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Chapter

Introduction

Model selection describes the process of formulating an appropriate model to describe a
relation between an observation and a statistic of interest. Choosing an ill-posed model
can either lead to the problem of having too little information to properly estimate the
statistic of interest, or having too much information and consequently describing fictitious
connections. These phenomena are called under- and overfitting, respectively. Accordingly,
a modeler’s objective is to select a model such that under- and overfitting are avoided.
Unfortunately, the process of manual model selection tends to resemble more an art than
a well described procedure. Often, it relies heavily on the modeler’s skills and personal
experience.

In the last few years, this paradigm of manual model selection has been challenged and
a variety of approaches to automated model selection were proposed. It is apparent that
the need for such mechanics is becoming more important with machine learning pushing
into everyday life. In fact, machine-aided data selection and filtering processes can greatly
increase explanatory quality and help users to interpret and comprehend the resulting model.
Additionally, with data becoming more complex, possible structures and patterns might not
be evidently revealed to a human operator, making it close to impossible to conduct a model
selection by hand. This particular problem is especially prevalent in applications such as
prediction of drug resistance or cancer screening. The problem of selecting relevant features
of possibly opaque and incomprehensible data became a significant topic in communities
ranging from mathematics, machine learning, statistics, computer science to biology and
medicine. Some examples of model selection are the following:

e Cancer prediction: Determine which genes are responsible for which type of cancer.
The research measured 4718 genes of 349 cancer patients with 15 types of cancer.
Hastie, Tibshirani, and Wainwright (2015) were able to relate each cancer type to a
small subset of all observed genes. The resulting model can predict the cancer type
correctly with a 90% success rate.
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o Estimation of supernova distance/luminance: Uemura, Kawabata, Ikeda, and Maeda
(2015) are using the Lasso method to select explanatory variables in order to estimate
luminance and thus the distance of supernovae.

o Prediction of HIV drug resistance: Percival, Roeder, Rosenfeld, and Wasserman (2011)
examine the effect of protein sequences on an HIV drug resistance. They find that their
model selection process improves interpretability of drug resistance while ensuring
comparable predictive quality.

Although model selection can arise in many scenarios, in this work we are concentrating
on the linear regression model selection. That is, we assume a linear model y = X% + ¢
where y € R" is a response, X € R"™*P is a design matrix consisting of the regressors
Xi,...,Xp, B9 € RP is a coefficient vector forming the linear relation between X and y, and
finally, e € R™ is some noise perturbing the response y. The true coefficients 5" are unknown
and are assumed to be sparse, i.e., we have observed too many statistical variables, which
are for the most part irrelevant. The objective is to select only variables i with 37 # 0.

Most approaches addressing this topic follow a common objective: Enforcing sparsity of
explanatory variables. In that sense, we are interested in finding a subset of variables which
best predict our quantity of interest. We will look at this sparsity condition from the point
of view of mized-integer optimization. In this context a central problem arises in the form
of the following mixed-integer nonlinear program

min || X5 —y]*
pere (SSRy)
st [1Bllo <k

where ||| is the euclidean norm and ||-||o is defined by || ||o := [supp(8)| = |{i : B; # 0}|. The
parameter k € N is fixed and controls the sparsity of the solution. In contrast to the ordinary
least square regression problem, requires significantly increased computational effort.
Therefore, it has long been considered impractical.

We analyze the subset selection regression from a modern discrete optimization per-
spective, we challenge the statistical notion behind , propose an alternative model
selection formulation, and present empirical evidence of the potency of discrete optimization
in statistics in light of the subset selection methods. The idea of the best subset selection is
not new, even though it witnessed a renaissance in recent years. Hence, we present previous
research on the topic up to what is considered state-of-the-art.

1.1. State-of-the-art

An early overview over methods for the subset selection regression is given by Cox and
Snell (1974)) and Seber (1977). Their proposed approaches include full enumeration, simple
branching methods and a priori variable filtering by various heuristics. Seber (1977) also
presents the stepwise selection, a “greedy”-like approach to the variable selection problem.
Roodman (1974)) and Arthanari and Dodge (1981)) formulate a mixed-integer linear program.
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However, they only consider the #1-loss function, instead of the 5 norm. The lack of viable
mixed-integer nonlinear programming solvers and computer performance at that time made
most branching approaches nearly unusable in practice. For instance, Beale (1970) reports
running times of up to 648 seconds for instances of size n = 86, p < 29.

Since computational performance has been a major hindrance in solving , many
heuristics were developed. The first heuristics include forward selection, backward elim-
ination and stepwise selection (see for example Miller, 1990), all of which pick variables
based on immediate gain or loss in the residual sum of squares || X3 — y||?>. Regarding the

optimization problem
min [|X5 — y]|?
peRe (1.1.1)
s.t. P(p)<c

as a surrogate of (SSRy|) for some penalty function P : RP? — R yields a collection of heuris-
tics for the subset selection regression problem. Often, ([1.1.1)) is replaced by a regularized
optimization problem

min X5 ~ yl* + wP(3) (11.2)

with > 0. Setting P = ||-||? yields the ridge regression, which was presented by Hoerl
and Kennard (1970). Since the ridge regression tends to shrink all variables simultaneously,
they propose to calculate a path of various ¢ (or p, respectively) and exclude variables where
the coefficient changes sign or decreases rapidly. Nowadays, however, the ridge regression is
usually not used as a mean to select variables but rather as a tool to tackle multicollinearities,
selection bias or to robustify the regression coefficients (see Chapter |3)).

A major impact was caused by the Lasso method, which was developed by Tibshirani
(1996). The approach utilizes the shrinkage function P = ||-||;, which is the “closest” norm
to ||-|lo, and thus yields the tightest relaxation when restricting P in to be a norm. In
contrast to the ridge regression, the Lasso methods often shrinks individual coefficients to 0
and, therefore, is a better suited tool for variable selection. Since it was proposed, it became
an extensive subject of research (Biithlmann & van de Geer, 2011). As Lasso is one of the
most prominent variable selection methods available, we consider it a benchmark against the
discrete optimization methods presented in this thesis. As such, we review Lasso in detail in
Chapter |3l A prominent extension to Lasso was proposed by Zou and Hastie (2005). They
combine Lasso and ridge regularization to obtain the elastic net approach. The method is
particularly useful in the case p > n and exhibits a grouping effect on strongly correlated
variables.

At the cost of losing global optimality without utilizing sophisticated search procedures
one can also consider non-convex penalty functions P. In fact, the idea garnered a lot of
interest recently. The so-called MC+ penalty (C.-H. Zhang, 2010) consists of a minimax
concave penalty and a penalized linear unbiased selection (PLUS) algorithm. Whereas
the subset selection regression is unbiased but computationally hard, the Lasso method is
efficient but biased. The idea behind MC+ is to combine the advantages of both approaches
while avoiding the disadvantages. Based on this penalty, Mazumder, Friedman, and Hastie
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(2011) developed SparseNet, a method which utilizes MC+ to produce excellent predictions.
We further review SparseNet in Chapter [3] as it is a state-of-the-art method for variable
selection.

One of the earliest mixed-integer formulations for the subset selection regression problem
was given by Konno and Yamamoto (2009)). Since then, interest in solving
via modern discrete optimization methods grew rapidly. Dong, Chen, and Linderoth (2015)
applied the perspective reformulation to the subset selection regression enabling a much
stronger relaxation and consequently allowing for the mixed-integer program to be solved
faster. Bertsimas, King, and Mazumder (2016]) present a mixed-integer quadratic formula-
tion, a first-order warm start approach and an extensive study on the statistical quality of
the subset selection regression. They argue that discrete optimization methods can play an
important role in statistics. They provide evidence that the critique of discrete optimiza-
tion being computationally impractical in fields like statistics is obsolete and that proper
mixed-integer optimization can be highly valuable and worthwhile. Bertsimas resumed to
work on several articles covering the subset selection regression: Bertsimas and King (2016])
propose a framework which extends the subset selection regression to an automation process
which promises to require minimal human interaction and understanding. Bertsimas and
Van Parys (2017) reformulate the subset selection regression to a nonlinear binary program
without any continuous variables and solve the problem with an outer approximation ap-
proach. Due to high effectiveness of the formulation they apply it to polynomial regression
with exponentially many variables (Bertsimas & Parys, 2017). Atamtiirk and Gémez (2018)
focus on the case when X7 X is an M-matrix. They present a formulation which is inspired
by the perspective formulation, but yields an even tighter relaxation.

In summary, the subset selection regression problem has garnered a high level of interest
from the discrete optimization community in recent years. The problem enjoys an exciting
development at the interface of data science and integer optimization. In this thesis we
contribute to this progression in the research on the subset selection regression.

1.2. Contributions of the thesis

The contributions of the thesis can be divided into three parts. In the first part, we concen-
trate on the structural properties of problem and slight variations of it. That means,
we concentrate on computational improvements and develop insights into the effectiveness
of known and novel formulations. The following contributions are developed and presented
in this thesis.

Often the different sparse regression formulation

. X o 2 .
min [ X5 —y["+ x[Bllo (SRx)

is utilized, which is unfortunately not equivalent to (SSRy|). We prove that certain sparsity
levels cannot be achieved via (SR, while they clearly can be represented by (SSRyf). We

prove which conditions cause such a discrepancy between the problems. We conclude that
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both problems are not interchangeable and that (SR, is a weaker formulation than (SSRy|)
in the sense that with (SSRg|) every sparsity can be represented whereas with (SR, not
every sparsity is achievable.

Many authors consider the £1-loss instead of the £s-loss as an objective function with the
justification that such a modification allows for an integer linear program formulation for
problem . We adopt this idea but develop a mixed-integer linear formulation for
the original subset selection regression . It shows that this formulation can be quite
effective in combination with new tangential cuts presented in this thesis.

In order to switch coefficients on or off we use Big-M constraints of the form —Lz; < 3; <
Lz;. Here, z € {0,1}? are the binary switch variables and L is a sufficiently large constant
such that no optimal solution is cut off. The smaller L is, the faster an optimal solution
is found. That means, we are inclined to choose L as tight as possible. We show that,
if we rely on eigenvalue information of XX, computing L is N'P-hard for general design
matrices. However, restricting ourselves to cases where coefficient bounds can be computed
efficiently does only pose a minor loss of generality. We argue that it is justified to assume a
regularization term and hence we can find coefficient bounds in polynomial time. We then
proceed to develop explicit bounds for the coefficients.

We discuss two state-of-the-art approaches to the subset selection regression — an explicit
binary reformulation by Bertsimas and Van Parys (2017) and a perspective formulation
developed by Dong et al. (2015]). We prove that the explicit binary reformulation, which is
a nonstandard binary nonlinear program, is in fact equal to the perspective reformulation.
This insight enables us to develop new cutting planes which mimic the perspective reformu-
lation, but require no second-order cone constraints. We observe that the cuts are highly
effective in combination with the MILP formulation.

Following the perspective reformulation, Atamtiirk and Gémez (2018) present a strong
relaxation of specific cardinality-constrained MIQPs, which require the objective matrix to
be an M-matrix, i.e., a positive semidefinite matrix with nonpositive off-diagonal entries.
In fact, they show that an optimal solution can be found in polynomial time for those
instances. We use these results to develop a condition for which instances of are
polynomial-time solvable. For that purpose, we present a set of matrices X, which can be
transformed such that XX is an M-matrix and such that the optimal subset is identical
to the original optimal subset.

In the second major part of the thesis we examine the larger approach in which the subset
selection regression is used. We note that some authors test the variable selection a posteriori
via test data or via a cross-validation (see for instance Bertsimas & King, 2016) in order to
verify the end result. We argue that doing so means in principle optimizing (subject to the
training error) after which the quality of the optimal solution is then evaluated against a
completely different objective function (test error). We present a mixed-integer nonlinear
formulation which incorporates the test error in-model. Hence, we directly optimize the
actual statistical objective. This enables us to omit the cardinality constraint as the ideal
sparsity is reflected in the objective function and as such, the sparsity is subject to the
optimization process.
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Furthermore, as the formulation requires bounds on the coefficients and the predicted
values, we utilize the box constraints presented for and apply them to this problem.

In the last part of the thesis we assess the statistical quality of the subset selection
methods. We compare the predictive performance as well as the coeflicient estimation. Our
findings support the conclusion that applying discrete optimization to regression problems
is highly valuable and that the combination of data science and integer optimization offers
promising possibilities.

1.3. Structure

This thesis is structured in the following way. In the remainder of this chapter we discuss
some notations used throughout this work. Thereafter, we specify some properties of the
linear regression and explain in detail why a variable selection is reasonable and necessary
in most cases. In this context, we talk about omission bias — an effect which warrants
and motivates a subset selection procedure. Afterwards, we introduce the subset selection
regression problem, which was only briefly introduced beforehand. In addition, we consider
the variation of the subset selection regression. Whereas the best subset selection
trims solution at some fixed k, the problem penalizes the number of non-zero coef-
ficients in the objective. Since both problems occur in the literature, we want to concisely
clarify the difference between the formulations.

In Chapter [3| we review several heuristics, including forward selection, backward elimina-
tion, stepwise selection, Lasso, and SparseNet. Lasso is one of the most prominent methods
in the field of sparse regression. In this regard, we examine the methodology of Lasso
and some of its theoretical properties. Due to its strong presence in the sparse regression
community, Lasso is still considered a state-of-the-art approach and as such, we measure
the performance of the best subset selection against Lasso. Another strong contender for
variable selection is SparseNet, which we review as well. Both Lasso and SparseNet rely
on regularizations to enforce sparsity. In the last section of Chapter [3| we argue that a
regularization term robustifies against new observations, and hence adding a regularization
to the subset selection problem is still reasonable under this aspect.

Chapter [4] covers the computational and structural elements of the subset selection regres-
sion problem. In Section 4.1} we review the mixed-integer quadratic formulation proposed by
Bertsimas et al. (2016)). In the following Section we present a novel mixed-integer lin-
ear formulation for . Since both formulations require coefficient bounds in the form
of Big-M constraints, we consider this issue in the subsequent Section [£.3] Here, we first
differentiate between two types of data, which we call cohesive and entropic. We examine
the computational complexity of computing bounds for the two types of data and develop
novel coefficient bounds, which can be applied to the presented formulations. In Section [£.4]
we review the perspective reformulation applied to the subset selection regression problem,
which provides a much tighter relaxation. We investigate the connection between the per-
spective formulation and an explicit binary formulation in the succeeding Section 4.4 where
we prove that they are equal. This enables us to utilize the tangent planes derived from



1.4 Notation

the binary formulation to use on the MILP formulation from Section Afterwards, we
compare the computational performance of the state-of-the-art formulations and approaches
in Section [£.7] Finally, we close Chapter [4] by presenting a novel class of polynomial-time
solvable instance for the subset selection regression problem.

In Chapter [5] we critically assess the notion of the subset selection regression. We argue
that the common approach to select a subset according to the training error and then
validate is flawed. In the chapter we propose to model the validation process as an objective
function of a mixed-integer nonlinear program such that each subset can be validated against
the test error. We call the resulting approach the cross-validation subset selection regression.

Moreover, we assess the statistical properties of the subset selection regression and the
cross-validation subset selection regression in comparison with heuristical methods Lasso,
SparseNet, and stepwise regression in Chapter [6]

1.4. Notation

We consider a linear regression model y = X3° 4 e. Throughout, we will refer to X € R"*P
as the design matrix with n being the number of observations and p being the number of
variables. Each column (also called variable, regressor or covariate) of X will be denoted by
X; for some i € {1,...,p} and each row (also called observation) of X will be denoted by x;
for some j € {1,...,n}. The response of the linear regression is denoted by y € R™. Note
that X1q,..., X,y are sampled variables. When talking about the related random variables,
we will write them as lower case letters with superscript 0, i.e., 2% and 4°. Note that 20 is a
1 x p random variable. The vector 5% € RP is composed of the true coefficients, which are in
practice unknown. Hence, we usually denote the coefficients by 3 to differentiate between
true and variable coefficients. The perturbation ¢ € R™ denotes the noise which disturbs
the response y.

The set {1,...,m} is denoted by [m] for an integer m € N. Since we are mainly interested
in variable subset selection, we are often dealing with subsets S C [p]. The complement of
S, i.e., the set [p] \ S, is denoted by S. In reference to the notation of the uniform matroid
we define the set

Uy ={SC[p]:|8 <k}

The corresponding set of indicator vectors is defined by

k._ 1T
ZF = {ze{0,1}?: 172 <k}.

Often, we consider a greedy selection with respect to U[’f. For this reason, let vy,...,v, be
a sequence of values in R and denote by vy > -+ > v(,,) the sorted sequence. We then
define the operator maxp,) by

k
max(y {v1, ..., Um} = Zv(i).
i=1
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For S = {i1,...,i;} we define
Xe=[X; - Xi

as the matrix having only columns indexed by the subset S. Similarly, for a subset T =
{jla s 7jl} C [n] we define
L1
T =
T

as the matrix having only rows indexed by the subset 7. For a symmetric matrix A we
write

A=0

to denote that A is positive definite, and we write
Ax0

to denote that A is positive semidefinite.

Norms

We usually consider the ¢o-norm and therefore write ||-|| := ||-||2 unless specified otherwise,

that is,

T

|ul] = VuTu.

Another “norm” we regularly consider in this thesis is the £yp-“norm”. It is defined as follows.

1Bllo = lsupp(B)] := [{i € [p] : Bi # O}.

The quotation marks indicate that this is not a norm as it is not absolute homogeneous,
e, [AllBllo # [[AB]lo holds for A € R\ {—1,0,1}. It became convention in the compressed
sensing community to call [|-][p a “norm” and hence we do no want to deviate from this
denotation.

The other common norms are defined as usual, that is, for ¢ € [1,00) we define

P ‘
18l = <Z|ﬁi|q>
i=1
and the maximum norm is defined by

1Blloo = max{[f1],.. -, |Bp[}-



1.5 Acknowledgement

Solutions to the least squares problem

Oftentimes, we want to consider an optimal solution to the least squares problem

min [ X5 - y|?
PER? (1.4.1)
s.t. Bsg=0

or to the ridge-regularized least squares problem

min || X5 —y* + ullB8)?
pERP (1.4.2)
s.t. PBsg=0

with ¢ > 0 or more general to the Tikhonov-regularized least squares problem

min | X8 —y|? + |8
BER? (1.4.3)
s.t. fBg=0

with I' € RP*P being a positive semi-definite diagonal matrix. A solution to is denoted
by BX(S), a solution to by BX’“(S’) and a solution for by BX’F(S). We omit
the superscripts in unambiguous situations. Solutions to ,A, and might
not be unique, however for a vector § € RP we still write 8 = §(S) and mean that there
exists an optimal solution to either (1.4.1)), (1.4.2)) or (|1.4.3]), such that the equality holds.

A

Note that (8(S)); is equal to 0 if i ¢ S. Therefore, we also define the truncated vector
without zeros. That is, we denote 3(S) := (8(S))s. The same notation we explained for
B (S) concerning the superscripts is also used for 3(S).

The term X 3(S) — y is called the residual (with respect to S) and the values (XB(S))j
are called the predicted values (with respect to S). We refer to the term [|X3(S)|? as
the squared predicted values (with respect to S). Sometimes, we consider an additional
ridge regularization in the form || X 3(S)||? 4 pl|8]|>. The term is then referred to as (ridge)

regularized, squared predicted values.
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Chapter

The sparse regression problem

In this chapter we concisely detail the motivation for doing a sparse regression. In Section
[2.1] we take a look at the ordinary least squares regression and analyze the effects of the
inclusion of irrelevant regressors. This examination leads us to the conclusion that doing a
sparse regression is essential for formulating a predictive model. In the second part of this
chapter, in Section [2.2] we then properly introduce the subset selection regression problem.
Additionally, we present a popular, alternative formulation. The problem can be confused
with the original formulation. We present that it is, however, profoundly different.

2.1. Linear regression

Before considering a subset selection we want to shortly explain the notion of the ordinary
linear regression. We take a look at its statistical properties and explain the term omission
bias. The effect makes variable selection necessary. Our objective in this section is to
minimize the fo-loss between y and the predicted values X, i.e., we want to minimize the
least square value

ly — X8I,
We assume that the noise € has zero mean and variance o2. Furthermore, in order to have
a unique solution to this problem, we demand full column rank of X. It is well-known that
a solution to the linear least squares regression
min X5 —yl;

is given by 3 = (XTX)~'XTy by solving the normal equations X' X3 = X Ty (see for
example Seber, |1977). In this section we review the motivation given by Miller (1990) on
the importance of conducting a variable selection.

Assume we receive some new data x € R'P and we would like to make a prediction
using the coefficients calibrated in the above model. Here, we do not consider x to be a

11
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random variable but a fixed vector. We define the prediction produced by z and the fitted
coefficients f3 by A

§=uap
and by the theory of least squares calculations we have Var(z8) = o2z(X7X) 12T, Recall
that the vector x is not a random variable but €, which is included in y and hence in B , is the
considered random variable. We can then represent XX by the Cholesky decomposition

RTR where R is an upper triangular matrix with positive entries on the diagonal. Seber
(1977)) shows that

Var(z'8) = c?2(R"R)'2T = 6?2R'R T2 T.

Now we consider selecting the first k£ variables and thus limiting the design matrix to Xg =
[X7 -+ X;] with S = [k]. Then, the Cholesky decomposition of X X is given by R;SRS,g
where Rg g is the matrix constructed by taking only the first k¥ rows and columns of R. It
follows that

Var(z(5)) = c’zgRg s Rg §x§

kK k
=0") > (Riz;)?
i=1j=1
p P

<0® > > (Rijxy)’

i=1j=1

= Var(z"5)
and hence the variance of the prediction is decreasing in the number of variables. Therefore,
one could argue that we should consider no variables at all. Clearly, always predicting a

constant value seems to have the smallest variance. However, minimizing the variance is
not the only objective we are interested in. A large bias is equally undesirable.

Following the definitions of Seber (1977)), we denote the pointwise mean of a matrix
Z = (Z;j) of random variables by £(Z) = (E(Z;;)). Then, because £(¢) vanishes, we have
= (X3 Xs) ' X3EW)
= (X5 Xs) X3 (X8 + £())
= (X3 Xg) ' X5 Xp°
= (X§Xs) ' X3 (XsB% + X5B2)
= 85+ (X5 Xs) T X5 X 5B

E(Bs)

Thus, the bias of estimating y, given by

A

2’ —E(zf(9)) = (v5 — 2(Xg Xs) ' X3 X35)Bg, (2.1.1)

12
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might increase when excluding variables. The bias, computed in , is called the omis-
ston bias. This contrariety between bias and variance is a regular appearance in statistics.
Our objective is to find a balance between the two. Assume that some values in 3° are zero,
as they are irrelevant for the prediction. Ideally, let us say that if 5% = 0, then the omis-
sion bias would be zero. On the other hand, including those variables would increase the
prediction variance and bias. Hence, omitting those variables is desirable and can increase
the predictive quality considerably. As such, conducting a variable selection is an important
part of predictive statistics and modeling. There are plenty of approaches addressing the
issue of variable selection and oftentimes the subset selection regression is identified as the
most natural method for model selection.

2.2. The best subset selection regression

We have seen that from a theoretical standpoint it is essential to conduct a variable selection
when doing a linear regression. Thus, in this work we are concerned with finding the best
subset of variables with respect to the predictive quality. In most of the literature the
predictive quality is estimated by the in-sample least squares loss. The subset selection
given in Chapter (1] is often formulated as the optimization problem

min [|X8 — yl|?
peky (SSRy)
s.t. |18l <k,

where ||3||o denotes the number of non-zero entries of § and the parameter k controls the
minimum accepted sparsity. The restriction on the sparsity enables a reduction in model
complexity as discussed previously and can therefore reduce the predictive error or respec-
tively omission bias. Unfortunately, in general the true sparsity level & is not known a priori.
Thus, it is common practice to conduct a cross-validation over all possible sparsity levels,
i.e., compute the optimal solution for each k& and then select the solution with the smallest
estimated prediction error. This, however, requires a high, additional computational effort.
The problem is N'P-hard (Natarajan, [1995). After all, many NP-hard problems,
which stem from real-life applications, can be solved quite fast in practice. Yet the subset
selection regression is considered hard to solve. Moreover, it has long been regarded as in-
tractable in practice, which, however, is not the consensus anymore. In recent years, much
progress was made (see for instance Dong et al., 2015; Bertsimas et al., 2016; Atamtiirk &
Goémez, 2018]) with respect to the subset selection regression.

Although the subset selection regression is computationally challenging the benefits are
worth the performance cost. Those benefits are demonstrated in Chapter [6| where we go into
detail about the statistical characteristics of the subset selection by conducting a simulation
study and comparing it to the state-of-the-art sparse regression approaches.

Sometimes, a penalty formulation is used to model a variable selection instead of a strict
cardinality constraint:

. o2
min X5 =yl + 18l (SRy)
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2. The sparse regression problem

for k € R;. We label the program the sparse regression problem. Oftentimes,
is called the regularized subset selection and the truncated subset selection problem.
The formulation is central to the works of Dong et al. (2015)) and Atamtiirk and Gémez
(2018) and also plays a role in this thesis. However, it is important to note that and
are not equivalent in the sense that there is a one-to-one relation between k and k.
This circumstance is also remarked by Shen, Pan, Zhu, and Zhou (2013)). Furthermore, they
show that is preferable in light of theoretical statistical properties. Nevertheless, the
fact that the regularized and truncated problem are not equivalent seems to be unintuitive
at first sight and no concise proof was given why this is the case. Hence, we are presenting
the condition which leads to equivalence.

We first note that every optimal solution of is an optimal solution of for

some k.

Theorem 2.1. If 3 is an optimal solution of (SR,]), then there exists a k € N such that /3
is an optimal solution of (SSRpl).

Proof. Setting k = ||3]|o, we show that § is an optimal solution of (SSRz). Assume that
this statement is false, i.e., there is a solution g yielding a smaller objective value in problem
(SSRk). Then, 8 would provide a smaller objective value in (SR as well:

IXB = ylI” + &l1Bllo < 1IXB — yl* + sk = | X3 —yl* + sl Bllo
in contradiction to the optimality of 5. Thus, 8 must be an optimal solution for (SSRg). [

Unfortunately, the converse is not true without further assumptions. We want to intro-
duce a property under which for every k an optimal solution of (SSRyl) is already an optimal
solution of (SRy) for some x > 0. For this reason let us denote the objective value of (SSRg))
as a function of k by ¢(k), i.e.,

c(k) == min || X3 -yl
()= min X5~y
st [IBllo <k

Note, that ¢ is a decreasing function. We now want to define convexity of c.

Definition 2.2. We call (SSRg|) convez in k if c(k) — c(k+ 1) > ¢(k + 1) — ¢(k + 2) for all
k € Ny or if strict inequality holds for all k£ € Ny (SSRyl) is called strictly convex in k.

The definition is inspired by the definition of convexity in real vector spaces. Instead of
requiring \f(x)+(1—=A)f(y) > f(Az+(1—=MN)y) for every x,y € R and A € [0, 1], we demand
the same inequality for x,y € N and A\ € {0, 1}, which results in the definition above.

Intuitively, one might assume that is always convex in k. After all, for a given
k the best subset is chosen and thus, the “better” variables should be taken first. Hence,
this suggests that the objective gain should be front loaded in regard to the sparsity k.
However, Definition does not hold trivially and there are cases where convexity in k is
not satisfied. See for example Figure for a situation where is not convex in k.
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2.2 The best subset selection regression
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Figure 2.1.: The objective value of (SSRg) in relation to the sparsity k on a synthetic data set. The data in the
plot has a signal-to-noise ratio of 1, i.e., Va\r/g:?go) =1, a true sparsity of 10, n = 2000, p = 20 and the
covariance matrix of X is constructed by ¥;; = 0. 9li—il Tt can be observed that c is not convex.

If multicollinearity is high, i.e., the correlation matrix of X has off-diagonal elements close
to 1, then Definition is often not satisfied. For instance, the correlation matrix 3 for
the data in Figure given by ¥;; = 0.9"=7l. In order to draw conclusions about the
existence of kK > 0 inducing a certain sparsity, Definition turns out to be important.

Lemma 2.3. Let (SSRy)) be convex in k. Then, all optimal solutions of (SR,|) have sparsity
k or less if and only if c¢(k) —c(k+1) < k

Proof. Given a k > 0 assume that all optimal solutions of (SR,| have sparsity less or equal
than k. From those solutions we pick the one with the largest number of non-zero entries
and denote it by 5. Assume that § has sparsity k. Then,

X6 —y|? + sk = c(k) + kk < c(k+1) + r(k + 1) (2.2.1)

must hold. Otherwise, ¢(k+ 1) + x(k+ 1) would provide at least the same objective value as
| X8 — y||> + rk in contradiction to 3 having the most non-zero entries. Hence, inequality

- yields )

c(k) —ce(k+1) < k.
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2. The sparse regression problem

Due to the (SSRy)) being convex in k and k being less or equal to k we have c¢(k)—c(k+1) < &
Let us now consider the reverse. Since we have ¢(k) — c¢(k + 1) < &, the inequality

c(i) —c(d) < (G —i)w

holds for every i,j € {k,k+ 1,...} with i < j. Indeed, by utilizing the convexity of ¢ we
have

Hence, we have c( ) + ki < ¢(j) + Kj. In particular the inequality c(k) + kk < ¢(j) + kj
holds and thus, (SR,| has an optimal solution with cardinality less or equal than k. ]

Theorem 2.4. Let (| m ) be strictly convex in k and let 5 be an optimal solution of
(SSR). Then, there exists a & > 0 such that {3 is an optimal solution of (SR.)-

Proof. Let us denote the optimal solution to as /Bk and the optimal solution of
as B.. Whenever a solution is not unique we choose an optimal solution with the
largest cardlnahty Assume that there exists a x > 0 such that the optimal solution S,
of has sparsity k. Then, B must be an optimal solution of - Otherwise,
HXB,i - y||2 < || X Bk — y||? would hold, rendering f; a non-optimal solution of ( (SSR4).
Hence, we are left with showing that for every k € [p] there exists k > 0 with ||Bx|lo = k-
Setting k = ¢(k) — ¢(k 4+ 1) and using the strict convexity of ¢ gives us

clk+1)—ck+2) <ck)—ck+1)

= K.

Furthermore, it is clear that c¢(k) — ¢(k + 1) > & holds. Utilizing both inequalities and
Lemma yields that all solutions of (SRy)) have cardinality k + 1 or less and that there
exists at least one optimal solution with cardinality & + 1. Hence, ||Bxllo = k+ 1 holds. O

Unfortunately, convexity of ¢ is necessary for (SSRif) and (SRk|) being equivalent. The
following proposition shows that a lack of convexity induces “gaps” in (SRy) that cannot
be recovered.

Proposition 2.5. Assume that c¢(k) — c(k+ 1) < ¢(k + 1) — ¢(k + 2) holds. Then, there is
no k£ > 0 such that (SR,|) has an optimal solution with cardinality & + 1.

Proof. We assume that there is a x > 0 such that an optimal solution B of (SRy)) has
cardinality k41. Then, c(k+1)+k(k+1) < c(k+2)+k(k+2) and c(k)+rkk > c(k+1)+k(k+1)
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2.2 The best subset selection regression

hold, otherwise 3 would not be optimal. This implies that

clk+1)—c(k+2) <k
clk) —ck+1)> k.

Clearly, combining both inequalities gives us c(k+1)—c(k+2) < ¢(k)—c(k+1), contradicting
our assumption that c(k + 1) — ¢(k + 2) > c¢(k) — c(k + 1). O

Hence, @D is more flexible in the sense that any number of predictors can be recovered
whereas with E[) depending on the data certain sparsity levels cannot be reached. In
fact, Figure @ shows that the true predictors cannot be recovered with since the
assumptions of Proposition [2.5|are satisfied at k+1 = 10. However, we will see in Chapter
that has structural benefits affecting the computational performance as it comprises
instances which can be solved in polynomial time.
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Chapter

Heuristical sparse regression approaches

Since the subset selection regression is a difficult combinatorial problem, many efforts have
gone into investigating approaches which share the same motivation but require less com-
putational effort. That is, conducting a variable selection in a less computational intensive
framework. All the presented methods can be regarded as variations of the best subset
selection and hence we encapsulate them under the topic of heuristics, even though, some
authors understand the methods as alternatives to the subset selection regression, rather
than simplifications. Both standpoints have their merits, however, since the best subset
selection is the focus of this thesis we are mostly interested in considering the approaches
as heuristics for the subset selection regression.

In Section [3.1] we are looking at greedy-like approaches to the subset selection regression.
These include the forward selection, backward elimination, and stepwise selection. Section
-2 covers the prominent Lasso method. We consider the approach in relation to the sub-
set selection regression and argue that it can be interpreted as a relaxation of a variant
of and . Furthermore, we give a brief overview of some theoretical results
concerning the Lasso approach. A method which extends the idea of Lasso by introducing
concave penalties is the SparseNet method, which we describe in Section [3.3] The approach
bridges the gap between Lasso and the best subset selection. Both Lasso and SparseNet
rely on penalization to shrink coefficients down to zero and enable variable selection. The
notion that regularization terms are utilized as an instrument for model selection is widely
accepted as the prevalent property. However, regularization can also be regarded from an-
other perspective, that is, as a form of robustification. We present this unconventional point
of view in Section [3.4] as it will be helpful to understand regularization in the context of the
subset selection regression.
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3. Heuristical sparse regression approaches

3.1. Forward selection, backward elimination, and stepwise
selection

Forward selection, backward elimination, and stepwise selection were among the earliest
attempts at conducting a variable selection. Due to the lack of computational power and
software at the time of their development, the methods are fairly simple and are basically
greedy-like approaches to . We want to shortly introduce them but will not go into
detail about the numerical technicalities, which improve performance in practice. For an
extensive overview of the methods and their implementations the book by Miller (1990) is
highly recommended.

Let us denote the residual sum of squares of a variable subset S C [p] by
F(8) = XB(S) - yII*
Beginning with the subset S = () the minimization problem

[ € argmin F(SU{i}) (3.1.1)
i€[p)\S

is solved and then the subset S is updated to include [, that is, S <— SU{l} is applied. Unless
some predetermined termination criterion is satisfied the steps are repeated and (3.1.1)) is
computed again. The algorithm could for instance be terminated if a cardinality constraint

akin to (SSRg) is reached.

Input: y € R?, X € R"*P
Output: A subset S C [p]
18«0
2 while termination criterion is not satisfied for S and |S| < p do

3 Choose an element [ from argmin F'(S U {i});
i€lp\S
4 S+ Sudllh

5 return S;

Algorithm 1: Forward selection algorithm

The backward elimination is very similar to the forward selection in the sense that it is
a reverse greedy approach. Instead of adding one variable after the other, predictors are
deleted according to the residual loss. In other words, we start with the subset S = [p] and
choose the variable which after deletion yields the lowest residual sum of squares:

de ar;gerglin F(S\{i}). (3.1.2)

Once again, S < S\{d} is updated and a termination criterion is checked. If the termination
check is negative the steps are repeated and (3.1.2)) is computed again. The backward
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3.1 Forward selection, backward elimination, and stepwise selection

elimination requires a higher computational effort since calculating the residual sum of
squares for a large set of variables is more costly than calculating it for a small set of
variables. Moreover, the backward elimination fails if n < p because deleting any variable
in the beginning would produce the same objective value, that is, a residual value of 0.
Hence, in this case the approach cannot gather any information from the residual sum of
squares.

Input: y € R", X € R™*P

Output: A subset S C [p]

S« [pl;

while termination criterion is not satisfied for S and |S| > 1 do

Choose an element d from argmin F(S\ {i});
i€S
S« S\ {d};

5 return S;

w N =

'

Algorithm 2: Backward elimination algorithm

One cannot expect to find optimal solutions from both of the two approaches. More-
over, Miller (1990) notes that solutions produced by either the forward selection or back-
ward elimination can be arbitrarily bad. In an attempt to improve the heuristic quality of
both approaches Efroymson (1960) proposes to allow deletion and addition of variables and
presents the stepwise selection.

Let us again denote the set of chosen variables by S starting with S = (. The method
picks the first variable to include in the same way as the forward selection (3.1.1). After
that, an [ due to (3.1.1]) is computed and it is checked whether

F(S) = F(SU{l})

Ry =(n—15—-2)- FS)

> O,

holds for some threshold d.. If this is the case, [ is added to S. Subsequently, if a variable was
added it is checked if any regressor can be deleted. This is done by computing d according

to and checking if
F(S\ {d}) = F(5)
F(S)

Roi=(n—|S|—1)- < 84

for a threshold d,4. If this is the case, S <— S\ {d} is assigned.

If 04, de are chosen such that §; < d., then the stepwise selection terminates after finitely
many steps. This is evident from the following observations. If variable [ is added, then

B F(S)
= 1+0./(n—18]-2)

FSU{l})
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3. Heuristical sparse regression approaches

Input: y € R", X € R"*P §.,05 € Ry
Output: A subset S C [p]

1S« 0

2 Choose an element [ from argmin F'(S U {i});
i€[p]\S

38 Ry (n— || - 2) - FEEAD,

4 while Ry > é. do

5 S« SuU{l};

6 Choose an element d from argmin F(S \ {i});

€S
I e G R R

if Ry < d, then

L S« S\ {d};
10 Choose an element [ from argmin F'(S U {i});
i€[p)\S

11| Ry (n—|S|-2) HEorE,

12 return S,

Algorithm 3: Stepwise selection algorithm

holds while the consecutive deletion of a variable d implies
F((SU{l})\{d}) < F(SU{l})- (1 +d4/(n— |5 =2)).

Hence, we have
FUSUD\ (D < FS) - g = e =

and therefore with every variable addition and deletion the residual sum of squares is re-
duced. Since there is only a finite number of possible subsets, the algorithm terminates.

As with the forward selection and backward elimination the algorithm by Efroymson
(1960) is not guaranteed to find a global optimal solution, although it often yields better
results than both of the aforementioned methods.

3.2. Lasso

One of the most prominent sparse regression approaches is the Lasso method proposed by
Tibshirani (1996), which is defined as the solution of the optimization problem

in | X3 -yl LA
min X5 —yl” + pllBl (LASSO)
for i > 0. The idea behind the approach is to penalize coefficients with the intention to force

irrelevant predictors to zero and hence generate a sparse solution. In practice this intention is
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3.2 Lasso

often realized. However, in general a sparsity inducing effect is not guaranteed, nevertheless
many results exist proving sparsity and model selection properties under certain matrix
conditions. Equivalently, the Lasso method can be formulated as the following optimization
problem ,
min X5 -y (LASSO™™
st I8l <t

for some t > 0.

In this section we want to concisely present the Lasso method and its properties. We
explain some theoretical results concerning the method and relate it to the subset selection
problem. Since the Lasso approach is considered to be a state-of-the-art approach in regard
to sparse regression, it poses a benchmark for the statistical performance of the subset
selection regression. Before going into detail about Lasso, we examine the relation between
Lasso and the subset selection regression .

3.2.1. Relation to subset selection regression

When talking about subset selection regression, the Lasso method cannot be excluded in the
discussion. The method has been one of the most influential approaches in sparse regression
over the last decade. Hence, an examination of both the differences and similarities of Lasso
and the subset selection regression is important when considering both problems.

The formulation is not a direct relaxation of the subset selection problem
. Clearly, Lasso bounds the coefficients whereas the subset selection regression only
restricts the number of non-zero entries ignoring the magnitude of the values. We can
however consider the slight modification of

min X5 =yl
s. t. ’/Bz‘ < Lz; Vi € [p]

p
i=1

z; € {0,1}.

(SSRy,1)

where L is some constant. Clearly, if L is chosen sufficiently large the program is equivalent
to the original subset selection regression. With the following proposition we can then
connect the subset selection regression with Lasso.

Proposition 3.1 (Bertsimas et al., [2016). The following relation holds:

conv ({ﬁ ERP:1Tz <k, |Bi| <Lz Vie[p], 2 €{0, 1}p})

={BeR:[|Blloc <L, [|Bl1 < Lk}
C{peR”: Bl < Lk}
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3. Heuristical sparse regression approaches

Hence, (LASSO®") with parameter ¢ := Lk is a relaxation of (SSRy, r|). However, consid-

ering that optimizing a quadratic function over the convex hull of some discrete set does not
guarantee an integer solution, the containment presented in Proposition could be rather
loose. We can paint a clearer picture if we consider Lasso in its canonical form
and the regularized mixed-integer program

p
min X8yl + 0=

BERP pr (SR, 1)
s. t. |5Z‘ < LZZ "

z € {0,1}*

The program is similar to (SRy|) with the only difference that the absolute values of the
coefficients are bounded from above. Just as with (SSRy ) the constant L can be chosen
such that it does not cut off any optimal solution. Remember that (SSRy)) and (SR.) are

not equivalent in general and hence the problems (SSRy r)) and (SR, ) are not equivalent

either. With the formulation in place we have the following statement.

Proposition 3.2 (Dong et al., [2015). The continuous relaxation of (SR, r|), where z €
{0,1}? is relaxed to z € [0, 00)?, is equivalent to (LASSO)) with parameter ji = £.

3.2.2. Theoretical results for Lasso

The Lasso method is well examined and a great number of theoretical results exist giving
proof of the beneficial characteristics of the approach. We are presenting some of them
here. For a more detailed overview of the theory of Lasso the book of Bithlmann and van de
Geer (2011)) is highly recommended. Most results are concerned with the prediction error
produced by the Lasso estimation in relation to the prediction error if true regressors were
known a priori. Central to many results is the dependence on the compatibility condition,
which closely resembles an eigenvalue requirement of the design matrix.

We first take a look at a comnsistency result concerning the Lasso approach, i.e., the
prediction of Lasso should converge in probability to the true predicted mean X 3°. For this
purpose let & denote an estimation of the noise variance. This could for example be given
by 62 = Lny For the consistency we are looking at a triangular array, that is, X = X (n,p)
and y = y(n) are samples dependent on n and p with n and p growing. Hence, & is also
dependent of n and we assume that & = 1 for all n. Furthermore, the true coefficients 3°
are also a function of n and p. Biithlmann and van de Geer (2011) present the following
result.

Proposition 3.3 (Biithlmann and van de Geer (2011)). For some ¢ > 0, let the regularization

parameter be
. [t2+2logp
u=46 ———=.
n
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3.2 Lasso

Moreover, denote
= Qe_TtQ +P(6 <o),
then the inequality
21X (3 = )17 /n < 3ull 8
holds with probability greater or equal than 1 — a.

If ||8°]]; grows in a smaller order than \/n/logp and p in the order /logp/n, then
Lasso is consistent. In other words, Lasso is consistent if ||3°||; = o (x/n/ log p) and p =

© <\/log p/ n) To refine the result by including the sparsity of the coefficients we require
the so-called compatibility condition. We denote the scaled Gram matrix by
XTX

5= :
n

Let us define the set Sy as the index set of the true predictors, i.e., So = {i : 8 # 0}.

Definition 3.4. The compatibility condition holds if there exists a constant ¢y > 0, such
that for all 3 satisfying |35, [l1 < 3||Bs, |1 the inequality

5 ) 190
185113 < (875) il

holds.

Since |8, 117 < |SolllBs, |2 < |So|[|8]|? and since the Rayleigh quotient STS4/||5]|? lies in
the interval [Amin(X T X), Amax(X T X)], the compatibility condition is weaker than requiring
non-zero eigenvalues. Estimating the smallest eigenvalue is a frequent occurrence in sparse
regression as seen in Section as well. Note that in practice the compatibility condition
can only be verified if it holds for every subset since the true regressors are usually not
known. In this case, verifying the compatibility condition is A/P-hard (Dobriban & Fan,
2016)).

Requiring the compatibility condition allows us to formulate an approximation utilizing
the ¢;-difference between the true 8° and the Lasso estimate 3.

Proposition 3.5 (Biithlmann and van de Geer, [2011). Assume the compatibility condition
holds for Sy. For ¢ > 0 let the regularization parameter be

_ [t2+2logp
pi=Agy | =8P
n

Set
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then, the inequality
N A S
I3 = 8012 + il - 11 < 40254
0
holds with probability greater than or equal to 1 — a.

In particular, we have

X3 = B2 < 42120

7
and \S ’
1B -8 < 4M7(2)
7

under the assumptions above with the corresponding probability. Hence, we know that
under appropriate conditions the ¢;-difference between the estimated coefficients and the
true coefficients is bounded from above.

There are more rigorous variable selection results available under stronger assumptions,
namely the irrepresentable condition (Zhao & Yu, 2006) or the restricted isometry property
(Candes & Tao, 2005). The former guarantees that the selected variables are a subset of the
true selected variables, whereas the later condition warrants that the true signal is recovered
under some further assumptions. While the Lasso method is well studied, the presented con-
ditions are rather restrictive and hard to verify. Moreover, if those assumptions are violated,
the beneficial characteristics of Lasso can vanish, as empirical studies show (Mazumder et
al.,2011; T. Zhang, 2010). To encounter these issues non-convex regularizations have moved
into the focus of research.

3.3. SparseNet

The SparseNet proposed by Mazumder et al. (2011) is a method which aims to eliminate
the drawbacks of Lasso while retaining computational efficiency. The idea is to utilize a
family of regularizations, many of which are non-convex, to bridge the gap between the
soft and the hard threshold penalization, i.e., between ¢ and £y regularization. Hence, the
problem which Mazumder et al. (2011)) propose to solve is highly non-convex and therefore,
it possesses many local minima. Finding a global optimal solution is computational difficult,
if not intractable. Therefore, the authors present an algorithm which does not guarantee
optimality, but which often produces excellent results nevertheless. In order to handle
the non-convexity they propose to use a coordinate-descent method, which considers one
dimension at a time.
The foundation for their framework is made up by the optimization problem

p
min Q(8) = 5l — XBI” + 1Y P(18i: :7)

p
BER i=1

where P is a family of penalty functions, which are concave in |3;|. The parameters p and
~ control the intensity of the regularization and concavity. Since SparseNet is supposed to
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3.3 SparseNet

be a coordinate-descent method, we are interested in optimizing Q in one dimension at a
time. This leads to the problem

1 -
i (1) — 2(B8 — R3)2 P(18l: u:
min Q(8) = 5(8 = B)" + uP (Bl 1)
for an appropriate 5. Mazumder et al. (2011)) then define the generalized threshold operator
as

S5(B. 1) = argmin QU (5).
BER
The family of penalizations should satisfy some properties for SparseNet to function as
intended. One main property covers the effective degrees of freedom. We refer to the works
of Bithlmann and van de Geer (2011), Hastie et al. (2015)), Zou, Hastie, and Tibshirani
(2007), Mazumder et al. (2011)) for a detailed explanation of the term. Intuitively speaking,
the degrees of freedom determine how many parameters can be freely chosen at the end
of a statistical calculation. That is, assume we want to estimate an array of numbers
(a1,as,...,a10) having the knowledge that 2%21 a; = 10. Clearly, in this case we can select
nine of ten numbers whereas the last number is determined by the previous choice. Hence,
the degrees of freedom would be 9. On the other hand, having the a priori knowledge that
a; € [1,00) reduces the degrees of freedom to zero since now only (1,...,1) is possible. The
effective degrees of freedom are a generalization of these thoughts, which aim to provide a
measure of complexity between different model selection procedures. Note that the term
does not simply measure the dimension of a set but rather takes the randomness of statistical
observations into account. The term, however, is not without flaws as shown by Janson,
Fithian, and Hastie (2015)).
For the penalization used by SparseNet some requirements are needed:

1. The parameter v should lie in the interval (g, 1) where 7o should represent the hard
threshold operator and ~y; the soft threshold operator, i.e.,

Sy (B 1) = sgn(B) (18] — )+
Syo(By 1) = B-1(18] = pn).-

Here pg > p is chosen in accordance to condition 2.

2. The effective degrees of freedom are controlled by u and for fixed u the effective degrees
of freedom of Sy (-, ) is about the same for all values of .

3. For fixed p, the largest absolute value which is set to zero by S, (-, ) should increase
as v decreases from y; to 7p.

4. QW (B) is convex for every 8.

5. The map v — S, (-, ) is continuous on (yg,71).
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Mazumder et al. (2011) show that the MC+ penalty (C.-H. Zhang, |2010) satisfies all afore-
mentioned conditions except for requirement 2. However, the authors present an approach
to calibrate MC+ such that all requirements are fulfilled.

Mazumder et al. (2011)) empirically find that SparseNet manages to yield superior statis-
tical performance on average compared to Lasso and often closely resembles the best subset
selection, which performs the best in low dimensional experiments. In the high dimension
setting SparseNet stays consistent and performs excellent whereas the authors omitted the
best subset selection from this setup since it becomes computationally intractable. Fortu-
nately, research advances of the subset selection made great strides in recent years, so that
subset selection regression became a viable approach to model selection. We discuss and
present novel research on the subset selection regression in Chapter

3.4. Regularization from a robustification perspective

As seen previously, regularizations in regression are mostly regarded as tools for shrinking
coeflicients and enforcing sparsity of the solution. Indeed, there are many theoretical results
showing that sparsity can be induced by the ¢ regularization under certain conditions (see
for instance Bithlmann & van de Geer, 2011)). However, these conditions are restrictive and
often computationally hard to verify. In contrast to these sparsity-inducing characteristics,
we study regularization in the context of robustification. Understanding regularization soley
as a mean to push certain coefficients to zero would be quite redundant in light of a subset
selection, however looking at regularization from the perspective of robustification gives us
good reason to include it into the optimization problem despite the already present subset
selection.

Often robustness is connoted differently in the optimization community than it is in the
statistics community. While robust statistics are concerned with the sensitivity to devia-
tions from distributional assumptions, robust optimization considers deterministic uncer-
tainties and aims at finding the best solution under the worst case scenarios. Even though
both approaches account for interference, their underlying methodology differs considerably.
Standard references covering both sides of robustness are the book by Huber and Ronchetti
(2009) for robust statistics and the book by Ben-Tal, E1 Ghaoui, and Nemirovski (2009) for
robust optimization. Ben-Tal et al. (2009) encapsulate the difference of the two approaches
excellently:

The term “robust statistics” is generally used to refer to methods that nicely handle
(reject) outliers in data. A standard reference on the topic is Huber’s book [Huber and
Ronchetti (2009)]. As said in the Preface, a precise and rigorous connection with robust
optimization remains to be made. It is our belief that the two approaches are radically
different, even contradictory, in nature: rejecting outliers is akin to discarding data
points that yield large values of the loss function, while robust optimization takes into
account all the data points and focuses on those that do result in large losses.

(Ben-Tal et al., 2009, pp. 337-338)

28



3.4 Regularization from a robustification perspective

In context of the definition of robustness by Ben-Tal et al. (2009) the authors Bertsimas,
Copenhaver, and Mazumder (2017)) connect two types of optimization problems with robust
statistics and robust optimization, which they call the min-min and min-max approach.
Considering a function g : R® — R, a set ¥V C R™ P a design matrix X € R™ P and a
response vector y € R™, the min-min approach is formulated by the optimization problem

o (X aA
min min g(y — (X +4)5),

while the min-maz approach is characterized by the problem

i —(X+A
min max g(y — (X +A)5),

where U C R™P is an uncertainty set. While in both variants the design matrix is per-
turbed to account for some measurement errors, the distinction between the sets V and U
is intentional. Whereas the set V is usually designed to account for distributional outliers,
the uncertainty set U represents deterministic interferences. Intuitively, the former can be
regarded as an optimistic view point whereas the later takes a pessimistic perspective.

Usually, the min-min approach is used in context of robust statistics, with the objective
to protect an estimate from outliers. Hence, oftentimes distribution information is assumed.
For instance, the methods least trimmed squares (Rousseeuw & Leroy, 2005)), trimmed Lasso
(Bertsimas et al., 2017) and total least squares (Markovsky & Huffel, 2007) belong to the
category of min-min problems.

In comparison, the min-maxz method is mainly associated with robust optimization. Here,
the objective is to find solutions which are still “good” or feasible under some uncertainty.
Such a robust optimization problem could for example be posed as follows. Assume we want
to cover some natural gas demand and therefore, were instructed to build a pipeline network.
We aim to minimize the costs of the network, however, if the demand is not satisfiable we
would have to acquire gas from somewhere else for a much higher price. The demand is
unknown a priori but we assume to have knowledge about certain scenarios which can occur.
The uncertainty set U is then designed according to our belief. Hence, we obtain a min-
max optimization problem where the price is minimized and the demand is maximized in
accordance to our belief about the uncertainty.

As demonstrated by the aforementioned, typical example of min-max optimization, the
discipline of robust optimization is mostly uncommon in statistics. However, this perspective
proves to be useful in regard to the subset selection regression. Hence, in this section we are
going to expose regularized regression as a form of robust optimization. We will see that
this point of view is justified and that it makes sense to include regularizations in the subset
selection problem under these aspects. Bertsimas and Copenhaver (2018) relate regularized
regression to robust optimization in the form of a min-max problem. Note, that a less
general variant of the proposition has been proved by Ben-Tal et al. (2009).
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3. Heuristical sparse regression approaches

Proposition 3.6 (Bertsimas and Copenhaver, [2018). If g : R” — R is a seminorm which
is not identically zero and h : R? — R is a norm, then for any z € R", 8 € RP and p > 0

rilglf{( g(z+ AB) = g(2) + ph(B)

where

A7)
=4 A e R"P . g( < }
u { R G =

The proposition directly implies that
i X+ A)S—y) =mi X5 — h
min max g((X + A)f —y) = min g(Xf —y) + ph(5)

for g, h and U as in Proposition [3.6] Having a regularization is equivalent to solving the
min-max problem where the perturbation of data is maximized under an uncertainty set,
which depends on the used (semi)norms and regularization parameter. To put it in another
way, the regularization directly controls the severance of noise in the data X we expect at
worst.

For g = ¢, selecting h = /5 yields

min X5~ ylz -+ ul 3l
and by picking h = #1 we obtain

min | X6 yll2 + w8l

Both optimization problems are similar to the ridge regression and Lasso method with
the difference that the norms are not squared. However, this poses an issue, since we
usually want to have separability, i.e., quadratic terms. Moreover, it is not clear if squared
terms fit the robustness framework by Bertsimas and Copenhaver (2018]) at all, since a
squared (semi)norm |[-]|? is not a (semi)norm. Hence, we want to generalize Proposition
and construct a similar robustness framework. We first consider the following lemma.
Equivalence between regularization and constrained optimization is well-known, however as
a service to the reader we want to state a concise proof.

Lemma 3.7. Let g : R" — R and hy, hs,...,hq : R — R4 be convex functions. If
d
Z € argmin g(z) + Z wihi(z) (3.4.1)
for given parameters ui, ..., ug > 0, then there exist cq,...,cq > 0 such that

Z € argmin  ¢g(z)
2€R" (3.4.2)
s.t. hl(z) <g¢ Vi € [d]
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3.4 Regularization from a robustification perspective

and vice versa. If there is a z such that h;(z) < ¢ for all 1 < i < d, then for given
C1,...,cq > 0there exist u1, ..., uqg > 0such that 2 is an optimal solution for both problems.

Proof. Assume ([3.4.1]) holds. We then define ¢; = h;(2) for all 1 <1i < d. Now assume that
% is not an optimal solution of (3.4.2)) and instead z* provides a better objective value, i.e.,
g(2) > g(z*), while satisfying h;(z*) < ¢; for all 1 < i < d. This would imply that

d d d
9(2*) + > pihi(z*) < g(8) + D pahi(2") < g(2) + Y pihi(2)
i=1 i=1 i=1
in contradiction to z being an optimal solution of (3.4.1]). Therefore, (3.4.2) must hold.
Now assume that Z is an optimal solution of the constrained optimization problem, i.e.,
(3.4.2) holds. We use Lagrange duality to prove that (3.4.1) holds as well. Note that the

Slater conditions are satisfied due to g, hq, . .., hg being convex and because there is a z such
that h;(z) < ¢; for all 1 < i < d. Thus, strong duality holds. It follows that

d

max min g(2) + ; pi(hi(z) — ) (3.4.3)

is equivalent to (3.4.2)), that is, the objective values of (3.4.2)) and (3.4.3|) are identical. Let
fi be an optimal solution of (3.4.3), then due to complementary slackness (see for example

Boyd & Vandenberghe, 2008, p. 242)

d d
9(2) = 9(2) + > pu(hi(2) — ;) = min g(z) + > nilhi(z) — i)
i=1 =1
holds, which proves the claim. O

Lemma 3.8. Let g : R®™ — R, be a seminorm which is not identically zero, let hy, ho, ... hg :
RP — Ry be norms and f, f1, fo,..., fa : R+ — R, be increasing, convex functions, then
there exist A1,...,Ag > 0 such that

d
argénin max gy — (X + A)B) = argénin floly— XB)) + ;uifi(hi(ﬂ))

where

d
U= {A ER™P: g(Avy) <Y Aihi(y) for all v € Rp} .
i=1

Proof. We first look at the right-hand side minimization problem

d
B = arg;nin Floly = XB) + Y pifi(hi(B)).

i=1
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3. Heuristical sparse regression approaches

Lemma [3.7] yields that there exist ¢y, ...,cq > 0 such that
B = argmin flgly—XB))
st. fi(hi(B) <¢  Vield].

Since fi,..., fq are convex and increasing, it follows that

A

p= argénin gy — XPB)
st. hi(B) < file)  Vield).

Once again applying Lemma yields that there are A1, ..., Ay > 0 such that

d
B = arginin 9y — XB)+ Y Xihi(B).
=1

It is easy to see that Zfl:l Aih; is a norm and thus by Proposition we have

A

B = argmin max g(y — (X + A)S)
B Aeld

with U = {A 1 g(Ay) < S0, Mihi(y) for all y € RP}. O

The Lemma enables us to consider more sophisticated regularizations in light of robus-
tification, albeit, we lose the direct one-to-one relation of the regularization parameter and
the uncertainty set in the process. Since the parameter optimization is usually conducted
via a cross validation on a grid of potential scalars, a one-to-one connection is not a prac-
tical requirement. Yet, it would certainly paint a clearer picture and help in designing an
appropriate grid of parameters.

Selecting g = fo, f = (-)?, hy = 3, and f; = (-)? yields the ridge regression

o 1X3 — yll2 2
min [|X5 —y||” + pllB]
and due to Proposition [3-§| the equivalent optimization problem

i X+A)SG—
Jain, pmax (X +A)8 -yl
for the uncertainty set Uy, = {A : [[Ay]| < A|yl| Vv € RP} = {A : omax(A) < A} where
Omax(A) is the largest singular value of A. In the case of Lasso we obtain the uncertainty

set
Uy = {A: |Av][ < Allvllr - vy € RP}.

The set Uy, can, however, be described in a much more interpretable form as shown in the
following proposition.
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3.4 Regularization from a robustification perspective

g | f [ hi| fi | ha| fo | Uncertainty set
Ridge regr. | f2 | (2 2 | (7] — | — | 4D : Cuanl&) < )
Lasso 62 ()2 fl id - - {A : ”AZHQ < A VZ}
Elasticnet | fo | ()2 | 41 | id | £2 | ()2 | {A: |AY] < M|yl + Xelly]| ¥y € RP}

Table 3.1.: Various combinations of settings for Proposition related to the prominent regression methods ridge
regression, Lasso, and Elastic net. The function id is the identity function.

Proposition 3.9 (Bertsimas and Copenhaver, 2018). Let be p € [1,00] and let A; be the
i-th column of A. If
U ={A:]|ABlla < AllBllo VIIBI, < 1}

and
u" = {A: Al <A Vi)

then Uy, =U' =U".

We can see that the ¢ regularization bounds the individual columns of the perturbation
matrix whereas the ¢y regularization bounds the singular value of the matrix. Table
presents an overview over some regularizations and their respective uncertainty sets.

The results encourage us to incorporate regularization in the subset selection regression
as an instrument to robustify coeflicients for new settings. We understand that the usual
characteristics of common regularizations like ¢; and ¢2 are mostly meaningless when doing
a discrete variable selection. However, in the light of the presented results the robustifica-
tion aspects of regularization should not be neglected. In fact, Mazumder, Radchenko, and
Dedieu (2017)) show that it is highly beneficial to extend the subset selection by a regular-
ization term. In our setting we consider the subset selection regression extended by the /o
regularization.
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Chapter

Subset selection regression

We consider the subset selection regression as a central topic in this chapter. The objective
is to find the best subset of variables of size not greater than k subject to the residual sum
of squares. In this and the following chapters we consider the following formulation of the

subset selection regression
min | X5 —y® + pll 5]
per (SSR"%M)
st [|Bllo <k

with ridge parameter p > 0. The formulation slightly differs from how we introduced the
problem in Chapter [I in that we extend the program by the option of adding a ridge
regularization. Note that the regularization remains indeed an option as we allow u to be
equal to 0. The use of a ridge regularization is justified by multiple reasons. It enforces
uniqueness of the fitted coefficients and therefore accounts for over-determined systems or
multicollinearities. Otherwise, the coeffcients would gain several degrees of freedom, which
could result in the coefficient having large variance (see for example Friedman, Hastie, &
Tibshirani, 2001, p. 59). Another reason for the use of a ridge penalization is that a model
selection process can generate selection bias (Miller, 1990)), which leads to an overestimation
of the coefficients. The ridge regression causes coefficients to shrink and can therefore correct
the additional bias. Furthermore, as described in Section [3.4] solving

: X3 — 2 2
min X5~y + 8]

is equivalent to solving

i X +A)8 -
min max [|(X + A)5 -y

with the uncertainty set U := {A : ||A||r < ~v}. Hence, a ridge regularization can be seen as
robustification, which protects the coefficients against new observations and therefore shields
against measurement noise. For some formulations and results presented in the following
chapter, we require the Gramian matrix to be positive definite, i.e., XTX 4 uI = 0. For
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4. Subset selection regression

p > 0 the assumption trivially holds, however if ; is equal to 0, the matrix X T X is positive
definite if and only if X has full column rank.

We categorize the subset selection regression problem into two distinct classes. The first
is the setting when X has full column rank or p is greater than 0. A necessary condition
for the columns to be linearly independent is that at least as many observations exist as
variables, i.e., p < n is true. Instances in this setting provide a lot of structure, which for
instance can be used to tighten formulations. Oftentimes, arguments are used which relate
some property of interest to the entire matrix X. The other class is the case in which we
have ;= 0 and linear dependencies. Here, many properties cannot be related to the entire
matrix X. As we will see, this makes it much harder, or partially impossible, for us to derive
the same results as for the former setting. As such, it will be made clear throughout which
setting we are considering.

In this chapter we focus on the mathematical and technical aspects of and ignore
the statistical facets of the problem. Our emphasis lies on mixed-integer optimization in
regard to the subset selection regression. We develop new insights and approaches for
, which help solving the problem faster. First, we discuss a basic mixed-integer
quadratic formulation for in Section which was proposed by Bertsimas et al.
(2016). In Section we develop a novel mixed-integer linear formulation for . A
major hindrance at formulating a mixed-integer program for the subset selection regression
is the issue of finding bounds for B (S) for all S, i.e., developing bounds on the coefficients
valid for all possible subsets. The issue is tackled in Section [£.3] where we present novel
bounds for . Following this, we review the perspective reformulation in Section
— a technique to tighten the relaxation of the subset selection regression. In Section
we discuss an outer approximation approach which is used to solve an explicit binary
formulation of . We prove that the underlying structure of the binary formulation
is equivalent to the perspective formulation presented in the preceding section. With this
in mind we can derive new effective cuts for the subset selection problem in Section We
then assess the formulations and cuts with a numerical study in Section [4.7] We close the
chapter with a novel class of polynomial-time solvable instances of , which we present
in Section 4.8

4.1. A mixed-integer quadratic formulation

In this section we provide a mixed-integer formulation for the subset selection regression
problem. Konno and Yamamoto (2009)) proposed to formulate the subset selection regression
as a mixed-integer quadratic program, however they conclude that a MIQP is too inefficient
for any practical intentions. Instead, they replace the quadratic deviation with the absolute
deviation. This replacement allows them to formulate a mixed-integer linear program,
which can be solved faster. They then use the solution of the mixed-integer linear program
to exclude a large number of variables and subsequently solve a variable-reduced quadratic
mixed-integer program. However, this approach does not guarantee an optimal solution to
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4.1 A mixed-integer quadratic formulation

(SSRy,,,)) since an optimal solution subject to the ¢;-loss does not necessarily coincide with
a solution subject to the £s-loss.

Later, the original quadratic subset selection problem regained interest in the mixed-
integer community. Bertsimas et al. (2016|) used several mixed-integer techniques to move
the subset selection program out of the computational intractability territory. They were
able to solve instances in the order of 1000s regressors. In this section we will present their
approach.

We do not require any special assumptions about X, y, or u, except that the columns of

X are normalized. In fact, X could have linear dependent columns and p can be chosen to
be 0. We start by formulating (SSRy ,)) as a mixed-integer quadratic program

min BTX"XB—2y" X3+ us' A
s.t. —Liz < B; < Liz Vi € [p]

p
ZZZ‘ S k (Qllt,u)
i=1

B eRP
z € {0,1}

with L; being some constant, which is chosen large enough, such that an optimal solution

of is also an optimal solution of and vice versa. In other words, it must be
ensured that for all § € U;f the inequality |3(S);] < L; holds. Under this premise it holds
that, if z; is chosen to be 1, §; is free. In constrast, the setting z; = 0 implies that ; must
be 0. In that sense the optimization variable z controls the sparsity of 5, and hence the
sum over z is restricted by k.

The natural question how to choose the constants L; immediately arises from the formu-
lation . It is folklore that the choice of such Big-M constants has significant influence
on the tractability of the problem. In light of this, we are interested in finding tight bounds
for the coefficients. This particular issue will be discussed in Section [£.3] As of now, let us
assume to have knowledge of appropriate constants L;. In addition to the bounds on the
coefficients, Bertsimas et al., 2016| propose to contain 3 with the constraint ||3|; < L“ with
L%, once again, being large enough to not cut off any optimal solution. Furthermore, they
recommend utilizing the special-ordered set 1 constraint, i.e., a constraint allowing exactly
one variable of a designated set to be non-zero. For instance, the notation

(a,b) : SOS1
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4. Subset selection regression

implies that exclusively either a or b are allowed to be nonzero. With that, we obtain the

optimization problem
min BTXTXB—2y" X3+ up" B
S. t. (/67,7 1-— Zi) : SOS1 Vi e [p]
—L; <Bi <L Vi € [p]

p
ZZZ' S k
=1

18Il < L9
B8RP
z€{0,1}*

(QF )

If a fast implementation is preferred, the box constraints on 3; and the constraint ||5]|; <
L% could be omitted. However, providing good bounds is helpful in terms of computational

performance. Note that Bertsimas et al. (2016) are assuming L1 = Lo = - --
makes their formulation of 1} slightly different.

= L, which

Furthermore, they propose to substitute the quadratic objective term with additional
variables and bound the predicted values in the same way the coefficients are bounded.

That is, we obtain the optimization problem

min £7¢ -2y X3 + up' B
s.t. (Bi, 1 —2z;):S0S1 Vi € [p]
—L; < B < Ly Vi € [p]

p

Zzi < k

i=1

18] < L
£=Xp

lell < N

—N; <& <N; Vg € [n]

B eRP
z € {0,1}
EeR”

(Q#u)

with N“1, Ny, ..., N, being sufficiently large constants, such that (]Qi#[) and

Qi,uD remain

equivalent. Even though the formulation contains more variables, i.e., § € R

Pz € {0,1}P

and ¢ € R", Bertsimas et al. (2016) argue that the quadratic term £7¢ is a function in n
variables, which is beneficial to the computational performance for the p > n case. However,

if p < n holds, formulation 1} should be utilized.
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4.2 A mixed-integer linear formulation

A mixed-integer linear formulation

Concerning solver performance the consensus seems to be that mixed-integer linear pro-
grams can be solved faster than mixed-integer nonlinear programs. Indeed, the inclusion of
mixed-integer linear programming algorithms into the prominent commercial solvers began
much earlier than the addition of comparable nonlinear procedures. For instance, MILP
functionality was first introduced to CPLEX in 1991 (Bixby, 2012) while the capability to
solve MIQPs was released with CPLEX 8.0 around 2002 (“Cplex 8.0 Release Notes”, 2002).

Furthermore, the same reason is stated in various early attempts at solving the subset
selection regression problem. Roodman (1974), for example, developed a subset selection
formulation for the ¢1-norm rather than the f9-norm. This had the effect that he could
naturally build a MILP formulation.

Konno and Yamamoto (2009)) argue that a MIQP formulation for (SSRg_,)) is too com-
putational burdensome in order to be useful. Instead they solve the MILP proposed by
Roodman (1974) and use the solution as a warm start for a reduced subset selection re-
gression problem with lower dimension. In this Section we reformulate m as a MILP.
Unlike the approach of Konno and Yamamoto (2009) our model is equivalent to (SSRy ).
The following result is well known.

Proposition 4.1. Let B be an optimal solution of

in || X8 —yl?.
ggRI;II B -y

Then, Xﬁ is orthogonal to XB — .
Let us begin with a simple consequence of this orthogonality.
Lemma 4.2. The following properties hold for any S C [p]:
D) [1IXA(S) = ylI* = llyll* = 1 XBS)* = 2ull6(S)]1>
i) yT(XB(S) —y) = —XB(S) =yl = ullB(S)|
i) yTXB(S) = [IXBS)I* + ul B(S)|?

Proof. We show the properties for ;1 = 0. Property i) follows directly from Proposition
and Pythagoras’ Theorem, i.e,

IXB(S) =yl + IXB(S)II* = 1 XB(S) = yl* = 2(XB(S) —y)TXB(S) + | XS = llyll*.

For Property ii) we start on the negated right-hand side of the equation and use Proposition

AT

IXB(S) —yl* = (XB(S ) y) (XA(S) - )
= XB(S) (XA(S) — ) —y"(XB(S) — )
= —y " (XB(S) —y)-

39



4. Subset selection regression

Next, Property iii) is directly implied by [ii) and .

Considering that
a2 o || X |5 (v

the case p > 0 can be concluded easily. O

2

Lemma [£.2] enables us to evaluate subsets with a linear objective function instead of
the usual least squares term. Clearly, as long as § = B(S) for some subset S we have
1X8 =yl + ul|Bll> = —y"XB + ||y||*> according to Lemma Therefore, —y" X is an
equivalent objective function to assess the best subset. This allows us to formulate the
optimization problem

max y' X[
5.t Bs € argmin || Xs¢ — y|* + ull¢
(eRIS| (4.2.1)
Bs =0
SeUy, BeERP

which is equivalent to (SSRy,,|). Note that S is an optimization variable in this program and
that the conditions for 3 form the definition of 3 (S). That is, for an S € U;f the coefficients
Bs have to be an optimal solution of the least squares problem

min | Xs¢ —yl|* + ¢l
CeRISI

and for every i € S the equality 8; = 0 holds. However, it is impossible to put the problem
into any of the common MIP solvers since the program does not yet provide any algebraic
structure.

To formulate problem (4.2.1]) algebraically, let us denote the normal equations by
NE(B, ) = X XsBs + uBs — Xgy.
Since BS is an optimal solution of

min || Xsf -yl + p) 8]
BERISI

if and only if NE(3, S) = 0 holds, we can reformulate problem (4.2.1)) to

max y' X[
s.t. NE(3,5)=0
(8,5) (4.2.2)
fs=0
SeUkl, BeRr.
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4.2 A mixed-integer linear formulation

Next, we want to represent subsets with a binary indicator vector, i.e., we want to model
the relation z; = 1 < 4 € S. In light of this we put up the mixed-integer linear optimization
problem

max yTX 15}
s. t. —L;z; < B < Lz Vi € [p]

p
ZZZ' S k
i=1

XTXB+pufi— XJy < Mi(1—z)  Vie[p]
—X]XB—puBi+ Xy < —mi(1—2z) Vi€ [p|
B eRP ze{0,1}P.

(LIN}W)

Once again, note that we assume known bounds for this formulation. The constants
L; must be chosen such that \B(S),] < L; and M;, m; must be picked such that —m; <
XTXB(S) + pB(S)i — Xy < M; for all S € UF. Problems (#.2.2) and (LIN} ) are
equivalent, that is, the following Proposition holds.

Proposition 4.3. Let (3, z) be a feasible solution of 1} then (3,S5) is a feasible

solution of (4.2.2) with S = {i € [p] : z; = 1}. If (,5) is a feasible solution of (4.2.2)), then
(8, z) is a feasible solution of 1} with z; = 1 if and only if i € S.

Proof. We only show the first statement. The reverse direction follows analogously and from

the fact that L;, m;, M; are sufficiently large. Assume we have a solution (3, z) of |j
then
[—mi, MZ], if Z; = 0,

{0}, if Z; = 1,

for all 7 € [p]. By the definition of S we obtain NE(3,S) = 0. Furthermore, the constraint
—L;z < i < L;z; implies Bg = 0. Finally, S € Ug holds since ) ,_; z; < k holds. Hence,
(8,95) is a feasible solution of (4.2.2]). O

s x|

41
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Similar to the way of handling the mixed-integer quadratic program 1) in Section
we can as well express 1) with SOS1 constraints, yielding

max y'Xp3
S. t. —L;<pB< L Vi € [p]
I8l < T4
(,31', 1-— Zz) : SOS1 Vi € [p]

p
Z Z5 S k
< (LIN ,,)

XTXB+uf—XTy=¢
—my; < fz < M; Vi € [p]
€l < M
(fi,zi) : SOS1 Vi € [p]
B eRP, ze{0,1}".

4.3. Bounds for the subset selection problem

As discussed in Section finding bounds on the individual coefficients and the predicted
values of the subset selection regression can be essential for the computational performance
of the formulation. We neglected this demand for the formulations we discussed, where we
simply assumed that coefficient bounds L; and L', predicted value bounds Nj; and N bt
and the bounds m;, M; required for the normal equations were given. In this section we
want to present an approach for determining these bounds and shed light on the difficulties
arising in this context.

We differentiate two cases, when X has full column rank or y is non-zero and when both
conditions are not satisfied. We call the former the cohesive case and the later the entropic
case. Both terms are chosen in accordance to the ability to make conclusions about a subset
of the data by using properties about the whole data. In a sense this can be understood as
connecting “macro” information to “micro” information. In an entropic system this would
be hardly possible, thus the denotation. In summary, we consider two settings:

e Cohesive: either X has full column rank or p is greater than zero. This is the case
if and only if XTX + ul is positive definite. Under these circumstances we can use
eigenvalue information about X TX + I to make conclusions about subset solutions
allowing us to draw conclusions from the macro level about the micro level.

e Entropic: X has not full column rank and p is equal to zero. We will see that it is
difficult to gather information for sub-matrices from the whole design matrix.

Bertsimas et al. (2016]) present two kind of approaches to computing the necessary bounds:
the first uses analytic arguments from compressed sensing theory while the other uses data

42



4.3 Bounds for the subset selection problem

driven, algorithmic arguments. While the analytic results require strict requirements on
the design matrix X, in principle they work for both the entropic and the cohesive case.
However, their second approach only works for cohesive data. In this section we review
both results and present arguments why finding bounds for the p > n case is particular
difficult. In addition to the results developed by Bertsimas et al. (2016) we are presenting
novel bounds for the cohesive case. We start with showing that an eigenvalue problem
related to the coefficient bounds is NP-hard, which is troublesome if we want to compute a
subset selection regression for general matrices X. We conclude that as long as we require
eigenvalue information to bound the coefficients, an efficient computation is not possible.
Next, we present the bounds proposed by Bertsimas et al. (2016) and finally, we develop a
novel set of bounds.

4.3.1. Coefficient bounds valid for the entropic case

Finding good, computationally tractable bounds for the case when X has not full column
rank, seems to be particular difficult. In fact, to my knowledge, there are no coefficient
bounds which can be calculated in polynomial time without assuming certain matrix con-
ditions, like diagonal dominance or full column rank. We argue that if the coefficients are
bounded using the minimal eigenvalue of X T X the problem of computing bounds becomes
NP-hard and therefore impractical.

Assume that we want to bound ||3(S)||? independently of the subset S. We have

1B = 18(S)]
= (X Xs) " Xyl
< IX3Xs) Il X3yl
= Amax((X§ X)) X5yl

[ Xsyll
)\min(X:ngS)

(4.3.1)

if Xg has full column rank. Otherwise, 3 (S) would be unbounded, and we would require
additional criteria on the null space of X Xg to limit the magnitude of B(S). If we would
know a lower bound v(X, k) < Amin(XJd Xs), which only depends on X and k, we would
obtain the intended estimate for /3 (S). If X has full column rank, we can bound Apin(X$ Xs)
by Amin(XTX) > 0 using the Cauchy Interlacing Theorem (see Appendix [A.1). However,
in the entropic case we have Apin (X TX ) = 0 and therefore, cannot use this argument. Put
in another way, we cannot make conclusions based on the “macro” level about the “micro”
level. Unfortunately, we will show that under these circumstances computing (X, k) is
NP-hard for general matrices X. Hence, unless NP = P holds, we cannot expect to
compute a bound efficiently - at least not if arguments similar to are used.

In the following, we will show why estimating the smallest eigenvalue over all cardinality-
constrained subsets is NP-hard. First, let us define the restricted isometry property.
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4. Subset selection regression

Definition 4.4. For a given matrix X € R"*P a constant > 0 and a cardinality constraint
k € N the restricted isometry property (RIP) is said to hold if

(L=a)IB8l* < IXB8I1* < (1 + 0181
is satisfied for all § € RP with 1 < ||8|lo < k.
Deciding whether the restricted isometry property holds for a non-trivial § is NP-hard:

Proposition 4.5 (Tillmann and Pfetsch (2014), Theorem 3). Given a matrix X € Q"*P, a
cardinality constraint £ € N and a constant § € (0, 1), deciding if X satisfies the RIP with
parameters k and ¢ is NP-hard.

Even though, Tillmann and Pfetsch (2014]) write out the result as stated, in their proof
they show that verifying whether the lower bound of (RIP) holds, is already NP-hard. That
is, in their proof they actually show

Proposition 4.6 (Tillmann and Pfetsch, 2014)). Let be X € Q"*P, a == {|X;j| : i € [n],j €
[p]} and C = 2Meg2(evPR)] - Given a cardinality constraint k¥ € N and a constant § € (0, 1),

deciding if
2

(1-9lP < | 5x5

holds for all g € RP with ||5]|o < k is N'P-hard.

(4.3.2)

Clearly, condition (4.3.2) is equivalent to the requirement that

21 _ 5y < B X3 X8
C(1-0) < =557

holds for all S € UF and 8 € RIS\ {0}. Using the Courant-Fischer theorem (see for example
Horn & Johnson, 2013, pp. 236 - 237) we obtain the equivalent condition

C?(1 —6) < min Apin(Xd Xs).
( )_Snelgg (XgXs)

Hence, the following proposition is implied.
Theorem 4.7. For a given X € R"*P k € N and v > 0 verifying whether

< min Ay (X&X
7_S€U§ mln( S S)

holds, is NP-hard.

Although, the result is disheartening for our intentions, we could come to the conclusion
that the aforementioned issue is only based on the rather simplistic, initial approach (4.3.1)).
However, all attempts getting around this problem appear to come back to the requirement
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4.3 Bounds for the subset selection problem

of estimating the smallest eigenvalue at some point and thus, efficiently bounding the coef-
ficients without any further assumptions remains an open question. The issue of computing
smallest sparse eigenvalue is closely related to the sparse PCA problem (see for example
Dey, Mazumder, & Wang, 2018), which is a computationally difficult and complex problem
in itself.

4.3.2. Bounds requiring X to be cumulative coherent

Although, the results show that in general it is difficult to bound the lowest eigenvalue
of the size-constrained sub-matrices of XX, there are still approaches to find non-trivial
bounds for /\min(XgX s) over all valid S. We next want to discuss the work by Bertsimas
et al. (2016), who confine the design matrix X to a special structure in order to estimate
~. Their bounds are based on the work of Tropp (2004) (see also Tropp, 2006; Donoho &
Elad, 2003]), who introduced the cumulative coherence function

X, k) = max max XTX,|
VXK = g s ST X

The function is related to the smallest eigenvalue of all principal submatrices of X T X with
size k x k or less, which we denote by

U(X, k) = min Amin(X$ Xg).
P

The following relation between ¢ and 1 holds.
Proposition 4.8 (Tropp, [2004). It holds that
(a) Y(X, k) < (X, 1)k,

(b) «(X,k) >1—9(X, kE—1).

Note that Proposition @ can also be understood as a cardinality-constrained variation
of diagonal dominance (the diagonal dominance property is for instance defined by Golub &
Van Loan, [1983). In Theorem We have seen that verifying a non-trivial, lower bound for
1(X, k) is N'P-hard. Nevertheless, the result by Tropp (2004) gives us a chance at finding
a non-trivial bound if 1 — (X, k — 1) is greater than 0. Unfortunately, the chances of this
being true are rather slim for the p > n case since the probability of two columns standing
in an acute angle to each other and thus, yielding an absolute inner product close to 1,
increases with p. This effect can be observed in Figure where a computational survey
about cumulative coherence is presented. For the simulation we generated various data sets
of size 400 x p with p € {100,200, 500, 800,2000}. Each data set is generated by drawing
observations from a multivariate normal distribution N(0, I,). Then, for & € {5,6,7,8}
the data set is checked if it is cumulative coherent, that is, if (X, k) < 1 holds. Each
experiment is repeated 100 times.
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4. Subset selection regression

| I l
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Figure 4.1.: Percentage of cumulative coherent data for different values of p and k. The design matrix X € R*00xP
is constructed by drawing observations from a multivariate normal distribution N(0,Ip). It can be
seen that the probability of X being cumulative coherent, i.e., 1(X, k) being smaller than 1, is rapidly
decreasing with p and k increasing.
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The probability of data satisfying the condition of Tropp is rapidly decreasing, if p
or k increases. In fact, we can see that, even though we chose small &k for our simulation, in
the high dimensional case no data sets are cumulative coherent for k > 7. For all cases of p,
the probability in the setting k > 8 is already negligibly small. Considering that we do not
know the real sparsity k in practice, and hence would have to calculate the subset selection
regression for every k up to p, the implications of cumulative coherence are insignificant.

From the results of Tropp , Bertsimas et al. deduce bounds on the coeffi-
cients.

Theorem 4.3.1 (Bertsimas et al. (2016)). Let k > 1 and ¥(X,k —1) < 1. For an optimal
solution B of (SSRy,,)) the following bounds hold.:

(a) |1Bll1 < ooy maxp {1 X Tyl Xyl

(5) 181 < min { gy s TXTol, -, X1}, s ol
(¢) 11X 811 < min {7 1(XT)illolIBlls, VE[ll2}

(d) | XBloc < (Ilfelf[gf maX[k]{!Xﬂ!a--w\Xip|}> 1]l

with max,) M being defined as the sum over the k largest elements of M.

Since the assumptions of Theorem [.3.1] are quite restrictive and in practice rarely satis-
fied, they propose additional bounds, which only work in the case n > p.
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4.3 Bounds for the subset selection problem

4.3.3. Bounds for the cohesive case

Assuming full column rank of X or requiring p > 0 allows us to use the Cauchy Interlacing
Theorem and estimate v(X, k), effectively bounding ¢(X, k) by eigenvalue information of
the whole data. This enables us to develop efficiently computable bounds of the coefficients.
We first present the approach proposed by Bertsimas et al. (2016) and then show novel
explicit bounds for the subset selection regression.

Assume that we have some upper bound on the residual sum of squares of the subset
selection regression problem, i.e.,

min [| Xs3(S) — ylI” + ull3(S)|> < UB.
Seuf

Such an upper bound can be obtained by some heuristical warm start for example. Then,
Bertsimas et al. (2016) propose to calculate lower and upper coefficient bounds as follows:

u:r =max [;
st | X8 —yl” + pl Bl < UB
and
u; =min f;

s.t. X8 —yl® + ulllI* < UB.

The necessary constants are then compiled with uj and u; , i.e., the constant is defined by
L> := max;epp max{|u; [, |uf|} and L = SF  max{|u; |, |u;|}. In the same way bounds
on the predicted values can be computed.

v;f =max z;3
st X8 —yl*+pl8]* < UB
and B '
v; =min z;f3

5.t | X8~y + ullBlI* < UB.

In the following we assume p > 0. The assumption does not limit the potential instances
which we can apply the results to since every subset selection regression instance with X
having full columns rank and g equal to 0 can be transformed to an instance with g > 0
and vice versa. Before presenting further bounds for the subset selection regression we
show how to conduct such a transformation. For the result we require the singular value
decomposition of X, that means, X is decomposed as UXV with U € R™™"™, V ¢ RP*P
unitary and ¥ € R"*P being a diagonal matrix with the non-negative singular values on the
diagonal. Note that all singular values are strictly positive if X has full column rank since

the i-th smallest singular value of X is equal to 1/ \;(XTX). The following result holds.

Lemma 4.9. Let X = UXV be the singular value decomposition of X. Assume that
either X has full column rank or that g > 0. For 7 € (=00, Amin(XTX) + ) denote
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4. Subset selection regression

Y=ETS+ul —rl, X =3V and § := " 'XTUTy. Then, the equations

argmin || X g8 — y||* + ]| 8% = argmin || Xs8 — §I1* + || 8>
BERISI BERISI

and

min || X5 —y|® + ul Bl = min [ Xs8—§l* + |87 + ylI* — l7]”
BERIS| BERIS|

hold for every subset S C [p].

Proof. First note, that % is well-defined and non-singular. Since
2TY = diag( A\ (X TX), ..., M (XTX))

holds, the diagonal matrix 7Y + uI — rI has positive diagonal entries and therefore the
square root of T3 4 I —rI is well-defined in RP*P. Additionally, since all diagonal entries
are positive, Y is non-singular as well. Since by assumption XX + uI is positive definite,
both optimization problems

min || X8 — yl|3 + ul|8]*, min || Xg8 — g|* + /|8
BERIS] BERIS

are strictly convex and thus have unique solutions, which we denote by B = (X:'g—XS +
pI)71 X1y and By = (XI Xg +rI)71 X1 j. Furthermore, it holds that

XIXs+pul =VISTSVs+ul = Vg (82— pl +rI)Vs+pl = XdXg+7rI  (4.3.3)
and - N
Xly=v{sTUTy =vixx 12Uy = Xig.
Thus, we have 8 = (XI Xg + pl) ' X3y = (XI X + rI)"'XT§ = Bo. Furthermore, the
objective values of both optimization problems are equal modulo an additive constant:
IXB1 = yll> + pll Bu > =BT XT X1+ pBl B — 2y X B +yTy
=PI XTXPy+ Bl b= 25" XBi +yTy
=X = glI” + rll5l® +yTy — 375 O

We have shown that if we restrict ourselves to the cohesive case requiring p > 0 does
not lead to a loss of generality. Hence, we assume y > 0 in the following. We now want to
provide explicit bounds for the subset selection regression, given as a closed-form term. Our
proposed bounds are derived from the optimal solutions B (S) and therefore comprise more
information about the coefficients than the algorithmic approach proposed by Bertsimas et
al. (2016), which does not restrict the coefficients to be optimal in the least squares sense.
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4.3 Bounds for the subset selection problem

Novel bound for the regularized, squared predicted values

We start by deriving bounds for the predicted values, i.e., we present an upper bound for
1 XB(S)|3+ l|B(S)||I3 only dependent on X and the required sparsity k. We first note that
according to Lemma the identity

IylI3 — 1XBS)I3 — wllBS)IE = IXBS) = yl3 + ull 5(S)II3. (4.3.4)

holds.

Immediately, a trivial bound could be derived. Since || X3(S) =3+ l5(S)||3 > 0 holds,
we have | X3(S)|12+ ul3(S)|I3 < |ly||3. Even though, this bound is easy to compute we can
do better and tighten this further. Before presenting this improvement, we quote a matrix
inversion identity we require.

Proposition 4.10 (Sherman-Morrison-Woodbury identity). Let be C, D € R™*™ and A €
R™*™ If (I + DTAC)~™! exists, then

(A + CDT)fl — Afl . Aflcv([ + DTAflc)leTAfl.

A proof of the proposition is for instance given by Meyer (2000)). With the help of the
formula we can deduce the following result.

Lemma 4.11. Let S be a subset of [p] with |S| < k, let g > 0. Then, the ridge regression
value is bounded from below by

||?J||421 A 2 A 2
< |IXB(S) — 9)|2.
lyl3 + L maxy {yTX; Xy i€ [p]} ~ [XB(S) —yllz + ullBS)2

Proof. Since B(S) satisfies Xd XsB(S)+uB(S) = Xy, we have B(S) = (XTI Xs+pl) 1 X1y.
Replacing 5(S) with this term yields

IX5(S) = yll3 + ullB)IE = 1XsB(S) —yll3 + ul B(S)I3
-1
= yTy -y Xs (XIXs+pl)  Xiy

Using the Sherman-Morrison-Woodbury matrix identity and the decomposition Xng =
Sies Xi X! gives us

1 1 -1
y'y—y' Xs (Xng + /LI) ng =y' (I + MXSX:gr) Y

-1
1
=y <I—|—ZXZ-XZ-T> Yy

K ies
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4. Subset selection regression

Since I + izz‘e S XiXZT is symmetric and positive definite we can take the square root of
the matrix in RP*P. With the Cauchy-Schwarz inequality it follows that

_1 10\ 2
<JW=(J@+1Z&&j G+1Z&&jy)

i€S i€S

-1
1 1
sf@+2&&ﬂ yf@+2&&jy
€S €S

Thus, by reordering the terms we get

ly12 12
yTy + maxpy {yTXiX Ty i€ pl} ~ o7 (I + 4 Yies XiXZ'T> Y

-1
y' <I+ZX1X¢T> Yy
1 53(

N

IN

1
K ies
S) = yll3 + ullB(S)3 O

We can then apply this lemma to the regularized, squared predicted values by using
Equation (4.3.4)).

Corollary 4.12. Let be g > 0 and let be S € Uz?' Then, the inequality

A 3 lyll5
IXBS)3 + ullBS)I5 < llyllz — : = c(X,y, k)
? ? ? lyll3 + imax[k] {yTX: Xy i€ [p|}

holds.

In the proof of Lemma it is possible to derive more computational intense, non-
analytic bounds. Instead of finding a lower estimate by using the Cauchy-Schwartz inequal-
ity one could as well solve the relaxation

Bertsimas and Van Parys (2017) show that this problem can be efficiently solved as a
second-order cone program. With that, paying an additional computational cost would
enable ¢(X,y, k) to be tightened even more.
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4.3 Bounds for the subset selection problem

Novel bounds on the absolute regression coefficients

In the previous section, we focused on computing an upper bound on the ridge regularized,
squared predicted values and now extend this work to derive a bound for the absolute values
of the coefficients of (SSRy ), i.e., we find constants L; Sl}Ch that |3(S)| < L; forall S € UF.
In order to derive bounds on the individual entries of 3(S), we utilize the following result,
which estimates the diagonal entries of the inverse of some positive definite matrix A.

Proposition 4.13 (Robinson and Wathen (1992))). For a positive definite matrix A € R™*™
assume p, 7 € R to be chosen such that they satisfy Apax(A) < p and 0 < 7 < Apin(A).
Then, for i € [m] the following bounds hold

) (A <5 (2+242) - (4i) 7 = gl (A7 p)

=

i) (A™)u < 2= (Aa—7)% (7 (Chey AL — 740)) T = g2 (A7)

Using the proposition we can prove the following bounds for the absolute values of the
coefficient entries.

Theorem 4.14. Let be S € sz. Then, the two inequalities

’B(S)l| < \/C(X,% k) : gzl(XTX + ,U'Ia )\min(XTX) + u, )\max(XTX) + ,Uf)

and

B(S)il < \JelX,y,k) - GAXTX + I, Anin(XTX) + p1)
hold.
Proof. We first define

()

Clearly, W has full column rank. Denoting the unit vector with entry 1 at position i by e;
and the pseudoinverse of W by W™, we first note that

1B(S)il = lesTB(S)
— e, TWEWA(S)|
= [(WH)Tes) WA(S)|
<N Tesll2WAS)Il2
W) TesllzIIX B + 1l B(S) 3
VOV Te) T W) Te - e(X,, k)
= \JeTWHWH)Te; - (X, y, k)
V

eiT(WTW)Jrei . C(Xv Y, k)
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4. Subset selection regression

= J(WTW) =i e(X, g, k).

We are going to use the bounds presented in Proposition to prove our claim. Therefore,
we determine an appropriate p and 7 independent of S.

It holds that Apin(WTW) = Apin(XTX + pl) = Apin(X T X) 4+ g and Apax(WTW) =
Amax (X TX41) = Amax (X T X)+p. Thus, we have 7 := Apin(X T X)+pand p = Apax (X TX)+
w as feasible choices for the bounds presented in Proposition

Therefore, we get

VIVTW) )5 eo(X, g, k) < \Jgh (XTX + L, 7, p) - e(X, g, k)

and

VIOVTW) V- e(X,y. k) < /g2 (XTX + I, 7) - (X, y, k)

which proves the original statement. O

Let us denote the minimum of the two bounds by

g9i(A, 7, p) = min{g} (A, 7,p), 97 (A, 7)}.

Using the presented results, we can determine the constants L;, L, N;, N4, m;, and
M;. Clearly, L; can be set to the bounds presented in Theorem [4.14] i.e., we have

Li = \/C(X7y) k) : gZ(XTX +:U’-[7 )\min(XTX) + u, )\max(XTX) +N)

The ¢1-bound can then be constructed by Lh = le L;. The constants IV; can be derived
from

2;B(9)| = 1X;,58(5)
< [1X5,5 11 11B(S) oo
< max[k]{val, ey Xj7p} . maX{Ll, e ,Lp}
= N;

and furthermore we simply sum the bounds up to deduce N, that is,

n
N =3"N;.
=i
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4.4 Stronger formulations

For m; and M; we first find a bound for the value |X;XA3(S) + u3(S)i|. The following
inequality holds

.
XTXA(S) + u(S)| = ‘( j;) [ j;I] ()

| ()L
= |\vae ) | || [var
= Wmn? + ) (IXBES) 2+l BS)1?)

< VUXill? + ) - (X, y, k).

] @<S>H

Then, for

mi = JUXl2 + ) - (X, g, k) + Xy

and

M = (112 + 1) - (X, k) - X[y

the inequality
—mi < X XB(S) + up(S) — X'y < M;

holds for all S € Uﬁ . Having determined valid bounds for the mixed-integer quadratic and
linear formulations presented in the previous sections, we next consider another formulation,
which provides a tighter relaxation.

4.4. Stronger formulations

Tight formulations bear major importance in mixed-integer nonlinear optimization as they
can improve solver performance considerably. In this section we want to look at an approach
for tightening the relaxation of the subset selection problem. For this reason, we consider
an application of the perspective formulation developed by Dong et al. (2015]). The usage of
the perspective of a function shows to be an effective way to improve the tightness of many
mixed-integer nonlinear programs and in particular of the subset selection regression.

In this section we are looking at the sparse regression problem (see Section

min [IX8 =yl + ullBllo (SR,,)
Throughout we assume that X TX is positive definite. For the p > n case a ridge regular-
ization can be appended and integrated into the Gramian matrix as shown in Lemma [£.9]
Many results shown here can however be applied to as well.

We first want to introduce the notion of the perspective of a function. Said perspective
can be used to describe the convex hull of simple mixed-integer sets via second-order cone
programming. In the context of the subset selection regression one can see that such a set
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4. Subset selection regression

is a part of the formulation we examine. Then, utilizing the convex hull description yields
a much stronger formulation.

First let us consider the perspective of a function f : R™ — R. It is defined by

M), i A>0,
fonz) =<0, if A =0,

0, otherwise.

As long as f is convex the perspective of f is convex as well. Giinliik and Linderoth (2012)
motivate the use of the perspective by describing the convex hull of the set W = WU W?!
where

W= {(z,2) ER" xR:2=0, =0}

and
W= {(z,2) eR"xR: fi(z) <0forie[l], z<x

I
81

, 2z =1}

for 1 € N, f; : R™ — R being convex for all i € [/] and z,z € R, z < z. They show that
conv(W) = {(x,z) ER" xR :zf; (i) <0, z22<x<Tz 0<z< 1}UWO
and equivalently
conv(W) = {(a:,z) ER"xR: ﬁ(z,m) <0, zz<x<72 0<2< 1}
hold. In light of this, a convex hull of the set
R:{(J:,y,z) eR, xR x {0,1}:y2x2, gzﬁxﬁfz}

is given by
conv(R) = {(a:,y,z) ERY x[0,1]: 2y > 2% z2 <z < a_:z}.

Gunlik and Linderoth (2010]) show that consequently the convex hull of the set
n
Q= {(w,x,z) ERXxR"x{0,1}" 1w > Zqix?, T2 < xp < Xz, 1€ [n]}
i=1

with ¢,z,7 € R"} is given by the extended formulation

n
COHV(Q) = proj(w,x,z) {(wvxvya Z) € R3n+1 Tw 2> quy’u (xivyi’ Zi) € CODV(RZ'), S {’I’L]}
i=1
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4.4 Stronger formulations

where R; = {(z,y,2) € R2 x[0,1] : 2y > 2?, z;z < x < Z;2}. This enables us to solve the
problem

n
min Z qix?
i=1

s.t. xz < wp < Tz Vi € [n]
z€{0,1}"

(4.4.1)

via a second-order cone program. Dong et al. (2015]) utilize this reformulation to strengthen
the relaxation of the sparse regression problem (SR,)). For this, they reformulate the problem
as

P p
min BT (XTX —T) B+ Y T2 = 2T XB+ >z +yTy
i=1 =1
SR, r
s. t. —LZZ' < Bz < LZZ' ( o )
z € {0,1}
with L being appropriately large such that the optimal solution of (SR is not cut off and
I' € RP*P being a positive definite diagonal matrix such that XTX —T' > 0. We can see

that (4.4.1) is part of (SR, 1) and thus we can apply the perspective reformulation. For this
reason, we replace Zle I‘nﬂf by > ,— I'ss7i and bound 7; from below by the second-order
cone constraint ,6’12 < 7;2; leading to

P P
min BT (XTX — F) 8+ ZFZ’Z’TZ' — 2yTXB + /LZZi + yTy
i=1 i=1
s. t. 522 < Tz (PSRM,F)
T € Rg_
z € {0,1}*

Let us denote the relaxation of where z € {0, 1}? is replaced with z € [0,1]P by
rPSR, r. It turns out that rPSR,, i is much stronger than the relaxation of the formulation
(SR,.r)). Dong et al. (2015) proceed to show how to optimally pick I' such that the relaxation
is the tightest, i.e., they solve the optimization problem

sup rPSR,r. (sup-inf)
Pediag(RY)

In order to solve this optimization problem they further consider the (inf-sup) variant of
this problem and look for a saddle-point of both problems, i.e., a point that does not allow
for any improvement for either of the operators inf or sup in their respective variables. The
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primal-dual semi-definite programs

P
min (XX, B) — 2yTXﬁ+yTy+uZzi

i=1
s. 1. B = 83T
—
[ﬁi Bz’i] =0 vi € [p)
B,z € RP
B € RP*P
and
sup yTy +e€
-
€ «
lz 2tu =0 Vi € [p]
o (DSPD)
Ozi-l-(X y)H—ti:O ViG[p]
Fii eR Vp S [p]
Lj=0  ViZjelp
eeR
a,y,t € RP

are central to finding a saddle point as displayed in the following theorem.

Theorem 4.15 (Dong et al., 2015). Let be XTX = 0let (3,2, B) and (¢, &, 4, ) be primal-
dual optimal solutions to (SDP)) and (DSPD)). Then, (4, ) is a saddle point for

and (inf-sup).

Dong et al. (2015]) show that the optimization problem featuring the perspective formu-
lation can be solved significantly faster than the sparse regression formulation. Next, we
consider an explicit binary formulation of the subset selection regression problem, which we
prove is equal to the perspective formulation.

4.5. An explicit formulation of the subset selection problem

We have seen several different formulations for the subset selection problem. In this sec-
tion we present an outer approximation approach presented by Bertsimas and Van Parys
(2017)). The method relies only on the solution of binary linear programs, which are gener-
ated successively via the addition of tangent planes of the underlying non-linear problem.
Generally, outer approximation is defined as an approximation of a set by the intersection of
possibly infinite many supersets. The outer approximation presented here, relies loosely on
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4.5 An explicit formulation of the subset selection problem

the method developed by Duran and Grossmann (1986). They proposed an outer approxi-
mation method, which assumes linearity of discrete variables and convexity of the feasible
space of continuous variables. The idea of the approach is to build up an increasingly tight
linear approximation of the nonlinear feasible set of continuous variables and concurrently
solve a MILP on the approximate problem.

4.5.1. Reformulating (SSRy | as a binary nonlinear program

In this context, we are looking at an approximation of a convex nonlinear objective func-
tion, which only depends on binary variables, i.e., optimization variables which encode the
selected subset. The coefficients of the subset selection problem, that is, the continuous
variables of the optimization problem, are explicitly represented as a function of the binary
indicator vector. More precisely, assume g > 0 holds in the original problem .
Then, the optimal coefficients of a subset S are composed by the term

_ —1
B(S) = (ngs + ,uI) X&y.
Hence, by Lemma [4.2] the residual sum of squares of the subset S is given by

IXB(S) = yl* = |1 XsB(S) -yl
-1
= Iyl - y"Xs (XIXs+pl) Xy

and by use of Proposition [£.10] we have
A 2 _ T 1 T\ 7!
IX53(8) <yl =" (14 XsXT) .

Since any matrix in the form XX T can be written as a sum of rank-1 matrices constructed
by the columns of X, ie., XX T = P X; X, we can reformulate problem (SSRy,,) to

-1
1 p
min y' <I+ ZX’LXZTS’L> Y
i=1
(InvSSRy, )
s.t. 1Ts <k g

s € {0,1}

While we used the letter z throughout the work to denote the indicator vector, here we
consciously use s. That is because it later helps us to differentiate a structural disparity
between the two notations in Section[d.6] Note, that the formulation relies on the assumption
that ¢ > 0 in . We have seen earlier in Section that the requirement p > 0 is
equivalent to the data being cohesive, i.e., XTX + ul > 0 holds.

Bertsimas and Van Parys (2017) explain that the optimization problem (InvSSRy ,|) stems
from the dual perspective. Indeed, the following results connect the dual of the ridge
regression to the presented MIP formulation.
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4. Subset selection regression

Proposition 4.16 (Vapnik (1998)). Let be p > 0. The objective value of the ridge regres-
sion problem én%) 1 X8 — yl|® + u|B]]? is equal to the maximum value of the optimization
€

problem

1
max — —a' XXTa—ala+2y . (4.5.1)
acR”™ )2

An optimal solution of this dual problem is given by

1 —1
&= (I + XXT> y.
o

yielding the optimal value

-1
LaTxxTa—aTay 2yTa=y' <I + 1XXT> y.

M K

The dual perspective offers several benefits compared to the primal formulations we have
seen so far. For a start, it does not require any explicit bounds on the coefficients. We
have reasoned previously that finding such bounds can be challenging, although, we also
require cohesive data in this context. Nevertheless, the lack of explicit coefficients in the
aforementioned optimization problem makes the formulation much stronger
and the approach less error-prone. Furthermore, when considering the kernel matrix XX T
we can see that the size depends on n rather than p. As such, high dimensional data can
be processed more efficiently with this method. We define the map ¢ : [0, 1]P — Ry by

p -1
P(s)=y' (I + ;Z XiXiTsi> y.

i=1

4.5.2. Solving (InvSSRy ) via outer approximation

To solve the problem Bertsimas and Van Parys (2017)) propose an outer ap-
proximation approach in which a new constraint is added whenever a new optimal integer
solution is found. The constraint by which the program is extended is the tangent plane of
the function ¢ meant to linearly approximate the objective function. That is, we are succes-
sively solving mixed-integer programs and with each iteration extending the programs by
an additional constraint. Since we are looking for an integer solution, only a finite number
of tangent planes are required to find an optimal solution, at most one for each point in UY.
If we cannot add a cut because the constraint was already appended beforehand, the found
solution is globally optimal. Accordingly, Algorithm [] describes the outer approximation.
While Algorithm [4] provides a correct description of the procedure, we can utilize modern
solver features to implement the outer approximation much more efficiently. Instead of
successively solving mixed-integer linear programs, we can apply lazy constraints, which
are supported by popular solvers like CPLEX, Gurobi, and SCIP. Lazy constraints can be
understood as cuts, which are necessary for the correctness of the model. Without them
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4.5 An explicit formulation of the subset selection problem

Input: y € R", X € R"*P k € [p]

Output: An optimal solution to
s1 < Warmstart;

m « 0;

t+ 1

while 7 < ¢(s:) do

St+1, M1 < argmin {n € Ry : s € ZL, n > ¢(si) + Vo(si)(s — si) Vi€ [t}
S?n

[T NI VUR R

6 t+—t+1;

7 return s;

Algorithm 4: Outer approximation algorithm

a solution to the underlying, original program could be infeasible since any of the lazy
constraints could be violated. In contrast, ordinary cuts are meant to cut off continuous
solutions but not feasible integer solutions and the lack of those would still lead to an optimal
integer solution, albeit with increased computational effort. That is, lazy constraints are
procedurally generated constraints, which are required for the description of the mixed-
integer program but are not provided to the solver at once. This is particularly helpful in
our case where we have a full description with exponentially many constraints, i.e., at each
point of Z; we have a potential tangent plane. In our implementation we are using the lazy
constraint callback of the C++ CPLEX library, which is invoked every time CPLEX finds a
new integer solution s; with the corresponding value 7;. We then add a new constraint if
ne < ¢(s¢) holds, which is similar to the condition in Algorithm

Nevertheless, the algorithmic framework still leaves us with two issues, that is, the gra-
dient of ¢ and how to provide a good warm start. The gradient of ¢ can be deduced using
matrix calculus.

Proposition 4.17 (Bertsimas and Van Parys (2017)). Let

P
K : {0, 1}p — RnXp, S ZXiXTSi
i=1
be the kernel function and let &(K(s)) be the optimal solution to problem (4.5.1)) where
X XT is replaced by K(s). Then, the gradient of ¢ is given by
) Q(K ()" - X1X] - G(K(s))
p T T A
a(K(s))" - XpX, - a(K(s))

In the article by Bertsimas and Van Parys (2017) further numerical details are considered
for computing ¢ and V¢, which we omit here.
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4. Subset selection regression

4.5.3. A min-max warm start

For providing a warm start, the relaxation of (InvSSRy ,|) is considered. In order to solve
the relaxation efficiently Bertsimas and Van Parys (2017) consider the formulation as a
saddle point problem. For this, they apply Proposition [£.16] and formulate the relaxation

of (InvSSRy ) as the min-max problem

1 & 7 T T T
min max — — a X; X as; —a a+ 2y a= ¢(s,a). 4.5.2
SECOHV(Z;?) aERM ,LL ; 1“2 2 y ¢( ) ( )

Since ¢(s, a) is convex in s and concave in a and since we can bound « to the compact
set {a € R" : ||ofe < maxep» |&(K(s))|loo }» We can apply a Minimax theorem (Sion,

1958; Du & Pardalos, 1995) and exchange minimum and maximum operators yielding

1 p
T T T T
max —a a+2y a— — max a X X, as;. 4.5.3
aER? 4 [ seconv(Zk) ; e ! ( )
Using the fact that
SN T T T T T
max a X; X as; = maxp{a XXy a,...,a XX, al,
seconv(Z) ; idg QSg [k]{ 141 pip }

Bertsimas and Van Parys (2017)) present the following second-order cone program, which is
equivalent to (4.5.3)) and can be solved efficiently.

max —a'a+2ya—1Tu—kt
st o X XTa <p(ui+t)  Viep (4.5.4)
acR", ueRE, teR

Solving (4.5.4)) yields an optimal & for (4.5.3) and consequently with

P
§ € argmax Z&TX,-XZ-Tdsi
seconv(Zk) =1

the tuple (&, §) forms an optimal solution of (4.5.3). Since the computation of § is a greedy
selection, § can always be chosen to be binary. Hence, the approach can be used as an
excellent warm start.

Bertsimas and Van Parys (2017)), however, do not cover the descent from the difficult

combinatorial problem (InvSSRy | to the efficiently solvable problem (4.5.3). After all,
solving (4.5.3) yields an optimal solution with § being binary. Since (4.5.3) and (4.5.2))

have the same optimal value, one could assume that § is an optimal solution to the subset
selection regression problem. However, unless the optimal solution (&, ) of (4.5.3) is a
saddle point, i.e., a point which satisfies ¢(s,&) > ¢(8,&) > ¢(8, ) for all &« € R™ and
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4.5 An explicit formulation of the subset selection problem

s € UF, it is not guaranteed to be an optimal solution of . Since the existence of
a saddle point is guaranteed (Ben-Tal & Nemirovski, [2013), we have to assume that most
instances do not provide unique solutions for . In particular, the choice of § should
not be unique, i.e., we should expect many of the weights éeXiXiT & to be equal. That is, let
w; = dTXiXZ-To? and let w() > w(g) > -+ > w,) be the sorted sequence of weights. Then,
§ is not unique if there is some sequence of indices I := [a,b] N {1,...,p} with k € I such
that w(; = w(; for all ¢, j € I. Concisely we have

Theorem 4.18. Let & be an optimal solution of (4.5.4). If w) > weg) > -+ > wyy >
W(k41), then
P
§ € argmax ZdTXiXiT&si
SEZ;f i=1

is an optimal solution to (InvSSRy ).

Proof. Clearly, under the assumption that the weights wy), ..., wq4q) are distinct, § is
unique. By Sion’s Minimax Theorerrﬂ (Sion, [1958)) we have

min  max ¢(s,«a) = max min S, «
s€conv(Zk) a€R™ ¢( ’ ) a€R™ seconv(Zk) o5, )

and hence a saddle point (s*, a*) exists (Ben-Tal & Nemirovski, 2013) satisfying

. % % .
min max S, ) = S, = Imax min S, ().
s€conv(Zk) acR™ ¢( ’ ) (z)( ) a€R™ seconv(Zk) ¢( 7 )

If (4.5.3) has an unique optimal solution (8, &), then the solution must be a saddle point,
and hence it is also an optimal solution of (4.5.2)). Since § is binary, it is an optimal solution

of (InvSSRy f). Therefore, we only have to prove that (8, &) is a unique optimal solution to
(.53

.5.3)). We first show that & is equal to &(K(8)), i.e., a solution to the problem

1 & .
max — — Z aTXiXZ-Tozsi —ala+ 2yTa.
acR™ [

and afterwards prove that & is unique. Let us denote
s(a) = argmax[k]{aTXlXira, e aTXpX;—oz}.
-1
Assume that & is not equal to &(K(8)) = (I + iZle XiXiT§i) y. Since wyy, - -+, W(gt1)
are pairwise distinct and maxy,) continuous, there is an open neighborhood U around &,

such that s(«) is equal to s(&) = § for all & € U. Consequently, there exists a A\ € (0, 1]
such that A&+ (1 — X\)&(K(8)) € U. As ¢ is strictly convex in « and as ¢(8, &(K(8))) is the

'For X compact and convex, Y convex, and f : X x Y — R continuous, the identity
mingex maxyey f(x,y) = maxyey mingex f(x,y) holds if f is convex in z and concave in y.
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4. Subset selection regression

unique minimum objective value for fixed § we have

C/a>
S

P(8, Ad + (1 = Na(K(3 ))) )+ (1 =)ol
)+ (1= XN)a(

W>
(o)
—~
>
~—
~—
N—

5/3)
(o)
N—

Ap(3,
A (5

)
o}

\_/Q>

¢>(

in contradiction to (8, &) being the optimal solution of (4.5.3)). Thus, & must be equal to
a(K(8)).

Assume there is another optimal solution (8,&) to Problem (4.5.3). Since the max,
operator is convex, the map

1
—a'a+2yTa— = max(y ("X X[, ... ,aTXpoTa}
w

is concave in o and thus every solution (s(A& + (1 — X\)&), A&+ (1 — X\)&) for A € [0,1]
is an optimal solution to (4.5.3). In particular, there is a A € (0,1] such that A& + (1 —
A)a € U holds, making (5, A\ + (1 — \)&) an optimal solution to (4.5.3). However, having
A&+ (1 = N)a # a(K(8)) and following the aforementioned argumentation a contradiction
arises leading to the assumption being false. Therefore, & is unique and considering that

D
§ € argmax Z dTXZ-XiTonZ-
s€Zf =1

is unique as well, we conclude the proposition. ]

We have presented a global optimality criterion for the subset selection regression problem,
which can efficiently be checked after computing a warmstart. It remains to be assessed if
anymore useful properties about the optimal solution can be extracted from the case when
W) = = = W(k+1) for some j

Furthermore, checking the requirement that the first k + 1 weights are distinct is not
numerically trivial, since in practice all weights are different as small numerical errors are
present in the solution of . Hence, the question arises what numerical tolerance should
be utilized in order to correctly differentiate between equal and unequal weights. Due to
the restricted scope of this thesis we leave those questions open for future research.

4.5.4. Relation to the perspective reformulation

As Bertsimas and Van Parys (2017)) solved problem via an outer approximation,
we are interested in examining further as it is rather uncommon to see such an
inverse matrix problem in the field of discrete optimization. We want to give some context
on the problem class related to the aforementioned problem and present a second-order cone
formulation for .

Unlike the second-order cone program Bertsimas and Van Parys (2017)) propose for solving
the relaxation and consequently generating a warm start, the program we propose can be
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4.5 An explicit formulation of the subset selection problem

used to solve directly. As we will see, the formulation arising from the matrix
inverse problem is exactly what Dong et al. (2015) propose (see Section . In order to
better connect the works of Bertsimas and Van Parys (2017) and Dong et al. (2015) we
consider the generalized Tikhonov variant of . That is, we consider the subset
selection problem

in || X3 —yl*+ (T8>
min X5 —ylI* + T8I

s.t. ||Bllo <k

where I' € RP*P is a positive definite diagonal matrix. Analogously to the reformulation at
the beginning of Section [A.5.1] we get the equivalent problem

p 71
min y' <I + ZFZ-_Z-QXZ'XZ-T> Y.

P
SEZ, =1

Let us consider the functional
P
A(s) = Ao+ ) Ais;
i=1

with A; € R™*™ 4 = 0,...,p, being positive semi-definite such that the sum is positive
definite. Then, the epigraph of

f:R"xRZ 5 R
Jla,s) = 2T (A(s)) e

is second-order cone representable (Nesterov & Nemirovskii, [1994] pp. 227 - 229), i.e., there
exists a second-order cone formulation whose feasible region coincidences with the set ) :==
{(t,z,s) e RxR" x RE : ¢ > f(z,s)}. More precisely, the feasible region of
1 1
Agug + -+ Apur =z
Juil|* < simi Vi€ {0,...,p}

Xp:
<t
2 (4.5.5)

80:1
u; € R, 7, € Ry Vi e {0,...,p}
teR, ze€R"”, seRE
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4. Subset selection regression

is equal to . Hence, a global minimum of f under additional second-order cone constraints
K can be computed in polynomial time. This class of optimization problems

min z,s
i, @)
s. t. (x,s) e K

is called matriz-fractional problems (see also Boyd & Vandenberghe, |2008). The matrix-
fractional problem (InvSSRy ,|), we wish to solve, has additional binary requirements. How-

ever, we can still use the SOCP transformation (4.5.5) to formulate (InvSSRy ) as a mixed-

integer second-order cone program. This yields the equivalent subset selection regression
formulation

p
s.t. ug+ ZF;HXz‘H*lXiXiTUi =y
=1
ui||* < sim; Vi € [p]
l[uol|® < o (MFy )

p
Zsi < k
i=1

u; € R" Vi € {0,...,p}
i € Ry Vi € {0,...,p}
se€{0,1}°

Unfortunately, this SOCP requires n(p + 1) + 2p variables, which makes the program
inefficient to solve in practice. We can however refine the formulation further and reduce
the number of variables. In particular, the following proposition holds.

Theorem 4.19. Let (£,35, 7, g, ... ,Up) be an optimal solution of (MF}, ), then there exist
M, ...np € R such that 4; = n;X; for every i € [p].

Proof. We are looking for an optimal solution of the problem

min ||uH2

4.5.6
st X u= X, (4.5.6)

Clearly, 4; must be an optimal solution of (4.5.6)) since otherwise we could swap the optimal
solution of (4.5.6)), shrink 7; and yield a better objective value for problem (MF} ). Due
to the KKT conditions and the strict convexity of (4.5.6]), a vector w is optimal if and only
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4.6 Effective cutting planes for the subset selection regression

if it satisfies the equation system

QU—{—)\XZ‘:O
X=X,

where A € R is the Lagrange multiplier. From the system it is easy to see that an optimal
solution has to be a multiple of X;, hence every ; must be linearly dependent of Xj. O

Hence, we do not require the whole vectors u; but instead only a scalar. The theorem en-
ables us to replace u; by the one dimensional information 7; X;. Furthermore, we substitute
Bi = Mni, resulting in the following program:

i
P
min Z T;
=0

s.t. uw+XB=y
F?i iQSSiTi Vi € [p]

l[uoll® < 0

p
ZSZ' S k
i=1

ug € R”
B eRP
TERﬂ
se€{0,1}

(Pk,,u)

It is interesting to see that the constraint T'% 32 < s;7; arises naturally from the formulation
as it depicts a perspective reformulation (Giinliik & Linderoth, [2010; Dong et
al., [2015), which was also detailed in Section Such a perspective reformulation can
significantly tighten the relaxation compared to the trivial bound I'%5? < 7;. The fact that
comprises such a formulation, gives us more insight into why this approach

works so well.

4.6. Effective cutting planes for the subset selection
regression

Seeing how encompasses the stronger perspective formulation we utilize the
tangent planes originating from (InvSSRj ,) as cutting planes in the weaker albeit linear
formulation . When constructing ([nvSSRy ,|) we neglected a detail, which is unim-
portant when looking at tangent planes for binary solutions but becomes relevant when
considering tangent planes for continuous solutions. For this reason, we have to define
continuous “subsets”. Let us imagine subsets having weights in the interval [0, 1] for each

65



4. Subset selection regression

element. For instance, a continuous subset S of the set [10] could look like this
S ={(0.5,1),(1,5),(0.2,9), (1,10)}

meaning that half of the 1, a full 5, a fifth of the 9 and the whole 10 is selected. The
corresponding indicator vector z would then look like this

(0.5,0,0,0,1,0,0,0,0.2,1).

We then define Xg = (X - diag(2)){;.z,>0}, which means that columns with nonzero weights
are simply scaled and columns with zero weights vanish. In light of this, we cannot depict
XsXI as 3P | X; X[z as implied in Section Instead, we have

p
XsX§ =) XiX] 2
=1

We consciously use z in this context, as we can interpret the previously used notation s as
a substitution of z, i.e.,

for every i € [p]. Hence, when deriving cutting planes from (InvSSRy .|} and applying them
to {D or any other similar formulation we have to be careful to translate z to s. With
that, we face two options: either we generate cutting planes from the point of view of

{InvSSRy ), i-e., our input is s, or we construct a cutting plane from the point of view of
LIN,% ),

i.e., our input is z. Both approaches have their justifications as we will see. Let

us assume we want to derive a cutting plane from a point pair §; = ZZ»Q . A cutting plane is

then formulated as the constraint

RSS > ¢(5) + Vo(5)(s — 3)
where RSS denotes the residual sum of squares. For 1| this translates to
P
lyll> = yTXB > ¢(3) + D V(3)i(zF — 2).
i=1

Since V¢ (5); < 0 for all i € [p], the constraint is concave and hence not usable in conjunction
with convex optimization methods. We can however relax the constraint to

p
Iyl =y X8 > 6(3) + D Ve(3)i(zi — ). (4.6.1)
i=1

as z only contains values between 0 and 1.

Assume we have a solution u from the relaxation of a branch-and-bound node of 1)
then it is not quite clear if it is better to set Z = u or if we should pretend that a relaxed
solution corresponds to § = u. To examine the difference between the two strategies, let us
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4.7 Numerical results

denote

B(z) = argmin || X - diag(z) - B — y||* + ulB]*
BERP

and .
r(z) = |lylI* — y" X - diag(z) - B(2).

Clearly, the equality r(z) = ¢(22,... ,zg) holds. We would like to approximate r(z) as
accurately as possible with the cutting planes, i.e., we want
P
r(w) = ¢(3) = Y Vo (3)i(ui — 2)

i=1

to be as small as possible. Setting Z = u yields

r(u) — ¢(3) = > Vo (8)i(ui — ) =7r(2) — ¢(3) — Y _ Vo(3)i(zi — 2)
=1 =1
= Vo(3)i(z — %) >0
=1

with strict inequality if u is not binary. Hence, we can easily measure the local effectiveness
of the cut and decide which one to add. Since those cuts can be placed at any continuous
point we could theoretically add infinitely many and as long as we do not specify some
criterion they are indeed appended ad infinitum in CPLEX. Hence, we only add a cut if
B(3) + X8 1 Vo(3)i(u; — 22) — OBJVAL(u) > 0.1 - (UB — LB) where OBJVAL(u) is the
objective value in the branch-and-bound node, UB is the best known upper bound of the
problem and LB is the best known lower bound. That means, at least 10% of the objective
value range has to be cut off for the constraint to be added.

4.7. Numerical results

We have seen several formulations for the subset selection regression problem (SSRy ,[). In
this section we study the computational performance of the approaches. We compare the
following methods with each other:

e MILP: The mixed-integer linear program 1l formulated in Section In
addition, we are applying the cuts presented in Section

« MILPNOCUTS: Same as MILP but without cuts.
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4. Subset selection regression

« SOCP: The perspective reformulation (Py_|) presented in Section [4.5.4}

e SOCPNE: Same as SOCP but we append the program by the normal equations as

in (j i.e., the problem is extended by

XTXB+pB—XTy=¢,

—m; <& < M; Vi € [p],
({i,si) : SOS1 Vi € [p],
£ e RP,

e OA: The outer approximation reviewed in Section

As MILP includes the normal equations, we are inspired to assess the effectiveness of those
constraints in light of the second-order cone formulation. Hence, we include SOCPNE in
the computational study. We are interested in examining the following aspects:

e Comparing MILP with MILPNOCUTS: we assess the impact of the novel tan-
gent cuts (4.6.1)) on the performance.

o Assessing the competitiveness of MILP: since SOCP and OA are considered
state-of-the-art approaches we are interested in seeing how MILP compares.

e« Comparing SOCP with OA: both methods are considered very efficient. We test
the conditions under which they perform the best.

o Assessing SOCPNE: we are interested in seeing if the inclusion of the normal equa-
tions have any beneficial effects.

4.7.1. Data generation

The instances we consider are synthetically generated. According to the dimensional settings

n p k
dim-1 | 400 | 100 | 10
dim-2 | 1000 | 200 | 20
dim-3 | 2000 | 500 | 300

we first draw n rows of X i.i.d. from N, (0, I), and k coefficients from the uniform distribution
U(1,10). The position of those k£ nonzero coefficients is then uniformly sampled, composing
the vector 3°. Then, the noise € is drawn i.i.d. from N, (0, %I). SNR stands for signal-
to-noise ratio and is defined by

Var(z°5°)

o2

SNR =
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4.7 Numerical results

where o2 is the variance of the noise. We consider the following SNR. values.

SNR[03]1[3]10]

A signal-to-noise-ratio of 0.3 corresponds to excessive noise whereas a ratio of 10 implies
very little noise. Finally, the instances we test are compiled as y = X3° + e.

4.7.2. Examined regularization parameters and implementation details

For each approach, we examine the following ridge parameters.

’ Ridge parameter ‘ 0 ‘ 0.5 ‘ 1 ‘ 5 ‘

If the regularization parameter is 0, we are applying Lemma with r = %)\min (XTX).
All in all, we test 12 instances for 5 approaches with each having 4 settings. This results in
240 optimization programs to solve. Each of the methods is implemented in C++ utilizing
CPLEX. We cap the CPLEX run-time at 600 seconds for each formulation.

4.7.3. Hardware

The experiments are performed on a machine with a Intel Core i7-6700 and a random access
memory capacity of 32 GB.

4.7.4. Implementation details

All methods are implemented in C++ and called from R. The code was compiled with g++
7.3.0 with flags -fopenmp, -03 -DNDEBUG, and -fPIC. The respective MIPs are solved with
CPLEX 12.6.2.

4.7.5. Evaluation

At each branch-and-bound node we measure the time and the MIP gap. In CPLEX the

MIP gap is defined by
IBESTBOUND — BESTINTEGER|

10-10 + [BESTBOUND)|

where BESTBOUND is the best objective bound known and BESTINTEGER is the value
of the best integer solution at the respective branch-and-bound node. The table of all runs
is available in Appendix [A] depicting the MIP gap after the root node, the MIP gap after
the last processed node and the required time. Here, we only indicate our observations and
results by representative examples.
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Effectiveness of the proposed cuts

First let us examine the effectiveness of the cuts proposed in Section For this purpose,
we compare MILPNOCUTS with MILP. We observe that in general, MILPNOCUTS has
issues closing the MIP gap and hence never achieves optimality within the time-limit. Apart
from that, we notice that the cuts used in MILP are highly effective and massively help to
compensate the drawbacks of MILPNOCUTS. For instance, this can be seen in Table
Here, the weakness of MILPNOCUTS is evident whereas the MILP approach closes the gap
many times faster. In particular, we observe that the “better” the data the faster MILP
closes the gap. In this context, “better” means that either the signal-to-noise ratio is high
or the noise is compensated by a high ridge parameter.

SNR  Reg. parameter Gap root node Gap last node Req. time
MILP MILPNOCUTS | MILP MILPNOCUTS | MILP MILPNOCUTS
0.3 0.0 | 0.4963 0.6721 0.2706 0.5800 600.00 600.01
0.3 0.5 | 0.0282 0.1371 0.0081 0.1116 600.20 600.01
0.3 1.0 | 0.0081 0.0724 0.0001 0.0451 35.09 600.02
0.3 5.0 | 0.0000 0.0161 0.0000 0.0042 0.05 600.01
1.0 0.0 | 0.4080 0.7130 0.2514 0.5959 600.04 600.99
1.0 0.5 | 0.0315 0.1762 0.0001 0.1363 453.98 601.04
1.0 1.0 | 0.0136 0.0941 0.0000 0.0549 14.25 600.01
1.0 5.0 | 0.0008 0.0189 0.0000 0.0051 0.14 600.01
3.0 0.0 | 0.3265 0.7890 0.0000 0.5524 31.72 600.01
3.0 0.5 | 0.0354 0.3919 0.0000 0.2022 0.26 600.01
3.0 1.0 | 0.0000 0.2339 0.0000 0.0999 0.16 600.01
3.0 5.0 | 0.0000 0.0512 0.0000 0.0078 0.04 600.01
10.0 0.0 | 0.4088 0.7933 0.0000 0.6299 0.22 600.01
10.0 0.5 | 0.0000 0.5491 0.0000 0.0064 0.04 600.04
10.0 1.0 | 0.0000 0.3540 0.0000 0.1601 0.04 600.01
10.0 5.0 | 0.0000 0.0937 0.0000 0.0152 0.03 600.02

Table 4.1.: Comparison between MILP and MILPNOCUTS. Only cases with setting dim-1 are displayed.

Since MILPNOCUTS is dominated by MILP we omit it from further examination and
concentrate on the other four approaches.

Performance in relation to signal-to-noise ratio and regularization

Similar to what we observed with MILP, that lower noise or high regularization parameters
cause faster run times, the same insight can be concluded for OA. In Table we can see
that both SNR and the regularization parameter have great effect on the computational
performance of the outer approximation.
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4.7 Numerical results

SNR  Reg. parameter Gap root node Gap last node Req. time

0.3 0.0 1.0000 0.4106 600.04
0.3 0.5 0.0435 0.0037 600.00
0.3 1.0 0.0122 0.0001 3.27
0.3 5.0 0.0000 0.0000 0.00
1.0 0.0 1.0000 0.4028 600.04
1.0 0.5 0.0701 0.0001 72.48
1.0 1.0 0.0228 0.0001 1.33
1.0 5.0 0.0005 0.0001 0.07
3.0 0.0 1.0000 0.0000 2.38
3.0 0.5 0.0687 0.0000 0.02
3.0 1.0 0.0105 0.0000 0.01
3.0 5.0 0.0007 0.0000 0.01
10.0 0.0 0.2726 0.0000 0.04
10.0 0.5 0.0000 0.0000 0.02
10.0 1.0 0.0000 0.0000 0.01
10.0 5.0 0.0000 0.0000 0.00

Table 4.2.: Numerical results of OA. Only cases with setting dim-1 are displayed.

For SOCP and SOCPNE this effect is not as pronounced as it is for MILP and OA.
In Figure it can be observed that the regularization parameter has an immense effect
on the performance of MILP and OA. Admittedly, SOCP and SOCPNE also benefit from
higher regularization parameters, but the influence is considerably less. In case of the signal-
to-noise-ratio being 10 we can even notice that the performance of SOCP and SOCPNE
becomes worse the higher the regularization is.

However, when we take a closer look at SOCP and SOCPNE we notice that the methods
perform considerably better in settings with high noise, i.e., low SNR, and no or little
regularization. Although no approach finds an optimal solution in those cases, SOCP and
SOCPNE terminate with a lower gap than OA and MILP. In this regard, OA performs
the worst and has trouble closing the gap whereas MILP yields moderate results. Figure
displays two cases where it is apparent that SOCP and SOCPNE are superior in the
aforementioned setting. In the plots it can be seen that OA starts with a higher MIP
gap than the other three approaches. MILP, SOCP, and SOCPNE either start with an
already low MIP gap or they manage to close the gap very fast within the first nodes. Even
though the MILP approach does not provide the lowest gap, the performance of MILP is
closer to SOCP and SOCPNE than it is to OA in this setting. Overall, MILP performs very
competitively in every setting but is not the top performer in most of the cases. Yet it is very
close to the performance of SOCP and SOCPNE in the high noise and low regularization
setting and performs nearly as well as OA in the low noise or high regularization setup.
Only occasionally does MILP perform worse than the other three approaches.
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4. Subset selection regression
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Figure 4.2.: Required time for various values of the ridge parameter u. The labels on the bars indicate the MIP gap
per cent after the last processed node if no optimal solution was found.
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dim-2, SNR = 0.3, Reg. parameter = 0
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Figure 4.3.: MIP gaps over time for the various approaches. Both settings feature the dim-2 setup with a regular-
ization parameter of 0. The upper plot shows the MIP gaps for a signal-to-noise ratio of 0.3 and the
lower plot the MIP gaps for a signal-to-noise ratio of 3.
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4. Subset selection regression

Comparison between SOCP and SOCPNE

Inspired by the usage of the normal equations in the MILP approach we included them as
well in the SOCP method to see if they have any beneficial effects on the tightness of the
formulation. We observed that the impact of the constraints is not clear-cut as there are
cases where SOCP closes the gap quicker and cases where SOCPNE comes out on top (see
Figure . However, we experienced that CPLEX runs into numerical difficulties with
SOCPNE for large instances. Thus, some results for dim-3 and SOCPNE are missing from
the study. We conclude that the beneficial effects of SOCPNE are negligible in light of the
numerical difficulties.

MIP gap in relation to the number of processed nodes

We have seen the methods’ ability to close the gap in a given time frame. However, we
did not consider the number of processed branch-and-bound nodes or the amount of MIP
gap closed per node. In Figure [{.4] we can see two plots depicting the MIP gaps in light
of the processed nodes and in light of the elapsed time. We observe that with MILP very
few nodes are actually processed, but each node reduces the MIP gap significantly. On the
contrary, OA processes each node very fast but reduces the MIP gap by a very small amount
per node. Despite processing most nodes, OA is the fastest to find the optimal solution in
this example. Interestingly, MILP requires very few iterations but each iteration takes a
long time. This can be explained by the large number of cutting planes which inflate the
problem size and lengthens the time to find an optimal solution for the relaxation. However,
it shows that the polyhedral description of the problem is very effective but large.
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Figure 4.4.: The upper plots shows the MIP gap in respect to the elapsed time. The lower plot displays the MIP
gap in respect to the processed branch-and-bound nodes.
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4. Subset selection regression

Conclusion of the computational study

We have compared 5 approaches for solving : a mixed-integer linear regression
formulation with and without novel cuts; a second-order cone formulation, which utilizes
the perspective reformulation; the same second-order cone formulation but with normal
equations included; and the outer approximation approach.

We first examined the computational difference between MILP and MILPNE. We saw
that the inclusion of the tangential cutting planes, as presented in Section is highly
beneficial. Using cutting planes the run times were reduced from the time-limit of 600
seconds to fractions of seconds in many cases. Therefore, we conclude that the inclusion
of the cuts is eminently important. However, we also observed that the high number of
cuts slow down branching as each node takes significantly more time. Hence, this issue
should be examined in more detail. A potential solution for this problem could be a refined
criterion for adding the cuts or re-evaluating the added cuts after a certain amount of time
and keeping only a selection of the most successful cuts to allow faster branching.

Comparing all approaches we have seen that they perform very differently in the various
scenarios. The perspective formulation works well in the settings with high noise and no
ridge regularization whereas the outer approximation performs very efficiently when the
signal-to-noise ratio is high or when a sufficiently high regularization parameter is given.
The MILP approach provided great performance in a broad range of scenarios. It performed
better than OA in the high noise and no regularization setting but worse than SOCP and
SOCPNE. At the other end of the spectrum, i.e., less noise or a higher ridge parameter,
it kept up with OA to the point where the difference was measured in fractions of seconds
and was considerably faster than SOCP and SOCPNE. Since in practice the signal-to-noise
ratio is not known or can only be estimated, the MILP approach is an advisable choice for
solving the subset selection regression. Including the normal equation in the second-order
cone formulation had no major effect besides causing numerical instabilities. Hence, it is
advised not to append them to SOCP.

4.8. A class of polynomial-time solvable instances

We have examined formulations and techniques which improve the computational perfor-
mance of the subset selection regression problem and demonstrated that in practice the
problem can be quickly solved for many cases. Yet the problem is NP-hard and hence has
an exponential worst-case run time, unless NP = P. In this section we present a class of
polynomial-time instances. Here, we consider the problem , the penalized variant of
the subset selection regression. Recall that we proved the non-equivalence of and
. We indeed need the penalized formulation in order to obtain a submodular mini-
mization problem, which is then solvable in polynomial time. For the results, we use the
notion of an M-matrix. In the space of real numbers, an M-matrix is a matrix which is
positive semidefinite but has only nonpositive off-diagonal entries. A characteristic of an
M-matrix is that its inverse is a nonnegative matrix, i.e., the inverse consists of elements
being greater or equal than 0.
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4.8 A class of polynomial-time solvable instances

In the section we proceed as follows. First we present some results by Atamtiirk and
Goémez (2018), who show that quadratic optimization problems with indicator constraints
and an M-matrix can be solved in polynomial time. We then show how the problem
fits into this class of problems. Afterwards, we present a transformation which allows us to
modify the design matrix without changing the objective order of the subsets. That means,
if a subset S produces a better least squares loss than a subset T', it will still produce a
better least squares loss after the matrix modification. We then present a condition under

which the transformation can be used to produce an M-matrix from the Gramian matrix
XTX.
Let @ € RP*P be an M-matrix and let the set Sy be defined by

Sy = {(z,x,t) €{0,1}’ xR xR: 2'Qur <t zi(l—z)=0forallic [p]}
Atamtiirk and Gémez (2018) introduce the optimization problems
min{a"z+b"x +1t: (2,2,t) € Sy} (P1)

and

min 3 a; - % SN bbb (T) (P2)

Tehl jer i=1j=1

with 0;;(T) = ((QT7T)_1)Z.]. and Q7 being the principal submatrix induced by 7. They
prove the following.

Proposition 4.20 (Atamtiirk and Gémez (2018)). If b < 0 and if problem (P1) has an
optimal solution, then (P1)) and (P2)) are equivalent and (P2]) is a submodular minimization
problem, and therefore, solvable in polynomial time.

First note, that we can rewrite (SRy|) as

min k1Tz—BTXTy+t
s.t. BTXTXB<t
Bi(1—2)=0 Vi € [p]
z € {0,1}?

Without loss of generality we can assume X'y > 0. Otherwise, we would multiply the
respective columns of X with —1. Let S C [p] be an arbitrary subset. Now assume that
XTX is an M-matrix, then XIXg is an M-matrix as well and thus (XIXg)~! is non-
negative. Since the optimal coefficients of every subset S are given by (XgX 5)*1X§y, we
can ensure 3 to be non-negative. Therefore, if XX is an M-matrix the subset selection
regression can be formulated as the optimization problem and is therefore solvable in
polynomial time. Hence, we have the following proposition.

Proposition 4.21. Let X" X be an M-matrix. Then, problem (SR,) is solvable in poly-
nomial time.
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4. Subset selection regression

However, assuming X' X to be an M-matrix is a major restriction and usually the as-
sumption does not hold naturally. In the following, we present a sufficient condition under
which XTX can be transformed to an M-matrix without changing the optimization struc-
ture.

An equivalent subset selection problem

Before we get to generate an M-matrix for , we present a transformation of the de-
sign matrix X, which retains the optimization structure, i.e., if a subset S yields a better
objective value than a subset T, it still yields a better objective value after the transforma-
tion. Applying this transformation yields a class of equivalent subset selection regression
instances.

We define the predicted values x(S) = XgB3(S) and the residual r(S) = z(S) —y of a
subset S. Instead of examining the common least squares problem, we consider the auxiliary
problem

min - [| Xy —y|

sty Xy = |yl (AUX)
vllo < &
Once again we introduce some subset-inspired notations. Let 7(.S) be an optimal solution
of (AUX]) for a fixed subset S of non-zero coefficients, i.e.,
7(S) € argmin | Xsv — y|?

VGR‘S\

sty Xey = |lyl)?
Further, we define z(S) := Xg7(S) and ¢(S) = 2(S5) — y. We will first show that (SSRy))
is equivalent to (AUX]), that is, we prove that [|7(S)||3 < |7(T)||3 holds if and only if

1g(S)13 < [|¢(T)||3 holds for S, T C [p]. To arrive at this result we begin with relating 5(S)
to 4(S). For that reason, the necessary and sufficient optimality conditions for

min [ Xsv - yl|?
76R|S\

sty Xey = |yl)?

are given by the linear equations

YT Xsv = |lyl? (4.8.1)
X§Xsy =nX§y (4.8.2)
n€R. (4.8.3)

Denoting a solution to (4.8.1) — (4.8.3) by the tupel (7(S5),7(S)), we find the following
connection between the coefficients.
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4.8 A class of polynomial-time solvable instances

Proposition 4.22. The following properties hold:

(a) 7(S) = y%‘(‘; = X;T;r(j) for any S C [p] and any i € S.

(b) 7(S) = AS)B(S) for every § C [p].
Proof. We first show that n :== yﬂi‘(‘z) and v := nf(S) satisfy the optimality criteria (@.8.1)
and (4.8.2). Thus, n = 7(S) and v = 7(95) is implied. Starting with equation (4.8.1f), we

can observe that it is indeed fulfilled:

2
Txn — T Xa _ lyl