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Zusammenfassung

Viele kombinatorische Optimierungsprobleme können als konvexe Pro-
bleme über einem Kegel formuliert werden, beispielsweise das stabile
Mengen Problem, das Cliquenproblem oder das Problem des maximalen
Schnitts. Insbesondere NP-schwere Probleme können als copositive Opti-
mierungsprobleme formuliert werden. Hierbei liegt die Schwierigkeit des
neuen Problems vollständig in der Copositivitätsbedingung.
Copositive Optimierung ist ein vergleichsweise neues Thema in der Op-
timierung. Es behandelt die Optimierung über dem sogenannten copo-
sitiven Kegel, welcher eine Obermenge des positiv semidefiniten Kegels
darstellt. Sein Dualkegel ist der Kegel der vollständig positiven Matrizen,
in welchem alle Matrizen enthalten sind, die als Summe von nichtnega-
tiven, symmetrischen Vektor-Vektor-Produkten zerlegt werden können.
Die zugehörigen Optimierungsprobleme haben eine lineare Zielfunktion,
lineare Nebenbedingungen in der Matrixvariable und eine Kegelbeding-
ung. Manche Optimierungsprobleme können als kombinatorische Pro-
bleme über unendlich dimensionalen Graphen formuliert werden, wie
zum Beispiel die Berechnung der sogennanten Kusszahl, welche als stabile
Mengen Problem über der Sphäre beschrieben werden kann. In der vor-
liegenden Arbeit werden wir diskutieren, inwieweit das Konzept der Co-
positivität in einem unendlichdimensionalen Raum verallgemeinert wer-
den kann. Für Spezialfälle werden wir Anwendungen in der kombina-
torischen Optimierung präsentieren.

In Kapitel 2 geben wir zunächst eine Einführung in die Thematik der copo-
sitiven Optimierung im Endlichdimensionalen und präzisieren einige An-
wendungen in der kombinatorischen Optimierung. Um diese Theorie in
einem unendlichendimensionalen Raum zu verallgemeinern, benötigen
wir Werkzeuge aus der Funktionalanalysis, denn anstelle von beispiels-
weise Matrizen wollen wir Operatoren in Hilberträumen betrachten. Die
wichtigsten Aspekte hierzu werden wir in Kapitel 3 aufzeigen. Eine
wichtige und verbreitete Norm in der Funktionalanalysis ist die (sym-
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metrische) projektive Norm. In Kapitel 4 werden wir diese und einige
ihrer Eigenschaften näher betrachten sowie ihre Bedeutung für unser Ziel,
die Verallgemeinerung des Konzepts von Copositivität bzw. vollständi-
ger Positivität im Unendlichdimensionalen, herausarbeiten. Mit Hilfe
dieser Norm werden wir zwei besondere Fälle, welche für eine Verall-
gemeinerung von copositiver Optimierung in Frage kommen, betrach-
ten. In Kapitel 5 analysieren wir den ersten dieser beiden Fälle. Dieser
basiert auf [24], wo die Autoren eine Verallgemeinerung des copositiven
Kegels als Kegel der copositiven Kerne über einem kompakten metrischen
Raum vorstellten. Darüber hinaus wurden der Dualkegel, die zugehöri-
gen Optimierungsprobleme sowie Aussagen zur Dualität formuliert und
bewiesen. Außerdem wurden Anwendungen in der kombinatorischen
Optimierung vorgestellt. Der zweite Fall, den die symmetrische projektive
Norm liefert, führt zu einer anderen Verallgemeinerung von Copositivität,
hier bezüglich eines Hilbertraumes. Diese neue Theorie wird in Kapitel 6
eingeführt. Im Rahmen dieser Thematik werden wir Eigenschaften disku-
tieren, die analog zum endlichdimensionalen Fall gelten, und Unterschiede
zu diesem aufzeigen. Wir werden Verallgemeinerungen des copositiven
und des vollständig positiven Kegels im L2 sowie deren besondere Eigen-
schaften betrachten. Als zentraler Punkt wird hier die Darstellung des
vollständig positiven Kegels mit Hilfe seiner Extremalstrahlen bewiesen.
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Chapter 1

Introduction

Many combinatorial optimization problems on finite graphs can be formu-
lated as conic convex programs, e.g. the stable set problem, the maximum
clique problem or the maximum cut problem. Especially NP-hard prob-
lems can be written as copositive programs. In this case the complexity is
moved entirely into the copositivity constraint. Copositive programming
is a quite new topic in optimization. It deals with optimization over the so-
called copositive cone, a superset of the positive semidefinite cone, where
the quadratic form x>Ax has to be nonnegative for only the nonnegative
vectors x. Its dual cone is the cone of completely positive matrices, which
includes all matrices that can be decomposed as a sum of nonnegative
symmetric vector-vector-products. The related optimization problems are
linear programs with matrix variables and cone constraints.
However, some optimization problems can be formulated as combinatorial
problems on infinite graphs. For example, the kissing number problem can
be formulated as a stable set problem on a circle. In this thesis we will dis-
cuss how the theory of copositive optimization can be lifted up to infinite
dimension. For some special cases we will give applications in combina-
torial optimization.

In Chapter 2 we give an introduction to the topic of copositive optimization
in finite dimension and some applications in combinatorial optimization.
To lift this theory to infinite dimension we need tools from functional anal-
ysis since we will study e.g. operators in Hilbert spaces instead of matrices.
These tools will be described in Chapter 3.
An essential and popular norm in functional analysis is the (symmetric)
projective norm. In Chapter 4 we will have a closer look at it and explain
its importance for our theory in infinite dimension. With this norm we can
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2 CHAPTER 1. INTRODUCTION

examine two special cases for a generalization of copositive optimization
in infinite dimension.
The first case will be discussed in Chapter 5. This case is based on [24],
where the authors gave an approach how to generalize the copositive cone
as the cone of copositive kernels over a compact metric space. They also
formulated the dual cone, the related optimization problems and duality
statements. Beyond that they presented some applications in combinato-
rial optimization.
The second case that results from the symmetric projective norm leads to
a different approach to generalize copositive optimization to an infinite
dimensional space, in particular to a selfdual Hilbert space. This new the-
ory will be presented in Chapter 6. In this context we will discuss some
properties which are equivalent to the ones in finite dimension and we
will also point out differences to finite dimension. We will consider the
generalization of the copositive and completely positive cone, respectively,
in the setting of L2 and their special characteristics. As an important in-
strument we will prove the representation of the completely positive cone
by its extreme rays.



Chapter 2

Basic facts on copositive
optimization

In this chapter we will introduce the fundamental knowledge about copos-
itive optimization. At first we will give a short motivation of this special
kind of cone optimization and embed it in the theory. Furthermore we will
give an overview of the current research in copositive optimization. Last
but not least we will consider some applications of copositive optimization
in finite dimension.

2.1 Motivation

Copositive optimization is a quite new topic in mathematical optimization.
It considers linear optimization problems over the cone of the so-called co-
positive matrices.
Many combinatorial optimization problems on finite graphs can be formu-
lated as conic convex programs (e.g. the stable set problem, the maximum
clique problem, the maximum cut problem). Especially NP-hard problems
can be written as copositive programs. In this case the complexity is moved
entirely into the cone constraint. Copositive programs are useful not only
in combinatorial but also in quadratic optimization. Since checking copos-
itivity is NP-hard, we have to mention that there exist different approaches
to approximate the copositive cone, for example by sum-of-squares decom-
position [42] or nonnegativity of the coefficients of a special polynomial
[16]. These approximations lead to linear or semidefinite programs. More
particularly with an algorithm via inner and outer approximations [11] a
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4 CHAPTER 2. BASIC FACTS ON COPOSITIVE OPTIMIZATION

copositive program can be approximated by a sequence of linear programs.
A comprehensive overview over the topic of copositive optimization can
be found in [7, 13, 25].

2.2 Preliminaries

In this section we will introduce the copositive and the completely positive
cone and some of their properties which will be relevant later in this thesis.
In this context, we will also have a look at the cone of positive semidefinite
matrices. Furthermore, we will consider the related optimization problems
over these cones.

But first we will discuss the notation. Although in this chapter we consider
the theory in finite dimension, the notation will already now be geared to
the infinite dimensional case. Therefore we introduce now the notation
of tensors and tensor products from an algebraic viewpoint. For two
vector spaces X,Y the tensor product can be constructed as a space of linear
functionals on the vector space B(X × Y) of bilinear maps on X × Y. For
x ∈ X and y ∈ Y we denote by x ⊗ y the functional given by evaluation at
the point (x, y), i.e.

(x ⊗ y)(A) =
〈
A, x ⊗ y

〉
= A(x, y),

for each bilinear form A on X × Y. The tensor product X ⊗ Y is a subspace
of the dual B(X × Y)′, which includes all linear functionals on B(X × Y),
spanned by their elements. Therefore a typical tensor, i.e. an element of the
tensor product X ⊗ Y, has the form

u =

k∑
i=1

λi xi ⊗ yi,

where k is a positive integer, λi ∈ R, xi ∈ X and yi ∈ Y for i = 1, . . . , k. Note
that the representation of u is in general not unique. This description and
more details about it can be found in [48, Chapter 1].

Moreover for a positive integer n we will denote by Rn the n-dimensional
real space and by Rn

+ the nonnegative orthant in Rn. An element a ∈ Rn is
a map a : {1, . . . ,n} → R. By a(i) we will mark the i-th entry of the vector a.
For two positive integers m,n we will denote the space of m × n matrices
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byRm×n, which is equal toRm
⊗Rn in the tensor notation. A matrix A with

A =

a11 · · · a1n

. . .
am1 · · · amn

 ∈ Rm×n

is a map A : {1, . . . ,m}× {1, . . . ,n} → R. By A(i, j) we will denote the (i, j)-th
entry of A. For a, b ∈ Rn the product ab> ∈ Rn×n is in tensor notation equal to
a⊗b ∈ Rn

⊗Rn. This product describes a map a⊗b : {1, . . . ,n}×{1, . . . ,n} → R
with (a ⊗ b) (i, j) = a(i)b( j). If it fits with the context, we will use the tensor
notation already in this chapter.

In this thesis we will only consider symmetric matrices or operators. Let
Sn be the set of symmetric n × n matrices. Then we have the following
definition:

Definition 2.1. The copositive cone COPn is defined as

COPn :=
{
A ∈ Sn : x>Ax ≥ 0 for all x ∈ Rn

+

}
.

In the context of tensors the condition x>Ax ≥ 0 is equivalent to the condi-
tion 〈A, x ⊗ x〉 ≥ 0, where

〈A,B〉 := trace(B>A) =

n∑
i, j=1

A(i, j)B(i, j)

denotes the inner product of two matrices. Since we only consider symmet-
ric matrices in this thesis, the inner product is equal to 〈A,B〉 := trace(BA).

Definition 2.2. For an arbitrary given cone K ⊆ Sn the dual cone K ∗ is
defined as follows:

K
∗ := {A ∈ Sn : 〈A,B〉 ≥ 0 for all B ∈ K} .

With this definition it can be shown, cf. [5, Theorem 2.3], that the dual cone
of the copositive cone is the cone CPn of completely positive matrices:

COP
∗

n = CPn := conv
{
x ⊗ x : x ∈ Rn

+

}
, (2.1)

where conv(M) denotes the convex hull of a set M ⊆ Rn. Furthermore, the
dual cone of CPn is again COPn, i.e.

COP
∗∗

n = CP∗n = COPn,

cf. [5, Theorem 2.3].
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Proposition 2.3. COPn and CPn are both pointed closed convex cones with
nonempty interior.

For a proof of Proposition 2.3 see [5, Proposition 1.24, Theorem 2.2].

In this context we also have to mention that testing, whether a matrix is
copositive or not, is a co-NP-complete decision problem. This means that
checking copositivity is NP-hard, but if the to be examined matrix is not
copositive then there exists a certificate for this that can be checked in
polynomial time, cf. [21, 41]. Intuitively this should also hold for testing
if a matrix is completely positive, but a formal proof for this assumption
does not exist so far. These issues are discussed in [1], [22, Theorem 5.5]
and [41, Theorem 3].

Another important cone in this context is the positive semidefinite cone:

S
+
n :=

{
A ∈ Sn : x>Ax ≥ 0 for all x ∈ Rn}

= conv {x ⊗ x : x ∈ Rn
}

=
(
S

+
n
)∗ .

Indeed the equations hold by the selfduality of S+
n , cf. [32, Lemma 1.2.6].

Furthermore, the following relations hold true:

CPn ⊆ S
+
n and S

+
n ⊆ COPn,

cf. [5, Remark 1.10, Remark 2.4].

Like the copositive and the completely positive cone, the positive semidefi-
nite cone is full-dimensional, closed, convex, pointed and has a nonempty
interior, cf. [5, Proposition 1.21]. If we consider in addition the cone of
entrywise nonnegative matricesNn, the following inclusions hold true:

CPn ⊆ S
+
n ∩Nn and S

+
n +Nn ⊆ COPn. (2.2)

Matrices in S+
n ∩Nn are called doubly nonnegative. For n ≤ 4 equality holds

in both inclusions and for n ≥ 5 the inclusions are strict, i.e. not every
copositive matrix can be written as the sum of a positive semidefinite and
a symmetric nonnegative matrix, cf. [5, Remark 1.10, Remark 2.4]. A special
example for this is the so-called 5×5 Horn-matrix, which is copositive, but
neither nonnegative, nor positive semidefinite and it cannot be represented
as a sum of a positive semidefinite and a symmetric nonnegative matrix.
A proof of this can be found in [5, Example 1.30].

An essential tool in conic optimization is the following well-known result:
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Lemma 2.4. A closed convex coneK ⊆ Rn is pointed if and only if its dual cone
K
∗ has a nonempty interior.

Proof. At first we show the sufficient part: Let ȳ ∈ int(K ∗), then
〈
x, ȳ

〉
> 0

for all 0 , x ∈ K because the interior ofK ∗ can be characterized as follows:

int(K ∗) = Rn
\ cl

(
(K ∗)c)

= Rn
\ cl

({
y ∈ Rn : ∃x ∈ K :

〈
x, y

〉
< 0

})
= Rn

\
{
y ∈ Rn : ∃ 0 , x ∈ K :

〈
x, y

〉
≤ 0

}
=

{
y ∈ Rn :

〈
x, y

〉
> 0 ∀0 , x ∈ K

}
.

Assume now that K is not pointed. Then there exists 0 , x̄ ∈ K ∩ (−K )
with x̄ ∈ K and −x̄ ∈ K . Together we have:〈

x̄, ȳ
〉
> 0, since x̄ ∈ K and ȳ ∈ int(K ∗),〈

−x̄, ȳ
〉
> 0, since − x̄ ∈ K and ȳ ∈ int(K ∗).

This is a contradiction and thereforeK is pointed.
Now we prove the necessity: Let K be pointed. Since K is closed and
convex, there exists a supporting hyperplane H =

{
x ∈ Rn :

〈
x, ȳ

〉
= 0

}
with

H ∩ K = {0} and K ⊆ H+ =
{
x ∈ Rn :

〈
x, ȳ

〉
≥ 0

}
. Therefore we have〈

x, ȳ
〉
≥ 0 for all x ∈ K and hence ȳ ∈ K ∗. Since H ∩K = {0}, it follows that〈

x, ȳ
〉

= 0⇔ x = 0. Hence, we get
〈
x, ȳ

〉
> 0 for all 0 , x ∈ K . Therefore

ȳ ∈ int(K ∗) and hence int(K ∗) , ∅. �

It is well-known that the interior of the copositive cone COPn is the cone of
strictly copositive matrices:

int (COPn) =
{
A ∈ Sn : x>Ax > 0 for all x ≥ 0, x , 0

}
= {A ∈ Sn : 〈A, x ⊗ x〉 > 0 for all x ≥ 0, x , 0} ,

cf. [10, Lemma 2.3].

The following characterization of the interior of CPn has been proven in
[20, Theorem 7.4]:

int (CPn) =
{
BB> : rank(B) = n,B > 0

}
.

The interior points of COPn and CPn are important instruments to show
strong duality for optimization problems. In these statements a strictly
feasible point is necessary, cf. Theorem 2.8.

Other important tools in this context are the extreme rays of COPn and
CPn.
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Definition 2.5. LetK be a convex cone and x ∈ K . Then x is called extreme
inK if for every decomposition x = y+z with y, z ∈ K and y , 0 , z holds:
y = αx and z = βx with α, β ≥ 0. The ray {αx : α ≥ 0} generated by x is
called extreme ray ofK . We denote the set of extreme rays ofK by Ext(K ).

For n ≤ 4 the extreme rays of COPn are the extreme rays of S+
n +Nn, which

are generated by ei ⊗ e j for i, j = 1, . . . ,n and by a ⊗ a with a ∈ Rn having
positive and negative entries, cf. [31, Theorem 3.2]. For n = 5 for example
the Horn-matrix is extremal for COPn. Unfortunately for n > 5 a full
characterization of the extreme rays of the copositive cone COPn is still an
open problem. Some examples of extreme rays are listed in the following
theorem:

Theorem 2.6. [20, Theorem 8.20] For n ≥ 2 the following results concerning the
extreme rays of the copositive cone COPn hold:

1. αEi j ∈ Ext (COPn), where Ei j denotes the matrix with all entries equal to 0,
except E(i, j) = E( j, i) = 1 for i, j = 1, . . . ,n and α > 0.

2. x ⊗ x ∈ Ext (COPn), where x ∈ Rn
\ (Rn

+ ∪ (−Rn
+)).

3. Properties, when A ∈ Ext (COPn) if A(i, j) ∈ {−1, 0,+1} and A(i, i) = +1
for all i, j = 1, . . . ,n can be found in [33].

4. A ∈ Ext (COPn) if and only if PDADP> ∈ Ext (COPn), where P is a
permutation matrix and D is a diagonal matrix such that D(i, i) > 0 for all
i = 1, . . . ,n.

5. For M ∈ COPn \ {0}, B ∈ Rn×m we have
(

M B
B> 0

)
∈ Ext (COPn+m) if and

only if B = 0 and M ∈ Ext (COPn).

For a comprehensive overview of the extreme rays ofCOPn we refer to [20,
Chapter 8.3] and the references given therein.

In contrast to COPn, the sets Ext(S+
n ) and Ext(CPn) are exactly known. The

extreme rays of the positive semidefinite cone S+
n are generated by the

symmetric rank-one matrices:

Ext
(
S

+
n
)

= {x ⊗ x : x ∈ Rn
} ,

cf. [5, Proposition 1.21].
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The extreme rays of the completely positive cone are generated by the
nonnegative symmetric rank-one matrices:

Ext (CPn) = {x ⊗ x : x ≥ 0} . (2.3)

A proof of this can be found in [5, Proposition 2.1 and Remark 2.3]. Note
here that the extreme rays of CPn are not only pleasant objects in theory,
they will be also very useful for the reformulation of the maximum clique
problem, which we will discuss in the next subsection.

If we consider the copositive program as the primal optimization problem,
it has the following form:

min 〈C,X〉
s.t. 〈Ai,X〉 = bi (i = 1, . . . ,m)

X ∈ COPn.

(P)

Its dual is the following completely positive program, which results from
the usual Lagrangian approach.

max
m∑

i=1

biyi

s.t. C −
m∑

i=1

yiAi ∈ CPn

yi ∈ R (i = 1, . . . ,m).

(D)

The following property is known as weak duality:

Theorem 2.7 (Weak Duality). [3, IV. (6.2) Theorem 1.] Let X be feasible for (P)
and y = (y1, . . . , ym) be feasible for (D). Then we have:

m∑
i=1

biyi ≤ 〈C,X〉.

For X feasible for (P) and y feasible for (D) the difference 〈C,X〉−
∑m

i=1 biyi is
called duality gap. It is easy to see that if 〈C, X̄〉−

∑m
i=1 bi ȳi = 0 and X̄ feasible

for (P) and ȳ feasible for (D), then X̄ is optimal for (P) and ȳ is optimal
for (D). Furthermore we call X strictly feasible for (P) if X is feasible for (P)
and X ∈ int (COPn). Analogously, y is called strictly feasible for (D) if y is

feasible for (D) and C −
m∑

i=1
yiAi ∈ int (CPn).
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A stronger duality statement can be found in [16, Theorem 1.1] for general
conic optimization problems. We will transfer it to our copositive (primal)
and completely positive (dual) programs:

Theorem 2.8 (Strong Duality). Let

p∗ := inf {〈C,X〉 : 〈Ai,X〉 = bi (i = 1, . . . ,m),X ∈ COPn}

d∗ := sup

 m∑
i=1

biyi : C −
m∑

i=1

yiAi ∈ CPn

 .
If there exist a strictly feasible solution X0 of (P) and a feasible solution of (D), then
p∗ = d∗ and the maximum in (D) is attained. Similarly, if there exist a strictly
feasible y0 for (D) and a feasible solution of (P), then p∗ = d∗ and the minimum in
(P) is attained.

A last thing that we have to mention in this chapter, is the relation between
copositive and quadratic programs, cf. [9]. For this, we first consider the
standard quadratic problem:

min x>Qx
s.t. e>x = 1

x ≥ 0,
(STQP)

where Q ∈ Sn and e denotes the all-ones vector. The main difficulty of
this kind of problems is that the quadratic objective function needs not
be convex. Note that the standard quadratic problem (STQP) is NP-hard
since many combinatorial optimization problems can be reduced to it, e.g.
the maximum clique problem.

By some transformations we can reformulate the (STQP) as a completely
positive program with a linear objective. The objective function can be
rewritten as: x>Qx = 〈Q, x ⊗ x〉 =: 〈Q,X〉. With e ⊗ e =: E the constraint
e>x = 1 results in the constraint 〈E, x ⊗ x〉 = 〈E,X〉. With these transforma-
tions we get the following relaxation of the standard quadratic problem:

min 〈Q,X〉
s.t. 〈E,X〉 = 1

X ∈ CPn.

(2.4)

Now we have a linear objective function, therefore an optimal solution
has to be attained in an extreme point of the convex feasible set. As
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mentioned in (2.3), the extreme points of CPn are exactly the rank-one
matrices x ⊗ x with x ≥ 0. With the second condition e>x = 1 it follows
that the reformulation (2.4) is equivalent to (STQP). Since the objective
function in (2.4) is linear, an optimal solution of this optimization problem
is attained in an extreme point of its feasible set. Hence in the next lemma
we will have a closer look at the extreme rays of the feasible set of (2.4).
The lemma and also its proof can be found in [9, Lemma 5].

Lemma 2.9. The extremal points of the feasible set of (2.4) are exactly the rank-one
matrices X = x ⊗ x with x ∈ ∆ :=

{
x ∈ Rn

+ : e>x = 1
}
.

Proof. We will prove the sufficient direction first. For this purpose we
denoteM := {X ∈ CPn : 〈E,X〉 = 1}. Then every X := x ⊗ x with x ∈ ∆ is a
member ofM. Now we suppose that x⊗x with x ∈ ∆ can be represented as
a proper convex combination of two points ofM, i.e. there exist Z,U ∈ M
and λ ∈ (0, 1) such that x ⊗ x = (1 − λ)U + λZ. Furthermore we choose an
orthogonal basis {x1, x2, . . . , xn} of Rn with x = xn. SinceM ⊂ CPn ⊂ S

+
n we

have Z,U ∈ S+
n . Consider further

0 = (x>i x)2 = (x>i x)(x>xi)
= x>i ((1 − λ)U + λZ) xi

= (1 − λ)x>i Uxi + λx>i Zxi.

Then x>i Uxi = x>i Zxi = 0 for all i < n since U,Z ∈ S+
n . Thus U and Z have

rank one. Since U,Z ∈ M ⊂ CPn, there exists a rank-one decomposition
U = u ⊗ u and Z = z ⊗ z for some u, z ∈ Rn

+. Accordingly x>i u = x>i z = 0 for
all i < n and so U and Z have to be positive multiples of x⊗ x, since xi is an
element of the orthogonal basis. Moreover since U,Z ∈ M the condition
〈E,U〉 = 〈E,Z〉 = 1 presents that U = Z = x ⊗ x. Hence X = x ⊗ x can only
be represented as a combination of itself and so it is an extreme point.
Now we will prove the necessity. For this we assume that X is an extremal
point ofM ⊂ CPn. Then X =

∑d+1
i=1 λixi ⊗ xi with xi ∈ Rn

+ \ {0} and λi ≥ 0 for
all i with

∑d+1
i=1 λi = 1 and d =

(n+1
2

)
. Since X ∈ M, we get

1 = 〈E,X〉

=

〈
e ⊗ e,

d+1∑
i=1

λixi ⊗ xi

〉

=

d+1∑
i=1

λi(e>xi)2,
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where e>xi > 0 for all i since xi , 0. Now put ui := (e>xi)−1xi ∈ ∆ such that
Ui := ui ⊗ ui ∈ M for all i. Then

X =

d+1∑
i=1

λi(e>xi)2Ui,

which is of course a convex combination of matrices Ui in M. From the
assumption that X is an extremal point ofM we get that X = U1 is of the
desired form. �

With the property from Lemma 2.9 it is possible to construct a solution of
(STQP) from a solution of (2.4) with the same optimal value.

2.3 Applications

In this section we will discuss some applications of copositive optimiza-
tion, in particular in combinatorial optimization. First we will consider
a generalization of (2.4). It is a pleasant result that not only standard
quadratic problems can be formulated as completely positive programs,
but also quadratic programs of a more general form.

Binary quadratic problems

In [14, Chapter 2] Burer showed this generalization: Every quadratic pro-
gram with linear and binary constraints can be reformulated as a com-
pletely positive optimization problem. In particular he showed that the
program

min 〈Q, x ⊗ x〉 + 2c>x
s.t. a>i x = bi (i = 1, . . . ,m)

x ≥ 0
x( j) ∈ {0, 1} ( j ∈ J)

(2.5)

where x ∈ Rn
+ and J ⊆ {1, . . . ,n} can be transformed into the following

completely positive program:
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min 〈Q,X〉 + 2c>x
s.t. a>i x = bi (i = 1, . . . ,m)

〈ai ⊗ ai,X〉 = b2
i (i = 1, . . . ,m)

x( j) = X( j, j) ( j ∈ J)(
1 x>

x X

)
∈ CPn+1.

This reformulation works only if system (2.5) fulfills the so-called key con-
dition, i.e. a>i x = bi for i = 1, . . . ,m and x ≥ 0 implies x( j) ≤ 1 for all j ∈ J.
Burer also showed that the key condition can be enforced without loss of
generality.

Next we will describe how a special NP-hard combinatorial optimization
problem can be transferred into a copositive program. In this context
we will consider in particular the maximum stable set problem and the
maximum clique problem.

The maximum stable set problem

In [16] de Klerk and Pasechnik showed that the maximum stable set pro-
blem can be transformed into a conic convex optimization problem over the
copositive cone. Unfortunately the copositive program remains NP-hard.

Definition 2.10. Let G = (V,E) be a finite, undirected and simple graph
with set of vertices V and set of edges E ⊆ V ×V. A set of vertices S ⊆ V is
called a stable set if for every pair i, j ∈ S holds

{
i, j

}
< E, where

{
i, j

}
denotes

the edge between i and j.

With this definition we can formulate the maximum stable set problem:

α(G) = max |S|
s.t. S is a stable set in G,

i.e. finding a stable set S in G of maximal cardinality |S|. α(G) is called the
stability number of G.

If we consider the following graph G̃
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Figure 2.1: Example graph G̃

then a maximum stable set in G̃ is given as follows:

Figure 2.2: Maximum stable set of G̃

De Klerk and Pasechnik proved in [16, Theorem 2.2] that the stability
number can be computed by a completely positive program:

Theorem 2.11. Let G = (V,E) be given with |V| = n. Then the stability number
of G is given by

α(G) = max 〈e ⊗ e,X〉
s.t. 〈I,X〉 = 1

X(i, j) = 0 for all
{
i, j

}
∈ E, i , j

X ∈ CPn,

(2.6)

where e denotes again the all-ones vector and I is the identity matrix.

Proof. DefineCG :=
{
X ∈ CPn : X(i, j) = 0,

{
i, j

}
∈ E

}
, which is a convex cone.

As written in (2.3) the extreme rays of CPn are of the form x ⊗ x for non-
negative x ∈ Rn. Therefore the extreme rays of CG are of the form x ⊗ x,
where x ∈ Rn is also nonnegative and where its support corresponds to a
stable set of G. Hence the extreme rays of the feasible set in (2.6) are given
by the intersection of the extreme rays of CG with the hyperplane defined
by 〈I,X〉 = 1.
Since 〈e ⊗ e,X〉 is a linear map, the optimal value of this map is attained in
an extreme point of the feasible set. Therefore there is an optimal solution
of the form:

X∗ = x∗ ⊗ x∗, x∗ ∈ Rn, x∗ ≥ 0, ‖x∗‖2 = 1,
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and where the support of x∗ corresponds to a stable set of G, denoted by
S∗. We denote now the optimal value of the objective function in (2.6) by
λ := max 〈e ⊗ e,X∗〉. Then:

λ = max
{
(e>x)2 : ‖x‖2 = 1, x ≥ 0, supp(x) = supp(x∗)

}
.

The optimality conditions of this problem imply

x∗ =
1
√
|S∗|

xS∗ ,

where xS∗ denotes the incidence vector of the stable set S∗, i.e. (xS∗)(i) = 1 if
i ∈ S∗ and (xS∗)(i) = 0 otherwise. Therefore we have

λ = (e>x∗)2 =
|S∗|2

|S∗|
= |S∗|.

Hence S∗ must be a maximum stable set and hence λ = α(G). �

Remark 2.12. An essential tool in the proof of Theorem 2.11 is the set of
extreme rays of CPn. Without their characterization the proof of the refor-
mulation (2.6) of the maximum stable set problem as completely positive
program would not work.
Another relevant aspect in this context is that there exists an optimal solu-
tion X∗ with X∗ = x∗ ⊗ x∗ and that supp(x∗) corresponds to the vertices of
the maximum stable set. This follows from the proof of Theorem 2.11.

The dual (copositive) program of (2.6) is the following:

min t
s.t. t ∈ R, K ∈ COPn

K(i, i) = t − 1 for all i ∈ V
K(i, j) = −1 for all

{
i, j

}
< E.

(2.7)

Although the copositive formulation (2.7) of the maximum stable set pro-
blem remains NP-hard, this formulation has the advantage that the com-
plexity is moved entirely into the copositivity constraint. The new for-
mulation is a convex optimization problem with linear objective, linear
constraints and one cone constraint.
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The maximum clique problem

Another well-known NP-hard problem in combinatorial optimization is
the maximum clique problem. This problem is equivalent to the maximum
stable set problem in the complementary graph. The complementary graph
Ḡ of a graph G is defined by the same set of vertices as G and two different
vertices in Ḡ are connected by an edge if and only if they were not connected
in G. For a survey of the maximum clique problem see [8]. In this section
we will show that this problem can be reformulated as a copositive and
completely positive program, respectively.

Definition 2.13. Let G = (V,E) be a finite, undirected and simple graph
with set of vertices V and set of edges E ⊆ V × V. A clique of G is a subset
C of vertices such that every pair of vertices in C is joined by an edge.

With this definition the maximum clique problem is given by:

ω(G) = max |C|
s.t. C is a clique in G,

i.e. finding a clique set C in G of maximal cardinality |C|. ω(G) is called the
clique number of G.

A maximum clique of the graph G̃ in Figure 2.1 is the following:

Figure 2.3: Maximum clique of G̃

We denote now by AG the adjacency matrix of a graph G. Motzkin and
Straus [40] showed the following equality:

1
ω(G)

= min
{
x>(e ⊗ e − AG)x : e>x = 1, x ≥ 0

}
, (2.8)

where e denotes the all-ones vector as before. If we combine the Motzkin-
Straus formulation (2.8) with the completely positive formulation (2.4), we
get:

1
ω(G)

= min {〈e ⊗ e − AG,X〉 : 〈e ⊗ e,X〉 = 1,X ∈ CPn} .



2.4. APPROXIMATION HIERARCHIES 17

Then its dual is:

1
ω(G)

= max {λ : λ(e ⊗ e − AG) − e ⊗ e ∈ COPn} ,

cf. [25, Chapter 2]. In particular strong duality holds. As in the maximum
stable set reformulation, the complexity of the reformulation is entirely in
the cone constraint since we have a convex program with a linear objective,
linear constraints and the cone constraint. Furthermore a discrete program
changed to a continuous one.

2.4 Approximation hierarchies

In the last part of this chapter we will discuss some approximation hierar-
chies of the copositive cone. Since checking whether a matrix is copositive
is NP-hard it is important to think about an easier way to check copositivity
by approximating the copositive cone. The easiest way to approximating
the copositive cone is of course to replace it by the positive semidefinite
cone. Here we will present three popular approximation techniques, which
lead to approximation hierarchies.

The first approximation is based on the following idea: By definition a
matrix A ∈ Rn×n is copositive if and only if the quadratic form z>Az is
nonnegative for all nonnegative arguments z. Equivalently for a given
symmetric matrix A and x ∈ Rn the following polynomial can be consid-
ered:

PA(x) :=
n∑

i=1

n∑
j=1

A(i, j)x(i)2x( j)2.

In conclusion A is copositive if and only if PA(x) ≥ 0 for all x ∈ Rn. A
sufficient condition for this nonnegativity is that PA(x) has a representation
as a sum of squares of polynomials, i.e.

PA(x) =

l∑
i=1

fi(x)2 for all x ∈ Rn

for some polynomial functions f1(x), . . . , fl(x). Then it is easy to see that
PA(x) ≥ 0 for all x ∈ Rn. Parrilo showed in [42] that PA(x) has such a
representation as a sum of squares if and only if A ∈ S+

n +Nn. For a given
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matrix A ∈ Rn×n we consider the following family of polynomials:

Pr(x) :=

 n∑
k=1

x(k)2


r

· PA(x).

It is clear that P0(x) = PA(x). Furthermore if for some r we have Pr(x) ≥ 0
for all x, then PA(x) ≥ 0 for all x. Moreover if Pr(x) has a sum of squares
decomposition, then Pr+1(x) also has a sum of squares decomposition. With
this property Parrilo [42] defined the following hierarchy of cones for
r ∈N0:

K
r
n :=

A ∈ Sn : PA(x) ·

 n∑
i=1

x(i)2

r

has a sum of squares decomposition

 .
Parrilo also showed that S+

n + Nn = K 0
n ⊂ K

1
n ⊂ . . . ⊂ COPn and that

int (COPn) ⊆
⋃

r∈N0
K

r
n. Therefore the convex cone K r

n approximates the
copositive cone COPn from the interior. The condition A ∈ K r

n can be
checked by solving a semidefinite feasibility problem. So the related opti-
mization problem overK r

n is equivalent to a semidefinite program.

Another approach has been introduced by de Klerk and Pasechnik [16].
They approximated the copositive cone by a system of linear inequalities.
For this we consider again the polynomial PA(x) =

∑n
i=1

∑n
j=1 A(i, j)x(i)2x( j)2

with x ∈ Rn. Another sufficient condition for its nonnegativity is that all
coefficients of PA(x) are nonnegative, i.e. A(i, j) ≥ 0 for all i, j. This property
is equivalent to A ∈ Nn. For r ∈N0 and Pr(x) =

(∑n
k=1 x(k)2)r PA(x) as before

the authors defined the convex cone

C
r
n :=

A ∈ Sn : PA(x) ·

 n∑
i=1

x(i)2

r

has nonnegative coefficients

 .
De Klerk and Pasechnik verified that Nn = C0

n ⊂ C
1
n ⊂ . . . ⊂ COPn and

int (COPn) ⊆
⋃

r∈N0
C

r
n. Accordingly the convex cone Cr

n also approximates
the copositive cone from the interior. Since all of these cones Cr

n are poly-
hedral cones, the related optimization problem corresponds to a linear
program.

Between the two hierarchies of cones the following relation holds true:

C
r
n ⊆ K

r
n for all r ∈N0.

The last approximation we want to illustrate, goes back to Peña et al.
[44]. The authors used the standard multiindex notation, i.e. for a given
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multiindex β ∈Nn we have |β| := β1 + . . .+ βn and xβ := xβ1

1 . . . x
βn
n . With this

notation the following set can be defined:

E
r
n :=


∑
β∈Nn,
|β|=r

xβx>(Sβ + Nβ)x : Sβ ∈ S+
n ,Nβ ∈ Nn

 .
This approach is based on the fact that a matrix, which can be represented
as the sum of a positive semidefinite matrix and an entrywise nonnegative
matrix, is copositive, cf. (2.2). Furthermore Peña et al. defined the following
cone:

Q
r
n :=

A ∈ Sn : x>Ax

 n∑
i=1

x(i)2

r

∈ E
r
n

 .
They were also able to show that Cr

n ⊆ Q
r
n ⊆ K

r
n for all r ∈N0. In particular

Q
r
n = K r

n for r ∈ {0, 1}. Therefore also Qr
n grows with r. The condition

A ∈ Qr
n can be written as a system of linear matrix inequalities, hence if

COPn is replaced by the cone Qr
n, the resulting optimization problem is a

positive semidefinite program.

Note that all convex cones K r
n, Cr

n and Qr
n have pleasant theoretical prop-

erties, but a fundamental aspect is that they approximate the copositive
cone uniformly. There are other techniques to approximate the copositive
cone in a certain direction more precisely, e.g. approximate COPn via par-
titions of the standard simplex into smaller simplices [12]. By using the
objective function to figure out which simplices have to be splitted further,
this method can approximateCOPn in the needed direction more precisely.
This technique also leads to linear programs.

In this chapter we formulated and proved some basics of copositive op-
timization in finite dimension. We defined the copositive as well as the
completely positive cone and their properties and furthermore the related
optimization problems. These results can be used among other things to
reformulate the standard quadratic problem (STQP) and also a more gen-
eral form of a quadratic program (2.5) into a completely positive program.
Moreover we presented some applications of copositive and completely
positive programs, respectively, especially in combinatorial optimization.
Besides the stability number and the clique number, many other quantities
in combinatorial optimization can be calculated by solving a copositive
program. An overview of the applications of copositive optimization can
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be found in [7, 13, 25]. Finally we gave some approximation hierarchies of
the copositive cone.



Chapter 3

Relevant tools from functional
analysis

In this chapter we will introduce some important aspects from functional
analysis. We will also define three special norms: the (symmetric) pro-
jective norm, the (symmetric) injective norm and the (symmetric) Hilbert-
Schmidt norm. Especially the symmetric projective norm gives us helpful
hints for our goal to generalize the principle of copositivity and its duality
in a suitable infinite dimensional space.

3.1 Preliminaries

Our notation concerning Banach spaces is the standard one, like e.g. in [46].
A Banach space is a normed space which is complete in the metric defined
by its norm. Or in other words, every Cauchy sequence is required to
converge. Many of the well-known function spaces are Banach spaces. For
example the spaces of continuous functions on compact sets, the Lp

−spaces
(i.e. the space of classes of p-integrable functions), Hilbert spaces, or the
spaces of continuous linear maps from one Banach space into another are
Banach spaces.

3.2 The tensor product of two vector spaces

We consider in this thesis real vector spaces only, i.e. vector spaces over the
fieldR of real numbers. First we will consider two fundamental examples:

21
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Example 3.1. For m,n ∈N as well as u ∈ Rm = R{1,...,m} and v ∈ Rn = R{1,...,n},
let u ⊗ v ∈ Rm×n = R{1,...,m}×{1,...,n} be defined by

u ⊗ v (i, j) := u(i) v( j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We set

Rm
⊗Rn := span {u ⊗ v : u ∈ Rm, v ∈ Rn

}

and calculate

Rm
⊗Rn = Rm×n,

cf. [19, Section 2.4 (1)]. This vector space has the following universal prop-
erty:
Given any bilinear map ψ : Rm

×Rn
→ G into a vector space G. Then there

is a unique linear map Lψ : Rm
⊗ Rn

→ G such that ψ(u, v) = Lψ(u ⊗ v) for
all u, v.

Rm
×Rn

ψ
G

⊗

Rm
⊗Rn

Lψ

In the infinite dimensional setting, the situation is more complicated:

Example 3.2. Consider compact spaces K and L (e.g. K = L = [−1, 1]) as
well as continuous functions f : K → R and g : L → R. Then we define in
the same way as before the function f ⊗ g : K × L→ R by

f ⊗ g (x, y) := f (x)g(y).

Set

C(K) ⊗ C(L) := span
{
f ⊗ g : f ∈ C(K), g ∈ C(L)

}
⊆ C(K × L),

where C(K) and C(L) denote the spaces of continuous maps f : K→ R and
g : L → R, respectively. In general (i.e. if K,L are no finite sets), we have
C(K) ⊗ C(L) , C(K × L).

C(K) ⊗ C(L) has the same universal property as above:
Given any bilinear mapψ : C(K)×C(L)→ G into a vector space G, then there
is a unique linear map Lψ : C(K) ⊗ C(L) → G such that ψ( f , g) = Lψ( f ⊗ g)
for all f ∈ C(K), g ∈ C(L).
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C(K) × C(L)
ψ

G

⊗

C(K) ⊗ C(L)

Lψ

There is a general principle behind these two examples, cf. [19, Section 2.2]:
If E,F are vector spaces, a tensor product of E and F is a pair (E ⊗ F,⊗),
where E ⊗ F is a vector space and ⊗ : E × F→ E ⊗ F is a bilinear map such
that for all bilinear maps ψ : E × F → G into a vector space G, there is a
unique linear map Lψ : E ⊗ F→ G with ψ = Lψ ◦ ⊗.

E × F
ψ

G

⊗

E ⊗ F

Lψ

Remark 3.3. As usual, we write x⊗ y instead of ⊗(x, y). Clearly, if the maps
T : E2 → E1 and S : F2 → F1 are isomorphisms and (E1 ⊗ F1,⊗) is a tensor
product for E1 and F1, then (E2⊗̃F2, ⊗̃), where ⊗̃ : E2 × F2 → E2⊗̃F2 with
(x2, y2) 7→ T(x2) ⊗ S(y2), is a tensor product for E2 and F2.

Moreover, a tensor product (E ⊗ F,⊗) is uniquely determined up to canon-
ical isomorphisms: If (E ⊗′ F,⊗′) is another tensor product for E and
F, then there are, due to the universal property, canonical linear maps
S : E⊗F→ E⊗′ F and T : E⊗′ F→ E⊗F with ⊗′ = S ◦⊗ and ⊗ = T ◦⊗′. The
uniqueness of the maps Lψ implies E ⊗ F = span

{
x ⊗ y : x ∈ E, y ∈ F

}
and

analogously, E ⊗′ F = span
{
x ⊗′ y : x ∈ E, y ∈ F

}
. With this it is easy to see

that S ◦ T = idE⊗′F and T ◦ S = idE⊗F, where idG denotes the identity map
idG : G→ G.

E × F
⊗
′

E ⊗′ F

⊗

E ⊗ F

S

T
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Due to the uniqueness of the tensor product - up to canonical isomorphisms
- it is common to speak about the tensor product E ⊗ F. Furthermore it is
very useful to consider specific realizations like

Rm×n = Rm
⊗Rn

or

span
{
f (·)g(··) : f ∈ C(K), g ∈ C(L)

}
= C(K) ⊗ C(L).

These properties can be found in [19, Section 2.4].

Finally we prove the existence of the tensor product: Let A ⊂ E,
B ⊂ F be bases of the vector spaces E and F, respectively. Then E
is isomorphic to F (A) and F is isomorphic to F (B), where we have
F (C) :=

{
f : C→ R : f has finite support

}
. Set F (A) ⊗ F (B) := F (A × B)

and ⊗ : F (A)×F (B)→ F (A)⊗F (B), with ( f ⊗ g)(a, b) := f (a)g(b) for a ∈ A,
b ∈ B. This is a tensor product for F (A) and F (B), so there exists a tensor
product for E and F as in Remark 3.3, cf. [19, Sections 2.1 and 2.2].

Remark 3.4. Note here that the same notation of the tensor product and
the well-known Kronecker product from optimization is not accidental.
The Kronecker product can be considered as a special case of the tensor
product that is restricted on matrices. The connection can be roughly
described as follows: If we have two matrices, which can be considered as
linear maps between vector spaces equipped with chosen bases, then the
tensor product of the linear maps is representing the Kronecker product of
the two matrices. For a more detailed description see [35, §9, Section 7 c)].

3.3 Tensor norms

We will start with additional structures on the vector spaces E and F, e.g.
if E and F are normed, Banach or locally convex spaces, the tensor product
should also carry the same structure. We restrict ourselves here to normed
spaces, Banach spaces and Hilbert spaces. For our purpose it is sufficient
to consider three canonical norms.

The projective norm

The first one, the π−norm or projective norm appears naturally if we change
from vector spaces to normed spaces:
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Definition 3.5. Let E, F be normed spaces. For z ∈ E ⊗ F set

π(z) := π(z; E,F) := inf

 n∑
ν=1

‖xν‖E
∥∥∥yν

∥∥∥
F

: n ∈N, z =

n∑
ν=1

xν ⊗ yν

 .
Then π is a norm and has the following universal property:
If ψ : E × F → G is a continuous bilinear map with values in a normed
space G, then there is a unique continuous linear map Lψ : (E ⊗ F, π) → G
such that ψ = Lψ ◦ ⊗. Moreover,∥∥∥ψ∥∥∥ := sup

‖x‖E≤1
‖y‖F≤1

∥∥∥ψ(x, y)
∥∥∥

G

= sup
‖x‖E≤1
‖y‖F≤1

∥∥∥Lψ(x ⊗ y)
∥∥∥

G

= sup
π(z)≤1

∥∥∥Lψ(z)
∥∥∥

G

=:
∥∥∥Lψ

∥∥∥ .
With E⊗πF we will denote the tensor product E⊗F equipped withπ(·; E,F).

In the next proposition we will formulate some properties of π, cf. [19,
Section 3.2]. For normed spaces E, F and G we denote by L(E,F) the set
of linear maps from E to F. Moreover we denote the set of linear and
continuous functions by L(E,F) := {T : E→ F : T linear and continuous}
and we denote by B(E,F; G) := {B : E × F→ G : B bilinear and continuous}
the set of continuous and bilinear functions, where bilinear means linear
in each variable. Furthermore E′ := L(E,R) denotes the (topological) dual

of E. Last we denote by E 1
= F that E and F are isometric.

Proposition 3.6. Let E, F be normed spaces, then:

1.

B(E,F; G) 1
= L(E ⊗π F,G)

and π is the unique seminorm on E ⊗ F which has this property for G = R.
In particular,

π(z; E,F) = max {| 〈S, z〉 | : S ∈ L(E,F′), ‖S‖ ≤ 1}
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and the duality bracket given by

(E ⊗π F)′ 1
= B(E,F;R) 1

= L(E,F′)

can be calculated by the trace duality.

2. π(x ⊗ y; E,F) = ‖x‖E
∥∥∥y

∥∥∥
F

for all (x, y) ∈ E × F.

3. π is finitely generated, i.e. for all z ∈ E ⊗ F

π(z; E,F) = inf
{
π(z; M,N) : z ∈M ⊗N,M ⊂ E,N ⊂ F,

dim(M),dim(N) < ∞
}
.

Special situations concerning the projective norm are stated in the next
example. These examples give a concrete setting to calculate the projective
norm:

Example 3.7. 1. If E = Rm and F = Rn equipped with ‖·‖1, then on
E ⊗ F = Rm×n we have

π(z) =

m∑
i=1

n∑
j=1

|z(i, j)|,

where z = (z(i, j))(i, j) ∈ Rm×n, cf. [30, Example 4.47].

2. More generally, if µ and ν are σ-finite measures on measure spaces X
and Y, we have for the spaces E = L1(µ) and F = L1(ν) as well as for
f ∈ E ⊗ F = span

{
g(·)h(··) : g ∈ L1(µ), h ∈ L1(ν)

}
that

π( f ) =

∫
X×Y
| f (x, y)| d(µ ⊗ ν)(x, y) =

∥∥∥ f
∥∥∥

L1(µ⊗ν)
,

cf. [19, Section 3.3 Proposition].

3. If E = Rm and F = Rn equipped with the Euclidean norm ‖·‖2, then

π(z) =

k∑
ν=0

λν,

where 0 ≤ λ0 ≤ . . . ≤ λk are the singular values of z ∈ Rm
⊗Rn = Rm×n,

cf. [48, Example 2.10].

Remark 3.8. Example 3.7 can be generalized to Hilbert spaces E and F, cf.
[19, Ex 3.28].
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The injective norm

The second tensor norm we want to consider is the ε−norm or injective
norm, which is the dual norm of the projective norm.

Definition 3.9. If E and F are normed spaces, then for z ∈ E ⊗ F we define:

ε(z) := ε(z; E,F) : = sup
{
|
〈
x′ ⊗ y′, z

〉
| : ‖x′‖E′ ≤ 1,

∥∥∥y′
∥∥∥

F′
≤ 1

}
= sup

∣∣∣ n∑
ν=1

x′(xν)y′(yν)
∣∣∣ : ‖x′‖E′ ≤ 1,

∥∥∥y′
∥∥∥

F′
≤ 1

 ,
if z =

∑n
ν=1 xν ⊗ yν. We write E ⊗ε F for E ⊗ F equipped with ε(·; E,F).

As mentioned in [19, Section 4.3] the norm ε behaves in a dual way to π
concerning subspaces and quotients, i.e. ε respects subspaces isometrically
and ε does not respect quotients.

Remark 3.10. The injective norm ε is the dual norm of the projective norm
π in the sense of trace duality. But the converse property that π is the
dual of ε, does not hold in this sense, cf. [19, Section 6.1]. This means
that (E⊗̂εE)′ , E′⊗̂πE′ in general. But in the finite case this equality holds.
Trace duality means as formulated in [19, Section 2.6]: Let φ ∈ (E⊗F)′ with
associated map T ∈ L(E,F′) and z ∈ E ⊗ F with associated S ∈ L(F′,E) with
finite rank. Then we have

〈
φ, z

〉
= trE(S ◦ T) = trF′(T ◦ S).

For the next proposition we need the following definition:

Definition 3.11. A subset A ⊂ BE′ is called norming if for all x ∈ E

‖x‖E = sup {| 〈x′, x〉 | : x′ ∈ A} .

For a normed space E we note by BE the closed unit ball {x ∈ E : ‖x‖E ≤ 1}.

The following proposition gives some properties of the injective norm:

Proposition 3.12. [19, Section 4.1] Let E, F be normed spaces. Then:

1. If E and F are finite dimensional, then

E ⊗ε F 1
= (E′ ⊗π F′)′.

2. ε(x ⊗ y; E,F) = ‖x‖E
∥∥∥y

∥∥∥
F

for all x ∈ E, y ∈ F.
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3. ε ≤ π on E ⊗ F.

4. For norming subsets A ⊂ BE′ and B ⊂ BF′ we have

ε(z; E,F) = sup
{
|
〈
x′ ⊗ y′, z

〉
| : x′ ∈ A, y′ ∈ B

}
.

The following examples present a way to calculate the injective norm in
two special situations.

Example 3.13. 1. If E = Rm and F = Rn are equipped with ‖·‖∞, then on
E ⊗ F = Rm×n we have

ε(z) = sup
1≤i≤m
1≤ j≤n

|z(i, j)|,

where z = (z(i, j))(i, j) ∈ Rm×n, cf. [30, Remark 4.64].

2. More generally, if K, L are compact spaces, f ∈ C(K) ⊗ C(L), then we
have

C(K) ⊗ C(L) =

{
f ∈ C(K × L) : ∃n ∈N, gν ∈ C(K), hν ∈ C(L) :

f (·, ··) =

n∑
ν=1

gν(·)hν(··)
}
,

cf. [19, Section 2.4. (2)] and moreover

ε( f ) = sup
{
| f (x, y)| : (x, y) ∈ K × L

}
.

Duality of norms

Before we consider a third norm, we will discuss the definition of a dual
norm in infinite dimension, cf. [48, Chapter 7.1]. In finite dimension the
definition of the dual norm is clear: If E and F are finite dimensional
normed spaces and α is a tensor norm, then E ⊗ F is algebraically the dual
space of E′ ⊗α F′ and we set α′ to be the dual norm such that

E ⊗α′ F = (E′ ⊗α F′)′ .

I.e. if u ∈ E ⊗ F, then

α′(u) = sup {| 〈u, v〉 | : v ∈ E′ ⊗ F′, α(v) ≤ 1} . (3.1)
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In the sense of trace duality, this means that the duality between E⊗ F and
E′ ⊗ F′ works in the following way: If we consider u as an operator from
E′ to F and v from F into E′, then 〈u, v〉 = tr(v ◦ u).

To get a definition of the dual norm in infinite dimension, Ryan [48, Chapter
7.1] uses [48, Proposition 6.3] to extend the definition in finite dimension.
With that, the dual norm α′ is defined as the unique tensor norm that
corresponds with the dual norm on tensor products of finite dimensional
spaces. Let u ∈ X ⊗ Y, where X and Y have to be Banach spaces, then:

α′(u) = inf
{
α′E,F(u) : u ∈ E ⊗ F,E ⊆ X,F ⊆ Y,dim E,dim F < ∞

}
,

where α′E,F(u) = α′(u; E ⊗ F).

The Hilbert-Schmidt norm

Now we have a look at the third norm. If the vector spaces G
and H are equipped with scalar products 〈·, ·〉G and 〈·, ·〉H, there is a
uniquely determined scalar product 〈·, ·〉G⊗H on G ⊗ H with the property〈
x1 ⊗ y1, x2 ⊗ y2

〉
G⊗H = 〈x1, x2〉G

〈
y1, y2

〉
H for all x1, x2 ∈ G, y1, y2 ∈ H, cf. [19,

Section 26.7]. The norm σ := σ(·; G,H), with

σ(z) :=
√
〈z, z〉G⊗H

is called the Hilbert-Schmidt norm on G ⊗ H and we write G ⊗σ H for the
normed space (G ⊗ H, σ). Note that the Hilbert-Schmidt norm is only
defined for vector spaces that are equipped with a scalar product.

Remark 3.14. Note that the dual norm of the Hilbert-Schmidt norm is again
the Hilbert-Schmidt norm, i.e. σ′ = σ, cf. [19, Section 26.7, Corollary 2].

Last we will give a special example for the Hilbert-Schmidt norm:

Example 3.15. If G = Rm, H = Rn, then on G ⊗H = Rm×n we have

〈w, z〉G⊗H =

m∑
i=1

n∑
j=1

w(i, j)z(i, j)

for w = (w(i, j))(i, j), z = (z(i, j))(i, j) ∈ Rm×n and σ(w) =
(∑m

i=1
∑n

j=1 |w(i, j)|2
)1/2

,
cf. [19, Section 26.7].
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The completions in Banach spaces

If we consider the context of Banach spaces (or particularly in the context of
Hilbert spaces), the „tensor products “ should be of the same form. There
we consider the completions

E⊗̂πF of E ⊗π F,
E⊗̂εF of E ⊗ε F,

and G⊗̂σH of G ⊗σ H.

By definition the first two spaces are Banach spaces and the third one is
even a Hilbert space. It can be proven that

L1(µ)⊗̂πL1(ν) 1
= L1(µ ⊗ ν),

C(K)⊗̂εC(L) 1
= C(K × L),

L2(µ)⊗̂σL2(ν) 1
= L2(µ ⊗ ν),

cf. [19, Ex 3.27 and Section 4.2 (3)] and [34, 2.6.11 Example]. In case of two
Hilbert spaces G and H we have

• G′⊗̂πH is canonically isomorphic to the space of nuclear operators
from G to H,

• G′⊗̂εH is canonically isomorphic to the space of compact operators
from G to H,

• G′⊗̂σH is canonically isomorphic to the space of Hilbert-Schmidt op-
erators from G to H,

with
∑n
ν=1 x′ν ⊗ yν 7→

∑n
ν=1 x′ν(·)yν.

3.4 Algebraic theory of symmetric tensor prod-
ucts

In this section we are going to define a symmetric tensor product, which
has the same universal property only for symmetric bilinear maps instead
of all bilinear maps, as it is in the case in the full tensor product E ⊗ F.
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Definition 3.16. If E is a real vector space, a pair (E ⊗s E,⊗s), where E ⊗s E
is a real vector space and ⊗s : E × E → E ⊗s E is a symmetric bilinear
map, is called a symmetric tensor product of E (formally a 2nd-symmetric
tensor product) if for all vector spaces F and all symmetric bilinear maps
ψ : E × E→ F, there is a unique linearization Sψ : E ⊗s E→ F, i.e. there is a
unique linear Sψ with ψ = Sψ ◦ ⊗s. In other words, the following diagram
holds:

E × E
ψ

F

⊗
s

E ⊗s E

Sψ

Remark 3.17. A generalization of the 2nd-symmetric tensor product is the
n-fold symmetric tensor product (⊗n,sE,⊗s), where ⊗n,sE = E⊗s E⊗s . . .⊗s E.
For a closer look at this generalization see [28, Section 1.2 et seqq.].

Since E ⊗s E is unique up to canonical isomorphisms, we are talking about
the symmetric tensor product E ⊗s E of E. Later we will give a concrete
description of this abstract object in certain examples. Let us now prove
that the symmetric tensor product always exists. For this, we define

E ⊗s E : = span
{1

2
(x ⊗ y + y ⊗ x) : x, y ∈ E

}
= span {z ⊗ z : z ∈ E}
⊂ E ⊗ E.

Recall here that 1
4

[
(x + y) ⊗ (x + y) − (x − y) ⊗ (x − y)

]
= 1

2

[
x ⊗ y + y ⊗ x

]
.

Furthermore we define ⊗s : E × E → E ⊗s E with (x, y) 7→ 1
2 (x ⊗ y + y ⊗ x).

Then E ⊗s E is the image of the linear projection P : E ⊗ E → E ⊗ E with∑n
ν=1 xν ⊗ yν 7→

∑n
ν=1

1
2 (xν ⊗ yν + yν ⊗ xν), which is the linearization of the

map E × E→ E ⊗s E.

Let ψ : E × E → F be symmetric and bilinear. Then there is a unique
factorization Lψ : E⊗E→ F with Lψ(x⊗ y) = ψ(x, y). Since ψ(x, y) = ψ(y, x),
we get Lψ(x ⊗ y) = Lψ(y ⊗ x) and Lψ

(
1
2 (x ⊗ y + y ⊗ x)

)
= ψ(x, y). Thus the

map Sψ : E ⊗s E→ F with

Sψ

 n∑
ν=1

1
2
(
xν ⊗ yν + yν ⊗ xν

) =

n∑
ν=1

ψ(xν, yν)
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is well-defined, linear and satisfies

ψ(x, y) = Sψ
(1
2
(
x ⊗ y + y ⊗ x

))
.

If S : E ⊗s E→ F is linear, we write

S
(1
2
(
x ⊗ y + y ⊗ x

))
= ψ(x, y) = Sψ

(1
2
(
x ⊗ y + y ⊗ x

))
.

Then by linearity we have S = Sψ on E ⊗s E.

3.5 Symmetric tensor norms

As in the case of the tensor product of normed spaces (or spaces with scalar
product) in Section 3.3, we consider here in an analogous way the sym-
metric projective norm, the symmetric injective norm and the symmetric
Hilbert-Schmidt norm on the symmetric tensor product.

Therefore we consider from now on only symmetric tensor products of the
form E ⊗s E, where E is either a normed space or a Banach space and the
index s denotes that it is symmetric.

The symmetric projective norm

We will start with the analogue of the π-norm for a symmetric tensor
product, which is the so-called symmetric projective norm πs:

Definition 3.18. Let E be a normed space. For z ∈ E ⊗s E we set

πs(z) := πs(z; E,E) := inf

 m∑
ν=1

‖xν‖2E : m ∈N, z =

m∑
ν=1

±xν ⊗ xν

 .
Note that ± is meant summandwise, i.e. it depends on the summation
index ν.

Remark 3.19. [28, Section 2.3] The following relation between the projective
norm and the symmetric projective norm holds:

π(z) ≤ πs(z) ≤ 2π(z),

for all z ∈ E ⊗s E.
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Concerning this remark we will consider a concrete example:

Example 3.20. LetRn be equipped with ‖·‖1. Then let z =

(
0 1
1 0

)
∈ R2

⊗
s
πs
R2.

We have z = e1 ⊗ e2 + e2 ⊗ e1, where e1, e2 denote the first and second unit
vector in R2. Then:

π(z) = inf∑n
ν=1 xν⊗yν=z

n∑
ν=1

‖xν‖1
∥∥∥yν

∥∥∥
1

≤ ‖e1‖1 ‖e2‖1 + ‖e2‖1 ‖e1‖1

= 2.

This estimate is already optimal. Because of the first result in Exam-
ple 3.7, we have that π(z) =

∑2
i=1

∑2
j=1 |z(i, j)| = 2. Furthermore with

z = 1
2 ((e1 + e2) ⊗ (e1 + e2) − (e1 − e2) ⊗ (e1 − e2)) we have

πs(z) = inf∑m
ι=1 xι⊗xι=z

m∑
ι=1

‖xι‖21

≤
1
2

(
‖e1 + e2‖

2
1 + ‖e1 − e2‖

2
1

)
= 4.

Moreover we can show that πs(z) ≥ 4. For the proof of this inequality we
need a result from Example 3.26, so we refer the reader to Remark 3.30 for
the second part of the proof. Hence πs(z) = 4 and so for this example we
have πs(z) = 4 = 2π(z). This shows that the estimate πs(z) ≤ 2π(z) for all z
is sharp.

Note here that the symmetric projective norm is not the projective norm
restricted to E ⊗s E, cf. [28, Section 2.1]. If π|E⊗sE denotes the restriction
to E ⊗s E of the projective norm on E ⊗ E, then we have π|E⊗sE ≤ πs and
πs , π|E⊗sE in general but πs = π|E⊗sE for Hilbert spaces, cf. [28, Section 2.3].

The symmetric projective norm has the following universal property: If
φ : E × E→ F is a continuous bilinear map with values in a normed space
F, then there is a unique continuous linear map Lφ : (E ⊗s E, πs) → F such
that φ = Lφ ◦ ⊗s. Moreover∥∥∥φ∥∥∥ = sup

‖x‖E≤1

∥∥∥φ(x, x)
∥∥∥

F

= sup
π(z)≤1

∥∥∥Lψ(z)
∥∥∥

F

=
∥∥∥Lφ

∥∥∥ .
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With E ⊗s
πs

E we will denote the tensor product E ⊗s E equipped with
πs(·; E,E).

A more general definition of the symmetric projective norm is the follow-
ing:

πs(z;⊗n,sE) := inf

 m∑
ν=1

‖xν‖nE : m ∈N, z =

m∑
ν=1

± ⊗
n xν

 ,
where ⊗n,sE := E ⊗s . . . ⊗s E and ⊗nx := x ⊗ . . . ⊗ x n-times respectively.
The notation will be analogous to the special case: ⊗n,s

πs E and ⊗̂n,s
εs

E for the
completion.
For our purpose Definition 3.18 will be sufficient. Hence we will formulate
the properties in next proposition concerning Definition 3.18.

For normed spaces E, F let Pn be the set of continuous n-homogeneous
polynomials, where q : E → F is an n-homogeneous polynomial if there
is a map φ : E × . . . × E → F with q(x) = φ(x, . . . , x) for all x ∈ E, cf.
[28, Sections 1.12 and 1.13]. Next we will give some properties of the
symmetric projective norm from Definition 3.18. A general formulation of
these properties can be found in [28, Section 2.2]:

Proposition 3.21. 1. For all normed spaces F we have

P
2(E; F) 1

= L
(
E ⊗s

πs
E; F

)
;

in particular: P2(E; F) is complete if F is complete, and we have

P
2(E; F) 1

= L
(
E⊗̂s

πs
E; F

)
in this case.

2. πs is the unique seminorm α on (E ⊗s E, α) which satisfies

(E ⊗s E)′ 1
= P2(E).

3. πs(x ⊗ x; E ⊗s E) = ‖x‖2E for all x ∈ E.

4. πs is finitely generated in the sense that

πs (z; E ⊗s E) = inf {πs (z; M ⊗s M) : M ⊂ E,dim(M) < ∞, z ∈M ⊗s M} .
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Similar to [28, Sections 1.3, 1.4, 2.1] we set

θ2
E(z) :=

1
2

(z1 ⊗ z2 + z2 ⊗ z1) ∈ E ⊗ E.

Let im(T) := {T(x) ∈ F : x ∈ E} be the range of T : E→ F linear and continu-
ous, then we denote by ι2E the embedding im

(
θ2

E

)
→ E ⊗ E. Moreover the

2nd polarization constant of a normed space E is defined by

c(2,E) := sup
{∥∥∥q̄

∥∥∥
L(E×E)

: q ∈ BP2(E)

}
,

where q̄ ∈ Lsym(E × E; F) stands for the unique linearization of the 2-
homogeneous polynomial q ∈ P2(E; F).

In general we have

c(2,E) ≤
22

2!
= 2.

For `p := `p(R, ‖·‖p) it is well-known that c(2, `1) = 22

2! = 2 and c(2, `2) = 1
and in particular c(2,H) = 1 for all Hilbert spaces H. Properties of the n-th
polarization constant can be found in [28, Chapter 2].

With these notations the following proposition holds:

Proposition 3.22. [28, Sections 2.1 and 2.3] Let E be a normed space. Then:

1.
∥∥∥ι2E : E ⊗s

πs
E→ E ⊗π E

∥∥∥ = 1 if E , {0}

2.
∥∥∥∥θ2

E : E ⊗π E→ E ⊗s
π|E⊗sE

E
∥∥∥∥ = 1

3.
∥∥∥θ2

E : E ⊗π E→ E ⊗s
πs

E
∥∥∥ = c(2,E)

4. E ⊗s
πs

E is a topologically complemented subspace of E ⊗π E.

Note that the upper index 2 denotes just the case n = 2 and not the squared
function.

Remark 3.23. Unfortunately there is no easy way as in Example 3.7, to
calculate the symmetric projective norm πs directly in special cases like in
Rn×n, where Rn is equipped with ‖·‖1 or ‖·‖2.



36 CHAPTER 3. RELEVANT TOOLS FROM FUNCTIONAL ANALYSIS

The symmetric injective norm

The second tensor norm we want to consider, analogous to the ε-norm, is
the symmetric injective norm εs, which is the dual norm of the symmetric
projective norm.

Definition 3.24. If E is a normed space, then for z ∈ E ⊗s E we define

εs(z) := εs(z; E,E) := sup {| 〈x′ ⊗ x′, z〉 | : ‖x′‖E′ ≤ 1}

= sup

∣∣∣ n∑
ν=1

x′(xν) · x′(xν)
∣∣∣ : ‖x′‖E′ ≤ 1


if z =

∑n
ν=1 xν ⊗ xν. We write E ⊗s

εs
E for E ⊗s E equipped with εs(·; E,E).

Remark 3.25. For the (symmetric) injective norm the following inequalities
are true:

εs(z) ≤ ε(z) ≤ 2εs(z)

for all z ∈ E ⊗s E, cf. [28, Section 3.1].

The next example illustrates the inequality stated the last remark:

Example 3.26. LetRn be equipped with ‖·‖∞. Then let z =

(
0 1
1 0

)
∈ R2

⊗
s
εs
R2.

We have z = e1 ⊗ e2 + e2 ⊗ e1, where e1 and e2 denote the first and second
unit vector in R2. Then:

ε(z) = sup
‖x′‖1≤1
‖y′‖1≤1

|
〈
x′ ⊗ y′, z

〉
|

= sup
‖x′‖1≤1
‖y′‖1≤1

|
〈
x′ ⊗ y′, e1 ⊗ e2 + e2 ⊗ e1

〉
|

= sup
|x′(1)|+|x′(2)|≤1
|y′(1)|+|y′(2)|≤1

|x′(1) · y′(2) + x′(2) · y′(1)|

= 1.
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And furthermore:

εs(z) = sup
‖x′‖1≤1

| 〈x′ ⊗ x′, z〉 |

= sup
‖x′‖1≤1

| 〈x′ ⊗ x′, e1 ⊗ e2 + e2 ⊗ e1〉 |

= sup
|x′(1)|+|x′(2)|≤1

|x′(1) · x′(2) + x′(2) · x′(1)|

= 1/2.

Indeed the second equality in each case holds by Definition 3.9 and Defi-
nition 3.24. This shows that the estimate ε(z) ≤ 2εs(z) for all z is sharp.

Note here that also the symmetric injective norm is not the injective norm
restricted to E ⊗s E (see [28, Section 3.1]). If ε|E⊗sE denotes the restriction
to E ⊗s E of the injective norm, then εs ≤ ε|E⊗sE is valid and in particular
εs = ε|E⊗sE for Hilbert spaces.

Definition 3.24 is just the special definition for E ⊗s E. A more general one
is the following:

εs(z; E,E) : = sup {| 〈⊗nx′, z〉 | : ‖x′‖E′ ≤ 1}

= sup

∣∣∣ m∑
k=1

〈x′, xk〉
n
∣∣∣ : ‖x′‖E′ ≤ 1


if z =

∑m
k=1 ⊗

nxk. The notation will be analogous to the one we used before:
⊗

n,s
εs E and ⊗̂n,s

εs
E for the completion, cf. [28, Section 3.1]. For our purpose

Definition 3.24 is sufficient. For this case we will give some properties of
the symmetric injective norm from Definition 3.24. The general statements
can be found in [28, Section 3.2].

Proposition 3.27. 1. εs(x ⊗ x; E ⊗s E) = ‖x‖2E for all x ∈ E

2. εs ≤ πs on E ⊗s E

3. εs is finitely generated, i.e.

εs(z; E ⊗s E) = inf {εs(z; M ⊗s M) : M ⊂ E,dim(M) < ∞, z ∈M ⊗s M} .

The general formulation of following proposition can be found in [28,
Section 3.1]:
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Proposition 3.28. Let E be a normed space. Then:

1.
∥∥∥ι2E : E ⊗s

εs
E→ E ⊗ε E

∥∥∥ ≤ c(2,E′)

2.
∥∥∥ι2E′ : E′ ⊗s

εs
E′ → E′ ⊗ε E′

∥∥∥ ≤ c(2,E)

3.
∥∥∥θ2

E : E ⊗ε E→ E ⊗s
εs

E
∥∥∥ = 1 if E , {0}

4. E ⊗s
εs

E is the topologically complemented subspace of E ⊗ε E.

Again, the upper index 2, denotes the special case for our purpose and not
the squared function.

Remark 3.29. Unfortunately there is no simple formula known to calculate
the symmetric projective norm εs concerning Rn equipped with ‖·‖∞ or in
C(K) ⊗ C(K), where K is a compact space, analogous to Example 3.13.

Duality

Now we will formulate the duality betweenπs and εs for the 2nd symmetric
tensor product, cf. [28, Chapter 4]. If E is a normed space, then the maps

E⊗̂s
εs

E→
(
E′ ⊗s

πs
E′

)′ 1
= P2(E′)

E′⊗̂s
εs

E′ →
(
E ⊗s

πs
E
)′ 1

= P2(E)

are metric injections, i.e. ‖Ix‖F = ‖x‖E for I ∈ L(E,F), cf. [19, A1].

Furthermore just like in (3.1) the duality between πs and εs holds, i.e.

πs(u) = sup
εs(w)≤1

| 〈u,w〉 |

for u ∈ E ⊗s
πs

E and w ∈ E′ ⊗s
εs

E′. With this property and the results from
Example 3.26 we can now prove the inequality from Example 3.20, which
was still to be done.

Remark 3.30. In Example 3.20 we used the fact that πs(z) ≥ 4, which we
will prove now. In the situation of Example 3.26 we know that εs(z) = 1/2.
Moreover with the duality of πs and εs in the situation of Example 3.20 the
following holds for w ∈ R2

⊗
s
εs
R2:

πs(z) = sup
εs(w)≤1

| 〈z,w〉 |

≥ 〈e1 ⊗ e2 + e2 ⊗ e1, 2 (e1 ⊗ e2 + e2 ⊗ e1)〉
= 4.

Consequently πs(z) ≥ 4 and the still pending inequality is proved.
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The symmetric Hilbert-Schmidt norm

Last but not least we consider a third symmetric norm, analogous to
the Hilbert-Schmidt norm. If a vector space F is equipped with a scalar
product 〈·, ·〉F there is a uniquely determined scalar product 〈·, ·〉F⊗sF with
〈x1 ⊗ x1, x2 ⊗ x2〉F⊗sF = 〈x1, x2〉F 〈x1, x2〉F for x1, x2 ∈ F, cf. [19, Section 26.7].
The norm σs := σs(·; F,F) with

σs(z) :=
√
〈z, z〉F⊗sF

is called the symmetric Hilbert-Schmidt norm on F ⊗s F and we write F ⊗s
σs

F
for the normed space (F ⊗s F, σs).

Remark 3.31. Note here that in contrast to the symmetric projective and the
symmetric injective norms, the symmetric Hilbert-Schmidt norm is equal
to the Hilbert-Schmidt norm restricted to F⊗s F, which is denoted by σ|F⊗sF,
i.e. σs(z) = σ|F⊗sF(z) for all z ∈ F ⊗s F. This results from the uniqueness of
the scalar product.

In the present chapter concerning functional analysis we gave an overview
over the most important tools for our further research. Of particular impor-
tance were the algebraic theory of the symmetric tensor products. It will
be essential for our further research since we will consider only symmet-
ric operators. An important instrument will be the symmetric projective
norm, which is not only the restriction of the projective norm to symmet-
ric tensor products. Rather it arises via the symmetric decompositions of
the considered tensor. With the help of this norm we will find suitable
spaces for our goal to generalize the concept of copositivity in an infinite
dimensional space.
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Chapter 4

Discussion of special cases

In this chapter we will have a closer look at the symmetric projective norm
and its special properties. We will analyze how the value of the symmetric
projective norm depends on the different p-norms. Furthermore we will see
that there are two special cases depending on the choice of p in which the
symmetric projective norm is easier to calculate and that in the other cases
the calculation is not so easy. Moreover we will give different examples to
illustrate these special cases. In the second part of this chapter we will give
some numerical experiments for a special kind of decomposition. Last
we will discuss the importance of the symmetric projective norm for our
goal to generalize the topic of copositivity and completely positivity in an
infinite dimensional space.

4.1 Properties of the symmetric projective norm

First we will repeat the definition of the symmetric projective norm partic-
ularly for `n

p ⊗
s `n

p :

Definition 4.1. The symmetric projective norm πs,p on the symmetric tensor
space `n

p ⊗
s `n

p , with `n
p := (Rn, ‖·‖p) depending on p is for z ∈ `n

p ⊗
s `n

p defined
as follows:

πs,p(z) := πs

(
z; `n

p , `
n
p

)
:= inf

 N∑
ν=1

‖xν‖2p : N ∈N, z =

N∑
ν=1

± xν ⊗ xν

 .
For the sake of simplicity we will drop p in the index of πs,p if it is clear
which p is used.

41
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The symmetric projective norm is generally very impractical to calculate
because of the many possibilities for decompositions of a tensor and be-
yond that the different choices of values of p. Therefore we thought about
special cases depending on the value of p, in which the symmetric projec-
tive norm would be easier to calculate. Furthermore as a special issue, it
would be less complicated if the set of decompositions would be smaller.
With regard to the generalization of the completely positive cone, we were
able to prove the following result that deals only with nonnegative decom-
positions:

Theorem 4.2. Let z =
∑N
ν=1 uν ⊗ uν with uν ≥ 0. If p = 1 or p = 2, then:

πs,p(z) =

N∑
ν=1

‖uν‖2p .

Proof. First we prove the case p = 1: Consider z =
∑N
ν=1 uν ⊗ uν ∈ `n

1 ⊗
s `n

1
and uν ≥ 0. With z(i, j) we denote the (i, j)-th entry of z. Then:

πs

(
z; `n

1 , `
n
1

)
≥ π

(
z; `n

1 , `
n
1

)
=

n∑
i, j=1

∣∣∣z(i, j)
∣∣∣

=

n∑
i, j=1

z(i, j)

=

N∑
ν=1

 n∑
i, j=1

uν(i) · uν( j)


=

N∑
ν=1

 n∑
i=1

uν(i)

2

=

N∑
ν=1

‖uν‖21

≥ πs

(
z; `n

1 , `
n
1

)
.

This chain of inequalities shows that

πs

(
z; `n

1 , `
n
1

)
≥

N∑
ν=1

‖uν‖21 ≥ πs

(
z; `n

1 , `
n
1

)
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and therefore the equality is proved:

πs

(
z; `n

1 , `
n
1

)
=

N∑
ν=1

‖uν‖21 .

Now we show the property for p = 2: Let z =
∑N
ν=1 uν ⊗ uν ∈ `n

2 ⊗
s `n

2 and
uν ≥ 0. With z(i, j) we denote again the (i, j)-th entry of z. Furthermore let
λν(z) with ν = 1, . . . ,K be the singular values of z. Then:

πs

(
z; `n

2 , `
n
2

)
≥ π

(
z; `n

2 , `
n
2

)
=

K∑
ν=1

|λν(z)|

=

K∑
ν=1

λν(z)

= tr(z)

=

n∑
i=1

z(i, i)

=

N∑
ν=1

 n∑
i=1

uν(i) · uν(i)


=

N∑
ν=1

n∑
i=1

(uν(i))
2

=

N∑
ν=1

‖uν‖22

≥ πs

(
z; `n

2 , `
n
2

)
.

Again this chain of inequalities shows that

πs

(
z; `n

2 , `
n
2

)
≥

N∑
ν=1

‖uν‖22 ≥ πs

(
z; `n

2 , `
n
2

)
and therefore equality holds:

πs

(
z; `n

2 , `
n
2

)
=

N∑
ν=1

‖uν‖22 .

�
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Remark 4.3. Note that in the case p = 1 the restriction uν ≥ 0 for all ν is
essential for the proof of Theorem 4.2. But in the case p = 2 this restriction
is not necessary for the proof. So this property holds for any positive
semidefinite z, and not only for completely positive z. But nonetheless it
is a useful result that we need just a single - and particularly nonnegative
- decomposition to determine πs,p.

In the next example we will show that in the case p ∈ (1, 2) the equality
from Theorem 4.2 does not hold in general:

Example 4.4. Let A =

(
2 1
1 2

)
. We have one decomposition A =

∑2
i=1 bi ⊗ bi

with b1 = (
√

3/2, 0)> and b2 = (1/
√

2,
√

2)> and a second A =
∑3

j=1 c j⊗c j with
c1 = (0, 1)>, c2 = (1, 1)> and c3 = (1, 0)>. First for p ∈ [1, 2] we determine:

2∑
i=1

‖bi‖
2
p =




√

3
2

p

+ 0p


1/p

2

+

(( 1
√

2

)p

+
√

2p

)1/p2

=
3
2

+
( 1
2p/2 + 2p/2

)2/p

=
3
2

+
1
2

(1 + 2p)2/p

whereas

3∑
j=1

∥∥∥c j

∥∥∥2

p
=

(
(0p + 1p)1/p

)2
+

(
(1p + 1p)1/p

)2
+

(
(1p + 0p)1/p

)2

= 1 + 22/p + 1

= 2 + 22/p.

Next we show that for p ∈ [1, 2] we have

3∑
j=1

∥∥∥c j

∥∥∥2

p
≥

2∑
i=1

‖bi‖
2
p .

Especially for p ∈ (1, 2) the inequality holds strictly. To illustrate this
inequality, we consider the graph of the difference

∑3
j=1

∥∥∥c j

∥∥∥2

p
−

∑2
i=1 ‖bi‖

2
p:
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Let p ∈ [1, 2], then:

2 + 22/p
≥

3
2

+
( 1
2p/2 + 2p/2

)2/p

⇔
1
2

+ 22/p
≥

( 1
2p/2 + 2p/2

)2/p

⇔ 1 + 22/p+1
≥ 2

( 1
2p/2 + 2p/2

)2/p

⇔ 1 + 22/p+1
≥ (1 + 2p)2/p.

To prove the inequality

(1 + 2p)2/p
≤ 1 + 22/p+1 (4.1)

we look for a function g(p) such that

(1 + 2p)2/p
≤ g(p) ≤ 1 + 22/p+1.

For this purpose we use the property that the map t 7→ t2/p is convex. For
λ ∈ (0, 1) we have:

(1 + 2p)2/p =

(
λ

1
λ

+ (1 − λ)
2p

(1 − λ)

)2/p

≤ λ
( 1
λ

)2/p

+ (1 − λ)
(2p)2/p

(1 − λ)2/p

=
( 1
λ

)2/p−1

+ 4
1

(1 − λ)2/p−1 =: g(p).
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For p = 1 by (4.1) and Theorem 4.2 we have (1 + 2p)2/p = 1 + 22/p+1, hence
(1 + 2p)2/p = g(p) = 1 + 22/p+1 and we can find a solution for λ ∈ (0, 1):(

1 + 21
)2

=
( 1
λ

)2/1−1

+ 4
( 1
1 − λ

)2/1−1

= 1 + 22/1+1

⇔
1
λ

+ 4
1

1 − λ
= 9

⇔ (1 − λ) + 4λ = 9λ(1 − λ)

⇔ 9λ2
− 6λ + 1 = 0

⇔ λ2
−

2
3
λ +

1
9

= 0

⇔

(
λ −

1
3

)2

= 0

⇔ λ =
1
3
.

With λ = 1
3 we get g(p) = 32/p−1 + 4

(
3
2

)2/p−1
. To simplify this expression we

substitute 2/p − 1 = : x and hence x ∈ [0, 1]. Then

g(x) = 3x + 4
(3
2

)x

and the right-hand side of (4.1) is equal to 1 + 2x+2 = 1 + 4 · 2x. Instead of
proving (4.1) we prove the following inequality for x ∈ [0, 1]:

3x + 4
(3
2

)x

≤ 1 + 4 · 2x

⇔ 1 + 4 · 2x
− 3x
− 4

(3
2

)x

≥ 0

⇔

(1
2

)x

+ 4 · 2x
·

(1
2

)x

−

(3
2

)x

− 4
(3
4

)x

≥ 0

⇔

(1
2

)x

+ 4 −
(3
2

)x

− 4
(3
4

)x

︸                        ︷︷                        ︸
= : f (x)

≥ 0.
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We have f (0) = 1 + 4 − 1 − 4 = 0 and f (1) = 1
2 + 4 − 3

2 − 3 = 0. To show
that the inequality above holds strictly for x ∈ (0, 1), it is enough to verify
that f : [0, 1]→ R is strictly concave. To prove this we calculate the second
derivative and show that f ′′(x) < 0 for x ∈ (0, 1):

f ′(x) = −2−x ln (2) −
(3
2

)x

ln
(3
2

)
+ 4 ·

(3
4

)x

ln
(4
3

)
,

where ln denotes the natural logarithm that has e as its base. Thus for
x ∈ (0, 1) we have:

f ′′(x) = − ln (2) (−2−x) ln (2) − ln
(3
2

) (3
2

)x

ln
(3
2

)
+ 4 ln

(4
3

) (3
4

)x

ln
(4
3

)
= ln2 (2)

(1
2

)x

− ln2
(3
2

) (3
2

)x

− 4 ln2
(4
3

) (3
4

)x

≤ ln2 (2)
(
1 −

x
2

)
− ln2

(3
2

) (
1 + ln

(3
2

)
x
)
− 4 ln2

(4
3

) (
1 + ln

(3
4

)
x
)

=

(
ln2 (2)
−2

− ln3
(3
2

)
− 4 ln3

(4
3

))
x + ln2 (2) − ln2

(3
2

)
− 4 ln2

(4
3

)
< −0.40212x − 0.014992

< 0.

The inequality in the third row follows with the Taylor series of
(

3
2

)x
and(

3
4

)x
. The inequality

(
1
2

)x
≤ 1 − x

2 is valid because
(

1
2

)x
is a convex function

and 1 − x
2 is a linear function and they are equal in x = 0 and x = 1. Hence

f is strictly concave on (0, 1). Therefore the inequality (4.1) is correct and
holds strictly if p ∈ (0, 1).

With this example we proved that if p ∈ (1, 2) then
∑2

i=1 ‖bi‖
2
p ,

∑3
j=1

∥∥∥c j

∥∥∥2

p
for

two different decompositions of A. So in these cases Theorem 4.2 does not
apply, and it is more complicated to determine the symmetric projective
norm. Here we have to find a decomposition for which the infimum is
attained.

In a second example we will see that even the quotient of the sum of
squared norms of two decompositions can be arbitrarily large and that
there is no way to estimate them against each other. In this example we
have a large representation with many different tensors.
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Example 4.5. Let 1 < p < 2 and let Pk
n := {S ⊂ {1, . . . ,n} : |S| = k}. Then∣∣∣Pk

n

∣∣∣ =
(n

k

)
. Set

A = (A(i, j))(i, j) :=
∑
S∈Pk

n

∑
i∈S

ei

 ⊗
∑

i∈S

ei

 ∈ Rn×n,

where ei denotes again the i-th unit vector in Rn. Since there exists a de-
composition consisting of nonnegative elements, A is completely positive.

If (i, j) ∈ {1, . . . ,n}2 then:

∣∣∣∣{S ∈ Pk
n : (i, j) ∈ S2

}∣∣∣∣ =


(n−1

k−1

)
: i = j(n−2

k−2

)
: i , j

and consequently

ai j =


(n−1

k−1

)
: i = j(n−2

k−2

)
: i , j.

With this property we get a second decomposition of A:

A =

(
n − 2
k − 2

)  n∑
i=1

ei

 ⊗
 n∑

j=1

e j

 +

((
n − 1
k − 1

)
−

(
n − 2
k − 2

)) n∑
i=1

ei ⊗ ei.

For the first representation of A we set:

∑
S∈Pk

n

∥∥∥∥∥∥∥∑i∈S ei

∥∥∥∥∥∥∥
2

p

=: αn.

And for the second decomposition of A we define:

(
n − 2
k − 2

) ∥∥∥∥∥∥∥
 n∑

i=1

ei


∥∥∥∥∥∥∥

2

p

+

((
n − 1
k − 1

)
−

(
n − 2
k − 2

)) n∑
i=1

‖ei‖
2
p =: βn.
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The comparison of both for p ∈ (1, 2) leads to

βn

αn
=

(n−2
k−2

)
=n2/p︷      ︸︸      ︷∥∥∥∥∥∥∥

 n∑
i=1

ei


∥∥∥∥∥∥∥

2

p

+
((n−1

k−1

)
−

(n−2
k−2

))
=n︷   ︸︸   ︷

n∑
i=1

‖ei‖
2
p

∑
S∈Pk

n

∥∥∥∥∥∥∥∑i∈S ei

∥∥∥∥∥∥∥
2

p︸        ︷︷        ︸
=(n

k)k2/p

=

(n−2)!
(k−2)!(n−k)!n

2/p +
(

(n−1)!
(k−1)!(n−k)! −

(n−2)!
(k−2)!(n−k)!

)
n

n!
k!(n−k)!k

2/p

=

(
(n − 2)!n2/p

(k − 2)!(n − k)!
+

(n − 1)!n
(k − 1)!(n − k)!

−
(n − 2)!n

(k − 2)!(n − k)!

)
k!(n − k)!

n!k2/p

=
(k − 1)kn2/p

(n − 1)nk2/p +
kn

nk2/p −
(k − 1)kn

(n − 1)nk2/p

=
k − 1
n − 1

k1−2/pn2/p−1 + k1−2/p
−

k − 1
n − 1

k1−2/p

= k1−2/p

(
k − 1
n − 1

n2/p−1︸       ︷︷       ︸
→0

(n→∞)

+1 −
k − 1
n − 1︸︷︷︸
→0

(n→∞)

)
,

for k fixed. It is also possible to choose k depending on n, due to the
convergence k is only allowed to grow as fast as

√
n. This shows that we

can choose k = kn such that

αn

βn
=

1

k1−2/p
(

k−1
n−1n2/p−1 + 1 − k−1

n−1

) →∞ (n→∞) .

This second example shows much more that for two decompositions the
values αn and βn can not be estimated against each other because the
quotient of both gets arbitrarily large. Therefore it is very difficult to
calculate πs,p if p ∈ (1, 2).
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The last case we will discuss is the case p > 2:

Proposition 4.6. Let z =
∑M
ι=1 uι ⊗ uι with uι ≥ 0. If p > 2 then

πs,p(z) , inf

 N∑
ν=1

‖xν‖2p : z =

N∑
ν=1

xν ⊗ xν, xν ≥ 0,N ∈N

 .
Proof. To prove the result, we consider the n × n identity matrix In and a
special decomposition of it:

In =

n∑
i=1

ei ⊗ ei,

where ei denotes again the i-th unit vector in Rn. This is up to rearrange-
ments or multiples the unique nonnegative and symmetric decomposition
of In. Therefore we know:

n∑
i=1

‖ei‖
2
p = n = inf

 N∑
ν=1

‖xν‖2p : In =

N∑
ν=1

xν ⊗ xν, xν ≥ 0,N ∈N

 .
There is no possibility to get a symmetric and nonnegative decomposition
with a smaller sum of squared norms. However, with [19, Section 8.8,
Corollary] it follows that

πs,p (In) =

n2/p if p ≥ 2
n if p ≤ 2.

For p > 2 and n ≥ 2 we get:

πs,p(In) = n2/p < n = inf

 N∑
ν=1

‖xν‖2p : In =

N∑
ν=1

xν ⊗ xν, xν ≥ 0,N ∈N

 .
In particular

n2/p

n
→ 0 for n→∞.

�

Therefore if p > 2 it is not possible to calculate πs,p by considering only the
nonnegative decompositions as Proposition 4.6 shows.
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Another question that arises while thinking about special properties of
the symmetric projective norm is whether there is any relation between
the number of summands of a decomposition and the size of its sum
of squared norms. For example whether a higher (or lower) number of
summands leads to a higher (or lower) sum of squared norms or the other
way around.

In a first result, we want to show that a decomposition with more sum-
mands may have the same norm.

Lemma 4.7. Let z =
∑m
ν=1 uν ⊗ uν. Then for any n > m there exists a different

decomposition z =
∑n
ι=1 wι ⊗ wι such that

∑m
ν=1 ‖uν‖

2
p =

∑n
ι=1 ‖wι‖

2
p.

Proof. Let k := n − m. We construct the decomposition as follows: For
ι = 1, . . . ,m − 1 we set wι := uν. Furthermore for ι = m, . . . ,m + k we define
wι := 1

√
k+1

um. Then obviously
∑m
ν=1 uν ⊗ uν =

∑n
ι=1 wι ⊗ wι = z, and we get

the following sums of squared norms for the two decompositions:

α :=
m∑
ν=1

‖uν‖2p =

m−1∑
ν=1

‖uν‖2p + ‖um‖
2
p

β :=
n∑
ι=1

‖wι‖
2
p =

m−1∑
ι=1

‖uι‖2p +

m+k∑
ι=m

∥∥∥∥∥∥ 1
√

k + 1
um

∥∥∥∥∥∥
2

p

.

To prove that both sums of squared norms have the same value, we calcu-
late their difference:

β − α =

m−1∑
ι=1

‖uι‖2p +

m+k∑
ι=m

∥∥∥∥∥∥ 1
√

k + 1
um

∥∥∥∥∥∥
2

p

−

m−1∑
ν=1

‖uν‖2p − ‖um‖
2
p

= (k + 1)

∣∣∣∣∣∣ 1
√

k + 1

∣∣∣∣∣∣
2

‖um‖
2
p − ‖um‖

2
p

= 0.

Hence it is true that
∑m
ν=1 ‖uν‖

2
p =

∑n
ι=1 ‖wι‖

2
p. �

As the above lemma shows, a larger number of summands does not neces-
sarily imply a larger sum of squared norms. The principle of duplicating
summands, which is used in the proof of Lemma 4.7, is well-known in
optimization. Although we duplicated only one summand, the result
would stay the same if we would duplicate more than one summand. In
optimization this principle is used for example in [26, Chapter 3].
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The next example shows a stronger statement of Lemma 4.7. Here we
will consider two decompositions and we will see that the one with more
summands has a smaller sum of squared norms.

Example 4.8. We consider the matrix

A =


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2


and two decompositions A =

∑6
i=1 bi ⊗ bi =

∑5
j=1 ci ⊗ c j. For the sake of

clarity we collect the vectors bi (i = 1, . . . , 6) and c j ( j = 1, . . . , 5) in matrices
B = (b1, b2, b3, b4, b5, b6) and C = (c1, c2, c3, c4, c5), respectively. Then:

B =


1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 ∈ R
5×6,

C =


1.1145 0.3408 0.4039 0.6885 0.00679
0.0009 0.0553 0.0773 1.3326 0.4639

0 0.1039 1.2388 0.6743 0
0 1.2046 0.3646 0.6277 0.1483

0.3129 0.3461 0.6143 0.3011 1.1464

 ∈ R
5×5.

We calculate now the sum of squared norms of the first decomposition:

6∑
i=1

‖bi‖
2
p = (1p + 1p + 1p + 1p + 1p)2/p + 5 · (1p)2/p

= 52/p + 5

and for the second decomposition we have:

5∑
j=1

∥∥∥c j

∥∥∥2

p
= (1.1145p + 0.3408p + 0.4039p + 0.6885p + 0.00679p)2/p

+ (0.0009p + 0.0553p + 0.0773p + 1.3326p + 0.4639p)2/p

+ (0p + 0.1039p + 1.2388p + 0.6743p + 0p)2/p

+ (0p + 1.2046p + 0.3646p + 0.6277p + 0.1483p)2/p

+ (0.3129p + 0.3461p + 0.6143p + 0.3011p + 1.1464p)2/p
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For these decompositions and p ∈ (1, 2) we have:
6∑

i=1

‖bi‖
2
p <

5∑
j=1

∥∥∥c j

∥∥∥2

p

To illustrate this inequality, we consider the graph of the difference∑6
i=1 ‖bi‖

2
p −

∑5
j=1

∥∥∥c j

∥∥∥2

p
:

Of course if p = 1 or p = 2 it results that
∑6

i=1 ‖bi‖
2
p −

∑5
j=1

∥∥∥c j

∥∥∥2

p
= 0 by

Theorem 4.2.

We have to mention here that the second decomposition in Example 4.8
comes from [26, Algorithm 2]. Thus we found an example where the
decomposition with the larger number of summands has a smaller value
of its sum of squared norms. An illustration for decompositions where the
one with the larger number of summands does also have a larger sum of
squared norms is Example 4.4.

Summarizing we can say: Although it would be a desirable result since
the symmetric projective norm would be easier to calculate, there is un-
fortunately no known relation between the number of summands of a
decomposition and the value of the sum of squared norms in general.

In this section we discussed the symmetric projective norm πs,p by consid-
ering different cases of p. We were able to prove for two special cases (p = 1
and p = 2) that πs,p can be calculated by considering only a single nonneg-
ative decomposition. These special cases also give hints for our goal to
generalize the topic of copositivity and completely positivity suitably in
infinite dimension. Furthermore we proved that this restriction is not pos-
sible in general, e.g. if p > 2, it is not possible to calculate πs,p by dealing
with only the nonnegative decompositions. Moreover we were able to
show that there is no direct relation between the number of summands of
a decomposition and the value of its sum of squared norms.
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4.2 Numerical experiments

In this section we will have a closer look at the symmetric projective norm
and its properties if p ∈ (1, 2). Unfortunately we were not able to prove
that the πs,p-norm can be calculated by considering only the nonnegative
decompositions in general. But we conjecture that the following equality
holds for any z ∈ `n

p ⊗
s `n

p that allows a symmetric nonnegative decompo-
sition:

πs,p(z) ?
= inf

 N∑
ν=1

‖xν‖2p : z =

N∑
ν=1

xν ⊗ xν, xν ≥ 0,N ∈N

 . (4.2)

Therefore in this section we will consider three different examples to ver-
ify conjecture (4.2) numerically. For each example we compute the sum
of squared p-norms for all suitable symmetric and nonnegative decom-
positions and determine the numerical minimum. Furthermore we will
show that there is at least one nonnegative decomposition for which the
minimum is attained. In these examples we will calculate the minimum
only for special completely positive matrices in R2×2 which can be de-
composed in the sum of two symmetric and positive semidefinite vector-
vector-products.

Let A be a (2 × 2)-completely positive matrix. Then we can represent A
in a general decomposition of two positive semidefinite matrices in the
following form:

A =

(
a2 c2

c2 b2

)
=

(
α2 αβ
αβ β2

)
+

(
γ2 γδ
γδ δ2

)
=

(
α
β

) (
α β

)
+

(
γ
δ

) (
γ δ

)
. (4.3)

Furthermore we assume that det(A) > 0, which means that A has full rank.
Therefore we have a2b2 > c4

≥ 0 which is equivalent to ab > c2
≥ 0. With

the decomposition in (4.3) we know that

a2 = α2 + γ2

b2 = β2 + δ2

c2 = αβ + γδ
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and with this we get the following reformulations as functions of α:

β =
αc2

a2 ±

√(
αc2

a2

)2

+ b2 −

(
α2b2

a2

)
−

c4

a2

γ =
c2
− αβ√

b2 − β2

δ =
√

b2 − β2.

(4.4)

Note here that it is also possible to define γ = −
c2
−αβ
√

b2−β2
and δ = −

√
b2 − β2,

but then, because of symmetry, the different cases we have to check change
analogously. Therefore without loss of generality we consider only the
cases γ =

c2
−αβ
√

b2−β2
and δ =

√
b2 − β2.

At this point we have to think about the domains of α and β. From equality
(4.3) we immediately get that:

|α| ≤ a and |β| ≤ b. (4.5)

If these conditions are fulfilled, then the terms under the roots in (4.4) are
nonnegative and we consider only real valued solutions, as desired.

It is clear from Definition 3.18 of πs,p that

πs,p(z) ≤

∥∥∥∥∥∥
(
α
β

)∥∥∥∥∥∥
2

p

+

∥∥∥∥∥∥
(
γ
δ

)∥∥∥∥∥∥
2

p

=
(
|α|p + |β|p

)2/p
+

(
|γ|p + |δ|p

)2/p .

(4.6)

Therefore, without loss of generality the interesting cases of α, β, γ and δ
are the following:

(i) α, β, γ, δ ≥ 0

(ii) α ≥ 0, β < 0, γ, δ ≥ 0.

It is easy to see that those are all cases we have to consider: There are 16
possible combinations to choose α, β, γ and δ either nonnegative or strictly
negative. In the following table we discuss all combinations and show that
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some of them are not suitable for our decomposition and the remaining
cases are equivalent to case (i) or (ii):

Combination α β γ δ equivalent to case
1 ≥ 0 ≥ 0 ≥ 0 ≥ 0 (i)
2 < 0 ≥ 0 ≥ 0 ≥ 0 (ii)
3 ≥ 0 < 0 ≥ 0 ≥ 0 (ii)
4 ≥ 0 ≥ 0 < 0 ≥ 0 (ii)
5 ≥ 0 ≥ 0 ≥ 0 < 0 (ii)
6 < 0 < 0 ≥ 0 ≥ 0 (i)
7 < 0 ≥ 0 < 0 ≥ 0 /
8 < 0 ≥ 0 ≥ 0 < 0 /
9 ≥ 0 < 0 < 0 ≥ 0 /

10 ≥ 0 < 0 ≥ 0 < 0 /
11 ≥ 0 ≥ 0 < 0 < 0 (i)
12 ≥ 0 < 0 < 0 < 0 (ii)
13 < 0 ≥ 0 < 0 < 0 (ii)
14 < 0 < 0 ≥ 0 < 0 (ii)
15 < 0 < 0 < 0 ≥ 0 (ii)
16 < 0 < 0 < 0 < 0 (i)

Table 4.1: Different cases

Four of them (combinations 7, 8, 9 and 10) are not suitable for our decom-
position, e.g. combination 7 (α, γ < 0 and β, δ ≥ 0) leads to c2 = αβ+γδ < 0,
which is a contradiction to c2

≥ 0.
So there are 12 combinations left: The combinations 1, 6, 11 and 16 are
equivalent to case (i). The other combinations (2, 3, 4, 5, 12, 13, 14 and
15) are all equivalent to case (ii): All of them describe the case that one
vector of the decomposition (4.3) has only entries with the same sign and
the other vector has entries with different signs. Switching the signs in
the same vector (the negative to positive and vice versa) leads to the same
decomposition and the same value of the sum of squared norms. Thus,
Table 4.1 lists all possible combinations and hence it is enough to consider
only the cases (i) and (ii). So without loss of generality, we can assume
α ≥ 0 and γ ≥ 0 for the rest of our calculations.
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Note that in the case (i) we use only the positive root to calculate β, i.e.

β =
αc2

a2 +

√(
αc2

a2

)2

+ b2 −

(
α2b2

a2

)
−

c4

a2

and in case (ii) the negative one, i.e.

β =
αc2

a2 −

√(
αc2

a2

)2

+ b2 −

(
α2b2

a2

)
−

c4

a2 .

Furthermore we have to ensure that b2
− β2 , 0 in order to have γ well

defined.

At this point we want to discuss a possible necessary condition to find a
decomposition for which the right-hand side of (4.6) gets minimal. An
intuitive approach would be to calculate the derivative of the right-hand
side of (4.6), set it equal to zero and solve the equation. We will show now
that this is not as easy as it seems. First we have to calculate the derviative
of the right-hand side in (4.6), which was done by Wolfram Mathematica,
Version 10.3. Note that we consider only the case

β =
αc2

a2 +

√(
αc2

a2

)2

+ b2 −

(
α2b2

a2

)
−

c4

a2 .

The case with the negative sign before the root works analogously.

Then the derivative in case (i) is the following:
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d
dα

((
|α|p + |β|p

)2/p
+

(
|γ|p + |δ|p

)2/p
)

=
d

dα

((
αp + βp)2/p

+
(
γp + δp)2/p

)
=

2
p

pαp−1 + p

c2

a2 +
2c4α

a4 −
2b2α

a2

2
√

t(α)

 (αc2

a2 +
√

t(α)
)p−1


(
αp +

(
αc2

a2 +
√

t(α)
)p) 2

p−1

+
2
p


b2
−

(
αc2

a2 +
√

t(α)
)2

p
2

+

 c2
− α

(
αc2

a2 +
√

t(α)
)

√
b2 −

(
αc2

a2 +
√

t(α)
)2


p

2
p−1 p

 c2
− α

(
αc2

a2 +
√

t(α)
)

√
b2 −

(
αc2

a2 +
√

t(α)
)2


p−1


−
αc2

a2 − α

(
c2

a2 +
2c4α

a4 −
2b2α

a2

2
√

t(α)

)
−

√
t(α)√

b2 −
(
αc2

a2 +
√

t(α)
)2

+

c2

a2 +
2c4α

a4 −
2b2α

a2

2
√

t(α)

 (αc2

a2 +
√

t(α)
) (

c2
− α

(
αc2

a2 +
√

t(α)
))

(
b2 −

(
αc2

a2 +
√

t(α)
)2
) 3

2


−p

c2

a2 +
2c4α

a4 −
2b2α

a2

2
√

t(α)

 (αc2

a2 +
√

t(α)
) b2

−

(
αc2

a2 +
√

t(α)
)2

p
2−1 ,

where t(α) = α2c4

a4 −
c4

a2 + b2
−

b2α2

a2 .

The derivative in case (ii) results analogously when replacing β by −β, i.e.

d
dα

((
|α|p + |β|p

)2/p
+

(
|γ|p + |δ|p

)2/p
)

=
d

dα

((
αp + (−β)p)2/p

+
(
γp + δp)2/p

)
.



4.2. NUMERICAL EXPERIMENTS 59

To calculate the minimum of (4.6) we have to solve

d
dα

((
|α|p + |β|p

)2/p
+

(
|γ|p + |δ|p

)2/p
)

= 0. (4.7)

In Mathematica there are two possibilities to solve this equation: exactly
with the command Solve or numerically with the command NSolve. None of
them supplies a result of (4.7). Using the first command Mathematica said
by itself that it can not solve the equation and using the second command,
we decided to cancel the calculation after more than an hour. The problem
here might be the following: The left-hand side of (4.7) can be converted
into a polynomial. But the degree of this polynomial is too high to calculate
its zeros via Mathematica since there exists no general algorithm to solve
such problems.

Since it was not possible to compute the minimum of the right-hand side
of (4.6) in the general case, we will consider three concrete examples, for
which we calculate the minimum numerically for different choices of p. The
numerical results are again computed by Wolfram Mathematica, Version
10.3.

Example 4.9. Let A =

(
2 1
1 2

)
. Then the trivial estimates in (4.5) give us

|α| ≤
√

2 and |β| ≤
√

2. Note that if p = 1, then the minimum of the right-
hand side of (4.6) is not attained in case (ii). The reason for that is the
following:

α2 + γ2 = 2

β2 + δ2 = 2
αβ + γδ = 1.

In case (ii), the last equation gives with the help of the triangle inequality

|αβ| + |γδ| ≥ |αβ + γδ| = 1.

Since we consider the case (ii), we can assume without loss of generality
α > 0, since the case α = 0 with β < 0, γ, δ ≥ 0 reduces to case (i) by
switching the signs. Thus it follows that αβ < 0 and therefore |αβ|+ |γδ| > 1.
Hence for p = 1 we get:

(|α| + |β|)2 + (|γ| + |δ|)2 = |α|2 + 2|α||β| + |β|2 + |γ|2 + 2|γ||δ| + |δ|2

> 2 + 2 + 2 · 1 = 6.
(4.8)
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From the proof of Theorem 4.2, we know that πs(A) =
∑n

i, j=1

∣∣∣A(i, j)
∣∣∣ if p = 1.

Therefore the minimum is equal to 6 and it can not be attained under the
conditions of case (ii). Then for different values of p the minimum, which
was calculated by Mathematica, is given by:

• p = 1: The minimum is equal to 6 and it is attained in case

(i) for all α ∈
[
0, 1
√

2

]
(ii) /

In the case p = 1 the minimum is attained for a nonengative decom-
position. In this case it is also possible to exclude the decompositions
that belong to case (ii) because of the special property (4.8) above.

• p = 2: The minimum is equal to 4 and it is attained in the given cases
for all

(i) α ∈
[
0, 1
√

2

]
(ii) α ∈ [0, 1.2233]

If p = 2, then the minimum is attained in each of the cases (i) and
(ii). Therefore it is possible to consider just the nonnegative decom-
positions to determine the minimum confirming, what was shown
in Theorem 4.2.

• p = 3
2 :

(i) min = 4.4377 for α = 0.3667

(ii) min = 4.4945 for α = 0

For p = 3
2 we get a nonnegative decomposition for which the mini-

mum is attained: α = 0.3667, β = 1.3662, γ = 1.3659, δ = 0.3654.

• p = 1.35:

(i) min = 4.7034 for α = 0.3667

(ii) min = 4.7656 for α = 0

For p = 1.35 the minimum is only attained for a single value of α in
each case. Moreover there exists a nonnegative decomposition with
α = 0.3667, β = 1.3662, γ = 1.3659, δ = 0.3654 for which the minimum
is attained.
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Figure 4.1: p = 3
2 , case (i) Figure 4.2: p = 1.35, case (i)

For each of our choices of p we receive a nonnegative decomposition of
A which leads the minimal sum of squared norms as the graphics show.
Furthermore in the special cases p = 1 and p = 2 the results illustrate
the property we proved in Theorem 4.2 that the minimum is attained for
every feasible decomposition. The other cases determine one nonnegative
decomposition, where the sum of squared norms is minimal.

Example 4.10. Let A =

(
3 1
1 1/2

)
. Then we know from (4.5) that |α| ≤

√
3

and |β| ≤
√

1/2. Note that if p = 1, then the minimum of the right-hand
side of (4.6) is not attained in case (ii). The argument for that is again:

α2 + γ2 = 3

β2 + δ2 = 1
2

αβ + γδ = 1.

As before the last equation gives via the triangle inequality:

|αβ| + |γδ| ≥ 1.

Since we consider case (ii) and we assume again without loss of generality
α > 0, we have αβ < 0. Thus |αβ| + |γδ| > 1 and for p = 1 we get:

(|α| + |β|)2 + (|γ| + |δ|)2 = |α|2 + 2|α||β| + |β|2 + |γ|2 + 2|γ||δ| + |δ|2

> 3 + 1
2 + 2 · 1 = 51

2 .
(4.9)

Then for different values of p the minimum, which was calculated by
Mathematica, is given as follows:
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• p = 1: The minimum is equal to 5.5 for all

(i) α ∈
[
0,
√

2
]

(ii) /

The minimum is attained for nonnegative decompositions if p = 1.
The case (ii) can be ignored again because of the inequality (4.9).

• p = 2: The minimum is equal to 3.5 for all

(i) α ∈
[
0,
√

2
]

(ii) α ∈ [0, 1]

Also here for p = 2 the minimum is attained for nonnegative decom-
positions in case (i).

• p = 3
2 :

(i) min = 3.9542 for α = 0.1433
(ii) min = 3.9602 for α = 0

If p = 3
2 the minimum is attained in case (i) for the nonnegative

decomposition α = 0.1433, β = 0.4546, γ = 1.7261, δ = 0.5416.

• p = 1.35:

(i) min = 4.2217 for α = 0.1433
(ii) min = 4.2283 for α = 0

If p = 1.35, then the minimum is only attained for a single value of α
in each case. Moreover the decomposition is nonnegative, since we
have α = 0.1433, β = 0.4546, γ = 1.7261, δ = 0.5416.

Figure 4.3: p = 3
2 , case (i) Figure 4.4: p = 1.35, case (i)
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Also in this second example we obtain a nonnegative decomposition for
every case, for which the sum of squared norms is minimal. Moreover
the special cases p = 1 and p = 2 supply the expected result, i.e. that the
minimum is attained for every nonnegative decomposition. In the other
cases we determined a minimal decomposition as the graphics show.

Example 4.11. Let A =

(
4 1
1 1/2

)
. Then we have by (4.5) that |α| ≤ 2 and

|β| ≤
√

1/2. Note that if p = 1, then the minimum of the right-hand side of
(4.6) is not attained in case (ii). The argument for that is again:

α2 + γ2 = 4

β2 + δ2 = 1
2

αβ + γδ = 1.

The last equation gives with the help of the triangle inequality:

|αβ| + |γδ| ≥ 1.

Because of case (ii) and without loss of generality α > 0, we have αβ < 0 as
well as |αβ| + |γδ| > 1. Thus for p = 1 we get:

(|α| + |β|)2 + (|γ| + |δ|)2 = |α|2 + 2|α||β| + |β|2 + |γ|2 + 2|γ||δ| + |δ|2

> 4 + 1
2 + 2 · 1 = 61

2 .
(4.10)

Then for different values of p the minimum, calculated by Mathematica, is
given by:

• p = 1: The minimum is equal to 6.5 for all

(i) α ∈
[
0,
√

2
]

(ii) /

If p = 1, then the minimum is attained for nonnegative decomposi-
tions. Also here the case (ii) can be ignored because of (4.10).

• p = 2: The minimum is equal to 4.5 for all

(i) α ∈
[
0,
√

2
]

(ii) α ∈
[
0,
√

2
]
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As before the minimum is attained for p = 2 and nonnegative decom-
positions.

• p = 3
2 :

(i) min = 4.9231 for α = 0.1233

(ii) min = 4.9302 for α = 0

Again the minimum is attained for p = 3
2 and a nonnegative decom-

position with α = 0.1233, β = 0.5299, γ = 1.9962, δ = 0.4682.

• p = 1.35:

(i) min = 5.1868 for α = 0.1233

(ii) min = 5.1949 for α = 0

If p = 1.35, then the minimum is again only attained for a single value
of α in each case. Moreover the decomposition is nonnegative with
α = 0.1233, β = 0.5299, γ = 1.9962, δ = 0.4682.

Figure 4.5: p = 3
2 , case (i) Figure 4.6: p = 1.35, case (i)

Also in this last example we were able to replicate the results from the
examples before. Again for p = 1 and p = 2 the minimum was attained for
every nonnegative decomposition and in the other cases we gave a non-
negative decomposition for which the sum of squared norms is minimal.

Conclusion

In this section we considered several matrix decompositions. Our goal was
to get more information about the case p ∈ (1, 2) and to justify our conjecture
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(4.2). Here we discussed which of the decompositions would be suitable
and restricted them to two different cases. Furthermore we calculated the
derivative of the sum of squared norms of this special decomposition and
equate it to zero to determine the minimum. Unfortunately Mathematica
was not able to solve this problem analytically. For some numerical results
we discussed three different examples and for every example the two dif-
ferent cases (i) and (ii). For each case we calculated the minimum of the
sum of p-norms numerically.
For each example and each case of p we found a nonnegative decompo-
sition for which the minimum is attained. In particular for p = 3

2 and
p = 1.35 there was a unique α for which the corresponding decomposition
is nonnegative.
These examples strengthened our conjecture

πs,p(z) ?
= inf

 N∑
ν=1

‖xν‖2p : z =

N∑
ν=1

xν ⊗ xν, xν ≥ 0,N ∈N

 ,
i.e. that theπs,p-norm can be calculated by considering only the nonnegative
decompositions if the matrix is completely positive for p ∈ (1, 2).

4.3 Interpretation for duality

In this section we will discuss the meaning of the symmetric projective
norm for our goal to generalize the topic of copositivity and completely
positivity in infinite dimension. In the cases p = 1 and p = 2 it is much
easier to calculate the projective norm, since the sum of squared norms is
constant for all nonnegative decompositions and the minimum is attained.

For the sake of simplicity we will discuss the needed spaces only for vectors.

First we will consider the case p = 1, which leads to Rn equipped with
the 1-norm ‖·‖1. This space is equivalent to the space of Borel measures
M({1, . . . ,n}) equipped with the total variation norm ‖·‖tv. Note that two
pairs (V, φ) and (W, ψ) are called equivalent if there is an isomorphism
f : V → W such that ψ = f ◦ φ, cf. [29, VI. Chapter 3]. We use the symbol
� to denote the equivalence of two products; thus:

(Rn, ‖·‖1) � (M({1, . . . ,n}), ‖·‖tv) ,

where the total variation norm is defined as follows:
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Definition 4.12. [48, Section 5.1] Let A be a σ-algebra of subsets of a set
Ω. A partition of Ω ∈ A is any finite set {A1, . . . ,An} of pairwise disjoint
subsets ofA satisfying

⋃n
i=1 Ai = Ω. If µ : A→ X is a vector measure, i.e. a

countable additive function with values in a Banach space X, then the total
variation norm of µ is given by

∥∥∥µ∥∥∥
tv

= |µ|(Ω) = sup

 n∑
i=1

|µ(Ai)| : {A1, . . . ,An} is a partition of Ω

 .
The dual space of (Rn, ‖·‖1) is (Rn, ‖·‖∞). This space is equivalent to
(C ({1, . . . ,n}) , ‖·‖∞), i.e.

(Rn, ‖·‖∞) � (C ({1, . . . ,n}) , ‖·‖∞) .

The second case p = 2 leads to the space Rn equipped with the 2-norm
‖·‖2. This space is equivalent the Hilbert space L2(m), where m denotes the
counting measure, equipped with the same norm ‖·‖2, i.e.

(Rn, ‖·‖2) �
(
L2(m), ‖·‖2

)
.

A very fundamental property in this context is that this Hilbert space is
selfdual, which is why we can consider the same space on the primal and
on the dual side.

On that basis we will discuss in the next chapter a generalization of co-
positivity and completely positivity that results from the first case p = 1.
After that we will discuss in Chapter 6 the generalizations of both cones
that follows from second case p = 2.



Chapter 5

Copositivity for continuous
kernels

In Chapters 4.1 and 4.3 we discussed that there are two practical cases
(p = 1 and p = 2), in which the symmetric projective norm can be calculated
comparatively easily. This leads us to the conclusion that in these two cases
also a generalization of the concept of copositivity would be possible to be
formulated in an appropriate way. In this chapter we will have a look at
the first case p = 1 and the resulting generalization which deals with the
copositive cone of continuous Hilbert-Schmidt kernels and the completely
positive cone of symmetric, signed Radon measures. Furthermore we
will give a representation of the completely positive cone by its extreme
rays and provide a copositive formulation of the stable set problem. The
theory which is discussed in this chapter is based on [24]. The formulated
statements and their proofs can be found there or in the references given
therein.

5.1 Theoretical results

Let V be a compact metric space with probability measure ω, which has to
be strictly positive on open sets. Such a measure ω always exists for the
following reason: If V is compact and metrizable, then V is also separable,
see Proposition A.4. So V has a countable dense subset (see Definition
A.2) and that is why there exists a sequence (xn)n∈N which lies dense in V.
Furthermore we choose a sequence an > 0 with

∑
n∈N an = 1 and also define

ω(A) :=
∑

n∈N anXA(xn) for any set A ⊆ V. Here XT(x) denotes the indicator

67
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function XT : V ⊃ T → {0, 1}, which is equal to 1 if x ∈ T and otherwise
equal to 0. Thus ω is a probability measure which is strictly positive on
open sets.

A natural generalization of finite n×n−matrices are real-valued continuous
Hilbert-Schmidt kernels on a compact Hausdorff space V. The set of
continuous Hilbert-Schmidt kernels is defined as follows:

C(V × V)sym =
{
K : V × V → R : K is symmetric and continuous

}
.

Here symmetry means that K is symmetric concerning its arguments, i.e.
for all x, y ∈ V we have K(x, y) = K(y, x).

Analogously to the finite case we give the following definition of copositi-
vity:

Definition 5.1. We name a kernel K ∈ C(V × V)sym copositive if∫
V

∫
V

K(x, y) f (x) f (y) dω(x)dω(y) ≥ 0 for all f ∈ C(V)≥0,

where C(V)≥0 denotes the convex cone of all nonnegative continuous func-
tions on V. The convex cone of copositive kernels is denoted by COPV.

Furthermore we have to think about a generalization of duality in infinite
dimension because we also want to find a representation of the dual cone
of the cone of copositive kernels. The dual space of C(V × V)sym equipped
with the supremum norm ‖·‖∞ consists of all continuous linear functionals
equipped with the 1−norm ‖·‖1. By the Riesz’ representation theorem A.5
the space of all continuous linear functionals equipped with the 1-norm
‖·‖1 can be identified with the space of symmetric, signed Radon measures
M(V × V)sym equipped with the total variation norm ‖·‖tv, see [27, 1.1
Definition] and Definition 4.12.

Therefore let K be a continuous kernel and let µ be a symmetric, signed
Radon measure on V × V. Then the duality is given by the pairing〈

K, µ
〉

=

∫
V×V

K(x, y) dµ(x, y). (5.1)

Moreover we have to equip the spaces C(V × V)sym and M(V × V)sym with
a topology, e.g. to define closure properties. Therefore we use the weakest
topologies which are compatible with the pairing (5.1), which are the weak
topology on C(V × V)sym and the weak∗ topology on M(V × V)sym.

Moreover with (5.1) we can give the following definition:



5.1. THEORETICAL RESULTS 69

Definition 5.2. The dual cone of the cone of copositive kernels is given by

CPV =
{
µ ∈M(V × V)sym :

〈
K, µ

〉
≥ 0 for all K ∈ COPV

}
,

which we call the cone of completely positive measures.

In the finite case a subset of the copositive cone is the cone of positive semi-
definite matrices. In infinite dimension we have the following definition:

Definition 5.3. A kernel K ∈ C(V × V)sym is called positive (semi-)definite if∫
V

∫
V

K(x, y) f (x) f (y) dω(x)dω(y) ≥ 0 for all f ∈ C(V),

where C(V) denotes the space of continuous functions. We denote the set
of positive semidefinite kernels by S+

V.

In [6, Lemma 1] Bochner proved that a kernel K ∈ C(V × V)sym is positive
semidefinite if and only if for any choice of x1, . . . , xN of finitely many
points in V, the matrix (K(xi, x j))N

i, j=1 is positive semidefinite. This is a
generalization of the finite characterization, cf. [5, Theorem 1.10 (c)].

In [24, Lemma 2.1] a similar property is shown for copositive kernels:

Lemma 5.4. Let V be a compact space with probability measureωwhich is strictly
positive on open sets. A kernel K ∈ C(V × V)sym is copositive if and only if for
any choice of finitely many points x1, . . . , xN ∈ V, the matrix (K(xi, x j))N

i, j=1 is
copositive.

Remark 5.5. An important aspect, which follows from Lemma 5.4, is that
the set COPV is independent of the choice of ω.

An alternative characterization of copositive kernels is the following, see
[24, Lemma 2.2]:

Lemma 5.6. A kernel K ∈ C(V×V)sym is copositive if and only if for any choice of
finitely many points x1, . . . , xN in V, the sum

∑N
i=1

∑N
j=1 K(xi, x j) is nonnegative.

Next we have a look at a representation of the cone of completely positive
measures by its extreme rays, for which the proof can be found in [24,
Proposition 2.3].
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Proposition 5.7. The cone of completely positive measures is equal to

CPV = cl cone

 N∑
i=1

aiδxi ⊗ aiδxi : N ∈N, xi ∈ V, ai ≥ 0

 ,
where the closure is taken with respect to the weak∗ topology Rn

⊗̂
s
πs
Rn and by δx

we denote the Dirac measure of x.

Next we will show that the set of extreme rays of the completely positive
cone consists of all product measures of the form µ ⊗ µ, where µ is a
nonnegative measure on V. For this purpose we have to formulate some
helping properties first. The next two statements and their proofs can be
found in [24, Lemma 2.5 and Proposition 2.6].

Lemma 5.8. Let B be a compact set in a topological space such that 0 < B. Then
the setK defined by the unionK =

⋃
λ≥0 λB is closed.

Proposition 5.9. The set

B = cl conv

 N∑
i=1

aiδxi ⊗ aiδxi : N ∈N, xi ∈ V, ai ≥ 0,
N∑

i=1

ai = 1


is weak∗ compact and the equality

CPV =
⋃
λ≥0

λB

holds. Hence the extreme rays ofCPV are exactly the rays generated by the extreme
points of B.

Furthermore we need two results from Choquet theory [45, Proposition 1.5
and Chapter 3, Theorem]:

Theorem 5.10 (Milman’s converse of the Krein-Milman theorem). Suppose
that X is a compact convex subset of a locally convex space. Suppose further that
Z ⊆ X, and that X = cl conv Z. Then the extreme points of X are contained in
the closure of Z, i.e. Ext (X) ⊆ cl Z.

Theorem 5.11 (Choquet). Suppose that X is a metrizable compact convex subset
of a locally convex space E, an let x0 ∈ X. Then there exists a probability measure
P on X which represents x0, i.e.

u(x0) =

∫
X

u(x) dP(x) for every continuous linear functional u on E,

and is supported by the extreme points of X, i.e. P(X \ Ext (X)) = 0.
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With these properties we can now prove the following theorem concern-
ing the extreme rays of the cone of completely positive measures, cf. [24,
Theorem 2.4].

Theorem 5.12. A measure generates an extreme ray of the coneCPV of completely
positive measures if and only if it is a product measure of the form µ ⊗ µ, where
µ ∈M(V) is a nonnegative measure on V.

Proof. First we define the following sets

M
+
1 (V) :=

{
µ ∈M(V) : µ ≥ 0, µ(V) = 1

}
K1 :=

{
µ ⊗ µ : µ ∈ M+

1

}
.

We will prove that

Ext (cl convK1) = K1,

i.e. the extreme rays of the closed convex hull of K1 are equal to K1. Since
K1 is weak∗ compact we get the first inclusion from Theorem 5.10:

Ext (cl convK1) ⊆ K1.

To prove the other inclusion, we assume that µ⊗µ ∈ K1 can be represented
as µ ⊗ µ = 1

2 (ν1 + ν2) for some ν1, ν2 ∈ cl convK1, i.e. that µ ⊗ µ can be
written as a convex combination of two product measures in cl convK1.
FurthermoreK1 is weak∗ compact and weak∗metrizable. Then by Theorem
5.11 there exist two probability measures P1,P2 on M+

1 such that for all
u ∈

(
M(V × V)sym

)′
the following description holds:

u(νi) =

∫
M+

1

u(ρ ⊗ ρ) dPi(ρ), i = 1, 2.

Let P := 1
2 (P1 + P2), then it follows that for all F ∈ C(V × V)sym

(µ ⊗ µ)(F) =
1
2

∫
M+

1

(ρ ⊗ ρ)(F) dP1(ρ) +

∫
M+

1

(ρ ⊗ ρ)(F) dP2(ρ)


=

∫
M+

1

(ρ ⊗ ρ)(F) d
(1
2

(P1 + P2)
)

(ρ)

=

∫
M+

1

(ρ ⊗ ρ)(F) dP(ρ).
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According to our conditions V is a compact metrizable space and hence
separable. Therefore the space C(V) of continuous functions on V is sepa-
rable too, cf. [49, p.33]. Consequently there exists a countable dense subset
H of C(V)≥0. Furthermore let f ∈ H and let 11V be the constant function
equal to 1 on V. Then we consider

F :=
1
2

( f ⊗ 11V) +
1
2

( f ⊗ 11V).

Therefore we have

µ( f ) = (µ ⊗ µ)(F)

=

∫
M+

1

(ρ ⊗ ρ)(F) dP(ρ)

=

∫
M+

1

ρ( f ) dP(ρ).

(5.2)

Analogously we set F′ = f ⊗ f and get

µ( f )2 = (µ ⊗ µ)(F′)

=

∫
M+

1

(ρ ⊗ ρ)(F′) dP(ρ)

=

∫
M+

1

ρ( f )2 dP(ρ).

(5.3)

If µ( f ) = 0, then by (5.2) it follows that ρ( f ) = 0 P-almost everywhere.
Furthermore if µ( f ) > 0, we divide (5.2) and (5.3) by µ( f ) and µ( f )2, respec-
tively, and get the following equations:∫

M+
1

ρ( f )
µ( f )

dP(ρ) = 1 =

∫
M+

1

ρ( f )2

µ( f )2 dP(ρ).

Therefore there exists a set N f ⊂ M
+
1 with P(N f ) = 0 such that ρ( f ) = µ( f )

for all ρ ∈ M+
1 \ N f . Furthermore we set N =

⋃
f∈H N f and since H is

countable we know that P(N) = 0 and ρ( f ) = µ( f ) for all ρ ∈ M+
1 \ N

and for all f ∈ H. Since H is dense in C(V)≥0 it follows that ρ = µ for all
ρ ∈ M+

1 \N.

Because 0 ≤ Pi(N) ≤ 2P(N) = 0 we get for i = 1, 2 and for all F ∈ C(V×V)sym
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that

νi(F) =

∫
M+

1 \N
(ρ ⊗ ρ)(F) dPi(ρ)

=

∫
M+

1 \N
(µ ⊗ µ)(F) dPi(ρ)

= (µ ⊗ µ)(F)
∫
M+

1 \N
dPi(ρ)

= (µ ⊗ µ)(F).

Hence, ν1 = ν2 = µ ⊗ µ, so µ ⊗ µ can be represented only by a convex
combination of itself, i.e. µ ⊗ µ ∈ Ext (cl convK1) and the second inclusion
is proved. Consider now cl convK1 = B and with Proposition 5.9 the
theorem follows. �

Remark 5.13. Theorem 5.12 also gives us another representation of the
cone of completely positive measures by its extreme rays:

CPV = cl

 N∑
ν=1

µν ⊗ µν : µν ∈M(V), µν ≥ 0, ν = 1, . . . ,N,N ∈N

 .
5.2 Duality

In this section we will have a look at two special applications of copositive
optimization in infinite dimension. The first one is the stable set problem
that determines the stability number. In [24, Chapter 3] the authors formu-
lated the stable set problem of an infinite graph as a completely positive
program and by duality this leads to a copositive program. For both prob-
lems strong duality holds. The second application we will consider in this
section is the so-called kissing number problem, which can be illustrated
as the stable set problem over a sphere. In [24, Chapter 4] the authors gave
a copositive formulation of this problem too.

First we have to define a generalization of a graph in infinite dimension,
cf. [24, Definition 1.1]:

Definition 5.14. Consider a graph whose vertex set is a Hausdorff topolog-
ical space. An open clique is an open subset of the vertex set, where every
two vertices are adjacent. The graph is called topological packing graph if
each finite clique is contained in an open clique.
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As a generalization of (2.6) in [24, Chapter 3] the authors gave the following
copositive formulation of the maximum stable set problem: Let G = (V,E)
be a compact topological packing graph with metrizable vertex set. Fur-
thermore let Ē =

{{
x, y

}
: x , y,

{
x, y

}
< E

}
and D = {(x, x) : x ∈ V}. Then the

copositive program which supplies the stability number is the following:

α(G) = inf t
s.t. t ∈ R,K ∈ COPV

K(x, x) = t − 1 for all x ∈ V
K(x, y) = −1 for all

{
x, y

}
< E.

(5.4)

To receive the dual program the authors followed the arguments in [3,
Chapter IV]. The problem (5.4) can be seen as a general conic problem of
the form

inf 〈x, c〉1
s.t. x ∈ K , Ax = b

(5.5)

with the notations as follows:

x = (t,K) ∈ R × C(V × V)sym

c = (1, 0) ∈ R ×M(V × V)sym

〈·, ·〉1 :
(
R × C(V × V)sym

)
×

(
R ×M(V × V)sym

)
→ R

K = R≥0 × COPV

A : R × C(V × V)sym → C(V) × C(Ē)
A(t,K) = (x 7→ K(x, x) − t, (x, y) 7→ K(x, y))

b = (−1,−1) ∈ C(V) × C(Ē).

Indeed, the condition t ∈ R can be easily replaced by t ∈ R≥0 in (5.4) since
t ≥ 0 holds automatically because diagonal elements of copositive kernels
are nonnegative. The dual problem of (5.5) has the following form:

sup
〈
b, y

〉
2

c − A∗y ∈ K ∗.

We use the following notation:

〈·, ·〉2 : (C(V) × C(Ē)) × (M(V) ×M(Ē))→ R
y = (µ0, µ1) ∈M(V) ×M(Ē)
A∗ : M(V) ×M(Ē)→ R ×M(V × V)sym

A∗(µ0, µ1) = (−µ0(V), µ0 + µ1)
K
∗ = R≥0 × CPV.
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Note that the map A∗ is the adjoint of A because

〈
A(t,K), (µ0, µ1)

〉
2 =

∫
V

K(x, x) − t dµ0(x) +

∫
Ē

K(x, y) dµ1(x, y)

= −tµ0(V) +

∫
V×V

K(x, y) d(µ0 + µ1)(x, y)

=
〈
(t, k),A∗(µ0, µ1)

〉
1 .

Thus, we receive the dual of (5.4), which is a completely positive program:

sup µ(V × V)
s.t. µ ∈ CPV

µ(D) = 1
suppµ ⊆ D ∪ Ē,

(5.6)

where µ = −µ0 − µ1 and the support of a measure µ is given by

suppµ = (V × V) \O

and

O =
⋃

W open in V×V
µ(W)=0

W.

Furthermore the authors were able to prove that the optimal value of the
completely positive program (5.6) is equal to the stability number too:

Theorem 5.15. Let G = (V,E) be a compact topological packing graph. Then the
optimal value of the completely positive program (5.6) is attained and equals α(G).

In [24, Theorem 3.2] they were also able to prove that strong duality holds
for (5.4) and (5.6):

Theorem 5.16. There is no duality gap between the primal copositive program
(5.4) and the dual completely positive program (5.6). In particular the optimal
value of both programs equals α(G).
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5.3 Application

A special application of the maximum stable set problem is the so-called
kissing number problem. The kissing number inRn is the maximum num-
ber τn of unit spheres that can be arranged simultaneously around a unit
sphere in an n-dimensional space without pairwise overlapping. A exten-
sive overview over the known kissing numbers so far and the development
of this topic can be found in [2] and the references given therein. The fol-
lowing facts can be found in [2, Introduction]. Up to now the values of τn

are only known for n = 1, 2, 3, 4, 8, 24. For the other values of n only lower
and upper bounds are known. It is not difficult to identify the kissing num-
ber for n = 1 and n = 2, where the centers of the spheres are arranged in a
line and in a plane, respectively. It becomes more difficult for larger n. For
n = 3 the kissing number is τ3 = 12. Furthermore in this case the points can
be moved around obtaining infinitely many new suitable configurations
apart from the configurations that arise by orthogonal transformation. In
dimension n = 4 it is known that τ4 = 24, but a proof of the uniqueness up
to orthogonal transformations of the optimal configuration of points is still
an open problem. Moreover the known kissing numbers in higher dimen-
sions are τ8 = 240 and τ24 = 196560. In contrast to dimension 4, in these
cases it is known that the optimal configuration of points of the spheres
is unique up to orthogonal transformations. Additionally the difference
between the lower and upper bounds can be very big, e.g. for n = 5 the
lower bound is equal to 40 and the upper bound is equal to 44, while the
bounds for n = 20 are 17400 and 36764. Moreover in [2] an approach by
semidefinite programming is used to verify the known kissing numbers
(n = 3, 4, 8, 24) and to calculate new upper bounds for the kissing number
in dimension n = 5, 6, 7, 9, 10, 13, 14, 15, 16, 17.

In [24, Chapter 4] the authors gave the following copositive formulation of
the kissing number problem:

inf t
s.t. t ∈ R,K ∈ COPSn−1

K(x, x) = t − 1 for all x ∈ Sn−1

K(x, y) = −1 for all x, y ∈ Sn−1 with x>y ∈ [−1, 1/2] ,

(5.7)

where Sn−1 = {x ∈ Rn : x>x = 1} denotes the n-dimensional unit sphere.

In [24, Chapter 4] they also showed that the copositive program (5.7) can be
approximated by a sequence of semi-infinite linear programs, i.e. programs
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with a finite number of variables and an infinite number of constraints.
Their reasoning is the following: The packing graph is invariant under
the orthogonal group. Therefore the copositive formulation is invariant
under this group too. By convexity the copositive formulation (5.7) can be
restricted to copositive kernels which are invariant under the orthogonal
group. Thus K(x, y) depends only on the inner product x>y.

With the Theorem of Stone-Weierstrass it follows that polynomials lie dense
in C([−1, 1]), cf. [49, Satz I.2.10 and Satz VIII.4.7]. Therefore we can ap-
proximate K(x, y) by

∑d
k=0 ck(x>y)k. Then, by Lemma 5.6 the copositivity

condition K ∈ COPSn−1 translates to

N∑
i=1

N∑
j=1

d∑
k=0

ck(x>i x j)k
≥ 0 for all N ∈N and x1, . . . , xN ∈ Sn−1. (5.8)

The other constraints of (5.7) change in the same way and by considering
that x>x = 1 for x ∈ Sn−1, the following semi-infinite linear program results.
Its optimal value converges to the kissing number if the degree d tends to
infinity.

inf 1 +

d∑
k=0

ck

c0, . . . , cd ∈ R
N∑

i=1

N∑
j=1

d∑
k=0

ck(x>i x j)k
≥ 0 for all N ∈N and x1, . . . , xN ∈ Sn−1

d∑
k=0

cksk
≤ −1 for all s ∈ [−1, 1/2] .

The condition
∑d

k=0 cksk = −1 is relaxed to
∑d

k=0 cksk
≤ −1 to make the

problem feasible for finite degree d. This relaxation does not affect the
optimal value if d goes to infinity.

Further on all the difficulty of the problem lies in constraint (5.8). In contrast
to this, the other constraint

∑d
k=0 cksk

≤ −1 for all s ∈ [−1, 1/2] is quite easy.
Although there are infinitely many linear conditions on the coefficients ck,
this can be modeled equivalently as a semidefinite constraint using the
sum of squares technique for polynomial optimization, cf. [43, 37].
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5.4 Approximation hierarchies

Based on the results of [24], Kuryatnikova and Vera discussed in [36]
different ways to approximate the copositive cone COPV. Therein the
authors generalized the approaches from Peña et al. [44] and de Klerk
and Pasechnik [16] for an inner approximation of the copositive cone from
finite to infinite dimension. Note that also in infinite dimension the easiest
way to approximate COPV is to replace it by S+

V. Derived from Chapter
2.4 we will present here the generalizations of Cr

n and Qr
n. To that purpose

we repeat the definitions:

C
r
n =

A ∈ Sn : PA(x) ·

 n∑
i=1

x(i)2

r

has nonnegative coefficients

 ,
where PA(x) =

∑n
i=1

∑n
j=1 A(i, j)x(i)2x( j)2 for a given symmetric matrix A.

Furthermore we had

E
r
n =


∑
β∈Nn,
|β|=r

xβx>(Sβ + Nβ)x : Sβ ∈ S+
n ,Nβ ∈ Nn


Q

r
n =

A ∈ S+
n : x>Ax

 n∑
i=1

x(i)2

r

∈ E
r
n

 .
To approximate the kissing number, Kuryatnikova and Vera [36] extended
the definitions of Cr

n and Qr
n. Since they considered a special kind of

tensors which are used in numerical applications we will only present a
short summary of their generalizations and results. Of course we will
adjust our notation to their theory. For F ∈ C(Vd+2) and v = (v1, . . . , vd) ∈ Vd

let Fv = F(:, :, v1, . . . , vd) be the 2-slice of F obtained by fixing all but the
first two variables. Moreover a function F ∈ C(Vd+2) is called 2-psd if Fv is
positive definite for all v ∈ Vd.

We set Pd as the group of permutations on d elements. Then for any d ∈N
we define θ : C(Vd)→ C(Vd) as the symmetrization (Reynolds) operator:

θ(F) :=
1
d!

∑
η∈Pd

F(vη) ∀v ∈ Vd,

where vη = (vη(1), . . . , vη(d)) for a permutation η ∈ Pd. If d ∈ N, then for any
r ∈N, v ∈ Vd the lifting operator ·⊕r : C(Vd)→ C(Vd+r) is defined as

F(v) 7→ F⊕r(v,u1, . . . ,ur) for all u1, . . . ,ur ∈ V.
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Then the authors introduced the following sets:

C
r
V :=

{
K ∈ C(V × V)sym : θ(K⊕r) = θ(T), T ∈ C(Vr+2)≥0

}
,

Q
r
V :=

{
K ∈ C(V × V)sym : θ(K⊕r) = θ(S) + θ(T),

S,T ∈ C(Vr+2), T ∈ C(Vr+2)≥0, S is 2-psd
}
,

where C(Vd)≥0 :=
{
F ∈ C(Vd) : F(v) ≥ 0, ∀v ∈ Vd

}
denotes the set of non-

negative continuous functions on Vd. In particular if V = {1, . . . ,n}, then
C

r
V = Cr

n and Qr
V = Qr

n for any r. Furthermore the authors were able to
prove for V ⊆ Rn compact that

C
0
V ⊆ C

1
V ⊆ . . . ⊆ COPV,

Q
0
V ⊆ Q

1
V ⊆ . . . ⊆ COPV.

Define a kernel K as strictly copositive if there exists an ε > 0 such that for
any choice of v1, . . . , vn ∈ V we have

min
x∈∆

n∑
i=1

n∑
j=1

K(vi, v j) ≥ ε,

where ∆ = {x ∈ Rn : e>x = 1, x ≥ 0} denotes the standard simplex inRn. The
set of strictly copositive kernels is denoted by COP+

V.

For this generalization of the interior of the copositive cone the authors
were also able to prove that

COP
+
V ⊆

⋃
r∈N0

C
r
V ⊆

⋃
r∈N0

Q
r
V.

Apart from these convergence results they have also shown that the bounds
obtained by replacing COPV by Cr

V or Qr
V converge to the stability number

α(G) of a compact topological packing graph G = (V,E). With this tech-
niques and V = Sn−1 they were able verify the previously known kissing
numbers and give new lower and upper bounds for the unknown kissing
numbers.

For the sake of completeness we have to mention here that De Laat and
Vallentin presented in [17] the hierarchy las∗r which is based on Lasserre’s
hierarchy for finite graphs [38]. This hierarchy can be seen as a generaliza-
tion of K r

n. A description of these concepts in this thesis would go to far
and we refer to [17, Section 3].
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In this chapter we discussed copositivity for Hilbert-Schmidt kernels and
completely positivity for symmetric, signed Radon measures. Besides the
definition, we gave some interesting results in infinite dimension and in
particular the proof of extreme rays of the cone of completely positive
measures as an essential aspect. Furthermore we presented as an applica-
tions the generalization of the maximum stable set problem and the kissing
number problem. All of these results were obtained from [24]. Last we
cited the approximation hierarchies by Kuryatnikova and Vera [36]. In
the next chapter we will discuss what happens in the special case p = 2
and consider the copositive as well as the completely positive cone in the
selfdual Hilbert space L2(µ).



Chapter 6

Copositivity in Hilbert spaces

In this chapter we will discuss a generalization of the copositive and the
completely positive cone as well as their characteristics for the case p = 2
which leads to the space L2(µ), where µ is a σ-finite measure. We will
formulate and prove important properties of these cones and compare
them with the theory in finite dimension and the results from the case p = 1,
respectively. Furthermore we will give impressions of the difficulties that
result in this kind of generalization.

6.1 The copositive cone

First we will give a definition of the copositive cone concerning the space
L2(µ). For this purpose, we will repeat the definition of the copositive cone
concerning C(V) from Definition 5.1 and show the connection to the new
cone. Let E be either the space C(V) of all continuous real valued functions
on a metrizable compact space V or E = Lp(µ), with 1 ≤ p < +∞, for some
σ−finite measure µ on some measurable space (V,A), whereA is assumed
to be countably generated. Note that E = C(V) leads to the theory which
we discussed in Chapter 5 and E = L2(µ) leads to a new case, which we
will consider in this chapter. We remark that it is possible to give the
following definitions and to prove some of the results in the much more
general context of Riesz-spaces, but for our purpose the above spaces are
more than sufficient.

We will introduce in this chapter the copositive cone concerning L2(µ),
thus we denote from now on COPV =: COPC(V) to get a more noticeable
distinction between both cones. In [24, Inequality (2)] the cone COPC(V) of

81
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copositive kernels on a metrizable compact space V is defined as the cone
of all symmetric continuous functionals F on V × V such that∫

V

∫
V

F(x, y) f (x) f (y) dω(x)dω(y) ≥ 0

for all f ∈ C(V) and f ≥ 0. There ω is a regular measure on V such that
ω(O) > 0 for all ∅ , O ⊂ V is open. We remark thatCOPC(V) is independent
of such a measure ω. It is clear that COPC(V) equals to the cone of all
symmetric continuous functions F on V × V such that∫

V

∫
V

F(x, y) dµ(x)dµ(y) ≥ 0

for all regular Radon measure µ ≥ 0 on V, cf. (5.1), Remark 5.13 and [24].
Expressed in the language of the symmetric tensor product, COPC(V) is the
cone of all F ∈ C(V)⊗̂s

εs
C(V) such that〈

F, µ ⊗ µ
〉
≥ 0

for all µ ∈ C(V)′ = M(V) and µ ≥ 0. This is what we now take as a general
definition:

Definition 6.1. Let E = Lp(µ) for 1 ≤ p < +∞ or E = C(V). Then we set

COPE :=
{
z ∈ E⊗̂s

εs
E : 〈z, x′ ⊗ x′〉 ≥ 0 for all x′ ∈ E′, x′ ≥ 0

}
.

The copositive cone COPC(V) regarding the continuous functions over V
and its properties were discussed in Chapter 5. In this chapter we will now
have a closer look at COPL2(µ):

COPL2(µ) =
{
z ∈ L2(µ)⊗̂s

εs
L2(µ) : 〈z, x′ ⊗ x′〉 ≥ 0 for all x′ ∈ L2(µ)′, x′ ≥ 0

}
.

If z ∈ L2(µ)⊗̂s
εs

L2(µ), then there is a unique compact self-adjoint operator
T = Tz such that 〈

T f , f
〉

L2(µ) =
〈
z, f ⊗ f

〉
L2(µ)⊗̂s

εs L2(µ) .

With this identification the cone COPL2(µ) can be considered as the cone of
all self-adjoint compact operators T on L2(µ) such that

〈
T f , f

〉
L2(µ) ≥ 0 for

all f ∈ L2(µ) and f ≥ 0.

In contrast to the characteristics in finite dimension in Proposition 2.3, we
can prove the following theorem:
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Theorem 6.2. The copositive cone COPL2(µ) is a closed convex and pointed cone.
Furthermore it has no interior points if dim(L2(µ)) = +∞.

Proof. The copositive cone in L2(µ)⊗̂s
εs

L2(µ) is the dual cone of the set
span

{
f ⊗ f : f ∈ L2(µ), f ≥ 0

}
and hence convex and closed. To prove that

COPL2(µ) is pointed we assume that there is a z ∈ COPL2(µ) such that also
−z ∈ COPL2(µ). Then 〈z, x′ ⊗ x′〉 = 0 for all x′ ∈ L2(µ)′. Thus εs(z) = 0 and
hence z = 0. Last we prove that COPL2(µ) has no interior point. For this,
let (V,A, µ) be a σ-finite measure space with dim L2(µ) = +∞. We assume
that z is an interior point of COPL2(µ). Then there exists an ε > 0 such
that z − w ∈ COPL2(µ) for all w ∈ L2(µ)⊗̂s

εs
L2(µ) with εs(w) ≤ ε. Addition-

ally we denote z =
∑
∞

ν=0 λν fν ⊗ fν with an orthonormal basis ( fν)ν∈N0 and
λν ∈ R with λν → 0 as ν → ∞. Then there exists an n ∈ N with |λν| < ε/2
for all ν ≥ n. Furthermore for k ∈ N let wk ∈ L2(µ)⊗̂s

εs
L2(µ) be given by

wk =
∑
∞

ν=n λν fν ⊗ fν + ε
2

∑k
ν=n fν ⊗ fν. Thus z−wk ∈ COPL2(µ) and for f ∈ L2(µ)

it is valid that

〈
z − wk, f ⊗ f

〉
=

n−1∑
ν=0

λν
〈

f , fν
〉2
−
ε
2

k∑
ν=n

〈
f , fν

〉2

≤ max
0≤k≤n−1

|λk|

n−1∑
ν=0

〈
f , fν

〉2
−
ε
2

k∑
ν=n

〈
f , fν

〉2 .

Denote max1≤k≤n−1 |λk| =: s. To construct k ∈ N and f ∈ L2(µ) with〈
z − w, f ⊗ f

〉
< 0 it is sufficient to find an f ≥ 0 such that

s
n−1∑
ν=0

〈
f , fν

〉2
−
ε
2

∞∑
ν=n

〈
f , fν

〉2 < 0.

We assume that such an f does not exist. Then for all f ∈ L2(µ) with f ≥ 0
we have

∥∥∥ f
∥∥∥

L2(µ)
=

 ∞∑
ν=0

〈
f , fν

〉2


1
2

≤

(
1 +

2s
ε

) 1
2

 n−1∑
ν=0

〈
f , fν

〉2


1
2

.

We pick Xk ∈ A pairwise disjoint with µ(Xk) > 0 and
⋃

k Xk = V. For the
existence see [4, Chapter 7, Ex. 1.3]. Set fk := 1

µ(Xk)1/2XXk ≥ 0, where XA
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denotes again the indicator function. Then
∥∥∥ fk

∥∥∥
L2(µ)

= 1 holds and for all
g ∈ L2(µ) by the Cauchy-Schwarz inequality we have

|
〈

fk, g
〉

L2(Xk) | ≤
∥∥∥ fk

∥∥∥
L2(Xk)

∥∥∥g
∥∥∥

L2(Xk)
.

Since
∥∥∥g

∥∥∥2

L2(µ)
=

∑
k∈N

∥∥∥g
∥∥∥2

L2(Xk)
it follows that

∥∥∥g
∥∥∥

L2(Xk)
→ 0 for k → ∞.

Therefore 〈
fk, g

〉
L2(µ) =

〈
fk, g

〉
L2(Xk) → 0 for k→∞.

Indeed, the equality holds by the definition of fk. So in particular〈
fk, fν

〉
→ 0 for k→∞ and 0 ≤ ν ≤ n.

Thus we have

1 =
∥∥∥ fk

∥∥∥
L2(µ)

≤

(
1 +

2s
ε

) 1
2

 n−1∑
ν=0

〈
fk, fν

〉2


1
2

→ 0 for k→∞,

which is a contradiction. Therefore there exists an f ∈ L2(µ) with f ≥ 0 such
that

〈
z − wk, f ⊗ f

〉
< 0. But this is a contradiction to z−wk ∈ COPL2(µ). Thus

z − w < COPL2(µ) for all w ∈ L2(µ)⊗̂s
εs

L2(µ) with εs(w) ≤ ε. Consequently z
can not be an interior point of COPL2(µ) and the proof is complete. �

Remark 6.3. In contrast to COPL2(µ) the cone COPC(V) has a nonempty
interior, for example 11V×V is an interior point of COPC(V).

Analogous to Lemma 5.4 we can formulate and prove the following prop-
erty:

Lemma 6.4. Let z ∈ L2(µ)⊗̂s
εs

L2(µ). Then z ∈ COPL2(µ) if and only if for all
decompositionsE = {E1, . . . ,En} of V with Ei∩E j = ∅ (i , j) and 0 < µ(Ei) < +∞,
1 ≤ j ≤ n holds that

(〈
z,XEν ⊗ XEι

〉)
1≤ν,ι≤n is copositive.

Proof. Let z ∈ COPL2(µ) with z =
∑
∞

k=0 %khk ⊗ hk and let h0, hh, . . . be an
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orthonormal system in L2(µ). Then we have:〈
z,XEν ⊗ XEι

〉
=

∞∑
k=0

%k
〈
hk,XEν

〉 〈
hk,XEι

〉
=

∞∑
k=0

%k

∫
Eν

hk dµ
∫

Eι
hk dµ

=

n∑
ν=1

n∑
ι=1

〈
z, ανXEν ⊗ αιXEι

〉
=

〈
z,

n∑
ν=1

n∑
ι=1

αναιXEν ⊗ XEι

〉
=

〈
z,

 n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν

〉
≥ 0, for all αν ≥ 0.

Thus
(〈

z,XEν ⊗ XEι
〉)

1≤ν,ι≤n is copositive.
Conversely, let f ∈ L2(µ) and f ≥ 0. For ε > 0 choose E1, . . . ,En pair-
wise disjoint with 0 < µ(E j) < +∞ for all j and α1, . . . , αn ≥ 0 such that∥∥∥ f −

∑n
ν=1 ανXEν

∥∥∥
2
< ε. Then:

π

 f ⊗ f −

 n∑
ν=1

ανXEν ⊗

n∑
ν=1

ανXEν


≤π

 f ⊗

 f −
n∑
ν=1

ανXEν

 + f ⊗

 n∑
ν=1

ανXEν

 −  n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν


≤

∥∥∥ f
∥∥∥ ε + ε

(∥∥∥ f
∥∥∥ + ε

)
.

Therefore for ε > 0 and f ∈ L2(µ) with f ≥ 0 we can choose E1, . . . ,En

measurable and α1, . . . , αn ≥ 0 such that

πs

 f ⊗ f −

 n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν

 < ε.
Recall that in L2(µ) holds: π(z) = πs(z) for all z. Hence:〈

z, f ⊗ f
〉

=

〈
z, f ⊗ f −

 n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν

〉 +

〈
z,

 n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν

〉
≥ − ε.
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Consequently we have〈
z,

 n∑
ν=1

ανXEν

 ⊗  n∑
ν=1

ανXEν

〉 =

n∑
ν=1

n∑
ι=1

αναι
〈
z,XEν ⊗ XEι

〉
≥ 0,

and hence z ∈ COPL2(µ). �

By duality we have the following definition of the dual cone of COPE:

Definition 6.5. The completely positive cone CPE′ for E′, where E′ = C(V)′ or
E′ = L2(µ)′ is given as

CPE′ :=
{
z ∈

(
E⊗̂s

εs
E
)′

: 〈z,w〉 ≥ 0 ∀w ∈ COPE

}
.

With this definition the completely positive cone regarding C(V) and Lp(µ)
with 1 ≤ p < +∞ is given as follows. Since(

C(V)⊗̂s
εs

C(V)
)′

=
{
µ ∈ C(V × V)′ : µ symmetric

}
,

we get for the completely positive cone regarding C(V) that

CPC(V)′ =

{
µ ∈ C(V × V)′ : µ symmetric and

∫
V

K dµ ≥ 0 ∀K ∈ COPC(V)

}
.

If we consider E = Lp(µ) with 1 ≤ p < +∞we have(
Lp(µ)⊗̂s

εs
Lp(µ)

)′
= Lq(µ)⊗̂s

πs
Lq(µ)

for 1
p + 1

q = 1, cf. [19, Section 6.2]. With this property the completely positive
cone regarding Lp(µ) is

CPLp(µ) =
{
z ∈ Lq(µ)⊗̂s

πs
Lq(µ) : 〈z,w〉 ≥ 0 for all w ∈ COPLp(µ)

}
.

With these characteristics we will have a closer look at the completely
positive cone concerning L2(µ) and its special properties in the next section.
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6.2 The completely positive cone and its extreme
rays

In this section we will have a closer look at the completely positive cone
and especially at its extreme rays. Recall here some important aspects
of functional analysis which can be found in the Appendix. They will
be useful for some results we need to prove the representation of the
completely positive cone by its extreme rays, which is the goal of the
current section.

We define the following set

B :=
{

f ∈ L2(µ) : f ≥ 0,
∥∥∥ f

∥∥∥
L2(µ)
≤ 1

}
.

By Proposition A.3 the space L2(µ) is separable since by assumption (In-
troduction of Section 6.1) µ is σ-finite andA is countably generated. Thus
B equipped with the σ(L2(µ),L2(µ)′) = σ(L2(µ),L2(µ))-topology (= weak
topology) is compact and metrizable, and hence by Proposition A.4 a sep-
arable topological space. Therefore due to duality it is also possible to
consider the weak∗- topology σ(L2(µ)⊗̂πsL2(µ),L2(µ)⊗̂εsL2(µ)).

In contrast to the properties in the finite dimensional case in Proposition
2.3 we can prove the following theorem:

Theorem 6.6. CPL2(µ) is a closed convex pointed cone in L2(µ)⊗̂πsL2(µ) and it
has no interior points if dim(L2(µ)) = +∞.

Proof. Since the completely positive cone CPL2(µ) is the dual cone of the
copositive cone COPL2(µ), it is closed and convex. To prove that CPL2(µ)

is pointed we assume that z ∈ CPL2(µ) and that also −z ∈ CPL2(µ). Then
〈w, z〉 = 0 for all w ∈ L2(µ)⊗̂s

εs
L2(µ). Thus πs(z) = 0 and hence z = 0. To

prove that CPL2(µ) has no interior point we show that the generalization of
S

+
n in L2(µ)

S
+
L2(µ) :=

{
z ∈ L2(µ)⊗̂s

πs
L2(µ) :

〈
z, f ⊗ f

〉
≥ 0 ∀ f ∈ L2(µ)

}
has no interior point. Since CPL2(µ) ⊆ S

+
L2(µ)

it follows directly that also
CPL2(µ) has no interior point. Therefore let z ∈ S+

L2(µ)
be an interior point.

Then we have z =
∑
∞

ν=0 λν fν ⊗ fν, where f0, f1, . . . is an orthonormal system
in L2(µ), and 0 ≤ λν ↓ 0 with

∑
∞

ν=0 λν < ∞. Therefore there exists an ε > 0
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with z − εg ⊗ g ∈ S+
L2(µ)

for all g ∈ L2(µ) with
∥∥∥g

∥∥∥
L2(µ)

= 1. Let λν0 < ε and
g = fν0 , then

∞∑
ν=0

λν fν ⊗ fν − ε fν0 ⊗ fν0 =
(
λν0 − ε

)
fν0 ⊗ fν0 +

∞∑
ν=0
ν,ν0

λν fν ⊗ fν.

With λν0 − ε < 0 it follows that z − εg ⊗ g < S+
L2(µ)

since it has a negative
eigenvalue. Therefore S+

L2(µ)
has no interior points and hence neither has

CPL2(µ). �

Remark 6.7. Just like CPL2(µ) the cone CPC(V) has no interior points. Let
x0, x1 ∈ V with x1 , x0 and consider δx0 ⊗ δx0 ∈ CPC(V), where δx denotes the
Dirac measure of x. Then δx0 ⊗ δx0 − ε

(
δx1 ⊗ δx1

)
< CPC(V) for all ε > 0.

Remark 6.8. A preferable result in this context would be a generalization
of Lemma 2.4 in infinite dimension. Unfortunately this is not possible:
Consider

S
+
(L2(µ),σ) :=

{
z ∈ L2(µ)⊗̂s

σL
2(µ) :

〈
z, f ⊗ f

〉
≥ 0 ∀ f ∈ L2(µ)

}
.

This cone is pointed and has no interior point. MoreoverS+
(L2(µ),σ)

is selfdual,
thus its dual cone also has no interior points.

Remark 6.9. Another interesting question in this context is whether
a z ∈ CPL2(µ) can be approximated by a sequence zn ∈ CPL2(µ) with
zn ∈ span

(
XEν ⊗ XEι

)
such that z − zn ∈ CPL2(µ), i.e. zn =

∑
∞

ι=1 hι ⊗ hι with
hι ≥ 0 and further

∑
∞

ι=1 ‖hι‖
2
L2(µ) < πs(z) + ε. However, we were not able to

prove the existence of such a sequence so far.

Next we will repeat the definition of the trace for our purpose. It can be
found in [19, Section 2.5]:

Definition 6.10. Let E be a vector space. For a linear map T : E → E with
T =

∑m
l=1 xl⊗xl and representing matrix (〈el,Tek〉)lk , where e1, . . . , en is a basis

of E with coefficient functionals e∗k, cf. [39, p. 340, Definition], the trace is

tr(T) = tr

 m∑
l=1

xl ⊗ xl

 =

m∑
l=1

〈xl, xl〉 =

m∑
l=1

〈 n∑
k=1

〈xl, ek〉 e∗k, xl

〉
=

n∑
k=1

〈
e∗k,

m∑
l=1

〈xl, ek〉 xl

〉
=

n∑
k=1

〈
e∗k,Tek

〉
.
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Hence the trace of T is the sum of the diagonal elements of the representing
matrix of the mapping T. Because of the circumstance that we consider
here the case p = 2, where the symmetric projective norm of a completely
positive operator is constant for all decompositions by Theorem 4.2, we do
not need the representing matrix to calculate the trace.

Analogously to Theorem 4.2 we prove the following theorem:

Theorem 6.11. Let z ∈ L2(µ)⊗̂s
πs

L2(µ) with z =
∑N
ν=1 fν ⊗ fν and fν ≥ 0, then

πs(z) = tr(z) =

N∑
ν=1

∥∥∥ fν
∥∥∥2

L2(µ)
. (6.1)

Proof. The idea of the proof of (6.1) is to show both inequalities and thus
the equality holds. The trace is tr : E ⊗ E→ R with

∑
ν xν ⊗ xν 7→

∑
x′ν(xν).

Let z =
∑n
ν=1 fν ⊗ fν, then:

tr(z) = tr

 n∑
ν=1

fν ⊗ fν


=

n∑
ν=1

〈
fν, fν

〉
=

n∑
ν=1

∫
V

fν fν dµ

=

n∑
ν=1

∥∥∥ fν
∥∥∥2

L2(µ)

≥ πs(z).

Conversely let z =
∑N
ν=1 gν ⊗ hν, then:

tr(z) = tr

 N∑
ν=1

gν ⊗ hν


=

N∑
ν=1

〈
gν, hν

〉
≤

N∑
ν=1

∥∥∥gν
∥∥∥

L2(µ)
‖hν‖L2(µ) .
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The last inequality holds by the Cauchy-Schwarz inequality. Using the
infimum supplies the definition of the π-norm on the right-hand side of
the inequality:

tr(z) ≤ π(z) ≤ πs(z)

The last inequality holds by [28, Section 2.3]. Combining both inequalities
leads to (6.1):

πs(z) = tr(z) =

N∑
ν=1

∥∥∥ fν
∥∥∥2

L2(µ)
.

�

Remark 6.12. Note that the restriction f ≥ 0 is not necessary for the proof.
So this holds for any positive semidefinite z, and not only for completely
positive z.

Next for z ∈ CPL2(µ) with πs(z) = 1 we want to construct a probability space
(V,S ,P) such that ω 7→ fω ⊗ fω is measurable with respect to the Borel
σ-algebra and restricted as well as z =

∫
V

fω ⊗ fω dP(ω). Note here that the
measurability poses no problem, since every continuous map f : A→ B on
a metric (or topological) space A in the metric (or topological) space B is
Borel-measurable, cf. [27, III, Corollary 1.4].

But first we will prove the following lemma:

Lemma 6.13. The convex set conv
{
f ⊗ f : f ∈ L2(µ), f ≥ 0

}
is πs-dense in

CPL2(µ).

Proof. We use: If M ⊆ L2(µ) finite and ε > 0, then there exists a measurable
decomposition E = {E1, . . . ,En} of V such that∥∥∥∥∥∥∥ f −

n∑
ν=1

1
µ(Eν)

∫
Eν

f dµXEν

∥∥∥∥∥∥∥
L2(µ)

< ε for all f ∈M.
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We set SE : L2(µ)→ L2(µ) with f 7→
∑n
ν=1

(
1

µ(Eν)

∫
Eν

f dµ
)
XEν . Then:

∥∥∥SE( f )
∥∥∥2

L2(µ)
=

∫
V

 n∑
ν=1

(
1

µ(Eν)

∫
Eν

f dµ
)
XEν

2

dµ

=

n∑
ν=1

n∑
ι=1

1
µ(Eν)

1
µ(Eι)

(∫
Eν

f dµ
) (∫

Eι
f dµ

)
µ(Eν ∩ Eι)

=

n∑
ν=1

1
µ(Eν)2

(∫
Eν

f dµ
)2

µ(Eν)

=

n∑
ν=1

1
µ(Eν)

(∫
Eν

f dµ
)2

≤

n∑
ν=1

1
µ(Eν)

(∫
Eν
| f | dµ

)2

≤

n∑
ν=1

1
µ(Eν)

√
µ(Eν)2

(∫
Eν

f 2 dµ
) 1

2 ·2

=

n∑
ν=1

∫
Eν

f 2 dµ

=

∫
V

f 2 dµ

=
∥∥∥ f

∥∥∥2

L2(µ)
.

Furthermore we have SE( f ) ≥ 0 if f ≥ 0 and SE is self-adjoint. For a
measurable decomposition E of V we set R : L2(µ)⊗̂s

πs
L2(µ)→ L2(µ)⊗̂s

πs
L2(µ)

continuous and linear with
∑
∞

ν=0 λνgν ⊗ gν 7→
∑
∞

ν=0 λνSE(gν)⊗ SE(gν), where
λν ↓ 0 and g0, g1, . . . an orthonormal system of L2(µ). This map R fulfills
πs(R(z)) ≤ πs(z) and further

im(R) ⊂ span
{1

2
(
XEν ⊗ XEι +XEι ⊗ XEν

)
: 1 ≤ ν, ι ≤ n

}
⊂ L2(µ) ⊗ L2(µ).

Furthermore we have that R(CPL2(µ)) ⊂ CPL2(µ). In the following we need
to show for any z ∈ CPL2(µ), i.e. 〈z,w〉 ≥ 0 for all w ∈ COPL2(µ) that R(z) is
also in CPL2(µ), i.e. 〈R(z),w〉 ≥ 0 for all w ∈ COPL2(µ). For that purpose let
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z =
∑
∞

ν=0 λνgν ⊗ gν and w =
∑
∞

ι=0 %ιhι ⊗ hι. Then we have:

〈R(z),w〉 =

∞∑
ν=0

∞∑
ι=0

λν%ι
〈
SE(gν) ⊗ SE(gν), hι ⊗ hι

〉
=

∞∑
ν=0

∞∑
ι=0

λν%ι
〈
SE(gν), hι

〉2

=

∞∑
ν=0

∞∑
ι=0

λν%ι
〈
gν,SE(hι)

〉2

=

∞∑
ν=0

∞∑
ι=0

λν%ι
〈
gν ⊗ gν,SE(hι) ⊗ SE(hι)

〉
=

∞∑
ι=0

%ι 〈z,SE(hι) ⊗ SE(hι)〉

=

〈
z,
∞∑
ι=0

%ιSE(hι) ⊗ SE(hι)
〉
.

It remains to show that
∑
∞

ι=0 %ιSE(hι)⊗ SE(hι) ∈ COPL2(µ). Indeed since f ≥ 0
we have:〈 ∞∑

ι=0

%ιSE(hι) ⊗ SE(hι), f ⊗ f
〉

=

〈 ∞∑
ι=0

%ιhι ⊗ hι,SE( f ) ⊗ SE( f )
〉
≥ 0.

Therefore for z ∈ CPL2(µ) we have shown that R(z) ∈ CPL2(µ) and further
that R(z) =

∑K
k=1 δk fk ⊗ fk with fk ≥ 0. In the last step we need to show

that for a z ∈ CPL2(µ) with z =
∑
∞

ν=0 gν ⊗ gν and for all ε > 0 there exists a
decomposition E such that πs(z − RE(z)) < ε. Furthermore we choose n0

with
∑
∞

ν=n0+1 |λν| < ε/4 and select E such that

πs
(
SE(gν) ⊗ SE(gν) − gν ⊗ gν

)
<
ε
2

1∑n0
ν=0 |λν| + 1

.

Then:

πs (z − RE(z)) ≤
n0∑
ν=0

|λν|πs
(
SE(gν) ⊗ SE(gν) − gν ⊗ gν

)
+

∞∑
ν=n0+1

|λν|
∥∥∥SE(gν)

∥∥∥2

L2(µ)

+

∞∑
ν=n0+1

|λν|
∥∥∥gν

∥∥∥2

L2(µ)

<
ε
2

+ 2 ·
ε
4

= ε.
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Therefore conv
{
f ⊗ f : f ∈ L2(µ), f ≥ 0

}
lies πs-dense in CPL2(µ) and the

proof is complete. �

We will show now:

Theorem 6.14. Let (X,A , µ) be a σ-finite measure space such that A is countably
generated. Then for all z ∈ CPL2(µ) with πs(z) = 1 there exists a probability
measure P on B, equipped with the Borel σ-algebra in such a way that

z =

∫
B

f ⊗ f dP( f ).

Furthermore for every representation of that kind we have

1 = πs(z) =

∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dP( f ),

which is equivalent to

P
({

f ∈ B :
∥∥∥ f

∥∥∥
L2(µ)

< 1
})

= 0.

Proof. Let f (n)
ν ∈ L2(µ) with f (n)

ν ≥ 0 for n ∈N and ν = 1, . . . ,n. Furthermore
let

πs

z −
n∑
ν=1

f (n)
ν ⊗ f (n)

ν

→ 0 for n→∞. (6.2)

Moreover without loss of generality we have

n∑
ν=1

∥∥∥ f (n)
ν

∥∥∥2

L2(µ)
= πs

 n∑
ν=1

f (n)
ν ⊗ f (n)

ν

 = 1 (6.3)

simply by scaling. Write

n∑
ν=1

f (n)
ν ⊗ f (n)

ν =

∫
B

f ⊗ f dPn( f ), (6.4)

where Pn =
∑n
ν=1

∥∥∥ f (n)
ν

∥∥∥2

L2(µ)
δ f (n)

ν∥∥∥∥ f (n)
ν

∥∥∥∥
L2(µ)

. Thus every Pn is a probability measure

on B.
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Since C(B) is separable (cf. [49, p. 33]), there exists a convergent subse-
quence, which we denote by (Pn)n∈N. Then (Pn)n∈N converges to a proba-
bility measure P on B with respect to the weak∗-topology σ(Me(B),C(B))
by the compactness of probability measures.

For this we have to show that
∫
B

f ⊗ f dP( f ) exists. Thus we have to prove
that the map f 7→ f ⊗ f is continuous. Let w ∈ L2(µ)⊗̂s

εs
L2(µ), then we have

to show that for n→∞ holds:〈
fn ⊗ fn,w

〉
→

〈
f0 ⊗ f0,w

〉
.

For this we choose a z ∈ L2(µ)⊗L2(µ) such that εs(w−z) < ε and we consider〈
fn ⊗ fn − f0 ⊗ f0,w

〉
=

〈
fn ⊗ fn − f0 ⊗ f0,w − z

〉
+

〈
fn ⊗ fn − f0 ⊗ f0, z

〉
.

Thus we have |
〈

fn ⊗ fn − f0 ⊗ f0,w − z
〉
| ≤ 2ε. Let z =

∑
∞

ν=0 hν⊗hν. We know
that for all h ∈ L2(µ) it is valid that

〈
fn, h

〉
→

〈
f0, h

〉
. With

〈
fn, h

〉2
→

〈
f0, h

〉2

it follows that 〈
fn ⊗ fn, h ⊗ h

〉
→

〈
f0 ⊗ f0, h ⊗ h

〉
.

Hence 〈
fn ⊗ fn, z

〉
→

〈
f0 ⊗ f0, z

〉
and therefore 〈

fn ⊗ fn − f0 ⊗ f0, z
〉
→ 0 as n→∞.

Thus we have for n large enough

|
〈

fn ⊗ fn − f0 ⊗ f0,w − z
〉
| ≤ 2ε.

This proves that f 7→ f ⊗ f is continuous and that the integral
∫
B

f ⊗ f dP( f )
exists.

Then for all h ∈ L2(µ) it follows:

〈z, h ⊗ h〉 = lim
n→∞

n∑
ν=1

〈 f (n)
ν , h〉2

= lim
n→∞

∫
B

〈 f , h〉2 dPn( f )

=

∫
B

〈 f , h〉2 dP( f )

= 〈

∫
B

f ⊗ f dP( f ), h ⊗ h〉.
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With this we get z =
∫
B

f ⊗ f dP( f ). The first equality uses property (6.2)
and the second equality uses (6.4), i.e. that Pn converges on continuous
functions. The third equality holds by the weak∗ convergence of Pn to P
and the last equality is valid by the Theorem of Hille [23, II Theorem 6].

Last we show the second property of the theorem:∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dP( f ) = lim

n→∞

∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dPn( f )

= lim
n→∞

∫
B

∥∥∥ f
∥∥∥2

L2(µ)

n∑
ν=1

∥∥∥ fν
∥∥∥2

L2(µ)
dδ f (n)

ν
( f )

= lim
n→∞

∫
B

∥∥∥ f
∥∥∥2

L2(µ)
πs

 n∑
ν=1

f (n)
ν ⊗ f (n)

ν

 dδ f (n)
ν

( f )

= lim
n→∞

∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dδ f (n)

ν
( f )

= lim
n→∞

n∑
ν=1

∥∥∥ f (n)
ν

∥∥∥2

L2(µ)

= lim
n→∞

πs

 n∑
ν=1

f (n)
ν ⊗ f (n)

ν


= πs(z)
= 1.

The first equality holds by the weak convergence of Pn to P and the second
by the definition of Pn. The third, the fourth and the sixth equality are ful-
filled by (6.3). The seventh is satisfied by (6.2) and the last by assumption.

The property P
({

f ∈ B :
∥∥∥ f

∥∥∥
L2(µ)

< 1
})

= 0 follows directly with the equa-

tion
∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dP( f ) = 1. �

In the next theorem we will prove a representation of the extreme rays of
the completely positive cone.

Theorem 6.15. The set Ext
(
CPL2(µ)

)
of extreme rays of the completely positive

cone CPL2(µ) is given by

Ext
(
CPL2(µ)

)
=

{
[0,∞) f ⊗ f : f ∈ L2(µ), f ≥ 0

}
.
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Proof. Let A = [0,∞) z0 be an extreme ray ofCPL2(µ) with z0 , 0 and without
loss of generality πs(z0) = 1. Then by Theorem 6.14 we have

z0 =

∫
B

f ⊗ f dP( f )

for some probability measure P. For every measurable subset S ⊂ B we
have

z0 =

∫
S

f ⊗ f dP( f ) +

∫
B\S

f ⊗ f dP( f )

and since z0 is an extreme direction there exists some λS ≥ 0 such that

λSz0 =

∫
S

f ⊗ f dP( f ) (6.5)

for all measurable S ⊂ B. Then f 7→ f ⊗ f is P-almost surely constant.
The argument for this is the following: By equation (6.5) we know that∫

S
f ⊗ f dP( f ) ∈ span(z0). We consider {z0}

◦ =
{
w ∈ L2(µ)⊗̂s

εs
L2(µ) : w(z0) = 0

}
,

where {z0}
◦ denotes the annihilator of {z0} in L2(µ)⊗̂s

πs
L2(µ), cf. [39, p. 48/49

Definition and Remark]. Then let A ⊂ {z0}
◦ be countable and dense (this

is possible since L2(µ)⊗̂s
εs

L2(µ) is a separable Banach space). Then for all
w ∈ A it is valid that∫

S
w( f ⊗ f ) dP( f ) = 0 for all measurable S ⊂ B.

Then

f 7→ w( f ⊗ f ) ≡ 0 P−a.e.

Since A is countable there exists a measurable set N ⊆ B with P(N) = 0
such that w( f ⊗ f ) = 0 for all w ∈ A and for all f ∈ B \ N. Hence for all
f ∈ B \ N it holds f ⊗ f ∈ A◦ = span(z0). Therefore we have z0 = f0 ⊗ f0

with f0 ∈ L2(µ) and f0 ≥ 0.

Conversely let f0 ∈ L2(µ) with f0 ≥ 0 and
∥∥∥ f0

∥∥∥
L2(µ)

= 1. Furthermore let
f0 ⊗ f0 = z1 + z2 with z1, z2 ∈ CPL2(µ). Then for j = 1, 2 we have:

1
πs(z j)

z j =

∫
B

f ⊗ f dP j( f ), with P j

({
f :

∥∥∥ f
∥∥∥

L2(µ)
< 1

})
= 0. (6.6)
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And therefore:

f0 ⊗ f0 =

∫
B

f ⊗ f d(πs(z1)P1 + πs(z2)P2)( f ). (6.7)

Set P( f ) := [πs(z1)P1 + πs(z2)P2]( f ). Consequently we have:

1 =
(
πs( f0 ⊗ f0)

)2

=

∫
B

∥∥∥ f
∥∥∥2

L2(µ)
dP( f )

=

∫
B

1 d(πs(z1)P1 + πs(z2)P2)( f )

= πs(z1) + πs(z2).

Thus P is a probability measure. Furthermore it follows:

1 =
∥∥∥ f0

∥∥∥2

L2(µ)

=
〈

f0 ⊗ f0, f0 ⊗ f0
〉

=

∫
B

〈
f , f0

〉2 dP( f ).

The first equation holds by assumption. The second is true because of∥∥∥ f0

∥∥∥2

L2(µ)
=

〈
f0, f0

〉2
=

〈
f0 ⊗ f0, f0 ⊗ f0

〉
and the third follows with equality

(6.7): 〈
f0 ⊗ f0, f0 ⊗ f0

〉
=

〈∫
B

f ⊗ f dP( f ), f0 ⊗ f0

〉
=

∫
B

〈
f ⊗ f , f0 ⊗ f0

〉
dP( f )

=

∫
B

〈
f , f0

〉2 dP( f ).

Consequently we get
〈

f , f0
〉2

= 1 and
∥∥∥ f0

∥∥∥
L2(µ)

=
∥∥∥ f

∥∥∥
L2(µ)

= 1 for P-almost
all f . Thus f = ± f0 is valid for P-almost all f and with f ∈ B it follows
that f ≥ 0. This is why we have f = f0 P-almost everywhere as well
as P1- and P2-almost everywhere too. With f = f0 P-almost everywhere,
f0 ⊗ f0 = z1 + z2 and (6.6) we have:

z1 = πs(z1) · z0 and z2 = πs(z2) · z0.

Therefore z1 and z2 lie in the same extreme ray and thus f0⊗ f0 is an extreme
ray of CPL2(µ). �
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Remark 6.16. With the result from Theorem 6.15 we get a new representa-
tion of the completely positive cone CPL2(µ) by its extreme rays:

CPL2(µ) = cl conv cone
{

f ⊗ f : f ∈ L2(µ), f ≥ 0,
∥∥∥ f

∥∥∥
L2(µ)
≤ 1

}
,

where the closure is taken with respect to the weak∗- topology
σ(L2(µ)⊗̂πsL2(µ),L2(µ)⊗̂εsL2(µ)).

Remark 6.17. The proof of Theorem 6.15 also gives a characterization of
the extreme rays of the positive semidefinite cone S+

L2(µ)
:

Ext
(
S

+
L2(µ)

)
=

{
[0,∞) f ⊗ f : f ∈ L2(µ)

}
.

6.3 Duality and application?

With these theoretical basics the next step would be to formulate the pri-
mal and dual optimization problems over the copositive as well as the
completely positive cone similarly to Section 5.2. Unfortunately a direct
reformulation is not possible. The main difficulty with an exact reformu-
lation is that the trace is not defined in L2(µ)⊗̂s

εs
L2(µ).

An interesting application of these optimization problems would be the
kissing number problem, i.e. the maximum stable set problem over a cir-
cle. But also for this problem a direct copositive formulation is not possible
since we need measures that describe the feasible set correctly. In a direct
way this is very difficult to be realized in L2(µ), perhaps another way via
approximations would work.

Although we considered in this chapter another generalization concerning
L2(µ) instead of the set of continuous functions the results have a similar
structure like the outcome of Chapter 5. Of course both chapters differ in
essential characteristics, in particular the existence of usual tools, e.g. the
trace, was difficult to realize. But nevertheless we obtained a generalization
of the principle of copositivity as well as completely positivity that fits
suitably into the previous results of copositivity in finite and even more in
infinite dimension.
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6.4 Current literature

The topic of copositive optimization in infinite dimension is a topical sub-
ject in cone optimization hence not solely we have been doing research in
this topic. Therefore we will set [18] in contrast to our work.

The paper [18] by DeCorte, de Oliveira Filho and Vallentin, which was
published during our work, also treats a generalization of copositive and
completely positive optimization. In this paper the copositive and the
completely positive cones are also discussed concerning the space L2(µ).
Some of their definitions and results may look similar to our work although
the research was done independently. But in contrast to our theory, the au-
thors considered the tensor product concerning the Hilbert-Schmidt norm.
In our notation this is the space L2(µ)⊗̂s

σs
L2(µ) = L2(µ ⊗ µ), which is the

simplest way to generalize the theory. But in this space there is no trace
available. We discussed this topic in a more general way since we can
define the theory for all kernels, not only for continuous ones as it is the
case in [18]. Furthermore our generalization provides a trace that we can
define uniquely and that gives us the possibility to work via properties
of the diagonal or instruments like the polarization formula. In particular
the trace is an essential component in the formulation of the optimiza-
tion problems. Our theory in this chapter corresponds to the choice of a
maximal sized copositive and a minimal sized completely positive cone,
which we control via the tensor product concerning the projective or the
injective norm, respectively. In the paper of DeCorte et al. both cones were
defined regarding the tensor product equipped with the Hilbert-Schmidt
norm, which can be seen compared to our definitions as an in-between
concerning their size.
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Chapter 7

Conclusions and outlook

7.1 Summary

The goal of this thesis was to generalize the topic of copositivity and com-
pletely positivity suitably to an infinite dimensional space. In order to do
so we introduced the topic of copositivity in finite dimension in Chapter 2.
After a short motivation and preliminaries we presented some basic prop-
erties, the definition of the copositive and the completely positive cone as
well as their special properties, i.e. both are pointed closed convex cones
with nonempty interior. Furthermore we gave a representation of the
respective interiors and considered their extreme rays. In particular the
related optimization problems and duality statements were formulated.
As an application we considered binary quadratic problems and problems
from combinatorial optimization which can be formulated as copositive
programs. The advantage of the reformulation is that the complexity of
the new problem lies entirely in the cone constraint. Last we cite some
approximation hierarchies of the copositive cone.
In order to generalize this theory in infinite dimension we introduced
the background from functional analysis in Chapter 3 especially for Ba-
nach spaces. In this chapter we presented the tensor product of two vec-
tor spaces and three different tensor norms (projective, injective, Hilbert-
Schmidt norm), which can be defined over normed and especially Hilbert
spaces. For these norms we formulated special properties and explained
the duality between the projective and the injective norm. As a special topic
we presented the algebraic theory of the symmetric tensor product, which
forms the basis for the generalization of copositivity and completely posi-
tivity later. Also here we gave three different symmetric tensor norms: the

101
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symmetric projective, the symmetric injective and the symmetric Hilbert-
Schmidt norm. A crucial point is that these norms are in general not simply
the restrictions of the general norms to the symmetric spaces. They are cal-
culated only for the symmetric decompositions. Also for these norms we
presented some special properties and discussed the duality between the
symmetric projective and the symmetric injective norm. We illustrated this
chapter with some appropriate examples.
In Chapter 4 we discussed the symmetric projective norm in more detail.
We were able to prove that in two spacial cases (p = 1 and p = 2) the
symmetric projective norm can be determined by considering only the
nonnegative decompositions and in particular that one nonnegative de-
composition is enough for its calculation. Especially for the case p ∈ (1, 2)
we compute many different examples. For a special decomposition of a
positive semidefinite matrix we tried to verify our conjecture that also in
this case the symmetric projective norm can be determined via the non-
negative decompositions. These examples strengthen our conjecture but
unfortunately we were not able to prove this equality.
The symmetric projective norm leads not only to nice numerical results but
also gave us hints for our goal to generalize the topic of copositivity and
completely positivity suitably to infinite dimension. It is intuitive that if
the norm is quite easy to calculate, then we would also get a duality theory
in which calculations are possible.
The first case p = 1 leads to the setting of copositivity in Hilbert-Schmidt
kernels, which was first introduced in [24]. Analogous to the finite case
we gave in Chapter 5 the definitions of the cone of copositive kernels and
the cone of completely positive measures. Moreover we proved special
properties, in particular the representation of the completely positive cone
by its extreme rays. It is pleasant to see that the representations and prop-
erties look similar to the finite case. Nonetheless the proofs here are more
complicated. As an application we considered some problems from com-
binatorial optimization. The kissing number problem, which is a special
formulation of the stable set problem, was of particular interest. Regarding
this application we cited approximation hierarchies as a generalization of
the finite ones.
In Chapter 6 we discussed the respective generalizations of the copositive
and the completely positive cone for the second special case of the projec-
tive norm, i.e. p = 2. The advantage here in contrast to Chapter 5 is that this
case leads to the selfdual Hilbert space L2(µ), i.e. both cones, the copositive
and the completely positive, are subsets of the same space. Analogous to
the previous case, we defined the copositive and the completely positive
cone in L2(µ). As a pleasant result we proved that both cones are closed
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convex and pointed. In contrast to the finite case they have no interior
points. Another useful result was the characterization of the set of extreme
rays of the completely positive cone. The proof to this representation was
quite extensive and required some auxiliary statements which we proved
too. In this context we mentioned the difficulties relating to reformulate the
optimization problems. Last we referenced to the very topical literature.

7.2 Further research

As presented in this thesis copositive optimization in infinite dimension is
a new topic in optimization. Therefore we had to discuss the basic prop-
erties and generalizations of statements from finite dimension first. But
now there is a more specific framework to refine this topic. In particular
for Hilbert spaces the theory can be further developed.
There are many possibilities to expand this theory. Starting with finding
more representations, characteristics and properties of the copositive and
the completely positive cone, respectively. Like in Sections 2.4 and 5.4 an
approximation of COPL2(µ) would be a desirable extension of this topic. A
next step could be the formulation of the primal and the dual optimization
problems such that the basic properties in functional analysis hold true.
This theory around the primal-dual pair would offer many possibilities
for further research too. For example finding constraint qualifications or
necessary optimality conditions would be essential points in optimization.
A fundamental result in this context would be the proof of strong duality
between the primal and the dual program.
Furthermore a transfer of the known solution techniques from finite di-
mension like the simplex partition via inner and outer approximations or
the interior point method would be a new field in this context. Moreover
an application of this new theory to the topic of quadratic programs, es-
pecially standard quadratic programs, or to optimization problems with
binary constraints would also be worth considering. Apart from the kiss-
ing number problem there are many more problems from combinatorial
optimization that can be formulated as copositive program. It would be
interesting to transfer those into our context.
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Appendix

Here we will state some definitions and properties concerning separability,
which are relevant in Chapters 5 and 6. The use of these aspects from
functional analysis is explained in these chapters too.

Definition A.1. [15, p. 102] Let A be a σ-algebra on the set X. Then A
is countably generated if there is a countable subfamiliy C of A such that
A = σ(C ).

Definition A.2. [15, p. 86] A metric space is called separable if it has a
countable dense subset.

Proposition A.3. [15, Proposition 3.4.5] Let (X,A , µ) be a measure space and
1 ≤ p < +∞. If µ is σ-finite and A is countably generated, then Lp(X,A , µ) is
separable.

Proposition A.4. [35, §4, Section 5 (2)] Let (X, d) be a compact metrizable space.
Then (X, d) is separable.

Definition .1. [47, 3.16 Definition] A complex function f on a locally com-
pact Hausdorff space X is said to vanish at infinity if for every ε > 0 there
exists a compact set S ⊂ X such that | f (x)| < ε for all x not in S. We denote
the class of all continuous functions on X that vanish at infinity by C0(X).

Theorem A.5. [47, 6.19 Theorem] If X is a locally compact Hausdorff space, then
every bounded linear functional Φ on C0(X) is represented by a unique regular
complex Borel measure µ, in the sense that

Φ f =

∫
X

f dµ

for every f ∈ C0(X). Moreover, the norm of Φ is the total variation norm of µ:

‖Φ‖ =
∥∥∥µ∥∥∥

tv
(X).
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