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Chapter 1

Introduction

A rigorous mathematical description of physical processes often leads to (partial) di�erential
or integral equations that, in general, can have a very complex structure. Often it is desirable
to have a simpli�ed mathematical model for the physical process in order to recognize the
characteristics (and in�uence coe�cients) of the process. In certain cases an explicit form or
a series representation of the desired solutions can be obtained by using special functions.
Such a representation can be obtained when the problem is of some special structure, i.e. the
domain under consideration is of special geometry, e.g. a cylindrical domain. Then, the solu-
tion can be represented by using special functions, so that a suitable approximation of these
function is required. However, if the structure of the problem is more complicated, especially
the domain under consideration is not of such special type, we have to use discretization
methods like �nite di�erences or �nite elements in order to get a numerical solution of the
problem. We remark that improvements of the approximation then require a new discretiza-
tion of the problem. Whereas in the case of a series representation a complete system of
functions is at hand, such that we can improve the approximation or the truncated series
by adding more terms of the series. Hence, in view of the numerical simulation of such
mathematical models it is necessary to have e�cient methods for computing these special
functions.
In [22] Lozier investigated software available for the computation of special functions and
stated the software needs in scienti�c computing. This analysis exhibits a de�ciency in the
availability of software packages for certain special functions. In particular, software packages
are needed for the computation (in �xed precision) of con�uent hypergeometric functions
with complex arguments and special cases like Coulomb wave functions and Bessel functions
(of complex order). Since the class of con�uent hypergeometric functions covers several im-
portant special functions, it is therefore desirable to have an e�cient algorithm for computing
these functions (with complex parameters and argument). Moreover, every solution of linear
ordinary di�erential equations of second order can be represented by con�uent hypergeomet-
ric functions (see Erdélyi [8], p. 249), that is using a suitable transformation of the linear
ordinary di�erential equations we obtain a di�erential equation of con�uent hypergeometric
type.
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8 1 Introduction

In this thesis we focus on the computation of con�uent hypergeometric functions and point
out the relations between these functions and parabolic boundary value problems with ap-
plications to heat transfer and �uid dynamics.
In Chapter 2 we provide the characteristics of con�uent hypergeometric functions. We in-
vestigate the con�uent hypergeometric function of the �rst kind denoted by M(a; c; z) with
two, in general complex, parameters a and c as well as argument z, whose power series
representation is given by

M(a; c; z) =
∞∑
ν=0

(a)νzν

(c)νν!
.

This function, which is also called the Kummer function or M -function, is an entire function,
so that convergence of the series for all z ∈ C is ensured. We give alternative de�nitions and
representations of the function. Of particular importance are the integral representation and
the connections to the hypergeometric functions. Furthermore, we address the connections
to many other special functions which are included in the class of con�uent hypergeometric
functions as special cases.
In Chapter 3 the advantages and disadvantages of several methods for the (numerical) com-
putation of con�uent hypergeometric functions are discussed as no single method can be
expected to be equally successful for all parameters and arguments. If we consider e.g. the
partial sums of the above power series representation

sn(a, c, z) =
n∑
ν=0

(a)νzν

(c)νν!

for n ∈ N, we �nd that they provide a reasonable approximation to the function M(a; c; z)
in a small neighbourhood of the origin only. The main disadvantage of these partial sums
are the cancellation errors which occur when computing in �xed precision arithmetic outside
this neighbourhood. The computation of small function values in modulus causes problems,
because the summation of the terms of the partial sums sn(a, c, z), which are inherently large
in modulus, leads to a loss or cancellation of several decimal digits. Therefore we develop
and investigate di�erent methods for the computation of con�uent hypergeometric functions
regarding stability of these methods with respect to cancellation errors.
We start with the computation of the Kummer function on (real or complex) bounded inter-
vals [0, β] for some β 6= 0, so that the partial sums sn(a, c, z) do not provide an appropriate
approximation. Instead, it is possible to use the shifted Chebyshev expansion of the function
M(a; c; z), given by

M(a; c; z) = B0(a, c) + 2
∞∑
k=1

Bk(a, c)Tk(z/β)

with Chebyshev coe�cients Bk(a, c) and shifted Chebyshev polynomials Tk. However, the
Chebyshev coe�cients are functions of generalized hypergeometric type whose numerical
evaluation is di�cult. Moreover, the coe�cients depend on the parameters a and c, so that the
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computation of the function M(a; c; z) for di�erent parameters requires a new computation
for each change of parameters yielding a high computational e�ort.
In order to overcome this disadvantage of the Chebyshev expansion, we develop a method
based on the Hadamard product (also called convolution product) of two power series ϕ(z) =∑∞

ν=0 ϕνz
ν and ψ(z) =

∑∞
ν=0 ψνz

ν , de�ned by

(ϕ ∗ ψ)(z) =
∞∑
ν=0

ϕνψνz
ν .

This product is also called convolution product due to the following integral representation.
For a holomorphic function ϕ, an entire function ψ and a suitable integration curve γ we
have for z ∈ C

(ϕ ∗ ψ)(z) =
1

2πi

∫
γ

ϕ(ζ)ψ(z/ζ)
dζ

ζ
.

With the help of this representation we can show a continuity property of the Hadamard
product: For entire functions ψ and functions ϕ holomorphic in C \ [1,∞), we obtain in the
sup-norm ‖ · ‖

‖ϕ ∗ ψ‖K ≤ML · ‖ψ‖L

with a certain constant ML and for certain compact sets K and L (dependent on K) in the
complex plane.
After providing these main properties of the Hadamard product we establish certain esti-
mates which are of particular importance for the following convergence analysis.
Starting from the power series representation of the con�uent hypergeometric function
M(a; c; z) we then construct a series expansion with the help of a suitable convolution,
that is

M(a; c; ·) = F (a, 1; c; ·) ∗ exp(·)

of a hypergeometric function F (a, 1; c; ·) and the exponential function. Replacing the expo-
nential function exp(·) by its shifted Chebyshev expansion we obtain the following series
expansion of the con�uent hypergeometric function

M(a; c; z) = eβ/2I0(β/2) + 2eβ/2
∞∑
k=1

(−1)kIk(β/2)3F2(−k, k, a; c, 1/2; z/β)

denoting by Ik(β/2) the modi�ed Bessel functions of order k and by 3F2(−k, k, a; c, 1/2; ·)
the polynomials resulting from the convolution of the hypergeometric function F (a, 1; c; ·)
and the shifted Chebyshev polynomials Tk. We see that the coe�cients depend only on the
considered interval and not on the parameters a and c. Hence, for a �xed chosen interval these
coe�cients do not change and can be stored. Moreover, the polynomials 3F2(−k, k, a; c, 1/2; ·)
can be computed by a four-term recurrence formula, so the partial sums of this series expan-
sion can be used for an e�cient approximation of the function M(a; c; z). In Section 3.1.4
a detailed error analysis is given for the partial sums of the series expansion. In addition,
results are proved for the asymptotic behaviour of the absolute error. In Section 3.1.5 on
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numerical results we compute relative errors of the partial sums of the series expansion and
of the Taylor sections of M(a; c; z), where the parameters a and c are real or complex. It
can be seen that the problem of cancellation errors can be reduced considerably by using the
partial sums of this expansion.
A similar method was developed by Müller [27] for the computation of Bessel functions of
variable order on compact intervals.
Another important tool for the computation of special functions are recurrence formulae.
We give a short review of the basic theory of linear di�erence equations (of second order),
i.e. we compute solutions (yn) satisfying the equation

yn+1 + anyn + bnyn−1 = 0,

with given coe�cients an and bn 6= 0. After considering some examples we state recurrence
relations for the con�uent hypergeometric functions. Although easy to implement, such re-
currence relations are often numerically unstable e.g. due to rounding errors. In particular,
forward recurrences cause these problems. In order to circumvent these problems we apply
a method for computing recurrence relations in backward direction: the Miller algorithm.
Since the application of the Miller algorithm does not require exact starting values for the
backward recurrence we need a so-called �normalizing series� instead, i.e. for the computa-
tion of the functions fn(z) with a real or complex variable z we need a convergent series
expansion of the form

S =
∞∑
n=0

cnfn(z)

with known S 6= 0. However, the determination of the starting index is a critical point.
Gautschi [11] presented various versions of Miller algorithms particularly considering esti-
mates of the starting values for the backward recursion and providing an asymptotic theory
of three-term recurrence relations.
We apply the Miller algorithm to recurrence formulae for the computation of the con�uent
hypergeometric functionM(a; c; z) and we prove results concerning the asymptotic behaviour
of the relative errors for these computations. Furthermore, numerical results show the e�-
ciency of this method.
Finally, another method for computing con�uent hypergeometric functions is discussed. If we
want to compute the function M(a; c; z) on unbounded intervals we have to consider methods
like asymptotic expansions for large arguments z in modulus. We use for the computation
of a function f in some sector in the complex plane an expansion of the form

f(z) ∼
∞∑
ν=0

aν
zν

(z →∞).

After providing the basic characteristics of asymptotic expansions, we consider the asymp-
totic expansion of the con�uent hypergeometric function M(a; c; z). For numerical computa-
tion, the determination of the number of terms used for the approximation is a crucial point.
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We present a method to determine the number of terms with regard to numerical stability.
We will see that from the numerical point of view the monotonicity behaviour of the terms
of the series yields a suitable criterion for the truncation of the series.
Further contributions on computing the con�uent hypergeometric function M are given by
Nardin et al. [28], where results on numerical computation of M(a; c; z), based on the power
series representation, for large |z| are presented. In [5], Barnett used a method based on
continued fractions in order to compute the Coulomb wave functions.
As an application of the discussed methods we consider initial-boundary value problems with
partial di�erential equations of parabolic type in Chapter 4. In order to determine solutions
of the initial-boundary value problems we apply the method of eigenfunction expansion or
(generalized) Fourier series representation, where the arising eigenfunctions of the associated
eigenvalue problem depend directly on the geometry of the considered domain. For certain
domains with some special geometry like cylinders (circular, elliptic, parabolic), rectangles
or spheres the corresponding eigenfunctions can be obtained in an explicit form. In this case
the eigenfunctions are often of con�uent hypergeometric type, so that the above methods
for computing these functions can be applied.
First, we consider (conductive) heat transfer in a cylinder with boundary control. To be
more precise, we investigate an initial-boundary value problem including the two-dimensional
conductive heat equation in the domain Ω, i.e. we consider the linear parabolic di�erential
equation

∂θ

∂t
= χ∆θ in Ω× (0, T )

with the initial temperature distribution
θ(·, 0) = θ0(·) in Ω

and the so-called Robin boundary condition
∂θ

∂n
= α(u− θ) on ∂Ω× (0, T )

modelling the heat transfer from the surrounding medium. By θ we denote the temperature
and by u the boundary control or the temperature of the surrounding medium. Furthermore,
we exploit the geometry of the domain and reduce the problem above to a problem of
dimension one by introducing cylindrical coordinates.
We show how to construct an eigenfunction expansion or (generalized) Fourier series repre-
sentation of the solution θ of this initial-boundary value problem. In general such a repre-
sentation has the form

θ =
∑
n

αnψn

with time-dependent (generalized) Fourier coe�cients αn. These are determined by solving
an initial value problem. The eigenfunctions ψn come from an associated eigenvalue problem
and form a complete orthonormal system.
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Moreover, the uniform convergence of the series is proved. After separating the (general-
ized) Fourier series representation into a general solution and a particular solution, we �nd
convergent majorants for these series representations. Furthermore, we simplify the heat
transfer model for constant boundary controls, such that the resulting series representation
is of simple structure being of particular interest in view of the application to sterilization
processes in Chapter 5. Also from the numerical point of view this representation provides
some advantages.
Finally, we explicitly show how the con�uent hypergeometric function M(a; c; z) arises, if
di�erent special geometries of the underlying domain, like circular, elliptic or parabolic cylin-
ders, are considered.
We close this chapter by presenting an application in �uid dynamics. It will be discussed how
the dynamics of a �uid �lled loop which is heated on one side and cooled on the other can be
simulated. Since we obtain a �uid �ow only driven by temperature, termed natural convec-
tion, the loop is often called thermal convection loop. The adequate mathematical model is
based on the Boussinesq equations including the Navier-Stokes equations for incompressible
Newtonian �uids and the (convective) heat equation

∂v
∂t

+ (v · ∇)v = (1 + β(θ0 − θ))g −
1
ρ
∇p+ ν∆v

div v = 0
∂θ

∂t
+ v · ∇θ = χ∆θ

in the domain Ω × (0, T ) with appropriate initial and boundary conditions denoting by v
the velocity �eld and by p the pressure. After introducing several simpli�cations we can
solve the resulting initial-boundary value problem again with the method of (generalized)
Fourier series. Aside from the formulation of the mathematical model we perform a detailed
derivation of the (generalized) Fourier series representation of the velocity and the temper-
ature. A crucial point is the determination of the (generalized) Fourier coe�cients, since
these coe�cients satisfy an in�nite system of coupled ordinary di�erential equations. In or-
der to compute approximations of the velocity and the temperature of the �uid, we truncate
the (generalized) Fourier series and obtain a �nite system of coupled ordinary di�erential
equations. If we truncate to one mode, the simplest approximation, the system of coupled
ordinary di�erential equations can be formulated by the Lorenz system

dX

dτ
= −σX + σY

dY

dτ
= −XZ − Y + rX

dZ

dτ
= XY − bZ

(see Yorke et al. [48]). After providing the essential characteristics of this dynamical system,
speci�cally focussing on the asymptotic stability of the system, we give numerical results
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illustrating how this system (and enhanced systems) can be applied to the approximation of
the �ow behaviour.
In Chapter 5 we apply the heat transfer models given in Chapter 4 to sterilization processes
in food industry, where the food is �lled into containers and heated in an autoclave by
steam or hot water in order to destroy harmful microorganisms. Unfortunately, heat sensitive
nutrients and vitamins are also a�ected during the heating process. Since, in practice, the
temperature of the autoclave is often empirically determined, it may happen that during the
sterilization process not only the harmful microorganisms but also the nutrients and vitamins
are destroyed. Hence, we need appropriate mathematical models for the sterilization process
and the heat transfer, in order to optimize the nutritional quality of the product. Moreover,
common sterility measures are very sensitive to the evolution of temperature, so that it is very
important to have a reasonable heat transfer model for simulating the heating process. We
present and discuss several models of heat transfer, a very simple and empirically determined
model (the Ball-formula) which is still in practical use as well as models based on partial
di�erential equations of di�erent complexity.
We end this thesis by giving some concluding remarks on the combination of computing
con�uent hypergeometric functions and solving (parabolic) partial di�erential equations via
eigenfunction expansions.
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Chapter 2

The con�uent hypergeometric

functions

The con�uent hypergeometric functions which are also called Kummer functions generate
an important class of functions including many other special functions, e.g. Coulomb wave
functions, parabolic cylinder functions, Bessel functions, incomplete gamma functions, ex-
ponential integrals, Fresnel integrals and error functions.

2.1 De�nition and basic properties
In this section we de�ne the con�uent hypergeometric functions and state the basic proper-
ties, cf. Temme [40], pp. 171-177 or Andrews [3], pp. 385-390.
In order to de�ne the con�uent hypergeometric or Kummer functions, we start with the
Gaussian hypergeometric equation

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0, (2.1)
with its singularities z = 0, z = 1 and z = ∞. It is solved by the Gaussian hypergeometric
function w = F (a, b; c; z), de�ned by

F (a, b; c; z) =
∞∑
ν=0

(a)ν(b)νzν

(c)νν!
(|z| < 1) (2.2)

with complex parameters a, b and c, where c /∈ (−N0). For ζ ∈ C and ν ∈ N the Pochhammer
symbol or shifted factorial is de�ned by

(ζ)ν = ζ(ζ + 1)(ζ + 2) · · · (ζ + ν − 1), (ζ)0 = 1.

We obtain the con�uent hypergeometric functions when two of the singularities of (2.1)
merge into one singularity (�con�uence� of two singularities). In order to describe this formal
process we consider the hypergeometric function F (a, b; c; z/b) which has a singularity at
z = b. We de�ne

M(a; c; z) = lim
b→∞

F (a, b; c; z/b). (2.3)

15



16 2 The con�uent hypergeometric functions

Since we have
lim
b→∞

(b)n
bn

= 1,

the computation of the limits of the terms of the power series (2.2) yields �nally the power
series representation of the con�uent hypergeometric function of the �rst kind

M(a; c; z) =
∞∑
ν=0

(a)νzν

(c)νν!
(z ∈ C) (2.4)

with complex parameters a and c, where c /∈ (−N0). From (2.4) follows that the con�uent
hypergeometric function can be written as

M(a; c; z) = 1F1(a; c; z),

a member of the class of generalized hypergeometric functions pFq. The same limit process
is applicable to known results of the hypergeometric function. In this way we obtain the
Kummer di�erential equation

zw′′ + (c− z)w′ − aw = 0.

Linearly independent solutions of the Kummer equation are the function M(a; c; z) and the
con�uent hypergeometric function of the second kind U(a; c; z), de�ned by

U(a; c; z) =
π

sin(πc)

(
M(a; c; z)

Γ(1 + a− c)Γ(c)
− z1−cM(1 + a− c; 2− c; z)

Γ(a)Γ(2− c)

)
.

The important functional relation

M(a; c; z) = ezM(c− a; c;−z)

is called Kummer transformation . If we again apply the limit process above to the Euler
integral representation of the hypergeometric function, given by

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

ta−1(1− t)c−a−1(1− tz)−b dt (2.5)

for Re(c) > Re(a) > 0 and | arg(1 − z)| < π, we obtain the following representation for the
con�uent hypergeometric function

M(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

eztta−1(1− t)c−a−1 dt

for Re(c) > Re(a) > 0.
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Order and type of the con�uent hypergeometric functions
We denote by

M(r, f) = max
|z|≤r
|f(z)| (r > 0)

the maximum modulus of an entire function f : C → C. Then the order ρ ∈ [0,∞] of f is
de�ned by

ρ = ρf = lim sup
r→∞

log logM(r, f)
log r

and for ρ ∈ (0,∞) the type τ ∈ [0,∞] of f is de�ned by
τ = τf = lim sup

r→∞

logM(r, f)
rρ

.

Further it is possible to characterize the order and type of entire functions by means of
the magnitude of the Taylor coe�cients. For the Taylor coe�cients an of an entire function
f(z) =

∑∞
ν=0 aνz

ν it is well-known that
lim
n→∞

|an|1/n = 0.

For the following results on the characterization of order and type we refer to Boas [6], p. 9.

Theorem 2.1 Let f(z) =
∑∞

ν=0 aνz
ν be an entire function of order ρ. Then we have

ρ = lim sup
n→∞

log n
− log |an|1/n

. (2.6)

Theorem 2.2 Let f(z) =
∑∞

ν=0 aνz
ν be an entire function of order ρ ∈ (0,∞) and type τ .

Then we have

ρτe = lim sup
n→∞

n|an|ρ/n. (2.7)

With the help of these theorems we obtain immediately that the con�uent hypergeometric
function M(a; c; ·) is an entire function of order ρ = 1 and type τ = 1.
Indeed: With the use of the asymptotic representation of the Pochhammer symbol (for
arbitrary ζ ∈ C)

(ζ)n+1 ∼
nζn!
Γ(ζ)

(n→∞)

and a simpli�ed version of the Stirling formula
(n!)1/n ∼ n

e
(n→∞),

we obtain
ρ = lim sup

n→∞

log n

− log |(a)n/((c)nn!)|1/n
= 1

and
τ = lim sup

n→∞

n

e

∣∣∣∣ (a)n
(c)nn!

∣∣∣∣1/n = 1.
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2.2 Special cases of the con�uent hypergeometric function
As mentioned above the class of con�uent hypergeometric functions includes many important
special functions. We give a summary of these special functions with their connections to
the con�uent hypergeometric functions.

Whittaker functions
In the literature the con�uent hypergeometric functions are often characterized as Whittaker

functions, de�ned by
Mκ,µ(z) = e−z/2z1/2+µM

(
1
2 + µ− κ, 1 + 2µ; z

)
Wκ,µ(z) = e−z/2z1/2+µU

(
1
2 + µ− κ, 1 + 2µ; z

)
,

which are solutions of the Whittaker equation

w′′ +

(
−1

4
+
κ

z
+

1
4 − µ

2

z2

)
w = 0.

These functions occur as solutions of transformated di�erential equations of second order
(see Temme [40], p. 178).

Parabolic cylinder functions
The parabolic cylinder functions are solutions of the di�erential equation

y′′ −
(
a+

z2

4

)
y = 0,

given by
y1 = e−z

2/4M
(

1
2 a+ 1

4 ; 1
2 ; 1

2 z
2
)

y2 = ze−z
2/4M

(
1
2 a+ 3

4 ; 3
2 ; 1

2 z
2
)

(see Temme [40], p. 179).

Error functions
The error functions play an important role in statistics and probability theory. The error

function erf and complementary error function erfc are de�ned through

erf(z) =
2√
π

z∫
0

e−t
2
dt

erfc(z) = 1− erf(z) =
2√
π

∞∫
z

e−t
2
dt,
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and the relations to the Kummer functions are
erf(z) = zM

(
1
2 ; 3

2 ;−z2
)

erfc(z) = e−z
2
U
(

1
2 ; 1

2 ; z2
)

(see Temme [40], p. 180).

Exponential integrals
For n = 1, 2, . . . the exponential integrals are de�ned by

En(z) =

∞∫
1

e−zt

tn
dt (Re(z) > 0).

The connection to the Kummer function of the second kind U is given by
En(z) = e−zU(1; 2− n; z) = zn−1e−zU(n;n; z).

For n = 1 we write

−Ei(−z) = E1(z) =

∞∫
z

e−t

t
dt (| arg z| < π).

If z = x is real, we de�ne the exponential integral

Ei(x) =

x∫
−∞

et

t
dt

(see Temme [40], p. 180).

Incomplete gamma functions
The incomplete gamma function is de�ned by

γ(a, z) =

z∫
0

ta−1e−t dt (Re(a) > 0, | arg z| < π)

and the complementary incomplete gamma function is de�ned by

Γ(a, z) =

∞∫
z

ta−1e−t dt (a ∈ C, | arg z| < π).

These functions are called incomplete because of their incomplete interval of integration
compared to the (Euler) gamma function. If in particular Re(a) > 0, we have

Γ(a) = Γ(a, z) + γ(a, z).
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The connections to the Kummer functions are
γ(a, z) =

za

a
e−zM(1; a+ 1; z),

Γ(a, z) = zae−zU(1; a+ 1; z)

(see Temme [40], pp. 185-186, p. 277).
For computation of γ(a, x) and Γ(a, x) for x ≥ 0 and a ∈ R by methods based on Taylor
sections and continued fractions see Gautschi [13].

Orthogonal polynomials
The Laguerre polynomials which are de�ned by

Lαn(z) =
1
n!
ezz−α

dn

dzn
(zn+αe−z),

where α is in general a complex parameter, are related to the Kummer function through

Lαn(z) =
Γ(n+ α+ 1)
n! Γ(α+ 1)

M(−n;α+ 1; z) =
(−1)n

n!
U(−n;α+ 1; z).

(see Nikiforov [29], p. 23, p. 284).
The de�nition of the Hermite polynomials is

Hn(z) = (−1)nez
2 dn

dzn
(e−z

2
).

The relations to the Kummer function are

H2n(z) =
22n√π

Γ(1/2− n)
M
(
−n; 1

2 ; z2
)
,

H2n+1(z) = − 22n+2√π
Γ(−1/2− n)

M
(
−n; 3

2 ; z2
)

(see Nikiforov [29], p. 23, p. 284).

Bessel functions
The Bessel functions Jλ(x) of the order λ of the �rst kind, de�ned by

Jλ(x) =
(x/2)λ

Γ(λ+ 1)

∞∑
ν=0

(−x2/4)ν

(λ+ 1)νν!

with a real argument x are connected to the con�uent hypergeometric function in the fol-
lowing way:

Jλ(x) =
(x/2)λ

Γ(λ+ 1)
e−ixM

(
λ+ 1

2 ; 2λ+ 1; 2ix
) (2.8)

(see Andrews [3], p. 400, Temme [40], p. 227).
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Fresnel integrals
The Fresnel integrals C(x) and S(x), de�ned by

C(x) =

x∫
0

cos
(
πt2

2

)
dt and S(x) =

x∫
0

sin
(
πt2

2

)
dt

with a real argument x are also connected to the con�uent hypergeometric function. The
relations are

C(x) =
x

2
(
M
(

1
2 ; 3

2 ; 1
2 iπx

2
)

+M
(

1
2 ; 3

2 ;−1
2 iπx

2
))

S(x) =
x

2i
(
M
(

1
2 ; 3

2 ; 1
2 iπx

2
)
)−M

(
1
2 ; 3

2 ;−1
2 iπx

2
))

(see Andrews [3], p. 113, p. 400).

Coulomb wave functions
The Coulomb wave functions are solutions of the nonrelativistic Coulomb wave equation

d2w

dρ2
+
(

1− 2η
ρ
− λ(λ+ 1)

ρ2

)
w = 0.

This equation is of particular interest in physics, more exact in quantum mechanics as a form
of the Schrödinger equation in a central Coulomb �eld. Two linearly independent solutions
of the equation are the regular and irregular Coulomb wave functions denoted by Fλ(η, ρ)
and Gλ(η, ρ). The relations to the Kummer functions are

Fλ(η, ρ) = Cλ(η)ρλ+1e−iρM(λ+ 1− iη; 2λ+ 2; 2iρ),

with Cλ(η) = 2λe−πη/2|Γ(λ+ 1 + iη)|/Γ(2λ+ 2) and
Gλ(η, ρ) = iFλ(η, ρ) + iDλ(η)ρλ+1e−iρU(λ+ 1− iη; 2λ+ 2; 2iρ),

with Dλ(η) = 2λ+1eπη/2+λπi−iσλ .
In nuclear and atomic physics the angular momentum number λ is integer and often denoted
by L, the parameter η is real and the argument ρ is positive. Moreover, the functions Fλ and
Gλ are real valued for real values of η, ρ > 0 and λ ≥ 0 (cf. Temme [40], p. 171, p. 178).
We will see in the next chapter how to compute functions of con�uent hypergeometric type.
Since we also consider complex parameters, especially the Coulomb wave functions are of
particular interest.
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Chapter 3

Computation of con�uent

hypergeometric functions

In this chapter we consider several methods for computing con�uent hypergeometric func-
tions of �rst kind. We develop a method for computing con�uent hypergeometric functions on
bounded real or complex intervals using the partial sums of certain series expansions. These
partial sums are easily computable and provide a better rate of convergence in comparison
to the Taylor sections. Furthermore, the problem of cancellation errors is considerably re-
duced compared to the corresponding Taylor sections. Also the use of recurrence formulae
is discussed in this chapter. Thereby we have to take the numerical stability of recurrence
formulae into account. Finally, we consider the asymptotic expansion of the con�uent hy-
pergeometric function in order to compute the function M(a; c; z) for large arguments z in
modulus.

3.1 Computation on compact intervals
We consider the con�uent hypergeometric function M(a; c; ·) with complex parameters a and
c where c /∈ (−N0) as de�ned in (2.4). Because M is an entire function, we have convergence
of the series for all z ∈ C. If the parameter a is a negative integer, the function M reduces
to a polynomial.
Given β 6= 0 we would like to compute the function M(a; c; z) for z ∈ Kβ , where Kβ denotes
the compact interval [0, β]. A simple possibility to evaluate the con�uent hypergeometric
function is the use of the Taylor sections, given by

sn(a, c, z) =
n∑
ν=0

(a)νzν

(c)νν!
(3.1)

for n ∈ N. These partial sums might be taken as approximations in a certain neighbour-
hood of the origin. The size of the neighbourhood, however, is seriously restricted due to
cancellation errors which arise when computing in �xed precision arithmetic. In particular,
the computation of function values of small modulus causes problems, because the occurring

23
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terms of the partial sums of larger modulus generate a loss or a cancellation of some deci-
mal digits. For this reason we look for series expansions, which are more stable than Taylor
sections with respect to cancellation errors.

3.1.1 Chebyshev expansions
In order to compute the con�uent hypergeometric function on the compact interval Kβ we
may use the shifted Chebyshev expansion of the Kummer function M , given by

M(a; c; z) = B0(a, c) + 2
∞∑
k=1

Bk(a, c)Tk(z/β),

with the Chebyshev coe�cients

Bk(a, c) =
(a)k(β/4)k

(c)kk! 2F2(1
2 + k, a+ k; 1 + 2k, c+ k;β)

and the shifted Chebyshev polynomials Tk, de�ned by
Tk(z) = tk(1− 2z),

using the k-th Chebyshev polynomial tk (cf. Luke [23], p. 300 and [24], p. 30). The problem,
however, is the computation of the coe�cients Bk which are of generalized hypergeometric
type. The e�cient numerical evaluation of these functions is di�cult. The use of the power
series representation of Bk is, as mentioned above, reliable only in a small neighbourhood
of the origin. Additionally the coe�cients Bk are dependent on the parameters a and c of
the function M . It is, however, desirable to have methods for the computation of con�uent
hypergeometric functions for continuously varying parameters a and c at hand. But it is not
possible to store these Chebyshev coe�cients since each change of parameters requires a new
computation of the coe�cients Bk. Because of this high e�ort for the computation of these
coe�cients it is very expensive to compute the partial sums of the expansion above.
In contrast to this, we will use series expansions, where the coe�cients are independent of
the varying parameters and thus can be precomputed.

3.1.2 Series expansions by convolution
In this section we will give theoretical results on the Hadamard product or convolution
product of power series, which is the essential tool for the construction of the underlying
series expansion (cf. Müller [26]).

De�nition 3.1 For two formal power series ϕ(z) =
∑∞

ν=0 ϕνz
ν and ψ(z) =

∑∞
ν=0 ψνz

ν we
denote their Hadamard product by

(ϕ ∗ ψ)(z) =
∞∑
ν=0

ϕνψνz
ν .
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By a cycle γ in C we understand a union of closed piecewise smooth curves as in Rudin [37],
p. 217, and from there we also adopt the notation of ∫γ f(z)dz and of Indγ . The Hadamard
product is also often called convolution product because of its integral representation. For
the following result and its proof we refer to Müller [26].

Lemma 3.2 Let Ω ⊂ C be a region which contains the origin and let ϕ be holomorphic in

Ω. Suppose further that γ is a cycle in Ω, such that

Indγ(0) = 1 and Indγ(α) = 0 for all α /∈ Ω.

If ψ is an entire function, then we have for every z ∈ C

(ϕ ∗ ψ)(z) =
1

2πi

∫
γ

ϕ(ζ)ψ(z/ζ)
dζ

ζ
. (3.2)

Proof: We denote with

ϕ(z) =
∞∑
ν=0

ϕνz
ν and ψ(z) =

∞∑
ν=0

ψνz
ν

the Taylor expansions of ϕ and ψ around the origin. If we apply the general Cauchy Theorem
(see Rudin [37], Theorem 10.35), we get

ϕν =
1

2πi

∫
γ

ϕ(ζ)
ζν+1

dζ (ν ∈ N0).

Since ϕ ∗ ψ is entire, we have by interchanging the order of summation and integration for
every z ∈ C

∞∑
ν=0

ϕνψνz
ν =

1
2πi

∫
γ

∞∑
ν=0

ψν(z/ζ)ν
ϕ(ζ)
ζ

dζ

=
1

2πi

∫
γ

ϕ(ζ)ψ(z/ζ)
dζ

ζ
.

�

For a compact set K and a continuous function ϕ we de�ne
‖ϕ‖K = sup

z∈K
|ϕ(z)|.

We only consider regions Ω which are cut planes, more precisely we assume without loss of
generalization Ω = C \ [1,∞). Hence, the integral representation of Lemma 3.2 leads to the
following continuity property of the Hadamard product (cf. Müller [26]).
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Theorem 3.3 Let ϕ be holomorphic in the cut plane Ω = C \ [1,∞). If K is a compact

set in C, then for every compact set L with K∗ ⊂ L0, where K∗ := K · [0, 1], a constant

ML = ML(ϕ,K) > 0 exists, such that for every entire function ψ we have

‖ϕ ∗ ψ‖K ≤ML · ‖ψ‖L. (3.3)

Proof: We use the notation
K · γ−1 := {z/ζ : z ∈ K, ζ ∈ γ}

with a cycle γ as in Lemma 3.2. Since K∗ is starlike with respect to the origin, for every
open set U ⊃ K∗ a simple closed piecewise smooth curve γ in C \ [1,∞) of the form as in
Figure 3.1 containing the origin in its interior exists, such that K · γ−1 ⊂ U . Hence, we may
choose γ = γ(L) such that K · γ−1 ⊂ L.
With the given parameterization γ = {ζ ∈ C : ζ = ζ(t), t ∈ [t, t]} we get for every z ∈ K

|(ϕ ∗ ψ)(z)| = 1
2π

∣∣∣∣∣∣∣
t∫
t

ϕ(ζ(t))ψ(z/ζ(t))
dζ(t)
ζ(t)

∣∣∣∣∣∣∣ ≤
1

2π

t∫
t

|ϕ(ζ(t))| · |ζ
′(t)|
|ζ(t)|

dt · ‖ψ‖K·γ−1 .

De�ning
ML :=

1
2π

t∫
t

|ϕ(ζ(t))| · |ζ
′(t)|
|ζ(t)|

dt

we get the asserted estimate. �

Remark 3.4 In particular, the result of Theorem 3.3 can be formulated for compact sets K
which are starlike with respect to the origin (see Müller [26]). Then, for every compact set
L with K ⊂ L0, a constant ML = ML(ϕ,K) > 0 exists, such that for every entire function
ψ we have

‖ϕ ∗ ψ‖K ≤ML · ‖ψ‖L.

We introduce for some �xed entire function g the family of entire functions
F = {f : ∃ ϕ = ϕf holomorphic in C \ [1,∞) : f = ϕ ∗ g}.

Moreover, let K ⊂ C be a given compact set which is starlike with respect to the origin. This
is the set on which the function f ought to be approximated. Denoting by (Pn) a sequence
of polynomials of degree ≤ n converging uniformly to g on L (with L as in Theorem 3.3),
application of Theorem 3.3 yields

‖f − ϕf ∗ Pn‖K ≤Mf,L · ‖g − Pn‖L (n ∈ N), (3.4)
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i.e. the error of approximating f by the polynomials ϕf ∗ Pn can be estimated by the error
of approximating g by the polynomials Pn and the factor Mf,L = Mf,L(g,K). Hence, we
have to choose polynomials Pn which provide a fast rate of convergence on L to g, at least
essentially faster than the rate of convergence of the Taylor sections (sn(g)) of g.
The idea is the use of some series expansion of the function g, i.e.

g =
∞∑
k=0

αkTk

with coe�cients αk and polynomials Tk of deg(Tk) ≤ k yielding the formal series represen-
tation of the function f

f = ϕf ∗ g =
∞∑
k=0

αk(ϕf ∗ Tk).

Note that the coe�cients αk are independent of the functions f of the family F and ϕf ∗ Tk
are polynomials of deg(ϕf ∗ Tk) ≤ k. Indentifying the polynomials Pn with the partial sums
of the expansion of the function g we have the approximation of the function f

ϕf ∗ Pn =
n∑
k=0

αk(ϕf ∗ Tk).

Furthermore, we are interested in an estimate in terms of ‖ · ‖K instead of ‖ · ‖L. This can be
achieved by the Bernstein Lemma (see e.g. Walsh [43], p. 77). If δ > 1 is given, a compact
set L = Lδ exists as in Theorem 3.3 such that for all m ∈ N

‖Pm − Pm−1‖L ≤ δm‖Pm − Pm−1‖K ,

with P0 := 0. The uniform convergence of Pn =
∑n

m=0(Pm − Pm−1) to g on L yields
‖g − Pn‖L ≤

∑
m>n

‖Pm − Pm−1‖L ≤
∑
m>n

δm‖Pm − Pm−1‖K (n ∈ N),

and if we use (3.4) with Mf (δ) := Mf,Lδ we get
‖f − ϕf ∗ Pn‖K ≤Mf (δ)

∑
m>n

δm‖Pm − Pm−1‖K (n ∈ N, f ∈ F). (3.5)

Henceforth, we would like to apply the results above to the con�uent hypergeometric func-
tion. Setting

F := {M(a; c; ·) = (ϕ ∗ g)(·) : a, c ∈ C, c /∈ −N0}

we have the family of entire functions to be approximated, where the con�uent hypergeo-
metric function can be written as

M(a; c; z) =
∞∑
ν=0

(a)νzν

(c)νν!
=
∞∑
ν=0

(a)ν
(c)ν

zν ∗ exp(z),

so that we have g(z) = exp(z) and the Gaussian hypergeometric function ϕ(z) = F (a, 1; c; z).
Since the hypergeometric function F (a, b; c; ·) is holomorphic in the cut plane C \ [1,∞), we
are allowed to apply Theorem 3.3 and can prove the following result.
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Theorem 3.5 Let ψ be an arbitrary entire function. If ϕ = F (a, 1; c; ·) is a hypergeometric

function with 0 < Re(a) < Re(c), then we have

‖ϕ ∗ ψ‖K ≤ δa,c ‖ψ‖K (3.6)
with

δa,c =
∣∣∣∣ Γ(c)
Γ(a)Γ(c− a)

∣∣∣∣ · Γ(Re(a))Γ(Re(c− a))
Γ(Re(c))

for all compact sets K ⊂ C which are starlike with respect to the origin.

In order to prove Theorem 3.5, we need some information on the boundary behaviour of the
hypergeometric functions h(a, c; ·) := F (a, 1; c; ·).

Lemma 3.6 For t > 1 the limits

h+(a, c; t) := lim
z→t

Im(z)>0

h(a, c; z) and h−(a, c; t) := lim
z→t

Im(z)<0

h(a, c; z)

both exist, and we have for 0 < Re(a) < Re(c)

1
2πi

[
h+(a, c; t)− h−(a, c; t)

]
=

Γ(c)
Γ(a)Γ(c− a)

t1−c(t− 1)c−a−1 (t > 1).

Proof: Since the hypergeometric function h(a, c; ·) is analytically continuable across the cut
[1,∞) except of the (possible) singularity z = 1, for arbitrary parameters a, c with c /∈ −N0,
we know the existence of the limits h+(a, c; t) and h−(a, c; t) for t > 1.
For 0 < Re(a) < Re(c) we consider the Euler integral representation for the hypergeometric
function (2.5)

h(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

ta−1(1− t)c−a−1 dt

1− zt
.

The substitution t = 1/s gives the Cauchy integral

h(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∞∫
1

s1−c(s− 1)c−a−1 ds

s− z
.

In order to characterize the boundary behaviour of this integral, we can apply the formulae
of Sokhotskyi (see Henrici [17], p. 94) and obtain

1
2πi

[
h+(a, c; t)− h−(a, c; t)

]
=

Γ(c)
Γ(a)Γ(c− a)

t1−c(t− 1)c−a−1

for all t > 1. �
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As a �rst consequence of this result the substitution t = 1/s yields
∞∫

1

t1−c(t− 1)c−a−1dt

t
=

1∫
0

sa−1(1− s)c−a−1ds = B(a, c− a)

and therefore
1

2πi

∞∫
1

[
h+(a, c; t)− h−(a, c; t)

] dt
t

=
Γ(c)

Γ(a)Γ(c− a)
B(a, c− a) = 1,

where B denotes the Beta function. If we consider the modulus of the di�erence of the limits,
we obtain as a further consequence of Lemma 3.6

1
2π

∣∣h+(a, c; t)− h−(a, c; t)
∣∣ =

∣∣∣∣ Γ(c)
Γ(a)Γ(c− a)

∣∣∣∣ · tRe(1−c)(t− 1)Re(c−a−1).

An analogous consideration as above yields
∞∫

1

tRe(1−c)(t− 1)Re(c−a−1)dt

t
=

1∫
0

sRe(a)−1(1− s)Re(c−a)−1ds = B(Re(a),Re(c− a))

and �nally
1

2π

∞∫
1

∣∣h+(a, c; t)− h−(a, c; t)
∣∣ dt
t

= δa,c. (3.7)

Proof of Theorem 3.5: It is su�cient to show |(ϕ ∗ ψ)(z)| ≤ δa,c‖ψ‖[0,z] with the straight
line [0, z] = {tz : t ∈ [0, 1]} for every z ∈ C.
For a given ε ∈ (0, 1

2) a simple closed and piecewise smooth curve γε is chosen as in Figure
3.1. It consists of two circular arcs γ(1)

ε = {ζ : |ζ − 1| = ε}, γ(2)
ε = {ζ : |ζ| = 1/ε} and of

two arcs γ(3)
ε and γ(4)

ε parallel to the real axis connecting γ(1)
ε and γ(2)

ε . In order to obtain
the required estimate, we will consider the integral representation of the Hadamard product
with the curve of integration γε. We are interested in limit relations for ε tending to zero.
Therefore we need information on the asymptotic behaviour of hypergeometric functions at
the singularities ζ = ∞ and ζ = 1. The use of formulae which describe this behaviour (see
Olver [32], pp. 165-168 for a /∈ N, c − a /∈ N and Abramowitz, Stegun [1], pp. 559-560 for
a ∈ N, c− a ∈ N) leads for arbitrary z ∈ C to∫

γ
(j)
ε

h(a, c; ζ)ψ(z/ζ)
dζ

ζ
→ 0 (ε→ 0+, j = 1, 2),

∫
γ

(3)
ε

h(a, c; ζ)ψ(z/ζ)
dζ

ζ
→

∞∫
1

h+(a, c; t)ψ(z/t)
dt

t
(ε→ 0+),



30 3 Computation of con�uent hypergeometric functions

γ
(1)
ε

γ
(2)
ε

γ
(3)
ε

γ
(4)
ε

1

Figure 3.1: integration curve γε

∫
γ

(4)
ε

h(a, c; ζ)ψ(z/ζ)
dζ

ζ
→ −

∞∫
1

h−(a, c; t)ψ(z/t)
dt

t
(ε→ 0+).

Altogether we have for ε→ 0+

∫
γε

h(a, c; ζ)ψ(z/ζ)
dζ

ζ
→

∞∫
1

[
h+(a, c; t)− h−(a, c; t)

]
ψ(z/t)

dt

t
.

Application of the integral representation (3.2) leads to

(ϕ ∗ ψ)(z) = (h(a, c; ·) ∗ ψ)(z) =
1

2πi

∞∫
1

[
h+(a, c; t)− h−(a, c; t)

]
ψ(z/t)

dt

t
.

If we consider the modulus of the product and apply (3.7), we obtain

|(ϕ ∗ ψ)(z)| ≤ 1
2π

∞∫
1

∣∣h+(a, c; t)− h−(a, c; t)
∣∣ dt
t
· ‖ψ‖[0,z] = δa,c ‖ψ‖[0,z],

since z · [1,∞)−1 = [0, z]. �

Theorem 3.5 is a generalization of Theorem 2 in Müller [26] for the case of complex param-
eters a and c:



3.1 Computation on compact intervals 31

Corollary 3.7 Let ψ be an arbitrary entire function and let ϕ = F (a, 1; c; ·) be a hypergeo-

metric function with 0 < a ≤ c. Then we have

‖ϕ ∗ ψ‖K ≤ ‖ψ‖K (3.8)
for all compact sets K ⊂ C which are starlike with respect to the origin.

Proof: Application of Theorem 3.5 yields δa,c = 1 for 0 < a < c. For parameters a = c we
have

ϕ(z) = h(a, a; z) =
1

1− z
=
∞∑
ν=0

zν

and therefore ϕ ∗ ψ = ψ. �

3.1.3 Construction of the series expansion
In this section we see how to construct the desired series expansion of the Kummer function
(cf. Müller [26] and [38]). As mentioned above, the essential tool in this context is the
Hadamard product of power series. In the previous section we have already seen that the
con�uent hypergeometric function can be written as the convolution product

M(a; c; ·) = F (a, 1; c; ·) ∗ exp(·). (3.9)
The next step is the choice of an approximation of the exponential function. For this purpose
we consider the shifted Chebyshev expansion on the compact interval Kβ which is given by

ez = eβ/2I0(β/2) + 2eβ/2
∞∑
k=1

(−1)kIk(β/2)Tk(z/β) (3.10)

(cf. e.g. Luke [24], p. 32), where Iλ denote the modi�ed Bessel functions of the �rst kind of
order λ, de�ned by

Iλ(z) =
(z/2)λ

Γ(λ+ 1)

∞∑
ν=0

(z2/4)ν

(λ+ 1)νν!
,

for λ ∈ C\(−N). In order to construct the series expansion for the con�uent hypergeometric
function we need some information on the convolution product of the Chebyshev polynomials
Tk and the hypergeometric function F (a, 1; b; ·). Since the Chebyshev polynomials Tk can be
represented as

Tk(z/β) = F (−k, k; 1/2; z/β),

(cf. e.g. Luke [23], p. 301), we obtain the convolution product
F (a, 1; c; z) ∗ Tk(z/β) = 3F2(−k, k, a; c, 1/2; z/β) (3.11)

with the generalized hypergeometric function

3F2(−k, k, a; c, 1/2; z) =
k∑
j=0

(−k)j(k)j(a)jzj

(c)j(1/2)jj!
, (3.12)
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which is reduced to a polynomial. With these relations we are able to construct �nally the
series expansion.

Lemma 3.8 For the con�uent hypergeometric function M(a, c; ·) we have the following se-

ries expansion

M(a, c, z) = eβ/2I0(β/2) + 2eβ/2
∞∑
k=1

(−1)kIk(β/2)3F2(−k, k, a; c, 1/2; z/β) (3.13)

where the convergence is uniform on every compact set in C.

Proof: Based on the representation (3.9) of the Kummer function using the relations (3.11)
for the product F (a, 1; c; z) ∗ Tk(z/β) and (3.10) for the Chebyshev expansion of the ex-
ponential function we obtain the asserted expansion. According to Theorem 3.3 a similar
argument as in (3.5) using the Bernstein Lemma yields uniform convergence of the series
expansion (3.13) due to the uniform convergence of the Chebyshev expansion (3.10) of the
exponential function. �

We notice that the coe�cients depend only on the interval Kβ and are independent of the
parameters a and c of the Kummer function M . For the computation of the polynomials 3F2

we can apply a four-term recurrence formula, which can be found in Luke [24], p. 147. In
our case we obtain the following result.

Lemma 3.9 For the polynomials Fk(·) := 3F2(−k, k, a; c, 1/2; ·) we have the following re-

currence formula

(k − 2)(k + c− 1)Fk(x) =− [2(k − 1)(k + c− 2)(k − 3/2) −2k(k − 2)(k + c− 1)

+ 4x · (k − 2)(k + a− 1)]Fk−1(x)

− [2(k − 2)(k − c− 1)(k − 3/2) −2(k − 3)(k − 1)(k − c− 2)

− 4x · (k − 1)(k − a− 2)]Fk−2(x)

+ (k − 1)(k − c− 2)Fk−3(x),

with the starting values F0(x) = 1, F1(x) = 1−2ax/c and F3(x) = 1−8ax/c+8(a)2x
2/(c)2.

If we take into consideration, that one of our main goals is the e�cient computation and
programming of the con�uent hypergeometric functions, we have to take the computational
e�ort into account. We can state, that with respect to the precomputation of the coe�cients
and the use of the recurrence formula for the computation of the polynomials, we are able
to compute with a essentially lower e�ort in comparison to the Chebyshev expansion.



3.1 Computation on compact intervals 33

3.1.4 Convergence theory
Application of Theorem 3.5 and Corollary 3.7 leads to the following important result for
the polynomials 3F2, which enables us to prove results on the asymptotic behaviour of the
absolute errors of the partial sums of expansion (3.13) (cf. [38]).

Theorem 3.10 For parameters 0 < Re(a) < Re(c) we have

‖3F2(−k, k, a; c, 1/2; ·)‖[0,1] ≤ δa,c (k ∈ N0).

In the case of parameters 0 < a ≤ c we have

‖3F2(−k, k, a; c, 1/2; ·)‖[0,1] = 1 (k ∈ N0).

Proof: First, application of Theorem 3.5 with ϕ = F (a, 1; c; ·) and ψ = Tk leads to the �rst
inequality. Then, application of Corollary 3.7 with ϕ = F (a, 1; c; ·) and ψ = Tk yields

‖3F2(−k, k, a; c, 1/2; ·)‖[0,1] = ‖F (a, 1; c; ·) ∗ Tk‖[0,1] ≤ ‖Tk‖[0,1] = 1

for parameters 0 < a ≤ c. Since 3F2(−k, k, a; c, 1/2; 0) = 1, we get the asserted equality. �
Let Sn(a, c, β, ·) denote the n-th partial sum of the expansion (3.13) and Tn(β, ·) the n-th
partial sum of the Chebyshev expansion (3.10) of the exponential function for n ∈ N. Then
for the asymptotic behaviour of the absolute error we obtain

Corollary 3.11 For parameters 0 < a ≤ c and intervals Kβ = [0, β] we have

‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ∼
2eRe(β)/2

√
2πn

(
e|β|
4n

)n
(n→∞).

Proof: Since 3F2(−k, k, a; c, 1/2; 0) = 1, the application of Theorem 3.10 leads to
‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ≤ ‖ exp(·)− Tn−1(β; ·)‖Kβ (3.14)

≤ 2eRe(β)/2
∑
k≥n
|Ik(β/2)| (3.15)

and

‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ≥ 2eRe(β)/2

∣∣∣∣∣∣
∑
k≥n

(−1)kIk(β/2)

∣∣∣∣∣∣ . (3.16)

Because of the asymptotic behaviour of the modi�ed Bessel functions In (see Abramowitz,
Stegun [1], p. 365), we have (n→∞)

|In(z)| ∼ 1√
2πn

(
e|z|
2n

)n
(z ∈ C),
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and therefore

‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ∼ 2eRe(β)/2 |In(β/2)| ∼ 2eRe(β)/2

√
2πn

(
e|β|
4n

)n
,

what is the assertion. �

In a similar way we get for 0 < Re(a) < Re(c) the results
‖M(a, c; ·)− Sn−1(a, c, β; ·)‖Kβ ≤ δa,c‖ exp(·)− Tn−1(β; ·)‖Kβ (3.17)

≤ 2eRe(β)/2δa,c
∑
k≥n
|Ik(β/2)| (3.18)

and

‖M(a, c; ·)− Sn−1(a, c, β; ·)‖Kβ ≥ 2eRe(β)/2

∣∣∣∣∣∣
∑
k≥n

(−1)kIk(β/2)

∣∣∣∣∣∣
and therefore the same asymptotic behaviour for the absolute error of Sn(a, c, β, ·) except
for the constant δa,c. The comparison of this result with the asymptotic behaviour of the
Taylor sections leads to

Remark 3.12 For the Taylor sections sn(a, c, ·) we obtain (n→∞)

‖M(a, c; ·)− sn−1(a, c, ·)‖Kβ ∼
(a)n|β|n

(c)nn!
∼ (a)n

(c)n
√

2πn

(
e|β|
n

)n
, (3.19)

and if we consider the quotient of the absolute errors, we �nd
‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ
‖M(a, c; ·)− sn−1(a, c, ·)‖Kβ

∼ 2eRe(β)/2(c)n
(a)n4n

∼ 2eRe(β)/2Γ(a)
Γ(c)

· n
c−a

4n
,

with the �asymptotic acceleration factor� 2eRe(β)/2Γ(a)
Γ(c) · nc−a4n .

Remark 3.13 In the case of arbitrary complex parameters a and c, which are no negative
integer, we are not allowed to apply Theorem 3.5 and therefore the inequality (3.17) for the
absolute error is no longer valid. But we have an asymptotically optimal rate of convergence
of the partial sums Sn(a, c, β, ·) in the following sense: A sequence of polynomials Pn of
degree ≤ n is said to be maximally convergent on a compact set K to an entire function f
of order ρ ∈ (0,∞), if

lim sup
n→∞

n1/ρ‖f − Pn‖1/nK = lim sup
n→∞

n1/ρEn(f,K)1/n, (3.20)

where En(f,K) denotes the error of the best approximating polynomial of degree ≤ n on
the interval K. About the rate of convergence of the best approximating polynomial of an
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entire functions of order ρ ∈ (0,∞) and type τ ∈ (0,∞) we know by a result found in Rice
[35] or Winiarski [47]

lim sup
n→∞

n1/ρEn(f,K)1/n = c(K)(eρτ)1/ρ, (3.21)

where c(K) denotes the capacity of the compact set K, if it exists. In the case of K = Kβ ,
we have c(Kβ) = β/4.

Now we can prove the asymptotical optimality of the polynomials Sn(a, c, β, ·) for arbitrary
complex parameters a and c. We remark that according to (3.19) we have no maximal
convergence for the Taylor sections sn(a, c, ·).

Theorem 3.14 For arbitrary complex parameters a and c with c /∈ (−N0) and intervals Kβ

we have

lim sup
n→∞

n‖M(a, c; ·)− Sn(a, c, β, ·)‖1/nKβ
=
eβ

4
= lim sup

n→∞
nEn(M,Kβ)1/n.

Proof: The application of Theorem 3.3 ensures for every δ > 1 and k su�ciently large the
inequality

‖3F2(−k, k, a; c, 1/2; ·)‖[0,1] ≤ δk.

Therefore we get in this case inequalities for the absolute error of the form
‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ≤ 2eRe(β)/2

∑
k≥n

δk |Ik(β/2)|

and
‖M(a, c; ·)− Sn−1(a, c, β, ·)‖Kβ ≥ 2eRe(β)/2

∣∣∣∣∣∣
∑
k≥n

(−1)kIk(β/2)

∣∣∣∣∣∣ .
Then we obtain with the asymptotic behaviour of the modi�ed Bessel functions for n→∞

2eRe(β)/2
∑
k≥n

δk |Ik(β/2)| ∼ 2eRe(β)/2δn |In(β/2)| ∼ 2eRe(β)/2

√
2πn

δn
(
e|β|
4n

)n
and

2eRe(β)/2

∣∣∣∣∣∣
∑
k≥n

(−1)kIk(β/2)

∣∣∣∣∣∣ ∼ 2eRe(β)/2

√
2πn

(
e|β|
4n

)n
.

Thus we have (replacing n by n+ 1)
eβ

4
≤ lim sup

n→∞
n‖M(a, c; ·)− Sn(a, c, β, ·)‖1/nKβ

≤ eβ

4
δ

for all δ > 1. So we get the �rst asserted equality.
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Since M(a; c; z) has order ρ = 1 and type τ = 1, we get now the asymptotical optimality
from the equation (3.21), what proves the second asserted equation. �

In the previous chapter we have already seen that many important special functions can
be represented by means of con�uent hypergeometric functions. Three important examples
are the Bessel functions, Fresnel integrals and the Coulomb wave functions. In [27] Müller
developed a method for computing the Bessel functions Jλ with variable order on compact
intervals. For computation methods based on Taylor series and asymptotic expansions see
Amos et al. [2]. In order to compute these special functions with the help of the function M

we have to evaluate the function M(a; c; z) at pure imaginary arguments z = ix. Hence we
consider in the next section on numerical results especially pure imaginary arguments of the
con�uent hypergeometric function.

3.1.5 Numerical results
As mentioned above, the major disadvantage of the Taylor sections results from cancellation
errors, which occur in the evaluation of the partial sums sn(a, c, ·). If we consider the simple
case z = 25i and a = c = 1, we have

M(1; 1; 25i) = e25i =
∞∑
ν=0

(25i)ν

ν!
,

and a largest term of the magnitude

max
ν∈N

∣∣∣∣(25i)ν

ν!

∣∣∣∣ =
2525

25!
≈ 5.726042115469874 · 109.

Since |M(1, 1; 25i)| = |e25i| = 1, we are confronted with a loss of 9 decimal digits.
Now we present the numerical results for computing the Kummer function M(a; c; z) for real
and complex parameters.

Real parameters
As a �rst example we consider a compact interval on the imaginary axis with β = iγ = 25i,
which means Kβ = [0, 25i]. The following �gures show approximations of the signi�cant
decimal digits for M(a; c; z), given by

d1(a, c, z) = min
{

15,− log10

(
|M(a; c; z)− Sn(a, c, β; z)|

|M(a; c; z)|

)}
(3.22)

and
d2(a, c, z) = min

{
15,− log10

(
|M(a; c; z)− sn(a, c, z)|

|M(a; c; z)|

)}
. (3.23)

The results are computed in double precision arithmetic providing an accuracy of about
16 decimal digits. Since the usual accuracy requirement for special functions computation
routines is 15 decimal digits in double precision programs, we have cut o� the errors at a
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Figure 3.2: d1 and d2 for z = 0.5i(0.25i)25i, a = 0.05(0.0125)1.0 and c = 0.5 with deg(Sn) =
45, deg(sn) = 100
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Figure 3.3: d1 and d2 for z = 0.5i(0.25i)25i, a = 0.5 and c = 0.05(0.025)2.0 with deg(Sn) =
45, deg(sn) = 100
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Figure 3.4: d1 and d2 for z = 0.5i(0.25i)25i, a = 0.5(0.25)24.5 and c = 24.5 with deg(Sn) =
40, deg(sn) = 95
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level of 15 digits. Therefore all values on the 15-digits level represent approximations within
the usual tolerance. The choice of degrees 100 (Figure 3.2), 100 (Figure 3.3) and 95 (Figure
3.4) for the Taylor sections and 45 (Figure 3.2), 45 (Figure 3.3) and 40 (Figure 3.4) for the
sections of expansion (3.13) ensures that the errors result exclusively from cancellation, so
that the choice of higher degrees does not provide a reduction of these errors. On the two
horizontal axes we see the varying argument z and the varying parameter a (Figure 3.2 and
Figure 3.4) or c (Figure 3.3). The �gures show that the partial sums of the expansion (3.13)
yield a satisfying accuracy both for parameters a ≤ c and in the case of a > c.

Complex parameters

We consider Coulomb wave functions with parameters a = L+1−iη, c = 2L+2 and argument
z = 2iρ on compact intervals on the imaginary axis [0, 40i]. Because of their de�nition, these
functions belong to the class of con�uent hypergeometric functions with 0 < Re(a) < Re(c),
so the theoretical convergence results from above are applicable. We also calculate the relative
errors of Sn(a, c, β; ·) and the Taylor sections sn(a, c, ·) through d1(a, c, z) and d2(a, c, z). Also
in this case we compute the results in double precision arithmetic, shown in Figure 3.5 and
Figure 3.6, and the chosen degrees of the approximating polynomials ensure that the obtained
errors result exclusively from cancellation.
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Figure 3.5: d1 and d2 for ρ = 0.25(0.25)20, η = 0.0125(0.0125)1 and L = 1 with deg(Sn) = 60,
deg(sn) = 120
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Figure 3.6: d1 and d2 for ρ = 0.25(0.25)20, η = 0.125(0.125)10 and L = 1 with deg(Sn) = 60,
deg(sn) = 120
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On the horizontal axes in Figure 3.5 and Figure 3.6 we see the varying argument ρ and the
varying parameter η. The �waves� and the decreasing accuracy between them are due to the
zeros of M(L+ 1− iη; 2L+ 2; 2iρ).

3.2 Computation with recurrence relations
Recurrence relations represent an important tool for computing special functions or even a
sequence of special functions. The essential advantage of such methods is that in many cases
they are easy to implement and the computational e�ort is low. But on the other hand such
relations are often very susceptible to errors in numerical computation, like rounding errors.
Therefore it is very important to know whether the recurrence relation is (numerically)
stable.

3.2.1 Basics of linear di�erence equations
In this section we will give an overview on the theory of linear di�erence equations, especially
of second order. We state the main results concerning solutions of the equations and their
asymptotic behaviour. For this section we refer to Temme [40], pp. 335-342 and Gautschi
[11].
We consider for n = 1, 2, . . . the following (three-term) recurrence relation

yn+1 + anyn + bnyn−1 = 0, (3.24)
with given coe�cients an and bn 6= 0. An equation of the type (3.24) is called linear homo-

geneous di�erence equation of second order . The general solution (yn) of equation (3.24) is
given through

yn = pfn + qgn, (3.25)
with two linearly independent solutions (fn) and (gn) of the equation (3.24), and p, q are
constants independent of n. Now, we are interested in those solutions (fn), (gn) satisfying
the relation

lim
n→∞

fn
gn

= 0. (3.26)
This condition implies

lim
n→∞

fn
yn

= 0

for any solution (yn) not being a constant multiple of (fn). Indeed, if (yn) is not proportional
to (fn) we have q 6= 0, and therefore we get

lim
n→∞

fn
yn

= lim
n→∞

fn/gn
q + p(fn/gn)

= 0.

The set of all solutions (fn) of equation (3.24) having the property (3.26) forms a one-
dimensional subspace of the space of all solutions. It is not possible to have two linearly
independent solutions (fn), (f̃n) satisfying condition (3.26). Solutions of this subspace are
called minimal, whereas any non-minimal solution is called dominant. We state that each
dominant solution of equation (3.24) is asymptotically proportional to (gn).
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Labelling the initial values y0, y1 as well as f0, f1, g0, g1 the constants p and q can be
computed as

p =
g1y0 − g0y1

f0g1 − f1g0
, q =

f1y0 − f0y1

f1g0 − f0g1
.

We remark that the denominators are di�erent from zero when we have linearly independent
solutions (fn), (gn).
Now, we will illustrate the problem when computing minimal solutions (or any constant mul-
tiple of them). If we calculate such a sequence (fn) by the relation (3.24) using approximate
initial values y0 ≈ f0, y1 ≈ f1, caused by rounding errors for example, but computing with
in�nite precision, the resulting solution (yn) will be in general linearly independent of the
minimal solution (fn). So, the condition (3.26) implies∣∣∣∣yn − fnfn

∣∣∣∣→∞ (n→∞).

That means the relative error of the computed approximation (yn) to (fn) diverges. The
following examples will show the di�culty of forward computing of minimal solutions. For
Example 3.15 and Example 3.16 cf. Gautschi [11] and [12].

Example 3.15 We compute the Bessel functions of the �rst kind Jn(x) for �xed real x and
n = 0, 1, 2, . . . using the recurrence relation

yn+1 −
2n
x
yn + yn−1 = 0. (3.27)

We compute for x = 1 with known initial values J0(1) and J1(1) in double precision. The
results of the forward recurrence, f̂n, and the exact values, fn = Jn(1), are shown in Table
3.1, where the underlined digits coincide with the correct ones. We recognize the absurd
results of the forward recurrence since we know that Jn(1) decrease with increasing n and
Jn(1) → 0 for n → ∞. Also the negative values for n ≥ 10 indicate that something goes
wrong. The problem can be explained by the arguments introduced before. Since Yn(x), the
Bessel function of the second kind, is also a solution of equation (3.27) we have, recalling
the asymptotic behaviour of the Bessel functions for n → ∞ (see Abramowitz, Stegun [1],
p. 365)

Jn(x) ∼ 1√
2πn

( ex
2n

)n
, Yn(x) ∼ −

√
2
πn

(
2n
ex

)n
and setting fn = Jn(x), gn = Yn(x),

fn
gn
∼ −1

2

( ex
2n

)2n
(n→∞),

so that the condition (3.26) is ful�lled and therefore fn = Jn(x) is the minimal solution of
equation (3.27).
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n
f̂ n

f n
=
J
n
(1

)
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66E
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1

4.4
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4.4

005
058
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37E
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Example 3.16 We consider the �rst order recurrence
(n+ 1)yn − yn+1 = xn+1,

with the solution fn = n!(ex − en(x)), where en(x) =
∑n

k=0
xk

k! and x > 0. We execute some
iterations with the starting value f0 = ex − 1 and x = 1. The computation is carried out in
double precision arithmetic, so that we have an accuracy of 16 decimal digits. The results
are shown in Table 3.1, where again the underlined digits coincide with the correct ones.

For a detailed investigation on the numerical instability of forward recursions we refer to
[46], where Wimp de�ned a so-called index of stability for the forward computation. With
the use of this index Wimp characterized the stability of recurrence relations.
Often it is possible to determine dominant and minimal solutions of linear homogeneous
di�erence equations using the asymptotic behaviour of the coe�cients an and bn. For an
overview on the asymptotic theory of linear second order di�erence equations we refer to
Gautschi [11].

Recurrence formulae for con�uent hypergeometric functions
Now we consider recurrence formulae for con�uent hypergeometric functions. The following
three examples show the properties of three di�erent recurrence relations for the con�uent
hypergeometric functions in a single parameter as well as in both parameters.

Example 3.17 We consider the recurrence relation with respect to parameter a (see Temme
[40], p. 341)

(n+ a+ 1− c)yn+1 + (c− z − 2a− 2n)yn + (a+ n− 1)yn−1 = 0 (3.28)
which has the solutions

fn =
Γ(a+ n)

Γ(a)
U(a+ n; c; z), gn =

Γ(a+ n)
Γ(a+ n+ 1− c)

M(a+ n; c; z).

The asymptotic formulae (n → ∞) of the solutions (fn) and (gn) can be obtained (see
Temme [40], p. 341) with use of the asymptotic expansions of the con�uent hypergeometric
functions for large parameter a (see Abramowitz, Stegun [1], p. 508)

fn ∼ c1n
c/2−3n/4e−2

√
nz, gn ∼ c2n

c/2−3n/4e2
√
nz,

where the constants c1 and c2 do not depend on n.

Example 3.18 We consider the recurrence relation with respect to parameter c (see Temme
[40], p. 342)

zyn+1 + (1− c− n− z)yn + (c+ n− a− 1)yn−1 = 0 (3.29)
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which has the solutions
fn =

Γ(c+ n− a)
Γ(c+ n)

M(a; c+ n; z), gn = U(a; c+ n; z).

Here, with the help of the asymptotic relation M(a; c + n; z) ∼ 1 for n → ∞, we have the
asymptotic relations (n→∞)

fn ∼ n−a, gn ∼ z1−c−nΓ(c+ n− 1)
Γ(a)

.

Example 3.19 We consider the recurrence relation with respect to both parameters a and
c (see Wimp [46], p. 61) for n = 1, 2, . . .

(2n+ c− 2)(n+ c− a)yn+1 + (2n+ c− 1)
(

(2a− c) +
(2n+ c− 2)(2n+ c)

z

)
yn

− (2n+ c)(n+ a− 1)yn−1 = 0 (3.30)
which has the solutions

fn =
zn(a)n
(c)2n

M(n+ a; 2n+ c; z), (3.31)

gn =
z−nΓ(2n+ c− 1)

Γ(n+ c− a)
M(a+ 1− c− n; 2− c− 2n; z). (3.32)

We consider the asymptotic behaviour for n→∞ of fn and gn. First, we get the asymptotic
relation

M(n+ a; 2n+ c; z) ∼ ez/2 (n→∞)

and for the quotient of Pochhammer symbols, with use of the representation

(z)n+1 ∼
√

2πn
(n
e

)n nz

Γ(z)

for n→∞ and z ∈ C \ (−N0) (see Henrici [16], p. 28 and Stirling's formula)
(a)n
(c)2n

∼ Γ(c)
Γ(a)

(n− 1)n+a−1/2

(2n− 1)2n+c−1/2
en ∼ Γ(c)

Γ(a)
1

22n+c−1/2

1
nn−a+c

en.

Finally, we obtain for the minimal solution

fn ∼
Γ(c)
Γ(a)

1
2c−1/2

(ez
4

)n
ez/2

1
nn−a+c

. (3.33)

A similar argument shows, with use of the Stirling formula
Γ(z) ∼

√
2πe−zzz−1/2
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for |z| → ∞ and | arg(z)| ≤ π − ε, ε > 0 (see Luke [24], p. 32),
Γ(2n+ c− 1)
Γ(n+ c− a)

∼ (2n+ c− 1)2n+c−3/2

(n+ c− a)n+c−a−1/2
e−n−a+1

∼ (2n+ c− 1)n+a−3/2

(n+ c− a)−1/2

(n+ c− a+ a− 1)n+c−a

(n+ c− a)n+c−a 2n+c−ae−n−a+1

∼ 22n+c−3/2nn+a−1e−n

and we get for the dominant solution
gn ∼ 2c−3/2

(
4
ez

)n
ez/2nn+a−1. (3.34)

Remark 3.20 The recurrence relation (3.30) for the con�uent hypergeometric function (see
Example 3.19) can be understood as a generalization of the Bessel recurrence relation (3.27)
introduced in Example 3.15. We choose the parameters a = 1/2, c = 1 and the argument
z = 2ix, for x ∈ R. Then the recurrence relation (3.30) reads as

(2n− 1)(n+ 1/2)yn+1 + (2n− 1)(n+ 1/2)
2n
ix
yn − (2n+ 1)(n− 1/2)yn−1 = 0

and simplifying this equation leads to
yn+1 +

2n
ix
yn − yn−1 = 0.

On the other hand the minimal solution fn (3.31) can be written as
fn =

(ix/2)n

n!
M(n+ 1/2; 2n+ 1; 2ix).

Now we understand the solution fn as a transformation is the following way
fn = ineixf̃n,

where, recalling the representation of the con�uent hypergeometric function in terms of
Bessel functions (2.8),

f̃n =
(x/2)n

n!
e−ixM(n+ 1/2; 2n+ 1; 2ix) = Jn(x).

Hence, this leads to the recurrence relation
in+1eixỹn+1 +

2n
ix
ineixỹn − in−1eixỹn−1 = 0,

which can be simpli�ed to
ỹn+1 −

2n
x
ỹn + ỹn−1 = 0

what is exactly the Bessel recurrence relation (3.27) with the solution f̃n = Jn(x). In this way
we have shown that the recurrence relation (3.30) for the con�uent hypergeometric function
is a generalization of the Bessel recurrence relation.

In the next section we consider the (numerically stable) computation using such recurrence
formulae, especially for computing minimal solutions.
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3.2.2 The Miller algorithm
As we have seen in the previous section the numerical computation of minimal solutions
might be very problematic. The idea is now to apply (3.24) in backward direction in order to
compute the values f1, . . . , fN for �xed integer N . Then, (fn) becomes a dominant solution
and (gn) a minimal solution. But we need the starting values fN and fN−1 then. For the
Miller algorithm these starting values are not required as we will see soon. For the following
formulation of the algorithm and the statement of the main known properties we refer to
Gautschi [11], Temme [40], pp. 343-346 and Wimp [46], pp. 29-34.

The algorithm
We assume to have a convergent series of the form

S :=
∞∑
k=0

ckfk, (3.35)

with known S 6= 0 and known coe�cients ck. This series is also called a �normalizing series�.
Now we choose a nonnegative integer, usually large, starting value ν > N and compute a
solution of (3.24) for n = ν − 1, ν − 2, . . . , 0 through

y
(ν)
n+1 + any

(ν)
n + bny

(ν)
n−1 = 0

with the incorrect initial values
y

(ν)
ν+1 = 0, y(ν)

ν = 1,

where these initial values can be replaced by other ones, but at least one of these values
must be di�erent from zero. (The choice of these initial values, however, may a�ect the rate
of convergence of the algorithm.) Then the computed solution is a linear combination of the
solutions (fn) and (gn) of the form

y(ν)
n = pνfn + qνgn, (3.36)

for n = 0, 1, . . . , ν + 1, where the coe�cients are
pν =

gν+1

gν+1fν − gνfν+1
, qν =

fν+1

gν+1fν − gνfν+1
.

Since we made the assumption (3.26) on the solutions (fn) and (gn) we can conclude

lim
ν→∞

y
(ν)
n

pν
= fn − lim

ν→∞

fν+1

gν+1
gn = fn (3.37)

for n = 0, . . . , N . Obviously, we have an approximation to fn, if ν is large enough, given by
the quantities y(ν)

n and pν , whereas indeed pν is unknown, in general. But, by the use of the
normalizing series we can compute the approximation to fn, if ν is large enough, de�ning

f (ν)
n := y(ν)

n

S

S(ν)
(3.38)
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where S(ν) is de�ned by
S(ν) :=

ν∑
k=0

cky
(ν)
k .

Now, if we replace y(ν)
k with pνfk in S(ν) having (3.37) in mind we get the asymptotic relation

pν ∼ S(ν)/S. Therefore we are allowed to consider f (ν)
n as an approximation to fn for large

enough integer ν. Consequently, we call the algorithm convergent if for n = 0, 1, . . . , N

lim
ν→∞

f (ν)
n = fn.

The following result, for which we refer to Gautschi [11], yields a characterization of the
convergence of the algorithm. (Here, the presented proof is slightly more detailed.)

Theorem 3.21 Let (fn) with fn 6= 0 be a minimal solution of the recurrence relation (3.24)

with the normalizing series (3.35) and let (gn) be any other solution of the relation (3.24)

(satisfying the condition (3.26)). Then the Miller algorithm converges, i.e.

lim
ν→∞

f (ν)
n = fn

if and only if the condition

lim
ν→∞

fν+1

gν+1

ν∑
k=0

ckgk = 0 (3.39)

is ful�lled.

Proof: Let (fn) with fn 6= 0 be a minimal solution of (3.24) and let (gn) be any other
solution of (3.24) satisfying (3.26). By using the initial values y

(ν)
ν = 1 and y

(ν)
ν+1 = 0 we

obtain

pνfν+1 + qνgν+1 = 0

pνfν + qνgν = 1

and can determine qν = −(fν+1/gν+1)pν by the �rst equation. Putting this in the represen-
tation of the approximate solution y

(ν)
n we get

y(ν)
n = pν

(
fn −

fν+1

gν+1
gn

)
.

Setting
σν =

∞∑
k=ν+1

ckfk, ρn =
fn
gn
, τν = ρν+1

ν∑
k=0

ckgk
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and using the normalization (3.38) we obtain

f (ν)
n =

Sfn (1− ρν+1/ρn)∑ν
k=0 ckfk − ρν+1

∑ν
k=0 ckgk

=
Sfn (1− ρν+1/ρn)

S −
∑∞

ν+1 ckfk − ρν+1
∑ν

k=0 ckgk

=
fn (1− ρν+1/ρn)
1− σν/S − τν/S

.

We conclude that σν → 0 for ν → ∞ since we have convergence of the normalizing series
and ρν+1 → 0 for ν → ∞ because of the condition (3.26). So, we have convergence of the
Miller algorithm if and only if τν → 0. �

We note that the condition (3.39) is ful�lled for bounded coe�cients ck and if we have

lim
ν→∞

gν+1

gν
= t1, lim

ν→∞

fν+1

fν
= t2

for |t1| > |t2| and |t2| < 1. Indeed: This implies the existence of numbers r1 and r2 satisfying
|t1| > r1 > r2 > |t2| such that ∣∣∣∣gν+1

gν

∣∣∣∣ ≥ r1,

∣∣∣∣fν+1

fν

∣∣∣∣ ≤ r2

for ν large enough. Then, we obtain the following estimate

|τν+1| ≤
r2

r1
|τν |+

r2

r1
|cν+1fν+1|

which already implies that τν → 0 for ν →∞ since r2/r1 < 1 and cνfν → 0 (see Polyak [34],
p. 45, Lemma 3).
For numerical purposes and to obtain results concerning the (asymptotic) rate of convergence,
we have to consider the relative error of f (ν)

n . We de�ne for fn 6= 0 the relative error

ε(ν)
n =

f
(ν)
n − fn
fn

and obtain the following representation of the relative error (cf. Temme [40], p. 345 and
Gautschi [11]).

Lemma 3.22 For the relative error ε
(ν)
n of the approximation f

(ν)
n we have

ε(ν)
n =

σν/S − ρν+1/ρn + τν/S

1− σν/S − τν/S
, (3.40)

where ρn, σν and τν are de�ned as before.
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Proof: First, using the de�nition of the approximation f
(ν)
n , we can write

ε(ν)
n =

Sy
(ν)
n /S(ν) − fn

fn
=
S(pν + qνgn/fn)− S(ν)

S(ν)
.

Putting in the normalizing series and the partial sums S(ν) yields

ε(ν)
n =

pν
∑∞

k=ν+1 ckfk + qν/ρn
∑∞

k=0 ckfk − qν
∑ν

k=0 ckgk

pν
∑ν

k=0 ckfk + qν
∑ν

k=0 ckgk
.

Adding zero to the denominator of the form 0 = Spνσν −Spνσν and using the de�nitions of
σν and τν we get

ε(ν)
n =

pνσν + Sqν/ρn − qντν/ρν+1

Spν − pνσν + qντν/ρν+1

=
σν/S + qν/(pνρn)− qντν/(Spνρν+1)

1− σν/S + qντν/(Spνρν+1)
.

But this expression can still be simpli�ed. We consider the initial value y(ν)
ν+1 and obtain

y
(ν)
ν+1 = pνfν+1 + qνgν+1 = 0,

what leads to
qν
pν

= −fν+1

gν+1
= −ρν+1.

Putting this in the last equality for the relative error we can rewrite it as
ε(ν)
n =

σν/S − ρν+1/ρn + τν/S

1− σν/S − τν/S

what is the asserted representation. �

By the use of this representation of the relative error we can state again the convergence
condition for the algorithm: The relative error ε(ν)

n converges to zero for n = 0, . . . , N and
ν →∞ if and only if τν → 0.
For numerical purposes it is important to have information on the asymptotic behaviour
of the relative error ε(ν)

n . Since it is di�cult to get strict estimates we approximate the
representations of τν and σν through the dominant terms of the series. This leads to the
approximations

σν ≈ cν+1fν+1, τν ≈ ρν+1cνgν

and with it to the approximate relative error
ε(ν)
n ≈

cν+1fν+1

S
+
fν+1

gν+1

cνgν
S
− fν+1

gν+1

gn
fn

(3.41)
There are two aspects in�uencing the convergence behaviour of the algorithm. First, the
terms cν+1fν+1 or cνfν+1 on the right-hand side of (3.41) indicate that the normalizing
series (3.35) has to converge fast. For the second fraction on the right-hand side we have
gν/gν+1 → 1/t1, as we stated earlier in order to achieve convergence of the algorithm. Second,
the last fraction on the right-hand side of (3.41) indicates that the extent of dominance of
the solution (gn) in comparison to the minimal solution (fn) is very important. In other
words, the rate of convergence of (3.26) has to be taken into account.
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Example 3.23 We compute again the Bessel functions as in Example 3.15, but now in
backward direction using the Miller algorithm. To get an impression of the fast convergence
of the Miller algorithm in this case we consider the relative error and its asymptotic be-
haviour. Using the asymptotic representation of the relative error of the Miller algorithm
above and the asymptotic formulae for the minimal solution (fn) and the dominant solution
(gn) of the Bessel di�erential equation (see Example 3.15) we obtain the following asymptotic

n f
(ν)
n fn

25 1.902219281208027E-33 1.902951751891382E-33
24 9.511096406040136E-32 9.511097932712494E-32
23 4.563424055618057E-30 4.563424055950106E-30
22 2.098223955943702E-28 2.098223955943777E-28
21 9.227621982096672E-27 9.227621982096670E-27
20 3.873503008524659E-25 3.873503008524658E-25
19 1.548478441211654E-23 1.548478441211653E-23
18 5.880344573595760E-22 5.880344573595758E-22
17 2.115375568053262E-20 2.115375568053261E-20
16 7.186396586807494E-19 7.186396586807493E-19
15 2.297531532210345E-17 2.297531532210344E-17
14 6.885408200044227E-16 6.885408200044226E-16
13 1.925616764480173E-14 1.925616764480173E-14
12 4.999718179448405E-13 4.999718179448405E-13
11 1.198006746303137E-11 1.198006746303137E-11
10 2.630615123687453E-10 2.630615123687453E-10
9 5.249250179911875E-09 5.249250179911875E-09
8 9.422344172604501E-08 9.422344172604501E-08
7 1.502325817436808E-06 1.502325817436808E-06
6 2.093833800238927E-05 2.093833800238927E-05
5 2.497577302112344E-04 2.497577302112344E-04
4 2.476638964109955E-03 2.476638964109955E-03
3 1.956335398266841E-02 1.956335398266841E-02
2 1.149034849319005E-01 1.149034849319005E-01
1 4.400505857449336E-01 4.400505857449335E-01
0 7.651976865579666E-01 7.651976865579666E-01

Table 3.2: Approximated solution f
(ν)
n and exact values fn of Example 3.23
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representation of the relative error for n = 25 and ν →∞

ε(ν)
n ≈

(
ez

2(ν + 1)

)2(ν+1) [ 1
2π(ν + 1)

− 1
4πν

( ez
2ν

)2ν
+

1
2
Y25(z)
J25(z)

]
. (3.42)

We recognize the dominant factors (ez/(2ν + 2))2ν+2 which are responsible for the fast
convergence. For illustration we present a numerical example where we chose ν = 25 as
starting value. The results are presented in Table 3.2. Again, the underlined digits show the
exact decimal digits.

Another task is the determination or estimation of a starting value ν, where some information
on asymptotic estimates of the dominant and minimal solution is needed. A further detailed
investigation of the Miller algorithm can be found in Gautschi [11]. Here, Gautschi used
asymptotic estimates of the underlying special functions in order to obtain estimates of the
starting value of the backward recursion. There are estimated and empirical ratios ν/N

given. Also the in�uence of the choice of the normalizing series is investigated. We note that
serious problems may occur if there is cancellation in the series (3.35) itself. A further aspect
is the sensitivity of the Miller algorithm to rounding errors, although our numerical analysis
does not give such indication. An analysis of the error accumulation of the Miller algorithm
is due to Olver and can be found in [30]. An approach for numerical computation of starting
values was performed by Olver [31], where also inhomogeneous di�erence equations were
considered.

3.2.3 Applications and numerical results
In this section we apply the previous results on the asymptotic behaviour of the relative
error of the Miller algorithm to recurrence formulae for con�uent hypergeometric functions
and give some numerical results. For this purpose we compute the recurrence relation, intro-
duced in Example 3.19, in backward direction using the Miller algorithm in double precision
arithmetic. Computing the minimal solution (fn) of the recurrence relation (3.30) we choose
the normalizing series (see Wimp [46], p. 62)

S = c− 1 =
∞∑
k=0

(−1)k

k!
(c− 1)k(c+ 2k − 1)fk.

In order to investigate the asymptotic rate of convergence of the Miller algorithm we consider
the relative error, with �xed n and starting value ν,

ε(ν)
n =

y
(ν)
n − fn
fn

(3.43)

approximated asymptotically by (ν →∞)

ε(ν)
n ≈

cν+1fν+1

S
+
fν+1

gν+1

cνgν
S
− fν+1

gν+1

gn
fn
.
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Using the asymptotic formulae of the solutions (fn) (3.33) and (gn) (3.34) the relative error
can be written as

ε(ν)
n ≈

Γ(c)
Γ(a)Γ(c− 1)(c− 1)

1
2c−1/2

(
ez

4(ν + 1)

)ν+1

·
[
(−1)ν+1(ν + 1)a−1(c+ 2ν + 1)ez/2 + (−1)ννa−2(c+ 2ν − 1)ez/2

z

4
−

Γ(c− 1)(c− 1)
1

2c−1/2

(
ez

4(ν + 1)

)ν+1 1
(ν + 1)c−1

gn
fn

]
.

Since the in�uence of the last term to the rate of convergence is neglectable it can be omitted.
Hence, the relative error reads as

ε(ν) ≈ Γ(c)
Γ(a)Γ(c− 1)(c− 1)

1
2c−1/2

(
ez

4(ν + 1)

)ν+1

·
[
(−1)ν+1(ν + 1)a−1(c+ 2ν + 1)ez/2 + (−1)ννa−2(c+ 2ν − 1)ez/2

z

4

]
, (3.44)

where we omit the index n of ε(ν)
n . Hence, we investigate the numerical behaviour of the

relative error ε(ν), de�ned in (3.43), in comparison to its asymptotic approximation (3.44)
for �xed parameters and argument, in order to check the quality of the asymptotic approxi-
mation. For this purpose we compute the number of signi�cant decimal digits by

d(ν) = d(ν)(a, c, z) = min

15,− log10


∣∣∣M(a; c; z)− f (ν)

0 (z)
∣∣∣

|M(a; c; z)|


and its asymptotic approximation by

d̂(ν) = min
{

15,− log10

∣∣∣ε(ν)
∣∣∣} .

The results are presented in Figure 3.7 and Figure 3.8, where the dashed lines show the
asymptotic approximation d̂(ν) of the relative error d(ν), which is shown by the dotted lines.
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Figure 3.7: d(ν)(10, 20, 10i), d̂(ν)
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Figure 3.8: d(ν)(24.5, 24.5, 25i), d̂(ν)
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Both �gures show the number of signi�cant decimal digits where (the starting value) ν is
varied (ν = 1, . . . , 50 in Figure 3.7 and ν = 1, . . . , 100 in Figure 3.8). We recognize in
Figure 3.8 cancellation of nearly 5 decimal digits. This phenomenon can be explained by
cancellation occurring during the computation of the normalizing series. So, the choice of
the normalizing series plays an important role. We can conclude that in particular increasing
modulus of the parameter a and the argument z lead to worse results, in the sense of slower
convergence and with respect to cancellation errors.
In order to see into the numerical behaviour of the relative error (3.43) of the Miller algorithm
for varying parameters and argument, we consider again real and complex parameters. We
compute again the (logarithmic) relative errors, or more precisely the number of signi�cant
decimal digits d(ν) in the case of real parameters a and c. The results are shown in Figure
3.9 for small positive a and c (left �gure) and for larger positive parameters a and c (right
�gure). We recognize a decrease of the number of signi�cant decimal digits especially for the
larger parameter case. Analogously, we compute in the complex case, the case of Coulomb
wave functions, the number of signi�cant decimal digits d(ν) for parameters a = L+ 1− iη,
c = 2L+ 2 and argument z = 2iρ. A crucial point is the determination of the starting value
ν. As can be seen in Figure 3.10 there is no signi�cant di�erence between d(80) and d(110).
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Figure 3.9: d(110) for a = 0.05(0.0125)1.0, c = 0.5 and z = 0.5i(0.25i)25i and d(100) for
a = 0.5(0.25)24.5, c = 24.5 and z = 0.5i(0.25i)25i
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Figure 3.10: d(80) and d(110)for ρ = 0.25(0.25)20, η = 0.125(0.125)10 and L = 1
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Remark 3.24 We point out an important application of the recurrence formula introduced
in Example 3.17, a recurrence relation for the con�uent hypergeometric functions with respect
to the �rst parameter a. We remember the results in the previous Section 3.1, where we
have shown favourable convergence behaviour of the partial sums of the constructed series
expansion (3.13) in the case 0 < Re(a) < Re(c), or 0 < a ≤ c in the case of real parameters.
Now it is possible to apply the recurrence relation (3.28) in forward direction using starting
values computed with the partial sums of the series expansion (3.13), in order to compute
the function M(a; c; z) for parameter a > c. From the numerical point of view this procedure
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Figure 3.11: d62(2, 1.5, 25i)

10 20 30 40

8

10

12

14

16

Figure 3.12: d42(1.5, 25, 25i)

is interesting since the computed solution (gn) of the recurrence relation (3.28) is dominant.
We compute the number of signi�cant decimal digits for di�erent n and �xed parameters
and argument, i.e. we have to evaluate an expression

dn = dn(a, c, z) = min
{

15,− log10

(
|ĝn − gn|
|gn|

)}
,

where dn denotes the number of signi�cant decimal digits, ĝn is the computed solution of
the recurrence relation and gn the exact solution, given by (see Example 3.17)

gn =
Γ(a+ n)

Γ(a+ n+ 1− c)
M(a+ n; c; z).

In fact, Figure 3.11 shows that even for n = 1, . . . , 62 the recurrence nearly remains nu-
merically stable in the sense of forward stability for a > c. On the other hand we recognize
some problems in the case of a < c. The result can be seen in Figure 3.12, where we at least
observe a stabilization at a level of 7 decimal digits, for n = 1, . . . , 42.

3.3 Asymptotic expansions
In this section we will consider another method for the computation of con�uent hypergeo-
metric functions. The series expansions developed in Section 3.1 are only applicable in some
bounded domains. Also recurrence relations do not seem to be suitable for the computation
of M(a; c; z) at large arguments z in modulus. If we want to compute functions on a sector
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S = {z ∈ C : | arg(z) − α| ≤ δ}, we have to consider methods like asymptotic expansions.
These expansions play an important role if we want to compute the Kummer functions on
an unbounded interval.

3.3.1 Principal results on asymptotic expansions
First, we give the de�nition and fundamental properties of asymptotic expansions (see Olver
[32], p. 16).

De�nition 3.25 Let∑∞ν=0 aνz
−ν be a formal power series, and let f(z) be a function, such

that
f(z) =

n−1∑
ν=0

aν
zν

+Rn(z), (3.45)

where we have for each �xed n ∈ N
Rn(z) = O

(
1
|z|n

)
(z →∞ in S). (3.46)

Then we call the series ∑∞ν=0 aνz
−ν an asymptotic expansion of f(z) in S, and write

f(z) ∼
∞∑
ν=0

aν
zν

(z →∞ in S). (3.47)

If the series ∑∞ν=0 aνz
−ν converges for all su�ciently large |z|, then it is the asymptotic

expansion of its sum without restriction to arg(z).
We give a necessary and su�cient condition for the existence of asymptotic expansions (see
Olver [32], p. 17).

Remark 3.26 The function f(z) has an asymptotic expansion of the form (3.47) if and only
if we have for all n ∈ N0

zn

(
f(z)−

n−1∑
ν=0

aν
zν

)
→ an (z →∞ in S)

uniformly with respect to arg(z). This implies that the sequence (an) is uniquely determined.
Therefore every function f can have at most one asymptotic expansion in S (see Olver [32],
p. 17).

3.3.2 Asymptotic expansions for con�uent hypergeometric functions
The asymptotic expansions for the Kummer function can be inferred from integral repre-
sentations and connections to the con�uent hypergeometric function of the second kind (see
Abramowitz, Stegun [1], p. 508).
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Theorem 3.27 For �xed parameters a and c the function M(a; c; z) has the asymptotic

expansion

M(a, c; z) =
Γ(c)

Γ(c− a)
eiπa

za

N1∑
n=0

(a)n(a− c+ 1)n
n! (−z)n

+O
(

1
|z|N1+1

)

+
Γ(c)
Γ(a)

ezza−c
N2∑
n=0

(c− a)n(1− a)n
n! zn

+O
(

1
|z|N2+1

)
(z →∞ in S)

with S = {z : −1
2π < arg(z) < 3

2π}.

An important fact especially for numerical evaluation of the partial sums of the asymptotic
expansion is the choice of numbers N1 and N2. Therefore we investigate the monotonicity
behaviour of the terms of the partial sums. Note that the asymptotic expansion truncates if
a ∈ Z and c ∈ Z. We de�ne the sequences

fn = fn(a, c, z) =
(a)n(a− c+ 1)n

n! (−z)n
and gn = gn(a, c, z) =

(c− a)n(1− a)n
n! zn

and formulate the following result concerning the determination of degrees N1 and N2.

Lemma 3.28 For real parameters a and c, numbers Nf ∈ N and Ng ∈ N exist, such that

we have for n ∈ N

|fn+1| ≥ |fn| (n > Nf ), |gn+1| ≥ |gn| (n > Ng).

Moreover, the numbers Nf and Ng are given by

Nf =

max
(

0,
⌈

1
2

(
−(a+ γ − |z|) +

√
(a+ γ − |z|)2 − 4(aγ − |z|)

)⌉)
if a ≤ âf ,

0 if a > âf

and

Ng =

max
(

0,
⌈

1
2

(
(a+ γ̃ + |z|) +

√
(a+ γ̃ + |z|)2 − 4(aγ̃ + c− |z|)

)⌉)
if a ≥ âg,

0 if a < âg

denoting by dxe the largest integer less than or equal to the real number x as well as setting

γ = a− c+ 1, γ̃ = a− c− 1,

âf =
1

4|z|
(1− 2c+ c2 + 2|z|+ 2c|z|+ |z|2),

and

âg = − 1
4|z|

(1− 2c+ c2 + 2|z| − 2c|z|+ |z|2).
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Proof: We �rst prove the assertion for the sequence (fn). The assertion for (gn) can be
shown analogously. We consider the quotient∣∣∣∣fn+1

fn

∣∣∣∣ =
∣∣∣∣ (a)n+1(a− c+ 1)n+1n!(−z)n

(a)n(a− c+ 1)n(n+ 1)!(−z)n+1

∣∣∣∣
which simpli�es to ∣∣∣∣fn+1

fn

∣∣∣∣ =
∣∣∣∣(a+ n)(a− c+ n+ 1)

(n+ 1)(−z)

∣∣∣∣ . (3.48)
Since we have to �nd a number Nf , such that∣∣∣∣fn+1

fn

∣∣∣∣ ≥ 1

for n > Nf we consider for the moment the function hf : R+ → R, de�ned by

hf (x) =
(a+ x)(a− c+ x+ 1)

(x+ 1)|z|
. (3.49)

In order to �nd a number xf with hf (xf ) = 1 we have to solve the quadratic equation
x2 + (2a− c+ 1− |z|)x+ a(a− c+ 1)− |z| = 0

which leads to the possible solutions (γ = a− c+ 1)
x1,2
f =

1
2

(
−(a+ γ − |z|)±

√
(a+ γ − |z|)2 − 4(aγ − |z|)

)
.

Then, we have one solution xf if the parameter a satis�es

a = âf =
1

4|z|
(1− 2c+ c2 + 2|z|+ 2c|z|+ |z|2),

two solutions x1,2
f if a < â and no solution if a > â. In the case of two positive solutions we

choose the largest one. Since we recognize from (3.49) that hf →∞ for x→∞ the choice of
the largest solution xf and setting Nf = dxfe yield |fn+1| ≥ |fn| for n > Nf . If we have no
solution or negative solutions the same argument as before yields |fn+1| ≥ |fn| for n > Nf

with Nf = 0. Then, the assertion follows by setting Nf = max (0, dxfe) for a < â and since
Nf = 0 for a > â.
Analogously, we consider the quotient of the sequence (gn)∣∣∣∣gn+1

gn

∣∣∣∣ =
∣∣∣∣(c− a+ n)(1− a+ n)

(n+ 1)z

∣∣∣∣ . (3.50)

In order to �nd a number Ng with ∣∣∣∣gn+1

gn

∣∣∣∣ ≥ 1

for n > Ng we consider the corresponding real function hg : R+ → R, de�ned by

hg(x) =
(c− a+ x)(1− a+ x)

(x+ 1)|z|
. (3.51)
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Here, the determination of a number xg satisfying hg(xg) = 1 leads to the quadratic equation

x2 + (c− 2a+ 1− |z|)x+ a(a− c− 1) + c− |z| = 0

yielding the possible solutions (setting γ̃ = a− c− 1)

x1,2
g =

1
2

(
(a+ γ̃ + |z|)±

√
(a+ γ̃ + |z|)2 − 4(aγ̃ + c− |z|)

)
.

In this case we have one solution xg if

a = â = − 1
4|z|

(1− 2c+ c2 + 2|z| − 2c|z|+ |z|2),

two solutions x1,2
g if a > â and no solution if a < â. Again we choose the largest one if there

are two positive solutions and since we recognize from (3.51) that hg → ∞ for x → ∞ the
choice of the largest solution xg and setting Ng = dxge yield |gn+1| ≥ |gn| for n > Ng. If we
have no solution or negative solutions the same argument as before yields |gn+1| ≥ |gn| for
n > Ng with Ng = 0. Then, the assertion follows by setting Ng = max (0, dxge) for a > â

and since Ng = 0 for a < â. �

In order to illustrate the result of Lemma 3.28 we consider the following numerical example.

Example 3.29 We choose the parameters a = −4.5, c = 70.1 and the argument z = 45i.
Then, the application of Lemma 3.28 leads to the equation

x2 − 123.1x+ 286.2 = 0

which yields the solutions N1
f = 2 and N2

f = 120. We choose N2
f for truncating the expansion.

Moreover, we obtain the equation

x2 + 35.1x+ 365.3 = 0

which has no real solution and we therefore set Ng = 0. So, the sequence (fn) increases mono-
tonely for n > 120 and the sequence (gn) increases monotonely for n > 0. This behaviour
can be seen in Figure 3.13, where we computed log10 |fn| and log10 |gn| for n = 1, . . . , 130.
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Figure 3.13: Monotonicity of the sequences (fn) and (gn)
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3.3.3 Numerical results
We consider the approximations of the asymptotic expansion

σN1,N2(a, c, z) =
Γ(c)

Γ(c− a)
eiπa

za

N1∑
n=0

(a)n(a− c+ 1)n
n! (−z)n

+
Γ(c)
Γ(a)

ezza−c
N2∑
n=0

(c− a)n(1− a)n
n! zn

and compute the relative error or the number of signi�cant decimal digits by
dN1,N2(a, c, z) = min

{
15,− log10

(
|M(a; c; z)− σN1,N2(a, c, z)|

|M(a; c; z)|

)}
.

The results are computed in double precision arithmetic and are shown in Figure 3.14 and
Figure 3.15, where we see the results obtained by using the abort criterion, presented in
Lemma 3.28, on the left-hand side of Figures 3.14 and 3.15, whereas on the right-hand side
in Figures 3.14 and 3.15 we see the results obtained by computing without abort criterion
and a degree of N1 = N2 = 45 terms. We recognize that we achieve an improvement of the
relative error dN1,N2 especially for arguments |z| ≤ 45. But we also have to observe a not so
excellent behaviour for increasing a. Nevertheless we can conclude that we have an e�cient
tool for computing M(a; c; z) for large values of |z| by using the partial sums σN1,N2 of the
asymptotic expansion of the con�uent hypergeometric function M(a; c; z) combined with the
criterion for truncating the asymptotic expansion.
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Figure 3.14: dN1,N2 with (left) and without (right) use of abort criterion for z = 25i(1.0i)105i,
a = 0.07(0.07)3.5 and c = 3.5
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Figure 3.15: dN1,N2 with (left) and without (right) use of abort criterion for z = 25i(1.0i)105i,
a = 0.07 and c = 0.07(0.07)3.5
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3.4 Conclusion
We give some concluding remarks about the previous chapter in order to make suggestions
to combine the presented methods for computing con�uent hypergeometric functions.
At �rst, the computation method on compact intervals, investigated in Section 3.1, leads to
reliable results in the case of the parameter combination 0 < Re(a) < Re(c) and not too
large intervals, i.e. we are able to compute on intervals from zero to 30i or even 40i. But this
restriction may be dropped if we combine this method with the asymptotic expansion of the
con�uent hypergeometric function (see Section 3.3). Here, the numerical results show that
we may use the partial sums of the asymptotic expansion in general for arguments exceeding
the modulus of 30i or 40i. We could even improve the results by applying a suitable abort
criterion for the determination of the maximal degree of the partial sums. So, it should
be possible to close the gap between the reliability of these two methods. Furthermore,
numerical results show that especially large (real) parameters a may cause problems when
computing the con�uent hypergeometric functions. Indeed, the convergence theory developed
in Section 3.1.4 does not cover the case Re(a) > Re(c). Therefore we investigated in Section
3.2 the computation with recurrence relations. In particular, the simple forward recurrence
relation for the con�uent hypergeometric functions with respect to parameter a, introduced
in Example 3.17, may be applied to overcome the described problem above. We compute
two starting values for small (real) parameters a and a + 1 using the method based on the
series expansion for the computation on compact intervals (see Section 3.1) and apply the
forward recurrence relation with respect to a until we obtain the desired function value. We
also investigated another method for the computation of con�uent hypergeometric functions
with the help of recurrence relations, the Miller algorithm, which especially for small (real)
parameters a and c leads to very good results. This algorithm is easy to implement and we
do not need any (exact) starting value providing essential advantages. But also in this case
large (real) parameters a cause problems (see Section 3.2.3). The reason is the cancellation
when computing the normalizing series, which is responsible for the quality of the results.
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Chapter 4

Application to parabolic boundary

value problems

In this chapter we consider initial-boundary value problems governed by parabolic partial
di�erential equations occurring in heating processes.
First, we describe a conductive heat transfer model in cylindrical domains. In order to sim-
plify the model by introducing a cylindrical coordinate system the discussion of the underly-
ing geometry is essential. Based on the associated eigenvalue problem of the initial-boundary
value problems we then use the method of eigenfunction expansion to obtain a generalized
solution of the problem. The required eigenfunctions are, in general, of con�uent hyperge-
ometric type, so that the computational methods of the previous chapter can be used to
obtain the desired results.
In addition to the classical cylindrical domains we make suggestions to generalize the given
model to domains with di�erent geometry.
Besides of the conductive heat transfer we present a heat transfer model including convection.
We consider a �uid �lled loop where the �ow behaviour is described by the Navier-Stokes
equations. Using the aforementioned method of eigenfunction expansions we obtain solutions
of the underlying initial-boundary value problem.
Finally, we will illustrate how the Lorenz system can be used to approximate the �ow be-
haviour of the �uid.

4.1 Conductive heat transfer

We consider initial-boundary value problems describing the heat transfer in cylindrical do-
mains. After transforming the initial-boundary value problem into cylindrical coordinates,
the construction of a (generalized) Fourier series representation is presented and convergence
of the resulting Fourier series is proved. Furthermore, it will be shown that in some cases
the transformation of the initial-boundary value problem into a problem with homogeneous
boundary conditions is appropriate. The resulting simpli�ed model provides advantageous

61
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characteristics for later numerical computations. Finally, we illustrate that di�erent geome-
tries of the domain cause the appearance of di�erent eigenfunctions in the Fourier series
expansions establishing dependence of the con�uent hypergeometric functions on the chosen
geometry.

4.1.1 The model of heat transfer in cylindrical domains
Considering a cross-section of an in�nite cylinder, we start with an initial-boundary value
problem including the two-dimensional conductive heat equation in the domain Ω, where
Ω = {ξ ∈ R2 : |ξ| < 1}, i.e. we consider the linear parabolic di�erential equation

∂θ

∂t
(ξ, t) = χ∆θ(ξ, t)

for (ξ, t) ∈ Ω × (0, T ) with the process time T > 0. We denote by ∆ the Laplace operator
which is for ξ = (ξ1, ξ2) ∈ Ω de�ned by ∆ = ∂2/∂ξ2

1 + ∂2/∂ξ2
2 . The parameter χ is called the

heat di�usivity (of the product to be heated) and is de�ned by χ = k/(ρc), where ρ is the
density, c the heat capacity and k the thermal conductivity (of the product). In general the
parameters k and c depend on the temperature θ, but in the following simpli�ed model we
assume a constant heat di�usivity.
The initial condition is given by

θ(ξ, 0) = θ0(ξ)

with the initial temperature distribution θ0 ∈ C2(Ω).
Finally, the boundary condition is described by the so-called mixed Neumann boundary
condition (or Robin boundary condition)

∂θ

∂n
(ξ, t) = α(u(t)− θ(ξ, t))

for (ξ, t) ∈ ∂Ω× (0, T ) modelling the heat transfer from the surrounding medium. We denote
by n the outward unit normal vector and the function u represents the boundary control,
the temperature of the surrounding medium. The parameter α is called the heat transfer
coe�cient which is also assumed to be constant.
Due to the geometry of the cylinder we introduce a di�erent coordinate system. Since we
consider a cross-section of a cylinder we de�ne for a given point ξ = (ξ1, ξ2) ∈ Ω the polar
coordinates by

ξ1 = r cosϕ, ξ2 = r sinϕ

with radius r ∈ [0, 1) and angle ϕ ∈ [0, 2π]. By doing this, we can consider the solution θ

dependent only on the distance r from the origin due to the symmetry of the problem (cf.
Tröltzsch [42], p. 150). This leads to the following one-dimensional problem,

r
∂θ

∂t
(r, t) = χ

(
r
∂2θ

∂r2
(r, t) +

∂θ

∂r
(r, t)

)
(4.1)

θ(r, 0) = θ0(r)
∂θ

∂r
(1, t) = α(u(t)− θ(1, t))
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for (r, t) ∈ Q, where Q = (0, 1) × (0, T ). We call the function θ a classical solution of the
initial-boundary value problem (4.1), if θ is twice continuously di�erentiable with respect to
the spatial variable r on (0, 1) and once continuously di�erentiable with respect to the time
variable t on (0, T ). It can be shown that a unique classical solution of the problem (4.1)
exists (cf. McOwen [25], pp. 134-137 and p. 312).

4.1.2 Fourier series approach
In this section we derive the (generalized) Fourier series representation of the solution of the
given initial-boundary value problem.
In order to apply the method of eigenfunction expansion we have to consider the associated
homogeneous eigenvalue problem with respect to the initial-boundary value problem (4.1).
For ψ ∈ C2(0, 1) the eigenvalue problem

χrψ′′(r) + χψ′(r) + rλψ(r) = 0, (4.2)
ψ′(1) + αψ(1) = 0 (4.3)

is called a singular Sturm-Liouville eigenvalue problem with the singularity r = 0 (cf. Pinsky
[33], pp. 23-26 and González-Velasco [14], pp. 370-378). Setting kn =

√
λn/χ we obtain the

(bounded) solutions of this eigenvalue problem
ψn(r) =

√
cnJ0(knr)

with constants cn. The eigenvalues λn can be computed solving the boundary condition (4.3)
αJ0(kn)− knJ1(kn) = 0. (4.4)

The system {ψn} forms a complete orthonormal system in L2
ω(0, 1) with the weight function

ω(r) = r (cf. e.g. Triebel [41], pp. 362-365), i.e.
1∫

0

r ψn(r)ψm(r) dr =

0 forλn 6= λm,

1 forλn = λm,

and we can now specify the normalizing coe�cients to be
cn = 2

(
J2

0 (kn) + J2
1 (kn)

)−1
.

We can thus expand the function θ(r, t) for each t ∈ (0, T ) into a (generalized) Fourier series

θ(r, t) =
∞∑
n=1

αn(t)ψn(r), (4.5)

with the (generalized) Fourier coe�cients

αn(t) =

1∫
0

r θ(r, t)ψn(r) dr.
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In order to determine the coe�cients αn we consider the derivative
∂θ

∂t
(r, t) =

∞∑
n=0

d

dt
αn(t)ψn(r)

assuming for the moment that the coe�cients are di�erentiable and the order of summation
and di�erentiation can be interchanged (cf. Haberman [15], p. 258). Then the equation (4.1)
reads

∞∑
n=0

d

dt
αn(t)ψn(r) = χ

(
∂2θ

∂r2
(r, t) +

1
r

∂θ

∂r
(r, t)

)
and thus d

dt αn is given by

d

dt
αn(t) = χ

1∫
0

r θrr(r, t)ψn(r) dr + χ

1∫
0

θr(r, t)ψn(r) dr

denoting the partial derivatives of θ with respect to r by θr and θrr. Integrating by parts
twice we get

1∫
0

r θrrψn dr = [r θrψn]10 −
1∫

0

θr
(
rψ′n + ψn

)
dr

= θr(1, t)ψn(1)−
1∫

0

r θrψ
′
n dr −

1∫
0

θrψn dr

= α(u(t)− θ(1, t))ψn(1)−
[
r θψ′n

]1
0

+

1∫
0

θ
(
r ψ′′n + ψ′n

)
dr −

1∫
0

θrψn dr

= α(u(t)− θ(1, t))ψn(1)− θ(1, t)ψ′n(1) +

1∫
0

r θψ′′n dr +

1∫
0

θψ′n dr −
1∫

0

θrψn dr

and since the eigenfunctions ψn satisfy the di�erential equation (4.2) and the homogeneous
boundary condition (4.3) we obtain the equation

d

dt
αn(t)− χαu(t)ψn(1) =

1∫
0

θ(r, t)
(
χrψ′′n(r) + χψ′n(r)

)
dr

=

1∫
0

θ(r, t) (−rλnψn(r)) dr

= −λnαn(t).

Using the initial condition θ(r, 0) = θ0(r) the functions αn(t) have to satisfy the initial value
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problem
d

dt
αn(t) + λnαn(t) = χαu(t)ψn(1)

αn(0) =

1∫
0

η θ0(η)ψn(η) dη

which has the solution

αn(t) = e−λnt
1∫

0

η θ0(η)ψn(η) dη + χα

t∫
0

e−λn(t−s)u(s)ψn(1) ds.

Summing up, we �nally have the Fourier series representation

θ(r, t) =
∞∑
n=0

ψn(r)

e−λnt 1∫
0

ηθ0(η)ψn(η)dη + ψn(1)χα

t∫
0

e−λn(t−s)u(s)ds

 . (4.6)

Introducing the Green function

G(r, η; t− s) =
∞∑
n=0

ψn(r)ηψn(η)e−λn(t−s) (4.7)

we may write the solution as

θ(r, t) =

1∫
0

G(r, η; t)θ0(η)dη + χα

t∫
0

G(r, 1; t− s)u(s)ds (4.8)

(see Tröltzsch [42], p. 113 and p. 151).
It can be shown that for a continuous control u(t) exactly one bounded solution of (4.1)
exists (see Tröltzsch [42], p. 151). If u(t) is not continuous, a classical solution θ(r, t) of
(4.1) need not exist. Hence, for u ∈ L∞(0, T ) a continuous function θ(r, t) that satis�es the
integral equation (4.8) is called a generalized solution of (4.1).
We split this representation in two series in order to investigate the convergence behaviour.
The function

θfree(r, t) =
∞∑
n=0

ψn(r)e−λnt
1∫

0

ηθ0(η)ψn(η)dη

is called the free solution, whereas the function

θpart(r, t) =
∞∑
n=0

ψn(r)ψn(1)χα

t∫
0

e−λn(t−s)u(s)ds

is called the particular solution of the initial-boundary value problem (cf. e.g. Logan [21], p.
216).
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4.1.3 Convergence analysis
We prove the following result regarding the convergence behaviour of the series representa-
tions of the free and particular solutions of the initial-boundary value problem.

Theorem 4.1 Let θ(r, t) = θfree(r, t) + θpart(r, t) be the (generalized) Fourier series repre-

sentation of the solution of the initial-boundary value problem (4.1). If u ∈ Lp(0, T ) for some

p > 2, then the series

θfree(r, t) =
∞∑
n=1

cnJ0(knr)e−k
2
nχt

1∫
0

ηθ0(η)J0(knη)dη

and

θpart(r, t) =
∞∑
n=1

cnJ0(knr)J0(kn)χα

t∫
0

e−k
2
nχ(t−s)u(s)ds

converge absolutely and uniformly on Qδ = (δ, 1)× (0, T ) for every δ > 0 and are continuous

on Qδ.

Proof: We �rst consider the terms of the series expansion θpart. Since we are interested in
estimates of these terms for large n we use the asymptotic expansion for the Bessel function
Jν (see Nikiforov [29], p. 210) with integer order ν,

Jν(z) =

√
2
πz

{
cos
(
z − π

2

(
ν +

1
2

))
+O

(
1
z

)}
(z →∞).

Then we can estimate the terms of the series
|cnJ0(knr)J0(kn)| = 2|J0(knr)J0(kn)|

|J2
0 (kn) + J2

1 (kn)|

=
2r−1/2| [cos(knr − π/4) +O(1/(knr))] · [cos(kn − π/4) +O(1/kn)] |

[cos(kn − π/4) +O(1/kn)]2 + [cos(kn − 3π/4) +O(1/kn)]2

≤ 2r−1/2 [1 +O(1/(knr))O(1/kn) +O(1/(knr)) +O(1/kn)]
1 + 4O(1/kn) + 2O(1/k2

n)
,

since cos2(kn − π/4) + cos2(kn − 3π/4) = 1. Then, for ε > 0 and δ > 0 a number N∗ =
N(δ, ε) ∈ N exists, such that

|cnJ0(knr)J0(kn)| ≤ 2√
δ

(1 + ε)

for all r ≥ δ and all n ≥ N∗. Now we have to estimate the integral. The use of Hölder's
inequality in its general version (see Werner [45], p. 20) yields∣∣∣∣∣∣

t∫
0

e−k
2
nχ(t−s)u(s)ds

∣∣∣∣∣∣ ≤
 t∫

0

e−qk
2
nχ(t−s)ds

1/q

· ‖u‖p,
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where 1/p+ 1/q = 1 and ‖ · ‖p denotes the norm in the space Lp(0, T ). The integral on the
right hand side can be computed as

t∫
0

e−qk
2
nχ(t−s)ds =

1
qk2
nχ

(
1− e−qk2

nχt
)
.

Since the eigenvalues λn = k2
nχ ful�ll √λn = nπ + c(α), where c(α) is a positive constant,

we �nally have ∣∣∣∣∣∣cnJ0(knr)J0(kn)

t∫
0

e−k
2
nχ(t−s)u(s)ds

∣∣∣∣∣∣ ≤ const · 1√
δ
· 1
n2/q

for all r ≥ δ and all n ≥ N∗. Hence, we have a convergent majorant of the series θpart because
q < 2. The assertion follows by the Weierstrass majorant criterion.
Now we consider the series expansion θfree. For the terms cnJ0(knr) we can apply the same
estimate as above. With given δ > 0 and ε > 0 a number N∗ = N(δ, ε) ∈ N exists, such that

|cnJ0(knr)| ≤
√

2πkn
δ

(1 + ε)

for all r ≥ δ and all n ≥ N∗. The integral can be estimated with a positive constant C by∣∣∣∣∣∣
1∫

0

ηθ0(η)J0(knη)dη

∣∣∣∣∣∣ ≤ C
1∫

0

|J0(knη)|dη.

If we substitute knη = τ , we can further estimate
1∫

0

|J0(knη)|dη =
1
kn

kn∫
0

|J0(τ)|dτ ≤ 1
kn

kn∫
0

1√
τ
dτ =

2√
kn
,

where we used the relation J0(τ) ≤ 1/
√
τ . Finally, we have∣∣∣∣∣∣cnJ0(knr)e−k

2
nχt

1∫
0

ηθ0(η)J0(knη)dη

∣∣∣∣∣∣ ≤ const · 1√
δ
·
(
e−χt

)k2
n ,

a convergent majorant of the series. The assertion follows also by the Weierstrass majorant
criterion. The continuity of θfree and θfree on Qδ follows immediately by the continuity of the
terms of the series as well as the already shown uniform convergence. �

Since the boundary control u(t), which is in general in L∞(0, T ) (see Tröltzsch [42], pp.
150-151), is often of simple structure, the representation of the solution can be simpli�ed,
which is shown in the following section.
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4.1.4 Homogeneous boundary conditions
In order to evaluate the series expansion numerically some parameters have to be taken into
account. A crucial point for numerical evaluation is the choice of the heat transfer coe�cient
α. In practical applications this parameter is often of the magnitude 104. Numerical tests
exhibit certain problems for such values of α. We recognize that in these cases the eigenvalues
of the problem (4.2), which are determined by the equation (4.4)

αJ0(kn)− knJ1(kn) = 0,

are close to the zeros of J0. This fact is responsible for requiring a larger number of terms of
the partial sums of the Fourier series expansion. This is illustrated in Figure 4.1. The dotted
lines represent the function J0(x) and the solid lines represent the function J0(x)−xJ1(x)/α
for x ∈ [0, 20]. We observe that the latter function approaches the former for increasing values
of α. In particular, the �rst zeros of J0(x) nearly coincide with the computed eigenvalues, so
that the �rst terms of the partial sums of the series representation (4.6) achieve very small
contribution to the approximation, since ψn(1) =

√
cnJ0(kn) has to be evaluated for the

particular solution θpart.
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Figure 4.1: Functions J0(x) and J0(x)− xJ1(x)/α for α = 5, 10 and 100

Under certain conditions we can overcome the occurring problems when computing the
temperature distribution via the Fourier series. When we have a constant boundary control
and transform the initial-boundary value problem into one with homogeneous boundary
conditions, the resulting Fourier series is of the type θfree, which should not cause problems
in numerical evaluation. This is favourable for the numerical computations in the practical
applications treated in Chapter 5.
We consider the initial-boundary value problem including the one-dimensional heat equation
in cylindrical coordinates

r
∂θ

∂t
(r, t) = χ

(
r
∂2θ

∂r2
(r, t) +

∂θ

∂r
(r, t)

)
θ(r, 0) = θ0(r)
∂θ

∂r
(1, t) = α(u(t)− θ(1, t))

for (r, t) ∈ Q, control u and state θ. In order to perform a transformation to homogeneous
boundary conditions we assume a constant boundary control u(t) = uc for all t ∈ (0, T ) and



4.1 Conductive heat transfer 69

set φ(r, t) = θ(r, t)− uc for (r, t) ∈ Q. Then, we obtain the following initial-boundary value
problem

r
∂φ

∂t
(r, t) = χ

(
r
∂2φ

∂r2
(r, t) +

∂φ

∂r
(r, t)

)
φ(r, 0) = θ0(r)− uc (4.9)
∂φ

∂r
(1, t) = −αφ(1, t)

for (r, t) ∈ Q. Considering the already known associated Sturm-Liouville problem (4.2) the
eigenfunctions in this case are again ψn(r) =

√
cnJ0(knr) and the eigenvalues kn =

√
λn/χ.

Hence, we expand for each t ∈ (0, T ) the function φ(r, t) into a (generalized) Fourier series
in eigenfunctions

φ(r, t) =
∞∑
n=1

αn(t)ψn(r),

with Fourier coe�cients
αn(t) =

1∫
0

r φ(r, t)ψn(r) dr.

Now the Fourier coe�cients are given by the equation
d

dt
αn(t) = χ

1∫
0

r φ(r, t)ψ′′n(r) dr + χ

1∫
0

φ(r, t)ψ′n(r) dr

allowing determination by the initial value problem
d

dt
αn(t) = −λnαn(t)

αn(0) =

1∫
0

r (θ0 − uc)ψn(r) dr

yielding the solution
αn(t) = e−k

2
nχt

1∫
0

r (θ0 − uc)ψn(r) dr.

Summing up, in case of a constant boundary control we get the following representation of
the solution of (4.9)

φ(r, t) =
∞∑
n=1

cnJ0(knr)e−k
2
nχt

1∫
0

η (θ0(η)− uc)J0(knη) dη. (4.10)

If additionally the initial temperature is constant, θ0(η) = θ0, we are able to compute the
integral explicitly. The substitution ρ = knη leads to

1∫
0

η(θ0 − uc)J0(knη)dη =
θ0 − uc
k2
n

kn∫
0

ρJ0(ρ)dρ =
θ0 − uc
kn

J1(kn).
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De�ning
dn =

θ0 − uc
kn

J1(kn)cn =
2(θ0 − uc)J1(kn)

kn(J2
0 (kn) + J2

1 (kn))
the solution φ has the simple form

φ(r, t) =
∞∑
n=1

dnJ0(knr)e−k
2
nχt.

In Chapter 5 we present numerical examples and applications of this representation.

4.1.5 Di�erent geometries of the domain
In this section we suggest extensions of the previous heat transfer model to di�erent geome-
tries of the domain. Up to now we considered the (classical) case of cylindrical domains.
Henceforth, we introduce geometries of e.g. elliptical cylinder and parabolic cylinder type.
The idea is to exploit the special geometry of the domain by introducing di�erent coordinate
systems.
Starting from the initial-boundary value problem

∂φ

∂t
= χ∆φ on Ω× (0, T )

φ(·, 0) = θ0(·)− uc on Ω
∂φ

∂n
+ αφ = 0 on ∂Ω× (0, T )

in the bounded domain Ω ⊂ R3 with boundary ∂Ω and time interval (0, T ) we have to
determine generalized solutions of this problem. In doing so, functions ψ ∈ C2(Ω) have to
solve the multidimensional eigenvalue problem

∆ψ + λψ = 0 on Ω (4.11)
∂ψ

∂n
+ αψ = 0 on ∂Ω

with eigenvalue parameter λ (the so-called Helmholtz equation).
Then, the �rst step is the transformation of this equation into the di�erent coordinate sys-
tems, and second, �nd the solutions with the method of separation of variables.
We give three examples for possible coordinate transformations and show how to achieve
solutions of the Helmholtz equation using separation of variables. For the given examples
see Temme [40], pp. 257-266 and Nikiforov [29], pp. 297-299. Except for the third example
we consider only cross-sections of cylindrical domains Ω and since we neglect the third
independent variable the problem is reduced to the cross-section Ω′ ⊂ R2.

Elliptical cylinder coordinates
We transform the point (x, y) ∈ Ω′ in the Cartesian coordinate system into the point (ξ, η)
in the elliptical cylinder coordinate system, de�ned by

x = cosh ξ cos η, y = sinh ξ sin η
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with ξ ∈ [0,∞), η ∈ [0, 2π]. Figure 4.2 shows the cross-section of the elliptical cylinder and
the orthogonal trajectories for �xed ξ = ξ0 and η = η0. The transformation of the Laplace
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η=η
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ξ=ξ
0

Figure 4.2: Elliptical cylinder coordinates
operator ∆ (with respect to the Cartesian coordinate system) into the new coordinate system
yields

∆ψ =
1

sinh2 ξ + sin η

(
∂2ψ

∂ξ2
+
∂2ψ

∂η2

)
.

If we set ψ(ξ, η) = f1(ξ)f2(η), the separation of ∆ψ + λψ = 0 leads to
f ′′1 +

(
−ν + 1

2

(
λ− µ2

)
cosh 2ξ

)
f1 = 0, (4.12)

f ′′2 +
(
ν − 1

2

(
λ− µ2

)
cos 2η

)
f2 = 0 (4.13)

with separation constants ν and µ. The solutions of the equations (4.12) and (4.13) are
Mathieu functions, which are related to Bessel functions (see Abramowitz, Stegun, p. 730).

Parabolic cylinder coordinates
We transform the point (x, y) ∈ Ω′ in the Cartesian coordinate system into the point (ξ, η)
in the parabolic cylinder coordinate system, de�ned by

x =
1
2

(ξ2 − η2), y = ξη

with ξ, η ∈ R. Figure 4.3 shows the cross-section of the parabolic cylinder and the orthogonal
trajectories for �xed ξ = ξ0 and η = η0. The transformation of the Laplace operator ∆ into
the new coordinate system yields

∆ψ =
1

ξ2 + η2

(
∂2ψ

∂ξ2
+
∂2ψ

∂η2

)
.

If we set ψ(ξ, η) = f1(ξ)f2(η), the separation of ∆ψ + λψ = 0 leads to
f ′′1 +

(
ν +

(
λ− µ2

)
ξ2
)
f1 = 0, (4.14)

f ′′2 +
(
−ν +

(
λ− µ2

)
η2
)
f2 = 0 (4.15)
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Figure 4.3: Parabolic cylinder coordinates

with separation constants ν and µ. The solutions of the equations (4.14) and (4.15) are
parabolic cylinder functions, which can be represented in terms of con�uent hypergeometric
functions.

Rotational paraboloidal coordinates
We transform the di�erential equation (4.11) into rotational paraboloidal coordinates in the
following way (see Nikiforov [29], pp. 297-299). For points (x, y, z) ∈ Ω we introduce

x = ξη cosϕ, y = ξη sinϕ, z =
1
2

(ξ2 − η2).

In this case the Helmholtz equation becomes
1

ξ2 + η2

[
1
ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
+

1
η

∂

∂η

(
η
∂ψ

∂η

)]
+

1
(ξη)2

∂2ψ

∂ϕ2
+ λψ = 0. (4.16)

Using separation of variables
ψ(ξ, η, ϕ) = f1(ξ)f2(η)f3(ϕ)

we obtain the system of ordinary di�erential equations
f ′′1 +

1
ξ
f ′1 + (λξ2 − µξ−2 + ν)f1 = 0 (4.17)

f ′′2 +
1
η
f ′2 + (λη2 − µη−2 − ν)f2 = 0 (4.18)

f ′′3 + µf3 = 0. (4.19)
with separation constants ν and µ. It is only necessary to solve equation (4.17), since we can
solve equation (4.18) by the substitution −ν for ν, and equation (4.19) is solved by trigono-
metric functions. The substitution ξ2 = s transforms equation (4.17) into a generalized
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hypergeometric equation
f ′′1 +

1
s
f ′1 + (λs2 + νs− µ)f1 = 0. (4.20)

The next step is the transformation into an equation of hypergeometric type. This was done
by the method described in Nikiforov [29], pp. 1-3. An equation of the form

f ′′1 +
τ̃(s)
σ(s)

f ′1 +
σ̃(s)
σ2(s)

f1 = 0,

where σ(s) and σ̃(s) are polynomials of degree at most 2, and τ̃(s) is a polynomial of degree
at most 1, can be reduced to an equation of hypergeometric type

σ(s)y′′ + τ(s)y′ + κy = 0,

where τ(s) is a polynomial of degree at most 1 and κ is constant. This was done by the
substitution f1 = g(s)y with a suitable chosen g(s). Here, the transformation of equation
(4.20) leads to

sy′′ + (1 + l(i
√
µ+ s))y′ + (l(i

√
µ+ 1)/2− ν/4)y = 0. (4.21)

Equation (4.21) can be transformed into a canonical form by a linear change of the inde-
pendent variable (see Nikiforov [29], p. 253). There are three possibilities, dependent on
the degree of the polynomial σ(s). In the case of equation (4.21) the degree of σ(s) is
deg(σ(s)) = 1. The linear transformation s = βw leads to

wy′′ + τ(βw)y′ + κβy = 0,

and with β = −1/τ ′(s) = −1/l we get the con�uent hypergeometric equation
wy′′ + (c− w)y′ − ay = 0, (4.22)

where the parameters are a = −κβ = (1 + i
√
µ)/2− ν/(4k) and c = τ(0) = 1 + ki

√
µ with

k =
√
λ. So, we obtain the solutions

y1 = M(a; c;−ks)

and, by the Kummer identity,
y2 = e−ksM(c− a; c; ks).

The transformation function g(s) is determined by the expression (see Nikiforov [29], p. 2)
g′(s)
g(s)

=
ls/2 + ki

√
µ/2

s
,

and we get
g(s) = ski

√
µ/2eks/2,
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so that we have the solution of equation (4.20)
f1(s) = g(s)y(s) = ski

√
µ/2eks/2M(a; c;−ks) = ski

√
µ/2e−ks/2M(c− a; c; ks).

In this way we recognize how con�uent hypergeometric functions appear in the context of
solving (parabolic) partial di�erential equations, where the crucial point is the geometry
of the domain. We remark that it is necessary to prove orthogonality and completeness of
the respective system of eigenfunctions. For known results on multidimensional eigenvalue
problems including the Helmholtz equation we refer to e.g. Haberman [15], pp. 203-210.

4.2 Thermal convection loop
We consider a system of partial di�erential equations describing the �ow behaviour as well
as the heat transfer in a �uid �lled loop. The underlying initial-boundary value problem can
be solved by the use of the (generalized) Fourier series approach. Also the connection to the
Lorenz system is presented. Finally, some numerical results are given in order to show how
to approximate the dynamics of the system originated by convection.

4.2.1 The model
We consider a thermal convection loop consisting of a circular pipe standing in a vertical
plane, as shown in Figure 4.4. Such devices are often called thermosyphons (see Yorke et
al. [48] and Bau et al. [44]) and are of particular interest since a circulation of �uid can be
achieved without use of pumps. Usually such loops are heated from below and cooled from
above. This induces a �uid �ow only driven by temperature called natural convection. Our
goal is to give a reasonable model for the simulation of the �ow behaviour of the �uid (cf.
Yorke et al. [48], Bau et al. [44] and Rubio [36]).
We denote the radius of the pipe by rp and the radius of the torus by R. If we denote the
velocity vector by v, the pressure by p, the density by ρ and the external body force by f ,
the behaviour of incompressible Newtonian �uids in a loop Ω ⊂ R2 for time t ∈ [0, T ] can
be described by the Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
ρ

f − 1
ρ
∇p+ ν∆v (4.23)

div v = 0, (4.24)
where the density ρ is constant since the considered �uid is incompressible. Furthermore, ν
denotes the constant kinematic viscosity. As mentioned above we consider an enhanced model
including the heat transfer. That means thermodynamic characteristics of the �uid as well
as the vertical buoyancy force have to be taken into account. If we denote the temperature
by θ, the heat equation (convection di�usion equation) is given by

∂θ

∂t
+ v · ∇θ = χ∆θ, (4.25)
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g

R

rp

ϕ

Figure 4.4: Thermal convection loop

with the coe�cient of thermal di�usivity χ. Heat transfer by convection is described by
the term v · ∇θ and heat transfer through di�usion by means of the term χ∆θ. We make
the following assumptions: Variations of the �uid's characteristics due to changes in density
are neglected with the exception of the vertical buoyancy force, which is due to changes in
density induced by temperature changes. We assume the density ρ depending linearly on the
temperature θ,

ρ = ρ0(1 + β(θ0 − θ))

with the thermal expansion coe�cient β, the reference density ρ0 of the �uid and the reference
temperature θ0 of the �uid. These simpli�cations are called Boussinesq approximation. In the
case of the thermal convection loop the external force is induced by the gravity acceleration
g and the vertical buoyancy force, given by fb = (ρ0 − ρ)(−g). Hence the external force
becomes f = ρg + fb = g(ρ + ρ0β(θ0 − θ)) (see Rubio [36]) and we obtain the Boussinesq
equations describing the �ow behaviour

∂v
∂t

+ (v · ∇)v = (1 + β(θ0 − θ))g −
1
ρ
∇p+ ν∆v (4.26)

div v = 0 (4.27)
∂θ

∂t
+ v · ∇θ = χ∆θ. (4.28)

Based on the loop's geometry it is convenient to consider polar coordinates (r, ϕ) with radius
r ∈ [0, rp) and angle ϕ ∈ [0, 2π). Additionally, we make the assumption of a thin loop, that
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means the radius of the pipe rp is much smaller than the radius of the loop R, so that the
velocity depends only on the radial coordinate. So, the �uid �ow obeys circular streamlines,
i.e. the �ow of the �uid particles takes place at a �xed distance of the origin. Making these
assumptions the velocity vector v can be represented by

v(r, ϕ, t) = v(r, t) eϕ, (4.29)
where eϕ denotes a unit vector in direction of increasing angle ϕ. It can be shown that
all �ows of the form (4.29) satisfy the divergence free condition (see Rubio [36]). So, the
Boussinesq equations can be written as

∂v
∂t

+ (v · ∇)v = (1 + β(θ0 − θ))g −
1
ρ0
∇p+ ν∆v (4.30)

∂θ

∂t
+ v · ∇θ = χ∆θ. (4.31)

But these equations can still be simpli�ed by integrating both sides of equation (4.30) along
a circular path at �xed radius r̄. For a detailed derivation of the equations see Rubio [36].
We make the additional assumption that there is no di�usion along the pipe, i.e. in the
convection di�usion equation we consider

∆rθ =
∂2θ

∂r2
+

1
r

∂θ

∂r
.

This is justi�ed as in thin pipes the rate of change in temperature across the pipe is (much)
larger than along the pipe.
Hence, the initial-boundary value problem describing the �uid �ow in a thermal convection
loop can be written as (cf. Rubio [36] and Yorke et al. [48])

∂v

∂t
(r, t) = ν∆rv(r, t) +

βg

2π

2π∫
0

θ(r, ϕ, t) cosϕdϕ (4.32)

∂θ

∂t
(r, φ, t) = −v(r, t)

R

∂θ

∂ϕ
(r, ϕ, t) + χ∆rθ(r, ϕ, t), (4.33)

for r ∈ (0, rp), ϕ ∈ [0, 2π) and t ∈ (0, T ). The magnitude of the gravity acceleration is
denoted by g.
The boundary conditions are assumed to be �no-slip� conditions, i.e. at the wall the velocity
of the �ow is zero,

v(rp, t) = 0, t ≥ 0.

Further we assume equality of the wall temperature, at the inner and outer wall, and the
�uid temperature at the wall, i.e. we have the Dirichlet boundary condition

θ(rp, ϕ, t) = uw(ϕ)

for t ∈ (0, T ) and ϕ ∈ (0, 2π), where the wall temperature is assumed to satisfy
uw(ϕ) = θc −W sin(ϕ)
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with a constant W and constant temperature θc = θ(rp, 0, t) = θ(rp, π, t) for t ∈ (0, T ). This
boundary condition describes the di�erence of the wall temperature between the bottom
ϕ = 3

2π and the top ϕ = 1
2π of the torus.

The initial conditions are given by
v(r, 0) = v0(r), r ∈ (0, rp)

for the velocity and
θ(r, ϕ, 0) = θ0(r, ϕ), r ∈ (0, rp), ϕ ∈ (0, 2π)

for the temperature distribution.

4.2.2 Fourier series approach
We formally expand the di�erence between the temperature θ and the wall temperature uw
into a Fourier series in angle ϕ with coe�cients cn and sn depending on the radius r and
time t, i.e.

θ(r, ϕ, t) = uw(ϕ) +
∞∑
n=1

(cn(r, t) cos(nϕ) + sn(r, t) sin(nϕ)) . (4.34)

Hence, we have to determine the coe�cients sn and cn. Putting the representation of the
temperature (4.34) in equation (4.32) we compute the integral

2π∫
0

θ(r, ϕ, t) cosϕdϕ = c1(r, t)π,

with the help of the trigonometric integrals (k ∈ N \ {1})

2π∫
0

cos2(ϕ) dϕ = π,

2π∫
0

cos(ϕ) cos(kϕ) dϕ = 0,

2π∫
0

cos(ϕ) sin(kϕ) dϕ = 0.

Then the di�erential equation for the velocity (4.32) can be rewritten as
∂v

∂t
(r, t) = ν∆rv(r, t) +

βg

2
c1(r, t).

In order to determine the Fourier coe�cients of θ we put the representation (4.34) in the
convection di�usion equation (4.33). In doing so, we have to compute the partial derivatives

∂θ

∂t
(r, ϕ, t) =

∑
k

(
∂ck
∂t

(r, t) cos(kϕ) +
∂sk
∂t

(r, t) sin(kϕ)
)

∂θ

∂ϕ
(r, ϕ, t) = −W cosϕ+

∑
k

(−kck(r, t) sin(kϕ) + ksk(r, t) cos(kϕ))

∆rθ =
∑
k

(∆rck cos(kϕ) + ∆rsk sin(kϕ)) ,
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then we multiply both sides of equation (4.33) once with cos(kϕ), once with sin(kϕ) and
integrate each time along the circular path from 0 to 2π. In a similar way as before we obtain
the di�erential equations

∂c1

∂t
(r, t) = χ∆rc1(r, t)− v(r, t)

R
s1(r, t) +

W

R
v(r, t)

∂s1

∂t
(r, t) = χ∆rs1(r, t) +

v(r, t)
R

c1(r, t)

for the case k = 1 and for each k > 1 we obtain
∂ck
∂t

(r, t) = χ∆rck(r, t)−
v(r, t)
R

sk(r, t)

∂sk
∂t

(r, t) = χ∆rsk(r, t) +
v(r, t)
R

ck(r, t).

For abbreviation we drop the index 1 of c1 and s1. We recognize that the partial di�erential
equations for v(r, t), c(r, t) and s(r, t) decouple from the coe�cients ck and sk for k > 1.
Moreover, it can be shown that

rp∫
0

(c2
k(r, t) + s2

k(r, t))r dr → 0 (t→∞),

i.e. for increasing time t→∞ the higher frequency terms of the series can be neglected (see
Yorke et al. [48]). Summarizing, we can determine the coe�cients c, s and the velocity v by
solving the three (parabolic) partial di�erential equations

∂v

∂t
(r, t) = ν∆rv(r, t) +

βg

2
c(r, t) (4.35)

∂c

∂t
(r, t) = χ∆rc(r, t)−

v(r, t)
R

s(r, t) +
W

R
v(r, t) (4.36)

∂s

∂t
(r, t) = χ∆rs(r, t) +

v(r, t)
R

c(r, t). (4.37)

We determine generalized solutions of the partial di�erential equations above by constructing
the corresponding eigenfunction expansions of the functions c(r, t), s(r, t) and v(r, t). Without
loss of generality we consider a radius of the pipe rp = 1 and obtain for ψ ∈ C2(0, 1) the
associated Sturm-Liouville eigenvalue problem

rψ′′ + ψ′ + λrψ = 0, ψ(1) = 0.

Since we recognize the equation of Bessel type we can determine the system of eigenfunctions
ψn(r) =

√
cnJ0(znr), which form a complete orthonormal system in L2

ω(0, 1) with ω(r) = r

as we already know. The eigenvalues λn are given by J0(
√
λn) = 0, i.e. the eigenvalues are

the zeros of J0, denoted by λn = z2
n. Here, the constants for normalization are cn = 2/J2

1 (zn).
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Now we can expand v, c and s for each t ∈ (0, T ) into (generalized) Fourier series in eigen-
functions

v(r, t) =
∞∑
n=1

αvn(t)ψn(r), αvn(t) =

1∫
0

r v(r, t)ψn(r)dr,

c(r, t) =
∞∑
n=1

αcn(t)ψn(r), αcn(t) =

1∫
0

r c(r, t)ψn(r)dr,

s(r, t) =
∞∑
n=1

αsn(t)ψn(r), αsn(t) =

1∫
0

r s(r, t)ψn(r)dr,

where the Fourier coe�cients αvn(t), αcn(t) and αsn(t) are given by

d

dt
αvn(t) = ν

1∫
0

r v(r, t)ψ′′(r) dr + ν

1∫
0

v(r, t)ψ′(r) dr +
βg

2

1∫
0

r c(r, t)ψ(r) dr

for the velocity v(r, t),

d

dt
αcn(t) = χ

1∫
0

r c(r, t)ψ′′(r) dr + χ

1∫
0

c(r, t)ψ′(r) dr

− 1
R

1∫
0

r v(r, t)s(r, t)ψ(r) dr +
W

R

1∫
0

r v(r, t)ψ(r) dr

for the function c(r, t) and

d

dt
αsn(t) = χ

1∫
0

r s(r, t)ψ′′(r) dr + χ

1∫
0

s(r, t)ψ′(r) dr +
1
R

1∫
0

r v(r, t)c(r, t)ψ(r) dr

for the function s(r, t). So, the Fourier coe�cients can be determined by solving the ordinary
di�erential equations (cf. Yorke et al. [48])

d

dt
αvn = −ν

(
zn
rp

)2

αvn +
βg

2
αcn

d

dt
αcn = −χ

(
zn
rp

)2

αcn −
1
R

∑
j,k

γ
(n)
jk α

v
jα

s
k +

W

R
αvn (4.38)

d

dt
αsn = −χ

(
zn
rp

)2

αsn +
1
R

∑
j,k

γ
(n)
jk α

v
jα

c
k,

with
γ

(n)
jk =

2
J2

1 (zn)

1∫
0

xJ0(znx)J0(zjx)J0(zkx) dx.
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Hence, we have to solve a system of coupled ordinary di�erential equations in order to
compute the desired functions θ and v for simulating the thermal convection loop.
The initial conditions αvn(0), αcn(0) and αsn(0) are determined by the initial conditions for
the velocity v(r, 0) = v0(r) and the temperature θ(r, ϕ, 0) = θ0(r, ϕ).

4.2.3 The Lorenz equations
The connection between the system (4.38) of ordinary di�erential equations and the Lorenz
equations can be seen by the use of dimensionless quantities. We introduce the dimensionless
variable τ for measuring time by

τ =
χz2

1

r2
p

t

and the quantities
ξ =

βg

2χν

(
rp
z1

)4 W

R
, σ =

ν

χ
= Pr

where σ is the Prandtl number of the �uid. The corresponding quantities with respect to the
coe�cients are given by

Xn = hvnα
v
n, Yn = hcnα

c
n, Zn = hsnα

s
n,

with suitable quantities hvn, hcn and hsn. For an exact de�nition of the quantities and a more
detailed derivation of the Lorenz equations see Yorke et al. [48].
In order to show the connection to the Lorenz equations we restrict ourselves to the case
n = 1. The di�erentiation of the (new) coe�cients X1, Y1 and Z1 with respect to τ yields

dX1

dτ
= −σX1 + σY1

dY1

dτ
= −X1Z1 − Y1 + ξX1

dZ1

dτ
= X1Y1 − Z1,

and we recognize the well-known Lorenz equations as a truncation of the system above to
one mode. The usual formulation of the Lorenz equations, which can be found e.g. in Doering
[7], p. 75, is

dX

dτ
= −σX + σY

dY

dτ
= −XZ − Y + rX

dZ

dτ
= XY − bZ

with positive parameters σ, b and r. In our case the parameter σ is determined by the �uids
Prandtl number, the (geometric) parameter is b = 1 and the parameter r, or ξ, corresponds
to the Rayleigh number Ra, which expresses the proportion of thermal expansion to viscosity.
If the number Ra exceeds a certain critical value Rac we obtain a chaotic �ow.
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Now it is possible to characterize the �ow behaviour using the known characteristics of the
Lorenz system. A detailed description of the characteristics of the dynamics of the system
can be found in Doering [7], (pp. 75-87) and in Sparrow [39]. We give a short summary of
the basic properties of the system and implications to the �ow behaviour (cf. Doering [7],
pp. 75-80).
We start with the determination of the system's stationary points and the stability analysis of
these points. Writing the nonlinear Lorenz system with the help of the function F : R3 → R3,
de�ned by

F (X,Y, Z) = (−σX + σY,−XZ − Y + ξX,XY − bZ)T ,

the Lorenz system can be written as
d

dτ
(X,Y, Z)T = F (X,Y, Z)

and we can determine the stationary points of the system. We obtain
p1 = (0, 0, 0)

and the two points
p2 =

(√
ξ − 1,

√
ξ − 1, ξ − 1

)
, p3 =

(
−
√
ξ − 1,−

√
ξ − 1, ξ − 1

)
,

existing for ξ > 1, such that F (pi) = 0 for i = 1, 2, 3. The origin p1 corresponds to the case
of no convection in our �ow problem. First, we investigate the stability of the origin. For this
purpose we consider the linearized system given by the Jacobian of the function F , de�ned
by

JF (X,Y, Z) =


−σ σ 0

ξ − Z −1 −X
Y X −b

 .

The next step is the computation of the eigenvalues of the matrix JF at the three �xed
points. At the origin the Jacobian reads as

JF (0, 0, 0) =


−σ σ 0

ξ −1 0

0 0 −b

 .

The solutions of the equation
(λ+ b)(λ2 + (σ + 1)λ− σ(ξ − 1)) = 0

are the eigenvalues λ1 = −b and
λ2,3 = −1

2(σ + 1)± 1
2

√
(σ + 1)2 + 4σ(ξ − 1).

We see that the three eigenvalues are always real (assuming σ > 0) and that λ2 has negative
sign for ξ < 1 and positive sign for ξ > 1. Hence, we have for ξ < 1 (asymptotic) stability
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of the origin p1 = (0, 0, 0) since the real parts of all eigenvalues are negative. Whereas for
ξ > 1 the origin p1 is non-stable.
At the �xed points p2 and p3 the Jacobian reads

JF (δ, δ, r − 1) =


−σ σ 0

1 −1 −δ
δ δ −b,


setting δ = ±

√
ξ − 1 for abbreviation leading to the characteristic equation

λ3 + (σ + b+ 1)λ2 + b(σ + ξ)λ+ 2σb(ξ − 1) = 0.

Setting the critical value
ξc =

σ(σ + 4)
σ − 2

it can be shown that for ξ < ξc all eigenvalues have negative real part and therefore the two
stationary points p2 and p3 are stable, whereas for ξ > ξc the points p2 and p3 are non-stable
(see Doering [7], p. 79).

Example 4.2 We choose the parameter σ = 6 implying the critical value ξc = 15. So, we
can determine the stationary points for

ξ = 10 : p2 = (3, 3, 9), p3 = (−3,−3, 9),

ξ = 26 : p2 = (5, 5, 25), p3 = (−5,−5, 25).

We recognize the stable case shown in the illustration in Figures 4.5 and 4.6 on the left-hand
side and the non-stable case on the right-hand side.

4.2.4 Numerical results
In this section we compute approximations of the velocity and the temperature of a �uid
�ow in a thermal convection loop.
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Figure 4.5: Lorenz system for ξ = 10 and ξ = 26



4.2 Thermal convection loop 83

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16

X

Z

−15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

X

Z

Figure 4.6: (X,Z)−projection of Lorenz system for ξ = 10 and ξ = 26

The following data of the �uid are given: the thermal di�usivity is χ = 1.514 · 10−6 ft2/s,
the kinematic viscosity is ν = 1.22 · 10−5 ft2/s, the thermal expansion coe�cient is β =
8.0 · 10−4 /K. The radius of the loop is given by R = 1.2467 ft and the radius of the pipe is
rp = 4.921 · 10−2 ft. The wall temperature is uw(ϕ) = θc −W sinϕ with θc = 314.15 K and
variation W = 1. The time interval is [0, 1000].
We compute approximations of the velocity

v(r, t) ≈
N∑
n=1

αvn(t)ψn(r)

and of the temperature

θ(r, ϕ, t) ≈ uw(ϕ) + cosϕ
N∑
n=1

αcn(t)ψn(r) + sinϕ
N∑
n=1

αsn(t)ψn(r).

The initial values are given by v0 = 0, θ0 = θc.
In Figure 4.9 the velocity pro�le (left-hand side) and the temperature pro�le (right-hand
side) for various terms of the partial sums are shown for ϕ = 3

2π. The upper pair of �gures
shows the one-mode model N = 1, the pair of �gures in the middle are the results for N = 2
and the lower pair of �gures represents the pro�les for degree N = 5. It can be seen that the
addition of further terms of the partial sums improves the quality of the approximations.
In Chapter 5 we present possible applications of the model and further numerical results.
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Figure 4.8: v(r, t), θ(r, 3
2π, t), N = 2
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Chapter 5

Modelling the heat transfer in food

processing

In food processing the sterilization of food products in so-called autoclaves plays an impor-
tant role. Thereby the product is �lled into containers which are heated in the autoclave
by steam or hot water. During the heating processes harmful microorganisms are destroyed.
Unfortunately heat sensitive nutrients and vitamins are also a�ected during the heating pro-
cess. Since in practice the temperature of the autoclave is often empirically determined, it
may happen that during the sterilization process not only the harmful microorganisms but
also the nutrients and vitamins are destroyed. Hence, it is necessary to have appropriate
mathematical models for the sterilization process and the heat transfer in order to optimize
the nutritional quality of the product.
In this chapter we �rst present a sterilization model which enables us to measure the mi-
croorganism destruction during heating processes. In this way we can formulate an optimal
control problem with the goal of optimizing the nutritional quality of the product during
the heating process subject to a sterility constraint. We will then recognize the importance
of having a reasonable model of the heat transfer presenting di�erent models and discussing
their advantages and disadvantages.

5.1 An optimal control problem

In this section we specify an optimal control problem describing the maximization of the
nutritional quality of the product subject to the sterility constraint. We consider sterilization
processes where prepackaged food is heated in an autoclave in order to eliminate existing
microorganisms, i.e. the thermal e�ect on microorganisms and nutrients has to be taken into
account. Consequentially, it is necessary to provide a sterility requirement in the model in
order to formulate a suitable control problem. For the derivation and investigation of the
model for sterilization of prepackaged food we refer to Kleis/Sachs [20] and Kleis [19].
Let Ω denote the domain of the container of the product under consideration and ∂Ω its

85
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boundary. The concentration of microorganisms, C(x, t), at the point (x, t) can be described
by an initial value problem consisting of a linear di�erential equation

∂C

∂t
(x, t) = −K(θ(x, t))C(x, t), (5.1)

C(x, 0) = C0(x)

where θ(x, t) is the absolute temperature at the point x ∈ Ω at time t and C0 denotes
the initial concentration of microorganisms at x ∈ Ω. The function K(θ) is given by the
Arrhenius equation

K(θ) = Kref exp
(
−E
R

(
1
θ
− 1
θref

))
,

with the reference temperature θref , the activation energy E and the universal gas constant
R. The data θref and E are dependent on the considered microorganism. In order to obtain a
sterility condition we have to solve the initial value problem (5.1). For a continuous function
θ(x, ·) in [0, T ] and �xed x ∈ Ω the continuity of the function K(θ(x, ·)) yields the unique
solution of the initial value problem (5.1)

C(x, t) = C0(x) exp

− t∫
0

K(θ(x, τ))dτ

 .

The concentration of the microorganisms is a�ected by the temperature at the corresponding
location. We recognize that for �xed location the concentration decreases with increasing
temperature. Therefore, in practice, one has to consider only that location where the product
is the coldest during the heating period. We call the point xc ∈ Ω the coldest point which is
often assumed to be located in the geometrical center of the container.
In order to describe the sterility condition for the product we consider the concentration
of microorganisms at the point xc for the processing time T with respect to the initial
concentration

C(xc, T )
C0(xc)

≤ 10−β

with the given reduction rate β corresponding to the considered microorganisms. The con-
centration C(xc, T ) can be rewritten as

C(xc, T ) = C0(xc) exp

− T∫
0

K(θ(xc, τ))dτ


= C0(xc) exp

− T∫
0

Kref10−
E

R ln 10

(
1

θ(xc,τ)
− 1
θref

)
dτ


= C0(xc) exp

− T∫
0

Kref10
θ(xc,τ)−θref
z(θ(xc,τ)) dτ
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with the z-value
z(θ(xc, τ)) =

R

E
θrefθ(xc, τ) ln 10.

If we neglect the dependence of the z-value on the temperature and use the approximation
θrefθ(xc, τ) ≈ θ2

ref we obtain the sterility condition

exp

− T∫
0

Kref10
θ(xc,τ)−θref

zref dτ

 ≤ 10−β

with zref = (R/E)θ2
ref . Using logarithms we can reformulate this condition as

T∫
0

10
θ(xc,τ)−θref

zref dτ ≥ β ln 10
Kref

.

The expression on the left hand side is characteristic for the measurement of microorganism
destruction and common in food industry. For the following de�nition cf. Kessler [18], p. 172.

De�nition 5.1. The function

F (θ, θref)(x) =

T∫
0

10(θ(x,τ)−θref )/zrefdτ

is called the F-value at the point x to the reference temperature θref and zref .

Using the de�nition of the F-value we can rewrite the sterility condition as
F (θ, θref)(xc) ≥

β ln 10
Kref

.

This requirement can be interpreted as follows: The F-value is the needed time to achieve a
given F0-value, where the F0-value is de�ned as

F0 = β
ln(10)
Kref

.

In engineering practice this value is often related to the microorganism Clostridium botulinum

with the value β = 12. The reference value Kref depends on the heated product and the
reference temperature is usually θref = 394.25 K (see Kessler [18], p. 172).
We can interpret the F-value as a measure for the reduction of microorganisms for a given
temperature pro�le θ(x, t).
The di�erential equation (5.1) can also be used to describe the concentration of nutrients.
Determining the related reference data θq and zq we can de�ne analogously to the de�nition
of the F-value

J(θ, θq)(x) =

T∫
0

10(θ(x,τ)−θq)/zqdτ
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to re�ect the desired value. Since it is desired to maximize the concentration of nutrients we
consider the function J at the boundary of the container xb because this region is the most
critical, in terms of destruction of nutrients, during the heating period.
Now we are able to formulate the control problem. Introducing the boundary control u(t)
for t ∈ (0, T ), the temperature of the autoclave, the control problem can be formulated by
the minimization of the objective function

J(θ, θq)(xb) +
µ

2

T∫
0

|u(t)|2dt

subject to the sterility condition
F (θ, θref)(xc) ≥ F0

and the constraint
ulow ≤ u(t) ≤ uup for t ∈ (0, T )

due to technical restrictions on the control for t ∈ (0, T ), i.e. there are upper and lower
bounds for the temperature of the autoclave. The objective function includes a regularizing
energy term weighted with a parameter µ > 0. For investigation of such optimal control
problems we refer to Kleis/Sachs [20] and Kleis [19].
We notice that θ = θ(x, t;u) is the temperature distribution corresponding to the boundary
control u(t). Hence, the determination of a reasonable heat transfer model is very important.
In particular, the sterility constraint given by the F-value requires a reasonable approxima-
tion of the temperature pro�le since the F-value is very sensitive to changes in temperature
particularly if the temperature is near the reference value.

5.2 Modelling the heat transfer
The choice of the heat transfer model for representing the temperature evolution inside the
food container (often of cylindrical shape) is very important. We will give a survey of some
of the available models and their approximations. The available input parameters are the
temperature of the autoclave, the initial temperature of the product, the size of the container
and the heat di�usivity.

5.2.1 The Ball-formula
A very simple approach for modelling heat transfer in food processing is the Ball-formula.
Although presented in 1957 in Ball/Olson [4], p. 228, the Ball-formula is still very popular
in engineering practice.
If we assume constant and uniform temperature of the autoclave, u(t) = uc, and constant
initial temperature θ0, the formula for the scaled di�erence

ϑ =
θ − uc
θ0 − uc
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is given by
ϑ = je−(t/f) ln(10). (5.2)

Considering the absolute temperature θ we can rewrite the formula as

θ(xc, t) = j(θc − uc)e−(t/f) ln(10) + uc.

The Ball-formula is determined by two parameters j and f dependent on the geometry of
the problem and the heat transfer coe�cient. The parameter f is also dependent on the heat
di�usivity. For heating processes the two parameters are positive. A detailed description of
the parameters is given in (5.3). Usually the parameters are determined empirically using
measured data of the heated product.
On the other hand the Ball-formula can be interpreted as a solution of a time-dependent
ordinary di�erential equation

d

dt
ϑ = − ln(10)

f
ϑ, ϑ(0) = j

or
d

dt
θ = − ln(10)

f
(θ − uc), θ(xc, 0) = j(θc − uc) + uc.

Since this di�erential equation only depends on time the conductivity can not be represented
by this equation. The spatial e�ect is neglected in this equation which is important for a heat
conduction process. Moreover, the Ball-formula leads to reliable results only for su�ciently
large time values t (see Ball/Olson [4], p. 288). Hence, in this form it cannot be used for
cooling processes, or in general, changes in autoclave temperature. The reason is the initial
lag of the cooling curve, since the conductivity of the process cannot be modelled by (5.2).
This problem is illustrated in the section on numerical results. In order to compensate this
lag portion, this part of the curve is instead approximated by a hyperbola (see Ball/Olson
[4], p. 321).
Despite these disadvantages this formula is still in practical use. The main reasons may
be the simplicity of the formula as well as the often required large time values in heating
processes.

5.2.2 The Fourier series approach
Another approach imbeding the Ball-formula (5.2) as a special case, is based on the (con-
ductive) heat equation and the representation of its solution via Fourier series. Based on a
multi-dimensional heat equation we show how the Ball-formula can be derived in this case.
For a detailed derivation of the following model we refer to Section 4.1.4. Starting from a
cylindrical domain, a cross-section of a cylinder, considered in a cylindrical coordinate system
we can reduce the two-dimensional problem to a one-dimensional problem due to symmetry.
Then the initial-boundary value problem for the one-dimensional (conductive) heat equation
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reads as
r
∂θ

∂t
(r, t) = χ

(
r
∂2θ

∂r2
(r, t) +

∂θ

∂r
(r, t)

)
θ(r, 0) = θ0(r)
∂θ

∂r
(1, t) = α(u(t)− θ(1, t))

for (r, t) ∈ Q, where Q = (0, 1)× (0, T ) with radius r and time t, control u and state θ. We
denote again with χ the heat di�usivity and with θ0 the initial temperature distribution.
Assuming constant autoclave temperature u(t) = uc and constant initial temperature θ0(r) =
θc the temperature inside the container can be represented by the series expansion

θ(r, t) =
∞∑
n=1

dnJ0(knr)e−k
2
nχt + uc

with constant coe�cients
dn = cn(θ0 − uc)J1(kn)/kn.

Hence, the computed approximations are the partial sums of the series θ(r, t), de�ned by
θN (r, t) for N ∈ N. If we consider only the �rst term and let r → 0+,

θ1(0+, t) = d1e
−k2

1χt,

we (formally) obtain the Ball-formula (5.2) with parameters
j = c1J1(k1)/k1, f = ln(10)/(k2

1χ). (5.3)
The dependencies of the parameters of the Ball-formula are easy to see from these represen-
tations. By appearance of the �rst eigenvalue k1 the parameter j depends on the geometry
of the product and the heat transfer coe�cient α. The parameter f is also dependent on the
geometry and the heat transfer coe�cient but furthermore inversely correlated to the heat
di�usivity χ.

5.2.3 Reduced order modelling
If the given problem is of more complex structure a di�erent model is required, e.g. a nonlinear
heat equation of the form

c(θ)
∂

∂t
θ −∇ · (k(θ)∇(θ)) = 0 in Ω× (0, T )

θ(·, 0) = θ0(·) in Ω

k(θ)
∂

∂n
θ = α̃(u− θ) on ∂Ω× (0, T )

with density ρ, heat capacity c and heat conductivity k of the product might be solved ap-
proximately by �nite elements methods. But after discretizing the partial di�erential equa-
tion often the resulting problem to be solved is of large-scale type. Therefore reduced order
models like proper orthogonal decomposition are suitable to achieve a reduction of dimension
(see Fahl [9] and [10]).
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5.2.4 Numerical results
In this section we compare the di�erent approaches for the computation of the temperature
evolution inside the container for a simple model problem. The given data are the domain
Ω = (0, 0.03), the time T = 3000 s, a constant heat di�usivity χ, so that we have to consider
the following initial-boundary value problem

r
∂θ

∂t
= χ

(
r
∂2θ

∂r2
+
∂θ

∂r

)
θ(r, 0) = θ0(r)

∂θ

∂r
(0.03, t) = α(u(t)− θ(0.03, t))

with the constants χ(= k/cρ) = 10−6, α = α̃/k = 1.25 ·104 and constant initial temperature
θ0 = 314.15 K. The control representing the heating and cooling process is given by

u(t) =

{
403.15 K, 0 < t < 1500 s

303.15 K, 1500 s ≤ t ≤ 3000 s
.

As derived before we use the following approximation to the temperature distribution

θN (r, t) =
N∑
n=0

dnJ0(knr)e−k
2
nχt + u(t).

The numerical results are shown in Figure 5.1. The replacement of the area with the peak
by an appropriate hyperbola is shown in Figure 5.2, for which we refer to Ball/Olson [4], p.
321. We remark that the construction of this hyperbola is based on empirical data being one
of the main weaknesses of this method. Figure 5.1 shows the comparison of the unmodi�ed
Ball-formula (dashed line) with the Fourier series solution. We see the heating up and cooling
down process with the speci�ed temperatures. We notice that the peaks in the solution are
due to the model. In particular the evident peak of the unmodi�ed Ball-formula was the
reason why this portion is replaced by an appropriate hyperbola in the Ball-formula. The
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Figure 5.1: Ball-formula and Fourier Approximation
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Figure 5.2: From Ball-Olson [4], Sterilization in food technology, 1957

plot for the Fourier series was obtained by using 18 terms in the Fourier series expansion.
The additional use of terms of the series further improves the behaviour at the switching
point, the peaks get smaller and the gap can be closed.
In order to see the e�ect of the di�erent models on the F-value for a typical industrial
sterilization process we use the following data: χ = 10−6, α = 1.25 · 104. The domain is still
chosen as Ω = (0, 0.03) as well as the initial temperature θ0 = 314.15 K. For the control
(autoclave temperature) we use

u(t) =

{
399.15 0 ≤ t ≤ 1500 s

303.15 1500 ≤ t ≤ 3000 s
.

The computation of the F-value using the unmodi�ed Ball-formula (dashed dotted line) as
well as the Fourier partial sums of degree N = 18 (solid line) is shown in Figure 5.3.
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Figure 5.3: F-value computation using di�erent models
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We recognize the computed F-value of 47.7 (min.) using the Fourier partial sums, whereas
the use of the unmodi�ed Ball-formula delivers a completely wrong result, (the computed
F-value is 1.5 · 105).
The presented results show how simple methods like the Ball-formula can signi�cantly im-
proved with the help of the Fourier series approach in order to achieve evidently better
results. The improvements are primarily based on the explicit consideration of the underly-
ing structure, i.e. geometry and symmetry. Of course more general problems of nonlinear type
require more general and more complex models suited for simulation and optimal control of
such problems (see [10]).

5.3 Thermal convection loop
We consider the model derived in Section 4.2 in the light of the sterilization processes pre-
sented in this chapter. That means we have a �uid �lled loop, e.g. a cross-section of a hollow
cylinder, and we would like to model the process of heating up. The radius of the loop is R,
the radius of the pipe rp. The heating time is given by T . Then, the initial-boundary value
problem is given by (see (4.32) and (4.33))

∂v

∂t
(r, t) = ν∆rv(r, t) +

βg

2π

2π∫
0

θ(r, ϕ, t) cosϕdϕ

∂θ

∂t
(r, φ, t) = −v(r, t)

R

∂θ

∂ϕ
(r, ϕ, t) + χ∆rθ(r, ϕ, t),

for r ∈ (0, rp), ϕ ∈ [0, 2π) and t ∈ (0, T ). The initial conditions are given by
v(r, 0) = v0(r), r ∈ (0, rp)

for the velocity and
θ(r, ϕ, 0) = θ0(r, ϕ), r ∈ (0, rp), ϕ ∈ (0, 2π)

for the temperature distribution. The boundary conditions are
v(rp, t) = 0, t ≥ 0

and
θ(rp, ϕ, t) = uw(ϕ)

with the wall temperature (boundary control) uw(ϕ) = ūc −W sin(ϕ). Then, the Fourier
series representations of the velocity and the temperature are

v(r, t) =
∞∑
n=1

αvnψn(r)
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and
θ(r, ϕ, t) = uw(ϕ) + cos(ϕ)

∞∑
n=1

αcn(t)ψn(r) + sin(ϕ)
∞∑
n=1

αsn(t)ψn(r),

where the system of ordinary di�erential equations for the determination of the Fourier
coe�cients of the series expansions reads as (n = 1, 2, . . .)

d

dt
αvn(t) = −ν

(
zn
rp

)2

αvn(t) +
βg

2
αcn(t)

d

dt
αcn(t) = −χ

(
zn
rp

)2

αcn(t)− 1
R

∑
j,k

γ
(n)
jk α

v
j (t)α

s
k(t) +

W

R
αvn(t)

d

dt
αsn(t) = −χ

(
zn
rp

)2

αsn(t) +
1
R

∑
j,k

γ
(n)
jk α

v
j (t)α

c
k(t).

Numerical results

We give a comparison of the approximations of the temperature and the F-value for a di�erent
number of terms of the partial sums. The following data are given: the thermal di�usivity is
χ = 1.514 · 10−6 ft2/s, the kinematic viscosity is ν = 1.22 · 10−5 ft2/s, the thermal expansion
coe�cient is β = 8.0 · 10−4 /K. The radius of the loop is given by R = 1.2467 ft and the
radius of the pipe is rp = 4.921 · 10−2 ft. The heating time is T = 1000 s and θ0 = 314.15 K.
We compute the approximations

θ(r, ϕ, t) ≈ uw(ϕ) + cosϕ
N∑
n=1

αcn(t)ψn(r) + sinϕ
N∑
n=1

αsn(t)ψn(r)

for the temperature and
F (θ) =

T∫
0

10(θ(r,ϕ,s)−θref )/zrefds
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for the F-value at the center of the pipe (r → 0+). The reference data are θref = 394.25 K,
zref = 10 K and the wall temperature (boundary control) is uw(ϕ) = 399.15 − 4 sin(ϕ) K.
So, the wall temperature at the top and the bottom of the loop is

uw(ϕ) =

395.15 K for ϕ = 1
2π,

403.15 K for ϕ = 3
2π.

The results are shown in Figure 5.4. It can be seen that the increase of temperature, and
also of F-value, is faster if the number of terms of the partial sums increases. The curve
of the �ve-mode approximation (solid line) with N = 5 is steeper than the curves of the
one-mode (dashed-dotted line) with N = 1 or two-mode approximation (dotted line) with
N = 2. Moreover, we recognize that for small values of time t the approximations might be
improved by the use of further terms of the series expansion of θ. But the addition of one
term of the series requires the solution of a system of ordinary di�erential equations with
three additional equations.
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Conclusion

The �rst subject of this thesis was the development and analysis of e�cient methods for the
computation of con�uent hypergeometric functions. Based on series expansions, recurrence
relations and asymptotic expansions we presented and analyzed approaches for the compu-
tation of these functions yielding promising results in a great variety of cases. In particular
we have seen that the computation with recurrence relations using the Miller algorithm leads
to very good results for small (real) parameters a and c. Using the series expansion and the
asymptotic expansion of the con�uent hypergeometric function we are able to compute on
compact intervals and on unbounded domains.
The second subject was the solution of certain boundary value problems using the (gen-
eralized) Fourier series approach for solving (parabolic) partial di�erential equations. We
have shown how the computation of solutions of di�erent heat transfer processes via the
computation of con�uent hypergeometric functions can be carried out. The advantage of
this proceeding is the easy improvement of the approximation by adding more terms of the
series, since a complete system of eigenfunctions is at hand. As a result we have seen that
if the underlying geometry is of a suitable type the computation is practicable and e�cient
achieving a low computational e�ort compared to other methods for the numerical solution of
partial di�erential equations based on discretization, e.g. �nite di�erences. In these methods
the improvement of the approximation requires a new discretization of the partial di�erential
equations resulting in large-scale problems. On the other hand they are more �exible with
respect to the problem geometry. Furthermore, we have seen how the Fourier series approach
can be applied to modelling heat transfer processes in food processing. We have shown that
these representations are generalizations of standard methods in food processing which are
still in practical use, e.g. the Ball-formula.
As a �nal result we have seen again that also in the �eld of partial di�erential equations
no method can be termed �standard� as the choice of the method and the e�ciency of the
implementation always depends on the speci�c structure of the problem. We hope we could
contribute to this theory by pointing out the areas and circumstances where the analyzed
methods are speci�cally advantageous.
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