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Chapter 1

Introduction

It is often necessary to have a mathematical model for a physical process in

order to recognize its characteristics. The mathematical description leads in

general to differential or integral equations which can have a very complex

structure.

In certain cases an explicit form or a series representation of the resulting

solutions can be obtained by using special functions. So, considering the

numerical simulation of such mathematical models it is necessary to have

efficient methods for computing special functions.

We will focus our considerations in particular on the classes of Mittag-Leffler

and confluent hypergeometric functions. In the last few years the interest in

functions of the Mittag-Leffler type has increased among scientists, engineers

and applications-oriented mathematicians. This interest is caused by the

close connection of these functions to the solutions of differential equations of

fractional order (in the sense of non-integer order) and integral equations of

Abel type. Such equations are becoming more and more popular for modelling

scientifical and technical processes and situations (see [Go1], [Go2], [Ma]).

Although there already exists a rich literature on methods for solving differen-

tial equations, in general, numerical solution techniques are required. Lozier

[Loz] investigated software available for the computation of special functions

and stated the software needs in scientific computing. In particular, software
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Introduction 3

packages are needed for the computation (in floating point arithmetic with a

fixed precision) of Mittag-Leffler type functions and confluent hypergeometric

functions with complex parameters and arguments. Since the classes of

Mittag-Leffler and confluent hypergeometric functions cover several important

special functions (like incomplete gamma or complementary error functions),

it is therefore desirable to have an efficient algorithm for computing these

functions. A consideration of standard software packages like MATLAB or

MATHEMATICA also shows that it is necessary to find such algorithms.

In Chapter 2, entire functions f are considered. If we look at the partial sums

of the Taylor series with respect to the origin

sn(f, z) :=
n∑
ν=0

aνz
ν

for n ∈ N, we find that they typically only provide a reasonable approximation

of the function f in a small neighborhood of the origin. The main disadvantages

of these partial sums are the cancellation errors which occur when computing

in fixed precision arithmetic outside this neighborhood. The computation of

small function values in modulus causes problems because the summation of

the terms of the partial sums sn(f, z), which are inherently large in modulus,

may lead to a loss or cancellation of several decimal digits. Therefore, our first

aim is to quantify this cancellation effect using basic growth properties of an

entire function f such as order ρf , type τf and indicator function hf . We find

that the loss of exact decimal digits for z = reiϑ under certain conditions can

be asymptotically described by

(τf − hf (ϑ))rρf/ log(10).

We develop and investigate a method for the computation of entire functions

which is stable as far as cancellation errors are concerned.

The idea is to modify the function f in such a way that, for certain parts

of the complex plane, the order of magnitude of the modified function f̃

and the maximal term of the series sn(f̃ , z) do not differ as much as the

ones of the function f . Then an approximation of f(z) may be obtained
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from sn(f̃ , z) and we can compute the Taylor sections with less cancellation.

Such a modification may consist in a multiplication of f by an appropriate

function ϕ which can be numerically evaluated. Under certain conditions, this

”multiplier” function ϕ can be found by solving an adequate optimization

problem.

Using this method, we have to consider recurrence formulae as an important

tool to find reasonable representations of the coefficients of the modified func-

tion f̃ . We give a short review of the basic theory of linear difference equations

(of second order) and compute solutions (yn) satisfying the equation

yn+1 + anyn + bnyn−1 = 0,

with given coefficients an and bn 6= 0. Although easy to implement, such

recurrence relations are often numerically unstable e.g. due to rounding

errors. In particular, forward recurrences may cause problems. In order

to circumvent the problems we apply a well-known method for computing

recurrence relations in backward direction: the Miller algorithm. Since the

application of the Miller algorithm does not require exact starting values for

the backward recurrence, a so-called ”normalizing series” is usually needed.

For our considerations (see Section 2.4.1), we can simply use the known initial

values instead. Finally, with some numerical examples we show the efficiency

of this method.

In Chapter 3, we first look at the definitions and characteristics of the Mittag-

Leffler and confluent hypergeometric functions. We consider the confluent

hypergeometric functions of the first kind, denoted by Φ(a, c; z), with two, in

general complex, parameters a, c as well as argument z, whose power series

expansions are given by

Φ(a, c; z) =
∞∑
ν=0

(a)νz
ν

(c)νν!
(z ∈ C).

Moreover the Mittag-Leffler functions M(α, β; z) for α > 0 and β a complex
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parameter as well as argument z are defined by

M(α, β; z) :=
∞∑
ν=0

zν

Γ(αν + β)
(z ∈ C).

The characteristics, especially the growth properties like order, type and in-

dicator function of the classes of Mittag-Leffler and confluent hypergeometric

functions are pointed out. Furthermore, we address the connections with

other special functions which are included in the classes of both functions.

Then, considering the numerical evaluation of the Mittag-Leffler and conflu-

ent hypergeometric functions, we look in particular at the complementary

error function and the incomplete gamma function in several parts of the

complex plane where the partial sums sn(f, z) do not provide an appropriate

approximation because of cancellation errors. By using the growth properties

of the functions, we are able to quantify cancellation problems. Furthermore,

using the method we developed in Chapter 2, we can reduce the cancellation

problems by ”modifying” the function for several parts of the complex plane.

With the examples of the complementary error and the incomplete gamma

function we illustrate in which way an appropriate multiplier function ϕ can

be appointed and we can see the difficulties to find a reasonable representation

for the coefficients of the Taylor series of the modified function f̃ . Numerical

results, in which we compare our results of the computation using the

method developed in Chapter 2 with reference values, are presented. The

reference values for f are generated using exact arithmetic from iRRAM (see

[Mue1]). It can be seen that the problem of cancellation errors can be reduced

considerably by using the method developed in Chapter 2.

Finally, in Chapter 4 two other approaches to compute Mittag-Leffler type and

confluent hypergeometric functions are discussed. If we want to evaluate such

functions on unbounded intervals or sectors in the complex plane, we have to

consider methods like asymptotic expansions or continued fractions for large

arguments z in modulus.
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When considering asymptotic expansions, we use an expansion of the form

f(z) ∼
∞∑
ν=0

aν
zν

(z →∞)

for the computation of a function f in some sectors of the complex plane.

After looking at the basic properties of asymptotic expansions (we already

did in Chapter 3), we consider the asymptotic expansion of the Mittag-Leffler

functions in detail. For numerical considerations, the determination of the

number of terms used for the approximation is a crucial point. In [WoZh], a

method to determine the number of terms is presented. We will see that from

the numerical point of view the monotonicity behaviour of the terms of the

series plays a central role for the truncation of the series.

Considering continued fractions for the computation of Mittag-Leffler type

and confluent hypergeometric functions, we refer to the works of Gautschi

([Ga1],[Ga3]) and Poppe/Wijers ([PW1]). In their articles the advantages of

this method are discussed in detail.



Chapter 2

Taylor Sections of Entire

Functions: Cancellation and

How to Reduce It

Let f be an entire function given by its Taylor series

f(z) =
∞∑
ν=0

aνz
ν =

∞∑
ν=0

f (ν)(0)

ν!
zν (z ∈ C)

with respect to the origin. Of course, one way to numerically evaluate f(z) is

to truncate the series, that is, to take, for n sufficiently large,

sn(f, z) :=
n∑
ν=0

aνz
ν

as an approximation of f(z).

However, it turns out that, in many interesting cases, serious cancellation

problems arise if z is not restricted to a more or less small neighborhood of

the origin. So first of all, we have to take a closer look at the problems which

occur if we use series expansions as an approximation of f(z). We especially

consider the problem of cancellation.

7
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2.1 The problem of cancellation

As mentioned above, our aim is to compute entire functions by series expan-

sions. If we have convergence of the series for all z ∈ C, it is possible to use

some kind of exact arithmetic to compute entire functions by using their Tay-

lor sections, but in this case a variable precision of the decimal digits and in

many cases ”endless” time is needed.

Because of this, our aim is to find ”simple” and ”fast” methods to compute

entire functions by using floating point arithmetic with fixed precision of p

decimal digits.

In the following, our computations will be performed in MATLAB with a fixed

precision of 16 decimal digits.

First of all, we give a short overview of the different kinds of errors which occur

if numerical computations are performed. After this, we take a closer look at

the problem of cancellation.

2.1.1 Different kinds of errors

Different kinds of errors occur when we consider practical methods for math-

ematical problems.

These include method errors, notably truncating errors, which occur when an

infinite process is replaced by a finite method (for example the partial sum of

an infinite series).

Initial errors occur if there are inexact values or statistical variation resulting

in errors among the initial data. These must be accepted in subsequent math-

ematical operations. It is desirable that initial data errors cause only small

errors in the result.

Further errors occur when computing practically using real numbers. These

depend on the method used and on the computing tool.

Here we have input data errors which occur when the input data is rounded

into machine-adaptable numbers.

Also, we look at errors due to rounding. These occur no matter which arith-
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metic operation is used. Of course we have to make sure that we compute

using a fixed precision arithmetic.

Primarily, we want to consider the worst possible errors when computing nu-

merically, namely cancellation errors.

First, we consider some definitions and examples to describe and demonstrate

the phenomenon of cancellation. After this, we will look at the question of

how we can quantify and reduce this kind of error.

2.1.2 Definitons and illustrating examples

We give some basic definitions and we take a look at some examples which

illustrate the problem of cancellation.

First of all, it is important to say that our considerations regarding the

cancellation problem are not only limited to the use of real numbers. As

mentioned above, our aim is to compute series expansions of certain entire

functions for all z ∈ C. Actually, we also have to consider the problem

of cancellation for complex numbers. But in the following, by using the

partial sums of the Taylor sections to compute the entire functions, we will

describe the cancellation problem for at least one of the values of the real

and the imaginary part of the series. So it makes sense that we focus our

considerations on the cancellation problem for real numbers.

Definition 2.1

If x̃ is an approximation of x ∈ R, then |x̃ − x| is the absolute error and

|(x̃− x)/x| is the relative one, in case of x 6= 0.

Let us take a closer look at the behaviour of relative errors using certain

operations. It is a common technique to leave out the products of errors.

This enables us to simplify complex terms of errors drastically. We use the

symbol =̇ which means that products of errors are ignored.

We refer to [SW] for the following result.
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Theorem 2.2

Let x, y ∈ R \ {0} and ϕ be one of the arithmetic operations +, · or /. For the

relative errors

εx := (x̃− x)/x, εy := (ỹ − y)/y, and

εϕ := (ϕ(x̃, ỹ)− ϕ(x, y))/ϕ(x, y)

regarding two approximations x̃ of x and ỹ of y we get

εϕ =̇ εx + εy, if ϕ(x, y) = x · y,

εϕ =̇ εx − εy, if ϕ(x, y) = x/y,

εϕ =̇
x

x+ y
εx +

y

x+ y
εy, if ϕ(x, y) = x+ y 6= 0.

Conclusion 2.3

Multiplication and division of numbers are not problematic since, in the worst

case, they cause an addition of the absolute values of the relative errors found

in the input data.

However, cancellation occurs in the subtraction of two nearly identical

numbers since the factors x/(x+ y) and y/(x+ y) can become really large.

Example 2.4

Assuming floating point arithmetic, let x and y be two nearly equal numbers.

When the difference x − y is formed, some leading digits of the mantissa will

be zero, so significant digits have been ”cancelled”. The mantissa will be

normalized by moving the digits to the left and at the tail end of the mantissa

there will appear zeros which are meaningless.

For example, let

x =
√

9876 = 9.937806599043876 ·101, y =
√

9875 = 9.937303457175895 ·101.

Then we have

x− y = 0.000503141867981 · 101.
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Normalization changes this to

x− y = 5.031418679810000 · 10−3.

The four zeros at the end of the mantissa are meaningless. With the estimate

√
9876−

√
9875 =

1√
9876 +

√
9875

= 5.031418679802768 · 10−3

we get a result which is accurate to all digits given.

Cancellation does not only occur when two nearly equal numbers are directly

subtracted from each other. More generally, this situation occurs in the eval-

uation of a sum if the partial sums are large compared to the final result.

Let

s :=
n∑
k=1

ak

be the sum to be computed. We assume that the evaluation is done by forming

the sequence of partial sums according to

s1 := a1, sk := sk−1 + ak (k = 2, 3, ..., n),

so that s = sn.

The phenomenon of cancellation can occur if the sum s is evaluated in floating

arithmetic.

Let us assume that one of the intermediate sums sk is considerably larger than

the final sum s in the sense that the exponent of sk exceeds the exponent of

s by several units (of course this can happen only if not all ak have the same

sign).

In [He3] the effect of the loss of significant digits due to large intermediate

sums is called ”smearing”.

Now our aim is to quantify these cancellation errors, especially this smearing-

effect by using partial sums of Taylor sections of entire functions.

So we have to consider the relation between the order of magnitude of the

function and the largest term of the series that may occur.
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2.2 A description of the cancellation problem

Let f be again an entire function given by its Taylor series

f(z) =
∞∑
ν=0

aνz
ν =

∞∑
ν=0

f (ν)(0)

ν!
zν (z ∈ C)

with respect to the origin. The maximal term of the series is defined by

µ(r) := µf (r) := max
ν∈N0

|aν | rν (r ≥ 0).

We write

sn,p(f, z) :=
n∑
ν=0

aνz
ν

for the n-th partial sum of the above Taylor series of f if the computations

are performed in floating point arithmetic with a precision of p decimal digits

and with input data aν and z given with an accuracy of p digits.

In this situation, the loss of exact digits in the evaluation of at least one of the

values Re sN(z),p(f, z) and Im sN(z),p(f, z) may be approximately measured by

df (z) := log10 µf (|z|)− log10 |f(z)| (2.1)

for N(z) sufficiently large (see [He3], p. 27).

We always assume that the number of terms N(z) = Nf (z) is taken so large

that errors do not result from truncation of the series (so, increasing the num-

ber of terms does not improve the exactness).

This implies that the number of exact digits (here and in what follows al-

ways understood in the sense of the minimal number in both the real and

the imaginary part) is approximately given by max(p − df (z), 0) in the case

of computations with p exact figures. So one can be confonted with serious

problems if df (z) turns out to be large.

Our aim is to reduce such problems by modifying f in an appropriate way.

Before we go into the details, we will first quantify df for entire functions of

finite order and type and of regular growth, approximately in terms of the

indicator function of f .

For this we need some basic knowledge on the growth of entire functions, in
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particular we have to explain what it means that an entire function has a finite

order and type. Also we define the indicator function of an entire function f

and consider some of its properties.

2.2.1 The growth of entire functions

At first we give some basic definitions.

Definition 2.5

Let f be an entire function, defined by

f(z) =
∞∑
n=0

anz
n. (2.2)

i) We denote by

Mf (r) = max
|z|≤r

|f(z)| (r > 0), (2.3)

the maximum modulus of f on |z| ≤ r.

ii) Then we call ρ = ρf the order of f , if

ρf = lim
r→∞

log log Mf (r)

log r
. (2.4)

iii) If ρf ∈ (0,∞), we say that f is of type τ = τf of its order, if

τf = lim
r→∞

log Mf (r)

rρf
. (2.5)

A function f is said to be of maximal type of its order ρf , if τf = ∞, of

normal type, if τf ∈ (0,∞) and of minimal type, if τf = 0.

Remark 2.6

So, the growth of an entire function f can be described by its order and type.

A finite order ρf means that for each ε > 0

Mf (r) ≤ er
(ρf +ε)

(r ≥ r0(ε)). (2.6)

For the type τf we get

Mf (r) ≤ e(τf+ε)r
ρf

(r ≥ r1(ε)). (2.7)
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It is possible to characterize the order and type of entire functions by means

of the magnitude of the Taylor coefficients.

For the following results, which characterize order and type, we refer to [Bo].

Theorem 2.7

Let f(z) =
∞∑
n=0

anz
n be an entire function of order ρf . Then we have

ρf = lim
n→∞

log n

−log |an|1/n
. (2.8)

Theorem 2.8

Let f(z) =
∞∑
n=0

anz
n be an entire function of order ρf ∈ (0,∞) and type τf .

Then we have

τfeρf = lim
n→∞

(n|an|ρf/n). (2.9)

Moreover, the growth of f along rays emanating from the origin is asymptoti-

cally described by its indicator function h = hf which can be defined as follows.

Definition 2.9

The (Phragmen-Lindeloef) indicator function h = hf : [−π, π] → R is given

by

hf (ϑ) := lim
r→∞

log |f(reiϑ)|
rρf

(ϑ ∈ [−π, π]). (2.10)

Finally, we give some important remarks about the order, type and indicator

function of an entire function f . For this we refer to [Le].

Remark 2.10

i) The indicator function hf is continuous (with hf (−π) = hf (π)) and

max
[−π,π]

hf (ϑ) = τf .

ii) For the function

f(z) = eaz
ρ

(a ∈ C)
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with the finite order ρ ∈ N, we obtain

hf (ϑ) = Re a cos(ρϑ) + Im a sin(ρϑ) (ϑ ∈ [−π, π]).

Such indicator functions are called ”ρ-trigonometric indicator functions”.

iii) It results directly from the definition that the indicator of the product

of two functions does not exceed the sum of the indicators of the factors.

That means, if the functions f and ϕ are functions of the same order,

then we have

hfϕ(ϑ) ≤ hf (ϑ) + hϕ(ϑ) (ϑ ∈ [−π, π]). (2.11)

We can obtain equality in equation (2.11) if one of the functions is of

completely regular growth (for a definition, see, e.g., [Le], p.137, for the

assertion, see e.g., [Le], p.157).

iv) If f has completely regular growth, there exists a set E, which is a so-

called C0-set, that is, E is the union of circles {z : |z − zj| < rj} with

lim
R→∞

1

R

∑
|zj |<R

rj = 0,

so that for all ϑ

hf (ϑ) = lim
r→∞

reiϑ /∈E

log |f(reiϑ)|
rρf

.

2.3 How to quantify cancellation errors

In this section, we want to quantify the cancellation problem using the proper-

ties of the growth of entire functions. Our aim is to find a formula to approx-

imate the difference df (z) (see (2.1)) which describes the loss of exact digits.

For this we need a relation between the maximal term µf (r) of the series and

the growth of the entire function.
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This relation is given in the following theorem ([Ru], Theorem 10.1).

Theorem 2.11

Let the function f be of finite order, then

log µf (r)/ logMf (r) → 1 (r →∞).

Considering this theorem, we can replace Mf (r) in the above definitions (2.4)

and (2.5) by µf (r).

Finally, if f has completely regular growth, we can obtain with the help of

Remark 2.10 iv) that

lim
r→∞,reiϑ /∈E

log(10) · df (reiϑ)
rρf

= τf − hf (ϑ) =: δf (ϑ) , (2.12)

which means that the loss of exact decimal digits for z = reiϑ is (up to

exceptional values, e.g., near the zeros of f) asymptotically described by δf (ϑ)

in the sense that

df (re
iϑ) ∼ δf (ϑ)rρf/ log(10) (r →∞, reiϑ 6∈ E) .

(2.13)

To illustrate the theoretical considerations on the smearing effect by using

the partial sums of the Taylor sections of entire functions, we look at the

following simple example of computing the exponential function using series

expansions on the negative real axis.

Example 2.12

Let f be the exponential function

f(x) = exp(x) =
∞∑
k=0

xk

k!
(x ∈ R).
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If ex is computed numerically with a fixed precision of 16 decimal digits, the

series must be truncated and we take the n-th partial sum

sN(x),16(f, x) =
N(x)∑
ν=0

xν

ν!
(x ∈ R). (2.14)

as an approximation of f(x).

We again assume that the number of terms N(x) is taken so large that errors

do not result from truncation of the series.

Using (2.14) for our computations, we see that this series is not well suited

for the evaluation of ex for x << 0. The problem of cancellation causes a loss

of significant decimal digits on the negative real axis.

Our theoretical considerations above give us the possibility to quantify the

cancellation problem.

Using Stirling’s formula, we can find an approximation for the largest term of

the series (2.14), which is

µf (r) ∼
rr

r!
∼ rr√

2πr( r
e
)r

=
1√
2πr

er.

With the help of (2.1) the loss of exact digits in the evaluation of the expo-

nential function can be approximately measured by

df (re
iϑ) = log10 µf (r)− log10 e

r cosϑ

∼ r(1− cos ϑ)/log(10)− 1/2 log10(2πr)

∼ r(1− cos ϑ)/log(10). (2.15)

In contrast to this approximation, we want to quantify the loss of exact digits

in the evaluation using the growth properties of the exponential function.

It can be easily seen that the exponential function is an entire function of the

order 1 and type 1.

From Remark 2.10 we get the indicator function of the exponential function

as follows:

hf (ϑ) = cos(ϑ) (ϑ ∈ [−π, π]).
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Figure 2.1: Indicator function of the exponential function.

Considering (2.12), we can see that δf (ϑ) = 1 − cos(ϑ), and the loss of exact

digits (see (2.13)) can be approximately described by

df (re
iϑ) ∼ δf (ϑ)r/log(10) = r(1− cos(ϑ))/log(10). (2.16)

In fact, this approximation complies with the one in (2.15).

The ”worst case” in the evaluation of the exponential function appears in a

neighborhood of the negative semiaxis.

It can be seen that δf (−π) = τf − hf (−π) = 2. Hence, as an approximation

for the loss of exact decimal digits on the negative real axis we get

df (re
−iπ) ∼ 2r/ log(10) (r →∞) .

For the following numerical considerations we evaluate ex for various x < 0 by

truncating the Taylor series. The loss of decimal digits, the relation between

the largest term of the series and the order of magnitude of the function,

described in (2.1), and the approximation for the loss of decimal digits, given

in (2.13), are illustrated in the following table. The underlined digits coincide

with the correct ones.

x Value of ex (Taylor series) Exact value ∼ µf (r) [df ]

-5 6.737946999086907 ∗ 10−3 6.737946999085467 ∗ 10−3 2.6 ∗ 101 4

-10 4.539992947267379 ∗ 10−5 4.539992976248485 ∗ 10−5 2.8 ∗ 103 8

-15 3.062880133869493 ∗ 10−7 3.059023205018258 ∗ 10−7 3.4 ∗ 105 13
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Of course, the determination of accurate values of ex for x << 0 does not

present a real problem. By exploiting the relation ex = (e−x)−1, the computa-

tion of ex may be reduced to the computation of e−x, for which reliable values

may be obtained from the truncated Taylor series.

Such simple functional relationships are not always available. So our aim is

to find a method to avoid or at least to reduce these cancellation errors in

general.

2.4 A method to reduce cancellation errors

We are confronted with the question of how such cancellation problems can be

reduced. One idea is to modify the function f in such a way that, at least for

certain parts of the complex plane, the order of magnitude of the modified f̃

and µf̃ do not differ as much as the ones of the function f . Then the Taylor

sections sn(f̃ , z) can be computed with less cancellation, and an approximation

of f(z) may be obtained from sn(f̃ , z). Such a modification may consist in a

multiplication of f by an appropriate function ϕ which can be numerically

evaluated.

More precisely, the general idea is the following:

Suppose that S ⊂ C is a given set (where f is to be numerically evaluated).

i) Choose an appropriate (entire) function ϕ = ϕS so that

dfϕ(z) = log10 µfϕ(|z|)− log10 |f(z)ϕ(z)|

is “small” for z ∈ S and ϕ(z) 6= 0 in S.

ii) Take 1
ϕ(z)

sN(z),p(fϕ, z) (for N(z) sufficiently large) as an approximation

of f(z) for z ∈ S.

Of course, the question arises of how to choose ϕ appropriately. If f and ϕ

are of the same order ρ and one of them is of completely regular growth, then

(see Remark 2.10 iii)) we have

hfϕ = hf + hϕ. (2.17)
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Remark 2.13

More conveniently, using the definition (2.10) of the indicator function, we also

obtain equation (2.17) if there exists a dense subset M of ∂D, so that

hf (ϑ) = lim
r→∞

log |f(reiϑ)|
rρ

or hϕ(ϑ) = lim
r→∞

log |ϕ(reiϑ)|
rρ

for all ϑ ∈M.

With the help of (2.17), we get

δfϕ = τfϕ − hf − hϕ .

If S = {reiϑ : r ≥ 0, ϑ ∈ Θ} is given, then ϕ = ϕS should be chosen so that

max
ϑ∈Θ

δfϕ(ϑ) = max
ϑ∈Θ

(max
[−π,π]

(hf + hϕ)− hf (ϑ)− hϕ(ϑ))

is small (compare also the considerations in [Mue2]).

If ϕ is taken from a parametrized family Φ = {ϕ(a, ·) : a ∈ A}, we can try to

solve the problem

max
ϑ∈Θ

(max
[−π,π]

(hf + hϕ(a,·))− hf (ϑ)− hϕ(a,·)(ϑ)) → min
a∈A

. (2.18)

So we have considered a way to choose ϕ appropriately.

Now the question we are confronted with is how to numerically evaluate

sN(z),16(fϕ, z) in an efficient way. If we cannot find a closed form for the

resulting coefficients of f and ϕ by convolution, it will often be necessary to

find a recurrence relation for the coefficients. For this we need some basic

definitions and characteristics of the work with recurrence relations.

2.4.1 Recurrence relations

Recurrence relations are very interesting for computing special functions

because in many cases they are easy to implement and the computational

input is low. But often these methods are very susceptible to errors in numer-

ical computation, therefore it is important to know whether the recurrence

relation is numerically stable.
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Linear difference equations

In this section we give some basics about the theory of linear difference equa-

tions of second order. For this section we refer to [Te], pp. 335-342, [Ga2] and

[Wi].

A three-term recurrence relation

yn+1 + anyn + bnyn−1 = 0, (2.19)

for n = 1, 2, ... and given coefficients an and bn 6= 0, is called a linear homoge-

nous difference equation of second order.

For the general solution (yn) of the equation (2.19) we have

yn = pfn + qgn, (2.20)

and (fn), (gn) are two linearly independent solutions of (2.19), p and q are

constants independent of n.

In the following, we try to find solutions (fn), (gn) satisfying the condition

lim
n→∞

fn
gn

= 0. (2.21)

This condition implies

lim
n→∞

fn
yn

= 0

for any solution (yn) not being a constant multiple of (fn). If (yn) is not

proportional to (fn) we have q 6= 0, and therefore we get

lim
n→∞

fn
yn

= lim
n→∞

fn/gn
q + p(fn/gn)

= 0.

The set of all solutions (fn) of equation (2.19) having the property (2.21)

forms, if existent, a one-dimensional subspace of the space of all solutions.

There cannot be two linearly independent solutions (fn) and (f̃n) satisfying

condition (2.21). Such solutions are called minimal, any non-minimal solution

is called dominant.

The constants p and q can be computed by using the initial values y0, y1 as

well as f0, f1, g0, g1.

We get (note, that the denominators are different from zero when we have
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linearly independent solutions (fn), (gn))

p =
g1y0 − g0y1

f0g1 − f1g0

, q =
f1y0 − f0y1

f1g0 − f0g1

.

If we calculate such a sequence (fn) by the relation (2.19) using approximate

initial values y0 ≈ f0, y1 ≈ f1, caused by rounding errors for example, the

resulting solution (yn) will be in general linarly independent of the minimal

solution (fn).

So (2.21) implies ∣∣∣∣∣yn − fn
fn

∣∣∣∣∣→∞ (n→∞).

That means the relative error of the computed approximation (yn) for (fn)

tends to infinity. Hence, the numerical computation of minimal solutions turns

out to be delicate.

So the question arises of how the computation using such recurrence relations

can be numerically stable.

The idea (Miller algorithm) is to apply (2.19) in backward direction in order

to find the values f1, ..., fN for fixed integer N . We usually need starting values

fN and fN−1 for this, but for the Miller algorithm these starting values are not

required, as we will see in the following.

We assume that a convergent ”normalizing” series is known:

S :=
∞∑
k=0

ckfk 6= 0. (2.22)

Let ν > N a nonnegative integer, usually large, and compute a solution of

(2.19) for n = ν − 1, ν − 2, ..., 0 through

y
(ν)
n−1 = − 1

bn
(y

(ν)
n+1 + any

(ν)
n )

with the chosen initial values

y
(ν)
ν+1 = 0, y(ν)

ν = 1.

Whereas these initial values are not unique, only one of these must be different

from zero.

For n = 0, 1, ..., ν + 1 the computed solution is a linear combination of the

solutions (fn) and (gn) of the form

y(ν)
n = pνfn + qνgn,
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with coefficients

pν =
gν+1

gν+1fν − gνfν+1

, qν =
fν+1

gν+1fν − gνfν+1

.

With (2.21) we get

lim
ν→∞

y(ν)
n

pν
= fn − lim

ν→∞

fν+1

gν+1

gn = fn (n = 0, 1, ..., N). (2.23)

So y(ν)
n and pν give us an approximation for fn if ν is large enough, whereas pν

is in general unknown. But by using the normalizing series S, we can compute

an approximation for fn if ν is large enough, defining

f (ν)
n := y(ν)

n

S

S(ν)
(2.24)

with S(ν) defined by

S(ν) :=
ν∑
k=0

cky
(ν)
k .

Replacing y
(ν)
k by pνfk in S(ν) and using (2.23), we get the asymptotic relation

pν ∼ S(ν)/S.

So we can use f (ν)
n as an approximation for fn if the integer ν is large enough.

We call the algorithm convergent if

lim
ν→∞

f (ν)
n = fn

for n = 0, 1, ..., N . Sometimes an initial value f0 6= 0 is known. If y
(ν)
0 6= 0,

then (2.24) can be replaced by

f (ν)
n := y(ν)

n

f0

y
(ν)
0

. (2.25)

Of course, another question is the determination or estimation of a starting

index ν. For this we usually need some information on asymptotic estimates

of the dominant and the minimal solution. A very detailed investigation of the

Miller algorithm can be found in [Ga2]. Here, Gautschi considered asymptotic

estimates of the underlying special functions to obtain determinations of the

starting value of the backward recursion. Also, the influence of the choice of

the normalizing series is investigated.

Finally, we will look at an example which makes these problems clear and uses

a recurrence relation which will play an important role in the following chapter.
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Example 2.14

Let us consider the following three-term recurrence relation

(2n+ 1)(2n+ 2)yn+1 = (4 + 12n)yn − 8yn−1 (n = 1, 2, ...) (2.26)

with known initial values y0 = 1, y1 =
√
π/2. The results of the forward

recursion (ŷn) have been computed with a precision of 16 decimal digits

(MATLAB) using relation (2.26). The exact values (yn) have been produced

using exact arithmetic from iRRAM (see [Mue1]). The results are compared

in Table 2.1 where the underlined digits coincide with the correct ones.

n ŷn yn

0 1.000000000000000E+000 1.000000000000000E+000

1 7.267604552648375E-001 7.267604552648373E-0001

2 3.023472736864499E-001 3.023472736864498E-0001

3 8.838800070339661E-002 8.838800070339648E-0002

4 1.994181854721902E-002 1.994181854721895E-0002

5 3.665228431424621E-003 3.665228431424596E-0003

... ... ...

10 9.112388225874632E-008 9.112388225872194E-0008

... ... ...

20 9.958891087018652E-020 9.958891083304824E-0020

... ... ...

30 7.554710592297667E-034 7.554707104224064E-0034

... ... ...

40 2.142349065449608E-049 2.141187882624492E-0049

42 1.217332184619682E-052 1.214634895827316E-0052

44 6.334787999685751e-056 6.277762866654770E-0056

45 1.405382835570240e-057 1.380038332000917E-0057

46 3.078657699180013e-059 2.968464205400354E-0059

... ... ...

Table 2.1: Approximative solution ŷn and exact values yn

using (2.26) (forward computation).



Taylor Sections of Entire Functions: Cancellation and How to Reduce It 25

We can see that, if n = 30, we already have a loss of 11 exact digits, and if

n = 46, all digits are incorrect.

As we have mentioned above, one idea (Miller algorithm) is to compute ŷ(ν)
n

using relation (2.26) again, but now in backward direction. We may start with

the values ŷ
(ν)
K = 1 and ŷ

(ν)
K+1 = 0 (K large enough) and then the exact values

are obtained by rescaling with factor y0/ŷ
(ν)
0 = 1/ŷ

(ν)
0 .

To illustrate the importance of the starting index, we show two numerical

examples; in the first example we have chosen ν = 60 as the starting index

with ŷ
(60)
61 = 0 and ŷ

(60)
60 = 1, in the second one we have chosen ν = 100 as the

starting index with ŷ
(100)
101 = 0 and ŷ

(100)
100 = 1 (see Table 2.2).
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Chapter 3

The Computation of

Mittag-Leffler and Confluent

Hypergeometric Functions by

Modified Taylor Series

In the second chapter we developed a general method for computing entire

functions in several parts of the complex plane.

Now, in this chapter, we consider special functions, in particular the class of

Mittag-Leffler and confluent hypergeometric functions. Both classes include

many important special functions. We will consider the error function and the

incomplete gamma function in detail. Using the ideas described in Chapter 2,

we will see that the partial sums of the resulting series expansions are easily

computable and the problem of cancellation errors is considerably reduced

compared to the corresponding Taylor sections.

27
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3.1 Mittag-Leffler and confluent hypergeo-

metric functions

First of all, we give some basic definitions and characteristics of the Mittag-

Leffler and the confluent hypergeometric functions.

Definition 3.1

For α > 0, β ∈ C the functions

M(α, β; z) :=
∞∑
ν=0

zν

Γ(αν + β)
(z ∈ C) (3.1)

are called generalized Mittag-Leffler functions.

For β = 1 the functions

M(α; z) := M(α, 1; z) (z ∈ C) (3.2)

are briefly called Mittag-Leffler functions.

For certain values of the parameters α and β the functions M(α, β; z) reduce

to elementary functions. For example we have

M(1; z) = ez, M(2;−z2) = cos z (z ∈ C), (3.3)

M(2; z) = cosh
√
z, M(2, 2; z) =

sinh
√
z√

z
(z ∈ C). (3.4)

The functions M(α; z) have been introduced in 1903 by Mittag-Leffler as a

generalisation of the exponential function.

We also consider the confluent hypergeometric functions with their basic prop-

erties. In order to define the confluent hpergeometric functions, which are also

called Kummer functions, we start with the Gaussian hypergeometric equation

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0, (3.5)
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with its singularities z = 0, z = 1 and z = ∞.

For ξ ∈ C and ν ∈ N the Pochhammer symbol is defined by

(ξ)ν = ξ(ξ + 1)(ξ + 2) · · · (ξ + ν − 1), (ξ)0 = 1.

The equation, given in (3.5), is solved by the Gaussian hypergeometric func-

tions w = F (a, b, c; z), defined by

F (a, b, c; z) =
∞∑
ν=0

(a)ν(b)νz
ν

(c)νν!
(|z| < 1) (3.6)

with complex parameters a, b and c where c 6∈ (−N0).

We obtain the confluent hypergeometric functions when two of the singulari-

ties of (3.5) merge into one singularity (”confluence” of two singularities). In

order to describe this formal process, we consider the hypergeometric functions

F (a, b, c; z/b) which have a singularity at z = b.

We define

Φ(a, c; z) = lim
b→∞

F (a, b, c; z/b). (3.7)

Since we have

lim
b→∞

(b)n
bn

= 1,

the computation of the limits of the terms of the power series (3.6) finally yields

the power series representation of the confluent hypergeometric functions of

the first kind

Φ(a, c; z) =
∞∑
ν=0

(a)νz
ν

(c)νν!
(z ∈ C) (3.8)

with complex parameters a and c, where c 6∈ (−N0).

An important functional relation, namely

Φ(a, c; z) = ezΦ(c− a, c;−z), (3.9)

is called Kummer transformation.

From their series expansions the following connection between the Mittag-

Leffler and the confluent hypergeometric functions can be seen easily:

Φ(1, α+ 1; z) = αΓ(α)M(1;α+ 1; z). (3.10)
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In the following sections our aim is to characterize the Mittag-Leffler and the

confluent hypergeometric functions, especially their gowth will be considered.

3.1.1 Order and Type

The order and type of entire functions (see (2.4) and (2.5)) are important

quantities to characterize the functions and, as we have seen in the second

chapter, they play an essential role if we want to quantify the problem of

cancellation.

With the help of the Theorem 2.7 we immediately see that the generalized

Mittag-Leffler functions M(α, β; z) are entire functions of the order 1/α and

type 1 for all β ∈ C.

Indeed: By using the Stirling formula

Γ(αn+ β) =
√

2π (αn)αn+β−1/2 e−αn (1 + o(1)) (n→∞), (3.11)

we obtain

ρ = lim sup
n→∞

log n

−log|1/Γ(αn+ β)|1/n
= 1/α

and

τ = lim sup
n→∞

nα

e

∣∣∣∣∣ 1

Γ(αn+ β)

∣∣∣∣∣
1/(αn)

= 1.

Using Theorem 2.7 again, we obtain that the confluent hypergeometric func-

tions Φ(a, c; z) are entire functions of the order ρ = 1 and type τ = 1.

Indeed: With the use of the asymptotic representation of the Pochhammer

symbol

(ξ)n+1 ∼
nξn!

Γ(ξ)
(n→∞),

and a simplified version of the Stirling formula

(n!)1/n ∼ n

e
(n→∞),
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we obtain

ρ = lim sup
n→∞

logn

−log|(a)n/((c)nn!)|1/n
= 1

and

τ = lim sup
n→∞

n

e

∣∣∣∣∣ (a)n
(c)nn!

∣∣∣∣∣
1/n

= 1.

3.1.2 Asymptotic expansions and Indicator Functions

Further, we need some information about the functions for large arguments

z in modulus. For this we first look at the asymptotic expansions of the

Mittag-Leffler and the confluent hypergeometric functions. After that, using

the asymptotic expansions, we can find the indicator functions which reflect

the asymptotic growth behaviour in a rather coarse manner. As we have

seen in the second chapter, the indicator functions are of great importance to

quantify and reduce cancellation problems.

At first, the definition and fundamental properties of asymptotic expansions

are given.

Definition 3.2

Let
∞∑
ν=0

aνz
ν be a formal power series and S ⊂ C an unbounded region, and

let f : S → C be a function such that

f(z) =
n−1∑
ν=0

aν
zν

+Rn(z) (3.12)

where we have for each fixed n ∈ N

Rn(z) = O(1/|z|n) (z →∞ in S). (3.13)

Then we call the series
∞∑
ν=0

aνz
−ν an asymptotic expansion of f(z) in S and

write

f(z) ∼
∞∑
ν=0

aν
zν

(z →∞ in S). (3.14)

If the series
∞∑
ν=0

aνz
−ν converges for all sufficiently large |z|, then it is the

asymptotic expansion of its sum without restriction to arg(z).

We give a necessary and sufficient condition for the existence of asymptotic
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expansions.

Remark 3.3

If and only if we have for all n ∈ N0

zn
(
f(z)−

n−1∑
ν=0

aν
zν

)
→ an (z →∞ in S), (3.15)

the function f(z) has an asymptotic expansion of the form (3.14).

This implies that the sequence (an) is uniquely determined. Therefore, every

function f can have at most one asymptotic expansion in S.

Asymptotic expansions of Mittag-Leffler and confluent hypergeo-

metric functions

For the asypmtotic expansions of Mittag-Leffler functions M(α, β; z) we refer

to [DZ]. The results are composed in the following two theorems for the cases

α < 2 and α ≥ 2.

Theorem 3.4

Let 0 < α < 2, z, β ∈ C be given and

απ

2
< ϕ < min {π, απ}.

For each N ∈ N und |z| −→ ∞ we get:

a) If S = {z : |arg z| ≤ ϕ}, we have

M(α, β; z) =
1

α
z(1−β)/αez

1/α −
N∑
k=1

z−k

Γ(β − kα)
+RN(z) (3.16)

with

RN(z) → 0 (z →∞ in S).

b) If S = {z : ϕ ≤ |arg z| ≤ π}, we have

M(α, β; z) = −
N∑
k=1

z−k

Γ(β − kα)
+RN(z) (3.17)

with

RN(z) → 0 (z →∞ in S).
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Theorem 3.5

Let α ≥ 2, z, β ∈ C and N ∈ N be given. Then, we have:

M(α, β; z) =
1

α

∑
h∈A(z)

(
z1/αe2πih/α

)(1−β)
ee

i2πh/αz1/α −
N∑
k=1

z−k

Γ(β − kα)
+RN(z),

with

A(z) = {h : h ∈ Z, |arg z + 2πh| ≤ απ

2
}

and

RN(z) → 0 (z →∞).

For the asypmtotic expansions of the confluent hypergeometric functions

Φ(a, c; z) we refer to [AS].

Theorem 3.6

For fixed parameters a and c we have

Φ(a, c; z) =
Γ(c)

Γ(c− a)

eiπa

za

N1∑
k=0

(a)k(a− c+ 1)k

k!(−z)k
+O(|z|−1−N1) (3.18)

+
Γ(c)

Γ(a)
ezza−c

N2∑
k=0

(c− a)k(1− a)k

k!zk
+O(|z|−1−N2) (z →∞ in S)

with

S = {z : −1

2
π < arg z <

3

2
π}.

It should be mentioned that the term on the right hand side of the formulas

(3.16) and (3.18) results in the expontial function for the special cases of

α = β = 1 and a = c. In this cases the term on the right hand side of the

formula (3.17) results in 0.

Indicator functions of Mittag-Leffler and confluent hypergeometric

functions

Using the definition of the indicator function (see (2.10)) and the asymptotic
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expansions, given in the theorems above, the indicator functions of the Mittag-

Leffler and the confluent hypergeometric functions can be obtained.

The indicator functions of the Mittag-Leffler functions for α, β 6= 1 are given

as

hM(α,β;·)(ϑ) =

 cos(ϑ/α) , |ϑ| ≤ απ/2

0 , else
, (3.19)

and for the indicator functions of the confluent hypergeometric functions for

a 6= c we find

hΦ(a,c;·)(ϑ) =

 cos(ϑ) , |ϑ| ≤ π/2

0 , else
. (3.20)

3.2 Special cases of Mittag-Leffler and conflu-

ent hypergeometric functions

As we have mentioned above, the classes of Mittag-Leffler and confluent

hypergeometric functions include many important special functions.

Thus, at first we give a short summary of certain special functions as well

as their connections to the Mittag-Leffler and the confluent hypergeometric

functions.

Error functions

The error functions play an important role in statistics and probability theory.

The error function erf and complementary error function erfc are defined by

erf(z) =
2√
π

∫ z

0
e−t

2

dt (z ∈ C),

erfc(z) = 1− erf(z) (z ∈ C),

and the relations to the Mittag-Leffler and the confluent hypergeometric func-

tions are

erf(z) = z Φ(
1

2
,
3

2
;−z2), (3.21)

erfc(−z) = M(1/2; z)e−z
2

. (3.22)
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Here we can also mention DAWSON’s function given by

daw(z) =

√
π

2i
e−z

2

erf(iz) = e−z
2
∫ z

0
et

2

dt (z ∈ C)

and the FADEEWA function

ω(z) = M(1/2; iz) (z ∈ C).

Incomplete gamma functions

The incomplete gamma function is defined by

γ(α, z) =
∫ z

0
tα−1e−t dt (Re(α) > 0).

For the numerical evaluation of γ(α, x) for x ≥ 0 and α ∈ R see Gautschi

[Ga3].

The connections with the Mittag-Leffler and the confluent hypergeometric

functions are

γ(α, z) =
zα

α
e−zΦ(1, α+ 1; z), (3.23)

γ(α, z) = zαe−zΓ(α)M(1;α+ 1; z). (3.24)

3.3 The computation of the error function

In the following section we consider the complementary error function in

detail and we look at the cancellation errors which occur if we compute this

function using series expansions. With the help of the method described in

Section 2.4, we will see that the problem of cancellation errors is considerably

reduced compared to the corresponding Taylor sections.

Suppose now that

f(z) = erfc(−z) = 1 + erf(z) = M(1/2, z)e−z
2

.

Considering this connection with the Mittag-Leffler functions, we obtain that

ρf = 2 and with (3.19) we have the indicator function given as

hf (ϑ) =

 0 , |ϑ| ≤ π/4

− cos(2ϑ) , |ϑ| > π/4
.
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Figure 3.1: Indicator function of f(z) = erfc(−z).

In Poppe’s and Wijers’ Algorithm 680 for the computation of the error function

(see [PW1], [PW2]), which is based on Gautschi’s algorithm [Ga1] and which

may be viewed as a benchmark for algorithms concerning the evaluation of the

complex error function (see, e.g., [Wei]), truncation of the Taylor series

f(z) = 1 + erf(z) = 1 +
2√
π

∞∑
ν=0

(−1)νz2ν+1

(2ν + 1)ν!
(3.25)

is performed in the second quadrant

S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π}

and for |z| = r sufficiently small.

Moreover, the calculation in the remaining quadrants is reduced to the second

one by elementary operations.

According to the considerations in (2.13), we are faced with a loss of significant

decimal digits of about

δf (ϑ)r2/ log(10) =

 r2/ log(10), |ϑ| ≤ π/4,

(1 + cos(2ϑ))r2/ log(10) , |ϑ| > π/4,

for z = reiϑ and r large.

So, in S, the Taylor sections behave well on the imaginary axis, and the “worst

case” appears in a neighborhood of the negative semiaxis (where erfc(−z) is

very small).
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Figure 3.2: 16− δf (ϑ)r2/ log(10) in the second quadrant S.

Figure 3.2 shows the values of 16−δf (ϑ)r2/ log(10) which, according to (2.13),

may be viewed as a theoretical measure for the exact digits if computations are

performed in floating point arithmetic with fixed precision of 16 decimal digits.

Figure 3.3: ef,sN(z),16(f,·)(z) in S.

Moreover, Figure 3.3 shows ef,sN(z),16(f,·)(z), where

ef,g(z) := − log10

(
|f(z)− g(z)|

|f(z)|

)
, (3.26)

that is, the decimal logarithm of the relative error when replacing f(z) by

sN(z),16(f, z). Once again, the value ef,sN(z),16(f,·)(z) measures approximately

the smaller one of the two numbers of exact digits of the real part and the

imaginary part of f(z) if f(z) is approximated by sN(z),16(f, z) and the com-

putations are performed in double precision arithmetic providing an accuracy

of about 16 decimal digits.
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The reference values for f(z) were produced using exact arithmetic from iR-

RAM (see [Mue1]) again. Since the usual accuracy requirement of special

function routines is 15 digits in double precision, we have cut off the error at a

level of 15 digits. Therefore, all values on the 15-digit level represent approxi-

mations within the usual tolerance.

The numerical results shown in Figure 3.3 essentially fit the theoretical values

from Figure 3.2 and thus support the above considerations on the loss of exact

decimal digits.

So we are confronted with the question of how cancellation problems can be

reduced. Now, we take a look at the method described in Section 2.4.

Since f is of order 2, an evident choice for Φ is

Φ = {ϕ(a, ·) : a ∈ A} , ϕ(a, z) := eaz
2

(z ∈ C),

where A ⊂ C. We (first) restrict our investigations to the case A = R. Then

hϕ(a,·)(ϑ) = a cos(2ϑ) (ϑ ∈ [−π, π]),

and thus, according to Remark 2.10 iii),

(hf + hϕ(a,·))(ϑ) =

 a · cos(2ϑ) , |ϑ| ≤ π/4,

(a− 1) cos(2ϑ) , |ϑ| > π/4.

In particular, we obtain

max
[−π,π]

(hf + hϕ(a,·)) = max(a, |a− 1|) =: τ(a)

and so the optimization problem (2.18) here reads as

max
ϑ∈Θ

(
τ(a)− (hf + hϕ(a,·))(ϑ)

)
→ min

a∈R
. (3.27)

If Θ contains one of the points ±π/4 or ±3π/4 (where hf − hϕ(a,·) vanishes),

then obviously the maximum in (3.27) is ≥ τ(a), which is minimal exactly for

a = 1/2. For a = 1/2 and |ϑ| ≤ 3π/4 we find

τ(a)− (hf + hϕ(a,·))(ϑ) =
1

2
(1− | cos(2ϑ)|) ≤ 1

2
,

so a = 1/2 turns out to be the (unique) solution of (3.27) for all subsets Θ of

the interval [−3π/4, 3π/4], with {±π/4,±3π/4} ∩Θ 6= ∅.
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As already mentioned above, in the algorithm of Poppe and Wijers, truncation

of the Taylor series

f(z) = 1 +
2√
π

∞∑
ν=0

(−1)νz2ν+1

(2ν + 1)ν!
(3.28)

is performed in the second quadrant S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π} and

for |z| = r sufficiently small.

The advice is to use Taylor sections of

(fϕ)(z) := f(z)ϕ
(1

2
, z
)

= erfc(−z)ez2/2 (3.29)

instead. The following figures show the indicator function of fϕ and the cor-

responding approximation for the number of exact digits.

Figure 3.4: Indicator functions of fϕ (solid curve) and f (dotted curve).

Figure 3.5: 16−δfϕ(ϑ)r2/ log(10) (solid line) and 16−δf (ϑ)r2/ log(10) (dotted

line) in the second quadrant S.
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For the computation of the Taylor sections of (3.29) it is important to have a

reasonable representation for the coefficients.

Theorem 3.7

For z ∈ C we have

(fϕ)(z) = f(z)ϕ(
1

2
, z) =

∞∑
ν=0

bνz
ν , (3.30)

with

bν =


1
l!2l

if ν = 2l,

1
Γ(l + 3/2) 2l

l∑
k=0

(
k − 1/2

k

)
(−1)k if ν = 2l + 1.

(3.31)

Proof: From (3.22) we have the relation

erfc(−z) = M(1/2; z)e−z
2

.

Hence, in terms of the Cauchy product we get

f(z)ϕ
(1

2
, z
)

= M(1/2; z)e−
1
2
z2 =

∞∑
ν=0

bνz
ν ,

with

bν =


1
l!2l

if ν = 2l,

1
Γ(l + 3/2)

l∑
k=0

(
l + 1/2

k

)(−1

2

)k
if ν = 2l + 1.

(3.32)

So it remains to consider the case ν = 2l + 1.

The binomial theorem and an index shift show that for x ∈ R, z ∈ C, and

n ∈ N0, we have

n∑
k=0

(
x− n+ k

k

)
zk(1 + z)n−k =

n∑
µ=0

zµ
µ∑
k=0

(
x− n+ k

k

)(
n− k

µ− k

)
.

Furthermore, we obtain for a, b ∈ C, µ ∈ N0

µ∑
k=0

(
a+ k

k

)(
b+ µ− k

µ− k

)
=

(
a+ b+ µ+ 1

µ

)
.

Setting a = x− n, b = n− µ, we have

n∑
k=0

(
x+ 1

k

)
zk =

n∑
k=0

(
x− n+ k

k

)
zk(1 + z)n−k. (3.33)
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Then applying (3.33) and setting x = l − 1/2, n = l, z = −1/2 in (3.32), we

finally get the assertion. �

For

mk :=

(
k − 1/2

k

)

we have mk+1 =
k + 1/2

k + 1
mk, k ∈ N0. Thus, the sum

l∑
k=0

(
k − 1/2

k

)
(−1)k in

(3.30) and therefore also the Taylor coefficients bν of (3.29) can be evaluated

recursively (note that Γ(l + 3
2
) = (l + 1

2
)(l − 1

2
) . . . 1

2

√
π).

Even more suitable for numerical purposes is the two-term recursion

(ν + 1)(ν + 2)bν+2 = bν + bν−2, b−2 := b−1 := 0, b0 = 1, b1 =
2√
π

for the coefficients bν , which may be found by applying the above relations

twice. More directly, this recursion follows from the fact that F := fϕ satisfies

the differential equation F ′′ = (1 + z2)F .

We take 1
ϕ(z)

sN(z),16(fϕ, z) (for N(z) sufficiently large) as an approximation of

f(z) for z ∈ S of small modulus and compare the results with the exact values

of f(z), which again were produced using exact arithmetic (iRRAM).

Figure 3.6: ef,sN(z),16(fϕ,·)/ϕ(z) (solid line), ef,sN(z),16(f,·)(z) (dotted line) in S.

The numerical results shown in Figure 3.6 support our theoretical considera-

tions which are illustrated in Figure 3.5 and demonstrate the advantages of
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this method compared to the computation of the Taylor sections of f (see

Figures 3.2 and 3.3).

Although there is an improvement, the Taylor sections of fϕ also turn out

to be numerically unstable with respect to cancellation near the negative axis

where δfϕ is maximal (cf. Figure 3.4). So the question arises, if there is an

appropriate entire function ψ such that δfψ(ϑ) is smaller than δfϕ(ϑ) for ϑ ≈ π.

If we take

ψ(z) = erfc(z) e2z
2

,

then we obtain for the indicator function of fψ, using Remark 2.13 and (3.19),

hfψ(ϑ) =

 0 , π/4 ≤ |ϑ| ≤ 3π/4

cos(2ϑ) , else
,

and therfore δfψ(π) = 0.

Figure 3.7: Indicator functions of fψ (solid curve) and f (dotted curve).

Figure 3.8: 16− δfψ(ϑ)r2/ log(10) (solid), 16− δf (ϑ)r2/ log(10)(dotted) in S.
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Thus it is reasonable to take 1
ψ(z)

sN(z),16(fψ, z) as an approximation of f(z),

in particular, close to the negative real axis. The multiplication by 1/ψ(z)

in the second quadrant S requires the evaluation of erfc(w) in the fourth (or

the first) quadrant. In this part of the plane the Taylor sections of fϕ from

(3.29) turn out to be sufficiently well behaved. So we actually replace ψ(z) by

ψ̃(z) := e2z
2
sN(−z),16(fϕ,−z)/ϕ(−z).

In order to find the Taylor coefficients of fψ with respect to the origin, we just

have to apply the Cauchy product again. This leads to

(fψ)(z) = erfc(−z)ψ(z) = M(1/2; z) M(1/2; z) =
∞∑
ν=0

cνz
ν , (3.34)

with

cν =


0 if ν is odd,
ν∑

µ=0

(−1)µ

Γ(1
2
µ+ 1)Γ(1

2
(ν − µ) + 1)

if ν is even.
(3.35)

As in the case of fϕ above, the coefficients cν , ν even, can be evaluated by

recursion.

Setting r := ν/2, we write

dr :=
2r∑
µ=0

(−1)µ

Γ(1
2
µ+ 1)Γ(r + 1− 1

2
µ)

(r ∈ N0).

We get

dr =
2r

r!
− sr−1, (3.36)

with

sn :=
n∑
ν=0

1

Γ(ν + 3
2
)Γ(n− ν + 3

2
)

(n ∈ N0), and s0 =
4

π
.

Then we can obtain that

sn+1 =
2

n+ 2
sn +

1

(n+ 2)Γ(3
2
)Γ(n+ 5

2
)

(n ∈ N0), and s0 =
4

π
. (3.37)

If we understand (3.37) as a difference equation, we get

sn =
2n

(n+ 1)!

n∑
ν=0

ν!

2νΓ(3
2
)Γ(ν + 3

2
)
. (3.38)

For the recursion to evaluate the coefficients dr we obtain

dr+1−
2

r + 1
dr =

2r+1

(r + 1)!
− sr−

2r+1

(r + 1)!
+

2

r + 1
sr−1 = − 1

(r + 1)Γ(3
2
)Γ(r + 3

2
)
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and therefore

dr+1 =
2

r + 1
dr −

2

(r + 1)π

r∏
ν=0

2

2ν + 1
(r ∈ N0), and d0 = 1. (3.39)

It turns out, however, that this recursion (3.39) tends to be unstable if per-

formed upwards. Fortunately, this problem no longer occurs if we apply it in

the backward direction, that is, we compute with an appropriate starting value

dR(z) (or an approximation d̃R(z))

dr =
r + 1

2
dr+1 +

1

π

r∏
ν=0

2

2ν + 1

for r = R(z)− 1, . . . , 1, 0.

Of course, in this case the question arises of how to get the starting value.

Since dr tends to 0 very rapidly as r tends to ∞, it is possible to simply take

d̃R(z) = 0 for R(z) sufficiently large.

In our case suitable values of R(z) could be computed explicitly by using the

representation

dr =
4

πr!

1∫
0

(1− ξ2)r

1 + ξ2
dξ (r ∈ N0), (3.40)

which results from (3.36) and (3.38) after some routine calculations employing

Euler’s Beta integral.

From (3.40) we also have the estimate

√
r r! dr ≤

2√
π

(3.41)

being asymptotically sharp as r →∞.

Similarly as in the case of fϕ, a two-term recursion for the coefficients cν can

be obtained from the fact that the function G := fψ satisfies the differential

equation

G′′ = 4(1− 2z2)G+ 6zG′ − 8

π
,

namely,

(ν + 1)(ν + 2)cν+2 = (4 + 6ν)cν − 8cν−2.
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This recursion equals the recursion (2.26) we considered in the first chapter

in detail. We know this recursion is again stable (only) in the backward

direction. The exact value c0 = 1 is known, and so the backward recurrence

may be started with the values ĉK = 1 and ĉK+2 = 0 (for K large enough).

Then the exact values are obtained by rescaling with factor c0/ĉ0 = 1/ĉ0 as

we have seen in Example 2.14.

The numerical results shown in the Figure 3.9 demonstrate the efficiency of

the proposed method for the evaluation of f(z) in particular near the negative

real axis.

Figure 3.9: ef,sN(z),16(fψ,·)/ψ̃(z) (solid line), ef,sN(z),16(f,·)(z) (dotted line) in S.

It turns out that a further improvement concerning the accuracy is possible.

Using Remark 2.13 and (3.19), multiplication of fψ with ϕ(−1/2, z) = e−z
2/2

results in the indicator function

hfψϕ(−1/2,·)(ϑ) =
1

2
| cos(2ϑ)| .

The above theory shows that fψϕ(−1/2, ·) shares the advantages of fϕ and

fψ concerning the reduction of cancellation.

We were, however, not able to find a reasonable recursion relation for the co-

efficients, and, unfortunately, the computation from the coefficients of fψ and

ϕ(−1/2, ·) by convolution leads again to cancellation. So it seems necessary to

evaluate the coefficients using exact arithmetic and then to implement them

as data.
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If we agree with the same disadvantage, then we can do even better in the area

in which we are interested, namely, near the line arg(z) = 3π/4.

With

a := e3πi/4 − 1/2

and ϕ(a, z) = eaz
2
, we obtain for fψϕ(a, ·) the indicator function

hfψϕ(a,·)(ϑ) = hfψϕ(−1/2,·)(ϑ) + cos(2ϑ− 3π/2)

(see Figure 3.10), which is comparably ”large” for ϑ ≈ 3π/4.

Figure 3.10: Indicator function of fψϕ(a, ·).

3.4 The computation of the incomplete

gamma function

In the following section we consider the incomplete gamma function and we

look at the relation to the Mittag-Leffler functions (see (3.24))

γ(α, z) = zαe−zΓ(α)M(1, α+ 1; z).

Considering this equation, we will analyse the cancellation errors of the

function M(1, β; z) especially in the area near the negative axis.

Using the method described in Section 2.4, we will see that the cancellation

problem is again strictly reduced compared to the corresponding Taylor
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sections and that the partial sums are easily computable.

We are not interested in the special case of M(1, β; z) being the exponential

function. So for the following considerations we always assume that β 6= 1.

Suppose that

f(z) := M(1; β; z) =
∞∑
k=0

zk

Γ(k + β)
.

Then we have already seen that ρf = 1 and for the indicator function (see

(3.19)) we have

hf (ϑ) =

 cos(ϑ) , |ϑ| ≤ π/2

0 , |ϑ| > π/2
.

Figure 3.11: Indicator function of f(z) = M(1; β; z).

Again we consider the second quadrant

S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π}

for |z| = r sufficiently small, especially the area near the negative axis.

According to the considerations in (2.13), we are faced with a loss of significant

decimal digits of about

δf (ϑ)r/ log(10) =

 (1− cos(ϑ))r/ log(10), |ϑ| ≤ π/2

r/ log(10) , |ϑ| > π/2

for z = reiϑ and r large. So the Taylor sections do not behave well in the

whole quadrant S, except for a small neighborhood of the origin.

Using the ideas which are described in Section 2.4, we have to solve the question



The Computation by Modified Taylor Series 48

if there is an appropriate entire function ψ such that δfψ(ϑ) is smaller than

δf (ϑ) for ϑ ≈ π.

If we take

ψ(z) = M(1, β,−z),

then we obtain for the indicator function of fψ with the help of Remark 2.13

and (3.19)

hfψ(ϑ) = |cos(ϑ)|,

and therfore δfψ(π) = 0.

Figure 3.12: Indicator function of fψ.

Figure 3.13: 16−δfψ(ϑ)r/ log(10) (solid line), 16−δf (ϑ)r/ log(10)(dotted line)

in S.

Thus, it is reasonable to take 1
ψ(z)

sN(z),16(fψ, z) as an approximation of f(z),

in particular, close to the negative real axis. The multiplication by 1/ψ(z) in

the second quadrant S requires the evaluation of M(1, β, z) in the fourth (or

the first) quadrant. In this part of the plane the Taylor sections of f turn out

to be sufficiently well behaved.
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It has to be noticed that all these considerations are independent from the

parameter β.

In order to find the Taylor coefficients of fψ with respect to the origin, we just

have to apply Cauchy product again. This leads to

(fψ)(z) = M(1, β; z) M(1, β;−z) =
∞∑
ν=0

cνz
ν , (3.42)

with

cν =


0 , if ν is odd,

1

(ν/2 + β − 1)Γ(β − 1)Γ(ν + β)
, if ν is even.

(3.43)

Indeed, setting r := ν/2 and applying Cauchy product, we have to prove that

for r ∈ N0 and β ∈ C

2r∑
k=0

(−1)k

Γ(k + β)Γ(2r − k + β)
=

1

(r + β − 1)Γ(β − 1)Γ(2r + β)
. (3.44)

Therefore we need the following equality which can be proved by induction

n∑
ν=0

(−1)ν
(
α

ν

)
= (−1)n

(
α− 1

n

)
. (3.45)

At first we want to prove (3.44) for r ∈ N0 and β ∈ N.

If β = 1, the identity follows easily.

For β = l + 1 ≥ 2 an index shift show that

2r∑
k=0

(−1)k

(k + l)!(2r − k + l)!
=

(−1)l

(2r + 2l)!

2r+l∑
ν=l

(−1)ν
(

2r + 2l

ν

)
.

This sum can be split up to

(−1)l

(2r + 2l)!

(
2r+l∑
ν=0

(−1)ν
(

2r + 2l

ν

)
−

l−1∑
ν=0

(−1)ν
(

2r + 2l

ν

))
. (3.46)

Applying (3.45), we can write (3.46) as

(−1)l

(2r + 2l)!

(
(−1)2r+l

(
2r + 2l − 1

2r + l

)
− (−1)l−1

(
2r + 2l − 1

l − 1

))
.
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Finally we can reduce this to

1

(2r + 2l)!

(
(2r + 2l − 1)!

(2r + l)!(l − 1)!
+

(2r + 2l − 1)!

(2r + l)!(l − 1)!

)
=

1

(r + l)Γ(2r + l + 1)Γ(l)
.

Equation (3.44) gives us

2r∑
k=0

(−1)k(2r+β−1)...(2r−k+β)(r+β−1)(k+β)...(2r+β−1) =
2r∏
ν=0

(ν+β−1).

Now the assertion follows with the identity theorem for polynomials.

The following numerical results shown in Figure (3.14) support our theoretical

considerations which are illustrated in Figure (3.13) and demonstrate the

advantages of this method compared to the computation of the Taylor sections

of f .

Figure 3.14: ef,sN(z),16(fψ,·)/ψ̃(z) in S (rem. ψ̃(z) = sN(−z),16(ψ,−z)).

Finally, we give some ideas of how the evaluation of the function

f(z) = M(1, β; z) in the second quadrant S can be improved.

Remark 3.8

i) Similar to the considerations in the case of the complementary error

function it turns out that a further improvement concerning the accuracy

of the computation of f is possible.

The multiplication of f by ϕ(z) = e−z/2 results with the help of Remark
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2.10 iii) in the indicator function

hfϕ =
1

2
|cos(ϑ)|.

Obviously, fϕ itensifies the advantages of fψ which are illustrated in

Figure 3.13.

Unfortunately, the computation of the coefficients of f and ϕ by convolu-

tion leads to cancellation again, and we were not able to find a reasonable

recursion relation for the coefficients.

So it seems necessary to evaluate the coefficients with the help of exact

aritmetic and implement them as data.

ii) Another way to evaluate the incomplete gamma function in several parts

of the second quadrant S is the use of the Kummer transformation, which

has been mentioned in (3.9).

3.5 The Computation of Mittag-Leffler and

confluent hypergeometric functions for

more general parameters

We consider similar ideas which we have applied to the special cases of f

being the complementary error function or the incomplete gamma function

for Mittag-Leffler and hypergeometric functions for more general parameters.

Let us first take a look at the Mittag-Leffler functions M(α; z), defined in (3.2).

We already have seen that the functions M(α; z) are entire functions of the

order ρα = 1/α.

The indicator function for α 6= 1 is given explicitely in (3.19) as

hM(α;·)(ϑ) =

 cos(ϑ/α) , |ϑ| ≤ απ/2

0 , else.
.

Let us consider the case of α ∈ N, α 6= 1.

Resulting from the considerations in Chapter 2, it may be of advantage to use
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the Taylor sections

(fϕ)(z) := M(1/α; z)e−
1
α
zα

(α ∈ N, α > 2) (3.47)

in several parts of the complex plane. Analogous considerations as in Theorem

3.7 give us for z ∈ C

(fϕ)(z) = M(1/α; z)e−
1
α
zα

=
∞∑
ν=0

bνz
ν , (3.48)

with

bν =


(α− 1)l

αll!
, if ν = αl, l ∈ N,

(α− 1)l

αlΓ(l + 1 + rα)

l∑
k=0

(
k − 1 + r/α

k

)
(−1)k

(α− 1)k
, if ν = αl + r, 0 ≤ r < α.

(3.49)

For

mk :=

(
k − 1 + r/α

k

)
1

(α− 1)k

we have

mk+1 =
k + r/α

(k + 1)(α− 1)
mk (k ∈ N0).

Thus, the sum
l∑

k=0

(
k − 1 + r/α

k

)
(−1)k

(α− 1)k

and also the Taylor coefficients bν of (3.49) can be evaluated recursively.

Finally we tried to apply this method for the general case α ∈ R. However,

there was the problem of how an adequate function ϕ can be found, sat-

isfying the conditions described in Section 2.4. So, this is still an open problem.

Also we want to look at the confluent hypergeometric functions Φ(a, c; z) (see

(3.8)) for more general parameters.

The indicator function for a 6= c is given in (3.20) as

hΦ(a,c;·)(ϑ) =

 cos(ϑ) , |ϑ| ≤ π/2

0 , else
. (3.50)
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Figure 3.15: Indicator function of f(z) = Φ(a, c; z).

The Taylor sections only behave well on the positive real axis. In the whole

second quadrant

S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π}

we have δΦ(a,c;·)(ϑ) = 1 (see (2.12)) and so in this area the cancellation

problem causes a great loss of significant decimal digits.

According to the considerations in Chapter 2, the advice is to use Taylor

sections of

(fϕ)(z) := Φ(a, c; z)e−z/2. (3.51)

Figure 3.16: Indicator functions of fϕ (solid curve) and f (dotted curve).

Using MATHEMATICA, we find the following representation for the coeffi-

cients to compute the Taylor sections:

n∑
k=0

(−1/2)k(a)n−k
(c)n−kk!(n− k)!

=
2(1−c−n)Γ(c)Γ(a+ n)F (1− a, 1− c− n, 1− a− n;−1)

Γ(a)Γ(1 + n)Γ(c+ n)
,

where F is the hypergeometric function defined in (3.6).

For known values of the hypergeometric function for certain parameters, we
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can compute the coefficients in this way and it is possible to compute the

Kummer function near the negative real axis without cancellation.

Although there is an improvement, the Taylor sections of fϕ also turn out to

be numerically unstable with respect to cancellation near the imaginary axis

where δfϕ is maximal (cf. Figure 3.5). So the question arises again if there

is an appropriate entire function ψ such that δfψ(ϑ) is smaller than δfϕ(ϑ)

for ϑ ≈ π/2. For this we can use similar methods we used to compute the

complementary error function (cf. Figure 3.10). We should use a function

ψ(a, z) = eaz, a ∈ C and find the parameter a in such a way that δfψ(ϑ) is

small for ϑ ≈ π/2.

However, in this general case it is difficult to find a reasonable relation for the

coefficients, or the computation of the coefficients of fϕ by convolution leads

to cancellation and we have to implement them as data using exact arithmetic

again.

In [Schw] different methods to compute the Kummer functions on bounded

intervals can be found, especially with good results near the imaginary axis

using modified kinds of Chebyshev polynomials.



Chapter 4

Further Methods to Compute

Entire Functions

In this chapter we will consider two other methods, which can be used to nu-

merically evaluate entire functions. In particular we will look again at the

computation of some special cases of the Mittag-Leffler and the confluent hy-

pergeometric functions. The modified series expansions, desribed in the second

chapter, are only applicable in several parts of the complex plane. So, in this

chapter, we consider asymptotic expansions and continued fractions, and we

use them to compute the functions on unbounded sectors S.

4.1 Computation with Asymptotic expansions

In Section 3.1.2 definitions and basic properties of asymptotic expansions have

been considered. There we have seen that it is possible to find the indicator

function of certain entire functions with the help of asymptotic expansions.

This fact is of great importance to quantify and reduce cancellation errors.

Now, in this section, we compute certain entire functions using their asymp-

totic expansions. We consider a sector S = {z ∈ C : |arg(z) − α| ≤ δ} and

large arguments z in modulus.

55
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4.1.1 Asymptotic expansions for the complementary er-

ror and the incomplete gamma function

In the following section we will consider in particular the asymptotic ex-

pansions of the complementary error function and the incomplete gamma

function. We already have considered the connections of these functions with

the class of Mittag-Leffler functions (see (3.22) and (3.24)). So we have to

study the asymptotic expansion of the Mittag-Leffler functions for α < 2 in

detail.

In Theorem 3.4 the asymptotic expansion for the case α < 2 is given explicitly.

From the expansions (3.16) and (3.17) we can see that the result depends on

a sector. As arg z varies, the exponential term is dominant or recessive.

Of course, if we use the expansions (3.16) and (3.17) to numerically evaluate

the Mittag-Leffler functions, the question arises of how the remainder RN(z)

can be estimated and of how the number of terms N in the sum

N−1∑
n=1

z−n

Γ(β − αn)
(4.1)

can be chosen adequately.

In [WoZh], where the asymptotic expansion of the functions M(α, β; z) are

investigated in detail, the questions are answered. The authors point out an

estimation for the remainder RN(z) in the following form:

|RN(z)| ≤ C(α, β)(αN)−Reβ+1eN(−α+αlog(αN)−logz) (4.2)

where arg z ∈ [−π,−απ] and C(α, β) is a positive constant whose values

depend only on α and β.

Considering the estimation (4.2) and minimizing the remainder, an optimal

choice for the index N = N(z) is given by

N(z) =
1

α
|z|

1
α . (4.3)
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Remark 4.1

We numerically consider the non-zero terms of

N−1∑
n=1

z−n

Γ(β − αn)
(4.4)

for a real parameter β, as well as α < 2 and z ∈ C with Im z > 0. Then,

for increasing index n, we can see that the absolute values of the terms first

decrease and subsequently increase monotonically. Numerical evaluations have

shown that the index of the smallest term, according to amount, essentially

equals the index N(z) (see (4.3)), deduced in [WoZh].

Hence, using the sum
N(z)−1∑
n=1

z−n

Γ(β − αn)
(4.5)

to approximate a function of Mittag-Leffler type (β real, α < 2, z ∈ C, Im z >

0), we just have to add terms which decrease according to amount. From

numerical evaluations it can be seen that the order of magnitude of the result

of the summation equals the order of magnitude of the first term of the sum

if the modulus of the argument z is large enough. Because of this, we do not

expect any cancellation problems if we use the sum (4.5) to approximate a

function of Mittag-Leffler type for a sufficiently large argument z in modulus.

Now we want to apply the asymptotic expansions in particular to the

computation of the complementary error function and the incomplete gamma

function for large arguments z in modulus.

The complementary error function

To compute the complementary error function for large arguments z in mod-

ulus, we will use the asymptotic expansion of the Mittag-Leffler function

M(1/2; z), given in Theorem 3.4. With the help of (4.2) we can obtain that

the remainder behaves like O(e−|z
2|), and considering (4.3), we should use

[2|z|2]∑
k=1

z−k

Γ(1− k/2)
as an approximation of the function M(1/2; z). (In the first

quadrant the leading term 2ez
2

has to be taken into account.)
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Figure 4.1: −log10((exp(−|z|2)/exp(|z|2 hM(1/2;·)(arg z))) in the first quadrant.

Figure 4.2: −log10((exp(−|z|2)/exp(|z|2 hM(1/2;·)(arg z))) in the 2nd quadrant.

The theoretical loss of significant digits using this kind of approximation to

compute the Mittag-Leffler function M(1/2; z) is illustrated in the Figures 4.1

and 4.2. The values of −log10((exp(−|z|2)/exp(|z|2 hM(1/2;·)(arg z))) in the

first and in the second quadrant are shown and can be viewed as a theoretical

measure for the exact digits if computations are again performed in floating

point aritmetic with a fixed precision of 16 decimal digits.

Figure 4.3: Numerical results of the asymptotic expansion in the first quadrant.
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Figure 4.4: Numerical results of the asymptotic expansion in the 2nd quadrant.

The numerical results shown in the Figures 4.3 and 4.4 support our theoretical

considerations again. Furthermore, we have found a method to compute the

complementary error function for large arguments z in modulus.

The incomplete gamma function

Similar to the case of computing the complementary error function, we now

look at the incomplete gamma function for large arguments z in modulus.

So it makes sense to consider the asymptotic expansion of the Mittag-Leffler

functions again for α = 1 and β arbitrary (β 6= 1). According to (4.2) and

(4.3), we can use

z1−βez −
[|z|]∑
k=1

z−k

Γ(β − k)
(4.6)

as an approximation of the function M(1, β; z) and for the remainder we

obtain the estimation O(e−|z||z|−β+1).

Figure 4.5: −log10((exp(−|z|)|z|−1/2/exp(|z| hM(1,3/2;·)(arg z))) in the second

quadrant.
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Figure 4.6: −log10((exp(−|z|)|z|−19/2/exp(|z| hM(1,3/2;·)(arg z))) in the second

quadrant.

Again we illustrate (see Figures 4.5 and 4.6) the theoretical loss of exact digits

using this approximation to compute the function M(1, β; z) for arguments z

of large modulus if the evaluations are performed in floating point arithmetic

with a fixed precision of 16 decimal digits. We look at the special cases of

β = 3/2 and β = 21/2. From the Figures 4.5 and 4.6 we can also see that the

area in which we have a loss of exact digits decreases if β increases.

For arguments z of large modulus we can use the approximation (4.6) to

compute the incomplete gamma function.

An alternative method to compute special functions for arguments z of large

modulus will be described in the following section.

4.2 Computation with Continued fractions

At first the definition and some basic properties of continued fractions

(see [JoTh]) are given. A relation to three-term recurrence formulas will

be described (Theorem of Pincherle) and the continued fractions of the

complementary error function and the incomplete gamma function will be

computed.

Definition 4.2

A continued fraction is an ordered pair [[(an), (bn)], (fn)] where a1, a2, ... and
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b0, b1, b2, ... are complex numbers with all an 6= 0 and where (fn) is a sequence

in the extended complex plane defined as follows:

fn = Sn(0) (n = 0, 1, 2, ...), (4.7)

where

S0(w) = s0(w); Sn(w) = Sn−1(sn(w)) (n = 1, 2, 3, ...), (4.8)

and

s0(w) = b0 + w; sn(w) =
an

bn + w
(n = 1, 2, 3, ...). (4.9)

The numbers an and bn are called the n-th partial numerator and denominator

of the continued fraction.

Sometimes they are simply called the elements; (fn) is called the n-th approx-

imant.

If (an) and (bn) are infinite sequences, then [[(an), (bn)], (fn)] is called an infi-

nite (or non terminating) continued fraction.

It is called a finite (or terminating) continued fraction if (an) and (bn) only

have a finite number of terms a1, a2, .., am and b0, b1, .., bm. Hereafter a con-

tinued fraction will be assumed to be infinite unless otherwise stated.

It can be seen that the n-th approximant is given by

fn = b0 +
a1

b1 +
a2

b2+
.. .

+
an
bn

.

For convenience we will now denote a continued fraction [[(an), (bn)], (fn)] by

the symbol

b0 + a1

b1 +
a2

b2 +
a3

b3 +
· · · .

(4.10)

A continued fraction is said to converge if its sequence of approximants (fn)

converges to a point in the extended complex plane.
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When convergent, the value of the continued fraction is lim fn.

Now our aim is to get representations of analytic functions by continued

fractions.

In [JoTh] and [Wa] different approaches are given. In one of these approaches

three-term recurrence relations (see Section 2.4.1) play an important role for

representing analytic functions by continued fractions.

The method is based on a theorem of Pincherle concerning minimal solutions

of three-term recurrence relations (see Section 2.4.1). In the paper [Ga2]

about computational aspects of three-term recurrence relations Gautschi

recognized the importance of Pincherle’s result and applied it extensively.

A generalization of Pincherle’s theorem for continued fractions is given in

[JoTh].

Theorem 4.3

For each n = 1, 2 , 3, ... let an and bn be elements of C, with

an 6= 0 (n = 1, 2 , 3, ...).

1. The three-term recurrence relation

yn+1 = bnyn + anyn−1 (n = 1, 2 , 3, ..), (4.11)

has a minimal solution (hn), hn ∈ C if and only if the continued fraction

a1

b1 +
a2

b2 +
a3

b3 +
· · ·

(4.12)

converges (to a finite value in C or to infinity).

2. Suppose that (4.12) has a minimal solution (hn), hn ∈ C. Then for each

m = 1, 2, 3, ...

hm
hm−1

= − am
bm +

am+1

bm+1 +
am+2

bm+2 + · · · .
(4.13)

By (4.13) we mean the following: If hm−1 = 0, then hm 6= 0 and the

continued fraction (4.13) converges to ∞ = hm/hm−1. If hm−1 6= 0 then

the continued fraction (4.13) converges to the finite value hm/hm−1 ∈ C.
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Continued fraction of the complementary error function

We again look at the complementary error function

f(z) = erfc(z) = 1− erf(z) =
2√
π

∫ ∞

z
e−t

2

dt (z ∈ C).

Here the path of integration is subject to the restriction arg t → α with

|α| < π/4 as t→∞ along the path (see, [AS], p. 297). Repeated integrals of

erfc(z) are defined by

I−1erfc(z) =
2√
π
e−z

2

, I0erfc(z) = erfc(z),

Inerfc(z) =
∫ ∞

z
In−1erfc(t) dt (n = 1, 2, 3, ...).

Now let (hn) and (gn) defined by

hn = ez
2

Inerfc(z) (n = −1, 0, 1, 2, ...),

gn = (−1)nez
2

Inerfc(−z) (n = −1, 0, 1, 2, ...).

Gautschi has shown in [Ga2] that (hn) is a minimal solution of the system of

three-term recurrence relations

yn+1 = − z

n+ 1
yn +

1

2(n+ 1)
yn−1 (n = 0, 1 , 2, ..),

if Re z > 0, and (gn) is a minimal solution, if Re z < 0. It follows from

Theorem 4.3 that for each m = 0, 1, 2, ...,

Imerfc(z)

Im−1erfc(z)
=

1/2

z +

(m+ 1)/2

z +

(m+ 2)/2

z +
· · · (Rez > 0).

In the special case m = 0 we get

2ez
2
∫ ∞

z
e−t

2

dt =
1

z +

1/2

z +

1

z +

3/2

z +

2

z +

5/2

z +

3

z +
· · · (Rez > 0),

hence,

erfc(z) =
e−z

2

√
π

(
1

z +

1/2

z +

1

z +

3/2

z +

2

z +

5/2

z +

(ν − 1)/2

z +
· · ·
)

(Rez > 0).

(4.14)

With the help of the continued fraction (4.14) Gautschi [Ga1] and

Poppe/Wijers [PW1] have computed the complementary error function for
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large arguments z in modulus. While Gautschi used this continued fraction

outside a rectangular region with a fixed chosen index ν, Poppe/Wijers opti-

mized this region in which it is reasonable to use the continued fraction of the

complementary error function. They pointed out that it makes sense to define

an elliptic contour Γ in the second quadrant S by the condition that points z

on Γ have to obey the relation

σ(z) =

√√√√(Rez

x0

)2

+

(
Imz

y0

)2

= 1, with x0 = −4.4, y0 = 6.3. (4.15)

Outside of this contour Γ the continued fraction attains a required accuracy

of 14 decimal digits.

Also Poppe/Wijers have chosen an optimal index ν which depends on z.

An approximation of the index ν for each z outside the contour Γ is defined

by

ν(z) =

[
3 +

1442

26σ(z) + 77

]
.

The numerical results using the continued fraction (4.14) to compute the com-

plementary error function can be seen in Figure 4.7.

Figure 4.7: Numerical results using continued fraction of f(z) = erfc(−z) in

the second quadrant S.



Further Methods to Compute Entire Functions 65

The use of the elliptic contour described in (4.15) is illustrated in the following

Figure 4.8.

Figure 4.8: Elliptic contour of the continued fraction of f(z) = erfc(−z).

Finally, we compare the continued fraction and the asymptotic expansion for

the numerical evaluation of the complementary error function in the second

quadrant for large arguments z in modulus.

From the Figures 4.4 and 4.7 we can see that using the continued fraction

with the ellipic contour illustrated in Figure 4.8 is more advantageous for the

computation than using the asymptotic expansion.

Continued fraction of the incomplete gamma function

Similar considerations as in the case of the complementary error function give

us a continued fraction of the incomplete gamma function.

For all z with |arg z| < π we have (see [Ga3])

γ(a, z) =
1

2 +

1− a

1 +

1

z +

2− a

1 +

2

z +

3− a

1 +

3

2 +
. . . . (4.16)

The numerical results using the continued fraction (4.16) to compute the in-

complete gamma function for the special case a = 1/2 can be seen in the

following Figure 4.9.
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Figure 4.9: Numerical results using continued fraction of f(z) = γ(1/2, z) in

the second quadrant S.

Finally, we again compare the continued fraction and the asymptotic expan-

sion for the numerical evaluation of the incomplete gamma function in the

second quadrant for large arguments z in modulus. In this case it can be seen

from the Figures 4.5 and 4.9 that the continued fraction should be used in a

neighborhood of the negative real axis (see [Ga3]). In the remaining part of

the second quadrant we should use the asymptotic expansion.



Chapter 5

Conclusion

In the previous chapters we have given some concluding remarks in order to

make suggestions to combine the presented methods for computing Mittag-

Leffler type and confluent hypergeometric functions.

In particular, the complementary error function has been considered in de-

tail. At first, the computation method investigated in Section 2.4 leads to

reliable results for several parts of the complex plane if the modulus of the

arguments z is not too large. In the Figures 3.6 and 3.9, numerical results

are illustrated. For large arguments z in modulus we have seen in Chapter

4 that the use of continued fractions in the second quadrant is more advan-

tageous for the computation than the use of the asymptotic expansion. In

the Figure 4.7, corresponding numerical results are illustrated. Overall, nu-

merical experiments comfirm that for the computation of the complementary

error function a combination of the four types of approximants based on the

continued fractions and the Taylor series of erfc(−z)ez2/2, erfc(−z)erfc(z)e2z2

and erfc(−z)erfc(z)eaz2 (a = e3πi/4− 1/2), provide a reasonable method in the

sense that at least 14 exact figures are reached in the second quandrant (and

thus in all of the complex plane; cf. [PW1]).

In the case of the incomplete gamma function, the computation method de-

scribed in Section 2.4 has been applied for values of z near the negative real

axis and small modulus of the arguments z. In Figure 3.14, numerical results

67



Conclusion 68

are illustrated. For methods which are efficient near the imaginary axis, we re-

fer to [Schw]. In Chapter 4, continued fractions and the asymptotic expansion

of the incomplete gamma function have been compared for large arguments z

in modulus. The continued fractions should be used in a neighborhood of the

negative real axis and in the remaining part of the second quadrant we should

use the asymptotic expansion. For the computation of the incomplete gamma

function, similarly to the case of the complementary error function, a combi-

nation of different types of approximants based on the asymptotic expansion,

continued fractions and modified Taylor series is possible.

The important question in which way the method investigated in Section 2.4

is available for Mittag-Leffler type and confluent hypergeometric functions in

general, has been discussed in Chapter 3.5. For the Mittag-Leffler functions

M(α; z), with parameter α ∈ N, α 6= 1, some ideas concerning the numerical

evaluation have been presented. Applying this method to the general case

α ∈ R, we have the problem in which way a multiplier function ϕ can be

chosen satisfying the conditions which are described in Section 2.4.

In the case of the confluent hypergeometric function Φ(a, c; z), computational

methods for arguments z near the negative real axis have been obtained. How-

ever, in several parts of the complex plane it is difficult to find a reasonable

relation for the coefficients of fϕ by convolution, and the computation of the

coefficients by convolution leads to cancellation again. The only way is to im-

plement them as data using exact arithmetic.

Finally, as already mentioned in Section 2.1, for the numerical evaluation of

entire functions it is in principle possible to use some kind of exact arithmetic

instead of floating point arithmetic with a fixed precision. In particular, the

reference values which we used for our numerical considerations have been

generated using such exact arithmetic from iRRAM. The computational effort

was comparatively high. Therefore, our suggestion is to use the method inves-

tigated in Section 2.4 also in exact arithmetic software with the aim to reduce

the computational effort and to accelerate the evaluations.
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Stuttgart, 1957.

[PW1] Poppe, G. P. M., Wijers, C. M. J., More efficient evaluation of the

complex error function, ACM Trans. Math. Software, 16 (1990) 38-46.

[PW2] Poppe, G. P. M., Wijers, C. M. J., Algorithm 680: Evaluation of the

complex error function, ACM Trans. Math. Software, 16 (1990) 47.

[Ru] Rubel, L. A., Entire and meromorphic functions, Springer, New York,

1996.

[Sa] Sansone, G., Gerretsen, J., Lectures on the thoery of functions of a com-

plex variable, Noordhoff, Groningen, 1960.

[Schw] Schwarz, C., Computation of Confluent Hypergeometric Functions on

Compact Intervals., In Proceedings of the Alexits Memorial Conference:

Functions, Series, Operators, Aug. 9-14, 1999, Budapest.



Bibliography 72

[SW] Schaback, R., Wendland, H., Numerische Mathematik, Springer, Berlin,

Heidelberg, New York, 2005.

[Te] Temme, N. M., Special functions: An introduction to the classical func-

tions of mathematical physics, Wiley, New York, 1996.

[Wa] Wall, H. S., Analytic Theory of Continued Fractions, Chelsea Publishing

Company, New York, 1948.

[Wat] Watanabe, T., Natori, M., Oguni, T., Mathematical Software for the

P.C. and Work Stations, North-Holland, Amsterdam, 1994.

[Wei] Weideman, J. A. C., Computation of the complex error function, SIAM

J. Numer. Anal., 31 (1994) 1497-1518.

[Wi] Wimp, J., Computation with recurrence relations, Pitman, Boston, Lon-

don, Melbourne, 1984.

[WoZh] Wong, R., Zhao, Y. Q., Exponential Asymptotics of the Mittag-Leffler

Function, Constr. Approx., 18 (2002) 355-385.



73

Tabellarische Zusammenfassung des Bildungsweges

Name Martin Reinhard

Geburtstag 2. Juni 1977

Geburtsort Bitburg

08/1983 - 07/1987 Grundschule Kyllburg

08/1984 - 06/1996 Gymnasium Bitburg

03/1998 - 04/2003 Studium der Wirtschaftsmathematik an der

Universität Trier mit Abschluss Diplom

06/2003 - 03/2004 Promotionsstipendiat der Landesgraduiertenförderung

des Landes Rheinland-Pfalz

04/2004 - 03/2008 Wissenschaftlicher Mitarbeiter am Lehrstuhl

Angewandte Analysis im Fachbereich IV

der Universität Trier


