High-level Methods for OBDD-based Sequential Verification

Dissertation zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich IV

der Universitat Trier

von

Dipl. Inform. Christian Stangier

2002

1. Berichterstatter: Prof. Dr. Christoph Meinel (Universitit Trier)
2. Berichterstatter: Prof. Dr. Werner Damm (Carl von Ossietzky Universitat Oldenburg)

Datum der Disputation: 29. November 2002

Contents

Introduction

1 Preliminaries

1.1 Boolean Functions e e e e e e e e

1.1.1
1.1.2

Operations on Boolean Functions

Data Structures for Boolean Functions

1.2 OBDDs — Ordered Binary Decision Diagrams

1.2.1
1.2.2
1.2.3
1.24
1.2.5

Manipulation of OBDDs L o Lo
Efficient Synthesis of OBDDs
Influence of the Variable Order on the OBDD-Size
Optimization of the Variable Order
Sifting e

1.3 Verification of Combinatorial Circuits

1.4 Formal Verification of Sequential Systems

14.1
1.4.2
1.4.3

Equivalence Check for Two Finite State Machines
Reachability Analysis,
Symbolic Model Checking

1.5 Software Packageso e

2 A Case Study in Formal Verification

2.1 Formal Verification in an Industrial Setting

2.1.1

Protocol Compiler

2.2 An Assertion Checking Methodology for Protocol Compiler

2.2.1
2.2.2
2.2.3
224

Verification Flow
Example RS232
Example Cow-Stomach

Dealing with Inputs during Verification

2.3 Conclusion and Open Problems

10
10
12
13
14
14
15
15
16
18
20

ii CONTENTS

3 Partitioning 35
3.1 The Partitioning Problem 35
3.1.1 Common Partitioning Strategy 36
3.1.2 Related Work L 38

3.2 RTL Partitioning e 39
3.2.1 Hardware Description Languages 39
3.2.2 RTL based Partitioning Heuristic 39
3.2.3 Discussion of the Method 41
3.2.4 Experimental Results 00000, 42

3.3 Group Partitioning oL oL 48
3.3.1 Dependency Matrices oo 48
3.3.2 The Grouping Algorithm 48
3.3.3 Reordering of Clusters 51
3.3.4 Experimental Resultso 000, 53

4 Hierarchization 57
4.1 Hierarchical Image Computation 57
4.1.1 Hierarchical Partitioning 58
4.1.2 Hierarchical Image Computation 60

4.2 Dynamic Conjunction Scheduling 62
4.2.1 Dynamic Scheduling Heuristic. 62
4.2.2 Experimental Results 0000, 64

4.3 Hierarchical Group Partitioning 67
4.3.1 Discussion of the AndExist Algorithm 67
4.3.2 Modular Grouping of the Transition Relation 69
4.3.3 Experimental Results 72

4.4 Conclusiono e e 76
5 Reordering 77
5.1 Sample Sifting 78
5.1.1 Basic Concept o e 78
5.1.2 Sample Sifting Strategy for Symbolic Model Checking 78
5.1.3 Experimental Results 85

5.2 Block Restricted Sifting o o Lo 90
5.2.1 Basic Concept e 90
5.2.2 BRS Strategy for Symbolic Model Checking 92
5.2.3 Experimental Results 94

5.3 Conclusion e e e e 94

CONTENTS iii
6 Conclusion o7
A Additional Tables 99

References 107

v

CONTENTS

Introduction

Motivation

During the last years we are facing an enormous increase in utilization of digital circuits:
Many applications like information processing, telecommunication, network computing, au-
tomotive and industrial control demand for even more powerful and faster circuits.

The computer industry keeps pace with this demand by increasing the system integration
of VLSI (Very Large Scale Integration) designs. Moore’s law [Moo65], which says that the
number of transistors on a chip doubles every 18 month is still valid and an end of this
growth is not in sight.

On the other hand there is a growing need for proving correctness of complex designs for
the following two reasons:

1. Simulation is the conventional method for validation of digital designs. This method
loses its ability to guarantee correctness, if designs grow larger and become more
complex.

2. Economic, safety and security reasons request for mathematical (i.e. formal) proofs of
the correctness of digital systems.

The famous Pentium bug, an error in the floating division unit of the Intel Pentium I proces-
sor, which was responsible for a $475 Million loss in Intel’s revenue, shows the importance
of proving correctness of digital hardware.

But, there are more important reasons to insist on the correctness of digital circuits than
the profit of a company:

— The automotive control of an airplane should be correct under any circumstance.

— The control of a satellite should be at least resettable (there is no way to switch the
power off — and back on).

— Hardware realizations of cryptographic protocols should be guaranteed to be function-
ally correct.

Virtually any aspect of our daily live is affected by digital circuits with an increasing ten-
dency and the above list gives only a few examples of possible applications for formal
verification.

A central problem in CAD (computer aided design) of digital designs is the representa-
tion of Boolean functions. Within the last decade ordered binary decision diagrams (OB-
DDs) [Bry86] have become one of the most popular data structures in this area.

1

2 INTRODUCTION

The classical application for OBDDs is the formal verification of combinatorial circuits.
Here, the equivalence of the specification and an implementation of a given circuit has to
be checked. Recently, the focus of the interest in research and industry has moved to the
application of OBDDs to sequential systems. Many design tools use OBDDs to represent
finite state machines. The emerging need for formal verification of sequential systems requires
the use of highly sophisticated data structures and algorithms.

Formal Verification of Sequential Systems

Formal verification is the mathematical proof that an implementation of a circuit C fullfils
its specification S. In combinatorial verification this is done by checking the equivalence of
the representations of C and S. OBDDs are well suited for this task, because they represent
Boolean functions in a compact way and the equivalence check is trivial. The term sequen-
tial verification denotes formal verification of synchronous finite state machines (FSMs) or
systems of communicating FSMs. Various sequential verification techniques exist, e.g. the
functional equivalence of two FSMs can be tested. Unfortunately, often a formal specification
S of a FSMs is not given. In this case, certain properties that the FSM should satisfy are
tested. These properties include: Assertions, deadlocks, livelocks, etc. The main applications
in sequential verification are assertion checking and model checking. [CES86]

A major problem in sequential verification is the so called state space explosion problem,
resulting from huge state space of complex FSMs that cannot be represented explicitely.
This problem can be circumvented by representing state sets symbolically by using OBDDs.
Together with the efficient algorithms for manipulation of Boolean functions OBDDs enable
efficient symbolic breadth first traversal for reachability analysis, assertion checking and
symbolic model checking [McM93].

Usage of OBDDs does not solve all problems in sequential verification. The size of the OBDD
representation and the efficiency of the algorithms heavily influences the performance of the
applications.

Two of the main areas for optimization in OBDD-based sequential verification are

— Partitioning of the transition relation of the FSM to allow efficient reachable states
computation, and

— ordering of state- and input-variables to reduce the size of the OBDD-representation.

Scope of the Thesis

This work covers practical aspects of OBDD-based sequential verification. It is structured in
a top-down fashion: We start by presenting a formal verification methodology at the user-
level of a design and verification tool. Then, we present algorithms at the application-level of
OBDD-based formal verification, i.e. reachability and image computation. Finally, we move
down to the representation-level and deal with improvement of the OBDD-representation
size.

The mayor area of this work is Algorithmic Engineering.

OBDD-based sequential verification moved into the focus of research for various reasons:

INTRODUCTION 3
— Designers realize that their simulation based validation approaches are no longer ca-
pable to find all bugs and search for more reliable techniques.

— OBDD-based techniques for combinatorial verification are well investigated and one
hopes to transfer these techniques to sequential verification.

OBDDs are already integrated in many design tools simply for function representation
purposes, and thus they are ready to use for formal verification.

— The interest in formal verification has generally increased.

Some of the points mentioned above are challenges: Enabling a designer to verify complex
properties of a design, requires almost push-button-technology. Some of the points actually
are problematic: Algorithms that are good in combinatorial verification do not necessary
work in sequential verification.

For these reasons we propose the utilization of

High-Level Methods

to improve the efficiency and ease the applicability of OBDD-based sequential verification.

The main contributions of this work are:

1. An assertion checking methodology, integrated in the verification flow of the high-level
design and verification tool Protocol Compiler.

2. New approaches for partitioning of transition relations of complex finite state ma-
chines, that significantly improve the performance of OBDD-based sequential verifica-
tion.

3. Dynamic variable reordering techniques that drastically reduce the time required for
reordering without a trade-off in OBDD-size.

Overview of the Thesis

The present work is structured as follows:

We start this work in Chapter 1 with recapitulating the basic concepts, state-of-the-art data
structures and algorithms and give the most common applications in formal verification in
VLSI design.

In Chapter 2 we conduct a case study on formal verification in an industrial setting. We
develop a methodology for assertion checking, which is a subproblem of model checking and
apply it to two examples: A simplified RS232 transceiver and a pipelined FIFO-like buffer.
The study shows how to integrate formal verification into a typical verification flow. The
study also shows the limitations of this approach and serves as a motivation for the research
presented in the following chapters.

Chapter 3 deals with the partitioning problem, i.e. building a partitioned transition rela-
tion of a finite state machine. The transition relation allows image computation, and thus
reachable states computation and model checking. We start by presenting a heuristic that
uses explicit high-level information of the design under consideration. The heuristic is called

4 INTRODUCTION

RTL-method, because it utilizes register transfer level (RTL) constructs of the description
language Verilog. The outcome is an increased efficiency of the formal verification algorithms.

In the second part of Chapter 3 we develop, motivated by the success of the RTL-method, a
heuristic that is independent of high-level information. This heuristic imitates the effects of
the RTL-method that cause the improved efficiency. This heuristic is called Group-method.

The heuristics presented in Chapter 3 produce a somewhat “flat” partitioning, but nowadays
designs are structured — and developed — in a hierarchical fashion. Thus it seems obvious to
adapt hierarchy for the partitioning problem. In Chapter 4 we present algorithms that build
a hierarchical partitioned transition relation and allow hierarchical image computation. The
first heuristic in Chapter 4 for partitioning is based on high-level information and is called
due to its modular structure RTLMOD-method. We also tackle another important problem
in OBDD-based image computation: The conjunction scheduling problem. We present a
conjunction scheduling heuristic that is based on the hierarchical image computation. A
highlight of this heuristic is that it is able to change the schedule dynamically.

In the second part of Chapter 4 we develop — similar to Chapter 3 — a heuristic that is
independent of explicit high-level information. This heuristic is called GROUPMOQO D-method.

In Chapter 5 we focus on a problem on the representation layer of formal verification, i.e.
the optimization of the OBDD-representation by dynamic variable reordering.

Reordering of variables is the only way to improve the size of the OBDD-representation.
In the last years the dynamic Sifting approach turned out to produce the best average
results. But, this approach can be very time consuming, and time is the most valuable
resource in model checking. We present two acceleration techniques for variable reordering:
Sample Sifting for symbolic model checking and Block Restricted Sifting for symbolic model
checking. The first method utilizes high-level information of the represented functions and
the state of the computation, while the second only is application dependent and thus easier
to implement.

Finally, Chapter 6 concludes this thesis with summarizing its key results and an outlook on
possible future work.

Publications

Parts of this thesis have been published in similar form:

— C. Stangier and U. Holtmann: Applying Formal Verification with Protocol Compiler,
Proc. of EUROMICRO Digital System Design (DSD’01), 2001.

— Ch. Meinel and C. Stangier: Speeding Up Image Computation by using RTL Informa-
tion, Proc. of Formal Methods in CAD (FMCAD’00), LNCS 1954, Springer, 2000.

— Ch. Meinel and C. Stangier: A New Partitioning Scheme for Improvement of Image
Computation, Proc. of ASP Design Automation Conference (ASPDAC’01), 2001.

— Ch. Meinel and C. Stangier: Hierarchical Image Computation with Dynamic Conjunc-
tion Scheduling, Proc. of IEEE Int. Conf. on Computer Design, 2001.

— Ch. Meinel and C. Stangier: Modular Partitioning and Dynamic Conjunction Schedul-
ing in Image Computation, In Proc, ACM/IEEE Int. Workshop on Logic and Synthe-
sis, 2002.

INTRODUCTION 5

— Ch. Meinel and C. Stangier: Speeding Up Symbolic Model Checking by Accelerating
Dynamic Variable Reordering, Proc. of IEEE 10th Great Lakes Symopsium on VLSI,
2000.

Some parts have been published in a survey paper:

— Ch. Meinel and C. Stangier: Data Structures for Boolean Functions. BDDs - Founda-
tions and Applications, In: Computational Discrete Mathematics, Ed. H. Alt, LNCS
2122, Springer, 2001.

6 INTRODUCTION

Acknowledgments

First of all, T would like to thank my advisor Prof. Christoph Meinel for all his support and
advice over the last years.

Many thanks are devoted to Ulrich Holtmann from Synopsys, who put this thesis on the
right track.

I have to thank Harald Sack for always being motivating and listening to all my complaints.

Thanks to my parents for being my parents (and not someone else’s parents). And, thanks
to Tommy Stumpe, for being a great friend and providing me with vital doses of Rock’n’Roll
(in every sense).

Furthermore, I wish to thank all the members of Prof. Meinel’s working group, who helped
and supported me during my PhD.

Chapter 1

Preliminaries

This chapter covers the basic concepts that underly this work. In particular we introduce
ordered binary decision diagrams (OBDDs), the state-of-the-art data structure for repre-
sentation of Boolean functions. We discuss properties of OBDDs and present the basic
algorithms for manipulation of OBDDs. In the Section 1.4 we introduce the main applica-
tions of OBDD-based sequential formal verification, i.e. state space traversal, equivalence
checking and symbolic model checking. The chapter is concluded by an description of the
software packages we used to implement our algorithms and heuristics.

1.1 Boolean Functions

Definition 1.1

— The set {0,1} is denoted by B.

— The set of all Boolean functions IB" — IB,n € N is denoted by IB,,.

In computer-aided design, Boolean functions f € IB,, are of central importance for describing
the switching behavior of digital circuits. Hence, those functions are also called switching
functions. By introducing a suitable 0-1-encoding, all finite problems can — at least in prin-
ciple — be modeled by means of switching functions. The great importance of switching
functions stems from the possibility to obtain substantially simplified, optimized and with
optional properties provided circuits by applying optimization techniques during the design
process. In the area of VLSI circuits this task is performed by CAD systems. But, before op-
timization techniques can be applied, a way to represent the switching functions themselves
uniquely and as efficiently as possible in computers has to be found.

The representation of a Boolean function is not an end in itself: On the basis of such a
representation the various algorithms of CAD systems are performed. Hence, it is impor-
tant to analyze the ability of the representation for supporting the basic operations of the
algorithms.

1.1.1 Operations on Boolean Functions

The following list gives the basic operations on Boolean functions (f,g € B,,):

7

8 CHAPTER 1. PRELIMINARIES

Satisfiability test (SAT): Test, whether there exists an assignment a € IB" of the vari-
ables of f with f(a) = 1.

Equivalence test: Check, whether f = g for two functions f, g.
Evaluation: Compute f(a) for a given assignment a € B"

Synthesis: Compute a representation P, of h = f ® g for an arbitrary binary Boolean
operator ®.

Replacement by constants: Compute a representation Py, for h = f|;,—, (i.e. the input
z; in f is replaced by the Boolean constant a € IB).

Replacement by function: Compute a representation Py, for h = f,;,—, (i.e. the input
z; in f is replaced by the Boolean function g).

Quantification: Compute a representation P, for h = Vz; : f (universal quantification)
resp. h = 3x; : f (existential quantification) of f.

Minimization: Given a representation Py of a function f. Compute a minimized represen-
tation Pj.

1.1.2 Data Structures for Boolean Functions

Why are special data structures for the representation of Boolean function needed? Well
known representations for Boolean functions include:

Circuits: The elementary SAT problem is NP-complete for circuits and the minimization
problem is NP-hard.

Boolean formulas: The equivalence test is co-NP-complete for Boolean formulas.

Truth tables: All operations can be performed efficiently, but truth tables always require
exponential space.

Conjunctive Normal Form (CNF): Even simple functions often have only an exponen-
tial representation in CNF. The SAT problem is NP-complete for CNF.

Disjunctive Normal Form (DNF): The problems with DNF are similar to CNF, but
SAT is in P.

Branching Programs (BPs): Many functions can be represented very efficiently using
branching programs but already the SAT problem is NP-complete for BPs.

For definitions of these data structures and proofs of the lower bounds see [MT98]. All these
data structures fail for use in electronic design automation either for reasons of space com-
plexity (e.g. truth tables) or time complexity of the operations (e.g. branching programs).

1.2 OBDDs — Ordered Binary Decision Diagrams

In 1986, by introducing ordered binary decision diagrams (OBDDs), Randall E. Bryant got
ahead a fundamental step in the search for suitable data structures in circuit design [Bry86,
Bry92]. Bryant’s OBDDs combine two advantages: the new established data structure is not
only quite space efficient but can also be handled efficiently from the algorithmic point of
view.

1.2. OBDDS - ORDERED BINARY DECISION DIAGRAMS 9

Definition 2.1 An Ordered Binary Decision Diagram (OBDD) P for a Boolean function
f € B, is a directed acyclic graph consisting of inner nodes labeled by Boolean variables and
sinks labeled by the Boolean constants 1 and 0. Each inner node has two outgoing edges:
the 1-edge and the 0-edge. The OBDD has a starting node called root. The computation of
f(aq,...,a,) follows a path from the root to a sink, where on a node labeled by z; the input
bit a; is tested. If a; = 1, the path follows the 1-edge, otherwise the 0-edge. The value of
the reached sink determines the value of f(ai,...,a,). On a path from the root to the sink,
each variable occurs at most once. The variables on a path respect a given order, which is
(possibly after renaming) z1,...,z,. For an edge leading from a node labeled by z; to a
node labeled by z; it follows that j > i.

An OBDD with more than one root node (i. e. representing f : B" — B™,m € N,m > 1) is
called a shared OBDD [MIY90]. In practice all functions to be represented are kept in one
single shared OBDD. For simplicity we stay with the term OBDD.

Figure 1.1 gives two examples for OBDDs for the Boolean function f = bc + abé w.r.t. the
variable order a < b < c.

Figure 1.1: Two OBDDs representing f = bc + abc

From the Shannon decomposition

fzx'f\zzl +E'f|w:0

one can derive the first important property of OBDDs:

Property 2.2 Universality: Any Boolean function f € B, can be represented by an
OBDD w.r.t. any predefined variable order 7.

For a proof see [SW93].

If we give up the restrictions on the variable order and the read-once property we get more
general decision diagrams. Like in many other representations general decision diagrams
have difficulties in handling Boolean functions caused by the missing uniqueness. By using
a surprisingly simple reduction mechanism, for OBDDs this problem can be solved very ele-
gantly. Obviously, the following two reduction rules keep the represented function invariant:

Elimination rule: If 1- and 0-edge of a node v point to the same node u, then eliminate
v, and redirect all incoming edges from v to w.

Merging rule: All terminal nodes with a given label are merged to one node, redirect all
incoming edges to this node. If the non-terminal nodes u and v are labeled by the
same variable, their 1-edges lead to the same node and their 0-edges lead to the same

10 CHAPTER 1. PRELIMINARIES

node, then eliminate one of the two nodes u, v, and redirect all incoming edges to the
remaining node.

The elimination rule and the merging rule are illustrated in Figure 1.2.

b
- T

u u
Elimination rule Mergmg rule

Figure 1.2: Reduction rules for OBDDs

Definition 2.3 An OBDD is called reduced, if none of the two reduction rules can be
applied.

It is easy to see that the right OBDD in Figure 1.1 is reduced. Regarding the algorithmic
properties of reduced OBDDs, the following property of canonicity is of basic importance:

Property 2.4 Canonicity: With respect to a fixed variable order 7, the reduced OBDD
of a Boolean function f is uniquely determined.

For a proof also see [SW93].

Besides universality and canonicity, OBDDs have a third fundamental property, which makes
OBDDs such a successful data structure for representation of Boolean functions: It is the
efficiency of algorithmic manipulation.

1.2.1 Manipulation of OBDDs

OBDDs are the only data structure for the representation of switching functions, whose
representation size is not exponential in the number of variables for all functions (like truth
tables) and that has deterministic polynomial time algorithms for all important operations.

In Figure 1.3, the runtime and space requirements for these operations are given (|Pj|
denotes the number of nodes in the OBDD P for the function f, which depends on n
variables and a € {0,1}"). All OBDDs have to respect the fixed variable order 7. (Results
due to [Bry86, SW93])

It is worthwhile mentioning that most operations (except synthesis and replacement by
function) have time and space requirements linear in the size of the OBDD. Together with
an efficient implementation OBDDs form a powerful data structure.

1.2.2 Efficient Synthesis of OBDDs

By ® we denote an arbitrary binary Boolean operation, e.g. the conjunction or the dis-
junction. In order to compute the OBDD P}, of h = f ® g from the OBDD representations

1.2. OBDDS - ORDERED BINARY DECISION DIAGRAMS 11

Operation Runtime Space
Satisfiability test (Ja, f(a) = 1) O(|P¢) O(|Py|)
Fquivalence test (f = g) Omin([P11, 17,1) | OUPf| +17,))
Evaluation (f(a)) O(n) O(Py)
Comporsition (f ® g) OUPl-IR) | OUPfl Iy
Replacement by constant (fz;—c) O(|Py|) O(|Pyl)
Replacement by function (fz;=4) O(|Py|? - | Py)) O(|Py|? - | Pyl)
Quantification (e.g. 3z; : f = fz,=1 V fz,—0) O(|P¢|?) O(|Py|?)
Reduction (minimization of Py w.r.t. O(|P¢) O(|Py|)

Figure 1.3: Complexity of OBDD operations

Py and P, of two functions f and g, one uses Shannon’s decomposition w.r.t. the leading
variable z in the variable order =:

h=f®g = 2 (flea=1 ®9lz=1) + T (flz=0 ® gla=0),

where f|,—1 is the subfunction that results from f after replacing the variable x by the
constant 1. By repeated application of this decomposition, an OBDD representation P}, of
the function h can be computed.

In an OBDD P} every node represents a subfunction f' of f. If the node that represents
f" is marked with z;, its successors represent f|;,—1 resp. f'|z,=o. For the representation of
any subfunction in P, two pairs of nodes from P; and P, have to be computed. If one would
simply follow the Shannon decomposition, where the number of computations doubles on
each level, 2" pairs would be computed (for n variables). But, only (|Pf|- |P,|) different
pairs exist. Thus, re-computation of pairs has to be avoided, as different subfunctions may
be represented by the same node.

The already computed results from earlier stages are being recalled from a computed-table.
In this way, the originally exponential number of decompositions is now bounded by the
product of the two OBDD-sizes.

To increase the usage of the computed table all synthesis operations are mapped to a single
operation, the so called if-then-else operator (ITE):

For example h = f - g maps to h = ITE(f,g,0). Because of the huge number of ITE
operations during synthesis, the computed table is usually implemented as a hash based
cache to reduce memory consumption. The cache exploits the locality of reference, i.e.
results are usually only reused shortly after their computation.

Another helpful construction is the usage of a unique-table which holds in a hash-table all
already represented nodes. Before a node is created it is checked in the unique-table whether
an functionally equivalent node already exists. This technique implements the merging rule.
Together with an immediate check for the elimination rule the constructed OBDDs are
always reduced and there is no need to call the reduction operation explicitely.

Remark:

— In a reduced OBDD the complexity for the satisfiability test (SAT) reduces to: O(1),
because the O-function is uniquely represented by the 0-sink.

12 CHAPTER 1. PRELIMINARIES

— In a reduced shared OBDD the complexity for the equivalence test (f = g) reduces to
O(1), because equivalent functions are represented by the same node, i.e. the equiva-
lence test is a pointer comparison.

Construction of OBDDs: Symbolic Simulation

The process of constructing an OBDD is called symbolic simulation of the circuit to be
represented. Symbolic simulation is based on the synthesis operation:

Starting with the (trivial) OBDD representations of the input nodes one constructs, in
topological order, OBDDs for each gate from the OBDDs of the corresponding predecessor
gates.

Of course, it may happen that the OBDDs of the circuits are quite large. However, many
circuits of practical interest inherently contain much structure — hence, the reduction rules
of the OBDDs cause the graphs describing the circuit to remain small.

1.2.3 Influence of the Variable Order on the OBDD-Size

The size of an OBDD and hence the complexity of its manipulation heavily depends on the
underlying variable order. An example is shown in Figure 1.4. With respect to the variable
order aq,by,...,ay,b, the function

a1b1 + a2b2 + ...+ anbn

has an OBDD representation of linear size. For the variable order a1, a2, ..., an,b1,bo,...,b,
however, the size of the OBDD grows exponentially in n. It can be shown that any order
that separates the a-variables from the b-variables leads to an exponentially large OBDD.

Figure 1.4: Influence of the variable order on OBDDs

The same effect occurs in the case of adder functions: Depending on the variable order, the
OBDD-size varies from linear to exponential in the number of input bits. Other important
functions, e.g. the multiplication of two n-bit numbers imply OBDDs of exponential size
w.r.t. every variable order [Bry91, Woe01].

1.2. OBDDS - ORDERED BINARY DECISION DIAGRAMS 13

Due to the uniqueness of the OBDD representation of a Boolean function f w.r.t. a given

variable order, the only way to optimize the size of the OBDD representation for f is to find
a suited variable order.

1.2.4 Optimization of the Variable Order

Due to the strong dependency of the OBDD-size upon the chosen variable order it is one of
the most important problems in the use of OBDDs to construct “good” orders, i.e. orders
that fit well to the represented function. However, the problem to construct an optimal
order of a given OBDD is known to be NP-hard [THY93, BW96]. The currently best known
exact procedure is based on dynamic programming and has running time O(n - 3") [Weg00].
Unfortunately, for real-life applications this method is useless. To make the problem even
worse, Sieling [Sie98] has shown that there is no polynomial time approximation scheme for
the variable ordering problem unless P=NP.

We have to distinguish two different approaches for optimization of the variable order:

Static Techniques: There exist a variety of heuristics to determine a variable ordering
before building the OBDD of a function. These heuristics utilize various information
given by the netlist of the function [MWB88, MIY90, FOH93]. It turned out that these

heuristics often work only for very specific functions. Nevertheless, these heuristics can
be useful to determine starting orders.

Applications in OBDD-based sequential verification often require representation of
state sets, as these states sets and thus their OBDD representation changes, modifi-
cations of the variable order become necessary and a dynamic approach is required

Dynamic Techniques: Dynamic Variable Reordering is the process of improving the vari-
able order and hence the size of an already existing OBDD.

All dynamic variable reordering strategies currently are based on the so called swap
operation. The swap operation exchanges the position of two neighboring variables
in the variable order. The advantage of the swap operation is that it only affects the
OBDD-nodes on the two levels that are exchanged. Thus, the operation remains local
and its effects on the OBDD-size can be measured immediately. Also, the operation is
symmetric and can be reverted at any time. Figure 1.5 shows a schematic of the swap
operation, in which the number of nodes could be reduced by one.

Y X
a o a c d

Figure 1.5: Schematic of the Swap Operation.

Virtually any optimization paradigm has been applied to variable reordering, but still one
of the most successful strategies is the local search algorithm proposed by Rudell 1993.

14 CHAPTER 1. PRELIMINARIES

1.2.5 Sifting

Rudell’s so called Sifting [Rud93] algorithm is a local search algorithm, based on the swap
operation. In its basic form it works as follows (see also Figure 1.6): Each variable consec-
utively is moved through the variable order by performing repeated swap operations. The
best OBDD-size is stored and after the variable order has been moved to the bottom and
the top of the variable order it is moved to the stored best position. Because the size of the
OBDD may drastically grow during sifting of a variable, a factor MAXGROWTH limits the
maximum growth of the OBDD-size during sifting of a variable.

The sifting algorithm performs a local search on up to n? variable orders (on a OBDD with
n variables) out of n! possible variable orders and thus visits only a small fraction of the
search space. Nevertheless, in practice the Sifting algorithm produces sufficient results.

Sifting(P) {
foreach(i € {1...n}){
optsize= | P|; optpos=startpos=i;
for(j=startpos to n-1){
swap(P.j+1.j);
if(| P| < optsize){ optsize = |P|; optpos =j};
if(|P| > optsize *MAXGROWTH) break;

}

for(k=j downto 2){
swap(P,k-1,k);
if(| P| < optsize){ optsize = |P|; optpos =k};
if(|P| > optsize *MAXGROWTH) break;

if(optpos < k) for(j=k downto optpos+1) swap(P,j-1,j);
else for(j=k to optpos-1) swap(P,j+1.j);

Figure 1.6: Basic Sifting Algorithm in Pseudocode

1.3 Verification of Combinatorial Circuits

In our notion combinatorial circuits compute functions f : B, (n,m € IN). They do not
contain memory elements like flip-flops or latches. The task in verification of combinatorial
circuits is to check whether an implementation of a circuit C' fulfills its specification S, i.e.
both S and C produce the same functional outputs for all inputs. It can be easily seen that
this is an intractable problem if all inputs variations to the circuit are tested explicitly.

OBDD-based combinatorial verification proceeds in two steps:
1. Construct the OBDDs FP¢ and Pg for C' and S by symbolic simulation.

2. Check the equivalence of the OBDDs Pz and Pg.

In case of a strong canonical representation, i.e. when both functions are represented within
the same OBDD, the equivalence test itself consists of a single pointer comparison. Each
step in the iteration can be performed efficiently w.r.t. the OBDD-sizes of the predecessor

1.4. FORMAL VERIFICATION OF SEQUENTIAL SYSTEMS 15

gates. This shows that the difficulty of the NP-complete equivalent test [GJ78] has now been
shifted into the representation size.

If C and S are not equivalent the operation Po @ Ps gives the inputs where implementation
and specification differ. This may be used for debugging.

1.4 Formal Verification of Sequential Systems

A task that is more complex than the verification of combinatorial circuits is the verification
of sequential or reactive systems. Throughout this thesis we consider only those systems that

can be represented by synchronous finite state machines (FSMs) or systems of communicat-
ing FSMs.

Definition 4.1 A Finite State Machine (FSM) M is a six-tuple (@, 1,0, é,7,q), where
Q@ is a set of states, I is the input alphabet, O the output alphabet, § : Q@ X I — @ is the
next-state function, v : Q x I — O is the output function, and qq is the initial state.

The most common techniques used for formal verification of sequential systems are:

— equivalence check for two finite state machines,
— reachability analysis, including assertion checking, and

— model checking.

1.4.1 Equivalence Check for Two Finite State Machines

A central task in formal verification of sequential systems controllers is the test for equiv-
alence of two given finite state machines. This is needed if correctness of a FSM has to be
checked, e. g. after an optimization process.

The equivalence test of two finite state machines M; and M, itself can be reduced to a
reachability analysis by using the construction in Figure 1.7: Let M denote the so-called
product machine, whose state space is the Cartesian product of the state spaces of M;
and Ms. The output of M for a given state and a given input is 1, if and only if for this
configuration the outputs of M; and My agree. My and My have the same input/output
behavior if and only if the output of M evaluates to 1 for all reachable states. Hence,
reachability analysis is the key problem.

B

,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.7: Product machine for FSM verification

16 CHAPTER 1. PRELIMINARIES

1.4.2 Reachability Analysis

The computation of the reachable states is a core task for optimization and verification of
sequential systems. As we have seen it is needed for equivalence checking for FSMs, also
checking for error states or assertion checking requires the computation of the reachable
states.

Since the set of reachable states can be quite large, an explicit representation of this set, e. g.
in form of a list, usually suffers from the state space explosion problem. Coudert, Berthet and
Madre have investigated the characteristic function of state sets which can be considered as
a Boolean function and therefore be represented by an OBDD [CBM89, CM95]. They have
shown that this representation form fits well to the operations, which have to be performed
for the computation of the reachable states.

Symbolic Representation of FSMs

Typically, the components of a FSM are binary encoded. Let p be the number of input
bit, n be the number of state bits and m the number of output bits. Then § is a function
d:B" x B — B"”, X is a function A : B" x IB? - B™ and ¢o € B".

Remark:

The problem of encoding the states of an FSM is a hard problem itself, but beyond the focus
of this work. For a detailed description of the state encoding problem see e. g. [The98].

If an encoding of the states with n bits is given, we can represent any set of states by an
OBDD representing the characteristic function c of this set:

c(z) = D a2y,

a€ct

where a € {0,1}" is an assignment and z} = ; resp. z{ = 7;. Obviously the set operators
N and U equal to c; - co resp. ¢1 + 3.

The essential part of OBDD-based traversal techniques is the transition relation (TR),
which is based on the transition functions. If the states of an FSM M defined according to
Definition 1.4.1 are encoded by n bits, 6 = (d1,...,0,) and the input is encoded by p bits
the transition relation of M yields to:

TR(z,y,e) =T(T1,--.,Zn, Y1, Yns€15--.,€p) = H (yi = di(z,€)),
1<i<n

where z denotes the present state, y the next state, and e the input. The TR is used for
traversal of the state space.

BF'S traversal

If the reachable states are computed according to a breadth-first-traversal, the representation
via the characteristic function allows to compute all corresponding successor states within
a single step. For this reason, one also uses the term symbolic breadth-first traversal. Once
more, the complexity of the computation depends on the OBDD-size of the occurring state
sets.

Figure 1.8 gives an outline of the traversal algorithm. In the first step of the BFS traversal
iteration, set To of all successor states of the set From is computed. The image computation

1.4. FORMAL VERIFICATION OF SEQUENTIAL SYSTEMS 17

step results in a set depending only on next-state variables y. After renaming the set To is
depending on present-state variables z. The set of new states New is computed by subtracting
the set of already reached states Reached from the set To. The new states are then added
to the reached states. The iteration is repeated until no new states are found.

Traverse(TR, Sp) {
/* Transition Relation TR, initial set S */
/* Output: Set of reachable states */
Reached = From = Sj;
do {
To = Img(TR, From);
To = TOny;
New = To \ Reached;
From = New;
Reached = Reached U New;
} while (New # §);
return Reached;

}

Figure 1.8: Basic algorithm for reachability analysis based on breadth-first traversal

Image computation

The symbolic breadth first reachable states computation mainly consists of repeated image
computations Img(TR, From) of a set of already reached states From:

Img(TR, From) = 3; .(TR(z,y,e) - From)

The transition relation is monolithically represented as a single OBDD and such a monolithic
representation is usually much too large to allow an efficient computation of the reachable
states. Therefore, more sophisticated reachable states computation methods make use of a
partitioned transition relation [BCL91], i.e. a cluster of OBDDs each of them repre-
senting the TR of a subgroup of latches. A transition relation partitioned over sets of latches
Py,..., P; can be described as follows:

TR(z,y,e) = HTRj(;v,y,e) , where

J
TR;(z,y,e) = H 0i(z, e) = y;.
1EP;

Image computation using AndExist

With the use of a partitioned transition relation the image computation can be iterated over
P; and the 3 operation can be applied during the product computation (early quantification):

Img(TR,R) = 3, (TR, - ... - 3,2(TR2 - 31 (TRy - From) . ..),

where v* are those variables in (z U e) that do not appear in the following TRy, (i < k < 7).

The so called AndEzist [BCL91] or AndAbstract operation performs the AND operation
of two functions (here partitions) while simultaneously applying existential quantification

18 CHAPTER 1. PRELIMINARIES

(3z;f = (fz;=1 V fz;—0)) on a given set of variables. The variables to be quantified out are
those that are not in the support of the remaining partitions. Unlike the conventional AND
operation the AndExist operation only has an exponential upper bound for the size of the
resulting OBDD, but for many practical applications it prevents a blow-up of OBDD-size
during the image computation.

Another important problem in the context of image computation is finding an optimal
schedule of the partitions for the AndExist operation. Geist and Beer [GB94] presented a
heuristic for the ordering of partitions each representing a single state variable. The goal
of this heuristic is to keep the support variable set of the intermediate products as small
as possible. This heuristic was broadened by Ranjan et.al. [Ran95] to allow partitions
including more than one state variable.

An insight into the complexity of the partition problem was given by Hojati et. al. [HKB96]:
They have shown that finding a tree of conjunctions s.t. the support of the largest inter-
mediate product is less than a given constant is NP-complete even under the simplifying
assumption that the support of f A g is the union of the supports of f and g.

For a more detailed description of OBDD-based reachability analysis see [MT98].

1.4.3 Symbolic Model Checking

Since a complete formal verification of a sequential system is often too complex, methods
are of interest that guarantee at least correctness of certain properties. One of them is the
so called model checking.

Model checking is the problem to decide whether an implementation satisfies its specification
given in terms of a temporal logic, e.g. the so called computation tree logic (CTL). The
formulas of CTL describe properties of infinite paths of states that are traversed during the
computation.

The idea to use OBDDs for a symbolic representation of state sets during model checking
was first introduced by Burch et. al. [Bur90].

Using this way of symbolic model checking, real-life systems up to 1019 states can be verified.

The Temporal Logic CTL

The logic that is used in symbolic model checking is a modal logic and it is called computation
tree logic (CTL). CTL is based on the concept of branching time. In branching time the
temporal order “<” defines a tree, which branches toward the future. The past of each
event is uniquely defined, but its future is not. This corresponds to the dynamic behaviour
of FSMs, where the the past sequence of traversed states is unique, but the future states are
not known.

The reason to use CTL is that its operators can be easily expressed by fixed point compu-
tations. CTL consist only of present and future operators, past operators are not allowed.

In addition to the Boolean operators A,V and —, CTL has four temporal operators:
X The next operator describes a condition that is true in the next state of the computation.
G The global operator describes a condition that is true for all states of a path.

F The future operator describes a condition that is true on a path sometimes in the future.

1.4. FORMAL VERIFICATION OF SEQUENTIAL SYSTEMS 19

U The until operator aUb is true on a path if ¢ is true until b is true.

All temporal operators are quantified with either an universal quantifier A (“on all paths it
holds...”) or an existential quantifier E (“there exists a path, where...”).

Typical examples of CTL formulas of practical relevance include:
— AG(req — AF ack): Each request is eventually acknowledged.
— AG —(p A q): Mutual exclusion: p and q are never satisfied at the same time.

— AG EF (sg): There is always a sequence of paths that allow to return to the initial
state sg. This property checks for deadlocks.

Computation of the operands

The operands EX, EU and EG are computed by the routines CheckEX, CheckEU and
CheckEG, where the latter two are fixed point computations:

CheckEX consists of an pre-image computation:

CheckEX (p) = PreImg(TR,p) = Jy(TR(z,y) A p).

CheckEU computes the least fixed point for EU and can be described inductively as:

CheckEUy(p,q,TR) = gq
CheckEU;+1(p,q,TR) = CheckEU;(p,q,TR)V
(p A CheckEX(CheckEU;(p,q,TR), TR))

The number of states represented by the sequence of the CheckEU; increases
monotonously. The sequence converges and at a certain iteration k, because the num-
ber of states is finite:

CheckEUy1 = CheckEUy, = CheckEU.

CheckEG computes the greatest fixed point for EG and can be described inductively as:
CheckEGy(p,TR) = p
CheckEGiy1(p,TR) = CheckEG;(p,TR) A
(p A CheckEX (CheckEG;(p,TR), TR))

The number of states represented by the sequence of the CheckEG; decreases
monotonously. The sequence converges and at a certain iteration k, because the num-
ber of states is finite:

CheckEGgy1 = CheckEGy, = CheckEU.

The remaining operators EFp, AXp, AGp and A(p U q) are derived from the above operators
by the following rules:

EFp = E(trueUp)
AXp = —EX-p
A(qUp) = —(E(-pU—gq A -p)V EG-p)
Figure 1.9 gives an algorithmic description of the operators CheckEX, CheckEU and
CheckEG that form the basic symbolic model checking algorithm Eval(f).

For a more detailed introduction to symbolic model checking see [McM93].

20 CHAPTER 1. PRELIMINARIES

Eval(f) {
case{

(f== atomic proposition): return f;
(f== —p): return —=Eval(p);
(f==pV q): return Eval(p) V Eval(q);
(f== EXp): return EvalEX(p);
(f== E(p U q)): return EvalEU(Eval(p),Eval(q),0);
(f== EGp): return EvalEG(eval(p),1);

}

}
EvalEX(p){
return Prelmg(TR,p);
}
EvalEU(paqu){
y'=q V(p A evalEX(y));
if (y==y') returny;
else return EvalEU(p,q,y’);

EvalEG (p,y){
y'=(p A EvalEX(y));
if (y==y') returny;
else return EvalEG(p,y');

}

Figure 1.9: Basic Symbolic Model Checking Algorithm

1.5 Software Packages

In the following we will briefly describe the OBDD package and the formal verification
package, in which we implemented our algorithms and heuristics. The Protocol Compiler
synthesis and verification package is described in Chapter 2.

The OBDD Package

The Colorado University Decision Diagram Package (CUDD) [Som] is a BDD-package writ-
ten by Fabio Somenzi and his working group at the University of Colorado at Boulder.
It inherits algorithms for OBDDs, zero-suppressed OBDDs (ZDDs) [Min93] and algebraic
DDs (ADDs) [BFG93+]. CUDD is written in C, allowing easy programming and fast ac-
cess of graph data-structures. CUDD includes various algorithms for dynamic reordering
like Sifting or Group-sifting. Alternative techniques like simulated annealing [BLW95] or ge-
netic algorithms [DBG95] are implemented as well. CUDD includes sophisticated memory
management techniques. We are using version 2.3.0 of CUDD.

The Verification Package

The Verification Interacting with Synthesis Package (VIS) [VIS] is a cooperation of the
Carnegie Mellon University, University of California Berkeley and University of Colorado at
Boulder. It integrates synthesis, simulation and formal verification of finite state machines.
The algorithms for these tasks are based on OBDDs. The interface to the OBDD package
is transparent, i. e. independent of the chosen OBDD package. Currently three packages are

1.5. SOFTWARE PACKAGES

supported: CMU [Lon92], CAL [CAL] and CUDD. We are using solely the CUDD package.

Figure 1.10 shows the architecture of the VIS system. The VIS front-end is able to read
in gate level BLIF (Berkeley Logic Interchange Format) descriptions or low-level RTL de-
scriptions in BLIF-MV [Kuk96]. Together with the vl2mv compiler, which compiles Ver-
ilog [TM91] into BLIF-MV, a subset of Verilog at RT-level can be read in. VIS itself imple-
ments algorithms for representation, simulation and verification of FSMs. For optimization
of FSMs, VIS interacts with SIS (Sequential Interactive Synthesis) [SIS]. We are working

with version 1.3 of VIS

CTL

Specificati

on

vli2mv
verilog 2 Blif-mv
compiler

l

Blif-mv

(low level

RTL)

(gatelevel)

(oir)

VIS front-end
Traversal of hierarchy

!

{

Verification

-Equivalence
-Reachahility
-Model Checking
-Simulation

—

Synthesis

- State minim.
- State encoding
- Restructuring

BDD-package

SIS

Figure 1.10: Architecture of the VIS-system

22

CHAPTER 1. PRELIMINARIES

Chapter 2

A Case Study in Formal
Verification

In the previous chapter we have learned about two important techniques for the verification
of sequential systems in CAD, which are reachability analysis and model checking. In this
chapter we will conduct a case study, which presents the application of formal verification
methods in an industrial surrounding. We develop a methodology which allows to integrate
formal verification in the design flow.

The abilities of formal verification, as well as its limitations become visible. The limitations
of the approach motivate the research that is presented in the remaining chapters.

This chapter is structured as follows: In the next section we discuss the application of
formal verification in industrial settings and briefly present the synthesis and verification
tool Protocol Compiler. The next section presents our formal verification methodology,
which is based on assertion checking. The methodology is applied to two examples that are
taken from the networking arena. The first is a simplified RS232 transceiver, the second
a pipelined FIFO-like buffer written in Verilog. Because the examples represent different
types of protocols, two different techniques are given. At the end of the section the general
problem of the handling of inputs during verification is discussed. The last section concludes
the chapter and gives an outlook on challenges and open problems.

2.1 Formal Verification in an Industrial Setting

Recently, usage of complex controller and protocol designs like ATM, Sonet, SDH, etc. as
well as their complexity has increased and due to Moore’s law [Moo65] we can expect this
to continue.

Much design time is spent verifying the design and in practice nearly all of it is done by
simulation. But, as the complexity of the design increases, simulation loses its sufficiency. To
guarantee correctness of complex designs, formal verification techniques like model checking
or theorem proving are a useful supplement to simulation. Unfortunately, formal verification
currently does not fit well into the design process for multiple reasons:

— Fairness constraints and specifications must be given in languages such as CTL, that
are not related to any hardware description language (HDL), hence unknown by most
designers. Also, they are not very intuitive.

23

24 CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

— formal verification is an inherently complex task.
— Expert guidance is required.

— When formal verification finds a bug, it is difficult to determine where the bug origi-
nates from.

In this case study we present two examples how to apply formal verification methods in
Protocol Compiler. We use a simulation-like approach and re-use the testbench for simulation
as well as assertion checking.

This case study demonstrates the possibility of integrating formal verification in the design
process of real life controllers. Nevertheless, its limitations and challenges become visible.
This chapter serves as a motivation for the problems that are addressed in the following
chapters.

2.1.1 Protocol Compiler

Protocol Compiler is a design environment for the processing of structured data streams such
as the ATM, SDH/SONET, or MPEG protocols. It is based on previous work by Seawright,
Brewer, and Crews on logic synthesis from grammatical productions [SB94, CB96]. Seawright
gave an overview of the tool [Sea96] and Holtmann and Meyer application examples for
SPDIF [HB98] and SDH/SONET [MST97a] protocols. The design environment consists of
entry, debugging support, protocol synthesis, and HDL generation (both VHDL [HJ96] and
Verilog [TM91] are supported). The Protocol Compiler language is conceptually higher than
register transfer level (RTL).

Protocol Compiler provides a sophisticated debugging environment for simulation as well as
formal verification based on the following features:

— The high-level language of Protocol Compiler makes it simple to describe stimuli or
to check for errors. The language is applicable to the design as well as the testbench.

— Interfaces to Verilog and VHDL simulators are provided.

— Protocol Compiler provides formal verification capabilities like image computation,
reachable states computation and model checking [CBM89, Bur90] based on OB-
DDs [Bry86]. These formal verification capabilites are set up on the internal repre-
sentation of the controller, which is also based on OBDDs.

— Results from simulation or formal verification are mapped back onto the source by
highlighting frames.

In this case study, we focus on applying assertion checking that is a subproblem of model
checking.

2.2 An Assertion Checking Methodology for Protocol Com-
piler
We start the description of our verification methodology by outlining our general verifica-

tion flow, which closely combines simulation and formal verification. Then, we present two
different assertion checking strategies for the verification of two different controllers.

2.2. AN ASSERTION CHECKING METHODOLOGY FOR PROTOCOL COMPILER25

2.2.1 Verification Flow

Our design flow (see Figure 2.1) starts with the conventional steps to enter the design, write
a testbench and then simulate it and fix bugs. We first check typical cases and then enhance
the stimuli generators to cover corner cases as well. During the first cycles of the verification
flow it is very likely to have obvious errors that can easily be detected by simulation and do
not need the more time consuming formal verification approach.

(Create Testbench)
|

]
(Stimuli for Typical Cases) Simulation

Simulation ssalg S
(waveforms,highlighting)

(Stimuli for Corner Cases)

debug
(waveforms,highlighting)

Simulation

SR

Replace (some) Stimuli]Assertion Checker

ith F | t . .
with Free Inputs Formal Verification

: debug
(waveforms highlighting)

Figure 2.1: Verification Flow.

In order to cover all corner cases we finally apply formal verification in form of assertion
checking. Some parts of the stimuli generator are replaced by free inputs but most of the
testbench is re-used. An assertion checker is added. Then, the formal verification engine of
Protocol Compiler is used.

Assertion checkers are part of the testbench and prove whether the design under test behaves
correct, i.e. the correct result is returned. We use the same or similar assertion checkers for
simulation and formal verification.

During formal verification, we perform assertion checking by computing all reachable states
and determining whether an assertion is violated in any of the states. If a bug is found, i.e.
an assertion is violated, we generate a trace file and review it with a waveform viewer. The
trace shows the shortest explicit sequence of input values and state transitions leading to
the bug.

2.2.2 Example RS232

As the first example, we show how to verify a simplified RS232 receiver with simulation and
formal verification methods.

The RS232 is a simple and well-known serial communication interface. Transmission is done
through a single wire (we ignore all control signals). A byte is transmitted as a sequence of

26 CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

8 data bits plus some start, stop and parity bits. For the sake of simplicity, we assume that
receiver and transmitter are already synchronized at the bit-level. Also, we always use two
stop bits and even parity.

Figure 2.2 shows the implementation of the receiver with Protocol Compiler. Thick outlined
boxes are terminal frames and describe a delay of 1 clock cycle plus a condition like Rx==
to be met. Other frames describe sequence { }, repetition []* or concurrency I Ovals
are actions which are executed whenever the corresponding frame successfully finishes. If
the incoming bit stream is invalid, e. g. a wrong parity bit, then the corresponding terminal
frame will not accept and the exception frame executes the action set(invalid) for one
cycle before the receiver resumes.

Please see the overview [Sea96] or application papers [MST97a, HB98] of Protocol Compiler
for a more detailed description of the language.

Top

(N\ Mark
start bit
|Rx == o| (dout=0)

data bits

j=0:7
dout[j] = Rx
P parity bit

stop bits

| Rx == 1| (et(valid))
N 7
error has been detected

set(invalid)

Figure 2.2: Protocol Compiler Implementation of the RS232 Controller.

All frames of the controller put together work as follows: The Top frame first repeats execut-
ing the terminal frame Rx==1 on the right-hand side of the alternative frame until Rx goes
to 0. Then execution shifts to the left side and a full word is read, beginning with the start
bit Rx==0, 8 data bits, parity and two stop bits. If the parity bit has the wrong value, then
the terminal frame Rx==!dout will not accept, thus raising an error and execution jumps
into the exception handler at the bottom where the invalid flag is set. Ditto both stop bits
are checked. Then, the receiver starts searching for the first start bit (Rx==0) again.

In this example we show how to apply formal verification methods by reusing a major part
of the simulation testbench. In other words, how to apply formal verification without leaving
the design-simulation track.

We start the verification task with simulation. The simulation is driven by a testbench that
creates inputs (e.g., using a counter) and sends them to the Transmitter (Tx) of the RS232.

2.2. AN ASSERTION CHECKING METHODOLOGY FOR PROTOCOL COMPILER27

Furthermore, these messages are buffered in a circular register. The register is needed to
store the messages for the latency period between sending and receiving. In this example a
register with two slots is sufficient, since only one message is pending at a time. One register
is keeping the actual message, the other one is ready for writing. The circular register also
allows simultaneous reading and writing. Each time a message is delivered from the Receiver
(Rx) it is compared to the actual message in the circular register. The error flag is set, if
these messages differ. See Figure 2.3 for a schematic view of the testbench.

error A

Stimuli- R N
Generator +

Testbench

_|
X
Py
X
Unit under Test

Figure 2.3: Schematic View of the Testbench for the RS232.

This setup provides us with a sound testing environment, e. g. we can test the correct trans-
mission of all 256 possible input values. But, this simulation cannot assure full correctness
of the controller, since it is not only required to test all possible values, but all possible
sequences of input values including any arbitrary number of ready=0 signals in between.

A simulation testbench is not able to process this infinite input stream. If we want to assure
correctness over all input sequences we have to use formal verification methods.

As part of the transformation from simulation to formal verification we build an assertion
checker (AC) by reusing most of the testbench. The only change for assertion checking is
to remove the stimuli generator from the testbench and to declare the inputs to be free.
Free inputs are treated like external inputs, i.e. no special value is assigned and thus the
inputs can take any possible value in any clock-cycle. In this context a free input is like a
stimuli generator that exhausts all possible sequences of all possible values. After doing this
we lose the ability to perform simulation in return for the possibility of assertion checking.
Figure 2.4 shows the assertion checker for the RS232.

Assertion checking amounts to computing the set of reachable states. After this set has been
computed, checking the correctness property is easy: The situation when an error occurs,
i.e. , the error flag is set, marks a state or a set of states. We only have to check whether
the error states are within the reachable state set.

The testbench describes the fairness constraints and specifications necessary for assertion
checking. Normally, they would be written in languages such as CTL (see [Bur90]), which
are not related to HDLs and unknown by most designers. This is one of the reasons why
application of formal verification is currently difficult. Instead of CTL, we use the Protocol
Compiler language which is similar to an HDL but at an higher abstraction level. Because
the language is fully synthesizable, all constructs can be turned into OBDDs making formal
verification possible.

28 CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

freeinputs error

T %

|6

(g E

> E

| B
! =
. Y% - RX B
| | S5
| RS232 | E

Figure 2.4: Schematic View of the Assertion Checker for the RS232

Experimental Results

The verification of the RS232 required 34 seconds on a 336 MHz UltraSPARC-II, resulting
in 268,545 reachable states within a sequential depth of 29 shells. The design was proven to
be correct.

In the next example we present a more sophisticated assertion checking method and show
how to combine assertion checking and debugging at the source level.

2.2.3 Example Cow-Stomach

The second example is a ”cow-stomach”: a small FIFO-like buffer inserted between two
modules forming a source and sink. In networking designs, pairs of modules often form
a source and sink. In general, data simply flows from source to sink, however the sink is
sometimes not able to accept data and indicates this by clearing a ready flag. Common
design practice is to register all flags (ports) between modules to improve clock speed. This
introduces a one-clock-cycle delay per register, so the sink must indicate with ready that it
will be ready in the next cycle to accept data.

The sink essentially has to predict its ability to accept data a cycle later, however, in some
designs this is not possible. The best thing the sink can do is to provide a taken flag
indicating that is was able to accept data in the current clock cycle. In that case we need
to insert a FIFO-like buffer between source and sink. We call this buffer a cow stomach and
its goal is to provide maximum throughput using only few resources (see Figure 2.5).

dat
data a
aid
: Cow- — _
Source | vaid StomachL__taken Sink
ready sync

Figure 2.5: Cow-Stomach.

The cow stomach also has registered outputs, so there is now a four cycle delay to send a
data token from source to sink and an acknowledgment back. The cow stomach consists of

2.2. AN ASSERTION CHECKING METHODOLOGY FOR PROTOCOL COMPILER?29

a buffer, organized as a FIFO, and control logic. We found that designing the control logic,
although not too complex, was easy to get wrong. The difficulty arises from the fact that
data has to be speculatively send from the source several cycles before it is known whether
the sink will accept the data. One can view this as a 2-stage pipeline. The cow-stomach
must store up to 4 data tokens, so the controller must also keep track of the buffer status
as well as the pipeline stages.

We implemented the cow-stomach as an explicit FSM (Figure 2.6: for simplicity all actions
and conditions have been removed) in Verilog and imported it to Protocol Compiler using
a prototype Verilog parser.

stage0
stagel
stage2
stagel+2

Figure 2.6: Cow-Stomach Controller.

The cow-stomach represents a common type of design where data is transferred and/or
modified. The control is unstructured and depends on many flags. Errors that may occur in
this context include:

— Buffer underflow or overflow,
— lost or duplicated messages, and

— out-of-order messages.

Although the control logic has only nine states, the design had initially several errors. For
example, the ready flag was cleared too late with the result that the source kept on sending
data and the internal buffer overflowed later.

To check the controller for these errors, we start with a simulation using a testbench similar
to the one used in the previous example. In this case, the circular register has to be larger
(at least five slots) due to the higher number of messages buffered.

After a detailed simulation phase, we may assure correctness of the controller for many
situations, but again, we cannot assure correctness for all possible situations. At this stage

30 CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

we could turn the testbench into an assertion checker as in the previous example to check
the controller for the errors described above, instead we propose a different method for two
reasons:

1. The larger circular register and the higher bit-width of the messages may make formal
verification of the controller too complex.

2. The Cow-Stomach is a data-independent protocol which allows us to use a more efficient
method for the verification.

A data-independent protocol is a protocol whose control only depends on control inputs
(flags like valid or ready), but not on the data itself. The RS232, for example, is data-
dependent, since it computes the parity bit from the input. For a detailed analysis of data-
independency refer to Wolper [Wol86]. For the verification of data independent protocols
no circular register is needed. Since the data does not influence the behavior of a data-
independent protocol, the data input width can be reduced to one bit. Wolper has also
shown that this bit is sufficient to distinguish messages and we take advantage of this fact.

The assertion checker for the verification is built in the following way: The generator part
of the assertion checker generates an arbitrary number of O-messages. Then two consecutive
1-messages are sent, followed by 0-messages. The receiving part of the assertion checker
checks whether the output of the protocol fulfills the following properties:

— Exactly two 1-messages are sent, and

— the 1-messages arrive consecutively.

The assertion checker does this symbolically for all streams of 0-messages with two con-
secutive 1-messages embedded into it. Errors in the design are detected in the following
way:

— If a message is lost, there exists a stream for which one 1-message is lost.

— If a message is duplicated, there exists a stream for which one 1-message is duplicated,
resulting in three 1-messages.

— If the order of messages is disturbed, there exists a stream where the two 1-messages
are no longer consecutively.

If data is corrupted, then there is a stream with either only one or three 1-messages. See
Figure 2.7 for a representation of the Assertion Checker.

After the cow-stomach passed all simulation tests we still found one more bug with formal
verification using this assertion checker.

Usually, formal verification confirms that your design works correct but what do you do
when it still has bugs? What is needed is a way to explicitly find the conditions under which
the error occurs and why. We use Protocol Compiler’s facility to trace to a certain state
(in this case the error state) to get a shortest path of state transitions to the error state. A
trace file is generated and examined with a waveform viewer as shown in Figure 2.8.

We found that being able to see a specific trace leading to an error is very helpful. Protocol
Compiler allows to move the marker (the vertical line in the middle of Figure 2.8) backward

2.2. AN ASSERTION CHECKING METHODOLOGY FOR PROTOCOL COMPILER31

Generator Verifier Generator Verifier

4 \

@ [I Irand I (src,data =0)] I: *
[|
vt I rand I (src,data =1)
@ < |
[E=D < >
n

DD |

N 7

]

Transitions = in/out

= Nr. of 1-messages
a) b)

1

Figure 2.7: Assertion Checker a) as FSM b) in Protocol Compiler.

and see which states were executed in the source. We did this and found the cause of the
error happened 7 cycles earlier in the state shown in Figure 2.9. The shading indicates which
frames and actions were executed in the current clock cycle.

The problem was that the src_ready flag was incorrectly set high too early. Consequently,
the source sent more data than the cow-stomach could store and a token was lost.

Using this kind of a assertion checker we add only a small overhead to the design. This
allows a fast computation and little memory requirements. Nevertheless, since only one bit
of the input data is required for the verification one either should reduce the bit-width of
the input to one or at least set the unused bits to default values. This keeps the state space
and the sequential depth of the FSM to a minimum.

Experimental Results

We performed the assertion checking of the (correct) cow-stomach protocol on a 336 MHz
UltraSPARC-II. It takes 7 seconds to compute the protocol’s 1763 reachable states in a
sequential depth of 15 shells (includes testbench and assertion checker).

2.2.4 Dealing with Inputs during Verification

In preparation of the assertion checker the inputs (i. e. ports) to the design have to be chosen
carefully. Each input may belong to one of the three types given below:

— Inputs driven by the assertion checker,
— free inputs, or
— fixed inputs.
All inputs affecting the property that is checked by the assertion checker process have to

be driven by the assertion checker. This includes the data-path of the controller as well as
timeouts etc.. Assertion checking is conservative regarding the choice of inputs. This means,

32 CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

Clock 0
pc_extra 0
hickup_src ||0O
hickup_destj|0
rand 1
src_data 1
src_walid 1

src_ready || 1

dest data |[|0O

dest_walid [{1
dest_sync

dest_taken

[R
j;EEJEET WT%

[= [

errar

Figure 2.8: Diagnostic Trace

S2H_

[2values stored, the first one just send]

sre_valid b3 = src_data
set(src_ready) | set{dest_valid)
(!src_\y

‘ dest_data = b2
Bug: should have been clear (src_ready)

set(sro_ ready)

Figure 2.9: Discovered Bug

choosing the wrong inputs to be free will introduce false negatives, i. e. probably non-existing
errors are notified, but it will never ignore real errors. For example, setting the data-input
of the RS232-receiver to a free input will produce an error, due to the arbitrary input values
like missing stop bits, although the receiver is error-free.

Any input not affecting the assertion checking process may be set to a free input. The
problem that arises from this strategy is that too many free inputs increase the number
of reachable states and the sequential depth of the system, making a successful assertion
checking problematic. This problem may be avoided by setting inputs to fixed values. But
these variables have to be chosen carefully. For example: The cow-stomach has an input
hick-up that is set, if the sink has a congestion while processing data. Setting this input
in to a fixed value will prevent a meaningful assertion checking. Setting assertion checking-
related variables to fixed values may be detected by the fact that fractions of the controller
that should be checked are no longer reachable at all (but this is not guaranteed).

Another way to lower the complexity of the assertion checking is to reduce the bandwidth
of the data-path-variables. Once a controller has been judged data-independent the width
of the data-path may be set to 1. This may be done by fixing the other bits of the data-path

2.3. CONCLUSION AND OPEN PROBLEMS 33

or — preferably — by reducing the bit-width within the protocol’s declaration. Within data-
dependent protocols reducing the bit-width of the data-path will influence the computation,
and thus has to be done very carefully.

2.3 Conclusion and Open Problems

This case study presented two examples how to verify designs in Protocol Compiler. We
use simulation and formal verification in form of assertion checking. We entered designs and
testbenches in Verilog or the Protocol Compiler language and found that a very similar
setup can be used for simulation and formal verification. Actually, the assertion checker can
be derived from the simulation testbench (See Figure 2.3 and Figure 2.4).

Applying formal verification methods with Protocol Compiler turned out to be straightfor-
ward, because it is easy to describe stimuli as well as assertion checker and formal verification
is tightly integrated in the tool.

We also found that data independent protocols can be efficiently handled by formal verifi-
cation using a special type of assertion checker with reduced complexity.

Although the usage of an assertion checker is easy and formal verification is well integrated
into Protocol Compiler, the limitations of the approach that are due to increased complexity
become visible.

The examples presented here are realistic, but not too complex. As soon as the protocols
become more complex the effort for formal verification increases drastically. The formal
verification is still feasible, but it requires some “expert knowledge in formal verification
technology. This knowledge usually is not given on the user side.

Protocol Compiler is a high-level design and verification tool, it follows a modular design
approach and is capable of high-level design languages as e. g. Verilog. This high-level infor-
mation can be used as “knowledge to drastically improve the performance of the integrated
formal verification techniques.

The main areas for optimization of OBDD-based formal verification are the partitioning of
the transition relation of the design under test and the dynamic variable reordering of the
OBDDs.

In the remaining chapters we present approaches that

— utilize high-level information to build a modular structured partitioned transition re-
lation,

— generate a modular structured partitioned transition relation under the assumption
that the design is structured, but without explicitely using external high-level infor-
mation, or

— use specialized adaptions of general approaches for dynamic variable reordering

to improve the performance of formal verification.

All these methods increase the efficiency of formal verification and reduce expert knowledge
required to verify designs.

34

CHAPTER 2. A CASE STUDY IN FORMAL VERIFICATION

Chapter 3

Partitioning

Image computation is the core operation in any sequential verification application like model
checking or reachability analysis. As an example, the basis of the Assertion Checking strategy
described in the previous chapter is a reachability analysis of the combined design and
assertion checker system. OBDD-based state space exploration algorithms use a partitioned
representation of the transition relation of the design under consideration. Modern designs
are modularized and hierarchically structured, but the conventional partitioning strategies
lack the ability to incorporate additional information provided by the designer or a high-level
design tool.

Most partitioning strategies are based on finding an ordering of the latches for clustering. In
this chapter we will describe partitioning techniques that change this paradigm to grouping
the latches for clustering.

This chapter is structured as follows: We start with an description of the partitioning prob-
lem, give the standard partitioning method and briefly outline other partitioning approaches.
In the next section we describe our RTL-heuristic that utilizes high-level information given
by the design to group latches and improve the partitioning. We then analyze these group-
ing effects. The section is concluded by benchmark experiments. In Section 3.3 we present
our second heuristic called group heuristic. An analysis of the RTL heuristic shows how
the grouping of latches improves the quality of the partitioning. In the group heuristic we
simulate this kind of grouping, but without using explicit high-level information, making
this approach more general. Also, this section is concluded by benchmark experiments.

3.1 The Partitioning Problem

The computation of an image using OBDDs as shown in Section 1.4.2 requires the OBDD-
representation of the transition relation (TR) of the system. Most TRs of realistic systems
are much too complex to be represented by a single OBDD. A so-called monolithic transition
relation usually blows up in size and exceeds any space limitation. For this reason one uses
a partitioned transition relation. This technique introduces two optimization problems:

1. Finding an optimal clustering of the latches (clustering problem), and

2. finding an optimal schedule for the conjunction of the clusters (scheduling problem).

Typically, both problems interfere with each other. The possibilities for clustering range
from the monolithic TR, which as mentioned above in most cases cannot be represented in

35

36 CHAPTER 3. PARTITIONING

terms of OBDDs, to the single latch clustering, which has a small TR, but includes many
very costly operations, whose intermediate results may also exceed space limitations.

The difficulty of the partitioning problem increases as it is not known

— how many images will be computed until a fixed point is reached,
— how the OBDD-representation of the reached state set will develop, and

— how the variable order will change due to dynamic variable reordering.

All these points have to be taken into account by a good partitioning strategy.

3.1.1 Common Partitioning Strategy

The common strategy for clustering and conjunction scheduling is the so called TWLS95
method [Ran95] that is used e. g. by VIS [VIS]. (The name stems from the first presentation
of this method at the IWLS workshop.)

The AndExist-based image computation step using a partitioned TR is done by iteratively
taking clusters into the product and quantifying out variables that are not needed in the
following iterations. Clusters are built by conjoining bit-relations to a cluster until a given
partition-size threshold is exceeded. Then, a new cluster is introduced (clustering problem).
A more subtle decision has to be made for the conjunction scheduling of clusters (or bit-
relations) to allow an efficient AndExist operation (scheduling problem).

The IWLS95 method partitions a transition relation as follows:

1. Order latches: First, the latches are ordered by using a benefit heuristic.

2. Cluster latches: The single latch relations are clustered by following a simple strategy.
OBDDs representing latch transition functions are added to a cluster OBDD (i.e. by
performing AND) in the order computed by the benefit heuristic until the size of the
OBDD exceeds the partition-size threshold. Then, a new cluster OBDD is created.

3. Order clusters: In the last step the clusters are ordered similarly to the latches by
again using a benefit heuristic.

For a description of the algorithm in pseudocode see Figure 3.1.

The heuristic argument of the IWLS95 method is that the number of variables being quan-
tified out of the product and the number of additional variables being introduced into the
product determines the efficiency of the operation. Thus, the goal of the heuristic is to keep
the number of variables in the support of the product as small as possible.

It is worthwhile mentioning that already a subproblem of the scheduling problem is algorith-
mically intractable: Hojati et. al. . [HKB96] have shown that finding a tree of conjunctions
s.t. the support of the largest intermediate product is less than a given constant is NP-
complete even under the simplifying assumption that the support of f A g is the union of
the supports of f and g.

The ordering of bit-relations or clusters for the conjunction schedule is done by a benefit
heuristic [GB94] that performs a structural analysis of the transition functions of the latches.
The heuristic chooses greedily from the set of unordered relations the one that fits best to
the following criteria:

3.1. THE PARTITIONING PROBLEM 37

IWLS95Partition(latches){
ordered_latches = BenefitOrder(latches);
tmp_cluster=cluster= 1-Sink;
foreach(latch in ordered_latches){
tmp_cluster = cluster A latch;
if(BDDsize(tmp_cluster) > THRESHOLD){
append(cluster, cluster_list);
cluster = latch;

} else{

cluster = tmp_cluster;

}

ordered_cluster = BenefitOrder(cluster_list);
return ordered_cluster;

}
Figure 3.1: Algorithm for the IWLS95 Heuristic in Pseudocode.

1. The relation having the maximum number of variables quantified out, when chosen
for the next product.

2. The relation having the maximum number of present-state variables to be introduced
in the product.

3. The relation having the maximum number of next-state variables to be introduced in
the product.

4. The relation having the maximum level of a variable in the OBDD to quantified out.

The formula which computes the benefit according to the above criteria when latch resp.
cluster ¢ is chosen:

z b;
] lql| [yl b
where || || denotes the cardinality of the following sets:

q Variables which can be quantified out if 4 is chosen

Variables which have not been quantified out yet

Q)

x Present state and input variables in 2

y Next state variables in ¢

9y Next state variables not yet introduced

b; Maximum OBDD level of a variable to be quantified out in

b Maximum OBDD level of a variable not yet quantified out.

According to [Ran95] the weights are:

w1 :2,’[1]2 = 1,w3 = 1,’LU4 =1

38 CHAPTER 3. PARTITIONING

The version of VIS that we are using (VIS-1.3) has the weights by default set to:

w1 = 6,’(112 = 1,’LU3 == 1,'w4 = 2.
This is done to put more weight on those choices that reduce the number of variables in the
next product.

Remark:

The 4th criterion is not useful if dynamic variable reordering is activated during the par-
titioning process, because after reordering the ranking computed on the previous variable
order becomes — at least partially — obsolete.

Figure 3.2 summarizes the partitioning process for the IWLS95 strategy.

| < Latches
9 =—Relations (OBDDs)

\
1. Order latches %
by benefit heuristic T

\
AL
2. Cluster latches v @ @ V

<=— Cluster (OBDDs)
3. Order clusters
by benefit heuristic

Figure 3.2: Schematic of IWLS95 Partitioning Strategy.

3.1.2 Related Work

After the IWLS95 method has been the state-of-the-art method for partitioning for several
years, recently new approaches (beyond those present here) have been published:

Hachtel et. al. [MHS00] presented a heuristic that minimizes active lifetime of the variables
in the product to gain a good conjunction schedule. The active lifetime is the number of
conjunctions in which the variable is involved schedule and it is computed from a dependency
matrix, which describes the dependency between the different latches. Additionally, the
authors give a blocking strategy for the clustering, which forbids clustering across certain
borders, which turned out to produce too large clusters.

Chauhan et.al. [CCJ+01] presented a heuristic that creates a parse tree resulting in a
non-linear quantification schedule. The heuristic argument is to perform the cheapest con-
junctions first. This strategy allows a dynamic conjunction scheduling, although experiments
are given only for the fixed scheduling heuristics.

Cabodi et. al. [CCQO02] presented an improved benefit heuristic, which avoids the reordering
problem mentioned in the section above and an adaptive clustering approach also allowing
dynamic conjunction scheduling and clustering.

Except for [CCJ+01], the basic idea of these approaches still is ordering of bit-relations.

3.2. RTL PARTITIONING 39
3.2 RTL Partitioning

In this section we will discuss the basic concept of using high-level information to improve
image computation. The heuristic described here is named RTL-heuristic, because we utilize
constructs typical for descriptions on register transfer level (RTL). After a description of
the heuristic, we will discuss its benefits and the underlying mechanisms. Experiments prove
the effectiveness of this approach.

3.2.1 Hardware Description Languages

Since modern complex designs require a structured hierarchical description to be feasible
they are currently written in a hardware description language (HDL) at register transfer
level (RTL). The term RTL is used for an HDL description style that utilizes a combination
of data flow and behavioral constructs. Logic synthesis tools take the RTL description to
produce an optimized gate level netlist and high level synthesis tools at the behavioral level
output RTL descriptions. Verilog [TM91] and VHDL [HJ96] are the most popular HDLs
used for describing the functionality at RT level. Within the design cycle of optimization
and verification the RTL level is an important and frequently used part.

The design methodology in Verilog is a top down hierarchical modeling concept based on
modules, which are the basic building block. Our experimental work is based on designs
written in this language, but our approaches can easily be extended to other HDLs or
any hierarchical finite state machine representation as it is, e.g. provided by state space
decomposition algorithms (see. e.g. [MJH+98]).

3.2.2 RTL based Partitioning Heuristic

The way to build a complex design is to break it into modules, each with a dedicated func-
tionality and a smaller complexity. For example communication protocols contain trans-
mitter and receiver that represent independent modules. These modules are usually not too
complex, thus the complexity of their TRs will be small. If a partition contains state variables
of several modules, we need to represent the Cartesian product of these modules leading
to a much more complex TR. The main reason for the efficiency of the partitioned TR
approach is that state variables not appearing in other partitions are quantified out during
the AndExist operation. This leads to much smaller OBDD-sizes and a faster computation.
If the state variables of a module are spread over several partitions, the quantification does
take effect only late in image computation. Therefore, most of the computation has to be
done with large OBDDs.

RTL level description languages like Verilog support a hierarchical design methodology by
providing module constructs. As it can be seen this modularization has effects on the image
computation (see discussion below) that should not be neglected.

Although the IWLS95 method optimizes the partitioning twice (clustering and scheduling),
its main disadvantage is that it only uses structural information about the latches to op-
timize the partitioning for an efficient order for the AndExist operation during the image
computation.

We propose a method that changes the paradigm of ordering the bit-relations as it is used
by other methods to a grouping paradigm. Therefore, additional semantical information
about the represented functions is included in the partitioning process. As an analysis and

40 CHAPTER 3. PARTITIONING

experimental results show, there is a close connection between the RTL description and an
efficient image computation.

We call this heuristic RTL heuristic. It proceeds in three steps:

1. Group latches: Each Verilog RTL description contains a main module. The modules
that are instantiated in this main module form the groups of our approach. Usually,
only a few, but largely independent, modules are instantiated in the main module,
leading to a reasonable granularity of the groups. There is no special ordering strategy
for the latches within a group. Just to avoid a random ordering we order the latches
lexicographically by their internal names (names of latches from submodules are pre-
fixed by the submodule name). Also, the bits of a certain register are named by the
register and the bit number. A side effect of this sorting is, that latches of a submodule
within the group stay adjacent, without being grouped explicitly. The same holds for
the bits of a register.

2. Cluster groups: The groups represent borders for the clusters. It is not allowed for a
cluster to contain latches from different groups. To control the OBDD-size of the clus-
ters, the partition-size threshold from the IWLS95 method is applied within the groups.
The clustering given by the groups lowers the influence of the arbitrary clustering pro-
duced by the OBDD-size threshold. Thus, resulting in a more natural partitioning, i.e.
a new cluster is created with any new top-level semantical entity.

3. Order clusters: (optional) In the last step the clusters may be ordered by e.g. using
the benefit heuristic from the standard method.

Figure 3.3 gives an overview of this strategy.

LI T T TT] <— Latches
<— Relations (OBDDs)

1. Group latches
acc. to RTL-modules

<— Modules

2. Cluster latches
within groups

A\
\A§\, <— Cluster (OBDDs)

N

3. Order cluster
(optional) f

Figure 3.3: Schematic of RTL-based Partitioning Strategy.

Modifications of this strategy could be:

— Step 1la) As an additional step the benefit heuristic of the standard method may be
applied to order the latches within the single groups. It emerged that in our case the
lexicographic order of the latches — especially those that form registers — preserves
more of the structure of the design and leads to better results.

3.2. RTL PARTITIONING 41

— Step 2a) One may allow to create clusters that cross a group border. This will lead
to a more compact representation of the TR with fewer clusters. Although the repre-
sentation is more efficient the image computation does not perform as efficient as with
the strict group borders. An explanation for this behavior is given below.

— Step 3) It turned out that the benefit heuristic does not help improving our results,
thus Step 3 is omitted in our experiments.

3.2.3 Discussion of the Method

In the following we will discuss the influence of different partitioning schemes on the image
computation of designs that are inherently modularized. Then, we will take a look how the
RTL heuristic performs on the primary target of the IWLS heuristic that is minimization
of the number of variables involved in the product computation.

Grouping Effects

For the ease of understanding we consider a hypothetical communication protocol consisting
of a transmitter (Tx) and a receiver (Rx) (see Figure 3.4). The state variables of Tx are
to, - --,tm and the corresponding transition functions are dy,. .., ds,,. The state variables of
Rx are ry,..., Ty, the corresponding transition functions are d,,...,9d,, .

Tx-out Rx-out

Rx-TxAi{ Rxein

Logic

Tx-in_

0162 ...6n

ro

rl

r2
Register M

Transmitter Receiver

Figure 3.4: Schematic of the Communication Protocol.

A common greedy partitioning strategy merges d;s and §,s until the threshold for the OBDD-
size of the partition is exceeded. We can expect that §;s and d,s appear in every partition.
Hence, every partition depends on many of the variables %, ..., tmy,ro,..., ,. This kind of
“interleaved” partitioning will not have negative effects on monolithic controllers, but it will
have negative effects on modularized controllers:

1. The quantification operation (3) included in the AndExist operation takes effect lately,
resulting in large OBDDs in the preceeding computations.

2. If the partitions depend on all variables, the AND part within the AndExist is a
complete AND operation with a worst case complexity of O(|I;| - |F;|), where P; is the

42 CHAPTER 3. PARTITIONING

OBDD of the ith partition and I; is the intermediate OBDD of the (i — 1)th iteration
(The AndExist operation does not have polynomial runtime).

Even if the partitions are almost separated, but e.g. d,, is represented in a partition of only
d¢s, the OBDD for 4,, cannot share any nodes with the OBDDs for the other functions. This
results in an unnecessary large partition that is again depending on all variables.

We have a different situation, if we use a modularized partitioning: The set From of already
reached states and the resulting Image (7T0) of every iteration of the reachable states com-
putation are independent of the chosen partitioning scheme. The OBDDs of From and To
may be different due to variable reordering, but the main reason for the better performance
is the different partitioning scheme: Only transition functions of one type (d; resp. d,) are
merged into one partition and iterated consecutively. This scheme performs better for the
following reasons:

1. The AND part of the AndExist operation is performed on a smaller number of vari-
ables. During the ith iteration the partition P; and the intermediate result I; share
only a fraction of variables. The complexity for the AND operation of two OBDDs A
and B with totally disjoint variable sets is O(|A| + |B|). The AND part in the modu-
larized scheme is much closer to this complexity than the AND part in the interleaved
scheme.

2. If the end of a module is reached, the abstract operation will quantify out most vari-
ables of this module, resulting in smaller OBDDs.

Variable Balances

During the iterated image computation next-state variables (y) are introduced while present-
state variables (z) are quantified out. The goal of the standard heuristic is to minimize the
sum of these variables The diagram in Figure 3.5 shows this balance for a typical example
of our benchmarks (p62_L_L_V02). The solid line (Orig) shows the result for the IWLS95-
method. The balance of variables quickly reaches a maximum of 73 additional variables and
then, decreases down to a balance of 0 additional variables after 22 clusters.

The RTL heuristic (dashed line) produces a totally different result. Although, the heuristic
is not tuned to this target the balance is smaller (max. 49). Furthermore, the number of
additional variables decreases several times, i.e. when crossing a group border.

The obvious differences in the number of variables is related to the improvement in the qual-
ity of the partitioning for the RTL method. Remarkably, the RTL heuristic outperforms the
standard method even in a structural analysis, giving a good argument for the effectiveness
of this approach.

3.2.4 Experimental Results

In this section we give a proof of our concept by performing model checking with public-
domain benchmarks.

Implementation

We implemented our algorithms in the VIS-package [VIS] (version 1.3) using the underlying
CUDD-package [Som] (version 2.3.0). VIS is a popular verification and synthesis package

43

3.2. RTL PARTITIONING
80 T
Orig
RTL --—-----
Group --------
70 .
60 .
50 i i
©
o
c B
3 /
8 -
© 40 -’;‘ / \ A - 7]
K<} L \ R [
s i AR /
30 f | \ .
20 |/ \ .
10 F .
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I‘;““I‘;‘;‘I‘;:LI 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
cluster
Figure 3.5: Variable Balances for different Heuristics.

in academic research. It inherits state of the art techniques for OBDD manipulation, image
and reachable states computation as well as formal verification techniques. Together with

the vI2mv translator VIS provides a Verilog front-end.

Benchmarks
For our experiments we used Verilog designs from the Texas97 benchmark suite [Azi97] and
examples from the VIS distribution. This publicly available benchmark suite contains real

life designs including;:

— MSI Cache Coherence Protocol,

— PCI Local BUS,

— PI BUS Protocol,
— MESI Cache Coherence Protocol,

— MPEG System Decoder,

— DLX and

— PowerPC 60x Bus Interface.
The benchmark suite also contains properties given in CTL formulas for verification.
We chose those designs that represent RTL rather than gate level descriptions. Only designs
were considered, whose transition relation could be build respecting our system limitations

44 CHAPTER 3. PARTITIONING

We computed 24 different benchmarks for which one or two sets of properties have been
checked (resulting in 36 experiments). The runtime heavily depends on the chosen set of
properties and is not proportional to the number of image computations. Therefore, it
is reasonable to check more than one set of properties per benchmark. Some very small
examples (CPU time < 5s) are not shown.

Experimental Setup

We left all parameters of VIS and CUDD unchanged. The most important default values
are:

— Partition cluster size = 5000,

— partition method for MDDs = frontier,

— OBDD variable reordering method = sifting and
— first reordering threshold = 4004 nodes.

The model checking was preceeded by an explicit call to variable reordering (i.e. Sifting).
The CPU time was limited to 6 CPU hours and memory usage was limited to 200MB.
For runtime comparison, all experiments were performed on Linux PentiumIIl 500MHz
workstations. These settings are valid for all experiments we performed using VIS.

Results

The results of the experiments are shown in Table 3.1 and Table 3.2 We compared our
RTL-method with the standard partitioning method of VIS, which is the IWLS95 method.

In Table 3.1 the runtimes of the two methods are compared. Icmp gives the number of
image computations performed during reachable states computation and model checking.
The CPU time is given in seconds. For statistics the benchmarks exceeding the time limit
(>6h) have been calculated as 6h+1s. The improvement is given in % (—100 < % < 100)
and is calculated as follows:

a>b:%=(1-b/a)- 100,
a<b:%=(a/b—1)-100.

The RTL-method wins 25 out of the 36 cases. The improvements range up to 91%. The
RTL-method finishes three benchmarks more than the IWLS-method. This results in an
overall improvement in time of 27%. The RTL-method shows significant losses only for
three benchmarks: For TWO, ethernet and the somewhat pathological (because of 65326
image computations) packet.

For a comparison of OBDD-sizes see Table 3.2. The maximum number of live peak-nodes
is given by Peakn, The number of nodes in the transition relation is given by TRn and the
number of clusters in the transition relation is given by Parts.

The overall peak node size of the RTL-method basically remains unchanged in comparison
to the IWLS95-method. The RTL-method requires 10% less nodes for the representation of
the transition relation, while it uses 15% more clusters for its representation. This demon-
strates that the RTL-method introduces additional but meaningful borders for clusters as
the improvements in CPU time show.

3.2. RTL PARTITIONING 45

Concluding it can be said that the RTL-method performs stable, improving the computation
time and even enlarges the applicability of model checking.

CHAPTER 3. PARTITIONING

| I IWLS95 | RTL-method ||
| [lcmp | time/s [[time/s | % |

ONE.mv.PPCliveness.c 40 7 9 | -22
ONE.mv.contention.ct 19 6 8 | -25
PCIabnorm.mv.PCI.ctl 304 253 167 33
PCInorm.mv.PCI.ctl.o 206 56 39 30
TW0.mv.PPCliveness.c 74 303 9364 | -96
TW0.mv.contention.ct 37 47 125 | -62
ethernet.define.213. 303 3321 14441 | -77
ged.mv.ged.ctl.out 37 20 37 | -45
minMax30.mv.minMax30 8 21 12 42
multi_main.mv.multim 45 34 18 47
p62_LS_LS_VO01.mv.ccp 64 200 140 | 30
p62_LS_LS_VO1.mv.p61 99 831 444 | 46
p62_LS_L_VO1.mv.ccp. 64 210 151 28
p62_LS_L_VO1l.mv.p6li 99 3511 335 90
p62_LS_S_VO1.mv.ccp. 64 210 153 | 27
p62_LS_S_VO1.mv.p6li 99 3601 318 91
p62_L_L_VO01.mv.ccp.c 52 189 127 32
p62_L_L_VO1l.mv.p6liv 87 934 483 | 48
p62_L_S_VO1.mv.ccp.c 75 121 122 0
p62_L_S_VO1.mv.p6liv 118 231 278 | -16
p62_ND_LS_VO1.mv.ccp 83 830 779 6
p62_ND_LS_VO1.mv.p61 128 21039 13370 | 36
p62_ND_L_VO1.mv.ccp. 75 781 788 0
p62_S_S_VO1.mv.ccp.c 43 101 61 | 39
p62_S_S_VO1.mv.p6liv 80 106 112 -5
p62_V_LS_VO1.mv.ccp. 108 587 368 | 37
p62_V_LS_VO1.mv.p6li 153 >6h 16270 | 24
p62_V_S_VO1.mv.ccp.c 82 245 169 | 31
p62_V_S_VO01.mv.p6liv 127 2168 595 | 72
packet.mv.packet.ctl || 65326 5122 7258 | -29
single_main.mv.singl 108 13 8 38
single_main.mv.singl 52 13 8 38
three_processor.mv.p 244 >6h 8276 61
three_processor_bin. 122 >6h 5708 73
two_processor.mv.pro 264 676 75 | 88
two_processor_bin.mv 140 150 33| 78
Total 69119 | 110740 80649

Improvement 27%

Table 3.1: Comparison of CPU time for IWLS95 and RTL method

3.2. RTL PARTITIONING 47

| I IWLS95 I RTL-method I
| I Peakn [Parts | TRn [Peakn | % [Parts | % | TRn| % |
ONE.mv.PPCliveness.c 19185 3 4456 21229 -9 4 | -25 2671 40
ONE.mv.contention.ct 17784 3 4456 21229 | -16 4 | -25 2671 40
PCIabnorm.mv.PCI.ctl 176276 14 28613 128310 27 10 28 24482 14
PCInorm.mv.PCI.ctl.o 81123 15 35124 69291 14 10 33 20646 41
TW0.mv.PPCliveness.c 263756 8 13118 5363742 | -95 9 | -11 12828 2
TW0.mv.contention.ct 97622 7 11865 223656 | -56 10 | -30 12040 -1
ethernet.define.213. 980429 6 14907 6239111 | -84 17 | -64 1859 87
gcd.mv.ged.ctl.out 215222 2 7470 215222 0 31]-33 6466 13
minMax30.mv.minMax30 101042 3 7355 101042 0 2 33 6170 16
multi_main.mv.multim 38694 5 14700 33423 13 4 19 3092 78

p62_LS_LS_VO1.mv.ccp 166074 23 49952 136280 | 17 20 | 13 56040 | -10
p62_LS_LS_VO1.mv.p6l 452267 23 49952 463209 -2 20 | 13 56040 | -10

p62_LS_L_VO1.mv.ccp. 176540 23 49684 174275 1 18| 21 53012 -6
p62_LS_L_VO1.mv.p6li 1617162 23 49684 293189 | 81 18 | 21 53012 | -6
p62_LS_S_VO1.mv.ccp. 176540 23 49684 174275 1 18| 21 53012 -6

p62_LS_S_VO1.mv.p6li 1614473 23 49684 293189 | 81 18 | 21 53012 | -6
p62_L_L_VO01l.mv.ccp.c 164244 23 48961 177614 -7 18 21 54445 | -10
p62_L_L_VO1.mv.p6liv 477543 23 48961 507110 -5 18| 21 54445 | -10
p62_L_S_VO01.mv.ccp.c 168782 22 62479 144687 | 14 18 | 18 55820 | 10
p62_L_S_VO1.mv.p6liv 192410 22 62479 255775 | -24 18 | 18 55820 | 10
p62_ND_LS_VO1.mv.ccp 396642 24 63506 430404 | -7 20 | 16 54629 | 13
p62_ND_LS_VO1.mv.p61 5583160 24 63506 4091039 | 26 20 | 16 54629 | 13
p62_ND_L_VO1.mv.ccp. 356794 25 65964 436916 | -18 21 | 16 59711 9
p62_S_S_V01.mv.ccp.c 147063 23 62209 133192 9 18 | 21 56727 8
p62_S_S_VO01.mv.p6liv 153012 23 62209 163585 | -6 18 | 21 56727 8
p62_V_LS_VO1.mv.ccp. 283494 24 58415 307382 | -7 19 | 20 58007 0
p62_V_LS_VO1.mv.p6li 4483034 24 58415 5450872 | -17 19 | 20 58007 0
p62_V_S_VO1l.mv.ccp.c 213245 23 61795 157448 | 26 19 | 17 53163 | 13
p62_V_S_VO01.mv.p6liv 964988 23 61795 345774 | 64 19 | 17 53163 | 13

packet.mv.packet.ctl 53790 3 9704 62574 | -14 4| -25 5191 | 46
single_main.mv.singl 14936 2 6352 9360 37 3| -33 2227 64
single_main.mv.singl 14936 2 6352 9360 | 37 3] -33 2227 | 64
three_processor.mv.p 4621235 9 19750 4588114 0 4 | 55 5362 | 72
three_processor_bin. 8779857 7 20387 3257556 | 62 4| 42 5358 | 73
two_processor.mv.pro 903917 4 12311 86871 | 90 3] 25 2838 | 76
two_processor_bin.mv 252974 4 11610 63296 | 74 3] 25 2831 | 75
Total 34420245 538 | 1307864 || 34629601 454 1168380

Improvement 0% 15% 10%

Table 3.2: Comparison of OBDD-sizes for IWLS95 and RTL method

48 CHAPTER 3. PARTITIONING

3.3 Group Partitioning

The RTL heuristic significantly outperforms the standard method for partitioning. The
reason for this lies in the usage of information about the system’s main modules. In this
chapter we will introduce the notion of a cluster dependency matrizx (CDM) that describes
the interaction between the clusters of the transition relation. We will see that the CDM
of the RTL method is more structured and sparser than the CDM of the IWLS95 method.
Then, We will develop a heuristic that is targeted towards a structured and small CDM.
The idea of this heuristic is to find groups of strongly related latches. This heuristic is more
general than the RTL heuristic as it does not require RTL information and thus can be
applied to designs that are not given in an HDL or where the RTL information is not given
(e.g. after optimization). Nevertheless, this heuristic also assumes a structured modular
design.

3.3.1 Dependency Matrices

The quality of the partitioning can be described by a cluster dependency matrix CDM.
Entry (7, 7) of the CDM contains the number of support variables that cluster 7 and cluster
j have in common. As the number of common variables gets higher the dependency increases.

Figure 3.6 gives the CDM of one of the benchmark examples (p62_L_L_V02), when the
standard method is used (the CDM is symmetric, so the lower triangle part of the matrix
has been omitted). The TR resulting from the standard method has 24 clusters. It can be
seen that dependencies between all clusters exist and many of them are quite high. The
maximum number is 62 common variables. There is no structure observable in this CDM.

Figure 3.7 shows the resulting CDM for the RTL method, given the same example. It is
easy to see that:

— Some clusters are not connected (shown by empty fields). The ordering of clusters
that are not connected does not have any influence on the performance of the image
computation.

— The dependency is small on module borders (cluster 0-1, 9-10, 17-18). This means
that at the end of a module most variables have been quantified out, resulting in a
decrease in OBDD-size.

— The overall dependency is smaller (maximum at 37 common variables). A generally
smaller number of common variables indicates smaller OBDD-sizes throughout the
whole computation.

— The TR resulting from the RTL approach is very structured. This results in smaller
OBDDs and thus fewer clusters. The number of clusters reduced to 21.

All the points mentioned above indicate a better early quantification, and thus a more
efficient AndExist operation.

3.3.2 The Grouping Algorithm

The CDM is the result of the partitioning process. As we have seen as structured CDM
will lead to a more efficient image computation. The usage of additional RTL information

3.3. GROUP PARTITIONING

01234567 8 91011121314151617181920212223

o~NOoOOGThWDN R O|IO

NN NRNF H O
WNNHHOOUWLOUNOOLE, WN = O

535021451212383141171310273416262017171713 316
622147142034354818 7 4232712211815211912 721
2147141434354813 7 4232712211815201712 721
16141420222118201213 911 919191922131215

6 62526381912 43323 61618151719 8 311
575538 71334452419252118151317222745

5232 71829402419252118151419222240
57281132452220212214111011182140

36 53026 5 4 7 47 7 8 9112731

9 7 11517 51711112115 8 717
2312292115172727222814 615

341811 91119192020172033

2214161611 8 812101633

4121312321232915 827

36463224252115 628

3429221317141025

2922252015 630

39252917 721

252917 721

514 722

181021

1222

25

Figure 3.6: Dependency Matrix for IWLS95 Heuristic.

r {01 234567 8 91011121314151617181920
0 6 61711 8 6 617 9 8 3

1 26263137 3 2 107 8687 11

2 222625 7910 6 97 11

3 3737 5 3 4 81021 912 7 11

4 35 126711883 11

5 11180912 814 9 11

6 272727 7 7 7 3 911 11

7 2828

8 28

9

10 2626313712 3 2 11
11 22252511 11
12 353712 5 5 11
13 357 3 11
14 1311 11
15 2727 11
16 28

17

18

19

20

Figure 3.7: Dependency Matrix for RTL Heuristic.

49

50 CHAPTER 3. PARTITIONING

helped creating a structured CDM for the RTL heuristic. We will now develop a heuristic
that also results in a sparse and structured CDM. We will utilize the dependencies between
the latches to define a reasonable number of groups, which will play a similar role as the
modules in the RTL heuristic. Therefore, we call this heuristic Group Heuristic.

The group heuristic proceeds in two phases:

LDM phase: In the first phase a latch dependency matriz (LDM) is created. An entry of the
matrix LDM contains the number of variables that both latch /; and latch I; are depending

on:
LDM (l;,15) = [supp(l;) N supp(l;)]-

The matrix contains numbers of variables and not the variables itself. The runtime of this
phase of the heuristic is O(I%2 - n) for a I x I LDM of a system with n boolean variables.

Grouping phase: During the second phase the groups of latches are determined with the
help of the latch dependencies matrix LDM. The idea is to put latches that have a high
number of variables in common into one group. We start with the highest dependency. All
pairs of latches that have this dependency are placed in one group Gaz:

li,lj = Gz : LDM(ZZ’,LJ') = macx.

While lowering the dependency threshold ¢ all remaining latches are put into groups G
using the same strategy. In a second step groups with similar dependencies are merged to
reduce the number of groups:

Gi—)Gj:|'i—j|<€.
The merging is done to keep a certain granularity of the groups. Too many groups would
result in a high number of clusters and a decrease in performance. As we have seen from
the RTL method a reasonable number of groups improves the efficiency.

The problem using this very basic approach is that there always exists a certain dependency
between all latches (e.g. reset signals). There are also latches that are only very loosely
coupled to other latches. Thus, in this form the heuristic would result in a single large group
after all latches have been grouped.

To avoid this effect, we introduced an additional criterion for the separation of groups. The
separation is realized by avoiding merges of groups, whose dependencies differ too much.
Groups are no longer numbered by their dependency, but by the order in which they have
been created. The difference of two group numbers now gives a better criterion for the
difference in the amount of dependency. If the numbers of the group differ too much, a
merge is forbidden. The runtime of this phase of the heuristic is O(I* - n). Although the
runtime of this algorithm seems quite high, it can be neglected in comparison to other
expensive OBDD operations like variable reordering or AndExist.

For a sketch of the grouping heuristic see Figure 3.8.

After computing the groups of latches the partitioning is computed by applying the cluster-
ing strategy of the RTL heuristic outlined in Figure 3.3.

Figure 3.9 shows the application of the group heuristic to our benchmark example. The
following can be seen from this CDM:

— The overall dependency compared to the standard method is much smaller (maximum
42 variables), resulting in a smaller TR size.

— Many clusters are not connected. Thus, the relative order of these clusters does not
influence the image computation.

3.3. GROUP PARTITIONING 51

ComputeGroups(LDM){
for (dep = maxdep downto 1){ /* decrease dependency */
forall (ij; j<i){
if(depmatrix[i][j] == dep){

if(lis_grouped(i) && is_grouped(j)) add_to_group(j,i);

if(is-grouped(i) && lis_grouped(j)) add_to_group(i,j);

if(lis_grouped(i) && lis_grouped(j)){ /* create a new group */
create_new_group_with(i j);

}

if(is_grouped(i) && is_grouped(j) &&
abs(group_of(i) - group_of(j))< 3){ /* merge groups */

merge_groups_of(i,j);

Figure 3.8: Algorithm for the Group Heuristic in Pseudocode.

— The CDM is not as structured as for the RTL method, but it is comparable.

The CDM of the group method is not as structured as the CDM of the RTL method, but this
result is not surprising: The RTL method is a high-level method, while the group method
simulates high-level effects with low-level information, i. e. it works much more heuristically
than the RTL method.

3.3.3 Reordering of Clusters

To improve the quality of the group partitioning method we will reorder the clusters i.e.
change the permutation of the rows and columns of the CDM. The “worst” position in a
CDM is the upper right corner of the matrix. Here, the dependency of the first and the last
cluster in the schedule is given. This entry gives the number of variables that stay in the
product from the first to the last cluster. The surrounding entries of the matrix describe
dependencies of clusters with similar large distances. Large numbers in this area result in
bad performance as the OBDD for the intermediate image will remain large during the
AndExist iterations. For the RTL method this area is sparse and only small dependencies
occur.

We can achieve a similar effect for the group heuristic by reordering the clusters. Since rows
and columns of the CDM need to have the same permutation we cannot move empty entries
to arbitrary positions. Every time we change the order of some clusters we change rows and
columns of the CDM, but OBDD-size and the dependencies between the clusters are not
changed.

Our algorithm works as follows:
1. First, we compute the number of very small dependencies (i. e. 0 and 1) for each cluster.

2. According to these numbers we compute a ranking of clusters. A high ranking means
a hight number of empty or very small entries.

3. Then, the clusters are ordered from low to high ranking.

52 CHAPTER 3. PARTITIONING

g |01 234567 8 91011121314151617181920212223
0 33422415 151316 9 911 111 5

1 3425 32 18 1 5 3
2 25 32 18 1 5 3
3 1 15 2 4
4 2823 131 18 15 3
5 23 11 18 12 4
6 1 13 2 1
7 382424 3 3161316141515 5 7 3

8 3022 4 181522171617 313 7

9 30 312 916132113 7 9 7

10 421 92513322014 510

11 1 2 2
12 12 2
13 2540212720 910 7

14 25171116 31411

15 172820 9 8 7

16 1614 7 7 5

17 1914 510

18 151311

19 35

20 11

21

22

23

Figure 3.9: Dependency Matrix for Group Heuristic.

For a sketch of the cluster reordering algorithm see Figure 3.10.

ReorderCluster(CDM){
init group_perm to 0...m-1;
init rank to 0;
forall (i,j; j<i){
if(COMI[i][i] <2) rank[i]++;

sort_increasing(group_perm,rank);
return group_perm;

}

Figure 3.10: Algorithm for Cluster Reordering in Pseudocode.

Clusters with the same ranking remain in their original order. The result is a CDM, where
the number of empty entries increases from left to right. We also get a very compact area
for the first clusters, but this is acceptable, since during the first computational steps in the
AndExist the OBDDs are not too large.

For our example the reordering results in the CDM of Figure 3.11: As mentioned above,
the reordering does not change the values of the entries of the CDM. The upper left corner
of the CDM is now a dense area, but the upper right corner is now almost empty. It is
acceptable to have higher dependencies in the beginning of the image computation, if there
are smaller dependencies at the end of the image computation.

Let us take a look at the variable balance during the image computation. In the diagram of

3.3. GROUP PARTITIONING 53

rgl0 1234567 8 91011121314151617181920212223
0 15171314202016201913111115 2 5 5 2 5 2

1 3824142416131615 7 333 5 3 3 3 3

2 3017221815221613 742 3 22411

3 133012 91621 9 724 7 3 3 11

4 1321171716 7 5 9 7 111 2 2

5 21 92532 5101514 4 1 1

6 25402710 715 9

7 2511141113 3

8 28 8 716 9

9 510 914 1 1 1

10 1111 3

11 55

12 1

13

14 18 1813 2
15 3418 25 3
16 18 25 3
17 15 2
18 2823 3
19 4
20 23 4
21 1
22

23

Figure 3.11: Reordered Dependency Matrix of Group Heuristic.

Figure 3.5 the balance for the group heuristic (dotted line) is positioned between the RTL
and the standard heuristic. More variables are introduced in comparison to the RTL method
but less in comparison to the standard method. We cannot detect sharp borders as for the
RTL method, but the number of variables decreases several times during the iteration.

3.3.4 Experimental Results

We implemented this heuristic in VIS. We used the same experimental setup as in Section 3.2
for our experiments. Experimental results are shown in Table 3.3 and Table 3.4 (For an
description of the column headers refer to Section 3.2).

We compare the results of the Group-method with the IWLS95-method. The Group-method
wins 26 of the 36 cases, resulting in a 28% overall time improvement. Unfortunately, the
Group-method is not able to finish the three_processor and the three_processor_bin benchmark.
For the packet benchmarks only 55803 of the 65326 image computations (i.e. 85%) could
be finished within the time limit.

Otherwise, the Group-method was able to achieve remarkable improvements, e.g. the
p62_V_LS_V01.p6live benchmarks could be improved from more than 6h to 413s (98%). Other
large benchmarks show similar improvements. The Group-method lost on the same bench-
marks as the RTL-method, i.e. TWO and ethernet.

Table 3.4 compares the OBDD-size of the IWLS-method with the Group-method. Remark-
ably, the Group-method was able to reduce the overall amount of live peak-nodes by 45%,
while only using slightly more (2%) clusters for the representation of the transition rela-

54 CHAPTER 3. PARTITIONING

tion. At the same time, the size of the transition relation could be reduced by 21%. This
shows that the Group-method produces a compact — but nonetheless effective — partitioned
transition relation.

In comparison with the RTL-method, the Group-method achieves better results on single
benchmarks, but the RTL-method performs more stable overall. For a direct comparison of
the RTL-method and the Group-method see Table A.1 and Table A.2.

3.3. GROUP PARTITIONING

| I IWLS95 | Group-method ||
| | lemp | time/s || time/s | % |

ONE.mv.PPCliveness.c 40 7 9 -22
ONE.mv.contention.ct 19 6 8 -25
PCIabnorm.mv.PCI.ctl 304 253 222 12
PCInorm.mv.PCI.ctl.o 206 56 57 -1
TW0.mv.PPCliveness.c 74 303 2139 -85
TW0.mv.contention.ct 37 47 106 -55
ethernet.define.213. 303 3321 6088 -45
gcd.mv.ged.ctl.out 37 20 23 -13
minMax30.mv.minMax30 3 21 7 66
multi_main.mv.multim 45 34 24 29
p62_LS_LS_VO1.mv.ccp 64 200 129 35
p62_LS_LS_VO1.mv.p6l 99 831 130 84
p62_LS_L_VO1.mv.ccp. 64 210 126 40
p62_LS_L_VO1.mv.p61i 99 3511 226 93
p62_LS_S_VO1.mv.ccp. 64 210 126 40
p62_LS_S_VO1l.mv.p61li 99 3601 235 93
p62_L_L_VO1l.mv.ccp.c 52 189 71 62
p62_L_L_VO1l.mv.p6liv 87 934 121 87
p62_L_S_VO1l.mv.ccp.c 75 121 69 42
p62_L_S_VO1.mv.p6liv 118 231 116 49
p62_ND_LS_VO1.mv.ccp 83 830 572 31
p62_ND_LS_VO1.mv.p6l 128 21039 1798 91
p62_ND_L_VO1.mv.ccp. 75 781 715 8
p62_S_S_VO1.mv.ccp.c 43 101 66 34
p62_S_S_VO01.mv.p6liv 80 106 67 36
p62_V_LS_VO1.mv.ccp. 108 587 354 39
p62_V_LS_VO1.mv.p61i 153 >6h 413 98
p62_V_S_VO1l.mv.ccp.c 82 245 146 40
p62_V_S_VO1.mv.p6liv 127 2168 279 87
packet.mv.packet.ctl || 65326 5122 >6h -76
single_main.mv.singl 108 13 10 23
single_main.mv.singl 52 13 10 23
three_processor.mv.p 244 >6h >6h 0
three_processor_bin. 222 >6h >6h 0
two_processor.mv.pro 264 676 84 87
two_processor_bin.mv 140 150 80 46
Total 69119 | 110740 79429

Improvement 28%

Table 3.3: Comparison of CPU time for IWLS95 and Group method

56 CHAPTER 3. PARTITIONING

I IWLS95 I Group-method |
I Peakn | Parts | TRn | Peakn | % [Parts | %[TRn | % |

ONE.mv.PPCliveness.c 19185 3 4456 21362 | -10 51 -40 4971 | -10
ONE.mv.contention.ct 17784 3 4456 21362 | -16 51| -40 4971 | -10
PCIabnorm.mv.PCI.ctl 176276 14 28613 184722 -4 8| 42 18676 34
PCInorm.mv.PCI.ctl.o 81123 15 35124 64961 19 11 26 29081 17
TWO.mv.PPCliveness.c 263756 8 13118 2317020 | -88 10 | -19 11730 10
TWO.mv.contention.ct 97622 7 11865 220979 | -55 10 | -30 15056 | -21
ethernet.define.213. 980429 6 14907 1614232 | -39 14 | -57 6471 56
ged.mv.ged.ctl.out 215222 2 7470 215222 0 31]-33 5366 28
minMax30.mv.minMax30 101042 3 7355 101042 0 2 33 3151 57
multi_main.mv.multim 38694 5 14700 33423 13 5 0 4837 67
p62_LS_LS_VO1.mv.ccp 166074 23 49952 119996 | 27 23 0 44697 10
p62_LS_LS_VO1.mv.p6l 452267 23 49952 127833 | 71 23 0 44697 10
p62_LS_L_VO1.mv.ccp. 176540 23 49684 118284 | 32 23 0 43117 13
p62_LS_L_VO1.mv.p61li 1617162 23 49684 197326 | 87 23 0 43117 13
p62_LS_S_VO1.mv.ccp. 176540 23 49684 118284 | 32 23 0 43117 13
p62_LS_S_VO1.mv.p6li 1614473 23 49684 197326 | 87 23 0 43117 13
p62_L_L_VO1.mv.ccp.c 164244 23 48961 121246 26 23 0 44027 10
p62_L_L_VO1.mv.p6liv 477543 23 438961 121246 74 23 0 44027 10
p62_L_S_VO01.mv.ccp.c 168782 22 62479 107565 | 36 23 | -4 45494 | 27
p62_L_S_VO1.mv.p6liv 192410 22 62479 117042 39 23 -4 45494 | 27
p62_ND_LS_VO1.mv.ccp 396642 24 63506 201233 | 26 24 0 51339 19
p62_ND_LS_VO1.mv.p6l 5583160 24 63506 821661 85 25 -4 40484 | 22
p62_ND_L_VO1.mv.ccp. 356794 25 65964 306682 14 24 4 52423 | 20
p62_S_S_VO01.mv.ccp.c 147063 23 62209 97647 | 33 23 0 44041 29
p62_S_S_VO01.mv.p6liv 153012 23 62209 97647 | 36 23 0 44041 29
p62_V_LS_VO1.mv.ccp. 283494 24 58415 211863 | 25 24 0 46795 | 19
p62_V_LS_VO1.mv.p6li 4483034 24 58415 242306 | 94 24 0 46795 19
p62_V_S_VO1.mv.ccp.c 213245 23 61795 145859 | 31 24 -4 47214 | 23
p62_V_S_VO1.mv.p6liv 964988 23 61795 204216 78 24 -4 47214 23
packet.mv.packet.ctl 53790 3 9704 51592 4 5 | -40 10906 | -11
single_main.mv.singl 14936 2 6352 9668 | 35 3]-33 2238 | 64
single_main.mv.singl 14936 2 6352 9668 | 35 3|-33 2238 | 64
three_processor.mv.p 4621235 9 19750 4722353 -2 9 0 13522 31
three_processor_bin. 8779857 7 20387 5086098 | 42 9 | -22 13902 | 31
two_processor.mv.pro 903917 4 12311 75205 | 91 3| 25 5027 | 59
two_processor_bin.mv 252974 4 11610 131104 | 48 3| 25 6305 | 45
Total 34420245 538 | 1307864 || 18645365 553 1028698

Improvement 45% -2% 21%

Table 3.4: Comparison of OBDD-sizes for IWLS95 and Group method

Chapter 4

Hierarchization

In the last chapter we have shown how to improve the partitioning process by grouping
latches. We have done this by either utilizing RTL information given by the design or
by building groups from the latch dependencies. Nevertheless, both strategies result in a
somewhat flat partitioning, i. e. all groups are equal in the way that no group can be favored.
This makes it hard to find an order for the conjunction of the groups.

In this chapter we will introduce the concept of hierarchical partitions that extends the
grouping techniques of the last chapter. With the use of a hierarchical partitioning we are
able to perform hierarchical image computation, which is more efficient than the linear image
computation and has a larger freedom for a choice of the conjunction scheduling. Almost
naturally a dynamic conjunction scheduling strategy results for the hierarchical partitioning.
We will develop a strategy that improves the performance of the AndExist algorithm.

The chapter is structured as follows: First, we describe how to build a hierarchical transition
relation from a hierarchical FSM description, i.e. designs given in the Verilog description
language. We also introduce an algorithm called Hierarchical AndSmooth that computes the
image based on a hierarchical transition relation. In the second section we describe our dy-
namic conjunction scheduling heuristic. Therefore, we will take a closer look at the AndExist
algorithm. Benchmark experiments conclude this section. In the last section we develop —
similar to the last chapter — a heuristic for building a hierarchical transition relation that is
independent of an explicit hierarchical FSM description. The hierarchical grouping heuris-
tic analyzes the latch dependencies and exploits the advantages of a hierarchical transition
relation. For this heuristic we perform benchmark experiments, too.

4.1 Hierarchical Image Computation

In this section we will develop a strategy for the construction of a hierarchical transition
relation. The strategy generalizes the modular partitioning presented in the last chapter. In
contrast to the RTL-method that stopped after separating the main modules of a design,
the new strategy will exploit the complete hierarchy of the design. As a main result we
obtain more natural partitions, i.e. the influence of the partition size threshold is drastically
reduced. To complete this framework, we describe the algorithm for computing an image
based on a hierarchical transition relation.

This hierarchical partitioning concept is based, also for the ease of understanding, on Verilog,
but other types of hierarchical descriptions are possible.

o7

58 CHAPTER 4. HIERARCHIZATION

Figure 4.1a shows the structure of a hierarchical FSM description typical for a hardware
description at RT level. Circles represent modules i.e. subFSMs. An arrow pointing from
module A to module B denotes the instantiation of a submodule B within the module A.
Boxes denote latches controlling the state of the respective (sub)FSM. Multiple instantia-
tions of the same module definition appear as different (sub)trees in the structure.

Figure 4.1b shows the concept of a hierarchical TR. The TR itself is solely represented by
the OBDD-clusters (shown as triangles). The tree connecting the OBDD-clusters has been
adopted from the hierarchical FSM description and serves only for structuring the TR.

FSM

BDD cluster

i@
AA A

3) b)

Figure 4.1: Hierarchical FSM and Transition Relation.

4.1.1 Hierarchical Partitioning

In the following we will describe the hierarchical partitioning and clustering algorithm.

The HierarchicalCluster algorithm takes the tree of modules and submodules of a hierarchical
FSM as it is described e.g. at RT-level as input and computes a hierarchical partitioned
transition relation. For an outline of the algorithm see Figure 4.2.

HierarchicalCluster (module,threshold){
/* First, cluster the modules own latches */
mv_relations =
PreclusterMVLatches(module— latches,threshold*2);
module—latch_cluster =
CreateClusters(mv_relations,threshold);

/* Then, cluster the children of the module */

ForEachltem(module—children, child){
Hierarchical Cluster(child,threshold);
}

}

Figure 4.2: Algorithm for Hierarchical Partitioning in Pseudocode.

The algorithm traverses the modules in breadth first style, beginning with the main module.
The algorithm consists of two major steps:

4.1. HIERARCHICAL IMAGE COMPUTATION 59

1. The latches of the current modules are clustered. This is done by the same scheme as
in the RTL-heuristic (see Section 3.2), i.e. latches are conjuncted to a cluster until a
given threshold for the OBDD-size is exceeded.

2. The children (submodules) of the current module are visited recursively.

The CreateCluster routine is preceeded by a routine called PreclusterMVLatches. This rou-
tine clusters latches that represent a multivalued (MV) register (i.e. more than one bit).
During this routine different MV-registers are not merged. Also, single bit latches remain
as they are. The preclustering routine puts additional structure in the partitioning, because
in the CreateCluster routine no ordering or grouping of latches of the module takes place.
PreclusterM V Latches assures that latches of a MV-register stay in adjacent clusters or in the
best case in one single cluster. We think that grouping MV-registers is very important and
thus, we allow a clustering OBDD-size threshold that is double the size of the regular thresh-
old. If a cluster resulting from preclustering a MV-register has fewer OBDD-nodes than the
regular partition-size threshold, other latches are conjuncted to it during the CreateCluster
routine.

In the second step the whole process is repeated in the recursion for the submodules of
the design. There is no merging of clusters between different modules and between different
levels of the hierarchy. For a schematic of the hierarchical clustering see Figure 4.3

Remark:

The HierarchicalCluster algorithm works for any tree-like representation of the latches. Tt
is not necessarily required to have a HDL description like Verilog. Only the Precluster-
MVLatches routine requires an explicit description of the MV-latches. If this information is
missing, the routine can be skipped.

Discussion of the Partitioning Algorithm

Figure 4.4 shows the CDM of our standard example when the hierarchical partitioning
method is applied. The numbers of the clusters give the order, in which they have been
created.

Additionally to the CDM, the clustering algorithm outputs information about how the
modules have been clustered. By definition no cluster contains latches from different
(sub)modules. Thus, modules can be clearly identified in the CDM:

— The main module is represented by cluster 0.

Module 0 includes cluster 1-10 with submodules 1-3, 4-9 and 10.

Module 1, which is structurally the same as Module 0, includes cluster 11-21 with
submodules 11-14, 15-20 and 21.

The last module is represented by clusters 22 and 23.

See also Figure 4.3

We can clearly see that there is almost no communication between module borders, i. e. no
dependency between clusters. Even at submodule borders the dependency is very small. The
dependency is relatively high (up to 42) within a module for directly neighbored clusters (the
diagonal above the main diagonal). This is due to splits between semantically related latches

60 CHAPTER 4. HIERARCHIZATION

123 456789 10 11121314 151617181920 21

Figure 4.3: Result of the Modular Clustering.

that appear when the clustering threshold for the OBDD-size is exceeded. Although the
CDM gives not a schedule for the partitioning, the order of the creation of the clusters, i.e.
the cluster number indicates a good quality of the partitioning: Generally, the dependency
decreases from left to right, resp. from bottom to top. There is no dependency between the
last clusters and the very first clusters (the upper right corner of the CDM).

Using the hierarchical partitioning strategy the arbitrary influence of the partition-size
threshold can be drastically reduced. The hierarchy produces more natural and more mean-
ingful cluster borders than just an OBDD-size threshold. It might happen that the hierar-
chical partitioning produces clusters that are too small and could have been merged with
other clusters without affecting the efficiency. Anyway, we left the strategy in this pure form
for not to dilute the hierarchical concept.

4.1.2 Hierarchical Image Computation

The algorithm that performs the iteration of AndExist operations to compute an image
Img(TR, From) of a given state set From with a transition relation TR is called Lin-
earAndSmooth, because the clusters of the transition relation are iterated in a linear list
order (see Figure 4.5a).

The algorithm that computes the image based on an hierarchical partitioning is called Hier-
archical AndSmooth and replaces the LinearAndSmooth (see Figure 4.5b). The Hierarchical-
AndSmooth is structured similarly to the Hierarchical Cluster algorithm (for an overview see
Figure 4.6).

The hierarchical partitioning tree, which is isomorph to the module tree is traversed in
breadth first style:

The image computation starts with the main module. First, the modules own clusters are
processed. The order in which the clusters are taken into the product is determined by the
routine ChooseBestCluster, which can result simply the list order or an order computed by
a heuristic. After a cluster has been chosen for the next product, its smoothing variables
have to be computed, i.e. those variables that do not occur in any later product and thus
can be quantified out. This is done by the routine ComputeSmoothVars that traverses the
complete partitioning tree to compute the variables to be quantified out.

The ComputeSmooth Vars operation needs to be executed before every AndExist operation,

4.1. HIERARCHICAL IMAGE COMPUTATION

h| 01234567 8 91011121314151617181920212223
0 222222 222222

1 2823 3 4 5 3 2 7

2 23315 37

3 1 5

4 4234421838 1810 912 5 9 85
5 34411329 1210 812 3 6 96
6 372232 9 618 7 810 12 4
7 1829 14101012 5 7 95
8 17 537355 51
9 9 510 5 510 6 4
10

11 282828 3 3 1 3 7

12 2828 3 212 27

13 303141 37

14 3121 17

15 3932371739 85
16 26381227 96
17 262335 12 4
18 1123 85
19 20 61
20 6 4
21

22 18
23

Figure 4.4: Dependency Matrix of the Hierarchy Heuristic.

o

S

a) Linear Image Computation

b) Hierarchical Image Computation

Figure 4.5: Linear and Hierarchical Image Computation.

61

62 CHAPTER 4. HIERARCHIZATION

since the order of conjunctions may change with every image computation. Only if the order
is fixed, e.g. when the list order is chosen, the quantification variables can be computed
once and then be stored with the according cluster.

The chosen cluster is then taken into the product by AndExist (resp. Boolean AND if there
are no quantify variables in the cluster).

After all clusters of the module have been processed, the image computation continues
with the submodules (children) of the current module in the same way as described above.
Again, the order in which the children are processed can either be determined by a heuristic
(ChooseBestSubmodule) or simply be the list order.

HierarchicalAndSmooth(fromSet,module){
product = fromSet;
clustersremaining = module—cluster
while(clustersremaining){
cluster = ChooseBestCluster(clustersremaining);
smoothVars = ComputeSmoothVars(cluster);
if (smoothVars)
tmpProduct = bdd_AndExist(product,cluster,smoothVars);
else
tmpProduct = bdd_And(product, cluster);
product = tmpProduct;
remove_from(clustersremaining, cluster);

childrenremaining = module—children;
while(childrenremaining){
child = ChooseBestSubmodule(childrenremaining);
tmpProduct = HierarchicalAndSmooth(product,child);
product = tmpProduct;
remove_from(childrenremaining,child);

}

return product;

}

Figure 4.6: Algorithm for Hierarchical Image Computation in Pseudocode.

4.2 Dynamic Conjunction Scheduling

In the previous section we have discussed how to compute an image from a hierarchical
transition relation. But, the most important problem has not been solved yet: Finding a
schedule for the conjunction of the clusters. In this section we will present a heuristic that
solves the conjunction scheduling problem for hierarchical transition relations. The heuristic
utilizes the structure that is generated by the hierarchical transition relation to improve the
AndExist operation. Also, the heuristic works dynamically, i.e. for any image computation
the schedule is computed on-the-fly, resulting in a more efficient image computation.

4.2.1 Dynamic Scheduling Heuristic

The conjunction schedule for the image computation is determined in the Hierarchical-
AndSmooth by ChooseBestSubmodule resp. ChooseBestCluster, which can be computed stat-
ically or dynamically (the simplest solution would be the list order). Ordering heuristics

4.2. DYNAMIC CONJUNCTION SCHEDULING 63

like [Ran95, MHS00] may be applied as well, but they are not useful for dynamic schedul-
ing, because they only take structural information of the transition relation into account and
will always result in the same schedule. Nevertheless, adjusting the conjunction schedule to
changing state sets, OBDD-sizes, or variable orders might be very profitable.

We describe a strategy that improves the performance of the AndExist operation twofold:
The AndExist operation generally profits from a hierarchical partitioning, and we can use
the hierarchy structure to improve the conjunction schedule dynamically.

The AndExist operation profits from a compact cube of smooth variables. The cube of
smooth variables describes the set of variables that are quantified out during the AndExist
operation. We call this cube compact, if the variables that appear in the cube are adjacent
and do not spread over the variable order of the OBDD. During a step of the AndExist
recursion the following three cases are possible:

1. The current variable is contained in the smooth variable set: Then, the recursion
continues and the two resulting OBDDs are combined by an OR operation.

2. The current variable is not contained in the smooth variable set: The result is a new
node labeled with the current index and the successors of the new node are the results
of the two recursions.

3. The cube has reached the sink node: The recursion reduces to an AND operation.

If the smooth variable cube is compact, the third case will appear earlier, improving the
efficiency of the operation. If the clusters are separated, i.e. do not share many variables,
the third case may reduce to the identity function, because the cube and the cluster reach
the sink node simultaneously.

This leads us to the following strategy for ChooseBestSubmodule and ChooseBestCluster:

1. Compute the maximum level (maxlevel) in the OBDD of a variable to be quantified
out of all clusters (or submodules) of a given submodule.

2. Choose the clusters (or submodules) of the current module in increasing order of their
maxlevels, i.e. choose the highest cluster first.

Figure 4.7 gives a sketch of the algorithm for ChooseBestCluster. The algorithm for
ChooseBestSubmodule looks similar to ChooseBestCluster, except that the maximal level
for a quantify variable needs to be computed recursively for all the submodules.

This strategy gives us a good conjunction schedule, because we expect from the hierarchical
partitioning that the clusters of the modules have highly separated variable sets resulting
in compact cubes. Also, the schedule is changed dynamically, if the variable order changes
during the computation as a result of increasing state sets etc.

Applying the scheduling heuristic to our standard example results in the following order for
the conjunction of the clusters (For comparison see Figure 4.3 and Figure 4.4):

012310896745111213142116 181719 20 15 23 22

The order for the conjunction of the clusters follows the module structure, but for the order
of submodules as well as for the clusters itself a heuristic choice is made. These heuristic
choices improve the efficiency of the AndExist operation.

64 CHAPTER 4. HIERARCHIZATION

ChooseBestCluster(module){
maxlevel = —vars— ; bestcluster = 0;
foreach(cluster € module—cluster){
smoothVars = ComputeSmoothVars(cluster);
mlevel = compute_maximum_level(smoothVars);
if(mlevel < maxlevel){
maxlevel = mlevel;
bestcluster = cluster;

}
}

return bestcluster;

}

Figure 4.7: Algorithm for ChooseBestCluster in Pseudocode.

Changes in the variable order, due to dynamic reordering, affect the AndExist operation.
The heuristic then changes the conjunction schedule dynamically. Changes in the schedule
may occur even during a single image computation step.

Remark:

The obvious strategy for ChooseBestCluster would be to take the clusters by decreasing
maxlevel to reduce the complexity of the OR operation inside the AndExist. Nevertheless,
the choice of the increasing order for transition relations with compact cubes has been proven
empirically to produce better results than the decreasing choice. In the case of non-compact
cubes a dynamic scheduling heuristic taking the decreasing choice might be preferable.

The heuristic for ChooseBestCluster and ChooseBestSubmodule is only one heuristic out of
many possible strategies, but experiments have shown its effectiveness.

4.2.2 Experimental Results

We implemented this heuristic in VIS, too. We used the same experimental setup as in
Section 3.2 for our experiments. Experimental results are shown on Table 4.1 and Table 4.2
(For an description of the column headers refer to Section 3.2).

We compare the results of the RTLMOD-method with the IWLS95-method. The RTLMOD-
method wins 32 of the 36 cases and is able to reduce the CPU-time to almost 1/4 of the
original CPU-time (74%). The RTLMOD-method is not only able to reduce the CPU time
of large circuits up to 97%, it is also the first of our heuristics that is able to improve the
ethernet and the packet benchmark. The first one largely by 75% and the second one slightly
by 1%. The only losses worth mentioning appear at the TWO benchmarks.

Table 4.2 compares the OBDD-size of the IWLS-method with the RTLMOD-method. The
overall peak node size has been reduced by more than half (58%), adding to the increased
performance of the RTLMOD-method.

The size for the partitioned transition relation could be reduced by 30%, while almost
the same number of clusters (-1%) is used. This clearly shows that the RTLMOD-method
computes a compact and efficient partitioning and scheduling for image computation.

4.2. DYNAMIC CONJUNCTION SCHEDULING

| I IWLS95 | RTLMOD-method |
| | lemp | time/s || time/s | % ||

ONE.mv.PPCliveness.c 40 7 9 =22
ONE.mv.contention.ct 19 6 8 -25
PCIabnorm.mv.PCI.ctl 304 253 152 39
PCInorm.mv.PCI.ctl.o 206 56 47 16
TW0.mv.PPCliveness.c 74 303 3436 -91
TW0.mv.contention.ct 37 47 150 -68
ethernet.define.213. 303 3321 818 75
gcd.mv.ged.ctl.out 37 20 11 44
minMax30.mv.minMax30 8 21 12 42
multi_main.mv.multim 45 34 18 47
p62_LS_LS_VO1.mv.ccp 64 200 84 58
p62_LS_LS_VO1.mv.p6l 99 831 173 79
p62_LS_L_VO1l.mv.ccp. 64 210 103 50
p62_LS_L_VO1l.mv.p61li 99 3511 252 92
p62_LS_S_VO1.mv.ccp. 64 210 103 50
p62_LS_S_VO1.mv.p6li 99 3601 260 92
p62_L_L_VO1l.mv.ccp.c 52 189 78 58
p62_L_L_VO1.mv.p6liv 87 934 159 82
p62_L_S_VO1l.mv.ccp.c 75 121 93 23
p62_L_S_VO1.mv.p6liv 118 231 166 28
p62_ND_LS_VO1.mv.ccp 83 830 559 32
p62_ND_LS_VO1.mv.p61l 128 21039 4544 78
p62_ND_L_VO1.mv.ccp. 75 781 577 26
p62_S_S_VO1.mv.ccp.c 43 101 62 38
p62_S_S_VO1.mv.p6liv 80 106 67 36
p62_V_LS_VO1.mv.ccp. 108 587 362 38
p62_V_LS_VO1.mv.p6li 153 >6h 6236 71
p62_V_S_VO1l.mv.ccp.c 82 245 173 29
p62_V_S_VO1.mv.p6liv 127 2168 890 58
packet.mv.packet.ctl || 65326 5122 5068 1
single_main.mv.singl 108 13 8 38
single_main.mv.singl 52 13 7 46
three_processor.mv.p 244 >6h 2959 86
three_processor_bin. 222 >6h 522 97
two_processor.mv.pro 264 676 72 89
two_processor_bin.mv 140 150 42 72
Total 69119 | 110740 28280

Improvement 74%

Table 4.1: Comparison of CPU time for IWLS95 and RTLMOD method

66 CHAPTER 4. HIERARCHIZATION

| IWLS95 I RTLMOD-method |
[Peakn [Parts | TRn[[Peakn [% [Parts| % | TRn[% |

ONE.mv.PPCliveness.c 19185 3 4456 21558 | -11 4 | -25 3220 | 27
ONE.mv.contention.ct 17784 3 4456 21558 | -17 4 | -25 3220 | 27
PCIabnorm.mv.PCI.ctl 176276 14 28613 116345 | 33 10 | 28 18061 | 36
PCInorm.mv.PCI.ctl.o 81123 15 35124 69291 14 11 | 26 16993 | 51
TW0.mv.PPCliveness.c 263756 8 13118 2083768 | -87 10 | -19 13881 | -5
TW0.mv.contention.ct 97622 7 11865 215686 | -54 10 | -30 10508 | 11
ethernet.define.213. 980429 6 14907 516625 | 47 17 | -64 2191 | 85
gcd.mv.ged.ctl.out 215222 2 7470 215222 0 2 0 6327 | 15
minMax30.mv.minMax30 101042 3 7355 101042 0 21 33 6180 | 15
multi_main.mv.multim 38694 5 14700 33423 | 13 6 | -16 1578 | 89
p62_LS_LS_VO1.mv.ccp 166074 23 49952 124430 25 23 0 41246 | 17
p62_LS_LS_VO1.mv.p6l 452267 | 23 | 49952 158021 | 65 | 23| 0| 41246 | 17
p62_LS_L_VOl.mv.ccp. 176540 23 49684 132128 | 25 22 4 41001 | 17
p62_LS_L_VO1.mv.p61i 1617162 23 49684 183674 88 22 4 41001 | 17
p62_LS_S_VO1l.mv.ccp. 176540 23 49684 132128 | 25 22 4 41001 | 17
p62_LS_S_VO1.mv.p6li 1614473 23 49684 183674 88 22 4 41001 | 17
p62_L_L_VO1l.mv.ccp.c 164244 23 48961 117269 28 23 0 41165 | 15
p62_L_L_VO1l.mv.p6liv 477543 23 48961 189172 | 60 23 0 41165 | 15
p62_L_S_V01l.mv.ccp.c 168782 22 62479 123551 | 26 23| -4 42294 | 32
p62_L_S_VO1.mv.p6liv 192410 22 62479 137714 | 28 23| -4 42294 | 32
p62_ND_LS_VO1.mv.ccp 396642 24 63506 299289 | 24 24 0 46550 | 26
p62_ND_LS_VO1.mv.p6l 5583160 24 63506 1747044 | 68 24 0 46550 | 26
p62_ND_L_VO1.mv.ccp. 356794 25 65964 380121 -6 24 4 | 45076 | 31
p62_S_S_V01.mv.ccp.c 147063 23 62209 97360 | 33 23 0 39901 | 35
p62_S_S_VO01.mv.p6liv 153012 23 62209 97360 | 36 23 0 39901 | 35
p62_V_LS_VOl.mv.ccp. 283494 24 58415 210147 | 25 23 4 45928 | 21
p62_V_LS_VO1.mv.p6li 4483034 24 58415 2126524 52 23 4 45928 | 21
p62_V_S_VO1l.mv.ccp.c 213245 23 61795 142930 | 32 23 0 43513 | 29
p62_V_S_VO01.mv.p6liv 964988 23 61795 442596 | 54 23 0 43513 | 29
packet.mv.packet.ctl 53790 3 9704 68473 | -21 4| -25 4742 | 51
single_main.mv.singl 14936 2 6352 9360 | 37 4 | -50 884 | 86
single_main.mv.singl 14936 2 6352 9360 | 37 4 | -50 884 | 86
three_processor.mv.p 4621235 9 19750 3062696 | 33 7| 22 4838 | 75
three_processor_bin. 8779857 7 20387 560970 | 93 7 0 5140 | 74
two_processor.mv.pro 903917 4 12311 88215 | 90 51-19 1810 | 85
two_processor_bin.mv 252974 4 11610 64924 | 74 51 -19 2623 | 77
Total 34420245 538 | 1307864 || 14283648 548 913714

Improvement 58% -1% 30%

Table 4.2: Comparison of OBDD-sizes for IWLS95 and RTLMOD method

4.3. HIERARCHICAL GROUP PARTITIONING 67

4.3 Hierarchical Group Partitioning

In the previous two sections we have developed a heuristic that generates a hierarchical
transition relation from a design description given at RT-level. The concept has been proven
to significantly improve the image computation process

In this section we will generalize this approach to be independent of an explicit hierarchical
description of the design to allow a broader application of the concept.

We start this section with a more detailed analysis of the AndExist algorithm. Then, we
present our so-called modular grouping heuristic (GROUPMOD). This heuristic is based on
the analysis of the latch dependency matrix induced by the design. Benchmark experiments
conclude this section.

4.3.1 Discussion of the AndExist Algorithm

The efficiency of the dynamic conjunction scheduling algorithm described in the previous
section relies on the compact clustering produced by the hierarchical partitioning. Compact
clustering means that there are fewer support variables and a higher number of quantify
variables in each cluster. As a side effect we can expect that variables of a compact cluster
will stay close in the variable order due to their high interaction even during dynamic variable
reordering.

To understand the effect of compact clustering on the AndExist operation, let us take a closer
look at its algorithm (see Figure 4.8). The AndExist operation performs the quantification
of variables (3, f = (fz;=1V fz;—0)) while performing a recursive AND. Thus, it follows the
general scheme of any recursive OBDD algorithm like ITE:

— First, terminal cases and the computed table are checked (lines 1, 2).

— If the actual variable (top) is not to be quantified, the recursion is called recursively
with the successors of the current nodes (10, 11) and a node is created from the results
t, e of the recursion.

— If no more variables are to be quantified out, the recursion switches to the regular
AND (3, 8).

— If the actual variable is to be quantified out, the recursion continues with the successors
of f and g (14, 15) as well, but afterwards, an OR operation on the results ¢, e of the
recursion is executed (16).

Let us recall: The OR operation is called within the recursive step of the AndExist. This
actually is the reason why AndExist is not a polynomial operation. To make things even
worse the results ¢ and e of the recursive step are obsolete later and are dereferenced (17), i.e.
if not part of another OBDD they will be deleted. This means that the AndExist operation
produces — in contrast to any other OBDD operation — temporary nodes. These temporary
nodes are the main reason for a possible blow-up in OBDD-size during image computation.

We think that the problem of temporary nodes is more profound than the problem of having
the OR operation inside the recursion. We try to reach shortcuts (3, 4, 8) in the computation
earlier, to keep the lifetime of temporary nodes shorter. For this reason we will even accept
a slightly more complex OR operation, due to larger operand sizes.

68 CHAPTER 4. HIERARCHIZATION

AndExistRecur(f,g,smoothvars){

1) Check_terminal_cases;

2) /*sink-nodes, recomputation, etc.*/

3) if(!smoothvars) return BddAnd(f, g);

4) if(g == ONE) return BddExist(f, smoothvars);
5) top = topmost variable in f and g;

6) top-q = topvar in smoothvars;

7) while(top_q < top) top_q = top_q—T;

8) if(top-g == ONE) return BddAnd(f, g);

9) if(top_q > top){ /* no quantify */

10) t = AndExistRecur(f—T, g—T, smoothvars);

e = AndExistRecur(f—E, g—E, smoothvars);

12) return makeBDDnode(index of top, t.e);

13) }else{ /* quantify */

14) t = AndExistRecur(f—>T, g—T, smoothvars—T);
15) e = AndExistRecur(f—E, g—E, smoothvars—T);
16) result = BddOr(t, e);

17) Deref(t); Deref(e);

18) return result;

—
—
~—

Figure 4.8: Sketch of the AndExist Algorithm.

In a compact clustering as shown (simplified) in Figure 4.9a we have fewer variables in a
cluster (7;) of the transition relation than in a regular clustering as shown in Figure 4.9b. If
the clusters are ordered by choosing the cluster with the highest maximum level of a quantify
variable first, we can expect earlier shortcuts in the AndExist operation. As the clusters have
fewer variables, the AND operation (3, 8) terminates earlier (e.g. AND(f,1) = f) leaving
the bottom part of R untouched.

Figure 4.9: Schematic of Compact Clustering (a) vs. Regular Clustering (b).

We can conclude that the dynamic conjunction scheduling does not only try to improve
single AndExist operations (e. g. by performing the cheapest operations in terms of OBDD-
size first), instead the whole series of AndExist operations will be optimized. This heuristic
optimizes the complete image computation process, because the output of the AndExist
operation is (except for the last cluster) always an input to the next AndExist operation,

4.3. HIERARCHICAL GROUP PARTITIONING 69

4.3.2 Modular Grouping of the Transition Relation

As we have seen in Section 4.1 a hierarchical partitioning improves the quality of the TR,
is more flexible and allows dynamic conjunction scheduling. In the following we will de-
velop a heuristic that groups latches hierarchically, but without using explicit hierarchical
information.

The Grouping Algorithm

Our algorithm follows a separate and group strategy. Therefore, we utilize the latch depen-
dency matriz (LDM) introduced in Section 3.3. An entry of the LDM gives the number of
variables that latch /; and latch /; have in common, i.e.

LDM(l;,1;) = |supp(li) N supp(l;)|-

A higher number denotes a high dependency and thus a strong interaction of the latches. A
low number reflects a weaker relation of the latches.

The grouping algorithm proceeds in three phases, where in the first two phases separated
modules of latches are build, while in the third phase grouping inside the modules takes
place. The phases in detail:

1. Module definition phase: During this phase we create completely independent mod-
ules M;. In this phase the modules contain only a single latch thats serves as a represen-
tative for the module. A latch will be a representative for a new module, whenever there
is no dependency with the representatives of the other modules: V; : LDM (I;, M;) = 0.
This operation is performed for all latches. The threshold for the dependency is 0 to
keep a reasonably small number of modules. The latches are checked consecutively.
The latches that do not form an own module are put in the set R of the remaining
latches. The modules M; and the remaining latches R serve as a basis for the 2nd
phase.

2. Module assignment phase: The remaining latches of R are assigned to the modules
using a best-fit strategy, i.e. a latch [; is put into a module M} containing the latch
l;, which has the highest common dependency with latch /;:

l; > My : LDM(li,lj) = maxzx, lj € M.

A minimum dependency is required, otherwise this latch is a representative for a new
module. At the end of this phase all latches are assigned to modules. The value of the
minimum dependency controls the number of additional modules.

3. In-module grouping phase: Now, we have medium to strongly related latches inside
the modules. To build groups within the modules we have to apply a more complex
heuristic than those before. The heuristic has to be able to group latches that are
strongly related, but also has to avoid building one large group containing all latches.
Let us keep in mind: All latches in a single module have a certain dependency at least
to one other latch in the module.

We propose a grouping algorithm based on merging of groups that utilizes a group
dependency matriz (GDM). An entry of the GDM denotes the number of shared vari-
ables from the common support of group G; and group Gj. The common support of a
group is defined as the intersection of the support of all members of the group:

GDM (G, Gj) = |supp(Gi) N supp(G;)|.

70 CHAPTER 4. HIERARCHIZATION

The algorithm works as follows for a module M:

1. Initialize the groups, s.t. each group contains a single latch G; = [;,l; € M and
compute the initial GDM.

2. Compute the maximum dependency in the GDM
mazdep = max; j(GDM(G;,Gj)).

3. Pairwise merge groups G; and Gj, whose dependency equals mazdep.

4. Update the GDM. The support of a merged group is the intersection of the
support of the former groups: supp(G;) = supp(G;) N supp(G;).

5. Repeat 2-4 until mazdep is below a certain threshold or the number of allowed
runs is exceeded.

Step 2 of this phase guarantees that strongly related latches are grouped. Performing
an intersection of the support of the groups that are merged (Step 4) and limiting the
number of runs avoids construction of groups with latches that are related only very
loosely.

The latches that could not be grouped after termination of the algorithm are considered
being the modules own latches.

The runtime of this algorithm is cubic in the number of latches, but it is negligible in
comparison to other operations during construction of the transition relation (OBDD-AND,
variable reordering, etc.).

In our implementation we set the minimal required dependency for the 2nd phase to 3
variables. In phase 3 we set the threshold for mazdep to 5 and limited the number of runs
to 10% of the number of latches. For an overview of the algorithm see Figure 4.10.

Clustering

After the relations have been grouped, the clusters of the partitioned transition relation can
be computed. A cluster of the transition relation is only built from latches of one group. If
the OBDD-size of a cluster exceeds a certain threshold, an additional cluster for this group
is created. The OBDD-size is a rather artificial indicator for the separation of clusters, but
it is used in all partitioning approaches to avoid size explosion of the transition relation.
Fortunately, the grouping approach drastically limits the influence of this threshold on the
efficiency of the image computation by providing more meaningful borders for the clusters.

Figure 4.11 shows a schematic of the result of clustering the hierarchical partitioned transi-
tion relation, when applying the modular grouping to our standard example. It represents a
typical clustering result. Starting from the root node (Main) representing the whole design
one reaches the modules (M1, M2, etc.) of the design. These modules hardly interact and
can be seen as almost independent FSMs. Attached to the main node, we find relations that
hardly interact with any of the modules, but do not form an own module. Those relations
may be seen as global state variables.

Each module has a small number of children the so-called groups (G1, G2, etc.). Relations
within a group strongly interact and should stay as close as possible, in the best case within
one cluster. Attached to each module, we find those relations that do not interact strong
enough with any of the groups to be attached to one of them. Keeping those loosely coupled
relations separate in the module gives us more freedom in the choice of the conjunction
schedule.

4.3. HIERARCHICAL GROUP PARTITIONING

ComputeGroups(relations){
/¥ — 1. phase — */
remaining_relations=relations;
foreach(rel € relations){
dependent=0;
foreach(mod € modules){
if(supp(rel) C supp(mod)) dependent=1;

if(!dependent){
remove(rel, remaining_relations);
append(rel, modules);
}
}
/¥ — 2. phase — */
foreach(rel € remaining_relations){
best_fit=0; best_-mod=0;
foreach(mod € modules){
tmp_supp = |[supp(rel) U supp(mod)| ;
if(tmp_supp > best_fit){
best_fit = tmp_supp; best_-mod = mod;
}

}
if(best_fit > MINIMUM_FIT)

append(rel, best_mod);
else
append(rel, modules);
}

merge_single_relation(modules);
/* — 3. phase — */
foreach(mod € modules){
foreach(rel € mod) append(rel,groups);
do{
GDM = computeGDM(groups);
maxdep = computeMaxdep(GDM);
foreach(group € groups){
foreach(group2 € groups){
if(GDM(group,group2) == maxdep)
merge(group,group?);
}

}
runs—+-;
} while(maxdep > MINDEP &&: runs < MAXRUN)

merge_single_relation_groups(groups);

}

return modules;

}

Figure 4.10: Sketch of the Modular Grouping Algorithm.

71

72 CHAPTER 4. HIERARCHIZATION

W

789 1011 12 14 15 16 18 19 20 22 23

Figure 4.11: Result of the Modular Clustering.

Summarized, the modular grouping approach results in a hierarchical partitioning consisting
of a small number of separate modules each consisting of a reasonable number of groups,
whose relations strongly interact. The depth of the hierarchy is always limited to three layers,
because the grouping algorithm only allows the creation of one main node, one module layer
and one group layer. The algorithm is not recursive.

The computation of the image based on this hierarchical partitioning uses the algorithm for
hierarchical image computation presented in Section 4.1.

Application of the modular grouping heuristic to our standard benchmark example results to
the CDM shown in Figure 4.12. The structure of the hierarchical TR that underlies the CDM
is shown in Figure 4.11. The numbers denote the cluster ID. The CDM is well structured.
We can easily see the structure that has been induced by hierarchical partitioning. There
is almost no communication between the modules. The highest dependencies appear within
and between groups of a module. The CDM shows many empty entries giving us a higher
freedom in the choice for the conjunction schedule.

The modular group heuristic produces a hierarchical TR similar to the heuristic presented in
Section 4.1. It seems reasonable to apply the dynamic conjunction scheduling heuristic from
Section 4.2, because we expect to have compact clusters for the modular group heuristic as
well.

Applying the conjunction scheduling heuristic to our example results in the following starting
order for the clusters:

02122231718192013141516121211105348796.

We have the same situation as in Section 4.2: The conjunction schedule follows the modular
structure, but a heuristic choice is made on the order of submodules and clusters. Also, the
schedule is subject to changes due to variations in the variable order caused by dynamic
variable reordering.

4.3.3 Experimental Results

We implemented this heuristic in VIS, as well. We used the same experimental setup as in
Section 3.2 for our experiments. Experimental results are shown on Table 4.3 and Table 4.4
(For an description of the column headers refer to Section 3.2).

4.3. HIERARCHICAL GROUP PARTITIONING 73

gh) 01234567 8 91011121314151617181920212223
0 1 222545862 22 22212

1 144414445414 4 22
2 2409 2 2

3 259 159321333523 11 8 8
4 15 99513441111 755
5 3671455 311
6 26522 1

7 25 91611 3 352311838
8 1617 8 6 1111755
9 11 5 3 311
10 11 925222522311
11 9 311
12 866
13 282618

14 2618

15 16

16

17 282618

18 2618

19 16

20

21 2118
22 15
23

Figure 4.12: Dependency Matrix of the Group Hierarchy Heuristic.

We compare the results of the GROUPMOD-method with the IWLS95-method. The
GROUPMOD-method wins 27 of the 36 cases, resulting in an 42% overall decrease in
computation time. Many of the larger benchmarks have been significantly improved (up
to 93%). Similar to the Group-Method, the GROUPMOD-method was not able to finish
the three_processor and the three_processor_bin benchmark. But, it was able to finish the
packet benchmark and improved one of the TWO benchmarks and the ethernet benchmark.

Table 4.4 compares the OBDD-size of the IWLS95-method with the GROUPMOD-method.
The GROUPMOD method produces the most compact transition relation representation of
all our methods. In comparison to the IWLS95-method the overall size for the transition
relation has been reduced by 50%. At the same time the number of clusters of the transition
relation has only increased slightly (5%). The GROUPMOD-method is also able to reduce
the overall size of peak-nodes significantly by 44%.

The GROUPMOD-method does not perform as powerful as the RTLMOD-method, but
respecting the more heuristic behavior of the GROUPMOD-method, it represents a good
alternative, if no external information is available. For a direct comparison of the RTLMOD-
method with the GROUPMOD-method see Table A.3 and Table A .4.

For a comparison of all the partitioning heuristics presented in the last two chapters see
Table A.5 and Table A.6.

74

CHAPTER 4. HIERARCHIZATION

[IWLS95

[GROUPMOD-method

| lemp | time/s || time/s

%

ONE.mv.PPCliveness.c 40 7 7 0
ONE.mv.contention.ct 19 6 6 0
PCIabnorm.mv.PCI.ctl 304 253 237 6
PCInorm.mv.PCI.ctl.o 206 56 62 -9
TW0.mv.PPCliveness.c 74 303 237 21
TW0.mv.contention.ct 37 47 85 -44
ethernet.define.213. 303 3321 572 82
gcd.mv.ged.ctl.out 37 20 44 -54
minMax30.mv.minMax30 8 21 13 38
multi_main.mv.multim 45 34 19 44
p62_LS_LS_VO1.mv.ccp 64 200 111 44
p62_LS_LS_VO1.mv.p6l 99 831 218 73
p62_LS_L_VO1.mv.ccp. 64 210 121 42
p62_LS_L_VO1.mv.p61i 99 3511 244 93
p62_LS_S_VO1.mv.ccp. 64 210 120 42
p62_LS_S_VO01.mv.p61li 99 3601 299 91
p62_L_L_VOl.mv.ccp.c 52 189 102 46
p62_L_L_VO1l.mv.p6liv 87 934 186 80
p62_L_S_VOl.mv.ccp.c 75 121 69 42
p62_L_S_VO1l.mv.p6liv 118 231 114 50
p62_ND_LS_VO1.mv.ccp 83 830 527 36
p62_ND_LS_VO1.mv.p61 128 21039 2082 90
p62_ND_L_VO1.mv.ccp. 75 781 794 -1
p62_S_S_VO01.mv.ccp.c 43 101 41 59
p62_S_S_VO1l.mv.p6liv 80 106 67 36
p62_V_LS_VO1.mv.ccp. 108 587 380 35
p62_V_LS_VO1.mv.p6li 153 >6h 1772 91
p62_V_S_VO0l.mv.ccp.c 82 245 146 40
p62_V_S_VO1l.mv.p6liv 127 2168 675 68
packet.mv.packet.ctl | 65326 5122 || 10540 -51
single_main.mv.singl 108 13 7 46
single_main.mv.singl 52 13 7 46
three_processor.mv.p 244 >6h >6h 0
three_processor_bin. 222 >6h >6h 0
two_processor.mv.pro 264 676 170 74
two_processor_bin.mv 140 150 35 76
Total 69119 | 110740 63311

Improvement 42%

Table 4.3: Comparison of CPU time for IWLS95 and GROUPMOD method

4.3. HIERARCHICAL GROUP PARTITIONING 75
I IWLS95 I GROUPMOD-method [
I Peakn [Parts | TRn Peakn | % [Parts [%] TRn [% |
ONE.mv.PPCliveness.c 19185 3 4456 19246 0 6 | -50 1809 | 59
ONE.mv.contention.ct 17784 3 4456 19246 -7 6 | -50 1809 | 59
PCIabnorm.mv.PCI.ctl 176276 14 28613 114041 | 35 11] 21 17787 | 37
PCInorm.mv.PCI.ctl.o 81123 15 35124 69291 14 10 | 33 16749 | 52
TWO.mv.PPCliveness.c 263756 8 13118 272317 -3 11 | -27 7393 | 43
TWO.mv.contention.ct 97622 7 11865 139081 | -29 10 | -30 7909 | 33
ethernet.define.213. 980429 6 14907 275055 71 11 | -45 2989 | 79
ged.mv.ged.ctl.out 215222 2 7470 215222 0 3] -33 5707 | 23
minMax30.mv.minMax30 101042 3 7355 101042 0 4 | -25 4521 | 38
multi_main.mv.multim 38694 5 14700 33423 13 10 | -50 1842 | 87
p62_LS_LS_VO1l.mv.ccp 166074 23 49952 86196 | 48 23 0 29319 | 41
p62_LS_LS_VO1.mv.p6l 452267 23 49952 141477 | 68 23 0 29319 | 41
p62_LS_L_VO1.mv.ccp. 176540 23 49684 93166 | 47 23 0 27739 | 44
p62_LS_L_VO1.mv.p61li 1617162 23 49684 192775 | 88 23 0 27739 | 44
p62_LS_S_VO1.mv.ccp. 176540 23 496384 93166 | 47 23 0 27739 | 44
p62_LS_S_VO1l.mv.p6li | 1614473 23 | 49684 192775 | 88 23| 0| 27739 | 44
p62_L_L_VOl.mv.ccp.c 164244 23 48961 87708 | 46 23 0 28427 | 41
p62_L_L_VO1.mv.p6liv 477543 23 48961 121978 74 23 0 28427 | 41
p62_L_S_VOl.mv.ccp.c 168782 22 62479 72087 | 57 23 -4 25419 | 59
p62_L_S_VO1.mv.p6liv 192410 22 62479 94688 | 50 23 -4 25419 | 59
p62_ND_LS_VO1.mv.ccp 396642 24 63506 342875 | 13 24 0 26903 | 57
p62_ND_LS_VO1.mv.p61 5583160 24 63506 815232 | 85 24 0 26903 | 57
p62_ND_L_VO1.mv.ccp. 356794 25 65964 483549 | -26 24 4 | 33171 | 49
p62_S_S_VO01.mv.ccp.c 147063 23 62209 64410 | 56 23 0 27880 | 55
p62_S_S_VO1.mv.p6liv 153012 23 62209 84190 | 44 23 0 27880 | 55
p62_V_LS_VO1.mv.ccp. 283494 24 58415 212132 25 24 0 31618 | 45
p62_V_LS_VO1.mv.p61li 4483034 24 58415 1019022 | 77 24 0 31618 | 45
p62_V_S_VO1.mv.ccp.c 213245 23 61795 118153 | 44 23 0| 28363 | 54
p62_V_S_VO1.mv.p6liv 964938 23 61795 269843 | 72 23 0 28363 | 54
packet.mv.packet.ctl 53790 3 9704 168874 | -68 4 | -25 8131 | 16
single_main.mv.singl 14936 2 6352 9360 | 37 6 | -66 1831 | 71
single_main.mv.singl 14936 2 6352 9360 | 37 6 | -66 1831 | 71
three_processor.mv.p 4621235 9 19750 6989715 | -33 8| 11 9756 | 50
three_processor_bin. 8779857 7 20387 5903397 | 32 7 0 6855 | 66
two_processor.mv.pro 903917 4 12311 179562 80 7 | -42 1928 | 84
two_processor_bin.mv 252974 4 11610 65156 74 6 | -33 2307 | 80
Total 34420245 538 | 1307864 || 19168810 568 641139
Improvement 44% -5% 50%

Table 4.4: Comparison of OBDD-sizes for IWLS95 and GROUPMOD method

76 CHAPTER 4. HIERARCHIZATION

4.4 Conclusion

In the last two chapters we have developed new approaches for the partitioning of the
transition relation of FSMs. These methods changed the paradigm in partitioning from
ordering latches to grouping of the latches. We were able to improve the computation time in
our experiments from 27% up to 74%, depending whether high-level information is available
or not.

In the last chapter we introduced hierarchical image computation and a dynamic conjunction
scheduling approach.

All the presented methods reduce the influence of the somewhat arbitrary partition size
threshold that usually drastically influences the performance of the image computation.
Thus, allowing a more stable image computation that requires less expertise on the user
side.

Chapter 5

Reordering

The last two chapters were dealing with concepts for partitioning of the transition relation.
Partitioning is a problem on the application layer of a formal verification package. Now, we
consider a problem on the representation layer, i. e. optimization of the OBDD-representation
size.

The only way to improve the size of the OBDD representation is to change its variable
ordering. If the order of an already built OBDD has to be changed we speak of dynamic
reordering. The most successful dynamic reordering strategy is the Sifting algorithm.

Sifting provides a good average performance and good results for general applications, but
it is often problematic for really hard applications for various reasons:

— It is too time consuming.
— The results are insufficient.

— The quality of the results has a wide variation.

In symbolic model checking the most valuable resource is time. We want the reordering to
be as fast as possible. Often, the reordering is not very successful in reducing the size of the
OBDD as the represented functions become more complex and simply require more nodes
for their representation. Then, reordering is a waste of time and we want to keep it as short
as possible. On the other hand, there are situations in which we need to reorder the OBDD,
e. g. if the functions became easier or a bad starting order has been chosen. In this case the
reordering has to find a good order.

In the next sections we will describe two variable reordering strategies that both accelerate
the reordering process, but without significant losses in quality. These strategies are called:
Sample Sifting for symbolic model checking and Block Restricted Sifting for symbolic model
checking.

The first one uses high-level information about the functions represented in the OBDD and
is tailored for symbolic model checking. The second one is only depending on the symbolic
model checking application. Therefore, it this heuristic is easier to integrate into an OBDD
package, because no information has to be passed from the application layer to the OBDD
layer.

7

78 CHAPTER 5. REORDERING

5.1 Sample Sifting

In this section we present our first strategy to improve the dynamic variable reordering dur-
ing symbolic model checking. This method uses semantic knowledge about the application
and the represented functions, whose OBDDs have to be reordered.

The basis for our improved reordering technique is Sample Sifting introduced by Meinel
and Slobodova in [SM98], and independently by Jain, Adams and Fujita [JAF98]. This
reordering method turned out to be a good basis for a reordering strategy for symbolic
model checking. The advantages of Sample Sifting are:

— Sample Sifting is very fast.

When depending on a specific application it produces very good results.

Unsuccessful reordering attempts are finished quickly.

— In case of an unsuccessful sample reordering the whole reordering process can be
aborted and the computation can be continued at the point it was stopped.

After describing the basic Sample Sifting strategy, we will explain our Sample Sifting strategy
for symbolic model checking.

5.1.1 Basic Concept

Sampling is a common strategy in heuristic algorithm design: For a given problem instance
P, choose a smaller subinstance p, solve the problem for p and apply the solution to P. The
benefit is that p can be solved with less resources than P.

Applied to OBDD reordering we get the following basic sampling scheme:
1. Choose a sample.
2. Copy the sample to a different location.
3. Reorder the sample.
4. Apply the new order to the original OBDD.

5. If the result is insufficient, reorder back to starting order or repeat 1. to 4.

5.1.2 Sample Sifting Strategy for Symbolic Model Checking

The reordering problem for symbolic model checking turns out to be more challenging
than for other OBDD applications like combinatorial verification. Therefore, we develop
a more sophisticated strategy for Sampling during symbolic model checking. Because only
a few reordering attempts occur in model checking, a single reordering attempt has to be
conducted very carefully.

The Sample Sifting strategy for symbolic model checking consists of seven steps:

1. Analysis of the OBDD and its functions.

2. Determination of candidates for the sample.

5.1. SAMPLE SIFTING 79

3. Copying of the candidates into the sample.
4. Reordering of the sample.

5. Applying the new order.

6. Evolution of the new order.

7. Possible abort of the reordering.

We will now describe each step of our strategy in detail:

Step 1) Analysis

The OBDDs for the application are all kept in a single shared OBDD. We call this shared
OBDD manager or DD, because other information like the variable order is also stored in
it. Reordering always affects the complete manager. In the following we use the term OBDD
for the OBDD representation of a single function in the manager and root for the pointer
to the root node of an OBDD. The term subOBDD describes a subgraph of an OBDD that
itself represents a valid subfunction of the function represented by the OBDD.

To determine the state of the operation we perform a detailed analysis of the OBDD, the
current operation and the functions represented in the OBDD. This is done to guarantee a
good sample and to estimate the chances for a successful reordering. The following values
are computed or evaluated:

nvars: The number of support variables of the OBDDs in the manager.
ddsize: The number of live OBDD-nodes in the manager.

lastroots: The roots that have been involved in key operations during a certain period of
the computation.

recentroots: A subset of lastroots that has been used in recent operations (determined by
a constant e.g. 500)

lastrootssize: Number of shared OBDD-nodes of lastroots.
recentrootssize: Number of shared OBDD-nodes of recentroots.

temproots: The roots that have been found as nodes with external references (definition of
a root), but do not appear in lastroots. These roots are temporary results of the current
operation. They could become inner nodes of the function that is just computed or
become obsolete at a later stage.

temprootssize: Number of shared OBDD-nodes of temproots.
currentop: The type and operands of the operation currently performed.
maxdd: The function with the largest OBDD-size in the manager.

maxddsize: Number of OBDD-nodes of mazdd.

80 CHAPTER 5. REORDERING

The classification of the temporary roots (temproots) is crucial: Dynamic reordering is always
triggered during an operation. Thus, there are always temporary roots that are part of the
result of the current operation. These roots cannot be classified as important or not, because
they neither belong to last- or recentroots nor do we know if they will persist over the end
of the operation. On the other hand they might be part of a very costly operation, or even
be the reason for the reordering. They can even represent a mayor fraction of the OBDD.

To take care of this effect, we compute the fractions of OBDD-nodes of the various last-
, recent- and temproots of the total OBDD-size and choose nodes for sample according
to this fraction. This supports to represent their importance and influence on the sample
accordingly. The fraction for the lastroots is computed by:

lastrootsize - samplesize
ddsize?

lastrootfraction =

The recentrootfraction and the temprootfraction are computed analogously.

Step 2) Determination of the candidates for the sample

The most fundamental parameter for Sample Sifting is the required OBDD-size for the
sample (samplesize). This is the fraction of OBDD-nodes that should be copied into the
sample. This parameter has the largest influence on the performance of the Sample Sifting.
As smaller the sample is as faster it can be reordered, but a sample that is too small does
not contain enough information of the original functions and leads to poor results if applied
to the source manager. Sample sizes between 30% and 40% of the original OBDD-size seem
appropriate for symbolic model checking . Candidates for the samples are first of all roots
that have at least a certain number of nodes. We choose the number of support variables
of the manager (nvars) as a lower limit. Smaller OBDDs cannot contain all variables and
thus do not add useful information to the sample. OBDDs from recentroots, lastroots and
temproots are chosen for the sample according to their fractions lastrootfraction, recentroot-
fraction and temprootfraction. When copying complete OBDDs to the sample, a very small
number of large OBDDs can already suffice the size requirements for the complete sample,
but reordering only a few functions of the manager does usually not lead to sufficient results.
To allow a larger number of roots in the sample, only fractions of the candidate OBDDs
are copied to the sample. The only exception is the largest OBDD (mazdd): This OBDD is
copied completely into the sample, if it is involved in the current operation (currentop).

Step 3) Copying the candidates into the sample

There are various alternatives for the copying procedure, if only a fraction of a candidate
OBDD should be copied into the sample:

Backtrack: This method was presented by Meinel and Slobodova in [SM98]. It copies a
sample by traversing the OBDD in recursive depth first style and copies a node to the
sample, after its children have been copied to the sample. The copying is thus done
in postorder fashion. When the size limit (samplesize) of the sample is exceeded, the
copying process is canceled. Nodes, whose parents have not yet been copied become
roots of the sample. The benefit of this method is that real subfunctions of the OBDDs
are copied into the sample. The disadvantage is that for any real sample of an OBDD
(i.e. <100%) at least the topmost variable is missing. Unfortunately, the top variables

5.1. SAMPLE SIFTING 81

can be very important for the reordering. The reordering of the sample cannot deter-
mine a position for the missing variables. Thus, the missing variables have to be put
externally into the computed order, e. g. to their original position. See Figure 5.2 for
a sketch of the backtrack algorithm.

Visit: This method also copies nodes in depth first order, but nodes are copied to the sample
as soon as they have been visited (preorder style). The result is a sample that is more
likely to contain all variables of the OBDD. When the sample size limit is exceeded
and the copying stops, it leaves the sample with nodes, whose successors have not been
completely copied. To transform the sample into a valid OBDD representation those
missing edges are connected to the 1-sink of the sample resulting in an overestimation
of the original function. See Figure 5.3 for a sketch of the visit algorithm. The visit
algorithm uses a computed table to avoid creation of redundant nodes that result from
the overestimation.

Levelcopy: Both of the above methods copy the lower part of the OBDD completely, but
only a small fraction of the upper part of the OBDD. To provide a more balanced
sample of the OBDD we propose this method: The sample is copied in depth first
style, but the sample size restriction is now applied on each level, i.e. only a given
fraction of the nodes of each level is allowed to be copied into the sample. When a level
reached its maximal node count, it will be skipped for the rest of the copying process.
For the copying itself the visit method as well as the backtrack method can be used.
When a certain percentage p (0% < p < 100%) of the nodes of each level is allowed
in the sample the final size of the sample will roughly be the same percentage p of
the original OBDD-size. The sample could actually be smaller due to elimination of
redundant nodes that appear as nodes have to be skipped in the sample. See Figure 5.4
for a sketch of the levelcopy algorithm.

Figure 5.1 gives schematics for the results of the different copying methods. Note that the
method levelcopy represents the profile of the OBDD manager best, while backtrack copies
real subfunctions, instead of overestimations into the sample.

Backtrack Visit Levelcopy

Figure 5.1: Schematic of different methods for copying a sample.

Step 4) Reordering of the sample

We use the standard Sifting to reorder the samples. The main parameter to control the
quality and the performance of Sifting is the so called MAXGROWTH factor, i. e. the allowed

CHAPTER 5. REORDERING

CopyRecurBacktrack(dd,ndd,f,size,run_size){
if(Isize) return 0; /* size limit exceeded? */
if(IsTerminal(f)) return(f==dd_one ? ndd_one : ndd_zero);
result = lookup_table(f); /* already visited? */
if(result) return result;
fl=f—then; f0=f—else; /* have not been visited yet */

ChooseRecursionOrderRandomly{
resultl=Ref(CopyRecurBacktrack(dd,ndd,f1,size,run_size));
if(!resultl) return O; /* required size reached already */
resultO=Ref(CopyRecurBacktrack(dd,ndd,f0,size,run_size));
if(!result0) return 0;

}

if(result0) == resultl) result = result0; /* deletion rule */
elsif(run_size > size) return 0; /* required size reached already */
else{

result=CreateNode(ndd,f—index,resultl,result0);
add_table(f,result);

run_size = run_size +1;

Deref(result0); Deref(resultl);

}

return result;

}

Figure 5.2: Algorithm for Sample Copying (Backtrack) in Pseudocode.

CopyRecurVisit(dd,ndd,f,size,run_size){
if(IsTerminal(f)) return(f==dd_one ? ndd_one : ndd_zero);
if (run_size > size) return ndd_one; /* size limit exceeded? overestimate */
result = lookup_table(f); /* already visited? */
if(result) return result;
fl=f—then; f0=f—else; /* have not been visited yet */

ChooseRecursionOrderRandomly{

result1=CopyRecurVisit(dd,ndd,f1,size,run_size);

resultO=CopyRecurVisit(dd,ndd,f0,size,run size);

}

if(result0 == resultl) result = result0; /* deletion rule */

else{ /* create result*/
result=CreateNode(ndd,f—index,result1,result0);
run_size = run_size + 1;

add_table(f,result);
return result;

Figure 5.3: Algorithm for Sample Copying (Visit) in Pseudocode.

5.1. SAMPLE SIFTING 83

CopyRecurLevelcopy(dd,ndd,f,size,run_size){ /* visit */
if(IsTerminal(f)) return(f==dd_one ? ndd_one : ndd_zero);
result = lookup_table(f); /* already visited? */
if(result) return result;

level = Index—Level(dd,f—index); /* size limit exceeded for current level? */
if(NodesAtLevel(ndd,level) > NodesAtLevel(dd,level) x sample_fraction){
ChooseRandomly{
f=f—then; /* skip level */
f=f—else;

}

return CopyRecurVisit(dd,ndd,f size,run_size);

}

fl=f—then; f0=f—else; /* have not been visited yet */

ChooseRecursionOrderRandomly{
resultl=CopyRecurVisit(dd,ndd,f1,size run size);
resultO=CopyRecurVisit(dd,ndd,f0,size, run size);

if(result0 == resultl) result = result0; /* deletion rule */

else{ /* create result*/
result=CreateNode(ndd,f—index,resultl,result0);
run_size = run_size + 1;

}
add_table(f,result);
return result;

Figure 5.4: Algorithm for Sample Copying (Level) in Pseudocode.

increase of the OBDD-size while sifting a single variable. The default value is 20% and we
left it unchanged.

Using a more intensive sample reordering method might lead to very good orders that
unfortunately cannot be reached by shuffling as intermediate results are too large. Instead,
a less intense sample reordering, using a smaller MAXGROWTH factor might be more
useful.

Step 5) Applying the new order

When the reduction of the sample is evaluated to be sufficient (e.g. the sample OBDD
reduced to at least 95% of its original size) the newly computed order =’ is applied to
the original manager. Doing this and keeping the root pointers valid can only be done by
a operation called Shuffling. Shuffling performs variable swap operations like sifting but
towards a given variable order. Unfortunately, it suffers from the same problem as sifting:
Temporary graph sizes can blow up, although the final result is small. To prevent us from
memory overflow, we limit the increase of the OBDD-size during shuffling in the same way
as for sifting, but this means that the manager probably cannot be shuffled to the new
order '. See Figure 5.5a for a schematic of an unreachable order. The example schematic
shows the OBDD-size for shuffling from order 7 to order 7. The order 7’ cannot be reached,
because the intermediate OBDD-size during shuffling exceeds the memory limitations.

During shuffling to the new order all intermediate OBDD-sizes are stored. If the final size is
not the minimal size, the manager will be shuffled to the order with the minimal size (This

84 CHAPTER 5. REORDERING
process is not repeated to convergence).

Step 6) Evolution of the new order

Sample Sifting can find an order on a very remote location in the search space, unlike Sifting,
which performs a local search. This order might be the best in its surrounding area, but
often it is not. For this reason, we perform an additional very fast sifting that searches
the local space for a better order 7. The maximal allowed increase of the OBDD-size is
drastically reduced (5%) to keep this search very local. See Figure 5.5b for a schematic of
order evolution. In this schematic the order n’ decreases the OBDD-size in comparison to 7
but an evolutionary Sifting finds the even better order 7.

mem-out

shuffling

Q (&)
N N
Q Q
Q| | ~ (@]
Sy,
Ol ! 1 O
m v
a)

Figure 5.5: Schematic of an Unreachable Order a) and Order Evolution b).

Step 7) Possible abort of the reordering

Up to step 5 the source manager has not been reordered. Before actually reordering the
manager, the cache has to be cleared and a garbage collection has to be performed. The result
is a lower performance, because results of operations have been in the computed table before
and need to be recomputed now. The garbage collection removes dead nodes, i. e. nodes with
reference count 0. Allocating a node that was a dead node before the garbage collection is
way more time consuming than reclaiming it from dead nodes. After the manager has been
reordered, the temporary roots are no longer valid and the current operation (which can be
very costly) has to be repeated. Sometimes, performing a time intensive shuffle operation
results only in a negligible reduction in OBDD-size. Additionally, the current operation has
to be repeated. Instead, it could be more useful to abort the complete reordering process and
just increase the threshold for the next reordering. Then, the operation can be continued,
where it was suspended.

Variations of the strategy

Step 4a) Evaluation of the sample order: After reordering the sample to the new or-
der ' we can use the sample manager to evaluate the computed variable order =’.
This could be done to either check for an abortion of the reordering or to get the
real improvement of the OBDD-size. We can do this by copying other samples to the
sample manager or even complete OBDDs. The problem for this operation lies in the
transfer of OBDDs from one manager to another one with a different variable order.
The standard method for transferring functions between different managers basically
treats the OBDDs in the source manager as multiplexer circuits and rebuilds them

5.1. SAMPLE SIFTING 85

in the new manager. Unfortunately, this method suffers from large (even exponential)
intermediate OBDD-sizes. Another method that has been proposed by Meinel and
Slobodova [BMS95] called Global Rebuilding avoids this problem, but heavily uses co-
factoring, which results in a slowdown of the operation. Also, it produces temporary
nodes in the source manager. These nodes could become problematic, if the reordering
is canceled.

Step 8) Repeating the sample process: To improve the quality of the result of the
sample reordering, several sampling attempts can be performed during a reordering.
This can either be done by choosing different functions, different fractions for the sam-
ples or by choosing a different method for sampling. Also, there is a choice whether
to reorder the manager to the starting order 7 after the first reordering attempt or to
continue with the new order 7’ and to base the next sampling attempt on this one.

Since, for model checking, samples of a certain size (30%-40%) are required to guaran-
tee good results, we found several reordering attempts too time consuming. Instead,
we focus on the quality of the samples to enable good results within one attempt.

Figure 5.6 summarizes the Sample Sifting for symbolic model checking strategy.

SampleSifting(mgr){
data = AnalyzeManager(mgr);
candidates = DetermineCandidates(mgr, data);
newmgr = InitManager();
CopyFunctions(newmgr,candidates, COPYMETHOD);
Reorder(newmgr);
if (size reduction of newmgr > MIN_.SAMPLE_REDUCTION){
Shuffle(mgr,order of newmgr);
if (sizereduction of mgr > MIN_REDUCTION){
Reorder(mgr);
}

}

else{
abort Sampling;

}
}

Figure 5.6: Algorithm for Sample Sifting in Pseudocode.

5.1.3 Experimental Results

In the following we will prove our Sample Sifting concept by benchmark experiments. We will
first introduce the benchmarks we used. After giving some implementation details, we will
discuss the results of computing the benchmarks using standard sifting. Then, we compare
these results with the results using Sample Sifting.

Benchmarks

We use the publicly available SMV-traces of Yang [Yan98, YBO-+98] for our experiments.
SMV is the description language for the SMV-model checker [McM93]. SMV is comparable
to Verilog or VHDL. Traces are recorded calls of OBDD operations done by the SMV model
checker during the computation of a certain model. With the use of traces, one is not

86 CHAPTER 5. REORDERING

restricted to use the underlying OBDD-package of SMV. Instead one can use any OBDD
package and/or own algorithms. Furthermore, traces have become the reference benchmark
set for reordering during model checking. This allows a fair comparison of our heuristic to
other approaches.

The SMV-models that underly the traces come from different sources and represent a range
from communication protocols to industrial controllers:

— dme2-16: A distributed mutual exclusion protocol.

— dartes: A communication protocol of a complex Ada program.

— dpd75: Dining philosophers with dictionary.

— ftp3: The file transfer protocol.

— furnacel7: A remote furnace program.

— key10: This protocol manages keyboard/screen interaction in a window manager.
— mmgt20: A distributed memory manager.

— overl2: An automated highway system overtake protocol.

— futurebus: The futurebus cache coherence protocol.

— motors-stuck, valves-gates: Batch reactor system models.

— phone-async: An asynchronous model of a simple telephone system.

— phone-sync-CW: A synchronous model of a similar phone system with call waiting.

— tcas: A part of a preliminary version of the system requirements specification of TCAS
IT (Traffic Alert and Collision Avoidance System) for aircraft.

We did not use those benchmarks that did not trigger any reordering at all (short, abp11),
and whose transition relation could not be build with our memory limitations (tomasulo).

Implementation

We implemented our Sample Sifting strategy in the CUDD Package [Som]| (version 2.3.0).
We applied Sampling during the construction of the transition relation and during model
checking. An interface from the routines calling the OBDD operations to the sample routines
is necessary to get a list of recent roots. For the combinatorial part of the computation, i.e.
the construction of the transition relation, this interface is integrated in the main routine
for ITE-operation that implements AND, OR, etc. For the model checking part, we have in-
tegrated an interface from the trace-driver to sampling routines. Thus, we get those OBDDs
in the recent-root-list that are involved in the important model checking operations.

5.1. SAMPLE SIFTING 87

Experiments using Standard Sifting

All experiments were performed on Intel PentiumIII 500MHz Linux workstations with
500MByte datasize and CPU-time limited to 6 hours. For all computations we used the
common technique of grouping present- and next-state variables, i.e. a pair of present-
/next-state variables is always kept on adjacent levels. This setting accelerates reordering
and results in better variable orders. The MAXGROWTH factor has been set to 20% (de-
fault value). The first reordering is triggered at 100,000 nodes. These settings are valid for
all our experiments using SMV-traces.

ED =Y

5 L o X .E’ g .5 :% -%D é
S Lo ge| 85| 5| 88| 28
o X} 5 @ 5@ (] .3 3 5 _zg
S BE|EE|EE| £\ PE|4E| &%
+ + + @© . —
dartes 198 242 214 | 88% 3 8% 1 583
dme2-16 586 | 1871 1190 | 63% 5| 18% 3| 4868
dpd75 600 | 2235 | 1363 | 61% 51 0% 0| 3342
ftp3 100 598 335 | 56% 4 1% 0| 3127
furnacel? 184 | 1928 760 | 39% 51| 21% 1] 2339
futurebus 348 | 2329 666 | 28% 8 | 28% 8 | 2057
keyl0 140 422 326 | 77% 6 | 24% 3 1098
mmgt20 264 754 419 | 55% 4| 2% 0| 2904
motors-stuck 172 130 68 | 52% 4| 36% 4 670
overl2 174 | 1743 1499 | 86% 6 7% 2| 4725
phone-async 86 | 1482 683 | 46% 5| 8% 1| 12570
phone-sync-CW 88 | 17006 | 14236 | 83% 10 | 14% 7| 17203
tcas 202 | 3969 | 3783 | 95% | 10 | 28% 10 | 6074
valves-gates 172 131 98 | 75% 5| 35% 5 542
Total 3404 | 34840 | 25640 904 80 | 230 45 | 62102
Average 243 | 2488 | 1831 | 65% | 5.7 | 16% 3| 4435

Table 5.1: Overview of Computation and Reordering Effort for the Benchmarks using Stan-
dard Sifting

We begin our with benchmark experiments using standard Sifting for reordering to demon-
strate the complexity of the benchmarks.

Table 5.1 shows the results and some additional statistics. The columns labeled #Variables
and Peaknodes give an overview of the complexity of the designs. The complexity ranges
from a medium (86) to a large (600) number of variables. A number of 600 variables is
about, what is feasible with todays symbolic model checkers. The OBDD-size averages to
4.4 Mio. nodes, and thus is quite high. The average CPU time needed is 2488s and almost
2/3 of it are used for reordering (Reorder Time in %).

We have enlisted some more details for reordering: The column #Reorderings gives the num-
ber of reordering attempts for each design. The average number of 5.7 reordering attempts
per design is quite low in comparison to e.g. symbolic simulation as used in combinatorial
verification. Also, the average reduction per reordering attempt (avg. Size Reduction) and the
number of successful reorderings (#Successful Reorderings), i.e. those reordering attempts

88 CHAPTER 5. REORDERING

that reduce the OBDD-size by more than 5%, is given.
We can distinguish three types of benchmarks:

1. Reordering fails: Reordering takes place, but it does not reduce the OBDD size. Here,
an acceleration technique can exploit its full potential. Examples: dpd, ftp3.

2. Most reordering attempts fail, very few are successful: This is a more challenging task
for an acceleration technique, because it has to deliver a good result at the right time,
unsuccessful reordering attempts cannot be corrected. Example: furnacel?.

3. Most reordering attempts are successful: In this case an acceleration technique has to
prove that it produces overall good results in terms of reordering quality, because only
a few reorderings occur. Examples: tcas, futurebus.

Experiments using Sample Sifting

On the basis of the above benchmarks we performed experiments with our Sample Sifting
technique. We set the parameters for Sampling to the following values:

Sample-size: 30%,
— Sample-reduction: 95%,
— DD-reduction: 95%,

— Sample-growth: 20%,

Shuffle-growth: 20%,

— Copymethod: levelcopy,

Table 5.2 and Table 5.3 show the results of the benchmark experiments using our Sam-
ple Sifting strategy. Time is given in CPU-seconds and the size is given in peak-nodes in
thousands (K).

The most important result is that Sampling accelerates the reordering significantly. We
achieved an overall improvement of 44% of the CPU-time. We were able to improve all of
the 14 benchmarks. The improvements ranged up to 56%.

Interestingly, we could achieve even a small decrease in size, i.e. 1% overall. The Sampling
improved the OBDD-size in 5 of the 14 cases. The improvement in size is not really a win,
but we state this as time improvement without losses in OBDD-size.

5.1. SAMPLE SIFTING 89

‘ H Sifting H Sampling
| | time/s | time/s | %

dartes 242 161 | 33
dme2-16 1871 1299 | 31
dpd75 2235 2059 | 8
ftp3 598 367 | 39
furnacel? 1928 1415 | 27
futurebus 2329 1294 | 44
key10 422 224 | 47
mmgt20 754 495 | 34
motors-stuck 130 104 | 20
overl2 1743 1013 | 42
phone-async 1482 1121 | 24
phone-sync-CW || 17006 7469 | 56
tcas 3969 2452 | 38
valves-gates 131 126 | 3
Total 34841 || 19600

Improvement 44%

Table 5.2: Comparison of CPU-time in Seconds for Standard Sifting and Sampling

| [Sifting | Sampling |
| | size/K | size/K | % |

dartes 583 614 | -5
dme2-16 4868 4198 14
dpd75 3342 3350 0
ftp3 3127 2963 5
furnacel? 2339 3118 | - 25
futurebus 2057 2013 2
key10 1098 1274 | - 14
mmgt20 2904 3159 | -8
motors-stuck 670 717 | -7
overl2 4725 4692 1
phone-async 12570 || 10525 16
phone-sync-CW || 17203 || 17803 | -3
tcas 6074 6258 | -3
valves-gates 542 907 | - 40
Total 62102 || 61591

Improvement 1%

Table 5.3: Comparison of Peak-nodes in Thousands (K) for Standard Sifting and Sampling

90 CHAPTER 5. REORDERING

5.2 Block Restricted Sifting

In the last section we have shown how to apply Sample Sifting to accelerate symbolic model
checking without losses in memory efficiency. But, Sampling has some disadvantages on the
implementation side that limit an application:

— Routines on several layers of the BDD-package are involved.

— Interaction with the application layer is required.

An additional OBDD-manager has to be maintained.

— Complex algorithms require a number of parameters to be set.

In this section we present an alternative strategy to accelerate symbolic model checking that
is somewhat orthogonal to Sampling. The so called Block Restricted Sifting (BRS) restricts
the search space of the sifting algorithm, resulting in a significant time improvement, but
a size penalty has to be accepted. One benefit of BRS is that it is self-contained, i.e. only
one routine within the reordering preprocessing is called. The number of parameters is very
limited.

BRS was first presented by Meinel and Slobodova [MS97], who applied it to combinatorial
verification. It turned out that this strategy is in its basic form not well suited for symbolic
model checking for the following reasons:

— In combinatorial verification and reachability analysis many reorderings occur. Bad
results can be adjusted by other reorderings. Thus, the accelerating power can be used
more excessively. In model checking a deviation of the results is more likely, because
only a few reordering attempts occur. As a consequence the bad results would lead
to a time penalty as larger OBDDs require more time for computation. The time
improvement from reordering would be compensated.

— In [MS97] BRS and standard Sifting are interleaved to improve the quality of the
results. During model checking too few reorderings occur to obtain significant accel-
eration when reordering methods are interleaved.

Our goal is to adjust Block Restricted Sifting for symbolic model checking in the way that
it almost produces the same results as standard sifting, but in shorter time. To achieve this
the BRS has to be application dependent. Nevertheless, we do not want the BRS to interact
too much with the application to keep the implementation simple.

This section is structured as follows: We start with the basic BRS concept. Then, we present
our BRS for symbolic model checking strategy. The section is concluded with benchmark
experiments.

5.2.1 Basic Concept

One way to accelerate variable reordering is to restrict the search space, i.e. reduce the
number of variable orders that are tested. A simple approach to restrict the search space as
it is used e. g. in the CUDD-package is to allow a maximum growth of the OBDD-size during
sifting a single variable (MAXGROWTH). This threshold is typically set to 20%. Another
approach is the so called lower bound sifting [DG99], which computes the theoretical lower

5.2. BLOCK RESTRICTED SIFTING 91

bound of the OBDD-size for the variable that is currently sifted. When this lower bound
is no improvement of the already reached best result, the sifting process for this variable is
stopped. But, the MAXGROWTH threshold often overrides these bounds.

The block restricted sifting approach follows the idea of dividing the search space into blocks,
in which useful variable orders could be found. One observation is that the optimal position
for a variable often lies relatively close to its original position, thus checking remote positions
in the order is often just a waste of time, also it results in large intermediate OBDD-sizes.
These large intermediate sizes often foreclose finding good remote positions for a variable.

The challenge is to find well suited blocks to divide the OBDD. An argument from the
communication complexity theory is used to find good block borders: A good cut in a
circuit (OBDDs are special multiplexer circuits) divides the circuit that only a low flow of
information crosses the cut. A cut with a low flow of information in an OBDD is a level
with a small number of nodes. To be more precise: It is a level with a small number of nodes
in comparison to its neighboring levels. Another fact that supports the blocking concept is
that when a variable is sifted only within a block the upper and lower cut lines, and thus
the remaining OBDD, remains unchanged. This keeps the reordering effects local.

Basic Algorithm

The basic algorithm for block restricted sifting as it was described by Meinel and Slo-
bodova [MS97] consists of three major steps:

1. Compute the subfunction profile of the OBDD.
2. Determine block borders from the subfunction profile.

3. Reorder within the computed blocks.
The algorithm in more detail:

Compute subfunction profile: The information passed on a certain level of the OBDD
does not only consist of the nodes of the level, but also of edges that cross this level.
Nodes and edges together form the subfunction profile. The computation of the sub-
function profile works as follows: The number of subfunctions on level 7 is represented
as the ith entry of the array SubFunc. If the root node of a function is not on the
toplevel of the OBDD, this function has to be added to all levels above the root node
level. This has to be done for all root nodes, which have to be computed in advance.
During the second phase all edges of all nodes are added in top-down manner to the
subfunction profile. Edges that cross several levels have to be added to the respective
entries of the array.

Determine block borders: The heuristic for finding block borders is controlled by three
values:

— MINBLOCK: The minimal fraction of all variables that has to go in one block.

— MINUP and MINDOWN: The minimal relative increase (resp. decrease) in the
subfunction profile to allow a new block border.

The heuristic evaluates the levels of the subfunction profile. Whenever the require-
ments for MINUP/MINDOWN are met and the current block is large enough (MIN-
BLOCK), a new block border is created. If the next level fits even better, the block
border is moved down.

92 CHAPTER 5. REORDERING

Reorder within blocks: The reordering within the blocks is done by standard Sifting. The
implementation in the CUDD-package is quite easy as the package provides handling
of variable groups. Each block defines a variable group and reordering is allowed only
within the groups.

5.2.2 BRS Strategy for Symbolic Model Checking

In the following we will describe the adaptations that are necessary to enable a successful
application of the block restricted sifting strategy for symbolic model checking.

Computation of the subfunction profile

In a large OBDD the computation of roots can be a time consuming operation. In the
operation ApprozimateSubfunctionProfile (Figure 5.7) we omit computation of the roots.
We only compute an approximation of the subfunction profile, but the introduced error is
negligible and has almost no effect on the computation of the borders.

ApproximateSubfunctionprofile{
foreach (varlevel){
SubFunc|varlevel] = 0;

foreach (varlevel){
foreach (node on varlevel){
for (both sons of node)
if (NotMarked(son))
for (j = varlevel to varlevel of son)
SubFunc][j] = SubFunc][j] + 1;
SetMark(son);
}
}

return SubFunc;

}

Figure 5.7: Algorithm for Approximation of the Subfunction Profile in Pseudocode

Block borders

In the procedure ComputeBounds we changed the best-fit strategy to a first-fit strategy,
i.e. borders are no longer moved down in the order. This leads to more borders in the
OBDD, especially in the lower part, where the subfunction profile naturally decreases and
the best-fit strategy would move the border further downwards.

Additionally, we introduced a parameter MAXBLOCK that gives — similar to MINBLOCK
— the maximum fraction of the total number of variables that is allowed in a single block.
The effect is similar to the one of the first-fit strategy, but it also affects the top part of the
OBDD. See Figure 5.8 for a sketch of the algorithm.

Reordering of the blocks

The reordering inside the blocks is done by standard Sifting. We used the standard threshold
(MAXGROWTH) for the allowed growth of the OBDD-size during sifting of one variable
(i.e. 20%). Using a smaller threshold would accelerate the reordering even more, but at the
cost of poor quality of the found order. An alternative would be to use some of the time
savings of the BRS to reorder the blocks more intensively, but this seems not appropriate
for symbolic model checking.

5.2. BLOCK RESTRICTED SIFTING 93

ComputeBounds(s) {
minblock=MINBLOCK*n;
bl_start=A=0;
foreach (1 <i < n-minblock) {

bounds[i-1]=0;
A=s]i]-s[i-1];
if(A > MINDOWN*s[i-1]) {
if (A > MINUP*s[i-1]) {
if (i-bl_start > minblock) {
bounds][i-1]=i-1; /* first-fit:new border*/
bl_start=i-1;
}
}

}
else if(bl_start - i > MAXBLOCK*n) {

bounds[i-1]=i-1; /* new border*/
bl_start=i-1;
}
}
}

Figure 5.8: Sketch of ComputeBounds in Pseudocode

Additionally, we introduced the concept of weak boundaries, i.e. we include a small number
of variables (here: 4) above and below the current block in the reordering of the block. This
overlap of the block borders drastically increases the quality of the results without affecting
the runtime largely. The positive effect of the weak boundaries is that variables that have
been placed on a wrong position in the variable order (e. g. by a static ordering heuristic for
starting orders) can now cross the border to a different block. A few variables may move
completely from the top to the bottom of the order. Figure 5.9 shows a schematic of an
OBDD with weak boundaries.

During the reordering we assure that related present- and next-state variables always stay
adjacent and remain in one single block.

B1

B2

B3
Vv B4

Figure 5.9: Schematic of an OBDD divided into Blocks.

94 CHAPTER 5. REORDERING

5.2.3 Experimental Results

We used the same benchmarks as in Section 5.1 for our experiments. We compared our BRS
strategy with standard Sifting. The parameters have been set to the following values:

MINBLOCK = 15%,

MAXBLOCK = 25%,
— MINDOWN = 0.02,
— MINUP = 0.01,

OVERLAP = 4,

— Group present/next state variables.

The results are shown in Table 5.4 and Table 5.5. Time is given in CPU-seconds and the
size is given in peak-nodes in thousands (K).

The BRS method wins in 13 of the 14 cases, resulting in an overall improvement of 36%
with a maximum improvement of 61%. The losses in size summarize to marginal 3%. The
BRS method was able to improve the size of four benchmarks. Concluding it can be said
that BRS enables a significant improvement in computation time by only marginal losses in
OBDD-size.

5.3 Conclusion

The most valuable resource in symbolic model checking is time. Unfortunately, it is often
wasted by unsuccessful reordering attempts. We have developed two reordering strategies
that are balanced in the way that they are very fast, but still compute sufficient results. The
Sampling strategy and the BRS strategy improved the computation time in our experiments
by 44% resp. 36% with no or only a small trade-off in OBDD-size.

5.3. CONCLUSION

| | Sifting | BRS |

‘ | time/s | time/s | % |
dartes 242 97 60
dme2-16 1871 842 | 55
dpd75 2235 1360 | 39
ftp3 598 446 | 25
furnacel? 1928 1374 | 29
futurebus 2329 3078 | - 24
key10 422 163 | 61
mmgt20 754 534 | 29
motors-stuck 130 108 17
overl2 1743 940 | 46
phone-async 1482 1393 6
phone-sync-CW || 17006 9680 | 43
tcas 3969 2218 | 44
valves-gates 131 130 1
Total 34841 || 22365
Improvement 36%

Table 5.4: Comparison of CPU-time in Seconds for Standard Sifting and BRS

‘ H Sifting H BRS ‘
‘ | size/K | size/K | % |
dartes 583 584 0
dme2-16 4868 4215 13
dpd75 3342 3325 1
ftp3 3127 2878 8
furnacel? 2339 3056 | - 23
futurebus 2057 2120 | -3
key10 1098 1256 | - 13
mmgt20 2904 3026 | -4
motors-stuck 670 709 | -6
overl2 4725 4778 | -1
phone-async 12570 || 10894 13
phone-sync-CW || 17203 || 17475 | -2
tcas 6074 9841 | - 38
valves-gates 542 627 | - 14
Total 62102 || 64784
Improvement -3%

Table 5.5: Comparison of Peak-nodes in Thousands (K) for Standard Sifting and BRS

96

CHAPTER 5.

REORDERING

Chapter 6

Conclusion

Key Results

In this work we have presented utilization of high-level methods on different levels of formal
verification applications:

— We have demonstrated that a well suited assertion methodology is easy to integrate
in the typical verification flow of an industrial tool.

— We have developed new approaches for partitioning of the transition relation of finite
state machines. These approaches profit from high-level information, but are general
enough to work efficiently without.

— Finally, we have shown how to handle the sometimes problematic use of dynamic
variable reordering during symbolic model checking more efficiently. Often, dynamic
variable reordering during model checking is useless, but sometimes it is important to
guarantee completion of the computation. We developed strategies, that improve the
run-time of the reordering without negatively affecting the OBDD-size.

We have shown that the performance of the very general OBDD technology can be drastically
improved, if high-level methods are used in the right way, i. e. if information about the design,
the structure of the design and the specific application is integrated into the algorithms and
heuristics for formal verification. We have als shown that from experiences with high-level
methods, often improved general methods can be deducted.

Possible Future Work

This section gives a brief outlook on possible directions for future work in this area.

First of all, we recommend the examination of hybrid methods that allow to choose from
different partitioning methods. After creating the partitioned transition relation using dif-
ferent methods (e. g. RTLMOD/GROUPMOD or GROUPMOD/MLP [MHS00]) a decision
about which approach to use, could be made by analyzing the resulting cluster dependency
matrices (CDMs). For example the sparseness or the structure of the different CDMs could
be compared.

97

98 CHAPTER 6. CONCLUSION

Another topic could be an even tighter integration of dynamic variable reordering in
the image computation process. The threshold that triggers the reordering (i.e. OBDD-
size_after_last_reorderingx2) is quite arbitrary. An advanced triggering heuristic for image
computation should avoid a lot of unsuccessful reordering attempts. Also, the computa-
tion of starting orders for image computation has not yet been studied. Especially for the
RTLMOD-method improvements should be possible.

Finally, as an application at the representation layer, we suggest interchanging and inter-
leaving of Sampling and BRS. Reordering of samples using BRS would allow to reorder
larger samples in shorter time.

Appendix A

Additional Tables

99

100 APPENDIX A. ADDITIONAL TABLES

| | RTL I Group |
| [lemp | time/s [[time/s [% |

ONE.mv.PPCliveness.c 40 9 9 0
ONE.mv.contention.ct 19 8 8 0
PCIabnorm.mv.PCI.ctl 304 167 222 | -24
PCInorm.mv.PCI.ctl.o 206 39 57 | -31
TW0.mv.PPCliveness.c 74 9364 2139 77
TW0.mv.contention.ct 37 125 106 15
ethernet.define.213. 301 | 14441 6088 57
ged.mv.ged.ctl.out 37 37 23 | 37
minMax30.mv.minMax30 8 12 7 41
multi_main.mv.multim 45 18 24 | -25
p62_LS_LS_VO1.mv.ccp 64 140 129 7
p62_LS_LS_VO1.mv.p6l 99 444 130 70
p62_LS_L_VO1.mv.ccp. 64 151 126 16
p62_LS_L_VO1.mv.p61i 95 335 226 | 32
p62_LS_S_VO1l.mv.ccp. 64 153 126 | 17
p62_LS_S_VO01.mv.p61i 95 318 235 | 26
p62_L_L_VO1.mv.ccp.c 52 127 71 | 44
p62_L_L_VO1l.mv.p6liv 89 483 121 | 74
p62_L_S_VO1l.mv.ccp.c 75 122 69 43
p62_L_S_VO1l.mv.p6liv 118 278 116 | 58
p62_ND_LS_VO1.mv.ccp 83 779 572 | 26
p62_ND_LS_VO1.mv.p6l 128 | 13370 1798 | 86
p62_ND_L_VO1.mv.ccp. 75 788 715 9
p62_S_S_VO1.mv.ccp.c 43 61 66 -7
p62_S_S_VO1.mv.p6liv 80 112 67 | 40
p62_V_LS_VO1.mv.ccp. 108 368 354 3
p62_V_LS_VO1.mv.p6li 153 | 16270 413 | 97
p62_V_S_VO1.mv.ccp.c 82 169 146 | 13
p62_V_S_VO1.mv.p6liv 127 595 279 53
packet.mv.packet.ctl || 65325 7258 >6h | -66
single_main.mv.singl 107 8 10 | -19
single_main.mv.singl 51 8 10 | -19
three_processor.mv.p 244 8276 >6h | -61
three_processor_bin. 222 5708 >6h | -73
two_processor.mv.pro 264 75 84 | -10
two_processor_bin.mv 141 33 80 | -58
Total 69119 | 80649 79429

Improvement 1%

Table A.1: Comparison of CPU-time in Seconds for the RTL-method and the Group-Method

101

|| RTL || Group

I Peakn | Parts | TRn || Peakn | % [Parts [% | TRn | %
ONE.mv.PPCliveness.c 21229 4 2671 21362 0 51 -19 4971 | -46
ONE.mv.contention.ct 21229 4 2671 21362 0 51 -19 4971 | -46
PCIabnorm.mv.PCI.ctl 128310 10 24482 184722 | -30 8 19 18676 23
PCInorm.mv.PCI.ctl.o 69291 10 20646 64961 6 11 -9 29081 | -29
TW0.mv.PPCliveness.c 5363742 9 12828 2317020 56 10 -9 11730 8
TW0.mv.contention.ct 223656 10 12040 220979 1 10 0 15056 | -20
ethernet.define.213. 6239111 17 1859 1614232 74 14 17 6471 | -71
gcd.mv.ged.ctl.out 215222 3 6466 215222 0 3 0 5366 17
minMax30.mv.minMax30 101042 2 6170 101042 0 2 0 3151 48
multi_main.mv.multim 33423 4 3092 33423 0 51 -19 4837 | -36
p62_LS_LS_VO1l.mv.ccp 136280 20 56040 119996 11 23 | -13 44697 | 20
p62_LS_LS_VO1.mv.p6l 463209 20 56040 127833 | 72 23 | -13 44697 | 20
p62_LS_L_VO1.mv.ccp. 174275 18 53012 118284 | 32 23 | -21 43117 18
p62_LS_L_VO1.mv.p61li 2903189 18 53012 197326 | 32 23 | -21 43117 18
p62_LS_S_VO1.mv.ccp. 174275 18 53012 118284 | 32 23 | -21 43117 18
p62_LS_S_VO1.mv.p61li 203189 18 53012 197326 | 32 23 | -21 43117 18
p62_L_L_VO1l.mv.ccp.c 177614 18 54445 121246 | 31 23 | -21 44027 19
p62_L_L_VO1l.mv.p6liv 507110 18 54445 121246 | 76 23 | -21 44027 19
p62_L_S_VO1l.mv.ccp.c 144687 18 55820 107565 | 25 23 | -21 45494 18
p62_L_S_VO1.mv.p6liv 255775 18 55820 117042 54 23 | -21 45494 18
p62_ND_LS_VO1.mv.ccp 430404 20 54629 291233 | 32 24 | -16 51339 6
p62_ND_LS_VO1.mv.p61 4091039 20 54629 821661 79 25 | -19 49484 9
p62_ND_L_VO1.mv.ccp. 436916 21 59711 306682 | 29 24 | -12 52423 12
p62_S_S_V01.mv.ccp.c 133192 18 56727 97647 | 26 23 | -21 44041 22
p62_S_S_VO1.mv.p6liv 163585 18 56727 97647 | 40 23 | -21 44041 22
p62_V_LS_VO1l.mv.ccp. 307382 19 58007 211863 | 31 24 | -20 46795 19
p62_V_LS_VO1.mv.p6li 5450872 19 58007 242396 | 95 24 | -20 46795 19
p62_V_S_VO1l.mv.ccp.c 157448 19 53163 145859 7 24 | -20 47214 11
p62_V_S_VO1.mv.p6liv 345774 19 53163 204216 | 40 24 | -20 47214 11
packet.mv.packet.ctl 62574 4 5191 51592 | 17 5| -19 10906 | -52
single_main.mv.singl 9360 3 2227 9668 -3 3 0 2238 0
single_main.mv.singl 9360 3 2227 9668 -3 3 0 2238 0
three_processor.mv.p 4588114 4 5362 4722353 -2 9 | -55 13522 | -60
three_processor_bin. 3257556 4 5358 5086098 | -35 9 | -b5 13902 | -61
two_processor.mv.pro 86871 3 2838 75205 | 13 3 0 5027 | -43
two_processor_bin.mv 63296 3 2831 131104 | -51 3 0 6305 | -55
Total 34629601 454 | 1168380 || 18645365 553 1028698
Improvement 46% -17% 11%

Table A.2: Comparison of OBDD-sizes for the RTL-method and the Group-Method

102 APPENDIX A. ADDITIONAL TABLES

| [RTLMOD || GROUPMOD

| | lcmp | time/s || time/s | %]

ONE.mv.PPCliveness.c 40 9 7 22
ONE.mv.contention.ct 19 8 6 25
PCIabnorm.mv.PCI.ctl 303 152 237 | -35
PCInorm.mv.PCI.ctl.o 204 47 62 -24
TWO0.mv.PPCliveness.c 74 3436 237 93
TW0.mv.contention.ct 37 150 85 43
ethernet.define.213. 300 818 572 30
gcd.mv.ged.ctl.out 37 11 44 -75
minMax30.mv.minMax30 8 12 13 -7
multi_main.mv.multim 45 18 19 -5
p62_LS_LS_VO1.mv.ccp 64 84 111 -24
p62_LS_LS_VO1.mv.p6l 99 173 218 | -20
p62_LS_L_VO1.mv.ccp. 64 103 121 -14
p62_LS_L_VO1.mv.p61i 99 252 244 3
p62_LS_S_VO1.mv.ccp. 64 103 120 -14
p62_LS_S_VO1l.mv.p6li 99 260 299 | -13
p62_L_L_VO1l.mv.ccp.c 52 78 102 | -23
p62_L_L_VO1l.mv.p6liv 89 159 186 | -14
p62_L_S_VO1l.mv.ccp.c 75 93 69 25
p62_L_S_VO1.mv.p6liv 118 166 114 31
p62_ND_LS_VO1.mv.ccp 83 559 527 5
p62_ND_LS_V01.mv.p61 128 | 4544 | 2082 | 54
p62_ND_L_VO1.mv.ccp. 75 577 794 | -27
p62_S_S_VO1l.mv.ccp.c 42 62 41 33
p62_S_S_VO1l.mv.p6liv 79 67 67 0
p62_V_LS_VO1.mv.ccp. 108 362 380 -4
p62_V_LS_VOl.mv.p61i 153 6236 1772 71
p62_V_S_VO1l.mv.ccp.c 82 173 146 15
p62_V_S_VO01.mv.p6liv 127 890 675 24
packet.mv.packet.ctl || 65326 5068 10540 | -51
single_main.mv.singl 106 8 7 12
single_main.mv.singl 19 7 7 0
three_processor.mv.p 244 2959 >6h | -86
three_processor_bin. 140 522 >6h | -97
tWo_processor.mv.pro 264 72 170 -57
two_processor_bin.mv 141 42 35 16
Total 69007 | 28280 63311

Improvement -55%

Table A.3: Comparison of CPU-time in Seconds for the RTLMOD-method and the
GROUPMOD-Method

103

| I RTLMOD I GROUPMOD |
| I Peakn | Parts | TRn || Peakn [% [Parts | % | TRn [% |

ONE.mv.PPCliveness.c 21558 4 3220 19246 10 6 | -33 1809 43
ONE.mv.contention.ct 21558 4 3220 19246 10 6 | -33 1809 43
PCIabnorm.mv.PCI.ctl 116345 10 18061 114041 1 11 -9 17787 1
PCInorm.mv.PCI.ctl.o 69291 11 16993 69291 0 10 9 16749 1
TW0.mv.PPCliveness.c 2083768 10 13881 272317 86 11 -9 7393 46
TW0.mv.contention.ct 215686 10 10508 139081 35 10 0 7909 24
ethernet.define.213. 516625 17 21901 275055 46 11 35 2089 | -26
gcd.mv.ged.ctl.out 215222 2 6327 215222 0 3|-33 5707 9
minMax30.mv.minMax30 101042 2 6180 101042 0 4 | -50 4521 26
multi_main.mv.multim 33423 6 1578 33423 0 10 | -40 1842 | -14
p62_LS_LS_VO01.mv.ccp 124430 23 41246 86196 | 30 23 0 20319 | 28
p62_LS_LS_VO1.mv.p61 158021 23 41246 141477 10 23 0 29319 28
p62_LS_L_VO1.mv.ccp. 132128 22 41091 93166 | 29 23 -4 27739 | 32
p62_LS_L_VO1.mv.p6li 183674 22 41091 192775 -4 23 -4 27739 | 32
p62_LS_S_VO1.mv.ccp. 132128 22 41091 93166 | 29 23 -4 27739 | 32
p62_LS_S_VO1.mv.p6li 183674 22 41091 192775 -4 23 -4 27739 | 32
p62_L_L_VO1.mv.ccp.c 117269 23 | 41165 87708 | 25 23 0 28427 | 30
p62_L_L_VOl.mv.p6liv 189172 23 41165 121978 35 23 0 28427 | 30
p62_L_S_VO1.mv.ccp.c 123551 23 42294 72087 | 41 23 0 25419 | 39
p62_L_S_VO1.mv.p6liv 137714 23 422904 94688 | 31 23 0 25419 | 39
p62_ND_LS_VO1.mv.ccp 299289 24 46550 342875 | -12 24 0 26903 | 42
p62_ND_LS_VO1.mv.p61 1747044 24 46550 815232 53 24 0 26903 | 42
p62_ND_L_VO1.mv.ccp. 380121 24 45076 483549 | -21 24 0 33171 26
p62_S_S_V01.mv.ccp.c 97360 23 39901 64410 | 33 23 0 27880 | 30
p62_S_S_V01.mv.p6liv 97360 23 39901 84190 13 23 0 27880 | 30
p62_V_LS_VO1l.mv.ccp. 210147 23 45928 212132 0 24 -4 31618 | 31
p62_V_LS_VO1.mv.p61i 2126524 23 45928 1019022 52 24 -4 31618 31
p62_V_S_VO1l.mv.ccp.c 142930 23 43513 118153 | 17 23 0 28363 | 34
p62_V_S_VO1.mv.p6liv 442596 23 43513 269843 39 23 0 28363 | 34
packet.mv.packet.ctl 68473 4 4742 168874 | -59 4 0 8131 | -41
single_main.mv.singl 9360 4 884 9360 0 6 | -33 1831 | -51
single_main.mv.singl 9360 4 884 9360 0 6 | -33 1831 | -51
three_processor.mv.p 3062696 7 4838 6989715 | -56 8 | -12 9756 | -50
three_processor_bin. 560970 7 5140 5903397 | -90 7 0 6855 | -25
tWo_processor.mv.pro 88215 5 1810 179562 | -50 7 | -28 1928 -6
two_processor_bin.mv 64924 5 2623 65156 0 6 | -16 2307 12
Total 14283648 548 | 913714 || 19168810 568 641139

Improvement -25% -3% 29%

Table A.4: Comparison of OBDD-sizes for the RTLMOD-method and the GROUPMOD-
Method

104 APPENDIX A. ADDITIONAL TABLES

| || IWLS95 || RTL || Group || RTLMOD || GROUPMOD |
| [lcmp | time/s [time/s | % [time/s | % [[time/s | % [time/s [% |

ONE.mv.PPCliveness.c 40 7 9 | -22 9 | -22 9 | -22 7 0
ONE.mv.contention.ct 19 6 8 |-25 8 | -25 8 | -25 6 0
PCIabnorm.mv.PCI.ctl 304 253 167 | 33 222 | 12 152 | 39 237 6
PCInorm.mv.PCI.ctl.o 206 56 39 | 30 57 -1 47 | 16 62 -9
TW0.mv.PPCliveness.c 74 303 9364 | -96 2139 | -85 3436 | -91 237 | 21
TW0.mv.contention.ct 37 47 125 | -62 106 | -55 150 | -68 85 | -44
ethernet.define.213. 303 3321 14441 | -77 6088 | -45 818 | 75 572 | 82
gcd.mv.ged.ctl.out 37 20 37 | -45 23 | -13 11 | 44 44 | -54
minMax30.mv.minMax30 8 21 12 | 42 7| 66 12 | 42 13 | 38
multi_main.mv.multim 45 34 18 | 47 24 | 29 18 | 47 19 | 44
p62_LS_LS_VO1l.mv.ccp 64 200 140 | 30 129 | 35 84 | 58 111 | 44
p62_LS_LS_VO1.mv.p6l 99 831 444 | 46 130 | 84 173 | 79 218 | 73
p62_LS_L_VOl.mv.ccp. 64 210 151 | 28 126 | 40 103 | 50 121 | 42
p62_LS_L_VO1l.mv.p61li 99 3511 335 | 90 226 | 93 252 | 92 244 | 93
p62_LS_S_VO1.mv.ccp. 64 210 153 | 27 126 | 40 103 | 50 120 | 42
p62_LS_S_VO1.mv.p61li 99 3601 318 | 91 235 | 93 260 | 92 299 | 91
p62_L_L_VOl.mv.ccp.c 52 189 127 32 71 62 78 58 102 46
p62_L_L_VO1l.mv.p6liv 87 934 483 | 48 121 | 87 159 | 82 186 | 80
p62_L_S_VOl.mv.ccp.c 75 121 122 0 69 42 93 23 69 42
p62_L_S_VO1.mv.p6liv 118 231 278 | -16 116 | 49 166 | 28 114 | 50
p62_ND_LS_VO1.mv.ccp 83 830 779 6 572 | 31 559 | 32 527 | 36
p62_ND_LS_VO1.mv.p61 128 | 21039 13370 | 36 1798 | 91 4544 | 78 2082 | 90
p62_ND_L_VO1.mv.ccp. 75 781 788 0 715 8 577 | 26 794 | -1
p62_S_S_VOl.mv.ccp.c 43 101 61 | 39 66 | 34 62 | 38 41 | 59
p62_S_S_VO1.mv.p6liv 80 106 112 -5 67 | 36 67 | 36 67 | 36
p62_V_LS_VOl.mv.ccp. 108 587 368 | 37 354 | 39 362 | 38 380 | 35
p62_V_LS_VO1l.mv.p6li 153 >6h 16270 | 24 413 | 98 6236 | 71 1772 | 91
p62_V_S_V0l.mv.ccp.c 82 245 169 | 31 146 | 40 173 | 29 146 | 40
p62_V_S_VO1.mv.p6liv 127 2168 595 | 72 279 | 87 890 | 58 675 | 68
packet.mv.packet.ctl || 65326 5122 7258 | -29 >6h | -76 5068 1 10540 | -51
single_main.mv.singl 108 13 8| 38 10 | 23 8| 38 7| 46
single_main.mv.singl 52 13 8| 38 10 | 23 7| 46 7| 46
three_processor.mv.p 244 >6h 8276 | 61 >6h 0 2959 | 86 >6h 0
three_processor_bin. 122 >6h 5708 | 73 >6h 0 522 | 97 >6h 0
two_processor.mv.pro 264 676 75 | 88 84 | 87 72 | 89 170 | 74
two_processor_bin.mv 140 150 33| 78 80 | 46 42 | 72 35| 76
Total 69119 | 110740 || 80649 79429 28280 63311

Improvement 27% 28% 74% 42%

Table A.5: Comparison of CPU-time in Seconds for all Partitioning Methods

105

HIMﬂ595|| RTL Group RTLMOD H GROUPMOD |
| Peakn]| Peakn | % [Peakn [% || Peakn [%]| Peakn | %]

ONE.mv.PPCliveness. 19185 21229 -9 21362 | -10 21558 | -11 19246 0
ONE.mv.contention.ct] 17784 21229 | -16 21362 | -16 21558 | -17 19246 -7
PCIabnorm.mv.PCI.ctl|| 176276 128310 | 27 184722 -4 116345 | 33 114041 | 35
PCInorm.mv.PCI.ctl.o 81123 69291 14 64961 | 19 69291 14 69291 | 14
TWO.mv.PPCliveness.c|| 263756 || 5363742 | -95 || 2317020 | -88 || 2083768 | -87 272317 -3
TW0.mv.contention.ct| 97622 223656 | -56 220979 | -55 215686 | -54 139081 | -29
ethernet.define.213.|| 980429 || 6239111 | -84 || 1614232 | -39 516625 | 47 275055 | 71
gcd.mv.ged.ctl.out 215222 215222 0 215222 0 215222 0 215222 0
minMax30.mv.minMax3ﬂ 101042 101042 0 101042 0 101042 0 101042 0
multi_main.mv.multi 38694 33423 | 13 33423 | 13 33423 | 13 33423 | 13
p62_LS_LS_VOl.mv.ccp|| 166074 136280 | 17 119996 | 27 124430 | 25 86196 | 48
p62_LS_LS_VO1.mv.p6l|| 452267 463209 -2 127833 | 71 158021 | 65 141477 | 68
p62_LS_L_VOl.mv.ccp.|| 176540 174275 1 118284 | 32 132128 | 25 93166 | 47
p62_LS_L_VO1.mv.p6li|| 1617162 293189 | 81 197326 | 87 183674 | 88 192775 | 88
p62_LS_S_VOl.mv.ccp.|| 176540 174275 1 118284 | 32 132128 | 25 93166 | 47
p62_LS_S_VO1.mv.p6li|| 1614473 293189 | 81 197326 | 87 183674 | 88 192775 | 88
p62_L_L_VO1l.mv.ccp.c|| 164244 177614 -7 121246 | 26 117269 | 28 87708 | 46
p62_L_L_VOl.mv.p6liv)| 477543 507110 -5 121246 | 74 189172 | 60 121978 | 74
p62_L_S_VO1.mv.ccp.c|| 168782 144687 | 14 107565 | 36 123551 | 26 72087 | 57
p62_L_S_VO1.mv.p6liv|| 192410 255775 | -24 117042 | 39 137714 | 28 94688 | 50
p62_ND_LS_VO1l.mv.ccp|| 396642 430404 -7 291233 | 26 209289 | 24 342875 | 13
p62_ND_LS_VO1.mv.p61|| 5583160 || 4091039 | 26 821661 | 85 || 1747044 | 68 815232 | 85
p62_ND_L_VO1l.mv.ccp.|| 356794 436916 | -18 306682 | 14 380121 -6 483549 | -26
p62_S_S_VO01.mv.ccp.c|| 147063 133192 9 97647 | 33 97360 | 33 64410 | 56
p62_S_S_VO1.mv.p6livi| 153012 163585 -6 97647 | 36 97360 | 36 84190 | 44
p62_V_LS_VOl.mv.ccp.|| 283494 307382 -7 211863 | 25 210147 | 25 212132 | 25
p62_V_LS_VO1.mv.p6li|| 4483034 || 5450872 | -17 242306 | 94 || 2126524 | 52 || 1019022 | 77
p62_V_S_VO1.mv.ccp.c|| 213245 157448 | 26 145859 | 31 142930 | 32 118153 | 44
p62_V_S_VO1.mv.p6liv|| 964988 345774 | 64 204216 | 78 442596 | 54 269843 | 72
packet.mv.packet.ctl 53790 62574 | -14 51592 4 68473 | -21 168874 | -68
single_main.mv.singl| 14936 9360 | 37 9668 | 35 9360 | 37 9360 | 37
single_main.mv.singl| 14936 9360 | 37 9668 | 35 9360 | 37 9360 | 37
three_processor.mv.p/| 4621235 || 45383114 0 || 4722353 | -2 || 3062696 | 33 || 6989715 | -33
three_processor_bin.|| 8779857 || 3257556 | 62 | 5086008 | 42 560970 | 93 || 5903397 | 32
two_processor.mv.pro| 903917 86871 | 90 75205 | 91 88215 | 90 179562 | 80
two_processor_bin.mv]| 252974 63296 | 74 131104 | 48 64924 | 74 65156 | 74
Total 34420245 |(|34629601 18645365 14283648 19168810

Improvement 0% 45% 58% 44%

Table A.6: Comparison of Peak-nodes for all Partitioning Methods

106 APPENDIX A. ADDITIONAL TABLES

| | Sampling | BRS |

‘ | time/s | time/s | % |
dartes 161 9 | + 39
dme2-16 1299 841 | + 35
dpd75 2059 1360 | + 33
ftp3 367 446 | - 17
furnacel? 1415 1373 | + 2
futurebus 1293 3078 | - 57
key10 224 163 | + 27
mmgt20 494 534 -7
motors-stuck 104 108 -3
overl2 1013 940 | +7
phone-async 1121 1393 | - 19
phone-sync-CW 7469 9680 | - 22
tcas 2451 2217 | +9
valves-gates 126 130 -2
Total 19600 | 22364
Improvement -14%

Table A.7: Comparison of CPU-time in Seconds for Sampling and BRS

| | Sampling || BRS |

‘ | size/K [size/K | % |
dartes 614 584 | + 4
dme2-16 4198 4215 -0
dpd75 3350 3325 | +0
ftp3 2963 2878 | + 2
furnacel7 3118 3056 | +1
futurebus 2013 2120 -5
key10 1274 1256 | +1
mmgt20 3159 3026 | + 4
motors-stuck 717 709 | +1
overl2 4692 4778 -1
phone-async 10525 || 10894 -3
phone-sync-CW 17803 || 17475 | + 1
tcas 6258 9841 | - 36
valves-gates 907 627 | + 30
Total 61591 || 64784
Improvement -5%

Table A.8: Comparison of Peak-nodes in Thousands (K) for Sampling and BRS

Bibliography

[Azi97]

[BFG93-+]

[BW96]

[BLWY5]

[VIS]

[Bry86]

[Bry91]

[Bry92]

[BCL91]

[BMS95]

[Bur90]

[CAL]

A. Aziz et. al., Tezas-97 benchmarks, http://
www-cad. EECS.Berkeley. EDU /Respep/Research/Vis/texas-97.

R. I. Bahar and E. A. Frohm and C. M. Gaona and G. D. Hachtel and E. Macii
and A. Pardo and F. Somenzi, Algebraic decision diagrams and their applica-
tions, In Proc. IEEE International Conference on Computer-Aided Design,1993

B. Bollig and 1. Wegener, Improving the Variable Ordering of OBDDs is NP-
complete, TEEE Transaction on Computers, 45(9), 1996.

B. Bollig and M. Lobbing and I. Wegener, Simulated Annealing to Improve
Variable Orderings for OBDDs, Int. Workshop on Logic Synthesis, 1995

R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. Somenzi, A.
Aziz, S. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy and T. Villa, VIS: A System
for Verification and Synthesis, Proc. of Computer Aided Verification (CAV’96),
1996.

R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation,
IEEE Transactions on Computers, C-35, 1986.

R.E. Bryant, On the Complexity of VLSI implementations and Graph Rep-
resentations of Boolean Functions with Application to Integer Multiplication,
IEEE Transaction on Computers, 40, 1991.

R. E. Bryant, Symbolic Boolean manipulation with ordered binary decision di-
agrams, ACM Computing Surveys, 24(3), 1992.

J. R. Burch, E. M. Clarke and D. E. Long, Symbolic Model Checking with
partitioned transition relations, Proc. of Int. Conf. on VLSI, 1991.

J. Bern, Ch. Meinel and A. Slobodova, Global Rebuilding of OBDDs - Tunneling
Memory Requirement Mazima Proc. of Computer Aided Verification (CAV’95),
LNCS 939, Springer-Verlag, 1995.

J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang and K. L. McMillan, Symbolic
model checking: 10?0 states and beyond, Proc. of Logic in Computer Science
(LICS’90), 1990.

J. V. Sanghavi, R. K. Ranjan, R. K. Brayton and A. Sangiovanni-Vincentelli,
High Performance BDD Package Based on Ezploiting Memory Hierarchy In
Proc. of ACM/IEEE Design Automation Conference, 1996.

107

108

[CBY6]

[CBMS9]

[CCI+01]

[CCQo2

[CES86]

[CM90]

[CMY5]

[DBGY5]

[DDG98]

[DGYY]

[FK98]

[FS90]

[FOHY3]

[GIT8]

[GBY4]

[HBYS]

[HKBY6]

BIBLIOGRAPHY

A. Crews and F. Brewer, Controller Optimization for Protocol Intensive Appli-
cations, in Proc. of the European Design Automation Conference 1996, Geneva,
Switzerland, 1996.

O. Coudert, C. Berthet and J. C. Madre, Verification of Synchronous Machines
using Symbolic Ezxecution, Proc. of Workshop on Automatic Verification Meth-
ods for Finite State Machines, LNCS 407, Springer, 1989.

P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, T. Shiple, H. Veith and D.
Wang, Non-linear Quantification Scheduling in Image Computation, Proc. of
International Conference on CAD (ICCAD’01), 2001.

G. Cabodi, P. Camurati and S. Quer, Dynamic Scheduling and Clustering in
Symbolic Image Computation Proc. of Design and Test in Europe (DATE,02),
2002.

E. M. Clarke, E. A. Emerson and A. P. Sistla, Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications, ACM Transac-
tions on Programming Languages and Systems, 1986.

O. Coudert and J. C. Madre, A unified framework for the formal verification of
sequential circuits, Proc. of IEEE Int. Conf. on Computer-Aided Design, 1990.

O. Coudert and J. C. Madre, The implicit set paradigm: A new approach to
finite state system verification, Formal Methods in System Design, 6(2), 1995.

R. Drechsler and B. Becker and N. Gockel A genetic algorithm for variable
ordering of OBDDs, Int. Workshop on Logic Synthesis, 1995.

R. Drechsler, N. Drechsler and W. Giinther, Fast Fxact Minimization of BDDs,
Proc. of Design Automation Conference, 1998.

R. Drechsler and W. Gunther, Using lower bounds during dynamic BDD min-
imization, Proc. of Design Automation Conference (DAC’99), 1999.

L. Fix and G. Kamhi, Adaptive Variable Reordering for Symbolic Model Check-
ing, Proc. IEEE International Conference on Computer-Aided Design, 1998.

S.J. Friedman and K.J. Supowit, Finding the Optimal Variable Ordering for
Binary Decision Diagrams, IEEE Transactions on Computers, 39(5), 1990.

H Fujii, G. Ootomo and C. Hori, Interleaving Based Variable Ordering Methods
for Ordered Binary Decision Diagrams, Proc. of Int. Conf on Computer Aided
Design, 1993.

M. R. Garey, and M. Johnson Computers and Intractibility: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, CA, 1978.

D. Geist and 1. Beer, Efficient Model Checking by Automated Ordering of Tran-
sition Relation Partitions, Proc. of Computer Aided Verification CAV’94, 1994.

U. Holtmann, P. Blinzer, Design of a SPDIF Receiver using Protocol Compiler,
in Proc. Design Automation Conference 1998, San Francisco, 1998.

R. Hojati, S. C. Krishnan, R. K. Brayton, Early gantification and partitioned
transition relations, Proc. of. IEEE Int. Conf. on Computer-Aided Design, 1996.

BIBLIOGRAPHY 109

[HJ96]

[JAF98]

[Kuk96]

[Lon92]

[MWBSS]

[McM93]
[MHS00]

[MJH+98]

[MKR+00]

[MSS99]

[MS97]

[MST97]

[MST97a]

[MS00]

[MS00a]

[MSO01]

R. D. M. Hunter and T. T. Johnson, Introduction to VHDL, Chapman & Hall,
1996.

J. Jain, W. Adams and M. Fujita, Sampling schemes for computing OBDD
variable orderings, Proc. IEEE International Conference on Computer-Aided
Design, 1998.

Y. Kukimoto, BLIF-MYV, Tech. Report , U.C. Berkeley, EECS Dept., May 31,
1996.

D. E. Long, Efficient implementation of an OBDD package, Carnegie-Mellon-
University1992.

S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, Logic
Verification Using Binary Decision Diagrams in a Logic Synthesis Environ-
ment, Proc. of the 25th Design Automation Conference, 1988.

K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

I. Moon, G. D. Hachtel and F. Somenzi, Border-Block Triangular Form and
Conjunction Schedule in Image Computation, Proc. of Formal Methods in CAD
(FMCAD’00), LNCS 1954, 2000.

I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan and C. Pixley, Approzi-
mate Reachability Don’t cares for CTL Model Checking, Proc. of Int. Conf. on
CAD (ICCAD’98), 1998.

I.Moon, J. Kukula, K. Ravi and F. Somenzi, To Split or to Conjoin: The Ques-
tion in Image Computation, Proc. of Design Automation Conference (DAC’00),
2000.

Ch. Meinel, K. Schwettmann, and A. Slobodova, Application Driven Variable

Reordering and an Example Implementation in Reachability Analysis, Proc. of
ASP-DAC’99, Hongkong, 1999.

Ch. Meinel and A. Slobodova, Speeding up Variable Reordering of OBDDs, in
Proc. of the International Conference on Computer Design, 1997.

Ch. Meinel, F. Somenzi, and T. Theobald Linear sifting of decision diagrams.
Proc. 34th ACM/IEEE Design Automation Conference, 1997.

W. Meyer, A. Seawright, F. Tada, Design and Synthesis of Array Structured
Telecommunication Processing Applications, in Proc. of the Design Automation
Conference, 1997.

Ch. Meinel and C. Stangier, Speeding Up Image Computation by using RTL
Information, Proc. of Formal Methods in CAD (FMCAD’00), LNCS 1954, 2000.

Ch. Meinel and C. Stangier, Speeding Up Symbolic Model Checking by Accelerat-
ing Dynamic Variable Reordering, Proc. of IEEE 10th Great Lakes Symopsium
on VLSI, 2000.

Ch. Meinel and C. Stangier, A New Partitioning Scheme for Improvement
of Image Computation, Proc. of ASP Design Automation Conference (ASP-
DAC’01), 2001.

110

[MS01a)]

[MSO1b]

[MS02]

[MT98]

[Min93]

[MIY90]

[Moo65]

[Ran95]

[Rud93]

[SW97]

[SBY4]

[Sea96]

[SIS]

[Sie98]

[SW93]

[SM98]

[Som]

BIBLIOGRAPHY

Ch. Meinel and C. Stangier, Hierarchical Image Computation with Dynamic
Conjunction Scheduling, Proc. of IEEE Int. Conf. on Computer Design, 2001.

Ch. Meinel and C. Stangier, Data Structures for Boolean Functions. BDDs -
Foundations and Applications, In: Computational Discrete Mathematics, Ed.
H. Alt, LNCS 2122, Springer, 2001.

Ch. Meinel and C. Stangier, Modular Partitioning and Dynamic Conjunction
Scheduling in Image Computation, In Proc, ACM/IEEE Int. Workshop on Logic
and Synthesis, 2002.

Ch. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design:
OBDD - Foundations and Applications, Springer-Verlag, 1998.

S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems, In Proc. 30th ACM/IEEE Design Automation Conference,1993.

S. Minato, N. Ishiura, and S. Yahima, Shared Binary Decision Diagrams with
Attributed Fdges for Efficient Boolean Function Manipulation, Proc. of the
27th ACM/IEEE Design Automation Conference, 1990.

G. E. Moore, Cromming more Components onto Integrated Circuits, Electronic
Magazine, vol. 38, no. 8, 1965.

R. K. Ranjan, A. Aziz, R. K. Brayton, C. Pixley and B. Plessier, Efficient BDD
Algorithms for Synthesizing and Verifying Finite State Machines, Proc. of Int.
Workshop on Logic Synthesis (IWLS’95), 1995.

R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision Diagrams,
Proc. of ACM/IEEE Int. Conf. on Computer-Aided Design , 1993.

P. Savicky and I. Wegener, Efficient Algorithms for the Transformation between
Different Types of Binary Decision Diagrams, Acta Informatica, 34, 1997.

A. Seawright and F. Brewer, Clairvoyant: A Synthesis System For Production-
Based Specification, in IEEE Trans. on VLSI Systems, 1994.

A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, and J. Buck,
A System for Compiling and Debugging Structured Data Processing Controllers,
in Proc. of the European Design Automation Conference ,1996.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton and A.
Sangiovanni-Vincentelli, Sequential Circuit Design using Synthesis and Opti-
mization, in Proc. of Int. Confererence on Circuit Design, 1992.

D. Sieling. On the Existence of Polynomial Time Approximation Schemes for
OBDD Minimization, Proc. of STACS’98, LNCS 1373, Springer Verlag, 1998.

D. Sieling and 1. Wegener, Reduction of BDDs in Linear Time, Information
Processing Letters, 48(3), 1993.

A. Slobodova and Ch. Meinel, Sample Method for Minimization of OBDDs,
Proc. of Int. Workshop on Logic Synthesis, (Tahoe City,CA), June 1998.

F. Somenzi, CUDD: CU Decision Diagram Package,
ftp://vlsi.colorado.edu/pub/ .

BIBLIOGRAPHY 111

[SHO1]

[THY93]

[The98]

[TMY1]

[Weg00]

[Woe01]

[Wol86]

[Yan98]

[YBO+98]

C. Stangier and U. Holtmann, Applying Formal Verification with Protocol Com-
piler, in Proc. of EUROMICRO Digital System Design (DSD’01), Poland, 2001

S. Tani, K. Hamaguchi, and S. Yajima, The Complexity of the Optimal Variable
Ordering Problem of Shared Binary Decision Diagrams, Proc. of ISAAC, LNCS
762, Springer, 1993.

T. Theobald, Transformation Techniques for Decision Diagrams in Computer-
Aided Design Shaker, 1998.

D. E. Thomas and P. Moorby, The Verilog Hardware Description Language,
Kluwer, 1991.

I. Wegener, Branching programs and binary decision diagrams - theory and
applications, STAM Monographs on Discrete Mathematics and Applications,
2000.

P Woelfel, New Bounds on the OBDD-Size of Integer Multiplication via Uni-
versal Hashing, Proc. of STACS 2001, LNCS 2010, 2001.

P. Wolper, Ezpressing interesting properties of programs in propositional tem-
poral logic, in Proc. 13th ACM Symp. on Principles of Programming, 1986.

B. Yang, SMV Models, http://www.cs.cmu.edu/ bwolen/software/, 1998.

B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen,
R. K. Ranjan, and F. Somenzi, A Performance Study of BDD-based Model
Checking, In Proc. Formal Methods in CAD (FMCAD’98), 1998.

112 BIBLIOGRAPHY

Christian Stangier

Fujitsu Labs of America
595 Lawrence Expressway
Sunnyvale, CA 94086
USA

Geboren am 2. August 1969 in Solingen.

Akademischer Werdegang

Schule
8/75 — 6/79 Grundschule: Maischutzenschule, Bochum
8/79 - 6/88 Gymnasium: Gymnasium am Ostring, Bochum
6/88 Abitur, Leistungskurse: Mathematik, Physik
Universitat
10/89 - 6/96 Universitit Dortmund:
Hauptfach: Informatik, Nebenfach: Physik
6/96 Diplom
Diplomarbeit:
Speicherverwaltung bei der BDD-Synthese
9/96 - 12/99 Graduiertenkolleg
”"Mathematische Optimierung”
an der Universitat Trier
1/00 - 4/02 Promotionsstudent am Lehrstuhl

fur Theoretische Informatik, Universitat Trier
seit 10/02 Member of Research Staff,
Fujitsu Labs of America, Sunnyvale, CA, USA

