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German Summary
(Zusamenfassung)

In dieser Arbeit wird das Problem der Stichprobenallokation in stratifizierten Designs
unter Unsicherheit untersucht. Im Allgemeinen sind die schichtspezifischen Varianzen,
die zur Ermittlung der optimalen Lösung notwendig sind, nur näherungsweise bekannt.
Dabei existieren meist keine genaueren Informationen zur Verteilung des Fehlers der
Näherung. Ein weiterer Unsicherheitsfaktor bei der Allokation sind die Kosten für
die Befragung einer Person in einer Schicht. Diese sind ebenfalls nur näherungsweise
bekannt. Beispielsweise sind manchmal Personen für das Interview beim ersten Ter-
min nicht verfügbar, und müssen in Folgeterminen befragt werden, was den Befra-
gungsaufwand und damit die Kosten erhöht. In dieser Dissertation werden robuste
Allokationen vorgeschlagen, um der Unsicherheit sowohl bei schichtspezifischen Var-
ianzen als auch bei den schichtspezifischen Kosten zu begegnen. Diese Allokationen
sind auch für ausschließlich unsichere Varianzen oder unsichere Kosten geeignet. Insge-
samt werden daher drei verschiedene robuste Formulierungen vorgeschlagen, die diese
verschiedenen Fälle darstellen. Zum Zeitpunkt der Einreichung dieser Dissertation ist
dem Autor keine andere Forschungsarbeit bekannt, die die robuste Allokation für das
Stichprobenallokationsproblem berücksichtigt.

Die erste robuste Formulierung für lineare Probleme wurde von (Soyster, 1973)
vorgeschlagen. (Bertsimas and Sim, 2004) schlugen eine weniger konservative, robuste
Formulierung für lineare Probleme vor. Wir untersuchen diese Formulierungen und
erweitern sie für das Problem der nichtlinearen Stichprobenallokation. Es ist sehr
unwahrscheinlich, dass alle schichtspezifischen Varianzen und Kosten unsicher sind.
Die robusten Formulierungen sind so aufgebaut, dass wir wählen können, wie viele
schichtspezifische Varianzen als unsicher gelten. Dies wird als Grad der Unsicherheit
bezeichnet. Es wird bewiesen, dass eine Obergrenze für die Wahrscheinlichkeit einer
Verletzung der nichtlinearen Beschränkungen berechnet werden kann, bevor das ro-
buste Optimierungsproblem gelöst wird. Wir berücksichtigen verschiedene Arten von
Datensätzen und berechnen robuste Allokationen. Wir führen mehrere Experimente
durch, um die Qualität der robusten Allokationen zu überprüfen und sie mit den beste-
henden Allokationsmethoden zu vergleichen.
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Summary

In this thesis, we aim to study the sampling allocation problem of survey statistics
under uncertainty. We know that the stratum specific variances are generally not known
precisely and we have no information about the distribution of uncertainty. The cost of
interviewing each person in a stratum is also a highly uncertain parameter as sometimes
people are unavailable for the interview. We propose robust allocations to deal with
the uncertainty in both stratum specific variances and costs. However, in real life
situations, we can face such cases when only one of the variances or costs is uncertain.
So we propose three different robust formulations representing these different cases. To
the best of our knowledge robust allocation in the sampling allocation problem has not
been considered so far in any research.

The first robust formulation for linear problems was proposed by (Soyster, 1973).
(Bertsimas and Sim, 2004) proposed a less conservative robust formulation for linear
problems. We study these formulations and extend them for the nonlinear sampling al-
location problem. It is very unlikely to happen that all of the stratum specific variances
and costs are uncertain. So the robust formulations are in such a way that we can select
how many strata are uncertain which we refer to as the level of uncertainty. We prove
that an upper bound on the probability of violation of the nonlinear constraints can be
calculated before solving the robust optimization problem. We consider various kinds
of datasets and compute robust allocations. We perform multiple experiments to check
the quality of the robust allocations and compare them with the existing allocation
techniques.
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Chapter 1

Introduction

1.1 Motivation

Survey statistics is a branch of statistics where we investigate the estimation of char-
acteristics of the whole population on the basis of data collected from samples of the
population. Sampling is the most important factor to decide the accuracy of any survey
study. The accuracy of the final results in terms of information about the whole pop-
ulation is directly affected by the selected samples. These samples are selected on the
basis of available information of the population. The information about the population
can be collected from the data of previous surveys conducted on the same population.
The selection of samples becomes more complex when we have some uncertainty in the
data. The objective of sample selection is to minimize the total variance of the esti-
mator of the population and/or to minimize the total cost of conducting the survey. If
only one characteristic about the population is studied, then the problem is called uni-
variate sampling allocation problem and when several characteristics of the population
are studied, then the problem is called multivariate sampling allocation problem. A
multivariate sampling allocation problem is a multicriteria optimization problem where
we try to find an allocation that minimizes the total variances of the estimators of
several characteristics of the population.

The problems of survey statistics are often formulated as optimization problems
which generally are of high dimension. Standard optimal allocation might fail or lead
to results that are not feasible in the case when uncertainty takes place. Generally,
we do not have information about the type of uncertainty existing in the data, so
stochastic approaches are not very helpful. A robust optimization approach guarantees
feasibility even in the worst case of uncertainty. In robust optimization sometimes in
order to ensure feasibility, we lose much of the quality of the solutions if we take the
uncertainty in a very pessimistic way. Therefore, new robust allocation techniques need
to be developed or existing approaches need to be improved in order to reduce the loss
of quality and to ensure feasibility.
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This work shows how mathematical optimization can be used to obtain satisfactory
solutions of uncertain survey statistics problems. Starting with describing uncertainty
in survey statistics (Chapter 2), we introduce some robust optimization modeling tech-
niques (Chapter 3). Some less pessimistic robust models are proposed. These less
pessimistic robust allocation models can also be extended to the multicriteria cases.
We integrate these less pessimistic robust models for the univariate and multivariate
cases and propose new robust allocation models (Chapter 4). Apart from the devel-
opment of new robust allocation techniques, we present some real data studies and
simulation work also.

1.2 Outline

A brief overview of each chapter is presented here. Chapter 2 and Chapter 3 introduce
the fundamentals of survey statistics and robust optimization, respectively. Chapter 4
discusses the more specific problems in robust optimization when multiple objectives
exist. Chapter 4 also deals with the robust allocation approaches and related robust
formulations. In Chapter 5, Chapter 6 and Chapter 7 we present applications of robust
formulations from the previous chapters in simulated, synthetic and real life datasets.

Chapter 2: Fundamentals of Survey Statistics

In this chapter, we discuss some fundamentals of survey statistics that are needed in
the overall study. We start with the sampling design in stratified sampling and then
explain the mathematical formulations of stratified sampling allocation problems. We
also discuss the case of uncertainty existing in the stratum specific variances and the
formulation of uncertain sampling allocation problems.

Chapter 3: Fundamentals of Robust Optimization

This chapter starts with a case study of a dairy problem. We will see how uncertainty
can make a feasible solution completely infeasible and practically meaningless. In order
to deal with the uncertainty of parameters some basics of robust optimization are
introduced and existing robust counterparts are presented.

Chapter 4: Robust Allocation in Survey Statistics

In this chapter we formulate the uncertain sampling allocation problem presented in
Chapter 2 as robust formulation. It has also been proved that the robust approach such
as presented by (Soyster, 1973) and (Bertsimas and Sim, 2004) for linear programming
can also be applied to our nonlinear stratified sampling allocation problems. Theoretical
results of robust formulations are also proved again for our specific problem.

2



Chapter 5: Analysis with Simulated Data

In this chapter simulated data is generated for the survey statistical problem. The
variables are considered to be distributed diversely. Robust formulations are solved for
three different cases when only cost is uncertain, when only variance is uncertain and
when both cost and variance parameters are uncertain. In order to check the robust
solutions, stability and feasibility tests have been carried out.

Chapter 6: Robust Allocation in the AMELIA Dataset

In this chapter, we consider a synthetically generated dataset with around 3.7 million
observations for our sampling allocation problem. The idea is to check the robust ap-
proach for more complex datasets. Provinces in the AMELIA dataset have been merged
together in order to make the data more complex statistically but computationally eas-
ier. Feasibility tests have been carried out for the robust solutions.

Chapter 7: NRW Income and Taxation Data

After working with simulated and synthetic datasets in the previous chapters, this chap-
ter continues with a real life complex dataset. We consider here income and taxation
data from 2001 of the German state of NRW. Characteristics of the data have been
studied and on the basis of the characteristics, stratification of the population has been
carried out. Robust allocations are achieved using the robust formulations introduced
in the previous chapters. Feasibility tests have been carried out for the robust solutions.

3
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Chapter 2

Fundamentals of Survey Statistics

In order to make strategic decisions about a whole population, surveys play an impor-
tant role, see for example (LeRoux and Wright, 2010). Surveys provide information
such as the health status of a population, economic activity and educational situation
of the population, and this statistical information is the basis for taking decisions. For
example, (Hollederer, 2011) studied the German microcensus 2005 and found that there
are various types of interactions between health and occupational status of people. This
kind of insight helps the policy makers to take major decisions about the population.
This is why survey statistics are widely used in these decision making processes in or-
der to obtain accurate decisions, see (Hoffmann et al., 2000) and (LeRoux and Wright,
2010).

Survey statistics also involves financial risks and accuracy risks. If the implemen-
tation of a survey is not done using optimal strategies it can result in including more
people in the research than required or too few people which will result in increased cost
or accuracy problems respectively, for details see (Swanson and Holton, 2005), p. 50.
One of the common approaches is to take samples from the population such that they
represent the whole of the population. Inference about the whole population is drawn
from the selected samples. German microcensus is one of the examples of how survey
statistics can be helpful in conducting surveys efficiently. In German microcensus single
stage stratified cluster sampling is used since 1972 and federal states are considered as
strata. The sampling fraction is taken to be 1% of the total population (about 800,000
people), see (GESIS, 2019).

Definition 2.1 (UNECE (2000)). A survey is an investigation about the characteristics
of a given population by means of collecting data from a sample of that population and
estimating their characteristics through the systematic use of statistical methodology.

Sampling can be classified in probability sampling and non-probability sampling.
Non-probability sampling is often referred to as purposive sampling, see (Teddlie and
Yu, 2007). Probability sampling is used when the probability of selecting a sample

5



according to the given objective is known. When the probability of selecting a sample
is not known, we use the non-probability sampling. In this study we will not use non-
probability sampling as the non-probability sampling relies more on researchers decision
of selection of the samples and the results of non-probability sampling can sometimes
lead to a biased outcome, (Yeager et al., 2011). Some of the differences in probability
sampling and non-probability sampling can be listed as follows in Table 2.1.

Alternatively, probability sampling is also known as random sampling because the
basis of probability sampling is randomization. In probability sampling some of the
following methods are used:

• Simple Random Sampling (SRS)

Simple random sampling is the easiest form of probability sampling and provides
a basis for almost all kinds of complex probability sampling. In simple random
sampling, the samples can be selected in two ways: with replacement and without
replacement. In SRS with replacement, the same unit may be included in the
sample more than once whereas in SRS without replacement all units in the
sample are distinct. Simple random sampling is discussed in detail in Section 2.1.

• Stratified Sampling

In stratified sampling the whole population is divided into many subgroups that
we call strata. Then simple random sampling is applied to take samples from
each stratum. The population is divided into heterogeneous strata which are
homogeneous within themselves. The strata are formed according to the interest
of the investigator. For example, for a study related to income and taxation we
can divide the population into subgroups on the basis of their income level or the
taxation level. Stratified sampling is discussed in detail in Section 2.2.

• Cluster Sampling

In cluster sampling, the whole population is divided into a collection of population
units called clusters. So in cluster sampling each unit of the sample is a collection
of population units. Simple random sampling is used for selecting clusters. Sup-
pose we want to survey all the people living in villages of Rhineland-Palatinate.
However we do not have a list of all people living in villages. We can consider the
villages as clusters and take a simple random sampling of all the villages. This is
useful in reducing the total cost of conducting the survey as it can directly reduce
the travelling cost of the interviewer. However, people living in the same village
might have the same characteristrics, so stratified sampling or simple random
sampling can provide better precision than cluster sampling. In several studies
where the travelling cost can be very high, for example in forestry, cluster sam-
pling is very efficient. For example (Philippi, 2005) uses adaptive cluster sampling
to estimate the abundances of low abundance plants.

6



Probability sampling Non-probability sampling
The samples are selected randomly so each
unit of the population has an equal chance
of being selected.

The samples are not selected randomly.
Hence, each unit does not have an equal
chance of being selected.

The probability of selecting a unit is
known and equal for all the units.

The probability of selecting a unit is not
equal and it is either unknown or not
specified.

Probability sampling is helpful when the
research is conclusive, for example in the
German microcensus (Schwarz, 2001).

If the research is non exploratory, then
non-probability sampling can provide bet-
ter results, see for example (Schreuder and
Alegria, 1995)

(Schreuder and Alegria, 1995) discuss the
case when probability sampling is used to
estimate population totals if the proba-
bilities of selection were unequal and un-
known. They also mention that this can
introduce a probabilistic bias, which can
be large.

(Särndal et al., 1992) discussed several
non-probability sampling methods includ-
ing balance sampling and quota sampling
methods. These two methods select sam-
ples in such a way that many units of the
population have zero probability of selec-
tion. This approach might provide an ac-
curate estimation of population character-
istics but an objective measure of preci-
sion is not possible.

Probability samples represent the popu-
lation in a more effective way and they
have a broader appeal and support, see
(Hansen et al., 1983).

Many authors discussed that the word
”representative” can be subject to a wide
interpretation. Some other authors say
that a sample with n < N elements of
a population of size N can never repre-
sent the population, whether it is cho-
sen probabilistically or not. See, (Kruskal
and Mosteller, 1979) and (Schreuder et al.,
2001).

Table 2.1: Probability and non-probability sampling

• Systematic Sampling

In systematic sampling, the first sample unit is selected randomly and then other
samples are seleted according to the first sample but with a fixed interval size.
This interval size can be calculated by dividing the population with the total

7



sample size. For example, if we have a population of 100 people and we need to
select a sample of 8 people for a survey, then we have an interval size of b100

8
c = 12.

The first unit of the sample is selected randomly, let us say 9 is selected. Now
according to systematic sampling, the other sample units wil be 21, 33, 45, 57, 69,
81, 93. The selected sample units represent the population as it is very unlikely
to happen that each 12th unit of the population has the same characteristic.

There are some other methods also, such as two stage sampling and multi stage
sampling. For details, we suggest the readers to see (Lohr, 2010).

2.1 Simple Random Sampling

Simple random sampling is a very basic form of probability sampling. In simple random
sampling the sample units are selected randomly from the population and each unit of
the population has an equal chance of being selected, see (Olken and Rotem, 1986).
There are two ways to draw samples in simple random sampling: with replacement in
which the same unit can be chosen again, and without replacement in which each unit
can be selected only once.

In simple random sampling with replacement (SRSWR), if we have a sample size
of n and a population size of N then the first sample unit is selected randomly from
the population with an equal probability of being selected. The selected sample unit
is replaced into the population so for selecting the second sample unit each population
unit has again equal probability of being selected. The procedure is repeated till n
sample units are selected. The probability of selecting a unit in each draw is 1/N .

In SRSWoR each sample is equally likely and there are
(
N
n

)
possible samples. In

the first draw each unit has equal probability of 1/N of being selected. For the next
draw, unlike SRSWR, the selected unit is not replaced and a unit is chosen from the
remaining population of size N − 1. This process is repeated untill n sample units
are selected. In SRSWoR, the probability of selecting any individual sample S can be
written as follows:

P (S) =
1(
N
n

) =
n! (N − n)!

N !

Let i be a unit contained in the population of size N . Let πi denote the probability
for unit i to be included in a sample of size n using SRSWoR. If unit i is in the sample,
then the remaining n− 1 sample units must be chosen from the remaining N − 1 units
of the population. Since there are

(
N−1
n−1

)
possibilities to do so, we obtain

πi =

(
N−1
n−1

)(
N
n

) =
n

N

8



In SRSWR the selected sample can have duplicates from the population and sam-
pling the same individual twice does not increase any information about the population.
This is the reason that simple random sampling without replacement(SRSWoR) is pre-
ferred.

Definition 2.2 (Lohr (2010)). For any sampling design, we define the sampling weight
of unit i to be the reciprocal of the inclusion probability:

wi =
1

πi

Sampling weights are used in design based sampling to achieve proportionality. The
sampling weight of an individual unit i can be interpreted as the number of units in the
population which are represented by unit i. In SRS each unit has equal probability of
inclusion and thus equal sampling weight. We can interpret this as follows: each unit
in the sample represents itself and all other units of the population that are not in the
sample. We refer to (Lohr, 2010) and (Särndal et al., 2003) for a detailed study.

2.2 Stratified Sampling Allocation Problems

One important kind of sampling design is stratified random sampling that is widely
used in practice e.g. in the German microcensus, (Schwarz, 2001). Stratified sampling
leads to efficient selection of samples when the total population is heterogeneous in
nature. In stratified sampling, the total heterogeneous population of size N is divided
into H subsets of sizes N1, N2, . . . , NH as denoted in (Sukhatme, 1954), where

N = N1 +N2 + . . .+NH .

The process of dividing the population into smaller subsets is called stratification. These
subsets are called strata, they are homogeneous within themselves but heterogeneous
among each other. We need some prior information about the population in order to
identify homogeneous strata.

Figure 2.1 taken from (Pinterest, 2019) explains how stratified sampling exactly
works by identifying homogeneous strata and then selecting samples from these strata.
In stratified sampling we take a sample of size nh from stratum h, and these nh units
are selected using simple random sampling. The population quantities for a variable of
interest y can be defined as follows:

9



Figure 2.1: Representation of stratification and random samples (Pinterest, 2019)

yhj = Value of unit j in stratum h

Yh =

Nh∑
j=1

yhj = Population total in stratum h

Y =
H∑

h=1

Yh = Population total

Ȳh =

∑Nh

j=1 yhj

Nh

= Population mean in stratum h

ȲU =
Y

N
=

∑H
h=1

∑Nh

j=1 yhj

N
= Overall population mean

S2
h =

Nh∑
j=1

(yhj − Ȳh)2

(Nh − 1)
= Population variance in stratum h

(2.1)

For convinience reasons we assume WOR sampling if not stated otherwise. Define
Sh to be the set of nh units in simple random sampling for stratum h. We have |Sh|= nh

for each h = 1, . . . , H. The notations in (2.1) for the sample within each stratum can
be defined as follows:

ȳh =

∑
j∈Sh yhj

nh

= Sample mean

s2
h =

∑
j∈Sh

(yhj − ȳh)2

(nh − 1)
= Sample variance

ŷh =
Nh

nh

∑
j∈Sh

yhj = Nhȳh = Estimate of the population total in stratum h

10



In stratum h, we have a population of Nh units and a sample of nh units selected
using SRS. Then we can estimate ȲU and Yh by ȳh and ŷh respectively. As given in
(2.1) the population total is Y =

∑H
h=1 Yh and can be estimated as follows:

Ŷstr =
H∑

h=1

ŷh =
H∑

h=1

Nhȳh,

and the overall population mean ȲU can be estimated as follows:

Ȳstr =
Ŷstr
N

=
H∑

h=1

Nh

N
ȳh.

Some more details on estimators can be found in Cochran (1977).
In stratified sampling, the variance V (Ŷstr) of the estimator Ŷstr can be calculated

as follows:

V (Ŷstr) =
H∑

h=1

N2
hS

2
h

nh

(1− nh

Nh

), (2.2)

where S2
h represents the stratum specific variance of the characteristic under study in

stratum h.
In SRS, we saw in Section 2.1 that the inclusion probabilities πi and the sampling

weights wi = 1/πi are equal. However, in stratified sampling, the inclusion probabilities
can vary from one stratum to another. Thus the sampling weights can also be different.
The stratified sampling estimator Ŷstr can be written as weighted sum of the individual
sampling units as follows:

Ŷstr =
H∑

h=1

Nhȳh =
H∑

h=1

∑
j∈Sh

Nh

nh

yhj

and following this, the estimator of the population total can be written as follows:

Ŷstr =
H∑

h=1

∑
j∈Sh

whjyhj,

where whj = Nh

nh
is the sampling weight for unit j in stratum h. Here this sampling

weight can be understood as the number of population units represented by the selected
unit j in stratum h. The probability πhj of inclusion of unit j in stratum h can be written
as follows:

πhj =
nh

Nh

11



Thus the sampling weight can be calculated as the reciprocal of the inclusion prob-
ability, i.e.

whj =
1

πhj
=
Nh

nh

.

There are various approaches for the selection of samples from these strata such as,
for example, equal allocation where equal sample sizes are allocated to each stratum
irrespective of its size and its stratum specific variance. If the total sample size is β,
then the sample size nh of the sample in stratum h in equal allocation is calculated as
follows:

nh =
β

H
, ∀h = 1, . . . , H.

In some applications, equal allocation might allocate a sample size bigger than the
stratum size, i.e. nh > Nh, and that is practically impossible.

This problem can be avoided by using a different well known method of allocating
samples in stratified sampling: proportional allocation. In proportional allocation the
sample sizes are allocated according to the size of the strata i.e.:

nh ∝ Nh, ∀h = 1, . . . , H.

However, the proportional allocation allocates sample sizes irrespective of the stra-
tum specific variances which might lead to an increase in the total variance of the
estimator. This shows an important perspective to be considered while allocating sam-
ples to the strata, that is, minimizing the total variance of the estimator.

Neyman (1959) and Tschuprow (1923) proposed the following optimum allocation
minimizing the variance of the estimator using a standard Lagrangian approach.

nh =
NhSh∑H
i=1NiSi

β, ∀h = 1, . . . , H (2.3)

In the sampling allocation problem sometimes the fixed cost of selecting a unit
sample is also known. In this case, we can consider the total cost of allocating samples
as an additional objective. If Ch denotes the cost of selecting a unit sample in stratum
h (h = 1, . . . , H), then Cochran suggested an allocation method which minimizes the
product of the variance of the total estimate and the total cost (see Section 5.5, Cochran
(1977)). Abbreviating Wh = Nh/N , we can calculate the allocation using the following
formula:

nh = β
WhSh/

√
Ch∑H

h=1WhSh

√
Ch

∀h = 1, . . . , H.
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However, there exist problems where there are several characteristics of the total
population under study. These characteristics are referred to as variables in survey
statistics. A sampling allocation problem with multiple variables is called multivari-
ate sampling allocation problem. In this situation we want to minimize several total
variances in the optimum sampling allocation problem. We assume there are K > 1
characteristics. For k = 1, . . . , K and h = 1, . . . , H, we define S2

hk to represent the
stratum specific variance of characteristic k in stratum h. In multivariate sampling
allocation, we estimate the various characteristics of the population. Conidering the K
charactersitics separately might lead to K different sample allocations in the popula-
tion. However, considering them together may lead to yet another allocation. Chat-
terjee (1967) proposed an allocation method by minimizing the sum of the relative
increases in the variance of the estimates. Chatterjee’s allocation can be calculated as
follows:

nh =
Ch

√∑K
k=1 n

∗2
hk∑H

h=1Ch

√∑K
k=1 n

∗2
hk

∀h = 1, . . . , H

where

n∗hk =
ChWhShk/

√
Ch∑H

h=1 WhShk

√
Ch

∀h = 1, . . . , H; k = 1, . . . , K

All of the above mentioned allocation methods suffer from three disadvantages:

• Sometimes we encounter the problem of over allocation in a stratum, i.e., nh > Nh.
This happens for example if both the stratum specific variance S2

h and the unit
cost Ch are very low.

• If the stratum specific variance S2
h and the cost Ch are very high, then that

stratum might be assigned an extremely low sample size which might not give a
good representation of the stratum population.

• All of these methods give non integer solutions which we need to round off before
actual use.

These disadvantages in the sampling allocation inspired the mathematical formulation
of box constrained sampling allocation problems by Münnich et al. (2012).

2.3 Mathematical Formulation

In order to deal with the problem of over allocation and low sample size, Münnich
et al. (2012) and Gabler et al. (2012) added box constraints to the sampling allocation
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problem where lower and upper bounds mh and Mh on the variables nh are defined,
such that mh ≥ 2 (as we need at least two sample units from each stratum in order
to calculate the stratum specific variances) and Mh ≤ Nh (as nh should not be bigger
than the size Nh of the population in stratum h). The following constraints are added
to the optimization problem:

mh ≤ nh ≤Mh ∀h = 1, . . . , H and
H∑
i=1

ni ≤ β.

These bounds make sure that the optimal allocation does not have more sample
units allocated to a stratum than the stratum size and the sum of the sample sizes
does not exceed the total sample size. The objective function of this mathematical
formulation is the total variance of the estimator defined in (2.2), i.e.

V (Ŷstr) =
H∑

h=1

N2
hS

2
h

nh

(1− nh

Nh

) =
H∑

h=1

N2
hS

2
h

nh

−
H∑

h=1

NhS
2
h.

However, the constant part in this variance can be ignored in the mathematical formu-
lation. We get the following mathematical formulation:

min
H∑

h=1

N2
hS

2
h

nh

s.t.
H∑

h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.4)

In this model, it is assumed that β > 0 and 2 ≤ mh < Mh ≤ Nh for all h. We define
dh := N2

hS
2
h for all h = 1, . . . , H and the above formulation can be rewritten as follows:

min
H∑

h=1

dh
nh

s.t.
H∑

h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.5)

(Friedrich et al., 2015) proposed three algorithms based on Greedy strategies to
obtain an integer solution of the univariate sampling allocation problem (2.5). They
use the fact that an integer solution can be obtained if the feasible set is a polymatroid.
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The univariate problem (2.5) can be extended to the multivariate case. Assuming
that we have K variables of interest, let us denote by S2

hk the stratum specific variance
of variable k in statum h. We define

dhk := N2
hS

2
hk ∀h = 1, . . . , H and ∀k = 1, . . . , K

We get the following multi-criteria optimization problem:

min
H∑

h=1

dhk
nh

∀k = 1, . . . , K

s.t.
H∑

h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.6)

We can see here that the above problem (2.6) is a multi-objective optimization prob-
lem and it must be scalarized in order to get some Pareto optimal solution (Friedrich
et al., 2018). There are several ways of doing this: one option is the so called weighted
sum method, where we transform the problem to a single objective problem by con-
sidering a weighted sum of the K objective functions. For more details see Chapter
3 in (Ehrgott, 2005). Another option is the so called ε-constraint method, where we
minimize only one of the original K objective functions, while the others are moved
into the constraints by introducing an upper bound of εk for the objectrive function
fk. For more details we refer to Chapter 4.1 in (Ehrgott, 2005). However, it is always
difficult to find appropriate weights of the different characteristics in the weighted sum
method or to find the proper bounds εk in the ε-constraint method.

Several authors used other well established multiobjective optimization techniques
to solve the multivariate sampling allocation problem in the form of problem (2.6).
(Dı́az-Garćıa and Cortez, 2008) solve the multivariate problem using the value function
method. They also suggest a distance based method to find a compromise solution by
minimizing the distance to the ideal point. (Friedrich et al., 2018) proposed several
scalarization techniques such as weighted sum and p-norm scalarization method to deal
with the multiple objectives and they proposed some standardization techniques where
the objectives have been standardized by the unique univariate optimal allocations.

If the cost Ch of selecting a unit sample in stratum h is provided, then we have one
more objective function to minimize the total cost

min
H∑

h=1

Chnh + C0,

where C0 is the overhead cost which is a constant. However, we can ignore the constant
term in this objective function. We get the following problem with K + 1 objective
functions:

15



min
H∑

h=1

dhk
nh

∀k = 1, . . . , K

min
H∑

h=1

Chnh

s.t.
H∑

h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.7)

Whenever we have a given total budget C that our total cost must not exceed, we
can transfer the cost function to the constraints by adding the following constraint:

H∑
h=1

Chnh ≤ C

The same can be done with the other objective functions: If an upper bound Vk
on the the objective function

∑H
h=1

dhk
nh

is somehow available, then we can transfer this
objective function to the constraints by adding the following constraint:

H∑
h=1

dhk
nh

≤ Vk (2.8)

The problem of allocating samples in stratified sampling has been discussed continu-
ously since the 1950s. Dalenius (1953) discussed two geometric approaches for allocating
samples in stratified sampling where he solved the problem with two strata. Following
that Kokan and Khan (1967) present an analytical solution for a certain multi stage
sampling and double sampling problem. They also show existence and uniqueness of the
solution in their specific allocation problem. Chaddha et al. (1971) proposed a dynamic
programming approach to find an optimum solution for a univariate stratified sampling
problem. Omule (1985) solved the multivariate sampling allocation problem using the
same dynamic programming approach. (Chatterjee, 1967) solved the sampling alloca-
tion problem considering the cost objective function and calculating an upper bound on
the variance constraint. (Sukhatme, 1954) formulated the sampling allocation problem
as nonlinear optimization problem with cost as objective function. Recently, (Dı́az-
Garćıa and Garay-Tápia, 2007) investigated the same nonlinear optimization problem
as (Sukhatme, 1954) by considering a cost objective function and nonlinear variance
constraints with known upper bounds on the variances.
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2.4 Uncertainty in Sampling Allocation Problems

In the stratified sampling allocation problem, the stratum specific variances are some
given values used in the optimization process. Generally, the exact values for the
stratum specific variances are not known because they are often based on inexact data
or data from previous surveys that may not be valid at present time. So there is a very
high chance that there are uncertainties in the stratum specific variances. The same
applies to the cost of selecting a unit sample in each stratum. These costs are also
subject to change.

Denote the true values by d̃hk and C̃h. We assume interval uncertainty which means
that we assume

d̃hk ∈ [dhk − d̂hk, dhk + d̂hk] and C̃h ∈ [Ch − Ĉh, Ch + Ĉh]

respectively. Here, dhk and Ch are fixed numbers and d̂hk ≥ 0 and Ĉh ≥ 0 are the
possible deviations from dhk and Ch respectively.

The box constrained optimum sampling allocation problem with interval uncertainty
can be written as follows:

min
H∑

h=1

d̃hk
nh

∀k = 1, . . . , K

min
H∑

h=1

C̃hnh

s.t.
H∑

h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.9)

Many authors have considered the uncertainty existing in the stratum specific vari-
ance. (Dı́az-Garćıa and Garay-Tápia, 2007) solved the univariate nonlinear sampling al-
location optimization problem using a stochastic optimization approach considering the
fact that S2

h are generally unknown and the sample variances s2
h are random variables.

(Diaz-Garcia and Ramos-Quiroga, 2011) proposed a stochastic matrix optimization ap-
proach to solve the multivariate sampling allocation problem where they minimize the
estimated covariance matrix of the estimated means. In order to deal with the uncer-
tainty, fuzzy programming has also been used for sampling allocation problems. (Gupta
et al., 2014) proposed a chance constrained multivariate sampling allocation approach
and used a fuzzy goal programming approach to find a compromise solution. (Ullah
et al., 2015) proposed a fuzzy geometric programming approach for a two stage mul-
tivariate problem considering linear and quadratic cost functions. These methods do
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not consider interval uncertainty but more general types of uncertainty. However, these
approaches are computationally tractable only for small scale problem.

Another very useful approach to deal with the interval uncertainty is robust opti-
mization. To the best of our knowledge, robust optimization has not been applied yet
in the sampling allocation problems. In robust optimization, one generally considers
optimization problems where the objective function does not contain uncertainties as
it would result in an interval valued optimal value of the objective function which is
very difficult to obtain from a computational point of view. Instead, an uncertain ob-
jective function is moved to the constraints by introducing an additional variable. We
introduce new variables φk ∈ R for all k = 1, . . . , K and φ0 ∈ R and rewrite (2.9) as
follows:

min φk ∀k = 1, . . . , K

min φ0

s.t.
H∑

h=1

d̃hk
nh

≤ φk ∀k = 1, . . . , K

H∑
h=1

C̃hnh ≤ φ0

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

φ0 ∈ R, φk ∈ R ∀k = 1, . . . , K

(2.10)

We can deal with the univariate problem (K = 1) in just the same way. If the
cost function is considered as the second objective of the problem, then the uncertain
univariate sampling allocation problem reads as follows:
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min φ

min φ0

s.t.
H∑

h=1

d̃h
nh

≤ φ

H∑
h=1

C̃hnh ≤ φ0

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

φ ∈ R, φ0 ∈ R

(2.11)

Here we have a bi-objective formulation of the sampling allocation problem. As
discussed in Section 2.3, we can easily convert it to a single objective problem by
calculating an upper bound on one of the objectives. Another issue with this problem
is that we have uncertain parameters both in the linear and in the nonlinear constraints.
Presence of uncertain parameters in the nonlinear constraints makes the above problem
difficult from the computational point of view.

In this chapter, we presented some basics of survey statistics. We discussed vari-
ous mathematical formulations of sampling allocation problems in stratified sampling.
However, new formulations of sampling allocation problems are needed because of un-
certainty existing in the parameters. Before discussing robust formulations of sampling
allocation problems, we discuss some basics of robust optimization in the next chapter.
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Chapter 3

Fundamentals of Robust
Optimization

3.1 Why Robust Optimization?

It has been discussed that we have some data uncertainty in sampling allocation prob-
lems. In the presence of uncertainty we do not get the desired optimality using uncertain
values of parameters, as the true values of the parameters might differ. In real world
situations, this may lead to serious problems. In order to show how badly uncertainty
can affect our solutions, we present a case study on a sampling allocation problem in
dairy industry.

The sample allocation problem is taken from (Khan et al., 1997) (Example 2 of
Section 4) and originally reported in Jessen (1942). The problem considers three char-
acteristics under study with stratum specific variances and costs of selecting a sample
unit in different strata given in Table 3.1.

h 1 2 3 4 5
Ch 3 4 5 6 7
Nh 39,552 38,347 43,969 36,942 41,760
S2
h1 4.6 3.4 3.3 2.8 3.7
S2
h2 11.7 9.8 7.0 6.5 9.8
S2
h3 332 357 246 173 278

Table 3.1: Data for the dairy problem

The notations are as defined in Section 2.2. From the data in Table 3.1 we have
K = 3 and H = 5 and we set β = 1082.

In this case study, we take into consideration proportional allocation, Cochran’s
allocation and Chatterjee’s allocation. We calculated the sampling allocation with R
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software using these techniques and we found

np = (197, 191, 219, 184, 208) (3.1)

using proportional allocation,

nC = (330, 244, 195, 123, 189) (3.2)

using Cochran’s allocation and

nCH = (330, 245, 195, 123, 189) (3.3)

using Chatterjee’s allocation. We can calculate the total variances of these three meth-
ods using the formula (2.2).

Since Cochran’s allocation and Chatterjee’s allocation are optimal allocation meth-
ods using a compromise function, they have smaller total variances than the total vari-
ance of the proportional allocation method. For this reason we use the total variance Vk
(k = 1, . . . , K) for proportional allocation as an upper bound on the total variance of
the estimator as discussed in Formula (2.8). We get the following optimization problem:

min
H∑

h=1

Chnh

s. t.
H∑

h=1

nh ≤ β

H∑
h=1

dhk
nh

≤ Vk ∀k = 1, . . . , K

(3.4)

Observe here that the stratum specific variances are hardly known with high accu-
racy, so it is natural to consider them as uncertain. We study the effect of uncertainty
only on the nonlinear constraints. The non uncertain constraint

∑H
h=1 nh ≤ β is fulfilled

by proportional, Cochran’s and Chatterjee’s allocation.
Let us assume that the uncertain values dhk are 10% approximations of the unknown

true values d̃hk and the true value d̃hk lies in the interval [dhk ± 0.1dhk]. For each of the
three characteristics, we have one nonlinear constraint.

We conduct the following experiment: For each h = 1, . . . , H and k = 1, . . . , K we
took 100 uniformly distributed random dhk within the interval [dhk±0.1dhk]. With each
set of parameters dhk, we tested whether the proportional, Cochran and Chatterjee’s
allocation from (3.1)-(3.3) fulfills the constraints

H∑
h=1

dhk
nh

≤ Vk ∀k = 1, . . . , K.
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We investigated the effect of this uncertainty and here is what we found:
• We found that for most of the random parameter sets dhk one or more of the

nonlinear constraints
∑H

h=1
dhk
nh
≤ Vk (k = 1, . . . , K) were violated. The worst violations

of the constraints (instead of
∑H

h=1
d̃hk
n∗h
− Vk ≤ 0) which we observed were:

Proportional allocation

for k = 1,
H∑

h=1

d̃h1

n∗h
− V1 ≥ 0.00035702

for k = 2,
H∑

h=1

d̃h2

n∗h
− V2 ≥ 0.00124568

for k = 3,
H∑

h=1

d̃h3

n∗h
− V3 ≥ 0.04095227

Cochran allocation

for k = 1,
H∑

h=1

d̃h1

n∗h
− V1 ≥ 0.0002639279

for k = 2,
H∑

h=1

d̃h2

n∗h
− V2 ≥ 0.0008612519

for k = 3,
H∑

h=1

d̃h3

n∗h
− V3 ≥ 0.02671216

Chatterjee allocation

for k = 1,
H∑

h=1

d̃h1

n∗h
− V1 ≥ 0.000261641

for k = 2,
H∑

h=1

d̃h2

n∗h
− V2 ≥ 0.0008546603
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for k = 3,
H∑

h=1

d̃h3

n∗h
− V3 ≥ 0.02647204

• Considering the above worst case scenario could be a very pessimistic approach.
So we consider a more realistic approach to know the violation intensity. We tested
feasibility of the allocations from (3.1)-(3.3) with all of the randomly generated dhk.
What we found is that in many cases these allocations are heavily infeasible. With this
experiment, Figure 3.1 is generated using R software. It explains the pattern of con-
straint violation. The green region in Figure 3.1 represents the feasibility with respect
to the nonlinear constraints and the values outside this green region show infeasibility.

Figure 3.1: Constraint feasibility with 100 random paremeters

• Figure 3.2 represents the density plots for the scaled total variances obtained in
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our experiment. For each V1, V2, V3 and each allocation from (3.1)-(3.3), Figure 3.2
shows how often the quantity

1

Vk

H∑
h=1

d̃hk
n∗h

takes a certain value. Clearly, an allocation is feasible if and only if this quantity is
less than or equal to 1. We can see that the first characteristic is least affected by the
uncertainty whereas for the third characteristic, the allocations are highly infeasible.

Figure 3.2: Density plot with uncertain parameters

• The same data can also be visualized as boxplots in Figure 3.3. We see that the
uncertainty existing in the parameters makes the allocation infeasible in most of the
cases.
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Figure 3.3: Boxplots of total variances for different allocations

Summarizing, we see that just 10% perturbation of the obviously uncertain stra-
tum specific variances can make an allocation heavily infeasible. Such allocations, if
uncertainty exists, are practically meaningless. We have seen in this section that it is
necessary to consider the uncertainty and that it is important to compute a solution
that is robust.

3.2 Principles of Robust Optimization

As we have seen in the previous section, uncertainty in the problem parameters is
a serious issue which can severely affect the solutions of the underlying optimization
problems. This was also observed by (Ben-Tal and Nemirovsky, 2000) who carried out
a case study on linear optimization problems from the Net-Lib library. We quote their
words about how important robustness is:

In real-world applications of Linear Programming, one cannot ignore the possibility
that a small uncertainty in the data can make the usual optimal solution completely
meaningless from a practical viewpoint.

We will now explain the principles of robust optimization and we will illustrate
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this by looking at linear optimization problems. Although our sampling allocation
problems lead to nonlinear optimization problems, it will be clear how to formulate
robust versions for these problems. This will be studied in Chapter 4. So consider a
linear optimization problem of the form:

min c>x

s.t. Ax ≤ b

x ≥ 0

(3.5)

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. This problem is parametrized by (c, A, b), all
of which can be affected by uncertainty. In this case, one considers an uncertainty set
U ⊆ Rn × Rm×n × Rm such that

(c, A, b) ∈ U.

Ignoring the uncertainty by simply taking any (c, A, b) ∈ U leads to the so called
nominal problem. However, we are interested in robust verisons of the problem. Before
we outline the possible approaches, note that it is no loss of generality to assume that
the objective function is not affected by the uncertainty. This is true because we can
always write (3.5) equivalently as

min t

s.t. Ax ≤ b

c>x ≤ t

x ≥ 0

t ∈ R

by introducing an additional variable t.
Likewise we can always assume that the right-hand side is not affected by uncer-

tainty. To see this, consider the LP

min c>x

s.t. a>i x ≤ bi ∀i = 1, 2, . . . ,m

x ≥ 0

where the right hand side is uncertain. We can write this LP in the equivalent form

min c>x

s.t. a>i x− bixn+1 ≤ 0 ∀i = 1, 2, . . . ,m

xn+1 = 1

x1, . . . , xn ≥ 0
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with the additional variable xn+1 ∈ R. Therefore, we can assume that neither the
objective function nor the right hand side of the constraints are affected by uncertainty.

(Soyster, 1973) was the first to formulate a robust counterpart of an uncertain linear
optimization problem. He proposed a linear optimization formulation of an uncertain
problem such that the solution of the new formulation is feasible for all uncertain param-
eters. (Soyster, 1973) considers column-wise uncertainty which means that the columns
Aj of the constraint matrix A belong to a convex set Kj. This is the most conservative
robust optimization approach because in order to ensure feasibility, the worst case was
considered. This results in loosing a lot of optimality of the nominal problem in terms
of the objective function value (see (Ben-Tal and Nemirovski, 2000)). (El Ghaoui and
Lebret, 1997) presented a less conservative robust model considering ellipsoidal uncer-
tainty which can be solved using second order cone programming. (Ben-Tal and Ne-
mirovski, 1999) also proposed a less conservative robust model considering ellipsoidal
uncertainty. Generally for a large scale uncertain optimization problem, robustness
becomes expensive in terms of computational complexity. The practical drawback of
these less conservative models are that the robust counterparts are nonlinear. (Ben-Tal
and Nemirovski, 1999) proved that many robust counterparts of linear programs with
ellipsoidal uncertainty are polynomially solvable inspite of the fact that some robust
counterparts are not linear programs.(Bertsimas and Sim, 2004) presented a controlled
conservative approach where the level of conservatism of the robust model can be con-
trolled or various robust solutions can be achieved on the basis of the preferred level
of conservatism. The highest level of conservatism leads to the robust formulation of
(Soyster, 1973). A detailed discussion is available in Section 3.3.

3.3 Robust Counterparts

We have already explained that we can always include the uncertain objective function
parameters and right hand side uncertain parameters in the constraint matrix. We also
consider that we have only interval uncertainty as discussed in Section 2.4. Let âij be
the maximum deviation from the nominal value aij. In the constraint matrix A, the
true value of each element aij is a symmetric and bounded random variable, represented
by ãij ∈ [aij − âij, aij + âij]. We define the random variable ηij ∈ [−1, 1] which follows
an unknown but symmetric distribution such that ηij = (ãij − aij)/âij.

3.3.1 Robust counterpart of Soyster

(Soyster, 1973) considered the following model:
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min c>x

s.t.
n∑

j=1

Ajxj ≤ b ∀Aj ∈ Kj, j = 1, 2, . . . , n

x ≥ 0

(3.6)

where c ∈ Rn, b ∈ Rm, and Aj ∈ Rm is considered to be the column j of the constraint
matix A. The uncertainty model considered by Soyster is column wise uncertainty for
the constraint matrix, i.e., Aj ∈ Kj for some convex sets Kj (j = 1, . . . , n).

Define a matrix Ā whose entries are āij = supAj∈Kj
(aij). (Soyster, 1973) showed

that (3.6) is equivalent to the following problem:

min c>x

s.t.
n∑

j=1

Ājxj ≤ b

x ≥ 0.

(3.7)

Soyster considered LPs with nonnegativity constaints. Here we study a more general
model and we consider the following nominal problem:

min c>x

s.t. Ax ≤ b

l ≤ x ≤ u

(3.8)

where c, l, u ∈ Rn, A ∈ Rm×n and b ∈ Rm. Note that in this case the lower bound l is
allowed to be strictly negative. Now we consider entrywise uncertainty which means
that

ãij ∈ [aij − âij, aij + âij] for all i = 1, . . . ,m and j = 1, . . . , n,

where ãij follows an unknown but symmetric distribution in [aij − âij, aij + âij] and
âij ≥ 0 is the maximal deviation from the nominal value aij. We use the random
variables ηij = (ãij − aij)/âij ∈ [−1, 1], such that

ãij = aij + ηij âij for all i = 1, . . . ,m and j = 1, . . . , n

Then the constraint
n∑

j=1

ãijxj ≤ bi for all ãij ∈ [aij − âij, aij + âij]

becomes
n∑

j=1

aijxj +
n∑

j=1

ηij âijxj ≤ bi.
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Since xj can be positive or negative, we have to introduce auxiliary variables yj ≥ 0
and we can rewrite this constraint equivalently as

n∑
j=1

aijxj +
n∑

j=1

âijyj ≤ bi ∀i = 1, 2, . . . ,m

− yj ≤ xj ≤ yj ∀j = 1, . . . , n

y ≥ 0

We can therefore formulate a roust version according to Soyster for problem (3.8)
as follows:

min c>x

s.t.
n∑

j=1

aijxj +
n∑

j=1

âijyj ≤ bi ∀i = 1, 2, . . . ,m

− yj ≤ xj ≤ yj ∀j = 1, . . . , n

l ≤ x ≤ u

y ≥ 0

(3.9)

Let (x∗, y∗) be an optimal solution of problem (3.9). Note that we can always assume
that y∗j = |x∗j | for all j: Clearly, the constraint in (3.9) entails |x∗j |≤ y∗j for all j. Assume
that |x∗k|< y∗k for some k. Then we can define

y∗∗j =

{
|x∗j | if j = k

y∗j else.

With this definition the point (x∗, y∗∗) is also an optimal solution of problem (3.9)
and it fulfills y∗∗j = |x∗j | for all j.

Now we can show that for every possible realization of ãij of the uncertain data, the
optimal solution x∗ is feasible for the original uncertain problem (3.6): indeed, we have

n∑
j=1

ãijx
∗
j =

n∑
j=1

aijx
∗
j +

n∑
j=1

ηij âijx
∗
j

≤
n∑

j=1

aijx
∗
j +

n∑
j=1

âij|x∗j |≤ bi for all i.

Note that if the lower bound l in problem (3.9) is 0 or strictly positive, then it is
not necessary to introduce the auxiliary variable yj. In this case problem (3.9) becomes
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min c>x

s.t.
n∑

j=1

(aij + âij)xj ≤ bi ∀i = 1, 2, . . . ,m

0 ≤ l ≤ x ≤ u

(3.10)

Soyster’s robust optimization problem (3.9) is equivalent to solving the nominal
problem for the worst case. As we have seen the robust solution according to Soyster is
feasible for the original uncertain problem for any realization of the uncertain parame-
ters within the uncertainty interval. This is why this approach is considered to be the
most conservative robust formulation. This robustnss comes with a cost: the optimal
objective function value is usually worse than the optimal value of the nominal problem.
It is also very pessimistic to consider that all of the parameters are uncertain in the
worst possible way. Therefore, we study some less conservative robust formulation in
the next section.

3.3.2 Robust counterpart of Ben-Tal and Nemirovski

Consider the following nominal problem:

min c>x

s.t. Ax ≤ b

l ≤ x ≤ u

(3.11)

where c, l, u ∈ Rn, b ∈ Rm, and A ∈ Rm×n. In order to address the conservatism of
Soyster’s model, (Ben-Tal and Nemirovski, 2000) consider a different setting. They
assume again that the uncertainty concerns the entries ãij which can take values in the
interval [aij − âij, aij + âij].

For i = 1, . . . ,m, let Ji ⊆ {1, . . . , n} be the set of indices of the parameters that
are considered uncertain in row i of the constraint matrix A, i.e., aij is an uncertain
parameter if and only if j ∈ Ji (and consequently aij is not considered uncertain if
j /∈ Ji). (Ben-Tal and Nemirovski, 2000) introduce a parameter Ωi > 0 (i = 1, . . . ,m)
for each uncertain constraint and consider the following robust optimization problem:

min c>x

s.t.
n∑

j=1

aijxj +
∑
j∈Ji

âijyij + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi ∀i = 1, 2, . . . ,m

− yij ≤ xj − zij ≤ yij ∀i, j ∈ Ji
l ≤ x ≤ u

y ≥ 0

(3.12)
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The authors show the following: if (x, y, z) is an optimal solution of (3.12), then x
is feasible for the nominal problem, and for any realization of the uncertain parameters
ãij, the probability that x violates constraint i is at most exp(−Ω2/2).

So in a sense, the parameter Ωi guides the probability that constraint i is violated.
Since this parameter is chosen by the user, he can decide the level of conservatism.

The drawback of the approach by (Ben-Tal and Nemirovski, 2000) is that (3.12) is
not a linear problem. It has a certain quadratic structure which is called second order
cone problem (SOCP). Although nonlinear, these problems can be solved efficiently
by interior point algorithms, see e.g. (Boyd and Vandenberghe, 2004), and efficient
software implementations are available for this.

However, in this thesis we will restrict ourselves to robust models which are linear.
In the next section, we describe a robust model introduced by (Bertsimas and Sim,
2004) which combines the benefits of being less conservative than Soyster’s aproach,
but still resulting in a linear optimization problem.

3.3.3 Robust counterpart of Bertsimas and Sim

In this section, we present the robust formulation of (Bertsimas and Sim, 2004) which
is less conservative than that of Soyster.

Consider again the nominal problem as follows:

min c>x

s.t. Ax ≤ b

l ≤ x ≤ u

(3.13)

Similar to the approach of (Ben-Tal and Nemirovski, 2000), the approach of Bertsi-
mas and Sim is based on the assumption that we know which of the problem parameters
are uncertain and which are not. For i = 1, . . . ,m, let Ji ⊆ {1, . . . , n} be the set of
indices of the parameters that are considered uncertain in row i of the constraint ma-
trix A, i.e., aij is an uncertain parameter if and only if j ∈ Ji (and consequently aij
is not considered uncertain if j /∈ Ji). Note that this setting includes both the case of
all parameters being uncertain (if Ji = {1, . . . , n} for all i) and the case of absence of
uncertainty (if Ji = ∅ for all i). We assume again that the uncertain parameters aij can
take values in [aij − âij, aij + âij].

Next, introduce parameters Γi ∈ [0, |Ji|] (for i = 1, . . . ,m) and assume for the
moment that Γi is integer (we will relax this assumption later). The philosophy behind
this is that it seems unlikely that all of the parameters aij (j ∈ Ji) will change, and Γi

reflects how many of them do. The robust formulation of (Bertsimas and Sim, 2004)
guarantees that the optimal solution is feasible if at most Γi out of the |Ji| uncertain
parameters are allowed to change, however we do not know which of them do change.
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We need to investigate how this model of uncertainty affects problem (3.13), and in
particular the constraint

n∑
j=1

ãijxj ≤ bi.

In Soyster’s approach we saw that if all uncertain parameters change we arrive at
the constraints

n∑
j=1

aijxj +
n∑

j=1

âijyj ≤ bi ∀i = 1, 2, . . . ,m

− yj ≤ xj ≤ yj ∀j = 1, . . . , n

y ≥ 0

If we now assume that only Γi ≤ |Ji| of the uncertain parameters change, then
clearly the maximal possible left hand side value is

n∑
j=1

aijxj + max
Si⊆Ji,|Si|=Γi

∑
j∈Si

âijyj. (3.14)

Therefore the robust version of the problem (3.13) according to (Bertsimas and Sim,
2004) is

min c>x

s.t.
n∑

j=1

aijxj + max
Si⊆Ji,|Si|=Γi

∑
j∈Si

âijyj ≤ bi ∀i = 1, . . . ,m

− yj ≤ xj ≤ yj ∀j ∈ 1, . . . , n

l ≤ x ≤ u

y ≥ 0

(3.15)

Note that if Γi = |Ji| for all i, then we recover Soyster’s model, while Γi = 0 for all
i is the case of no data uncertainty and we recover the nominal problem (3.13). In this
problem (3.15), it is inconvinient that there appear the terms

βi(y,Γi) := max
Si⊆Ji,|Si|=Γi

∑
j∈Si

âijyj ∀i = 1, . . . ,m.

Bertsimas and Sim showed that βi(y,Γi) can be replaced by a system of linear
expressions.
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Lemma 3.1. Let i ∈ {1, . . . ,m}, let y ∈ Rn and let Γi ∈ [0, |Ji|]. Then βi(y,Γi) equals
the optimal value of the following linear problem:

βi(y,Γi) = min
u,v

Γiui +
∑
j∈Ji

vij

s.t. ui + vij ≥ âijyj ∀j ∈ Ji
vij ≥ 0, ∀j ∈ Ji
ui ∈ R.

(3.16)

Proof. First consider the linear problem which is dual to (3.16)

max
z

∑
j∈Ji

âijyjzij

s.t.
∑
j∈Ji

zij = Γi

0 ≤ zij ≤ 1, ∀j ∈ Ji.

(3.17)

Note that since we consider y to be fixed, this is indeed an LP. Clearly, an optimal
solution z∗i of (3.17) is a binary vector with Γi of its components equal to 1 and |Ji|−Γi

components equal to 0. The nonzero components clearly fulfill z∗ij = 1 if and only if
j ∈ S∗i , where S∗i ⊆ Ji is a set of cardinality |S∗i |= Γi which maximizes

∑
j∈Si

âijyj.
In other words, the optimal value of (3.17) equals βi(y,Γi). Since problem (3.17) is
feasible and bounded, strong LP duality yields that the optimal values of (3.17) and
(3.16) are equal, which proves the lemma.

Substituting this result into model (3.15) gives the following equivalent but more
tractable formulation of the robust model (3.15) according to Bertsimas and Sim:

min c>x

s.t.
n∑

j=1

aijxj + Γiui +
∑
j∈Ji

vij ≤ bi ∀i = 1, . . . ,m

ui + vij ≥ âijyj ∀i = 1, . . . ,m ∀j ∈ Ji
− yj ≤ xj ≤ yj ∀j ∈ 1, . . . , n

l ≤ x ≤ u

y ≥ 0

vij ≥ 0 ∀i = 1, . . . ,m ∀j ∈ Ji
ui ∈ R ∀i = 1, . . . ,m

(3.18)

Note that this problem is a linear problem with 2n + m + mn variables, m +∑m
i=1|Ji|+4n constraints and n+

∑m
i=1|Ji| nonnegativity constraints.
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(Bertsimas and Sim, 2004) also considered the case when Γi ∈ [0, |Ji|] is non integer.
The interpretation is that this provides robustness against the case that bΓic of the
uncertain parameters change by their worst value âij , while one more parameter changes
by (Γi−bΓic)âij. In this setting it is easy to see that in analogy to (3.14) the maximum
possible left hand side value in constraint i is:

n∑
j=1

aijxj + max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Ji

âijyj + (Γi − bΓic)âitiyti

}
≤ bi (3.19)

Similar as in Lemma 3.1 Bertsimas and Sim showed that the maximum in (3.19)
can be computed by solving the following linear problem:

min
u,v

Γiui +
∑
j∈Ji

vij

s.t. ui + vij ≥ âijyj ∀j ∈ Ji
vij ≥ 0 ∀j ∈ Ji
ui ≥ 0 ∀i = 1, . . . ,m.

(3.20)

Therefore, the robust version of problem (3.13) in this setting reads as follows:

min c>x

s.t.
n∑

j=1

aijxj + Γiui +
∑
j∈Ji

vij ≤ bi ∀i = 1, . . . ,m

ui + vij ≥ âijyj ∀i = 1, . . . ,m ∀j ∈ Ji
− yj ≤ xj ≤ yj ∀j ∈ 1, . . . , n

l ≤ x ≤ u

y ≥ 0

vij ≥ 0 ∀i = 1, . . . ,m ∀j ∈ Ji
ui ∈ R ∀i = 1, . . . ,m

(3.21)

Again this is a linear problem and hence easy to solve.
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Chapter 4

Robust Allocation in Survey
Statistics

In the sample allocation problem, it is well known that some of the parameters are
uncertain in nature. (Dı́az-Garćıa and Garay-Tápia, 2007) solved the optimum alloca-
tion problem considering the stratum specific variances as random variables. However
a stochastic approach might not be suitable as we do not have much information about
the distribution of the uncertain parameters. So in this chapter, we propose a robust
allocation approach for solving the sample allocation problem.

We can always solve the sampling allocation problem by minimizing the total vari-
ance and transferring the cost function into the constraints when an upper bound on
the total budget is given. The problem can also be solved by minimizing the total
cost by transferring the variance function to the constraints when an upper bound on
the total variance is available, for details see (Dı́az-Garćıa and Garay-Tápia, 2007). If
we have a fixed total budget C then we can write the uncertain multivariate sampling
allocation problem from (2.10) as follows:

min φk ∀k = 1, . . . , K

s.t.
H∑

h=1

C̃hnh ≤ C

H∑
h=1

d̃hk
nh

≤ φk ∀k = 1, . . . , K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

φk ∈ R ∀k = 1, . . . , K

(4.1)
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In this section, we present robust formulations of this sampling allocation problem.
We follow the approaches of (Soyster, 1973) and (Bertsimas and Sim, 2004) which were
already discussed in Section 3.3.

4.1 Robust allocation according to Soyster

The approach of (Soyster, 1973) follows a worst case philosophy, so it is extremely
conservative and guarantees feasibility of the optimal allocation under any realization
of the uncertain parameters. Soyster mainly considered linear optimization problems,
but his approach can easily be extended to our nonlinear problem (4.1).

Using Soyster’s approach, we formulate a robust version of the uncertain multivari-
ate sampling allocation problem (4.1) as follows:

First we define for all k = 1, . . . , K and for all h = 1, . . . , H, the quantities:

d̄hk := max{d̃hk | d̃hk ∈ [dhk − d̂hk, dhk + d̂hk]} = dhk + d̂hk,

and for all h = 1, . . . , H, we define:

C̄h := max{C̃h | C̃h ∈ [Ch − Ĉh, Ch + Ĉh]} = Ch + Ĉh.

The robust formulation according to Soyster reads as follows:

min φk ∀k = 1, . . . , K

Subject to:

H∑
h=1

C̄hnh ≤ C

H∑
h=1

d̄hk
nh

≤ φk ∀k = 1, . . . , K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . , H

φk ∈ R ∀k = 1, . . . , K

(4.2)

The robust formulation of Soyster admits the highest protection and hence is the
most conservative in practice. The next statement shows that Soyster’s approach guar-
antees feasibility even in the worst case.
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Theorem 4.1. Let (n∗1, . . . , n
∗
H , φ

∗
1, . . . , φ

∗
K) be a feasible solution of the problem (4.2).

Then (n∗1, . . . , n
∗
H , φ

∗
1, . . . , φ

∗
K) is feasible for problem (4.1) under any realization of pa-

rameters

d̃hk ∈ [dhk − d̂hk, dhk + d̂hk] and C̃h ∈ [Ch − Ĉh, Ch + Ĉh].

In particular, any Pareto optimal solution of problem (4.2) is feasible for problem (4.1)
under any realization of the uncertain parameters.

Proof. We have to show that (n∗1, . . . , n
∗
H , φ

∗
1, . . . , φ

∗
K) is feasible for problem (4.2). Let

d̃hk ∈ [dhk − d̂hk, dhk + d̂hk] and C̃h ∈ [Ch − Ĉh, Ch + Ĉh]. Then we have

H∑
h=1

C̃hn
∗
h ≤

H∑
h=1

C̄hn
∗
h ≤ C.

So the cost constraint in problem (4.1) is fulfilled. Due to the definition of d̄hk and
n∗h ≥ 0, we have that

H∑
h=1

d̃hk
n∗h
≤

H∑
h=1

d̄hk
n∗h
≤ φ∗k ∀k = 1, . . . , K.

So the other nonlinear constraints of problem (4.1) are also fulfilled. The remaining
constraints

H∑
h=1

n∗h ≤ β

mh ≤ n∗h ≤Mh ∀h = 1, . . . , H

φ∗k ∈ R ∀k = 1, . . . , K

are trivialy fulfilled. Thus, the solution (n∗1, . . . , n
∗
H , φ

∗
1, . . . , φ

∗
K) is feasible for (4.1)

under any realization of uncertain parameters defined in the interval.

Soyster’s approach guarantees feasibility even in the worst case but in order to
ensure feasibility, it loses a lot of optimality in terms of the quality of the objective
function value. For this reason, we will not consider Soyster’s approach any further
in this thesis. Instead, we follow a less conservative aproach by (Bertsimas and Sim,
2004), who proposed a robust formulation which reduces the conservatism and gives a
probabilistic bound on the constraint violation.

39



4.2 Robust allocation according to Bertsimas and

Sim

In this section, we formulate robust models for the sampling allocation problem that
are less conservative than that of Soyster. We follow closely an approach outlined by
Bertsimas and Sim (2004), which we already introduced in Section 3.3.3.

4.2.1 Robust allocation if costs and variances both are uncer-
tain (RobCV)

Let us return to problem (4.1). First introduce the abbreviation H := {1, . . . , H}.
Following the philosophy outlined in Section 3.3.3, let J0 ⊆ H be the set of uncertain
cost parameters Ch in stratum h, and for k = 1, . . . , K, let Jk ⊆ H be the set of
uncertain variance parameters dhk of variable k in stratum h.

We also introduce parameters Γi ∈ [0, |Ji|] for i = 0, . . . , H. Note that we do not
assume that Γi are integers. Our goal is to be protected against all cases in which bΓ0c of
C̃h are allowed to change in the interval [Ch+Ĉh, Ch−Ĉh] and one coefficient changes by
(Γ0−bΓ0c)Ĉh. Similarly for each k = 1, . . . , K, we allow bΓkc of the parameters d̃hk to
change in the interval [dhk+ d̂hk, dhk− d̂hk] and one coefficient changes by (Γk−bΓkc)d̂hk.

Denoting the vector n := (n1, . . . , nH), we define

β0(n,Γ0) := max
{{i}∪S|S⊆H,S=bΓ0c,i∈H\S}

{∑
h∈S

Ĉhnh + (Γ0 − bΓ0c)Ĉini

}
(4.3)

and for all k = 1, . . . , K, we define

βk(n,Γk) := max
{{i}∪S|S⊆H,S=bΓkc,i∈H\S}

{∑
h∈S

d̂hk
nh

+ (Γk − bΓkc)
d̂ik
ni

}
. (4.4)

By the same arguments that we used in Section 3.3.3 to derive problem (3.21), we
obtain the following robust version of problem (4.1).
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min φk ∀k = 1, . . . , K

s.t.
H∑

h=1

Chnh + β0(n,Γ0) ≤ C

H∑
h=1

dhk
nh

+ βk(n,Γk) ≤ φk ∀k = 1, . . . , K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h ∈ H
φk ∈ R ∀k = 1, . . . , K

(4.5)

As we will see next, a Pareto optimal solution of problem (4.5) is feasible for the
problem (4.1) with a very high probability even if more than Γ0 of the cost parameters
and/or more than Γk of the variance parameters are uncertain.

Probability bound on Constraint Violation

By construction, a Pareto optimal solution of problem (4.5) is feasible for the un-
certain problem (4.1) if at most Γ0 of the cost parameters C̃h and/or at most Γk of
the variance parameters d̃hk are uncertain. Here, we prove that even if more param-
eters are uncertain, then the robust solution is feasible with a very high probability.
We prove the following theorem to support our statement. We use the abbreviation
φ∗ := (φ∗1, . . . , φ

∗
K).
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Theorem 4.2. Let (n∗, φ∗) be a Pareto optimal solution of model (4.5). For all k =
0, 1, . . . , K, let S∗k and i∗k be the set and index, respectively, that achieve the maximum
for βk(n∗,Γk). Then we have:

(a) The probability that the cost constraint is violated can be bounded as follows:

Pr

(∑
h∈H

C̃hn
∗
h > C

)
≤ Pr

(∑
h∈H

γhãh > Γ0

)
,

where for all h ∈ H, we define

ãh =
C̃h − Ch

Ch

, γh0 =

1, if h ∈ S∗0
Ĉhn

∗
h

Ĉe∗0
ne∗0

, if h ∈ H\S∗0

and

e∗0 = argmin{Ĉen
∗
e | e ∈ S∗0 ∪ {i∗0}}.

(b) The probability that the k-th nonlinear constraint is violated can be bounded as
follows

Pr

(∑
h∈H

d̃hk
n∗h

> φ∗k

)
≤ Pr

(∑
h∈H

γhkb̃h > Γk

)

where for all h ∈ H and for all k = 1, . . . , K, we define:

b̃hk =
d̃hk − dhk

dhk
, γhk =

1, if h ∈ S∗k
d̂hkne∗

k

d̂e∗
k
n∗h
, if h ∈ H\S∗k

and

e∗k = argmin

{
d̂rk
n∗e
| e ∈ S∗k ∪ {i∗k}

}
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Proof. (a) The probability that (n∗, φ∗) violates the cost constraint can be written as follows:

Pr

(∑
h∈H

C̃hn
∗
h > C

)

=Pr

∑
h∈H

Chn
∗
h +

∑
h∈J0

ãhĈhn
∗
h > C


≤Pr

∑
h∈H

Chn
∗
h +

∑
h∈J0

ãhĈhn
∗
h >

∑
h∈H

Chn
∗
h +

∑
h∈S∗0

Ĉhn
∗
h + (Γ0 − bΓ0c)Ĉi∗0

ni∗0


=Pr

∑
h∈J0

ãhĈhn
∗
h >

∑
h∈S∗0

Ĉhn
∗
h + (Γ0 − bΓ0c)Ĉi∗0

ni∗0


=Pr

 ∑
h∈J0\S∗0

ãhĈhn
∗
h >

∑
h∈S∗0

(1− ãh)Ĉhn
∗
h + (Γ0 − bΓ0c)Ĉi∗0

ni∗0


≤Pr

 ∑
h∈J0\S∗0

ãhĈhn
∗
h > Ĉe∗0

n∗e∗0

∑
h∈S∗0

(1− ãh) + (Γ0 − bΓ0c)


=Pr

 ∑
h∈J0\S∗0

ãh
Ĉhn

∗
h

Ĉe∗0
n∗e∗0

>

bΓ0c −
∑
h∈S∗0

ãh + Γ0 − bΓ0c


=Pr

∑
h∈S∗0

ãh +
∑

h∈J0\S∗0

ãh
Ĉhn

∗
h

Ĉe∗0
n∗e∗0

> Γ0


=Pr

∑
h∈S∗0

γh0ãh +
∑

h∈J0\S∗0

γh0ãh > Γ0


=Pr

∑
h∈J0

γh0ãh > Γ0


≤Pr

∑
h∈J0

γh0ãh ≥ Γ0



Thus,

Pr

(∑
h∈H

C̃hn
∗
h > C

)
≤ Pr

∑
h∈J0

γh0ãh ≥ Γ0


This proves part (a).

43



Similarly, part (b) can also be proved. For each k = 1, . . . ,K, we have;

Pr

(∑
h∈H

d̃hk
n∗h

> φ∗k

)

=Pr

∑
h∈H

dhk
n∗h

+
∑
h∈Jk

b̃hk
d̂hk
n∗h

> φ∗k


≤Pr

∑
h∈H

dhk
n∗h

+
∑
h∈Jk

b̃hk
d̂hk
n∗h

>
∑
h∈H

dhk
n∗h

+
∑
h∈S∗k

d̂hk
n∗h

+ (Γk − bΓkc)
d̂i∗kk

n∗ik


=Pr

∑
h∈Jk

b̃hk
d̂hk
n∗h

>
∑
h∈S∗k

d̂hk
n∗h

+ (Γk − bΓkc)
d̂i∗kk

n∗ik


=Pr

 ∑
h∈Jk\S∗k

b̃hk
d̂hk
n∗h

>
∑
h∈S∗k

(1− b̃hk)
d̂hk
n∗h

+ (Γk − bΓkc)
d̂i∗kk

n∗ik


≤Pr

 ∑
h∈Jk\S∗k

b̃hk
d̂hk
n∗h

>
d̂e∗k
n∗e∗k

∑
h∈S∗k

(1− b̃hk) + (Γk − bΓkc)


=Pr

 ∑
h∈Jk\S∗k

b̃hk
d̂hk/n

∗
h

d̂e∗kk/n
∗
e∗k

>

bΓkc −
∑
h∈S∗k

b̃hk + Γk − bΓkc


=Pr

∑
h∈S∗k

b̃hk +
∑

h∈Jk\S∗k

b̃hk
d̂hk/n

∗
h

d̂e∗kk/n
∗
e∗k

> Γk


=Pr

∑
h∈S∗k

γhk b̃hk +
∑

h∈Jk\S∗k

γhk b̃hk > Γk


=Pr

∑
h∈Jk

γhk b̃hk > Γk


≤Pr

∑
h∈Jk

γhk b̃hk ≥ Γk


Thus, we have that for each k = 1, . . . ,K

Pr

(∑
h∈H

d̃hk
n∗h

> φ∗k

)
≤ Pr

∑
h∈Jk

γhk b̃hk ≥ Γk

 .
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Theorem (4.2) provides upper bounds on the probability that (n∗, φ∗) violates the con-
straints. However, from the computational point of view these upper bounds are difficult to
compute. The upper bound depends on the robust solution (n∗, φ∗) so we have to solve the
problem first to know how good the solution is. However, it would be much better to have
an upper bound that is independent of the robust solution. Next we present upper bounds
on the probability bounds which are easier to compute and are independent of the robust
solution. This result closely follows Theorem 2 of (Bertsimas and Sim, 2004).

Theorem 4.3. (a) If for all h ∈ J0, the random variables ãh = C̃h−Ch
Ch

are independent and
symmetrically distributed in [−1, 1], then

Pr

∑
h∈J0

γh0ãh > Γ0

 ≤ exp

(
−Γ2

0

2|J0|

)
.

(b) If for all h ∈ Jk and for all k ∈ {1, . . . ,K}, the random variables b̃hk = d̃hk−dhk
dhk

are
independent and symmetrically distributed in [−1, 1], then

Pr

∑
h∈Jk

γhk b̃hk > Γk

 ≤ exp

(
−Γ2

k

2|Jk|

)
.

Proof. (a) For any t > 0, we have using Tschebyshev inequality

Pr

∑
h∈J0

γh0ãh ≥ Γ0

 ≤ exp(−tΓ0)E

exp

t∑
h∈J0

γh0ãh


= exp(−tΓ0)

∏
h∈J0

E (exp (tγh0ãh)) (4.6)

= exp(−tΓ0)
∏
h∈J0

2

∫ 1

0

∞∑
k=0

(tγh0ãh)2k

(2k)!
dFãh(ah) (4.7)

≤ exp(−tΓ0)
∏
h∈J0

∞∑
k=0

(tγh0)2k

(2k)!

≤ exp(−tΓ0)
∏
h∈J0

exp

(
t2γ2

h0

2

)

= exp(−tΓ0) exp

 t2
2

∑
h∈J0

γ2
h0


Transformations (4.6) and (4.7) come from the independence and symmetry of the distribution
of ãh ∈ [−1, 1].

Now choose t = Γ0/|J0|. Then we get
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Pr

∑
h∈J0

γh0ãh ≥ Γ0

 ≤ exp

(
− Γ2

0

|J0|

)
exp

(
Γ2

0

∑
h∈J0 γ

2
h0

2|J0|2

)

≤ exp

(
− Γ2

0

|J0|

)
exp

(
Γ2

0

2|J0|

)
= exp

(
Γ2

0

2|J0|
− Γ2

0

|J0|

)
= exp

(
−Γ2

0

2|J0|

)
This proves part (a). We can similarly prove part (b) also.

It is very difficult to solve the problem (4.5) in its current form. In order to reformulate
it and get rid of (4.3) and (4.4) in the constraints, we proceed as in Section 3.3.3

Lemma 4.4. Given a vector n∗, then β0(n∗,Γ0) has the same optimal value as

β0(n∗,Γ0) = min rΓ0 +
∑
h∈J0

qh

s.t. r + qh ≥ Ĉhn
∗
h ∀h ∈ J0

r ≥ 0

qh ≥ 0 ∀h ∈ J0

(4.8)

Proof. The dual of problem (4.8) can be written as follows:

max
∑
h∈J0

Ĉhn
∗
hzh

s.t.
∑
h∈J0

zh ≤ Γ0

0 ≤ zh ≤ 1 ∀h ∈ J0

(4.9)

Since problem (4.8) is feasible and bounded, its dual problem (4.9) is also feasible and
bounded and hence we have strong duality.

An optimal solution z∗ of (4.9) has the property that bΓ0c of its coordinates equal 1, one
of its coordinates equals (Γ0 − bΓ0c) and the rest of the coordinates equal zero. Define a set
S∗0 := {h ∈ J0|z∗h = 1}. Clearly S∗0 is a solution of the maximization problem (4.3) defining
β0(n∗,Γ0). This proves the lemma.

Lemma 4.5. Let k ∈ {1, . . . ,K} and n∗ be a given vector, then βk(n∗,Γk) has the same
optimal value as
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βk(n∗,Γk) = min lkΓk +
∑
h∈Jk

phk

s.t. lk + phk ≥
d̂hk
n∗h

∀h ∈ Jk

lk ≥ 0

phk ≥ 0 ∀h ∈ Jk

(4.10)

Proof. Note that the problem (4.10) is linear as we have a fixed n∗. Now, using the dual of
(4.10), we can prove this lemma similarly as Lemma 4.4.

Thus, substituting the values of β0(n∗,Γ0) and βk(n∗,Γk) from (4.8) and (4.10) respec-
tively, in problem (4.5), we get the following:

min φk ∀k

s.t.
H∑

h=1

Chnh + rΓ0 +
∑
h∈J0

qh ≤ C

r + qh ≥ Ĉhnh ∀h ∈ J0

H∑
h=1

dhk
nh

+ lkΓk +
∑
h∈Jk

phk ≤ φk ∀k = 1, . . . ,K

lk + phk ≥
d̂hk
nh

∀h ∈ Jk and ∀k = 1, . . . ,K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . ,H

φk ∈ R ∀k = 1, . . . ,K

r, q ≥ 0

lk, phk ≥ 0 ∀h ∈ Jk and ∀k = 1, . . . ,K

(4.11)

Hence, problem (4.11) is equivalent to problem (4.5). Note that we get the robust formu-
lation of a univariate sampling allocation problem by putting k = 1 in formulation (4.11).

4.2.2 Robust allocation if only costs are uncertain (RobC)

In this robust formulation of the sampling allocation problem (4.1), we consider uncertainty
only in the cost parameters. We refer to this robust model as RobC. The following robust
formulation is presented:
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min φk ∀k = 1, . . . ,K

s.t.
H∑

h=1

Chnh + β0(n,Γ0) ≤ C

H∑
h=1

dhk
nh
≤ φk ∀k = 1, . . . ,K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . ,H

φk ∈ R ∀k = 1, . . . ,K

(4.12)

where β0(n,Γ0) is defined in (4.3).

The results of Theorem 4.2, Theorem 4.3 and Lemma 4.4 also hold for problem (4.12). In
a similar way, we can get rid of β0(n,Γ0) in the constraints of (4.12). An equivalent version
of problem (4.12) can be written as follows:

min φk ∀k = 1, . . . ,K

s.t.
H∑

h=1

Chnh + rΓ0 +
∑
h∈J0

qh ≤ C

r + qh ≥ Ĉhnh ∀h ∈ J0

H∑
h=1

dhk
nh
≤ φk ∀k = 1, . . . ,K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, . . . ,H

r ≥ 0

qh ≥ 0 ∀h ∈ J0

(4.13)

where r and qh are the optimization variables introduced in the robustification process.

4.2.3 Robust allocation if only variances are uncertain (RobV)

In this section, we formulate the univariate sampling allocation problem (4.1) considering that
we have uncertain stratum specific variances but not uncertain costs. This robust formulation
is referred to as RobV and can be stated as follows:
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min φk ∀k = 1, . . . ,K

s.t.

H∑
h=1

Chnh ≤ C

H∑
h=1

dhk
nh

+ βk(n,Γk) ≤ φk ∀k = 1, . . . ,K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h ∈ H
φk ∈ R ∀k = 1, . . . ,K

(4.14)

where βk(n,Γk) is as defined in (4.4).
Here again, the results of Theorem 4.2, Theorem 4.3 and Lemma 4.4 hold for problem

(4.14). We can get rid of βk(n,Γk) in the constraints of (4.14) in a similar way. The problem
(4.14) can be written equivalently as follows:

min φk ∀k = 1, . . . ,K

s.t.

H∑
h=1

Chnh ≤ C

H∑
h=1

dhk
nh

+ lkΓk +
∑
h∈Jk

phk ≤ φk ∀k = 1, . . . ,K

lk + phk ≥
d̂hk
nh

∀h ∈ Jk and ∀k = 1, . . . ,K

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . ,H

φk ∈ R ∀k = 1, . . . ,K

lk, phk ≥ 0 ∀h ∈ Jk and ∀k = 1, . . . ,K

(4.15)

Here lk and phk are the optimization variables introduced during robustification process.
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Chapter 5

Analysis with Simulated Data

In this chapter we generate some large scale simulated data of survey statistical problems.
Simulation can enable us to work with diversely distributed variables of a population. Some-
times it is difficult to gather exact information about the population such as the distribution
of variables in subgroups of the population. In this simulation study we generate such data
using R software. We generate a population of fixed size with variables having different
distributions within the total population and also within the subgroups of the population.
We use this simulated data to calculate robust allocations from our robust formulations. As
we have already discussed in Chapter 4, Bertsimas and Sim’s approach is less conservative
than Soyster’s apporach. We formulate three different robust formulations of the sampling
allocation problem (SAP) using Bertsimas and Sim’s approach and compare the results. We
perform various experiments on the robust allocations obtained for the simulated data. These
experiments are helpful in explaining the benefits of using robust formulations. In these ex-
periments we check if the uncertain parameters of the optimization problems can make the
robust solutions infeasible.

5.1 Simulated Data Generation

We consider both the univariate and the multivariate case of stratified sampling. The nominal
problem of the multivariate SAP can be written as follows:

min

H∑
h=1

dhk
nh

∀k = 1, . . . ,K

s.t.

H∑
h=1

Chnh ≤ C

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, . . . ,H

(5.1)
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As before, Nh denotes the size of stratum h and N =
∑H

h=1Nh denotes the population size.
We abbreviate dhk := N2

hS
2
hk/N

2. Here, S2
hk is the variance of variable k in stratum h. The

optimization variable defining the sample size in stratum h is denoted by nh and Ch is the
unit cost of selecting a sample in stratum h. The upper bound on the total sample size is
denoted by β and C is the upper bound on the total cost. In addition we have lower bounds
mh and upper bounds Mh on the optimization variables nh.

If we consider only one variable of the population then the problem (5.1) can be reduced
to the following:

min
H∑

h=1

dh
nh

s. t.

H∑
h=1

nh ≤ β

H∑
h=1

chnh ≤ C

mh ≤ nh ≤Mh ∀h = 1, 2, ...,H

(5.2)

In this simulation study, we generate a population of size N = 10, 000 with H = 5 strata
of sizes N1 = 1000, N2 = 2000, N3 = 1000, N4 = 2000 and N5 = 4000. The unit cost of
selecting a sample in each stratum is taken (C1, . . . , C5) = (31, 32, 33, 34, 35) and the deviation
of the cost in case of uncertainty is taken to be Ĉh = 30 for all h = 1, 2 . . . , 5. The upper
bound on the total cost is considered to be C = 2000. We allow a maximal sample size of
1% of the total population, i.e. β = 0.01

∑H
h=1Nh = 100. We take mh = 2 and Mh = Nh (to

avoid over allocation) as lower and upper bounds on the optimization variable nh. The data
can be summarized in following table:

Table 5.1: Assumed data for the sample allocation

Nh Cost (Ch) Ĉh

Stratum 1 1000 31 30
Stratum 2 2000 32 30
Stratum 3 1000 33 30
Stratum 4 2000 34 30
Stratum 5 4000 35 30

We generate this population using simulation for three different characteristics. In stratum
1 and 2 the variables are Normally distributed and generated using R software as follows:

Sigma.h1 <- matrix(c(1 ,.9 ,-.2 ,.9,1,0 ,-.2,0,1),3,3)

is.positive.definite(Sigma.h1)

Sigma.h2 <- matrix(c(1 ,-.9 ,+.2 ,-.9,1,0 ,+.2,0,1),3,3)

is.positive.definite(Sigma.h2)
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Pop.h1 <- rmvnorm(Nh[1],mean=rep(10,3),sigma = Sigma.h1)

Pop.h2 <- rmvnorm(Nh[2],mean=rep(10,3),sigma = Sigma.h2)

Sigma.h1 and Sigma.h2 are the 3 × 3 covariance matrices of the Normal distributions.
The mean of the Normal distribution is considered to be (10, 10, 10).

In stratum 3 and 4 the variables are χ2 distributed and generated as follows:

Pop.h3 <- rmvnorm(Nh[3],mean=rep(10,3),sigma = Sigma.h1)^2

Pop.h4 <- rmvnorm(Nh[4],mean=rep(10,3),sigma = Sigma.h2)^2

For a more diverse population we consider that in stratum 5, two variables are Normally
distributed and one is χ2 distributed.

Pop.h5 <- rmvnorm(Nh[5],mean=rep(10,3),sigma = Sigma.h1)

Pop.h5[,3] <- Pop.h5[,3]^2

cor(Pop.h5)

POP <- rbind(cbind(Pop.h1,1),cbind(Pop.h2,2),cbind(Pop.h3,3),

cbind(Pop.h4,4),cbind(Pop.h5,5))

As discussed in the previous chapter we can always solve the multivariate sampling allo-
cation problem as single objective optimization problem by minimizing the cost function and
transferring the variance functions into the constraints. In next sections, many experiments
are carried out to investigate the stability and robustness of the allocations. Note that we
aim here to present the robust allocations and to test how the robust allocations behave in
different situations. We start by computing robust allocations considering the first variable
generated in the simulation which is also defined in Table 5.2. The deviation d̂h in the stratum
specific variance has been taken to be 10% of dh.

Table 5.2: Simulated data for the sample allocation

S2
h1 dh1 d̂h1 Distribution

Stratum 1 0.9761 0.0098 0.0010 Normal
Stratum 2 1.3414 0.0537 0.0054 Normal
Stratum 3 286.7397 2.8674 0.2867 χ2

Stratum 4 494.4716 19.7789 1.9779 χ2

Stratum 5 0.8799 0.1408 0.0141 Normal

5.2 Robust Formulations of SAP

5.2.1 Robust Formulation with Uncertain Costs (RobC)

In this setting the robust formulation of the univariate sampling allocation problem with
uncertain cost parameters is formulated. We consider the situation where only the cost vector
is affected by uncertainty. We refer to the robustification of this problem as RobC.
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min

H∑
h=1

dh
nh

subject to:

H∑
h=1

Chnh + rΓ0 +
H∑

h=1

qh ≤ C

r + qh ≥ Ĉhnh ∀h = 1, 2, . . . ,H

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, . . . ,H

r ≥ 0

qh ≥ 0 ∀h = 1 . . . , H

(5.3)

where r and qh are the optimization variables introduced in the robustification process. We
solve this problem for different values of Γ0 using the R package nloptr. The results are given
in Table 5.3.

Table 5.3: Results of RobC for different values of Γ0.

Gammas Γ0 = 0 Γ0 = 1 Γ0 = 2 Γ0 = 3 Γ0 = 4 Γ0 = 5

Total Variance (
∑H

h=1
dh

nh
) 0.99187 1.24533 1.43268 1.47989 1.52927 1.58702

Total Cost (
∑H

h=1 Chnh) 1646.719 1315.226 1155.962 1118.947 1087.109 1053.719
n1 2 2 2 2 2 2
n2 2 2 2 2 2 2
n3 14.25 9.84 7.80 7.57 7.50 7.38
n4 27.73 22.82 20.32 19.78 18.92 18.04
n5 3.06 2.52 2.31 2.00 2.00 2.04∑5

h=1 nh 49.05 39.19 34.45 33.36 32.42 31.44

Here we have monotonically increasing total variance with increasing level of uncertainty.
This increment in the variance can be considered as the cost of robustness. The more robust we
want to be the more optimality we loose. However, the total cost is decreasing as we increase
the level of uncertainty. The reason is that the optimal solution of the robust formulation
gives smaller stratum specific sample sizes due to the fact that uncertainty reduces the sample
sizes in the strata with high uncertainty which results in reduced total costs. If we see the cost
constraint in (5.3), we have an upper bound on it of C = 2000. This gap between the total
cost and the total budget is for the protection of the cost constraint in case of uncertainty.
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5.2.2 Robust Formulation with Uncertain Variance (RobV)

Next, we formulate the univariate sampling allocation problem considering that we have
uncertain stratum specific variances but no uncertainty in the cost. This robust formulation
is referred to as RobV and can be stated as follows:

min

H∑
h=1

dh
nh

+ lΓ1 +

H∑
h=1

ph

subject to:

H∑
h=1

Chnh ≤ C

l + ph ≥
d̂h
nh

∀h = 1, 2, . . . ,H

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, . . . ,H

l ≥ 0

ph ≥ 0 ∀h = 1, 2, . . . ,H

(5.4)

Here l and ph are the optimization variables introduced during robustification process. We
solve this problem using the R package nloptr and the results obtained are as follows:

Table 5.4: Results for RobV with different values of Γ1.

Gammas Γ1 = 0 Γ1 = 1 Γ1 = 2 Γ1 = 3 Γ1 = 4 Γ1 = 5

Total Variance 0.7973683 0.8493959 0.8693515 0.8739389 0.8766170 0.8771051
Total Cost 2000 2000 2000 2000 2000 2000
n1 2 2 2 2 2 2
n2 2.02 2.00 2.00 2.00 2.00 2.02
n3 14.57 14.11 14.62 14.58 14.57 14.57
n4 37.71 38.29 37.83 37.73 37.71 37.71
n5 3.13 3.03 2.99 3.14 3.13 3.13∑5

h=1 nh 59.45 59.44 59.46 59.45 59.45 59.45

The total variance of the estimator is increasing as we increase the level of uncertainty
in the variance. The total variance in RobV is smaller than the total variance in RobC. The
reason is that in RobC we have uncertain costs but the total budget is fixed and the total cost
can not exceed the total budget and hence the optimal solution of RobC has smaller sample
sizes, whereas in RobV we have bigger sample sizes than in RobC and this results in a bigger
total variance in RobV. However we can conclude from the results of RobV that if we increase
the total budget C in RobC then in the optimal solution of RobC the sample sizes will increase
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and consequently the total variance would be reduced. We can also notice in Table 5.4 that
the total cost seems to be not affected by the change of Γ1. The cost depends directly on the
sample sizes for each stratum whereas the total variance also depends on the stratum specific
variances. The sum of the allocated sample sizes is constant for all uncertainty levels however
the sample sizes for each stratum change which is why the total variance is changing. When
dealing with the uncertain stratum specific variances we prefer a solution that concentrates
more on reducing the total variance while keeping the total budget. The results show that
the formulation RobV fufills this aim.

5.2.3 Robust Formulation with Uncertain Cost and Variance
(RobCV)

In real life survey statistical problems we might face a situation when there is uncertainty
in both the variance and the cost. The solutions of RobC and RobV are not enough for
this kind of situation. So we assume that C̃h and d̃h are allowed to change in the intervals
[Ch + Ĉh, Ch − Ĉh] and [dh + d̂h, dh − d̂h] respectively. In this setting the robust formulation
of the univariate sampling allocation problem with uncertain stratum specific variances and
uncertain costs is referred to as RobCV and can be formulated as follows:

min
H∑

h=1

dh
nh

+ lΓ1 +
H∑

h=1

ph

subject to:

H∑
h=1

Chnh + rΓ0 +
H∑

h=1

qh ≤ C

r + qh ≥ Ĉhnh ∀h = 1, 2, . . . ,H

l + ph ≥
d̂h
nh

∀h = 1, 2, . . . ,H

H∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, . . . ,H

l, r ≥ 0

ph, qh ≥ 0 ∀h = 1, . . . ,H

(5.5)

Here, Γ0 represents the number of uncertain cost parameters and Γ1 represents the number
of uncertain stratum specific variance parameters. It has already been established that in
Bertsimas and Sim’s aproach of robust formulation, if both Γ0 = 0 and Γ1 = 0 then we get
back to the original nominal problem (3.4). Therefore, problem (5.3) and problem (5.4) are
special cases of problem (5.5) when Γ1 or Γ0 are 0, respectively. However in practice this
might not be completely true. If we have Γ0 = 0 in problem (5.5) then our input is that there
is no uncertainty in the costs. However we still have some other optimization variables such
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as r, q in problem (5.5) that were added during the robustification process. These variables
might affect the total cost in the robust solution for the case when we have Γ0 = 0 or Γ1 = 0.
Hence the robust formulations RobC and RobV give more accurate robust solutions for the
cases where Γ0 = 0 or Γ1 = 0.

We solve the problem (5.5) with the R package nloptr. The following Table 5.5 shows the
total variances as we increase the number of uncertain parameters.

Table 5.5: Total variances for RobCV with different values of Γ0 and Γ1.

Gammas Γ0 = 0 Γ0 = 1 Γ0 = 2 Γ0 = 3 Γ0 = 4 Γ0 = 5
Γ1 = 0 0.7974 1.2370 1.4327 1.4799 1.5290 1.5817
Γ1 = 1 0.8494 1.3267 1.5293 1.5792 1.6319 1.6884
Γ1 = 2 0.8694 1.3518 1.5666 1.6177 1.6717 1.7297
Γ1 = 3 0.8739 1.3575 1.5728 1.6247 1.6787 1.7367
Γ1 = 4 0.8766 1.3602 1.5755 1.6274 1.6814 1.7394
Γ1 = 5 0.8771 1.3607 1.5760 1.6279 1.6819 1.7399

The following Table 5.6 shows various total costs generated as we increase the number of
uncertain parameters.

Table 5.6: Total costs for different values of Γ0 and Γ1.

Gammas Γ0 = 0 Γ0 = 1 Γ0 = 2 Γ0 = 3 Γ0 = 4 Γ0 = 5
Γ1 = 0 2000.00 1342.39 1155.96 1118.94 1087.19 1055.44
Γ1 = 1 2000.00 1334.60 1154.83 1119.06 1087.31 1055.55
Γ1 = 2 2000.00 1340.96 1154.26 1118.94 1087.19 1055.44
Γ1 = 3 2000.00 1342.39 1155.96 1118.94 1087.19 1055.44
Γ1 = 4 2000.00 1342.39 1155.96 1118.94 1087.19 1055.44
Γ1 = 5 2000.00 1342.39 1155.96 1118.94 1087.19 1055.44

In Theorem 4.2 and Theorem 4.3, we have developed an upper bound on the probabil-
ity that a constraint is violated. Figure 5.1 illustrates this upper bound for both the cost
constraint and the variance constraint.

We find that when we increase Γ0 or Γ1 the upper bound on the probability is decreasing
exponentially. This gives the decision maker some flexibility to choose how conservative they
would like to be. It makes sense to assume that not all of the parameters are uncertain.
Decreasing the uncertainty level is completely practical and efficient especially when we have
a strong probability that the robust solutions will be feasible even if our assumptions are
wrong.
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Figure 5.1: Upper bound on probabilities of the constraint violation in RobCV with
increasing Γ0 and Γ

5.3 Experiments

5.3.1 Stability Analysis

Robustness always comes with a cost, it decreases the quality of optimality i.e. we can achieve
a better optimal value without robustness. We do some experiments to see how the robustness
affects the allocation in our SAP. We want to find out the stability of robust solutions against
varying stratum specific variances and we would like to see how sample sizes, total cost and
total variance are affected by increasing levels of uncertainty. In this experiment, we generated
100 sets of stratum specific variances using simulation on the same population. For these 100
cases, we always considered the same cost. We calculated both the nominal (non-robust) and
robust allocations with RobC, RobV and RobCV for each set of stratum specific variances.

For each of the 100 simulation runs, we compare the robust allocations from RobCV
for different values of Γ0 and Γ1 with the nominal allocations using boxplots. The re-
sults are shown in the following figures. In the figures displaying the robust allocations
we see on the x-axis the 36 combinations of Γ0,Γ1 ∈ {0, . . . , 5} in the following order:
(0, 0), (0, 1), . . . , (0, 5), (1, 0), . . . , (5, 5).
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Figure 5.2: Allocations in stratum 1
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Figure 5.3: Allocations in stratum 2
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A very low variance within stratum 1 leads to n1 = 2 = m1 in stratum 1 in all cases.
There is not much difference in nominal allocations and robust allocations in stratum 1 as
shown in Figure 5.2a and Figure 5.2b. In Figure 5.3a, robust allocations in stratum 2 become
more stable as the level of uncertainty is increasing. However with low level of uncertainty,
the robust allocations are similar to the nominal allocation. The sample sizes in RobCV
decrease when the uncertainty is increasing. This can be understood by the increasing level
of uncertainty in the costs. A bigger sample size in a stratum might be very expensive when
the cost is uncertain and that might result in an extremely high total cost. The same pattern
can be observed in the allocations in stratum 3, stratum 4 and stratum 5. As the uncertainty
level is increasing the robust solutions are more stable, i.e. the range of the optimal sample
sizes is smaller.
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Figure 5.4: Allocations in stratum 3

1 3 5 7 9 12 15 18 21 24 27 30 33 36

10

20

30

40

Allocations in stratum 4

Combination of Gamma0 and Gamma1

S
am

pl
e 

si
ze

s

(a) RobCV allocations

10

20

30

40

Allocations in stratum 4

S
am

pl
e 

si
ze

s

(b) Nominal allocations

Figure 5.5: Allocations in stratum 4
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Figure 5.6: Allocations in stratum 5

In this experiment we also study how the total cost and the total variance of RobC, RobV
and RobCV behave as compared to the nominal allocations.
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Figure 5.7: Boxplots of total variance with increasing Γ0 and Γ1
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We see in Figure 5.7 that robust allocation has better variance as compared to the nominal
allocation when the uncertainty level is lower. As the level of uncertainty is increasing the
total variance is also increasing. In order to ensure feasibility we loose some optimality and
that results in an increased total variance.
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Figure 5.8: Representation of costs with increasing Γ0 and Γ1

We can see in Fig 5.8 that the costs in RobV are not affected by the uncertainty level
because we have uncertainty only in the variance. The costs in RobC and RobCV are mono-
tonically decreasing with increasing level of uncertainty. This is because the robust models
reduce the sample sizes when the cost is uncertain in order to avoid higher total cost.

Summarizing, we see from these expirements that in the nominal case the total variance
is less than the total variances in RobC, RobV and RobCV. However, the robust allocations
still have an advantage over the nominal allocation: in case there are some changes in the
stratum specific variances the robust allocation is still feasible whereas the nominal allocation
might violate some constraints. In order to illustrate this we do one more experiment:

5.3.2 Feasibility Analysis

We have already seen that the allocations obtained from RobC, RobV and RobCV are more
stable as compared to the nominal allocation. Now we want to see the effect of uncertainty
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on the nominal allocation and the robust allocations. We check whether the optimal solutions
of RobC, RobV and RobCV satisfy the cost constraint by taking 100 random values between
Ch and Ch + Ĉh as defined in Table 5.1. The density graph of various costs obtained by using
100 random parameters in the defined interval is as follows:
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Figure 5.9: Density plots of costs

Recall that the upper bound on the cost constraint was C = 2000 which, in general, is
the given fixed total budget. It is clear from Fig 5.9a and Fig 5.9b that RobC and RobCV
have no infeasibility whereas the nominal allocation is highly infeasible when uncertainty is
considered. The infeasibility is clearer if we look at the following boxplots of nominal, RobC
and RobCV allocations.

 Total Cost / Upper bound on Cost

Nominal

RobC

RobCV

0.6 0.8 1.0 1.2 1.4

Variable

Figure 5.10: Boxplots of costs for the nominal, RobC and RobCV solutions

In Figure 5.10 we divide the total costs obtained from the random parameters by the
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upper bound on the cost. Hence all values bigger than 1 represent infeasible cases and values
smaller than 1 represent the feasible cases. Also, in these comparisons we considered the
value of Γ0 = 5 in RobC and RobCV which is why we do not have any infeasible cases. If we
decrease the value of Γ0, we might get some infeasible cases as illustrated in Figure 5.11.
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Figure 5.11: Density plots of costs in all cases of RobC and RobCV for different values
of Γ0

We can see in Fig 5.11a and Fig 5.11b that as the value Γ0 for the cost is increasing we have
more feasible solutions. We know that the cases Γ0 = 0 and Γ0 = 5 repersent the two extreme
situations where no uncertainty is present or all parameters are uncertain, respectively. We
can see that at Γ0 = 3 we have feasibility in most of the cases as we found in the probability
given in Fig 5.1. It also shows that we can be less conservative on the basis of probability
calculations. It can help in improving optimality without having to fear a high amount of
infeasibility.
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Chapter 6

Robust Allocation in the AMELIA
Dataset

In this chapter, we work with the dataset AMELIA, see (Burgard et al., 2017). This is a
synthetically generated dataset with approximately 3.7 million observations of 27 variables
on household level and approximately 10 million observations of 33 variables on personal
level. The AMELIA dataset is an artificially generated data set where the variables follow
conditional distributions. Generally access to some household level and personal level data
is restricted for real data and that makes the research and exploration of the data very
complex. In this data set a synthetic population, generated using simulation is available
and can be used for sampling allocation. Both the population and samples drawn using
various techniques are provided at the AMELIA platform and can be accessed using the url
http://www.amelia.uni-trier.de/. The generation process of the AMELIA with detailed
description can be found in (Alfons et al., 2011). The data generation approach for the
AMELIA dataset is explained in (Münnich and Schürle, 2003). The AMELIA dataset and its
samples are provided in the form of csv and RData files.

The AMELIA is a synthetically generated dataset that can be used for sampling allocation
problem. Using synthetic data generation, we can produce the required dataset with some
specific information which in real life datasets is not available or sometimes it is anonymized.
The synthetic data is generated from real data by anonymization, merging and taking subsets
of the real data, see (Machanavajjhala et al., 2008). Synthetic data is generated by filtering
the confidential informations that is not allowed to use for research purposes by individuals,
such as the geographical location, contact number and IP address etc.

In the sampling allocation problem, cost is often considered as an uncertain parameter,
see (Dı́az-Garćıa and Garay-Tápia, 2007). If we do not have enough information about cost
then uncertainty existing in the cost can make a survey very expensive. Information about
cost can be obtained using the population distribution structure for various variables. In the
sampling allocation problems the geographical location plays a very important role in the
optimization process. The total cost of conducting a survey directly depends on the cost
of interviewing individual units of the population. The cost of interviewing varies with the
geographical location of persons. For example, it is less expensive to interview a person living
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in a big city as compared to interviewing someone at a remote location due to the better
transport connections and lesser distance from one interview location to another.

It is interesting to see how household income and other characteristics are distributed in
the region under study, it could also be helpful in the stratification process. The geocoded
data of household incomes of the US population for the years 2006–2010 is available at the
website of the University of Michigan, (Population studies centre, 2010). This data includes
zip codes with mean and median households sizes in the US. (Amunategui, 2014) has allocated
this data on a Google map of the US in order to show how household incomes are distributed.
The geocoded census data for the German microcensus is so far not available due to political
and data security issues. However, a similar study could be conducted about Germany also
if geocoded data were available.

6.1 Description of the AMELIA Dataset

The AMELIA dataset has a very large population size and we consider the household level
data for our sampling allocation problem. In this dataset, the household size varies from 1 to
16 people. This dataset provides 33 household level variables however, we focus on the income
variables and investigate their structure and distribution among different regional levels. On
the basis of the structure and the distribution of the variables among regions, we select one
of the variables and solve the sampling allocation optimization problems by considering both
certainty and uncertainty in the parameters.

This dataset also provides household structure in different degrees of urbanisation. The
structure and distribution of variables among the population is in well defined form. The
AMELIA dataset provides 4 levels of population distribution: regions, provinces, districts
and cities. The population is distributed among 4 regions, 11 provinces, 40 districts and 1592
cities. This information on the regional distribution of the population can be helpful in the
stratification process. We draw some insights of this structure as follows:

Figure 6.1: Distribution of variables for different degree of urbanisation

We start with looking into the effect of urbanisation on two income variables (total gross
income and personal income) and one tax variable (tax on income and social insurance con-
tribution). In the AMELIA dataset the degree of urbanisation is provided in 3 levels. We
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show boxplots of the variables for different degrees of urbanisation in Figure 6.1. We can
see that the income and tax variables are homogeneously distributed for different degrees of
urbanisation.

In the AMELIA dataset the total population is divided in 11 provinces. It is also interest-
ing to see how the variables are distributed in the different provinces. We generated boxplots
for the income and tax variables in each province. We can see in Figure 6.2 that province 1
does not have as many outliers as the other provinces. Provinces 4 and 8 have the highest
number of outliers for total gross income and personal income whereas provinces 2 and 6 have
the highest number of outliers for the tax variable.

Figure 6.2: Distribution of variables in different provinces

It is also interesting to see how the whole population is distributed in various provinces.
We show it using a density plot given in Figure 6.3.

Figure 6.3: Barplot of population distribution in each province

We can see here that province 1 and province 6 have the least population and province 3
has the highest population. We can stratify our population on the basis of provinces. Thus

67



the cost of interviewing a person can be defined on the basis of the population of the province:
the provinces with higher population will have lower cost of interviewing and the provinces
with lower population have higher cost of interviewing. The reason behind such costs is
that in the regions where population is higher, transportation is usually easily available and
the distances in between two interview locations is usually smaller. However, regions with
smaller population are generally remote locations with less transportation facilities and bigger
distances between two interview locations. This is the reason why we assume the costs in the
mentioned way when we do not know exact costs.

In stratified sampling, for such a large population, stratification is a very important step.
Stratification can make the survey very complicated and expensive if the strata are not de-
fined considering administrative efficiency. For example if a stratum includes population from
different provinces and different cities, it will be a very complex situation from the administra-
tive point of view. Complexity can be avoided by doing stratification using regional structure
that is already available in the AMELIA dataset. So in order to avoid complexities we assume
the provinces as the strata in our study.

6.2 Sampling Allocation with the Provinces as Strata

In this section, we consider the personal income as our variable of the interest for the sampling
allocation problem. The problem is to select samples in each province such that we can
minimize the total variance of the variable. We assume that the cost of interviewing a person
living in the highest populated province is lowest, and in the least populated province the
cost is highest. We also consider uncertainty in the data and assume that 10% of the stratum
specific variances are subject to uncertainty and 20% of the cost parameters are subject to
uncertainty.

Table 6.1: Data for the variable personal income in the AMELIA Dataset

h Nh S2
h dh =

N2
hS

2
h

N2 d̂h Ch Ĉh

1 74429 1182924552.29 458312.47 45831.25 150 30
2 298381 1225672233.33 7631974.93 763197.49 110 22
3 621864 1206393366.65 32628719.47 3262871.95 50 10
4 577935 1441844867.51 33681915.80 3368191.58 60 12
5 471154 1424703280.49 22119252.52 2211925.25 70 14
6 127344 1949091889.49 2210596.85 221059.68 140 28
7 366365 1898144764.94 17818762.68 1781876.27 90 18
8 327763 1918627099.08 14415532.31 1441553.23 100 20
9 249249 1433520514.58 6228608.28 622860.83 120 24
10 424330 1437897700.64 18107384.40 1810738.44 80 16
11 242475 1423128816.40 5851920.35 585192.03 130 26

The notations in Table 6.1 are as defined in the previous chapters. Recall that Nh denotes
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the population size in stratum (or province) h given in the AMELIA dataset. The stratum
specific variance S2

h of the variable personal income is calculated from the AMELIA dataset.

We calculate N =
∑11

h=1Nh which is the total population size and dh =
N2

hS
2
h

N2 . The deviation

d̂h from dh in case of uncertainty is calculated as d̂h = 0.1dh. The cost of interviewing
one person in province h is defined to be Ch as given in Table 6.1. As mentioned earlier,
we assume higher cost for strata with a smaller population and lower cost for strata with
bigger population. The cost deviation Ĉh from Ch in the case of uncertainty is calculated as
Ĉh = 0.2Ch.

We used the above data to solve the nominal sampling allocation problem where we
minimize the variance function and we have the cost function in the set of constraints along
with other constraints of the sampling allocation problem as discussed in the Section 2.3. We
also solve three different cases of robust allocation problems as discussed in Section 4.2.

(i) Robust allocation when cost in uncertain (RobC)

(ii) Robust allocation when variance is uncertain (RobV)

(iii) Robust allocation when both variance and cost are uncertain (RobCV)

First of all, the upper bounds on the probability of violation of the cost constraint, as
we derived in Theorem 4.3, have been calculated and are represented in Figure 6.4. We can
calculate the upper buonds on the probabaility of violation before solving the optimization
problems in RobC and RobCV. We can see that at Γ0 = 7 till Γ0 = 10 the proability upper
bound on the constraint violation is very small.

Figure 6.4: Probability bound on the constraint violation with increasing Γ0

All the problems are solved using the NLopt package of R software on a computer with
an Intel Core i7 processor running at 3.40GHz using 8 GB of RAM, running on ubuntu
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version 14.04. RobC and RobV are solved 11 times for different values of Γ0 = 1, . . . , 11
and Γ1 = 1, . . . , 11 respectively. RobCV is solved 121 times for all combinations of values of
Γ0 = 1, . . . , 11 and Γ1 = 1, . . . , 11. The total computation time in solving RobC, RobV and
RobCV using R Software is 166.23 minutes, 12.19 minutes and 4577.25 minutes (76.45 hours)
respectively.

Allocation

Allocation of samples for the nominal problem is plotted in Figure 6.5. The sample size
in province 1 is smallest as the population size in province 1 is smallest and the cost of
interviewing a person is highest. Province 5 has the biggest sample size as in this province
the cost of interviewing is very small and the population size is big.

In RobC, we have 11 different allocations in each province corresponding to the 11 dif-
ferent levels of uncertainty (Γ0 = 1, . . . , 11). The different allocations in each province are
represented by the boxplots in Figure 6.6. We can see that the mean value of the sample sizes
is highest in province 1 and smallest in province 3. As we minimize the variance function in
RobC and since province 1 has the lowest stratum specific variance, we get a bigger sample
size allocated to this province.

Figure 6.5: Allocations in nominal problem Figure 6.6: Allocations in RobC problem

Allocations in RobV are also shown using boxplots for each province in Figure 6.7. Here
we have 11 different allocations for RobV for different levels of uncertainty in each province.
We can also notice that allocations are more stable in RobV as compared to RobC and are
not changing a lot with the change in the uncertainty level.

Allocations in RobCV are shown in the Figure 6.8. We have and 121 different allocations
in RobCV for all the combinations of Γ0 = 1, . . . , 11 and Γ1 = 1, . . . , 11. Allocations in RobCV
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are more unstable than RobC and RobV. The possible reason might be that the AMELIA
dataset has many outliers and RobCV deals with the highest amount of uncertainty.

Figure 6.7: Allocations in RobV problem Figure 6.8: Allocations in RobCV

Figure 6.9 and Figure 6.10 show the total sample sizes in RobC and RobV respectively for
increasing level of uncertainty. We can see that in both RobC and RobV the sample sizes are
not decreasing continuously. The possible reason is the very high stratum specific variance
in the datasets and the presence of outliers which affects the total sample size in both RobC
and RobV. If the total sample sizes are not decreasing monotonically then the total cost will
also be not decreasing monotonically as the total cost directly depends on the sample sizes.
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Figure 6.9: Total sample size in RobC Figure 6.10: Total sample size in RobV

Total Variance

Figures 6.11 and 6.12 show the total variances in RobC and RobV for different uncertainty
levels. We can see that the total variances in both RobC and RobV are bigger than the total
variance in the nominal problem. This difference in the total variance can be considered as
the cost of robustness. We can also see that the total variances of RobC and RobV are not
continuously increasing. The reason here is the heterogeneity of the strata and the selection
of outliers in the sample.

Figure 6.13 and Figure 6.14 show the total variances in RobCV when the uncertainty
level Γ0 in the cost and Γ1 in the variance parameters are increasing. In Figure 6.13 for each
Γ0 we have 11 total variances for Γ1 = 1, . . . , 11 represented in the boxplot. In a similar
way, in Figure 6.14 for each Γ1 we have 11 total variances for Γ0 = 1, . . . , 11 represented in
the boxplot. We can see that in Figure 6.13 total variances are not changing much with the
change in uncertainty level of the cost parameter which is as expected. In Figure 6.14 the
total variances are continuously increasing with the increase in uncertainty level in stratum
specific variances. However, we can see a decrease in the total variance from Γ1 = 3 to Γ1 = 4,
from Γ1 = 7 to Γ1 = 8 and from Γ1 = 9 to Γ1 = 10. This decrease or increase in the total
variance is recorded because we have many outliers in the total population. As we select the
sample completely randomly from each stratum, we can have sometimes more outliers and
sometimes less outliers in the sample. This is an interesting effect and therefore we will study
it in more detail in Section 6.3 by investigating more heterogeneous strata and the effect of
this heterogeneity on the robust solutions.
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Figure 6.11: Total variance in RobC with
increasing Γ0

Figure 6.12: Total variance in RobV with
increasing Γ1

Figure 6.13: Total variance in RobCV
with increasing Γ0

Figure 6.14: Total variance in RobCV
with increasing Γ1

Total Cost

Figure 6.15 and 6.16 show the total costs in RobC and RobV for increasing level of uncertainty
in cost parameters and variance parameters respectively. In RobC total costs for all values of
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Γ0 are less than the total cost of the nominal problem. The reason behind this is that RobC
has smaller sample sizes as compared to the nominal allocation in order to ensure feasibility
when uncertainty exists. The total cost is expected to increase strongly for uncertain cases
and RobC tries to compensate that cost in advance. In Figure 6.16 we can see that the total
costs for all Γ1 in RobV is equal to the total cost in the nominal problem because we do not
consider any uncertainty in the cost parameters in problem RobV.

Figure 6.15: Total cost in RobC with in-
creasing Γ0 = 1, . . . , 11

Figure 6.16: Total cost in RobV with in-
creasing Γ1 = 1, . . . , 11

Figure 6.17 shows the total costs in the RobCV with increasing Γ0 = 1, . . . , 11. In this
figure for each Γ0 we have 11 total costs for different values of Γ1. Figure 6.18 shows the total
cost in RobCV with increasing Γ1 = 1, . . . , 11 where for each Γ1 we have 11 total costs for
Γ0 = 1, . . . , 11. The total cost in the RobCV is decreasing when uncertainty in variance is
increasing. We also notice in the Figure 6.17 that uncertainty in the cost parameters does not
affect the total costs of RobCV and uncertainty in the variance parameters directly affects
the total costs of RobCV. It is interesting to see that when we have heterogeneous strata
uncertainty of variance parameters affetcs the total cost. The possible reason here is that we
have the variance function as the objective of the optimization problem of RobCV. Another
reason is also that in each stratum the cost of interviewing a person is equal for all the units.
However, uncertainty in the total costs will be also effective if we have different costs for each
unit in a stratum.
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Figure 6.17: Total cost in RobCV with in-
creasing Γ0

Figure 6.18: Total cost in RobCV with in-
creasing Γ1

We can see here that heterogeneity in the strata affects the total costs in the robust
solutions of RobC and RobCV. We noticed that the total cost in RobC is not decreasing
continuously. In RobV we can see that the total cost takes the value of the upper bound. The
total variance of RobV is also not increasing with the increase in the uncertainty parameter Γ1.
We can state that RobC and RobV are not very stable when the population is heterogeneous
and has many outliers. However performance of RobCV is still good in case of a heterogeneous
population.

Feasibility Analysis

We have seen in this section that with a heterogeneous population the total variances and
total costs are not completely in control of robust solutions. However, robust solutions still
have an advantage that they are feasible for all the values of uncertain parameters in the
uncertainty interval. We know that in RobV there is no variance constraint and the costs are
considered to be certain parameters, hence the feasibility is guaranteed.

We have uncertain costs in both RobC and RobCV in the following constraint:

11∑
h=1

C̃hnh ≤ C (6.1)

where C̃h represent the uncertain costs and C = 40500 as considered in the RobC, RobCV
and the nominal problem. We check whether the robust optimal allocations (nRobC

Γ0
) of RobC

and the robust optimal allocations (nRobCV
Γ0

) of RobCV for each value of Γ0 fulfill the cost
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constraint. We know that the cost constraint will not be violated for C̃h ∈ [Ch − Ĉh, Ch] so
we ignore this interval in this feasibility analysis.

We take 100 uniformly distributed random cost vectors

(C̃1, . . . , C̃11) ∈ [C1, C1 + Ĉ1]× . . .× [C11, C11 + Ĉ11]

and for each value of Γ0 = 1, . . . , 11 we calculate the 100 total costs with the optimal al-
locations nRobC

Γ0
of RobC and nRobCV

Γ0
of RobCV. We also calculate the total costs of the

nominal optimal allocation nNom for these 100 random cost vectors. We investigate in each
case whether the cost constraint (6.1) is fulfilled.

We see in Figures 6.19 and 6.20 the density plots of the total costs in RobC and RobCV
respectively for all 100 random cost vectors. We consider here only the case when we have
Γ0 = 11 in RobC and RobCV for comparison with the nominal problem. We can see that the
cost constraint in the nominal problem is violated in all 100 cases whereas the cost constraint
in RobC and RobCV is always fulfilled. However as mentioned, in this comparison we have
taken the total costs of RobC and RobCV at the maximum uncertainty, i.e. at Γ0 = 11. If
we consider other values of Γ0 then we might get some cases where we have infeasibility as
predicted in the probability upper bound, see Figure 6.4.

Figure 6.19: Densityplot of total cost in
RobC with Γ0 = 11 and nominal consider-
ing uncertainty. The red line displays the
upper bound C = 40506.03

Figure 6.20: Densityplot of total cost in
RobCV with Γ0 = 11 and nominal consid-
ering uncertainty. The red line displays the
upper bound C = 40506.03

In Figure 6.21 we can see the densityplots of the total costs in RobC for all 100 random
cost vectors at different uncertainty levels. It is interesting to see that only for Γ0 = 3 some
of the robust optimal solutions violate the cost constraint (6.1). For all other values of Γ0 the
cost constraint is always fulfilled.

In Figure 6.22 we see the densityplots of the total costs in RobCV for all random cost
vectors for Γ0 = 1, . . . , 11. For each Γ0, we have a 100 random cost vectors and 11 different
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robust optimal allocations corresponding to Γ1 = 1, . . . , 11. This leads to 1100 total cost
values for each value of Γ0. We see that for Γ0 = 1, 2 and 3 none of the robust optimal
solutions fulfill the cost constraint. For Γ0 = 4 and 5 the cost constraint is fulfilled for some
of the cases and violated for others. Moreover we see that for Γ0 = 6, . . . , 11 the cost constraint
is fulfilled by all of the cases.

Figure 6.21: Densityplot of total cost in
RobC for Γ0 = 1, . . . , 11. The red line dis-
plays the upper bound C = 40506.03

Figure 6.22: Densityplot of total cost in
RobCV for Γ0 = 1, . . . , 11. The red line
displays the upper bound C = 40506.03

However, we have seen in this section that with a heterogeneous data RobC does not
perform very well specially when we have a very high amount of stratum specific variance.
Performance of RobCV is still very good with this dataset but the computation time of solving
RobCV using the AMELIA dataset is very long. It would be interesting from statistical
and computational point of view if we decrease the number of strata by merging various
provinces together and hence making the strata population heterogeneous and much diversely
distributed. It might help in reducing the total computation time but mmakes it more complex
for dealing with uncertainty in a much more heterogeneous strata.

6.3 Sampling Allocation with more Heterogeneous

Strata

In order to define heterogeneous strata, we merge provinces that are taken originally from
different regions and represent heterogeneous populations. In these new strata, stratum 1
is made by merging province 1, 4 and 8. Stratum 2 is made by merging province 2 and 5.
Stratum 3 is made by merging province 3 and 6. Stratum 4 is made by merging province 7
and 10 and stratum 5 is made by merging province 9 and 11. The resut is a complex dataset
from a statistical point of view. However the optimization problem to compute the sampling
allocation has fewer variables and therefore the computation time is reduced.
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(a) Boxplots of personal income in different
provinces

(b) Boxplots of personal income in the new
strata

Figure 6.23: Distribution of peronsal income among population before and after merge
of provinces

We can see that in Figure 6.23a that the provinces with same colour boxplots are merged
with each other and we get 5 strata instead of 11. In Figure 6.23b, each stratum has all
the values of personal incomes from two or more provinces that were merged to make new
strata. Clearly, the new strata is much more hetrogeneous than the provinvces provided in
the AMELIA dataset.

Table 6.2: Data for sampling allocation with new strata in the AMELIA Dataset

Stratum h Nh S2
h d d̂h Ch Ĉh

1 980127 1595234057 107178920 10717892.00 5 1.0
2 769535 1348854293 55865289 5586528.90 3 0.6
3 749208 1346753826 52870484 5287048.40 2 0.4
4 790695 1662381151 72689026 7268902.60 4 0.8
5 491724 1428433269 24155889 2415588.90 1 0.2

In the Table 6.2, the new costs are chosen according to the population size of the stratum.
The stratum with the biggest population size has the highest cost and the stratum with the
smallest population has the lowest cost. The sample size of proportional allocation is taken
to be 1% of the stratum sizes rounded off to nearest integer, i.e.

nprop = (9801, 7695, 7492, 7906, 4917).
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The total cost of proportional allocation

C = Cprop =
5∑

h=1

nproph Ch = 123619

is considered as the upper bound on the cost constraint in RobCV. The upper bounds Mh

and lower bounds mh on the optimization variable nh are considered to be Mh = 10000 and
mh = 2 for all h = 1, . . . , 5.

The sampling allocation problem becomes much more complex when the uncertainty is
introduced and solutions are not robust against uncertainty. In our case we can be sure that
the probability of the robust solution being infeasible is bounded as discussed in Theorem 4.3.
Figure 6.24 shows the probability upper bound that the robust solution will violate the cost
constraint of the nominal optimization problem at different uncertainty levels. Again these
uncertainty levels represent how many strata have uncertainty. We can see that at Γ0 = 5
we have the maximum guarantee that the robust solution is feasible for the nominal problem,
however we can also be less conservative and consider Γ0 = 4 with a little risk known in the
form of

Pr(

5∑
h=1

Chnh > C) = 0.2.

Figure 6.24: Probability upper bound on the cost constraint violation with increasing
Γ0

The problem RobCV was solved 25 times for all comibations of values of Γ0 = 1, . . . , 5
and Γ1 = 1, . . . , 5 using NLopt package and Auglag package of R software. The total
computation time for solving the 25 problems was 3.321 hours.

Figure 6.25a and Figure 6.25b both represent the robust allocations of RobCV in each
stratum. For each stratum we have 25 allocations for all combinations of Γ0 = 1, . . . , 5 and
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(a) (b)

Figure 6.25: Sample allocations in RobCV with more heterogeneous strata

Γ1 = 1, . . . , 5. These different allocations are represented by boxplots in Figure 6.25a and by
scatterplots in Figure 6.25b. We can see in the boxplots that the mean of the sample sizes is
highest in stratum 3 and stratum 5 as these strata have the smallest cost of selecting a sample
unit. We can also see that in stratum 1 the sample size equals the upper bound M1 = 10000
two times even though stratum 1 has the highest cost of selecting a sample unit.

The total costs in RobCV are represented by boxplots in Figure 6.26a when uncertainty
is increasing in cost parameters by Γ0 = 1, . . . , 5. For each value of Γ0 we have 5 values (for
Γ1 = 1, . . . , 5) of total costs and these 5 values are represented in the boxplots of Figure 6.26a.
In a similar way we generated the boxplots of Figure 6.26b that represent the total costs in
RobCV when uncertainty in the stratum specific variance Γ1 = 1, . . . , 5 is increasing. We
can see in Figure 6.26a that with increasing uncertainty in Γ0 the total cost is continuously
decreasing. We can see some jumps in the boxplots for example in Figure 6.26b at Γ1 = 3.
The possible reasons is the heterogeneity of the popoulation as shown in Figure 6.23b.

80



(a) (b)

Figure 6.26: Total costs in problem RobCV with increasing Γ0 and Γ1

(a) (b)

Figure 6.27: Total variance in problem RobCV with increasing Γ0 and Γ1
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We can see in Figure 6.27 that the total variance in RobCV is very slightly increasing
with the increase of Γ0 = 1, . . . , 5 whereas the total variance is not increasing or decreasing
continuously with the increase in Γ1. We note here that in Figure 6.27b the total variance
for Γ1 = 1, 2, 4, 5 is roughly the same whereas we observe a big jump for Γ1 = 3. This is
consistent with what we saw for the total costs of RobCV where we have a very small total
cost at Γ1 = 3, see Figure 6.26b. This shows that the total sample size is very small at Γ1 = 3.

These jumps in the total variances and total costs are because of the heterogeneity of the
population. When we select only one sample then we might get outliers in our sample and
that can increase or decrease our total variance. We try to deal with this problem by taking
the samples 100 times for each allocation of RobCV.

100 times samples selection and outliers removal

We study three ways of dealing with the heterogenity of the dataset: First we study the effect
of stratum specific variances. These were given in Table 6.2. In order to see effect of these
values we generate estimated stratum specific variances following a normal distribution. We
show the stimated stratum specific variances in the following table:

Table 6.3: Known and estimated stratum specific variances. The known values are the
same as in Table 6.2

Stratum h S2
h (known) S2

h (estimated)
1 1595234057 1595197725
2 1348854293 1348821639
3 1346753826 1346744676
4 1662381151 1662394233
5 1428433269 1428408121

For the estimated stratum specific variances we solve RobCV for all combinations of
Γ0 = 1, . . . , 5 and Γ1 = 1, . . . , 5 as we solved RobCV for the known stratum specific variances.
Now we have two types of allocations in RobCV: (i) allocations with the estimated stratum
specific variances and (ii) allocations with the known stratum specific variances. We also solve
the nominal problem with both estimated and known stratum specific variances.

Second, we deal with outliers: We know that there are many outliers in the data and the
sample units are selected randomly from the population. In random selection we can have
outliers in our sample and that can increase or decrease the total variance and hence the
sample sizes and therefore the total cost is also affected. This is one of the problems that we
faced in the calculation of the total variance. Due to the amount of heterogeneity we have in
our stratum, the data is very complex statistically. We illustrate this in Figure 6.28: The left
most boxplot shows the personal income in the AMELIA dataset. The middle boxplot shows
the cumulative personal income data in the selected samples for all 25 allocations of RobCV
computed with the known stratum specific variances. We can see that there are many outliers
in the sample. Since they heavily affect the total variance, we delete these outliers. The right
most boxplot shows the personal income when the outliers of the samples are deleted.
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Figure 6.28: Boxplots of personal income in different phases

Third, we repeat this experiment 100 times: We have 25 different allocations in RobCV
with the known variance and 25 allocations in RobCV with the estimated variance. We have
one allocation for the nominal problem with known variance and one allocation for the nominal
problem with estimated variance. Now for each of these allocations we select 100 samples. We
delete the outliers from each sample. In RobCV with known variance 907601 sample units are
selected each time and on an average 32523 outliers (3.58%) have been removed. In RobCV
with estimated variance 1122480 samples are selected each time and on an average 40222
outliers (3.58%) have been removed. In nominal problem with known variance 37814 sample
units are selected each time and on an average 1355 outliers (3.58%) have been removed. In
nominal problem with estimated variance 37812 sample units are selected each time and on
an average 1358 outliers (3.59%) have been removed. The number of population units for the
variable of ineterst personal income in the AMELIA dataset is 3781289 with 135838 outliers
(3.59%).

For each of the resulting 100 samples without outliers, we calculate the total variances for
all the allocations of RobCV with known and estimated variance and for the nominal problem
with known and estimated variance. In Figures 6.29 to 6.31, we compare these total variances.

The total variances with estimated and known stratum specific variances for the nominal
problem are calculated for each of the 100 samples. These 100 total variances are represented
in the boxplots of Figure 6.29a and Figure 6.29b. We can see that the median of the total
variances of the nominal problem with known stratum specific variances is a bit bigger than
the median of the total variances of the nominal problem with estimated stratum specific
variances. It is interesting that the total variance in nominal problem with estimated variance
is better than the total variance of nominal problem with known variance. However, in the
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overall 100 variances we do not see a big difference.

(a) (b)

Figure 6.29: Nominal problem using estimated and known stratum specific variances
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(a) Γ1 = 1, . . . , 5 (b) Γ1 = 1, . . . , 5

Figure 6.30: RobCV using estimated and known stratum specific variances with in-
creasing Γ1

In Figure 6.30 we see the boxplots of the total variances in RobCV for increasing uncer-
tainty levels in cost and variance represented by Γ0 = 1, . . . , 5 and Γ1 = 1, . . . , 5 and for both
known and estimated stratum specific variances. For each value of Γ1 we have 5 allocations for
Γ0 = 1, . . . , 5. So for each Γ1 in Figure 6.30 we have 500 values of total variance corresponding
to Γ0 = 1, . . . , 5 and 100 samples.

It is interesting that we see again in Figure 6.30b a jump in the total variance of RobCV
with known variances at the Γ1 = 3. The reason is that the allocations (i.e. the sample
sizes) of RobCV were calculated considering the known stratum specific variances of personal
income without removal of outliers. However, in Figure 6.30a we see a small jump at Γ1 = 4
in the total variance of RobCV with estimated stratum specific variances. We can see that
for Γ0 = 1, . . . , 5 the difference in the total variances is smaller as comapared to the difference
for Γ1 = 1, . . . , 5 and that is why we get the boxplot as a line in Figures 6.30a and 6.30b.
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Figure 6.31: Total variance in RobCV for Γ = 1, . . . , 5

In Figure 6.31 we can see separate boxplots of the total variances for each Γ1 to visualise
them better. As mentioned earlier in the boxplots for each Γ1, we have all the cases of
Γ0 = 1, . . . , 5. We can see that the interquartile range is rather small so we can conclude that
the total variances are not affected much by Γ0. In a similar way we could generate boxplots
of the total variances of RobCV with known stratum specific variances and draw the same
conculsion.

Feasibility Analysis

We now return to the setting where we only consider the known stratum specific variances
and we do not delete outliers. We have seen how the robust solutions perform when there are
many outliers in the dataset. We have noticed that in an extremely heterogeneous dataset the
total variances and total costs are hard to control according to the uncertainty level. However,
robust solutions always have the advantage that they are feasible and it does not matter what
value the uncertain parameters take in the defined uncertainty interval.

We check the feasibility of our robust solutions for the cost constraint as done for the
robust allocations in Section 6.2. We know that the total costs will not be violated in the
interval [Ch − Ĉh, Ch] so we have ignored it in this analysis. We take 100 random values of
C̃h ∈ [Ch, Ch+Ĉh] in the defined uncertainty interval of cost parameters for each h = 1, . . . , 5.
For each of these 100 set of cost parameters we computed the total costs and checked whether
they violate the cost constraint. We recall that the upper bound C in the cost constraint is
C = 123619.

For the nominal problem, the total costs for 100 sets of cost parameters from the uncer-
tainty interval are represented in Figure 6.32. In all of the cases the total costs in the nominal
problem exceed the cost upper bound.

In Figure 6.33 a comparison is presented between the total costs of the nominal problem
and the total costs of RobCV for the 100 sets of cost parameters. The 100 total costs in this
figure are represented by the densityplot. We can see that the total costs of RobCV are always
smaller than the upper bound and the total costs of the nominal problem are always bigger
than the upper bound. In this figure, we have considered the case of Γ1 = 1 and Γ0 = 5 for
RobCV which provides the maximum ensurance that the cost constraint will not be violated.
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Figure 6.32: Total costs in the nominal problem when uncertainty exists

Figure 6.33: Comparison of total costs in RobCV and the nominal problem. The red
line displays the upper bound C = 123619

However if we look at the different levels of uncertainty in the costs i.e., Γ0 = 1, . . . , 5 then
there might be some violations.
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Figure 6.34: Densityplots of total costs in RobCV for Γ0 = 1, . . . , 5 and Γ1 = 1. The
red line displays the upper bound C = 123619

In Figure 6.34 we can see different levels of Γ0 and the corresponding densityplots of the
total costs. It is very interesting to see that at Γ0 = 0 the densityplot is very similar to the
densityplot of the nominal problem, however, this is not always the case. We see that at
Γ0 = 1 we have only a few of the total costs which are smaller than the upper bound. For
Γ0 = 2, 3 we have only few of the total costs bigger than the upper bound and for Γ0 = 4, 5
all of the 100 total costs are smaller than the upper bound in the cost constraint.
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Chapter 7

NRW Income and Taxation Data

Microcensus in Germany is being carried out since 1957. The German microcensus survey is
integrated into the Labour Force Survey of the European Union (EU Labour Force Survey).
The microcensus aims to collect official statistical figures about the population. It is helpful
to have an inference about the labour market, economic and social activity of the population,
education and training situations and on health and housing situations. Stratified sampling
techniques are used to select samples and the sample size is taken to be 1% of the people
and households in Germany. The microcensus provides very important data not just for
administrative purposes but also for research purposes. We have already seen the robust
allocation approach for simulated datasets in Chapter 5 and Chapter 6. In this chapter,
we focus on the real dataset on income and taxation of North Rhine-Westphalia (NRW),
Germany. This data is available for research purposes from (Forschungsdatenzentrum, 2001).

Income and taxes are two important factors that have a direct impact on the financial
situation of a country (Alesina and Perotti, 1997). Income and taxation data are collected from
different states of a country. This data helps the government in taking financial decisions.
For our survey statistical problem we take the income and taxation data of North Rhine-
Westphalia. This data includes information about a population of size 274, 743 with their
age, sex, income (yearly and monthly), amount of tax paid in a year, taxation level and social
structure etc.

We do not have geocoded data available from the statistical office in Germany. This would
be desirable because it can be helpful to identify the interview cost per sample unit based on
the location. The NRW income and taxation dataset does not contain cost of interviewing a
person which is needed if we have a fixed budget of conducting a survey. Self interviews and
online interviews can reduce the total costs but they are poor in quality and can sometimes
result in non response. This is why the interviews are generally carried out by visiting the
persons. Some of the surveys are made mandatory by the German law so that non responses
can be eradicated, (Schwarz, 2001).

A sampling allocation problem has to be solved for this data considering the objective
that the selected samples should represent the whole NRW population in terms of tax and
income. The first step is to clean the data as some values in the data might be typos and
do not make any sense, for example NAs and some negative values. We can not have these
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values as input during the stratification and optimization process. The dataset contains 32101
such units where the values were either wrong or NAs. We simply delete these values and
their corresponding data lines. In this way we can get rid of the clearly visible wrong values,
however there still might be other typos which we can not detect. This is why we need a robust
allocation process so that we can achieve good compromising solutions even if some entries
in our data are wrong. Deletion of rows can also affect the quality of the optimal allocations,
however this can be compensated by increasing the uncertainty level in the remaining data.

After cleaning the data, the first step is stratification of the population. We have 5 levels
of taxes in Germany and as our objective is related to the income and tax, we stratify the
whole population in 5 strata each representing a tax level.

We have some variables available in the NRW data which are not directly related to the
income and taxation such as age group and social structure of the population units. The age
group variable is defined as follows:

• 0 denotes no entry in the age column

• 1 denotes 0 to 19 years of age

• 2 denotes 20 to 29 years of age

• 3 denotes 30 to 39 years of age

• 4 denotes 40 to 49 years of age

• 5 denotes 50 to 59 years of age

• 6 denotes 60 to 69 years of age and

• 7 denotes 70 years or older.

In a similar way the social structure variable is defined as follows:

• 0 denotes no income

• 1 denotes mostly non-self-employed with reduced provisioning allowance

• 2 denotes mostly non-self-employed with unrestricted provision

• 3 denotes predominantly pension recipients with a reduced pension plan

• 4 denotes predominantly pension recipients with unrestricted provision

• 5 denotes mostly self-employed with gross wages

• 6 denotes mostly self-employed without gross wage.
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Figure 7.1: Age groups distriution in the
strata

Figure 7.2: Distribution of social structure
in the strata

In Figure 7.1 we can see the distribution of the different age groups among the strata. We
can see that the people of age 0 to 29 years (age group 1 and 2) pay mostly the level 1 and
level 2 tax whereas people of age 40 to 69 years (age group 4, 5 and 6) pay mostly in the tax
level 3. People of age 30 to 39 years (age group 3) pay mostly level 4 and level 5 taxes. We
can also see that there are is a big group who pay level 1 tax but they have no entry in the
age group. Pearson correlation test suggests that there is a correlation between the age group
and tax levels.

In Figure 7.2 we can see the distribution of the variable social structure among the strata.
We can see that stratum 1 has a majority of those who have no income (social structure 0).
We can see that level 1 tax has the least number of self employed people (social structure 5
and 6) whereas level 3 tax has highest number of self employed people. Pearson correlation
test suggests that there is a correlation between social structure and tax levels.

Now we look at the income variables provided by this dataset. We have 3 main income
variables:

1. Income (Einkommen)

2. Sum of the income (Summe der Einkommen)

3. Total income (Gesamtbetrag der Einkünfte)
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Figure 7.3: Income vs Total income scatter
plot

Figure 7.4: Sum of the income vs Total
income scatterplot

Figure 7.5: Sum of the income vs Income scatterplot

We check the possible correlations among these variables. In Figures 7.3, 7.4 and 7.5
we can see that there is a linear correlation between these variables. For this reason, we will
consider ”Sum of the income” as our variable of interest for the robust optimization problems.
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Figure 7.6: Boxplots of sum of the income in each taxation level

It is interesting to see how the variable of interest is distributed among the 5 different tax
levels. In Figure 7.6 we show boxplots of the sum of the income in each tax level which we
consider as strata. We observe heterogeneity in each of the strata. However, the heterogeneity
in stratum 2 is not as bad as in the other strata. The heterogeneity existing in the variable
of interest makes the sampling allocation process more complex.

7.1 Allocations and Analysis

In this section we present the results of robust allocations for the income and taxation data of
NRW. As mentioned earlier the unavailability of cost parameters in the data leads us to solve
the problem without considering cost constraints. We assume that the costs of conducting
the survey do not affect the allocation of samples. The sampling allocation problem in this
scenario can be formulated as follows:

93



Table 7.1: Stratum size (Nh) and stratum specific variances (S2
h) for the variable sum

of the income

h Nh S2
h dh =

N2
hS

2
h

N2 d̂h = 10%dh
1 105584 1.336060365× 1011 2.5006562817× 1010 2.500656282× 109

2 12178 3.8389023459× 1010 9.5585211× 107 9.558521× 106

3 67204 3.66309611529× 1011 2.7776035552× 1010 2.777603555× 109

4 23701 1.0979788868× 1011 1.035521281× 109 1.03552128× 108

5 35386 2.57341088083× 1011 5.410081133× 109 5.41008113× 108

We calculate the stratum specific variances of the variable sum of the income for each
stratum. This stratum specific variance is an uncertain parameter in the optimization process.
We assume that there is 10% uncertainty in the stratum specific variance. The final parameters
used for the sampling allocation problem are given in Table 7.1.

We take the sample size to be 1% of the total population size, i.e.,

β = 0.01
5∑

h=1

Nh = 2440.53.

We use NLopt package of R software to solve all the optimization problems. The nominal
problem without a cost constraint can be written as problem (7.1).

min

5∑
h=1

dh
nh

s. t.

5∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, ..., 5

(7.1)

where the notations are same as explained in Chapter 4. We consider mh = 2 and Mh = Nh

for all h = 1, . . . , 5. The robust formulation RobV of the above problem can be written as
follows:
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min

5∑
h=1

dh
nh

+ lΓ1 +

5∑
h=1

ph

s.t. l + ph ≥
d̂h
nh

∀h = 1, 2, . . . , 5

5∑
h=1

nh ≤ β

mh ≤ nh ≤Mh ∀h = 1, 2, . . . , 5

l ≥ 0

ph ≥ 0 ∀h = 1, 2, . . . , 5

(7.2)

Here Γ1 = 0, . . . , 5 defines the number of uncertain variance parameters.
The solutions of above robust optimization problem are provided in Table 7.2:

Table 7.2: Robust allocations with different values of Γ1

Gammas Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5
Γ1 = 0 877.1488 54.16350 924.1846 178.2392 406.7939
Γ1 = 1 860.6172 53.20779 951.2789 175.1295 400.2966
Γ1 = 2 863.5282 52.29401 959.1640 172.1219 393.4218
Γ1 = 3 868.3603 51.43075 964.5310 169.2805 386.9274
Γ1 = 4 829.0089 114.83812 920.8217 183.2365 392.6248
Γ1 = 5 877.2793 49.83732 974.4379 164.0359 374.9396

Table 7.2 provides the allocation for each stratum and for different uncertainty levels. We
can see in this table that the uncertainty level does not affect much the allocations in the
strata. For each value of Γ1, stratum 3 has the largest sample size allocated whereas stratum
2 has the smallest sample size allocated. The reason is that stratum 3 has the largest stratum
specific variance and stratum 2 has the smallest. In Figure 7.7 we can see the same results
displayed as boxplots for each stratum. In each stratum we have 5 allocations for all values
of Γ1 = 0, . . . , 5.
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Figure 7.7: Boxplots of allocations in
RobV in different strata

Figure 7.8: Total variances in the nominal
problem and RobV for Γ1 = 0, . . . , 5

We wanted to see how the total variances of RobV and of the nominal problem differ. So
we solved the nominal problem (7.1) and calculated its total variance. In Figure 7.8 we can
see that at Γ1 = 0, the total variance in RobV and in the nominal problem are equal. The
total variance of RobV increases with the increase in Γ1 and is highest at Γ1 = 5.

Figure 7.9: Total variance in the nominal
problem and effect of uncertainty. The red
line displays the total variance of the nom-
inal problem.

Figure 7.10: Total variance in RobV and
effect of uncertainty. The red line displays
the total variance of RobV at Γ1 = 3
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It is interesting to see how, when uncertainty is introduced, total variances of the nominal
problem and RobV change. So we performed an experiment here and took 100 sets of random
stratum specific variances within the uncertainty level. For each of these random stratum
specific variances, we calculated 100 total variances using the nominal allocation and 100
total variances for each Γ1 = 0, . . . , 5 using the allocations of RobV. We can see in Figure 7.9
that the total variances calculated using random stratum specific variances are larger than
the total variance of the nominal problem in all the 100 cases. In Figure 7.10 we generated
the densityplots of 100 total variances for each Γ1. We have shown here that the 100 total
variances of RobV for each Γ1 are smaller than the total variance of RobV at Γ1 = 3. We can
conclude that we do not need to consider always that all of the parameters are uncertain.

7.2 Inclusion of Cost and Robust Allocations

In real life sampling allocation problems the cost of carrying out a survey plays an important
role. Sometimes it also happens that the selected person is not available for interview and the
interviewer has to revisit the person in order to complete the survey process. This results in
an increased cost and shows that the cost is very uncertain in nature.

So here we assume that the cost Ch of selecting a unit sample in stratum h is as given in
Table 7.3. We also assume that there is 20% of uncertainty in the costs, i.e., the uncertainty
interval for the cost Ch is

[Ch − Ĉh, Ch + Ĉh] with Ĉh = 0.2Ch.

The resulting assumed data is provided in the following Table 7.3:

Table 7.3: Assumed data for the sample allocation

Strata (h) 1 2 3 4 5
Ch 100 120 140 160 180

Ĉh 20 24 28 32 36

We now include a cost constraint in the robust sampling allocation problems RobC, RobV
and RobCV. The upper bound on the cost constraint

5∑
h=1

Chnh ≤ C

is assumed to be C = 157629.
Now the sampling allocation problem can be divided into the three cases discussed in

Section 4.2: First, when only cost is uncertain (RobC). Second, when only variance is uncertain
(RobV) and third, when both cost and variance are uncertain (RobCV). Before discussing
these cases, we would like to recall that the robust formulations of these cases are similar to
(5.3), (5.4) and (5.5) from Section 5.2. We use the data given in Tables 7.1 and 7.3 for solving
all the problems in this section.
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7.2.1 When only cost is uncertain (RobC)

This scenario is based on the situation when only the cost in the sampling allocation problem
is uncertain. We solved the problem RobC given in (5.3) 6 times for different values of
Γ0 = 0, . . . , 5 using NLopt package of R software. Solving these 6 problems took 22 minutes
and 37 seconds. We also computed allocations of the nominal problem given in (5.2) in which
we minimize the variance function subject to the cost and other constraints. We compare the
total cost of the nominal problem and the total costs of RobC in the following Figure 7.11.

Figure 7.11: Total costs in the nominal problem and RobC for Γ0 = 0, . . . , 5

We can see here that the total cost in RobC is continuously decreasing with the increase
in the uncertainty level of cost parameters Γ0 = 0, . . . , 5. We can see that at Γ0 = 0 the total
cost is equal to the total cost of the nominal problem which is not always the case. The total
cost in a sampling allocation problem directly depends on the sample sizes allocated to the
strata. Now we look at the allocations of RobC in Table 7.4

Table 7.4: Sample sizes nh for stratum h in RobC with different values of Γ0

Gammas n1 n2 n3 n4 n5

∑5
h=1 nh

Γ0 = 0 389.2061 71.08409 278.0182 203.98859 216.2467 1158.54
Γ0 = 1 387.8898 58.47588 277.0779 167.44065 215.5154 1106.39
Γ0 = 2 385.9911 46.24693 275.7218 132.17464 214.4606 1054.59
Γ0 = 3 382.5667 35.05459 273.2758 100.03876 212.5581 1003.49
Γ0 = 4 379.4524 30.72769 271.0513 87.60385 188.8454 957.68
Γ0 = 5 374.9896 27.01899 267.8636 77.02346 166.0117 912.90
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We can see in the Table 7.4 that the total sample size is decreasing with the increase in
the uncertainty level Γ0 of cost parameters. This decrease in total sample size is reflected in
the decrease of the total cost of RobC which we saw above. Boxplots of the allocations in
RobC are given in the Figure 7.12. We can see that for all uncertainty levels Γ0 = 0, . . . , 5,
stratum 1 has the highest allocation and a possible reason is that stratum 1 has the biggest
population size. Stratum 2 has the smallest population size and also the smallest allocation.

Figure 7.12: Boxplots of allocations in RobC for each stratum

99



Figure 7.13: Total variance in RobC for Γ0 = 0, . . . , 5

We can see in Figure 7.13 that the total variance for RobC is continuously increasing with
the increase in uncertainty in the cost parameters Γ0. We saw earlier that with the increase
in uncertainty we have decreasing total sample sizes. However, a smaller sample size leads to
a bigger total variance.

7.2.2 When only variance is uncertain (RobV)

The second scenario is based on the case when only the variance is considered to be uncertain.
We solved the prolem RobV 6 times for Γ1 = 0, . . . , 5 using the NLopt package of R software.
Solving these 6 problems took 1 minute and 32 seconds. The allocations in RobV are given
in Table 7.5 and Figure 7.14.

Table 7.5: Sample sizes nh for stratum h in RobV with different values of Γ1

Gammas n1 n2 n3 n4 n5

∑5
h=1 nh

Γ = 0 481.1024 47.03223 446.4876 83.12790 157.7009 1215.45
Γ = 1 473.0996 46.12478 458.7384 81.52297 154.6501 1214.13
Γ = 2 463.3346 45.32172 471.4763 80.10446 151.9641 1212.20
Γ = 3 458.2498 44.57075 480.4101 78.78336 149.5154 1211.52
Γ = 4 449.6980 43.84004 491.8766 77.48480 146.9895 1209.88
Γ = 5 442.9153 43.17934 501.4704 76.31706 144.7743 1208.65

We can see that there is not much difference in the total sample size for different uncer-
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tainty levels Γ1 = 0, . . . , 5. However, the allocations in each stratum are changing with the
increase in Γ1. We can see in Figure 7.14 that stratum 3 has the largest allocation. This is
consistent with the fact that stratum 3 has the largest stratum specific variance (see Table
7.1). In RobV we minimize the total variance function and this is inversely proportional to
the sample sizes. We can conclude that the bigger the sample size is the smaller the total
variance is.

Figure 7.14: Boxplots of allocations in RobV for each stratum

We can see in Figure 7.15 that there is no difference in the total costs of RobV for different
uncertainty levels in the variance parameter Γ1 = 0, . . . , 5. The total cost of RobV is equal to
the total cost of the nominal problem for all values of Γ1 which is as expected. From Table 7.5,
we can see that the total sample size in RobV for different values of Γ1 is not much increasing
or decreasing and since the total cost depends on the sample size, this total cost is also not
increasing or decreasing.
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Figure 7.15: Comparison of total costs in the nominal problem and RobV for Γ1 =
0, . . . , 5

Figure 7.16: Comparison of total variances in the nominal problem and RobV for
Γ1 = 0, . . . , 5
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Figure 7.16 shows the total variances of the nominal problem and RobV for different
uncertainty levels Γ1 = 0, . . . , 5. For Γ1 = 0, the total variance of RobV is bigger than the
total variance of the nominal problem. An increase in the uncertainty level Γ1 results in an
increased total variance of RobV. This increase in total variance can be understood as the
cost of robustness.

7.2.3 When both cost and variance are uncertain (RobCV)

This is the realistic case because usually both costs and variances are uncertain parameters in
the sampling allocation problem. Neverthless, RobC and RobV can be very useful if one of the
parameters is known for sure. We recall again that due to the artificial variables introduced
in the robustification process, RobCV with Γ0 = 0 is not the same as RobV, and RobCV with
Γ1 = 0 is not the same as RobC.

We solve the optimization problem RobCV given in (5.5) 36 times for all combinations
of Γ0 = 0, . . . , 5 and Γ1 = 0, . . . , 5 using NLopt package of R software. Solving these 36
problems took 4 hours 24 minutes 37 seconds. The allocations in RobCV for each stratum
are given in Figure 7.17:

Figure 7.17: Boxplot of allocations in RobCV for all combinations of Γ0 and Γ1

We can see in Fig 7.17 that the sample sizes in stratum 1 are bigger than the other sample
sizes. The reason is that stratum 1 has a large stratum specific variance and the minimal cost
of selecting a unit sample.

We can see in Figure 7.18 that the total costs are not increasing or decreasing with the
increase in the uncertainty level Γ0. We can also see that the total cost is much smaller than
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Figure 7.18: Total cost in RobCV for in-
creasing Γ0

Figure 7.19: Total cost in RobCV for in-
creasing Γ1

the upper bound C = 157629 in the cost constraint. In Figure 7.19, we can see that for
Γ1 = 0, . . . , 5 the total costs is changing.

Figure 7.20: Total variance in RobCV for
increasing Γ0

Figure 7.21: Total variance in RobCV for
increasing Γ1

We can see in Figures 7.20 and 7.21 that the total variance is not affected by the increasing

104



level of Γ0 and remains constant whereas the total variance is directly affected by the increasing
level of Γ1, which is as expected. The total variance of RobCV is expected to increase with
increasing Γ1 however, we can see small jumps in the total variance at Γ1 = 3, 4. The reason for
this is probably that the strata are heterogeneous and at some places its effect was expected.

7.2.4 Feasibility Analysis

Now we want to see the effect of uncertainty on the nominal and the robust allocations. We
check whether the optimal solutions of the nominal problem, RobC and RobCV satisfy the
cost constraint by taking 100 random values between Ch and Ch + Ĉh as defined in Table
7.3. The densityplots of the total costs obtained by using these 100 random parameters are
as follows:

Figure 7.22: Total costs in the nominal
problem and RobC with Γ0 = 5. The red
line displays the upper bound C = 157629

Figure 7.23: Total costs in the RobC for
increasing Γ0. The red line displays the
upper bound C = 157629

In Figure 7.22 we can see a comparison of the total costs in the nominal problem and in
RobC. We see that the total costs of the nominal problem are always bigger than the upper
bound in the cost constraint and hence the cost constraint is always violated. In Figure 7.23
we can see different levels of Γ0 and the corresponding densityplots of the total costs in RobC.
It is very interesting to see that at Γ0 = 0 the densityplot is very similar to the densityplot
of the nominal problem, however, this is not always the case. We see that at Γ0 = 1 we have
a few of the total costs which are smaller than the upper bound. For Γ0 = 2 we have half
of the total costs bigger than the upper bound and at Γ0 = 3 only few of the total costs are
bigger than the upper bound. For Γ0 = 4, 5 all of the 100 total costs are smaller than the
upper bound in the cost constraint.
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Figure 7.24: Total costs in the nominal
problem and in RobCV with Γ0 = Γ1 = 5

Figure 7.25: Total costs in RobCV with
Γ1 = 5 and increasing Γ0 = 0, . . . , 5

In Figure 7.24 we see a comparison between the total costs of the nominal problem and
the total costs of RobCV. The total costs of the nominal problem are again always bigger than
the upper bound in the cost constraint whereas the total costs of RobCV is always smaller
than the upper bound. In Figure 7.25 we can see the densityplots of the total costs of RobCV
with Γ1 = 5 and different values of Γ0 = 0, . . . , 5. Due to the very small sample sizes in
RobCV all of the costs are much smaller than the upper bound in the cost constraint.

Figure 7.26: Boxplots of scaled total costs
in the nominal, RobC and RobCV

Figure 7.27: Densityplot of scaled total
costs in the nominal, RobC and RobCV
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In Figures 7.26 and 7.27 we divide the total costs of the nominal problem, RobC and
RobCV by the upper bound in the cost constraint. Hence in both the boxplots and den-
sityplots all the values bigger than 1 represent infeasible cases and values smaller than 1
represent the feasible cases. Also, in these comparisons we considered the value of Γ0 = 5 in
RobC which is why we do not have any infeasible cases. For the total costs of RobCV we
consider Γ0 = Γ1 = 5.
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Chapter 8

Conclusion and Outlook

In this thesis, we dealt with the sampling allocation problem with uncertain stratum specific
variances and uncertain costs. We proposed three robust formulations for optimal sampling
allocations: if the only cost is uncertain (RobC), if the only stratum specific variances are
uncertain (RobV) and if both stratum specific variances and cost are uncertain (RobCV). To
the best of our knowledge, this is the first time robust allocations are proposed for sampling
allocation problems. We proved that the upper bound on the probability of nonlinear con-
straint violation can be calculated. It is Interesting that the calculated upper bound does not
depend on the robust solutions, so we know in advance that how good the robust solutions are.
In order to check the stability and feasibility of the robust allocations, we performed several
experiments. We considered three different datasets: First, we considered a simulated data
where the strata are diversely distributed. Second, we consider the synthetically generated
heterogeneous dataset AMELIA with around 3.7 million observations. Third, we considered
a real life and very complex dataset: an income and taxation dataset from the German state
of NRW for the year 2001.

We found that the robust allocations for a population generated through simulation are
very stable. We noticed that in such cases the total cost decreases monotonically with the
increase in uncertainty level. However, for a heterogeneous population, the robust solutions
are not very stable and change with the change in uncertainty level. A feasibility test for the
robust allocations of simulated data was also carried out and proved that the robust solutions
are feasible no matter what values the uncertain parameter takes in the defined uncertainty
interval. The computation time can be very large so we merged some of the strata and
made more heterogeneous strata. Robust allocations in a smaller number of strata are easy
to compute but very complex statistically. We also did an experiment to see how robust
solutions are affected if the outliers of heterogeneous populations are deleted. We saw that
in a very heterogeneous dataset it is hard to control the total costs and total variance but we
have feasibility in all the cases when uncertainty exists.

The main applications of these robust allocations are in the future censuses. However,
generally, the censuses have much bigger number of strata, for example in the German census
2011 the total number of strata was around 19,144. For such a large problem, the computation
time of robust allocations might be a problem. The integrality constraint should also be
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added in the robust formulations. In this case, we will have a mixed integer nonlinear robust
formulation of the sampling allocation problem. Hence, an algorithmic development is also
needed for the robust formulations of the sampling allocation problem.
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