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Chapter 1

Introduction

In this thesis, we study the convergence behavior of an efficient optimization method used for the
identification of parameters for underdetermined systems.

The research in this thesis is motivated by optimization problems arising from the estimation of
parameters in finance. In the following, we are especially concerned with the valuation of European
call options as well as neural networks used to forecasting stock market indices.

Assuming that an asset price satisfies the stochastic differential equation

dS = pu(S,t)Sdt + o (S, t)SdAW;

with p, 0 : IRT x [0, T] — IR are the drift and volatility term, respectively, abid is a Brownian
motion, then the value of a European call opt@(k, T") in dependence on the strike priéeand
the maturityl” satisfies the parabolic differential equation

Cr — 30(K, T)’K*Crr + (r(T) — d(T))KCk + d(T)C =0
subject to the initial condition
C(U(.v )a K7 0) = HlaX(S - K7 0) )

see Andersen and Brotherton—Ratcliffe [1] and Dupire [32]. The valuation of the European call
option according to this model requires information about the volatility paraméf€r’) which

is not explicitly observable in the market. For small maturitiésand strike priceds that are
close to the current asset price, usually, the volatiity<, 7') is computed implicitly from market
European call options. However, for the valuation of European call options with long maturities
or that are far out or in the money, this procedure does not work. In accordance with the
dependence of the European call price on the volatility paramé¢f€r7"), we will slightly change

the notation for this call value t6'(co (-, -); K, T"). For the numerical solution of the problem, we
discretize the parabolic differential equation, i.e. the infinite dimensional functions are replaced by
finite dimensional approximations. In the following, letand z(5) be the finite dimensional
approximations of the volatility parameter and the call value, respectively. Then, we will estimate
the finite dimensional version of the unknown volatiliyby using market European call prices,
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2 1 Introduction

i.e. & will be adapted such that the model European call prices approximate the corresponding
counterparts in the market.

Moreover, we will examine an application of neural networks to forecasting stock market
indices. The nonlinear input—output map of a neural network can be described by a function
y'(w;t) = s wheret is the input,s is the output generated by the neural network ani the
vector of weights and threshold values which are responsible for the adjustment of the neural
network to a particular problem. The identification of this parameter vegtaerhich is also called
the training of the neural network, is carried out through a set of appropriate examples representing
the particular application.

Hence, both models can be described by a funajignt) = s wheres represents the output
of the particular model which in each case depends nonlinearly, amknown parameters
r = (z1,...,7,)7 € IR" and the input data. The unknown parameter vecter will be
determined by using some given observations(tifs;), i = 1, ...,p, are the observed input—
output patterns and

ri(x) =y(x,t;) —s, i=1,...,p,

is the discrepancy between the model evaluated at the parameterwvectdthe observations then
the identification of the parameters in each of these models can be posed as the nonlinear least—
squares problem

Minimize 3 ||R(z)|3

whereR : R" — IR™ is defined byR(z) = (r1(z),...,rp(x))T and|| - |2 is the Euclidean norm.

In neural networks, the dimensiondepends on the number of neurons in each layer of the
network and on the number of layers. In general, this number tends to grow very quickly when
adding additional neurons, e.g. in the input layer. In the case that neural networks are used to
forecasting stock market indices, the amount of input data is very large since the behavior of stock
market indices is usually influenced by a variety of factors. Hence, many different time series can
be used to provide input data for the neural network suchvili@comes very large in this case. The
dimensionm of the range space d? depends on the number of neurons in the output layer of the
neural network and the number of training patteiiss;), i = 1, ...,p. When sufficient data are
available, in particular in cases like time series, then this dimension also increases quickly, however,
not as fast ag gets large. Hence, in this case usually> m such that the nonlinear least—squares
problem is underdetermined.

This relationship also holds for the nonlinear least—squares problem resulting from the
determination of the discretized volatility functiahin the European call price model. In this
thesis, we examine a model for the valuation of European call options where the volatility
parameters (K, T) of the underlying asset is a real valued function defined on the rectangular
domain R* x [0,7T]. Hence, the dimensiom of the discrete versiorr of the volatility
parameter depends on the discretization size of the grid approxim@&ing [0, 7] such that in
this problemn tends to grow very quickly, too. The dimensionof the range space of the residual
function R depends on the number of market European call prices with the same underlying.
However, option prices are only quoted on an exchange for exercise prices at discrete intervals [107]



and which are close to the current value of the underlying, i.e. at—-the—market options. Furthermore,
on an exchange options are only traded for a small number of maturities. Therefore, the dimension
m usually is much smaller than the dimensionf the parameter space, i?e>> m.

In Chapter 2, we are concerned with the solution of underdetermined nonlinear least—squares
problems. For this class of problems, it is likely that their residual veBfar) at the solution is
fairly small. In this case, the Gauss—Newton method is a promising optimization method for the
solution of nonlinear least—squares problems [15], [25]. The Gauss—Newton method approximates
in each step the nonlinear residual vediir) by an affine modeh(dx) = R(x) + J(x) dz such
that in each iteration the linear least—squares problem

Minimize 3 [|J(z)dz + R(z)||3,
or, equivalently, the linear system of equations
J(x) ' J(x) 6z = —J(x)T R(x)

has to be solved wher&(x) € IR™*" is the Jacobian of the residual vec®(z). As mentioned
above, we are concerned with problems where the dimension of the weetdR" is large.

Unfortunately,J/(x) is not only large but also dense, so that it is impossible to store the matrix
J(x) or evenJ(z)"J(x). Hence, we are not able to use direct methods for the solution of linear
systems in this case. However, in both models, we can evaluate the Jacobian applied to a vector
at a reasonable cost, i.€(x) 6v or J(x)"sv is available, see for instance Sachs, Schulze [91] for
the evaluation of the Jacobian resulting form the neural network model. The structure of these
routines will be close to the ideas of automatic differentiation where the evaluation of the matrix—
vector product/ () év respective/ (z)T dv is much cheaper than the computation/éf) itself, see
for instance Griewank [46], Saarinen, Bramley and Cybenko [90]. Therefore, we are able to use an
iterative scheme to solve the linear least—squares subproblem in every iteration of the Gauss—Newton
method [7].

An overview of iterative methods for the solution of linear systems is given in [36] and for
the solution especially of linear least—squares problems can be found in [7] and the references cited
therein. The coefficient matri¥ (x)”J(z) in the normal equation is symmetric. Thus, we will
use a method which exploits this structure like the conjugate gradient method, which is due to
Hestenes and Stiefel [56]. This method, that belongs to the Krylov subspace methods, computes
in each step an optimal approximation of the solution to the normal equation in the nested set of
Krylov subspaces. For the computation of these iterates, it is necessary to evaluate the matrix—
vector products/(x) §v and J(z)?dv and to perform some additionah + 2m multiplications.

The storage requirements are held constant over the process. Faber and Manteuffel showed that,
except for a few anomalies, there do not exist Krylov subspace methods for more general linear
systems that fulfil this optimality condition by keeping the work and storage requirements in each
of the iteration low and roughly constant at the same time [34], [35]. For example, in the GMRES
method, a Krylov subspace method for nonsymmetric linear systems, it is necessary to store an
orthogonal basis of the particular Krylov spaces which, in our case, can lead to storage problems
since the vector: of the unknowns is very large. Moreover, the vectors in the basis can become



4 1 Introduction

nonorthogonal, especially whef(z) is ill-conditioned or many iterations are needed [64] which
may lead to inaccurate approximate solutions.

In this thesis, we will use the special version of the conjugate gradient method for the solution of
linear least—squares systems which is already presented in the original paper on conjugate gradients
by Hestenes and Stiefel [56]. In [80], this algorithm is denoted CGLS and in [36] it is called CGNR.

It is also possible to apply the version of the conjugate gradient method for general symmetric
positive definite systems to the normal equations which would result in an explicit formation of
the matrix—vector product (z)?J(z) dv. However, the formation of the matrix—vector product
J(x)T J(x) §v can lead to poor performance especially when the condition nuribér)) of J ()

is large [8], i.e. when the system is ill-conditioned, since a small perturbatigifaii’ J(z), e.g.

by roundoff, may change the solution much more than perturbations of similar size:jrtself

[7]. Furthermore, Bjorck shows in [7, Section 1.4] that in the case of a small residual at the solution
of the linear least—squares problem the condition number for the linear least—squares problem will
be smaller than the one for the normal equations, i.e. methods for the linear least—-squares problem
usually will be more reliable than normal equations methods [18].

Moreover, note that the version of the conjugate gradient method for the solution of the linear
least—squares problem is equivalent to the LSQR method due to Paige and Saunders [80], a stable
method [8] based on the bidiagonalization procedure of Golub and Kahan [42].

An additional difficulty with the underdetermined linear least—squares problem is the fact that
its solution cannot be expected to be unique. However, if the initial approximation of the solution in
the conjugate gradient method is chosen properly, then the conjugate gradient method computes the
unique solution to the linear least—squares problem with minimal norm [54], [55], i.e. in this case
the iterates of the conjugate gradient method converge o= —J(z)* R(z) with J(z)" is the
Moore—Penrose inverse or pseudoinverse/0f). This is the solution of the Gauss—Newton
subproblems which is desirable in the problems resulting from the formulation of the training
process in neural networks and the determination of the volatility funetionthe European call
price model.

In neural networks, the decision about sending a signal from one neuron to another depends on
the evaluation of a sigmoidal function [109], e.g. the logistic functign) = 1/(1 + e~2") which
we will use in the model described in Chapter 4 of this thesis. For large argumenis, isdarge,
this function is almost constant. Hence, the residual function for the training of the neural network, a
composition of this activation function, does not change much if large weights are present such that
those are inefficient for the training of the neural network. Thus, in neural networks the solution to
the linear least—squares problem with minimal norm is desirable, since a small norm of the variable
means that each of the components of the variable, i.e. the weights in this case, are small, too.

In the European call price model, the volatility functief¥<, T") is supposed to be a sufficiently
smooth function. This smooth behavior of the volatility function is modelled in the discrete problem
formulation by restricting the size of the stép of the discrete version of the volatility functian
according to a weighted norm, i@z || 5 = \/(67, D 65) with (-, -) is the Euclidean inner product.

The weight matrixD will be a slight modification of the discrete version of the differentiation
operator (note that we cannot use the exact discrete version of the differentiation opeatause



D has a nontrivial null space). Therefore, we want to generate a sequence of conjugate gradient
iterates which converge to a minim&—norm solution. Since the matri® is symmetric positive
definite, the square rodd'/2 exists and

165]% = (5, D d5) = (D'/*55, D'/?s5) = ||D'/*55|3.
Hence, a transformation of the variables= D'/25 leads to the Gauss—Newton subproblems
Minimize 1 [|(.J(5) D™"/2) 3y + R(a)I13

These transformed problems have the same structure than those when a preconditioner is introduced
into the conjugate gradient method. Thus, in the Gauss—Newton algorithm for the solution of the
nonlinear least-squares problem resulting from the determination of the discrete volatility function

o we will solve the linear least—squares subproblems with the preconditioned version of the
conjugate gradient method. The weight matfi¥/2 will take the role of the preconditioner.
However, note, thatD'/2 is not a preconditioner in the original sense which is introduced to
accelerate the convergence of the algorithm but is established because of the given facts of the
underlying problem. Furthermor®?/2 will be constant for the complete iteration process such that

a factorization ofD'/2 has to be computed only once at the beginning of the algorithm.

As we will see in the convergence analysis of the algorithm, the sequence of iterates generated
by the pure Gauss—Newton method will converge to a solution only when the initial iterate of the
algorithm is already a sufficiently “good” approximation of the solution. A larger convergence
region can be achieved by introducing a globalization technigue such as a line search technique or a
trust-region strategy.

For the solution of the training problem in neural networks, a line search technique is used
in the Backpropagation algorithm; the traditional method for the training of neural networks that
uses steepest descent information. This means that the convergence of this method to a stationary
point, starting at an arbitrary starting point, is showed by introducing a certain step Pefigih
[47] which, in the neural network context, is called the learning rate. Using a line search technique
in the Gauss—Newton method has the disadvantage that in case of a rank deficient Jacobian these
techniques always must include some estimation strategy for the rank of the Jacobian to compute a
reliable Gauss—Newton direction.

Hence, in this thesis we use a trust region strategy to implement a globalization strategy since
this strategy enforces a regularization of the Gauss—Newton subproblems when the Gauss—Newton
direction has bad descent properties. Thus, in every iteration of the Gauss—Newton method we solve
the restricted linear least—squares problems

Minimize 3 [|J(z)dz+ R(z)|3, st |éozl|p <A,

see for instance HeinkenschloR3 [52]. Using the trust region strategy has the advantage that it can
be combined with the conjugate gradient solver [105], [98], i.e. the conjugate gradient method can
be used for the solution of the trust-region subproblems in each iteration of the Gauss—Newton
method. The resulting algorithm is closely related to the Levenberg—Marquardt method [69], [72].



6 1 Introduction

The global solution of the Gauss—Newton—Trust—Region subproblems is also the solution of the
Levenberg—Marquardt subproblems for a spegial The difficulty in the Levenberg—Marquardt
method consists just in the choice of this paramatdvioré presented in [75] an implementation of

the Levenberg—Marquardt method in a trust—region framework. The advantage of the trust-region
method in comparison with the Levenberg—Marquardt method is the self adapting procedure for the
size of the trust-region and, thus, for the size of the steps.

The requirements on the presented method are determined by the characteristics of the two
model problems; however, the results in the following two chapters in this thesis will be in a fairly
general setting to make the method applicable to a wide class of large scale underdetermined non-
linear least—squares problems. An important aspect for the efficient implementation of the proposed
algorithm in the case of large scale problems is the performance of the matrix—vector products
J(x)dv andJ(x)T sv. Later on, we will show how to make the training of neural networks and the
determination of the volatility function amenable to large scale optimization methods by exploiting
the particular problem structure inherited from each of the models and by providing subroutines for
an efficient evaluation of (x)dv and.J (z)7 6v.

As mentioned above, the global convergence of the presented algorithm follows from the
introduction of the trust—region strategy. The global convergence theory of the latter to a stationary
point is well established, see for example [82], [83], [84], [102], [76], [18]. A significant aspect in
the proof of the global convergence of trust-region methods is a sufficient model decrease in each
step of the algorithm. Steihaug shows in [98] that the iterates generated by the modified conjugate
gradient method satisfy this sufficient model decrease condition. At the beginning of Chapter 3,
we will outline the main ideas of the proof of the global convergence of the algorithm presented in
Chapter 2.

Usually, nonlinear least—squares problems are examined for overdetermined problems, i.e.
problems where the dimension of the range space of the residual vRci®rlarger than the
dimension of the parameter vecter Thus, there are many papers on the convergence behavior
of Gauss—Newton methods applied to this class of problems; see for instance Deuflhard and Heindl
[30], Deuflhard and Apostolescu [29], Dennis and Schnabel [25], Schaback [93], and for the
inexact Gauss—Newton method, Dennis and Steihaug [26]. However, the area of underdetermined
least—squares problems has been studied less actively. Boggs shows in [11] the local convergence
of the Ben-Israel iteration combined with a step size control to a solution in the general case, i.e.
for overdetermined as well as for underdetermined problems. Furthermore, Bock [10] proves the
r—linear convergence of the exact Gauss—Newton method using the minimal norm solution of the
linear least—squares problems.

In Chapter 3, we analyze the local convergence properties of the inexact Gauss—Newton method
for a more general class of residual vect&sSince in general the Jacobidifz) has a nontrivial
null space, the convergence rate of the iterates has to be considered in the orthogonal subspace of
the null space o/ (z). When in each Gauss—Newton iteration an arbitrary solution of the Gauss—
Newton subproblem is chosen for the correction of the Gauss—Newton iterate, then we show that
this sequence converges g-linearly to a solution on the orthogonal complement of the null space
of J(x). This result holds also when the solution is computed inexactly. If the residual function



R is zero at the solution, then this sequence converges even g—quadratically to a solution on the
above mentioned subspace. Thus, these results also hold for the sequence generated by the above
described inexact Gauss—Newton method that computes a truncated minimal norm solution to the
linear Gauss—Newton subproblems in each iteration. Furthermore, we show that in the special case
of a overdetermined residual functidhwith a full rank Jacobian these results reduce to the known
results in the literature. Finally, for a particular sequence of Gauss—Newton iterates which is
generated with a specific solution of the Gauss—Newton subproblems the g—linear convergence of the
iterates to a local solution of the nonlinear least—squares problem can be shown without restriction to
a specific subspace. However, this sequence can only chosen theoretically since information about
a minimizer of the nonlinear least—squares problem are necessary to construct this Gauss—Newton
sequence.

In the following chapters, we apply the proposed inexact Gauss—Newton method to two
underdetermined nonlinear least—squares problems arising in finance.

In the first application, we are concerned with neural networks applied in forecasting economic
data such as stock or stock index values. The question about the future development of the stock
market is equally interesting for experts as well as theorists. Because of the special economical
importance of the knowledge of the future market development, it is not surprising that a variety of
theories with corresponding analysis instruments were developed [87].

The stock market is characterized by its highly complex structure whose co—operation of the
variables is neither theoretically uniquely explainable nor empirically exactly describable [5].
Moreover, there exists a large variety of variables in the stock market which are not all obvious
and which change over time. Furthermore, there is evidence that also the interactions of these
variables change and that they are nonlinear [81]. Since neural networks are qualified to
simultaneously model a variety of influencing factors and their nonlinear interactions, they offer
a promising mathematical instrument in forecasting. The advantage of the application of neural
networks in forecasting is that the underlying function form which generates the data does not need
to be known in advance. The neural network rather tries to find this function during the learning
process [65].

However, we will see that complete freedom in the choice of the model is also not given if
neural networks are used. An important part in the determination of a first idea of the model plays
the choice of the data since the data set should be sufficiently large and representative concerning the
task of stock or index price forecasting so that the structure of the formation of prices can be marked.
Thus, the experts opinion regarding the explanation of the formation of prices and the valuation
approach for the calculation of prices will play an important role in the choice of the data. The two
main existing model classes in this context are the fundamental analysis and the technical analysis
[16]. The advantage of neural networks is that they can be assigned either to the technical or the
fundamental approach by feeding exclusively either technical oriented or fundamental oriented input
data into the neural network or they combine these two approaches by simultaneously analyzing
both variables which are assigned to the technical analysis and variables which are assigned to the
fundamental analysis in solely one computation.
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As mentioned above, the training process of the neural network, i.e. the determination of the
unknown weights and bias in the neural network, can be described by an underdetermined nonlinear
least—squares problem such that the proposed inexact Gauss—Newton method seems to be a
promising algorithms for its solution. If the training process is carried out until the error of the
outputs of the neural network and the target outputs in the training patterns is minimized, then the
neural network strives to perfectly map the presented data. However, the extracted structure can not
be used for a generalization since time series not only contain deterministic behavior but also a
certain portion of noise that should not be modelled by the network. To avoid this overfitting
behavior, we stop the inexact Gauss—Newton method by using the Stopped—Training method, a
method that determines the time during the learning process when the ability of generalization of
the network decreases.

A comparison of the training results of the proposed inexact Gauss—Newton method and the
backpropagation algorithm will show the efficiency of the former method. We will see that using the
inexact Gauss—Newton method for the solution of the nonlinear least—squares problem decreases the
computation time of the training process extremely. Moreover, the inexact Gauss—Newton method
enables the treatment of very large neural networks, even with half a million variables. This opens a
new area of application for neural networks. In addition, we give numerical results to illustrate the
relevance of the local convergence theorems. In particular, one can see that the projection of iterates
is needed to analyze the rate of convergence properly.

Furthermore, we examine the quality of the forecasts generated by the neural network. This will
be done by comparing the output computed by the network with the target output and by computing
the rate of right trends and the trading profit of a given trading strategy for the neural network.
We obtain some very promising results for applying neural networks to forecasting stock and index
values. However, these results also elucidate the time—consuming process of finding an optimal
network.

One disadvantage mentioned in connection with neural networks is that the knowledge found
during the training process is difficult to extract since it is distributed among the different weights
and biases of the neural network. We will show that it is possible to determine the sensitivities of
the optimal output of the neural network with regard to small variations of the various components
of the input vector. At the end of this chapter, we will compute these sensitivities for different neural
networks.

Finally, in the last chapter of this thesis, we are concerned with the valuation of European call
options. A well known model in this context is the Black—Scholes model [9] which assumes that the
underlying asset follows an one—factor diffusion process with constant drift and volatility parameters
and that the known risk—free interest rate and the dividend yield are constant, too. Using arbitrage—
free pricing techniques, it follows that in this case the European call price function is described by a
parabolic initial-value problem with constant coefficients. Moreover, since the parabolic differential
equation can be transformed to the one—dimensional heat—equation, there exists also an explicit
representation of the value of the European call option in the Black—Scholes model, the so—called
Black—Scholes formula. The only not directly in the market observable parameter in this formula
is the volatility which can be either estimated empirically from historical data or numerically by



inverting the Black—Scholes formula to compute the volatility implied by an option price observed

in the market. Despite the widespread use of the Black—Scholes model in financial practice, it is
generally realized that the assumptions of the model are not all conforming to reality. The existence
of term structures in interest rates and dividends, for instance, indicates that these two parameters
are at least functions dependent on time. Furthermore, Rubinstein [88] empirically showed that the
Black—Scholes formula became increasingly unreliable over time and that the implied volatility of
market European call options varies for options with different strike prices. Moreover, Dupire [32]
exhibited a variation of the volatility also with respect to the maturity. The existence of this so—
called volatility smile or volatility skew indicates that the price process of the underlying asset does
not correspond to an one—factor diffusion process with constant drift and volatility parameter [1].

In financial practice, these deficiencies are overcome by managing tables of values for the
interest rate, the dividend yield and the volatility parameter belonging to different option
maturities and strike prices. Unfortunately, this approach works only for European call options
with short maturities and strike prices that are close to the current value of the underlying.
However, financial institutions also have an interest in volatility values that belong to options with
long maturities or strike prices that are not close to the current asset value since they might deal with
individual inquiries or because they might want to hedge older positions in their portfolio that were
held speculative so far. Moreover, this approach does not work for pricing of more complicated
options such as exotic options or options with early exercise features [1].

There exists a variety of approaches trying to be consistent with the volatility smile. Some of
these approaches, see for instance Merton [74], Hull and White [59], include an additional source
of risk which destroys the completeness of the model. However, Derman and Kani [27], Dupire
[32] and Rubinstein [88] have independently shown that an one—factor diffusion model for the asset
value in which the drift and the volatility term are deterministic functions dependent on the asset
value and the time is sufficiently rich to be consistent to most reasonable volatility smiles [67]. The
advantage of this model is that it maintains the completeness. Moreover, Dupire [32] has shown that
this volatility function can be extracted from market European call options when they are available
for all conceivable strike prices and maturities.

Since this one—factor diffusion model maintains completeness, arbitrage—free pricing
techniques can be used to show that the European call price furctiof, -); S, t) satisfies the
following deterministic parabolic initial-value problem with nonconstant coefficients and with one
of the coefficients consisting of the deterministic volatility function:

Cr + 50%(S,1)S2Css + (r(t) —d(t)) SCs = r()C, (S,t) € R x (0,7
C(o(+,+); S, T) = max(S — K,0), SeR".

In the following we will call this model the extended Black—Scholes model because of its similarity

to the original Black—Scholes model. Moreover, Dupire [32] and Andersen and Brotherton-Ratcliffe
[1] have derived an additional model for European call options also consisting of a deterministic
parabolic initial-value problem by using the Feynman—Kac Theorem and the Kolmogorov forward
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equation:
Cr — 0*(K,T)K2Cgx + (n(T)—d(T)) KCx = —d(T)C,
(K,T) € IR" x (0,T]
C(o(-); K,0) = max(S — K,0), K € R*.

This model can be thought as being dual to the first one since the variables in this model are given by
the strike price and the maturity” and the price of the underlyingjand the current timeare hold

fixed. Thus, we will call this second European call price model the dual extended Black—Scholes
model. The coefficients in this second model are again nonconstant with one coefficient containing
the volatility functiono (K, T") depending on the strike prid€ and the maturityl” which will be
designated as the instantaneous volatility function.

The second model contains the volatility values that correspond to European call options with
strike priceK and maturityl’, i.e. the volatility values that are necessary to evaluate European call
options that are not traded in the market. Moreover, this second model has the advantage that a single
evaluation of the model establishes the values of European call options for all conceivable strike
prices and maturities for a fixed price of the underlyfgnd the current timé Thus, in this thesis
we will use the second model to determine the instantaneous volatility funetin?’) necessary
for a valuation of European call prices that is consistent with the market prices. This means that we
will adapt the instantaneous volatility function in the dual extended Black—Scholes equation such
that the model European call option values approximate their counterpart in the market. Thus, the
mathematical formulation of the construction of the instantaneous volatility function represents an
inverse problem with a system equation given by the dual extended Black—Scholes equation. These
problems are naturally ill-posed.

The existence and uniqueness of a solution to the dual extended Black—Scholes equation is
ensured by results given by Friedman [37] when the coefficients of the parabolic differential equation
are sufficiently smooth (i.e. satisfy certain Holder conditions). For the numerical solution of this
initial-value problem, we are using a finite difference scheme. Since the numerical computations
can only be carried out on a finite domain, we have to introduce boundary conditions such that the
given initial-value problem is transformed into an initial-boundary value problem. The existence of
a unique solution to this latter problem follows again from results given by Friedman [37].

The convergence of the solution of the finite difference scheme to the solution of the initial—
boundary—value problem is derived by using the concepts of consistency and stability of the finite
difference scheme. A main tool in proving the consistency of finite difference schemes is Taylor’s
expansion which requires a certain smoothness of the solution to the initial-boundary—value
problem. However, for the given problem, this cannot be ensured since the initial condition in
the initial-boundary—value problem is continuous but not differentiable everywhere. LadyZenskaja,
Solonnikov, and Ural’ceva have shown in [66, IV, Theorem 5.2] that the smoothness of the solution
to the parabolic initial-boundary—value problem depends on the smoothness of its initial condition.
However, since the initial condition is evaluated at discrete points in the finite difference scheme, it
is also possible that these discrete points present an approximation of a function possessing more
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smoothness features such as a certain order of differentiability. Hence, we will examine the
consistency of the finite difference scheme with respect to a slightly perturbed initial-boundary—
value problem that coincides with the original initial-boundary—value problem except for the initial
condition which is exchanged with a sufficiently smooth approximation of the original initial
condition. The maximum principle then ensures that the difference between the solution of these
two initial-boundary—value problems is bounded by the maximal difference between the original
initial condition and its approximation. The examination of the consistency of the slightly perturbed
initial-boundary—value problem corresponds to the well-known ideas of consistency examinations
for finite difference schemes applied to parabolic differential equations. The stability of the finite
difference scheme is ensured under certain assumptions on the discrete coefficients of the parabolic
differential equation and on the discretization sizes of the spatial and the time variable which also
correspond to the known stability conditions for finite difference schemes for parabolic differential
equations. Using these two results, we will show that the order of convergence of the solution of
the finite difference scheme to the solution of the corresponding parabolic initial-boundary—value
problem depends on the order of accuracy of a sufficiently smooth approximation of the nonsmooth
initial condition of the original initial-boundary value problem. Moreover, we elucidate that similar
problems occur also in the convergence analysis when finite element methods are applied to the
solution of the initial-boundary—value problem.

Using a finite difference scheme for numerically solving the parabolic initial-boundary—value
problem, the functional form of the volatility parameter in the inverse problem can be replaced
by a finite dimensional approximatiancontaining the values of the volatility function at the grid
points of the finite difference mesh. Thus, the infinite dimensional inverse problem is replaced
by a finite dimensional nonlinear least—squares problem. Because of the statements given above,
this nonlinear least—squares problem is underdetermined such that the ill-posedness of the infinite
dimensional inverse problem is carried over to its finite dimensional counterpart. For the solution
of this problem, we again apply the inexact Gauss—Newton algorithm. A regularization of the ill—
posedness of the problem is achieved because of the use of a trust-region strategy in the inexact
Gauss—Newton algorithm. Using the Euclidean norm in the definition of the trust—region prevents
the updates of the Gauss—Newton iterates from becoming too large. In the context of constructing
the instantaneous volatility function, however, one wishes to determine the volatility function so that
the dual extended Black—Scholes model approximates the values of the market European call options
and which shows the most smooth behavior. Thus, in this case the trust—region is defined using a
scaled norm with the scaling matrix given by a modified version of the discretized differentiation
operator.

At the end of this chapter, we present some computational experience with the inexact Gauss—
Newton method applied to the nonlinear least—squares problem describing the construction of the
instantaneous volatility function. In the first example, we demonstrate the behavior of the algorithm
by constructing the instantaneous volatility function for several synthetic European call options.
In this example, we suppose that the instantaneous volatility function is known. Then, the market
European call data are simulated by evaluating a set of European call options using a finite difference
scheme applied to the parabolic differential equation containing the exact instantaneous volatility
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function. A comparison of the constructed with the exact instantaneous volatility function shows that

the instantaneous volatility function is accurately approximated in regions where market European
call option data are located. Finally, we examine a more realistic example by using values of market
European DAX call options to approximate the instantaneous volatility function of the German stock

index DAX.



Chapter 2

An lterative Inexact Gauss—Newton
Method

In this chapter, we are concerned with the solution of the large dimensional unconstrained nonlinear
least—squares problem

Minimize ¢(z) =1 |R(2)|3, =€ R"

whereR : IR" — IR™ andn is very large. In Section 2.1, we briefly introduce this class of problems

and discuss their special structure. We are especially interested in underdetermined systems, where
the number of variables is larger than the dimension of the range space,.en. In this case,

it is not surprising that?(x) at the solution is fairly small. Therefore, we use a Gauss—Newton
method for the solution of the nonlinear least—squares problem, which is described in Section 2.2.
In Subsection 2.2.1, we introduce the basic ideas of the Gauss—Newton Method. In Chapter 3, we
will show that the pure Gauss—Newton method converges only locally. To enlarge the region of
convergence, we combine the Gauss—Newton method with a trust—region strategy. In Section 2.2.2,
we describe the basic ideas of trust-region methods. In every step of the Gauss—Newton method
combined with a trust—region strategy, a constrained linear least—squares problem

Minimize ¢ (6z) = 3 ||J(z) 6z + R(z)||3 subjectto |dz|p <A

has to be solved whergz) € IR™*" is the Jacobian of the residual vecfz). The Jacobiad ()

in the applications of Chapters 4 and 5 are not only large but also dense. Since subroutines for the
evaluation of the matrix—vector product$x) v and.J(x)” éu are available for both applications,

we use an iterative scheme for the solution of these constrained linear least—squares problems. In
Subsection 2.2.3, we describe the modified [98] (truncated [18]) conjugate gradient method for the
solution of the trust-region subproblems which was derived by Toint [105] and Steihaug [98]. At
the end, we list the complete algorithm which we use for the solution of the nonlinear least-squares
problems. This is a fully iterative algorithm which takes into account the dimension and the structure
of the problems examined in Chapters 4 and 5 as well as their ill-posedness.

13
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2.1 The Nonlinear Least—Squares Problem

Nonlinear least—squares problems are a special class of minimization problems where the objective
function¢ has the special form

o(2) = HIR@IE =13 Ri(x) (2.1.1)

=1

with R : IR™ — IR™ is defined by
R(z) = (Ri(z),Ry(x),..., Rp(z))". (2.1.2)

The component function®;, « = 1,...,m, are nonlinear real valued functions fral®R" to IR,
and we assume thak;(x), ¢ = 1,...,m, are sufficiently smooth. We refer to each of tRe
i=1,...,m, as aresidual and t8 as the residual vector.

The nonlinear least—squares problem often arises in the context of data—fitting applications
where one tries to fit a set of observation data with a model approximating the examined system. In
these applications, usually, some a priori information is available to describe the examined system
by a parameterized model. The unknown parameters of the model are then chosen such that the
model matches as close as possible the output of the system at various observation paints. Let
be the output of the system at the observation pgint= 1, ..., m. Furthermore, suppose that the
parameterized model of this system is described by the real funetiory) which is nonlinear in
the unknown parametess= (x1,x2,. .., 2,) € IR™ and whereg, corresponds to the input variables
of the system. If we define thi¢h residualR; as the difference between thl outputout; of the
examined system and the output of the model evaluated &ttbbservation poing;, i = 1,...,m,

Ri(x) = out; — 2(x, ;)

then fitting the model to the data means to find a parameter vesiach that the residual vectéris
minimized in an appropriate norm. Adapting the parameter vacsoich that the sum of the squares
of the residuals?;(z), i = 1,...,m, is minimized, i.e. the Euclidean norm &fis minimized, is
equivalent to solving a nonlinear least—squares problem. It is possible to use also a different norm
for the measurement of the size of the residual veBtdrdowever, the choice of the Euclidean norm
is verified by statistical arguments when the errors are independently normally distributed. In this
case, the minimization of the Euclidean norm of the residual vegtsr equivalent to minimizing
the variance [4], [95].

Generally, we could use any algorithm for unconstrained minimization problems for the
solution of the nonlinear least—squares problem

Minimize ¢(z), =€ R" (2.1.3)

with ¢(z) defined as in (2.1.1). However, as the gradient and the Hessiafxrdpossess a certain
structure these structural properties should be exploited and special algorithms adjusted to nonlinear
least—squares problems should be used for their solution, see e.g. [21], [22], [85], [40, Section 4.7],
[23], [25, Chapter 10], [24], [7, Chapter 9], [79, Chapter 10].
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We define the Jacobian of the residual ved®x) = (R1(z), ..., Ry(x))T € R™ by

J(z) = <az;;(;)) | e R™"
J z]=_11,7m

and the Hessian of th¢h residual functiom?;(z) ,i =1,...,m, by

82Rz($)
8l“j Bxk

Hi(x):VQRi(:L‘):< > eR™™, i=1,...,m.
7.k=1,...,n

Then, the gradient and the Hessian0t:) can be written as:

Vo(r) = J(x)"R(z),

m (2.1.4)
Vip(z) = J(@)"J(z)+ > Ri(z)Hi(x).

=1

Algorithms for the solution of nonlinear unconstrained minimization problems are based upon
the approximation of the nonlinear objective function by a quadratic model function. In the case
of the nonlinear least—squares problem (2.1.3), this quadratic model of the objective fu{atjon
around a point is defined by

mi(es —x) = o)+ (Vole),or — )+ 1 (o4 — 2, B vy —2))

— LIR@)3 + (@) R(), a5 — o) + b oy — 2, B (04 — 2))

(2.1.5)

whereB is either the Hessial?¢(z) or some approximation of it. Note that the quadratic model
will be a good approximation of the objective function only in a small neighborhood of the point
x. The minimizerz,. of the quadratic modeh?(z, — x) serves as the new approximation of the
solutionz, to the nonlinear least—squares problem (2.1.3). In case of a positive definite mMatrix
the minimizerz . of (2.1.5) is the solution to the linear system of equations

B(zy —x) = —J(x)TR(x). (2.1.6)

If Newton’s method is used, theli = V2¢(x) and the new approximatian, of the solution
r, 10 (2.1.3) is given by (iV2¢(z) is positive definite)

vy = x— B YJ(z)TR(z)

m -1
= z— (J(x)TJ(x) + Z Rz(m)HZ(:r)> J(z)TR(x)
i=1

This method exhibits a fast local g—quadratic rate of convergence if standard assumptions are
fulfilled. However, to achieve this fast asymptotic convergence behavior it is necessary to compute
the second derivativeH;(x) of the residual function®;(x), i = 1,...,m. Unfortunately, often
they are either too expensive or even impossible to obtain. Nonlinear least-squares problems
possess the special feature that the first part of the HeS&atx) can be computed for free when
the Jacobiaw/(z) of the residualR(z) is known. Moreover, the first part &7%4(z) is often more
important than the second term which might be very small for points close to the salution
especially whenR(x) is almost linear or very small at the solutian.. This argument is
considered in the Gauss—Newton method which we present in the next section.
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2.2 The Inexact Gauss—Newton Method

2.2.1 The Gauss—Newton Method

So far, we have characterized the nonlinear least-squares problem as a special case of an
unconstrained minimization problem. However, they are also conceptually close to the solution
of a system of nonlinear equations (whan= n the nonlinear least—squares problem includes the
solution of a system of nonlinear equations as a special case) [25], [7]. In this case, a natural
approach for the solution of the nonlinear least—squares problem would be the approximation of the
residual vecto?(z) by the affine model

m(zy —x) = R(x) + J(z) (x4 — 2) . (2.2.1)

and taking the solutiom; of m*(z,+ — x) = 0 as a new approximation of the solution to the
nonlinear problem. In the special casenef= n, this is also the model usually used in algorithms
for the solution of systems of nonlinear equations. Since in the generahcagen we cannot
guarantee the existence of a solution — = to m%(x;. — ) = 0, a logical way is to find the
pointz — = which minimizes the Euclidean norm of the affine model, i.e. the solution to the linear
least—squares problem

Minimize ¢(0z) = % [|R(z) + J(z) 6|3, dx € R", (2.2.2)

with 0x = = — z, see for instance Dennis and Schnabel [25, Chapter 10]. The resulting iterative
process in which in every iteration the linear least—squares problem (2.2.2) is solved is called the
Gauss—Newton method.

Since

SIR(z) + J(2) 6z[|3 = & (R(z), R(x)) + (J(z)" R(z),6z) + 3 (0, J(z)" J(z) 6z)

and|| - ||2 is a convex and differentiable function it follows that is a solution of the linear least—
squares problem (2.2.2) if and onlydif: is also a solution of the normal equations

J(x)J(z) 6x = —J(x)T R(z) (2.2.3)

(see e.g. [18)).
In the previous section, we have shown that the Newton iterate is the solution of the following
linear system of equations:

(J(x)TJ@c) +Y Ri(x) Hi<x>> (24 —2) = —J ()T R(x).
=1

Since the linear least—squares problem (2.2.2) is equivalent to solving the normal equations (2.2.3),

the difference between Newton’s method and the Gauss—Newton method is that in the latter method,

the second order terms in the Hessia0f) are omitted. We will see in the next chapter that the

success of the Gauss—Newton method will depend on the importance of the omitted term
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S Ri(z) Hi(x) in the HessiarW2¢(z). If, for instance, the residual functior®;(x) are small
near the solution, then the second order term in the Hessiaa(af) is small and the approximation
J(x)TJ(z) of the Hessian of(z) in the Gauss—Newton method is close to the Hes¥ian(x)
itself [15], [25]. If the residual vectoRk(x,) at the solutionz, is zero, then the Gauss—Newton
method even achieves similar good asymptotic convergence results than Newton’s method.

The applications in Chapters 4 and 5 are characterized by the fact that the number of the residual
functionsR;,i = 1,...,m, is smaller than the number of variables j = 1,. .., n, i.e. the systems
are underdetermined. Thus, it is not surprising that the residual functions in these cases tend to be
fairly small at the solution:,. such that the Gauss—Newton method seems to be a reliable method for
the solution of these nonlinear least—squares problems [15].

Since in the general case # n the solution to the normal equations (2.2.3) is non—unique,
it is to be expected that this leads to numerical instabilities. To account for the local validity of the
affine modebn®(dx) and the characteristics of the problems in Chapters 4 and 5 the solution of the
normal equations is taken with minimal norm. This solution is given by

dx=x; —x=—J(x)TR(z) (2.2.4)

whereJ(z)" is the Moore—Penrose inverse (or pseudoinverse) of the Jacdbiarof the residual
vector R(x). In the following, we will refer to this direction as the Gauss—Newton direction. If
m > n and the Jacobiai(z) has full column rank, then the Moore—Penrose inverse is given by

J(@)t = (J(@)" I ()" T ()"
and hence, in this special case the Gauss—Newton direction is given by (see e.g. [25, Section 10.2])
vy —x=—(J(2)TJ(x) " J(2)TR(z).

In the following Lemma 2.2.1, we show that the Gauss—Newton direction is a descent
direction, i.e.~V¢(x)?J(z)T R(x) < 0, as long as: is not a critical point. Note that a point, is
called ecritical pointif x, satisfies the first—order necessary optimality condition for a minimizer, i.e.
in case of the nonlinear least-squares problem (2.1.3) a critical pointsatisfies
Vo(zs) = J(x:)'R(z4) = 0.

Lemma 2.2.1 Letx be not a critical point, i.eJ(z)” R(z) # 0. Then, the Gauss—Newton direction
sz = —J(z)" R(x) is a descent direction, i.& ¢(z)Tdz < 0.

Proof: For the proof of Lemma 2.2.1, we have to verify that (see (2.1.4) for the special form of

Vo(x))
(J(2)" R(2))" (= J ()" R(x)) = —R(2)" J (z) J (x) " R(z) < 0

SinceJ(z)* is the Moore—Penrose inverse.bfr) the following identities hold:

J(@)t =J@)TJ(x) J(z)t and J(z) J(z)" = (J(z) J(z)T)T.
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Hence,
—R(x)TJ(z) J(x)TR(z) = —R(z)'J(x)J(x)*J(x)J(z)" R(z)
= —R(@)"(J(2) J(2)")" I (2) J(z)* R(z)
= —(J(z) J(2)"R(x))" J(z) J ()" R(x)
= —[lJ(z) J(2)* R()]3

IN

0

The identity of the null spaces of (z)” and J(z)F, i.e. N(J(z)T) = N(J(x)T)), yields
—J(x)*R(x) # 0. Furthermore, the Gauss—Newton directibn = —.J(z)* R(x) is orthogonal
to the null spaceN (J(z)) of the Jacobian/(x), i.e. J(z)"R(z) L N(J(z)) such that
J(z) J(z)TR(z) # 0. Thus,

Vo(x) oz = —||J(x) J(z)" R(z)|I3 < 0.

2.2.2 Globalization of the Algorithm: Introduction of a Trust—Region Strategy

We will show in Section 3.2 that the Gauss—Newton method converges only locally. In addition,
it is possible that for ill-posed problems the Gauss—Newton direction is almost orthogonal to the
negative gradient such that it might be a bad descent direction. Furthermore, the performance
of the Gauss—Newton method is highly sensitive to the estimate of the rank of the Jacobian, see
e.g. Gill, Murray and Wright [40, Example 4.11]. This results from the fact that the Moore—
Penrose inverse varies discontinuously when the rank of the matrix changes, see Wedin [106], Bjérck
[7, Section 1.4.2]. One way to deal with these difficulties is the introduction of a trust—region
strategy which yields a globalization of the overall algorithm as well as a regularization of the
iteration. A globalization of the algorithm might also be achieved by using a line search method.
However, in case of a rank deficient Jacobian, line search methods always must include some
estimation strategy for the rank of the Jacobian to compute a reliable Gauss—Newton direction
[7, Section 9.2.1]. This is not necessary when using a trust-region strategy since this method
enforces a regularization of the subproblem when the Gauss—Newton direction has bad descent
providing a self adapting procedure to handle the situation mentioned above.

The trust-region strategy consists in the introduction of a baNmh the size of the variable
vector in the quadratic Gauss—Newton subproblem. This bound also guarantees that the quadratic
approximation of the nonlinear least—squares problem will be restricted to a certain neighborhood
of the current iterate. Hence, we have to solve the problem

Minimize ;(6z) = 3 ||R(z;) + J(z;) 6z||3 subjectto |[|6z[p < A (2.2.5)

in each step of the algorithm, wheltéz || , = \/{(z, D z) with D € IR™ ™ is a symmetric positive
definite matrix. In the case whe = I, with I € IR"*" is the n—dimensional identity matrix, this
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is just thels norm. However, if the iterate®e,, are badly scaled numerical instabilities can occur. In
this case, the problem might be stabilized by introducing a scaling mat(see e.g. Conn, Gould
and Toint [18, Section 6.7]). It is also possible that the choice of the norm in (2.2.5) results from
the characteristics of the specific problem (see for instance the application in Chapter 5). If the
resulting trust-region subproblems are formulated in the original variables, then they have the form
asin (2.2.5).

In the following, we examine the general case whBrec IR™ " is an arbitrary symmetric
positive definite matrix. Then, the basic trust-region strategy applied to the Gauss—Newton method
has the following structure (see for instance Conn, Gould, and Toint [18, Section 6.1]):

Algorithm 2.2.1 (Trust—Region Method)

Let an initial approximation xo, and an initial trust-region

radius Ay < A be given and set 0<ar<as<1l, and 0<y3<u<l<n;.
Compute ¢(xzg) and set i=0.

1) Find an approximate solution ox; to

Minimize  ¢;(6z) = 5 ||R(x;) + J(x;) 6z|)3 st lox]lp < A;

2.) Compute ¢(x; + dx;) and

() — ¢(wi + dz;)
¢i(0) — @i(dzi)

Pi =

3.) Set

T + 5-'E7, ) if Pi > ai,
Ti+1 = .
T , otherwise.

4,) Determine

[A;, min{ys Ay, A}, if pi>ag,
Aiy1 € (V4 Ai, A , pi €lar,a2),
[v3 A, v4 A . pi < an

5) If  @(ziy1) <e or |[Ve(zis1)| = [[J(zig1)" R(zit)]| < € stop,
else set i:=i+1 and go to step 1.

Note that¢(z) = 3 ||[R(z)||3 is the objective function of the original nonlinear least-squares
problem. In Step 1 of this algorithm, we compute an approximate minimizer to our quadratic model
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problem. The minimization is restricted to the neighborhood of the current iteyatbere we can
trustthe quadratic model function, i.e. where the quadratic model function approximates the original
objective function sufficiently good. We call the domain

Ui={zcR"|x=uz;+ 0z, ||6z]p < A; } (2.2.6)

the trust region and the valu&; the trust—region radius. In the second step the quopemns
computed which gives information about the ratio of the decrease in the objective funttipto

the decrease in the model(dz). If this quotient is sufficiently close to 1, i.e. the reduction predicted

by the model coincides with the reduction in the objective function then the trial step computed in
Step 1 is accepted (see Step 3). On the other side, if the reduction in the model does not estimate
the reduction in the objective function well enough, the trial step from Step 1 of Algorithm 2.2.1 is
rejected and the trust—region radifisis reduced in Step 4 of the routine in hopes that the quadratic
model can be trusted more in the smaller region.

Although we only need to compute an approximate solution to problem (2.2.5) in Step 1
of Algorithm 2.2.1, we firstly examine the global solution of (2.2.5) which is characterized in
the following Theorem 2.2.2 (see for instance Moré [76, Theorem 3.11], Conn, Gould and Toint
[18, Section 7.4])

Theorem 2.2.2 The vectowz; is a global minimizer to the trust—region subprobl¢?.5)if and
only if ||0z;|| p < A and

(J(x)T T (x5) + N D)ox; = —J ()T R(x;) (2.2.7)

for some); > 0 and \;(||6z;]| 5 — A) = 0. Moreover, if.J(z;)"J(z;) + \; D is positive definite
thendz; is unique.

This theorem was independently proved by Gay [38] and Sorensen [97] and it is based on a
result by Goldfeld, Quandt and Trotter [41]. The representation (2.2.7) of the global solution is a
direct consequence from the first—order necessary optimality conditions for constrained optimization
(also known as the Karush—Kuhn—Tucker (KKT) conditions).

Theorem 2.2.2 also makes clear the close relationship between the Gauss—Newton method
combined with a trust-region strategy and the well-known Levenberg—Marquardt method [69], [72].
The difficulty in the Levenberg—Marquardt method is the choice of the pararneteioré presented
in [75] an implementation of the Levenberg—Marquardt method (2.2.7) in a trust—region framework.
The advantage of the trust—region method in comparison with the Levenberg—Marquardt method is
the explicit control of the size of the steps.

Moreover, from Theorem 2.2.2 follows that either the minimizer of the unconstrained linear
least—squares problem (2.2.2) lies in the inside of the trust-region or the trust-region boundary
is active and the minimizer of the constrained linear least—squares problem (2.2.5) occurs on the
boundary.

Finally, (2.2.7) elucidates the regularization property of the trust—region strategy.
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2.2.3 lterative Solution of the Trust—Region Subproblem

The central computation in Algorithm 2.2.1 is the calculation of the approximate solution to the
constrained linear least—squares problems in Step 1. To obtain global convergence of the Trust—
Region Method 2.2.1, it is necessary to guarantee a sufficient reduction in the moédte), for

x; + dx € U;, see Conn, Gould, and Toint [18, Section 6.3]. We will see that the Cauchy point
already satisfies such a sufficient decrease condition.

Definition 2.2.3 Let §x3¢ be the steepest descent direction to the trust-region subproblem (2.2.5),
and lety;” be the optimal solution to

I;ligl s(9) = (=19 6x5%)  subjectto |9 6z 5 < A;
>

then

P =z — 9P da5d = ;4GP

is called the Cauchy point ardd:” the Cauchy direction.

The Cauchy direction has the advantage that it is cheap to compute; however, the repeated use
of this direction might result in a poor convergence behavior of the method. On the other side, the
global minimizer of the trust—region subproblem, which is characterized in Theorem 2.2.2, might
lead to an asymptotically fast rate of convergence but the computational effort of this point might
be very high (see Conn, Gould, and Toint [18, Sections 7.3 — 7.4] for findingtrerm and the
scaled/s—norm model minimizer).

Since the dimension of the problems in Chapters 4 and 5 is very large, we are especially
interested in efficient solution methods for the trust-region subproblems. Additionally, we cannot
fall back upon a particular structure of the Jacobian appearing in the problems in Chapters 4 and 5
such that we have to suppose tlidt:) is not only large but also dense. Thus, it is impossible to
store the matrix/ () or evenJ(z)?J(x). However, for both applications we can make efficient
subroutines for the evaluation of the matrix—vector produitts)dv and.J(x)” éu available (see
Lemma4.2.1, Lemma 4.2.2 and Theorem 5.5.2, Theorem 5.5.3, respectively). A promising method
for the solution of the unconstrained version of the linear least-squares problem (2.2.2) that must
not know.J (x) explicitly and which makes only use of the mentioned matrix—vector products is the
conjugate gradient method due to Hestenes and Stiefel [56] respective its preconditioned version. A
further benefit of the conjugate gradient method is that it converges to the minimal norm solution
of the unconstrained linear least—squares problem (2.2.2) if the starting element is chosen properly
(see e.g. Hestenes [54, Section 4], [55, p. 296]).

Toint [105] and Steihaug [98] modified the preconditioned conjugate gradient method so that it
is applicable to quadratic trust—region subproblems with a symmetric approximation of the
Hessian. This algorithm finds an approximate solution to the trust—region subproblem and generates
a compromise between the Cauchy direction and the global minimizer of the subproblem.
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Applying the conjugate gradient method to problem (2.2.5) with the trust—region being defined
using the Euclidean norrf - ||2, i.e. D = I, then the length of the iteratéis:, i.e. ||0z]|2, is
strictly increasing withk, see Lemma 2.2.6. This characteristic ensures that the iterates will not
return in the trust—region if they have once left this area. Thus, the conjugate gradient method can be
stopped when the conjugate gradient iterates become too large (this will be one of the modifications
introduced in the algorithm presented by Toint [105] and Steihaug [98]). However, if the length
of the iterates is measured in tihg-norm|| - |5, D # I, this monotonicity characteristic is not
guaranteed when the conjugate gradient method is applied to problem (2.2.5). Ifave get/25z,
then, problem (2.2.5) can be easily transformed to

Minimize ¢;(2) = 3 | R(x;) + J(2;) D7Y22|3  subjectto ||z[ls < A (2.2.8)

such that theD—norm problem (2.2.5) is equivalent to a trust—region subproblem with the trust—
region being defined using the Euclidean norm. Now, applying the conjugate gradient method
to problem (2.2.8) and transforming the variables back to the variables of the original problem
(2.2.5), then yields the preconditioned version of the conjugate gradient methaB Wtheing the
preconditioner.

This modified [98] (truncated [18]) preconditioned conjugate gradient method presented by
Steihaug respective Toint has the following form:

Algorithm 2.2.2 (Modified Preconditioned Conjugate Gradient Method)

Set initially dxg =0, 79=—R(z), solve DYV2?py=—J(x)TR(z),
and set syp=p. Given ¢>0 and A > 0.
For £k=0,1,2,...,n do

1.) Solve DY2y, = py

2) Set v = [[J(x)uell3

3) If Y = 0 set dxpy1 = dxg, and stop
Else  continue with Step 4.

4.) Set ap = |lskll3/vn

5.) Set 0Tk11 = Oxp+ apvg

6.) If |0z + cgvillp > A

compute 7, >0 so that ||dzx + mvillp = A,
set dxxi1 = xk + TRvE, and stop
Else  continue with Step 7.
7.) Set The1 = 7Tp—agJ(x)vg
8.) Solve DV2s,., = J(x)Trpyq
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Algorithm 2.2.2 (Modified Precond. Conjugate Gradient Method, cont.)

9) |If skl < € [IJ(2)"R(x)]p,  stop
10.) Set Be = lserll3/IIsel3
11.) Set P41 = Skl + Brbr

Note that in this algorithm, the first iterade is just the Cauchy direction since we set initially
dxg = 0.

The single steps of Algorithm 2.2.2 are those of the preconditioned version of the conjugate
gradient method applied to linear least—squares problemsith chosen as the preconditioner,
see for instance Bj6rck [7, Algorithm PCCGLS]. Since we are examining the general case of trust—
region subproblems with scaldd—norm trust-regions, we use the preconditioned version of the
conjugate gradient method, see Conn, Gould, and Toint [18, Section 6.7 and 7.4] and the statements
about the equivalence of the trust—region subproblems (2.2.5) and (2.2.8) for the connection of trust—
region scaling and preconditioning of the conjugate gradient iterations.

The modification in Algorithm 2.2.2 consists in the introduction of two further stopping criteria
to account for the applicability of the algorithm also to positive semidefinite systems and the
observance of the trust—region restriction. If in Step 3 of Algorithm 2.2.2 the diregtidies in
the null space off (), i.e.vy, = 0, then the value of the model(dx; + « vy) stays constant along
this line since

o0z +avy) = % |R(z) + J(z) (z) + awv)|3 = % |R(x) + J(z) 6xp||3 = @(0xp).

In this case, we seéir;. 1 = dzj and stop the algorithm. It is also possible to compute the positive
root 7, to ||z + 71 vk||p = A to obtain an approximate solution on the boundary of the trust—
region; however, since the value gfdoes not change along this line and we are not interested in
steps which are too large (see the arguments in Chapters 4 and 5) we terminate the algorithm with
the current iterate.

The following Lemma 2.2.4 shows that this stopping criteria is not necessaryif= I, with
I is the identity matrix. In this case, it i, = pr andJ(x) pr # 0 which is a simple consequence
of the formula forp, and the orthogonality of the range space/¢f)” to the null space of ().

Lemma2.2.4Let D'/2 = [ andpg, k = 0,...,7, be generated in Step 11 of Algorithm 2.2.2.
Then,

J(@)pr #0 for k=0,...,5.
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Proof: From Step 11 of Algorithm 2.2.2 together with the initializatipn = —J(z) R(z), it
follows with D1/2 = T

Pk = Sk+ Br—1Dr—1
= J@) T re + Br1 (51 + BraDk_2)
k=1 (k=1
= J@) e+ {115 | J@)'r
=0 \ j—i
k=1 [k—1
= J() Tk—l-z Hﬂ] i
=0 \ j—i

and, thusp;, € R(J(z)T). Furthermore, it follows that

k3 = sk + Br—1pe—1l13
= |lsull3 + B2_1 Ipk—1113 + 2 Bi—1(sk , Pr—1)

= sl + 671 Ipe—ll3

On this occasion, we have used the orthogonality of the gradjeand the conjugate directions
pr—1 in the conjugate gradient method, see for instance Conn, Gould, and Toint [18, Lemma 5.1.4].
Note that||sy||2 # 0 since otherwise the Modified Preconditioned Conjugate Gradient Method 2.2.2
would have been stopped in a previous iteration (see Step 9 of Algorithm 2.2.2). gihes 0.
SinceR(J(z)T) = N(J(x))* it follows that.J (x) py. # 0. [ |

Remark 2.2.5 Sincedx;, in step 5 of Algorithm 2.2.2 can be written as
k—1
0wy = 01 + Qg—1 Vk—1 = 0T0 + Z Q; v
i=0
from Lemma 2.2.4 follows thaiz, € R(J(x)T) if the initial point §z lies in this space and if
DV? = I (see also [18, Theorem 5.3.1]).

The second stopping criterion occurs in Step 6 of the Algorithm 2.2.2. Here, we test if the new
iterate of the preconditioned conjugate gradient method stays within the trust-region. If the length
of the new iterate is larger than the trust—region radius, we compute a linear combination of the
current and the new iterate of the preconditioned conjugate gradient method which just reaches to
the boundary of the trust—region and stop the algorithm. The following lemma, which is proved by
Steihaug [98], ensures that subsequent iterates will not return in the interior of the trust-region if a
former iterate has left this region.

Lemma 2.2.6 Let dxx, k = 0,...,j, be the iterates generated by the Modified Preconditioned
Conjugate Gradient Algorithm 2.2.2, and &t be the terminating iterate of the algorithm. Then
the iteratesz, k = 0,.. ., j, satisfy the following two conditions:
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(a) The model functiop(dzy) is strictly decreasing fok = 0, ..., 7, and

o(62) < p(63;). (2.2.9)

(b) The length of the iteratg®xy || 5 is strictly increasing fork = 0, ..., j, and

1625 = 1925 - (2.2.10)

Thus, if Algorithm 2.2.2 has generated an iterate that lies on the boundary of the trust-region
it follows from Lemma 2.2.6 that the global minimizer of the mogg{dz) is not in the interior of
the trust—region.

Moreover, since the first iterate generated by the Modified Preconditioned Conjugate Gradient
Algorithm 2.2.2 is the Cauchy point, which already satisfies a necessary sufficient decrease
condition (see for instance Powell [84, Theorem 4]), and since every subsequent iterate of the
algorithm achieves a larger reduction of the model functipfdz) according to Lemma 2.2.6(a),
it follows that every iterate generated by Algorithm 2.2.2 decreases the model function sufficiently.
This aspect will ensure the convergence of Algorithm 2.2.1 to a first—order critical point if Algorithm
2.2.2 is used for the solution of the trust—region subproblems (2.2.5) in Step 1 of Algorithm 2.2.1.

Next, we analyze the residu@bf the linear model(z) 6= + R(x) in the linear least-squares
problem which corresponds to the terminating poitibf the Algorithm 2.2.2. It is well known that
for r.1 in Step 7 of Algorithm 2.2.2 it holds thad ;.1 = Z?:o a;jv;j if dzg = 0)

k
Tht1 = Tk — agd (x)vp =10 — J () Z a;jv; = —(R(x) + J(x) 6xp41) -
j=0
If the modified preconditioned conjugate gradient method 2.2.2 is stopped begausd) (Step
3) or thek-th conjugate gradient iteraber;, violates the trust region bound (Step 6), then the same
relationship holds withy, = 7. Thus,

i = —(J(z) 62 + R(x)). (2.2.11)

If the Modified Preconditioned Conjugate Gradient Method 2.2.2 terminates neither in Step 3
nor in Step 6, then the following theorem gives information about the rate of convergence of the
residuals, = J(x) dzx + R(x) which are computed in Step 7 of Algorithm 2.2.2.

Theorem 2.2.7Let {dx;} be generated by Algorithm 2.2.2. Then, for the residuals
rr = J(x) dz + R(x) computed in Step 7 of Algorithm 2.2.2, we have

T —1T < min ma; 2 llrg —r
[re = rell2 < min _mmax p(o”) [lro — il (2.2.12)

wherer, = J(z) 0z, + R(z), 0z, = —J(z)" R(x), Py is the set of polynomials of degreek or
less withp(0) = 1 andoy > o9 > ... > o, are the singular values of (z) D~1/2.
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(See e.g. Nachtigal, Reddy and Trefethen [77, Theorem 1] or Greenbaum [45].)
An error bound for the right side of the inequality in (2.2.12) is given by

_ k
_ —1/2y _
Irw=relle iy max pe?) < 2 (FU@DTT) -1 (2.2.13)
70 = 7+]l2 PEP: 0E{o1,m00} w(J(z) D-1/2) +1

wherer(J(x) D~1/2) = ¢y /o, is the condition number of (z) D~'/2 (see for instance Greenbaum
[45, Theorem 3.1.1] or Conn, Gould and Toint [18, Theorem 5.1.8]).

The inequality in (2.2.13) shows that the convergence of the preconditioned conjugate gradient
method depends on the condition number of the mati¥z)D~'/2, ie. the
convergence of the conjugate gradient method is slower if the condition numble{lfcb)f)—l/2
is large. Furthermore, by choosing an appropriate polynopii@) in (2.2.12) (see e.g. Kelley
[64, Section 2.2] or Bjérck [7, Section 7.4.2]) it follows that the reduction in the residuals will be
larger if the singular values of (x) D~1/2 are clustered. Thus, an appropriate choice of a
preconditionetD /2 can yield an acceleration of the convergence of the preconditioned conjugate
gradient method.

However, note that the acceleration of the convergence is combined with an increase of the
computational cost. 1D~1/2 #£ I, then in each iteration of Algorithm 2.2.2 the linear systems
of equations in Steps 1 and 8 have to be solved. The cost for the solution of these linear systems
depends on the form of the preconditioder'/2. If D—/2 is a diagonal matrix then the additional
effort consists ir2n multiplications. In caseD~'/2 is a lower or an upper triangular matrix then
the linear system can be computed by forward or back substitution [43], respectively. However, if
D~1/2 has a more general structure, then the additional cost consists in factorizing the/atrix
and in solving the systems in Step 1 and 8 using this factorization. However, a wise choice of the
preconditioner may lead to a large reduction of the number of iterations in Algorithm 2.2.2 such
that the overall effort of the preconditioned version might be smaller than the effort for the version
without the preconditioner.

Unfortunately in general, it can be difficult to find an efficient preconditioner. In the problems
arising from the applications examined in Chapters 4 and 5, we have the difficulty that we do not
know the Jacobiad (x) explicitly and that we expect a dense structure of this matrix. Thus, we do
not have sufficient information to built an efficient preconditioner for these problems.

However, the problem formulation in Chapter 5 leads to a scaling of the itefatewith a
modified discrete version of the differentiation operator. Although this scaling will not be a
preconditioning in the original sense we will use the preconditioned version of the conjugate
gradient method for the solution of the resulting linear least—squares problems.

Thus, the complete algorithm we will use for the solution of the nonlinear least—squares
problems appearing in Chapters 4 and 5 has the following form:
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Algorithm 2.2.3 (Inexact Gauss—Newton Method)

Let
an initial approximation x0,
an initial trust-region radius Ag < A, and
an initial relative error & for the algorithm in
Step 1

be given and set O0<a;<as<l,and 0<y3< v <1l<ns.
Compute ¢(xzg) and R(xg) and set i=0.

1) Use the Modified Preconditioned Conjugate Gradient
Algorithm 2.2.2 to find an approximate solution ox;
to

Minimize  ¢;(0z) = 1 ||R(z;) + J(x;) 0|3
subject to |0z]| 5 < A

with relative error &.
2.) Compute  ¢(x; + dx;)

P(x;) — p(x; + 0z;)
©i(0) — i (o)

pi =

3.) Set

T; + 51‘1 ) if Pi > ay,
Ti+1 = .
x; , otherwise.

4.) Determine

[AZ ) min{’YB Ai7 A}] ) If Pi 2 as ,
Ai+l € [74 Ai: AZ] y  Pi S [al ,CLQ) )
[v3 Ay ya A y pi<ar

5.) Compute ¢(x;4+1) and R(z;1+1) and update &1.
It @(zit1) <e or [Vé(zir1)| = |J(wis1)" R(zig)]] < € stop,
else set i:=i+1 and go to step 1.

The relative errorg; controls the accuracy of the approximate solution of the linear least—
squares subproblem. Since additional stopping criteria are integrated in the preconditioned
conjugate gradient method, the direction generated deviates from the original Gauss—Newton



28 2 An lterative Inexact Gauss—Newton Method

direction. Thus, we call the algorithm an inexact Gauss—Newton method.

At the beginning of the iteration process, itis not necessary to compute the approximate solution
in Step 1 of Algorithm 2.2.3 to a high accuracy. However, when the Gauss—Newton iterates approach
a critical point an increased accuracy is necessary to improve the asymptotical convergence behavior
(see Section 3.2).



Chapter 3

Convergence

In this chapter, we examine the global convergence as well as the local convergence rate of the
algorithm presented in Chapter 2. The global convergence of the inexact Gauss—Newton method
results from the introduction of the trust—region strategy into the algorithm. Since the global
convergence theory of trust-region methods is already well established we outline briefly the main
assumptions in Section 3.1, which are necessary to ensure the global convergence. There exists also
a variety of results about the local convergence behavior of the Gauss—Newton method. However, in
the analysis of the asymptotic rate of convergence, usually, it is assumed that the residual function
R(z) is overdetermined and that the Jacobign) has full column rank. But, the applications we

treat in Chapters 4 and 5 are characterized by the fact that the dimension of the variable is much
larger than the dimension of the range space such that in these Baspss underdetermined.
Therefore, in Section 3.2, we examine the local rate of convergence of the inexact Gauss—Newton
method for underdetermined as well as overdetermined systems.

3.1 Global Convergence of the Inexact Gauss—Newton Method

In the following, we examine if the sequence of iterafes} generated by Algorithm 2.2.3, starting
with an arbitrary initial element, will converge to a limit pointc, that is a critical point to the
nonlinear least—squares problem, i. e. that satisfies

Voé(z.) = J(@)TR(z,) = 0.

The use of the trust-region strategy in the Gauss—Newton method ensures the global
convergence of the algorithm. The theory of the global convergence of trust—region methods is
already well established, see e. g. Powell [83], Powell [84], Thomas [102], Moré [76, Theorem
(4.14)]. In [18, Section 16.3] Conn, Gould and Toint present also convergence results of trust—
region methods applied to the nonlinear least—squares problem. Therefore, we give only a rough
sketch on the main aspects necessary to ensure the global convergence of the algorithm presented in
Chapter 2.

Firstly, we state the assumptions which have to be satisfied by the residual fuR¢iipm the
nonlinear least—squares problem (2.1.3).

29
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Assumption 3.1.1 The functionR(z) is twice continuously differentiable afe".

Assumption 3.1.2 The functionR(x) = (Ry(z), ..., Rn(z))7, its Jacobian/(z) and the Hessian
H;(x) of the residualsk;(z), ¢ = 1,...,m are uniformly bounded, i. e. there exists a positive
constantK such that for alk: € IR"™ and for alli = 1,...,m holds

[R(z)[l2 < K, |J(2)]2 < K, and [Hi(z)]2 < K.

The latter assumption is strong and will not be fulfilled in general by the residual functions
modelling the systems in Chapters 4 and 5. In the proof of the global convergence, it is sufficient
to assume that the HessidR2¢(x)||2, and thus|R(x)|ls, || J(x)||2 and || H;(x)|l2, i = 1,...,m,
are bounded for elements which lie between two successive iterates of the Inexact Gauss—Newton
Method 2.2.3, see Conn, Gould, and Toint [18, Section 16.3]. Hence, if the Gauss—Newton iterates
x; stay in a compact subset @" the smoothness of the residual functi@rensures this weaker
condition automatically.

Note that the characteristics of the applications examined in Chapters 4 and 5 will guarantee
this boundedness of the iterates.

In neural networks, the output is computed by a repeated evaluation of so—called activation
functions. In Chapter 4, this activation function is given by the logistic function
or(z) = 1/(1 + e~2%). For large arguments, i.ér| is large, this function is almost constant.
Thus, if large parameters are present in the neural network, its output will be almost constant
independently from the input data of the neural network which is an undesirable effect. Therefore,
in the context of neural networks, it is natural that the parameter vedtays in a compact region.

In Chapter 5, we are determining the volatility parameter in an extended Black—Scholes model
by approximating the theoretical computed European option prices and their market counterparts and
by simultaneously minimizing the variation of the volatility parameter. Since a certain size of the
volatility parameter is given by the market European option prices, the minimization of the variation
of the volatility parameter guarantees that the parameter vector will not get arbitrary large. Thus,
in this model, the affiliation of the Gauss—Newton iteratg$o a compact region is also naturally
given by the characteristics of the examined problem.

An additional condition, that is necessary for the convergence theory of trust-region methods,
is a sufficient reduction of the model function within the trust redipsee (2.2.6) for its definition).

The descent direction which reduces the quadratic mpgel:) in a small local neighborhood of
the current iterate; at the fastest rate is the steepest descent direétighof ¢(z). The minimum
of the model along this direction within the trust region, i. e.

P = z; — 9Psxi with 9 = arg min o(—90x) (3.1.2)

v —vsedeu;
which is the Cauchy point (see Definition 2.2.3), is computed easily in the case of our quadratic
model. In Algorithm 2.2.3, this is just the first iterate computed by the Modified Preconditioned
Conjugate Gradient Method 2.2.2 in Step 1 of the former algorithm.
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This Cauchy point fulfills the following decrease condition (see Powell [84, Theorem 4] or
Conn, Gould, and Toint [18, Theorem 6.3.1]).

Lemma 3.1.1 Let the Cauchy point:” be given according t¢3.1.1)and define

cp cp s, .sd
dx;” = —9;70x;".

Then, the model functiop; (dz) (see(2.2.2)for its definition) satisfies

17 ()" R(zi) 2
qi

©i(0) — @i(dz’) > %HJ(.Z‘Z)TR(.fl)HQ min , VPN (3.1.2)

where
i = 1 T )
g = 1+ max [ J(@)" ()]
with the trust regiori/; defined in(2.2.6) is an upper bound on the curvature of the model and where

v ()" R(wi)ll2

o @) R@)p

Moreover, from Lemma 2.2.6(a) follows for each iteré.izéC generated in théth iteration of
the Modified Preconditioned Conjugate Gradient Method 2.2.2 initthéeration of the Inexact
Gauss—Newton Method 2.2.3 (see Steihaug [98])

17 (i)™ R(wi)l|2

©i(0) — wi(dz}) > 5 [1J(zi)" R(z:)|2 min .

L VPA, (3.1.3)

with ¢; andv;* defined as in Lemma 3.1.1. From this last condition also follows that the quptient
in Step 2 of Algorithm 2.2.3 is well-defined since (3.1.3) yields that

pi(dz}) < ¢(0)

as long as/(z;)T R(z;) # 0 andézt, # 0.
Then, the following theorem states the global convergence of the Inexact Gauss—Newton Method
2.2.3 presented in Chapter 2 (see for instance Conn, Gould, and Toint [18, Theorem 6.4.6]).

Theorem 3.1.2 Let Assumption 3.1.1 and Assumption 3.1.2 be satisfied. Then, for the sequence
{z;} generated by Algorithm 2.2.3 holds

lim J(z;)TR(z;) = 0,
i. e. the limit points of the sequende;} generated by the Inexact Gauss—Newton Algorithm

2.2.3 satisfy the first—order necessary optimality condition for the nonlinear least—squares problem
(2.1.3)
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3.2 Local Convergence Analysis of the Inexact Gauss—Newton Method

In this section, we examine the local convergence of the inexact Gauss—Newton method without
making a distinction between overdetermined and underdetermined residual functions.

The local convergence of the Gauss—Newton method has already been analyzed extensively,
see for example [15], [11], [30], [29], [50], [25], [10], [93], [26]; however, none of these results
make any statements about frxeonvergence rate of the inexact Gauss—Newton method applied to
underdetermined residual vectde$zr).

In the following subsection, firstly, we give an overview of already existing local convergence
analysis.

3.2.1 Known Local Convergence Results for the Gauss—Newton Method

We start with statements about the application of the Gauss—Newton method to the generally
examined class of overdetermined residual functifs) whose Jacobiaw/ (z) at the solution
x, has a full rank. Subsequently, we state results for an extended class of residual functions.

Brown and Dennis show in [15] that the Gauss—Newton method converdiegarly when

the residual vectoR : IR" — IR™ in the nonlinear least—squares problem is overdetermined, i.e.

m > n, and the Jacobiad(x) of R(x) at the solutionz, has a full column rank. If additionally,

the residual vectoR(z) is zero at the solution.., then this method converges evgrguadratically

(see Theorem 1 — 2, Corollary 1 — 2 and Remark 2 in [15] as well as Dennis and Schnabel, Theorem
10.2.1 and Corollary 10.2.2 in [25]). The discussion by Dennis and Schnabel in [25] makes clear
that the nonlinearity of the residual function and the size of the residual at the solution are important
quantities in the proof of these results. They remark that the speed of convergence depends on
these quantities in connection with the smallest eigenvalug(of)? J(x.). Moreover, if either

the relative nonlinearity or the relative residual size of the problem is too large, the Gauss—Newton
method may not converge at all.

The convergence results of Brown and Dennis have the disadvantage that they do not consider
the invariance of the Gauss—Newton sequence under unitary transformations (see e.g. Subsection
3.2.3). This aspect is considered by Hauliler in [50]. He shows that for overdetermined residual
functions with rankJ(z.)) = n the Gauss—Newton method convergebnearly org—quadratically,
respectively, under assumptions which are also invariant under unitary transformations (see
Theorems 2.1, 2.5, and 2.7 in [50]).

Deuflhard and Apostolescu examine in [29] the Gauss—Newton method also for overdetermined
residual vectors; however, they drop the assumption about the full rank of the Jacobian at the
solution. They show under unitary invariant assumptions that the Gauss—Newton method converges
locally for adequate nonlinear least—squares problems if the norm minimal solution of the Gauss—
Newton subproblems is chosen for the correction of the Gauss—Newton iterates (see Theorem 1 in
[29]). On this occasion, they call a nonlinear least—squares problem adequate, if and only if, there
exists some convex neighborhood of the solutigrso that

1T (I = J(2) J(2)7) R(z)ll2 < x(2) ly —=ll with x(z) <x <1  (321)
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holds for all elements, y in this neighborhood. A combination of the critical point condition:ef
i.e. J(z.)TR(z,) = J(z4)T R(x.) = 0, with the condition (3.2.1) yields

1T TRzl < x(s) ly — 22

such that condition (3.2.1) can be interpreted as some kind of “small residual” condition on the
residual vectoR(x) [29]. The result of Deuflhard and Apostolescu does not contain any statements
about the rate of convergence|pf;, — z.||2, wherezy, is thekth Gauss—Newton iterate.

The local convergence analyses of the Gauss—Newton method by Boggs [11], Deuflhard and
Heindl [30], and Bock [10] do not distinguish between overdetermined and underdetermined
residual vectorsk(x). Boggs proves in [11] the local convergence of the Gauss—Newton method
if the norm minimal solution of the Gauss—Newton subproblems is chosen for the update of the
Gauss—Newton iterates (see Theorem 3.2 in connection with his statements about the bounds on the
step size in [11]). This result is valid for residual functions whose Jacaobjan has a constant
rank andJ (z)? R(z) is Lipschitz continuous in a convex neighborhood of the solutipand if the
largest eigenvalue of (x.)” J(z.) is smaller than 2. If this last assumption on the largest eigenvalue
of J(z«)T J(z.) is not satisfied, then he obtains the local convergence for a damped Gauss—Newton
method.

Deuflhard and Heindl present in [30] an unitary invariant convergence theorem for a class of
generalized Gauss—Newton methods. They prove under assumptions that are invariant under unitary
transformations the local convergence to a critical paipffor this class of generalized Gauss—
Newton methods (see Theorem 4 in [30]). The ordinary Gauss—Newton method where the Gauss—
Newton iterates are updated by using the norm—minimal solution of the Gauss—Newton subproblems
is contained in this class. The critical condition in their result is again the condition (3.2.1).

Furthermore, Bock proves in [10] the r-linear convergence of the Gauss—Newton sequence if
the norm minimal solution of the Gauss—Newton subproblems is chosen for the correction of the
Gauss—Newton iterate (see Theorem 3.1.44 in [10]). He introduces a generalized inverse which
makes in his case an uniform treatment of constrained as well as unconstrained nonlinear least—
squares problems possible. The critical condition in his result is given by

(10D =I@D) @@, < x@ ly—alz with x@) < x <1
whereJ(z)(*) is a generalized inverse of the Jacobifn) andQ(x) is given by
Q(z) := R(z) — J(z)J(z) P R(z) = (I—J(z) J(:z:)(+)) R(z).

If unconstrained nonlinear least-squares problems are treated, the generalizedJwgrseof
the Jacobia/(z) in Bock’s examination is just the Moore—Penrose invefée)™ so that in this
case the above given condition is identical to condition (3.2.1) by Deuflhard and Heindl because of
the identity.J (z)* (I — J(x) J(z)*) = 0.

Moreover, Dennis and Steihaug examined in [26] the convergence rate of an inexact version
of the Gauss—Newton method in the overdetermined, full rank case. Under similar assumptions as
Dennis and Schnabel, they showed that the inexact Gauss—Newton iterates converge at least
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g-linearly to the solution in a weighted norm (see Theorem 3.1 in [26]). The convergence of this
sequence, again, depends on the nonlinearity and the size of the residual of the problem.
Additionally, since the linear Gauss—Newton subproblems are only solved inexactly, the residuals of
the linearized problems, i.6(z;) r; = J(z;)* (J(z;) 6x; + R(z;)) , influence the convergence of

the iterates to a solution.

3.2.2 Difficulties in the Convergence Analysis of the Inexact Gauss—Newton Method
Applied to Underdetermined Problems

The results of the—convergence rate of the Gauss—Newton method mentioned above cannot be
applied to our problem formulation because the nonlinear least-squares problems under
consideration are, in general, underdetermined.

As far as we know, there do not exist any results ofgheonvergence rate of the Gauss—Newton
method applied to nonlinear least—squares problems with an underdetermined residual vectors.

In this case, the Jacobiaf(z) of the residual functionR(z) has a nontrivial null space.
However, this implies the difficulty that the linear least—squares problems, which have to be solved
in every Gauss—Newton iteration, do not have unique solutions. The set of solutions of the linear
least—squares problem

Minimize 1 ||J(2;) 0z + R(z;)|3, dz € R" (3.2.2)
is given by
S; = {0w; € R"| dx; = —J(x))TR(w;) + (I — J(2)TJ(2;)) 2, 2 € R"}

where J(z;)* is the Moore—Penrose inverse, also known as pseudoinversgzof. The first
term in the representation of the iteratas in S; is the minimal norm solution to (3.2.2) which is
orthogonal to the null space df(z;). Since(I — J(x;)*J(z;)) is the orthogonal projection onto
the null space off (z;) the second term represents an arbitrary element in the null spaice of

If iterative methods for the solution of the linear least—squares problem (3.2.2) are used in
combination with a trust-region method, then the linear least-squares problem (3.2.2) is solved
inexactly. Letdx; be the approximate solution to (3.2.2). Then, (2.2.11) implies that the residual
satisfies

—J(x) T = J(x)T (J(x) 0z + R(xy)) (3.2.3)

if the Modified Preconditioned Conjugate Gradient Method 2.2.2 is used for the solution of (3.2.2).
Since the linear system of equations (3.2.3) is equivalent to the linear least-squares problem

Minimize % ||J(z;) 6z + (R(z;) +1:)||3, 6z € R"
the set of solutions for the perturbed normal equations (3.2.3) is given by

S; = {6x; € R™ | 6y = —J ()T (R(xs) + 1)+ (I — J(z)TJ () 2, z € R"}. (3.2.4)
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3.2.3 Local g-Convergence Analysis of an Arbitrary Inexact Gauss—Newton Itera-
tion

Firstly, we analyze the convergence behavior when in each Gauss—Newton iteration an arbitrary
element ofS; (3.2.4) is chosen for the correction of the Gauss—Newton iterate.

We start with proposing some conditions on the residual vegtar and its Jacobian that will
be used in the following convergence Theorem 3.2.1.

Assumption 3.2.1 Let a real constart > 0 be given with

17(2)H (T @+t — 2)) = T (@)@ — 2.)]2
< ot |7@) " I(@) (x — 2|3, te (0,1, (3.2.5)

for all z in a seff).

Assumption 3.2.2 Let a real constant > 0 be given with
1(2) " (2) (J(2) " = T (@) ) R(z)ll2 < x 1 (2) " T(2) (@ = z4)[l2 (3.2.6)

for all z in a seff).

When in each Gauss—Newton iteration the Gauss—Newton iterate is updated by using an
arbitrary element ofS; (3.2.4), then the new iterate is an arbitrary element in an affine linear
subspace, i.et;1 € y; + N (J(x;)) with y; = z; — J(x;) " (R(x;) + r;) and N (J(z;)) is the
null space of/(x;). Thus, it is only possible to obtain thelinear convergence of the iterates on
the orthogonal complement of the null space of the Jacobian, i.e. on a linear subspace.

Theorem 3.2.1Let R : IR™ — IR™ be continuously differentiable on an open and convex set
Q C IR"™. Furthermore, let the sequence

Ti+1 = Lj — J(.CEZ)+R($1) — (I — J(:L‘l)—’—J(CL'Z)) 25 — J(:L’i)+Ti, Z; € JRn (327)
with
HJ(xZ)JrT'ZHQ < ||J(a;z)+J(xZ) ((L‘Z —x*)Hg, 0<nm<n<1, (328)

andzo € IR" converge to a solution, € Q with J(x,)" R(z,) = 0. Let the Assumptions 3.2.1
and 3.2.2 be satisfied for all € Q withy +7n < 1.

Then there exists > 0 such thatc := & + x + 7 < 1 and the sequencér;} satisfies either
J(x;)T R(z;) = 0 for some finite or

T (@) T (25) (Tig1 — x4)]l2 <

§ 11T (a) T (@) (@ — @) 15+ O+ ) (1 ()T (20) (25 — )12

(3.2.9)
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and
1T ()T T () (i1 — @)l < e[ T ()" T (i) (25 — @) |2 (3.2.10)

for sufficiently largei.

Proof: The proof follows by induction ovei. Definee; := z; — =, and setR; = R(x;),
Ji = J(x;), J;t == J(z;)" and choose so small thatV (z. ,e) C Qand% + xy +n < 1.
Because of the identit}/(J (z.)T) = N'(J(x4)T), J(z.)T R(x.) = 0 and the mean value theorem

€i+1 = €i—J;_RZ'—(I—J;_Ji)ZZ'—J;_Ti

= (I—-J T)(ei —2)—J (R — R — Jiei) — (J;7 — JN)Ra — J s

1
= (I J+J) Jj/ {L‘l-f—t —l‘l))—JZ) e; dt
0
~(JF — JDR. — T

Since (I — J*J) is the orthogonal projection onto the null spacefpfand because the Moore—
Penrose inversg; ™ fulfils the condition;” = J:*J; J;", multiplication ofe; 1 with the projection
J;FJZ onto the range of ! yields

1
T Tiers = —/J;F(J(a:i+t(:z* —w) =) erdt — JFT (T — TP R — Jhr.
0

Taking the Euclidean norm of" J; e; 1 yields

1 Teille < /HJ;F(J(xi (e — a0) — ) el dt
F T (= J5) Rella + 1 7ill2 -
With (3.2.5), (3.2.6), and (3.2.8) we obtain
1T Tieislla < § 17 Tiealld + Oc+n0) |17 T ealls
< (S Tillz Nleillz + x +m) 1195 Ji el -

Since by assumptiom; converges tac, there existsiy = ig(e) such thatr; € N(z.,¢) for all
i > io. Becausd|J;" J;||2 = 1 we have fori > i

[ Tieialle < (5 +x+n) [T Jieill

= | T

such that (3.2.9) and (3.2.10) are proved. |
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Note that the Gauss—Newton sequence (3.2.7) is invariant under unitary transformations of the
residual vectorR(z), i.e. the sequence generated according to formula (3.2.7) is the same if it is
applied toU R(z), with U € IR™*™ is a unitary matrix, or taR(z). This follows from (see for
instance Ben-lIsrael, Greville [6, Exercise 17(d)] for the validity of the equdlity= (A7 A)* AT
for an arbitrary matrixd € IR™*"):

(UR)(z)" =

= J(x)tuT
for all x € Q and any unitary matrix/ € IR™*™ (see for instance [30]). Thus,
(U J(z))TUR(z) = J(x)*UTU R(z) = J(z)"R(z)
and forz € R"
I—UJ)TUJ@)z = I -J)UTUJ(2)z = (I—-J@x)TJ(x)) 2.
Furthermore, for the residuaj of the linear least—squares problem
Minimize 3 ||U J(z;) 6z + U R(z;)||3, 6z € R"
when solved with the modified preconditioned conjugate gradient method 2.2.2 holds
ri = UJ(z;)0zi + U R(x;) = U (J(z;)0xi + R(z;)) = Ur;

such that
(UJ(J‘Z‘))—’_E' = J(l’i)+UTU1"i = J(:L‘@')J'_T‘Z'.

Hence, any unitary transformation of the residual veétor) will not affect the convergence
or divergence of the inexact Gauss—Newton sequence. This is reflected also by Theorem 3.2.1 since
the assumptions and the statements in Theorem 3.2.1 remain unaltered Rheis replaced
by U R(x) for any unitary matrixU € IR™*™. Thus, Theorem 3.2.1 is invariant under unitary
transformations. This characteristic will also be valid for the other theorems and corollaries in this
section.

Since thej—linear convergence of the inexact Gauss—Newton sequence (3.2.7) in Theorem 3.2.1
is obtained only on the orthogonal complement of the null space of the Jacobian, it is natural that the
conditions on the residual vect®&(x) and the residuals; of the linear least-squares problems are
also restricted to this linear subspace. Note that this argument is considered in the Assumptions
3.2.1, 3.2.2, and (3.2.8) by the projection of both sides of each of these inequalities onto the
orthogonal complement of the null space of the Jacohigm;). Without these projections,
Assumptions 3.2.1 and 3.2.2 are similar to those given, for instance, by Deuflhard and Heindl [30]
or Bock [10], evaluated at = z,.
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Furthermore, the constaitin Assumption 3.2.2 plays a crucial role in Theorem 3.2.1 since
x must be less thai to guarantee convergence of the sequence (3.2.7). Using the critical point
condition ofz,, i.e.J(z+)T R(z.) = J(z+)" R(z) = 0 and the identity/ (z) " = J(z)*J(z) J(z)*
the left side in inequality (3.2.6) reduces to

1 ()T (@) (J(2)" = J(2)T) Rz
= |J(@) " (@) J(2)" R(zs) = J(2) " T (@) J (22) T R(.) 12

= [[J(@) " Rzl

Thus, as one would expect, Theorem 3.2.1 also includes some kind of small residual condition on
the residual vectoR(z) at the solutionz,. (see also Deuflhard and Apostolescu [29]). Moreover,
the following equality holds for the left side in inequality (3.2.6):

1 ()" () (J(2)" = J(2)T) Rzl = (@) TRz
= (@7 = J(@)") Rzl

This shows that Assumption 3.2.2 also can be interpreted as a combined measure of the continuity

of the Moore—Penrose inverse of the Jacobi@n) and on the size of the residual vec®(x) at

the solutionz,.. Hence, if the Lipschitz constant of the Moore—Penrose inverséof in a convex

neighborhood of the solution, is very small than Theorem 3.2.1 also holds for residual functions

R(z) with a larger size of the residual at the solution If the residual functiom?(z) is linear, the

size of the residual is even irrelevant for the convergence of the Gauss—Newton method. However,

note that a necessary condition for the continuity of the Moore—Penrose inverse of the Jacobian is

a constant rank of the Jacobidiiz) for all = in the specific neighborhood of the solution (see

for instance Bjorck [7, Corollary 1.4.1]). Furthermore, Theorem 3.2.1 points out that the inexact

Gauss—Newton sequence (3.2.7) does not converge at all if one of these quantities is too large.
Inequality (3.2.8) in Theorem 3.2.1 controls the size of the residual of the linearized Gauss—

Newton subproblems. Note that (see for instance [6, Exercise 17(d)])

1T () ralle = [ (J(a)T T (@) T (@) il
< (T @) T T (@) Tl 17 (2:) T rill2
= [ (J@)T T (o) 17" 1 (o) il

whereJ (z;)Tr; = J(x;)T (J(x;) 6z; + R(x;)) is the error made in the solution of the linearized
problem if for instance an iterative method is used for the solution of this problem. Therefore,
condition (3.2.8) can be interpreted as a relative measure on the size of the error in the solution of
the linearized problem in connection with the smallest singular value of the Jachbign

If the nonlinear least—squares problem is a zero residual problen®(ug) = 0, it follows
from Assumption 3.2.2 that the constaptin (3.2.6) is equal zero. If, in additiony; satisfies a
proper bound, then the following corollary is a direct consequence of Theorem 3.2.1.
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Corollary 3.2.2 Let the assumptions of Theorem 3.2.1 be satisfie®(4f.) = 0 andn; in (3.2.8)
satisfies

ni < Yl (@) I (i) (25 — @) |12,
then there exists > 0 such that the sequender;} satisfies eithet/(z;)T R(z;) = 0 for some
finited or

1T ()T T () (i1 — z)lla < (§+7) [T (2a) T T () (wi — 205

3.2.4 Local g—-Convergence Analysis of the Inexact Gauss—Newton Iteration
Generated by the Proposed Algorithm

It is well known that the solution generated by the conjugate gradient method is the norm minimal
solution to the linear least—squares problem if only the starting eleingiig zero (see e.g. Hestenes

[54, Section 4], [55, p. 296]). Hence, if we sgt= 0 for i € IV in (3.2.7) then the sequence (3.2.7)

of Theorem 3.2.1 corresponds to the sequence generated by the Inexact Gauss—Newton Algorithm
2.2.3. Hence, from Theorem 3.2.1 follows the next corollary.

Corollary 3.2.3 Let the assumptions of Theorem 3.2.1 be satisfied. Furthermore let the sequence
Ti+1 = Tj — J($1)+R(CCZ) - J(l‘i)+7”i s (3211)

with 2o € IR™ converge to a solutiom, € Q with J(x.)T R(z,) = 0.
Then there exists > 0 such thatc := & + x + 7 < 1 and the sequencgr;} satisfies either
J(z;)T R(z;) = 0 for some finite or

[T (z:) T T (@) (zig1 — 24)|l2 <

§ 1T (@)t T (@) (i — 23 + Oct+n) (1) T (1) (21 = 24)l2

(3.2.12)

and
1T ()T () (i1 — @)lla < e T ()T T (20) (@0 — ) 2 (3.2.13)

for sufficiently largei.

3.2.5 Local g—Convergence Analysis of the Inexact Gauss—Newton Iteration for
Overdetermined Problems

In the case that < m and rank/(z,) = n the Moore—Penrose inverse Hfz;) is given by
J(xi)* = (J(@) "I (2) " T ()"

for z; € N(z.,e1). Then the orthogonal projection on the range space/(@f;)? satisfies
J(z;)TJ(z;) = I, and thus, Assumptions 3.2.1 and 3.2.2 change to:
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Assumption 3.2.3 Let a real constant > 0 be given with

17 (@) (J (@ +t(z — ) = J(@)) (@ —z)|l2 < ot |z —a3, t€[0,1], (3.2.14)

for all z in a set(.

Assumption 3.2.4 Let a real constant > 0 be given with
I(J(@)* = T(z) )Rl < x llo = z4]l2 (3.2.15)

for all x in a set(2.
Hence for overdetermined problems, we obtain the following corollary:

Corollary 3.2.4 Let R : IR™ — IR™ with n < m be continuously differentiable on an open and
convex sef) C IR". Assume that there exists a solutiop € Q with J(z,)" R(z,) = 0 and
rank J(z,) = n. Let the Assumptions 3.2.3 and 3.2.4 be satisfied for:adt 2. Assume that
x<l1.

Then there existg n > 0 such thatc := & + 7 + x < 1 and for allzy € N(z.,¢) the sequence

i1 = xi— (J(@) I (22) " T (20) T (R(@s) + 73)
with

[J(zi) rille < millwe — a2, 0 < < 7,
either satisfies/ (z;)” R(x;) = 0 for some finite or converges ta:, and

[Ziv1 — zullz < Gz — a3 + (x+ 1) 2 — 2z < cllzi — 242

Thus, in the full rank case with < m, Theorem 3.2.1 specializes to known results (see for
instance Dennis and Schnabel [25, Theorem 10.2.1], HauR3ler [50, Theorem 2.1] ).

Furthermore, note that in the overdetermined, full rank case Assumptions 3.2.1 and 3.2.3 are
identical to the assumptions of Theorem 2.1 of HauRler in [50] which examineg—iimear
convergence of the Gauss—Newton sequence with unitary invariant assumptions. Note that the
convergence theorem by Dennis and Schnabel is not invariant under unitary transformations so that
their conditions on the residual vectBfx) are slightly different.

Moreover, Conn, Gould, and Toint show in [18, Theorem 16.1.4] that for overdetermined
problems the trust—region constraint in the Inexact Gauss—Newton Algorithm 2.2.3 is asymptotically
inactive and that the trust-region radifys is bounded away from zero if the residual vecitr)
at the solutione, is zero and its Jacobiaf(z.) has full column rank. Since

[T () rills = (T (@) T (@) T (20) |
(T ()" T @) I3 11 () il
in this case the size of the error tolerangas determined by the relative errgy in the Modified

Preconditioned Conjugate Gradient Method 2.2.2 (see Step 9 of this algorithm) and by the smallest
eigenvalue of/ (x;)7 J (x;) for i sufficiently large.

IN
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3.2.6 Local g—-Convergence Analysis of a Specific Inexact Gauss—Newton Iteration

In (3.2.10), the convergence rate is established for a sequence of projected iterates. For a particular
sequencgx; }2,, which is generated with a specific solutiom; € S; of (3.2.2), theg—linear
convergence of the iterates without projection to a local solution of the nonlinear least-squares
problem can be shown. However, one should note that this sequence can only be chosen
theoretically. For the update of the iterates we need information about the distance of the current
iteratex; to the solutionc, which is usually unknown.

Theorem 3.2.5Let R : IR™ — IR™ be continuously differentiable on an open and convex set
Q c IR". Assume that there exists a solutionc Q with J(z.)” R(z.) = 0. Let the Assumptions
3.2.3 and 3.2.4 be satisfied for alle Q2. Assume thag < 1.

Then, there exists > 0 such thaic := & + 7 + x < 1 and forallzg € N(z.,¢) the sequence

Tigr = o — J(x) T R(x) — (I — J(x) T T (20)) (i — i) — T (2) T (3.2.16)
with
[J(zi) rilla < millei — a2, 0<mi <n, (3.2.17)
either satisfies/ (z;)” R(z;) = 0 for some finite or converges ta:, and
lziv1 —aulz < § llzi —2ll3 + (c+n) [l — 2l (3.2.18)
and

[#it1 — 2ll2 < cllzi — 2. (3.2.19)

Proof: The proofis similar to that for Theorem 3.2.1, and hence, the statements (3.2.18) and (3.2.19)
are also proved by induction. Let, R;, J; , J;r be defined like in the proof of Theorem 3.2.1 and
choose: so small thatV (z, ,e) C Qand% +n+ x < 1.

Because of the identit}/(J1) = V(J;F) andJ(z.)T R(z,) = 0

€i+1 = € — Ji_‘_Ri — (I — J;“Jz-)ei — J;_T’Z‘
= —J(Ri— Ry — Jie;) — (J;7 — TR — J s
Applying the mean value theorem and taking the Euclidean norep,@f we obtain

1
leivill2 < /||J¢+(J(%' + (@ — x3)) — i) eilladt + [|(J = TF) Rulla + || J; a2 -
0

With (3.2.14), (3.2.15), and (3.2.17), we obtain

A

1
leirillz < olleill3 /tdt+X||€i||2+?7!€iH2
0

= §leld + Oc+n) leill2,
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which proves (3.2.18). Sindg;||2 < ¢ ||eo|l2 < €, we have

leivall < (5 +x+n) lleilla = clleillz,

such that (3.2.19) also holds. |

In the case of a zero residual problem, i(z.) = 0, we again obtain the—quadratic
convergence of the sequence (3.2.16) to the solutidh»; for i € IV is sufficiently small.



Chapter 4

Forecasting with Neural Networks

After we have presented the algorithm and its convergence behavior, in the following two chapters
we apply the Inexact Gauss—Newton Algorithm 2.2.3 on nonlinear least—squares problems arising
from two different applications. In this chapter, we apply the inexact Gauss—Newton method on
the nonlinear least—squares problem resulting from the formulation of the training process of neural
networks. Furthermore, we examine the application of neural networks in financial forecasting.

We start this chapter by describing the structure of neural networks and their training process
in Section 4.1. In the following Section 4.2, we present subroutines for the evaluation of the
Jacobian and its transpose multiplied with a vector without storing the Jacobian explicitly. These two
evaluations are necessary in the modified conjugate gradient method which is used for the solution
of the Gauss—Newton subproblems in Algorithm 2.2.3. The solution of the nonlinear least-squares
problem corresponds to the training process of the neural network which carries out the adaption
of the neural network to the examined system. An often mentioned deficiency of neural networks
is that the knowledge of neural networks of the examined system can not be extracted. However,
in Section 4.3, we show how the sensitivity of the output of the neural network can be determined
concerning small changes of the different input data. This gives at least some information on the
influence of each of the input data on the output of the neural network. Finally, in Section 4.4, the
application of neural networks in forecasting the German stock index DAX are discussed together
with some numerical results.

4.1 Description of Neural Networks

Neural networks are information processing systems which orientate themselves by the structure
and the functioning of the human brain. However, we do not claim to reproduce the brain but the
natural model is to serve as a reference point, i.e. the special ability of learning capacity as well as
the capability of pattern recognition should be obtained [19]. Neural networks are composed of a
large number of uniform processing units. These processing units are the basic elements in a neural
network and are called the neurons.

In a neuron the information are processed according the following procedure, see also Figure
4.1. The incoming information (these are the inputs in Figure 4.1) into a neuron are combined

43
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" %\
yo — 12
— §=o(netin +0)
Ya W,
Inputs Output

FIGURE 4.1: The structure of a neuron

by weighting each of the inputs and, subsequently, adding them up, i.e. building thenvalue

in Figure 4.1. The decision whether this neuron gives a signal to the other neurons is based on a
comparison of the linear combination of the inputs with the bias, also known as the threshold, of the
neuron (which corresponds to the valum Figure 4.1). If the sum of the linear combination of the
inputsnetin and the biad is larger than zero the neuron sends a signal to the other neurons, in the
opposite case it does not. This decision process of the neuron is modelled by a sigmoidal function
[109].

1 1+
05 + 0.5
0 o]
FIGURE 4.2: Heaviside functios g (netin + 0) FIGURE 4.3: Logistic functioro, (netin + 6)

with k = 1 (see (4.1.1))

A yes/no statement could be described by the Heaviside function (the unit step function), see

Figure 4.2,
1 : r>0
op(r) =
0 : <0

However, the Heaviside function is not differentiable at 0 so we approximate this function by the
differentiable logistic functiow, see (4.1.1). The function that models the decision process of the
neuron, is also called the transfer or activation function. Hence, the output of the neuron is generated
by transmitting the sum of the linear combination of the inputs and the biag&é#n +6), through
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the transfer or activation functiary,. The output or response of the neuron is known as the activation
value, or in short, the activation of the neuron [39].

In a neural network these neurons are arranged in different layers (see Figure 4.4). The first
layer serves as the input layer which is fed with some given information. The neurons in this layer
(which are also called the source nodes, see [51]) only make the different information available to the
neural network but do not yet process the information. This takes place in the following layers, the
hidden layers of the neural network. The neurons in these layers process the information according
to the procedure described in the previous paragraph. Thus, only the insertion of the hidden layers
enables one to represent interactions between the inputs; and, hence, allows the network to also
model more complicated systems [39]. A neural network without a hidden layer is only able to map
linear relations of the values in the input layer [39]. The neurons in the final layer, the output layer,
of the neural network process the information for a last time; and, finally, generate the outputs of the
network.

stockg —
bonds) —
currencies—

— [stocks
— [bonds

FIGURE 4.4: 3—4—-2—feed—forward net

There exists a variety of different types of neural network architectures. For an overview see for
instance [78, Section 17.3]. In our examinations, we restrict our attention to feed—forward networks
(see Figure 4.4). These are networks which propagate the information through the network in a
forward direction, on a layer—by—layer basis [51]. Thus, in these networks only the neurons in
consecutive layers are connected. Finally, we suppose that the networks are fully connected, i.e. a
neuron in any layer of the network is connected to all the nodes/neurons in the previous layer [51].

In order to define a neural network in mathematical terms we introduce the following notation:

[+ 1 number of layers,

nL number of neurons in layét,

oF bias or threshold of neuranin layerk,
yf activation value of neurohin layerk,

Wz’j weight from neurory in layerk — 1 to neuron: in layerk.
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In the following we set

ok = (0F,....08)", k=1,...,1,

yk = (ylf7"'7y£k)T7 kZO,...,l,

Wk — (W{“,...,WfFl), k=1, ....1,

with WF = (Wf,, ..., W} )T, j =1,...,n4_1, such that these variables have the following
dimensions

0k ¢ IR™, k=1,...,1,

y* € R™, k=0,...,1,

Wk e RwX™-1 k=1,...1.

Letor : IR — [0,1] be the activation function modelling the decision process of each of the

neurons, e.g. the logistic function
1

=—. 41.1
14 ehr ( )

or(r)

Then the activation valugf, which depends on the weights of the connections to the lower layer
k — 1, the activation values of the neurons in the previous layerl and the biaﬁf, is computed

by

Nkg—1

yr=or(D_Whyr 08, i=1 . mg, k=11
j=1
Using matrix notation this can be rewritten in a more compact form with
o:R"™ — IR™ o(x):= (op(z1), - .. ,O’L(l'nk))T

as follows
Y = oWk k1 4 gk, k=1,...,1. (4.1.2)

Note that the/* are defined recursively

yk — O.(wkyk—l 4 Qk) — O'(Wk O.(wk—lyk—Q _|_(9k—1) 4 ek)

(4.1.3)
= oc(WFo(WF ... a(WhO+0Y) ... +08 1) +0b).

Thus, a neural network can also be viewed as a discretized dynamical system where the initial value
y¥ is given.

The representation of the activation of the neurons in (4.1.3) shows that the output of the neural
network, i.e. the activation value of the neurons in layedepends on the weight matrices
Wt ..., W' the bias vectorg!, ..., 6" and the initial valug, which we express in the following
by using the notationy! = y'(w; y°) with w defined as in (4.1.5). Thus, the knowledge of a neural
network is distributed among the weight matrié&s, ..., W' and the bias vecto&, . .., 6" [19].
Therefore, the adaption of a neural network to a certain problem structure is carried out by adjusting
these weights and biases. This will be done by presenting the network appropriate examples of
input—output patterns of the examined system. Let various inputad corresponding outpuss,
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p=1,...,P, begiven. Then, in order to learn to emulate the behavior of the system the weights
Wkand#* k=1, ...,1, have to be determined, depending on these inpurssuch a way that the
output of the neural network (w; t,,) of (4.1.3) is close to the prescribed outpsfsp = 1, ..., P.
The closeness is described by a cost function, for example, the squared error of the neural network
output with regard to the target output [39]. During the adaption of the weights, the neural network
finds conformities in the presented data and maps them into its weight structure. Thus, the neural
network is able to implicitly map also unknown linear and nonlinear cause/effect relations such that
they are predestinated for problem classes where explicit modelling is not possible [19].

The process of the adaption of the weights is called the training of the neural network and leads
to the following optimization problem

Optimization Problem (NN)

Given patterng, ¢ R™, s, €c R", p=1, ..., P.
Findw = (W1, ...,W' 6", ..., 6", such that
P
I 2 ie minimized
> 5 14 (w;t,) = 5|3 is minimized.
p=1

This is a nonlinear least squares problem with a total of
nony +ning + ...+ +ny+...+n

variables. Defining the map (cf. (4.1.6) ferandm)

R:R"— R™ Rw)=1y'(w)—s (4.1.4)
with
y'(w) = ((wit), ...,y (w;tp)) € R™,
s = (s1,...,8p) € R™, (4.1.5)
w = (Wl ... ,whel, ... 60)e R,
and

m=Pn;, n=ngni+nmne+...+m_1n+ni+...+n, (4.1.6)

we can use the Euclidean norm™ to rewrite the problem in a more compact way as
s 1
Minimize ¢(w) = §|\R(w)||§, we R". (4.1.7)

When neural networks are applied to problems in finance, like forecasting stock or index values,
usually the number of patterits,, s,) available to train the network is much smaller than would be
needed to specify the associated dynamical system (e.g. Zimmermann [109]). Thus the number of
unknown weights and bias is often much larger than the number of training patterns, which means
thatn > m.
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For the adaption of the weights, i.e. for the solution of the optimization problem (4.1.7), a
so—called “learning algorithm” is used. The classical algorithm for training feed—forward neural
networks is the backpropagation algorithm which was popularized through the publication by
Rumelhart, Hinton and Williams [89]. This is a gradient—type method, for which convergence is
guaranteed by applying appropriate rules for the computation of the step size along the negative
gradient direction, see e.g. Grippo [47], Mangasarian and Solodov [71]. In this research we use a
different approach, and that is the Inexact Gauss—Newton Method 2.2.3 presented in Chapter 2 (see
Subsection 4.4.4 for a comparison of these two algorithms). In this algorithm in every iteration, we
solve the constrained linear least—squares problems

Minimize 3 ||R(w)+ J(w)dwl|j3 subjectto [[dwl[s <A

with the Modified Conjugate Gradient Method 2.2.2 which requires the evaluatidiwofow as
well as J(w)Tdy. In the next section, we show how both of these matrix—vector products can be
computed without knowing (w) explicitly.

4.2 Evaluation of the Jacobian

We start this section with showing how the evaluation/¢fv) w can be achieved without saving
the matrix.J (w).

The main aspects in the derivation of this subroutine is the recursive definition of the activation
valuesy”, k = 1,...,1, in (4.1.3) and the use of the implicit function theorem. Let the function
e(y,w) be defined by

e(y,w) = (ei(y,w), ..., ep(y,w), ..., e1(y,w), ... ep(y,w))"

with
y = (yl,...,yl)ERm,

v = (f ... yp) € RP™, (4.2.1)
w = (Wi... Whe.. .. 0)eR",

y’; is the activation of the neurons in layemwith input datat,,, and

el;(y,w) = y;f—a(ka;f—l + 6%, k=2,...,1, p=1,...,P,
e}o(y,w) = y;—a(Wltp+91), p=1,...,P,
where
m=Pni+...4+n), n=noni+nng+...+n_n+n+...+n;. 4.2.2)

In order to apply the implicit function theorem gy, w) = 0, we have to ensure that
e : IR™™ — IR™ is continuously differentiable of2"*™ and that for eachv € IR" there
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exists an uniquey € IR™ with e(y,w) = 0. Furthermoreg,(y,w) has to be invertible for all
(y,w) € R™™,

In our case the continuous differentiability of(y,w) follows from the continuous
differentiability of o;, and the unique solvability iny for a givenw is trivial because of the
iterative process (4.1.3) for computipg The invertibility ofe, can be seen as follows. Assume that
for somen € IR™ we havee, (y, w) n = 0. This means

nﬁ—a'(ka;f_l—l—Qk)Wknlg_l:0, k=2,...,1, and 1711):0, p=1,...,P.

From these equations we deduge- 0. Since the assumptions of the implicit function theorem are
satisfied bye(y, w), it follows that there exists an unique continuous mapping

y: IR" — IR™

which is defined by
e(y(w),w) =0, forall we R",

and, furthermorey(-) is continuously differentiable and its derivative is given by

Y (w) = —ey(y(w), w) ey (y(w), w), forall w e IR". (4.2.3)

Note, that the lasPn; rows ofy’(w) are just/(w), i.e. J(w) = (y')'(w), sinces,, p = 1,..., P,
in the definition ofR(w) (see (4.1.4)) do not depend an

Although the number of variables is very large, each compoeé?mlf e depends only on a
rather small number of variables, i.e. the Jacobianisfsparse. Especially, the partial derivative of
e with respect tay has a nice structure. Sineg(y, w) only depends oyj’;*l andy}’;*1 the derivative
ey(y(w), w) is a lower triangular matrix with identity matrices on the diagonal. Hence for obtaining
the derivative of the activation of the neurons in the last layer with respectite just have to solve
a triangular system of linear equations.

This aspect leads to the recursive computation of the matrix vector prégugtw.

Lemma4.2.1lletw = (W', ..., WLt ....0), ow = (6W?, ..., 6W 60, ...,60") ¢ IR
and
y;; =y (w;t,) = oc(WF a(WEL . a(Wht, +60Y) ...+ 605+ 05, p=1,...,P,

with ¢, = y9. Set

8y’“ ) 8yk )
k._ p J P spJ n —
vp__E <6 jaw +89j59 elR"™, k=1, ...,1.

j=1

Then .
J(w)dw = o' = (vi, ...,vé;) c RP™ (4.2.4)
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can be computed recursively by
optl = o (WL 4 ) (SRR 4 gg 4 L) (4.2.5)
fork=1,...,l—1landp=1, ..., P, where

vy, = o (W', +0") (W', +60"), p=1,...,P.

Proof: The proof follows by induction ovekt. First we derive the partial derivatives ¢f. Sincey*
depends only op*~! andw* = (W*, %), an application of the chain rule yields

Oy _ Oy, oyt Oy
owk st oyl owk”

Furthermore fosW* € IR "1

oy*
8 ]fil O./(kaé:—l + ek)Wk c BnkX’rLk_1’
Yp
ﬁyf,f k 1k, k—1 o pk k,k—1 g
8Wk6W = o/ (Whys =" +0%) oW" y; e IR,
o k
67?;112 _ U/(kal;—l +0k) c  IRMXNk
Fork =1, ...,1with g5 = ¢, we obtain
o l
or = (W 6 W g (W ) WL (R o),
o l
Sl OWE = (WGl 0 W o (WL o gt Wt

o (Whyp™t 4 6%) sWF st

For the first step of the inductioik (= 1), we obtain from the definition (4.1.3)

ayl 8y1
1 _ P 1, Y9 cp1
b = By oW + 701 00

= o/ (W', +0) (6Wht, +60%) .

To carry out one step of the induction argument note mﬁéﬂ, k=1,...,1—1, can be rewritten
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as follows
k+1 k+1 k41
dy . Oy .
k+1  _ p J 4y 7P spJ
vkt = ; <8WJ'5W + 57 59)
k41
_ Z U’(Wk+1y£+9k+1) Wk+1 U/(Wj—i-lyg_i_@j—&-l) Wj+1_
j=1

o (Wiy) ™+ 67) ((5ij§_1 + 69j)
_ Gl(Wk""ly]If + 9k+1) (5Wk+1y£ + 59kz+1) + U/(Wk:-i-ly]l; + 0k+1) Wk+1 X

) Z U/(ka;;—l +9k) wk ... U/(Wj+1yg+9j+1) Witl.

7j=1
ol (Wiyh ™! 4 69) (5ij§_1 + 5l9j)

= (WL R (WAL 4 gRHL - R HLE)

[ |

For the computation oi;}’,f“ are 3ny+1n, multiplications andny; evaluations ofo’ ,

k=1,...,l—1,p =1, ..., P, necessary. Furthermore, the computatiomgafequires2 ning
multiplications andn; evaluations ofo’,, p = 1, ..., P. Thus, the computational effort of one

evaluation of/ (w) dw is

# multiplications ~ P(2ngny + 3(ning + ... +n_1n;)) (4.2.6)
# evaluations of,  P(ny + ...+ mn) o

Note, that we have not considered the effort for the recursive computat'yjjmfthis list, yet.

The following lemma shows how the evaluation.tfw)” 6y can be done without storing the
matrix.J(w)”. This result follows also from the representationytifw) in (4.2.3) and from Lemma
4.2.1. From (4.2.3) follows that

-1

Yy (w) dw = —ey(y(w), w) ew(y(w), w) dw.

Thus, .
(J(w)T(Sy)T&U = ((yl)’(w)Téy) ow
= (v ()" 5y)" ow
= 5y o (w)sw
= =0y ey(y(w), w) L ew(y(w), w) u
with 0y = (0, ...,0,6y)” and
)T

y ()" oy = —ew(y(w), w)” u, where e,(y(w),w)" pn = dy.

Sincee, (y(w), w)T is an upper triangular matrix, the linear systepy(w), w)? 4 = dy is solved
backwards foy.
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Lemma4.2.2 Letw = (W', ..., W' ot ... 0" ¢ R"anddy = (0y1,...,0yp) € IRF™. Setfor
p=1,...,P

p, = Oy, € R™ 427
pk = (WEOTo (Whtlyk L gty bl e R p=1—1,01-2,...,1.
Then
Jw)Toy=w= W ... . whe . .. 60)eR" (4.2.8)
can be computed by
P = S WA k=1,
Pl (4.2.9)
Wk = S W oMb, k=1,
p=1

with yg = 1.

Proof: For arbitrarydw € IR"™, we have according to Lemma 4.2.1 and (4.2.4), (4.2.7), (4.2.8) with
ph= (... ) € RP™
ol ow = oy J(w)dw = dyTo! = (ph)T! (4.2.10)

Fork =1,...,2 we obtain with (4.2.7) and Lemma 4.2.1
P

(W7 = 3 (0 Why 4 05 ) (W Ry 4 06%)
=1
. (WE)To! (Wrys™ 4 65)uf) T ™)
= (pFHToR1 4 3 (o' (WryE=L - oR)yi)T (sWhyh=! + 56%)) (4.2.11)
p=1
(phHTov! = EP: (M}?)T (o' W'ty + 61 (W', + 601))
p=1

= Z ((o—’(Wltp + Hl)u},)Téwltp + (o' (W', + 91);;[1,)%91) .
p=1
Using (4.2.10) and substituting recursively into (4.2.11) yields

I P
= > > (@ WhyE + 05 )up) oWhy—!
k=2 p=1
+ (0! (WhyE=" + 0 )uf) T 66%)
P

+D (' Wty + 0" )Wty + (o (Wt + 01 pp) 766",
p=1
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Because ofw = (0W*,..., W' 66, ...,66") andyl = ¢, we obtain

P
gk = Za/(ka]Iffl—&—Gk)u];, k=1,...,1,
1

3
[

Wk = o WhyE=1 + oMl (1T, k=1,...,L

M~

1

p
The last equation follows from
P

(Wk)Tde _ Z(U/(ka];_l + Qk),u];)T(Skalg_l

p=1
P

= D tr(yy (o Wyt + 05 ) )T
p=1

P nkg—1 ng
= > Y WED(@ W+ 0 )T (W)
p=1 i=1 j=1
which completes the proof. |

The steps of the subroutine for computiifw)? 5y are very similar to the computation of the
gradient by the backpropagation algorithm which is essentially the reverse differentiation technique
in automatic differentiation, see Saarinen, Bramely, and Cybenko [90].

For the computation qf}, in (4.2.7) areny,1ny, + ny1 multiplications andu;; evaluations
of o} necessaryk = 1,...,l —1,p = 1,...,P. Furthermore, the computation of one part
of the sum ofW* requires2n,ny,_; + n; multiplications andn;, evaluations ofo’,. Since the
sum is built over all the training patterns, the computational effort for the determinati®¥i*of
is P(2nini—1 + ng) multiplications andPn;, evaluations ofs}, k¥ = 1, ...,l. Note that the
determination of/* does not require further multiplications or evaluationszbfsince the terms
in the sum ford* also have to be calculated for the determinatiomdf. Thus, the effort for one
computation of/ (w)? §y consists of

# multiplications P (2noni + 4(ninz2 + ... + nj_1ny)
+n1 + 2(?12 + ...+ nl)) (4212)
# evaluations ob;  P(ni +2(n2 + ... +np))

Moreover, for the evaluation of (w) Sw as well asJ(w)? dy it is necessary to determine the
activationyj’,f in (4.1.3). The effort for this computation is

# multiplications P + .o+
P (mom n-1m) (4.2.13)
# evaluations o6, P(ni + ...+ ng)

Additionally to the evaluation of/(w) §w and J(w)? 6y in each iteration of the conjugate
gradient method

3n+2m = 3(ngn1+...+n_ng+ny+...+n) + 2Py
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multiplications have to be performed such that the overall computational effort for one conjugate
gradient iteration when the inexact Gauss—Newton method is applied to the training problem of a
neural network amounts to

# multiplications (5P + 3)noni + (8P 4 3)(ning + ... + nj—1ny)

+(P+3)n1+ (2P +3)(ng+...+ni—1) + (4P + 3)ny

_ (4.2.14)
# evaluations o, P(ny+ ...+ ny)

# evaluations ob;, P(2n; +3(n2 + ... +ny))

By contrast, the computational effort for one iteration of the backpropagation algorithm consists of

# multiplications (2P + 1)ngny + (5P 4+ 1)(ning + ... + nj—1ny)
+P+1Dni+1)+ 2P+ 1)(ng+...+mn)

# evaluationsob;, P(ny+ ...+ ny)

# evaluations ob;,  P(ni +2(ng + ... +ny))

Thus, the computational effort for one iteration of the backpropagation algorithm as well as for one
iteration of the conjugate gradient method is of magnit@qé# n) (see (4.2.2) for the definition of

4.3 Sensitivity Analysis

When the weights of a neural network are determined by the learning process then the knowledge
of a neural network about the examined system is distributed among the different weight matrices
and bias vectors. However, this distribution of the knowledge makes it difficult or even impossible
to interpret the results generated by the neural network [19].

The representation of the activation value of a neuron in (4.1.3) shows that the outputs generated
by a neural network depend on the input data& IR™. In the following lemma, we show how the
derivative of the output of the neural network with respect to the input data can be computed. Thus,
it is possible to determine the sensitivities of the optimal output of the neural network with regard
to small variations of the various components of the input vegtsuch that we can at least derive
some information about the influence of each of the input data on the output of the neural network.

Lemma 4.3.1 The sensitivities of the output of the neural netwgitw; ,,) with regard to thej-th
component of the input datg € IR at a given pointw are given by
J/(leé—l + el) Wl J/(Wl—lyé—Q + 0[—1) Wl—l . O'/(Wltp + 01)W1€j

with unit vectorse; € IR™.
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Proof: The derivative of the output of the neural netwqﬂ(w;tp) with respect to thej-th
component of the input, is given by
Ay (w, ty)
oty

ej.

Since y*(w,t,) = yF(w) is defined recursively by (4.1.3) ang depends only on/s~! and
w® = (W*, 0*), an application of the chain rule yields

ol _ o 0 oy

= . . 43.1
oty oyt Oyy oty ( )
Furthermore,
o k
o (WAL WE € R k=21, (4.3.2)
dyp
and
oyl
—L = JWlt,+o0Hw! e Rmxno, (4.3.3)
oty
Thus, inserting the expressions (4.3.2) and (4.3.3) into (4.3.1) yields
oyt
a—t;ej = o (Whylt+0HWwh...o'(Wht, + 01 )W'e; € R™.
which completes the proof. |

4.4 Numerical Results

The final section of this chapter deals with the application of neural networks in financial forecasting.

We start the section with verifying the convergence results presented in Section 3.2, see
Subsection 4.4.1. Afterwards, we apply neural networks to forecasting the German stock index DAX
on the basis of monthly data. In Subsection 4.4.2, we give a brief statement about the applicability of
neural networks to financial forecasting. Then, in the following subsection, we explain the different
aspects necessary to set up a neural network. We start the numerical experiments in Subsection 4.4.4
where we compare the Inexact Gauss—Newton Algorithm 2.2.3 with the traditional method for the
training of neural networks, the backpropagation algorithm, which is a variant of steepest descent
method. Subsequently, we discuss the quality of the forecasts generated by the neural network in
Subsection 4.4.5. For the judgement of the forecasts, we use a graphical comparison of the forecasts
of the neural network with the target value as well as the performance of a trading strategy which is
based on the forecasts of the neural network. Then, in Subsection 4.4.6, we examine the sensitivities
of the output data generated by the neural network in regard to small variations in the input data.
Finally, at the end of this section, we give some concluding remarks on neural networks in financial
forecasting.
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4.4.1 Convergence Rates

To illustrate the convergence results of Section 3.2 we consider a 2—-2—-1 neural network, i.e. the
input as well as the one hidden layer of the neural network contain two neurons and the output layer
consists of one neuron. Using the notation introduced in Section 4.1, in this case the varese

the following form

_ 1 1 1 1 gl pl 2 2 52
w = (Wi, Wip, Woy, Wy, 07,05, Wiy, Wi, 07) .

The network is trained with 5 patterns of input and corresponding output data. Since the output of
the network represents a prediction of a scaled value of the DAX, the input data of the network are
scaled DAX values of the previous two months. A more precise description of the composition of

the training patterns and the preparation of the input and output data will be given in the following

subsection.

Lteri | o) [ Vol | lwi —walls | el | jw —w.|l | el

lw; —1 —ws s lwi —1—wx |2

2 0.128D+00 | 0.694D-01 | 0.359D+01 0.61134 0.612D+01 0.79625
3 0.355D-01 | 0.119D+00 | 0.298D+01 0.62362 0.485D+01 0.79259
4 0.259D-02 | 0.394D-01 | 0.434D+01 0.95186 0.465D+01 0.95769
5 0.543D-03 | 0.210D-02 | 0.396D+01 0.95128 0.447D+01 0.96116
6 0.395D-03 | 0.449D-02 | 0.404D+01 0.96192 0.432D+01 0.96637
7
8
9

0.282D-03 | 0.924D-03 | 0.381D+01 0.90380 0.392D+01 0.90841
0.207D-03 | 0.207D-02 | 0.355D+01 0.91249 0.358D+01 0.91392
0.114D-03 | 0.103D-02 | 0.313D+01 0.89146 0.321D+01 0.89617
10 | 0.103D-03 | 0.323D-03 | 0.294D+01 0.96334 0.311D+01 0.96700
11 | 0.997D-04 | 0.747D-03 | 0.266D+01 0.89299 0.280D+01 0.90200
12 | 0.986D-04 | 0.211D-02 | 0.252D+01 0.93755 0.264D+01 0.94285
13 | 0.876D-04 | 0.677D-03 | 0.222D+01 0.87020 0.232D+01 0.87984
14 | 0.838D-04 | 0.219D-02 | 0.209D+01 0.92485 0.216D+01 0.92903
15 | 0.719D-04 | 0.741D-03 | 0.195D+01 0.91993 0.199D+01 0.92276
16 | 0.660D-04 | 0.591D-03 | 0.163D+01 0.82694 0.166D+01 0.83138
17 | 0.576D-04 | 0.249D-02 | 0.147D+01 0.89022 0.148D+01 0.89107
18 | 0.423D-04 | 0.506D-03 | 0.112D+01 0.75732 0.112D+01 0.75824
19 | 0.301D-04 | 0.179D-02 | 0.382D+00 0.34124 0.382D+00 0.34161
20 | 0.233D-04 | 0.328D-02 | 0.201D-01 0.05271 0.202D-01 0.05272
21 | 0.115D-05 | 0.664D-03 | 0.364D-04 0.00180 0.364D-04 0.00180
22 | 0.233D-10 | 0.358D-05 | 0.473D-09 0.00001 0.473D-09 0.00001

TABLE 4.1: Training of a 2—2-1 neural network with the inexact Gauss—Newton method presented in Section 2
(lllli = 17 (wi) ™ T (wi) 2|])

The results in Table 4.1 are generated by the Inexact Gauss—Newton Algorithm 2.2.3 presented
in Chapter 2, i.e. the generated sequence has the form

wit1 = w; — J(wi) T R(w;) — J(w;) i (4.4.1)
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Table 4.1 shows that this sequence converges to a solutiqsee Column 6 of Table 4.1). The
values of the last iterations in Table 4.1 make clear that the sequence (4.4.1) converges locally
g—quadratically tow. on R(J(w;)”). This corresponds to the theoretical results in Section 3.2
since the second column of Table 4.1 shows that the residual of the present problem at the solution
is very small, probably even zero. Columns 4 and 6 of Table 4.1 illustrate that the difference of the
current iteratev; from the solutionw, in the null space off (w;)

1T = T (wi) " (wi))(w; = wi)[[3 = lJwi — wa|3 = || (wi) ™ (wi) (w; = w,)]13

is very small. Therefore the g—quadratic convergence is obtained even on the wholé&¥pace

[wi —wall;

Ltteri | g(wi) | IVo@lla | flws —w.| | el
2 0.125D+00 | 0.778D-01 | 0.336D+01 0.60275 0.567D+01 0.77111
3 0.743D-01 | 0.124D+00 | 0.447D+01 0.79705 0.451D+01 0.79587
4 0.401D-01 | 0.147D+00 | 0.446D+01 0.99231 0.447D+01 0.99024
5 0.196D-01 | 0.316D-01 | 0.350D+01 0.78615 0.351D+01 0.78612
6 0.107D-02 | 0.191D-01 | 0.328D+01 0.93574 0.329D+01 0.93497
;
8
9

|wi —wall2
llwi—1—wsll2

[ lhws — wu |

0.344D-03 | 0.395D-02 | 0.306D+01 0.93225 0.306D+01 0.93176
0.181D-03 | 0.258D-02 | 0.214D+01 0.70100 0.215D+01 0.70161
0.149D-03 | 0.605D-02 | 0.164D+01 0.76541 0.165D+01 0.76597
10 | 0.581D-04 | 0.156D-02 | 0.144D+01 0.87761 0.144D+01 0.87748
11 0.468D-04 | 0.167D-02 | 0.119D+01 0.82558 0.119D+01 0.82582
12 0.312D-04 | 0.926D-03 | 0.678D+00 0.57044 0.683D+00 0.57305
13 0.214D-04 | 0.238D-02 | 0.556D-01 0.08212 0.938D-01 0.13727
14 | 0.967D-05 | 0.166D-02 | 0.323D-01 0.57998 0.728D-01 0.77619
15 | 0.309D-07 | 0.188D-04 | 0.430D-04 0.00133 0.563D-01 0.77383
16 0.852D-11 | 0.664D-06 | 0.344D-04 0.88250 0.485D-01 0.86118

24 | 0.335D-16 | 0.300D-08 | 0.155D-05 0.91021 0.891D-02 0.71941
25 | 0.235D-16 | 0.249D-08 | 0.763D-06 0.85563 0.571D-02 0.64054
26 | 0.167D-16 | 0.208D-08 | 0.265D-06 0.70877 0.275D-02 0.48114

TABLE 4.2: Training of a 2—2—1 neural network with the inexact Gauss—Newton sequence (4.4.2)
(llls = 17 (wi) T (w:) ]]2)

For a clear distinction between the convergence rate of the projected and unprojected iterates,
consider the sequence

wit1 = w; — J(wi) TR(w;) — (I = J(wi) ™ T (wi))z — J (wi) Ty (4.4.2)

T
with z; = ((Hll)Q,..., (z'+11)2) . The convergence to a solutian. is still obtained as well (see
Table 4.2). However, in comparison with the convergence of the iterat&¥ i(see columns 4 and
6 of Table 4.2), the convergence of the sequence (4.4.B(0f{w;)”) is much better.
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(e i [ p(w) [ IVow)lls [ flws —w.]lp [ lezels

llwi—1—wx |2

2 0.796D-01 | 0.171D+00 | 0.275D+01 0.85624
0.261D-01 | 0.349D-01 | 0.199D+01 0.72504
0.113D-01 | 0.569D-01 | 0.171D+01 0.85794
0.150D-02 | 0.577D-02 | 0.289D+00 0.16861
0.383D-03 | 0.931D-02 | 0.175D+00 0.60685
0.250D-05 | 0.577D-03 | 0.751D-02 0.04287
0.158D-06 | 0.231D-03 | 0.671D-05 0.00089
0.793D-12 | 0.677D-06 | 0.798D-07 0.01189

© 00 N O O b~ W

TABLE 4.3: Training of a 2—2-1 neural network with the inexact Gauss—Newton method of Theorem 3.2.5

If the training of the described 2—-2-1 network is carried out with the inexact Gauss—Newton
method which generates the sequence of Theorem 3.2.5

wiv1 = wi — J(wi) T R(wi) — (I — J(wi)*J (wi))(wi — wi) — J(wi) "

we obtain the values presented in Table 4.3. Note that the problem is a zero-residual problem. Here,
as in Theorem 3.2.5, the sequenggconverges g—quadratically in norm 4@ without projecting

it onto a proper subspace. Although this sequence of iterates cannot be used in general since the
required information onw, is not available, the numerical results underline the theoretical
statements.

4.4.2 Neural Networks in Forecasting Stock and Index Prices

In this subsection, we summarize briefly some important aspects of financial forecasting and the
application of neural networks in this area.

A model based examination of financial forecasting and the application of neural networks

In general, a forecast is a guess about one or more events that will happen in a future period and
which is based on observations of the past [14, p. 551]. If forecasts are based on a model that gives a
simplified description of the influence of observations of the past on the future value of the examined
object, then the success of any forecast is determined by the quality and the temporal stability of this
model [14], [53].

The quality of the model is determined by the extent and the faultless determination of the
observations. These observations should include the examined object as well as all quantities which
might have an influence on the future value of this object [14]. Note that the number of the
observations causes the complexity of the model [5]. Furthermore, the quality of the model is based
on the ability of a sufficiently good description of the influence of the observations on the future
value of the examined object.

The temporal stability of a model is given if an explanation of the connection of the observations
and the forecast which holds for a past period continues to be valid in the future [14]. However, the
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validity of this last aspect describes an universal problem since an exact repetition of past events
does not exist [53]. Hence, the question is whether the structural change is so significant that the
projection of valid structural connections from the past into the future would lead to false forecasts
[53]. In addition to this Stottner [100] mentions that a final solution of the dilemma of forecasts
supported by observations of the past and the future structural instability is hardly possible and that
this dilemma is finally the reason of an indelible remaining risk of any forecast.

Thus, the model for forecasting stock or index prices determines the quality of the forecast.
Unfortunately, so far one failed to quote a mathematical description about the realization of a stock
or index price such that it is not possible to assert a well defined model for the forecast of stock or
index prices [5].

The stock market is marked by its highly complex structure whose co—operation of the variables
is neither theoretically uniquely explainable nor empirically exactly describable [5]. Moreover, there
exists a large variety of variables in the stock market which are not all obvious and which change
over time. Furthermore, there is evidence that also the interactions of these variables change and
that they are nonlinear [81].

Thus, for an efficient forecast of a stock or index price it is necessary to examine the linear and
nonlinear dependencies of a large number of variables as well as their interactions.

The advantage of the application of neural networks in forecasting is that the underlying
function form which generates the data does not need to be known in advance. The neural network
rather tries to find this function during the learning process. In this spirit, the neural network learns
the model for pricing the stocks and indices, respectively [65].

Complete freedom in the choice of the model, however, is also not given if neural networks are
used. A certain idea of the model is necessary. In this connection, the choice of the data plays an
important part: the data set should be sufficient large and representative concerning the task of stock
or index price forecasting so that the structure of the formation of prices can be marked [5]. However,
already the determination of a first idea of the model by choosing the variables, which might have an
influence on the forecast, is difficult. Especially in financial forecasting, it is impossible to determine
only roughly optimal a priori the number and the kind of preprocessing of the variables because of
the complex interactions in the stock market [5].

A survey of methods for neural networks that deal with this phenomena is given in [5].

Specialization of the model underlying neural networks

In the following, we mark the models which are generated by neural networks.

As mentioned above, we restrict ourselves to the examination of feed—forward networks. These
network architectures model the transition of the input into the output on the basis of the law of
cause and effect since the information is transmitted through the network only in one direction. The
transition between the input variables and the forecast is determined without an explicit influence of
the time. Thus, the use of feed—forward architectures implies the formation of input/output models
[5].

Neural networks also can be classified with regard to the different models that exist for the
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analysis of asset prices. The traditional explanation and valuation models for analyzing asset prices
are divided regarding the origin of their variables and regarding the explanation of the formation of
prices and the valuation approach for the calculation of prices. The existing two main model classes
are the fundamental analysis and the technical analysis [16].

Fundamental analysis is the examination of the underlying forces that affect the well being of
the economy, industry groups, and companies. To forecast future stock prices, fundamental analysis
combines economic, industry, and company analysis to derive a stock’s current fair value and
forecast future value.

By contrast, technical analysis is the examination of past price movements to forecast future
price movements. Technical analysts are sometimes referred to as chartists because they rely almost
exclusively on charts for their analysis. Technical analysts believe that the current price fully reflects
all information. Thus, the price represents the fair value and should form the basis for analysis.

Until now, the procedure was that the technical analysis and the fundamental analysis were both
carried out independently. After their separated inquiry, the results are combined which is often not
done methodically [5] but within the scope of qualitative discussions of experts.

Neural networks can be assigned either to the technical or to the fundamental approach by
feeding exclusively either technical oriented or fundamental oriented input data into the neural
network. The advantage of a technical or fundamental analysis with neural networks is that these
allow the simultaneous analysis of very many variables at which additionally a nonlinear perspective
can be established [5].

A further development of the traditional models for analyzing asset prices by neural networks
consists in the combination of the fundamental and technical approach with reference to econometric
models. In this case, the neural network simultaneously analyzes both variables which are assigned
to the technical analysis and variables which are assigned to the fundamental analysis in solely one
computation.

Hence, in neural networks the choice of the different approaches for analyzing stock or index
prices consists in the determination of the input data, i.e. which variables and which preprocessing
of the time series have to be chosen. According to the specification of the input data, a technical,
fundamental or econometric model is supported.

4.4.3 Preparation of the Neural Network and the Training Patterns
Choice and preprocessing of the input data

The statements in the previous subsection illustrate that the selection of the data plays an important
role in deriving an efficient model for forecasting stock or index prices. In general, the following
aspects have to be considered for the choice of the data (see also [19]):

1. Do the data satisfy the requirements regarding quantity and quality?

2. Which data are suitable as input and output data with regard to the problem formulation and
are added to the neural network?
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3. In which form are the data to be presented to the neural network?

Regarding the quantity, it has to be guaranteed that a sufficient number of data sets are available,
since the neural network gain their knowledge out of these data. The more extensive the data
material is the better the different situation is covered and the smaller the runaways in the measured
values is weighted [19]. However, one has to consider that the preprocessing of the data and the
learning process gets more expensive with increasing data material. Furthermore, in this case the
risk increases that contradictory information is added to the network which might make worse the
learning result [19].

The quality of the data is the basis for the function built by the neural network, i.e. one has
to clarify which are the possible values having a causal influence of the predicting value [87]. The
choice of the data is certainly influenced by ones conviction regarding the success of technical or
fundamental analysis in forecasting stock or index prices (see also the previous subsection). In this
connection also the principle holds “garbage in — garbage out”, i.e. the quality of the statements of
the neural network largely depends on the validity and consistence of the data underlying the training
process of the network [19]. However, as already mentioned above, often it is not possible to specify
concretely which variables influence the examined object. Hence, it is necessary to include many
variables into the model to increase the probability that the scope is described comprehensively.

The data which crucially determine the examined problem are to be chosen as the input data.
The output of the neural network is determined by the wanted information [19]. In the case of stock
or index price forecasting, the input vectors are the lagged values of a time series and the output is
the prediction for the next value [39]

Moreover, within the scope of the representation of the data, we have to deal with the aspects of
scaling and preprocessing of the data. The scaling of the data applies to the task that the data which
are supplied to the network are mapped onto the interval which can be processed by the network
[19]. The choice of the interval depends on the activation function. In our case, we have chosen the

logistic function (see (4.1.1))
1

1 + e—kr :
For this function, it is necessary to scale the input and output data onto the iftemjalin doing
so, we have chosen the intery@ll; 0.9] since the end poindand1 are not reached by the logistic
function. The preprocessing of the data deals with the question in which form the information
should be made available to the neural network and which form the output of the neural network
should have. In the field of financial forecasting, the preprocessing functions are often derived
from technical analysis [78] in order to capture some of the underlying dynamics of the financial
markets (see for instance [86], [109]). Regarding the output of the neural network, the preprocessing
prescribes whether point predictions are carried out or the network output informs about the trend
of the examined time series.

or(r)

Construction of the training pattern

When the choice of the input and output data is made, the patterns for the training of the network
have to be arranged. In this connection, we stress again how important the choice of the learning
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patterns is for the attainable efficiency of a neural network. The patterns in its entirety must represent
as good as possible the set of all possible situations in the relevant part of the capital market. On
the other side, the information in the training set must not get arbitrary large since the capability of
learning, i.e. the storage capacity, in a neural network is limited.

Training:

Input Output
1. pattern DAX,,DAX5,$1,8%2) (DAX3)
2. pattern DAX>,DAX35,82,9%s) (DAXy)

10. pattern DAX10 s DAX1; 7$10 s $11) (DAX12)

ForecastingD AX3:

Input Output
1. pattern PAX11,DAX12,%11,%12) unknown

FIGURE 4.5: Arrangement of the training and forecasting patterns

We will explain the arrangement of the training and forecasting patterns by the following
example (see also Figure 4.5). Suppose we wish to forecast the German stock index DAX for
instance for the month 1/1994, i.e. the closing value of the last day of the month 1/1994 (in Figure
4.5 this value corresponds 194 X 3). Furthermore, we assume that lagged values of the time series
of the DAX itself and the US—Dollar are to present to the network, and that this are the values of
the last twelve months each, i.e. the DAX and US—Dollar values of the months 1/1993 until 12/1993
(these are the valud3A X, — DAX1, and$; — $12, respectively, in Figure 4.5). Each of the input
vectors are to contain two scaled DAX values as well as two scaled US—Dollar values. Since each
neuron in the input layer of the neural network only contains one value, thus, the first layer of the
network consists of four neurons. The output of the pattern consists in a scaled DAX value according
to the given problem formulation. According to the available data, we are now able to construct ten
training patterns. The composition of this training patterns is made clear in Figure 4.5. This figure
shows that the input vector contains the values of the DAX and US-Dollar which directly preceded
the output value, i.e. if the output value for instance represents the DAX value of the month 5/1993
then the input vector of this pattern contains the DAX and US-Dollar values of the months 3/1993
and 4/1993.

After the termination of the training of the neural network, the actual vector of input data, i.e.
the DAX and US-Dollar values of the months 11/1993 and 12/1993, is presented to the network
in the example (this corresponds to the forecasting pattern in Figure 4.5). Then, the output of the
neural network represents the prediction of the DAX value for the month 1/1994.
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Note that the number of values in the input vector which belong to the same time series and the
number of training patterns determine the period of observations that is available for the learning
process.

The design of the neural network

The solution of the questions how many layers or how many units in any of the layers enables the
best forecast is mathematically unsolved. It turned out that different results were achieved when the
numbers of layers and units in any of the layer were varied; however, a deterministic method for the
choice of the optimal network is not known so far. In principle, neural networks with only one layer
of hidden neurons are already able to approximate any structure contained in a data set [78].

Regarding the number of neurons in each of the layer, we note that the number of neurons
in the input and output layer are already determined by the decision which variables are to be
presented to the network and the number of forecasts to be made with just one network, respectively.
For the determination of the necessary number of units in the hidden layer, usually the strategy is
followed such that one starts with a network whose dimension is too large for the given problem and
subsequently removes superfluous units.

Thus, an optimal configuration of a neural network can only be found in an extensive trial—
and—error process.

Overfitting

After the training patterns and the neural network architecture is fixed, the training process of the
neural network, i.e. the adjustment of the weights in the neural network, is started.

Now, if the training process is carried out until the error of the outputs of the neural network and
the target outputs in the training patterns is minimized, then the neural network strives to perfectly
map the presented data. However, the extracted structure cannot be used for a generalization. Figure
4.6 makes clear that in case of a perfect map of the training patterns the neural network generally
generates poor forecasts. This is the case because time series not only contain deterministic behavior
but also a certain portion of noise that should not be modelled by the network. This problem of fitting
the noise in addition to the signal is called overfitting [39].

Moreover, the problem of overfitting is increased by the constellation of a large number of
parameters compared to a small number of training data. In problems like forecasting stock or index
prices often there are only a few training data available compared to the complexity of the network
parameter [109], especially when the adaption of the weights is carried out on the basis of monthly
data [44]. This enables the network to obtain an arbitrary exact adaption to the training data without
building an ability of generalization.

In forecasting, it is less important how well a model fits the training data. The aim of the
training process rather is to achieve an optimal ability of generalization of the neural network, i.e.
the network should extract regularities from the training examples that do transfer to new examples
[19].
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FIGURE 4.6: Training and Forecasting period of a FIGURE 4.7: Error on the training set and the test set
neural network

Stopping criterion for the training process

One of the most well known techniques for attacking the overfitting problem [78] and achieving
the ability of generalization of the neural network is the early stopping procedure, also called the
Stopped-Training method.

In this method, the time when to stop during the learning process is determined when the ability
of generalization of the network decreases. In this connection, the concept of cross validation has
been proven successful. The idea of this concept is to divide the available patterns of input/output
data into two disjoint sets (see e.g. Zimmermann [109]):

1. The set of training data serves for the actual learning process, i.e. the adaption of the unknown
weights.

2. The set of test data is used after each iteration of the learning algorithm to compute the error
generated by the network.

The plot of the error in predicting points out of the training set and the error in predicting points out
of the test set in Figure 4.7 shows that the former error decreases monotonically during the complete
training process, see the line in Figure 4.7 labelled with “training”. By contrast, the error on the test
set will initially decrease as the network starts to learn the interactions of the input data, but then will
begin to increase once the network starts to learn the noise, see the line in Figure 4.7 labelled with
“test”. The location of the minimum of this error determines when the effective network complexity

is right [39], i.e. this state of the neural network presents the best possible weights and accordingly
should be saved and documented.

4.4.4 Training of Large—Scale Networks

For comparison of the inexact Gauss—Newton algorithm with the backpropagation algorithm, we
carried out the training of different neural networks with these two methods. The networks
considered have between 4,500 and 45,000 unknown parameters.
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Network # of total # of | aver. # of
(# variab.) Method cpu in sec. outeriter. | cgiter. cg iter.
Backp. 5859 2031 - -
110-40-2 5 _\. 398 154 425 2.76
(4.522) G.—-N. (mt) 296 66 343 5,20
Backp. 25161 4029 - -
110-80-2| 5 _\. 952 239 383 1.60
(9.042) G.—N. (mt) 572 71 355 5.00
Backp. 82061 10000 - -
110-100-2) o . 1899 398 598 1.50
(11,302) G.—N. (mt) 831 77 437 5.68
Backp. 24430 2743 - -
165-100-2 5 . 1304 249 374 1.50
(16,802) G.—N. (mt) 718 56 318 5.68
Backp. 108876 10000 - -
165-120-2) 5 _\. 2612 429 604 1.41
(20,162) G.—N. (mt) 714 43 273 6.35
Backp. 74587 5853 - -
165-140-2) 5 _\. 5225 730 1100 1.51
(23,522) G.—N. (mt) 1425 62 528 8.52
Backp. 124255 8104 - -
165-160-2)  \. 5608 701 1012 1.44
(26,882) G.—N. (mt) 1441 66 425 6.44
Backp. 168884 10000 - -
165-180-2)  \. 6080 709 866 1.22
(30,242) G.—N. (mt) 3244 200 703 3.52

TABLE 4.4: Comparison of the inexact Gauss—Newton method with the Batch-Backpropagation with Armijo line search
(Backp.= Backpropagation, G.—N= Inexact Gauss—Newton Algorithm 2.2.3 of Sec. 2, G.—N. @nthexact
Gauss—Newton Algorithm 2.2.3 with a modified trust—region strategy)

The input data of these networks consist of the DAX and other time series such as e.g. the
Dollar, the REX performance index, dividend yields. The goal of these neural networks is to predict
the DAX value of the two following months. Therefore, the output layer of these networks contains
two neurons. For the training of the network, 180 patterns are available.

As a termination criterion for the overall method, we used the Stopped-Training method
described in the previous Subsection 4.4.3 to training the neural networks.

The results of the training of each of these networks with a backpropagation algorithm
combined with a Armijo step size rule and the Inexact Gauss—Newton Algorithm 2.2.3 described
in Chapter 2 are listed in the first two rows in Tables 4.4 and 4.5. These results show that the
computation time of the inexact Gauss—Newton method in most of these examples is less than 5%
of the computation time of the backpropagation.
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Network # of total # of | aver. # of
(# variab.) Method cpu in sec. outeriter. | cg iter. cg iter.

Backp. 32782 3461 - -
220-100-2 . 3128 483 931 1.93
(22:302) | 5\, (mt) 1000 59 438 7.42

Backp. 117513 10000 - -
220-120-2 5 \. 4849 690 1077 1.56
(26.762) | 5 . (mt) 1387 56 502 8.96

Backp. 40591 2961 - -
220-140-2  _\. 3846 472 696 1.47
(31.222) | 5 . (mt) 1121 81 264 3.26

Backp. 162602 10000 - -
220-160-21 5\ 7572 828 1235 1.49
(35682) | 5 . (mt) 1728 62 485 7.82

Backp. 69421 3831 - -
220-180-21 5\ 7577 775 986 1.27
(40.142) | 5\, (mt) 2594 93 625 6.72

Backp. 167536 8135 - -
220-200-2 5\ 9244 852 1063 1.25
(44.602) | 5 _\. (mt) 1702 64 347 5.42

TABLE 4.5: Comparison of the inexact Gauss—Newton method with the Batch-Backpropagation with Armijo line search
(Backp.= Backpropagation, G.—N= Inexact Gauss—Newton Algorithm 2.2.3 of Sec. 2, G.—N. @mthexact
Gauss—Newton Algorithm 2.2.3 with a modified trust—region strategy)

The results listed in the last row of each subsection in Tables 4.4 and 4.5 are obtained with
the inexact Gauss—Newton method but with a slightly modified trust—region strategy. Usually, the
trust—region radius is updated with the rule

[[w]| if 0, <
Ai_t,_l _ P} B ) If Pi > .0417
min{2 |[ow;||,A} , otherwise.

In the modified version the increase of the trust—region is more aggressive; Botv; the radius
is not dependent anymore on the current direction but on the radius of the previous trust—region and
accordingly we set

[[w]| if 0, <
AVERTIES 2 o= .al’
min{2 A;, A} , otherwise.

Additionally, in the modified version of the trust—region strategy the stopping criterion when
reaching the trust-region is changed slightly. If a conjugate gradient direction reaches the boundary
of the trust—region, then the ratip of the actual decrease to the predicted decrease is computed. If
pi < as we proceed as described in Algorithm 2.2.3 in Chapter 2. Otherwise, we ignore the current
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trust—region and continue until the conjugate gradient iterate fylfills . Hence, this modified
version considers not only the previous quadratic model for the adjustment of the trust—region but
also the current one.

The numerical tests show that this strategy accelerates the inexact Gauss—Newton method even
further, as the number of outer Gauss—Newton iterations is reduced. A consequence of the modified
trust—region strategy is that the average number of conjugate gradient iterations increases but due to
the large reduction of the number of Gauss—Newton iterations the total number of conjugate gradient
iterations is also decreased.

Network | # of train. # of total # of | aver. # of | approx. cpu
(# variab.) pattern cpuin sec. outer iter. | cg iter. cg iter. of 1 cg iter.
900 49046 97 1645 16.96 29.82
390-195-11 1559 81052 114 2207 19.36 36.72
(76,441) 1800 208766 152 3932 25.87 53.09
900 114659 105 2656 25.30 43.17
520-260-11 1,54 144506 110 2542 23.11 56.85
(135,721) 1800 485480 151 5938 39.32 81.76
900 264923 84 2794 33.26 94.82
84542511 1500 316647 113 2384 21.10 132.82
(359,976) 1800 956468 137 4541 33.15 210.63

TABLE 4.6: Training of very large neural networks with the inexact Gauss—Newton method using the modified
trust-region strategy

Finally, Table 4.6 contains results of the training of very large neural networks (i.e. up to
360,000 unknowns) using the Inexact Gauss—Newton Algorithm 2.2.3 with the modified trust-region
strategy. The input of these networks contains data of different time series which are based on daily
data. The reason for the large increase of the computation time of the training of these large networks
compared to that of the networks of middle size in Tables 4.4 and 4.5 is, apart from the increase of
the number of variables, the larger number of training patterns. The latter causes the increase of the
average number of conjugate gradient iterations and the increase of the approximate computation
time of one conjugate gradient iteration (cpu tichéotal # of conjugate gradient iteration) which
almost depends linearly on the number of training patterns assuming a fixed network (see also the
theoretical statements about the computational effort in Section 4.2).

Furthermore, in Figures 4.8 and 4.9 we have plotted the computation time of the training for
neural networks of middle and large size in dependence of the number of unknown weights in the
neural network. These plots show that the computation of the training also depends almost linear
on the number of weights in the neural network. Moreover, the Figures 4.8 and 4.9 show that the
increase of the computation time is at a smaller rate for the inexact Gauss—Newton method with the
modified trust-region strategy.
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FIGURE 4.8: Computation time of networks of middle FIGURE 4.9: Computation time of networks of large
size size

The results in this subsection about the training of neural networks using the Inexact Gauss—
Newton Algorithm 2.2.3 show that this method enables also a convenient use of middle and large
scale neural networks.

4.4.5 Forecasting and Performance

The goal of the development of neural networks is to find a network that achieves results that are
as good as possible on unknown patterns, i.e. with data which was not available during the training
process. Therefore, it is necessary to compare and review the results of different developed networks
on the basis of so—called forecasting data after the training process is finished. In this connection,
input/output patterns are put aside that are not used in the training process and that serve to test the
quality of the forecasts of each of the neural networks. These forecasts that are made for a past
period to test the quality of the underlying model are so—called ex post forecasts [14]. To illustrate
the procedure of testing the quality of neural networks, suppose that for instance in January 1995 a
forecasting model is developed to predict the future value of the DAX on monthly basis. Assume
that therefore the underlying system of the process describing the formations of prices is examined
by observations belonging to the period starting January 1992 until December 1993. Then, for
the period from January 1994 until January 1995, the future values are forecasted although there
already exists observations for this period. These ex post forecasts serve for the check of the model.
Subsequently, if the forecasting model proves to be good, it is used to forecast ex ante the still
unknown values for February 1995 and the following months (see [14]).

Whereas during the training period, usually the mean squared error is used for the measurement
of the learning progress, we use different reference numbers for the ex post judgement. A central
difficulty in the judgement of the quality of a forecasting model is the choice of the proper values,
that form the basis of the valuation, as well as a proper benchmark [87]. In the following we compare
the output computed by the network with the target output. Furthermore, we use the rate of right
trends and the trading profit for a valuation of each of the model.

Although we perform point prediction, we still can deduce information from the output of
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the neural network about the trend of the price process of the examined asset. If the future value
predicted by the neural network is larger than the newest value of the corresponding time series in
the input layer, then the network predicts an increase and in the opposite case the prediction of the
network is interpreted as a decrease of the price of the examined asset. Then, for the computation
of the rate of right trends one only needs to count the number of right and false trends given by the

neural network to compute the rate of the right forecasts.

The computation of the trading profit is more complicated. For this a trading model (which
converts predictions to recommendations for actions [39]) has to be incorporated into the simulation.
In our simulations, we will use the following simple trading strategy: If the neural network predicts
an increasing price, then the trading model orders to buy fictitiously the index (or to hold the index, if
already a long position exists). In the opposite case, i.e. the network predicts a decreasing price, then
the trading model orders to sell the index and to invest in bonds or time deposits (or to do nothing
if already an investment in bonds or time deposits exists). The profit from this trading strategy
under consideration of transaction costs is then compared with the profit of a simple buy—and-hold
strategy. Note that the latter strategy also reflects the general market development in the examined
time period (see also [87]); and, hence, is appropriate to serve as a reference value for a assessment
of the trading profit of the neural network.

In our simulation, we leave the network architecture fixed for the simulation period. However,
for each forecast we start the training process again to renew the weights in the neural network so
that also the more recent dynamics in the corresponding market is incorporated.

net input sign acc. perf.
10-10-1 dax 67 % 167
30-6-1 dax, us, rex 67 % 187
40-5-1 dax, us, rex, div 72 % 196

50-5-1 dax, us, rex, div,cuy 80 % 215

TABLE 4.7: Dependence of the choice of the input data on the quality of the performance of the neural network
(dax = DAX, us = US-Dollar, rex = REX performance index, div = dividend yields, cuy = current yield)

Table 4.7 lists the results about the rate of right trends and the performance of the above
described trading strategy for different neural networks. The second column informs about the
different input data of the neural network. The numbers in the third column are the rate of right
trends attained by each of the neural networks. Furthermore, the last column of Table 4.7 informs
about the performance of the trading strategy of each of the neural networks for an initial investment
amount of 100 DM. The simulation period is January 1992 until December 1994. The task of each
of the networks is the prediction of the future DAX price. One can see that both numbers increase
if the network is not only fed with DAX prices but also with other information which could have an
influence on the development of the DAX price. These results underline the statements in Subsection
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4.4.3 and make clear that a naive application of neural networks will fail for financial data (see also
[39]).

Forecasts for the period 1992 - 1994 (50-5-1 network, 65 training patterns) Performance for the period 1992 - 1994 (50-5-1 network, 65 training patterns)
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FIGURE 4.10: Forecasting of the neural network FIGURE 4.11: Comparison of NN—portfolio and
DAX—portfolio

In Figure 4.10 we have plotted the forecast of the last neural network listed in Table 4.7 against
the target output (i.e. the particular DAX value) for the period January 1992 until December 1994.
Figure 4.10 shows that some of the predictions of the network are very close to the particular DAX
value (see f.e. the prediction for January 1992, February 1992 and June 1992) however in other
months the difference between the output of the neural network and the target output is quite large
(this is especially the case at the end of the simulation period).

Although it would be most profitable to know the exact future price of the examined asset, a
rough estimation is often enough to make a reasonable profit on dealing operations. In Figure 4.11,
we have plotted the performance of the trading strategy underlying the above mentioned 50-5-1
neural network (i.e. the line labelled with “NN”) against the performance of a buy—and-hold strategy
(i.e. the line labelled with “DAX”). Although this neural network has failed to accurately predict the
particular DAX value, the performance of the neural network trading strategy beats the benchmark
(i.e. the general market development) quite clearly in the period January 1992 until December 1994.
A prerequisite for a good performance is that the neural network detects decreases of the price to
avoid losses in the investment. Figure 4.11 makes clear that the examined network has identified all
except three of these situations. Furthermore, for a good performance like the one in Figure 4.11
additionally it is necessary to participate in price increases of the examined asset. The lower line
in Figure 4.11 that jumps between 60 and 80 informs about the current type of the investment. The
line jumps to or stays at 60 , respectively, if the trading strategy gives the order to invest in bonds
or time deposits. If the line jumps to or stays at 80 then the order is to invest in the index. This
line, that is labelled with “Strategy”, shows that the examined 50-5—1 network in general identifies
also price increases so that in all the trading strategy underlying this neural network achieves this
excellent performance.

This illustrates that for speculative purposes, only trend turning points are actually important.
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Therefore, many of the financial institutions which are trying to predict future asset prices generally
rate algorithms by evaluating the percentage of time when the algorithm gives the right trend from
today until some time in the future [68].

net input # of train.—pattern #inFig. 4.13 & 4.15
10-10-1 dax 65 44
20-8-1 dax, us 65 48
30-6-1 dax, us, rex 65 52
40-5-1 dax, us, rex, div 65 56
50-5-1 dax, us, rex, div, cuy 65 60

TABLE 4.8: List of neural networks used for backtesting (dax = DAX, us = US-Dollar, rex = REX performance index,
div = dividend yields, cuy = current yield)

However, we also noticed that the performance of this 50-5—-1 network was worse for other
periods. Since the conditions in financial markets change dynamically it is necessary that the model
approximating the particular market has to be adapted correspondingly. To possibly react more
flexible on these structural changes in the market we carried out a so—called backtesting. In this
connection, we examined a set of neural networks with different network architectures as well as a
different choice of input data by measuring the performance of the trading strategy underlying each
of these networks for an in advance defined period of time. For example for a prediction of the
DAX of January 1994, we measured the performance of the trading strategy of, say, five different
networks for the period starting January 1993 until December 1993. Then, the neural network which
has performed best on these past data is used for the forecast of the next future DAX price, i.e. the
DAX at the end of January 1994 in our example. For the following forecast, i.e. the forecast of the
DAX in February 1994, the whole process is repeated all over, however, with all the dates put off by
one month into the future.

In the following, we show the results of backtesting simulations for the period January 1990
until December 1994. In these simulations the set of neural networks consists of the networks listed
in Table 4.8.

In the first simulation, the performance of each of the different networks was measured for a
period of twelve months. Figure 4.12 shows the forecasts and Figure 4.13 displays the performance
of an investment following the trading strategy of this backtesting simulation. The choice of the
different networks for each of the forecasts is given by the lowest line in Figure 4.13. The relation
of the numbers and the different networks is given in the last column of Table 4.8. The quality of
the forecasts and the performance of the networks chosen in this backtesting simulation is certainly
not as good as the forecasts and the performance of the 50-5-1 network in Figures 4.10 and 4.11
(note that the period of the backtesting simulation is longer), but in this backtesting simulation most
of the time the trend turning points were found in time, too, so that the losses in the investment only
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Forecasts for the period 1990 - 1994 (Backtesting with 5 networks, testing period 12 months)

Performance for the period 1990 - 1994 (Backtesting with 5 networks, testing period 12 months)
2300 200 T T T T T T T T T
DAX NN

2200 | El

180 NEtz o |
2100 |

160
2000 |

140 |
1900 -
1800 |- El 120 |
1700 |-

100 =
1600 |

80
1500 -

60 9000 $0040 ' 0060b080b400600-
1400 -

oo

1300 40

L L L L L L L L L L L L L L L L
06.1990 121990 06.1991 121991 06.1992 121992 06.1993 121993 06.1994 12.1994 061990 121990 06.1991 121991 06.1992 121992 06.1993 121993 06.1994 12.1994

FIGURE 4.12: Forecasting of the neural network FIGURE 4.13: Comparison of NN—portfolio and

DAX—portfolio

occurred for a few times and only to a small amount. The performance of the networks chosen in the
backtesting simulation is not that outstanding than the performance of the 50-5-1 network since in
the backtesting simulation the underlying investment has not always participated in price increase.
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DAX—portfolio

Unfortunately, these good results also are not generally obtained. If the performance
measurement is carried out for a period of three months, the performance of the networks based
on the backtesting is much worse (see Figures 4.14 and 4.15). At the end of the examined period the
trading strategy based on the networks chosen in the backtesting simulation is only slightly better
than the buy—and—hold strategy.
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4.4.6 Sensitivities

Economists are often not only interested in the forecast by itself but also in the relation inherent in
the financial markets. The knowledge found during the training of the neural network is distributed
among the different weights and biases of the neural network. In general, it is very difficult to
extract and interpret this knowledge. One attempt to make statements about the found knowledge
is the analysis of the sensitivities to identify relations between the input data and the forecast. In
Section 4.3, we have shown that the sensitivities of the output of the neural nefifetk,) with

regard to theith component of the input datg € IR™ at a given pointv are given by

0 yl(w’ tp) — O_/(wlyzl)—l + Ql) Wl J/(Wl—lyIZ)—Q + el—l) Wl—l . O',(Wltp + 91)W1€j

(tp);

FIGURE 4.16: Sensitivities with respect to the time of FIGURE 4.17: Average sensitivities with respect to the
the input data of a 8—-8-1 network; the training was time of the input data of a 8-8—1 network; the training
carried out only once was carried out only once

In Figure 4.16, we have plotted the sensitivities of a 8—8—1 network which only contained DAX
values in the input layer. The training of the network was only carried out once such that the forecasts
of the next ten dates are all made on the basis on the same weights and biases of the network but
on different input data. This aspect is reflected by the plot of the sensitivities as the sensitivities for
the different input pattern are almost constant. One can also see that the latest DAX value, which
corresponds to 8 on the-axis, has the largest influence on the forecast, i.e. small changes in the
latest DAX value will cause the largest changes in the output of the neural network. Figure 4.17
contains the average sensitivities over the different forecasting patterns which are given by
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with P is the number of forecasts and

, pzl...,]a.
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Figures 4.18 and 4.19 display the sensitivities of the same 8-8-1 network as above but in
contrast to Figures 4.16 and 4.17 the training was carried out and, thus, the weights and biases were



74 4 Forecasting with Neural Networks

FIGURE 4.18: Sensitivities with respect to the time of FIGURE 4.19: Average sensitivities with respect to the
the input data of a 8—8-1 network; the training was time of the input data of a 8-8-1 network; the training
carried out for each forecast was carried out for each forecast

adapted, for each of the ten forecasts. Figure 4.18 makes clear that again the latest DAX value has
the largest influence on each of the forecasts, but the size of the influences of the other input data
changes during the simulation period. Furthermore, Figure 4.17 shows that older input data have
less influence on the forecast.

In Figures 4.20 and 4.21 we plotted the sensitivities with respect to the time of the input data of
the 50-5-1 network which we have already examined in the previous subsection. If the composition
of the different input data in the input vectgyis given by

ty = (ty,to.t0 ) )7

with t; containing the different time series values of ittetype of input data, i.e.

th= ()1, ({th)2,...,(th)w)", i=1,...,5,

then the sensitivities with respect to time given in Figures 4.20 are computed according the formula
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and the ones in Figure 4.21 are given by

with P is the number of forecasts and
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Figure 4.21 shows that the newest input data again have the largest influence on the forecast of the
neural network, however, the difference to the older input data is not as large as in the previous
Figures 4.16 — 4.19. It is possible that regarding the other time series (i.e. DAX, REX Performance
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FIGURE 4.20: Sensitivities with respect to the time of
the input data of a 50-5-1 network with different type
of input data

FIGURE 4.22: Sensitivities with respect to the type of
the input data of a 50-5-1 network

FIGURE 4.21: Average sensitivities with respect to the
time of the input data of a 50-5—-1 network with
different type of input data

Sensitivitaet (50-5-1 Netz, 65 Muster, 1 Prognose,

FIGURE 4.23: Average sensitivities with respect to the
type of the input data of a 50-5-1 network

etc.) the difference of the influence with regard to the time of the input data is not as large as for the

DAX time series.

Finally, in Figures 4.22 and 4.23, the sensitivities of the 50-5—-1 network with respect to the
different input data are shown. The sensitivities displayed in Figure 4.22 are computed according to

the formula
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with (,)s = ((t3)i, (t2)i, (t3)i, (t3)i, (t5)s) containing theith time series value of each of the
different type of input data. Furthermore, the average sensitivities in Figure 4.23 are given by
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This plot reflects the expected result that the DAX value has the largest influence on the development
of the time series of the DAX.

4.4.7 Concluding Remarks on Neural Networks in Financial Forecasting

A critical item in using neural networks in forecasting is to find an optimal neural network for the
given task. This process is very time—consuming since not only the choice of the input data but also
the decisions about the number of hidden layers of the network as well as the number of neurons
in each of these layers have to be made. Furthermore, if an “optimal” network is found that has
obtained good results for a specific period it necessarily does not work well in other periods since
the capital markets are subject to permanent structural changes of the interactions of the different
variables. Hence, the set of input data and the network architecture must permanently be adapted
to consider the changes in the capital markets. Nevertheless, neural networks have generated some
very promising results in forecasting financial prices, see for instance the results in Subsection 4.4.5.

Unfortunately, at the beginning of the application of neural networks in financial forecasting,
some expected that neural networks would almost be equivalent to the legendary “crystal ball”.
However, this expectation could not be fulfilled by neural networks, since they also only generate
their knowledge on the basis of past data. In the end, however, neural networks are a promising
attempt when unknown linear and nonlinear connections in the examined system have to be treated
and when data in sufficient quantity and quality are available.



Chapter 5

Constructing the Instantaneous
Volatility Function

In this chapter, we are concerned with the valuation of European call options. We will show in the
first section that an important parameter for determining the value of the European call option is the
volatility parameter. For along time, this parameter was assumed to be a constant according to the
well known model of Black and Scholes. However, it is evident that the assumption of a constant
volatility parameter in the model describing the underlying asset price process is not conform to
reality since the computation of implied volatilities from market European call values has shown
that the volatility varies with the strike price as well as with the maturity of the option. In this work,
we will examine a European option model that is consistent with this volatility smile. In this model
the volatility parameter now represents a function dependent on the strike price and the maturity
of the European call option. In Section 5.2, we will present this model that represents a second—
order parabolic initial-value problem and show that the value of the European call option is the
unigue solution to this problem. Then, in the following section, we will introduce the mathematical
formulation of the construction of the volatility functien K, T') dependent on the strike pridé

and the maturityl” of the option. The resulting optimization problem represents an inverse problem
with the system equation given by a parabolic initial-value problem.

Treating this problem numerically requires a discretization of the parabolic initial-value
problem which will be presented in the following Section 5.4 by using a finite difference method.
Moreover, we examine the convergence behavior of this finite difference method and introduce the
finite dimensional version of the optimization problem describing the construction of the volatility
function. This problem represents an underdetermined nonlinear least—squares problem. Applying
the Inexact Gauss—Newton Algorithm 2.2.3 to this problems requires the evaluation of the Jacobian
of the residual function of the nonlinear least—-squares problem times a vector as well as the
evaluation of its transpose times a vector. In Section 5.5, we will present subroutines for both of
this evaluations without storing the Jacobian explicitly. We end this chapter by presenting some
numerical results for a synthetic European call option example and for constructing the volatility
function for the German stock index DAX.

77
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5.1 Motivation

European call and put options are a special kind of derivative securities. These are securities whose
value depends on the values of other more basic underlying variables [58] and which can establish
rights as well as obligations [92]. Strictly speaking, a European call option gives the holder the
right to buy an underlying security (the underlying) for a fixed prcdthe strike price or exercise

price) on a fixed dat& (the maturity, expiration date or exercise date), see for instance Hull [58] or
Wilmott, Dewynne, and Howison [107]. A European put option, on the other side, gives the holder
the right to sell an underlying security for a fixed pri&eon a fixed datd” [58], [107]. The holder

of a European call or put option only will exercise the option if the strike pKcef the option

is smaller or larger, respectively, than the value of the underlying @ssetthe expiration date

T. Since options only establish rights and no obligations for the holder these derivative securities
have a certain price. The value of the European call and put option at twilebe denoted by

C(S,t; K,T)andP(S,t; K,T), respectively. It is well known that the value of European call and

put options are closely related to each other according to the put—call parity

S+ P(S,t; K,T)—C(S,t; K,T) = K exp(—r(T — t)),

if equal borrowing and lending rates are assumed and with the risk—free interest rate dengted by
see for instance Merton [73]. Therefore, in the following we will only examine the valuation of
European call options.

For the valuation of options there exist different models. In general, they establish a relationship
between the traded derivative, the underlying asset and some market variables, e.g. volatility of the
underlying asset [9], [73].

A well known model in this context, that is often used in financial practice, is the Black—
Scholes model [9]. This model assumes that the valoéthe asset underlying the option satisfies
the following stochastic differential equation (a geometric Brownian motion with constant process
parameters)

dS = pSdt+ o Sdw, (5.1.1)

where the constantg and o are the drift and the volatility parameter of the asset price process,
respectively. The random part of the price process is described by a Brownian figtidonder

this assumption, the price of a European call optitfi%, ¢; K, T') can be described by the following
deterministic differential equation

Ci+30°5*Css+(r—d)SCs=rC (5.1.2)

with the end condition
C(S,T;K,T) = max(S — K,0). (5.1.3)

The parameted in (5.1.2) represents the constant continuous dividend yield of the underlying asset.
Since the parabolic differential equation (5.1.2) can be transformed to the one—dimensional heat
eqguation through simple transformation of the variables there exists even an explicit representation
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of the valueC(S, t; K,T') of a European call option in the Black—Scholes model. This so—called
Black—Scholes formula is given by

C(S,t; K, T) = S exp(—d(T —1t)) ®(a1(S,t; K,T))

(5.1.4)
—K exp(—r(T —t)) ®(az(S,t; K,T))
with g -
In(2) 4+ (r—d+ 50°)(T —t)
S, t: K, T) = K 2
( ) oI —t
az(S,t; K,T) = a1(S,t; K, T) —oT —t

and where

O(x) = / \/% exp(—%) du
—o0

is the standard normal distribution function. The parameters in the Black—Scholes formula (5.1.4)
are all but the volatility parameter, in principle, directly observable in the financial market. An
estimation of the volatility parametercan be done in different ways. One possibility is to estimated
the volatility empirically from historical data. A more common way is to compute the volatility
parameter implied by an option price observed in the market by numerically inverting the Black—
Scholes formula (5.1.4), see e.g. Hull [58].

Despite the widespread use of the Black—Scholes model in financial practice, it is generally
realized that the assumptions of the model are not all conforming to reality. The existence of term
structures in interest rates and dividends, for instance, indicatesanatl are not constants but (at
least) functions of andT" [1]. Assuming a constant volatility, the Black—Scholes formula has in
this case the form (see for instance Andersen and Brotherton—Ratcliffe [1])

C(S, LK, T) = S exp (— I d(T)dT) O(ay(S,t; K, T))
(5.1.5)
_K exp (— ftTr(T)dT) ®(a2(S, t; K, T))
with
n(2) + ([ (r(r) = d(r))dr + 1o )(T —t)

al(S,t;K,T) = oTJT — 1

ax(S,t; K, T) = a1(S,t; K,T) —o/T — 1

Moreover, Rubinstein observed in [88] that the Black—Scholes formula became increasingly
unreliable over time. His examinations of S&P 500 index options on the Chicago Board Options
Exchange (he expected that this market approximates best the assumptions of the Black—Scholes
formula) showed that in 1976 to 1978 differences between the market price of these options and
the value computed according to the Black—Scholes formula existed but were not economically
significant. He examined the same for 1986. However, starting in 1987, the errors between market
prices and option values computed with the Black—Scholes model increased rapidly, see Rubinstein
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[88, Section 1]. It seems that the crash of October 1987 increased the likelihood assigned by market
participants to extreme stock market movements [1]. Rubinstein [88] observed that put options with
strike prices smaller than the current asset price, i.e. out—-of-the—money puts, were priced much
more highly. Since the Black—Scholes formula is monotonically increasing in volatility this means
that options with a low strike price had significantly higher implied volatilities than high striking
price options. Furthermore, the examination of options with different maturities has shown that the
volatility parametew is also not constant with respect to the maturity, see for instance Dupire [32].
This phenomenon of a time- and strike—dependent volatility paraméteralled the volatility smile

or the volatility skew and indicates that the stock prices do not follow the log—normal distribution
with constant drift and volatility parameter that is assumed in the Black—Scholes model [1].

In financial practice, these deficiencies were considered by managing tables of values for
ando which are used with different option maturities and strikes. This approach works for European
options with short maturities and strike prices which are close to the current asset price; but it is
unsuitable for options which are far out or in the money and/or with long maturities. These options
are not or only rarely traded such that there do not exist volatility values for them. However, financial
institutes might also be interested in information about these volatilities since their portfolios can
containolder positions that were held speculative so far and now, they wish to hedge these positions
with options with strike prices that are not close to the current asset price. Furthermore, financial
institutions have to deal with individual inquiries from customers. For the pricing of these individual
products information might be necessary about volatilities of the market price of the underlying asset
with respect to a long maturity. Moreover, the above approach does not work for the pricing of more
complicated options such as exotic options or options with early exercise features since in these cases
it is not clear which values for, d, ando should be used, see Andersen and Brotherton—Ratcliffe
[1].

Many approaches exist which try to be consistent with the existence of a volatility smile.
Merton [74], for instance, expands the Black Scholes model by introducing Poisson jumps into
the model. Hull and White [59] are examining options on assets that have a stochastic volatility.
Unfortunately, these approaches introduce an additional source of risk so that they are not complete
anymore. Thus, the concept of arbitrage—free pricing cannot be applied and assumptions about
investor preferences and behavior have to be made.

However, Derman and Kani [27], Dupire [32] and Rubinstein [88] have independently shown
that an one—factor diffusion model of the form

dS = pu(S,t) S dt + o(S,t) S dW, (5.1.6)

for the value of the asset is sufficiently rich to allow a perfect fit to most reasonable volatility smiles
[67]. The local volatility functiono (S, ¢) is now a deterministic function dependent on the time

as well as on the current asset price level. This model has the advantage that it maintains the
completeness and allows for the application of the usual arbitrage—free pricing techniques.
Moreover, Dupire has shown in [32] that this local volatility function and hence, the risk—neutral
process (5.1.6) is determined when there exists a complete knowledge of arbitrage—free values of
European call options (or put options) for all possible strike priges- 0 and maturitiesl” > 0.
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This group of researchers has tried to extract the true probability distribution of the stock prices from
market European option prices by using implied trees, see for instance Rubinstein [88], Dupire [32],
Derman and Kani [27], Derman, Kani and Chriss [28].

In this work, we follow a different approach by considering a continuous model for a
European call option consistent with the one—factor diffusion model (5.1.6) for the price process
of the underlying. Using the common arbitrage—free pricing techniques the resulting European call
price model is given by the following deterministic parabolic differential equation with nonconstant
coefficients with one of these coefficients containing the volatility functigsl, ¢) of the diffusion
process (5.1.6):

Cy + $0%(S,t)S?Css + (r(t) —d(t))SCs = r(t)C, (S,t) € Rt x (0,T]
C(S,T;K,T) = max(S — K,0), SecRt.

Some approaches already exist trying to extract this volatility functigh ¢) by calibrating the

model European call prices with respect to their market counterparts, see for instance Lagnado and
Osher [67], Andersen and Brotherton—Ratcliffe [1], and Coleman and Verma [17]. The formulation
of these problems results in inverse problems so that they are naturally ill-posed. Lagnado and
Osher [67] overcome this ill-posedness by introducing regularization techniques in their approach.
In comparison with it, Coleman and Verma [17] achieve this effect by representing the volatility
functiono (S, t) by a two—dimensional cubic spline.

Moreover, starting from this continuous deterministic European call price model, Dupire [32]
and, in more general form, Andersen and Brotherton—Ratcliffe [1] have shown that there exists an
additional model for the European call option which can be thought as being dual to the first one
[32]. The first model considers a fixed option, i.e. the strike pfcand the maturityl” are hold
fixed, and gives information about the value of this option for different value$the underlying
assetandtimesi.e. the European call price function presents a functighamdt. On the contrary,
in the second model the current asset valuand the time are hold fixed and the European call
price function is variable with strike pricE and maturity?’. This second model, again, consists
in a deterministic parabolic differential equation containing the volatility functidn one of its
coefficients, but this time the volatility function is dependent on the strike ffi@ad the maturity
T,i.e.c(K,T) appears in the coefficient of the differential equation:

Cr — £0*(K,T)K*Ckk + (r(T)—d(T)) KCx = —d(T)C,
(K,T) e R" x (0,T)]
C(o(+-); K,0) = max(S — K,0), KeRt.
In accordance with the literature in the following, we will callK, T") the instantaneous volatility
function, see for instance [32], [1]. Thus, this model contains the volatility values that correspond to
European call options with strike pri¢ge and maturityl” which are the volatility values the financial

institutions have an interest in, see the statements given above. Moreover, since in this model the
European call price function is variable with strike prigeand maturityl’ a single evaluation of the
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model establishes the values of European call options for all conceivable strike prices and maturities
for fixed S and¢. For these reasons, in this work we will use the latter model for constructing the
instantaneous volatility functiom( K, 7') with respect to market European call option, i.e. adapting

the instantaneous volatility function(K, T') so that the model matches the market prices of all
European call options in this class.

The mathematical formulation of the construction of the instantaneous volatility function again
represents an inverse problem such that in this case we are also confronted with an ill-posed
problem. We will apply the Inexact Gauss—Newton Algorithm 2.2.3 for the solution of this
problem which overcomes the ill-posedness since using the trust-region strategy for the solution
of the Gauss—Newton subproblems enforces a regularization of these problems, see the statements
given in Subsection 2.2.2.

5.2 An Extended Black—Scholes Model for European Calls

Before we present the mathematical formulation of the construction problem of the instantaneous
volatility function o(K,T), first, we will derive and study the underlying European call option
model which gives information about European call prices for all conceivable strike gticasl
maturitiesT for a fixed valueS of the underlying asset and time In the first part of this section,

we will state the major steps given by Dupire [32] and Andersen and Brotherton—Ratcliffe [1],
respectively, of the derivation of this European call option model. The model consists in a
deterministic second-order parabolic initial-value problem with some coefficients of the parabolic
differential equation containing the space variable Since this can lead to instabilities when
treating the differential equation numerically, in the following subsection, we will carry out a
transformation of the differential equation to eliminate the varidgbla these coefficients. Finally

in the last subsection, we examine the existence and uniqueness of a solution to the transformed
parabolic differential equation by falling back on results presented by Friedman in [37].

5.2.1 The “Dual” European Call Price Model

We assume that the price process of the underlying asset fulfils the one—factor diffusion model
(5.1.6). Then, by using the usual arbitrage-free pricing techniques, it follows that the price function
C(S,t; K,T) of a European call option is given by the solution of the extended Black—Scholes
model

Cr + 30%(8,t)S?Css + (r(t) —d(t)SCs = r(t)C, (S,t) € R* x (0,T]

(5.2.1)
C(S,T; K, T) = max(S — K,0), SeR",

see for instance Avellaneda and Laurence [3]. This model elucidates the dependence of the value
of a European call optior()(S, t; K, T), on the value of the underlying, the current timet, the

strike price, K, the maturity, 7", the instantaneous interest raté), the continuous dividend rate,

d(t), and the volatility functiorw (.S, ¢). In the extended Black—Scholes model (5.2.1), the European
call price function varies with the current value of the underlyihgnd the timet. Dupire [32]
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(see also [33]) and, in more general form, Andersen and Brotherton—Ratcliffe [1] have shown that
there also exists a European call price model in which the European call price function is given as a
function of the strike pricdd and the maturity’. These two problems can be thought as being dual
to each other, however, the relationship is not so universal [32]. In the following, we will briefly
quote their derivation for the latter model to elucidate the relation between these two models. We
will follow mainly the statements given by Andersen and Brotherton—Ratcliffe given in [1].

Applying the Feynman—Kac Theorem (see for instance Karatzas and Shreve [63, Theorem
5.7.6]) to the solutionC'(S,¢; K,T) of the parabolic initial-value problem (5.2.1) yields that
C(S,t; K, T) admits the stochastic representation

[e.o]

C(S,t; K,T) = exp (—ftT r(7) dT) / max(u — K,0) p(S,t;u,T) du
. (5.2.2)
= exp (—ftT r(T) dT) / (u—K) p(S,t;u, T) du
K

with p(S,¢;u,T) being the risk—neutral transition probability density of the procéss
determined by (5.1.6) assuming that the coefficietitg,d(t) : [0,7] — IR are continuous,
a(S,t),u(S,t) : IR x [0,00) — IR are locally uniform bounded in, Lipschitz—continuous in

S (ensures the existence and uniqueness of a sol§timnthe one—factor diffusion model (5.1.6),
see for instance Irle [60, Theorem 13.4 and 13.5]) and that they satisfy the linear growth condition

ln(S, I + Nlo (S, )7 < &2 (1 +[ISI*)

for some constart > 0. Note that the condition on the initial condition of the Cauchy problem in
the Feynman—Kac Theorem, i.e.

F(S)] < k (L+]S|?Y) or f(S) >0, for Se R"

is satisfied for the end condition given in the end—value problem (5.2.1) and that the end-value
problem (5.2.1) can be transformed into an initial-value problem just by transforming the time
variablet into the time to maturityl’ — ¢. The transition probability density(S,¢;u,T") in the
stochastic representation (5.2.2)@fS, ¢; K, T') satisfies for fixed S, t) the Kolmogorov forward
equation

Do+ Z([r(T) — d(D)up) — 125 (0 (u, T)?u?p) = 0, (u,T) € R* x (t,T],

(5.2.3)

p(S,t;u,t) = 6(S —u), u€ R,
whered(-) is the Dirac delta—function, see for instance Cox and Miller [20, Chap. 5] or Karatzas
and Shreve [63, Chap. 5].

Moreover, differentiation of(.S, ¢; K, T) in (5.2.2) twice with respect t&” yields

o0

B%C’(S,t;K,T) = —exp(—ftTr(T)dT> /p(S,t;u,T)du

K
%C(S,t;fﬂT) = exp (—ftTT(T) dT) p(S,t; K,T)
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and, thus,
p(S,t; K, T) = exp (ftT’I"(T ) 8%2 C(S,t; K,T). (5.2.4)

This last equation makes clear that the risk—neutral transition deri$ity; K, 7") can be recovered
directly from market prices when market European call options exist for all conceiable) and
T > 0, aresult which was already was presented by Breeden and Litzenberger in [13].

Using the representation (5.2.4) of the risk—neutral transition demsity; K, 7'), the different
terms in the forward equation (5.2.3) become

%p = exp (ft dT) = (52?20) + 6T exp (ft dT) aKQC'

= exp (ft dT) (8‘9—;2 (&C) +r(T) 88—;20)

(1) =AM Kp) = exp (J] r(r)dr) (r(T) = d(T)) g (K )

%88—;2(0(1(, T’ K%p) = exp (ftT r(T) dT)
and inserting them into (5.2.3) yields
0200+ 7(T) 2C + (r(T) — d(T)) 2% (Ka%(/’) — 1.8 (02(K, T)Kzaa—;gC) = 0.
Integration of this equation twice with respectioproduces

20 +r(T)C+ (r(T) — d(T)) (K %C - C) -1 ( 2(K, T)K? 2 0)
(5.2.6)
= V(IO)K+W(T),

whereV andW are arbitrary functions of time. Assuming that the functions appearing in (5.2.6)
show sufficient regularity features to make all terms, that incliidapproach zero a& approaches
infinity, see also Dupire [33], Andreasen [2], then, the integration functibasd W must be zero.

Thus, the price process of a European call option is also described by the parabolic initial-value
problem

Cr—1L1o(K, T’ K*Ckk+(r(T)—d(T))KCx +d(T)C =0, (K,T)e R"x(0,T], (5.2.7)
subject to the initial condition
C(8,t K,0) = max(S — K,0), KeR", (5.2.8)

however, now the European call price function is dependent on the strikeforazed the maturity
T.

An important aspect in the derivation of the initial-value problem (5.2.7), (5.2.8) is the
representation (5.2.4) of the risk—neutral transition density by the second derivative of the
European call price function with respect to the strike pricewhich holds because the intrinsic
value of a European call happens to be the second integral of a Dirac function [32]. Thus, the
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initial-value problem (5.2.7), (5.2.8) applies only to European call options whereas by choosing the
appropriate initial condition in (5.2.1) the latter model is valid for any contingent claim. Hence,
the dual relationship between the problems (5.2.1) and (5.2.7), (5.2.8) holds only for European call
options.

Because of the reasons given in the previous section, we proceed working with the initial value
problem (5.2.7), (5.2.8).

5.2.2 Transformation of the “Dual” Extended Black—Scholes Equation

Before we further examine the partial differential equation (5.2.7), we eliminate the vafaivle
the coefficients of the equation. This can be done by changing the vafiatue

K =S exp(x) (5.2.9)

with S # 0 and setting
C(K,T)=Sc(ln%,T)=Sc(z,T). (5.2.10)

AssumingS =# 0 is a natural restriction since in the case%t 0 the stochastic process (5.1.6)
elucidates that the asset price will stay there also for future times so that trading contingent claims
with this underlying would not make any sense anymore.

Using the transformation (5.2.9) and the definition (5.2.10), the partial derivativ€svadth
respect ta can be expressed in terms of the transformed European call functiocording the
following identities (note that = In £)

2 CK,T) = SZc(z,T) (In%)
= % a%c(x,T)
(5.2.11)
LLOET) = —32% Le(a,T) + % P o(a,T) H(In %)
= S <§;20(1: T)— (:1: T))

Replacing the partial derivatives in the differential equation (5.2.7) with the corresponding
expressions in (5.2.11) we get the following partial differential equation for the transformed
European call function(z, T") (for clearness, we neglect the argumentsl’) of ¢ in the following)

0 = Se—L1o2(K,T)K25 (8@2@ gxc)+(r(T)—d(T))K%%c+d(T)Sc
- S (8%(:— 162(2,T) Lye + (r(T) — d(T) + 162(2,T)) L+ d(T) c) .

To express the volatility functioa also in terms of the transformed variabhlewe have changed
slightly the notation fow (K, T") to

(x,T):=0(S exp(z),T) =0(K,T).
According to the transformation (5.2.9), the initial condition (5.2.8) in termstads the form

C(K,0) = max(S — K,0) = S max(1 — £,0) = S max(1 — exp(z),0) = Sc(z,0).
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Thus,c(z, T) is the solution to the parabolic differential equation
e+ (WD) +16%@,T)) e — 162, T) Lye = —d(T)c (5.2.12)
subject to the initial condition
¢(z,0) = max(1 — exp(z),0), (5.2.13)

with
b(T):=r(T)—d(T). (5.2.14)

In the following, we will examine the transformed parabolic differential equation (5.2.12),
(5.2.13) since this problem is more advantageous to the subsequent numerical treatment. We will see
later on that the stability of finite difference methods applied to the transformed forward equation
(5.2.12) for European call options depends on the discretization size ef8pace. By contrast,
the stability of finite difference methods applied to the original parabolic differential equation (5.2.7)
depends on the size of the varialife Hence, the scheme can be stable for sthalhind unstable
for large K, see for instance Wilmott et al [107] and Remark 5.4.16 in this work. Thus, it is not
evident whether the scheme is stable and it can happen that negative option values are predicted for
large values of<. However, this behavior does not occur with the discretization of the transformed
equation (5.2.12) since the resulting system is either stable at every mesh point or unstable at every
mesh point.

5.2.3 Existence and Uniqueness of Solutions to the Transformed “Dual” Extended
Black—Scholes Equation

In this section, we examine the existence and the uniqueness of the solution to the parabolic
differential equation (5.2.12) with initial condition (5.2.13). The existence as well as the uniqueness
of solutions to linear parabolic differential equations with nonconstant smooth coefficients is
already well estabilished and can be found for instance in the monographs by Friedman [37], It6
[61] or LadyZenskaja, Solonnikov and Ural’ceva [66].

The following statements are the main results of Friedman in [37, Chapter 1] regarding the
existence and uniqueness of the solution to the Cauchy problem (5.2.12), (5.2.13). Let

Le = 36%(a,T) Zye — (W(T) + 162(2,T)) L — d(T) e — Zre (5.2.15)
for (x,T) € IR x (0,T). Then, a solution to the parabolic differential equatian= 0 is defined as
Definition 5.2.1 (See Friedman [37, Chap. 1.1].) The functigm, T) is a solution to the parabolic
differential equationCe = 0 in the regionR x (0, T if

{%;C(‘TvT) ’ %C(va) ’ a%c(xaT)

are continuous functions it x (0, 7] andLc(x,T) = 0 for each poin{x, T) € IR x (0,T].
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To guarantee the existence and the uniqueness of a sol(igh) to the parabolic differential
equationLc = 0, the coefficients of the differential operatGrhave to satisfy certain conditions.
The coefficient of the second—order term in the definitiod ¢5.2.15) consists of the instantaneous
volatility function &(x, T') of the risky asset underlying the European call option. We assume that
this riskiness is always existing so thgt(x, T') is bounded away fror, i.e. there exists a positive
constant\q such that\, < &2(z,T'). Additionally, we assume that the riskiness of the underlying
asset is bounded above by a positive constarsuch that fo?(x, T') holds

o <632, T) <\ foral (2,7) € R x[0,T]. (5.2.16)

Condition (5.2.16) ensures that the differential equation (5.2.12) is uniformly parabolic. Moreover,
we assume that(T) andd(T") are bounded continuous functions[in T, 6%(z,T), 562(z,T)
and 320— (x,T) are bounded continuous functionsliix [0, T, which satisfy

6%(2,T) — 6220, )| < r (|2 — wol + T — T[3)

IN

a 62(x,T) — —02(3307T)] < Klr—xo|? (5.2.17)

|426%(@, T) = £56%(20,T)| < o — ol

forall (z,T), (20, To) , (z0,T) € IR x [0,T], q > 0.

Friedman [37] derived the existence of the solution to a second-order linear parabolic
differential equation by using the parametrix method. In this method a fundamental solution
I'(z,T; x, ) of Lc = 0 is constructed.

Definition 5.2.2 (See Friedman [37, Chap. 1.1].) A fundamental solutiof@f= 0 (in IR x [0,77])
is a functionl'(z, T'; x, 7) defined for all(z, T), (x,7) € IR x [0,T], T > 7 which satisfies the
following conditions

1. for fixed (x,7) € IR x [0,7] it satisfies, as a function dfr, T), x € R, 7 < T < T, the
equation
162(z, T) —(W(T) 4 162z, T)) Lc—d(T)c— Zic = 0
20 2 ’ ox oT
2. for every continuous functiofi(x) in IR with

|f(z)] < p1 exp(ha?),

if z € IR, then

o0

lim F(l‘,T; X T) f(X) dx = f(ZL')

T—T

According to Friedman [37], a fundamental solutidfx, T'; x, 7) of Lc = 0 (in IR x [0, T]) is
given by

\8

T
Mo Tixr) = 2@ T + [ [ 2@ T dmon) dido (5218

— 00
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whereZ(z, T x, T) is a fundamental solution of the following differential equation without minor
terms and frozen leading coefficient

1,2 02 9 . _
50' (X,T) WC - aTC = 0

It is well-known that the fundamental solutidf(z, T; x, 7) of the latter differential equation is
given by the so—called Gaussian kernel

1 o (z —x)?
2 (T — 1) 6(x, 7) p<2&2(X’7') (T_T)> '

Z(x,T;x,7) =

Furthermore, the densi(n, v; x, 7) in the integral term of (5.2.18) is determined by the \Volterra
integral equation

T oo
O(z,T;x,7) = LZ(2,T;x,7) + //CZ(w,T;n,v) ®(n,v; x,7) dndv.

Thus, the solution to the parabolic differential equation (5.2.12) with initial condition (5.2.13)
is given by

. 1) = [ T Ti00) 00 dy (5.2.19)
if the initial condition (5.2.13) satisfies
lc(x,0)| < pa exp(ha®) (5.2.20)

whereh is any positive constant satisfying

1
h — 5.2.21
< T ( )
andc(z, T') satisfies
le(x, T)| < p3exp(kz?) for (x,T) € IR x [0,T] (5.2.22)

with p3 is a positive constant anklis a constant depending only én \; and T, see Friedman
[37, Chap. 1, Theorem 12].

Furthermore, Friedman [37, Chap. 1, Theorem 16] showed that there exists at most one
solution to the parabolic differential equation (5.2.12) with initial condition (5.2.13) that satisfies
the boundedness condition

/

for some positive constait

/|c(x,T) exp(—kz?)dzdT < oo
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Theorem 5.2.3 Supposer(T) and d(7T') are bounded continuous functions @, 7], 6%(z,T),

262(z,T) and %&Q(az,T) are bounded continuous functions # x [0,77] and the conditions

(5.2.16)and(5.2.17)are satisfied. Then, the soluti¢h.2.19)of the parabolic initial-value problem
(5.2.12) (5.2.13)that is unique with respect to the set

T oo
B ={c(z,T) : // lc(z, T)| exp(—kz?)dzdT < oo for somek > 0}
0 —oo

represents the price function of a European call option.

Proof: To ensure the existence of the solution (5.2.19) to the parabolic initial-value problem (5.2.12),
(5.2.13) we have to verify that the initial condition (5.2.13) given by

c(z,0) = max(1l—exp(z),0)
1—exp(zx) , <0
0 , x>0

satisfies condition (5.2.20).

Initial condition c(x,t) = max(L - exp(x), 0)
T T T T

T exp(001d)

FIGURE 5.1: Boundedness of the initial conditiet, 0)

For allz > 0 the initial condition (5.2.13) is equal to 0 such that in this case the inequality (5.2.20) is
satisfied for all positive constangs andh. Furthermore, the functios(x, 0) is positive and strictly
decreasing for: < 0 and1 — exp(z) tends tol for = tending to—occ. Hence, we can choose an
arbitrary positive constarit to ensure the condition (5.2.20) if onpp > 1 (see also Figure 5.1).
Thus, the existence of the solution (5.2.19) to the differential equation (5.2.12) with initial condition
(5.2.13) is ensured for any arbitrary time inter{f@IT] with T < co.

Moreover, it follows with (5.2.22) that(z, ) in (5.2.19) is the unique solution in the set

T oo
B ={c(z,T) : // lc(x, T)| exp(—kx?)dxdT < oo for somek > 0}
0 —o©
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to the differential equation (5.2.12), (5.2.13).

To show that the solution (5.2.19) represents the price function of a European call option, we
only have to verify that the European call price function belongs to th8.skterton [73] showed
that from no—arbitrage arguments follows that the price of a European call option has to satisfy

C(K,T) < S forall K>0 and T€[0,T].
and thus, because of (5.2.1@), T") has to fulfil
c(z,T) <1 forall z€IR and T €0,T].

Thus, the transformed European call price function belongs to the seth that Theorem 5.2.3 is
proven.
[ |

5.3 Determination of the Instantaneous Volatility Function

After establishing the European call option model, we now return to the construction of the
instantaneous volatility functiom( K, T") respectives (x, T').

The previous section has shown that if the functional for (of, T') is specified and given the
valueS of the underlying, the risk—free instantaneous interestatg and the continuous dividend
rated(T"), then a European call option with transformed strike price- ln(%) and maturity?’
has a unique value(5 (-, -); z,T). Note that we have changed slightly the notation to express the
dependence of the European option price on the particular choice of the instantaneous volatility
functions (z, T).

Now, suppose that we are givem market prices of European call options with strike prices
K; and maturitiesl;, I = 1,...,m. Let the bid and ask prices observed at 0 of a European
call option with strike priceK; and maturity7; be denoted bﬁ?ﬁm and C’%I,Tl, respectively,

[ =1,...,m. Inthis context, constructing the instantaneous volatility funcéion 7°) with respect
to market European call options means that an instantaneous volatility fuactioff’) has to be
found such that the solution to the initial-value problem (5.2.12), (5.2.13) evaluated:dh(%)
andT; falls between the corresponding bid and ask quotes, i.e.

Chom < Se(6(-,);m,T) < Ch g

fori = 1,...,m. Since it is somewhat unwieldy working with these inequalities we will
alternatively minimize the distance between the model European call vel&és-); x;,7;) and

the mearC, 1, = (C%, 1, + C%, 1,)/2 of the bid and ask quotes=1,...,m, with respect to the
Euclidean norm. Moreover, existence of an unique solution to the initial-value problem (5.2.12),
(5.2.13) is guaranteed if the instantaneous volatility funcéign, ¢) belongs to the set

H = {6(x,T) : 62,%&2,%&2 bounded, continuous and satsify (5.2117)  (5.3.1)
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Thus, we alternatively solve the nonlinear least—squares problem

min § > |le(6(, )21, T) — Croy |1
- (5.3.2)

st o(z,T)e™H

—

with ¢(6(+,-); 2, T') being the solution to the initial-value problem

er + (0(T) + 36° (2, T))cy — 36%(2, T)cge = —d(T)e, (z,T) € R x (0,T]
(5.3.3)
c(e(-,-);x,t) = max(l —e”,0), z e IR,

with b(T") defined in (5.2.14).

Hence, the problem of constructing the volatility functidfx, 7') presents an inverse problem
which is naturally ill-posed. To overcome the ill-posedness, often, regularization terms are imposed
into the objective function in (5.3.2), see for instance Lagnado and Osher [67]. Since smoothness
of the instantaneous volatility functiol(z, T') is important for the existence of a solution of the
initial-value problem (see above), they use smoothness as a regularization condition to approximate
the volatility function, i.e. their regularized optimization problem is of the form

m
oy, 8 2 Nel0C i T) = Craml” + AIVE (Dl
with \ being a positive constant. In this regularized problem, the size of the regularization parameter
A is responsible for the degree of minimizing the first order derivative of the volatility function,
i.e. the degree of smoothness of the volatility function. However, the choice of this regularization
parameter appears to be not easy since a large regularization parameter slows down the optimization
process while a small regularization parameter might not overcome the ill-posedness of the problem.
In this work, we use a different approach. Using finite difference methods to discretize the
initial-value problem (5.3.3) and because of the limited number of observation data, the finite
dimensional counterpart of (5.3.2) represents an underdetermined nonlinear least—squares problem,
see the following Section 5.4. Using the Inexact Gauss—Newton Algorithm 2.2.3 for the solution of
this problem, we overcome the ill-posedness of the nonlinear least—squares problem because of the
integrated trust—region strategy. This latter method enforces a regularization of the linear Gauss—
Newton subproblems. The regularization with respect to the smoothness of the volatility function
will be achieved by scaling the trust—region with respect to a modified discretized version of the
differentiation operator.

5.4 Determination of the Discrete Instantaneous Volatility Function

For a numerical treatment of the optimization problem (5.3.2) it is, first of all, necessary to
evaluate numerically the theoretical European call price funetién-,-); z, T") that is described
by the parabolic differential equation (5.3.3). We will solve this differential equation by using a
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finite difference scheme. Note that the parabolic differential equation (5.3.3) is a pure initial-value
problem. Since in practice only a finite number of discretization points regarding the space variable
x can be treated in Subsection 5.4.1, we introduce boundary condition&for - ); zmin, 7') and
c(6(+,+); Tmax, T') With i, andzy.y, are chosen sufficiently small and large, respectively. Using
these boundary conditions, we will derive a finite difference scheme for the resulting initial—
boundary—value problem in Subsection 5.4.2. After examining the well-posedness and the
convergence of the finite difference scheme (see Subsection 5.4.3), we will derive the finite
dimensional optimization problem that determines the instantaneous volatility function at the grid
points of the mesh chosen in the finite difference method. The resulting optimization problem is
an underdetermined nonlinear least—squares problem that will be solved with the Inexact Gauss
Newton Algorithm 2.2.3. The ill-posedness of the problem mentioned in the previous section is
carried over to the finite dimensional problem. However, the trust—region strategy used in Algorithm
2.2.3 enforces a regularization of the Gauss—Newton subproblems such that these problems will
become well-posed. We will carry out the trust-region strategy with respect to the weighted norm
| - | p whereD is a slight modification of the discrete version of the differentiation operator since
we required the solutioéi(z, T') to be sufficiently smooth, i.&(z, T) € H.

5.4.1 Derivation of Boundary Conditions

In Section 5.2.3, we have seen that the European call price is already uniquely described by the
parabolic initial-value problem (5.3.3). For a numerical determination of the European call price
function c(é(-,-);z,T), however, we can only consider a finite dimensional number of
discretization points regarding the state variabl@hus, we have to choose a lower boungd,, and
an upper bound:,.x for the state variable so that the resulting intervak,,i, , max| contains
the region relevant for the construction of the instantaneous volatility functiom; i;g.and z,ax
have to be chosen sufficiently small and large, respectively. Hence, we are approximating
IR x [0,T] by the bounded domaif,in , Tmax] % [0, 7] and the pure initial-value problem
becomes a initial-boundary—value problem. Therefore, we need to derive wise values of
¢(6(-,-);z, T) at the lateral boundary df min , max] x [0, 7], i.e. we need information about the
boundary values( (-, -); Tmin, T') @andc(6(+, -); Tmax, T) for T € [0, T).

We first examine the value ofs (-, -); =, T') at the left boundary, i.e. whenis small. Suppose
x tends to—oco. Because of the change of variables (5.2.9), this is equivalent to assuming that the
strike priceK is very small, i.e.K is tending to0. In this case, the holder of the European call
option gets the underlying asset almost for free at the end of the géridfiwe suppose that the
volatility is constant, then with (5.1.5) it follows that in this case the European call pric& fer0
is given by

T
Clo(-):0.T) = S exp(—/d(T) dr), Te,T], (5.4.1)
0

with d(T), T € [0,T] is the known dividend yield. This equality also holds for the nonconstant
volatility case. We will derive the value @¥'(o(-,-);0,7") by building an equivalent portfolio that
generates the same payout at the expiration dads the European call option. Suppose first that
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no dividends are paid on the asset underlying the optiond(E) = 0 for T' € [0,T]. Since the
exercise pricds is equal to zero, the payout of the option at the expiration date is equivalent to the
value of the underlying asset at the expiration date. Hence, the option can be replicated by using a
portfolio which consists of one share of the underlying asset and is held constant over the life of the
option. Thus, to avoid possibilities of arbitrage the value of the option and the value of this portfolio

at the current time must be the same if no payments on either of these assets are made during the
life of the option, i.e. the value of the option is equal to the current price of the asset underlying the
option. If this relationship is not true, an arbitrageur can easily make a riskless profit by buying the
option and selling the stock or vice versa.

Now, suppose that dividends are paid on the underlying asset. The payment of a dividend
causes the stock to drop by an amount equal to the dividend. Supposing that a continuous dividend
yield of rated is paid and the stock price rises frofrtoday toSy at timeT, it follows that without
dividend payments the stock would have risen frfmxp(—d(T" — t)) today up toSy at timeT".

Thus, if the underlying asset of a European call option pays a continuous dividend yield of rate
then the European call option has the same value than the corresponding European call option with
the same underlying asset paying no dividends and having the Salup(—d(7T — t)) today since

the final value of the asset is the same in both cases. Therefore, for a valuation of a European call
option with an underlying asset paying a continuous dividend yietthoé can base the calculations

on the current value of the asset®kxp(—d(T — t)), see for instance Hull [58]. Hence, assuming

a time varying dividend yield(T), T € [0, T}, (5.4.1) presents the value of a European call option
with strike price K = 0 and an underlying asset with vali$ethat pays a dividend yield of rate

d(T), T €[0,T).

Since we carry out the numerical computation of the value of the European call option on a
bounded domain with respect to the space variableie are interested in the value of the Euro-
pean call option for a sufficiently small, but finite, left boundagy,, = ln(%). In this case, the
holder of the European call option still has to pay a small strike pkigg, at maturity. Considering
the time value of this payment, the value of the European call option at the left boundary
Kpnin = S exp(zmin) becomes

T T
C(o(+,); Kpin, T) = S exp(—/d(T) dr) — Kmin exp(—/r(T) dr), (5.4.2)
0 0
for T € [0, 7] and withr(T), T € [0, T], being the riskless interest rate.

For the right boundary of the domajiy,in , zmax), the following observation can be made for
the value of a European call option. As the strike price increases without bound, it becomes ever
more likely that the option will not be exercised, i.e. it becomes ever more likely that at the expiration
date the payoff is zero. Thus, the call option is worthlesgfor+ oo even if there is a long time to
expiration. Hence,

lim C(o(-,-); K, T)=0, Tcl0,T], (5.4.3)

K—oo

such that the condition for the right bounddky,.x = S exp(zmax) IS given by
Clo(,); Kmax, T) =0, T €0,T]. (5.4.4)
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Note that the boundary conditions (5.4.2) and (5.4.4) ensure the compatibility of the initial and
boundary condition of the initial-boundary—value problem.

The transformation (5.2.10) frod (K, T') to ¢(z, T') and the boundary conditions (5.4.2) and
(5.4.4) for the original parabolic differential equation (5.2.7) lead to the boundary condition for the
transformed parabolic differential equation (5.2.12):

T T
c(6(,); Tmin, T) = exp(—/d(T) dr) —exp(wmin)eXP(—/r(T> ar), (5.4.5)
0 0

C(OA—<'7 '); Tmax; T) = 07

forT €[0,7).

5.4.2 Discretization Scheme for the Transformed Extended Black—Scholes Model

For the numerical computation of the solutie@ (-, -); «, T') of the second—order parabolic initial—
boundary—value problem consisting of the parabolic differential equation (5.2.12), the initial
condition (5.2.13) and the boundary conditions (5.4.5), i.e.

3632, T) coo — (0(T) + 3 6*(2,T)) ¢z —d(T)c = cr,
(2,T) € (Tumin  Tmax) X (0, 7],

C(OA'(" '); 1‘,0) = maX(l - eXp(l‘)a O) ; HARS [xmin a-rmax] ;

T
c(6(-y); Tmin, ') = exp(—/d(q-) dr) — (5.4.6)
0

T
exp(Zmin) exp(—/T(T) dr), T €l0,T],
0
C(‘a—('v');xmax;T) = 07 T e [O,T] ,

we use a finite difference method (see for instance Gustafsson, Kreiss, Oliger [49], Smith [96],
Thomas [101]). These methods reduce the continuous partial differential equation (5.2.12) to a
discrete set of difference equations by replacing the partial derivatives occurring in the partial
differential equation by finite difference approximations. For notation, we neglect the dependence
of the European call price functionon the volatility parametes (-, -) in this subsection by not
considering the volatility parameter in the argument of the European call fungtioe. in this
subsection we use the notatiefx, 7") for the European call price function. For the discretization of
the parabolic differential equation (5.2.12) we especially use the forward difference quotient for the
approximation oty (z, T), i.e.

c(x, T+ AT) — ¢(x,T)

CT(J;? T) ~ AT )

AT small, (5.4.7)
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the central difference quotient for approximatingx, 7'), i.e.

clr+ Az, T) — c(x — Az, T)

er(2,T) » 2 Az ’

Ax small, (5.4.8)

and the symmetric central difference quotient for approximatingz, 7), i.e.

clx+ Az, T) —2c(z,T) + c(x — Az, T)

e , Az small. (5.4.9)

Coz(x, T) =~
From Taylor's theorem itimmediately follows that the forward difference quotient (5.4.7) is accurate
of orderO(AT), i.e.

c(x, T+ AT) — ¢(z,T)
AT

cr(x,T) = + O(AT), (5.4.10)

if the solutionc to the parabolic initial-boundary—value problem (5.4.6) is sufficiently smooth.
Furthermore, the central difference quotient (5.4.8) and the symmetric central difference quotient
(5.4.9) give approximations of ordé}((Az)?), i.e.

clx + Az, T) — c(x — Az, T)

ez, T) = e + O((Ax)?), (5.4.11)

x4+ Ax,T) —2c(z,T) + c(x — Az, T)
Con(,T) = (Ar)? + 0((Az)?), (5.4.12)

again, supposing a sufficient smoothness of the solution

Approximating the partial derivatives occurring in the partial differential equation (5.2.12) by
using finite difference quotients, the continuous domaig, , Tmax] x [0, 7] can be replaced by
a discrete set of grid points [48]. A division of the domaif,i, , Tmax] x [0,7] into @ mesh is
obtained by dividing the—axis as well as th&—axis into equally spaced nodes a distaneeand
AT, respectively, apart, see Figure 5.2. It is also possible to take non—constant spactssaeps
time—stepsAT’, however, for convenience we confine our examinations on uniform grids. Suppose
that the discretization of the time and the spatial axis are chosen so that

T = MAT and Zmax — Tmin = NAz, M ,N eIN, N even (5.4.13)
Moreover, we set for the grid points of the spatial and the time domain
T; = Tmin +1Az and T; := jAT, 1=0,...,N,7=0,....,.M.

Since in the following we are only interested in valuesc@t these mesh points we use the
notation

Ci,j = C(l‘i ,T]) (5414)

for the exact solutiore of the parabolic initial-boundary—value problem (5.4.6) evaluated at the
grid point(z; ,7;),i =0,...,N, j = 0,..., M. Furthermore, for the coefficients occurring in
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FIGURE 5.2: Discretization of the domaifemin , Tmax] X [0, T

(5.2.12) we set

fori=0,...,N,j7=0,...,M.

We first examine the discretization of the elliptic part of the parabolic differential equation

(5.2.12), i.e.

Le(z,T) = 36%(2,T)cau(x,T) —

(5.4.15)

16%(2,T)) cu(x,T) — d(T) c(x,T) .

Using the central difference quotient (5.4.11) fo(x,T") and the symmetric central difference
quotient (5.4.12) foe,,.(x, T'), the elliptic part (5.4.15) of the parabolic differential equation (5.2.12)

becomes

Le(z;, Tj) = 163

o Citlj — 2Cij+Cim1,

/L’]

(Az)?

. Cit1j — Ci—1,j
567;) ——t———L — djc;j+ O((Ax)?),

.3

2 Az

i=1,...,N—1, 5 =0,...,M, where we have restricted our attention to the values af
the discrete mesh. Ignoring the tet{(Ax)?), an approximation of the elliptic paftc(z; , Tj) is

given by

. o Zitlj —22zij + 21,
%

(b + L62,) S SicLi

(5.4.16)

ohy | HiFa
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i=1,...,N—-1,75=0,...,M, where the use of; ; emphasizes that the scheme (5.4.16) is
only an approximation of the elliptic differential equatiénin (5.4.15). Note that, ; andzy ; in
(5.4.16) are given by the boundary conditions (5.4.5) of the initial-boundary—value problem (5.4.6),
ie.

T T}
g = exp(— [ d(r)dr) — explao)exp(~ [ r(r) dr), 5.417)
0 0 o
ZN,j = 0.
A rearrangement of the terms in the right hand side of (5.4.16) yields
Ei,j Zij = _7(A;)2 (’Uf Zi—1,5 + mZ Zij + uz ZiJrl,j) , (5418)
fori=1,...,N—1,5=0,...,M,where
vf = fl (a + Az (b~+%62j)) ,
ml = 62,4 (Ax)%d;, (5.4.19)
uf = -1 (&%j—A$ (b + 16 3])) ;

forj =0,..., M. For the numerical computation of the integral terfﬁs' d(t) dr andfOTj r(r)dr
occurring in the first boundary condition in (5.4.17), we use the trapezoidal rule, i.e. we approximate
the integralsf d(r) dr and 7 r(r) dr by

T} _

[aw i~ 4 S+ di) and / ~ A S (it i), (5.4.20)
k=0

This approximation is accurate of ord8¢(AT)?), see for instance Stoer [99].
Now, using matrix notation, equation (5.4.16) can be rewritten in a more compact form

.Zij:—(Dij—l-Bj), jZO,...,M,

where

zj=(21,...,2n-1,) € RN 71, (5.4.21)
andD;isa(N — 1) x (N — 1)-dimensional tridiagonal matrix

Dj = app Dy € RIVZDX(D (5.4.22)

with D; containing the coefﬂmenfmz U andv in (5.4.19) on the diagonal and on the super- and
subdiagonal, i.e.

J
my

J J
Uy My Uy
D; = e RW—1x(N=1) (5.4.23)
J J J
Un_—g Mpy_o Un_o

J J
U1 My
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j=20,....,.M. The vectorBj at the extreme right—-hand side of this equation arises from the
boundary conditions (5.4.17) in combination with (5.4.20), Be contains the values) ; andzy ;

_ . . T N_1
Bj = ok (120,00, uh 2ny) € RY™ (5.4.24)
wherezg ; andzy ; are given by =0,..., M,
Jj—1 Jj—1
205 = exp(—=5F Y (dy + dita)) — exp(zo) exp(—5E D (rk +1641))
o ] (5.4.25)

ZN,j = 0.

Lemma 5.4.1 The elliptic part of the parabolic differential equatig¢h.2.12) i.e.
Le(z,T) =16, T) cou(z,T) — (b(T) + 3 6*(2,T)) co(2,T) — d(T) c(z,T)

in discretized form is given by

Ejzj:—(Dij+Bj), j=0,....M,
with z; , D; and B; defined in(5.4.21) (5.4.22) and(5.4.24) respectively, and by using the central
difference quotien(5.4.8)and the symmetric central difference quotiéné.9)for approximating:,
andc,.., respectively. The approximaticfn,j ¢;,; of the differential equatiod c¢(z;, T}) is accurate
of order2, i.e.

Le(w;,Tj) = Lijey + O((Ax)?)

fori=1,....N—-1,j=0,...,M.

Letc; = (c1,...,cn—1,5) be the vector of values of the solutierof the parabolic initial—
boundary—value problem (5.4.6) evaluated at the different grid pgintsl;) of the jth time step.
Then, replacind. ¢(-, T;) by its discrete approximatiofnjcj in (5.2.12) yields a system of ordinary
differential equations

8%6]': —(DjCj+Bj)+O((A$)2), jZO,,M

An approximation of the partial derivative of with respect to the time variablé using the
forward difference quotient (5.4.7) and ignoring the te{$Ax)?) andO(AT) yields the weighted
difference scheme
Zij+l — Zij =
2 T — L (1—0) 2z + 02z 7
AT 0= 0z + b2i50) (5.4.26)
i=1,...,.N—1,j=0,...,M—1,

where the weighting is achieved by the paramétédote that only values @gfwith 0 < § < 1 make
sense. Moreoveg; ; denotes again the approximation of the exact solutiof(5.4.6). The scheme
(5.4.26) belongs to the two level schemes since the parabolic differential eqlatierc; contains
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only first derivatives with respect t6' which are approximated by using the forward difference
quotient (5.4.7) [101].
Plugging the definition oﬂm in (5.4.18) into (5.4.26) yields
ar (g1 — zig) = —(ane <Uf (L =0)zi1j +0zi-1541) +
ml (1= 0) 205+ 0 zi501) + ] (1= 6) zis15+02011541) )

fori=1,...,.N—1,j=0,...,M — 1. Arearrangement of the terms in the previous equation
yields
Oov] zi—1j+(1+06 a@f) Zij41 + 0 au] Zi+1,j+1' | (5.4.27)
= —(1-0)av]zi1;j+1-1=-0)aml)z;—(1-0)au! zit1,

with o = (AATT)Qandizl,...,N—l, j=0,...,M—1.
Using matrix notation equation (5.4.27) can be rewritten in a more compact form
(I+60D;) 211 = I—-(1—0)Dj)z + B;, for j=0,...,M—1, (5.4.28)
with (see (5.4.23) for the definition dp;)
D;j = aD; (5.4.29)
andBj € IRV~ containing the boundary conditions (see (5.4.25) for the definitiap pandzy ;)

Bj = —« (U{ ((1 — 9) 20,5 + 920’j+1) ,0,...,
| . (5.4.30)
0y (L= 0) 2w+ 02n41))

The initial vectorz is given by the initial condition (5.2.13) evaluated at the mesh pgints0),
i=1,...,N—1,i.e.

20 =c = ([1- exp(z1)]",...,[1— exp(acN,l)]Jr)T (5.4.31)

where[l — exp(z)]" = max(1 — exp(z),0).

Lemma 5.4.2 The finite difference scheme of the parabolic initial-boundary—value problem

62(x,T) Cpp — (b(T) + %&2(x,T)) ¢z —d(T)c=cr, (,T) € (Tmin s Tmax) X (0,77,

N[ =

c(é(+,+);2,0) = max(1—exp(z),0), T € [Tmin , Tmax]
T
() i, T) = exp(—/d(T) dr) —
0

T
exp(Zmin ) €xp(— /7“(7') dr), T e[0,T],
0

C(é’(-, ')§xmax,T) = 0, T e [O,T],
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using the forward difference quotie(t.4.7) for the approximation otr, the central difference
quotient(5.4.8) and the symmetric central difference quotiéni.9)for approximatingc, andc,,
respectively, is given by the recursive scheme

(I+9Dj)2j+1 = (I—(l—H)Dj)Zj -+ BJ’, for jZO,...,M—l

with the initial elementzy given by the initial condition of the parabolic differential equation
(5.2.13) see(5.4.31) z;, D;, and B; defined in(5.4.21) (5.4.29) and (5.4.30) respectively, and
0<0<1.

The scheme (5.4.28) is an explicit method only in the dase 0, since in this case the
approximations of the following time layej + 1 are simply obtained by matrix—vector
multiplication and vector addition. For all other valuestpfi.e.0 < 6 < 1, the scheme (5.4.28)
represents an implicit scheme [48]. In this case the scheme (5.4.28) is well-defined if the linear
systems

(I4+6Dj)zj41 = I-(1-0)Dj)z; + B;, j=0,....,M—1

have unique solutiong;; for j =0, ..., M —1. This latter condition is equivalent to the regularity
of the matriceg’ + Hf)j), j=0,...,M — 1, which is examined in Theorem 5.4.3 and Corollary
5.4.5.

Moreover, note that foé = 0 the scheme (5.4.28) represents the explicit Euler method, for
# = 1 the implicit Euler method, and fdt = % the Crank—Nicolson method.

Theorem 5.4.3Let Ax and AT be the discretization size for the space and the time variable,
respectivelyd € [0, 1], and define

= L 1x2 ) A2
Pi= max Axlbj + 50 ;] — 07 (5.4.32)
7j=0,...,M—1

(i) If P <0Othen(I + HDj) is nonsingular forj = 0,..., M — 1.

(ii) If P > 0andAT satisfies

(Az)?
P
then(I + 6D;) is nonsingular forj = 0,..., M — 1.

AT < (5.4.33)

Remark 5.4.4 Andersen, Brotherton—Ratcliffe examine in [1] the finite difference scheme for the
parabolic differential equation (5.2.1) describing the European call price function dependent on the
underlying asset price and the current time. Their sufficient condition for the existence of a unique
solution of the tridiagonal linear systems arising from the finite difference scheme are also given by
a relationship of the discretization sizes for the time and the space domain. They derive this result
by using the equivalence of the diagonal dominance and invertibility of the coefficient matrices of
the tridiagonal linear systems. Moreover, for proving the diagonal dominance of the tridiagonal
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coefficient matrix, they show that the sum of the non—diagonal elements in one row of this matrix
can be represented By(1—6) (|[A+ B|+|C — B|) with A, C > 0 andB can take negative as well

as positive values. Depending on the signBfthey show that this expression takes the following
form:

1(1-0)(|A+B|+|C-BJ)

(1-0) max(A+C,2B—-C+A), if B>0 (5.4.34)

[T Sl

(1-6) max(A+C,2|B|+C — A), otherwise

We will make use of these techniques in the proof of Theorem 5.4.3, too. However, the remaining
part of the proof is different to the proof of Andersen, Brotherton—Ratcliffe in [1], since they have
carried out further transformations for the coefficients appearing in the parabolic differential
equation (5.2.1) by using certain features of bonds, asset forwards and European call options. In
our examination, however, we will use the original continuous coefficients evaluated at the different
grid points in the finite difference mesh.

Proof of Theorem 5.4.3.To verify that(I +0D;) is nonsingular foj = 0, ..., M —1 itis sufficient

to show that these matrices are strictly diagonally dominant, see for instance Johnson and Riess
[62, Theorem 2.3]. A matrix is diagonally dominant if the absolute value of the diagonal element in
each row is strictly larger than the sum of the absolute values of the non—diagonal elements. Hence,
for the proof that( 7 + HDj),j =0,...,M — 1, is diagonally dominant we have to verify that for
j=0,...,M —1the elements ofl + 6 D;) fulfil

6@(1}?—}—21{) < 1+6amg , 1=2,...,N =2,
9a‘u{‘ < 1+9am{ ,
0o U?\/—l‘ < 1+9am§\h1"

which is equivalent to

Ha §12A_|_Ax b.+l(}i2A +&Z2.—Ax b'—i—l&ﬁ
5 (67 (b + 3675 [ + 67 (bj + 3035 ) (5.4.35)

< |14+ 0« (6%4— (A:n)zdjﬂ ,

fori=2,...,N—-2and

03

o1, — Az (bj+361;)| < [1+0a(61;+(A2)’dy) ],
(5.4.36)

0 <

S ox_1j Az b+ 568 1,) ] < [1+0a (6% 1+ (Ax)*d)) ],

forj=0,...,M —1.
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Let
F = (3'@-2->0
F = A:z(b +562;) = Az (rj —d;j+ 367)
for an arbitrary but fixed € {2,..., N — 2} andj € {0,..., M — 1}. Then, the left hand side of
(5.4.35) satisfies
05 (|07 + Az (b + 5005)| + 1675 — Aw (b + 3605)|) = 05 (I[P + Fo| + [Fi = Fol) .

Inthe case; + 367, > d;,i.e.F, >0
P+ B +|F B = F+F+max{(F - F),(F - F)}
= max{2F,2F}
= max{2F,2|F|}.
If rj + 367, < d; then
[FL+ Fo| + [FL — Fb| = [F1— [Py [+ |[Fy + |F2l |
= max{(F1 — |F3), (|F2| — F1)} + F1 + [ P2
= max{2F,2|F|}.

Hence,

05 (|F1 + Fo| + |F1 — F»|) = 0 o max{F} ,|Fy|}.
Since we have chosen arbitrarg {2,..., N — 2} andj € {0,..., M — 1} it follows that the left
hand side of (5.4.35) satisfies

90‘ o —&—’Amb—k?”‘—l—‘a — Ax (bj + %3)‘)
(5.4.37)
= 6o max {a” ,Ax }bj + %&%H ,
fori =2,...,N—2,57=0,...,M — 1. Note thatAx > 0. Furthermore, each of the left hand
sides of the equations in (5.4.36) fulfil for=10,... , M — 1

0510

o1, — Ax(bj + 01])’ < 0amax{01],Ax‘b +3 1]‘}

(5.4.38)
0% T Az(b; + 6% )] < ba max{&?v_lyj,Ax‘bj+%&]2\,_17]-‘}.
M IfP< Othen

Ax by + 362, < o

foralli=1,...,N—1, 7=0,...,M — 1 and with (5.4.37) and (5.4.38) we get
05 (|62, + Axlv; + 302)| + |62, — Ay, + 362) )

= fu 61-2 :
J (5.4.39)

< 1+0a (62,4 (An)d))
= ‘1+9a (&zj-i-(Ax)de)‘
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fori=1,...,N—1, j=0,..., M—1sothatin this case the conditions (5.4.35) and (5.4.36)
are satisfied foj = 0,..., M — 1 without any restrictions concerning the discretization size
AT of the time—space.

(i) We now examine the case > 0. Define
Q = {G,j):i=1,....N—1,j=0,....,M—1},

(5.4.40)
= {6 A < 62, (i) €Q} .

b+21]

If (7,7) € @1 then the verification of conditions (5.4.35) and (5.4.36), respectively, follows
in the same way than in part (i) of this proof. In the cgsg) € Q\Q1, we get (note that

d; = 0)
eg(

67+ Ax(b; Jr%o*?])‘Jr Y

= fa (Ax‘b + 36 ” — 67 +UJ)

= 40 {( (Aa:‘b + 507, — &} )—1—@02]}
Ax(b +302-a2

< P +ad;;

<

0 (1+a (&zj + (Az)de))

‘1—1—904 (&3j+(Ax)2dj))

IN

such that conditions (5.4.35) and (5.4.36) also hold (forj) € Q\Q:. Consequently,
conditions (5.4.35) and (5.4.36) hold for &l j) € Q.

Thus, we have shown thatl + 9[)]-) is diagonally dominant and, hence, nonsingular for
j=0,...,M —1. [

Theorem 5.4.3 has the disadvantage that the upper limit (5.4.33) for the discretizatith¥size
of the time space depends on the volatility paramétésee the definition of (5.4.32)). However,
the adaption of the theoretical computed European call values to the market European call values
is carried out by adjusting the volatility parameter Thus, it is possible that the change of the
volatility parameter during the optimization process makes a refinement of the discretization size
AT necessary to maintain the regularity of the matrides ¢ Dj) forj =0,...,M—1. Therefore,
in the following corollary, we define an upper limit f&xT" which is independend af. Thus, the
conditions stated in Corollary 5.4.5 guarantee the regularity ef6 Dj),j =0,...,M —1forthe
complete optimization process without having to change the discretization with respect to the time
variableT" during the optimization.
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Corollary 5.4.5 Let Az and AT be the discretization size for the space and the time variable,
respectivelyg € [0,1]. If Az < 2 andAT satisfies

Az

AT <
10l

(5.4.41)

with [|b]|s is the Maximum-norm idRM, i.e. |[b]|oc = max;j—o_ -1 |bj|, then,(I + 0 D;) is
nonsingular forj =0,..., M — 1.

Proof: It holds the following relationship betwedngiven by (5.4.32) in Theorem 5.4.3 afjbl|.:

- 1520 52
P = _nax Az |bj + 507 ,] — 67,

52 .
= Az max |bj + 1462, — -
i ‘] 2 Z,]’ Ax

-2 22
< Az max |bj| + 567, — 5675
irj

= Ax ”bHoo .
Thus, it follows )
Ax (Ax)
AT < <
[1b]loo P
so that Corollary 5.4.5 immediately follows from Theorem 5.4.3. |

Remark 5.4.6 To guarantee the regularity of the matrigést+ GDj), the discretization sizAz of
the state variable has to be less than two. Since we have changed variablds foomaccording
to the transformationK’ = S exp(x) a discretization of ther—space withAxz < 2 is very
reasonable to achieve a sufficient accuracy of the approximajimomputed with the discrete
scheme (5.4.28) with regard to the exact soluiipro the parabolic differential equation (5.2.12)
with initial condition (5.2.13) and the appropriate boundary conditions (5.4.5).

Moreover, the sufficient condition of the invertibility of the matricég -+ GDj),
j =0,...,M — 1, with regard to the discretization siz®T" of the time variable is given by
condition (5.4.41). Usually, the size ||, is 10~ or less such that the constraint (5.4.41) is not
likely to interfere with the design of the finite difference mesh.

5.4.3 Convergence of the Discretization Scheme

Using the finite difference scheme (5.4.28) to approximate the solution to the parabolic initial—
boundary-value problem (5.4.6), we are now interested in the behavior of the solytion

j =0,...,M, of (5.4.28), when the discretization siz&sx and AT tend to zero. Hence, in

this subsection, we examine the convergence behavior of the finite difference method (5.4.28) —
(5.4.31), i.e. we study whether the solutiepy j = 0,..., M, of the finite—difference scheme
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(5.4.28) — (5.4.31) tends to the solution= (c1,;,...,cn-1,), ¢ij = c(x3,T}),j = 0,..., M,
of the parabolic initial-boundary—value problem (5.4.6) as we refine the discretizatiod\sizesl
AT.

Definition 5.4.7 Let ¢ be the solution to the parabolic initial-boundary—value problem (5.4.6) and
zj, 7 =0,..., M, be the solution to the finite difference scheme

Zij4+1 — Zij
AT
approximating the parabolic initial-boundary—value problem (5.4.6) with

= Lij(1—=0)z;+02,11), i=1,...,N—1,5=0,....,M—1,

zio = max(l —exp(z;),0), ¢=1,...,N—1

andzpj,zn;, j = 0,...,M are given by (5.4.25). Then, the given finite difference method is a
convergent scheme at maturifyif, as (j + 1) AT — T,

lzj+1 — ¢jsall =0

asAz — 0 andAT — 0 and withc; = (c15,...,cv-1;) ande; j = c(x;,T;). Moreover, a finite
difference scheme is convergent of orderq), p,q > 1 if

1zj+1 = ¢jall = O((Az)?) + O((AT)?) .

Remark 5.4.8 In Definition 5.4.7, we have not specified the nofm ||, yet. In the following
examinations we will use the discretizéd—norm which is given by

N-—1 %
[wll2,a0 = <A:r > w?) : (5.4.42)

=1

forw = (wl,. . .,wN_l).

Note that in Subsection 5.2.3, we have only examined the existence and uniqueness of a
solution to the pure initial-value problefic = ¢ with initial condition (5.2.13). However, by
treating the differential equation numerically, we were forced to introduce boundary conditions such
that we are now confronted with an initial-boundary—value problem of parabolic type. The theory
of the existence and the uniqueness of solutions of these latter problems is well-established, too.
They are for instance studied in the monographs by Friedman [37] or LadyZenskaja, Solonnikov
and Ural'’ceva [66]. In Appendix A, we briefly cite the results we will fall back on in the following
examinations. To begin with, the first result in this section, i.e. Theorem A.1.1, guarantees the
existence and uniqueness of a solutigm, 7") to the parabolic initial-boundary—value problem
(5.4.6) as well as its continuous dependence on the initial data.

Two important aspects in the examination of the convergence of the solytigr= 0, ..., M,
of the finite difference scheme (5.4.28) to the unique solutiory = 0,..., M, of the parabolic
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initial-boundary—value problem (5.4.6) are the consistency and the stability of the finite difference
scheme. To begin with, we study the consistency and the stability of the finite difference scheme
(5.4.28), and at the end of this subsection, we use both of these concepts to derive convergence
results of the solution of the discrete scheme (5.4.28) to the solutiof’) of the given parabolic
initial-boundary—value problem.

Consistency of the Finite—Difference Scheme

A finite difference scheme is said to be a consistent scheme if the finite difference equation converges
to the parabolic differential equation as the grid spacings approaches zero [31]. The examination of
consistency of a finite difference scheme consists in the study of the error that occurs if the finite
difference scheme is evaluated with the exact solution of the parabolic differential equation. This
error is called the local truncation error of the finite difference scheme.

Definition 5.4.9 A finite difference scheme
Zij41 — Zij
AT
is consistent with a parabolic initial-boundary—value problem= cr with accompanying initial
and boundary conditions if for the solutiefz, T") of the initial-boundary—value problem and with
c(z;,T;) = ¢; j the local truncation erraf; ;41 fulfilsfori=1,..., N -1andj =0,...,M -1

= Lij(1—0)z;+0z,41), i=1,....N—1,5=0,....M—1,

Cijj+1 ~ Ciyj

Eij+1 = AT Lij(1=0)cij+0cij)| —0

asAx , AT — 0. Moreover, the difference scheme is said to be accurate of goder to the given
parabolic differential equation at maturityif, as(j + 1) AT — T

lej+1ll = O((Az)") + O((AT)),

asAz — 0, AT — 0 and withe ;11 denoting the vector whoséh component is; ;.

A main tool in proving the consistency of finite difference schemes is Taylor's expansion.
Applying Taylor's expansion to a functiafix, T') it is necessary that(z, T) is sufficiently smooth,
i.e. that partial derivatives of(x,T") exist up to a certain order and that they are continuous.
According to Theorem A.1.1, we know that the solutig, 7") is a continuous function in the
domain[zmin, Tmax) X [0, 7] having two continuous—derivatives and one continuoflis-derivative
in the interior (i, Tmax) x (0,T) if the function describing the initial condition is continuous.
Moreover, LadyZenskaja, Solonnikov, and Ural'ceva have shown in [66, IV, Theorem 5.2] (see
also Appendix A) that the smoothness of the solution, 7") to the parabolic differential equation
(5.2.12) depends on the smoothness of the initial condition accompanying the differential equation,
i.e. the order of differentiability of the solutiariz, ") of the parabolic differential equation (5.2.12)
increases with the order of differentiability of its initial condition.



5.4 Determination of the Discrete Instantaneous Volatility Function 107

Since the initial condition is evaluated at discrete points in the finite difference scheme, it
is also possible that these discrete points present an approximation of a function possessing more
smoothness features such as a certain order of differentiability. Hence, we will examine the
consistency of the finite difference scheme (5.4.28) with respect to the parabolic differential equation
(5.2.12) accompanied by an initial condition that deviates slightly from the initial condition (5.2.13)
but which possesses certain smoothness characteristics. Thus, in the following examination of the
consistency of the finite difference scheme (5.4.28), we will refer to the slightly perturbed parabolic
initial boundary value problem

N[

6%(x,T) oo — (0(T) + 5 6%(x,T)) cx —d(T)c=cr,
(2,T) € (Tunin  Tmax) X (0,7T],

C(&('v '); xz, O) = 50('1‘) ) HS [xmin ) xmax]

T
c(6(); Tmin, T) = exp(— / d(r) dr)— (5.4.43)
0

T
exp(ZLmin ) €xXp(— /r(r) dr), T €]0,T],
0

c(6(,); Tmax, T) = 0, T e[0,T],
with () sufficiently smooth and

max | max(1 — exp(x),0) — ¢(x)] < 0.
ZTE[Zmin »Tmax]
Letx_ = max(x;, i =0,...,N : x; <0)andzx; = min(x;, i =0,...,N : x; > 0), then
©(x) is chosen such that it agrees wittax(1 — exp(z),0) ON [Tmin , -] U [24 , Tmax] and in the
domain(z_, =), it approximatesnax(1 — exp(x), 0) by satisfying certain smoothness conditions
such as the existence of continuous partial derivatives of a certain ordler,Qn z,ax]-

Letc(x, T) be the solution to the original parabolic initial-boundary—value problem (5.4.6) and
¢(z,T) be the solution to the perturbed initial-boundary—value problem (5.4.43). Then, according
to Theorem A.1.1, we know that the difference betweén T') and ¢(z,T") on the complete
domain [min , Tmax] % [0,77] is bounded above by the maximal difference between the original
initial conditionc¢(x, 0) = max(1 — exp(x), 0) and its smooth approximatign(x), i.e.

max le(z, T) —é(x, T)| < 9.

(z,T)E[Tmin ;Tmax]x[0,T]

Now, in the next theorem, we examine the consistency of the finite difference scheme
(5.4.28) — (5.4.31) with respect to the perturbed initial-boundary—value problem (5.4.43).

Theorem 5.4.10Let the initial conditiony(x) of (5.4.43)satisfyy € H([Xmin  Tmax]), With
e > 0 arbitrary small. Then, the finite difference sche(bet.28)— (5.4.31)is consistent to the
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perturbed initial-boundary—value proble(®.4.43)of order (2,1) with respect to|| - |2, A, for
0<6<1.

Moreover, ifp € HT¢([Zmin , Tmax), € > 0 arbitrary small, and the coefficient§T'), 5 (x, T') and
d(T) in the parabolic differential equatio(b.2.12)are not dependent df, i.e.

WT)=b, 6(x,T)=0a(x), dT)=d

then the finite difference scherff4.28)- (5.4.31)is consistent to the perturbed initial-boundary—
value problem(5.4.43)of order (2,2) with respect to|| - [[2,a, for 6 = 3, i.e. in this case the
Crank—Nicolson method is consistent of ord2r2) with respect td| - |2, A

Remark 5.4.11 The spaceﬂl([:z:min , Tmax|) @re Banach spaces whose elements are functions that
are continuous in the sense of Holder (i, , Tmax ), Which have N[z, , Zmax] cONtinuous
derivatives up to orddi] (= max{z € Z : z < [}) inclusively and which are finite with respect to

a certain norm defined oH! ([Zmin , Tmax] ), S€€ Appendix A for a definition of this norm.

We have dispersed the proof of Theorem 5.4.10 into Appendix B since we have used the usual
proving techniques applied to the determination of the consistency of finite difference schemes and
its order of accuracy.

However, note that in the proof of Theorem 5.4.10, it is necessary that the solution of the
examined initial-boundary—value problem has to be differentiablé at0. This condition is not
satisfied for the original parabolic initial-boundary—value problem (5.4.6), since its initial condition
c(x,0) = max(1l — exp(z),0) iS continuoOUs ONzmin , Tmax] but not differentiable at = 0. In
this case, the local truncation error for the first time layer can not be determined by using Taylor's
expansion for an evaluation of the accuracy of the finite difference quotients approximating the
different differentiation operators appearing in the parabolic differential equation (5.2.12). This
aspect is often not considered in the examination of finite difference schemes that are applied to
parabolic differential equations with a nonsmooth initial condition, see for instance Wilmott et al.
[107], Andersen, Brotherton—Ratcliffe [1] for an application of finite difference schemes in option
pricing models. In this case, the well-known order of accuracy2of) of the finite difference
schemes (5.4.28) in general and the or@eR) in the special case @f = % cannot be maintained
when approachin@’ = 0. We will return to this aspect at the end of this section.

Stability of the Discretization Scheme
Next, we examine the stability of the finite difference scheme (5.4.28)
(I+9Dj)Zj+1:(I—(l—Q)D]‘)Zj—i-Bj, j=0,...,M—1,

with Dj, Bj, andz; defined in (5.4.29), (5.4.30), and (5.4.21), respectively. In Corollary 5.4.5 we
have shown that the matricés+ 0D;),j = 0,..., M — 1, are nonsingular iNT < Az/||b||s. If
this condition is satisfied, formally the finite difference scheme (5.4.28) can be rewritten as

Zj41 = (I—i—gbj)fl (I—(l—&)[)j)zj + (I+6Dj)’1 Bj, 7=0,...,. M -1
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using the inverse ofl +6D;),j =0,...,M — 1.

A discretization scheme is said to be stable if small errors in the initial conditions cause small
errors in the solution [101]. Hence, the finite difference scheme (5.4.28) is stable if the absolute
values of the eigenvalues of the matrices

D; = (I+6D;)"*(I—(1-0)D;)
(5.4.44)
= (I+6aD;)~' (I - (1-0)aDy)

j=0,...,M —1, are less than one [94], [103], i.e. &}, v = 1,..., N — 1, be the eigenvalues
of D, j =0,...,M — 1, then the finite difference scheme is stable if

M| <1 for v=1,...,N—1,j=0,...,M—1. (5.4.45)

If 11, are the eigenvalues &f,, j = 0, ..., M —1, then the eigenvalueg, of D,,j =0,..., M —1,
are given by 4
N = 1_(1_0)“,”]”, v=1,... ,N—1.
14+0ap
We start the investigation of the stability of the finite difference system (5.4.28) by examining the
eigenvaluegi), v =1,...,N —1,0f D;,j=0,...,M — 1.

Lemmab5.4.12Let Az and AT be the discretization size for the space and the time variable,
respectively, and € [0, 1]. If

6'2

Az < min ——2 (5.4.46)

- _ 1 22
1=1,..., N-—-1 . = 4
j=0,...,M—1 |b] + 2 UZ,]

then, the matrice®;, j = 0,..., M — 1, are positive semidefinite. Moreover, the eigenvaMe,s
v=1,...,N—-1,0fD;,j=0,...,M — 1, satisfy
0 < dj(Az)* <l < max 12&2j+(m)2 dj = 2|63 + (Ax)*d;  (5.4.47)
1=1,....N—

with [|6%]|cc = max;=1 . N—1 67

Proof: Firstly, we show that the matrices;, j = 0,..., M — 1, are similar to a symmetric matrix.
For this purpose, we introduce the diagonal matrices
Y, =diagy], ..., v 1), §=0,....,M -1
where the diagonal elemer::,tﬁ, i=1,...,.N—1,3j=0,...,M — 1, are recursively defined by
yl = 1, j=0,...,M—1,

y =y o, i=2...,N-1,j=0,...,M—1.
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The diagonal elemeng,i{, i=1,...,N—-1,0fY;,5=0,...,M — 1, are well-defined since the
condition (5.4.46) on the discretization si2a: guarantees that

d e (e <
vf = —% (5’i,j+Al’ (b +2 ))

forallz‘:l,...,N—l,j:O,...,M—lregardIeSS|(b +367;) > 00r (bj+367,) < 0such

that — " >0foralli=1,....N—1,3j=0,...,M — 1. Then,
z 1
my i
W omh @
—1 o
Y; DY =
~J J ~ j
Un_o Mpy_g “N—2
~J
Un_1 My
with
J J
o= Y _ P Yivr j _ i
Vi1 = 5 Vg1 = i+1 7 u;
Yit1 i
forir=1,...,N—1,j=0,...,M —1. Thus,D; is similar to a symmetric matrix. Since similar

matrices have identical characteristic polynomials and the eigenvalues of symmetric matrices are
real, it follows that the eigenvalues éf;, j =0,..., M — 1, are real.

Moreover, the Gershgorin Circle Theorem, see for instance Golub, van Loan
[43, Theorem 7.2.1], applied t&;, j = 0,...,M — 1, yields that the eigenvalueg’,
v=1,...,N—-1,0fD;,5=0,...,M — 1, satisfy

N—-1 4
woe | @
=1

with the Gershgorin circlesf given by

Gl = {uslw-mll<pll+1dl}, i=2,. N-2,
Gl = {n:lu—mil <]},
G = {p l—mh I <ld 1}

forj =0,...,M — 1. Thus, foru € G/ holds

u—a (Ax)d‘ <

3 (62 + a0 (b +302)) | + |5 (63 — Aw vy + 362)|

_ ~2
= Oij
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sincei (a + Az (b + % ”)> > 0andi ( — Az (bj + 36 J-)) > 0. Thus,
(Az)?d; < p < 262+ (Az)*d; for peg)

such that
N-1

U d < [(a02d; 20163 + (A2) d;]

i=1
which proves that the matricds;, j = 0,..., M — 1 are positive semidefinite, and that condition
(5.4.47) is satisfied for the eigenvalygs v =1,...,N —1,0f D;,j=0,...,M — 1. |

Remark 5.4.13 If (ﬁj > |b;] theng < 1 such that
2,7

&2
05 1 1

= >
1 A2 b 11 — b5 1
b5 + 3635 7 +al  #+a

i,J

oleo| =
Wl N

Thus, in this case, condition (5.4.46) is satisfied if the discretizationsizef the state variable
fulfils Az < % However, this is only a weak restriction on the discretization Aizesince we have
changed variables fromi{’ to = according to the transformatioli = S exp(z), see also Remark
5.4.6.

Condition (5.4.46) becomes more restrictive for the discretization/sizé 52 ; < |bj]. Inthis

case, the size of the quotleﬁ} determines the size dkx. If - 'b | ~ 10 then condltlon (5.4.46)
is satisfied ifAz < 0.09. However the numerical results in Sectlon 5.6 will show that with a
reasonable chosen number of discretization points this condition will not be neglected, neither.

Having information available about the eigenvalues of the matiegsj = 0,..., M — 1,
now we can examine the eigenvalues of the matriegsj = 0,..., M — 1, and, consequently,
the stability of the finite difference scheme (5.4.28). The conditions ensuring the stability for the
different finite difference schemes, i.e. foxK 6 < 1, are stated in the following theorem.

Theorem 5.4.14 Let the assumptions of Lemma 5.4.12 be satisfied ar;dilet =1,...,N -1,

be the eigenvalues of the matricés, j = 0,...,M — 1. Then, the finite difference scheme
(5.4.28)— (5.4.31)is absolutely stable foi < ¢ < 1 and it is stable for0 < 6 < 1 if the
discretization sizé\T' of the time step satisfies

2 (Az)?
AT < - (5.4.48)
(1=26) (2(|6%lloc + lldlloc(Az)?)
with
~2 _ 52 — .
16500 = _max  &i; and |ldfjoc = max |d;|.
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Proof: We have already mentioned above that the finite difference scheme (5.4.28) — (5.4.31) is
stable if the eigenvalueg; of D; (see (5.4.44)) are less than oneuif are the eigenvalues @b;,
j=0,...,M — 1, then the stability condition for the finite difference scheme (5.4.28) — (5.4.31) is
given by

1—(1—«9)@/1&
1—1—904/1?;

| = <1, for v=1,...,N—1, j=0,...,M—1.

This condition is satisfied if and only if

!1—(1—0)(1,@‘ < ‘1+9au{;‘ = 1+0apu
respective

—1—fap, <1-1-0ap, <1+0apl,
which is equivalent to

, 2
(1-20) u, < o

This inequality is satisfied for aI% < # < 1 without any further restriction with regard to the

discretization sizes\T and Az sincea = (AATT)Q > 0, u{; > 0forv = 1,....,N — 1,

j =20,...,M — 1 according to Lemma 5.4.12 arid— 2 6 < 0 for 8 > % For0 < 0 < %
the stability condition is satisfied if

2 ~2 2 j
= > J
i-20)a 2|[6%]loo + lldfloc(Az)™ = 0

which is equivalent to
2 (Ax)?
(1—-20) (216200 + [|d]loc(Az)?)
Thus, Theorem 5.4.14 is proven. [ |

> AT.

Remark 5.4.15 The stability condition (5.4.48) puts for< 6 < % strong restrictions on the size of

the discretization sizAT since this condition means that maintaining stability requires to quarter
the size of AT if only the number of discretization points in the-mesh are doubled. Regarding
computational effort, this means that on the one side the computatigriafone time—step requires

twice as much effort (assuming that the computational effort for the solution of the tridiagonal
system isO(N)) and on the other side the computation of four times as many time—steps. Thus,
maintaining stability in this case means that the computational effort is eight times as much than it
was before if we started from a stable system and doubled the number of discretization points in the
z—mesh. Hence, a choice &fwith 0 < 6 < % is not recommendable since on the one side in each
time—step a tridiagonal system has to be solved and on the other side obtaining a higher accuracy by
increasing the number of discretization points inthenesh results in a considerable increase of the
computational effort. The increase of the computational cost might be Iessérvlgeﬁ < 1 since

then the resulting finite difference scheme is unconditional stable and does not require urgently an
adaption of the discretization size Afl' when the discretization siz&z is altered.
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Remark 5.4.16 If we would have applied a finite difference method to the original parabolic
differential equation (5.2.7)

Cr — 30(K, T)’K*Cgr + (r(T) — d(T))KCk + d(T)C =0

then, by using the forward difference quotients, the central difference quotient and the symmetric
central difference quotient for the approximatior(df, C'x andCk i, respectively, and discretizing
the K—space by

K,=iAK, fori=0,...,N andwith K., = NAK
the finite difference scheme would be given by

OAT ) 2 1501+ (1 +0AT ) 2ij1 + O AT @ iy 1
= —(1-0)AT 21,4+ (1 -1 =0)AT ) zij — (1 — O) AT 241

with,i=1,....N—1,j=0,...,M —1,

~7 1 ~2 .9 s
U, = 5 (am-z + b; z) ,
AT 22 2 )

m; = 0,1 +dj,

~7 _ _l A2 2 1
u; = 5 (Um-z b; z) .

In this case, condition (5.4.46) in Lemma 5.4.12 would become max(\bj]/&ﬁj) which puts
restrictions on the choice of the lower bound of the dom&iR,,, Kmax]- This, however, is very
much undesirable.
Moreover, the condition (5.4.48) on the discretization six& in Theorem 5.4.14 would
become fo0 < 6 < 1
2

AT < (1-260) (2]162]|oc (N —1)2 + ||d||s0) (5.4.49)

which would mean that the maximum stable discretization AiZenow depends on the number of
discretization points in thé&l—space and not on the discretization si¥& as in Theorem 5.4.14.
However, we will see in the next paragraph that the convergence of a finite difference method
depends on the size df K such that the convergence and the stability criterion are distinct [107].
Furthermore, condition (5.4.49) makes clear that it is possible that the difference scheme is stable
for small i and unstable for larg&’, i.e. if AT = 2/((1 —26) (26| (5)% + [|d||0)) the finite
difference scheme would be stable f6y,: =0, ..., % and unstable fokK;, i = % +1,...,N—1
such that at first sight it is not clear whether the scheme is stable.

All these difficulties do not appear when applying finite difference method to the transformed
version (5.2.12) of the parabolic differential equation (5.2.7) which elucidates the necessity of the
change of variables.
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Convergence of the Finite-Difference Scheme

After establishing the consistency and the stability of the finite difference scheme (5.4.28) — (5.4.31)
we now derive the convergence of this scheme.

Theorem 5.4.17 Letc(x, T') be the solution to the parabolic initial-boundary—value prob(&m.6)
and letz; = (z1;,...,2n-1,;) be the solution to the finite difference schefhie.28)— (5.4.31)
Moreover, assume there exists a functione H4+f([xmm,xmax}), e > 0 arbitrary small, with
o(z;) = max(1l — exp(x;),0),i=0,...,N,and

max | max(1 — exp(x),0) — ¢(x)] < (Az)®, forsomes>0.

e [-’Emin ,fmax}

Suppose that the discretization sizes for the time domdirand for the space domaifx fulfil

6.2

Ar < miI]lv %ﬂ
mpeet b+ 5 67
and
) Az 2 (Ax)? ) . 1
min , _ , F0<O<s
AT - (HbHDO (1= 20) 26 oo 1 [dl(22)7) :
Az if l<o<1
[0ll0c 2o

Then, the finite difference meth(4.28) (5.4.31)is a convergent scheme of ordenin{s,2},1)
with respect to the discretizeth—norm|| - |2 Az, i.€.

1211 = cjsillz.ae = O((Ax)™™ 52 4+ O(AT), for j=0,...,M—1.

Proof: Letc(x,T) be the solution to the parabolic initial-boundary—value problem (5.4.6), and let
¢(z,T) be the solution to the slightly perturbed parabolic initial-boundary—value problem (5.4.43)
with initial conditioné(z, 0) = ¢(x). Furthermore, let

Zj = (ZL]‘ goeey ZN—I,j)
be the solution to the finite difference scheme
(I+0Dj)2j+1:(I—(l—e)bj)Zj—i-Bj, 7=0,....M—1

with zq given by the initial condition (5.2.13)

20 = ¢g = ([1 — exp(a:l)]+ ey [1— exp(xN_l)]+)T ,

[1 — exp(x)]" = max(1—exp(z),0), andD; andB; defined by (5.4.29) and (5.4.30), respectively.
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If £;41 is the vector containing the local truncation erreys,  of the finite difference scheme
(5.4.28) — (5.4.31) with respect to the slightly perturbed parabolic initial-boundary—value problem
(5.4.43) in the(j + 1)st time layer, then for the solutiatiz, T') of (5.4.43) holds

(I+9Dj)5j+1 = (I—(l—@)bj)éj + Bj + AT€]'+1, j=0,....M—1

with Ej+1 = (817j+1 yeun ,EN—l,j-H) and 6]‘_;,_1 = (617j+1 e ,51\7_17]'_’_1), 51‘7]' = 5(371’ ,Tj), i.e.
¢(z, T) fulfils the finite difference scheme (5.4.28) — (5.4.31) extended with a term containing the
local truncation errors. "

Moreover, since\x < min; j L %,

T according to Theorem 5.4.14 we have
2 7,]

IDjlla = (I+60D))"*(I—-(1—-0)Dj)|la < 1, for j=0,...,.M—1.

Note, that the matrix norms$- |2 and|| - [|2,a. (i.e. these are the matrix norms defined in terms of
the vector norms) are equal sinde (|2,a> = VAz || - [|2)

Dilloaz = max D; A
IDylloae = max | [Dsylaas

= max VAz || D;yl2
VAz ||yll2<1

= max [ D;yl|l2
max (1D
= Djll2

Now, lete; ; be the difference of the exact solutiépn; of the perturbed parabolic initial—
boundary value problem (5.4.43) and the solutiey); of the finite difference method
(5.4.28) - (5.4.31), i.e.

ell?] = CZ?] - Zivj’

thene; ; satisfies the nonhomogeneous finite difference equatioa:(e1;,...,en—1;))
(I+60Dj)ejs1 = (I—(1—-0)Dj)ej + ATej1, j=0,....,M—1
with homogeneous initial and boundary conditions,dge—= 0. Thus,
ejs1 = I+0D) " (I—-(1—-0)D;j)e; + AT(I+0D;)  ejrr, j=0,...,M—1,
and taking the discretizebl,—norm|| - |2 o, Of ¢4 yieldsforj =0,...,M — 1

lejtillzae < [I(1460D;)7 (I = (1= 60)Dj)ll2,a2

+ AT (I +0D;) Yoaz llejrillza:  (5.4.50)

IN

k1 + AT |lgj11]l2,a2

with k1 < 1. To see that| (I + 0D;) ' [la.ax = ||(I +0D;)"|2 < 1 we examine the eigenvalues
M,v=1,....,N—1,0of (I+60D)"" = I+0aDj)"', j =0,....M — 1. Letyl,
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v=1,...,N -1, be the eigenvalues d@p; (see (5.4.23) for the definition dp;). Lemma 5.4.12
yields that

and, thus, for the eigenvalues@f+ 6 a D;)"!,j =0,...,M — 1, holds

: 1
No=—— < 1.
1+ 0oy

Now, applying (5.4.50) recursively (|2, Az, [ = J, ..., 1, yields (noteM = AL_T)

IN

lejr1llz,Ax k1llejll2,ae + AT |lgj11]l2,a2

IN

k1 (k1 llej-1ll2,a0 + AT [lgjll2,a2) + AT [lej4+1
i+
AT Z k{_l—H ”El
=1
Jj+1
< AT Y Jeiloa
=1

|2,Az

IN

2,Ax

According to Theorem 5.4.10, the accuracy of the finite difference scheme (5.4.28) — (5.4.31) with
respect to the slightly perturbed initial-boundary—value problem (5.4.43) is of ¢2dey, i.e.
letll2,ae = O((Az)?) + O(AT), 1 =1,..., M, such that

j+1
AT Y~ O((Az)?) + O(AT)

=1
AT M ((’)((Ax)2) + O(AT))

IN

lejr1ll2,a2

IN

IN

T (O((Ax)?) + O(AT))
O((Az)?) + O(AT)

forj =0,...,M — 1. Thus, the order of convergence of the solutign, of the finite difference
scheme (5.4.28) — (5.4.31) to the soluti®n  to the perturbed parabolic initial-boundary—value
problem (5.4.43) i$2, 1).

Now, we study the deviation of the solution;; of the finite difference scheme
(5.4.28) — (5.4.31) to the solutiory; of the original parabolic initial-boundary—value problem
Lc¢ = ¢ with initial condition (5.2.13) and boundary condition (5.4.5). We know that the
deviation of the solutions(z,T") andé(z, T') of the original and the slightly perturbed parabolic
initial-boundary—value problem, respectively, is of magnitud2((Ax)®) for every
(,T) € [Tmin,Tmax] X [0,T] by using the weak maximum principle and the accuracy of the
approximationy(x) to the original initial conditionmax (1 — exp(x),0). Moreover, we just have
shown that the convergence of the solution of the finite difference scheme (5.4.28) — (5.4.31) to
the solution of the perturbed parabolic initial-boundary—value problem (5.4.43) is of @der
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Using the triangle inequality and these two aspects, we get for the gtror— 2,41 (note that
N — wmax_mmin)
Az

xT

IN

lejt1 — 2zjtill2,ax lcjiv1 — Giallzae + 1641 — 2zj+i1ll2.a2

N-1 1/2
— <Am > (cijer — Giga)’ + O((A2)?) + O(AT)

=1
— (Ar (V- 1)(O((Ae 5))2)1/2 + O((A2)?) + OAT)

((Az)
< (Zmax — Tmin) /2 O((A2)*) + O((Az)?) + O(AT)

= O((Aa)min(s2}) 4 O(AT)

such that the finite difference scheme is convergent of ofden{s,2},1) with respect to the
discreteLo—norm|| - |2, Az - [ |

In Theorem 5.4.17, we have shown the convergence of the solution of the finite difference
scheme (5.4.28) — (5.4.31) to the solution of the parabolic initial-boundary—value problem (5.4.6) by
introducing an auxiliary parabolic initial-boundary—value problem and assuming that the
accompanying initial condition is given by a sufficiently smooth functigriz) with
o(z;) = max(1l — exp(z;),0), 7 = 0,...,N, that approximates the original initial condition
max(1 — exp(z),0) with a certain accuracy. This result makes clear that the order of this accuracy
determines the order of convergence with respect to the spatial variable i. If the solution
of the finite difference scheme is directly compared to the solution of the original parabolic initial—
boundary—value problem (5.4.6), difficulties appear in the examinatioris fending to0 because
the initial data are not differentiable far = 0. In these cases, finite element methods are often
preferred since they possess certain smoothing properties.

Thomée has investigated convergence estimates of spatially and fully discrete schemes
resulting from an application of finite element methods on second order parabolic initial-boundary—
value problems, see for instance Bramble, Schatz, Thomée, and Wahlbin [12], Huang and Thomée
[57], Thomée [104]. We start with presenting convergence estimates for spatially or semidiscrete
schemes, i.e. schemes that result from a discretization of the parabolic differential equation with
respect to the state space. kgt (7") be the solution to this semidiscrete scheme which presents a
Az—dependent finite system of ordinary differential equations in time and let
o(T) = (e(x1,T),...,c(zy—1,T)) be the solution of the original parabolic initial-boundary—value
problem withz;,i = 1,..., N — 1, being fixed by the spatial discretization. For the homogeneous
heat equation

cr = Ac inQ forT>0,

c(,0) = ¢ inQ, (5.4.51)

c = 0 onoQ forT>0,

where € is a bounded domain inR™ with smooth boundaryf2, Thomée has derived in
[104, Theorem 3.5] an error estimate for the spatially discretized system elucidating the relation
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of the error in the finite element solution and the regularity of the exact solution.
Before we present this result, we briefly introduce the relevant spaces and the corresponding
norms. According to the statements of Thomée in [104] we denote lhghe norm inLs = Lo (2)
and, for a positive integer, by || - ||,- that in the Sobolev spadé” = H"(2) = W5 (£2). Moreover,
for s > 0, let H* = H*(9) be the subspace df, defined by

k=1

oo 00 1/2
H® = {QDZ(QD,Uk)UkELQ s els = <Z)\Z(%Uk)2> < 00} -
k=1

with {\;}72, being the nondecreasing sequence of positive eigenvalues of the eigenvalue problem
—Au = XNuin Q andu = 0 on 99, that tends toco with &, and with {vi}72, being the
corresponding sequence of eigenfunctions which form an orthonormal bdsis=nl,(€2) [104].

Let us now cite the convergence estimate presented by Thomée in [104, Theorem 3.5]:

Theorem 5.4.18Let {Sx,} be a family of finite dimensional subspaced.gfand{.Ax, } a family
of operatorsAa, : Lo — Sa., approximating the exact solution operatgr of the Dirichlet
problem—Ac = fin Qwithc = 00n9f?, such that

(1) Aa. is selfadjoint, positive semidefinite @dn, and positive definite 08 ,;
) [[(Aaz — A fl| < k(AZ)P||f]lp-2,for2 <p<r,andf € HP2.

Moreover, assume that the approximatipR,. of the initial conditiony satisfieSpa, = Paz With
P, denoting the orthogonal projection gfontoSa,. with respect to the inner product ib,. Then
if the initial conditiony fulfils ¢ € H* and0 < s < ¢ < r, we have for the error in the semidiscrete
problem

leas(T) — o(T)|| < k(A2)TT~@9/2 |4, forT > 0. (5.4.52)

The convergence estimate (5.4.52) shows that a convergence rate adbofder)”) is satisfied
uniformly down to7" = 0 if the initial datay are sufficiently smooth, i.e. ip € H” in case of an
accuracy of the approximating solution operathk, of orderr. If the order of regularity of the
initial condition ¢ is lower, the order of convergence ©f (Az)") is only achieved fofl’ bounded
away from0 and the bound depends in a singular wayloasT tends to0. Note that the above
estimate (5.4.52) combines this order of singularity with the smoothness of the initial condition
(), see Thomée [104, Chap. 3].

Remark 5.4.19 If the initial condition ¢ of the initial-boundary—value problem (5.4.51) with

Q= (0,1)is given by
—x, if z<
€T =
o) {1x, if >

[T ST



5.4 Determination of the Discrete Instantaneous Volatility Function 119

theny € H3/2-< with e > 0 arbitrary small. Thus, in this case the convergence estimate (5.4.52) in
Theorem 5.4.18 has the form
leas(T) = o(T)|| < k(Az)?T~07379/2 g

5—€

for 7 > 0and0 < 2 —¢ < ¢ < r. Note that the initial condition (5.2.8) given by
C(o(--); K,0) = max(S — K,0) of the parabolic initial-boundary—value problem (5.2.7) with
initial condition (5.2.8) and boundary conditions (5.4.2), (5.4.4) in the original varidblesdT
possesses a similar structure. Hence, we would expect that the smoothness of the initial condition
of the parabolic initial-boundary—value problem describing the value of a European call option will
be of a similar order.

Huang and Thomée presented in [57] also convergence estimates for semidiscrete schemes that
approximate initial-boundary—value problems consisting of a more general parabolic differential
equation with the elliptic operator having coefficients depending on:baitd’, containing lower
order terms and being nonselfadjoint and nonpositive, i.e. a parabolic differential equation of the
form

n n
v = 3 2 () + Y a &+ anc (5.4.53)
Jik=1 J=1

wherea,y, , a;, andag are smooth functions i x [0, 77, ajr = ax;. In case of nonsmooth initial
data they obtained the following result, see Huang and Thomée [57, Theorem 3 and 4]:

Theorem 5.4.20Let {Sa,} be as in Theorem 5.4.18 and leta, be a family of operators
Anz © Lo — Sa, approximating the exact solution operatgr of the elliptic part of equation
(5.4.53)with homogeneous Dirichlet boundary conditions, such that

1) (f,Aazf) =0for f € Ly, and(x, Aazx) > 0for 0 # x € Saq;

@) [(Aacf 9) = (f+Aszg)l < k(f,Aacf) [l Anzgll;

(3) thereis an integer > 2 such that

() Ane = () AV f < k(A2)*|[flls—2, for2<s<r,j=0,1;

(4) the adjoints of4 and.A4x, satisfy forr defined in (3)

() Ane = () AV < k(A2)°||flls—2, for2<s<r,j=0,1.

Furthermore, assume that the initial conditignfulfils ¢ € Lo and that its approximatiopa, is
given bypa, = Pagp With Pa, denoting the orthogonal projection @f onto Sa, with respect to
the inner product inL,. Then, the error in the semidiscrete problem satisfies

leas(T) — e(T)|| < k(Az)" T7"2|p|, forT >0. (5.4.54)
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(Note that if condition (3) in Theorem 5.4.20 is fulfilled with= 2 then the following condition
(4) is not necessary to obtain the given error estimate in Theorem 5.4.20, see Huang and Thomée
[571)

Although the result in Theorem 5.4.20 lacks to give a more general relation between the
order of singularity and the smoothness of the initial conditioiit again elucidates that including
nonsmooth initial data into the examination of error estimates for semidiscrete schemes introduces
singularities in the error estimates fértending to0 and that the optimal order of convergence of
the solution of the semidiscrete scheme is only achieved for0, i.e. for7 bounded away from.

Finally, we cite an error estimate regarding the maximum-norm for semidiscrete schemes
presented by Thomée in [104, Chap. 5]. Restricted to initial-boundary—value problems of the form
(5.4.51) and to piecewise linear approximation functions in the finite element method, he showed
for nonsmooth initial data the following estimate, see Thomée [104, Theorem 5.4 and 5.5]:

Theorem 5.4.21Let {Sa,} be a family of finite dimensional subspaceslefand letP, be a
partition of €2 into disjoint triangles with the union of the triangles determine a polygonal domain
Qa. C Q. Suppose thafSa,} consists of the continuous functions on the closuref 2 which

are linear in each triangle of the triangulatioRa ., and which vanish outside 6fA,.. Furthermore,
assume that the initial conditiop fulfils o € Lo and for its approximatiopa, holdspa, = Pagp

with Pa, denoting the orthogonal projection gf onto Sa,. Then, we have for the error in the
solution of the semidiscrete problem

leae(T) —e(T)||pe < k(Az)* (In(2)*' T l¢llr., forT>0. (5.4.55)

Moreover, if for the initial conditionp only holdsy € Ly, then we get for the error in the solution
of the semidiscrete problem

leas(T) —e(T)|r. < k(Az)* (In(2)* T2 |¢llL,, forT >0. (5.4.56)

Note, that although the regularity assumptions on the initial data are weakened in the
second part of Theorem 5.4.21, still, an error estimate of o2der obtained forT bounded
away from0. Moreover, a logarithmic factor additionally appears in the estimate of the error
regarding the maximum-norm. This term, however, might be eliminated according to Thomée, see
[104, Chap. 5].

After presenting convergence estimates for spatially semidiscrete problems, we now inspect
fully discretized systems for second order parabolic initial-boundary—value problems which are
obtained by discretizing the semidiscrete problems with respect to time. We continue to present
statements of Thomée represented in [104]. To begin with, let the initial-boundary—value problem
be of the form (5.4.51). As in Theorem 5.4.17, the accuracy and the stability of the discretized
problems are called on to obtain convergence of the solution of the fully discretized scheme to the
solution of the initial-boundary—value problem. For the definition of these two concepts and for
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the examination of discretization schemes with respect to time, Thomée considers the initial-value
problem

d + Lc=0 forT >0, withc(0)=¢, (5.4.57)

with £ being a linear, selfadjoint, positive definite, not necessarily bounded operator with compact
inverse, and with the definition domain being a subspace of a separable Hilbert/spadehe
solution operator of problem (5.4.57) can be written as

N

o(T) =Y exp(=\T) (¢, ) vj,

j=1

with {Aj}é\le being the eigenvalues qﬁ‘and{vj}é\f:l denoting a corresponding basis of orthogonal
eigenfunctions (withV < oo). Thus, the solution operator of this initial-value problem can be
viewed as the exponentiakp(—7 £) such that a possible way of defining a single step discrete
method for this problem class consists of approximatitg—A) by a rational functiom(\) that is
defined on the spectrum(k £) of k £ [104]. Hence, Thomée [104, Chap. 7] defines the accuracy
(orderg) and the stability condition of a discretized system

Zj+1 = T(] ,C_) Zj, 720 and with zg = ©
by
r(A) = exp(—)\) + O\, asA —0

and

sup [r(A)[ <1,
Ao (kL)

respectively, witho (L) = {)\j}f’:l being the spectrum of. Deriving convergence estimates for
nonsmooth initial data a further classification of the rational functior) approximatingexp(—X\)
is needed, see Thomée [104, Chap. 7],i(@) will be of type I, Il, Ill, or IV, respectively, if

I: |r(A)] < 1,for0 < A < o, witha > 0;
I |r(N)] < 1,for A > 0;
: |r(A)| <1, for A > 0, and|r(c0)| < 1;
IV: |r(N)] < 1, for A > 0, andr(c0) = 0.

If the initial-value problem (5.4.57) represents a spatially semidiscrete problem, Thomée
[104, Chap. 7] has introduced an additional classification(af). The rational function-(\) is
said to be of type I’ or II’, respectively, if

I': r(\)is of type | andk \pax < ag, for somea with 0 < ag < «;

I': r(A) is of type Il andk Apax < a1, for somen; with 0 < ay < o0;
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with \..x denoting the largest eigenvalue 6f Note that the explicit Euler, the implicit Euler and
the Crank—Nicolson scheme can be represented in form of a rational fun¢hpand that they are
of type I, IV and Il, respectively.

Analogously to the error estimate of the spatially semidiscrete problem in Theorem 5.4.18,
there exists an estimate for the error in the solution of a discrete scheme obtained be discretizing
problem (5.4.57) with respect to time. The bound of this error again expresses the relation between
the regularity of the data, the order of convergence, and the order of singularity, see Thomée
[104, Theorem 7.3]:

Theorem 5.4.22 Let the discretization scheme
zjit1=r(jL)z;, forj>0 andwithzy =¢ (5.4.58)

be accurate of ordeg and of type I', II’, or lll. Moreover, let the initial conditiorp fulfil p € Lo.
Then, we have for the error in the solutiepof (5.4.58)with respect to the solutionof (5.4.57)

lzj — (@) < k(AT T, |plas, for e (%, 0<s<1<q.

Theorem 5.4.22 fits for smooth as well as nonsmooth initial data and its error bound again
makes clear that optimal order results holding uniformly dowfl'te= 0 are only possible when
certain smoothness conditions are fulfilled by the initial data.

Finally, we cite estimates for the error in the solutignof fully discretized schemes, i.e.
schemes where the discretization is carried out with respect to the state as well as the time variable.
Thus, these results express the accuracy of the solution with respect to the discretization sizes of
both the state and the time variable. We start with stating the error estimate for nonsmooth initial
data with respect to thea—norm, see Thomée [104, Theorem 7.7].

Theorem 5.4.23 Let the time discretization scheme be accurate of ordend of type I', II’, or

[Il. Moreover, let{Sx,} be a family of finite dimensional subspaced.efand {. A} a family of
operatorsAna, : Lo — Sz, approximating the exact solution operatdrof the Dirichlet problem
—Ac = fin Qwith ¢ = 0 on 9%, such that conditions (1) and (2) given in Theorem 5.4.18 are
fulfilled. Furthermore, assume that the initial conditiprsatisfiesp € Lo and that its discretized
approximation is given bya, = Pazp With Pa, denoting the orthogonal projection gf onto
Saz With respect to the inner product ih,. Then, the error in the solution; of a fully discrete
scheme satisfies

I = eill <k ((Aa) 17 4+ (ATYIT) |lgll, for Ty = jAT > 0,

Theorem 5.4.23 is a direct consequence of Theorems 5.4.18 and 5.4.22 with and by
using the triangle inequality. Thus, if the initial conditiprfulfils ¢ € H?%, then, also the following
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estimate holds combining the regularity of the data, the order of convergence, and the order of
singularity:

—(p—s —(l—s
2 —cill < k (@2 27" fel, + (AT T gl

witho <s<p<rando<s<l[<gq.

The error estimate in the maximum—norm is exemplified for a fully discrete scheme for the
initial-boundary—value problem (5.4.51) in two spatial variables, With consisting of piecewise
linear approximation functions in space that are defined on a quasiuniform triangulations of the
spatial domain, see Thomée [104, Theorem 8.6].

Theorem 5.4.24 Let z; be defined by the fully discrete scheme
zj = 1(—kApz)" paq

with () being a rational function approximatingmp(—\) that is defined on the spectrunik £) of

k £ with £ = — A, being the discrete Laplacian and lebe the solution to the initial-boundary—
value problen{5.4.51) Moreover, let the discrete approximation of the initial conditiphe defined
by pa. = Pagp With Pa, denoting the orthogonal projection gf onto Sa, with respect to the
inner product inLs. Furthermore, assume that the rational functiofx) approximatingexp(—X\)

is A—stable, i.e|r(z)| < 1 for |argz| < 7, that it satisfiegr(co)| < 1 and that it is accurate of
ordergq. If ¢ € L, then, forT; > 0 holds

2 —esllie <k ((A2)” () T 4+ (AT)? (n(55) " T;7") el

In summary, it may be said, that the convergence estimates in Theorems 5.4.18, 5.4.20 — 5.4.24,
which all apply to the solution of finite element schemes, elucidate the difficulties when the
initial condition in parabolic initial-boundary—value problems is not sufficiently smooth. In all
these results, the error bound contains a singularity fe@nding to0 such that the optimal order of
convergence is only achieved férbounded away from.

Although the presented error estimates are derived for an initial-boundary—value problem for
the homogeneous heat equation, Thomée mentions that the results of Theorem 5.4.22 and 5.4.23
generalize directly to parabolic equation of the form + L ¢ = 0 where the elliptic operatok
is selfadjoint, positive definite, and time independent [104, Chap. 7]. However, since in Theorems
5.4.18 — 5.4.24 only special classes of second—order parabolic initial-boundary—value problems are
considered it is possible that convergence estimates for finite element solutions applied to more
general second—order parabolic initial-boundary—value problems containing for instance a time—
dependent elliptic operator, may even be worst.

5.4.4 Determination of the Discrete Instantaneous Volatility Function

After the introduction of a numerical method for the computation of the European call price function
c(z, T), we now return to the construction of the volatility functiéz, T'). Therefore, we again
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introduce the dependence of the value of the European call option on the volatility fufCiigh)
in our notation by denoting the European call price function with(-, -); z, T") in the following.

In Subsection 5.3, we have derived that the instantaneous volatility fungtiofi’) can be
implicitly determined by approximating the market European option prices, i.e. we have described
the construction of the instantaneous volatility functidfx, 7') by an inverse problem. In the
optimization problem (5.3.2), the value of the European call option is given by a sufficiently smooth
real-valued function satisfying the transformed version of the extended Black—Scholes model (5.3.3).
Using the finite difference approach (5.4.28) — (5.4.31) introduced in the previous section for
numerically solving the parabolic initial-value problem (5.3.3) respective the parabolic initial—
boundary—value problem (5.4.6), the European call price funetiéfy, -); =z, T') is approximated
by the finite dimensional solution= (zg , 21 , ..., zar) With z; = (20 ; ...,ZNJ)T,J' =0,...,M,
of the finite difference scheme (5.4.28) — (5.4.31) (note that we have changed slightly the
notation by including the boundary values into the definition of the approximajioince for the
determination of the approximationonly values of the instantaneous volatility functiéf, 7°)
on the grid knots are required, we can replace the functional fofm7’) in problem (5.3.2) by
the finite dimensional vectos just containing the values af(z,7") at the grid knots(z;, T}),
i=1,...,N—1,j=0,....,.M—1,ie.

g = (60,...,00-1) € RMIN-1) with

&j = (&173‘,...,&]\1_17]')6&%]\[71, j=0,...M—1.

In the following, we will denote the solution of the finite difference scheme (5.4.28) — (5.4.31) by
z(o) to elucidate the dependencez06n the volatility parametes.

2P . 2P .
(2P, 1; ) @ Ty,

)

Ty = Ty

AT{

Ty =T,
37 T2 (=2, T
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J1 1 1 4 1
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oo e
z
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FIGURE 5.3: Arrangement of the market European call options in the finite difference grid

We have already noted above that option prices are quoted in the market for strike prices at
discrete intervals and only for a small number of maturities [107]. Furthermore, different series
not necessarily contain options with identical strike prices such that, generally, the market
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European call options are scattered in the finite difference grid, see Figure 5.3. Moreover,
regarding the original variabl&™ the strike prices of market European call options are usually
arranged on an equally spaced grid. However, since we have introduced the transformation
x = ln(%) to eliminate the variabldS in the coefficients of the original parabolic differential
equation (5.2.7), we cannot guarantee that the transformation of the strikeprices 1,...,m,

of the market European call options, are located on the grid knots in the finite difference mesh. Thus,
we cannot guarantee that the corresponding approximations of the market European call options are
given by an element; ;(5) of the finite difference solution(). However, since the solutiof(o)

of the finite difference scheme (5.4.28) — (5.4.31) approximates the sot(ti¢n-); =, T') of (5.4.6)

with an accuracy of ord€2, 1), see Theorem 5.4.17, it is possible to obtain the values of European
call options located between two grid points by using polynomial interpolation of second order
without disturbing the given order of accuracy of the solution of the finite difference scheme. Thus,
let the strike prices; = ln(%) and the maturitie¥; of the market European call options satisfy

i1 < 1 < T4 and T = j AT,

l=1,....,m,withi; € {1,...,N — 1} andyj; € {0,..., M}. Since market European options only
exist for a small number of maturities and we have not carried out a transformation with respect
to the maturityT’, we suppose that the market European call options are located on the chosen
time layers in the finite difference grid. Hence, using polynomial interpolation of second order the
values of European call options with maturify which are located between the two grid points
(xi,—1, 51 AT) and(z;,+1, ji AT) are given by

clw JIAT) ~ CEmn), (o) ¢ U ) 4

(5.4.59)
%%14_1&(5), for z € [xiz—lﬂxiz-i-ﬂ
For a simplified representation of the location of the market European call options in the finite
difference grid, we introduce a so—called observation operator that determines the corresponding
approximations of the market European call options by being evaluated at the finite dimensional
solutionz(a) of the finite difference scheme (5.4.28) — (5.4.31). For the definition of this observation

operator, we introduce some notation. Let
J = {(K,T;) : l=1,...,m}
be the set of the pairs of strike prices and maturities of the market European call options and let
Jj = {(K.T)€J :T=jAT}

be the set of the pairs of strike prices and maturities of the market European call options where the
maturity 7; is assigned to thgth time layer in the finite difference grid with

M
’J]’ =my such that ij =m.
=0
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Moreover, we assume that there existtime layers ji,j2,...,5, € {1,...,M} with
m;, = |Jj.| > 0 whose indices are united in the index set

I={je{l,....,M}:m;>0}. (5.4.60)

Then,
ij =m and lI| = p.
jeI
We now determine the observation operatoe IR"™>*P(N+1)_ Since different series of market
European call options, i.e. set of market European call options with the same maturity, might not
contain options with identical strike prices, we have to determine the location of the market European
call options in the finite difference grid separately for the different maturjieST with j, € I,
kE=1,...,p. LetA; = (adks) € R™*(N+1) pe the operator determining the location of the
market European call options with maturify= j, AT in the finite difference gridk = 1,... ,p.
Then, we defined = diag4;, ,...,A;,) as the block diagonal matrix containing the different
observation operatord;, on its diagonal.
Let K{k ye ,Ki}’%k be the different strike prices of the market European call options belonging
to the series with maturit¢’ = j, AT, k = 1,...,p, with K{’f < ... < Kﬂ,lfjk without loss of
generality. Moreover, define

Ik

. - K
§ = {5=0,..., 5 =1 : 295 <In(=F) < w31y}
forq =1,...,m;, andk = 1,...,p. Considering the polynomial interpolation of second order
(5.4.59) for the approximation of European call option values that are located between two grid
points, then, the elementg’s, ¢ = 1,...,m;,, s = 0,..., N of the observation operatot;, ,
k=1,...,p, are given by
k_ k_ . .
(v~ 2+(1A)(§)¢12 @s+2) if s = 232
(ngccs_l)(xs+1fx§) if s —9 Ak 1
. B2)? ITs=25+
adk =
©s (a:];—xsfg)(;r’;—xsfl) . Ak
0 otherwise
with 27 = In(=¢&-),i = 1,...,m;,, andzs = Ty, + s Az.
Let2(6) = (2,(5) ..., 2;,(7)T € RRN*V with j € I,k =1,...,p, then, an evaluation

of the observation operatoet at 2(5), i.e.
_ Al = _ _ _\7
25(0) = AZ(G) = (4),2,(0), Ajp 23,(5) ..., Ay, 2, (5))

causes that,s(¢) contains the computed European call option values using the finite difference
scheme (5.4.28) — (5.4.31) for the solution of the transformed version of the extended Black—Scholes
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equation (5.3.3) that correspond to the market European call options. Furthermore, if we set

T
Cio = (Cin i Cin i € R™
J K{k 7T1Jk ’ I K:Zrlbcjk VT%k )

ie. C*jk contains the values of the market European call options with matiltity= j, AT,
k=1,.

..,p,and
and define
R(6'> = st(a') — Cobserv (5.4.61)
then
. — _ . l — 2

min 9(0) = min § IR (5.4.62)

with
n = M(N-1)

(| - || is the Euclidean norm ifR™(¥-1)) is the discrete counterpart of optimization problem

(5.3.2) describing the construction of the instantaneous volatility funétien?’) if we ignore the
smoothness condition ai(x, T') for a moment.

Since the residual functio® depends nonlinearly on the finite dimensional version of the
instantaneous volatility functio, problem (5.4.62) represents a nonlinear least—squares problem.
Moreover, note that usually the number of market European call options is small and a sufficient
accuracy is only achieved with a certain number of discretization knots such that, in general, these
problems will be underdetermined, ir7e;> m. Since the degree of freedom of these problems is too
large, they typically have an infinite number of solutions so that the ill-posedness of the optimization
problem (5.3.2) is carried over to its finite dimensional counterpart (5.4.62).

As already mentioned in earlier chapters, in the case of underdetermined nonlinear least—
squares problem it is likely that the residual functiBnat the solution is small. Hence, for the
solution of problem (5.4.62) we use the Inexact Gauss—Newton Algorithm 2.2.3 presented in
Chapter 2. This algorithm has the advantage that on the one side in case of a zero residual at
the solution the algorithm exhibits good asymptotic convergence behavior and on the other side by
using a trust—region strategy for the solution of the Gauss—Newton subproblems a regularization is
imposed on the subproblems that overcomes their ill-posedness, see Theorem 2.2.2.

If the Euclidean norm is used in the definition of the trust—regipgiven by (2.2.6), then the
restriction in the Gauss—Newton subproblems prevents the updates of the iterates from becoming
too large. In the context of constructing the instantaneous volatility functionT’), however,
one wishes to determine the volatility function so that the extended Black—Scholes model calibrates
the values of the market European call options and which shows the most smooth behavior, i.e.
|Vé(xz,T)| should be as small as possible. Thus, in this case, regularization is carried out with
respect to the smoothness of the volatility function. For the definition of the trust—region, this means
that the norm of the discrete version of the differential operator evaluated at the updates of the
iterates should be bounded.
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Hence for the definition of this trust—region, we first of all need to make the discrete version of
Vé(xz,T) available.

Lemma5.4.25Leté(x, T) : IR x [0,T] — IR be the instantaneous volatility function. Using the
finite grid generated by the finite difference schémé.28)- (5.4.31)and approximating the partial
derivatives of(x,T") with a forward difference quotient, then a discrete version of the Jacobian
Vé(xz,T) is given by

D,
D = T (5.4.63)
Dr
with
E -1 I 0
E -1 I
D, = A _ and Dr = o )
E 0 —I T

D, € RW-2Mx(N-O)M ). ¢ RIN-DM-1)x(N-DM gnd where] € RW-D*WN-1) js the
(N —1) x (N — 1) identity matrix and

-1 1 0
o -t ¢ RIV-DX(N-1)
0 -1 1

Proof: Since the instantaneous volatility functiéiiz, T') is of the formé : IR x [0,T] — IR the
Jacobian ot (x, T') has the form

Vé(z,T) = (£6(2,T), 26(2,T)) .

For the derivation of the discrete form ®fs(z,T") we use the same discretization of the state and
the time space than in the finite difference scheme (5.4.28) — (5.4.31), i.e.

i = ZTmin+iAx, 1=0,...,N,

T, = jAT, j=0,...,M,
With Az = (Zmax — Tmin) /N andAT = T/M. Furthermore, we set

Vibij = 26(x,T5), i=1,....,N—=2,j=0,...,M—1,
9

VTC}M = 8T5'(£L‘¢,T‘j), izl,...,Nfl,jZO,...,M*2.
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First, we examine the partial derivative 6fx,T") with respect tox. A discretized version of

26(z,T) is given by

Voo = (Vb0, Vb1, .., Vaor—1) € RN-2M
with
(T b T s AT o pN-2 . _
Va6j = (Ve01,4,Vab2j,...,Veon_2;) € IR , j=0,...,.M—1,

l.e. V.o contains the partial derivativ%&(:c, T') evaluated at the different grid knots in the finite
difference grid. We approximate the partial derivativesdf:, T') with respect tar by using the
forward difference quotient, i.e.

9 - o A Titlj = Oy

Ax ’
Let
1 1 0
E= - e RN-2)x(N-1),
0 -1 1

then, an approximation of the partial derivatigﬁe%(x, T') evaluated at the different grid knots in the
jth time layer is given by

~E6; ~ V65, j=0,...,M—1,

and

with D, € RW-2Mx(N-1)M " The rank of the discrete differentiation operafdy, is given by
rankD, = (N — 2)M sincerankk = N — 2 andD, = diag F,... , E) with E appearingV/
times on the diagonal d,, according to thel/ time steps.

Similarly to 55, a discrete version of the partial derivative @fz,T’) with respect to the
maturity 7" is given by

Voo = (Vpéo,Vrér,..., Vroy_o) € RN-DM=1)
with
VT(ATJ' = (VT&LJ-,VT&Q,J-,... ,VT(ATN,L]')T € BNfl , 7=0,....M—2.
Using the forward difference quotient for the approximation of the partial derivative(:of 7)
with respect tdl” yields
Gij+1 — Oiyj
AT ’

0

aTa'(l‘i,Tj):VT&iJ% i=1,....N—1,45=0,...,M —2.
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Hence
-1 I 0 60 Voo
) -1 I b1 Vo1
AT : . ~ .
0 -1 T Gr—1 Vrop—2
= DT

with 7 ¢ RW-D*(N-1) s the(N — 1) x (N — 1) identity matrix, Dy € RO-DM-1)x(N-1)M
and rankDy = (N — 1)(M — 1) since Dy is an upper triangular matrix with non—zero diagonal
elements.

Thus, a discrete version of the Jacob¥afi(z, T") of the volatility functions (x, T") is given by

_ R . R R T D, \ _
Vo = (Vy60,...,Veor—1,Vrb0,....,Vrop—2) = -G

Dr
——
=D
with D € R™*N=DM gndyn = (N —2)M 4 (N —1)(M — 1) such that Lemma 5.4.25 is proven.
[ ]
Remark 5.4.26 SinceD,. & = 0 if and only if 5 satisfies
Givij = 6ij, i=1,...,N=2,j=1,....M—1, (5.4.64)
and Dy ¢ = 0 if and only if 5 fulfils
Gijo1 = 05, i=1,... . N—1,j=1,...,M—2, (5.4.65)

the homogeneous linear systdpa = 0 is fulfilled if and only if & satisfies simultaneously (5.4.64)
and (5.4.65). However, this is only the cas&if= Ae, withe = (1,...,1)T, e € RN-DM and
A € IR such that the null-spag¥ (D) of the discrete differentiation operatbris given by

J\/(D):{a—elR(N’l)M : 6:>\e,)\e]R} .

Thus, the null-space of the discrete version of the differentiation opeYaiorresponds to the
null-space of its continuous counterpart.

Now, to achieve regularization regarding smoothness of the instantaneous volatility function
o(x,T), the trust—region in the Inexact Gauss—Newton Algorithm 2.2.3 might be defined by setting

IDdalla < A, (5.4.66)

i.e. that the norm of the update of the current iteraté scaled with the discretized differentiation
operator has to be bounded By Since according to Remark 5.4.26 the maitixhas a nontrivial
null space

lzllprp = |Dzll2 = VaTDTD g
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is only a seminorm since for at € N (D) we have that|z||,rp = 0. Thus, using condition
(5.4.66) for the definition of the trust—region is not sufficient for obtaining well-posed Gauss—
Newton subproblems. Sinc&7)?J(5) + A DT D (J(5) is the Jacobian of the residual functions
R(7)) might have a nontrivial null-space, it is possible that the solution of the Gauss—Newton
subproblem is not unique, see Theorem 2.2.2.

Moreover, if the trust-regiody; (see (2.2.6)) is defined with respect to the seminpriipr
it is possible that the solution to the Gauss—Newton subproblem is not located in a neighborhood
of the current iterateé. The linearised problem in the Gauss—Newton method is derived from the
nonlinear problem by using Taylor approximation which only can be trusted in a neighborhood of
the expansion point. To ensure that the solution of the Gauss—Newton subproblem is restricted to
a certain neighborhood of the current Gauss—Newton iteraselditionally, we have to guarantee
that the norm of the solution of these subproblems is not getting too larggjdf < A. Hence,
we additionally introduce the restriction that the norm of the orthogonal projection of the iterate
onto the null-spac&/(D) of D is bounded.

Including this additional restriction into the definition of the trust-region, the Gauss—Newton
subproblems become

&;fréi]%nu(ﬁ)TR(&), 65) + (65, J(5) I (7) &?) (5.4.67)
S.t. ||D55’||2 <A and HP./\/(D)56H2 <A

with the orthogonal projectio®py onto V(D) being given by

wheree = (1,...,1)T € IR"™.
In the following, we combine the two restrictions in (5.4.67) by defining

6|l p = \/ (05, D o) (5.4.68)

with D is given by
D = D"D + P p) Py () -

Lemma 5.4.27 Let D be the discrete version of the differentiation operalorgiven in Lemma
5.4.25 and letPyrpy be the orthogonal projection onto the null-spa& D) of D. Then,|| - | 5,
defined in(5.4.68) represents a norm.

Proof: Since )
(6c,Dda) = (65,(D"D + P p Pn(p)) 00)

= (66,D"Dd3) + (05, P\ py Py (D) 67)
= D3G5+ | Pxvp) 9513

> 0



132 5 Constructing the Instantaneous Volatility Function

the square root in (5.4.68) is defined an||5 > 0. Furthermore||éa|5 = 0 if and only if
6 = 0 sincel|6a |5 = 0 if and only if || D 6|3 = 0 and||Pyr(p) 6|3 = 0. The former term is
zero if and only ifoc € V(D). In caseds € N (D) andja # 0 it is

PN(D)(S&: J%e#o
sincee’ & # 0 becausés € N'(D). Hence,
1D 6513 + | Parpy 85113 # 0.

If, on the other side|| Py p) 67|13 = 0 andéa # 0 this means that” 65 = 0, i.e. 45 is orthogonal
to V(D). However, therD 65 # 0. Hence|| D 65 |5 and|| Pyr(p) 05 || are simultaneously equal to
0 if and only if 6 = 0 such that|éa|| 5 = 0 if and only if 65 = 0.

Moreover,

151 + 862]%, = (051 + 852, D (651 + 652))
) ) ) (5.4.69)
= <551 ,D(551> + 2 <(551,D552> + <(55’2,D(5(_72> .

SinceD is symmetric and positive definite it exists the square roddafuch thatD = D'/2D1/2
with D'/2 being symmetric and positive definite. Hence, by using the Cauchy—Schwarz inequality,
we get

(651, D 8G9) = (651, DY2DY?55y)

= <D1/2 ba1, D/? (552>
< ||DY2 6612 [|DY? 66

= \/((55’1 ,D(55'1>\/<55'2 ,D552> .
Including this result into (5.4.69) we get

oGy + (55’2”% = (001 ,D55’1> +2 <55’1,D55’2> + <552,D(5(5’2>

(
(651 ,D 651) + 2/ (651, D 651)\/ (652, D 63) + (652 , D 655)

= (/(061,Déa1) + /{052 ,D552>)2
= (9515 + 1602 5)°
which verifies the triangle inequality far- || 5. Finally,
[Xéa]|% = (NdG,DAda)
= A\2{(66,Dc)
= 22||6a]

such that| - || 5 satisfies all attributes of a norm. |
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Now, using the norm - || 5 for the restriction of the iterate® the subproblems in the Inexact
Gauss—Newton Algorithm 2.2.3 have the form

min (J(3)T'R(3),65) + +(65,J(5)T J(5) 65
65%”( (6)" R(5),60) + 3( (6)" J(o)d5) (5.4.70)
st ||65]p < A

with J (&) being the Jacobian of the residual functi&(z ). These subproblems are now well-posed
according to Theorem 2.2.2.

Usually, a weighted norm in the definition of the trust—region is introduced to obtain a better
scaling of the variables in the Gauss—Newton subproblem. Note, however, that the introduction of
the norm|| - || 5 in the subproblems (5.4.70) is originated by the characteristic features of the given
problem describing the construction of the instantaneous volatility parameter

5.5 Evaluation of the Jacobian

Using the Inexact Gauss—Newton Algorithm 2.2.3 for the solution of the underdetermined nonlinear
least—squares problem (5.4.62) in each iteration of the Gauss—Newton method, we solve the resulting
restricted linear least—squares problem
Jmin (J(6)'R(5),05) + (05, J(5) J(5) 65)
ocIR™
st. ol <A

appearing in every iteration of the Gauss—Newton method with the Modified Preconditioned
Conjugate Gradient Method 2.2.2. We have seen in Chapter 2 that the conjugate gradient method
requires an efficient evaluation method &fz)é as well asJ(5)?§y. In the two following
theorems, we show how this can be achieved without saving the m&i#ix For the proof of

the first of these two theorems, the following lemma is useful.

Lemma5.5.1Letf: R? — IR" andW : IR? — IR™*"™ with

f) = (L), f29),--., faly)’ € R™,
Wi(y) = {wi;(y)} = (wi(y), w2(y),...,wu(y)) € R™"

wheref;(y) € R, w;(y) = (w1,;(y), w2,;(¥), -, wm ()" € R™ y = (y1,-..,y4) € IR? and
f,w; € CHRY),j=1,...,n. Then, forsy € IRY,

W) (W)} oy = fily) sewi(y)dy + W (y) & f(y)dy € B™
=1
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Proof: Since
W) = h@wi) + ...+ fa@wa(y) = > fily)wily)
=1
Lemma 5.5.1 follows immediately by applying the product rul%éytcéfl(y)wl(y)). |

In Subsection 5.4.2, we have shown that approximations of the value of a European call option
can be computed recursively by using the finite difference scheme (5.4.28), i.e.

(I+0D;(5)) zj41(5) = (I—(1-0)D;(5)) 2(5) + By(5),

where we include the dependency of the matriégsand the vector®3;, j = 0,...,M —1,0ng
by writing

D; = Dj(o),

B; = Bj(o).

For simplicity, we define

U;j(3) = I+6Dj(a) e RW-Dx(N-1) i —0,...,M—-1

) )

Vi(g) = I—-(1-0)Dj(e) € RW-DxWN=1 " j=0. ... M-1,

with Dj(5) defined in (5.4.29). Furthermore, let the conditions of Theorem 5.4.3 or Corollary 5.4.5
are satisfied so thdf;(5) is nonsingular forj = 0,..., M — 1. LetU/(5) andV/ () be theith
column ofU;(c) andVj;(a), respectively) =1,...,N -1, j=0,...,M — 1, then

Ul(5) = e +6D](a) e RN-D 551)

Vi@ = e—(1-0)Di(g) € RN-D

wheree; is thelth Euclidean unit vector ifR™N~1 and D} () is thelth column of the matrix
D;(5),ie.forl=2,...,N —2
D}(e) = (0,...,0,u_,(5),m](7),v],,(5),0,...,00" € RNV,

and

D} (@) = a(0,...,0,uy_,(@),m}_,(@)" € RN-D
with v/ (), m? (5) andu! (7) defined in (5.4.19).
We now show that the Jacobian of
Aj1 Zj1 (6) - CA’j1
Ajz Zja (5) - Cj

)

2

R(5) =

Ajp Zj,, (5’) — éj
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(for the definition ofA, and(j’ji ,i=1,...p, see Subsection 5.4.4) evaluated at a vetidoran be
efficiently computed without saving the Jacobi&@) of the residual function.

Theorem 5.5.2 Letdg = ((550,. . .,55]\/[_1) ¢ IR™ with (5(_Tj = ((5(_71,]', - ,(55]\[_1’]') S R(Nfl),
j=0,....,M—1,n= M (N — 1), and set

7j—1
sj1= Y 52-%(5) 00y . (5.5.2)
k=0

Then
J(6)66 = 5= (5j,,55,,-..,5;,) € R™, 5, =455, i=1,...,p, (5.5.3)

wherej; € I with I defined in (5.4.60) and;+1, j = 1,..., M — 1, can be computed recursively
by solving
Uj(5)8j+1:‘/}(5')8j+ﬂ(6), (5.5.4)

with s; is the solution to
Uo(a') S1 = Fo(a') (555)

andFj(c),j=0,...,M — 1, are given by
Fij(6) =aX;d%; (H ((1 —0)zj(5) + 02z,41()) + h;(5)) (5.5.6)
with
Y; = diagaij,...,0N-14),

5%, = diagéar,...,00N 1,),

hi(@) = (14 85)((1 - 0)20,4(5) + 620,541(5)),0,...,0)T,
[ 2 (-4 ] (5.5.7)
1+5H -2 (-5
H = : ,
1+5H -2  (1-5Y9
I 1+5) -2

andzg (o), j =0,..., M, defined in (5.4.25).

Proof: If we setA = diag(4;,, A,,...,A;,), i.e. Ais a block diagonal matrix, then

R(5) = 2 =2 2| = A2(5) — copsers
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With 2(5) = (24,(5), 2,(8), - ., 2j,())" andcopsers = (Cj, Cjy, -, C;,)T. Note thatA;, and
C’ji, i1=1,...,p,donot depend oa. Therefore,
J(6)66 = A L2(5)65 .

Note thatz;(5),j = 1, ..., M, is defined recursively by (5.4.28). Sinbg(7) , B;(v) (see (5.4.19),
(5.4.23), (5.4.29) and (5.4.30)) and heri¢gs) andV; () are only dependend ary it follows that
zj(a) depends only oay, &1, . ..,5;—1 and therefore,

0 »(3)65, =0, k=4j,...,M—1.

Bak

Hence, we get

J(&)é&zA% (6)0c = As=(Aj,8j,, A58, Ajpsjp) =3
where
s = (sjl,sz,...,sjp)T,
]2_1
S5, = Zamczjl (5Uk, and
55, = Ajisji'
Furthermore,
5%B()%k::0,k#ﬁ k=0,...,M—1,
(5.5.8)
ié( Yoo, = 0, k#j, k=0,...,.M—1,
l=1,...,N—1,=0,...,M — 1, such that also
2-Uj(@)dor = 0, k#j, k=0,...,M—1,
(5.5.9)

W(w% = 0, k#j, k=0,...,.M—1.

954,

Taking the partial derivative with respectdg of the right and left hand side of (5.4.28), i.e.
52 (U;() 11(0)) 00 = 2% (Vi(0) (o) + By(@)) oo

and using Lemma 5.5.1 we get

N-1
Uj(0) 522j11(0)06k + Y _ 21,j11(6) 52-U7 (5)05%
=t (5.5.10)
= Vj(0)5%2(5)d5% + sz )52 Vi ()03, + 52 Bj(a)da, .

j,k=10,...,M — 1. A rearrangement of the terms in (5.5.10) and (5.5.8) and (5.5.9) yields for
k<j
Uj(@')%%‘.ﬂ(&)&?k = V]‘(&)%Zj(&)&j'k, (5.5.11)
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fork =7
Uj(0)g2;2j+1(5)80; = Vj(5)5%;2(0)30; + 52-B;(5)35; +
N-1 ) )
<Zl,j(5)a%.v/ (@) = 2141(0) g U (5)) 00,
=1
(5.5.12)
= 6%3]-(5)55] +
N-—1
(25(0) 52V (0) = 2151 (0)52, U (2) ) 65
=1
(%zj(ﬁ)daj =0) and fork > j
Uj(@')%Zj.H (6)dar =0. (5.5.13)

Next, we examine the terms in the sum on the very right hand side of Equation 5.5.12. For the partial

derivative of théth column of the matrice§; () andV; (&) with respect tar;, we get

2Ul@) = 3 (a+0D](@) = 0,2 D),
Vi@ = g2 (a-01-0D@) = ~(1-0)2Di0).
Furthermore, since
ool (5)80:5 = 52=m](5)80:; = 52—v](6)65:; =0 for i#I
and
sa-vi(@) = —(1+5)ay
o= (0) = 20y
ge-ul(0) = —(1-45)a

the Jacobian of thih column ofD;(5), i.e. %D{(&), is a diagonal matrix that is given by

0 Pisy —
95, D1(0) =

a diag (o, 0 ] (@), 52 (0), e vl (0),0, o)

adiag(0,...,0,— (1 - 42) 5114, 26,5, — (1 + 5%) 6141,,0,...,0)
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forl=2,...,N —2andforl =1andl = N — 1 the Jacobian is given by
2 Di(e) = adiag(52-m{(), 52-0}(@),0,...,0)
= adiag(251,;,— (14 42%) 62,,0,...,0)
2 D_,(0)05; = o diag (o, 0, gy 5(0), #ﬂmg@(a))

= « diag(O, o, 0,— (1 - %) ON-2,j 725N—1,j) .

23(0) 55;D](@)57; = a (0,...,0,~ (L= §F) 5110011, 21,1(7). 201, 651, 21,4(7),
_ _ _ T
— (1 + %) Ol+1,j (50’[+17j lej(0'>, 0,... ,O)
foril=2,...,N —2and
214(7) 53; D1(0)05; = a (201001, 21,4(7)

— (1 + %) 02,5 (55’27]‘ 2'17]‘(5') 0, 70)

en-14(0) 55, Dy 1 (0)85; = (0,...,0,— (1= 4F) On—2,; 072 2n-1,4(5),

20N-1,j00N-1,j 2N-1,j(7))

such that
N-1 ' N-1 -
24(0) 2V @05 = Y 2,0) % (a— (1-0)D](@)) oo,
1= =
' N-1 '
= —(1-9) Zl,](5)a§jDz (6)d0;
=1

(2 Zl»j(&) - (1 - %) Z2,j<5)) 01,5 (5514

—(=0)a| (—(1+45) 2-14(0) +22;(0) — (1 - 5°) 2141,(0)) 71,5 651,

(—(1+ 55) 2n—2,4(0) +22n-1,4(0)) GN-1,0TN-1
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—221j(0) + (1 — &%) 22,4(9)

= (1-0)a%;0%; | (1+482)2-1,(6) —22,7) + (1 — 5) 2141,;(5)

(14 4%) 2n-2(6) — 22n-1,(7)

= (1 —9) oszéZszj(ﬁ)

N-1
Z
=1

with X5, §3; and H defined in (5.5.7). Similarly, it follows that

)55']‘ = (1 — 0) OéEj 5EJ sz(6) (5514)

(%'J

N-1 N—
2,j+1(0) 55U} (0)d5; = Z 21,541(0 (61 +0 D] (5 )) 00
=1 =1
il o (5.5.15)
= Z 21,541(0) 52D (5)65;
= —Gazjészsz(&).
Furthermore,

= —a (~(1+22)51; (1-60) 20,4(6) + 020,41(5)) 661,4,0,...,0)"  (5.5.16)
= CMZ]‘(SZ]‘ hj(ﬁ)

with h;(a) defined in (5.5.7). Note that the values at the boundaryzy.e(5) , zn ;(&), do not
depend on the volatility parameter Using (5.5.14), (5.5.15) and (5.5.16), we get

N-1
(24(2) V7 (0) = 20541(0)55 U7 (0) ) 66 + 5= By ()0
=1 (5.5.17)
= aX; 0% (H ((1-60)2(5) + 0241(5)) + hy(3)) -
Now, we show by induction ovef thats;, j = 1,..., M, can be computed recursively by

using (5.5.4). We start with the computationsgf = 8%)21(5') day. The approximations; () of
the value of the European call option in the time layef are given by the solution of the linear
system of equations

Uo(0) z1(6) = V(o) 20(6) + Bo(a)-
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The partial derivative with respect & of both sides of the previous equation are given by

Uo(0)5%21(5)000 = 72 B 500+Z (Zzo 72-V2(5) — 211(5) 52U (5 )) 600

= a¥péSy (H((1—0)2(5) + 021(5)) + ho(5))

= Fy(o).
where we have used Lemma 5.5.1 together with the transformations (5.5.10) and (5.5.12) for
j=k=0and (5.5.17). Since; = z2-21(5)d59 we have proven (5.5.5).
Next, we prove the induction step frojrto j + 1. Using the identity (5.5.2) of; 1, we get

U( )S]_H = U (Z dakZJ'H 5O'k> ZU dakZJ‘H )(55k

and with (5.5.11), (5.5.12), (5.5.13), (5.5.17) and the |dent|ty (5.5.2) farfollows

J
Uj(@)sj1 = Y Uj(0)52-211(0) 04

_ (V3(@) 52 2i(@)00x) +

N-1

= V;(a)s; + F;(9)
which confirms (5.5.4). |

The computational effort for one evaluation.£fz)da is composed of the effort necessary for
setting up the system of linear equations (5.5.5) and (5.5.4) and the solution of it. The coefficients
of the matriced/;(c) andV; (o) are composed of the sum of the particular elements of the matrix
Dj(ﬁ) multiplied by —(1 — ) and#, respectively, and the corresponding elements of the identity
matrix. Thus, the number of multiplications necessary to compute each of the three diagonals of
U, () andV; () consists of the computational effort for the determination of the elemerits (@f)
and the subsequent multiplication with'1 — #) and6, respectively, which is given in the relevant
case by

computation ofD; () : 6(N—2)4+ N=7N—12 multiplications,
computation of/;(a) : 3N —5 multiplications,
computation ofV; () : 3N —5 multiplications.
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The right hand side of (5.5.5) consists of the vedip(c) and that of (5.5.4) is composed of the
matrix vector producV;(a) s; andF;(¢), j = 1,..., M — 1. SinceV;(o) is a tridiagonal matrix

the effort for the computation of the matrix—vector product amounss¥o— 5 multiplications. The
vector Fj () is composed of the sum of a matrix—vector product and a vector that is multiplied by
two diagonal matrices from the left and a scalar. The effort for the matrix—vector product is again
3 N — 5 multiplications since the matri¥l is also tridiagonal. For the computation of the vector
(1—-0)zj(0) + 0zj+1(0) are2 (N — 1) multiplications necessary. The evaluatiomgfs) consists

only in the calculation of the first element which costs three multiplications. Thus, the effort for the
computation ofF;(¢) amounts t8 N —3+3N —5+ 2N — 2+ 3 = 8 N — 7 multiplications

forj =0,..., M — 1. Finally, for the solution of the linear tridiagonal systems (5.5.5) and (5.5.4)
forj =0,...,M — 1are5(N — 1) — 4 multiplications necessary when using a LU factorization
(see for instance Schwarz [94]) such that the total computational effort for one evaluation of the
matrix—vector product/ (¢)éc adds up to

M-(5N—9+8N—T7+7N—12+3N—5)+ (M —1)(3N —5+3N —5)

s (5.5.18)
= M (29N —43) — (6 N — 10) multiplications.

Thus, the computational effort for one evaluation/é&)da is of orderO(M N).
In the next theorem, we show haw()”'éc can be efficiently evaluated also without storing
the Jacobia/ (7).

Theorem 5.5.3Lets = (Go,...,5m-1) € RMN=D andéc = (dc1,dca,...,d¢,) € IR™ with
dcp, € Rk, jpel,k=1,....,p,andl < ji <jo <...<jp= M. Setfork=1,...,p

pir = Al e, € RN
. ' (5.5.19)
e = Vi@ e R, j=jk—1,k—2,...,0,
where¢], j = jx — 1,5k — 2,...,0,k = 1,...,p, is the solution to
Uj()'¢) =l (5.5.20)
Then
J(3)'6c =6 = (59,...,6m-1) € RMN=D (5.5.21)
;€ RN=1,j=0,...,M — 1, can be computed by
p .
z=k
with jo = 0 and
Aj = diag(/\l,j, cey )\N—l,j) (5523)
where); ;,i = 1,..., N — 1, is theith component of
A= o (H((1-6) 2(0) +02:1(5)) + hy(0)) (5.5.24)

and with andh;(5),j =0,...,M — 1, defined in(5.5.7)
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Proof: For arbitraryés = (3G, ...,000-1) € RMN-1 55, ¢ RN-1 1 =0,...,M — 1, we
have according to Theorem 5.5.2 and (5.5.21), (5.5.3) and (5.5.19),

P

p
5766 = 6c"J(5)65 = 6c"s =Y dcfs;, = Z Scf Ajsi, = > () Ts;, (5.5.25)
k=1 k=1

Forj = ji,jx — 1,...,1andk = 1,...,p we obtain with (5.5.4), (5.5.20), (5.5.19), (5.5.5) and
Theorem 5.5.2

) "s; = ()" (Uj—1(0)"Vim1(9) sjo1 + Ujma(0) 7 Fjoa(9))
= (1) U;1(8)"'Vi1(8) sj-1 + (Uj1(8) T uif,) " F-1(5)
= (Vie1(0)"Ujma(@) i) sjoa + (¢ DT Fi-a (o)
= (Vi@ ¢ s+ () F(0)

A (5.5.26)

= (u Nsjo1+ (G HTF-(9)

(1) s1 = () Uo(6) " Fo()
= (Uo(0) ") (o)
= ()" F(o)

whereF;(c),j =0,...,M — 1, is defined by (see (5.5.6))
Fj(0) = aX;6%; (H((1—0)2(0) + 0zj41(0)) + hj(5)) = ;055 A,

with \; defined in (5.5.24). Using (5.5.26) and substituting recursively into (5.5.25) yields

5T66 = (ui’“)Tsjk

<.
e

(G Fy-a(0)

1

<.
<.
=

(ljﬂ I)TEJ 1521 1Aj-1

<.
Il
-

Jk p

Z Z (HTE1681 A1

Jj=jk—1+1 z=k
Jk—1 P

ST ()TN

1 j=jrk—1 z=k

1
M= I M= I T

b
Il

The transformations from the third row to the fourth row of this equation consists in a rearrangement
of the terms in the sum. For elucidation, we have stated exemplary the different terms of this sum
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J
1 2 3 4 5 6 7 8
7 J2 73 Ja Js
1 ()R | ()R
2| ()"Fo | ()R | (G)'F
k3] ()" Fo | (G)"F | (G)TF | ()'Fs | (¢G)Fu

41 CD)"F | )R | (DT | (GD)TF | (GD)TF | (C)TFs
51 () Fo | (G)TF | (G)TF | (B)TFs | (G)TFa | (()'Fs | (CG)TFs | (¢)'Fr

TABLE 5.1: Exemplary listing of the terms in the suméaféz forp =5, j1 = 2,52 = 3,53 =5,j4 = 6,55 = 8

in Table 5.1. In the third row of this equation, the terms are added up row for row with regard to
Table 5.1. In contrast, in the fourth row of the equation, the different terms are summed up column
for column. Furthermore, we have used thatandsy:; are diagonal matrices, i.E; = (¥;)7 and

6% = (6%5)T.

Then, fork =1,...,pandj = ji_1,...,jr — 1 we get withu"v = trfuv”], u,v € RN~}

p
5766, = > (5;¢)To%;N

N—-1 ‘

(Z Agj (Ej ()i (5Ej)i,s>
=1
N—

p
= 3 Y g (56 (65

1<q,s<N1]

Note that; andd>; are diagonal matrices, i.e.(E;); , and(dX;); , denote the element in thith
row and theyth column ofX; andoX;, respectively, they;); , = (0X;); 4 = 0 fori # ¢. Hence,
in the fourth row in the previous transformations, all terms in the sumingthy are zero.
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Finally, it follows from the previous equation that

p
=A% Y, for j=jea,.dk—1, k=1,...p,
z=k

which concludes the proof. |

The computational effort necessary for the determination of the prod(®}’sc = &
consists of setting up the matric&$(¢) andV;(a) and the vectors,; for j = 0,..., M — 1, the
determination of the paramete(%, k=1,....,p, 7 = jr — 1,...,0, and the subsequent
computation ofg;, j = 0,...,M — 1. As in the determination of the computational effort for
the calculation of the product of(7)da, the computational effort for setting up the matriég$o)
andVj(g) for j =0,..., M — 1is given by

computation ofD; () : 6(N —2)4+ N=7N—12 multiplications,
computation of/;(a) : 3N —5 multiplications,
computation ofl;(a) : 3N —5 multiplications.

Moreover, the number of multiplications necessary to comphfeis 6N — 5 for each
j =0,...,M — 1. The computation ot‘,z is done by the backward recursion (5.5.19) and the
solution of the linear tridiagonal system of equations (5.5.20). For kdleh initial setting requires
(N — 1)m;, multiplications. In the subsequent iteration of this backward recursion process,
(3N — 5) ji multiplications are necessary for thig matrix—vector productg] = V;(3)7¢} and,
additionally, (5 N — 9)j, multiplications have to be carried out for the solution of the linear
tridiagonal system&/;(5)7¢] = uJ*'. Finally, the computation of eadh;, j = 0,..., M — 1,
makes2 (N — 1) multiplications necessary. Thus, the complete computational effort for one
evaluation of/(5)7'6c amounts to
p
M (13N—22+6N—5+2N—2)+m(]\7—1)+Z Jje- (BN —943N —5)

k=1
/4

= M(21N—29)—|—m(N—1)+Zjk.(gN_M) (5.5.27)
k=1

< M (21N —29+p (8N —14)) + m (N — 1) multiplications,

so that is of orde©(pM N).

5.6 Numerical Results

In this last section, we present some computational experience with Algorithm 2.2.3 applied to
problem (5.4.62) of constructing the instantaneous volatility funciofhe model European call
prices occurring in the residual functidR(c) (5.4.61) are computed using the finite difference
scheme (5.4.28) — (5.4.31) with= % i.e. the Crank—Nicolson method. For the finite difference
scheme (5.4.28) — (5.4.31), we employ a uniformly spaced meshMith M grid points in the
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region [v1 S, S] x [0,T] whereT is the maximum maturity of the market option data. The
evaluation of the Jacobiaf(&) of the residual functio?(7) times a vector and the transpose of this
Jacobian times a vector are carried out according to Theorem 5.5.2 and Theorem 5.5.3, respectively.
Moreover, the linear systems appearing in the Modified Preconditioned Conjugate Gradient Method
2.2.2 are solved by applying the singular value decomposition to the scaling m#trix Note

that the singular value decompositiondfmust only computed once since the scaling mafdiis
constant for the complete optimization process.

We divide this section into two parts. In the first part, we demonstrate the behavior of the
algorithm by constructing the instantaneous volatility function in several synthetic European call
option examples. In these examples we pretend to know the instantaneous volatility function. Then,
in the second part, we apply the algorithm to real world problems by examining European DAX
index call options.

5.6.1 Synthetic European Call Option Examples

For the demonstration of the applicability of Algorithm 2.2.3 onto the determination of the volatility
parametes, we start our examination with a synthetic example. We assume that the asset underlying
the option follows the stochastic differential equation

dS = u(S,t) Sdt+ o*(S,t) SdW;, te]0,T]

such that the price function with respect to the strike pficand the maturityl’ of the European
call option follows the deterministic parabolic differential equation

Cr — 30" (K,T)*K*Ckk + (r(T) — d(T))KCk + d(T)C = 0 (5.6.1)
subject to the initial condition

C(o(+,+); K,0) = max(S — K,0).

THE INSTANTANEOUS VOLATILITY FUNCTIONS”

STRIKE PRICE K o0

MATURITY T

FIGURE 5.4: The instantaneous volatility functiari
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Moreover, we suppose that the instantaneous volatility funetigix’, 7") in (5.6.1) is given by
o*(K,T) = 0.2+ 0.005 (In(£))? + 0.037%, for (K,T) € R" x [0,T]. (5.6.2)
Furthermore, we set

r(T) = 0.05, for T e[0,T],
d(T) = 002, for Te€l0,T]

and assume that the current stock valueSis= 100. Then, using these parameters, the
corresponding European call option price functiofi (K ,7") is computed using the finite
difference scheme (5.4.28) — (5.4.31) applied to the transformed version (5.2.12) of the parabolic
differential equation (5.6.1) respective the parabolic initial-boundary—value problem (5.4.6) with
[Tmin , Tmax] = [V1 5,12 .S] wherev; = 0.05 andve = 3. The number of grid points with respect

to the space variable and the time variablé’ were chosen to b&” = M = 30.

Since we have carried out this computation with the “exact” instantaneous volatility function
o*(K,T) given in (5.6.2) in the following examples, we interpret a certain number of these
European call option values as market European call option daté?,kil@l = C*(S exp(ay),T},),
l=1,...,m,and

cobsers = (Cry1y - -+, Crcpom) - € R™

Furthermore, the vectors with the corresponding strike prices and maturities, respectively, are
designated as

Kopsero = (Ki1,...,Kn)" € R™,

Topserv = (T1,...,Tpn)T € R™.

We will see in the following subsection that usually only for a limited number of strike prices
and only few maturity dates options are available in the market so that in general only a small number
of observations exist in comparison to the large number of unknowns that have to be estimated.
Ignoring this aspect for a moment, we start our examination by assuming that at each grid knot in
the chosen grid of the finite difference scheme there exists market European call option values, i.e.

* * * * T N—-1)M
Cobserv — (Cl,l7"'7CN71,17"'7C1,]\/[7"'7CN71,]\/[) ER( )

with
Cr; = C"(S exp(zi), Tj) .

We started the optimization routine with an initial guess of the volatility function of
7% = 0.24 = const. The computation of the European call option values appearing in the
residual functionR(c) is carried out by using the same discretization paramedérand M
in the finite difference scheme as in the computation of the European call values
Cr,my = C*(S exp(x;),T;), | = 1,...,m. The algorithm stopped after 12 Gauss—Newton
iterations with a computed optimal objective function valjg?(a°?")|| of 10~1* with 5% is the
approximated volatility function computed by Algorithm 2.2.3. The volatility funcés# and its
deviation from

F*

(A% Ak ~ % ~ % T
= (01,07'"70'N71,0a"'a‘71,Mflv"'7UN71,M71)
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THE VOLATILITY FUNCTIONG" FORMED BY THE INEX. GN-METHOD THE DEVIATION OF¢°"' TOG™

VOLATILITY ¢®(K,T)

4
STRIKE PRICE K MATURITY T STRIKE PRICE K MATURITY T

FIGURE 5.5: \olatility functiona°?* determined by FIGURE 5.6: Deviation ofz°?* to 6*
the Inexact Gauss—Newton Method 2.2.3

with

&;j =0"(S exp(z;),T})
are shown in Figure 5.5 and 5.6, respectively. These two figures show that in this case the accuracy
of the approximated solution is acceptable. For a more precise demonstration of the accuracy we
have plotted the volatility functiom?? against the “true” instantaneous volatility functieti for
the maturitiesI’ = 0,0.5 andT = 1 on the left hand side in Figure 5.9. If observation data are
available at every grid point in the finite difference grid, the error of the approximated solution is
very small. We observe that f@r = 0.5 the solution and its approximation are almost identical and
that they only slightly deviate foFF = 0 in case of larger strike prices and fér= 1 for smaller

strike prices.

THE VOLATILITY FUNCTIONG®P' FORMED BY THE INEX. GN-METHOD THE DEVIATION OF ™' TO g

(K,
o o
R 3

o
N
DEVIATION p'(K,T) - o'(K,T)|

VOLATILITY 6°P(K,T)

9

“
8

STRIKE PRICE K MATURITY T STRIKE PRICE K MATURITY T

FIGURE 5.7: Volatility function5°?* determined by FIGURE 5.8: Deviation of5°?* to 5*
the Inexact Gauss—Newton Method 2.2.3

Since the assumption of the existence of market European call data at every grid point of the
finite difference grid is not very realistic, next, we successively reduce the number of observable
option values.
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Deviation ofz°P* to 6* for the maturities” = 0, 0.5 andT’ = 1; Left hand side: observations available at
every grid point; Right hand side: observations available at every second grid point
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Figures 5.7 and 5.8 show the constructed volatility functiéff and its deviation t@* when
market European call option values are available only at every second grid point. In this case the
Inexact Gauss—Newton Method 2.2.3 needs 13 outer iteration to stop with a computed objective
function value; || R(5°")|| of 107!, The deviation of the approximated solutioff’ to 5* is still
of order10~3, however, the plots on the right hand side of Figure 5.9 show that they are slightly
larger than in the previous example.

Finally, we examine the more realistic case by assuming that only a small number of European
call options with the same underlying are traded. Figures 5.10 and 5.11 contain the results when
European call options are available with six different maturities and each series having eight different
strike prices, i.e. 48 observed European call options are considered as market data. The maturities
areT = 0.1,0.17,0.23,0.5,0.76 andT = 1 and for the strike price#(;, i = 1 ...,8, holds
K; € [0.55,1.3 5] such that the vector with the observed European call values is given by

Cobserv = (C,Cg , C5 , Clg, Oy Oi;,kl)T € R* (5.6.3)
with
C; = (C*(S exp(z18) , Tj) ;... , C*(S exp(was) TN eR®, j=4,6,8,16,24,31.

Regarding the finite difference grid, this means that the observation data are located only in a small
strip of the grid with respect to the state variable.e. for small and large strike prices there are no
observation data available.

THE VOLATILITY FUNCTIONG®P" FORMED BY THE INEX. GN-METHOD THE DEVIATION OF® TOG"

VOLATILITY 0%'(K,T)

0 o 00
STRIKE PRICE K MATURITY T STRIKE PRICEK MATURITY T

FIGURE 5.10: Volatility functionz°?* determined by FIGURE 5.11: Deviation o&°?* to *
the Inexact Gauss—Newton Method 2.2.3

For this example, the Inexact Gauss—Newton Method 2.2.3 requires 50 Gauss—Newton
iterations to stop with the same size of the objective function than in the previous examples. Thus,
the number of iterations has increased considerably in comparison with the previous two examples.
Since the number of market European call values has been decreased the nonlinear least—squares
problem (5.4.62) became more underdetermined, and thus, is more difficult to solve. Moreover,
Figures 5.10 and 5.11 show that the quality of the approximatiatt®fis worse than for the first
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two examples. For a more precise examination of the deviatio’®fto 5*, we have plotted

7°Pt anda* for certain fixed maturities in Figure 5.12. These plots show that in the region where
observation data are available the volatility functidhis approximated very accurately lay?t.
However, in the region where no observations are available, i.e. for small and large strike prices, the
deviation of°?! to 5* is much larger.
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FIGURE 5.12: Deviation o5°?* to * for the maturities”’ = 0,0.23,0.5 and7 = 1

For an explanation of this behavior, we examine the influence of different volatility values
67 ;1 on the approximated European call option valugs™). Figures 5.13 and 5.14 are showing
the partial derivatives of the discrete approximatig(z*) of the transformed European call price
function c(z, T;) with respect to the volatilities>_, for a fixed maturity; € {1,...,29}. In
Figure 5.13, we have plotted the elements of the Jacolilan»(c*)/96% 19)1<i k<29. Since
the size of these elements differ considerably, Figure 5.14 contains only the gradients(of*)
with respect tosjg for ¢ = 3,...,18, i.e. in Figure 5.14 we have plotted the partial derivatives
(0zi 20(0™) /8&2719)};31’;;}122' These two plots show that only a few volatility parametefs,,
seem to have an influence on the value;of(c*). For a more precise observation of this aspect, for
i = 1,10, 20,29 we have drawn the gradients of 2 (c*) with respect tas}, in Figure 5.15, i.e.
they show the values c(ﬁ)zwo(6*)/6&;‘;719);6:1,“.729 for i = 1,10, 20 and29, respectively. These
last plots make clear that the main influence on the valug pfc*) is given bys;, ; and that
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FIGURE 5.13: Partial derivatives of the European call FIGURE 5.14: Partial derivatives of the European call
values with maturityl’, z; ;(¢*),7 = 1,..., N, with values with maturityl’, z; ;(¢*),7 = 1,..., N, with
respect to the volatilitieé; ;_, fori =1,..., N, respect to the volatilities; ;_, fori =1,..., N,
respectively. respectively.
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FIGURE 5.15: Gradient o&(1, 20), 2(10, 20) , 2(20, 20) andz(29, 20) with respect tar19, respectively
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z; j(6*) is almost independent of;;J_l for k£ # 4. An explanation for this behavior might be
the tree-like structure of finite difference methods. Thus, incorrect valuég of; do not lead to
a large error in the computation of ;(¢) for & # 4, unfortunately, such that a determination of
the volatility paramete& can be carried out with an acceptable accuracy only in the region where
market European call values are available.

So far, we have explored the deviation of the approximati®h to its solutions* with respect
to the strike priceK. Next, we examine the behavior of the approximatixsi’ concerning the
maturity 7. Therefore, we have plotteg?* anda* for certain fixed strike price& for the first
and the third example on the left and on the right hand side, respectively, in Figure 5.16. The plots
on the left hand side confirm the earlier statements of the high accuracy of the approxiafétion
when observation data are available at every grid knot in the finite difference grid. On the right
hand side of this figure, the plots are shown for the case if only a small number of observation data
exist. Note that in this example, we have assumed that market European call options with strike
price K = S exp(z23) were available; however, they do not exist for strike priges- S exp(x15)
andK = S exp(za9), respectively. The second plot on the right hand side of Figure 5.16 shows that
for the former strike price the approximated volatility functietf’ formed by the Inexact Gauss—
Newton Method 2.2.3 almost coincides with its solution for all considered maturities; independent if
market option values with these maturities exist or not. For the latter strike prices the approximation
7°Pt shows a linear behavior in contrast to the quadratic behavior of its sokiticsee the first and
the last plot on the right hand side of Figure 5.16. Starting with an initial settind ef 0.24, the
approximated solutioa?* approaches*, however, is not able to identify the behavioraf more
precisely.
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FIGURE 5.16: Deviation o5°?* to 5* for the strike pricest’ = S exp(x15) (= 34) , S exp(x23) (= 100) and
K = S exp(z29) (= 262); Left hand side: observations available at every grid point; Right hand side: 48 observations
available at specified grid points, see (5.6.3)
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5.6.2 Construction of the Instantaneous Volatility Function for the German Stock
Index DAX

Finally, in this last subsection, we examine a more realistic example. We use values of market
European DAX call options of February 2, 2002 to approximate the instantaneous volatility function
o(x,T) of the German stock index DAX.

For the determination of the discrete versioof the instantaneous volatility function, we have
136 market European DAX call options available. These options belong to ten different series, i.e.
they have ten different maturities which start with one month and reach up to five years. Each
series consists of a different number of options which is higher for series with shorter maturities
and smaller for series with longer maturities. The strike prices of the options of each of these series
are scattered on the intervdl 500; 8,000]. The corresponding market value of the DAX index is
S = 5,003.24.

For the numerical solution of the parabolic initial-boundary—value problem (5.4.6), we choose
a finite difference mesh approximating the regiorl S,2.S] x [0, 5] that consists ofV = 50
discretization points for the spatial domdinl S,2.S] and M = 56 discretization points for the
time variableT'.

THE VOLATILITY FUNCTIONG®?' FORMED BY THE INEX. GN-METHOD
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FIGURE 5.17: The approximated instantaneous volatility functioof
the German stock index DAX using all 136 data

We started the optimization process for the solution of the nonlinear least—squares problem
(5.4.62) with an initial guess for the instantaneous volatility function of

7% = 0.28 = const .

Using all the given market European DAX call options, the Inexact Gauss—Newton Algorithm
2.2.3 stopped aftet6 iterations with an approximated instantaneous volat#it§ for which the
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computed objective function valuk | R(5°||? is of order10-6. The maximum absolute price
error amounted t@.0 - 10~ which occurred for prices belonging to options with long maturities.
Thus, the given method excellently reproduces the market European DAX call values across
the complete set of given data. The corresponding gradjigtt’!)” R(5°P!)|| of the residual
function R is of magnitudel0—> such that we expea®”’ to be a local minimizer. At the beginning

of the optimization process, the Modified Preconditioned Conjugate Gradient Algorithm 2.2.2
needed only 2 iterations for the solution of the restricted Gauss—Newton subproblems (5.4.70),
however, this number has slightly increased during the optimization process. The maximal number
of conjugate gradient iterations required for the solution of these subproblemg)wadsch is still

very reasonable.

The approximated instantaneous volatility functigi*’ constructed by the given model and
using all the136 market European call option data is displayed in Figure 5.17. This picture shows
thatz°P! exhibits a smooth behavior without any spikes. For sufficiently small and large strike prices
K, the numerically determined values ®* remain essentially unchanged over time. Regarding
the spatial domain, this is the region where no market European DAX call options are located. We
have already examined in the previous subsection that volatility values in these peripheral regions
have little or no influence on an option value evaluated at a point that is located more in the interior
of the domain0.1 5,2 5] x [0, 5].

THE VOLATILITY FUNCTIONG®® FORMED BY THE INEX. GN-METHOD
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FIGURE 5.18: The approximated instantaneous volatility functioof
the German stock index DAX using all 129 data

Furthermore, we have determined the approximated instantaneous volatility fusatiging
all of the above explained market European DAX call options with a maturity less than three years,
i.e. in this second computation we did not consider European DAX call options having a maturity of
four and five years. Now, the data set consist$2%f market European DAX call options. For the
numerical solution of the parabolic initial-boundary—value problem (5.4.6), we have used the same
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finite difference grid than in the previous example and have cut if off at matiirity 3 years, i.e.
the number of discretization points for the spatial domain and the time domain are gives30
andM = 33, respectively.

In this case, the Inexact Gauss—Newton Method 2.2.3 applied to the nonlinear least—squares
problem (5.4.62) requiredO iterations to yield a objective function vzalluﬁl%f(ﬁom)u2 of order
1075 and a value of the norn.J(5°P))T R(5°P!)| of the gradient of ordei0~°, i.e. the same
magnitudes than in the first computation using all of tBé market European call option data. The
maximum absolute error between the model and the market European call values ix@gein?
which, this time, took place for options with maturities of three years. Thus, it seems that for the
proposed method it is more difficult to identify the values of options with the longest maturity in
the data set. Moreover, we again made the observation that at the beginning of the optimization
process the number of iterations of the Modified Preconditioned Conjugate Gradient Method 2.2.2
required less iterations than at its end. However, compared to the dimension of the range space of
the residual function of29 the maximum number &f conjugate gradient iterations for the solution
of the Gauss—Newton subproblems (5.4.70) is again reasonable.

FIGURE 5.19: Deviation of the instantaneous volatility functi®n
given in Figures 5.17 and 5.18 for maturities up to 3 years

Finally, we compare the instantaneous volatility functi@ansonstructed with the complete
data set consisting df36 option values and with the reduced data set contaimifigoption data,
respectively. In Figure 5.19, we display the deviation of these two approximated instantaneous
volatility functions given in Figures 5.17 and 5.18 for all valuegrptvith maturities7; < 3 years.

This picture makes clear that the two approximated instantaneous volatility functiahsost
coincide for large strike prices independent of the maturity. For short maturities, the deviation
increases only slightly with decreasing strike pri€e However, for larger maturities, the deviation

of these two instantaneous volatility functioasgets larger for small strike prices. Thus, the
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largest deviations occur for volatility values with strike prices smaller than the current value of the
underlying and a maturity of three years. This observation corresponds to the above given
speculation that the given model has more difficulties identifying option values with longer

maturities.
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Chapter 6

Conclusions

In this work, we were concerned with the identification of parameters for large scale
underdetermined systems arising in finance. We have shown that these problems can be described
by underdetermined nonlinear least—squares problems.

For this class of problems, it is likely that the residual functi®mat the solution is fairly
small. It is well known that in this case the Gauss—Newton method exhibits a good asymptotic
convergence behavior so that we have decided to choose this method for the solution of the nonlinear
least—squares problems. To obtain global convergence of this algorithm, we applied a trust—region
strategy to the Gauss—Newton method so that in each iteration of the Gauss—Newton algorithm a
restricted linear least—squares problem has to be solved. Compared to line search methods, the
trust—region strategy has the advantage that this method additionally enforces a regularization of
the subproblems. This is especially in case of underdetermined residual functions useful since the
solution of the linearized least—squares problems cannot be expected to be unique. Hestenes and
Stiefel [56] presented, already in their original paper on conjugate gradients, a special version of
the conjugate gradient method for linear least—squares problems. We applied this version of the
conjugate gradient method to the solution of the linear Gauss—Newton subproblems. Furthermore,
we included two additional stopping criteria presented by Toint [105] and Steihaug [98] into the
preconditioned conjugate gradient method to take into account the restriction introduced by the
trust—region strategy and the non—positive curvature of the Jacobian, since we cannot expect them
to have a full column rank. In each iteration of the preconditioned conjugate gradient method,
an evaluation of the matrix—vector products of the Jacobian of the residual function as well as its
transpose times a vector has to be carried out. We have shown that for both applications in this work,
we were able to make subroutines available that efficiently compute these matrix—vector products
without saving the Jacobian explicitly. Thus, for the solution of the underdetermined nonlinear
least—squares problems, we used a fully iterative inexact Gauss—Newton method.

Although the local convergence behavior of the Gauss—Newton method is already examined
extensively, so far it did not exist amy-convergence results for underdetermined residual functions.
In this work, we have shown that in general iladinear convergence rate of the inexact Gauss—
Newton sequence is obtained on the orthogonal complement of the null space of the Jacobian, i.e.
on a linear subspace. In the case of zero residual problems, i.e. the residual function is zero at
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the solution, this convergence rate is eveiquadratically. Furthermore, for a special sequence of

the Gauss—Newton method that can however only be chosen theoretically, we obtaipddhtee
convergence o™ for overdetermined as well as underdetermined residual functions. Moreover,

we have seen that in case of overdetermined nonlinear least—-squares problems, the presented results
specialize to known results [50]. Note, that all the convergence results derived in this work are
invariant under unitary transformations.

Subsequently, we have applied the inexact Gauss—Newton method to the solution of nonlinear
least—squares problems arising from the estimation of parameters in neural networks and in the
valuation of European call options.

In a neural network, the unknown parameters consist in the weights matrices between the dif-
ferent layers and the bias of the different neurons in the neural network. We have shown that the
determination of these unknown weights and biases in the neural network, i.e. the training of the neu-
ral network, is described by a nonlinear least—squares problem. When neural networks are applied
to problems in finance, usually the number of training patterns available to train the network is much
smaller than would be needed to specify the associated dynamical system such that the number of
unknown weights and bias is often much larger than the number of training pattern. Thus, for neural
networks applied in forecasting, the nonlinear least—-squares problem describing the training process
of the neural network is underdetermined. An application of the proposed inexact Gauss—Newton
method has led to a significant reduction of the computation time compared to the traditional method
for the training process, the backpropagation algorithm. Moreover, the low number of required con-
jugate gradient iterations in the optimization process suggests a careful selection of the conjugate
gradient iterates. Thus, the efficiency of the inexact Gauss—Newton method enables the treatment
also of very large size networks with about 500,000 unknown weights and biases.

Furthermore, we have examined the ability of neural networks of forecasting the
German stock index DAX. For an efficient forecast of a stock or index price, it is
necessary to examine the linear and nonlinear dependencies of a large number of variables as well
as their interactions. The advantage of the application of neural networks in forecasting is that the
underlying function form which generates the data does not need to be known in advance; the neu-
ral network rather tries to find this function during the learning process. However, we have seen
that complete freedom in the choice of the model is also not given if neural networks are used. A
crucial part in the design of the neural network is the choice of the data set as well as the choice of
the number of layers and the number of neurons in any of the layers in the neural network which
proves to be an extensive trial-and—error process. To attack the problem of overfitting (the problem
of fitting the noise in addition to the signal) and to achieve the ability of generalization of the neural
network, we have introduced the Stopped-Training method. The proposed examples have shown
that the rate of right trends and the performance of a trading strategy increases if the network is
not only fed with DAX prices but also with other information which could have an influence on
the development of the DAX price. Moreover, we showed that there exist networks whose trading
strategy beats the benchmark quite clearly. However, we also noticed that the performance of this
network was worse for other periods. Therefore, we introduced the backtesting which achieved
good results too; however, they were also not generally obtained. These results elucidate the
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difficulties in finding an optimal neural network for the given task. Finally, we determined the sensi-
tivities of the optimal output of the neural network with regard to small variations of the various com-
ponents of the input vector such that we could at Ileast derive some
information about the influence of each of the input data on the output of the neural network.

In the last chapter, we were concerned with the valuation of European call options. Assum-
ing that the underlying asset of the European call option follows a continuous one—factor diffusion
model, we presented a method of approximating the instantaneous volatility fua¢hor") using
a finite set of market European call prices. The model European call option prices were computed
numerically by applying a finite difference method to the parabolic differential equation describing
the price process of the European call option. The examination of the convergence of the finite differ-
ence scheme has shown that difficulties in the examination of the consistency of the finite difference
scheme occur when the initial condition is not sufficiently smooth. Moreover, we have shown that
the order of convergence of the solution of the finite difference scheme to the solution of the corre-
sponding parabolic differential equation depends on the order of accuracy of a sufficiently smooth
approximation of the nonsmooth initial condition of the initial-boundary—value problem describing
the price process of the European call options.

The unknown instantaneous volatility values at the grid points in the finite difference
mesh are determined by solving an underdetermined nonlinear least-squares problem.
We have solved these underdetermined nonlinear least—squares problems using the proposed
inexact Gauss—Newton method.  To take account for the smoothness of the volatility
parameter, the restrictions in the linear least squares problems are scaled with a modified
discrete differentiation operator. For an illustration of the capability of the proposed method, we con-
sidered two European call option examples. In the first example, we considered
synthetic European call options for which the underlying follows a known 1-factor diffusion model.
The market European call data were simulated by evaluating a set of European call options using a
finite difference scheme applied to the parabolic differential equation containing the “exact” instan-
taneous volatility function. A comparison of the reconstructed instantaneous volatility function to
the “exact” instantaneous volatility function indicates a fairly accurate construction of the volatility
function in the region within which the market European call options are located. In the second
example, European DAX index call options with market data of February 2002 are considered. The
resulting constructed instantaneous volatility function exhibits a smooth behavior.

Our first computations for the determination of the instantaneous volatility function were car-
ried out in Matlab. They show a promising behavior of the proposed method. However, to take
advantage of the complete efficiency of the proposed inexact Gauss—Newton method, it is necessary
to code the program in a program language like C or C++.
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Appendix A

The Parabolic Initial-Boundary—Value
Problem

A.1 Existence and Unigueness of the Solution

Friedman showed in [37] the existence of the initial boundary value prollers ¢ with initial
condition (5.2.13) and boundary condition (5.4.5), using the method of continuity, i.e. by examining
the family of parabolic operators

Lyc=XLc—cr) + 1 —=XN)(czxz—er), 0<A<1,

and showing that if the problem can be solved fonak o (0 < ¢ < 1) then it also can be solved
for A < o, and that if the problem can be solved foralk o (0 < o < 1) then it can also be solved
forall A < o + € for somee > 0 and since, finally, the problem can be shown to be solvable for
¢z — cr = 0, the same is true fak ¢ — ¢ = 0. Then, the uniqueness of the solution to the initial
boundary value problems follows from the weak maximum principle, see [37, Chap. 2, Theorem 7].
Moreover, let c¢!(z,7) and c?(x,T) satisfy the initial-boundary value problem
Lc¢ = ecp with boundary conditions (5.4.5) and initial conditions(z,0) = ¢;i(z) and
c2(z,0) = pa(x), respectively, withp; (x) andys () are continuous functions. Then, the difference
Az, T) = c'(x,T) — c*(z,T) is the solution to the parabolic differential equatibe = c7 with
homogenous boundary conditions and initial conditidfx, 0) = !(x) — ¢?(z) and is continuous
iN [Zmin » Zmax) X [0, T]. SUPPOSING? : [Tmmin s Tmax] X [0,T] — IRT andr,d : [0,T] — IR* are
continuous functions with?(x, T') satisfying

Ao < [72(33,T) <)\ foral (z,7) € [min,Tmax] X [0,7T],

then the weak maximum principle holds stating that the maximum cbfz, T) in
[Tmin » Tmax] X [0, T is attained on the boundary

[Tmin > Tmax] X {0} U{@min} X (0, T) U {&max} x (0,77,
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see for instance Friedman [37, Chap. 2, Theorem 6]. Thus,

et (@, 1) = (=, 1) = |*(z,T)

IN

max _ |(x,T)|
['Imin ﬂ»’max] X [0 7T]

IN

3
ma; T
[#min ,zm;ﬁ]x{oy [, Tl
{zmin ,Zmax } X (0,T]

max _|c3(z,0)|
[Imin ;Tmax

max |p'(z) - o*(2)].

[zmin vrmax]

Theorem A.1.1 Let 62(x, T) be a continuous function i, , Zmax] % [0, 7], r(T) and d(T)
continuous functions ift , 7] and lets?(z, T) satisfy

M <63z, T) <\ foral (z,T) € [Zmin , Tmax] X [0, 7]

Then, there exists at most one solution to the parabolic initial-boundary value problem
Lc = c¢p with initial condition (5.2.13) and boundary condition(5.4.5) Moreover, the
solution ¢(z, T') depends continuously on the initial data, i.ecjfx,T) and ca(x,T') are solu-
tions to the parabolic initial-boundary value problebr = ¢ with boundary condition$5.4.5)

and initial conditionsc; (z,0) = ¢1(x) andea(z,0) = pa(x), respectively, withp; (x) and p2(z)

are continuous functions, then

(@, T) — oz, T)| < max  [p1(2) = pa()]-

BS [xmin sTmax

Hence, according to the definition of well-posedness by Hadarmard (see for instance Louis
[70]), the initial-boundary value problethc = ¢ with initial condition (5.2.13) and boundary
condition (5.4.5) is a well-posed problem.

Moreover, we cite the existence result by LadyZenskaja, Solonnikov, and Ural'’ceva
[66, IV, Theorem 5.2] showing that the smoothness of the solutian’) to the parabolic
differential equation (5.2.12) depends on the smoothness of the initial condition
accompanying the differential equation, i.e. the order of differentiability of the solutiesT") of
the parabolic differential equation (5.2.12) increases with the order of differentiability of its initial
condition.

For this, we first introduce the corresponding functional spaces which are used in this result.
Let Hl([xmin , Tmax)), | IS @ nonintegral positive number, be the Banach space whose elements are
continuous functiong(x) in (Zmin s Tmax) havING IN[Zmin , Tmax) cONtinuous derivatives up to order
[l] inclusively and a finite value for the quantit2 (= (Zmin ; Tmax))

U

S = @8 + 3 @y
j=0
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where . z
@) = lely = max |gl,

@9 = Y DielY, (@Y =Y (DUpS,
() (1)

SUp z.2'eq %, O<O[<1
lz—z'|<pg

and let HY2([2min , Tmax] x [0,7] be the Banach space of functiongz,T) that are
continuous iNZmin , Tmax] % [0, 77, together with all derivatives of the ford, D; for 2r +s < [,
and have a finite norm; = (Zmin , Tmax) x (0,7))

(1]
O _ /a0 ()
g T <C>QT + Z <C>QT

J=0

where .
0
(€)= lelg, = max lel,

@9 = Y |DpDiY)
(2r+s=j)

l l /2
(©F, = (@, + )

T

(rar = 2. (DrDie)lqr.
(2r+s=[l])
1/2) r s \((I—2r—s)/2)
@Yo = > (DR DI,
’ 0<l—2r—s<?2 B
a) e(x,T) —c(2',T)|
<c>x7QT = <z,T>,(S:},I;>EQT e, 0<a<l,
lz—a/|<pg
() _ le(z,T) —c(2,T")|
<C>T7QT - (z,T),(Szl,ljl“)’)eQT [T—T'[> , O<ax<l.
IT—T"|<pg

Then, the result on the unique solvability of the initial-boundary—value problem given by La-
dyZenskaja, Solonnikov, and Ural’ceva [66, IV, Theorem 5.2] is

Theorem A.1.2 Supposel > 0 is a nonintegral number and the coefficients of the
operator L belong to the classH"Y/?([min,Tmax] x [0,T].  Then, for any function
o(x) € H™?([min , rmax]) describing the initial condition the initial-boundary value problem
has a unique solution from the clagB 2!/t [z, , Tmax] X [0, 7). It satisfies the inequality

1+2 b2 -
& <k (116" + le@ains DI, 1)
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Appendix B

Consistency of the Finite Difference
Scheme

B.1 Proof of Theorem 5.4.10

In this section, we present the proof of Theorem 5.4.10 in Section 5.4 showing that the finite differ-
ence scheme (5.4.28) — (5.4.31) applied to the slightly perturbed initial-boundary—value problem is
consistent of ordef2, 1).

Theorem B.1.1 Let the initial conditionp(z) of (5.4.43)satisfyy € H4"¢([£min » Zmax]), With e >

0 arbitrary small. Then, the finite difference scheffiel.28)- (5.4.31)is consistent to the perturbed
initial-boundary—value probler(b.4.43)of order (2, 1) with respect td| - [2,a, for 0 < 6 < 1.
Moreover, ifp € H5%¢([zmin , Tmax]), € > 0 arbitrary small, and the coefficient§T'), (z, T) and
d(T) in the parabolic differential equatio(b.2.12)are not dependent df, i. e.

bT)=0b, 6(x,T)=0(x), dT)=d

then the finite difference scherf®4.28)— (5.4.31)is consistent to the perturbed initial-boundary
value problem (5.4.43) of order (2,2) with respect to| - |2a, for & = 1, ie. in
this case the Crank—Nicolson method is consistent of q2i&) with respect td| - ||2, -

Proof: Let c¢(x,T) be the solution to the perturbed parabolic initial-boundary—value
problem (5.4.43). According to the result by LadyZenskaja, Solonnikov, and Ural'’ceva
[66, Chap. IV, Theorem 5.2] the solutiafiz, ') belongs toH*+ <4 +)/2 ([0, Zmax] X [0, 7))

since o(z) € H*([Tmin,Tmax]) (S€€e Appendix A for the definition of the spaces
HAFoWH)/2([2000 Zna] X [0, T)) @and H*¢([2min , Zmax]) @nd the solvability result for the parabolic
initial-boundary  value problem presented by LadyZenskaja, Solonnikov, and
Ural’ceva in [66]). Thus, all derivatives @fz, T') of the form(9/0T")"(0/0x)?, i.e. therth deriva-

tive with respect tdl" and thesth derivative with respect ta, for 2r + s < 4 + € exist and are
continuous.

167
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In accordance to Definition 5.4.9, we have to verify that

€ijr1 = w7 (Cijr1 — ¢ij) — Lij (1= 0) cij + 0cijr1) — 0 (B.1.1)

and that

lejrilloae = O((A2)?) + O(AT). (812)

Using Taylor’s theorem, we see that the forward difference quotient with respect to the time variable
T satisfies

(c(z,T+AATT)—c(x,T)) = ¢p(z,T) + O(AT) (B.1.3)

since the partial derivatives efz, T') with respect tol" on [Ty, , Tmax] X [0, 7] exist up to the
order2. Similarly, we get for the central difference quotient and the symmetric central difference
quotient that

(c(x+Ax,T2)£;(fo:r,T)) _ Cm(:E,T) + O((A:E)Q) (B.1.4)
and
(c(erAm,T)72(c§7;)72’)+c(x7Az,T)) _ wa(.%', T) + (’)((Ax)Q) ) (815)

because of the existence and continuitya%}c(a:,T) ON [Tmin » Tmax] X [0,7T]. Furthermore, the
central difference quotient and the symmetric central difference quotient in the timellayekxT
can be written as

Cletbr AT e M THAD) — (2, T) + O((AT) + O((Ax)?)
(B.1.6)
(c(:rJrAx,TJrAT)720(95g’m+)2AT)+c(man:,T+AT)) _ C:mc(xy T) + O(AT) + O((Al‘)Q)

under the given smoothness characteristicg of T").

Now, plugging (B.1.3) — (B.1.6) into (B.1.1) and using the fact th&t,7") is a
solution to the parabolic differential equation (5.2.12) yieldsifee N~ +1,...,N*T — 1 and
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€i,j+1

= wr (Cigr1—cig) — Lij (1= 0) cij + 0 ¢ jy1)

I L U N I ) _p) Gitlj—2¢ jtcio1 g Cit1,j4+41=2Ci j41+Ci—1,541
= a7 (Cij1 = cij) [201',3‘ ((1 0) (Az)? +0 (Ax)?

o 122 _ Cit1,j—Ci—1,j5 Citl,j—Ci—1,5
- (bj + 2%;’) <(1 0) =m0 )

— dj ((1 — 9) Cij+ 961'7]41)]

= cp(iAx,jAT) — 36(i Az, jAT)? (1 — 0) cau(i Az, § AT) + 0 cyy(i Az, j AT))
+ (b(FAT) + 36(i Az, j AT)?) (1 —0) co(i Az, jAT) + Ocy(i Az, j AT))
+d(jAT) (1 —0)c(i Az, jAT) + 0c(i Az, j AT))
+ O(AT) + O((Az)?)

= O(AT) + O((Ax)?).

Since the perturbed initial-boundary—value problem (5.4.43) contains Dirichlet boundary condi-
tions, we do not have to consider the boundary conditions separately since we have used the exact
values forc(N~ Ax,j AT) andc¢(Nt Ax,jAT), j = 0,...,M — 1, given by the functions
describing the boundary conditions. Moreover, note thaj fer0 the condition

Le(x,0) = ep(x,0)

is obtained by a sufficient smoothness of the coefficients appearing in the elliptic operabar
the smoothness of the solutieti, ') oN [Zmin , Zmax] X [0, T]. For a detailed examination of the
regularity we refer to Friedman [37, Chap. 10] or Wloka [108].

Furthermore, the discrete,—norm of the vector containing the truncation errors injthe1st
time layer fulfils

Nt-1
%,Am = Az Z 812,]'—&-1
i=N—41
Nt—1
= Ar > (O(AT)+0O((Az)?))
i=N—+1
= (@max — Tmin) (O(AT) + O((Az)?))?

lej+1]

2

such that
lej1llz.ae = O(AT) + O((Az)?).

Thus, if ¢(z,T) € H*OH92([znn , 2max] % [0,T]) the weighted finite difference scheme
(5.4.28) is consistent of ord¢2, 1) for0 < 6 < 1.
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In the following, we assume thatp(z) € H([Zmin , Tmax])- Then,
oz, T) € HO O+ 2([z 00 wma] x [0,T]) and all derivatives ofc(z, T) of the form
(0/0T)"(0/0ox)® for 2r + s < 6 + € exist and are continuous (see Appendix A). In this case,
the Taylor expansion of the forward difference quotient with respect to theZirmaed the central
difference quotient and the symmetric central difference quotient in the time Tayer AT with
respect to the space variable can contain further terms such that (B.1.3) and (B.1.6) become

(C(I’T+AAT7)17C(I7T)) = CT('rv T) + %CTT(xa T) + O((AT)Q) ) (817)

and
(c(lx+Ax, T+AT)—c(x— Az, T+AT))
2Ax

= cu(x, T+ AT) + O((Ax)?)

= ¢z, T) + AT cur(x,T) + O((AT)?) + O((Ax)?),
(B.1.8)

(c(z+Azx, T+AT)—2c(z, T+ AT)+c(x— Az, T+AT))
(Az)?

= cuo(z, T+ AT) + O((A2)?)

= Cpz(2,T) + AT cppr(z, T) + O((AT)?) + O((Az)?).
Using (B.1.4), (B.1.5), (B.1.7), and (B.1.8) then the local discretization error is given by

gijy1 = AT (err(iAz,jAT) — 36(i Az, j AT)? 0 cypr(i Az, j AT)
+ (b(jAT) + 36(i Az, j AT)?) O cor(i Az, j AT)
+d(j AT) O er(i Az, j AT)) + O((AT)?) + O((Az)?).
If the coefficients(T") , 6(x, T') andd(T') are not dependent dfj, i. e.
bT)=0b, 6xT)=0c(x), dT)=d
thene; ;11 becomes fof =
cijr1 = AL (err(iAx,jAT) + (b+ 362(i Az))eyr(i Az, j AT) + der(i Az, j AT)
— 362(i Az) copr (i Az, j AT)) + O((AT)?) + O((Ax)?) .

However, in this case; j11 = O((AT)?) + O((Az)?) sincec(x, T) is a solution to the parabolic
differential equation (5.2.12), i. e.

cr(i Az, jAT) + (b+ 362(2;))ce(i Az, j AT) + dc(i Az, j AT)
— 26%(2) coo(i Az, j AT) = 0
and therefore, the derivative with respecfltof the left hand side of the previous equation satisfies
crr(i Az, j AT) + (b+ 362(2;))cor(i Az, j AT) + dep(i Az, j AT)

— %6’2(@-) Crar (1A, jAT) =0



B.1 Proof of Theorem 5.4.10 171

such that all the terms containidyI in the equation fok; ;i cancel out for ali and;. Thus, the
Crank—Nicolson method is even consistent of of@eR) with respect tq| - ||2 A, if the coefficients
b, & andd in the parabolic differential equation (5.2.12) are independent of the’fimEhis con-

cludes the proof of Theorem 5.4.10. |
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Universitat Trier mit dem mathematischen Schwerpunkt
Numerik und der betriebswirtschaftlichen Spezialisie-
rung in Geld, Kredit, Wahrung, Finanzwirtschaft

Wissenschaftliche Mitarbeiterirm Fachbereich IV —
Mathematik der Universitat Trier am Lehrstuhl von
Prof. Dr. E. W. Sachs

Associate Researchaar der Virginia Polytechnical
Institute and State University, Blacksburg, Virginia,
USA

Promotion zum Dr. rer. nat.an der Universitat Trier






