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Summary 

 

Acid drainage from weathering of mining wastes can harmfully impact the quality of 
drinking water and the health of riparian ecosystems. The task of identification and 
monitoring of such contamination sources is often costly and time consuming, if it is 
done conventionally with field sampling and laboratory analysis. While measurements 
of chemical and physical parameters can determine pollution levels at point locations, 
they do not give insight into their spatial structure. This can be achieved only to a 
certain extent with spatial interpolation algorithms. However, the quality of these 
interpolations is highly dependent of the number and distribution of the sampling points. 

Reflectance spectroscopy is usually applied in the laboratory, but it can be applied also 
directly in the field and provides means for fast non-destructive measurements. 
Extended to hyperspectral airborne remote sensing it provides the potential of spatial 
observations of affected areas at different spatial resolutions. However, meaningful 
physical/chemical properties cannot be measured directly, both field spectra and remote 
sensing observations have to be calibrated with other measurements of chemical and 
physical properties. 

In the present study, the possibilities of reflectance spectroscopy and airborne 
hyperspectral remote sensing for the qualitative and quantitative assessment of heavy 
metal contamination and the acidification risk related to the Aznalcóllar mining accident 
in SW Spain were evaluated. The data were collected in the two years after the accident, 
which happened in 1998. They consist of three types: soil samples taken from profiles 
along different transects, spectral field measurements with a portable spectrometer and 
hyperspectral images acquired with the HyMap sensor covering the entire affected area. 

The results of the chemical analysis are in line with the results of other research groups, 
and confirm that after the first clean up the contamination is still very high, particularly 
in the northern part. The second clean up and remediation campaign improved the 
situation effectively by a re-cleaning and addition of acidity neutralizing products for 
fixation of heavy metals. In areas, where the remediation was not finished yet, the 
contamination problems worsened due to the oxidation of pyritic sludge, which 
produced acidity that mobilised heavy metals allowing them to penetrate into the soil 
profile. 

In a mixture experiment, soil was contaminated with sludge for a better understanding 
of its influence on soil reflectance. A strong decrease in albedo could be observed with 
increasing sludge content and a wide iron absorption feature is becoming the main 
absorption feature centred near 1.0 µm. There was a strong linear correlation between 
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the depth of this absorption and heavy metal concentration, which allowed an estimation 
of heavy metals for laboratory data. 

Multivariate calibration was chosen for improving these results and extending them to 
the full spectral range, including also other soil constituents. Multivariate calibration has 
the advantage that it is not based on a known physical assumption, but only on the data 
available. Stepwise multiple linear regression (MLR), partial least squares regression 
(PLSR) and artificial neural networks (ANN) were tested for their ability to estimate 
heavy metal concentrations based on their reflectance spectra. The spectra were 
transformed using different techniques in order to enhance important spectral features. 
Furthermore, they were spectrally degraded to evaluate the effect of wavelength 
reduction with regard to the predictive power of the models. The three methods worked 
equally well with a slightly better performance of PLSR, which was eventually selected 
for further modelling. With respect to the transformations and resampling, the best 
results were obtained with vector-normalised spectra with ten nm spectral resolution. 
The prediction quality of the various constituents was very different. Best results were 
obtained for those elements directly related to the accident, e.g. heavy metals. Also 
within the heavy metal group a clear separation could be observed. The quality of 
prediction improves with the stability of the heavy metals; the very mobile elements 
such as Cd, Cu and Zn cannot be predicted significantly, because they were not directly 
linked to the tailings sludge. 

The application of chemometric models to field and image data was only partially 
successful. Field spectra were strongly influenced by surface crusts, but calibration with 
field spectra provided good results. Instead, the prediction of heavy metals with image 
spectra failed due to the strong influences of vegetation (green and dry), surface 
roughness and crusting (caused by pyrite oxidation) on a single pixel. 

Spectral mixture analysis (SMA) accounts for this heterogeneity in the pixels and 
allowed a spatial estimation of contamination. Using an iterative approach with multiple 
endmember (EM) sets and standardised variables, it was possible to separate sludge 
related spectral information from background contributions. 

The semi-quantitative abundance information derived from could be turned into 
quantitative information incorporating the mixture series into the SMA. These results 
provided the link between sludge abundance and sludge weight, allowing as a 
consequence calculation of the amount of residual sludge per pixel, the acidification 
potential and other parameters important for remediation planning. Validation against 
an independent data set analysed with conventional methods showed that the results 
obtained from the image are very reliable and allow a much higher level of detail than 
the interpolation of the conventional data. In the subsequent year it was possible to 
identify jarosite mixed with copiapite and ferrihydrite as indicators for oxidation of 
pyrite; gypsum was detected as an indicator for neutralisation of acidity by the 
remediation efforts. 
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The application of laboratory, field and imaging spectroscopy for providing quantitative 
information about the contamination levels in their spatial context is a good 
complement to conventional methods. The advantage is the reduction of the time and 
labour-intensive geochemical analysis because after the model calibration, further 
samples can be analysed directly with the chemometric models. Furthermore, the spatial 
distribution can be mapped with imaging spectroscopy data helping in a more precise 
remediation planning. However, the availability of field and imaging spectrometers has 
today only experimental character, which limits at the moment the application as 
screening tool. 





 

Zusammenfassung 

 

Bei der Verwitterung von Abbraum aus der Erz-Förderung bilden sich oft saure 
Sickerwässer (engl. acid mine drainage) durch Oxidationsprozesse. Diese Sickerwässer 
können Schwermetalle mobilisieren, die mit den Erzlagerstätten assoziert sind, und 
Grundwasser und Fliessgewässer kontaminieren. Die Erfassung und Überwachung der 
Kontaminationsquellen ist langwierig und kostspielig wenn sie mit konventionellen 
Methoden (Bodenprobennahme und Laboranalytik) durchgeführt wird. Zudem geben 
diese punktuellen Messungen nur zu einem geringen Teil Einblick in die räumliche 
Verteilung der Kontamination. Häufig wird versucht durch geostatistische 
Interpolationsmethoden die räumliche Struktur besser zu charakterisieren. Die Qualität 
der Interpolation ist allerdings sehr stark von der Anzahl und der Verteilung der 
Probenpunkte beeinflusst. 

Reflektionsspektroskopie bietet eine sinnvolle Verbesserung zur Bereitstellung der 
gefragten Information. Ein Reflektionsspektrometer misst die von einem Objekt 
reflektierte Strahlung und erlaubt mit Hilfe von material-spezifischen Absorptionen 
Aussagen über dessen Zusammensetzung. Sie kann in der Regel ohne grössere 
Probenvorbereitung genutzt und sowohl im Labor als auch vor Ort eingesetzt werden. 
Darüber hinaus bieten luftgestützte abbildende Spektrometer, die ein 
Reflektionsspektrum für jedes Bildpixel erzeugen, die Möglichkeiten einer 
flächenhaften Darstellung. 

In der vorliegenden Studie wurde die Anwendung von Labor-, Feld- und abbildender 
Spektroskopie zur Kartierung und Quantifizierung der Kontamination durch 
schwermetallhaltigen Pyrit-Schlamm nach einem Minenunfall westlich von Sevilla 
(Spanien) untersucht. Durch den Dammbruch eines Staubeckens im April 1998 wurde 
eine Fläche von mehr als 4000 ha mit Flotationsrückständen verseucht. Angesichts der 
Nähe zum Doñana Nationalpark, der eines der wichtigsten europäischen Feuchtgebiete 
beheimatet, wurden umgehend grossräumige Reinigungsmassnahmen gestartet, die 
allerdings eine beträchtliche Restkontamination zurückliessen. Zur Charakterisierung 
dieser Restkontamination und deren Enwicklung in einem räumlichen und zeitlichen 
Kontext wurden 1999 und 2000 zwei Messkampagnen durchgeführt. Im 
Untersuchungsgebiet wurden umfangreiche Bodenproben gesammelt und deren 
Reflektion zuvor vor Ort mit einem Feldspektrometer gemessen. Zeitgleich fanden 
Befliegungen mit dem HyMap Sensor, einem abbildenden Spektrometer, statt. Die 
Bodenproben wurden im Labor auf ihre Gehalte an Schwermetallen, Schwefel, Eisen 
und sonstigen Elementen analysiert und erneut spektral vermessen. 

Die geochemischen Laboranalysen bestätigten die Ergebnisse anderer Forschergruppen, 
die vor allem für den Nordteil des Untersuchungsgebietes eine hohe Restkontamination 



xiv Zusammenfassung 

festgestellt hatten. Zwar verbesserte sich die Situation zwischen der ersten und der 
zweiten Messkampagne durch eine wiederholte Reinigungsaktion und weitere 
Sanierungsmassnahmen deutlich, aber in einigen Teilen kam es durch beginnende 
Oxidationsprozesse zu einer Mobilisierung der Schwermetalle; insbesondere die 
Gehalte von Arsen erhöhten sich im Bodenprofil beträchtlich. 

Für die Modellierung der Schwermetallgehalte mit Hilfe der Reflektionsspektren ist das 
Verständnis des Einflusses des Pyrit-Schlammes auf die Bodenreflektion von 
Bedeutung. Deshalb wurde eine künstliche Mischreihe erstellt, bei der nicht-
kontaminierte Böden aus dem Untersuchungsgebiet mit dem Pyrit-Schlamm in 
verschiedenen Gewichtsanteilen gemischt wurden. Mit Erhöhung des Schlamm-Anteils 
konnte ein starker Rückgang der Gesamtalbedo und die Ausbildung einer weiten 
Eisenabsorptionsbande bei 1 µm beobachtet werden. Zwischen der Tiefe dieser Bande 
und dem Schlammgehalt bestand eine hohe Korrelation, die eine signifikante 
Bestimmung der Schwermetalle für die Labordaten ermöglichte. 

Die Labordaten und die Mischreihe bildeten die Grundlage für weitere Modellierungen, 
um die Bestimmung der Schwermetalle anhand der spektralen Reflektion zu verbessern. 
Neben multipler linearer Regression und „Partial Least Squares Regression“ wurden 
künstliche neuronale Netze getestet. Zur Verbesserung der Modellierungen wurden die 
Reflektionsspektren mit Hilfe von verschiedenen Methoden transformiert, um dadurch 
wichtige Absorptionsbereiche zu betonen. Ausserdem wurden die hochaufgelösten 
Bandbreiten zusammengefasst, um dadurch die Anzahl der Variablen in den Modellen 
zu reduzieren. 

Die Ergebnisse der drei Modellierungs-Methoden waren insgesamt sehr ähnlich; 
aufgrund der etwas besseren und stabileren Ergebnisse wurde schliesslich „Partial Least 
Squares Regression“ für die weitere Modellierung ausgewählt. Durch die 
Transformation der Spektren liessen sich die Ergebnisse deutlich verbessern; generell 
erwiesen sich vektor-normalisierte Spektren mit einer Bandbreite von 10 nm am 
vorteilhaftesten. Allerdings zeigten sich beträchtliche Unterschiede in der 
Modellierungsqualität für die verschiedenen Elemente. Die besten Ergebnisse wurden 
für diejenigen Elemente erzielt, die direkt mit dem Unfall im Zusammenhang stehen, 
vor allem Schwermetalle. Aber auch innerhalb dieser Gruppe gab es starke 
Unterschiede. Dabei erhöhte sich die Qualität der Ergebnisse mit der Stabilität (im 
Sinne von Mobilisierbarkeit) der Schwermetalle. So wurden für die stabilen Elemente 
Pb (R²=0.942), Hg (R²=0.932) und Sb (R²=0.924) die besten Ergebnisse erzielt. 
Hingegen konnten Cd, Cu und Zn nicht zufriedenstellend berechnet werden, da sie 
früher in Lösung gehen und dementsprechend nicht so stark mit dem Pyrit-Schlamm 
korrelieren. Eine Übertragung der Labormodelle auf die Feldspektren und die 
abbildenden Spektrometerdaten war nur bedingt möglich. Die vor Ort gemessenen 
Spektren waren stark von dünnen, oberflächlichen Krusten verändert, die sich negativ 
auf die Qualität der Ergebnisse auswirkten. Die Anwendung auf Spektren des 
abbildenden Spektrometers war nicht erfolgreich, da der Einfluss von grüner und 



 xv 

trockener Vegetation, Oberflächenrauhigkeit und Oberflächenverkrustung auf das 
Reflektionssignal zu stark waren. 

Auf eine derartige Heterogenität im Subpixelbereich zielt die spektrale 
Mischungsanalyse (engl. Spectral Mixture Analysis) ab, mit der sich die Anteile der 
Materialien, die zur Reflektion eines Pixels beitragen (die sog. Endmember), bestimmen 
lassen. Dadurch können die Restschlammgehalte in dieser Studie flächenhaft dargestellt 
werden. Es wurde ein iteratives Verfahren mit multiplen „Endmembern“ benutzt, was 
den Vorteil hat, dass für jedes Pixel spezifische Lösungen gefunden werden können. 
Ausserdem wurde anstelle von Reflektionswerten mit standardisierten Spektren 
gearbeitet, die, wie schon bei der vorher beschriebenen Modellierung, den spektralen 
Kontrast zwischen belasteten und unbelasteten Böden verstärken. Diese 
semiquantitativen Ergebnisse konnten mit Hilfe der spektralen Mischungsanalyse der 
künstlichen Mischreihe in quantitative Information umgewandelt werden. Die 
Entmischungsergebnisse zeigten eine klare nicht-lineare Beziehung zwischen 
prozentualem Anteil am Reflektionssignal und Gewichtsprozent des Pyritschlamms. 
Über diese Beziehung, die sich durch ein Polynom zweiten Grades abbilden liess, 
konnten sowohl Karten der Schwermetalle und anderer Elemente wie auch der 
Restschlammenge erstellt werden. Mit Hilfe von geochemischen Modellen liess sich 
daraus das Versauerungspotential, das für die Sanierungsmassnahmen von Bedeutung 
ist, bestimmen. Die Daten wurden mit Hilfe eines unabhängigen, konventionellen 
Datensatzes validiert und zeigten, dass die aus den Bildspektren abgeleiteten Gehalte 
sehr gut mit den konventionell bestimmten Werten übereinstimmen und gegenüber 
einer Interpolation mit dem konventionellen Datensatz ein sehr viel genaueres Bild der 
Restkontamination zeichnen. 

Im darauffolgenden Jahr konnten mit Hilfe der spektralen Mischungsanalyse 
verschiedene Indikatorminerale für die Oxidation von Pyrit identifiziert werden. Diese 
Sekundärminerale fanden sich vor allem in jenen Bereichen, in denen die 
Sanierungsmassnahmen noch nicht abgeschlossen waren. Sie waren dort mit Gips 
assoziiert, der durch die Reaktion der freigesetzten Säure mit dem eingebrachten Kalk 
entstand und eine direkte Folge der Sanierungmassnahmen ist. 

Insgesamt bietet der kombinierte Einsatz von Labor-, Feld- und abbildender 
Spektrometrie zur Kartierung und Quantifizierung der Kontamination nach einem 
Minenunfall eine sinnvolle Ergänzung zu herkömmlichen Untersuchungsmethoden. Der 
Vorteil des Einsatzes liegt in der Reduzierung der zeit- und kostenintensiven 
geochemischen Laboranalyse und geostatistischer Modellierung, denn nach der 
Kalibrierung können weitere Proben direkt mit den chemometrischen Modellen 
bestimmt werden. Diese Bestimmung kann unter Umständen sogar direkt vor Ort 
durchgeführt werden. Darüberhinaus lässt sich die räumliche Verteilung mit Hilfe der 
abbildenden Spektrometerdaten kartieren, was eine zielgerichtetere Planung der 
Sanierungsmassnahmen ermöglicht. Abbildende Spektrometer könnten auch für die 
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weitere Überwachung von Oxidationsprozessen und potentieller Versauerung im 
betroffenen Gebiet eingesetzt werden. 

Um allerdings im Falle eines Unfalls als Screening und Monitoring-Tool zur Verfügung 
zu stehen, müssen vor allem auch flugzeuggetragene abbildende Spektrometer schnell 
und zuverlässig bereitgestellt werden können. Im Moment ist das in Europa noch nicht 
hinreichend gewährleistet, da die Anzahl von wirklich operationell einsetzbaren 
Systemen noch zu gering ist. Für das Monitoring könnten hingegen weltraumgestützte 
hyperspektrale Systeme bei gleichzeitig relativ hoher räumlicher Auflösung neue 
Möglichkeiten eröffnen. 



 

1 Introduction 

 

Mining for the extraction of metals has been used in many areas throughout the world 
and in some places for thousands of years. Today mining is, on the one hand, an 
important sector in global economy, and, on the other hand, mining activities are some 
of the most far-reaching and intensive disturbances of the ecological balance on a 
worldwide basis (Sol et al. 1999). Mining operations generally progress through 
different stages, starting with the exploration for assessment of the size and economic 
value of the deposit to the exploitation by extraction of minerals and disposal of 
overburden and waste rock. The extracted ore is processed by smelting or refining on 
site or at a different location. Finally, at the end of its productive phase the mine is 
closed. At every stage of operations mining activities have a wide range of 
environmental impacts. They can be the source of both acute pollution, releasing large, 
often concentrated amounts of pollutants in a short time (due to accidents) and diffuse 
pollution, a rather constant emission of relatively low concentrations during a longer 
period of time (Table 1.1, Sol et al. 1999). 

Management of tailings, which is a ground rock waste product that remains after the 
desired metal minerals have been removed from the ore, is one of the most significant 
environmental aspects of mining operations (World Bank 1998). Failure of tailings 
containments can have serious adverse environmental consequences. Only in the past 
ten years, a large number of mining accidents have happened worldwide; some of them 
will be mentioned in the following paragraph to explain the far-reaching consequences 
they may have on the environment and human health: In 1992, a damburst at the 
Summitville Gold Mine in Colorado/USA caused the complete loss of aquatic life along 
a 25 km stretch of the Alamosa River. In 1993, masses of sludge and rubble buried a 
gold miner’s settlement in Ecuador causing the deaths of 24 people. In 1994, a similar 
accident at the Harmony Gold Mine in South Africa killed 17 people and destroyed 80 
houses. In 1995, 2.5 million cubic meters of cyanide solution from the Omai Gold Mine 
in Guyana contaminated the river Essequibo causing massive loss of aquatic life. In 
1996, on Marinduque Island in the Phillippines, 3 million tonnes of poisonous sludge 
from a copper mine flowed into the river Boac flooding 20 villages (ICOLD 2001). In 
1998, the collapse of the tailings pond in Aznalcóllar, Spain, left several thousands of 
hectares in the Guadiamar floodplain contaminated with pyritic sludge with high 
concentrations of trace metals, endangering the Doñana National Park (Grimalt et al. 
1999). In January 2000, cyanide contaminated water with some tailings were released in 
Baia Mare, Romania, into the Tisza river, a tributary of the Danube, killing all aquatic 
life up to its confluent with the Danube (UNEP/OCHA 2000). 
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Table 1.1. Potential environmental impacts of mining (Sol et al. 1999) 

Environmental impacts 

Destruction of natural habitat at the mine site and waste disposal site 

Destruction of adjacent habitats as a result of emissions and discharges 

Destruction of adjacent habitats arising from influx of settlers 

Changes in river ecology due to siltation and flow modification 

Alteration of water tables 

Change in land form 

Land degradation due to inadequate rehabilitation after closure 

Land instability 

Danger from failure of structures and dams 

Abandoned equipment, plant and buildings 

Pollution impacts 

Drainage from mining sites, including acid mine drainage 

Sediment run-off from mining sites 

Pollution from mining operations in riverbeds 

Effluent from mineral processing operations 

Sewage effluent from the site 

Oil and fuel spills 

Soil contamination from treatment residues and spillage of chemicals 

Pollutants leached from tailings, disposal areas and contaminated soils 

Air emissions from mineral processing operations 

Dust emissions from sites near living areas or habitats 

Release of methane from mines 

Occupational health impacts 

Handling of chemicals, residues and products 

Dust inhalation 

Fugitive emissions within the plant 

Air emissions in confined spaces from transport, blasting, combustion 

Exposure to asbestos, cyanide, mercury or other toxic materials 

Exposure to heat, noise, vibration 

Physical risk at the plant or site 

Resource Issues 

Effects on ground water and surface water resources 

Effects on fisheries 

Loss of forestry resources 

Agricultural land losses 
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In Europe particularly the Aznalcóllar and Baia Mare accidents have increased public 
awareness of the environmental and safety hazards of mining activities, which since a 
long time have been considered a major problem in the mining provinces in North 
America and Australia (U.S. Bureau of Mines  1994, Harries 1997). The U.S. 
Environmental Protection Agency (EPA) estimated that 45 billion tons of mining and 
mineral processing waste had been generated in the United States and about one billion 
tons would continue to be generated each year (U.S. Environmental Protection Agency 
1985). Much of this waste is left in inactive or abandoned mine sites, whose number 
(between 100 000 and 500 000) and extent varies widely with often little or no field 
evidence (Peters 1995). However, metal mining activities are also an issue within 
Europe with considerable metal mining activity carried out in four EU member states 
(Finland, Greece, Sweden and Spain), while minor mining sites are active in Austria, 
France, Ireland and Portugal. In other Member States, past mining activities have left 
abandoned mines and waste disposals that need to be monitored and managed to avoid 
environmental damages. Solely in Europe, evidence of significant accidental pollution 
problems caused by leakage and spillage from mine tailings lagoons and by abandoned 
mines (acid mine streams) can be found in at least five Member States (Spain, Italy, 
Portugal, Sweden and United Kingdom) (Sol et al. 1999). In central and eastern Europe 
the mining sector plays even a more important role. The production in the former 
communist countries, some of them becoming EU member states, was very high until 
the collapse of the political and economic system in 1989 and the beginning of the 
nineties. Many mining sites were closed abrupt without adequate measures to prevent 
pollution. In spite of the significance of the problem and of the existence of active or 
inactive mining sites throughout the European territory, no inventory of active and 
abandoned metal mining sites exists at a European level, nor have common guidelines 
for the national mining legislation been defined so far. Moved by the latest accidents in 
Europe, the European Commission started in March 2001 a debate with the 
Communication COM 664 on “Safe operation of mining activities: a follow-up to recent 
mining accidents” (European Commission 2000), in order to amend existing EU 
environmental legislation. The objective of the debate is the definition of measures that 
can prevent the negative impacts of mining activities, and the development of a new 
element of EU environmental legislation regulating all the aspects of mining waste 
management, in particular the operation of tailings lagoons. In general, the literature 
reveals a lack of precise spatial and substance-dynamic information and an urgent need 
for an inventory of metal mining activities and abandoned mine sites. Special interest 
should be given to those sites producing acid mine drainage (AMD), which is the result 
of iron sulphide oxidation (Nordstrom 1982). Production of broken waste rock and 
tailings by mining operations expose large amounts of pyrites and other sulphides to the 
effects of water and oxygen. Pyrite oxidation is one of the most acid producing natural 
weathering processes, in which heavy metals (HM) are mobilised and released into the 
river system and the groundwater. It is these dissolved HMs that constitute the most 
dangerous emissions of metal mining, due to their strong toxicity to most forms of life. 
Where pyrite oxidation is active, the impact is highly visual – colours of yellow, orange 
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and red line affected streams (Anderson & Robbins 1998, Figure 1.1). This led early on 
to the application of remote sensing for mineral identification and analysis of mining 
impacts. Early studies by Alexander et al. (1973), Chase & Pettyjohn (1973) and 
Schubert & McLeod (1973) described the use of Landsat1 MSS data (ERTS-1) to 
evaluate the damage caused by strip mining in Maryland, Ohio and Pennsylvania. Peters 
(1983) used airborne multispectral data for detection of the iron minerals goethite and 
hematite. Further development of sensor technology led to the construction of imaging 
spectrometers, which have been used for mineral exploration since the eighties (Collins 
et al. 1983). However, they are also used for the assessment of mining impacts and the 
remediation of abandoned mining sites. The identification and mapping of acid 
generating minerals using imaging spectroscopy is documented in a large number of 
papers (e.g. Fenstermaker & Miller 1994, Swayze et al. 1996, Farrand 1997, Farrand & 
Harsanyi 1997, Clark et al. 1998, Reinhäckel & Krüger 1998, Ferrier 1999, Swayze et 
al. 2000). 

 

 

Figure 1.1. Acid Mine Drainage at Rio Agrio, Spain 

 



 

2 Objectives and workflow of the study 

 

The principal objective of this study is to assess the potential of the combined 
application of ground and airborne reflectance spectroscopy for the mapping, impact 
assessment and monitoring of metal mining related contamination. The work is based 
upon data sets collected in the Aznalcóllar test area that had been affected by a tailings 
pond accident releasing large amounts of heavy metal bearing pyrite sludge into the 
environment. 

Given the large volumes and extent of contaminated materials in mining waste a strong 
demand for spatial information about distribution and severity of environmental 
pollution from metal mining is given. 

Previous studies (e.g. Swayze et al. 2000) showed that the major advantage of 
reflectance spectroscopy and particularly imaging spectrometry is the ability to provide 
a synoptic view on the spatial distribution of minerals indicating semi-quantitatively the 
occurrence of hazardous waste material released to the environment. Furthermore, it 
offers the potential to assess the state of the processes related to AMD based on the 
diagnostic absorption features in the spectral reflectance signatures of secondary 
minerals formed during these processes.  

This may particularly help to overcome typical problems of ground surveys due to the 
discontinuous spatial distribution of contaminated material creating problems in 
geostatistical interpolation and spatialisation of geo-chemical models. Thus, 
conventional geochemical modelling of contamination typically based on raster 
sampling, laboratory geochemical analysis and geostatistical spatial modelling, may be 
planned in a more focussed, time and cost efficient way and complemented by more 
frequent up-dates by information derived from multiple scale reflectance spectroscopy. 
This is particularly important in the case of mining accidents with a sudden release of 
contamination affecting wide areas as happened in the Aznalcóllar area. In such cases 
fast responses to minimize the impact of the accident are required. 

Reflectance spectroscopy could be used for a fast screening of residual contamination 
by providing quantitative information about the concentration of contaminants in their 
spatial context. This would allow estimation of the potential acidification risk and 
acidity buffering needs as input for a remediation plan. Furthermore, repeated airborne 
surveys could provide evidence for acidification through identification of indicator 
minerals for AMD. Hence, reflectance spectroscopy provides faster spatially and 
temporally more detailed information than can be obtained with conventional 
assessments within the same time. Once applied successfully, this method could be 
adapted to other mining accidents. 
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On the small-scale level reflectance spectroscopy can be applied as a fast non-
destructive method for the characterization and quantification of the contamination. In 
agriculture and food research it is used for similar purposes and became known as near 
infrared analysis (NIRA) (Williams & Norris 1987, Massart et al. 1998, Hildrum et al. 
1992). It is based on the assumption that the concentration of a constituent is 
proportional to a combination of several absorption features. Relatively few researchers 
have extended the methods for the extraction of soil/sediment related information. Ben-
Dor & Banin (1990, 1994) have used this method for the prediction of different soil 
constituents. Malley & Williams (1997) determined the heavy metal contamination in 
lake sediments using multivariate methods. Udelhoven & Schütt (2000) used artificial 
neural networks for the chemical characterization of sediments. Kooistra et al. (2001) 
used partial least squares regression for the estimation of soil contamination in 
floodplain sediments. This study applies different multivariate methods and artificial 
neural networks to predict soil constituents related to the mining accident. 

The macroscopic level, which obviously refers to the imaging spectroscopy data, is 
analysed with Spectral Mixture Analysis (SMA), which is a means of determining the 
relative abundances of materials represented in multispectral imagery based on the 
materials’ spectral characteristics. The reflectance at each pixel of the image is assumed 
to be a linear combination of the reflectance of each material present within the pixel 
(e.g. Adams et al. 1986; Thomson and Salisbury 1993, Hill et al. 1995, Roberts et al. 
1998). In this study SMA is applied to the image data for sub-pixel determination of 
residual sludge and sludge derivatives, which result from sludge oxidation. 

Using two different approaches, multivariate calibration and spectral mixture analysis, a 
quantitative estimation of soil contamination with laboratory and field spectra as well as 
with hyperspectral airborne imagery to obtain precise soil contamination information is 
envisaged. 

In order to reach the principle objectives special emphasis should be given to the 
following points: 

• Exploration of correlation between soil constituents and soil spectral reflectance 
with a special emphasis on components related to the Aznalcóllar mining 
accident. A particular interest focuses on the investigation of properties which 
are not directly related to spectral absorption features, but which are highly 
relevant to describe the contamination status in an environmental context (e.g. 
heavy metals). 

• Development and test of models for the prediction of soil constituents with the 
help of reflectance spectra. The methods should be robust and simple in order to 
keep the models transferable to data measured in the field or with the imaging 
spectrometer. The methods include multivariate statistics and artificial neural 
networks. A detailed pre-processing precedes the modelling that takes advantage 
of different filtering and transformation methods to enhance important features. 
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• Assessment of the possibilities to transfer the developed models to spectra 
measured in the field and extracted from imaging spectroscopy data, which 
would allow production of contamination maps for the most important heavy 
metals (As, Cd, Cu, Hg, Pb, Sb, Zn) and driving variables for acidification (Fe 
and S). 

• Evaluation of spectral mixture analysis for extraction of abundances of residual 
sludge and its weathering products. The SMA is achieved with advanced 
unmixing approaches based on multiple endmember sets and standardised 
variables. 

 

The working steps necessary to derive the quantitative spatial information about the 
residual contamination are outlined in Figure 2.1. The work consists of two parts, the 
laboratory/field spectral analysis and the imaging spectroscopy data analysis. The 
division in two parts is imposed mainly by the different data processing steps. However, 
there are several links between laboratory/field data analysis and imaging spectroscopy 
data analysis. 

For the laboratory/field spectral analysis, soil samples collected during the field 
campaigns were geochemically analysed and spectrally measured (in situ and in 
laboratory). This data set, consisting of chemical concentrations and spectral 
reflectance, was used for the estimation of the soil constituents based on the spectral 
properties of the samples. Field spectra were used for the in-flight calibration of the 
imaging spectroscopy data and were inserted into a spectral database as potential 
endmembers for the SMA. Furthermore, an artificial mixture series was built with soil 
samples and pure sludge. This data set was analysed using spectral mixture analysis in 
order to obtain the relation between sludge abundance and concentration of heavy 
metals. 

The imaging spectroscopy data were radiometrically and geometrically corrected and 
converted into georeferenced reflectance images. SMA was used for the determination 
of abundances of different endmembers that contribute to the reflectance of a pixel. The 
derived sludge abundance maps show the spatial distribution of sludge visible at the 
surface. The relation between sludge abundance and heavy metal concentration derived 
from the mixture series could then be used for calculation of contamination maps. 
Based on a geochemical model the potential acidification risk and acidity buffering 
needs could be estimated as input for a remediation plan. For data of the following year, 
the adapted SMA focused on identification of indicator minerals for acidification. 
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Figure 2.1. Flowchart of fundamental work steps and products of the thesis 

 

Deriving quantitative information about soil contamination with reflectance 
spectroscopy comprises a wide range of competences. On the one hand the geochemical 
processes and the remediation actions related to the accident have to be understood. On 
the other hand the derivation of quantitative information from laboratory, field and 
image data has to be managed. Therefore, the first chapter introduced to the topic of 
metal mining related contamination and the contribution of remote sensing for 
identification of such contamination. 

The following chapter 3 presents the Aznalcóllar case study. It provides general 
information about the study area, the mining activities and the processes related to 
pyrite oxidation and contamination of heavy metals. Furthermore, the accident and its 
impact are described and finally the remediation work and concept is explained. 

Chapter 4 introduces the fundamentals of reflectance spectroscopy, which are necessary 
to understand how reflectance spectroscopy can provide qualitative and quantitative 
information about materials. The spectral properties of materials related to the study are 
described and the use of imaging spectroscopy is presented. 
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Chapter 5 starts with a description of the data set used in this study. This includes the 
data collection in the field, the acquisition and the pre-processing of the hyperspectral 
imagery and the methodologies, which were used to chemically analyse the soil samples 
and to measure the spectral data including the corrections of these data. The chapter also 
includes the presentation of the results of the geochemical laboratory analysis. 

Chapter 6 deals with analysis of the relationship between soil composition as derived 
from the geochemical analysis and soil reflectance measured in the laboratory. It 
presents and analyses an artificial mixture series of sludge and soil to assess the 
influence of sludge on the soil reflectance. The chapter describes the methods used for 
the prediction of soil constituents based on their spectral reflectance, and finally, it 
presents and discusses the results obtained. 

Chapter 7 shows the application of spectral mixture analysis to the imaging 
spectroscopy data for derivation of the spatial distribution of the residual contamination 
and the identification of oxidation products. 

Chapter 8 demonstrates how the derived abundances can be turned into quantitative 
maps of heavy metals, potential acidification risk and other parameters important in the 
remediation planning process and validates the results with an independent data set. 

Finally, in chapter 9 the results are evaluated and recommendations are given for the 
application of reflectance spectroscopy as a screening tool for future cases of accidental 
contamination related to metal mining. 

 





 

3 The Aznalcóllar case 

 

The Aznalcóllar mine-tailings spill was one of the largest environmental pollution 
accidents recorded in Spanish history (Grimalt et al. 1999, WWF 2002). The impact of 
the accident was particularly severe, because it occurred in the surroundings of the 
Doñana National Park, one of the biggest wetlands in Europe and an important refuge 
for migrating waterfowl. The park is protected by national and international laws and 
conventions (UNESCO - Man and Biosphere Reserve, Natural World Heritage Site and 
RAMSAR site (Wetland of International Importance), UNESCO 1972, 1994). 

The study area is located in the region of Andalucía, SW Spain, approximately 30 km 
west of Sevilla. The Aznalcóllar mining area is located on the foothills of the Sierra 
Morena. From Aznalcóllar, the contaminated area extends southbound along the Rio 
Agrio and Rio Guadiamar, the last tributary of the Rio Guadalquivir (Figure 3.1). 
 

 
Figure 3.1. Sketch of the study area 

 

3.1 The Aznalcóllar Mine – Geological setting and mine operation 

The Aznalcóllar mine is part of the Iberian Pyrite Belt (IPB), which extends from 
southern Portugal into central south Spain on 250 km length and 25-70 km width. The 
IPB is considered one of the most important reserves of non-ferrous metals in Europe, 
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that include the massive sulphide deposits of Rio Tinto, Aljustrel, Neves Corvo, 
Tharsis, Sotiel and Aznalcóllar.  

All these deposits are typical representatives of so called Volcanogenic Massive 
Sulphide deposits (VMS). VMS belong to the large class of concordant massive 
sulphide deposits. They typically, if not exclusively occur within geological domains, 
which can be defined by the presence of submarine volcanic rocks (Lydon 1988). The 
paleo-geographic tectonic setting of the IPB is considered a hercynian convergent plate 
margin in island arc or continental margin position. Although the immediate host rocks 
to the deposits are most commonly associated with rocks of direct volcanic origin, other 
sedimentary marine lithologies with no volcanic affiliation such as shales or greywackes 
are by no means rare (Lydon 1988). 

This typical lithology is clearly represented in the hercynian sequence of upper 
paleozoic rocks of the South Portuguese Zone, which hosts the Pyrite Belt. It consists of 
Late Devonian to Middle Carboniferous rocks, covered in places by Tertiary-
Quarternary terrace and alluvial deposits (Figure 3.2). According to Olivera (1990), the 
IPB can be divided into a southern parautochthonous branch and a northern 
autochthonous branch. For the southern branch hosting the mine the successions are 
relatively well established and can be distinguished in three litho-stratigraphic 
formations: 

1. Phyllitic Quarzite (PQ) formation – late Devonian: 

• shale and quartz sandstone, rare conglomerate and a 30 m thick top 
sequence containing bioclastic carbonate lenses and nodules with fauna 
and conodonts from middle to late Famennian  

2. Volcano-Sedimentary (VS) sequence – late Famennian to early late Visean: 

• The thickness of the VS varies between 100 and 600 m, but only exposed 
in the IPB. The VS sequences are: 

o VA1 a lowermost rhyolitic sequence with fine to coarse-grained 
pyroclastics and lava 

o VA2 a second rhyolitic sequence with pyroclastics and lava 

o VA3 a third rhyolitic sequence with reworked tuff and siliceous shale 

• Basic lava, locally pillowed, intercalated between VA1 and VA3; basic 
dykes and sills injected into the lower part of the complex probably 
represent feeder zones 

• A bed of purple-blue shale is orming a marker horizon immediately 
below VA3 

• A pelite black shale and sandstone sequence, which contains beds of 
jasper and rare limestone, interstratified with VA1 and VA2 volcanics. 

3. Turbidite formation – Culm facies or Baixo Alentejo flysch group: 
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• The Turbidite formation is forming a detrital cover graduating in SW 
direction and is lying diachronoussly over the other series. Several basin 
formations are distinguished on the basis of sedimentological and 
paleontological criteria. 

The massive sulphides are hosted by the VS sequence, either directly in the black shale, 
which is the most common situation, or resting on acidic volcanic facies, though 
commonly separated from the acidic volcanics by a thin pelitic layer. 

 

 
Figure 3.2. Major structural units and tectonostratigraphic domains in the South Portuguese Zone 
and location of the major volcanogenic massive sulphide deposits of the Iberian Pyrite Belt (from 
Leistel et al. 1998) 

 

The Aznalcóllar mining district is located on the eastern edge of the Iberian Pyrite Belt 
(IPB) (Figure 3.3). The PQ crops out mainly N of the mining complex with tectonised 
contacts with the overlying VS sequence. The characteristic lithofacies include 
alternating Devonian shales and sandstones. 

The VS complex is present in Aznalcóllar in two sequences: the Southern Sequence 
(SS) and the Aznalcóllar-Los Frailes Sequence (AFS). The SS is located outside the 
mineralised area and is mainly pelitic, containing some carbonate rocks and basic 
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volcanites. The AFS comprises the massive sulphides in the study area. The sequence is 
subdivided into two felsic sub-units, known as Upper and Lower Sequences. They are 
correlated with the two main volcanic episodes in the area. In the Lower Sequence 
crystalline tuffs, vitric, tuffs and black shales with massive sulphides can be 
distinguished. In the Upper Sequence dacite porphyries, purple tuffites and felsic 
epiclastites are found. 

 

 
Figure 3.3. Geological Map of the Aznalcóllar mining district (from Almodóvar et al. 1998) 

 

As in other deposits in the IPB, the massive sulphides are characterised by a limited 
number of major minerals (pyrite, sphalerite, chalcopyrite, galena) together with a wide 
variety of minor species (Strauss 1965, Marcoux et al. 1996, Almodóvar et al. 1998). 

According to their mineral composition, three ore types can be distinguished in the area: 
polymetallic, pyritic and cu-pyritic. Pyrite is the most common mineral in all three 
types, showing a wide range of textures including framboidal, colloform, replacement, 
banded, idiomorphic and recrystallisation. The polymetallic ores are characterised by 
sphalerite, and galena with minor portions of tetrahedrite, arsenopyrite, chalcopyrite and 
less frequent minerals like bournonite, boulangerite, stannite and cassiterite. The cu-
pyrites consist of chalcopyrite and different Bi-minerals like native bismuth, 
bismuthinite, nuffieldite, Bi-meneghinite and jaskoskiite (Almodóvar et al. 1998). These 
associations are, however, rare in massive sulphides and more common in the 
stockwork zones. 
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More detailed information on the geology of the IPB is found in the review of Leistel et 
al. (1998); the Aznalcóllar mining district is described detailed in Almodóvar et al. 
(1998) and the references therein. 

In the IPB mining activities are widely spread and some mines have been in operation 
since Roman times. Boliden-Apirsa, a multinational Swedish-Canadian-Spanish 
consortium had acquired the Aznalcóllar mine in 1987, while the mine had been in 
exploitation for a considerable number of years already. In 1996, a new opencast pit 
was opened with an ore body of an estimated potential of 50 million tons and the 
planned annual production was 400,000 tons of concentrate. 

The mine produces zinc-, silver-, lead- and copper-concentrates from a pyritic ore body. 
The ore, which also contains arsenic, cadmium, thallium and other metals in lower 
concentrations, is broken in the mine installations and milled down to a rather fine 
grain. Then, different metal compounds are separated from this fine-grained ore with 
the help of a flotation process, where water is used, to which sulphur dioxide, calcium 
hydroxide, copper-sulphate-pentahydrate and an organic compound are added as agents, 
in order to promote flotation. 

This extraction procedure produces huge amounts of acidic waste and tailings. These 
tailings were discharged into an artificial pond. The pond covered a surface of about 1.5 
km² and contained, at the time of the accident, about 31 million tons of sludge. Around 
this pond, a dam had been erected in 1974 to contain the tailings; the dam was regularly 
increased, as more quantities of tailings were added. The main material that was used 
for the construction of the dam came from the mining activity itself. At the time of the 
accident, the dam had an altitude of approximately 25 m. 

The main aspects to be controlled in such dams are wall resistance and water draining. 
Poor structure and resistance of the dam or formation of water lenses by inadequate 
control of water drainage may lead to rupture of the tailings reservoir under 
overpressure of the water pockets. Aguilar Campos had already reported these problems 
in 1995 for the Aznalcóllar dam (in Grimalt et al. 1999). Already several times before 
the last accident heavy metal pollution by mine effluent leaks occurred in the Agrio and 
Guadiamar rivers (Cabrera et al. 1984, 1987, Arambarri et al. 1996). 

 

3.2 Geochemical processes and hazards of metal mining waste 

As mentioned before, mining of metallic sulphide ore deposits, like the deposits of the 
IPB, generates huge amounts of mining waste. The waste produces acidic water through 
chemical reaction of surface water with sulphur-bearing minerals (mainly pyrite), 
resulting in sulphuric acid. HMs can be leached from natural and waste rocks that are 
exposed to the acid water. AMD and the related HM mobilisation is a major threat to 
the quality of water and soil resources throughout the world (USDA Forest Service 
1993). 
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3.2.1 The pyrite weathering process 

The formation of AMD is a complex geochemical microbially mediated process that is 
controlled by several factors. AMD is produced primarily by the oxidation of the iron 
disulfide mineral pyrite. A complex series of chemical reactions is initiated when 
surface mining activities expose waste rock to an oxidizing environment. These 
reactions are analogous to geologic weathering, which takes place over extended time-
periods (hundreds of years). However, the rates are orders of magnitudes faster than in 
natural weathering systems. The accelerated rates release huge amounts of acidity, 
which allows the associated HMs to get mobile and releases them into the environment. 
The sequence of pyrite reactions was described by Singer and Stumm (1970): 
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The first equation (Eq. 3.1) describes the reaction of pyrite with water and oxygen to 
produce ferrous iron, sulphate and acidity. In the second step (Eq. 3.2) ferrous iron is 
converted to ferric iron. This second reaction term has been termed the “rate 
determination” step for the overall process (Singer and Stumm 1970). This conversion 
is significantly accelerated by microbial action. Several species of bacteria that are 
widespread in the environment, principally Thiobacillus ferroxidans, have shown to 
increase the iron conversion rate by a factor of 100 to 106 times (Singer and Stumm 
1970, Nordstrom 1982). The activity of these bacteria is pH dependent with optimal 
conditions in the range of pH 2 to 3. Thus, once the pyrite oxidation and acid production 
has started, conditions for the bacteria are favourable to further accelerate the reaction 
rate (Nordstrom 1982). The third step (Eq. 3.3) involves the hydrolysis of ferric iron 
with water to form solid ferric hydroxide and the release of more acidity. As this 
reaction is controlled by pH, ferric hydroxide precipitates only at pH values above 3.5. 
The fourth step (Eq. 3.4) involves the oxidation of additional pyrite by ferric iron. The 
ferric iron is generated in the steps one and two. This cyclic propagation of acid 
generation continues until the supply of ferric iron or pyrite is exhausted (Nordstrom 
1982). 

The acidic water formed by sulphide oxidation can precipitate a large suite of relatively 
soluble and insoluble Fe-bearing secondary minerals, whose speciation is controlled by 
pH, degree of oxidation, moisture content, and solution composition (Bigham et al. 
1992). It is these secondary minerals that can be identified and possibly quantified with 
remote sensing techniques (Swayze et al. 1996). Therefore, they are described in more 
detail. Nordstrom (1982) described the overall sequence of mineral reactions for pyrite 
oxidation (Figure 3.4). 
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Figure 3.4. Overall sequence of mineral reactions for pyrite oxidation showing relationships 
between oxidising agents, catalysts and mineral products (from Nordstrom 1982) 

 

Hydrated ferrous sulphate minerals develop on moist pyrite surfaces. When moisture 
evaporates saturation is first reached with respect to melanterite (FeSO4·7 H2O), which 
possibly dehydrates to either rozenite (FeSO4·4H2O) or szomolnokite (FeSO4·H2O). If 
these minerals are still in contact with soil water or humid air and warm temperatures 
they oxidise to copiapite (Fe2+Fe4

3+(SO4)6(OH)2·2H2O). When iron becomes fully 
oxidised in acid mine waters it eventually reaches saturation with respect to either 
ferrihydrite (Fe(OH)3) or jarosite (KFe3(SO4)2(OH)6). Jarosite is stable at lower pH 
levels than ferrihydrite. When jarosite weathers or is exposed to dilute waters with 
higher pH it will gradually decompose to ferrihydrite or goethite (FeOOH). Goethite 
possibly dehydrates to hematite (Nordstrom 1982). The more soluble sulphates are most 
commonly formed during dry periods as evaporation promotes the rise of subsurface 
waters to the uppermost soil layers by capillary action. The water becomes 
progressively concentrated and the salts precipitate in an efflorescence, which is an 
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important step preceding the precipitation of more common insoluble minerals such as 
jarosite or goethite. Under more humid conditions, the ferrous ion is oxidised to ferric 
ion catalysed by bacterial action and eventually forms jarosite or ferrihydrite depending 
on the acidity. Because jarosite forms under more acidic conditions then do 
schwertmannite, ferrihydrite, and goethite, the relative distributions of these minerals 
can provide a remote sensing basis for locating potential acid producing areas (Swayze 
et al. 2000). 

The overall quality of the weathering products is a product of two competing processes: 
the formation of acidity from pyrite weathering and the generation of alkalinity from 
dissolution of carbonates and other basic materials. The acid-producing process can 
proceed very rapidly with few chemical constraints. In contrast, dissolution or reaction 
rates of many common minerals are generally slow due to solubility limitations. 
Production of alkalinity tends to attain a constant value or level off with time so that the 
rate of acid production may commonly exceed the production of alkalinity. 

More detailed description of pyrite weathering and AMD can be found e.g. in Alpers & 
Blowes (1994) or Plumlee & Lodgson (1999). 

3.2.2 Toxicity and mobilisation of heavy metals 

Generally, ore deposits consist only of a certain number of major minerals, but with a 
large variety of secondary minerals. Massive sulphide ores are typically dominated by 
pyrite with associated sulphides of trace elements (e.g. Cu, Zn, Pb), which are often the 
actual mined commodity. These trace elements are also often referred to as heavy 
metals (HMs) if their density is more than 6 g/cm³ (Alloway 1999). For simplification, 
in this study also arsenic is included into the heavy metal group even if the density is 
less than 6 g/cm³. Among all chemical contaminants, trace elements are considered to 
be of a specific ecological, biological and health significance (Kabata-Pendias & 
Pendias 1984). Table 3.1 lists the ranges found in soils and the critical concentrations 
above which toxic effects may occur. 
 

Table 3.1. Ranges of natural occurence and critical concentrations of different trace metals 
(*Bowen H.J.M. 1979, ** Kabata-Pendias & Pendias 1992) 

Element Range*[ppm] Critical Concentrations**[ppm] 
As 0.1 – 40 20 – 50 
Cd 0.01 – 2.0 3 – 8 
Cr 5 – 1500 75 – 100 
Cu 2 – 250 60 – 125 
Hg 0.01 – 0.5 0.3 – 5 
Mn 20 – 10000 1500 – 3000 
Ni 2 – 750 100 
Pb 2 – 300 100 – 400 
Sb 0.2 – 10 5 – 10 
Zn 1 - 900 70 – 400 
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High concentrations of HMs do not necessarily impose an acute toxicity risk. In soils 
with a neutral or alkaline pH value, the solubility of HMs (and therefore their toxicity) 
is limited. However, with increasing soil acidity (e.g. caused by AMD), the trace 
elements get into solution. Cadmium becomes soluble already with values lower than 
pH 6.5. Table 3.2 lists the boundary values for beginning mobility for some trace metals 
(Blume & Brümmer 1991). 

 

Table 3.2. Boundary pH values for beginning mobility of trace metals (Blume & Brümmer 1991) 

Trace Element Boundary pH value 
As 4.5 – 4.0 
Cd 6.5 
Cr 4.5 – 4.0 
Cu 4.5 
Hg 4.0 
Ni 5.5 
Pb 4.0 
Sb 4.0 
Zn 6.0 – 5.5 

 

More detailed information on the behaviour and toxicity of different trace elements can 
be found in Kabata-Pendias & Pendias (1984) and Alloway (1999). 

Consequently, the complex process of mine waste weathering and particularly pyrite 
oxidation has strong potential to affect the environment and human health because the 
mobilised HMs associated with the mine waste may pollute soil and aquifers and thus 
eventually enter the food chain. Hence, a primary objective for mine waste management 
is to avoid or minimise the spread and the oxidation of the waste material at any time. 
This includes the handling during extraction, transport, processing and deposition. 

 

3.3 The accident 

Sometime during the night of the 24th and 25th of April 1998 a 50 m wide breach was 
opened in the dam of the tailings pond (Figure 3.5). Approximately 4 million m³ of 
acidic water and 2 million m³ of toxic sludge (1.3 to 1.9 million tons) were released into 
the Agrio and Guadiamar rivers. The sudden release overflowed the floodplain of both 
rivers approximately 400 m on both sides of the rivers, depending on the elevation of 
the different river terraces (Figure 3.6). The mud layer left after the flood accumulated 
40 km along the rivers with a thickness of 1.7 m in the surroundings of the dam and a 
few centimetres further down the river. The toxic flood affected an area of 4286 ha of 
land and the sludge covered an area of 2616 ha (Table 3.3, Coopers & Lybrand 1998), 
mostly agricultural land and flood or marsh plains (Figure 3.8).  
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Figure 3.5. Breach of the broken tailings pond dam (from Aguilar et al. 2000) 

 
Figure 3.6. Aerial view of Rio Agrio floodplain after the accident. View to NW (from Aguilar et al. 
2000) 
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Table 3.3.  Landcover types affected by the accident (Coopers & Lybrand 1998) 

Land type Area [ha] 
Herbaceous crops 999 
Herbaceous crops under plastic 172 
Fruit and olive trees 261 
Rice fields 481 
Marsh pastures 315 
Pasture 176 
Non-worked crop land 154 
Water flows, marsh and barren soil 1729 

 

While the toxic flow left 62 % of the spilled tailings in the first 13 km downstream from 
the broken dam, most of the toxic water was retained in the Entremuros area with 
several urgently constructed dams, but some of the released amount of toxic water was 
conducted through the Aguas Minimas channel towards Brazo de la Torre, a side arm of 
the Guadiamar, and were discharged directly into the Guadalquivir river. The fish and 
shellfish population in the watercourses died due to burial, gill blocking or the drastic 
change in water quality (decrease of pH to values near 3 and low dissolved oxygen) 
(Grimalt et al. 1999). 

From the measured concentrations in the sludge (Table 3.4, CSIC 1998, Simón et al. 
1998, Cabrera et al. 1999) it could be calculated that the remaining sludge layer 
contained an estimated 16 000 t of lead and zinc, 10 000 t of arsenic, 4000 t of copper, 
1000 t of antimony, 120 t of cobalt, 100 t of thallium and bismuth, 50 t of cadmium and 
silver, 30 t of mercury and 20 tons of selenium and other metals. Most of the metals 
occurred in insoluble sulphides, but oxidation processes of these sulphides started right 
after the accident (Figure 3.7). 

Table 3.4. Average chemical concentrations of the sludge released by the accident. Measurements 
taken immediately after the accident from different locations (CSIC 1998) 

Element Mean Concentration 
[ppm] 

Standard Deviation 
[ppm] 

Iron 34.9 [%] - 
Sulphur 38.1 [%] - 

Lead 7996.1 2364.1 
Zinc 7187.0 613.4 

Arsenic 3113.5 1066.4 
Copper 1993.2 195.5 

Antimony 699.8 214.6 
Barium 639.9 152.7 
Bismuth 68.6 20.7 
Thallium 54.2 12.6 
Cobalt 47.3 7.9 

Cadmium 29.4 5.3 
Mercury 3.3 0.9 
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Figure 3.7. Sludge layer at Vado de Quemas, 
approx. 30 km downstream (from Aguilar et 
al. 2000). Note the bright efflorescent crusts 
on top of the sludge, which are the first 
oxidation indicators. 

 

Figure 3.8. Area affected by the toxic spill 
(from WWF 2002) 
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3.4 Geo-environmental setting of the affected area 

An understanding of the environmental context is indispensable for a risk assessment of 
the contamination. The vulnerability of soils is strongly dependent on their buffer 
potential, which is strongly controlled by the background geology. Therefore, in the 
following paragraph an overview of the climatological, geomorphological, pedological 
conditions and vegetation and land use is given. 

The climate of the study area is a subhumid Mediterranean type with winter rains and 
harsh summer droughts. However, it still has some oceanic influence, which results in 
milder temperatures, higher air moisture and rainfall than further inland, although this 
influence is decreasing from South to North. The decrease in oceanic influence is 
overweighed by the terrain effects, which cause higher precipitation in the Sierra 
Morena area. The precipitation regime is characterised by a strong inter- and intra-
annual irregularity. Yearly precipitation averages 565 mm, but can exceed 1000 mm or 
stay below 300 mm. Most of the precipitation (80 %) occurs in the October to March 
period with December and January maxima approaching 90 mm and no rain for July 
and August. The monthly average temperatures vary from 9° C in December and 
January to 27° C in July and August with an absolute maximum exceeding 40° C 
(Figure 3.9, Consejería de Medio Ambiente 1999). 
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Figure 3.9. Climate diagram of Sanlucar la Mayor (Consejería de Medio Ambiente 1999) 
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The Guadiamar is the last big tributary to the Guadalquivir. However, it does not flow 
directly into the Guadalquivir, but splits up into the Brazo de la Torre arm, leading to 
the Guadalquivir, and the Caño de Guadiamar, which fed the salt marshes of the 
Marismas in case of floods. This circumstance is explained by the evolution of the 
Guadalqivir estuary, whose sediments forced the rivers continuously to change their 
riverbeds. Additionally, the anthropogenic influence has changed the net of 
watercourses in the last decades. 

From a lithologic point of view, the Guadiamar watershed consists of three well 
distinguishable units. The superior section of the fluvial system is inserted in the 
southern edge of the Sierra Morena, which is characterised by outcroppings of material 
from the superior Palaeozoic and a strong folding tectonics in sub-meridional direction 
(Consejería de Medio Ambiente 1999). In this unit the volcano-sedimentary complex 
penetrated with the sulphuric mineralisation that is mined at the Aznalcóllar mine and 
all along the Iberian Pyrite Belt. The middle section, the Campiñas and the Aljarafe, of 
the river basin is underlain by Miocene blue marls and yellowish calcareous sands from 
the Pliocene/Pleistocene transition, and on Quaternary materials associated with fluvial 
dynamics. The latter represent coarse to fine detrital facies of fluvial terraces and 
alluvial plains. The lower section, the Marismas, as well as parts of the middle section 
are dominated by Holocene clays and loam (Gallart et al. 1999, Consejería de Medio 
Ambiente 1999). 

The most recent distribution of sediments from a hydro-geomorphologic point of view 
is of particular interest for this work because a higher permeability may lead to a deeper 
intrusion of contamination. In the area affected by the mining accident, three sectors can 
be distinguished according to geomorphic characteristics and human impact. In the 
upper reach, along the first 15 km downstream from the tailings reservoir, the river 
comprises a 50 m wide, 2-3 m deep single meandering channel, and a 350 to 1000 m 
wide floodplain, which smoothly declines towards the main channel. It is built up 
mainly by point bar deposits, formed by gravels and medium to coarse sand textures, 
and overbank deposits with coarse to fine sand textures. Gravel and sand deposits are 
mined in open pits (Gallart et al. 1999). 

The second reach, between Las Doblas Bridge and Vado de Quema (15 and 30 km 
downstream the reservoir), is characterised by a sudden change to a lower valley 
gradient. The low flow channel is a 30 m wide and 4-5 m deep single meandering 
channel. This channel is limited by natural levees, which are typical for suspended load 
rivers. The floodplain is 300-700m wide and is built up mainly by overbank deposits 
with sand and silt textures. 

The lowest part affected by sludge reaches from Vado de Quema to Entremuros (30 to 
45 km downstream). Where the Guadiamar enters the marshland, the natural river 
divided into two branches; the Brazo de la Torre, which flows in the western direction 
to the Guadalquivir and the Caño de Guadiamar, which crosses the Doñana marsh 
lands. However, the natural river system has been changed drastically to allow 
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agriculture. The Brazo de la Torre arm was abandoned and a straight low flow channel 
with an artificial levee along the right side was constructed to prevent flooding. This 
channel opens at the former junction of Guadiamar-Brazo de la Torre into a 1 km wide 
channel, called Entremuros, which is 34 km long and conveys the waters of the 
Guadiamar directly into the Guadalquivir (Gallart et al. 1999). 

The flood produced by the failure of the tailings reservoir merely caused minor changes 
in river morphology due to the low gradient and the short flood peak discharge. The 
pyrite mud sedimentation generally occurred in the main channel and the floodplain. 
The flood wave reached the lower terrace, 4 m above the main channel, only at the 
confluent of Rio Agrio and Guadiamar. The pyrite thickness decreased from 50 cm at 
the reservoir to a few millimeters in the Entremuros area. The largest accumulations 
were found in the gravel pits. The impact of the clean up activities on the river 
morphology was much stronger. During the removal, also the topsoils with vegetation 
cover as well as most of the trees were removed, smaller fluvial landforms were 
destroyed and the main channel had to be transformed into an earth channel with a flat 
bottom and steep embankments (Gallart et al. 1999). 

Soils are a complex and dynamic system generated by diverse factors. The most 
important ones are lithology, climate and biocenosis. The lithology provides the basic 
material; the climate determines the existence and characteristics of certain biocenosis, 
the alteration and erosion processes and finally, the biocenosis controls the biochemical 
change, provides organic matter and protects the surface from erosion. The factor time 
has to be added in terms of duration and history; duration is related to the time the soil 
has for its development and the history is related to paleo-soils that were formed during 
different climatic conditions (e.g. terra rossa). According to these specifications, the 
soils in the study area correspond to the Mediterranean edaphic zone, which is 
particularly in Andalucia a very heterogeneous zone due to a highly variable lithology 
and mesoclimate (Alba 1991). Three different edaphic units can be separated in the 
study area: Sierra Morena, Campiñas and Marisma. 

The soils in the Sierra Morena are, apart from few calcitic outcrops, underlain mainly 
by silicatic material and form predominantly little developed soils with A-C type 
profiles. Leptosols and regosols are the most common. The leptosols are located in areas 
with very steep slopes and ridges that do not allow any accumulation of finer material 
and often show outcrops of bare rocks. The Regosols develop preferably on shists and 
granitic colluvial deposits. Depending on the parent material, they have a varying 
composition and are covered by Matorral comunities and, if agriculturally used, by 
olive groves or cereals. In less hilly terrain cambisols are common (Alba 1991). 

In the central study area, catenas dominated by calcaric cambisols are widespread on 
gentle slopes on the Miocene material of the edges of the Campiñas Altas. They are 
associated with calcaric Regosols in steeper terrain and with Vertisols on the clayey 
foothills of the slopes. Chromic Luvisols or Terra rossa are located on the Pliocene 
sands of the Aljarafe and the higher terraces of the Guadiamar. They are relictic soils 
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from the hot interglacial, when intense weathering liberates iron and allowed 
rubification of the cambisols. The Campiñas Bajas with their clayey Miocene/Pliocene 
parent material are characterised by Vertisols, which have a strong swelling capacity 
during the rainy season and the formation of deep cracks during the dry season. 

The Marismas are characterised by Fluvisols and Solonchaks, which had been subject to 
contamination already before the last accident (Cabrera et al. 1984, Ramos et al. 1994). 

With respect to the affected area, the major part of the soils are calcic and eutric 
Fluvisols with minor areas of calcic and eutric Luvisols, calcic Vertisols, calcic 
Regosols and calcic or vertic Cambisols (Simón et al. 1998). The affected soils react 
very differently to the contamination, depending on their physical characteristics and 
their chemical properties. The soils may act as a filter that retains, transforms or even 
degrades the contaminants and therefore play an important role for the expansion and 
the development of the contamination. According to Simón et al. (1998), the soils in the 
area generally show a favourable behaviour towards the contamination with neutral to 
alkaline pH regime and high cation exchange capacity. However, there are two areas 
with different contamination characteristics CSIC (1998). There is on the one hand the 
area from the Las Doblas Bridge to Entremuros with pH values above 6.5, elevated 
calcite, clay and salt contents, characteristics which generally favour the buffering of 
acidity and the fixation of heavy metals. On the other hand, there is the very 
heterogeneous area from Aznalcóllar to the Las Doblas Bridge. The pH values are 
ranging from lower than three to seven, which means that one finds hyper acidic, acidic 
and neutral environments. The texture is lighter and the calcite content much lower 
(CSIC 1998). This means that this area is much more susceptible to contamination. 

The natural vegetation shows a clear trisection in the N-S direction. The typical 
Mediterranean Matorral communities, predominated by low tree, shrub and herbaceous 
vegetation patterns, dominate the area north of Aznalcóllar. The vegetation cover is 
characterised by patches of Dehesa, oak and pine forests and different shrub 
associations (with Arbutus unedo, Pistacia lentiscus, Cistus ssp) (Consejería de Medio 
Ambiente 1999). 

In the central part from Aznalcóllar to Vado de Quema the natural vegetation is 
practically absent due to the intense agricultural land use. Depending on the substratum 
cork oak (Quercus suber) and stone oak (Quercus rotundifolia) would be predominant 
species. The few spots of trees are limited to the vicinity of the rivers and agriculturally 
unusable land. The natural riparian vegetation is a gallery forest with poplar, willow, 
elm, ash and other trees, but in many areas, this typical Mediterranean forest was 
substituted by eucalyptus plantations. In the vicinity of Aznalcázar and Villamanrique 
de la Condesa extended pine forests are found (Consejería de Medio Ambiente 1999). 
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Figure 3.10. Soil map of the study area (derived from 'Mapa de suelos de Andalucía 1:400 000) 
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In the lower part, the natural vegetation consists of aquatic (reed, sedge) and halophytic 
(Tamarix ssp., Salicornia ssp.) vegetation. As well as the central zone, also the 
Marismas have been changed drastically due to agricultural land use. The natural 
vegetation in the area is differentiated in three types according to the level of 
inundation. The upper Marisma is dominated by Salicornia ssp. vegetation. Pastures 
characterize the middle Marisma, which is not affected by periodical inundations. The 
lower Marisma finally, with the highest humidity, is found in depressions and old 
abandoned water channels. The water in these depressions is often covered with swamp 
vegetation (García Novo (1981), Consejería de Medio Ambiente 1999). 

As mentioned before, the study area is used intensively for agricultural production. 
Hence, the natural vegetation is repelled to small islands within the agricultural matrix. 
The central part between Aznalcóllar to Vado de Quema is dominated by dry land 
agriculture (Secano) with Crops, the areas in the South and along the river are 
characterised by irrigated fields (Regadio) with corn, sugar beets, cotton and rice. 
Furthermore, orchards and olive groves are common on the plateau of the Aljarafe 
(Consejería de Medio Ambiente 1999). 

 

3.5 Clean up/remediation 

The only way to prevent severe soil and ground water contamination, atmospheric 
pollution due to wind transportation of dried tailings and further surface water 
contamination due to soil lixiviation was the removal of the material left by the toxic 
flood, the neutralisation of the retained waters and the decommissioning of the failed 
dam. 

The acidic water with high concentrations of cadmium, zinc, thallium, cobalt 
manganese and nickel was submitted to physical-chemical treatment in decanting 
ponds, where the pH was neutralised and heavy metal hydroxides were precipitated. 
Prior to release into the Guadalquivir estuary, solid substances were physically 
separated and the water diluted with non-toxic water. The treatment of accumulated 
toxic water was concluded in August 1998 (WWF 2002). 

After the accident the tailings pond still contained 13 Mm3 of tailings, which had to be 
prevented from further pollution. After some immediate emergency measures, the 
tailings pond was decommissioned by sealing the lagoon through an impermeable 
seepage cut-off wall around the north and east side of the dam and a hydraulic barrier 
including a back-pumping system on the inside of the cut-off wall (Eriksson & Adamek 
2000). 

The collection of tailings started slowly on May 3, 1998, eight days after the accident, 
using heavy machinery: 154 excavators and caterpillars, 491 trucks. In addition to the 
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sludge layer, also the topsoils were removed leaving behind barren soils and alluvial 
sands. The removed sludge and soils were disposed in the Aznalcóllar open-pit for sub-
aqueous disposal. Most of the 300 m deep open-pit is situated below ground water level 
in Visean Terranes comprising folded and thrusted black shales and rhyolitic 
pyroclastites. This first removal campaign was completed in November 1998, just 
before the start of the rainy season. According to the Consejería de Medio Ambiente 
(2001), about 7 million m3 of sludge and soil were deposited in the Aznalcóllar open-
pit. 

The use of heavy machinery and trucks left large amounts of toxic material on the 
ground and favoured a mixing of tailings and soils. This made a sampling campaign 
necessary to analyse the status of residual contamination. In March 1999 more than 
1000 samples were taken and geochemically analysed. In areas with an elevated 
concentration additional 775 samples were taken in order to direct a second clean up. 
After identification of problematic areas a second clean- up was performed mainly in 
the northern part during which approximately 200 ha were re-cleaned and 1 million m3 
taken to the open pit. 

After a further removal of sludge was not possible any more, areas that still had 
elevated heavy metal concentrations or low pH values were treated with substances that 
are able to fix heavy metals in more or less soluble products and improve the soil 
quality. Different materials were tested for their capacity to precipitate heavy metals and 
to raise the pH level of the acidic soils (García et al. 2000). Limestone (CaCO3) was the 
parameter, which controlled fundamentally the precipitation of heavy metals. In non-
carbonatic horizons the precipitation of Fe, regulated by cation exchange capacity 
(CEC), controlled the fixation of Cu, As and partly Tl. The clay content controlled the 
retention of Zn, Pb and Tl. 

Alkaline lime-rich by-products from sugar refinement were distributed for neutralisation 
of acidity and precipitation of heavy metals, because its application is less aggressive 
than the one of pure limestone by lifting the pH level more gradually. Moreover, the 
high content of organic matter is a positive side effect. In order to improve the fixation 
of As, clayey soils from road construction rich in iron oxides, MnO2 and FeCl3 were 
applied. Finally, organic matter was distributed to improve the overall pedologic 
conditions after the topsoils had been removed during the clean up. 

As a consequence of the accident the regional and the central government have 
launched two restoration programmes aiming at repairing the damages of the toxic flood 
and improving the ecological conditions in the whole Doñana area: the Guadiamar 
Green Corridor and the Doñana 2005 plans. 

The Guadiamar Green Corridor project aims at a restoration of the Guadiamar basin and 
the establishment of an ecological corridor between the mountainous Sierra Morena and 
the littoral systems of Doñana. At the same time, the program intends to improve the 
quality of life for the inhabitants of the region by developing a socio-economical system 
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that is sustainable and integrated into the natural context (Consejería de Medio 
Ambiente 2000). 

The marshland restoration project Doñana 2005 aims at a hydrologic regeneration of the 
watershed and riverbed flowing into the marshland of the Doñana national park in order 
to recover the hydrologic supply and to ensure the needed quantity and quality of water 
for the marshland ecosystem. 

The accident had a great impact on Spanish society, which considers the Doñana a 
‘pearl’ of nature conservation in Spain. Besides this the economic impact of the 
accident was also tremendous. The costs of the disaster remediation sum up to 377.7 
million euro (M€) (WWF 2002). The mining company Boliden-Apirsa had expenses of 
96 M€, which included clean up in the northern sector of Guadiamar (27 M€), 
acqusition of the harvest 1998 (11M€), the operations of the decommissioning of the 
tailings lagoon (41 M€) and the loss due to the interruption of the mining activity during 
1998. The regional government of Andalusia made 145 M€ available for disaster 
remediation including clean up and acquisition of polluted land (48 M€) and land 
restoration (90 M€). The national government approved 136.7 M€. This includes 13 M€ 
for tailings removal and 15 M€ for treatment of the toxic waters and 93.7 M€ for the 
hydrologic regeneration plan. 

The mining company recommenced mining one year after the accident, but in October 
2000 the Spanish subsidiary Boliden-Apirsa of the Swedish-Canadian company went 
bankrupt and ceased mining. The mining company abandoned the Aznalcóllar mine in 
December 2001, suspending payments, dismissing 425 workers and leaving behind an 
environmental deficit of 298 M€ without undertaking an appropriate closure (WWF 
2002). 

 



 

4 Principles of reflectance spectroscopy 

Reflectance spectroscopy is the study of light as a function of wavelength that has been 
reflected or scattered from a solid, liquid, or gas (Clark 1999). Spectroscopy has the 
advantage of being sensitive to both crystalline and amorphous materials, unlike some 
diagnostic methods such as X-ray diffraction. The other main advantage is that 
spectroscopy can be used at different scales, from the microscopic scale (laboratory) to 
macroscopic scales (earth remote sensing and planetary astronomy). Because 
spectroscopy is sensitive to many processes, spectra can be very complex. However, it 
is because of this sensitivity that spectroscopy has great potential as a diagnostic tool. 
Reflectance spectroscopy can be used without sample preparation, is non-destructive, 
and can be carried out remotely without direct contact to the object under investigation. 

In reflectance spectroscopy (particularly in remote sensing), the electromagnetic 
radiation (EMR) serves as the main communication link between object and sensor. The 
interaction of EMR with materials on a ‘macroscopic’ level, including refraction, 
diffraction, and scattering effects, formed the basis of traditional remote sensing theory. 
However, hyperspectral research (hyperspectral imaging is another expression for 
imaging spectroscopy) and development has shifted the emphasis towards monitoring 
interactions of electromagnetic energy within molecules, crystal lattices, and cell 
structures (Goetz 1992a). This new perspective requires knowledge of quantum 
mechanics and the application of a ‘particulate view’ of electromagnetic energy (Hunt 
1980). 

Hence, the key of deriving information from spectroscopy data is the understanding of 
the interactions between electromagnetic energy and the surfaces being observed. This 
chapter discusses those issues. However, a single chapter cannot cover the topic of 
reflectance spectroscopy adequately. For more detailed information the reader is 
referred to Hunt (1980), Elachi (1987), Gaffey et al. (1993), Clark & Roush (1984), 
Clark (1999) and the references therein for more detailed discussions. 

4.1 Electromagnetic radiation 

Since the discovery of the composite nature of white light by Newton in 1664 the 
physical principles of spectroscopy in all ranges of wavelengths of electromagnetic 
radiation have been used to study the properties of terrestrial and extraterrestrial objects 
(Sturm 1992). Electromagnetic radiation is a dynamic form of energy that is capable of 
propagating through a vacuum and becoming apparent only by its interaction with 
matter (Suits 1983). Over time, two different concepts of electromagnetic radiation have 
been developed to describe the behaviour of radiation and its interactions with matter. 



32 4  Principles of reflectance spectroscopy 

The classic concept treats electromagnetic radiation as a continuous transverse wave of 
oscillating magnetic and electric fields. The interaction of electromagnetic radiation 
with materials on a macroscopic level can be described by Maxwell’s equations. This 
set of partial differential equations can be used for phenomena related to propagation, 
reflection, dispersion, diffraction and interference of electromagnetic radiation (Hunt 
1980). However, with this concept only macroscopic optical behaviour can be described 
and predicted, but interactions at atomic and molecular levels have to be described 
using the quantum theory that treats electromagnetic radiation as a stream of discrete 
particles, which carry fixed amounts of energy (Hunt 1980). According to quantum 
theory, an atom or molecule can only exist at certain discrete energy levels and cannot 
have intermediate energy levels. In addition, energy can only be absorbed if the 
provided energy matches exactly the amount that is necessary to promote an atom or 
molecule from one energy state to a higher state. Similarly, electromagnetic radiation is 
emitted when an atom or molecule falls from an excited state to a lower-energy state. 

The wave concept is used to describe the electromagnetic radiation. It is characterised 
with respect to frequency, wavelength, and wavenumber. The energy carried by a 
photon is precisely related to its associated wave frequency by the following equation: 
 

 ν⋅= hE  Eq. 4.1 
where E is energy, h is Planck’s constant (6.626 ⋅ 10-34 J⋅s), and ν is the frequency. The 
frequency is a fundamental characteristic; as it is independent of the medium, the 
radiation passes through. The frequency is related to wavelength and the speed of 
radiation propagation in a medium: 
 

 λν /c=  Eq. 4.2 
where λ represents wavelength and c is the speed of propagation (in a vacuum the speed 
of propagation is approximately 3⋅108 m ⋅ s-1). The wavenumber is the reciprocal of the 
wavelength and gives the number of wave cycles per unit distance. The flux and 
reflectance of radiation are generally expressed as a function of wavelength (Clark 
1999). 

The radiance measured by a sensor (e.g. a spectrometer) is related to the irradiance on a 
Lambert surface by the following expression: 
 

 
π

λλ
λ
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)( =  Eq. 4.3 

where L(λ) is the spectral radiance measured in W m–2 sr–1 µm-1, R(λ) is the absolute 
spectral reflectance, and E(λ) is the irradiance from the light source (e.g. the sun). 

The most commonly used term in remote sensing in the VIS to SWIR domain is 
bidirectional reflectance ρ(λ), which is the ratio of reflected radiance in direction toward 
the sensor to the irradiance in direction toward a portion of the source: 
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where Lλ (θr, ϕr) is the radiance measured along the direction of observation (θr, ϕr) and 
Eiλ(θi, ϕi) is the incident irradiance of the light source along direction (θi, ϕi); θ is the 
zenith angle and ϕ the azimuth angle. In practice, the bidirectional reflectance ρ(λ) of an 
object is derived from the ratio of reflected object radiance to the reflected radiance of a 
standard under identical illumination geometry and irradiance. 

The spectrum has been divided into different spectral or wavelength ranges. However, 
the extent of the spectral ranges is rather arbitrary and the decision as to where the 
divisions should be was made based on limits imposed by the human eye (visible 
range), the properties of optical materials, and the response limits of various sources and 
detectors. The common spectral ranges are: ultraviolet (UV, 0.001 – 0.4 µm), visible 
(VIS 0.4 – 0.7 µm), near-infrared (NIR, 0.7 – 3.0 µm), mid-infrared (MIR, 3.0 – 30 µm) 
and far-infrared (FIR, 30 µm – 1 mm). These spectral ranges are general in chemistry 
and physics (Lide 2000). However, in remote sensing literature the range from 0.4 to 1 
µm is often referred to as visible/near-infrared region (VNIR) and the range from 1 to 
2.5 is referred to as short wave infrared (SWIR) (Clark 1999). 

4.2 Interaction of electromagnetic radiation with matter 

The key to understanding how remotely sensed data could be used to recognize surface 
features lies in the way electromagnetic energy interacts with matter. When an 
electromagnetic wave interacts with matter, there are a number of mechanisms, which 
affect the properties of the resulting wave. Some mechanisms affect the entire spectrum, 
while others operate over a narrow band of the spectral region. The narrow band 
interactions are usually associated with electronic and vibrational molecular processes. 
These mechanisms are strongly affected by composition and crystalline structure and 
thus allow estimates of the target properties from the reflectance spectrum. The wide 
band mechanisms are usually associated with non-resonant electronic processes like 
reflection, transmission and scattering. 

4.2.1 Electronic processes 

Electronic processes are associated with electronic energy levels. Electrons in an atom 
can occupy only specific quantized orbits with specific energy levels. Electronic 
processes occur at shorter wavelengths (0.4 to 1.1 µm) since the energy necessary to lift 
an electron into a higher level is rather high. Many of the absorption features in the VIS 
and NIR, which are particularly important for remote sensing, are due to crystal field 
effects. However, other processes like charge transfer bands, conduction bands and 
colour centres occur and – even if not frequent – they are important for certain minerals. 

The most common absorption process in mineral spectra is caused by the unfilled 
electron shells of transition elements (e.g. Ni, Cr, Fe, Ti). Amongst the transition 
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elements iron is the most important, because it is common in many minerals and hence 
practically all soils resulting from weathering of the parent materials (Clark 1999). 
When transition elements are bound in a crystal field, the energy levels are split. The 
split of orbital energy states allows the movement of electrons to a higher level by 
absorption of photons with the equivalent energy state (Burns 1993). The energy levels 
are primarily determined by the valence state of the atom (e.g. Fe2+, Fe3+), and by its 
coordination number and the symmetry of the site it occupies. Secondarily, they are 
determined by types of ligands formed (e.g. metal-oxygen), the extent of distortion of 
the metal ion site, and value of the metal-ligand interatomic distance (Hunt 1980). 

The crystal field varies with the crystal structure from mineral to mineral and 
consequently the amount of splitting varies. The same ion (e.g. Fe3+) produces different 
absorptions in different minerals due to the variable splitting, making specific mineral 
identification possible from spectroscopy (Clark 1999). For example, the Fe3+-minerals 
goethite and hematite show a change in Fe3+-absorption band position and shape with 
composition (Figure 4.1). 

Absorptions caused by charge transfer bands refer to inter-element transitions, where 
the absorption of a photon causes an electron to move between neighbouring ions or 
ions and ligands. The transition can also occur between the same metal in different 
valence states, such as between Fe2+ and Fe3+. Charge transfer bands are in general 
diagnostic in mineralogy. They are stronger by a factor 100 to 1000 than those of crystal 
fields; thus only in the short wavelengths enough energy is available and consequently 
the band centres of charge transfer bands occur in the ultraviolet, with wings of the 
absorption extending into the visible (Figure 4.1). Charge transfer bands are the main 
causes for the reddish colours of iron oxides and hydroxides (Clark 1999). 

In metals and semiconductors the electrons are released entirely from attachment to 
particular atoms or ions. In metals the valence electrons are essentially equivalent, 
because they can freely exchange places. The energy levels form a continuum. Thus a 
metal can absorb radiation at any wavelength (Elachi 1987). In the case of 
semiconductors there is a splitting of the energy levels into two broad bands with a 
forbidden gap. The lower energy levels in the valence band are completely occupied. 
The upper conduction band is usually empty. The semiconductor cannot absorb photons 
with energy less than the gap energy. If the gap is small, all wavelengths in the visible 
spectrum can be absorbed (e.g. the dark, metal-like luster of silicon). If the band gap is 
large, no wavelength in the visible can be absorbed and the material is colourless (e.g. 
diamond). The conduction band of sulphur and cinnabar extend throughout the NIR, 
starting at about 0.6 µm. The valence band is located in the UV, only visible for 
Cinnabar in this example. The band gap of sulphur is located at about 450 nm causing 
its yellow colour, for cinnabar at 0.59 µm causing a red colour (Figure 4.2). The 
sharpness of the conduction band is a function of purity and crystallinity of the material. 
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Figure 4.1. Reflectance spectra of the iron oxide hematite (Fe2O3) and iron hydroxide goethite 
(FeOOH) (from Clark et al. 1993). The wing of an intense charge transfer band in the UV is partly 
visible at wavelengths < 0.5 µm. The Fe3+-absorption at about 1 µm is caused by variable energy 
splitting within the crystal structure. 
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Figure 4.2. Reflectance spectra of sulphur (S) and Cinnabar (HgS) with a conduction band in the 
visible. The arrows indicate the level of the conduction and the valence band for cinnabar (from 
Clark et al. 1993). 
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4.2.2 Vibrational processes 

The vibration of molecules consists of very small displacements of atoms from their 
equilibrium positions. The frequency of vibration depends on the strength of each bond 
in a molecule and the mass of each element in a molecule. In a molecule composed of N 
atoms, there are 3N possible modes of motion, because each atom has three degrees of 
freedom. Of these modes of motion, three constitute of rotation of the molecule as a 
whole, three constitute translation and 3N – 6 constitute independent types of vibration. 
Each motion leads to vibration at a classical frequency νi. The transitions between the 
ground state to a state only one energy level higher are called fundamental tones. These 
usually occur in the mid infrared (> 3µm) (Elachi 1987). Overtones occur when a 
vibrational mode transits from one energy state to a state more than one energy level 
above (or below) the original state. Combinations of fundamental and/or overtone 
transitions are called combination tones, which occur when the energy of an absorbed 
photon is split between more than one (fundamental and/or overtone) mode (Castellan 
1983). 

This will be demonstrated for the water molecule (Figure 4.3). It consists of three atoms 
that produce three fundamentals at ν1 (symmetrical OH stretch at 3.106 µm), ν2 (HOH 
bending 6.08 µm) and ν3 (OH asymmetric stretch at 2.903 µm). The lowest order 
overtones correspond to the frequencies 2ν1, 2ν2 and 2ν3 and to the wavelengths λ1/2, 
λ2/2 and λ3/2. Overtones and combination tones of the fundamental modes occur in the 
near-infrared at 1.875, 1.454, 1.38, 1.135 und 0.942 µm (Elachi 1987). 

 
Figure 4.3. Fundamental vibrational modes of the water molecule (from Elachi 1987). 

 

In the SWIR, vibrational features are very narrow and mineral-specific, which allows 
identification of many minerals. In minerals, OH-, H2O and CO3

2- are the main 
oscillation units for overtones and AlOH, MgOH and FeOH the most important 
oscillation units for combination tones (Geerken 1991). Three examples of absorptions 
caused by these oscillation units are given for calcite, gypsum and jarosite in Figure 4.4. 
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Figure 4.4. Reflectance spectra of calcite, gysum and jarosite, showing vibrational bands due to 
H2O, OH, CO3 (overtones) and FeOH (combination bands) (from Clark et al. 1993) 

4.2.3 Scattering processes 

Scattering is a key process, which makes reflectance spectroscopy possible. When 
photons enter a surface they are scattered one or more times. Some are absorbed from 
the surface and others are scattered from the surface to the sensor (Figure 4.5). 
However, the scattering processes make the information more complex, because it is 
basically a non-linear process, which makes the retrieval of quantitative information 
more difficult (Clark 1999). 

Clark & Roush (1984) explained the reflectance of a particulate surface as a random 
walk. At each grain the photons encounter, a certain percentage is absorbed. If the 
encountered grain is bright, like a quartz grain, most photons are scattered and the 
random walk process continues many times. If the encountered grains are dark, like 
pyrite, the majority of photons are absorbed (the problem of mixtures is discussed in 
chapter 4.4.3). 
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Figure 4.5. Wave interaction at an interface between two materials (from Elachi 1987) 

 

The random walk process of photons scattering in a particulate surface also enhances 
weak absorption features, because at the wavelength of a weak absorption fewer 
photons are absorbed with each encounter with a grain, so the random walk process 
goes further and the greater path length will result in more absorption, thus 
strengthening the weak absorption in the reflectance spectrum. The amount of light 
scattered and absorbed by a grain is dependent on the grain size. A larger grain has a 
greater internal path, where photons may be absorbed. In a smaller grain there are 
proportionally more surface reflections than internal photon path lengths. If multiple 
scattering dominates, the reflectance decreases as the grain size increases (Clark & 
Roush (1984), Hapke (1993). 

There have been various attempts to quantify the scattering process. The Kubelka-Munk 
theory was one of the first and is still used today (e.g. Clark & Roush (1984)). In 
chemical and food industries the use of absorption described as log(1/R), where R is 
reflectance, is very widespread (see also chapter 6). However, these approaches are 
useful only under controlled conditions, e.g. in laboratory. The independent theories of 
Hapke (1981), Goguen (1981) and Lumme & Bowell (1981) provided reasonable 
solutions to the complex radiative transfer problem of particulate surfaces. These 
theories provide for nonisotropic scattering of photons from particles, shadowing 
between particles and first surface reflection from grain surfaces. The theory of Hapke 
(1981, 1993) also provides for mixtures and has become the dominant theory in the 
remote sensing community (Clark 1999). With the Hapke (1981, 1993) reflectance 
theory and the optical constants of minerals, reflectance spectra of pure minerals at a 
single grain size, spectra of pure minerals with a grain size distribution and mineral 
mixtures with varying grain sizes can be computed. Clark & Roush (1984) showed that 
reflectance spectra could be inverted to derive quantitative information on the 
abundances and grain sizes of each component. The inversion of reflectance to 
quantitative abundance have been tested in laboratory mixtures (e.g. Johnson et al. 
(1992), Mustard & Pieters (1987a)) and some inversion attempts using imaging 
spectroscopy have been published (e.g. Mustard & Pieters (1987b), Adams et al. 1993). 
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4.3 Spectral properties of selected materials related to the study 

All methodologies used for identification or quantification of materials based on 
spectral properties require a certain knowledge of the reflectance spectra of pure 
materials and of common natural mixtures in order to build an appropriate analysis 
strategy. As reported in chapter 3.2, the environmental risk of metal mining waste is 
related to the acidification and the associated HMs. However, they are only traceable 
due to the presence of secondary minerals as oxidation products of pyrite. Hence, the 
first group of materials described are pyrite and the most important secondary minerals. 

The real world is a complex mixture of materials at just about any scale. Also in this 
study the pyrite was worked into the soil causing a mixture of different soil materials 
and sludge. Consequently, also soil reflectance will be described. Finally, there is the 
vegetation, which is in most areas present in more or less high concentrations. 

4.3.1 Iron oxides, hydroxides, sulphates and sulphides 

Iron oxides and hydroxides are in general very important for remote sensing, because 
they are ubiquitous and the iron ions tend to substitute other ions like Mg2+, Al3+, Si4+ or 
Mn2+ (Geerken 1991). They are of central importance for this study, because the sludge 
is composed mainly of the iron sulphide mineral pyrite and the secondary products are 
iron oxides and hydroxides. In the following, some of these minerals will be described 
with regard to their spectral reflectance and diagnostic absorption features (Figure 4.6). 

The pyrite spectrum is an example for a strong conduction band that absorbs over the 
full spectrum equally strong due to the free electrons in the crystal structure. Jarosite has 
a narrow absorption at 0.43 µm caused by Fe2+, which appears however sometimes 
weak due to saturated UV absorption. A weak diagnostic absorption for jarosite at 2.27 
µm is due to a combination of OH stretch and Fe-OH bend. Features near 1.475 and 1.8 
µm are related to OH and are common for sulphate spectra (Clark 1999). The absorption 
band at about 0.91 µm is related to Fe3+ electronic transitions. Copiapite has similar 
features as jarosite, like the 0.43 µm feature and the 1.475 µm OH absorption, but 
without the diagnostic OH stretch and Fe-OH bend at 2.27 µm. Ferrihydrite is 
characterised by OH/H2O absorptions near 1.45 and 1.9 µm and the Fe3+ absorption 
centred near 1.0 µm. Goethite (FeO·OH) is one of the most common minerals, typically 
formed under oxidizing conditions and very often mixed with hematite. Goethite 
displays trans-opaque behaviour with an absorption edge near 0.55 µm caused by a 
conduction band. The ferric ion itself produces a wider absorption near 0.9 µm. Unlike 
other oxides, goethite does not produce any hydroxyl bands in the NIR (Hunt et al. 
1971). Hematite (Fe2O3) is the anhydrous ferric oxide and has a similar spectral 
behaviour as goethite in that it displays the transition from opaque to transparent 
behaviour near 0.55µm. However, it has a narrower absorption near 0.9 µm at a slightly 
shorter wavelength than goethite (Clark 1999). 
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Figure 4.6. Spectra of iron oxide, iron hydroxide, iron sulphate and sulphide minerals related to 
pyrite oxidation (from Clark et al. 1993) 

 

4.3.2 Soils 

The spectral reflectance of soils is a combination of the spectral reflectance of its 
constituents. As such soil reflectance may be very variable depending on compositional 
factors such as mineralogy, organic matter, iron, water or salinity. Stoner and 
Baumgardner (1981) studied the spectral reflectance of 485 soil samples mainly from 
the U.S. They identified five characteristic curve shapes on the basis of visual 
inspection (Figure 4.7). Each shape is associated with certain soil characteristics. The 
classes are: organic dominated (organic carbon > 2%, iron oxide < 1%, fine texture), 
minimally altered (organic carbon < 2%, iron oxide < 1%), iron affected (organic 
carbon > 2%, iron oxide 1–4%), organic affected (organic carbon > 2%, iron oxide < 
1%), iron dominated (iron oxides > 4%). More detailed information about reflectance of 
soils is found in the reviews of Baumgardner et al. (1985), Irons et al. (1989) and Ben-
Dor et al. (1999). 
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Figure 4.7. Reflectance spectra of mineral soils representing different soil characteristics: organic 
dominated (A), minimally altered (B), iron affected (C), organic affected (D) and iron dominated 
(E) (from Stoner & Baumgardner 1981) 

 

4.3.3 Vegetation 

Most remote sensing land applications have to consider the spectral reflectance of 
vegetation even if it is not the focus of the study, because vegetation is quasi 
omnipresent on the land surface. Spectra of vegetation have two general forms: green 
photosynthetic active or dry non-photosynthetic; between these two extremes exists a 
continuous range. Although the albedo may vary, the general shape of reflectance 
curves for green leaves is similar for all leaves, because all plants are made of the same 
basic components (Gates et al. 1965). Figure 4.8 shows spectra of green and dry 
vegetation. Foliar absorptions are caused primarily by photosynthetic pigments (mainly 
chlorophyll) in the visible spectrum below 1 µm and water, cellulose, and other carbon-
based compounds in the infrared. Water dominates the leaf absorption in the NIR 
region; major water absorptions appear at 1.45 and 1.94 µm with secondary features at 
0.96, 1.12, 1.54 and 2.2 µm (Knipling 1970, Weyer 1985). Dry vegetation is 
characterised by absorptions of cellulose (1.7, 1.77, 2.09, 2.227, 2.34 µm), lignin (1.7, 
1.74, 2.13, 2.227 µm), tannin (1.65 µm) in the SWIR (Elvidge 1990). These features 
must also be present in green vegetation but they are masked by the stronger water 
absorptions. 
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Figure 4.8. Typical spectra of photosynthetic active vegetation (×) and non-photosynthetic dry 
vegetation (◊) 

 

4.4 Use of imaging spectroscopy 

Supported by laboratory measurements and airborne campaigns, the relevance of 
imaging spectroscopy for the extraction of distinct spectral features contained in multi-
spectral remotely sensed data sets has become apparent. The ability to acquire narrow-
band spectra gives remote sensing more detailed information about the environment 
compared with broadband sensors (Rast 1991). As reported previously, most natural 
Earth surface materials have diagnostic absorption features in the 0.4 – 2.5 µm range of 
the reflected spectrum. Since the diagnostic features for each material are apparent over 
very narrow spectral bands, differences between materials can only be identified if the 
spectrum is sampled at a sufficiently high resolution. Imaging spectrometers have been 
recently developed as a new generation of airborne optical remote sensing systems 
specifically designed to acquire this hyperspectral information. Today, imaging 
spectrometry is widely used in environmental research (Hill & Megier 1992). In order 
to analyse imaging spectroscopy data in a proper way, the technical principles and the 
implications, which are arising when analysing imaging spectroscopy data, are 
discussed in this section. 
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4.4.1 Principle of imaging spectroscopy 

Imaging spectroscopy for remote sensing involves the acquisition of image data in 
many contiguous spectral bands with an ultimate goal of producing laboratory quality 
reflectance spectra for each pixel in an image (Figure 4.9) (Goetz 1992b). 
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Figure 4.9. HyMap image data cube. Spatial data (x and y axes) represented as a three-band colour 
composite (R= band 25, G= band 17, B= band 9). The spectral data is represented by the z-axis in 
pseudocolour (rainbow) showing the first 64 out of 128 bands. Spectra on the right show extracted 
spectra from the data cube. 

 

Imaging spectrometers were preceded by broadband multispectral sensors like Landsat 
MSS and TM or SPOT. These sensors with less than ten bands allow a mapping of 
surface materials only based on statistical classification techniques. The advances of 
technology led to the development of portable field spectrometers, which were initially 
used to verify and correct observations made with broadband sensors, and to establish 



44 4  Principles of reflectance spectroscopy 

reference spectral databases. The first airborne spectrometer was built in the late 
seventies by Geophysical Environmental Research Company (GER, USA) as a profiling 
instrument with 500 bands but only a single scan line (Chiu & Collins 1978). The first 
airborne imaging spectrometer was developed in the early eighties by NASA’s Jet 
Propulsion Laboratory (JPL). The Airborne Imaging Spectrometer (AIS) acquired data 
in 128 bands in the NIR between 0.9 and 2.4 µm in either ‘tree’ mode (0.9 – 2.1 µm) or 
‘rock’ mode (1.2 – 2.4 µm) with a field of view of 3.7 ° (Goetz et al. 1985). In 1983, 
JPL started the construction of a new sensor; the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS), is continuously in use since 1987. AVIRIS measures radiance 
through 224 contiguous spectral channels of 10 nm intervals across the spectrum from 
0.4 to 2.4 µm (Green et al. 1998). With its high signal-to-noise ratio and its contiguous 
bandwidth of 10 nm it is still one of the best imaging spectrometers, although in the 
meantime a large number of imaging spectrometers is available (see Kramer (1994) for 
a list of available sensors). 

4.4.2 Atmospheric interactions 

When moving out of the laboratory, the most evident change is the illumination. The 
sun is the most important radiation source for most remote sensing applications and 
field spectroscopy measurements in the visible and infrared part of the spectrum. The 
radiation emitted at a temperature of 6000 K is measured with 1370 Watts/m² at top of 
the atmosphere and it is relatively stable. When passing the atmosphere a part of the 
solar energy is absorbed at specific wavelengths by atmospheric gases or scattered by 
molecules and aerosols. Strong absorptions are caused by atmospheric water vapour (at 
0.95, 1.12, 1.4 and 1.9 µm), carbon dioxide (2.01 and 2.06 µm) and oxygen (0.76 µm) 
(Figure 4.10). 

The atmospheric absorptions limit the use of optical remote sensing systems to 
relatively small transmission windows (Figure 4.11). With the available optical sensor 
techniques the spectral ranges 0.4 to 2.5 µm and 8 to 12 µm are used. However, the 
bandwidths in the range 8 to 12 µm (thermal range) are usually too wide for direct 
material identification due to the small amount of energy available. However, it has 
been shown that also in the wavelength range between 0.4 and 2.5 µm spectral 
diagnostic absorptions occur, which allow an identification of minerals and biochemical 
components of plants (Goetz 1992a). 
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Figure 4.10. Solar radiation at top of atmosphere and on earth surface after selective absorption 
and scattering (from Elachi 1987) 

 

 

Figure 4.11. Transmission windows of the atmosphere (from Elachi 1987) 
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Figure 4.12 describes the interactions of incoming solar radiation and radiation reflected 
from the target with the atmosphere. Due to the absorption and scattering only a part of 
the direct solar radiation (50 – 80 %) arrives at the earth surface (1). The target is 
additionally illuminated by diffused solar radiation (skylight, 2), and, to a smaller 
extend, by already ground-reflected light that is again reflected back by aerosols in the 
lower atmosphere (3). The radiation measured at the sensor is a combination of target 
reflectance (4), path radiance (5) and radiance contributions from the environment of 
the target (6), which enter the field of view due to secondary scattering effects in the 
lower atmosphere (Hill 1993). 

 

 

Figure 4.12. Interactions of incoming solar radiation with the atmosphere and contamination of 
radiance measured at the sensor (from Tanré et al. 1995) 

 

The described atmospheric effects have to be corrected in order to retrieve the real 
surface reflectance. This is achieved for ground-based field measurements using a 
calibrated reference surface, which is measured under the same illumination conditions 
than the target and with which the target reflectance is estimated through division by the 
reference reflectance (see Eq. 4.4). Field measurements can be used for spectra derived 
with airborne instruments to apply the regression-based empirical line method described 
e.g. by Roberts et al. (1985) or Farrand et al. (1994). More complex radiative transfer 
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models try to describe the mentioned interactions of radiation with the atmosphere on its 
way from the source to the target and from the target to the sensor (e.g. Tanré et al. 
1990, Vermote et al. 1997). They have been applied successful to data of satellite and 
airborne sensors (e.g. Hill 1993, Staenz & Williams 1997, Richter & Schläpfer 2001). 

 

4.4.3 Extraction of semi quantitative information on a sub-pixel level 

Spatial mixing of materials within the field of view (FOV) of a sensor down to the 
depth of penetration of the photons is the cause of spectral mixing. The concept of 
mixed pixel has been recognised for many years (e.g. Horwitz et al. 1975, Nash & 
Conel 1974), but the idea that mixing at a subpixel scale is a natural consequence of 
earth processes and an inherent feature of remote sensing data sets that can be exploited 
quantitatively has evolved only in the last two decades (e.g. Adams et al.1986, Smith et 
al. 1990; Thomson and Salisbury 1993; Hill et al. 1995, Roberts et al. 1998). 

The basic premise of mixture modelling is that within a given field of view (FOV), the 
surface is dominated by a small number of materials, so called endmembers (EM), that 
have relatively constant spectral properties. Nash & Conel (1974) showed that the 
reflectance spectrum of a mixture is a systematic combination of the components of the 
mixture. The systematics is basically linear if the components are arranged in spatially 
distinct patterns, analogous to those of a checkerboard (Figure 4.13) (Singer & McCord 
1979). In this case the scattering and absorption of electromagnetic radiation is 
dominated by a single component on the surface, and thus the spectrum of a mixed pixel 
is a linear combination of the EM spectra weighted by the areal coverage of each EM in 
the pixel (Mustard & Sunshine 1999). If, however, the components of interest are in an 
intimate mixture, like mineral grains in a soil or rock, the mixing systematics between 
the different components are non linear. The spectral properties of the different EMs 
become involved in this case, because the electromagnetic radiation interacts with more 
than one EM as it is multiply scattered in the surface. In an intimate mixture, the darker 
material dominates because photons are absorbed when they encounter a dark grain 
(Clark 1999). An example for an intimate mixture is the artificial mixture series, which 
is described in the chapter 6.2 and analysed later in chapter 8.1. 
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Figure 4.13. Spectral mixing is a consequence of integration of reflected radiation from a spatially 
mixed IFOV. 

 

4.5 Summary 

Reflectance spectroscopy can be used to derive significant information about materials 
with little or no sample preparation, because electromagnetic radiation reacts with the 
molecules of the materials causing specific absorption features in the reflectance 
spectrum. This principle works in the laboratory, in the field and even for airborne or 
spaceborne spectrometers. However, only for laboratory measurements controlled 
measurement conditions can be assumed. When measuring in the field or from an 
airborne system, the illumination of target by the sun is modified by the atmosphere. 
Moreover, the area over which the spectrum is integrated, is much more inhomogeneous 
causing mixtures of different materials in the field of view. Nevertheless it is possible to 
account for most of these modifications. Therefore spectroscopy is an excellent tool for 
all materials that exhibit distinct absorption features. Among these are iron oxides, iron 
hydroxides and sulphates, which are of central importance for the identification of 
residual contamination after the Aznalcóllar mining accident. 

 



 

5 Data acquisition and availability 

 
This work is based on a number of different digital and analogue data sets, which were 
collected during fieldwork or provided by the Consejería de Medio Ambiente. 
In order to be able to develop models for the estimation of the quantitative composition 
of soils by means of reflectance spectroscopy, it is indispensable to have a large, 
meaningful reference data set that allows a profound statistical analysis. Hence, data 
were acquired during two intensive field campaigns in May/June 1999 and June/July 
2000. Apart from the soil sampling, also spectral measurements with portable 
spectroradiometers were performed for a spectral characterisation of the area and for 
providing in-flight ground calibration data for the airborne flight campaigns, which took 
place at the same time. 
This chapter describes the data sets acquired for and used in this thesis and describes the 
fundamental pre-processing steps, which are a prerequisite for later data analysis. 

 

5.1 General data availability 

The Consejería de Medio Ambiente, as one of the key actors in the management of the 
remediation, provided several data sets for this work (Figure 5.1). This data was used in 
the pre-processing of the imaging spectroscopy data and in the analysis of obtained 
results. 

The digital terrain model (DTM) has a pixel resolution of 20 × 20 m². It was derived 
from elevation lines, which were converted into area-wide raster data. The digital 
elevation data are necessary for the geometric and radiometric correction of the imaging 
spectrometer data. The digital raster maps in 1:10.000 and 1:50.000 scales were used for 
the collection of ground control points for the geometric correction of the images. 

Directly after the accident, an assessment of the extent of the sludge contamination was 
made. The resulting vector layer with the initial sludge contamination (volume, average, 
minimum and maximum thickness) was used for evaluation of the spatial results 
obtained with imaging spectroscopy data. Further vector layers included the major 
roads, villages and the borders of the green corridor. 

The University of Granada performed a soil sampling and analysis campaign after the 
first clean up in order to assess the residual contamination. The 676 sampling points 
were chosen from a regular 400 × 400 m² grid. At each point five samples were taken 
from the corners and the centre of a 10 × 10 m² rectangle. The samples were taken with 
an auger from 0 to 10 cm depth and then analysed as a single sample (Consejería de 
Medio Ambiente 2001). 
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Figure 5.1. Data sets provided by Consejería de Mediombiente of the Junta de Andalucía. Base 
layer: raster maps 1:50.000; 2nd layer: digital terrain model with soil sampling points; 3rd layer: 
mayor roads and villages; 4th layer: distribution of sludge before remediation and borders of the 
green corridor. 

 

5.2 Field data collection 

5.2.1 Soil sampling 

In the affected area, a total of seven test sites were selected for a detailed soil sampling. 
These sites were selected in such a way that they represent a broad range of both 
contamination levels and background soils. If possible, they were chosen in zones, 
where soil sampling had already taken place by other research groups (Figure 5.3). This 
could help in an interpretation of our own results, since the other measurements were 
taken before the remediation campaign (Cabrera et al. 1999, Simón et al. 1999, Simón 
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et al. 2001). Out of the six sites three are in the northern part (Mine North & South, 
Sobarbina), the remaining sites are located in the central and southern part. At the ‘Las 
Doblas’ site samples were only taken in 1999 and at Entremuros only in 2000. At each 
site, sampling transects, consisting of five to twelve points, were selected following 
possible contamination gradients. If possible, also areas that were not contaminated 
were included in the transects. Detailed maps of each sampling location are shown in 
Figure 5.2 and in Annex A. At each point, soil samples were taken at four different 
levels (0-2, 2-20, 20-40, 40-60 cm) (Figure 5.2). The surface samples were collected 
with a hoe from an area of approx. 50 × 50 cm². The lower horizons were sampled with 
an auger; 20 cm cores were used as sample material. Each sample was mixed and 
divided into two sub-samples. One was used for spectroscopic measurements, the other 
one for characterisation of soil chemical properties. 

The location of each sampling point was marked using a differential global positioning 
system (Trimble Geoexplorer3®). This allowed a mapping of the sampling points in the 
hyperspectral images and for the sampling in the second year, which, if possible, was 
carried out on the same spots. However, in two areas it was not possible to sample due 
to a dense vegetation cover. It would have been possible to take soil samples, but not to 
make field measurements of the soil surfaces. At the Vado de Quemas site, new 
sampling points were selected in the vicinity. The Las Doblas site was irrecoverable and 
therefore a new site was established at the Entremuros site. 

 

 
Figure 5.2. Soil sample map example from Sobarbina site (left). Soil sampling depth profile (right) 



52 5  Data acquisition and availability 

 

Figure 5.3. Soil sampling sites with sludge affected area (average sludge depth deposited after the 
accident from Consejería de Medio Ambiente 1999) 
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5.2.2 Field spectrometry 

Two different spectroradiometers were used for  the field measurements, the GER S-
IRIS® in 1999 and the ASD FieldSpec FR® in 2000. The Single-field-of-view InfraRed 
Intelligent Spectroradiometer covers a spectral range from 370-3000 nm with 900 bands 
and a bandwidth between 1.3 and 4.8 nm. It is an opto-mechanical scanner with three 
dispersing gratings and a filter wheel across silicon and PbS detectors (Geophysical & 
Environmental Research Corp. 1993). ASD FieldSpec FR® is a portable 
spectroradiometer designed for field use with a sampling interval of 2 nm and a spectral 
resolution of 10 nm. It covers a spectral range from 350 to 2500 nm. The spectrometer 
has a line array of Si-photo-diodes in the VIS and NIR (350 to 1000 nm); the SWIR part 
is measured with two spectrometers with InGaAs detectors (Analytical Spectral Devices 
1999). In the field, reflectance was measured relative to a sprayed BaSO4 panel or to 
Spectralon®. 

The field measurements were made mainly with the sun as the illumination source. In 
2000, also the ASD High Intensity Reflectance Probe® was used, if the atmospheric 
conditions did not allow measurements with sun illumination. The ASD High Intensity 
Reflectance Probe® is designed for measuring small surfaces of not more than 60 mm 
with a built in light source (Analytical Spectral Devices 1999). 

The purpose of the field measurements was the spectral measurements of the soil 
surfaces at the sampling points, a spectral characterisation of dominant surfaces in the 
entire area and in-flight calibration measurements for the correction of the hyperspectral 
images. 

Apart from the measurements at the soil sampling sites (Figure 5.3), about 30 additional 
spectral measurement sites were selected based on their physiographic characteristics 
and their spectral variability. The description of the sites included exact locations using 
differential GPS, characterisation of the environment (geology, pedology, landcover), 
visual documentation (digital camera), information on conditions on the day of the site 
visit (weather, phenology, soil moisture), and spectral measurements of the spectrally 
dominant surfaces. The spectra measured at these sites were compiled to a spectral 
library. The in-flight calibration measurements were performed on spatial and spectral 
homogeneous sites of a size that covered several pixels in the hyperspectral images. In 
1999, three areas in the northern part and in 2000 two areas in the southern part were 
selected. The field spectra were pre-processed to correct for influences imposed by 
systematic errors rather than material immanent changes in spectral reflectance. 
Furthermore, the spectra were transformed into absolute reflectance. 
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5.3 Imaging spectroscopy data acquisition 

5.3.1 Sensor description 

The data used in this thesis was collected with the HyMap Sensor. HyMap is a highly 
flexible airborne hyperspectral scanner. The system provides 128 wavebands over the 
range 403 – 2480 nm with a spectral resolution of 13 – 17 nm. Signal to noise ratio is 
quoted at 500:1 with spectral calibration precision similar to AVIRIS. Band to band 
registration is within 1/10th of a pixel. The instrument is optimised for operating at a 
spatial resolution of 5 m, with a 2.3 km swath width; the spatial resolution can be 
improved to 3 m (approx. 1.3km swath), though this may be at the expense of signal to 
noise at SWIR wavelengths. The acquisition of 5 m resolution data is recommended, in 
order to maximise spectral data quality (Cocks et al. 1998). Spectral coverage is 
contiguous, except for the atmospheric water bands near 1.4 µm and 1.9 µm. Each 
module acquires 32 bands (Table 5.1). 

 

Table 5.1. HyMap spectral specifications for 1999 

Module Spectral Range Bandwidth Across Module Average Spectral Sampling 

VIS 0.40 - 0.89 µm 15 -16 nm 15 nm 

NIR 0.89 - 1.35 µm 15 - 16 nm 15 nm 

SWIR1 1.40 - 1.80 µm 15 - 16 nm 13 nm 

SWIR2 1.95 - 2.48 µm 18 - 20 nm 17 nm 

 

In 2000 the sensor was set up slightly different with only 126 bands and somewhat 
shifted band centres. Detailed information about spectral configuration of both years 
can be found in Annex B. 

 

5.3.2 Data set description 

The HyMap data were acquired on behalf of the JRC performed by DLR in parallel to 
the soil sampling campaigns. In order to cover the entire affected area (see Figure 5.3), 
it was necessary to record five flight strips, which were arranged in form of a ‘Z’ 
(Figure 5.4). Table 5.2 summarizes the flight dates, times and altitude. The weather 
conditions were excellent on both flight dates and the sensor worked properly. 
However, in 2000 the data recording was stopped too early, so that the calibration site in 
the Southern end of the flight strip and the nearby soil-sampling site were not recorded. 
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Table 5.2. Flight dates, time and altitude for 1999 and 2000 

 1999 2000 

Date 05.06.1999 28.06.2000 

Time (UTC) 12:45 to 13:38 11:50 to 12:54 

Altitude [m above ground] 3200 3350 

 

Figure 5.4. Georectified HyMap false colour composite (R = band41 (1.011 µm), G = band17 (0.671 
µm), B = band9 (0.549 µm)) showing the full flightline 
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5.3.3 Data preprocessing 

Geometric and radiometric effects account for main distortions present in imaging 
spectroscopy data and need to be corrected to allow a physics based image analysis. 

The HyMap sensor is a scanning airborne system. The stability of such systems is much 
worse than that of spaceborne satellites. Geometric distortions occur due to variations of 
the flightpath as well as of attitude (given by roll, pitch and heading angles) of the 
airplane. These distortions cannot be corrected simply by traditional ground control 
point based georeferencing, because the movements of the airplane cannot be 
approximated satisfactorily by polynomial transformations of the image. A pixel-by-
pixel transformation has to be performed instead, to account for the position and attitude 
of the plane during the scanning process (Schlaepfer et al. 1998). 

The geometric correction, which was applied in this study, is based on a fully 
parametric orthorectification. The parametric geocoding procedure (Parge) strictly takes 
into account the aircraft and terrain geometry and uses a forward transformation 
algorithm to create orthorectified imaging spectrometry cubes (Schlaepfer & Richter 
2001). The parametric geocoding requires a variety of input data, which include 
navigation data, which consist of position data (longitude, latitude, height) and attitude 
data (roll, pitch, heading) for each scan line, a digital terrain model (DTM) and general 
sensor information. A ground control point based procedure is used to recalibrate the 
offsets of the attitude data, which are given in relative angles. Combining this 
information, Parge exactly reconstructs the scanning geometry for each image pixel 
with accuracies down to one or two pixels, depending on the available input data. 

The radiometric data (Digital Numbers, DN) acquired by the sensor cannot be directly 
linked to the radiance or reflectance of the field and laboratory measurements. In fact, 
the signal measured by the sensor is composed of sensor specific characteristics, effects 
related to the acquisition date and constellation (i.e. illumination, observation geometry, 
atmospheric phenomena and topographic variations) and target reflectance 
characteristics (Hill, 1993). Therefore, several steps are necessary in order to correct 
radiometric distortions of hyperspectral images: 

• Sensor calibration 

• Atmospheric correction 

• Topographic correction with digital elevation model 

In case of the HyMap sensor is radiometric calibration is not necessary, because the data 
are delivered already calibrated to at sensor radiance (Cocks et al. 1998). 

The influence of the atmosphere on the radiance measured at the sensor has been 
described in chapter 4.4.2. The components that have to be taken into account are path 
radiance (radiation scattered by the atmosphere), reflected radiation from the viewed 
pixel, adjacency radiation (ground reflected from the neighbourhood into the view 
direction) and terrain radiation reflected to the pixel.  
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The radiometric correction is based on the geocoded, orthorectified image, which is 
obtained by the georectification described above. From this output the scan and azimuth 
angles are obtained. Then a combined atmospheric/topographic correction is performed 
with a database of look-up tables of atmospheric correction functions (path radiance, 
atmospheric transmittance, direct and diffuse solar flux) calculated with a radiative 
transfer code, which is based on MODTRAN4 (Berk et al. 1989). Additionally the 
terrain shape obtained from a digital elevation model is taken into account. (Richter & 
Schlaepfer 2001). 

The data used in this study were delivered by DLR radiometrically and geometrically 
corrected, because at DLR the corrections are synchronised in a tool, which combines 
the two independent procedures for geometric and atmospheric processing. It is 
optimised with regard to specific characteristics of airborne imaging spectrometry data. 
A detailed description of the two procedures is found in Schlaepfer & Richter (2001) 
and Richter & Schlaepfer (2001).  

The results of the atmospheric correction are shown in Figure 5.5 for two calibration 
sites used in 1999. The first pair of spectra matches well, some problems due to 
atmospheric interference occur at the 1.4 µm water absorption. In the NIR, (1.5 to 1.9 
µm) some differences can be observed in overall albedo. The second pair exhibits the 
same water absorption features than the first pair. However, the image spectrum shows 
also absorptions at 0.9 and 1.1 µm, which can be also attributed to water absorptions of 
the atmosphere. The two examples show that it is still very difficult to account for all 
influences particularly when atmospheric conditions are changing within a scene. 

 

0.00 0.50 1.00 1.50 2.00 2.50
Wavelength [µm]

0.00

0.10

0.20

0.30

0.40

0.50

R
ef

le
ct

an
ce

Field

Image

0.00 0.50 1.00 1.50 2.00 2.50
Wavelength [µm]

0.00

0.10

0.20

0.30

0.40

0.50

R
ef

le
ct

an
ce

Field

Image

 

Figure 5.5. Comparison of averaged calibration measurements and averaged image spectra for two 
sites in 1999 
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5.4 Laboratory analysis 

5.4.1 Laboratory spectrometry 

The spectral reflectance of the collected soil samples was measured after they were 
dried at room temperature with an ASD FieldSpec FR®. Illumination was provided with 
ASD High Intensity Reflectance Probe® or with UNOMAT LX 801S- CP® Videolamp. 
Spectralon® was used as white standard. For the bidirectional measurements with the 
video lamp the illumination angle was 30º and the observation angle was 0º (vertical 
observation geometry). The distance lamp–sample was 30 cm, the distance sensor–
sample 25 cm. In combination with an apex angle of 25º, it results in a circle of approx. 
11 cm in diameter. The measurement setup was constructed in such a way that 
disturbing effects were limited. The samples were measured four times with a different 
field-of-view; each measurement was an average of 50 scans with the ASD Fieldspec. 

 

5.4.2 Methods for geochemical analysis 

Chemical analysis was provided by the Soil & Waste Unit of the Institute for 
Environment and Sustainability using the following methods: 

• Major and trace elements (SiO2, Al2O3, CaO, K2O, Fe2O3, MgO, TiO2, S, P2O5, 
Pb, Zn, Cu, Ni, Mn, Cr, Na, Cl, Sb) were estimated directly through X-ray 
fluorescence analysis (XRF) 

• Mercury (Hg) was analyzed directly with atomic absorption spectrometry (AAS) 

• Arsenic (As) was analyzed in solution, obtained by microwave acid digestion, 
by AAS with hydride generation 

• Total Carbon Ctot, Hydrogen (H) and Nitrogen (N) were determined through 
combustion at 1000° C and gas-chromatography 

• Organic Carbon Content (Corg) was estimated after acidification with 
hydrochloric acid, combustion at 1300° C and measurement of the carbon 
dioxide by an infrared detecting system 

• Calcite was estimated by X-ray diffraction utilizing active dilution technique 

 

5.4.3 Geochemical analysis results 

5.4.3.1 Data analysis 1999 
During the first sampling campaign in May/July 1999, 214 samples have been taken 
from 55 points. The first studies after the accident have shown that the main 
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contaminants, in descending order of concentrations, were Zn, Pb, Cu, As, Sb and Cd 
(Cabrera et al. 1999, Simón et al. 1999). Additionally, we found high concentrations of 
mercury. This is important, because it is one of the most toxic elements when released 
into the environment (Steinnes 1999). The concentration levels for the soils collected in 
1999 are summarised in Table 5.3 ( see Annex C for detailed information about single 
samples). The coefficient of variation (C.V.), or relative standard deviation, is 
particularly high for elements closely related to the mining accident (bold); this group 
includes most trace metals, sulphur and calcite. The high variation is caused by the 
irregular distribution of the sludge (and the related elements) after the first remediation 
campaign. The average values are close to or above critical concentrations at which 
toxic effects may be observed for most trace metals (Kabata-Pendias & Pendias 1984, 
see also Table 3.1). 
 

Table 5.3. Descriptive statistics (minimum, maximum,mean, standard deviation and coefficient of 
variance) for all samples from 1999. 

Element Min Max Mean Stddev C.V. % 

Al2O3 (%) 0.5 16.95 11.48 2.50 21.79 

As (ppm) 7 442 61.26 66.40 108.39 

CaO(%) 0.4 32.8 4.15 3.10 74.68 

Calcite(%) 0.46 42.42 4.52 4.86 107.52 

Ctot. (%) 0.105 6.69 1.26 0.74 58.37 

Corg. (%) 0.1 3.28 0.73 0.41 56.28 

Cd (ppm) 0.05 14.803 1.26 1.70 134.36 

Cl (%) 0.02 0.15 0.03 0.02 76.46 

Cr (ppm) 41 322.5 107.84 32.28 29.93 

Cu (ppm) 17.5 521 120.44 84.08 69.81 

Fe2O3 (%) 2.75 18.45 5.98 1.98 33.06 

H (%) 0.24 1.6 0.51 0.17 33.54 

Hg (ppm) 0.01 13.9 0.45 1.14 255.06 

K2O (%) 0.3 2.8 1.94 0.34 17.56 

MgO (%) 0.6 6.65 1.88 0.57 30.47 

Mn (ppm) 203.5 1177 734.52 188.16 25.62 

N (%) 0.015 0.405 0.08 0.04 54.39 

Na2O (%) 0.05 6.4 2.67 1.34 50.17 
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Element Min Max Mean Stddev C.V. % 

Ni (ppm) 2 123.5 39.89 14.65 36.72 

P2O5 (%) 0.055 0.605 0.12 0.04 36.67 

Pb (ppm) 17.5 3331.5 202.21 305.09 150.88 

S (%) 0.01 19.34 0.77 2.28 294.36 

Sb (ppm) 196 3362 438.73 308.97 70.42 

SiO2 (%) 25.35 64.15 52.78 4.62 8.76 

Ti O2 (%) 0.315 1.225 0.89 0.14 16.13 

Zn (ppm) 94 3887 380.44 372.85 98.00 

 

However, the variability is also related to the fact that samples were taken from 
different depths and different sites. Therefore, it is necessary to have a more detailed 
look at the soil profiles and to compare profiles within the affected area with those from 
outside, which can be referred to as normal background contamination. Furthermore, 
the different sites have to be compared. 

The trace metal concentrations are rapidly decreasing with increasing depth, but even 
the levels in 40 to 60 cm are still clearly above background values. This is demonstrated 
for selected HM in Figure 5.6 in comparison to uncontaminated soils of the area. The 
profiles are average profiles from nine contaminated and three uncontaminated soils 
taken at the Sobarbina site. 
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Figure 5.6. Average depth profiles from Sobarbina site for contaminated soils (solid) and 
uncontaminated soils (dashed). Arsenic (left), cadmium (right) 
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Generally, the highest surface contaminations are found in the northern part at the Mine 
South and Sobarbina sites (Table 5.4). The site Mine North is less contaminated due to 
its upstream location at the northern edge of contamination. The Vado de Quema site 
shows again higher contamination levels. Here, samples were taken from profiles on 
surfaces with the original sludge layers. Cabrera et al. (1999) found similar 
contamination patterns in their study. 

 

Table 5.4. Average surface trace metal contaminations 1999 for all sites in ppm (Fe2O3 and S in 
percent). 

Average (0-2cm) As Cd Cu Fe2O3 Hg Pb S Sb Zn 

Mina Nord 101 2.31 143 6.40 1.19 213 0.54 453 536 

Mine South 160 4.25 231 8.81 1.53 552 3.37 759 1003 

Sobarbina 176 3.14 145 9.60 1.59 589 4.69 949 660 

Las Doblas 124 2.27 200 7.29 0.80 338 1.47 600 558 

Puente Nuevo 56 1.70 109 4.69 0.29 178 0.20 405 468 

Quema 99 3.71 144 5.21 0.52 226 0.70 453 879 

 

The correlation analysis of the analysed soil samples (Table 5.5) shows a clear 
separation between elements related to the accident and elements related to normal soil 
composition. The group of elements related to the accident is composed of the trace 
metals As, Cd, Cu, Hg, Pb, Sb and Zn and Fe2O3 and Sulphur. The latter can be 
attributed to the pyrite (Fe2S) that made up 80 % of the sludge. The correlations within 
this group are not equally distributed. A strong group with equally strong correlations is 
made up of Fe2O3, Hg, Pb, S and Sb. As is correlated weaker with this group, but it is a 
link between this group and another group of Cd, Cu and Zn. 

The elements related to normal soil composition are divided into four sub-groups; some 
of them forming groups of related soil components or processes. A group consisting of 
Al2O3, K2O and SiO2 can be attributed to the Al- and Si-oxides, which are the most 
abundant oxides in the earth crust (Hudson 1995) and consequently are major elements 
in soil composition. Mn and TiO2 are not strongly correlated to the group of oxides, but 
they are also abundant soil components. Cr and Ni are trace metals, which are not 
particularly related to the mining accident. The group of Calcite, CaO, Ctot, Corg, N and 
P2O5 is related to the nutrients part of the soil, as Ca, N, P are plant nutrients and Ctot 
and Corg can be related to the organic matter component. Cl, H, MgO and Na2O do not 
have strong correlations with any of the other elements. 
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5.4.3.2 Data analysis 2000 
During the field campaign in June/July 2000, 132 samples have been taken from 70 
points. However, because the results of 1999 showed that most of the contamination is 
found in the upper centimetres of the soil, and that for hyperspectral remote sensing 
only the first millimetres are visible, only one full depth profile per profile was taken. 

In 2000, slightly different elements have been analysed. Additionally bismuth and 
thallium have been measured; total, organic and inorganic carbon and calcite were not 
obtained (Table 5.6, see Annex D for detailed information about single samples). The 
average concentrations for bismuth (Bi) and thallium (Tl) are above critical 
concentrations (Kabata-Pendias & Pendias 1984) and they show the same elevated C.V. 
values than all other elements related to the accident. Consequently, they can be 
considered contaminants related to the accident. The differences in C.V. between 
elements related to the accident and others are more pronounced than in 1999. This 
raised C.V. is probably caused by the different sampling strategy with more surface 
samples in 2000, which are generally higher contaminated. 

 

Table 5.6. Descriptive statistics for all samples from 2000 

Element Min Max Mean Stdev. C.V. 

Al2O3 3 19.4 14.00 3.50 25.02 

As 12.3 3070.9 223.89 479.65 214.24 

Bi 0.3 49.5 2.94 7.40 251.82 

CaO 0.5 19.7 5.36 3.23 60.31 

Cd 0.06 17.03 1.60 2.18 136.54 

Cl 0.01 0.15 0.03 0.02 76.17 

Cr 62 439 116.48 44.91 38.55 

Cu 31 614 110.31 83.99 76.15 

Fe2O3 3.75 24.6 6.90 3.62 52.43 

Hg 0.01 16.29 0.80 2.35 293.39 

K2O 0.23 3.3 1.99 0.63 31.81 

MgO 0.2 6.35 2.02 1.11 55.18 

Mn 136 3440 796.74 363.04 45.57 

Na2O 0.05 3.5 1.69 0.80 47.40 

Ni 6 48 34.31 8.08 23.54 
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Element Min Max Mean Stdev. C.V. 

P2O5 0.055 0.695 0.19 0.09 46.42 

Pb 25 3130 272.41 506.29 185.85 

S 0.02 30.4 2.42 5.80 239.52 

Sb 10 3840 343.83 642.24 186.79 

SiO2 15.2 64.9 51.02 8.99 17.62 

TiO2 0.195 1.09 0.76 0.18 22.96 

Tl 0.18 46.8 2.87 7.43 259.22 

Zn 68 5600 445.85 628.31 140.92 

 

The comparison between concentrations of the two years focuses on those elements that 
are related to the mining accident and which have shown a high variability (Figure 5.7). 
Generally, the concentrations decrease. Only for arsenic a considerable increase of 
concentrations can be observed at all sites. The iron and particularly the sulphur 
concentrations show an inconsistent behaviour. At two sites (Mine South & Sobarbina), 
the sulphur concentrations diminish by approx. 50 %, while they increase at the other 
sites between 40 and 220 %. 
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Figure 5.7. Differences in surface concentrations (in percent) between 1999 and 2000 for the sites, 
where sampling was possible in both years 
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Changes in the concentrations also appear in the depth profile, which can be caused by 
removal due to the remediation works, they may be washed away by surface runoff or 
they may be migrated into deeper horizons. Regarding the movement within the profile 
also an upward movement is possible, when elements in solution are transported upward 
due to capillary effects caused e.g. by a high evapotranspiration. 

As mentioned above the concentrations for As increased considerably at all sites. Also 
the Sobarbinas depth profiles show an overall increase (Figure 5.8, for further profiles 
see Annex E). The strongest increase is observed at the surface, but also in the samples 
down to 40 cm. Fe and S concentrations also increase slightly at the surface and even 
more in the middle part of the profile indicating a downward movement. Similar 
changes can be observed for Pb and Hg, although the concentrations at the surface 
decrease. A general decrease can be observed for Cd, Cu, Sb and Zn. Only the surface 
concentrations are still above background levels. 
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Figure 5.8. Comparison of soil depth profiles 1999 (triangle) and 2000 (square) and background 
(cross) from Sobarbina 

 

5.4.3.3 Conclusion 
The reference data set with more than 300 samples forms a good basis, on which the 
relationships between chemical composition and spectral reflectance can be built. The 
results obtained are in good agreement with the results obtained by other research 
groups. The data set is big enough to use the samples of both years separately for 
assessments of the temporal development of the contamination. 

After the end of the first clean-up operation in June 1999 the contamination was partly 
still high, which corresponds accurately with the study of Galán et al. (2002). The 
average values of contaminated soils for all HM were still above average values of 
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background soils and the range of contamination values was very wide. The HM 
concentrations were rapidly decreasing with increasing depth, but even the levels in 40 
to 60 cm were still clearly above background values, which showed that the HM had 
already affected deeper horizons. One year later in July 2000, the HM concentrations 
generally decreased. Only for arsenic a considerable increase of concentrations could be 
observed at all sites. It is also the only element, whose concentrations also in the depth 
profile rose significantly, indicating an increased mobility, which is most probably 
triggered by the intensified oxidation. 



 

6 Laboratory spectroscopy for quantification of 
residual contamination and other soil 
constituents 

 

As demonstrated in chapter 5 reflectance spectra are very rich in information, which 
allows inferring chemical or physical properties of material from a single spectrum. 
Sometimes, we can even use the visible spectrum and our own eyes to infer such 
properties. For example, we can estimate the ripeness of a banana at a glance just by its 
colour (yellow for ripe and green for unripe). Automatically, without any chemical test, 
we can assess how much of its starch has been converted to sugar. 

In this chapter, the relationship between soil constituents and soil reflection is worked 
out and multivariate calibration is used to predict different soil constituents related to 
the mining accident using the spectra measured in the laboratory and in the field. An 
artificial mixture series of sludge and soil is developed and analysed for a better 
understanding of the effect of the contamination on the spectral reflectance and for 
having more control over influencing side effects. 

 

6.1 Multivariate calibration 

Using chemometric modelling we can formalize the process of correlating properties to 
spectra. In chemometrics, a discipline of analytical chemistry, this modelling is often 
referred to as multivariate calibration. Multivariate calibration is the collective term 
used for the development of a quantitative method for the reliable prediction of 
properties of interest (y1, y2, …, yq) from a number of predictor variables (x1, x2, …, xp). 
The goal of the calibration is to replace a measurement of the property of interest by one 
that is cheaper, faster, or better accessible, yet sufficiently accurate. Developing the 
calibration model includes stating of the objective of the study, designing the 
experiment (sample measurement, data treatment), choosing the type of model, 
estimating its parameters and finally assessing the precision of the predictions (Massart 
et al. 1998). 

Multivariate calibration, in contrast to univariate calibration, involves more than one 
predictor variable, which opens up new opportunities for better prediction. It allows for 
example, the use of an entire spectrum rather than the signal at the ‘best’ wavelength. In 
principle, this may lead to improved predictions. However, it also opens the possibility 
to incorporate essentially non-informative spectral regions through random correlations 
in the calibration set, which are not based on physical relationships. Multivariate 
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calibration allows the estimation of more than one dependent property and the 
correction for undesired covariates (interferences). The latter allows for the separation 
of information relevant for the respective properties from non-relevant variation or 
random noise, and is a major motivation for multivariate calibration (Massart et al. 
1998). 

A major application of multivariate calibration is in analytical chemistry, specifically 
the development and application of quantitative predictive calibration models, e.g. for 
simultaneous determination of the concentrations of various analytes in a multi-
component mixture, where one may choose from different spectroscopic methods (e.g. 
UV, IR, NIR, XRF). The application of near infrared analysis (NIRA) to analyse 
samples, needing little or no pre-treatment, has found widespread use in chemical and 
food industries (Williams & Norris 1987, Hildrum et al. 1992). The use of multivariate 
calibration in the field of environmental science particularly in the soil sciences is still 
limited. Relatively few researchers have extended the methods for the extraction of 
soil/sediment information. Ben-Dor & Banin (1990, 1994) have used this method for 
the prediction of different soil constituents. Malley & Williams (1997) determined the 
heavy metal contamination in lake sediments using multivariate methods. Udelhoven & 
Schütt (2000) used artificial neural networks for the chemical characterisation of 
sediments. Kooistra et al. (2001) used partial least squares regression for the estimation 
of soil contamination in floodplain sediments. 

The ultimate goal of multivariate calibration is the indirect determination of a property 
of interest by measuring the predictor variables only. Therefore, it is not sufficient to 
describe the calibration data as adequate, but the model must be able to generalise 
unknown observations. The assessment of the optimum extent to which this is possible 
has to be done carefully. When the calibration model chosen is too simple (underfitting) 
systematic errors are introduced, when it is too complex (overfitting) large random 
errors may result. 

In order to understand chemometric models a deeper understanding of the underlying 
chemistry and physics is as important as a set of statistical parameters describing the 
models. This means for spectral data that a basic understanding of spectra and their 
errors is useful and that spectral representation should be included in the utility of the 
data treatment (Geladi & Martens 1996a). Having this in mind, in the following section 
a mixture experiment is performed with exactly the purpose of understanding the 
relationship between sludge and reflectance. 

 

6.2 Generation of an artificial mixture series of sludge and soil 

The soil samples collected in the field were analysed in the laboratory as described 
above for their element composition, but the detailed quantitative analysis of the 
mineralogical composition could not be provided with the means of the laboratory. This 
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means that the sludge content of the samples can only be determined indirectly via the 
correlation between sludge and elements. However it is known that pyrite makes up 75 
– 80 % of the sludge (Galán et al. 2002) that predominantly influences the spectral 
behaviour of the samples through its opacity and consequently absorption rather than 
the associated HMs or trace elements. This was the rationale for setting up an artificial 
mixture series, in order to assess under controlled conditions empirically the influence 
of the sludge on the overall reflectance of the soils. Non-contaminated samples (i.e. not 
affected by the accident) of the three most important soil types in the area were used for 
this experiment to add sludge in increasing weight percentage from 0 to 100 % (32 
samples).  

Already, the visual analysis of the measured soil spectra showed a large difference 
between contaminated and uncontaminated soils. Figure 6.1 shows the reflectance 
change for an uncontaminated soil with increasing sludge content. The most evident 
change was a strong decrease of overall albedo from a maximum reflectance of 53 
percent to 14 percent. In particular, at longer wavelengths the spectrum levelled off 
strongly. Besides the general decrease in albedo, some changes in the absorption 
features are apparent. With the building up of a very wide absorption feature between 
700 and 1400 nm the absorption features at 1400, 1900 and 2200 nm diminished and 
were almost extinguished at sludge concentrations above 50 weight-percent. Smaller 
absorption features disappeared even earlier. 
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Figure 6.1. Spectra of mixture series of soil sample AZ086 (10 nm) 
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A means for a comparison of individual absorption features is the so-called continuum 
removal. Continuum removal normalizes reflectance spectra to allow comparison from 
a common baseline (Clark & Roush 1984). The continuum is a convex hull fit over the 
top of a spectrum utilizing straight-line segments that connect local spectral maxima 
(Figure 6.2). The first and last spectral data values are on the hull and therefore the first 
and last bands in the output continuum removed data file will be equal to 1.0. 
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Figure 6.2. Soil AZ086 with 30 weight-% sludge and convex hull fit (dashed) 

 

The continuum removed spectra of the mixture series are displayed in Figure 6.3. The 
main feature is the wide iron absorption centred at about 1000 nm, whose depth and 
width are increasing with increasing amount of sludge. The H2O and OH features at 
1400, 1900 and 2200 show the opposite behaviour; they are strongest with lowest 
sludge content. Also the iron absorptions between 400 and 500 nm are related to non-
contaminated soils. 

The strong link between depth of the iron absorption and sludge content allows the use 
of this relationship for the estimation of the sludge content. The strongest correlation for 
the samples of the mixture series was obtained at the maximum absorption depth at 
1043 nm with a high coefficient of determination (R² = 0.967). 
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Figure 6.3. Continuum removed spectra of mixture series 

 

This relationship is also apparent for all samples collected in 1999 (Figure 6.4). There is 
however, a group of samples that do not follow this trend. The spectral shape of these 
samples is different from the one of the mixture series. The maximum depth of 
absorption for these samples is shifted towards 948 nm, which can be related to the 
absorption of goethite or hematite. These samples are characterised by an elevated 
amount of Fe2O3. In fact, all samples were collected in the riverbed of the Rio Agrio 
and had a very coarse gravel texture with iron coatings, which were caused by the long-
term acidic conditions in the riverbed rather than the accident. By removing these 
outliers a coefficient of determination of R2 = 0.851 is obtained, which is however 
strongly controlled by the skewed distribution of the data. The application of this 
relationship to image data is difficult, because of the influence of green vegetation in 
this part of the spectrum and the amounts of Goethite in the soils. 
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Figure 6.4. Relationship between absorption depth at 1043 nm and Pb content for 1999 samples. 
Outliers are marked as triangles (∆) 

 

6.3 Data pretreatment 

The continuum removal procedure applied in the previous section has shown that it is 
possible to strongly enhance subtle features, which may be very important for the 
purpose of a study. Thus, this section applies different transformations to the spectra, 
but also to the geochemical data. 

6.3.1 Soil component scaling 

The data set of elements, which was chemically analysed, represents quite different 
properties of the soils, so that the metric differs substantially. This implies absolute 
values as well as variances. It becomes obvious, when checking again the descriptive 
statistics table (e.g. Table 5.3); trace metal concentrations are given in ppm, the soil 
matrix concentrations are given in percentage values and the C.V. values vary over a 
wide range. Both types of distortion may affect the statistically based multivariate 
methods and neural networks. Scaling the data to similar ranges can eliminate these 
differences (Otto 1999): 

 (min)(max)
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where i = row index,  

k = column index,  

(min)xk
= column minimum  

(max)xk
= column maximum. 
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6.3.2 Spectral resampling 

The spectral resampling smoothes the spectra and reduces the number of wavelengths, 
which will be used later as independent variables in multivariate calibration, speeding 
up calculations and reducing the problems of over-fitting (Otto 1999). The resampling, 
termed ‘spectral channel degradation technique’, has been found effective for prediction 
of different soil properties (Ben-Dor & Banin 1994). Furthermore, the final goal is the 
application of multivariate calibration to airborne and eventually satellite imaging 
spectrometers, which usually have a bandwidth between 10 and 50 nm. Accordingly, 
the reflectance spectra were resampled from 1 nm to 5, 10, 20 and 50 nm spectral 
resolution  at full width half maximum (FWHM) and HyMap band set, reducing the 
number of spectral bands from 2151 to 42, which smoothes the spectra and speeds up 
the calculations.  

 

Table 6.1. Resampling width (FWHM) and resulting number of bands 

FWHM [nm] Number of bands

1 2151 

5 431 

10 216 

20 108 

50 42 

HyMap 128 

 

The spectral processing was performed using IDL/ENVI® software (Research Systems 
Incorporate 1999) using a gaussian model that takes into account the band centre and 
the FWHM spacing. 

Figure 6.5 illustrates the effects of the resampling. They are best recognizable at the 
water and hydroxyl absorptions at 1400, 1900 and 2200 nm. The broader the bandwidth 
is, the wider and the more flattened out is the absorption feature. The close up of the 
SWIR region highlights these effects and show the filtering effect due to resampling. 
However, very broad bands are not able to resolve small absorption features like the 
weak carbonate absorption at 2350 nm. 
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Figure 6.5. Resampling results for soil sample AZ086. Full spectrum (left), spectral subset with 
band centres (right). From bottom to top increasing bandwidth (1,5,10,20,50 nm), HyMap spectra 
on top 

 

6.3.3 Transformation of spectra 

After the spectral resampling, different data treatments were applied to each data set in 
order to enhance the spectral features that might be important in the modelling process. 
The reflectance data were transformed to absorption, standardised and vector-
normalised spectra, first and second order derivatives using the Savitzky-Golay method. 

 

6.3.3.1 Absorption 
One of the keys to quantitative analysis in any scientific field is the assumption that the 
amounts (concentrations) of the constituents of interest in the samples are somehow 
related to the data from a measurement technique used to analyse them. 

In chemometrics, the Beer-Lambert law is often used to exploit this correlation. The law 
states that there is an exponential dependence between the transmission of light through 
a substance and the concentration of the substance, and also between the transmission 
and the length of material that the light travels through. Thus, the concentration of a 
substance can be deduced from the amount of light transmitted by it. However, the law 
tends to break down at very high concentrations, especially if the material is highly 
scattering (e.g. in turbis solutions). 

Nevertheless, the transformation of reflectance units into absorption is widely applied in 
chemometrics. Absorption is often preferred, because there is an almost linear 
relationship between the concentration of an absorbing component and its contribution 
to the log(1/R) value at the wavelength absorbed. Due to its logarithmic scale, 
absorption also accounts for scattering effects (Hruschka 1987). 
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Reflectance spectra are transformed into absorption units according to the following 
equation: 

 

  Eq. 6.2

where  A = Absorption 

R = Reflectance. 

 

After the transformation, the spectra appear mirrored and stretched. The absorption 
features that are negative peaks in reflectance units appear as slightly enhanced positive 
peaks (Figure 6.6). 
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Figure 6.6. Absorption spectra of examples from mixture series (10 nm). See Figure 6.1 for original 
reflectance spectra 
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6.3.3.2 Standardisation 
The standardisation transforms the data to a set of data with a mean of zero and a 
standard deviation of one: 

 
s

xxx
k

kik
ik

−
=*  Eq. 6.3 

where i = row index,  

k = column index, 

xk = column mean,  

( )
1

1

−

−
=

∑
=

n

xx
s

n

i
kik

k , where n = number of objects 

Figure 6.7 shows an example of standardised spectra of the mixture series. This 
standardisation transforms the data to a set of percentage variations about the mean 
value, which allows matching of the data in a manner independent of the reflectance 
scale (Mackin et al., 1991). This procedure overcomes the problems of brightness 
variations due to grain size retaining and even enhancing the information due to the 
spectral shape, such as gradient and absorption bands. This is particularly true for the 
sludge spectrum, which is spectrally flat when it is not transformed, but shows a well 
defined, strong absorption centred at about 1000 nm. 
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Figure 6.7. Standardised reflectance spectra of examples from mixture series (10 nm). See Figure 
6.1 for original reflectance spectra 
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6.3.3.3 Vector normalisation 
The length of a vector x = (x1, x2, …, xn) is defined as the square root of the sum of the 
squared elements in a vector. The normalisation of a data vector to length one is 
achieved by division of the vector x with the length of the vector (Otto 1999): 
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The effects of vector normalisation are similar to those of the standardisation (Figure 
6.8). The brightness differences are significantly reduced, whereas structural 
information is preserved or even enhanced. Only the data range is reduced and the 
values are all positive. 
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Figure 6.8. Vector standardised reflectance spectra of examples from mixture series (10 nm). See 
Figure 6.1 for original reflectance spectra 
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6.3.3.4 Derivatives 
Derivatives are a well-established signal processing approach in analytical chemistry. 
Derivatives of VIS/NIR spectra carry predominantly chemical information of the 
sample, because albedo effects are reduced and overlapping spectral features are 
resolved. For example, the OH-absorption of a soil (Figure 6.1) at 1400 nm is shown in 
the second derivative of this spectrum as a distinct peak (Figure 6.10). The FWHM is 
smaller for the peak in the second derivative compared with the original spectrum. 
Consequently, the smaller FWHM of the derivatives allows overlapping absorption 
features that are recognised as a single broad absorption in the reflectance spectrum to 
be distinguished. Baseline shifts are removed because the curvature of a straight line is 
zero and hence, the derivative of a spectrum plus a constant offset is the same as the 
derivative of the pure spectrum. The first order derivative has also these effects, but to a 
lesser extent. It can be interpreted as the slope of a spectrum at each wavelength. Higher 
order derivatives have the same two basic effects and will resolve overlapping 
absorptions even better than lower order derivatives. However, they are more sensitive 
to noise and generate more artefacts than lower order derivatives. Furthermore, they do 
not have any easily visualised geometric interpretation and hence, have not been widely 
used in VIS/NIR spectroscopy (Hruschka 1987). 

There are three common methods of calculating derivatives: the finite-differences, 
Fourier transform and Savitzky-Golay methods; each has its advantages and 
disadvantages. The Fourier transform is most useful, if the Fourier transform of a 
spectrum is already available for other purposes. The finite-difference is easiest to 
calculate but is more sensitive to noise than the Savitzky-Golay method, which includes 
a smoothing based on a polynomial function. Therefore the latter has been used for this 
study. 

The Savitzky-Golay method fits the spectrum in a wavelength interval with a 
polynomial and then takes the derivative of that polynomial. Savitzky & Golay (1964) 
used simplified least-square-fit convolution for smoothing and computing of derivatives 
of a spectrum. The general equation is represented as follows: 
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where Y is the original spectrum, Y* is the resultant spectrum, Ci is the coefficient of 
the i-th spectral value of the filter window, and N is the number of convoluting integers. 
The index j is the running index for the wavelength of the original spectrum data table. 
The filter window consists of 2m+1 points, where m is the half width of the filter 
window. Savitzky & Golay (1964) provided several tables of coefficient values. 
Corrections to these tables were provided by Steinier et al. (1972). The use of these 
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tables limits the application of the method. The maximum filter window size of the 
tables provided by Savitzky & Golay (1964) is 25 (m=12). Furthermore, for application 
of several combinations of polynomials and derivatives, a general analytical form for 
calculation would be preferable. Tsai & Philpot (1998) have implemented in their 
algorithms the equations of Madden (1978) to overcome the limit of 25 points for the 
filter window. According to Madden, equation Eq. 6.5 can be rewritten as: 
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where is the coefficient of the i-th point of the filter in the zeroth order of derivative 
computation. Accordingly, the smoothed q-th order derivative point of the midpoint is 
represented as: 
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Madden’s equations allow calculation of the coefficients of least-square-fit convolution 
from zeroth order to the sixth order of smoothed derivatives. 

It has to be mentioned that the derivative spectra obtained with the procedures described 
above are shorter than the original spectrum by the width of the filter because the 
procedures cannot be applied correctly at the ends of the spectrum. 

The computer code for the calculation of the derivatives was kindly provided by Tsai & 
Philpot (1998). The different modules, collectively called HyperSpec, were developed 
in MATLAB (Mathworks 2000) script. 

The derivatives of the respective data sets have been treated differently according to 
their spectral bandwidth; the broader the bandwidth the smaller the filter size (Table 
5.3). All data sets were filtered with a second order polynomial.  
 

Table 6.2. Filter sizes used for calculating first and second order derivatives 

Bandwidth [nm] 1st derivative 2nd derivative 
1 25 25 
5 11 17 
10 5 11 
20 3 5 
50 3 3 

 
The first derivative produces two opposed peaks in front and behind absorption features. 
At the wavelength of the peak, the first derivative equals zero. For example, the H2O 
absorption at 1400 nm is preceded by a local minimum and followed by a local 
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maximum (Figure 6.9). The disappearance of the H2O and OH-features at 1400, 1900 
and 2200 nm in the mixture series with increasing sludge content is clearly reflected. As 
sludge content increases, so the first derivative becomes flatter. 
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Figure 6.9. First derivatives of reflectance spectra of examples from mixture series (10 nm, 
Savitzky-Golay Method). See Figure 6.1 for original reflectance spectra 

 
The second order derivative produces a positive peak at the position of an absorption 
feature, which is enclosed by two smaller opposed peaks. Hence, the most obvious 
features are again the H2O and OH-absorptions in the soil with little or no 
contamination (Figure 6.10). 
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Figure 6.10. Second derivatives of reflectance spectra of examples from mixture series (10 nm, 
Savitzky-Golay Method). See Figure 6.1 for original reflectance spectra. 



6.3  Data pretreatment 81 

6.3.3.5 Discussion of data pre-treatment 
The examples of the different spectral transformations were taken from the mixture 
series, but were applied to all samples. It became clear that the different data treatments 
changed the aspect of the spectra entirely. Whether these changes are also reflected in 
the correlations between the soil constituents and the spectra can be assessed by the 
analysis of so called ‘correlograms’. In a correlogram, the correlation coefficients 
between soil constituents and reflectance are plotted as a function of wavelength. These 
‘correlation-spectra’ bear a lot of information, which are also very helpful for the 
analysis of the predictive models. They show spectral features or regions, which may 
correlate highly with a soil component and hence will be important for the later 
modelling. Due to the amount of information (26 soil constituents), the elements were 
grouped into different figures according to similar correlation structure. The grouping 
resulted in three sets, which are almost identical with the groups identified in the 
correlation matrix of elements (Table 5.5): trace metals, soil matrix and soil nutrients. 
Figure 6.11 shows the correlograms for the three groups in relationship to the 10 nm 
reflectance spectra. The trace metal group is mostly negatively correlated to reflectance, 
only in the VIS part of the spectrum a small, positive correlation peak can be observed 
at 400 nm, after which the correlation becomes negative. The negative correlations are 
very stable and range mainly between – 0.6 and – 0.8 for all elements, except Cu and Zn 
that are less strongly correlated. Exactly the contrary behaviour can be observed for the 
soil matrix group; the only difference is that the correlations are weaker and the feature 
in the VIS is wider. The organic part is mostly positively, but even weaker correlated 
with reflectance. 
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Figure 6.11. Correlograms of soil constituents and reflectance spectra (10nm). Trace metal group  
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Figure 6.11. (continued) Correlograms of soil constituents and reflectance spectra (10nm). Soil 
matrix group (top), Organic group (bottom) 

It was previously postulated that the transformation of the spectra enhances important 
absorption features. This should be reflected also in the correlation structure of the 
correlograms. The changes in the correlation structure of the trace metal group due to 
the standardisation are used as an example because here the differences are most 
obvious. The changes after standardisation are very evident (Figure 6.12). Due to the 
scaling, the reflectance spectra have a zero mean and have positive and negative parts, 
which have a strong influence on the sign of correlation. After standardisation, there are 
two spectral features with very strong correlations: a small positive feature at 520 nm 
and a wide feature with negative correlations centred at 1100 nm. Both can be attributed 
to iron absorptions. The three other positive peaks at 1400, 1900 and 2200 can be 
attributed to water and hydroxyl absorptions. 
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Figure 6.12. Correlograms of soil constituents and standardised reflectance spectra (10 nm). Trace 
metal group 

The example has shown that the transformations have quite a strong influence on the 
correlation structure. It can be expected that this positively influences the predictive 
quality of the multivariate calibration models, which will be discussed in the next 
section. 

 

6.4 Building models using multivariate calibration 

In this section, the spectral data described above will be used for the prediction of the 
chemical soil components. If it is possible to model known data, the models could then 
be transferred to unknown spectral measurements. However, the first step in the 
modelling process is calibration. Calibration plays an important role in analytical 
chemistry. All analytical instrumentation is dependent on a calibration that uses some 
regression model for a set of calibration samples. This has lead to the development of a 
number of different calibration methods, which cannot all be treated here (more detailed 
discussions can be found in the standard literature for chemometrics such as Martens 
and Naes (1989), Massart et al. (1997, 1998) and Otto (1999). 

However, a valuable classification is given by Martens and Naes (1989). The most basic 
distinction is between univariate and multivariate calibration. Due to the huge number 
of variables that are produced with today’s spectrometers, we will concentrate on 
multivariate data. 

Another basic distinction is between linear and non-linear calibration, e.g. methods that 
yield linear or non-linear functions for the X-variables. Most of the models focus on 
linear models, because theory may indicate a linear relationship, e.g. the Lambert-Beer 
law of the linear relationship between concentration and absorption. Even when the 
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linear relationship does not hold, it can be a sufficiently good local approximation 
(Massart et al. 1998). 

An important question in multivariate calibration is whether all available X-variables 
should be used or only a few of them. Many methods can employ only a limited number 
of predicting variables for purely mathematical reasons. In contrast, the full spectrum 
methods use all available wavelengths of relevance. 

The distinction between direct and indirect calibration is related to the amount of a 
priori information available. All model parameters are known for direct calibration and 
can be used to construct a predictor. This may be possible in some simple situations 
(e.g. linear mixtures), but in most analytical situations, such causal calibration is not 
possible because not all parameters are known due to unknown interferents. 

The last distinction concerns two ways of thinking about the calibration modelling: 
causal vs. predictive modelling. The latter is referred to as forward or inverse 
modelling, the causal modelling as reverse or classical; this method was the original and 
basic approach to calibration and is therefore sometimes referred to as classical 
calibration. In controlled calibration experiments, the X-variables are designed. They 
can be set exactly at the values prescribed by the experimental design, e.g. calibration 
standards of known composition can be prepared. In the classical way of thinking, a 
spectrum can be expressed as a function of its composition. It may work well for one-
constituent problems and simple mixtures, but it does not work with spectra, which are 
affected by unidentified constituents or whose constituents interact. 

Three different methods have been selected for this study trying to cover a wide range 
of the above-mentioned distinctions: multiple linear regression (MLR), partial least 
squares regression (PLSR) and artificial neural networks (ANN). These methods are all 
multivariate, indirect models, which perform forward calibration from X to Y. MLR and 
PLSR are linear methods, with ANN non-linear modelling is possible. MLR can be used 
as wavelength selection method, if it is combined with appropriate selection methods, 
PLSR and ANN are full-spectrum methods. 

 

6.4.1 Multiple Linear Regression (MLR) 

One of the most widely used spectroscopic quantification methods is Multiple Linear 
Regression (MLR). It uses the information at a number of wavelengths to isolate the 
effect of a property of interest on the spectrum. Given a set of data with one dependent 
variable Y (e.g. property concentration) and i independent variables (e.g. wavelengths) 
X1, X2, …, Xi, the problem is to find the set of constants a, b1, b2, …, bi so that the 
function: 

 Y* = a + b1X1 + b2X2 + … + biXi Eq. 6.8 
is the best to fit the data. 
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With MLR, it is possible to build models for complex mixtures when only some of the 
constituent concentrations are known. However, the MLR approach does have some 
drawbacks. One problem is due to the dimensionality of the matrix equations, which 
limits the number of selected wavelengths to be smaller than the number of calibration 
samples. 

The reflectances in a spectrum tend to increase and decrease together as the 
concentrations of the constituents in the mixture change. This linear dependence, known 
as collinearity, causes the mathematical solution to become less stable with respect to 
each constituent. 

Another problem with adding more wavelengths to the model is an effect known as 
overfitting. Generally, starting from very few wavelengths, and adding more to the 
model (provided they are chosen to reflect the constituents of interest) will improve the 
prediction accuracy. However, at some point, the predictions will start to get worse. 
When the number of wavelengths increases in the calibration equations, the likelihood 
that "unknown" samples will vary in exactly the same manner decreases. Using too 
much information in the spectrum for calibration, the model starts to include the 
spectral noise, which is unique to the training set, and the prediction accuracy for 
unknown samples suffers. 

In MLR, wavelength selection is critically important to building an accurate model. 
Ideally, there is a crossover point between selecting enough wavelengths to compute an 
accurate least squares line and selecting few enough so that the calibration is not overly 
affected by the collinearity of the spectral data. 

There are a number of methods to select which and how many variables to use in the 
final model. On one side there are the so-called forward selection methods. These start 
with one wavelength, incorporate further wavelengths one at a time and stop when a 
certain criterion is met. Another type are the backward elimination methods, which start 
with the full spectrum and eliminate the wavelengths one by one until a stopping 
criterion is reached. Finally, there are the best subset selection methods where all 
possible submodels are tested relative to an optimisation criterion and the best model is 
selected (Martens & Naes 1989). A number of selection criteria can be applied for each 
of the selection strategies (see Weisberg (1985) for details). 

In this study, a stepwise forward selection method based on the F-test criterion was 
used. The F-value is calculated for each variable, which is not incorporated at an earlier 
step, and the variable with the most significant coefficient is included into the model. 
Variables in the equation whose significance drops below a certain level are removed 
from the model. The whole process terminates, when no variables reach the significance 
level. The calibration using stepwise MLR was accomplished in IDL® (Research 
Systems Incorporate 1999) using the stepwise.pro routine, which is based on an 
algorithm by Afifi & Azen (1971). The significance level for variables to be entered 
into the model was set to α = 0.05 and α = 0.1 to be removed. 



86 6  Laboratory spectroscopy for quantification of residual contamination and other soil constituents 

6.4.2 Partial Least Squares Regression (PLSR) 

A more complex way of calibration is the so-called bilinear modelling such as principal 
components regression (PCR) or PLSR. It is a powerful, flexible approach and yields 
informative and reliable predictors Y  by projecting the many variables X = 
(x

)(ˆ Xf=

ˆ,ˆ(ˆ
1 tt=1,x2, …, xk) onto the few variables T . The compressed variables are 

then used as regressors for y. In this way, the common structures in the X-variables are 
compressed into a stabilised, more easily interpretable model, leaving out much of the 
noise and not relevant information (Martens & Naes 1989). 

)ˆ,,2 t aK

The data compression applied in PCR gives substantial improvement over ordinary 
MLR in the modelling of collinear data. The important problem is the choice of the 
right number of eigenvectors. Nevertheless, sometimes improvements in PCR can be 
obtained by leaving out some major eigenvectors, since they correspond to phenomena 
in X of no relevance for modelling Y. 

PLSR is an extension of classical PCR. The concept of partial least squares (PLS) was 
developed by H. Wold (1981) in the field of economy and social sciences and 
propagated to the field of chemometrics by his son S. Wold (Wold et al. 1983). PLSR 
differs from PCR by using the Y-variables actively during the bilinear decomposition of 
X. By balancing the X- and Y-information, the method reduces the impact of large, but 
irrelevant variations in the calibration modelling (Martens & Naes 1989). 

PLSR is now dominating the practice in multivariate calibration because of the quality 
of calibration models and because it is implemented in many commercial software 
packages (Brown et al. (1996), Lavine (1998) and references therein). For more detailed 
discussions of the algorithm, see e.g. Haaland & Thomas (1988a, 1988b) or Massart et 
al. (1997, 1998). The description used here is based on the review of Wold et al. (2001). 

The PLSR model is developed from a training set of N observations (soil samples in this 
study) with K X-variables (spectral bands) and M Y-variables (soil constituents). These 
training data form the matrices X and Y with dimensions (N*K) and (N*M), 
respectively. 

The linear PLSR model finds new variables, which are estimates of the latent variables 
or their rotations. They are few in number and orthogonal. These new variables T are 
called X-scores and are linear combinations of the original variables X and with the 
weights (or coefficients) W: 

 
 XWT =  Eq. 6.9 

 

The X-scores T, multiplied by the loadings P, good summaries of X, so that the 
residuals E are small: 

 ETPX += '  Eq. 6.10 
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Figure 6.13: Data arrangement for PLSR (from Wold et al.  2001). The variables are described in 
the text. 

 

With multivariate Y (when M > 1), the corresponding Y-scores U, multiplied by the 
loadings Q are good summaries of Y, so that the residuals F are small: 

 GUCY += '  Eq. 6.11 
 

The X-scores T are also good predictors of Y: 
 FTCY += '  Eq. 6.12 

 

The Y residuals G express the deviations between observed and modelled responses and 
comprise the elements of the Y residual matrix G. 

Because of Eq. (6.9), Eq. (6.12) can be rewritten to resemble a multiple regression 
model: 

 FXBFCXWY +=+⋅= '  Eq. 6.13 
 

The PLS-regression coefficients can be written as: 
 'CWB ⋅=  Eq. 6.14

 

The score matrices T and U contain information about the objects and their 
similarities/dissimilarities with respect to the given model and problem for the 
interpretation of the PLSR model. The weights W and C give information about how the 
variables combine to form a quantitative relationship between X and Y, thus providing 
an interpretation of the weights T and U. Therefore, the weights are important for an 
understanding of which X-variables are important (e.g. having large numerical weight 
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values) and which provide the same information (e.g. having similar profiles of 
weights) (Wold et al. 2001). 

All parameters T, U, W, P and C are calculated by a PLSR algorithm. There are several 
variants developed for different types of data. The algorithms work either with (scaled 
and centred) original data or with variance-covariance matrices. The most common 
algorithm is the non-linear partial least squares (NIPALS) algorithm, which is 
numerically and statistically very stable (Wold et al. 1983). It is also used in this study. 

The calibration with PLSR was achieved using the N-way toolbox for Matlab, which is 
a freely available collection of functions and algorithms for modelling multiway data 
sets by a range of multilinear models (Anderson & Bro 2000). 

 

6.4.3 Artificial Neural Networks (ANN) 

Artificial neural networks were first developed as a model of the human brain structure. 
It turned out that these simplified, computerised models are capable of handling non-
linearities in problems of modelling and pattern recognition without requiring 
knowledge of underlying functions or distributions, which is a great advantage over 
classical statistical techniques (Brown et al. 1996). 

Many different types of networks have been developed. They all consist of small units 
(neurons) that are interconnected. The local behaviour of these units determines the 
overall behaviour of the network. The most common is the multi-layer-feed-forward 
network (MLF), which was also applied in this study. A good overview of other neural 
networks types and learning algorithms is given by Zell (1994). The description used 
here is based on Massart et al. (1998), Despagne & Massart (1998) and Zupan & 
Gasteiger (1993). 

The following gives an overview of the basic concepts of neural networks, describes the 
MLF and the standard back propagation to facilitate the understanding of the resilient 
propagation learning rule, which was used in this study. 

The basic structural unit of ANN is the neuron, an abstraction of the biological neuron. 
A biological neuron consists of a cell body from which many branches (dendrites and 
axon) grow in various directions. Impulses are received through the dendrites. In the 
cell body, these signals are checked and integrated. When a certain threshold impulse is 
reached, a suitable response signal is delivered. The axon transports the response signal 
to other neurons through a complex branching system. The contact points between 
different nerve cells, through which the signals are propagated, are called synapses. The 
efficiency of the propagation of signals from one cell to another is influenced by various 
chemical and electrical factors. However, the basic processes are the same for all 
neurons. Hence, the overall behaviour of a neural system is determined by the neural 
connecting structure. 
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Figure 6.14. Artificial neuron.  x1,...,xp are incoming signals, w1,...wp are the corresponding weight 
factors, F is the transfer function. 

 

The artificial neurons are a strong simplification of the processes that take place in 
biological neurons. The basic process of information reception, integration and 
weighted output in ANN neurons is shown in Figure 6.14. The incoming signals are 
passed to the neuron body, where they are weighted and summed. Then they are 
transformed with the help of a transfer function into the output signal. The propagation 
of the signal is determined by the connections between the neurons and by their 
associated weights. 

The different types of networks are distinguished by their different connection pattern, 
since this determines the information flow through the network. The weights are equally 
essential, because they determine, in combination with the connection pattern, the signal 
flow through the network. Each signal that is transported through a connection is 
multiplied by the associated weight. The appropriate setting of the weights is essential 
for their proper performance. They determine the relationship between input and 
eventual output of the network. Therefore, they are considered the distributed 
knowledge content of the network. Finding the proper weight setting is achieved in a 
training phase in which the weights are adapted according to a learning rule. This is the 
major phase of the developing process of ANN (Massart et al. 1998). 

MLF networks became popular after Rumelhart et al. (1986) published the back-
propagation learning rule, which allowed a training of more than one layer network. In 
analytical chemistry more than 90 % of applications are based on this learning 
algorithm (Otto 1999). 

The general structure of a MLF network is shown in Figure 6.15. The network is 
ordered in layers: input, hidden and output layer. All neurons in a layer are connected to 
all neurons of the following layer. The network receives the input signals through the 
input layer. The number of neurons is determined by p, the number of variables in the 
(n*p) matrix X. In this study, the matrix X consists of the spectra, p refers to the number 
of wavelengths and n is the number of samples. The information is then passed to the 
hidden layer(s). There may be zero, one or more hidden layers, but in the majority of 
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applications only one layer is used. The number of neurons in the hidden layer(s) has to 
be determined empirically. Finally, information is forwarded to the output layer that 
produces the response of the network. The number of neurons in the output layer is 
determined by q, the number of variables in the (n*q) matrix Y. In this study, the output 
matrix refers to the soil constituents that are to be predicted. 

 

1

q

1

h
p

1x1 y1

yp

xp

…

…

…

1

q

1

h
p

1x1 y1

yp

xp

…

…

…
Input OutputHidden  

Figure 6.15. General structure of a MLF network 

For each sample n, each unit, or neuron, in the input layer is fed with one variable of the 
X matrix, and each unit in the output layer is fed with one variable of the Y matrix. The 
values are passed unchanged to the hidden layer. Each hidden unit h receives the signals 
from the p neurons of the input layer. From these signals the net input is calculated: 
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The net input NETj is then passed to the transfer function that transforms it into the 
output signal of the unit. Different transfer functions may be used, the most common 
non-linear one is the sigmoidal function: 

 

 
e

NETsfooutput xNETjjj ))((1
1)(

−+
===  Eq. 6.13 

 

The output units receive the weighted output signals of the h hidden units. The weighted 
sums are calculated and passed through the transfer function to yield the final output of 
the network 
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The signals are only forwarded from one layer to the next, not to the neurons within the 
same layer. 

In MLF, supervised training optimises the proper setting of the weights. During the 
training the weights are adapted according to the learning rule. The original learning 
rule is the back-propagation rule (Verbos (1974), Rumelhart et al. (1986)). The weight 
updates are based on the differences between actual and desired network output of the 
training set. 

The training is initialised with random weights. For each output unit j, the error Ej 
between output value and desired output using the current weight setting is calculated: 

 

 2)(
2
1

jjj odE −=  Eq. 6.15

 

The error Ej is determined by the weights; dj is the teaching input (e.g. a measured 
concentration). The factor ½ is used in order to cancel later the value 2, which forms 
after differentiation. For the estimation of optimal weights, it does not matter if the full 
or half error is optimised (Zell 1994). The weight adaptation of the output neurons is 
carried out as follows: 

 
 hjhj ow ηδ=∆  Eq. 6.16

whj is the weight between the hth hidden unit and the jth output unit; η  is the learning 
rate, a positive constant between 0 and 1; oh is the output of the hth hidden unit and δ  is 
a term based on the error. 

In back-propagation, the weight adaptation is made in the direction that minimizes the 
error; it is essentially a gradient-based optimisation method. Hence, the gradient of the 
error as a function of the weights must be calculated. This leads to the following 
equation: 
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)( jNETsf  represents the value of the sigmoidal function NETj. 

The adaptation of the weights to the hidden layer in back-propagation is calculated from 
the errors of the output neurons: 
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In this equation, k represents the units of the output layer. 

All weights can be calculated using equations (5) and (7). Now it becomes clear that the 
error is back-propagated through the network. The process is repeated for all input 
pattern. One iteration is defined as one weight correction for all samples. 

In equation (5), the learning rate η  was introduced. This term is important for the 
training procedure. If it is small, the convergence of the weights to an optimum will be 
slow and there is a risk of becoming trapped in a local optimum. On the other hand, the 
system may start oscillating if the chosen learning rate is too high. 

The slow convergence of the basic algorithm and its tendency to become trapped in one 
of the many local minima in the error surface triggered the need for improvements and 
many algorithms have been proposed to deal with the problem of appropriate weight 
update by parameter update during learning (Zell 1994). 

In this study, the ‘resilient propagation’ (RPROP, Riedmiller & Braun 1993) learning 
algorithm was used. In several studies, it has been tested regarding the sensitivity of the 
learning parameters against other algorithms such as standard back-propagation, 
Quickprop and SuperSAB (Riedmiller & Braun 1993, Braun 1997, Udelhoven & Schütt 
2000). RPROP was most insensitive for the initial learning rate and, together with 
Quickprop, the training rates were considerably faster, but the RPROP was more robust 
concerning the tuning of the parameters. 

The algorithm combines ideas of different adaptive learning schemes. The basic 
principle of RPROP is to eliminate the harmful influence of the size of the partial 
derivative on the weight step. The weights are not changed according to the gradient in 
the error function, but according to the sign of the gradient. The size of the weight 
change is exclusively determined by a weight specific ‘update value’: 
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where 
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n

∂
∂  denotes the summed gradient information over all patterns in the pattern 

set. RPROP is a ‘batch learning’ or ‘offline’ algorithm, because it adapts the weights 
only after presentation of all training patterns. 
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The second step of RPROP learning is to determine the update-value ∆ . This is based 

on a sign dependent adaptation process: 
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where +− <<< ηη 10  

Every time the partial derivative of the corresponding weight wij changes its sign, which 
indicates that the last update was too big and the algorithm has jumped over a local 
minimum, the update-value  is decreased by the factor . If the derivative retains 

its sign, the update-value is slightly increased to accelerate convergence in flat regions. 
Additionally, in the case of a change in sign, there is no adaptation in the succeeding 
learning step. 

)(n
ij∆ −η

The building and training of the ANN was accomplished using the Stuttgart Neural 
Network Simulator (SNNS, version 4.2) in the following way: 

1. In a test series, the optimal size of the multi-layer-feed-forward network (MLF) 
was defined. The test series resulted in a network with only one hidden layer and 
a ratio between hidden and input neurons set to 0.15. 

2. In a second test series, the optimal learning parameters were determined for the 
resilient propagation algorithm. The initial update value ∆0, which directly 
determines the size of the first weight step was set to 0.1. The maximum weight 
step ∆max, which prevents the weights from becoming too large, was set to 50; 
and finally the weight decay term α, which determines the relationship between 
the output error and the reduction in the size of the weights, is set to 104. 

3. Finally, the training of the different data sets was accomplished with training 
and monitoring sets. 

 

6.4.4 Results and discussion of modelling 

6.4.4.1 Modelling set up 
Validation of the models is of fundamental importance for multivariate calibration. To 
achieve this, the data set was split into a calibration set and a validation set. However, 
only for MLR is the validation set a validation set in its’ strictest sense, because both 
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PLSR and ANN use the validation set for the model definition (PLSR use the data to 
determine the number of principal components used in the model; for ANN the 
validation error determines the end of the training). In that case the validation set is 
referred to as monitoring set. 

The data were sorted from lowest to highest lead concentration (lead was chosen, 
because it is one of the key elements of the contamination). The samples were divided 
into two groups by taking odd-numbered spectra for the calibration group and even-
numbered samples for the validation group. In such a way, both sets represent 
approximately the full range of concentrations. The samples of the artificial mixture 
series were added to the 214 samples collected in 1999, which resulted in a data set of 
238 samples. These were split into a calibration and a validation set, consisting of 119 
samples each. The calibration was done twice with an exchange of the calibration and 
validation sets. 

The analysis of correlation matrix and correlograms revealed a grouping of the 
elements, which was also used for multivariate calibration in order to maximize the 
model quality. Based on their correlation structure in the correlograms, three groups 
were selected, which were modelled together in PLSR and ANN (in MLR elements are 
modelled one at a time): 

Trace Metals: As, Cd, Cu, Fe2O3, Hg, MgO, Pb, S, Sb, Zn 

Soil Matrix: Al2O3, Cr, K2O, Mn, Na2O, Ni, SiO2, TiO2  

Carbonatic/organic soil fraction: Calcite, CaO, Ctot, Corg, H, N, P2O5 

The trace metal group was used to test the different methods and data preprocessing 
combinations. The best method was then more thoroughly checked for quality and 
optimised. Finally, it was used for further predictions. 

The prediction quality of the models and the selection of the best model are based on 
the validation set. This approach gives the best estimate of the model’s performance 
since none of the samples in the validation set were used to build the model. In general, 
the prediction error is calculated as predictive residuals sum of squares (PRESS) from: 

 

 ∑ −= 2)ˆ( ii yyPRESS  Eq. 6.21 

 

The root mean square value of the prediction error is derived from PRESS as: 

 
n

PRESSRMSPE =  Eq. 6.22 

 

Correlations of measured versus predicted concentration are expressed as coefficients of 
determination (R²). Due to the skewed distribution of concentration values, the 
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coefficient of determination would overestimate the quality of the results. Therefore, 
additional error measures were calculated. The standard error of prediction (SEP) was 
calculated as standard deviation of differences between reference values and predicted 
values. From the SEP, two other measures were derived for the evaluation of the model 
quality. The relative percent difference (RPD) is the ratio of the standard deviation of 
the reference chemistry to the SEP. It should be as high as possible (RPD > 3 for 
prediction purposes). The relative error ratio (RER) is the ratio of the range in the 
prediction set to the SEP. It should be greater than 10 (Malley & Williams 1997). 

 

6.4.4.2 MLR models 
The models derived with the stepwise MLR algorithm achieved good results for some 
elements. However, due to the limitations of the algorithm, it caused problems in 
calibration of models with many wavelengths (1 or 5 nm). The F-value selection 
criterion was not able to select a number of wavelengths smaller or equal to the number 
of observations for these wavelength intervals. Even a decrease of the F-value could not 
overcome the problem. Nevertheless, for the other wavelength intervals, reliable results 
could be achieved (Table 6.3). 

 

Table 6.3. Prediction results for MLR (validation set)* 

Elements R² SEP RPD RER PRESS RMSE FWHM Method 
As 0.847 0.0079 3.12 17.62 0.0137 0.0107 20 vec 
Cd 0.528 0.079 1.04 6.53 0.929 0.0258 hymap std 
Cu 0.54 0.0858 1.23 6.95 1.5537 0.1143 10 abs 

Fe2O3 0.718 0.0449 2.17 10.09 0.4015 0.0581 20 abs 
Hg 0.955 0.023 5.82 33.02 0.1174 0.0314 20 vec 

MgO 0.941 0.0247 5.81 35.98 0.1558 0.0362 10 vec 
Pb 0.944 0.0312 5.3 30 0.1858 0.0088 10 std 
S 0.83 0.0439 2.4 12.8 0.2836 0.0084 50 std 
Sb 0.93 0.0296 4.55 25.87 0.16 0.0084 50 std 
Zn 0.213 0.0832 0.56 2.22 1.0247 0.0932 20 ref 

* FWHM denotes the wavelength interval yielding the best results; Method refers to the type of 
transformation (abs) absorption, der1) 1st derivative, der2) 2nd derivative, ref) reflectance, std) 
standardisation, vec) vector standardization) 

 

Very good results were achieved for Hg, Pb, Sb and MgO with coefficients of 
determination above 0.9. Also the RPD and RER are very high with values above 4 and 
25, respectively. The results obtained for As, Fe2O3 and S are also significant with R²’s 
between 0.7 and 0.9. The RER is above 10, but the RPD drops below 3 for Fe2O3 and S. 
The prediction for Cd and Cu was not satisfactory with R²’s below 0.55. The prediction 
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of Zn was not possible using MLR. The best prediction results were achieved with 
absorption, standardisation and vector normalisation; but the latter two are more 
reliable, because they were selected mainly for the elements with the best predictive 
results (e.g. Hg, Pb). Derivatives and reflectance spectra were not useful for prediction 
with MLR i.e., the prediction results obtained with these spectra were generally in the 
lower part of the prediction quality range. The best resampling intervals are generally 
longer FWHM with a slight preference of 20 nm intervals. However, this selection is 
strongly influenced by the above-mentioned limitations of the algorithm with too many 
input variables. The collinearity is a problem even in the models selected. It becomes 
obvious when analysing the wavelengths selected by the different MLR models (Table 
6.4). In many models, adjacent wavelengths have been selected, like the first three 
bands (360, 380, 400 nm) in the As-model or the two wavelengths 1860 and 1800 nm in 
the Fe2O3 prediction model. 

Nevertheless, this table also provides valuable information for the interpretation of the 
models, since the wavelengths in the models represent spectral features that are directly 
linked to certain spectrally active constituents (e.g. Fe3+, H2O, etc.). 
 

Table 6.4. Number of variables selected for optimal prediction (first line) and central wavelength 
positions [nm] of the selected variables in the order of their selection 

As Cd Cu Fe2O3 Hg MgO Pb S Sb Zn 
7 4 4 5 8 7 8 6 7 4 

380 1222 1400 860 380 1160 2290 1125 1125 1720 
1400 1346 460 1580 860 2140 2160 2225 775 2340 
360 981 430 1880 1380 2220 1170 1225 2075 1680 
400 1401 1450 1920 2060 2490 1930 2075 1875 380 
2340   1860 360 1920 2300 2175 2225  
2200    400 620 350 1375 2175  
520    1860 2250 2250  1825  

    1400  1940    

 

6.4.4.3 ANN models 
The calibration of ANN is more complex than MLR, because more decisions have to be 
taken concerning network architectures, size of the network, learning algorithms, 
learning parameters, etc. Only after these decisions have been taken can the calibration 
process start. Subsequently a further decision has to be made, namely when to stop 
training. If it is stopped too early, the prediction results will be poor. If the network 
‘learns’ for too long (e.g. too many learning cycles), overfitting reduces the predictive 
power of the model, because it learnt exactly the relationship presented in the training 
set, but lost all generalisation capabilities. 

Hence, in this case the training was controlled by the monitoring set. After every 
learning cycle, the calibration and the validation error were plotted and the training was 



6.4  Building models using multivariate calibration 97 

terminated when the rate of the improvement in the monitoring set had reached a 
minimum; longer learning cycles showed that the error asymptotically approaches a 
constant. Thus, the training was terminated after 30 to 70 cycles; the more wavelengths 
used, the longer the training. The initial weights were determined randomly. Therefore, 
the results vary each time the network is re-initialised. In order to account for these 
variations, the network was initialised five times and the best model was selected. 

The results of the prediction for the validation set are presented in Table 6.5. Best 
results were achieved for Pb, Sb, Hg, MgO with R2’s above 0.9, RPD’s above 3 and 
RER’s above 20. The coefficient of determination for As is below 0.9, but the high RPD 
and RER indicate that also for As the models could be used for prediction purposes. 
Reliable results are also obtained for S and Fe2O3, however, the RPD drops below the 
threshold of 3.0. The prediction quality for Cd, Cu and Zn, in contrast, is less reliable. 

The best transformations in ANN models were the derivatives, mainly the first order; 
only in one occasion did standardisation yield better results. A comparison with 
derivatives calculated using the finite difference method showed that the ‘Savitzky-
Golay derivatives’ yield considerably better results and should be preferred. Best 
resampling intervals are generally longer wavelengths with an optimum at 20 nm. The 
prediction results achieved with the different combinations were very similar, which 
proves that the ANN models are very robust and provide stable results for a wide range 
of different inputs. 

 

Table 6.5. Prediction results of ANN (monitoring set)* 

Element R² SEP RPD RER PRESS RMSEP FWHM Method
As 0.858 0.0073 3.28 15.88 0.0125 0.0103 20 der2 
Cd 0.494 0.085 0.96 4.32 1.0474 0.0942 20 der1 
Cu 0.446 0.0965 0.84 4.57 1.9661 0.1291 1 der1 

Fe2O3 0.714 0.0447 1.98 9.83 0.4057 0.0586 10 der1 
Hg 0.928 0.0335 4.12 21 0.1735 0.038 20 der2 

MgO 0.903 0.032 3.86 21.33 0.2827 0.0489 10 der1 
Pb 0.934 0.0285 5.53 27.74 0.19 0.0401 50 der1 
S 0.845 0.041 2.66 13.05 0.2658 0.047 20 std 
Sb 0.932 0.0267 5 25.11 0.1538 0.0361 50 der1 
Zn 0.22 0.0861 0.51 2.17 1.0736 0.0954 20 der1 

* FWHM denotes the wavelength interval yielding the best results; Method refers to the type of 
transformation (abs) absorption, der1) 1st derivative, der2) 2nd derivative, ref) reflectance, std) 
standardisation, vec) vector standardization) 
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6.4.4.4 PLSR models 
One of the most difficult tasks in using PLSR is determining the correct number of 
loading vectors to use to model the data. The first vectors in the model are most likely 
to be the ones related to the constituents of interest, while later vectors generally have 
less information that is useful for predicting concentration. In fact, if these vectors are 
included in the model, the predictions can actually be worse than if ignored altogether. 
Thus, decomposing spectra with PLSR and selecting the correct number of loading 
vectors is a very effective way of filtering out noise. However, if too few vectors are 
used to construct the model, the prediction accuracy for unknown samples will suffer 
since not enough terms are used to model all the spectral variations that make up the 
constituents of interest. Therefore, it is very important to define a model that contains 
enough vectors to properly model the components of interest without adding too much 
contribution from the noise. 

To avoid building a model that is either an overfit or an underfit, the number of factors 
where the PRESS plot reaches a minimum would be the obvious choice for the best 
model. While the minimum of the PRESS may be the best choice for predicting the 
particular set of samples, it is however, unlikely to be the optimum choice for all 
unknown samples. 

Since there is a finite number of samples in the set used for prediction, in many cases 
the number of factors that gives a minimum PRESS value can still create an overfit for 
predicting unknown samples. In other words, there is a statistical possibility that some 
of the "noise" vectors from the spectral decomposition may be present in more than one 
sample. These vectors can appear to improve the calibration by a small amount when, 
by random correlation, they are added to the model. However, if these exact same noise 
vectors are not present in unknown (future) samples, the predicted concentrations will 
have significantly larger prediction errors than if those additional vectors were left out 
of the model. 

A solution to this problem has been suggested by Haaland & Thomas (1988a) in which 
the PRESS values for all previous factors are compared to the PRESS value at the 
minimum. The ratio between these values can be calculated and assigned a statistical 
significance based on the number of samples used in the calibration set: 

 

 
minPRESS

PRESSFratio i
i =  Eq. 6.23 

 

This ratio is an indicator of the relative significance of each model to the model with the 
number of factors at the minimum of the PRESS. The number of factors where the F-
ratio falls below a predefined significance level determines the optimum number of 
factors for a model used for predicting unknowns: 
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mmi FFratio ,;α< , where  is the (1-α) percentile of Snedecor’s F distribution with 

m and m degrees of freedom (m is the number of calibration samples). Haaland & 
Thomas (1988a) found that α = 0.25 is a good compromise in practice, and this was also 
adopted for this study. 

mmF ,;α

The best prediction results for each element are shown in Table 6.6. As for the previous 
methods, the best prediction results could be obtained for As, Hg, Mg, Pb and Sb with 
high R2’s, RPD and RER. These are clearly above the threshold values for prediction. 
Fe2O3 and S were also predicted satisfactorily. Again, the results for Cd, Cu and 
particularly Zn were insufficient. The results in Table 6.6 show only the best results. 
However, the predictions obtained with PLSR are very similar regarding resampling 
intervals. The best results indicate that smaller wavelength intervals are preferred or at 
least yield as good results as the broader resampling intervals. Concerning 
transformation types, standardised and vector-normalised spectra were preferred over 
reflectance and derivatives. 

Table 6.6. Prediction results for PLSR (monitoring set)* 

Elements R² SEP RPD RER PRESS RMSEP FWHM Method Factors
As 0.862 0.0266 17.39 3.68 0.0122 0.0101 1 abs 9 
Cd 0.506 0.0921 1.16 5.05 1.0014 0.0917 hymap abs 11 
Cu 0.581 0.1311 1.58 7.9 1.383 0.1078 1 vec 12 

Fe2O3 0.718 0.0969 10.57 2.1 0.4015 0.0581 5 abs 9 
Hg 0.95 0.1425 30.57 5.8 0.1255 0.0325 20 std 9 

MgO 0.936 0.1424 32.6 5.5 0.1667 0.0374 20 vec 10 
Pb 0.945 0.164 30.16 5.65 0.1778 0.0387 1 std 9 
S 0.826 0.1066 12.45 2.44 0.2863 0.049 hymap std 9 
Sb 0.934 0.1359 25.87 4.84 0.15 0.0355 1 std 9 
Zn 0.3 0.0546 3.6 0.68 0.9527 0.0895 20 vec 10 

* FWHM denotes the wavelength interval yielding the best results; Method refers to the type of 
transformation (abs) absorption, der1) 1st derivative, der2) 2nd derivative, ref) reflectance, std) 
standardisation, vec) vector standardization); Factors denotes the number of factors used in the 
model 

 

The PLSR algorithm applied in this study has the ability to model and analyse several 
Y’s simultaneously, which has the advantage of giving a simpler overall picture than 
having one separate model for each Y-variable. It is particularly useful, when, like in 
the case of the heavy metals, the Y-variables are correlated (Wold et al. 2001). This is 
of course only possible with a single spectral input. Hence, the spectral combination 
generating the smallest PRESS for all predicted elements was selected for further 
analysis. Best overall results were achieved with 10 nm vector-normalised spectra 
(Table 6.7). 
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Table 6.7. PLSR Prediction results for vector-normalised data with 10 nm FWHM (monitoring set) 

Elements R² SEP RPD RER PRESS RMSEP 
As 0.849 0.0266 3.62 18.58 0.0133 0.0106 
Cd 0.581 0.0948 1.29 6.11 0.7728 0.0806 
Cu 0.521 0.1249 1.55 8.52 1.6394 0.1174 

Fe2O3 0.721 0.0989 2.03 9.93 0.459 0.0621 
Hg 0.935 0.1453 5.03 26.43 0.1031 0.0294 

MgO 0.936 0.1419 5.48 32.62 0.1901 0.04 
Pb 0.933 0.1689 5.03 27.1 0.2264 0.0436 
S 0.787 0.1058 2.18 11.47 0.346 0.0539 
Sb 0.918 0.1395 4.36 23.34 0.1953 0.0405 
Zn 0.299 0.0538 0.67 3.48 0.9943 0.0914 

 

6.4.4.5 Final model selection and analysis 
The predictions obtained with the three different methods yield very similar results, 
which are summarised in Figure 6.16. Considerable differences can be observed for Cd, 
Cu and Zn. However, the models predictive capacities are poor; hence the predictive 
quality should not be used as a single criterion for the selection of the best model. 
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Figure 6.16. Coefficients of determination for the best results obtained with the three methods 
MLR, PLSR and ANN for the heavy metal group. 

 

MLR had some problems in the wavelengths selection due to the strong collinearity in 
the data. Nevertheless, it proved to be a valuable tool for multivariate calibration and 
may be even preferable over the other methods in some cases due to its straightforward 
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interpretability, since the estimated parameters relate the property of interest linearly to 
a set of original variables; but PLSR and ANN have the ability to model and analyse 
several constituents together, which is considerably faster and simplifies the overall 
picture. Moreover, correlations between the Y-variables can be exploited. Hence, MLR 
was not used for further modelling. 

The predictive quality is again exploited for the comparison of the two remaining 
methods; the results of PLSR are in nine out of ten cases slightly superior. This might 
be caused by a linear behaviour of the heavy metals with regard to the reflectance 
spectra. In such cases Despagne & Massart (1998) recommend the use of linear models. 
Following these recommendations, the PLSR was selected. It proved to be a very robust 
method being able to handle highly collinear data sets with large amounts of X 
variables. Also with different spectral transformations comparable results could be 
obtained. 

 

6.4.4.6 Outlier detection 
The presence of outliers may have a detrimental effect on the quality of the calibration 
model. Therefore, the identification of outliers is an important part of the modelling 
process. Outliers usually arise from some incorrect measurement, whether it is in the 
concentration data, or in the spectral data. The inclusion of outlier samples in the 
training set will introduce a bias to the final model. In effect, outlier samples will tend 
to ‘pull’ the model in their direction, causing the predicted concentrations of valid 
samples to be less accurate (or even erroneous) than if the sample was completely 
eliminated from the training set. A discussion of standard diagnostic tools for the 
detection of calibration and prediction outliers is given by Martens & Naes (1989). 
There are two approaches for outlier detection. The first approach is to fit the data with 
least squares, construct regression diagnostics and remove the outliers. The second 
approach is to construct estimators that fit the majority of data and examine the 
residuals from this fit to detect the outliers (Pell 2000). 

A tool for outlier detection is the cross-validation procedure, which is often used as a 
validation method. The most common approach is the Leave-Out-One (LOO) 
procedure, where n calibration steps are calculated leaving out one sample at a time. 
The samples not included are then used to assess the PRESS of the cross validation 
(Figure 6.17). The model attempts to account for all the variations in the training data 
when the calibration calculations are performed, thus rendering approximately the same 
prediction error for most of the samples should be approximately the same. Samples 
that have significantly larger concentration residuals than the rest of the training set are 
known as concentration outliers. The samples az092 and az125 are significantly 
different from the rest of the training set and represent the most likely outliers. 
However, with the samples az126 or az146 such a decision based on visual 
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interpretation is more difficult and a mathematical way to accurately determine the 
likelihood that a sample is really an outlier is needed. 
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Figure 6.17. Cross Validation of vector normalised data (10 nm). High values signalise potential 
outliers 

 

The F-test method for determining the optimum number of factors from PRESS analysis 
is also useful for determining the statistical significance of a sample’s concentration 
residual with respect to the rest of the training set. In this case, the F-ratio value is 
calculated by: 
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where i is the number of the sample being tested, n is the number of samples in the 
training set and e is the difference between measured and predicted concentration for 

the i-th sample left out during cross validation. Generally, samples that exhibit 
probabilities of 0.99 (α=0.01) are considered outliers and should be removed from the 
training set before calculating the final calibration model (Haaland & Thomas 1988a). 

ic

Four samples were deleted from the model for the vector-normalised data set with a 
FWHM of 10 nm before final calibration. However, this did not influence the prediction 
results significantly (Table 6.8). 
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Table 6.8. Final prediction results after outlier detection for vector-normalised data, 10 nm 
(validation) using PLSR 

Elements R² SEP RPD RER PRESS RMSEP 
As 0.843 0.0242 2.96 15 0.0139 0.0108 
Cd 0.524 0.0772 0.91 4.45 1.0125 0.0922 
Cu 0.568 0.1169 1.41 7.71 1.4402 0.11 

Fe2O3 0.725 0.0894 1.8 9.39 0.4004 0.058 
Hg 0.932 0.1416 4.89 26.29 0.1663 0.0374 

MgO 0.935 0.1375 5.15 32.02 0.1738 0.0382 
Pb 0.942 0.1632 5.24 28.25 0.1878 0.0397 
S 0.796 0.1024 2.12 11.02 0.3419 0.0536 
Sb 0.924 0.135 4.39 23.28 0.1745 0.0383 
Zn 0.27 0.0395 0.46 2.07 1.0314 0.0931 

 

It was possible to estimate seven elements out of ten with high precision. Coefficients of 
determination for Hg, Pb, Mg and Sb are above 0.9. Also RPDs > 4 and RER > 20 are 
indicative of very good models. The validation results for As, Fe and S gave R²s 
between 0.7 and 0.9, RPDs between 2 and 3 and RERs between 9 and 16, which can 
also be considered as satisfactory. The models didn’t provide a reliable prediction for 
Cd, Cu and Zn. The poor prediction quality can be attributed to different geochemical 
behaviour. According to Blume & Brümmer (1991) and Ainsworth et al. (1991) the 
solubility of trace metals decreases in the following order: Cd > Zn > Cu >As > Hg ~ Pb 
~ Sb. Accordingly, Simon et al. (2001) found that the larger part of the Cd, Cu and Zn 
penetrated the soil and precipitated from the solution phase of the spill, while the other 
elements were deposited by sedimentation processes as part of the pyrite dominated 
solid phase. Hence, a great part of the mobile Cd, Cu and Zn are distributed in the soil 
profile by an independent process and thus not directly linked to the pyritic sludge, 
which most significantly influences the spectral response of the contaminated soils. 
Alastuey et al. (1999) and Galán et al. (2002) found similar results in their studies of the 
mobility of heavy metals in sludge and soils in the study area. Figure 6.18 shows the 
scatterplots of predicted vs. measured concentrations. The one to one line shows a 
perfect relationship; deviations from this relationship occur mainly with small 
concentrations. Some outliers in the validation set are visible, e.g., in the scattergrams 
for iron or sulphur. The results would be even better if these outliers would have been 
deleted from the validation set. 
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Figure 6.18. Scatterplots of predicted vs. measured concentrations. 1:1 line for perfect fit 
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Figure 6.18. (continued) Scatterplots of predicted vs. measured concentrations. 1:1 line for perfect 
fit 

 

The correlation structure of HM and spectral information was examined for a better 
understanding of the functioning of multivariate statistics and ANN, which are often 
regarded as black boxes, since both prediction methods make use of the correlation 
structure amongst intercorrelated variables (Table 5.5). Most heavy metals, iron and 
sulphur (As, Fe, Hg, Pb, S, Sb) were strongly intercorrelated  (r > 0.8); only copper and 
zinc was less correlated with the other elements. Cadmium played an intermediate roll, 
as it was correlated significantly with As, Fe, Hg, Pb, S, and Sb and relatively high (r = 
0.83) with Zn. The correlation structure clearly reflects the prediction results: all 
elements that were highly correlated were predicted more precisely. 

The separation of different subgroups was even more clearly visible in the correlogram 
(Figure 6.19) illustrating the correlation between the reflectance at single wavelengths 
and respective elements. The structure is similar for all elements, but there were strong 
differences in the strength of the correlation. The areas of strongest correlation could be 
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attributed mainly to absorption features of iron and iron oxides. The high positive 
correlation at about 550 nm displayed the change from opaque to transparent behaviour, 
which was caused by an intense charge-transfer band in the UV region of the spectrum 
(Hunt et al. 1971). The broad area with the highest negative correlations (1000 – 1800 
nm) was linked to the strong absorption band of the ferrous ion centred at about 1000 
nm (Clark 1999). It was interrupted by the peaks of strong molecular water bands at 
1400 and 1900 nm in combination with hydroxyl absorption, centred at 1400 and 2200 
nm. In particular, secondary clay minerals show distinct absorption features at these 
wavelengths. In this data set, higher amounts of secondary clay minerals represented 
less contaminated soils. 
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Figure 6.19. Correlogram for vector normalised spectra (10 nm) and HM 

 

6.4.5 Modelling other element groups 

New models were developed for the other two element groups using PLSR and the 
resampling and transformation combinations described previously. 

The group of elements related to the soil matrix could be modelled best with vector-
normalised spectra with a FWHM of 20 nm. After cross validation and outlier detection, 
the final model was built with 13 factors and with three outliers deleted. The prediction 
results in Table 6.9 show very similar values for Al2O3, K2O, Mn, Na2O, SiO2 and TiO2 
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with R2’s of 0.7 RPD’s above two and RER’s above ten. The prediction of Cr and Ni 
was not reliable. 

Table 6.9. Final prediction results of elements related to soil matrix with vector-normalised spectra 
and 20 nm FWHM 

Elements R² SEP RPD RER PRESS RMSEP 
Al2O3 0.7 0.1149 2.08 12.1 0.8169 0.0832 

Cr 0.343 0.0458 0.98 5.97 0.5236 0.0666 
K2O 0.787 0.1111 2.73 16.7 0.3957 0.0579 
Mn 0.726 0.0465 2.17 11.33 0.1204 0.0319 

Na2O 0.714 0.1823 2.16 9.62 1.6504 0.1183 
Ni 0.461 0.08 1.17 7.75 1.0138 0.0927 

SiO2 0.662 0.0778 2.35 13.28 0.3383 0.0535 
TiO2 0.711 0.1098 2.15 9.29 0.7075 0.0774 

 

The final model for the group of elements related to organic soil components and plant 
nutrients consisted of twelve factors with five outliers removed from the calibration set. 
The results obtained for Calcite, CaO, Ctot., Corg. and H were similar, but not sufficient 
for predictive models (Table 6.10). No reliable results were obtained for N and P2O5. 

 

Table 6.10. Final prediction results of elements related to organic soil matrix with standardised 
spectra and 10 nm FWHM 

Elements R² SEP RPD RER PRESS RMSEP 
Calcite 0.543 0.0773 2 8.86 0.4801 0.0635 

CaO 0.562 0.0589 2.11 9.67 0.2373 0.0447 
Ctot. 0.604 0.0802 2.34 10.92 0.3868 0.057 
Corg. 0.599 0.0775 1.54 9.04 0.6458 0.0737 
H 0.668 0.072 1.45 6.82 0.5233 0.0663 
N 0.396 0.0577 0.72 4.06 0.9734 0.0904 

P2O5 0.298 0.0356 1.58 8.25 0.1409 0.0344 

 

The elements not directly related to the accident could not be predicted successfully, 
because the major changes in spectral behaviour are clearly linked to the pyritic sludge. 
Already the modelling of mobile elements, which originate from the mine, but which 
were distributed in solution, was unsuccessful. 

The prediction of calcite and organic matter would have been very valuable for 
remediation planning, because they have the ability to buffer acidity and fixate HM. 
However, the sampling strategy was emphasised on HM and thus, variation in 
concentrations for the other elements too small (see Table 5.3). 
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6.4.6 Modelling heavy metal concentration for subsequent year 

The data collected in 1999 were used to estimate the concentrations of samples 
collected one year later. The calibration model consisted of 238 samples. In the 
crossvalidation 11 factors were used and 8 samples were removed from the final model 
as outliers (Table 6.11). 

 

Table 6.11. Prediction results for samples 2000 using vector normalised spectra (10nm) from 1999 

Elements R² SEP RPD RER PRESS RMSEP 
As 0.774 0.0275 0.15 0.7 3.401 0.1977 
Cd 0.541 0.0904 1.2 6.07 0.7062 0.0901 
Cu 0.279 0.201 1.51 7.52 2.7943 0.1792 

Fe2O3 0.689 0.1174 1.18 5.16 1.293 0.1219 
Hg 0.878 0.14 2.56 14.49 0.3704 0.0653 

MgO 0.055 0.1301 0.64 4.76 5.5197 0.2519 
Pb 0.839 0.1622 2.66 14.88 0.4703 0.0735 
S 0.863 0.1031 0.8 4.36 1.7818 0.1431 
Sb 0.839 0.1356 1.95 10.75 0.8231 0.0973 
Zn 0.232 0.0476 0.49 2.53 1.131 0.114 

 

Like in the models described earlier, the prediction of Cd, Cu and Zn was impossible. 
Additionally, Mg could not be predicted anymore. In fact, the element was added to the 
heavy metal group due to its similar correlogram (Figure 6.11), but in the correlation 
matrix of elements it did not correlate strongly with this group and in the year 2000 it 
did not show any correlation with other elements. 

The prediction for As was not reliable. With regard to the coefficient of determination 
(R2), the results for As seem to be comparable to those of the models described earlier. 
However, the RPD and RER are smaller, indicating a poor model performance. The 
geochemical conditions changed strongly between the year 1999 and the year 2000, 
which is clearly reflected in the samples (see paragraph 5.4.3.2). The greatest change 
could be observed for As, whose concentrations in the samples increased from 119 ppm 
to 289 ppm, while those of the other elements diminished. A model calibrated for the 
conditions in 1999 obviously cannot estimate concentrations, which are not reflected in 
the spectral behaviour. 

6.4.7 Modelling with field and image spectra 

Until now, the models were only applied to spectra measured in the laboratory. Whereas 
in the laboratory soil spectra are measured under controlled conditions, in the field 
uncontrolled conditions provide an environment that makes soil reflectance 
measurement more difficult. Nevertheless, the good prediction results obtained could 
also allow application to spectra measured with the ASD in the field and finally to the 
image spectra of the Hymap sensor. The laboratory models also revealed that with the 
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spectral resolution of the HyMap sensor very good results could be obtained. Hence, the 
field spectra were transformed to HyMap spectral resolution, which allowed a direct 
comparison of the models. However, the models have to be adapted, because both field 
and image spectra are strongly affected by noise due to atmospheric interference in the 
water absorption bands, in the blue part of the VIS bands and towards the end of SWIR 
bands (chapter 5.3). In total 18 bands were deleted, resulting in a data set with 110 
bands. This reduction of bands had little impact on the predictive power of the models 
(Table 6.12). 

 

Table 6.12. Comparison of R2’s of prediction results using simulated Hymap full resolution (128 
bands) and HyMap reduced band set (110 bands) with laboratory data from 1999 

Element 128 bands 110 bands
As 0.839 0.826 
Cd 0.563 0.454 
Cu 0.567 0.381 
Fe 0.693 0.684 
Hg 0.951 0.937 
Mg 0.935 0.927 
Pb 0.936 0.948 
S 0.776 0.792 
Sb 0.916 0.930 
Zn 0.266 0.162 

 

6.4.7.1 Field spectra 
The PLSR model was calibrated using the data collected in 2000, because in this 
sampling campaign the field spectra were collected prior to the soil sampling allowing 
the measurement of the undisturbed topsoils, which was not possible during the 
campaign in 1999. After cross validation and outlier detection, the final model was 
build with four factors and three outliers deleted (Table 6.13). The results of the field 
spectra obtained for As, Hg, Pb, Sb and with some respect also for Fe and S are 
acceptable. Taking into consideration that it is a case of self-prediction (because the 
calibration spectra describe the same soils as measured in the laboratory), the results 
shown are below those to be expected. 

The reasons for the inferior model performance can be assigned to the change in the 
geochemical behaviour, which already caused problems in the prediction of 
concentrations with laboratory data from 2000 using data from 1999: The residual 
pyrite in the soils had started oxidation and formed gypsum together with other iron-
sulphate minerals and poorly crystalline iron oxy-hydroxides on the soil surface (Galán 
et al. 2002). The spectral behaviour of these crusts is very different from the non-
oxidised pyrite and thus, the main source of error, when the models are calibrated with 
homogenised laboratory spectra. Furthermore, the spectral measurement is strictly 
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limited to the tip few millimetres of the surface, whereas the soil sample for laboratory 
analysis is an average of the first two centimetres, which may also represent a 
considerable source of error. Finally, surface roughness effects have to be taken into 
consideration; macro- and micro-aggregation cause changes in the albedo, which can 
not be removed fully by the pre-treatment of spectra (Udelhoven et al. 2000). 

 

Table 6.13. Prediction results for field spectra with HyMap reduced band set resolution using 
vector normalised spectra of the year 2000 

Elements R2 SEP RPD RER PRESS RMSEP 
As 0.745 0.0886 2.57 8.64 0.9896 0.1274 
Cd 0.347 0.1175 1.51 3.82 1.2633 0.1439 
Cu 0.036 0.1335 1.28 1.94 1.7042 0.1671 

Fe2O3 0.582 0.1 2.06 6.65 1.1103 0.1349 
Hg 0.771 0.0808 2.41 8.28 0.6732 0.1051 

MgO 0.112 0.1424 1.52 6.91 2.989 0.2214 
Pb 0.772 0.0764 2.62 8.91 0.7191 0.1086 
S 0.695 0.0912 2.56 8.4 1.1066 0.1347 
Sb 0.779 0.0798 2.73 9.22 0.8341 0.1169 
Zn 0.002 0.1246 1.18 0.81 1.3105 0.1466 

 

An example from the Sobarbina site illustrates the problems caused by crusting 
processes. Figure 6.20 shows an area, where the residual pyrite (which was worked into 
the soil) oxidised and created crusts of diverse colours on the surface. Different 
coloured crusts were measured with the spectrometer and afterwards samples prepared 
for laboratory analysis. From Figure 6.21 it can be seen that the crusts are only a few 
millimetres thick and the underlying soil is often much darker. 
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Figure 6.20. Strongly oxidised surfaces at the Sobarbina site (July 2000) 

 

Figure 6.21. Sampling point of a bright crust (AZ 426) 
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The shape and the albedo of the spectra measured in laboratory are very different. The 
albedo differences are not a major issue, because they can be reduced using the 
normalisation procedures described in paragraph 6.3.3, but the spectra also exhibit 
different spectral features (Figure 6.22). For example, the field measurement of AZ426 
is most probably a gypsum crust (a more detailed identification of these spectra is given 
in chapter 4.3), because it exhibits the typical absorption features of water bonding in 
the mineral at 1.4, 1.9 and 2.2 µm. The laboratory sample in contrast, is composed 
mainly of the underlying contaminated soil. According to the spectral shape it is a 
highly contaminated sample, which corresponds well with the laboratory analysis. 
Sample AZ422 shows a similar shape in the field spectrum than AZ426, but both the 
laboratory spectrum and the chemical analysis classify it as non-contaminated. 
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Figure 6.22. Comparison of field (left) and laboratory spectra (right) 

 

6.4.7.2 Image spectra 
The prediction of HM concentrations from the HyMap image 2000 was performed with 
spectra collected from the georeferenced image using the GPS coordinates taken during 
the sampling campaign. The spectra were selected in such a way, that they represent the 
corresponding soil-sampling site as well as possible. A sampling point, for example, 
may have fallen close to a dense vegetation patch and due to inaccuracies in the 
georeferencing, the vegetation patch would have been selected. In such cases the next 
pixel with soil reflectance characteristics was selected. Examples of image spectra 
corresponding to the spectra of the sampling points are shown in Figure 6.23. The shape 
of the spectra is very different compared to the field and laboratory spectra (Figure 
6.22). The factors influencing the image spectra are manifold and complex. According 
to Ben-Dor et al. (1999), they can be broadly divided into biosphere, surface cover and 
atmospheric interference. Even for the high spatial resolution of airborne sensors such 
as HyMap the registered spectrum always represents a mixture of the surface 
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components. Vegetation is one of the mayor factors masking the soil signal. The 
spectral region of 0.68 to 1.3 µm of soils is the region most affected by green 
vegetation, as a result of the steep rise in reflectance caused by green vegetation (see 
Figure 4.8) (Ben-Dor et al. 1999). Furthermore, tall vegetation causes shading of soil 
surfaces. Dry vegetation does not change the spectral shape of soils in the VIS-NIR 
region, except a rise in albedo; in the SWIR spectral features related to cellulose, lignin 
and water content alter the soil reflectance spectrum. Surface cover interference is 
related to a change of natural surfaces due to human interaction, e.g. tillage, crusting 
processes (physical & biogenic) and surface roughness (aggregate size). The difficulties 
caused by atmospheric interference were discussed earlier (see chapter 4.4.2) and are 
apparent in the noise of the spectra. The peaks at about 1.4 µm were caused by strong 
water vapour absorptions and were left out from the models. 
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Figure 6.23. Image spectra extracted from HyMap image 2000 at the Sobarbinas site. The spectra 
show approximately the same surfaces as the field spectra in Figure 6.22 

 

The influence of green and dry vegetation on the sensitivity of the models was assessed 
using the surface spectra of the data collected in 1999. The soil spectra were linearly 
mixed with reflectance spectra of green and dry vegetation in various amounts. The 
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influence of green vegetation is shown in Figure 6.24. The vegetation reflectance affects 
the original soil reflectance already at low percentages. The strong rise of reflectance 
between 0.68 and 1.3 µm changes the shape of the spectra drastically. The contaminated 
soils exhibit in this region a strong iron absorption feature, which is a key area in the 
modelling. This feature is masked for soil AZ021 at only 5 % vegetation coverage. The 
chlorophyll absorptions in the VIS also considerably alter the spectral pattern. 
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Figure 6.24. Linear mixture of two soils and green vegetation for the assessment of vegetation 
influence on the modelling. AZ001 uncontaminated, AZ021 contaminated 

 

The influence of dry vegetation is smaller (Figure 6.25). In the VIS-NIR part of the 
spectrum it is mainly the overall albedo that increases. This affects the darker 
contaminated soils more than the brighter uncontaminated soils. However, the wide iron 
absorption is still visible with a higher percentage vegetation cover. In the SWIR, the 
reflectance exhibits contrary behaviour. The hydroxyl absorption soil at 2200 nm, for 
example, is ‘balanced’ by the dry vegetation reflectance peak. 
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Figure 6.25. Linear mixture of two soils and dry vegetation for the assessment of vegetation 
influence on the modelling. AZ001 uncontminated, AZ021 contaminated 

 

The examples presented above, show clearly the strong influence of green and dry 
vegetation on the spectra. This is also reflected in the predictive power of the models, 
when the spectra are influenced by vegetation. The influence of green vegetation is 
already too strong at coverages above 5%. Figure 6.26 shows the prediction results for 
Pb with an increasing coverage of dry vegetation. In the vegetation-free case, the trend 
line is more or less congruent with the 1:1 line. With increasing vegetation cover, the 
trend line leans over more and more. The models underestimate the measured Pb 
concentrations and with dry vegetation cover above 20 %, most of the concentrations 
are negative. 

Having in mind the various factors influencing the spectra, as described above, it is not 
surprising that the laboratory models are not able to predict the HM concentrations of 
image spectra (Table 6.14). The obtained results are not significant. Several tests with 
field spectra as calibration or cross validation with image spectra could not improve the 
poor results. Calibration with image spectra could possibly provide better results, but 
this implies an adapted sampling strategy with homogeneous sample areas, which was 
not possible in the sampling campaigns. 
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Figure 6.26. Prediction results for Pb using PLSR and vector normalised spectra with increasing 
influence of dry vegetation (0, 5, 10, 20, 30 % from left to right). The first line shows the 1:1 
relationship, the second line is the trend line of the predicted data. The plot with 0 % vegetation 
shows the results of the validation 

 

Table 6.14. Prediction Results for image spectra 

Elements R2 SEP RER RPD PRESS RMSEP 
As 0.028 0.2437 3.31 0.72 0.1137 0.052 
Cd 0.061 0.1338 2.78 0.63 0.4163 0.0996 
Cu 0.135 0.1264 3.05 0.7 0.2704 0.0802 

Fe2O3 0.053 0.2145 3.31 0.72 0.1394 0.0576 
MgO 0.016 0.1873 3 0.66 0.1191 0.0533 

Pb 0.006 0.2175 4.15 0.97 0.2414 0.0758 
S 0.018 0.2267 3.36 0.74 0.1921 0.0676 
Sb 0.022 0.2356 3.07 0.67 0.2852 0.0824 
Zn 0.028 0.2173 3.16 0.7 0.2825 0.082 

6.5 Conclusions 

In this chapter the chemical analysis data of the soil samples were combined with the 
spectral data for the prediction of chemical concentrations based on the spectral data. 
The models built with laboratory data were then transferred to field and image spectra. 

In a mixture series of artificially contaminated soils, a strong decrease in albedo could 
be observed with increasing sludge content and a wide iron absorption feature became 
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the main absorption feature centred at about 1000 nm. The depth of this absorption was 
used for the estimation of heavy metals for laboratory data. 

Multivariate calibration has been chosen as the method for the quantitative estimation of 
HM and other soil constituents, because it has the advantage that it does not have to be 
based on a known physical assumption, but instead on the data available. This allows 
for a quantitative estimation of visually featureless spectra. On the other hand, it may be 
hard to interpret these results. When a wavelength is selected based on a statistical 
relationship that cannot be related to a physically explicable absorption feature. 
Stepwise multiple linear regression (MLR), partial least squares regression (PLSR) and 
artificial neural networks have been tested for their ability to estimate HM 
concentrations based on their reflectance spectra. The spectra were transformed using 
different techniques (absorption, derivatives, standardisation and vector normalisation) 
in order to enhance important spectral features, and spectrally degraded (1, 5, 10, 20, 50 
nm) to evaluate the effect of wavelength reduction with regard to the predictive power 
of the models. This is particularly important, when the models are adapted to the 
spectral resolution of imaging spectrometers. 

All calibration methods obtained meaningful and significant results for many of the 
elements related to the accident (As, Fe2O3, Hg, Pb, S, Sb). The prediction of Cd, Cu 
and Zn was not possible due to the fact that these elements penetrated the soil and 
precipitated from the solution phase of the spill, while the other elements were 
deposited as part of the pyrite dominated solid phase (Simón et al. 2001). Hence, a great 
part of the mobile Cd, Cu and Zn are distributed in the soil profile by an independent 
process and thus not directly linked to the pyritic sludge, which most significantly 
influences the spectral response of the contaminated soils. This is underpinned by the 
fact that the prediction quality for As of samples collected in the year 2000 is reduced. 
In this year, As had shown to be very mobile and widely distributed within the soil 
profile and strongly accumulated in the oxidation crusts. 

The estimation of other elements, which were not directly related to the mining 
accident, was possible for those elements related to the normal soil matrix (Al2O3, K2O, 
Mn, Na2O, SiO2, TiO2), but failed for calcite, carbon (total & organic) and phosphorous. 
These elements are normally concentrated in the upper soil horizons, but due to the 
cleaning activities, the top soils were removed (cut profiles) and the concentration range 
very small. The quantitative estimation of Calcite, organic matter and phosphorous 
would have been very helpful for the estimation of the acidification risk, because they 
are important agents for buffering and the retention of acidification/heavy metal. 

The transfer of models from laboratory to spectra measured in the field or extracted 
from the image was only partially possible. The results for the field spectra were 
strongly influenced by the presence of surface crusts with a totally different spectral 
behaviour than the laboratory spectra. An estimation of the heavy metal concentration 
for the image spectra was not possible; also attempts to calibrate the models using field 
or image spectra failed. The problems caused by integration of the signal over 25 m2 
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produces even on pure soil surfaces mixtures that are not represented by the laboratory 
models. The influence of green and dry vegetation is very strong even at surface 
coverages of less than 10 %. Improvements might be achieved for both, field and image 
spectra, with a calibration/validation with field and image spectra. However, the factors 
influencing the spectrum will always strongly degrade the prediction quality. 

 



 

7 Imaging spectroscopy for quantification of 
residual contamination 

 

As previously reported, spatial mixing of reflectance at sub-pixel scale is an inherent 
feature of remote sensing data sets. This causes considerable problems in their 
interpretation as demonstrated in the previous chapter; on the other hand such spectral 
mixtures can be exploited quantitatively (Mustard & Sunshine 1999). Hence, in this 
chapter the spectral mixing is analysed in its spatial context to derive qualitative and 
quantitative information about the materials making up the reflectance of each pixel. 

7.1 Addressing the problems of mixed pixels 

The first approaches to solve the mixture problem were proposed by Detchmendy & 
Pace (1972) and Horwitz et al. (1975). In the mid-eighties the spectral mixture analysis 
(SMA) was used for the analysis of multispectral data obtained by NASA’s missions to 
the Moon and Mars (Singer & McCord 1979, Adams et al. 1986). Today, it is widely 
used to determine the sub-pixel abundance of vegetation, soils and other spectrally 
distinct materials that fundamentally contribute to the spectral signal of mixed pixels 
(e.g. Smith et al. 1990; Thomson &  Salisbury 1993; Roberts et al. 1998). This is of 
particular importance to obtain quantitative estimates of distinct materials, which is a 
typical application of hyperspectral data. SMA aims to decompose the measured 
reflectance spectrum of each pixel into the proportional spectral contribution of so-
called ‘endmembers’ (EM). These EMs are known reflectance spectra considered to 
represent the spectral characteristics of the relevant surface components. The strategy to 
select these EMs is one of the key issues in the successful application of SMA. It has to 
consider the changing spectral significance of EMs as a function of the variability of the 
occurring surface materials, the spatial and spectral resolution of the data and the 
thematic purpose of the study. Different strategies have been described in the literature; 
the most widely used method consists of employing the same EMs to the whole image, 
and using all available EMs at the same time. 

Although it is mathematically possible to use one EM more than the number of spectral 
bands available in the decomposition, which for imaging spectrometry data would allow 
the use of dozens of EMs, usually a limited number of EMs is sufficient to explain the 
mixed spectral signature of an individual pixel in a physically meaningful way. In an 
absolutely noise free system it should be theoretically possible to retrieve out of a large 
number of distinct spectra abundance values above zero only for those EMs that really 
contribute to the mixed signal, while for the other spectra the abundance value would be 
zero. In real data sets, however, the natural variability of the EM’s material reflectance, 
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residual errors of calibration and atmospheric correction as well as electronic noise from 
the detector system prevent such ideal, absolutely unambiguous solutions of the spectral 
unmixing. When using more EMs than really present in the pixel, there is a high risk to 
produce mathematically well fitting results, which are physically misleading and do not 
explain the real composition of the pixel. 

In recent years, many authors have proposed and used a more complex model where 
both the number and the set of EMs vary dynamically on a per-pixel basis (e.g. Roberts 
et al. 1991, Lacaze et al. 1996), which has become known as ‘Multiple Endmember 
Spectral Mixture Analysis’ (MESMA). The idea consists of restricting the large set of 
possible EMs to a small set of appropriate EMs which can be different for each pixel, 
thereby allowing accurate decomposition using a virtually unlimited number of EMs. 
These spectra are chosen to represent the spectral variability of a larger area of interest, 
but would overdetermine the spectral signal of most of the single pixels. Nevertheless, 
MESMA in not optimal and presents some drawbacks. Estimated local EMs may be 
incorrect, for example, because different EM subsets may model the same areas equally 
well. In general, authors consider that EMs characterize the overall variance in the 
image as a unique condition. However, this is not sufficient since low modelling errors 
may coexist with relatively high fractional errors, e.g. when the spectrum of interest 
resembles a mixture of other materials such as the spectrum of dry grass, which 
resembles mixtures of shade, green foliage, and soil (Ustin et al. 1993). Thus, one 
additional pre-requisite is that EMs should reflect the different surface conditions in the 
scene. As a result, to address these limitations the entire unmixing process must be 
guided by a significant amount of user knowledge (Gross & Schott 1998). 

This was the rationale for the development of a software tool, called ‘Variable Multiple 
Endmember Spectral Mixture Analysis’ (VMESMA) that combines, amongst other 
features, two complementary unmixing approaches: first, the use of standardised 
signatures to represent the scene materials and, second, an improved strategy for image 
segmentation (García-Haro & Sommer 2001). 

VMESMA is used in this study to map the residual sludge on a sub pixel level and to 
estimate its surface concentration. This information could be used to estimate the total 
residual sludge amount, which in turn allows calculation of parameters important for 
risk assessment and remediation management, like the potential acidification risk. The 
application of VMESMA to the data collected in the second year is used for monitoring 
purposes and the identification of areas still contaminated. 

7.2 The variable multiple endmember approach 

The VMESMA unmixing tool is an image analysis package that extends the 
possibilities of multiple EM spectral unmixing. The categorisation of the scene and the 
variety of techniques available to model the different scene sub-areas enhance the 
ability to implement analysis strategies adapted to the problem under consideration. The 
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hierarchical analysis can incorporate a priori knowledge from different sources of data, 
including information derived from the unmixing results. Based on an iterative feedback 
process, the unmixing performance may be improved at each stage until an optimum 
level is reached (Figure 7.1). After each unmixing run, the program provides different 
outputs (abundances, residuals, RMS, etc.), which can be used to modify the EM 
combinations for subsequent unmixing runs in order to improve the results. Appropriate 
segmentation tools allow the identification of subunits within the image based on 
spectral and spatial features of interest, usually representing incorrectly modelled areas. 
Problematic areas can be identified not only from high modelling errors, but also from 
either negative proportions or solutions not matching the proportions derived from field 
observations, aerial photographs or other sources. From these unmodelled areas image 
EMs can be extracted, which may be incorporated in the unmixing library, possibly 
after spectrally matching them with a complete spectra database. A subsequent run will 
use a modified list of EM models extracted from the updated library and a hierarchical 
optimised strategy on the basis of the updated segmentation. 
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Figure 7.1. General VMESMA scheme 
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In this study, VMESMA was applied as outlined in Figure 7.2. Based on GIS 
information about the maximum extent of the sludge a first separation of areas affected 
by the mining accident was possible. A simple EM set was selected for both units 
consisting of the main landscape elements (green, dry vegetation and the main soil types 
of the area). The RMS and residuals of the first unmixing were used to separate pixels 
in the affected area with small errors. The small errors indicate that these areas were 
already cleaned and no residual sludge could be detected. 

In areas where the modelling error was higher sludge EMs were added to the multiple 
EM set and more complex EM subsets were used for unmixing. In the third run a water 
EM was added to the multiple EM set to separate out the water surfaces. 

The EMs for the mixture analysis were taken from the spectral library acquired during 
the fieldwork campaigns. However, for the mapping of residual sludge and its oxidation 
products, it is important to know the mineral composition of the spectral EM. Therefore 
the selected spectra of sludge and crusts were compared to spectra from the USGS 
spectral library (Clark et al. 1993) using spectral feature fitting for identification of 
minerals based on diagnostic absorption features. 
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Figure 7.2. Application scheme of VMESMA in the present study 

 

7.3 Linear spectral mixture analysis with standardised variables 

In the previous chapter it was demonstrated that the standardisation of spectra enhances 
the spectral contrast of spectral features of interest for this study. Therefore, also the 
SMA is also based on standardised signatures rather than reflectance values. 
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Standardised SMA is based on the same principles as conventional SMA, simply 
solving the problem using standardised coordinates, which introduces some differences 
in the equations. The formulation of standardised SMA is expressed as follows: 
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where  is the standardised pixel vector, E  represents the i-th standardised endmember, r i

f i  is the proportion of such an endmember in the standardised coordinates, c is the 
number of components in the pixel and ε  is the residual vector (expressed in standardised 
units). Standardised SMA consists of unmixing the pixel vector  using standardised 
EMs  (i =1,…c) in order to obtain the proportions 
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estimator is used according to which the sum-to-one condition in standardised SMA is 
expressed as follows (García-Haro et al., 1999): 
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where and iEσ rσ  represent the standard deviation of the vectors E  and r , respectively. 
Finally, the proportions in the original system, f , are obtained using the expression: 

i

i

 

 ∑
=

=
c

1i
i

iE

r
i f

σ
σf

)
 Eq. 7.4

This transformation ensures the sum-to-one condition and also preserves the positive 
proportions. 

Unlike conventional SMA, standardised SMA accounts for differences in shadow or 
shade, because the standardisation eliminates such brightness variations. Hence it is 
possible to add a new EM to better represent complex mixture pixels or, alternatively, 
apply the SMA with less EMs thus increasing the reliability of estimated abundances. 
Conventional and standardised SMA focus on different information, and hence both 
strategies can be used in a complementary manner to find the proportions of mixed 
pixels, each one isolating contrasting features. For example, conventional SMA is rather 
insensitive to spectral absorptions of minor constituents because the analysis predicts 
the best-fit least square regression over the full spectrum. However, standardised SMA 
provides increased enhancement of these absorption features. 

For this study, standardised SMA is ideal, because it enhances the features of the sludge 
related materials and drastically reduces the variability of vegetation features, which are 
not of interest in this study. This is demonstrated with the following figure (Figure 7.3). 
The differences in the architecture of the various plant canopies cause different shade 
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proportions, particularly in the NIR. However, after standardisation only one green 
vegetation spectrum may be sufficient to represent the spectral variability of all green 
vegetation components in the scene, because the intra-class variability/separability has 
been significantly reduced. The effect of standardisation on soil and sludge reflectance 
spectra was discussed in the previous chapter; the standardisation removes most of the 
spectral differences associated with soil texture (e.g. aggregation) while spectrally 
interesting features (e.g. iron absorption of sludge) are enhanced (Figure 6.7). 
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Figure 7.3. Example of four different types of vegetation (taken from Medspec database (Preissler 
et al. 1998)): herbaceous (Asphodelus albus, ), shrub with some shade (Euphorbia characias, ), 
dense coniferous forest canopy (Pinus brutia, ) and dry shrub (Arbutus unedo, ). Reflectance 
(left) and standardised reflectance (right) 

 

7.4 Identification of endmembers 

The accuracy of the SMA results is highly influenced by the selected EMs. Thus, the 
strategy to select the EMs is one of the key issues in the successful application of SMA. 
It has to consider the changing spectral significance of EMs as a function of the 
variability of the occurring surface materials, the spatial and spectral resolution of the 
data and the thematic purpose of the study. The correct EMs have to fulfil the physically 
based and statistically determined requirement of purity, which means that the selected 
EMs have to represent the relevant feature space. This is achieved with materials that 
represent the endpoints of the vectors enclosing the feature space (Figure 7.4). In an 
ideal case all possible mixtures of EMs lie within the spanned feature space; pixels 
outside the feature space produce physically erroneous abundance (<0 or >1), or high 
errors. 
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Figure 7.4. 2D-scatterplot of data representative of a scene with EMs, which define the mixture 
space  

 

The EMs may be selected objectively using methods based on mathematic/statistical 
models, which can be divided into image EM extraction and spectral library search 
algorithms. On the other hand, EM selection can be based on criteria such as field 
knowledge and a trial-and-error approach. According to Tompkins et al. (1997) an ideal 
approach is an objective pre-selection of possible EMs followed by user control and 
optimisation. There are a number of methods for the detection of extremes within the 
image which are considered potential EMs, ranging from automatic methods based on 
the exploration of abstract factor space of principal components (Bateson and Curtiss 
1996; García-Haro et al. 1999) and artificial neural networks (García-Haro et al. 1999) 
to the use of spectral libraries (Boardman 1989) and the Pixel Purity Index (PPI), an 
empirical measure for the purity of a pixel (Boardman et al. 1995). 

In this study, it was necessary to separate sludge related spectral information from other 
‘background’ information for the extraction of the residual sludge signal. The 
corresponding background spectra were selected based on an principal components 
analysis (García-Haro et al. 1999). The proposed candidate EMs were then compared to 
spectra of the spectral data base and finally typical spectra of green and dry vegetation 
and two different soils were selected as background information (Figure 7.5). The green 
vegetation spectrum is a spectrum of stacked sugar beet leaves; the dry vegetation 
spectrum was measured over a stack of dry grass. The brighter soil had a fine texture 
and a yellowish red colour (Munsell value 5YR 5/6), the absorption at about 1.0 µm is 
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indicative of certain amounts of iron oxides and the absorption at 2.2 µm is typical for 
clay minerals. The darker soil has an intermediate structure and a brown colour 
(Munsell value 7.5YR 5/3). This soil does not exhibit strong iron absorption, but has a 
distinct absorption caused by clay minerals. 
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Figure 7.5. Background EM: green vegetation ( ), dry vegetation ( ), soil 1 ( ), soil 2 ( ). 
Absolute reflectance (left), standardised reflectance (right) 

The identification of specific minerals, which is one of the great strengths of imaging 
spectroscopy, is of particular importance for the sludge related EM. As described in 
chapter 3.2, pyrite oxidation produces a number of secondary minerals, which can be 
used as indicators for the location of potential acid producing areas. The identification 
of minerals with hyperspectral data is physically based, which distinguishes it from 
simple ratios or statistical classifications, and takes advantage of the diagnostic 
absorption features of these minerals, whose formation was described in chapter 4. 

The easiest approach simply characterizes position, strength and symmetry of an 
absorption feature using the continuum removal as described in chapter 6.2 (Clark & 
Roush 1984). This approach can be quite effective, but it is very sensitive to noise. 
Furthermore, the method reduces the spectral information of many spectral bands into 
four parameters (position of the absorption (lowest point), starting point, end point and 
depth). This information reduction can lead to ambiguity in the identification of 
minerals, particularly for absorption features with a greater width like ferric or ferrous 
absorptions, which are of special interest for this study (Mustard & Sunshine 1999). The 
full information is preserved and used by an approach developed by Clark et al. (1990), 
Clark et al. (1991) and Clark & Swayze (1995). The algorithm computes the degree of 
similarity between the spectrum of interest and spectra from a spectral library. After the 
continuum removal using a predefined spectral subset, the contrast is adjusted in such a 
way that the continuum removed library spectrum best fits the continuum removed 
observed spectrum. This adjustment is rearranged to a standard least squares equation 
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and results in a superposition of the library spectrum by a linear gain and offset into the 
same reference frame as the observed spectrum (Figure 7.6). From this, the relative 
strength of the absorption and the RMS can be calculated, where the RMS serves as a 
goodness-of-fit measure and the strength is related to the abundance of the mineral. In 
this study, the algorithm was used as implemented in the ENVI software and the USGS 
library of minerals, which is one of the most complete mineral libraries available, was 
used as reference database (Clark et al. 1993). 
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Figure 7.6. Example of Spectral Feature Fitting (SFF). Reference spectrum of gypsum (black) is 
fitted to the field measurement AZ425 (red) using least squares. The SFF score can be calculated 
from this fit. See Table 7.1 for results. 

 

The selection of sludge EM had to consider the potential secondary minerals of pyrite, 
like jarosite, copiapite, ferrihydrite and goethite (see chapters 3.2 and 4.3.1 for details). 
However, for the images for 1999, the oxidation was limited to areas with a constant 
water supply and for the major part of the contaminated area no considerable oxidation 
took place. Thus, a single spectrum of pure sludge was sufficient to represent the sludge 
fraction. 

In the year 2000 images other sludge related spectra had to be taken into consideration, 
because field and image assessment confirmed that the oxidation processes had 
produced various crusts on the soil surface. During the second field campaign, spectral 
measurements of the most abundant crusts were recorded. Due to the fact that no 
qualitative mineralogy of these crusts could be obtained, the spectral feature-fitting 
algorithm was used to identify some minerals based on diagnostic absorption features. 
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The spectra of surface crusts were matched to the spectra of the USGS spectral library. 
First, the algorithm was applied to spectra resampled to the 5nm spectral resolution of 
the USGS library, and then the HyMap reduced band set of 110 bands was used to 
obtain an insight into the possibilities to map these minerals in the HyMap images. 

The crusts are most probably not pure minerals but mixtures of different components 
with different absorption features. Due to these mixtures the SFF scores for the full 
spectrum may be not be very high. Therefore, SFF was carried out in three steps 
covering different spectral regions: the full spectrum, the VIS-NIR (0.4 – 1.35 µm) and 
NIR-SWIR parts (1.35 – 2.4 µm. The VIS-NIR region was analysed for minerals having 
diagnostic electronic transitions of ferrous and ferric ions, like hematite, goethite, 
ferrihydrite, copiapite, jarosite and others. The NIR-SWIR part was analysed for 
minerals having diagnostic vibrational features mainly in the 2.2 and 2.3-µm region. 

The results of the SFF are displayed in Table 7.1. Sample AZ423 shows features of 
jarosite, copiapite and ferrihydrite. In fact, the score matches for the full spectrum are 
not very high, indicating that it is a mixture of different minerals. In the SWIR, the 
diagnostic absorption of jarosite at 2.27 µm is absent, but the higher values of the VIS-
NIR spectral range suggest that it is dominantly composed of jarosite with minor parts 
of ferrihydrite and copiapite. In any case, the minerals are closely related to each other 
in the oxidation process, so that the spectrum can be used as indicator of pyrite 
oxidation. 

Sample AZ424 matches highly with jarosite, pyrite and copiapite. By taking into 
account the overall albedo, the sample is composed mainly of the opaque pyrite. 

The bright spectrum AZ425 matches very well with pure gypsum spectrum showing 
exactly the same absorption features (1.45 and 1.55, 1.75, 1.9 2.2 and 2.27 µm). The 
absorptions in the VIS-NIR (0.65 and 0.9 µm and strong absorptions < 0.6 µm) match 
with goethite, with which it is mixed in some minor parts. Gypsum (CaSO4 2H2O) is 
not a secondary mineral of pyrite weathering. It is the product of chemical treatment 
using limestone-derived alkali for neutralisation of sulphuric acid, which is produced by 
pyrite oxidation. 

Table 7.1. Results of the spectral feature fitting for full range spectra, VIS-NIR and NIR-SWIR 

Sample Full Range Mineral VIS-NIR Mineral SWIR Mineral 

AZ423 0.222 

0.209 

Jarosite 

Copiapite 

0.713 Jarosite 0.661 Ferrihydrite 

AZ424 0.680 Pyrite 0.860 

0.802 

Jarosite 

Pyrite 

0.827 Copiapite 

AZ425 0.567 Gypsum 0.878 Goethite 0.744 Gypsum 



7.4  Identification of endmembers 129 

0.50 1.00 1.50 2.00 2.50
Wavelength [µm]

0.00

0.20

0.40

0.60

0.80

R
ef

le
ct

an
ce

Jarosite

AZ423

     
 

0.50 1.00 1.50 2.00 2.50
Wavelength [µm]

0.00

0.10

0.20

0.30

0.40

0.50

R
ef

le
ct

an
ce

Pyrite

AZ424

     
 

0.50 1.00 1.50 2.00 2.50
Wavelength [µm]

0.00

0.20

0.40

0.60

0.80

1.00

R
ef

le
ct

an
ce

Gypsum

AZ425

    

 

 

Figure 7.7. Comparison of field measurement and best fitting reference spectrum. The photos on 
the right show the crusts from which the field spectra were derived. 
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7.5 Results 

7.5.1 Derivation of residual sludge distribution for the year 1999 

The SMA results are demonstrated with a subset of the HyMap images in order to allow 
a sufficient level of detail. However, the entire affected area was analysed in the same 
way (see Annex F). The site ‘Sobarbina’ is located in the northern part of the affected 
area, just in the South of the confluent of the Agrio and Guadiamar rivers. The area is 
mainly built up of point bar deposits, formed by gravels and medium to coarse sand 
textures, and by finer grained overbank deposits. The gravel and sand deposits are 
mined in open pits. The zone exhibited an elevated contamination level in both years 
(see chapter 5.4.3). 

In the first unmixing step, the four background spectra (Figure 7.5) were used to unmix 
the entire scene. Although a maximum of four EMs per pixel was allowed, only in less 
than 0.5 % of the cases as many EMs were used. In the majority (75 %) two EMs were 
sufficient to model the scene. The RMS error after the first unmixing clearly separated 
the sludge-affected areas with a high RMSE from the non contaminated areas (Figure 
7.8). 

 
 

 
Figure 7.8. RMS error after the first unmixing. Border of the green corridor for delineation of 
maximum sludge extension 
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Some areas with an equally high error (other than the sludge-contaminated areas) are 
open waters like the Guadiamar River or paved roads, which still have to be separated 
from the sludge affected area. In areas with a higher RMSE the residuals also clearly 
reflect the lack of another EM. On the other hand, in most of the non affected areas, the 
proposed EMs were sufficient, which is shown by low RMS and featureless residuals 
(Figure 7.9). 
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Figure 7.9. Comparison of original ( ) and modelled ( )spectra and residuals ( ). Pixel in sludge 
affected area (left) and pixel in non affected area (right) 

 

The next unmixing step was performed on a segmented image. Areas outside the green 
corridor were neglected, and in the affected area, a RMSE threshold was used to 
separate areas that were already sufficiently modelled from areas, which were most 
probably sludge affected. 

The sludge abundance map for June 1999 (Figure 7.10) shows that the sludge 
abundances were still very high with an average abundance of 0.51 (calculated for areas 
with sludge abundances > 0). The results were obtained with only one sludge EM. In 
fact, tests with additional sludge EMs were not successful. This is a clear indicator that 
at this point in time, 13 months after the accident, oxidation of pyrite did not yet reach a 
high intensity and consequently it was possible to map the sludge using only the pyrite 
sludge EM. 

The retrieved sludge distribution corresponds well with the field observations and 
reflects the discontinuous distribution pattern caused by the mechanical clean up. 
However, a quantitative validation of the sludge abundances is difficult, because the 
corresponding sludge concentration (amount of residual sludge) cannot be measured 
directly. On the other hand, it is possible to estimate the concentrations of sludge 
constituents. These constituents were derived from the sludge abundance in the 
following chapter. They were validated against the results of the chemical analysis. 
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0                 Abundance                1  

Figure 7.10. Sludge abundance map 1999. The affected area (black) superimposed on the HyMap 
false colour image for better orientation. Sludge abundance within the affected area is scaled from 
zero (black) to one (white). 
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7.5.2 Derivation of residual sludge abundance and pyrite oxidation products for 
the year 2000 

The same unmixing strategy was applied for the data collected in 2000. However, the 
situation had changed significantly. The Consejería de Medio Ambiente proceeded with 
the remediation of the area. The remediation process included a second cleaning phase 
in combination with fixation of the trace metals. This was achieved by augmentation of 
the pH-level of the soil through addition of lime-rich material as described in chapter 
3.5. At the time of the second field and flight campaign the work was still ongoing. In 
many areas, particularly in the northern part, efflorescent crusting could be observed. 
According to Nordstrom (1982), these crusts are most commonly formed during dry 
periods when evaporation promotes the rise of subsurface water to the uppermost soil 
surfaces by capillary action. As the water reaches the surface it becomes progressively 
more concentrated and finally precipitates various salts in efflorescence. The formation 
of these iron sulphate salts is an intermediate step, which precedes the precipitation of 
more common insoluble iron minerals such as goethite and jarosite. In order to account 
for this change in surface composition two new EMs (the jarosite and the gypsum 
spectra, see Figure 7.7) representing these efflorescent crusts were included in the SMA 
modelling. 

The abundance map for July 2000 shows a considerable reduction of areas with sludge 
EM abundances compared to the abundances obtained for June 2000 (Figure 7.11, see 
also Annexes F and G). This reduction was achieved by the second remediation process 
initiated by of the Consejería de Medio Ambiente. As explained in chapter 3.5, they re-
cleaned some areas, distributed Ca-rich products for buffering and covered the area with 
non-contaminated topsoils. In those covered areas, sludge or its secondary products 
cannot be detected anymore, even if it is still present in deeper layer of the profile. 

However, in areas where the remediation was not finished, higher abundances of 
secondary minerals were found. This is demonstrated for a subset from the confluent of 
the Agrio and Guadiamar rivers, where the sludge wave contaminated the wide 
floodplains (see zoom window, Figure 7.11). In this area, jarosite was found to be 
abundant. It was widely distributed in the area. It is formed under dryer conditions 
according to the reaction sequence explained in chapter 3.2 (see Figure 3.4), which 
explains its wider distribution. The patches of gypsum, which were found, are restricted 
to shallow depressions, in which more water gathered after rainfalls and the humidity 
was sufficient for the formation of gypsum when the water evaporates (Figure 7.12). 
However, these few millimetres thin crusts are only on the surface and below them 
secondary minerals are found (see chapter 6.4.7.1 Figure 6.21 and Figure 6.22). This 
pattern was also observed at the gravel pits close to the Sobarbinas site in the south of 
Figure 7.11. The gravel pits are in the same level as the riverbed and hence the water 
supply was sufficient to form gypsum. The gypsum is distributed more widely, because 
the groundwater provided a more constant source of humidity than do the shallow 
depressions. 
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Hence, the presence of gypsum is on the one hand an indicator for buffering of acidity 
by the distributed material Ca-rich material; on the other hand it shows that there is still 
residual sludge in the soil, which produces acidity.  
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Figure 7.11. Mineral abundance map 2000. The mixtures of the different EMs can be derived from 
the colour coded ternary diagram. Red is the pyrite EM, green is the jarosite EM, blue the gypsum 
EM. 
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Figure 7.12. Field measurements on a typical gypsum patch (bright) in the area. In the foreground 
some yellow-red patches of jarosite 

7.6 Conclusions 

In this chapter SMA was used for mapping residual sludge and sludge derivatives. This 
was achieved with a variable multiple endmember SMA system (VMESMA), which 
offers greater flexibility and new possibilities to get improved performances and more 
accurate interpretation of the unmixing results. 

The iterative approach of VMESMA starting with a simple endmember (EM) set of 
background material worked very successful; the delineation of the affected area using 
the RMS error after the first unmixing was almost congruent with the GIS layers of the 
affected area. 

The standardisation of spectra was very helpful for the detection of sludge, which is a 
very dark and almost spectral featureless material. First, it was possible to use EM 
models without shade, which could have caused problems in separation of shade and 
sludge. Second, the standardisation enhanced the wide absorption features of sludge and 
it lets different types of green vegetation appear so similar that a single vegetation EM 
is sufficient to cover their variability.  

The multiple EM approach enhanced the stability of the models in combination with the 
standardisation due to the fact that in most of the cases two or three EM were sufficient 
to model the reflectance of a pixel. 
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In 1999 the sludge could be characterised using a pure sludge EM, because the 
oxidation did not start yet. The obtained sludge abundances are in good agreement with 
the field observations and the results obtained by the Consejería de Medio Ambiente 
(2000). As mentioned before the conditions changed drastically between 1999 and 
2000. The remediation efforts of the CMA resulted in a drastic reduction of the surface 
contamination, which is clearly reflected in the unmixing results. However in areas, 
where the remediation was not concluded yet the oxidation of the residual sludge had 
started. The complex weathering leads to an efflorescence of easily dissolved salt crusts 
and more stable secondary minerals. Using the spectral feature fitting algorithm and 
field measurements, it was possible to detect indicators like jarosite, copiapite and 
ferrihydrite and separate them from still not oxidised pyrite and gypsum, which points 
to the remediation efforts by buffering of acidity. Using these spectra as EM the spatial 
distribution of the oxidation becomes evident. Mayor problematic areas are found in the 
riverbed of the Agrio River at the confluent of the Agrio and Guadiamar rivers and in 
the gravel pits at Sobarbinas. 

The comparison between the sludge abundance obtained in 1999 and the oxidation 
products obtained in 1999 shows that imaging spectroscopy is able to follow the full 
process of pyrite oxidation: the initial pyrite could be identified in 1999 mapping the 
oxidation potential. In 2000, the minerals, identified by SFF and SMA, give qualitative 
evidence of oxidation processes. 

 



 

8 Transformation of abundances into quantitative 
information for remediation management 

 

The results obtained through SMA show clearly a very heterogeneous distribution of the 
residual sludge. Such abundance maps are already very useful information, which could 
be used for remediation planning. However, a transformation into maps comparable to 
the results obtained by conventional approaches would facilitate their application in 
remediation management. 

In the following section such a transformation is implemented based on the knowledge 
and results obtained so far. This transformation is only possible for the data of the year 
1999, because it is linked directly to the close relationship between pyritic sludge matrix 
and associated heavy metals. The conditions changed drastically within one year. The 
oxidation processes and the crusting have altered the close relationship between sludge, 
associated heavy metals and sludge reflectance. 

 

8.1 The artificial mixture series as a link between abundances and 
contamination 

The artificial mixture series of soils and sludge, described in section 6.2, was initially 
prepared for a better understanding of the influence of sludge on reflectance, and 
eventually the mixture series was used to stabilize the calibration of the chemometric 
models. However, it is also possible to regard these samples as a spectral mixture and 
apply SMA as described previously. By comparison of sludge abundance and known 
sludge concentration of the artificial mixture series a direct link can be established, 
which can be exploited further for the estimation of weight-percentages and eventually 
transformed into concentrations of elements related to the mining accident. 

The artificial mixture series was prepared with three different soils and pure sludge. The 
spectra of the non-contaminated soils and the pure sludge were used as EM in the 
unmixing. The SMA was set up as a multiple EM model in such a way that the sludge 
EM could mix only with one of the three soil EM. The unmixing was performed with 
standardised variables, thus a shade EM was neglected. Figure 8.1 shows the obtained 
abundances with respect to the weight percentage of the sludge in the mixture. The 
clearly non-linear behaviour can be explained by the fact that the soil – sludge mixture 
is an intimate mixture, where the darker pyrite dominates because photons are absorbed 
when they encounter a dark grain (Clark 1999). 
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Figure 8.1. Comparison of sludge abundance derived from SMA of the mixture series and sludge 
weight percentage. A second order polynomial is fitted to the data (R2 = 0.973). 

 

8.2 Quantification of residual contamination and assessment of 
acidification risk 

Knowing the relationship between sludge abundance and weight percentage offers the 
possibility for a quantitative assessment of the residual sludge and the related heavy 
metal contamination. The quantification is based on the sulphur content. Sulphur plays a 
key role in the assessment, because it is one of the two elements forming pyrite (FeS2), 
which is the main component of the sludge, and it is the main source for acidity when 
pyrite oxidizes. The sulphur content is also used in conventional mining waste analysis 
for prediction of the geochemical behaviour of mining waste in order to identify wastes 
that are likely to be acid generating, potentially acid generating or otherwise susceptible 
to heavy metal leaching (Tremblay & Hogan 2001). A commonly applied method is 
Acid-Base Accounting (ABA), which is a two part analytical procedure for 
determination of the Acid Potential (AP) and the Neutralisation Potential (NP) of the 
waste (Miller 1991). 

The Acid-Base Accounting process has been adapted to the Aznalcóllar accident to 
determine parameters that provide important information for remediation planning and 
can be derived in a spatial context from the unmixing results. The Acid Potential refers 
to the maximum potential acidity, which can be obtained by complete oxidation of 
residual sludge. The Neutralisation Potential is presumed to measure carbonate 



8.2  Quantification of residual contamination and assessment of acidification risk 139 

minerals, exchangeable bases and weatherable silicate minerals (Sobek et al. 1978). 
Instead of neutralisation potential, in this study the neutralisation requirements are 
calculated based on the maximum potential acidity. 

The calculations necessary to derive the wanted information are based on the following 
assumptions: 

• The relationship between sludge abundance and weight-percent derived with the 
artificial mixture is applicable for the whole area: the mixture series was build 
using three different soils from different parts of the riverbed (Sobarbinas, 
Puente Nuevo and Vado de Quemas), which are representative for the affected 
area. This should reflect sufficiently the soil variability. 

• The abundances obtained from the HyMap images are representative for the first 
twenty centimetres: in reality, the penetration depth of the radiation, and 
consequently the abundances obtained, is limited to less than a millimetre. The 
sludge contaminated the soil superficially and residual sludge was worked into 
the soil by ploughing, which allows the assumption that the sludge is distributed 
more or less homogeneously in this ploughing layer. This is also supported by 
the soil profiles (see Figure 5.8), which show clearly that the contamination is 
limited to the upper centimetres of the soil. 

• The geochemical/mineralogical composition of the sludge solid phase is 
fundamentally stable in the entire area, although a certain grain size 
differentiation as function of transport length along the river course occurred. 

• Sulphur is present predominantly in connection to pyrite: other secondary 
minerals such as jarosite or metal sulphate salts are intermediate products of 
starting pyrite oxidation after the accident. 

 

Bearing in mind these assumptions, the following calculations were made. In the first 
step the weight percentage of sulphur was extracted from the relationship sludge 
abundance and sulphur content. This relationship can be expressed as a second order 
polynomial: 

 
 Sulphur = 13.98 × (Abundance)2 + 0.8465 × (Abundance) + 0.3751 Eq. 8.1

 

The second step implies the transfer from weight percentage to effective weight. In 
order to achieve such a transfer, the bulk density of the soil has to be taken into 
consideration, which can be approximated with 1.3 t/m³ (Brady 1984). Based on that 
value the amount of sulphur in the ploughing layer of the soil was calculated for each 
pixel: 
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 Sulphur [tons] = Sulphur [weight-%] × 1.3 t/m³ × 0.2 m × 5 m× 5 m Eq. 8.2 
 

The total amount of pyrite in this soil layer was derived from the amount of sulphur, 
based on the molecular composition of pyrite, which consists of 53.45 % sulphur and 
46.55 % iron. Finally, the amount of residual sludge after the remediation was 
calculated. According to Galán et al. (2002), the pyrite concentration of the sludge 
ranges between 75 and 80 weight-%. With this information it is possible to roughly 
estimate on a pixel basis the amount of residual sludge at the time of the first sampling 
campaign. The overall quantity in the first 20 centimetres totalled 148976 to 186220 
tons (depending on the pyrite content). Compared to the amount of tailings that was 
spilled (according to Eriksson & Adamek (2000) between 1.3 and 1.9 million tons), this 
means that after the first remediation campaign between 9.4 and 14.3 % of the released 
tailings remained in the area. 

The amount of residual sludge is an indicator for the quality of the first clean up. This 
information is very valuable for remediation planning, because it allows the estimation 
of the maximum potential acidity and the neutralisation requirements. The calculations 
of the maximum potential acidity are based on the overall reaction for pyrite oxidation 
(Puura 1998), which is a simplified summary of the reactions described in chapter 3.2: 

 
 FeS2 + 3.75 O2 + 3.5 H2O → Fe(OH)3 + 2 SO4 2- + 4 H+ Eq. 8.3 

 

This means that each gram of sulphur in pyrite produces 3.06 grams of acidity (in the 
form of H+ and SO4

2-). The two additional cations H+ were derived from the hydrolysis 
of ferric iron with water to form solid ferric hydroxide. 

The calculations of the neutralisation requirements are based on the following assumed 
stoichiometry (Cravotta et al. 1990): 

 
FeS2 + 2CaCO3 + 3.75O2 + 1.5H2O → 2SO4

2- + Fe(OH)3 + 2Ca2+ + 2CO2 Eq. 8.4 
 

For each mole of pyrite that is oxidised, two moles of calcite are required for acid 
neutralisation, or on a mass ratio basis, for each gram of sulphur present, 3.125 grams of 
calcite are required for acid neutralisation. 

An estimation of heavy metals is also possible. The good fit that was obtained with the 
second order polynomial for the estimation of the weight percentage also allows an 
estimation of the heavy metals, because their concentration in the samples of the 
mixture series can be calculated from the known concentrations of sludge and soils, and 
substitution of the weight percentage values. An example is given for lead (Pb) as one 
of the key contaminants. The second order polynomial function that was obtained from 
the unmixing of the mixture series has the following form: 
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 Pb = 2541.1 × (Abundance)2 + 148.24 × (Abundance) + 100.66 Eq. 8.5

 

These functions can be directly applied to the sludge abundance image derived from 
unmixing of the HyMap images from 1999 (Figure 8.2, see Annex H for the full 
flightline). The results show the heterogeneous spatial distribution caused by the clean 
up activities. 
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Figure 8.2. Contamination parameters derived from the sludge abundance image for June 1999: 
residual sludge in g/kg, maximum potential acidification after full oxidation of pyrite in g/kg, 
neutralisation requirements for full oxidation of pyrite in g/kg and lead contamination in ppm 
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8.3 Validation SMA maps against conventional methods 

The transformation of abundance information into heavy metal concentrations allows 
validating the obtained results with the results of the geochemical analysis of soil 
samples collected in the field in a quantitative way. 

The validation is based on the 56 surface soil samples collected during the field work, 
and the results of the soil sampling and analysis accomplished by the Consejeria de 
Mediomabiente in parallel to our field work (see chapter 5.1). For the validation, 180 
points sampled from the mine downstream to the bridge of road A472 (Sanlúcar La 
Mayor – Castilleja del Campo) were taken into account. The direct comparison of the 
laboratory derived concentration with the corresponding pixel values was not possible 
due to inaccuracies in both the georeferenced image and the measured GPS location of 
the sampling point. Therefore, the best fitting pixel within a 15 m search radius around 
the sampling location was selected. Lead (Pb) and Arsenic (As) were selected for 
validation, because they were still present in high concentrations and represent different 
mobile heavy metals (see chapter 5.1). A total of 236 sampling points was available for 
Pb, but 128 samples were excluded, either because no sludge could be detected in the 
vicinity or the concentrations measured in the laboratory were below 100.66 ppm. This 
value is the detection limit in the remote sensing maps, which was imposed by the offset 
in equation (Eq. 8.5). Figure 8.3 shows the comparison between laboratory and image 
derived lead concentration. After excluding 5 outliers, a coefficient of determination of 
0.729 was obtained. However, the data are strongly controlled by the skewed 
distribution of the data. Generally, the model works better for medium and high 
concentrations; e.g., when considering only concentrations above 300 ppm, the 
coefficient of determination improves (R² = 0.852). 
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Figure 8.3: Comparison of Pb concentrations for samples analysed in laboratory with 
concentrations derived from HyMap data. Outliers ( ) were not included into the regression. 
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The relationship between As and sludge abundance was derived from the SMA of the 
artificial mixture series in the same way as described for lead and sulphur using a 
second order polynomial: 

 
 As = 328.18 × (Abundance)2 + 18.345 × (Abundance) + 24.809 Eq. 8.6

 

For As, 122 samples could be used after removing samples without sludge abundances 
in the vicinity or with concentrations measured in the laboratory below the detection 
limit of 24.8 ppm for As. The range of arsenic concentrations in the laboratory is much 
wider than in the image-derived data (Figure 8.4). The concentration maximum reaches 
282 ppm for the image data and 2649 ppm for the laboratory data (this value has been 
left out in Figure 8.4 for illustration reasons; there the highest value is 1204). Therefore, 
the match of high laboratory data with image data is very poor. In the low and medium 
range the match is much better; if laboratory concentrations above 400 ppm are left out, 
a strong coefficient of determination (R² = 0.732) can be obtained.  
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Figure 8.4. Comparison of As concentrations for samples analysed in laboratory with 
concentrations derived from the HyMap data. Outliers ( ) were not included into the regression. 
Note that the scales of the axes are chosen differently for illustration purposes. 

 

Both examples show that there is a strong correlation between laboratory samples and 
field data particularly for the medium concentration ranges. They also show that the 
image data generally underestimate the laboratory data. On the one hand, this can be 
attributed to the fact that the image data are averaged over the area of one pixel. That 
means that locally high concentrations are reduced due to the averaging with less high 
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concentrations within one pixel. On the other hand, the image concentrations are 
derived with the artificial mixture series, which do not reflect extreme high situations. 
In fact, the maxima in the data set provided by the Consejería de Medioambiente are 
higher than the maxima found in our sludge samples, which were used in the artificial 
mixture series. 

However, the spatial information derived here is not meant to substitute conventional 
geochemical analysis methods, but to provide area-wide spatial information on a per-
pixel basis, which is one of the major advantages of remote sensing data. Given a 
sufficient spatial resolution, remote sensing can provide information on heterogeneous 
environments, where an in situ sampling would need an enormous number of samples to 
cover the variability of the entire area. This is particularly true for the monitoring of 
residual contamination after the Aznalcóllar mining accident. 

In the context of remediation planning it is more important to know a threshold for 
contamination above which an intervention is necessary rather than the exact 
contamination range. Consequently, for each heavy metal the Consejería de 
Medioambiente defined thresholds for intervention for sensitive and less sensitive areas, 
which are based on Andalusian law (Table 7.1). The law considers areas to be less 
sensitive areas, if they are closed for public use after establishment of the green 
corridor. Consequently, sensitive areas are considered public areas with a recreational 
aspect (Consejería de Medio Ambiente 1998). 

 

Table 8.1. Intervention limits for sensitive and less sensitive areas applied in the green corridor 
(from Consejería de Medio Ambiente 1998) 

 Less sensitive Sensitive 

As 100 ppm 52 ppm 

Cd 10 ppm 5 ppm 

Cu 500 ppm 250 ppm 

Pb 500 ppm 350 ppm 

Zn 1200 ppm 700 ppm 

 

The differences between spatial information based on conventional soil sampling and 
remote sensing derived contamination maps will be shown with maps classified 
according to the thresholds mentioned in Table 8.1. 

The data set of 676 samples provided by the Consejeria de Medioambiente was used to 
interpolate a raster-map of As concentration with a standard interpolation algorithms 
implemented in ArcView Spatial Analyst (ESRI 1997). The inverse distance weighted 
(IDW) interpolation was used, which uses a linearly weighted combination of a set of 
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neighbouring points, where the weight is a function of inverse distance (e.g. the smaller 
the distance, the higher the weight) (e.g. Davis 1986, Cressie 1993). There are a number 
of (more sophisticated) methods for spatial interpolation, e.g. kriging; however it is out 
of the scope of this study to compare different interpolation approaches. More detailed 
information can be found in the above-mentioned literature. In this study the IDW 
interpolation with a weight of 2 and 4 nearest neighbours obtained the best results. 

Figure 8.5 shows the comparison of the two different maps and the sampling points with 
the symbol size attributed to the contamination level. The portions of the contamination 
levels are very similar for the soil samples, the remote sensing and the interpolated map, 
respectively (Table 8.2). Both maps show generally similar patterns of contamination, 
e.g. the high contamination in the northern part, which is the lower part of the Rio Agrio 
and its confluent with the Rio Guadiamar. However, the level of detail is much higher in 
the remote sensing derived map due to the ability to estimate the contamination based 
on the abundance rather than interpolating between neighbouring points. 

There are also areas with differences between remote sensing data and soil 
analysis/interpolation. For example, in the southern part of Figure 8.5 the concentration 
in the remote sensing image is generally higher than in the interpolated one. In this area 
the Sobarbina site is located. According to our analyses, the As concentration is still 
high with an average of 172 ppm for the surface samples (Table 5.4). In view of that, it 
can be assumed that the results obtained by remote sensing reflect the contamination 
situation in this area better than the interpolation. The soil sampling in this area has 
possibly taken less contaminated samples by chance or the contamination situation has 
changed significantly between the different sampling dates due to clean-up activities. 

 

Table 8.2. Comparison of relative amounts of contamination levels for different data sets 

As [ppm] Geochemistry 
(soil samples) 

Remote 
sensing (area) 

Interpolation 
(area) 

As < 52 69.53 % 66.97 % 68.23 % 

52 < As < 100 16.27 % 16.28 % 13.85 % 

As > 100 14.20 % 16.75 % 17.92 % 
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Figure 8.5. Comparison of classified As maps based on remote sensing (left) and based on 
interpolated point measurements (right). The size of the sampling points is related to the measured 
As concentration. 

 

8.4 Conclusion 

The unmixing of the artificial mixture series allowed linking the sludge abundances and 
the sludge weight. Through this link also the heavy metal concentrations could be 
linked to the abundances and maps of heavy metals, oxidification risk and neutralisation 
needs, which can be very valuable products for remediation, were produced. The 
comparison with a fully independent data set acquired at the same time showed that the 
results obtained with remote sensing data are very precise and that they are superior to 
the interpolation example carried out. 
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However, this approach was only possible as long as the sludge in the field was not 
considerably altered and the samples of the mixture in the lab are comparable to the 
intimate mixture in the field, which was caused by the ploughing after the first clean up. 
Already the data of the year 2000 are so different that this relationship has to be handled 
with care. 

Nevertheless, it demonstrates the potential of unmixing of imaging spectroscopy for fast 
screening of residual contamination. The produced maps could have helped much better 
in coordination of the remediation by providing detailed information about location and 
approximate amount of residual tailings and leading to more efficient distribution of 
neutralizing material. 





 

9 Conclusions and recommendations 

Laboratory, field and imaging spectroscopy have been tested and applied to develop a 
concept for identification, quantification and monitoring of metal mining related 
contamination addressing particularly the situation in the Guadiamar floodplain after the 
Aznalcóllar accident in 1998. The conclusions related to the methodology and the 
results obtained are listed below: 

The levels of contamination found in June 1999 after the first cleaning campaign were 
in many areas still very high, making a second clean-up campaign necessary. The clean-
up with heavy machinery left considerable amounts of tailings sludge on the grounds 
and favoured a mixing up of pyritic material and soil, which led to a discontinuous 
distribution of the contamination. In July 2000, the remediation efforts of the Consejería 
de Medio Ambiente had reduced the level and extent of contamination significantly. 
However, in some areas oxidation processes were detected and for several toxic 
elements the concentrations in deeper soil layers increased indicating a mobilisation of 
these elements. Particularly, the increasing concentrations of arsenic give rise to 
concern. This underpins the necessity for a continuous monitoring of the entire area and 
new remediation actions in cases of detection of oxidation processes. Despite the huge 
dimension of the accident, the Aznalcóllar case is a positive example for the 
remediation of an affected area. There are many examples of mining areas, which are 
sources of contaminant emission without major attempts to solve the problems. Only 30 
km East of the Guadiamar basin, for example, the Rio Tinto every year releases high 
amounts of heavy metals into the Gulf of Cadiz (Van Geen et al. 1997, Davis et al. 
2000). 

Based on the experiences made in the Aznalcóllar case, a concept to apply combined 
laboratory, field and imaging spectroscopy is proposed, which includes the following 
steps: 

1. Soil sampling, geochemical analysis and spectral measurements in the 
laboratory 

2.  Building predictive chemometric models with the laboratory data 

3. Determination of the relationship between sludge concentration and reflectance 
of the mixture  

4. SMA of mixture series and hyperspectral images and application of the 
empirical relationship of the mixture series to the hyperspectral data 

5. Assessment of spatial distribution of residual sludge and potential acidification 
risk 

6. Monitoring of oxidation processes 
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The above-described working steps are based on the following methodological 
implications: 

• The pre-processing of spectra has a strong influence on the prediction quality of 
the chemometric models. Depending on the model used, best results were 
obtained with standardised, vector-normalised spectra or first order derivatives, 
because these methods best enhance the features of interest. In most cases, 
spectra with 10 or 20 nm FWHM produced the best results, because they are the 
best compromise between ability to resolve spectral features, the number of 
variables and noise. 

• The three different chemometric methods produced comparable results for the 
laboratory data set, because the link between reflection decrease and sludge 
content increase was very strong and linear and the heavy metals were clearly 
associated with the pyritic sludge matrix. 

• A careful model calibration and validation is crucial for the modelling process. 
The application of the models always has to consider the data, which were used 
for calibration. If the conditions change, the model has to be recalibrated. This 
became obvious when applying the laboratory models to field spectra, whose 
spectral characteristics changed drastically compared to the laboratory spectra. 
After recalibration with field spectra, the models were able to predict also the 
concentrations of crusted surfaces. Furthermore, the models should be validated 
from time to time with new data for quality control. 

• The construction of an artificial mixture series of sludge and non-contaminated 
soils improved considerably the understanding of the relationship between 
sludge content and sludge reflectance of the mixtures. It highlighted the strong 
correlation between sludge content and spectral reflectance with a strong 
decrease in albedo with increasing sludge content and a wide iron absorption at 
about 1.0 µm becoming the main feature. 

• In order to understand chemometric models, a deeper understanding of the 
underlying chemistry and physics is as important as a set of statistical 
parameters describing the models. This means for spectral data that a basic 
understanding of spectra and their errors is useful and that spectral 
representation should be included in the usefulness of the data treatment (Geladi 
& Martens 1996a). In this context the mixture series was very helpful. In this 
data set, the best results were obtained for elements linked to the mining 
accident such as heavy metals, iron and sulphur. However, also within this group 
big differences could be observed which were related to the mobility of the 
heavy metals: the less mobile the elements, the better their prediction. 

• Spectral mixture analysis (SMA) is a method to solve successfully the problems 
of scale-induced mixtures. The use of multiple EM sets and an iterative 
approach proved to be superior to conventional methods allowing a very site-
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specific mixture strategy, which is necessary to separate sludge and non-sludge 
reflectance. In that respect also the use of standardised reflectance improved 
strongly the unmixing results. 

• With SMA it was possible to identify clearly the residual sludge in the year 
1999. Moreover, with the data of the year 2000 it was possible to detect hot 
spots, where the oxidation of the residual sludge had started. This opens the 
possibilities to use hyperspectral remote sensing as a monitoring tool. Since 
pyrite and also the secondary minerals can be identified, it is possible to use 
hyperspectral data and SMA as screening tool for metal mining related 
contamination. 

• The abundance of residual sludge and its oxidation products are already valuable 
products for semi quantitative estimation, which can be used to locate areas in 
which further remediation efforts are necessary. However, this semi quantitative 
information could be turned into quantitative maps through incorporation of the 
artificial mixture series. By unmixing the spectra of the artificial mixture series, 
a non-linear relationship between sludge abundance and sludge weight was 
established, which we consider applicable to describe also the intimate mixture 
of non-oxidised sludge and soil as represented in the imaging spectroscopy data. 

• Based on this relationship the amount of residual sludge in the area was 
estimated for the year 1999. To our knowledge such information was not 
available so far. According to these estimates between 9.4 and 14.3 % of the 
released tailings remained in the area after the first clean up. With simple 
geochemical models, this information could be turned into maps of potential 
acidification risk, calcite buffering needs and heavy metals. 

• A comparison of the obtained results with an independent conventional data set, 
which was acquired at the same time by the Consejería de Medio Ambiente, 
showed a good correlation between image derived concentrations and laboratory 
measurements. Remote sensing data usually underestimate the concentrations, 
because of the bigger areal integral compared to point sampling, which however, 
may be strongly influenced by nugget effects. The level of detail provided by 
remote sensing data overcomes that of standard interpolation methods. 

The applied method proved to be able to provide quantitative information for 
identification and characterisation of environmental contamination related to metal 
mining. For example, in the case of the remediation of the Leadville mining area 
(Colorado, USA), the use of mineral maps derived from imaging spectroscopy data 
accelerated the remediation efforts by two years, saving over 2 million US$ in 
investigation costs (Swayze et al. 2000). The U.S. Bureau of Reclamation and the 
Environmental Protection Agency used the produced maps to prioritise field sampling 
of mine waste sites. 
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On the basis of this study an integrated mapping and monitoring approach for similar 
tailings pond accidents and the inventory of related contamination is proposed, which is 
discussed using the Aznalcóllar example. Assuming the availability of the necessary 
equipment (field spectrometer, airborne imaging spectrometer), the remediation of the 
contaminated area could have been alleviated according to the following scenario 
(Figure 9.1): 

Few days after the accident, the extent of the contamination is mapped using an airborne 
sensor. The derived map is a direct input for the planning of the clean-up activities. In 
parallel a soil sampling campaign is carried out to describe the contamination level 
using geochemical analysis. The data are also used for calibration of chemometric 
models. 

The first clean up is controlled with imaging spectroscopy data. The derived sludge 
abundance map is used to locate areas with high sludge abundances and HM 
concentrations, where a re-cleaning is necessary. The maps of potential acidification 
risk and acidity buffering needs are used to determine precisely the amount of calcite 
necessary to buffer fully the oxidation of pyrite. 

After the remediation, imaging spectroscopy is proposed for monitoring purposes based 
on the hypothesis that the occurrence of secondary minerals on the soil surface is an 
indicator for pyrite oxidation, which could mobilise HM. The presence of these 
minerals on the surface is also a strong indicator for sub-surface oxidation processes 
going on, which must be verified by a closer examination in situ. 

However, the described scenario requires an ad hoc availability of hyperspectral 
sensors. Today, there are only few airborne hyperspectral sensors for scientific purposes 
available in Europe. This limits a fast disaster monitoring in the case of accidents in 
some way due to the long preparation times for the flight campaigns. 

 

The proposed methodology has to be adapted to the local geological environment, if 
applied to similar accidents. However, it can be expected that it can be transferred to 
other VMS or porphyric copper deposits. For every accident a new calibration data set 
is necessary, due to the changing composition of the ores and different soil background. 
However, the calibration methodology can be applied in the same standardised way. 
Moreover, the identification of indicator minerals is rather robust, because the key 
minerals of the sulphate oxidation (e.g. jarosite, copiapite) always exhibit the same 
spectral features. 
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Figure 9.1. Proposed scheme for an integrated assessment and spatial monitoring of metal mining 
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174 Annex  A 

A. Description of sampling sites 

 

Figure A.1. Sketch of Sampling Site ‘Mine North’ 

Table A.1. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Mine North’ site (non-contaminated samples in blue) 

Point Latitude Longitude Id Depth
M 1 37.50386 6.22658 AZ106 0 - 2 

   AZ107 2 - 20
   AZ108 20 - 40
   AZ109 40 - 60

M 2 37.50383 6.22600 AZ102 0 - 2 
   AZ103 2 - 20
   AZ104 20 - 40
   AZ105 40 - 60

M 3 37.50375 6.22569 AZ098 0 - 2 
   AZ099 2 - 20
   AZ100 20 - 40

Point Latitude Longitude Id Depth
M 3 37.50375 6.22569 AZ101 40 - 60
M 4 37.50377 6.22521 AZ094 0 - 2 

  AZ095 2 - 20
  AZ096 20 - 40
  AZ097 40 - 60

M 5 37.5037 6.22462 AZ090 0 - 2 
  AZ091 2 - 20
  AZ092 20 - 40
  AZ093 40 - 60
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Figure A.2. Sketch of Sampling Site ‘Mine South’ 

Table A.2. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Mine South’ site 

Point Latitude Longitude Depth

V 1 6.21537 AZ137 0 - 2 
  2 - 20 
 AZ139 20 - 40
   40 - 60

V 2 6.21588 AZ133 0 - 2 
  2 - 20 

 AZ135 20 - 40
   40 - 60

V 3 6.21646 AZ131 0 - 2 
  2 - 20 

 20 - 40
   40 - 60

V 4 6.21702 AZ127 0 - 2 
  2 - 20 
 AZ129 20 - 40
 

Point Latitude Longitude DepthId Id 

37.48481 
 AZ138

  
AZ140

37.48481 
 AZ134

  
AZ136

37.48471 
 AZ132

   
 

37.48472 
 AZ128

  
  AZ130 40 - 60

V 5 37.48460 6.21774 AZ124 0 - 2 
   AZ125 2 - 20 
   AZ126 20 - 30

V 5 37.48460 6.21774  40 - 60

V 6 6.21825 AZ121 0 - 2 
  AZ122 2 - 20 
  AZ123 20 - 30
   40 - 60

V 7 37.48457 6.21882 AZ118 0 - 2 
  AZ119 2 - 20 
  AZ120 20 - 40
   40 - 60

V 8 37.48450 6.21946 AZ114 0 - 2 
  AZ115 2 - 20 
  AZ116 20 - 40
  AZ117 40 - 60

V 9 37.48446 6.22000 AZ110 0 - 2 
  AZ111 2 - 20 
  AZ112 20 - 40
  AZ113 40 - 60

37.48459
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Figure A.3. Sketch of Sampling Site ‘Sobarbina’ 

Table A.3. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Sobarbina’ site. (non-contaminated samples in blue) 

Point Latitude Longitude Id depth 

S 12 37.44695 6.21632 AZ033 0 - 2 
   AZ034 2 - 20 
   AZ035 20 - 40
   AZ036 40 - 60

S 1 37.44672 6.21624 AZ029 0 - 2 
   AZ030 2 - 20 
   AZ031 20 - 40
   AZ032 40 - 60

S 11 37.44653 6.21624 AZ025 0 - 2 
   AZ026 2 - 20 
   AZ027 20 - 40
   AZ028 40 - 60

S 10 37.44676 6.2148 AZ045 0 - 2 
   AZ046 2 - 20 
   AZ047 20 - 40
   AZ048 40 - 60

S 2 37.44659 6.21485 AZ041 0 - 2 
   AZ042 2 - 20 
   AZ043 20 - 40
   AZ044 40 - 60

S 9 37.44627 6.21482 AZ037 0 - 2 
   AZ038 2 - 20 

   AZ039 20 - 40
   AZ040 40 - 60

     

Point Latitude Longitude Id depth 

S 8 37.44663 6.21341 AZ013 0 - 2 
  AZ014 2 - 20 
  AZ015 20 - 40
  AZ016 40 - 60

S 3 37.44636 6.21348 AZ017 0 - 2 
  AZ018 2 - 20 
  AZ019 20 - 40
  AZ020 40 - 60

S 7 37.44616 6.21351 AZ021 0 - 2 
  AZ022 2 - 20 
  AZ023 20 - 40
  AZ024 40 - 60

S 6 37.44662 6.21174 AZ005 0 - 2 
  AZ006 2 - 20 
  AZ007 20 - 40
  AZ008 40 - 60

S 4 37.44616 6.21181 AZ001 0 - 2 
  AZ002 2 - 20 
  AZ003 20 - 40
  AZ004 40 - 60

S 5 37.44592 6.21182 AZ009 0 - 2 
  AZ010 2 - 20 
  AZ011 20 - 40
  AZ012 40 - 60
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Figure A.4. Sketch of Sampling Site ‘Las Doblas’ 

Table A.4. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Las Doblas’ site 

Point Latitude Longitude Id Depth

D 1 37.37372 6.22872 AZ141 0 - 2 
   AZ142 2 - 20 
   AZ143 20 - 40
   AZ144 40 - 60

D 2 37.37383 6.28815 AZ145 0 - 2 
   AZ146 2 - 20 
   AZ147 20 - 40
   AZ148 40 - 60

D 3 37.37388 6.22759 AZ149 0 - 2 
   AZ150 2 - 20 
   AZ151 20 - 40
   AZ152 40 - 60

D 4 37.37401 6.22704 AZ153 0 - 2 
   AZ154 2 - 20 
   AZ155 20 - 40
   AZ156 40 - 60

D 5 37.37404 6.22678 AZ157 0 - 2 
   AZ158 2 - 20 
   AZ159 20 - 40

Point Latitude Longitude Id Depth

D 5 37.37404 6.22678 AZ160 40 - 60

D 6 37.37406 6.22648 AZ161 0 - 2 
  AZ162 2 - 20 
  AZ163 20 - 40
  AZ164 40 - 60

D 7 37.37413 6.2262 AZ165 0 - 2 
  AZ166 2 - 20 
  AZ167 20 - 40
  AZ168 40 - 60

D 8 37.37415 6.22593 AZ169 0 - 2 
  AZ170 2 - 20 
  AZ171 20 - 40
  AZ172 40 - 60

D 9 37.37418 6.22568 AZ173 0 - 2 
  AZ174 2 - 20 
   20 - 40
   40 - 60
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Figure A.5. Sketch of Sampling Site ‘Puente Nuevo’ 

Table A.5. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Puente Nuevo’ site. (non-contaminated samples in blue) 

Point Latitude Longitude Id Depth

PN 1 37.30267 6.26064 AZ175 0 - 2 
   AZ176 2 - 20 
   AZ177 20 - 40
   AZ178 40 - 60

PN 2 37.30282 6.26113 AZ179 0 - 2 
   AZ180 2 - 20 
   AZ181 20 - 40
   AZ182 40 - 60

PN 3 37.30303 6.2616 AZ183 0 - 2 
   AZ184 2 - 20 
   AZ185 20 - 40
   AZ186 40 - 60

PN 4 37.30301 6.26222 AZ187 0 - 2 
  AZ188 

   AZ189 20 - 40
   AZ190 40 - 60

PN 5 37.30303 6.26280 AZ191 0 - 2 
   AZ192 2 - 20 
   AZ193 20 - 40
   AZ194 40 - 60

     
     

Point Latitude Longitude Id Depth

PN 6 37.30302 6.26335 AZ195 0 - 2 
  AZ196 2 - 20 
  AZ197 20 - 40
  AZ198 40 - 60

PN 7 37.30303 6.26380 AZ199 0 - 2 
  AZ200 2 - 20 
  AZ201 20 - 40
  AZ202 40 - 60

PN 8 37.30306 6.26428 AZ203 0 - 2 
  AZ204 2 - 20 
  AZ205 20 - 40
  AZ206 40 - 60

PN 9 37.30303 6.26482 AZ207 0 - 2 
  AZ208 2 - 20 
  AZ209 20 - 40
  AZ210 40 - 60

PN 10 37.30307 6.26537 AZ211 0 - 2 
  AZ212 2 - 20 
  AZ213 20 - 40
  AZ214 40 - 60

 2 - 20 
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Figure A.6. Vado de Quema 

Table A.6. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for ‘Vado de Quema’ site. (non-contaminated in blue, sludge sample in red) 

Point Latitude Longitude Id Depth

Q 1 37.25232 6.26786 AZ049 0 - 2 
   AZ050 2 - 20 
   AZ051 20 - 40
   AZ052 40 - 60

Q 2 37.25157 6.26724 AZ053 0 - 2 
   AZ054 2 - 20 
   AZ055 20 - 40
   AZ056 40 - 60

Q 3 37.25084 6.26668 AZ057 0 - 2 
   AZ058 2 - 20 
   AZ059 20 - 40
   AZ060 40 - 60

Q 4 37.25008 6.26598 AZ061 0 - 2 
   AZ062 2 - 20 
   AZ063 20 - 40
   AZ064 40 - 60

Q 5 37.24929 6.26536 AZ065 0 - 2 
   AZ066 2 - 20 
   AZ067 20 - 40
   AZ068 40 - 60

     

Point Latitude Longitude Id Depth

Q 6 37.24857 6.26473 AZ069 0 - 2 
  AZ070 2 - 20 
  AZ071 20 - 40
  AZ072 40 - 60

Q 7 37.2478 6.26417 AZ073 0 - 2 
  AZ074 2 - 20 

 AZ075 20 - 40
  AZ076 40 - 60

Q 8 37.24745 6.26381 AZ077 0 - 2 
  AZ078 2 - 20 
  AZ079 20 - 40
  AZ080 40 - 60

Q 9 37.25039 6.26456 AZ085 sludge

Q 9 37.25039 6.26456 AZ081 0 - 2 

   AZ082 2 - 20 

   AZ083 20 - 40

   AZ084 40 - 60
Q 10 37.25028 6.26415 AZ086 0 - 2 

  AZ087 2 - 20 
  AZ088 20 - 40
  AZ089 40 - 60

 



180 Annex  A 

Table A.7. Sampling points, coordinates [decimal degrees, WGS84], corresponding soil samples and 
sampling depth [cm] for sampling campaign 2000. (non-contaminated in blue, sludge sample in red) 

Point Latitude Longitude Id Depth

EC 0 37.178625 6.204499 Az300 0 - 2 

EC 1 37.179048 6.205497 Az301 0 - 2 

EC 2 37.179217 6.206062 Az302 0 - 2 

EC 3 37.178479 6.205201 Az303 0 - 2 

EC 4 37.178830 6.204993 Az304 0 - 2 
   Az311 2 - 20 
   Az312 20 - 40
   Az313 40 - 60

EC 5   Az305 0 - 2 

EC 6   Az306 0 - 2 

EC 7   Az307 0 - 2 

EC 8   Az308 0 - 2 

EC 9   Az309 0 - 2 

EC 10   Az310 0 - 2 

EL 0 37.178640 6.206206 Az314 0 - 2 

EL 1 37.179641 6.206478 Az315 0 - 2 

EL 2 37.178752 6.206731 Az316 0 - 2 

EL 3 37.179732 6.207059 Az317 0 - 2 

EL 4   Az318 0 - 2 

EL 5   Az319 0 - 2 

EL 6   Az320 0 - 2 

EL 7 37.179191 6.206611 Az324 0 - 2 
   Az325 2 - 20 
   Az326 20 - 40
   Az327 40 - 60

EL 8   Az321 0 - 2 

EL 9   Az322 0 - 2 

EL 10   Az323 0 - 2 

Q 0 37.242736 6.264359 Az328 0 - 2 

Q 1 37.242692 6.264834 Az329 0 - 2 

Q 2   Az330 0 - 2 

Q 3 37.240946 6.264048 Az331 0 - 2 

Q 4 37.237651 6.260042 Az332 0 - 2 

Q 5 37.240845 6.264596 Az333 0 - 2 

Q 6   Az334 0 - 2 

Q 8   Az335 0 - 2 

Q 9   Az336 0 - 2 

Q 10   Az337 0 - 2 

Q 7 37.241854 6.264450 Az338 0 - 2 

Point Latitude Longitude Id Depth

   Az339 2 - 20 
   Az340 20 - 40
   Az341 40 - 60

Q 11 37.242846 6.264704 Az342 sludge
  Az343 2 - 20 
  Az344 20 - 40
  Az345 40 - 60

Q 12 37.243027 6.264561 Az346 sludge
  Az347 2 - 20 
  Az348 20 - 40
  Az349 40 - 60

Q 13 37.237741 6.259770 Az350 sludge
  Az351 2 - 20 
  Az352 20 - 40
  Az353 40 - 60

Q 14 37.237651 6.260042 Az354 sludge
  Az355 2 - 20 

S 12 Az355-1 37.446950 6.216320 0 - 2 
  Az356 20 - 40
   2 - 20 Az356-1 
  Az357 40 - 60
   Az357-1 20 - 40
   Az358 40 - 60

S 1 37.446720 6.216240 Az359 0 - 2 
   Az360 2 - 20 
   Az361 20 - 40
   Az362 40 - 60

S 11 37.446530 6.216240 Az363 0 - 2 
   Az364 2 - 20 
   Az365 20 - 40
   Az366 40 - 60

S 9 37.446270 6.214820 Az367 0 - 2 
   Az368 2 - 20 
   Az369 20 - 40
   Az370 40 - 60

S 2 37.446590 6.214850 Az371 0 - 2 
   Az372 2 - 20 
   Az373 20 - 40

S 2 Az374 37.446590 6.214850 40 - 60

S 10 37.446760 6.214800 Az375 0 - 2 
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Point Latitude Longitude Id Depth

  2 - 20  Az376 
   Az377 20 - 40
   Az378 40 - 60

S 8 37.446630 Az379 0 - 2 6.213410 
  Az380 2 - 20  
   Az381 20 - 40
   Az382 40 - 60

S 3 37.446360 6.213480 Az383 0 - 2 
   Az384 2 - 20 
   Az385 20 - 40
   Az386 40 - 60

S 7 37.446160 6.213510 Az387 0 - 2 
   Az388 2 - 20 
   Az389 20 - 40
   Az390 40 - 60

V 1 37.484810 6.215370 Az391 0 - 2 
V 1 37.484810 6.215370 Az392 2 - 20 
V 1 37.484810 6.215370 Az393 20 - 40
V 1 37.484810 6.215370 Az394 40 - 60

V 2 37.484810 6.215880 Az395 0 - 2 

V 3 37.484710 6.216460 Az396 0 - 2 

V 4 37.484720 6.217020 Az397 0 - 2 

V 5 37.484600 6.217740 Az398 0 - 2 

V 6 37.484590 6.218250 Az399 0 - 2 

V 7 37.484570 6.218820 Az400 0 - 2 

V 8 37.484500 6.219460 Az401 0 - 2 

V 9 37.484460 6.220000 Az402 0 - 2 

M 1 37.503860 6.226570 Az403 0 - 2 

Point Latitude Longitude Id Depth

   Az404 2 - 20 
   Az405 20 - 40
   Az406 40 - 60

M 2 37.503870 6.226000 Az407 0 - 2 

M 3 37.503750 6.225690 Az408 0 - 2 

M 4 37.503770 6.225210 Az409 0 - 2 

M 5 37.503700 6.224620 Az410 0 - 2 

PN 2 37.302820 6.261130 Az411 0 - 2 

PN 3 Az412 0 - 2 37.303030 6.261600 

PN 4 37.303010 6.262220 Az413 0 - 2 

PN 5 37.303030 6.262800 Az414 0 - 2 

PN 6 37.303020 6.263350 Az415 0 - 2 

PN 7 37.303030 6.263800 Az416 0 - 2 

PN 8 37.303060 6.264280 Az417 0 - 2 

PN 9 6.264820 37.303030 Az418 0 - 2 
   Az419 2 - 20 
   Az420 20 - 40
   Az421 40 - 60

PN 10 37.306556 6.265458 Az422 0 - 2 

S 20 37.444730 6.216320 Az423 0 - 2 

S 21 37.444470 6.216180 Az424 0 - 2 

S 22 37.444490 6.216090 Az425 0 - 2 

S 23 37.444410 6.215850 Az426 0 - 2 

S 24 37.444500 6.215990 Az427 0 - 2 

S 25 37.444840 6.216210 Az428 0 - 2 
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B. HyMap sensor setup 

Table B.1. HyMap band positions 1999 (WL = centre wavelength [nm]; FWHM = Full width at half 
maximum [nm]) 

Band WL FWHM 
1 0.403 0.013 
2 0.447 0.014 
3 0.457 0.0147 
4 0.472 0.0159 
5 0.487 0.018 
6 0.503 0.016 
7 0.517 0.0163 
8 0.533 0.017 
9 0.549 0.0159 
10 0.563 0.014 
11 0.58 0.0146 
12 0.594 0.0152 
13 0.609 0.0163 
14 0.624 0.0186 
15 0.641 0.0152 
16 0.656 0.0156 
17 0.671 0.0156 
18 0.685 0.01471 
19 0.702 0.0172 
20 0.716 0.0162 
21 0.731 0.0155 
22 0.747 0.0155 
23 0.761 0.0156 
24 0.777 0.0164 
25 0.792 0.016 
26 0.807 0.0161 
27 0.823 0.0167 
28 0.837 0.01541 
29 0.854 0.019 
30 0.868 0.0164 
31 0.883 0.0166 
32 0.885 0.0192 
33 0.896 0.0137 
34 0.9 0.021 
35 0.918 0.0158 
36 0.933 0.0184 
37 0.948 0.0164 
38 0.965 0.025 
39 0.981 0.01651 
40 0.996 0.01639 
41 1.011 0.01619 
42 1.029 0.0218 
43 1.043 0.01599 
44 1.059 0.01701 
45 1.074 0.017 

Band WL FWHM 
46 1.089 0.0179 
47 1.104 0.01659 
48 1.119 0.0172 
49 1.134 0.017 
50 1.148 0.0166 
51 1.163 0.01659 
52 1.178 0.0164 
53 1.192 0.016 
54 1.207 0.0164 
55 1.222 0.01659 
56 1.236 0.016 
57 1.25 0.016 
58 1.264 0.0165 
59 1.279 0.017 
60 1.293 0.0158 
61 1.307 0.016 
62 1.321 0.0158 
63 1.334 0.0163 
64 1.346 0.0152 
65 1.401 0.0164 
66 1.417 0.0157 
67 1.431 0.01621 
68 1.445 0.01599 
69 1.459 0.01561 
70 1.473 0.017 
71 1.487 0.0165 
72 1.5 0.01621 
73 1.514 0.0163 
74 1.527 0.0163 
75 1.541 0.01701 
76 1.554 0.0163 
77 1.567 0.0165 
78 1.58 0.016 
79 1.593 0.0164 
80 1.606 0.0164 
81 1.619 0.0164 
82 1.632 0.01679 
83 1.644 0.0165 
84 1.657 0.01619 
85 1.669 0.0165 
86 1.682 0.0161 
87 1.694 0.01621 
88 1.706 0.01631 
89 1.719 0.0165 
90 1.731 0.016 

Band WL FWHM 
91 1.743 0.0158 
92 1.755 0.0158 
93 1.767 0.0156 
94 1.778 0.01551 
95 1.79 0.016 
96 1.802 0.01599 
97 1.949 0.0204 
98 1.967 0.02131 
99 1.986 0.0215 
1 2.5 0.021199 

101 2.023 0.02099 
102 2.042 0.02049 
103 2.06 0.02049 
104 2.079 0.02099 
105 2.097 0.02101 
106 2.115 0.02059 
107 2.132 0.0204 
108 2.15 0.0202 
109 2.168 0.0202 
110 2.184 0.01941 
111 2.201 0.02049 
112 2.22 0.02011 
113 2.237 0.0195 
114 2.254 0.0202 
115 2.271 0.01971 
116 2.288 0.01979 
117 2.305 0.01962 
118 2.321 0.02 
119 2.337 0.0202 
120 2.354 0.02101 
121 2.37 0.022 
122 2.386 0.02 
123 2.402 0.0195 
124 2.418 0.02999 
125 2.434 0.01959 
126 2.449 0.02011 
127 2.465 0.0195 
128 2.48 0.01939 
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TableB.2. HyMap band positions 2000 (WL = centre wavelength [nm]; FWHM = Full width at half 
maximum [nm]) 

Band WL FWHM 
1 0.439 0.015 
2 0.451 0.012 
3 0.463 0.016 
4 0.479 0.015 
5 0.494 0.015 
6 0.509 0.016 
7 0.525 0.016 
8 0.541 0.016 
9 0.556 0.015 
10 0.572 0.015 
11 0.587 0.015 
12 0.602 0.016 
13 0.618 0.016 
14 0.633 0.016 
15 0.649 0.015 
16 0.664 0.015 
17 0.679 0.016 
18 0.694 0.016 
19 0.71 0.015 
20 0.725 0.016 
21 0.74 0.016 
22 0.755 0.015 
23 0.771 0.015 
24 0.785 0.015 
25 0.801 0.016 
26 0.816 0.016 
27 0.831 0.016 
28 0.846 0.016 
29 0.862 0.016 
30 0.875 0.019 
31 0.877 0.016 
32 0.888 0.02 
33 0.904 0.019 
34 0.92 0.019 
35 0.936 0.018 
36 0.952 0.019 
37 0.967 0.019 
38 0.983 0.019 
39 0.999 0.019 
40 1.015 0.019 
41 1.03 0.019 
42 1.046 0.019 
43 1.061 0.018 

Band WL FWHM
44 1.076 0.019 
45 1.091 0.019 
46 1.106 0.018 
47 1.121 0.019 
48 1.136 0.018 
49 1.15 0.018 
50 1.165 0.018 
51 1.179 0.019 
52 1.194 0.018 
53 1.208 0.017 
54 1.222 0.018 
55 1.237 0.018 
56 1.251 0.018 
57 1.265 0.017 
58 1.279 0.017 
59 1.293 0.017 
60 1.307 0.018 
61 1.322 0.017 
62 1.335 0.017 
63 1.404 0.017 
64 1.419 0.016 
65 1.432 0.017 
66 1.446 0.017 
67 1.461 0.016 
68 1.475 0.016 
69 1.488 0.016 
70 1.502 0.016 
71 1.515 0.016 
72 1.529 0.016 
73 1.542 0.017 
74 1.556 0.017 
75 1.569 0.016 
76 1.582 0.017 
77 1.594 0.017 
78 1.607 0.017 
79 1.62 0.016 
80 1.633 0.016 
81 1.646 0.016 
82 1.658 0.016 
83 1.671 0.015 
84 1.683 0.016 
85 1.696 0.016 
86 1.708 0.016 

Band WL FWHM
87 1.72 0.015 
88 1.732 0.015 
89 1.745 0.015 
90 1.756 0.015 
91 1.768 0.014 
92 1.78 0.014 
93 1.792 0.014 
94 1.804 0.014 
95 1.95 0.021 
96 1.969 0.021 
97 1.987 0.021 
98 2.006 0.021 
99 2.025 0.021 

100 2.044 0.021 
101 2.062 0.021 
102 2.081 0.021 
103 2.099 0.02 
104 2.117 0.021 
105 2.135 0.021 
106 2.153 0.021 
107 2.17 0.02 
108 2.187 0.019 
109 2.205 0.021 
110 2.223 0.019 
111 2.24 0.019 
112 2.257 0.019 
113 2.275 0.019 
114 2.292 0.018 
115 2.308 0.018 
116 2.324 0.018 
117 2.341 0.018 
118 2.358 0.018 
119 2.374 0.018 
120 2.39 0.018 
121 2.406 0.017 
122 2.422 0.017 
123 2.437 0.016 
124 2.453 0.017 
125 2.468 0.017 
126 2.484 0.016 
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C. Geochemical analysis 1999 

Table C.1.  Geochemical laboratory analysis for 1999. Part I 

ID Depth 
[cm] 

Al2O3 
[%] 

As 
[ppm] 

CaO 
[%] 

CaCO3
[%] 

Ctot. 
[%]

Corg. 
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%] 

Hg 
[ppm]

AZ 001 0 - 2 15.1 10 2.05 0.5 0.9 0.89 0.13 0.02 124 22 5.45 0.75 0.04 
AZ 002 2 - 20 15.05 16 2 1.3 0.93 0.77 0.12 0.02 123 19 5.4 0.76 0.03 
AZ 003 20 - 40 15.1 16 2.1 0.5 0.83 0.77 0.12 0.02 118 22 5.4 0.68 0.03 
AZ 004 40 - 60 14.65 16 3.3 3.3 0.71 0.31 0.1 0.02 124 17.5 5.3 0.65 0.02 
AZ 005 0 - 2 15.15 15 2.05 0.7 0.96 0.87 0.13 0.02 120 19.5 5.45 0.73 0.02 
AZ 006 2 - 20 15.15 16 2.05 0.5 0.88 0.82 0.12 0.02 119 18 5.35 0.71 0.03 
AZ 007 20 - 40 15.1 9 2.05 0.6 0.9 0.83 0.13 0.02 115 21 5.4 0.84 0.03 
AZ 008 40 - 60 14.9 15 2.8 1.1 0.72 0.59 0.1 0.02 110 19.5 5.35 0.66 0.03 
AZ 009 0 - 2 15.35 19 2.4 0.5 0.91 0.86 0.13 0.02 118.5 20.5 5.65 0.7 0.03 
AZ 010 2 - 20 15.45 18 2.3 0.8 0.9 0.8 0.12 0.02 114.5 19.5 5.6 0.74 0.04 
AZ 011 20 - 40 15.3 11 2.25 0.9 0.89 0.78 0.12 0.02 111.5 22 5.5 0.8 0.03 
AZ 012 40 - 60 14.9 8 3.8 2.1 0.84 0.59 0.11 0.02 112 20 5.6 0.58 0.02 
AZ 013 0 - 2 10.7 114 2.05 0.5 0.67 0.64 2.17 0.03 132.5 119 8.4 0.5 1.08 
AZ 014 2 - 20 12.15 46 2.15 0.5 0.67 0.67 1.08 0.02 123.5 71.5 6.7 0.51 0.47 
AZ 015 20 - 40 13.75 16 2.1 0.5 0.5 0.47 0.17 0.02 126 41 5.65 0.47 0.08 
AZ 016 40 - 60 12.85 25 2.5 0.5 0.39 0.33 0.38 0.02 130 40 5.85 0.52 0.11 
AZ 017 0 - 2 9.3 173 2.35 0.5 0.75 0.73 3.51 0.06 103.5 170.5 10.1 0.62 0.09 
AZ 018 2 - 20 11.6 29 2.4 0.7 0.83 0.77 0.46 0.03 111.5 60 6.15 0.7 0.25 
AZ 019 20 - 40 12.4 10 3.55 2.8 0.86 0.52 0.12 0.02 106 42.5 5.65 0.69 0.11 
AZ 020 40 - 60 12.35 11 4.5 3.7 0.82 0.37 0.07 0.02 116 28 5.65 0.59 0.1 
AZ 021 0 - 2 3.3 317 5.25 2.7 0.97 0.65 9.33 0.13 79 309 18.45 0.76 5.5 
AZ 022 2 - 20 10.95 83 4 4.6 1.37 0.82 0.49 0.03 103.5 59 6.6 0.74 0.3 
AZ 023 20 - 40 12.45 43 3.1 3 1 0.64 0.15 0.02 109.5 57 5.7 0.71 0.08 
AZ 024 40 - 60 12.45 50 3.45 3.8 1.1 0.64 0.15 0.02 103 63.5 5.7 0.68 0.12 
AZ 025 0 - 2 10.45 175 3.65 3.9 1.82 1.35 1.56 0.04 152 109.5 6.8 0.6 0.58 
AZ 026 2 - 20 12 43 2.3 0.5 0.69 0.65 0.1 0.02 120.5 51.5 5.45 0.4 0.05 
AZ 027 20 - 40 12.95 41 2.2 1.2 0.66 0.52 0.89 0.02 109 52 5.6 0.52 0.07 
AZ 028 40 - 60 15.25 47 2.5 0.8 0.65 0.56 0.1 0.02 114.5 67.5 5.75 0.55 0.11 
AZ 029 0 - 2 11.65 192 3.2 1.3 0.59 0.43 1.69 0.02 143.5 106.5 6.85 0.39 0.76 
AZ 030 2 - 20 12 174 3.2 0.5 0.5 0.45 1.11 0.02 95 90 6.6 0.37 0.54 
AZ 033 0 - 2 11.1 131 3.5 1.7 0.78 0.58 2.5 0.02 123.5 138.5 7.7 0.37 1.18 
AZ 034 2 - 20 13.6 22 4.95 4.5 1.22 0.68 0.2 0.02 117 52 5.35 0.43 0.11 
AZ 035 20 - 40 13.6 19 3.3 1 0.64 0.52 0.12 0.02 95.5 56 5.5 0.35 0.07 
AZ 036 40 - 60 13.7 15 3.05 1.8 0.65 0.44 0.1 0.02 134 64.5 5.35 0.47 0.1 
AZ 037 0 - 2 11.95 45 2.85 0.7 0.68 0.59 0.44 0.02 138 45.5 5.9 0.41 0.3 
AZ 038 2 - 20 12.7 21 2.85 0.7 0.61 0.53 0.13 0.02 88 38.5 5 0.35 0.05 
AZ 039 20 - 40 13.2 18 2.6 0.8 0.59 0.49 0.07 0.02 123.5 26.5 5.35 0.43 0.03 
AZ 040 40 - 60 13.5 18 2.75 0.7 0.63 0.54 0.08 0.02 123.5 30.5 5.2 0.49 0.03 
AZ 041 0 - 2 10.75 157 2.65 1.3 0.75 0.59 2.52 0.02 143.5 104 7.5 0.43 0.93 
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ID Depth 
[cm] 

Al2O3 
[%] 

As 
[ppm] 

CaO 
[%]

CaCO3
[%] 

Ctot. 
[%]

Corg. 
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%]

Hg 
[ppm]

AZ 042 2 - 20 12.1 49 2.7 0.5 0.57 0.58 0.66 0.02 109 54.5 6.1 0.36 0.35 
AZ 043 20 - 40 13.35 23 2.7 0.6 0.58 0.5 0.21 0.02 123 36.5 5.4 0.42 0.09 
AZ 044 40 - 60 13.95 19 2.65 0.5 0.57 0.52 0.12 0.02 130 68.5 5.55 0.45 0.06 
AZ 045 0 - 2 5.6 280 2.35 0.5 0.57 0.53 4.58 0.09 83 203.5 14.7 0.36 3.85 
AZ 046 2 - 20 14.05 19 2.95 0.5 0.65 0.59 0.28 0.05 163 29 5.25 0.4 0.07 
AZ 047 20 - 40 11.7 17 2.55 0.9 0.61 0.5 0.17 0.02 126 38 6.4 0.5 0.06 
AZ 048 40 - 60 13.3 16 2.45 0.5 0.58 0.51 0.1 0.02 130 45 5.75 0.5 0.07 
AZ 049 0 - 2 9.65 118 8.8 13 2.29 0.73 1.67 0.02 78.5 97.5 5.9 0.55 0.49 
AZ 050 2 - 20 11.15 21 6.5 9.2 1.66 0.55 0.38 0.02 81 43.5 4.8 0.56 0.11 
AZ 051 20 - 40 12.15 23 5.65 8 1.56 0.6 0.23 0.02 89.5 36 5.15 0.5 0.07 
AZ 052 40 - 60 12.85 20 5 7.1 1.46 0.6 0.12 0.02 92.5 38 5.2 0.56 0.07 
AZ 053 0 - 2 7 36 13 18.9 3.04 0.77 2.25 0.03 124.5 105.5 5.05 0.43 0.43 
AZ 054 2 - 20 9.5 20 7.4 11.5 1.95 0.57 1.24 0.02 79 67.5 4.05 0.41 0.12 
AZ 055 20 - 40 10.3 11 6 7 1.26 0.41 0.4 0.02 90 47.5 4 0.33 0.05 
AZ 056 40 - 60 10.6 7 6.25 9.7 1.6 0.44 0.08 0.02 83.5 28 4.4 0.44 0.04 
AZ 057 0 - 2 7.85 36 7.4 10.4 1.87 0.62 2.47 0.04 95 123.5 5.7 0.39 0.63 
AZ 058 2 - 20 9.2 39 7.05 10.4 1.83 0.58 1.31 0.02 103.5 88 4.65 0.44 0.18 
AZ 059 20 - 40 9.8 26 6.25 8.8 1.64 0.58 0.93 0.02 86 77 4.65 0.42 0.13 
AZ 060 40 - 60 10.75 16 5.6 9.3 1.67 0.55 0.36 0.02 82.5 51.5 4.85 0.48 0.36 
AZ 061 0 - 2 8.15 26 8.65 13.3 2.31 0.71 1.36 0.02 72.5 71.5 3.75 0.41 0.13 
AZ 062 2 - 20 9.4 17 7.25 11.1 1.95 0.61 1.02 0.02 77 72.5 4.2 0.44 0.07 
AZ 063 20 - 40 10.3 18 5.85 8.1 1.56 0.58 0.45 0.02 82.5 67.5 4.65 0.4 0.07 
AZ 064 40 - 60 12.35 26 5.85 7.7 1.57 0.65 0.75 0.02 96.5 118.5 4.75 0.44 0.12 
AZ 065 0 - 2 10.5 115 7.35 9.7 1.83 0.67 2.67 0.02 64 162 5.6 0.45 0.51 
AZ 066 2 - 20 11.7 34 5 5.6 1.22 0.55 1.4 0.02 70.5 167.5 4.7 0.38 0.13 
AZ 067 20 - 40 11.9 34 4.85 6.1 1.28 0.55 1.24 0.02 93.5 168.5 4.8 0.4 0.14 
AZ 068 40 - 60 11.25 19 4.85 4.1 0.83 0.34 0.31 0.02 65 81.5 3.95 0.26 0.06 
AZ 069 0 - 2 9.8 38 9.1 13.8 2.35 0.69 1.25 0.02 77 80.5 3.85 0.42 0.15 
AZ 070 2 - 20 11.2 34 6.25 8.3 1.57 0.57 0.93 0.02 68 105 4.45 0.42 0.1 
AZ 071 20 - 40 11.25 27 4.95 5.6 1.07 0.4 0.45 0.02 84.5 78 4.3 0.37 0.06 
AZ 072 40 - 60 6.45 20 7.7 5.6 0.95 0.27 0.1 0.06 98.5 282.5 10.2 0.25 0.04 
AZ 073 0 - 2 10.3 244 5.65 5.5 1.25 0.58 4.97 0.02 102 30 3.85 0.79 1.39 
AZ 074 2 - 20 9.35 75 7.25 8.3 1.57 0.57 1.84 0.02 89 102 5.75 0.4 0.42 
AZ 075 20 - 40 9.1 63 7.4 10.3 1.77 0.53 1.46 0.02 85 104 5.65 0.44 0.44 
AZ 076 40 - 60 9.55 20 6.9 9.8 1.55 0.37 0.29 0.02 93 104 5.3 0.36 0.11 
AZ 077 0 - 2 9.6 37 6.95 10.8 2.03 0.74 1.92 0.02 93 104 4.2 0.48 0.35 
AZ 078 2 - 20 9.9 24 6.3 8 1.58 0.61 0.57 0.02 65 80.5 4.6 0.38 0.1 
AZ 079 20 - 40 10.45 20 5.7 7.5 1.42 0.52 0.33 0.02 100.5 70 4.45 0.38 0.08 
AZ 080 40 - 60 10.2 17 6.55 9.4 1.49 0.36 0.09 0.02 89.5 32 4 0.34 0.05 
AZ 081 0 - 2 7.45 241 4.15 2.6 0.81 0.5 14.8 0.07 79 521 9 0.74 0.59 
AZ 082 2 - 20 10.4 28 4.95 5.6 1.22 0.54 2.41 0.02 104 160 5.35 0.42 0.13 
AZ 083 20 - 40 10.7 18 5.75 7.7 1.43 0.5 0.8 0.02 112.5 75.5 4.8 0.42 0.07 
AZ 084 40 - 60 10.1 22 6.3 8 1.39 0.43 0.27 0.02 92 34.5 4.55 0.39 0.05 



186 Annex  C 

ID Depth 
[cm] 

Al O  2 3
[%] 

As 
[ppm] 

CaO 
[%] 

CaCO3
[%] 

C  tot.
[%]

C  org.
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%] 

Hg 
[ppm]

AZ 085 sludge 0.5 442 2.9 0.5 0.11 0.1 6.38 0.1 59.5 197 15.25 0.65 13.9 
AZ 086 0 - 2 9.75 23 6.7 10.8 2.34 1.04 1.46 0.02 91.5 126.5 5.1 0.58 0.11 
AZ 087 2 - 20 10.1 24 6.55 11.2 2.29 0.94 1.41 0.02 90 125.5 4.95 0.53 0.1 
AZ 088 20 - 40 11.95 21 6.55 10 2.07 0.86 1.06 0.02 102 130 4.85 0.48 0.11 
AZ 089 40 - 60 11.25 14 5.7 6.5 1.19 0.41 0.22 0.02 141 45 4.1 0.38 0.05 
AZ 090 0 - 2 13.75 27 2.15 2.9 2.1 1.75 1.88 0.02 190.5 177.5 5.45 0.59 0.29 
AZ 091 2 - 20 13.25 15 1.55 0.5 0.9 0.8 0.55 0.02 164 65.5 4.8 0.33 0.08 
AZ 092 20 - 40 13.5 24 2.15 1.7 1.49 1.29 1.09 0.02 169 105 5.2 0.5 0.17 
AZ 093 40 - 60 13.35 22 1.95 1.5 1.53 1.35 0.78 0.02 135.5 100.5 5.2 0.47 0.17 
AZ 094 0 - 2 12.2 43 1.85 1.8 1.61 1.4 1.74 0.02 128.5 111.5 6.35 0.57 0.29 
AZ 095 2 - 20 13 24 1 0.5 0.58 0.54 0.71 0.02 215.5 75.5 5.55 0.34 0.11 
AZ 096 20 - 40 13 30 1 0.8 0.51 0.45 0.37 0.02 219 68.5 5.6 0.36 0.1 
AZ 097 40 - 60 12.75 29 0.7 0.5 0.26 0.23 0.18 0.02 225.5 60.5 5.65 0.29 0.08 
AZ 098 0 - 2 11.6 46 1.8 1.5 1.65 1.46 1.99 0.02 124 169.5 6.95 0.59 0.48 
AZ 099 2 - 20 12.65 30 1 1.4 1.24 1.11 0.86 0.02 159 83.5 5.8 0.48 0.23 
AZ 100 20 - 40 12.55 64 1.65 0.6 0.77 0.7 0.35 0.02 117.5 99 6.2 0.45 0.13 
AZ 101 40 - 60 12.55 16 0.6 0.5 0.22 0.22 0.11 0.02 141 82.5 5.5 0.29 0.05 
AZ 102 0 - 2 11.7 88 0.5 0.5 0.31 0.26 0.82 0.03 216 99.5 6.5 0.36 0.32 
AZ 103 2 - 20 10.95 50 1.1 0.6 0.39 0.32 1.86 0.04 128 138.5 6.2 0.38 0.33 
AZ 104 20 - 40 11.5 21 0.45 0.5 0.12 0.1 0.2 0.06 151.5 130.5 6.85 0.36 0.04 
AZ 105 40 - 60 10.65 24 0.4 0.5 0.11 0.1 0.23 0.06 322.5 93 6.05 0.33 0.03 
AZ 106 0 - 2 13.2 301 1.1 4.2 2.43 1.92 5.13 0.02 117.5 158 6.75 1.6 4.56 
AZ 107 2 - 20 10.85 51 1.05 0.5 1.44 1.37 1.46 0.09 134.5 315 11.7 0.78 0.53 
AZ 108 20 - 40 14.9 30 1.15 0.5 1.12 1.08 1.15 0.02 116.5 110.5 6.05 0.52 0.18 
AZ 109 40 - 60 14.4 16 0.7 0.5 0.32 0.31 0.34 0.02 139 52 5.4 0.35 0.06 
AZ 110 0 - 2 10.95 125 3.3 2.9 1.13 0.78 6.41 0.03 111.5 238.5 9.45 0.52 1.85 
AZ 111 2 - 20 12.95 106 1.5 1.9 0.78 0.55 1.77 0.02 88 161.5 8.05 0.47 0.8 
AZ 112 20 - 40 14.75 75 0.9 0.5 0.76 0.76 0.82 0.02 112.5 190 6.9 0.42 0.38 
AZ 113 40 - 60 15.2 79 0.85 1 1.74 1.61 1.23 0.02 148.5 373.5 6.8 0.57 0.71 
AZ 114 0 - 2 10.35 152 3.75 3.7 0.74 0.3 2.05 0.05 135.5 200 7.95 0.38 0.98 
AZ 115 2 - 20 11.55 85 0.9 1.5 0.31 0.12 0.35 0.03 88 135 5.8 0.6 0.31 
AZ 116 20 - 40 11.65 71 0.65 0.5 0.13 0.12 0.32 0.02 189 123.5 5.65 0.28 0.21 
AZ 117 40 - 60 12.55 80 0.65 0.5 0.22 0.2 0.37 0.02 93.5 150 5.9 0.35 0.22 
AZ 118 0 - 2 4.35 46 32.8 42.4 6.69 1.6 0.33 0.02 41 62 2.75 0.53 0.17 
AZ 119 2 - 20 12.6 48 1.25 0.8 0.21 0.12 0.34 0.02 83 169.5 6 0.3 0.23 
AZ 120 20 - 40 12.55 74 0.9 0.5 0.25 0.18 0.5 0.03 98 223 6.2 0.34 0.32 
AZ 121 0 - 2 11.75 109 5.6 9.4 1.87 0.74 6.13 0.07 83.5 419 10.5 0.98 1.36 
AZ 122 2 - 20 9.95 96 0.7 0.5 0.22 1.07 0.29 0.11 93 258 7.6 0.41 0.38 
AZ 123 20 - 30 10.55 99 0.55 0.7 0.22 0.14 0.29 0.15 129 239.5 7.1 0.41 0.77 
AZ 124 0 - 2 7.05 128 1.85 0.5 0.43 0.4 6.6 0.13 135 446 12.9 0.72 2.23 
AZ 125 2 - 20 10.8 72 0.8 0.5 0.27 0.21 0.63 0.14 85.5 198.5 8.25 0.54 0.73 
AZ 126 20 - 30 11.25 91 0.7 0.5 0.18 0.15 0.8 0.09 132 151 7.65 0.44 0.47 
AZ 127 0 - 2 10.85 211 4.3 1.5 1.89 1.71 5.53 0.05 98 202 9.45 0.7 1.66 
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ID Depth 
[cm] 

Al O  2 3
[%] 

As 
[ppm] 

CaO 
[%]

CaCO3
[%] 

C  tot.
[%]

C  org.
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%]

Hg 
[ppm]

AZ 128 2 - 20 11.85 116 1.65 1.6 1.67 1.48 2.28 0.04 106.5 124 8.55 0.88 0.98 
AZ 129 20 - 40 14.5 98 1.5 0.5 1.38 1.35 1.4 0.02 92 140.5 7.75 0.69 0.94 
AZ 130 40 - 60 16.95 39 1.3 0.5 1.68 1.63 0.26 0.02 104.5 81 6.95 0.68 0.21 
AZ 131 0 - 2 10 196 13.6 18.9 3.86 1.59 3.22 0.02 90.5 139 7.55 0.61 1.5 
AZ 132 2 - 20 15.75 55 0.95 2 1.49 1.25 0.23 0.02 101.5 101.5 6.25 0.57 0.21 
AZ 133 0 - 2 13.05 76 4.75 7.3 1.86 0.99 0.85 0.02 77.5 116.5 6.05 0.47 0.4 
AZ 134 2 - 20 15.3 52 0.85 0.6 0.72 0.64 0.11 0.02 86.5 96.5 5.95 0.57 0.14 
AZ 135 20 - 40 14.85 46 0.65 0.5 0.46 0.42 0.09 0.02 85.5 119.5 5.9 0.38 0.18 
AZ 136 40 - 60 14.4 75 0.6 0.5 0.37 0.31 0.09 0.02 146.5 118.5 5.8 0.4 0.17 
AZ 137 0 - 2 9.45 393 1.25 1.5 3.47 3.28 7.1 0.08 99.5 258 12.7 1 3.58 
AZ 138 2 - 20 13.25 159 1.3 0.9 1.76 1.65 1.11 0.02 113.5 89.5 7.85 0.89 0.84 
AZ 139 20 - 40 13.8 116 1.25 1.3 1.37 1.21 0.78 0.02 98.5 85.5 7.35 0.74 0.53 
AZ 140 40 - 60 15.3 44 1.05 1.1 0.96 0.82 0.18 0.02 108.5 71.5 6.15 0.65 0.18 
AZ 141 0 - 2 10.65 96 8.35 13.8 2.4 0.74 0.96 0.02 62.5 102 5 0.58 0.37 
AZ 142 2 - 20 11.45 62 7.65 12 2.32 0.87 0.5 0.02 74.5 106 4.9 0.56 0.27 
AZ 143 20 - 40 12.75 73 4.35 5.6 1.79 1.11 0.62 0.02 81.5 166.5 6.05 0.64 0.31 
AZ 144 40 - 60 13.7 83 2.8 2.2 1.69 1.42 0.95 0.02 109 235.5 6.2 0.68 0.28 
AZ 145 0 - 2 10.15 102 6.95 2.8 1.18 0.85 1.81 0.02 71 130 5.9 0.69 0.69 
AZ 146 2 - 20 11.85 122 6.4 9.8 2.26 1.08 1.27 0.02 81.5 156.5 6.2 0.63 0.49 
AZ 147 20 - 40 11.35 106 5.65 8.8 2.16 1.1 1.3 0.03 78.5 161.5 6.25 0.65 0.51 
AZ 148 40 - 60 12.8 99 2.85 2.8 1.74 1.4 1.12 0.03 98.5 189.5 6.3 0.66 0.38 
AZ 149 0 - 2 7.5 283 6.65 8.8 1.72 0.66 3.09 0.07 79 170 8.4 0.42 1.55 
AZ 150 2 - 20 8.9 55 7.25 10.6 1.9 0.63 0.97 0.02 64.5 83 4.45 0.48 0.29 
AZ 151 20 - 40 11 51 4.95 7.4 1.78 0.89 1.28 0.03 91.5 158 5.65 0.57 0.26 
AZ 152 40 - 60 12.4 52 2.75 0.6 1.46 1.39 1.05 0.03 109 227.5 6.05 0.67 0.26 
AZ 153 0 - 2 8.6 146 3.3 2.6 1.21 0.89 3.23 0.08 131.5 230 9 0.57 1.25 
AZ 154 2 - 20 7.8 108 3.5 2.2 1.29 1.02 3.26 0.1 96 232 9.65 0.7 1.13 
AZ 155 20 - 40 10.85 47 3.1 2.2 1.39 1.12 1.44 0.07 120.5 214 6.95 0.55 0.49 
AZ 156 40 - 60 11.6 42 2.8 2.2 1.4 1.13 1.04 0.03 112.5 207.5 6.3 0.56 0.33 
AZ 157 0 - 2 9.9 77 4.25 3.9 1.29 0.82 2.17 0.07 144 223 7.25 0.46 0.71 
AZ 158 2 - 20 11.5 33 3.45 4.5 1.5 0.96 0.8 0.03 125.5 186.5 5.8 0.55 0.24 
AZ 159 20 - 40 11.85 25 3.1 2.2 1.47 1.21 0.71 0.03 89 228 5.9 0.54 0.25 
AZ 160 40 - 60 12 21 3.25 2.8 1.36 1.02 0.55 0.02 120 255.5 5.7 0.54 0.18 
AZ 161 0 - 2 11.1 71 4.1 2.3 1.32 1.04 2.99 0.02 90.5 248 7.75 0.62 0.63 
AZ 162 2 - 20 13.75 41 3.5 10 2.28 1.08 0.94 0.02 135 205.5 6.05 0.99 0.29 
AZ 163 20 - 40 14.1 29 3.35 2 1.42 1.17 0.69 0.02 101 244.5 6 0.64 0.32 
AZ 164 40 - 60 13.4 23 4.45 3.9 1.37 0.9 0.47 0.02 96 253.5 5.45 0.55 0.13 
AZ 165 0 - 2 10.3 193 4.35 1.8 1.39 1.17 2.83 0.06 93.5 261 9 0.67 1.1 
AZ 166 2 - 20 12.85 58 3.05 0.9 1.54 1.43 1.71 0.02 90 304 7.1 0.74 0.43 
AZ 167 20 - 40 12.8 44 3.5 1.8 1.32 1.1 1.26 0.02 93.5 222 6.3 0.58 0.24 
AZ 168 40 - 60 13.1 41 3.4 2.5 1.42 1.12 1.4 0.02 113 237.5 6.1 0.62 0.25 
AZ 169 0 - 2 12.3 43 6.95 8.8 2.48 1.43 1.19 0.02 113 189.5 6.65 0.7 0.36 
AZ 170 2 - 20 13.35 40 2.95 1.3 1.4 1.24 1.15 0.02 84.5 225.5 6.1 0.53 0.27 



188 Annex  C 

ID Depth 
[cm] 

Al O  2 3
[%] 

As 
[ppm] 

CaO 
[%] 

CaCO3
[%] 

C  tot.
[%]

C  org.
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%] 

Hg 
[ppm]

AZ 171 20 - 40 12.95 41 3.2 1.4 1.4 1.23 1.14 0.02 114.5 221 6.05 0.59 0.27 
AZ 172 40 - 60 12.4 44 3.9 2.4 1.44 1.15 0.99 0.02 95 235 6.1 0.67 0.23 
AZ 173 0 - 2 10.45 107 4.5 3.4 1.05 0.64 2.18 0.03 106.5 243 6.65 0.39 0.57 
AZ 174 2 - 20 11.55 87 2.8 1.2 1.07 0.92 1.37 0.05 99.5 244.5 6.6 0.46 0.43 
AZ 175 0 - 2 7.55 105 9.55 14.8 2.53 0.76 3.87 0.03 104 169.5 5.55 0.38 0.66 
AZ 176 2 - 20 6.45 137 6.55 6.8 1.39 0.57 4.24 0.05 92.5 199.5 7 0.47 0.83 
AZ 177 20 - 40 7.2 89 6.65 8.6 1.49 0.46 2.75 0.03 72.5 154 5.45 0.39 0.43 
AZ 178 40 - 60 7 31 7.3 10.8 1.76 0.47 2.36 0.02 64 67.5 3.2 0.34 0.12 
AZ 179 0 - 2 8.1 37 8.2 12.9 2.14 0.59 1.79 0.02 119.5 96.5 4.1 0.36 0.17 
AZ 180 2 - 20 7.45 27 7 9.9 1.49 0.3 1.07 0.02 88 118.5 3.95 0.24 0.07 
AZ 181 20 - 40 7.65 32 6.4 8.6 1.6 0.57 1.53 0.03 69 125 4.2 0.39 0.13 
AZ 182 40 - 60 8.25 34 5.2 7.4 1.58 0.69 1.48 0.03 79.5 146 4.65 0.39 0.15 
AZ 183 0 - 2 7.7 43 7.65 8.8 2.32 1.26 2.03 0.03 89.5 114 4.45 0.47 0.21 
AZ 184 2 - 20 7.55 27 7.6 11.8 2.18 0.77 1.64 0.03 93.5 112 4.25 0.41 0.15 
AZ 185 20 - 40 7.75 26 4.6 6.8 1.14 0.32 1.08 0.03 157 111.5 4.35 0.29 0.09 
AZ 186 40 - 60 8.45 19 4.8 5.5 1.12 0.46 0.32 0.03 126.5 52 4.35 0.35 0.05 
AZ 187 0 - 2 8.05 41 3.9 7.8 1.19 0.25 1.39 0.03 127 134.5 4.65 0.29 0.2 
AZ 188 2 - 20 7.9 30 3.5 1.3 0.79 0.64 0.88 0.03 114 103.5 4.4 0.25 0.12 
AZ 189 20 - 40 8 18 4.25 2.4 0.73 0.44 0.35 0.03 66.5 67.5 4.2 0.26 0.08 
AZ 190 40 - 60 8.15 17 5 5.3 1.13 0.5 0.11 0.03 85 32.5 4.2 0.29 0.04 
AZ 191 0 - 2 7 34 5.85 12.4 1.8 0.31 1.79 0.03 100.5 111 4.2 0.27 0.17 
AZ 192 2 - 20 7.25 32 6.45 10.3 1.89 0.65 2.13 0.04 68 133.5 4.4 0.35 0.19 
AZ 193 20 - 40 11.85 59 7.25 9.8 2.02 0.84 2 0.02 81 160.5 4.9 0.53 0.19 
AZ 194 40 - 60 12.25 57 6.6 12 2.28 0.84 1.38 0.02 79 191.5 5.5 0.6 0.27 
AZ 195 0 - 2 9.7 31 7.45 4.9 1.38 0.79 1.24 0.02 117.5 70 3.4 0.3 0.12 
AZ 196 2 - 20 11.05 23 6.8 7.5 1.29 0.38 1.06 0.02 124 73 3.95 0.35 0.07 
AZ 197 20 - 40 11.1 27 6.5 7.3 1.22 0.35 0.87 0.02 101 73 3.85 0.31 0.08 
AZ 198 40 - 60 11.95 15 6.05 5.8 0.94 0.24 0.22 0.02 110.5 33 4.2 0.33 0.05 
AZ 199 0 - 2 12.65 55 6.6 10 1.95 0.75 0.6 0.02 98.5 65 5.4 0.7 0.29 
AZ 200 2 - 20 13.65 25 5.55 6 1.31 0.58 0.18 0.02 94.5 44 5.05 0.59 0.1 
AZ 201 20 - 40 13.15 22 5.5 5.6 1.19 0.51 0.25 0.02 88.5 47.5 4.85 0.53 0.13 
AZ 202 40 - 60 13.7 20 5 5 1.09 0.49 0.11 0.02 92 52.5 5 0.57 0.1 
AZ 203 0 - 2 12.2 50 4.55 3.6 0.97 0.53 0.96 0.02 135 124 4.6 0.35 0.14 
AZ 204 2 - 20 12.25 33 4.25 3.4 0.83 0.42 0.83 0.02 96.5 123.5 4.5 0.41 0.1 
AZ 205 20 - 40 12 23 4.65 5.1 1.02 0.4 0.62 0.02 88 108 4.2 0.27 0.07 
AZ 206 40 - 60 11.8 19 4.7 4.7 0.91 0.34 0.41 0.02 91 85.5 4.2 0.3 0.08 
AZ 207 0 - 2 10.35 105 5.6 5.9 1.41 0.7 1.68 0.02 89 95 5.85 0.56 0.68 
AZ 208 2 - 20 12.2 36 4.45 4.7 1.15 0.58 0.47 0.02 90 43.5 4.5 0.55 0.14 
AZ 209 20 - 40 12.35 25 4.1 4.5 1.04 0.5 0.36 0.02 79.5 35.5 4.4 0.53 0.11 
AZ 210 40 - 60 13.35 16 3.4 2.3 0.7 0.43 0.16 0.02 93.5 36.5 4.85 0.63 0.07 
AZ 211 0 - 2 14.6 15 3.25 3.2 1.16 0.78 0.09 0.02 100 25.5 5.25 0.75 0.02 
AZ 212 2 - 20 14.75 14 2.9 1.7 0.77 0.57 0.18 0.02 99 25 5.25 0.62 0.02 
AZ 213 20 - 40 14.75 14 2.8 1.8 0.73 0.51 0.06 0.02 100.5 24.5 5.3 0.71 0.01 
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ID Depth 
[cm] 

Al O  2 3
[%] 

As 
[ppm] 

CaO 
[%]

CaCO3
[%] 

C  tot.
[%]

C  org.
[%]

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm] 

Fe2O3 
[%] 

H 
[%]

Hg 
[ppm]

AZ 214 40 - 60 15 20 2.7 1.8 0.66 0.44 0.05 0.02 100.5 24.5 5.5 0.69 0.01 

Table C.2. Geochemical laboratory analysis for 1999. Part II 

ID Depth 
[cm] 

K2O 
[%] 

MgO 
[%] 

Mn 
[ppm]

N 
[%]

Na2O
[%]

Ni 
[ppm]

P2O5
[%] 

Pb 
[ppm]

S 
[%] 

Sb 
[ppm] 

SiO2 
[%] 

TiO2
[%] 

Zn 
[ppm]

AZ 001 0 - 2 2.20 2.70 776.5 0.11 1.35 38.5 0.115 33.0 0.020 282 56.30 0.930 106.0 

AZ 002 2 - 20 2.20 2.70 761.0 0.11 1.45 40.0 0.105 36.0 0.020 257 56.45 0.925 105.5 

AZ 003 20 - 40 2.20 2.70 769.5 0.10 1.55 32.0 0.105 33.0 0.020 232 56.85 0.955 107.5 

AZ 004 40 - 60 2.05 2.65 778.5 0.07 2.05 36.5 0.095 25.0 0.020 229 54.65 0.965 105.0 

AZ 005 0 - 2 2.20 2.70 750.5 0.13 1.35 39.5 0.115 33.5 0.020 270 56.75 0.915 105.0 

AZ 006 2 - 20 2.20 2.70 746.5 0.11 1.35 38.5 0.105 34.5 0.020 257 57.00 0.920 104.0 

AZ 007 20 - 40 2.20 2.65 747.0 0.12 1.50 40.0 0.110 34.0 0.020 279 57.10 0.910 107.5 

AZ 008 40 - 60 2.10 2.70 755.5 0.08 1.80 36.5 0.100 29.0 0.020 273 55.85 0.945 101.0 

AZ 009 0 - 2 2.25 2.70 790.0 0.11 1.40 39.5 0.120 34.5 0.020 273 56.25 0.930 106.5 

AZ 010 2 - 20 2.20 2.75 805.5 0.11 1.40 36.5 0.110 34.5 0.020 255 56.10 0.965 105.0 

AZ 011 20 - 40 2.15 2.50 795.5 0.11 1.40 37.0 0.105 33.5 0.020 249 56.10 0.955 104.0 

AZ 012 40 - 60 1.90 2.60 917.5 0.08 2.00 39.5 0.075 23.0 0.020 291 53.20 1.030 103.5 

AZ 013 0 - 2 1.85 2.50 527.0 0.41 0.70 37.0 0.100 485.0 2.535 883 53.05 1.005 523.0 

AZ 014 2 - 20 2.00 2.50 821.5 0.10 1.65 41.5 0.110 236.0 0.995 502 54.20 0.990 357.5 

AZ 015 20 - 40 2.20 2.25 885.5 0.07 2.65 41.5 0.095 65.5 0.090 262 55.35 0.985 125.0 

AZ 016 40 - 60 2.00 2.35 910.5 0.06 3.05 49.0 0.085 70.0 0.255 259 53.15 0.995 181.5 

AZ 017 0 - 2 1.60 2.85 553.0 0.10 0.05 27.0 0.105 754.0 4.940 1169 49.00 1.020 744.5 

AZ 018 2 - 20 1.95 2.55 790.5 0.13 1.75 35.0 0.125 140.0 0.685 399 51.80 0.940 208.0 

AZ 019 20 - 40 1.90 2.40 850.5 0.08 2.25 39.5 0.105 70.5 0.075 253 50.10 0.940 125.0 

AZ 020 40 - 60 1.80 2.40 847.0 0.07 2.30 35.0 0.105 55.0 0.020 308 48.20 0.940 102.0 

AZ 021 0 - 2 0.90 4.00 353.0 0.09 0.05 11.0 0.100 1334.5 19.340 1872 39.15 0.865 1399.5

AZ 022 2 - 20 1.90 2.80 698.5 0.12 1.20 30.5 0.130 172.5 1.055 417 49.50 0.895 235.5 

AZ 023 20 - 40 2.05 2.50 779.5 0.09 1.95 36.0 0.115 81.0 0.165 258 51.65 0.925 124.5 

AZ 024 40 - 60 2.00 2.50 790.0 0.09 1.85 34.5 0.110 91.0 0.115 302 51.05 0.910 118.0 

AZ 025 0 - 2 1.85 2.30 840.5 0.13 2.45 53.0 0.120 296.5 1.075 608 49.35 0.955 436.5 

AZ 026 2 - 20 2.00 1.95 915.0 0.07 4.85 40.5 0.095 77.5 0.035 293 52.40 1.035 260.5 

AZ 027 20 - 40 2.00 2.20 1004.5 0.07 3.30 30.0 0.095 94.0 0.020 314 52.00 1.070 145.5 

AZ 028 40 - 60 2.15 2.05 1082.0 0.05 3.25 41.0 0.080 125.0 0.020 341 56.20 1.145 116.0 

AZ 029 0 - 2 1.80 2.10 811.5 0.06 3.65 47.0 0.080 362.5 0.670 604 54.75 1.120 467.5 

AZ 030 2 - 20 1.85 2.25 828.0 0.05 3.65 23.0 0.085 270.0 0.510 489 54.90 1.115 385.5 

AZ 033 0 - 2 1.75 2.10 760.0 0.07 2.30 38.5 0.085 497.5 1.315 776 53.75 1.050 613.5 

AZ 034 2 - 20 2.05 2.10 806.0 0.09 3.45 31.0 0.110 99.5 0.020 317 54.95 0.985 144.5 

AZ 035 20 - 40 2.00 2.05 890.5 0.05 4.25 32.0 0.090 91.0 0.045 350 55.60 1.090 122.5 

AZ 036 40 - 60 2.10 1.90 852.0 0.05 5.05 48.5 0.090 119.0 0.020 318 56.25 1.040 107.5 
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ID Depth 
[cm] 

K O 2
[%] 

MgO 
[%] 

Mn 
[ppm] 

N 
[%] 

Na O2
[%]

Ni 
[ppm]

P O2 5
[%] 

Pb 
[ppm]

S 
[%] 

Sb 
[ppm] 

SiO  2
[%] 

TiO  2
[%] 

Zn 
[ppm]

AZ 037 0 - 2 1.85 2.15 868.0 0.08 5.05 47.5 0.090 169.0 0.325 383 54.25 1.150 195.5 

AZ 038 2 - 20 1.90 1.95 882.5 0.07 5.95 31.5 0.085 45.5 0.020 260 55.00 1.120 295.0 

AZ 039 20 - 40 1.95 2.05 907.5 0.06 5.50 38.5 0.085 52.0 0.020 233 54.60 1.125 102.5 

AZ 040 40 - 60 2.00 1.85 913.5 0.06 6.20 43.0 0.080 59.0 0.020 326 57.75 1.135 162.0 

AZ 041 0 - 2 1.70 2.30 1062.5 0.11 4.10 49.0 0.085 389.5 1.110 745 54.00 1.195 709.0 

AZ 042 2 - 20 1.85 1.95 757.5 0.07 5.05 35.5 0.080 184.5 0.310 416 55.10 1.180 222.5 

AZ 043 20 - 40 1.95 2.00 860.5 0.07 5.85 43.0 0.080 70.0 0.030 302 56.00 1.155 130.0 

AZ 044 40 - 60 1.95 2.11 904.0 0.06 4.85 43.5 0.080 68.0 0.025 256 55.60 1.160 113.5 

AZ 045 0 - 2 1.15 2.85 472.0 0.06 0.05 13.5 0.080 1012.5 10.920 1499 46.80 1.225 852.5 

AZ 046 2 - 20 2.05 2.25 941.5 0.07 5.50 49.0 0.110 60.5 0.020 299 57.05 1.160 158.5 

AZ 047 20 - 40 1.80 2.30 883.0 0.06 4.00 48.5 0.085 77.0 0.565 263 53.55 1.155 155.0 

AZ 048 40 - 60 1.90 2.20 933.5 0.06 4.20 47.5 0.075 66.5 0.125 287 53.75 1.125 215.5 

AZ 049 0 - 2 1.65 2.15 591.0 0.09 1.90 31.5 0.145 308.5 0.525 546 48.55 0.775 499.0 

AZ 050 2 - 20 1.85 1.95 672.0 0.07 2.65 32.0 0.115 78.5 0.080 283 52.00 0.820 173.5 

AZ 051 20 - 40 1.95 2.05 752.5 0.07 2.20 38.5 0.110 62.0 0.060 266 52.25 0.860 133.5 

AZ 052 40 - 60 2.05 2.10 768.5 0.07 2.20 41.0 0.115 61.0 0.020 246 52.80 0.870 135.0 

AZ 053 0 - 2 1.40 1.95 469.0 0.11 1.50 41.0 0.230 255.0 0.370 479 43.25 0.625 610.0 

AZ 054 2 - 20 1.70 1.80 557.5 0.08 2.50 30.5 0.130 80.0 0.055 298 50.85 0.720 352.0 

AZ 055 20 - 40 1.80 1.80 588.0 0.05 3.65 37.5 0.110 46.0 0.020 254 52.45 0.795 160.0 

AZ 056 40 - 60 1.80 1.85 662.0 0.05 2.95 33.0 0.105 41.5 0.020 234 51.20 0.805 94.0 

AZ 057 0 - 2 1.60 2.00 532.0 0.07 1.85 37.5 0.135 338.0 0.965 576 48.50 0.705 621.5 

AZ 058 2 - 20 1.75 1.90 594.0 0.09 2.45 47.5 0.140 112.0 0.215 332 49.65 0.740 364.0 

AZ 059 20 - 40 1.80 1.80 631.5 0.07 2.80 37.0 0.125 88.5 0.105 277 50.60 0.785 264.5 

AZ 060 40 - 60 1.85 1.95 711.5 0.07 2.55 35.0 0.120 66.5 0.040 286 50.65 0.825 150.5 

AZ 061 0 - 2 1.65 1.65 536.0 0.10 2.40 32.0 0.150 81.0 0.070 273 49.40 0.665 369.5 

AZ 062 2 - 20 1.75 1.75 610.5 0.08 2.70 32.5 0.130 61.0 0.030 296 50.35 0.750 407.5 

AZ 063 20 - 40 1.80 1.90 661.0 0.07 2.65 36.5 0.125 67.0 0.025 269 50.50 0.795 177.5 

AZ 064 40 - 60 1.90 1.70 671.0 0.08 2.90 33.5 0.105 75.5 0.020 279 55.30 0.850 218.0 

AZ 065 0 - 2 1.65 1.90 626.5 0.09 1.85 23.0 0.105 295.5 0.380 571 52.50 0.790 714.5 

AZ 066 2 - 20 1.85 1.55 644.5 0.06 3.85 25.0 0.100 81.5 0.025 327 56.15 0.810 339.0 

AZ 067 20 - 40 1.90 1.55 661.0 0.06 3.95 36.0 0.095 79.5 0.010 318 55.85 0.840 298.0 

AZ 068 40 - 60 1.85 1.45 578.5 0.04 4.95 26.0 0.090 45.5 0.020 255 57.45 0.810 141.5 

AZ 069 0 - 2 1.70 1.55 516.0 0.08 2.70 33.5 0.120 99.5 0.020 312 52.65 0.695 349.0 

AZ 070 2 - 20 1.85 1.60 613.0 0.07 3.05 24.5 0.110 69.5 0.020 275 54.15 0.785 263.0 

AZ 071 20 - 40 1.90 1.50 602.0 0.05 4.50 32.0 0.100 55.0 0.020 290 56.05 0.775 172.0 

AZ 072 40 - 60 1.25 2.70 517.5 0.03 0.05 31.0 0.105 724.0 4.430 1093 45.05 0.815 1182.5

AZ 073 0 - 2 1.85 1.45 556.5 0.07 4.85 43.5 0.090 37.5 0.020 261 55.30 0.725 97.0 

AZ 074 2 - 20 1.70 2.05 589.0 0.07 2.00 34.5 0.120 282.5 0.675 507 50.05 0.775 447.5 
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Mn 
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AZ 075 20 - 40 1.65 1.95 577.5 0.07 1.95 34.5 0.115 295.5 0.640 498 49.95 0.760 448.0 

AZ 076 40 - 60 1.75 1.95 709.0 0.05 2.45 38.0 0.130 218.0 0.435 462 50.35 0.755 759.5 

AZ 077 0 - 2 1.75 1.75 709.0 0.12 3.45 38.0 0.105 218.0 0.070 312 51.50 0.760 759.5 

AZ 078 2 - 20 1.80 1.85 635.5 0.08 2.90 24.5 0.125 72.5 0.100 286 50.85 0.775 227.5 

AZ 079 20 - 40 1.85 1.80 633.0 0.06 3.05 40.0 0.110 59.5 0.025 276 51.95 0.775 166.0 

AZ 080 40 - 60 1.75 1.80 598.5 0.05 3.60 39.0 0.100 37.0 0.020 257 51.75 0.765 101.0 

AZ 081 0 - 2 1.45 2.85 548.0 0.07 0.85 33.0 0.110 403.5 3.890 743 45.25 0.865 3887.0

AZ 082 2 - 20 1.85 2.10 932.0 0.06 2.80 44.5 0.115 92.5 0.325 320 50.30 0.820 1246.0

AZ 083 20 - 40 1.85 2.05 961.0 0.06 2.70 49.0 0.105 57.5 0.085 267 50.30 0.805 620.0 

AZ 084 40 - 60 1.80 1.90 813.0 0.05 3.05 39.5 0.110 46.0 0.045 234 50.40 0.770 236.5 

AZ 085 sludge 0.30 6.65 203.5 0.02 0.05 2.0 0.070 3331.5 18.175 3362 34.85 0.550 744.5 

AZ 086 0 - 2 1.80 2.05 627.0 0.11 1.90 41.0 0.145 77.5 0.230 264 48.40 0.745 349.5 

AZ 087 2 - 20 1.85 2.00 626.0 0.10 2.25 36.0 0.145 81.0 0.105 309 49.05 0.755 332.0 

AZ 088 20 - 40 1.90 1.80 650.5 0.10 2.60 42.5 0.120 77.5 0.015 285 53.20 0.800 353.0 

AZ 089 40 - 60 1.90 1.60 577.0 0.05 4.10 55.5 0.095 47.5 0.020 278 55.55 0.755 122.5 

AZ 090 0 - 2 2.50 1.55 826.5 0.16 4.00 86.5 0.115 220.5 0.050 382 57.05 0.905 748.5 

AZ 091 2 - 20 2.50 1.30 786.5 0.06 6.40 76.5 0.090 57.5 0.020 346 59.55 0.865 219.5 

AZ 092 20 - 40 2.50 1.45 851.0 0.10 4.20 79.0 0.105 118.5 0.015 343 56.70 0.905 317.0 

AZ 093 40 - 60 2.45 1.40 856.0 0.11 4.30 66.5 0.105 114.0 0.015 325 56.40 0.925 491.5 

AZ 094 0 - 2 2.35 1.65 1061.5 0.13 2.80 59.0 0.120 162.0 0.625 425 54.50 0.910 575.0 

AZ 095 2 - 20 2.60 1.25 888.5 0.05 3.90 92.5 0.100 62.0 0.140 324 59.30 0.780 786.0 

AZ 096 20 - 40 2.55 1.20 768.5 0.05 3.60 92.5 0.100 60.0 0.135 256 59.00 0.770 246.5 

AZ 097 40 - 60 2.60 1.10 681.5 0.03 3.70 96.5 0.095 50.5 0.115 301 59.90 0.740 156.5 

AZ 098 0 - 2 2.30 1.70 1177.0 0.14 2.55 59.0 0.130 241.5 1.015 477 53.15 0.905 676.5 

AZ 099 2 - 20 2.50 1.35 861.0 0.12 3.20 69.0 0.110 73.5 0.195 337 56.25 0.855 216.0 

AZ 100 20 - 40 2.45 1.45 1021.0 0.08 3.00 55.0 0.130 125.0 0.335 401 54.40 0.885 341.5 

AZ 101 40 - 60 2.60 1.15 645.0 0.04 3.65 60.0 0.100 35.5 0.060 327 58.45 0.730 125.0 

AZ 102 0 - 2 2.40 1.05 520.5 0.05 2.75 84.5 0.105 181.5 0.530 513 57.75 0.755 286.0 

AZ 103 2 - 20 2.25 1.00 509.0 0.04 2.85 54.0 0.120 139.0 0.490 472 56.50 0.750 702.5 

AZ 104 20 - 40 2.30 0.75 367.5 0.03 2.05 51.0 0.105 31.5 0.250 281 55.45 0.810 153.0 

AZ 105 40 - 60 2.15 0.75 407.0 0.02 2.65 123.5 0.145 31.5 0.180 260 57.55 0.670 164.5 

AZ 106 0 - 2 2.40 1.65 1039.0 0.24 2.05 48.0 0.110 260.5 0.495 467 52.40 1.015 393.5 

AZ 107 2 - 20 2.10 1.70 833.5 0.13 0.05 45.0 0.140 1753.5 5.735 1421 46.20 0.995 1029.5

AZ 108 20 - 40 2.70 1.60 1171.0 0.08 2.65 56.0 0.100 91.5 0.075 337 59.20 1.015 422.5 

AZ 109 40 - 60 2.75 1.10 812.0 0.04 3.80 60.0 0.080 36.5 0.015 278 64.15 0.845 238.5 

AZ 110 0 - 2 2.05 1.75 1145.5 0.09 0.45 39.0 0.150 562.0 2.945 369 53.70 0.840 1461.5

AZ 111 2 - 20 2.45 1.50 776.5 0.06 1.30 32.5 0.125 304.5 1.395 697 57.00 0.895 604.5 

AZ 112 20 - 40 2.60 1.35 813.0 0.06 2.40 42.5 0.110 200.5 0.270 499 58.45 0.930 259.0 
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K O 2
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AZ 113 40 - 60 2.40 1.50 978.0 0.09 2.30 56.5 0.110 294.5 0.135 525 55.55 1.065 299.0 

AZ 114 0 - 2 2.05 1.25 566.5 0.04 1.15 48.0 0.160 374.5 1.990 699 54.60 0.740 592.0 

AZ 115 2 - 20 2.25 0.90 557.5 0.05 2.30 35.5 0.100 172.5 0.475 483 61.90 0.655 224.5 

AZ 116 20 - 40 2.30 0.85 569.5 0.02 2.40 75.5 0.095 139.0 0.270 447 61.85 0.660 190.0 

AZ 117 40 - 60 2.45 1.00 612.0 0.03 2.85 36.5 0.100 147.5 0.165 486 61.00 0.765 193.5 

AZ 118 0 - 2 0.95 1.50 282.0 0.15 1.35 8.0 0.605 72.0 0.020 322 25.35 0.315 121.5 

AZ 119 2 - 20 2.55 1.10 598.5 0.03 2.70 32.0 0.125 153.0 0.110 460 58.95 0.740 229.5 

AZ 120 20 - 40 2.45 1.05 689.0 0.04 2.55 37.5 0.110 235.5 0.070 634 57.75 0.910 166.0 

AZ 121 0 - 2 2.10 2.00 662.5 0.11 0.05 27.0 0.175 625.5 3.120 734 44.75 0.810 1712.0

AZ 122 2 - 20 2.05 0.65 235.5 0.02 0.90 17.5 0.105 206.0 1.685 499 51.40 0.785 211.5 

AZ 123 20 - 30 2.10 0.60 241.5 0.03 1.20 28.5 0.100 178.0 0.890 573 52.50 0.785 196.0 

AZ 124 0 - 2 1.40 2.05 475.0 0.04 0.05 30.5 0.120 694.0 10.515 1040 43.30 0.850 1483.5

AZ 125 2 - 20 2.05 0.95 366.0 0.04 0.95 19.5 0.115 359.5 2.165 693 51.00 0.890 483.0 

AZ 126 20 - 30 2.20 0.90 345.0 0.03 1.20 36.0 0.115 223.0 1.095 649 52.60 0.840 303.0 

AZ 127 0 - 2 2.00 2.25 901.0 0.15 0.20 40.5 0.175 711.5 2.835 818 46.35 0.920 1059.5

AZ 128 2 - 20 2.20 2.15 737.0 0.15 0.45 40.0 0.130 425.0 2.160 630 49.90 1.020 424.5 

AZ 129 20 - 40 2.45 1.90 1039.0 0.11 0.75 39.0 0.100 435.5 0.735 655 55.95 1.095 386.5 

AZ 130 40 - 60 2.80 1.85 1175.5 0.12 1.15 50.0 0.110 183.0 0.045 506 57.50 1.105 363.0 

AZ 131 0 - 2 1.80 1.70 769.5 0.19 1.05 35.5 0.290 521.0 0.545 816 43.25 0.745 723.5 

AZ 132 2 - 20 2.70 1.55 1080.5 0.14 2.15 45.0 0.110 276.5 0.035 559 59.25 1.105 183.0 

AZ 133 0 - 2 2.35 1.45 880.5 0.13 2.20 29.5 0.155 311.0 0.200 566 55.10 0.910 530.5 

AZ 134 2 - 20 2.75 1.55 872.5 0.08 2.20 34.0 0.115 245.5 0.030 513 59.50 0.990 178.0 

AZ 135 20 - 40 2.75 1.30 796.0 0.05 2.85 36.5 0.100 275.0 0.020 579 60.75 0.955 285.5 

AZ 136 40 - 60 2.70 1.20 768.0 0.04 2.95 60.5 0.095 275.0 0.020 569 60.80 0.885 118.5 

AZ 137 0 - 2 1.65 2.55 839.5 0.30 0.05 26.5 0.125 1096.5 8.185 1466 49.15 1.085 1346.0

AZ 138 2 - 20 2.20 2.25 920.0 0.18 0.60 44.5 0.110 366.5 1.455 629 54.25 1.060 400.5 

AZ 139 20 - 40 2.30 2.10 866.0 0.14 0.85 41.0 0.100 297.5 0.895 587 56.15 1.035 299.5 

AZ 140 40 - 60 2.55 1.85 999.5 0.09 1.60 48.5 0.090 181.5 0.095 478 58.00 1.005 147.0 

AZ 141 0 - 2 1.70 1.70 503.5 0.11 1.90 29.5 0.130 173.5 0.110 435 51.30 0.765 267.5 

AZ 142 2 - 20 1.80 1.75 533.5 0.10 1.75 26.5 0.120 118.5 0.035 301 51.55 0.800 259.0 

AZ 143 20 - 40 1.90 1.70 746.0 0.11 2.25 28.0 0.115 147.5 0.085 338 51.80 0.935 270.5 

AZ 144 40 - 60 1.95 1.75 971.5 0.11 3.15 41.0 0.105 132.5 0.055 405 52.20 1.045 284.0 

AZ 145 0 - 2 1.70 1.80 538.5 0.09 1.55 28.5 0.125 275.0 0.525 505 50.25 0.785 452.5 

AZ 146 2 - 20 1.85 1.90 659.5 0.11 1.55 31.0 0.140 238.0 0.305 446 49.60 0.850 359.0 

AZ 147 20 - 40 1.85 1.80 689.0 0.11 1.75 30.0 0.140 237.5 0.360 442 49.90 0.855 357.0 

AZ 148 40 - 60 1.90 1.75 908.5 0.11 2.35 34.5 0.120 159.0 0.075 421 50.20 0.980 297.5 

AZ 149 0 - 2 1.40 2.20 537.5 0.09 0.85 26.0 0.145 526.5 2.920 829 46.85 0.840 835.0 

AZ 150 2 - 20 1.60 1.90 482.5 0.07 1.95 23.0 0.135 148.0 0.245 390 50.45 0.730 316.0 



C  Geochemical analysis 1999 193 

ID Depth 
[cm] 

K O 2
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AZ 151 20 - 40 1.85 1.80 726.5 0.09 2.20 38.0 0.130 168.5 0.150 356 50.00 0.870 333.5 

AZ 152 40 - 60 1.90 1.85 927.0 0.10 3.35 45.0 0.115 129.5 0.070 359 50.45 1.020 270.5 

AZ 153 0 - 2 1.55 2.15 678.5 0.09 1.05 44.5 0.120 497.5 3.475 771 47.05 0.975 704.0 

AZ 154 2 - 20 1.50 2.50 756.0 0.10 0.55 30.0 0.130 451.0 4.480 737 45.90 0.995 815.5 

AZ 155 20 - 40 1.80 2.00 859.0 0.09 2.70 45.5 0.120 250.0 0.910 459 49.15 0.990 641.5 

AZ 156 40 - 60 1.85 1.95 902.0 0.09 3.40 39.0 0.115 174.5 0.385 394 50.20 1.005 284.5 

AZ 157 0 - 2 1.70 2.10 833.0 0.08 2.40 53.5 0.125 362.5 1.375 575 48.45 0.885 647.5 

AZ 158 2 - 20 1.85 1.85 908.5 0.09 4.55 51.0 0.110 119.0 0.160 400 50.65 0.980 219.5 

AZ 159 20 - 40 1.85 1.80 964.0 0.09 3.80 31.5 0.110 128.5 0.115 367 50.30 1.000 220.0 

AZ 160 40 - 60 1.90 1.85 948.5 0.08 4.00 45.0 0.110 92.5 0.095 289 51.25 0.990 202.0 

AZ 161 0 - 2 1.65 2.40 975.0 0.10 2.10 34.0 0.105 264.5 1.245 580 51.00 1.050 611.5 

AZ 162 2 - 20 1.90 1.95 969.0 0.16 3.20 45.0 0.095 138.5 0.120 400 53.90 1.085 255.5 

AZ 163 20 - 40 1.95 1.85 1026.0 0.09 3.60 41.5 0.090 132.0 0.055 358 54.25 1.070 223.0 

AZ 164 40 - 60 1.95 1.80 923.5 0.07 3.85 38.5 0.090 71.0 0.015 268 54.95 1.000 632.5 

AZ 165 0 - 2 1.60 2.10 819.5 0.10 0.90 25.5 0.115 478.5 2.525 784 48.45 1.010 620.5 

AZ 166 2 - 20 1.90 1.90 1058.0 0.11 2.45 32.0 0.105 197.5 0.625 473 51.75 1.070 448.5 

AZ 167 20 - 40 1.90 1.85 939.0 0.08 3.75 39.5 0.100 118.5 0.280 387 52.95 1.040 284.5 

AZ 168 40 - 60 1.85 1.90 935.5 0.09 3.40 43.0 0.095 114.0 0.185 329 52.65 1.055 329.5 

AZ 169 0 - 2 1.80 1.95 857.5 0.15 2.45 38.0 0.165 169.0 0.285 423 47.95 0.940 302.5 

AZ 170 2 - 20 1.95 1.75 977.0 0.10 3.80 29.0 0.105 130.0 0.080 433 52.55 1.035 262.5 

AZ 171 20 - 40 1.90 1.75 953.0 0.09 4.60 44.0 0.100 139.5 0.110 339 52.30 1.050 370.5 

AZ 172 40 - 60 1.80 1.90 969.5 0.09 3.60 40.0 0.095 98.0 0.215 344 51.25 1.015 219.5 

AZ 173 0 - 2 1.75 1.80 732.5 0.07 3.60 37.5 0.120 294.0 0.800 499 50.85 0.945 578.5 

AZ 174 2 - 20 1.90 1.60 773.0 0.08 3.60 31.5 0.105 221.0 0.545 408 51.60 0.945 432.0 

AZ 175 0 - 2 1.50 1.65 499.0 0.08 2.60 41.0 0.175 359.5 0.640 585 46.95 0.640 792.0 

AZ 176 2 - 20 1.40 2.05 527.0 0.06 1.65 32.5 0.125 449.0 2.255 694 47.75 0.705 915.0 

AZ 177 20 - 40 1.50 1.85 522.0 0.05 2.50 30.0 0.115 264.5 1.010 559 49.15 0.695 654.0 

AZ 178 40 - 60 1.50 1.35 450.5 0.05 4.05 29.5 0.105 69.5 0.030 294 51.35 0.665 273.5 

AZ 179 0 - 2 1.60 1.80 560.5 0.06 2.15 39.0 0.155 107.0 0.100 303 47.75 0.695 464.0 

AZ 180 2 - 20 1.60 1.65 527.5 0.03 3.20 40.5 0.130 92.0 0.190 276 48.95 0.655 473.0 

AZ 181 20 - 40 1.60 1.55 529.0 0.06 3.35 24.0 0.130 102.5 0.080 259 48.75 0.705 380.5 

AZ 182 40 - 60 1.75 1.60 583.0 0.08 3.75 29.5 0.135 100.5 0.065 317 49.00 0.725 394.0 

AZ 183 0 - 2 1.65 1.80 516.5 0.08 2.40 36.5 0.150 122.5 0.140 343 46.50 0.675 470.0 

AZ 184 2 - 20 1.65 1.80 505.5 0.08 2.70 36.0 0.155 101.5 0.115 313 46.50 0.670 426.5 

AZ 185 20 - 40 1.75 1.55 568.5 0.05 4.40 67.0 0.130 88.5 0.060 263 49.45 0.745 340.0 

AZ 186 40 - 60 1.80 1.75 618.5 0.05 4.30 54.5 0.120 60.0 0.030 248 49.65 0.775 150.0 

AZ 187 0 - 2 1.75 1.55 632.0 0.06 4.85 50.5 0.155 129.5 0.180 368 49.90 0.710 423.0 

AZ 188 2 - 20 1.75 1.60 606.0 0.05 4.80 45.5 0.130 81.0 0.095 281 49.70 0.770 277.0 
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ID Depth 
[cm] 

K O 2
[%] 

MgO 
[%] 

Mn 
[ppm] 

N 
[%] 

Na O2
[%]

Ni 
[ppm]

P O2 5
[%] 

Pb 
[ppm]

S 
[%] 

Sb 
[ppm] 

SiO  2
[%] 

TiO  2
[%] 

Zn 
[ppm]

AZ 189 20 - 40 1.75 1.75 610.5 0.04 4.75 27.0 0.120 57.0 0.045 270 49.05 0.800 155.5 

AZ 190 40 - 60 1.75 1.75 617.0 0.03 4.65 33.5 0.110 43.0 0.010 265 48.55 0.780 111.0 

AZ 191 0 - 2 1.70 1.60 540.0 0.08 3.60 39.5 0.150 125.0 0.120 326 48.30 0.695 436.0 

AZ 192 2 - 20 1.70 1.70 564.0 0.07 3.05 23.5 0.155 111.5 0.060 318 47.05 0.695 454.0 

AZ 193 20 - 40 1.85 1.70 636.5 0.09 2.40 28.5 0.135 162.0 0.020 294 52.70 0.785 428.0 

AZ 194 40 - 60 1.80 1.60 645.5 0.11 2.30 26.5 0.115 220.0 0.035 346 52.45 0.810 334.5 

AZ 195 0 - 2 1.70 1.45 486.0 0.05 3.80 48.0 0.105 83.5 0.020 327 55.90 0.690 334.0 

AZ 196 2 - 20 1.80 1.55 588.5 0.05 3.70 45.0 0.080 71.0 0.020 253 56.00 0.785 267.0 

AZ 197 20 - 40 1.80 1.55 578.5 0.05 3.80 38.0 0.140 57.0 0.020 302 55.60 0.795 572.5 

AZ 198 40 - 60 1.90 1.70 622.5 0.03 4.10 39.5 0.080 50.0 0.020 266 55.80 0.870 129.0 

AZ 199 0 - 2 1.95 2.15 713.5 0.11 2.00 31.0 0.130 165.5 0.105 394 53.05 0.855 595.5 

AZ 200 2 - 20 2.00 2.10 794.5 0.05 2.10 36.5 0.100 83.0 0.020 288 54.95 0.920 124.5 

AZ 201 20 - 40 1.95 2.10 758.5 0.05 2.30 33.5 0.110 101.0 0.020 298 55.10 0.895 161.0 

AZ 202 40 - 60 2.00 2.05 817.0 0.05 2.30 31.0 0.090 94.5 0.020 332 55.45 0.950 149.0 

AZ 203 0 - 2 1.85 1.60 704.0 0.05 3.95 48.0 0.085 78.5 0.020 303 56.40 0.865 216.0 

AZ 204 2 - 20 1.90 1.55 676.5 0.05 4.40 32.0 0.105 71.0 0.020 292 57.15 0.865 212.0 

AZ 205 20 - 40 1.85 1.55 688.5 0.04 4.90 26.5 0.080 57.5 0.020 329 57.35 0.905 181.0 

AZ 206 40 - 60 1.85 1.50 659.5 0.03 4.35 27.0 0.085 55.5 0.020 258 56.65 0.945 145.0 

AZ 207 0 - 2 1.70 1.75 627.5 0.08 1.70 31.0 0.110 434.0 0.470 693 54.35 0.870 478.5 

AZ 208 2 - 20 1.90 1.65 677.0 0.08 2.20 29.0 0.100 94.0 0.020 321 57.45 0.905 197.0 

AZ 209 20 - 40 1.85 1.55 715.5 0.06 2.10 26.5 0.090 74.0 0.020 301 57.80 0.925 162.0 

AZ 210 40 - 60 1.95 1.65 833.5 0.05 2.25 30.5 0.055 49.5 0.020 242 57.70 0.985 144.0 

AZ 211 0 - 2 2.15 1.90 889.0 0.10 1.70 38.0 0.115 21.5 0.020 262 57.20 0.960 104.5 

AZ 212 2 - 20 2.15 1.95 905.0 0.07 1.65 38.5 0.125 17.5 0.020 243 57.00 0.990 101.0 

AZ 213 20 - 40 2.10 1.90 942.0 0.06 1.70 37.0 0.090 24.5 0.020 226 57.10 1.010 98.0 

AZ 214 40 - 60 2.15 1.90 1071.5 0.04 1.80 40.5 0.090 20.5 0.020 196 56.90 1.050 103.0 
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D. Geochemical analysis 2000 

Table D.1. Geochemical laboratory analysis for 2000. Part I 

ID Depth 
[cm] 

Al O  2 3
[%] 

As 
[ppm] 

Bi 
[%]

CaO
[%] 

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm]

Fe O  2 3
[%] 

Hg 
[ppm] 

K O2
[%]

MgO
[%] 

Az300 0 - 2 11.9 125.5 1.6 9.75 2.62 0.06 79 127 5.30 0.34 1.85 1.90
Az301 0 - 2 12.3 117.5 1.3 10.40 2.44 0.08 81 115 5.50 0.34 1.85 1.80
Az302 0 - 2 10.1 110.1 1.3 10.40 2.54 0.03 68 115 4.60 0.32 1.60 1.50
Az303 0 - 2 12.5 47.7 0.7 10.30 2.54 0.06 78 126 5.30 0.15 1.95 1.95
Az304 0 - 2 10.7 83.3 1.1 9.85 2.32 0.03 70 106 4.35 0.23 1.70 1.60
Az305 0 - 2 10.9 162.5 1.9 9.80 2.58 0.02 77 121 5.15 0.39 1.75 1.60
Az306 0 - 2 10.8 54.7 1.0 9.40 2.45 0.08 71 112 4.10 0.14 1.95 1.55
Az307 0 - 2 11.8 46.2 0.7 9.70 2.22 0.03 76 102 4.50 0.13 1.85 1.80
Az308 0 - 2 8.1 82.9 0.9 17.50 1.76 0.03 64 82 4.05 0.22 1.40 1.60
Az309 0 - 2 11.1 51.5 0.7 9.55 2.46 0.03 81 111 4.25 0.18 1.75 1.60
Az310 0 - 2 12.9 127.3 1.6 9.80 2.90 0.04 85 139 5.95 0.33 1.85 1.95
Az311 2 - 20 12.7 78.6 1.2 9.70 3.82 0.02 83 181 5.75 0.26 1.95 2.00
Az312 20 - 40 16.7 64.4 2.1 5.65 1.66 0.04 99 160 7.55 0.16 2.60 3.10
Az313 40 - 60 18.8 28.3 0.6 5.15 0.23 0.05 101 51 7.05 0.04 3.30 4.70
Az314 0 - 2 17 35.1 0.6 7.2 0.48 0.15 90 56 6.35 0.08 3.1 4.8 
Az315 0 - 2 17.6 37.6 0.7 6.65 0.44 0.08 97 56 6.5 0.13 3 4.95
Az316 0 - 2 17.9 41 0.9 5.75 0.45 0.05 97 60 6.9 0.11 3.1 4.35
Az317 0 - 2 17.7 37 0.7 5.45 0.4 0.09 100 60 6.9 0.12 3.05 4.15
Az318 0 - 2 18.7 32.4 0.6 6 0.36 0.06 95 93 6.8 0.13 3.2 5.65
Az319 0 - 2 17.9 38.3 0.7 5.4 0.43 0.07 102 60 6.95 0.11 3.1 4 
Az320 0 - 2 18.2 34.2 0.6 5.8 0.37 0.07 99 56 6.85 0.11 3.15 4.85
Az321 0 - 2 17.5 34 0.6 5.9 0.45 0.1 97 59 6.85 0.11 3.15 4.15
Az322 0 - 2 17.8 33.2 0.6 5.6 0.39 0.1 96 59 6.95 0.11 3.1 4.2 
Az323 0 - 2 18.1 34.5 0.6 5.95 0.42 0.01 100 54 6.85 0.11 3.25 4.9 
Az324 0 - 2 17.6 33.9 0.6 5.9 0.4 0.09 97 58 6.8 0.11 3.15 4.2 
Az325 2 - 20 17.2 32.8 0.6 6.75 0.38 0.05 95 57 6.6 0.11 3 4.25
Az326 20 - 40 18.7 12.3 0.3 5.5 0.25 0.06 97 53 7 0.06 3.2 4.9 
Az327 40 - 60 17.1 - - 9.1 0.15 0.09 87 38 6.25 0.06 3.15 4.9 
Az328 0 - 2 11.4 259.1 2.7 6.00 2.16 0.02 108 140 5.80 0.54 1.70 1.50
Az329 0 - 2 12.4 139.1 1.7 6.60 1.45 0.02 122 108 5.00 0.33 1.85 1.75
Az330 0 - 2 9.9 422.5 5.4 6.95 2.42 0.02 96 138 6.30 1.04 1.50 1.35
Az331 0 - 2 12.4 17.8 0.3 6.60 0.63 0.02 102 55 3.75 0.05 1.95 1.60
Az332 0 - 2 12.4 51.1 0.8 6.45 0.88 0.02 99 84 4.25 0.14 1.90 1.75
Az333 0 - 2 14.1 17.5 0.3 4.55 0.24 0.02 92 49 4.45 0.04 2.25 1.75
Az334 0 - 2 12.3 83.2 1.2 6.00 0.97 0.02 92 73 4.50 0.89 1.90 1.60
Az335 0 - 2 12.1 195.8 2.3 6.70 1.91 0.02 96 116 4.75 0.34 1.85 1.55
Az336 0 - 2 13.0 31.5 0.5 5.45 0.55 0.02 107 73 4.40 0.07 1.95 1.70
Az337 0 - 2 11.5 98.4 1.2 6.50 1.14 0.02 102 94 4.25 0.23 1.80 1.60
Az338 0 - 2 10.8 210.1 2.5 7.25 2.13 0.02 90 126 4.95 0.44 1.75 1.50
Az339 2 - 20 13.1 42.3 0.7 5.75 0.72 0.02 105 90 4.55 0.11 1.90 1.80
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ID Depth 
[cm] 

Al2O3 
[%] 

As 
[ppm] 

Bi 
[%] 

CaO
[%] 

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm]

Fe2O3
[%] 

Hg 
[ppm] 

K2O 
[%] 

MgO
[%] 

Az340 20 - 40 12.6 55.0 0.8 5.90 0.84 0.02 100 90 4.45 0.14 1.85 1.65
Az341 40 - 60 12.9 47.2 0.8 5.70 0.67 0.02 101 84 4.45 0.11 1.85 1.70
Az342 sludge 3.7 2857.9 49.5 1.55 5.70 0.02 62 200 23.00 12.83 0.30 0.40
Az343 2 - 20 12.2 105.0 0.8 5.95 1.49 0.02 112 113 4.46 0.14 1.75 1.75
Az344 20 - 40 12.8 73.9 0.8 5.95 1.04 0.02 104 120 4.80 0.14 1.80 1.70
Az345 40 - 60 13.3 60.0 0.9 5.75 1.10 0.02 107 143 5.05 0.13 1.75 1.75
Az346 sludge 4.0 3070.9 44.7 1.10 7.38 0.02 91 262 24.60 11.84 0.23 0.43
Az347 2 - 20 10.0 601.9 11.0 4.55 4.65 0.02 92 201 9.75 2.68 1.30 1.30
Az348 20 - 40 12.5 84.4 1.5 5.90 0.82 0.02 98 102 4.95 0.34 1.70 1.60
Az349 40 - 60 12.8 72.9 1.3 6.05 0.66 0.02 127 87 4.80 0.24 1.75 1.65
Az350 sludge 4.8 2413.6 44.2 2.15 6.02 0.02 64 250 20.10 10.37 0.48 0.60
Az351 2 - 20 11.5 196.6 0.9 6.35 1.81 0.02 86 113 4.70 0.17 1.65 1.60
Az352 20 - 40 12.7 149.0 0.8 6.00 2.00 0.02 107 123 4.95 0.14 1.75 1.70
Az353 40 - 60 12.9 - - 5.40 - 0.02 125 40 4.15 0.04 1.80 1.60
Az354 sludge 3.0 - - 1.60 - 0.02 65 171 23.30 16.29 0.25 0.20
Az355 2 - 20 9.7 178.3 1.0 14.50 2.66 0.02 90 130 6.55 0.16 1.35 1.65

Az355-1 0 - 2 9.7 264.7 2.9 14.60 2.10 0.02 193 128 6.65 0.76 1.35 1.70
Az356 20 - 40 15.8 64.7 0.6 3.50 0.80 0.02 128 52 5.70 0.09 1.95 1.90

Az356-1 2 - 20 16.1 33.3 0.6 3.50 0.14 0.02 186 67 5.70 0.12 1.95 2.00
Az357 40 - 60 13.1 20.5 0.3 5.60 0.22 0.02 134 40 4.15 0.04 1.80 1.65

Az357-1 20 - 40 16.4 26.9 1.0 2.85 0.11 0.02 142 51 5.65 0.09 1.95 1.85
Az358 40 - 60 17.4 32.0 0.8 2.70 0.11 0.02 146 71 6.15 0.09 1.95 2.05
Az359 0 - 2 13.7 259.1 2.7 6.40 2.48 0.02 122 123 7.05 0.77 1.65 1.70
Az360 2 - 20 16.4 61.7 1.0 3.55 0.43 0.02 132 66 6.30 0.19 2.05 1.90
Az361 20 - 40 17.3 31.2 0.8 2.55 0.13 0.02 150 57 6.10 0.08 2.10 1.95
Az362 40 - 60 - - - - - - - - - - -  
Az363 0 - 2 16.2 43.5 0.7 4.15 0.23 0.02 155 67 6.35 0.14 2.00 2.00
Az364 2 - 20 16.1 31.5 0.7 3.85 0.17 0.02 168 65 6.20 0.09 2.05 1.95
Az365 20 - 40 16.8 37.0 0.7 2.90 0.18 0.02 139 64 6.30 0.10 2.10 2.00
Az366 40 - 60 16.8 30.4 0.8 2.55 0.08 0.02 169 67 5.65 0.54 2.00 1.85
Az367 0 - 2 15.1 64.2 0.8 3.30 0.55 0.02 129 48 5.95 0.20 1.80 1.95
Az368 2 - 20 16.1 24.0 0.4 2.55 0.14 0.02 130 33 5.90 0.06 1.90 2.00
Az369 20 - 40 16.7 21.8 0.4 2.45 0.08 0.02 116 31 5.95 0.04 1.85 2.10
Az370 40 - 60 17.8 22.9 0.4 2.35 0.06 0.02 149 36 6.40 0.03 1.90 2.30
Az371 0 - 2 13.7 186.0 1.8 4.15 1.56 0.02 130 90 7.00 0.66 1.65 1.75
Az372 2 - 20 15.1 151.5 2.2 2.80 0.62 0.02 135 67 7.30 0.55 1.80 1.80
Az373 20 - 40 16.6 69.2 0.7 2.40 0.42 0.02 125 52 6.65 0.19 1.85 2.05
Az374 40 - 60 16.8 53.1 0.7 2.45 0.36 0.02 114 51 6.55 0.16 1.85 2.05
Az375 0 - 2 11.4 417.1 3.6 6.65 2.44 0.02 118 141 8.60 1.22 1.35 1.50
Az376 2 - 20 15.5 90.5 1.5 2.45 0.39 0.02 136 65 6.50 0.35 2.00 1.85
Az377 20 - 40 16.9 37.7 0.6 2.30 0.15 0.02 148 48 6.25 0.13 2.05 2.00
Az378 40 - 60 17.9 35.1 0.7 1.95 0.08 0.02 144 60 6.10 0.11 2.25 1.95
Az379 0 - 2 12.3 330.8 2.8 3.80 1.61 0.02 118 122 8.45 0.99 1.70 1.45
Az380 2 - 20 13.8 251.8 3.1 3.25 0.72 0.02 121 95 8.00 0.99 1.95 1.50
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ID Depth 
[cm] 

Al2O3 
[%] 

As 
[ppm] 

Bi 
[%]

CaO
[%] 

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm]

Fe2O3 
[%] 

Hg 
[ppm] 

K2O
[%]

MgO
[%] 

Az381 20 - 40 16.1 64.8 0.7 2.30 0.20 0.02 143 78 7.45 0.47 2.20 1.85
Az382 40 - 60 18.5 58.0 0.8 2.15 0.29 0.02 136 53 7.00 0.15 2.50 1.80
Az383 0 - 2 11.6 792.5 6.5 5.30 2.78 0.02 117 152 9.60 1.29 1.50 1.45
Az384 2 - 20 15.6 180.8 2.4 3.10 1.61 0.02 135 90 6.90 0.44 2.00 2.25
Az385 20 - 40 14.1 417.6 6.5 3.80 1.50 0.02 124 117 7.95 1.25 1.85 1.85
Az386 40 - 60 17.0 61.5 1.6 4.15 0.19 0.02 129 113 6.70 0.23 2.05 2.30
Az387 0 - 2 14.9 200.6 2.5 3.90 0.80 0.02 115 72 6.95 0.40 2.05 2.00
Az388 2 - 20 15.5 150.6 2.0 3.60 0.45 0.02 122 65 6.80 0.36 2.05 2.15
Az389 20 - 40 15.8 154.9 2.1 3.55 0.55 0.02 127 63 6.75 0.30 2.10 2.25
Az390 40 - 60 17.1 84.3 1.4 3.20 0.28 0.02 127 59 6.75 0.17 2.10 2.40
Az391 0 - 2 16.4 254.5 3.3 3.60 1.49 0.02 124 105 7.45 0.51 2.35 1.50
Az392 2 - 20 17.1 153.3 2.1 3.10 0.85 0.02 113 81 7.25 0.40 2.40 1.60
Az393 20 - 40 18.3 108.4 1.7 2.30 0.75 0.02 122 76 7.10 0.26 2.60 1.70
Az394 40 - 60 19.4 69.6 1.5 1.30 0.21 0.02 124 75 6.50 0.15 2.85 1.50
Az395 0 - 2 16.3 112.0 2.3 5.25 0.74 0.02 111 97 5.70 0.23 2.70 1.20
Az396 0 - 2 14.5 243.9 3.9 9.90 0.92 0.02 100 139 5.85 0.45 2.25 1.30
Az397 0 - 2 17.6 274.3 3.5 3.65 2.11 0.02 112 127 7.75 0.58 2.40 1.75
Az398 0 - 2 16.1 807.8 5.5 4.00 4.63 0.02 103 447 12.20 1.37 2.15 1.50
Az399 0 - 2 16.3 779.9 7.1 7.35 12.29 0.02 82 537 9.85 1.54 2.25 1.80
Az400 0 - 2 8.7 88.3 1.2 19.70 0.63 0.02 113 106 4.65 0.31 1.65 1.20
Az401 0 - 2 10.3 785.2 8.9 8.45 4.97 0.02 147 320 11.20 1.81 1.45 0.95
Az402 0 - 2 13.7 373.8 3.9 4.95 1.75 0.02 146 173 8.05 0.62 2.30 0.95
Az403 0 - 2 17.0 216.7 2.5 2.35 0.75 0.02 99 104 6.25 0.48 2.45 1.15
Az404 2 - 20 18.9 23.4 0.5 1.85 0.13 0.02 103 74 5.65 0.07 2.75 1.25
Az405 20 - 40 19.2 19.0 0.4 1.30 0.08 0.02 107 88 5.50 0.07 2.90 1.20
Az406 40 - 60 18.4 20.6 0.4 1.10 0.06 0.02 133 73 5.40 0.06 2.90 1.00
Az407 0 - 2 15.0 46.8 0.4 0.50 1.86 0.02 439 104 5.80 0.17 2.45 0.75
Az408 0 - 2 15.9 94.5 2.2 0.80 0.96 0.02 152 131 6.45 0.28 2.30 0.85
Az409 0 - 2 13.4 438.7 2.5 2.20 1.17 0.02 184 134 8.90 0.91 2.10 0.80
Az410 0 - 2 16.8 65.3 0.8 2.40 1.79 0.02 105 189 5.20 0.29 2.45 1.05
Az411 0 - 2 11.4 42.5 0.8 6.35 1.74 0.02 97 114 3.95 0.15 1.65 1.40
Az412 0 - 2 12.1 128.0 1.8 7.40 2.21 0.02 101 140 4.95 0.34 1.70 1.60
Az413 0 - 2 13.4 83.1 1.2 5.50 1.45 0.02 106 129 5.00 0.21 1.85 1.50
Az414 0 - 2 10.1 128.5 1.5 7.15 2.27 0.02 91 150 4.70 0.23 1.55 1.40
Az415 0 - 2 9.3 197.2 2.1 5.95 2.05 0.02 123 130 4.85 0.41 1.35 1.15
Az416 0 - 2 13.8 74.4 1.1 13.40 1.91 0.02 91 90 6.50 0.32 2.35 2.40
Az417 0 - 2 12.4 120.8 2.0 6.50 1.91 0.02 94 166 6.20 0.48 1.70 1.65
Az418 0 - 2 14.4 33.2 0.5 4.30 0.93 0.02 103 44 5.05 0.80 1.95 1.50
Az419 2 - 20 15.6 20.2 0.4 3.45 0.38 0.02 110 36 5.20 0.05 2.00 1.50
Az420 20 - 40 15.0 35.2 0.6 3.80 0.60 0.02 106 36 5.10 0.06 1.95 1.50
Az421 40 - 60 15.8 26.2 0.5 3.20 0.37 0.02 114 39 5.35 0.06 2.00 1.50
Az422 0 - 2 16.6 19.9 0.35 3.05 0.08 0.02 134 31 5.65 0.01 2.15 1.80
Az423 0 - 2 9.9 277.9 2.7 7.35 3.95 0.08 96 162 7.50 0.59 0.95 6.35
Az424 0 - 2 8.7 398.9 2.4 3.80 4.76 0.06 289 243 10.00 0.60 0.80 2.20
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ID Depth 
[cm] 

Al2O3 
[%] 

As 
[ppm] 

Bi 
[%] 

CaO
[%] 

Cd 
[ppm]

Cl 
[%]

Cr 
[ppm]

Cu 
[ppm]

Fe2O3
[%] 

Hg 
[ppm] 

K2O 
[%] 

MgO
[%] 

Az425 0 - 2 6.8 1060.2 2.5 1.50 17.03 0.04 323 614 14.60 0.86 0.30 1.95
Az426 0 - 2 3.7 2324.4 30.7 1.55 4.85 0.02 86 207 23.40 9.45 0.25 0.40
Az427 0 - 2 10.8 204.1 2.0 8.00 2.17 0.08 100 122 7.40 0.05 1.10 2.75
Az428 0 - 2 14.7 497.3 5.3 4.40 4.04 0.02 120 256 10.90 1.27 1.65 1.95

 

Table D.2. Geochemical laboratory analysis for 2000. Part II 

Sample 
ID 

Depth 
[(cm] 

Mn 
[ppm]

Na2O 
[%] 

Ni 
[ppm] 

P2O5
[%] 

Pb 
[ppm]

S 
[%] 

Sb 
[ppm]

SiO2
[%] 

TiO2 
[%] 

Tl 
[ppm] 

Zn 
[ppm] 

Az300 0 - 2 583 0.90 32 0.19 198 0.85 183 51.8 0.67   1.8  690 
Az301 0 - 2 618 0.75 33 0.20 174 0.87 173 50.0 0.64   1.7  540 
Az302 0 - 2 489 0.95 28 0.20 189 0.87 226 53.2 0.65   1.5  548 
Az303 0 - 2 644 0.95 35 0.21 82 0.30 91 51.0 0.69   1.0  617 
Az304 0 - 2 514 0.95 31 0.19 142 0.50 143 54.3 0.66   1.3  528 
Az305 0 - 2 529 0.85 31 0.21 240 0.92 207 52.8 0.66   2.1  600 
Az306 0 - 2 501 1.20 32 0.19 76 0.26 89 55.8 0.66   1.7  534 
Az307 0 - 2 546 0.90 32 0.19 70 0.22 94 53.7 0.66   1.1  489 
Az308 0 - 2 480 0.50 27 0.41 114 0.95 156 39.6 0.49   1.5  373 
Az309 0 - 2 515 0.95 31 0.18 84 0.35 128 54.3 0.66   4.4  526 
Az310 0 - 2 643 0.75 36 0.21 176 0.58 192 50.3 0.69   2.0  748 
Az311 2 - 20 637 0.85 36 0.20 157 0.42 158 51.1 0.70   1.5  906 
Az312 20 - 40 969 1.30 43 0.16 100 0.16 65 51.9 0.85   0.9  381 
Az313 40 - 60 905 1.35 47 0.15 77 0.09 10 52.2 0.85   0.5  100 
Az314 0 - 2 993 1.4 45 0.22 67 0.14 52 50.4 0.765 0.58 144 
Az315 0 - 2 866 1.25 44 0.24 72 0.855 10 49.6 0.77 2.51 126 
Az316 0 - 2 929 1.1 45 0.23 72 0.185 106 51.9 0.825 1.94 138 
Az317 0 - 2 901 1.3 45 0.235 70 0.375 83 52.1 0.83 0.87 125 
Az318 0 - 2 845 1.15 45 0.22 69 0.21 102 50.4 0.795 0.64 122 
Az319 0 - 2 915 1.3 45 0.215 70 0.22 97 52.3 0.84 0.77 130 
Az320 0 - 2 955 1.25 45 0.22 71 0.135 70 51.5 0.82 2.85 121 
Az321 0 - 2 910 1.35 45 0.235 73 0.38 10 51.5 0.81 0.56 128 
Az322 0 - 2 898 1.3 45 0.22 70 0.115 10 52 0.835 0.72 126 
Az323 0 - 2 948 1.3 47 0.225 67 0.125 48 51.2 0.81 0.63 118 
Az324 0 - 2 896 1.35 46 0.22 70 0.14 10 52.2 0.825 0.6 126 
Az325 2 - 20 809 1.25 44 0.22 66 1.16 10 49.9 0.77 2.3 119 
Az326 20 - 40 774 1.25 46 0.17 63 0.145 10 51.5 0.82 0.33 111 
Az327 40 - 60 869 1.05 43 0.165 44 0.165 - 47.9 0.7 - 84 
Az328 0 - 2 559 1.30 27 0.19 370 2.73 472 53.0 0.67 2.5 587 
Az329 0 - 2 596 1.35 30 0.22 206 0.86 235 55.2 0.71 1.2 421 
Az330 0 - 2 507 1.05 26 0.17 628 3.44 791 52.3 0.63 4.4 662 
Az331 0 - 2 553 1.25 31 0.41 57 0.06 81 58.0 0.68 0.3 210 
Az332 0 - 2 578 1.55 29 0.21 96 0.21 153 57.4 0.71 0.5 257 
Az333 0 - 2 734 1.55 34 0.61 77 0.02 86 58.6 0.74 0.3 122 
Az334 0 - 2 612 1.50 31 0.28 150 0.38 154 57.4 0.72 0.9 332 
Az335 0 - 2 561 1.40 27 0.21 230 0.96 304 55.3 0.68 2.0 554 
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Az336 0 - 2 620 1.65 30 0.24 66 0.19 10 57.9 0.75 0.3 189 
Az337 0 - 2 541 1.45 29 0.20 158 0.54 182 57.4 0.69 0.9 349 
Az338 0 - 2 545 1.20 28 0.19 294 1.52 384 55.0 0.66 1.8 635 
Az339 2 - 20 606 1.60 31 0.20 80 0.18 125 57.2 0.74 0.4 206 
Az340 20 - 40 595 1.60 30 0.19 102 0.44 152 57.1 0.73 0.5 241 
Az341 40 - 60 607 1.70 30 0.19 84 0.32 152 57.4 0.74 0.5 202 
Az342 sludge 188 0.10 6 0.06 2870 28.00 3470 21.9 0.24 46.8 678 
Az343 2 - 20 561 1.40 28 0.20 92 0.69 101 56.6 0.69 0.6 452 
Az344 20 - 40 620 1.65 30 0.17 88 0.40 116 56.5 0.74 0.4 294 
Az345 40 - 60 627 1.70 30 0.16 86 0.18 117 56.0 0.76 0.4 279 
Az346 sludge 205 0.10 8 0.07 2680 28.40 3270 19.7 0.20 43 861 
Az347 2 - 20 582 0.95 22 0.14 1370 7.75 1610 46.7 0.62 9.4 1140 
Az348 20 - 40 570 1.70 27 0.15 206 0.88 234 56.1 0.72 1.0 229 
Az349 40 - 60 575 1.65 29 0.15 159 0.79 165 55.7 0.74 0.9 192 
Az350 sludge 227 0.30 10 0.06 2470 24.20 3360 27.4 0.34 42.1 816 
Az351 2 - 20 551 1.45 29 0.16 107 1.20 148 55.8 0.72 0.7 547 
Az352 20 - 40 615 1.65 31 0.15 91 0.86 130 55.6 0.73 0.6 526 
Az353 40 - 60 555 2.30 30 0.13 49 0.52 10 57.7 0.71 - 105 
Az354 sludge 136 0.05 9 0.06 3130 30.40 3840 21.1 0.22 - 443 
Az355 2 - 20 615 1.10 25 0.44 334 1.01 202 38.6 0.62 0.7 539 

Az355-1 0 - 2 628 1.00 42 0.45 329 0.95 447 37.5 0.63 2.8 531 
Az356 20 - 40 880 3.15 34 0.14 89 1.90 66 55.7 0.95 0.3 98 

Az356-1 2 - 20 881 3.05 48 0.15 86 0.19 143 55.4 0.93 0.3 101 
Az357 40 - 60 575 2.25 31 0.13 43 0.26 68 57.9 0.75 0.2 102 

Az357-1 20 - 40 896 3.40 35 0.13 89 0.11 132 56.5 0.96 0.2 76 
Az358 40 - 60 941 3.00 35 0.13 99 0.10 120 55.0 0.99 0.2 80 
Az359 0 - 2 1020 2.40 30 0.26 352 1.50 479 48.8 0.79 2.8 652 
Az360 2 - 20 892 2.70 44 0.16 138 0.50 202 54.5 0.94 0.6 179 
Az361 20 - 40 915 2.90 38 0.15 98 0.13 101 55.8 0.99 0.3 86 
Az362 40 - 60 - - - - - - - - - - - 
Az363 0 - 2 928 2.50 36 0.22 105 0.31 107 52.6 0.95 0.4 118 
Az364 2 - 20 953 2.60 38 0.20 94 0.23 131 53.6 0.95 0.3 103 
Az365 20 - 40 957 2.90 37 0.16 97 0.17 127 54.8 0.98 0.3 100 
Az366 40 - 60 809 3.50 34 0.13 117 0.12 160 56.2 0.89 0.2 71 
Az367 0 - 2 892 3.30 34 0.16 113 3.31 146 54.1 1.01 0.6 222 
Az368 2 - 20 950 3.50 41 0.13 55 1.16 87 56.0 1.02 0.2 92 
Az369 20 - 40 920 3.45 37 0.12 49 0.40 63 55.8 1.05 0.2 68 
Az370 40 - 60 999 2.95 38 0.12 52 0.21 63 54.7 1.03 0.2 72 
Az371 0 - 2 904 2.85 32 0.20 261 2.14 393 50.8 1.02 1.9 450 
Az372 2 - 20 791 2.70 32 0.14 293 2.10 390 51.9 1.02 1.8 233 
Az373 20 - 40 946 3.05 35 0.13 105 0.85 138 54.4 1.05 0.6 176 
Az374 40 - 60 966 3.00 36 0.14 94 0.74 154 53.9 1.04 0.5 167 
Az375 0 - 2 805 2.10 27 0.29 448 0.82 661 43.9 0.82 4.0 681 
Az376 2 - 20 859 3.05 34 0.15 174 0.28 292 55.4 1.02 1.1 170 
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Az377 20 - 40 935 3.05 37 0.15 87 0.09 104 55.9 1.09 0.4 94 
Az378 40 - 60 841 3.00 35 0.13 121 0.07 155 55.8 0.98 0.3 77 
Az379 0 - 2 648 1.75 30 0.17 384 5.02 510 48.1 0.77 3.0 477 
Az380 2 - 20 578 1.70 30 0.14 419 3.69 480 50.8 0.87 3.0 287 
Az381 20 - 40 668 1.95 33 0.14 240 1.74 300 54.3 0.92 0.6 243 
Az382 40 - 60 1060 2.00 42 0.14 91 0.71 128 55.0 0.89 0.6 148 
Az383 0 - 2 581 1.20 28 0.18 471 6.99 624 41.2 0.69 6.0 714 
Az384 2 - 20 875 1.70 38 0.15 201 2.15 252 53.2 0.86 2.2 520 
Az385 20 - 40 718 1.50 32 0.13 496 3.95 585 50.0 0.80 6.1 498 
Az386 40 - 60 866 1.65 41 0.14 134 0.41 206 53.4 0.89 0.7 100 
Az387 0 - 2 771 1.75 36 0.18 195 1.55 247 53.1 0.84 2.1 294 
Az388 2 - 20 740 1.70 37 0.15 167 1.66 269 53.8 0.88 2.7 201 
Az389 20 - 40 765 1.70 37 0.16 157 1.21 136 54.2 0.87 1.7 217 
Az390 40 - 60 826 1.85 40 0.14 110 0.56 114 54.7 0.90 1.0 144 
Az391 0 - 2 938 1.10 45 0.20 250 1.53 349 53.3 0.89 2.8 491 
Az392 2 - 20 997 1.20 45 0.18 188 1.29 230 54.1 0.92 1.9 323 
Az393 20 - 40 1060 1.30 48 0.17 152 0.82 214 55.1 0.95 1.4 280 
Az394 40 - 60 953 1.75 43 0.14 158 0.25 219 57.4 0.92 0.7 138 
Az395 0 - 2 1070 2.00 37 0.25 238 0.33 249 54.5 0.90 1.0 288 
Az396 0 - 2 912 1.45 32 0.37 388 0.40 506 46.1 0.83 2.2 329 
Az397 0 - 2 1120 1.20 42 0.20 280 1.41 298 51.5 0.87 3.1 653 
Az398 0 - 2 599 1.00 33 0.20 475 2.15 649 45.5 0.76 7.9 1940 
Az399 0 - 2 1260 1.10 42 0.35 621 0.95 806 43.7 0.73 7.1 3820 
Az400 0 - 2 533 0.70 24 0.70 108 0.03 181 35.4 0.46 0.8 202 
Az401 0 - 2 948 0.85 26 0.31 523 4.64 695 36.4 0.52 7.3 1620 
Az402 0 - 2 706 1.70 29 0.28 256 2.03 352 49.2 0.77 3.0 543 
Az403 0 - 2 1200 2.70 37 0.13 219 1.55 260 55.5 0.91 2.5 361 
Az404 2 - 20 1430 2.65 41 0.16 50 0.14 119 56.9 0.96 0.6 119 
Az405 20 - 40 1220 2.60 41 0.15 44 0.14 119 56.2 0.93 0.4 90 
Az406 40 - 60 1080 2.85 38 0.14 40 0.18 52 59.2 0.85 0.4 77 
Az407 0 - 2 887 2.50 43 0.11 70 0.26 232 64.9 0.58 0.8 604 
Az408 0 - 2 738 3.40 30 0.13 224 0.78 254 59.0 0.83 1.1 338 
Az409 0 - 2 450 1.95 29 0.16 343 3.99 506 50.5 0.68 3.0 375 
Az410 0 - 2 933 3.00 37 0.15 189 0.26 264 57.5 0.83 1.0 541 
Az411 0 - 2 566 2.05 27 0.16 96 0.20 118 57.3 0.59 0.6 445 
Az412 0 - 2 607 1.45 29 0.19 180 0.70 240 53.8 0.66 1.7 575 
Az413 0 - 2 646 1.90 28 0.22 123 0.49 166 54.9 0.72 0.9 407 
Az414 0 - 2 579 1.50 27 0.20 149 0.85 203 54.8 0.72 1.2 650 
Az415 0 - 2 521 1.65 25 0.15 225 2.01 277 56.2 0.68 1.9 597 
Az416 0 - 2 548 0.35 39 0.20 121 0.65 186 42.3 0.64 1.3 405 
Az417 0 - 2 661 1.25 31 0.18 269 0.75 252 53.4 0.71 1.4 481 
Az418 0 - 2 703 1.40 38 0.19 67 0.20 76 58.1 0.80 0.7 465 
Az419 2 - 20 753 1.50 37 0.18 42 0.11 70 58.8 0.83 0.4 207 
Az420 20 - 40 731 1.40 35 0.17 51 0.21 10 58.4 0.82 0.7 301 
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Az421 40 - 60 864 1.65 40 0.15 47 0.12 55 58.7 0.85 0.5 209 
Az422 0 - 2 795 1.35 39 0.18 25 0.07 10 58.5 0.85 0.35 78 
Az423 0 - 2 3440 1.60 33 0.16 307 12.90 439 26.8 0.47 2.8 1200 
Az424 0 - 2 1660 1.55 41 0.14 211 13.50 350 30.4 0.57 2.7 1380 
Az425 0 - 2 2400 1.20 48 0.15 228 18.10 535 17.0 0.23 3.2 5600 
Az426 0 - 2 314 0.20 14 0.07 2010 30.30 2770 15.2 0.23 40.1 636 
Az427 0 - 2 1350 1.70 29 0.14 206 10.50 234 34.7 0.60 1.8 510 
Az428 0 - 2 1100 1.50 37 0.16 707 5.73 786 42.1 0.74 4.7 1120 
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E. Soil profiles 
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Figure E.1. Comparison of soil depth profiles 1999 (triangle) and 2000 (square) and background 
(cross) from Sobarbina. Part I. 
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Figure E.2. Comparison of soil depth profiles 1999 (triangle) and 2000 (square) and background 
(cross) from Sobarbina. Part II 
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F. Sludge abundance 1999 
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Figure F.1. Sludge abundance map 1999 for the entire flightstrip. The affected area (black) 
superimposed on the HyMap false colour image for better orientation. The white rectangle 
indicates the location of the enlargement. 
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G. Mineral abundance 2000 
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Figure G.1. Mineral abundance map 2000 for the entire flightstrip. The mixtures of the different 
EMs can be derived from the colour coded ternary diagram. Red is the pyrite EM, green is the 
jarosite EM, blue the gypsum EM. The white rectangle indicates the location of the enlargement. 
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H. Sludge derivatives 1999 
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Figure H.1. Contamination parameters derived from the sludge abundance image for June 1999: 
residual sludge in g/kg, maximum potential acidification after full oxidation of pyrite in g/kg, 
neutralisation requirements for full oxidation of pyrite in g/kg 
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