ,

with tp = y0
p. Set

vk
p :=

k∑
j=1

(
∂yk

p

∂W j
δW j +

∂yk
p

∂θj
δθj

)
∈ IRnk , k = 1, . . . , l .

Then

J(w) δw = vl =
(
vl
1, . . . , v

l
P

)T
∈ IRPnl (4.2.4)
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can be computed recursively by

vk+1
p = σ′(W k+1yk

p + θk+1)
(
δW k+1yk

p + δθk+1 +W k+1vk
p

)
(4.2.5)

for k = 1, . . . , l − 1 andp = 1, . . . , P , where

v1
p = σ′(W 1tp + θ1)

(
δW 1tp + δθ1

)
, p = 1, . . . , P.

Proof: The proof follows by induction overk. First we derive the partial derivatives ofyk. Sinceyk

depends only onyk−1 andwk = (W k, θk), an application of the chain rule yields

∂yl
p

∂wk
=

∂yl
p

∂yl−1
p

· · ·
∂yk+1

p

∂yk
p

·
∂yk

p

∂wk
.

Furthermore forδW k ∈ IRnk×nk−1

∂yk
p

∂yk−1
p

= σ′(W kyk−1
p + θk)W k ∈ IRnk×nk−1 ,

∂yk
p

∂W k
δW k = σ′(W kyk−1

p + θk) δW k yk−1
p ∈ IRnk ,

∂yk
p

∂θk
= σ′(W kyk−1

p + θk) ∈ IRnk×nk .

Fork = 1, . . . , l with y0
p = tp we obtain

∂yl
p

∂θk
= σ′(W lyl−1

p + θl) W l · · · σ′(W k+1yk
p + θk+1) W k+1σ′(W kyk−1

p + θk) ,

∂yl
p

∂W k
δW k = σ′(W lyl−1

p + θl) W l · · · σ′(W k+1yk
p + θk+1) W k+1 ·

· σ′(W kyk−1
p + θk) δW k yk−1

p .

For the first step of the induction (k = 1), we obtain from the definition (4.1.3)

v1
p =

∂y1
p

∂W 1
δW 1 +

∂y1
p

∂θ1
δθ1

= σ′(W 1tp + θ1)
(
δW 1tp + δθ1

)
.

To carry out one step of the induction argument note thatvk+1
p , k = 1, . . . , l − 1, can be rewritten
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as follows

vk+1
p =

k+1∑
j=1

(
∂yk+1

p

∂W j
δW j +

∂yk+1
p

∂θj
δθj

)

=
k+1∑
j=1

σ′(W k+1yk
p + θk+1) W k+1 · · · σ′(W j+1yj

p + θj+1) W j+1 ·

· σ′(W jyj−1
p + θj)

(
δW jyj−1

p + δθj
)

= σ′(W k+1yk
p + θk+1)

(
δW k+1yk

p + δθk+1
)

+ σ′(W k+1yk
p + θk+1) W k+1 ·

·
k∑

j=1

σ′(W kyk−1
p + θk) W k · · · σ′(W j+1yj

p + θj+1) W j+1 ·

· σ′(W jyj−1
p + θj)

(
δW jyj−1

p + δθj
)

= σ′(W k+1yk
p + θk+1)

(
δW k+1yk

p + δθk+1 +W k+1vk
p

)
.

�

For the computation ofvk+1
p are 3nk+1nk multiplications andnk+1 evaluations ofσ′L,

k = 1, . . . , l − 1, p = 1, . . . , P , necessary. Furthermore, the computation ofv1
p requires2n1n0

multiplications andn1 evaluations ofσ′L, p = 1, . . . , P . Thus, the computational effort of one

evaluation ofJ(w) δw is

# multiplications P (2n0n1 + 3(n1n2 + . . .+ nl−1nl))

# evaluations ofσ′L P (n1 + . . .+ nl)
(4.2.6)

Note, that we have not considered the effort for the recursive computation ofyk
p in this list, yet.

The following lemma shows how the evaluation ofJ(w)T δy can be done without storing the

matrixJ(w)T . This result follows also from the representation ofy′(w) in (4.2.3) and from Lemma

4.2.1. From (4.2.3) follows that

y′(w) δw = −ey(y(w), w)−1ew(y(w), w) δw .

Thus, (
J(w)T δy

)T
δw =

(
(yl)′(w)T δy

)T
δw

=
(
y′(w)T δy

)T
δw

= δy
T
y′(w) δw

= −δyT
ey(y(w), w)−1 ew(y(w), w) δw

with δy = (0, . . . , 0, δy)T and

y′(w)T δy = −ew(y(w), w)T µ , where ey(y(w), w)T µ = δy .

Sinceey(y(w), w)T is an upper triangular matrix, the linear systemey(y(w), w)T µ = δy is solved

backwards forµ.
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Lemma 4.2.2 Letw = (W 1, . . . ,W l, θ1, . . . , θl) ∈ IRn andδy = (δy1, . . . , δyP ) ∈ IRPnl . Set for

p = 1, . . . , P

µl
p = δyp ∈ IRnl

µk
p = (W k+1)Tσ′(W k+1yk

p + θk+1)µk+1
p ∈ IRnk , k = l − 1, l − 2, . . . , 1.

(4.2.7)

Then

J(w)T δy = w̄ = (W̄ 1, . . . , W̄ l, θ̄1, . . . , θ̄l) ∈ IRn (4.2.8)

can be computed by

θ̄k =
P∑

p=1

σ′(W kyk−1
p + θk)µk

p , k = 1, . . . , l

W̄ k =
P∑

p=1

σ′(W kyk−1
p + θk)µk

p(y
k−1
p )T , k = 1, . . . , l

(4.2.9)

with y0
p = tp.

Proof: For arbitraryδw ∈ IRn, we have according to Lemma 4.2.1 and (4.2.4), (4.2.7), (4.2.8) with

µl = (µl
1, . . . , µ

l
P ) ∈ IRPnl

w̄T δw = δyTJ(w)δw = δyT vl = (µl)T vl (4.2.10)

Fork = l, . . . , 2 we obtain with (4.2.7) and Lemma 4.2.1

(µk)T vk =
P∑

p=1

(
(σ′(W kyk−1

p + θk)µk
p)

T (δW kyk−1
p + δθk)

+ ((W k)Tσ′(W kyk−1
p + θk)µk

p)
T vk−1

p

)
= (µk−1)T vk−1 +

P∑
p=1

((σ′(W kyk−1
p + θk)µk

p)
T (δW kyk−1

p + δθk)) (4.2.11)

(µ1)T v1 =
P∑

p=1

(µ1
p)

T (σ′(W 1tp + θ1)(δW 1tp + δθ1))

=
P∑

p=1

(
(σ′(W 1tp + θ1)µ1

p)
T δW 1tp + (σ′(W 1tp + θ1)µ1

p)
T δθ1

)
.

Using (4.2.10) and substituting recursively into (4.2.11) yields

w̄T δw = (µl)T vl

=
l∑

k=2

P∑
p=1

(
(σ′(W kyk−1

p + θk)µk
p)

T δW kyk−1
p

+ (σ′(W kyk−1
p + θk)µk

p)
T δθk

)
+

P∑
p=1

((σ′(W 1tp + θ1)µ1
p)

T δW 1tp + (σ′(W 1tp + θ1)µ1
p)

T δθ1).
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Because ofδw = (δW 1, . . . , δW l, δθ1, . . . , δθl) andy0
p = tp we obtain

θ̄k =
P∑

p=1

σ′(W kyk−1
p + θk)µk

p , k = 1, . . . , l,

W̄ k =
P∑

p=1

σ′(W kyk−1
p + θk)µk

p(y
k−1
p )T , k = 1, . . . , l.

The last equation follows from

(W̄ k)T δW k =
P∑

p=1

(σ′(W kyk−1
p + θk)µk

p)
T δW kyk−1

p

=
P∑

p=1

tr (yk−1
p (σ′(W kyk−1

p + θk)µk
p)

T δW k)

=
P∑

p=1

nk−1∑
i=1

nk∑
j=1

(yk−1
p )i((σ′(W kyk−1

p + θk)µk
p)

T )j(δW k)j,i,

which completes the proof. �

The steps of the subroutine for computingJ(w)T δy are very similar to the computation of the

gradient by the backpropagation algorithm which is essentially the reverse differentiation technique

in automatic differentiation, see Saarinen, Bramely, and Cybenko [90].

For the computation ofµp
k in (4.2.7) are2nk+1nk +nk+1 multiplications andnk+1 evaluations

of σ′L necessary,k = 1, . . . , l − 1, p = 1, . . . , P . Furthermore, the computation of one part

of the sum ofW̄ k requires2nknk−1 + nk multiplications andnk evaluations ofσ′L. Since the

sum is built over all the training patterns, the computational effort for the determination ofW̄ k

is P (2nknk−1 + nk) multiplications andPnk evaluations ofσ′L, k = 1, . . . , l. Note that the

determination of̄θk does not require further multiplications or evaluations ofσ′L since the terms

in the sum forθ̄k also have to be calculated for the determination ofW̄ k. Thus, the effort for one

computation ofJ(w)T δy consists of

# multiplications P (2n0n1 + 4(n1n2 + . . .+ nl−1nl)

+n1 + 2(n2 + . . .+ nl))

# evaluations ofσ′L P (n1 + 2(n2 + . . .+ nl))

(4.2.12)

Moreover, for the evaluation ofJ(w) δw as well asJ(w)T δy it is necessary to determine the

activationyk
p in (4.1.3). The effort for this computation is

# multiplications P (n0n1 + . . .+ nl−1nl)

# evaluations ofσL P (n1 + . . .+ nl)
(4.2.13)

Additionally to the evaluation ofJ(w) δw and J(w)T δy in each iteration of the conjugate

gradient method

3n+ 2m = 3 (n0n1 + . . .+ nl−1nl + n1 + . . .+ nl) + 2Pnl
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multiplications have to be performed such that the overall computational effort for one conjugate

gradient iteration when the inexact Gauss–Newton method is applied to the training problem of a

neural network amounts to

# multiplications (5P + 3)n0n1 + (8P + 3)(n1n2 + . . .+ nl−1nl)

+(P + 3)n1 + (2P + 3)(n2 + . . .+ nl−1) + (4P + 3)nl

# evaluations ofσL P (n1 + . . .+ nl)

# evaluations ofσ′L P (2n1 + 3(n2 + . . .+ nl))

(4.2.14)

By contrast, the computational effort for one iteration of the backpropagation algorithm consists of

# multiplications (2P + 1)n0n1 + (5P + 1)(n1n2 + . . .+ nl−1nl)

+(P + 1)(n1 + 1) + (2P + 1)(n2 + . . .+ nl)

# evaluations ofσL P (n1 + . . .+ nl)

# evaluations ofσ′L P (n1 + 2(n2 + . . .+ nl))

Thus, the computational effort for one iteration of the backpropagation algorithm as well as for one

iteration of the conjugate gradient method is of magnitudeO(P n) (see (4.2.2) for the definition of

n).

4.3 Sensitivity Analysis

When the weights of a neural network are determined by the learning process then the knowledge

of a neural network about the examined system is distributed among the different weight matrices

and bias vectors. However, this distribution of the knowledge makes it difficult or even impossible

to interpret the results generated by the neural network [19].

The representation of the activation value of a neuron in (4.1.3) shows that the outputs generated

by a neural network depend on the input datatp ∈ IRn0 . In the following lemma, we show how the

derivative of the output of the neural network with respect to the input data can be computed. Thus,

it is possible to determine the sensitivities of the optimal output of the neural network with regard

to small variations of the various components of the input vectortp such that we can at least derive

some information about the influence of each of the input data on the output of the neural network.

Lemma 4.3.1 The sensitivities of the output of the neural networkyl(w; tp) with regard to thej-th

component of the input datatp ∈ IRn0 at a given pointw are given by

σ′(W lyl−1
p + θl) W l σ′(W l−1yl−2

p + θl−1) W l−1 · · ·σ′(W 1tp + θ1)W 1ej

with unit vectorsej ∈ IRn0 .
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Proof: The derivative of the output of the neural networkyl(w; tp) with respect to thej-th

component of the inputtp is given by

∂yl(w, tp)
∂tp

ej .

Since yk(w, tp) = yk
p(w) is defined recursively by (4.1.3) andyk

p depends only onyk−1
p and

wk = (W k, θk), an application of the chain rule yields

∂yl
p

∂tp
=

∂yl
p

∂yl−1
p

· · ·
∂y2

p

∂y1
p

·
∂y1

p

∂tp
. (4.3.1)

Furthermore,

∂yk
p

∂yk−1
p

= σ′(W kyk−1
p + θk)W k ∈ IRnk×nk−1 , k = 2, . . . , l , (4.3.2)

and
∂y1

p

∂tp
= σ′(W 1tp + θ1)W 1 ∈ IRn1×n0 . (4.3.3)

Thus, inserting the expressions (4.3.2) and (4.3.3) into (4.3.1) yields

∂yl
p

∂tp
ej = σ′(W lyl−1

p + θl)W l · · ·σ′(W 1tp + θ1)W 1ej ∈ IRnl .

which completes the proof. �

4.4 Numerical Results

The final section of this chapter deals with the application of neural networks in financial forecasting.

We start the section with verifying the convergence results presented in Section 3.2, see

Subsection 4.4.1. Afterwards, we apply neural networks to forecasting the German stock index DAX

on the basis of monthly data. In Subsection 4.4.2, we give a brief statement about the applicability of

neural networks to financial forecasting. Then, in the following subsection, we explain the different

aspects necessary to set up a neural network. We start the numerical experiments in Subsection 4.4.4

where we compare the Inexact Gauss–Newton Algorithm 2.2.3 with the traditional method for the

training of neural networks, the backpropagation algorithm, which is a variant of steepest descent

method. Subsequently, we discuss the quality of the forecasts generated by the neural network in

Subsection 4.4.5. For the judgement of the forecasts, we use a graphical comparison of the forecasts

of the neural network with the target value as well as the performance of a trading strategy which is

based on the forecasts of the neural network. Then, in Subsection 4.4.6, we examine the sensitivities

of the output data generated by the neural network in regard to small variations in the input data.

Finally, at the end of this section, we give some concluding remarks on neural networks in financial

forecasting.
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4.4.1 Convergence Rates

To illustrate the convergence results of Section 3.2 we consider a 2–2–1 neural network, i.e. the

input as well as the one hidden layer of the neural network contain two neurons and the output layer

consists of one neuron. Using the notation introduced in Section 4.1, in this case the variablew has

the following form

w = (W 1
11,W

1
12,W

1
21,W

1
22, θ

1
1, θ

1
2,W

2
11,W

2
12, θ

2
1) .

The network is trained with 5 patterns of input and corresponding output data. Since the output of

the network represents a prediction of a scaled value of the DAX, the input data of the network are

scaled DAX values of the previous two months. A more precise description of the composition of

the training patterns and the preparation of the input and output data will be given in the following

subsection.

Iter. i φ(wi) ‖∇φ(wi)‖2 ‖wi − w∗‖i
‖wi−w∗‖i
‖wi−1−w∗‖i

‖wi − w∗‖2 ‖wi−w∗‖2
‖wi−1−w∗‖2

2 0.128D+00 0.694D−01 0.359D+01 0.61134 0.612D+01 0.79625

3 0.355D−01 0.119D+00 0.298D+01 0.62362 0.485D+01 0.79259

4 0.259D−02 0.394D−01 0.434D+01 0.95186 0.465D+01 0.95769

5 0.543D−03 0.210D−02 0.396D+01 0.95128 0.447D+01 0.96116

6 0.395D−03 0.449D−02 0.404D+01 0.96192 0.432D+01 0.96637

7 0.282D−03 0.924D−03 0.381D+01 0.90380 0.392D+01 0.90841

8 0.207D−03 0.207D−02 0.355D+01 0.91249 0.358D+01 0.91392

9 0.114D−03 0.103D−02 0.313D+01 0.89146 0.321D+01 0.89617

10 0.103D−03 0.323D−03 0.294D+01 0.96334 0.311D+01 0.96700

11 0.997D−04 0.747D−03 0.266D+01 0.89299 0.280D+01 0.90200

12 0.986D−04 0.211D−02 0.252D+01 0.93755 0.264D+01 0.94285

13 0.876D−04 0.677D−03 0.222D+01 0.87020 0.232D+01 0.87984

14 0.838D−04 0.219D−02 0.209D+01 0.92485 0.216D+01 0.92903

15 0.719D−04 0.741D−03 0.195D+01 0.91993 0.199D+01 0.92276

16 0.660D−04 0.591D−03 0.163D+01 0.82694 0.166D+01 0.83138

17 0.576D−04 0.249D−02 0.147D+01 0.89022 0.148D+01 0.89107

18 0.423D−04 0.506D−03 0.112D+01 0.75732 0.112D+01 0.75824

19 0.301D−04 0.179D−02 0.382D+00 0.34124 0.382D+00 0.34161

20 0.233D−04 0.328D−02 0.201D−01 0.05271 0.202D−01 0.05272

21 0.115D−05 0.664D−03 0.364D−04 0.00180 0.364D−04 0.00180

22 0.233D−10 0.358D−05 0.473D−09 0.00001 0.473D−09 0.00001

TABLE 4.1: Training of a 2–2–1 neural network with the inexact Gauss–Newton method presented in Section 2

(‖x‖i = ‖J(wi)
+J(wi) x‖)

The results in Table 4.1 are generated by the Inexact Gauss–Newton Algorithm 2.2.3 presented

in Chapter 2, i.e. the generated sequence has the form

wi+1 = wi − J(wi)+R(wi)− J(wi)+ri . (4.4.1)



4.4 Numerical Results 57

Table 4.1 shows that this sequence converges to a solutionw∗ (see Column 6 of Table 4.1). The

values of the last iterations in Table 4.1 make clear that the sequence (4.4.1) converges locally

q–quadratically tow∗ on R(J(wi)T ). This corresponds to the theoretical results in Section 3.2

since the second column of Table 4.1 shows that the residual of the present problem at the solution

is very small, probably even zero. Columns 4 and 6 of Table 4.1 illustrate that the difference of the

current iteratewi from the solutionw∗ in the null space ofJ(wi)

‖(I − J(wi)+J(wi))(wi − w∗)‖22 = ‖wi − w∗‖22 − ‖J(wi)+J(wi)(wi − w∗)‖22

is very small. Therefore the q–quadratic convergence is obtained even on the whole spaceIRn.

Iter. i φ(wi) ‖∇φ(wi)‖2 ‖wi − w∗‖i
‖wi−w∗‖i
‖wi−1−w∗‖i

‖wi − w∗‖2 ‖wi−w∗‖2
‖wi−1−w∗‖2

2 0.125D+00 0.778D−01 0.336D+01 0.60275 0.567D+01 0.77111

3 0.743D−01 0.124D+00 0.447D+01 0.79705 0.451D+01 0.79587

4 0.401D−01 0.147D+00 0.446D+01 0.99231 0.447D+01 0.99024

5 0.196D−01 0.316D−01 0.350D+01 0.78615 0.351D+01 0.78612

6 0.107D−02 0.191D−01 0.328D+01 0.93574 0.329D+01 0.93497

7 0.344D−03 0.395D−02 0.306D+01 0.93225 0.306D+01 0.93176

8 0.181D−03 0.258D−02 0.214D+01 0.70100 0.215D+01 0.70161

9 0.149D−03 0.605D−02 0.164D+01 0.76541 0.165D+01 0.76597

10 0.581D−04 0.156D−02 0.144D+01 0.87761 0.144D+01 0.87748

11 0.468D−04 0.167D−02 0.119D+01 0.82558 0.119D+01 0.82582

12 0.312D−04 0.926D−03 0.678D+00 0.57044 0.683D+00 0.57305

13 0.214D−04 0.238D−02 0.556D−01 0.08212 0.938D−01 0.13727

14 0.967D−05 0.166D−02 0.323D−01 0.57998 0.728D−01 0.77619

15 0.309D−07 0.188D−04 0.430D−04 0.00133 0.563D−01 0.77383

16 0.852D−11 0.664D−06 0.344D−04 0.88250 0.485D−01 0.86118
...

...
...

...
...

...
...

24 0.335D−16 0.300D−08 0.155D−05 0.91021 0.891D−02 0.71941

25 0.235D−16 0.249D−08 0.763D−06 0.85563 0.571D−02 0.64054

26 0.167D−16 0.208D−08 0.265D−06 0.70877 0.275D−02 0.48114

TABLE 4.2: Training of a 2–2–1 neural network with the inexact Gauss–Newton sequence (4.4.2)

(‖x‖i = ‖J(wi)
+J(wi) x‖2)

For a clear distinction between the convergence rate of the projected and unprojected iterates,

consider the sequence

wi+1 = wi − J(wi)+R(wi)− (I − J(wi)+J(wi))zi − J(wi)+ri (4.4.2)

with zi =
(

1
(i+1)2

, . . . , 1
(i+1)2

)T
. The convergence to a solutionw∗ is still obtained as well (see

Table 4.2). However, in comparison with the convergence of the iterates inIRn (see columns 4 and

6 of Table 4.2), the convergence of the sequence (4.4.2) onR(J(wi)T ) is much better.
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Iter. i φ(wi) ‖∇φ(wi)‖2 ‖wi − w∗‖2 ‖wi−w∗‖2
‖wi−1−w∗‖2

2 0.796D−01 0.171D+00 0.275D+01 0.85624

3 0.261D−01 0.349D−01 0.199D+01 0.72504

4 0.113D−01 0.569D−01 0.171D+01 0.85794

5 0.150D−02 0.577D−02 0.289D+00 0.16861

6 0.383D−03 0.931D−02 0.175D+00 0.60685

7 0.250D−05 0.577D−03 0.751D−02 0.04287

8 0.158D−06 0.231D−03 0.671D−05 0.00089

9 0.793D−12 0.677D−06 0.798D−07 0.01189

TABLE 4.3: Training of a 2–2–1 neural network with the inexact Gauss–Newton method of Theorem 3.2.5

If the training of the described 2–2–1 network is carried out with the inexact Gauss–Newton

method which generates the sequence of Theorem 3.2.5

wi+1 = wi − J(wi)+R(wi)− (I − J(wi)+J(wi))(wi − w∗)− J(wi)+ri

we obtain the values presented in Table 4.3. Note that the problem is a zero–residual problem. Here,

as in Theorem 3.2.5, the sequencewi converges q–quadratically in norm tow∗ without projecting

it onto a proper subspace. Although this sequence of iterates cannot be used in general since the

required information onw∗ is not available, the numerical results underline the theoretical

statements.

4.4.2 Neural Networks in Forecasting Stock and Index Prices

In this subsection, we summarize briefly some important aspects of financial forecasting and the

application of neural networks in this area.

A model based examination of financial forecasting and the application of neural networks

In general, a forecast is a guess about one or more events that will happen in a future period and

which is based on observations of the past [14, p. 551]. If forecasts are based on a model that gives a

simplified description of the influence of observations of the past on the future value of the examined

object, then the success of any forecast is determined by the quality and the temporal stability of this

model [14], [53].

The quality of the model is determined by the extent and the faultless determination of the

observations. These observations should include the examined object as well as all quantities which

might have an influence on the future value of this object [14]. Note that the number of the

observations causes the complexity of the model [5]. Furthermore, the quality of the model is based

on the ability of a sufficiently good description of the influence of the observations on the future

value of the examined object.

The temporal stability of a model is given if an explanation of the connection of the observations

and the forecast which holds for a past period continues to be valid in the future [14]. However, the
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validity of this last aspect describes an universal problem since an exact repetition of past events

does not exist [53]. Hence, the question is whether the structural change is so significant that the

projection of valid structural connections from the past into the future would lead to false forecasts

[53]. In addition to this Stöttner [100] mentions that a final solution of the dilemma of forecasts

supported by observations of the past and the future structural instability is hardly possible and that

this dilemma is finally the reason of an indelible remaining risk of any forecast.

Thus, the model for forecasting stock or index prices determines the quality of the forecast.

Unfortunately, so far one failed to quote a mathematical description about the realization of a stock

or index price such that it is not possible to assert a well defined model for the forecast of stock or

index prices [5].

The stock market is marked by its highly complex structure whose co–operation of the variables

is neither theoretically uniquely explainable nor empirically exactly describable [5]. Moreover, there

exists a large variety of variables in the stock market which are not all obvious and which change

over time. Furthermore, there is evidence that also the interactions of these variables change and

that they are nonlinear [81].

Thus, for an efficient forecast of a stock or index price it is necessary to examine the linear and

nonlinear dependencies of a large number of variables as well as their interactions.

The advantage of the application of neural networks in forecasting is that the underlying

function form which generates the data does not need to be known in advance. The neural network

rather tries to find this function during the learning process. In this spirit, the neural network learns

the model for pricing the stocks and indices, respectively [65].

Complete freedom in the choice of the model, however, is also not given if neural networks are

used. A certain idea of the model is necessary. In this connection, the choice of the data plays an

important part: the data set should be sufficient large and representative concerning the task of stock

or index price forecasting so that the structure of the formation of prices can be marked [5]. However,

already the determination of a first idea of the model by choosing the variables, which might have an

influence on the forecast, is difficult. Especially in financial forecasting, it is impossible to determine

only roughly optimal a priori the number and the kind of preprocessing of the variables because of

the complex interactions in the stock market [5].

A survey of methods for neural networks that deal with this phenomena is given in [5].

Specialization of the model underlying neural networks

In the following, we mark the models which are generated by neural networks.

As mentioned above, we restrict ourselves to the examination of feed–forward networks. These

network architectures model the transition of the input into the output on the basis of the law of

cause and effect since the information is transmitted through the network only in one direction. The

transition between the input variables and the forecast is determined without an explicit influence of

the time. Thus, the use of feed–forward architectures implies the formation of input/output models

[5].

Neural networks also can be classified with regard to the different models that exist for the
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analysis of asset prices. The traditional explanation and valuation models for analyzing asset prices

are divided regarding the origin of their variables and regarding the explanation of the formation of

prices and the valuation approach for the calculation of prices. The existing two main model classes

are the fundamental analysis and the technical analysis [16].

Fundamental analysis is the examination of the underlying forces that affect the well being of

the economy, industry groups, and companies. To forecast future stock prices, fundamental analysis

combines economic, industry, and company analysis to derive a stock’s current fair value and

forecast future value.

By contrast, technical analysis is the examination of past price movements to forecast future

price movements. Technical analysts are sometimes referred to as chartists because they rely almost

exclusively on charts for their analysis. Technical analysts believe that the current price fully reflects

all information. Thus, the price represents the fair value and should form the basis for analysis.

Until now, the procedure was that the technical analysis and the fundamental analysis were both

carried out independently. After their separated inquiry, the results are combined which is often not

done methodically [5] but within the scope of qualitative discussions of experts.

Neural networks can be assigned either to the technical or to the fundamental approach by

feeding exclusively either technical oriented or fundamental oriented input data into the neural

network. The advantage of a technical or fundamental analysis with neural networks is that these

allow the simultaneous analysis of very many variables at which additionally a nonlinear perspective

can be established [5].

A further development of the traditional models for analyzing asset prices by neural networks

consists in the combination of the fundamental and technical approach with reference to econometric

models. In this case, the neural network simultaneously analyzes both variables which are assigned

to the technical analysis and variables which are assigned to the fundamental analysis in solely one

computation.

Hence, in neural networks the choice of the different approaches for analyzing stock or index

prices consists in the determination of the input data, i.e. which variables and which preprocessing

of the time series have to be chosen. According to the specification of the input data, a technical,

fundamental or econometric model is supported.

4.4.3 Preparation of the Neural Network and the Training Patterns

Choice and preprocessing of the input data

The statements in the previous subsection illustrate that the selection of the data plays an important

role in deriving an efficient model for forecasting stock or index prices. In general, the following

aspects have to be considered for the choice of the data (see also [19]):

1. Do the data satisfy the requirements regarding quantity and quality?

2. Which data are suitable as input and output data with regard to the problem formulation and

are added to the neural network?
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3. In which form are the data to be presented to the neural network?

Regarding the quantity, it has to be guaranteed that a sufficient number of data sets are available,

since the neural network gain their knowledge out of these data. The more extensive the data

material is the better the different situation is covered and the smaller the runaways in the measured

values is weighted [19]. However, one has to consider that the preprocessing of the data and the

learning process gets more expensive with increasing data material. Furthermore, in this case the

risk increases that contradictory information is added to the network which might make worse the

learning result [19].

The quality of the data is the basis for the function built by the neural network, i.e. one has

to clarify which are the possible values having a causal influence of the predicting value [87]. The

choice of the data is certainly influenced by ones conviction regarding the success of technical or

fundamental analysis in forecasting stock or index prices (see also the previous subsection). In this

connection also the principle holds “garbage in – garbage out”, i.e. the quality of the statements of

the neural network largely depends on the validity and consistence of the data underlying the training

process of the network [19]. However, as already mentioned above, often it is not possible to specify

concretely which variables influence the examined object. Hence, it is necessary to include many

variables into the model to increase the probability that the scope is described comprehensively.

The data which crucially determine the examined problem are to be chosen as the input data.

The output of the neural network is determined by the wanted information [19]. In the case of stock

or index price forecasting, the input vectors are the lagged values of a time series and the output is

the prediction for the next value [39]

Moreover, within the scope of the representation of the data, we have to deal with the aspects of

scaling and preprocessing of the data. The scaling of the data applies to the task that the data which

are supplied to the network are mapped onto the interval which can be processed by the network

[19]. The choice of the interval depends on the activation function. In our case, we have chosen the

logistic function (see (4.1.1))

σL(r) =
1

1 + e−kr
.

For this function, it is necessary to scale the input and output data onto the interval[0; 1]. In doing

so, we have chosen the interval[0.1; 0.9] since the end points0 and1 are not reached by the logistic

function. The preprocessing of the data deals with the question in which form the information

should be made available to the neural network and which form the output of the neural network

should have. In the field of financial forecasting, the preprocessing functions are often derived

from technical analysis [78] in order to capture some of the underlying dynamics of the financial

markets (see for instance [86], [109]). Regarding the output of the neural network, the preprocessing

prescribes whether point predictions are carried out or the network output informs about the trend

of the examined time series.

Construction of the training pattern

When the choice of the input and output data is made, the patterns for the training of the network

have to be arranged. In this connection, we stress again how important the choice of the learning



62 4 Forecasting with Neural Networks

patterns is for the attainable efficiency of a neural network. The patterns in its entirety must represent

as good as possible the set of all possible situations in the relevant part of the capital market. On

the other side, the information in the training set must not get arbitrary large since the capability of

learning, i.e. the storage capacity, in a neural network is limited.

Training:

Input Output

1. pattern (DAX1 , DAX2 , $1 , $2) (DAX3)

2. pattern (DAX2 , DAX3 , $2 , $3) (DAX4)
...

...
...

10. pattern (DAX10 , DAX11 , $10 , $11) (DAX12)

ForecastingDAX13:

Input Output

1. pattern (DAX11 , DAX12 , $11 , $12) unknown

FIGURE 4.5: Arrangement of the training and forecasting patterns

We will explain the arrangement of the training and forecasting patterns by the following

example (see also Figure 4.5). Suppose we wish to forecast the German stock index DAX for

instance for the month 1/1994, i.e. the closing value of the last day of the month 1/1994 (in Figure

4.5 this value corresponds toDAX13). Furthermore, we assume that lagged values of the time series

of the DAX itself and the US–Dollar are to present to the network, and that this are the values of

the last twelve months each, i.e. the DAX and US–Dollar values of the months 1/1993 until 12/1993

(these are the valuesDAX1 −DAX12 and$1 − $12, respectively, in Figure 4.5). Each of the input

vectors are to contain two scaled DAX values as well as two scaled US–Dollar values. Since each

neuron in the input layer of the neural network only contains one value, thus, the first layer of the

network consists of four neurons. The output of the pattern consists in a scaled DAX value according

to the given problem formulation. According to the available data, we are now able to construct ten

training patterns. The composition of this training patterns is made clear in Figure 4.5. This figure

shows that the input vector contains the values of the DAX and US–Dollar which directly preceded

the output value, i.e. if the output value for instance represents the DAX value of the month 5/1993

then the input vector of this pattern contains the DAX and US–Dollar values of the months 3/1993

and 4/1993.

After the termination of the training of the neural network, the actual vector of input data, i.e.

the DAX and US–Dollar values of the months 11/1993 and 12/1993, is presented to the network

in the example (this corresponds to the forecasting pattern in Figure 4.5). Then, the output of the

neural network represents the prediction of the DAX value for the month 1/1994.
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Note that the number of values in the input vector which belong to the same time series and the

number of training patterns determine the period of observations that is available for the learning

process.

The design of the neural network

The solution of the questions how many layers or how many units in any of the layers enables the

best forecast is mathematically unsolved. It turned out that different results were achieved when the

numbers of layers and units in any of the layer were varied; however, a deterministic method for the

choice of the optimal network is not known so far. In principle, neural networks with only one layer

of hidden neurons are already able to approximate any structure contained in a data set [78].

Regarding the number of neurons in each of the layer, we note that the number of neurons

in the input and output layer are already determined by the decision which variables are to be

presented to the network and the number of forecasts to be made with just one network, respectively.

For the determination of the necessary number of units in the hidden layer, usually the strategy is

followed such that one starts with a network whose dimension is too large for the given problem and

subsequently removes superfluous units.

Thus, an optimal configuration of a neural network can only be found in an extensive trial–

and–error process.

Overfitting

After the training patterns and the neural network architecture is fixed, the training process of the

neural network, i.e. the adjustment of the weights in the neural network, is started.

Now, if the training process is carried out until the error of the outputs of the neural network and

the target outputs in the training patterns is minimized, then the neural network strives to perfectly

map the presented data. However, the extracted structure cannot be used for a generalization. Figure

4.6 makes clear that in case of a perfect map of the training patterns the neural network generally

generates poor forecasts. This is the case because time series not only contain deterministic behavior

but also a certain portion of noise that should not be modelled by the network. This problem of fitting

the noise in addition to the signal is called overfitting [39].

Moreover, the problem of overfitting is increased by the constellation of a large number of

parameters compared to a small number of training data. In problems like forecasting stock or index

prices often there are only a few training data available compared to the complexity of the network

parameter [109], especially when the adaption of the weights is carried out on the basis of monthly

data [44]. This enables the network to obtain an arbitrary exact adaption to the training data without

building an ability of generalization.

In forecasting, it is less important how well a model fits the training data. The aim of the

training process rather is to achieve an optimal ability of generalization of the neural network, i.e.

the network should extract regularities from the training examples that do transfer to new examples

[19].
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FIGURE 4.6: Training and Forecasting period of a

neural network
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FIGURE 4.7: Error on the training set and the test set

Stopping criterion for the training process

One of the most well known techniques for attacking the overfitting problem [78] and achieving

the ability of generalization of the neural network is the early stopping procedure, also called the

Stopped–Training method.

In this method, the time when to stop during the learning process is determined when the ability

of generalization of the network decreases. In this connection, the concept of cross validation has

been proven successful. The idea of this concept is to divide the available patterns of input/output

data into two disjoint sets (see e.g. Zimmermann [109]):

1. The set of training data serves for the actual learning process, i.e. the adaption of the unknown

weights.

2. The set of test data is used after each iteration of the learning algorithm to compute the error

generated by the network.

The plot of the error in predicting points out of the training set and the error in predicting points out

of the test set in Figure 4.7 shows that the former error decreases monotonically during the complete

training process, see the line in Figure 4.7 labelled with “training”. By contrast, the error on the test

set will initially decrease as the network starts to learn the interactions of the input data, but then will

begin to increase once the network starts to learn the noise, see the line in Figure 4.7 labelled with

“test”. The location of the minimum of this error determines when the effective network complexity

is right [39], i.e. this state of the neural network presents the best possible weights and accordingly

should be saved and documented.

4.4.4 Training of Large–Scale Networks

For comparison of the inexact Gauss–Newton algorithm with the backpropagation algorithm, we

carried out the training of different neural networks with these two methods. The networks

considered have between 4,500 and 45,000 unknown parameters.
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Network # of total # of aver. # of

(# variab.)
Method cpu in sec.

outer iter. cg iter. cg iter.

Backp. 5859 2031 - -
110–40–2

G.–N. 398 154 425 2.76
(4,522)

G.–N. (mt) 296 66 343 5,20

Backp. 25161 4029 - -
110–80–2

G.–N. 952 239 383 1.60
(9,042)

G.–N. (mt) 572 71 355 5.00

Backp. 82061 10000 - -
110–100–2

G.–N. 1899 398 598 1.50
(11,302)

G.–N. (mt) 831 77 437 5.68

Backp. 24430 2743 - -
165–100–2

G.–N. 1304 249 374 1.50
(16,802)

G.–N. (mt) 718 56 318 5.68

Backp. 108876 10000 - -
165–120–2

G.–N. 2612 429 604 1.41
(20,162)

G.–N. (mt) 714 43 273 6.35

Backp. 74587 5853 - -
165–140–2

G.–N. 5225 730 1100 1.51
(23,522)

G.–N. (mt) 1425 62 528 8.52

Backp. 124255 8104 - -
165–160–2

G.–N. 5608 701 1012 1.44
(26,882)

G.–N. (mt) 1441 66 425 6.44

Backp. 168884 10000 - -
165–180–2

G.–N. 6080 709 866 1.22
(30,242)

G.–N. (mt) 3244 200 703 3.52

TABLE 4.4: Comparison of the inexact Gauss–Newton method with the Batch-Backpropagation with Armijo line search

(Backp.= Backpropagation, G.–N.= Inexact Gauss–Newton Algorithm 2.2.3 of Sec. 2, G.–N. (mt)= Inexact

Gauss–Newton Algorithm 2.2.3 with a modified trust–region strategy)

The input data of these networks consist of the DAX and other time series such as e.g. the

Dollar, the REX performance index, dividend yields. The goal of these neural networks is to predict

the DAX value of the two following months. Therefore, the output layer of these networks contains

two neurons. For the training of the network, 180 patterns are available.

As a termination criterion for the overall method, we used the Stopped–Training method

described in the previous Subsection 4.4.3 to training the neural networks.

The results of the training of each of these networks with a backpropagation algorithm

combined with a Armijo step size rule and the Inexact Gauss–Newton Algorithm 2.2.3 described

in Chapter 2 are listed in the first two rows in Tables 4.4 and 4.5. These results show that the

computation time of the inexact Gauss–Newton method in most of these examples is less than 5%

of the computation time of the backpropagation.
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Network # of total # of aver. # of

(# variab.)
Method cpu in sec.

outer iter. cg iter. cg iter.

Backp. 32782 3461 - -
220–100–2

G.–N. 3128 483 931 1.93
(22,302)

G.–N. (mt) 1000 59 438 7.42

Backp. 117513 10000 - -
220–120–2

G.–N. 4849 690 1077 1.56
(26,762)

G.–N. (mt) 1387 56 502 8.96

Backp. 40591 2961 - -
220–140–2

G.–N. 3846 472 696 1.47
(31,222)

G.–N. (mt) 1121 81 264 3.26

Backp. 162602 10000 - -
220–160–2

G.–N. 7572 828 1235 1.49
(35,682)

G.–N. (mt) 1728 62 485 7.82

Backp. 69421 3831 - -
220–180–2

G.–N. 7577 775 986 1.27
(40,142)

G.–N. (mt) 2594 93 625 6.72

Backp. 167536 8135 - -
220–200–2

G.–N. 9244 852 1063 1.25
(44,602)

G.–N. (mt) 1702 64 347 5.42

TABLE 4.5: Comparison of the inexact Gauss–Newton method with the Batch-Backpropagation with Armijo line search

(Backp.= Backpropagation, G.–N.= Inexact Gauss–Newton Algorithm 2.2.3 of Sec. 2, G.–N. (mt)= Inexact

Gauss–Newton Algorithm 2.2.3 with a modified trust–region strategy)

The results listed in the last row of each subsection in Tables 4.4 and 4.5 are obtained with

the inexact Gauss–Newton method but with a slightly modified trust–region strategy. Usually, the

trust–region radius is updated with the rule

∆i+1 =

{ ‖δwi‖
2 , if ρi ≤ α1,

min{2 ‖δwi‖ , ∆̄} , otherwise.

In the modified version the increase of the trust–region is more aggressive. Forρi > α1 the radius

is not dependent anymore on the current direction but on the radius of the previous trust–region and

accordingly we set

∆i+1 =

{ ‖δwi‖
2 , if ρi ≤ α1,

min{2 ∆i , ∆̄} , otherwise.

Additionally, in the modified version of the trust–region strategy the stopping criterion when

reaching the trust–region is changed slightly. If a conjugate gradient direction reaches the boundary

of the trust–region, then the ratioρi of the actual decrease to the predicted decrease is computed. If

ρi ≤ α2 we proceed as described in Algorithm 2.2.3 in Chapter 2. Otherwise, we ignore the current
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trust–region and continue until the conjugate gradient iterate fulfillsρi ≤ α2. Hence, this modified

version considers not only the previous quadratic model for the adjustment of the trust–region but

also the current one.

The numerical tests show that this strategy accelerates the inexact Gauss–Newton method even

further, as the number of outer Gauss–Newton iterations is reduced. A consequence of the modified

trust–region strategy is that the average number of conjugate gradient iterations increases but due to

the large reduction of the number of Gauss–Newton iterations the total number of conjugate gradient

iterations is also decreased.

Network # of train. # of total # of aver. # of approx. cpu

(# variab.) pattern
cpu in sec.

outer iter. cg iter. cg iter. of 1 cg iter.

900 49046 97 1645 16.96 29.82
390–195–1

1200 81052 114 2207 19.36 36.72
(76,441)

1800 208766 152 3932 25.87 53.09

900 114659 105 2656 25.30 43.17
520–260–1

1200 144506 110 2542 23.11 56.85
(135,721)

1800 485480 151 5938 39.32 81.76

900 264923 84 2794 33.26 94.82
845–425–1

1200 316647 113 2384 21.10 132.82
(359,976)

1800 956468 137 4541 33.15 210.63

TABLE 4.6: Training of very large neural networks with the inexact Gauss–Newton method using the modified

trust–region strategy

Finally, Table 4.6 contains results of the training of very large neural networks (i.e. up to

360,000 unknowns) using the Inexact Gauss–Newton Algorithm 2.2.3 with the modified trust–region

strategy. The input of these networks contains data of different time series which are based on daily

data. The reason for the large increase of the computation time of the training of these large networks

compared to that of the networks of middle size in Tables 4.4 and 4.5 is, apart from the increase of

the number of variables, the larger number of training patterns. The latter causes the increase of the

average number of conjugate gradient iterations and the increase of the approximate computation

time of one conjugate gradient iteration (cpu time/ total # of conjugate gradient iteration) which

almost depends linearly on the number of training patterns assuming a fixed network (see also the

theoretical statements about the computational effort in Section 4.2).

Furthermore, in Figures 4.8 and 4.9 we have plotted the computation time of the training for

neural networks of middle and large size in dependence of the number of unknown weights in the

neural network. These plots show that the computation of the training also depends almost linear

on the number of weights in the neural network. Moreover, the Figures 4.8 and 4.9 show that the

increase of the computation time is at a smaller rate for the inexact Gauss–Newton method with the

modified trust–region strategy.
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The results in this subsection about the training of neural networks using the Inexact Gauss–

Newton Algorithm 2.2.3 show that this method enables also a convenient use of middle and large

scale neural networks.

4.4.5 Forecasting and Performance

The goal of the development of neural networks is to find a network that achieves results that are

as good as possible on unknown patterns, i.e. with data which was not available during the training

process. Therefore, it is necessary to compare and review the results of different developed networks

on the basis of so–called forecasting data after the training process is finished. In this connection,

input/output patterns are put aside that are not used in the training process and that serve to test the

quality of the forecasts of each of the neural networks. These forecasts that are made for a past

period to test the quality of the underlying model are so–called ex post forecasts [14]. To illustrate

the procedure of testing the quality of neural networks, suppose that for instance in January 1995 a

forecasting model is developed to predict the future value of the DAX on monthly basis. Assume

that therefore the underlying system of the process describing the formations of prices is examined

by observations belonging to the period starting January 1992 until December 1993. Then, for

the period from January 1994 until January 1995, the future values are forecasted although there

already exists observations for this period. These ex post forecasts serve for the check of the model.

Subsequently, if the forecasting model proves to be good, it is used to forecast ex ante the still

unknown values for February 1995 and the following months (see [14]).

Whereas during the training period, usually the mean squared error is used for the measurement

of the learning progress, we use different reference numbers for the ex post judgement. A central

difficulty in the judgement of the quality of a forecasting model is the choice of the proper values,

that form the basis of the valuation, as well as a proper benchmark [87]. In the following we compare

the output computed by the network with the target output. Furthermore, we use the rate of right

trends and the trading profit for a valuation of each of the model.

Although we perform point prediction, we still can deduce information from the output of



4.4 Numerical Results 69

the neural network about the trend of the price process of the examined asset. If the future value

predicted by the neural network is larger than the newest value of the corresponding time series in

the input layer, then the network predicts an increase and in the opposite case the prediction of the

network is interpreted as a decrease of the price of the examined asset. Then, for the computation

of the rate of right trends one only needs to count the number of right and false trends given by the

neural network to compute the rate of the right forecasts.

The computation of the trading profit is more complicated. For this a trading model (which

converts predictions to recommendations for actions [39]) has to be incorporated into the simulation.

In our simulations, we will use the following simple trading strategy: If the neural network predicts

an increasing price, then the trading model orders to buy fictitiously the index (or to hold the index, if

already a long position exists). In the opposite case, i.e. the network predicts a decreasing price, then

the trading model orders to sell the index and to invest in bonds or time deposits (or to do nothing

if already an investment in bonds or time deposits exists). The profit from this trading strategy

under consideration of transaction costs is then compared with the profit of a simple buy–and–hold

strategy. Note that the latter strategy also reflects the general market development in the examined

time period (see also [87]); and, hence, is appropriate to serve as a reference value for a assessment

of the trading profit of the neural network.

In our simulation, we leave the network architecture fixed for the simulation period. However,

for each forecast we start the training process again to renew the weights in the neural network so

that also the more recent dynamics in the corresponding market is incorporated.

net input sign acc. perf.

10-10-1 dax 67 % 167

30-6-1 dax, us, rex 67 % 187

40-5-1 dax, us, rex, div 72 % 196

50-5-1 dax, us, rex, div, cuy 80 % 215

TABLE 4.7: Dependence of the choice of the input data on the quality of the performance of the neural network

(dax = DAX, us = US–Dollar, rex = REX performance index, div = dividend yields, cuy = current yield)

Table 4.7 lists the results about the rate of right trends and the performance of the above

described trading strategy for different neural networks. The second column informs about the

different input data of the neural network. The numbers in the third column are the rate of right

trends attained by each of the neural networks. Furthermore, the last column of Table 4.7 informs

about the performance of the trading strategy of each of the neural networks for an initial investment

amount of 100 DM. The simulation period is January 1992 until December 1994. The task of each

of the networks is the prediction of the future DAX price. One can see that both numbers increase

if the network is not only fed with DAX prices but also with other information which could have an

influence on the development of the DAX price. These results underline the statements in Subsection
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4.4.3 and make clear that a naive application of neural networks will fail for financial data (see also

[39]).
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In Figure 4.10 we have plotted the forecast of the last neural network listed in Table 4.7 against

the target output (i.e. the particular DAX value) for the period January 1992 until December 1994.

Figure 4.10 shows that some of the predictions of the network are very close to the particular DAX

value (see f.e. the prediction for January 1992, February 1992 and June 1992) however in other

months the difference between the output of the neural network and the target output is quite large

(this is especially the case at the end of the simulation period).

Although it would be most profitable to know the exact future price of the examined asset, a

rough estimation is often enough to make a reasonable profit on dealing operations. In Figure 4.11,

we have plotted the performance of the trading strategy underlying the above mentioned 50–5–1

neural network (i.e. the line labelled with “NN”) against the performance of a buy–and–hold strategy

(i.e. the line labelled with “DAX”). Although this neural network has failed to accurately predict the

particular DAX value, the performance of the neural network trading strategy beats the benchmark

(i.e. the general market development) quite clearly in the period January 1992 until December 1994.

A prerequisite for a good performance is that the neural network detects decreases of the price to

avoid losses in the investment. Figure 4.11 makes clear that the examined network has identified all

except three of these situations. Furthermore, for a good performance like the one in Figure 4.11

additionally it is necessary to participate in price increases of the examined asset. The lower line

in Figure 4.11 that jumps between 60 and 80 informs about the current type of the investment. The

line jumps to or stays at 60 , respectively, if the trading strategy gives the order to invest in bonds

or time deposits. If the line jumps to or stays at 80 then the order is to invest in the index. This

line, that is labelled with “Strategy”, shows that the examined 50–5–1 network in general identifies

also price increases so that in all the trading strategy underlying this neural network achieves this

excellent performance.

This illustrates that for speculative purposes, only trend turning points are actually important.
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Therefore, many of the financial institutions which are trying to predict future asset prices generally

rate algorithms by evaluating the percentage of time when the algorithm gives the right trend from

today until some time in the future [68].

net input # of train.–pattern # in Fig. 4.13 & 4.15

10–10–1 dax 65 44

20–8–1 dax, us 65 48

30–6–1 dax, us, rex 65 52

40–5–1 dax, us, rex, div 65 56

50–5–1 dax, us, rex, div, cuy 65 60

TABLE 4.8: List of neural networks used for backtesting (dax = DAX, us = US–Dollar, rex = REX performance index,

div = dividend yields, cuy = current yield)

However, we also noticed that the performance of this 50–5–1 network was worse for other

periods. Since the conditions in financial markets change dynamically it is necessary that the model

approximating the particular market has to be adapted correspondingly. To possibly react more

flexible on these structural changes in the market we carried out a so–called backtesting. In this

connection, we examined a set of neural networks with different network architectures as well as a

different choice of input data by measuring the performance of the trading strategy underlying each

of these networks for an in advance defined period of time. For example for a prediction of the

DAX of January 1994, we measured the performance of the trading strategy of, say, five different

networks for the period starting January 1993 until December 1993. Then, the neural network which

has performed best on these past data is used for the forecast of the next future DAX price, i.e. the

DAX at the end of January 1994 in our example. For the following forecast, i.e. the forecast of the

DAX in February 1994, the whole process is repeated all over, however, with all the dates put off by

one month into the future.

In the following, we show the results of backtesting simulations for the period January 1990

until December 1994. In these simulations the set of neural networks consists of the networks listed

in Table 4.8.

In the first simulation, the performance of each of the different networks was measured for a

period of twelve months. Figure 4.12 shows the forecasts and Figure 4.13 displays the performance

of an investment following the trading strategy of this backtesting simulation. The choice of the

different networks for each of the forecasts is given by the lowest line in Figure 4.13. The relation

of the numbers and the different networks is given in the last column of Table 4.8. The quality of

the forecasts and the performance of the networks chosen in this backtesting simulation is certainly

not as good as the forecasts and the performance of the 50–5–1 network in Figures 4.10 and 4.11

(note that the period of the backtesting simulation is longer), but in this backtesting simulation most

of the time the trend turning points were found in time, too, so that the losses in the investment only
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occurred for a few times and only to a small amount. The performance of the networks chosen in the

backtesting simulation is not that outstanding than the performance of the 50–5–1 network since in

the backtesting simulation the underlying investment has not always participated in price increase.
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Unfortunately, these good results also are not generally obtained. If the performance

measurement is carried out for a period of three months, the performance of the networks based

on the backtesting is much worse (see Figures 4.14 and 4.15). At the end of the examined period the

trading strategy based on the networks chosen in the backtesting simulation is only slightly better

than the buy–and–hold strategy.
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4.4.6 Sensitivities

Economists are often not only interested in the forecast by itself but also in the relation inherent in

the financial markets. The knowledge found during the training of the neural network is distributed

among the different weights and biases of the neural network. In general, it is very difficult to

extract and interpret this knowledge. One attempt to make statements about the found knowledge

is the analysis of the sensitivities to identify relations between the input data and the forecast. In

Section 4.3, we have shown that the sensitivities of the output of the neural networkyl(w; tp) with

regard to thejth component of the input datatp ∈ IRn0 at a given pointw are given by

∂
∂(tp)j

yl(w; tp) = σ′(W lyl−1
p + θl) W l σ′(W l−1yl−2

p + θl−1) W l−1 · · ·σ′(W 1tp + θ1)W 1ej

with unit vectorsej ∈ IRn0 and(tp)j being thejth component of the input datatp.
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In Figure 4.16, we have plotted the sensitivities of a 8–8–1 network which only contained DAX

values in the input layer. The training of the network was only carried out once such that the forecasts

of the next ten dates are all made on the basis on the same weights and biases of the network but

on different input data. This aspect is reflected by the plot of the sensitivities as the sensitivities for

the different input pattern are almost constant. One can also see that the latest DAX value, which

corresponds to 8 on thex–axis, has the largest influence on the forecast, i.e. small changes in the

latest DAX value will cause the largest changes in the output of the neural network. Figure 4.17

contains the average sensitivities over the different forecasting patterns which are given by

1
P̃

P̃∑
p=1

1
sp
max

∂
∂tp
yl(w; tp)

with P̃ is the number of forecasts and

sp
max = max

j=1 ...,n0

∣∣∣ ∂
∂(tp)j

yl(w; tp)
∣∣∣ , p = 1 . . . , P̃ .

Figures 4.18 and 4.19 display the sensitivities of the same 8–8–1 network as above but in

contrast to Figures 4.16 and 4.17 the training was carried out and, thus, the weights and biases were
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adapted, for each of the ten forecasts. Figure 4.18 makes clear that again the latest DAX value has

the largest influence on each of the forecasts, but the size of the influences of the other input data

changes during the simulation period. Furthermore, Figure 4.17 shows that older input data have

less influence on the forecast.

In Figures 4.20 and 4.21 we plotted the sensitivities with respect to the time of the input data of

the 50–5–1 network which we have already examined in the previous subsection. If the composition

of the different input data in the input vectortp is given by

tp = (t1p , t
2
p , t

3
p , t

4
p , t

5
p)

T

with tip containing the different time series values of theith type of input data, i.e.

tip = ((tip)1 , (t
i
p)2 , . . . , (t

i
p)10)

T , i = 1 , . . . , 5 ,

then the sensitivities with respect to time given in Figures 4.20 are computed according the formula

1
5

5∑
j=1

∂

∂tjp
yl(w; tp) , p = 1 . . . , P̃ ,

and the ones in Figure 4.21 are given by

1
P̃

P̃∑
p=1

1
s̃p
max

5∑
j=1

∂

∂tjp
yl(w; tp)

with P̃ is the number of forecasts and

s̃p
max = max

i=1 ...,10

∣∣∣∣∣∣
5∑

j=1

∂

∂(tjp)i
yl(w; tp)

∣∣∣∣∣∣ , p = 1 . . . , P̃ .

Figure 4.21 shows that the newest input data again have the largest influence on the forecast of the

neural network, however, the difference to the older input data is not as large as in the previous

Figures 4.16 – 4.19. It is possible that regarding the other time series (i.e. DAX, REX Performance
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etc.) the difference of the influence with regard to the time of the input data is not as large as for the

DAX time series.

Finally, in Figures 4.22 and 4.23, the sensitivities of the 50–5–1 network with respect to the

different input data are shown. The sensitivities displayed in Figure 4.22 are computed according to

the formula

1
10

10∑
i=1

∂
∂(tp)i

yl(w; tp) , p = 1 . . . , P̃ ,

with (tp)i = ((t1p)i , (t2p)i , (t3p)i , (t4p)i , (t5p)i) containing theith time series value of each of the

different type of input data. Furthermore, the average sensitivities in Figure 4.23 are given by

1
P̃

P̃∑
p=1

1
ŝp
max

10∑
i=1

∂
∂(tp)i

yl(w; tp)

with P̃ is the number of forecasts and

ŝp
max = max

j=1 ...,5

∣∣∣∣∣
10∑
i=1

∂

∂(tjp)i
yl(w; tp)

∣∣∣∣∣ , p = 1 . . . , P̃ .
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This plot reflects the expected result that the DAX value has the largest influence on the development

of the time series of the DAX.

4.4.7 Concluding Remarks on Neural Networks in Financial Forecasting

A critical item in using neural networks in forecasting is to find an optimal neural network for the

given task. This process is very time–consuming since not only the choice of the input data but also

the decisions about the number of hidden layers of the network as well as the number of neurons

in each of these layers have to be made. Furthermore, if an “optimal” network is found that has

obtained good results for a specific period it necessarily does not work well in other periods since

the capital markets are subject to permanent structural changes of the interactions of the different

variables. Hence, the set of input data and the network architecture must permanently be adapted

to consider the changes in the capital markets. Nevertheless, neural networks have generated some

very promising results in forecasting financial prices, see for instance the results in Subsection 4.4.5.

Unfortunately, at the beginning of the application of neural networks in financial forecasting,

some expected that neural networks would almost be equivalent to the legendary “crystal ball”.

However, this expectation could not be fulfilled by neural networks, since they also only generate

their knowledge on the basis of past data. In the end, however, neural networks are a promising

attempt when unknown linear and nonlinear connections in the examined system have to be treated

and when data in sufficient quantity and quality are available.



Chapter 5

Constructing the Instantaneous
Volatility Function

In this chapter, we are concerned with the valuation of European call options. We will show in the

first section that an important parameter for determining the value of the European call option is the

volatility parameterσ. For a long time, this parameter was assumed to be a constant according to the

well known model of Black and Scholes. However, it is evident that the assumption of a constant

volatility parameter in the model describing the underlying asset price process is not conform to

reality since the computation of implied volatilities from market European call values has shown

that the volatility varies with the strike price as well as with the maturity of the option. In this work,

we will examine a European option model that is consistent with this volatility smile. In this model

the volatility parameter now represents a function dependent on the strike price and the maturity

of the European call option. In Section 5.2, we will present this model that represents a second–

order parabolic initial–value problem and show that the value of the European call option is the

unique solution to this problem. Then, in the following section, we will introduce the mathematical

formulation of the construction of the volatility functionσ(K,T ) dependent on the strike priceK

and the maturityT of the option. The resulting optimization problem represents an inverse problem

with the system equation given by a parabolic initial–value problem.

Treating this problem numerically requires a discretization of the parabolic initial–value

problem which will be presented in the following Section 5.4 by using a finite difference method.

Moreover, we examine the convergence behavior of this finite difference method and introduce the

finite dimensional version of the optimization problem describing the construction of the volatility

function. This problem represents an underdetermined nonlinear least–squares problem. Applying

the Inexact Gauss–Newton Algorithm 2.2.3 to this problems requires the evaluation of the Jacobian

of the residual function of the nonlinear least–squares problem times a vector as well as the

evaluation of its transpose times a vector. In Section 5.5, we will present subroutines for both of

this evaluations without storing the Jacobian explicitly. We end this chapter by presenting some

numerical results for a synthetic European call option example and for constructing the volatility

function for the German stock index DAX.

77
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5.1 Motivation

European call and put options are a special kind of derivative securities. These are securities whose

value depends on the values of other more basic underlying variables [58] and which can establish

rights as well as obligations [92]. Strictly speaking, a European call option gives the holder the

right to buy an underlying security (the underlying) for a fixed priceK (the strike price or exercise

price) on a fixed dateT (the maturity, expiration date or exercise date), see for instance Hull [58] or

Wilmott, Dewynne, and Howison [107]. A European put option, on the other side, gives the holder

the right to sell an underlying security for a fixed priceK on a fixed dateT [58], [107]. The holder

of a European call or put option only will exercise the option if the strike priceK of the option

is smaller or larger, respectively, than the value of the underlying assetS at the expiration date

T . Since options only establish rights and no obligations for the holder these derivative securities

have a certain price. The value of the European call and put option at timet will be denoted by

C(S, t;K,T ) andP (S, t;K,T ), respectively. It is well known that the value of European call and

put options are closely related to each other according to the put–call parity

S + P (S, t;K,T )− C(S, t;K,T ) = K exp(−r(T − t)),

if equal borrowing and lending rates are assumed and with the risk–free interest rate denoted byr,

see for instance Merton [73]. Therefore, in the following we will only examine the valuation of

European call options.

For the valuation of options there exist different models. In general, they establish a relationship

between the traded derivative, the underlying asset and some market variables, e.g. volatility of the

underlying asset [9], [73].

A well known model in this context, that is often used in financial practice, is the Black–

Scholes model [9]. This model assumes that the valueS of the asset underlying the option satisfies

the following stochastic differential equation (a geometric Brownian motion with constant process

parameters)

dS = µS dt+ σ S dWt (5.1.1)

where the constantsµ andσ are the drift and the volatility parameter of the asset price process,

respectively. The random part of the price process is described by a Brownian motionWt. Under

this assumption, the price of a European call optionC(S, t;K,T ) can be described by the following

deterministic differential equation

Ct + 1
2 σ

2 S2CSS + (r − d)S CS = r C (5.1.2)

with the end condition

C(S, T ;K,T ) = max(S −K, 0) . (5.1.3)

The parameterd in (5.1.2) represents the constant continuous dividend yield of the underlying asset.

Since the parabolic differential equation (5.1.2) can be transformed to the one–dimensional heat

equation through simple transformation of the variables there exists even an explicit representation
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of the valueC(S, t;K,T ) of a European call option in the Black–Scholes model. This so–called

Black–Scholes formula is given by

C(S, t;K,T ) = S exp(−d(T − t)) Φ(a1(S, t;K,T ))

−K exp(−r(T − t)) Φ(a2(S, t;K,T ))
(5.1.4)

with

a1(S, t;K,T ) =
ln( S

K ) + (r − d+ 1
2σ

2)(T − t)
σ
√
T − t

a2(S, t;K,T ) = a1(S, t;K,T )− σ
√
T − t

and where

Φ(x) =

x∫
−∞

1√
2π

exp(−u2

2 ) du

is the standard normal distribution function. The parameters in the Black–Scholes formula (5.1.4)

are all but the volatility parameterσ, in principle, directly observable in the financial market. An

estimation of the volatility parameterσ can be done in different ways. One possibility is to estimated

the volatility empirically from historical data. A more common way is to compute the volatility

parameterσ implied by an option price observed in the market by numerically inverting the Black–

Scholes formula (5.1.4), see e.g. Hull [58].

Despite the widespread use of the Black–Scholes model in financial practice, it is generally

realized that the assumptions of the model are not all conforming to reality. The existence of term

structures in interest rates and dividends, for instance, indicates thatr andd are not constants but (at

least) functions oft andT [1]. Assuming a constant volatilityσ, the Black–Scholes formula has in

this case the form (see for instance Andersen and Brotherton–Ratcliffe [1])

C(S, t;K,T ) = S exp
(
−
∫ T
t d(τ)dτ

)
Φ(a1(S, t;K,T ))

−K exp
(
−
∫ T
t r(τ)dτ

)
Φ(a2(S, t;K,T ))

(5.1.5)

with

a1(S, t;K,T ) =
ln( S

K ) + (
∫ T
t (r(τ)− d(τ))dτ + 1

2σ
2 )(T − t)

σ
√
T − t

a2(S, t;K,T ) = a1(S, t;K,T )− σ
√
T − t

Moreover, Rubinstein observed in [88] that the Black–Scholes formula became increasingly

unreliable over time. His examinations of S&P 500 index options on the Chicago Board Options

Exchange (he expected that this market approximates best the assumptions of the Black–Scholes

formula) showed that in 1976 to 1978 differences between the market price of these options and

the value computed according to the Black–Scholes formula existed but were not economically

significant. He examined the same for 1986. However, starting in 1987, the errors between market

prices and option values computed with the Black–Scholes model increased rapidly, see Rubinstein
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[88, Section 1]. It seems that the crash of October 1987 increased the likelihood assigned by market

participants to extreme stock market movements [1]. Rubinstein [88] observed that put options with

strike prices smaller than the current asset price, i.e. out–of–the–money puts, were priced much

more highly. Since the Black–Scholes formula is monotonically increasing in volatility this means

that options with a low strike price had significantly higher implied volatilities than high striking

price options. Furthermore, the examination of options with different maturities has shown that the

volatility parameterσ is also not constant with respect to the maturity, see for instance Dupire [32].

This phenomenon of a time- and strike–dependent volatility parameterσ is called the volatility smile

or the volatility skew and indicates that the stock prices do not follow the log–normal distribution

with constant drift and volatility parameter that is assumed in the Black–Scholes model [1].

In financial practice, these deficiencies were considered by managing tables of values forr, d

andσ which are used with different option maturities and strikes. This approach works for European

options with short maturities and strike prices which are close to the current asset price; but it is

unsuitable for options which are far out or in the money and/or with long maturities. These options

are not or only rarely traded such that there do not exist volatility values for them. However, financial

institutes might also be interested in information about these volatilities since their portfolios can

containolderpositions that were held speculative so far and now, they wish to hedge these positions

with options with strike prices that are not close to the current asset price. Furthermore, financial

institutions have to deal with individual inquiries from customers. For the pricing of these individual

products information might be necessary about volatilities of the market price of the underlying asset

with respect to a long maturity. Moreover, the above approach does not work for the pricing of more

complicated options such as exotic options or options with early exercise features since in these cases

it is not clear which values forr, d, andσ should be used, see Andersen and Brotherton–Ratcliffe

[1].

Many approaches exist which try to be consistent with the existence of a volatility smile.

Merton [74], for instance, expands the Black Scholes model by introducing Poisson jumps into

the model. Hull and White [59] are examining options on assets that have a stochastic volatility.

Unfortunately, these approaches introduce an additional source of risk so that they are not complete

anymore. Thus, the concept of arbitrage–free pricing cannot be applied and assumptions about

investor preferences and behavior have to be made.

However, Derman and Kani [27], Dupire [32] and Rubinstein [88] have independently shown

that an one–factor diffusion model of the form

dS = µ(S, t)S dt+ σ(S, t)S dWt (5.1.6)

for the value of the asset is sufficiently rich to allow a perfect fit to most reasonable volatility smiles

[67]. The local volatility functionσ(S, t) is now a deterministic function dependent on the time

as well as on the current asset price level. This model has the advantage that it maintains the

completeness and allows for the application of the usual arbitrage–free pricing techniques.

Moreover, Dupire has shown in [32] that this local volatility function and hence, the risk–neutral

process (5.1.6) is determined when there exists a complete knowledge of arbitrage–free values of

European call options (or put options) for all possible strike pricesK > 0 and maturitiesT > 0.
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This group of researchers has tried to extract the true probability distribution of the stock prices from

market European option prices by using implied trees, see for instance Rubinstein [88], Dupire [32],

Derman and Kani [27], Derman, Kani and Chriss [28].

In this work, we follow a different approach by considering a continuous model for a

European call option consistent with the one–factor diffusion model (5.1.6) for the price process

of the underlying. Using the common arbitrage–free pricing techniques the resulting European call

price model is given by the following deterministic parabolic differential equation with nonconstant

coefficients with one of these coefficients containing the volatility functionσ(S, t) of the diffusion

process (5.1.6):

Ct + 1
2 σ

2(S, t)S2CSS + (r(t)− d(t))S CS = r(t)C , (S, t) ∈ IR+ × (0 , T ]

C(S, T ;K,T ) = max(S −K, 0) , S ∈ IR+ .

Some approaches already exist trying to extract this volatility functionσ(S, t) by calibrating the

model European call prices with respect to their market counterparts, see for instance Lagnado and

Osher [67], Andersen and Brotherton–Ratcliffe [1], and Coleman and Verma [17]. The formulation

of these problems results in inverse problems so that they are naturally ill–posed. Lagnado and

Osher [67] overcome this ill–posedness by introducing regularization techniques in their approach.

In comparison with it, Coleman and Verma [17] achieve this effect by representing the volatility

functionσ(S, t) by a two–dimensional cubic spline.

Moreover, starting from this continuous deterministic European call price model, Dupire [32]

and, in more general form, Andersen and Brotherton–Ratcliffe [1] have shown that there exists an

additional model for the European call option which can be thought as being dual to the first one

[32]. The first model considers a fixed option, i.e. the strike priceK and the maturityT are hold

fixed, and gives information about the value of this option for different valuesS of the underlying

asset and timest, i.e. the European call price function presents a function inS andt. On the contrary,

in the second model the current asset valueS and the timet are hold fixed and the European call

price function is variable with strike priceK and maturityT . This second model, again, consists

in a deterministic parabolic differential equation containing the volatility functionσ in one of its

coefficients, but this time the volatility function is dependent on the strike priceK and the maturity

T , i.e.σ(K,T ) appears in the coefficient of the differential equation:

CT − 1
2 σ

2(K,T )K2CKK + (r(T )− d(T ))K CK = − d(T )C ,

(K,T ) ∈ IR+ × (0 , T̄ ]

C(σ(·, ·);K, 0) = max(S −K, 0) , K ∈ IR+ .

In accordance with the literature in the following, we will callσ(K,T ) the instantaneous volatility

function, see for instance [32], [1]. Thus, this model contains the volatility values that correspond to

European call options with strike priceK and maturityT which are the volatility values the financial

institutions have an interest in, see the statements given above. Moreover, since in this model the

European call price function is variable with strike priceK and maturityT a single evaluation of the
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model establishes the values of European call options for all conceivable strike prices and maturities

for fixedS andt. For these reasons, in this work we will use the latter model for constructing the

instantaneous volatility functionσ(K,T ) with respect to market European call option, i.e. adapting

the instantaneous volatility functionσ(K,T ) so that the model matches the market prices of all

European call options in this class.

The mathematical formulation of the construction of the instantaneous volatility function again

represents an inverse problem such that in this case we are also confronted with an ill–posed

problem. We will apply the Inexact Gauss–Newton Algorithm 2.2.3 for the solution of this

problem which overcomes the ill–posedness since using the trust–region strategy for the solution

of the Gauss–Newton subproblems enforces a regularization of these problems, see the statements

given in Subsection 2.2.2.

5.2 An Extended Black–Scholes Model for European Calls

Before we present the mathematical formulation of the construction problem of the instantaneous

volatility function σ(K,T ), first, we will derive and study the underlying European call option

model which gives information about European call prices for all conceivable strike pricesK and

maturitiesT for a fixed valueS of the underlying asset and timet. In the first part of this section,

we will state the major steps given by Dupire [32] and Andersen and Brotherton–Ratcliffe [1],

respectively, of the derivation of this European call option model. The model consists in a

deterministic second–order parabolic initial–value problem with some coefficients of the parabolic

differential equation containing the space variableK. Since this can lead to instabilities when

treating the differential equation numerically, in the following subsection, we will carry out a

transformation of the differential equation to eliminate the variableK in these coefficients. Finally

in the last subsection, we examine the existence and uniqueness of a solution to the transformed

parabolic differential equation by falling back on results presented by Friedman in [37].

5.2.1 The “Dual” European Call Price Model

We assume that the price process of the underlying asset fulfils the one–factor diffusion model

(5.1.6). Then, by using the usual arbitrage-free pricing techniques, it follows that the price function

C(S, t;K,T ) of a European call option is given by the solution of the extended Black–Scholes

model

Ct + 1
2 σ

2(S, t)S2CSS + (r(t)− d(t))S CS = r(t)C , (S, t) ∈ IR+ × (0 , T ]

C(S, T ;K,T ) = max(S −K, 0) , S ∈ IR+ ,
(5.2.1)

see for instance Avellaneda and Laurence [3]. This model elucidates the dependence of the value

of a European call option,C(S, t;K,T ), on the value of the underlying,S, the current time,t, the

strike price,K, the maturity,T , the instantaneous interest rate,r(t), the continuous dividend rate,

d(t), and the volatility functionσ(S, t). In the extended Black–Scholes model (5.2.1), the European

call price function varies with the current value of the underlyingS and the timet. Dupire [32]
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(see also [33]) and, in more general form, Andersen and Brotherton–Ratcliffe [1] have shown that

there also exists a European call price model in which the European call price function is given as a

function of the strike priceK and the maturityT . These two problems can be thought as being dual

to each other, however, the relationship is not so universal [32]. In the following, we will briefly

quote their derivation for the latter model to elucidate the relation between these two models. We

will follow mainly the statements given by Andersen and Brotherton–Ratcliffe given in [1].

Applying the Feynman–Kac Theorem (see for instance Karatzas and Shreve [63, Theorem

5.7.6]) to the solutionC(S, t;K,T ) of the parabolic initial–value problem (5.2.1) yields that

C(S, t;K,T ) admits the stochastic representation

C(S, t;K,T ) = exp
(
−
∫ T
t r(τ) dτ

) ∞∫
0

max(u−K, 0) p(S, t;u, T ) du

= exp
(
−
∫ T
t r(τ) dτ

) ∞∫
K

(u−K) p(S, t;u, T ) du

(5.2.2)

with p(S, t;u, T ) being the risk–neutral transition probability density of the processS

determined by (5.1.6) assuming that the coefficientsr(t) , d(t) : [0 , T ] → IR are continuous,

σ(S, t) , µ(S, t) : IR × [0 ,∞) → IR are locally uniform bounded int, Lipschitz–continuous in

S (ensures the existence and uniqueness of a solutionS to the one–factor diffusion model (5.1.6),

see for instance Irle [60, Theorem 13.4 and 13.5]) and that they satisfy the linear growth condition

‖µ(S, t)‖2 + ‖σ(S, t)‖2 ≤ k2 (1 + ‖S‖2)

for some constantk > 0. Note that the condition on the initial condition of the Cauchy problem in

the Feynman–Kac Theorem, i.e.

|f(S)| ≤ k
(
1 + ‖S‖2 ν

)
or f(S) ≥ 0 , for S ∈ IR+

is satisfied for the end condition given in the end–value problem (5.2.1) and that the end–value

problem (5.2.1) can be transformed into an initial–value problem just by transforming the time

variablet into the time to maturityT − t. The transition probability densityp(S, t;u, T ) in the

stochastic representation (5.2.2) ofC(S, t;K,T ) satisfies for fixed(S, t) the Kolmogorov forward

equation

∂
∂T p+ ∂

∂u([r(T )− d(T )]up)− 1
2

∂2

∂u2 (σ(u, T )2u2p) = 0 , (u, T ) ∈ IR+ × (t, T̄ ] ,

p(S, t;u, t) = δ(S − u) , u ∈ IR+ ,

(5.2.3)

whereδ(·) is the Dirac delta–function, see for instance Cox and Miller [20, Chap. 5] or Karatzas

and Shreve [63, Chap. 5].

Moreover, differentiation ofC(S, t;K,T ) in (5.2.2) twice with respect toK yields

∂
∂KC(S, t;K,T ) = − exp

(
−
∫ T
t r(τ) dτ

) ∞∫
K

p(S, t;u, T ) du

∂2

∂K2C(S, t;K,T ) = exp
(
−
∫ T
t r(τ) dτ

)
p(S, t;K,T )
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and, thus,

p(S, t;K,T ) = exp
(∫ T

t r(τ) dτ
)

∂2

∂K2C(S, t;K,T ) . (5.2.4)

This last equation makes clear that the risk–neutral transition densityp(S, t;K,T ) can be recovered

directly from market prices when market European call options exist for all conceivableK > 0 and

T > 0, a result which was already was presented by Breeden and Litzenberger in [13].

Using the representation (5.2.4) of the risk–neutral transition densityp(S, t;K,T ), the different

terms in the forward equation (5.2.3) become

∂
∂T p = exp

(∫ T
t r(τ) dτ

)
∂

∂T

(
∂2

∂K2C
)

+ ∂
∂T exp

(∫ T
t r(τ) dτ

)
∂2

∂K2C

= exp
(∫ T

t r(τ) dτ
) (

∂2

∂K2

(
∂

∂T C
)

+ r(T ) ∂2

∂K2C
)

∂
∂K ([r(T )− d(T )]K p) = exp

(∫ T
t r(τ) dτ

)
(r(T )− d(T )) ∂

∂K

(
K ∂2

∂K2C
)

1
2

∂2

∂K2 (σ(K,T )2K2 p) = exp
(∫ T

t r(τ) dτ
)

1
2

∂2

∂K2 (σ(K,T )2K2 ∂2

∂K2C)

(5.2.5)

and inserting them into (5.2.3) yields

∂2

∂K2
∂

∂T C + r(T ) ∂2

∂K2C + (r(T )− d(T )) ∂
∂K

(
K ∂2

∂K2C
)
− 1

2
∂2

∂K2

(
σ2(K,T )K2 ∂2

∂K2C
)

= 0 .

Integration of this equation twice with respect toK produces

∂
∂T C + r(T )C + (r(T )− d(T ))

(
K ∂

∂KC − C
)
− 1

2

(
σ2(K,T )K2 ∂2

∂K2C
)

= V (T )K +W (T ) ,
(5.2.6)

whereV andW are arbitrary functions of time. Assuming that the functions appearing in (5.2.6)

show sufficient regularity features to make all terms, that includeC, approach zero asK approaches

infinity, see also Dupire [33], Andreasen [2], then, the integration functionsV andW must be zero.

Thus, the price process of a European call option is also described by the parabolic initial–value

problem

CT − 1
2σ(K,T )2K2CKK +(r(T )−d(T ))KCK +d(T )C = 0 , (K,T ) ∈ IR+×(0 , T̄ ] , (5.2.7)

subject to the initial condition

C(S, t;K, 0) = max(S −K, 0) , K ∈ IR+ , (5.2.8)

however, now the European call price function is dependent on the strike priceK and the maturity

T .

An important aspect in the derivation of the initial–value problem (5.2.7), (5.2.8) is the

representation (5.2.4) of the risk–neutral transition density by the second derivative of the

European call price function with respect to the strike priceK, which holds because the intrinsic

value of a European call happens to be the second integral of a Dirac function [32]. Thus, the
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initial–value problem (5.2.7), (5.2.8) applies only to European call options whereas by choosing the

appropriate initial condition in (5.2.1) the latter model is valid for any contingent claim. Hence,

the dual relationship between the problems (5.2.1) and (5.2.7), (5.2.8) holds only for European call

options.

Because of the reasons given in the previous section, we proceed working with the initial value

problem (5.2.7), (5.2.8).

5.2.2 Transformation of the “Dual” Extended Black–Scholes Equation

Before we further examine the partial differential equation (5.2.7), we eliminate the variableK in

the coefficients of the equation. This can be done by changing the variableK to

K = S exp(x) (5.2.9)

with S 6= 0 and setting

C(K,T ) = S c(ln K
S , T ) = S c(x, T ) . (5.2.10)

AssumingS 6= 0 is a natural restriction since in the case ofS = 0 the stochastic process (5.1.6)

elucidates that the asset price will stay there also for future times so that trading contingent claims

with this underlying would not make any sense anymore.

Using the transformation (5.2.9) and the definition (5.2.10), the partial derivatives ofC with

respect toK can be expressed in terms of the transformed European call functionc according the

following identities (note thatx = ln K
S )

∂
∂KC(K,T ) = S ∂

∂xc(x, T ) ∂
∂K (ln K

S )

= S
K

∂
∂xc(x, T ) ,

∂2

∂K2C(K,T ) = − S
K2

∂
∂xc(x, T ) + S

K
∂2

∂x2 c(x, T ) ∂
∂K (ln K

S )

= S
K2

(
∂2

∂x2 c(x, T )− ∂
∂xc(x, T )

)
.

(5.2.11)

Replacing the partial derivatives in the differential equation (5.2.7) with the corresponding

expressions in (5.2.11) we get the following partial differential equation for the transformed

European call functionc(x, T ) (for clearness, we neglect the arguments(x, T ) of c in the following)

0 = S ∂
∂T c−

1
2σ

2(K,T )K2 S
K2

(
∂2

∂x2 c− ∂
∂xc
)

+ (r(T )− d(T ))K S
K

∂
∂xc+ d(T )S c

= S
(

∂
∂T c−

1
2 σ̂

2(x, T ) ∂2

∂x2 c+
(
r(T )− d(T ) + 1

2 σ̂
2(x, T )

)
∂
∂xc+ d(T ) c

)
.

To express the volatility functionσ also in terms of the transformed variablex, we have changed

slightly the notation forσ(K,T ) to

σ̂(x, T ) := σ(S exp(x) , T ) = σ(K,T ) .

According to the transformation (5.2.9), the initial condition (5.2.8) in terms ofc has the form

C(K, 0) = max(S −K, 0) = S max(1− K
S , 0) = S max(1− exp(x) , 0) = S c(x, 0) .
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Thus,c(x, T ) is the solution to the parabolic differential equation

∂
∂T c +

(
b(T ) + 1

2 σ̂
2(x, T )

)
∂
∂xc −

1
2 σ̂

2(x, T ) ∂2

∂x2 c = − d(T ) c (5.2.12)

subject to the initial condition

c(x, 0) = max(1− exp(x) , 0) , (5.2.13)

with

b(T ) := r(T )− d(T ) . (5.2.14)

In the following, we will examine the transformed parabolic differential equation (5.2.12),

(5.2.13) since this problem is more advantageous to the subsequent numerical treatment. We will see

later on that the stability of finite difference methods applied to the transformed forward equation

(5.2.12) for European call options depends on the discretization size of thex–space. By contrast,

the stability of finite difference methods applied to the original parabolic differential equation (5.2.7)

depends on the size of the variableK. Hence, the scheme can be stable for smallK and unstable

for largeK, see for instance Wilmott et al [107] and Remark 5.4.16 in this work. Thus, it is not

evident whether the scheme is stable and it can happen that negative option values are predicted for

large values ofK. However, this behavior does not occur with the discretization of the transformed

equation (5.2.12) since the resulting system is either stable at every mesh point or unstable at every

mesh point.

5.2.3 Existence and Uniqueness of Solutions to the Transformed “Dual” Extended
Black–Scholes Equation

In this section, we examine the existence and the uniqueness of the solution to the parabolic

differential equation (5.2.12) with initial condition (5.2.13). The existence as well as the uniqueness

of solutions to linear parabolic differential equations with nonconstant smooth coefficients is

already well estabilished and can be found for instance in the monographs by Friedman [37], Itô

[61] or Ladyženskaja, Solonnikov and Ural’ceva [66].

The following statements are the main results of Friedman in [37, Chapter 1] regarding the

existence and uniqueness of the solution to the Cauchy problem (5.2.12), (5.2.13). Let

Lc = 1
2 σ̂

2(x, T ) ∂2

∂x2 c− (b(T ) + 1
2 σ̂

2(x, T )) ∂
∂xc− d(T ) c− ∂

∂T c (5.2.15)

for (x, T ) ∈ IR× (0, T̄ ]. Then, a solution to the parabolic differential equationLc = 0 is defined as

Definition 5.2.1 (See Friedman [37, Chap. 1.1].) The functionc(x, T ) is a solution to the parabolic

differential equationLc = 0 in the regionIR× (0, T̄ ] if

∂
∂xc(x, T ) , ∂2

∂x2 c(x, T ) , ∂
∂T c(x, T )

are continuous functions inIR× (0, T̄ ] andLc(x, T ) = 0 for each point(x, T ) ∈ IR× (0, T̄ ].



5.2 An Extended Black–Scholes Model for European Calls 87

To guarantee the existence and the uniqueness of a solutionc(x, T ) to the parabolic differential

equationLc = 0, the coefficients of the differential operatorL have to satisfy certain conditions.

The coefficient of the second–order term in the definition ofL (5.2.15) consists of the instantaneous

volatility function σ̂(x, T ) of the risky asset underlying the European call option. We assume that

this riskiness is always existing so thatσ̂2(x, T ) is bounded away from0, i.e. there exists a positive

constantλ0 such thatλ0 ≤ σ̂2(x, T ). Additionally, we assume that the riskiness of the underlying

asset is bounded above by a positive constantλ1 such that for̂σ2(x, T ) holds

λ0 ≤ σ̂2(x, T ) ≤ λ1 for all (x, T ) ∈ IR× [0, T̄ ] . (5.2.16)

Condition (5.2.16) ensures that the differential equation (5.2.12) is uniformly parabolic. Moreover,

we assume thatr(T ) andd(T ) are bounded continuous functions in[0, T̄ ], σ̂2(x, T ), ∂
∂x σ̂

2(x, T )
and ∂2

∂x2 σ̂
2(x, T ) are bounded continuous functions inIR× [0, T̄ ], which satisfy

|σ̂2(x, T )− σ̂2(x0, T0)| ≤ κ (|x− x0|q + |T − T0|
q
2 )

| ∂
∂x σ̂

2(x, T )− ∂
∂x σ̂

2(x0, T )| ≤ κ |x− x0|q

| ∂2

∂x2 σ̂
2(x, T )− ∂2

∂x2 σ̂
2(x0, T )| ≤ κ |x− x0|q

(5.2.17)

for all (x, T ) , (x0, T0) , (x0, T ) ∈ IR× [0, T̄ ], q > 0.

Friedman [37] derived the existence of the solution to a second–order linear parabolic

differential equation by using the parametrix method. In this method a fundamental solution

Γ(x, T ;χ, τ) of Lc = 0 is constructed.

Definition 5.2.2 (See Friedman [37, Chap. 1.1].) A fundamental solution ofLc = 0 (in IR× [0, T̄ ])
is a functionΓ(x, T ;χ, τ) defined for all(x, T ) , (χ, τ) ∈ IR × [0, T̄ ], T > τ which satisfies the

following conditions

1. for fixed(χ, τ) ∈ IR × [0, T̄ ] it satisfies, as a function of(x, T ), x ∈ IR, τ < T < T̄ , the

equation
1
2 σ̂

2(x, T ) ∂2

∂x2 c− (b(T ) + 1
2 σ̂

2(x, T )) ∂
∂xc− d(T ) c− ∂

∂T c = 0

2. for every continuous functionf(x) in IR with

|f(x)| ≤ p1 exp(hx2) ,

if x ∈ IR, then

lim
T→τ

∞∫
−∞

Γ(x, T ;χ, τ) f(χ) dχ = f(x)

According to Friedman [37], a fundamental solutionΓ(x, T ;χ, τ) of Lc = 0 (in IR× [0, T̄ ]) is

given by

Γ(x, T ;χ, τ) = Z(x, T ;χ, τ) +

T∫
τ

∞∫
−∞

Z(x, T ; η, υ) Φ(η, υ;χ, τ) dη dυ (5.2.18)
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whereZ(x, T ;χ, τ) is a fundamental solution of the following differential equation without minor

terms and frozen leading coefficient

1
2 σ̂

2(χ, τ) ∂2

∂x2 c − ∂
∂T c = 0 .

It is well–known that the fundamental solutionZ(x, T ;χ, τ) of the latter differential equation is

given by the so–called Gaussian kernel

Z(x, T ;χ, τ) =
1√

2π (T − τ) σ̂(χ, τ)
exp

(
(x− χ)2

2 σ̂2(χ, τ) (T − τ)

)
.

Furthermore, the densityΦ(η, υ;χ, τ) in the integral term of (5.2.18) is determined by the Volterra

integral equation

Φ(x, T ;χ, τ) = LZ(x, T ;χ, τ) +

T∫
τ

∞∫
−∞

LZ(x, T ; η, υ) Φ(η, υ;χ, τ) dη dυ .

Thus, the solution to the parabolic differential equation (5.2.12) with initial condition (5.2.13)

is given by

c(x, T ) =

∞∫
−∞

Γ(x, T ;χ, 0) c(χ, 0) dχ (5.2.19)

if the initial condition (5.2.13) satisfies

|c(x, 0)| ≤ p2 exp(hx2) (5.2.20)

whereh is any positive constant satisfying

h <
1

4 T̄ λ1
, (5.2.21)

andc(x, T ) satisfies

|c(x, T )| ≤ p3 exp(k x2) for (x, T ) ∈ IR× [0, T̄ ] (5.2.22)

with p3 is a positive constant andk is a constant depending only onh, λ1 and T̄ , see Friedman

[37, Chap. 1, Theorem 12].

Furthermore, Friedman [37, Chap. 1, Theorem 16] showed that there exists at most one

solution to the parabolic differential equation (5.2.12) with initial condition (5.2.13) that satisfies

the boundedness condition

T̄∫
0

∞∫
−∞

|c(x, T )| exp(−k x2) dx dT < ∞

for some positive constantk.



5.2 An Extended Black–Scholes Model for European Calls 89

Theorem 5.2.3 Supposer(T ) and d(T ) are bounded continuous functions in[0, T̄ ], σ̂2(x, T ),
∂
∂x σ̂

2(x, T ) and ∂2

∂x2 σ̂
2(x, T ) are bounded continuous functions inIR × [0, T̄ ] and the conditions

(5.2.16)and(5.2.17)are satisfied. Then, the solution(5.2.19)of the parabolic initial–value problem

(5.2.12), (5.2.13)that is unique with respect to the set

B = {c(x, T ) :

T̄∫
0

∞∫
−∞

|c(x, T )| exp(−k x2) dx dT < ∞ for somek > 0}

represents the price function of a European call option.

Proof: To ensure the existence of the solution (5.2.19) to the parabolic initial–value problem (5.2.12),

(5.2.13) we have to verify that the initial condition (5.2.13) given by

c(x, 0) = max(1− exp(x) , 0)

=

 1− exp(x) , x < 0

0 , x ≥ 0

satisfies condition (5.2.20).
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FIGURE 5.1: Boundedness of the initial conditionc(x, 0)

For allx ≥ 0 the initial condition (5.2.13) is equal to 0 such that in this case the inequality (5.2.20) is

satisfied for all positive constantsp2 andh. Furthermore, the functionc(x, 0) is positive and strictly

decreasing forx < 0 and1 − exp(x) tends to1 for x tending to−∞. Hence, we can choose an

arbitrary positive constanth to ensure the condition (5.2.20) if onlyp2 ≥ 1 (see also Figure 5.1).

Thus, the existence of the solution (5.2.19) to the differential equation (5.2.12) with initial condition

(5.2.13) is ensured for any arbitrary time interval[0, T̄ ] with T̄ <∞.

Moreover, it follows with (5.2.22) thatc(x, T ) in (5.2.19) is the unique solution in the set

B = {c(x, T ) :

T̄∫
0

∞∫
−∞

|c(x, T )| exp(−k x2) dx dT < ∞ for some k > 0}
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to the differential equation (5.2.12), (5.2.13).

To show that the solution (5.2.19) represents the price function of a European call option, we

only have to verify that the European call price function belongs to the setB. Merton [73] showed

that from no–arbitrage arguments follows that the price of a European call option has to satisfy

C(K,T ) < S for all K ≥ 0 and T ∈ [0, T̄ ] .

and thus, because of (5.2.10)c(x, T ) has to fulfil

c(x, T ) < 1 for all x ∈ IR and T ∈ [0, T̄ ] .

Thus, the transformed European call price function belongs to the setB such that Theorem 5.2.3 is

proven.

�

5.3 Determination of the Instantaneous Volatility Function

After establishing the European call option model, we now return to the construction of the

instantaneous volatility functionσ(K,T ) respectivêσ(x, T ).
The previous section has shown that if the functional form ofσ̂(x, T ) is specified and given the

valueS of the underlying, the risk–free instantaneous interest rater(T ) and the continuous dividend

rated(T ), then a European call option with transformed strike pricex = ln(K
S ) and maturityT

has a unique valuec(σ̂(·, ·);x, T ). Note that we have changed slightly the notation to express the

dependence of the European option price on the particular choice of the instantaneous volatility

functionσ̂(x, T ).
Now, suppose that we are givenm market prices of European call options with strike prices

Kl and maturitiesTl, l = 1 , . . . ,m. Let the bid and ask prices observed att = 0 of a European

call option with strike priceKl and maturityTl be denoted byĈb
Kl,Tl

and Ĉa
Kl,Tl

, respectively,

l = 1, . . . ,m. In this context, constructing the instantaneous volatility functionσ̂(x, T ) with respect

to market European call options means that an instantaneous volatility functionσ̂(x, T ) has to be

found such that the solution to the initial–value problem (5.2.12), (5.2.13) evaluated atxl = ln(Kl
S )

andTl falls between the corresponding bid and ask quotes, i.e.

Ĉb
Kl,Tl

≤ S c(σ̂(·, ·);xl, Tl) ≤ Ĉa
Kl,Tl

for l = 1 , . . . ,m. Since it is somewhat unwieldy working with these inequalities we will

alternatively minimize the distance between the model European call valuesc(σ̂(·, ·);xl, Tl) and

the meanĈKl,Tl
= (Ĉb

Kl,Tl
+ Ĉa

Kl,Tl
)/2 of the bid and ask quotes,l = 1 , . . . ,m, with respect to the

Euclidean norm. Moreover, existence of an unique solution to the initial–value problem (5.2.12),

(5.2.13) is guaranteed if the instantaneous volatility functionσ̂(x, t) belongs to the set

H = {σ̂(x, T ) : σ̂2 , ∂
∂x σ̂

2 , ∂2

∂x2 σ̂
2 bounded, continuous and satsify (5.2.17)} . (5.3.1)
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Thus, we alternatively solve the nonlinear least–squares problem

min 1
2

m∑
l=1

‖c(σ̂(·, ·);xl, Tl)− ĈKl,Tl
‖2

s.t. σ̂(x, T ) ∈ H

(5.3.2)

with c(σ̂(·, ·);x, T ) being the solution to the initial–value problem

cT + (b(T ) + 1
2 σ̂

2(x, T ))cx − 1
2 σ̂

2(x, T )cxx = − d(T )c , (x, T ) ∈ IR× (0 , T̄ ]

c(σ̂(·, ·);x, t) = max(1− ex, 0) , x ∈ IR ,
(5.3.3)

with b(T ) defined in (5.2.14).

Hence, the problem of constructing the volatility functionσ̂(x, T ) presents an inverse problem

which is naturally ill–posed. To overcome the ill–posedness, often, regularization terms are imposed

into the objective function in (5.3.2), see for instance Lagnado and Osher [67]. Since smoothness

of the instantaneous volatility function̂σ(x, T ) is important for the existence of a solution of the

initial–value problem (see above), they use smoothness as a regularization condition to approximate

the volatility function, i.e. their regularized optimization problem is of the form

min
σ̂(x,T )∈H

1
2

m∑
l=1

‖c(σ̂(·, ·);xl, Tl)− ĈKl,Tl
‖2 + λ‖∇σ̂(x, T )‖2

with λ being a positive constant. In this regularized problem, the size of the regularization parameter

λ is responsible for the degree of minimizing the first order derivative of the volatility function,

i.e. the degree of smoothness of the volatility function. However, the choice of this regularization

parameter appears to be not easy since a large regularization parameter slows down the optimization

process while a small regularization parameter might not overcome the ill–posedness of the problem.

In this work, we use a different approach. Using finite difference methods to discretize the

initial–value problem (5.3.3) and because of the limited number of observation data, the finite

dimensional counterpart of (5.3.2) represents an underdetermined nonlinear least–squares problem,

see the following Section 5.4. Using the Inexact Gauss–Newton Algorithm 2.2.3 for the solution of

this problem, we overcome the ill–posedness of the nonlinear least–squares problem because of the

integrated trust–region strategy. This latter method enforces a regularization of the linear Gauss–

Newton subproblems. The regularization with respect to the smoothness of the volatility function

will be achieved by scaling the trust–region with respect to a modified discretized version of the

differentiation operator.

5.4 Determination of the Discrete Instantaneous Volatility Function

For a numerical treatment of the optimization problem (5.3.2) it is, first of all, necessary to

evaluate numerically the theoretical European call price functionc(σ̂(·, ·);x, T ) that is described

by the parabolic differential equation (5.3.3). We will solve this differential equation by using a
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finite difference scheme. Note that the parabolic differential equation (5.3.3) is a pure initial–value

problem. Since in practice only a finite number of discretization points regarding the space variable

x can be treated in Subsection 5.4.1, we introduce boundary conditions forc(σ̂(·, ·);xmin, T ) and

c(σ̂(·, ·);xmax, T ) with xmin andxmax are chosen sufficiently small and large, respectively. Using

these boundary conditions, we will derive a finite difference scheme for the resulting initial–

boundary–value problem in Subsection 5.4.2. After examining the well–posedness and the

convergence of the finite difference scheme (see Subsection 5.4.3), we will derive the finite

dimensional optimization problem that determines the instantaneous volatility function at the grid

points of the mesh chosen in the finite difference method. The resulting optimization problem is

an underdetermined nonlinear least–squares problem that will be solved with the Inexact Gauss–

Newton Algorithm 2.2.3. The ill–posedness of the problem mentioned in the previous section is

carried over to the finite dimensional problem. However, the trust–region strategy used in Algorithm

2.2.3 enforces a regularization of the Gauss–Newton subproblems such that these problems will

become well–posed. We will carry out the trust–region strategy with respect to the weighted norm

‖ · ‖D̄ whereD̄ is a slight modification of the discrete version of the differentiation operator since

we required the solution̂σ(x, T ) to be sufficiently smooth, i.e.̂σ(x, T ) ∈ H.

5.4.1 Derivation of Boundary Conditions

In Section 5.2.3, we have seen that the European call price is already uniquely described by the

parabolic initial–value problem (5.3.3). For a numerical determination of the European call price

function c(σ̂(·, ·);x, T ), however, we can only consider a finite dimensional number of

discretization points regarding the state variablex. Thus, we have to choose a lower boundxmin and

an upper boundxmax for the state variablex so that the resulting interval[xmin , xmax] contains

the region relevant for the construction of the instantaneous volatility function, i.e.xmin andxmax

have to be chosen sufficiently small and large, respectively. Hence, we are approximating

IR × [0 , T̄ ] by the bounded domain[xmin , xmax] × [0 , T̄ ] and the pure initial–value problem

becomes a initial–boundary–value problem. Therefore, we need to derive wise values of

c(σ̂(·, ·);x, T ) at the lateral boundary of[xmin , xmax] × [0 , T̄ ], i.e. we need information about the

boundary valuesc(σ̂(·, ·);xmin, T ) andc(σ̂(·, ·);xmax, T ) for T ∈ [0 , T̄ ].
We first examine the value ofc(σ̂(·, ·);x, T ) at the left boundary, i.e. whenx is small. Suppose

x tends to−∞. Because of the change of variables (5.2.9), this is equivalent to assuming that the

strike priceK is very small, i.e.K is tending to0. In this case, the holder of the European call

option gets the underlying asset almost for free at the end of the periodT . If we suppose that the

volatility is constant, then with (5.1.5) it follows that in this case the European call price forK = 0
is given by

C(σ(·, ·); 0, T ) = S exp(−
T∫

0

d(τ) dτ) , T ∈ [0 , T̄ ] , (5.4.1)

with d(T ) , T ∈ [0 , T̄ ] is the known dividend yield. This equality also holds for the nonconstant

volatility case. We will derive the value ofC(σ(·, ·); 0, T ) by building an equivalent portfolio that

generates the same payout at the expiration dateT as the European call option. Suppose first that
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no dividends are paid on the asset underlying the option, i.e.d(T ) ≡ 0 for T ∈ [0 , T̄ ]. Since the

exercise priceK is equal to zero, the payout of the option at the expiration date is equivalent to the

value of the underlying asset at the expiration date. Hence, the option can be replicated by using a

portfolio which consists of one share of the underlying asset and is held constant over the life of the

option. Thus, to avoid possibilities of arbitrage the value of the option and the value of this portfolio

at the current time must be the same if no payments on either of these assets are made during the

life of the option, i.e. the value of the option is equal to the current price of the asset underlying the

option. If this relationship is not true, an arbitrageur can easily make a riskless profit by buying the

option and selling the stock or vice versa.

Now, suppose that dividends are paid on the underlying asset. The payment of a dividend

causes the stock to drop by an amount equal to the dividend. Supposing that a continuous dividend

yield of rated is paid and the stock price rises fromS today toST at timeT , it follows that without

dividend payments the stock would have risen fromS exp(−d(T − t)) today up toST at timeT .

Thus, if the underlying asset of a European call option pays a continuous dividend yield of rated

then the European call option has the same value than the corresponding European call option with

the same underlying asset paying no dividends and having the valueS exp(−d(T − t)) today since

the final value of the asset is the same in both cases. Therefore, for a valuation of a European call

option with an underlying asset paying a continuous dividend yield ofd we can base the calculations

on the current value of the asset ofS exp(−d(T − t)), see for instance Hull [58]. Hence, assuming

a time varying dividend yieldd(T ), T ∈ [0 , T̄ ], (5.4.1) presents the value of a European call option

with strike priceK = 0 and an underlying asset with valueS that pays a dividend yield of rate

d(T ) , T ∈ [0 , T̄ ].
Since we carry out the numerical computation of the value of the European call option on a

bounded domain with respect to the space variablex, we are interested in the value of the Euro-

pean call option for a sufficiently small, but finite, left boundaryxmin = ln(Kmin
S ). In this case, the

holder of the European call option still has to pay a small strike priceKmin at maturity. Considering

the time value of this payment, the value of the European call option at the left boundary

Kmin = S exp(xmin) becomes

C(σ(·, ·);Kmin, T ) = S exp(−
T∫

0

d(τ) dτ) − Kmin exp(−
T∫

0

r(τ) dτ) , (5.4.2)

for T ∈ [0 , T̄ ] and withr(T ) , T ∈ [0 , T̄ ], being the riskless interest rate.

For the right boundary of the domain[xmin , xmax], the following observation can be made for

the value of a European call option. As the strike price increases without bound, it becomes ever

more likely that the option will not be exercised, i.e. it becomes ever more likely that at the expiration

date the payoff is zero. Thus, the call option is worthless forK →∞ even if there is a long time to

expiration. Hence,

lim
K→∞

C(σ(·, ·);K,T ) = 0 , T ∈ [0 , T̄ ] , (5.4.3)

such that the condition for the right boundaryKmax = S exp(xmax) is given by

C(σ(·, ·);Kmax, T ) = 0 , T ∈ [0 , T̄ ] . (5.4.4)
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Note that the boundary conditions (5.4.2) and (5.4.4) ensure the compatibility of the initial and

boundary condition of the initial–boundary–value problem.

The transformation (5.2.10) fromC(K,T ) to c(x, T ) and the boundary conditions (5.4.2) and

(5.4.4) for the original parabolic differential equation (5.2.7) lead to the boundary condition for the

transformed parabolic differential equation (5.2.12):

c(σ̂(·, ·);xmin, T ) = exp(−
T∫

0

d(τ) dτ)− exp(xmin) exp(−
T∫

0

r(τ) dτ) ,

c(σ̂(·, ·);xmax, T ) = 0 ,

(5.4.5)

for T ∈ [0 , T̄ ].

5.4.2 Discretization Scheme for the Transformed Extended Black–Scholes Model

For the numerical computation of the solutionc(σ̂(·, ·);x, T ) of the second–order parabolic initial–

boundary–value problem consisting of the parabolic differential equation (5.2.12), the initial

condition (5.2.13) and the boundary conditions (5.4.5), i.e.

1
2 σ̂

2(x, T ) cxx −
(
b(T ) + 1

2 σ̂
2(x, T )

)
cx − d(T ) c = cT ,

(x, T ) ∈ (xmin , xmax)× (0 , T̄ ] ,

c(σ̂(·, ·);x, 0) = max(1− exp(x), 0) , x ∈ [xmin , xmax] ,

c(σ̂(·, ·);xmin, T ) = exp(−
T∫

0

d(τ) dτ) −

exp(xmin) exp(−
T∫

0

r(τ) dτ) , T ∈ [0, T̄ ] ,

c(σ̂(·, ·);xmax, T ) = 0 , T ∈ [0, T̄ ] ,

(5.4.6)

we use a finite difference method (see for instance Gustafsson, Kreiss, Oliger [49], Smith [96],

Thomas [101]). These methods reduce the continuous partial differential equation (5.2.12) to a

discrete set of difference equations by replacing the partial derivatives occurring in the partial

differential equation by finite difference approximations. For notation, we neglect the dependence

of the European call price functionc on the volatility parameter̂σ(·, ·) in this subsection by not

considering the volatility parameter in the argument of the European call functionc, i.e. in this

subsection we use the notationc(x, T ) for the European call price function. For the discretization of

the parabolic differential equation (5.2.12) we especially use the forward difference quotient for the

approximation ofcT (x, T ), i.e.

cT (x, T ) ≈ c(x, T + ∆T )− c(x, T )
∆T

, ∆T small, (5.4.7)
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the central difference quotient for approximatingcx(x, T ), i.e.

cx(x, T ) ≈ c(x+ ∆x, T )− c(x−∆x, T )
2 ∆x

, ∆x small, (5.4.8)

and the symmetric central difference quotient for approximatingcxx(x, T ), i.e.

cxx(x, T ) ≈ c(x+ ∆x, T )− 2 c(x, T ) + c(x−∆x, T )
(∆x)2

, ∆x small. (5.4.9)

From Taylor’s theorem it immediately follows that the forward difference quotient (5.4.7) is accurate

of orderO(∆T ), i.e.

cT (x, T ) =
c(x, T + ∆T )− c(x, T )

∆T
+ O(∆T ) , (5.4.10)

if the solution c to the parabolic initial–boundary–value problem (5.4.6) is sufficiently smooth.

Furthermore, the central difference quotient (5.4.8) and the symmetric central difference quotient

(5.4.9) give approximations of orderO((∆x)2), i.e.

cx(x, T ) =
c(x+ ∆x, T )− c(x−∆x, T )

2 ∆x
+ O((∆x)2) , (5.4.11)

cxx(x, T ) =
c(x+ ∆x, T )− 2 c(x, T ) + c(x−∆x, T )

(∆x)2
+ O((∆x)2) , (5.4.12)

again, supposing a sufficient smoothness of the solutionc.

Approximating the partial derivatives occurring in the partial differential equation (5.2.12) by

using finite difference quotients, the continuous domain[xmin , xmax] × [0 , T̄ ] can be replaced by

a discrete set of grid points [48]. A division of the domain[xmin , xmax] × [0 , T̄ ] into a mesh is

obtained by dividing thex–axis as well as theT–axis into equally spaced nodes a distance∆x and

∆T , respectively, apart, see Figure 5.2. It is also possible to take non–constant space–steps∆x and

time–steps∆T , however, for convenience we confine our examinations on uniform grids. Suppose

that the discretization of the time and the spatial axis are chosen so that

T̄ = M ∆T and xmax − xmin = N ∆x , M ,N ∈ IN , N even. (5.4.13)

Moreover, we set for the grid points of the spatial and the time domain

xi := xmin + i∆x and Tj := j∆T , i = 0 , . . . , N , j = 0 , . . . ,M .

Since in the following we are only interested in values ofc at these mesh points we use the

notation

ci,j = c(xi , Tj) (5.4.14)

for the exact solutionc of the parabolic initial–boundary–value problem (5.4.6) evaluated at the

grid point (xi , Tj), i = 0 , . . . , N , j = 0 , . . . ,M . Furthermore, for the coefficients occurring in
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FIGURE 5.2: Discretization of the domain[xmin , xmax]× [0 , T̄ ]

(5.2.12) we set

σ̂i,j = σ̂(xi , Tj) ,

bj = b(Tj) ,

rj = r(Tj) ,

dj = d(Tj) .

for i = 0 , . . . , N , j = 0 , . . . ,M .

We first examine the discretization of the elliptic part of the parabolic differential equation

(5.2.12), i.e.

Lc(x, T ) = 1
2 σ̂

2(x, T ) cxx(x, T ) −(
b(T ) + 1

2 σ̂
2(x, T )

)
cx(x, T )− d(T ) c(x, T ) .

(5.4.15)

Using the central difference quotient (5.4.11) forcx(x, T ) and the symmetric central difference

quotient (5.4.12) forcxx(x, T ), the elliptic part (5.4.15) of the parabolic differential equation (5.2.12)

becomes

Lc(xi , Tj) = 1
2 σ̂

2
i,j

ci+1,j − 2 ci,j + ci−1,j

(∆x)2
−(

bj + 1
2 σ̂

2
i,j

) ci+1,j − ci−1,j

2 ∆x
− dj ci,j +O((∆x)2) ,

i = 1 , . . . , N − 1 , j = 0 , . . . ,M , where we have restricted our attention to the values ofc on

the discrete mesh. Ignoring the termO((∆x)2), an approximation of the elliptic partLc(xi , Tj) is

given by

L̃i,j zi,j = 1
2 σ̂

2
i,j

zi+1,j − 2zi,j + zi−1,j

(∆x)2
−

(
bj + 1

2 σ̂
2
i,j

) zi+1,j − zi−1,j

2∆x
− dj zi,j ,

(5.4.16)
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i = 1 , . . . , N − 1 , j = 0 , . . . ,M , where the use ofzi,j emphasizes that the scheme (5.4.16) is

only an approximation of the elliptic differential equationL in (5.4.15). Note thatz0,j andzN,j in

(5.4.16) are given by the boundary conditions (5.4.5) of the initial–boundary–value problem (5.4.6),

i.e.

z0,j = exp(−
Tj∫
0

d(τ) dτ) − exp(x0) exp(−
Tj∫
0

r(τ) dτ) ,

zN,j = 0 .

(5.4.17)

A rearrangement of the terms in the right hand side of (5.4.16) yields

L̃i,j zi,j = − 1
(∆x)2

(
vj
i zi−1,j +mj

i zi,j + uj
i zi+1,j

)
, (5.4.18)

for i = 1 , . . . , N − 1 , j = 0 , . . . ,M , where

vj
i = −1

2

(
σ̂2

i,j + ∆x
(
bj + 1

2 σ̂
2
i,j

))
,

mj
i = σ̂2

i,j + (∆x)2 dj ,

uj
i = −1

2

(
σ̂2

i,j −∆x
(
bj + 1

2 σ̂
2
i,j

))
,

(5.4.19)

for j = 0 , . . . ,M . For the numerical computation of the integral terms
∫ Tj

0 d(τ) dτ and
∫ Tj

0 r(τ) dτ
occurring in the first boundary condition in (5.4.17), we use the trapezoidal rule, i.e. we approximate

the integrals
∫ Tj

0 d(τ) dτ and
∫ Tj

0 r(τ) dτ by

Tj∫
0

d(τ) dτ ≈ ∆T
2

j−1∑
k=0

(dk + dk+1) and

Tj∫
0

r(τ) dτ ≈ ∆T
2

j−1∑
k=0

(rk + rk+1) . (5.4.20)

This approximation is accurate of orderO((∆T )2), see for instance Stoer [99].

Now, using matrix notation, equation (5.4.16) can be rewritten in a more compact form

L̃jzj = −
(
D̄jzj + B̄j

)
, j = 0 , . . . ,M ,

where

zj = (z1,j , . . . , zN−1,j) ∈ IRN−1 , (5.4.21)

andD̄j is a(N − 1)× (N − 1)–dimensional tridiagonal matrix

D̄j = 1
(∆x)2

Dj ∈ IR(N−1)×(N−1) (5.4.22)

with Dj containing the coefficientsmj
i , u

j
i andvj

i in (5.4.19) on the diagonal and on the super- and

subdiagonal, i.e.

Dj =



mj
1 uj

1

vj
2 mj

2 uj
2

... ... ...

vj
N−2 mj

N−2 uj
N−2

vj
N−1 mj

N−1


∈ IR(N−1)×(N−1) , (5.4.23)
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j = 0 , . . . ,M . The vectorB̄j at the extreme right–hand side of this equation arises from the

boundary conditions (5.4.17) in combination with (5.4.20), i.e.B̄j contains the valuesz0,j andzN,j

B̄j = 1
(∆x)2

(
vj
1 z0,j , 0 , . . . , 0 , u

j
N−1 zN,j

)T
∈ IRN−1 (5.4.24)

wherez0,j andzN,j are given by,j = 0 , . . . ,M ,

z0,j = exp(−∆T
2

j−1∑
k=0

(dk + dk+1))− exp(x0) exp(−∆T
2

j−1∑
k=0

(rk + rk+1)) ,

zN,j = 0 .

(5.4.25)

Lemma 5.4.1 The elliptic part of the parabolic differential equation(5.2.12), i.e.

Lc(x, T ) = 1
2 σ̂

2(x, T ) cxx(x, T )−
(
b(T ) + 1

2 σ̂
2(x, T )

)
cx(x, T )− d(T ) c(x, T )

in discretized form is given by

L̃jzj = −
(
D̄jzj + B̄j

)
, j = 0 , . . . ,M ,

with zj , D̄j andB̄j defined in(5.4.21), (5.4.22), and(5.4.24), respectively, and by using the central

difference quotient(5.4.8)and the symmetric central difference quotient(5.4.9)for approximatingcx
andcxx, respectively. The approximatioñLi,j ci,j of the differential equationLc(xi, Tj) is accurate

of order2, i.e.

Lc(xi, Tj) = L̃i,j ci,j + O((∆x)2)

for i = 1 , . . . , N − 1 , j = 0 , . . . ,M .

Let cj = (c1,j , . . . , cN−1,j) be the vector of values of the solutionc of the parabolic initial–

boundary–value problem (5.4.6) evaluated at the different grid points(xi , Tj) of thejth time step.

Then, replacingLc(· , Tj) by its discrete approximatioñLjcj in (5.2.12) yields a system of ordinary

differential equations

∂
∂T cj = −

(
D̄j cj + B̄j

)
+O((∆x)2) , j = 0 , . . . ,M .

An approximation of the partial derivative ofc with respect to the time variableT using the

forward difference quotient (5.4.7) and ignoring the termsO((∆x)2) andO(∆T ) yields the weighted

difference scheme

zi,j+1 − zi,j
∆T

= L̃i,j ((1− θ) zi,j + θ zi,j+1) ,

i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1 ,
(5.4.26)

where the weighting is achieved by the parameterθ. Note that only values ofθ with 0 ≤ θ ≤ 1 make

sense. Moreover,zi,j denotes again the approximation of the exact solutionc of (5.4.6). The scheme

(5.4.26) belongs to the two level schemes since the parabolic differential equationLc = cT contains
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only first derivatives with respect toT which are approximated by using the forward difference

quotient (5.4.7) [101].

Plugging the definition of̃Li,j in (5.4.18) into (5.4.26) yields

1
∆T (zi,j+1 − zi,j) = − 1

(∆x)2

(
vj
i ((1− θ) zi−1,j + θ zi−1,j+1) +

mj
i ((1− θ) zi,j + θ zi,j+1) + uj

i ((1− θ) zi+1,j + θ zi+1,j+1)
)

for i = 1 , . . . , N − 1 , j = 0, . . . ,M − 1. A rearrangement of the terms in the previous equation

yields

θ α vj
i zi−1,j+1 + (1 + θ αmj

i ) zi,j+1 + θ α uj
i zi+1,j+1

= −(1− θ)αvj
i zi−1,j + (1− (1− θ)αmj

i ) zi,j − (1− θ)αuj
i zi+1,j

(5.4.27)

with α = ∆T
(∆x)2

andi = 1 , . . . , N − 1 , j = 0, . . . ,M − 1.

Using matrix notation equation (5.4.27) can be rewritten in a more compact form

(I + θD̃j) zj+1 = (I − (1− θ)D̃j) zj + B̃j , for j = 0, . . . ,M − 1 , (5.4.28)

with (see (5.4.23) for the definition ofDj)

D̃j = α Dj (5.4.29)

andB̃j ∈ IRN−1 containing the boundary conditions (see (5.4.25) for the definition ofz0,j andzN,j)

B̃j = −α
(
vj
1 ((1− θ) z0,j + θ z0,j+1) , 0, . . . ,

. . . , 0, uj
N−1 ((1− θ) zN,j + θ zN,j+1)

)T
.

(5.4.30)

The initial vectorz0 is given by the initial condition (5.2.13) evaluated at the mesh points(xi , 0),
i = 1 , . . . , N − 1, i.e.

z0 = c0 =
(
[1− exp(x1)]

+ , . . . , [1− exp(xN−1)]
+)T (5.4.31)

where[1− exp(x)]+ = max(1− exp(x), 0).

Lemma 5.4.2 The finite difference scheme of the parabolic initial–boundary–value problem

1
2 σ̂

2(x, T ) cxx −
(
b(T ) + 1

2 σ̂
2(x, T )

)
cx − d(T ) c = cT , (x, T ) ∈ (xmin , xmax)× (0 , T̄ ] ,

c(σ̂(·, ·);x, 0) = max(1− exp(x), 0) , x ∈ [xmin , xmax]

c(σ̂(·, ·);xmin, T ) = exp(−
T∫

0

d(τ) dτ) −

exp(xmin) exp(−
T∫

0

r(τ) dτ) , T ∈ [0, T̄ ] ,

c(σ̂(·, ·);xmax, T ) = 0 , T ∈ [0, T̄ ] ,
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using the forward difference quotient(5.4.7) for the approximation ofcT , the central difference

quotient(5.4.8), and the symmetric central difference quotient(5.4.9)for approximatingcx andcxx,

respectively, is given by the recursive scheme

(I + θD̃j) zj+1 = (I − (1− θ)D̃j) zj + B̃j , for j = 0, . . . ,M − 1

with the initial elementz0 given by the initial condition of the parabolic differential equation

(5.2.13), see(5.4.31), zj , D̃j , and B̃j defined in(5.4.21), (5.4.29), and (5.4.30), respectively, and

0 ≤ θ ≤ 1.

The scheme (5.4.28) is an explicit method only in the caseθ = 0, since in this case the

approximations of the following time layerj + 1 are simply obtained by matrix–vector

multiplication and vector addition. For all other values ofθ, i.e. 0 < θ ≤ 1, the scheme (5.4.28)

represents an implicit scheme [48]. In this case the scheme (5.4.28) is well–defined if the linear

systems

(I + θD̃j) zj+1 = (I − (1− θ)D̃j) zj + B̃j , j = 0 , . . . ,M − 1

have unique solutionszj+1 for j = 0 , . . . ,M−1. This latter condition is equivalent to the regularity

of the matrices(I + θD̃j), j = 0 , . . . ,M − 1, which is examined in Theorem 5.4.3 and Corollary

5.4.5.

Moreover, note that forθ = 0 the scheme (5.4.28) represents the explicit Euler method, for

θ = 1 the implicit Euler method, and forθ = 1
2 the Crank–Nicolson method.

Theorem 5.4.3 Let ∆x and ∆T be the discretization size for the space and the time variable,

respectively,θ ∈ [0, 1], and define

P := max
i=1 ,...,N−1
j=0,...,M−1

∆x|bj + 1
2 σ̂

2
i,j | − σ̂2

i,j (5.4.32)

(i) If P ≤ 0 then(I + θD̃j) is nonsingular forj = 0, . . . ,M − 1.

(ii) If P > 0 and∆T satisfies

∆T <
(∆x)2

P
. (5.4.33)

then(I + θD̃j) is nonsingular forj = 0, . . . ,M − 1.

Remark 5.4.4 Andersen, Brotherton–Ratcliffe examine in [1] the finite difference scheme for the

parabolic differential equation (5.2.1) describing the European call price function dependent on the

underlying asset price and the current time. Their sufficient condition for the existence of a unique

solution of the tridiagonal linear systems arising from the finite difference scheme are also given by

a relationship of the discretization sizes for the time and the space domain. They derive this result

by using the equivalence of the diagonal dominance and invertibility of the coefficient matrices of

the tridiagonal linear systems. Moreover, for proving the diagonal dominance of the tridiagonal



5.4 Determination of the Discrete Instantaneous Volatility Function 101

coefficient matrix, they show that the sum of the non–diagonal elements in one row of this matrix

can be represented by12 (1−θ) (|A+B|+ |C−B|) withA ,C > 0 andB can take negative as well

as positive values. Depending on the sign ofB, they show that this expression takes the following

form:

1
2 (1− θ) (|A+B|+ |C −B|)

=


1
2 (1− θ) max(A+ C , 2B − C +A) , if B ≥ 0

1
2 (1− θ) max(A+ C , 2 |B|+ C −A) , otherwise

.

(5.4.34)

We will make use of these techniques in the proof of Theorem 5.4.3, too. However, the remaining

part of the proof is different to the proof of Andersen, Brotherton–Ratcliffe in [1], since they have

carried out further transformations for the coefficients appearing in the parabolic differential

equation (5.2.1) by using certain features of bonds, asset forwards and European call options. In

our examination, however, we will use the original continuous coefficients evaluated at the different

grid points in the finite difference mesh.

Proof of Theorem 5.4.3.To verify that(I+θD̃j) is nonsingular forj = 0, . . . ,M−1 it is sufficient

to show that these matrices are strictly diagonally dominant, see for instance Johnson and Riess

[62, Theorem 2.3]. A matrix is diagonally dominant if the absolute value of the diagonal element in

each row is strictly larger than the sum of the absolute values of the non–diagonal elements. Hence,

for the proof that(I + θ D̃j), j = 0, . . . ,M − 1, is diagonally dominant we have to verify that for

j = 0, . . . ,M − 1 the elements of(I + θ D̃j) fulfil

θ α
(∣∣∣vj

i

∣∣∣+ ∣∣∣uj
i

∣∣∣) <
∣∣∣1 + θ αmj

i

∣∣∣ , i = 2 , . . . , N − 2 ,

θ α
∣∣∣uj

1

∣∣∣ <
∣∣∣1 + θ αmj

1

∣∣∣ ,
θ α

∣∣∣vj
N−1

∣∣∣ <
∣∣∣1 + θ αmj

N−1

∣∣∣ .
which is equivalent to

θ α
2

(∣∣σ̂2
i,j + ∆x (bj + 1

2 σ̂
2
i,j)
∣∣+ ∣∣σ̂2

i,j −∆x (bj + 1
2 σ̂

2
i,j)
∣∣)

<
∣∣1 + θ α

(
σ̂2

i,j + (∆x)2 dj

) ∣∣ , (5.4.35)

for i = 2 , . . . , N − 2 and

θ α
2

∣∣σ̂2
1,j −∆x (bj + 1

2 σ̂
2
1,j)
∣∣ <

∣∣1 + θ α
(
σ̂2

1,j + (∆x)2 dj

) ∣∣ ,
θ α

2

∣∣σ̂2
N−1,j + ∆x (bj + 1

2 σ̂
2
N−1,j)

∣∣ <
∣∣1 + θ α

(
σ̂2

N−1,j + (∆x)2 dj

) ∣∣ , (5.4.36)

for j = 0, . . . ,M − 1.
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Let
F1 = σ̂2

i,j > 0

F2 = ∆x (bj + 1
2 σ̂

2
i,j) = ∆x (rj − dj + 1

2 σ̂
2
i,j)

for an arbitrary but fixedi ∈ {2, . . . , N − 2} andj ∈ {0, . . . ,M − 1}. Then, the left hand side of

(5.4.35) satisfies

θ α
2

(∣∣σ̂2
i,j + ∆x (bj + 1

2 σ̂
2
i,j)
∣∣+ ∣∣σ̂2

i,j −∆x (bj + 1
2 σ̂

2
i,j)
∣∣) = θ α

2 ( |F1 + F2|+ |F1 − F2| ) .

In the caserj + 1
2 σ̂

2
i,j ≥ dj , i.e.F2 ≥ 0

|F1 + F2|+ |F1 − F2| = F1 + F2 + max{(F1 − F2) , (F2 − F1)}

= max{2F1 , 2F2}

= max{2F1 , 2|F2|} .

If rj + 1
2 σ̂

2
i,j < dj then

|F1 + F2|+ |F1 − F2| = |F1 − |F2| |+ |F1 + |F2| |

= max{(F1 − |F2|) , (|F2| − F1)}+ F1 + |F2|

= max{2F1 , 2|F2|} .
Hence,

θ α
2 (|F1 + F2|+ |F1 − F2|) = θ α max{F1 , |F2|} .

Since we have chosen arbitraryi ∈ {2, . . . , N − 2} andj ∈ {0, . . . ,M − 1} it follows that the left

hand side of (5.4.35) satisfies

θ α
2

(
σ̂2

i,j +
∣∣∆x (bj + 1

2 σ̂
2
i,j)
∣∣+ ∣∣σ̂2

i,j −∆x (bj + 1
2 σ̂

2
i,j)
∣∣)

= θ α max
{
σ̂2

i,j ,∆x
∣∣bj + 1

2 σ̂
2
i,j

∣∣} , (5.4.37)

for i = 2, . . . , N − 2, j = 0, . . . ,M − 1. Note that∆x > 0. Furthermore, each of the left hand

sides of the equations in (5.4.36) fulfil forj = 0, . . . ,M − 1

θ α
2

∣∣σ̂2
1,j −∆x(bj + 1

2 σ̂
2
1,j)
∣∣ ≤ θ α max

{
σ̂2

1,j ,∆x
∣∣bj + 1

2 σ̂
2
1,j

∣∣} ,
θ α

2

∣∣σ̂2
N−1,j + ∆x(bj + 1

2 σ̂
2
N−1,j)

∣∣ ≤ θ α max
{
σ̂2

N−1,j ,∆x
∣∣bj + 1

2 σ̂
2
N−1,j

∣∣} . (5.4.38)

(i) If P ≤ 0 then

∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣ ≤ σ̂2
i,j

for all i = 1, . . . , N − 1 , j = 0, . . . ,M − 1 and with (5.4.37) and (5.4.38) we get

θα
2

(∣∣∣σ̂2
i,j + ∆x(bj + 1

2 σ̂
2
i,j)
∣∣∣+ ∣∣∣σ̂2

i,j −∆x(bj + 1
2 σ̂

2
i,j)
∣∣∣)

= θ α σ̂2
i,j

< 1 + θ α
(
σ̂2

i,j + (∆x)2 dj

)
=

∣∣∣1 + θ α
(
σ̂2

i,j + (∆x)2 dj

)∣∣∣
(5.4.39)
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for i = 1, . . . , N−1 , j = 0, . . . ,M−1 so that in this case the conditions (5.4.35) and (5.4.36)

are satisfied forj = 0, . . . ,M − 1 without any restrictions concerning the discretization size

∆T of the time–space.

(ii) We now examine the caseP > 0. Define

Q = {(i, j) : i = 1, . . . , N − 1 , j = 0, . . . ,M − 1} ,

Q1 =
{

(i, j) : ∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣ ≤ σ̂2
i,j , (i, j) ∈ Q

}
.

(5.4.40)

If (i, j) ∈ Q1 then the verification of conditions (5.4.35) and (5.4.36), respectively, follows

in the same way than in part (i) of this proof. In the case(i, j) ∈ Q\Q1, we get (note that

dj ≥ 0)

θ α
2

(∣∣∣σ̂2
i,j + ∆x(bj + 1

2 σ̂
2
i,j)
∣∣∣+ ∣∣∣σ̂2

i,j −∆x(bj + 1
2 σ̂

2
i,j)
∣∣∣)

= θ α
(
∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣)
= θ α

(
∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣− σ̂2
i,j + σ̂2

i,j

)
= θ

[
∆T

(∆x)2

(
∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣− σ̂2
i,j

)
+ α σ̂2

i,j

]

< θ

∆x
∣∣∣bj + 1

2 σ̂
2
i,j

∣∣∣− σ̂2
i,j

P
+ α σ̂2

i,j


≤ θ

(
1 + α

(
σ̂2

i,j + (∆x)2 dj

))
≤

∣∣∣1 + θ α
(
σ̂2

i,j + (∆x)2 dj

)∣∣∣
such that conditions (5.4.35) and (5.4.36) also hold for(i, j) ∈ Q\Q1. Consequently,

conditions (5.4.35) and (5.4.36) hold for all(i, j) ∈ Q.

Thus, we have shown that(I + θ D̃j) is diagonally dominant and, hence, nonsingular for

j = 0, . . . ,M − 1. �

Theorem 5.4.3 has the disadvantage that the upper limit (5.4.33) for the discretization size∆T
of the time space depends on the volatility parameterσ̂ (see the definition ofP (5.4.32)). However,

the adaption of the theoretical computed European call values to the market European call values

is carried out by adjusting the volatility parameterσ̂. Thus, it is possible that the change of the

volatility parameter during the optimization process makes a refinement of the discretization size

∆T necessary to maintain the regularity of the matrices(I+θ D̃j) for j = 0, . . . ,M−1. Therefore,

in the following corollary, we define an upper limit for∆T which is independend of̂σ. Thus, the

conditions stated in Corollary 5.4.5 guarantee the regularity of(I+ θ D̃j), j = 0, . . . ,M −1 for the

complete optimization process without having to change the discretization with respect to the time

variableT during the optimization.



104 5 Constructing the Instantaneous Volatility Function

Corollary 5.4.5 Let ∆x and ∆T be the discretization size for the space and the time variable,

respectively,θ ∈ [0, 1]. If ∆x ≤ 2 and∆T satisfies

∆T <
∆x
‖b‖∞

(5.4.41)

with ‖b‖∞ is the Maximum–norm inIRM , i.e. ‖b‖∞ = maxj=0,...,M−1 |bj |, then,(I + θ D̃j) is

nonsingular forj = 0, . . . ,M − 1.

Proof: It holds the following relationship betweenP given by (5.4.32) in Theorem 5.4.3 and‖b‖∞:

P = max
i=1 ,...,N−1
j=0,...,M−1

∆x |bj + 1
2 σ̂

2
i,j | − σ̂2

i,j

= ∆x max
i,j

|bj + 1
2 σ̂

2
i,j | −

σ̂2
i,j

∆x

≤ ∆x max
i,j

|bj |+ 1
2 σ̂

2
i,j − 1

2 σ̂
2
i,j

= ∆x ‖b‖∞ .

Thus, it follows

∆T <
∆x
‖b‖∞

≤ (∆x)2

P

so that Corollary 5.4.5 immediately follows from Theorem 5.4.3. �

Remark 5.4.6 To guarantee the regularity of the matrices(I + θD̃j), the discretization size∆x of

the state variable has to be less than two. Since we have changed variables fromK to x according

to the transformationK = S exp(x) a discretization of thex–space with∆x ≤ 2 is very

reasonable to achieve a sufficient accuracy of the approximationzj computed with the discrete

scheme (5.4.28) with regard to the exact solutioncj to the parabolic differential equation (5.2.12)

with initial condition (5.2.13) and the appropriate boundary conditions (5.4.5).

Moreover, the sufficient condition of the invertibility of the matrices(I + θD̃j),
j = 0 , . . . ,M − 1, with regard to the discretization size∆T of the time variable is given by

condition (5.4.41). Usually, the size of‖b‖∞ is 10−1 or less such that the constraint (5.4.41) is not

likely to interfere with the design of the finite difference mesh.

5.4.3 Convergence of the Discretization Scheme

Using the finite difference scheme (5.4.28) to approximate the solution to the parabolic initial–

boundary–value problem (5.4.6), we are now interested in the behavior of the solutionzj ,

j = 0 , . . . ,M , of (5.4.28), when the discretization sizes∆x and ∆T tend to zero. Hence, in

this subsection, we examine the convergence behavior of the finite difference method (5.4.28) –

(5.4.31), i.e. we study whether the solutionzj , j = 0, . . . ,M , of the finite–difference scheme
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(5.4.28) – (5.4.31) tends to the solutioncj = (c1,j , . . . , cN−1,j), ci,j = c(xi, Tj), j = 0, . . . ,M ,

of the parabolic initial–boundary–value problem (5.4.6) as we refine the discretization sizes∆x and

∆T .

Definition 5.4.7 Let c be the solution to the parabolic initial–boundary–value problem (5.4.6) and

zj , j = 0 , . . . ,M , be the solution to the finite difference scheme

zi,j+1 − zi,j
∆T

= L̃i,j ((1− θ) zi,j + θ zi,j+1) , i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1 ,

approximating the parabolic initial–boundary–value problem (5.4.6) with

zi,0 = max(1− exp(xi) , 0) , i = 1 , . . . , N − 1

andz0,j , zN,j , j = 0 , . . . ,M are given by (5.4.25). Then, the given finite difference method is a

convergent scheme at maturityT if, as(j + 1) ∆T → T ,

‖zj+1 − cj+1‖ → 0

as∆x→ 0 and∆T → 0 and withcj = (c1,j , . . . , cN−1,j) andci,j = c(xi , Tj). Moreover, a finite

difference scheme is convergent of order(p, q), p , q ≥ 1 if

‖zj+1 − cj+1‖ = O((∆x)p) +O((∆T )q) .

Remark 5.4.8 In Definition 5.4.7, we have not specified the norm‖ · ‖, yet. In the following

examinations we will use the discretizedL2–norm which is given by

‖w‖2,∆x =

(
∆x

N−1∑
i=1

w2
i

) 1
2

, (5.4.42)

for w = (w1, . . . , wN−1).

Note that in Subsection 5.2.3, we have only examined the existence and uniqueness of a

solution to the pure initial–value problemLc = cT with initial condition (5.2.13). However, by

treating the differential equation numerically, we were forced to introduce boundary conditions such

that we are now confronted with an initial–boundary–value problem of parabolic type. The theory

of the existence and the uniqueness of solutions of these latter problems is well–established, too.

They are for instance studied in the monographs by Friedman [37] or Ladyženskaja, Solonnikov

and Ural’ceva [66]. In Appendix A, we briefly cite the results we will fall back on in the following

examinations. To begin with, the first result in this section, i.e. Theorem A.1.1, guarantees the

existence and uniqueness of a solutionc(x, T ) to the parabolic initial–boundary–value problem

(5.4.6) as well as its continuous dependence on the initial data.

Two important aspects in the examination of the convergence of the solutionzj , j = 0, . . . ,M ,

of the finite difference scheme (5.4.28) to the unique solutioncj , j = 0, . . . ,M , of the parabolic
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initial–boundary–value problem (5.4.6) are the consistency and the stability of the finite difference

scheme. To begin with, we study the consistency and the stability of the finite difference scheme

(5.4.28), and at the end of this subsection, we use both of these concepts to derive convergence

results of the solution of the discrete scheme (5.4.28) to the solutionc(x, T ) of the given parabolic

initial–boundary–value problem.

Consistency of the Finite–Difference Scheme

A finite difference scheme is said to be a consistent scheme if the finite difference equation converges

to the parabolic differential equation as the grid spacings approaches zero [31]. The examination of

consistency of a finite difference scheme consists in the study of the error that occurs if the finite

difference scheme is evaluated with the exact solution of the parabolic differential equation. This

error is called the local truncation error of the finite difference scheme.

Definition 5.4.9 A finite difference scheme

zi,j+1 − zi,j
∆T

= L̃i,j ((1− θ) zi,j + θ zi,j+1) , i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1 ,

is consistent with a parabolic initial–boundary–value problemLc = cT with accompanying initial

and boundary conditions if for the solutionc(x, T ) of the initial–boundary–value problem and with

c(xi , Tj) = ci,j the local truncation errorεi,j+1 fulfils for i = 1 , . . . , N − 1 andj = 0 , . . . ,M − 1

εi,j+1 =
[
ci,j+1 − ci,j

∆T
− L̃i,j ((1− θ) ci,j + θ ci,j+1)

]
→ 0

as∆x ,∆T → 0. Moreover, the difference scheme is said to be accurate of order(p, q) to the given

parabolic differential equation at maturityT if, as(j + 1) ∆T → T

‖εj+1‖ = O((∆x)p) +O((∆T )q) ,

as∆x→ 0, ∆T → 0 and withεj+1 denoting the vector whoseith component isεi,j+1.

A main tool in proving the consistency of finite difference schemes is Taylor’s expansion.

Applying Taylor’s expansion to a functionc(x, T ) it is necessary thatc(x, T ) is sufficiently smooth,

i.e. that partial derivatives ofc(x, T ) exist up to a certain order and that they are continuous.

According to Theorem A.1.1, we know that the solutionc(x, T ) is a continuous function in the

domain[xmin, xmax]× [0, T̄ ] having two continuousx–derivatives and one continuousT–derivative

in the interior(xmin, xmax) × (0, T̄ ) if the function describing the initial condition is continuous.

Moreover, Ladyženskaja, Solonnikov, and Ural’ceva have shown in [66, IV, Theorem 5.2] (see

also Appendix A) that the smoothness of the solutionc(x, T ) to the parabolic differential equation

(5.2.12) depends on the smoothness of the initial condition accompanying the differential equation,

i.e. the order of differentiability of the solutionc(x, T ) of the parabolic differential equation (5.2.12)

increases with the order of differentiability of its initial condition.
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Since the initial condition is evaluated at discrete points in the finite difference scheme, it

is also possible that these discrete points present an approximation of a function possessing more

smoothness features such as a certain order of differentiability. Hence, we will examine the

consistency of the finite difference scheme (5.4.28) with respect to the parabolic differential equation

(5.2.12) accompanied by an initial condition that deviates slightly from the initial condition (5.2.13)

but which possesses certain smoothness characteristics. Thus, in the following examination of the

consistency of the finite difference scheme (5.4.28), we will refer to the slightly perturbed parabolic

initial boundary value problem

1
2 σ̂

2(x, T ) cxx −
(
b(T ) + 1

2 σ̂
2(x, T )

)
cx − d(T ) c = cT ,

(x, T ) ∈ (xmin , xmax)× (0 , T̄ ] ,

c(σ̂(·, ·);x, 0) = ϕ(x) , x ∈ [xmin , xmax]

c(σ̂(·, ·);xmin, T ) = exp(−
T∫

0

d(τ) dτ)−

exp(xmin) exp(−
T∫

0

r(τ) dτ) , T ∈ [0, T̄ ] ,

c(σ̂(·, ·);xmax, T ) = 0 , T ∈ [0, T̄ ] ,

(5.4.43)

with ϕ(x) sufficiently smooth and

max
x∈[xmin ,xmax]

|max(1− exp(x), 0)− ϕ(x)| ≤ δ .

Let x− = max(xi , i = 0, . . . , N : xi < 0) andx+ = min(xi , i = 0, . . . , N : xi ≥ 0), then

ϕ(x) is chosen such that it agrees withmax(1 − exp(x), 0) on [xmin , x−] ∪ [x+ , xmax] and in the

domain(x−, x+), it approximatesmax(1− exp(x), 0) by satisfying certain smoothness conditions

such as the existence of continuous partial derivatives of a certain order on[xmin , xmax].
Let c(x, T ) be the solution to the original parabolic initial–boundary–value problem (5.4.6) and

c̃(x, T ) be the solution to the perturbed initial–boundary–value problem (5.4.43). Then, according

to Theorem A.1.1, we know that the difference betweenc(x, T ) and c̃(x, T ) on the complete

domain[xmin , xmax] × [0 , T̄ ] is bounded above by the maximal difference between the original

initial conditionc(x, 0) = max(1− exp(x), 0) and its smooth approximationϕ(x), i.e.

max
(x,T )∈[xmin ,xmax]×[0 ,T̄ ]

|c(x, T )− c̃(x, T )| ≤ δ .

Now, in the next theorem, we examine the consistency of the finite difference scheme

(5.4.28) – (5.4.31) with respect to the perturbed initial–boundary–value problem (5.4.43).

Theorem 5.4.10Let the initial conditionϕ(x) of (5.4.43)satisfyϕ ∈ H4+ε([xmin , xmax]), with

ε > 0 arbitrary small. Then, the finite difference scheme(5.4.28)– (5.4.31) is consistent to the
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perturbed initial–boundary–value problem(5.4.43)of order (2, 1) with respect to‖ · ‖2,∆x for

0 ≤ θ ≤ 1.

Moreover, ifϕ ∈ H6+ε([xmin , xmax]), ε > 0 arbitrary small, and the coefficientsb(T ), σ̂(x, T ) and

d(T ) in the parabolic differential equation(5.2.12)are not dependent onT , i.e.

b(T ) = b̄ , σ̂(x, T ) = σ̄(x) , d(T ) = d̄

then the finite difference scheme(5.4.28)– (5.4.31)is consistent to the perturbed initial–boundary–

value problem(5.4.43)of order (2, 2) with respect to‖ · ‖2,∆x for θ = 1
2 , i.e. in this case the

Crank–Nicolson method is consistent of order(2, 2) with respect to‖ · ‖2,∆x.

Remark 5.4.11 The spacesH l([xmin , xmax]) are Banach spaces whose elements are functions that

are continuous in the sense of Hölder in(xmin , xmax), which have in[xmin , xmax] continuous

derivatives up to order[l] (= max{z ∈ ZZ : z ≤ l}) inclusively and which are finite with respect to

a certain norm defined onH l([xmin , xmax]), see Appendix A for a definition of this norm.

We have dispersed the proof of Theorem 5.4.10 into Appendix B since we have used the usual

proving techniques applied to the determination of the consistency of finite difference schemes and

its order of accuracy.

However, note that in the proof of Theorem 5.4.10, it is necessary that the solution of the

examined initial–boundary–value problem has to be differentiable atT = 0. This condition is not

satisfied for the original parabolic initial–boundary–value problem (5.4.6), since its initial condition

c(x, 0) = max(1 − exp(x), 0) is continuous on[xmin , xmax] but not differentiable atx = 0. In

this case, the local truncation error for the first time layer can not be determined by using Taylor’s

expansion for an evaluation of the accuracy of the finite difference quotients approximating the

different differentiation operators appearing in the parabolic differential equation (5.2.12). This

aspect is often not considered in the examination of finite difference schemes that are applied to

parabolic differential equations with a nonsmooth initial condition, see for instance Wilmott et al.

[107], Andersen, Brotherton–Ratcliffe [1] for an application of finite difference schemes in option

pricing models. In this case, the well–known order of accuracy of(2, 1) of the finite difference

schemes (5.4.28) in general and the order(2, 2) in the special case ofθ = 1
2 cannot be maintained

when approachingT = 0. We will return to this aspect at the end of this section.

Stability of the Discretization Scheme

Next, we examine the stability of the finite difference scheme (5.4.28)

(I + θD̃j) zj+1 = (I − (1− θ)D̃j) zj + B̃j , j = 0 , . . . ,M − 1 ,

with D̃j , B̃j , andzj defined in (5.4.29), (5.4.30), and (5.4.21), respectively. In Corollary 5.4.5 we

have shown that the matrices(I + θD̃j), j = 0 , . . . ,M − 1, are nonsingular if∆T < ∆x/‖b‖∞. If

this condition is satisfied, formally the finite difference scheme (5.4.28) can be rewritten as

zj+1 = (I + θD̃j)−1 (I − (1− θ)D̃j) zj + (I + θD̃j)−1 B̃j , j = 0 , . . . ,M − 1
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using the inverse of(I + θD̃j), j = 0 , . . . ,M − 1.

A discretization scheme is said to be stable if small errors in the initial conditions cause small

errors in the solution [101]. Hence, the finite difference scheme (5.4.28) is stable if the absolute

values of the eigenvalues of the matrices

Dj := (I + θD̃j)−1 (I − (1− θ)D̃j)

= (I + θαDj)−1 (I − (1− θ)αDj)
(5.4.44)

j = 0 , . . . ,M − 1, are less than one [94], [103], i.e. letλj
ν , ν = 1 , . . . , N − 1, be the eigenvalues

of Dj , j = 0 , . . . ,M − 1, then the finite difference scheme is stable if

|λj
ν | < 1 for ν = 1 , . . . , N − 1, j = 0 , . . . ,M − 1 . (5.4.45)

If µj
ν are the eigenvalues ofDj , j = 0 , . . . ,M−1, then the eigenvaluesλj

ν ofDj , j = 0 , . . . ,M−1,

are given by

λj
ν =

1− (1− θ) α µj
ν

1 + θ α µj
ν

, ν = 1 , . . . , N − 1 .

We start the investigation of the stability of the finite difference system (5.4.28) by examining the

eigenvaluesµj
ν , ν = 1 , . . . , N − 1, ofDj , j = 0 , . . . ,M − 1.

Lemma 5.4.12 Let ∆x and ∆T be the discretization size for the space and the time variable,

respectively, andθ ∈ [0 , 1]. If

∆x < min
i=1 ,...,N−1
j=0 ,...,M−1

σ̂2
i,j

|bj + 1
2 σ̂

2
i,j |

, (5.4.46)

then, the matricesDj , j = 0, . . . ,M − 1, are positive semidefinite. Moreover, the eigenvaluesµj
ν ,

ν = 1 , . . . , N − 1, ofDj , j = 0 , . . . ,M − 1, satisfy

0 ≤ dj (∆x)2 ≤ µj
ν ≤ max

i=1 ,...,N−1
2 σ̂2

i,j + (∆x)2 dj = 2 ‖σ̂2
j ‖∞ + (∆x)2 dj (5.4.47)

with ‖σ̂2
j ‖∞ = maxi=1 ,...,N−1 σ̂

2
i,j .

Proof: Firstly, we show that the matricesDj , j = 0 , . . . ,M − 1, are similar to a symmetric matrix.

For this purpose, we introduce the diagonal matrices

Yj = diag(yj
1, . . . , y

j
N−1) , j = 0 , . . . ,M − 1

where the diagonal elementsyj
i , i = 1, . . . , N − 1 , j = 0 , . . . ,M − 1, are recursively defined by

yj
1 = 1 , j = 0 , . . . ,M − 1 ,

yj
i = yj

i−1

√
vj

i

uj
i−1

, i = 2, . . . , N − 1 , j = 0 , . . . ,M − 1 .
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The diagonal elementsyj
i , i = 1, . . . , N − 1 , of Yj , j = 0 , . . . ,M − 1, are well–defined since the

condition (5.4.46) on the discretization size∆x guarantees that

uj
i = −1

2

(
σ̂2

i,j −∆x
(
bj + 1

2 σ̂
2
i,j

))
< 0

vj
i = −1

2

(
σ̂2

i,j + ∆x
(
bj + 1

2 σ̂
2
i,j

))
< 0

for all i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1 regardless if(bj + 1
2 σ̂

2
i,j) > 0 or (bj + 1

2 σ̂
2
i,j) < 0 such

that vj
i

uj
i−1

> 0 for all i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1. Then,

Y −1
j Dj Yj =



mj
1 ũj

1

ṽj
2 mj

2 ũj
2

... ... ...

ṽj
N−2 mj

N−2 ũj
N−2

ṽj
N−1 mj

N−1


with

ṽj
i+1 =

yj
i

yj
i+1

vj
i+1 =

√√√√ uj
i

vj
i+1

vj
i+1 =

uj
i

vj
i+1

√√√√vj
i+1

uj
i

vj
i+1 =

yj
i+1

yj
i

uj
i = ũj

i

for i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1. Thus,Dj is similar to a symmetric matrix. Since similar

matrices have identical characteristic polynomials and the eigenvalues of symmetric matrices are

real, it follows that the eigenvalues ofDj , j = 0, . . . ,M − 1, are real.

Moreover, the Gershgorin Circle Theorem, see for instance Golub, van Loan

[43, Theorem 7.2.1], applied toDj , j = 0 , . . . ,M − 1, yields that the eigenvaluesµj
ν ,

ν = 1 , . . . , N − 1, ofDj , j = 0 , . . . ,M − 1, satisfy

µj
ν ∈

N−1⋃
i=1

Gj
i

with the Gershgorin circlesGj
i given by

Gj
i =

{
µ : |µ−mj

i | ≤ |v
j
i |+ |uj

i |
}
, i = 2 , . . . , N − 2 ,

Gj
1 =

{
µ : |µ−mj

1| ≤ |u
j
1|
}
,

Gj
N−1 =

{
µ : |µ−mj

N−1| ≤ |v
j
N−1|

}
,

for j = 0 , . . . ,M − 1. Thus, forµ ∈ Gj
i holds∣∣∣µ− σ̂2

i,j − (∆x)2 dj

∣∣∣ ≤
∣∣∣12 (σ̂2

i,j + ∆x (bj + 1
2 σ̂

2
i,j)
)∣∣∣+ ∣∣∣12 (σ̂2

i,j −∆x (bj + 1
2 σ̂

2
i,j)
)∣∣∣

= σ̂2
i,j
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since1
2

(
σ̂2

i,j + ∆x (bj + 1
2 σ̂

2
i,j)
)
> 0 and 1

2

(
σ̂2

i,j −∆x (bj + 1
2 σ̂

2
i,j)
)
> 0. Thus,

(∆x)2 dj ≤ µ ≤ 2 σ̂2
i,j + (∆x)2 dj for µ ∈ Gj

i

such that
N−1⋃
i=1

Gj
i ⊆

[
(∆x)2 dj , 2 ‖σ̂2

j ‖∞ + (∆x)2 dj

]
which proves that the matricesDj , j = 0, . . . ,M − 1 are positive semidefinite, and that condition

(5.4.47) is satisfied for the eigenvaluesµj
ν , ν = 1 , . . . , N − 1, ofDj , j = 0 , . . . ,M − 1. �

Remark 5.4.13 If σ̂2
i,j ≥ |bj | then |bj |

σ̂2
i,j
≤ 1 such that

σ̂2
i,j

|bj + 1
2 σ̂

2
i,j |

=
1∣∣ bj

σ̂2
i,j

+ 1
2

∣∣ ≥ 1
|bj |
σ̂2

i,j
+ 1

2

≥ 1
3
2

=
2
3
.

Thus, in this case, condition (5.4.46) is satisfied if the discretization size∆x of the state variable

fulfils ∆x < 2
3 . However, this is only a weak restriction on the discretization size∆x since we have

changed variables fromK to x according to the transformationK = S exp(x), see also Remark

5.4.6.

Condition (5.4.46) becomes more restrictive for the discretization size∆x if σ̂2
i,j < |bj |. In this

case, the size of the quotient|bj |
σ̂2

i,j
determines the size of∆x. If |bj |

σ̂2
i,j
≈ 10 then condition (5.4.46)

is satisfied if∆x < 0.09. However, the numerical results in Section 5.6 will show that with a

reasonable chosen number of discretization points this condition will not be neglected, neither.

Having information available about the eigenvalues of the matricesDj , j = 0 , . . . ,M − 1,

now we can examine the eigenvalues of the matricesDj , j = 0 , . . . ,M − 1, and, consequently,

the stability of the finite difference scheme (5.4.28). The conditions ensuring the stability for the

different finite difference schemes, i.e. for0 ≤ θ ≤ 1, are stated in the following theorem.

Theorem 5.4.14Let the assumptions of Lemma 5.4.12 be satisfied and letµj
ν , ν = 1 , . . . , N − 1,

be the eigenvalues of the matricesDj , j = 0, . . . ,M − 1. Then, the finite difference scheme

(5.4.28)– (5.4.31) is absolutely stable for12 ≤ θ ≤ 1 and it is stable for0 ≤ θ < 1
2 if the

discretization size∆T of the time step satisfies

∆T <
2 (∆x)2

(1− 2 θ) (2 ‖σ̂2‖∞ + ‖d‖∞(∆x)2)
(5.4.48)

with

‖σ̂2‖∞ = max
i=1 ,...,N−1
j=0,...,M−1

σ̂2
i,j and ‖d‖∞ = max

j=0,...,M−1
|dj | .
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Proof: We have already mentioned above that the finite difference scheme (5.4.28) – (5.4.31) is

stable if the eigenvaluesλj
ν of Dj (see (5.4.44)) are less than one. Ifµj

ν are the eigenvalues ofDj ,

j = 0 , . . . ,M − 1, then the stability condition for the finite difference scheme (5.4.28) – (5.4.31) is

given by

∣∣λj
ν

∣∣ =

∣∣∣∣∣1− (1− θ) α µj
ν

1 + θ α µj
ν

∣∣∣∣∣ < 1 , for ν = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1 .

This condition is satisfied if and only if∣∣1− (1− θ) α µj
ν

∣∣ <
∣∣1 + θ α µj

ν

∣∣ = 1 + θ α µj
ν

respective

−1− θ α µj
ν < 1− (1− θ) α µj

ν < 1 + θ α µj
ν ,

which is equivalent to

(1− 2 θ) µj
ν <

2
α
.

This inequality is satisfied for all12 ≤ θ ≤ 1 without any further restriction with regard to the

discretization sizes∆T and ∆x sinceα = ∆T
(∆x)2

> 0, µj
ν ≥ 0 for ν = 1 , . . . , N − 1,

j = 0, . . . ,M − 1 according to Lemma 5.4.12 and1 − 2 θ < 0 for θ ≥ 1
2 . For 0 ≤ θ < 1

2

the stability condition is satisfied if

2
(1− 2 θ) α

> 2 ‖σ̂2‖∞ + ‖d‖∞(∆x)2 ≥ max
ν=1 ,...,N−1
j=0,...,M−1

µj
ν

which is equivalent to

2 (∆x)2

(1− 2 θ) (2 ‖σ̂2‖∞ + ‖d‖∞(∆x)2)
> ∆T .

Thus, Theorem 5.4.14 is proven. �

Remark 5.4.15 The stability condition (5.4.48) puts for0 ≤ θ < 1
2 strong restrictions on the size of

the discretization size∆T since this condition means that maintaining stability requires to quarter

the size of∆T if only the number of discretization points in thex–mesh are doubled. Regarding

computational effort, this means that on the one side the computation ofzj for one time–step requires

twice as much effort (assuming that the computational effort for the solution of the tridiagonal

system isO(N)) and on the other side the computation of four times as many time–steps. Thus,

maintaining stability in this case means that the computational effort is eight times as much than it

was before if we started from a stable system and doubled the number of discretization points in the

x–mesh. Hence, a choice ofθ with 0 < θ < 1
2 is not recommendable since on the one side in each

time–step a tridiagonal system has to be solved and on the other side obtaining a higher accuracy by

increasing the number of discretization points in thex–mesh results in a considerable increase of the

computational effort. The increase of the computational cost might be less when1
2 ≤ θ ≤ 1 since

then the resulting finite difference scheme is unconditional stable and does not require urgently an

adaption of the discretization size of∆T when the discretization size∆x is altered.
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Remark 5.4.16 If we would have applied a finite difference method to the original parabolic

differential equation (5.2.7)

CT − 1
2σ(K,T )2K2CKK + (r(T )− d(T ))KCK + d(T )C = 0

then, by using the forward difference quotients, the central difference quotient and the symmetric

central difference quotient for the approximation ofCT ,CK andCKK , respectively, and discretizing

theK–space by

Ki = i∆K , for i = 0 , . . . , N and with Kmax = N ∆K

the finite difference scheme would be given by

θ∆T v̂j
i zi−1,j+1 + (1 + θ∆T m̂j

i ) zi,j+1 + θ∆T ûj
i zi+1,j+1

= −(1− θ) ∆T v̂j
i zi−1,j + (1− (1− θ) ∆T m̂j

i ) zi,j − (1− θ) ∆T ûj
i zi+1,j

with, i = 1 , . . . , N − 1, j = 0 , . . . ,M − 1,

v̂j
i = −1

2

(
σ̂2

i,j i
2 + bj i

)
,

m̂j
i = σ̂2

i,j i
2 + dj ,

ûj
i = −1

2

(
σ̂2

i,j i
2 − bj i

)
.

In this case, condition (5.4.46) in Lemma 5.4.12 would becomei > max(|bj |/σ̂2
i,j) which puts

restrictions on the choice of the lower bound of the domain[Kmin,Kmax]. This, however, is very

much undesirable.

Moreover, the condition (5.4.48) on the discretization size∆T in Theorem 5.4.14 would

become for0 ≤ θ < 1
2

∆T <
2

(1− 2 θ) (2 ‖σ̂2‖∞ (N − 1)2 + ‖d‖∞)
(5.4.49)

which would mean that the maximum stable discretization size∆T now depends on the number of

discretization points in theK–space and not on the discretization size∆K as in Theorem 5.4.14.

However, we will see in the next paragraph that the convergence of a finite difference method

depends on the size of∆K such that the convergence and the stability criterion are distinct [107].

Furthermore, condition (5.4.49) makes clear that it is possible that the difference scheme is stable

for smallK and unstable for largeK, i.e. if ∆T = 2/((1− 2 θ) (2 ‖σ̂2‖∞ (N
2 )2 + ‖d‖∞)) the finite

difference scheme would be stable forKi, i = 0 , . . . , N
2 and unstable forKi, i = N

2 +1, . . . , N −1
such that at first sight it is not clear whether the scheme is stable.

All these difficulties do not appear when applying finite difference method to the transformed

version (5.2.12) of the parabolic differential equation (5.2.7) which elucidates the necessity of the

change of variables.
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Convergence of the Finite–Difference Scheme

After establishing the consistency and the stability of the finite difference scheme (5.4.28) – (5.4.31)

we now derive the convergence of this scheme.

Theorem 5.4.17Letc(x, T ) be the solution to the parabolic initial–boundary–value problem(5.4.6)

and letzj = (z1,j , . . . , zN−1,j) be the solution to the finite difference scheme(5.4.28)– (5.4.31).

Moreover, assume there exists a functionϕ ∈ H4+ε([xmin , xmax]), ε > 0 arbitrary small, with

ϕ(xi) = max(1− exp(xi) , 0), i = 0 , . . . , N , and

max
x∈[xmin ,xmax]

|max(1− exp(x), 0)− ϕ(x)| ≤ (∆x)s , for somes > 0 .

Suppose that the discretization sizes for the time domain∆T and for the space domain∆x fulfil

∆x < min
i=1 ,...,N−1
j=0 ,...,M−1

σ̂2
i,j

|bj + 1
2 σ̂

2
i,j |

and

∆T <


min

(
∆x
‖b‖∞

,
2 (∆x)2

(1− 2 θ) (2 ‖σ̂2‖∞ + ‖d‖∞(∆x)2)

)
, if 0 ≤ θ < 1

2

∆x
‖b‖∞

, if 1
2 ≤ θ ≤ 1

Then, the finite difference method(5.4.28)– (5.4.31)is a convergent scheme of order(min{s , 2} , 1)
with respect to the discretizedL2–norm‖ · ‖2,∆x, i.e.

‖zj+1 − cj+1‖2,∆x = O((∆x)min{s ,2}) +O(∆T ) , for j = 0, . . . ,M − 1 .

Proof: Let c(x, T ) be the solution to the parabolic initial–boundary–value problem (5.4.6), and let

c̃(x, T ) be the solution to the slightly perturbed parabolic initial–boundary–value problem (5.4.43)

with initial condition c̃(x, 0) = ϕ(x). Furthermore, let

zj = (z1,j , . . . , zN−1,j)

be the solution to the finite difference scheme

(I + θD̃j) zj+1 = (I − (1− θ)D̃j) zj + B̃j , j = 0, . . . ,M − 1

with z0 given by the initial condition (5.2.13)

z0 = c0 =
(
[1− exp(x1)]

+ , . . . , [1− exp(xN−1)]
+)T ,

[1− exp(x)]+ = max(1−exp(x), 0), andD̃j andB̃j defined by (5.4.29) and (5.4.30), respectively.
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If εj+1 is the vector containing the local truncation errorsεi,j+1 of the finite difference scheme

(5.4.28) – (5.4.31) with respect to the slightly perturbed parabolic initial–boundary–value problem

(5.4.43) in the(j + 1)st time layer, then for the solutioñc(x, T ) of (5.4.43) holds

(I + θD̃j) c̃j+1 = (I − (1− θ)D̃j) c̃j + B̃j + ∆T εj+1 , j = 0, . . . ,M − 1

with εj+1 = (ε1,j+1 , . . . , εN−1,j+1) and c̃j+1 = (c̃1,j+1 , . . . , c̃N−1,j+1), c̃i,j = c̃(xi , Tj), i.e.

c̃(x, T ) fulfils the finite difference scheme (5.4.28) – (5.4.31) extended with a term containing the

local truncation errors.

Moreover, since∆x < mini,j
σ̂2

i,j

|bj+
1
2

σ̂2
i,j |

according to Theorem 5.4.14 we have

‖Dj‖2 = ‖(I + θD̃j)−1 (I − (1− θ)D̃j)‖2 < 1 , for j = 0, . . . ,M − 1 .

Note, that the matrix norms‖ · ‖2 and‖ · ‖2,∆x (i.e. these are the matrix norms defined in terms of

the vector norms) are equal since (‖ · ‖2,∆x =
√

∆x ‖ · ‖2)

‖Dj‖2,∆x = max
‖y‖2,∆x≤1

‖Dj y‖2,∆x

= max√
∆x ‖y‖2≤1

√
∆x ‖Dj y‖2

= max
‖y‖2≤1

‖Dj y‖2

= ‖Dj‖2

Now, let ei,j be the difference of the exact solutioñci,j of the perturbed parabolic initial–

boundary value problem (5.4.43) and the solutionzi,j of the finite difference method

(5.4.28) – (5.4.31), i.e.

ei,j = c̃i,j − zi,j ,

thenei,j satisfies the nonhomogeneous finite difference equation (ej = (e1,j , . . . , eN−1,j))

(I + θD̃j) ej+1 = (I − (1− θ)D̃j) ej + ∆T εj+1 , j = 0, . . . ,M − 1

with homogeneous initial and boundary conditions, i.e.e0 = 0. Thus,

ej+1 = (I + θD̃j)−1 (I − (1− θ)D̃j) ej + ∆T (I + θD̃j)−1 εj+1 , j = 0, . . . ,M − 1 ,

and taking the discretizedL2–norm‖ · ‖2,∆x of ej+1 yields forj = 0, . . . ,M − 1

‖ej+1‖2,∆x ≤ ‖(I + θD̃j)−1 (I − (1− θ)D̃j)‖2,∆x ‖ej‖2,∆x

+ ∆T ‖(I + θD̃j)−1‖2,∆x ‖εj+1‖2,∆x

≤ k1 ‖ej‖2,∆x + ∆T ‖εj+1‖2,∆x

(5.4.50)

with k1 < 1. To see that‖(I + θD̃j)−1‖2,∆x = ‖(I + θD̃j)−1‖2 ≤ 1 we examine the eigenvalues

λj
ν , ν = 1 , . . . , N − 1, of (I + θD̃j)−1 = (I + θ αDj)−1, j = 0 , . . . ,M − 1. Let µj

ν ,
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ν = 1 , . . . , N − 1, be the eigenvalues ofDj (see (5.4.23) for the definition ofDj). Lemma 5.4.12

yields that

0 ≤ µj
ν ≤ 2 ‖σ̂2

j ‖∞ + (∆x)2 dj , ν = 1 , . . . , N − 1 ,

and, thus, for the eigenvalues of(I + θ αDj)−1, j = 0 , . . . ,M − 1, holds

λj
ν =

1

1 + θ αµj
ν

≤ 1 .

Now, applying (5.4.50) recursively to‖el‖2,∆x, l = j, . . . , 1, yields (noteM = T̄
∆T )

‖ej+1‖2,∆x ≤ k1 ‖ej‖2,∆x + ∆T ‖εj+1‖2,∆x

≤ k1 (k1 ‖ej−1‖2,∆x + ∆T ‖εj‖2,∆x) + ∆T ‖εj+1‖2,∆x

≤ ∆T
j+1∑
l=1

kj−l+1
1 ‖εl‖2,∆x

≤ ∆T
j+1∑
l=1

‖εl‖2,∆x

According to Theorem 5.4.10, the accuracy of the finite difference scheme (5.4.28) – (5.4.31) with

respect to the slightly perturbed initial–boundary–value problem (5.4.43) is of order(2, 1), i.e.

‖εl‖2,∆x = O((∆x)2) +O(∆T ), l = 1, . . . ,M , such that

‖ej+1‖2,∆x ≤ ∆T
j+1∑
l=1

O((∆x)2) +O(∆T )

≤ ∆T M
(
O((∆x)2) +O(∆T )

)
≤ T̄

(
O((∆x)2) +O(∆T )

)
= O((∆x)2) +O(∆T )

for j = 0 , . . . ,M − 1. Thus, the order of convergence of the solutionzj+1 of the finite difference

scheme (5.4.28) – (5.4.31) to the solutionc̃j+1 to the perturbed parabolic initial–boundary–value

problem (5.4.43) is(2, 1).
Now, we study the deviation of the solutionzj+1 of the finite difference scheme

(5.4.28) – (5.4.31) to the solutioncj+1 of the original parabolic initial–boundary–value problem

Lc = cT with initial condition (5.2.13) and boundary condition (5.4.5). We know that the

deviation of the solutionsc(x, T ) and c̃(x, T ) of the original and the slightly perturbed parabolic

initial–boundary–value problem, respectively, is of magnitudeO((∆x)s) for every

(x, T ) ∈ [xmin , xmax] × [0 , T̄ ] by using the weak maximum principle and the accuracy of the

approximationϕ(x) to the original initial conditionmax (1− exp(x), 0). Moreover, we just have

shown that the convergence of the solution of the finite difference scheme (5.4.28) – (5.4.31) to

the solution of the perturbed parabolic initial–boundary–value problem (5.4.43) is of order(2, 1).



5.4 Determination of the Discrete Instantaneous Volatility Function 117

Using the triangle inequality and these two aspects, we get for the errorcj+1 − zj+1 (note that

N = xmax−xmin
∆x )

‖cj+1 − zj+1‖2,∆x ≤ ‖cj+1 − c̃j+1‖2,∆x + ‖c̃j+1 − zj+1‖2,∆x

=

(
∆x

N−1∑
i=1

(ci,j+1 − c̃i,j+1)
2

)1/2

+ O((∆x)2) + O(∆T )

=
(
∆x (N − 1) (O((∆x)s))2

)1/2
+ O((∆x)2) + O(∆T )

≤ (xmax − xmin)
1/2 O((∆x)s) + O((∆x)2) + O(∆T )

= O((∆x)min{s ,2}) +O(∆T )

such that the finite difference scheme is convergent of order(min{s , 2} , 1) with respect to the

discreteL2–norm‖ · ‖2,∆x . �

In Theorem 5.4.17, we have shown the convergence of the solution of the finite difference

scheme (5.4.28) – (5.4.31) to the solution of the parabolic initial–boundary–value problem (5.4.6) by

introducing an auxiliary parabolic initial–boundary–value problem and assuming that the

accompanying initial condition is given by a sufficiently smooth functionϕ(x) with

ϕ(xi) = max(1 − exp(xi) , 0), i = 0 , . . . , N , that approximates the original initial condition

max(1− exp(x) , 0) with a certain accuracy. This result makes clear that the order of this accuracy

determines the order of convergence with respect to the spatial variable ifs < 2. If the solution

of the finite difference scheme is directly compared to the solution of the original parabolic initial–

boundary–value problem (5.4.6), difficulties appear in the examinations forT tending to0 because

the initial data are not differentiable forx = 0. In these cases, finite element methods are often

preferred since they possess certain smoothing properties.

Thomée has investigated convergence estimates of spatially and fully discrete schemes

resulting from an application of finite element methods on second order parabolic initial–boundary–

value problems, see for instance Bramble, Schatz, Thomée, and Wahlbin [12], Huang and Thomée

[57], Thomée [104]. We start with presenting convergence estimates for spatially or semidiscrete

schemes, i.e. schemes that result from a discretization of the parabolic differential equation with

respect to the state space. Letc∆x(T ) be the solution to this semidiscrete scheme which presents a

∆x–dependent finite system of ordinary differential equations in time and let

c(T ) = (c(x1, T ), . . . , c(xN−1, T )) be the solution of the original parabolic initial–boundary–value

problem withxi, i = 1, . . . , N − 1, being fixed by the spatial discretization. For the homogeneous

heat equation

cT = ∆c in Ω for T > 0 ,

c(·, 0) = ϕ in Ω ,

c = 0 on ∂Ω for T > 0 ,

(5.4.51)

where Ω is a bounded domain inIRn with smooth boundary∂Ω, Thomée has derived in

[104, Theorem 3.5] an error estimate for the spatially discretized system elucidating the relation
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of the error in the finite element solution and the regularity of the exact solution.

Before we present this result, we briefly introduce the relevant spaces and the corresponding

norms. According to the statements of Thomée in [104] we denote by‖ · ‖ the norm inL2 = L2(Ω)
and, for a positive integerr, by ‖ · ‖r that in the Sobolev spaceHr = Hr(Ω) = W r

2 (Ω). Moreover,

for s ≥ 0, let Ḣs = Ḣs(Ω) be the subspace ofL2 defined by

Ḣs =

ϕ =
∞∑

k=1

(ϕ , vk) vk ∈ L2 : |ϕ|s =

( ∞∑
k=1

λs
k(ϕ , vk)2

)1/2

< ∞

 .

with {λk}∞k=1 being the nondecreasing sequence of positive eigenvalues of the eigenvalue problem

−∆u = λ2u in Ω and u = 0 on ∂Ω, that tends to∞ with k, and with {vk}∞k=1 being the

corresponding sequence of eigenfunctions which form an orthonormal basis inL2 = L2(Ω) [104].

Let us now cite the convergence estimate presented by Thomée in [104, Theorem 3.5]:

Theorem 5.4.18Let{S∆x} be a family of finite dimensional subspaces ofL2 and{A∆x} a family

of operatorsA∆x : L2 → S∆x, approximating the exact solution operatorA of the Dirichlet

problem−∆c = f in Ω with c = 0 on∂Ω, such that

(1) A∆x is selfadjoint, positive semidefinite onL2, and positive definite onS∆x;

(2) ‖(A∆x −A)f‖ ≤ k (∆x)p ‖f‖p−2, for 2 ≤ p ≤ r, andf ∈ Hp−2.

Moreover, assume that the approximationϕ∆x of the initial conditionϕ satisfiesϕ∆x = P∆xϕ with

P∆x denoting the orthogonal projection ofϕ ontoS∆x with respect to the inner product inL2. Then

if the initial conditionϕ fulfilsϕ ∈ Ḣs and0 ≤ s ≤ q ≤ r, we have for the error in the semidiscrete

problem

‖c∆x(T )− c(T )‖ ≤ k (∆x)q T−(q−s)/2 |ϕ|s, for T > 0 . (5.4.52)

The convergence estimate (5.4.52) shows that a convergence rate of orderO((∆x)r) is satisfied

uniformly down toT = 0 if the initial dataϕ are sufficiently smooth, i.e. ifϕ ∈ Ḣr in case of an

accuracy of the approximating solution operatorA∆x of orderr. If the order of regularity of the

initial conditionϕ is lower, the order of convergence ofO((∆x)r) is only achieved forT bounded

away from0 and the bound depends in a singular way onT asT tends to0. Note that the above

estimate (5.4.52) combines this order of singularity with the smoothness of the initial condition

ϕ(x), see Thomée [104, Chap. 3].

Remark 5.4.19 If the initial condition ϕ of the initial–boundary–value problem (5.4.51) with

Ω = (0 , 1) is given by

ϕ(x) =

{
−x, if x ≤ 1

2

1− x, if x > 1
2
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thenϕ ∈ Ḣ3/2−ε with ε > 0 arbitrary small. Thus, in this case the convergence estimate (5.4.52) in

Theorem 5.4.18 has the form

‖c∆x(T )− c(T )‖ ≤ k (∆x)q T−(q− 3
2
+ε)/2 |ϕ| 3

2
−ε

for T > 0 and 0 ≤ 3
2 − ε ≤ q ≤ r. Note that the initial condition (5.2.8) given by

C(σ(·, ·);K, 0) = max(S − K, 0) of the parabolic initial–boundary–value problem (5.2.7) with

initial condition (5.2.8) and boundary conditions (5.4.2), (5.4.4) in the original variablesK andT

possesses a similar structure. Hence, we would expect that the smoothness of the initial condition

of the parabolic initial–boundary–value problem describing the value of a European call option will

be of a similar order.

Huang and Thomée presented in [57] also convergence estimates for semidiscrete schemes that

approximate initial–boundary–value problems consisting of a more general parabolic differential

equation with the elliptic operator having coefficients depending on bothx andT , containing lower

order terms and being nonselfadjoint and nonpositive, i.e. a parabolic differential equation of the

form

cT −
n∑

j,k=1

∂
∂xj

(
ajk

∂c
∂xk

)
+

n∑
j=1

aj
∂c
∂xj

+ a0 c (5.4.53)

whereajk , aj , anda0 are smooth functions in̄Ω × [0 , T̄ ], ajk = akj . In case of nonsmooth initial

data they obtained the following result, see Huang and Thomée [57, Theorem 3 and 4]:

Theorem 5.4.20Let {S∆x} be as in Theorem 5.4.18 and letA∆x be a family of operators

A∆x : L2 → S∆x approximating the exact solution operatorA of the elliptic part of equation

(5.4.53)with homogeneous Dirichlet boundary conditions, such that

(1) (f ,A∆xf) ≥ 0 for f ∈ L2, and(χ ,A∆xχ) > 0 for 0 6= χ ∈ S∆x;

(2) |(A∆xf , g) − (f ,A∆xg)| ≤ k (f ,A∆xf)1/2‖A∆xg‖;

(3) there is an integerr ≥ 2 such that

‖(( d
dt)

jA∆x − ( d
dt)

jA)f‖ ≤ k (∆x)s‖f‖s−2 , for 2 ≤ s ≤ r , j = 0 , 1 ;

(4) the adjoints ofA andA∆x satisfy forr defined in (3)

‖(( d
dt)

jA∗∆x − ( d
dt)

jA∗)f‖ ≤ k (∆x)s‖f‖s−2 , for 2 ≤ s ≤ r , j = 0 , 1 .

Furthermore, assume that the initial conditionϕ fulfils ϕ ∈ L2 and that its approximationϕ∆x is

given byϕ∆x = P∆xϕ with P∆x denoting the orthogonal projection ofϕ ontoS∆x with respect to

the inner product inL2. Then, the error in the semidiscrete problem satisfies

‖c∆x(T )− c(T )‖ ≤ k (∆x)r T−r/2 ‖ϕ‖, for T > 0 . (5.4.54)
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(Note that if condition (3) in Theorem 5.4.20 is fulfilled withr = 2 then the following condition

(4) is not necessary to obtain the given error estimate in Theorem 5.4.20, see Huang and Thomée

[57].)

Although the result in Theorem 5.4.20 lacks to give a more general relation between the

order of singularity and the smoothness of the initial conditionϕ, it again elucidates that including

nonsmooth initial data into the examination of error estimates for semidiscrete schemes introduces

singularities in the error estimates forT tending to0 and that the optimal order of convergence of

the solution of the semidiscrete scheme is only achieved forT > 0, i.e. forT bounded away from0.

Finally, we cite an error estimate regarding the maximum–norm for semidiscrete schemes

presented by Thomée in [104, Chap. 5]. Restricted to initial–boundary–value problems of the form

(5.4.51) and to piecewise linear approximation functions in the finite element method, he showed

for nonsmooth initial data the following estimate, see Thomée [104, Theorem 5.4 and 5.5]:

Theorem 5.4.21Let {S∆x} be a family of finite dimensional subspaces ofL2 and letP∆x be a

partition of Ω into disjoint triangles with the union of the triangles determine a polygonal domain

Ω∆x ⊂ Ω. Suppose that{S∆x} consists of the continuous functions on the closureΩ̄ of Ω which

are linear in each triangle of the triangulationP∆x and which vanish outside ofΩ∆x. Furthermore,

assume that the initial conditionϕ fulfilsϕ ∈ L2 and for its approximationϕ∆x holdsϕ∆x = P∆xϕ

with P∆x denoting the orthogonal projection ofϕ ontoS∆x. Then, we have for the error in the

solution of the semidiscrete problem

‖c∆x(T )− c(T )‖L∞ ≤ k (∆x)2 (ln( 1
∆x))4 T−1 ‖ϕ‖L∞ , for T > 0 . (5.4.55)

Moreover, if for the initial conditionϕ only holdsϕ ∈ L1, then we get for the error in the solution

of the semidiscrete problem

‖c∆x(T )− c(T )‖L∞ ≤ k (∆x)2 (ln( 1
∆x))4 T−2 ‖ϕ‖L1 , for T > 0 . (5.4.56)

Note, that although the regularity assumptions on the initial data are weakened in the

second part of Theorem 5.4.21, still, an error estimate of order2 is obtained forT bounded

away from0. Moreover, a logarithmic factor additionally appears in the estimate of the error

regarding the maximum–norm. This term, however, might be eliminated according to Thomée, see

[104, Chap. 5].

After presenting convergence estimates for spatially semidiscrete problems, we now inspect

fully discretized systems for second order parabolic initial–boundary–value problems which are

obtained by discretizing the semidiscrete problems with respect to time. We continue to present

statements of Thomée represented in [104]. To begin with, let the initial–boundary–value problem

be of the form (5.4.51). As in Theorem 5.4.17, the accuracy and the stability of the discretized

problems are called on to obtain convergence of the solution of the fully discretized scheme to the

solution of the initial–boundary–value problem. For the definition of these two concepts and for
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the examination of discretization schemes with respect to time, Thomée considers the initial–value

problem

c′ + L̄ c = 0 for T > 0, with c(0) = ϕ , (5.4.57)

with L̄ being a linear, selfadjoint, positive definite, not necessarily bounded operator with compact

inverse, and with the definition domain being a subspace of a separable Hilbert spaceM. The

solution operator of problem (5.4.57) can be written as

c(T ) =
N∑

j=1

exp(−λjT ) (ϕ , vj) vj ,

with {λj}N
j=1 being the eigenvalues of̄L and{vj}N

j=1 denoting a corresponding basis of orthogonal

eigenfunctions (withN ≤ ∞). Thus, the solution operator of this initial–value problem can be

viewed as the exponentialexp(−T L̄) such that a possible way of defining a single step discrete

method for this problem class consists of approximatingexp(−λ) by a rational functionr(λ) that is

defined on the spectrumσ(k L̄) of k L̄ [104]. Hence, Thomée [104, Chap. 7] defines the accuracy

(orderq) and the stability condition of a discretized system

zj+1 = r(j L̄) zj , j ≥ 0 and with z0 = ϕ

by

r(λ) = exp(−λ) + O(λq+1) , asλ→ 0

and

sup
λ∈σ(kL̄)

|r(λ)| ≤ 1 ,

respectively, withσ(L̄) = {λj}N
j=1 being the spectrum of̄L. Deriving convergence estimates for

nonsmooth initial data a further classification of the rational functionr(λ) approximatingexp(−λ)
is needed, see Thomée [104, Chap. 7], i.e.r(λ) will be of type I, II, III, or IV, respectively, if

I: |r(λ)| < 1, for 0 < λ < α, with α > 0;

II: |r(λ)| < 1, for λ > 0;

III: |r(λ)| < 1, for λ > 0, and|r(∞)| < 1;

IV: |r(λ)| < 1, for λ > 0, andr(∞) = 0.

If the initial–value problem (5.4.57) represents a spatially semidiscrete problem, Thomée

[104, Chap. 7] has introduced an additional classification ofr(λ). The rational functionr(λ) is

said to be of type I’ or II’, respectively, if

I’: r(λ) is of type I andk λmax ≤ α0, for someα0 with 0 < α0 < α;

II’: r(λ) is of type II andk λmax ≤ α1, for someα1 with 0 < α1 <∞;
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with λmax denoting the largest eigenvalue ofL̄. Note that the explicit Euler, the implicit Euler and

the Crank–Nicolson scheme can be represented in form of a rational functionr(λ) and that they are

of type I, IV and II, respectively.

Analogously to the error estimate of the spatially semidiscrete problem in Theorem 5.4.18,

there exists an estimate for the error in the solution of a discrete scheme obtained be discretizing

problem (5.4.57) with respect to time. The bound of this error again expresses the relation between

the regularity of the data, the order of convergence, and the order of singularity, see Thomée

[104, Theorem 7.3]:

Theorem 5.4.22Let the discretization scheme

zj+1 = r(j L̄)zj , for j ≥ 0 and withz0 = ϕ (5.4.58)

be accurate of orderq and of type I’, II’, or III. Moreover, let the initial conditionϕ fulfil ϕ ∈ L2.

Then, we have for the error in the solutionzj of (5.4.58)with respect to the solutionc of (5.4.57)

‖zj − c(Tj)‖ ≤ k (∆T )l T
−(l−s)
j |ϕ|2s, for ϕ ∈ Ḣ2s, 0 ≤ s ≤ l ≤ q .

Theorem 5.4.22 fits for smooth as well as nonsmooth initial data and its error bound again

makes clear that optimal order results holding uniformly down toT = 0 are only possible when

certain smoothness conditions are fulfilled by the initial data.

Finally, we cite estimates for the error in the solutionzj of fully discretized schemes, i.e.

schemes where the discretization is carried out with respect to the state as well as the time variable.

Thus, these results express the accuracy of the solution with respect to the discretization sizes of

both the state and the time variable. We start with stating the error estimate for nonsmooth initial

data with respect to theL2–norm, see Thomée [104, Theorem 7.7].

Theorem 5.4.23Let the time discretization scheme be accurate of orderq and of type I’, II’, or

III. Moreover, let{S∆x} be a family of finite dimensional subspaces ofL2 and{A∆x} a family of

operatorsA∆x : L2 → S∆x, approximating the exact solution operatorA of the Dirichlet problem

−∆c = f in Ω with c = 0 on ∂Ω, such that conditions (1) and (2) given in Theorem 5.4.18 are

fulfilled. Furthermore, assume that the initial conditionϕ satisfiesϕ ∈ L2 and that its discretized

approximation is given byϕ∆x = P∆xϕ with P∆x denoting the orthogonal projection ofϕ onto

S∆x with respect to the inner product inL2. Then, the error in the solutionzj of a fully discrete

scheme satisfies

‖zj − cj‖ ≤ k
(
(∆x)r T

−r/2
j + (∆T )q T−q

j

)
‖ϕ‖, for Tj = j∆T > 0 ,

Theorem 5.4.23 is a direct consequence of Theorems 5.4.18 and 5.4.22 withs = 0 and by

using the triangle inequality. Thus, if the initial conditionϕ fulfils ϕ ∈ Ḣ2s, then, also the following
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estimate holds combining the regularity of the data, the order of convergence, and the order of

singularity:

‖zj − cj‖ ≤ k
(
(∆x)p T

−(p−s)/2
j |ϕ|s + (∆T )l T

−(l−s)
j |ϕ|2s

)
,

with 0 ≤ s ≤ p ≤ r and0 ≤ s ≤ l ≤ q.

The error estimate in the maximum–norm is exemplified for a fully discrete scheme for the

initial–boundary–value problem (5.4.51) in two spatial variables, withS∆x consisting of piecewise

linear approximation functions in space that are defined on a quasiuniform triangulations of the

spatial domain, see Thomée [104, Theorem 8.6].

Theorem 5.4.24Letzj be defined by the fully discrete scheme

zj = r(−k∆∆x)n ϕ∆x

with r(λ) being a rational function approximatingexp(−λ) that is defined on the spectrumσ(k L̄) of

k L̄ with L̄ = −∆∆x being the discrete Laplacian and letc be the solution to the initial–boundary–

value problem(5.4.51). Moreover, let the discrete approximation of the initial conditionϕ be defined

by ϕ∆x = P∆xϕ with P∆x denoting the orthogonal projection ofϕ ontoS∆x with respect to the

inner product inL2. Furthermore, assume that the rational functionr(z) approximatingexp(−λ)
is A–stable, i.e.|r(z)| ≤ 1 for | arg z| ≤ π

2 , that it satisfies|r(∞)| < 1 and that it is accurate of

order q. If ϕ ∈ L∞, then, forTj > 0 holds

‖zj − cj‖L∞ ≤ k
(
(∆x)2 (ln( 1

∆x))4 T−1
j + (∆T )q (ln( 1

∆x))2q+4 T−q
j

)
‖ϕ‖L∞ .

In summary, it may be said, that the convergence estimates in Theorems 5.4.18, 5.4.20 – 5.4.24,

which all apply to the solution of finite element schemes, elucidate the difficulties when the

initial condition in parabolic initial–boundary–value problems is not sufficiently smooth. In all

these results, the error bound contains a singularity forT tending to0 such that the optimal order of

convergence is only achieved forT bounded away from0.

Although the presented error estimates are derived for an initial–boundary–value problem for

the homogeneous heat equation, Thomée mentions that the results of Theorem 5.4.22 and 5.4.23

generalize directly to parabolic equation of the formcT + Lc = 0 where the elliptic operatorL

is selfadjoint, positive definite, and time independent [104, Chap. 7]. However, since in Theorems

5.4.18 – 5.4.24 only special classes of second–order parabolic initial–boundary–value problems are

considered it is possible that convergence estimates for finite element solutions applied to more

general second–order parabolic initial–boundary–value problems containing for instance a time–

dependent elliptic operator, may even be worst.

5.4.4 Determination of the Discrete Instantaneous Volatility Function

After the introduction of a numerical method for the computation of the European call price function

c(x, T ), we now return to the construction of the volatility functionσ̂(x, T ). Therefore, we again
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introduce the dependence of the value of the European call option on the volatility functionσ̂(x, T )
in our notation by denoting the European call price function withc(σ̂(·, ·);x, T ) in the following.

In Subsection 5.3, we have derived that the instantaneous volatility functionσ̂(x, T ) can be

implicitly determined by approximating the market European option prices, i.e. we have described

the construction of the instantaneous volatility functionσ̂(x, T ) by an inverse problem. In the

optimization problem (5.3.2), the value of the European call option is given by a sufficiently smooth

real–valued function satisfying the transformed version of the extended Black–Scholes model (5.3.3).

Using the finite difference approach (5.4.28) – (5.4.31) introduced in the previous section for

numerically solving the parabolic initial–value problem (5.3.3) respective the parabolic initial–

boundary–value problem (5.4.6), the European call price functionc(σ̂(·, ·);x, T ) is approximated

by the finite dimensional solutionz = (z0 , z1 , . . . , zM ) with zj = (z0,j . . . , zN,j)T , j = 0, . . . ,M ,

of the finite difference scheme (5.4.28) – (5.4.31) (note that we have changed slightly the

notation by including the boundary values into the definition of the approximationz). Since for the

determination of the approximationz only values of the instantaneous volatility functionσ̂(x, T )
on the grid knots are required, we can replace the functional formσ̂(x, T ) in problem (5.3.2) by

the finite dimensional vector̄σ just containing the values of̂σ(x, T ) at the grid knots(xi, Tj),
i = 1 , . . . , N − 1 , j = 0 , . . . ,M − 1, i.e.

σ̄ = (σ̂0, . . . , σ̂M−1) ∈ IRM(N−1), with

σ̂j = (σ̂1,j , . . . , σ̂N−1,j) ∈ IRN−1 , j = 0, . . .M − 1 .

In the following, we will denote the solution of the finite difference scheme (5.4.28) – (5.4.31) by

z(σ̄) to elucidate the dependence ofz on the volatility parameter̄σ.
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•

• • •

••••
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FIGURE 5.3: Arrangement of the market European call options in the finite difference grid

We have already noted above that option prices are quoted in the market for strike prices at

discrete intervals and only for a small number of maturities [107]. Furthermore, different series

not necessarily contain options with identical strike prices such that, generally, the market
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European call options are scattered in the finite difference grid, see Figure 5.3. Moreover,

regarding the original variableK the strike prices of market European call options are usually

arranged on an equally spaced grid. However, since we have introduced the transformation

x = ln(K
S ) to eliminate the variableK in the coefficients of the original parabolic differential

equation (5.2.7), we cannot guarantee that the transformation of the strike pricesxl, l = 1, . . . ,m,

of the market European call options, are located on the grid knots in the finite difference mesh. Thus,

we cannot guarantee that the corresponding approximations of the market European call options are

given by an elementzi,j(σ̄) of the finite difference solutionz(σ̄). However, since the solutionz(σ̄)
of the finite difference scheme (5.4.28) – (5.4.31) approximates the solutionc(σ̂(·, ·);x, T ) of (5.4.6)

with an accuracy of order(2, 1), see Theorem 5.4.17, it is possible to obtain the values of European

call options located between two grid points by using polynomial interpolation of second order

without disturbing the given order of accuracy of the solution of the finite difference scheme. Thus,

let the strike pricesxl = ln(Kl
S ) and the maturitiesTl of the market European call options satisfy

xil−1 ≤ xl ≤ xil+1 and Tl = jl ∆T ,

l = 1, . . . ,m, with il ∈ {1, . . . , N − 1} andjl ∈ {0, . . . ,M}. Since market European options only

exist for a small number of maturities and we have not carried out a transformation with respect

to the maturityT , we suppose that the market European call options are located on the chosen

time layers in the finite difference grid. Hence, using polynomial interpolation of second order the

values of European call options with maturityTl which are located between the two grid points

(xil−1, jl ∆T ) and(xil+1, jl ∆T ) are given by

c(x, jl∆T ) ≈ (x−xil
)(x−xil+1)

2(∆x)2
zil−1,jl

(σ̄) +
(x−xil−1)(xil+1−x)

(∆x)2
zil,jl

(σ̄) +

(x−xil−1)(x−xil
)

2(∆x)2
zil+1,jl

(σ̄) , for x ∈ [xil−1, xil+1]
(5.4.59)

For a simplified representation of the location of the market European call options in the finite

difference grid, we introduce a so–called observation operator that determines the corresponding

approximations of the market European call options by being evaluated at the finite dimensional

solutionz(σ̄) of the finite difference scheme (5.4.28) – (5.4.31). For the definition of this observation

operator, we introduce some notation. Let

J := {(Kl, Tl) : l = 1 , . . . ,m}

be the set of the pairs of strike prices and maturities of the market European call options and let

Jj := {(Kl, Tl) ∈ J : Tl = j∆T}

be the set of the pairs of strike prices and maturities of the market European call options where the

maturityTl is assigned to thejth time layer in the finite difference grid with

|Jj | = mj such that
M∑

j=0

mj = m.
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Moreover, we assume that there existp time layers j1, j2, . . . , jp ∈ {1, . . . ,M} with

mjk
= |Jjk

| > 0 whose indices are united in the index set

I = {j ∈ {1, . . . ,M} : mj > 0} . (5.4.60)

Then, ∑
j∈I

mj = m and |I| = p .

We now determine the observation operatorA ∈ IRm×p(N+1). Since different series of market

European call options, i.e. set of market European call options with the same maturity, might not

contain options with identical strike prices, we have to determine the location of the market European

call options in the finite difference grid separately for the different maturitiesjk ∆T with jk ∈ I,

k = 1 , . . . , p. Let Ajk
= (αjk

q,s) ∈ IRmjk
×(N+1) be the operator determining the location of the

market European call options with maturityT = jk ∆T in the finite difference grid,k = 1 , . . . , p.
Then, we defineA = diag(Aj1 , . . . , Ajp) as the block diagonal matrix containing the different

observation operatorsAjk
on its diagonal.

LetKjk
1 , . . . ,Kjk

mjk
be the different strike prices of the market European call options belonging

to the series with maturityT = jk ∆T , k = 1 , . . . , p, with Kjk
1 < . . . < Kjk

mjk
without loss of

generality. Moreover, define

ŝk
q = {s̃ = 0, . . . , N

2 − 1 : x2s̃ ≤ ln(K
jk
q

S ) ≤ x2(s̃+1)}

for q = 1, . . . ,mjk
andk = 1 , . . . , p. Considering the polynomial interpolation of second order

(5.4.59) for the approximation of European call option values that are located between two grid

points, then, the elementsαjk
q,s, q = 1, . . . ,mjk

, s = 0, . . . , N of the observation operatorAjk
,

k = 1 , . . . , p, are given by

αjk
q,s =



(xk
q−xs+1)(xk

q−xs+2)

2(∆x)2
if s = 2 ŝk

q

(xk
q−xs−1)(xs+1−xk

q )

(∆x)2
if s = 2 ŝk

q + 1

(xk
q−xs−2)(xk

q−xs−1)

2(∆x)2
if s = 2 ŝk

q + 2

0 otherwise

with xk
i = ln(K

jk
i
S ), i = 1, . . . ,mjk

, andxs = xmin + s∆x.

Let ẑ(σ̄) = (zj1(σ̄) , . . . , zjp(σ̄))T ∈ IRp(N+1) with jk ∈ I, k = 1 , . . . , p, then, an evaluation

of the observation operatorA at ẑ(σ̄), i.e.

zbs(σ̄) = A ẑ(σ̄) =
(
Aj1 zj1(σ̄) , Aj2 zj2(σ̄) , . . . , Ajp zjp(σ̄)

)T
causes thatzbs(σ̄) contains the computed European call option values using the finite difference

scheme (5.4.28) – (5.4.31) for the solution of the transformed version of the extended Black–Scholes
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equation (5.3.3) that correspond to the market European call options. Furthermore, if we set

Ĉjk
=
(
Ĉ

K
jk
1 ,T

jk
1

, . . . , Ĉ
K

jk
mjk

,T
jk
mjk

)T

∈ IRmjk ,

i.e. Ĉjk
contains the values of the market European call options with maturityT = jk ∆T ,

k = 1, . . . , p, and

cobserv =
(
Ĉj1 , Ĉj2 , . . . , Ĉjp

)
and define

R(σ̄) = zbs(σ̄)− cobserv (5.4.61)

then

min
σ̄∈IRn

φ(σ̄) = min
σ̄∈IRn

1
2 ‖R(σ̄)‖2 (5.4.62)

with

n = M(N − 1)

(‖ · ‖ is the Euclidean norm inIRM(N−1)) is the discrete counterpart of optimization problem

(5.3.2) describing the construction of the instantaneous volatility functionσ̂(x, T ) if we ignore the

smoothness condition on̂σ(x, T ) for a moment.

Since the residual functionR depends nonlinearly on the finite dimensional version of the

instantaneous volatility function̄σ, problem (5.4.62) represents a nonlinear least–squares problem.

Moreover, note that usually the number of market European call options is small and a sufficient

accuracy is only achieved with a certain number of discretization knots such that, in general, these

problems will be underdetermined, i.e.n� m. Since the degree of freedom of these problems is too

large, they typically have an infinite number of solutions so that the ill–posedness of the optimization

problem (5.3.2) is carried over to its finite dimensional counterpart (5.4.62).

As already mentioned in earlier chapters, in the case of underdetermined nonlinear least–

squares problem it is likely that the residual functionR at the solution is small. Hence, for the

solution of problem (5.4.62) we use the Inexact Gauss–Newton Algorithm 2.2.3 presented in

Chapter 2. This algorithm has the advantage that on the one side in case of a zero residual at

the solution the algorithm exhibits good asymptotic convergence behavior and on the other side by

using a trust–region strategy for the solution of the Gauss–Newton subproblems a regularization is

imposed on the subproblems that overcomes their ill-posedness, see Theorem 2.2.2.

If the Euclidean norm is used in the definition of the trust–regionUi given by (2.2.6), then the

restriction in the Gauss–Newton subproblems prevents the updates of the iterates from becoming

too large. In the context of constructing the instantaneous volatility functionσ̂(x, T ), however,

one wishes to determine the volatility function so that the extended Black–Scholes model calibrates

the values of the market European call options and which shows the most smooth behavior, i.e.

‖∇σ̂(x, T )‖ should be as small as possible. Thus, in this case, regularization is carried out with

respect to the smoothness of the volatility function. For the definition of the trust–region, this means

that the norm of the discrete version of the differential operator evaluated at the updates of the

iterates should be bounded.
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Hence for the definition of this trust–region, we first of all need to make the discrete version of

∇σ̂(x, T ) available.

Lemma 5.4.25 Let σ̂(x, T ) : IR × [0, T̄ ] → IR be the instantaneous volatility function. Using the

finite grid generated by the finite difference scheme(5.4.28)– (5.4.31)and approximating the partial

derivatives of̂σ(x, T ) with a forward difference quotient, then a discrete version of the Jacobian

∇σ̂(x, T ) is given by

D σ̄ =

(
Dx

DT

)
· σ̄ (5.4.63)

with

Dx = 1
∆x


E

E
...

E

 and DT = 1
∆T


−I I 0

−I I
... ...

0 −I I

 ,

Dx ∈ IR(N−2)M×(N−1)M , DT ∈ IR(N−1)(M−1)×(N−1)M and whereI ∈ IR(N−1)×(N−1) is the

(N − 1)× (N − 1) identity matrix and

E =


−1 1 0

−1 1
... ...

0 −1 1

 ∈ IR(N−2)×(N−1) .

Proof: Since the instantaneous volatility functionσ̂(x, T ) is of the formσ̂ : IR × [0, T̄ ] → IR the

Jacobian of̂σ(x, T ) has the form

∇σ̂(x, T ) =
(

∂
∂x σ̂(x, T ) , ∂

∂T σ̂(x, T )
)
.

For the derivation of the discrete form of∇σ̂(x, T ) we use the same discretization of the state and

the time space than in the finite difference scheme (5.4.28) – (5.4.31), i.e.

xi = xmin + i∆x , i = 0, . . . , N ,

Tj = j∆T , j = 0, . . . ,M ,

with ∆x = (xmax − xmin)/N and∆T = T̄ /M . Furthermore, we set

∇xσ̂i,j = ∂
∂x σ̂(xi, Tj) , i = 1, . . . , N − 2 , j = 0, . . . ,M − 1 ,

∇T σ̂i,j = ∂
∂T σ̂(xi, Tj) , i = 1, . . . , N − 1 , j = 0, . . . ,M − 2 .
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First, we examine the partial derivative ofσ̂(x, T ) with respect tox. A discretized version of
∂
∂x σ̂(x, T ) is given by

∇xσ̄ = (∇xσ̂0,∇xσ̂1, . . . ,∇xσ̂M−1)
T ∈ IR(N−2)M

with

∇xσ̂j = (∇xσ̂1,j ,∇xσ̂2,j , . . . ,∇xσ̂N−2,j)
T ∈ IRN−2 , j = 0, . . . ,M − 1 ,

i.e.∇xσ̄ contains the partial derivative∂∂x σ̂(x, T ) evaluated at the different grid knots in the finite

difference grid. We approximate the partial derivative ofσ̂(x, T ) with respect tox by using the

forward difference quotient, i.e.

∂
∂x σ̂(xi, Tj) = ∇xσ̂i,j ≈

σ̂i+1,j − σ̂i,j

∆x
, i = 1, . . . , N − 2 , j = 0, . . . ,M − 1 .

Let

E =


−1 1 0

−1 1
... ...

0 −1 1

 ∈ IR(N−2)×(N−1),

then, an approximation of the partial derivative∂
∂x σ̂(x, T ) evaluated at the different grid knots in the

jth time layer is given by

1
∆x E σ̂j ≈ ∇xσ̂j , j = 0, . . . ,M − 1,

and

1
∆x


E

E
...

E


︸ ︷︷ ︸

=: Dx

·


σ̂0

...

σ̂M−1

 ≈


∇x σ̂0

...

∇x σ̂M−1



with Dx ∈ IR(N−2)M×(N−1)M . The rank of the discrete differentiation operatorDx is given by

rankDx = (N − 2)M since rankE = N − 2 andDx = diag(E , . . . , E) with E appearingM

times on the diagonal ofDx according to theM time steps.

Similarly to ∂
∂x σ̂, a discrete version of the partial derivative ofσ̂(x, T ) with respect to the

maturityT is given by

∇T σ̄ = (∇T σ̂0,∇T σ̂1, . . . ,∇T σ̂M−2)
T ∈ IR(N−1)(M−1)

with

∇T σ̂j = (∇T σ̂1,j ,∇T σ̂2,j , . . . ,∇T σ̂N−1,j)
T ∈ IRN−1 , j = 0, . . . ,M − 2 .

Using the forward difference quotient for the approximation of the partial derivative ofσ̂(xi, Tj)
with respect toT yields

∂
∂T σ̂(xi, Tj) = ∇T σ̂i,j ≈

σ̂i,j+1 − σ̂i,j

∆T
, i = 1, . . . , N − 1 , j = 0, . . . ,M − 2 .
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Hence

1
∆T


−I I 0

−I I
... ...

0 −I I


︸ ︷︷ ︸

=: DT

·


σ̂0

σ̂1

...

σ̂M−1

 ≈


∇T σ̂0

∇T σ̂1

...

∇T σ̂M−2



with I ∈ IR(N−1)×(N−1) is the(N − 1) × (N − 1) identity matrix,DT ∈ IR(N−1)(M−1)×(N−1)M

and rankDT = (N − 1)(M − 1) sinceDT is an upper triangular matrix with non–zero diagonal

elements.

Thus, a discrete version of the Jacobian∇σ̂(x, T ) of the volatility functionσ̂(x, T ) is given by

∇σ̄ = (∇x σ̂0, . . . ,∇x σ̂M−1 ,∇T σ̂0, . . . ,∇T σ̂M−2)
T ≈

(
Dx

DT

)
︸ ︷︷ ︸

=: D

·σ̄

with D ∈ IRm̃×(N−1)M andm̃ = (N − 2)M +(N − 1)(M − 1) such that Lemma 5.4.25 is proven.

�

Remark 5.4.26 SinceDx σ̄ = 0 if and only if σ̄ satisfies

σ̂i+1,j = σ̂i,j , i = 1, . . . , N − 2 , j = 1, . . . ,M − 1 , (5.4.64)

andDT σ̄ = 0 if and only if σ̄ fulfils

σ̂i,j+1 = σ̂i,j , i = 1, . . . , N − 1 , j = 1, . . . ,M − 2 , (5.4.65)

the homogeneous linear systemDσ̄ = 0 is fulfilled if and only if σ̄ satisfies simultaneously (5.4.64)

and (5.4.65). However, this is only the case ifσ̄ = λ e, with e = (1, . . . , 1)T , e ∈ IR(N−1)M and

λ ∈ IR such that the null–spaceN (D) of the discrete differentiation operatorD is given by

N (D) =
{
σ̄ ∈ IR(N−1)M : σ̄ = λe , λ ∈ IR

}
.

Thus, the null–space of the discrete version of the differentiation operator∇ corresponds to the

null–space of its continuous counterpart.

Now, to achieve regularization regarding smoothness of the instantaneous volatility function

σ̂(x, T ), the trust–region in the Inexact Gauss–Newton Algorithm 2.2.3 might be defined by setting

‖D δσ̄‖2 ≤ ∆ , (5.4.66)

i.e. that the norm of the updateδσ̄ of the current iteratēσ scaled with the discretized differentiation

operator has to be bounded by∆. Since according to Remark 5.4.26 the matrixD has a nontrivial

null space

‖x‖DT D = ‖Dx‖2 =
√
xTDTDx
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is only a seminorm since for all̄x ∈ N (D) we have that‖x̄‖DT D = 0. Thus, using condition

(5.4.66) for the definition of the trust–region is not sufficient for obtaining well–posed Gauss–

Newton subproblems. SinceJ(σ̄)TJ(σ̄) + λDTD (J(σ̄) is the Jacobian of the residual functions

R(σ̄)) might have a nontrivial null–space, it is possible that the solution of the Gauss–Newton

subproblem is not unique, see Theorem 2.2.2.

Moreover, if the trust–regionUi (see (2.2.6)) is defined with respect to the seminorm‖ · ‖DT D

it is possible that the solution to the Gauss–Newton subproblem is not located in a neighborhood

of the current iteratēσ. The linearised problem in the Gauss–Newton method is derived from the

nonlinear problem by using Taylor approximation which only can be trusted in a neighborhood of

the expansion point. To ensure that the solution of the Gauss–Newton subproblem is restricted to

a certain neighborhood of the current Gauss–Newton iterateσ̄, additionally, we have to guarantee

that the norm of the solution of these subproblems is not getting too large, i.e.‖δσ̄‖2 < ∆. Hence,

we additionally introduce the restriction that the norm of the orthogonal projection of the iterateδσ̄

onto the null–spaceN (D) of D is bounded.

Including this additional restriction into the definition of the trust–region, the Gauss–Newton

subproblems become

min
δσ̄∈IRn

〈J(σ̄)TR(σ̄), δσ̄〉+ 1
2〈δσ̄ , J(σ̄)TJ(σ̄) δσ̄〉

s.t. ‖Dδσ̄‖2 ≤ ∆̄ and ‖PN (D)δσ̄‖2 ≤ ∆̃
(5.4.67)

with the orthogonal projectionPN (D) ontoN (D) being given by

PN (D) = 1
‖e‖22

e eT = 1
n e e

T

wheree = (1, . . . , 1)T ∈ IRn.

In the following, we combine the two restrictions in (5.4.67) by defining

‖δσ̄‖D̄ =
√
〈δσ̄ , D̄ δσ̄〉 (5.4.68)

with D̄ is given by

D̄ = DTD + P T
N (D)PN (D) .

Lemma 5.4.27 Let D be the discrete version of the differentiation operator∇ given in Lemma

5.4.25 and letPN (D) be the orthogonal projection onto the null–spaceN (D) of D. Then,‖ · ‖D̄,

defined in(5.4.68), represents a norm.

Proof: Since
〈δσ̄ , D̄ δσ̄〉 = 〈δσ̄ , (DTD + P T

N (D)PN (D)) δσ̄〉

= 〈δσ̄ ,DTD δσ̄〉+ 〈δσ̄ , P T
N (D)PN (D) δσ̄〉

= ‖D δσ̄‖22 + ‖PN (D) δσ̄‖22

≥ 0
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the square root in (5.4.68) is defined and‖δσ̄‖D̄ ≥ 0. Furthermore,‖δσ̄‖D̄ = 0 if and only if

δσ̄ = 0 since‖δσ̄‖D̄ = 0 if and only if ‖D δσ̄‖22 = 0 and‖PN (D) δσ̄‖22 = 0. The former term is

zero if and only ifδσ̄ ∈ N (D). In caseδσ̄ ∈ N (D) andδσ̄ 6= 0 it is

PN (D) δσ̄ = eT δσ̄
n e 6= 0

sinceeT δσ̄ 6= 0 becauseδσ̄ ∈ N (D). Hence,

‖D δσ̄‖22 + ‖PN (D) δσ̄‖22 6= 0 .

If, on the other side,‖PN (D) δσ̄‖22 = 0 andδσ̄ 6= 0 this means thateT δσ̄ = 0, i.e.δσ̄ is orthogonal

toN (D). However, thenD δσ̄ 6= 0. Hence,‖D δσ̄‖22 and‖PN (D) δσ̄‖22 are simultaneously equal to

0 if and only if δσ̄ = 0 such that‖δσ̄‖D̄ = 0 if and only if δσ̄ = 0.

Moreover,

‖δσ̄1 + δσ̄2‖2D̄ = 〈δσ̄1 + δσ̄2 , D̄ (δσ̄1 + δσ̄2)〉

= 〈δσ̄1 , D̄ δσ̄1〉+ 2 〈δσ̄1, D̄ δσ̄2〉+ 〈δσ̄2 , D̄ δσ̄2〉 .
(5.4.69)

SinceD̄ is symmetric and positive definite it exists the square root ofD̄ such thatD̄ = D̄1/2D̄1/2

with D̄1/2 being symmetric and positive definite. Hence, by using the Cauchy–Schwarz inequality,

we get

〈δσ̄1, D̄ δσ̄2〉 = 〈δσ̄1, D̄
1/2D̄1/2 δσ̄2〉

= 〈D̄1/2 δσ̄1, D̄
1/2 δσ̄2〉

≤ ‖D̄1/2 δσ̄1‖2 ‖D̄1/2 δσ̄2‖2

=
√
〈δσ̄1 , D̄ δσ̄1〉

√
〈δσ̄2 , D̄ δσ̄2〉 .

Including this result into (5.4.69) we get

‖δσ̄1 + δσ̄2‖2D̄ = 〈δσ̄1 , D̄ δσ̄1〉+ 2 〈δσ̄1, D̄ δσ̄2〉+ 〈δσ̄2 , D̄ δσ̄2〉

≤ 〈δσ̄1 , D̄ δσ̄1〉+ 2
√
〈δσ̄1 , D̄ δσ̄1〉

√
〈δσ̄2 , D̄ δσ̄2〉+ 〈δσ̄2 , D̄ δσ̄2〉

=
(√

〈δσ̄1 , D̄ δσ̄1〉+
√
〈δσ̄2 , D̄ δσ̄2〉

)2

= (‖δσ̄1‖D̄ + ‖δσ̄2‖D̄)2

which verifies the triangle inequality for‖ · ‖D̄. Finally,

‖λ δσ̄‖2
D̄

= 〈λ δσ̄ , D̄ λ δσ̄〉

= λ2 〈δσ̄ , D̄ δσ̄〉

= λ2 ‖δσ̄‖2
D̄

such that‖ · ‖D̄ satisfies all attributes of a norm. �
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Now, using the norm‖ · ‖D̄ for the restriction of the iteratesδσ̄ the subproblems in the Inexact

Gauss–Newton Algorithm 2.2.3 have the form

min
δσ̄∈IRn

〈J(σ̄)TR(σ̄), δσ̄〉+ 1
2〈δσ̄ , J(σ̄)TJ(σ̄) δσ̄〉

s.t. ‖δσ̄‖D̄ ≤ ∆
(5.4.70)

with J(σ̄) being the Jacobian of the residual functionR(σ̄). These subproblems are now well–posed

according to Theorem 2.2.2.

Usually, a weighted norm in the definition of the trust–region is introduced to obtain a better

scaling of the variables in the Gauss–Newton subproblem. Note, however, that the introduction of

the norm‖ · ‖D̄ in the subproblems (5.4.70) is originated by the characteristic features of the given

problem describing the construction of the instantaneous volatility parameterσ̄.

5.5 Evaluation of the Jacobian

Using the Inexact Gauss–Newton Algorithm 2.2.3 for the solution of the underdetermined nonlinear

least–squares problem (5.4.62) in each iteration of the Gauss–Newton method, we solve the resulting

restricted linear least–squares problem

min
δσ̄∈IRn

〈J(σ̄)TR(σ̄), δσ̄〉+ 1
2〈δσ̄ , J(σ̄)TJ(σ̄) δσ̄〉

s.t. ‖δσ̄‖D̄ ≤ ∆

appearing in every iteration of the Gauss–Newton method with the Modified Preconditioned

Conjugate Gradient Method 2.2.2. We have seen in Chapter 2 that the conjugate gradient method

requires an efficient evaluation method ofJ(σ̄)δσ̄ as well asJ(σ̄)T δy. In the two following

theorems, we show how this can be achieved without saving the matrixJ(σ̄). For the proof of

the first of these two theorems, the following lemma is useful.

Lemma 5.5.1 Letf : IRq → IRn andW : IRq → IRm×n with

f(y) = (f1(y), f2(y), . . . , fn(y))T ∈ IRn ,

W (y) = {wi,j(y)} = (w1(y), w2(y), . . . , wn(y)) ∈ IRm×n

wherefj(y) ∈ IR, wj(y) = (w1,j(y), w2,j(y), . . . , wm,j(y))T ∈ IRm, y = (y1, . . . , yq) ∈ IRq and

f , wj ∈ C1(IRq), j = 1, . . . , n. Then, forδy ∈ IRq,

d
dy {W (y)f(y)} δy =

n∑
l=1

fl(y) d
dywl(y)δy +W (y) d

dyf(y)δy ∈ IRm
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Proof: Since

W (y)f(y) = f1(y)w1(y) + . . .+ fn(y)wn(y) =
n∑

l=1

fl(y)wl(y)

Lemma 5.5.1 follows immediately by applying the product rule tod
dy (fl(y)wl(y)). �

In Subsection 5.4.2, we have shown that approximations of the value of a European call option

can be computed recursively by using the finite difference scheme (5.4.28), i.e.

(I + θD̃j(σ̄)) zj+1(σ̄) = (I − (1− θ)D̃j(σ̄)) zj(σ̄) + B̃j(σ̄) ,

where we include the dependency of the matricesD̃j and the vectors̃Bj , j = 0, . . . ,M − 1, on σ̄

by writing

D̃j = D̃j(σ̄) ,

B̃j = B̃j(σ̄) .

For simplicity, we define

Uj(σ̄) = I + θD̃j(σ̄) ∈ IR(N−1)×(N−1) , j = 0, . . . ,M − 1 ,

Vj(σ̄) = I − (1− θ)D̃j(σ̄) ∈ IR(N−1)×(N−1) , j = 0, . . . ,M − 1 ,

with D̃j(σ̄) defined in (5.4.29). Furthermore, let the conditions of Theorem 5.4.3 or Corollary 5.4.5

are satisfied so thatUj(σ̄) is nonsingular forj = 0, . . . ,M − 1. Let U j
l (σ̄) andV j

l (σ̄) be thelth

column ofUj(σ̄) andVj(σ̄), respectively,l = 1, . . . , N − 1, j = 0, . . . ,M − 1, then

U j
l (σ̄) = el + θD̃j

l (σ̄) ∈ IR(N−1)

V j
l (σ̄) = el − (1− θ)D̃j

l (σ̄) ∈ IR(N−1)

(5.5.1)

whereel is the lth Euclidean unit vector inIR(N−1) and D̃j
l (σ̄) is the lth column of the matrix

D̃j(σ̄), i.e. for l = 2, . . . , N − 2

D̃j
l (σ̄) = α (0, . . . , 0, uj

l−1(σ̄),mj
l (σ̄), vj

l+1(σ̄), 0, . . . , 0)T ∈ IR(N−1),

and
D̃j

1(σ̄) = α (mj
1(σ̄), vj

2(σ̄), 0, . . . , 0)T ∈ IR(N−1) ,

D̃j
N−1(σ̄) = α (0, . . . , 0, uj

N−2(σ̄),mj
N−1(σ̄))T ∈ IR(N−1)

with vj
i (σ̄),mj

i (σ̄) anduj
i (σ̄) defined in (5.4.19).

We now show that the Jacobian of

R(σ̄) =


Aj1 zj1(σ̄)− Ĉj1

Aj2 zj2(σ̄)− Ĉj2
...

Ajp zjp(σ̄)− Ĉjp





5.5 Evaluation of the Jacobian 135

(for the definition ofAji andĈji , i = 1, . . . p, see Subsection 5.4.4) evaluated at a vectorδσ̄ can be

efficiently computed without saving the JacobianJ(σ̄) of the residual function.

Theorem 5.5.2 Let δσ̄ = (δσ̄0, . . . , δσ̄M−1) ∈ IRn with δσ̄j = (δσ̄1,j , . . . , δσ̄N−1,j) ∈ IR(N−1),

j = 0, . . . ,M − 1, n = M (N − 1), and set

sj :=
j−1∑
k=0

∂
∂σ̄k

zj(σ̄) δσ̄k . (5.5.2)

Then

J(σ̄)δσ̄ = s̄ = (s̄j1 , s̄j2 , . . . , s̄jp) ∈ IRm , s̄ji = Ajisji , i = 1, . . . , p , (5.5.3)

whereji ∈ I with I defined in (5.4.60) andsj+1, j = 1, . . . ,M − 1, can be computed recursively

by solving

Uj(σ̄) sj+1 = Vj(σ̄) sj + Fj(σ̄) , (5.5.4)

with s1 is the solution to

U0(σ̄) s1 = F0(σ̄) (5.5.5)

andFj(σ̄), j = 0, . . . ,M − 1, are given by

Fj(σ̄) = αΣj δΣj (H ((1− θ)zj(σ̄) + θzj+1(σ̄)) + hj(σ̄)) (5.5.6)

with

Σj = diag(σ̄1,j , . . . , σ̄N−1,j) ,

δΣj = diag(δσ̄1,j , . . . , δσ̄N−1,j) ,

hj(σ̄) = ((1 + ∆x
2 )((1− θ)z0,j(σ̄) + θz0,j+1(σ̄)), 0, . . . , 0)T ,

H =



−2 (1− ∆x
2 )

(1 + ∆x
2 ) −2 (1− ∆x

2 )
... ... ...

(1 + ∆x
2 ) −2 (1− ∆x

2 )

(1 + ∆x
2 ) −2


,

(5.5.7)

andz0,j(σ̄), j = 0, . . . ,M , defined in (5.4.25).

Proof: If we setA = diag(Aj1 , Aj2 , . . . , Ajp), i.e.A is a block diagonal matrix, then

R(σ̄) =


Aj1 zj1(σ̄)− Ĉj1

Aj2 zj2(σ̄)− Ĉj2
...

Ajp zjp(σ̄)− Ĉjp

 = A ẑ(σ̄)− cobserv
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with ẑ(σ̄) = (zj1(σ̄), zj2(σ̄), . . . , zjp(σ̄))T andcobserv = (Ĉj1 , Ĉj2 , . . . , Ĉjp)T . Note thatAji and

Ĉji , i = 1, . . . , p, do not depend on̄σ. Therefore,

J(σ̄)δσ̄ = A d
dσ̄ ẑ(σ̄)δσ̄ .

Note thatzj(σ̄), j = 1, . . . ,M , is defined recursively by (5.4.28). SincẽDj(σ̄) , B̃j(σ̄) (see (5.4.19),

(5.4.23), (5.4.29) and (5.4.30)) and henceUj(σ̄) andVj(σ̄) are only dependend on̄σj it follows that

zj(σ̄) depends only on̄σ0, σ̄1, . . . , σ̄j−1 and therefore,

∂
∂σ̄k

zj(σ̄) δσ̄k = 0 , k = j, . . . ,M − 1 .

Hence, we get

J(σ̄)δσ̄ = A d
dσ̄ ẑ(σ̄)δσ̄ = As = (Aj1sj1 , Aj2sj2 , . . . , Ajpsjp)T = s̄

where
s = (sj1 , sj2 , . . . , sjp)T ,

sji =
ji−1∑
k=0

∂
∂σ̄k

zji(σ̄) δσ̄k , and

s̄ji = Ajisji .

Furthermore,
∂

∂σ̄k
D̃j

l (σ̄) δσ̄k = 0 , k 6= j , k = 0, . . . ,M − 1 ,

∂
∂σ̄k

B̃j(σ̄) δσ̄k = 0 , k 6= j , k = 0, . . . ,M − 1 ,
(5.5.8)

l = 1, . . . , N − 1, j = 0, . . . ,M − 1, such that also

∂
∂σ̄k

U j
l (σ̄) δσ̄k = 0 , k 6= j , k = 0, . . . ,M − 1 ,

∂
∂σ̄k

V j
l (σ̄) δσ̄k = 0 , k 6= j , k = 0, . . . ,M − 1 .

(5.5.9)

Taking the partial derivative with respect toσ̄k of the right and left hand side of (5.4.28), i.e.

∂
∂σ̄k

(Uj(σ̄) zj+1(σ̄)) δσ̄k = ∂
∂σ̄k

(
Vj(σ̄) zj(σ̄) + B̃j(σ̄)

)
δσ̄k

and using Lemma 5.5.1 we get

Uj(σ̄) ∂
∂σ̄k

zj+1(σ̄)δσ̄k +
N−1∑
l=1

zl,j+1(σ̄) ∂
∂σ̄k

U j
l (σ̄)δσ̄k

= Vj(σ̄) ∂
∂σ̄k

zj(σ̄)δσ̄k +
N−1∑
l=1

zl,j(σ̄) ∂
∂σ̄k

V j
l (σ̄)δσ̄k + ∂

∂σ̄k
B̃j(σ̄)δσ̄k ,

(5.5.10)

j, k = 0, . . . ,M − 1. A rearrangement of the terms in (5.5.10) and (5.5.8) and (5.5.9) yields for

k < j

Uj(σ̄) ∂
∂σ̄k

zj+1(σ̄)δσ̄k = Vj(σ̄) ∂
∂σ̄k

zj(σ̄)δσ̄k , (5.5.11)
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for k = j

Uj(σ̄) ∂
∂σ̄j

zj+1(σ̄)δσ̄j = Vj(σ̄) ∂
∂σ̄j

zj(σ̄)δσ̄j + ∂
∂σ̄j

B̃j(σ̄)δσ̄j +

N−1∑
l=1

(
zl,j(σ̄) ∂

∂σ̄j
V j

l (σ̄)− zl,j+1(σ̄) ∂
∂σ̄j

U j
l (σ̄)

)
δσ̄j

= ∂
∂σ̄j

B̃j(σ̄)δσ̄j +

N−1∑
l=1

(
zl,j(σ̄) ∂

∂σ̄j
V j

l (σ̄)− zl,j+1(σ̄) ∂
∂σ̄j

U j
l (σ̄)

)
δσ̄j ,

(5.5.12)

( ∂
∂σ̄j

zj(σ̄)δσ̄j = 0) and fork > j

Uj(σ̄) ∂
∂σ̄k

zj+1(σ̄)δσ̄k = 0 . (5.5.13)

Next, we examine the terms in the sum on the very right hand side of Equation 5.5.12. For the partial

derivative of thelth column of the matricesUj(σ̄) andVj(σ̄) with respect tōσj , we get

∂
∂σ̄j

U j
l (σ̄) = ∂

∂σ̄j

(
el + θ D̃j

l (σ̄)
)

= θ ∂
∂σ̄j

D̃j
l (σ̄) ,

∂
∂σ̄j

V j
l (σ̄) = ∂

∂σ̄j

(
el − (1− θ) D̃j

l (σ̄)
)

= −(1− θ) ∂
∂σ̄j

D̃j
l (σ̄) .

Furthermore, since

∂
∂σ̄i,j

uj
l (σ̄)δσ̄i,j = ∂

∂σ̄i,j
mj

l (σ̄)δσ̄i,j = ∂
∂σ̄i,j

vj
l (σ̄)δσ̄i,j = 0 for i 6= l

and

∂
∂σ̄l,j

vj
l (σ̄) = −

(
1 + ∆x

2

)
σ̄l,j

∂
∂σ̄l,j

mj
l (σ̄) = 2 σ̄l,j

∂
∂σ̄l,j

uj
l (σ̄) = −

(
1− ∆x

2

)
σ̄l,j

the Jacobian of thelth column ofD̃j(σ̄), i.e. ∂
∂σ̄j

D̃j
l (σ̄), is a diagonal matrix that is given by

∂
∂σ̄j

D̃j
l (σ̄) = α diag

(
0, . . . , 0, ∂

∂σ̄l−1,j
uj

l−1(σ̄), ∂
∂σ̄l,j

mj
l (σ̄), ∂

∂σ̄l+1,j
vj
l+1(σ̄), 0, . . . , 0

)
= α diag

(
0, . . . , 0,−

(
1− ∆x

2

)
σ̄l−1,j , 2 σ̄l,j ,−

(
1 + ∆x

2

)
σ̄l+1,j , 0, . . . , 0

)
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for l = 2, . . . , N − 2 and forl = 1 andl = N − 1 the Jacobian is given by

∂
∂σ̄j

D̃j
1(σ̄) = α diag

(
∂

∂σ̄1,j
mj

1(σ̄) , ∂
∂σ̄2,j

vj
2(σ̄) , 0, . . . , 0

)
= α diag

(
2 σ̄1,j ,−

(
1 + ∆x

2

)
σ̄2,j , 0, . . . , 0

)
∂

∂σ̄j
D̃j

N−1(σ̄)δσ̄j = α diag
(
0, . . . , 0, ∂

∂σ̄N−2,j
uj

N−2(σ̄) , ∂
∂σ̄N−1,j

mj
N−1(σ̄)

)
= α diag

(
0, . . . , 0,−

(
1− ∆x

2

)
σ̄N−2,j , 2 σ̄N−1,j

)
.

Thus,

zl,j(σ̄) ∂
∂σ̄j

D̃j
l (σ̄)δσ̄j = α

(
0, . . . , 0,−

(
1− ∆x

2

)
σ̄l−1,j δσ̄l−1,j zl,j(σ̄), 2 σ̄l,j δσ̄l,j zl,j(σ̄),

−
(
1 + ∆x

2

)
σ̄l+1,j δσ̄l+1,j zl,j(σ̄), 0, . . . , 0

)T
for l = 2, . . . , N − 2 and

z1,j(σ̄) ∂
∂σ̄j

D̃j
1(σ̄)δσ̄j = α (2 σ̄1,j δσ̄1,j z1,j(σ̄) ,

−
(
1 + ∆x

2

)
σ̄2,j δσ̄2,j z1,j(σ̄) , 0, . . . , 0

)
zN−1,j(σ̄) ∂

∂σ̄j
D̃j

N−1(σ̄)δσ̄j = α
(
0, . . . , 0,−

(
1− ∆x

2

)
σ̄N−2,j δσ̄N−2,j zN−1,j(σ̄) ,

2 σ̄N−1,j δσ̄N−1,j zN−1,j(σ̄))

such that

N−1∑
l=1

zl,j(σ̄) ∂
∂σ̄j

V j
l (σ̄)δσ̄j =

N−1∑
l=1

zl,j(σ̄) ∂
∂σ̄j

(
el − (1− θ) D̃j

l (σ̄)
)
δσ̄j

= − (1− θ)
N−1∑
l=1

zl,j(σ̄) ∂
∂σ̄j

D̃j
l (σ̄)δσ̄j

= − (1− θ) α



(
2 z1,j(σ̄)− (1− ∆x

2 ) z2,j(σ̄)
)
σ̄1,j δσ̄1,j

...(
−(1 + ∆x

2 ) zl−1,j(σ̄) + 2 zl,j(σ̄)− (1− ∆x
2 ) zl+1,j(σ̄)

)
σ̄l,j δσ̄l,j

...(
−(1 + ∆x

2 ) zN−2,j(σ̄) + 2 zN−1,j(σ̄)
)
σ̄N−1,j δσ̄N−1,j


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= (1− θ) αΣj δΣj



−2 z1,j(σ̄) + (1− ∆x
2 ) z2,j(σ̄)

...

(1 + ∆x
2 ) zl−1,j(σ̄)− 2 zl,j(σ̄) + (1− ∆x

2 ) zl+1,j(σ̄)
...

(1 + ∆x
2 ) zN−2,j(σ̄)− 2 zN−1,j(σ̄)


= (1− θ) αΣj δΣj H zj(σ̄)

i.e.
N−1∑
l=1

zl,j(σ̄) ∂
∂σ̄j

V j
l (σ̄)δσ̄j = (1− θ) αΣj δΣj H zj(σ̄) (5.5.14)

with Σj , δΣj andH defined in (5.5.7). Similarly, it follows that

N−1∑
l=1

zl,j+1(σ̄) ∂
∂σ̄j

U j
l (σ̄)δσ̄j =

N−1∑
l=1

zl,j+1(σ̄) ∂
∂σ̄j

(
el + θ D̃j

l (σ̄)
)
δσ̄j

= θ

N−1∑
l=1

zl,j+1(σ̄) ∂
∂σ̄j

D̃j
l (σ̄)δσ̄j

= − θ αΣj δΣj H zj+1(σ̄) .

(5.5.15)

Furthermore,

∂
∂σ̄j

B̃j(σ̄)δσ̄j

= −α
(
−(1 + ∆x

2 )σ̄1,j ((1− θ) z0,j(σ̄) + θz0,j+1(σ̄)) δσ̄1,j , 0, . . . , 0
)T

= αΣjδΣj hj(σ̄)

(5.5.16)

with hj(σ̄) defined in (5.5.7). Note that the values at the boundary, i.e.z0,j(σ̄) , zN,j(σ̄), do not

depend on the volatility parameterσ̄. Using (5.5.14), (5.5.15) and (5.5.16), we get

N−1∑
l=1

(
zl,j(σ̄) ∂

∂σ̄j
V j

l (σ̄)− zl,j+1(σ̄) ∂
∂σ̄j

U j
l (σ̄)

)
δσ̄j + ∂

∂σ̄j
B̃j(σ̄)δσ̄j

= αΣj δΣj (H ((1− θ)zj(σ̄) + θzj+1(σ̄)) + hj(σ̄)) .

(5.5.17)

Now, we show by induction overj that sj , j = 1, . . . ,M , can be computed recursively by

using (5.5.4). We start with the computation ofs1 = ∂
∂σ̄0

z1(σ̄) δσ̄0. The approximationsz1(σ̄) of

the value of the European call option in the time layer∆T are given by the solution of the linear

system of equations

U0(σ̄) z1(σ̄) = V0(σ̄) z0(σ̄) + B̃0(σ̄) .
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The partial derivative with respect tōσ0 of both sides of the previous equation are given by

U0(σ̄) ∂
∂σ̄0

z1(σ̄)δσ̄0 = ∂
∂σ̄0

B̃0(σ̄)δσ̄0 +
N−1∑
l=1

(
zl,0(σ̄) ∂

∂σ̄0
V 0

l (σ̄)− zl,1(σ̄) ∂
∂σ̄0

U0
l (σ̄)

)
δσ̄0

= αΣ0 δΣ0 (H((1− θ)z0(σ̄) + θz1(σ̄)) + h0(σ̄))

= F0(σ̄) .

where we have used Lemma 5.5.1 together with the transformations (5.5.10) and (5.5.12) for

j = k = 0 and (5.5.17). Sinces1 = ∂
∂σ̄0

z1(σ̄)δσ̄0 we have proven (5.5.5).

Next, we prove the induction step fromj to j + 1. Using the identity (5.5.2) ofsj+1, we get

Uj(σ̄)sj+1 = Uj(σ̄)

(
j∑

k=0

∂
∂σ̄k

zj+1(σ̄) δσ̄k

)
=

j∑
k=0

Uj(σ̄) ∂
∂σ̄k

zj+1(σ̄) δσ̄k

and with (5.5.11), (5.5.12), (5.5.13), (5.5.17) and the identity (5.5.2) forsj it follows

Uj(σ̄)sj+1 =
j∑

k=0

Uj(σ̄) ∂
∂σ̄k

zj+1(σ̄) δσ̄k

=
j−1∑
k=0

(
Vj(σ̄) ∂

∂σ̄k
zj(σ̄)δσ̄k

)
+

∂
∂σ̄j

B̃j(σ̄)δσ̄j +
N−1∑
l=1

(
zl,j(σ̄) ∂

∂σ̄j
V j

l (σ̄)− zl,j+1(σ̄) ∂
∂σ̄j

U j
l (σ̄)

)
δσ̄j

= Vj(σ̄)

(
j−1∑
k=0

∂
∂σ̄k

zj(σ̄)δσ̄k

)
+

αΣj δΣj (H ((1− θ)zj(σ̄) + θzj+1(σ̄))) + hj(σ̄))

= Vj(σ̄) sj + Fj(σ̄)

which confirms (5.5.4). �

The computational effort for one evaluation ofJ(σ̄)δσ̄ is composed of the effort necessary for

setting up the system of linear equations (5.5.5) and (5.5.4) and the solution of it. The coefficients

of the matricesUj(σ̄) andVj(σ̄) are composed of the sum of the particular elements of the matrix

D̃j(σ̄) multiplied by−(1 − θ) andθ, respectively, and the corresponding elements of the identity

matrix. Thus, the number of multiplications necessary to compute each of the three diagonals of

Uj(σ̄) andVj(σ̄) consists of the computational effort for the determination of the elements ofD̃j(σ̄)
and the subsequent multiplication with−(1 − θ) andθ, respectively, which is given in the relevant

case by

computation ofD̃j(σ̄) : 6 (N − 2) +N = 7N − 12 multiplications,

computation ofUj(σ̄) : 3N − 5 multiplications,

computation ofVj(σ̄) : 3N − 5 multiplications.
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The right hand side of (5.5.5) consists of the vectorF0(σ̄) and that of (5.5.4) is composed of the

matrix vector productVj(σ̄) sj andFj(σ̄), j = 1, . . . ,M − 1. SinceVj(σ̄) is a tridiagonal matrix

the effort for the computation of the matrix–vector product amounts to3N − 5 multiplications. The

vectorFj(σ̄) is composed of the sum of a matrix–vector product and a vector that is multiplied by

two diagonal matrices from the left and a scalar. The effort for the matrix–vector product is again

3N − 5 multiplications since the matrixH is also tridiagonal. For the computation of the vector

(1− θ)zj(σ̄) + θzj+1(σ̄) are2 (N − 1) multiplications necessary. The evaluation ofhj(σ̄) consists

only in the calculation of the first element which costs three multiplications. Thus, the effort for the

computation ofFj(σ̄) amounts to3N − 3 + 3N − 5 + 2N − 2 + 3 = 8N − 7 multiplications

for j = 0, . . . ,M − 1. Finally, for the solution of the linear tridiagonal systems (5.5.5) and (5.5.4)

for j = 0, . . . ,M − 1 are5 (N − 1) − 4 multiplications necessary when using a LU factorization

(see for instance Schwarz [94]) such that the total computational effort for one evaluation of the

matrix–vector productJ(σ̄)δσ̄ adds up to

M · (5N − 9 + 8N − 7 + 7N − 12 + 3N − 5) + (M − 1) (3N − 5 + 3N − 5)

= M (29N − 43)− (6N − 10) multiplications.
(5.5.18)

Thus, the computational effort for one evaluation ofJ(σ̄)δσ̄ is of orderO(MN).
In the next theorem, we show howJ(σ̄)T δc can be efficiently evaluated also without storing

the JacobianJ(σ̄).

Theorem 5.5.3 Let σ̄ = (σ̄0, . . . , σ̄M−1) ∈ IRM(N−1) and δc = (δc1, δc2, . . . , δcp) ∈ IRm with

δck ∈ IRmjk , jk ∈ I, k = 1, . . . , p, and1 ≤ j1 < j2 < . . . < jp = M . Set fork = 1, . . . , p

µjk
k = AT

jk
δck ∈ IRN−1

µj
k = Vj(σ̄)T ζj

k ∈ IR
N−1 , j = jk − 1, jk − 2, . . . , 0 ,

(5.5.19)

whereζj
k , j = jk − 1, jk − 2, . . . , 0, k = 1, . . . , p, is the solution to

Uj(σ̄)T ζj
k = µj+1

k . (5.5.20)

Then

J(σ̄)T δc = σ̃ = (σ̃0, . . . , σ̃M−1) ∈ IRM(N−1) , (5.5.21)

σ̃j ∈ IRN−1, j = 0, . . . ,M − 1, can be computed by

σ̃j = Λj Σj

p∑
z=k

ζj
z , jk−1 ≤ j ≤ jk − 1 , k = 1, . . . , p , (5.5.22)

with j0 = 0 and

Λj = diag(λ1,j , . . . , λN−1,j) (5.5.23)

whereλi,j , i = 1, . . . , N − 1, is theith component of

λj = α (H ((1− θ) zj(σ̄) + θ zj+1(σ̄)) + hj(σ̄)) (5.5.24)

and withH andhj(σ̄), j = 0, . . . ,M − 1, defined in(5.5.7).



142 5 Constructing the Instantaneous Volatility Function

Proof: For arbitraryδσ̄ = (δσ̄0, . . . , δσ̄M−1) ∈ IRM(N−1), δσ̄l ∈ IRN−1 , l = 0, . . . ,M − 1, we

have according to Theorem 5.5.2 and (5.5.21), (5.5.3) and (5.5.19),

σ̃T δσ̄ = δcTJ(σ̄)δσ̄ = δcT s̄ =
p∑

k=1

δcTk s̄jk
=

p∑
k=1

δcTkAjk
sjk

=
p∑

k=1

(µjk
k )T sjk

. (5.5.25)

For j = jk, jk − 1, . . . , 1 andk = 1, . . . , p we obtain with (5.5.4), (5.5.20), (5.5.19), (5.5.5) and

Theorem 5.5.2

(µj
k)

T sj = (µj
k)

T
(
Uj−1(σ̄)−1Vj−1(σ̄) sj−1 + Uj−1(σ̄)−1Fj−1(σ̄)

)
= (µj

k)
TUj−1(σ̄)−1Vj−1(σ̄) sj−1 + (Uj−1(σ̄)−Tµj

k)
TFj−1(σ̄)

= (Vj−1(σ̄)TUj−1(σ̄)−Tµj
k)

T sj−1 + (ζj−1
k )TFj−1(σ̄)

= (Vj−1(σ̄)T ζj−1
k )T sj−1 + (ζj−1

k )TFj−1(σ̄)

= (µj−1
k )T sj−1 + (ζj−1

k )TFj−1(σ̄)

(µ1
k)

T s1 = (µ1
k)

TU0(σ̄)−1F0(σ̄)

= (U0(σ̄)−Tµ1
k)

TF0(σ̄)

= (ζ0
k)TF0(σ̄)

(5.5.26)

whereFj(σ̄), j = 0, . . . ,M − 1, is defined by (see (5.5.6))

Fj(σ̄) = αΣj δΣj (H ((1− θ)zj(σ̄) + θzj+1(σ̄)) + hj(σ̄)) = Σj δΣj λj

with λj defined in (5.5.24). Using (5.5.26) and substituting recursively into (5.5.25) yields

σ̃T δσ̄ =
p∑

k=1

(µjk
k )T sjk

=
p∑

k=1

jk∑
j=1

(ζj−1
k )TFj−1(σ̄)

=
p∑

k=1

jk∑
j=1

(ζj−1
k )T Σj−1 δΣj−1 λj−1

=
p∑

k=1

jk∑
j=jk−1+1

p∑
z=k

(ζj−1
z )T Σj−1 δΣj−1 λj−1

=
p∑

k=1

jk−1∑
j=jk−1

p∑
z=k

(Σj ζ
j
z)

T δΣj λj

The transformations from the third row to the fourth row of this equation consists in a rearrangement

of the terms in the sum. For elucidation, we have stated exemplary the different terms of this sum
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j

1 2 3 4 5 6 7 8

j1 j2 j3 j4 j5

1 (ζ0
1 )T F0 (ζ1

1 )T F1

2 (ζ0
2 )T F0 (ζ1

2 )T F1 (ζ2
2 )T F2

k 3 (ζ0
3 )T F0 (ζ1

3 )T F1 (ζ2
3 )T F2 (ζ3

3 )T F3 (ζ4
3 )T F4

4 (ζ0
4 )T F0 (ζ1

4 )T F1 (ζ2
4 )T F2 (ζ3

4 )T F3 (ζ4
4 )T F4 (ζ5

4 )T F5

5 (ζ0
5 )T F0 (ζ1

5 )T F1 (ζ2
5 )T F2 (ζ3

5 )T F3 (ζ4
5 )T F4 (ζ5

5 )T F5 (ζ6
5 )T F6 (ζ7

5 )T F7

TABLE 5.1: Exemplary listing of the terms in the sum ofσ̃T δσ̄ for p = 5, j1 = 2 , j2 = 3 , j3 = 5, j4 = 6, j5 = 8

in Table 5.1. In the third row of this equation, the terms are added up row for row with regard to

Table 5.1. In contrast, in the fourth row of the equation, the different terms are summed up column

for column. Furthermore, we have used thatΣj andδΣj are diagonal matrices, i.e.Σj = (Σj)T and

δΣj = (δΣj)T .

Then, fork = 1, . . . , p andj = jk−1, . . . , jk − 1 we get withuT v = tr[uvT ], u, v ∈ IRN−1

σ̃T
j δσ̄j =

p∑
z=k

(Σj ζ
j
z)

T δΣj λj

=
p∑

z=k

tr
[
Σj ζ

j
z (δΣj λj)T

]
=

p∑
z=k

tr
[
Σj ζ

j
z λ

T
j δΣj

]
=

p∑
z=k

tr
[
λj (Σj ζ

j
z)

T δΣj

]
=

p∑
z=k

tr

(N−1∑
i=1

λq,j (Σj ζ
j
z)i (δΣj)i,s

)
1≤q,s≤N−1


=

p∑
z=k

N−1∑
q=1

N−1∑
i=1

λq,j (Σj ζ
j
z)i (δΣj)i,q

=
p∑

z=k

N−1∑
i=1

λi,j (Σj ζ
j
z)i δσ̄i,j

=
N−1∑
i=1

p∑
z=k

(Λj Σj ζ
j
z)i δσ̄i,j

Note thatΣj andδΣj are diagonal matrices, i.e. if(Σj)i,q and(δΣj)i,q denote the element in theith

row and theqth column ofΣj andδΣj , respectively, then(Σj)i,q = (δΣj)i,q = 0 for i 6= q. Hence,

in the fourth row in the previous transformations, all terms in the sum withi 6= q are zero.
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Finally, it follows from the previous equation that

σ̃j = Λj Σj

p∑
z=k

ζj
z , for j = jk−1, . . . , jk − 1 , k = 1, . . . , p ,

which concludes the proof. �

The computational effort necessary for the determination of the productJ(σ̄)T δc = σ̃

consists of setting up the matricesUj(σ̄) andVj(σ̄) and the vectorsλj for j = 0, . . . ,M − 1, the

determination of the parametersζj
k, k = 1, . . . , p , j = jk − 1, . . . , 0, and the subsequent

computation ofσ̃j , j = 0, . . . ,M − 1. As in the determination of the computational effort for

the calculation of the product ofJ(σ̄)δσ̄, the computational effort for setting up the matricesUj(σ̄)
andVj(σ̄) for j = 0, . . . ,M − 1 is given by

computation ofD̃j(σ̄) : 6 (N − 2) +N = 7N − 12 multiplications,

computation ofUj(σ̄) : 3N − 5 multiplications,

computation ofVj(σ̄) : 3N − 5 multiplications.

Moreover, the number of multiplications necessary to computeλj is 6N − 5 for each

j = 0, . . . ,M − 1. The computation ofζj
k is done by the backward recursion (5.5.19) and the

solution of the linear tridiagonal system of equations (5.5.20). For eachk the initial setting requires

(N − 1)mjk
multiplications. In the subsequent iteration of this backward recursion process,

(3N − 5) jk multiplications are necessary for thejk matrix–vector productsµj
k = Vj(σ̄)T ζj

k and,

additionally, (5N − 9)jk multiplications have to be carried out for the solution of the linear

tridiagonal systemsUj(σ̄)T ζj
k = µj+1

k . Finally, the computation of each̃σj , j = 0, . . . ,M − 1,

makes2 (N − 1) multiplications necessary. Thus, the complete computational effort for one

evaluation ofJ(σ̄)T δc amounts to

M (13N − 22 + 6N − 5 + 2N − 2) +m (N − 1) +
p∑

k=1

jk · (5N − 9 + 3N − 5)

= M (21N − 29) +m (N − 1) +
p∑

k=1

jk · (8N − 14)

≤ M (21N − 29 + p (8N − 14)) +m (N − 1) multiplications,

(5.5.27)

so that is of orderO(pMN).

5.6 Numerical Results

In this last section, we present some computational experience with Algorithm 2.2.3 applied to

problem (5.4.62) of constructing the instantaneous volatility functionσ̄. The model European call

prices occurring in the residual functionR(σ̄) (5.4.61) are computed using the finite difference

scheme (5.4.28) – (5.4.31) withθ = 1
2 , i.e. the Crank–Nicolson method. For the finite difference

scheme (5.4.28) – (5.4.31), we employ a uniformly spaced mesh withN ×M grid points in the



5.6 Numerical Results 145

region [ν1 S , ν2 S] × [0 , T̄ ] where T̄ is the maximum maturity of the market option data. The

evaluation of the JacobianJ(σ̄) of the residual functionR(σ̄) times a vector and the transpose of this

Jacobian times a vector are carried out according to Theorem 5.5.2 and Theorem 5.5.3, respectively.

Moreover, the linear systems appearing in the Modified Preconditioned Conjugate Gradient Method

2.2.2 are solved by applying the singular value decomposition to the scaling matrixD̄1/2. Note

that the singular value decomposition ofD̄ must only computed once since the scaling matrixD̄ is

constant for the complete optimization process.

We divide this section into two parts. In the first part, we demonstrate the behavior of the

algorithm by constructing the instantaneous volatility function in several synthetic European call

option examples. In these examples we pretend to know the instantaneous volatility function. Then,

in the second part, we apply the algorithm to real world problems by examining European DAX

index call options.

5.6.1 Synthetic European Call Option Examples

For the demonstration of the applicability of Algorithm 2.2.3 onto the determination of the volatility

parameter̄σ, we start our examination with a synthetic example. We assume that the asset underlying

the option follows the stochastic differential equation

dS = µ(S, t)S dt+ σ∗(S, t)S dWt , t ∈ [0, T̄ ]

such that the price function with respect to the strike priceK and the maturityT of the European

call option follows the deterministic parabolic differential equation

CT − 1
2σ

∗(K,T )2K2CKK + (r(T )− d(T ))KCK + d(T )C = 0 (5.6.1)

subject to the initial condition

C(σ(·, ·);K, 0) = max(S −K, 0) .
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FIGURE 5.4: The instantaneous volatility function̄σ∗
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Moreover, we suppose that the instantaneous volatility functionσ∗(K,T ) in (5.6.1) is given by

σ∗(K,T ) = 0.2 + 0.005 (ln(K
S ))2 + 0.03T 2 , for (K ,T ) ∈ IR+ × [0 , T̄ ] . (5.6.2)

Furthermore, we set

r(T ) = 0.05 , for T ∈ [0 , T̄ ] ,

d(T ) = 0.02 , for T ∈ [0 , T̄ ]

and assume that the current stock value isS = 100. Then, using these parameters, the

corresponding European call option price functionC∗(K ,T ) is computed using the finite

difference scheme (5.4.28) – (5.4.31) applied to the transformed version (5.2.12) of the parabolic

differential equation (5.6.1) respective the parabolic initial–boundary–value problem (5.4.6) with

[xmin , xmax] = [ν1 S , ν2 S] whereν1 = 0.05 andν2 = 3. The number of grid points with respect

to the space variablex and the time variableT were chosen to beN = M = 30.

Since we have carried out this computation with the “exact” instantaneous volatility function

σ∗(K,T ) given in (5.6.2) in the following examples, we interpret a certain number of these

European call option values as market European call option data, i.e.ĈKl,Tl
= C∗(S exp(xl) , Tjl

),
l = 1 , . . . ,m, and

cobserv = (ĈK1,T1 , . . . , ĈKm,Tm)T ∈ IRm

Furthermore, the vectors with the corresponding strike prices and maturities, respectively, are

designated as

Kobserv = (K1 , . . . ,Km)T ∈ IRm ,

Tobserv = (T1 , . . . , Tm)T ∈ IRm .

We will see in the following subsection that usually only for a limited number of strike prices

and only few maturity dates options are available in the market so that in general only a small number

of observations exist in comparison to the large number of unknowns that have to be estimated.

Ignoring this aspect for a moment, we start our examination by assuming that at each grid knot in

the chosen grid of the finite difference scheme there exists market European call option values, i.e.

cobserv = (C∗1,1 , . . . , C
∗
N−1,1 , . . . , C

∗
1,M , . . . , C∗N−1,M )T ∈ IR(N−1)M

with

C∗i,j = C∗(S exp(xi) , Tj) .

We started the optimization routine with an initial guess of the volatility function of

σ̄0 = 0.24 = const. The computation of the European call option values appearing in the

residual functionR(σ̄) is carried out by using the same discretization parametersN and M

in the finite difference scheme as in the computation of the European call values

ĈKl,Tl
= C∗(S exp(xl) , Tjl

), l = 1 , . . . ,m. The algorithm stopped after 12 Gauss–Newton

iterations with a computed optimal objective function value1
2‖R(σ̄opt)‖ of 10−14 with σ̄opt is the

approximated volatility function computed by Algorithm 2.2.3. The volatility functionσ̄opt and its

deviation from

σ̄∗ = (σ̂∗1,0 , . . . , σ̂
∗
N−1,0 , . . . , σ̂

∗
1,M−1 , . . . , σ̂

∗
N−1,M−1)

T
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FIGURE 5.5: Volatility functionσ̄opt determined by

the Inexact Gauss–Newton Method 2.2.3
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FIGURE 5.6: Deviation of̄σopt to σ̄∗

with

σ̂∗i,j = σ∗(S exp(xi) , Tj)

are shown in Figure 5.5 and 5.6, respectively. These two figures show that in this case the accuracy

of the approximated solution is acceptable. For a more precise demonstration of the accuracy we

have plotted the volatility function̄σopt against the “true” instantaneous volatility functionσ̄∗ for

the maturitiesT = 0 , 0.5 andT = 1 on the left hand side in Figure 5.9. If observation data are

available at every grid point in the finite difference grid, the error of the approximated solution is

very small. We observe that forT = 0.5 the solution and its approximation are almost identical and

that they only slightly deviate forT = 0 in case of larger strike prices and forT = 1 for smaller

strike prices.
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FIGURE 5.7: Volatility functionσ̄opt determined by

the Inexact Gauss–Newton Method 2.2.3
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FIGURE 5.8: Deviation of̄σopt to σ̄∗

Since the assumption of the existence of market European call data at every grid point of the

finite difference grid is not very realistic, next, we successively reduce the number of observable

option values.
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FIGURE 5.9: Deviation of̄σopt to σ̄∗ for the maturitiesT = 0 , 0.5 andT = 1; Left hand side: observations available at

every grid point; Right hand side: observations available at every second grid point
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Figures 5.7 and 5.8 show the constructed volatility functionσ̄opt and its deviation tōσ∗ when

market European call option values are available only at every second grid point. In this case the

Inexact Gauss–Newton Method 2.2.3 needs 13 outer iteration to stop with a computed objective

function value1
2‖R(σ̄opt)‖ of 10−14. The deviation of the approximated solutionσ̄opt to σ̄∗ is still

of order10−3, however, the plots on the right hand side of Figure 5.9 show that they are slightly

larger than in the previous example.

Finally, we examine the more realistic case by assuming that only a small number of European

call options with the same underlying are traded. Figures 5.10 and 5.11 contain the results when

European call options are available with six different maturities and each series having eight different

strike prices, i.e. 48 observed European call options are considered as market data. The maturities

areT = 0.1 , 0.17 , 0.23 , 0.5 , 0.76 andT = 1 and for the strike pricesKi, i = 1 . . . , 8, holds

Ki ∈ [0.5S , 1.3S] such that the vector with the observed European call values is given by

cobserv = (C∗4 , C
∗
6 , C

∗
8 , C

∗
16 , C

∗
24 , C

∗
31)

T ∈ IR48 (5.6.3)

with

C∗j = (C∗(S exp(x18) , Tj) , . . . , C∗(S exp(x25) , Tj))T ∈ IR8 , j = 4 , 6 , 8 , 16 , 24 , 31 .

Regarding the finite difference grid, this means that the observation data are located only in a small

strip of the grid with respect to the state variablex, i.e. for small and large strike prices there are no

observation data available.
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FIGURE 5.10: Volatility functionσ̄opt determined by

the Inexact Gauss–Newton Method 2.2.3
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FIGURE 5.11: Deviation of̄σopt to σ̄∗

For this example, the Inexact Gauss–Newton Method 2.2.3 requires 50 Gauss–Newton

iterations to stop with the same size of the objective function than in the previous examples. Thus,

the number of iterations has increased considerably in comparison with the previous two examples.

Since the number of market European call values has been decreased the nonlinear least–squares

problem (5.4.62) became more underdetermined, and thus, is more difficult to solve. Moreover,

Figures 5.10 and 5.11 show that the quality of the approximation ofσ̄opt is worse than for the first
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two examples. For a more precise examination of the deviation ofσ̄opt to σ̄∗, we have plotted

σ̄opt andσ̄∗ for certain fixed maturities in Figure 5.12. These plots show that in the region where

observation data are available the volatility functionσ̄∗ is approximated very accurately bȳσopt.

However, in the region where no observations are available, i.e. for small and large strike prices, the

deviation ofσ̄opt to σ̄∗ is much larger.
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FIGURE 5.12: Deviation of̄σopt to σ̄∗ for the maturitiesT = 0 , 0.23 , 0.5 andT = 1

For an explanation of this behavior, we examine the influence of different volatility values

σ̂∗i,j−1 on the approximated European call option valueszj(σ̄∗). Figures 5.13 and 5.14 are showing

the partial derivatives of the discrete approximationzj(σ̄∗) of the transformed European call price

function c(x, Tj) with respect to the volatilitieŝσ∗j−1 for a fixed maturityj ∈ {1 , . . . , 29}. In

Figure 5.13, we have plotted the elements of the Jacobian(∂zi ,20(σ̄∗)/∂σ̂∗k ,19)1≤i ,k≤29. Since

the size of these elements differ considerably, Figure 5.14 contains only the gradients ofzi ,20(σ̄∗)
with respect tôσ∗19 for i = 3, . . . , 18, i.e. in Figure 5.14 we have plotted the partial derivatives

(∂zi ,20(σ̄∗)/∂σ̂∗k ,19) i=3,...,18
k=1,...,29

. These two plots show that only a few volatility parametersσ̂∗k ,19

seem to have an influence on the value ofzi,j(σ̄∗). For a more precise observation of this aspect, for

i = 1, 10, 20, 29 we have drawn the gradients ofzi ,20(σ̄∗) with respect tôσ∗19 in Figure 5.15, i.e.

they show the values of(∂zi,20(σ̄∗)/∂σ̂∗k,19)k=1,...,29 for i = 1, 10, 20 and29, respectively. These

last plots make clear that the main influence on the value ofzi,j(σ̄∗) is given byσ̂∗i,j−1 and that
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FIGURE 5.14: Partial derivatives of the European call

values with maturityT̃ , zi,j(σ̄
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zi,j(σ̄∗) is almost independent of̂σ∗k,j−1 for k 6= i. An explanation for this behavior might be

the tree–like structure of finite difference methods. Thus, incorrect values ofσ̂k,j−1 do not lead to

a large error in the computation ofzi,j(σ̄) for k 6= i, unfortunately, such that a determination of

the volatility parameter̄σ can be carried out with an acceptable accuracy only in the region where

market European call values are available.

So far, we have explored the deviation of the approximationσ̄opt to its solutionσ̄∗ with respect

to the strike priceK. Next, we examine the behavior of the approximationσ̄opt concerning the

maturityT . Therefore, we have plotted̄σopt and σ̄∗ for certain fixed strike pricesK for the first

and the third example on the left and on the right hand side, respectively, in Figure 5.16. The plots

on the left hand side confirm the earlier statements of the high accuracy of the approximationσ̄opt

when observation data are available at every grid knot in the finite difference grid. On the right

hand side of this figure, the plots are shown for the case if only a small number of observation data

exist. Note that in this example, we have assumed that market European call options with strike

priceK = S exp(x23) were available; however, they do not exist for strike pricesK = S exp(x15)
andK = S exp(x29), respectively. The second plot on the right hand side of Figure 5.16 shows that

for the former strike price the approximated volatility functionσopt formed by the Inexact Gauss–

Newton Method 2.2.3 almost coincides with its solution for all considered maturities; independent if

market option values with these maturities exist or not. For the latter strike prices the approximation

σ̄opt shows a linear behavior in contrast to the quadratic behavior of its solutionσ̄∗, see the first and

the last plot on the right hand side of Figure 5.16. Starting with an initial setting ofσ̄0 = 0.24, the

approximated solution̄σopt approaches̄σ∗, however, is not able to identify the behavior ofσ̄∗ more

precisely.
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FIGURE 5.16: Deviation of̄σopt to σ̄∗ for the strike pricesK = S exp(x15) (≈ 34) , S exp(x23) (≈ 100) and

K = S exp(x29) (≈ 262); Left hand side: observations available at every grid point; Right hand side: 48 observations

available at specified grid points, see (5.6.3)



154 5 Constructing the Instantaneous Volatility Function

5.6.2 Construction of the Instantaneous Volatility Function for the German Stock
Index DAX

Finally, in this last subsection, we examine a more realistic example. We use values of market

European DAX call options of February 2, 2002 to approximate the instantaneous volatility function

σ̂(x, T ) of the German stock index DAX.

For the determination of the discrete versionσ̄ of the instantaneous volatility function, we have

136 market European DAX call options available. These options belong to ten different series, i.e.

they have ten different maturities which start with one month and reach up to five years. Each

series consists of a different number of options which is higher for series with shorter maturities

and smaller for series with longer maturities. The strike prices of the options of each of these series

are scattered on the interval[3, 500; 8, 000]. The corresponding market value of the DAX index is

S = 5, 003.24.

For the numerical solution of the parabolic initial–boundary–value problem (5.4.6), we choose

a finite difference mesh approximating the region[0.1S , 2S] × [0 , 5] that consists ofN = 50
discretization points for the spatial domain[0.1S , 2S] andM = 56 discretization points for the

time variableT .
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FIGURE 5.17: The approximated instantaneous volatility functionσ̄ of

the German stock index DAX using all 136 data

We started the optimization process for the solution of the nonlinear least–squares problem

(5.4.62) with an initial guess for the instantaneous volatility function of

σ̄0 = 0.28 = const .

Using all the given market European DAX call options, the Inexact Gauss–Newton Algorithm

2.2.3 stopped after46 iterations with an approximated instantaneous volatilityσ̄opt for which the
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computed objective function value12 ‖R(σ̄opt‖2 is of order10−6. The maximum absolute price

error amounted to2.0 · 10−3 which occurred for prices belonging to options with long maturities.

Thus, the given method excellently reproduces the market European DAX call values across

the complete set of given data. The corresponding gradient‖J(σ̄opt)TR(σ̄opt)‖ of the residual

functionR is of magnitude10−5 such that we expect̄σopt to be a local minimizer. At the beginning

of the optimization process, the Modified Preconditioned Conjugate Gradient Algorithm 2.2.2

needed only 2 iterations for the solution of the restricted Gauss–Newton subproblems (5.4.70),

however, this number has slightly increased during the optimization process. The maximal number

of conjugate gradient iterations required for the solution of these subproblems was10 which is still

very reasonable.

The approximated instantaneous volatility functionσ̄opt constructed by the given model and

using all the136 market European call option data is displayed in Figure 5.17. This picture shows

thatσ̄opt exhibits a smooth behavior without any spikes. For sufficiently small and large strike prices

K, the numerically determined values ofσ̄opt remain essentially unchanged over time. Regarding

the spatial domain, this is the region where no market European DAX call options are located. We

have already examined in the previous subsection that volatility values in these peripheral regions

have little or no influence on an option value evaluated at a point that is located more in the interior

of the domain[0.1S , 2S]× [0 , 5].

0
0.5

1
1.5

2
2.5

3

0

2000

4000

6000

8000

10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MATURITY T

 THE VOLATILITY FUNCTION σopt FORMED BY THE INEX. GN−METHOD

STRIKE PRICE K

V
O

LA
T

IL
IT

Y
 σ

op
t (K

,T
)

FIGURE 5.18: The approximated instantaneous volatility functionσ̄ of

the German stock index DAX using all 129 data

Furthermore, we have determined the approximated instantaneous volatility functionσ̄ using

all of the above explained market European DAX call options with a maturity less than three years,

i.e. in this second computation we did not consider European DAX call options having a maturity of

four and five years. Now, the data set consists of129 market European DAX call options. For the

numerical solution of the parabolic initial–boundary–value problem (5.4.6), we have used the same
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finite difference grid than in the previous example and have cut if off at maturityT = 3 years, i.e.

the number of discretization points for the spatial domain and the time domain are given byN = 50
andM = 33, respectively.

In this case, the Inexact Gauss–Newton Method 2.2.3 applied to the nonlinear least–squares

problem (5.4.62) required40 iterations to yield a objective function value12‖R(σ̄opt)‖2 of order

10−6 and a value of the norm‖J(σ̄opt)TR(σ̄opt)‖ of the gradient of order10−5, i.e. the same

magnitudes than in the first computation using all of the136 market European call option data. The

maximum absolute error between the model and the market European call values is again2.0 · 10−3

which, this time, took place for options with maturities of three years. Thus, it seems that for the

proposed method it is more difficult to identify the values of options with the longest maturity in

the data set. Moreover, we again made the observation that at the beginning of the optimization

process the number of iterations of the Modified Preconditioned Conjugate Gradient Method 2.2.2

required less iterations than at its end. However, compared to the dimension of the range space of

the residual function of129 the maximum number of8 conjugate gradient iterations for the solution

of the Gauss–Newton subproblems (5.4.70) is again reasonable.
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FIGURE 5.19: Deviation of the instantaneous volatility functionσ̄

given in Figures 5.17 and 5.18 for maturities up to 3 years

Finally, we compare the instantaneous volatility functionsσ̄ constructed with the complete

data set consisting of136 option values and with the reduced data set containing129 option data,

respectively. In Figure 5.19, we display the deviation of these two approximated instantaneous

volatility functions given in Figures 5.17 and 5.18 for all values ofσ̂j with maturitiesTj ≤ 3 years.

This picture makes clear that the two approximated instantaneous volatility functionsσ̄ almost

coincide for large strike prices independent of the maturity. For short maturities, the deviation

increases only slightly with decreasing strike priceK. However, for larger maturities, the deviation

of these two instantaneous volatility functionsσ̄ gets larger for small strike prices. Thus, the



5.6 Numerical Results 157

largest deviations occur for volatility values with strike prices smaller than the current value of the

underlying and a maturity of three years. This observation corresponds to the above given

speculation that the given model has more difficulties identifying option values with longer

maturities.
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Chapter 6

Conclusions

In this work, we were concerned with the identification of parameters for large scale

underdetermined systems arising in finance. We have shown that these problems can be described

by underdetermined nonlinear least–squares problems.

For this class of problems, it is likely that the residual functionR at the solution is fairly

small. It is well known that in this case the Gauss–Newton method exhibits a good asymptotic

convergence behavior so that we have decided to choose this method for the solution of the nonlinear

least–squares problems. To obtain global convergence of this algorithm, we applied a trust–region

strategy to the Gauss–Newton method so that in each iteration of the Gauss–Newton algorithm a

restricted linear least–squares problem has to be solved. Compared to line search methods, the

trust–region strategy has the advantage that this method additionally enforces a regularization of

the subproblems. This is especially in case of underdetermined residual functions useful since the

solution of the linearized least–squares problems cannot be expected to be unique. Hestenes and

Stiefel [56] presented, already in their original paper on conjugate gradients, a special version of

the conjugate gradient method for linear least–squares problems. We applied this version of the

conjugate gradient method to the solution of the linear Gauss–Newton subproblems. Furthermore,

we included two additional stopping criteria presented by Toint [105] and Steihaug [98] into the

preconditioned conjugate gradient method to take into account the restriction introduced by the

trust–region strategy and the non–positive curvature of the Jacobian, since we cannot expect them

to have a full column rank. In each iteration of the preconditioned conjugate gradient method,

an evaluation of the matrix–vector products of the Jacobian of the residual function as well as its

transpose times a vector has to be carried out. We have shown that for both applications in this work,

we were able to make subroutines available that efficiently compute these matrix–vector products

without saving the Jacobian explicitly. Thus, for the solution of the underdetermined nonlinear

least–squares problems, we used a fully iterative inexact Gauss–Newton method.

Although the local convergence behavior of the Gauss–Newton method is already examined

extensively, so far it did not exist anyq–convergence results for underdetermined residual functions.

In this work, we have shown that in general theq–linear convergence rate of the inexact Gauss–

Newton sequence is obtained on the orthogonal complement of the null space of the Jacobian, i.e.

on a linear subspace. In the case of zero residual problems, i.e. the residual function is zero at

159
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the solution, this convergence rate is evenq–quadratically. Furthermore, for a special sequence of

the Gauss–Newton method that can however only be chosen theoretically, we obtained theq–linear

convergence onIRm for overdetermined as well as underdetermined residual functions. Moreover,

we have seen that in case of overdetermined nonlinear least–squares problems, the presented results

specialize to known results [50]. Note, that all the convergence results derived in this work are

invariant under unitary transformations.

Subsequently, we have applied the inexact Gauss–Newton method to the solution of nonlinear

least–squares problems arising from the estimation of parameters in neural networks and in the

valuation of European call options.

In a neural network, the unknown parameters consist in the weights matrices between the dif-

ferent layers and the bias of the different neurons in the neural network. We have shown that the

determination of these unknown weights and biases in the neural network, i.e. the training of the neu-

ral network, is described by a nonlinear least–squares problem. When neural networks are applied

to problems in finance, usually the number of training patterns available to train the network is much

smaller than would be needed to specify the associated dynamical system such that the number of

unknown weights and bias is often much larger than the number of training pattern. Thus, for neural

networks applied in forecasting, the nonlinear least–squares problem describing the training process

of the neural network is underdetermined. An application of the proposed inexact Gauss–Newton

method has led to a significant reduction of the computation time compared to the traditional method

for the training process, the backpropagation algorithm. Moreover, the low number of required con-

jugate gradient iterations in the optimization process suggests a careful selection of the conjugate

gradient iterates. Thus, the efficiency of the inexact Gauss–Newton method enables the treatment

also of very large size networks with about 500,000 unknown weights and biases.

Furthermore, we have examined the ability of neural networks of forecasting the

German stock index DAX. For an efficient forecast of a stock or index price, it is

necessary to examine the linear and nonlinear dependencies of a large number of variables as well

as their interactions. The advantage of the application of neural networks in forecasting is that the

underlying function form which generates the data does not need to be known in advance; the neu-

ral network rather tries to find this function during the learning process. However, we have seen

that complete freedom in the choice of the model is also not given if neural networks are used. A

crucial part in the design of the neural network is the choice of the data set as well as the choice of

the number of layers and the number of neurons in any of the layers in the neural network which

proves to be an extensive trial–and–error process. To attack the problem of overfitting (the problem

of fitting the noise in addition to the signal) and to achieve the ability of generalization of the neural

network, we have introduced the Stopped–Training method. The proposed examples have shown

that the rate of right trends and the performance of a trading strategy increases if the network is

not only fed with DAX prices but also with other information which could have an influence on

the development of the DAX price. Moreover, we showed that there exist networks whose trading

strategy beats the benchmark quite clearly. However, we also noticed that the performance of this

network was worse for other periods. Therefore, we introduced the backtesting which achieved

good results too; however, they were also not generally obtained. These results elucidate the
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difficulties in finding an optimal neural network for the given task. Finally, we determined the sensi-

tivities of the optimal output of the neural network with regard to small variations of the various com-

ponents of the input vector such that we could at least derive some

information about the influence of each of the input data on the output of the neural network.

In the last chapter, we were concerned with the valuation of European call options. Assum-

ing that the underlying asset of the European call option follows a continuous one–factor diffusion

model, we presented a method of approximating the instantaneous volatility functionσ(K,T ) using

a finite set of market European call prices. The model European call option prices were computed

numerically by applying a finite difference method to the parabolic differential equation describing

the price process of the European call option. The examination of the convergence of the finite differ-

ence scheme has shown that difficulties in the examination of the consistency of the finite difference

scheme occur when the initial condition is not sufficiently smooth. Moreover, we have shown that

the order of convergence of the solution of the finite difference scheme to the solution of the corre-

sponding parabolic differential equation depends on the order of accuracy of a sufficiently smooth

approximation of the nonsmooth initial condition of the initial–boundary–value problem describing

the price process of the European call options.

The unknown instantaneous volatility values at the grid points in the finite difference

mesh are determined by solving an underdetermined nonlinear least–squares problem.

We have solved these underdetermined nonlinear least–squares problems using the proposed

inexact Gauss–Newton method. To take account for the smoothness of the volatility

parameter, the restrictions in the linear least squares problems are scaled with a modified

discrete differentiation operator. For an illustration of the capability of the proposed method, we con-

sidered two European call option examples. In the first example, we considered

synthetic European call options for which the underlying follows a known 1–factor diffusion model.

The market European call data were simulated by evaluating a set of European call options using a

finite difference scheme applied to the parabolic differential equation containing the “exact” instan-

taneous volatility function. A comparison of the reconstructed instantaneous volatility function to

the “exact” instantaneous volatility function indicates a fairly accurate construction of the volatility

function in the region within which the market European call options are located. In the second

example, European DAX index call options with market data of February 2002 are considered. The

resulting constructed instantaneous volatility function exhibits a smooth behavior.

Our first computations for the determination of the instantaneous volatility function were car-

ried out in Matlab. They show a promising behavior of the proposed method. However, to take

advantage of the complete efficiency of the proposed inexact Gauss–Newton method, it is necessary

to code the program in a program language like C or C++.
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Appendix A

The Parabolic Initial–Boundary–Value
Problem

A.1 Existence and Uniqueness of the Solution

Friedman showed in [37] the existence of the initial boundary value problemLc = cT with initial

condition (5.2.13) and boundary condition (5.4.5), using the method of continuity, i.e. by examining

the family of parabolic operators

Lλ c = λ (Lc− cT ) + (1− λ) (cxx− cT ) , 0 ≤ λ ≤ 1 ,

and showing that if the problem can be solved for allλ < σ (0 < σ ≤ 1) then it also can be solved

for λ ≤ σ, and that if the problem can be solved for allλ ≤ σ (0 ≤ σ < 1) then it can also be solved

for all λ ≤ σ + ε for someε > 0 and since, finally, the problem can be shown to be solvable for

cxx − cT = 0, the same is true forLc− cT = 0. Then, the uniqueness of the solution to the initial

boundary value problems follows from the weak maximum principle, see [37, Chap. 2, Theorem 7].

Moreover, let c1(x, T ) and c2(x, T ) satisfy the initial–boundary value problem

Lc = cT with boundary conditions (5.4.5) and initial conditionsc1(x, 0) = ϕ1(x) and

c2(x, 0) = ϕ2(x), respectively, withϕ1(x) andϕ2(x) are continuous functions. Then, the difference

c3(x, T ) = c1(x, T ) − c2(x, T ) is the solution to the parabolic differential equationLc = cT with

homogenous boundary conditions and initial conditionc3(x, 0) = ϕ1(x)−ϕ2(x) and is continuous

in [xmin , xmax]× [0 , T̄ ]. Supposinĝσ2 : [xmin , xmax]× [0 , T̄ ] → IR+ andr , d : [0 , T̄ ] → IR+ are

continuous functions witĥσ2(x, T ) satisfying

λ0 ≤ σ̂2(x, T ) ≤ λ1 for all (x, T ) ∈ [xmin , xmax]× [0, T̄ ] ,

then the weak maximum principle holds stating that the maximum ofc3(x, T ) in

[xmin , xmax]× [0 , T̄ ] is attained on the boundary

[xmin , xmax]× {0} ∪ {xmin} × (0 , T̄ ] ∪ {xmax} × (0 , T̄ ] ,
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see for instance Friedman [37, Chap. 2, Theorem 6]. Thus,

|c1(x, T )− c2(x, T )| = |c3(x, T )|

≤ max
[xmin ,xmax]×[0 ,T̄ ]

|c3(x, T )|

≤ max
[xmin ,xmax]×{0}

{xmin ,xmax}×(0 ,T̄ ]

|c3(x, T )|

= max
[xmin ,xmax]

|c3(x, 0)|

= max
[xmin ,xmax]

|ϕ1(x)− ϕ2(x)| .

Theorem A.1.1 Let σ̂2(x, T ) be a continuous function in[xmin , xmax] × [0 , T̄ ], r(T ) and d(T )
continuous functions in[0 , T̄ ] and letσ̂2(x, T ) satisfy

λ0 ≤ σ̂2(x, T ) ≤ λ1 for all (x, T ) ∈ [xmin , xmax]× [0, T̄ ] .

Then, there exists at most one solution to the parabolic initial–boundary value problem

Lc = cT with initial condition (5.2.13) and boundary condition(5.4.5). Moreover, the

solution c(x, T ) depends continuously on the initial data, i.e. ifc1(x, T ) and c2(x, T ) are solu-

tions to the parabolic initial–boundary value problemLc = cT with boundary conditions(5.4.5)

and initial conditionsc1(x, 0) = ϕ1(x) andc2(x, 0) = ϕ2(x), respectively, withϕ1(x) andϕ2(x)
are continuous functions, then

|c1(x, T )− c2(x, T )| ≤ max
x∈[xmin ,xmax]

|ϕ1(x)− ϕ2(x)| .

Hence, according to the definition of well–posedness by Hadarmard (see for instance Louis

[70]), the initial–boundary value problemLc = cT with initial condition (5.2.13) and boundary

condition (5.4.5) is a well–posed problem.

Moreover, we cite the existence result by Ladyženskaja, Solonnikov, and Ural’ceva

[66, IV, Theorem 5.2] showing that the smoothness of the solutionc(x, T ) to the parabolic

differential equation (5.2.12) depends on the smoothness of the initial condition

accompanying the differential equation, i.e. the order of differentiability of the solutionc(x, T ) of

the parabolic differential equation (5.2.12) increases with the order of differentiability of its initial

condition.

For this, we first introduce the corresponding functional spaces which are used in this result.

LetH l([xmin , xmax]), l is a nonintegral positive number, be the Banach space whose elements are

continuous functionsϕ(x) in (xmin , xmax) having in[xmin , xmax] continuous derivatives up to order

[l] inclusively and a finite value for the quantity (Ω = (xmin , xmax))

|ϕ|(l)Ω = 〈ϕ〉(l)Ω +
[l]∑

j=0

〈ϕ〉(j)Ω
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where
〈ϕ〉(0)

Ω = |ϕ|(l)Ω = max
Ω

|ϕ| ,

〈ϕ〉(j)Ω =
∑
(j)

|Dj
xϕ|

(0)
Ω , 〈ϕ〉(l)Ω =

∑
([l])

〈D[l]
x ϕ〉

(l−[l])
Ω ,

sup x,x′∈Ω
|x−x′|≤ρ0

|ϕ(x)−ϕ(x′)|
|x−x′|α , 0 < α < 1 .

and let H l,l/2([xmin , xmax] × [0 , T̄ ] be the Banach space of functionsc(x, T ) that are

continuous in[xmin , xmax]× [0 , T̄ ], together with all derivatives of the formDr
T D

s
x for 2r+ s < l,

and have a finite norm (QT̄ = (xmin , xmax)× (0 , T̄ ))

|c|(l)QT̄
= 〈c〉(l)QT̄

+
[l]∑

j=0

〈c〉(j)QT̄

where
〈c〉(0)

QT̄
= |c|(l)QT̄

= max
QT̄

|c| ,

〈c〉(j)QT̄
=

∑
(2r+s=j)

|Dr
T D

s
xc|

(0)
QT̄

,

〈c〉(l)QT̄
= 〈c〉(l)x,QT̄

+ 〈c〉(l/2)
T,QT̄

,

〈c〉(l)x,QT̄
=

∑
(2r+s=[l])

〈Dr
T D

s
xc〉

(l−[l])
x,QT̄

,

〈c〉(l/2)
T,QT̄

=
∑

0<l−2r−s<2

〈Dr
T D

s
xc〉

((l−2r−s)/2)
T,QT̄

,

〈c〉(α)

x,Q̄T̄
= sup

(x,T ),(x′,T )∈QT̄
|x−x′|≤ρ0

|c(x,T )−c(x′,T )|
|x−x′|α , 0 < α < 1 ,

〈c〉(α)

T,Q̄T̄
= sup

(x,T ),(x,T ′)∈QT̄
|T−T ′|≤ρ0

|c(x,T )−c(x,T ′)|
|T−T ′|α , 0 < α < 1 .

Then, the result on the unique solvability of the initial–boundary–value problem given by La-

dyženskaja, Solonnikov, and Ural’ceva [66, IV, Theorem 5.2] is

Theorem A.1.2 Suppose l > 0 is a nonintegral number and the coefficients of the

operator L belong to the classH l,l/2([xmin , xmax] × [0 , T̄ ]. Then, for any function

ϕ(x) ∈ H l+2([xmin , xmax]) describing the initial condition the initial–boundary value problem

has a unique solution from the classH l+2,l/2+1([xmin , xmax]× [0 , T̄ ]. It satisfies the inequality

|c|(l+2)
QT̄

≤ k1

(
|ϕ|(l+2)

Ω + |c(xmin, T )|(l+2)

xmin×[0 ,T̄ ]

)
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Appendix B

Consistency of the Finite Difference
Scheme

B.1 Proof of Theorem 5.4.10

In this section, we present the proof of Theorem 5.4.10 in Section 5.4 showing that the finite differ-

ence scheme (5.4.28) – (5.4.31) applied to the slightly perturbed initial–boundary–value problem is

consistent of order(2, 1).

Theorem B.1.1 Let the initial conditionϕ(x) of (5.4.43)satisfyϕ ∈ H4+ε([xmin , xmax]), with ε >

0 arbitrary small. Then, the finite difference scheme(5.4.28)– (5.4.31)is consistent to the perturbed

initial–boundary–value problem(5.4.43)of order(2, 1) with respect to‖ · ‖2,∆x for 0 ≤ θ ≤ 1.

Moreover, ifϕ ∈ H6+ε([xmin , xmax]), ε > 0 arbitrary small, and the coefficientsb(T ), σ̂(x, T ) and

d(T ) in the parabolic differential equation(5.2.12)are not dependent onT , i. e.

b(T ) = b̄ , σ̂(x, T ) = σ̄(x) , d(T ) = d̄

then the finite difference scheme(5.4.28)– (5.4.31)is consistent to the perturbed initial–boundary

value problem (5.4.43) of order (2, 2) with respect to ‖ · ‖2,∆x for θ = 1
2 , i.e. in

this case the Crank–Nicolson method is consistent of order(2, 2) with respect to‖ · ‖2,∆x.

Proof: Let c(x, T ) be the solution to the perturbed parabolic initial–boundary–value

problem (5.4.43). According to the result by Ladyženskaja, Solonnikov, and Ural’ceva

[66, Chap. IV, Theorem 5.2] the solutionc(x, T ) belongs toH4+ε,(4+ε)/2([xmin , xmax] × [0 , T̄ ])
since ϕ(x) ∈ H4+ε([xmin , xmax]) (see Appendix A for the definition of the spaces

H4+ε,(4+ε)/2([xmin , xmax]×[0 , T̄ ]) andH4+ε([xmin , xmax]) and the solvability result for the parabolic

initial–boundary value problem presented by Ladyženskaja, Solonnikov, and

Ural’ceva in [66]). Thus, all derivatives ofc(x, T ) of the form(∂/∂T )r(∂/∂x)s, i.e. therth deriva-

tive with respect toT and thesth derivative with respect tox, for 2r + s < 4 + ε exist and are

continuous.
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In accordance to Definition 5.4.9, we have to verify that

εi,j+1 = 1
∆T (ci,j+1 − ci,j)− L̃i,j ((1− θ) ci,j + θ ci,j+1) → 0 (B.1.1)

and that

‖εj+1‖2,∆x = O((∆x)2) + O(∆T ) . (B.1.2)

Using Taylor’s theorem, we see that the forward difference quotient with respect to the time variable

T satisfies

(c(x,T+∆T )−c(x,T ))
∆T = cT (x, T ) +O(∆T ) (B.1.3)

since the partial derivatives ofc(x, T ) with respect toT on [xmin , xmax] × [0 , T̄ ] exist up to the

order2. Similarly, we get for the central difference quotient and the symmetric central difference

quotient that

(c(x+∆x,T )−c(x−∆x,T ))
2∆x = cx(x, T ) +O((∆x)2) (B.1.4)

and

(c(x+∆x,T )−2c(x,T )+c(x−∆x,T ))
(∆x)2

= cxx(x, T ) +O((∆x)2) . (B.1.5)

because of the existence and continuity of∂4

∂x4 c(x, T ) on [xmin , xmax] × [0 , T̄ ]. Furthermore, the

central difference quotient and the symmetric central difference quotient in the time layerT + ∆T
can be written as

(c(x+∆x,T+∆T )−c(x−∆x,T+∆T ))
2∆x = cx(x, T ) +O((∆T ) +O((∆x)2)

(c(x+∆x,T+∆T )−2c(x,T+∆T )+c(x−∆x,T+∆T ))
(∆x)2

= cxx(x, T ) +O(∆T ) +O((∆x)2)

(B.1.6)

under the given smoothness characteristics ofc(x, T ).

Now, plugging (B.1.3) – (B.1.6) into (B.1.1) and using the fact thatc(x, T ) is a

solution to the parabolic differential equation (5.2.12) yields fori = N− + 1 , . . . , N+ − 1 and
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j = 0 , . . . ,M − 1

εi,j+1

= 1
∆T (ci,j+1 − ci,j)− L̃i,j ((1− θ) ci,j + θ ci,j+1)

= 1
∆T (ci,j+1 − ci,j)−

[
1
2 σ̂

2
i,j

(
(1− θ) ci+1,j−2 ci,j+ci−1,j

(∆x)2
+ θ

ci+1,j+1−2 ci,j+1+ci−1,j+1

(∆x)2

)
−
(
bj + 1

2 σ̂
2
i,j

)(
(1− θ) ci+1,j−ci−1,j

2 ∆x + θ
ci+1,j−ci−1,j

2 ∆x

)
− dj ((1− θ) ci,j + θ ci,j+1)]

= cT (i∆x , j∆T )− 1
2 σ̂(i∆x , j∆T )2 ((1− θ) cxx(i∆x , j∆T ) + θ cxx(i∆x , j∆T ))

+
(
b(j∆T ) + 1

2 σ̂(i∆x , j∆T )2
)

((1− θ) cx(i∆x , j∆T ) + θ cx(i∆x , j∆T ))

+ d(j∆T ) ((1− θ) c(i∆x , j∆T ) + θ c(i∆x , j∆T ))

+ O(∆T ) +O((∆x)2)

= O(∆T ) +O((∆x)2) .

Since the perturbed initial–boundary–value problem (5.4.43) contains Dirichlet boundary condi-

tions, we do not have to consider the boundary conditions separately since we have used the exact

values forc(N−∆x , j∆T ) and c(N+ ∆x , j∆T ), j = 0 , . . . ,M − 1, given by the functions

describing the boundary conditions. Moreover, note that forj = 0 the condition

Lc(x, 0) = cT (x, 0)

is obtained by a sufficient smoothness of the coefficients appearing in the elliptic operatorL and

the smoothness of the solutionc(x, T ) on [xmin , xmax] × [0 , T̄ ]. For a detailed examination of the

regularity we refer to Friedman [37, Chap. 10] or Wloka [108].

Furthermore, the discreteL2–norm of the vector containing the truncation errors in thej + 1st

time layer fulfils

‖εj+1‖22,∆x = ∆x
N+−1∑

i=N−+1

ε2i,j+1

= ∆x
N+−1∑

i=N−+1

(
O(∆T ) +O((∆x)2)

)2
= (xmax − xmin)

(
O(∆T ) +O((∆x)2)

)2
such that

‖εj+1‖2,∆x = O(∆T ) +O((∆x)2) .

Thus, if c(x, T ) ∈ H4+ε,(4+ε)/2([xmin , xmax] × [0 , T̄ ]) the weighted finite difference scheme

(5.4.28) is consistent of order(2, 1) for 0 ≤ θ ≤ 1.
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In the following, we assume thatϕ(x) ∈ H6+ε([xmin , xmax]). Then,

c(x, T ) ∈ H6+ε,(6+ε)/2([xmin , xmax] × [0 , T̄ ]) and all derivatives ofc(x, T ) of the form

(∂/∂T )r(∂/∂x)s for 2r + s < 6 + ε exist and are continuous (see Appendix A). In this case,

the Taylor expansion of the forward difference quotient with respect to the timeT and the central

difference quotient and the symmetric central difference quotient in the time layerT + ∆T with

respect to the space variable can contain further terms such that (B.1.3) and (B.1.6) become

(c(x,T+∆T )−c(x,T ))
∆T = cT (x, T ) + ∆T

2 cTT (x, T ) +O((∆T )2) , (B.1.7)

and
(c(x+∆x,T+∆T )−c(x−∆x,T+∆T ))

2∆x

= cx(x, T + ∆T ) +O((∆x)2)

= cx(x, T ) + ∆T cxT (x, T ) +O((∆T )2) +O((∆x)3) ,

(c(x+∆x,T+∆T )−2c(x,T+∆T )+c(x−∆x,T+∆T ))
(∆x)2

= cxx(x, T + ∆T ) +O((∆x)2)

= cxx(x, T ) + ∆T cxxT (x, T ) +O((∆T )2) +O((∆x)2) .

(B.1.8)

Using (B.1.4), (B.1.5), (B.1.7), and (B.1.8) then the local discretization error is given by

εi,j+1 = ∆T
(

1
2cTT (i∆x , j∆T )− 1

2 σ̂(i∆x , j∆T )2 θ cxxT (i∆x , j∆T )

+
(
b(j∆T ) + 1

2 σ̂(i∆x , j∆T )2
)
θ cxT (i∆x , j∆T )

+ d(j∆T ) θ cT (i∆x , j∆T )) +O((∆T )2) +O((∆x)2) .

If the coefficientsb(T ) , σ̂(x, T ) andd(T ) are not dependent onT , i. e.

b(T ) = b̄ , σ̂(x, T ) = σ̄(x) , d(T ) = d̄

thenεi,j+1 becomes forθ = 1
2

εi,j+1 = ∆T
2

(
cTT (i∆x , j∆T ) + (b̄+ 1

2 σ̄
2(i∆x))cxT (i∆x , j∆T ) + d̄ cT (i∆x , j∆T )

− 1
2 σ̄

2(i∆x) cxxT (i∆x , j∆T )
)

+O((∆T )2) +O((∆x)2) .

However, in this caseεi,j+1 = O((∆T )2) + O((∆x)2) sincec(x, T ) is a solution to the parabolic

differential equation (5.2.12), i. e.

cT (i∆x , j∆T ) + (b̄+ 1
2 σ̄

2(xi))cx(i∆x , j∆T ) + d̄ c(i∆x , j∆T )

− 1
2 σ̄

2(xi) cxx(i∆x , j∆T ) = 0

and therefore, the derivative with respect toT of the left hand side of the previous equation satisfies

cTT (i∆x , j∆T ) + (b̄+ 1
2 σ̄

2(xi))cxT (i∆x , j∆T ) + d̄ cT (i∆x , j∆T )

− 1
2 σ̄

2(xi) cxxT (i∆x , j∆T ) = 0
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such that all the terms containing∆T in the equation forεi,j+1 cancel out for alli andj. Thus, the

Crank–Nicolson method is even consistent of order(2, 2) with respect to‖ · ‖2,∆x if the coefficients

b , σ̂ andd in the parabolic differential equation (5.2.12) are independent of the timeT . This con-

cludes the proof of Theorem 5.4.10. �
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[8] Å. Björck, T. Elfving, and Z. Strakŏs. Stability of conjugate gradient and Lanczos methods

for linear least squares problems.SIAM J. Matrix Anal. Appl., 19(3):720–736, 1998.

[9] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities.Journal of

Political Economy, 81:637–654, 1973.

[10] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nicht-

linearer Differentialgleichungen. Dissertation, Rheinische Friedrich–Wilhelms–Universität,

Bonn, 1985.

[11] P. T. Boggs. The Convergence of the Ben-Israel Iteration for Nonlinear Least Squares Prob-

lems.Mathematics of Computation, 30(135):512–522, 1976.

[12] J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin. Some Convergence Estimates

for Semidiscrete Galerkin Type Approximations for Parabolic Equations.SIAM Journal on

Numerical Analysis, 14(2):218–241, 1977.

173



174 Bibliography

[13] D. T. Breeden and R. H. Litzenberger. Prices of State–contingent Claims Implicit in Option

Prices.Journal of Business, 51(4):621–651, 1978.

[14] K. Brockhoff. Prognosen. In F. X Bea et al., editors,Allgemeine Betriebswirtschaftslehre,

volume 2: Führung, pages 551–590. Gustav Fischer Verlag, Stuttgart, 5th edition, 1991.

[15] K. M. Brown and J. E. Dennis. Derivative Free Analogues of the Levenberg–Marquardt and

Gauss Algorithms for Nonlinear Least Squares Approximation.Numerische Mathematik,

18:289–297, 1972.

[16] Buchner.Grundzüge der Finanzanalyse. Vahlen, München, 1981.

[17] T. F. Coleman and A. Verma. Reconstructing the Unknown Local Volatility Function.The

Journal of Computational Finance, 2(3), 1999.

[18] A. R. Conn, N. I. M. Gould, and P. L. Toint.Trust–Region Methods. SIAM, MPS, Philadel-

phia, PA, 2000.

[19] H. Corsten and C. May. Anwendungsfelder Neuronaler Netze und ihre Umsetzung. In

H. Corsten and C. May, editors,Neuronale Netze in der Betriebswirtschaft, pages 1–13.

Gabler Verlag, Wiesbaden, 1996.

[20] D. R. Cox and H. D. Miller.The Theory of Stochastic Processes. Chapman and Hall, London,

1965.

[21] J. E. Dennis. Some Computational Techniques for the Nonlinear Least Squares Problem. In

G. D. Byrne and C. A. Hall, editors,Numerical Solution of Systems of Nonlinear Algebraic

Equations, pages 157–183. Academic Press, New York, 1973.

[22] J. E. Dennis. Non–linear Least Squares and Equations. In D. A. H. Jacobs, editor,The State

of the Art in Numerical Analysis, pages 269–311. Academic Press, New York, 1977.

[23] J. E. Dennis. Algorithms for Nonlinear Fitting. In M. J. D. Powell, editor,Nonlinear Opti-

mization 1981, pages 67–78. Academic Press, New York, 1982.

[24] J. E. Dennis. A User’s Guide to Nonlinear Optimization Algorithms.Proceedings of the

IEEE, 72(12):1765–1776, 1984.

[25] J. E. Dennis and R. B. Schnabel.Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[26] J. E. Dennis and T. Steihaug. On the Successive Projections Approach to Least–Squares

Problems.SIAM Journal on Numerical Analysis, 23(4):717–733, 1986.

[27] E. Derman and I. Kani. Riding on a Smile.RISK, 7(2):32–39, 1994.

[28] E. Derman, I. Kani, and N. Chriss. Implied Trinomial Trees of the Volatility Smile.The

Journal of Derivatives, 3(4):7–22, 1996.



Bibliography 175

[29] P. Deuflhard and V. Apostolescu. A Study of the Gauss–Newton Algorithm for the Solution of

Nonlinear Least Squares Problems. In D. Frehse, J., Pallaschke and U. Trottenberg, editors,

Special Topics of Applied Mathematics, pages 129–150. North-Holland Publishing Company,

1980.

[30] P. Deuflhard and G. Heindl. Affine Invariant Convergence Theorems for Newton’s Method

and Extensions to Related Methods.SIAM Journal on Numerical Analysis, 16(1):1–10, 1979.

[31] P. DuChateau and D. Zachmann.Applied Partial Differential Equations. Harper & Row, New

York, NY, 1989.

[32] B. Dupire. Pricing with a Smile.RISK, 7(1):18–20, 1994.

[33] B. Dupire. Pricing and Hedging with Smiles. In M. A. H. Dempster and S. R. Pliska, editors,

Mathematics of Derivative Securities, pages 103–111. Cambridge University Press, Cam-

bridge, 1997.

[34] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conju-

gate gradient method.SIAM Journal on Numerical Analysis, 21(2):352–362, 1984.

[35] V. Faber and T. Manteuffel. Orthogonal error methods.SIAM Journal on Numerical Analysis,

24:170–187, 1987.

[36] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative Solution of Linear Systems.Acta

Numerica, pages 57–100, 1992.

[37] A. Friedman.Partial Differential Equations of Parabolic Type. Prentice–Hall, Inc., Engle-

wood Cliffs, New Jersey, 1964.

[38] D. M. Gay. Computing optimal locally constrained steps.SIAM Journal on Scientific and

Statistical Computing, 2(2):186–197, 1981.

[39] N. A. Gershenfeld and A. S. Weigend. The Future of Time Series: Learning and Understand-

ing. In N. A. Gershenfeld and A. S. Weigend, editors,Times Series Prediction: Forecasting

the Future and Understanding the Past, pages 1–70. Addison–Wesley, 1993.

[40] P. E. Gill, W. Murray, and M. H. Wright.Practical Optimization. Academic Press, London,

New York, Toronto, Sydney, San Francisco, 1981.

[41] S. M. Goldfeld, R. E. Quandt, and H. F. Trotter. Maximization by Quadratic Hill–Climbing.

Econometrica, 34(3):541–551, 1966.

[42] G. H. Golub and W. Kahan. Calculation the singular values and pseudoinverse of a matrix.

SIAM Journal on Numerical Analysis, 2:205–224, 1965.

[43] G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press,

Baltimore, Maryland, second edition, 1989.



176 Bibliography

[44] C. W. J. Granger. Forecasting in Economics. In N. A. Gershenfeld and A. S. Weigend, editors,

Times Series Prediction: Forecasting the Future and Understanding the Past, pages 529–538.

Addison–Wesley, 1993.

[45] A. Greenbaum.Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA, 1997.

[46] A. Griewank. Tutorial on Computational Differentiation and Optimization. Technical Report,

University of Michigan, 1994.

[47] L. Grippo. A Class of Unconstrained Minimization Methods for Neural Network Training.

Optimization Methods and Software, 4:135–150, 1994.

[48] Ch. Großmann and H.-G. Roos.Numerik partieller Differentialgleichungen. B. G. Teubner,

Stuttgart, 1992.

[49] B. Gustafsson, H.-O. Kreiss, and J. Oliger.Time Dependent Problems and Difference Meth-

ods. John Wiley & Sons, Inc, New York, New York, 1995.

[50] W.M. Häußler. A Local Convergence Analysis for the Gauss–Newton and Levenberg–

Morrison–Marquardt Algorithms.Computing, 31:231–244, 1983.

[51] S. S. Haykin.Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle

River, NJ, 1999.

[52] M. Heinkenschloß.Gauss–Newton Methods for Infinite Dimensional Least Squares Problems

with Norm Constraints. Dissertation, Universität Trier, Trier, 1991.

[53] H. Henschel.Wirtschaftsprognosen. Vahlen, München, 1979.

[54] M. R. Hestenes. Pseudoinverses and conjugate gradients.Communications of the ACM,

18(1):40–43, 1975.

[55] M. R. Hestenes.Conjugate Direction Methods in Optimization. Springer–Verlag, New York,

1980.

[56] M. R. Hestenes and E. Stiefel. Methods of conjugate gradient for solving linear systems.

Journal of Research of the National Bureau of Standards, 49:409–436, 1952.

[57] M. Huang and V. Thomée. Some Convergence Estimates for Semidiscrete Type Schemes

for Time–Dependent Nonselfadjoint Parabolic Equations.Mathematics of Computation,

37(156):327–346, 1981.

[58] J. C. Hull.Options, Futures, and Other Derivative Securities. Prentice–Hall, Inc., Englewood

Cliffs, 1993.

[59] J. C. Hull and A. White. The Pricing of Options on Assets with Stochastic Volatilities.

Journal of Finance, 42(2):281–300, 1987.



Bibliography 177

[60] A. Irle. Finanzmathematik: Die Bewertung von Derivaten. B. G. Teubner, Stuttgart, 1998.

[61] Seizô Itô.Diffusion Equations. American Mathematical Society, 1992.

[62] L. W. Johnson and R. D. Riess.Numerical Analysis. Addison–Wesley, Reading, MA, second

edition, 1982.

[63] I. Karatzas and S. E. Shreve.Brownian Motion and Stochastic Calculus. Springer, New York,

NY, 1991.

[64] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,

1995.

[65] K. P. Kratzer. Neuronale Netze: Grundlagen und Anwendungen. Carl Hanser Verlag,

München, Wien, 1993.

[66] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva.Linear and Quasilinear Equa-

tioins of Parabolic Type. American Mathematical Society, Providence, Rhode Island, 1968.

[67] R. Lagnado and S. Osher. Reconciling Differences.RISK, 10(4):79–83, 1997.

[68] J. Y. Lequarré. Foreign Currency Dealing: A Brief Introduction. In N. A. Gershenfeld and

A. S. Weigend, editors,Times Series Prediction: Forecasting the Future and Understanding

the Past, pages 131–137. Addison–Wesley, 1993.

[69] K. Levenberg. A Method for the Solution of Certain Non–linear Problems in Least Squares.

Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[70] A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, Germany, 1989.

[71] O. L. Mangasarian and M. V. Solodov. Serial and Parallel Backpropagation Convergence

via Nonmonotone Perturbed Minimization.Optimization Methods and Software, 4:103–116,

1994.

[72] D. W. Marquardt. An Algorithm for Least–Squares Estimation of Nonlinear Parameters.

SIAM Journal Applied Mathematics, 11(2):431–441, 1966.

[73] R. C. Merton. Theory of Rational Option Pricing.The Bell Journal of Economics and Man-

agement Science, 4(1):141–183, 1973.

[74] R. C. Merton. Option Pricing when Underlying Stock Returns are Discontinuous.Journal of

Financial Economics, 3:124–144, 1976.

[75] J. J. Moré. The Levenberg–Marquardt Algorithm: Implementation and Theory. In G. A.

Watson, editor,Numerical Analysis, Proceedings of the Biennial Conference held at Dundee,

June 28 - July 1, 1977, pages 105–116. Springer–Verlag, Berlin, 1978.



178 Bibliography

[76] J. J. Moré. Recent Developments in Algorithms and Software for Trust Region Methods. In

A. Bachem, M. Grötschel, and B. Korte, editors,Mathematical Programming. The State of

the Art, Bonn 1982, pages 258–287. Springer–Verlag, Berlin, 1983.

[77] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix

iterations.SIAM Journal on Matrix Analysis and Applications, 13(3):778–795, 1992.

[78] R. Neuneier and H. G. Zimmermann. How to Train Neural Networks. In G. B. Orr and K.-

R. Müller, editors,Neural Networks: Tricks of the Trade, pages 373–423. Springer–Verlag,

Berlin, Heidelberg, 1998.

[79] J. Nocedal and S. J. Wright.Numerical Optimization. Springer, New York, 1999.

[80] C. C. Paige and M. A. Saunders. LSQR: An Algorithm for Sparse Linear Equations and

Sparse Least Squares.ACM Transactions on Mathematical Software, 8(1):43–71, 1982.

[81] E. E. Peters.Chaos and Order in the Capital Markets. John Wiley & Sons, Inc., New York,

1996.

[82] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor,Numerical

Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon and Breach, London,

1970.

[83] M. J. D. Powell. A new algorithm for unconstrained optimization. In O. L. Mangasarian,

K. Ritter, and J. B. Rosen, editors,Nonlinear Programming, pages 31–65. Academic Press,

London, 1970.

[84] M. J. D. Powell. Convergence Properties of a Class of Minimization Algorithms. In O. L.

Mangasarian, R. R. Meyer, and S. M. Robinson, editors,Nonlinear Programming 2, pages

1–27. Academic Press, London, 1975.

[85] H. Ramsin and P.-Å Wedin. A Comparison of some Algorithms for the Nonlinear Least

Squares Problem.BIT, 17:72–90, 1977.

[86] A.-P. Refenes, editor.Neural Networks in the Capital Markets, Chichester, 1995. John Wiley

& Sons, Inc.

[87] H. Rehkugler and T. Poddig. Künstliche Neuronale Netze in der Finanzmarktanalyse: Eine

neue Ära der Kursprognosen. In H. Corsten and C. May, editors,Neuronale Netze in der

Betriebswirtschaft, pages 17–35. Gabler Verlag, Wiesbaden, 1996.

[88] M. Rubinstein. Implied Binomial Trees.The Journal of Finance, 69(3):771–818, 1994.

[89] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by

Error Propagation. In D. E. Rumelhart and J. L. McClelland, editors,Parallel Distributed

Processing, volume 1, pages 318–362. MIT Press, Cambridge, 1986.



Bibliography 179

[90] S. Saarinen, R. B. Bramley, and G. Cybenko. Neural Networks, Backpropagation, and Au-

tomatic Differentiation. In A. Griewank and G. F. Corliss, editors,Automatic Differentiation

of Algorithms: Theory, Implementation, and Application, pages 31–42. SIAM, Philadelphia,

1992.

[91] E. W. Sachs and M. Schulze. Convergence of Gauss–Newton Methods for Underdetermined

Systems Arising in Neural Networks.Preprint, Universität Trier, Germany, 1999.

[92] K. Sandmann.Einführung in die Stochastik der Finanzmärkte. Springer, Berlin, 2nd edition,

2001.

[93] R. Schaback. Convergence Analysis of the General Gauss–Newton Algorithm.Numerische

Mathematik, 46:281–309, 1985.

[94] H. R. Schwarz.Numerische Mathematik. B. G. Teubner, Stuttgart, 1993.

[95] G. A. F. Seber and C. J. Wild.Nonlinear Regression. John Wiley & Sons, New York, 1989.

[96] G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Meth-

ods. Oxford University Press, New York, 1985.

[97] D. C. Sorensen. Newton’s method with a model trust region modification.SIAM Journal on

Numerical Analysis, 19(2):409–426, 1982.

[98] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization.

SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[99] J. Stoer.Numerische Mathematik 1. Springer, Berlin, Heidelberg, 1994.

[100] R. Stöttner. Finanzanalyse: Grundlagen der markttechnischen Analyse. Oldenbourg,

München/Wien, 1989.

[101] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods.

Springer, New York, 1995.

[102] S. W. Thomas.Sequential Estimation Techniques for Quasi–Newton Algorithms. Ph.D. dis-

sertation, Res. Rep. TR 75-227, Dept. Computer Science, Cornell University, Ithaca, NY,

1975.

[103] V. Thomée. Finite Difference Methods for Linear Parabolic Equations. In P. G. Ciarlet

and J. L. Lions, editors,Handbook of Numerical Aanalysis, volume I, pages 5–196. North–

Holland, Amsterdam, 1990.

[104] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin,

1997.



180 Bibliography

[105] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In

I. S. Duff, editor,Sparse Matrices and their Uses, pages 57–88. Academic Press, London,

1981.

[106] P.-Å. Wedin. Perturbation Theory for Pseudo–Inverses.BIT, 13:217–232, 1973.

[107] P. Wilmott, J. Dewynne, and S. Howison.Option Pricing: Mathematical Models and Com-

putation. Oxford Financial Press, Oxford, 1996.

[108] J. Wloka.Partielle Differentialgleichungen. B. G. Teubner, Stuttgart, 1982.

[109] H. G. Zimmermann. Neuronale Netze als Entscheidungskalkül. In H. Rehkugler and

H. G. Zimmermann, editors,Neuronale Netze in der Ökonomie: Grundlagen und fi-

nanzwirtschaftliche Anwendungen, pages 1–87. Vahlen, München, 1994.



Curriculum Vitae

M ICHAELA SCHULZE

GEBOREN AM 16. NOVEMBER 1969

IN GÖTTINGEN, GERMANY

08/1976 – 07/1980 Wilhelm–Busch–Grundschule, Ebergötzen

08/1980 – 07/1982 Orientierungsstufe Nord, Göttingen

08/1982 – 05/1989 Abitur, Theodor–Heuss–Gymnasium, Göttingen

09/1989 – 06/1991 Ausbildung zur Bankkauffrau, BHW Bausparkasse,

Hameln

06/1991 – 09/1992 Kreditsachbearbeiterin, BHW Bausparkasse, Hameln

10/1992 – 04/1998 Diplom–Wirtschaftsmathematikerin,
Studium der Wirtschaftsmathematik an der

Universität Trier mit dem mathematischen Schwerpunkt

Numerik und der betriebswirtschaftlichen Spezialisie-

rung in Geld, Kredit, Währung, Finanzwirtschaft

05/1998 – 08/2002 Wissenschaftliche Mitarbeiterinim Fachbereich IV –

Mathematik der Universität Trier am Lehrstuhl von

Prof. Dr. E. W. Sachs

07/2000 – 12/2000 Associate Researcheran der Virginia Polytechnical

Institute and State University, Blacksburg, Virginia,

USA

08/2002 Promotion zum Dr. rer. nat.an der Universität Trier




