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Abstract

In this thesis we study structure-preserving model reduction methods for the efficient and reliable
approximation of dynamical systems. A major focus is the approximation of a nonlinear flow
problem on networks, which can, e.g., be used to describe gas network systems. Our proposed
approximation framework guarantees so-called port-Hamiltonian structure and is general enough
to be realizable by projection-based model order reduction combined with complexity reduction.
We divide the discussion of the flow problem into two parts, one concerned with the linear damped
wave equation and the other one with the general nonlinear flow problem on networks.

The study around the linear damped wave equation relies on a Galerkin framework, which
allows for convenient network generalizations. Notable contributions of this part are the profound
analysis of the algebraic setting after space-discretization in relation to the infinite dimensional
setting and its implications for model reduction. In particular, this includes the discussion of
differential-algebraic structures associated to the network-character of our problem and the deriva-
tion of compatibility conditions related to fundamental physical properties. Amongst the different
model reduction techniques, we consider the moment matching method to be a particularly well-
suited choice in our framework.

The Galerkin framework is then appropriately extended to our general nonlinear flow problem.
Crucial supplementary concepts are required for the analysis, such as the partial Legendre trans-
form and a more careful discussion of the underlying energy-based modeling. The preservation of
the port-Hamiltonian structure after the model-order- and complexity-reduction-step represents
a major focus of this work. Similar as in the analysis of the model order reduction, compatibil-
ity conditions play a crucial role in the analysis of our complexity reduction, which relies on a
quadrature-type ansatz. Furthermore, energy-stable time-discretization schemes are derived for
our port-Hamiltonian approximations, as structure-preserving methods from literature are not
applicable due to our rather unconventional parametrization of the solution.

Apart from the port-Hamiltonian approximation of the flow problem, another topic of this
thesis is the derivation of a new extension of moment matching methods from linear systems to
quadratic-bilinear systems. Most system-theoretic reduction methods for nonlinear systems rely
on multivariate frequency representations. Our approach instead uses univariate frequency repre-
sentations tailored towards user-defined families of inputs. Then moment matching corresponds
to a one-dimensional interpolation problem rather than to a multi-dimensional interpolation as
for the multivariate approaches, i.e., it involves fewer interpolation frequencies to be chosen. The
notion of signal-generator-driven systems, variational expansions of the resulting autonomous sys-
tems as well as the derivation of convenient tensor-structured approximation conditions are the
main ingredients of this part. Notably, our approach allows for the incorporation of general input
relations in the state equations, not only affine-linear ones as in existing system-theoretic methods.
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Zusammenfassung

In dieser Arbeit werden strukturerhaltende Modellreduktionsmethoden zur effizienten Simulation
dynamischer Systeme untersucht. Große Teile der Arbeit fokussieren sich auf ein nichtlineares
Strömungsproblem auf Netzen, welches unter anderem in der Simulation von Gasnetzen Anwen-
dung findet, und dessen Approximation durch port-Hamiltonsche Systeme. Die Behandlung des
Strömungsproblems ist in zwei Teile aufgeteilt, einen für den Spezialfall der linearen gedämpften
Wellengleichung und den anderen für das allgemeine Strömungsproblem.

Die Diskussion bezüglich der gedämpften Wellengleichung stützt sich wesentlich auf einen
Galerkin-Ansatz, der sich besonders gut auf Netze verallgemeinern lässt. Im Fokus unserer Anal-
yse stehen die (differential-)algebraischen Strukturen, die sich nach Ortsdiskretisierung ergeben,
sowie deren Bedeutung im Funktionenraum-Setting und für die Modellreduktion. Insbesondere
werden Kompatibilitätsbedingungen für reduzierte Modelle hergeleitet, die den Erhalt physikalis-
cher Strukturen garantieren, und deren Umsetzung für die Moment-Matching Methode diskutiert.

Unserem Ansatz für das allgemeine Strömungsproblem liegt eine geeignete Verallgemeinerung
des Galerkin-Ansatzes zugrunde. Für die Untersuchungen des nichtlinearen Falls sind zusätzliche
Konzepte vonnöten, allen voran die partielle Legendre-Transformation und eine tiefergreifende en-
ergiebasierte Modellierung. Die Erhaltung von port-Hamiltonscher Struktur nach Modellordnungs-
und Komplexitätsreduktion stellen einen wesentlichen Fokus dieser Arbeit dar. Ähnlich wie bei
der Modellordnungsreduktion, spielen bei der Analyse der Komplexitätsreduktion, die wir durch
empirische Quadratur umsetzen, Kompatibilitätsbedingungen eine entscheidende Rolle. Wegen
der nichtlinearen Parametrisierung, die unseren port-Hamiltonschen Approximationen zugrunde
liegt, sind strukturerhaltende Methoden aus der Literatur zur Zeitdiskretisierung nicht anwendbar.
Wir greifen auch diesen Punkt auf und schlagen neuartige energiestabile Methoden vor.

Losgelöst von der port-Hamiltonschen Approximation des Strömungsproblems, wird in dieser
Arbeit außerdem eine Verallgemeinerung des Moment-Matching Verfahrens auf quadratisch-bili-
neare Systeme vorgeschlagen.

Die Mehrzahl der bisher behandelten systemtheoretischen Methoden für nichtlineare Systeme
verwendet multivariate Frequenzdarstellungen. Unser Ansatz basiert hingegen auf univariaten
Frequenzdarstellungen, die für geeignet gewählte Klassen von Inputs hergeleitet werden. Der
resultierende Interpolationsansatz, der sich aus dem Moment-Matching ergibt, benötigt demzu-
folge auch nur die Wahl von Parametern in einem eindimensionalen Frequenzraum, was ihn von
den multivariaten Ansätzen unterscheidet. Die Grundlage für die vorgeschlagene Methodik sind
spezielle Signalgenerator-getriebene Systeme, eine variationelle Entwicklung dieser Systeme und
geeignete Approximationsansätze in Tensorräumen. Wir diskutieren außerdem, wie sich unsere
Methodik für Systeme mit allgemeinen Input-Abhängigkeiten, die über typischerweise behandelten
affin-linearen Abhängigkeiten hinausgehen, erweitern lässt.
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Preface

The challenges in model reduction are various, and in this thesis different aspects are discussed in
three different parts. Each part is written as a separate unit with its own structure and numbering.
They are especially intended to be readable independently of each other. As Part I.A and Part I.B
share the same general goal, namely the structure-preserving approximation of a flow problem on
networks described by port-Hamiltonian models, they share an elementary introduction and have
a common conclusion. Part II stands on its own. Let me very briefly characterize the parts and
relate them to my scientific contributions in my time working on this dissertation:

• Part I.A is restricted to the linear damped wave equation, as a simple representative of the
flow problem. Furthermore, the analysis is focused on the Galerkin approximation steps in
space, which are the space discretization and model order reduction. While the study of
the linear problem is an interesting topic on its own, it also serves as a viable preparation
for Part I.B. The discussion of the linear problem largely relies on the works [EKLS+18],
[LSM17].

• Part I.B is concerned with an approximation procedure for our general nonlinear flow prob-
lem on networks. Considerable parts of the linear analysis can be reused in this part.
Whenever this is the case, we are brief in the exposition and make a reference to the re-
spective results from Part I.A. However, crucial new concepts have to be taken into account
for the adaption to the nonlinear case, such as the partial Legendre transform, complexity
reduction and formulation-adapted time discretization methods. The models we are able
to cover by our analysis of Part I.B include the barotropic Euler equations on networks.
We employ them to simulate gas network systems. In the context of this part, [EKLS20],
[LSM19] have been published.

• Part II takes up the classical question of approximation quality. As an abstract approxima-
tion property, a new generalization of the notion of moment matching from the linear to the
nonlinear case is proposed, and a related model reduction procedure for quadratic-bilinear
systems is derived. The main ingredients are the notion of a system to be driven by a signal
generator, variational expansions of the resulting autonomous systems, as well as the deriva-
tion of convenient tensor-structured approximation conditions. The contributions [LSM18],
[SLSM19] provide the basis for this part.
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Notation

Throughout this thesis, matrices/tensors, vectors and scalars are indicated by capital boldfaced,
small boldfaced and small normal letters, respectively. The unit matrix and the zero matrix are
denoted by IN ∈ RN,N and 0M,N ∈ RM,N , where the sub-index of the dimensions is omitted if
they are clear from the context. The column- and row-wise concatenation of matrices or vectors
is abbreviated with a comma and a semicolon, respectively. That is

[A,B] =
[
A B

]
∈ RM,N+NB

[A; C] =

[
A
C

]
∈ RM+MC ,N , for A ∈ RM,N , B ∈ RM,NB , C ∈ RMC ,N

[a; b] =

[
a
b

]
∈ RN+NB , for a ∈ RN , b ∈ RNB .

The kernel and image of A are denoted as ker(A) and im (A), respectively. We write [A]i,j for
the entry of A in the i-th row and j-th column, and [a]i for i-th entry of a. The Euclidean scalar
product for two vectors a,b of the same length is written as a · b.

Tensors are approached by matricization strategies as in [Rug81], [KT10], [Hac12]: The
Kronecker-tensor product ⊗ is defined by

P⊗Q =

 [P]1,1Q [P]1,2Q . . . [P]1,NQ
. . . . . . . . . . . .

[P]M,1Q [P]M,2Q . . . [P]M,NQ

 for P,Q ∈ RM,N .

We abbreviate P 2○ = P⊗P, P 3○ = P⊗P⊗P. Additionally, we introduce the notation

2○PQ = Q⊗P + P⊗Q ∈ RM2,N2

3○PQ = 2○PQ⊗P + P 2○ ⊗Q

= Q⊗P⊗P + P⊗Q⊗P + P⊗P⊗Q ∈ RM3,N3

.

The expressions P i○ and i○PQ are defined analogously for i > 3. The Kronecker product has
precedence to matrix multiplications, thus the relations

(A⊗B)C = A⊗BC

(AB)⊗ (CD) = (A⊗C) (B⊗D) = A⊗C B⊗D

hold matrices of appropriate dimension. From the definition of ⊗ it follows directly[
A B
C D

]
⊗P =

[
A⊗P B⊗P
C⊗P D⊗P

]
.
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Regarding nonlinear transformations and derivatives, we use the following notational conven-
tions: Coordinate transformations in Rn are consistently marked by a hat (e.g. â, ẑ : Rn → Rn).
Given a scalar field, h : Rn → R and a partitioning into vector-components z = [z1; z2] with
zi ∈ Rni , n1 + n2 = n, we write ∇zh and ∇zih for the gradient and its respective sub-blocks, i.e.,

∇zh : Rn → Rn, and ∇zh =

[
∇z1h
∇z2h

]
.

Moreover, ∇zzh denotes the Hessian, and the respective sub-blocks ∇zizjh for i, j = 1, 2 are given
by

∇zzh : Rn → Rn,n, and ∇zzh =

[
∇z1z1h ∇z1z2h
∇z2z1h ∇z2z2h

]
.

We allow for derivatives w.r.t. coordinate-transformations, e.g., ∇zh(ẑ(a)) for a ∈ Rn should be
read as

∇zh(ẑ(a)) = ∇zh(z̃)|z̃=ẑ(a).

Function-valued vector spaces (e.g. Vi,L2) are distinguished in their typesetting from real-
valued spaces and sets (e.g. RN ,A). The solutions of partial differential equations in this thesis
depend on time t and space x, e.g. zi(t, x) ∈ R for i = 1, 2. When it is convenient, we instead
interpret them as functions in time with values in a function space, i.e., zi(t) ∈ Vi for some function
space Vi. In either case, the concatenation of solution components in a vector is underscored to
distinguish it from an ordinary vector, i.e.,

¯
z(t, x) = [z1(t, x); z2(t, x)] ∈ R2 or

¯
z(t) = [z1(t); z2(t)] ∈ V1 × V2.

The application of real-valued functions onto the solution components (e.g. h(
¯
z)) has to be

understood pointwise in space and time. This holds in particular for the derivative-expressions
from above. For example, the expression ∇zh(

¯
z) is defined by

∇zh(
¯
z(t, x)) = ∇zh(z̃)|z̃=

¯
z(t,x).

Respective expressions ∇zih(
¯
z) and ∇zizjh(

¯
z) are similarly defined as the pointwise application of

∇zih and ∇zizjh onto
¯
z for i, j = 1, 2.

The acronyms FOM and ROM are used to abbreviate full order model and reduced order
model. The latter is typically a low-dimensional approximation of the former. Quantities related
to ROMs are marked by a subscript r.

Finally, note that the parts are independently structured and have their own numbering.
Cross-references from one part to another are indicated by a prefix, e.g., when we want to refer
to Chapter 1 of Part I.A outside of this part, we write Part I.A-Chapter 1.

3



Part I

Port-Hamiltonian approximation for flow
problems on networks
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Introduction

Model problem

Part I of this thesis deals with the approximation of a prototypical partial differential equation
on networks. The network is described by a directed graph. Each edge ω of the graph can be
identified with an interval (0, lω) of length lω. Given the Hamiltonian density h : R2 → R and a
friction term r : R2 → R+, the edgewise states

¯
zω = [zω1 ; zω2 ] : [0, T ]× (0, lω)→ R2 are governed by

∂tz
ω
1 (t, x) = −∂x∇z2h(

¯
zω(t, x))

∂tz
ω
2 (t, x) = −∂x∇z1h(

¯
zω(t, x))− r(

¯
zω(t, x))∇z2h(

¯
zω(t, x)),

with short-hand notation ∇zih defined by

∇zih(
¯
zω(t, x)) = ∇zih([z1; z2])|[z1,z2]=

¯
zω(t,x), for i = 1, 2.

In the upcoming, the above equations are also written in the more compact form

∂t
¯
zω(t, x) =

[
−∂x

−∂x −r(
¯
zω(t, x))

]
∇zh(

¯
zω(t, x)). (1a)

The edgewise systems are interconnected at inner nodes ν of the graph by the two coupling
conditions∑

ω∈E(ν)

nω[ν]∇z2h(
¯
zω(t, ν)) = 0, ∇z1h(

¯
zω(t, ν)) = ∇z1h(

¯
zω̃(t, ν)) for ω, ω̃ ∈ E(ν), (1b)

with nω[ν] ∈ {−1, 0, 1} describing the direction of the edge and E(ν) denoting the set of all edges
incident to ν, see Part I.A-Chapter 1 for details. The system is complemented by appropriate
boundary- and initial-conditions.

For the set of all edges E , the total mass M and the Hamiltonian H are defined as

M(
¯
z) =

∑
ω∈E

∫
(0,lω)

zω1 dx and H(
¯
z) =

∑
ω∈E

∫
(0,lω)

h(
¯
zω)dx.

Conservation of mass and dissipation of the Hamiltonian (energy dissipation) up to exchange with
the boundary are fundamental properties of our model problem. They are also central for our
analysis and proposed structure-preserving approximation procedure.

Next, let us shortly go through the representatives of (1), which take a special role in this
thesis. For convenience, we drop the superscript ’ω’ and consider the one-edge problem for now.
Throughout the main part we treat the network case.

5



Damped wave equation

The damped wave equation, cf. [AH14], [EK18], [SMH19], is obtained for our model problem by
the choice

¯
z =

[
αp
βm

]
, h([z1; z2]) =

1

2

(
1

α
z2

1 +
1

β
z2

2

)
.

The parameters α, β > 0 may depend on the spatial variable x. When r is constant, this yields a
linear system reading

α∂tp(t, x) + ∂xm(t, x) = 0

β∂tm(t, x) + ∂xp(t, x) = −rm(t, x), for x ∈ (0, lω), t ∈ [0, T ].

The whole Part I.A is devoted to this representative.

Euler equations

The Euler equations take an important role in many applications, see [Che05], [LeV02], [LeV90],
[BGH11], [LM18], [Dom11]. They consist of the following set of equations characterizing density ρ,
velocity v and a potential energy P ,

∂tρ+ ∂x (ρv) = 0 (2a)

∂t(ρv) + ∂x
(
ρv2 + p

)
= − λ

2D
ρ|v|v (2b)

∂th+ ∂x (vh+ vp) = −Ke, h = ρv2/2 + P (2c)

for x ∈ (0, lω), t ∈ [0, T ]. A constitutive law for the prescription of the pressure p has to be
added, and the energy dissipation term Ke and the friction term λ may depend on the states like
Ke = Ke(ρ, v,m, P ) and λ = λ(ρv) in general. Note that (2c) particularly describes the energy
dissipation for the energy functional

∫
h([ρ; v])dx.

Barotropic Euler equations

For all our discussions, we take barotropic pressure models [Che05], meaning that we assume p to
be a function only depending on the density, i.e., p = p(ρ). All in all, the first two equations can
then be solved independent of the third one, and ρ, v are characterized by

∂tρ+ ∂x (ρv) = 0 (3a)

∂t(ρv) + ∂x
(
ρv2 + p(ρ)

)
= − λ

2D
ρ|v|v. (3b)

Still, the system inherits dissipation of the energy functional

H([ρ; v]) =

∫
(0,lω)

h([ρ; v])dx, with h([ρ; v]) = ρ
v2

2
+ P (ρ), (3c)
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which we refer to as Hamiltonian. Note that P is now a function of density instead of a dependent
variable. Given a pressure law p, it necessarily holds

P ′′(ρ) =
1

ρ
p′(ρ) (3d)

due to compatibility reasons with (2). Clearly, several choices for P may be possible. This is
not surprising, when one keeps in mind that in the full Euler equations (2) additional initial- and
boundary-conditions have to be prescribed for P . Defining

¯
z = [ρ; v], we can formally rewrite (3)

in our abstract standard form

∂t
¯
z(t, x) =

[
−∂x

−∂x −r(
¯
z(t, x))

]
∇zh(

¯
z(t, x)), with r(

¯
z) =

λ

2D

|v|
ρ
.

Let us list particular choices for pressure laws p and related consistent potential energy func-
tions P , cf. [BGH11], [MLD19], [DHLT17]. We refer to the references for a physical interpretation
of the constants and derivations of the models.

• Isentropic: p(ρ) = cpρ
γ, cp > 0, γ > 1

P (ρ) = cp
γ−1

ργ

• Isothermal: p(ρ) = RT ρ
1−RTαρ , RT > 0, α < 0

P (ρ) = RTρ log
(
ρsc

1−RTαρ
ρ

)
• Ideal isothermal gas: p(ρ) = c2

sρ, cs > 0

P (ρ) = c2
sρ log

(
ρ
ρsc

)
The factor ρsc above is needed for a non-dimensionalization and is one, when SI-units are taken.

Simplified barotropic Euler equations

In many applications it is acceptable to use model simplifications on the Euler equations. Moti-
vated by [BGH11], [MLD19], we consider the simplification obtained by dropping the term ∂x(ρv

2)
in (3b). By introducing the mass flow m = ρv, the system can then be re-expressed in ρ and m
as

∂tρ+ ∂xm = 0 (4a)

∂tm+ ∂xp(ρ) = − λ

2D

1

ρ
|m|m. (4b)

To apply our framework, we define the Hamiltonian

H([ρ;m] =

∫
(0,lω)

h([ρ;m])dx, with h([ρ;m]) =
m2

2
+ P̃ (ρ) (4c)

with potential energy function P̃ chosen such that

P̃ ′′(ρ) = p′(ρ). (4d)
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Again, several choices for P̃ are possible from a mathematical point of view. Equations (4) can
then be rewritten in our abstract model standard form (1) with

¯
z =

[
ρ
m

]
and r(

¯
z) =

λ

2D

|m|
ρ
.

Let us also list choices for potential energy functions P̃ for the pressure laws as above:

• Isentropic: p(ρ) = cpρ
γ, cp > 0, γ > 1.

P̃ (ρ) = cp
γ+1

ρ(γ+1)

• Isothermal: p(ρ) = RT ρ
1−RTαρ , RT > 0, α < 0.

P̃ (ρ) = −1
RTα2 (log (1−RTαρ) +RTαρ)

• Ideal isothermal gas: p(ρ) = c2
sρ.

P̃ (ρ) = 1
2
c2
sρ

2

Note that for the ideal isothermal gas model, the simplified barotropic Euler equations coincide
with the damped wave equations with a nonlinear damping term.

In Part I.B the approximation framework is derived for the general abstract model problem (1).
The realization by the barotropic Euler equations takes a special role in the last two chapters of
that part: A well-posedness result for its approximation in our framework is derived, and all
numerical examinations are performed for the isothermal Euler equations and their simplification.

Outline

The main theme of Part I is the systematic derivation of a structure-preserving approximation
procedure for nonlinear flow problems on networks of the form (1) and its realization by model
reduction. Special emphasis lies on the preservation of fundamental properties underlying our
model problem, such as mass conservation, energy dissipation and the network structure. To
approach this aim in a systematic manner, we built our approximation procedure around energy-
based modeling concepts, specifically the notion of so-called port-Hamiltonian systems.

Structure of parts

We divide the discussion in the two separate parts Part I.A and Part I.B. Their basic outlines
follow the same pattern: In Chapter 1 preliminary tools necessary for the formulation of the
respective model problem are gathered, and a formal introductory discussion is given. The abstract
approximation procedure is derived in Chapter 2, where also resulting coordinate representations
are treated. Subsequently, the realization of the approximation procedure by model reduction
methods is addressed in Chapter 3. The remainder is then reserved to the application of the
derived approximation- and model reduction-methods. For Part I.A, the application solely consists
of the presentation of numerical results (Part I.A-Chapter 4), whereas in Part I.B, the abstract
model is first instanced at the example of the barotropic Euler equations (Part I.B-Chapter 4),
and afterwards numerical results are discussed (Part I.B-Chapter 5).

The substructure of the chapters is guided by the hierarchy underlying our approximation
procedure.
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Model problem (1)

Full order model

Reduced order model

Complexity-reduced model
time discretization

space discretization

model order reduction

complexity reduction

Figure 1: Sketch for all steps in our approximation procedure. The analysis of Part I.A is restricted
to the linear damped wave equation and the steps marked in blue. In Part I.B, the general model
problem (1) is addressed, and all approximation steps are considered.

Outline of the approximation procedure

Our approximation procedure includes all steps necessary in the construction of low-order and
online-efficient reduced models. The individual stages of our approximation procedure, see Fig. 1,
read as follows:

Given an instance of model problem (1), we first discretize it in space to obtain the full
order model. Afterwards, a model order reduction is performed leading to the reduced (order)
model. These first two approximation steps correspond to a Galerkin approximation in space.
Although the reduced order model is typically of much lower dimension as the full order model,
it is not necessarily more efficient to solve in the nonlinear case. That is, because the evaluation
of reduced nonlinearities in general requires a lifting step to the space of the underlying full
order model for each evaluation. To avoid this lifting-bottleneck, another approximation step
is included, the complexity reduction. This step is not of Galerkin-type and, therefore, has to
be analyzed separately. All our proposed approximation steps in space are such that they yield
port-Hamiltonian structure. This structure also guides our choice of time discretization, which is
the last approximation step in our hierarchy. We present our results in two separate parts that
emphasize different challenges:

In Part I.A the discussion is restricted to the linear damped wave equation. The focus lies here
on the handling of the network structure and the role of compatibility conditions related to the
convectional terms in the model equations. Only the Galerkin approximation steps are discussed
in detail here, i.e., the space discretization and the model order reduction. For the linear case, com-
plexity reduction is not needed and appropriate structure-preserving time discretization schemes
have already been discussed in literature. Let us also note that a standard port-Hamiltonian form
can be recovered by linear coordinate transformations in this case.

In Part I.B we present a procedure for the general nonlinear model problem (1). While the
incorporation of the network-aspect is by no means trivial for most approximation schemes, our
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ansatz is chosen such that an adaption of the framework presented in Part I.A is almost immediate.
Moreover, our ansatz carefully takes into account the underlying structure of the model problem
on all stages of the approximation. In contrast to the discussion in Part I.A, nonlinear state
transformations have to be considered here. To deal with them, we make use of some tools from
convex analysis, first and foremost of the (partial) Legendre transform. With the help of these
tools, we are able to prove port-Hamiltonian structure for our approximations in the nonlinear case.
In particular, it is shown that a reformulation of the space-discrete systems into a standard port-
Hamiltonian form is possible. The involved nonlinear transformation is, however, not necessarily
well-suited for practical implementation. Hence, time discretization schemes for port-Hamiltonian
systems from literature are not applicable in Part I.B. New structure-preserving time discretization
methods, accounting for our natural parametrization, are therefore proposed.

Overview on port-Hamiltonian approximation

Naive approximation methods for dynamical systems can in general fail to respect the physical
and geometric structure of the system at hand. Needless to say that this is undesired on its own,
but it is also a major source of instability for approximation methods. A remedy consists in the
usage of structure-preserving methods. Their analysis has grown to a wide field of research, see
e.g., [LeV02], [CMKO11], [CGM+12] for selected overviews.

We concentrate here on the port-Hamiltonian framework. This energy-based modeling ap-
proach has undergone a tremendous development since its introduction by the authors of [MvdS92],
[MvdS01]. It originates from the analysis of finite-dimensional interconnected systems [vdSM13],
[vdSJ14], but also has been extended to the infinite-dimensional setting of partial differential
equations [BMBM18], [GTvdSM04], and has been systematically generalized to constrained dy-
namical differential-algebraic systems [BMXZ17], [vdSJ14]. In what follows, we first touch upon
finite-dimensional port-Hamiltonian systems, and then give a selected and concise overview on
structure-preserving model reduction and discretization. Parallels between methods from litera-
ture and our proposed approximation procedure are drawn.

Finite-dimensional port-Hamiltonian systems

Central in the port-Hamiltonian approach is the Hamiltonian. In the finite-dimensional setting,
it is a functional H : RN → R and typically assumed to be convex. Often it relates to an energy
or entropy in applications. We additionally presume it to be twice continuously differentiable
here. Let z ∈ RN denote a state, and an anti-symmetric matrix J̄(z) and a symmetric positive
semi-definite matrix R̄(z) be given, i.e.,

J̄(z) = −J̄(z)T ∈ RN,N and R̄(z) = R̄(z)T ∈ RN,N , for all considered z.

Further introducing a matrix K ∈ RN,p, we can formulate a prototype for port-Hamiltonian
systems of central importance in this thesis:

System 0.1. Find z ∈ C1([0, T ];RN), eB ∈ C0([0, T ];Rp) and fB ∈ C1([0, T ];Rp) such that

d

dt
z(t) =

(
J̄(z)− R̄(z)

)
∇zH(z(t)) + KeB(t)

fB(t) = KT∇zH(z(t)).
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Given input u : [0, T ]→ Rp, the system can, e.g., be closed by conditions of either type,

Type 1: eB(t) = u(t), Type 2: fB(t) = u(t), t ∈ [0, T ],

together with appropriate initial conditions. In the port-Hamiltonian framework, z is called the
energy variable, e = ∇zH(z) the effort variable, and eB and fB the boundary effort and boundary
flow, respectively. The system structure readily implies a fundamental property, which we refer
to as the energy dissipation equality.

Lemma 0.2. A solution of System 0.1 fulfills the energy dissipation equality

d

dt
H(z(t)) = eB(t) · fB(t)−∇zH(z(t))T R̄(z)∇zH(z(t)) ≤ eB(t) · fB(t).

Proof. By application of the chain-rule, we obtain

d

dt
H(z) =

d

dt
z · ∇zH(z) =

[(
J̄(z)− R̄(z)

)
∇zH(z) + KeB

]
· ∇zH(z)

= ∇zH(z)T J̄(z)∇zH(z)−∇zH(z)T R̄(z)∇zH(z) + (KeB) · ∇zH(z).

By employing the structural properties of the system, we see that the first term on the right side
is equal to zero, the second one is bounded by zero from above, and the third one can be rewritten
as (KeB) · ∇zH(z) = eB · (KT∇zH(z)) = eB · fB.

As will be discussed in Part I.A in detail, closing conditions Type 2 make System 0.1 a differen-
tial algebraic system. With closing conditions of Type 1, on the other hand, the system simplifies
to an ordinary differential equation. We assume to be in the latter case for the remainder of this
section. In accordance with standard notations, we define the output vector y(t) = fB(t) and the
matrix B = K. Then System 0.1 specializes as follows.

System 0.3. Find z ∈ C1([0, T ];RN) such that

d

dt
z(t) =

(
J̄(z(t))− R̄(z(t))

)
∇zH(z(t)) + Bu(t)

y(t) = BT∇zH(z(t)), z(0) = z0

for given input u ∈ C0([0, T ];Rp) and initial conditions z0 ∈ RN .

Model order reduction of port-Hamiltonian systems

The application of standard model reduction onto System 0.3 can be summarized as follows: One
seeks high-fidelity bases V,W ∈ RN,n with n � N and defines the reduced model of System 0.3
as

(WTV)
d

dt
zr(t) = WT

[(
J̄(z)− R̄(z)

)
∇zH(z)

]
|z=Vzr(t)

+ WTBu(t) (5)

y(t) = BT∇zH(z)|z=Vzr(t), zr(0) = zr,0.

Without any further doing, this reduced model most certainly does not inherit the port-Hamil-
tonian structure and not even the energy dissipation of Lemma 0.2. There have been a few
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attempts in literature for structure-preserving model reduction, which yield reduced models of
port-Hamiltonian structure, i.e., of the form

d

dt
zr(t) =

(
J̄r(zr(t))− R̄r(zr(t))

)
∇zrHr(zr(t)) + Bru(t) (6)

y(t) = BT
r∇zrHr(zr(t)), zr(0) = zr,0,

with J̄r(zr) anti-symmetric and R̄r(zr) symmetric positive semi-definite. These attempts seem
mostly to fall in one of the following three categories: 1. Additional approximation of the Hamil-
tonian, 2. compatible reduction bases and 3. reparametrization.

1. Additional approximation of the Hamiltonian Taking a closer look at the reduced
model (5), it can be recognized that the fundamental structure, which the model is in general
not able to capture, is the gradient structure present in System 0.3. More precisely, we cannot
identify ∇zH(z)|z=Vzr with a reduced Hamiltonian acting on a reduced state. A possible remedy
is to replace this expression by an approximation, for which there exists an underlying reduced
Hamiltonian. Following the ideas of [CBG16], this can be done by the approximation ansatz

∇zH(z)|z=Vzr ≈W
(
VTW

)−1
VT∇zH(z)|z=Vzr = WVT∇zH(z)|z=Vzr , (7)

where VTW = In is assumed for the last equality. The latter assumption is not restrictive, as
it can be reached by rescaling, given im (V) and im (W) have generic orientations to each other.
The reason for the special choice of approximation (7) is that it may be interpreted as replacing
the Hamiltonian H by an approximate one reading

H̃(z) := H(VWTz), as it holds ∇zH̃(z) = WVT∇zH(z) for z ∈ im (V).

With that replacement, the reduced model can be recast in the port-Hamiltonian structure (6)
with

Hr(zr) = H̃(Vzr) = H(Vzr), Br = WTB

J̄r(zr) = WT J̄(Vzr)W, R̄r(zr) = WT R̄(Vzr)W.

Apart from the model order- and complexity reduction-method proposed in [CBG16], also, e.g.,
the discretization schemes [Kot13], [GTvdSM04], [PAvdS12], [CML19], [MM14] can be considered
to be of this category.

Remark 0.4. The above interpretation of approximation step (7) by a new Hamiltonian H̃ is not
the only one. Another, possibly more natural one for someone familiar with basic Riemannian
geometry, is that we replaced the Euclidean gradient ∇z by a Riemannian gradient acting on the
subspace V, cf.[AMS08, pp. 60].

2. Compatible reduction bases By the additional approximation step (7), the upper ap-
proach does not yield a pure Galerkin projection of the full order model but includes an additional
approximation of an operator. This may of course be undesirable. Apart from the additional er-
ror, it also complicates the analysis, as such operator approximations do not necessarily have a
useful interpretation in terms of approximating partial differential equations. The reason for the
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latter is that orthogonal projections between infinite dimensional Hilbert spaces are not neces-
sarily bounded operators. To avoid these difficulties related to the replacement (7), one can in
certain situations construct compatible Petrov-Galerkin approximations instead. For this to be
practicable, we need the matrix operators J̄ and R̄ to be of sufficiently simple structure. For given
orthogonal reduction basis V ∈ RN,n we need to be able to construct a compatible reduction basis
W ∈ RN,n such that

WT J̄(Vzr) = J̄r(zr)V
T and WT R̄(Vzr) = R̄r(zr)V

T

for an anti-symmetric J̄r(zr) ∈ Rn,n and a symmetric positive semi-definite R̄r(zr) ∈ Rn,n. Given
this is possible, the reduced model may be rewritten in the port-Hamiltonian form (6) with
Hr(zr) = H(Vzr). Note that in contrast to the first approach, the substitution (7) is not explicitly
added here as an additional approximation step but appears naturally through the compatibility
between V and W. Such compatible projections have been constructed in [PM16], [AH17], [AH19]
for the special case of R̄ equal to zero and J̄ being a constant symplectic matrix. The approach
there goes by the name symplectic model reduction. A finite element method using similar ideas
can, e.g., be found in [SMH19].

3. Reparametrization It may also be worthwhile to reconsider the parametrization of the
solution. An important case is the reformulation of the system in the effort variable e = ∇zH(z).
It is well-known that this generally nonlinear change of variable is connected to the so-called
Legendre transform of H, which we denote by G. It can be characterized by

∇eG(e)|e=∇zH(z) = z, for all z.

For e = ∇zH(z), let us define the matrix-valued functions

Q(e) = ∇eeG(e), J̃(e)|e=∇zH(z) = J̄(z), R̃(e)|e=∇zH(z) = R̄(z).

The reparametrized version of System 0.3 then reads: Find e ∈ C1([0, T ];RN) solving

Q(e(t))
d

dt
e(t) =

(
J̃(e(t))− R̃(e(t))

)
e(t) + Bu(t)

y(t) = BTe(t), e(0) = e0.

When applying a Galerkin projection on this reparametrization with W = V, one obtains the
reduced model

Qr(er(t))
d

dt
er(t) =

(
J̃r(e(t))− R̃r(er(t))

)
er(t) + Bru(t)

y(t) = BT
r e(t), er(0) = er,0

for the reduced effort er ∈ C1([0, T ];Rn), Br = VTB and respective reduced matrix functions

Qr(er) = VTQ(Ver)V, J̃r(er) = VT J̃(Ver)V, R̃r(er) = VT R̃(Ver)V.

The anti-symmetry of J̃r(er) and the positive semi-definiteness of R̃r(er) easily follow. By con-
struction, the reduced model also inherits a reduced Legendre-transformed

Gr(er) = G(Ver), for which Qr(er) = ∇ererGr(er)
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and by that the full port-Hamiltonian structure. To see the latter, one can rearrange the system
in standard form as in System 0.3 by performing a Legendre transform on Gr and making use
of the related state transformation, cf. Part I.B for details. In the linear case, the situation
significantly simplifies, see [GPBvdS09], [WLEK10] for model reduction methods and [FKJ+13]
for a finite-element discretization. For the nonlinear case, see, e.g., [Egg19].

Relation to our approach Which, if any of the above structure-preserving approximation
ansatzes is suitable, depends on the underlying problem. Especially when the underlying problem
is linear, the third ansatz, the reparametrization, seems to be the most straight-forward, as it
allows for direct Galerkin-approximation. We pursue this approach in Part I.A, where we are
faced with a linear model.

On the other hand, when considering the general nonlinear model problem (1), the full
reparametrization may be unfeasible. This is, e.g., the case for the barotropic Euler equa-
tions (3). Our approximation procedure in Part I.B instead relies on ideas of both, the second
approach by compatible reduction bases and the third one by reparametrization. More precisely,
we reparametrize parts of the variables and enforce compatibility conditions to handle the remain-
ing variables.

Our complexity reduction method follows the idea of empirical quadrature [HCF17], [Jam08],
[FACC14], but we include additional compatibility conditions in order to guarantee port-Hamil-
tonian structure. To the best of the author’s knowledge, the latter has not been proposed before
in the context of structure-preserving approximation of port-Hamiltonian systems.
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Subpart I.A

Linear damped wave equation
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Chapter 1

Preliminaries

1.1 Motivation

Part I.A is devoted to the linear damped wave equation on networks. For a motivation, let us
briefly discuss the equations with spatial domain chosen as the interval (0, lω) instead. Given
T > 0, the pressure and the mass flow, p,m : [0, T ]× (0, lω)→ R, are assumed to be governed by

α∂tp(t, x) + ∂xm(t, x) = 0 (1.1a)

β∂tm(t, x) + ∂xp(t, x) = −rm(t, x), for x ∈ (0, lω), t ∈ [0, T ]. (1.1b)

The parameters α, β, r may depend on the spatial variable x, but we suppress that in our notation.
We assume there exist constants clow, cup > 0 such that clow ≤ α(x), β(x), r(x) ≤ cup for x ∈ (0, lω).
This system is a basic instance of our abstract model problem. To rewrite it in the abstract form,
let us define the energy variable

¯
z and the Hamiltonian density h : R2 7→ R, as

¯
z =

[
z1

z2

]
=

[
αp
βm

]
, h([z1; z2]) =

1

2

(
1

α
z2

1 +
1

β
z2

2

)
.

Defining the effort variable and the constant Hessian of the Hamiltonian density as

¯
e = ∇zh(

¯
z) = [p;m],

¯
Q = ∇zzh(

¯
z) =

[
1
α

1
β

]
,

one can see that (1.1) corresponds to a formulation in effort variables, i.e.,

¯
Q−1∂t

¯
e(t, x) =

[
−∂x

−∂x −r

]
¯
e(t, x).

Next, let us sketch the weak form underlying our approximation schemes. The function spaces
L2((0, lω)) and H1((0, lω)) are defined as the Sobolev space of square integrable functions on
(0, lω) and the Sobolev space with additionally square integrable weak derivatives, respectively.
The L2-scalar product and norm for b, b̃ ∈ L2((0, lω)) is written as

〈b, b̃〉 =

∫
(0,lω)

b(x)b̃(x)dx and ||b|| =
√
〈b, b〉.
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Given b ∈ H1((0, lω)), we can associate boundary values b[ν] ∈ R to ν ∈ {0, lω} by means of
the trace theorem, [Bra07]. By that, we can define a linear bounded trace operator

T : H1((0, lω))→ R2, T b =

[
−b[lω]
b[0]

]
,

as recalled later in Definition 2.1. In anticipation of the port-Hamiltonian formulations, we intro-
duce additional variables acting on the boundaries of the spatial domain, the so-called boundary
effort and boundary flow

eB =

[
eB[lω]
eB[0]

]
, fB =

[
fB[lω]
fB[0]

]
, eB(t), fB(t) ∈ R2, for t ∈ [0, T ].

These degrees of freedom are chosen such that eB = [p[lω]; p[0]] and fB = [−m[lω];m[0]] for
smooth solutions. By testing (1.1) with appropriate test-functions, taking the integral and using
integration by parts once on the second equation, we obtain the following weak form:

Find p ∈ C1([0, T ];L2((0, lω)), m ∈ C1([0, T ];H1(0, lω)) fulfilling

〈α∂tp(t), b1〉 = −〈∂xm(t), b1〉
〈β∂tm(t), b2〉 = 〈p(t), ∂xb2〉 − 〈rm(t, x), b2〉+ eB(t) · T b2(t)

fB(t) = Tm(t)

for all b1 ∈ L2((0, lω)), b2 ∈ H1((0, lω)). The boundary term in the second equation originates
from partial integration. To close the system, data p0,m0 : (0, lω) → R prescribing the initial
conditions p(0) = p0 and m(0) = m0 as well as boundary data uν : [0, T ] → R for ν ∈ {0, lω}
are assumed to be given. One boundary condition per ν is prescribed given by either one of the
following types:

Type 1: eB[ν] = uν , Type 2: fB[ν] = n[ν]uν , t ∈ [0, T ],

with n[ν] describing the inner normal vector, i.e., n[0] = 1, n[lω] = −1. Type 1 relates to
pressure boundary conditions and is weakly imposed in our weak form, whereas Type 2 has the
interpretation of a mass-inflow boundary condition and takes the role of a so-called essential or
Dirichlet-boundary condition for our weak form. Next, we introduce the necessary concepts for
a formulation of the network problem. First the description of the spatial topology, the network
graph, is discussed, and then the Sobolev spaces are generalized to the network case. For this
purpose we employ the framework derived in [EK18], [Kug19].

1.2 Network topology

Let a set of nodes N = {ν1, . . . , νl} and edges E = {ω1, . . . , ωk} ⊂ N ×N be given. To every edge
ω, we additionally associate a positive length lω, and collect all lengths in the set l = {lω1 , . . . , lωk}.
The tuple G = (N , E , l) describes a directed graph. For ω ∈ E and ν ∈ N , the incidence mapping
nω[ν] is defined by

nω[ν] =


1 for ω = (ν, ν̄) for some ν̄ ∈ N
−1 for ω = (ν̄, ν) for some ν̄ ∈ N

0 else.
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ν1 ν2
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ν4

ω1
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Figure 1.1: Graph G = (N , E) with verticesN = {ν1, ν2, ν3, ν4} and edges E = {ω1, ω2, ω3} defined
by ω1 = (ν1, ν2), ω2 = (ν2, ν3) and ω3 = (ν2, ν4). Consequently, N0 = {ν2}, N∂ = {ν1, ν3, ν4}
and E(ν2) = {ω1, ω2, ω3}. Furthermore, nω1 [ν1] = nω2 [ν2] = nω3 [ν2] = 1 and nω1 [ν2] = nω2 [ν3] =
nω3 [ν4] = −1.

Remark 1.1. The matrix N ∈ Rl,k with components [N]i,j = −nωj [νi] is known as the incidence
matrix of the graph, cf. [LMT13], [DHLT17].

The set of all edges adjacent to the node ν is denoted by

E(ν) = {ω ∈ E : ω = (ν, ν̄), or ω = (ν̄, ν)}.

Furthermore, the nodes are grouped into interior nodes N0 ⊂ N and boundary nodes N∂ = N\N0.
The network notations are illustrated in Fig. 1.1. Throughout the manuscript, we make the
following additional assumptions on the network topology:

Assumption 1.2.

A1) The graph (N , E) is connected, finite and directed.

A2) It holds |E(ν)| = 1 for all boundary nodes ν ∈ N∂.

1.3 Function spaces

Let us now introduce the function spaces defined on the network topology. They consist of
compositions of standard Sobolev spaces for every edge. Note that every edge ω ∈ E can be
naturally identified with the interval (0, lω) with lω being its length, which we tacitly do for all
upcoming integral-expressions. The spatial domain Ω consists then of the union of edges,

Ω = {x : x ∈ ω, for ω ∈ E}.

The space of square-integrable functions on E is then defined as

L2(E) =
{
b : Ω → R with b|ω ∈ L2(ω) for all ω ∈ E

}
.

Given b, b̃ ∈ L2(E), the scalar product and norm then read

〈b, b̃〉E =
∑
ω∈E

〈b|ω, b̃|ω〉ω and ||b||E =
√
〈b, b〉E .
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The subscript for the domain will typically be suppressed, when it is clear from the context.
Further, a broken derivative operator ∂x

′ is introduced as the edgewise weak derivative

(∂x
′b)|ω = ∂xb|ω, for all ω ∈ E .

For convenience, we simplify the notation ∂x
′ to ∂x, as the broken derivative operator is the only

derivative operator we use on the network domain. We then define the space of functions with
square-integrable weak broken derivative on E by

H1
pw(E) =

{
b ∈ L2(E) : ∂xb ∈ L2(E)

}
.

A natural identification of the two introduced spaces with product spaces is given by

L2(E) ∼=
∏
ω∈E

L2(ω) ∼=
∏
ω∈E

L2((0, lω)) and H1
pw(E) ∼=

∏
ω∈E

H1(ω) ∼=
∏
ω∈E

H1((0, lω)).

The function space of piecewise smooth functions are defined accordingly for k ≥ 0,

Ckpw(E) =
{
b : Ω → R with b|ω ∈ Ck(ω) for all ω ∈ E

}
.

Finally, note that the spatial domains for boundary- and coupling-conditions are the sets of
nodes N∂ and N0. We tacitly identify the function space acting on these sets by the Euclidean
vector space R|N∂ | and R|N0| equipped with the standard Euclidean scalar product and norm. By
means of the trace theorem, [Bra07], we can define an operator for the values of the boundary
nodes as follows.

Definition 1.3. For b ∈ H1
pw(E) and a boundary node ν ∈ N∂ = {ν1, . . . , νp}, we denote by b[ν]

the evaluation of the function at the boundary in the sense of the trace theorem. The boundary
trace operator T : H1

pw(E)→ Rp is then introduced componentwise as

[T b]i = nω[νi]b|ω[νi] for ω ∈ E(νi), i = 1, . . . , p and b ∈ H1
pw(E).

Further, boundary efforts and boundary flows eB, fB ∈ Rp associated to all boundary nodes of
the network are introduced with components

eB = [eB[ν1]; . . . ; eB[νp]] , fB = [fB[ν1]; . . . ; fB[νp]] .

The coupling conditions for the network generalization consist of conservation of mass and
continuity of pressure on the inner nodes,∑

ω∈E(ν)

nω[ν]m|ω[ν] = 0 for ν ∈ N0, p|ω[ν] = p|ω̃[ν] for ω, ω̃ ∈ E(ν), ν ∈ N0.

To incorporate them, it is useful to introduce an additional operator acting on the node values.

Definition 1.4. For ω = (ν, ν ′) ∈ E and φ ∈ H1(ω), let φ[ν], φ[ν ′] denote the evaluations of φ in
terms of the trace theorem. Let further, N0 = {ν1, . . . , νq}. Then T N0 : H1

pw(E) → Rq is defined
componentwise by[

T N0b
]
i

=
∑

ω∈E(νi)

nω[νi]b|ω[νi] for i = 1, . . . , q, b ∈ H1
pw(E).
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Instead of incorporating the coupling conditions explicitly by the operator from Definition 1.4,
one can also include them in the ansatz spaces directly. Following [EK18], we define

H1
div(E) =

b ∈ H1
pw(E) :

∑
ω∈E(ν)

nω[ν]b|ω[ν] = 0, for ν ∈ N0

 .

Remark 1.5. By construction, it holds H1
div(E) =

{
b ∈ H1

pw(E) : T N0b = 0
}
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Chapter 2

Approximation procedure

The approximation framework for the damped wave equation on networks is presented in this
chapter. In Section 2.1 the network problem is introduced. Its weak form and Galerkin approx-
imation are then addressed in Section 2.2 and Section 2.3, respectively. The latter can, e.g.,
be realized by finite elements, cf. Section 2.4. The remaining two sections are devoted to the
structure of the Galerkin approximation on the level of coordinate representations, Section 2.5,
and the construction of formulations, in which the algebraic equations relating to coupling- and
boundary-conditions are fully or partly eliminated, Section 2.6.

2.1 Network problem

Let a directed graph (N , E , l) and parameters α, β, r : Ω → R+\{0} be given with clow ≤
α(x), β(x), r(x) ≤ cup for x ∈ Ω and constants clow, cup > 0. The edgewise pressures and mass
flows, pω,mω : [0, T ]×ω → R for ω ∈ E , are assumed to be governed by the damped wave equation

α∂tp
ω(t, x) + ∂xm

ω(t, x) = 0 (2.1a)

β∂tm
ω(t, x) + ∂xp

ω(t, x) = −rmω(t, x), for x ∈ ω, ω ∈ E and t ∈ [0, T ]. (2.1b)

They are interconnected at ν ∈ N0 by the coupling conditions∑
ω∈E(ν)

nω[ν]mω(t, ν) = 0 for ν ∈ N0, pω(t, ν) = pω̃(t, ν) for ω, ω̃ ∈ E(ν), (2.1c)

and one boundary condition for each boundary node ν ∈ N∂ is set, each of one of the types

Type 1: pω(t, ν) = uν(t), Type 2: nω[ν]mω(t, ν) = uν(t), for ω ∈ E(ν), (2.1d)

for t ∈ [0, T ]. To set up a first weak formulation, we introduce auxiliary edgewise boundary
operators and boundary ports.

Definition 2.1 (Edgewise boundary ports). Let ω = (ν, ν̃) ∈ E and φ ∈ H1(w). Let φ[ν] and
φ[ν̃] denote the evaluations of φ at the respective boundary node in the sense of the trace theorem.
Then we define

T ω : H1(ω)→ R2, T ωφ =

[
−φ[ν̃]
φ[ν]

]
.
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Furthermore, boundary efforts and boundary flows eωB(t), fωB(t) ∈ R2 for t ∈ [0, T ], are intro-
duced with components eωB = [eωB[ν̃]; eωB[ν]] and fωB = [fωB[ν̃]; fωB[ν]] associated to the nodes ν, ν̃.

The weak form of the network system then reads:
Find p ∈ C1([0, T ];L2(E)), m ∈ C1([0, T ];H1

pw(E)), eωB ∈ C0([0, T ];R2), fωB ∈ C1([0, T ];R2) and
λν ∈ C0([0, T ];R) for all ω ∈ E , ν ∈ N0 fulfilling for each ω ∈ E

〈α∂tp(t), b1〉E = −〈∂xm(t), b1〉E (2.2a)

〈β∂tm(t), b2〉E = 〈p(t), ∂xb2〉E − 〈rm(t), b2〉E +
∑
ω∈E

eωB(t) · T ωb2|ω (2.2b)

fωB(t) = T ωm|ω(t), for all ω ∈ E , (2.2c)

for all b1 ∈ L2(E), b2 ∈ H1
pw(E), and t ∈ [0, T ], and the coupling conditions∑

ω∈E(ν)

fωB[ν] = 0 for ν ∈ N0, eωB[ν] = λν for ω ∈ E(ν), ν ∈ N0. (2.2d)

The system then has to be complemented with one boundary condition per boundary node and
initial conditions.

Lemma 2.2. Let pω,mω ∈ C1([0, T ]; C1(ω)) for ω ∈ E be a solution of (2.1). Then it also fulfills
the variational principle (2.2) with

eωB =

[
pω[ν ′]
pω[ν]

]
, fωB = T ωmω =

[
−mω[ν ′]
mω[ν]

]
, for ω = (ν, ν ′).

Conversely, any sufficiently smooth solution of the weak problem describes a solution of equa-
tion (2.1).

Proof. Let p,m ∈ C1([0, T ]; C1(E)) be defined edgewise by the solution components pω, mω of (2.1)
for ω ∈ E . Let ω = (ν, ν ′) ∈ E . Testing (2.1b) with b2 ∈ H1(ω) and integration by parts then
yields

〈β∂tm(t), b2〉ω = −〈∂xp(t), b2〉ω − 〈rm(t), b2〉ω =

= 〈p(t), ∂xb2〉ω − 〈rm(t), b2〉ω −
(
pω[ν ′](t)b2[ν ′]− pω[ν](t)b2|ω[ν]

)
= 〈p(t), ∂xb2〉ω − 〈rm(t), b2〉ω + eωB(t) · T ωb2|ω,

i.e., equation (2.2b). Equation (2.2a) and (2.2c) follow immediately from the strong form. Sum-
marizing, this shows that a strong solution fulfills the variational principle. On the other hand,
given a solution of (2.2) with p,m ∈ C1([0, T ]; C1(E)), we can go through the reverse steps to show
the converse result.
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2.2 Weak form

Throughout, we assume that at each boundary node ν ∈ N∂ one of the following boundary
conditions is prescribed, as well as initial conditions given as follows:

Type 1: eB[ν] = uν ∈ C([0,∞),R), Type 2: fB[ν] = uν ∈ C1([0,∞),R)

¯
e(0) =

¯
e0, uν : [0, T ]→ R given such that

[
T
T N0

]
e2(0) =

[
fB(0)

0

]
,

and at least one ν ∈ N∂ with boundary conditions of Type 1. (2.3)

An equivalent, more compact formulation of (2.2) reads as follows.

System 2.3. Find p ∈ C1([0, T ];L2(E)), m ∈ C1([0, T ];H1
pw(E)), eB ∈ C0([0, T ];R|N∂ |),

fB ∈ C1([0, T ];R|N∂ |) and λ ∈ C0([0, T ];R|N0|) fulfilling

〈α∂tp(t), b1〉E = −〈∂xm(t), b1〉E
〈β∂tm(t), b2〉E = 〈p(t), ∂xb2〉E − 〈rm(t), b2〉E + λ(t) · T N0b2 + eB(t) · T b2

0 = T N0m(t)

fB(t) = T m(t)

for all b1 ∈ L2(E), b2 ∈ H1
pw(E), and t ∈ [0, T ]. Closing conditions (2.3) are posed.

The Hamiltonian and the total mass of the network system read

H([p;m]) =

〈
1

2
(αp2 + βm2), 1

〉
E

=
∑
ω∈E

∫
ω

1

2
(αp2 + βm2)dx

M([p;m]) = 〈αp, 1〉E =
∑
ω∈E

∫
ω

αpdx.

As we show now, the variational principle of System 2.3 readily implies dissipation of the Hamil-
tonian and mass conservation.

Theorem 2.4 (Energy-dissipation equality). For any solution of the weak form System 2.3, it
holds for t ∈ [0, T ]

d

dt
H([p(t);m(t)]) = eB(t) · fB(t)− 〈rm(t),m(t)〉E < eB(t) · fB(t).

Proof. By elementary calculations and the variational principle of System 2.3, it holds

d

dt

1

2

∫
ω

αp2 + βm2dx =

∫
ω

(α∂tp)p+ (β∂tm)mdx

=

∫
ω

(−∂xm)p+ (p∂xm− rm2)dx+ eωB · T ωm|ω

= −
∫
ω

rm2dx+ eωB · T ωm|ω.
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Summing over all edges ω ∈ E , using the coupling conditions of System 2.3 and the definition of
the Hamiltonian H, we get

d

dt
H([p;m]) =

∑
ω∈E

d

dt

1

2

∫
ω

(αp2 + βm2)dx =
∑
ω∈E

∫
ω

−rm2dx+ eωB · T ωm|ω

= −
〈
r,m2

〉
E + eB · T m = −

〈
r,m2

〉
E + eB · fB < eB · fB.

Theorem 2.5 (Global mass conservation). For any solution of the weak form, System 2.3, it
holds for t ∈ [0, T ],

d

dt
M([p(t);m(t)]) =

∑
ν̄∈N∂

fB[ν̄](t).

Proof. The change of mass in time on one edge ω = (ν, ν̃) is given as

d

dt

∫
ω

αp dx = −
∫
ω

∂xmdx = −m[ν̃] +m[ν] = fωB[ν̃] + fωB[ν] = fωB · [1; 1].

By summing over all edges ω ∈ E and utilizing the coupling conditions of System 2.3, we can then
conclude

d

dt
M([p;m]) =

d

dt
〈αp, 1〉 =

∑
ω∈E

∫
ω

∂t(αp)dx =
∑
ω∈E

fωB · [1; 1] =
∑
ν̄∈N∂

fB[ν̄].

Moreover, existence of unique steady states as well as exponential decay to steady states
for constant boundary data have been shown in [EK18]. The respective results are shown by
variational arguments, which carry over to appropriate Galerkin approximation and are uniform
with respect to the discretization parameters. We therefore only state them on this level, cf.
Lemma 2.12 and Lemma 2.13. Let us mention that also a local mass conservation property holds
for the continuous solution.

Lemma 2.6. Let ω ∈ E, and [w1, w2] ⊂ ω be a subpart of the edge. Then it holds for solutions of
System 2.3 that

d

dt

∫
[w1,w2]

αp(t) dx = m(t)[w1]−m(t)[w2].

Proof. The assertion follows by testing the first equation of the weak form with b1 = χ[w1,w2], the
indicator function of the domain [w1, w2].
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2.3 Galerkin approximation

Space discretizations as well as reduced models are constructed by Galerkin approximation of Sys-
tem 2.3. The main tool for the derivation of the theoretical results are the following compatibility
conditions on the ansatz spaces, see [EKLS+18].

Assumption 2.7 (Compatibility of spaces for System 2.9). Let V = V1 ×V2, and let V1 ⊂ L2(E)
and V2 ⊂ H1

pw(E) be finite dimensional subspaces fulfilling the compatibility conditions

A1) V1 = ∂xV2, with ∂xV2 = {ξ : It exists ζ ∈ V2 with ∂xζ = ξ}

A2) 1E ∈ V1, with 1E : Ω → R and 1E(x) = 1 for x ∈ Ω

A3) {b2 ∈ H1
pw(E) : ∂xb2 = 0} ⊂ V2.

Remark 2.8. The space {b2 ∈ H1
pw(E) : ∂xb2 = 0} in Assumption 2.7-(A3) is spanned by the

edgewise constant functions, i.e., its dimension is equal to the number of edges.

We are now in the position to set up the Galerkin approximation for the network system.

System 2.9 (Galerkin-approximation of System 2.3). Find p ∈ C1([0, T ];V1), m ∈ C1([0, T ];V2),
eB ∈ C0([0, T ];R|N∂ |), fωB ∈ C1([0, T ];R|N∂ |) and λ ∈ C0([0, T ];R|N0|) fulfilling

〈α∂tp(t), b1〉E = −〈∂xm(t), b1〉E
〈β∂tm(t), b2〉E = 〈p(t), ∂xb2〉E − 〈rm(t), b2〉E + λ(t) · T N0b2 + eB(t) · T b2

0 = T N0m(t)

fB(t) = T m(t)

for all b1 ∈ V1, b2 ∈ V2 and t ∈ [0, T ] and closing conditions (2.3). Assumption 1.2 and Assump-
tion 2.7 are supposed to hold.

With essentially the same arguments as on the continuous level, we can shown energy dissipa-
tion and global mass conservation. We therefore state the results without repeating the proofs.

Theorem 2.10 (Energy-dissipation equality). For any solution of System 2.9, it holds for t ∈
[0, T ],

d

dt
H([p(t);m(t)]) = eB(t) · fB(t)− 〈rm(t),m(t)〉E < eB(t) · fB(t).

Theorem 2.11 (Global mass conservation). For any solution of System 2.9 it holds for t ∈ [0, T ],

d

dt
M([p(t);m(t)]) =

d

dt

∑
ω∈E

∫
ω

p(t)dx =
∑
ν̄∈N∂

fB[ν̄](t).

Note that the global mass conservation is ensured by Assumption 2.7-(A2). Local mass con-
servation can, however, in general not be shown in the same way as done on the continuous level,
cf. Lemma 2.6, and does not necessarily hold. On the other hand, the assumptions are sufficient
to show exponential decay of the energy with constants uniform in the discretization parameters.
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Lemma 2.12 (Uniform exponential stability). Let all boundary conditions of System 2.9 be zero,
i.e., uν ≡ 0 for all ν ∈ N∂. Then it holds for the solution

H([p(t);m(t)]) ≤ C exp(−γ(t− s))H([p(s);m(s)]), for t ≥ s ≥ 0,

with constants C, γ > 0, which are independent of the discretization parameters and the closing
conditions (2.3).

The result has been stated in [EKLS+18, Lemma A.2.6] and [EK18, Theorem 7.4]. By the help
of exponential decay, one can also derive the following, see [EKLS+18, Lemma A.2.7] and [EK18,
Theorem 6.3].

Lemma 2.13 (Unique steady states). Let all boundary conditions of System 2.9 be chosen constant
in time, i.e., uν ≡ constant for all ν ∈ N∂. Then the system omits a unique steady state, and the
solution of the system converges to this steady state for any choice of initial conditions in (2.3).

Remark 2.14. With the help of the uniform exponential stability, uniform a-priori error bounds
have been derived for the Galerkin approximation, System 2.9, see [EK18, Theorem 7.5] and
[EK18, Theorem 8.5]. Given the continuous solution, i.e., the solution of System 2.3, is smooth
enough, the error of the Galerkin-approximation can be bounded pointwise in time by appropriate
norms of the continuous solution and its time derivative.

2.4 Finite element spaces

As a particular choice of approximation spaces fulfilling Assumption 2.7, we employ mixed finite
element methods. Given an interval (0, lω), a natural choice of ansatz spaces are piecewise polyno-
mial functions. As the identification of edges ω with intervals (0, lω) is possible, we can similarly
construct ansatz functions, which are piecewise polynomial on each edge. Given a uniform parti-
tioning Tω = {Tω,k : k = 1, . . . , Kω} for the edge ω, where Tω,k can be identified with sub-intervals
of (0, lω), we define

Qq(Tω,k;R) =

{
φ : Tω,k → R : φ(x) =

q∑
j=0

xjξj, for x ∈ Tω,k, with ξj ∈ R

}
Qq(Tω) =

{
φ : ω → R : φ|Tω,k ∈ Qq(Tω,k;R), for k = 1 . . . , Kω

}
.

For the partition of all edges TE = {Tω : ω ∈ E} we define spaces of piecewise polynomial ansatz
functions on the network

Qq(TE) =
{
φ : Ω → R : φ|ω ∈ Qq(Tω), for ω ∈ E

}
, Pq(TE) = Qq(TE) ∩H1

pw(E).

Note that Qq(TE) is by construction a subspace of L2(E), but not of H1
pw(E). The latter only

contains functions continuous along each edge, cf. [Bra07]. Our particular choice of ansatz spaces
for the space discretization is

V1 = Q0(TE), V2 = P1(TE), (2.4)

which clearly fulfill the Assumptions 2.7.

Remark 2.15. Similarly, edgewise higher-order polynomial ansatz spaces fulfilling Assumption 2.7
can be conveniently implemented by employing edgewise Lagrange polynomials for the pressure and
edgewise Legendre polynomials for the mass flow, as done in [EKLS20].
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2.5 Coordinate representations

We can characterize the Galerkin-approximation by differential-algebraic equations in RN by con-
sidering coordinate representations.

Definition 2.16. Let V = V1 × V2, and let bases b1
i , . . . , b

Ni
i of Vi be fixed for i = 1, 2. For

¯
e = [p;m] ∈ V we define the coordinate representation e = [e1; e2] ∈ RN , with N = N1 +N2, by

p(t) =

N1∑
l=1

bl1e
l
1(t), m(t) =

N1∑
l=1

bl2e
l
2(t), ei = [e1

i ; . . . ; e
Ni
i ] ∈ RNi .

The transformation from the coordinate representation e ∈ RN to the function
¯
e = [p;m] ∈ V is

defined as

Ψ : RN → V , Ψ(e) =

[∑N1

l=1 b
l
1e
l
1(t)∑N2

l=1 b
l
2e
l
2(t)

]
=

[
p
m

]
.

The system matrices are defined by

M1 = [〈αbn1 , bm1 〉E ]m,n=1,...,N1
, M2 = [〈βbn2 , bm2 〉E ]m,n=1,...,N2

, M =

[
M1

M2

]
R = [〈rbn2 , bm2 〉E ]m,n=1,...,N2

, J = [〈−∂xbn2 , bm1 〉E ]m=1,...,N1,n=1,...,N2

L2 =
[
T b1

2, . . . , T b
N2
2

]T
, K2 =

[
T N0b1

2, . . . , T N0bN2
2

]T
L =

[
0N1,p

L2

]
∈ RN,p, K =

[
0N1,q

K2

]
∈ RN,q,

with p = |N∂| and q = |N0|.

System 2.17 (Coordinate representation of System 2.9). Find e ∈ C1([0, T ];RN),
eB ∈ C0([0, T ];Rp), fB ∈ C1([0, T ];Rp), λ ∈ C0([0, T ];Rq) with

M
d

dt
e(t) =

[
J

−JT −R

]
e(t) + Kλ(t) + LeB(t) (2.5a)

0 = KTe(t) (2.5b)

fB = LTe(t) (2.5c)

and closing conditions as in (2.3).

With the help of Assumption 2.7-(A3), the following can be shown, see [EKLS+18].

Lemma 2.18. Let the system matrices of System 2.17 be given. Let L̃2 ∈ RN2,p−1 be obtained by
removing one column in L2. Then the matrices [−JT ,K2, L̃2] and [K2,L2] have both full column
rank.

As a direct consequence of Lemma 2.18, one can show that System 2.17 is a differential-
algebraic system with differentiation index 2 in so-called Hessenberg form. The lemma can also
be used to proof Lemma 2.13 on the level of coordinate representations.
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2.6 Elimination of Lagrange multipliers

For an analysis of differential-algebraic systems, it is useful to decouple the equations into their
underlying ordinary differential equations and algebraic equations, cf. [LMT13], [KM06]. In our
systems, the algebraic equations stem from coupling- and boundary-conditions. We derive more
compact formulations, which incorporate the coupling-conditions into the ansatz spaces for all
stages, i.e., for the weak formulation, the Galerkin approximation with respective compatibility
conditions, and for the coordinate representation. Finally, the underlying ordinary differential
equation is constructed for the coordinate representation.

Weak form

Recall from Remark 1.5 that H1
div(E) =

{
b ∈ H1

pw(E) : T N0b = 0
}

. As an immediate consequence,
System 2.3 can be reduced to the upcoming more compact formulation.

System 2.19. Find p ∈ C1([0, T ];L2(E)), mD ∈ C1([0, T ];H1
div(E)), eB ∈ C0([0, T ];R|N∂ |), fB ∈

C1([0, T ];R|N∂ |) fulfilling

〈α∂tp(t), b1〉E = −〈∂xmD(t), b1〉E
〈β∂tmD(t), b2〉E = 〈p(t), ∂xb2〉E − 〈rmD(t), b2〉E + eB(t) · T b2(t)

fB(t) = T mD(t)

for all b1 ∈ L2(E), b2 ∈ H1
div(E) and t ∈ [0, T ] with one closing condition for each boundary node,

each of one of the following types

Type 1: eB[ν] = uν , Type 2: fB[ν] = uν , for ν ∈ N∂.

Galerkin approximation

As the Lagrange multipliers λν for ν ∈ N0 have been removed in System 2.19, Assumption 2.7
has to be adapted.

Assumption 2.20 (Compatibility of spaces for System 2.21). Let V = V1×V2, and let V1 ⊂ L2(E)
and V2 ⊂ H1

div(E) be finite dimensional subspaces fulfilling the compatibility conditions

A1) V1 = ∂xV2, with ∂xV2 = {ξ : It exists ζ ∈ V2 with ∂xζ = ξ}

A2) 1E ∈ V1, with 1E : Ω → R and 1E(x) = 1 for x ∈ Ω

A3) {b2 ∈ H1
div(E) : ∂xb2 = 0} ⊂ V2.

Note that the space {b2 ∈ H1
div(E) : ∂xb2 = 0} is finite dimensional and in particular a subspace

of the space appearing in Assumption 2.7-(A3).

System 2.21 (Galerkin approximation of System 2.19). Find p ∈ C1([0, T ];V1), mD ∈ C1([0, T ];V2),
eB ∈ C0([0, T ];R|N∂ |) and fB ∈ C1([0, T ];R|N∂ |) fulfilling

〈α∂tp(t), b1〉E = −〈∂xmD(t), b1〉E
〈β∂tmD(t), b2〉E = 〈p(t), ∂xb2〉E − 〈rmD(t), b2〉E + eB(t) · T b2(t)

fB(t) = T mD(t)

28



for all b1 ∈ V1, b2 ∈ V2 and closing conditions (2.3). Assumption 1.2 and Assumption 2.20 are
supposed to hold.

The results of Lemma 2.13, Lemma 2.12 and Remark 2.14 still can be shown to hold true for
the solutions of System 2.21, see [EK18]. In fact, an equivalence of solutions of System 2.9 and
System 2.21 and can be derived. This becomes evident by the upcoming discussion on condensed
coordinate representations.

Coordinate representation

Formulations with (partially) removed algebraic equations are constructed here on the algebraic
level by post-processing the coordinate representation System 2.17. In particular, Corollary 2.23
states the coordinate representation for System 2.19. The underlying ordinary differential equa-
tions are constructed in Lemma 2.22 for a special case and in Lemma 2.25 for the general case,
respectively. The latter highlights the different roles of boundary conditions of Type 1 and Type 2
in (2.3).

Let us note that our algebraic construction is similar to the one in [GSW13], [HSS08], where
the decoupling of differential-algebraic equations with Hessenberg-index-2-structure is explained.
We also refer to [BH15], where the algebraic structure stemming from the discretization of essential
boundary conditions is discussed.

Lemma 2.22. Let in System 2.17 all boundary conditions in (2.3) be of Type 1, i.e., eB = u for
u : [0, T ]→ Rp, and the system may be rewritten as

M
d

dt
e(t) =

[
J

−JT −R

]
e(t) + Kλ(t) + Lu(t)

0 = KTe(t).

Let W2 ∈ RN2,N2−|N0| as a basis matrix of ker(KT
2 ), such that

W =

[
IN1

W2

]
fulfills KTW = 0.

Let further

JD = JW2, RD = WT
2 RW2, MD = WTMW, LD = WTL.

Then the system can be equivalently characterized by the underlying ordinary differential

MD
d

dt
eD(t) =

[
JD

−JTD −RD

]
eD(t) + LDu(t),

together with the algebraic equations

e(t) = WeD(t), λ(t) = −
(
KTM−1K

)−1
KTM−1

([
J

−JT −R

]
WeD(t) + Lu(t)

)
.
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Proof. By (2.5b), it follows e(t) ∈ ker(KT ). Thus, for W+ being the Moore-Penrose pseudoinverse
of W, and eD(t) := W+e(t), it holds

e(t) = WW+e(t) = WeD(t).

By pre-multiplying (2.5a) with WT , and inserting the latter relation for e, we obtain the underlying
ordinary differential equation for eD, which shows the first part.

On the other hand, when (2.5a) is pre-multiplied by KTM−1, the equation can be solved for
λ, as K has full column rank, cf. Lemma 2.18. This gives

λ(t) =
(
KTM−1K

)−1
(
d

dt
(KTe(t)−KTM−1

[
J

−JT −R

]
e(t)−KTM−1Lu(t)

)
.

The first summand in the brackets is zero, as seen by differentiating (2.5b). Inserting again the
representation e(t) = WeD(t) then finishes the proof.

The algebraic counterpart of System 2.21 in the general case can be derived in the same manner.
But as can be seen below, there remain algebraic coupling conditions relating to the boundary
terms.

Corollary 2.23 (Coordinate representation of System 2.21). Let System 2.17 be given, and let W,
JD, RD, MD and LD be defined as in Lemma 2.22. Then the solution component e ∈ C1([0, T ];RN)
of System 2.17 is equally characterized by e = WeD, closing conditions (2.3) and

MD
d

dt
eD(t) =

[
JD

−JTD −RD

]
eD(t) + LDeB(t)

fB(t) = LT
DeD(t).

Remark 2.24. A basis matrix W, as utilized in Lemma 2.22 and Corollary 2.23, can typically be
constructed analytically in very effective manner for our systems. This is, because every algebraic
equation in (2.5b) relates to one coupling condition at one inner node.

To derive the underlying ordinary differential equation in the general case, not only algebraic
manipulations, but also a differentiation step is involved. Therefore, the solution then can depend
on the derivative of the boundary data. Just to simplify the notation, we assume the boundary
nodes to be grouped into Type 1 - and Type 2 -boundary conditions, respectively, in the upcoming
result.

Lemma 2.25. Let System 2.17 be given with pa boundary conditions of Type 1, pb boundary
conditions of Type 2, where pa + pb = p, and let the boundary conditions u be grouped as

u(t) =

[
ua(t)
ub(t)

]
, ua(t) ∈ Rpa , ub(t) ∈ Rpb .

Let

Sa =

[
Ipa

0pb,pa

]
, Sb =

[
0pa,pb
Ipb

]
and Lb = LSb.
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Let W2 ∈ RN2,N2−(|N0|+pb) be a basis matrix of ker([K2,L2Sb]
T ), such that

W =

[
IN1

W2

]
fulfills [K,Lb]

TW = 0.

Define further,

JD = JW2, RD = WT
2 RW2, MD = WTMW

LD = WTLSa, F = Lb

(
LT
b Lb

)−1
STb .

Then the system can be equivalently characterized by the underlying ordinary differential equation

MD
d

dt
eD(t) =

[
JD

−JTD −RD

]
eD(t) + LDua(t)

−WT

[
J

−JT −R

]
Fub(t) + WTMF

d

dt
ub(t),

together with the algebraic equations

eG(t) = Fub(t), e(t) = WeD(t) + eG(t), eB(t) = [ua(t);µ(t)]

λ(t) = −
(
KTM−1K

)−1
KTM−1

([
J

−JT −R

]
e(t) + LeB(t)

)
µ(t) = −

(
LT
b M−1Lb

)−1
LT
b M−1

([
J

−JT −R

]
e(t) + LeB(t)

)
+
(
LT
b MLb

)−1
F
d

dt
ub(t).

The proof is similar to the one of Lemma 2.22. We refer to [GSW13], [HSS08] and [KM06] for
detailed discussions on the construction of underlying ordinary differential equations for differential-
algebraic equations in Hessenberg-form.

Remark 2.26. By construction, the boundary conditions in Lemma 2.25 can be expressed by the
two equations

STa eB(t) = ua(t) and STb fB(t) = ub(t), for t > 0.

31



Chapter 3

Realization of model reduction

The starting point for this section is a high-fidelity, but also high-order space discretization by
finite elements, Section 2.4, which we will refer to as full order model. The subsequent structured
model reduction of the full order model is the focus here. The upcoming derivations are mainly
made in the algebraic setting of coordinate representations, and the results are framed in the
wording of model reduction, cf. [BBF14], [MS05], [Ant05]. The full order model is described by
System 2.17, where we for ease of presentation assume all boundary conditions to be of Type 1 in
(2.3). We relate to the boundary conditions as input u, and take the boundary flows as output y.
By that, the input and output fully characterize the exchange of the system over the boundaries.

System 3.1 (Full order model). The full order model, describing the input-output relation u 7→ y,
reads

E
d

dt
x(t) = Ax(t) + Bu(t)

y(t) = BTx(t), x(0) = x0,

with x = [e1; e2;λ] and E,A ∈ RN+q,N+q, B ∈ RN+q,p defined by the matrices before System 2.17
as

E =

M1

M2

0q

 , A =

 J
−JT −R K2

KT
2

 , B =

[
L

0q,p

]
.

Let Ψ : RN → Vf be the transformation from coordinate representation to the related function space
V = Vf as in Definition 2.16. We suppose Ψ(RN) fulfills Assumption 2.7 and u ∈ C([0, T ];Rp).

Remark 3.2. The initial conditions for the Lagrange-multiplier λ in System 3.1 are assumed to
be chosen consistent to the characterization in Lemma 2.22 throughout this part, as other choices
would lead to inconsistencies.

It is evident from our discussion throughout this part that System 3.1 is the coordinate repre-
sentation of a Galerkin approximation as in System 2.9 with an ansatz space Vf fulfilling Assump-
tion 2.7. The first crucial observation for us is that compatibility conditions of the ansatz space
Vf for the full order model can be transferred to reduced order space Vr by imposing compatibility
conditions only depending on these two spaces.
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Lemma 3.3. Let Assumption 2.7 hold for Vf = Vf,1 × Vf,2. Let Vr = Vr,1 × Vr,2 ⊂ Vf fulfill

1. Vr,1 = ∂xVr,2, with ∂xVr,2 = {ξ : It exists ζ ∈ Vr,2 with ∂xζ = ξ}

2. 1E ∈ Vr,1, with 1E : Ω → R and 1E(x) = 1 for x ∈ Ω

3. {b2 ∈ V2,f : ∂xb2 = 0} ⊂ Vr,2.

Then Vr fulfills Assumption 2.7.

The proof of the latter result is straight-forward, and therefore omitted.

Remark 3.4. The Lagrange multiplier λ(t) ∈ Rq is not reduced in the model reduction step. If
desired, it can be eliminated, partly or fully, beforehand in the full order model, cf. Corollary 2.23.
This still gives an input-output system as in System 3.1, but with a lower-dimensional Lagrange
multiplier.

Typically it holds for N = dim(Vf ) and n = dim(Vr) that n � N . We will characterize the
transition from the space Vf to the space Vr by a reduction basis V ∈ RN+q,n+q in the algebraic
setting. Then the assumptions on Vr of Lemma 3.3 can directly be recast as assumptions on V.

Assumption 3.5 (Compatibility of reduction basis). For System 3.1 given, let the reduction basis
V have block structure

V =

V1

V2

Iq

 , V1 ∈ RN1,n1 , V2 ∈ RN2,n2 , n = n1 + n2.

Let further, o1 ∈ RN1,1 be the coordinate representation of 1E : Ω → R, 1E(x) = 1 for x ∈ Ω. Then
V is assumed to fulfill

A1) im (M1V1) = im (JV2)

A2) o1 ∈ im (V1)

A3) ker(J) ⊂ im (V2).

System 3.6 (Reduced order model). Given the full order model in System 3.1 and a reduction
basis V fulfilling Assumption 3.5, the reduced order model is defined by

Er
d

dt
xr(t) = Arxr(t) + Bru(t)

yr(t) = BT
r xr(t), xr(0) = V†x0,

with xr = [er,1; er,2;λ] and Er,Ar ∈ Rn+q,n+q, Br ∈ Rn+q,p. Further, V† denotes the pseudo-
inverse of V w.r.t. the energy scalar product and

Er =

Mr,1

Mr,2

0q

 = VTEV, Ar =

 Jr
−JTr −Rr Kr,2

KT
r,2

 = VTAV

Br =

[
Lr

0q,p

]
= VTB, V† =

VT

M1

M2

Iq

V

−1

VT

M1

M2

Iq

 .
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Remark 3.7. The initial conditions as chosen in System 3.6 by the pseudo-inverse V† minimizes
the projection-error in the energy-scalar product, i.e., for

x̃0 = V
(
V†x0

)
it holds x̃0 = argmin

x∈im(V)

(x0 − x)T

M1

M2

Iq

 (x0 − x) .

As is evident from Lemma 3.3, System 3.6 is again a coordinate representation of a compatible
Galerkin approximation, i.e., of System 2.9 fulfilling Assumptions 2.7. Therefore, all results can
be transferred to the algebraic level. Let us state the algebraic counterpart to Theorem 2.10 and
Theorem 2.11.

Corollary 3.8 (Energy dissipation equality and mass conservation). Let for System 3.6 the Hamil-
tonian Hr : Rn → R and the total mass Mr : Rn → R be defined by

Hr(er) =
1

2
eTr Mrer, Mr(er) = oTr,1Mr,1er,1,

with or,1 = V†1o1 ∈ Rn1 the reduced coordinate representation of 1E ∈ V1, cf. Assumption 3.5.
Then it holds

d

dt
Hr(er(t)) = u(t) · yr(t)− eTr,2(t)Rrer,2(t) < u(t) · yr(t)

d

dt
Mr(er(t)) = or,1 · yr(t)

Proof. The dissipation equality for the Hamiltonian can be derived conveniently from the algebraic
representation by basic calculations,

d

dt
Hr(er(t)) =

d

dt
er(t) · ∇erHr(er(t)) =

(
Mr

d

dt
er(t)

)
· er(t)

=

([
Jr

−JTr −Rr

]
er(t) + Lru(t)

)
· er(t) = −er,2(t)TRrer,2(t) + u(t) · yr(t).

The mass conservation is most appropriately shown by changing from coordinate representations
to the function space setting. We refer to Theorem 2.11 and [EKLS+18, Lemma A3.3].

Clearly, the existence of unique steady states and the exponential stability with stability con-
stants uniform in the reduction parameters also hold by Lemma 2.12 and Lemma 2.13.

3.1 Compatible basis

For our approach, we consider the construction of the reduced subspace Vr = Vr,1 × Vr,2 in the
form

Vr,1 =W1 + Z1, Vr,2 =W2 + Z2.

A standard model reduction procedure is applied to construct the high-fidelity spaces W ⊂ Vf ,
from which we extract separate bases Wi ⊂ Vf,i for i = 1, 2. The reduction spaces are comple-
mented by spaces Zi to guarantee the compatibility conditions of Lemma 3.3. Our procedure thus
consists of several steps.
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Stable splitting with partial compatibility

Starting from unstructured bases, our first aim is to extract block bases Wi ∈ RNi,n̄i with n̄i � Ni

for i = 1, 2, fulfilling Assumption 3.5-(A1). Defining Wi = im (Wi), this may be expressed as

im (M1W1) = im (JW2), or equivalently M1W1 = JW2. (3.1)

Here, we tacitly identified the matrices M1,J with their related linear functions. We consider two
different strategies to reach this aim.

Remark 3.9. Notably, it will turn out that the situation is simpler in the linear case, when
moment matching is applied. Nevertheless, we keep the discussion more general here, as we will
need it later in Part I.B, but also if other model reduction procedures for the linear model are
applied.

Strategy 1:

One possibility is to base the whole construction on an unstructured high-fidelity basis W̃1 ∈ RN1,ñ1

relating to the first component e1 only. Let us introduce a pseudo-inverse of [J; KT
2 ] as[

J
KT

2

]†
= M−1

2

[
JT K2

]([ J
KT

2

]
M−1

2

[
JT K2

])−1

. (3.2)

By Lemma 2.18, one can see that it is well-defined. The pseudo-inverse is related to a minimization
problem. Given g1 ∈ RN1 , it holds

g2 =

[
J

KT
2

]†
g1, solves g2 = argmin

õ2∈RN2

(
õT2 M2õ2

)
s.t.

[
J

KT
2

]
õ2 =

[
M1g1

0q,1

]
.

The bases fulfilling the compatibility condition (3.1) are then chosen as

W1 := W̃1 and W2 :=

[
J

KT
2

]†
W1.

The main issue in this strategy is that we do not directly control the second solution component
e2 by a high-fidelity basis, but need to somehow encode enough fidelity in W̃1 for both components.
We follow this approach in Part I.B.

Strategy 2:

Another possibility is to base the procedure on a high-fidelity basis W̃ ∈ RÑ,ñ relating to both so-
lution components e1, e2. Then we first need to extract basis matrices W̃i for the sub-components
ei for i = 1, 2. The naive splitting W̃ = [W̃1; W̃2], followed by a separate orthonormalization,
is known to be very sensitive to numerical errors. We therefore apply the cosine-sine splitting
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instead, [GVL96], [VL85]. For the matrices W̃1, W̃2, the related cosine-sine decomposed is given
as [

W̃1

W̃2

]
=

[
W̄1

W̄2

] [
C
S

]
XT ,

with U1,U2 and X orthogonal matrices, and C, S diagonal matrices with [C]ii + [S]ii = 1. Note
that the cosine-sine decomposition can be computed in a numerical efficient and stable manner.
We present in Algorithm 3.10 an implementation, which takes into account non-standard scalar
products.

Algorithm 3.10 (Stable splitting via cosine-sine decomposition).

function [Wb1,Wb2]=split(W1,W2,M1,M2,tolerance)

% compute cholesky factorizations Mi=Ri*Ri’

R1 = chol(M1); R2 = chol(M2);

% compute generalized svd

[U1,U2,X,C,S] = gsvd(R1*W1,R2*W2,0); % 0: economic version

% eliminate dependent columns

kc = find(diag(C)>tolerance);

ks = find(diag(S)>tolerance);

Wb1 = R1\U1(:,kc); Wb2 = R2\U2(:,ks);

end

Having constructed block bases W̄i ∈ RNi,n̄i for i = 1, 2 by Algorithm 3.10, let W̄i = im
(
W̄i

)
.

Next, a post-processing step is needed to guarantee the compatibility condition (3.1). The easiest
choice is to set

W1 := W̄1 + M−1
1 JW̄2, W2 := W̄2 +

[
J

KT
2

]†
W̄1.

We refer to [EKLS20], where this has been applied.

Remark 3.11. Strategy 2 seems not optimal for truncation-based methods like proper orthogonal
decomposition in terms of reducing the order most efficiently. Let us therefore point towards
a related discussion for a slightly simpler related problem. Given a Hamiltonian system in the
following canonical form

d

dt
x(t) =

[
0 IN̄
−IN̄ 0

]
∇xH(x(t)), with H : R2N̄ → R,

the so-called symplectic model order reduction aims for a symplectic reduction basis V ∈ R2N̄,2n̄

with n̄� N̄ . This means, one seeks for a reduction basis fulfilling

VT

[
0 IN̄
−IN̄ 0

]
V =

[
0 In̄
−In̄ 0

]
.

Both greedy and singular value decomposition based approaches have been proposed, see [PM16],
[AH17], [AH19], to accomplish that. The adaption of the ideas from symplectic model reduction
to our problem of finding a basis fulfilling (3.1) seems possible. We, however, do not pursue this
direction here.
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Complementing spaces and compatibility

Let us assume high-fidelity spaces Wi, i = 1, 2, fulfilling the compatibility condition (3.1), have
been constructed by either of the former strategies. Let o1 be as in Assumption 3.5, and set

o2 =

[
J

KT
2

]†
o1, with

[
J

KT
2

]†
as in (3.2).

We then define the complementing spaces Zi and the overall reduction space Vr,i by

Z1 = span{o1}, Z2 = span{o2}+ ker(J)

Vr,1 =W1 + Z1, Vr,2 =W2 + Z2

Vi as basis matrix to Vr,i for i = 1, 2. (3.3)

The orthogonalization is done w.r.t. the related energy scalar products (a,b) 7→ a · (Mib) for
i = 1, 2 throughout, see Algorithm 3.12.

Algorithm 3.12 (Orthogonalization).

function Vo=ortho(W,U,Ms,tolerance)

% constructs orthogonal basis of ’W’, orthogonal to im(U), in scalar

% product induced by ’Ms’

for k = 1:size(W,2)

% orthogonalize to Uj

for r=1:2 % use re-orthonormalization

for j = 1:size(U,2)

hk1j = U(:, j)’ * Ms * W(:, k);

W(:, k) = W(:, k) - U(:, j) * hk1j;

end

end

% orthogonalize to previous Wj

for r=1:2

for j = 1:k-1

if d(j)<tolerance, continue; end

hk1j = W(:, j)’ * Ms * W(:, k);

W(:, k) = W(:, k) - W(:, j) * hk1j;

end

end

% normalize

d(k) = sqrt(W(:,k)’ * Ms * W(:,k));

if d(k)>=tolerance,

W(:, k) = W(:, k) / d(k);

end

end

% only keep relevant vectors

Vo = W(:,find(d>tolerance));

end
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By construction, V1,V2 then fulfill Assumption 3.5. Algorithm 3.13 summarizes their con-
struction from bases W1,W2 fulfilling the partial compatibility (3.1).

Algorithm 3.13 (Modifications).

function [V1,V2]=modify(W1,W2,M1,M2,J,K2,o1,KernelJ,tolerance)

V1 = ortho([W1,M1\(J*W2),o1],[],M1,tolerance);

S = [J’,K2];

V2 = M2\(S*((S’*(M2\S))\[M1*V1;zeros(size(K2,2),size(V1,2))]));

V2 = ortho([KernelJ,V2],[],M2,tolerance);

end

3.2 Moment matching

Next, we discuss the construction ofW1,W2 by moment matching, cf. [Ant05], [Gri97]. Given the
transfer function s 7→ (sE−A)−1B, the moments kj around an expansion frequency s0 ∈ C read

kj = −
[
A−1
s0

E
]j

A−1
s0

B, with As0 = A− s0E, for j ≥ 0.

Let us separate these moments in block structure according to System 3.1, as

kj =

µj

ηj
νj

 , with µj ∈ RN1,p, ηj ∈ RN2,p, νj ∈ Rq,p.

The zeroth moment is then characterized by

−s0M1 µ0 + Jη0 = 0

−s0M2 η0 − JT µ0 − Rη0 + K2 ν0 = −L2

KT
2 η0 = 0. (3.4a)

The recursion for j ≥ 1 reads accordingly

−s0M1 µj + Jηj = M1 µj−1

−s0M2 ηj − JT µj − Rηj + K2 νj = M2 ηj−1

KT
2 ηj = 0. (3.4b)

As a direct consequence of Lemma 2.18, one can see that As0 as above for s0 ≥ 0 is regular, which
shows the well-posedness of all moments.

Lemma 3.14. The recursion (3.4) is well-defined for any s0 ≥ 0 and j ≥ 0.

The moment matching method is a particularly suitable choice, as in this case the splitting
into subspaces W1, W2 fulfilling (3.1) is almost immediate.

Lemma 3.15. Let µj and ηj for j = 0, . . . , L, be defined by the recursion (3.4). Let further,

WL
1 = span{µ0, . . . ,µL}, WL

2 = span{η0, . . . ,ηL}.

Then for s0 > 0, it holds M1WL
1 = JWL

2 , whereas for s0 = 0 it is instead M1WL−1
1 = JWL

2 .
Moreover, KT

2 ηj = 0 for any choice of s0 ≥ 0 and j ≥ 0.
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Theorem 3.16. Given s0 ≥ 0, let WL
1 and WL

2 be as in Lemma 3.15. Let further,

W1 :=WL
1 , W2 :=

{
WL

2 for s0 > 0

WL+1
2 for s0 = 0.

Then V1,V2 defined as in (3.3), fulfill Assumption 3.5. Moreover, the related reduced model,
System 3.6, matches the first 2(L+ 1) moments at s0 of System 3.1.

Proof. Most parts of Theorem 3.16 conclude the upper discussion and therefore have already been
shown. The only assertion not yet discussed, is the improved moment matching result. We claim
to match 2(L+ 1) moments, whereas in the general case of Galerkin-type moment matching, only
half the amount can be guaranteed, cf. [Ant05, Gri97]. The improved result can be deduced from
the special symmetries present in our system, which directly follows from the results of [Fre08].
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Chapter 4

Numerical results

The numerical results of this chapter have already been published in [EKLS+18]. The focus of
the upcoming studies lies on the performance of our structure preserving model order reduction
approach. To ensure negligible errors in all other discretization steps, those are carried out with
sufficiently high resolution. If not stated otherwise, space discretization is realized by the finite
element method with 1000 elements per edge and the ansatz spaces Q0(TE), P1(TE) from (2.4).
The time discretization employs 1000 steps with uniform time step size ∆t, and is based on the
θ-scheme with θ = 1

2
+ ∆t, [EK18], [Kug19].

The compatible reduced models in all numerical experiments are constructed in accordance to
Theorem 3.16 with s0 = 0 as chosen expansion frequency. Given the moment matching spaces
WL

1 , WL
2 and complementing spaces Z1, Z2 as in (3.3), our reduced models employ the ansatz

spaces

Vr,1 =WL
1 ∪ Z1, Vr,2 =WL+1

2 ∪ Z2, for L ≥ 0. (4.1)

4.1 Structure-preservation

Standard non-compatible reduced models can in general not cover the essential structural prop-
erties, if they are under-resolved. To showcase this, we compare standard ROMs constructed by
the moment matching spaces

Vr,1 =WL
1 , Vr,2 =WL

2 , for L ≥ 0,

against their compatible counterpart from (4.1). Clearly the standard model does not fulfill
Assumption 3.5.

Our first numerical experiments are carried out on the most simple network consisting of one
pipe, Fig. 4.1. Throughout, zero boundary conditions are chosen at the right node ν2, and the
related column in the input matrix B of FOM, System 3.1, is removed, which leads to a system

ν1 ν2
ω

Figure 4.1: Network consisting of a single pipe of unit length lω = 1. The model parameters are
chosen as a = b = r = 1.
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exact standard ROM modified compatible ROM
L 0 2 9 0 2 9

projection M(0) 1.000 0.750 0.902 0.949 1.000 1.000 1.000
H(0) 0.500 0.375 0.451 0.475 0.500 0.500 0.500

mass constraint M(0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
H(0) 0.500 0.667 0.554 0.527 0.500 0.500 0.500

Table 4.1: Initial values of M(0) and H(0) for the mass and energy for full and the reduced order
models obtained by projection in the energy norm with and without additional mass constraint
for varying number of moments L+ 1.

with the single input uν1(t). This setup is already appropriate to showcase the loss of essential
structural properties for standard ROMs.

Remark 4.1. Removing the columns relating to zero boundary conditions in the matrix B of FOM
does not affect the simulation. It does, however, influence the moment matching procedure. This
artificial simplification is only done for the tests using the one-edge network of Fig. 4.1.

Errors in initial conditions

As discussed in Remark 3.7, our choice xr(0) = V†x0 for the initial conditions of the reduced
model provides the best approximation with respect to the initial Hamiltonian H(0) for a given
ansatz space V . This alone, however, is not sufficient to guarantee mass conservation. Recall that
Assumption 3.5-(A2) has been used to prove the conservation of mass in time. But in fact, it also
guarantees that the reduced model reproduces the total mass M(0) of the full order model at the
initial time. The standard reduced model, on the other hand, may suffer from large deficiencies in
the initial mass. As a remedy, which not employs our analysis, one could enforce mass conservation
in the initial conditions as a constraint, similar to [CCS18].

For initial values of FOM chosen as

p(0, x) = 0, m(0, x) = 1, x ∈ Ω, (4.2)

the different strategies for the construction of initial values in the ROMs are compared in Table 4.1
for varying included moments L. For the standard non-compatible ROM, we observe a substantial
miss-specification of the total mass at initial time if the initial conditions are chosen by the energy
projection. Exact representation of the total mass via the constraint, on the other hand, leads to
an artificial increase of the initial energy. The size of both defects can be reduced by increasing
the approximation order L, which allows to approximate the initial conditions better and better.
Our compatible ROM, on the other hand, satisfies Assumption 3.5 and therefore leads to the exact
representation of the mass and a good approximation of the energy at the same time. For the
problem under investigation, the energy can even be represented exactly.

Exponential stability

We next consider the influence of the basis construction on the exponential stability of the reduced
models. We again set the initial values as in (4.2), and choose the input at the left boundary
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exact standard ROM modified compatible ROM
t \ L 0 2 9 0 2 9
0 0.5000 0.3750 0.4512 0.4745 0.5000 0.5000 0.5000
1 0.1528 0.3750 0.1665 0.1514 0.1876 0.1552 0.1527
2 0.0512 0.3750 0.0708 0.0509 0.0690 0.0511 0.0511
3 0.0174 0.3750 0.0384 0.0173 0.0245 0.0173 0.0174
4 0.0059 0.3750 0.0273 0.0059 0.0084 0.0059 0.0059

Table 4.2: Energy decay H(t) for the full order model, the standard non-compatible reduced model
and the modified compatible reduced model for varying number L+ 1 of included moments.

conditions as uν1(t) = 1 for t ≥ 0. In Table 4.2, we display the values of the energy for the full
order and the reduced models for a sequence of time steps.

The modified compatible ROM yields uniform exponential decay of the energy in all cases.
Already for L = 2, the energy is predicted accurately over the whole time interval. The standard
reduced model, on the other hand, underestimates the initial energy and does not provide the
correct decay rate for small L. For the smallest model with L = 0, we do not even observe any
decay in energy at all.

4.2 Numerical robustness

Recall that our underlying Galerkin framework in Chapter 2 suggests the interpretation of the
columns of the reduction bases V1 and V2 as orthogonal bases for the subspaces Vr,1 and Vr,2. In
fact, any single moment corresponds to the solution of an elliptic boundary value problem, which
explains why the basis functions are smooth. For the one-pipe network Fig. 4.1, which is again
used throughout this section, the underlying spatial domain can be identified with the interval
[0, 1]. In Fig. 4.2, we display our basis functions (4.1) obtained for L = 3.

Figure 4.2: Bases for the subspaces Vr,1 = W1 + Z1 (left) and Vr,2 = W2 + Z2 (right) from (4.1)
obtained for L = 3. The resulting dimensions are dim(Vr,1) = 5 and dim(Vr,2) = 6 here.
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Figure 4.3: Basis functions computed with the same Krylov iteration but using different full order
models obtained by finite element discretization with mesh sizes h = 1

20
, 1

40
and 1

80
. Left:

pressure; Right: mass flow.

Also note that the functions look similar to a sequence of orthogonal polynomials of increasing
degree. This indicates that the projection onto the moment spaces leads to some sort of higher
order approximation.

Mesh independence

In the formulation of our algorithms, we paid special attention to a construction that respects the
underlying function space setting. As a consequence, the subspaces Vr,i and even the corresponding
bases turn out to be almost independent of the underlying full order model. To illustrate this fact,
we display in Fig. 4.3 one of the basis functions for pressure and mass flow computed with full order
models resulting from discretization on different meshes. We choose rather coarse discretizations
for the full order model here in order to visualize the differences clearly.

Note that the basis functions for different levels coincide almost perfectly, up to discretiza-
tion errors. This clearly demonstrates the mesh independence of the proposed algorithms. As
mentioned before, all algorithms could even be formulated directly for the infinite dimensional
problem and the basis functions depicted in Fig. 4.3 thus correspond to approximations for the
corresponding functions that would be obtained by the Krylov iteration in infinite dimensions.

Stability of the splitting step

In our basis construction we use the cosine-sine decomposition in order to improve the numerical
stability of the splitting W = [W1; W2]. A simple splitting with re-orthogonalization of W1 and
W2, on the other hand, could be realized as follows.

function [W1,W2]=simplesplit(W1,W2,M1,M2,tolerance)

W1 = ortho(W1,[],M1,tolerance);

W2 = ortho(W2,[],M1,tolerance);

end
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Figure 4.4: Basis functions for the pressure space WL
1 obtained after L = 9 Krylov itera-

tions and splitting with the cosine-sine decomposition (left), and the simple splitting and re-
orthogonalization (right).

In Fig. 4.4, we compare the results obtained by splitting the spacesWL
i of moments by this simple

strategy with those obtained by means of the cosine-sine decomposition.
Due to the possibility of interpreting the basis vectors as functions on the interval [0, 1], one

can easily conclude that already for relatively small dimensions, the standard splitting suffers
from severe numerical instabilities. Let us emphasize that this is caused only by the instability
of the splitting step and not by the employed Arnoldi iteration defining the moment spaces. The
splitting via cosine-sine decomposition, on the other hand, does not suffer from these instabilities
and should therefore always be preferred in practice. Let us refer to [GVL96] for further discussion.

ν1 ν3

ν4

ν5

ν6 ν2

ω1

ω2

ω
3

ω
4

ω
5

ω6

ω7

Figure 4.5: Small network example with edges of unit length. The model parameters for
the edges are specified by the vectors a = [4, 4, 1, 1, 1, 4, 4], b =

[
1
4
, 1

4
, 1, 1, 1, 1

4
, 1

4

]
and

r = r0 ·
[

1
8
, 1

8
, 1, 1, 1, 1

8
, 1

8

]
with constant damping parameter r0 varying over the test cases.

4.3 Approximation of input-output behavior

By Theorem 3.16 we know that the reduced models obtained with our algorithms exactly match the
first few moments of the transfer function, from which we can expect a good overall approximation
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Figure 4.6: Mass inflow yν2(t) = m(t, ν2)n[ν2] over boundary node ν2 for the network test problem.
Results are displayed for FOM (blue) and the ROM (red) for damping parameters r0 = 0.1, 0.5, 1
(left to right) and L = 4, 9, 19 (top to bottom).

of the input-output behavior in frequency domain. With the following tests, we take a closer look
also at the approximation in time domain. First, we consider the small network depicted in
Fig. 4.5. The chosen edge-parameters correspond to the modeling of pipes with different cross-
sectional areas.

The initial- and boundary-conditions are specified as

p(0, x) = 0, m(0, x) = 0, x ∈ Ω

uν1(t) =


t, 0 ≤ t < 1

2− t, 1 ≤ t < 2

0, t ≥ 2

and uν2(t) = 0, t ≥ 0 (4.3)

For varying damping parameter r0, we compare the mass inflow of the FOM and the ROM
over time at the vertex ν2 in Fig. 4.6. The resulting mass-flow-profile is relatively complex due to
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ν1

ν2

ν3

Figure 4.7: Large network example with edges of unit length. The model parameters are globally
chosen as a = b = 1 and r = 0.5. The boundary nodes are depicted in blue.

multiple pathways through the network and possible reflections at the junctions. The oscillations
in the initial phase of the output are due to a Gibbs phenomenon. This effect, however, becomes
negligible when increasing the dimension of the reduced models. For L = 19, which here corre-
sponds to dim(V1) = 37 and dim(V2) = 44, we already observe an almost perfect prediction of the
input-output behavior. The plots displayed in Fig. 4.6 also illustrate the exponential decay of the
output which becomes faster when the damping factor r0 is increased.

4.4 Results for a larger network

To demonstrate the viability and efficiency of the proposed model reduction approach also for
larger problems, we consider as a last test case the network depicted in Fig. 4.7. The full order
model is of dimension 94.078 in this case.

In Fig. 4.8, we plot the mass fluxes over the three boundary nodes which result as response to
the input u = [uν1 ;uν2 ;uν3 ] with component uν1 as defined in (4.3) and uν2 = uν3 ≡ 0.

For L = 9 Krylov iterations, we obtain a reduced model with dim(V1) = 19 and dim(V2) = 66
here, which is not capable to capture the relevant system behavior. Setting L = 19, results in a
reduced model with dim(V1) = 34 and dim(V2) = 81, which already allows to predict the input-
output behavior rather well. For L = 39, we obtain a reduced model with dim(V1) = 61 and
dim(V2) = 108 which yields an almost perfect reproduction of the system output.
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Figure 4.8: Mass-flux across the output ports ν1, ν2, ν3 (left to right) obtained with the full order
model (blue) and the reduced order models (red) with L = 9, 19, 39 (top to bottom).
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Subpart I.B

Nonlinear flow problem
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Chapter 1

Preliminaries

This part is concerned with the approximation of our general nonlinear flow problem on networks,
see the prior introduction of Part I, or (2.1) in Section 2.2 below. In this chapter we shortly
review the commonalities and differences in the derivations of this part to the ones in Part I.A
and introduce the crucial additional concepts needed in this part. In particular, the treatment of
the network structure follows very similar for our kind of approximations. The major difference
to the linear case is that additional tools from convex analysis are needed here, first and foremost
the partial Legendre transform and its related variable transform.

1.1 Commonalities and differences to the linear case

Commonalities

Notation and framework is adopted from Part I-A where possible. In particular, the handling of
network aspects completely relies on the framework of Part I.A. Let us therefore briefly recapitulate
a few definitions of Part I.A-Section 1.3. A network (E ,N , l) is assumed to be given, fulfilling
Assumption I.A-1.2. This means N = N0 ∪ N∂, and every boundary node ν ∈ N∂ has exactly
one incident edge. Recall that the spatial domain is described by the interconnection of edges and
every edge can be identified with an interval ω ∼= (0, lω). Consequently, function spaces acting
on the network can be introduced by the composition of edgewise function spaces, e.g., L2(E),
H1
pw(E) and H1

div(E). Recall that the related L2-product was also defined in terms of its edgewise
contributions, i.e.,

〈b, b̃〉E =
∑
ω∈E

〈b|ω, b̃|ω〉ω and ||b||E =
√
〈b, b〉E

Subscripts are used to indicate the integration domain. When we integrate over the whole spatial
domain, we also write 〈·, ·〉 instead of 〈·, ·〉E . The broken derivative-operator has been introduced
as the edgewise weak derivative

∂x : H1
pw(E)→ L2(E), (∂xb)|ω = ∂xb|ω, for all ω ∈ E ,

and the boundary operator T : H1
pw(E)→ R|N∂ | by means of the trace theorem.
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Remark 1.1. In practice, the edges ω ∈ E may have different weights Aω associated to them. For
ease of presentation, we assume Aω = 1 throughout the main part and postpone the generalization
to Aω 6= 1 to Section 2.6.

Remark 1.2. When considering the equations on one edge only, the problem can be simplified as
follows: The spatial domain Ω = (0, lω) and the boundary N∂ = {0, lω} can be assumed. The set of
inner nodes N0 is empty, and the coupling equations, (2.1b) below, do not appear. Also E can be
replaced by Ω = (0, lω) in all function spaces, and the scalar product on L2(E) needs to be replaced
by the standard scalar product on L2((0, lω)). The boundary operator simplifies to

T b =

[
−b[lω]
b[0]

]
, for b ∈ H1((0, lω)).

With this simplification, most upcoming derivations can be followed without the framework of
Part I.A.

Differences

According to the port-Hamiltonian wording, our weak formulations of Part I-A used a parame-
trization in the effort variable e = ∇zH(z). Although a similar theory could be derived in effort
variables for the nonlinear case, see [Egg19], this choice of parametrization is not viable for the
application we have mainly in mind, which are the barotopic Euler equations. We instead rely
on a mixed parametrization, composed of parts of the energy variable z and the effort variable
e, in this part. The resulting space discretization is similar to [Egg18] for the barotropic Euler
equations, cf. Chapter 4, but we additionally preserve port-Hamiltonian structure. Moreover,
the transformation between energy variables and effort variables is now generally nonlinear and
needs more care in the examinations. To cope for that, we make heavy use of the so-called partial
Legendre transform and the theory behind it, see Section 1.2.

Further, recall that we almost exclusively are concerned with Galerkin-type methods in space
in Part I-A. Both, the space discretization by a finite element method and the projection-based
model order reduction fit into the same Galerkin framework. To efficiently evaluate nonlinearities
in projection-based reduced order models, it is necessary to add a so-called complexity reduction
step in this part. We derive a structure-preserving complexity reduction by a quadrature-type
approximations of integrals involving nonlinearities here, similar to [HCF17], [Jam08], [FACC14].
Finally, as existing structure-preserving time discretization schemes for port-Hamiltonian systems
from literature, cf. [LM17], [Egg19], [MM19], cannot be applied to our formulations, due to
our rather unconventional mixed parametrization in effort and energy variables, we deduce new
structure-preserving time discretization schemes for our proposed parametrization. All in all, we
go through each of the approximation steps illustrated in Fig. 1 in the introduction of Part I.

1.2 Tools from convex analysis

We present a concise summary of the results from convex analysis we draw from. For further
reading, we refer to [RW98], [Roc70] and references therein.

Definition 1.3 (Convexity). Let Z ⊂ Rm be a convex set.
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• A function φ : Z→ R is called convex, if for every z, z̄ ∈ Z it holds

φ(λz + (1− λ)z̄) ≤ λφ(z) + (1− λ)φ(z̄), for λ ∈ (0, 1).

• A convex function is called strictly convex, when the upper inequality holds strictly for z 6= z̄.

• A function Ψ : Z→ R is called (strictly) concave, when z 7→ −Ψ(z) is (strictly) convex.

The following characterizations of strict convexity are used throughout the work, see [RW98,
Theor. 2.14].

Theorem 1.4. Let Z ⊂ Rm be convex and φ : Z→ R. Then it holds:

1. If φ is differentiable, it is strictly convex, if and only if,

φ(z̄)− φ(z) > ∇zφ(z) · (z̄− z) , for all z, z̄ ∈ Z.

2. If φ is differentiable, it is strictly convex, if and only if,

(∇zφ(z̄)−∇zφ(z)) · (z̄− z) > 0, for all z, z̄ ∈ Z.

3. Let φ be twice differentiable. If its Hessian ∇zzφ(z) is positive definite for all z ∈ Z, then
it is also strictly convex. Moreover, it is convex, if and only if, the Hessian is positive
semi-definite.

Note that the characterization Theorem 1.4-(3) of strict convexity by the Hessian is only
sufficient, but not necessary. An example for a smooth strict convex function with a Hessian not
being positive definite is x 7→ x4. Clearly, its Hessian x 7→ 12x2 is zero at x = 0.

Legendre-transformation

Definition 1.5. For a function φ : Z → R with domain Z ⊂ Rm, the Legendre-transform φ∗ is
defined by

φ∗(y) := sup
z∈Z

y · z− φ(z), y ∈ Rm.

There exists a well-established theory around the duality of convexity- and differentiability-
properties of a convex function and its Legendre transform. We give here a basic result, which is
a special case of [RW98, Theorem 11.13].

Theorem 1.6. Let Z ⊂ Rm be an open convex set, and φ : Z → R be differentiable and strictly
convex. Then its Legendre transform φ∗ is differentiable and strictly convex on every open convex
subset of its domain. Moreover, the Legendre transform (φ∗)∗ of φ∗ is equal to φ.

The Legendre transform φ∗ of φ is constructed such that its gradient, if it exists, is the inverse
function of the gradient of φ, as the following theorem states.
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Theorem 1.7. Let Z ⊂ Rm be an open convex set, and φ : Z → R be differentiable and strictly
convex. Then the mapping z 7→ ∇zφ(z) is injective, and its inverse with ẑ(∇zφ(z)) = z for all
z ∈ Z reads

ẑ : ∇zφ(Z)→ Z, ẑ(y) = ∇yφ
∗(y).

Moreover, the Legendre transform can equally be characterized as

φ∗(y) = ẑ(y) · y − φ(ẑ(y)), for y ∈ ∇zφ(Z).

Proof. Let z̄, z̃ ∈ Z with z̄ 6= z̃. For injectivity of the map z 7→ ∇zφ(z), we have to show
that ∇zφ(z̄) 6= ∇zφ(z̃). The latter is immediate by the strict convexity of φ and the second
characterization of Theorem 1.4 of strict convexity. By that the map is injective, and the inverse
ẑ : ∇zφ(Z)→ Z exists.

For the next part, recall that by Definition 1.5, the Legendre transform is given as the supre-
mum over the map Ψ : z 7→ y · z−φ(z). As Ψ is strictly concave and differentiable, its supremum
is uniquely realized at z̄ with

0
!

= ∇zΨ (z̄) = y −∇zφ(z̄).

Clearly, z̄ = ẑ(y), with ẑ : ∇zφ(Z) → Z the inverse to z 7→ ∇zφ(z), fulfills the latter equation.
That verifies the claimed characterization of φ∗. Differentiating the just derived characterization
of φ∗ then also shows ẑ(y) = ∇yφ

∗(y).

Remark 1.8. Many authors also use the label ’convex conjugate’ or ’Legendre-Fenchel transform’
for φ∗ defined in the general setting of Definition 1.5. We use the more classical label ’Legendre
transform’, which is typically used, when the additional assumptions of Theorem 1.6 hold.

Partial Legendre-transformation

Instead of applying the Legendre transform onto all components, one can apply it only to parts
of the components. This yields the partial Legendre transformation. Accordingly, we separate in
the upcoming the vectors a, z ∈ Rn into sub-vectors

a =

[
a1

a2

]
, z =

[
z1

z2

]
, with ai, zi ∈ Rni , n = n1 + n2.

Related state transformations in Rn are denoted by â(·), ẑ(·), for which also sub-components
âi(·), ẑi(·) with images in Rni are introduced. We consider the partial Legendre transform w.r.t.
the second component throughout.

Definition 1.9. Let Z ⊂ Rn be a convex set. The partial Legendre transformation of h : Z 7→ R
is defined as

g(a) = sup
z2∈{z̄2:[a1;z̄2]∈Z}

a2 · z2 − h([a1; z2]), for a =

[
a1

a2

]
.
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Theorem 1.10. Let Z ⊂ Rn be a convex set. For h : Z→ R, let z2 7→ h([z̄1; z2]) be strictly convex
and differentiable for fixed z̄1. Then the map

â : Z→ Rn, â(z) =

[
z1

∇z2h(z)

]
is injective, and its inverse with ẑ(â(z)) = z exists and is of the form

ẑ : A→ Z, ẑ(a) =

[
a1

ẑ2(a)

]
, for a =

[
a1

a2

]
with A = â(Z) ⊂ Rn.

Proof. Let z̄ = [z̄1; z̄2] and z̃ = [z̃1; z̃2] be in Z with z̄ 6= z̃. Injectivity of â(·) is then equivalent to
â(z̄) 6= â(z̃). When z̄1 6= z̃1, this holds trivially. Let us therefore assume z̄1 = z̃1, implying that
z̄2 6= z̃2. The strict convexity of z2 7→ h([z̄1; z2]) implies by Theorem 1.4 that

(∇z2h([z̄1; z̄2])−∇z2h([z̄1; z̃2])) · (z̄2 − z̃2) > 0,

i.e., ∇z2h(z̄) 6= ∇z2h(z̃), which shows the injectivity. Clearly, its inverse ẑ : A → Z then exists
and is of the claimed form.

Theorem 1.11. Assume that the requirements of Theorem 1.10 hold true. Then the partial
Legendre transformation g of h in Definition 1.9 can also be characterized by

g : A→ R, g(a) = ẑ2(a) · a2 − h(a1, ẑ2(a)), for a =

[
a1

a2

]
∈ A.

Moreover, it holds

∇a1g(a) = −∇z1h(z)|z=ẑ(a), ∇a2g(a) = ẑ2(a),

and φ : a2 7→ g([ā1; a2]) is strictly convex.

Proof. Let a = [a1; a2] ∈ A be given. By construction, ψ : z2 7→ a2 · z2 − h(a1, z2) is strictly
concave and differentiable. Its supremum is therefore uniquely realized for z̄2 with

0
!

= ∇z2ψ(z̄2) = a2 −∇z2h(z)|z=[a1;z̄2].

Clearly, this holds for the choice z̄2 = ẑ2(a) with ẑ2(·) as in Theorem 1.10, which shows the claimed
representation for the partial Legendre transformation. The equalities ∇a1g(a) = −∇z1h(z)|z=ẑ(a)

and ∇a2g(a) = ẑ2(a) follow by straight forward calculations. As the partial Legendre transform
can be considered as a Legendre transform of a function parametrized in a1 = z1, strict convexity
of φ can be deduced from Theorem 1.6.
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Generalizations to other scalar products

Up to now, we have tacitly used the standard Euclidean scalar product, (z, z̄) 7→ z · z̄, in all our
definitions. But the gradient and the Legendre transform are actually inner-product-dependent
concepts, and other inner products as the Euclidean one will naturally appear later, when we
consider our Galerkin approximations.

Definition 1.12. Let φ : Rn → R be a differentiable function and M ∈ Rn,n a positive definite
symmetric matrix inducing the inner product

(z, z̄)M = z · (Mz̄), for z, z̄ ∈ RN .

Then the gradient ∇M,zφ with respect to the inner product (·, ·)M is defined by

(∇M,zφ(z), z̄)M = ∇zφ(z) · z̄, for z, z̄ ∈ RN .

It can be expressed by the Euclidean gradient as ∇M,zφ(z) = M−1∇zφ(z).

Note that the criteria for strict convexity in terms of the gradient, Theorem 1.4, is invariant
under the used scalar product. For the (partial) Legendre transform w.r.t. any other inner
product, all results from before can be adapted. We only give the summarized results here, as the
proofs are very similar to the Euclidean case.

Definition 1.13 (Generalization of Def. 1.9). Let Z = Z1 × Z2 ⊂ Rn1+n2 be a convex set and
M ∈ Rn2,n2 be symmetric positive definite. The partial Legendre transformation of h : Z 7→ R
w.r.t. the inner product (·, ·)M is defined as

gM(a) = sup
z2∈{z̄2:[a1;z̄2]∈Z}

(a2, z2)M − h([a1; z2]).

Lemma 1.14 (Generalization of Theorem 1.11). Assume that h : Z 7→ R in Definition 1.13 is
such that φ : Z2 → R, φ : z2 7→ h([z̄1; z2]) is strictly convex and differentiable for fixed z̄1. Then

â : Z→ Rn1+n2 , â(z) =

[
z1

∇M,z2h(z)

]
, for z =

[
z1

z2

]
is injective, and for A = â(Z) its inverse

ẑ : A→ Z, ẑ(a) =

[
a1

ẑ2(a)

]
, for a =

[
a1

a2

]
,

exists. Moreover, the partial Legendre transform gM(·) can also be characterized as

gM(a) = ẑ2(a) · a2 − h(a1, ẑ2(a)), for a =

[
a1

a2

]
∈ A,

and it holds

∇a1gM(a) = −∇z1h(z)|z=ẑ(a), ∇M,a2gM(a) = ẑ2(a),

and a2 7→ gM([ā1; a2]) is strictly convex.
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We also note that all parts of Theorem 1.7 generalize in the natural way to this case. This espe-
cially includes that we end up with the Hamiltonian itself, when the (partial) Legendre transform
is applied twice w.r.t. the same inner product.

A comparison of Lemma 1.14 and Theorem 1.11 show that a scaling in the inner product leads
to an inverse scaling of the gradient, as expressed by the following proposition.

Proposition 1.15. Let the conditions of Lemma 1.14 hold. Let g(·) and gM(·) be the partial
Legendre-transform w.r.t. the Euclidean scalar product and the scalar product (·, ·)M, respectively.
Then it holds

∇M,a2gM(a) = M−1∇a2g(a), for a ∈ A.

Remark 1.16. Both, gradients and Legendre-transformations also take a prominent role in more
general settings. While the generalization of a Riemannian gradient on finite dimensional nonlin-
ear submanifolds can be calculated from the Euclidean gradient by suitable projection and rescaling,
e.g. [AMS08, pp. 60], the situation is more delicate in the infinite dimensional case, where the ex-
istence of gradients is non-trivial and depends on the choice of inner product, see [Zei85], [Bre11].
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Chapter 2

Approximation procedure

This chapter presents the approximation procedure for our general nonlinear flow problem on net-
works. The problem is introduced in Section 2.1 and variable-transformed formulations as well as
a variational principle are discussed. This lays the foundation for our Galerkin approximation and
complexity reduction framework, which we present in Section 2.2 and Section 2.3, respectively.
The structural properties of the approximations are further analyzed on the level of coordinate
representations in Section 2.4. Afterwards, energy-stable time discretization schemes for our ap-
proximations are discussed in Section 2.5. Finally, Section 2.6 then addresses the adaptions to the
case of networks with different edge-weights, which is needed for the the simulation of realistic
network scenarios.

2.1 Network problem

Let a network be described by a directed graph (N , E , l) and Ω = {x : x ∈ ω, for ω ∈ E}
describe its spatial domain. We consider a class of prototypical partial differential equations on
the network: The state

¯
z = [z1; z2] : [0, T ]× Ω→ R2 is governed by

∂t
¯
z(t, x) =

[
−∂x

−∂x −r̃(
¯
z(t, x))

]
∇zh(

¯
z(t, x)), x ∈ Ω, t ∈ [0, T ] (2.1a)

with r̃ : R2 → R such that r̃(
¯
z(t, x)) ≥ 0. The solution components are interconnected by the

coupling conditions∑
ω∈E(ν)

nω[ν]∇z2h(
¯
z|ω(t, ν)) = 0, ∇z1h(

¯
z|ω(t, ν)) = ∇z1h(

¯
z|ω̃(t, ν)) for ω, ω̃ ∈ E(ν). (2.1b)

To close the system, data z0 : Ω → R2 is assumed to be given to prescribe initial conditions

¯
z(0, x) = z0(x) for x ∈ Ω, and one boundary data uν : [0, T ] → R per boundary node ν ∈ N∂,
each describing a boundary condition of one of the following types,

Type 1: ∇z1h(z(t, ν)) = uν(t), Type 2: nω[ν]∇z2h(
¯
z(t, ν)) = uν(t) ω ∈ E(ν) (2.1c)
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for t ∈ [0, T ]. We refer to h(·) as its Hamiltonian density and to

H(
¯
z) = 〈h(

¯
z), 1〉 =

∑
ω∈E

∫
ω

h(
¯
z)dx

M(
¯
z) = 〈z1, 1〉 =

∑
ω∈E

∫
ω

z1dx

as the Hamiltonian and the (total) mass, respectively. Given (2.1) has a strong solution, it can
be shown that

d

dt
M(

¯
z) =

∑
ν∈N∂ , ω∈E(ν)

nω[ν]∇z2h(
¯
z[ν])

d

dt
H(

¯
z) ≤

∑
ν∈N∂ , ω∈E(ν)

nω[ν]∇z1h(
¯
z[ν])∇z2h(

¯
z[ν]).

The first relation has in our application the interpretation of mass conservation, and the second
one is referred to as energy dissipation from now on. Our approximation schemes is constructed
such that they mimic these two relations on a discrete level, which greatly enhances their stability
in comparison to standard methods. These properties are also used to derive, e.g., the existence
of global solutions for our discretizations.

Assumption 2.1. The domain Z ⊂ R2 of the Hamiltonian density h : Z→ R is an open convex
set. Moreover, h is twice continuously differentiable with symmetric positive definite Hessian
∇zzh(z) for all z ∈ Z.

Lemma 2.2. Under Assumption 2.1, it holds

∇z1z1h(z) > 0, ∇z2z2h(z) > 0,

∇z1z1h(z)∇z2z2h(z) > (∇z1z2h(z))2, for z ∈ Z.

Proof. The eigenvalues of the Hessian are dependent on z ∈ Z and read

µ1/2(z) =
1

2

(
∇z1z1h(z) +∇z2z2h(z)±

√
(∇z1z1h(z)−∇z2z2h(z))2 + 4∇z1z2h(z)2

)
.

By Assumption 2.1, µ1/2(z) > 0 are positive. The assertions of the lemma can be derived by the
latter by basic manipulations.

Corollary 2.3. Under Assumption 2.1, the map

â : Z→ A, â(z) =

[
z1

∇z2h(z)

]
, for a =

[
a1

a2

]
and its inverse ẑ : A→ Z, defined in Theorem 1.10, are both continuously differentiable.
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Proof. Theorem 1.10 is applicable, which shows that â is injective, and its inverse ẑ is well-defined.
The gradient ∇zâ(z) of â is continuous by Assumption 2.1, and a direct calculation shows that its
eigenvalues read λ1 = 1 and λ2 = ∇z2z2h(z), which are strictly positive by Lemma 2.2. Therefore,
the derivative of ẑ : A→ Z is a continuous function and is given as

d

da
ẑ(a)) = (∇aẑ(a))T =

(
d

dz
â(z)−1

)
|z=ẑ(a)

=

[
1 0

−∇z1z2h(ẑ(a))

∇z2z2h(ẑ(a))
1

∇z2z2h(ẑ(a))

]
,

which can be deduced by applying the implicit function theorem locally for each z ∈ Z.

Additionally, Assumption 2.1 determines our system (2.1) to be of strict hyperbolic type ac-
cording to the following definition, see e.g, [LeV02].

Definition 2.4. Let Z ⊂ Rn and F : Z→ Rn,n, g : Z→ Rn define the partial differential equation

∂t
¯
z(t, x) = F(

¯
z(t, x))∂x

¯
z(t, x) + g(

¯
z(t, x)), x ∈ Ω, t ∈ [0, T ],

for
¯
z : [0, T ] × Ω → Z on Ω ⊂ Rd and T > 0. Assume further that F(z) has n real distinct

eigenvalues µ1, . . . , µn for all z ∈ Z. Then we call this partial differential equation, and every
partial differential equation formally transferable into the above form, strictly hyperbolic. Moreover,
µ1, . . . , µn are called its characteristic speeds.

Proposition 2.5. Under Assumption 2.1, the partial differential equation (2.1a) is strictly hyper-
bolic. The characteristic speeds read

λ1/2(z) = ∇z1z2h(z)±
√
∇z1z1h(z)∇z2z2h(z),

where λ1(z) is positive and λ2(z) is negative for z ∈ Z.

Proof. Equation (2.1a) can be formally rewritten as in Definition 2.4 with

F(z) =

[
−1

−1

]
∇zzh(z) ∈ R2, for z ∈ Z.

The eigenvalues of F(z) are given by λ1/2(z) as in the proposition. Using Lemma 2.2, it is readily
seen that λ1 is positive, and λ2 is negative, which completes the proof.

Change of variables have played a crucial role in the theoretical and numerical analysis of hy-
perbolic systems, e.g., [Moc80], [Har83], [CHS90], [Jam08]. Next, we discuss the state-transformed
versions of the strong form (2.1a), our approximation schemes are based on. The partial Legendre
transform plays a prominent role in the upcoming.

Corollary 2.6 (Partial Legendre-transformed strong form). Let ẑ : A → Z and g : A → R be
defined as in Theorem 1.10. Let further

¯
a ∈ C1([0, T ]; C1

pw(E)× C1
pw(E)) fulfill

∂t

[
a1(t)

∇a2g(
¯
a(t))

]
=

[
−∂x

−∂x −r(
¯
a(t))

] [
−∇a1g(

¯
a(t))

a2(t)

]
, x ∈ Ω, t ∈ [0, T ]

with r(
¯
a(t)) := r̃(ẑ(

¯
a(t))). Then ẑ(

¯
a) fulfills equation (2.1a), and for the Hamiltonian H it holds

H(ẑ(
¯
a(t))) = 〈h(ẑ(

¯
a(t))), 1〉 = 〈ẑ2(

¯
a(t))a2(t), 1〉 − g(

¯
a(t)).
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Remark 2.7. Likewise as for the Hamiltonian density function h, also for H, a partial Legendre
transform G can be introduced. For sufficiently smooth

¯
a(t), it reads

G(
¯
a(t)) = 〈g(

¯
a(t)), 1〉 = 〈ẑ2(

¯
a(t))a2(t), 1〉 − H(ẑ(

¯
a(t))),

and it holds

H(ẑ(
¯
a(t))) = 〈ẑ2(

¯
a(t))a2(t), 1〉 − G(

¯
a(t)),

which is in analogy to the last part of Theorem 1.7, stating that the Legendre transform of the
Legendre transform again yields the Hamiltonian. For a related discussion of the dual theory in a
function space setting, we, e.g., refer to [Zei85, Theorem 51.A] and [Bre11].

Both, the underlying partial Legendre transform, Corollary 2.6, and the interpretation of the
system in terms of the energy variable z play a crucial role in our considerations. Referring to
the latter interpretation, we construct a related state-transformed form of (2.1a) with the help of
Theorem 1.11. It reads

∂t

[
a1(t)
ẑ2(

¯
a(t))

]
=

[
−∂x

−∂x −r(
¯
a(t))

] [
∇z1h(ẑ(

¯
a(t)))

a2(t)

]
x ∈ Ω, t ∈ [0, T ]. (2.2)

Note also that by construction a2(t) = ∇z2h(ẑ(
¯
a(t))). By testing the upper strong form and using

partial integration once, the following variational principle can be deduced.

Theorem 2.8. A strong solution
¯
a ∈ C1([0, T ]; C1

pw(E) × C1
pw(E)) of (2.2) fulfills the variational

principle

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉
〈∂tẑ2(

¯
a(t)), b2〉 = 〈∇z1h(ẑ(

¯
a(t))), ∂xb2〉+ eB(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉

fB(t) = T a2(t)

for all b1 ∈ L2(E), b2 ∈ H1
div(E). Given N∂ = {ν1, . . . , νp}, it holds for

eB = [eB[ν1]; . . . ; eB[νp]], fB = [fB[ν1]; . . . ; fB[νp]] ∈ Rp, and

eB[νi] = ∇z1h(ẑ(
¯
a[νi])), fB[νi] = nω[νi]∇z2h(ẑ(

¯
a[νi])), for ω ∈ E(νi),

for i = 1, . . . , p.

Proof. The second equation in (2.2) reads

∂tẑ2(
¯
a(t)) = −∂x∇z1h(ẑ(

¯
a(t)))− r(

¯
a(t))a2(t).

Testing this equation with b2 ∈ H1
div(E), integrating it over one edge ω = (ν, ν̃) ∈ E and using

integration by parts once, we obtain

〈∂tẑ2(
¯
a(t)), b2〉ω = 〈∇z1h(ẑ(

¯
a(t))), ∂xb2〉ω − 〈r(

¯
a(t))a2(t), b2〉ω

+ [∇z1h(ẑ(t, x))(−b2[x])]ν̃x=ν .

Repeating this for all edges and then summing over all equations, the interface terms at the inner
nodes drop out, as b2 ∈ H1

div(E). All in all, this gives the second equation of the variational
principle. The other equations follow similarly.
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Remark 2.9. The variational principle may also hold for generalized solutions not being classical
solutions. The needed regularities for all terms in Theorem 2.8 to be well-defined for every t ∈ (0, T ]
depend, however, on the choice of the Hamiltonian density h(·) and the nonlinearity r(·). To
the best of the author’s knowledge, there only exist partial results on the well-posedness of weak
solutions for this type of equations, e.g., [Che05], [LeV02].

The variational principle can be used to show (local) mass-conservation and the energy-
dissipation equality. The proof of this upcoming result is done in a way suitable for adaption
to our Galerkin approximations later on.

Theorem 2.10. Let
¯
a ∈ C1([0, T ]; C1

pw(E)×C1
pw(E)) fulfill the variational principle of Theorem 2.8

for some fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |). Then it holds for [w1, w2] ⊂ ω, ω ∈ E
d

dt

∫
[w1,w2]

a1(t)dx = a2(t)[w1]− a2(t)[w2],
d

dt
M(

¯
a(t)) =

∑
ν∈N∂

fB(t)[ν]

d

dt
H(ẑ(

¯
a)(t)) = eB(t) · fB(t)− 〈r(

¯
a(t))a2(t), a2(t)〉 ≤ eB(t) · fB(t).

Proof. The first relation, the local mass conservation, follows by testing the first equation of the
variational principle in Theorem 2.8 with b1 = χ[w1,w2], the indicator function of the domain
[w1, w2]. By that we get

d

dt

∫
[w1,w2]

a1dx = 〈∂ta1, χ[w1,w2]〉 = −〈∂xa2, χ[w1,w2]〉 = a2[w1]− a2[w2].

The second equation, the global mass conservation, follows similarly by summing up over the
individual masses over the edges.

To derive the energy dissipation, we prove, as a preliminary step, the existence of ξ(
¯
a(t)) ∈

L2(E) such that

〈∇z1h(ẑ(
¯
a)), b1〉 = 〈ξ(

¯
a), b1〉 for all b1 ∈ L2(E), (2.3)

for solutions
¯
a of the variational principle. By assuming

¯
a fulfills the variational principle, the

term 〈∇z1h(ẑ(
¯
a)), ∂xb2〉 has to be well-defined for all b2 ∈ H1

div(E) and t ∈ [0, T ], as the second
equation of Theorem 2.8 implies. The compatibility

L2(E) ⊂
{
ξ : It exists ζ ∈ H1

div(E) with ∂xζ = ξ
}

then implies that b1 7→ 〈∇z1h(ẑ(
¯
a)), b1〉 is well-defined as an element of the dual space of L2(E).

The existence of ξ(
¯
a) fulfilling (2.3) can now be deduced from the Riesz representation theorem,

as L2(E) with 〈·, ·〉 is a Hilbert space. Moreover, a formal application of the chain rule gives

d

dt
H(ẑ(

¯
a)) = 〈∂ta1,∇z1h(ẑ(

¯
a))〉+ 〈∂tẑ2(

¯
a), a2〉.

As shown in the preliminary step, ∇z1h(ẑ(
¯
a)) can be replaced by ξ(

¯
a) here. Applying the varia-

tional principle of Theorem 2.8 with
¯
b = [ξ(

¯
a); a2] then gives

〈∂ta1,∇z1h(ẑ(
¯
a))〉+ 〈∂tẑ2(

¯
a), a2〉 = −〈∂xa2, ξ(

¯
a)〉+ 〈∇z1h(ẑ(

¯
a)), ∂xa2〉

+ eB · T a2 − 〈r(
¯
a), a2

2〉 = eB · fB − 〈r(
¯
a), a2

2〉 ≤ eB · fB,

which finishes the proof.
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Remark 2.11. Let {bk1}k∈N be an orthogonal basis of L2(E). The function ξ : L2(E)×H1
div(E)→

L2(E) fulfilling

〈∇z1h(ẑ(
¯
a)), b1〉 = 〈ξ(

¯
a), b1〉 for all b1 ∈ L2(E),

which we introduced in (2.3), then has the representation

ξ(
¯
a) =

∑
k∈N

1

||bk1||2
〈
∇z1h(ẑ(

¯
a)), bk1

〉
bk1.

It can be interpreted as the gradient w.r.t. the L2-scalar product of a1 7→ −〈g([a1; a2]), 1〉 for fixed
a2, see Remark 1.16.

The existence of gradient representations in the underlying variational principle is strongly
related to the structure-preservation of our upcoming approximation schemes. They are a key
tool for most analytical results on the Galerkin approximations.

2.2 Galerkin approximation

To transfer the structural properties on Galerkin approximations, we need the following structural
assumption on the ansatz spaces.

Assumption 2.12 (Compatibility of spaces). Let V = V1 × V2, V1 ⊂ L2(E) and V2 ⊂ H1
div(E) be

finite dimensional subspaces fulfilling the compatibility conditions

A1) V1 = ∂xV2, with ∂xV2 = {ξ : It exists ζ ∈ V2 with ∂xζ = ξ}.

A2) {b2 ∈ H1
div(E) : ∂xb2 = 0} ⊂ V2.

For our analysis, we assume for each boundary node ν ∈ N∂ that one of the following boundary
conditions is prescribed, as well as that initial conditions are given as follows:

Type 1: eB[ν] = uν ∈ C([0,∞),R), Type 2: fB[ν] = uν ∈ C1([0,∞),R)

¯
a(0) =

¯
a0, for

¯
a0 ∈ V , uν : [0, T ]→ R given such that T a2(0) = fB(0). (2.4)

Other types of boundary conditions could be handled similarly, given the boundary data is regular
enough.

System 2.13. Find
¯
a ∈ C1([0, T ];V1×V2), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |), solving

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉
〈∂tẑ2(

¯
a(t)), b2〉 = 〈∇z1h(ẑ(

¯
a(t))), ∂xb2〉+ eB(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉

fB(t) = T a2(t)

for all b1 ∈ V1, b2 ∈ V2 and closing conditions (2.4). Assumption 2.12 is supposed to hold.

The compatibility conditions yet imply two important properties on every solution of the
Galerkin approximation, the local mass conservation and the energy dissipation equality, as we
will derive next.
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Lemma 2.14 (Local mass conservation). Let Assumption 2.12 hold, and let for a1 ∈ C1([0, T ];V1)
and a2 ∈ C1([0, T ];V2) the variational principle

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉, t ∈ [0, T ]

hold for all b1 ∈ V1. Then it follows ∂ta1 ≡ −∂xa2.

Proof. By construction, ∂ta1(t), ∂xa2(t) ∈ V1 for t ∈ [0, T ], i.e., they lie in the test space. Therefore,
the variational principle with b1 = ∂ta1 + ∂xa2 gives

〈∂ta1(t), ∂ta1(t) + ∂xa2(t)〉 = 〈−∂xa2(t), ∂ta1(t) + ∂xa2(t)〉.
By subtracting the right-hand side from both sides of the latter equation, one can see that for all
t ∈ [0, T ] the L2-norm of ∂ta1(t) + ∂xa2(t) is zero, i.e., ∂ta1 ≡ −∂xa2.

Remark 2.15. Lemma 2.14 shows that for any solution of System 2.13 mass conservation readily
holds in a pointwise sense, i.e., local mass conservation. This is in contrast to the result for
the Galerkin approximation of Part I.A, where we could only guarantee global mass conservation
and needed the additional assumption that the global constant function was included in V1, cf.
Assumption I.A-2.7.

In the upcoming result, we state that all expressions involving the Hamiltonian density h
can be re-expressed by representatives of the function spaces V1,V2. This yet reveals that the
Galerkin approximations inherit the gradient structure of the underlying Hamiltonian density h
and its Legendre transformed g.

Theorem 2.16. Let {bki }k=1,...,Ni be orthogonal bases of Vi for i = 1, 2. Then the second equation
of System 2.13 can be recast as

〈ξ̃(
¯
a(t)), b2〉 = 〈ξ(

¯
a(t)), ∂xb2〉+ eB(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉

with ξ : V → V1 and ξ̃ : V → V2, defined by

ξ(
¯
a) =

N1∑
k=1

1

||bk1||2
〈
∇z1h(ẑ(

¯
a)), bk1

〉
bk1 = −

N1∑
k=1

1

||bk1||2
〈
∇a1g(

¯
a), bk1

〉
bk1

ξ̃(
¯
a) =

N2∑
k=1

1

||bk2||
〈
∂t∇a2g(

¯
a), bk2

〉
bk2.

The proof relies on the Riesz representation theorem, together with the compatibility condition.
We refer to the more general result of Theorem 2.23.

Theorem 2.17 (Energy-dissipation equality). For any solution of System 2.13 it holds

d

dt
H(ẑ(

¯
a(t))) = eB(t) · fB(t)− 〈r(

¯
a(t))a2(t), a2(t)〉 ≤ eB(t) · fB(t),

where the Hamiltonian for
¯
a ∈ V1 × V2 is defined as H(ẑ(

¯
a)) = 〈h(ẑ(

¯
a)), 1〉.

As the proof is almost verbatim to the one of Theorem 2.10, up to replacing the spaces L2(E)
and H1

div(E) by V1 and V2, it is omitted.

Remark 2.18. Note that H1
div(E), equipped with the L2-scalar product, is not a Hilbert space.

Thus, the identification of ∂tẑ2(
¯
a) with ξ̃(

¯
a) ∈ H1

div(E), as we did it in Theorem 2.16, explicitly
relies on the finite dimensional setting, whereas the proof of the energy dissipation does not, i.e.,
the existence of the representation ξ̃(

¯
a) from Theorem 2.16 is never explicitly used in our proofs.
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2.3 Complexity reduction

In order to formulate the complexity reduction, we have to specify the realization of the Galerkin
approximation steps. In our approach, they consist of a space discretization by the finite element
method and a subsequent model order reduction step, cf. Fig. 1 in the introduction of Part I.
This yields the full order model and the reduced order model, respectively. Both models are
of the form of System 2.13, but the ansatz space for the full order model is a typically large
superset of the ansatz space for the reduced order model. In what follows, V refers to the ansatz
space of the reduced order model. Moreover, the full order model is assumed to be associated
to a partitioning of the spatial domain Ω described by finite elements Kj ⊂ Ω, j = 1, . . . , J .
The complexity reduction aims for efficient approximation of nonlinear integral expressions in the
reduced order model without evaluating them for each finite element. For that, we apply the
following quadrature-type approximation.

Definition 2.19. Let a partitioning of Ω be given by the full order model by finite elements
Kj ⊂ Ω, j = 1, . . . , J , fulfilling⋃

j∈J

Kj = Ω,

∫
Kj∩Kl

1dx = 0, for j 6= l.

Let further an index-set I ⊂ {1, . . . , J} and weights wi ∈ R for i ∈ I be given. Then we define the
complexity-reduced bilinear form 〈·, ·〉c : L2(Ω)× L2(Ω)→ R and || · ||c by

〈b, b̄〉c =
∑
i∈I

wi

∫
Ki

b(x)b̄(x)dx, ||b||c =
√
〈b, b〉c.

Note that 〈·, ·〉c can be seen as an approximation of the L2-scalar product 〈·, ·〉. For our
analysis, we rely on the following assumptions.

Assumption 2.20. The bilinear form 〈·, ·〉c is given as in Definition 2.19 with wi > 0 for i ∈ I.
Moreover, there exists a constant C̃ such that it holds

1

C̃
||b||c ≤ ||b|| ≤ C̃||b||c, for b ∈ V1 ∪ V2.

Remark 2.21. The last part of Assumption 2.20 is the same as requiring the L2-norm || · || and
|| · ||c to be equivalent norms on V1 ∪ V2.

The complexity-reduced approximation of System 2.13 we propose then reads as follows.

System 2.22. Find
¯
a ∈ C1([0, T ];V1×V2), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |), solving

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉
〈∂tẑ2(

¯
a(t)), b2〉c = 〈∇z1h(ẑ(

¯
a(t))), ∂xb2〉c + eB(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉c

fB(t) = T a2(t)

for all b1 ∈ V1, b2 ∈ V2. Closing conditions (2.4), Assumption 2.12 and Assumption 2.20 are
presumed to hold.
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A crucial point is that we can recast the complexity reduction of the nonlinear terms as
complexity reduction of the Hamiltonian, i.e., System 2.22 can be re-interpreted as a Galerkin-
approximation with a modified Hamiltonian and friction term. The structural properties expressed
in Theorem 2.16 carry over to the complexity-reduced system very naturally.

Theorem 2.23 (Counterpart of Theorem 2.16). Let {bki }k=1,...,Ni be orthogonal bases of Vi for
i = 1, 2. Then the second equation of System 2.22 can be recast as

〈ξ̃(
¯
a(t)), b2〉 = 〈ξ(

¯
a(t)), ∂xb2〉+ eB(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉c

with ξ : V → V1 and ξ̃ : V → V2, defined by

ξ(
¯
a) =

N1∑
k=1

1

||bk1||2
〈
∇z1h(ẑ(

¯
a)), bk1

〉
c
bk1 = −

N1∑
k=1

1

||bk1||2
〈
∇a1g(

¯
a), bk1

〉
c
bk1

ξ̃(
¯
a) =

N2∑
k=1

1

||bk2||2
〈
∂t∇a2g(

¯
a), bk2

〉
c
bk2.

Proof. When all expressions in System 2.22 are well-posed, this implies particularly

〈∇z1h(ẑ(
¯
a(t))), ∂xb2〉c <∞ and 〈∂t∇a2g(

¯
a), b2〉c = 〈∂tẑ2(

¯
a(t)), b2〉c <∞.

By that and the compatibility condition V1 ⊂ ∂xV2, the linear functionals

Φ1 : V1 → R, b1 7→ 〈∇z1h(ẑ(
¯
a)), b1〉c, Φ2 : V2 → R, b2 7→ 〈∂t∇a2g(

¯
a), b2〉c

are seen to be bounded. This means that Φi, for i = 1, 2, are elements of the dual spaces of
Vi. We consider the L2-scalar product here. As the latter spaces are Hilbert spaces, the Riesz
representation theorem then shows the existence of ξ(

¯
a(t)) ∈ V1 and ξ̃(

¯
a(t)) ∈ V2 as claimed in

the theorem.

As a direct consequence, the energy-dissipation equality carries over from Theorem 2.17 with
an almost verbatim proof.

Theorem 2.24 (Energy-dissipation equality). For any solution
¯
a(t) of System 2.22 it holds

d

dt
Hc(ẑ(

¯
a(t))) = eB(t) · fB(t)− 〈r(

¯
a(t))a2(t), a2(t)〉c ≤ eB(t) · fB(t),

where the complexity-reduced Hamiltonian is given as

Hc(ẑ(
¯
a)) = 〈h(ẑ(

¯
a)), 1〉c for

¯
a ∈ V1 × V2.

2.4 Coordinate representations

The identification of gradient structures in the function-space setting, which we did in Remark 2.11
and Theorem 2.16, strongly suggests that we should be able to find coordinate representations
with gradient expressions of an underlying energy functional. We construct these representations
in the upcoming. The notation follows the one from Part I.A-Section 2.5, where possible.
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Definition 2.25. Let V = V1 × V2, and let bases b1
i , . . . , b

Ni
i of Vi be fixed for i = 1, 2. For

¯
a = [a1; a2] ∈ V, we define the coordinate representation a = [a1; a2] ∈ RN , with N = N1 +N2, by

ai(t) =

Ni∑
l=1

blia
l
i(t), ai = [a1

i ; . . . ; a
Ni
i ] ∈ RNi .

The transformation from the coordinate representation a ∈ RN to the function
¯
a = [a1; a2] ∈ V is

defined as

Ψ : RN → V , Ψ(a) =

[∑N1

l=1 b
l
1a
l
1(t)∑N2

l=1 b
l
2a
l
2(t)

]
=

[
a1

a2

]
.

Galerkin approximation

Let us first consider the coordinate representation of System 2.13. Recall that in the function
space setting, the partial Legendre transform G : V → R and its density g : R2 → R are given as

G(
¯
a) = 〈g(

¯
a), 1〉, g(

¯
a) = ẑ2(

¯
a)a2 − h(ẑ(

¯
a)),

where h is the Hamiltonian density. The respective coordinate representation of G is then defined
as

G : RN → R, G(a) = G (Ψ(a)).

By the chain rule, it follows for l ∈ Ni that

∂

∂ali
G(a) =

〈
∇aig(

¯
a)|

¯
a=Ψ(a), b

l
i

〉
.

Let for i = 1, 2, Mi ∈ RNi be symmetric positive definite matrices. The partial gradients of G in
the scalar product (x,y) 7→ (Mix) · y according to Definition 1.12 then read

∇Mi,aiG(a) = M−1
i ∇aiG(a) = M−1

i

[
∂

∂a1i
G(a); . . . ;

∂

∂
a
Ni
i

G(a)

]
.

It readily can be seen, cf. Corollary 2.6, that System 2.13 naturally translates into a coordinate
representation as follows.

Corollary 2.26. Define the system matrices

M1 = [〈bn1 , bm1 〉]m,n=1,...,N1
, M2 = [〈bn2 , bm2 〉]m,n=1,...,N2

M =

[
M1

M2

]
, J = [〈−∂xbn2 , bm1 〉]m=1,...,N1,n=1,...,N2

R(a) = [〈r(Ψ(a))bn2 , b
m
2 〉]m,n=1,...,N2

K2 =
[
T b1

2, . . . , T b
N2
2

]T
, K =

[
0N1,|N∂ |

K2

]
.
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Then System 2.13 can be equivalently described as:
Find a ∈ C1([0, T ];RN), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |), solving

M
d

dt

[
a1(t)

∇M2,a2G(a(t))

]
=

[
J

−JT −R(a(t))

] [
−∇M1,a1G(a(t))

a2(t)

]
+ KeB(t)

fB(t) = KTa(t).

Remark 2.27. Note that only because of the compatibility of Assumption 2.12 on V1 and V2, we
are able to recover the gradient structure fully in the coordinate representation, cf. Corollary 2.26.
In particular, we utilize that for b2 ∈ V2, it holds for an orthogonal basis {bl1}l=1,...,N1,

〈∇a1g(
¯
a), ∂xb2〉 =

N1∑
l=1

〈bl1, ∂xb2〉
1

||bl1||2
〈∇a1g(

¯
a), bl1〉,

which relates to the term JT∇M1,a1G(a(t)) in the coordinate representation, cf. Remark 2.11.

In light of our discussion, the question arises, if we can recover a Hamiltonian and rewrite the
system in Corollary 2.26 in terms of the energy variables in standard port-Hamiltonian form. This
turns out to be the case, as the following result shows.

Theorem 2.28. For the system in Corollary 2.26, the coordinate transform

ẑ : AN → RN , ẑ(a) =

[
a1

ẑ2(a)

]
is well-defined and injective on every open convex subset AN ⊂ RN of the domain of G. Moreover,
for H : ẑ(AN)→ R defined as the partial Legendre transform of G by

H(z) = sup
a2∈{ā2:[z1;ā2]∈AN}

(z2, a2)M2 −G([z1; a2]),

it holds

∇M1,z1H(ẑ(a)) = −∇M1,a1G(a), ∇M2,z2H(ẑ(a)) = a2,

and the coordinate representation can be equally rewritten as follows:
Find z ∈ C1([0, T ]; ẑ(AN)), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |) solving

M
d

dt
z(t) =

[
J

−JT −R̃(z(t))

]
∇MH(z(t)) + KeB(t)

fB(t) = KT∇M,zH(z(t)),

with R̃(·) defined such that R̃(ẑ(a)) = R(a) for a ∈ AN .

Proof. The theorem can be derived by employing a partial Legendre transform on the functional
G and the results from Lemma 1.14.

Remark 2.29. It can be shown that there exists a transformation Ψz from the coordinate repre-
sentation z ∈ Rn to the function

¯
z : Ω→ R2, such that

ẑ(Ψ(a)) = Ψz(ẑ(a)), for a ∈ AN ⊂ Rn.

The Hamiltonian of Theorem 2.33 can then also be written as H(z) = 〈h(Ψz(z)), 1〉. This is in
correspondence to the results in Theorem 1.6.
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Complexity-reduced system

All results we were able to derive for the purely projection-based approximation, System 2.13, can
be carried over to the complexity-reduced System 2.22. While the first result, Corollary 2.30, holds
independently of Assumption 2.20, the derivation of all other upcoming generalizations heavily
rely on that assumption.

Corollary 2.30. Let the system matrices be as in Corollary 2.26. Let, furthermore,

Gc : AN → RN , Gc(a) = 〈g(Ψ(a)), 1〉c, for AN ⊂ RN

Rc(a) = [〈r(Ψ(a))bn2 , b
m
2 〉c]m,n=1,...,N2

.

Then System 2.22 can be equivalently described as:
Find a ∈ C1([0, T ];RN), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |), solving

M
d

dt

[
a1(t)

∇M2,a2Gc(a(t))

]
=

[
J

−JT −Rc(a(t))

] [
−∇M1,a1Gc(a(t))

a2(t)

]
+ KeB(t)

fB(t) = KTa(t).

Lemma 2.31. For Gc as in Corollary 2.30, it holds for fixed a1 that

Φ : RN2 → R, Φ : a2 7→ Gc([a1; a2])

is strictly convex on every convex open subset of its domain.

Proof. For fixed a1 ∈ RN1 , let a convex subset S ⊂ RN2 of the domain of Φ be given, and let
a2, ā2 ∈ S with a2 6= ā2. As Φ is differentiable, strict convexity can equivalently be shown by
Theorem 1.4 by verifying the inequality

(∇a2Φ(ā2)−∇a2Φ(a2)) · (ā2 − a2)
!
> 0.

As a preparation, we introduce the following notation for the functions related to the coordinate
representations,

a2 =

N1∑
l=1

bl2a
l
2 ∈ V2, ā2 =

N1∑
l=1

bl2ā
l
2 ∈ V2, for a2 = [a1

2; . . . ; aN2
2 ], ā2 = [ā1

2; . . . ; āN2
2 ] ∈ RN2 .

Moreover, we define a1 ∈ V1 as the function related to the coordinate representation a1. Then it
holds

∇a2Φ(a2) · ā2 =

N1∑
l=1

∂

∂a2,l
Φ(a2) āl2 =

N1∑
l=1

〈
∇a2g([a1; a2]), bl2

〉
c
āl2

=
∑
i∈I

wi

∫
Ki

∇a2g([a1; a2])

(
N1∑
l=1

āl2b
l
2

)
dx =

∑
i∈I

wi

∫
Ki

∇a2g([a1; a2]) ā2dx.
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And likewise, it holds

(∇a2Φ(ā2)−∇a2Φ(a2)) · (ā2 − a2) =
∑
i∈I

wi

∫
Ki

(∇a2g([a1; ā2])−∇a2g([a1; a2])) (ā2 − a2) dx︸ ︷︷ ︸
=:Si

.

As wi > 0 by definition, it only remains to show that Si ≥ 0 for i ∈ I, and for at least one
j ∈ I it is Sj > 0. Note that by construction, ā2 − a2 ∈ V2, and therefore we can follow from the
equivalence of || · ||c and || · || on V2 that∑

i∈I

wi

∫
Ki

(ā2 − a2)2dx = ||ā2 − a2||2c ≥
1

C̃2
||ā2 − a2||2 > 0,

i.e., there exists a j ∈ I with (ā2−a2)|Kj 6= 0. Further, the strict convexity of the density function
g : R2 → R with respect to its second argument, Theorem 1.11, then implies for this j∫

Kj

(∇a2g([a1; ā2])−∇a2g([a1; a2])) (ā2 − a2) dx > 0, and∫
Ki

(∇a2g([a1; ā2])−∇a2g([a1; a2])) (ā2 − a2) dx ≥ 0, for i ∈ I.

Summarizing, it follows

(∇a2Φ(ā2)−∇a2Φ(a2)) · (ā2 − a2) =
∑
i∈I

wiSi ≥ wjSj > 0.

From Lemma 2.31, the following two results can be derived in analogy to Lemma 1.14.

Lemma 2.32. Let the domain of Gc, denoted by AN , be an open convex set. Then

ẑ : AN → RN , ẑ(a) =

[
a1

ẑ2(
¯
a)

]
:=

[
a1

∇M2,a2Gc(a)

]
, for a =

[
a1

a2

]
is injective.

Theorem 2.33. Let the system matrices be as in Corollary 2.30 and the assumptions of Lem-
ma 2.32 hold. Let Hc : ẑ(AN)→ R be defined as partial Legendre transform of Gc by

Hc(z) = sup
a2∈{ā2:[z1;ā2]∈AN}

(z2, a2)M2 −Gc([z1; a2]), for z = [z1; z2].

Then it holds

∇M1,z1Hc(z)|z=ẑ(a) = −∇M1,a1Gc(a), ∇M2,z2Hc(z)|z=ẑ(a) = a2.

Moreover, the coordinate representation can be equally rewritten as follows:
Find z ∈ C1([0, T ]; ẑ(AN)), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C([0, T ];R|N∂ |), solving

M
d

dt
z(t) =

[
J

−JT −R̃(z(t))

]
∇M,zHc(z(t)) + KeB(t)

fB(t) = KT∇M,zHc(z(t)).

with R̃ defined such that R̃(ẑ(a)) = Rc(a) for a ∈ AN .
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Note that ẑ(AN) is a nonlinear N -dimensional manifold, which depends on the Hamiltonian
density h(·) and the quadrature rule 〈·, ·〉c. The representation of Theorem 2.33 is therefore not
suitable for a numerical realization. Also for the examination of well-posedness, the upcoming
formulation in a is more convenient.

Lemma 2.34. The solution
¯
a ∈ C1([0, T ];V) of System 2.22 can be equally characterized by an

ordinary differential equation

d

dt
a(t) = f(t, a(t)), a(0) = a0 ∈ AN ,

for a ∈ C1([0, T ];RN). In this formulation, f : [0, T ] × AN → RN is continuous, and AN denotes
the open set of the domain of f .

Proof. Firstly, the state transform ẑ in Lemma 2.32 can be shown to be continuously differentiable
with pointwise non-singular Jacobian. This readily follows from the non-singularity of the Jacobian
of a2 7→ ẑ(ā1, a2) for fixed ā1, which, in turn, can be derived with the help of Corollary 2.3 and a
similar calculation as in the proof of Lemma 2.31.

In the second step, we consider the construction of the claimed standard form. Let a ∈
C1([0, T ];RN) be the coordinate representation of Corollary 2.30. As ẑ is continuously differen-
tiable, we may apply the chain-rule to get

d

dt
ẑ(a(t)) = Z(a(t))

d

dt
a(t), with Z(a(t)) =

dẑ(a(t))

da
.

Using the representation of Corollary 2.30, we can write

(M Z(a(t)))
d

dt
a(t) = M

d

dt

[
a1(t)

∇M2,a2Gc(a(t))

]
=

[
J

−JT Rc(a(t))

] [
−∇M1,a1Gc(a(t))

a2(t)

]
+ KeB(t).

As M is non-singular, also (M Z(a(t))) is non-singular by the first part of the proof. Because of
that and because the algebraic conditions fB(t) = KTa(t) present in the coordinate representation
of Corollary 2.30 are linear in a(t), the differential equation in the above stated standard form
can be derived by eliminating the boundary port variables eB, fB. The construction is in complete
analogy to the one in Lemma I.A-2.25 for the linear case, which is the reason why we do not
repeat it here.

2.5 Time discretization

In the following, we construct time discretization schemes for System 2.13. The compatibility con-
ditions for V1 and V2, Assumption 2.12, are supposed throughout. The schemes are constructed
such that an analogous energy-bound as Theorem 2.17 can be shown for the fully discrete sys-
tem. The first two ones, System 2.37 and System 2.40, feature numerical dissipation, though.
Their energy bounds are therefore referred to as dissipation inequalities, instead of dissipation
equalities. The third, System 2.45 is dissipation-free but more complex and restrictive in terms of
implementation.
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Remark 2.35. The same kind of results hold, when the time discretization schemes are applied
to the complexity-reduced System 2.22 instead. Also the proofs can be transferred almost verbatim,
which is why we do not discuss them separately.

In the following, let 0 = t0 < t1 < . . . < tK = T be a partition of [0, T ], Ik = (tk−1, tk]
and Īk = [tk−1, tk] for k = 1, . . . , K. For ease of presentation, we assume constant time steps
∆t = tk−tk−1. The closing conditions (2.4) are realized for the time-discretized systems as follows:
Given initial data

¯
a0 and one boundary data uν,k per boundary node ν ∈ N∂ and time-step k, we

set

Type 1: ekB[ν] = uk,ν , Type 2: fkB[ν] = uk,ν

¯
a0 ≡

¯
a0, for

¯
a0 ∈ V . (2.5)

Remark 2.36. Let us stress that the upcoming time discretization schemes employ different ansatz
spaces for the solution. The realization of time-discrete boundary conditions uk,ν has to be adapted
accordingly: The first scheme, System 2.37, can be seen as a finite-difference-type scheme and thus
uk,ν is nothing but a point-evaluation in time then. For the Galerkin-in-time methods, System 2.40
and System 2.45, uk,ν is a polynomial in time and is obtained by quadrature from the continuous
boundary data in (2.4).

We start with the simplest and most dissipative discretization scheme.

System 2.37 (Implicit-Euler-type scheme). Let initial- and boundary-data be given by (2.5).
Then, find for k ≥ 1,

¯
ak = [ak1; ak2] ∈ V1 × V2, fkB, e

k
B ∈ R|N∂ | by solving

1

∆t

〈ak1 − ak−1
1 , b1〉 = −〈∂xak2, b1〉

1

∆t

〈ẑ2(
¯
ak)− ẑ2(

¯
ak−1), b2〉 = 〈∇z1h(ẑ(

¯
ak)), ∂xb2〉+ ekB · T b2 − 〈r(

¯
ak)ak2, b2〉

fkB = T ak2

for all b1 ∈ V1, b2 ∈ V2.

Note that System 2.37 can be interpreted as an implicit-Euler-type discretization in the energy
variable z. This differs from the classical implicit Euler scheme, in which the second equation would
read instead

1

∆t

〈(
∇aẑ2(

¯
ak)
)
·
(
¯
ak −

¯
ak−1

)
, b2

〉
= 〈∇z1h(ẑ(

¯
ak)), ∂xb2〉+ ekB · T b2 − 〈r(

¯
ak)ak2, b2〉.

The interpretation of the system in energy-variables plays a crucial role for all our schemes. A
similar result as Theorem 2.17 for the time-continuous case can be derived.

Theorem 2.38 (Energy-dissipation inequality). For any solution of System 2.37 it holds for
0 ≤ l < k ≤ K,

H(ẑ(
¯
ak))−H(ẑ(

¯
al)) < ∆t

(
k∑

j=l+1

ejB · f
j
B −

〈
r(

¯
aj), (aj2)2

〉)
≤ ∆t

k∑
j=l+1

ejB · f
j
B,

where the Hamiltonian for
¯
a ∈ V1 × V2 is defined as H(ẑ(

¯
a)) = 〈h(ẑ(

¯
a)), 1〉.
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Proof. Clearly, it suffices to consider the case l = k − 1, as l < k − 1 can be directly derived from
that case. Using the characterization of strict convexity of Theorem 1.4 onto h(·) yields

H(ẑ(
¯
ak))−H(ẑ(

¯
ak−1)) =

〈
h(ẑ(

¯
ak))− h(ẑ(

¯
ak−1)), 1

〉
<
〈
ẑ(

¯
ak)− ẑ(

¯
ak−1),∇h(ẑ(

¯
ak))

〉
.

As ∇z2h(ẑ(
¯
ak)) = ak2 ∈ V2 and Lemma 2.14 holds, the time-discrete variational principle of

System 2.37 with [b1; b2] = ∇zh(ẑ(
¯
ak)) can be used, leading to

1

∆t

〈
ẑ(

¯
ak)− ẑ(

¯
ak−1),∇h(ẑ(

¯
ak))

〉
= ekB · fkB − 〈r(¯a

k)ak2, a
k
2〉

− 〈∂xak2,∇z1h(ẑ(
¯
ak))〉+ 〈∇z1h(ẑ(

¯
ak)), ∂xa

k
2〉

= ekB · fkB −
〈
r(

¯
ak), (ak2)2

〉
≤ ekB · fkB.

Setting together the two inequalities shows the assertion.

The difference of the dissipation inequality of Theorem 2.38 to an equality is given by the
numerical dissipation

DImpEul(tk) = ∆t

(
k∑
j=1

ejB · f
j
B −

〈
r(

¯
aj)aj2, a

j
2

〉)
−
[
H(ẑ(

¯
ak))−H(ẑ(

¯
a0))

]
. (2.6)

Next we construct more elaborate time discretization schemes by Galerkin methods in time, cf.
[RSV13], [AM04], [LW16], [Egg19]. In the construction, the following well-known result is crucial,
cf. [Hac12].

Lemma 2.39 (Tensor product Hilbert space). Let V be a Hilbert space with inner product 〈·, ·〉V
and basis (vi)i∈N, and Q be a Hilbert space with inner product 〈·, ·〉Q and basis (qi)i∈N. Then the
tensor space Q⊗ V is a Hilbert space with inner product 〈·, ·〉QV defined by

〈q1 ⊗ v1,q2 ⊗ v2〉QV := 〈q1,q2〉Q 〈v1,v2〉V , for q1,q2 ∈ Q, v1,v2 ∈ V .

Because of the latter lemma, the Hilbert-space structure obtained after space discretization
can be transferred to a space-time Hilbert-space structure. For a given Hilbert-function space W ,
we introduce the spaces of polynomials up to q-th order on Ik = (tk−1, tk] with values in W as

Qq(Ik;W) =

{
ψ : Ik →W : ψ(t) =

q∑
j=0

tjwj, with wj ∈ W

}
.

Clearly, these spaces are tensor Hilbert spaces as described in Lemma 2.39, when the L2-scalar
product is used in time. Continuous and discontinuous compositions of the spaces are defined as

Pq(W) =
{
φ ∈ C((0, T ];W) : φ|Ik ∈ Qq(Ik;W), for k = 1, . . . , K

}
Qq(W) =

{
φ : (0, T ]→W : φ|Ik ∈ Qq(Ik;W), for k = 1, . . . , K

}
.

A function φ ∈ Qq(W) may have jumps at the interval boundaries tk, but for each k ∈ {1, . . . , K},
a continuous function can be defined on the closed interval Īk = Ik ∪ {tk−1} as

φk ∈ C(Īk;W), φk(t) = φ|Ik(t) for t ∈ Ik,

without ambiguities. When φ ∈ Pq(W), it simply holds φ(tk) = φk(tk) = φk+1(tk). In the
upcoming, we consider the time discretization of System 2.13 by discontinuous Petrov-Galerkin
methods.
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System 2.40 (Time-discontinuous Galerkin). Find
¯
a = [a1; a2] ∈ Pq(V1)×Qq−1(V2) and eB, fB ∈

Qq−1

(
R|N∂ |

)
such that for k = 1, . . . , K and

¯
ak ∈ C(Īk;V1 × V2) with

¯
ak(t) =

¯
a|Ik(t) for t ∈ Ik it

holds ∫
Ik

〈∂tak1(t), b1〉dt = −
∫
Ik

〈∂xak2(t), b1〉dt∫
Ik

〈∂tẑ2(
¯
ak(t)), b2〉dt =

∫
Ik

〈∇z1h(ẑ(
¯
ak(t))), ∂xb2〉 − 〈r(

¯
ak(t))ak2(t), b2〉dt

+

∫
Ik

eB(t) · T b2dt−
[
〈ẑ2(

¯
ak(tk−1))− ẑ2(

¯
ak−1(tk−1)), b2(tk−1)〉

]
fB(t) = T a2(t).

for all b1 ∈ Qq−1(Īk;V1), b2 ∈ Qq−1(Īk;V2), with closing conditions (2.5).

Lemma 2.41 (Space-time local mass conservation). Let Assumption 2.12 hold for V1 and V2, and
let for [a1; a2] ∈ Qq(Īk;V1)×Qq−1(Īk;V2) the variational principle∫

Ik

〈∂ta1(t), b1〉dt = −
∫
Ik

〈∂xa2(t), b1〉dt

hold for all b1 ∈ Qq−1(Īk;V1). Then ∂ta1 = −∂xa2.

Proof. By construction, ∂ta1, ∂xa2 ∈ Qq−1(Īk;V1), i.e., they lie in the test space. Therefore, the
variational principle with b1 = ∂ta1 + ∂xa2 gives∫

Ik

〈∂ta1(t), ∂ta1(t) + ∂xa2(t)〉dt =

∫
Ik

〈−∂xa2(t), ∂ta1(t) + ∂xa2(t)〉dt.

The L2-product in time together with the inner product 〈·, ·〉 on V1 form an inner product on
Qq−1(Īk;V1). By subtracting the right-hand side from both sides of the latter equation, one
can see that the norm of ∂ta1 + ∂xa2 induced by the inner product on Qq−1(Īk;V1) is zero, i.e.,
∂ta1 = −∂xa2.

Remark 2.42. The variational principle in Lemma 2.41 then clearly holds for all test functions
b1 for which the expressions are well-defined. Mass conservation, locally in space and time, can be
derived by testing the variational principle with local indicator functions.

Theorem 2.43 (Energy-dissipation inequality). For any solution of System 2.40 it holds for
0 ≤ l < k ≤ K

H(ẑ(
¯
a(tk)))−H(ẑ(

¯
a(tl))) <

∫ tk

tl

eB(t) · fB(t)− 〈r(
¯
a(t))a2(t), a2(t)〉dt ≤

∫ tk

tl

eB(t) · fB(t)dt,

where the Hamiltonian for
¯
a ∈ V1 × V2 is defined as H(ẑ(

¯
a)) = 〈h(ẑ(

¯
a)), 1〉.

Proof. It suffices to consider the case l = k − 1, as l < k − 1 directly follows from that. For
convenience, the abbreviation

¯
cj = [cj1; cj2] := ẑ(

¯
aj(tk−1)) for j ∈ {k− 1, k} is used throughout the

proof. It then holds

H(ẑ(
¯
ak(tk)))−H(ẑ(

¯
ak−1(tk−1))) = H(ẑ(

¯
ak(tk)))−H(ẑ(

¯
ak(tk−1))) +H(

¯
ck)−H(

¯
ck−1)

=

∫
Ik

〈
d

dt
h(ẑ(

¯
ak(t))), 1

〉
dt+

〈
h(

¯
ck)− h(

¯
ck−1), 1

〉
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By the strict convexity of c 7→ h([ck1; c]) for fixed ck1 and the fact that ck1 = ak1(tk−1) = ck−1
1 by the

choice of the ansatz spaces, it holds by Theorem 1.4 that(
h(

¯
ck)− h(

¯
ck−1)

)
−∇z2h(z)|z=

¯
ck
(
ck2 − ck−1

2

)
< 0.

This clearly implies 〈
h(

¯
ck)− h(

¯
ck−1), 1

〉
−
〈
ck2 − ck−1

2 ,∇z2h(z)|z=
¯
ck
〉
< 0. (2.7)

By construction,
¯
ak ∈ Qq(Ik;V1) × Qq−1(Ik;V2) is smooth in time on Ik, and the chain rule can

be applied to get∫
Ik

〈
d

dt
h(ẑ(

¯
ak(t))), 1

〉
dt =

∫
Ik

〈∂tẑ(
¯
ak(t)),∇zh(ẑ(

¯
ak(t)))〉dt

=

∫
Ik

〈∂tak1(t),∇z1h(ẑ(
¯
ak(t)))〉+ 〈∂tẑ2(

¯
ak(t)), ak2(t)〉dt.

As∇z2h(ẑ(
¯
ak)) = ak2 ∈ Qq−1(Īk;V2) and Lemma 2.41 holds, the variational principle with [b1; b2] =

∇zh(ẑ(
¯
ak)) can be used, leading to∫

Ik

〈
d

dt
h(ẑ(

¯
ak(t))), 1

〉
dt = −

∫
Ik

〈∂xak2(t),∇z1h(ẑ(
¯
ak(t)))〉+ 〈∇z1h(ẑ(

¯
ak(t))), ∂xa

k
2(t)〉dt

−〈r(
¯
ak(t))ak2(t), ak2(t)〉dt+

∫
Ik

eB(t) · fB(t)dt−
[
〈ck2 − ck−1

2 , ak2(tk−1)〉
]

= −〈r(
¯
ak(t))ak2(t), ak2(t)〉dt+

∫
Ik

eB(t) · fB(t)dt−
[
〈ck2 − ck−1

2 ,∇z2h(
¯
ck)〉

]
.

Inserting the latter equality into the first equation of the proof and using estimation (2.7) finishes
the proof.

The difference of the dissipation inequality of Theorem 2.43 to an equality is given by the
numerical dissipation

DDG(tk) =

∫ tk

0

eB(t) · fB(t)− 〈r(
¯
a(t))a2(t), a2(t)〉dt− [H(ẑ(

¯
a(tk)))−H(ẑ(

¯
a(0)))] . (2.8)

Towards energy-preserving time discretization schemes

At least theoretically, time discretization schemes fulfilling a dissipation-equality can also be con-
structed by Galerkin methods in time, which is demonstrated in the following.

Definition 2.44. Let Πk : L2(Īk;R) → Qq−1(Īk;R) be the L2-orthogonal projection in time,
defined for f ∈ L2(Īk;R) as∫

Ik

(Πkf(t))g(t)dt =

∫
Ik

f(t)g(t)dt, for all g ∈ Qq−1(Īk;R).
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System 2.45 (Time-continuous Galerkin). Find
¯
a = [a1; a2],

¯
a : [0, T ]→ V1 × V2 and

eB ∈ Qq−1

(
R|N∂ |

)
, fB : [0, T ]→ R|N∂ | with a1 ∈ Pq(V1) and ẑ2(a[x]) ∈ Pq(R) for x ∈ Ω, such that

for k = 1, . . . , K it holds∫
Ik

〈∂ta1(t), b1〉dt = −
∫
Ik

〈∂xa2(t), b1〉dt∫
Ik

〈∂tẑ2(
¯
a(t)), b2〉dt =

∫
Ik

〈∇z1h(ẑ(
¯
a(t))), ∂xb2〉 − 〈r(

¯
a(t)) Πk a2(t), b2〉dt

+

∫
Ik

eB(t) · T b2dt

fB(t) = T a2(t).

for all b1 ∈ Qq−1(Īk;V1), b2 ∈ Qq−1(Īk;V2), with closing conditions (2.5).

Theorem 2.46 (Energy-dissipation equality). For any solution of System 2.45 it holds for
0 ≤ l < k ≤ K

H(ẑ(
¯
a(tk)))−H(ẑ(

¯
a(tl))) =

k∑
j=l+1

∫
Ij

eB(t) · fB(t)− 〈r(
¯
a(t)), (Πja2(t))2〉dt

≤
∫ tk

tl

eB(t) · fB(t)dt.

Proof. We consider only l = k−1, as l < k−1 can be directly derived from that case. By applying
the chain rule we get

H(ẑ(
¯
a(tk)))−H(ẑ(

¯
a(tk−1))) =

∫
Ik

〈
d

dt
h(ẑ(

¯
a(t))), 1

〉
dt

=

∫
Ik

〈∂ta1(t),∇z1h(ẑ(
¯
a(t)))〉+ 〈∂tẑ2(

¯
a(t)), a2(t))〉dt

=

∫
Ik

〈∂ta1(t),Πk∇z1h(ẑ(
¯
a(t)))〉+ 〈∂tẑ2(

¯
a(t)),Πka2(t)〉dt.

In the last step, we used that ∂ta1[x], ∂tẑ2(a[x]) ∈ Qq−1(Īk;R) for almost all x ∈ Ω. Using now
the variational principle of System (2.45), we get

H(ẑ(
¯
a(tk)))−H(ẑ(

¯
a(tk−1))) =

∫
Ik

−〈r(
¯
a(t)) Πk a2(t),Πka2(t)〉+ eB(t) · T (Πka2(t)) dt

+

∫
Ik

−〈∂xa2(t),Πk∇z1h(ẑ(
¯
a(t)))〉+ 〈∇z1h(ẑ(

¯
a(t))), ∂x(Πka2(t))〉dt

=

∫
Ik

−
〈
r(

¯
a(t)), (Πka2(t))2

〉
+ eB(t) · T (Πka2(t)) dt.

The last equality holds, as∫
Ik

〈∂xa2(t),Πk∇z1h(ẑ(
¯
a(t)))〉dt =

∫
Ik

〈Πk∂xa2(t),Πk∇z1h(ẑ(
¯
a(t)))〉dt

=

∫
Ik

〈∇z1h(ẑ(
¯
a(t))), ∂x(Πka2(t))〉dt.
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Finally, the boundary-term can be rewritten as∫
Ik

eB(t) · T (Πka2(t)) dt =

∫
Ik

(ΠkeB(t)) · T a2(t)dt =

∫
Ik

eB(t) · fB(t)dt,

which finishes the proof.

Theorem 2.46 describes a dissipation equality in contrast to Theorem 2.43 and Theorem 2.38.
Thus, the term

DCoG(tk) =
k∑
l=1

[∫
Il

eB(t) · fB(t)− 〈r(
¯
a(t))Πla2(t), a2(t)〉dt

]
− [H(ẑ(

¯
a(tk)))−H(ẑ(

¯
a(0)))] (2.9)

is provable equal zero in exact arithmetic.

Remark 2.47. The realization of System 2.45 is more delicate in comparison to the former
methods due to the different parametrizations in space and time. Note furthermore that terms
linear in the variable a2, such as

∫
Ik
〈∂xa2(t), b1〉dt, lead to nonlinear expressions in the coefficients

of the space-time discrete solution.

For the special case of ẑ2 : R2 → R being a linear map, System 2.45 coincides with [LW16] for
the conservation part. Only for this case, terms linear in the variable a2, such as

∫
Ik
〈∂xa2(t), b1〉dt,

lead to linear expressions in terms of the coefficient representations of the fully discrete system.
The respective coordinate representation is stated in System 2.50.

Coordinate representations of discontinuous Galerkin in time

The detailed coordinate representation of the time-discrete System 2.40 for the lowest-order q = 1
is presented here. As by construction the test functions b1, b2 as well as the solution components
ak2, ∂ta

k
1, fkB and ekB are constant in time on Ik, most integrals in System 2.40 can be evaluated

explicitly. Thus, for k ≥ 1, the piecewise solution
¯
ak ∈ P1(Īk;V1) × Q0(Īk;V2) and the constant

values ekB, f
k
B ∈ R|N∂ | fulfill〈

ak1(tk)− ak1(tk−1), b1(tk−1)
〉

= −∆t

〈
∂xa

k
2(tk−1), b1(tk−1)

〉
〈
ẑ2(

¯
ak(tk))− ẑ2(

¯
ak−1(tk−1)), b2(tk−1)

〉
=

∫
Ik

〈∇z1h(ẑ(
¯
ak(t))), ∂xb2(tk−1)〉

− 〈r(
¯
ak(t))ak2(t), b2(tk−1)〉dt+ ∆t e

k
B · T b2(tk−1)

fkB = T ak2(tk−1).

Given the transformation Ψ : RN → V as in Definition 2.25, the related coordinate represen-
tation aj = [aj1; aj2] ∈ Rn is characterized by

¯
ak(t) = Ψ

([
tk−t
∆t

ak−1
1 + t−tk−1

∆t
ak1

ak2

])
, for t ∈ [tk−1, tk].

For a = [a1; a2] ∈ Rn, we introduce the notation

ẑ(a) =

[
a1

∇M2,a2G(a)

]
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for the energy variable. Finally, we employ a quadrature-rule for the remaining time-integrals.
Given quadrature-weights ωp and quadrature-points tp for p ∈ {1, . . . , P} the quadrature-rule for
a vector- or matrix-valued function f : a→ f(a) is then defined as

Ξk [f ] :=
P∑
p=1

ωpf

([ tk−tp
∆t

ak−1
1 + tp−tk−1

∆t
ak1

ak2

])
≈ 1

∆t

∫
Ik

f(ak(t))dt. (2.10)

The algebraic representation for the marching scheme reads then as follows:

System 2.48 (Coordinate representation of System 2.40). Given closing conditions (2.5), find
for k ≥ 1, ak ∈ RN , ekB, f

k
B ∈ R|N∂ |, solving

1

∆t

M
(
ẑ
(
ak
)
− ẑ
(
ak−1

))
=

[
J

−JT −Ξk [R]

] [
Ξk [−∇M1,a1G]

ak2

]
+ KekB

fkB = KTak.

Remark 2.49. The quadrature in time Ξk makes the implementation much more convenient. We
use high-order quadrature rules, which are expected to come with negligible small additional errors.
The rigorous inclusion of quadrature rules in time into our analysis is left for future research here.

Coordinate representations of continuous Galerkin in time

Here, the coordinate representation of the time-discrete System 2.45 for the lowest order q = 1
and the special case ẑ2([a1; a2]) = a2 is discussed. The latter means that

¯
a = ẑ(

¯
a).

By construction it then holds
¯
a = [a1; a2] ∈ P1([0, T ];V), eB ∈ Q0([0, T ];R|N∂ |) and

fB ∈ P1([0, T ];R|N∂ |). By basic manipulations, System 2.45 may also be simplified to

〈a1(tk)− a1(tk−1), b1(tk−1)〉 = −
∫
Ik

〈∂xa2(t), b1(tk−1)〉 dt

〈a2(tk)− a2(tk−1), b2(tk−1)〉 =

∫
Ik

〈∇a1h(
¯
a(t)), ∂xb2(tk−1)〉

−
〈
r(

¯
a(t))

(∫
Ik

a2(ξ)dξ

)
, b2(tk−1)

〉
dt+ ekB · T b2(tk−1)

fB(t) = T a2(t),

where again ekB ∈ R|N∂ | is equal to the constant value eB(t) for t ∈ Ik.
Given the transformation Ψ : RN → V as in Definition 2.25, the related coordinate represen-

tation aj = [aj1; aj2] ∈ Rn and f jB ∈ R|N∂ | is characterized by

¯
a(t) = Ψ

(
tk − t

∆t

ak−1 +
t− tk−1

∆t

ak
)
,

fB(t) =
tk − t

∆t

fk−1
B +

t− tk−1

∆t

fkB, for t ∈ [tk−1, tk].

The quadrature rule for a vector- or matrix-valued function f : a→ f(a) is then defined as

Ξk [f ] :=
P∑
p=1

ωpf

(
tk − tp

∆t

ak−1 +
tp − tk−1

∆t

ak
)
≈ 1

∆t

∫
Ik

f(ak(t))dt.

76



System 2.50 (Coordinate representation of System 2.45). Given closing conditions (2.5), find
for k ≥ 1, ak ∈ RN , ekB, f

k
B ∈ R|N∂ |, solving

1

∆t

M
(
ẑ
(
ak
)
− ẑ
(
ak−1

))
=

[
J

−JT −Ξk [R]

] [
−Ξk [∇M1,a1G]
1
2

(
ak−1

2 + ak2
) ]+ KekB

fkB = KTak.

2.6 Generalization for weighted edges

Throughout all our derivations, we assumed all edges ω ∈ E to have a weight equal to one. If this is
not the case, we define A = {Aω, ω ∈ E} as the set of edge-weights and extend the directed graph
to (N , E , l,A). To cope for the weights Aω, the following adaptions are needed: In generalization
to model problem (2.1), the state

¯
z : [0, T ]× Ω→ R2 is then governed by

∂t
¯
z(t, x) =

[
−∂x

−∂x −r̃(
¯
z(t, x))

]
∇zh(

¯
z(t, x)), x ∈ Ω, t ∈ [0, T ],

together with coupling conditions at ν ∈ N0 given as∑
ω∈E(ν)

nω[ν]Aω∇z2h(
¯
z|ω(t, ν)) = 0, ∇z1h(

¯
z|ω(t, ν)) = ∇z1h(

¯
z|ω̃(t, ν)) for ω, ω̃ ∈ E(ν),

and one boundary condition per boundary node ν ∈ N∂, each of one of the following types,

Type 1: ∇z1h(
¯
z|ω(t, ν)) = uν(t), Type 2: nω[ν]Aω∇z2h(

¯
z|ω(t, ν)) = uν(t), ω ∈ E(ν),

for t ∈ [0, T ] with prescribed boundary data uν : [0, T ] → R and initial conditions. Note that
scaling terms Aω enter the coupling conditions and the boundary conditions of Type 2. Similarly,
for the integration operator 〈·, ·〉E over the network scaling terms Aω have to be added,

〈b, b̃〉E =
∑
ω∈E

Aω
∫
ω

b[x]b̃[x]dx. (2.11)

The Hamiltonian is altered accordingly to

H(
¯
z) = 〈h(

¯
z, 1〉E =

∑
ω∈E

Aω
∫
ω

h(
¯
z)dx.

Finally, the ansatz space H1
div(E), defined at the end of Part I.A-Section 1.3, is modified to

H1
div(E) =

b ∈ H1
pw(E) :

∑
ω∈E(ν)

nω[ν]Aωb|ω[ν] = 0, for ν ∈ N0

 .

With these adaptions, all our derived results generalize immediately to the case of a network with
differently weighted edges.
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Chapter 3

Realization of model reduction

In this chapter we discuss the implementation of our abstract model order reduction and com-
plexity reduction approach from Chapter 2. The preceding space discretization step is assumed
to be realized with the same finite element ansatz spaces as for the linear case in our studies,
cf. Part I.A-Section 2.4. The finite element discretization serves as the full order model (FOM)
in this chapter. Thus, our starting point is a coordinate representation similar to Corollary 2.26.
Compared to the analysis in Chapter 2, we allow for more general boundary conditions here. They
are realized by a generic nonlinear function g : Rp × Rp × Rp → Rp.

System 3.1 (Full order model). Let input u : Rp → [0, T ] be given and the system matrices be as
in Corollary 2.26. Let further

ẑ2(ā) = ∇a2G(ā), ê1(a) = −∇M1,a1G(ā), d̂(a) = R(a)a2, for ā ∈ RN .

The full order model then reads: Find a ∈ C1([0, T ];RN) and eB ∈ C([0, T ];R|N∂ |), solving

d

dt

[
M1a1(t)
ẑ2(a(t))

]
=

[
J

−JT

] [
ê1(a(t))

a2(t)

]
−
[

0

d̂(a(t))

]
+ KeB(t)

0p,1 = g(eB(t),KTa(t),u(t)), a(0) = a0.

Let Ψ : RN → Vf be the transformation from the coordinate representation to the related function
space V = Vf as in Definition 2.25. We suppose Vf = Ψ(RN) fulfills Assumption 2.12.

Note that we employed the equality ∇a2G(ā) = M2∇M2,a2G(ā) in the definition of ẑ2(ā) in
System 3.1 to get slightly shorter expressions compared to Corollary 2.26.

Remark 3.2. The initial conditions eB(0) are assumed to be prescribed consistent with the input
function and its time-derivative at t = 0 and the initial state a0, cf. Part I.A-Lemma 2.25, and
need therefore not to be prescribed separately.

All upcoming methods will be snapshot-based. Consequently, we assume training data, the
so-called snapshots S, to be given as

S =
[
ā1, ā2, . . . , āL

]
∈ RN,L, āl =

[
āl1
āl2

]
, for l ∈ {1, . . . , L}. (3.1)

The training data typically consists of snapshots of one or several solution trajectories of System 3.1
for appropriate training setups.
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3.1 Model order reduction

The model order reduction step by projection closely follows the ideas of Part I.A-Section 3.1.
We thus are brief in the exposition here. The compatibility of the full order model, i.e., Assump-
tion 2.12 on Vf = Ψ(RN) can be guaranteed for reduced order models under assumptions on the
reduction basis only. In accordance to Part I.A-Assumption 3.5, they read as follows.

Assumption 3.3 (Compatibility of reduction basis). For System 3.1 given, let the reduction basis
Vb have block structure

Vb =

[
V1

V2

]
, V1 ∈ RN1,n1 , V2 ∈ RN2,n2 , n = n1 + n2.

Then Vb is assumed to fulfill

A1) im (M1V1) = im (JV2)

A2) ker(J) ⊂ im (V2).

Note that one compatibility condition less is needed as in Part I.A, as the proof for mass-
conservation is slightly different, Remark 2.15. The ROM (without complexity reduction) is
constructed by Galerkin projection.

System 3.4 (Order-reduced model). Given the full order model in System 3.1 and a reduction
basis Vb fulfilling Assumption 3.3, the reduced order model is defined as follows: Find ar =
[ar,1; ar,2] ∈ C1([0, T ];Rn) and eB ∈ C([0, T ];R|N∂ |), solving

d

dt

[
Mr,1ar,1(t)
ẑr,2(ar(t))

]
=

[
Jr

−JTr

] [
êr,1(ar(t))

ar,2(t)

]
−
[

0

d̂r(ar(t))

]
+ KreB(t)

0p,1 = g(eB(t),KT
r ar(t),u(t)), ar(0) = M−1

r VT
b Ma0,

where M is as in Corollary 2.26, Mr = VT
b MVb and

Mr,1 = VT
1 M1V1, Jr = VT

1 JV2, d̂r(ar) = VT
2 d̂(Vbar)

êr,1(ar) = M−1
r,1VT

1 M1ê1(Vbar), ẑr,2(ar) = VT
2 ẑ2(Vbar), Kr = VT

b K.

Remark 3.5. Both, the initial condition for ar(0) and the term êr,1(ar) can be interpreted as
orthogonal projections of their non-reduced counterparts w.r.t. the energy scalar products.

To construct a reduction basis Vb fulfilling Assumption 3.3, we follow here Part I.A-Section 3.1,
Strategy 1. Including the small adaptions needed for the slightly modified compatibility condi-
tions in this part compared to Part-I.A, this leads us to Algorithm 3.6. The call ’ortho’ in the
algorithm refers to Part I.A-Algorithm 3.12, and the system matrices M2 and K2 are defined as
in Corollary 2.26.
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Algorithm 3.6 (Compatible basis for System 3.1).

function [V1,V2]=compBasis(W1,M1,M2,J,K2,KernelJ,tolerance)

V1 = ortho(W1,[],M1,tolerance);

S = [J’,K2];

V2 = M2\(S*((S’*(M2\S))\[M1*V1;zeros(size(K2,2),size(V1,2))]));

V2 = ortho([KernelJ,V2],[],M2,tolerance);

end

The high-fidelity basis W1 that our Algorithm 3.6 takes as input, is calculated from the
snapshots S of (3.1). More precisely, we collect ā1(tl) and M−1

1 Jā2(tl) in one new snapshot matrix
and apply proper orthogonal decomposition (POD) onto it. This is summarized in Algorithm 3.7.
The call ’Podscp’ in the algorithm refers to POD in a desired scalar product, see, e.g. [GH18],
[KV01].

Algorithm 3.7 (POD basis W1).

function [W1]=PodW1(S,M1,J,dimr)

[N1,N2] = size(J);

S1 = S(1:N1,:); S2 = S(N1+(1:N2),:);

% construct POD-basis of dimension ’dimr’ using scalar product induced by ’M1’

W1 = Podscp([S1,M1\(J*S2)],M1,dimr);

end

Remark 3.8. Given a(t) = [a1(t); a2(t)] is a snapshot of a solution to System 3.1 at time t, it
holds

M−1
1 Ja2(t) = ∂ta1(t).

Thus, our strategy for the snapshot collection can also be interpreted as collecting ā1(tl) and the
time derivatives ∂tā1(tl) for l = 1, . . . , L in a snapshot matrix and applying POD. Including
time derivatives into the snapshots has been proposed, e.g., in [IW14], [KV01], also for problems
without any special additional structure. The saddle-point-type structure and our aim to ensure
Assumption 3.3-(A1) further motivates this for our problem.

3.2 Concept of complexity reduction

Although the reduced order model is typically of much lower dimension n� N than the full order
model, evaluations of nonlinearities may still scale with N . This is because there is in general no
better way to evaluate them than performing a prolongation step ā = Var every time. To avoid
this bottleneck, nonlinear terms are additionally approximated by so-called complexity reduction.
Applying this approach to System 3.4, leads us to the complexity-reduced model.

System 3.9 (Complexity-reduced model). Under the definitions of System 3.4 and additional
complexity-reduced approximations ẑc,2, d̂c : Rn → Rn2 and êc,1 : Rn → Rn1 of ẑr,2(·), d̂r(·) and
êr,1(·), the complexity-reduced model is defined as follows:
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Find ar = [ar,1; ar,2] ∈ C1([0, T ];Rn) and eB ∈ C([0, T ];R|N∂ |) solving

d

dt

[
Mr,1ar,1(t)
ẑc,2(ar(t))

]
=

[
Jr

−JTr

] [
êc,1(ar(t))

ar,2(t)

]
−
[

0

d̂c(ar(t))

]
+ KreB(t)

0p,1 = g(eB(t),KT
r ar(t),u(t)), ar(0) = M−1

r VT
b Ma0.

The rest of this section is concerned with the construction of the complexity-reduced function-
approximations. For the exposition, we generically write f : RN → RM for the nonlinearity of the
full order model. Its counterpart in the order-reduced model reads

fr : Rn → Rm, fr : ar 7→ V̂T f(Vbar), V̂ ∈ RM,m, m�M.

Remark 3.10. In our case it is M ∈ {N1, N2, N}, V̂ ∈ {V1,V2,Vb} and, e.g., f = ê1.

The complexity reduction now aims for a cheaper-to-evaluate fc : Rn → Rm with

fc(ā
l
r) ≈ fr(ā

l
r), for ālr = V+

b āl, l = 1, . . . , L, (3.2)

with āl the snapshots as in (3.1) and V+
b the pseudo-inverse w.r.t. the given scalar product.

The main ingredients in the construction of fc are the formulation of an approximation ansatz
and its solution by a snapshot-based heuristic. Similar to the model order reduction step, the
implementation of compatibility conditions have to be explicitly implemented in the complexity
reduction. The relevant condition here is Assumption 2.20.

3.3 Quadrature-type complexity reduction

Our complexity reduction framework from Section 2.3 employs one sparse quadrature-rule to ap-
proximate every nonlinear integral expression. Recall that the full order model infers a partitioning
of the spatial domain Ω by the finite elements Kj ⊂ Ω, j = 1, . . . , J . Following Definition 2.19, the
sparse quadrature-rule approximation 〈·, ·〉c, is defined by an index set I and quadrature weights
wi as

〈b̄, b〉c =
∑
i∈I

wi

∫
Ki

b̄[x]b[x]dx, b̄, b ∈ L2(E).

It is used to set up the complexity-reduced functions ẑc,2(·), d̂c(·) and êc,1(·) of System 3.9 as
described in Corollary 2.30. A gain in efficiency is achieved, when only a few non-zero weights
wi are employed, i.e., |I| � |{1, . . . , J}|. The construction of those weights is the topic of this
section. For convenience, we gather them in a vector with one entry for each finite element,

wqu ∈ RJ , [wqu]i =

{
wi, i ∈ I
0, else.

The starting point is the representation of the L2-scalar product 〈·, ·〉 as a sum of contributions
from each finite element Kj,

〈b̄, b〉 =
J∑
j=1

wfj

∫
Kj

b̄[x]b[x]dx, for b̄, b ∈ L2(E). (3.3)
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The coefficients wfj ∈ R are nothing but the edge-weights from Section 2.6. For a network without

edge-weighting it is wfj = 1, j = 1, . . . , J . For fixed functions b̄, b ∈ L2(E), (3.3) can be interpreted

as a linear equality fulfilled by the weight-vector wf = [wf1 ; . . . ;wfJ ] ∈ RJ , i.e.,[∫
K1
b̄[x]b[x]dx

∫
K2
b̄[x]b[x]dx . . .

∫
KJ
b̄[x]b[x]dx

]
wf = 〈b̄, b〉.

Similarly, one can reformulate each evaluation of the nonlinearity fr at a snapshot of (3.1), i.e.,
fr(V

+ā(tl)) ∈ Rni for l ∈ {1, . . . , L}, as m linear equalities fulfilled by wf . Collecting all of them
in one large system, this then takes the form

Awf = b, with A ∈ RLm,J , b ∈ RLm (3.4)

A,b determined by fr and S =
[
ā1, ā2, . . . , āL

]
from (3.1).

We refer to, e.g., [HCF17], [Jam08], [FACC14] for the detailed form of the entries in A and b. The
approximation ansatz for the quadrature-based approach then aims for a sparse vector of weights
wqu ∈ RJ such that

Awqu ≈ b, with A,b as in (3.4).

The fundamental underlying heuristic we apply to find appropriate weights wqu is the greedy
search from Algorithm 3.12, similar to the ones used in [HCF17], [Jam08]. In contrast to the
references, we additionally allow for initially fixed quadrature-points by the input wqu

0 . These
initial quadrature points are chosen towards the fulfillment of Assumption 2.20 independent of the
snapshots, as explained below.

Remark 3.11. The minimization problem in Algorithm 3.12-Step 2.d is an unconstrained least-
squares problem, which can be easily solved exactly.

Algorithm 3.12 (Greedy empirical quadrature weights).
INPUT:

• Data matrix A and vector b as in (3.4)

• Initial sparse-quadrature vector wqu
0

• Number of quadrature-points nc

OUTPUT: Vector wqu of quadrature-weights

1. Set I0 = {i ∈ {1, . . . , J} : [wqu
0 ]i 6= 0 }.

2. for k = 1 : nc

a) Define set of candidates Ic = {1, . . . , J} \ Ik−1.

b) Find jmax solving: maxj∈Ic

∣∣∣[AT
(
Awk−1 − b

)]
j

∣∣∣.
c) Set Ik = Ik−1 ∪ {jmax}.
d) Find wk solving:

min
wk∈RJ

[wk]j=0, for j /∈Ik

∣∣∣∣Awk − b
∣∣∣∣

endfor

3. Set wqu = wnc.
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Towards compatibility

Regarding our analysis, we should aim for a quadrature-weight such that Assumption 2.20 is
fulfilled, i.e.,

wi ≥ 0, i = 1, . . . , J (3.5a)

1

C̃
||b||c ≤ ||b|| ≤ C̃||b||c, b ∈ Vi, i ∈ {1, 2}. (3.5b)

Condition (3.5b) needs to be translated from function-space setting to an algebraic setting. For
that, let bases b1

i , . . . , b
ni
i of Vi for i = 1, 2 be given as in Definition 2.25. Then define mass matrices

Mi,Mc,i ∈ Rni,ni by

[Mi]jl = 〈bli, b
j
i 〉, [Mc,i]jl = 〈bji , bli〉c, j, l = 1, . . . , ni. (3.6)

Any v ∈ Vi can be written in terms of its coordinate representation v = [v1; . . . ; vni ] ∈ Rni as
v =

∑Ni
l=1 v

lbli. It then holds

||v||2c = 〈v, v〉c =

ni∑
j,l=1

〈vlbli, vjb
j
i 〉c =

ni∑
j,l=1

〈bli, b
j
i 〉c vlvj = vTMc,iv.

Similarly, the norm ||v|| can be expressed in terms of Mi. Condition (3.5b) thus holds for a
bounded C̃, when Mc,i is non-singular for i = 1, 2. Moreover, C̃ can be seen as a stability-
constant, and it is C̃ ≈ 1 for Mc,i ≈Mi. This clarifies our aim. Its strict fulfillment in a practical
implementation is, however, a challenging task.

Remark 3.13. The greedy procedures in [HCF17], [Jam08] enforce the positivity-constraint (3.5a)
in contrast to our Algorithm 3.12. We omitted the constraint, as we only observed very minor
violation in all our numerical experiments and the constraint (3.5b), which showed to be more
relevant in our tests, is not enforcible in such a straight forward manner in a greedy procedure.

We therefore take a more pragmatic approach and include in a pre-selection step a few
quadrature-points towards the fulfillment of the part of (3.5), which is the most troubled in
practice. We observe that to be the following condition:

||b|| ≤ C̃||b||c, for b ∈ K, K = {w ∈ V2 : ∂xw ≡ 0} . (3.7)

As we incorporate K in our reduced space Vr,2 independently of the snapshots at hand, cf. As-
sumption 2.12, this is not surprising. With the same reasoning as above, a related algebraic
characterization of (3.7) can be given in terms of a basis w1, . . . , wk of K by the mass matrices
M̃, M̃c ∈ Rk,k defined by[

M̃
]
ij

= 〈wj, wi〉,
[
M̃c

]
ij

= 〈wj, wi〉c, i, j = 1, . . . , k.

Our implementation of the pre-selection step in Algorithm 3.14 aims towards initial quadrature-
weights w̃qu

0 , for which M̃c ≈ M̃. Note that within the procedure it is employed that the entries
of M̃ can be expressed in terms of a basis w1, . . . ,wk of ker(Jr) and the function

fr : Rn2 → Rk, fr : ar,2 7→WTar,2, with W = [w1, . . . ,wk].
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The weights w̃qu
0 obtained from the pre-selection are taken as initialization in our greedy search.

By this, respective quadrature points are forced to be included, independently of the snapshots.

Algorithm 3.14 (Pre-selection of weights for compatibility).
INPUT: Matrix Jr from System 3.4
OUTPUT: Vector w̃qu

0 of quadrature-weights

1. Form orthogonal basis W = [w1, . . . ,wk] of ker(Jr).

2. Define fr : Rn2 → Rk, fr : ar,2 7→WTar,2.

3. Construct A and b according to (3.4) for ālr = wl for l = 1, . . . , k and fr.

4. Find w̃qu
0 by Algorithm 3.12 for A, b from Step 3, and wqu

0 = 0, nc = k.

Adaption to our model

For the greedy training phase in the construction of the quadrature-weights, we suggest to ap-
ply Algorithm 3.12 onto the snapshots (3.2) and the nonlinearity composed of d̂r(·) and ar 7→
WJJrêr,1(ar). The matrix WJ is constructed to be a basis matrix for im (Jr). Its inclusion only
removes redundant data and enhances the performance of the training phase. Our full proce-
dure consists of the pre-selection step and the subsequent greedy search. Its implementation is
summarized in Algorithm 3.15.

Algorithm 3.15 (Training of sparse quadrature weights).
INPUT:

• Projected snapshots ālr, l = 1, . . . , L from (3.2)

• Order-reduced model, System 3.4

• Number nonzero entries nc

OUTPUT: Vector wqu of quadrature-weights

1. Construct pre-selected quadrature-weight vector wqu
0 from Algorithm 3.14.

2. Construct orthogonal matrix WJ with im (WJ) = im (Jr).

3. Define fr : ar 7→ [d̂r(ar); WJJrêr,1(ar)].

4. Construct A, b depicted in (3.4) for fr and snapshots ālr, l = 1, . . . , L.

5. Find wqu by Algorithm 3.12 with A, b, wqu
0 and nc as above.

Remark 3.16. While the pre-selection of wqu
0 in Algorithm 3.15 strongly improves the perfor-

mance, cf. Section 5.5, it does not rigorously guarantee Assumption 2.20 to hold. The design of
a more sophisticated heuristic strictly enforcing compatibility is a direction for future research.
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3.4 Complexity reduction by DEIM

Another popular complexity reduction method is the discrete empirical interpolation method
(DEIM). This non-structure-preserving approach is instanced here for later numerical comparisons
against our structure-preserving method from Section 3.3.

Let us explain the basic idea of DEIM with the example of the generic nonlinearity fr from (3.2),

fr : Rn → Rm, fr : ar 7→ V̂T f(Vbar), V̂ ∈ RM,m, m�M.

Let f(·) be the related full order model nonlinearity. The ansatz of DEIM aims for an interpolation
of f(·) by an appropriate sparse approximation. This is realized by setting up a quadratic matrix
Df with only a few non-zero columns, i.e., a small image, such that

f(āl) ≈ Df f(āl)

for the trained snapshots āl, (3.2). The DEIM-complexity-reduced function is then defined as

fc : ar 7→ V̂TDf f(Vbar).

A gain in efficiency is achieved, when the sparsity of Df is employed in the implementation. The
construction of Df follows a greedy procedure. We refer to [CS12], [CS10], [DS18], [PDG18] for
details. Note that the references suggest slightly varying greedy methods, but the used approxi-
mation ansatz is the same for all of them.

Adaption to our model

In our implementation we employ the DEIM-procedure depicted in [PDG18, Algorithm 2] (without
oversampling) to each of the nonlinearities ẑr,2(·), d̂r(·) and êr,1(·) of System 3.4 separately. That
is, sparse quadratic matrices Dz, Dd and De are constructed in the training phase to set up the
complexity-reduced nonlinearities for System 3.9 as

ẑc,2 : ar 7→ VT
2 Dzẑ2(Vbar), d̂c : ar 7→ VT

2 Ddd̂(Vbar)

êc,1 : ar 7→M−1
r,1VT

1 M1Deê1(Vbar).
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Chapter 4

Application to Euler equations

Our approximation procedure is in particular applicable for the Euler equations with barotropic
pressure models and for its simplifications sketched in Fig. 4.1. Besides the isothermal model,
we are mainly interested in, e.g., the isentropic model is another instance for a barotropic pres-
sure model. We refer to the introduction of Part I and [Che05], [BGH11], [Egg18] for details
and alternative approximation methods. In this chapter we focus on the first two stages of the
model hierarchy of Fig. 4.1, the barotropic Euler equations and what we refer to as the simplified
barotropic Euler equations. The respective models for the network case are stated together with
their approximation in our framework. We also derive a well-posedness result for the complexity-
reduced system at the end of the chapter.

As our main motivation is the simulation of gas networks, we present the respective model
assumptions here, cf. [SAB+17], [HGCATRM09], [BGH11], [DHLT17]. The typical choice for the
pressure model in this application is the isothermal model. Further, edges ω ∈ E represent (cross-
sectionally averaged) pipes. The cross-sectional areas A = {Aω, ω ∈ E} are constant on a pipe but
may be different for each one of them. They act as weights for the edges, see Section 2.6, and the

Isothermal Euler
(ISO1)

Simpl. isothermal Euler
(ISO2)

Nonlinear
damped wave equation

drop term ∂x(ρv
2)

assume p(ρ) = cρ

Figure 4.1: Model hierarchy for (isothermal) Euler-type equations. Equations of (ISO1) and
(ISO2) are given by (4.1) and (4.2), respectively.
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network description is thus given by a directed graph (N , E , l,A). The pipes are assumed to be
perfectly round. For convenience, we also introduce functions A,D : Ω→ R for the cross-sectional
area and the diameter. It then holds

A|ω = Aω and A|ω =
π

4
D2
|ω, for ω ∈ E .

In the upcoming, ρ and v denote density and velocity, respectively. The pressure p is assumed
to be a function of density only, i.e., p = p(ρ), which exactly is the characterization of a barotropic
model. Further, λ describes a friction factor, which may be state-dependent.

4.1 Barotropic Euler equations

In the full barotropic Euler equations, which we also refer to as the ISO1 model for the isothermal
case, the density and and velocity ρ, v : [0, T ]× Ω→ R are governed by

∂tρ+ ∂x (ρv) = 0 (4.1a)

∂t(ρv) + ∂x
(
ρv2 + p(ρ)

)
= − λ

2D
ρ|v|v (4.1b)

for x ∈ Ω, t ∈ [0, T ]. Given a potential energy function P (·) fulfilling

P ′′(ρ) =
1

ρ
p′(ρ),

the coupling conditions at inner nodes ν ∈ N0 read∑
ω∈E(ν)

nω[ν]Aωρ|ω[ν]v|ω[ν] = 0 (4.1c)

P ′(ρ|ω)[ν] +
v|ω[ν]2

2
= P ′(ρ|ω̃)[ν] +

v|ω̃[ν]2

2
for ω, ω̃ ∈ E(ν). (4.1d)

The system has to be complemented with initial conditions and one boundary condition per
boundary node. For the isothermal Euler equations, it holds in particular

ISO1: p(ρ) = RT
ρ

1−RTαρ
, P (ρ) = RTρ log

(
ρsc

1−RTαρ
ρ

)
(4.1e)

for R > 0 the specific gas constant, T the temperature, a model parameter α < 0 and a factor
from the non-dimensionalization ρsc. For the latter, it holds ρsc = 1, when SI-units are used. Our
abstract standard form (2.1) specializes to

∂t

[
ρ
v

]
=

[
−∂x

−∂x −r(ρ, ρv)

]
∇h([ρ; v]), x ∈ Ω, t ∈ [0, T ]

with h([ρ; v]) = ρ
v2

2
+ P (ρ), r(ρ, ρv) =

λ

2D

|v|
ρ
,

¯
z = [ρ; v].

With mass flow m given as m = ρv it then holds

∇zh([ρ; v]) = ∇zh

([
ρ;
m

ρ

])
=

[
m2

2ρ2
+ P ′(ρ)

m

]
.

The complexity-reduced approximation, System 2.22, for this case thus reads as follows.
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System 4.1. Find [ρ;m] ∈ C1([0, T ];V1 × V2), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C0([0, T ];R|N∂ |)
such that it holds

〈∂tρ, b1〉 = −〈∂xm, b1〉〈
∂t
m

ρ
, b2

〉
c

=

〈
P ′(ρ) +

m2

2ρ2
, ∂xb2

〉
c

+ eB · T b2 − 〈r(ρ,m)m, b2〉c

fB = Tm

for all b1 ∈ V1 and b2 ∈ V2, and [ρ(0);m(0)] = [ρ0;m0]. One boundary condition for each boundary
node ν ∈ N∂ is prescribed, each of one of the following types for t ∈ [0, T ],

Type 1: eB[ν] = uν ∈ C([0,∞),R), Type 2: fB[ν] = uν ∈ C1([0,∞),R)

and at least one ν ∈ V∂ with boundary conditions of Type 1.

The Hamiltonian of System 4.1 is then given for
¯
a = [ρ;m] as

Hc : V → R, Hc

([
ρ;
m

ρ

])
=

〈
P (ρ) +

m2

2ρ
, 1

〉
c

.

The specific choice of boundary conditions is chosen for the upcoming theoretical investigations
in Section 4.3. For the application, more general boundary conditions can be easily included, cf.
System 3.1.

4.2 Simplified barotropic Euler equations

In the simplified barotropic Euler equations, which we also refer to as the ISO2 model for the
isothermal case, the density and and mass flow ρ,m : [0, T ]× Ω→ R are governed by

∂tρ+ ∂xm = 0 (4.2a)

∂tm+ ∂xp(ρ) = − λ

2D

1

ρ
|m|m (4.2b)

for x ∈ Ω, t ∈ [0, T ]. The coupling conditions at inner nodes ν ∈ N0 then read∑
ω∈E(ν)

nω[ν]Aωm|ω[ν] = 0 (4.2c)

p(ρ|ω[ν]) = p(ρ|ω̃[ν]) for ω, ω̃ ∈ E(ν). (4.2d)

The system has to be complemented with initial conditions and one boundary condition per
boundary node. Again, we can construct a Hamiltonian. For this, we assume a potential energy
function P̃ (·) to be given with

P̃ ′′(ρ) = p′(ρ).
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For the isothermal Euler equations, it in particular holds

ISO2: p(ρ) = RT
ρ

1−RTαρ
, P̃ (ρ) =

−1

RTα2
(log (1−RTαρ) +RTαρ) . (4.2e)

Our abstract standard form (2.1) in this case specializes to

∂t

[
ρ
m

]
=

[
−∂x

−∂x −r(ρ, ρv)

]
∇h([ρ;m]), x ∈ Ω, t ∈ [0, T ]

with h([ρ;m]) =
m2

2
+ P̃ (ρ), r([ρ;m]) =

λ

2D

|m|
ρ ¯

z = [ρ;m].

The complexity-reduced approximation, System 2.22, for this case thus reads as follows.

System 4.2. Find [ρ;m] ∈ C1([0, T ];V1 × V2), fB ∈ C1([0, T ];R|N∂ |) and eB ∈ C0([0, T ];R|N∂ |)
such that it holds

〈∂tρ, b1〉 = −〈∂xm, b1〉
〈∂tm, b2〉c = 〈p(ρ), ∂xb2〉c + eB · T b2 − 〈r(ρ,m)m, b2〉c

fB = Tm

for all b1 ∈ V1 and b2 ∈ V2, and [ρ(0);m(0)] = [ρ0;m0]. One boundary condition for each boundary
node ν ∈ N∂ has to be added.

The Hamiltonian of System 4.1 is then given for
¯
a = [ρ;m] as

Hc : V → R, Hc ([ρ;m]) =

〈
P̃ (ρ) +

m2

2
, 1

〉
c

.

Remark 4.3. The nonlinear damped wave equation, Fig. 4.1, differs from the simplified barotropic
Euler equations by the fact that the Hamiltonian density h is a quadratic function in the energy
variable, i.e., there is constant c > 0 such that

h([ρ;m]) =
1

2

(
m2 + cρ2

)
.

As elaborated on in [Kug19], [EKLS20], most results from Part I.A can be generalized from the
linear damped wave equation to the nonlinear damped wave equation for appropriate friction terms.

4.3 A well-posedness result

In this section we aim for a well-posedness result of System 4.1, which is the complexity-reduced
approximation of the full barotropic Euler equations. We base our derivations on the following
additional assumptions.

Assumption 4.4.

A1) Assumption 2.12 on V and Assumption 2.20 on 〈·, ·〉c hold.
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A2) The function P : (0,M) → R for M > 0 is two times continuously differentiable. It holds
P ′′(y) > 0, and y ≤ max{P (y), 1} for y ∈ (0,M), and limy→M P (y) =∞.

A3) The initial conditions [ρ0;m0] ∈ V are chosen such that ρ0(x) ∈ (0,M) for x ∈ Ki, i ∈ I.

A4) The friction model takes the form r(ρ,m) = 1/ρ2 (laminar friction model for λ(·)).

A5) The underlying full order model uses the finite element spaces from Part I.A-Section 2.4, i.e.,
Vf,1 = Q0(TE) and Vf,2 = P1(TE), and the restriction of the density to one finite element Ki,
ρ(t)|Ki, is constant.

A6) It holds Aω = 1 for all ω ∈ E.

Assumption (A1) ensures that || · ||c and || · || are equivalent norms on V1 and V2. As-
sumptions (A2)-(A3) are used to show that the complexity-reduced Hamiltonian Hc can be
evaluated and bounds the norm of the solution. Moreover, the underlying Hamiltonian den-
sity h : (0,M) × R → R then fulfills Assumption 2.1. To establish a global existence-result, we
follow the lead of [Egg18, Lemma 4.4] and derive uniform boundedness of the solution and strict
positivity of the density. The proof of the latter relies on Assumptions (A4)-(A5) and is needed
to avoid zeros in the denominators of System 4.1. The last assumption is only made for ease of
presentation.

Lemma 4.5. For any solution of System 4.1, it holds that ρ(t)|Ki > 0 for t > 0 and i ∈ I.
Moreover, there exists a constant C, independent of the discretization parameters, such that

1

ρ(t)|Ki
≤ exp

(
C

√
t

∆xi

√
wi

√
R(t)

)
1

ρ(0)|Ki

for R(t) = Hc

([
ρ(0);

m(0)

ρ(0)

])
+

∫ t

0

eB(s) · fB(s)ds, for i ∈ I,

where ∆xi is the grid size of the finite element Ki.

Proof. At several instances, we employ that ρ(t)|Ki and ∂xm|Ki(t) are constant in space. As long
as 1/ρ(t)|Ki is well-defined, it therefore holds

d

dt

(
1

ρ(t)|Ki

)
=

〈
∂t

1

ρ(t)
, 1

〉
Ki

= −
〈
∂tρ(t),

1

ρ(t)2

〉
Ki

=

〈
∂xm(t),

1

ρ(t)2

〉
Ki

≤
(

1

ρ(t)|Ki
||∂xm(t)||Ki,∞

)
1

ρ(t)|Ki
.

By the inverse estimate, there exists a constant C with ||∂xm(t)||Ki ≤ C/∆xi ||m(t)||Ki . Together
with 1/ρ(t) and ∂xm(t) both being constant on Ki, this yields

1

ρ(t)|Ki
||∂xm(t)||Ki,∞ =

1

ρ(t)|Ki
||∂xm(t)||Ki ≤ ci(t),

with ci(s) =
C

∆xi

∣∣∣∣∣∣∣∣m(s)

ρ(s)

∣∣∣∣∣∣∣∣
Ki

.
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Setting together the two estimates, we thus get by the Gronwall lemma, see [Chi06],

1

ρ(t)|Ki
≤ exp

(∫ t

0

ci(s)ds

)
1

ρ(0)|Ki
.

It remains to bound
∫ t

0
ci(s)ds for i ∈ I. Assuming ρ(t)|Ki > 0 and i ∈ I, we can follow

wi

∫ T

0

∣∣∣∣∣∣∣∣m(t)

ρ(t)

∣∣∣∣∣∣∣∣2
Ki

dt ≤
∑
i∈I

wi

∫ T

0

∣∣∣∣∣∣∣∣m(t)

ρ(t)

∣∣∣∣∣∣∣∣2
Ki

dt =

∫ T

0

〈(
m(t)

ρ(t)

)2

, 1

〉
c

dt

≤
∫ T

0

〈(
m(t)

ρ(t)

)2

, 1

〉
c

dt+Hc

([
ρ(t);

m(t)

ρ(t)

])
= R(t).

The latter equality corresponds to the energy-dissipation equality of Theorem 2.24, integrated in
time. Now first applying the Jensen-inequality, see [RW98], and then inserting the former estimate
yields

∫ t

0

ci(s)ds ≤
(
t

∫ t

0

ci(s)
2ds

)1/2

= C

√
t

∆xi

(∫ t

0

∣∣∣∣∣∣∣∣m(t)

ρ(t)

∣∣∣∣∣∣∣∣2
Ki

ds

)1/2

≤ C

√
t

∆xi

√
wi

√
R(t).

Inserting the latter bound on
∫ t

0
ci(s)ds into the estimate obtained by the Gronwall lemma finishes

the proof.

Remark 4.6. In the special case of 〈·, ·〉c chosen as the L2-scalar product, we recover the case of
pure Galerkin-approximation without complexity reduction. Lemma 4.5 then shows strict positivity
of ρ(t) on all of the spatial domain. Such a result has been derived in [Egg18] in a similar setting.

Note that positivity of ρ(t)|Ki can only be guaranteed for i ∈ I by Lemma 4.5. This turns out
to be sufficient, as the ρ(t)-terms in the denominator are only evaluated for i ∈ I. Next, we derive
a boundedness result for the solution.

Theorem 4.7. Let Assumptions 4.4 hold. Then there exist constants C1, C2, independent of the
discretization parameters, such that for [ρ;m] ∈ V with ρ|Ki > 0 for i ∈ I it holds

||ρ||+ ||m|| ≤
(

max
i∈I

wi
− 1

2

)
[C1Hc([ρ;m]) + C2] .

Proof. Let k = argmaxi∈Iρ|Ki , and let Ī = {i ∈ I : ρ|Ki > 1]} w.l.o.g. be non-empty. Otherwise
we trivially can bound the terms ||ρ||c, ρ|Kk by a constant. From Assumption 4.4-(A1) we get

1

C̃2
||ρ||2 ≤ ||ρ||2c = 〈ρ2, 1〉c =

∑
i∈I

wiρ
2
|Ki ≤ ρ|Kk

∑
i∈I

wiρ|Ki

= ρ|Kk

∑
i∈Ī

wiρ|Ki +
∑
j∈I\Ī

wjρ|Kj

 ≤ P (ρ|Kk)

∑
i∈Ī

wiP (ρ|Ki) +
∑
j∈I\Ī

wj

 .
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By Assumption 4.4-(A2) it follows that P (·) can be bounded from below (not necessarily by zero),
which implies that there exists a constant ĉ such that

wkP (ρ|Kk) ≤
∑
i∈Ī

wiP (ρ|Ki) ≤ 〈P (ρ), 1〉c + ĉ.

Together, this shows that for some ĉ1, ĉ2 > 0 it holds

||ρ|| ≤ 1
√
wk

(ĉ1〈P (ρ), 1〉c + ĉ2) .

Similarly, it follows

1

C̃2
||m||2 ≤ ||m||2c =

〈
m2

ρ
ρ, 1

〉
c

≤ ρ|Kk

〈
m2

ρ
, 1

〉
c

≤ P (ρ|Kk)

〈
m2

ρ
, 1

〉
c

≤ 1

wk
(〈P (ρ), 1〉c + ĉ)

〈
m2

ρ
, 1

〉
c

,

where in the last step the same estimate on P (ρ[xk]) as before has been used. With the help of
Young’s inequality it follows

||m|| ≤ C̃
√
wk

√
(〈P (ρ), 1〉c + ĉ)

√〈
m2

ρ
, 1

〉
c

≤ C̃

2
√
wk

(
〈P (ρ), 1〉c +

〈
m2

ρ
, 1

〉
c

+ ĉ

)
.

Setting together the estimates for ||ρ|| and ||m|| shows the assertion.

Notably, the bound on the L2-norms in Theorem 4.7 is almost independent of the discretization
parameters. Only the quadrature weights of the complexity reduction step enter. To make the
bound uniform, one has to require the quadrature weights to be bounded from below by a positive
constant. The concluding result now reads as follows.

Theorem 4.8. Given
∫ T
t=0

eB(t) · fB(t)dt is bounded for T > 0, System 4.1 has a unique solution

[ρ;m] ∈ C1([0, T );V1 × V2), fB ∈ C1([0, T );R|N∂ |) and eB ∈ C([0, T );R|N∂ |).

Proof. Without loss of generality, we assume that the assumptions of the theorem hold for T =
∞ for the upcoming proof. Let the boundary conditions uν be grouped in two vectors u1 ∈
C([0,∞),Rp1) and u2 ∈ C1([0,∞),Rp2) according to our distinction into boundary conditions
of Type 1 and Type 2. In Corollary 2.30 and Lemma 2.32 characterizations of

¯
a = [ρ;m] ∈

C1([0, T );V1 × V2) in terms of a coordinate representation have been derived. This coordinate
representation can be written as a system in a ∈ C1([0, T );RN) and µ ∈ C([0,∞),Rp2) given as

M
d

dt

[
a1(t)

ẑ2(a(t))

]
=

[
J

−JT −Rc(a(t))

] [
∇M1,a1Hc(a(t))

a2(t)

]
+

[
0
P1

]
u1(t) +

[
0
P2

]
µ(t)

0 =
[
0 P2

]T
a(t)− u2(t).

The matrices P1 and P2 describe sub-blocks of K2 in Corollary 2.30. To show global existence
of solutions, we employ the underlying ordinary differential equation of the coordinated represen-
tation. It is obtained by eliminating µ. According to Lemma 2.34, this yields a system of the
form

d

dt
a(t) = f(t, a(t)), a(0) = a0 ∈ AN
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with f : [0, T ]×AN → RN continuous. Let Ψ : RN → V be the transformation from the coordinate
representation to the function in V , Definition 2.25. The domain AN can then be specified as

AN = {a ∈ RN : with [ρ;m] = Ψ(a) ∈ V , and 0 < ρ[x] < M for x ∈ Ki, i ∈ I}.

The local existence of a solution readily follows by the Peano existence theorem. The extension
theorem [WP10, Theorem 6.2.1] then states that there exists a maximal continuation of this
solution onto a maximal interval [0, t∗). The theorem further states that either t∗ =∞ or one of
the following scenarios holds for finite t∗:

• The solution diverges, i.e., || limt↑t∗ a(t)|| =∞.

• The solution tends to the boundary of AN , i.e., limt↑t∗ a(t) ∈ ∂AN .

The first scenario cannot be reached as the solution is bounded due to Theorem 2.24 and The-
orem 4.7. The second scenario of a(t) leaving AN is a contradiction to Lemma 4.5. Therefore,
t∗ =∞, and the solution can be globally extended.

Let us now discuss the uniqueness. For that, we reinterpret the boundary conditions u1(t),
u2(t) and the time-derivatives d

dt
a1(t), d

dt
ẑ2(a(t)) as right hand sides for fixed t ≥ 0 and gather

them in a vector g(t). The coordinate representation then yields an algebraic system determining
[a(t);µ(t)] in dependence of g(t), given as

F

([
a(t)
µ(t)

])[
a(t)
µ(t)

]
= g(t), with F

([
a
µ

])
=

 J
−JT −Rc(a(t)) P2

PT
2


g(t) =

[
M

I

]
d

dt

 a1(t)
ẑ2(a(t))

0

+

 0
−P1u1(t)

u2(t)

 .
Under the help of Part I.A-Lemma 2.18 and the inverse function theorem, unique solvability of
the algebraic system can be derived. This, in turn, shows that the time derivatives d

dt
a1(t) and

d
dt
ẑ2(a(t)) are unique for each t ≥ 0, i.e., the uniqueness of solutions of System 4.1.

Remark 4.9. The boundedness of the boundary exchange
∫ T
t=0

eB(t) · fB(t)dt was posed as an
assumption in Theorem 4.8. Under certain circumstances on the boundary conditions or the
form of P (·), one can derive an intrinsic bound. Sufficient is a bound depending linearly on the
Hamiltonian and continuously on the boundary conditions uν. We obtain this, e.g., when only
boundary conditions of Type 1 are posed, or for the isentropic model for P (·), cf. the introduction
of Part I and [Egg18], [Che05].

Let us briefly summarize the results of this subsection: We derived well-posedness, positivity
of the densities, ρ(t)|Ki > 0 for i ∈ I and t > 0, and we were able to bound the norms of ρ(t),m(t)
in terms of Hc([ρ(t);m(t)]) as described in Theorem 4.7 for t > 0, i.e., by the initial data and
power exchange over the boundaries as described in Theorem 2.24.
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Chapter 5

Numerical results

Different aspects of our theoretical findings are numerically illustrated in this chapter using the
example of the isothermal Euler equations on networks. After our standard setup for the numerical
experiments is settled in Section 5.1, the time discretization is examined in Section 5.2. All other
sections are on the performance of our model reduction approach. Expectably, the latter depends
on the parameter regimes and scales at hand. We briefly illustrate this for a small network example
for varying friction terms in Section 5.3. More extensive studies are then carried out on a larger
network example in Section 5.4. First this is done for purely projection-based reduced models
and then for the additionally complexity-reduced ones. In particular, a comparison to the non-
structure-preserving alternative for complexity reduction given by DEIM is made. Finally, the
importance of the compatibility condition, Assumption 2.20, for the performance of our proposed
complexity reduction is showcased in Section 5.5.

5.1 Setup for numerical results

For all calculations, equations and quantities are non-dimensionalized w.r.t. to SI-units. Where
we assume it to be helpful, we state the respective SI-base in squared brackets once, e.g., [kg] for
kilogram. The constants

h̄ = 3600 and km = 1000

are used to specify time- and space-variables in the illustrations. The isothermal Euler equations
(ISO1) and its simplification (ISO2) from Chapter 4 are considered here in parameter regimes
typical in the application for gas transport networks, [SAB+17], [HGCATRM09]. For all test
cases, the constitutive law for pressure p is set to

p(ρ) = RT
ρ

1−RTαρ
, with R = 518

[
J

kg K

]
, T = 283 [K] , α = −3 · 10−8.

If not stated differently, the ISO1 model is utilized. Although ISO1 and ISO2 lead to very similar
solution trajectories for all our test scenarios, the ISO1 model clearly is the more challenging one
in our framework due to the more complex Hamiltonian structure.

Errors are measured by the L2-norm in space and the supremum-norm in time. If not stated
differently, the solution of the FOM acts as the reference solution. Thus given a as the FOM
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solution, and the approximation ã at hand, the relative error ET is defined as

ET =
maxt∈[0,T ] ||a(t)− ã(t)||E

maxt∈[0,T ] ||a(t)||E
.

The FOM is obtained using a finite element discretization on an edge-wise uniform partitioning
with the ansatz spaces from Part I.A-Section 2.4. Our standard discretization parameters are
∆s ≤ 500[m] chosen maximal as spatial step size, and a time discretization by the implicit Euler-
type scheme, System 2.37, with ∆t = 3[s] uniformly for FOM and all reduced models. Only
deviations from these settings are reported in the scenarios. The resulting nonlinear algebraic
equations after all discretization steps are solved by Netwton’s method, which is ran until a relative
tolerance of 10−8 is reached in our energy-norm. If the fixed-point iteration has not reached this
tolerance after 20 iterations, we cancel the simulation and consider it as failed. For convenience
of implementation, a few nonlinear integrals are approximated by the Gauss-quadrature with
four quadrature-points [Bar16], [DH08]. These are the space integrals of the friction-term d̂(·)
in System 3.1 and its reduced counterparts as well as the time-integrals in the Galerkin-in-time
methods, Section 2.5, for which we already introduced the placeholder Ξk [·] for quadrature, see
(2.10), and the boundary data for the Galerkin-in-time methods, cf. Remark 2.36.

The projection matrix in all our reduced models is obtained by Algorithm 3.7. This algorithm
as well as the complexity reduction methods get the trajectory of the FOM solution sampled
at 500 uniformly distributed time instances as snapshots S in (3.1), if not stated differently.
The reduced dimension n and the number of degrees of freedom in the greedy search of the
complexity reduction nc then fully specify these models. We reserve the abbreviation ROM in
this chapter for the reduced model gotten from Galerkin projection without complexity reduction,
System 3.4. Additionally complexity-reduced models, System 3.9, are denoted as ROMQ and
ROMD, depending on whether the quadrature-based method of Section 3.3 or the DEIM method
of Section 3.4 is applied. Recall that only the complexity-reduced models ROMQ and ROMD
are online-efficient in the sense that computational time is saved compared to FOM. The model
ROM, in comparison, takes about the same simulation time as FOM. All implementations have
been carried out in MATLAB Version 9.1.0.441655 (R2016b).

Remark 5.1 (Spatial representations for network solution). The spatial domain described by a
single pipe can be identified with an interval. In our spatial representations for networks, we
tacitly make these identifications for each pipe and string them together, see Fig. 5.4, Fig. 5.6 and
Fig. 5.11. Note that discontinuities in the mass flows at junctions, marked by dotted vertical lines
in the figures, are to be expected when more than two pipes meet due to the employed coupling
conditions.

5.2 Time discretization

In this section the performance of our time discretization schemes System 2.37, System 2.40
and System 2.45 are compared. We refer to them in the upcoming as ImpEul, DG and CoG,
respectively. In contrast to all other sections, the space approximation is fixed and only the time
discretization is varied. Consequently, the reference solution refers to a solution obtained from a
highly resolved time discretization. In our case it is obtained by MATLAB’s solver ’ode15s’ with

95



D
en

si
ty
ρ

0 20 40 60 80 100

40

41

42

43

44

Space x/km

M
as

s
fl
ow

A
m

0 20 40 60 80 100

-1000

-500

0

500

Space x/km

Figure 5.1: One pipe, Scenario 5.2. Spatial representation of reference solution.

the relative tolerance modified to ’RelTol = 10−8’ and exact Jacobian matrices forwarded to it.
We start by considering a scenario with only one pipe.

Scenario 5.2 (One-pipe network). The network topology consists of one pipe ω = (ν1, ν2) with
length lω = 100km and diameter D = 2

√
1/π (i.e. A = 1). Initial- and boundary conditions are

chosen as

ρ(0, x) = 40 + 9

(
x

lω
− 1

3

)2

, Am(0, x) = 200

ρ(t, ν1) = 41, ρ(t, ν2) = 44, t ∈ [0, T ], T = 120.

The ISO2 model is employed and the laminar friction model

λ(m) = 10−5 64

mD
.

Moreover, step size ∆s = 2km is chosen, resulting in a dimension N = 101 for FOM.

The scenario involves initial conditions far afield from a stationary solution and a comparably
small friction factor given by the laminar friction model [DHLT17].Consequently, relatively large
temporal gradients are observed in the considered simulation period t ∈ [0, 120], see Fig. 5.1. The
scenario is designed to reveal the different numerical dissipation rates of our methods distinctly.

Numerical dissipation

Recall the (absolute) numerical dissipation DImpEul, DDG and DCoG for the different methods from
(2.6), (2.8) and (2.9). Defining the total dissipation for the final time T as

DoT = H(ẑ(
¯
a(T )))−H(ẑ(

¯
a(0))),
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Figure 5.2: One pipe, Scenario 5.2. Left: Rel. numerical dissipation DT ; Right: Rel. errors ET .

we can introduce a relative numerical dissipation rate DT as the method-dependent quantity

DT =


DImpEul(T )

DoT
for ImpEul

DDG(T )
DoT

for DG

DCoG(T )
DoT

for CoG.

(5.1)

This rate is depicted in Fig. 5.2-left for Scenario 5.2 for varying step size ∆t. ImpEul and
DG show a similar, rather high numerical dissipation, which scales approximately linear with the
step size. CoG, on the other hand, inherits no step-size dependent numerical dissipation, but
only a small step-size independent base-deviation in the Hamiltonian. With under 10−8 it is of an
order comparable to the chosen tolerance in the underlying Newton’s methods. This numerically
confirms our energy dissipation inequalities and, in particular, the dissipation equality shown
in Theorem 2.46.

Convergence

A convergence study in time for Scenario 5.2 is depicted in Fig. 5.2-right. It shows distinctly the
convergence orders, which are first order for ImpEuler and DG and even second order for CoG.
We note, however, that the handling of the friction term in CoG may lead to lower convergence
orders for scenarios featuring other friction models.

One can observe this for the upcoming scenario, where the so-called Weymouth-model [DHLT17]
is used for the friction factor.
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Figure 5.4: Diamond network, Scenario 5.3. Spatial representation of reference solution with the
domain relating to the marked path in Fig. 5.3.

Scenario 5.3 (Diamond network). The network topology is given as in Fig. 5.3. The boundary
conditions are chosen as

ρ(t, ν1) = 60 + up(t), Am(t, ν2) = 200

with up(t) = 5

(
exp

(
− t
h̄

)
− cos

(
πt

h̄

))
, t ∈ [0, T ], T = 2h̄,

and the solution is initialized with the respective stationary solution at t = 0. The employed
friction model reads

λ =
4

(11.18D1/6)2
.

The resulting dimension of FOM is N = 771.

The solution to Scenario 5.3 is visualized on the highlighted parts of spatial domain in Fig. 5.4
for different time instances. A convergence study can be found in Fig. 5.5, once for ISO1 and once
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Figure 5.5: Diamond network, Scenario 5.3. time discretization errors, divided by employed
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for ISO2. Convergence behavior is overall already seen for larger step sizes ∆t compared to the
former one-pipe scenario. All methods show here first order convergence, i.e., CoG is not of higher
order. In terms of absolute error, it still shows the best performance. Further recall that CoG is
only realizable for the ISO2 model and every single time step is more expensive, cf. Remark 2.47.
Again, DG and ImpEul show very similar quantitative approximation behavior. As ImpEul shows
to be slightly more efficient in our implementation, we employ this method here for all upcoming
tests. Let us mention, though, that DG could be generalized to higher-order methods by choosing
higher-order ansatz spaces, whereas a higher-order energy-stable generalization of ImpEul is not
straight-forwardly obtained in our analysis.

5.3 Reducibility of gas networks

Of course not every model or every parameter regime is equally appropriate for the application
of model reduction methods. One notoriously hard-to-reduce type of model consists of transport-
dominated systems, which allow for sharp fonts, [CMS19], [RSSM18]. Luckily, in our application
of gas networks, the friction term together with the high characteristic speeds insert considerable
damping effects. How strong they are, depends on the chosen friction factor λ. To illustrate its
influence, we repeat Scenario 5.3 with the modified input-profile

up(t) = 5usaw

(
4
t

h̄

)
, with usaw(t) =


t, 0 ≤ t < 1

2− t, 1 ≤ t < 2

0, t ≥ 2,

(5.2)

and varying choices of friction factor λ. The choices are λ = 0.01 and λ = 0.002, both constant
over the whole network. For both choices the respective solution on the spatial domain marked
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Figure 5.6: Diamond network, Scenario 5.3 with modified λ and input profile up from (5.2). Left:
λ = 0.01; Right: λ = 0.002. Spatial representation of reference solution with domain relating to
marked path in Fig. 5.3.

in Fig. 5.3 can be found in Fig. 5.6. The comparably high characteristic speeds inherent in the
problem are apparent when considering the solution at t = 0.2h̄. Already at this point in time,
the influence of the varying boundary conditions at ν1 have spread over the whole spatial domain.
A visualization of the evolution over time for the density and mass flow at the pipe-end of ω2 can
be found in the top rows of Fig. 5.7 and Fig. 5.8.

The respective differences in time of FOM minus the reduced models are plotted for a selection
of reduced models in these figures below. For all reduced models the dimension n = 12 is used. For
ROMQ-12 and ROMQ-17 the complexity reduction is done with nc = 12 and nc = 17, respectively.
While the (not online-efficient) ROM resolves the solution quite well for all scenarios, noticeable
errors occur in the complexity-reduced models. Their approximation quality tends to be worse
for the case with lower friction factor λ = 0.002, see Fig. 5.8-bottom. In particular, the ROMQ
method with nc = 12 seems under-resolved for this case. Notably also the under-resolved reduced
models allow for a stable simulation. This behavior can not be taken for granted when applying
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Figure 5.7: Diamond network, Scenario 5.3 with modified λ and input profile up from (5.2). Left:
λ = 0.01; Right: λ = 0.002. Temporal representation of density ρ at pipe-end of ω2. Top:
FOM- and ROM -solution. Bottom: Difference of ROM and ROMQ to FOM.

non-structure-preserving model reduction methods to our kind of model, as seen in the second
half of Section 5.4 and Section 5.5. Further, only scenarios with rather high friction factors seem
appropriate for model reduction. We assume to be in such regimes for all upcoming tests.
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FOM and ROM -solution. Bottom: Difference of ROM and ROMQ to FOM.
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Figure 5.9: Large network topology used in Scenario 5.4. The network consits of 38 Pipes between
5km to 74km length, in total 1008km. Diameters are between 0.4 to 1. The spatial domain given
by pipes 1-8 is marked in magenta.

P
ro

fi
le
u
p

Case A

0 1 2 3 4 5

-4

-2

0

2

4

6

Time t/h̄

Case B

0 1 2 3 4 5

-4

-2

0

2

4

6

Time t/h̄

Figure 5.10: Input profiles for Scenario 5.4, divided by cases.
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5.4 Model reduction for larger network

For all remaining numerical experiments in this part, we consider a larger pipe-network. The
respective topology, shown in Fig. 5.9, is constructed from [SAB+17, GasLib-40] by a few modi-
fications, such as replacing compressors by pipes and rounding the pipe-lengths onto two leading
digits.
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Figure 5.11: Large network, Scenario 5.4 divided by cases. Spatial representation of reference
solution with domain representing pipes 1-8 (marked in magenta in Fig. 5.9).
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Figure 5.12: Large network, Scenario 5.4-Case A, temporal representation of reference solution at
pipe-ends of pipes with number 2, 4 and 7 (left to right). Top: Density ρ. Bottom: Mass flow Am.
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Scenario 5.4 (Large network). The network topology is given as in Fig. 5.9. For given input-
profile up, the boundary conditions are chosen as

ρ(t, ν1) = 65 + up(t), ρ(t, ν2) = 50 + up(t), ρ(t, ν4) = 60− up(t)
ρ(t, ν5) = 60, ρ(t, ν6) = 45, Am(t, ν3) = −100 t ∈ [0, T ],

for T = 5h̄. The solution is initialized with the respective stationary solution at t = 0. Constant
friction factor λ = 0.01 is set. The input-profile is varied by cases:

• Case A: up(t) = 5
(
exp

(
− t
h̄

)
− cos

(
π t
h̄

))
.

• Case B: up(t) = 4usaw
(
t
h̄

)
) + 2

(
1 + sin

(
4π t

h̄

))
+−4 t

h̄
exp

(
t
h̄

)
,

with usaw(t) =


t, 0 ≤ t < 1

2− t, 1 ≤ t < 2

0, t ≥ 2.

The resulting dimension of FOM is N = 4074.

The input-profiles up for the cases of Scenario 5.4 are plotted in Fig. 5.10. Respective solutions
are illustrated in Fig. 5.11 in a spatial representation. Temporal representations can be found in
Fig. 5.12 for Case A and in Fig. 5.13 for Case B. Comparing these with the input-profiles from
Fig, 5.10, the smoothing of the solution profiles by the damping is apparent.

For all upcoming tests, the solution trajectory of Scenario 5.4-Case A is used for the snap-
shots of the training phase. Consequently, larger errors for the reduced models can be expected
in Case B.

Projection step

First, the error in the model reduction in dependence of the reduced dimension n is examined. For
this, we consider in Fig. 5.14 the reduced models without complexity reduction, i.e., ROM. In the
figure a direct comparison to OrthP is drawn, which is the orthogonal projection of the solution
trajectory onto the respective reduced space. OrthP thus shows the pure projection error made
in the model reduction and serves as a lower bound for the expected total reduction error.
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Figure 5.14: Large network, Scenario 5.4, relative errors ET of ROM compared to orthogonal
projection. Left: Case A (trained); Right: Case B (not trained).

We observe its error to monotonically decrease until an error of about 10−3 is reached. Further,
the gap between ROM and OrthP is quite small and no significant drift-off effects can be observed
in ROM. In other words, our reduced models show to be robust, both for the trained Case A and
the not trained Case B. However, recall that ROM is not online-efficient and thus complexity
reduction has to be taken into account to save computational time.

Complexity reduction step

Next, we examine the performance of the complexity reduction step for varying degrees of freedom
nc in the greedy search of the complexity reduction methods. For this, we fix the reduced dimension
n = 40 in all models. The errors made for Scenario 5.4 by our proposed ROMQ and the non-
structure-preserving ROMD are compared in Fig. 5.15. A few observations can be made. Firstly,
the simulations of ROMD do not even run to completion for quite a few parameter settings, which
are all points without a plot in Fig. 5.15. This in particular is the case for the not perfectly
trained setting, Fig. 5.15-Case B, where only for nc = 75 and nc = 85 the simulation of ROMD
does not break down. Our proposed ROMQ, on the other hand, does not suffer from these severe
stability issues, and it runs to completion for all considered parameter settings. We also observe
that for nc sufficiently large, the complexity reduction errors can be neglected compared to the
reduction errors. In the setting of Fig. 5.15, this holds for nc ≈ 65 and larger. Although ROMQ
performs profoundly more robust than ROMD, it also shows some undesired effect. The error
is not monotonously decreasing for increasing nc for nc < 50, though not as wavering as for
ROMD. This points towards room for improvement for our heuristic, Algorithm 3.15, underlying
the construction of ROMQ. The speed-up factor we observe for ROMQ in comparison to FOM is
about a factor of six in our implementation (≈50 sec. vs. ≈300 sec.) for the highest tested order
nc. We want to emphasize, however, that this factor is strongly implementation-dependent and
we assume bigger speed-up factors to be possible.
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Figure 5.15: Large network, Scenario 5.4, relative errors ET of complexity-reduced models. Un-
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Figure 5.16: Large network, Scenario 5.4 with model modified to ISO2. Relative errors ET of
complexity-reduced models. Underlying reduced dimension n = 40. Left: Case A (trained);
Right: Case B (not trained).

Complexity reduction for simpler model

Recall that our discretization of ISO1 involves nonlinearities in the time derivative as well, which
represents a further challenge for the complexity reduction. By changing the model to ISO2, we
have a setup without nonlinearities in the time derivatives, cf. Section 4.2. In ROMD, where all
nonlinearities are complexity-reduced independently of each other, we thus can omit to approxi-
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mate the now linear time-derivative-part. In the notation of Section 3.4, this relates to the choice
Dz = I. We repeat Scenario 5.4 with this simplification and compare the performance of the
complexity reduction methods in Fig. 5.16. Both ROMQ and ROMD perform better in terms of
errors. In particular, the simulations in ROMD all run to completion for nc ≥ 55. Nonetheless,
the same basic observations as in Fig. 5.16 can be made: The structure-preserving ROMQ model
is more robust and has no parameter setting with simulation breakdowns. But its error is also
not monotonically decreasing for increasing nc on the whole parameter domain. The speed-up
factor we observe in this setting for ROMQ in comparison to FOM is about a factor of four in our
implementation (≈50 sec. vs. ≈200 sec.) for the highest tested order nc.

5.5 Compatibility condition for complexity reduction

As discussed in Section 3.3, there is one part of our compatibility-conditions Assumption 2.20,
which is notoriously violated for non-structure-preserving complexity reduction in our setting.
That part is (3.7), i.e.,

||b|| ≤ C̃||b||c, for b ∈ K, K = {w ∈ V2 : ∂xw ≡ 0} .

Recall that the constant C̃ can be seen as a stability-constant and can be estimated from certain
mass matrices, cf. the discussion in Section 3.3. In particular, it is bounded by the the condition
number of the matrix Mc,2 from (3.6),

cond(Mc,2) = ||Mc,2||2
∣∣∣∣M−1

c,2

∣∣∣∣
2
.

Recall further that a pre-selection step is assigned towards the fulfillment of (3.7) in Algo-
rithm 3.15. In the upcoming, it is showcased that this pre-selection step does lower the condition
number cond(Mc,2) and leads to overall more stable reduced results.

In what follows, a modified complexity-reduced model ROMQ-nc is compared to our proposed
ROMQ. The modification ROMQ-nc is constructed to disregard for the compatibility condition,
but to be otherwise similar to ROMQ. Concretely, we construct it by Algorithm 3.15 without its
pre-selection step. In the notation of Algorithm 3.15, this relates to setting w0

qu = 0.
We repeat our perfectly trained case, Scenario 5.4-Case A, for ROMQ and its non-compatible

modification ROMQ-nc. From the plot Fig. 5.17-left of the resulting errors, we can see that
ROMQ-nc even fails for a few parameter settings in contrast to ROMQ. Also, if it does not fail,
it performs worse for almost all choices of nc. Further, ROMQ-nc generally inherits significantly
larger condition numbers cond(Mc,2) than our proposed method, Fig. 5.17-right , which is to
be expected. Further, by comparing Fig. 5.17-left and -right , a coherence of cond(Mc,2) and the
performance of the reduced models is apparent. Also the non-monotonicity of the errors in ROMQ
w.r.t. nc seem to correlate to a non-monotonicity in the condition number of cond(Mc,2). We
want to stress that the error and cond(Mc,2) stabilize for ROMQ for large enough nc. In our test
case that is for nc ≥ 55. This stabilization can, on the other hand, not be observed for ROMQ-nc.
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Discussion and conclusion

Our aim in Part I was the systematic construction of online-efficient, structure-preserving reduced
models for the approximation of a nonlinear flow problem on networks. In contrast to standard
model reduction methods, our proposed procedure provides approximations that inherit the mass
conservation and energy dissipation, which are fundamental features of the nonlinear flow problem.
Furthermore, our reduced models can be shown to be of port-Hamiltonian structure. Most of our
derivations relied on a careful energy-based modeling and appropriate variational principles. The
discussion was divided into Part I.A and Part I.B.

In Part I.A we focused on the linear damped wave equation as a simple instance of our flow
problem. The analysis for this special case relies on the Galerkin framework [EK18], [Kug19]. We
studied the algebraic setting, which results after space discretization, in detail. This includes the
differential-algebraic structure related to the network-character, and the interplay of the function-
space setting and algebraic compatibility conditions, cf. Assumption 2.20.

We then embedded the results in a model reduction context, cf. Assumption 3.5, and proposed
stable numerical procedures for the construction of compatible reduced models. In this regard,
the problem of finding compatible bases has been analyzed, which showed some similarities to
a problem occurring in so-called symplectic model reduction [PM16], [AH17]. We also showed
in Theorem 3.16 that this problem significantly simplifies, when moment matching is chosen as
the underlying model reduction procedure. With our subsequent numerical studies, we could
verify the superior structural properties of our proposed structure-preserving approach compared
to standard methods.

In Part I.B the approximation of the general nonlinear flow problem was then approached.
In its treatment, we were faced with several additional challenges compared to the linear case:
The energy-based modeling and the formulation of variational principles appropriate for structure-
preserving approximations are more involved due to the nonlinearities. Our approach especially
features a nonlinear parametrization of the energy variables of the solution, cf. Theorem 2.8, and
makes heavy use of the theory around the partial Legendre transform. Notably, our variational
characterization allows for a very convenient inclusion of the network-aspect, similar to the linear
case.

Another new aspect was the need for complexity reduction for the treatment of nonlinearities.
In this regard, we used a quadrature-type ansatz. The proposed complexity-reduced models were
then shown to fulfill an energy-dissipation equality, Theorem 2.24. Furthermore, port-Hamiltonian
structure could be verified, see Theorem 2.33, given appropriate compatibility conditions are posed
on the ansatz spaces, Assumption 2.12, and the complexity reduction, Assumption 2.20. The
former assumption is similar to the linear case, and the latter one implies that the complexity-
reduced approximation of the L2-norm is a norm on the reduced ansatz space, cf. [EKLS20].
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Moreover, we proposed adapted structure-preserving time discretization schemes for our space-
discrete models, as existing structure-preserving methods like [LM17], [MM19],[CMKO11] could
not be applied due to our nonlinear parametrization of the solution. Our schemes, which are an
implicit-Euler-type scheme, a discontinuous Galerkin scheme and continuous Galerkin scheme in
time, were all shown to either fulfill an energy-dissipation inequality, Theorem 2.38 and Theo-
rem 2.43, or an energy dissipation equality in the latter case, Theorem 2.46.

In Chapter 3 a practical realization of the model order reduction and complexity reduction in
our framework was discussed. The former consisted of an adaption of proper orthogonal decompo-
sition and the latter of a greedy snapshot-based procedure for the training of quadrature weights.
The emphasis was on the inclusion of the compatibility conditions in the implementation, which
were exploited in our analysis.

The application of our approximation framework was then discussed in more detail using the
barotropic Euler equations on networks as the underlying model. This discussion includes a well-
posedness result of our proposed complexity-reduced models, Theorem 4.8.

To conclude Part I.B, we illustrated different aspects of our theoretical findings for the example
of the isothermal Euler equations on networks. The parameter regimes and settings were oriented
towards the simulation of gas network systems, cf. [SAB+17], [DHLT17], [HGCATRM09]. No-
tably, we observed our proposed method to have good stability properties, particularly compared
to popular standard methods like the discrete empirical interpolation method.

However, the numerical studies in Part I.B also indicated that the snapshot-based heuristics
for the construction of the quadrature weights should be further studied, as some fluctuations in
their fidelity w.r.t. the chosen degrees of freedom could be observed. Other possible questions
for future research include the construction of compatible reduced spaces by a greedy method,
cf. Part I.A-Remark 3.11, or the rigorous inclusion of quadrature-type approximation in time,
Part I.B-Remark 2.49. Moreover, the extension of our arguments to more general situations, such
as multi-dimensional systems or non-barotropic Euler equations, might be interesting and seems
feasible.
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Part II

Input-tailored system-theoretic
model order reduction
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Introduction

In this part we introduce a new system-theoretic model order reduction method for quadratic-
bilinear dynamical systems of the form

Eẋ = Ax + Gx⊗ x + Dx⊗ u + Bu, t ≥ 0

y = Cx, x(0) = x0 ∈ RN , u(t) ∈ Rp, t ≥ 0

with nonsingular matrix E and Kronecker-tensor product ⊗, i.e., x⊗ x ∈ RN2
and x⊗ u ∈ RNp.

The system characterizes a map u 7→ y from typically low-dimensional input u to low-dimensional
output y via a high-dimensional state x. For a cheaper-to-evaluate reduced model, we seek for an
appropriate basis matrix V ∈ RN,n, n� N , and define the reduced model as

Erẋr = Arxr + Grxr ⊗ xr + Drxr ⊗ u + Bru

ỹ = Crxr, xr(0) = VTx0 ∈ Rn

with

Er = VTEV, Ar = VTAV, Gr = VTGV ⊗V

Br = VTB, Dr = VTDV ⊗ Ip, Cr = CV,

and unit matrix Ip of dimension p. System-theoretic methods for linear systems are based on the
frequency representation of the input-output map, which is a univariate algebraic mapping, called
transfer function. For moment matching, the reduction basis V is developed such that the transfer
function of the reduced model fulfills certain interpolation conditions. In the nonlinear case, the
input-output map does in general not have a univariate frequency representation. Relaxations of
the linear notions are needed to generalize it to the nonlinear case, see, e.g., recent multi-moment
matching methods for multivariate frequency representations [ABJ16], [Gu12], [BB15], [ABJ16],
[GAB15], [BB12b]. In our approach we pursue an other idea by using the following three relaxation
steps:

1. Instead of considering the input-output map u 7→ y for arbitrary u, we assume the input
itself to be described by an autonomous quadratic differential system, the signal generator.
The input-output system driven by the signal generator can then also be characterized by
an enlarged autonomous output system, i.e., a system without any input, see Fig. 1 for an
illustration.

2. We construct a variational expansion of the autonomous signal generator driven system
w.r.t. its initial conditions. This results in an infinite series of linear systems.
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Figure 1: Left: Classical input-output modeling. Right: Modeling the same situation with an
autonomous output system by replacing the external input with a respective signal generator.
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Figure 2: Sketch for input-tailored moment matching being based on the signal generator driven
system and reduction via Galerkin projection.

3. For the first few terms of the variational expansion we construct univariate frequency rep-
resentations and perform an approximate moment matching. This means the determination
of the reduction basis V corresponds to approximating certain interpolation conditions for
the univariate representations.

The idea of using signal generators for model reduction can also be found in [Ast10a], [Ast10b],
[IA13]. But apart from that our approach is very different from theirs, as ours relies on variational
expansions and by that considers families of solutions. In particular, our relaxation steps (1)
and (2) induce a new input-tailored variational expansion of the state x of the high-dimensional
dynamical system. The work that probably shares most similarities with ours, and which initially
inspired us to look deeper into the subject, is [ZLW+12], [ZW16]. The common feature is the uni-
variate frequency representations derived for a variational expansion. Nonetheless, our approach
exhibits profound differences to the former: Using the concept of signal generators we develop
a framework that allows us to derive the variational expansion more rigorous and general. Our
analysis suggests additional tensor-structured approximation conditions to be incorporated. Re-
garding the cascade- and low-rank tensor-structure present in the approximation problems yields
a more efficient implementation. The latter point is crucial for practical usage, as the involved
univariate frequency representations grow vastly in dimension when considered as unstructured
linear ones. It turns out that the exact moment matching idea pursued classically in model re-
duction has to be relaxed to an approximate moment matching owed to the tensor structure of
the problem. In this respect, our input-tailored moment matching is more involved as the multi-
moment approaches [ABJ16], [BG17], [Gu12], [BB15], [BB12b]. However, our method corresponds
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to a one-dimensional interpolation problem unlike the multi-moment approaches corresponding to
multi-dimensional interpolation problems. The latter consequently involve the choice of more ex-
pansion frequencies in multi-dimensional frequency space compared to ours, which involves fewer
expansion frequencies to be chosen from a one-dimensional frequency space. A further difference
to other system-theoretic reduction approaches is that ours extends very naturally to systems with
more general input relations, such as, e.g., nonlinear functions and time derivatives. In this respect
it is similarly flexible as the trajectory-based reduction methods like proper orthogonal decom-
position [KV01], [AH14]. As a byproduct of the extension of our method to more general input
relations, we also derive a respective extension for system-theoretic methods relying on multivari-
ate frequency representations by incorporating input-weights. Although the use of input-weights
in model reduction is not new [VA02], [BBG15], they have, to the best of the authors’ knowledge,
not been applied for this purpose before.

Outline

The outline of this part is as follows: The concept of a system to be driven by a signal generator
as well as the proposed variational expansion and associated univariate frequency representation
of the resulting autonomous system are presented in Chapter 1. We refer to the expansion and
frequency representations as input-tailored, as they take into account the input described by the
signal generator. The approximation conditions, which our reduction method aims for, resem-
bles an approximate moment matching condition of the input-tailored frequency representations
(Chapter 2). In this context the commuting diagram of Fig. 2 also takes a prominent role. In
Chapter 3 our numerical realization is discussed. We particularly discuss the ability of handling
non-standard input dependencies in our method in Section 4.1. In this context we also suggest an
extension for other system-theoretic methods to handle non-standard input maps, which falls off
as a byproduct of the discussion of our approach. The remainder of Chapter 4 provides expressions
for higher-order univariate frequency representations as well as generalizations of the variational
expansion and generalizations. The performance of our input-tailored moment matching method
in comparison to the system-theoretic multi-moment matching and the trajectory-based proper
orthogonal decomposition as well as the proposed handling of non-standard input maps are nu-
merically studied in Chapter 5.
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Chapter 1

Input-tailored expansion and frequency
representation

In this chapter we develop our input-tailored variational expansion and frequency representation
our reduction method is based on. Starting point is the concept of signal generator driven systems
(Section 1.1). These signal generator driven systems are, by construction, autonomous. Variational
expansions of autonomous systems and associated univariate frequency representations are the
topic of Section 1.2. Then our input-tailored expansion and frequency representation are presented
in Section 1.3. In Section 1.4, we embed our proposed expansion in the existing literature by
relating it to the Volterra series and its frequency representations.

1.1 Signal generator driven system

In focus of this part are quadratic-bilinear dynamical systems of the form

S : Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu, x(0) = x0 ∈ RN (1.1a)

y = Cx, u(t) ∈ Rp, t ≥ 0 (1.1b)

with E nonsingular, all system matrices constant and G ∈ RN,N2
, D ∈ RN,Np. By slight abuse of

notation, we identify throughout the part the realization of the state equation S with its input-
to-state map S : u 7→ x.

Instead of considering S directly as abstract map, we use the concept of a system to be driven
by a signal generator. A signal generator is an autonomous differential system describing the input
u. We employ here the class of signal generators with quadratic nonlinearities given as

T : u = Czz, ż = Azz + Gzz
2○, z(0) = z0 ∈ Rq. (1.1c)

Remark 1.1 (Signal generators). For example, an oscillation u(t) = a sin (λt) for t ≥ 0 and
a, λ ∈ R is readily given by the signal generator

u = [1 | 0]z, ż = λ

[
1

−1

]
z, z(0) =

[
0
a

]
.
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More generally, any linear combination of exponential pulses and sine- and cosine-oscillations can
be described by a linear signal generator (as in (1.1c) with Gz = 0) by superposition of simple
signal generators. Taking, e.g., u(t) = a1 exp (λ1t) + a2 cos (λ2t), the associated signal generator
reads

u = [1 | 0 |1]z, ż =

λ1

λ2

−λ2

 z, z(0) =

a1

0
a2

 .
Arbitrary derivatives in frequency space of the above mentioned functions, such as e.g., u(t) =
tk exp(t) for k ∈ N, can also be described with linear signal generators. We refer to [ALM08],
[Ast10a]. With nonlinear signal generators an even larger class of inputs can be described, see
e.g., [ALM08], [Ast10a] for a broader discussion and some applications, or Section 5.2, Case 2
for an example of a quadratic signal generator.

Similar to [Ast10a], [Ast10b], [IA13], the notion of a system to be driven by a signal generator
is defined in the upcoming. It results from inserting a signal generator for the input u in system S.

Definition 1.2 (Signal generator driven system). Let a quadratic-bilinear system S with an input
u described by the signal generator T as in (1.1) be given,

S : Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu, x(0) = x0 ∈ RN

T : u = Czz, ż = Azz + Gzz
2○, z(0) = z0 ∈ Rq.

Let Q be the constant matrix such that

Q

[
x̄
z̄

] 2○

=

 x̄ 2○

x̄⊗ z̄
z̄ 2○

 for arbitrary x̄ ∈ RN , z̄ ∈ Rq.

Then we call the autonomous system

S :
Eẇ = Aw + Gw 2○, w(0) = b

x = Pxw

with

E =

[
E

Iq

]
, A =

[
A BCz

Az

]
, Px = [IN , 0], b =

[
x0

z0

]
,

G =

[
G D(IN ⊗Cz)

Gz

]
Q

the signal generator driven system S.

By definition, the solution x of system S for input u described by the signal generator T and
the output x of the signal generator driven system S coincide. For an illustration, we refer to
Fig. 2, left column. Note that the state equation of S (denoted by Sw in Fig. 2) is autonomous.

Remark 1.3. Quantities associated to the original input-output system (e.g. S, A, x) are written
in another typesetting than the ones associated to the signal generator driven system (e.g. S, A,
w). Moreover, frequency representations are written in a curved font (e.g. X , W ), cf. Fig. 2.
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1.2 Variational expansion of autonomous systems

Our approach employs a variational expansion of the autonomous system S from Definition 1.2
and associated univariate frequency representations. The theoretical basis is given by the following
theorem.

Theorem 1.4. Let an α-dependent initial value problem of the autonomous quadratic differential
equation

Eẇ(t;α) = Aw(t;α) + G (w(t;α)) 2○, t ∈ (0, T )

w(0;α) = αb

be given for T > 0 and constant system matrices E ,A ∈ RM,M , G ∈ RM,M2
and b ∈ RM with

E nonsingular. For parameter α ∈ I, 0 ∈ I ⊂ R bounded interval, the family of α-dependent
solutions w(·, α) can then be expanded as

w(t;α) =
N∑
i=1

αiwi(t) + O(αN+1), t ∈ [0, T ), α ∈ I. (1.2)

The univariate frequency representations W̆i of the first three functions wi for s ∈ C are

W̆1(s) = (sE − A)−1b (1.3a)

W̆2(s) = (sE − A)−1G (sE 2○ − 2○EA)−1 b 2○ (1.3b)

W̆3(s) = 2(sE − A)−1G (sE 2○ − 2○EA)−1 G ⊗ E (sE 3○ − 3○EA)−1 b 3○. (1.3c)

The proof of Theorem 1.4 relies on a variational expansion w.r.t. the initial conditions and
on frequency space formulations using the so-called Associated Transform [Rug81]. Formal simi-
larities to univariate frequency representations of [ZLW+12], [ZW16] are addressed and exploited
within our proof. The variational expansion w.r.t. the initial conditions in Theorem 1.4 is par-
ticularly based on the following well-known result (Theorem 1.5) for which we state a proof for
completeness.

Theorem 1.5. Consider the α-dependent differential equation

ẇ(t;α) = f(t,w(t;α)) t ∈ (0, T )

w(0;α) = b̂ + αb, with b̂, b ∈ RM

for T > 0, f being N + 1 times continuously differentiable w.r.t. w and continuous w.r.t. t. For
α ∈ I, I ⊂ R being a bounded interval containing zero, the family of α-dependent solutions w(·, α)
can be expanded as

w(t;α) = w0(t) +
N∑
i=1

αiwi(t) + O(αN+1), t ∈ [0, T ).
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Proof. With the regularity assumptions on the right hand side f, unique solutions are given by
the Picard-Lindelöf theorem for all α ∈ I. Moreover, the solution w is N + 1 times continuously
differentiable w.r.t. α. For both statements we refer to, e.g., [Har02, Sec. 5.4], [Chi06, Sec. 1].
Therefore, a Taylor series in α around α = 0 gives

w(t;α) = w0(t) +
N∑
i=1

αiwi(t) + O(αN+1)

with wi(t) :=
1

i!

∂i

∂αi
w(t;α)|α=0.

Furthermore, we use the following technical result from [BB12a], [Bre13].

Lemma 1.6. Let P,A ∈ RM,M , B ∈ RM,K, C ∈ RK,M , D ∈ RK,K, and let

M =

[
IM ⊗

[
IM

0K,M

]
IM ⊗

[
0M,K

IK

]]
.

Then it holds

MT

(
P⊗

[
A B
C D

])
M =

[
P⊗A P⊗B
P⊗C P⊗D

]
.

Moreover, M is a permutation matrix and therefore orthogonal, i.e., M−1 = MT .

Let us now turn to the proof of Theorem 1.4.

Proof. (Of Theorem 1.4) Theorem 1.5 with f(t,w) = E−1(Aw + Gw 2○) can be used to get

w(t;α) =
N∑
i=1

αiwi(t) + O(αN+1).

The term w0 scaling with α0 drops out here as the solution for α = 0 is w ≡ 0. Inserting this
series representation into the differential equation and equating equal powers in α, we get

Eẇ1 = Aw1, w1(0) = b

Eẇ2 = Aw2 + Gw 2○
1 , w2(0) = 0

Eẇ3 = Aw3 + G (w1 ⊗w2 + w2 ⊗w1) , w3(0) = 0.

On the upper equation for w1, the standard Laplace-transform can be done, e.g., [Ant05], which

gives the unique univariate frequency representation W̆1 of w1. Moreover, formally rewriting the
equation for w1 with the help of a Dirac impulse as

Eẇ1 = Aw1 + bδ(t), lim
t̄↑0

w1(t̄) = 0

does not change its Laplace transform. Also multivariate frequency representations of wi, i = 2, 3
can now be constructed following the standard procedure [Gu12], [Rug81], [ZW16]. To construct
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the desired univariate associated frequency representations W̆i, the Associated Transform [Rug81]
can be applied to the respective multivariate frequency representations of wi. This step has
already been performed for exactly our set of equations (using the Dirac impulse expression in
the equation for w1) in [ZW16], [ZLW+12], see Remark 1.13. Therefore, our associated frequency

representations coincide with their formally derived ones, and we can reuse their results. For W̆2,
the expression (1.3b) equals [ZW16, eq. (20)]. To derive expression (1.3c) for W̆3, the following
abbreviations are useful

Ĕ2 =

[
E
E 2○

]
, Ă2 =

[
A G

2○EA

]
, b̆2 =

[
0
b 2○

]
, C̆2 =

[
IM 0

]
,

cf. Lemma 1.8. Then expression [ZW16, eq. (23)] for W̆3 is equivalent to

W̆3(s) = (sE − A)−1G[
(C̆2 ⊗ IM)(sĔ2 ⊗ E − (Ă2 ⊗ E + Ĕ2 ⊗A))−1(b̆2 ⊗ b)

+ (IM ⊗ C̆2)(sE ⊗ Ĕ2 − (E ⊗ Ă2 +A⊗ Ĕ2))−1(b⊗ b̆2)
]
.

It remains to prove that this is equivalent to (1.3c). First we show that

(IM ⊗ C̆2)(sE ⊗ Ĕ2 − (E ⊗ Ă2 +A⊗ Ĕ2))−1(b⊗ b̆2)

= (C̆2 ⊗ IM)(sĔ2 ⊗ E − (Ă2 ⊗ E + Ĕ2 ⊗A))−1(b̆2 ⊗ b). (1.4)

Using the respective orthogonal permutation matrix M from Lemma 1.6, we get

(IM ⊗ C̆2)(sE ⊗ Ĕ2 − (E ⊗ Ă2 +A⊗ Ĕ2))−1(b⊗ b̆2)

= (IM ⊗ C̆2)M(sMTE ⊗ Ĕ2M−MT (E ⊗ Ă2 +A⊗ Ĕ2)M)−1MT (b⊗ b̆2)

Then by Lemma 1.6 we have

MTE ⊗ Ĕ2M =

[
E ⊗ E

E ⊗ E 2○

]
=

[
E 2○

E 3○

]
= Ĕ2 ⊗ E

MT (A⊗ Ĕ2 + E ⊗ Ă2)M =

[
2○EA G ⊗ E

3○EA

]
= (Ă2 ⊗ E + Ĕ2 ⊗A).

A small calculation shows

MTb⊗ b̆2 =

[
0
b 3○

]
= b̆2 ⊗ b

IM ⊗ C̆2M = C̆2 ⊗ IM = [IM2|0],

which together gives the equality (1.4). We therefore have

W̆3(s) = 2(sE − A)−1G[IM2|0]
[
sĔ2 ⊗ E − (Ă2 ⊗ E + Ĕ2 ⊗A)

]−1

(b̆2 ⊗ b)

= 2(sE − A)−1G (sE 2○ − 2○EA)−1 G ⊗ E (sE 3○ − 3○EA)−1 b 3○,

i.e., representation (1.3c). In the last step we just used the upper-triangular structure of the
matrix in the squared brackets to be inverted to factorize the term.
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Remark 1.7. Certainly, the series in (1.2) can be formulated regarding terms of arbitrary high
order in α. The tensor-structured explicit representations, however, get lengthy for high orders
and the calculations more technical. In the main body of the part, we restrict ourselves from now
on to terms up to order two to keep it more comprehensible. The tensor structure pattern that are
observed and exploited for order two, are preserved for the expressions of higher order as well. For
order three this can be seen in Theorem 1.4 and in respective generalizations of other important
results provided in Section 4.3.

Another point of view on the associated univariate frequency representation W̆2 is highlighted
in the following lemma that results from straight forward calculus (cf. Lemma 4.3 for W̆3).

Lemma 1.8. Assume that the requirements of Theorem 1.4 hold true. Then the associated fre-
quency representation W̆2 can be formulated with the linear representation

W̆2(s) = C̆2

(
sĔ2 − Ă2

)−1

b̆2,

with Ĕ2 =

[
E
E 2○

]
, Ă2 =

[
A G

2○EA

]
, b̆2 =

[
0
b 2○

]
, C̆2 =

[
IM 0

]
.

Remark 1.9 (Cascade- and tensor-structure of associated frequency representations). The fre-

quency representation W̆1 associated to the first order term of the variational expansion is a usual
linear input-to-state transfer function with dimension M equal to the dimension of the state w.
According to Lemma 1.8 (and Lemma 4.3), also the higher-order terms possess linear state rep-
resentations, which will strongly motivate our subsequently proposed procedure for setting up the
approximation conditions in the approximate moment matching. However, since the frequency
representations are of growing dimension, RM+M2

for W̆2 (RM+M2+M3
for W̆3), operating directly

on them – as done in [ZLW+12], [ZW16] – is unpractical for medium- to large-scale problems.
For the development of a numerically tractable method, we instead exploit their special cascade-
and tensor-structure that is revealed in Theorem 1.4. For example, W̆2 can be interpreted as the
cascade of the transfer functions G (sE 2○ − 2○EA)−1 b 2○ and (sE − A)−1, where the former has
low-rank tensor structure.

1.3 Input-tailored variational expansion

Based on the notion of a system to be driven by a signal generator, we can now formulate our
input-tailored expansion.

Definition 1.10 (Input-tailored variational expansion). Let the signal generator driven system S
with enlarged state w be as in Definition 1.2. Let

w(t;α) =
N∑
i=1

αiwi(t) + O(αN+1), t ∈ [0, T )

be the variational expansion of w w.r.t. the initial conditions w(0;α) = αb. Let W̆i be the associated
univariate frequency representations of wi as in Theorem 1.4.
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Then the input-tailored variational expansion of x described by S (respectively by S and T) is
defined as

x(t;α) =
N∑
i=1

αixi(t) + O(αN+1), xi(t) = Pxwi(t)

with Px = [IN ,0N,q]. The input-tailored frequency representations X̆i are given as

X̆i(s) = PxW̆i(s), s ∈ C.

Let us emphasize that our input-tailored variational expansion is not tailored towards a sin-
gle solution trajectory, but rather towards a family of solutions parametrized in the expansion
parameter α. Given, e.g., the signal generator

u = [1 |0]z, ż = λ

[
1

−1

]
z z(0) = α

[
0
1

]
, α ∈ R,

it relates to the inputs u(t) = α sin(λt), i.e., oscillations of varying amplitude.

Remark 1.11 (Possible generalizations). We point out that the definition of signal generator
driven systems, Definition 1.2, and with that our whole approach can be generalized straightfor-
wardly to systems with more sophisticated input maps, e.g., quadratic inputs, time derivatives, see
Section 4.1.

Moreover, the variational expansion from Theorem 1.4 itself can be generalized. Instead of
considering families of solutions parametrized in initial conditions that dependent only on the
single parameter α, also families of solutions parametrized in a multidimensional parameter can
be treated, see Section 4.4. This includes solutions parametrized in inputs u(t) =

∑
j αjuj(t) for

varying αj, where all uj have a linear signal generator.

1.4 Relation to Volterra series

In the following, we discuss the relation of our input-tailored variational expansion with the
Volterra series, which is a variational expansion of the solution w.r.t. the input. The Volterra series
has recently been extensively used as a basis for model reduction. For example, multi-moment
matching has been discussed in [Gu12], [BB12b], [BB12c], hermite multi-moment matching in
[BB15], [ABJ16], [BGG18], and balanced truncation in [BG17]. We recapitulate the variational
ansatz from [Rug81], [LK78], [Gil77]. As the references are restricted to the scalar input case
u : R → R, we also use this restriction for convenience. Consider the state equation S with a
scalar-valued input and trivial initial conditions, i.e.,

Eẋ = Ax + Gx 2○ + uDx + bu, x(0) = 0, u : R→ R

with b ∈ RN . For appropriate input u(t) = αv(t) with α ∈ R being sufficiently small and the
system being uniquely solvable in an α-neighborhood containing zero, a variational expansion in
the input holds, i.e., the solution can be expanded in α for N > 0 as

x(t;α) =
N∑
i=1

αixi(t) + O(αN+1) t ∈ [0, T ) (1.5)
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for some T > 0. It can be shown, using the multivariate Laplace transform as in [BGG18], that
the terms xi have multivariate frequency representations Xi with

X1(s1) = G1(s1)U (s1),

X2(s1, s2) = G2(s1, s2)U (s1)U (s2)

Xi(s1, s2, . . . , si) = Gi(s1, s2, . . . , si)U (s1)U (s2) . . .U (si), si ∈ C, i ≤ N

where U is the Laplace transform of the input u and Gi are the so-called symmetric transfer
functions, see [Rug81], [LP06], [ZW16] for details on them. The model reduction methods relying
on the Volterra series (1.5) typically formulate approximation conditions for the transfer functions
Gi.

At first glance there seems not to be a connection to our input-tailored variational expansion.
The upcoming lemma, however, shows that for inputs described by linear signal generators, both
expansions lead to the same result.

Lemma 1.12. For a quadratic-bilinear differential system S with scalar input and trivial initial
conditions, where the input is described by a signal generator T being linear, i.e.,

S : Eẋ = Ax + Gx 2○ + uDx + bu, x(0) = 0,

T : u = Czz, ż = Azz, z(0) = z0,

the same expansion of the solution

x(t;α) =
k∑
i=1

αixi(t) +O(αk+1)

can be obtained by the following two approaches:

a) By the input-tailored variational expansion of x as in Definition 1.10.

b) By the Volterra series: Expand the state x for input u(t) = αu1(t) in α, and then set the input
u to be as in the linear signal generator.

Proof. Proceeding from Approach a) we show the equality to Approach b). In Approach a) we
assume for initial value w0 = α[0; z̄0] that the extended state can be expanded as

w(t;α) =

[
x(t;α)
z(t;α)

]
=

k∑
i=1

αi
[
xi(t)
zi(t)

]
+O(αk+1).

From the signal generator relation T it then follows

u(t;α) =
k∑
i=1

αiui(t) +O(αk+1), ui(t) = Czzi(t).

As the signal generator is linear, it is easily seen that z ≡ αz1, thus also u ≡ αu1. Therefore, the
expansion terms αixi scale with ui ≡ αiui1 as in Approach b), and hence the expansion terms xi
of both approaches coincide.
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Inputs described by linear signal generators are an important case. Alternatively to the deriva-
tion in [BGG18], the multivariate symmetric transfer functions Gi can already be derived by
considering the response to sums of exponential functions

u(t) =
i∑

k=1

ak exp(λkt), for arbitrary ak, λk ∈ R

only, which is, e.g., used in the growing exponential approach, [Rug81], [Bre13]. Clearly, sums of
exponential functions can be described by linear signal generators, cf. Remark 1.1. Therefore,
loosely spoken, the associated univariate input-tailored frequency representation tailored towards
the upper growing exponentials for different choices ak, λk resemble the multivariate transfer
functions Gi. The works [LW13], [ZW16] indirectly heavily rely on the upper resemblance, but do
not explicitly elaborate on it.

Finally, let us comment on the more formal approach by [ZW16], [ZLW+12] that leads to
similar univariate frequency representations as ours.

Remark 1.13. In [ZW16], [ZLW+12] the quadratic-bilinear equation of Theorem 1.4 with zero
(pre-)initial conditions but an initial jump is considered, i.e.,

Eẇ = Aw + Gw 2○ + bu(t), u(t) = αδ(t), lim
t̄↑0

w(t̄) = 0,

where δ(t) is the Dirac-impulse. There the solution w is expanded formally as Volterra series with
that distributional input u(t) = αδ(t), yielding the same expansion terms as ours. However, the
validity of the Volterra series when the input is a Dirac-impulse is not covered by the classical result
on Volterra series expansions – as far as the authors know (cf., e.g., [Rug81], [LK78], [Gil77] or
[Bor10]). This issue is also not further addressed or discussed in the respective works.
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Chapter 2

Input-tailored system-theoretic model
reduction framework

Aim of our method is to construct a reduced model such that for the input-tailored frequency
representations X̆i the so-called moments

dk

dsk
X̆i(s)|s=s0 for k, i, s0 given

of the full order model are approximately matched by their reduced counterparts. This is a relax-
ation of the linear moment matching idea, which we recapitulate in Section 2.1. Our input-tailored
moment matching problem is formulated in Section 2.2. The notion of a signal generator driven
system S and its reduced counterpart is herefore essential. The structure of the approximation
problem is analyzed in Section 2.3. From a theoretical point of view, it can be characterized with
linear theory. To do so, a change to high-dimensional state representations (cf. Lemma 1.8) is
needed. Our projection ansatz, however, operates on the lower-dimensional original representation
with tensor structure, which is why the relaxation from exact to approximate moment matching
is needed. The proposed conditions aiming for approximate moment matching are presented in
Section 2.4.

2.1 Moments and linear theory

The basic theory of linear moment matching is recalled here for convenience, for further reading
we refer to, e.g., [Ant05], [Gri97], [Ast10a], and references therein.

Definition 2.1 (Moments). Given a univariate frequency representation H being k-times differ-
entiable at s0 ∈ C, its k-th moment at s0 is defined as

mk =
(−1)k

k!

dk

dsk
H (s)|s=s0 .

Note that the moments mk are dependent on the expansion frequency s0 chosen, which we,
however, suppress in our notation to keep it shorter.
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Lemma 2.2. Let a frequency representation H have the form H (s) = C(sE−A)−1B. Let, for
given s0, As0 = −s0E + A be nonsingular. Then the k-th moment of H at s0 reads

mk = −C
[
A−1
s0

E
]k

A−1
s0

B, for k ≥ 0.

The moments can be determined as follows: Calculate ki, the moments of s 7→ (sE −A)−1B at
s0, by the recursion

i = 0 : As0k0 = −B

i > 0 : As0ki = Eki−1.

Then set mk = Ckk.

For linear systems, reduced models fulfilling moment matching can be constructed by means
of the following lemma.

Lemma 2.3. Let H (s) = C(sE − A)−1B with E,A ∈ RN,N , and let for given reduction basis
V ∈ RN,n the reduced system be defined as

Hr(s) = Cr(sEr −Ar)
−1Br

with Er = VTEV, Ar = VTAV, Br = VTB, Cr = CV.

If for prescribed s0, it holds

span{k0,k1, . . . ,kk} ⊆ im (()V) (2.1)

for ki, 0 ≤ i ≤ k, as defined in Lemma 2.2, then the (exact) moment matching condition

di

dsi
H (s)|s=s0 =

di

dsi
Hr(s)|s=s0 , i ≤ k (2.2)

is satisfied. We say that the moments of the full and the reduced model match (up to k-th order
at s0). Moreover, it holds

ki = Vkr,i, i ≤ k,

where kr,i is recursively defined with Ar,s0 = −s0Er + Ar as

i = 0 : Ar,s0kr,0 = −Br

i > 0 : Ar,s0kr,i = Erkr,i−1.

Of course, projection errors play a crucial role in this kind of model reduction.

Lemma 2.4 (Error of projected solution). Let V ∈ RN,n be orthogonal. Let b ∈ RN,p and let
A ∈ RN,N , Ar = VTAV both be nonsingular, and

X := A−1b, Xr := A−1
r br,

where br = VTb. Then the following approximation condition holds

X−VXr =
[
I−VA−1

r VTA
] [

I−VVT
]
X,

where I−VVT is the projector onto the orthogonal complement of the image of V.

Lemma 2.4 can be shown by straight forward calculus. With the help of Lemma 2.4, and
exploiting the recursive manner the moments can be defined, leads to an iterative proof of Lemma
2.3. It mainly relies on the fact that under condition (2.1) the projection error in the respective
ki, i.e., (I−VVT )ki, is zero. It then follows iteratively that Vkr,i = ki, from which (2.2) can be
deduced.
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2.2 Reduced signal generator driven system

In this subsection we clarify our notion of a reduced signal generator driven system and its usage.
We start by stating the basic result behind the commuting diagram sketched in Fig. 2.

Lemma 2.5. Let a quadratic-bilinear system S, a signal generator T,

S : Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu, x(0) = x0,

T : u = Czz, ż = Azz + Gzz
2○, z(0) = z0,

and the associated signal generator driven system S, as in Definition 1.2, be given. Let further-
more, for given reduction basis V ∈ RN,n, n� N , the reduced state matrices be defined as

Er = VTEV, Ar = VTAV, Gr = VTGV ⊗V,

Br = VTB, Dr = VTDV ⊗ Ip.

Let Qr be the constant matrix such that

Qr

[
x̄
z̄

] 2○

=

 x̄ 2○

x̄⊗ z̄
z̄ 2○

 for arbitrary x̄ ∈ Rn, z̄ ∈ Rq.

Introducing the reduced system as

Sr : Erẋr = Arxr + Grxr ⊗ xr + Drxr ⊗ u + Bru, xr(0) = VTx0,

and setting up the signal generator driven system for Sr and T gives

Sr : Erẇr = Arwr + Grw 2○
r , wr(0) = br,

xr = Pxr wr.

with

Er =

[
Er

Iq

]
, Ar =

[
Ar BrCz

Az

]
, Pxr = [In, 0], br =

[
VTx0

z0

]
,

Gr =

[
Gr Dr(In ⊗Cz)

Gz

]
Qr.

Projecting the realization of S as

Er = VTEV , Ar = VTAV , Gr = VTGV ⊗ V br = VTb,

with reduction basis V =

[
V

Iq

]
,

and defining Pxr , as above, leads to the same reduced signal generator driven system Sr.
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The lemma is quite obvious, but nonetheless of high importance for us. The input-tailored
frequency representations X̆r,i of Sr are accordingly obtained, as specified in Definition 1.10, by

X̆r,i(s) = Pxr W̆r,i(s), s ∈ C

with W̆r,i being the frequency representation of the variational expansion terms wr,i. The proposed
approximate moment matching conditions we require on the reduced model Sr to be fulfilled are

V
dk

dsk
X̆r,i(s)|s=s0

!
≈ dk

dsk
X̆i(s)|s=s0 for k ≤ Li, i ≤ ī, (2.3)

for Li, ī, s0 prescribed.

Remark 2.6 (Extracting reduction basis from extended problem). Note that the signal generator
itself is not reduced in the construction of Lemma 2.5. This is also reflected in the block structure
of V with a unit matrix block Iq. Moreover, the lemma shows that projection and driving by a signal
generator commute. Therefore, the input-tailored moment matching (2.3) can be approached in a
two-step procedure:

• Find basis V such that

V d
k

dsk
W̆r,i(s)|s=s0

!
≈ dk

dsk
W̆i(s)|s=s0 for k ≤ Li, i ≤ ī (2.4)

holds, for Li, ī, s0 prescribed, where W̆i, W̆r,i are as in Definition 1.10 given S, Sr.

• Extract the basis V from V.

2.3 Input-tailored moments and projection

Up to now, the input-tailored moment matching problem has been tracked back to the extended
problem (Remark 2.6), and it has been shown that the reduced signal generator driven system Sr
can be seen as the projection of S, Lemma 2.5. What remains to examine is the actual structure
of the extended problem (2.4). It will be seen that, from a theoretical point of view, we can tackle
the problem with linear theory by changing into high-dimensional linear representations.

Lemma 2.7 (Reduced associated frequency representation). Given the full order signal generator
S, and its reduced counterpart Sr as in Lemma 2.5, the reduced associated frequency representa-
tion W̆r,2 is the Galerkin-projection of W̆2 written in its high-dimensional linear representation of
Lemma 1.8, i.e.,

W̆r,2(s) = C̆r,2
(
sĔr,2 − Ăr,2

)−1

b̆r,2

with Ĕr,2 = V̆T2 Ĕ2V̆2, Ăr,2 = V̆T2 Ă2V̆2, b̆r,2 = V̆T2 b̆2, C̆r,2 = C̆2V̆2,

and V̆2 =

[
V
V 2○

]
.

129



The proof is straight forward. Obviously, the inherent tensor-structure of the problem is handed
over to the reduction basis V̆2. Our method makes use of this special cascade- and tensor-structure
that is also present in the moments, which we show in the upcoming.

Lemma 2.8. For s0 ∈ C, i > 0 and quadratic matrices E ,A let As0 = −s0E +A. Then it holds

i○EAs0/i = −s0E i○ + i○EA.

Proof. For 0 ≤ k,m ≤ i− 1, with k +m+ 1 = i it holds

E k○ ⊗
(
−s0

i
E +A

)
⊗ E m○ = −s0

i
E i○ + E k○ ⊗A⊗ E m○.

Since i○EAs0/i can be written as sum of i such expressions with k = 0, . . . , i−1, and m = i−k−1,
the lemma follows.

A recursion formula for the moments m
(2)
i of W̆2 can now be stated (cf. Theorem 4.4 for W̆3).

The super-index ’.(j)’ in the moments is used throughout to indicate the correspondence to the
j-th frequency representation W̆j, j = 2, 3.

Theorem 2.9 (Extended input-tailored moments). Assume that the requirements of Theorem 1.4
and Lemma 1.8 hold, and let for given s0 ∈ C the matrix As0 = −s0E +A be nonsingular. Then

the moments m
(2)
i of W̆2 at s0 are characterized by the recursion:

i = 0 : 2○EAs0/2 µ
(2)
0 = −b 2○

As0 m
(2)
0 = −G µ(2)

0

i > 0 : 2○EAs0/2 µ
(2)
i = E 2○ µ

(2)
i−1

As0 m
(2)
i = Em

(2)
i−1−G µ

(2)
i .

Moreover, k
(2)
i = [m

(2)
i ;µ

(2)
i ] are the moments of s 7→

(
sĔ2 − Ă2

)−1

b̆2 at s0.

Proof. The representation of Lemma 1.8 for W̆2 is a linear state representation. Therefore, follow-
ing Lemma 2.2, the factors k

(2)
i recursively defined by

i = 0 : (−s0Ĕ2 + Ă2)k
(2)
0 = −b̆2

i > 0 : (−s0Ĕ2 + Ă2)k
(2)
i = Ĕ2 k

(2)
i−1,

are the moments of s 7→
(
sĔ2 − Ă2

)−1

b̆2 at s0. Let us introduce the following notation for the

upper and lower blocks

k
(2)
i =

[
m

(2)
i

µ
(2)
i

]
, where m

(2)
i ∈ RM , µ

(2)
i ∈ RM2

.

Then these blocks fulfill for i > 0

(−s0E +A) m
(2)
i +G µ(2)

i = Em
(2)
i−1

(−s0E 2○ + 2○E A)µ
(2)
i = E 2○ µ

(2)
i−1 .
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Using Lemma 2.8, we get the recursive expression for m
(2)
i for i > 0. The initial step i = 0 follows

similarly. In fact, m
(2)
i is the i-th moment of W̆2 at s0, as it equals C̆2k

(2)
i , which is the expression

we get for the moment by applying the last part of Lemma 2.2.

According to the linear theory, exact moment matching requires

k
(2)
i ∈ image(V̆2). (2.5)

This corresponds to a condition in a (N+q)2 +(N+q)-dimensional space. However, this condition
cannot be fulfilled exactly because of the specific form our reduction basis has.

2.4 Approximation conditions

We propose an approximate moment matching that accounts for the special tensor structure of
the problem.

Considering the reduction basis for W̆2

V̆2 =

[
V2

V 2○
2

]
,

we solve the following splitted problem: Find V2 such that it holds

||(IN+q − V2VT2 ) m
(2)
i ||/||m

(2)
i || small for i = 0, 1, . . . , L (2.6a)

||(I(N+q)2 − V
2○

2 (V 2○
2 )T )µ

(2)
i ||/||µ

(2)
i || small for i = 0, 1, . . . , L (2.6b)

for m
(2)
i , µ

(2)
i from Lemma 2.9. This aims for small projection errors(

I− V̆2V̆T2
)

k
(2)
i , with k

(2)
i = [m

(2)
i ;µ

(2)
i ],

which is a relaxation of the exact moment matching in (2.5).
In the assembly of the global reduction basis V that corresponds to all considered frequency

representations W̆i, i ≤ ī, cf. (2.4), we provide a block structure of the form

V =

[
V

Iq

]
.

This reflects that the signal generator itself is not reduced and gives the desired reduction basis
V of the original system.

Remark 2.10. Let us stress the difference to former work on model reduction using univari-
ate frequency representations for nonlinear systems. Comparing our approach with the one from
[ZLW+12], [ZW16] there are, besides the more rigorous treatment of the variational expansion
(cf. Remark 1.13), three major differences: The first and most important one is that our analysis
reveals an additional tensor-structured approximation condition (2.6b) to naturally appear when
aiming for approximate moment matching. Such a condition is not present in the former ap-
proach. Second, our framework using the concept of signal generator driven systems enables us to

131



consider a larger class of input scenarios within the process. And finally, the inherent cascade- and
sparse-tensor-structure has not been exploited in the former algorithmic implementation. It will be
seen in Chapter 3 that the appearing tensor-structured problems can be formulated as Lyapunov-
type equations with ’sparse right hand sides’. We deal with them using recently proposed low-rank
solvers from literature, which is known to save memory- and time-effort by orders of magnitude,
cf. [SKB16], [Sim07], [KT10].
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Chapter 3

Numerical realization

In this chapter we present and discuss the algorithms for the numerical realization of our input-
tailored moment matching method.

3.1 Low-rank calculations of input tailored moments

The main part of the numerics consists in constructing the subspace for basis V such that (2.6)
hold. Clearly, it is easy to construct a basis matrix V fulfilling (2.6a) exactly, namely just use the

matrix composed of the moments m
(2)
i itself. The question remains, why a low-rank basis fulfilling

(2.6b) should exist. Let us herefore look at the zeroth auxiliary moment µ
(2)
0 around s0. It fulfills

the equation [
E ⊗ As0/2 +As0/2 ⊗ E

]
µ

(2)
0 +b 2○ = 0,

which is the well-known Lyapunov equation, written in tensor notation, with a sparse ’right hand
side’ b 2○. Low-rank solutions for these kind of equations exist under reasonable conditions [KT10],
[Sim07], [BB12a], and take the form

ni∑
k=1

zki ⊗ zki ≈ µ
(2)
i for small ni. (3.1)

For the higher order terms, e.g., µ
(2)
1 , we suggest to follow up the iteration with the new sparse

’right hand side’ E 2○ µ
(2)
0 , i.e., the low-rank approximation from the former step, and so on. By

that, we do not only have a strategy to efficiently approximate µ
(2)
i and m

(2)
i up to a certain

extend, but also a candidate for a low-rank basis, namely the span over all zki . The upcoming
Algorithm 3.1 summarizes our approach aiming towards (2.6).

Note that the moments involved are the ones for the signal generator driven system S. Al-
beit the reduction basis V is constructed for the original system S. Thus, the selection matrix
Px : w 7→ x appears here.
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Algorithm 3.1 (Moment-matching-bases for X̆2).
INPUT:

• Realization matrices of signal generator driven system S (cf. Definition 1.2): E, A, G, b

• Dimension of state variable N ; Dimension of signal generator: q

• Expansion frequencies: (s1, s2, . . . , sµ); Number of moments: (L1, L2, . . . , Lµ)

• Tolerance for low-rank approximations: tol

• Basis for space not considered in low-rank approximation: V⊥

OUTPUT: Reduction bases: Va, Vb.

1. Set Px = [IN , 0N,q].

2. for j = 1, . . . µ

a) Set s0 := sj and L := Lj.

b) Calculate low-rank factors zki for k = 1, . . . , ni, i = 0, . . . , L− 1, see (3.1), i.e.,

zki with:

ni∑
k=1

zki ⊗ zki ≈
((

2○EAs0/2
)−1 E 2○

)i (
2○EAs0/2

)−1
b 2○.

c) Gather all (Pxzki ) in Zsj , i.e.,

Zsj := Px[z1
0, z

2
0, . . . , z

n0
0 , z

1
1, . . . , z

n1
1 , . . . , z

nL−1

L−1 ]

endfor

3. Gather all Zsj in Z, i.e.,

Z := [Zs1 ,Zs2 , . . . ,Zsµ ]

4. for j = 1, . . . µ

a) Set s0 := sj and L := Lj.

b) Calculate m
(2)
i for s0 from Lemma 2.9 (using the low-rank approximations on µ

(2)
i from

Step (2b))

c) Gather all (Px m
(2)
i ) in Msj , i.e.,

Msj := Px[m(2)
0 ,m

(2)
1 , . . . ,m

(2)
L−1]

endfor

5. Construct Va as orthogonal basis of [Ms1 , . . . ,Msj ].
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6. Define P⊥ as orthogonal projection onto the orthogonal complement of span of [Va,V⊥].
Then set Vb to consist of all left-singular vectors of (P⊥Z) with singular value bigger than
tol.

In terms of numerical calculation, the most delicate step is the construction of the low-rank
factors zki . Note that for each i in Step (2b) we actually need to construct a low-rank solution on
a Lyapunov equation. The projection step with P⊥ removes components of the dominant space
already present in the former constructed bases, and therefore allows for lower-order truncation
in step (6).

3.2 Constructing the reduction basis

In this subsection we conclude our approach for the construction of a reduced model, which aims
at approximate moment matching of the input-tailored frequency representations X̆1, X̆2 from
Definition 1.10.

For the basis construction with regards to X̆1, the signal generator does not need to be con-
sidered. This is because W̆1 can be factored as

W̆1(s) =
[
(sE−A)−1B

]
Cz(sIq −Az)

−1z0,

i.e., into the standard linear transfer function (sE−A)−1B and the signal generator. As discussed
in Chapter 2, the signal generator is not reduced, and therefore moment matching of the linear
transfer function automatically imposes moment matching on W̆1. Concluding, the following
algorithm for the construction of a reduced model is proposed.

Algorithm 3.2 (Input-tailored approximate moment matching). INPUT:

• Realization matrices of the quadratic-bilinear dynamical system S to reduce: E, A, G, D,
B, C

• Realization matrices of the signal generator T: Az, Gz, Cz

• Initial value vectors: x0, z0

• Concerning X̆2: Expansion frequencies: (s1, s2, . . . , sµ); Number of moments to match:
(L1, L2, . . . , Lµ); Tolerance for low-rank approximations in Algorithm 3.1: tol

• Concerning X̆1: Expansion frequencies: (s̃1, s̃2, . . . , s̃ν); Number of moments to match:
(L̃1, L̃2, . . . , L̃ν)

OUTPUT: Reduced realization: Er, Ar, Gr, Dr, Br, Cr.

1. Construct reduction basis V1 for X̆1 as orthonormal basis
for the union of the Krylov spaces KL̃j(A

−1
s̃j

E,A−1
s̃j

b) for j = 1, . . . ν.

2. Construct realization for signal generator driven system S (Definition 1.2): E, A, G, b

3. Construct reduction bases Va, Vb for X̆2 by Algorithm 3.1 for
frequencies (s1, s2, . . . , sµ), number of moments (L1, L2, . . . , Lµ), tolerance tol and V⊥ = V1.
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4. Construct V as orthogonal basis of span of [Va,Vb,V1].

5. Calculate reduced state representation as Er = VTEV, Ar = VTAV, Gr = VTGV ⊗ V,
Dr = VTDV ⊗ Ip, Br = VTB, Cr = CV.

For Step (1) in Algorithm 3.2 we just use the standard Krylov method as in [Gri97], [Ant05].
Note furthermore that in the calculation of Gr it is advisable to avoid the memory-demanding
explicit calculation of V ⊗V, see [Bre13], which we also do.

Remark 3.3. Algorithm 3.1 is only assumed to be stable if the order of moments matched Lj are
all chosen moderate. This is, because we actually seek for a special so-called Krylov space. For
matrices M,L of appropriate dimension and L ∈ N the Krylov space is defined as

KL(M,L) := span
{[

L, ML, . . . , ML−1L
]}
.

Then Step (2b), thought of in RN2
, consists in constructing the Krylov space

KL
((

2○EAs0/2
)−1 E 2○,

(
2○EAs0/2

)−1
b 2○
)

without any orthogonalization between the iteration. This is known to be unstable for high orders,
see, e.g., [Gri97], [Ant05]. However, orthogonalization in RN2

destroys our tensor structure.
It is possible to recover a low-rank tensor structure by additional truncation, but this goes with
further approximation errors [KK18]. Therefore, we recommend to match the moments at several
frequencies si rather than at high-order moments as it is also usual practice for linear moment
matching.
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Chapter 4

Generalizations

Our input-tailored method can be generalized in several directions. In particular, the handling of
non-standard input dependencies is possible as shown in Section 4.1. To the best of the author’s
knowledge, this has not been discussed before for system-theoretic methods relying on multivariate
frequency representations. We therefore also address a respective generalization for these methods
in Section 4.2. It is based on the notion of input-weighting, which shows some formal similarities
to our input-tailoring. Section 4.3 provides expressions for higher-order univariate frequency
representations and Section 4.4 generalizations of the variational expansion.

4.1 Handling of non-standard input-dependencies

In practical applications the state equation S to reduce may take a more general form as in (1.1a),
e.g.,

Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu + K(u)

with K(u) describing input dependencies not affine-linear in u. For example, quadratic terms in
the inputs can come from boundary control terms, when systems with quadratic nonlinearities are
discretized, as shown for the Burgers’ equation in Section 5.2. Also time derivatives in the input
can appear, when the state equation S originates from an index-reduced differential-algebraic
equation [KM06], [LMT13]. The usual work-around in system-theoretic model reduction is to
introduce artificial augmented inputs for all non-standard terms. Obviously, this enlarges the
input and ignores known input-structure, which leads to worse results in model reduction.

Our input-tailored approach can incorporate a large class of input-relations directly, as we
discuss for some cases in the following.

Input map with quadratic term and/or time derivative For K(u) = Guu
2○ + Bpu̇ our

signal generator driven system, and with that the core of our approach generalizes as follows.

Definition 4.1 (Generalization of Definition 1.2, Signal generator driven system). Let a system
S of the following form with an input u described by the signal generator T (as in (1.1c)) be given

S : Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu + Guu
2○ + Bpu̇, x(0) = x0 ∈ RN

T : u = Czz, ż = Azz + Gzz
2○, z(0) = z0 ∈ Rq.
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Let Q be the constant matrix such that

Q

[
x̄
z̄

] 2○

=

 x̄ 2○

x̄⊗ z̄
z̄ 2○

 for arbitrary x̄ ∈ RN , z̄ ∈ Rq.

Then we call the autonomous system

S :
Eẇ = Aw + Gw 2○, w(0) = b

x = Pxw

with

E =

[
E

Iq

]
, A =

[
A BCz + BpCzAz

Az

]
, Px = [IN , 0], b =

[
x0

z0

]
,

G =

[
G D(IN ⊗Cz) GuCz ⊗Cz + BpCzGz

Gz

]
Q,

the signal generator driven system S.

Note that the solution x of system S for input u described by the signal generator T and the
output x of the signal generator-driven system S from the definition coincide.

Input map with higher-order time derivatives When higher-order time derivatives occur
in the input map, the further procedure depends on the signal generator. If the signal generator
is linear, we can use that for

u = Czz, ż = Azz z(0) = z0, it holds
di

dti
u = CzA

i
zz.

Thus, a signal generator driven system, which is quadratic in the extended state [x; z], can be
directly constructed. Only the system matrices A, G have to be slightly adjusted.

If the signal generator is nonlinear, we suggest to further extend the signal generator driven
system. We exemplarily discuss this for the case of second order derivatives ü: Introduce z1 = ż
as a dependent variable and extend the signal generator driven state to w = [x; z; z1]. Add the
additional equation

ż1 = Azz1 + Gz(z1 ⊗ z + z⊗ z1), z1(0) = z10

with z10 chosen consistently to z to the signal generator driven system. Then proceed as in
Definition 4.1 to construct the quadratic signal generator driven system with extended state w =
[x; z; z1].

4.2 Input-weighted concept for input-output systems

At least formally, our input-tailoring shows some similarities to the concept of input-weighting.
The latter has been used in system-theoretic model reduction of linear systems to get reduced
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models with enhanced fidelity in certain frequency ranges. We refer to [VA02], [BBG15] and
references therein for details.

Motivated by our approach, we propose the usage of input-weights to incorporate non-standard
input maps in the system-theoretic methods like multi-moment matching or balanced truncation
[BG17] based on multivariate frequency representations. To stress the formal similarities to our
input-tailored approach, we use a similar notation.

Definition 4.2 (Input-weighted system). Let a system S and an input-weight F be given as

S : Eẋ = Ax + Gx 2○ + Dx⊗ u + Bu + Guu
2○ + Bpu̇, x(0) = 0 ∈ RN

F : u = Czz, ż = Azz + Gzz
2○ + BzuF , z(0) = 0 ∈ Rq.

Then we call SF : uF 7→ x

SF : Eẇ = Aw + Gw 2○ + BuF , w(0) = 0

x = Pxw

with

B =

[
BpCzBz

Bz

]
and E ,A,G as in Definition 4.1,

the input-weighted system.

The upper input-weighted system SF results from the assumption that the inputs of interest
u can be constructed from input-weight F and some auxiliary input uF , and then incorporating
the input-weight into the input-output description. By construction, SF has a linear input map.
Therefore, any standard system-theoretic model reduction method based on the input-independent
multivariate frequency representations can be used on it to construct an extended reduction basis
V . The reduction basis V for the original system S can then be extracted from the extended basis
V in the same fashion as we do it in our input-tailored approach, cf. Remark 2.6. Of course, the
choice of input-weight F and its influence on the reduction method is an important issue in this
approach, but beyond the scope of this work.

4.3 Univariate frequency representation of third order

Our approach uses univariate frequency representations tailored towards user-pre-defined families
of inputs. For convenience, most of our discussion is restricted to the first two expansion terms. Let
us stress that higher order terms can be similarly considered. The cascade- and tensor-structured
pattern, which the second order terms and their moments evidently have, is preserved. This
section provides the expressions and results associated to the third order term W̆3. In particular,
we state the respective extensions of Lemma 1.8 and Theorem 2.9.

Lemma 4.3 (Counterpart of Lemma 1.8). Assume that the requirements of Theorem 1.4 hold

true. Then the associated frequency representation W̆3 can also be formulated with the linear
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representation

W̆3(s) = C̆3

(
sĔ3 − Ă3

)−1

b̆3,

with Ĕ3 =

E E 2○

E 3○

 , Ă3 =

A 2G
2○EA G ⊗ E

3○EA


b̆3 =

 0
0
b 3○

 , C̆3 =
[
IM 0 0

]
.

The linear state representation follows by straight forward calculus from Theorem 1.4.

Theorem 4.4 (Counterpart of Theorem 2.9). Assume the requirements of Theorem 1.4 and
Lemma 4.3 hold, and let for given s0 ∈ C the matrix As0 = −s0E + A be nonsingular. Then

the moments m
(3)
i of W̆3 at s0 are characterized by the recursion formula:

i = 0 : 3○EAs0/3 η
(3)
0 = −b 3○

2○EAs0/2 µ
(3)
0 = −G ⊗ E η(3)

0

As0 m
(3)
0 = −2G µ(3)

0

i > 0 : 3○EAs0/3 η
(3)
i = E 3○ η

(3)
i−1

2○EAs0/2 µ
(3)
i = E 2○ µ

(3)
i−1−G ⊗ E η

(3)
i

As0 m
(3)
i = E m

(3)
i−1−2G µ(3)

i .

Moreover, k
(3)
i = [m

(3)
i ;µ

(3)
i ;η

(3)
i ] are the moments of s 7→

(
sĔ3 − Ă3

)−1

b̆3 at s0.

The proof follows similarly as the one of Theorem 2.9.

4.4 Variational expansion for parametrized initial condi-

tions

This section deals with the generalization of the variational expansion in Theorem 1.4. Instead
of just dealing with α-dependent initial conditions w(0;α) = αb as in the main part of this part,
initial conditions parametrized in a multidimensional linear space spanned by the column span of
a matrix B0 ∈ RM,K can be regarded.

We consider the r-dependent dynamical system

Eẇ(t; r) = Aw(t; r) + G (w(t; r)) 2○, t ∈ (0, T )

w(0; r) = B0r, for r ∈ RK

with T > 0 and system matrices E ,G as in Theorem 1.4. The respective generalization of Theo-
rem 1.4 then leads to the expansion

w(t; r) =
N∑
i=1

wi(t)r
i○ + higher order terms.
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Again, the wi have Laplace transforms W̆i analogously as in Theorem 1.4, where only b is replaced
by B0 at all instances.

To see that this holds true, we note that for each concrete choice of r one can define b̃ such
that b̃ = B0r. Then the state equation for w also can be written as

Eẇ(t) = Aw(t) + G(w(t)) 2○, w(0) = b̃.

Now use Theorem 1.4 and expand for b̃ = αb the solution w in α. Afterwards re-substitute the
’b̃ i○’-terms with the relation b̃ i○ = (B0r) i○ = B i○

0 r i○, which gives the expressions we claimed.
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Chapter 5

Numerical results

In this chapter we investigate the numerical performance of our new input-tailored approximate
moment matching in comparison to the system-theoretic multi-moment matching, the trajectory-
based proper orthogonal decomposition, and the method [ZLW+12], [ZW16] based on univariate
frequency representations. We consider three benchmarks, which have been used in literature
to test especially, but not exclusively, nonlinear system-theoretic model reduction methods, e.g.,
[ABJ16], [BG17], [Gu12], [BB12c], [BB15], [Gu11]. Apart from a general performance comparison,
certain aspects are further highlighted in the different benchmark tests: The viscous Burgers’
equation (Section 5.2) is used to demonstrate the applicability of the extensions from Section 4.1
to handle non-standard input maps. The difference of input-tailoring in our method against the
use of training trajectories in proper orthogonal decomposition is illustrated on the other two
benchmarks. On the one hand, different input-scenarios may lead to the same input-tailored
expansion, although the solution trajectories differ nonlinearly. Such an example is discussed
for the Chafee-Infante equation (Section 5.3). On the other hand, our method is overall less
dependent on the input-scenario than the proper orthogonal decomposition, which is showcased
for the nonlinear RC-ladder (Section 5.4). A discussion on the difference and computational
advantage of our approach to [ZLW+12], [ZW16] concludes Section 5.4 and the numerical section.

5.1 Setup for numerical results

We have implemented our approach, which we refer to as AssM, in MATLAB. For an efficient realiza-
tion of Step (2b) in Algorithm 3.1 the routine ’mess lyap’ from M.E.S.S. Toolbox [SKB16] with its
default settings is used. The full order model simulations, referred to as FOM as well as the reduced
simulation are done using MATLAB’s solver ’ode15s’, where the tolerances are modified to ’AbsTol
= 10−8’ and ’RelTol = 10−6’ and the exact Jacobian matrices are forwarded to the solver. For
the intended comparison, the one-sided multi-moment matching approach from [BB12b, Alg. 2],
[BB12c], which we refer to as MultM, has been implemented. It aims at matching the moments of
the symmetric transfer functions G1(s), at given frequencies (σ1, σ2, . . . , σµ) up to order q1 as well
as the multi-moments of G2(s1, s2) at the diagonal frequency pairs ((σ1, σ1), (σ2, σ2) . . . (σµ, σµ))
up to order q2, where q1 ≥ q2 has to be chosen. We refer to [BB12c], [Bre13], [Gu12] for details.
Just for convenience we choose the same expansion frequencies for AssM, both for the first and the
second associated transfer function and equal moment orders L1 = · · · = Lµ and L̃1 = · · · = L̃µ
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for all expansion frequencies, which we denote by L and L̃. As a heuristic to construct expansion
frequencies, we apply IRKA method to the linear transfer function G1(s), and select the first few
real calculated values, similarly to [BB12b], [BB15], [ABJ16]. Reduction results are also compared
to those gotten from the proper orthogonal decomposition method [KV01], [AH14], referred to as
POD. For the construction of POD we use time snapshots of the training trajectory, which, if not
indicated differently, is chosen as the solution trajectory. We use 300 uniformly distributed time
snapshots in all benchmark test cases, as we experienced no improvements in the results when
increasing the number of snapshots. The results have been generated on an Intel Core i7-8700
CPU, with 3.20GB RAM, and MATLAB Version 9.3.0.713579 (R2017b).

5.2 Burgers’ equation

On the spatial domain Ω = (0, 1) we consider the nonlinear viscous Burgers’ equation given by

∂tv(ξ, t) = −v(ξ, t) ∂ξv(ξ, t) + ν ∂ξξv(ξ, t) in (0, 1)× (0, T )

v(0, t) = u(t), ∂ξv(1, t) = 0 in (0, T )

v(ξ, 0) = 0 on [0, 1]

with ν = 0.01. The input u particularly prescribes a Dirichlet boundary condition on the left
boundary (ξ = 0). We choose the output to be the boundary value on the right, y(t) = v(1, t).
The two input-scenario cases we present relate to one linear and one nonlinear signal generator:

Case 1 Linear signal generator.

u(t) = 0.5 (cos (1.3πt)− cos (5.4πt)− sin (0.6πt) + 1.2 sin (3.1πt))

The input u is a sum of sine- and cosine-functions. Every summand can be described by a dynamic
system, e.g., the last summand ũ(t) = 1.2 sin (3.1πt) has the linear signal generator

ũ = [1 | 0]z, ż = 3.1π

[
1

−1

]
z z(0) = 1.2

[
0
1

]
,

and analogously for the others. Superposing these single generators gives the linear signal gener-
ator for u.

Case 2 Nonlinear signal generator.

u(t) =
1

0.5− exp (2t)
+ 2 exp (−t)

The respective signal generator is nonlinear and reads

u = [−0.5 | 2]z, ż =

[
−2

−1

]
z +

[
−0.5 0 0 0

0 0 0 0

]
z 2○, z(0) =

[
4
1

]
.

Case 1 is particularly similar to a test case considered in [Bre13], [BB12b], [BB15] for multi-moment
matching.
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In the upcoming, we employ two different discretization schemes for the upper partial differ-
ential equations to construct one quadratic-bilinear system with linear input-dependency (Sec-
tion 5.2), and one with nonlinear input-dependency (Section 5.2). Note that both discretized
systems describe up to a small discretization error the same dynamics, and should therefore serve
as an equally valid basis for model reduction. The nonlinear input-dependency, however, can-
not directly be incorporated into the input-output based system-theoretic methods. As will be
demonstrated, our input-tailored and input-weighted extensions, respectively, can be used for both
discretizations and show to be almost independent of the underlying discretization.

Full order model formulation with linear input map

The Burgers’ equation is discretized in space with standard central finite differences and uniform
mesh size h implicitly defined by h = 1/(N + 2) with N inner grid points. The equations for the
inner node values vi(t) ≈ v(ξi, t) with ξi = ih read

v̇i = −vi
vi+1 − vi−1

2h
+ ν

vi+1 − 2vi + vi−1

h2
, 1 ≤ i ≤ N.

The discretized boundary conditions give v0 = u and (vN+1−vN)/h = 0, which we use to eliminate
v0 and vN+1. This leaves us with a quadratic-bilinear full order model of the form (1.1) with state
x(t) = [v1(t); v2(t); . . . ; vN(t)] and E = IN . The output matrix becomes C = [0, . . . , 0, 1], as
y = vN+1 = vN due to the boundary conditions.

The parameters used in the model reduction for AssM and MultM are summarized in Table 5.1.
Proceeding from the FOM with N = 4000, this leads to reduced models of dimension n = 16,
which is also the dimension we choose for the reduced model of POD. The respective results
concerning output behavior and absolute error over time are illustrated in Fig. 5.1. As can be
observed, all methods (AssM, MultM and POD) perform comparably well, showing a similar
error behavior with moderate numerical oscillations near steep gradients of the solution output
in both cases. Notably, also the POD trained with the solution trajectory itself does not lead to
significantly better results, which indicates that this benchmark example is rather hard to reduce
for any kind of model reduction method.

Our main motivation to introduce input-weighted multi-moment matching, i.e., the extension
of Section 4.2, is the incorporation of non-standard input-dependencies. The latter is showcased

Expansion frequencies AssM & MultM 0.03, 0.22

Order moments
AssM L̃ = 3, L = 2

MultM q1 = 3, q2 = 2

Tolerance AssM : tol 0.001 (Case 1 )

0.0001 (Case 2 )

Resulting dimensions AssM & MultM 16

Table 5.1: Reduction parameters for Burgers’ equation Case 1 & Case 2 (FOM with N = 4000).
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Figure 5.1: Reduction results for Burgers’ equation with linear input map. Top to bottom: Input u,
output y, output errors. Dimensions: FOM : N = 4000, Reduced models : n = 16 (cf. Table 5.1).
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in the next subsection. But we want to mention that incorporation of an input-weight influences
the reduction method itself. To illustrate this, a preliminary comparison of the input-weighted
multi-moment matching, which we refer to as MultM-iw, and the unweighted MultM is done. We
construct reduced models with MultM-iw using the exemplary choice of input-weight

u = z, ż = −z + uF , z(0) = 0,

(i.e., Cz = 1, Gz = 0, Az = −1 and Bz = 1 in Definition 4.2) and otherwise the same parameters
as for MultM in Table 5.1.

The MultM-iw leads to the smaller dimension n = 12 compared to n = 16 for MultM, which is
due to the input-weighted system, cf. Definition 4.2, not having any bilinear parts to be considered
in the multi-moment matching. In this example the smaller dimension goes hand in hand with a
slightly larger output error, cf. Fig. 5.2. But we note that we also tested both methods with altered
reduction parameters (including different choices of input-weights), and observed comparable re-
sults when the reduced models are constructed to be of equal dimension, e.g., by incorporating an
additional expansion frequency for MultM-iw.

Full order model formulation with nonlinear input map

The FOM with quadratic input map for the Burger’s equation is constructed as follows: Instead of
using the advective form v ∂ξv for the nonlinearity as in Section 5.2, we rewrite it in conservative
form 0.5 ∂ξ(v

2) and then apply the central finite difference scheme. Then the equations for the
inner node values vi read

v̇i = −
v2
i+1 − v2

i−1

4h
+ ν

vi+1 − 2vi + vi−1

h2
, 1 ≤ i ≤ N.
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Figure 5.2: Reduction results for Burgers’ equation with linear input map. Comparing reduction
error for unweighted MultM with n = 16 and input-weighted MultM-iw with n = 12. (cf. Table 5.1
and Fig. 5.1).
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Incorporating the boundary conditions in this new discretization gives a quadratic term in the
input u, resulting in a FOM with nonlinear input map. We use this new FOM and apply, with
the extensions proposed in Section 4.1, the input-tailored method and the input-weighted multi-
moment matching with the reduction parameters as before, cf. Table 5.1. The resulting reduced
models are referred to as AssM-q for the input-tailored, and MultM-q-iw for the input-weighted
multi-moment matching method, respectively.

Independence of the underlying discretization in dimensions of the reduced models is observed,
i.e., n = 16 for AssM-q and AssM, and n = 12 for MultM-q-iw and MultM-iw. Also the output
response does not change beyond a negligible order much smaller than the reduction errors, which
can be seen comparing the output differences in Fig. 5.3 with the output errors in Fig. 5.1 and
Fig. 5.2.
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Figure 5.3: Difference of reduced outputs for Burgers’ equation under different underlying dis-
cretizations. AssM and MultM-iw (advective discretization, input-linear) versus AssM-q and
MultM-q-iw (conservative discretization, input-nonlinear) (cf. Table 5.1, Fig. 5.1 and Fig. 5.2).

147



5.3 Chafee-Infante equation

The Chafee-Infante equation is a one-dimensional convection-diffusion equation for v = v(ξ, t) with
a cubic nonlinearity in v. Following [BB15], we introduce the augmented function w by w = v2,
and consider an artificial differential equation describing w by differentiating the algebraic relation
to get ∂tw = 2v ∂tv. By that a representation with only quadratic nonlinearities results, reading

∂tv(ξ, t) = −v(ξ, t)w(ξ, t) + ∂ξξv(ξ, t) + v(ξ, t) in (0, 1)× (0, T )

∂tw(ξ, t) = −2w(ξ, t)2 + 2v(ξ, t) ∂ξξv(ξ, t) + 2v(ξ, t)2 in (0, 1)× (0, T )

v(0, t) = u(t), ∂ξv(1, t) = 0 in (0, T )

w(0, t) = v(0, t)2, w(1, t) = v(1, t)2 in (0, T )

v(ξ, 0) = v0(ξ), w(ξ, 0) = v0(ξ)2 on [0, 1].

The equations for w(0, t) and w(1, t) should be read as consistency conditions. Trivial initial
conditions for v0 are employed here, and the input u, prescribing a Dirichlet boundary condition on
the left boundary (ξ = 0), is varied over the test cases. In particular, two test cases distinguishing
by a linear scaling α in the input are set up:

u(t) = α [cos (1.3πt)− cos (5.4πt)− sin (0.6πt) + 1.2 sin (3.1πt)]

Case 1 : α = 1.

Case 2 : α = 0.125.

Therefore, the corresponding signal generators of both cases coincide up to a scaling. (They are a
scaling of the signal generator in Case 1 of Section 5.2.) Similarly as for the Burgers’ equation, we
discretize the system in space using central finite differences with a uniform mesh with Ñ inner grid
points, and eliminate the boundary node values by means of the boundary conditions. This leads to
a quadratic-bilinear system of the form (1.1) with state x(t) = [v1(t); . . . ; vÑ(t);w1(t); . . . ;wÑ(t)]
and E = IN , N = 2Ñ . As output we consider y(t) = v(1, t), implying the output matrix
C = [01,Ñ−1, 1,01,Ñ ], since vÑ = vÑ+1 due to the boundary conditions.

Expansion frequencies AssM & MultM 1.5, 21.5, 48.3

Order moments
AssM L̃ = 1, L = 2

MultM q1 = 2, q2 = 2 (σ ∈ {1.5, 21.5})

q1 = 2, q2 = 1 (σ = 48.3)

Tolerance AssM : tol 0.001 (Case 1 )

0.0001 (Case 2 )

Resulting dimensions AssM & MultM 12

Table 5.2: Reduction parameters for Chafee-Infante equation Case 1 & Case 2 (FOM with
N = 1500).
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Figure 5.4: Reduction results for Chafee-Infante equation. Top to bottom: Output y (with FOM ),
output errors for case-independent AssM and MultM, output errors for case-dependent POD
models. Dimensions: FOM : N = 1500, Reduced models : n = 12 (cf. Table 5.2).
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Reduced models of dimension n = 12 are constructed for MultM and AssM with the parameters
of Table 5.2. Reduced models of the same size are also constructed by POD, where we deviated
from the standard procedure and constructed separately bases of dimension 6 each for the physical
variables [v1(t); . . . ; vÑ(t)] and [w1(t); . . . ;wÑ(t)], which were then combined to a full block basis
of dimension 12. The direct application of POD onto the full state leads to significantly worse
results, which is known to possibly happen when different physical variables are mixed [AH14]. As
POD depends on the chosen training trajectory, the two cases lead to two distinct POD reduced
models. When we test POD models, where training trajectory and solution trajectory of the test
case differ, we indicate by a suffix ’-1 ’ or ’-2 ’ the case used in the training phase. In contrast,
AssM leads to the same reduced model in both cases, because by construction the input-tailored
variational expansions coincide. (The scaling in tol, cf. Table 5.2, is only needed to compensate
for the scaling in the input.)

As seen in Fig. 5.4, the case-independent AssM performs well for both cases, especially also
better than MultM. The results of proper orthogonal decomposition, in contrast, depend on the
training trajectory. Worse results are seen for POD-1 (trained with Case 1) in Case 2, and POD-2
(trained with Case 2) in Case 1 than for the perfectly trained models. In particular, if not trained
perfectly, the proper orthogonal decomposition performs worse than our AssM.

5.4 Nonlinear RC-ladder

This benchmark describes a nonlinear RC-ladder with Ñ capacitors and I-V diodes. The nonlin-
earity is due to the diode I-V characteristics, given by g(v) = exp (40v − 1) for voltages v. We use
the same setup as in [ABJ16], [BG17], [BB15], but also in [ZLW+12], [ZW16] a similar example
has been studied. The node voltages vi (2 ≤ i ≤ Ñ − 1, and Ñ = 500) are described by

v̇1(t) = −2v1(t) + v2(t)− g(v1(t))− g(v1(t)− v2(t)) + u(t)

v̇i(t) = −2vi(t) + vi−1(t) + vi+1(t) + g(vi−1(t)− vi(t))− g(vi(t)− vi+1(t))

v̇Ñ(t) = −vÑ(t) + vÑ−1(t) + g(vÑ−1(t)− vÑ(t)).

The input u corresponds to a current source. As detailed, e.g., in [Gu11], [SLSM19], the system
can be recast as a quadratic-bilinear system of size N = 2Ñ = 1000 in the new variables x1 = v1,
and xi = vi−1 − vi for 2 ≤ i ≤ Ñ , and xi = exp (40xi−Ñ − 1) for Ñ + 1 ≤ i ≤ 2Ñ . The output
is chosen as y = x1, and the benchmark is treated with trivial initial conditions and two different
cases of inputs:

Case 1 Exponential pulse. u(t) = exp (−t) with corresponding signal generator

u = z, ż = −z, z(0) = 1.

Case 2 Oscillation. u(t) = 1 + cos (10πt) with corresponding signal generator

u = [1 | 0 |1]z, ż =

0
10π

−10π

 z, z(0) =

1
0
1

 .
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Case 1 and the reduction parameters for MultM are directly taken from [Bre13], [BB12c], whereas
Case 2 is modified from the reference to have a higher amplitude and frequency.

The reduction parameters for AssM and MultM are summarized in Table 5.3. Additionally,
standard POD is used to construct reduced models of size n = 11 equal to the size of the other
reduced models. As the inputs in both cases differ nonlinearly from each other, both, POD and
AssM lead to different reduced models depending on the case used in the reduction step. We
indicate the models where the training scenario and the test case do not coincide by a suffix ’-1 ’
or ’-2 ’ for the case used in the training trajectory or input-tailoring, respectively.

As seen in Fig. 5.5, AssM outperforms MultM here by up to two orders. Perfectly trained
POD is yet superior to both system-theoretic methods, but falls off strongly when the training
scenario differs from the test case. In contrast, our AssM method shows to be much less sensitive
to the training scenario. We observe reduction errors of up to two orders smaller than for POD,
when training and test case disagree (cf. last row of Fig. 5.5).

Remark 5.1 (Choice of signal generator). There is no necessity to choose the signal generator
in the reduction phase of AssM such that it generates the signal of the test case, as we did mostly
throughout this part. Robust (input-independent) other choices for signal generators are yet an
open issue to us. Let us, however, note that in our experience the impact of the chosen signal
generator in AssM is not comparably strong as the impact of training trajectories in POD.

Expansion frequencies AssM & MultM 1

Order moments
AssM L̃ = 3, L = 2

MultM q1 = 5, q2 = 2

Tolerance AssM : tol 0.0006

Resulting dimensions AssM & MultM 11

Table 5.3: Reduction parameters for nonlinear RC-ladder (FOM with N = 1000).
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Figure 5.5: Reduction results for nonlinear RC-ladder. Top to bottom: Output y (with FOM ),
output errors of methods with training case and test case coinciding, output errors of AssM and
POD with training case and test case disagreeing. Dimensions: FOM : N = 1000, Reduced models :
n = 11 (cf. Table 5.3).
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Expansion frequencies AssM-mu 1.2, 8.8, 37.7, 108.2

AssM-inf 0.2, 1.3, 5.9, 20.0, 56.1, 121.3

Order moments AssM-mu & AssM-inf L̃ = 1, L = 1

Tolerance AssM-mu: tol 0.0005

AssM-inf : tol ∞

Resulting dimensions AssM-mu & AssM-inf 12

Table 5.4: Reduction parameters using multiple expansion frequencies for nonlinear RC-ladder
(FOM with N = 1000).
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Figure 5.6: Reduction errors for nonlinear RC-ladder with multiple expansion frequencies. Di-
mensions: FOM : N = 1000, Reduced models : n = 12 (cf. Table 5.4).

In a last test, we exemplarily showcase the importance of the newly proposed approximation
condition (2.6b). This condition has no analog in the former method [ZLW+12], [ZW16]. We
repeat the test cases for the RC-ladder using AssM with altered parameters involving multiple
expansion frequencies as described in Table 5.4. The expansion frequencies are, as mentioned,
found by applying IRKA onto the first transfer function of the Volterra series. The model AssM-
mu aims for the approximation condition (2.6b) up to a small tolerance, whereas in AssM-inf the
approximation condition is ignored and instead more expansion frequencies are used. The latter
therefore relates to [ZLW+12], [ZW16]. Although both models are of equal size n = 12, AssM-mu
leads to profoundly better results, as seen in Fig. 5.6.

Remark 5.2 (Performance). Our method AssM yields low order high fidelity models that are
competitive and overall similar to other system-theoretic model reduction methods as the multi-
moment matching. It naturally extends to systems with non-standard input maps, cf. Section 4.1
and comparisons in Section 5.2, which makes it in this respect similarly flexible as the trajectory-
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based methods like proper orthogonal decomposition. In contrast to trajectory-based methods, AssM
does not rely on pre-calculated full order model simulations. The most crucial part of its offline
phase consists in the solution of Lyapunov-type equations, which makes it more costly than the
offline phase of simple multi-moment matching. Nonetheless, our implementation is a profound
enhancement over the approach in [ZLW+12], [ZW16] in terms of offline times. We refer to
[SLSM19], where we showcased the latter. The time savings stem from the exploitation of the
appearing low-rank tensor structures, cf. Section 3.1.
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Discussion and conclusion

In this part we suggested a new system-theoretic model reduction approach for quadratic-bilinear
dynamical systems, which is based on a different perspective as compared to the multivariate
frequency-based ones. Instead of relying on input-output modeling, we used the notion of signal
generator driven systems. By that, input-tailored variational expansions were constructed for a
large class of inputs. We compared our approach to the system-theoretic multi-moment matching
and the trajectory-based proper orthogonal decomposition, and observed rather similar perfor-
mance to the former. Compared to the method [ZLW+12], [ZW16], which also utilizes univariate
frequency representations, our method shows profound enhancements regarding analytical results
and numerical performance. We stress that in contrast to existing system-theoretic reduction
methods, our method naturally extends to systems with non-standard input dependencies, such
as, e.g., quadratic terms, time derivatives. As a byproduct of the latter, we also suggested a
modification of input-output based system-theoretic methods able to handle non-standard input
dependencies.

We restricted the discussion in the main part to variational expansion terms up to order two.
Nonetheless, the results are presented in a tensor notation allowing for convenient generalizations
to higher order, as provided in Section 4.3 for the third order terms. Regarding higher order terms
in the numerical implementation, of course, the typical adaptions for the handling of tensors with
order higher than two, have to be integrated, cf. [KT10], [KK18]. Other possible extensions
of our approach could include more sophisticated automated choices of expansion frequencies or
generic (input-independent) signal generators as well as the handling of systems with more general
nonlinearities.
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[GH18] C. Gräßle and M. Hinze. POD reduced-order modeling for evolution equa-
tions utilizing arbitrary finite element discretizations. Adv. Comput. Math.,
44(6):1941–1978, 2018.

[Gil77] E. Gilbert. Functional expansions for the response of nonlinear differential sys-
tems. IEEE Trans. Autom. Control, 22(6):909–921, 1977.

159



[GPBvdS09] S. Gugercin, R. V. Polyuga, C. A. Beattie, and A. van der Schaft. Interpolation-
based H2 model reduction for port-Hamiltonian systems. In Proceedings of the
48th IEEE Conference on Decision and Control, and the 28th Chinese Control
Conference, Shanghai, pages 5362—-5369, 2009.

[Gri97] E. J. Grimme. Krylov projection methods for model reduction. Ph.D. Thesis,
Univ. of Illinois at Urbana-Champaign, USA, 1997.

[GSW13] S. Gugercin, T. Stykel, and S. Wyatt. Model reduction of descriptor systems by
interpolatory projection methods. SIAM J. Sci. Comput., 35(5):B1010–B1033,
2013.

[GTvdSM04] G. Golo, V. Talasila, A. van der Schaft, and B. Maschke. Hamiltonian discretiza-
tion of boundary control systems. Autom., 40(5):757–771, 2004.

[Gu11] C. Gu. QLMOR: A projection-based nonlinear model order reduction ap-
proach using quadratic-linear representation of nonlinear systems. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 30(9):1307–1320, 2011.

[Gu12] C. Gu. Model Order Reduction of Nonlinear Dynamical Systems. PhD thesis,
EECS Department, University of California, Berkeley, 2012.

[GVL96] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, 3 edition, 1996.

[Hac12] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.

[Har83] A. Harten. On the symmetric form of systems of conservation laws with entropy.
J. Comput. Phys., 49(1):151–164, 1983.

[Har02] P. Hartman. Ordinary Differential Equations. Society for Industrial and Applied
Mathematics, second edition, 2002.

[HCF17] J. A. Hernandez, M. A. Caicedo, and A. Ferrer. Dimensional hyper-reduction of
nonlinear finite element models via empirical cubature. Comput. Methods Appl.
Mech. Engrg., 313:687–722, 2017.

[HGCATRM09] A. Herran-Gonzalez, J. M. De La Cruz, B. De Andres-Toro, and J. L. Risco-
Martin. Modeling and simulation of a gas distribution pipeline network. Appl.
Math. Model., 33(3):1584–1600, 2009.

[HSS08] M. Heinkenschloss, D. C. Sorensen, and K. Sun. Balanced truncation model re-
duction for a class of descriptor systems with application to the Oseen equations.
SIAM J. Sci. Comput., 30(2):1038–1063, 2008.

[IA13] T. C. Ionescu and A. Astolfi. Families of reduced order models that achieve
nonlinear moment matching. In 2013 American Control Conference, pages 5518–
5523, 2013.

160



[IW14] T. Iliescu and Z. Wang. Are the snapshot difference quotients needed in the
proper orthogonal decomposition? SIAM J. Sci. Comput., 36(3):A1221–A1250,
2014.

[Jam08] A. Jameson. The construction of discretely conservative finite volume schemes
that also globally conserve energy or entropy. J. Sci. Comput., 34(2):152–187,
2008.

[KK18] V. Khoromskaia and B. N. Khoromskij. Tensor Numerical Methods in Quantum
Chemistry. De Gruyter, 2018.

[KM06] P. Kunkel and V. Mehrmann. Differential Algebraic Equations. European Math-
ematical Society, 2006.

[Kot13] P. Kotyczka. Discretized models for networks of distributed parameter port-
Hamiltonian systems. In nDS’13; Proceedings of the 8th International Workshop
on Multidimensional Systems, pages 1–5, 2013.

[KT10] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with
tensor product structure. SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[Kug19] T. Kugler. Galerkin methods for simulation of wave propagation on a network of
pipes. PhD thesis, TU Darmstadt, Verlag Dr. Hut, 2019.

[KV01] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods
for parabolic systems. Numer. Math., 90:117–148, 2001.

[LeV90] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1990.
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