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Chapter 1

Introduction

A rigorous mathematical description of physical processes often leads to (partial) differential
or integral equations that, in general, can have a very complex structure. Often it is desirable
to have a simplified mathematical model for the physical process in order to recognize the
characteristics (and influence coefficients) of the process. In certain cases an explicit form or
a series representation of the desired solutions can be obtained by using special functions.
Such a representation can be obtained when the problem is of some special structure, i.e. the
domain under consideration is of special geometry, e.g. a cylindrical domain. Then, the solu-
tion can be represented by using special functions, so that a suitable approximation of these
function is required. However, if the structure of the problem is more complicated, especially
the domain under consideration is not of such special type, we have to use discretization
methods like finite differences or finite elements in order to get a numerical solution of the
problem. We remark that improvements of the approximation then require a new discretiza-
tion of the problem. Whereas in the case of a series representation a complete system of
functions is at hand, such that we can improve the approximation or the truncated series
by adding more terms of the series. Hence, in view of the numerical simulation of such
mathematical models it is necessary to have efficient methods for computing these special
functions.

In [22] Lozier investigated software available for the computation of special functions and
stated the software needs in scientific computing. This analysis exhibits a deficiency in the
availability of software packages for certain special functions. In particular, software packages
are needed for the computation (in fixed precision) of confluent hypergeometric functions
with complex arguments and special cases like Coulomb wave functions and Bessel functions
(of complex order). Since the class of confluent hypergeometric functions covers several im-
portant special functions, it is therefore desirable to have an efficient algorithm for computing
these functions (with complex parameters and argument). Moreover, every solution of linear
ordinary differential equations of second order can be represented by confluent hypergeomet-
ric functions (see Erdélyi [8], p. 249), that is using a suitable transformation of the linear

ordinary differential equations we obtain a differential equation of confluent hypergeometric

type.
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In this thesis we focus on the computation of confluent hypergeometric functions and point
out the relations between these functions and parabolic boundary value problems with ap-
plications to heat transfer and fluid dynamics.

In Chapter 2 we provide the characteristics of confluent hypergeometric functions. We in-
vestigate the confluent hypergeometric function of the first kind denoted by M (a;c; z) with
two, in general complex, parameters a and ¢ as well as argument z, whose power series

representation is given by
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This function, which is also called the Kummer function or M-function, is an entire function,

v=0

so that convergence of the series for all z € C is ensured. We give alternative definitions and
representations of the function. Of particular importance are the integral representation and
the connections to the hypergeometric functions. Furthermore, we address the connections
to many other special functions which are included in the class of confluent hypergeometric
functions as special cases.

In Chapter 3 the advantages and disadvantages of several methods for the (numerical) com-
putation of confluent hypergeometric functions are discussed as no single method can be
expected to be equally successful for all parameters and arguments. If we consider e.g. the
partial sums of the above power series representation

n

sp(a,c,z) = Z (a),2”

— (c)uv!

for n € N, we find that they provide a reasonable approximation to the function M(a;c; 2)
in a small neighbourhood of the origin only. The main disadvantage of these partial sums
are the cancellation errors which occur when computing in fixed precision arithmetic outside
this neighbourhood. The computation of small function values in modulus causes problems,
because the summation of the terms of the partial sums s, (a, ¢, z), which are inherently large
in modulus, leads to a loss or cancellation of several decimal digits. Therefore we develop
and investigate different methods for the computation of confluent hypergeometric functions
regarding stability of these methods with respect to cancellation errors.

We start with the computation of the Kummer function on (real or complex) bounded inter-
vals [0, 3] for some 3 # 0, so that the partial sums s,(a,c, z) do not provide an appropriate
approximation. Instead, it is possible to use the shifted Chebyshev expansion of the function
M (a;c; z), given by

M (a; ¢;z) = Bo(a,¢) +2 ) Bi(a,e)Ti(z/B)
k=1

with Chebyshev coefficients By(a,c) and shifted Chebyshev polynomials T}. However, the
Chebyshev coefficients are functions of generalized hypergeometric type whose numerical
evaluation is difficult. Moreover, the coefficients depend on the parameters a and ¢, so that the



computation of the function M(a;c; z) for different parameters requires a new computation
for each change of parameters yielding a high computational effort.

In order to overcome this disadvantage of the Chebyshev expansion, we develop a method
based on the Hadamard product (also called convolution product) of two power series p(z) =

Yoo vz’ and (z) = > 07 ¥,2Y, defined by
(P * w Z oL, 2”

This product is also called convolution product due to the following integral representation.
For a holomorphic function ¢, an entire function ¢ and a suitable integration curve ~ we
have for z € C
1 d¢
(o)) =55 [ OUEIOT
gt
With the help of this representation we can show a continuity property of the Hadamard
product: For entire functions ¢ and functions ¢ holomorphic in C \ [1, 00), we obtain in the
sup-norm || - ||

lo* Yl < M- |[¥]L

with a certain constant M, and for certain compact sets K and L (dependent on K) in the
complex plane.
After providing these main properties of the Hadamard product we establish certain esti-
mates which are of particular importance for the following convergence analysis.
Starting from the power series representation of the confluent hypergeometric function
M (a;c; z) we then construct a series expansion with the help of a suitable convolution,
that is

M(a;c;-) = F(a,1;¢;-) x exp(-)

of a hypergeometric function F'(a,1;c;-) and the exponential function. Replacing the expo-
nential function exp(-) by its shifted Chebyshev expansion we obtain the following series

expansion of the confluent hypergeometric function

M(a;c; z) = P2 1(8/2) + 263/22 D*1,(8/2)sFo(—k, kya; ¢, 1/2;2/3)
k=1
denoting by I;(/5/2) the modified Bessel functions of order k and by 3Fa(—k, k,a;c,1/2;")
the polynomials resulting from the convolution of the hypergeometric function F(a,1;c;-)
and the shifted Chebyshev polynomials T},. We see that the coefficients depend only on the
considered interval and not on the parameters a and c. Hence, for a fixed chosen interval these
coefficients do not change and can be stored. Moreover, the polynomials 3F5(—k, k,a;c,1/2;")
can be computed by a four-term recurrence formula, so the partial sums of this series expan-
sion can be used for an efficient approximation of the function M(a;c; z). In Section 3.1.4
a detailed error analysis is given for the partial sums of the series expansion. In addition,
results are proved for the asymptotic behaviour of the absolute error. In Section 3.1.5 on
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numerical results we compute relative errors of the partial sums of the series expansion and
of the Taylor sections of M(a;c;z), where the parameters a and ¢ are real or complex. It
can be seen that the problem of cancellation errors can be reduced considerably by using the
partial sums of this expansion.

A similar method was developed by Miiller [27] for the computation of Bessel functions of
variable order on compact intervals.

Another important tool for the computation of special functions are recurrence formulae.
We give a short review of the basic theory of linear difference equations (of second order),
i.e. we compute solutions (y,) satisfying the equation

Yn+1 + @nYn + bpYn—1 = 0,

with given coefficients a,, and b,, # 0. After considering some examples we state recurrence
relations for the confluent hypergeometric functions. Although easy to implement, such re-
currence relations are often numerically unstable e.g. due to rounding errors. In particular,
forward recurrences cause these problems. In order to circumvent these problems we apply
a method for computing recurrence relations in backward direction: the Miller algorithm.
Since the application of the Miller algorithm does not require exact starting values for the
backward recurrence we need a so-called "normalizing series* instead, i.e. for the computa-
tion of the functions f,(z) with a real or complex variable z we need a convergent series
expansion of the form

S = Z Cnfn(z)
n=0

with known S # 0. However, the determination of the starting index is a critical point.
Gautschi [11]| presented various versions of Miller algorithms particularly considering esti-
mates of the starting values for the backward recursion and providing an asymptotic theory
of three-term recurrence relations.

We apply the Miller algorithm to recurrence formulae for the computation of the confluent
hypergeometric function M (a;c; z) and we prove results concerning the asymptotic behaviour
of the relative errors for these computations. Furthermore, numerical results show the effi-
ciency of this method.

Finally, another method for computing confluent hypergeometric functions is discussed. If we
want to compute the function M (a;c; z) on unbounded intervals we have to consider methods
like asymptotic expansions for large arguments z in modulus. We use for the computation
of a function f in some sector in the complex plane an expansion of the form

)~z o).

After providing the basic characteristics of asymptotic expansions, we consider the asymp-
totic expansion of the confluent hypergeometric function M (a;¢; z). For numerical computa-
tion, the determination of the number of terms used for the approximation is a crucial point.
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We present a method to determine the number of terms with regard to numerical stability.
We will see that from the numerical point of view the monotonicity behaviour of the terms
of the series yields a suitable criterion for the truncation of the series.

Further contributions on computing the confluent hypergeometric function M are given by
Nardin et al. [28], where results on numerical computation of M (a;c; z), based on the power
series representation, for large |z| are presented. In [5], Barnett used a method based on
continued fractions in order to compute the Coulomb wave functions.

As an application of the discussed methods we consider initial-boundary value problems with
partial differential equations of parabolic type in Chapter 4. In order to determine solutions
of the initial-boundary value problems we apply the method of eigenfunction expansion or
(generalized) Fourier series representation, where the arising eigenfunctions of the associated
eigenvalue problem depend directly on the geometry of the considered domain. For certain
domains with some special geometry like cylinders (circular, elliptic, parabolic), rectangles
or spheres the corresponding eigenfunctions can be obtained in an explicit form. In this case
the eigenfunctions are often of confluent hypergeometric type, so that the above methods
for computing these functions can be applied.

First, we consider (conductive) heat transfer in a cylinder with boundary control. To be
more precise, we investigate an initial-boundary value problem including the two-dimensional
conductive heat equation in the domain €2, i.e. we consider the linear parabolic differential
equation

%zxA@ in Q x (0,7)

with the initial temperature distribution
0(-,0) = 0p(-) in O
and the so-called Robin boundary condition

%:a(u—ﬁ) on 02 x (0,7)

modelling the heat transfer from the surrounding medium. By 6 we denote the temperature
and by u the boundary control or the temperature of the surrounding medium. Furthermore,
we exploit the geometry of the domain and reduce the problem above to a problem of
dimension one by introducing cylindrical coordinates.

We show how to construct an eigenfunction expansion or (generalized) Fourier series repre-

sentation of the solution 6 of this initial-boundary value problem. In general such a repre-

0= Z%ﬂ/}n

with time-dependent (generalized) Fourier coefficients «a,,. These are determined by solving

sentation has the form

an initial value problem. The eigenfunctions v, come from an associated eigenvalue problem
and form a complete orthonormal system.
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Moreover, the uniform convergence of the series is proved. After separating the (general-
ized) Fourier series representation into a general solution and a particular solution, we find
convergent majorants for these series representations. Furthermore, we simplify the heat
transfer model for constant boundary controls, such that the resulting series representation
is of simple structure being of particular interest in view of the application to sterilization
processes in Chapter 5. Also from the numerical point of view this representation provides
some advantages.

Finally, we explicitly show how the confluent hypergeometric function M(a;c;z) arises, if
different special geometries of the underlying domain, like circular, elliptic or parabolic cylin-
ders, are considered.

We close this chapter by presenting an application in fluid dynamics. It will be discussed how
the dynamics of a fluid filled loop which is heated on one side and cooled on the other can be
simulated. Since we obtain a fluid flow only driven by temperature, termed natural convec-
tion, the loop is often called thermal convection loop. The adequate mathematical model is
based on the Boussinesq equations including the Navier-Stokes equations for incompressible
Newtonian fluids and the (convective) heat equation

9 1
i VIV =480~ 0)g — Vp+vav
divv =10
9
E—i—v-V@-xAG

in the domain Q x (0,7") with appropriate initial and boundary conditions denoting by v
the velocity field and by p the pressure. After introducing several simplifications we can
solve the resulting initial-boundary value problem again with the method of (generalized)
Fourier series. Aside from the formulation of the mathematical model we perform a detailed
derivation of the (generalized) Fourier series representation of the velocity and the temper-
ature. A crucial point is the determination of the (generalized) Fourier coefficients, since
these coefficients satisfy an infinite system of coupled ordinary differential equations. In or-
der to compute approximations of the velocity and the temperature of the fluid, we truncate
the (generalized) Fourier series and obtain a finite system of coupled ordinary differential
equations. If we truncate to one mode, the simplest approximation, the system of coupled
ordinary differential equations can be formulated by the Lorenz system

dX

— = —0X+0Y

dr

Y xz_virx
dr

%:XY—bZ

dr

(see Yorke et al. |48]). After providing the essential characteristics of this dynamical system,
specifically focussing on the asymptotic stability of the system, we give numerical results
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illustrating how this system (and enhanced systems) can be applied to the approximation of
the flow behaviour.

In Chapter 5 we apply the heat transfer models given in Chapter 4 to sterilization processes
in food industry, where the food is filled into containers and heated in an autoclave by
steam or hot water in order to destroy harmful microorganisms. Unfortunately, heat sensitive
nutrients and vitamins are also affected during the heating process. Since, in practice, the
temperature of the autoclave is often empirically determined, it may happen that during the
sterilization process not only the harmful microorganisms but also the nutrients and vitamins
are destroyed. Hence, we need appropriate mathematical models for the sterilization process
and the heat transfer, in order to optimize the nutritional quality of the product. Moreover,
common sterility measures are very sensitive to the evolution of temperature, so that it is very
important to have a reasonable heat transfer model for simulating the heating process. We
present and discuss several models of heat transfer, a very simple and empirically determined
model (the Ball-formula) which is still in practical use as well as models based on partial
differential equations of different complexity.

We end this thesis by giving some concluding remarks on the combination of computing
confluent hypergeometric functions and solving (parabolic) partial differential equations via

eigenfunction expansions.
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Chapter 2

The confluent hypergeometric
functions

The confluent hypergeometric functions which are also called Kummer functions generate
an important class of functions including many other special functions, e.g. Coulomb wave
functions, parabolic cylinder functions, Bessel functions, incomplete gamma functions, ex-

ponential integrals, Fresnel integrals and error functions.

2.1 Definition and basic properties

In this section we define the confluent hypergeometric functions and state the basic proper-
ties, cf. Temme [40], pp. 171-177 or Andrews [3], pp. 385-390.
In order to define the confluent hypergeometric or Kummer functions, we start with the

Gaussian hypergeometric equation
2(1—2)w" + (c— (a+b+1)2)w — abw =0, (2.1)

with its singularities z = 0, z = 1 and z = oo. It is solved by the Gaussian hypergeometric

function w = F(a, b; ¢; z), defined by

Flabieiz) = 3028 (fa] < 1) (22)
v=0 v
with complex parameters a, b and ¢, where ¢ ¢ (—Ny). For ( € C and v € N the Pochhammer

symbol or shifted factorial is defined by
Qv =C¢C+D[C+2)---(C+v=1), (Qo=1

We obtain the confluent hypergeometric functions when two of the singularities of (2.1)
merge into one singularity ("confluence® of two singularities). In order to describe this formal
process we consider the hypergeometric function F'(a,b;c;z/b) which has a singularity at
z = b. We define

M(a;c;2) = bli{go F(a,b;c; z/b). (2.3)

15
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Since we have

b)n
hmgzl

b—oo b7 ’

the computation of the limits of the terms of the power series (2.2) yields finally the power
series representation of the confluent hypergeometric function of the first kind

M(a;c;z)zz

v=0

Gar (€0 (2.4)

with complex parameters a and ¢, where ¢ ¢ (—Ng). From (2.4) follows that the confluent

hypergeometric function can be written as
M(a;c; z) = 1Fi(a; ¢; 2),

a member of the class of generalized hypergeometric functions ,F,. The same limit process
is applicable to known results of the hypergeometric function. In this way we obtain the

Kummer differential equation
" / —
zw"” + (¢ — z)w’ — aw = 0.

Linearly independent solutions of the Kummer equation are the function M (a;c; z) and the

confluent hypergeometric function of the second kind U(a;c; z), defined by

) = — & M (a; c; z) _Zl,cM(lJra—c;ch;z)
Ulase; ) sin(7c) <F(1 +a—c)(c) T'(a)l'(2 —¢) > ’

The important functional relation
M(a;c;z) = e*M(c —a;c;—2)

is called Kummer transformation. If we again apply the limit process above to the Euler
integral representation of the hypergeometric function, given by

c—a

1
Fla,bic;2) = / 11— 1)e-a-L(1 — 12) b gt (2.5)
0

for Re(c) > Re(a) > 0 and |arg(l — z)| < m, we obtain the following representation for the
confluent hypergeometric function

1

M(a;c;z) / ztta 1 c a— ldt
c—a
0

for Re(c) > Re(a) > 0.
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Order and type of the confluent hypergeometric functions

We denote by
M(r, f) =max|[f(z)]  (r>0)

|z[<r
the maximum modulus of an entire function f : € — C. Then the order p € [0, 00] of f is

defined by
i loglog M(r, f)
p = ps = limsup —————"—=

r—00 logr
and for p € (0,00) the type 7 € [0,00] of f is defined by
log M(r, f)

T = 75 = limsup
T—00

rP

Further it is possible to characterize the order and type of entire functions by means of
the magnitude of the Taylor coefficients. For the Taylor coefficients a, of an entire function
f(z) =02y ayz” it is well-known that

lim |a,|"/" = 0.
n—oo

For the following results on the characterization of order and type we refer to Boas [6], p. 9.

Theorem 2.1 Let f(z) => 07 ayz” be an entire function of order p. Then we have

logn

p = limsup (2.6)

n—oc —log lay[t/"”

Theorem 2.2 Let f(z) =Y 2 qa,2" be an entire function of order p € (0,00) and type .
Then we have
pre = lim sup n|a,|”/". (2.7)

n—oo

With the help of these theorems we obtain immediately that the confluent hypergeometric
function M (a;c;-) is an entire function of order p = 1 and type 7 = 1.

Indeed: With the use of the asymptotic representation of the Pochhammer symbol (for
arbitrary ¢ € C)

Cp
nn!
(Ont1 ~ m (n — o0)
and a simplified version of the Stirling formula
(n!)l/"N n (n — ),
e
we obtain
lim sup logn 1
p _= =
n—oo —log|(a)n/((c)un))|"/"
and 1
n
7':1ims.upz (@)n =1.
nooo € |(¢)pn!
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2.2 Special cases of the confluent hypergeometric function

As mentioned above the class of confluent hypergeometric functions includes many important
special functions. We give a summary of these special functions with their connections to
the confluent hypergeometric functions.

Whittaker functions

In the literature the confluent hypergeometric functions are often characterized as Whittaker

functions, defined by

M, u(2) = e 2222400 (2 +p—r142u2)
Wi u(2) = e #2124y (% +p— K, 1+ 2u; z) )

which are solutions of the Whittaker equation

These functions occur as solutions of transformated differential equations of second order
(see Temme [40], p. 178).

Parabolic cylinder functions

The parabolic cylinder functions are solutions of the differential equation

2

" <
— + — =0
Y (a 4>y )

given by

(see Temme [40], p. 179).

Error functions

The error functions play an important role in statistics and probability theory. The error

function erf and complementary error function erfc are defined through

2 z
erf(z) = ﬁ/€t2dt
0

erfc(z) =1 —erf(z) = %/etzdt,
s
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and the relations to the Kummer functions are

erf(z) =2z M (%

erfc(z) (

(see Temme [40], p. 180).

Exponential integrals

For n =1,2,... the exponential integrals are defined by

_ / e:dt (Re(z) > 0).
1

The connection to the Kummer function of the second kind U is given by

En(z) =e*U(1;2 —ny2) = 2" Le*U(n;n; 2).

For n = 1 we write
—Ei(—=z /— dt (|arg z| < ).

If z = z is real, we define the exponential integral

‘< t
Pi(z) = / < ar

— 00

(see Temme [40], p. 180).

Incomplete gamma functions

The incomplete gamma function is defined by

z

v(a,z) = /t“let dt (Re(a) >0, |argz| < )
0
and the complementary incomplete gamma function is defined by

I'(a,z2) = /t“_le_t dt (a € C, |argz| < ).

z

These functions are called incomplete because of their incomplete interval of integration

compared to the (Euler) gamma function. If in particular Re(a) > 0, we have

I'(a) =T(a,2) +7(a, 2).
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The connections to the Kummer functions are

a

Ya,2) = e M(Lia+ 12),
I(a,z) = 2% *U(l;a+ 1;2)
(see Temme [40], pp. 185-186, p. 277).

For computation of v(a,z) and I'(a,x) for x > 0 and a € R by methods based on Taylor
sections and continued fractions see Gautschi [13].

Orthogonal polynomials

The Laguerre polynomials which are defined by

L(z) = lezz_o‘ﬂ (z"Fe%)
n n! dz" ’

where « is in general a complex parameter, are related to the Kummer function through

D(n+a+1) (1)
ary — . CL) — - .
L(z) = Tt 1) M(—n;a+1;z) o U(—n;a+1;2).
(see Nikiforov [29], p. 23, p. 284).
The definition of the Hermite polynomials is
ar . _
Hy(2) = (~1)"e” 7= ()

The relations to the Kummer function are

22”—\/7?]\4( 122)

Hon(2) = T(A/2—n) 22
2n+2 T
Hon1(2) = _prfn) (=n:3:2%)

(see Nikiforov [29], p. 23, p. 284).

Bessel functions

The Bessel functions Jy(x) of the order A of the first kind, defined by

/2 o= (—z?/4)

) = LSS

F'(A+1) s A+ 1),0!

with a real argument x are connected to the confluent hypergeometric function in the fol-
lowing way:

A
Jn(z) = %e”M (A + 3521 + 1; 2iz) (2.8)

(see Andrews [3], p. 400, Temme [40], p. 227).
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Fresnel integrals

The Fresnel integrals C(z) and S(z), defined by

)= feox (T)at a0 = fsn ()
0 0

with a real argument x are also connected to the confluent hypergeometric function. The

relations are

E

(see Andrews [3], p. 113, p. 400).

Coulomb wave functions

The Coulomb wave functions are solutions of the nonrelativistic Coulomb wave equation

2
dw+<1 2n )\(/\+1)>w—0.

T\ P

This equation is of particular interest in physics, more exact in quantum mechanics as a form
of the Schrodinger equation in a central Coulomb field. Two linearly independent solutions
of the equation are the regular and irreqular Coulomb wave functions denoted by Fy(n, p)
and G (n, p). The relations to the Kummer functions are

Fa(n, p) = Cx(mp™ e P M(A + 1 — in; 2X + 2; 2ip),
with C(n) = 2 e™™/2|0(A 4 1 + in)|/T(2) + 2) and
Ga(n, p) = iFA(n, p) + iDx(n)p* e PU (X + 1 — in; 2\ + 2; 2ip),

with Dy (n) = 2X\tlem/2HAmi—ion,

In nuclear and atomic physics the angular momentum number ) is integer and often denoted
by L, the parameter 7 is real and the argument p is positive. Moreover, the functions F) and
G are real valued for real values of 7, p > 0 and A > 0 (cf. Temme [40], p. 171, p. 178).

We will see in the next chapter how to compute functions of confluent hypergeometric type.
Since we also consider complex parameters, especially the Coulomb wave functions are of
particular interest.
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2 The confluent hypergeometric functions




Chapter 3

Computation of confluent

hypergeometric functions

In this chapter we consider several methods for computing confluent hypergeometric func-
tions of first kind. We develop a method for computing confluent hypergeometric functions on
bounded real or complex intervals using the partial sums of certain series expansions. These
partial sums are easily computable and provide a better rate of convergence in comparison
to the Taylor sections. Furthermore, the problem of cancellation errors is considerably re-
duced compared to the corresponding Taylor sections. Also the use of recurrence formulae
is discussed in this chapter. Thereby we have to take the numerical stability of recurrence
formulae into account. Finally, we consider the asymptotic expansion of the confluent hy-
pergeometric function in order to compute the function M (a;c; z) for large arguments z in

modulus.

3.1 Computation on compact intervals

We consider the confluent hypergeometric function M (a;¢;-) with complex parameters a and
c where ¢ ¢ (—Np) as defined in (2.4). Because M is an entire function, we have convergence
of the series for all z € C. If the parameter a is a negative integer, the function M reduces
to a polynomial.

Given 3 # 0 we would like to compute the function M(a;c; z) for z € Kg, where K3 denotes
the compact interval [0, 3]. A simple possibility to evaluate the confluent hypergeometric
function is the use of the Taylor sections, given by

sn(a,c,z) = Z (a)yzlj (3.1)

v=0

for n € N. These partial sums might be taken as approximations in a certain neighbour-
hood of the origin. The size of the neighbourhood, however, is seriously restricted due to
cancellation errors which arise when computing in fixed precision arithmetic. In particular,
the computation of function values of small modulus causes problems, because the occurring

23
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terms of the partial sums of larger modulus generate a loss or a cancellation of some deci-
mal digits. For this reason we look for series expansions, which are more stable than Taylor
sections with respect to cancellation errors.

3.1.1 Chebyshev expansions

In order to compute the confluent hypergeometric function on the compact interval Kz we
may use the shifted Chebyshev expansion of the Kummer function M, given by

M/(a;c;z) = By(a,c) + 2ZBk(a, o)T(z/P),
k=1

with the Chebyshev coefficients

k
By(a,c) = %QFQ(%+k,a+k;l+2k,c+k;ﬁ)

and the shifted Chebyshev polynomials T}, defined by
Th(2) = ty(1 — 22),

using the k-th Chebyshev polynomial ¢ (cf. Luke [23], p. 300 and [24], p. 30). The problem,
however, is the computation of the coefficients By which are of generalized hypergeometric
type. The efficient numerical evaluation of these functions is difficult. The use of the power
series representation of By is, as mentioned above, reliable only in a small neighbourhood
of the origin. Additionally the coefficients Bj are dependent on the parameters a and c¢ of
the function M. It is, however, desirable to have methods for the computation of confluent
hypergeometric functions for continuously varying parameters a and c¢ at hand. But it is not
possible to store these Chebyshev coefficients since each change of parameters requires a new
computation of the coefficients Bjy. Because of this high effort for the computation of these
coeflicients it is very expensive to compute the partial sums of the expansion above.

In contrast to this, we will use series expansions, where the coefficients are independent of

the varying parameters and thus can be precomputed.

3.1.2 Series expansions by convolution

In this section we will give theoretical results on the Hadamard product or convolution
product of power series, which is the essential tool for the construction of the underlying
series expansion (cf. Miiller [26]).

Definition 3.1 For two formal power series p(z) =Y 02 @u2” and ¢(z) = Y 07 1, 2" we
denote their Hadamard product by

(ex0)(x) = poth”.
v=0
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By a cycle v in € we understand a union of closed piecewise smooth curves as in Rudin [37],
p.- 217, and from there we also adopt the notation of f7 f(#)dz and of Ind,. The Hadamard
product is also often called convolution product because of its integral representation. For
the following result and its proof we refer to Miiller [26].

Lemma 3.2 Let Q C C be a region which contains the origin and let ¢ be holomorphic in
Q. Suppose further that v is a cycle in 2, such that

Indy(0) =1 and Ind,(o) =0 forall o¢ Q.

If 1 is an entire function, then we have for every z € C

L NS
(0 *9)(2) /mwm%. (3.2)

2
Y

Proof: We denote with
p(z2)=> @,z and  P(z) =D 12"
v=0 v=0

the Taylor expansions of ¢ and 1) around the origin. If we apply the general Cauchy Theorem
(see Rudin [37]|, Theorem 10.35), we get

RS
o= [ Sdc e,
v

Since ¢ * 1) is entire, we have by interchanging the order of summation and integration for

every z € C

Zoo ,_ 1 ZOO L, 2(0)
o SDI/,(/JI/Z = 9 /V_O ﬂ)u(z/C) C dC
= N ov=

- L w<<>w<z/<>%.

2w
b
For a compact set K and a continuous function ¢ we define
lellx = sup |p(2)]-
z€K

We only consider regions €2 which are cut planes, more precisely we assume without loss of
generalization 2 = C\ [1,00). Hence, the integral representation of Lemma 3.2 leads to the
following continuity property of the Hadamard product (cf. Miiller [26]).
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Theorem 3.3 Let ¢ be holomorphic in the cut plane Q = C\ [1,00). If K is a compact
set in ©, then for every compact set L with K* C L°, where K* := K -[0,1], a constant
M, = Mp(p, K) > 0 exists, such that for every entire function 1 we have

lo*llx < Mp-[[¢]|L. (3.3)

Proof: We use the notation

K-y1':={z/¢C:2€ K,( €y}

with a cycle v as in Lemma 3.2. Since K™ is starlike with respect to the origin, for every
open set U D K* a simple closed piecewise smooth curve v in C \ [1,00) of the form as in
Figure 3.1 containing the origin in its interior exists, such that K -y~! C U. Hence, we may
choose v = (L) such that K -y~! C L.

With the given parameterization v = {¢ € C: ( = ((t),t € [t,t]} we get for every z € K

t
1 d((t ¢'(t)]
(o)) = 5= | [ et Tl < 5 / PN - Tt I

t

Defining
t
1 (1)l
ML - 27Tt/’(p(<(t))‘ ’C(t)‘ dt

we get the asserted estimate. O

Remark 3.4 In particular, the result of Theorem 3.3 can be formulated for compact sets K
which are starlike with respect to the origin (see Miiller [26]). Then, for every compact set
L with K C L%, a constant My = M (¢, K) > 0 exists, such that for every entire function
1) we have

lo*¥llx < Mg - [[¢]|L.

We introduce for some fixed entire function g the family of entire functions
F ={f:3 ¢ =¢gholomorphic in C\ [1,00) : f = ¢ *g}.

Moreover, let K C ©C be a given compact set which is starlike with respect to the origin. This
is the set on which the function f ought to be approximated. Denoting by (P,) a sequence
of polynomials of degree < n converging uniformly to g on L (with L as in Theorem 3.3),
application of Theorem 3.3 yields

1f = s * Palle < Mpp-llg = Palle (ne€N), (3.4)
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i.e. the error of approximating f by the polynomials ¢ * P, can be estimated by the error
of approximating g by the polynomials P, and the factor My = My (g, K). Hence, we
have to choose polynomials P,, which provide a fast rate of convergence on L to g, at least
essentially faster than the rate of convergence of the Taylor sections (s,(g)) of g.

The idea is the use of some series expansion of the function g, i.e.

[e.9]
9=">_ Ty
k=0

with coefficients «j and polynomials T} of deg(7)) < k yielding the formal series represen-
tation of the function f

o

f=erxg=>Y_ orlps*Th).

k=0
Note that the coefficients oy, are independent of the functions f of the family 7 and ¢ * T},
are polynomials of deg(ys * Tj;) < k. Indentifying the polynomials P, with the partial sums
of the expansion of the function g we have the approximation of the function f

n
k=0

Furthermore, we are interested in an estimate in terms of || - || x instead of || - ||z. This can be
achieved by the Bernstein Lemma (see e.g. Walsh [43], p. 77). If § > 1 is given, a compact
set L = Lg exists as in Theorem 3.3 such that for all m € N

HPm - Pm—lHL S 5mHPm - Pm—l”Ka
with Py := 0. The uniform convergence of P, =>" (P, — Pp—1) to g on L yields

m=0

lg = Pall < Y I1Pm = Palle < ) 6™(|Pr = Pallk -~ (n € N),

m>n m>n
and if we use (3.4) with M(d) := My, we get
If = @5 * Pallc < Ms(8) Y 8" |Pn = Puille  (n€N, f e F). (3.5)
m>n

Henceforth, we would like to apply the results above to the confluent hypergeometric func-
tion. Setting
F:={M(a;c;-) =(px9g)(:):a,ce C, c¢ —No}

we have the family of entire functions to be approximated, where the confluent hypergeo-

metric function can be written as

M(a;c;2) = Z (a)VZT = Z (a), 2V * exp(z),
v=0 (C)VV' v=0 (C)V

so that we have g(z) = exp(z) and the Gaussian hypergeometric function ¢(z) = F(a, 1;¢; 2).
Since the hypergeometric function F'(a,b;c;-) is holomorphic in the cut plane C\ [1,00), we
are allowed to apply Theorem 3.3 and can prove the following result.
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Theorem 3.5 Let 1) be an arbitrary entire function. If ¢ = F(a,1;c;-) is a hypergeometric
function with 0 < Re(a) < Re(c), then we have

lo*llx < daellvllx (3.6)

with
5o ’ ING) T'(Re(a))l'(Re(c — a))
“C T (a)T(c — a) I'(Re(c))

for all compact sets K C € which are starlike with respect to the origin.

In order to prove Theorem 3.5, we need some information on the boundary behaviour of the

hypergeometric functions h(a,c;-) := F(a, 1;¢;-).

Lemma 3.6 Fort > 1 the limits

ht(a,c;t) == lirr% h(a,c;z) and h™(a,c;t) := lirr% h(a,c; 2)

Im(z)>0 Im(z)<0

both exist, and we have for 0 < Re(a) < Re(c)

i Ta.c:t) — h (a.c _ F(C) l—c(y _ 1\c—a—1
270 [ (@, ;) = b (0, 1)) I'(a)T'(c—a) tHE-1) (t>1).

Proof: Since the hypergeometric function h(a,c;-) is analytically continuable across the cut
[1,00) except of the (possible) singularity z = 1, for arbitrary parameters a, ¢ with ¢ ¢ —INj,
we know the existence of the limits h't(a,c;t) and h™(a,c;t) for t > 1.

For 0 < Re(a) < Re(c) we consider the Euler integral representation for the hypergeometric
function (2.5)

1
h(a,c;z) = %ﬁ)—a) O/ta—l(l _ t)c_a_llf—tzt'

The substitution ¢ = 1/s gives the Cauchy integral

c—a—1 ds

h(a,c;z) = %/slc(s —1) >
1

In order to characterize the boundary behaviour of this integral, we can apply the formulae
of Sokhotskyi (see Henrici [17], p. 94) and obtain

I'(c)

. _
5 W (a,et) = b (a, 1)) = (o) (c—a)

751—(: t—1 c—a—1
2mi ( )

for all ¢t > 1. O
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As a first consequence of this result the substitution ¢ = 1/s yields

o] J 1
t
/tlc(t— yeral— /s —5)"% lds = B(a,c — a)
1 0
and therefore
(o0}

i Ta,c;t) — h (a,c; @27“6) a,c—a
27Ti/[h (6, ¢58) = h™(a, 1)) t  T(a)T(c—a) B( ) =1

1

where B denotes the Beta function. If we consider the modulus of the difference of the limits,

we obtain as a further consequence of Lemma 3.6

1 _ I'(c) _ o
— |t D —h )| = 7.#{6(1 c)t_lRe(cal)‘
5 |1 @ it) = (i) = | o= (t—1)
An analogous consideration as above yields
oo J 1
t
/tRe(l c) Re(c a—1) % p /SRe(a)—l(l _ S)Re(c—a)—lds _ B(Re(a),Re(c— a))
1 0
and finally
1T dt
—/W(a, ) b (0] & = b (3.7)
7r
1

Proof of Theorem 3.5: It is sufficient to show |( *9)(2)| < dacll®][o,2) With the straight
line [0, 2] = {tz : t € [0,1]} for every z € C.

For a given ¢ € (0, ) a simple closed and piecewise smooth curve ~. is chosen as in Figure
3.1. Tt con:?lﬁts of tvzro) circular arcs 'ye ={C:|¢C—1] = ¢}, 75(2) = {C :|¢] = 1/e} and of

the required estimate, we will consider the integral representation of the Hadamard product

two arcs 2"’ and 7 ' parallel to the real axis connecting %1) and 75(2). In order to obtain
with the curve of integration .. We are interested in limit relations for ¢ tending to zero.
Therefore we need information on the asymptotic behaviour of hypergeometric functions at
the singularities ( = oo and ¢ = 1. The use of formulae which describe this behaviour (see
Olver [32], pp. 165-168 for a ¢ N, ¢ —a ¢ N and Abramowitz, Stegun [1], pp. 559-560 for

a € N, ¢ —a € N) leads for arbitrary z € C to

/h<a,c;<> <z/<>*ao (c -0 j=12)

ug

[ acoue0F - [ 1t @anueng @ o)
1

(3)
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A0

Figure 3.1: integration curve -,

[ ac0u/0E - [ @ateeng o).
s 1

Altogether we have for ¢ — 0
d [o¢]
[#a.c0uE0T — [ (@ - @an] o
Ye 1

Application of the integral representation (3.2) leads to

1
211

(0 30)(2) = (haci) s 0)2) = 5 [ W (@it = b (acst)] w00 T
1

If we consider the modulus of the product and apply (3.7), we obtain
(o 9z s;/Wﬁact W (@, t)] 10 = a1 lo.
since z - [1,00)7! = [0, 2]. O

Theorem 3.5 is a generalization of Theorem 2 in Miiller |26] for the case of complex param-
eters a and c:
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Corollary 3.7 Let ¢ be an arbitrary entire function and let ¢ = F(a,1;c;-) be a hypergeo-

metric function with 0 < a < c. Then we have

lo*Yllx < ldllx (3.8)

for all compact sets K C C which are starlike with respect to the origin.

Proof: Application of Theorem 3.5 yields ,. = 1 for 0 < a < c. For parameters a = ¢ we
have

1—2

o(2) = ha,a52) = —— =32
v=0

and therefore ¢ * 1 = 1. g

3.1.3 Construction of the series expansion

In this section we see how to construct the desired series expansion of the Kummer function
(cf. Miiller [26] and [38]). As mentioned above, the essential tool in this context is the
Hadamard product of power series. In the previous section we have already seen that the
confluent hypergeometric function can be written as the convolution product

M(a;c;-) = F(a,1;¢;-) x exp(-). (3.9)

The next step is the choice of an approximation of the exponential function. For this purpose
we consider the shifted Chebyshev expansion on the compact interval Kg which is given by

o)
e = P 1n(B8/2) + 2¢°72 Y " (—1)FI,(8/2)Tk(2/5) (3.10)
k=1
(cf. e.g. Luke |24], p. 32), where I denote the modified Bessel functions of the first kind of
order )\, defined by
22 =~ (22/4)
noy = /2P Sy
I'(A+1) —~ A+ 1),2!

for A € C\ (—N). In order to construct the series expansion for the confluent hypergeometric
function we need some information on the convolution product of the Chebyshev polynomials
T}, and the hypergeometric function F'(a,1;b;-). Since the Chebyshev polynomials T} can be
represented as

Ti(z/B) = F(=k,k;1/2;2/13),
(cf. e.g. Luke [23], p. 301), we obtain the convolution product

F(a,1;¢;2) * Ti(z/B) = sFa(—k, k,a;¢,1/2;2/5) (3.11)

with the generalized hypergeometric function

a);?’

(k) (
DR (3.12)

k
sFy(—k,k,a;¢,1/2;2) = (—(’3
7=0
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which is reduced to a polynomial. With these relations we are able to construct finally the

series expansion.

Lemma 3.8 For the confluent hypergeometric function M (a,c;-) we have the following se-

ries erpansion

M(a,c,z) = €72 1o(8/2) + 2P Y " (—1)* I, (8/2)3Fa(—k. k, a; ¢, 1/2; 2/ B) (3.13)
k=1

where the convergence is uniform on every compact set in C.

Proof: Based on the representation (3.9) of the Kummer function using the relations (3.11)
for the product F'(a,1;c;2) * Ti(z/5) and (3.10) for the Chebyshev expansion of the ex-
ponential function we obtain the asserted expansion. According to Theorem 3.3 a similar
argument as in (3.5) using the Bernstein Lemma yields uniform convergence of the series
expansion (3.13) due to the uniform convergence of the Chebyshev expansion (3.10) of the
exponential function. O

We notice that the coefficients depend only on the interval Kz and are independent of the
parameters a and c of the Kummer function M. For the computation of the polynomials 3F5
we can apply a four-term recurrence formula, which can be found in Luke [24], p. 147. In
our case we obtain the following result.

Lemma 3.9 For the polynomials Fy(-) := sFa(—k,k,a;c,1/2;-) we have the following re-

currence formula

(k—2)(k+c—1)Fg(x)=—[2(k—1)(k+c—2)(k—3/2) —2k(k—2)(k+c—1)
+4z - (k—2)(k+a—1)] Fr_1(z)
-2k -2)(k—c—1)(k—3/2) =2(k—3)(k—1)(k —c—2)
—dx - (k—1)(k—a—2)] Fy_o(x)
+(k—1)(k — ¢ — 2)Fx_3(x),

with the starting values Fo(z) =1, Fi(z) = 1—2ax/c and F3(x) = 1 —8ax/c+8(a)22?/(c)2.

If we take into consideration, that one of our main goals is the efficient computation and
programming of the confluent hypergeometric functions, we have to take the computational
effort into account. We can state, that with respect to the precomputation of the coefficients
and the use of the recurrence formula for the computation of the polynomials, we are able
to compute with a essentially lower effort in comparison to the Chebyshev expansion.



3.1 Computation on compact intervals 33

3.1.4 Convergence theory

Application of Theorem 3.5 and Corollary 3.7 leads to the following important result for
the polynomials 3F5, which enables us to prove results on the asymptotic behaviour of the

absolute errors of the partial sums of expansion (3.13) (cf. [38]).

Theorem 3.10 For parameters 0 < Re(a) < Re(c) we have
||3F2(_k7k7a; ¢, 1/2’ ')H[O,l] < 5%0 (k € NO)
In the case of parameters 0 < a < ¢ we have

||3F2(—k,k,a; c, 1/2; -)”[071} =1 (k S NQ).

Proof: First, application of Theorem 3.5 with ¢ = F'(a, 1;¢;+) and ¢ = T}, leads to the first
inequality. Then, application of Corollary 3.7 with ¢ = F(a,1;¢;-) and ¢ = T}, yields

laF2(=k, k,a;¢,1/2; ) ljo,1) = 1 (a, 1565-) * Tielljo,1) < [ Tkllo,1 = 1

for parameters 0 < a < c. Since 3F>(—k, k,a;¢,1/2;0) = 1, we get the asserted equality. [J

Let S,(a,c,3,) denote the n-th partial sum of the expansion (3.13) and 7,(3,-) the n-th
partial sum of the Chebyshev expansion (3.10) of the exponential function for n € N. Then
for the asymptotic behaviour of the absolute error we obtain

Corollary 3.11 For parameters 0 < a < ¢ and intervals Kg = [0, 8] we have

2¢Re(8)/2 < ﬂ

HM(G”C; ‘)_Sn_]_((l,C,/B, )HKﬁ ~ \/ﬂ in

)n (n — o0).

Proof: Since 3sFy(—k, k,a;c,1/2;0) = 1, the application of Theorem 3.10 leads to

1M (a,c;-) = Sn—1(a, ¢, B, )|k, < [l exp(-) = Tn—-1(8; ") ||k, (3.14)
< 202N L (5/2)] (3.15)
k>n
and
1M (a,¢;) = Sn-a(a,e, B, )|k, = 2RO (—1)F 1 (8/2)] . (3.16)
k>n

Because of the asymptotic behaviour of the modified Bessel functions I,, (see Abramowitz,

Stegun [1], p. 365), we have (n — o0)

Lel~ o= (2)  ceo,
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and therefore

2Re0)/2 (|
) Re
1@, ) = Sur(a,e, 8, ) g, ~ 2672 |1 (8/2)] ~ = — (4n> ’

what is the assertion. O

In a similar way we get for 0 < Re(a) < Re(c) the results

[M(a,c;-) = Sn—1(a, ¢, B )|y < baell exp(c) = Tn—1(8; )l x4 (3.17)
< 26025, > " 1k(B/2)] (3.18)
k>n

and
1M (a,c;) = Snoi(aye, ;)| i, = 26RO " (—1)F 1 (8/2)
k>n

and therefore the same asymptotic behaviour for the absolute error of S, (a,c,3,-) except
for the constant d,.. The comparison of this result with the asymptotic behaviour of the

Taylor sections leads to

Remark 3.12 For the Taylor sections sy (a,c, ) we obtain (n — o)

M (a,c;-) — sn—1(a, ¢, )|k, ~ (C(Li)litn ~ e )<6372Z7r—n (e\ﬁ]) (3.19)

and if we consider the quotient of the absolute errors, we find

HM(CL, C; ) — Sn_l (a, C, ,8, ) HKB 2€Re(ﬁ)/2(c)n 2€Re(ﬁ)/2r(a) ncfa
||M(a> G ) - Sn—l(aa Gy ')HKﬁ (a)n4n F(C) 4n

. . . Re(B)/2 c—a
with the “asymptotic acceleration factor” 2 F(C)F(a) L

Remark 3.13 In the case of arbitrary complex parameters a and ¢, which are no negative
integer, we are not allowed to apply Theorem 3.5 and therefore the inequality (3.17) for the
absolute error is no longer valid. But we have an asymptotically optimal rate of convergence
of the partial sums S, (a,c, ,-) in the following sense: A sequence of polynomials P, of
degree < n is said to be mazimally convergent on a compact set K to an entire function f
of order p € (0, 00), if

limsup n!/?|| f — P,|3/" = limsupn'/? E,(f, K)"/", (3.20)

n—oo n—oo

where E,(f, K) denotes the error of the best approximating polynomial of degree < n on
the interval K. About the rate of convergence of the best approximating polynomial of an
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entire functions of order p € (0,00) and type 7 € (0,00) we know by a result found in Rice
[35] or Winiarski [47]

limsup n'/? B, (f, K)Y/™ = ¢(K)(epr)'/?, (3.21)
where ¢(K') denotes the capacity of the compact set K, if it exists. In the case of K = Kg,
we have ¢(Kj3) = (/4.

Now we can prove the asymptotical optimality of the polynomials S, (a,c, 3,-) for arbitrary
complex parameters a and c. We remark that according to (3.19) we have no maximal
convergence for the Taylor sections s,(a,c,-).

Theorem 3.14 For arbitrary complex parameters a and ¢ with ¢ ¢ (—INg) and intervals Kz

we have

limsupn||M(a,c;-) — Sn(a,c, G, - )Hl/n = —ﬁ = limsupn E, (M, Kg)l/"

n—oo n—oo

Proof: The application of Theorem 3.3 ensures for every § > 1 and k sufficiently large the
inequality
lsFo(—k, k,a5¢,1/2; )| o1 < 0%

Therefore we get in this case inequalities for the absolute error of the form
1M (@, ¢;) = Sni(as e, B, )lx, < 2602 7 6% |1,(6/2)]
k>n
and
1M (a,¢;-) = Su-i(ase, B, )|k, = 27PN " (~1)¥1,(8/2)] -
k>n
Then we obtain with the asymptotic behaviour of the modified Bessel functions for n — oo

Re(8)/2 n
262 3 6 |1(3/2)] ~ 260200 1, 8/2)] ~ 2 (1)

4n
=n 2mn

and

Re(8)/2 | N 11k 2R <e|6!>

Thus we have (replacing n by n+ 1)

% < limsupn||M(a,c;-) — Su(a,c, 5")”}(/: = 4
n—oo

for all 6 > 1. So we get the first asserted equality.
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Since M (a;c; z) has order p = 1 and type 7 = 1, we get now the asymptotical optimality
from the equation (3.21), what proves the second asserted equation. O

In the previous chapter we have already seen that many important special functions can
be represented by means of confluent hypergeometric functions. Three important examples
are the Bessel functions, Fresnel integrals and the Coulomb wave functions. In [27| Miiller
developed a method for computing the Bessel functions Jy with variable order on compact
intervals. For computation methods based on Taylor series and asymptotic expansions see
Amos et al. [2]. In order to compute these special functions with the help of the function M
we have to evaluate the function M(a;c; z) at pure imaginary arguments z = iz. Hence we
consider in the next section on numerical results especially pure imaginary arguments of the

confluent hypergeometric function.

3.1.5 Numerical results

As mentioned above, the major disadvantage of the Taylor sections results from cancellation
errors, which occur in the evaluation of the partial sums s, (a,c,-). If we consider the simple
case z = 25¢ and a = ¢ = 1, we have

oo .
S 9Rs — 250 _ (25¢)”
M(151;250) = e =) o
v=0
and a largest term of the magnitude
25i) 2 25
mae | 2007 _ 257 5 796042115460874 - 10°,
veN | vl 25!
Since |M(1,1;254)| = |€2%!] = 1, we are confronted with a loss of 9 decimal digits.

Now we present the numerical results for computing the Kummer function M (a;¢; z) for real

and complex parameters.

Real parameters

As a first example we consider a compact interval on the imaginary axis with § = iy = 254,
which means Kz = [0,25i]. The following figures show approximations of the significant

decimal digits for M(a;c; z), given by

|M(a;c; z) — Sn(a,c,ﬂ;z)\>} (3.22)

dl(a7 07 Z) = mln {157 - logl() < ‘M(a c: Z)‘

and

do(a, ¢, z) = min {15, — logyg (’M(“; r]\;za_csng “ Z)’> } . (3.23)

The results are computed in double precision arithmetic providing an accuracy of about

16 decimal digits. Since the usual accuracy requirement for special functions computation
routines is 15 decimal digits in double precision programs, we have cut off the errors at a
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Figure 3.2: d; and ds for z = 0.5i(0.257)25¢, a = 0.05(0.0125)1.0 and ¢ = 0.5 with deg(S,) =
45, deg(s,) = 100

Figure 3.3: dy and dj for z = 0.5i(0.257)257, a = 0.5 and ¢ = 0.05(0.025)2.0 with deg(S,) =
45, deg(s,) = 100

Figure 3.4: d; and dj for z = 0.5i(0.257)257, a = 0.5(0.25)24.5 and ¢ = 24.5 with deg(S,) =
40, deg(sn) =95
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level of 15 digits. Therefore all values on the 15-digits level represent approximations within
the usual tolerance. The choice of degrees 100 (Figure 3.2), 100 (Figure 3.3) and 95 (Figure
3.4) for the Taylor sections and 45 (Figure 3.2), 45 (Figure 3.3) and 40 (Figure 3.4) for the
sections of expansion (3.13) ensures that the errors result exclusively from cancellation, so
that the choice of higher degrees does not provide a reduction of these errors. On the two
horizontal axes we see the varying argument z and the varying parameter a (Figure 3.2 and
Figure 3.4) or ¢ (Figure 3.3). The figures show that the partial sums of the expansion (3.13)
yield a satisfying accuracy both for parameters a < ¢ and in the case of a > c.

Complex parameters

We consider Coulomb wave functions with parameters ¢ = L+1—in, ¢ = 2L+2 and argument
z = 2ip on compact intervals on the imaginary axis [0, 40i]. Because of their definition, these
functions belong to the class of confluent hypergeometric functions with 0 < Re(a) < Re(c),
so the theoretical convergence results from above are applicable. We also calculate the relative
errors of Sy, (a, ¢, ;) and the Taylor sections s, (a, ¢, -) through di(a,c, z) and da(a, ¢, z). Also
in this case we compute the results in double precision arithmetic, shown in Figure 3.5 and
Figure 3.6, and the chosen degrees of the approximating polynomials ensure that the obtained

errors result exclusively from cancellation.

Figure 3.5: d; and dy for p = 0.25(0.25)20, n = 0.0125(0.0125)1 and L = 1 with deg(S,,) = 60,
deg(sy) = 120

Figure 3.6: dy and ds for p = 0.25(0.25)20, 7 = 0.125(0.125)10 and L = 1 with deg(S,,) = 60,
deg(s,) = 120
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On the horizontal axes in Figure 3.5 and Figure 3.6 we see the varying argument p and the
varying parameter 7. The “waves” and the decreasing accuracy between them are due to the
zeros of M (L + 1 —in;2L + 2;2ip).

3.2 Computation with recurrence relations

Recurrence relations represent an important tool for computing special functions or even a
sequence of special functions. The essential advantage of such methods is that in many cases
they are easy to implement and the computational effort is low. But on the other hand such
relations are often very susceptible to errors in numerical computation, like rounding errors.
Therefore it is very important to know whether the recurrence relation is (numerically)
stable.

3.2.1 Basics of linear difference equations

In this section we will give an overview on the theory of linear difference equations, especially
of second order. We state the main results concerning solutions of the equations and their
asymptotic behaviour. For this section we refer to Temme [40], pp. 335-342 and Gautschi
[11].

We consider for n = 1,2, ... the following (three-term) recurrence relation

Yn+1 + AnYp + bnyn—l =0, (324)

with given coefficients a, and b, # 0. An equation of the type (3.24) is called linear homo-
geneous difference equation of second order. The general solution (y,) of equation (3.24) is
given through

Yn = Dfn + qGn; (3.25)

with two linearly independent solutions (f,) and (g,) of the equation (3.24), and p, ¢ are
constants independent of n. Now, we are interested in those solutions (fy), (gn) satisfying

fn

the relation

lim — =0. (3.26)
n—oo g?’L
This condition implies
lim & =0
n—oo yn

for any solution (y,) not being a constant multiple of (f,,). Indeed, if (y,) is not proportional
to (fn) we have g # 0, and therefore we get

fo _ fn/ gn

lim — =

m ————— =0.
n—oo Yy Moo g "‘p(fn/gn)

The set of all solutions (f,) of equation (3.24) having the property (3.26) forms a one-
dimensional subspace of the space of all solutions. It is not possible to have two linearly
independent solutions (f,), (f,) satisfying condition (3.26). Solutions of this subspace are
called minimal, whereas any non-minimal solution is called dominant. We state that each
dominant solution of equation (3.24) is asymptotically proportional to (gy).
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Labelling the initial values yg, y1 as well as fo, f1, go, g1 the constants p and g can be

computed as
_ 91%0 — YoY1 _ fiyo — foyr

~ fogr— fige” T figo — fogr

We remark that the denominators are different from zero when we have linearly independent
solutions (fy), (gn)-

Now, we will illustrate the problem when computing minimal solutions (or any constant mul-
tiple of them). If we calculate such a sequence (f,,) by the relation (3.24) using approximate
initial values yo = fo, y1 = f1, caused by rounding errors for example, but computing with
infinite precision, the resulting solution (y,) will be in general linearly independent of the
minimal solution (f,). So, the condition (3.26) implies

Yn — fn
In

That means the relative error of the computed approximation (y,) to (f,) diverges. The

— 00 (n— o0).

following examples will show the difficulty of forward computing of minimal solutions. For
Example 3.15 and Example 3.16 cf. Gautschi [11] and [12].

Example 3.15 We compute the Bessel functions of the first kind .J,,(z) for fixed real = and

n =0,1,2,... using the recurrence relation
2n
Yn+1 — ;yn +Yn—1=0. (3.27)

We compute for x = 1 with known initial values Jy(1) and J;(1) in double precision. The
results of the forward recurrence, fm and the exact values, f,, = J,(1), are shown in Table
3.1, where the underlined digits coincide with the correct ones. We recognize the absurd
results of the forward recurrence since we know that J,, (1) decrease with increasing n and
Jn(1) — 0 for n — oo. Also the negative values for n > 10 indicate that something goes
wrong. The problem can be explained by the arguments introduced before. Since Y;,(x), the
Bessel function of the second kind, is also a solution of equation (3.27) we have, recalling
the asymptotic behaviour of the Bessel functions for n — oo (see Abramowitz, Stegun [1],

p. 365) 1 e\ N 2 (2n\"
Tn(@) o~ —o= (%) - Ta@) _\/% <5)

and setting f, = Jp(z), gn = Ya(2),

& N 1 (ea:)2n

2\2n

p 5 (n — o0),
n

so that the condition (3.26) is fulfilled and therefore f,, = J,(x) is the minimal solution of
equation (3.27).
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Example 3.16 We counsider the first order recurrence

(n+1Dyn — Ynt1 = a"
with the solution f,, = n!(e” — e, (x)), where e, (z) = >}, ;Z_’: and z > 0. We execute some
iterations with the starting value fy = e® — 1 and z = 1. The computation is carried out in
double precision arithmetic, so that we have an accuracy of 16 decimal digits. The results
are shown in Table 3.1, where again the underlined digits coincide with the correct ones.

For a detailed investigation on the numerical instability of forward recursions we refer to
[46], where Wimp defined a so-called index of stability for the forward computation. With
the use of this index Wimp characterized the stability of recurrence relations.

Often it is possible to determine dominant and minimal solutions of linear homogeneous
difference equations using the asymptotic behaviour of the coefficients a, and b,. For an
overview on the asymptotic theory of linear second order difference equations we refer to
Gautschi [11].

Recurrence formulae for confluent hypergeometric functions

Now we consider recurrence formulae for confluent hypergeometric functions. The following
three examples show the properties of three different recurrence relations for the confluent
hypergeometric functions in a single parameter as well as in both parameters.

Example 3.17 We consider the recurrence relation with respect to parameter a (see Temme
[40], p. 341)

m+a+1—c)ypy1+(c—2z—2a—2n)y, + (a+n—1)y,—1 =0 (3.28)

which has the solutions
I'(a+n)
I'(a)

The asymptotic formulae (n — o0) of the solutions (f,,) and (g,) can be obtained (see

I'(a+n)
I'a4+n+1-c¢)

fn= Ula+mn;c;z), gn= M(a+n;c; z).

Temme [40], p. 341) with use of the asymptotic expansions of the confluent hypergeometric
functions for large parameter a (see Abramowitz, Stegun [1], p. 508)

fr ~ Clnc/Q—Sn/Zle—Q«/nz’ G ~ C2nc/2—3n/482\/nz’

where the constants ¢; and ¢y do not depend on n.

Example 3.18 We consider the recurrence relation with respect to parameter ¢ (see Temme
[40], p. 342)
21+ (1 —c—n—2)yp+(c+n—a—1)y,—1 =0 (3.29)
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which has the solutions

I'c+n—a)

T(c+n) M(a;c+n;2), gn=U(a;c+n;z).

fn =
Here, with the help of the asymptotic relation M (a;c + n;z) ~ 1 for n — oo, we have the
asymptotic relations (n — o0)

a l—c—n

r —1

I'(a)

Example 3.19 We consider the recurrence relation with respect to both parameters a and
¢ (see Wimp [46], p. 61) for n =1,2,...

2n+c—2)(n+c—a)yny1 +(2n+c—1) ((Za—c)—i- (2n+62)(2n+0)>yn

z

—2n+c)(n+a—1)y,—1 =0 (3.30)

which has the solutions

n

fn = z (a)"M(n—i—a; 2n + ¢ z), (3.31)
(¢)2n
z7"I'2n+c—1

Gn = F(rg—i—c—a) )M(a+1—c—n;2—c—2n;z). (3.32)

We consider the asymptotic behaviour for n — oo of f,, and g,. First, we get the asymptotic
relation

M(n+ a;2n + ¢; 2) ~ e*/? (n — o0)
and for the quotient of Pochhammer symbols, with use of the representation

z

e 2 8

for n — oo and z € C\ (—Np) (see Henrici [16], p. 28 and Stirling’s formula)

(@ T (n—1)e12 T 1 1,
(c)on  T'(a) (2n — 1)2n+e-1/2 € I'(a) 22ntc—1/2 pn—ate e

Finally, we obtain for the minimal solution

F(C) 1 ez\ " 2/2 1
Jo ['(a) 2¢-1/2 ( 4 ) € n—ate (3.33)

A similar argument shows, with use of the Stirling formula

[(2) ~ V2me 277 1/2
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for |z| — oo and |arg(z)| <7 —¢€, € > 0 (see Luke [24], p. 32),

P@2n+c—1) (2n+c- 1)2nte=s/2
I'n+c—a) (n+c—a)rteal/2

(2n4c—1)"e 32 (n 4 c—a+a— 1)t

2n+c—ae—n—a+1
(n+c—a)~1/2 (n+c—a)rtea

~ 22n+c—3/2nn+a—1e—n
and we get for the dominant solution

n
Gn ~ 2073/2 (i) ez/2nn+a71. (3‘34)

(4

Remark 3.20 The recurrence relation (3.30) for the confluent hypergeometric function (see
Example 3.19) can be understood as a generalization of the Bessel recurrence relation (3.27)
introduced in Example 3.15. We choose the parameters a = 1/2, ¢ = 1 and the argument
z = 2iz, for x € R. Then the recurrence relation (3.30) reads as

(20 — 1)(n+1/2)yns1 + (20— 1)(n + 1/2)3—2 Yo — (20 4+ 1)(n = 1/2)yn_1 = 0

and simplifying this equation leads to
2n
Yn+1+ — Yn — Yn—1 = 0.
5

On the other hand the minimal solution f, (3.31) can be written as

oy
£ = (””/‘ ) M(n+1/2;2n + 1; 2iz).
mn.

Now we understand the solution f, as a transformation is the following way

Jn= ineixf n
where, recalling the representation of the confluent hypergeometric function in terms of
Bessel functions (2.8),

fn = (:”7/1—?)” e M(n +1/2;2n + 1;2iz) = J,(z).

Hence, this leads to the recurrence relation

-n+1 iz~ ‘N 1T~ -n—1 iz~ _
? € " Yn+1 + i e " Yn —1 e“Ypn—1 =0,

which can be simplified to
2n

Yn+1 — ?yn +Yn-1=0

what is exactly the Bessel recurrence relation (3.27) with the solution f,, = J,, (). In this way
we have shown that the recurrence relation (3.30) for the confluent hypergeometric function
is a generalization of the Bessel recurrence relation.

In the next section we consider the (numerically stable) computation using such recurrence

formulae, especially for computing minimal solutions.
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3.2.2 The Miller algorithm

As we have seen in the previous section the numerical computation of minimal solutions
might be very problematic. The idea is now to apply (3.24) in backward direction in order to
compute the values fi,..., fy for fixed integer N. Then, (f,) becomes a dominant solution
and (gn) a minimal solution. But we need the starting values fy and fy_; then. For the
Miller algorithm these starting values are not required as we will see soon. For the following
formulation of the algorithm and the statement of the main known properties we refer to
Gautschi [11], Temme [40], pp. 343-346 and Wimp [46], pp. 29-34.

The algorithm

We assume to have a convergent series of the form

S:=>Ycufn (3.35)
k=0

with known S # 0 and known coefficients cj. This series is also called a “normalizing series”.
Now we choose a nonnegative integer, usually large, starting value v > N and compute a
solution of (3.24) for n =v — 1,v —2,...,0 through

yfﬁzl + anyﬁl”) + bnygj_)l =0

with the incorrect initial values

yz(zlﬁl =0, yz(/y) =1,

where these initial values can be replaced by other ones, but at least one of these values
must be different from zero. (The choice of these initial values, however, may affect the rate
of convergence of the algorithm.) Then the computed solution is a linear combination of the
solutions (f,) and (g,) of the form

ygy) = pufn + QWon, (3.36)
forn=0,1,...,v+ 1, where the coefficients are
Juv+1 fV—‘rl

Pbv = y Qv = .
v gu+1fy - gl/fl/+1 v gy—i—lfl/ - gl/fl/+1

Since we made the assumption (3.26) on the solutions (f,) and (g,) we can conclude

)

lim ¥ £ = lim D = g (3.37)
V=00 Py V=00 gyt
for n =0,..., N. Obviously, we have an approximation to f,, if v is large enough, given by

the quantities yﬁly) and p,, whereas indeed p, is unknown, in general. But, by the use of the

normalizing series we can compute the approximation to f,, if v is large enough, defining

S
() .— o)
fn ‘ n S(l,)

(3.38)
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where S®) is defined by
S .— chy,(:).
k=0

Now, if we replace y,(:) with p,, fi in S®) having (3.37) in mind we get the asymptotic relation

~ S / S. Therefore we are allowed to consider f,”’ as an approximation to f,, for large
enough integer v. Consequently, we call the algorithm convergent if for n =0,1,... N

lim f) = fo.

V—00

The following result, for which we refer to Gautschi [11], yields a characterization of the
convergence of the algorithm. (Here, the presented proof is slightly more detailed.)

Theorem 3.21 Let (f,) with f, # 0 be a minimal solution of the recurrence relation (3.24)
with the normalizing series (3.35) and let (gn) be any other solution of the relation (3.24)
(satisfying the condition (3.26)). Then the Miller algorithm converges, i.e.

lim ") = f,

V—00

if and only if the condition

Z g =0 (3.39)

I/—?OO gV+1

is fulfilled.

Proof: Let (f,) with f, # 0 be a minimal solution of (3.24) and let (g,,) be any other

solution of (3.24) satisfying (3.26). By using the initial values y,(f/) =1 and yl(,i)l =0 we

obtain
pofosi + @wgvy1 =0
pufv+ qgy =1
and can determine ¢, = —(f,+1/gv+1)pv by the first equation. Putting this in the represen-

tation of the approximate solution y,({/) we get
f H
y7(1y) = <fn v n .
gv+1
[e.e]

f 14
oy = Z ckfr, Pn= g—n, Ty = Pr+1 chgk

k=v+1 n k=0

Setting
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and using the normalization (3.38) we obtain

f(l/) _ S fn (1 - pu-i—l/pn)
" > b0 Ch Sl — Pua1 D heo Ch Ik

_ St (1= pus1/pn)
S =3 o1 ke — Put1 Do CEIK

o In (l_pu+1/pn)
S 1-0,/S—1,/S

We conclude that 0, — 0 for v — oo since we have convergence of the normalizing series
and p,41 — 0 for v — oo because of the condition (3.26). So, we have convergence of the
Miller algorithm if and only if 7, — 0. 0

We note that the condition (3.39) is fulfilled for bounded coefficients cj and if we have

lim Jv+1 —t, lim Jv+1

V—00 gl/ V—00

=t

v

for |t1| > |t2| and |t2| < 1. Indeed: This implies the existence of numbers r; and ry satisfying
|t1’ >ry>Tre > ’tz‘ such that

Ju+1 fo+1

9v

>, <r

v

for v large enough. Then, we obtain the following estimate
72 T2
’Tu+1| < _‘7—1/‘ + _’CV—HfV—l-l’
1 1

which already implies that 7, — 0 for v — oo since r9/r; < 1 and ¢, f, — 0 (see Polyak [34],
p. 45, Lemma 3).

For numerical purposes and to obtain results concerning the (asymptotic) rate of convergence,
we have to consider the relative error of f,sy). We define for f,, # 0 the relative error

o) _ B =t

n fn

and obtain the following representation of the relative error (cf. Temme [40], p. 345 and
Gautschi [11]).

Lemma 3.22 For the relative error 67(1'/) of the approzimation j;S”) we have

) _ 0u/S = puy1/pn +1/S
“n 1-0,/S—71,/S (340)

where pn, o, and T, are defined as before.
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Proof: First, using the definition of the approximation f,(f/), we can write

6(V) _ S%(ZV)/S(V) — fn S(py + qygn/fn> e ‘

" fn S®)
Putting in the normalizing series and the partial sums S®) yields

) — bv ZZO:V.H ckfr + v/ pn ZZO:O Ckfe — q ZZ:O Crdk
" Pv Do Chfl + @ Y p—o CkIR '

Adding zero to the denominator of the form 0 = Sp,o, — Sp,o, and using the definitions of

o, and 7, we get

L) _ PvOy + 50/ pn — T/ Py
Sp” — DPvOy + quV/pV+1

n

_ ou/S+ av/(Pven) — @/ (SPuPvi1)
1—0,/S+q7/(Spupvi1)

)

But this expression can still be simplified. We consider the initial value y,/; and obtain
y,(jjr)l = pufl/-i—l + Qwov+1 = 0,
what leads to
qu fl/—l—l
— === =Py
bv gv+1
Putting this in the last equality for the relative error we can rewrite it as
L) _ 9v/S = pra1/pn+ /S
" 1-0,/S—1,/8
what is the asserted representation. O

By the use of this representation of the relative error we can state again the convergence
condition for the algorithm: The relative error 5,(1”) converges to zero for n = 0,..., N and
v — oo if and only if 7, — 0.

For numerical purposes it is important to have information on the asymptotic behaviour
of the relative error 6%1'). Since it is difficult to get strict estimates we approximate the
representations of 7, and o, through the dominant terms of the series. This leads to the

approximations
Oy = Cl/+1fl/+1a Ty = Pv+1Cv Gy

and with it to the approximate relative error

E%u) ~ Cu+1fu+1 n fu+1 Cviv fzz+1 gn (3‘41)
S g1 S Gut1fn

There are two aspects influencing the convergence behaviour of the algorithm. First, the
terms ¢,41f,41 or ¢, f,4+1 on the right-hand side of (3.41) indicate that the normalizing
series (3.35) has to converge fast. For the second fraction on the right-hand side we have
9v/gv+1 — 1/t1, as we stated earlier in order to achieve convergence of the algorithm. Second,
the last fraction on the right-hand side of (3.41) indicates that the extent of dominance of
the solution (g,) in comparison to the minimal solution (f,) is very important. In other
words, the rate of convergence of (3.26) has to be taken into account.
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Example 3.23 We compute again the Bessel functions as in Example 3.15, but now in
backward direction using the Miller algorithm. To get an impression of the fast convergence
of the Miller algorithm in this case we consider the relative error and its asymptotic be-
haviour. Using the asymptotic representation of the relative error of the Miller algorithm
above and the asymptotic formulae for the minimal solution (f,) and the dominant solution
(gn) of the Bessel differential equation (see Example 3.15) we obtain the following asymptotic

v)

n

Jn

S N W ks Ot O NN o ©

1.902219281208027E-33
9.511096406040136E-32
4.563424055618057E-30
2.098223955943702E-28
9.227621982096672E-27
3.873503008524659E-25
1.548478441211654E-23
5.880344573595760E-22
2.115375568053262E-20
7.186396586807494E-19
2.297531532210345E-17
6.885408200044227E-16
1.925616764480173E-14
4.999718179448405E-13
1.198006746303137E-11
2.630615123687453E-10
5.249250179911875E-09
9.422344172604501 E-08
1.502325817436808 E-06
2.093833800238927E-05
2.497577302112344E-04
2.476638964109955E-03
1.956335398266841E-02
1.149034849319005E-01
4.400505857449336E-01
7.651976865579666E-01

1.902951751891382E-33
9.511097932712494E-32
4.563424055950106E-30
2.098223955943777E-28
9.227621982096670E-27
3.873503008524658E-25
1.548478441211653E-23
5.880344573595758E-22
2.115375568053261 E-20
7.186396586807493E-19
2.297531532210344E-17
6.885408200044226E-16
1.925616764480173E-14
4.999718179448405E-13
1.198006746303137E-11
2.630615123687453E-10
5.249250179911875E-09
9.422344172604501E-08
1.502325817436808E-06
2.093833800238927E-05
2.497577302112344E-04
2.476638964109955E-03
1.956335398266841E-02
1.149034849319005E-01
4.400505857449335E-01
7.651976865579666E-01

Table 3.2: Approximated solution fr(LV) and exact values f,, of Example 3.23
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representation of the relative error for n = 25 and v — oo

2(v+1) v
() - (212 e
" 2(v+1) 2n(v+1) 4dwv \2v 2 Jas(2)

We recognize the dominant factors (ez/(2v + 2))***2 which are responsible for the fast

convergence. For illustration we present a numerical example where we chose v = 25 as
starting value. The results are presented in Table 3.2. Again, the underlined digits show the
exact decimal digits.

Another task is the determination or estimation of a starting value v, where some information
on asymptotic estimates of the dominant and minimal solution is needed. A further detailed
investigation of the Miller algorithm can be found in Gautschi [11]. Here, Gautschi used
asymptotic estimates of the underlying special functions in order to obtain estimates of the
starting value of the backward recursion. There are estimated and empirical ratios v/N
given. Also the influence of the choice of the normalizing series is investigated. We note that
serious problems may occur if there is cancellation in the series (3.35) itself. A further aspect
is the sensitivity of the Miller algorithm to rounding errors, although our numerical analysis
does not give such indication. An analysis of the error accumulation of the Miller algorithm
is due to Olver and can be found in [30]. An approach for numerical computation of starting
values was performed by Olver [31]|, where also inhomogeneous difference equations were
considered.

3.2.3 Applications and numerical results

In this section we apply the previous results on the asymptotic behaviour of the relative
error of the Miller algorithm to recurrence formulae for confluent hypergeometric functions
and give some numerical results. For this purpose we compute the recurrence relation, intro-
duced in Example 3.19, in backward direction using the Miller algorithm in double precision
arithmetic. Computing the minimal solution (f,) of the recurrence relation (3.30) we choose
the normalizing series (see Wimp [46], p. 62)

o~ (DF
!

S=c—-1= (¢ = Di(c+ 2k —1) fp.

k=0
In order to investigate the asymptotic rate of convergence of the Miller algorithm we consider
the relative error, with fixed n and starting value v,
(v)

e®) = y"f_f” (3.43)

approximated asymptotically by (v — o0)

(v) Cu+1fu+1 fl/+1 Cvgv fl/+1 9n
€y & + - =
S Gut1 S Gut1 fn
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Using the asymptotic formulae of the solutions (f,) (3.33) and (g,) (3.34) the relative error
can be written as

) I'(c) 1 ez vl
e = L(a)T(c—1)(c—1)2¢-1/2 (4@ + 1))

(D" w4+ ) e+ 204 1)l 4 (<1 e+ 20 - et

1 ez vl 1 In
M- V5s (mem)  wroe f_n] |

Since the influence of the last term to the rate of convergence is neglectable it can be omitted.
Hence, the relative error reads as

D) ING) 1 ez v
e~ L(a)['(c—1)(c— 1) 20-1/2 (4(1/ + 1))

. [(—1)“*1(1/ + 1) e+ 20+ 1)+ (=1)" 2 (e + 20 — 1)62/22 . (3.44)

where we omit the index n of asly). Hence, we investigate the numerical behaviour of the
relative error (), defined in (3.43), in comparison to its asymptotic approximation (3.44)
for fixed parameters and argument, in order to check the quality of the asymptotic approxi-

mation. For this purpose we compute the number of significant decimal digits by

M(ai;2) = f§7(2)
(M (@ ;2)

d") = d¥)(a, ¢, z) = min { 15, —log,,

and its asymptotic approximation by

d™) = min {15, —logyg ‘s(”)‘} .

The results are presented in Figure 3.7 and Figure 3.8, where the dashed lines show the
asymptotic approximation d®) of the relative error d¥ ), which is shown by the dotted lines.

16

16
14 A 144 /
/ \ /
12 / 12} /
! | /
10 J 10} | S
7 \ )
8 ;. 8t | i
7, \ e
61\ /v 6r S
\ i \ r)
4k e ar S
ST \ s
2 -7 2 \ .
. \ s
10 20 30 40 50 20 40 60 80 100

Figure 3.7: d*)(10,20,10¢), d®) Figure 3.8: d(*)(24.5,24.5,25i), d)
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Both figures show the number of significant decimal digits where (the starting value) v is
varied (v = 1,...,50 in Figure 3.7 and v = 1,...,100 in Figure 3.8). We recognize in
Figure 3.8 cancellation of nearly 5 decimal digits. This phenomenon can be explained by
cancellation occurring during the computation of the normalizing series. So, the choice of
the normalizing series plays an important role. We can conclude that in particular increasing
modulus of the parameter a and the argument z lead to worse results, in the sense of slower
convergence and with respect to cancellation errors.

In order to see into the numerical behaviour of the relative error (3.43) of the Miller algorithm
for varying parameters and argument, we consider again real and complex parameters. We
compute again the (logarithmic) relative errors, or more precisely the number of significant
decimal digits d*) in the case of real parameters ¢ and c. The results are shown in Figure
3.9 for small positive a and c (left figure) and for larger positive parameters a and c¢ (right
figure). We recognize a decrease of the number of significant decimal digits especially for the
larger parameter case. Analogously, we compute in the complex case, the case of Coulomb
wave functions, the number of significant decimal digits d™) for parameters a = L + 1 — in,
¢ = 2L+ 2 and argument z = 2ip. A crucial point is the determination of the starting value
v. As can be seen in Figure 3.10 there is no significant difference between d(8?) and d(19),

Figure 3.9: dM9 for ¢ = 0.05(0.0125)1.0, ¢ = 0.5 and z = 0.5i(0.25i)25i and d1%) for
a=0.5(0.25)24.5, ¢ = 24.5 and z = 0.5i(0.257)25i

Figure 3.10: d® and d"9for p = 0.25(0.25)20, n = 0.125(0.125)10 and L = 1



3.3 Asymptotic expansions 53

Remark 3.24 We point out an important application of the recurrence formula introduced
in Example 3.17, a recurrence relation for the confluent hypergeometric functions with respect
to the first parameter a. We remember the results in the previous Section 3.1, where we
have shown favourable convergence behaviour of the partial sums of the constructed series
expansion (3.13) in the case 0 < Re(a) < Re(c), or 0 < a < ¢ in the case of real parameters.
Now it is possible to apply the recurrence relation (3.28) in forward direction using starting
values computed with the partial sums of the series expansion (3.13), in order to compute
the function M (a; ¢; z) for parameter a > c. From the numerical point of view this procedure

16 16
14| eeeeeseseseccitonnas et . ".' . M Tee e "' 14
12 12
10 10
8 8
10 20 30 40 50 60 10 20 30 40
Figure 3.11: dg2(2, 1.5, 251) Figure 3.12: d42(1.5, 25, 251)

is interesting since the computed solution (g, ) of the recurrence relation (3.28) is dominant.
We compute the number of significant decimal digits for different n and fixed parameters

and argument, i.e. we have to evaluate an expression
dy, = dy(a,c,z) = min {15, —logyg (M) } ,
In

where d,, denotes the number of significant decimal digits, g, is the computed solution of

the recurrence relation and g, the exact solution, given by (see Example 3.17)

I'(a+mn)
FNa+n+1-c¢)

gn = M(a + n;c; z).

In fact, Figure 3.11 shows that even for n = 1,...,62 the recurrence nearly remains nu-
merically stable in the sense of forward stability for a > ¢. On the other hand we recognize
some problems in the case of a < ¢. The result can be seen in Figure 3.12, where we at least
observe a stabilization at a level of 7 decimal digits, for n =1,...,42.

3.3 Asymptotic expansions

In this section we will consider another method for the computation of confluent hypergeo-
metric functions. The series expansions developed in Section 3.1 are only applicable in some
bounded domains. Also recurrence relations do not seem to be suitable for the computation
of M(a;c; z) at large arguments z in modulus. If we want to compute functions on a sector
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S ={z¢€ C:|arg(z) — a|] < J}, we have to consider methods like asymptotic expansions.
These expansions play an important role if we want to compute the Kummer functions on
an unbounded interval.

3.3.1 Principal results on asymptotic expansions

First, we give the definition and fundamental properties of asymptotic expansions (see Olver
[32], p. 16).

Definition 3.25 Let > .7 a,z~" be a formal power series, and let f(z) be a function, such
that

n—1
ay
f(z) = Z:% o Ba2), (3.45)
where we have for each fixed n € N
1
R,(2)=0 (|z"> (z — o0 in S). (3.46)

Then we call the series > ° ja,z~" an asymptotic expansion of f(z) in S, and write

o0

e~

v=0

ay

(z — o0 in S). (3.47)

If the series » 2 a,z~" converges for all sufficiently large |z|, then it is the asymptotic
expansion of its sum without restriction to arg(z).

We give a necessary and sufficient condition for the existence of asymptotic expansions (see
Olver [32], p. 17).

Remark 3.26 The function f(z) has an asymptotic expansion of the form (3.47) if and only
if we have for all n € Ny

n—1

a

zn<f(z)—zz—z>—>an (z — oo in 5)
v=0

uniformly with respect to arg(z). This implies that the sequence (a,,) is uniquely determined.

Therefore every function f can have at most one asymptotic expansion in S (see Olver [32],

p. 17).

3.3.2 Asymptotic expansions for confluent hypergeometric functions

The asymptotic expansions for the Kummer function can be inferred from integral repre-
sentations and connections to the confluent hypergeometric function of the second kind (see
Abramowitz, Stegun [1], p. 508).
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Theorem 3.27 For fized parameters a and c the function M(a;c;z) has the asymptotic

eTPAnSIon
L(e) em N (@ala—c+1) !
(a,c;2) T(c—a) 2° nz:;] nl (—z)n + <|2!N1+1>

+

Mezza—c = (c—a)u(l = a)n L Z — 00 in
e L o () K

n=0

with S = {z: —3m < arg(z) < 3n}.

An important fact especially for numerical evaluation of the partial sums of the asymptotic
expansion is the choice of numbers N; and Ns. Therefore we investigate the monotonicity
behaviour of the terms of the partial sums. Note that the asymptotic expansion truncates if
a € 7Z and ¢ € Z. We define the sequences

(a)p(a—c+1),
n!(—z)"

(c—a),(l—a),

n!zm

fn:fn(a7caz) = and gn:gn(a,c,z) =

and formulate the following result concerning the determination of degrees N; and Ns.

Lemma 3.28 For real parameters a and c, numbers Ny € N and N, € N exist, such that
we have for n € N

’fn+1| = ‘fn’ (77, > Nf)7 ‘gn+1| > ‘gn| (n > Ng)’

Moreover, the numbers Ny and Ny are given by

max (0, E (—(a+7 —|2]) +(a+7 —|2])2 — 4(ay — |z]))D if a < ay,
0 if o> ay

Ny =

max (0, [3 ((a+7+ ) + 0@+ 7+ 7= 4@q +e— =) ]) ifa>ay,
0 if a < ay

Ny =

denoting by [x] the largest integer less than or equal to the real number x as well as setting
y=a—c+1l,y=a—c—1,

1
a5 = gz (1= 2+ 202] + 2cl2] + ),

and
. 1 2 2
Gy = W (1 —2c+ ¢+ 2|z| — 2¢|z| + |2]9).
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Proof: We first prove the assertion for the sequence (f,). The assertion for (g,) can be

shown analogously. We consider the quotient

fora| | (@)nia(a—c+ Dnpint(=2)"
fn (a)n(a—c+1)p(n+ 1)(—2z)nt+L

which simplifies to

fot1| _ (a+n)(a—c+n+1)' (3.48)

fn (n+1)(=2)
Since we have to find a number Ny, such that

fn+1 > 1
fn
for n > N; we consider for the moment the function Ay : Ry — IR, defined by
— 1
hf(x):(a—i-:l:)(a c+x+ ) (3.49)

(z+1)|2]

In order to find a number z; with h¢(zs) =1 we have to solve the quadratic equation
2+ 2a—c+1-|z)z+ala—c+1)—|z|=0

which leads to the possible solutions (v =a —c+ 1)

wb = 2 (~(aty— J2l) & vla 7y — 2P — Ay 2D

Then, we have one solution z; if the parameter a satisfies

a=aj— fz‘ (1= 2+ 2+ 2|2 + 2]2] + |22,

two solutions x}’Q if @ < @ and no solution if a > a. In the case of two positive solutions we
choose the largest one. Since we recognize from (3.49) that hy — oo for x — oo the choice of
the largest solution x; and setting Ny = [x¢] yield |fn11| > |fn| for n > Ny. If we have no
solution or negative solutions the same argument as before yields |f,4+1] > |fn| for n > Ny
with Ny = 0. Then, the assertion follows by setting N; = max (0, [x¢]) for a < G and since
Ny =0 for a > a.

Analogously, we consider the quotient of the sequence (gy)

gni1| _ (c—a+n)(1—a+n) (3.50)
Jn (n+1)z '
In order to find a number N, with
gn+1 > 1
gn
for n > N, we consider the corresponding real function hy : Ry — R, defined by
_ 11—
hy(z) = e D1 —at o) (3.51)

(z + 12|



3.3 Asymptotic expansions 57

Here, the determination of a number x4 satisfying hy(z,) = 1 leads to the quadratic equation
2?2+ (c—2a+1—|z)z4+ala—c—1)+c—]|z|=0

yielding the possible solutions (setting ¥ =a — ¢ — 1)

ey =5 ((a+A+1e) £ Vat 7+ P 4@+ e TaD).

In this case we have one solution z, if

a=d= —ﬁ (1—2¢+ ¢+ 22| — 2]z + |22),
two solutions 3351,’2 if @ > a and no solution if a < a. Again we choose the largest one if there
are two positive solutions and since we recognize from (3.51) that hy; — oo for & — oo the
choice of the largest solution x4, and setting Ny = [z4] yield |gni1]| > |gn| for n > Ny. If we
have no solution or negative solutions the same argument as before yields |g,+1| > |gn| for
n > Ny with Ny = 0. Then, the assertion follows by setting N, = max (0, [z4]) for a > a
and since Ny = 0 for a < a. O

In order to illustrate the result of Lemma 3.28 we consider the following numerical example.

Example 3.29 We choose the parameters a = —4.5, ¢ = 70.1 and the argument z = 451.
Then, the application of Lemma, 3.28 leads to the equation

22 —123.12 +286.2 =0

which yields the solutions N } = 2 and N]% = 120. We choose N]% for truncating the expansion.
Moreover, we obtain the equation

22 +35.12 + 365.3 =0

which has no real solution and we therefore set Ny, = 0. So, the sequence ( f;,) increases mono-

tonely for n > 120 and the sequence (g, ) increases monotonely for n > 0. This behaviour

can be seen in Figure 3.13, where we computed log; | fn| and logg |gn| for n =1,...,130.
= 150 o
\@*GO 80 100 120 e
f’
20 - 125 -

100 w'/,

75

-40

-60
50
-80

8 25

e,

-100 \_____’

20 40 60 80 100 120

Figure 3.13: Monotonicity of the sequences (f,,) and (gy,)
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3.3.3 Numerical results

We consider the approximations of the asymptotic expansion

Te) e N (@pla—ct+1)n T . 4 oA (c—a)n(l—a)n
I(c—a) 2° n! (—z)" * F(a)e ® Z nlzn

on.N,(a, ¢, 2) =

n=0 n=0
and compute the relative error or the number of significant decimal digits by
i |M(a;c;2) — ony N, (a, ¢, 2)|
dn, N, (a, ¢, z) = min {15, —logyg ( M C;IZ)T .

The results are computed in double precision arithmetic and are shown in Figure 3.14 and

Figure 3.15, where we see the results obtained by using the abort criterion, presented in
Lemma 3.28, on the left-hand side of Figures 3.14 and 3.15, whereas on the right-hand side
in Figures 3.14 and 3.15 we see the results obtained by computing without abort criterion
and a degree of N = Ny = 45 terms. We recognize that we achieve an improvement of the
relative error dy, n, especially for arguments |z| < 45. But we also have to observe a not so
excellent behaviour for increasing a. Nevertheless we can conclude that we have an efficient
tool for computing M (a;c; z) for large values of |z| by using the partial sums on, n, of the
asymptotic expansion of the confluent hypergeometric function M (q;c; z) combined with the
criterion for truncating the asymptotic expansion.

Figure 3.14: dn, n, with (left) and without (right) use of abort criterion for z = 25i(1.0¢)105¢,
a = 0.07(0.07)3.5 and ¢ = 3.5

Figure 3.15: dn, n, with (left) and without (right) use of abort criterion for z = 25i(1.0¢)105¢,
a =0.07 and ¢ = 0.07(0.07)3.5
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3.4 Conclusion

We give some concluding remarks about the previous chapter in order to make suggestions
to combine the presented methods for computing confluent hypergeometric functions.

At first, the computation method on compact intervals, investigated in Section 3.1, leads to
reliable results in the case of the parameter combination 0 < Re(a) < Re(c) and not too
large intervals, i.e. we are able to compute on intervals from zero to 30i or even 40:. But this
restriction may be dropped if we combine this method with the asymptotic expansion of the
confluent hypergeometric function (see Section 3.3). Here, the numerical results show that
we may use the partial sums of the asymptotic expansion in general for arguments exceeding
the modulus of 307 or 40¢. We could even improve the results by applying a suitable abort
criterion for the determination of the maximal degree of the partial sums. So, it should
be possible to close the gap between the reliability of these two methods. Furthermore,
numerical results show that especially large (real) parameters a may cause problems when
computing the confluent hypergeometric functions. Indeed, the convergence theory developed
in Section 3.1.4 does not cover the case Re(a) > Re(c). Therefore we investigated in Section
3.2 the computation with recurrence relations. In particular, the simple forward recurrence
relation for the confluent hypergeometric functions with respect to parameter a, introduced
in Example 3.17, may be applied to overcome the described problem above. We compute
two starting values for small (real) parameters a and a + 1 using the method based on the
series expansion for the computation on compact intervals (see Section 3.1) and apply the
forward recurrence relation with respect to a until we obtain the desired function value. We
also investigated another method for the computation of confluent hypergeometric functions
with the help of recurrence relations, the Miller algorithm, which especially for small (real)
parameters a and c leads to very good results. This algorithm is easy to implement and we
do not need any (exact) starting value providing essential advantages. But also in this case
large (real) parameters a cause problems (see Section 3.2.3). The reason is the cancellation
when computing the normalizing series, which is responsible for the quality of the results.



60

3 Computation of confluent hypergeometric functions




Chapter 4

Application to parabolic boundary
value problems

In this chapter we consider initial-boundary value problems governed by parabolic partial
differential equations occurring in heating processes.

First, we describe a conductive heat transfer model in cylindrical domains. In order to sim-
plify the model by introducing a cylindrical coordinate system the discussion of the underly-
ing geometry is essential. Based on the associated eigenvalue problem of the initial-boundary
value problems we then use the method of eigenfunction expansion to obtain a generalized
solution of the problem. The required eigenfunctions are, in general, of confluent hyperge-
ometric type, so that the computational methods of the previous chapter can be used to
obtain the desired results.

In addition to the classical cylindrical domains we make suggestions to generalize the given
model to domains with different geometry.

Besides of the conductive heat transfer we present a heat transfer model including convection.
We consider a fluid filled loop where the flow behaviour is described by the Navier-Stokes
equations. Using the aforementioned method of eigenfunction expansions we obtain solutions
of the underlying initial-boundary value problem.

Finally, we will illustrate how the Lorenz system can be used to approximate the flow be-
haviour of the fluid.

4.1 Conductive heat transfer

We consider initial-boundary value problems describing the heat transfer in cylindrical do-
mains. After transforming the initial-boundary value problem into cylindrical coordinates,
the construction of a (generalized) Fourier series representation is presented and convergence
of the resulting Fourier series is proved. Furthermore, it will be shown that in some cases
the transformation of the initial-boundary value problem into a problem with homogeneous
boundary conditions is appropriate. The resulting simplified model provides advantageous

61
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characteristics for later numerical computations. Finally, we illustrate that different geome-
tries of the domain cause the appearance of different eigenfunctions in the Fourier series
expansions establishing dependence of the confluent hypergeometric functions on the chosen
geometry.

4.1.1 The model of heat transfer in cylindrical domains

Considering a cross-section of an infinite cylinder, we start with an initial-boundary value
problem including the two-dimensional conductive heat equation in the domain 2, where
Q= {¢ €R?: [¢] < 1}, i.e. we consider the linear parabolic differential equation

00
E (gv t) = XAH(& t)

for (¢,t) € Q x (0,T) with the process time 7" > 0. We denote by A the Laplace operator
which is for € = (£1, &) € Q defined by A = 9%/9€2 + 92 /0¢5. The parameter x is called the
heat diffusivity (of the product to be heated) and is defined by x = k/(pc), where p is the
density, ¢ the heat capacity and k the thermal conductivity (of the product). In general the
parameters k£ and ¢ depend on the temperature 6, but in the following simplified model we
assume a constant heat diffusivity.
The initial condition is given by

0(&,0) = 0o(&)
with the initial temperature distribution 6y € C2(1).
Finally, the boundary condition is described by the so-called mixed Neumann boundary
condition (or Robin boundary condition)

£(66) = a(u(t) — (6. 1)

for (&,t) € 092 x (0,T) modelling the heat transfer from the surrounding medium. We denote
by n the outward unit normal vector and the function u represents the boundary control,
the temperature of the surrounding medium. The parameter « is called the heat transfer
coefficient which is also assumed to be constant.
Due to the geometry of the cylinder we introduce a different coordinate system. Since we
consider a cross-section of a cylinder we define for a given point £ = (£1,&2) € Q the polar
coordinates by

& =rcosp, & =rsing
with radius r € [0,1) and angle ¢ € [0,27]. By doing this, we can consider the solution 6
dependent only on the distance r from the origin due to the symmetry of the problem (cf.
Troltzsch [42], p. 150). This leads to the following one-dimensional problem,

2
r %(r, t)=x <T‘ %(T, t) + %(T, t)> (4.1)
0(r,0) = Oy(r)
00

E(l’t) = a(u(t) — 6(1,1))
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for (r,t) € @, where Q@ = (0,1) x (0,7"). We call the function 6 a classical solution of the
initial-boundary value problem (4.1), if 0 is twice continuously differentiable with respect to
the spatial variable r on (0,1) and once continuously differentiable with respect to the time
variable ¢ on (0,7). It can be shown that a unique classical solution of the problem (4.1)
exists (cf. McOwen [25], pp. 134-137 and p. 312).

4.1.2 Fourier series approach

In this section we derive the (generalized) Fourier series representation of the solution of the
given initial-boundary value problem.

In order to apply the method of eigenfunction expansion we have to consider the associated
homogeneous eigenvalue problem with respect to the initial-boundary value problem (4.1).
For 1 € C?(0,1) the eigenvalue problem

xr" (r) + x¥' (r) + r\g(r)
Y1) 4+ arp(1)

0, (4.2)
0 (4.3)

is called a singular Sturm-Liouville eigenvalue problem with the singularity » = 0 (cf. Pinsky
[33], pp. 23-26 and Gonzéalez-Velasco [14], pp. 370-378). Setting k, = \/A,/x we obtain the
(bounded) solutions of this eigenvalue problem

Un(r) = Vendo(knr)
with constants c,,. The eigenvalues \,, can be computed solving the boundary condition (4.3)
OzJ()(kn) — knjl (k‘n) =0. (4.4)

The system {1, } forms a complete orthonormal system in L2 (0, 1) with the weight function
w(r) =r (cf. e.g. Triebel [41], pp. 362-365), i.e.
1

/r U (1) (1) dr =

0

0 forAn # Am,
1 for Ay = A,

and we can now specify the normalizing coefficients to be

en =2 (J3(kn) + T2 (kn))

We can thus expand the function 6(r,t) for each t € (0,7) into a (generalized) Fourier series
o0

O(r,t) = an(t)n(r), (4.5)
n=1

with the (generalized) Fourier coefficients

1
an(t) = /r@(r, t)y (1) dr.
0
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In order to determine the coefficients «,, we consider the derivative

Zdt ¥n(

assuming for the moment that the coefficients are differentiable and the order of summation
and differentiation can be interchanged (cf. Haberman [15], p. 258). Then the equation (4.1)

>4 (P + 120
dt ¥n(r) = oz ror

and thus % ay, is given by

reads

1 1
%an(t) = X/THTT(r,t)zpn(r) dr + X/HT(T, t)y(r) dr
0 0

denoting the partial derivatives of 6 with respect to r by 6, and 6,,. Integrating by parts
twice we get

1

1
/Tarr¢ndr— T9r¢n /07" W +1/}n
0

0

1 1
= 0,(1,)n(1) — /rarwg d?‘—/gri/}n dr
0 0

1

1
= a(u(t) — 6(1,t)),(1) — [r 91/);](1) + /9 (r "+ 1/},/1) dr — /974% dr
0

0

1 1 1
— au(t) — 8L, 6)) (1) — B(L, 0 (1) + / r 0y dr + / 0, dr — / 6, dr
0 0 0

and since the eigenfunctions v, satisfy the differential equation (4.2) and the homogeneous
boundary condition (4.3) we obtain the equation

1
@ t0n(t) — xaru(t)a(1) = / 0(r,t) (xrl () + X (r)) dr
1

O(r,t) (—rApn(r)) dr
0
= —Anan(t).

Using the initial condition 6(r,0) = 0y(r) the functions «,,(t) have to satisfy the initial value
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problem

an(t) + Anan(t) = xau(t)pn(1)

dt
1
= / 1 600(n)n(n) dn
0
which has the solution
1 ¢
anlt) =< [ ntumntndn + xa [ e Iu(s)vn(1)ds

0 0

Summing up, we finally have the Fourier series representation

1 t

=) [ [ oty + vaxa [ Duls)as | (40
n=0

0 0

Introducing the Green function

G(r,m;t —s) = an )mn(n (4.7)

we may write the solution as

1 ¢
/G r,m;t) dn+xa/G r,1;t — s)u(s)ds (4.8)
0 0

(see Troltzsch [42], p. 113 and p. 151).

It can be shown that for a continuous control u(t) exactly one bounded solution of (4.1)
exists (see Troltzsch [42|, p. 151). If u(t) is not continuous, a classical solution é(r,t) of
(4.1) need not exist. Hence, for v € L*°(0,7") a continuous function 6(r,t) that satisfies the
integral equation (4.8) is called a generalized solution of (4.1).

We split this representation in two series in order to investigate the convergence behaviour.
The function

1
efree T t an Ant/n60(n)¢n 77)d77
0

is called the free solution, whereas the function

t
Opart (1, 1) = an )b (1 Xa/e n(t=5) 4 (s)ds
0

is called the particular solution of the initial-boundary value problem (cf. e.g. Logan [21], p.
216).
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4.1.3 Convergence analysis

We prove the following result regarding the convergence behaviour of the series representa-
tions of the free and particular solutions of the initial-boundary value problem.

Theorem 4.1 Let 0(r,t) = Opee(r,t) + Opart (1, 1) be the (generalized) Fourier series repre-
sentation of the solution of the initial-boundary value problem (4.1). If uw € LP(0,T') for some
p > 2, then the series

1
efree 7' t chv]O nr "Xt/Wo(ﬁ)Jo(knn)d??
0

and .
epart(ryt) = Z CnJO( n'r JO XOé/ —hnx(t=s) dS
n=1 0

converge absolutely and uniformly on Qs = (5,1) x (0,T) for every 6 > 0 and are continuous

on Qs.

Proof: We first consider the terms of the series expansion 0,.¢. Since we are interested in
estimates of these terms for large n we use the asymptotic expansion for the Bessel function
J, (see Nikiforov [29], p. 210) with integer order v,

T(2) = %{cos <z— z <y+%>> 1o <%>} (2 — 00).

Then we can estimate the terms of the series
2|Jo(knr)Jo(kn)|
| TG (k) + J7 (kn)|

|enJo(Rnr)Jo(kn)| =

_ 2r 12| [cos(kyr — 7/4) + O(1/ (knr))] - [cos(kn — 7/4) + O(1/k,)] |
[cos(kn — m/4) + O(1/kp)]? + [cos(ky — 37/4) + O(1/k,)]?

27»—1/2 1+ O(1/(knr)O(1/kn) + O(1/ (k) + O(1/ky)]
1+40(1/ky) + 20(1/k2) ’

since cos?(k,, — 7/4) + cos?(k, — 3w/4) = 1. Then, for ¢ > 0 and § > 0 a number N* =
N(0,¢e) € N exists, such that

lendo(knr)Jo(kn)| < (1+¢)

2
NG
for all » > § and all n > N*. Now we have to estimate the integral. The use of Holder’s
inequality in its general version (see Werner [45], p. 20) yields

¢ 1/q

t
/ —kax(t—s) s)ds| < /eqk%x(ts)ds Jllps
0

0
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where 1/p+1/¢ =1 and || - ||, denotes the norm in the space LP(0,T"). The integral on the
right hand side can be computed as

t
/eqkix(tS)dS — % (1 _ equ%xt> .
) qkzx

Since the eigenvalues )\, = k2x fulfill \/\, = n7 + c(a), where c(«a) is a positive constant,
we finally have

t
CnJo(k‘nT)Jo(k:n)/ —knx(t=s) u(s)ds| < const -
0

Lo
\/3 ' n2/q

for all » > ¢ and all n > N*. Hence, we have a convergent majorant of the series fp,; because
q < 2. The assertion follows by the Weierstrass majorant criterion.

Now we consider the series expansion 6fee. For the terms ¢, Jo(k,r) we can apply the same
estimate as above. With given § > 0 and ¢ > 0 a number N* = N (§,¢) € N exists, such that

2k
eadolkar)] < /=52 (L+2)

for all » > § and all n > N*. The integral can be estimated with a positive constant C by

1
/ ) Jo(kun)dn| < C / [ To(kam)ldn.
0

If we substitute k,n = 7, we can further estimate

kn

1 kn
1 1 [ 2
- <— R pr
ottt = - f 1o < 5 [ =
0 0 0

where we used the relation Jo(7) < 1/4/7. Finally, we have

1

1
CnJo(knT)e_kixt/7790(77)J0(kn?7)d77 < const - % . (e‘xt)k% ,
0

a convergent majorant of the series. The assertion follows also by the Weierstrass majorant
criterion. The continuity of fpee and Ogee on Q)5 follows immediately by the continuity of the
terms of the series as well as the already shown uniform convergence. g

Since the boundary control w(t), which is in general in L*(0,7) (see Troltzsch [42], pp.
150-151), is often of simple structure, the representation of the solution can be simplified,
which is shown in the following section.
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4.1.4 Homogeneous boundary conditions

In order to evaluate the series expansion numerically some parameters have to be taken into
account. A crucial point for numerical evaluation is the choice of the heat transfer coefficient
a. In practical applications this parameter is often of the magnitude 10*. Numerical tests
exhibit certain problems for such values of o. We recognize that in these cases the eigenvalues
of the problem (4.2), which are determined by the equation (4.4)

ado(kn) — knJi(kn) =0,

are close to the zeros of Jy. This fact is responsible for requiring a larger number of terms of
the partial sums of the Fourier series expansion. This is illustrated in Figure 4.1. The dotted
lines represent the function Jy(z) and the solid lines represent the function Jo(z)—zJ1(x)/a
for x € [0, 20]. We observe that the latter function approaches the former for increasing values
of a. In particular, the first zeros of Jy(x) nearly coincide with the computed eigenvalues, so
that the first terms of the partial sums of the series representation (4.6) achieve very small
contribution to the approximation, since 1, (1) = /¢, Jo(kn) has to be evaluated for the
particular solution 6part.

G ‘\1 7 iS\ 20
-0.25 o T
-0.5 ’

Figure 4.1: Functions Jy(z) and Jo(x) — zJ1(z)/a for o = 5, 10 and 100

Under certain conditions we can overcome the occurring problems when computing the
temperature distribution via the Fourier series. When we have a constant boundary control
and transform the initial-boundary value problem into one with homogeneous boundary
conditions, the resulting Fourier series is of the type Ogee, which should not cause problems
in numerical evaluation. This is favourable for the numerical computations in the practical
applications treated in Chapter 5.

We consider the initial-boundary value problem including the one-dimensional heat equation
in cylindrical coordinates

00

%6 00
r E(T, t)=x (r W(T’ t) + E(T’ t)>

0(r,0) = Oy(r)
%(1715) = a(u(t) — 0(1,1))

for (r,t) € @, control u and state 6. In order to perform a transformation to homogeneous
boundary conditions we assume a constant boundary control w(t) = u, for all t € (0,T) and
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set ¢(r,t) = 0(r,t) — uc for (r,t) € Q. Then, we obtain the following initial-boundary value
problem

92
r%(r,t) =X (7“ o f(r t) + %(r,t))
¢(r,0) = o(r) — ue (4.9)
¢

S(L) = —ad(L,1)

for (r,t) € Q. Considering the already known associated Sturm-Liouville problem (4.2) the
eigenfunctions in this case are again 1, (1) = \/cpJo(k,r) and the eigenvalues k, = \/An/X.
Hence, we expand for each t € (0,7 the function ¢(r,t) into a (generalized) Fourier series

rt) = Z o (1) Yn(r)
n=1

in eigenfunctions

with Fourier coefficients )
nlt) = [ 70 t00n(r) dr
0

Now the Fourier coefficients are given by the equation

1 1
d
Ean(t)zx/ o(r,t) dr—i—x/gbrtwn
0 0
allowing determination by the initial value problem

— an(t) = =Apan(t)

1
an(0) = /7“ (B0 — ue)pn(r) dr
0

yielding the solution
1

12
o (t) = e Faxt / 7 (6o — we)p(r) dr
0
Summing up, in case of a constant boundary control we get the following representation of

the solution of (4.9)

1
chJo nl)e nxt/n(ﬁg(n) — ue)Jo(knn) dn. (4.10)
0

If additionally the initial temperature is constant, 0y(n) = 6y, we are able to compute the
integral explicitly. The substitution p = k,n leads to

kn

1
Oy — ue 0o — uc
/77(90 — ue)Jo(knn)dn = Okz /pJo(p)dpz Ok J1(kn).
0 " 0 "
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Defining
2(00 — ue)J1(kn)

kn (S (k) + T3 (kn))

o — c
d, = Ok Y I (kn)en =

the solution ¢ has the simple form

o0
S(r,t) =Y dnJo(knr)e Xt
n=1
In Chapter 5 we present numerical examples and applications of this representation.

4.1.5 Different geometries of the domain

In this section we suggest extensions of the previous heat transfer model to different geome-
tries of the domain. Up to now we considered the (classical) case of cylindrical domains.
Henceforth, we introduce geometries of e.g. elliptical cylinder and parabolic cylinder type.
The idea is to exploit the special geometry of the domain by introducing different coordinate
systems.

Starting from the initial-boundary value problem

(?3_(? = xA¢ onQ x (0,7T)
#(-,0) = 6p(-) —ue. onf
99
%—l—aqﬁzo ond x (0,7

in the bounded domain @ C R? with boundary 99 and time interval (0,7') we have to
determine generalized solutions of this problem. In doing so, functions ¢ € C2%(Q) have to
solve the multidimensional eigenvalue problem

AYp+Ap=0 onQ (4.11)
8—¢—|—a¢:0 on 0f)
on

with eigenvalue parameter A (the so-called Helmholtz equation).

Then, the first step is the transformation of this equation into the different coordinate sys-
tems, and second, find the solutions with the method of separation of variables.

We give three examples for possible coordinate transformations and show how to achieve
solutions of the Helmholtz equation using separation of variables. For the given examples
see Temme [40], pp. 257-266 and Nikiforov [29], pp. 297-299. Except for the third example
we consider only cross-sections of cylindrical domains €2 and since we neglect the third
independent variable the problem is reduced to the cross-section €' C R2.

Elliptical cylinder coordinates

We transform the point (z,y) € Q' in the Cartesian coordinate system into the point (£,7)
in the elliptical cylinder coordinate system, defined by

x =coshécosn, y=sinh&siny
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with £ € [0,00), n € [0, 27]. Figure 4.2 shows the cross-section of the elliptical cylinder and
the orthogonal trajectories for fixed ¢ = £y and 1 = 19. The transformation of the Laplace

x = cosh(&) cos(n), y = sinh(§) sin(n), z =0

Figure 4.2: Elliptical cylinder coordinates

operator A (with respect to the Cartesian coordinate system) into the new coordinate system
yields

1 <62¢ N 821/))
sinh2§ +sinn \ 062 on* )
If we set ¥ (&,m) = f1(§) f2(n), the separation of Ay + A = 0 leads to
U+ (—v+ 3 (A= p?) cosh 2¢) f1 =0, (4.12)
5+ (v— % (A — ,u2) cos2n) fo =0 (4.13)
with separation constants v and p. The solutions of the equations (4.12) and (4.13) are
Mathieu functions, which are related to Bessel functions (see Abramowitz, Stegun, p. 730).

Parabolic cylinder coordinates

We transform the point (z,y) € Q' in the Cartesian coordinate system into the point (£,7)
in the parabolic cylinder coordinate system, defined by

1
r=5E -0, y==&

with £, n € R. Figure 4.3 shows the cross-section of the parabolic cylinder and the orthogonal
trajectories for fixed & = &y and n = 79. The transformation of the Laplace operator A into
the new coordinate system yields
1 0% 0%y
Ay = :
Ve Erp <852 * 8172)
If we set ¥(&,m) = f1(§) f2(n), the separation of Ay + A = 0 leads to

T+ +A=p)E) n=0, (4.14)
4+ (—v+(A=pP)n?) =0 (4.15)
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x=1/2 (E*-n%,y=&n,z=0

L 258> <S>
ZHLZSISIS N,
.....E:..'.:::“‘:“ 2=

Figure 4.3: Parabolic cylinder coordinates

with separation constants v and p. The solutions of the equations (4.14) and (4.15) are
parabolic cylinder functions, which can be represented in terms of confluent hypergeometric
functions.

Rotational paraboloidal coordinates

We transform the differential equation (4.11) into rotational paraboloidal coordinates in the
following way (see Nikiforov |29, pp. 297-299). For points (z,y,2) € Q we introduce

_ 1
z=¢Encosp, y=~Ensing, z= (& —n?).

2
In this case the Helmholtz equation becomes
1 10 6¢> 10 ( aw)] 1 0%
55 |== |\§== )+ |n=— )| + — + W =0. 4.16
£ +n? [5 ¢ < o¢) " non "oy (&n)? Op? v (416)

Using separation of variables

V(& n,¢) = f1(€) f2(n) f3(¢)

we obtain the system of ordinary differential equations

[+ A+ 08— 40 =0 (4.17)
1
5 + Efé + O —un 2 =v)fa=0 (4.18)

3+ ufz3=0. (4.19)

with separation constants v and . It is only necessary to solve equation (4.17), since we can
solve equation (4.18) by the substitution —v for v, and equation (4.19) is solved by trigono-
metric functions. The substitution ¢2 = s transforms equation (4.17) into a generalized
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hypergeometric equation
1
U4 A+ (s +vs—mfi=0. (4.20)

The next step is the transformation into an equation of hypergeometric type. This was done
by the method described in Nikiforov [29], pp. 1-3. An equation of the form

{/‘F@f{-i- :Q((Z))

a(s)

where o(s) and &(s) are polynomials of degree at most 2, and 7(s) is a polynomial of degree

f1:07

at most 1, can be reduced to an equation of hypergeometric type
o(s)y” +7(s)y’ + Ky =0,

where 7(s) is a polynomial of degree at most 1 and x is constant. This was done by the
substitution f; = g(s)y with a suitable chosen g(s). Here, the transformation of equation
(4.20) leads to

sy + (L +1(i/p+8)y + i/ +1)/2 —v/4)y = 0. (4.21)

Equation (4.21) can be transformed into a canonical form by a linear change of the inde-
pendent variable (see Nikiforov [29], p. 253). There are three possibilities, dependent on
the degree of the polynomial o(s). In the case of equation (4.21) the degree of o(s) is
deg(o(s)) = 1. The linear transformation s = Sw leads to

wy” + 7(Bw)y’ + Ky = 0,
and with 3 = —1/7'(s) = —1/1 we get the confluent hypergeometric equation
wy” + (c—w)y —ay =0, (4.22)

where the parameters are a = —xf = (1 +1i\/i)/2 — v/(4k) and ¢ = 7(0) = 1 + ki,/p with
k = v/A. So, we obtain the solutions

y1 = M(a;c; —ks)
and, by the Kummer identity,
Yo = e P M(c—a;c;ks).

The transformation function ¢(s) is determined by the expression (see Nikiforov [29], p. 2)

J'(s) _ Is/2 + ki/pi/2
9(s) s ’

and we get
g(s) _ Ski\/ﬁ/Qeks/27
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so that we have the solution of equation (4.20)
fi(s) = g(s)y(s) = sFVI2FSI2 N (a; 0; —ks) = SFVAI2e RS2V (¢ — a; ¢y ks).

In this way we recognize how confluent hypergeometric functions appear in the context of
solving (parabolic) partial differential equations, where the crucial point is the geometry
of the domain. We remark that it is necessary to prove orthogonality and completeness of
the respective system of eigenfunctions. For known results on multidimensional eigenvalue
problems including the Helmholtz equation we refer to e.g. Haberman [15], pp. 203-210.

4.2 Thermal convection loop

We consider a system of partial differential equations describing the flow behaviour as well
as the heat transfer in a fluid filled loop. The underlying initial-boundary value problem can
be solved by the use of the (generalized) Fourier series approach. Also the connection to the
Lorenz system is presented. Finally, some numerical results are given in order to show how

to approximate the dynamics of the system originated by convection.

4.2.1 The model

We consider a thermal convection loop consisting of a circular pipe standing in a vertical
plane, as shown in Figure 4.4. Such devices are often called thermosyphons (see Yorke et
al. [48] and Bau et al. [44]) and are of particular interest since a circulation of fluid can be
achieved without use of pumps. Usually such loops are heated from below and cooled from
above. This induces a fluid flow only driven by temperature called natural convection. Our
goal is to give a reasonable model for the simulation of the flow behaviour of the fluid (cf.
Yorke et al. [48], Bau et al. [44] and Rubio [36]).

We denote the radius of the pipe by 7, and the radius of the torus by R. If we denote the
velocity vector by v, the pressure by p, the density by p and the external body force by f,
the behaviour of incompressible Newtonian fluids in a loop Q C R? for time ¢ € [0,7] can
be described by the Navier-Stokes equations

ov 1 1
— Vv=—-f—--V .
T + (v-V)v P 5 p + VAV (4.23)

divv =0, (4.24)

where the density p is constant since the considered fluid is incompressible. Furthermore, v
denotes the constant kinematic viscosity. As mentioned above we consider an enhanced model
including the heat transfer. That means thermodynamic characteristics of the fluid as well
as the vertical buoyancy force have to be taken into account. If we denote the temperature
by 6, the heat equation (convection diffusion equation) is given by

% +v - Vo = xA0, (4.25)
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Figure 4.4: Thermal convection loop

with the coefficient of thermal diffusivity x. Heat transfer by convection is described by
the term v - V6 and heat transfer through diffusion by means of the term yA#. We make
the following assumptions: Variations of the fluid’s characteristics due to changes in density
are neglected with the exception of the vertical buoyancy force, which is due to changes in
density induced by temperature changes. We assume the density p depending linearly on the

temperature 6,
p=po(1+ 36 —0))

with the thermal expansion coefficient (3, the reference density pg of the fluid and the reference
temperature 6, of the fluid. These simplifications are called Boussinesq approximation. In the
case of the thermal convection loop the external force is induced by the gravity acceleration
g and the vertical buoyancy force, given by fi, = (po — p)(—g). Hence the external force
becomes f = pg + fi, = g(p + poB(0y — 0)) (see Rubio [36]) and we obtain the Boussinesq

equations describing the flow behaviour

9 1
a_z (VY)Y = (14500 — 0)g — - Vp+vAv (4.26)
divv =0 (4.27)

% +v - Vo = xAd. (4.28)

Based on the loop’s geometry it is convenient to consider polar coordinates (r,¢) with radius
r € [0,7,) and angle ¢ € [0, 2m). Additionally, we make the assumption of a thin loop, that
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means the radius of the pipe r, is much smaller than the radius of the loop R, so that the
velocity depends only on the radial coordinate. So, the fluid flow obeys circular streamlines,
i.e. the flow of the fluid particles takes place at a fixed distance of the origin. Making these
assumptions the velocity vector v can be represented by

v(r, o, t) = v(r,t) ey, (4.29)

where e, denotes a unit vector in direction of increasing angle ¢. It can be shown that
all flows of the form (4.29) satisfy the divergence free condition (see Rubio [36]). So, the

Boussinesq equations can be written as

9 1
S+ (V- V)V = (14 B(6 ~ 6)g - o Vp+vAv (4.30)
0
% +v -V = xAb. (4.31)

But these equations can still be simplified by integrating both sides of equation (4.30) along
a circular path at fixed radius 7. For a detailed derivation of the equations see Rubio [36].
We make the additional assumption that there is no diffusion along the pipe, i.e. in the

convection diffusion equation we consider
0% 100
orz  ror

This is justified as in thin pipes the rate of change in temperature across the pipe is (much)

A0 =

larger than along the pipe.
Hence, the initial-boundary value problem describing the fluid flow in a thermal convection
loop can be written as (cf. Rubio [36] and Yorke et al. [48])

27
v B @/
5 (r,t) = vApo(r,t) + o 0(r, p,t) cospdp (4.32)
0
00 v(r,t) 00
e — _— A 4.
5 (1 & 1) R o, P X rB(r, @, 1), (4.33)

for r € (0,7,), ¢ € [0,27) and ¢t € (0,T). The magnitude of the gravity acceleration is
denoted by g.
The boundary conditions are assumed to be "no-slip“ conditions, i.e. at the wall the velocity
of the flow is zero,

v(rp,t) =0, t>0.

Further we assume equality of the wall temperature, at the inner and outer wall, and the
fluid temperature at the wall, i.e. we have the Dirichlet boundary condition

9(7’1,, ') t) = uw(()@)
for t € (0,T") and ¢ € (0,27), where the wall temperature is assumed to satisfy

Uy () = 0. — Wsin(p)
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with a constant W and constant temperature 6, = 6(ry,0,t) = 6(rp, 7, t) for t € (0,7). This
boundary condition describes the difference of the wall temperature between the bottom
= %7‘(’ and the top ¢ = %TF of the torus.

The initial conditions are given by

v(r,0) = vo(r), r € (0,7rp)
for the velocity and

6(7’, 9070) = (90(7“, 90)7 T e (O7TP)7 P e (07 27T)

for the temperature distribution.

4.2.2 Fourier series approach

We formally expand the difference between the temperature 6 and the wall temperature wu,,
into a Fourier series in angle ¢ with coefficients ¢, and s, depending on the radius r and
time ¢, i.e.
o0
O(r, p,t) = uw(p) + Z (cn(r,t) cos(np) + su(r,t)sin(ng)) . (4.34)
n=1
Hence, we have to determine the coefficients s, and c,. Putting the representation of the
temperature (4.34) in equation (4.32) we compute the integral

2w

/9(T7 P, t) Cos @ d(p =C1 (Ta t)ﬂ',
0

with the help of the trigonometric integrals (k € N\ {1})

2T 2 2
/cosz(gp) dp =, /cos(go) cos(ky)dp =0, /cos(gp) sin(ky) dp = 0.
0 0 0

Then the differential equation for the velocity (4.32) can be rewritten as

0
20 r1) = vArelr 1) + L ea(r ),

In order to determine the Fourier coefficients of § we put the representation (4.34) in the

convection diffusion equation (4.33). In doing so, we have to compute the partial derivatives

%(r, p,t) = Xk: (%(r, t) cos(ky) + %(r, t) sin(kgo))

g—i(r, o, t) = —Wcosp + Z (—keg(r,t) sin(ky) + ks (r, t) cos(ky))

k

A0 = Z (Aycy cos(kp) + Apsg sin(ky)) ,
k
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then we multiply both sides of equation (4.33) once with cos(ky), once with sin(ky) and
integrate each time along the circular path from 0 to 27. In a similar way as before we obtain
the differential equations

B! t

%(7’, t) = xAyer (r, t) — % s1(r,t) + — v(r, 1)
o t

%("@ t) = XATSI(T7 t) + % Cc1 (T, t)

for the case £k = 1 and for each k£ > 1 we obtain

0
%(r, t) = xApc(r,t) —

Osi
ot

v(rt) sk(r,t)
v(r,t)

t) = YApsp(r, t
(1,8) = xApsp(r,0) + 7%

ck(r,t).

For abbreviation we drop the index 1 of ¢; and s1. We recognize that the partial differential
equations for v(r,t), c(r,t) and s(r,t) decouple from the coefficients ¢; and s for k& > 1.
Moreover, it can be shown that

Tp

/(cz(r,t) + 2 ) rdr— 0 (t— oo),
0

i.e. for increasing time ¢ — oo the higher frequency terms of the series can be neglected (see
Yorke et al. [48]). Summarizing, we can determine the coefficients ¢, s and the velocity v by
solving the three (parabolic) partial differential equations

ov B By

E(T’ t) =vAyu(rt) + > c(r,t) (4.35)
%(r, N ”(2“ s(r,t) + % o(r, 1) (4.36)
88(7’, t) = xAps(r,t) + UL c(r,t). (4.37)

ot

We determine generalized solutions of the partial differential equations above by constructing
the corresponding eigenfunction expansions of the functions ¢(r, t), s(r, t) and v(r, t). Without
loss of generality we consider a radius of the pipe r, = 1 and obtain for ¢ € C?(0,1) the
associated Sturm-Liouville eigenvalue problem

r" + "+ Arp = 0, (1) = 0.

Since we recognize the equation of Bessel type we can determine the system of eigenfunctions
Yn(r) = \/CnJo(z,7), which form a complete orthonormal system in L2(0,1) with w(r) =r
as we already know. The eigenvalues ), are given by Jo(v/\,) = 0, i.e. the eigenvalues are
the zeros of Jy, denoted by \,, = 22. Here, the constants for normalization are ¢, = 2/JZ(2y,).
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Now we can expand v, ¢ and s for each ¢ € (0,7) into (generalized) Fourier series in eigen-
functions

8

o) = Y anun), ()= [ ruvdr

n=1

=S Q) as(t) = / e, ) (r)dr
n=1

- Za;(t)zpn(r), ol (t) = /7“8(7", ) (r)dr
n=1 0

1 1
—a :V/rvrt ” dr—i—y/v %/
0 0

1 1
G080 =x [ retu @) dr+x [ etrtyw'r)ar
0 0

1

/rv(r, t)s(r, ) (r) dr +

0

==

1
% /rv(r, ) (r) dr
0

1 1 1
a0 =x [rstrw @y [ so.0w o dr g [ ro e o)
0 0 0

for the function s(r,t). So, the Fourier coefficients can be determined by solving the ordinary
differential equations (cf. Yorke et al. [48])

dt " p 2
2
c Zn c 1 (n) V.S W v
]7
d 20\ 2 (n)
Ggon=x(2) et g >t

with
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Hence, we have to solve a system of coupled ordinary differential equations in order to

compute the desired functions € and v for simulating the thermal convection loop.

c

The initial conditions «a?(0), af

(0) and «f(0) are determined by the initial conditions for
the velocity v(r,0) = vo(r) and the temperature 6(r, ¢, 0) = Oy(r, ).

4.2.3 The Lorenz equations

The connection between the system (4.38) of ordinary differential equations and the Lorenz
equations can be seen by the use of dimensionless quantities. We introduce the dimensionless
variable 7 for measuring time by

2
T= X_221 t
"p
and the quantities
4
w
= —ﬂg @ -, g = Z = PI‘

2xv \ 71 R X

where ¢ is the Prandtl number of the fluid. The corresponding quantities with respect to the
coefficients are given by

— KU U —_— KC L C _ hS 58
X, =hya, Y, = h, o, Zy, = h) o,

with suitable quantities i, h¢ and A} . For an exact definition of the quantities and a more
detailed derivation of the Lorenz equations see Yorke et al. [48].

In order to show the connection to the Lorenz equations we restrict ourselves to the case
n = 1. The differentiation of the (new) coefficients X7, Y7 and Z; with respect to 7 yields

dX

X 4oV
dr
dY;
Lo xyz v+ £§X1
dr
dz
L = XiY1 — Zi,
dr

and we recognize the well-known Lorenz equations as a truncation of the system above to
one mode. The usual formulation of the Lorenz equations, which can be found e.g. in Doering
[7], p- 75, is

ax
@Y X 4oV

dr

Y xz_virx
dr

2 _ sy _1z

dr

with positive parameters o, b and r. In our case the parameter o is determined by the fluids
Prandtl number, the (geometric) parameter is b = 1 and the parameter r, or &, corresponds
to the Rayleigh number Ra, which expresses the proportion of thermal expansion to viscosity.
If the number Ra exceeds a certain critical value Ra. we obtain a chaotic flow.
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Now it is possible to characterize the flow behaviour using the known characteristics of the
Lorenz system. A detailed description of the characteristics of the dynamics of the system
can be found in Doering [7], (pp. 75-87) and in Sparrow [39]. We give a short summary of
the basic properties of the system and implications to the flow behaviour (cf. Doering [7],
pp. 75-80).

We start with the determination of the system’s stationary points and the stability analysis of
these points. Writing the nonlinear Lorenz system with the help of the function F : R? — R3,
defined by

F(X,Y,Z)=(—0X +0Y,-XZ —-Y +£X, XY —b2Z)",

the Lorenz system can be written as

Ly 2" = F(X,Y,2)

and we can determine the stationary points of the system. We obtain
b1 = (Oa Oa 0)
and the two points

po= (VE-LVE-Te-1), m=(-vE-L-VE-T¢-1),

existing for £ > 1, such that F(p;) = 0 for ¢ = 1,2, 3. The origin p; corresponds to the case

of no convection in our flow problem. First, we investigate the stability of the origin. For this
purpose we consider the linearized system given by the Jacobian of the function F', defined
by

—0 o 0

Jr(X,Y,Z)=|¢-2Z2 -1 —-X

Y X b
The next step is the computation of the eigenvalues of the matrix Jp at the three fixed
points. At the origin the Jacobian reads as

-0 o 0
Jr(0,0,0) = &E -1 0
0 0 -b

The solutions of the equation
A+b)NH+(c+DA—0(E—1))=0

are the eigenvalues A\; = —b and

Xog=—3(c+1) £ 1/(oc+1)2+40(—1).

We see that the three eigenvalues are always real (assuming o > 0) and that A2 has negative
sign for £ < 1 and positive sign for £ > 1. Hence, we have for £ < 1 (asymptotic) stability
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of the origin p; = (0,0,0) since the real parts of all eigenvalues are negative. Whereas for
& > 1 the origin p; is non-stable.
At the fixed points py and p3 the Jacobian reads

Jr(,6r—1) =1 -1 -6

setting 6 = ++/€ — 1 for abbreviation leading to the characteristic equation
N4 (e +b+ 1A +b(o +EN+20b(6 —1) = 0.

Setting the critical value
o(o+4)
o—2

fc:

it can be shown that for £ < &, all eigenvalues have negative real part and therefore the two
stationary points ps and ps are stable, whereas for £ > &, the points ps and ps are non-stable
(see Doering [7], p. 79).

Example 4.2 We choose the parameter ¢ = 6 implying the critical value . = 15. So, we
can determine the stationary points for

5 =10 P2 = (37 379)7 pP3 = (_37 _379)7
5 =26: b2 = (575’25)7 b3 = (_55 _5)25)

We recognize the stable case shown in the illustration in Figures 4.5 and 4.6 on the left-hand

side and the non-stable case on the right-hand side.

4.2.4 Numerical results

In this section we compute approximations of the velocity and the temperature of a fluid

flow in a thermal convection loop.

Figure 4.5: Lorenz system for ¢ = 10 and & = 26
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Figure 4.6: (X, Z)—projection of Lorenz system for £ = 10 and £ = 26

The following data of the fluid are given: the thermal diffusivity is y = 1.514 - 1076 ft2/s,
the kinematic viscosity is v = 1.22 - 1072 ft?/s, the thermal expansion coefficient is 3 =
8.0-10~* /K. The radius of the loop is given by R = 1.2467 ft and the radius of the pipe is
rp = 4.921 - 1072 ft. The wall temperature is u,(¢) = 0. — W sin ¢ with 6, = 314.15 K and
variation W = 1. The time interval is [0, 1000].

We compute approximations of the velocity

N

v(r,t) = Y ap(t)ya(r)

n=1

and of the temperature

N N
0(r,0,t) ~ uy(p) + cosp > an(O)pa(r) +sing > as()ia(r).
n=1 n=1

The initial values are given by vg = 0, 6y = 6..

In Figure 4.9 the velocity profile (left-hand side) and the temperature profile (right-hand
side) for various terms of the partial sums are shown for ¢ = %71 The upper pair of figures
shows the one-mode model N = 1, the pair of figures in the middle are the results for N = 2
and the lower pair of figures represents the profiles for degree N = 5. It can be seen that the
addition of further terms of the partial sums improves the quality of the approximations.

In Chapter 5 we present possible applications of the model and further numerical results.
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Chapter 5

Modelling the heat transfer in food

processing

In food processing the sterilization of food products in so-called autoclaves plays an impor-
tant role. Thereby the product is filled into containers which are heated in the autoclave
by steam or hot water. During the heating processes harmful microorganisms are destroyed.
Unfortunately heat sensitive nutrients and vitamins are also affected during the heating pro-
cess. Since in practice the temperature of the autoclave is often empirically determined, it
may happen that during the sterilization process not only the harmful microorganisms but
also the nutrients and vitamins are destroyed. Hence, it is necessary to have appropriate
mathematical models for the sterilization process and the heat transfer in order to optimize
the nutritional quality of the product.

In this chapter we first present a sterilization model which enables us to measure the mi-
croorganism destruction during heating processes. In this way we can formulate an optimal
control problem with the goal of optimizing the nutritional quality of the product during
the heating process subject to a sterility constraint. We will then recognize the importance
of having a reasonable model of the heat transfer presenting different models and discussing

their advantages and disadvantages.

5.1 An optimal control problem

In this section we specify an optimal control problem describing the maximization of the
nutritional quality of the product subject to the sterility constraint. We consider sterilization
processes where prepackaged food is heated in an autoclave in order to eliminate existing
microorganisms, i.e. the thermal effect on microorganisms and nutrients has to be taken into
account. Consequentially, it is necessary to provide a sterility requirement in the model in
order to formulate a suitable control problem. For the derivation and investigation of the
model for sterilization of prepackaged food we refer to Kleis/Sachs [20] and Kleis [19].

Let Q denote the domain of the container of the product under consideration and Of) its

85
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boundary. The concentration of microorganisms, C(x,t), at the point (x,t) can be described

by an initial value problem counsisting of a linear differential equation

oC
T —(z,t) = —K(0(z,t))C(x, 1), (5.1)

C(l’, 0) = Co(l’)

where 0(x,t) is the absolute temperature at the point z € Q at time ¢ and Cy denotes

the initial concentration of microorganisms at = € 2. The function K (#) is given by the

E /1 1
K(a):KrefeXp (_E <§_9 f>>7
re

with the reference temperature 0,.¢, the activation energy E and the universal gas constant

Arrhenius equation

R. The data 6. and E are dependent on the considered microorganism. In order to obtain a
sterility condition we have to solve the initial value problem (5.1). For a continuous function
O(x,-) in [0,7] and fixed = € 2 the continuity of the function K(6(x,-)) yields the unique
solution of the initial value problem (5.1)

Clat) = Colw)exp | — / K(0(z,7))dr

The concentration of the microorganisms is affected by the temperature at the corresponding
location. We recognize that for fixed location the concentration decreases with increasing
temperature. Therefore, in practice, one has to consider only that location where the product
is the coldest during the heating period. We call the point x. € 2 the coldest point which is
often assumed to be located in the geometrical center of the container.

In order to describe the sterility condition for the product we consider the concentration
of microorganisms at the point z. for the processing time T with respect to the initial

concentration
C(CCC,T) S 10—ﬂ
Co(zc)
with the given reduction rate § corresponding to the considered microorganisms. The con-

centration C(z.,T') can be rewritten as

C(ze, T) = Co(x,) exp

$C,

N O\H
N

__E 11
= Co(z.) exp _/Kreflo RlnlO(Q(mc,-r) eref>d,r

0(xe,7)— Gref
= Cy(z.) exp /Krefl() z(0(@e,™)) dr
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with the z-value R
z2(0(xe, 7)) = b Oref0(zc, 7) In 10.

If we neglect the dependence of the z-value on the temperature and use the approximation
OretO(xc, T) = erf we obtain the sterility condition
T
0(1¢,T)*9ref
exp —/KreflO et dr | <107°
0

with 2.ef = (R/E)0%;. Using logarithms we can reformulate this condition as

T
0(26,7)79“# 1 10
/10 o g > A0 10
Kref

0

The expression on the left hand side is characteristic for the measurement of microorganism
destruction and common in food industry. For the following definition cf. Kessler [18], p. 172.

Definition 5.1. The function
T
F<97 Href)(x) = / IO(O(I’T)_eref)/Zrede
0

is called the F-value at the point z to the reference temperature 0.of and zef.

Using the definition of the F-value we can rewrite the sterility condition as

GIn10
> .
F(eaeref)(xc) = Koo

This requirement can be interpreted as follows: The F-value is the needed time to achieve a
given Fp-value, where the Fg-value is defined as

In(10)

Fy = .
0 ﬁ Kref

In engineering practice this value is often related to the microorganism Clostridium botulinum
with the value 8 = 12. The reference value Ko depends on the heated product and the
reference temperature is usually 6,ef = 394.25 K (see Kessler [18], p. 172).

We can interpret the F-value as a measure for the reduction of microorganisms for a given
temperature profile 6(z,t).

The differential equation (5.1) can also be used to describe the concentration of nutrients.
Determining the related reference data 6, and z, we can define analogously to the definition

of the F-value
T

J(6,6,)(z) = / 100@7)=04)/2a g7
0
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to reflect the desired value. Since it is desired to maximize the concentration of nutrients we
consider the function J at the boundary of the container x; because this region is the most
critical, in terms of destruction of nutrients, during the heating period.

Now we are able to formulate the control problem. Introducing the boundary control w(t)
for t € (0,7, the temperature of the autoclave, the control problem can be formulated by
the minimization of the objective function

T

70,60)() + 5 [ utt)Pas

0

subject to the sterility condition
F(G, eref)(xc) > Fy

and the constraint
Ulow < u(t) < Uyp fort € (0,7

due to technical restrictions on the control for ¢ € (0,7), i.e. there are upper and lower
bounds for the temperature of the autoclave. The objective function includes a regularizing
energy term weighted with a parameter g > 0. For investigation of such optimal control
problems we refer to Kleis/Sachs [20] and Kleis [19].

We notice that § = 6(z,t;u) is the temperature distribution corresponding to the boundary
control u(t). Hence, the determination of a reasonable heat transfer model is very important.
In particular, the sterility constraint given by the F-value requires a reasonable approxima-
tion of the temperature profile since the F-value is very sensitive to changes in temperature
particularly if the temperature is near the reference value.

5.2 Modelling the heat transfer

The choice of the heat transfer model for representing the temperature evolution inside the
food container (often of cylindrical shape) is very important. We will give a survey of some
of the available models and their approximations. The available input parameters are the
temperature of the autoclave, the initial temperature of the product, the size of the container
and the heat diffusivity.

5.2.1 The Ball-formula

A very simple approach for modelling heat transfer in food processing is the Ball-formula.
Although presented in 1957 in Ball/Olson [4], p. 228, the Ball-formula is still very popular
in engineering practice.

If we assume constant and uniform temperature of the autoclave, u(t) = u., and constant

initial temperature 6y, the formula for the scaled difference

0 — u,

v

_HO_uc
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is given by
Y = je~/1)n(0), (5.2)

Considering the absolute temperature 6 we can rewrite the formula as
0(2e, t) = j(0c — ue)e” WA Ly

The Ball-formula is determined by two parameters j and f dependent on the geometry of
the problem and the heat transfer coefficient. The parameter f is also dependent on the heat
diffusivity. For heating processes the two parameters are positive. A detailed description of
the parameters is given in (5.3). Usually the parameters are determined empirically using
measured data of the heated product.

On the other hand the Ball-formula can be interpreted as a solution of a time-dependent

ordinary differential equation

d .,  In(10) B
or p In(10)
n(10 .
EQZ_ 7 (0 —ue), 0(xe,0) = 5(0 — ue) + Ue.

Since this differential equation only depends on time the conductivity can not be represented
by this equation. The spatial effect is neglected in this equation which is important for a heat
conduction process. Moreover, the Ball-formula leads to reliable results only for sufficiently
large time values ¢ (see Ball/Olson [4], p. 288). Hence, in this form it cannot be used for
cooling processes, or in general, changes in autoclave temperature. The reason is the initial
lag of the cooling curve, since the conductivity of the process cannot be modelled by (5.2).
This problem is illustrated in the section on numerical results. In order to compensate this
lag portion, this part of the curve is instead approximated by a hyperbola (see Ball/Olson
[4], p. 321).

Despite these disadvantages this formula is still in practical use. The main reasons may
be the simplicity of the formula as well as the often required large time values in heating
processes.

5.2.2 The Fourier series approach

Another approach imbeding the Ball-formula (5.2) as a special case, is based on the (con-
ductive) heat equation and the representation of its solution via Fourier series. Based on a
multi-dimensional heat equation we show how the Ball-formula can be derived in this case.
For a detailed derivation of the following model we refer to Section 4.1.4. Starting from a
cylindrical domain, a cross-section of a cylinder, considered in a cylindrical coordinate system
we can reduce the two-dimensional problem to a one-dimensional problem due to symmetry.
Then the initial-boundary value problem for the one-dimensional (conductive) heat equation
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reads as

00 020 00

. at = ) 7t .. 7t
PG =x (5200 + o)
0(7’, 0) - 00<T)

00

—(1,t) = t)—0(1,t

5, (1L t) = alu(t) - 0(1,1)
for (r,t) € @, where @ = (0,1) x (0,T") with radius r and time ¢, control u and state 6. We
denote again with y the heat diffusivity and with 6y the initial temperature distribution.
Assuming constant autoclave temperature u(t) = u. and constant initial temperature 6y(r) =
0. the temperature inside the container can be represented by the series expansion

0(r,t) = > dndo(knr)e ™ X 4,
n=1

with constant coeflicients
dn = Cn(90 — UC)Jl(k‘n)/k’n

Hence, the computed approximations are the partial sums of the series 6(r,t), defined by
On(r,t) for N € N. If we consider only the first term and let » — 07,

01 (0+, t) = d1€7kfxt,
we (formally) obtain the Ball-formula (5.2) with parameters

j=cii(k1)/ki, f=n(10)/(kx). (5.3)

The dependencies of the parameters of the Ball-formula are easy to see from these represen-
tations. By appearance of the first eigenvalue k; the parameter j depends on the geometry
of the product and the heat transfer coefficient «. The parameter f is also dependent on the
geometry and the heat transfer coefficient but furthermore inversely correlated to the heat
diffusivity x.

5.2.3 Reduced order modelling

If the given problem is of more complex structure a different model is required, e.g. a nonlinear
heat equation of the form

0

C(@a

60—V -(k(@)V(O)=0 in Qx (0,7)
0(-,0) = by(-) in Q
k(@)%@ =alu—=0) ondQx(0,T)

with density p, heat capacity ¢ and heat conductivity &k of the product might be solved ap-
proximately by finite elements methods. But after discretizing the partial differential equa-
tion often the resulting problem to be solved is of large-scale type. Therefore reduced order
models like proper orthogonal decomposition are suitable to achieve a reduction of dimension
(see Fahl [9] and [10]).
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5.2.4 Numerical results

In this section we compare the different approaches for the computation of the temperature
evolution inside the container for a simple model problem. The given data are the domain
Q2 = (0,0.03), the time 7" = 3000 s, a constant heat diffusivity y, so that we have to consider
the following initial-boundary value problem

()
ot orz ~ or
0(r,0) = by(r)
00

5, (0:03,1) = a(u(t) - 0(0.03,1))

with the constants x(= k/cp) = 1076, a = &/k = 1.25-10* and constant initial temperature
0o = 314.15 K. The control representing the heating and cooling process is given by

) 403.15 K, 0<t<1500s
u =
303.15 K, 1500 s <t <3000 s

As derived before we use the following approximation to the temperature distribution

N
On(r,t) = Z dnJo(knr)e*kﬁxt + u(t).
n=0

The numerical results are shown in Figure 5.1. The replacement of the area with the peak
by an appropriate hyperbola is shown in Figure 5.2, for which we refer to Ball/Olson [4], p.
321. We remark that the construction of this hyperbola is based on empirical data being one
of the main weaknesses of this method. Figure 5.1 shows the comparison of the unmodified
Ball-formula (dashed line) with the Fourier series solution. We see the heating up and cooling
down process with the specified temperatures. We notice that the peaks in the solution are
due to the model. In particular the evident peak of the unmodified Ball-formula was the
reason why this portion is replaced by an appropriate hyperbola in the Ball-formula. The

460¢ 460r
|
L i
440 b 50l
420+ "
400
380F
Za0f
@
3401
320t/

, L .
300/ "
] | N
280} 390 "
[ .
260 : : 38 .
1

. . . ) 0 . . . . .
500 1000 1500 2000 2500 3000 350 1400 1450 1500 1550 1600 1650 1700
t[s] ts]

Figure 5.1: Ball-formula and Fourier Approximation
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Fic. 12.4. Hyperbola approximating the lag portion of a cooling curve.

Figure 5.2: From Ball-Olson [4], Sterilization in food technology, 1957

plot for the Fourier series was obtained by using 18 terms in the Fourier series expansion.
The additional use of terms of the series further improves the behaviour at the switching
point, the peaks get smaller and the gap can be closed.

In order to see the effect of the different models on the F-value for a typical industrial
sterilization process we use the following data: y = 1076, a = 1.25 - 10%. The domain is still
chosen as Q = (0,0.03) as well as the initial temperature 6y = 314.15 K. For the control

(autoclave temperature) we use

u(t) =

399.15 0 <t <1500 s
303.15 1500 < ¢ < 3000 s

The computation of the F-value using the unmodified Ball-formula (dashed dotted line) as
well as the Fourier partial sums of degree N = 18 (solid line) is shown in Figure 5.3.

601
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401

30r

F(8)

201

10t

0 500 1000 1500 2000 2500 3000
t[s]

Figure 5.3: F-value computation using different models
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We recognize the computed F-value of 47.7 (min.) using the Fourier partial sums, whereas
the use of the unmodified Ball-formula delivers a completely wrong result, (the computed
F-value is 1.5 - 10°).

The presented results show how simple methods like the Ball-formula can significantly im-
proved with the help of the Fourier series approach in order to achieve evidently better
results. The improvements are primarily based on the explicit consideration of the underly-
ing structure, i.e. geometry and symmetry. Of course more general problems of nonlinear type
require more general and more complex models suited for simulation and optimal control of

such problems (see [10]).

5.3 Thermal convection loop

We consider the model derived in Section 4.2 in the light of the sterilization processes pre-
sented in this chapter. That means we have a fluid filled loop, e.g. a cross-section of a hollow
cylinder, and we would like to model the process of heating up. The radius of the loop is R,
the radius of the pipe 7,. The heating time is given by 7'. Then, the initial-boundary value
problem is given by (see (4.32) and (4.33))

27
81) - ﬁg
5(7”7 t) = vApu(r,t) + o /0(r,<p,t) cos pdyp
0
90 t) 90
(ronty =~ T 0y A1),

ot R 0Op
for r € (0,7p), ¢ € [0,27) and ¢ € (0,T). The initial conditions are given by
v(r,0) = vo(r), r € (0,rp)
for the velocity and
0(r, ,0) = 0o(r, @), r € (0,7rp), ¢ € (0,2m)
for the temperature distribution. The boundary conditions are

v(rp,t) =0, t>0

and
Q(Tp, 2 t) = uw(@)

with the wall temperature (boundary control) wu.,(p) = 4. — Wsin(yp). Then, the Fourier
series representations of the velocity and the temperature are

o(r,t) = Z ann(r)
n=1
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and

O(r, o, t) = uy(p) + cos( Z ay, ) + sin(p Z o,

where the system of ordinary differential equations for the determination of the Fourier
coefficients of the series expansions reads as (n =1,2,...)

d v “n ? v ﬁg c

G0 =—v () a0+ Faz

d . zn 2 . 1 (n) s w
G0 =x(2) - g S o aj(0ei(0) + i)
d zn\ 2 1 (n)

G =—x(2) a0+ 4 St

Numerical results

We give a comparison of the approximations of the temperature and the F-value for a different
number of terms of the partial sums. The following data are given: the thermal diffusivity is
x = 1.514-1076 ft2/s, the kinematic viscosity is v = 1.22-107° ft2 /s, the thermal expansion
coefficient is 3 = 8.0 - 107* /K. The radius of the loop is given by R = 1.2467 ft and the
radius of the pipe is r, = 4.921 - 1072 ft. The heating time is 7 = 1000 s and 6y = 314.15 K.
We compute the approximations

O(r, o, t) ~ uy(p +cosg02a +smg02a
for the temperature and

T
F(H) = /10(9(r79078)9ref)/zrefds
0

420r 1r
0.9¢
0.8F
0.7F

0.6

8K
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0.51
0.4r
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0.2r

0.1r

280 0
0 ts] T 0 tis] T

Figure 5.4: Temperature ¢(r, 37,¢) and F-value F(6)
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for the F-value at the center of the pipe (r — 07). The reference data are 0,o = 394.25 K,
zref = 10 K and the wall temperature (boundary control) is u,(¢) = 399.15 — 4sin(p) K.
So, the wall temperature at the top and the bottom of the loop is

395.15 K for ¢ =
403.15 K for ¢ =

A

NI N|—
3

The results are shown in Figure 5.4. It can be seen that the increase of temperature, and
also of F-value, is faster if the number of terms of the partial sums increases. The curve
of the five-mode approximation (solid line) with N = 5 is steeper than the curves of the
one-mode (dashed-dotted line) with N = 1 or two-mode approximation (dotted line) with
N = 2. Moreover, we recognize that for small values of time ¢ the approximations might be
improved by the use of further terms of the series expansion of 6. But the addition of one
term of the series requires the solution of a system of ordinary differential equations with
three additional equations.
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Conclusion

The first subject of this thesis was the development and analysis of efficient methods for the
computation of confluent hypergeometric functions. Based on series expansions, recurrence
relations and asymptotic expansions we presented and analyzed approaches for the compu-
tation of these functions yielding promising results in a great variety of cases. In particular
we have seen that the computation with recurrence relations using the Miller algorithm leads
to very good results for small (real) parameters a and c. Using the series expansion and the
asymptotic expansion of the confluent hypergeometric function we are able to compute on
compact intervals and on unbounded domains.

The second subject was the solution of certain boundary value problems using the (gen-
eralized) Fourier series approach for solving (parabolic) partial differential equations. We
have shown how the computation of solutions of different heat transfer processes via the
computation of confluent hypergeometric functions can be carried out. The advantage of
this proceeding is the easy improvement of the approximation by adding more terms of the
series, since a complete system of eigenfunctions is at hand. As a result we have seen that
if the underlying geometry is of a suitable type the computation is practicable and efficient
achieving a low computational effort compared to other methods for the numerical solution of
partial differential equations based on discretization, e.g. finite differences. In these methods
the improvement of the approximation requires a new discretization of the partial differential
equations resulting in large-scale problems. On the other hand they are more flexible with
respect to the problem geometry. Furthermore, we have seen how the Fourier series approach
can be applied to modelling heat transfer processes in food processing. We have shown that
these representations are generalizations of standard methods in food processing which are
still in practical use, e.g. the Ball-formula.

As a final result we have seen again that also in the field of partial differential equations
no method can be termed "standard“ as the choice of the method and the efficiency of the
implementation always depends on the specific structure of the problem. We hope we could
contribute to this theory by pointing out the areas and circumstances where the analyzed
methods are specifically advantageous.
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