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Chapter 1
Introduction

Model selection describes the process of formulating an appropriate model to describe a
relation between an observation and a statistic of interest. Choosing an ill-posed model
can either lead to the problem of having too little information to properly estimate the
statistic of interest, or having too much information and consequently describing fictitious
connections. These phenomena are called under- and overfitting, respectively. Accordingly,
a modeler’s objective is to select a model such that under- and overfitting are avoided.
Unfortunately, the process of manual model selection tends to resemble more an art than
a well described procedure. Often, it relies heavily on the modeler’s skills and personal
experience.

In the last few years, this paradigm of manual model selection has been challenged and
a variety of approaches to automated model selection were proposed. It is apparent that
the need for such mechanics is becoming more important with machine learning pushing
into everyday life. In fact, machine-aided data selection and filtering processes can greatly
increase explanatory quality and help users to interpret and comprehend the resulting model.
Additionally, with data becoming more complex, possible structures and patterns might not
be evidently revealed to a human operator, making it close to impossible to conduct a model
selection by hand. This particular problem is especially prevalent in applications such as
prediction of drug resistance or cancer screening. The problem of selecting relevant features
of possibly opaque and incomprehensible data became a significant topic in communities
ranging from mathematics, machine learning, statistics, computer science to biology and
medicine. Some examples of model selection are the following:

• Cancer prediction: Determine which genes are responsible for which type of cancer.
The research measured 4718 genes of 349 cancer patients with 15 types of cancer.
Hastie, Tibshirani, and Wainwright (2015) were able to relate each cancer type to a
small subset of all observed genes. The resulting model can predict the cancer type
correctly with a 90% success rate.
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1. Introduction

• Estimation of supernova distance/luminance: Uemura, Kawabata, Ikeda, and Maeda
(2015) are using the Lasso method to select explanatory variables in order to estimate
luminance and thus the distance of supernovae.

• Prediction of HIV drug resistance: Percival, Roeder, Rosenfeld, and Wasserman (2011)
examine the effect of protein sequences on an HIV drug resistance. They find that their
model selection process improves interpretability of drug resistance while ensuring
comparable predictive quality.

Although model selection can arise in many scenarios, in this work we are concentrating
on the linear regression model selection. That is, we assume a linear model y = Xβ0 + ε
where y ∈ Rn is a response, X ∈ Rn×p is a design matrix consisting of the regressors
X1, . . . , Xp, β0 ∈ Rp is a coefficient vector forming the linear relation between X and y, and
finally, ε ∈ Rn is some noise perturbing the response y. The true coefficients β0 are unknown
and are assumed to be sparse, i.e., we have observed too many statistical variables, which
are for the most part irrelevant. The objective is to select only variables i with β0

i 6= 0.
Most approaches addressing this topic follow a common objective: Enforcing sparsity of

explanatory variables. In that sense, we are interested in finding a subset of variables which
best predict our quantity of interest. We will look at this sparsity condition from the point
of view of mixed-integer optimization. In this context a central problem arises in the form
of the following mixed-integer nonlinear program

min
β∈Rp

‖Xβ − y‖2

s. t. ‖β‖0 ≤ k
(SSRk)

where ‖·‖ is the euclidean norm and ‖·‖0 is defined by ‖β‖0 := |supp(β)| = |{i : βi 6= 0}|. The
parameter k ∈ N is fixed and controls the sparsity of the solution. In contrast to the ordinary
least square regression problem, (SSRk) requires significantly increased computational effort.
Therefore, it has long been considered impractical.

We analyze the subset selection regression from a modern discrete optimization per-
spective, we challenge the statistical notion behind (SSRk), propose an alternative model
selection formulation, and present empirical evidence of the potency of discrete optimization
in statistics in light of the subset selection methods. The idea of the best subset selection is
not new, even though it witnessed a renaissance in recent years. Hence, we present previous
research on the topic up to what is considered state-of-the-art.

1.1. State-of-the-art

An early overview over methods for the subset selection regression is given by Cox and
Snell (1974) and Seber (1977). Their proposed approaches include full enumeration, simple
branching methods and a priori variable filtering by various heuristics. Seber (1977) also
presents the stepwise selection, a “greedy”-like approach to the variable selection problem.
Roodman (1974) and Arthanari and Dodge (1981) formulate a mixed-integer linear program.
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1.1 State-of-the-art

However, they only consider the `1-loss function, instead of the `2 norm. The lack of viable
mixed-integer nonlinear programming solvers and computer performance at that time made
most branching approaches nearly unusable in practice. For instance, Beale (1970) reports
running times of up to 648 seconds for instances of size n = 86, p ≤ 29.

Since computational performance has been a major hindrance in solving (SSRk), many
heuristics were developed. The first heuristics include forward selection, backward elim-
ination and stepwise selection (see for example Miller, 1990), all of which pick variables
based on immediate gain or loss in the residual sum of squares ‖Xβ − y‖2. Regarding the
optimization problem

min
β∈Rp

‖Xβ − y‖2

s. t. P (β) ≤ c
(1.1.1)

as a surrogate of (SSRk) for some penalty function P : Rp → R+ yields a collection of heuris-
tics for the subset selection regression problem. Often, (1.1.1) is replaced by a regularized
optimization problem

min
β∈Rp

‖Xβ − y‖2 + µP (β) (1.1.2)

with µ ≥ 0. Setting P = ‖·‖2 yields the ridge regression, which was presented by Hoerl
and Kennard (1970). Since the ridge regression tends to shrink all variables simultaneously,
they propose to calculate a path of various c (or µ, respectively) and exclude variables where
the coefficient changes sign or decreases rapidly. Nowadays, however, the ridge regression is
usually not used as a mean to select variables but rather as a tool to tackle multicollinearities,
selection bias or to robustify the regression coefficients (see Chapter 3).

A major impact was caused by the Lasso method, which was developed by Tibshirani
(1996). The approach utilizes the shrinkage function P = ‖·‖1, which is the “closest” norm
to ‖·‖0, and thus yields the tightest relaxation when restricting P in (1.1.2) to be a norm. In
contrast to the ridge regression, the Lasso methods often shrinks individual coefficients to 0
and, therefore, is a better suited tool for variable selection. Since it was proposed, it became
an extensive subject of research (Bühlmann & van de Geer, 2011). As Lasso is one of the
most prominent variable selection methods available, we consider it a benchmark against the
discrete optimization methods presented in this thesis. As such, we review Lasso in detail in
Chapter 3. A prominent extension to Lasso was proposed by Zou and Hastie (2005). They
combine Lasso and ridge regularization to obtain the elastic net approach. The method is
particularly useful in the case p � n and exhibits a grouping effect on strongly correlated
variables.

At the cost of losing global optimality without utilizing sophisticated search procedures
one can also consider non-convex penalty functions P . In fact, the idea garnered a lot of
interest recently. The so-called MC+ penalty (C.-H. Zhang, 2010) consists of a minimax
concave penalty and a penalized linear unbiased selection (PLUS) algorithm. Whereas
the subset selection regression is unbiased but computationally hard, the Lasso method is
efficient but biased. The idea behind MC+ is to combine the advantages of both approaches
while avoiding the disadvantages. Based on this penalty, Mazumder, Friedman, and Hastie

3



1. Introduction

(2011) developed SparseNet, a method which utilizes MC+ to produce excellent predictions.
We further review SparseNet in Chapter 3 as it is a state-of-the-art method for variable
selection.

One of the earliest mixed-integer formulations for the subset selection regression problem
(SSRk) was given by Konno and Yamamoto (2009). Since then, interest in solving (SSRk)
via modern discrete optimization methods grew rapidly. Dong, Chen, and Linderoth (2015)
applied the perspective reformulation to the subset selection regression enabling a much
stronger relaxation and consequently allowing for the mixed-integer program to be solved
faster. Bertsimas, King, and Mazumder (2016) present a mixed-integer quadratic formula-
tion, a first-order warm start approach and an extensive study on the statistical quality of
the subset selection regression. They argue that discrete optimization methods can play an
important role in statistics. They provide evidence that the critique of discrete optimiza-
tion being computationally impractical in fields like statistics is obsolete and that proper
mixed-integer optimization can be highly valuable and worthwhile. Bertsimas resumed to
work on several articles covering the subset selection regression: Bertsimas and King (2016)
propose a framework which extends the subset selection regression to an automation process
which promises to require minimal human interaction and understanding. Bertsimas and
Van Parys (2017) reformulate the subset selection regression to a nonlinear binary program
without any continuous variables and solve the problem with an outer approximation ap-
proach. Due to high effectiveness of the formulation they apply it to polynomial regression
with exponentially many variables (Bertsimas & Parys, 2017). Atamtürk and Gómez (2018)
focus on the case when XTX is an M -matrix. They present a formulation which is inspired
by the perspective formulation, but yields an even tighter relaxation.

In summary, the subset selection regression problem has garnered a high level of interest
from the discrete optimization community in recent years. The problem enjoys an exciting
development at the interface of data science and integer optimization. In this thesis we
contribute to this progression in the research on the subset selection regression.

1.2. Contributions of the thesis

The contributions of the thesis can be divided into three parts. In the first part, we concen-
trate on the structural properties of problem (SSRk) and slight variations of it. That means,
we concentrate on computational improvements and develop insights into the effectiveness
of known and novel formulations. The following contributions are developed and presented
in this thesis.

Often the different sparse regression formulation

min
β∈Rp

‖Xβ − y‖2 + κ‖β‖0 (SRκ)

is utilized, which is unfortunately not equivalent to (SSRk). We prove that certain sparsity
levels cannot be achieved via (SRκ), while they clearly can be represented by (SSRk). We
prove which conditions cause such a discrepancy between the problems. We conclude that
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1.2 Contributions of the thesis

both problems are not interchangeable and that (SRκ) is a weaker formulation than (SSRk)
in the sense that with (SSRk) every sparsity can be represented whereas with (SRκ) not
every sparsity is achievable.

Many authors consider the `1-loss instead of the `2-loss as an objective function with the
justification that such a modification allows for an integer linear program formulation for
problem (SSRk). We adopt this idea but develop a mixed-integer linear formulation for
the original subset selection regression (SSRk). It shows that this formulation can be quite
effective in combination with new tangential cuts presented in this thesis.

In order to switch coefficients on or off we use Big-M constraints of the form −Lzi ≤ βi ≤
Lzi. Here, z ∈ {0, 1}p are the binary switch variables and L is a sufficiently large constant
such that no optimal solution is cut off. The smaller L is, the faster an optimal solution
is found. That means, we are inclined to choose L as tight as possible. We show that,
if we rely on eigenvalue information of XTX, computing L is NP-hard for general design
matrices. However, restricting ourselves to cases where coefficient bounds can be computed
efficiently does only pose a minor loss of generality. We argue that it is justified to assume a
regularization term and hence we can find coefficient bounds in polynomial time. We then
proceed to develop explicit bounds for the coefficients.

We discuss two state-of-the-art approaches to the subset selection regression – an explicit
binary reformulation by Bertsimas and Van Parys (2017) and a perspective formulation
developed by Dong et al. (2015). We prove that the explicit binary reformulation, which is
a nonstandard binary nonlinear program, is in fact equal to the perspective reformulation.
This insight enables us to develop new cutting planes which mimic the perspective reformu-
lation, but require no second-order cone constraints. We observe that the cuts are highly
effective in combination with the MILP formulation.

Following the perspective reformulation, Atamtürk and Gómez (2018) present a strong
relaxation of specific cardinality-constrained MIQPs, which require the objective matrix to
be an M -matrix, i.e., a positive semidefinite matrix with nonpositive off-diagonal entries.
In fact, they show that an optimal solution can be found in polynomial time for those
instances. We use these results to develop a condition for which instances of (SRκ) are
polynomial-time solvable. For that purpose, we present a set of matrices X, which can be
transformed such that XTX is an M -matrix and such that the optimal subset is identical
to the original optimal subset.

In the second major part of the thesis we examine the larger approach in which the subset
selection regression is used. We note that some authors test the variable selection a posteriori
via test data or via a cross-validation (see for instance Bertsimas & King, 2016) in order to
verify the end result. We argue that doing so means in principle optimizing (subject to the
training error) after which the quality of the optimal solution is then evaluated against a
completely different objective function (test error). We present a mixed-integer nonlinear
formulation which incorporates the test error in-model. Hence, we directly optimize the
actual statistical objective. This enables us to omit the cardinality constraint as the ideal
sparsity is reflected in the objective function and as such, the sparsity is subject to the
optimization process.

5



1. Introduction

Furthermore, as the formulation requires bounds on the coefficients and the predicted
values, we utilize the box constraints presented for (SSRk) and apply them to this problem.

In the last part of the thesis we assess the statistical quality of the subset selection
methods. We compare the predictive performance as well as the coefficient estimation. Our
findings support the conclusion that applying discrete optimization to regression problems
is highly valuable and that the combination of data science and integer optimization offers
promising possibilities.

1.3. Structure

This thesis is structured in the following way. In the remainder of this chapter we discuss
some notations used throughout this work. Thereafter, we specify some properties of the
linear regression and explain in detail why a variable selection is reasonable and necessary
in most cases. In this context, we talk about omission bias – an effect which warrants
and motivates a subset selection procedure. Afterwards, we introduce the subset selection
regression problem, which was only briefly introduced beforehand. In addition, we consider
the variation (SRκ) of the subset selection regression. Whereas the best subset selection
trims solution at some fixed k, the problem (SRκ) penalizes the number of non-zero coef-
ficients in the objective. Since both problems occur in the literature, we want to concisely
clarify the difference between the formulations.

In Chapter 3 we review several heuristics, including forward selection, backward elimina-
tion, stepwise selection, Lasso, and SparseNet. Lasso is one of the most prominent methods
in the field of sparse regression. In this regard, we examine the methodology of Lasso
and some of its theoretical properties. Due to its strong presence in the sparse regression
community, Lasso is still considered a state-of-the-art approach and as such, we measure
the performance of the best subset selection against Lasso. Another strong contender for
variable selection is SparseNet, which we review as well. Both Lasso and SparseNet rely
on regularizations to enforce sparsity. In the last section of Chapter 3 we argue that a
regularization term robustifies against new observations, and hence adding a regularization
to the subset selection problem is still reasonable under this aspect.

Chapter 4 covers the computational and structural elements of the subset selection regres-
sion problem. In Section 4.1 we review the mixed-integer quadratic formulation proposed by
Bertsimas et al. (2016). In the following Section 4.2, we present a novel mixed-integer lin-
ear formulation for (SSRk). Since both formulations require coefficient bounds in the form
of Big-M constraints, we consider this issue in the subsequent Section 4.3. Here, we first
differentiate between two types of data, which we call cohesive and entropic. We examine
the computational complexity of computing bounds for the two types of data and develop
novel coefficient bounds, which can be applied to the presented formulations. In Section 4.4
we review the perspective reformulation applied to the subset selection regression problem,
which provides a much tighter relaxation. We investigate the connection between the per-
spective formulation and an explicit binary formulation in the succeeding Section 4.4, where
we prove that they are equal. This enables us to utilize the tangent planes derived from
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1.4 Notation

the binary formulation to use on the MILP formulation from Section 4.2. Afterwards, we
compare the computational performance of the state-of-the-art formulations and approaches
in Section 4.7. Finally, we close Chapter 4 by presenting a novel class of polynomial-time
solvable instance for the subset selection regression problem.

In Chapter 5 we critically assess the notion of the subset selection regression. We argue
that the common approach to select a subset according to the training error and then
validate is flawed. In the chapter we propose to model the validation process as an objective
function of a mixed-integer nonlinear program such that each subset can be validated against
the test error. We call the resulting approach the cross-validation subset selection regression.

Moreover, we assess the statistical properties of the subset selection regression and the
cross-validation subset selection regression in comparison with heuristical methods Lasso,
SparseNet, and stepwise regression in Chapter 6.

1.4. Notation

We consider a linear regression model y = Xβ0 + ε. Throughout, we will refer to X ∈ Rn×p
as the design matrix with n being the number of observations and p being the number of
variables. Each column (also called variable, regressor or covariate) of X will be denoted by
Xi for some i ∈ {1, . . . , p} and each row (also called observation) of X will be denoted by xj
for some j ∈ {1, . . . , n}. The response of the linear regression is denoted by y ∈ Rn. Note
that X1, . . . , Xp, y are sampled variables. When talking about the related random variables,
we will write them as lower case letters with superscript 0, i.e., x0 and y0. Note that x0 is a
1×p random variable. The vector β0 ∈ Rp is composed of the true coefficients, which are in
practice unknown. Hence, we usually denote the coefficients by β to differentiate between
true and variable coefficients. The perturbation ε ∈ Rn denotes the noise which disturbs
the response y.

The set {1, . . . ,m} is denoted by [m] for an integer m ∈ N. Since we are mainly interested
in variable subset selection, we are often dealing with subsets S ⊆ [p]. The complement of
S, i.e., the set [p] \ S, is denoted by S̄. In reference to the notation of the uniform matroid
we define the set

Ukp := {S ⊆ [p] : |S| ≤ k}.

The corresponding set of indicator vectors is defined by

Zkp := {z ∈ {0, 1}p : 1Tz ≤ k}.

Often, we consider a greedy selection with respect to Ukp . For this reason, let v1, . . . , vp be
a sequence of values in R and denote by v(1) ≥ · · · ≥ v(m) the sorted sequence. We then
define the operator max[k] by

max[k]{v1, . . . , vm} =
k∑
i=1

v(i).

7



1. Introduction

For S = {i1, . . . , ik} we define

XS :=
[
Xi1 · · · Xik

]
as the matrix having only columns indexed by the subset S. Similarly, for a subset T =
{j1, . . . , jl} ⊆ [n] we define

xT :=

xj1...
xjl


as the matrix having only rows indexed by the subset T . For a symmetric matrix A we
write

A � 0

to denote that A is positive definite, and we write

A � 0

to denote that A is positive semidefinite.

Norms

We usually consider the `2-norm and therefore write ‖·‖ := ‖·‖2 unless specified otherwise,
that is,

‖u‖ :=
√
uTu.

Another “norm” we regularly consider in this thesis is the `0-“norm”. It is defined as follows.

‖β‖0 := |supp(β)| := |{i ∈ [p] : βi 6= 0}|.

The quotation marks indicate that this is not a norm as it is not absolute homogeneous,
i.e., |λ|‖β‖0 6= ‖λβ‖0 holds for λ ∈ R \ {−1, 0, 1}. It became convention in the compressed
sensing community to call ‖·‖0 a “norm” and hence we do no want to deviate from this
denotation.

The other common norms are defined as usual, that is, for q ∈ [1,∞) we define

‖β‖q :=
( p∑
i=1
|βi|q

) 1
q

and the maximum norm is defined by

‖β‖∞ := max{|β1|, . . . , |βp|}.
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Solutions to the least squares problem

Oftentimes, we want to consider an optimal solution to the least squares problem

min
β∈Rp

‖Xβ − y‖2

s. t. βS = 0
(1.4.1)

or to the ridge-regularized least squares problem

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖2

s. t. βS = 0
(1.4.2)

with µ ≥ 0 or more general to the Tikhonov-regularized least squares problem

min
β∈Rp

‖Xβ − y‖2 + ‖Γβ‖2

s. t. βS = 0
(1.4.3)

with Γ ∈ Rp×p being a positive semi-definite diagonal matrix. A solution to (1.4.1) is denoted
by β̂X(S), a solution to (1.4.2) by β̂X,µ(S) and a solution for (1.4.3) by β̂X,Γ(S). We omit
the superscripts in unambiguous situations. Solutions to (1.4.1), (1.4.2), and (1.4.3) might
not be unique, however for a vector β̂ ∈ Rp we still write β̂ = β̂(S) and mean that there
exists an optimal solution to either (1.4.1), (1.4.2) or (1.4.3), such that the equality holds.
Note that (β̂(S))i is equal to 0 if i 6∈ S. Therefore, we also define the truncated vector
without zeros. That is, we denote β̄(S) := (β̂(S))S . The same notation we explained for
β̂(S) concerning the superscripts is also used for β̄(S).

The term Xβ̂(S) − y is called the residual (with respect to S) and the values (Xβ̂(S))j
are called the predicted values (with respect to S). We refer to the term ‖Xβ̂(S)‖2 as
the squared predicted values (with respect to S). Sometimes, we consider an additional
ridge regularization in the form ‖Xβ̂(S)‖2 + µ‖β‖2. The term is then referred to as (ridge)
regularized, squared predicted values.
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Chapter 2
The sparse regression problem

In this chapter we concisely detail the motivation for doing a sparse regression. In Section
2.1 we take a look at the ordinary least squares regression and analyze the effects of the
inclusion of irrelevant regressors. This examination leads us to the conclusion that doing a
sparse regression is essential for formulating a predictive model. In the second part of this
chapter, in Section 2.2, we then properly introduce the subset selection regression problem.
Additionally, we present a popular, alternative formulation. The problem can be confused
with the original formulation. We present that it is, however, profoundly different.

2.1. Linear regression

Before considering a subset selection we want to shortly explain the notion of the ordinary
linear regression. We take a look at its statistical properties and explain the term omission
bias. The effect makes variable selection necessary. Our objective in this section is to
minimize the `2-loss between y and the predicted values Xβ, i.e., we want to minimize the
least square value

‖y −Xβ‖2.

We assume that the noise ε has zero mean and variance σ2. Furthermore, in order to have
a unique solution to this problem, we demand full column rank of X. It is well-known that
a solution to the linear least squares regression

min
β∈Rp
‖Xβ − y‖22

is given by β̂ = (XTX)−1XTy by solving the normal equations XTXβ = XTy (see for
example Seber, 1977). In this section we review the motivation given by Miller (1990) on
the importance of conducting a variable selection.

Assume we receive some new data x ∈ R1×p and we would like to make a prediction
using the coefficients calibrated in the above model. Here, we do not consider x to be a

11



2. The sparse regression problem

random variable but a fixed vector. We define the prediction produced by x and the fitted
coefficients β̂ by

ŷ = xβ̂

and by the theory of least squares calculations we have Var(xβ̂) = σ2x(XTX)−1xT. Recall
that the vector x is not a random variable but ε, which is included in y and hence in β̂, is the
considered random variable. We can then represent XTX by the Cholesky decomposition
RTR where R is an upper triangular matrix with positive entries on the diagonal. Seber
(1977) shows that

Var(xTβ̂) = σ2x(RTR)−1xT = σ2xR−1R−TxT.

Now we consider selecting the first k variables and thus limiting the design matrix to XS :=
[X1 · · ·Xk] with S = [k]. Then, the Cholesky decomposition of XT

SXS is given by RT
S,SRS,S

where RS,S is the matrix constructed by taking only the first k rows and columns of R. It
follows that

Var(xβ̂(S)) = σ2xSR
−1
S,SR

−T
S,Sx

T
S

= σ2
k∑
i=1

k∑
j=1

(Rijxj)2

≤ σ2
p∑
i=1

p∑
j=1

(Rijxj)2

= Var(xTβ̂)

and hence the variance of the prediction is decreasing in the number of variables. Therefore,
one could argue that we should consider no variables at all. Clearly, always predicting a
constant value seems to have the smallest variance. However, minimizing the variance is
not the only objective we are interested in. A large bias is equally undesirable.

Following the definitions of Seber (1977), we denote the pointwise mean of a matrix
Z = (Zij) of random variables by E(Z) := (E(Zij)). Then, because E(ε) vanishes, we have

E(β̂S) = (XT
SXS)−1XT

S E(y)
= (XT

SXS)−1XT
S (Xβ0 + E(ε))

= (XT
SXS)−1XT

SXβ
0

= (XT
SXS)−1XT

S (XSβ
0
S +XS̄β

0
S̄

)
= β0

S + (XT
SXS)−1XT

SXS̄β
0
S̄
.

Thus, the bias of estimating y, given by

xβ0 − E(xβ̂(S)) = (xS̄ − x(XT
SXS)−1XT

SXS̄)β0
S̄
, (2.1.1)

12



2.2 The best subset selection regression

might increase when excluding variables. The bias, computed in (2.1.1), is called the omis-
sion bias. This contrariety between bias and variance is a regular appearance in statistics.
Our objective is to find a balance between the two. Assume that some values in β0 are zero,
as they are irrelevant for the prediction. Ideally, let us say that if β0

S̄
= 0, then the omis-

sion bias would be zero. On the other hand, including those variables would increase the
prediction variance and bias. Hence, omitting those variables is desirable and can increase
the predictive quality considerably. As such, conducting a variable selection is an important
part of predictive statistics and modeling. There are plenty of approaches addressing the
issue of variable selection and oftentimes the subset selection regression is identified as the
most natural method for model selection.

2.2. The best subset selection regression

We have seen that from a theoretical standpoint it is essential to conduct a variable selection
when doing a linear regression. Thus, in this work we are concerned with finding the best
subset of variables with respect to the predictive quality. In most of the literature the
predictive quality is estimated by the in-sample least squares loss. The subset selection
given in Chapter 1 is often formulated as the optimization problem

min
β∈Rp

‖Xβ − y‖2

s. t. ‖β‖0 ≤ k,
(SSRk)

where ‖β‖0 denotes the number of non-zero entries of β and the parameter k controls the
minimum accepted sparsity. The restriction on the sparsity enables a reduction in model
complexity as discussed previously and can therefore reduce the predictive error or respec-
tively omission bias. Unfortunately, in general the true sparsity level k is not known a priori.
Thus, it is common practice to conduct a cross-validation over all possible sparsity levels,
i.e., compute the optimal solution for each k and then select the solution with the smallest
estimated prediction error. This, however, requires a high, additional computational effort.
The problem (SSRk) is NP-hard (Natarajan, 1995). After all, many NP-hard problems,
which stem from real-life applications, can be solved quite fast in practice. Yet the subset
selection regression is considered hard to solve. Moreover, it has long been regarded as in-
tractable in practice, which, however, is not the consensus anymore. In recent years, much
progress was made (see for instance Dong et al., 2015; Bertsimas et al., 2016; Atamtürk &
Gómez, 2018) with respect to the subset selection regression.

Although the subset selection regression is computationally challenging the benefits are
worth the performance cost. Those benefits are demonstrated in Chapter 6 where we go into
detail about the statistical characteristics of the subset selection by conducting a simulation
study and comparing it to the state-of-the-art sparse regression approaches.

Sometimes, a penalty formulation is used to model a variable selection instead of a strict
cardinality constraint:

min
β∈Rp

‖Xβ − y‖2 + κ‖β‖0 (SRκ)

13



2. The sparse regression problem

for κ ∈ R+. We label the program the sparse regression (SRκ) problem. Oftentimes, (SRκ)
is called the regularized subset selection and (SSRk) the truncated subset selection problem.
The formulation (SRκ) is central to the works of Dong et al. (2015) and Atamtürk and Gómez
(2018) and also plays a role in this thesis. However, it is important to note that (SSRk) and
(SRκ) are not equivalent in the sense that there is a one-to-one relation between κ and k.
This circumstance is also remarked by Shen, Pan, Zhu, and Zhou (2013). Furthermore, they
show that (SSRk) is preferable in light of theoretical statistical properties. Nevertheless, the
fact that the regularized and truncated problem are not equivalent seems to be unintuitive
at first sight and no concise proof was given why this is the case. Hence, we are presenting
the condition which leads to equivalence.

We first note that every optimal solution of (SRκ) is an optimal solution of (SSRk) for
some k.

Theorem 2.1. If β̃ is an optimal solution of (SRκ), then there exists a k ∈ N such that β̃
is an optimal solution of (SSRk).

Proof. Setting k = ‖β̃‖0, we show that β̃ is an optimal solution of (SSRk). Assume that
this statement is false, i.e., there is a solution β̂ yielding a smaller objective value in problem
(SSRk). Then, β̂ would provide a smaller objective value in (SRκ) as well:

‖Xβ̂ − y‖2 + κ‖β̂‖0 < ‖Xβ̃ − y‖2 + κk = ‖Xβ̃ − y‖2 + κ‖β̃‖0

in contradiction to the optimality of β̃. Thus, β̃ must be an optimal solution for (SSRk).

Unfortunately, the converse is not true without further assumptions. We want to intro-
duce a property under which for every k an optimal solution of (SSRk) is already an optimal
solution of (SRκ) for some κ > 0. For this reason let us denote the objective value of (SSRk)
as a function of k by c(k), i.e.,

c(k) := min
β∈Rp

‖Xβ − y‖2

s. t. ‖β‖0 ≤ k

Note, that c is a decreasing function. We now want to define convexity of c.

Definition 2.2. We call (SSRk) convex in k if c(k)− c(k + 1) ≥ c(k + 1)− c(k + 2) for all
k ∈ N0 or if strict inequality holds for all k ∈ N0 (SSRk) is called strictly convex in k.

The definition is inspired by the definition of convexity in real vector spaces. Instead of
requiring λf(x)+(1−λ)f(y) ≥ f(λx+(1−λ)y) for every x, y ∈ R and λ ∈ [0, 1], we demand
the same inequality for x, y ∈ N and λ ∈ {0, 1}, which results in the definition above.

Intuitively, one might assume that (SSRk) is always convex in k. After all, for a given
k the best subset is chosen and thus, the “better” variables should be taken first. Hence,
this suggests that the objective gain should be front loaded in regard to the sparsity k.
However, Definition 2.2 does not hold trivially and there are cases where convexity in k is
not satisfied. See for example Figure 2.1 for a situation where (SSRk) is not convex in k.
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Figure 2.1.: The objective value of (SSRk) in relation to the sparsity k on a synthetic data set. The data in the
plot has a signal-to-noise ratio of 1, i.e., Var(x0β0)

Var(ε) = 1, a true sparsity of 10, n = 2000, p = 20 and the
covariance matrix of X is constructed by Σij = 0.9|i−j|. It can be observed that c is not convex.

If multicollinearity is high, i.e., the correlation matrix of X has off-diagonal elements close
to 1, then Definition 2.2 is often not satisfied. For instance, the correlation matrix Σ for
the data in Figure 2.1 is given by Σij = 0.9|i−j|. In order to draw conclusions about the
existence of κ > 0 inducing a certain sparsity, Definition 2.2 turns out to be important.

Lemma 2.3. Let (SSRk) be convex in k. Then, all optimal solutions of (SRκ) have sparsity
k or less if and only if c(k)− c(k + 1) < κ.

Proof. Given a κ > 0 assume that all optimal solutions of (SRκ) have sparsity less or equal
than k. From those solutions we pick the one with the largest number of non-zero entries
and denote it by β̃. Assume that β̃ has sparsity k̃. Then,

‖Xβ̃ − y‖2 + κk̃ = c(k̃) + κk̃ < c(k̃ + 1) + κ(k̃ + 1) (2.2.1)

must hold. Otherwise, c(k̃+1)+κ(k̃+1) would provide at least the same objective value as
‖Xβ̃ − y‖2 + κk̃ in contradiction to β̃ having the most non-zero entries. Hence, inequality
(2.2.1) yields

c(k̃)− c(k̃ + 1) < κ.
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2. The sparse regression problem

Due to the (SSRk) being convex in k and k̃ being less or equal to k we have c(k)−c(k+1) < κ.
Let us now consider the reverse. Since we have c(k)− c(k + 1) < κ, the inequality

c(i)− c(j) < (j − i)κ

holds for every i, j ∈ {k, k + 1, . . . } with i < j. Indeed, by utilizing the convexity of c we
have

c(i)− c(j) =
j−1∑
l=i

c(l)− c(l + 1)

≤
j−1∑
l=i

c(k)− c(k + 1)

< (j − i)κ

Hence, we have c(i) + κi < c(j) + κj. In particular the inequality c(k) + κk < c(j) + κj
holds and thus, (SRκ) has an optimal solution with cardinality less or equal than k.

Theorem 2.4. Let (SSRk) be strictly convex in k and let β̂ be an optimal solution of
(SSRk). Then, there exists a κ > 0 such that β̂ is an optimal solution of (SRκ).

Proof. Let us denote the optimal solution to (SSRk) as β̂k and the optimal solution of
(SRκ) as β̃κ. Whenever a solution is not unique we choose an optimal solution with the
largest cardinality. Assume that there exists a κ > 0 such that the optimal solution β̃κ
of (SRκ) has sparsity k. Then, β̂k must be an optimal solution of (SRκ). Otherwise,
‖Xβ̃κ − y‖2 < ‖Xβ̂k − y‖2 would hold, rendering β̂k a non-optimal solution of (SSRk).
Hence, we are left with showing that for every k ∈ [p] there exists κ > 0 with ‖β̃κ‖0 = k.
Setting κ = c(k)− c(k + 1) and using the strict convexity of c gives us

c(k + 1)− c(k + 2) < c(k)− c(k + 1)
= κ.

Furthermore, it is clear that c(k) − c(k + 1) ≥ κ holds. Utilizing both inequalities and
Lemma 2.3 yields that all solutions of (SRκ) have cardinality k + 1 or less and that there
exists at least one optimal solution with cardinality k+ 1. Hence, ‖β̃κ‖0 = k+ 1 holds.

Unfortunately, convexity of c is necessary for (SSRk) and (SRκ) being equivalent. The
following proposition shows that a lack of convexity induces “gaps” in (SRκ) that cannot
be recovered.

Proposition 2.5. Assume that c(k)− c(k + 1) < c(k + 1)− c(k + 2) holds. Then, there is
no κ > 0 such that (SRκ) has an optimal solution with cardinality k + 1.

Proof. We assume that there is a κ > 0 such that an optimal solution β̃ of (SRκ) has
cardinality k+1. Then, c(k+1)+κ(k+1) ≤ c(k+2)+κ(k+2) and c(k)+κk ≥ c(k+1)+κ(k+1)
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2.2 The best subset selection regression

hold, otherwise β̃ would not be optimal. This implies that

c(k + 1)− c(k + 2) ≤ κ
c(k)− c(k + 1) ≥ κ.

Clearly, combining both inequalities gives us c(k+1)−c(k+2) ≤ c(k)−c(k+1), contradicting
our assumption that c(k + 1)− c(k + 2) > c(k)− c(k + 1).

Hence, (SSRk) is more flexible in the sense that any number of predictors can be recovered
whereas with (SRκ) depending on the data certain sparsity levels cannot be reached. In
fact, Figure 2.1 shows that the true predictors cannot be recovered with (SRκ) since the
assumptions of Proposition 2.5 are satisfied at k+1 = 10. However, we will see in Chapter 4
that (SRκ) has structural benefits affecting the computational performance as it comprises
instances which can be solved in polynomial time.
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Chapter 3
Heuristical sparse regression approaches

Since the subset selection regression is a difficult combinatorial problem, many efforts have
gone into investigating approaches which share the same motivation but require less com-
putational effort. That is, conducting a variable selection in a less computational intensive
framework. All the presented methods can be regarded as variations of the best subset
selection and hence we encapsulate them under the topic of heuristics, even though, some
authors understand the methods as alternatives to the subset selection regression, rather
than simplifications. Both standpoints have their merits, however, since the best subset
selection is the focus of this thesis we are mostly interested in considering the approaches
as heuristics for the subset selection regression.

In Section 3.1 we are looking at greedy-like approaches to the subset selection regression.
These include the forward selection, backward elimination, and stepwise selection. Section
3.2 covers the prominent Lasso method. We consider the approach in relation to the sub-
set selection regression and argue that it can be interpreted as a relaxation of a variant
of (SSRk) and (SRκ). Furthermore, we give a brief overview of some theoretical results
concerning the Lasso approach. A method which extends the idea of Lasso by introducing
concave penalties is the SparseNet method, which we describe in Section 3.3. The approach
bridges the gap between Lasso and the best subset selection. Both Lasso and SparseNet
rely on penalization to shrink coefficients down to zero and enable variable selection. The
notion that regularization terms are utilized as an instrument for model selection is widely
accepted as the prevalent property. However, regularization can also be regarded from an-
other perspective, that is, as a form of robustification. We present this unconventional point
of view in Section 3.4 as it will be helpful to understand regularization in the context of the
subset selection regression.
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3. Heuristical sparse regression approaches

3.1. Forward selection, backward elimination, and stepwise
selection

Forward selection, backward elimination, and stepwise selection were among the earliest
attempts at conducting a variable selection. Due to the lack of computational power and
software at the time of their development, the methods are fairly simple and are basically
greedy-like approaches to (SSRk). We want to shortly introduce them but will not go into
detail about the numerical technicalities, which improve performance in practice. For an
extensive overview of the methods and their implementations the book by Miller (1990) is
highly recommended.

Let us denote the residual sum of squares of a variable subset S ⊆ [p] by

F (S) := ‖Xβ̂(S)− y‖2.

Beginning with the subset S = ∅ the minimization problem

l ∈ argmin
i∈[p]\S

F (S ∪ {i}) (3.1.1)

is solved and then the subset S is updated to include l, that is, S ← S∪{l} is applied. Unless
some predetermined termination criterion is satisfied the steps are repeated and (3.1.1) is
computed again. The algorithm could for instance be terminated if a cardinality constraint
akin to (SSRk) is reached.

Input: y ∈ Rn, X ∈ Rn×p
Output: A subset S ⊆ [p]

1 S ← ∅;
2 while termination criterion is not satisfied for S and |S| < p do
3 Choose an element l from argmin

i∈[p]\S
F (S ∪ {i});

4 S ← S ∪ {l};
5 return S;

Algorithm 1: Forward selection algorithm

The backward elimination is very similar to the forward selection in the sense that it is
a reverse greedy approach. Instead of adding one variable after the other, predictors are
deleted according to the residual loss. In other words, we start with the subset S = [p] and
choose the variable which after deletion yields the lowest residual sum of squares:

d ∈ argmin
i∈S

F (S \ {i}). (3.1.2)

Once again, S ← S\{d} is updated and a termination criterion is checked. If the termination
check is negative the steps are repeated and (3.1.2) is computed again. The backward
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elimination requires a higher computational effort since calculating the residual sum of
squares for a large set of variables is more costly than calculating it for a small set of
variables. Moreover, the backward elimination fails if n < p because deleting any variable
in the beginning would produce the same objective value, that is, a residual value of 0.
Hence, in this case the approach cannot gather any information from the residual sum of
squares.

Input: y ∈ Rn, X ∈ Rn×p
Output: A subset S ⊆ [p]

1 S ← [p];
2 while termination criterion is not satisfied for S and |S| > 1 do
3 Choose an element d from argmin

i∈S
F (S \ {i});

4 S ← S \ {d};
5 return S;

Algorithm 2: Backward elimination algorithm

One cannot expect to find optimal solutions from both of the two approaches. More-
over, Miller (1990) notes that solutions produced by either the forward selection or back-
ward elimination can be arbitrarily bad. In an attempt to improve the heuristic quality of
both approaches Efroymson (1960) proposes to allow deletion and addition of variables and
presents the stepwise selection.

Let us again denote the set of chosen variables by S starting with S = ∅. The method
picks the first variable to include in the same way as the forward selection (3.1.1). After
that, an l due to (3.1.1) is computed and it is checked whether

R1 := (n− |S| − 2) · F (S)− F (S ∪ {l})
F (S) > δe

holds for some threshold δe. If this is the case, l is added to S. Subsequently, if a variable was
added it is checked if any regressor can be deleted. This is done by computing d according
to (3.1.2) and checking if

R2 := (n− |S| − 1) · F (S \ {d})− F (S)
F (S) < δd

for a threshold δd. If this is the case, S ← S \ {d} is assigned.
If δd, δe are chosen such that δd < δe, then the stepwise selection terminates after finitely

many steps. This is evident from the following observations. If variable l is added, then

F (S ∪ {l}) ≤ F (S)
1 + δe/(n− |S| − 2)
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Input: y ∈ Rn, X ∈ Rn×p, δe, δd ∈ R+
Output: A subset S ⊆ [p]

1 S ← ∅;
2 Choose an element l from argmin

i∈[p]\S
F (S ∪ {i});

3 R1 ← (n− |S| − 2) · F (S)−F (S∪{l})
F (S) ;

4 while R1 > δe do
5 S ← S ∪ {l};
6 Choose an element d from argmin

i∈S
F (S \ {i});

7 R2 ← (n− |S| − 1) · F (S\{d})−F (S)
F (S) ;

8 if R2 < δd then
9 S ← S \ {d};

10 Choose an element l from argmin
i∈[p]\S

F (S ∪ {i});

11 R1 ← (n− |S| − 2) · F (S)−F (S∪{l})
F (S) ;

12 return S;
Algorithm 3: Stepwise selection algorithm

holds while the consecutive deletion of a variable d implies

F ((S ∪ {l}) \ {d}) ≤ F (S ∪ {l}) · (1 + δd/(n− |S| − 2)) .

Hence, we have
F ((S ∪ {l}) \ {d}) ≤ F (S) · 1 + δd/(n− |S| − 2)

1 + δe/(n− |S| − 2)
and therefore with every variable addition and deletion the residual sum of squares is re-
duced. Since there is only a finite number of possible subsets, the algorithm terminates.

As with the forward selection and backward elimination the algorithm by Efroymson
(1960) is not guaranteed to find a global optimal solution, although it often yields better
results than both of the aforementioned methods.

3.2. Lasso

One of the most prominent sparse regression approaches is the Lasso method proposed by
Tibshirani (1996), which is defined as the solution of the optimization problem

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖1 (LASSO)

for µ > 0. The idea behind the approach is to penalize coefficients with the intention to force
irrelevant predictors to zero and hence generate a sparse solution. In practice this intention is
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often realized. However, in general a sparsity inducing effect is not guaranteed, nevertheless
many results exist proving sparsity and model selection properties under certain matrix
conditions. Equivalently, the Lasso method can be formulated as the following optimization
problem

min
β∈Rp

‖Xβ − y‖2

s. t. ‖β‖1 ≤ t
(LASSOcon)

for some t > 0.
In this section we want to concisely present the Lasso method and its properties. We

explain some theoretical results concerning the method and relate it to the subset selection
problem. Since the Lasso approach is considered to be a state-of-the-art approach in regard
to sparse regression, it poses a benchmark for the statistical performance of the subset
selection regression. Before going into detail about Lasso, we examine the relation between
Lasso and the subset selection regression (SSRk).

3.2.1. Relation to subset selection regression

When talking about subset selection regression, the Lasso method cannot be excluded in the
discussion. The method has been one of the most influential approaches in sparse regression
over the last decade. Hence, an examination of both the differences and similarities of Lasso
and the subset selection regression is important when considering both problems.

The formulation (LASSOcon) is not a direct relaxation of the subset selection problem
(SSRk). Clearly, Lasso bounds the coefficients whereas the subset selection regression only
restricts the number of non-zero entries ignoring the magnitude of the values. We can
however consider the slight modification of (SSRk)

min
β∈Rp

‖Xβ − y‖2

s. t. |βi| ≤ Lzi ∀i ∈ [p]
p∑
i=1

zi ≤ k

zi ∈ {0, 1}.

(SSRk,L)

where L is some constant. Clearly, if L is chosen sufficiently large the program is equivalent
to the original subset selection regression. With the following proposition we can then
connect the subset selection regression with Lasso.

Proposition 3.1 (Bertsimas et al., 2016). The following relation holds:

conv
({
β ∈ Rp : 1Tz ≤ k, |βi| ≤ Lzi ∀i ∈ [p], z ∈ {0, 1}p

})
= {β ∈ Rp : ‖β‖∞ ≤ L, ‖β‖1 ≤ Lk}
⊆ {β ∈ Rp : ‖β‖1 ≤ Lk}
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Hence, (LASSOcon) with parameter t := Lk is a relaxation of (SSRk,L). However, consid-
ering that optimizing a quadratic function over the convex hull of some discrete set does not
guarantee an integer solution, the containment presented in Proposition 3.1 could be rather
loose. We can paint a clearer picture if we consider Lasso in its canonical form (LASSO)
and the regularized mixed-integer program

min
β∈Rp

‖Xβ − y‖2 + µ
p∑
i=1

zi

s. t. |βi| ≤ Lzi
z ∈ {0, 1}p

(SRµ,L)

The program is similar to (SRκ) with the only difference that the absolute values of the
coefficients are bounded from above. Just as with (SSRk,L) the constant L can be chosen
such that it does not cut off any optimal solution. Remember that (SSRk) and (SRκ) are
not equivalent in general and hence the problems (SSRk,L) and (SRµ,L) are not equivalent
either. With the formulation in place we have the following statement.

Proposition 3.2 (Dong et al., 2015). The continuous relaxation of (SRµ,L), where z ∈
{0, 1}p is relaxed to z ∈ [0,∞)p, is equivalent to (LASSO) with parameter µ̄ = µ

L .

3.2.2. Theoretical results for Lasso

The Lasso method is well examined and a great number of theoretical results exist giving
proof of the beneficial characteristics of the approach. We are presenting some of them
here. For a more detailed overview of the theory of Lasso the book of Bühlmann and van de
Geer (2011) is highly recommended. Most results are concerned with the prediction error
produced by the Lasso estimation in relation to the prediction error if true regressors were
known a priori. Central to many results is the dependence on the compatibility condition,
which closely resembles an eigenvalue requirement of the design matrix.

We first take a look at a consistency result concerning the Lasso approach, i.e., the
prediction of Lasso should converge in probability to the true predicted mean Xβ0. For this
purpose let σ̂ denote an estimation of the noise variance. This could for example be given
by σ̂2 = yTy

n . For the consistency we are looking at a triangular array, that is, X = X(n, p)
and y = y(n) are samples dependent on n and p with n and p growing. Hence, σ̂ is also
dependent of n and we assume that σ̂ = 1 for all n. Furthermore, the true coefficients β0

are also a function of n and p. Bühlmann and van de Geer (2011) present the following
result.

Proposition 3.3 (Bühlmann and van de Geer (2011)). For some t > 0, let the regularization
parameter be

µ = 4σ̂

√
t2 + 2 log p

n
.
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Moreover, denote
α := 2e

−t2
2 + P(σ̂ ≤ σ),

then the inequality
2‖X(β̂ − β0)‖2/n ≤ 3µ‖β0‖1

holds with probability greater or equal than 1− α.

If ‖β0‖1 grows in a smaller order than
√
n/ log p and µ in the order

√
log p/n, then

Lasso is consistent. In other words, Lasso is consistent if ‖β0‖1 = o
(√

n/ log p
)

and µ =
Θ
(√

log p/n
)
. To refine the result by including the sparsity of the coefficients we require

the so-called compatibility condition. We denote the scaled Gram matrix by

Σ̂ = XTX

n
.

Let us define the set S0 as the index set of the true predictors, i.e., S0 = {i : β0
i 6= 0}.

Definition 3.4. The compatibility condition holds if there exists a constant φ0 > 0, such
that for all β satisfying ‖βS̄0

‖1 ≤ 3‖βS0‖1 the inequality

‖βS0‖21 ≤
(
βTΣ̂β

) |S0|
φ2

0

holds.

Since ‖βS0‖21 ≤ |S0|‖βS0‖2 ≤ |S0|‖β‖2 and since the Rayleigh quotient βTΣ̂β/‖β‖2 lies in
the interval [λmin(XTX), λmax(XTX)], the compatibility condition is weaker than requiring
non-zero eigenvalues. Estimating the smallest eigenvalue is a frequent occurrence in sparse
regression as seen in Section 4.3 as well. Note that in practice the compatibility condition
can only be verified if it holds for every subset since the true regressors are usually not
known. In this case, verifying the compatibility condition is NP-hard (Dobriban & Fan,
2016).

Requiring the compatibility condition allows us to formulate an approximation utilizing
the `1-difference between the true β0 and the Lasso estimate β̂.

Proposition 3.5 (Bühlmann and van de Geer, 2011). Assume the compatibility condition
holds for S0. For t > 0 let the regularization parameter be

µ := 4σ̂

√
t2 + 2 log p

n
.

Set
α := 2e−

t2
2 + P(σ̂ ≤ σ),
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then, the inequality
‖X(β̂ − β0)‖2 + µ‖β̂ − β0‖1 ≤ 4µ2 |S0|

φ2
0

holds with probability greater than or equal to 1− α.
In particular, we have

‖X(β̂ − β0)‖2 ≤ 4µ2 |S0|
φ2

0

and
‖β̂ − β0‖1 ≤ 4µ |S0|

φ2
0

under the assumptions above with the corresponding probability. Hence, we know that
under appropriate conditions the `1-difference between the estimated coefficients and the
true coefficients is bounded from above.

There are more rigorous variable selection results available under stronger assumptions,
namely the irrepresentable condition (Zhao & Yu, 2006) or the restricted isometry property
(Candes & Tao, 2005). The former guarantees that the selected variables are a subset of the
true selected variables, whereas the later condition warrants that the true signal is recovered
under some further assumptions. While the Lasso method is well studied, the presented con-
ditions are rather restrictive and hard to verify. Moreover, if those assumptions are violated,
the beneficial characteristics of Lasso can vanish, as empirical studies show (Mazumder et
al., 2011; T. Zhang, 2010). To encounter these issues non-convex regularizations have moved
into the focus of research.

3.3. SparseNet

The SparseNet proposed by Mazumder et al. (2011) is a method which aims to eliminate
the drawbacks of Lasso while retaining computational efficiency. The idea is to utilize a
family of regularizations, many of which are non-convex, to bridge the gap between the
soft and the hard threshold penalization, i.e., between `1 and `0 regularization. Hence, the
problem which Mazumder et al. (2011) propose to solve is highly non-convex and therefore,
it possesses many local minima. Finding a global optimal solution is computational difficult,
if not intractable. Therefore, the authors present an algorithm which does not guarantee
optimality, but which often produces excellent results nevertheless. In order to handle
the non-convexity they propose to use a coordinate-descent method, which considers one
dimension at a time.

The foundation for their framework is made up by the optimization problem

min
β∈Rp

Q(β) := 1
2‖y −Xβ‖

2 + µ
p∑
i=1

P (|βi|;µ; γ)

where P is a family of penalty functions, which are concave in |βi|. The parameters µ and
γ control the intensity of the regularization and concavity. Since SparseNet is supposed to
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3.3 SparseNet

be a coordinate-descent method, we are interested in optimizing Q in one dimension at a
time. This leads to the problem

min
β∈R

Q(1)(β) = 1
2(β − β̃)2 + µP (|β|;µ; γ)

for an appropriate β̃. Mazumder et al. (2011) then define the generalized threshold operator
as

Sγ(β̃, µ) = argmin
β∈R

Q(1)(β).

The family of penalizations should satisfy some properties for SparseNet to function as
intended. One main property covers the effective degrees of freedom. We refer to the works
of Bühlmann and van de Geer (2011), Hastie et al. (2015), Zou, Hastie, and Tibshirani
(2007), Mazumder et al. (2011) for a detailed explanation of the term. Intuitively speaking,
the degrees of freedom determine how many parameters can be freely chosen at the end
of a statistical calculation. That is, assume we want to estimate an array of numbers
(a1, a2, . . . , a10) having the knowledge that ∑10

i=1 ai = 10. Clearly, in this case we can select
nine of ten numbers whereas the last number is determined by the previous choice. Hence,
the degrees of freedom would be 9. On the other hand, having the a priori knowledge that
ai ∈ [1,∞) reduces the degrees of freedom to zero since now only (1, . . . , 1) is possible. The
effective degrees of freedom are a generalization of these thoughts, which aim to provide a
measure of complexity between different model selection procedures. Note that the term
does not simply measure the dimension of a set but rather takes the randomness of statistical
observations into account. The term, however, is not without flaws as shown by Janson,
Fithian, and Hastie (2015).

For the penalization used by SparseNet some requirements are needed:

1. The parameter γ should lie in the interval (γ0, γ1) where γ0 should represent the hard
threshold operator and γ1 the soft threshold operator, i.e.,

Sγ1(β̃, µ) = sgn(β̃)(|β̃| − µ)+

Sγ0(β̃, µ) = β̃ · I(|β̃| ≥ µH).

Here µH > µ is chosen in accordance to condition 2.

2. The effective degrees of freedom are controlled by µ and for fixed µ the effective degrees
of freedom of Sγ(·, µ) is about the same for all values of γ.

3. For fixed µ, the largest absolute value which is set to zero by Sγ(·, µ) should increase
as γ decreases from γ1 to γ0.

4. Q(1)(β) is convex for every β̃.

5. The map γ 7→ Sγ(·, µ) is continuous on (γ0, γ1).
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Mazumder et al. (2011) show that the MC+ penalty (C.-H. Zhang, 2010) satisfies all afore-
mentioned conditions except for requirement 2. However, the authors present an approach
to calibrate MC+ such that all requirements are fulfilled.

Mazumder et al. (2011) empirically find that SparseNet manages to yield superior statis-
tical performance on average compared to Lasso and often closely resembles the best subset
selection, which performs the best in low dimensional experiments. In the high dimension
setting SparseNet stays consistent and performs excellent whereas the authors omitted the
best subset selection from this setup since it becomes computationally intractable. Fortu-
nately, research advances of the subset selection made great strides in recent years, so that
subset selection regression became a viable approach to model selection. We discuss and
present novel research on the subset selection regression in Chapter 4.

3.4. Regularization from a robustification perspective

As seen previously, regularizations in regression are mostly regarded as tools for shrinking
coefficients and enforcing sparsity of the solution. Indeed, there are many theoretical results
showing that sparsity can be induced by the `1 regularization under certain conditions (see
for instance Bühlmann & van de Geer, 2011). However, these conditions are restrictive and
often computationally hard to verify. In contrast to these sparsity-inducing characteristics,
we study regularization in the context of robustification. Understanding regularization soley
as a mean to push certain coefficients to zero would be quite redundant in light of a subset
selection, however looking at regularization from the perspective of robustification gives us
good reason to include it into the optimization problem despite the already present subset
selection.

Often robustness is connoted differently in the optimization community than it is in the
statistics community. While robust statistics are concerned with the sensitivity to devia-
tions from distributional assumptions, robust optimization considers deterministic uncer-
tainties and aims at finding the best solution under the worst case scenarios. Even though
both approaches account for interference, their underlying methodology differs considerably.
Standard references covering both sides of robustness are the book by Huber and Ronchetti
(2009) for robust statistics and the book by Ben-Tal, El Ghaoui, and Nemirovski (2009) for
robust optimization. Ben-Tal et al. (2009) encapsulate the difference of the two approaches
excellently:

The term “robust statistics” is generally used to refer to methods that nicely handle
(reject) outliers in data. A standard reference on the topic is Huber’s book [Huber and
Ronchetti (2009)]. As said in the Preface, a precise and rigorous connection with robust
optimization remains to be made. It is our belief that the two approaches are radically
different, even contradictory, in nature: rejecting outliers is akin to discarding data
points that yield large values of the loss function, while robust optimization takes into
account all the data points and focuses on those that do result in large losses.

(Ben-Tal et al., 2009, pp. 337-338)
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3.4 Regularization from a robustification perspective

In context of the definition of robustness by Ben-Tal et al. (2009) the authors Bertsimas,
Copenhaver, and Mazumder (2017) connect two types of optimization problems with robust
statistics and robust optimization, which they call the min-min and min-max approach.
Considering a function g : Rn → R, a set V ⊆ Rn×p, a design matrix X ∈ Rn×p and a
response vector y ∈ Rn, the min-min approach is formulated by the optimization problem

min
β∈Rp

min
∆∈V

g(y − (X + ∆)β),

while the min-max approach is characterized by the problem

min
β∈Rp

max
∆∈U

g(y − (X + ∆)β),

where U ⊆ Rn×p is an uncertainty set. While in both variants the design matrix is per-
turbed to account for some measurement errors, the distinction between the sets V and U
is intentional. Whereas the set V is usually designed to account for distributional outliers,
the uncertainty set U represents deterministic interferences. Intuitively, the former can be
regarded as an optimistic view point whereas the later takes a pessimistic perspective.

Usually, the min-min approach is used in context of robust statistics, with the objective
to protect an estimate from outliers. Hence, oftentimes distribution information is assumed.
For instance, the methods least trimmed squares (Rousseeuw & Leroy, 2005), trimmed Lasso
(Bertsimas et al., 2017) and total least squares (Markovsky & Huffel, 2007) belong to the
category of min-min problems.

In comparison, the min-max method is mainly associated with robust optimization. Here,
the objective is to find solutions which are still “good” or feasible under some uncertainty.
Such a robust optimization problem could for example be posed as follows. Assume we want
to cover some natural gas demand and therefore, were instructed to build a pipeline network.
We aim to minimize the costs of the network, however, if the demand is not satisfiable we
would have to acquire gas from somewhere else for a much higher price. The demand is
unknown a priori but we assume to have knowledge about certain scenarios which can occur.
The uncertainty set U is then designed according to our belief. Hence, we obtain a min-
max optimization problem where the price is minimized and the demand is maximized in
accordance to our belief about the uncertainty.

As demonstrated by the aforementioned, typical example of min-max optimization, the
discipline of robust optimization is mostly uncommon in statistics. However, this perspective
proves to be useful in regard to the subset selection regression. Hence, in this section we are
going to expose regularized regression as a form of robust optimization. We will see that
this point of view is justified and that it makes sense to include regularizations in the subset
selection problem under these aspects. Bertsimas and Copenhaver (2018) relate regularized
regression to robust optimization in the form of a min-max problem. Note, that a less
general variant of the proposition has been proved by Ben-Tal et al. (2009).
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Proposition 3.6 (Bertsimas and Copenhaver, 2018). If g : Rn → R is a seminorm which
is not identically zero and h : Rp → R is a norm, then for any z ∈ Rn, β ∈ Rp and µ > 0

max
∆∈U

g(z + ∆β) = g(z) + µh(β)

where
U =

{
∆ ∈ Rn×p : max

γ∈Rp
g(∆γ)
h(γ) ≤ µ

}
.

The proposition directly implies that

min
β

max
∆∈U

g((X + ∆)β − y) = min
β

g(Xβ − y) + µh(β)

for g, h and U as in Proposition 3.6. Having a regularization is equivalent to solving the
min-max problem where the perturbation of data is maximized under an uncertainty set,
which depends on the used (semi)norms and regularization parameter. To put it in another
way, the regularization directly controls the severance of noise in the data X we expect at
worst.

For g = `2 selecting h = `2 yields

min
β
‖Xβ − y‖2 + µ‖β‖2

and by picking h = `1 we obtain

min
β
‖Xβ − y‖2 + µ‖β‖1.

Both optimization problems are similar to the ridge regression and Lasso method with
the difference that the norms are not squared. However, this poses an issue, since we
usually want to have separability, i.e., quadratic terms. Moreover, it is not clear if squared
terms fit the robustness framework by Bertsimas and Copenhaver (2018) at all, since a
squared (semi)norm ‖·‖2 is not a (semi)norm. Hence, we want to generalize Proposition
3.6 and construct a similar robustness framework. We first consider the following lemma.
Equivalence between regularization and constrained optimization is well-known, however as
a service to the reader we want to state a concise proof.

Lemma 3.7. Let g : Rn → R and h1, h2, . . . , hd : Rn → R+ be convex functions. If

ẑ ∈ argmin
z∈Rn

g(z) +
d∑
i=1

µihi(z) (3.4.1)

for given parameters µ1, . . . , µd > 0, then there exist c1, . . . , cd > 0 such that

ẑ ∈ argmin
z∈Rn

g(z)

s.t. hi(z) ≤ ci ∀i ∈ [d]
(3.4.2)
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and vice versa. If there is a z such that hi(z) < ci for all 1 ≤ i ≤ d, then for given
c1, . . . , cd > 0 there exist µ1, . . . , µd > 0 such that ẑ is an optimal solution for both problems.

Proof. Assume (3.4.1) holds. We then define ci = hi(ẑ) for all 1 ≤ i ≤ d. Now assume that
ẑ is not an optimal solution of (3.4.2) and instead z∗ provides a better objective value, i.e.,
g(ẑ) > g(z∗), while satisfying hi(z∗) ≤ ci for all 1 ≤ i ≤ d. This would imply that

g(z∗) +
d∑
i=1

µihi(z∗) < g(ẑ) +
d∑
i=1

µihi(z∗) ≤ g(ẑ) +
d∑
i=1

µihi(ẑ)

in contradiction to z being an optimal solution of (3.4.1). Therefore, (3.4.2) must hold.
Now assume that ẑ is an optimal solution of the constrained optimization problem, i.e.,

(3.4.2) holds. We use Lagrange duality to prove that (3.4.1) holds as well. Note that the
Slater conditions are satisfied due to g, h1, . . . , hd being convex and because there is a z such
that hi(z) < ci for all 1 ≤ i ≤ d. Thus, strong duality holds. It follows that

max
µ≥0

min
z∈Rn

g(z) +
d∑
i=1

µi(hi(z)− ci) (3.4.3)

is equivalent to (3.4.2), that is, the objective values of (3.4.2) and (3.4.3) are identical. Let
µ̂ be an optimal solution of (3.4.3), then due to complementary slackness (see for example
Boyd & Vandenberghe, 2008, p. 242)

g(ẑ) = g(ẑ) +
d∑
i=1

µ̂i(hi(ẑ)− ci) = min
z∈Rn

g(z) +
d∑
i=1

µ̂i(hi(z)− ci)

holds, which proves the claim.

Lemma 3.8. Let g : Rn → R+ be a seminorm which is not identically zero, let h1, h2, . . . hd :
Rp → R+ be norms and f, f1, f2, . . . , fd : R+ → R+ be increasing, convex functions, then
there exist λ1, . . . , λd > 0 such that

argmin
β

max
∆∈U

g(y − (X + ∆)β) = argmin
β

f(g(y −Xβ)) +
d∑
i=1

µifi(hi(β))

where

U =
{

∆ ∈ Rn×p : g(∆γ) ≤
d∑
i=1

λihi(γ) for all γ ∈ Rp
}
.

Proof. We first look at the right-hand side minimization problem

β̂ := argmin
β

f(g(y −Xβ)) +
d∑
i=1

µifi(hi(β)).
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Lemma 3.7 yields that there exist c1, . . . , cd > 0 such that

β̂ = argmin
β

f(g(y −Xβ))

s.t. fi(hi(β)) ≤ ci ∀i ∈ [d].

Since f1, . . . , fd are convex and increasing, it follows that

β̂ = argmin
β

g(y −Xβ)

s.t. hi(β) ≤ f−1
i (ci) ∀i ∈ [d].

Once again applying Lemma 3.7 yields that there are λ1, . . . , λd > 0 such that

β̂ = argmin
β

g(y −Xβ) +
d∑
i=1

λihi(β).

It is easy to see that ∑d
i=1 λihi is a norm and thus by Proposition 3.6 we have

β̂ = argmin
β

max
∆∈U

g(y − (X + ∆)β)

with U =
{

∆ : g(∆γ) ≤∑d
i=1 λihi(γ) for all γ ∈ Rp

}
.

The Lemma enables us to consider more sophisticated regularizations in light of robus-
tification, albeit, we lose the direct one-to-one relation of the regularization parameter and
the uncertainty set in the process. Since the parameter optimization is usually conducted
via a cross validation on a grid of potential scalars, a one-to-one connection is not a prac-
tical requirement. Yet, it would certainly paint a clearer picture and help in designing an
appropriate grid of parameters.

Selecting g = `2, f = (·)2, h1 = `2, and f1 = (·)2 yields the ridge regression

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖2

and due to Proposition 3.8 the equivalent optimization problem

min
β∈Rp

max
∆∈U`2

‖(X + ∆)β − y‖

for the uncertainty set U`2 = {∆ : ‖∆γ‖ ≤ λ‖γ‖ ∀γ ∈ Rp} = {∆ : σmax(∆) ≤ λ} where
σmax(∆) is the largest singular value of ∆. In the case of Lasso we obtain the uncertainty
set

U`1 = {∆ : ‖∆γ‖ ≤ λ‖γ‖1 ∀γ ∈ Rp}.

The set U`1 can, however, be described in a much more interpretable form as shown in the
following proposition.
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g f h1 f1 h2 f2 Uncertainty set
Ridge regr. `2 (·)2 `2 (·)2 – – {∆ : σmax(∆) ≤ λ}
Lasso `2 (·)2 `1 id – – {∆ : ‖∆i‖2 ≤ λ ∀i}
Elastic net `2 (·)2 `1 id `2 (·)2 {∆ : ‖∆γ‖ ≤ λ1‖γ‖1 + λ2‖γ‖ ∀γ ∈ Rp}

Table 3.1.: Various combinations of settings for Proposition 3.8 related to the prominent regression methods ridge
regression, Lasso, and Elastic net. The function id is the identity function.

Proposition 3.9 (Bertsimas and Copenhaver, 2018). Let be p ∈ [1,∞] and let ∆i be the
i-th column of ∆. If

U ′ = {∆ : ‖∆β‖2 ≤ λ‖β‖0 ∀‖β‖p ≤ 1}

and
U ′′ = {∆ : ‖∆i‖2 ≤ λ ∀i}

then U`1 = U ′ = U ′′.

We can see that the `1 regularization bounds the individual columns of the perturbation
matrix whereas the `2 regularization bounds the singular value of the matrix. Table 3.1
presents an overview over some regularizations and their respective uncertainty sets.

The results encourage us to incorporate regularization in the subset selection regression
as an instrument to robustify coefficients for new settings. We understand that the usual
characteristics of common regularizations like `1 and `2 are mostly meaningless when doing
a discrete variable selection. However, in the light of the presented results the robustifica-
tion aspects of regularization should not be neglected. In fact, Mazumder, Radchenko, and
Dedieu (2017) show that it is highly beneficial to extend the subset selection by a regular-
ization term. In our setting we consider the subset selection regression extended by the `2
regularization.
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Chapter 4
Subset selection regression

We consider the subset selection regression as a central topic in this chapter. The objective
is to find the best subset of variables of size not greater than k subject to the residual sum
of squares. In this and the following chapters we consider the following formulation of the
subset selection regression

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖2

s. t. ‖β‖0 ≤ k
(SSRk,µ)

with ridge parameter µ ≥ 0. The formulation slightly differs from how we introduced the
problem in Chapter 1, in that we extend the program by the option of adding a ridge
regularization. Note that the regularization remains indeed an option as we allow µ to be
equal to 0. The use of a ridge regularization is justified by multiple reasons. It enforces
uniqueness of the fitted coefficients and therefore accounts for over-determined systems or
multicollinearities. Otherwise, the coeffcients would gain several degrees of freedom, which
could result in the coefficient having large variance (see for example Friedman, Hastie, &
Tibshirani, 2001, p. 59). Another reason for the use of a ridge penalization is that a model
selection process can generate selection bias (Miller, 1990), which leads to an overestimation
of the coefficients. The ridge regression causes coefficients to shrink and can therefore correct
the additional bias. Furthermore, as described in Section 3.4 solving

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖2

is equivalent to solving
min
β∈Rp

max
∆∈U

‖(X + ∆)β − y‖

with the uncertainty set U := {∆ : ‖∆‖F ≤ γ}. Hence, a ridge regularization can be seen as
robustification, which protects the coefficients against new observations and therefore shields
against measurement noise. For some formulations and results presented in the following
chapter, we require the Gramian matrix to be positive definite, i.e., XTX + µI � 0. For
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µ > 0 the assumption trivially holds, however if µ is equal to 0, the matrix XTX is positive
definite if and only if X has full column rank.

We categorize the subset selection regression problem into two distinct classes. The first
is the setting when X has full column rank or µ is greater than 0. A necessary condition
for the columns to be linearly independent is that at least as many observations exist as
variables, i.e., p ≤ n is true. Instances in this setting provide a lot of structure, which for
instance can be used to tighten formulations. Oftentimes, arguments are used which relate
some property of interest to the entire matrix X. The other class is the case in which we
have µ = 0 and linear dependencies. Here, many properties cannot be related to the entire
matrix X. As we will see, this makes it much harder, or partially impossible, for us to derive
the same results as for the former setting. As such, it will be made clear throughout which
setting we are considering.

In this chapter we focus on the mathematical and technical aspects of (SSRk,µ) and ignore
the statistical facets of the problem. Our emphasis lies on mixed-integer optimization in
regard to the subset selection regression. We develop new insights and approaches for
(SSRk,µ), which help solving the problem faster. First, we discuss a basic mixed-integer
quadratic formulation for (SSRk,µ) in Section 4.1, which was proposed by Bertsimas et al.
(2016). In Section 4.2 we develop a novel mixed-integer linear formulation for (SSRk,µ). A
major hindrance at formulating a mixed-integer program for the subset selection regression
is the issue of finding bounds for β̂(S) for all S, i.e., developing bounds on the coefficients
valid for all possible subsets. The issue is tackled in Section 4.3 where we present novel
bounds for (SSRk,µ). Following this, we review the perspective reformulation in Section
4.4 – a technique to tighten the relaxation of the subset selection regression. In Section
4.5 we discuss an outer approximation approach which is used to solve an explicit binary
formulation of (SSRk,µ). We prove that the underlying structure of the binary formulation
is equivalent to the perspective formulation presented in the preceding section. With this
in mind we can derive new effective cuts for the subset selection problem in Section 4.6. We
then assess the formulations and cuts with a numerical study in Section 4.7. We close the
chapter with a novel class of polynomial-time solvable instances of (SRκ), which we present
in Section 4.8.

4.1. A mixed-integer quadratic formulation

In this section we provide a mixed-integer formulation for the subset selection regression
problem. Konno and Yamamoto (2009) proposed to formulate the subset selection regression
as a mixed-integer quadratic program, however they conclude that a MIQP is too inefficient
for any practical intentions. Instead, they replace the quadratic deviation with the absolute
deviation. This replacement allows them to formulate a mixed-integer linear program,
which can be solved faster. They then use the solution of the mixed-integer linear program
to exclude a large number of variables and subsequently solve a variable-reduced quadratic
mixed-integer program. However, this approach does not guarantee an optimal solution to
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(SSRk,µ) since an optimal solution subject to the `1-loss does not necessarily coincide with
a solution subject to the `2-loss.

Later, the original quadratic subset selection problem regained interest in the mixed-
integer community. Bertsimas et al. (2016) used several mixed-integer techniques to move
the subset selection program out of the computational intractability territory. They were
able to solve instances in the order of 1000s regressors. In this section we will present their
approach.

We do not require any special assumptions about X, y, or µ, except that the columns of
X are normalized. In fact, X could have linear dependent columns and µ can be chosen to
be 0. We start by formulating (SSRk,µ) as a mixed-integer quadratic program

min βTXTXβ − 2yTXβ + µβTβ

s. t. −Lizi ≤ βi ≤ Lizi ∀i ∈ [p]
p∑
i=1

zi ≤ k

β ∈ Rp

z ∈ {0, 1}p

(Q1
k,µ)

with Li being some constant, which is chosen large enough, such that an optimal solution
of (Q1

k,µ) is also an optimal solution of (SSRk,µ) and vice versa. In other words, it must be
ensured that for all S ∈ Ukp the inequality |β̂(S)i| ≤ Li holds. Under this premise it holds
that, if zi is chosen to be 1, βi is free. In constrast, the setting zi = 0 implies that βi must
be 0. In that sense the optimization variable z controls the sparsity of β, and hence the
sum over z is restricted by k.

The natural question how to choose the constants Li immediately arises from the formu-
lation (Q1

k,µ). It is folklore that the choice of such Big-M constants has significant influence
on the tractability of the problem. In light of this, we are interested in finding tight bounds
for the coefficients. This particular issue will be discussed in Section 4.3. As of now, let us
assume to have knowledge of appropriate constants Li. In addition to the bounds on the
coefficients, Bertsimas et al., 2016 propose to contain β with the constraint ‖β‖1 ≤ L`1 with
L`1 , once again, being large enough to not cut off any optimal solution. Furthermore, they
recommend utilizing the special-ordered set 1 constraint, i.e., a constraint allowing exactly
one variable of a designated set to be non-zero. For instance, the notation

(a, b) : SOS1
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implies that exclusively either a or b are allowed to be nonzero. With that, we obtain the
optimization problem

min βTXTXβ − 2yTXβ + µβTβ

s. t. (βi, 1− zi) : SOS1 ∀i ∈ [p]
−Li ≤ βi ≤ Li ∀i ∈ [p]

p∑
i=1

zi ≤ k

‖β‖1 ≤ L`1

β ∈ Rp

z ∈ {0, 1}p

(Q2
k,µ)

If a fast implementation is preferred, the box constraints on βi and the constraint ‖β‖1 ≤
L`1 could be omitted. However, providing good bounds is helpful in terms of computational
performance. Note that Bertsimas et al. (2016) are assuming L1 = L2 = · · · = Lp, which
makes their formulation of (Q2

k,µ) slightly different.

Furthermore, they propose to substitute the quadratic objective term with additional
variables and bound the predicted values in the same way the coefficients are bounded.
That is, we obtain the optimization problem

min ξTξ − 2yTXβ + µβTβ

s. t. (βi, 1− zi) : SOS1 ∀i ∈ [p]
−Li ≤ βi ≤ Li ∀i ∈ [p]

p∑
i=1

zi ≤ k

‖β‖1 ≤ L`1

ξ = Xβ

‖ξ‖1 ≤ N `1

−Nj ≤ ξj ≤ Nj ∀j ∈ [n]
β ∈ Rp

z ∈ {0, 1}p

ξ ∈ Rn

(Q3
k,µ)

with N `1 , N1, . . . , Nn being sufficiently large constants, such that (Q2
k,µ) and (Q3

k,µ) remain
equivalent. Even though the formulation contains more variables, i.e., β ∈ Rp, z ∈ {0, 1}p
and ξ ∈ Rn, Bertsimas et al. (2016) argue that the quadratic term ξTξ is a function in n
variables, which is beneficial to the computational performance for the p� n case. However,
if p < n holds, formulation (Q2

k,µ) should be utilized.
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4.2 A mixed-integer linear formulation

4.2. A mixed-integer linear formulation

Concerning solver performance the consensus seems to be that mixed-integer linear pro-
grams can be solved faster than mixed-integer nonlinear programs. Indeed, the inclusion of
mixed-integer linear programming algorithms into the prominent commercial solvers began
much earlier than the addition of comparable nonlinear procedures. For instance, MILP
functionality was first introduced to CPLEX in 1991 (Bixby, 2012) while the capability to
solve MIQPs was released with CPLEX 8.0 around 2002 (“Cplex 8.0 Release Notes”, 2002).

Furthermore, the same reason is stated in various early attempts at solving the subset
selection regression problem. Roodman (1974), for example, developed a subset selection
formulation for the `1-norm rather than the `2-norm. This had the effect that he could
naturally build a MILP formulation.

Konno and Yamamoto (2009) argue that a MIQP formulation for (SSRk,µ) is too com-
putational burdensome in order to be useful. Instead they solve the MILP proposed by
Roodman (1974) and use the solution as a warm start for a reduced subset selection re-
gression problem with lower dimension. In this Section we reformulate (SSRk,µ) as a MILP.
Unlike the approach of Konno and Yamamoto (2009) our model is equivalent to (SSRk,µ).
The following result is well known.

Proposition 4.1. Let β̂ be an optimal solution of

min
β∈Rp

‖Xβ − y‖2.

Then, Xβ̂ is orthogonal to Xβ̂ − y.

Let us begin with a simple consequence of this orthogonality.

Lemma 4.2. The following properties hold for any S ⊆ [p]:

i) ‖Xβ̂(S)− y‖2 = ‖y‖2 − ‖Xβ̂(S)‖2 − 2µ‖β̂(S)‖2

ii) yT(Xβ̂(S)− y) = −‖Xβ̂(S)− y‖2 − µ‖β̂(S)‖2

iii) yTXβ̂(S) = ‖Xβ̂(S)‖2 + µ‖β̂(S)‖2

Proof. We show the properties for µ = 0. Property i) follows directly from Proposition 4.1
and Pythagoras’ Theorem, i.e,

‖Xβ̂(S)− y‖2 + ‖Xβ̂(S)‖2 = ‖Xβ̂(S)− y‖2 − 2(Xβ̂(S)− y)TXβ̂(S) + ‖Xβ̂(S)‖2 = ‖y‖2.

For Property ii) we start on the negated right-hand side of the equation and use Proposition
4.1:

‖Xβ̂(S)− y‖2 = (Xβ̂(S)− y)T(Xβ̂(S)− y)

= Xβ̂(S)T(Xβ̂(S)− y)− yT(Xβ̂(S)− y)
= −yT(Xβ̂(S)− y).
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4. Subset selection regression

Next, Property iii) is directly implied by ii) and i).
Considering that

‖Xβ − y‖2 + µ‖β‖2 =
∥∥∥∥∥
[
X√
µI

]
β −

(
y
0

)∥∥∥∥∥
2

the case µ > 0 can be concluded easily.

Lemma 4.2 enables us to evaluate subsets with a linear objective function instead of
the usual least squares term. Clearly, as long as β = β̂(S) for some subset S we have
‖Xβ − y‖2 + µ‖β‖2 = −yTXβ + ‖y‖2 according to Lemma 4.2. Therefore, −yTXβ is an
equivalent objective function to assess the best subset. This allows us to formulate the
optimization problem

max yTXβ

s. t. βS ∈ argmin
ζ∈R|S|

‖XSζ − y‖2 + µ‖ζ‖2

βS̄ = 0
S ∈ Ukp , β ∈ Rp

(4.2.1)

which is equivalent to (SSRk,µ). Note that S is an optimization variable in this program and
that the conditions for β form the definition of β̂(S). That is, for an S ∈ Ukp the coefficients
βS have to be an optimal solution of the least squares problem

min
ζ∈R|S|

‖XSζ − y‖2 + µ‖ζ‖2

and for every i 6∈ S the equality βi = 0 holds. However, it is impossible to put the problem
into any of the common MIP solvers since the program does not yet provide any algebraic
structure.

To formulate problem (4.2.1) algebraically, let us denote the normal equations by

NE(β, S) := XT
SXSβS + µβS −XT

S y.

Since β̂S is an optimal solution of

min
β∈R|S|

‖XSβ − y‖2 + µ‖β‖2

if and only if NE(β, S) = 0 holds, we can reformulate problem (4.2.1) to

max yTXβ

s. t. NE(β, S) = 0
βS̄ = 0

S ∈ Ukp , β ∈ Rp.

(4.2.2)
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4.2 A mixed-integer linear formulation

Next, we want to represent subsets with a binary indicator vector, i.e., we want to model
the relation zi = 1⇔ i ∈ S. In light of this we put up the mixed-integer linear optimization
problem

max yTXβ

s. t. −Lizi ≤ β ≤ Lizi ∀i ∈ [p]
p∑
i=1

zi ≤ k

XT
i Xβ + µβi −XT

i y ≤Mi(1− zi) ∀i ∈ [p]
−XT

i Xβ − µβi +XT
i y ≤ −mi(1− zi) ∀i ∈ [p]

β ∈ Rp, z ∈ {0, 1}p.

(LIN1
k,µ)

Once again, note that we assume known bounds for this formulation. The constants
Li must be chosen such that |β̂(S)i| ≤ Li and Mi,mi must be picked such that −mi ≤
XT
i Xβ̂(S) + µβ̂(S)i − XT

i y ≤ Mi for all S ∈ Ukp . Problems (4.2.2) and (LIN1
k,µ) are

equivalent, that is, the following Proposition holds.

Proposition 4.3. Let (β, z) be a feasible solution of (LIN1
k,µ), then (β, S) is a feasible

solution of (4.2.2) with S = {i ∈ [p] : zi = 1}. If (β, S) is a feasible solution of (4.2.2), then
(β, z) is a feasible solution of (LIN1

k,µ) with zi = 1 if and only if i ∈ S.

Proof. We only show the first statement. The reverse direction follows analogously and from
the fact that Li,mi,Mi are sufficiently large. Assume we have a solution (β, z) of (LIN1

k,µ),
then

XT
i Xβ + µβi −XT

i y ∈
{

[−mi,Mi], if zi = 0,
{0}, if zi = 1,

for all i ∈ [p]. By the definition of S we obtain NE(β, S) = 0. Furthermore, the constraint
−Lizi ≤ βi ≤ Lizi implies βS̄ = 0. Finally, S ∈ Ukp holds since ∑i=1 zi ≤ k holds. Hence,
(β, S) is a feasible solution of (4.2.2).
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4. Subset selection regression

Similar to the way of handling the mixed-integer quadratic program (Q1
k,µ) in Section 4.1

we can as well express (LIN1
k,µ) with SOS1 constraints, yielding

max yTXβ

s. t. −Li ≤ β ≤ Li ∀i ∈ [p]
‖β‖1 ≤ L`1

(βi, 1− zi) : SOS1 ∀i ∈ [p]
p∑
i=1

zi ≤ k

XTXβ + µβ −XTy = ξ

−mi ≤ ξi ≤Mi ∀i ∈ [p]
‖ξ‖1 ≤M `1

(ξi, zi) : SOS1 ∀i ∈ [p]
β ∈ Rp, z ∈ {0, 1}p.

(LIN2
k,µ)

4.3. Bounds for the subset selection problem

As discussed in Section 4.1, finding bounds on the individual coefficients and the predicted
values of the subset selection regression can be essential for the computational performance
of the formulation. We neglected this demand for the formulations we discussed, where we
simply assumed that coefficient bounds Li and L`1 , predicted value bounds Nj and N `1 ,
and the bounds mi,Mi required for the normal equations were given. In this section we
want to present an approach for determining these bounds and shed light on the difficulties
arising in this context.

We differentiate two cases, when X has full column rank or µ is non-zero and when both
conditions are not satisfied. We call the former the cohesive case and the later the entropic
case. Both terms are chosen in accordance to the ability to make conclusions about a subset
of the data by using properties about the whole data. In a sense this can be understood as
connecting “macro” information to “micro” information. In an entropic system this would
be hardly possible, thus the denotation. In summary, we consider two settings:

• Cohesive: either X has full column rank or µ is greater than zero. This is the case
if and only if XTX + µI is positive definite. Under these circumstances we can use
eigenvalue information about XTX + µI to make conclusions about subset solutions
allowing us to draw conclusions from the macro level about the micro level.

• Entropic: X has not full column rank and µ is equal to zero. We will see that it is
difficult to gather information for sub-matrices from the whole design matrix.

Bertsimas et al. (2016) present two kind of approaches to computing the necessary bounds:
the first uses analytic arguments from compressed sensing theory while the other uses data
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4.3 Bounds for the subset selection problem

driven, algorithmic arguments. While the analytic results require strict requirements on
the design matrix X, in principle they work for both the entropic and the cohesive case.
However, their second approach only works for cohesive data. In this section we review
both results and present arguments why finding bounds for the p > n case is particular
difficult. In addition to the results developed by Bertsimas et al. (2016) we are presenting
novel bounds for the cohesive case. We start with showing that an eigenvalue problem
related to the coefficient bounds is NP-hard, which is troublesome if we want to compute a
subset selection regression for general matrices X. We conclude that as long as we require
eigenvalue information to bound the coefficients, an efficient computation is not possible.
Next, we present the bounds proposed by Bertsimas et al. (2016) and finally, we develop a
novel set of bounds.

4.3.1. Coefficient bounds valid for the entropic case

Finding good, computationally tractable bounds for the case when X has not full column
rank, seems to be particular difficult. In fact, to my knowledge, there are no coefficient
bounds which can be calculated in polynomial time without assuming certain matrix con-
ditions, like diagonal dominance or full column rank. We argue that if the coefficients are
bounded using the minimal eigenvalue of XTX, the problem of computing bounds becomes
NP-hard and therefore impractical.

Assume that we want to bound ‖β̂(S)‖2 independently of the subset S. We have

‖β̂(S)‖ = ‖β̄(S)‖
= ‖(XT

SXS)−1XT
S y‖

≤ ‖(XT
SXS)−1‖2‖XT

S y‖
= λmax((XT

SXS)−1)‖XT
S y‖

= ‖XSy‖
λmin(XT

SXS)

(4.3.1)

if XS has full column rank. Otherwise, β̂(S) would be unbounded, and we would require
additional criteria on the null space of XT

SXS to limit the magnitude of β̂(S). If we would
know a lower bound γ(X, k) ≤ λmin(XT

SXS), which only depends on X and k, we would
obtain the intended estimate for β̂(S). If X has full column rank, we can bound λmin(XT

SXS)
by λmin(XTX) > 0 using the Cauchy Interlacing Theorem (see Appendix A.1). However,
in the entropic case we have λmin(XTX) = 0 and therefore, cannot use this argument. Put
in another way, we cannot make conclusions based on the “macro” level about the “micro”
level. Unfortunately, we will show that under these circumstances computing γ(X, k) is
NP-hard for general matrices X. Hence, unless NP = P holds, we cannot expect to
compute a bound efficiently - at least not if arguments similar to (4.3.1) are used.

In the following, we will show why estimating the smallest eigenvalue over all cardinality-
constrained subsets is NP-hard. First, let us define the restricted isometry property.
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4. Subset selection regression

Definition 4.4. For a given matrix X ∈ Rn×p, a constant δ ≥ 0 and a cardinality constraint
k ∈ N the restricted isometry property (RIP) is said to hold if

(1− δ)‖β‖2 ≤ ‖Xβ‖2 ≤ (1 + δ)‖β‖2

is satisfied for all β ∈ Rp with 1 ≤ ‖β‖0 ≤ k.

Deciding whether the restricted isometry property holds for a non-trivial δ is NP-hard:

Proposition 4.5 (Tillmann and Pfetsch (2014), Theorem 3). Given a matrix X ∈ Qn×p, a
cardinality constraint k ∈ N and a constant δ ∈ (0, 1), deciding if X satisfies the RIP with
parameters k and δ is NP-hard.

Even though, Tillmann and Pfetsch (2014) write out the result as stated, in their proof
they show that verifying whether the lower bound of (RIP) holds, is already NP-hard. That
is, in their proof they actually show

Proposition 4.6 (Tillmann and Pfetsch, 2014). Let be X ∈ Qn×p, α := {|Xij | : i ∈ [n], j ∈
[p]} and C := 2dlog2(α√pn)e. Given a cardinality constraint k ∈ N and a constant δ ∈ (0, 1),
deciding if

(1− δ)‖β‖2 ≤
∥∥∥∥ 1
C
Xβ

∥∥∥∥2
(4.3.2)

holds for all β ∈ Rp with ‖β‖0 ≤ k is NP-hard.

Clearly, condition (4.3.2) is equivalent to the requirement that

C2(1− δ) ≤ βTXT
SXSβ

βTβ

holds for all S ∈ Ukp and β ∈ R|S|\{0}. Using the Courant-Fischer theorem (see for example
Horn & Johnson, 2013, pp. 236 - 237) we obtain the equivalent condition

C2(1− δ) ≤ min
S∈Ukp

λmin(XT
SXS).

Hence, the following proposition is implied.

Theorem 4.7. For a given X ∈ Rn×p, k ∈ N and γ > 0 verifying whether

γ ≤ min
S∈Ukp

λmin(XT
SXS)

holds, is NP-hard.

Although, the result is disheartening for our intentions, we could come to the conclusion
that the aforementioned issue is only based on the rather simplistic, initial approach (4.3.1).
However, all attempts getting around this problem appear to come back to the requirement
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4.3 Bounds for the subset selection problem

of estimating the smallest eigenvalue at some point and thus, efficiently bounding the coef-
ficients without any further assumptions remains an open question. The issue of computing
smallest sparse eigenvalue is closely related to the sparse PCA problem (see for example
Dey, Mazumder, & Wang, 2018), which is a computationally difficult and complex problem
in itself.

4.3.2. Bounds requiring X to be cumulative coherent

Although, the results show that in general it is difficult to bound the lowest eigenvalue
of the size-constrained sub-matrices of XTX, there are still approaches to find non-trivial
bounds for λmin(XT

SXS) over all valid S. We next want to discuss the work by Bertsimas
et al. (2016), who confine the design matrix X to a special structure in order to estimate
γ. Their bounds are based on the work of Tropp (2004) (see also Tropp, 2006; Donoho &
Elad, 2003), who introduced the cumulative coherence function

ψ(X, k) := max
|I|=k

max
j 6∈I

∑
i∈I
|XT

j Xi|.

The function is related to the smallest eigenvalue of all principal submatrices of XTX with
size k × k or less, which we denote by

ι(X, k) := min
S∈Ukp

λmin(XT
SXS).

The following relation between ι and ψ holds.

Proposition 4.8 (Tropp, 2004). It holds that

(a) ψ(X, k) ≤ ψ(X, 1) · k,

(b) ι(X, k) ≥ 1− ψ(X, k − 1).

Note that Proposition 4.8 b) can also be understood as a cardinality-constrained variation
of diagonal dominance (the diagonal dominance property is for instance defined by Golub &
Van Loan, 1983). In Theorem 4.7 we have seen that verifying a non-trivial, lower bound for
ι(X, k) is NP-hard. Nevertheless, the result by Tropp (2004) gives us a chance at finding
a non-trivial bound if 1− ψ(X, k − 1) is greater than 0. Unfortunately, the chances of this
being true are rather slim for the p� n case since the probability of two columns standing
in an acute angle to each other and thus, yielding an absolute inner product close to 1,
increases with p. This effect can be observed in Figure 4.1 where a computational survey
about cumulative coherence is presented. For the simulation we generated various data sets
of size 400 × p with p ∈ {100, 200, 500, 800, 2000}. Each data set is generated by drawing
observations from a multivariate normal distribution N (0, Ip). Then, for k ∈ {5, 6, 7, 8}
the data set is checked if it is cumulative coherent, that is, if ψ(X, k) < 1 holds. Each
experiment is repeated 100 times.
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Figure 4.1.: Percentage of cumulative coherent data for different values of p and k. The design matrix X ∈ R400×p

is constructed by drawing observations from a multivariate normal distribution N (0, Ip). It can be
seen that the probability of X being cumulative coherent, i.e., ψ(X, k) being smaller than 1, is rapidly
decreasing with p and k increasing.

The probability of data satisfying the condition of Tropp (2004) is rapidly decreasing, if p
or k increases. In fact, we can see that, even though we chose small k for our simulation, in
the high dimensional case no data sets are cumulative coherent for k ≥ 7. For all cases of p,
the probability in the setting k ≥ 8 is already negligibly small. Considering that we do not
know the real sparsity k in practice, and hence would have to calculate the subset selection
regression for every k up to p, the implications of cumulative coherence are insignificant.

From the results of Tropp (2004), Bertsimas et al. (2016) deduce bounds on the coeffi-
cients.

Theorem 4.3.1 (Bertsimas et al. (2016)). Let k ≥ 1 and ψ(X, k − 1) < 1. For an optimal
solution β̂ of (SSRk,µ) the following bounds hold.:

(a) ‖β̂‖1 ≤ 1
1−ψ(X,k−1) max[k]{|XT

1 y|, . . . , |XT
p y|},

(b) ‖β̂‖∞ ≤ min
{

1
ι(X,k)

√
max[k]{|XT

1 y|, . . . , |XT
p y|}, 1√

ι(X,k)
‖y‖2

}
,

(c) ‖Xβ̂‖1 ≤ min
{∑n

i=1‖(XT)i‖∞‖β̂‖1,
√
k‖y‖2

}
,

(d) ‖Xβ̂‖∞ ≤
(

max
i∈[n]

max[k]{|Xi1|, . . . , |Xip|}
)
‖β̂‖∞,

with max[k]M being defined as the sum over the k largest elements of M .

Since the assumptions of Theorem 4.3.1 are quite restrictive and in practice rarely satis-
fied, they propose additional bounds, which only work in the case n > p.
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4.3 Bounds for the subset selection problem

4.3.3. Bounds for the cohesive case

Assuming full column rank of X or requiring µ > 0 allows us to use the Cauchy Interlacing
Theorem and estimate γ(X, k), effectively bounding ι(X, k) by eigenvalue information of
the whole data. This enables us to develop efficiently computable bounds of the coefficients.
We first present the approach proposed by Bertsimas et al. (2016) and then show novel
explicit bounds for the subset selection regression.

Assume that we have some upper bound on the residual sum of squares of the subset
selection regression problem, i.e.,

min
S∈Ukp

‖XS β̂(S)− y‖2 + µ‖β̂(S)‖2 ≤ UB.

Such an upper bound can be obtained by some heuristical warm start for example. Then,
Bertsimas et al. (2016) propose to calculate lower and upper coefficient bounds as follows:

u+
i := max βi

s. t. ‖Xβ − y‖2 + µ‖β‖2 ≤ UB
and

u−i := min βi

s. t. ‖Xβ − y‖2 + µ‖β‖2 ≤ UB.

The necessary constants are then compiled with u+
i and u−i , i.e., the constant is defined by

L∞ := maxi∈[p] max{|u−i |, |u+
i |} and L1 := ∑k

i=1 max{|u−i |, |u+
i |}. In the same way bounds

on the predicted values can be computed.

v+
j := max xjβ

s. t. ‖Xβ − y‖2 + µ‖β‖2 ≤ UB

and
v−j := min xjβ

s. t. ‖Xβ − y‖2 + µ‖β‖2 ≤ UB.
In the following we assume µ > 0. The assumption does not limit the potential instances

which we can apply the results to since every subset selection regression instance with X
having full columns rank and µ equal to 0 can be transformed to an instance with µ > 0
and vice versa. Before presenting further bounds for the subset selection regression we
show how to conduct such a transformation. For the result we require the singular value
decomposition of X, that means, X is decomposed as UΣV with U ∈ Rn×n, V ∈ Rp×p
unitary and Σ ∈ Rn×p being a diagonal matrix with the non-negative singular values on the
diagonal. Note that all singular values are strictly positive if X has full column rank since
the i-th smallest singular value of X is equal to

√
λi(XTX). The following result holds.

Lemma 4.9. Let X = UΣV be the singular value decomposition of X. Assume that
either X has full column rank or that µ > 0. For r ∈ (−∞, λmin(XTX) + µ) denote

47



4. Subset selection regression

Σ̃ :=
√

ΣTΣ + µI − rI, X̃ := Σ̃V and ỹ := Σ̃−1ΣTUTy. Then, the equations

argmin
β∈R|S|

‖XSβ − y‖2 + µ‖β‖2 = argmin
β∈R|S|

‖X̃Sβ − ỹ‖2 + r‖β‖2

and
min
β∈R|S|

‖XSβ − y‖2 + µ‖β‖2 = min
β∈R|S|

‖X̃Sβ − ỹ‖2 + r‖β‖2 + ‖y‖2 − ‖ỹ‖2

hold for every subset S ⊆ [p].

Proof. First note, that Σ̃ is well-defined and non-singular. Since

ΣTΣ = diag(λp(XTX), . . . , λ1(XTX))

holds, the diagonal matrix ΣTΣ + µI − rI has positive diagonal entries and therefore the
square root of ΣTΣ+µI− rI is well-defined in Rp×p. Additionally, since all diagonal entries
are positive, Σ̃ is non-singular as well. Since by assumption XTX + µI is positive definite,
both optimization problems

min
β∈R|S|

‖XSβ − y‖22 + µ‖β‖2, min
β∈R|S|

‖X̃Sβ − ỹ‖2 + r‖β‖2

are strictly convex and thus have unique solutions, which we denote by β̂1 = (XT
SXS +

µI)−1XT
S y and β̂2 = (X̃T

S X̃S + rI)−1X̃T
S ỹ. Furthermore, it holds that

XT
SXS + µI = V T

S ΣTΣVS + µI = V T
S (Σ̃2 − µI + rI)VS + µI = X̃T

S X̃S + rI (4.3.3)

and
XT
S y = V T

S ΣTUTy = V T
S Σ̃Σ̃−1ΣTUTy = X̃T

S ỹ.

Thus, we have β̂1 = (XT
SXS + µI)−1XT

S y = (X̃T
S X̃S + rI)−1X̃T

S ỹ = β̂2. Furthermore, the
objective values of both optimization problems are equal modulo an additive constant:

‖Xβ̂1 − y‖2 + µ‖β̂1‖2 =β̂T
1 X

TXβ̂1 + µβ̂T
1 β̂1 − 2yTXβ̂1 + yTy

=β̂T
1 X̃

TX̃β̂1 + rβ̂T
1 β̂1 − 2ỹTX̃β̂1 + yTy

=‖X̃β̂1 − ỹ‖2 + r‖β̂1‖2 + yTy − ỹTỹ

We have shown that if we restrict ourselves to the cohesive case requiring µ > 0 does
not lead to a loss of generality. Hence, we assume µ > 0 in the following. We now want to
provide explicit bounds for the subset selection regression, given as a closed-form term. Our
proposed bounds are derived from the optimal solutions β̂(S) and therefore comprise more
information about the coefficients than the algorithmic approach proposed by Bertsimas et
al. (2016), which does not restrict the coefficients to be optimal in the least squares sense.
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4.3 Bounds for the subset selection problem

Novel bound for the regularized, squared predicted values

We start by deriving bounds for the predicted values, i.e., we present an upper bound for
‖Xβ̂(S)‖22 +µ‖β̂(S)‖22 only dependent on X and the required sparsity k. We first note that
according to Lemma 4.2 i) the identity

‖y‖22 − ‖Xβ̂(S)‖22 − µ‖β̂(S)‖22 = ‖Xβ̂(S)− y‖22 + µ‖β̂(S)‖22. (4.3.4)

holds.
Immediately, a trivial bound could be derived. Since ‖Xβ̂(S)−y‖22 +µ‖β̂(S)‖22 ≥ 0 holds,

we have ‖Xβ̂(S)‖22 +µ‖β̂(S)‖22 ≤ ‖y‖22. Even though, this bound is easy to compute we can
do better and tighten this further. Before presenting this improvement, we quote a matrix
inversion identity we require.

Proposition 4.10 (Sherman-Morrison-Woodbury identity). Let be C,D ∈ Rm×n and A ∈
Rm×m. If (I +DTAC)−1 exists, then

(A+ CDT)−1 = A−1 −A−1C(I +DTA−1C)−1DTA−1.

A proof of the proposition is for instance given by Meyer (2000). With the help of the
formula we can deduce the following result.

Lemma 4.11. Let S be a subset of [p] with |S| ≤ k, let µ > 0. Then, the ridge regression
value is bounded from below by

‖y‖42
‖y‖22 + 1

µ max[k]
{
yTXiXT

i y : i ∈ [p]
} ≤ ‖Xβ̂(S)− y‖22 + µ‖β̂(S)‖22.

Proof. Since β̄(S) satisfiesXT
SXS β̄(S)+µβ̄(S) = XT

S y, we have β̄(S) = (XT
SXS+µI)−1XT

S y.
Replacing β̄(S) with this term yields

‖Xβ̂(S)− y‖22 + µ‖β̂(S)‖22 = ‖XS β̄(S)− y‖22 + µ‖β̄(S)‖22
= yTy − yTXS

(
XT
SXS + µI

)−1
XT
S y

Using the Sherman-Morrison-Woodbury matrix identity and the decomposition XSX
T
S =∑

i∈S XiX
T
i gives us

yTy − yTXS

(
XT
SXS + µI

)−1
XT
S y = yT

(
I + 1

µ
XSX

T
S

)−1
y

= yT
(
I + 1

µ

∑
i∈S

XiX
T
i

)−1

y

49



4. Subset selection regression

Since I + 1
µ

∑
i∈S XiX

T
i is symmetric and positive definite we can take the square root of

the matrix in Rp×p. With the Cauchy-Schwarz inequality it follows that

(yTy)2 =

yT
(
I + 1

µ

∑
i∈S

XiX
T
i

)− 1
2
(
I + 1

µ

∑
i∈S

XiX
T
i

) 1
2

y

2

≤ yT
(
I + 1

µ

∑
i∈S

XiX
T
i

)−1

y · yT
(
I + 1

µ

∑
i∈S

XiX
T
i

)
y.

Thus, by reordering the terms we get

‖y‖42
yTy + 1

µ max[k]
{
yTXiXT

i y : i ∈ [p]
} ≤ ‖y‖42

yT
(
I + 1

µ

∑
i∈S XiXT

i

)
y

≤ yT
(
I + 1

µ

∑
i∈S

XiX
T
i

)−1

y

= ‖Xβ̂(S)− y‖22 + µ‖β̂(S)‖22

We can then apply this lemma to the regularized, squared predicted values by using
Equation (4.3.4).

Corollary 4.12. Let be µ > 0 and let be S ∈ Ukp . Then, the inequality

‖Xβ̂(S)‖22 + µ‖β̂(S)‖22 ≤ ‖y‖22 −
‖y‖42

‖y‖22 + 1
µ max[k]

{
yTXiXT

i y : i ∈ [p]
} =: c(X, y, k)

holds.

In the proof of Lemma 4.11 it is possible to derive more computational intense, non-
analytic bounds. Instead of finding a lower estimate by using the Cauchy-Schwartz inequal-
ity one could as well solve the relaxation

min yT
(
I + 1

µ

p∑
i=1

XiX
T
i zi

)−1

y

s. t.
p∑
i=1

zi ≤ t

0 ≤ zi ≤ 1

Bertsimas and Van Parys (2017) show that this problem can be efficiently solved as a
second-order cone program. With that, paying an additional computational cost would
enable c(X, y, k) to be tightened even more.
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4.3 Bounds for the subset selection problem

Novel bounds on the absolute regression coefficients

In the previous section, we focused on computing an upper bound on the ridge regularized,
squared predicted values and now extend this work to derive a bound for the absolute values
of the coefficients of (SSRk,µ), i.e., we find constants Li such that |β̂(S)i| ≤ Li for all S ∈ Ukp .

In order to derive bounds on the individual entries of β̂(S), we utilize the following result,
which estimates the diagonal entries of the inverse of some positive definite matrix A.

Proposition 4.13 (Robinson and Wathen (1992)). For a positive definite matrixA ∈ Rm×m
assume ρ, τ ∈ R to be chosen such that they satisfy λmax(A) ≤ ρ and 0 < τ ≤ λmin(A).
Then, for i ∈ [m] the following bounds hold

i) (A−1)ii ≤ 1
4

(
ρ
τ + τ

ρ + 2
)
· (Aii)−1 =: g1

i (A, τ, ρ)

ii) (A−1)ii ≤ 1
τ − (Aii − τ)2 ·

(
τ
(∑m

k=1A
2
ik − τAii

))−1 =: g2
i (A, τ)

Using the proposition we can prove the following bounds for the absolute values of the
coefficient entries.

Theorem 4.14. Let be S ∈ Ukp . Then, the two inequalities

|β̂(S)i| ≤
√
c(X, y, k) · g1

i (XTX + µI, λmin(XTX) + µ, λmax(XTX) + µ)

and
|β̂(S)i| ≤

√
c(X, y, k) · g2

i (XTX + µI, λmin(XTX) + µ)

hold.

Proof. We first define

W :=
(

X√
µ · I

)
.

Clearly, W has full column rank. Denoting the unit vector with entry 1 at position i by ei
and the pseudoinverse of W by W+, we first note that

|β̂(S)i| = |eiTβ̂(S)|
= |eiTW+Wβ̂(S)|

= |((W+)Tei)
T
Wβ̂(S)|

≤ ‖(W+)Tei‖2‖Wβ̂(S)‖2

= ‖(W+)Tei‖2
√
‖Xβ̂(S)‖22 + µ‖β̂(S)‖22

≤
√

((W+)Tei)T(W+)Tei · c(X, y, k)

=
√
eiTW+(W+)Tei · c(X, y, k)

=
√
eiT(WTW )+ei · c(X, y, k)
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4. Subset selection regression

=
√

((WTW )−1)ii · c(X, y, k).

We are going to use the bounds presented in Proposition 4.13 to prove our claim. Therefore,
we determine an appropriate ρ and τ independent of S.

It holds that λmin(WTW ) = λmin(XTX + µI) = λmin(XTX) + µ and λmax(WTW ) =
λmax(XTX+µ) = λmax(XTX)+µ. Thus, we have τ := λmin(XTX)+µ and ρ := λmax(XTX)+
µ as feasible choices for the bounds presented in Proposition 4.13.

Therefore, we get√
((WTW )−1)ii · c(X, y, k) ≤

√
g1
i (XTX + µI, τ, ρ) · c(X, y, k)

and √
((WTW )−1)ii · c(X, y, k) ≤

√
g2
i (XTX + µI, τ) · c(X, y, k)

which proves the original statement.

Let us denote the minimum of the two bounds by

gi(A, τ, ρ) := min{g1
i (A, τ, ρ), g2

i (A, τ)}.

Using the presented results, we can determine the constants Li, L`1 , Ni, N `1 , mi, and
Mi. Clearly, Li can be set to the bounds presented in Theorem 4.14, i.e., we have

Li =
√
c(X, y, k) · gi(XTX + µI, λmin(XTX) + µ, λmax(XTX) + µ).

The `1-bound can then be constructed by L`1 = ∑p
i=1 Li. The constants Ni can be derived

from

|xj β̂(S)| = |Xj,S β̄(S)|
≤ ‖Xj,S‖1‖β̄(S)‖∞
≤ max[k]{Xj,1, . . . , Xj,p} ·max{L1, . . . , Lp}
=: Nj

and furthermore we simply sum the bounds up to deduce N `1 , that is,

N `1 =
n∑
i=j

Nj .
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4.4 Stronger formulations

For mi and Mi we first find a bound for the value |XiXβ̂(S) + µβ̂(S)i|. The following
inequality holds

|XT
i Xβ̂(S) + µβ̂(S)i| =

∣∣∣∣∣∣
(
Xi√
µei

)T [
X√
µI

]
β̂(S)

∣∣∣∣∣∣
≤
∥∥∥∥∥
(
Xi√
µei

)∥∥∥∥∥
∥∥∥∥∥
[
X√
µI

]
β̂(S)

∥∥∥∥∥
=
√

(‖Xi‖2 + µ) ·
(
‖Xβ̂(S)‖2 + µ‖β̂(S)‖2

)
≤
√

(‖Xi‖2 + µ) · c(X, y, k).

Then, for
mi :=

√
(‖Xi‖2 + µ) · c(X, y, k) +XT

i y

and
Mi :=

√
(‖Xi‖2 + µ) · c(X, y, k)−XT

i y

the inequality
−mi ≤ XT

i Xβ̂(S) + µβ̂(S)i −XT
i y ≤Mi

holds for all S ∈ Ukp . Having determined valid bounds for the mixed-integer quadratic and
linear formulations presented in the previous sections, we next consider another formulation,
which provides a tighter relaxation.

4.4. Stronger formulations

Tight formulations bear major importance in mixed-integer nonlinear optimization as they
can improve solver performance considerably. In this section we want to look at an approach
for tightening the relaxation of the subset selection problem. For this reason, we consider
an application of the perspective formulation developed by Dong et al. (2015). The usage of
the perspective of a function shows to be an effective way to improve the tightness of many
mixed-integer nonlinear programs and in particular of the subset selection regression.

In this section we are looking at the sparse regression problem (see Section 2.2)

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖0. (SRµ)

Throughout we assume that XTX is positive definite. For the p > n case a ridge regular-
ization can be appended and integrated into the Gramian matrix as shown in Lemma 4.9.
Many results shown here can however be applied to (SSRk,µ) as well.

We first want to introduce the notion of the perspective of a function. Said perspective
can be used to describe the convex hull of simple mixed-integer sets via second-order cone
programming. In the context of the subset selection regression one can see that such a set
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4. Subset selection regression

is a part of the formulation we examine. Then, utilizing the convex hull description yields
a much stronger formulation.

First let us consider the perspective of a function f : Rn → R. It is defined by

f̃(λ, x) =


λf(xλ), if λ > 0,
0, if λ = 0,
∞, otherwise.

As long as f is convex the perspective of f is convex as well. Günlük and Linderoth (2012)
motivate the use of the perspective by describing the convex hull of the set W = W 0 ∪W 1

where
W 0 := {(x, z) ∈ Rn × R : x = 0, z = 0}

and
W 1 := {(x, z) ∈ Rn × R : fi(x) ≤ 0 for i ∈ [l], x ≤ x ≤ x̄, z = 1}

for l ∈ N, fi : Rn → R being convex for all i ∈ [l] and x, x̄ ∈ R, x ≤ x̄. They show that

conv(W ) =
{

(x, z) ∈ Rn × R : zfi
(
x

z

)
≤ 0, xz ≤ x ≤ x̄z, 0 < z ≤ 1

}
∪W 0

and equivalently

conv(W ) =
{

(x, z) ∈ Rn × R : f̃i (z, x) ≤ 0, xz ≤ x ≤ x̄z, 0 ≤ z ≤ 1
}

hold. In light of this, a convex hull of the set

R =
{

(x, y, z) ∈ R+ × R× {0, 1} : y ≥ x2, xz ≤ x ≤ x̄z
}

is given by
conv(R) =

{
(x, y, z) ∈ R2

+ × [0, 1] : zy ≥ x2, xz ≤ x ≤ x̄z
}
.

Günlük and Linderoth (2010) show that consequently the convex hull of the set

Q :=
{

(w, x, z) ∈ R× Rn × {0, 1}n : w ≥
n∑
i=1

qix
2
i , xizi ≤ xi ≤ x̄izi, i ∈ [n]

}

with q, x, x̄ ∈ Rn+ is given by the extended formulation

conv(Q) = proj(w,x,z)

{
(w, x, y, z) ∈ R3n+1 : w ≥

n∑
i=1

qiyi, (xi, yi, zi) ∈ conv(Ri), i ∈ [n]
}
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4.4 Stronger formulations

where Ri :=
{
(x, y, z) ∈ R2

+ × [0, 1] : zy ≥ x2, xiz ≤ x ≤ x̄iz
}
. This enables us to solve the

problem

min
n∑
i=1

qix
2
i

s. t. xizi ≤ xi ≤ x̄izi ∀i ∈ [n]
z ∈ {0, 1}n

(4.4.1)

via a second-order cone program. Dong et al. (2015) utilize this reformulation to strengthen
the relaxation of the sparse regression problem (SRκ). For this, they reformulate the problem
as

min βT
(
XTX − Γ

)
β +

p∑
i=1

Γiiβ2
i − 2yTXβ + µ

p∑
i=1

zi + yTy

s. t. −Lzi ≤ βi ≤ Lzi
z ∈ {0, 1}p

(SRµ,Γ)

with L being appropriately large such that the optimal solution of (SRκ) is not cut off and
Γ ∈ Rp×p being a positive definite diagonal matrix such that XTX − Γ � 0. We can see
that (4.4.1) is part of (SRµ,Γ) and thus we can apply the perspective reformulation. For this
reason, we replace ∑p

i=1 Γiiβ2
i by ∑i=1 Γiiτi and bound τi from below by the second-order

cone constraint β2
i ≤ τizi leading to

min βT
(
XTX − Γ

)
β +

p∑
i=1

Γiiτi − 2yTXβ + µ
p∑
i=1

zi + yTy

s. t. β2
i ≤ τizi
τi ∈ Rp+
z ∈ {0, 1}p

(PSRµ,Γ)

Let us denote the relaxation of (PSRµ,Γ) where z ∈ {0, 1}p is replaced with z ∈ [0, 1]p by
rPSRµ,Γ. It turns out that rPSRµ,Γ is much stronger than the relaxation of the formulation
(SRµ,Γ). Dong et al. (2015) proceed to show how to optimally pick Γ such that the relaxation
is the tightest, i.e., they solve the optimization problem

sup
Γ∈diag(Rp+)

rPSRµ,Γ. (sup-inf)

In order to solve this optimization problem they further consider the (inf-sup) variant of
this problem and look for a saddle-point of both problems, i.e., a point that does not allow
for any improvement for either of the operators inf or sup in their respective variables. The
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4. Subset selection regression

primal-dual semi-definite programs

min 〈XTX, B〉 − 2yTXβ + yTy + µ
p∑
i=1

zi

s. t. B � ββT[
zi βi
βi Bii

]
� 0 ∀i ∈ [p]

β, z ∈ Rp

B ∈ Rp×p

(SDP)

and
sup yTy + ε

s. t.
[
ε αT

α XTX − Γ

]
� 0[

γi ti
ti 2µ

]
� 0 ∀i ∈ [p]

αi + (XTy)i + ti = 0 ∀i ∈ [p]
Γii ∈ R ∀p ∈ [p]
Γij = 0 ∀i 6= j ∈ [p]
ε ∈ R

α, γ, t ∈ Rp

(DSPD)

are central to finding a saddle point as displayed in the following theorem.

Theorem 4.15 (Dong et al., 2015). Let be XTX � 0 let (β̂, ẑ, B̂) and (ε̂, α̂, γ̂, t̂) be primal-
dual optimal solutions to (SDP) and (DSPD). Then, (γ̂, β̂) is a saddle point for (sup-inf)
and (inf-sup).

Dong et al. (2015) show that the optimization problem featuring the perspective formu-
lation can be solved significantly faster than the sparse regression formulation. Next, we
consider an explicit binary formulation of the subset selection regression problem, which we
prove is equal to the perspective formulation.

4.5. An explicit formulation of the subset selection problem

We have seen several different formulations for the subset selection problem. In this sec-
tion we present an outer approximation approach presented by Bertsimas and Van Parys
(2017). The method relies only on the solution of binary linear programs, which are gener-
ated successively via the addition of tangent planes of the underlying non-linear problem.
Generally, outer approximation is defined as an approximation of a set by the intersection of
possibly infinite many supersets. The outer approximation presented here, relies loosely on
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4.5 An explicit formulation of the subset selection problem

the method developed by Duran and Grossmann (1986). They proposed an outer approxi-
mation method, which assumes linearity of discrete variables and convexity of the feasible
space of continuous variables. The idea of the approach is to build up an increasingly tight
linear approximation of the nonlinear feasible set of continuous variables and concurrently
solve a MILP on the approximate problem.

4.5.1. Reformulating (SSRk,µ) as a binary nonlinear program

In this context, we are looking at an approximation of a convex nonlinear objective func-
tion, which only depends on binary variables, i.e., optimization variables which encode the
selected subset. The coefficients of the subset selection problem, that is, the continuous
variables of the optimization problem, are explicitly represented as a function of the binary
indicator vector. More precisely, assume µ > 0 holds in the original problem (SSRk,µ).
Then, the optimal coefficients of a subset S are composed by the term

β̄(S) =
(
XT
SXS + µI

)−1
XT
S y.

Hence, by Lemma 4.2 the residual sum of squares of the subset S is given by

‖Xβ̂(S)− y‖2 = ‖XS β̄(S)− y‖2

= ‖y‖2 − yTXS

(
XT
SXS + µI

)−1
XT
S y

and by use of Proposition 4.10 we have

‖Xβ̂(S)− y‖2 = yT
(
I + 1

µ
XSX

T
S

)−1
y.

Since any matrix in the form XXT can be written as a sum of rank-1 matrices constructed
by the columns of X, i.e., XXT = ∑p

i=1XiX
T
i , we can reformulate problem (SSRk,µ) to

min yT
(
I + 1

µ

p∑
i=1

XiX
T
i si

)−1

y

s. t. 1Ts ≤ k
s ∈ {0, 1}p

(InvSSRk,µ)

While we used the letter z throughout the work to denote the indicator vector, here we
consciously use s. That is because it later helps us to differentiate a structural disparity
between the two notations in Section 4.6. Note, that the formulation relies on the assumption
that µ > 0 in (SSRk,µ). We have seen earlier in Section 4.3.3 that the requirement µ > 0 is
equivalent to the data being cohesive, i.e., XTX + µI � 0 holds.

Bertsimas and Van Parys (2017) explain that the optimization problem (InvSSRk,µ) stems
from the dual perspective. Indeed, the following results connect the dual of the ridge
regression to the presented MIP formulation.
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Proposition 4.16 (Vapnik (1998)). Let be µ > 0. The objective value of the ridge regres-
sion problem min

β∈Rp
‖Xβ − y‖2 + µ‖β‖2 is equal to the maximum value of the optimization

problem
max
α∈Rn

− 1
µ
αTXXTα− αTα+ 2yTα. (4.5.1)

An optimal solution of this dual problem is given by

α̂ =
(
I + 1

µ
XXT

)−1
y.

yielding the optimal value

− 1
µ
α̂TXXTα̂− α̂Tα̂+ 2yTα̂ = yT

(
I + 1

µ
XXT

)−1
y.

The dual perspective offers several benefits compared to the primal formulations we have
seen so far. For a start, it does not require any explicit bounds on the coefficients. We
have reasoned previously that finding such bounds can be challenging, although, we also
require cohesive data in this context. Nevertheless, the lack of explicit coefficients in the
aforementioned optimization problem (InvSSRk,µ) makes the formulation much stronger
and the approach less error-prone. Furthermore, when considering the kernel matrix XXT

we can see that the size depends on n rather than p. As such, high dimensional data can
be processed more efficiently with this method. We define the map φ : [0, 1]p → R+ by

φ(s) := yT
(
I + 1

µ

p∑
i=1

XiX
T
i si

)−1

y.

4.5.2. Solving (InvSSRk,µ) via outer approximation

To solve the problem (InvSSRk,µ) Bertsimas and Van Parys (2017) propose an outer ap-
proximation approach in which a new constraint is added whenever a new optimal integer
solution is found. The constraint by which the program is extended is the tangent plane of
the function φ meant to linearly approximate the objective function. That is, we are succes-
sively solving mixed-integer programs and with each iteration extending the programs by
an additional constraint. Since we are looking for an integer solution, only a finite number
of tangent planes are required to find an optimal solution, at most one for each point in Upk .
If we cannot add a cut because the constraint was already appended beforehand, the found
solution is globally optimal. Accordingly, Algorithm 4 describes the outer approximation.

While Algorithm 4 provides a correct description of the procedure, we can utilize modern
solver features to implement the outer approximation much more efficiently. Instead of
successively solving mixed-integer linear programs, we can apply lazy constraints, which
are supported by popular solvers like CPLEX, Gurobi, and SCIP. Lazy constraints can be
understood as cuts, which are necessary for the correctness of the model. Without them

58



4.5 An explicit formulation of the subset selection problem

Input: y ∈ Rn, X ∈ Rn×p, k ∈ [p]
Output: An optimal solution to (InvSSRk,µ)

1 s1 ← Warmstart;
2 η1 ← 0;
3 t← 1;
4 while ηt < φ(st) do
5 st+1, ηt+1 ← argmin

s,η
{η ∈ R+ : s ∈ Zpk , η ≥ φ(si) +∇φ(si)(s− si) ∀i ∈ [t]};

6 t← t+ 1;
7 return st

Algorithm 4: Outer approximation algorithm

a solution to the underlying, original program could be infeasible since any of the lazy
constraints could be violated. In contrast, ordinary cuts are meant to cut off continuous
solutions but not feasible integer solutions and the lack of those would still lead to an optimal
integer solution, albeit with increased computational effort. That is, lazy constraints are
procedurally generated constraints, which are required for the description of the mixed-
integer program but are not provided to the solver at once. This is particularly helpful in
our case where we have a full description with exponentially many constraints, i.e., at each
point of Zpk we have a potential tangent plane. In our implementation we are using the lazy
constraint callback of the C++ CPLEX library, which is invoked every time CPLEX finds a
new integer solution st with the corresponding value ηt. We then add a new constraint if
ηt < φ(st) holds, which is similar to the condition in Algorithm 4.

Nevertheless, the algorithmic framework still leaves us with two issues, that is, the gra-
dient of φ and how to provide a good warm start. The gradient of φ can be deduced using
matrix calculus.

Proposition 4.17 (Bertsimas and Van Parys (2017)). Let

K : {0, 1}p → Rn×p, s 7→
p∑
i=1

XiX
Tsi

be the kernel function and let α̂(K(s)) be the optimal solution to problem (4.5.1) where
XXT is replaced by K(s). Then, the gradient of φ is given by

∇φ(s) = − 1
µ


α̂(K(s))T ·X1X

T
1 · α̂(K(s))

...
α̂(K(s))T ·XpX

T
p · α̂(K(s))

 .
In the article by Bertsimas and Van Parys (2017) further numerical details are considered

for computing φ and ∇φ, which we omit here.
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4. Subset selection regression

4.5.3. A min-max warm start

For providing a warm start, the relaxation of (InvSSRk,µ) is considered. In order to solve
the relaxation efficiently Bertsimas and Van Parys (2017) consider the formulation as a
saddle point problem. For this, they apply Proposition 4.16 and formulate the relaxation
of (InvSSRk,µ) as the min-max problem

min
s∈conv(Zkp )

max
α∈Rn

− 1
µ

p∑
i=1

αTXiX
T
i αsi − αTα+ 2yTα =: φ(s, α). (4.5.2)

Since φ(s, α) is convex in s and concave in α and since we can bound α to the compact
set {α ∈ Rn : ‖α‖∞ ≤ maxs∈Up

k
‖α̂(K(s))‖∞}, we can apply a Minimax theorem (Sion,

1958; Du & Pardalos, 1995) and exchange minimum and maximum operators yielding

max
α∈Rn

− αTα+ 2yTα− 1
µ

max
s∈conv(Zkp )

p∑
i=1

αTXiX
T
i αsi. (4.5.3)

Using the fact that

max
s∈conv(Zkp )

p∑
i=1

αTXiX
T
i αsi = max[k]{αTX1X

T
1 α, . . . , α

TXpX
T
p α},

Bertsimas and Van Parys (2017) present the following second-order cone program, which is
equivalent to (4.5.3) and can be solved efficiently.

max −αTα+ 2yTα− 1Tu− kt
s. t. αTXiX

T
i α ≤ µ(ui + t) ∀i ∈ [p]

α ∈ Rn, u ∈ Rp+, t ∈ R
(4.5.4)

Solving (4.5.4) yields an optimal α̂ for (4.5.3) and consequently with

ŝ ∈ argmax
s∈conv(Zkp )

p∑
i=1

α̂TXiX
T
i α̂si

the tuple (α̂, ŝ) forms an optimal solution of (4.5.3). Since the computation of ŝ is a greedy
selection, ŝ can always be chosen to be binary. Hence, the approach can be used as an
excellent warm start.

Bertsimas and Van Parys (2017), however, do not cover the descent from the difficult
combinatorial problem (InvSSRk,µ) to the efficiently solvable problem (4.5.3). After all,
solving (4.5.3) yields an optimal solution with ŝ being binary. Since (4.5.3) and (4.5.2)
have the same optimal value, one could assume that ŝ is an optimal solution to the subset
selection regression problem. However, unless the optimal solution (α̂, ŝ) of (4.5.3) is a
saddle point, i.e., a point which satisfies φ(s, α̂) ≥ φ(ŝ, α̂) ≥ φ(ŝ, α) for all α ∈ Rn and
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4.5 An explicit formulation of the subset selection problem

s ∈ Upk , it is not guaranteed to be an optimal solution of (4.5.2). Since the existence of
a saddle point is guaranteed (Ben-Tal & Nemirovski, 2013), we have to assume that most
instances do not provide unique solutions for (4.5.3). In particular, the choice of ŝ should
not be unique, i.e., we should expect many of the weights α̂XiX

T
i α̂ to be equal. That is, let

wi := α̂TXiX
T
i α̂ and let w(1) ≥ w(2) ≥ · · · ≥ w(p) be the sorted sequence of weights. Then,

ŝ is not unique if there is some sequence of indices I := [a, b] ∩ {1, . . . , p} with k ∈ I such
that w(i) = w(j) for all i, j ∈ I. Concisely we have

Theorem 4.18. Let α̂ be an optimal solution of (4.5.4). If w(1) > w(2) > · · · > w(k) >
w(k+1), then

ŝ ∈ argmax
s∈Zkp

p∑
i=1

α̂TXiX
T
i α̂si

is an optimal solution to (InvSSRk,µ).

Proof. Clearly, under the assumption that the weights w(1), . . . , w(k+1) are distinct, ŝ is
unique. By Sion’s Minimax Theorem1 (Sion, 1958) we have

min
s∈conv(Zkp )

max
α∈Rn

φ(s, α) = max
α∈Rn

min
s∈conv(Zkp )

φ(s, α)

and hence a saddle point (s∗, α∗) exists (Ben-Tal & Nemirovski, 2013) satisfying

min
s∈conv(Zkp )

max
α∈Rn

φ(s, α) = φ(s∗, α∗) = max
α∈Rn

min
s∈conv(Zkp )

φ(s, α).

If (4.5.3) has an unique optimal solution (ŝ, α̂), then the solution must be a saddle point,
and hence it is also an optimal solution of (4.5.2). Since ŝ is binary, it is an optimal solution
of (InvSSRk,µ). Therefore, we only have to prove that (ŝ, α̂) is a unique optimal solution to
(4.5.3). We first show that α̂ is equal to α̂(K(ŝ)), i.e., a solution to the problem

max
α∈Rn

− 1
µ

p∑
i=1

αTXiX
T
i αŝi − αTα+ 2yTα.

and afterwards prove that α̂ is unique. Let us denote

s(α) := argmax[k]{αTX1X
T
1 α, . . . , α

TXpX
T
p α}.

Assume that α̂ is not equal to α̂(K(ŝ)) =
(
I + 1

µ

∑p
i=1XiX

T
i ŝi
)−1

y. Since w(1), . . . , w(k+1)
are pairwise distinct and max[k] continuous, there is an open neighborhood U around α̂,
such that s(α) is equal to s(α̂) = ŝ for all α ∈ U . Consequently, there exists a λ ∈ (0, 1]
such that λα̂+ (1−λ)α̂(K(ŝ)) ∈ U . As φ is strictly convex in α and as φ(ŝ, α̂(K(ŝ))) is the

1For X compact and convex, Y convex, and f : X × Y → R continuous, the identity
minx∈X maxy∈Y f(x, y) = maxy∈Y minx∈X f(x, y) holds if f is convex in x and concave in y.
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4. Subset selection regression

unique minimum objective value for fixed ŝ we have

φ(ŝ, λα̂+ (1− λ)α̂(K(ŝ))) ≥ λφ(ŝ, α̂) + (1− λ)φ(ŝ, α̂(K(ŝ)))
> λφ(ŝ, α̂) + (1− λ)φ(ŝ, α̂)
= φ(ŝ, α̂)

in contradiction to (ŝ, α̂) being the optimal solution of (4.5.3). Thus, α̂ must be equal to
α̂(K(ŝ)).

Assume there is another optimal solution (s̃, α̃) to Problem (4.5.3). Since the max[k]
operator is convex, the map

−αTα+ 2yTα− 1
µ

max[k] {αTX1X
T
1 α, . . . , α

TXpX
T
p α}

is concave in α and thus every solution (s(λα̂ + (1 − λ)α̃), λα̂ + (1 − λ)α̃) for λ ∈ [0, 1]
is an optimal solution to (4.5.3). In particular, there is a λ ∈ (0, 1] such that λα̂ + (1 −
λ)α̃ ∈ U holds, making (ŝ, λα̂ + (1− λ)α̃) an optimal solution to (4.5.3). However, having
λα̂+ (1− λ)α̃ 6= α̂(K(ŝ)) and following the aforementioned argumentation a contradiction
arises leading to the assumption being false. Therefore, α̂ is unique and considering that

ŝ ∈ argmax
s∈Zkp

p∑
i=1

α̂TXiX
T
i α̂si

is unique as well, we conclude the proposition.

We have presented a global optimality criterion for the subset selection regression problem,
which can efficiently be checked after computing a warmstart. It remains to be assessed if
anymore useful properties about the optimal solution can be extracted from the case when
w(j) = · · · = w(k+1) for some j.

Furthermore, checking the requirement that the first k + 1 weights are distinct is not
numerically trivial, since in practice all weights are different as small numerical errors are
present in the solution of (4.5.4). Hence, the question arises what numerical tolerance should
be utilized in order to correctly differentiate between equal and unequal weights. Due to
the restricted scope of this thesis we leave those questions open for future research.

4.5.4. Relation to the perspective reformulation

As Bertsimas and Van Parys (2017) solved problem (InvSSRk,µ) via an outer approximation,
we are interested in examining (InvSSRk,µ) further as it is rather uncommon to see such an
inverse matrix problem in the field of discrete optimization. We want to give some context
on the problem class related to the aforementioned problem and present a second-order cone
formulation for (InvSSRk,µ).

Unlike the second-order cone program Bertsimas and Van Parys (2017) propose for solving
the relaxation and consequently generating a warm start, the program we propose can be
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4.5 An explicit formulation of the subset selection problem

used to solve (InvSSRk,µ) directly. As we will see, the formulation arising from the matrix
inverse problem is exactly what Dong et al. (2015) propose (see Section 4.4). In order to
better connect the works of Bertsimas and Van Parys (2017) and Dong et al. (2015) we
consider the generalized Tikhonov variant of (InvSSRk,µ). That is, we consider the subset
selection problem

min
β∈Rp

‖Xβ − y‖2 + ‖Γβ‖2

s. t. ‖β‖0 ≤ k

where Γ ∈ Rp×p is a positive definite diagonal matrix. Analogously to the reformulation at
the beginning of Section 4.5.1 we get the equivalent problem

min
s∈Zp

k

yT
(
I +

p∑
i=1

Γ−2
ii XiX

T
i

)−1

y.

Let us consider the functional

A(s) = A0 +
p∑
i=1

Aisi

with Ai ∈ Rn×n, i = 0, . . . , p, being positive semi-definite such that the sum is positive
definite. Then, the epigraph of

f : Rn × Rp+ → R
f(x, s) 7→ xT (A(s))−1 x

is second-order cone representable (Nesterov & Nemirovskii, 1994, pp. 227 - 229), i.e., there
exists a second-order cone formulation whose feasible region coincidences with the set Q :=
{(t, x, s) ∈ R× Rn × Rp+ : t ≥ f(x, s)}. More precisely, the feasible region of

A
1
2
0 u0 + · · ·+A

1
2
p uk = x

‖ui‖2 ≤ siτi ∀i ∈ {0, . . . , p}
p∑
i=0

τi ≤ t

s0 = 1
ui ∈ Rn, τi ∈ R+ ∀i ∈ {0, . . . , p}

t ∈ R, x ∈ Rn, s ∈ Rp+

(4.5.5)
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4. Subset selection regression

is equal to Q. Hence, a global minimum of f under additional second-order cone constraints
K can be computed in polynomial time. This class of optimization problems

min
x∈Rn,s∈Rp+

f(x, s)

s. t. (x, s) ∈ K

is called matrix-fractional problems (see also Boyd & Vandenberghe, 2008). The matrix-
fractional problem (InvSSRk,µ), we wish to solve, has additional binary requirements. How-
ever, we can still use the SOCP transformation (4.5.5) to formulate (InvSSRk,µ) as a mixed-
integer second-order cone program. This yields the equivalent subset selection regression
formulation

min
p∑
i=0

τi

s. t. u0 +
p∑
i=1

Γ−1
ii ‖Xi‖−1XiX

T
i ui = y

‖ui‖2 ≤ siτi ∀i ∈ [p]
‖u0‖2 ≤ τ0
p∑
i=1

si ≤ k

ui ∈ Rn ∀i ∈ {0, . . . , p}
τi ∈ R+ ∀i ∈ {0, . . . , p}
s ∈ {0, 1}p

(MFk,µ)

Unfortunately, this SOCP requires n(p + 1) + 2p variables, which makes the program
inefficient to solve in practice. We can however refine the formulation further and reduce
the number of variables. In particular, the following proposition holds.

Theorem 4.19. Let (t̂, ŝ, τ̂, û0, . . . , ûp) be an optimal solution of (MFk,µ), then there exist
η1, . . . ηp ∈ R such that ûi = ηiXi for every i ∈ [p].

Proof. We are looking for an optimal solution of the problem

min ‖u‖2

s. t. XT
i u = XT

i ûi
(4.5.6)

Clearly, ûi must be an optimal solution of (4.5.6) since otherwise we could swap the optimal
solution of (4.5.6), shrink τ̂i and yield a better objective value for problem (MFk,µ). Due
to the KKT conditions and the strict convexity of (4.5.6), a vector u is optimal if and only
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4.6 Effective cutting planes for the subset selection regression

if it satisfies the equation system

2u+ λXi = 0
XT
i u = XT

i ûi

where λ ∈ R is the Lagrange multiplier. From the system it is easy to see that an optimal
solution has to be a multiple of Xi, hence every ûi must be linearly dependent of Xi.

Hence, we do not require the whole vectors ui but instead only a scalar. The theorem en-
ables us to replace ui by the one dimensional information ηiXi. Furthermore, we substitute
βi := ‖Xi‖

Γii ηi, resulting in the following program:

min
p∑
i=0

τi

s. t. u0 +Xβ = y

Γ2
iiβ

2
i ≤ siτi ∀i ∈ [p]

‖u0‖2 ≤ τ0
p∑
i=1

si ≤ k

u0 ∈ Rn

β ∈ Rp

τ ∈ Rp+
s ∈ {0, 1}p

(Pk,µ)

It is interesting to see that the constraint Γ2
iiβ

2
i ≤ siτi arises naturally from the formulation

(InvSSRk,µ) as it depicts a perspective reformulation (Günlük & Linderoth, 2010; Dong et
al., 2015), which was also detailed in Section 4.4. Such a perspective reformulation can
significantly tighten the relaxation compared to the trivial bound Γ2

iiβ
2
i ≤ τi. The fact that

(InvSSRk,µ) comprises such a formulation, gives us more insight into why this approach
works so well.

4.6. Effective cutting planes for the subset selection
regression

Seeing how (InvSSRk,µ) encompasses the stronger perspective formulation we utilize the
tangent planes originating from (InvSSRk,µ) as cutting planes in the weaker albeit linear
formulation (LIN2

k,µ). When constructing (InvSSRk,µ) we neglected a detail, which is unim-
portant when looking at tangent planes for binary solutions but becomes relevant when
considering tangent planes for continuous solutions. For this reason, we have to define
continuous “subsets”. Let us imagine subsets having weights in the interval [0, 1] for each
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4. Subset selection regression

element. For instance, a continuous subset S of the set [10] could look like this

S := {(0.5, 1), (1, 5), (0.2, 9), (1, 10)}

meaning that half of the 1, a full 5, a fifth of the 9 and the whole 10 is selected. The
corresponding indicator vector z would then look like this

(0.5, 0, 0, 0, 1, 0, 0, 0, 0.2, 1).

We then define XS := (X ·diag(z)){i:zi>0}, which means that columns with nonzero weights
are simply scaled and columns with zero weights vanish. In light of this, we cannot depict
XSX

T
S as ∑p

i=1XiX
T
i zi as implied in Section 4.5.1. Instead, we have

XSX
T
S =

p∑
i=1

XiX
T
i z

2
i .

We consciously use z in this context, as we can interpret the previously used notation s as
a substitution of z, i.e.,

si := z2
i

for every i ∈ [p]. Hence, when deriving cutting planes from (InvSSRk,µ) and applying them
to (LIN2

k,µ) or any other similar formulation we have to be careful to translate z to s. With
that, we face two options: either we generate cutting planes from the point of view of
(InvSSRk,µ), i.e., our input is s, or we construct a cutting plane from the point of view of
(LIN2

k,µ), i.e., our input is z. Both approaches have their justifications as we will see. Let
us assume we want to derive a cutting plane from a point pair s̃i = z̃2

i . A cutting plane is
then formulated as the constraint

RSS ≥ φ(s̃) +∇φ(s̃)(s− s̃)

where RSS denotes the residual sum of squares. For (LIN2
k,µ) this translates to

‖y‖2 − yTXβ ≥ φ(s̃) +
p∑
i=1
∇φ(s̃)i(z2

i − z̃2
i ).

Since∇φ(s̃)i ≤ 0 for all i ∈ [p], the constraint is concave and hence not usable in conjunction
with convex optimization methods. We can however relax the constraint to

‖y‖2 − yTXβ ≥ φ(s̃) +
p∑
i=1
∇φ(s̃)i(zi − z̃2

i ). (4.6.1)

as z only contains values between 0 and 1.
Assume we have a solution u from the relaxation of a branch-and-bound node of (LIN2

k,µ),
then it is not quite clear if it is better to set z̃ = u or if we should pretend that a relaxed
solution corresponds to s̃ = u. To examine the difference between the two strategies, let us
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4.7 Numerical results

denote
β̂(z) := argmin

β∈Rp
‖X · diag(z) · β − y‖2 + µ‖β‖2

and
r(z) := ‖y‖2 − yTX · diag(z) · β̂(z).

Clearly, the equality r(z) = φ(z2
1 , . . . , z

2
p) holds. We would like to approximate r(z) as

accurately as possible with the cutting planes, i.e., we want

r(u)− φ(s̃)−
p∑
i=1
∇φ(s̃)i(ui − z̃2

i )

to be as small as possible. Setting z̃ = u yields

r(u)− φ(s̃)−
p∑
i=1
∇φ(s̃)i(ui − z̃2

i ) = r(z̃)− φ(s̃)−
p∑
i=1
∇φ(s̃)i(z̃i − z̃2

i )

=
p∑
i=1
∇φ(s̃)i(z̃2

i − z̃i) ≥ 0

and setting s̃ = u results in

r(u)− φ(s̃)−
p∑
i=1
∇φ(s̃)i(ui − z̃2

i ) = r(s̃)− φ(s̃)−
p∑
i=1
∇φ(s̃)i(ui − ui)

= r(s̃)− φ(s̃) ≥ 0

with strict inequality if u is not binary. Hence, we can easily measure the local effectiveness
of the cut and decide which one to add. Since those cuts can be placed at any continuous
point we could theoretically add infinitely many and as long as we do not specify some
criterion they are indeed appended ad infinitum in CPLEX. Hence, we only add a cut if
φ(s̃) + ∑p

i=1∇φ(s̃)i(ui − z̃2
i ) − OBJVAL(u) > 0.1 · (UB − LB) where OBJVAL(u) is the

objective value in the branch-and-bound node, UB is the best known upper bound of the
problem and LB is the best known lower bound. That means, at least 10% of the objective
value range has to be cut off for the constraint to be added.

4.7. Numerical results

We have seen several formulations for the subset selection regression problem (SSRk,µ). In
this section we study the computational performance of the approaches. We compare the
following methods with each other:

• MILP: The mixed-integer linear program (LIN2
k,µ) formulated in Section 4.2. In

addition, we are applying the cuts presented in Section 4.6.

• MILPNOCUTS: Same as MILP but without cuts.
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• SOCP: The perspective reformulation (Pk,µ) presented in Section 4.5.4.

• SOCPNE: Same as SOCP but we append the program by the normal equations as
in (LIN2

k,µ), i.e., the problem is extended by

XTXβ + µβ −XTy = ξ,

−mi ≤ ξi ≤Mi ∀i ∈ [p],
(ξi, si) : SOS1 ∀i ∈ [p],

ξ ∈ Rp.

• OA: The outer approximation reviewed in Section 4.5.

As MILP includes the normal equations, we are inspired to assess the effectiveness of those
constraints in light of the second-order cone formulation. Hence, we include SOCPNE in
the computational study. We are interested in examining the following aspects:

• Comparing MILP with MILPNOCUTS: we assess the impact of the novel tan-
gent cuts (4.6.1) on the performance.

• Assessing the competitiveness of MILP: since SOCP and OA are considered
state-of-the-art approaches we are interested in seeing how MILP compares.

• Comparing SOCP with OA: both methods are considered very efficient. We test
the conditions under which they perform the best.

• Assessing SOCPNE: we are interested in seeing if the inclusion of the normal equa-
tions have any beneficial effects.

4.7.1. Data generation

The instances we consider are synthetically generated. According to the dimensional settings

n p k
dim-1 400 100 10
dim-2 1000 200 20
dim-3 2000 500 300

we first draw n rows ofX i.i.d. fromNp(0, I), and k coefficients from the uniform distribution
U(1, 10). The position of those k nonzero coefficients is then uniformly sampled, composing
the vector β0. Then, the noise ε is drawn i.i.d. from Nn(0, ‖β

0‖2
SNR I). SNR stands for signal-

to-noise ratio and is defined by

SNR := Var(x0β0)
σ2
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where σ2 is the variance of the noise. We consider the following SNR values.

SNR 0.3 1 3 10

A signal-to-noise-ratio of 0.3 corresponds to excessive noise whereas a ratio of 10 implies
very little noise. Finally, the instances we test are compiled as y = Xβ0 + ε.

4.7.2. Examined regularization parameters and implementation details

For each approach, we examine the following ridge parameters.

Ridge parameter 0 0.5 1 5

If the regularization parameter is 0, we are applying Lemma 4.9 with r = 1
2λmin(XTX).

All in all, we test 12 instances for 5 approaches with each having 4 settings. This results in
240 optimization programs to solve. Each of the methods is implemented in C++ utilizing
CPLEX. We cap the CPLEX run-time at 600 seconds for each formulation.

4.7.3. Hardware

The experiments are performed on a machine with a Intel Core i7-6700 and a random access
memory capacity of 32 GB.

4.7.4. Implementation details

All methods are implemented in C++ and called from R. The code was compiled with g++
7.3.0 with flags -fopenmp, -O3 -DNDEBUG, and -fPIC. The respective MIPs are solved with
CPLEX 12.6.2.

4.7.5. Evaluation

At each branch-and-bound node we measure the time and the MIP gap. In CPLEX the
MIP gap is defined by

|BESTBOUND− BESTINTEGER|
10−10 + |BESTBOUND|

where BESTBOUND is the best objective bound known and BESTINTEGER is the value
of the best integer solution at the respective branch-and-bound node. The table of all runs
is available in Appendix A depicting the MIP gap after the root node, the MIP gap after
the last processed node and the required time. Here, we only indicate our observations and
results by representative examples.
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Effectiveness of the proposed cuts

First let us examine the effectiveness of the cuts proposed in Section 4.6. For this purpose,
we compare MILPNOCUTS with MILP. We observe that in general, MILPNOCUTS has
issues closing the MIP gap and hence never achieves optimality within the time-limit. Apart
from that, we notice that the cuts used in MILP are highly effective and massively help to
compensate the drawbacks of MILPNOCUTS. For instance, this can be seen in Table 4.1.
Here, the weakness of MILPNOCUTS is evident whereas the MILP approach closes the gap
many times faster. In particular, we observe that the “better” the data the faster MILP
closes the gap. In this context, “better” means that either the signal-to-noise ratio is high
or the noise is compensated by a high ridge parameter.

SNR Reg. parameter Gap root node Gap last node Req. time
MILP MILPNOCUTS MILP MILPNOCUTS MILP MILPNOCUTS

0.3 0.0 0.4963 0.6721 0.2706 0.5800 600.00 600.01
0.3 0.5 0.0282 0.1371 0.0081 0.1116 600.20 600.01
0.3 1.0 0.0081 0.0724 0.0001 0.0451 35.09 600.02
0.3 5.0 0.0000 0.0161 0.0000 0.0042 0.05 600.01
1.0 0.0 0.4080 0.7130 0.2514 0.5959 600.04 600.99
1.0 0.5 0.0315 0.1762 0.0001 0.1363 453.98 601.04
1.0 1.0 0.0136 0.0941 0.0000 0.0549 14.25 600.01
1.0 5.0 0.0008 0.0189 0.0000 0.0051 0.14 600.01
3.0 0.0 0.3265 0.7890 0.0000 0.5524 31.72 600.01
3.0 0.5 0.0354 0.3919 0.0000 0.2022 0.26 600.01
3.0 1.0 0.0000 0.2339 0.0000 0.0999 0.16 600.01
3.0 5.0 0.0000 0.0512 0.0000 0.0078 0.04 600.01

10.0 0.0 0.4088 0.7933 0.0000 0.6299 0.22 600.01
10.0 0.5 0.0000 0.5491 0.0000 0.0064 0.04 600.04
10.0 1.0 0.0000 0.3540 0.0000 0.1601 0.04 600.01
10.0 5.0 0.0000 0.0937 0.0000 0.0152 0.03 600.02

Table 4.1.: Comparison between MILP and MILPNOCUTS. Only cases with setting dim-1 are displayed.

Since MILPNOCUTS is dominated by MILP we omit it from further examination and
concentrate on the other four approaches.

Performance in relation to signal-to-noise ratio and regularization

Similar to what we observed with MILP, that lower noise or high regularization parameters
cause faster run times, the same insight can be concluded for OA. In Table 4.2 we can see
that both SNR and the regularization parameter have great effect on the computational
performance of the outer approximation.
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SNR Reg. parameter Gap root node Gap last node Req. time
0.3 0.0 1.0000 0.4106 600.04
0.3 0.5 0.0435 0.0037 600.00
0.3 1.0 0.0122 0.0001 3.27
0.3 5.0 0.0000 0.0000 0.00
1.0 0.0 1.0000 0.4028 600.04
1.0 0.5 0.0701 0.0001 72.48
1.0 1.0 0.0228 0.0001 1.33
1.0 5.0 0.0005 0.0001 0.07
3.0 0.0 1.0000 0.0000 2.38
3.0 0.5 0.0687 0.0000 0.02
3.0 1.0 0.0105 0.0000 0.01
3.0 5.0 0.0007 0.0000 0.01

10.0 0.0 0.2726 0.0000 0.04
10.0 0.5 0.0000 0.0000 0.02
10.0 1.0 0.0000 0.0000 0.01
10.0 5.0 0.0000 0.0000 0.00

Table 4.2.: Numerical results of OA. Only cases with setting dim-1 are displayed.

For SOCP and SOCPNE this effect is not as pronounced as it is for MILP and OA.
In Figure 4.2 it can be observed that the regularization parameter has an immense effect
on the performance of MILP and OA. Admittedly, SOCP and SOCPNE also benefit from
higher regularization parameters, but the influence is considerably less. In case of the signal-
to-noise-ratio being 10 we can even notice that the performance of SOCP and SOCPNE
becomes worse the higher the regularization is.

However, when we take a closer look at SOCP and SOCPNE we notice that the methods
perform considerably better in settings with high noise, i.e., low SNR, and no or little
regularization. Although no approach finds an optimal solution in those cases, SOCP and
SOCPNE terminate with a lower gap than OA and MILP. In this regard, OA performs
the worst and has trouble closing the gap whereas MILP yields moderate results. Figure
4.3 displays two cases where it is apparent that SOCP and SOCPNE are superior in the
aforementioned setting. In the plots it can be seen that OA starts with a higher MIP
gap than the other three approaches. MILP, SOCP, and SOCPNE either start with an
already low MIP gap or they manage to close the gap very fast within the first nodes. Even
though the MILP approach does not provide the lowest gap, the performance of MILP is
closer to SOCP and SOCPNE than it is to OA in this setting. Overall, MILP performs very
competitively in every setting but is not the top performer in most of the cases. Yet it is very
close to the performance of SOCP and SOCPNE in the high noise and low regularization
setting and performs nearly as well as OA in the low noise or high regularization setup.
Only occasionally does MILP perform worse than the other three approaches.
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Figure 4.2.: Required time for various values of the ridge parameter µ. The labels on the bars indicate the MIP gap
per cent after the last processed node if no optimal solution was found.
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Figure 4.3.: MIP gaps over time for the various approaches. Both settings feature the dim-2 setup with a regular-
ization parameter of 0. The upper plot shows the MIP gaps for a signal-to-noise ratio of 0.3 and the
lower plot the MIP gaps for a signal-to-noise ratio of 3.
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Comparison between SOCP and SOCPNE

Inspired by the usage of the normal equations in the MILP approach we included them as
well in the SOCP method to see if they have any beneficial effects on the tightness of the
formulation. We observed that the impact of the constraints is not clear-cut as there are
cases where SOCP closes the gap quicker and cases where SOCPNE comes out on top (see
Figure 4.2). However, we experienced that CPLEX runs into numerical difficulties with
SOCPNE for large instances. Thus, some results for dim-3 and SOCPNE are missing from
the study. We conclude that the beneficial effects of SOCPNE are negligible in light of the
numerical difficulties.

MIP gap in relation to the number of processed nodes

We have seen the methods’ ability to close the gap in a given time frame. However, we
did not consider the number of processed branch-and-bound nodes or the amount of MIP
gap closed per node. In Figure 4.4 we can see two plots depicting the MIP gaps in light
of the processed nodes and in light of the elapsed time. We observe that with MILP very
few nodes are actually processed, but each node reduces the MIP gap significantly. On the
contrary, OA processes each node very fast but reduces the MIP gap by a very small amount
per node. Despite processing most nodes, OA is the fastest to find the optimal solution in
this example. Interestingly, MILP requires very few iterations but each iteration takes a
long time. This can be explained by the large number of cutting planes which inflate the
problem size and lengthens the time to find an optimal solution for the relaxation. However,
it shows that the polyhedral description of the problem is very effective but large.
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4. Subset selection regression

Conclusion of the computational study

We have compared 5 approaches for solving (SSRk,µ): a mixed-integer linear regression
formulation with and without novel cuts; a second-order cone formulation, which utilizes
the perspective reformulation; the same second-order cone formulation but with normal
equations included; and the outer approximation approach.

We first examined the computational difference between MILP and MILPNE. We saw
that the inclusion of the tangential cutting planes, as presented in Section 4.6, is highly
beneficial. Using cutting planes the run times were reduced from the time-limit of 600
seconds to fractions of seconds in many cases. Therefore, we conclude that the inclusion
of the cuts is eminently important. However, we also observed that the high number of
cuts slow down branching as each node takes significantly more time. Hence, this issue
should be examined in more detail. A potential solution for this problem could be a refined
criterion for adding the cuts or re-evaluating the added cuts after a certain amount of time
and keeping only a selection of the most successful cuts to allow faster branching.

Comparing all approaches we have seen that they perform very differently in the various
scenarios. The perspective formulation works well in the settings with high noise and no
ridge regularization whereas the outer approximation performs very efficiently when the
signal-to-noise ratio is high or when a sufficiently high regularization parameter is given.
The MILP approach provided great performance in a broad range of scenarios. It performed
better than OA in the high noise and no regularization setting but worse than SOCP and
SOCPNE. At the other end of the spectrum, i.e., less noise or a higher ridge parameter,
it kept up with OA to the point where the difference was measured in fractions of seconds
and was considerably faster than SOCP and SOCPNE. Since in practice the signal-to-noise
ratio is not known or can only be estimated, the MILP approach is an advisable choice for
solving the subset selection regression. Including the normal equation in the second-order
cone formulation had no major effect besides causing numerical instabilities. Hence, it is
advised not to append them to SOCP.

4.8. A class of polynomial-time solvable instances

We have examined formulations and techniques which improve the computational perfor-
mance of the subset selection regression problem and demonstrated that in practice the
problem can be quickly solved for many cases. Yet the problem is NP-hard and hence has
an exponential worst-case run time, unless NP = P. In this section we present a class of
polynomial-time instances. Here, we consider the problem (SRκ), the penalized variant of
the subset selection regression. Recall that we proved the non-equivalence of (SSRk) and
(SRκ). We indeed need the penalized formulation in order to obtain a submodular mini-
mization problem, which is then solvable in polynomial time. For the results, we use the
notion of an M -matrix. In the space of real numbers, an M -matrix is a matrix which is
positive semidefinite but has only nonpositive off-diagonal entries. A characteristic of an
M -matrix is that its inverse is a nonnegative matrix, i.e., the inverse consists of elements
being greater or equal than 0.
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In the section we proceed as follows. First we present some results by Atamtürk and
Gómez (2018), who show that quadratic optimization problems with indicator constraints
and an M -matrix can be solved in polynomial time. We then show how the problem (SRκ)
fits into this class of problems. Afterwards, we present a transformation which allows us to
modify the design matrix without changing the objective order of the subsets. That means,
if a subset S produces a better least squares loss than a subset T , it will still produce a
better least squares loss after the matrix modification. We then present a condition under
which the transformation can be used to produce an M -matrix from the Gramian matrix
XTX.

Let Q ∈ Rp×p be an M -matrix and let the set SU be defined by

SU :=
{

(z, x, t) ∈ {0, 1}p × Rp+ × R : xTQx ≤ t, xi(1− zi) = 0 for all i ∈ [p]
}
.

Atamtürk and Gómez (2018) introduce the optimization problems

min{aTz + bTx+ t : (z, x, t) ∈ SU} (P1)

and
min
T⊆[p]

∑
i∈T

ai −
1
4

p∑
i=1

p∑
j=1

bibjθij(T ) (P2)

with θij(T ) :=
(
(QT,T )−1)

ij and QT,T being the principal submatrix induced by T . They
prove the following.

Proposition 4.20 (Atamtürk and Gómez (2018)). If b ≤ 0 and if problem (P1) has an
optimal solution, then (P1) and (P2) are equivalent and (P2) is a submodular minimization
problem, and therefore, solvable in polynomial time.

First note, that we can rewrite (SRκ) as

min κ1Tx− βTXTy + t

s. t. βTXTXβ ≤ t
βi(1− zi) = 0 ∀i ∈ [p]

z ∈ {0, 1}p

Without loss of generality we can assume XTy ≥ 0. Otherwise, we would multiply the
respective columns of X with −1. Let S ⊆ [p] be an arbitrary subset. Now assume that
XTX is an M -matrix, then XT

SXS is an M -matrix as well and thus (XT
SXS)−1 is non-

negative. Since the optimal coefficients of every subset S are given by (XT
SXS)−1XT

S y, we
can ensure β to be non-negative. Therefore, if XTX is an M -matrix the subset selection
regression can be formulated as the optimization problem (P1) and is therefore solvable in
polynomial time. Hence, we have the following proposition.

Proposition 4.21. Let XTX be an M -matrix. Then, problem (SRκ) is solvable in poly-
nomial time.
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However, assuming XTX to be an M -matrix is a major restriction and usually the as-
sumption does not hold naturally. In the following, we present a sufficient condition under
which XTX can be transformed to an M -matrix without changing the optimization struc-
ture.

An equivalent subset selection problem

Before we get to generate an M -matrix for (SRκ), we present a transformation of the de-
sign matrix X, which retains the optimization structure, i.e., if a subset S yields a better
objective value than a subset T , it still yields a better objective value after the transforma-
tion. Applying this transformation yields a class of equivalent subset selection regression
instances.

We define the predicted values x(S) := XS β̄(S) and the residual r(S) := x(S) − y of a
subset S. Instead of examining the common least squares problem, we consider the auxiliary
problem

min
γ∈Rp

‖Xγ − y‖2

s. t. yTXγ = ‖y‖2

‖γ‖0 ≤ k

(AUX)

Once again we introduce some subset-inspired notations. Let γ̄(S) be an optimal solution
of (AUX) for a fixed subset S of non-zero coefficients, i.e.,

γ̄(S) ∈ argmin
γ∈R|S|

‖XSγ − y‖2

s. t. yTXSγ = ‖y‖2

Further, we define z(S) := XS γ̄(S) and q(S) := z(S) − y. We will first show that (SSRk)
is equivalent to (AUX), that is, we prove that ‖r(S)‖22 ≤ ‖r(T )‖22 holds if and only if
‖q(S)‖22 ≤ ‖q(T )‖22 holds for S, T ⊆ [p]. To arrive at this result we begin with relating β̄(S)
to γ̄(S). For that reason, the necessary and sufficient optimality conditions for

min
γ∈R|S|

‖XSγ − y‖2

s. t. yTXSγ = ‖y‖2

are given by the linear equations

yTXSγ = ‖y‖2 (4.8.1)
XT
SXSγ = ηXT

S y (4.8.2)
η ∈ R. (4.8.3)

Denoting a solution to (4.8.1) – (4.8.3) by the tupel (γ̄(S), η̄(S)), we find the following
connection between the coefficients.
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4.8 A class of polynomial-time solvable instances

Proposition 4.22. The following properties hold:

(a) η̄(S) = ‖y‖2
yTx(S) = XT

i z(S)
XT
i y

for any S ⊆ [p] and any i ∈ S.

(b) γ̄(S) = η̄(S)β̄(S) for every S ⊆ [p].

Proof. We first show that η := ‖y‖2
yTx(S) and γ := ηβ̄(S) satisfy the optimality criteria (4.8.1)

and (4.8.2). Thus, η = η̄(S) and γ = γ̄(S) is implied. Starting with equation (4.8.1), we
can observe that it is indeed fulfilled:

yTXγ = ηyTXS β̄(S) = ‖y‖22
yTx(S)y

Tx(S) = ‖y‖22.

The same holds for equation (4.8.2):

XT
SXSγ = ηXT

SXS β̄(S) = ηXT
S y.

Thus, we have proven b) and the first equation of a). The second equation of a) follows
directly from (4.8.2) by solving for η̄(S).

In addition to this proposition we can derive that

‖z(S)‖22 = ‖q(S)‖22 + ‖y‖22 (4.8.4)

by using equation (4.8.1). Therefore, minimizing ‖z(S)‖22 is equivalent to minimizing
‖q(S)‖22 over all S ∈ Ukp . A similar observation holds true for the original residual. Since

‖r(S)‖22 = ‖y‖22 − ‖x(S)‖22 (4.8.5)

holds (see for instance Lemma 4.2), ‖x(S)‖22 can be maximized instead of minimizing
‖q(S)‖22.

Lemma 4.23. Let be XTy = ‖y‖21 and S ⊆ [p]. Then,

‖x(S)‖2 = ‖y‖4

‖z(S)‖2

holds.

Proof. First note, that γ̄(S) are coefficients of an affine combination, that is, 1Tγ̄(S) = 1
for any subset S ⊆ [p]. This fact can easily be derived from equation (4.8.1), because
XTy = ‖y‖21 holds by assumption. Using this observation, a) and b) of Proposition 4.22
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yields

‖x(S)‖2 = ‖XS β̄(S)‖2 =
∥∥∥∥Xγ̄(S)
η̄(S)

∥∥∥∥2
=
∥∥∥∥ Xγ̄(S)
1Tγ̄(S)η̄(S)

∥∥∥∥2

= ‖z(S)‖2
(∑
i∈S

γ̄(S)iη̄(S)
)−2

= ‖z(S)‖2
(∑
i∈S

γ̄(S)i
XT
i z(S)
XT
i y

)−2

= ‖z(S)‖2
(
z(S)Tz(S)
‖y‖2

)−2

= ‖y‖4

‖z(S)‖2

From the Lemma we can conclude the following corollary.

Corollary 4.24. Let S, T ⊆ [p] be subsets. The inequality ‖r(S)‖2 ≤ ‖r(T )‖2 holds if and
only if ‖q(S)‖2 ≤ ‖q(T )‖2 is true.

We have shown that we can introduce a new constraint yTXSγ = ‖y‖2 such that the
objective order is not changed between subsets. We next propose a modification of the
design matrix using properties of (AUX). This transformation once again preserves the
subset structure of the optimization problem, i.e., changing the design matrix does not alter
the optimal subset. Note that if XT

S y = ‖y‖221 holds, the vector γ̄(S) consists of coefficients
of an affine combination, that is, they sum up to 1 as stated in the proof of Lemma 4.23.
We will use this property to show that the points X1, . . . , Xp can be uniformly moved away
from or towards y. For this matter, we use a superscript to denote which design matrix
we are referring to. For instance, assume we are optimizing for a design matrix Z ∈ Rn×p
instead of X. We would then write β̄Z(S), xZ(S), rZ(S), γ̄Z(S), zZ(S) and qZ(S).

Furthermore, we define the mapping

XS(ν) : R \ {−1} → Rn×p, ν 7→ XS + ν(XS − y1T)

and the corresponding Gramian matrix

GS(ν) := XS(ν)TXS(ν).

If XTy = ‖y‖21, then we have

GS(ν) = (XS + ν(XS − y1T))T(XS + ν(XS − y1T))
= (1 + ν)2XT

SXS − (1 + ν)νXT
S y1T − (1 + ν)ν1yTXS + ν21yTy1T

= (1 + ν)2GS(0)− (2ν + ν2)‖y‖211T

(4.8.6)
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leading to the following result.

Lemma 4.25. If XTy = ‖y‖21 and ν ∈ R \ {−1}, then

γ̄X(S) = γ̄X (ν)(S)

for any S ⊆ [p].

Proof. We will show that γ̄X(S) satisfies equations (4.8.1) – (4.8.3) for the design matrix
XS(ν). Before showing that the KKT-conditions are satisfied we will compute the term
XS(ν)Ty:

XS(ν)Ty = XT
S y + ν

(
XS − y1T

S

)T
y

= XT
S y + ν

(
XT
S y − 1SyTy

)
= XT

S y + ν
(
1S‖y‖2 − 1S‖y‖2

)
= XT

S y.

(4.8.7)

By using (4.8.7), equation (4.8.1) holds for XS(ν) and γ̄X(S):

yTXS(ν)γ̄X(S) = yTXS γ̄
X(S) = ‖y‖22.

Next, we use (4.8.6) and (4.8.7) to show that (4.8.2) holds as well:

GS(ν)γ̄X(S)
= (1 + ν)2 GS(0)γ̄X(S)− ν (2 + ν) ‖y‖21S1T

S γ̄
X(S)

= (1 + ν)2XT
SXS γ̄

X(S)− ν (2 + ν) ‖y‖21S1T
S γ̄

X(S)
= (1 + ν)2XT

SXS γ̄
X(S)− ν (2 + ν) ‖y‖21S

= (1 + ν)2 η̄(S)XT
S y − ν (2 + ν) ‖y‖21S

= (1 + ν)2 η̄(S)XT
S y − ν (2 + ν)XT

S y

=((1 + ν)2 η̄(S)− ν (2 + ν))XT
S y

=((1 + ν)2 η̄(S)− ν (2 + ν))XS(ν)Ty

With η̃ := (1 + ν)2 η̄(S)− ν (2 + ν) equation (4.8.2) follows

GS(ν)γ̄X(S) = η̃XS(ν)Ty

and therefore γ̄X(S) = γ̄X (ν(S) holds for all S ∈ [p].

With the coefficients staying the same after adding a matrix ν(X − y1T) onto the design
matrix X, we can use this result to show that the objective values are also staying consistent,
i.e., we can either optimize using the matrix X or X (ν) without changing the optimal
subsets.
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Theorem 4.26. Assume XTy = ‖y‖21 and ν ∈ R \ {−1}. For two subsets S, T ⊆ [p] the
inequality ‖qX(S)‖2 ≤ ‖qX(T )‖2 holds if and only if ‖qX (ν)(S)‖2 ≤ ‖qX (ν)(T )‖2 holds.

Proof. We show that the subset sum of squares stay consistent. Using the fact that
1Tγ̄X(S) = 1 and Lemma 4.25 the following equation holds

‖zX (ν)(S)‖2

=‖XS(ν)γ̄X (ν)(S)‖2

=‖XS(ν)γ̄X(S)‖2

=γ̄X(S)TGS(ν)γ̄X(S)
=(1 + ν)2γ̄X(S)TGS(0)γ̄X(S)− (2ν + ν2)‖y‖2γ̄X(S)T11Tγ̄X(S)
=(1 + ν)2‖z(S)‖2 − (2ν + ν2)‖y‖2

(4.8.8)

Thus, ‖zX (ν)(S)‖2 ≤ ‖zX (ν)(T )‖2 holds if and only if ‖z(S)‖2 ≤ ‖z(T )‖2. Since the
identity ‖z(S)‖2 = ‖q(S)‖2 + ‖y‖2 holds, the assertion follows.

We have seen that we can restrict the coefficient to form an affine combination of the
columns of X without changing the subset order. This restriction gives us some helpful
property. That is, we can modify the design matrix without changing the coefficients for
every subset S ⊆ [p]. In summary, we have the following equivalence.

Corollary 4.27. Assume XTy = ‖y‖21 and ν ∈ R \ {−1}. For S, T ⊆ [p] the following
statements are equivalent:

i) The inequality ‖rX(S)‖2 ≤ ‖rX(T )‖2 holds.

ii) The inequality ‖rX (ν)(S)‖2 ≤ ‖rX (ν)(T )‖2 holds.

iii) The inequality ‖qX(S)‖2 ≤ ‖qX(T )‖2 holds.

iv) The inequality ‖qX (ν)(S)‖2 ≤ ‖qX (ν)(T )‖2 holds.

Transforming XTX to an M-matrix

The results provide us the tool to transform the Gramian matrix XTX without changing
the subset structure of the `2-loss function. We use the transformation to transform XTX
to an M -matrix

Theorem 4.28. Let be XTy = ‖y‖21. Denote the entries of GS(0) by gij and gmax :=
max
i 6=j

gij . If gmax < ‖y‖2 and

ν ≥
√

1 + gmax

‖y‖2 − gmax − 1,

then the matrix GS(ν) is an M-matrix.
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Proof. It holds that

ν2 + 2ν ≥ 1 + gmax

‖y‖2 − gmax − 2
√

1 + gmax

‖y‖2 − gmax + 1 + 2
√

1 + gmax

‖y‖2 − gmax − 2

= gmax

‖y‖2 − gmax .

Since GS(ν) is a Gramian matrix it is positive semidefinite and hence satisfies the first
condition to be an M -matrix. Next, let be i 6= j. We complete the proof by showing that
GS(ν)ij is nonpositive. Using (4.8.6) we have

GS(ν)ij = (1 + ν)2gij − (ν2 + 2ν)‖y‖2

= gij + (ν2 + 2ν)(gij − ‖y‖2)

≤ gij + gmax

‖y‖2 − gmax (gij − ‖y‖2)

= gij − gmax ≤ 0

According to the theorem we define the set of design matrices which can be transformed
to an M -matrix.

M := {X ∈ Rn×p : XT
i Xj < ‖y‖2 for all i 6= j ∈ [p], XTy = ‖y‖21}.

Clearly, the set of orthogonal matrices is included in M , i.e.,

{X ∈ Rn×p : XTX = diag(a), a ∈ Rp++} ⊂M .

The set of orthogonal matrices is the most natural class of instances of polynomial solvable
instances. The set M is in fact a proper superset as it also includes all M -matrices, which
are not orthogonal in general. We can now establish our intended result.

Corollary 4.29. If X ∈M , then there is a ν 6= 1 such that the optimization problem

min
S⊆[p]

‖rX (ν)(S)‖2 + κ|S|

can be solved in polynomial time.

Note that we cannot apply this result to (SSRk) or in other words to

min
S⊆[p]

‖rX (ν)(S)‖2

s. t. |S| ≤ k

since minimizing a submodular function under cardinality constraints is NP-hard. In Sec-
tion 2.2 we have shown that not every sparsity level can be induced with (SRκ). This
leaves us with some unknown discrepancy between (SSRk) and (SRκ). While we proved
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that the subset order is upheld we have not shown if the sparsity “gaps” do change with the
aforementioned transformation. That implies that on the one hand the least squares subset
structure is maintained, but on the other hand we cannot guarantee that the representable
sparsity levels are kept the same. This is certainly a drawback, but one that is already
present from the outset.
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Chapter 5
Beyond subset selection: validation and
assessment

In the previous chapter we concentrated on the subset selection regression problem

min
β∈Rp

‖Xβ − y‖2 + µ‖β‖2

s. t. ‖β‖0 ≤ k
(SSRk,µ)

and its computational and structural properties. We have not, however, explained in detail
how to choose an appropriate sparsity level k. Moreover, we have often intuitively used
the term “predictive quality” but have not concisely defined it. In this chapter we explain
what the objective “predictive quality” refers to, the process of selecting a final model
according to this target and the issues arising in light of (SSRk,µ). In the last part of the
chapter we approach the identified issues. In Section 5.1 we explain the process of training,
validation and assessment in the context of the subset selection regression. We note that the
model selection process used for the subset selection has some drawbacks, which we address
in Section 5.2. Thereafter, we address the identified issue and propose a cross-validation
subset selection regression. For this reason we present a MINLP in Section 5.3 for which
we develop Big-M bounds in Section 5.4.

5.1. Model selection via the subset selection regression

We only briefly explained the exact process of selecting the “best” subset over all sparsity
levels. We first want to clearly define what “best” means. An optimal subset Ŝ ∈ [p] is
defined as the subset which minimizes the expected `2-loss

PE(S) := E
(
‖x0β̂(S)− y0‖2

)
, (5.1.1)
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which we refer to as the prediction error or test error. We use the term predictive quality
as an umbrella term of metrics, which measure the performance of a model in regard to a
new, unknown observation and response pair, which could either be given as sampled or
distributional information. Unfortunately, the prediction error of a subset is not directly
associated to the objective function of (SSRk,µ). On the contrary, the least squares loss
is decreasing in k (see Figure 2.1 in Section 2.2 for an illustration of the monotony in k)
and therefore the sparsity level with the smallest `2-loss is the one which allows the largest
cardinality, i.e., k = p. Since simply including all variables in the prediction model stands in
stark contrast to our assumption (that β0 is sparse), the `2-loss is not an appropriate metric
to select the best sparsity. Bertsimas et al. (2016) pick the best model by solving (SSRk,µ)
for every possible k ∈ {1, . . . , p} and then validating the computed variable selection on
a different validation data set (see Algorithm 5). Here, the objective value of (SSRk,µ) is
called the training error while the squared prediction error of a selected set of coefficients
applied to the validation data is called the validation error. Usually, when the final model
is determined the predictive quality is then certified on an independent test data set. The
resulting prediction error is then called test error. In other words, the sampled data X and y
is divided into three parts X(1) ∈ Rn1×p, X(2) ∈ Rn2×p, X(3) ∈ Rn3×p and y(1) ∈ Rn1 , y(2) ∈
Rn2 , y(3) ∈ Rn3 . For each k ∈ [p] problem (SSRk,µ) is solved with X(1) and y(1) yielding the
optimal solution β̂k. Then, the validation error

‖X(2)β̂k − y(2)‖2

is computed and saved. At the end k̂ = argmin{k ∈ [p] : ‖X(2)β̂k − y(2)‖2} is selected and
the test error

‖X(3)β̂k̂ − y(3)‖2

is calculated to assess the end result. In the described process the ridge parameter is ignored.
However, usually it is also part of the validation. Hence, we are looking at a two-dimensional
grid of validation points {(k, µ) : k ∈ [p], µ ∈M} where M is the finite set of different values
of µ.

Input: y ∈ Rn, X ∈ Rn×p
Output: A model S.

1 for k = 1, . . . , p do
2 Solve (SSRk,µ) on training data and obtain model S;
3 Validate S and update best model Ŝ on validation data;
4 return Ŝ;
Algorithm 5: Schematic process used to select a model in combination with
(SSRk,µ). The optimization problem (SSRk,µ) is solved iteratively for each k. Each
model is then tested on a validation data set and then the model with the best
predictive quality in respect to the validation process is returned.
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5.2 Critique of the subset selection regression

Validating on separate data X(2) only gives us an estimation of (5.1.1). We can, however,
also apply other estimates of the prediction error (5.1.1) like for example a cross-validation
(Friedman et al., 2001). For this reason we partition the index set of the observations into
m subsets T1, . . . , Tm. Furthermore, let X̄(l) be the matrix XT̄l,∗ and let X(l) be the matrix
XTl,∗. The same notation is applied to the response y, i.e., yTl is denoted by yl and yT̄l is
denoted by ȳ(l). For some fixed subset S ⊆ [p] the coefficients

β̂(l) = min
β∈R|S|

‖X̄(l)
S β − ȳ(l)‖22 + µ‖β(l)‖22 (5.1.2)

are computed for each l ∈ [m]. The cross-validation estimate of the prediction error is then
given by

P̂E(S) = 1
m

m∑
l=1
‖X(l)

S β̂(l) − y(l)‖22.

When doing model selection via cross validation, a finite collection of possible models
S1, . . . , Sd ⊆ [p] is chosen and then

Ŝ = argmin
S∈{S1,...,Sd}

P̂E(S)

is picked as the model of choice. However, this approach requires a careful selection of
possible subsets from the beginning. In case of the subset selection regression we define
the set S := {supp(β̂) : β̂ is an optimal solution for (SSRk,µ), k ∈ [p], µ ∈ M} and would
choose the best model according to the rule

Ŝ = argmin
S∈S

P̂E(S).

In other words, the optimal solutions of all possible configurations of (SSRk,µ) form the set
of models to validate.

5.2. Critique of the subset selection regression

Ideally, model selection should consist of three separate stages. Given a collection S of
models, for each set S ∈ S the coefficients are fitted in the training stage. Afterwards, the
calibrated model is validated with some estimate of PE(S) in the validation stage. Then,
the model producing the lowest validation error is picked and assessed in the test stage.

In case of problem (SSRk,µ) the variables are selected in accordance to the best training
error and only the sparsity is controlled by the validation process. That is, the method used
for the subset selection regression does not follow the model selection procedure described
beforehand. The methodology of looking for the best model solely by training error can be
problematic (see for instance Friedman et al., 2001, pp. 193 - 196) since training error and
validation error do not necessarily correlate with each other. This can be best understood
when considering an over-determined linear regression model. Certainly, the coefficients
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can be chosen such that the training error is 0 but the validation error would most likely
be undesirably high. In the context of this work, we would rather like to have the model
selection process happening at the validation stage and the model fitting process happening
at the training stage. The process explained in Algorithm 5 puts part of the model selection
into the training stage, that is, only the sparsity is selected in the validation stage.

Bertsimas and King (2016) tackle these problems by adding additional constraints to
the mixed-integer program. Those constraints are meant to exclude solutions, which are
considered statistically insignificant with respect to external selection criteria. However,
those metrics are not evaluated in the mixed-integer model itself but applied and enforced
a posteriori, which requires significant more solver invocations. In comparison, Miyashiro
and Takano (2015) use various information criteria like adjusted R2 (Draper & Smith,
2014), BIC (Schwarz, 1978) and AIC (Akaike, 1974) to select variables. They present a
mixed-integer second-order model, which produces the intended outcome.

We present a MIQP formulation which conducts an in-model cross validation. Our pro-
posed model is only allowed to fit coefficients to training data but can choose to switch
variables on and off in order to minimize the validation error of the cross validation.

5.3. A MIQP formulation for a cross-validation model
selection

We address this issue in this work and propose a novel MIQP formulation which is used to
solve the problem

min
S⊆[p]

P̂E(S). (MINCV)

Here, we do not require a predetermined collection S of models, which we wish to validate.
Instead, we select the best cross-validated subset out of all possible subsets. Assuming that
P̂E is a good estimate of the prediction error, we consider a larger model space than with the
subset selection regression, and hence we can expect to find solutions which provide better
predictions. We call problem (MINCV) the cross-validation subset selection regression.

The issue we face with the aforementioned concept of a coherent MIQP is that we have
to ensure strict separation between training and validation, i.e., the coefficients βl should
strictly be fitted to the training data and must not be able to optimize the validation error.
Therefore, we calibrate the coefficients using the normal equation

NElµ(β, S) := (X̄(l)
S )TX̄

(l)
S βS + µβS − (X̄(l)

S )Tȳ(l) = 0.

In other words NElµ(β, S) = 0 holds if and only if β is an optimal solution of (5.1.2).
Note, that it is important that for every S ⊆ [p] the equation system NElµ(β, S) = 0 has a
unique solution β. Furthermore, rewriting (5.1.2) as an algebraic formulation is important
to keep the separation between training and validation intact. For instance, replacing the `2
regularization with `1 results in the inability to formulate the fitting process as an algebraic
equation, making `1 an impractical regularization choice.
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5.3 A MIQP formulation for a cross-validation model selection

We can now formulate (MINCV) as following optimization problem.

min
m∑
l=1
‖X(l)

S β
(l)
S − y

(l)‖22

s. t. NElµ(β(l), S) = 0 ∀l ∈ [m]

β
(l)
S̄

= 0 ∀l ∈ [m]
|S| ≤ k

β(1), . . . , β(m) ∈ Rp, S ⊆ [p]

(P)

Note that |S| ≤ k for some k ∈ N is an extension to (MINCV), in the sense that the modeler
might choose k ∈ N in accordance to some anticipation or assumption about the sparsity the
program should return. In that case, the sparsity can be restricted. However, in comparison
to the subset selection regression (SSRk,µ) the sparsity constraint is not required and could
be removed with little influence on the effectiveness of the program.

Although, (P) is a convenient illustration of the general idea we propose, its formulation
cannot be entered into any of the commonly used MIQP solvers. Consequently, we present
the following MIQP formulation.

min
m∑
l=1
‖X(l)β(l) − y(l)‖22

s. t. zi = 1 ⇒ (X̄(l)
i )TX̄(l)β(l) + µβ

(l)
i = (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [m]

zi = 0 ⇒ β
(l)
i = 0 ∀i ∈ [p], l ∈ [m]

1Tz ≤ k
β(1), . . . , β(m) ∈ Rp, z ∈ {0, 1}p

(PInd)

The formulation uses logical constraints, which most solvers can translate to algebraic
constraints. We will later do this translation by ourselves and provide the necessary bounds
required for this. Note that logical constraints can be replaced with SOS1 constraints. At
least with CPLEX, the experience shows that SOS1 constraints are handled better, and
hence they are preferable. However, for didactic reasons we use logical constraints to better
illustrate the idea behind the formulation. First, we show that both formulations are indeed
equivalent.

Proposition 5.1. The formulation (P) is equivalent to (PInd), that is, when considering
z as an indicator vector, i.e., S = {i : zi = 1}, both optimization problems yield the same
optimal solution.

Proof. Let (β̂(1), . . . , β̂(m), Ŝ) be an optimal solution of (P) and let ẑ be the indicator vector
of Ŝ, i.e., Ŝ = {i : ẑi = 1} holds. We first show that (β̂(1), . . . , β̂(m), ẑ) is feasible for (PInd).
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For any l ∈ [m] we have

XŜ β̂
(l)
Ŝ

=
∑
i∈S

Xiβ̂
(l)
i =

p∑
i=1

Xiβ̂
(l)
i = Xβ̂(l) (5.3.1)

because β̂li = 0 for every i 6∈ Ŝ. Since NElµ(β̂(l), Ŝ) = 0 implies

(X̄(l)
i )TX̄

(l)
Ŝ
β̂

(l)
Ŝ

+ µβ̂
(l)
i − (X̄(l)

i )Tȳ(l) = 0

for every i ∈ Ŝ, by (5.3.1) we get

(X̄(l)
i )TX̄(l)β̂(l) + µβ̂

(l)
i − (X̄(l)

i )Tȳ(l) = 0

for every i ∈ Ŝ. Therefore, for every i ∈ [p] and every l ∈ [m] the logical constraint
ẑi = 1 ⇒ (X̄(l)

i )TX̄(l)β̂(l) + µβ̂
(l)
i = (X̄(l)

i )Tȳ(l) is satisfied. Furthermore, it is easy to see
that the last two constraints ẑi = 0 ⇒ β̂

(l)
i = 0 and 1Tẑ ≤ k are satisfied since β̂(l)

i = 0
for every i 6∈ Ŝ and |Ŝ| ≤ k hold. Additionally, by (5.3.1) both objective values are equal
as well. Analogously, for every optimal solution (β̃(1), . . . , β̃(m), z̃) of (PInd) it follows that
(β̃(1), . . . , β̃(m), S̃) is feasible for (P) and that both solutions provide the same objective
value. Hence, the optimization problems (P) and (PInd) are equivalent.

Experience shows, that mixed-integer programs utilizing logical constraint are more diffi-
cult to solve than programs with deliberately constructed algebraic constraints. We therefore
present the following Big-M formulation of (PInd).

min
m∑
l=1

(
(X(l)β(l))TX(l)β(l) − 2(ȳ(l))TX(l)β(l)

)
s. t. −L(l)

i zi ≤ β
(l)
i ≤ L

(l)
i zi ∀i ∈ [p], l ∈ [m]

(X̄(l)
i )TX̄(l)β(l) + γβ

(l)
i ≤M

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [m]

(X̄(l)
i )TX̄(l)β(l) + γβ

(l)
i ≥ −m

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [m]
1Tz ≤ k

β(1), . . . , β(m) ∈ Rp, z ∈ {0, 1}p

(PBigM)

For sufficiently large constants L
(l)
i ,m

(l)
i ,M

(l)
i the proposed program is equivalent to

(PInd). The tighter we can choose the model constants, the stronger our formulation be-
comes. Therefore, we will propose appropriate bounds in Section 5.4. In order for the
formulation to be statistical meaningful we have to demand some key assumptions on the
data X before considering technical details about the program (PBigM).
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5.3 A MIQP formulation for a cross-validation model selection

Data preprocessing

Since data preprocessing for (PBigM) is much more technical than it is for the subset selection
regression, we explain the data preparation in detail in this paragraph. In order for the
ridge penalization to produce consistent results, we have to standardize all variables, and
hence adapt the validation data as well. Otherwise, the regularization terms µ‖βl‖22 would
influence variables with various magnitudes, which would lead to undesirable results. The
transformations are applied before partitioning the data. Usually data is standardized in
the following way:

• Normalization: each variable is scaled such that the variance is equal to 1.

• Centering: each variable is shifted such that the mean is 0.

• Intercept: a 1 column is added to account for an affine displacement in the data.

Normalization requires no further considerations, and we simply scale all variables such
that the columns have `2-norm of 1. However, centering the covariates requires a more
deliberate approach. Assume we have some ridge regression model with added intercept
and centered variables

min
β0∈R,β∈Rp

‖1β0 +
p∑
i=1

(Xi − πi1)βi − y‖22 + µ‖β‖22 (5.3.2)

with πi = 1
n

∑n
j=1Xij being the mean of Xi. By this formulation it is easy to see that

centering a variable already accumulates the intercept. That is, if (β̂0, β̂1, . . . , β̂p) is an
optimal solution for (5.3.2), then the vector (β̂0−

∑p
i=1 πiβ̂i, β̂1, . . . , β̂p) is an optimal solution

for
min

β0∈R,β∈Rp
‖1β0 +

p∑
i=1

Xiβi − y‖22 + µ‖β‖22.

and vice versa. Therefore, adding an intercept already accounts for centering the variables.
However, centering a variable generates implicit intercept, even though the true model might
not have any constant shift. In light of our presented model, the intercept is handled exactly
like the covariates, that is, it can be ex- or included by the solver. Hence, the former requires
a conscious decision by the user while the later gives the freedom of choice to the algorithm.
Since we are interested in presenting an automated approach to model selection, we add an
intercept without centering the variables.

However, when adding a column of 1’s we do not want to penalize this intercept by the
ridge regression. Thus, it must be excluded from the regularization. This issue would
normally pose no problem, and in fact it does not produce any issues for the optimization
problem (PInd). With an additional intercept column we would simply reformulate the
problem to
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min
m∑
l=1

(([
1 X(l)

]
β(l)

)T [
1 X(l)

]
β(l) − 2(ȳ(l))T

[
1 X(l)

]
β(l)

)
s. t. zi = 0 ⇒ β

(l)
i = 0 ∀i ∈ [p], l ∈ [m]

z1 = 1 ⇒ 1T
[
1 X̄(l)

]
β(l) = 1Tȳ(l) ∀l ∈ [m]

zi = 1 ⇒ (X̄(l)
i−1)T

[
1 X̄(l)

]
β(l) + µβ

(l)
i = (X̄(l)

i−1)Tȳ(l) ∀i ∈ [p] \ {1}, l ∈ [m]

1Tz ≤ k
β(1), . . . , β(m) ∈ Rp, z ∈ {0, 1}p

However, it causes some complications when finding bounds for (PBigM). To better deal
with different ridge penalizations we generalize problem (PBigM) to

min
k∑
l=1

(
(X(l)β(l))TX(l)β(l) − 2(ȳ(l))TX(l)β(l)

)
s. t. −L(l)

i zi ≤ β
(l)
i ≤ L

(l)
i zi ∀i ∈ [p], l ∈ [k]

(X̄(l)
i )TX̄(l)β(l) + γiβ

(l)
i ≤M

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [k]

(X̄(l)
i )TX̄(l)β(l) + γiβ

(l)
i ≥ −m

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [k]
1Tz ≤ k

β(1), . . . , β(m) ∈ Rp, z ∈ {0, 1}p

(QBigM)

with parameters γ1, . . . , γp ≥ 0. Hence, an added intercept would be a special case of
(QBigM). Furthermore, we denote the diagonal matrix

√
diag(γ1, . . . , γp) by Γ ∈ Rp×p.

In conclusion, we assume that all covariates are normalized and that the validation data
is modified in accordance to the normalization. Furthermore, we assume that the model
accounts for an intercept, i.e., that X(l)

1 = 1 for all l ∈ {1, . . . ,m} with parameter γ1 = 0.

Data key assumption

After pre-processing the design matrix X for each l ∈ [m], we have to ensure that the fitted
coefficients β(l) are unique for every combination of selected variables. Otherwise, the solver
would choose each β(l) such that the validation error is minimized. However, this would
lead to a dependence between validation and training, which would most likely result in
overfitting. Thus, from now on we assume that (X̄(l))TX̄(l) + Γ is positive definite. We can
weaken this assumption by requiring that (X̄(l)

S )TX̄
(l)
S +

√
ΓT
SΓS is positive definite for all

S ⊆ [p] with |S| ≤ k. However, then the bounds presented in the next section would cease
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to work, and we would have to fall back to the formulation (PInd). Therefore, we assume
the former.

5.4. Bounds for the model constants

Most modern MINLP solvers support use of logical constraints like in (PInd) and thus we
could put the formulation directly into a solver and search for a global optimum. However,
the performance difference between MINLPs with logical constraints and MINLPs with
only algebraic constraints can be large in favor of the algebraic formulation, if the Big-M
constants are chosen sufficiently tight. Hence, we are enticed to find strong bounds on
the solutions to derive tight model constants. In this section we compute values for the
constants Lli,M l

i and ml
i.

Our requirements for the cross-validation subset selection regression are very similar to the
demands for the subset selection regression. Hence, we summarize and repeat some findings
from Section 4.3 where we developed Big-M bounds for (SSRk,µ). We distinguished entropic
and coherent data, i.e., XTX + µI having a minimum eigenvalue of 0 or XTX + µI being
positive definite. We showed that finding coefficient bounds is NP-hard for the entropic
case, as long as we utilize eigenvalue information. In the case of the cross-validation subset
selection, we require each β(l) to be uniquely determined by a chosen subset S, i.e., we
assume (X̄(l))TX̄(l) + Γ � 0 for each l ∈ [m]. Hence, we have coherent data, and we can
apply the results derived in Section 4.3. Remember that we defined

c(X, y, k) := ‖y‖22 −
‖y‖42

‖y‖22 + 1
µ max[k]

{
yTXiXT

i y : i ∈ [p]
}

which led to a bound for the predicted values

‖XS β̂(S)‖22 + µ‖β̂(S)‖22 ≤ c(X, y, k)

of the regularized subset selection ridge regression by Corollary 4.12. We then defined

g1
i (A, τ, ρ) := 1

4

(
ρ

τ
+ τ

ρ
+ 2

)
· (Aii)−1

g2
i (A, τ) := 1

τ
− (Aii − τ)2 ·

(
τ

(
m∑
k=1

A2
ik − τAii

))−1

with the minimum of the two values denoted by gi(A, τ, ρ) := min{g1
i (A, τ, ρ), g2

i (A, τ)}. We
then presented the coefficient bound

|β̂(S)i| ≤
√
c(X, y, k) · gi(XTX + µI, λmin(XTX) + µ, λmax(XTX) + µ),

in Theorem 4.14.
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The results presented until now are valid for the subset selection regression problem with
a ridge regularization term. However, we would like to apply the results to a more general
setting as presented in (QBigM).

Theorem 5.2. Let be l ∈ [p], let (β̂(1), . . . , β̂(m), ẑ) be a feasible solution of (QBigM) and
assume [

X̄(l)
√

Γ

]
= UΣV

to be a singular value decomposition as in Lemma 4.9. Define ρ(l) := λmin((X(l))TX(l) + Γ)
and τ (l) := λmax((X(l))TX(l) + Γ)). Furthermore, denote

G
(l)
i := gi((X̄(l))TX̄(l) + Γ, ρ(l), τ (l))

and
C(l) := c

((
ΣTΣ− rI

) 1
2 V,

(
ΣTΣ− rI

)− 1
2 ΣTUTȳ(l), k

)
for 0 < r < ρ(l). Then, the upper bound on the absolute coefficients

|β̂(l)
i | ≤

√
G

(l)
i · C(l) =: L(l)

i

holds.

Proof. Let be S := {i : ẑi = 1} and define

W :=
[
X̄(l)
√

Γ

]
, w :=

(
ȳ(l)

0

)
.

Since β̂(l) is feasible, it satisfies

(X̄(l)
S )TX̄(l)β̂(l) + Γβ̂(l) = (X̄(l)

S )Tȳ(l)

and β̂S̄ = 0. Hence, β̂(l)
S is an optimal solution of

min
β∈R|S|

‖WSβ − w‖22

and because UΣV is a singular value decomposition of W , Lemma 4.9 yields that β̂(l)
S is

also an optimal solution of

min
β∈R|S|

∥∥∥∥(ΣTΣ− rI
) 1

2 VSβ −
(
ΣTΣ− rI

)− 1
2 ΣTUTȳ(l)

∥∥∥∥2

2
+ r‖β‖22. (5.4.1)
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Additionally, by (4.3.3) it holds that the Gramian matrix H := V T
S

(
ΣTΣ− rI

)
VS , which

comes from the design matrix of (5.4.1), is equal to WT
SWS = XT

SXS + Γ. Thus,

gi(H,λmin(H), λmax(H)) = G
(l)
i

holds. By this and Theorem 4.14 it follows that the bound

|β̂(l)| ≤
√
G

(l)
i · C(l)

is valid.

Consequently, we can set the model constants L(l)
i to

√
G

(l)
i · C(l) without altering the

solution set of (QBigM). Now, we consider the constants M (l)
i and m

(l)
i . They are parts of

the inequalities

(X̄(l)
i )TX̄(l)β(l) + γiβ

(l)
i ≤M

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [m] (5.4.2)

(X̄(l)
i )TX̄(l)β(l) + γiβ

(l)
i ≥ −m

(l)
i (1− zi) + (X̄(l)

i )Tȳ(l) ∀i ∈ [p], l ∈ [m] (5.4.3)

of problem (QBigM).

Theorem 5.3. Assume (β(1), . . . , β(m), z) to be a solution of (QBigM) and for each l ∈ [m]
let C(l) be defined as in Proposition 5.2. Then,

M
(l)
i =

√(
‖X̄(l)

i ‖22 + γi
)
C(l) − (X̄(l))Tȳ(l)

and
m

(l)
i =

√(
‖X̄(l)

i ‖22 + γi
)
C(l) + (X̄(l))Tȳ(l)

are valid constants for (QBigM).

Proof. We find an upper estimate for |(X̄(l)
i )TX̄(l)β(l) +γiβ

(l)
i | and consequently derive M (l)

i

and m
(l)
i . By the the Cauchy-Schwarz inequality we have that

|(X̄(l)
i )TX̄(l)β(l) + γiβ

(l)
i | =

∣∣∣∣∣∣
(
X̄

(l)
i√
γiei

)T [
X̄(l)
√

Γ

]
β(l)

∣∣∣∣∣∣
≤
∥∥∥∥∥
(
X̄

(l)
i√
γiei

)∥∥∥∥∥
2

∥∥∥∥∥
[
X̄(l)
√

Γ

]
β(l)

∥∥∥∥∥
2

≤
√(
‖X̄(l)

i ‖22 + γi
)
C(l)

Accounting for (X̄(l))Tȳ(l) in the inequalities (5.4.2) and (5.4.3) yields the result.
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Having derived the bounds L(l)
i , M (l)

i , and m(l)
i we are now able to implement the mixed-

integer program (QBigM). Next, we want to compare the approaches presented in this thesis
with regard to their statistical performance. That is, we compare the heuristics presented in
Chapter 3, the subset selection regression presented in Chapter 4, and the cross-validation
subset selection regression presented in this Chapter.
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Chapter 6
Statistical quality of best subset selection

Many authors regard the best subset selection as an ideal method for sparse regression,
but argue that it is too computationally taxing to consider it for practical purposes. Since
the performance burden has been diminished in recent years, subset selection regression
has become a serious contender for sparse regression. After all, many authors claim that
the predictive performance is significantly better than state-of-the-art methods like Lasso
(Bertsimas et al., 2016; Bertsimas & Van Parys, 2017; Mazumder et al., 2011). On the
contrary, Hastie, Tibshirani, and Tibshirani (2017) argue that the subset selection regression
only works well under low noise levels and loses against Lasso otherwise. In this section we
examine these conflicting results. Furthermore, we test our proposed cross-validation subset
selection regression against state-of-the-art methods. Those include the subset selection
regression, Lasso, stepwise selection, and SparseNet.

6.1. Simulation setup

Our simulation setup is inspired by the settings of Bertsimas et al. (2016) and Hastie et al.
(2017). The general approach is as follows: we synthetically generate the design matrix
X ∈ Rn×p, sparse coefficients β0 ∈ Rp and noise ε ∈ Rn. Then, the response y ∈ Rn is
computed by y = Xβ0 + ε. In this way, we know the true coefficients, can try to recover
them with various algorithms and compare the results. Two setup parts emerge from the
experiment description. In the first part we are concerned with how to generate the data and
in the second part we determine what algorithms to use and how to set the corresponding
parameters.

Data generation

We first consider the design of X. In light of this, we analyze different problem sizes:

• dim-low-1: n = 400, p = 10, ‖β0‖0 = 5
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• dim-low-2: n = 2000, p = 20, ‖β0‖0 = 5

• dim-medium: n = 3000, p = 100, ‖β0‖0 = 30

• dim-high: n = 4000, p = 500, ‖β0‖0 = 100

For each dimension setting we draw each row of X i.i.d. from Np(0,Σ) with

• multicoll-none: Σ = I.

• multicoll-1: Σi,j = 0.5|i−j| for all i, j ∈ [p].

• multicoll-2: Σi,j =
{

1, if i = j,

0.9, if i 6= j.

We then select coefficients β0 ∈ Rp subject to the sparsity condition for the respective
dimension setting. Non-zero entries of β0 are uniformly drawn from the interval [1, 10].
The placements of the entries are drawn from the uniform distribution. In other words, we
uniformly draw m many values v1, . . . , vm from the interval [1, 10] with m being the desired
sparsity. We then draw a subset {s1, . . . , sm} ⊆ [p] and create the coefficients β0 according
to the rule

β0
i :=

{
vj , if i = sj for some j ∈ [m],
0, otherwise.

After creating the coefficients we generate the noise ε added to Xβ0, which is drawn i.i.d
from Nn(0, σ2I), with σ2 detailed below. The noise setting is the standard requirement
usually assumed for least squares regression. In order to measure the severance of the noise
we consider the signal-to-noise ratio (SNR). The SNR describes the proportion of the signal
in comparison to the noise. A high SNR means there is very little noise compared to the
signal whereas a low SNR describes the effect of a significant noise interference. The ratio
is defined as the quotient of the variance of the predicted response and the variance of the
noise, i.e.,

SNR := Var(x0β0)
Var(ε) = (β0)TΣβ0

σ2 .

In our experiment we consider the values

SNR 0.1 3 10

Accordingly, we choose the noise variance σ2 to fit the desired SNR value. In this sense,
low SNR leads to a high noise variance whereas a high SNR leads to a low noise variance.

Algorithm setting

We consider different algorithms for the simulation all of which are described in this work.
As far as possible, we are enabling intercept for all methods, even though our data setup
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does not have any intercept. In particular, the subset selection regression and the cross-
validation subset selection method should be able to exclude the intercept by themselves
solely by subset selection.

• SSR-Ridge: The subset selection regression as described in Chapter 4 with ridge
parameter µ ≥ 0. The sparsity level k and the ridge parameter is selected via a
cross-validation. The grid for the ridge parameters is detailed below.

• SSR: Subset selection regression but with ridge parameter µ = 0.

• CVSSR-Ridge: The cross-validation subset selection as described in Chapter 5 with
ridge parameter µ ≥ 0. We use 5 folds for the cross-validation. The optimal ridge
parameter is selected on a grid, which is detailed below, via a k-fold cross-validation
also consisting of 5 folds. We provide a warm start computed by SPARSENET.

• CVSSR: Same as CVSSR-Ridge but with ridge parameter µ = 0.

• LASSO: The Lasso method due to Tibshirani (1996). We are using the R imple-
mentation found in the package glmnet (Friedman, Hastie, & Tibshirani, 2010). The
k-fold cross-validation used by glmnet utilizes 10 folds and the mean squared error as
the loss function.

• SPARSENET: The SparseNet method developed by Mazumder et al. (2011). We are
using the R-package sparsenet. For the k-fold cross-validation used by this method
we are using the mean squared error as the loss function and a setup of 10 folds.

• STEPWISE: The stepwise regression. We are using the R-package caret (Kuhn,
2008), which relies on the implementation provided by the R-package leaps (Lumley
& Miller, 2017).

The methods SSR-Ridge, SSR, CVSSR-Ridge, and CVSSR are implemented in C++ and
called in R. The MIPs are solved via CPLEX. For the algorithms SSR-Ridge and CVSSR-
Ridge we are cross-validating each ridge parameter on a predefined grid. That is, let G
denote the number of evaluation points on the grid, µ̄ the upper regularization parameter
limit and

¯
µ the lower regularization parameter limit. Then, the ridge parameter grid is

constructed by
grid = {e(i−1)·

log(µ̄−
¯
µ+1)

G−1 − 1 +
¯
µ : i ∈ [G]}.

In the experiments we choose µ̄ = 10 and
¯
µ = 0. Since the subset selection regression

algorithms are computationally hard, we have to make some concessions in order to finish
the simulation in an appropriate time frame. Table 6.1 shows the algorithm settings for
each setup. We are dropping SSR-Ridge and CVSSR-Ridge from the simulation in higher
dimensions, since they require an evaluation for each grid point, which increases the com-
putational requirement considerably. Moreover, we reduce the time limit for SSR for each k
since we have to compute a subset selection regression for each sparsity level, which as well
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increases the computational burden significantly. This issue is not present with CVSSR.
Hence, we can afford to allocate more time per solver invocation.

Setting Algorithm #Repetitions Time limit Reg. grid size
dim-low-1 SSR-Ridge 99 720 per (k, µ) 20

SSR 99 720 per k NA
CVSSR-Ridge 99 720 per µ 20
CVSSR 99 720 NA
LASSO 99 NA 100
SPARSENET 99 NA 9× 50
STEPWISE 99 NA NA

dim-low-2 SSR-Ridge 99 720 per (k, µ) 10
SSR 99 720 per k NA
CVSSR-Ridge 99 720 per µ 10
CVSSR 99 720 NA
LASSO 99 NA 100
SPARSENET 99 NA 9× 50
STEPWISE 99 NA NA

dim-medium SSR 49 60 per k NA
CVSSR 49 3600 NA
LASSO 49 NA 100
SPARSENET 49 NA 9× 50
STEPWISE 49 NA NA

dim-high SSR 49 60 per k NA
CVSSR 49 7200 NA
LASSO 49 NA 100
SPARSENET 49 NA 9× 50
STEPWISE 49 NA NA

Table 6.1.: Table with algorithm setups for each dimension setting. Algorithms which are not listed for a specific
setting are not used. The values NA indicate that the setting is not available for the approach. Note
that for SSR and SSR-Ridge times per k are listed, i.e., in the worst case we spend timelimit · p seconds
for one instance.

Evaluation setup

Let β̂ be the estimated coefficients and x0 a new observation drawn from Np(0,Σ) with
response y0 = x0β0 + ε0. Furthermore, let θ̂ be the intercept estimated by any of the
approaches.

• Sparsity: Counting the number of non-zero entries. The intercept is counted towards
the sparsity. That means,

SPARSITY = ‖θ̂‖0 + ‖β̂‖0
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• Model difference: Even if a method produces the correct sparsity, the non-zero
entries could still be placed in deviation from the true model. The metric tells us how
many coefficients are out of place. It is defined by

MDIFF = ‖θ̂‖0 + ‖Isupp(β0) − Isupp(β̂)‖0

where IS denotes the indicator vector representing a set S.

• `2-difference from true coefficients: This metric evaluates how far the estimated
coefficients β̂ deviate from the true coefficients β0 with respect to the `2-norm.

L2DIFF = θ̂2 + ‖β0 − β̂‖2

• Relative risk: The relative risk is also used by Bertsimas et al. (2016) as an in-sample
version and is utilized by Hastie et al. (2017) in the variant shown here.

RR = E(θ̂ + x0β̂ − x0β0)2

E(x0β0)2 = θ̂2 + (β̂ − β0)Σ(β̂ − β0)
(β0)TΣβ0

The relative risk evaluates how far our prediction deviates from the true prediction.
The higher the RR the worse the method performs at predicting a new outcome
whereas the best achievable value is 0. The null score is 1.

• Relative test error: The metric is used by Hastie et al. (2017). It measures the test
error divided by the noise variance.

RTE = E(y0 − θ̂ − x0β̂)2

Var(ε0)

= E(ε− θ̂ − x0(β0 − β̂))2

Var(ε0)

= θ̂2 + (β0 − β̂)Σ(β0 − β̂) + σ2

σ2

The perfect score is 1 whereas the null score is SNR + 1.
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• Proportion of variance explained: The proportion of explained variance shows us
how much the model accounts for the present variance in the response.

PVE = 1− E(y0 − θ̂ − x0β̂)2

Var(y0)

= 1− θ̂2 + (β0 − β̂)Σ(β0 − β̂) + σ2

Var(x0β0 + ε)

= 1− θ̂2 + (β0 − β̂)Σ(β0 − β̂) + σ2

Var(x0β0) + Var(ε)

= 1− θ̂2 + (β0 − β̂)Σ(β0 − β̂) + σ2

(β0)TΣβ0 + σ2

• Pointwise coefficient difference: We measure the deviation of single coefficients
to the true value. This enables us to assess the coefficient estimation of the methods.
That means, we log the difference

PCDi := β̂i − β0
i

for every i ∈ [p]. Since we have nonzero coefficients at random positions, it does
not make much sense to consider single variables in the evaluation. Hence, we pool
all PCDi into one list for each approach. We exclude all differences which are zero
because we do not want to measure the selection quality but the coefficient quality.

• MIP Gap: This is only applicable to the methods SSR, SSR-Ridge, CVSSR, and
CVSSR-Ridge. We are measuring the MIP gap of the picked setting (sparsity, ridge
parameter) at the end of the optimization. A MIP gap of 0 means that an optimal
solution was found whereas a high MIP gap indicates that there are potentially better
integer solutions not found yet. In CPLEX the MIP gap is defined by

|BESTBOUND− BESTINTEGER|
10−10 + |BESTBOUND|

where BESTBOUND is the best objective bound known at end of the optimization
process and BESTINTEGER is the value of the best integer solution.

Hardware

We conducted the experiments on a machine with two Intel Xeon CPU E5-2699 v4 @
2.20GHz (2× 44 threads) and a random access memory capacity of 756 GB.

Implementation details

The same settings as in the numerical study in Chapter 4 are used. See Section 4.7.4 for
more details.
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Figure 6.1.: MIP gaps for all scenarios with dim-low-2. From left to right: SSR-Ridge, SSR, CVSSR-Ridge, CVSSR.

6.2. Evaluation: Low dimensional setting

We first consider the cases dim-low-1 and dim-low-2. In both of those settings all compu-
tationally difficult optimization problems terminate with a low MIP gap. For dim-low-1,
SSR, SSR-Ridge, CVSSR, and CVSSR-Ridge always find the optimal solution and for dim-
low-2 the gaps are mostly very low (see Figure 6.1). In this section we will observe that in
many relevant cases the subset selection regression and the cross-validation subset selection
regression are showing superior properties in almost all observed metrics.

6.2.1. High SNR and no multicollinearity

Let us first consider the case when the signal-to-noise ration is 10 and when there is no
multicollinearity present.
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Figure 6.2.: Sparsity of coefficients.

Sparsity

Figure 6.2 shows that STEPWISE, LASSO, CVSSR, and CVSSR-Ridge produce the sparsity
closest to the true sparsity level. In most of the instances LASSO, CVSSR, and CVSSR-
Ridge select one variable too much. That is because they often include the intercept, i.e.,
the added 1 column contained in X. Interestingly, for dim-low-2 the approaches SSR and
SSR-Ridge have a high variance and generate the worst sparsity level of all methods.

Measuring just the sparsity renders a rather simplistic picture. For what we know, the
examined method could pick all the wrong regressors and still have a correct sparsity level.
Therefore, we assess the correctness of variable selection in Figure 6.3. We observe that
for dim-low-2 the methods CVSSR, CVSSR-Ridge, LASSO, and SPARSENET produce
solutions, which coincidence nearly completely with the true predictors. They often only
choose one variable incorrectly. As mentioned before, this is because they often select the
intercept, which we assess as a false selection. SSR and SSR-Ridge do not select variables
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Figure 6.3.: Model difference between true coefficients and estimated coefficients.

as consistently as the competing methods as they often select too many variables. For dim-
low-1 the approaches have more difficulties selecting the correct model. Presumably, this
can be explained by the ratio between observations and variables, which is lower for dim-
low-1 than for dim-low-2. Here, CVSSR and CVSSR-Ridge generate the most consistent
models which are not too different from the true model. With dim-low-1, SSR and SSR-
Ridge provide the best median error but also the highest error variance.

Coefficient estimation quality

Figure 6.4 depicts the `2 difference between the estimated coefficients and the true coeffi-
cients. We can see that SSR, SSR-Ridge, CVSSR, CVSSR-Ridge, and SPARSENET have
the smallest `2 distance between the estimated coefficients β̂ and the true coefficients β0.
Interestingly, while LASSO performed well in selecting the variables, it performs the worst
at estimating the coefficients. The method produces estimates with the largest `2 difference.
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Figure 6.4.: `2-difference between true coefficients and estimated coefficients.

Figure 6.5 shows the reason for this pattern. Since LASSO must increase the regularization
parameter in order to shrink coefficients to zero, it also shrinks all non-zero parameters
resulting in lower than necessary β values. We can observe this in Figure 6.5. Whereas all
methods produce pointwise coefficient errors around 0, LASSO generates solutions having
pointwise errors with median −1.08, i.e., the true coefficients are usually greater than the
Lasso estimates. Furthermore, we can see that while SSR-Ridge and SSR often select more
variables than necessary, the wrongly picked coefficients are not large and appear to have
no notable effect on the coefficient estimate.
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Predictive performance

Having considered the coefficient structure of the produced solutions we now want to study
the predictive performance of the methods. We compare RTE, RR, and PVE for all meth-
ods. Evidently, LASSO and STEPWISE perform the worst under all metrics as can be
seen in Figures 6.6, 6.7, and 6.8. This is not surprising, as they are also the worst in
terms of `2 coefficient difference and pointwise coefficient distance. The subset selection
methods and SPARSENET show the best predictive performance. In the setting dim-low-
2 the SPARSENET method has the lowest variance. SSR and SSR-Ridge yield slightly
inferior results than CVSSR and CVSSR-Ridge. We can see that the underestimation of
the coefficients by LASSO has major influence on the predictive quality whereas the sub-
set selection methods and SPARSENET show near perfect predictive performance. In the
dim-low-1 setting very similar results are observable with the only notable difference being
that SPARSENET has a higher variance for RTE, RR, and PVE than the subset selection
methods.
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Figure 6.6.: Statistical performance of the methods quantified by the relative test error (RTE).
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Figure 6.7.: Statistical performance of the methods quantified by the relative test error (RTE).
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Figure 6.8.: Statistical performance of the methods quantified by the proportion of variance explained (PVE).
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6.2.2. Effects of SNR on the statistical performance

As the predictive quality of the subset selection methods is nearly perfect for the SNR value
10, we are interested in examining the effect of higher noise, i.e., lower SNR values. We
will see that in the higher noise setting LASSO performs better and we have already seen
that with less noise the subset selection methods perform excellently. However, what is a
realistic SNR value? Whereas Bertsimas et al. (2016) consider SNR values between 1 and
10, Hastie et al., 2017 argue that SNR values of this magnitude are unrealistically high.
They claim that in finance a PVE of 0.02 would be fantastic and a method producing such
a PVE would generate high profits. Since we have already observed that the PVE is much
larger for all methods for a SNR of 10, realistic noise must be much more severe – according
to the argumentation by Hastie et al. (2017). Consequently, they examine SNR values as
low as 0.05.

We argue that while LASSO performs better with such high noise, the prediction is still
unsatisfactory, as the method reverts to predicting a constant for all inputs. Hence, simply
computing the mean of y would yield the same results. We see that in the case of excessive
noise it is not sensible to apply the presented sparse regression methods. This raises the
question if such noise values are indeed reasonable. In the more relevant noise settings the
subset selection methods significantly outperform LASSO.

Sparsity

We first consider the sparsity across all observed SNR values. We can see in Figure 6.9 that
with decreasing signal-to-ratio values the sparsity decreases. This is particularly apparent
with LASSO, which reduces to sparsity 1 for the lowest signal-to-noise ratio 0.1. In fact, the
simulation results reveal that LASSO in this situation never picks any coefficient at all and
only chooses an intercept value. In both dimension settings, dim-low-1 and dim-low-2,
the simulations for SNR = 3 stand out as most of the methods show a large sparsity variance.
We presume that for low SNR the methods avoid the selection of variables since the noise
interference is so high that most variables appear to be irrelevant. For high SNR the true
variables can be singled out much more clearly. Except for the intercept the methods are
able to pick the correct sparsity level most of the time. We presume that with SNR = 3
the approaches are confident enough to select regressors, but the noise is large enough to
induce many false positives. This might be the reason why we observe such a high variance
for SNR = 3.
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Figure 6.9.: Sparsity levels of different SNR values.

Coefficient estimation quality

Since the sparsity decreases with high noise, the coefficient estimation becomes inaccurate
as well. In Figure 6.10 and Figure 6.11 we can see that the model difference and `2 co-
efficient difference is increasing with the signal-to-noise ratio being lower. SSR-Ridge and
SSR have the most difficulties selecting the correct regressors. Regarding the `2 difference in
Figure 6.11 the methods CVSSR, CVSSR-Ridge, SSR, SSR-Ridge, and STEPWISE fail to
accurately determine coefficients for the high noise case, although they fare much better for
SNR values of 3 and 10. For a signal-to-noise ratio of 0.1 LASSO and SPARSENET provide
the best `2 coefficient difference, though the values are still rather large. The results for the
pointwise coefficient difference, which are shown in Figure 6.12, are similarly unsatisfactory.
In the high noise setting no method besides LASSO provides “good” estimates. Looking
into the coefficients fitted by LASSO we see that they are all 0. Admittedly, they are better
estimates than any other methods yield, but it is doubtful if such estimates are considered

112



6.2 Evaluation: Low dimensional setting

SNR = 0.1

multicoll−none

SNR = 3

multicoll−none

SNR = 10

multicoll−none

0

2

4

6

0

5

5

M
od

el
 d

iff
er

en
ce

Algorithm

SSR−Ridge

SSR

CVSSR−Ridge

CVSSR

LASSO

SPARSENET

STEPWISE

Model difference (dim−low−1)

SNR = 0.1

multicoll−none

SNR = 3

multicoll−none

SNR = 10

multicoll−none

0

5

0

5

5

10

M
od

el
 d

iff
er

en
ce

Algorithm

SSR−Ridge

SSR

CVSSR−Ridge

CVSSR

LASSO

SPARSENET

STEPWISE

Model difference (dim−low−2)

Figure 6.10.: Model difference for the SNR values observed in the study.

usable. For signal-to-noise ratios of 3 and 10 LASSO produces estimates, which are far be-
hind the competing methods with respect to the `2 coefficient difference and the pointwise
coefficient difference.
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Figure 6.11.: `2 coefficient difference for the SNR values observed in the study.
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Figure 6.12.: Point-wise coefficient difference for all SNR values.
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Figure 6.13.: Relative risk and relative test error of different SNR values for all methods.

Predictive performance

Figure 6.13, 6.14, and 6.15 reveal that for signal-to-noise values of 3 and 10 the subset
selection methods and SPARSENET prove to be highly effective whereas the predictions
computed by LASSO and STEPWISE can be imprecise. When considering the low signal-to-
noise ratio 0.1 Lasso performs better. This is in line with the results by Hastie et al. (2017).
However, since we noticed that in this rather extreme noise setting, the Lasso method shrinks
all coefficients to zero and only upholds the intercept, the seemingly beneficial performances
is without any practical. Considering that we would like to predict an outcome based on
some input, this would translate to always predicting a constant value without taking any
of the input into account.

We conclude that in general SSR and CVSSR are not equipped to handle such noise.
Moreover, we observe that the additional ridge regularization is helpful and that the ridge
regularized methods SSR-Ridge and CVSSR-Ridge yield better predictions than their non-
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regularized counterparts. However, we observe that the automated selection of a ridge
parameter via a grid search is not working properly in the high noise case. The cross vali-
dation is not able to correctly quantify the prediction error, and hence the ridge parameter
is chosen too small.
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Figure 6.14.: Relative test error of different SNR values for all methods.
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Figure 6.15.: PVE for different observed SNR values

Having higher ridge parameters

We have recognized that in the high noise case LASSO yields better results than the compet-
ing methods. This is due to LASSO forcing coefficients to zero whereas the subset selection
methods highly overestimate the coefficients in terms of the absolute value. The subset se-
lection methods fail to function correctly because they do not pick the right regularization
parameter automatically. In this context we identify two major issues:

• The cross-validation used to select the ridge parameter does fail the fewer observations
we have and completely fails in the high noise case. In fact, the cross-validation never
picks the maximum regularization parameter of 10, even though it can be manually
recognized that high ridge values have a positive effect on the prediction in the high
noise case.

• Even if we ignore the measuring difficulties, the grid size has a large impact on the
performance. After all, we have to compute a difficult optimization problem for each
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of the grid points. It is not uncommon to have run-times of an hour for one subset
selection optimization for higher dimensional instances. Hence, it is impossible to
evaluate a large number of grid points.

To support this hypothesis we manually set the regularization parameter to 50 for the sub-
set selection methods. We denote this setting by SSR-HighRidge and CVSSR-HighRidge.
As expected, the high ridge parameter leads to significant shrunken coefficients. In Figure
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Figure 6.16.: Sparsity and point-wise coefficient difference for the subset selection methods with ridge parameter 50
and LASSO.

6.16 we can observe that CVSSR-HighRidge adapts the behavior of LASSO and shrinks
all coefficients to zero only leaving the intercept intact. SSR-HighRidge on the other hand
preserves some sparsity even with the high regularization. The observation that CVSSR-
HighRidge adapts the pattern of LASSO translates to the predictive quality as well. We can
see in Figure 6.17 that both approaches yield identical results. Though SSR-HighRidge pro-
duces much better predictions than the other two methods. We can only assume that our
quite arbitrarily chosen regularization parameter is better suited for the subset selection
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Figure 6.17.: Relative test error and proportion of variance explained for the subset selection methods with ridge
parameter 50 and LASSO.

than it is for cross-validation subset selection. After all, every coefficient is set to zero
by CVSSR-HighRidge, which is actually not something we aim for. Supposedly, a slightly
smaller regularization parameter for the cross-validation subset selection might yield results
similar to the subset selection regression.

6.2.3. Effects of multicollinearity

For an ordinary linear regression, multicollinearity should not have any effect on the pre-
dictive quality but rather on the coefficient estimation. Nevertheless, our setting is tightly
interwoven with the correct selection of variables. As such, we expect the high multi-
collinearity to also have effects on the predictive performance. In this section we want to
compare the different covariance settings multicoll-none, multicoll-1 and multicoll-2.
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Figure 6.18.: Sparsity for all multicollinearity settings.

Sparsity

High multicollinearity leads to columns being nearly linearly dependent. Accordingly, groups
of variables could be represented by a linear combination of other variables. Hence, finding
the correct regressors becomes more difficult. This hypothesis is reflected by our simula-
tion, as depicted in Figure 6.18 and Figure 6.19. We can see that for high multicollinearity
both the sparsity and the model difference become inaccurate. In particular, the meth-
ods CVSSR-Ridge and CVSSR have difficulties finding the right variables with the setting
dim-low-2. In contrast, SSR-Ridge and SSR are the most unaffected by the multicollinear-
ity. This is probably because with SSR and SSR-Ridge the cardinality is fixed and hence
models of every possible size are generated. We suspect that SSR and SSR-Ridge yield
multiple models with approximately the same prediction error and therefore the model with
the smallest cardinality is picked. CVSSR and CVSSR-Ridge lack the distinction between
sparsity levels, which is why a model with higher cardinality is more likely to be returned.
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Figure 6.19.: Model difference for all multicollinearity settings.
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Figure 6.20.: `2 coefficient distance for all multicollinearity settings.

Coefficient estimation quality

With multicollinearity we have the effect that variables are nearly linear dependent and so
coefficients can grow large. While multicoll-1 does not appear to have any major effect
on the coefficients, multicoll-2 does. In Figure 6.20 it can be seen be seen that the `2
coefficient difference becomes considerably large for all methods. Here, LASSO is the least
affected by multicoll-2, followed by CVSSR. Yet for multicoll-none and multicoll-1
LASSO produces the largest `2-difference.

Predictive performance

While multicollinearity does not necessarily affect predictive quality, we have already noticed
that variable selection suffers from the effect. Hence, we should expect the predictive quality
to be negatively affected as well. Indeed, we can see in Figure 6.21 and Figure 6.22 that the
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Figure 6.21.: Relative test error for all multicollinearity settings.

scale of the results change with multicoll-1 and multicoll-2. While the general relationship
between the approaches is kept intact the overall RTE and PVE become worse with higher
multicollinearity. Only CVSSR-Ridge is the least affected and performs the best with respect
to the RTE and PVE.

Overall LASSO yields predictions significantly worse than those of the other methods
whereas SPARSENET and CVSSR perform the best.
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Figure 6.22.: Proportion of variance explained for all multicollinearity settings.

6.3. Evaluation: Medium dimensional setting

For the higher dimensional settings we are not going into detail as much as we did in
the previous section. That is because we observed that with higher dimensions the subset
selection methods are not able to reach the global optimal solution anymore. While we gain
insight into how the methods perform when the optimal solution is not found, the main
interest lies with the methods finding optimal solutions.

In the case of dim-medium we see in Figure 6.24 that the MIP gaps at the end of the
optimization processes are rather high and hence we expect predictive quality to degrade in
comparison to the heuristic approaches.

Figure 6.24 depicts the sparsity over all settings. Although the subset selection meth-
ods do not find the optimal solution, they are the closest to the true sparsity. The
SPARSENET method yields solutions which are generally too sparse but there are ten-
dencies into the correct direction. It is noticeable that STEPWISE and LASSO generate
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Figure 6.23.: MIP gaps for all scenarios with dimensional setup dim-medium.

very sparse solutions far below the true sparsity of 30. Furthermore, in Figure 6.25 we can
see that SSR and CVSSR not only provide good sparsity levels but they also hold up with
the other methods concerning the correctness of the selection. In particular, SSR appears
to be less effective in more disrupted settings with much noise or high multicollinearity. On
the other hand, it shows that CVSSR is more robust against these interferences.

For the relative test error we can see mixed results with the subset selection methods.
Despite not finding the optimal solution they are competitive in the low noise and no
multilinearity setting. SSR, however, fails in most other setups. SPARSENET consistently
yields excellent results. Compared to the results in the low dimensional settings we can
definitely see a difference in predictive quality, which we attribute to the worse MIP gaps
observed with dim-medium.
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Figure 6.24.: Sparsity for all scenarios with dimensional setup dim-medium.
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Figure 6.25.: Model difference for all scenarios with dimensional setup dim-medium.
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Figure 6.26.: Relative test error for all scenarios with dimensional setup dim-medium.
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6.4 Evaluation: High dimensional setting
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Figure 6.27.: MIP gaps for all scenarios with dimensional setup dim-high.

6.4. Evaluation: High dimensional setting

As seen in Figure 6.27 the gap becomes notably large. Thus, it is not very reasonable to
regard the results for dim-high as defining for the predictive quality of the subset selection
methods. The relative test error for all setups is displayed in Figure 6.28. We can see
that SSR fails in all instances to yield useful predictions. While CVSSR fares much better
compared to SSR it still performs worse than LASSO and SPARSENET in all cases.

Although those results do not put the subset selection methods in a good light, the
conclusion which should be drawn from them is that paying attention to the MIP gap after
the optimization is crucial. Hastie et al., 2017 allow 3 minutes per k in their study. However,
they face the same dilemma, which arises here. That is, if doing a proper statistical study
the run times sum up to excessive amounts. For instance Hastie et al. (2017) report that
the sum of the potential, allowed time frames over all scenarios amounts to 31.25 days. The
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Figure 6.28.: Relative test error for all scenarios with dimensional setup dim-high.

presented setup here would amount to approximately 41 days if the simulation is run in
parallel on the available 88 cores. Admittedly, the computer did not run 41 days for this
thesis since many instances are solved faster than the allowed time limit. Cutting back on
the number of repetitions, however, would devaluate the statistical validity.

6.5. Discussion

By many authors, the subset selection regression is regarded as the ideal method for sparse
regression. We raised some concerns about the notion of the subset selection regression
in Chapter 5 and presented an alternative mixed-integer approach to model selection. We
assessed the statistical characteristics in this chapter. As long as the problems can be solved
to global optimality we observed that in most cases CVSSR and CVSSR-Ridge provide
better results than SSR and SSR-Ridge. Moreover, when noise is moderate it often generates
the best prediction of all compared methods and is much better than LASSO. Furthermore,
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we noticed that multicollinearity has the least negative effect on CVSSR and CVSSR-
Ridge concerning prediction quality. Concerning signal-to-noise ratio, we found that the
subset selection methods fail with excessive noise in place. LASSO on the other hand,
provides better prediction values in this case. However, we realized that LASSO always
predicts a constant value in this setting. We conclude that simply predicting the mean of y
would yield the same result with less computational effort and as such it does not make much
sense to conduct a variable selection. Furthermore, we noticed that CVSSR-Ridge and SSR-
Ridge yield significant better results in the high noise setup if the regularization parameter
is chosen sufficiently high, though this fact is not recognized by the grid search. The results
enable us to identify several insights:

• Extending the subset selection methods by an additional ridge regularization never
produces worse results. In fact, we have seen with SSR-HighRidge that the prediction
can be substantially improved even when dealing with excessive noise.

• The cross-validation used to select the regularization parameter fails in the high noise
case and never selects high parameters.

• Further research on the appropriate selection of the regularization parameter should
be conducted. From the simulation study we can deduce that a better choice of µ
would lead to significant better predictions.

Overall, we conclude that CVSSR shows superior statistical performance over SSR and the
heuristics, however we understand that there is still room for improvement concerning the
correct choice of the ridge parameter. Moreover, we observe that SPARSENET provides
very competitive results in all scenarios. Considering that it requires a fraction of the run
time of the subset selection methods, the usage of the method is advisable. On the other
side, we have LASSO and STEPWISE which produce the least favorable predictions and
often yield predictive results which are magnitudes worse than those of the subset selection
methods. Even in the scenarios where LASSO prevails the results are unsatisfactory and
have no practical benefit.

To conclude this discussion we want to bring our findings into the context of the studies
by Bertsimas et al. (2016) and Hastie et al. (2017). The authors Bertsimas et al. (2016)
found that SSRis superior in terms of its predictive performance compared to LASSO,
SPARSENET, and STEPWISE. In contrast to those statements, Hastie et al. (2017) argue
that the subset selection regression is not always the best choice for model selection and
that LASSO is the preferred method for realistic noise settings. In the simulation study we
shed a light on these discrepancies. We suspect that a major part of these opposing results
come from the fact that the simulation study by Hastie et al. (2017) is much larger, and
hence they cannot afford to provide enough time for the subset selection regression. This
causes the subset selection regression to not find the optimal solution. As the study in this
thesis shows, not finding an optimal solution leads to significant differences in the predictive
quality. This is presumably the reason why the subset selection produces less competitive
results in the study conducted by Hastie et al. (2017). Furthermore, we found that in the
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6. Statistical quality of best subset selection

high noise settings a sufficiently high regularization term is required for the subset selection
methods to produce proper results. This was not identified by Bertsimas et al. (2016) since
they only assessed higher SNR values. Hastie et al. (2017) did not use any regularization
for the subset selection regression and hence they could not observe its benefits. However,
their claim that SNR values far below 1 are more realistic is disputable. More so because
LASSO does not provide a sophisticated prediction in this case either. Simply predicting the
mean would suffice to produce the same results as LASSO in this case. It calls into question
if such a noisy setting is an appropriate application scenario for sparse regression methods.
Utilizing a simple mean prediction would yield the same results without the mathematical
and computational complexity.

Our findings show that the subset selection methods provide excellent statistical per-
formance in settings where noise is not extreme. We observed that CVSSR-Ridge and
CVSSR are nearly always superior to SSR-Ridge, SSR, and the heuristics. LASSO on the
other hand, yields poor predictions for low and medium noise and reduces to a simple mean
prediction in the high noise case.
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Chapter 7
Conclusion

In this thesis we considered the subset selection regression problem (SSRk). The problem
has always been regarded as an unachievable ideal, which provides the underlying motiva-
tion for heuristic, efficient alternatives, yet provides no practical relevance in itself. The
prevalent opinion in the past was that the method, due to its combinatorial difficulty, is
simply too computational burdensome for any useful application. In the recent years many
authors utilized modern discrete optimization techniques to improve the efficiency of (SSRk)
considerably and demonstrated that this mindset is no longer justified.

We covered structural and mathematical aspects of the subset selection regression in re-
gard to the computational efficiency of the approach. Moreover, we examined the statistical
notion behind the subset selection regression and rethought the basic approach to vari-
able selection. At the end we conducted an extensive simulation study verifying the ideas
presented in this thesis.

In the main part of this thesis we focused on the optimization facets of the subset selection
regression. We first extended the problem by a ridge regularization and denoted it by
(SSRk,µ). We presented a mixed-integer quadratic formulation proposed by Bertsimas et al.
(2016) and subsequently proposed a novel mixed-integer linear formulation. We argued that
nonlinear mixed-integer programs are more computational challenging and hence expected
the linear formulation to be solved quicker in general. The numerical study we conducted
at the end of Chapter 4 indicated however that this idea alone does not lead to a superior
formulation.

Both the presented approaches required Big-M bounds on the coefficients and the pre-
dicted values. We argued that such bounds should be as tight as possible in order for the
MIP solver to find the optimum quicker. Thus, we proceeded to develop novel bounds. In
the process, we found that if the data is entropic, i.e., XTX + µI 6� 0, finding coefficient
bounds under the premise that we use eigenvalue information is NP-hard. We proceeded
to concentrate on the setting where XTX + µI � 0 as this assumption does only result in
a negligible loss of generality. Furthermore, finding bounds in the entropic case is a sizable
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research topic in itself and would exceed the scope of this work. We then developed novel
Big-M bounds for the coherent case using approximations of λmin(XT

SXS) and λmax(XT
SXS).

With mixed-integer optimization it is helpful to find formulations which provide tighter
relaxations. We presented such a stronger formulation, which utilizes the perspective refor-
mulation. Furthermore, we explored another approach which relies on the reformulation of
(SSRk,µ) to an explicit binary nonlinear optimization problem and in which the resulting
problem is solved via an outer approximation. We identified that the binary formulation
is a matrix fractional problem, which can be translated to a second-order cone problem.
Surprisingly, this conversion led to the perspective formulation. We concluded that this is
the reason why both approaches are so efficient. This motivated us to utilize the tangent
planes of the outer approximation in a continuous, more general setting. As they basically
represent the perspective reformulation we found that they form an excellent class of cutting
planes.

Since the mixed-integer linear formulation we proposed turned out to be not as efficient
as we hoped for, we applied the tangent cuts to the problem. In the numerical study,
which we conducted, it was shown that the cuts are highly effective. In the computational
experiments, we tested the perspective second-order cone formulation, the same formulation
with additional normal equations, the outer approximation, and the mixed-integer linear
formulation on several instances ranging from various values of noise. It was shown that the
linear formulation with cuts is highly competitive and provides a very balanced performance
across all settings, i.e., in most instances the run time or the remaining MIP gap were very
close to the fastest time or smallest gap. The other methods excelled at certain scenarios but
failed to be efficient at others. We concluded that the mixed-integer linear formulation in
combination with the novel cutting planes is excellently suited for a broad range of different
settings and is a serious competitor for the state-of-the-art approaches by Bertsimas and
Van Parys (2017) and Dong et al. (2015). We identified further research opportunities
as well in this context. That is, we observed that often a lot of cuts are added, which
considerably slows down the branching. It would certainly be interesting to investigate if
better conditions for adding cuts at relaxed solutions can be deduced.

In the last section of the main chapter we presented a transformation, which retains
the objective subset order, i.e., a subset S yielding a better objective value than a subset T
remains to be an objectively better subset after the transformation. We utilized an auxiliary
problem to reach the desired result. We used these results to deduce a condition under which
XTX can be transformed to an M -matrix utilizing the proposed transformation. We then
applied these propositions to deduce a class of instances which are polynomial-time solvable.

In the second major part of this thesis we moved away from the technical aspects of the
subset selection regression and focused on the statistical notion behind it. We recognized
that the actual process of model selection is different from what is done with the subset
selection regression and that the underlying statistical objective differs from the optimization
objective in (SSRk,µ). We criticized this apparent discrepancy and proposed a novel mixed-
integer quadratic program subject to the actual statistical objective. We called the resulting
program the cross-validation subset selection regression.
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Finally, we assessed the subset selection regression and the cross-validation subset se-
lection in a statistical study. We compared the subset selection methods to the heuristics
stepwise selection, Lasso, and SparseNet. From the study, we concluded that the cross-
validation subset selection yields more accurate results than the subset selection regression
and for most scenarios yields the best predictive quality. Lasso yields predictions which are
significantly worse than the predictions by the subset selection methods in the scenarios
with SNR 3 and 10. However, if the noise is excessive or the subset selection methods have
not enough time to find an optimal solution they provide predictions which are worse com-
pared to the results of the heuristics. Some open issues arose from the study. We found that
it is highly beneficial to employ a regularization term, however determining an appropriate
regularization parameter turned out to be difficult. The cross-validated grid search could
not accurately estimate the test error and hence the ridge parameter was chosen too small.
We saw that manually setting the ridge parameter led to excellent results in the high noise
case. Thus, the question of how to determine the correct regularization parameter remains
open.

It is evident that discrete optimization plays a major role in statistics and data science.
Many problems coming from statistical applications feature large dimensions and hence
the usage of integer optimization for those data science problems has mostly been ignored.
However, with many problems, it shows that discrete optimization can lead to highly ben-
eficial outcomes. We focused on the subset selection regression in this thesis and provided
evidence that integer optimization in this context is not only feasible but also advantageous
and worthwhile. Nevertheless, we also identified open issues, which provide subjects for
future research.
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Appendix A
Appendix

A.1. Cauchy Interlacing Theorem

Since the Cauchy Interlacing Theorem is used several times in this thesis, we state it here.
For more information the book by Horn and Johnson (2013, pp. 242 - 248) is recommended.

Theorem A.1 (Cauchy Interlacing Theorem). Let A ∈ Rn×n be symmetric, let U ∈ Rn×m
be orthonormal and let B = UTAU . Assume that eigenvalues are arranged as

λmin = λ1 ≤ · · · ≤ λp = λmax,

then
λi(A) ≤ λi(B) ≤ λi+n−m(A)

holds.

A.2. Supplementary data for Section 4.7

The table presented below shows the MIP gap after the root node, the MIP gap after the
last processed node and the required time. The data is generated following the experiment
described in Section 4.7. Missing values are caused by numerical instabilities in CPLEX and
hence could not be measured. Values are typed bold if they are leading in their respective
setting and approaches are typed bold if they are overall preferable to the other methods
for the particular setup.

Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
MILP 0.3 0.0 dim-1 0.4963 0.2706 600.00
SOCP 0.3 0.0 dim-1 0.2532 0.0457 600.01
SOCPNE 0.3 0.0 dim-1 0.4071 0.0605 600.01
OA 0.3 0.0 dim-1 1.0000 0.4106 600.04
MILPNOCUTS 0.3 0.0 dim-1 0.6721 0.5800 600.01
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Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
MILP 0.3 0.5 dim-1 0.0282 0.0081 600.20
SOCP 0.3 0.5 dim-1 0.0087 0.0001 155.84
SOCPNE 0.3 0.5 dim-1 0.0138 0.0001 303.13
OA 0.3 0.5 dim-1 0.0435 0.0037 600.00
MILPNOCUTS 0.3 0.5 dim-1 0.1371 0.1116 600.01
MILP 0.3 1.0 dim-1 0.0081 0.0001 35.09
SOCP 0.3 1.0 dim-1 0.0022 0.0001 12.79
SOCPNE 0.3 1.0 dim-1 0.0022 0.0001 46.33
OA 0.3 1.0 dim-1 0.0122 0.0001 3.27
MILPNOCUTS 0.3 1.0 dim-1 0.0724 0.0451 600.02
MILP 0.3 5.0 dim-1 0.0000 0.0000 0.05
SOCP 0.3 5.0 dim-1 0.0000 0.0000 2.33
SOCPNE 0.3 5.0 dim-1 0.0000 0.0000 0.74
OA 0.3 5.0 dim-1 0.0000 0.0000 0.00
MILPNOCUTS 0.3 5.0 dim-1 0.0161 0.0042 600.01
MILP 1.0 0.0 dim-1 0.4080 0.2514 600.04
SOCP 1.0 0.0 dim-1 0.2355 0.0115 600.00
SOCPNE 1.0 0.0 dim-1 0.3039 0.0001 371.37
OA 1.0 0.0 dim-1 1.0000 0.4028 600.04
MILPNOCUTS 1.0 0.0 dim-1 0.7130 0.5959 600.99
MILP 1.0 0.5 dim-1 0.0315 0.0001 453.98
SOCP 1.0 0.5 dim-1 0.0109 0.0001 46.35
SOCPNE 1.0 0.5 dim-1 0.0109 0.0001 53.69
OA 1.0 0.5 dim-1 0.0701 0.0001 72.48
MILPNOCUTS 1.0 0.5 dim-1 0.1762 0.1363 601.04
MILP 1.0 1.0 dim-1 0.0136 0.0000 14.25
SOCP 1.0 1.0 dim-1 0.0034 0.0001 8.18
SOCPNE 1.0 1.0 dim-1 0.0039 0.0001 8.22
OA 1.0 1.0 dim-1 0.0228 0.0001 1.33
MILPNOCUTS 1.0 1.0 dim-1 0.0941 0.0549 600.01
MILP 1.0 5.0 dim-1 0.0008 0.0000 0.14
SOCP 1.0 5.0 dim-1 0.0002 0.0001 2.87
SOCPNE 1.0 5.0 dim-1 0.0002 0.0001 2.19
OA 1.0 5.0 dim-1 0.0005 0.0001 0.07
MILPNOCUTS 1.0 5.0 dim-1 0.0189 0.0051 600.01
MILP 3.0 0.0 dim-1 0.3265 0.0000 31.72
SOCP 3.0 0.0 dim-1 0.0866 0.0000 3.19
SOCPNE 3.0 0.0 dim-1 0.3265 0.0000 4.35
OA 3.0 0.0 dim-1 1.0000 0.0000 2.38
MILPNOCUTS 3.0 0.0 dim-1 0.7890 0.5524 600.01
MILP 3.0 0.5 dim-1 0.0354 0.0000 0.26
SOCP 3.0 0.5 dim-1 0.0057 0.0000 3.86
SOCPNE 3.0 0.5 dim-1 0.0057 0.0000 2.28
OA 3.0 0.5 dim-1 0.0687 0.0000 0.02
MILPNOCUTS 3.0 0.5 dim-1 0.3919 0.2022 600.01
MILP 3.0 1.0 dim-1 0.0000 0.0000 0.16
SOCP 3.0 1.0 dim-1 0.0020 0.0000 3.67
SOCPNE 3.0 1.0 dim-1 0.0020 0.0001 1.74
OA 3.0 1.0 dim-1 0.0105 0.0000 0.01
MILPNOCUTS 3.0 1.0 dim-1 0.2339 0.0999 600.01
MILP 3.0 5.0 dim-1 0.0000 0.0000 0.04

138



A.2 Supplementary data for Section 4.7

Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
SOCP 3.0 5.0 dim-1 0.0004 0.0001 3.11
SOCPNE 3.0 5.0 dim-1 0.0004 0.0001 1.36
OA 3.0 5.0 dim-1 0.0007 0.0000 0.01
MILPNOCUTS 3.0 5.0 dim-1 0.0512 0.0078 600.01
MILP 10.0 0.0 dim-1 0.4088 0.0000 0.22
SOCP 10.0 0.0 dim-1 0.0001 0.0001 0.25
SOCPNE 10.0 0.0 dim-1 0.0001 0.0001 0.22
OA 10.0 0.0 dim-1 0.2726 0.0000 0.04
MILPNOCUTS 10.0 0.0 dim-1 0.7933 0.6299 600.01
MILP 10.0 0.5 dim-1 0.0000 0.0000 0.04
SOCP 10.0 0.5 dim-1 0.0000 0.0000 1.39
SOCPNE 10.0 0.5 dim-1 0.0000 0.0000 0.72
OA 10.0 0.5 dim-1 0.0000 0.0000 0.02
MILPNOCUTS 10.0 0.5 dim-1 0.5491 0.0064 600.04
MILP 10.0 1.0 dim-1 0.0000 0.0000 0.04
SOCP 10.0 1.0 dim-1 0.0000 0.0000 1.48
SOCPNE 10.0 1.0 dim-1 0.0000 0.0000 0.60
OA 10.0 1.0 dim-1 0.0000 0.0000 0.01
MILPNOCUTS 10.0 1.0 dim-1 0.3540 0.1601 600.01
MILP 10.0 5.0 dim-1 0.0000 0.0000 0.03
SOCP 10.0 5.0 dim-1 0.0000 0.0000 1.77
SOCPNE 10.0 5.0 dim-1 0.0000 0.0000 0.57
OA 10.0 5.0 dim-1 0.0000 0.0000 0.00
MILPNOCUTS 10.0 5.0 dim-1 0.0937 0.0152 600.02
MILP 0.3 0.0 dim-2 0.4242 0.4132 600.01
SOCP 0.3 0.0 dim-2 0.2530 0.1926 600.04
SOCPNE 0.3 0.0 dim-2 0.3741 0.3154 600.01
OA 0.3 0.0 dim-2 1.0000 0.6447 600.01
MILPNOCUTS 0.3 0.0 dim-2 0.6061 0.5431 600.05
MILP 0.3 0.5 dim-2 0.0316 0.0180 600.00
SOCP 0.3 0.5 dim-2 0.0187 0.0084 600.05
SOCPNE 0.3 0.5 dim-2 0.0213 0.0138 600.03
OA 0.3 0.5 dim-2 0.0450 0.0282 600.02
MILPNOCUTS 0.3 0.5 dim-2 0.1244 0.0882 600.01
MILP 0.3 1.0 dim-2 0.0084 0.0048 600.07
SOCP 0.3 1.0 dim-2 0.0038 0.0027 600.13
SOCPNE 0.3 1.0 dim-2 0.0065 0.0062 600.04
OA 0.3 1.0 dim-2 0.0156 0.0089 600.01
MILPNOCUTS 0.3 1.0 dim-2 0.0634 0.0389 600.02
MILP 0.3 5.0 dim-2 0.0007 0.0001 3.43
SOCP 0.3 5.0 dim-2 0.0003 0.0001 600.06
SOCPNE 0.3 5.0 dim-2 0.0003 0.0002 600.02
OA 0.3 5.0 dim-2 0.0005 0.0001 9.16
MILPNOCUTS 0.3 5.0 dim-2 0.0126 0.0030 600.01
MILP 1.0 0.0 dim-2 0.4313 0.4129 600.03
SOCP 1.0 0.0 dim-2 0.2683 0.1655 600.02
SOCPNE 1.0 0.0 dim-2 0.3831 0.3049 600.02
OA 1.0 0.0 dim-2 1.0000 0.6918 600.01
MILPNOCUTS 1.0 0.0 dim-2 0.6541 0.5802 600.01
MILP 1.0 0.5 dim-2 0.0308 0.0246 600.05
SOCP 1.0 0.5 dim-2 0.0246 0.0105 600.04
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Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
SOCPNE 1.0 0.5 dim-2 0.0320 0.0182 600.05
OA 1.0 0.5 dim-2 0.0571 0.0385 600.01
MILPNOCUTS 1.0 0.5 dim-2 0.1616 0.1243 600.02
MILP 1.0 1.0 dim-2 0.0093 0.0057 600.03
SOCP 1.0 1.0 dim-2 0.0056 0.0033 600.05
SOCPNE 1.0 1.0 dim-2 0.0125 0.0068 600.03
OA 1.0 1.0 dim-2 0.0203 0.0108 600.04
MILPNOCUTS 1.0 1.0 dim-2 0.0856 0.0578 600.03
MILP 1.0 5.0 dim-2 0.0002 0.0001 6.31
SOCP 1.0 5.0 dim-2 0.0005 0.0002 600.05
SOCPNE 1.0 5.0 dim-2 0.0003 0.0002 600.04
OA 1.0 5.0 dim-2 0.0005 0.0001 5.55
MILPNOCUTS 1.0 5.0 dim-2 0.0171 0.0052 600.03
MILP 3.0 0.0 dim-2 0.2864 0.1307 600.06
SOCP 3.0 0.0 dim-2 0.1036 0.0262 600.01
SOCPNE 3.0 0.0 dim-2 0.1035 0.0762 600.01
OA 3.0 0.0 dim-2 1.0000 0.5265 600.03
MILPNOCUTS 3.0 0.0 dim-2 0.7694 0.6197 600.01
MILP 3.0 0.5 dim-2 0.0245 0.0001 117.47
SOCP 3.0 0.5 dim-2 0.0042 0.0001 112.95
SOCPNE 3.0 0.5 dim-2 0.0079 0.0006 600.01
OA 3.0 0.5 dim-2 0.1113 0.0001 6.17
MILPNOCUTS 3.0 0.5 dim-2 0.3976 0.3049 600.01
MILP 3.0 1.0 dim-2 0.0042 0.0001 1.33
SOCP 3.0 1.0 dim-2 0.0010 0.0001 42.49
SOCPNE 3.0 1.0 dim-2 0.0040 0.0001 156.19
OA 3.0 1.0 dim-2 0.0040 0.0000 0.05
MILPNOCUTS 3.0 1.0 dim-2 0.2437 0.1583 600.01
MILP 3.0 5.0 dim-2 0.0000 0.0000 0.28
SOCP 3.0 5.0 dim-2 0.0002 0.0001 13.13
SOCPNE 3.0 5.0 dim-2 0.0612 0.0000 26.44
OA 3.0 5.0 dim-2 0.0000 0.0000 0.01
MILPNOCUTS 3.0 5.0 dim-2 0.0577 0.0190 600.01
MILP 10.0 0.0 dim-2 0.2614 0.0000 0.47
SOCP 10.0 0.0 dim-2 0.0001 0.0000 1.57
SOCPNE 10.0 0.0 dim-2 0.0001 0.0001 1.58
OA 10.0 0.0 dim-2 0.0000 0.0000 0.02
MILPNOCUTS 10.0 0.0 dim-2 0.8039 0.5561 600.02
MILP 10.0 0.5 dim-2 0.0000 0.0000 0.17
SOCP 10.0 0.5 dim-2 0.0001 0.0001 10.73
SOCPNE 10.0 0.5 dim-2 0.0001 0.0001 6.69
OA 10.0 0.5 dim-2 0.0000 0.0000 0.00
MILPNOCUTS 10.0 0.5 dim-2 0.5939 0.4106 600.01
MILP 10.0 1.0 dim-2 0.0000 0.0000 0.15
SOCP 10.0 1.0 dim-2 0.0000 0.0000 9.91
SOCPNE 10.0 1.0 dim-2 0.0000 0.0000 5.94
OA 10.0 1.0 dim-2 0.0000 0.0000 0.01
MILPNOCUTS 10.0 1.0 dim-2 0.4211 0.1946 600.01
MILP 10.0 5.0 dim-2 0.0000 0.0000 0.10
SOCP 10.0 5.0 dim-2 0.0000 0.0000 10.46
SOCPNE 10.0 5.0 dim-2 0.1471 0.0000 33.63
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Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
OA 10.0 5.0 dim-2 0.0000 0.0000 0.01
MILPNOCUTS 10.0 5.0 dim-2 0.1258 0.0253 600.01
MILP 0.3 0.0 dim-3 0.7008 0.7008 600.05
SOCP 0.3 0.0 dim-3 0.0816 0.0816 600.02
SOCPNE 0.3 0.0 dim-3 – – –
OA 0.3 0.0 dim-3 0.9280 0.9099 600.01
MILPNOCUTS 0.3 0.0 dim-3 0.7008 0.7008 600.01
MILP 0.3 0.5 dim-3 0.0061 0.0061 600.08
SOCP 0.3 0.5 dim-3 0.0022 0.0022 600.03
SOCPNE 0.3 0.5 dim-3 – – –
OA 0.3 0.5 dim-3 0.0127 0.0069 600.02
MILPNOCUTS 0.3 0.5 dim-3 0.2201 0.2201 600.02
MILP 0.3 1.0 dim-3 0.0004 0.0004 600.04
SOCP 0.3 1.0 dim-3 0.0011 0.0011 600.59
SOCPNE 0.3 1.0 dim-3 0.0010 0.0010 600.40
OA 0.3 1.0 dim-3 0.0025 0.0012 600.04
MILPNOCUTS 0.3 1.0 dim-3 0.1111 0.1111 600.02
MILP 0.3 5.0 dim-3 0.0001 0.0001 2.09
SOCP 0.3 5.0 dim-3 0.0118 0.0001 600.09
SOCPNE 0.3 5.0 dim-3 0.0001 0.0001 600.21
OA 0.3 5.0 dim-3 0.0001 0.0001 0.13
MILPNOCUTS 0.3 5.0 dim-3 0.0179 0.0179 600.05
MILP 1.0 0.0 dim-3 0.7046 0.7046 600.10
SOCP 1.0 0.0 dim-3 0.0793 0.0793 600.02
SOCPNE 1.0 0.0 dim-3 – – –
OA 1.0 0.0 dim-3 0.8973 0.8742 600.01
MILPNOCUTS 1.0 0.0 dim-3 0.7046 0.7046 600.01
MILP 1.0 0.5 dim-3 0.0060 0.0060 600.04
SOCP 1.0 0.5 dim-3 0.0021 0.0021 600.06
SOCPNE 1.0 0.5 dim-3 – – –
OA 1.0 0.5 dim-3 0.0144 0.0067 600.02
MILPNOCUTS 1.0 0.5 dim-3 0.2243 0.2243 600.02
MILP 1.0 1.0 dim-3 0.0038 0.0015 600.05
SOCP 1.0 1.0 dim-3 0.0373 0.0373 600.29
SOCPNE 1.0 1.0 dim-3 – – –
OA 1.0 1.0 dim-3 0.0027 0.0013 600.02
MILPNOCUTS 1.0 1.0 dim-3 0.1138 0.1138 600.03
MILP 1.0 5.0 dim-3 0.0001 0.0001 0.96
SOCP 1.0 5.0 dim-3 0.0001 0.0001 600.24
SOCPNE 1.0 5.0 dim-3 0.0001 0.0001 600.28
OA 1.0 5.0 dim-3 0.0001 0.0001 0.07
MILPNOCUTS 1.0 5.0 dim-3 0.0186 0.0186 600.02
MILP 3.0 0.0 dim-3 0.7178 0.7178 600.11
SOCP 3.0 0.0 dim-3 0.0852 0.0852 600.03
SOCPNE 3.0 0.0 dim-3 – – –
OA 3.0 0.0 dim-3 1.0000 1.0000 600.01
MILPNOCUTS 3.0 0.0 dim-3 0.7178 0.7178 600.01
MILP 3.0 0.5 dim-3 0.0076 0.0076 600.10
SOCP 3.0 0.5 dim-3 0.0028 0.0028 600.07
SOCPNE 3.0 0.5 dim-3 – – –
OA 3.0 0.5 dim-3 0.0170 0.0070 600.03
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Algorithm SNR Reg. parameter Dim. Gap root node Gap last node Req. time
MILPNOCUTS 3.0 0.5 dim-3 0.2491 0.2355 600.02
MILP 3.0 1.0 dim-3 0.0048 0.0012 600.09
SOCP 3.0 1.0 dim-3 0.0011 0.0011 600.19
SOCPNE 3.0 1.0 dim-3 0.0011 0.0011 600.19
OA 3.0 1.0 dim-3 0.0027 0.0014 600.04
MILPNOCUTS 3.0 1.0 dim-3 0.1296 0.1296 600.03
MILP 3.0 5.0 dim-3 0.0001 0.0001 0.97
SOCP 3.0 5.0 dim-3 0.0001 0.0001 600.14
SOCPNE 3.0 5.0 dim-3 0.0001 0.0001 600.35
OA 3.0 5.0 dim-3 0.0001 0.0001 0.07
MILPNOCUTS 3.0 5.0 dim-3 0.0221 0.0221 600.02
MILP 10.0 0.0 dim-3 0.7446 0.7446 600.06
SOCP 10.0 0.0 dim-3 0.1288 0.1288 600.01
SOCPNE 10.0 0.0 dim-3 – – –
OA 10.0 0.0 dim-3 0.9379 0.9241 600.01
MILPNOCUTS 10.0 0.0 dim-3 0.7446 0.7419 600.03
MILP 10.0 0.5 dim-3 0.0168 0.0168 600.05
SOCP 10.0 0.5 dim-3 0.0052 0.0052 600.06
SOCPNE 10.0 0.5 dim-3 – – –
OA 10.0 0.5 dim-3 0.0380 0.0199 600.03
MILPNOCUTS 10.0 0.5 dim-3 0.3738 0.3660 600.02
MILP 10.0 1.0 dim-3 0.0098 0.0028 600.02
SOCP 10.0 1.0 dim-3 0.0022 0.0022 600.42
SOCPNE 10.0 1.0 dim-3 – – –
OA 10.0 1.0 dim-3 0.0083 0.0044 600.02
MILPNOCUTS 10.0 1.0 dim-3 0.2155 0.2155 600.01
MILP 10.0 5.0 dim-3 0.0001 0.0001 95.15
SOCP 10.0 5.0 dim-3 0.0002 0.0002 600.27
SOCPNE 10.0 5.0 dim-3 0.0002 0.0002 600.33
OA 10.0 5.0 dim-3 0.0001 0.0001 1.37
MILPNOCUTS 10.0 5.0 dim-3 0.0422 0.0422 600.01
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