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Abstract

This thesis addresses three different topics from the fields of mathematical finance, applied proba-
bility and stochastic optimal control. Correspondingly, it is subdivided into three independent
main chapters each of which approaches a mathematical problem with a suitable notion of a
stochastic particle system.

In Chapter 1, we extend the branching diffusion Monte Carlo method of Henry-Labordère et. al.
[HOT+19] to the case of parabolic PDEs with mixed local-nonlocal analytic nonlinearities. We
investigate branching diffusion representations of classical solutions, and we provide sufficient
conditions under which the branching diffusion representation solves the PDE in the viscosity
sense. Our theoretical setup directly leads to a Monte Carlo algorithm, whose applicability is
showcased in two stylized high-dimensional examples. As our main application, we demonstrate
how our methodology can be used to value financial positions with defaultable, systemically
important counterparties.

In Chapter 2, we formulate and analyze a mathematical framework for continuous-time mean field
games with finitely many states and common noise, including a rigorous probabilistic construction
of the state process. The key insight is that we can circumvent the master equation and reduce the
mean field equilibrium to a system of forward-backward systems of (random) ordinary differential
equations by conditioning on common noise events. We state and prove a corresponding existence
theorem, and we illustrate our results in three stylized application examples. In the absence of
common noise, our setup reduces to that of Gomes, Mohr and Souza [GMS13] and Cecchin and
Fischer [CF20].

In Chapter 3, we present a heuristic approach to tackle stochastic impulse control problems in
discrete time. Based on the work of Bensoussan [Ben08] we reformulate the classical Bellman
equation of stochastic optimal control in terms of a discrete-time QVI, and we prove a correspond-
ing verification theorem. Taking the resulting optimal impulse control as a starting point, we
devise a self-learning algorithm that estimates the continuation and intervention region of such a
problem. Its key features are that it explores the state space of the underlying problem by itself
and successively learns the behavior of the optimally controlled state process. For illustration, we
apply our algorithm to a classical example problem, and we give an outlook on open questions to
be addressed in future research.

Finally, several parts of the appendix complement the main part of this thesis: In Appendix A we
provide some auxiliary technical results, and we give a brief outline of the theory of Carathéodory
solutions of ODEs; in Appendix B we sketch an extension of the branching diffusion methodology
of Section 1.1 to nonlocal Dirichlet problems; Appendix C shows the relevant pricing PDEs for
Section 1.4.3 in a synopsis; Appendix D contains the proof of the existence result for a mean field
equilibrium (see Theorem 2.3.6), relevant assumptions and auxiliary results; and Appendix E
provides the master equation for the mean field games considered in Chapter 2.
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Zusammenfassung

Die vorliegende Arbeit behandelt drei verschiedene Themen aus den Bereichen Finanzmathematik,
angewandte Wahrscheinlichkeitstheorie und stochastische Optimalsteuerung. Sie ist folglich in
drei unabhängige Kapitel unterteilt, von welchen jedes sich einem mathematischen Problem mit
einem geeigneten stochastischen Partikelsystem nähert.

In Kapitel 1 erweitern wir die Branching Diffusion-Monte-Carlo-Methode von Henry-Labordère
et. al. [HOT+19] auf den Fall parabolischer partieller Differentialgleichungen (PDEs) mit gemischt
lokal-nichtlokalen analytischen Nichtlinearitäten. Dabei untersuchen wir die Darstellung klassischer
Lösungen mittels Branching Diffusions und geben hinreichende Bedingungen dafür an, dass eine
ebensolche Darstellung die vorliegende PDE im Viskositätssinne löst. Unsere theoretischen
Überlegungen führen unmittelbar zu einem Monte-Carlo-Algorithmus, dessen Anwendbarkeit
wir in zwei stilisierten hochdimensionalen Beispielen demonstrieren. Unsere Hauptanwendung
zeigt auf, wie unser Verfahren zur Bewertung von Derivatepositionen mit ausfallgefährdeten
systemrelevanten Kontrahenten verwendet werden kann.

In Kapitel 2 formulieren und analysieren wir einen mathematischen Rahmen für Mean Field
Games in stetiger Zeit mit endlich vielen Zuständen und Common Noise – einschließlich einer
rigorosen probabilistischen Konstruktion des Zustandsprozesses. Die wesentliche Erkenntnis ist,
dass wir die Master Equation umgehen und, durch Bedingen auf Common Noise-Ereignisse,
das Mean Field-Gleichgewicht auf ein Vorwärts-Rückwärtssystem von (zufälligen) gewöhnlichen
Differentialgleichungen reduzieren können. Wir formulieren und beweisen ein zugehöriges Exis-
tenzresultat und illustrieren unsere Ergebnisse in drei stilisierten Anwendungsbeispielen. Ohne
Common Noise reduziert sich unser Modell auf das von Gomes, Mohr und Souza [GMS13] und
Cecchin und Fischer [CF20].

In Kapitel 3 stellen wir einen heuristischen Zugang zu stochastischen Impulskontrollproblemen in
diskreter Zeit vor. Basierend auf der Arbeit von Bensoussan [Ben08] formulieren wir die klassische
Bellman-Gleichung der stochastischen Optimalsteuerung in die Form einer quasi-variationellen
Ungleichung in diskreter Zeit um und beweisen einen zugehörigen Verifikationssatz. Ausgehend
von der resultierenden optimalen Impulskontrolle entwickeln wir sodann einen selbstlernenden
Algorithmus, der die (Nicht-)Eingreifregion eines solchen Problems approximiert. Seine wesent-
lichen Eigenschaften sind, dass er den Zustandsraum des zugrundeliegenden Problems selbst
erkundet und das Verhalten des optimal gesteuerten Zustandsprozesses sukzessive lernt. Zur
Veranschaulichung wenden wir unseren Algorithmus auf ein klassisches Beispielproblem an und
geben einen Ausblick auf offene, in Zukunft zu behandelnde Forschungsfragen.

Schließlich ergänzen die Teile des Anhangs den Hauptteil dieser Arbeit: In Anhang A behandeln
wir einige technische Hilfsresultate und geben einen kurzen Abriss der Theorie der Carathéodory-
Lösungen gewöhnlicher Differentialgleichungen; in Anhang B skizzieren wir eine Erweiterung der
Branching Diffusion-Methodik aus Abschnitt 1.1 auf nichtlokale Dirichlet-Probleme; Anhang C
stellt die relevanten Bewertungsgleichungen für Abschnitt 1.4.3 gegenüber; Anhang D beinhaltet
den Beweis des Existenzresultats für ein Mean Field-Gleichgewicht (siehe Theorem 2.3.6), zuge-
hörige Annahmen sowie Hilfsresultate; Anhang E behandelt die Master Equation für die Mean
Field Games aus Kapitel 2.
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Publications

The structure and style of this thesis have their origins in three independent research projects
that I have been pursuing in recent years. In the course of these projects, two research papers
have been written and thus, upon submission of this thesis, essential parts of two of its three
main chapters and related parts of the appendix have already been made publicly available:

1. Essential parts of Chapter 1 have been submitted for publication in a scientific journal; the
corresponding preprint [BHS20a] is available at https://ssrn.com/abstract=3451280.

2. Essential parts of Chapter 2 and Appendix D have been submitted for publication in a
scientific journal; the corresponding preprint [BHS20b] is available at https://ssrn.com/
abstract=3458336.

Each of Chapter 1 (together with Appendix B/C) and Chapter 2 (together with Appendix D/E)
thus consists of a revised and partly extended version of the respective aforementioned original
research article. �

E

https://ssrn.com/abstract=3451280
https://ssrn.com/abstract=3458336
https://ssrn.com/abstract=3458336




Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Professor
Dr. Frank Thomas Seifried for his constant support and his sustained interest in my work. His
excellent guidance and our countless inspiring discussions of ideas have greatly contributed to the
completion of this thesis. I am very grateful that he shared his passion for mathematics and his
wealth of experience with me.
I wish to thank Professor Dr. Volker Schulz for the advice he gave me on numerical issues related
to my work as well as for agreeing to both co-supervise and review this thesis.
Furthermore, I am very grateful to Professor Dr. Sören Christensen for accepting to act as an
external referee for this thesis.

I owe my sincere thanks to Professor Dr. Christoph Belak for his helpful suggestions and many
insightful discussions on various topics related to my work; moreover, I would like to thank him
for our fruitful collaboration together with Professor Seifried that has led to two research papers.

In the last more than three years of my entire PhD studies I have been a member of the DFG
Research Training Group 2126 on “Algorithmic Optimization” (ALOP). I gratefully acknowledge
the provided educational and financial support. I have enjoyed the pleasant working atmosphere at
the Department of Mathematics and hence wish to thank all its members as well as my colleagues
– with special thanks to the secretaries Martina Shaw, Monika Thieme-Trapp and Doris Karpa.

Schließlich möchte ich meiner Familie von Herzen danken: Ein ganz besonderer Dank geht an
meine Eltern, Petra und Herbert, die mir jederzeit und in allen Lebenslagen mit Rat und Tat zur
Seite gestanden und immer an mich geglaubt haben. Ohne ihre unermüdliche Fürsorge wäre mein
bisheriger Weg nicht möglich gewesen.
Ich danke meinem Onkel Horst für sein stets offenes Ohr und seinen konstruktiven persönlichen
Rat. Vermutlich hätte ich mich ohne seine Ermutigung niemals näher mit Mathematik beschäftigt.
Und ich danke Christine, die mich während meiner Zeit als Doktorand stets unterstützt und
geduldig Verständis für meine Arbeit aufgebracht hat.

Trier und Idenheim, im Juni 2020
Daniel Hoffmann

G





Someone’s sitting in the shade today because someone planted a tree a long time ago.
Warren Buffett





Contents

Abstract A

Zusammenfassung C

Publications E

Acknowledgements G

1 Branching Diffusions with Jumps and Nonlocal Nonlinear PDEs 1

1.1 Branching Diffusion Representations for Nonlocal PDEs . . . . . . . . . . . . . . 3

1.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Branching Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Branching Diffusion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Branching Diffusion Representation . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Viscosity Solutions and Branching Diffusion Representations . . . . . . . . . . . . 13

1.2.1 Viscosity Solutions of Nonlocal Nonlinear PDEs . . . . . . . . . . . . . . . 14

1.2.2 Sufficient Conditions for Uniform Integrability of {Ψt,x} . . . . . . . . . . 17

1.3 Monte Carlo Simulation: A High-Dimensional Example . . . . . . . . . . . . . . . 20

1.4 Valuation with Systemically Important Counterparties . . . . . . . . . . . . . . . 23

1.4.1 Valuation with Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Branching Diffusion with Jumps Approach . . . . . . . . . . . . . . . . . . 26

1.4.3 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.4 Another High-Dimensional Example . . . . . . . . . . . . . . . . . . . . . 32

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Continuous-Time Finite-State Mean Field Games with Common Noise 37

2.1 Mean Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Probabilistic Setting and Common Noise . . . . . . . . . . . . . . . . . . . 40

2.1.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.3 State Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

K



2.2 Solution of the Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Mean Field Equilibrium System . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 A Decentralized Agricultural Production Model . . . . . . . . . . . . . . . 59

2.4.2 An SIR Model with Random One-Shot Vaccination . . . . . . . . . . . . . 65

2.4.3 Evacuation of a Room with Randomly Opening Doors . . . . . . . . . . . 73

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 A Heuristic Approach to Discrete-Time Impulse Control 85

3.1 Theoretical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 State Space and Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.2 Stochastic Control Problem and Value Function . . . . . . . . . . . . . . . 88

3.2 Reformulation of the Dynamic Programming Equation . . . . . . . . . . . . . . . 91

3.2.1 The Bellman Principle and a Classical Verification Theorem . . . . . . . . 91

3.2.2 A Verification QVI in Discrete Time . . . . . . . . . . . . . . . . . . . . . 92

3.2.3 Excursion: Existence of a Measurable Maximizer . . . . . . . . . . . . . . 98

3.3 A Self-Learning Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.1 Theoretical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.2 Implementation: Smart Voronoi Tessellations . . . . . . . . . . . . . . . . 103

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4.1 Impulse Control of Brownian Motion towards Zero . . . . . . . . . . . . . 109

3.4.1.1 A One-Dimensional Example without Proportional Costs . . . . 110

3.4.1.2 A One-Dimensional Example with Fixed and Proportional Costs 112

3.4.1.3 Some Examples in Higher Dimensions . . . . . . . . . . . . . . . 113

3.4.2 A Problem with Disconnected Continuation Region . . . . . . . . . . . . . 117

3.4.3 A Short Remark on the Numerical Results . . . . . . . . . . . . . . . . . . 118

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Some Auxiliary Results 123

A.1 Modifications and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Counting Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 Carathéodory Solutions of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B Branching Diffusions and Nonlocal Dirichlet Problems 129

C Counterparties and Pricing PDEs 133

L



D Existence of Mean Field Equilibria 135

E The Master Equation 147

List of Figures I

List of Tables III

References V

M





Chapter 1

Branching Diffusions with Jumps and
Nonlocal Nonlinear PDEs

The present chapter and Appendix B/C are a revised and partly extended version
of the article [BHS20a] that has already been made publicly available as a preprint
and submitted for publication in a scientific journal. �

The objective of this chapter is to derive probabilistic representations of solutions of a certain class
of nonlinear parabolic partial differential equations with nonlocal terms in the nonlinearity. The
representation is based on a branching diffusion mechanism with jumps at branching times and
makes it possible to compute solutions by direct (non-nested) Monte Carlo simulation, leading to
a numerical algorithm that does not suffer from the curse of dimensionality.

The class of partial differential equations under consideration takes the form

∂tu(t, x) +A[u](t, x) +

∫
Ξ
f
(
t, x, ξ,J [u](t, x, ξ)

)
γ(dξ) = 0, (PDE)

where A denotes the infinitesimal generator of an Itō diffusion, i.e. a (possibly degenerate) linear
partial differential operator of second order; J is a nonlocal operator; and the nonlinearity f is
analytic in the jump terms.

In recent years, there has been significant progress in the realm of probabilistic representations
of partial differential equations with analytic nonlinearities acting on zeroth- and first-order
derivatives. We refer in particular to [RRM10], [Hen12a] and [HTT14] for the zeroth-order
case and [HOT+19] for the first-order case. We also refer to [BTWZ17] for an extension of the
branching diffusion approach to the case of locally analytic nonlinearities, [BTW19] for the case
of Lipschitz nonlinearities, [HT18] and [War18] for higher-order partial differential equations, and
[BCL+15] and [AC18] for an extension to elliptic equations. Furthermore, beyond these recent
articles, connections between branching diffusion processes and partial differential equations have
already been established, e.g., in [Sko64], [Wat65] and [McK75].

Our main contribution is to extend the branching diffusion approach to the case of nonlocal terms
inside the nonlinearity. This extension is achieved by introducing jump marks in the branching

1



2 Chapter 1. Branching Diffusions with Jumps and Nonlocal Nonlinear PDEs

diffusion underlying the probabilistic representation result: We consider a branching diffusion
similar to the one introduced in Henry-Labordère et. al. [HOT+19] with the additional feature
that, at each branching time, a subset of offspring particles may jump away from their parent’s
position. We refer to the resulting object as a branching diffusion with jumps.1

Our main motivation behind the derivation of a probabilistic representation is to open up the
possibility to apply numerical algorithms for nonlocal nonlinear PDEs in high dimensions via
Monte Carlo simulation. The effectiveness and efficiency of such algorithms is showcased in an
example of a nonlocal nonlinear PDE, which we solve in dimensions up to 100. In addition,
we show how our Monte Carlo methodology can be used in the pricing of (equivalently, the
computation of credit valuation adjustments for) financial positions where the counterparty is a
systemically important financial institution whose default causes a devaluation of the underlying.
This jump-at-default model represents a particularly realistic setup for wrong-way risk; see, e.g.,
[PS13], [ML15a], [BP18] or [BPP18]. Our Monte Carlo approach complements existing methods
by making it possible to price systemic defaultable positions for settings where the underlying
dynamics are not tractable by PDE methods; the latter are consider in or developed by, e.g.,
[DH96], [HL99], or [KL16]; for probabilistic representation results we refer, e.g., to [CG15].

The remainder of the chapter is organized as follows: Section 1.1 provides the stochastic construc-
tion of the branching diffusion with jumps and derives a probabilistic representation of classical
solutions of (PDE) in terms of it. In Section 1.2 we conversely establish sufficient conditions
for the branching diffusion representation to yield a viscosity solution of (PDE). Section 1.3
illustrates how the branching diffusion representation allows for efficient simulation of solutions
via the Monte Carlo method in a stylized high-dimensional example. Finally, in Section 1.4 we
showcase our methodology in the context of pricing with a systemically important, defaultable
counterparty.

Three parts of the appendix complement the exposition of this chapter: Appendix A provides some
auxiliary technical results; in Appendix B we sketch how the representation result in Section 1.1
(see Theorem 1.1.6) can be transferred to the case of certain nonlocal Dirichlet problems; and
Appendix C provides the relevant pricing PDEs for the considered scenarios in Section 1.4.3.

1This is not to be confused with the straightforward notion of branching jump-diffusions, where jump terms appear
in the infinitesimal generator A; see also the discussion below Theorem 1.1.6.
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1.1 Branching Diffusion Representations for Nonlocal PDEs

Throughout this chapter, we fix a time horizon T > 0, a non-empty set I ⊆ Nm0 of multi-indices,
and a jump distribution γ on an abstract measurable space (Ξ,B). The goal of this section is
to provide a stochastic representation of a classical solution u : [0, T ] × Rd → R of a nonlocal
partial differential equation of the form

∂tu(t, x) +A[u](t, x) +

∫
Ξ
f
(
t, x, ξ,J [u](t, x, ξ)

)
γ(dξ) = 0, (t, x) ∈ [0, T )× Rd, (PDE)

u(T, x) = g(x), x ∈ Rd, (TC)

where
A[u](t, x) , µ(t, x)T∇xu(t, x) +

1

2
tr
[
σ(t, x)σ(t, x)T∇2

xu(t, x)
]

is the infinitesimal generator of a diffusion process; the nonlinearity

f : [0, T ]× Rd × Ξ× Rm → R, f(t, x, ξ, y) ,
∑
i∈I

ci(t, x, ξ)y
i

is (multivariate) analytic2 in y with measurable coefficients ci : [0, T ]× Rd × Ξ→ R for i ∈ I;
and the jump operator J is given by

J`[u](t, x, ξ) , u
(
t,Γ`(t, x, ξ)

)
for ` ∈ [1 :m],

where the jump maps Γ` : [0, T ]×Rd × Ξ→ Rd, ` ∈ [1 :m], are measurable. Finally, the function
g : Rd → R is assumed to be measurable as well.

1.1.1 Preliminaries

For n ∈ N, we denote by Nn ,
⋃n
ν=1 Nν the set of all N-words with length at most n and by

N ,
⋃
n∈NNn the set of finite N-words. We work on a probability space (Ω,A,P) that supports

the following random variables, all of which are taken to be mutually independent:

• A family {W (k)}k∈N of independent Rd-valued Brownian motions that serve as driving
noise for the emerging diffusion processes with infinitesimal generator A.

• A family {∆(k)}k∈N of i.i.d. Rd-valued random variables with distribution γ.

• A family {τ (k)}k∈N of i.i.d. (0,∞)-valued random variables serving as lifetimes of the
particles underlying the branching mechanism. We assume3 that the distribution of τ (k),
k ∈ N, admits a continuous density ρ : (0,∞)→ [0,∞) that is strictly positive on (0, T ]

and such that
F (T ) ,

∫ ∞
T

ρ(s)ds > 0. (1.1)

2We use standard multi-index notation and write yi ,
∏m
`=1 y

i`
` for y ∈ Rm and |i| ,

∑m
`=1 i`, i ∈ Nm0 . The case of

a multivariate polynomial obtains if I is finite.
3The stated conditions are standard given the literature; see, e.g., Assumption 3.1(i) in [HOT+19].
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• A family {I(k)}k∈N of i.i.d. I-valued random variables modeling the number of offspring of
each particle as well as marks for their initial positions. We assume3 that

pi , P(I(k) = i) > 0 for all i ∈ I, k ∈ N, and
∑
i∈I
|i|pi <∞.

In the following, we describe the branching mechanism and the spatial dynamics separately to
finally obtain the branching diffusion representation of (PDE).

1.1.2 Branching Mechanism

We fix an initial time t ∈ [0, T ]. The branching mechanism is defined by recursion on successive
generations, for each ω ∈ Ω.4

Given a particle of generation n ∈ N labeled k = (k1, . . . , kn) ∈ Nn, we denote its parent particle by
k− , (k1, . . . , kn−1) ∈ Nn−1. The branching time of particle k is given by T (k)

t , (T
(k−)
t +τ (k))∧T ;

on the event {T (k)
t < T} the particle k is removed at time T (k)

t and branches into |I(k)| descendants,
which are labeled by (k1, . . . , kn, kn+1) ∈ Nn+1 for kn+1 ∈ [1 : |I(k)|]. We attach the jump mark
J (k,kn+1) , 1 to the first I(k)

1 of these offspring particles, i.e. if kn+1 ∈ [1 : I
(k)
1 ], the mark

J (k,kn+1) , 2 to the following I(k)
2 offspring particles, etc., so each offspring particle (k, kn+1)

carries a mark J (k,kn+1) ∈ [1 :m]. This iteration is well-defined and uniquely determines the
branching dynamics if we assume that the mechanism starts with a single particle with label (1)

of generation 1 at time t and

(1)− , () , ∅ and T∅
t , t.

5

In the following, we only refer to k ∈ N as a particle if either k = (1) or if k− is a particle and
kn ∈ [1 : |I(k−)|]. Figure 1.1 below visualizes this branching mechanism.

We denote the random set of all particles of generation n ∈ N alive at time s ∈ [t, T ] by

Knt (s) ,


{
k ∈ Nn : k is a particle and T (k−)

t ≤ s < T
(k)
t

}
if s ∈ [t, T ),{

k ∈ Nn : k is a particle and T (k)
t = T

}
if s = T.

The set of all particles of generation n alive before or at time s is given by

Knt (s) ,
⋃

r∈[t,s]

Knt (r).

Finally, the set of all particles alive at time s and the set of all particles alive before or at time s
are defined as

Kt(s) ,
⋃
n∈N
Knt (s) and Kt(s) ,

⋃
n∈N
Knt (s), respectively.

4Note that the following construction of the branching mechanism is due to §2.2 in [HOT+19].
5For the sake of completeness, one could formally also define I∅ , e1 to indicate that the non-particle ∅ has exactly
one descendant, to wit, the initial particle (1); here, e1 denotes the first unit vector in Rm. However, note that as
there is no need for particle (1) to carry a jump mark (see below), setting it to 1 is an arbitrary choice.
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t = T∅
t

(1)

T
(1)
t

(1, 1)

(1, 2)

(1, 3)

T
(1,1)
t

T
(1,2)
t

T
(1,3)
t

(1, 1, 1)

(1, 3, 1)

(1, 3, 2)

†

T
(1,1,1)
t

T
(1,3,1)
t

T
(1,3,2)
t

(1, 3, 2, 4)

†

†

T = T
(1,3,2,4)
t

Figure 1.1: Illustration of the branching mechanism (without jump marks).

For ease of notation, we subsequently write

Knt , Knt (T ), Kt , Kt(T ), Knt , K
n
t (T ), Kt , Kt(T ). (1.2)

As in Proposition 2.4 in [HOT+19], the total number of particles is almost surely finite, i.e.

#Kt <∞ P-a.s. for all t ∈ [0, T ]; (1.3)

see also Theorem IV.1.1 in [AN72] and Chapter VI §§12f. in [Har63].

1.1.3 Branching Diffusion Dynamics

The next step is to specify the dynamics of the individual particles. We first impose some standard
regularity assumptions on the coefficient functions in the infinitesimal generator A:

Assumption 1.1.1. The functions

µ : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×d

are measurable and satisfy the following Lipschitz and linear growth conditions: There exists a
constant L > 0 such that

‖µ(t, x)− µ(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L · ‖x− y‖, t ∈ [0, T ], x, y ∈ Rd, (1.4)

‖µ(t, x)‖2 + ‖σ(t, x)‖2 ≤ L2 ·
(
1 + ‖x‖2

)
, t ∈ [0, T ], x ∈ Rd. �

Under this assumption, classical results such as Theorem 5.2.5/9 in [KS98] or Theorem 3.21 in
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[PR14] imply that the stochastic differential equation

X
t,x
s = x, s ∈ [0, t],

dX
t,x
s = µ

(
s,X

t,x
s

)
ds+ σ

(
s,X

t,x
s

)
dW s, s ∈ [t, T ],

(1.5)

admits a pathwise unique strong solution for each starting configuration (t, x) ∈ [0, T ]×Rd. Here,
W is an Rd-valued Brownian motion on (Ω,A,P) that is independent of all other random variables
that occurred so far. The natural filtration of Xt,x augmented by all P-nullsets is denoted by
F
t,x

= {Ft,xs }s∈[0,T ]. An application of the results in Chapter 3.7 of [PR14] yields the following:

Lemma 1.1.2 (Properties of the Diffusion). The random field {Xt,x
s }s,t∈[0,T ],x∈Rd defined via (1.5)

can be chosen such that it satisfies the following conditions:

(i) Continuity with respect to initial data: The map

X : [0, T ]× Rd × [0, T ]→ Rd, (t, x, s) 7→ X
t,x
s ,

is almost surely continuous.

(ii) Flow property: For all (t, x) ∈ [0, T ]× Rd and any [t, T ]-valued F
t,x-stopping time τ ,

X
τ,X

t,x
τ

τ+s 1{τ+s≤T} = X
t,x
τ+s1{τ+s≤T}, s ∈ [0,∞).

(iii) Strong Markov property: For all (t, x) ∈ [0, T ] × Rd and s ∈ [0,∞), for any [t, T ]-valued
F
t,x-stopping time τ , and for every bounded measurable function h : [0, T ]× Rd → Rd, we

have

E
[
h
(
τ + s,X

t,x
τ+s

)
1{τ+s≤T}

∣∣∣Ft,xτ ] = E
[
h
(
τ + s,X

t,x
τ+s

)
1{τ+s≤T}

∣∣∣(τ,Xt,x
τ

)]
. �

The branching diffusion is constructed by attaching to each particle in the branching mechanism
a diffusion with the same dynamics as X, but with a different driving noise and a suitable
initial condition. To make this precise, we fix x ∈ Rd and define for each k ∈ Kt with k =

(1, k2, . . . , kn) ∈ Nn an associated diffusion X(k) = Xk,t,x = {Xk,t,x
s }

s∈[T
(k−)
t ,T

(k)
t ]

as the unique
strong solution of

X
(k)

T
(k−)
t

= ΓJ(k)

(
T

(k−)
t , X

(k−)

T
(k−)
t

,∆(k−)
)
, (1.6)

dX(k)
s = µ

(
s,X(k)

s

)
ds+ σ

(
s,X(k)

s

)
dW (k)

s , s ∈
[
T

(k−)
t , T

(k)
t

]
. (1.7)

Note that replacing (1.6) with X(1)
t = x in case of k = (1) renders this iteration well-defined.

It follows that X(k) has the same dynamics as X, but with the different, independent, driving
noise W (k). The lifetime of X(k) coincides with the lifetime of the particle k. Moreover, in
case of k 6= (1), the initial value of X(k) is the terminal value of the diffusion X(k−) associated
with its parent particle k−, plus an additional jump whose size is given by the jump map ΓJ(k)

corresponding to its mark J (k) and the jump parameter ∆(k−).
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The resulting family {X(k)}k∈Kt is referred to as a branching diffusion with jumps.6

Figure 1.2 below visualizes a sample path of a branching Brownian motion with jumps on [0, 1].
For later reference, we encode all information available up to generation n ∈ N by setting

Fn , σ
(
W (k), τ (k),∆(k), I(k) : k ∈ Nn

)
.

For notational convenience, we furthermore write F0 , {∅,Ω} for the trivial σ-algebra. Finally,
for n ∈ N0, we enlarge these σ-algebras by the branching time information of one future generation,
i.e. we set

Gn , Fn ∨ σ
(
τ (k) : k ∈ Nn+1

)
.

For n ∈ N and k ∈ Knt , we observe that

conditional on Gn−1, the laws of X(k) and X
T

(k−)
t ,X

(k)

T
(k−)
t on

[
T

(k−)
t , T

(k)
t

]
are identical. (1.8)

We stress that X(k) and X
T

(k−)
t ,X

(k)

T
(k−)
t do not coincide pathwise since the dynamics of X(k) are

driven by W (k), while those of X
T

(k−)
t ,X

(k)

T
(k−)
t are driven by W . Replacing the driving Brownian

motion with a new, independent one for each offspring particle – without changing its distribution
– will be the key step in the branching representation below.

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.2: Sample path of a one-dimensional branching Brownian motion with jumps on [0, 1].

6For a similar construction of a branching diffusion (albeit without jumps) we refer to §2.3 in [HOT+19]; see also,
e.g., §2.2 in [HTT14].



8 Chapter 1. Branching Diffusions with Jumps and Nonlocal Nonlinear PDEs

1.1.4 Branching Diffusion Representation

We now address the branching diffusion representation of classical solutions of (PDE). To begin
with, we specify suitable boundedness assumptions on the coefficient functions ci and the terminal
condition g.

Assumption 1.1.3. The functions ci : [0, T ] × Rd × Ξ → R, i ∈ I, and g : Rd → R in (PDE)
and (TC) are bounded and measurable. �

In order for the possibly infinite series in the nonlinearity of (PDE) to be defined unambiguously,
we subsequently agree on the following definition of classical solutions.

Definition 1.1.4 (Classical Solution). Under Assumption 1.1.3, a continuous function

u : [0, T ]× Rd → R, (t, x) 7→ u(t, x)

is said to be a classical solution of (PDE) with terminal condition (TC) if

(i) u ∈ C1,2([0, T )× Rd);

(ii) for each (t, x) ∈ [0, T )× Rd, it holds that

∑
i∈I

∫
Ξ

∣∣ci(t, x, ξ)J [u](t, x, ξ)i
∣∣γ(dξ) < +∞;

(iii) and u satisfies (PDE) for each (t, x) ∈ [0, T )× Rd and (TC) for each x ∈ Rd. �

We are now in a position to establish the main result of this section, which allows us to represent a
classical solution of (PDE) by means of a functional of the branching diffusion. The key idea is to
introduce randomization across subsequent generations and subsequently exploit the conditional
independence structure.7

Remark 1.1.5 (Randomization). We fix a particle k ∈ Knt of generation n ∈ N. By a slight
abuse of notation, we drop any indices pertaining to the initial position (t, x) and write

X , X
T (k−),X

(k)

T (k−) and (∆, τ, I) , (∆(k), τ (k), I(k)).

Under suitable regularity and integrability assumptions, any classical solution u of (PDE) admits
a Feynman-Kač representation8 of the form

u
(
T (k−), X

(k)

T (k−)

)
= E

[
g
(
XT

)
+

∫ T

T (k−)

f
(
r,Xr,∆,J [u]

(
r,Xr,∆

))
dr
∣∣∣Fn−1

]
= E

[
g
(
XT

)
+

∫ T

T (k−)

∑
i∈I

ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]
. (1.9)

7These ideas, to be made rigorous in Remark 1.1.5 and the proof of Theorem 1.1.6 below, are well-known in the
literature on branching diffusion representations; see, e.g., [HOT+19] and the references therein.

8As demonstrated in its proof, this holds in particular under the conditions of Theorem 1.1.6.
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The key idea underlying the branching diffusion representation is to represent the right-hand
side recursively in terms of the branching diffusion X(k), thus eliminating the integral, sum and
nonlinearity within the conditional expectation. More precisely, we claim that

u
(
T (k−), X

(k)

T (k−)

)
= E

[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

+ 1{T (k)<T}
cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]
.

(1.10)

Let us start by considering the first summand in (1.10). Since T (k) = (T (k−) + τ)∧ T and X and
X(k) have the same conditional distribution given Gn−1, see (1.8), by using the tower property of
conditional expectation, we have

E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

∣∣∣Fn−1
]

= E
[
E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

∣∣∣Gn−1
]∣∣∣Fn−1

]
= E

[
E
[
1{τ≥T−T (k−)}

g
(
XT

)
F (T − T (k−))

∣∣∣Gn−1
]∣∣∣Fn−1

]
= E

[
1{τ≥T−T (k−)}

g
(
XT

)
F (T − T (k−))

∣∣∣Fn−1
]
.

But then, since τ is independent of Fn−1 and X, we can simply integrate with respect to the
density of τ and use the definition of F in (1.1) to obtain

E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

∣∣∣Fn−1
]

= E
[ g

(
XT

)
F (T − T (k−))

F (T − T (k−))
∣∣∣Fn−1

]
= E

[
g
(
XT

)∣∣Fn−1
]

as in (1.9). The second term in (1.10) is slightly more involved, but can be handled similarly:
First, we use the conditional identity in law given Gn−1 of X and X(k) in (1.8) and the tower
property of conditional expectation to obtain

E
[
1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]
= E

[
E
[
1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Gn−1

]∣∣∣Fn−1
]

= E
[
E
[
1{T (k)<T}

cI
(
T (k), XT (k) ,∆

)
ρ(T (k) − T (k−))pI

J [u]
(
T (k), XT (k) ,∆

)I ∣∣∣Gn−1
]∣∣∣Fn−1

]
= E

[
1{T (k)<T}

cI
(
T (k), XT (k) ,∆

)
ρ(T (k) − T (k−))pI

J [u]
(
T (k), XT (k) ,∆

)I ∣∣∣Fn−1
]
.

Next, independence of I and τ from all other objects involved allows us to integrate with respect
to the associated probability mass function and density, and we obtain

E
[
1{T (k)<T}

cI
(
T (k), XT (k) ,∆

)
ρ(T (k) − T (k−))pI

J [u]
(
T (k), XT (k) ,∆

)I ∣∣∣Fn−1
]

= E
[∫ T

T (k−)

∑
i∈I

ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]
.
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Combining the above equations, we have therefore argued that

E
[
1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]
= E

[∫ T

T (k−)

∑
i∈I

ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]
and thus (1.10) holds. The key advantage of (1.10) is that the nonlinearity is represented via

J [u]
(
T (k), X

(k)

T (k) ,∆
)I

=
m∏
`=1

u
(
T (k),Γ`

(
T (k), X

(k)

T (k) ,∆
))I` ,

where it is possible to iterate over all generations of particles, using conditional independence
across generations: Indeed, the terms Γ`(T

(k), X
(k)

T (k) ,∆
(k)) appearing as arguments in the function

u correspond to the initial positions of the particles of generation n+ 1; see (1.6). This leads to
the branching diffusion representation made rigorous in Theorem 1.1.6 below. �

We next state the first main result of this chapter: A branching diffusion representation of classical
solutions of (PDE).9

Theorem 1.1.6 (Branching Representation of Classical Solutions). Suppose Assumptions 1.1.1
and 1.1.3 hold, let u : [0, T ]× Rd → R be a classical solution of (PDE) satisfying (TC) and fix
(t, x) ∈ [0, T ]× Rd. For each n ∈ N0, iteratively define the random variables10 Gt,x0 , Ct,x0 , 1,

Gt,xn , Gt,xn−1

∏
k∈Kn

g(X
(k)
T )

F (T − T (k−))
and Ct,xn , Ct,xn−1

∏
k∈Kn\Kn

cI(k)(T (k), X
(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

and

Rt,xn ,
∏

k∈Kn+1

g(X
(k)
T )

F (T − T (k−))

×
∏

k∈Kn+1\Kn+1

cI(k)(T (k), X
(k)

T (k) ,∆
(k))J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

ρ(T (k) − T (k−))pI(k)

,

and set
Ψt,x
n , Gt,xn Ct,xn Rt,xn and Ψt,x , lim

n→∞
Ψt,x
n . (1.11)

Suppose that

(i) the family {Ψt,x
n }n∈N0 is uniformly integrable;

9Note that this result is similar to Proposition 3.4 in [HOT+19]; it partially extends the latter to the present setup
of a PDE with a nonlocal analytic nonlinearity.

10For notational convenience, we suppress the dependence on (t, x) on the right-hand sides of these definitions but
highlight here that X(k) = Xk,t,x and T (k) = T

(k)
t as well as Kn = Knt , Kn = Knt , K = Kt and K = Kt.
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(ii) for every (s, y) ∈ [t, T ]× Rd, it holds that

∑
i∈I

E
[∫ T

s

∫
Ξ

∣∣ci(r,Xs,y
r , ξ)J [u]

(
r,X

s,y
r , ξ

)i∣∣γ(dξ)dr
]
< +∞;

(iii) for any (s, y) ∈ [t, T ]× Rd, the local martingale

M s,y ,
∫ ·
s
∇xu(r,X

s,y
r )Tσ(r,X

s,y
r )dW r

is a martingale.

Then Ψt,x is integrable and u admits the branching diffusion representation

u(t, x) = E[Ψt,x]. �

Before we turn to the proof, note that unwinding the definitions we have Ψt,x = Gt,xCt,x where

Gt,x =
∏
k∈K

g(X
(k)
T )

F (T − T (k−))
and Ct,x =

∏
k∈K\K

cI(k)(T (k), X
(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

, (1.11)

so the branching diffusion representation in Theorem 1.1.6 can be written more explicitly as

u(t, x) = E
[∏
k∈K

g(X
(k)
T )

F (T − T (k−))

∏
k∈K\K

cI(k)(T (k), X
(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

]
. (1.12)

Proof of Theorem 1.1.6. Since limn→∞Ψt,x
n = Ψt,x P-a.s. by (1.3) and as {Ψt,x

n }n∈N0 is uni-
formly integrable by (i), it follows from Vitali’s convergence theorem that Ψt,x is integrable and
limn→∞ E[Ψt,x

n ] = E[Ψt,x]. Hence, to prove the result, it suffices to show that

u(t, x) = E[Ψt,x
n ] for each n ∈ N0. (1.13)

Step 1: Feynman-Kač representation and randomization. Using Itō’s lemma and the fact that u
solves (PDE) subject to (TC), we have

u(s, y) = u(T,X
s,y
T )−

∫ T

s

[
∂tu(r,X

s,y
r ) +A[u](r,X

s,y
r )
]
dr −M s,y

T

= g(X
s,y
T ) +

∫ T

s

∫
Ξ
f
(
r,X

s,y
r , ξ,J [u]

(
r,X

s,y
r , ξ

))
γ(dξ)dr −M s,y

T

for any (s, y) ∈ [t, T ]×Rd. Fix a particle k ∈ Kn of generation n ∈ N, write X(k)
, X

T (k−),X
(k)

T (k−) ,
and note that (T (k−), X

(k)

T (k−)) is Fn−1-measurable. Choosing (s, y) = (T (k−), X
(k)

T (k−)) in the Itō
representation above, taking conditional expectations and using (ii) and (iii) we obtain

u(T (k−), X
(k)

T (k−)) = E
[
g(X

(k)
T ) +

∫ T

T (k−)

∫
Ξ
f
(
r,X

(k)
r , ξ,J [u]

(
r,X

(k)
r , ξ

))
γ(dξ)dr

∣∣∣Fn−1
]
.
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Since ∆(k) has distribution γ, is independent of Fn−1 and X
(k) and ∆(k) are independent, it

follows that

u(T (k−), X
(k)

T (k−)) = E
[
g(X

(k)
T ) +

∫ T

T (k−)

f
(
r,X

(k)
r ,∆(k),J [u]

(
r,X

(k)
r ,∆(k)

))
dr
∣∣∣Fn−1

]
,

and by the argument in Remark 1.1.5 this can be further rewritten as

u(T (k−), X
(k)

T (k−)) = E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

+ 1{T (k)<T}
cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)

ρ(T (k) − T (k−))pI(k)

J [u]
(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

∣∣∣Fn−1
]
.

(1.14)

Step 2: Induction. We establish (1.13) by induction on n. For n = 0, let k = (1) be the only
particle of generation 1, recall that F0 is trivial, and note that (1.14) rewrites as

u(t, x) = E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

+ 1{T (k)<T}
cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)
J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

ρ(T (k) − T (k−))pI(k)

]
= E

[
Rt,x0

]
= E

[
Ψt,x

0

]
.

Now, let n ∈ N and suppose that the claim is true for n− 1, i.e.

u(t, x) = E
[
Ψt,x
n−1

]
= E

[
Gt,xn−1Ct,xn−1Rt,xn−1

]
. (1.15)

Let k ∈ Kn be an arbitrary particle of generation n. On the event {k ∈ Kn \ Kn} = {T (k) < T},
the particle k branches into |I(k)| offspring particles (k, kn+1), kn+1 ∈ [1 : |I(k)|], of which the
first I(k)

1 have mark 1, i.e. jump to Γ1

(
T (k), X

(k)

T (k) ,∆
(k)
)
, the next I(k)

2 have mark 2, i.e. jump to

Γ2

(
T (k), X

(k)

T (k) ,∆
(k)
)
, and so forth. Thus, on the event {k ∈ Kn \ Kn}, we have

J [u]
(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

=

m∏
`=1

u
(
T (k),Γ`

(
T (k), X

(k)

T (k) ,∆
(k)
))I(k)

`

=

|I(k)|∏
kn+1=1

u
(
T (k), X

(k,kn+1)

T (k)

)
=

∏
k∈Kn+1

, k−=k

u
(
T (k−), X

(k)

T (k−)

)

=
∏

k∈Kn+1
, k−=k

E
[
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

+ 1{T (k)<T}

c
I(k)

(
T (k), X

(k)

T (k)
,∆(k)

)
J [u]

(
T (k), X

(k)

T (k)
,∆(k)

)I(k)

ρ(T (k) − T (k−))p
I(k)

∣∣∣Fn],
where the final identity is due to (1.14). Thus using Fn-conditional independence of individual
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offspring particles, we have∏
k∈Kn\Kn

J [u]
(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

= E
[ ∏
k∈Kn+1

(
1{T (k)=T}

g
(
X

(k)
T

)
F (T − T (k−))

+ 1{T (k)<T}

c
I(k)

(
T (k), X

(k)

T (k)
,∆(k)

)
J [u]

(
T (k), X

(k)

T (k)
,∆(k)

)I(k)

ρ(T (k) − T (k−))p
I(k)

)∣∣∣∣Fn]
= E

[
Rt,xn

∣∣Fn]. (1.16)

But then, using (1.16) and the definition of Rt,xn−1, we obtain

Rt,xn−1 =
Gt,xn
Gt,xn−1

Ct,xn
Ct,xn−1

∏
k∈Kn\Kn

J [u]
(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

=
Gt,xn
Gt,xn−1

Ct,xn
Ct,xn−1

E
[
Rt,xn

∣∣Fn].
Plugging this into (1.15) yields the claim since (Gt,xn , Ct,xn ) is Fn-measurable and thus

u(t, x) = E
[
Gt,xn−1Ct,xn−1Rt,xn−1

]
= E

[
Gt,xn Ct,xn E

[
Rt,xn

∣∣Fn]] = E
[
Ψt,x
n

]
.

Remark 1.1.7. A sufficient condition for (ii) in Theorem 1.1.6 to hold is that u is bounded and∑
i∈I ‖ci‖∞‖u‖

|i|
∞ < +∞; note that this condition simplifies to

∑
i∈I ‖ci‖∞ < +∞ if ‖u‖∞ ≤ 1.

(iii) holds if ∇xu and σ are bounded, or, more generally, if E
[∫ T
s

∥∥σ(r,X
s,y
r )T∇xu(r,X

s,y
r )
∥∥2

dr
]
<

+∞ for all (s, y) ∈ [t, T ]× Rd. If u is bounded, similar arguments as in Section 1.2.2 can be used
to obtain sufficient conditions for (i). �

The branching diffusion representation in Theorem 1.1.6 can be extended in several ways: Upon
combining our approach with that in [HOT+19], one can also treat mixed local-nonlocal analytic
nonlinearities that include first-order derivatives. Moreover, the notion of branching diffusions
with jumps can also be extended to that of branching jump-diffusions with jumps, allowing for
an additional (linear) nonlocal term in the infinitesimal generator. Inspired by [AC18], it is
furthermore possible to consider nonlocal Dirichlet problems; we sketch a corresponding extension
of Theorem 1.1.6 in Appendix B.

1.2 Viscosity Solutions and Branching Diffusion Representations

In the previous section, our point of view was to start with a classical solution of (PDE) and
derive its branching diffusion representation. This result was achieved under the assumption that
a classical solution exists.
In this section, we study the converse question: Can the branching diffusion representation be
used to define a solution of the PDE? It is clear that this representation does in general not yield
a sufficiently regular solution to qualify as a classical solution, hence we subsequently work with
the weaker concept of viscosity solutions.
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The main result of this section gives sufficient conditions under which the branching diffusion
representation defines a viscosity solution of (PDE). We then derive conditions under which
the family {Ψt,x}(t,x)∈[0,T ]×Rd is uniformly integrable, which implies one of the key assumptions
needed to obtain this viscosity property.

1.2.1 Viscosity Solutions of Nonlocal Nonlinear PDEs

We first provide a definition of viscosity solutions of (PDE) appropriate to deal with the nonlocal
terms in the nonlinearity.11

Definition 1.2.1 (Viscosity Solution). Suppose Assumption 1.1.3 holds and let u : [0, T ]×Rd →
R be a continuous function such that∑

i∈I

∫
Ξ

∣∣ci(t, x, ξ)J [u](t, x, ξ)i
∣∣γ(dξ) < +∞ for all (t, x) ∈ [0, T )× Rd.

We say that

1. u is a viscosity subsolution of (PDE) if for all (t, x) ∈ [0, T ) × Rd and all test functions
ϕ ∈ C1,2([0, T ]× Rd) with ϕ(t, x) = u(t, x) and ϕ ≥ u we have

−∂tϕ(t, x)−A[ϕ](t, x)−
∫

Ξ
f(t, x, ξ,J [u](t, x, ξ))γ(dξ) ≤ 0;

2. u is a viscosity supersolution of (PDE) if for all (t, x) ∈ [0, T )× Rd and all test functions
ϕ ∈ C1,2([0, T ]× Rd) with ϕ(t, x) = u(t, x) and ϕ ≤ u we have

−∂tϕ(t, x)−A[ϕ](t, x)−
∫

Ξ
f(t, x, ξ,J [u](t, x, ξ))γ(dξ) ≥ 0;

3. u is a viscosity solution of (PDE) if it is both a viscosity sub- and supersolution. �

With this definition in place, we can state our second main result.12

Theorem 1.2.2 (Viscosity Property of the Branching Representation). For all (t, x) ∈ [0, T ]×Rd,
let Ψt,x be given as in (1.11) and define

u : [0, T ]× Rd → R, (t, x) 7→ u(t, x) , E
[
Ψt,x

]
. (1.17)

In addition to Assumptions 1.1.1 and 1.1.3, assume that the SDE coefficients µ and σ as well as
the PDE coefficients ci, i ∈ I, Γ`, ` ∈ [1 :m], and g are continuous.13 Moreover, suppose that the
following conditions are satisfied for all (t, x) ∈ [0, T ]× Rd:

(i) There exists ε > 0 such that the family {Ψs,y}(s,y)∈Bε(t,x) is uniformly integrable.

11Note that the following definition is inspired by the standard definition of viscosity solutions of local PDEs; see,
e.g., Definition 6.3 in [Tou13].

12Note that this result is consistent with the existing literature on branching diffusion representations for local
parabolic PDEs; see, e.g., Theorem 4.1 in [Hen12a] or Theorem 3.5 in [HOT+19].

13As regards ci and Γ`, we assume that for every fixed ξ ∈ Ξ the maps (t, x) 7→ ci(t, x, ξ) and (t, x) 7→ Γ`(t, x, ξ) are
continuous.
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(ii) There exist δ > 0 and a measurable function ζ : I × Rd → R such that

∣∣ci(s, y, ξ)J [u](s, y, ξ)i
∣∣ ≤ ζ(i, ξ) for all (s, y) ∈ Bδ(t, x)

with ∑
i∈I

∫
Ξ
|ζ(i, ξ)|γ(dξ) < +∞.

(iii) It holds that

∑
i∈I

E
[∫ T

t

∫
Ξ

∣∣∣ci(s,Xt,x
s , ξ

)
J [u]

(
s,X

t,x
s , ξ

)i∣∣∣γ(dξ)ds
]
< +∞.

Then u is a viscosity solution of (PDE). �

Note that if u is bounded and
∑

i∈I ‖ci‖∞‖u‖
|i|
∞ < +∞ (as in Remark 1.1.7), then conditions (ii)

and (iii) are satisfied; sufficient conditions for (i), which simultaneously imply boundedness of u,
are given in Section 1.2.2 below. �

Proof of Theorem 1.2.2.14 Note that the uniform integrability assumption (i) implies that Ψt,x ∈
L1(P) for every (t, x) ∈ [0, T ] × Rd and hence u is well-defined. Moreover, Lemma 1.1.2 and
continuity of ci, i ∈ I, Γ`, ` ∈ [1 :m], g, ρ and F guarantee that (t, x) 7→ Ψt,x is almost surely
continuous, so u is continuous by Vitali’s convergence theorem. Finally, condition (ii) guarantees
that u satisfies the integrability conditions required on viscosity solutions in Definition 1.2.1.
We fix (t, x) ∈ [0, T )× Rd.

Step 1: Dynamic programming representation. As before, we drop the index (t, x) in some of the
random variables and processes to simplify notation. Moreover, we set

(
X, I,∆

)
,
(
X(1), I(1),∆(1)

)
.

We first observe that
1{T (1)=T}Ψ

t,x = 1{T (1)=T}
g(XT )

F (T − t)
as well as

1{T (1)<T}Ψ
t,x = 1{T (1)<T}

cI(T
(1), XT (1) ,∆)

ρ(T (1) − t)pI

×
∏

k∈K\{(1)}

g
(
X

(k)
T

)
F (T − T (k−))

∏
k∈K\(K∪{(1)})

cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)

ρ(T (k) − T (k−))pI(k)

= 1{T (1)<T}
cI(T

(1), XT (1) ,∆)

ρ(T (1) − t)pI

|I|∏
k2=1

Ψ
T (1),X

(1,k2)

T (1) .

Using the definition of the branching diffusion and its conditional independence structure, we

14The result is proved along the lines of the proof of Theorem 3.5 in [HOT+19].
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find that

E
[ |I|∏
k2=1

Ψ
T (1),X

(1,k2)

T (1)

∣∣∣F1
]

=

|I|∏
k2=1

m∑
`=1

1{J(1,k2)=`}E
[
Ψs,y

]∣∣
(s,y)=(T (1),Γ`(T (1),X

T (1) ,∆))

= J [u]
(
T (1), XT (1) ,∆

)I
.

Putting these equations together and using the tower property of conditional expectation, it
follows as in Remark 1.1.5 that15

u(t, x) = E
[
E[Ψt,x|F1]

]
= E

[
1{T (1)=T}

g(XT )

F (T − t) + 1{T (1)<T}
cI
(
T (1), XT (1) ,∆

)
J [u]

(
T (1), XT (1) ,∆

)I
ρ(T (1) − t)pI

]
= E

[
g
(
XT

)
+

∫ T

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
. (1.18)

For ε > 0, we now introduce the stopping time

τε , inf
{
s ≥ t : ‖Xs − x‖ ≥ ε

}
∧ (t+ ε) ∧ T.

From (1.18), the flow property and the strong Markov property of X as noted in Lemma 1.1.2,
in combination with the conditional version of Fubini’s theorem, which is applicable by (iii), it
follows that u satisfies the dynamic programming representation16

u(t, x) = E
[
g
(
XT

)
+

∫ T

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
= E

[
E
[
g
(
XT

)∣∣Fτε]+

∫ T

τε

∫
Ξ

∑
i∈I

E
[
ci
(
s,Xs, ξ

)
J [u]

(
s,Xs, ξ

)i∣∣Fτε]γ(dξ)ds
]

+ E
[∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
= E

[
E
[
g
(
XT

)∣∣(τε, Xτε)
]

+

∫ T

τε

∫
Ξ

∑
i∈I

E
[
ci
(
s,Xs, ξ

)
J [u]

(
s,Xs, ξ

)i∣∣(τε, Xτε)
]
γ(dξ)ds

]
+ E

[∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
= E

[
E
[
g
(
X
τε,Xτε
T

)
+

∫ T

τε

∫
Ξ
f
(
s,X

τε,Xτε
s , ξ,J [u]

(
s,X

τε,Xτε
s , ξ

))
γ(dξ)ds

∣∣∣(τε, Xτε)
]]

+ E
[∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
= E

[
u
(
τε, Xτε

)
+

∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
. (1.19)

Step 2: Viscosity solution property. From the dynamic programming representation (1.19),
the viscosity property of u follows by standard arguments.17 To keep the presentation self-

15Note that the following identity (1.18) is in fact valid for (t, x) ∈ [0, T ]× Rd.
16As mentioned above, we suppress the initial condition in the notation whenever it coincides with (t, x); correspond-
ingly, we consider X = X

t,x and F = F
t,x.

17see, e.g., Proposition 3.6/7 in [Sei11], Proposition 7.2/3 in [Tou13] or Theorem 5.5.8 in [Zha17].
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contained, we provide a proof of the subsolution property (the supersolution property is established
analogously). We fix a test function ϕ ∈ C1,2([0, T ]× Rd) with ϕ(t, x) = u(t, x) and ϕ ≥ u. By
the dynamic programming representation (1.19) and Itō’s lemma, we find that

ϕ(t, x) = u(t, x)

= E
[
u
(
τε, Xτε

)
+

∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
≤ E

[
ϕ
(
τε, Xτε

)
+

∫ τε

t

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
= E

[
ϕ(t, x) +

∫ τε

t
∂tϕ(s,Xs) +A[ϕ](s,Xs)

+

∫
Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
.

For (s, y) ∈ [0, T ]× Rd, we now define

Iϕ(s, y) , ∂tϕ(s, y) +A[ϕ](s, y) +

∫
Ξ
f(s, y, ξ,J [u](s, y, ξ))γ(dξ)

to arrive at
E
[∫ τε

t
Iϕ(s,Xs)ds

]
≥ 0.

From condition (ii) and dominated convergence, it follows that I is continuous. But then

0 ≤ E
[∫ τε

t
Iϕ(s,Xs)ds

]
≤ E[τε − t] max

(s,y)∈Bε(t,x)
Iϕ(s, y),

and thus, since E[τε − t] > 0,
max

(s,y)∈Bε(t,x)
Iϕ(s, y) ≥ 0.

Letting ε ↓ 0 allows us to conclude that Iϕ(t, x) ≥ 0, so u is a viscosity subsolution in the sense
of Definition 1.2.1.

1.2.2 Sufficient Conditions for Uniform Integrability of {Ψt,x}

In this section, we provide a ramification of the results in [HOT+19] for branching diffusions with
jumps to give sufficient conditions for uniform integrability of {Ψt,x} as required in Theorem 1.2.2.

Proposition 1.2.3 (Integrability Conditions). Let κ ∈ (1,∞) and define

C1 ,
‖g‖κ∞

F (T )κ−1
and C2 , sup

i∈I, t∈(0,T ]

(‖ci‖∞
ρ(t)pi

)κ−1

.

Then the family {Ψt,x}(t,x)∈[0,T ]×Rd is bounded in Lκ(P), and in particular uniformly integrable,
in either of the following two cases:

(i) It holds that
C1

F (T )
∨ C

κ
κ−1

2 ≤ 1.
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(ii) The power series
∑

i∈I ‖ci‖∞x|i| has an infinite radius of convergence and is non-degenerate,
i.e. at least one coefficient ci, i ∈ I, is non-zero,18 and the terminal time T > 0 is sufficiently
small in that

T <

∫ ∞
C1

(
C2

∑
i∈I
‖ci‖∞x|i|

)−1
dx. �

Conceptually, essential parts of the following proof coincide with the one of Theorem 3.12 in
[HOT+19]; we also refer to §3.3 in [AC18] for similar considerations.

Proof of Proposition 1.2.3. Fix some (t, x) ∈ [0, T ]× Rd. By definition of Ψt,x, we have

∣∣Ψt,x
∣∣κ =

∏
k∈K

∣∣g(X(k)
T

)∣∣κ
F (T − T (k−))κ

∏
k∈K\K

∣∣cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)∣∣κ∣∣ρ(T (k) − T (k−))pI(k)

∣∣κ . (1.20)

With this, under condition (i), and since F is decreasing we immediately find that

E
[
|Ψt,x|κ

]
≤ E

[∏
k∈K

C1

F (T )

∏
k∈K\K

C
κ
κ−1

2

]
≤ E

[∏
k∈K

C1

F (T )
∨ C

κ
κ−1

2

]
≤ 1

and the proof is complete. Let us therefore subsequently assume that we are in case (ii); we
follow the approach of Theorem 3.12 in [HOT+19]: The main idea is to regard an upper bound
of |Ψt,x|κ as a branching estimator for an ODE which admits a global solution. First note that

E
[
|Ψt,x|κ

]
≤ E

[∏
k∈K

C1

F (T − T (k−)
t )

∏
k∈K\K

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

]
. (1.21)

Now consider the following ODE to be solved backwards in time:

η̇(t) + C2

∑
i∈I
‖ci‖∞η(t)|i| = 0, t ∈ [0, T ]; η(T ) = C1. (1.22)

Suppose that C1 > 0 and define the map19

ϕ : [C1,∞)→ [0,∞], y 7→ ϕ(y) ,
∫ y

C1

(
C2

∑
i∈I
‖ci‖∞x|i|

)−1
dx.

Since the power series is non-degenerate, ϕ is a continuous mapping that is strictly increasing
where finite. Upon rearranging and integrating the ODE, note that a [C1,∞)-valued function
η ∈ C1([0, T ]) is a solution of (1.22) if and only if

−
∫ T

t

(
C2

∑
i∈I
‖ci‖∞η(t)|i|

)−1
η̇(s)ds =

∫ T

t
1ds, t ∈ [0, T ]; η(T ) = C1,

18Otherwise (PDE) becomes linear; for that case the branching approach becomes unnecessary.
19The following arguments are borrowed from the theory of ODEs with separated variables; see, e.g., §I.1.VII in
[Wal98].
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and the substitution x , η(s) shows that this is the case if and only if

ϕ(η(t)) =

∫ η(t)

C1

(
C2

∑
i∈I
‖ci‖∞x|i|

)−1
dx = T − t, t ∈ [0, T ].

Since ϕ is strictly increasing where it is finite, the latter statement is equivalent to

T ∈ range(ϕ) ∩ R =
{
ξ ∈ R : 0 ≤ ξ ≤

∫ ∞
C1

(
C2

∑
i∈I
‖ci‖∞z|i|

)−1
dz
}
.

Thus, if C1 > 0, condition (ii) on T is both necessary and sufficient to guarantee the existence of
a strictly positive solution η of ODE (1.22) on [0, T ]. Otherwise, i.e. if C1 = 0, note that (1.22) is
solved by η ≡ 0. With this, we are now able to define

χn ,
∏

k∈
n⋃
ν=1
Kν

C1

F (T − T (k−))

∏
k∈

n⋃
ν=1
Kν\Kν

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

∏
k∈Kn+1

η(T (k−))

as well as
χ∞ , lim

n→∞
χn =

∏
k∈K

C1

F (T − T (k−))

∏
k∈K\K

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

.

By analogous arguments as in Remark 1.1.5, we obtain

η(t) = η(T ) +

∫ T

t
C2

∑
i∈I
‖ci‖∞η(s)|i|ds = E[χ1] = . . . = E[χn], t ∈ [0, T ]; n ∈ N.

But then, thanks to (1.21) and Fatou’s lemma, it follows that

E
[
|Ψt,x|κ

]
≤ E[χ∞] ≤ lim inf

n→∞
E[χn] = η(t) ≤ sup

t∈[0,T ]
η(t) <∞, (1.23)

and the proof is complete.

Under the conditions of Proposition 1.2.3, it follows in particular that {Ψt,x}(t,x)∈[0,T ]×Rd is
bounded in L1(P), so the function u : [0, T ]× Rd → R, u(t, x) , E[Ψt,x] is in fact bounded.

Moreover, in case of κ = 2 the result provides sufficient conditions for Ψt,x to have a finite
variance.
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1.3 Monte Carlo Simulation: A High-Dimensional Example

The representation (1.17) derived in Theorem 1.2.2 makes it possible to compute solutions
of (PDE) by direct (non-nested, plain vanilla) Monte Carlo simulation.20 To illustrate the
effectiveness and efficiency of the branching Monte Carlo algorithm, we consider the following
stylized problem in d ≥ 1 dimensions which is a inspired by the one considered in [HOT+19, §5.2]:

∂tu(t, x) +
1

2d2
∆u(t, x) +

∫
Rd

∑
i∈I

ci(t, x)u(t, x)i1u(t, x+ ξ)i2γ(dξ) = 0

u(T, x) = cos(1Td x).

(1.24)

Here, ∆ denotes the Laplace operator in Rd; the time horizon is T = 1; γ is the discrete uniform
distribution supported on {−(π/2)ei ∈ Rd : i ∈ [1 :d]};21 and the set of possible descendants is
given by I , {i ∈ N2

0 : |i| ≤ 2} with coefficients

c(0,0)(t, x) = (α+ 1/(2d)) cos(1Td x) exp{α(T − t)}+ cos(1Td x)2/d− 1/(2d),

c(1,0)(t, x) = (−1) · cos(1Td x) exp{−α(T − t)}/d,
c(0,1)(t, x) = (−1) · c(1,0)(t, x),

c(2,0)(t, x) = c(0,2)(t, x) = exp{−2α(T − t)}/(2d),

c(1,1)(t, x) = (−2) · c(2,0)(t, x),

where α = 0.2. It is not hard to verify that the solution is given in closed form by

u(t, x) = cos(1Td x)eα(T−t) = cos
(∑d

i=1xi
)
eα(T−t), (t, x) ∈ [0, T ]× Rd.

We refer to u as the exact solution and use it as a benchmark to quantify the error of the
estimates produced by our algorithm. All subsequent simulation results correspond to the initial
configuration (t, x) = (0, 1d), i.e. we determine u∗ , u(0, 1d).

The choice of parameters for the branching diffusion is reported in Table 1.1.

Parameter Value
Law(τ (1)) Γ(κ, θ) with κ = 0.5 and θ = 2.5
p(0,0) 1/3

p(1,0), p(0,1), p(1,1) 1/6
p(2,0), p(0,2) 1/12

Table 1.1: Parameters of the branching diffusion.22

Our simulation study is conducted as follows: Given a spatial dimension d ∈ N and a number
of Monte Carlo simulations N , a simulation run consists of computing the estimator ûd,N of u∗

as the average of N i.i.d. copies {Ψ0,1d
n }n∈[1:N ] of Ψ0,1d , i.e. ûd,N = 1

N

∑N
n=1 Ψ0,1d

n ; its standard

20see, e.g., Algorithm 3.1 in [KKK10] for the crude Monte Carlo algorithm.
21For i ∈ [1 :d] we denote by ei the ith unit vector in Rd.
22The choice of the lifetime distribution is the same as in [HOT+19, §5.2].
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deviation is estimated via

ŝtd(ûd,N ) ,
( 1

N(N − 1)

N∑
n=1

(
Ψ0,1d
n − ûd,N

)2) 1
2
.

All numerical computations are implemented in Matlab.23

Table 1.2 presents the simulation results for the estimator ûd,N for several values of d and N .

HHH
HHN
d 3 5 10 20 50 100

102 -1.0296 (0.567) 0.4456 (0.145) -0.9406 (0.127) 0.5478 (0.064) 1.1470 (0.122) 0.9323 (0.107)
103 -1.2793 (0.142) 0.3449 (0.048) -1.0211 (0.038) 0.4732 (0.019) 1.2351 (0.038) 1.0392 (0.034)
104 -1.1832 (0.060) 0.3710 (0.014) -1.0236 (0.012) 0.5010 (0.006) 1.1707 (0.012) 1.0680 (0.011)
105 -1.2003 (0.019) 0.3441 (0.005) -1.0246 (0.004) 0.4952 (0.002) 1.1837 (0.004) 1.0551 (0.003)
106 -1.2165 (0.008) 0.3443 (0.001) -1.0238 (0.001) 0.4983 (0.001) 1.1797 (0.001) 1.0542 (0.001)
u∗ -1.2092 0.3465 -1.0248 0.4984 1.1786 1.0532

Table 1.2: Simulation results for ûd,N , standard deviation ŝtd(ûd,N ) in brackets.

To quantify the accuracy of the Monte Carlo algorithm, we further denote the relative error
compared to the exact solution by

errrel(ûd,N ) ,
|ûd,N − u∗|
|u∗|

and report our simulation results in Table 1.3.

HHH
HHN
d 3 5 10 20 50 100

102 36.3% (42.2%) 30.5% (21.6%) 10.0% (6.7%) 10.2% (6.9%) 8.0% (6.2%) 7.5% (5.8%)
103 12.4% (12.0%) 10.3% (8.8%) 2.8% (1.9%) 2.9% (2.1%) 2.6% (1.9%) 2.5% (1.7%)
104 4.6% (3.6%) 3.3% (2.6%) 0.9% (0.7%) 0.9% (0.6%) 0.8% (0.5%) 0.8% (0.6%)
105 1.5% (1.2%) 1.0% (0.7%) 0.3% (0.2%) 0.3% (0.2%) 0.2% (0.2%) 0.2% (0.2%)
106 0.8% (2.2%) 0.3% (0.2%) 0.1% (0.1%) 0.1% (0.1%) 0.1% (0.1%) 0.1% (0.1%)

Table 1.3: Relative error errrel(ûd,N ), standard deviation in brackets.24

The algorithm is able to achieve high levels of accuracy even for high dimensions of d = 50 and
d = 100, provided N is sufficiently large. Note that in this example the precision of the results
actually increases with the dimension d; this is in line with Proposition 1.2.3, as in the above
specification the norm ‖ci‖∞ appearing in the constant C2 decreases with d.

At the same time, the running times required to achieve these levels of accuracy are rather modest;
the exact values are reported in Table 1.4.25

23We use Matlab R2019b [Mat19]; no explicit parallelization; OS: Linux Mint 18.1 Serena.
Hardware: Intel Core i7-6700 CPU @ 3.40 GHz (4 cores) with 32 GiB RAM capacity.

24Estimates and standard deviations are based on 100 mutually independent simulation runs of ûd,N .
25All stated running times are wall-clock times; each of them includes the time required by both the branching
Monte Carlo algorithm itself and its initialization.
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H
HHHHN

d 3 5 10 20 50 100

102 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
103 0.2 (0.1) 0.2 (0.1) 0.2 (0.0) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1)
104 1.5 (0.1) 1.5 (0.1) 1.5 (0.1) 1.5 (0.1) 1.6 (0.1) 2.0 (0.1)
105 14.8 (0.1) 14.9 (0.1) 15.0 (0.1) 15.1 (0.1) 15.6 (0.1) 19.8 (0.2)
106 146.7 (0.4) 147.4 (0.4) 148.3 (0.4) 149.2 (0.4) 163.9 (1.9) 204.8 (1.6)

Table 1.4: Running time (in seconds) to compute ûd,N , standard deviation in brackets.24

Finally, Figure 1.3 displays the relative error, the standard deviation, and the running time as
functions of the number of Monte Carlo samples N . As expected from the Central Limit Theorem,
the slope in the logarithmic plot of the standard deviation is approximately −1/2. The running
times also demonstrate that there is no curse of dimensionality effect.
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Figure 1.3: Simulation results.
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1.4 Valuation with Systemically Important Counterparties

In this section we illustrate the usefulness of the theory developed in this chapter in the valuation
of financial positions with systemic counterparty credit risk. Specifically, we assume that the
counterparty in a given financial position is a systemically important bank (SIB);26 its systemic
importance is captured by jumps in the underlying risk factors, or equivalently devaluations
in risky asset prices, that occur upon the SIB’s default. This model setup was, e.g., proposed
by [PS13]; see also [ML15a], [BP18] and [BPP18]. We wish to stress that our focus here is on
situations where finite-difference or fixed point methods for the pricing PDE (as considered in or
developed by, e.g., [DH96], [HL99] or [KL16]) are not applicable.

1.4.1 Valuation with Systemic Risk

We consider a financial market that is free of arbitrage; the underlying probability measure
(denoted by P in the preceding sections) is taken as the relevant risk-neutral pricing measure Q.27

The financial market consists of a locally riskless money market account B = {Bt}t∈[0,T ] and
d ∈ N dynamically traded risky assets with prices X = {Xt}t∈[0,T ] given by an [0,∞)d-valued
semimartingale such that X/B is a local Q-martingale. The financial position whose price is to
be determined promises a time-T payoff g(XT ) where g is a bounded continuous function of the
underlyings X, provided the counterparty does not default before time T .

Crucially, the counterparty in this financial position is a defaultable, systemically important
bank (SIB). This means that (i) the financial position is subject to credit risk; and (ii) if and
when the SIB counterparty defaults, there is a negative impact on risky asset prices X, which
simultaneously affects the value of the financial position g(XT ). Assuming fractional recovery of
post-default mark-to-market value as, e.g., in [DS99], risk-neutral pricing yields

Vt
Bt

= EQ
t

[
1{τ>T}

g(XT )

BT
+ 1{τ≤T}

h(Vτ )

Bτ

]
on {τ > t}, (1.25)

where V represents the value of the financial position provided the counterparty has not defaulted ;
τ is the (original) counterparty’s default time; and the recovery value the investor retrieves is
given by h(Vτ ), where h(v) , Rv+ − v− with a recovery rate R ∈ [0, 1]. Note that in (1.25),
Vτ represents the time-τ mark-to-market price of an identical financial position with an SIB
counterparty that has not defaulted, but is otherwise identical to the original one, immediately
after the original counterparty’s default. In particular, Vτ is based on post-default risky asset
prices Xτ = Xτ− + ∆Xτ .

Specifically, we assume that default events are modeled within a classical reduced-form framework,
and that the risk-neutral dynamics of X are given by an [0,∞)d-valued jump-diffusion.28 Thus

26A list of banks classified as globally systemically important by the Financial Stability Board
(FSB) is available at http://www.fsb.org/work-of-the-fsb/policy-development/addressing-sifis/global-
systemically-important-financial-institutions-g-sifis (accessed: 2020-05-31, 1939).

27Throughout this section, all emerging processes are assumed to be adapted with respect to a suitable filtration
{Ft}t∈[0,T ] satisfying the usual conditions of Q-completeness and right-continuity; by EQ

t [ · ] , EQ[ · |Ft] we denote
the corresponding time-t conditional expectation.

28For details on reduced-form models we refer, e.g., to §3.3 in [BMP13] and the references therein.

http://www.fsb.org/work-of-the-fsb/policy-development/addressing-sifis/global-systemically-important-financial-institutions-g-sifis
http://www.fsb.org/work-of-the-fsb/policy-development/addressing-sifis/global-systemically-important-financial-institutions-g-sifis
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the SIB counterparty’s default time is given by29

τ , inf{t ∈ [0, T ] : Yt 6= 0},

where Y = {Yt}t∈[0,T ] is a Cox process with intensity {λ(t,Xt)}t∈[0,T ],30 and the risk-neutral
dynamics of B and X are given by

dBt = r(t,Xt)Btdt, B0 = 1, (1.26)

dXt = diag(Xt−)
[
µ(t,Xt−)dt+ σ(t,Xt−)dWt + ∆YtdYt

]
, X0 = x, (1.27)

where {∆n}n∈N is a sequence of i.i.d. integrable E , (−1,∞)d-valued random variables and
independent of Y and W , and

µ(t, x) , r(t, x)1d − λ(t, x)E[∆1].31

In particular, the SIB counterparty’s default triggers a simultaneous devaluation in the financial
position’s underlyings of size ∆1. The corresponding pricing PDE is given by

∂tu(t, x) +A?[u](t, x)− r(t, x)u(t, x) + λ(t, x)

∫
E

(
h ◦ u

(
t, x+ diag(ξ)x

)
− u(t, x)

)
γ(dξ) = 0,

(1.28)

subject to the terminal condition u(T, x) = g(x), where γ denotes the distribution of ∆n, n ∈ N,
and the operator A? is given by

A?[u](t, x) , µ(t, x)T diag(x)∇xu(t, x) +
1

2
tr
[
diag(x)σ(t, x)σ(t, x)T diag(x)∇2

xu(t, x)
]
.

To justify (1.28) formally, let {τn}n∈[1:YT ] denote the jump times of Y in [0, T ] in increasing order
(if any); the random measure associated to the marked point process {(τn,∆n)}n∈[1:YT ] is given
by

ν(ds, dz) ,
YT∑
n=1

δ{(τn,∆n)}(ds, dz);

and the corresponding compensated random measure is defined to be

ν(ds, dz) , ν(ds, dz)− λ(s,Xs)γ(dz)ds.32

29We stick to the common convention inf ∅ , +∞; note that on the event {τ > T} = {τ = +∞} the SIB does not
default in [0, T ].

30see, e.g., Definition II.1.D1 (special case (β)) in [Bré81].
31We assume that the functions r : [0, T ]× [0,∞)d → R, λ : [0, T ]× [0,∞)d → [0,∞) and σ : [0, T ]× [0,∞)d → Rd×d
are measurable and satisfy suitable Lipschitz and linear growth conditions (in the spirit of Assumption 1.1.1) to
guarantee that (1.26)-(1.27) admits a pathwise unique strong solution; for a (change-of-measure) construction of
interacting Itō diffusions and point processes we refer, e.g., to [Kus99], [BS05] or [BKS13]; similar arguments also
appear in Chapter 2; see Lemma 2.1.3 below. Furthermore, we assume that r and λ are bounded.
Note with the help of Lemma A.4 that X− is a modification of X and hence in the following we may write Xt
instead of Xt− whenever it is more convenient and does not make a difference (e.g., in dt- or dW -integrals; see
Lemma A.1).

32For details on marked point processes see, e.g., §VIII.1 in [Bré81].
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Then the formal result33 reads as follows:

Theorem 1.4.1 (Risk-Neutral Pricing). Let u : [0, T ]× [0,∞)d → R be a classical solution of
(1.28) subject to u(T, x) = g(x) for x ∈ [0,∞)d. Moreover, suppose that∫ T

0

∥∥σ(s,Xs)
T diag(Xs)∇xu(s,Xs)

∥∥2

2
ds

+

∫ T

0

∫
E

∣∣h ◦ u(s, (Id×d + diag(z))Xs−
)
− u(s,Xs−)

∣∣λ(s,Xs)γ(dz)ds < +∞ Q-a.s.,

and that
1

B
•M =

∫
(0, · ]

1

Bs
dMs

is a Q-martingale where the local Q-martingale34 M is given by

M ,
∫ ·

0
∇xu(s,Xs)

T diag(Xs)σ(s,Xs)dWs

+

∫
(0, · ]

∫
E

(
h ◦ u

(
s, (Id×d + diag(z))Xs−

)
− u(s,Xs−)

)
ν(ds, dz).

Then the process V = {Vt}t∈[0,T ] given by Vt , u(t,Xt) for t ∈ [0, T ] satisfies (1.25). In particular,
given X0 = x ∈ [0,∞)d, the risk-neutral price of g(XT ) issued by a defaultable SIB is given by
V0 = u(0, x).

Proof. For t ∈ [0, T ] we obtain from (1.27) with Itō’s formula35 and (1.28)

Vt = u(t,Xt) = u(0, x) +

∫ t

0

(
∂tu(s−, Xs−) +A?[u](s−, Xs−)

)
ds

+

∫ t

0
∇xu(s−, Xs−)T diag(Xs−)σ(s−, Xs−)dWs

+

∫
(0,t]

∫
E

(
u
(
s−, (Id×d + diag(z))Xs−

)
− u(s−, Xs−)

)
ν(ds, dz)

= u(0, x) +

∫ t

0

(
∂tu(s−, Xs−) +A?[u](s−, Xs−)

)
ds+Mt

+

∫ t

0

∫
E
λ(s−, Xs−)

(
h ◦ u

(
s−, (Id×d + diag(z))Xs−

)
− u(s−, Xs−)

)
γ(dz)ds

−
∫

(0,t]

∫
E

(
h ◦ u

(
s−, (Id×d + diag(z))Xs−

)
− u
(
s−, (Id×d + diag(z))Xs−

))
ν(ds, dz)

= u(0, x) +

∫ t

0
r(s,Xs)u(s,Xs)ds+Mt −

∫
(0,t]

(
h(u(s,Xs))− u(s,Xs)

)
dYs

= V0 +

∫ t

0
r(s,Xs)Vsds+Mt −

∫
(0,t]

(
h(Vs)− Vs

)
dYs.

33With regard to the following proof we also refer to [BJR05] (see, e.g., the proof of Proposition 3.1 therein) for
similar arguments.

34For the local martingale property we refer, e.g., to Corollary VIII.C4 in [Bré81].
35see, e.g., Theorem II.33 in [Pro04].
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Thus, since by (1.26) it holds 1/Bt = exp
{
−
∫ t

0 r(s,Xs)ds
}
, thanks to Itō’s product rule35 we

have
Vt
Bt

= V0 +
(
V− •

1

B

)
s

+

∫
(0,t]

1

Bs−
dVs = V0 +

∫
(0,t]

1

Bs
dMs −

∫
(0,t]

h(Vs)− Vs
Bs

dYs.

Hence, due to the martingale assumption, it follows that the process V
B +

∫
(0, · ]

h(Vs)−Vs
Bs

dYs is a
Q-martingale; since VT = g(XT ) we conclude in turn that

Vt
Bt

= EQ
t

[g(XT )

BT
+

∫
(t,T ]

h(Vs)− Vs
Bs

dYs

]
for t ∈ [0, T ]. (1.29)

For t ∈ [0, T ] we consider the [t,∞]-valued stopping time τ t , inf{s ∈ [t, T ] : ∆Ys 6= 0}; with the
help of (1.29) and the tower property of conditional expectation we obtain the identity

Vt
Bt

= EQ
t

[
EQ
τ t

[g(XT )

BT
+

∫
(t,T ]

h(Vs)− Vs
Bs

dYs

]]
= EQ

t

[
EQ
τ t

[
1{τ t>T}

g(XT )

BT

]
+ 1{τ t≤T}

(
EQ
τ t

[g(XT )

BT
+

∫
(τ t,T ]

h(Vs)− Vs
Bs

dYs

]
+
h(Vτ t)− Vτ t

Bτ t

)]
= EQ

t

[
1{τ t>T}

g(XT )

BT
+ 1{τ t≤T}

h(Vτ t)

Bτ t

]
. (1.30)

Since on the event {τ > t} we have τ = τ t, (1.30) implies (1.25).

Note that the approach followed by the preceding proof is standard given the literature36 as it
uses Feynman-Kač type arguments to link a classical solution of (1.28) to the risk-neutral pricing
formula (1.25).

Furthermore, note that, similarly as in other credit risk valuation problems with recovery of
mark-to-market value, the pricing formula (1.25) and the corresponding pricing equation (1.28)
are inherently implicit, with the price to be determined appearing inside the nonlinearity that
represents the recovery value (see, e.g., [CG15] or [KL16] and the references therein) – with the
additional complication that jumps at default imply that this term is also nonlocal.

1.4.2 Branching Diffusion with Jumps Approach

In order to solve the pricing equation (1.28), we follow §5 in [Hen12a] and approximate the
recovery function h by a polynomial. Thus we assume without loss that ‖g‖L∞ ≤ 1 (since g is
bounded, this can always be achieved by appropriate rescaling; see (1.28)) and approximate the
recovery value function by a polynomial using v± ≈∑M

m=0 α
±
mv

m, v ∈ [−1, 1]; see Figure 1.4 for
illustration. We obtain the PDE

∂tu(t, x) +A?[u](t, x)−
[
r(t, x) + λ(t, x)

]
u(t, x)

+

∫
E

M∑
m=0

[
Rα+

m − α−m
]
λ(t, x)u

(
t, x+ diag(ξ)x

)m
γ(dξ) = 0, (1.31)

36see, e.g., §4.8 in [Eth02], Chapter 6 in [Shr04] or [BJR05].
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subject to the terminal condition u(T, x) = g(x).
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Figure 1.4: Approximation of h by a polynomial (parameters as in Tables 1.5/1.6).

Hence, setting I , {(`,m) ∈ [0 :M ]2 : ` = 0 or m = 0} we can rewrite (1.31) as

∂tu(t, x) +A?[u](t, x) +

∫
E

∑
i∈I

ci(t, x)u(t, x)i1u
(
t, x+ diag(ξ)x

)i2γ(dξ) = 0, (1.32)

u(T, x) = g(x),

where the coefficients c(`,m), (`,m) ∈ I, are given by

c(0,m)(t, x) , [Rα+
m − α−m]λ(t, x) for m ∈ [0 :M ]

c(1,0)(t, x) , −[r(t, x) + λ(t, x)] and c(`,0)(t, x) , 0 for ` ∈ [2 :M ].
(1.33)

Since (1.32) is a special case of (PDE), the branching diffusion with jumps approach developed
in this chapter can be applied to compute its solution via u(0, x) = E[Ψ0,x] with

Ψ0,x ,
∏
k∈K

g(X
(k)
T )

F (T − T (k−))
×

∏
k∈K\K,
I(k)=(1,0)

−
r(T (k), X

(k)

T (k)) + λ(T (k), X
(k)

T (k))

ρ(T (k) − T (k−))p(1,0)

×
M∏
m=0

∏
k∈K\K,

I(k)=(0,m)

[Rα+
m − α−m]λ(T (k), X

(k)

T (k))

ρ(T (k) − T (k−))p(0,m)

.

Here X(k) , Xk,0,x, k ∈ K , K0, is a branching diffusion with jumps as specified in Section 1.1,
where the dynamics of each individual particle k ∈ K are given by

dX
(k)
t = diag

(
X

(k)
t−
)[
µ
(
t,X

(k)
t−
)
dt+ σ

(
t,X

(k)
t−
)
dWt

]
, t ∈ [T (k−), T (k)],
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with initial conditions

X
(1)
0 = x and X

(k)

T (k−) ,

X
(k−)

T (k−) if I(k) = (1, 0),

X
(k−)

T (k−) + diag
(
∆(k−)

)
X

(k−)

T (k−) else.

1.4.3 Numerical Illustration

While our setup and Monte Carlo methodology allow for general diffusion dynamics and arbitrary
dimensionality in the underlying risky assets (see also Section 1.4.4 below), for illustration we
first use a baseline Black-Scholes-Merton model [BS73, Mer73], enhanced by the SIB’s credit risk
with constant default intensity and devaluations captured by the model of Kou [Kou02]. Thus we
take Y as a homogeneous Poisson process with intensity λ ≥ 0; the riskless rate r ∈ R is constant;
and g has a single underlying (d = 1) with volatility σ > 0. Jumps at default are such that
− log(1 + ∆1) is exponentially distributed with parameter η ≥ 0.37 We consider two financial
positions representing a shifted put and shifted discount call, respectively, i.e.

gshort(XT ) , (K −XT )+ − L and glong(XT ) = L− (K −XT )+.

Figure 1.5 provides an illustration of the corresponding payoffs.
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Figure 1.5: Payoff profiles gshort and glong with K = 2 and L = 1.

We compute their valuation at (t, x) = (0, x). To quantify the impact of systemic risk, we compare
the valuations of the financial positions gshort and glong in three benchmark scenarios that are
identical in all respects, except the choice of counterparty:

• SIB counterparty: The counterparty is systemically important, and their default triggers
devaluations in risky asset prices (see above).

37In the specification of §2 in [Kou02], this corresponds to the choice p , 0 and η2 , 1.
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• Non-SIB counterparty: The counterparty is non-systemic, but otherwise identical to the
SIB; in particular, it is defaultable with the same credit risk characteristics as the SIB.

• Default-free counterparty: There is no counterparty credit risk.38

In all three scenarios, the SIB is part of the model and will cause devaluations upon default; the
scenarios thus differ only in the choice of counterparty and the resulting wrong- or right-way risk;
the relevant pricing PDEs are reported in Appendix C.

Our implementation of the branching diffusion with jumps is based on the parameters specified
in Table 1.6. In contrast to Section 1.3, where we deliberately employ a non-accelerated crude
Monte Carlo method for performance analysis, here we exploit standard techniques for variance
reduction39 such as common random numbers, control variates and parallelization: Since all three
pricing PDEs can be solved by means of the discussed branching methodology (see Section 1.4.2
and Appendix C), and prices can be computed explicitly in case of a default-free counterparty,38

we take the branching estimator of the default-free price as a control variate. The latter is
optimized by taking correlations between the estimator of the default-free price and the other
two estimators into account; the corresponding covariance matrices are estimated independently
from the main simulation based on 104 branching (jump-)diffusion samples.40

The resulting three price estimators are simulated using common random numbers; in particular,
we make use of common samples of branching ancestries, jump parameters and increments of
the particles’ driving noise (i.e. Brownian motions and, where applicable, jump times and jump
sizes of compound Poisson processes). Note that the dynamics of each particle can be simulated
exactly as each underlying (geometric) SDE admits an explicit solution suitable for this purpose.
Each simulation run for the price estimators is parallelized over a pool of 44 workers using
Matlab’s parpool and parfor commands; the corresponding loop simulates a total of 8.8 · 106

i.i.d. branching (jump-)diffusion samples using 88 simulation blocks with 105 samples drawn per
block and 44 of these blocks running in parallel.41

The relevant model and simulation parameters are reported in Tables 1.5 and 1.6; note in
particular that the expected devaluation upon the SIB’s default is −50%; see (4) in [Kou02].

Coefficient T r σ R η x K L

Value 1 0.5% 25% 40% 1 1 2 1

Table 1.5: Market coefficients.

38In this scenario, the pricing PDE becomes linear (see Appendix C) and can be solved in closed form; see, e.g.,
[Kou02].

39For details on these (and other) variance reduction principles we refer, e.g., to Chapter 4 in [Gla03] or §3.3/4 in
[KKK10].

40This approach is standard given the literature; see, e.g., §3.3.2.1 in [KKK10]; we also refer to §4.1.1/3 in [Gla03].
41We use Matlab R2019b [Mat19]; OS: Linux Ubuntu 16.04.5 LTS.
For details on parpool and parfor we refer to the online documentation manual; see https://de.mathworks.com/
help/parallel-computing/parpool.html and https://de.mathworks.com/help/parallel-computing/parfor.
html, respectively (both accessed: 2020-05-31, 1940).
Hardware: 2 × Intel Xeon CPU E5-2699 v4 @ 2.20 GHz (44 cores in total) with 755 GiB RAM capacity.

https://de.mathworks.com/help/parallel-computing/parpool.html
https://de.mathworks.com/help/parallel-computing/parpool.html
https://de.mathworks.com/help/parallel-computing/parfor.html
https://de.mathworks.com/help/parallel-computing/parfor.html
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Parameter Value
N 8.8 · 106

Law(τ) Γ(κ, θ) with κ = 0.5 and θ = 2.5
M 4(

α±0 , . . . , α
±
4

)
(0.06,±0.50, 0.82, 0.00,−0.41)

p(0,0) q0

p(`,0) qloc · q` for ` ∈ [1 :M ]
p(0,m) (1− qloc) · qm for m ∈ [1 :M ]

qloc
|r+λ|

|r+λ|+λ·
∑M

m=0 |Rα
+
m−α−m|

qm
|c(1,0)|2·1{m=1}+|c(0,m)|·

∑M
m=0 |c(0,m)|

|c(1,0)|2+(
∑M

m′=0
|c(0,m′)|)2

for m ∈ [0 :M ]

Table 1.6: Simulation parameters.22, 42

Figures 1.6 through 1.8 display our simulation results for different specifications of the default
intensity. Note that the average running time of a single simulation run is approximately 102.2 sec;
for default intensities λ up to 5% it is approximately 95.7 sec.43

Figure 1.6 illustrates the impact of systemic interaction for the financial position gshort: Devalua-
tions imply a positive correlation between the SIB’s default events and underperforming risky
asset prices, causing significant wrong-way risk for short positions. While this is qualitatively
apparent, the quantitative size of this effect, in particular relative to the non-SIB counterparty, is
remarkable.44

In Figure 1.7 we thus decompose the implied SIB spread (i.e., the difference between the value of
an otherwise identical financial position with a default-free counterparty and that with an SIB
counterparty) into (i) a pure credit risk component (blue), which we identify with the spread
between the non-systemic defaultable counterparty and the default-free one, and (ii) a systemic
risk component (red), which is present only due to the counterparty’s systemic importance. It is
apparent that systemic risk is the main driver of the spread, accounting for 80-85% of the total
spread across realistic default intensities.

Finally, Figure 1.8 demonstrates that the effect is reversed for long positions, i.e. for glong; we
might refer to this as right-way risk, i.e. negative correlation between the counterparty’s default
and the value of the financial position. Technically, the systemic risk component turns negative,
and the spread becomes significantly smaller than for a non-systemic counterparty. �

42The values of α±m, m ∈ [0 :M ], are computed with Matlab’s pre-implemented routine polyfit.m which aims
for a best least-squares fit; for details we refer to the online documentation manual https://de.mathworks.com/
help/matlab/ref/polyfit.html (accessed: 2020-05-31, 1941); note that the obtained values are very close to the
polynomial coefficients used in §5 in [Hen12a].
Moreover, the choice of the probability weights pi, i ∈ I, is inspired by §4.3 in [Hen12a].

43The stated average running times differ from the ones in Section 1.3 in that simulation runs are not repeated;
rather we take the average of running times measured for various values of λ and for gshort and glong together. Still,
as in Footnote 25, all sampled running times are wall-clock times, including the time required by the branching
Monte Carlo algorithm itself, its initialization and the estimation of covariances for the optimized control variate.

44For further details see also our remarks in Section 1.4.4 below.

https://de.mathworks.com/help/matlab/ref/polyfit.html
https://de.mathworks.com/help/matlab/ref/polyfit.html
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Figure 1.6: Valuation of gshort as a function of the counterparty’s default intensity (with approxi-
mate 99%-confidence bands).
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Figure 1.7: Decomposition of the SIB spread into credit risk (blue) and systemic risk (red).
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Figure 1.8: Valuation of glong as a function of the counterparty’s default intensity (with approxi-
mate 99%-confidence bands).

1.4.4 Another High-Dimensional Example

The simulation study in Section 1.3 has already illustrated that the branching Monte Carlo
algorithm is able to cope with high-dimensional problems. To further corroborate this result, we
adopt the setup of Section 1.4.3 and exemplarily modify the payoff profile gshort into a multivariate
one; more precisely, we consider a financial position gbasket entered into with a defaultable SIB
counterparty whose time-T payoff is based on a basket of d = 50 underlyings and given by

gbasket(XT ) ,
(
K − 1

d
· 1TdXT

)+
− L =

(
K − 1

d

d∑
i=1

Xi(T )
)+
− L.

Mutatis mutandis, the relevant market and simulation parameters are chosen as in Section 1.4.3;
the underlyings’ price process is driven by a standard (uncorrelated) d-dimensional Brownian
motion; and the distribution of jumps at default of the SIB is assumed to be the product measure
of the univariate one in the previous section.

We compute the valuation of this financial position at (t, x) = (0, 1d) for various values of λ and R
by means of crude Monte Carlo with parallelization as outlined in Section 1.4.3.41 Our simulation
results are displayed in Figure 1.9; for corresponding estimates of the (relative) standard deviation
see Figure 1.10. The average running time of a single simulation run is approximately 103.7 sec.45

45Similarly as in Footnote 43, we report the average of (wall-clock) running times measured for various values of λ
and R.
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Figure 1.9: Valuation of gbasket for (λ†, R) ∈ [0, 0.1]× [0, 1].
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Figure 1.10: Estimated (relative) standard deviation of the branching estimator.46

46The standard deviation of the Monte Carlo estimator is estimated exactly as in Section 1.3; we estimate its relative
counterpart by dividing an estimate of the standard deviation by the absolute value of the corresponding valuation
estimate.
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The preceding results warrant a brief comment that complements our remarks in Section 1.4.3:
Note that, disregarding the fact that the financial position gbasket is subject to credit risk, it
consists of a long position in a basket put option on the underlying risky assets with strike K and
a short position in a zero coupon bond with principal L; it can thus be regarded as a multivariate
analogue of gshort, and hence it implements a bearish strategy given the underlying price dynamics
(1.27).

Since there is a positive correlation between the counterparty’s default events and underperforming
risky asset prices, the holder of gbasket faces a wrong-way risk the quantitative size of which is, in
turn, negatively correlated with the size of the recovery rate R:
For high values of R this risk is less pronounced and valuations either remain almost constant or
decline only moderately for increasing values of λ as the holder is rather immune to the impact
of a default before maturity.47

However, for more realistic low and moderate values of R a rise of λ leads to a considerably
tumbling valuation of gbasket; although the event of the SIB’s default becomes more likely and,
in case of occurrence, simultaneously triggers devaluations in the underlying risky asset prices
such that corresponding short positions appreciate in value, the holder of gbasket only retrieves a
comparably small recovery value if the position’s post-default valuation is positive.

As to the standard deviation we observe that it stays below 10−4 which is, in terms of scale, in line
with what one expects theoretically given an overall number of N = 8.8 ·106 Monte Carlo samples.
Due to the fact that the ratios |ci|/pi, i ∈ I, increase as λ increases (see (1.33) and Figure 1.11),
for all fixed values of R the standard deviation does so as well; see also Proposition 1.2.3. �

Of course, the preceding comments apply to the financial position gshort in equal measure; note
that the only new feature in this section is the (artificially introduced) high-dimensional state
space. We are aware that the present multivariate price dynamics are not suitable to model
market prices. However, the model can readily be extended to include realistic features, such as,
e.g., both common and idiosyncratic jumps of asset prices or correlations, but as such extensions
are beyond the scope of this chapter, for further details we refer, e.g., to §10 in [Kou07] and the
references therein.

Nevertheless, to conclude this section, observe that the results corroborate the findings of
Section 1.3 and showcase that our branching Monte Carlo algorithm is able to solve high-
dimensional nonlocal PDEs.

47As we assume fractional recovery of post-default mark-to-market value, note that for R = 1 the counterparty’s
default amounts to an early termination of the contract.
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Figure 1.11: Ratios of branching coefficients and offspring probability weights.

Conclusion and Outlook

To conclude, this chapter has developed a branching diffusion with jumps approach to solving
parabolic PDEs with nonlocal analytic nonlinearities. We have derived a stochastic representation
of a classical solution, and, conversely, we have proved that this representation is a viscosity
solution of the considered PDE. Furthermore, we have showcased the performance of the resulting
non-nested Monte Carlo methodology in dimensions up to 100, and we have demonstrated how it
applies to the valuation of financial positions with systemic counterparties and mark-to-market
recovery.

For future research, it would be interesting to investigate a unified approach to local-nonlocal
semilinear, fully nonlinear or, generally speaking, higher order PDEs relying on branching
processes. For recent developments we refer, e.g., to [HT18] or [War18]. Albeit the branching
methodology strongly relies on the polynomial structure of the nonlinearity (see, e.g., Remark 1.1.5
or [HOT+19]), we think that it is nevertheless worth attempting to generalize it to other types of
nonlinearities.

From a numerical point of view, it would be of interest to optimize branching parameters such
as the lifetime or the offspring distribution in the present setup to reduce the variance of the
resulting estimator and thus the overall computation complexity. For existing result see, e.g., §4.3
in [Hen12a] for optimized probability weights pi (offspring distribution), or §5.1 and the appendix
in [HOT+19] for the choice of the density ρ (lifetime distribution), a discussion of the complexity
and an importance sampling scheme.
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Moreover, several extensions of the above pricing model are conceivable within the setup of
this chapter, including stochastic recovery rates, shocks to state variables (e.g., volatilities),
idiosyncratic jumps in asset prices, and margin periods of risk. With regard to modeling jumps we
refer, e.g., to §10 in [Kou07]; for margin periods of risk (delays) see, e.g., Remark 5.1 in [Hen12a].



Chapter 2

Continuous-Time Finite-State Mean
Field Games with Common Noise

The present chapter and Appendix D/E are a revised and partly extended version
of the article [BHS20b] that has already been made publicly available as a preprint
and submitted for publication in a scientific journal. �

Since the seminal contributions of Lasry and Lions [LL07] and Huang, Malhamé and Caines [HMC06]
(see also [Car13] and the references therein), mean field games have become an active field of
mathematical research with a wide range of applications, including economics ([CFS15], [CDL17],
[KM17], [Nut18], [EIL20], [GS20]), socio-economics ([GVW14]), finance ([LLLL16], [CJ19b]),
epidemiology ([LT15], [DGG17], [EHT20]), computer science ([KB16]), crowd dynamics ([LW11])
and cryptocurrencies ([BBLL20]); see also the overview article [GLL11] and the monograph
[CD18a].

Mean field games constitute a class of dynamic, multi-player stochastic differential games with
identical agents. The key characteristic of the mean field approach is that (i) the payoff and state
dynamics of each agent depend on other agents’ decisions only through an aggregate statistic
(typically, the aggregate distribution of states); and (ii) no individual agent’s actions can change
the aggregate outcome. Thus, in solving an individual agent’s optimization problem, the feedback
effect of his own actions on the aggregate outcome can be discarded, breaking the notorious vicious
circle (“the optimal strategy depends on the aggregate outcome, which depends on the strategy,
which depends . . . ”). This significantly facilitates the identification of rational expectations
equlibria. A standard assumption that further simplifies the analysis is that randomness is
idiosyncratic (equivalently, there is no common noise), i.e. that the random variables appearing
in one agent’s optimization are independent of those in any other’s. As a result, all randomness
is “averaged out” in the aggregation of individual decisions, and the equilibrium dynamics of the
aggregate distribution are deterministic.

In the literature, mean field games are most often studied in settings with a continuous state
space and deterministic or diffusive dynamics, i.e. stochastic differential equations (SDEs) driven
by Brownian motion. The corresponding dynamic programming equations thus become parabolic

37
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partial differential equations, and the aggregate dynamics are represented by a flow of Borel
probability measures; see, e.g., the monographs [BFY13] and [CD18a] and the references therein.
Formally, the mean field game is typically formulated in terms of a controlled McKean-Vlasov
SDE, where the coefficients depend on the current state and control and the distribution of
the solution; intuitively, these McKean-Vlasov dynamics codify the dynamics that pertain to a
representative agent. The mathematical link to N -player games is subsequently made through
suitable propagation of chaos results in the mean field limit N →∞; see, e.g., [Lac15], [Fis17],
[CF18], [Lac18] and [DLR19]. In this context, the analysis of McKean-Vlasov SDEs has also seen
significant progress recently; see, e.g., [CD13], [BP19], [CP19b] and [MP19a]. In the presence of
common noise, i.e. sources of risk that affect all agents and do not average out in the mean field
limit, the mathematical analysis becomes even more involved as the dynamics of the aggregate
distribution become stochastic, leading to conditional McKean-Vlasov dynamics; see, e.g., [Ahu16],
[CDL16], [CW17] and [PW17]. We refer to the monograph [CD18b] for background and further
references on continuous-state mean field games with common noise; for discrete-time Markov
decision processes with mean field interaction and common noise see also [MP19b].

There is also a strand of literature on mean field games with finite state spaces, including
[GMS10], [Gué11], [GMS13], [BHK14], [Gué15], [BC18], [CP19a], [DGG19], [CF20], [Neu20] as
well as [CD18a, §7.2]. In a recent article, [CW18b] provide an extension of [GMS13] to mean
field interactions that occur not only through the agents’ states, but also through their controls.
Furthermore, [CW16] and [CW18a] address mean field games including dominating players; see
also [Wan19] for a corresponding comprehensive account.
To the best of our knowledge, however, to date there has been no extension of these results to
settings that include common noise; in the context of finite-state mean field games, we are only
aware of two contributions that include common noise (both via the master equation and with
a different focus or setting): [BLL19] formulate the master equation for finite-state mean field
games with common noise to include (random) jumps of the agents’ states at either deterministic
or random jump times, and [BCCD19] add a common Gaussian noise to the aggregate distribution
dynamics and study the resulting master equation.

In this chapter, we set up a mathematical framework for finite-state mean field games with
common noise.48 Our setup extends that of Gomes, Mohr and Souza [GMS13] and Cecchin and
Fischer [CF20] by common noise events occurring at fixed points in time. We provide a rigorous
formulation of the underlying stochastic dynamics, and we establish a verification theorem for the
optimal strategy and an aggregation theorem to determine the resulting aggregate distribution.
This leads to a characterization of the mean field equilibrium in terms of a system of (random)
forward-backward ordinary differential equations for which we also prove a corresponding existence
result. The key insight is that, after conditioning on common noise configurations, we obtain
classical piecewise dynamics subject to jump conditions at common noise times.

The remainder of this chapter is organized as follows: In Section 2.1 we set up the mathematical
model, provide a probabilistic construction of the state dynamics, and formulate the agent’s
optimization problem. In Section 2.2 we state the dynamic programming equation and establish

48We wish to point out that the focus of this chapter is not on the mean field limit of multi-player games; rather,
we directly investigate the mean field equilibrium via the corresponding McKean-Vlasov dynamics (see also
Remark 2.3.1 and [CDL13] in that context).
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a verification theorem for the agent’s optimization, given an ex ante aggregate distribution
(Theorem 2.2.4). Section 2.3 provides the dynamics of the ex post distribution (Theorem 2.3.4)
and, on that basis, a system of random forward-backward ODEs for the mean field equilibrium
(Definition 2.3.5) as well as a corresponding existence result (Theorem 2.3.6). Finally, in Section 2.4
we showcase our results in three stylized applications: agricultural production, infection control
and evacuation.

Three parts of the appendix complement the exposition of this chapter: Appendix A provides
some auxiliary technical results and a brief outline of the theory of Carathéodory solutions
of ODEs; Appendix D contains the proof of the existence result for a mean field equilibrium
(Theorem 2.3.6), relevant assumptions and auxiliary results; and, for the sake of completeness,
Appendix E provides the master equation within our framework.

2.1 Mean Field Model

We first provide an informal description of the individual agents’ state dynamics, optimization
problem, and the resulting mean field equilibrium. The agent’s state process X = {Xt} takes
values in the finite set S. Between common noise events, transitions from state i to state j occur
with intensity Qij(t,Wt,Mt, νt), where Wt represents the common noise events that have occurred
up to time t; Mt is the time-t aggregate distribution of agents; and νt represents the agent’s
control. In addition, upon the realization of a common noise event Wk at time Tk, the state jumps
from XTk− to XTk = JXTk−(Tk,WTk ,MTk−). Given these dynamics, the agent aims to maximize

Eν
[∫ T

0
ψXt(t,Wt,Mt, νt)dt+ ΨXT (WT ,MT )

]
where ψ and Ψ are suitable reward functions and the aggregate distribution process M = {Mt}
is given by

Mt , µ(t,Wt) for t ∈ [0, T ].

Here the function µ represents the aggregate distribution of states as a function of the common
noise factors. We obtain a rational expectations equilibrium by determining µ in such a way that
the representative agent’s ex ante expectations coincide with the ex post aggregate distribution
resulting from all agents’ optimal decisions, i.e.

Pν̂(Xt ∈ · |Wt) = µ̂(t,Wt) for all t ∈ [0, T ],

where ν̂ and µ̂ denote the equilibrium strategy and the equilibrium aggregate distribution. In the
remainder of this section, we provide a rigorous mathematical formulation of this model.
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2.1.1 Probabilistic Setting and Common Noise

Throughout, we fix a time horizon T > 0 and a finite set W and work on a probability space
(Ω,A,P) that carries a finite sequence W1, . . . ,Wn of i.i.d. random variables that are uniformly
distributed on W.49 We refer to W1, . . . ,Wn as common noise factors and to P as the reference
probability. The common noise factor Wk is revealed at time Tk, where

0 , T0 < T1 < T2 < · · · < Tn < Tn+1 , T.

The filtration G = {Gt}t∈[0,T ] generated by common noise events is given by

Gt , σ
(
Wk : k ∈ [1 :n], Tk ≤ t

)
∨N for t ∈ [0, T ],

where N denotes the system of P-null sets. For later reference, we note that G is piecewise
constant in the sense that Gt = GTk for all t ∈ [Tk, Tk+1〉 and k ∈ [0 :n], where for 0 ≤ s ≤ t ≤ T
we set

[s, t〉 , [s, t) if t < T and [s, T 〉 , [s, T ].

T0 = 0 T4 = TT1

W1 is revealed

T2

W2 is revealed

T3

W3 is revealed

Figure 2.1: Common noise factors and common noise times (n = 3).

For each configuration of common noise factors w ∈Wn we write

wt , (w1, . . . , wk) for t ∈ [Tk, Tk+1〉, k ∈ [0 :n].

With this convention, W = {Wt}t∈[0,T ] represents a piecewise constant, G-adapted process.

Definition 2.1.1 (Non-Anticipative Function). A function f : [0, T ]×Wn → Rm is said to be
non-anticipative if for all t ∈ [0, T ]

f(t, w) = f(t, w̄) whenever w, w̄ ∈Wn are such that wt = w̄t. �

With a slight abuse of notation, if f : [0, T ]×Wn → Rm is non-anticipative, we write

f(t, wt) , f(t, w) for w ∈Wn, t ∈ [0, T ].

49While the common noise factors are i.i.d. uniformly distributed under P, the distribution of W1, . . . ,Wn in the
agent’s optimization problem can be modeled arbitrarily via the functions κ1, . . . , κn introduced below; see also
Lemma 2.1.3.
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2.1.2 Optimization Problem

The agent’s state and action spaces are given by

S , [1 :d] and U ⊆ Re, where d, e ∈ N and U 6= ∅,

and we identify the space of aggregate distributions on S with the space of probability vectors50

M , Prob(S) ,
{
m ∈ [0,∞)1×d :

d∑
i=1

mi = 1
}
.

We further suppose that (Ω,A,P) supports, for each i, j ∈ S, i 6= j, a standard (i.e., unit intensity)
Poisson process N ij = {N ij

t }t∈[0,T ] and an S-valued random variable X0 such that

X0 and N ij , i, j ∈ S, i 6= j, and W1, . . . ,Wn are independent.

The corresponding full filtration F = {Ft}t∈[0,T ] is given by

Ft , σ
(
X0, Ws, N

ij
s : s ∈ [0, t]; i, j ∈ S, i 6= j

)
∨N for t ∈ [0, T ].

Note that Gt ⊆ Ft for all t ∈ [0, T ], that both G and F satisfy the usual conditions, and that N ij

is a standard (F,P)-Poisson process for i, j ∈ S, i 6= j.

The agent’s optimization problem reads51

Eν
[∫ T

0
ψXt(t,Wt,Mt, νt)dt+ ΨXT (WT ,MT )

]
−→
ν∈A

max! (Pµ)

where the class of admissible strategies for (Pµ) is given by the set of closed-loop controls

A ,
{
ν : [0, T ]× S[0,T ] ×Wn → U : ν is Borel measurable and

ν( · , x, · ) is non-anticipative for all x ∈ S[0,T ]
}
.

Note that A subsumes the class of Markovian feedback controls considered in, e.g., [GMS13] or
[Gué11, Gué15], and that each ν ∈ A canonically induces an F-adapted U-valued process via

νt , ν
(
t,X( · ∧t)−,Wt

)
for t ∈ [0, T ].

The G-adapted, M-valued ex ante aggregate distribution M = {Mt}t∈[0,T ] is given by

Mt , µ(t,Wt) for t ∈ [0, T ];

Eν [ · ] denotes the expectation operator with respect to the probability measure Pν given by (see
Lemma 2.1.3 below)

50The set M is commonly referred to as probability simplex in the literature.
51For notational simplicity, we write Xt instead of Xt−, Mt instead of Mt−, etc., where it does not make a difference
(e.g., in dt-integrals; see Lemma A.1 for a formal justification). In this context, note by Lemma A.4 that X− and
X are modifications of each other on [0, T ] \ {T1, . . . , Tn}, where, here and in the following, we set X0− , X0.
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dPν

dP
=
∏
i,j∈S,
i 6=j

(
exp
{∫ T

0

(
1−Qij(t,Wt,Mt, νt)

)
dt
}
·
∏

t∈(0,T ],

∆N ij
t 6=0

Qij(t,Wt,Mt, νt)

)

× |W|n ·
n∏
k=1

κk
(
Wk|W1, . . . ,Wk−1,MTk−

)
; (2.1)

and the agent’s state process X is given by

dXt =
∑
i,j∈S,
i 6=j

1{Xt−=i}(j − i)dN ij
t for t ∈ [Tk, Tk+1〉, k ∈ [0 :n], (2.2)

subject to the jump conditions

XTk = JXTk−
(
Tk,WTk ,MTk−

)
for k ∈ [1 :n]. (2.3)

The coefficient functions in the state dynamics and payoff functional are bounded and Borel
measurable functions

Q : [0, T ]×Wn ×M× U→ Rd×d

J : [0, T ]×Wn ×M→ Sd

ψ : [0, T ]×Wn ×M× U→ Rd

Ψ : Wn ×M→ Rd

such that Q( · , · ,m, u), ψ( · , · ,m, u) and J( · , · ,m) are non-anticipative for all fixed m ∈ M
and u ∈ U; Q satisfies the intensity matrix conditions Qij(t, w,m, u) ≥ 0, i, j ∈ S, i 6= j and∑

j∈SQ
ij(t, w,m, u) = 0, i ∈ S, for (t, w,m, u) ∈ [0, T ] ×Wn ×M × U; and for each k ∈ [1 :n]

the function

κk : Wk ×M→ [0, 1], (wk, w1, . . . , wk−1,m) 7→ κk(wk|w1, . . . , wk−1,m),

is Borel measurable and satisfies
∑

w̄k∈W κk(w̄k|w1, . . . , wk−1,m) = 1 for all w1, . . . , wk−1 ∈ W
and m ∈M. Finally, the function µ is non-anticipative and regular in the following sense:

Definition 2.1.2 (Regular Function). A function f : [0, T ]×Wn → Rm is said to be regular if
f( · , w) is absolutely continuous on [Tk, Tk+1〉 for k ∈ [0 :n] and w ∈Wn. �

Note that for a regular function f , the one-sided limits f(Tk−, w) , limt↑Tk f(t, w) exist for every
k ∈ [1 :n] and all w ∈Wn.52

2.1.3 State Dynamics

In the following, we verify that the preceding construction implies the dynamics described
informally above:

52This follows since every absolutely continuous function on [Tk, Tk+1〉 is uniformly continuous, and thus possesses a
continuous extension to [Tk, Tk+1] (for the latter see, e.g., [Kö04, p.97]).
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Lemma 2.1.3 (Pν-Dynamics). For each admissible strategy ν ∈ A, Pν is a well-defined probability
measure on (Ω,A), absolutely continuous with respect to P, and satisfies

Pν = P on σ(X0).

Moreover, N ij is a counting process with (F,Pν)-intensity λij = {λijt }t∈[0,T ], where

λijt , Q
ij (t,Wt,Mt, νt) for t ∈ [0, T ] and i, j ∈ S, i 6= j.

Finally, for all k ∈ [1 :n] we have

Pν
(
Wk = wk|GTk−

)
= κk(wk|W1, . . . ,Wk−1,MTk−) for all w1, . . . , wk ∈W

and, in particular,

Pν1 = Pν2 on GT for all admissible strategies ν1, ν2 ∈ A.

Proof. We fix ν ∈ A and split the proof into four steps.

Step 1: Pν is well-defined by (2.1). Since N ij is a standard Poisson process under P, the
compensated process N̄ ij , N̄ ij

t , N
ij
t − t for t ≥ 0, is an (F,P)-martingale for all i, j ∈ S, i 6= j.

We define the local (F,P)-martingale θν = {θνt }t∈[0,T ] via53

θνt ,
∑
i,j∈S,
i 6=j

∫ t

0

(
Qij
(
s,Ws, µ(s,Ws), νs

)
− 1
)
dN̄ ij

s , t ∈ [0, T ],

and observe that the Doléans-Dade exponential E [θν ] is a local (F,P)-martingale54 with

E [θν ]t =
∏
i,j∈S,
i 6=j

(
exp
{∫ t

0

(
1−Qij

(
s,Ws, µ(s,Ws), νs

))
ds
}
·
∏

s∈(0,t],

∆N ij
s 6=0

Qij(s,Ws, µ(s,Ws), νs)

)
(2.4)

for t ∈ [0, T ]. Next, we define ϑ = {ϑt}t∈[0,T ] via

ϑt ,
∑

k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
− 1
)
, t ∈ [0, T ],

and note that ϑ is an (F,P)-martingale. Indeed, for each k ∈ [0 : n] we have ϑt = ϑTk for
t ∈ [Tk, Tk+1〉 and, using the fact that Wk is independent of FTk− and uniformly distributed on
W under P, it follows that

E
[
ϑTk |FTk−

]
= ϑTk− + E

[
|W| · κk

(
Wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
− 1|FTk−

]
53Note that

∫ t
0
Qij(s,Ws, µ(s,Ws), νs)−1)dN̄ ij

s =
∫ t

0
Qij(s,Ws−, µ(s,Ws−), νs)−1)dN̄ ij

s for all t ∈ [0, T ] P-a.s. since
Wt− = Wt for all t ∈ [0, T ] \ {T1, . . . , Tn} and P(∆N ij

Tk
6= 0) = 0 by Lemma A.4. Hence, since Q is bounded, we

obtain, e.g., from Theorem IV.29 in [Pro04] that θν is a local (F,P)-martingale.
54The local martingale property follows, e.g., from Theorem 6.56.6 in [Med07]. For the subsequent representation
see, e.g., Theorem II.37 in [Pro04] or Theorem 6.56.7 in [Med07].
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= ϑTk− − 1 + |W| ·
∑
wk∈W

P
(
Wk = wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
× κk

(
wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
= ϑTk− − 1 + |W| ·

∑
wk∈W

1

|W| · κk
(
wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
= ϑTk−.

Hence the Doléans-Dade exponential E [ϑ] is a local (F,P)-martingale54, and we have

E [ϑ]t =
∏
s∈(0,t]

(1 + ∆ϑs) =
∏

k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

))
(2.5)

for t ∈ [0, T ]. Since ∆N ij
Tk

= 0 for all i, j ∈ S, i 6= j, and k ∈ [1 :n] P-a.s. (see Lemma A.4), we
have [θν , ϑ] = 0; thus, using Yor’s formula55, the process Zν , E [θν + ϑ] = E [θν ] · E [ϑ], i.e.

Zνt =
∏
i,j∈S,
i 6=j

(
exp
{∫ t

0

(
1−Qij

(
s,Ws, µ(s,Ws), νs

))
ds
}
·
∏

s∈(0,t],

∆N ij
s 6=0

Qij(s,Ws, µ(s,Ws), νs)

)

×
∏

k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)

))
(2.6)

is a local (F,P)-martingale as well.54 Since

sup
t∈[0,T ]

|E [θν ]t| ≤ ed
2T · `Y (2.7)

where ` , maxi,j∈S, i 6=j ‖Qij‖∞ and Y ,
∑

i,j∈S, i 6=j N
ij
T ∼P Poisson(d(d− 1)T ) and

sup
t∈[0,T ]

|E [ϑ]t| ≤ |W|n (2.8)

it follows that supt∈[0,T ] |Zνt | is P-integrable, so Zν is in fact an (F,P)-martingale. Since Zν is
non-negative with Zν0 = 1 by construction, we conclude (see also (2.1)) that Pν is a well-defined
probability measure on A, absolutely continuous with respect to P, with density process

dPν

dP

∣∣∣∣
Ft

= Zνt , t ∈ [0, T ].

Step 2: Pν-intensity of N ij. Let i, j ∈ S with i 6= j. Since Pν � P it is clear that N ij is a
Pν-counting process, so it suffices to show that the process νN̄ ij = {νN̄ ij

t }t∈[0,T ],

ν
N̄ ij
t , N

ij
t −

∫ t

0
Qij(s,Ws, µ(s,Ws), νs)ds, t ∈ [0, T ], (2.9)

is a local (F,Pν)-martingale; see Definition A.2. To show this, by Step 1 it suffices to demonstrate
that Zν · νN̄ ij is a local (F,P)-martingale. Noting that

55see, e.g, Theorem II.38 in [Pro04] or Proposition 6.55 in [Med07].
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. [Nk`, N ij ] =
∑

s∈(0, · ]
∆Nk`

s ·∆N ij
s = 0 whenever k, ` ∈ S and (k, `) 6= (i, j),56

. dZνt = Zνt−dθνt + Zνt−dϑt =
∑

k,`∈S,
k 6=`

Zνt−
(
Qk`(t,Wt, µ(t,Wt), νt)− 1

)
dN̄k`

t + Zνt−dϑt,

. d[Zν ,
ν
N̄ ij ]t = Zνt−(Qij(t,Wt, µ(t,Wt), νt)− 1)dN ij

t ,

and using integration by parts we obtain

d
(
Zνt ·

ν
N̄ ij
t

)
= Zνt−d

ν
N̄ ij
t +

ν
N̄ ij
t−dZνt + d[Zν ,

ν
N̄ ij ]t

= Zνt−dN ij
t − Zνt−Qij(t,Wt, µ(t,Wt), νt)dt+

ν
N̄ ij
t−dZνt

+ Zνt−Q
ij(t,Wt, µ(t,Wt), νt)dN

ij
t − Zνt−dN ij

t

=
ν
N̄ ij
t−dZνt + Zνt−Q

ij(t,Wt, µ(t,Wt), νt)dN̄
ij
t .

Thus νN̄ ij is a local (F,Pν)-martingale, as desired.

Step 3: Pν = P on σ(X0). Note that for any function g : S→ R we have

Eν [g(X0)] = E[g(X0) · ZνT ] = E
[
g(X0) · E[ZνT |F0]

]
= E[g(X0) · Zν0 ] = E[g(X0)]

by the tower property of conditional expectation and the (F,P)-martingale property of Zν . This
is equivalent to the desired identity.

Step 4: Distribution of Wk under Pν . Let k ∈ [1 : n] and w1, . . . , wk ∈ W. Since E [θν ]Tk =

E [θν ]Tk− P-a.s. and Wk is uniformly distributed on W and independent of FTk− under P, iterated
conditioning yields

Pν
(
W1 = w1, . . . ,Wk = wk

)
= E

[
ZνTk · 1{Wk=wk} · 1{W1=w1,...,Wk−1=wk−1}

]
= E

[
ZνTk− · |W| · κk(Wk|W1, . . . ,Wk−1, µ(Tk−,WTk−)) · 1{Wk=wk} · 1{W1=w1,...,Wk−1=wk−1}

]
= |W| · κk(wk|w1, . . . , wk−1, µ(Tk−, wTk−)) · E

[
ZνTk− · 1{W1=w1,...,Wk−1=wk−1} · P(Wk = wk|FTk−)

]
= κk(wk|w1, . . . , wk−1, µ(Tk−, wTk−)) · Pν

(
W1 = w1, . . . ,Wk−1 = wk−1

)
.

Thus we have
Pν
(
Wk = wk|GTk−

)
= κk(wk|W1, . . . ,Wk−1,MTk−)

and the proof is complete.

Lemma 2.1.3 implies in particular that Pν(∆N ij
t 6= 0) = 0 for every t ∈ [0, T ] (see Lemma A.4),

so as a consequence we have

∆Xt = 0 Pν-a.s. for all t ∈ [0, T ] \ {T1, . . . , Tn};

hence, X− is a modification of X on [0, T ] \ {T1, . . . , Tn} under Pν .
Moreover, since Pν1 = Pν2 on GT for all admissible controls ν1, ν2 ∈ A and Mt = µ(t,Wt)

56Note that N ij and Nkl are independent processes in these cases; hence this follows from Proposition 7.13 in
[Med07] in conjunction with [Med07, p.469].
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for t ∈ [0, T ], the agent’s ex ante beliefs concerning the common noise factors are the same,
irrespective of his control.

Remark 2.1.4. Our statement of the optimization problem (Pµ) where the control ν ∈ A affects
the state process X via its law (rather than changing its paths) is known as a weak formulation
of the stochastic control problem.57 This is natural in diffusive problems where only the drift
is controlled, see [CL15]; and in the context of controlled intensities, see [BS05], [BKS13] and
[CW18b]. �

2.2 Solution of the Optimization Problem

In the following, we solve the agent’s maximization problem (Pµ) using the associated dynamic
programming equation (DPE). This is the same methodology as in [GMS13] and [CF20]; we refer
to [CW18b] for an alternative approach (to extended mean field games, but without common
noise) based on backward stochastic differential equations.

The DPE for the agent’s optimization problem reads

0 = sup
u∈U

{
∂vi

∂t
(t, w) + ψi

(
t, w, µ(t, w), u

)
+Qi•

(
t, w, µ(t, w), u

)
· v(t, w)

}
for i ∈ S, subject to suitable consistency conditions for t = Tk, k ∈ [1 : n], and the terminal
condition

v(T,w) = Ψ
(
w, µ(T,w)

)
for all w ∈Wn.

The following crucial assumption will enable us to formulate the latter DPE in a reduced form;
see Definition 2.2.2 below.58 It is assumed to be valid throughout the remainder of this chapter.

Assumption 2.2.1 (Measurable Maximizer). There exists a measurable function

h : [0, T ]×Wn ×M× Rd → Ud

such that for every i ∈ S and all (t, w,m, v) ∈ [0, T ]×Wn ×M× Rd we have

hi(t, w,m, v) ∈ arg max
u∈U

{
ψi(t, w,m, u) +Qi•(t, w,m, u) · v

}
. �

A sufficient condition for Assumption 2.2.1 to be satisfied is that U is compact and Q and ψ are
continuous with respect to u ∈ U; see Theorem 18.19 in [AB06].59 Note that, since ψi( · , · ,m, u)

and Qi•( · , · ,m, u) are non-anticipative for m ∈ M and u ∈ U, we can assume without loss of

57For a conceptually different approach where the agents’ state process is constructed as a pathwise unique strong
solution of a controlled SDE driven by a Poisson random measure we refer, e.g., to [CF20].

58The stated assumption is standard given the literature and oftentimes derived from suitable sufficient conditions;
we refer, e.g., to §2 in [GMS13], Assumption 3.4(i) in [CW18b] or condition (C) in §2.1 in [CF20].

59Note that h is uniquely determined if U is convex and the Hamiltonian function (see also Definition E.1)

U 3 u 7−→ ψi(t, w,m, u) +Qi•(t, w,m, u) · v ∈ R

is strictly concave for each (i, t, w,m) ∈ S× [0, T ]×Wn ×M and all relevant v ∈ Rd.
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generality that h(·, ·,m, v) is non-anticipative form ∈M and v ∈ Rd. In view of Assumption 2.2.1,
we can define

Q̂ : [0, T ]×Wn ×M× Rd → Rd×d, Q̂ij(t, w,m, v) , Qij
(
t, w,m, hi(t, w,m, v)

)
,

ψ̂ : [0, T ]×Wn ×M× Rd → Rd, ψ̂i(t, w,m, v) , ψi
(
t, w,m, hi(t, w,m, v)

)
and thus obtain the following reduced-form DPE, which we use in the following:

Definition 2.2.2 (Reduced-Form DPE). Let µ : [0, T ]×Wn →M be regular and non-anticipative.
A function v : [0, T ] ×Wn → Rd is called a solution of (DPµ) subject to (CCµ), (TCµ) if v is
non-anticipative and satisfies the ordinary differential equation (ODE)60

v̇(t, w) = −ψ̂
(
t, w, µ(t, w), v(t, w)

)
− Q̂

(
t, w, µ(t, w), v(t, w)

)
· v(t, w) (DPµ)

for t ∈ [Tk, Tk+1〉, k ∈ [0 :n], subject to the consistency and terminal conditions

v(Tk−, w) = Ψk

(
w, µ(Tk−, w), v(Tk, · )

)
, (CCµ)

v(T,w) = Ψ
(
w, µ(T,w)

)
(TCµ)

for k ∈ [1 :n] and all w ∈Wn. Here for k ∈ [1 :n] the jump operator Ψk is defined via

Ψi
k(w,m, v̄) ,

∑
w̄k∈W

κk
(
w̄k|w1, . . . , wk−1,m

)
· v̄Ji(Tk,(w−k,w̄k),m)(w−k, w̄k), i ∈ S, (Ψk)

wherem ∈M, v̄ : Wn → Rd is a function and (w−k, w̄k) , (w1, . . . , wk−1, w̄k, wk+1, . . . , wn) ∈Wn

for w̄k ∈W, w ∈Wn. �

Observe that (DPµ) represents a system of (random) ODEs, coupled via w ∈Wn. The ODEs run
backward in time on each segment [Tk, Tk+1〉 ×Wn, k ∈ [0 :n], and their terminal conditions for
t ↑ Tk+1 are specified by (TCµ) for k = n and by (CCµ) for k < n. Note that for t ∈ [Tk, Tk+1〉
the relevant factors W1, . . . ,Wk are known.61

Remark 2.2.3. While the significance of the DPE (DPµ) and the terminal condition (TCµ)
are clear, the consistency conditions (CCµ) warrant a brief comment: For i ∈ S, k ∈ [1 : n]

and w ∈Wn the state process jumps from state i to state j , J i(Tk, (w−k,Wk), µ(Tk−, wTk−))

on the event {XTk− = i} ∩ {WTk− = wTk−} when the common noise factor Wk is revealed at
time Tk; and on this event for every admissible strategy ν ∈ A it holds Pν

(
Wk = w̄k|GTk−

)
=

κk
(
w̄k|w1, . . . , wk−1, µ(Tk−, wTk−)

)
, see Lemma 2.1.3. Hence, intuitively, the pre-jump value

at time Tk equals the expected post-jump value based on the (conditional) distribution of the
common noise factor Wk. �

We next use classical verification arguments62 to link the solution of the DPE to the underlying
60All ODEs in this chapter are taken in the sense of Carathéodory; see Section A.3 for a brief outline; for further
details we refer, e.g., to §I.5 in [Hal80] or Supplement II of III.§10 in [Wal98]. As a consequence, every solution v
of (DPµ) subject to (CCµ), (TCµ) is automatically regular in the sense of Definition 2.1.2.

61For a corresponding existence result (and relevant assumptions), i.e. for existence of a partial equilibrium given the
agent’s ex ante beliefs µ, we refer to Lemma D.4.

62see also, e.g., Theorem III.8.1 in [FS06] or Theorem 1 in [GMS13].
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stochastic control problem.

Theorem 2.2.4 (Verification). Suppose that v is a solution of (DPµ) subject to (CCµ) and (TCµ),
where µ : [0, T ]×Wn →M is regular and non-anticipative.61 Then v is the agent’s value function
for problem (Pµ), i.e.

∑
i∈S

P(X0 = i) · vi(0) = sup
ν∈A

Eν
[∫ T

0
ψXt(t,Wt,Mt, νt)dt+ ΨXT (WT ,MT )

]
and the control ν̂ ∈ A given by63

ν̂
(
t,X( · ∧t)−,Wt

)
= hXt−

(
t,Wt, µ(t,Wt), v(t,Wt)

)
for t ∈ [0, T ]

is optimal.

Proof. Let ν ∈ A be an admissible strategy. Until further notice we fix k ∈ [0 :n].

Step 1: Dynamics on [Tk, Tk+1〉. Using Itō’s lemma64 and the fact that v is regular, we obtain for
t ∈ [Tk, Tk+1〉

vXt(t,Wt) = vXTk (Tk,WTk) +

∫ t

Tk

v̇Xs(s,Ws)ds

+
∑
i,j∈S,
i 6=j

(∫
(Tk,t]

1{Xs−=i}
(
vj(s,Ws)− vi(s,Ws)

)
d
ν
N̄ ij
s

+

∫ t

Tk

1{Xs=i}
(
vj(s,Ws)− vi(s,Ws)

)
Qij (s,Ws, µ(s,Ws), νs) ds

)
where the processes νN̄ ij , i, j ∈ S, i 6= j, are defined in (2.9). Thus for t ∈ [Tk, Tk+1〉 we have

vXTk (Tk,WTk) = vXt(t,Wt)−
∑
i,j∈S,
i 6=j

∫
(Tk,t]

1{Xs−=i}
(
vj(s,Ws)− vi(s,Ws)

)
d
ν
N̄ ij
s

−
∫ t

Tk

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) +Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)

)
ds

and upon sending t ↑ Tk+1 we obtain

vXTk (Tk,WTk) = vXTk+1
(
Tk+1−,WTk+1−

)
−
∑
i,j∈S,
i 6=j

∫
(Tk,Tk+1)

1{Xs−=i}
(
vj(s,Ws)− vi(s,Ws)

)
d
ν
N̄ ij
s

−
∫ Tk+1

Tk

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) +Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)

)
ds.

(2.10)

63Formally, this corresponds to the function ν̂ : [0, T ]× S[0,T ] ×Wn → U, ν̂(t, x, w) = hxt
(
t, w, µ(t, w), v(t, w)

)
.

64More precisely, we refer to the fundamental theorem of calculus (for Lebesgue integrals); see, e.g., Theorem 7.20 in
[Rud87] or Theorem VII.4.14(b) in [Els09].
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Step 2: Jump dynamics at Tk. We recall that Wk is independent of FTk− and from Lemma 2.1.3
that

Pν(Wk = w̄k|XTk−,W1, . . . ,Wk−1) = Pν(Wk = w̄k|W1, . . . ,Wk−1)

= Pν(Wk = w̄k|GTk−)

= κk
(
w̄k|W1, . . . ,Wk−1, µ(Tk−,WTk−)

)
.

In view of the jump dynamics (2.3) and the consistency condition (CCµ), we thus obtain

Eν
[
vXTk

(
Tk,WTk

)∣∣σ(XTk−,WTk−
)]

= Eν
[
vJ

XTk− (Tk,(WTk−,Wk),µ(Tk−,WTk−))
(
Tk, (WTk−,Wk)

)∣∣σ(XTk−,WTk−
)]

=
∑
w̄k∈W

κk
(
w̄k|WTk−, µ(Tk−,WTk−)

)
× vJ

XTk− (Tk,(WTk−,w̄k),µ(Tk−,WTk−))
(
Tk, (WTk−, w̄k)

)
= Ψ

XTk−
k

(
WTk−, µ(Tk−,WTk−), v(Tk, · )

)
= vXTk−(Tk−,WTk−). (2.11)

Step 3: Optimality. Recall from Lemma 2.1.3 and Lemma A.4 that Pν(∆N ij
Tk
6= 0) = 0 for every

i, j ∈ S, i 6= j and k ∈ [1 :n]. Combining (2.10) and (2.11) for k = [1 :n] and using (TCµ) thus
yields

vX0(0) = vXT (T,WT ) +
n∑
k=1

(
vXTk− (Tk−,WTk−)− vXTk (Tk,WTk)

)
−

n∑
k=0

[ ∑
i,j∈S,
i 6=j

∫
(Tk,Tk+1]

1{Xs−=i}
(
vj(s,Ws)− vi(s,Ws)

)
d
ν
N̄ ij
s

+

∫ Tk+1

Tk

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) +Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)

)
ds

]

= ΨXT (WT , µ (T,WT )) +
n∑
k=1

(
Eν
[
vXTk

(
Tk,WTk

)∣∣σ(XTk−,WTk−
)]
− vXTk (Tk,WTk)

)
−
∑
i,j∈S,
i 6=j

LijT −
∫ T

0

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) +Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)

)
ds

(2.12)

where for i, j ∈ S, i 6= j the local (F,Pν)-martingale Lij is given by

Lijt ,
∫

(0,t]
1{Xs−=i}

(
vj(s,Ws)− vi(s,Ws)

)
d
ν
N̄ ij
s for t ∈ [0, T ].

Since νN̄ ij is a compensated counting process and v and Q are bounded, it follows from Lemma A.3
that Lij is an (F,Pν)-martingale. Hence, by taking Pν-expectations in (2.12) and using the tower
property of conditional expectation and the fact that Pν and P coincide on σ(X0) by Lemma 2.1.3,



50 Chapter 2. Continuous-Time Finite-State Mean Field Games with Common Noise

we obtain ∑
i∈S

P(X0 = i)vi(0) = E
[
vX0(0)

]
= Eν

[
vX0(0)

]
= Eν

[
ΨXT (WT , µ (T,WT ))

−
∫ T

0

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) +Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)

)
ds
]

= Eν
[
ΨXT (WT , µ (T,WT )) +

∫ T

0
ψXs (s,Ws, µ(s,Ws), νs) ds

−
∫ T

0

d∑
i=1

1{Xs=i}
(
v̇i(s,Ws) + ψi (s,Ws, µ(s,Ws), νs)

+Qi• (s,Ws, µ(s,Ws), νs) · v(s,Ws)
)
ds
]

≥ Eν
[
ΨXT (WT ,MT ) +

∫ T

0
ψXs (s,Ws,Ms, νs) ds

]
. (2.13)

If we replace ν with ν̂, the same argument applies with equality in (2.13); we thus conclude that
v is the value function of (Pµ), and that the strategy ν̂ is optimal.

The optimal strategy ν̂ is Markovian in the agent’s state; this is unsurprising given the literature,
see, e.g., Theorem 1 in [GMS13], Proposition 3.9 in [CW18b], or Theorem 4 in [CF20]. Note,
however, that the time-t optimal strategy may depend on all common noise events that have
occurred up to time t, as Wt = (W1, . . . ,Wk) for t ∈ [Tk, Tk+1〉. In the following, we denote by P̂
the probability measure

P̂ , Pν̂

where ν̂ is the optimal control specified in Theorem 2.2.4. It follows from Lemma 2.1.3 that N ij

has P̂-intensity λ̂ij = {λ̂ijt }t∈[0,T ] for i, j ∈ S, i 6= j, where

λ̂ijt , Q
ij
(
t,Wt, µ(t,Wt), h

Xt−(t,Wt, µ(t,Wt), v(t,Wt))
)

for t ∈ [0, T ]. (2.14)

2.3 Equilibrium

Having solved the agent’s optimization problem (Pµ) for a given ex ante function µ, we now turn
to the resulting mean field equilibrium. We first identify the aggregate distribution resulting from
the optimal control.

Remark 2.3.1 (Mean Field Limit). This chapter generally adopts a “representative agent”
point of view; a justification of the notion of a mean field equilibrium is usually provided either
via convergence of Nash equilibria65 of symmetric N -player games in the limit N → ∞, or,
reversely, via regarding mean field equilibria as approximate Nash equilibria of corresponding
finite-player games with approximation error asymptotically vanishing as N →∞; see, among
others, [BHK14], [CW16], [DGG16], [Fis17], [BC18], [CF18], [CW18b], [CDLL19, Chapter 6]

65This celebrated concept is due to Nash, see [Nas50], and more explicitly spelled out, e.g., in §§1.1.2/2.1.2 in
[CD18a].
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[CP19a], [CDFP19], [DGG19] and [CF20]. In the setting of this chapter (albeit under additional
regularity conditions) a mean field limit justification can be provided along the lines of the proof
of Theorem 7 in [GMS13] by conditioning on common noise configurations, similarly as in the
proof of Theorem 2.3.4 below. We also refer to [BC18] for a recent alternative approach using
the master equation, which is stated in Appendix E for our setup. �

2.3.1 Aggregation

Given an ex ante aggregate distribution specified in terms of a regular, non-anticipative function
µ and a corresponding solution v of (DPµ) subject to (CCµ), (TCµ), Theorem 2.2.4 yields an
optimal strategy ν̂ for the agent’s optimization problem (Pµ). With P̂ denoting the probability
measure associated with ν̂, the resulting ex post aggregate distribution is then given by the
M-valued, G-adapted process M̂ = {M̂t}t∈[0,T ] defined via

M̂t , P̂(Xt ∈ · |Gt) for t ∈ [0, T ].

Equilibrium obtains if M̂t = µ(t,Wt) for all t ∈ [0, T ]. To proceed, we therefore aim for a more
explicit description of M̂ . Thus we define for k ∈ [1 :n] the map

Φk : Wn ×M×M→M, Φk(w,m, m̄) , m · Pk(w, m̄), (Φk)

where Pk : Wn ×M→ {0, 1}d×d is given by

P ijk (w, m̄) , 1{Ji(Tk,w1,...,wk,m̄)=j} for i, j ∈ S,

and we set
m0 , P(X0 ∈ · ) = P̂(X0 ∈ · ) ∈M.

Lemma 2.3.2. The process M̂ has càdlàg sample paths.

Proof. Since G is piecewise constant, this is immediate by dominated convergence and the fact
that X is càdlàg.

Lemma 2.3.3. Let µ : [0, T ]×Wn →M and v : [0, T ]×Wn → Rd be regular and non-anticipative,
and suppose that Y = {Yt}t∈[0,T ] is an M-valued stochastic process with dynamics

Yt = YTk +

∫ t

Tk

Ys · Q̂
(
s,Ws, µ(s,Ws), v(s,Ws)

)
ds for t ∈ [Tk, Tk+1〉 and k ∈ [0 :n] (2.15)

that satisfies the initial condition
Y0 = m0

and the consistency conditions

YTk = Φk

(
WTk , YTk−, µ(Tk−,WTk−)

)
for k ∈ [1 :n].

Then Y is G-adapted.
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Proof. We split the proof into two steps.

Step 1: Existence and uniqueness of Carathéodory solutions. For each k ∈ [0 :n] and w ∈ Wn,
since µ and v are regular and Q is bounded, the function

f : [Tk, Tk+1]× R1×d → R1×d, f(t, y) , y · Q̂
(
t, w, µ(t, w), v(t, w)

)
is measurable in the first and Lipschitz continuous in the second argument, and bounded on
[Tk, Tk+1]× BR(0) for each R > 0. Thus, using that µ, v and Q̂ are non-anticipative, classical
results, see Theorem I.5.3 in conjunction with Theorem I.5.2 in [Hal80]66, imply that there exists
a unique Carathéodory solution ϕ

y,wTk
k : [Tk, Tk+1〉 → R1×d of

ẏ(t) = y(t) · Q̂
(
t, wTk , µ(t, wTk), v(t, wTk)

)
for t ∈ [Tk, Tk+1〉, y(Tk) = y,

for every initial condition y ∈ R1×d.

Step 2: Y is G-adapted. First note that Y0 = m0 is clearly G0-measurable. Next, suppose that
YTk is GTk -measurable, and note that for t ∈ [Tk, Tk+1〉 we have Wt = WTk , so

Yt = YTk +

∫ t

Tk

Ys · Q̂
(
s,WTk , µ(s,WTk), v(s,WTk)

)
ds.

Thus from uniqueness in part (a) it follows that we have the representation

Yt = ϕ
YTk ,WTk
k (t) for t ∈ [Tk, Tk+1〉.

Hence Yt is GTk -measurable for all t ∈ [Tk, Tk+1〉. Finally, for each k ∈ [0 :n) the consistency
condition implies that YTk+1

= Φk+1(WTk+1
, YTk+1−, µ(Tk+1−,WTk+1−)) is GTk+1

-measurable, too,
so the claim follows by induction on k ∈ [0 :n].

We are now in a position to state and prove the promised aggregation result:

Theorem 2.3.4 (Aggregation). Let µ : [0, T ]×Wn →M be regular and non-anticipative with
µ(0) = m0. Suppose v is a solution of (DPµ) subject to (CCµ), (TCµ), and the representative agent
implements his optimal strategy ν̂ as defined in Theorem 2.2.4. Then the aggregate distribution
M̂ has the P̂-dynamics

dM̂t = M̂t · Q̂
(
t,Wt, µ(t,Wt), v(t,Wt)

)
dt for t ∈ [Tk, Tk+1〉, k ∈ [0 :n], (M)

and satisfies the initial condition
M̂0 = m0 (M0)

and the jump conditions

M̂Tk = Φk

(
WTk , M̂Tk−, µ(Tk−,WTk−)

)
for k ∈ [1 :n]. (Mk)

Proof. Let w ∈Wn be a common noise configuration. Since X is defined path by path, see (2.2)

66see also Theorems A.6 and A.7 as well as Remark A.8(a).
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and (2.3), we first note that X = Xw on {WT = w}, where Xw satisfies (2.2) and

Xw
Tk

= J
Xw
Tk−
(
Tk, wTk , µ(Tk−, wTk−)

)
for k ∈ [1 :n]. (2.16)

We define ζ(w) = {ζ(w)t}t∈[0,T ] via

ζ(w)t ,
∏
i,j∈S,
i 6=j

(
exp
{∫ t

0

(
1−Qij

(
s, ws, µ(s, ws), h

Xw
s−(s, ws, µ(s, ws), v(s, ws))

))
ds
}

×
∏

s∈(0,t],

∆N ij
s 6=0

Qij(s, ws, µ(s, ws), h
Xw
s−(s, ws, µ(s, ws), v(s, ws)))

)
.

Using analogous arguments as in Step 1 of the proof of Lemma 2.1.3 (see in particular (2.4) and
(2.7)), it follows that there exists a probability measure P̂w with density process

dP̂w

dP

∣∣∣∣
Ht

, ζ(w)t for t ∈ [0, T ],

where the filtration H = {Ht} is given by67

Ht , σ
(
X0, N

ij
s : s ∈ [0, t]; i, j ∈ S, i 6= j

)
∨N for t ∈ [0, T ].

Furthermore, in view of (2.4) and (2.14) we have

ζ(w) = E [θν̂ ] on {WT = w}. (2.17)

Step 1: Conditional Kolmogorov dynamics. Throughout Step 1, we fix a common noise con-
figuration w ∈ Wn. It follows exactly as in the proof of Lemma 2.1.3 (with P̂w in place of P̂)
that

P̂w � P, P̂w = P on σ(X0),

and that for i, j ∈ S, i 6= j, the process N ij is a counting process with (H, P̂w)-intensity

Qij
(
t, wt, µ(t, wt), h

Xw
t−(t, wt, µ(t, wt), v(t, wt))

)
for t ∈ [0, T ].

It follows from Lemma A.3 that for each z ∈ Rd the process Lw[z] = {Lwt [z]}t∈[0,T ],

Lwt [z] ,
∑
i,j∈S,
i 6=j

∫
(0,t]

1{Xw
s−=i} · (zj − zi)dwN̄ ij

s for t ∈ [0, T ],

is an (H, P̂w)-martingale, where w
N̄ ij = {wN̄ ij

t }t∈[0,T ] is given by

w
N̄ ij
t , N

ij
t −

∫ t

0
Qij
(
s, ws, µ(s, ws), h

Xw
s−(s, ws, µ(s, ws), v(s, ws))

)
ds, t ∈ [0, T ].

67Note that Ft = Gt ∨ Ht for all t ∈ [0, T ].
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Using Itō’s lemma and the fact that λ̂ijt = Q̂ij(t,Wt, µ(t,Wt), v(t,Wt)) on {Xt− = i} for t ∈ [0, T ]

by (2.14), we have for each z ∈ Rd, k ∈ [0 :n] and t ∈ [Tk, Tk+1〉

zX
w
t = z

Xw
Tk +

∑
i,j∈S,
i 6=j

∫
(Tk,t]

1{Xw
s−=i}

(
zX

w
s − zXw

s−
)
dN ij

s

= z
Xw
Tk +

∑
i,j∈S,
i 6=j

∫
(Tk,t]

1{Xw
s−=i}(z

j − zi)dwN̄ ij
s

+
∑
i∈S

∑
j∈S, j 6=i

∫ t

Tk

1{Xw
s =i} · Q̂ij(s, ws, µ(s, ws), v(s, ws))(z

j − zi)ds

= z
Xw
Tk + Lwt [z]− LwTk [z] +

d∑
i=1

∫ t

Tk

1{Xw
s =i} · Q̂i•(s, ws, µ(s, ws), v(s, ws)) · z ds.

Taking expectations with respect to P̂w and using Fubini’s theorem yields

Êw
[
zX

w
t
]

= Êw
[
z
Xw
Tk

]
+

d∑
i=1

∫ t

Tk

P̂w(Xw
s = i) · Q̂i•(s, ws, µ(s, ws), v(s, ws)) · z ds,

so with z = ei, i ∈ S, we get

P̂w(Xw
t = i) = P̂w(Xw

Tk
= i) +

d∑
j=1

∫ t

Tk

P̂w(Xw
s = j) · Q̂ji(s, ws, µ(s, ws), v(s, ws))ds. (2.18)

It follows from (2.18) that η(w) = {η(w)t}t∈[0,T ],

η(w)t , P̂w(Xw
t ∈ · ), t ∈ [0, T ] (2.19)

satisfies, for all i ∈ S and k ∈ [0 :n],

η(w)it = η(w)iTk +

∫ t

Tk

η(w)s · Q̂•i (s, ws, µ(s, ws), v(s, ws)) ds for t ∈ [Tk, Tk+1〉. (2.20)

Moreover, since P̂w = P on σ(X0) and Xw
0 = X0, η(w) satisfies the initial condition

η(w)0 = P̂w(Xw
0 ∈ · ) = P(Xw

0 ∈ · ) = P(X0 ∈ · ) = m0. (2.21)

Finally, we consider a common noise time t = Tk, k ∈ [1 :n], and note that for all i ∈ S the jump
condition (2.16) implies that

η(w)iTk = P̂w
(
Xw
Tk

= i
)

= P̂w
(
J
Xw
Tk−(Tk, wTk , µ(Tk−, wTk−)) = i

)
=

d∑
j=1

P̂w
(
J j(Tk, wTk , µ(Tk−, wTk−)) = i

∣∣Xw
Tk− = j

)
· P̂w(Xw

Tk− = j)

=
d∑
j=1

1{Jj(Tk,wTk ,µ(Tk−,wTk−))=i} · P̂
w(Xw

Tk− = j)
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=
d∑
j=1

P jik (wTk , µ(Tk−, wTk−)) · η(w)jTk− = Φi
k

(
wTk , η(w)Tk−, µ(Tk−, wTk−)

)
. (2.22)

Since η(WT ) =
∑

w∈Wn 1{WT=w} · η(w), in view of (2.20), (2.21) and (2.22) it follows from
Lemma 2.3.3 that the process η(WT ) is G-adapted.

Step 2: Identification of η(WT ). Recall that GT = σ(WT ) ∨N and let w ∈ Wn. For t ∈ [0, T ]

and i ∈ S we have by (2.6) and (2.17)

Ê
[
1{WT=w} · 1{Xt=i}

]
= E

[
1{WT=w} · 1{Xw

t =i} · Z ν̂T
]

= E
[
1{WT=w} · 1{Xw

t =i} · ζ(w)T · E [ϑ]T
]

=

n∏
k=1

(
|W| · κk(wk|w1, . . . , wk−1, µ(Tk−, wTk−))

)
· E
[
1{WT=w} · 1{Xw

t =i} · ζ(w)T
]

= |W|n · P̂(WT = w) · P(WT = w) · P̂w(Xw
t = i) = Ê

[
1{WT=w} · η(WT )it

]
,

where in the final line the first identity is due to Lemma 2.1.3 and P-independence of (ζ(w), Xw)

and GT ; and the second is due to (2.19) and the fact that P(WT = w) = 1/|W|n. Thus

P̂(Xt ∈ · |GT ) = η(WT )t P̂-a.s. for t ∈ [0, T ].

Step 3: Dynamics of M̂ . By Step 2 and the tower property of conditional expectation, we find
that for each i ∈ S and t ∈ [0, T ]

M̂ i
t = P̂(Xt = i|Gt) = Ê

[
Ê[1{Xt=i}|GT ]|Gt

]
= Ê

[
η(WT )it|Gt

]
= η(WT )it P̂-a.s.,

where the final identity is due to the fact that η(WT ) is G-adapted by Step 1 and Ê denotes
P̂-expectation. Since both M̂ and η(WT ) are càdlàg, it follows that M̂ = η(WT ) P̂-a.s., and (M),
(M0) and (Mk) follow from (2.20), (2.21) and (2.22).

As a by-product, the preceding proof yields the alternative representation

M̂t = P̂(Xt ∈ · |GT ) for t ∈ [0, T ] P̂-a.s.

Our proof relies on stochastic analysis; the traditional method to establish results of this type
uses arguments from continuous-time Markov chain theory. We briefly sketch that approach:
Since ν̂ is Markov, it can be argued using Theorem II.2.T6 in [Bré81] that, conditional on the
configuration w ∈Wn, N ij is an inhomogeneous Poisson process under P̂ with intensity

Q̂ij (t, wt, µ(t, wt), v(t, wt)) on the event {Xw
t− = i} for t ∈ [0, T ].

Similar arguments as in the construction of continuous-time homogeneous Markov chains, see,
e.g., [Nor97, p.89f.] or §9.1.2 in [Bré99], can be used to conclude that X is a Markov chain
under P̂w with the preceding jump intensities. The dynamics (M) are then derived using (time-
inhomogeneous versions of) classical results from Markov chain theory; see, e.g., §9.2.2 in [Bré99]
or Theorem 12.22 in [Kal02]. �
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2.3.2 Mean Field Equilibrium System

As discussed above, equilibrium obtains if the agents’ ex ante beliefs coincide with the ex post
outcome. This holds if and only if the ex post aggregate distribution process M̂ from (M) satisfies

P̂(Xt ∈ · |Gt) = M̂t
!

= Mt = µ(t,Wt) for all t ∈ [0, T ].

Naturally, we arrive at the following68

Definition 2.3.5 (Equilibrium System). A pair (µ, v) of regular and non-anticipative functions

µ : [0, T ]×Wn →M and v : [0, T ]×Wn → Rd

is called a rational expectations equilibrium, mean field equilibrium, or briefly an equilibrium, if for
all w ∈Wn

µ̇(t, w) = µ(t, w) · Q̂
(
t, w, µ(t, w), v(t, w)

)
(E1)

v̇(t, w) = −ψ̂
(
t, w, µ(t, w), v(t, w)

)
− Q̂

(
t, w, µ(t, w), v(t, w)

)
· v(t, w) (E2)

for t ∈ [Tk, Tk+1〉, k ∈ [0 :n], subject to the consistency conditions69

µ(Tk, w) = Φk

(
w, µ(Tk−, w)

)
(E3)

v(Tk−, w) = Ψk

(
w, µ(Tk−, w), v(Tk, · )

)
(E4)

for k ∈ [1 :n], and the initial/terminal conditions

µ(0, w) = m0 (E5)

v(T,w) = Ψ
(
w, µ(T,w)

)
. (E6)

We also refer to (E1)-(E6) as the equilibrium system. �

In combination, Theorem 2.2.4 and Theorem 2.3.4 demonstrate that, given a solution (µ, v) of the
equilibrium system, v represents the value function of the agent’s optimization problem (Pµ) with
ex ante aggregate distribution µ; and the ex post distribution resulting from the corresponding
optimal strategy is given by µ itself. Theorem 2.3.6 (see below) in turn guarantees existence of
such a solution (µ, v), so a mean field equilibrium obtains.
More precisely, under standard Lipschitz conditions, see Assumption D.1 in Appendix D, we have
the following existence result for the equilibrium system; the proof is reported in Appendix D
and a ramification of that of Theorem 6 in [CF20]; in particular, it is also based on Banach’s
fixed point theorem.

68For the corresponding initial-terminal value problem that pertains in the absence of common noise we refer, e.g.,
to §2.6 in [GMS13].

69With a slight abuse of notation, here and in the following we write

Φk(w,m) , Φk(w,m,m) for k ∈ [1 :n], w ∈Wn and m ∈ M,

where the right-hand side is defined in (Φk) above.
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Theorem 2.3.6 (Existence of Equilibria). Fix n ∈ N0 and let Assumption D.1 be satisfied. Then
there exists T ? > 0 such that for every time horizon T ≤ T ? and every choice of common noise
times 0 = T0 < T1 < · · · < Tn < Tn+1 = T there is a unique solution of the equilibrium system
(E1)-(E6).70

Proof. See Appendix D.

In summary, using Theorems 2.2.4 and 2.3.4 we can identify a mean field equilibrium with
common noise by producing a solution of the equilibrium system (E1)-(E6); under the conditions
of Theorem 2.3.6, a solution exists and can be computed numerically by a fixed-point iteration.
We provide some illustrations in Section 2.4; note that, in order to formulate a model within our
mean field setting, it suffices to specify:

• the agent’s state space S,

• the agent’s action space U,

• the common noise space W,

• the common noise times and the terminal time, 0 = T0 < T1 < · · · < Tn < Tn+1 = T ,

• transition intensities Q(t, w,m, u),

• transition kernels κk(wk|w1, . . . , wk−1,m),

• common noise jumps J(t, w,m),

• reward functions ψ(t, w,m, u) and Ψ(w,m).

2.4 Applications

Before we illustrate our results in three showcase examples, we briefly discuss our numerical
approach to the equilibrium system (E1)-(E6). (E1)-(E2) is a forward-backward system of 2d

ODEs with boundary conditions (E3)-(E6), coupled through the parameter w ∈Wn representing
common noise configurations. The special case n = 0 (no common noise) corresponds to the
setting of [GMS13] and [CF20], with the equilibrium system reducing to a single 2d-dimensional
forward-backward ODE. For n ≥ 1, the consistency conditions (E3)-(E4) specify initial conditions
for µ on [Tk, Tk+1〉 and terminal conditions for v on [Tk−1, Tk〉, k ∈ [1 :n]; since these conditions are
interconnected, there is in general no segment [Tk, Tk+1〉×Wn where the equilibrium system yields
both an explicit initial condition for µ and an explicit terminal condition for v, so we cannot simply
split the problem into subintervals. Rather, the equilibrium system can be regarded as a multi-
point boundary value problem where for each of the |W|k conceivable combinations of common noise
factors on [Tk, Tk+1〉, k ∈ [0 :n], we have to solve a coupled forward-backward system of ODEs in
2d dimensions, resulting in a tree of such systems of size

∑n
k=0 |W|k = |W|n+1−1

|W|−1 ∈ O(|W|n); see
Figure 2.2.

70Note that although Banach’s fixed-point theorem also yields uniqueness of the fixed point, the resulting mean field
equilibrium need not be unique unless the maximizer h in Assumption 2.2.1 is uniquely determined. For details
on uniqueness of mean field equilibria (in setups without a common noise) see also, e.g., §2 in [GMS13] or §4 in
[CF20].
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T0 = 0 T4 = TT1

W1 is revealed

T2

W2 is revealed

T3

W3 is revealed

Wt = () Wt = (W1) Wt = (W1,W2) Wt = (W1,W2,W3)

Figure 2.2: Illustration of all possible common noise paths (|W| = 2, n = 3): The tree of FBODEs.

Our approach to solving (E1)-(E6) is to rely on the probabilistic interpretation as a fixed-point
system, based on Theorem 2.3.6. Thus, starting from an initial flow of probability weights µ0(t, w),
(t, w) ∈ [0, T ] ×Wn, with µ0(0, w) = m0 for all w ∈ Wn, we solve (DPµ) subject to (TCµ) and
(CCµ) backward in time for all (non-negligible) common noise configurations w ∈Wn to obtain
the value v0(t, w), (t, w) ∈ [0, T ] ×Wn, of the agents’ optimal response to the given belief µ0.
This, in turn, is used to solve (M) subject to (M0) and (Mk) forward in time. As a result, we
obtain an ex post aggregate distribution µ1(t, w), (t, w) ∈ [0, T ]×Wn; we then iterate this with
µ1 in place of µ0, etc., and thus construct two sequences {µj}j∈N0 and {vj}j∈N0 .71 Note that
Theorem 2.3.6 guarantees the convergence of this methodology for appropriate parameter settings.

Our implementation of this fixed-point iteration is in Matlab;72 all relevant ODEs are solved
numerically using an explicit Euler scheme with equidistant step size (see below); and the iteration
is stopped with iteration index ι ∈ N and an approximate equilibrium (µι+1, vι) as soon as the
sum of the maximum pointwise difference between the respective current and last iterate of the
forward and the backward system is less than or equal to 10−4, i.e. we stop at iteration index
ι ∈ N as soon as

sup
(t,w)∈[0,T ]×Wn

‖µι(t, w)− µι−1(t, w)‖∞ + sup
(t,w)∈[0,T ]×Wn

‖vι(t, w)− vι−1(t, w)‖∞ ≤ 10−4.

71This approach was also chosen in the example treated in §7.2.3 in [CD18a], albeit without common noise.
72We use Matlab R2019b [Mat19]; no explicit parallelization; OS: Linux Mint 18.1 Serena.
Hardware: Intel Core i7-6700 CPU @ 3.40 GHz (4 cores) with 32 GiB RAM capacity.
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2.4.1 A Decentralized Agricultural Production Model

As a first (stylized) application we consider a mean field game of agents, each of which owns
(an infinitesimal amount of) arable land of identical size and quality within a given area; see
Figure 2.3 for a schematic illustration. If it is farmed, each field has a productivity f(wk) > 0

that depends on the common weather condition wk. For simplicity, we assume that weather is
either good, bad or catastrophic, so wk ∈ W , {↑, ↓, }, and changes at given common noise
times T1, . . . , Tn.
Each agent is in exactly one state i ∈ S , {0, 1} (hence, d = 2) depending on whether he has
entered the market and thus grows crops on his field (i = 1, the agent is a farmer) or not (i = 0,
the agent is a non-farmer).
The selling price p for his harvest depends on the aggregate production, and thus in particular
on the proportion m1 ∈ [0, 1] of farmers; the mean field interaction is transmitted through the
market price of the crop. We assume that p is a strictly decreasing function of overall production
f(wk) ·m1; see Figure 2.4 for illustration.

Figure 2.3: Stylized area of farmland with N = 9 separate
fields, k = 4 of which are farmed (crossed fields): The
overall production within the area is proportional to
k/N · f(wk) + N−k/N · 0 = k/N · f(wk).
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Figure 2.4: Price and instantaneous profit function of the agents (parameters as in Table 2.1).
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We assume that f(↑) ≥ f(↓) = f( ) ≥ 0. Moreover, on the catastrophic event {Wk =  } all
agents are reduced to being non-farmers, and thus

J i(t, w,m) ,

0 if t ∈ {T1, . . . , Tn}, t = Tk, wk =  ,

i else,

for (i, t, w,m) ∈ S× [0, T ]×Wn ×M. Each agent can make an effort u ∈ U , [0, 1] to become or
stop being a farmer, i.e. u models his propensity to change his current state; the intensity matrix
for state transitions is given by

Q(t, w,m, u) , u ·
[
−qentry qentry

qexit −qexit

]
for (t, w,m, u) ∈ [0, T ]×Wn ×M× U,

where qentry, qexit ≥ 0 are given maximum rates. The running rewards capture the fact that both
efforts to build up farming capacities and production itself are costly, while the sales of the crop
generate revenues; thus, for (t, w,m, u) ∈ [0, T ]×Wn ×M× U,

ψ0(t, w,m, u) , −1

2
centry · u2,

ψ1(t, w,m, u) , p
(
f(wk) ·m1

)
· f(wk)− cprod if t ∈ [Tk, Tk+1〉, k ∈ [0 :n],

where w0 , ↑ and centry, cprod > 0; for the profit function see also Figure 2.4. The terminal
reward is zero. It follows that the unique maximizer in Assumption 2.2.1 is given by

h0(t, w,m, v) =
[qentry

centry
(v1 − v0)+

]
∧ 1 and h1(t, w,m, v) =

0 if v1 ≥ v0,

1 else,

for (t, w,m, v) ∈ [0, T ]×Wn ×M× R2. �
We choose m1

0 , 10% for the initial amount of farmers, and report the relevant coefficients in
Table 2.1. Note that weather conditions can change at n = 4 common noise times Tk = k/5,
k = 1, . . . , 4.

The fixed-point iteration is initialized by

µ0(t, w) , e−λ(t−Tk) · µ0(Tk, w) +
(
1− e−λ(t−Tk)

)
·m(wk) for (t, w) ∈ [Tk, Tk+1〉 ×Wn, k ∈ [0 :n],

where µ0(Tk, w) ,

m0 if k = 0,

Φk(w, µ0(Tk−, w)) if k ∈ [1 :n];

it holds m(wk) = [1−m1(wk),m
1(wk)] ∈M with m1(wk) denoting the break-even proportion of

farmers given by the unique root of m1 7→ p
(
f(wk) ·m1

)
· f(wk)− cprod for wk ∈W;73 and λ , 10

determines how fast µ0( · , w) approaches m(wk) on each segment [Tk, Tk+1〉 ×Wn, k ∈ [0 :n].
The step size of the Euler scheme is set to 10−4.

Our results for the evolution of the mean field equilibrium are shown in Figures 2.5 through 2.8
for various common noise configurations w ∈Wn and the following two baseline models:

73For parameters as specified in Table 2.1 it holds m1(↑) = 7/9 and m1(↓) = m1( ) = 4/9; see Figure 2.4.
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Parameter T n Tk qentry, qexit f(↑) f(↓) p(q) cprod centry

Value 1 4 k/5 0.7 1 0.5 1/(1 + 3q) 0.3 0.1

Table 2.1: Model parameters Agricultural Production.

(nC) Catastrophic weather conditions do not occur; we use

κk( ↑ |w1, . . . , wk−1,m) , κk( ↓ |w1, . . . , wk−1,m) , 0.5

for all w ∈Wn and m ∈M.

(C) Catastrophic events are likely; we use

κk( ↑ |w1, . . . , wk−1,m) , 0.25,

κk( ↓ |w1, . . . , wk−1,m) , 0.25,

κk( |w1, . . . , wk−1,m) , 0.5

for all w ∈Wn and m ∈M.

Figures 2.5, 2.6 and 2.7 illustrate the resulting equilibrium proportions of farmers, optimal
actions, and market prices for some fixed common noise configurations. To illustrate the effect of
uncertainty about future weather conditions we also show, for each common noise configuration,
the theoretical perfect-foresight equilibria that would pertain if future weather conditions were
known; these are plotted using dashed lines in Figures 2.5 through 2.7, and the subscript ◦
indicates the relevant deterministic common noise path. Finally, Figure 2.8 illustrates the tree of
all possible equilibrium evolutions in model (C).

Note that the impact of common noise, i.e. uncertainty about future weather conditions, on the
equilibrium proportion of farmers is significant, see Figure 2.5: If catastrophic events cannot
occur, see model (nC), in case of consistently good weather conditions fewer agents become a
farmer as compared to the corresponding perfect-foresight equilibrium. This is due to the fact
that, as long as there are still unrevealed common noise factors, agents cannot foresee whether
currently advantageous weather conditions will also prevail in the future, and thus they behave
more cautious. Analogously, on the path of consistently bad weather conditions more of them
start farming than under perfect foresight since weather conditions might improve.
In comparison, when faced with a high probability of catastrophic events, see model (C), agents
are more hesitant to enter the market as their entire farming capacities are wiped out every time
a catastrophe occurs and therefore all previous efforts to become a farmer have been in vain in
this case. This is also reflected by the non-farmers’ optimal actions at times before the final
common noise factor is revealed, see Figure 2.6: If catastrophic events are likely, efforts to become
a farmer are smaller and decrease more steeply between the common noise times.
Finally, note that equilibrium prices are stochastically modulated by the prevailing weather
conditions, see Figure 2.7.
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Figure 2.5: Equilibrium proportion of farmers in models (nC) and (C).
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Figure 2.6: Equilibrium optimal action h0(t, w, µ(t, w), v(t, w)) of non-farmers in models (nC)
and (C).74

74Note that the respective mean field equilibrium is denoted by (µ, v).
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Figure 2.7: Equilibrium market price p(f(wk)·µ1(t, w)) for t ∈ [Tk, Tk+1〉, k ∈ [1 :n] in models (nC)
and (C).74
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Figure 2.8: Equilibrium proportion of farmers in model (C) for all possible common noise
configurations w ∈Wn.

2.4.2 An SIR Model with Random One-Shot Vaccination

Our second application example is a mean field game of agents that are confronted with the
spread of an infectious disease where our main focus is to illustrate the qualitative effects of
common noise on the equilibrium behavior of the system. We consider a classical SIR model
setup75 with S = {S, I,R} (hence, d = 3): Each agent can be either susceptible to infection (S),
infected and simultaneously infectious for other agents (I), or recovered and thus immune to
(re-)infection (R); see Figure 2.9.

S I R

infection

recovery

Figure 2.9: State space and transitions in the SIR model.

The infection rate is proportional to the prevalence of the disease, i.e. the percentage of currently
infected agents. Susceptible agents can make individual efforts of size u ∈ U , [0, 1) to protect

75see Remark 2.4.1 below for further details and related references.
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themselves against infection and thus reduce the intensity of infection. The transition intensities
are given by

Q(t, w,m, u) ,

 −qinf(t, w,m, u) qinf(t, w,m, u) 0

0 −qIR qIR

0 0 0


for (t, w,m, u) ∈ [0, T ]×Wn ×M×U, where qIR ≥ 0 denotes the recovery rate of infected agents
and the infection rate is given by

qinf(t, w,m, u) , qSI ·mI · (1− u) · 1{t<τ?}(w) for (t, w,m, u) ∈ [0, T ]×Wn ×M× U

with a given maximum rate qSI ≥ 0. The running reward penalizes both protection efforts and
time spent in the infected state; correspondingly, with cP, ψI ≥ 0 we set

ψS(t, w,m, u) , −cP
u

1− u, ψI(t, w,m, u) , −ψI, ψR(t, w,m, u) , 0

for (t, w,m, u) ∈ [0, T ]×Wn ×M× U; see Figure 2.10 for an illustration of ψS.
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Figure 2.10: Running re-
ward of susceptible agents:
Penalization for making pro-
tection efforts (parameters
as in Table 2.2).

In addition, we include the possibility of a one-shot vaccination that becomes available, simulta-
neously to all agents, at a random point of time τ? ∈ {T1, . . . , Tn} ⊂ (0, T ). We set W , {0, 1}
and identify the kth unit vector ek = (δjk)j∈[1:n] ∈ Wn, k ∈ [1 : n] with the indicator of the
event {τ? = Tk}. The event that no vaccine is available until T is represented by 0 ∈ Wn; we
set τ? , +∞ in this case.76, 77 If and when it is available, all susceptible agents are vaccinated
instantaneously, rendering them immune to infection; thus

JS(t, w,m) ,

R if t ∈ {T1, . . . , Tn}, t = Tk = τ?,

S otherwise
and J i(t, w,m) , i for i ∈ {I,R}

76Note that, with a slight abuse of notation, we omit the formal dependence on w in the notation τ?.
77The specification of κk, k ∈ [1 : n], below implies that τ? = +∞ is equivalent to w = 0 ∈ Wn P-a.s., i.e., the
configurations in Wn \

(
{0} ∪ {ek : k ∈ [1 :n]}

)
are P-negligible.
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for (t, w,m) ∈ [0, T ]×Wn×M. The probability of vaccination becoming available is proportional
to the percentage of agents that have already recovered from the disease. Thus, for k ∈ [1 :n],
w1, . . . , wk ∈W and m ∈M, we set

κk(1 |w1, . . . , wk−1,m) ,

α ·mR if w1, . . . , wk−1 = 0,

0 otherwise,

and κk(0 |w1, . . . , wk−1,m) , 1 − κk(1 |w1, . . . , wk−1,m) with α ∈ [0, 1]. As a consequence, for
all (i, t, w,m, v) ∈ S× [0, T ]×W×M×R3, a maximizer as required in Assumption 2.2.1 is given
by78

hS(t, w,m, v) ,


[
1−

√
cP

qSI·mI·(vS−vI)

]+
if vS > vI and mI > 0,

0 otherwise,

and hi(t, w,m, v) , 0 for i ∈ {I,R}. �

Remark 2.4.1 (SIR Models in the Literature). Note that, given the above specification of the
transition matrix Q, the forward dynamics (E1) within the equilibrium system (E1)-(E6) read as
follows:
µ̇S(t, w) = −qSI · µI(t, w) ·

(
1− hS(t, w, µ(t, w), v(t, w))

)
· 1{t<τ?}(w) · µS(t, w)

µ̇I(t, w) = qSI · µI(t, w) ·
(
1− hS(t, w, µ(t, w), v(t, w))

)
· 1{t<τ?}(w) · µS(t, w)− qIR · µI(t, w)

µ̇R(t, w) = qIR · µI(t, w).

Disregarding common noise, these constitute a ramification of the classical SIR dynamics, which
are a basic building block of numerous compartmental epidemic models in the literature; see,
among others, [Het00], [HLM14], [Mil17] or [GMS20] and the references therein. The SIR mean
field game with controlled infection rates, albeit without common noise, has recently been studied
in the independent article [EHT20];79 we also refer, e.g., to [LT15] and [DGG17] for mean field
models with controlled (instantaneous) vaccination or controlled vaccination rates, respectively;
see also the references therein. Mathematically similar contagion mechanisms also appear in, e.g.,
[KB16], [KM17], §7.2.3 in [CD18a], §7.1.10 in [CD18b], or §4.4 in [Wan19]. �

For our numerical results, the initial distribution of agents is given by m0 , (0.995, 0.005, 0.00),
and the model coefficients are reported in Table 2.2. Note that there are n = 1999 common noise
times Tk = k · 0.01, k = 1, . . . , 1999, at which a vaccine can be administered. The specifications of
qSI and qIR imply a basic reproduction number R0 , qSI/qIR = 15 in the absence of vaccination
and protection efforts.80

The fixed-point iteration81 is initialized by µ0(t, w) ≡ m0 for all (t, w) ∈ [0, T ] ×Wn; the step
size of the Euler scheme is set to 5 · 10−4.

78Note that for given w ∈ Wn the stated maximizer hS is unique for times t < τ?; otherwise its specification is
immaterial. The latter applies likewise to hI and hR.

79The authors study in particular the SIR mean field game with a controlled contact rate against the backdrop of
the COVID-19 pandemic in 2020; this contact rate has an equivalent effect as the above protection efforts since it
allows susceptible agents to reduce their social interactions and hence to mitigate their individual infection risk.

80see, e.g., §2.2 and §2.3 in [Het00] for further details.
81Note that in order to cope with the sheer number of n = 1999 common noise times our implementation must
disregard negligible branches appearing in the tree of FBODEs to be solved (cf. Figure 2.2).
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Parameter T n Tk α qSI qIR cP ψI

Value 10 1999 k · 0.01 0.1 7.5 0.5 25 100

Table 2.2: Coefficients in the SIR model.

Our results for the mean field equilibrium distributions of agents µ and the corresponding optimal
protection efforts of susceptible agents hS are displayed in Figures 2.11 through 2.14 for different
common noises configurations, i.e. vaccination times τ?.82 As in Section 2.4.1, we also display the
corresponding (theoretical) perfect-foresight equilibria, marked by the subscript ◦.
Note that an agent’s running reward is the same in state S with zero protection effort and in state
R; agents are penalized relative to these in state I and hence aim to avoid that state. Susceptible
agents can reach the state R of immunity by two ways: First, they can become infected and
overcome the disease; second, they can be vaccinated and jump instantly from state S to state R.
While the first alternative is painful, the second comes at no cost and is hence clearly preferable.
However, as the availability of a vaccine cannot be directly controlled by the agents, they can only
protect themselves against infection at a certain running cost until the vaccine becomes available.

Figures 2.11 to 2.14 demonstrate that the possibility of vaccination as a common noise event can
dampen the spread of the disease and lower the peak infection rate. This is due to an increase in
agents’ protection efforts during the time period when the proportion of infected agents is high.
By contrast, in the perfect-foresight equilibria where the vaccination date is known, agents do
not make substantial protection efforts until the vaccination date is imminent, see Figures 2.12,
2.13 and 2.14; in the scenario without vaccination, see Figure 2.11, protection efforts are only
ever made by a very small fraction of the population. With perfect foresight, the agents’ main
rationale is to avoid being in state I when the vaccine becomes available. This highlights the
importance of being able to model the vaccination date as a (random) common noise event.
Finally, observe that our numerical results indicate convergence to the stationary distribution
µ̄ = (0, 0, 1) ∈M, showing that the model is able to capture the entire evolution of an epidemic.

82The displayed protection efforts are given by hS(t, w, µ(t, w), v(t, w)) where (µ, v) denotes the respective mean
field equilibrium.
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Figure 2.11: Equilibrium distribution and protection effort for τ? = +∞: Mean field game with
common noise (top) and corresponding perfect-foresight equilibrium (bottom).
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Figure 2.12: Equilibrium distribution and protection effort for τ? = 2.5: Mean field game with
common noise (top) and corresponding perfect-foresight equilibrium (bottom).
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Figure 2.13: Equilibrium distribution and protection effort for τ? = 5: Mean field game with
common noise (top) and corresponding perfect-foresight equilibrium (bottom).
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Figure 2.14: Equilibrium distribution and protection effort for τ? = 7.5: Mean field game with
common noise (top) and corresponding perfect-foresight equilibrium (bottom).
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2.4.3 Evacuation of a Room with Randomly Opening Doors

As our final application example, we consider a population of agents located inside a room that
has two doors. Formally, the agents’ positions are represented by the state space

S , S� ∪ {xout� , xout� }

where S� , [1 :r]2 is the set of positions inside the room and xout� , xout� /∈ S� are outside positions;83

two distinguished inside positions xin� , xin� ∈ S� represent the locations of the doors; see Figure 2.15
for an illustration of the setup.84
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Figure 2.15: State space S = S� ∪
{xout� , xout� } where S� = [1 : 5]2 with
xin� = (3, 5) and xin� = (3, 1), xout� = (3, 6)
and xout� = (3, 0).

The two doors of the room are assumed to be stochastically modulated by a common noise. More
precisely, whether a door is open or not depends on the outcome of a coin toss: Initially, on
[0, T1〉 both doors are closed; later on, at each time Tk, a coin is tossed to decide which one of
the two is open on [Tk, Tk+1〉, k ∈ [1 :n]. The set of possible common noise factors is thus set to
W , {↑, ↓}, such that on the event {Wk = ↑} the upper door xin� is open during [Tk, Tk+1〉, while
on {Wk = ↓} the lower door xin� is open on [Tk, Tk+1〉. The coin tosses are assumed to be fair and
independent, i.e. i.i.d. Bernoulli(0.5)-distributed, and hence we set

κk(wk|w1, . . . , wk−1,m) , 0.5, for w1, . . . , wk ∈W, m ∈M, k ∈ [1 :n].

For two inside positions x, y ∈ S� we write x y if y can be reached from x with one (vertical,
horizontal or diagonal) step, see Figure 2.16. For the two outside positions xout� , xout� we write
x xout� if and only if x = xin� and x xout� if and only if x = xin� .
We let U , [0, 1]8 represent the set of feasible actions, where u` represents the effort to move in

83Note that the specification of S involves a slight abuse of notation and corresponds to a total of d , r2 + 2 states.
84Similar setups have already been considered in the literature on continuous-state mean field games for modeling
crowd dynamics; see, e.g., [LW11].
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direction ` ∈ [1 :8]. The transition intensities are given by

Qxy(t, w,m, u) , λmax · u` ·
(
1− (my)α · 1y∈S�

)
if x y by action ` ∈ [1 :8]

and Qxy(t, w,m, u) , 0 otherwise, where y ∈ S, y 6= x, (x, t, w,m, u) ∈ S× [0, T ]×Wn ×M× U;
with α ∈ (0, 1] the factor (1− (my)α · 1y∈S�) captures a pushback effect for moving to crowded
inside positions, and λmax > 0 denotes the maximum intensity for a single state transition.
Moreover, at common noise times there are no jumps of the state process, i.e. it holds Jx(t, w,m) ,

x for (x, t, w,m) ∈ S× [0, T ]×Wn ×M.

Figure 2.16: Possible directions of movement.

The agents’ preferences are such that they prefer being outside the room, and such that large
efforts to change their positions are penalized. Correspondingly, with Cψ1 , C

ψ
2 , C

Ψ > 0 we set

ψx(t, w,m, u) , −C
ψ
1

2
·

8∑
`=1

u2
` + Cψ2 · 1x/∈S� and Ψx(w,m) , CΨ · 1x/∈S�

for (x, t, w,m, u) ∈ S× [0, T ]×Wn×M×U. As a consequence, for all (x, t, w,m, v) ∈ S× [0, T ]×
W×M× Rd the unique maximizer in Assumption 2.2.1 is given by

hx(t, w,m, v)` =
[λmax

Cψ1
·
(
1− (my)α · 1y∈S�

)
· (vy − vx)+

]
∧ 1 if x y by action `

and hx(t, w,m, v)` , 0 otherwise, for ` ∈ [1 :8]. �
The relevant model parameters are given in Table 2.3. Note that there are n = 4 common noise
events revealed at times Tk , k/5, k = 1, . . . , 4.

We initialize the fixed-point iteration for (E1)-(E6) by µ0(t, w) ≡ m0 for all (t, w) ∈ [0, T ]×Wn,
and we set the step size of the Euler scheme to 5 · 10−3.

Our results for the mean field equilibrium distributions of agents are displayed in Figures 2.17
through 2.19 and 2.21 through 2.23 for various common noise configurations w ∈Wn and initial
distributions m0 ∈M. Exemplarily, for each of the resulting distributions in Figures 2.19 and 2.23
we also provide an illustration of the equilibrium distribution in the corresponding game without
incorporation of the pushback effect mentioned above; see Figures 2.20 and 2.24, respectively.85

85We wish to point out that without the pushback effect there is no mean field interaction in the game anymore.
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Parameter T n Tk r mid xin� xin� λmax α Cψ CΨ

Value 1 4 k/5 21 (r + 1)/2 (mid, r) (mid, 1) 5 0.3 (2.5, 10) 100

Table 2.3: Model parameters Evacuation.

Note that, throughout the entire game, agents have the desire to leave the room since only staying
outside is continuously and terminally rewarded. At the same time, due to common noise, they
are confronted with doors opening at random, i.e. they cannot foresee through which door they
can leave the room after the next coin toss. Therefore and for reasons of symmetry, the initial
field of agents either splits, see Figures 2.17 through 2.19 and 2.21, or merges, see Figures 2.22
and 2.23, into two groups each of which aims to leave the room through one specific door.
Furthermore, observe that the specification of the transition intensities includes a pushback effect
that renders efforts to move to crowded inside positions less effective than those aimed at less
occupied target positions. As a consequence, compared to the corresponding game85 without that
effect, the majority of agents in each of the two groups moves at a slower pace and the percentage
of agents that ultimately reach the outside positions is considerably lower; compare Figures 2.19
and 2.20, or 2.23 and 2.24, respectively.
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Figure 2.17: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↓, ↓, ↑, ↑);
m0 is the (conditional) uniform distribution on [4 :r − 3]× {mid}.
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Figure 2.18: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↓, ↓, ↓, ↓)
and m0 = U(S�).
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Figure 2.19: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↑, ↓, ↑, ↓)
and m0 = δ(mid,mid).
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Figure 2.20: Equilibrium aggregate distribution of agents in the (non-mean field) game85 without
a pushback effect corresponding to Figure 2.19.
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Figure 2.21: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↑, ↑, ↑, ↑)
and m0 = δ(mid,mid).
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Figure 2.22: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↑, ↑, ↑, ↓);
m0 puts 50% mass each on (mid− 3,mid) and (mid + 3,mid).
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Figure 2.23: Equilibrium aggregate distribution of agents at t ∈ {Tk : k ∈ [0 :5]} for w = (↓, ↑, ↑, ↓);
m0 puts 25% mass on each of the four corners of the room.



2.4. Applications 83

Figure 2.24: Equilibrium aggregate distribution of agents in the (non-mean field) game85 without
a pushback effect corresponding to Figure 2.23.
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Conclusion and Outlook

In summary, this chapter has developed a rigorous framework for continuous-time mean field
games with finitely many states and common noise. We have provided a rigorous probabilistic
construction of the agents’ state dynamics, and we have proved a verification theorem for the
representative agents’ optimization problems given their ex ante beliefs, an aggregation theorem
for the resulting dynamics of the ex post aggregate distribution of agents and an existence result
for the resulting mean field equilibrium system. Moreover, we have highlighted the impact of
common noise effects in three benchmark application examples.

For future research we think that combining our model with that of [CW18b] is a natural next
step leading to a unified probabilistic approach to extended finite-state mean field games with
common noise; this would allow agents to interact not only via the aggregate distribution of
their states, but rather also via the aggregate distribution of their controls, and conceivably, via
a source of common noise, pave the way for finite-state price impact models with mean field
interactions.86

Moreover, it would be of interest to carry out a probabilistic analysis of finite-state mean field
games that include a source of common noise described by an independent continuous-time
Markov chain. For related recent developments using the master equation we refer, e.g., to
[BLL19].

86For further details on price impact models we refer, e.g., to §1.3.2 in [CD18a] or [CJ19b] (see also [CJ19a]) and the
references therein.



Chapter 3

A Heuristic Approach to Discrete-Time
Impulse Control

Impulse control problems constitute a major branch of continuous-time stochastic optimal control
theory. As opposed to continuous or singular control, they provide a means to model discrete
interventions in a continuous-time stochastic process and naturally include the possibility of
charging fixed costs for such impulses. Unsurprisingly, this class of stochastic control problems
provides the appropriate mathematical concept of formalization in many application contexts;
examples include portfolio optimization with transaction costs ([EH88], [Kor98], [BP00], [ØS02],
[IS06], [PS07], [BC19]), optimal consumption and investment problems ([Liu04], [ARS17]), in-
ventory control and cash management ([CR78], [HST83], [HSZ17]), optimal control of exchange
rates ([Kor97], [MØ98], [CZ00]), index tracking ([BK98]), stochastic forest growth and timber
harvesting ([Wil98], [Alv04]), optimal control of dividends ([AV06]), and other fields of research
in applied probability theory, economics and finance; one may also consult [Kor99] or Part II in
[Sto09] for an overview.

From a theoretical point of view, continuous-time impulse control problems are tackled in different
ways: As their corresponding dynamic programming equation is given by a quasi-variational
inequality (QVI), a nonlocal and highly nonlinear partial differential equation (see, e.g., [BL84],
[Dav93, §54] or [ØS05, Chapter 6]), a vast body of literature studies either classical or viscosity
solutions thereof; see, e.g., [TY93], [GW09], [Sey09], [DGW10], [BEM13], [CG13]. For numerical
methods for related Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) we refer
to the recent papers [AF16] and [ABL18] as well as the references therein. On the other hand,
impulse control is also related to iterated optimal stopping problems (see, e.g, [ØS05, Chapter 7],
[Men80], [Men87], [BCS17]), and there is a characterization of the corresponding value function in
terms of superharmonic functions available in the literature (see, e.g., [Chr14], [BCS17], [BC19]).

In this chapter, however, we consider an impulse control problem in a discrete-time setup with
finite time horizon. Such problems have already been addressed in the literature in case of an
infinite time horizon; see, e.g., [Ste86] and [Ben08]. Based on the work of Bensoussan [Ben08] who
has introduced the concept of a quasi-variational inequality in discrete time, we first reformulate
the classical Bellman equation of stochastic optimal control for the considered problem in terms
of such a discrete-time QVI. The derivation of this alternative formulation of the dynamic

85
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programming principle strongly relies on the impulsive nature of interventions; more precisely,
every non-trivial action the controller takes to intervene in the state dynamics has strictly positive
fixed costs that are uniformly bounded away from zero across time, states and (non-trivial) actions.
Hereafter, we prove a corresponding verification theorem, including an explicit specification of an
optimal impulse control in terms of the standard concepts of a continuation and an intervention
region. This strategy, in turn, serves as our starting point to heuristically devise a self-learning
algorithm based on policy iteration that aims to approximate the value function of our problem.

Regarding its implementation we are most prominently confronted with the following two issues:
On the one hand, especially in case of an infinite state space, a both suitable and computationally
tractable spatial discretization has to be found; on the other hand, emerging (conditional)
expectations have to be estimated.
Both of these problems have already been identified and studied in the literature, but are still
the subject of ongoing research: The first one has already been addressed for optimal stopping
problems, usually in the context of pricing American or Bermudan option, leading to concepts
such as weighted stochastic meshs; see, e.g., [BGH00], [Gla03, §8.5], [BG04a], [LH09], [AJ13] and
[BKS19]; moreover, quantization-based techniques have been developed for optimal stopping and
control problems; see, e.g., [BP03], [PPP04a] and [PPP04b] as well as the references therein.
The second issue is often approached by regression-based Monte Carlo methods; see, e.g., [LS01],
[GY04], [BP17a], [BP17b] and [BLMP19].
Furthermore, note that in recent years stochastic control problems have also attracted interest in
the area of machine learning; cf., among others, [HE16] and [HPBL18, BHLP19].
Partially inspired by those ideas, the implementation of our theoretical algorithm sets up a
hierarchy of levels and combines policy iteration and non-nested Monte Carlo simulation with
interpolation based on stochastic nodes adapted to the underlying problem; thus, by exploiting
information acquired from previous levels, it explores the state space of the problem by itself
and successively learns the behavior of the optimally controlled state process. The developed
heuristics of combining policy iteration, non-nested Monte Carlo simulation and an exploration
strategy that adapts to the structure of the underlying problem constitutes the core contribution
of this chapter.

The remainder of this chapter is organized as follows: In Section 3.1 we introduce the theoretical
setup and the considered impulse control problem. Section 3.2 establishes a reformulation of the
classical Bellman equation in terms of a discrete-time QVI and provides a corresponding verification
theorem. In Section 3.3 we state and discuss our algorithm and sketch its implementation. Finally,
Section 3.4 considers the classical problem of impulse control of Brownian motion and provides
some numerical examples that showcase the effectiveness of our algorithm; underlining the
heuristic core contribution of this chapter, we conclude with an outlook on issues to be addressed
in future research.
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3.1 Theoretical Setup

To start with, we provide an informal description of the addressed stochastic control problem. We
work on the discrete time interval [0 :T ] and assume that the controller’s state process {Xα

t } takes
values in a measurable state space X; it is driven by a process {Zt} of exogenous stochastic shocks
consisting of i.i.d. random variables; and his control {αt} is interpreted to be of impulsive nature
in that at each time instant t ∈ [0 :T ) he can decide to intervene and in turn to change the location
of his state process while incurring at least positive fixed impulse costs. More precisely, at time
t ∈ [0 :T ) he can decide to move his state from Xα

t to ξ(Xα
t , αt) at a cost of c(t,Xα

t , αt), before
the next random shock Zt+1 propagates this post-jump state to Xα

t+1 = φ(t, ξ(Xα
t , αt), Zt+1) at

time t+ 1. In this way, the controller aims to maximize his performance functional

E
[ T−1∑
t=0

(
ψ(t, ξ(Xα

t , αt))− c(t,Xα
t , αt)

)
+ Ψ(Xα

T )
]

over feasible choices of strategies {αt} where ψ and Ψ are suitable running and terminal reward
functions, respectively.

In the remainder of this section, we provide a rigorous mathematical formulation of this problem.87

3.1.1 State Space and Dynamics

Throughout, we fix some time horizon T ∈ N and consider the discrete time interval [0 :T ].88

We work on a probability space (Ω,F,P) that carries a finite sequence {Zt}t∈[1:T ] of i.i.d. random
variables that attain their values in a measurable noise space (Z,Z); each of them is regarded as an
exogenous source of noise or a stochastic shock and their distribution is denoted by µ , P(Z ∈ · )
where we set Z , Z1 for later reference. The corresponding flow of information is thus modeled
by the filtration {Ft}t∈[0:T ] defined by

Ft , σ (Zs : s ≤ t) for t ∈ [0 :T ].

The state space is given by some non-empty measurable space (X,X); the controller’s feasible
actions are chosen to be a subset of a measurable action space (A,A); see below.
Given some initial configuration (t, x) ∈ [0 : T ] × X, the state process Xt,x;α = {Xt,x;α

s }s∈[t:T ]

starting in state x ∈ X at time t ∈ [0 :T ] is defined to obey the dynamics89

Xt,x;α
t = x and Xt,x;α

s+1 = φ
(
s, ξ
(
Xt,x;α
s , αs

)
, Zs+1

)
for s ∈ [t :T ), (3.1)

87Large parts of the model setup to be described below are standard in the literature; see, e.g., Chapter 2 in [Ber76],
Chapter 8 in [BS78], Chapter 2 in [BR11] or §1.2 in [Sei11]. With regard to notation we mainly rely on the latter
reference.

88Of course, upon simple reformulation of the stochastic control problem specified below, this includes the case of a
time grid Π = [0 = t0, t1, . . . , tN = T ] ⊂ [0, T ] for some real-valued time horizon T > 0; see also Section 3.4 below.

89Whenever it is clear from the context, we drop the part of the upper index concerning the initial configuration and
simply write Xα instead of Xt,x;α.
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which is subject to a control process α ∈ A′(t, x) that is chosen by the controller. Here,

A′(t, x) ,
{
{αs}s∈[t:T ) : α is {Fs}s∈[t:T )-adapted, αs ∈ Γ(s,Xα

s ) ∀s ∈ [t :T )
}

denotes the set of pre-admissible controls or strategies;90 the set-valued map

Γ : [0 :T )× X→ 2A

therein specifies the set of feasible actions given a time-space configuration, i.e. at (t, x) ∈ [0 :T )×X
the actions within the set Γ(t, x) ⊆ A are considered feasible. The actions of the controller affect
the state process at (t, x) via the measurable jump-to-state map

ξ : X× A→ X,

in that, given a feasible action a ∈ Γ(t, x), the state x ∈ X is immediately, i.e. at time t,
transformed into y = ξ(x, a) ∈ X; correspondingly, an action a is also referred to as an impulse to
the system. We assume that there is some action � ∈ A that is always feasible, i.e. � ∈ Γ(t, x)

for all (t, x) ∈ [0 :T )× X, and models the controller’s inaction, i.e.

ξ(x,�) ≡ x for all x ∈ X.

For later reference we set Γ◦(t, x) , Γ(t, x) \ {�} and note that A′(t, x) 6= ∅ for all (t, x) ∈ [0 :

T )× X. Finally, the function
φ : [0 :T )× X× Z→ X

is assumed to be measurable and describes the intertemporal transition of states, i.e. given some
instant of time t ∈ [0 :T ), some state y ∈ X and a random shock z ∈ Z, the subsequent state at
time (t+ 1) is computed to be φ(t, y, z) ∈ X. Note that the map φ is beyond the control of the
controller.

The dynamics of the state process is schematically illustrated in Figure 3.1.

3.1.2 Stochastic Control Problem and Value Function

Given an initial configuration (t, x) ∈ [0 :T )× X, the controller chooses an admissible strategy
within the set A(t, x) to be described below; thereby, he specifies an impulse to intervene in the
state process via the map ξ. More precisely, given a feasible action a ∈ Γ(t, x) he moves the state
process from x to ξ(x, a) at time t; see above. In doing so, he incurs intervention costs of size
c(t, x, a) specified the map

c : [0 :T )× X× A→ [0,∞),

which satisfies
c(t, x,�) ≡ 0 and c(t, x, a) > 0 whenever a ∈ Γ◦(t, x)

90The terms control and strategy are used synonymously in the following.
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t− 1 t t+ 1

. . .

ξ(Xα
t−1, αt−1)

φ
(
t− 1, ξ(Xα

t−1, αt−1), Zt
)

= Xα
t

ξ(Xα
t , αt)

Xα
t+1

. . .

ξ φ ξ φ ξ

Xα
t−1

ξ(Xα
t+1, αt+1)

Figure 3.1: Dynamics of the state process.

for (t, x) ∈ [0 :T )× X.91 As the state process is driven by exogenous random shocks described by
the process {Zs}s∈(t:T ] via the state transition map φ and since both are beyond the control of
the controller, his actions thus only affect the current spatial position of the state process at time
t ∈ [0 :T ) with strictly positive costs in case of intervention. These are precisely the features that
render our setup an analogue of continuous-time impulse control problems in discrete time.

Given (t, x) ∈ [0 :T ]× X, his goal is to maximize the following performance functional over the
set of admissible controls:

J (t, x;α) , E
[ T−1∑
s=t

(
ψ(s, ξ(Xα

s , αs))− c(s,Xα
s , αs)

)
+ Ψ(Xα

T )
]
−→

α∈A(t,x)
max! (C)

The functions
ψ : [0 :T )× X→ R and Ψ : X→ R

model the controller’s running and terminal reward, respectively; both are assumed to be
measurable; and the set of admissible controls or strategies90 for a given initial configuration
(t, x) ∈ [0 :T )× X is defined by

A(t, x) ,

{
α ∈ A′(t, x) : E

[ T−1∑
s=t

(
ψ(s, ξ(Xα

s , αs))− c(s,Xα
s , αs)

)−
+ Ψ(Xα

T )−
]
<∞

}
.

Note that the latter refinement of A′(t, x) guarantees that the emerging expectations in (C) are
well-defined and take values in (−∞,∞] – provided an admissible strategy α exists at all.

The controller’s value function is thus given by92

v? : [0 :T ]× X→ [−∞,∞], v?(t, x) , sup
α∈A(t,x)

J (t, x;α). (3.2)

91For a more concrete set of requirements see Assumption 3.2.3 below.
92We stick to the common convention sup∅ , −∞.
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Observe from (3.2) that, due to the sup over a potentially uncountably infinite set, the value
function v? may fail to be measurable. �
As regards the stated integrability conditions in the definition of A(t, x), we simplify our consid-
erations and require the following assumption to hold throughout this chapter:

Assumption 3.1.1. For all (t, x) ∈ [0 :T )× X it holds A(t, x) = A′(t, x). �

Note that the latter assumption in particular implies A(t, x) 6= ∅ for all (t, x) ∈ [0 :T )× X since
the trivial strategy α = {�}s∈[t:T ) is clearly admissible, i.e. it is always admissible to let the state
dynamics run uncontrolled.93

Sufficient conditions for Assumption 3.1.1 to hold include suitable (growth) conditions on the
model coefficients; more precisely, existence of an upper bounding function is sufficient; see
Definition 2.4.1 in [BR11]; the relevant conditions read as follows in our setup:

Remark 3.1.2 (Upper Bounding Function). Suppose that there is a measurable map $ : X→
[0,∞) such that for all (t, x) ∈ [0 :T )× X and a ∈ Γ(t, x) it holds

Ψ(x)− ∨ ψ(t, ξ(x, a))− ∨ c(t, x, a) ≤ κ1 ·$(x) and (3.3)

E
[
$(φ(t, ξ(x, a), Z))

]
≤ κ2 ·$(x), (3.4)

where κ1, κ2 ∈ [0,∞) are nonnegative constants. Then one readily shows along the lines of the
proof of Proposition 2.4.2 in [BR11] that Assumption 3.1.1 is satisfied. Note in particular that
(3.3) and (3.4) are trivially fulfilled if the cost function c is bounded and the reward functions ψ
and Ψ are lower bounded. �

As feedback strategies will be of frequent use below, we further note in this regard:

Remark 3.1.3 (Feedback Strategies). Let that Assumption 3.1.1 be satisfied and (t, x) ∈ [0 :

T )× X be an initial configuration. Suppose that a : [t :T )× X→ A is a measurable map such
that a(s, y) ∈ Γ(s, y) for all (s, y) ∈ [t :T )× X. We recursively define

Xt , x and αt , a(t,Xt), as well as αs , a
(
s,Xs

)
for s ∈ (t :T ),

where Xs , φ(s− 1, ξ(Xs−1, αs−1), Zs) for s ∈ (t :T ].
(3.5)

Then α is an admissible strategy, i.e. α = {αs}s∈[t:T ) ∈ A(t, x), and it holds X = Xt,x;α; see (3.1).
We refer to α as the feedback strategy corresponding to a.
Whenever we are given a measurable function a as above we just write αs = a(s,Xα

s ) for s ∈ [t :T )

and implicitly assume that the strategy α ∈ A(t, x) is constructed recursively as outlined in
(3.5). �

To conclude this section, observe that every feedback strategy renders the state process Markov:
For (t, x) ∈ [0 :T )×X and a feedback strategy given by αs = a(s,Xα

s ), s ∈ [t :T ), for a measurable
map a as in Remark 3.1.3, by (3.1) and due to independence of Zs and Fs−1 ⊇ FX

α

s−1 for s ∈ (t :T ]

we obtain for any bounded measurable function f : X→ R the identity

E
[
f(Xα

s )
∣∣Xα

t , . . . , X
α
s−1

]
= E

[
f
(
φ(s− 1, ξ(Xα

s−1, a(s− 1, Xα
s−1)), Zs)

)∣∣Xα
t , . . . , X

α
s−1

]
93One may also consult Proposition 1.9 in [Sei11] for a similar consideration.



3.2. Reformulation of the Dynamic Programming Equation 91

= E
[
f
(
φ(s− 1, ξ(Xα

s−1, a(s− 1, Xα
s−1)), Zs)

)∣∣Xα
s−1

]
= E

[
f(Xα

s )
∣∣Xα

s−1

]
.

Hence, the state process Xα is a Markov process; correspondingly, in view of problem (C), it is
also referred to as a Markov decision process.94

3.2 Reformulation of the Dynamic Programming Equation

In this section we state the classical Bellman equation and reformulate it to obtain a discrete-time
quasi-variational inequality (QVI) in the spirit of Bensoussan [Ben08]; within a suitable space of
candidate functions and under standard assumptions, each of them has at most one solution that,
in case of existence, coincides with the value function of problem (C), see (3.2).

3.2.1 The Bellman Principle and a Classical Verification Theorem

The classical Bellman or dynamic programming equation for the given stochastic optimal control
problem (C) reads as follows:

v(t, x) = sup
a∈Γ(t,x)

{
ψ(t, ξ(x, a))− c(t, x, a) +

∫
Z
v
(
t+ 1, φ(t, ξ(x, a), z)

)
µ(dz)

}
for (t, x) ∈ [0 :T )× X,

v(T, x) = Ψ(x) for x ∈ X.

(DP)

For integrals occurring in (DP) to be well-defined, suitable measurability and integrability
conditions must be imposed; hence, in the remainder of this chapter, we consider (DP) for
functions within the candidate space

V ,
{
v : [0 :T ]× X→ R

∣∣ v is measurable and∫
Z
v
(
t+ 1, φ(t, ξ(x, a), z)

)−
µ(dz) <∞

for all (t, x) ∈ [0 :T )× X and a ∈ Γ(t, x)
}
.

Thus, the classical Bellman principle states that a solution of (DP) can be identified with the
value function of (C), provided that the supremum in (DP) is attained; more precisely, the
following standard verification theorem holds:

Theorem 3.2.1 (Verification via (DP)). Let Assumption 3.1.1 be satisfied and v ∈ V be a function
that solves the Bellman equation (DP). Additionally, assume that there exists a measurable
maximizer, i.e. a measurable function a? : [0 :T )× X→ A such that for all (t, x) ∈ [0 :T )× X it
holds a?(t, x) ∈ Γ(t, x) and

v(t, x) = ψ(t, ξ(x, a?(t, x)))− c(t, x, a?(t, x)) +

∫
Z
v(t+ 1, φ(t, ξ(x, a?(t, x)), z))µ(dz). (3.6)

94For a more detailed account on Markov decision processes we refer, e.g., to Chapter 4 in [Put94] or Chapter 2 in
[BR11].
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Then v = v? is the value function of problem (C) and a corresponding optimal strategy α? ∈ A(t, x)

is given by

α?s , a
?(s,Xα?

s ) =

a?(t, x) for s = t,

a?
(
s, φ(s− 1, ξ(Xα?

s−1, α
?
s−1), Zs)

)
for s ∈ (t :T ).

(3.7)

Proof. The stated result is standard given the literature on discrete-time stochastic optimal
control; it is readily shown by backward induction. We refer, e.g., to the discussion in §2.3, in
particular to Theorem 2.3.7, in [BR11].

Put differently, equation (DP) has at most one solution within V that admits a measurable
maximizer in the sense of (3.6); in case of existence, its unique solution is the (measurable) value
function of problem (C). Sufficient conditions for the required measurable maximizer to exist
can be obtained in similar fashion as the ones tailored to the second verification equation (QVI)
below; see Section 3.2.3.

3.2.2 A Verification QVI in Discrete Time

A reformulation of (DP) for discrete-time impulse control problems with infinite time horizon in
terms of a QVI is due to Bensoussan [Ben08]. In order to adapt this result to our setup and for
later reference we define the following standard operators in analogy to §4.2 in [Ben08]:

Definition 3.2.2 (Maximum and Continuation Operator). Let v : [0 :T ]× X→ [−∞,∞] be a
function and (t, x) ∈ [0 :T ]× X. We define the maximum operator M by95

M[v](t, x) ,

supa∈Γ◦(t,x)

{
v(t, ξ(x, a))− c(t, x, a)

}
if (t, x) ∈ [0 :T )× X,

Ψ(x) else;

moreover for v ∈ V we define by

C[v](t, x) ,

ψ(t, x) +
∫
Z v(t+ 1, φ(t, x, z))µ(dz) if (t, x) ∈ [0 :T )× X,

Ψ(x) else

the continuation operator C. �

Observe thatM is a nonlocal operator and thatM[v] may attain the values ±∞, even if v itself is
R-valued; furthermore, note that the condition v ∈ V guarantees that C[v] : [0 :T ]×X→ (−∞,∞]

is well-defined. Clearly, the integral in the definition of C can be interpreted as an expectation:
Since µ = P(Z ∈ · ) it holds C[v](t, x) = ψ(t, x) + E[v(t+ 1, φ(t, x, Z))] for (t, x) ∈ [0 :T )×X and
v ∈ V.

95Note that the concept of a maximum/intervention operator is standard in the literature on impulse control;
see also, e.g., (30) in [Ste86], Definition 6.1 in [ØS05] or (4) in [BCS17]. One should bear in mind that the
maximum operatorM as defined here excludes � and only considers “nontrivial” actions, i.e. those specified by
the correspondence Γ◦; see also §4.2 in [Ben08].
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Note that with the help of these operators, for a function v ∈ V the Bellman equation (DP) can
be equivalently rewritten as

v(t, x) =M[C[v]](t, x) ∨ C[v](t, x) for all (t, x) ∈ [0 :T ]× X. (DP)

The following set of assumptions, similar to those stated in (4) in [Ben08],96 will prove to be
sufficient to reformulate (DP) in terms of a discrete-time QVI in the spirit of [Ben08]; see
Theorem 3.2.5 below.

Assumption 3.2.3. For every (t, x) ∈ [0 :T )× X we assume the following requirements to be
satisfied:

(a) Each action a ∈ Γ◦(t, x) has positive, uniformly lower bounded fixed costs, i.e. there is some
c0 > 0 and a measurable function c1 : [0 :T ) × X × A → [0,∞) satisfying c1(t, x,�) = 0

such that
c(t, x, a) = c0 · 1Γ◦(t,x)(a) + c1(t, x, a) for all a ∈ Γ(t, x).

(b) For every a ∈ Γ◦(t, x) and every a′ ∈ Γ◦(t, ξ(x, a)) there is some a⊕ a′ ∈ Γ◦(t, x) such that
it holds

• direct accessibility: ξ(x, a⊕ a′) = ξ(ξ(x, a), a′) and

• subadditivity: c1(t, x, a⊕ a′) ≤ c1(t, x, a) + c1(t, ξ(x, a), a′).

x ξ(x, a)

ξ(ξ(x, a), a′) = ξ(x, a⊕ a′)

a ∈ Γ◦(t, x)

a′ ∈ Γ◦(t, ξ(x, a))Γ◦(t, x) 3 a⊕ a′

Figure 3.2: Concatenation of actions.

Condition (b) is illustrated in Figure 3.2. Note that the diagram does not commute when taking
costs into account: Due to incurred fixed costs, a single direct action is always more favorable
than a concatenation of two separate ones. �
As a direct consequence we obtain the following auxiliary result:

Lemma 3.2.4 (No Multiple Interventions). Let Assumption 3.2.3 be satisfied, v : [0 :T ]×X→ R
be a function and (t, x) ∈ [0 :T )× X. Then for all a ∈ Γ◦(t, x) and a′ ∈ Γ◦(t, ξ(x, a)) it holds

v(t, ξ(ξ(x, a), a′))− c(t, ξ(x, a), a′) ≤M[v](t, x) + c(t, x, a)− c0.

96The conditions stated below are widespread in the literature on impulse control; see also, e.g., §1 and (C4) in
[Ste86] or Definition 1.7 in [Die09].
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In particular, we have

M[v](t, ξ(x, a)) ≤M[v](t, x) + c(t, x, a)− c0 for every a ∈ Γ◦(t, x).

Proof. Let a ∈ Γ◦(t, x) and a′ ∈ Γ◦(t, ξ(x, a)). Using Assumption 3.2.3(b) we fix some action
a⊕ a′ ∈ Γ◦(t, x) and observe that

v(t, ξ(ξ(x, a), a′))− c(t, ξ(x, a), a′)

= v(t, ξ(x, a⊕ a′))−
(
c(t, ξ(x, a), a′) + c(t, x, a)

)
+ c(t, x, a)

= v(t, ξ(x, a⊕ a′))−
(
2c0 + c1(t, ξ(x, a), a′) + c1(t, x, a)

)
+ c(t, x, a)

≤ v(t, ξ(x, a⊕ a′))− c(t, x, a⊕ a′)− c0 + c(t, x, a) ≤M[v](t, x) + c(t, x, a)− c0, (3.8)

as desired. If Γ◦(t, ξ(x, a)) = ∅, the second part of the assertion is trivially satisfied since we
have M[v](t, ξ(x, a)) = −∞ in this case; otherwise it follows by taking sup with respect to
a′ ∈ Γ◦(t, ξ(x, a)) in the preceding inequality (3.8).

Now we are in a position to establish the announced reformulation of the classical dynamic
programming equation (DP) in terms of a discrete-time QVI. The proof of the following result is
a ramification of the arguments provided in §4.3 in [Ben08].

Theorem 3.2.5 (Quasi-Variational Inequality). Suppose that Assumption 3.2.3 is satisfied and
let v ∈ V. Then v solves (DP) if and only if it solves the equation

v(t, x) =M[v](t, x) ∨ C[v](t, x) for all (t, x) ∈ [0 :T ]× X. (QVI)

Note that (QVI) can be rewritten as

min
{
v(t, x)− C[v](t, x), v(t, x)−M[v](t, x)

}
= 0 for (t, x) ∈ [0 :T ]× X, (QVI)

which strongly resembles the usual formulation considered in continuous-time impulse control;
see, e.g., (3) in [BCS17]. �

Proof of Theorem 3.2.5. Observe that solutions of (DP) and (QVI) coincide at time t = T as
well as at all configurations (t, x) ∈ [0 :T )×X for which Γ◦(t, x) = ∅ is satisfied; the latter is due
to the fact that in this case we haveM[v](t, x) =M[C[v]](t, x) = −∞.
Furthermore note that in any case and for every t ∈ [0 :T ) we have C[v](t, · ) ≤ v(t, · ) whence for
all (t, x) ∈ [0 :T )× X it holds

M[C[v]](t, x) = sup
a∈Γ◦(t,x)

{C[v](t, ξ(x, a))− c(t, x, a)}

≤ sup
a∈Γ◦(t,x)

{v(t, ξ(x, a))− c(t, x, a)} =M[v](t, x). (3.9)

Throughout the remainder of this proof we fix some (t, x) ∈ [0 :T )× X such that Γ◦(t, x) 6= ∅,
and we split the proof into two steps:

Step 1: Sufficiency. Suppose that v solves (QVI). We distinguish two cases:
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Case 1: It holds v(t, x) = M[v](t, x). Let ε ∈ (0, c0/2) and approximate the sup within the
definition ofM from below, i.e. let aε ∈ Γ◦(t, x) be some action such that

v(t, x) < v(t, ξ(x, aε))− c(t, x, aε) + ε. (3.10)

We claim that it holds
v(t, ξ(x, aε)) = C[v](t, ξ(x, aε)). (3.11)

To prove (3.11), suppose to the contrary that it is not valid. Note that we then have v(t, ξ(x, aε)) >

C[v](t, ξ(x, aε)) and thus v(t, ξ(x, aε)) = M[v](t, ξ(x, aε)) ∈ R since v ∈ V solves (QVI); in
particular it follows Γ◦(t, ξ(x, aε)) 6= ∅. Hence, by the same token as for (3.10) there is some
action a′ε ∈ Γ◦(t, ξ(x, aε)) such that

v(t, ξ(x, aε)) < v(t, ξ(ξ(x, aε), a
′
ε))− c(t, ξ(x, aε), a′ε) + ε. (3.12)

As a consequence, we obtain from (3.10), (3.12) and Lemma 3.2.4 that

M[v](t, x) = v(t, x) < v(t, ξ(ξ(x, aε), a
′
ε))− c(t, ξ(x, aε), a′ε)− c(t, x, aε) + 2ε

≤M[v](t, x)− c0 + 2ε <M[v](t, x),

where the final inequality follows since ε ∈ (0, c0/2). This is a contradiction. Thus, equation
(3.11) must be valid and together with (3.10) it implies

v(t, x) < C[v](t, ξ(x, aε))− c(t, x, aε) + ε ≤M[C[v]](t, x) + ε.

Since ε ∈ (0, c0/2) was arbitrary, we can send ε ↓ 0 and obtain v(t, x) ≤ M[C[v]](t, x). On
the other hand, by (3.9) we have M[C[v]](t, x) ≤ M[v](t, x) = v(t, x), and thus v(t, x) =

M[C[v]](t, x) =M[C[v]](t, x) ∨ C[v](t, x), where the latter identity is due to (QVI). Hence (DP)
is satisfied at (t, x).

Case 2: It holds v(t, x) = C[v](t, x). From (3.9) and (QVI) we conclude that M[C[v]](t, x) ≤
M[v](t, x) ≤ v(t, x). Thus, we get v(t, x) = C[v](t, x) =M[C[v]](t, x) ∨ C[v](t, x), whence also in
this case (DP) is satisfied at (t, x).

Step 2: Necessity. Suppose that v solves (DP). Moreover assume thatM[v](t, x) > v(t, x). By
definition ofM and since Γ◦(t, x) 6= ∅ there is some action a0 ∈ Γ◦(t, x) such that

M[v](t, x) ≥ v(t, ξ(x, a0))− c(t, x, a0) > v(t, x). (3.13)

Suppose that v(t, ξ(x, a0)) = C[v](t, ξ(x, a0)). Then it follows from (3.13) and (DP) that

v(t, x) < C[v](t, ξ(x, a0))− c(t, x, a0) ≤M[C[v]](t, x) ≤ v(t, x),

a contradiction. Hence (DP) yields v(t, ξ(x, a0)) =M[C[v]](t, ξ(x, a0)), and Lemma 3.2.4 thus
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implies that

v(t, ξ(x, a0)) =M[C[v]](t, ξ(x, a0)) ≤M[C[v]](t, x) + c(t, x, a0)− c0. (3.14)

With the help of (3.13), (3.14) and (DP) we conclude, in turn, that

v(t, x) < v(t, ξ(x, a0))− c(t, x, a0) ≤M[C[v]](t, x)− c0 ≤ v(t, x)− c0 < v(t, x),

a contradiction. It follows thatM[v](t, x) ≤ v(t, x) and we distinguish two cases again:

Case 1: It holds v(t, x) =M[C[v]](t, x). Then, using (3.9), we obtain v(t, x) ≤M[v](t, x) ≤ v(t, x)

and thus from (DP) further that v(t, x) =M[v](t, x) =M[v](t, x) ∨ C[v](t, x) which establishes
(QVI) in this case.

Case 2: It holds v(t, x) = C[v](t, x). In this case, (QVI) follows immediately as M[v](t, x) ≤
v(t, x) = C[v](t, x).

Hence, as desired, (DP) and (QVI) are equivalent.

Our goal is to use Theorem 3.2.5 to identify (QVI) as another verification equation for the
considered impulse control problem (C). To this end, we make use of the standard concepts of a
continuation and an intervention region:97

Definition 3.2.6 (Continuation and Intervention Region). Given the value function v? of problem
(C), see (3.2), the set

C ,
{

(t, x) ∈ [0 :T )× X : v?(t, x) >M[v?](t, x)
}

is called its continuation region, whereas

I ,
{

(t, x) ∈ [0 :T )× X : v?(t, x) =M[v?](t, x)
}

is said to be its intervention region. �

In view of (QVI), we thus obtain the following verification theorem as an analogue of Theo-
rem 3.2.1:

Corollary 3.2.7 (Verification via (QVI)). Let Assumptions 3.1.1 and 3.2.3 be satisfied and
assume that v ∈ V is a solution of (QVI). Furthermore suppose thatM admits a measurable
maximizer in the sense that there exists a measurable function g? : [0 :T )× X→ A such that for
all (t, x) ∈ [0 :T )× X it holds g?(t, x) ∈ Γ◦(t, x) and

M[v](t, x) = v(t, ξ(x, g?(t, x)))− c(t, x, g?(t, x)). (3.15)

Then v = v? is the value function of (C) and an optimal impulse control is given by

α?s , a
?(s,Xα?

s ) = 1C(s,Xα?

s ) ·�+ 1I(s,Xα?

s ) · g?(s,Xα?

s ) for s ∈ [t :T ). (3.16)

97These concepts are standard in the literature on continuous-time impulse control; see, e.g., (17) and (18) in
[BCS17].
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Sufficient conditions for existence of g? in (3.15) will be stated below; see Assumption 3.2.9 and
Proposition 3.2.10. �

Proof of Corollary 3.2.7. Since v ∈ V solves (QVI), first note that Theorem 3.2.5 implies that it
is also a solution of (DP). Furthermore, by (3.15) the mapM[v] : [0 :T ]× X→ R is measurable
and thus the following candidate sets are measurable as well:

Cv ,
{

(t, x) ∈ [0 :T )× X : v(t, x) >M[v](t, x)
}

(3.17)

is said to be the candidate continuation set based on v, whereas

Iv ,
(
[0 :T )× X

)
\ Cv =

{
(t, x) ∈ [0 :T )× X : v(t, x) =M[v](t, x)

}
(3.18)

denotes the corresponding candidate intervention set ; note that the second identity in (3.18) is
valid due to (QVI); by the same token, we have v(t, x) = C[v](t, x) for (t, x) ∈ Cv.

Based on the above candidate sets, we define the measurable action map

a? : [0 :T )× X→ A, a?(t, x) , 1Cv(t, x) ·�+ 1Iv(t, x) · g?(t, x) (3.19)

and aim to prove that it provides a measurable maximizer for (DP) as required by (3.6). To this
end, we fix some (t, x) ∈ [0 :T )× X, note that a?(t, x) ∈ Γ(t, x) and distinguish the following two
cases:

(a) For (t, x) ∈ Cv we have a?(t, x) = � and v(t, x) = C[v](t, x). Thanks to (DP) it follows that

sup
a∈Γ◦(t,x)

{
C[v](t, ξ(x, a))− c(t, x, a)

}
=M[C[v]](t, x) ≤ v(t, x)

= C[v](t, x) = C[v](t, ξ(x, a?(t, x)))− c(t, x, a?(t, x)).

(3.20)

(b) For (t, x) ∈ Iv we have a?(t, x) = g?(t, x) ∈ Γ◦(t, x) and v(t, x) =M[v](t, x). From Step 1,
Case 1 in the proof of Theorem 3.2.5 it follows that

sup
a∈Γ◦(t,x)

{
C[v](t, ξ(x, a))− c(t, x, a)

}
=M[C[v]](t, x) = v(t, x) =M[v](t, x).

On the other hand, we obtain with Lemma 3.2.4 and (3.15) that

M[v](t, ξ(x, a?(t, x))) ≤M[v](t, x) + c(t, x, a?(t, x))− c0

= v(t, ξ(x, a?(t, x)))− c0 < v(t, ξ(x, a?(t, x))),

whence (t, ξ(x, a?(t, x))) ∈ Cv. As a result and thanks to (QVI) and (3.15) it follows that

C[v](t, x) ≤ v(t, x) = sup
a∈Γ◦(t,x)

{
C[v](t, ξ(x, a))− c(t, x, a)

}
=M[C[v]](t, x)

=M[v](t, x) = v(t, ξ(x, a?(t, x)))− c(t, x, a?(t, x))

= C[v](t, ξ(x, a?(t, x)))− c(t, x, a?(t, x)). (3.21)
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Hence, in both cases, see (3.20) and (3.21), we have

a?(t, x) ∈ arg max
a∈Γ(t,x)

{
C[v](t, ξ(x, a))− c(t, x, a)

}
,

and thus, as v solves (DP), it holds

v(t, x) =M[C[v]](t, x) ∨ C[v](t, x)

= sup
a∈Γ(t,x)

{
C[v](t, ξ(x, a))− c(t, x, a)

}
= C[v]

(
t, ξ(x, a?(t, x))

)
− c(t, x, a?(t, x)),

as required by (3.6). Thus, the claim follows from Theorem 3.2.1, and we obtain v = v?. As a
consequence, it holds Cv = C as well as Iv = I, and using (3.19) in (3.7) yields that (3.16) defines
an optimal impulse control.

Note that the specification of an optimal impulse control in (3.16) above literally explains the
terms continuation and intervention region, respectively. However, note also that the following
alternative definitions of the candidate continuation and intervention region (replacing (3.17) and
(3.18), respectively) serve just as well to establish Corollary 3.2.7:

Remark 3.2.8. Let v ∈ V be a solution of (QVI) and suppose that the assumptions of Corol-
lary 3.2.7 are satisfied. Instead of Cv and Iv, consider the sets

C′v ,
{

(t, x) ∈ [0 :T )× X : v(t, x) = C[v](t, x)
}

(3.17’)

and
I′v ,

(
[0 :T )× X

)
\ C′v =

{
(t, x) ∈ [0 :T )× X : v(t, x) > C[v](t, x)

}
. (3.18’)

Since, thanks to (QVI), for (t, x) ∈ [0 :T )× X it holds both

(t, x) ∈ C′v ∪ Cv ⇒ v(t, x) = C[v](t, x) and (t, x) ∈ I′v ∪ Iv ⇒ v(t, x) =M[v](t, x),

the arguments used in the proof of Corollary 3.2.7 remain valid and the corresponding adaption
of a? in (3.19) and α? in (3.16), respectively, yields an optimal impulse control as well.

Note that C′v ⊇ Cv and hence Iv ⊇ I′v; furthermore we have (Cv4C′v) ∪ (Iv4I′v) = (C′v \ Cv) ∪
(Iv \ I′v) ⊆ {(t, x) ∈ [0 :T )× X : C[v](t, x) =M[v](t, x)}.
Thus, loosely speaking, the only difference between the two definitions is that the strategy α? in
(3.16) intervenes less often if C′v and I′v are used instead of Cv and Iv: While for the latter definition
interventions are already performed if (t, x) ∈ C′v ∩ Iv, i.e. if C[v](t, x) = v(t, x) =M[v](t, x), for
the former one the strict inequality v(t, x) > C[v](t, x) needs to be satisfied.

However, note that an analogous replacement of C and I in Definition 3.2.6 is in general not
possible as v? may fail to be measurable and hence C[v?] need not be well-defined. �

3.2.3 Excursion: Existence of a Measurable Maximizer

As already promised above and in a setup general enough for our purposes, we provide a set of
sufficient conditions to establish existence of a measurable maximizer g? as required by (3.15) in
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Corollary 3.2.7:

Assumption 3.2.9. We suppose that the following conditions are met:

(a) X ∈ B(Rd) is a measurable subset of Rd, where d ∈ N, and X = B(X).

(b) A ∈ B(Re) is a closed subset of Re, where e ∈ N, and A = B(A).

Furthermore we assume that for every t ∈ [0 :T ) it holds:

(c) The set-valued function Γ◦(t, · ) : X→ 2A is both nonempty- and compact-valued; further-
more it is continuous in the sense that it is both upper and lower hemicontinuous at every
x ∈ X, i.e.98

• for all sequences {xn}n∈N ∈ XN, {an}n∈N ∈ AN satisfying limn→∞ xn = x and an ∈
Γ◦(t, xn) for all n ∈ N there exists a subsequence {nj}j∈N and some a ∈ Γ◦(t, x) such
that limj→∞ anj = a (upper hemicontinuity), and

• for every sequence {xn}n∈N ∈ XN satisfying limn→∞ xn = x and every a ∈ Γ◦(t, x)

there exists some subsequence {nj}j∈N and elements anj ∈ Γ◦(t, xnj ) for each j ∈ N
such that limj→∞ anj = a (lower hemicontinuity). �

Now standard results imply existence of a measurable maximizer g?:

Proposition 3.2.10. Let v : [0 : T ] × X → R be a measurable function and suppose that
Assumption 3.2.9 is satisfied. Moreover assume for every t ∈ [0 :T ) that the function

Graph(Γ◦(t, · )) 3 (x, a) 7→ v(t, ξ(x, a))− c(t, x, a) ∈ R

is continuous, where Graph(Γ◦(t, · )) , {(x, a) ∈ X × A : a ∈ Γ◦(t, x)}. Then there exists
a measurable function g? : [0 : T ) × X → A such that for all (t, x) ∈ [0 : T ) × X it holds
g?(t, x) ∈ Γ◦(t, x) and

M[v](t, x) = v(t, ξ(x, g?(t, x)))− c(t, x, g?(t, x)).

Proof. Until further notice, we fix some t ∈ [0 : T ). Under the stated assumptions, Berge’s
Maximum Theorem (see, e.g., Theorem 17.31 in [AB06]) yields that the functionM[v](t, · ) is
R-valued and continuous and satisfies

M[v](t, x) = max
a∈Γ◦(t,x)

{
v(t, ξ(x, a))− c(t, x, a)

}
for x ∈ X;

moreover, by the same result, the set-valued map of maximizers

G?(t, · ) : X→ 2A, G?(t, x) ,
{
a ∈ Γ◦(t, x) : v(t, ξ(x, a))− c(t, x, a) =M[v](t, x)

}
is nonempty- and compact-valued and upper hemicontinuous. This, in turn, allows us to apply
the Kuratowski-Ryll-Nardzewski Selection Theorem (see, e.g., Theorem 18.13 in [AB06])99 to

98This version of the definition of hemicontinuity is derived from Definition 17.2 and Theorems 17.20/21 in [AB06].
99For its requirement of G?(t, · ) to be weakly measurable in the sense of [AB06, Definition 18.1] we resort to both
[AB06, Lemma 17.4] and [AB06, Lemma 18.2.1].
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conclude that the set-valued map G?(t, · ) admits a measurable selector g?(t, · ) : X → A. As
a consequence there is a measurable map g? : [0 :T )× X → A satisfying g?(t, x) ∈ G?(t, x) for
every (t, x) ∈ [0 :T )× X, i.e.

v(t, ξ(x, g?(t, x))− c(t, x, g?(t, x)) =M[v](t, x) for all (t, x) ∈ [0 :T )× X,

as desired.

As an immediate consequence of the latter result, we obtain existence of a measurable maximizer
g? in the situation of Corollary 3.2.7 if Assumption 3.2.9 is satisfied and the considered solution
v ∈ V of (QVI) as well as the cost function c are such that the required continuity condition is
fulfilled. �
For a general and comprehensive account of the theory of (measurable) correspondences we refer,
e.g., to Chapters 17 and 18 in [AB06]; a Theorem of the Maximum is also discussed in §3.3 in
[SL89]; and for measurable selection one may also consult [Sch74].

3.3 A Self-Learning Monte Carlo Algorithm

In this section we introduce and investigate the announced algorithm to tackle problem (C). We
discuss both its theoretical background as well as an approach to a numerical implementation.
While the former is essentially based on the concept of policy iteration, see Section 3.3.1, the
latter additionally resorts to Monte Carlo simulation and builds up a hierarchy of stochastic
interpolation nodes in order to successively learn the behavior of the optimally controlled state
process, see Section 3.3.2 for details. Note that the developed heuristics of combining policy
iteration, non-nested Monte Carlo simulation and an exploration strategy that adapts to the
structure of the underlying problem constitutes the core contribution of this chapter.100

Throughout this section we suppose that Assumptions 3.1.1 and 3.2.3 are satisfied.

3.3.1 Theoretical Aspects

From a theoretical point of view we propose the following policy iteration-based algorithm (3.22)-
(3.24) in order to attack problem (C), i.e. to approximate its value function v?. It consists of
levels ` = 0, 1, . . . , and is inspired by the optimal impulse control (3.16) based on a solution of
the verification equation (QVI) (see Corollary 3.2.7): Pretending that v`−1 is a solution, for every
` ∈ N the iteration steps below construct optimal actions similarly as in (3.19) and evaluate the
resulting strategy in order to assign it a value v`. The individual steps are as follows:

The algorithm is initialized with the function v0 : [0 :T ]× X→ R defined by

v0(t, x) , C[v0](t, x) for t = T, T − 1, . . . , 0, x ∈ X, (3.22)

and subsequently constructs the functions v` for ` ≥ 1 inductively in two steps:

100For details on policy iteration we refer, e.g., to Chapter 4 in [How60], §6.4 in [Put94] or §1.2 in [Sei11].
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(a) Policy Improvement: For every (t, x) ∈ [0 :T )× X compute g?` (t, x) ∈ Γ◦(t, x) such that101

g?` (t, x) ∈ arg max
a∈Γ◦(t,x)

{
v`−1(t, ξ(x, a))− c(t, x, a)

}
. (3.23)

(b) Policy Evaluation: If t = T define v`(T, x) , Ψ(x) for x ∈ X; otherwise proceed backward
in time, i.e. t = T − 1, . . . , 0, and set for x ∈ X

v`(t, x) ,

C[v`](t, x) if v`−1(t, x) >M[v`−1](t, x),

C[v`](t, x) ∨
(
C[v`](t, ξ(x, g?` (t, x)))− c(t, x, g?` (t, x))

)
otherwise.

(3.24)

Recall from Definition 3.2.2 that C[v`](t, x) = ψ(t, x)+E[v`(t+1, φ(t, x, Z))] for (t, x) ∈ [0 :T )×X
and ` ∈ N0; thus the backward recursions in (3.22) and (3.24) are both explicit.102 �
Let us briefly comment on how this (theoretical) algorithm works: It is initialized with the value
v0 of the trivial strategy α0 = {�}, i.e. α0

s = � for all relevant s, that leads to the uncontrolled
state process Xα0 . Then, for ` ∈ N, with v`−1 being the available approximation of the value
function of problem (C), the algorithm computes an optimal intervention action g?` (t, x) ∈ Γ◦(t, x)

for each (t, x) ∈ [0 :T )×X. Afterwards, using v`−1 as a basis of decision-making, it decides either
to not carry out this intervention in case that it is considered to result in a lower value, or it
implements the computed action in the opposite case. Finally, the resulting policy is consistently
evaluated in a manner inspired by classical backward induction or reward iteration,103 with an
additional comparison of values corresponding to inaction and intervention, respectively, if the
policy suggests the latter of these two options. �

From a more abstract point of view the iterative construction of levels v`−1 7→ v`, ` ∈ N, given by
(3.23) and (3.24) can be regarded as the application of an operator T : V → V,104 i.e. it holds
v` = T [v`−1] for ` ∈ N, and hence the above algorithm can be regarded as a fixed-point iteration
corresponding to T . Thus, to justify its correctness, it suffices to show that a fixed point of this
operator coincides with the value function of problem (C).

To do so, we make use of the following auxiliary result that is interesting on its own as it rules
out multiple interventions on each level of the above algorithm:

Lemma 3.3.1 (No Multiple Interventions). Let Assumption 3.2.3 be fulfilled and suppose that the
operator T : V→ V is well-defined.104 Then the sequence {v`}`∈N0 ∈ VN0 satisfying v` = T [v`−1]

for ` ∈ N as specified by (3.22)-(3.24) satisfies

101We assume tacitly that the maximizer maps g?` , ` ∈ N, exist and that they are measurable; see also Footnote 104
below for further details. Note that then it holds v`−1(t, ξ(x, g?` (t, x)))− c(t, x, g?` (t, x)) =M[v`−1](t, x).

102With regard to potential integrability issues, we refer to Footnote 104 below.
103see, e.g., §4.2 in [Put94] or Theorem 2.3.4 in [BR11].
104To fix ideas and avoid technical subtleties, throughout this section we implicitly assume that the operator T is

well-defined; this includes appropriate integrability assumptions as well as the existence of suitable measurable
maximizers as required by (3.23). To this end and for instance, note that conditions similar to the ones stated in
Remark 3.1.2 (e.g., replace ( · )− with | · | in (3.3)) and Assumption 3.2.9 along with suitable continuity conditions
(as, e.g., stated in Proposition 3.2.10) need to be imposed. For a related discussion of such conditions for the
classical Bellman equation (DP) we refer, e.g., to §2.4 in [BR11].
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v`(t, ξ(x, g
?
` (t, x))) = C[v`](t, ξ(x, g?` (t, x))) whenever v`−1(t, x) ≤M[v`−1](t, x)

for ` ∈ N and (t, x) ∈ [0 :T )× X.

Proof. Let ` ∈ N and (t, x) ∈ [0 :T )× X such that v`−1(t, x) ≤ M[v`−1](t, x). Note from (3.23)
that a? , g?` (t, x) ∈ Γ◦(t, x) satisfies v`−1(t, ξ(x, a?))− c(t, x, a?) =M[v`−1](t, x). Hence, Lemma
3.2.4 yields

M[v`−1](t, ξ(x, a?)) ≤M[v`−1](t, x) + c(t, x, a?)− c0

= v`−1(t, ξ(x, a?))− c0 < v`−1(t, ξ(x, a?)),

and thus by (3.24) it holds v`(t, ξ(x, a?)) = C[v`](t, ξ(x, a?)), as desired.

We are now in a position to prove correctness of our (theoretical) algorithm:

Proposition 3.3.2 (Fixed-Point Property). Let Assumptions 3.1.1 and 3.2.3 be fulfilled and
suppose that the operator T : V → V is well-defined.104 If v ∈ V is a fixed point of T then it
holds v = v?, i.e. v coincides with the value function of problem (C).

Proof. Using (3.24) first note that v(T, · ) ≡ Ψ; for (t, x) ∈ [0 :T )×X we distinguish the following
two cases:

1. Suppose we have v(t, x) >M[v](t, x). Then it follows from (3.24) that v(t, x) = C[v](t, x) =

C[v](t, x) ∨M[v](t, x).

2. Suppose we have v(t, x) ≤ M[v](t, x).105 Let a? , g?(t, x) ∈ Γ◦(t, x) and observe from
Lemma 3.3.1 that v(t, ξ(x, a?)) = C[v](t, ξ(x, a?)).106 Thus it follows with (3.23) and (3.24)
that

v(t, x) = C[v](t, x) ∨
(
C[v](t, ξ(x, a?))− c(t, x, a?)

)
= C[v](t, x) ∨ (v(t, ξ(x, a?))− c(t, x, a?)) = C[v](t, x) ∨M[v](t, x).

Hence, in both cases the function v ∈ V satisfies (QVI) and the claim immediately follows from
Corollary 3.2.7.

Note that Proposition 3.3.2 only shows that, in case of existence, the unique fixed point of the
operator T , with respect to which the algorithm (3.22)-(3.24) can be regarded as a fixed-point
iteration, coincides with the value function of (C). However, although our illustrations in Section
3.4 corroborate the algorithm’s correctness, it is by no means clear whether and under what
assumptions the stated iteration indeed converges. We leave this open question for further
research; see also our remarks on page 118 below.

105In the following we consider v` , v`−1 , v such that v` = v = T [v] = T [v`−1] since v is a fixed point of T .
106Note that g? is defined as g?` in (3.23) with v in place of v`−1.
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3.3.2 Implementation: Smart Voronoi Tessellations

In the remainder of this chapter we assume that the state space X is a Borel measurable subset
of Rd, i.e. we consider X ∈ B(Rd); moreover we use the Euclidean norm ‖ · ‖ , ‖ · ‖2 to measure
distances.

Note that an implementation of the theoretical algorithm as outlined in (3.22)-(3.24) is confronted
with the following two major issues:

(a) The (conditional) expectations emerging in (3.22) and (3.24) are usually not explicitly
computable and thus need to be approximated.

(b) The (finite) number of points x ∈ X at which the value function of the problem can be
approximated is limited by both time and memory constraints.

A natural stochastic approach to attack issue (a) is to resort to Monte Carlo simulation; we
employ (non-nested, plain vanilla) crude Monte Carlo below.107

As the well-known curse of dimensionality-phenomenon usually renders grid-based discretization
techniques computationally infeasible already for moderate values of the dimension d, an explo-
ration strategy based on a sparse ensemble of interpolation nodes is required and issue (b) is thus
a bit more involved: It is by no means clear a priori which points in space should be selected as
interpolation nodes. We address this problem by constructing a hierarchy of stochastic nodes
that gradually adapt to the behavior of the optimally controlled state process.
For this, we make use of the concept of a Voronoi tessellation of points in Rd which is standard
in the literature on quantization and related methods:108

Definition 3.3.3 (Voronoi Tessellations). Let X , {xi}i∈[1:m] ⊂ Rd be a finite family of pairwise
different points in Rd.

(i) The Voronoi diagram of X is defined to be the family {VorXi }i∈[1:m] consisting of the
Voronoi regions

VorXi ,
{
x ∈ Rd : ‖x− xi‖ ≤ ‖x− xj‖ for all j ∈ [1 :m] \ {i}

}
for i ∈ [1 :m].

(ii) Whenever {CX
i }i∈[1:m] ⊂ B(Rd) is a partition of Rd consisting of Borel measurable sets

such that CX
i ⊆ VorXi for all i ∈ [1 :m], it is called a Voronoi partition of Rd with respect

to X.

In any case, for i ∈ [1 :m] the point xi is called (Voronoi) center of the (Voronoi) region VorXi or
CX
i , respectively. �

An illustration of the preceding definition can be found in Figure 3.3 for a random sample of
m = 25 points in R2.109

107see, e.g., Algorithm 3.1 in [KKK10] for the crude Monte Carlo algorithm.
108see, e.g., [GL00] and [BP03, PPP04a, PPP04b].

The following definition is based on the notions discussed in §I.1 in [GL00] to which we also refer for further details.
109The points have been sampled from a N2(02, I2×2)-distribution; the corresponding Voronoi tessellation has been

computed using the SciPy-package spatial.Voronoi and plotted with scipy.spatial.voronoi_plot_2d and
matplotlib in Python; for details on the language and package versions used, we refer to Footnote 122 below.
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Figure 3.3: Example of a Voronoi tessellation in R2 with centers given by the blue dots.

Intuitively it is clear that, up to intersecting boundaries, every Voronoi diagram partitions Rd:
For every point x ∈ Rd \⋃i 6=j(∂VorXi ∩ ∂VorXj ) there is a unique index idx(x) = idxX(x) ∈ [1 :m]

such that x ∈ VorXidx(x); only for points on the intersecting boundaries there is ambiguity; see
also equation (1.6) and Proposition I.1.3 in [GL00].110 Clearly, whenever we are given a Voronoi
partition {CX

i }i∈[1:m] of Rd, idx can be unambiguously defined on the entire space Rd with CX
i in

place of VorXi , i ∈ [1 :m], above. �

For interpolating discretely sampled functions we employ the following two operators:

Definition 3.3.4 ((Shepard) Interpolation). Let X , {xi}i∈[1:m] ⊂ Rd be a finite family of
pairwise different points in Rd and V , {vi}i∈[1:m] ⊂ [−∞,∞) a corresponding finite sequence of
numbers.

(i) For a given Voronoi partition {CX
i }i∈[1:m] of Rd with respect to X we define the nearest-

neighbor interpolation operator INNX,V supported on X with values specified by V to be

INNX,V(y) ,
m∑
i=1

vi · 1CX
i

(y) = vidx(y) for y ∈ Rd.

(ii) For each y ∈ Rd let an order statistic with respect to distances to y be given by {x(i)y}i∈[1:m],

110However, note that the union of these finitely many region boundaries has Lebesgue measure zero; see, e.g.,
Theorem I.1.5 in [GL00]. Thus, with X = B(X), under suitable conditions on φ and µ, such that, e.g., it holds
P(φ(t, x, Z) ∈ ·)� Leb|X for all (t, x) ∈ [0 :T )×X, these intersections are negligible and hence of minor importance
in practice.
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i.e. ‖x(1)y − y‖ ≤ ‖x(2)y − y‖ ≤ · · · ≤ ‖x(m)y − y‖.111 For a number of queried neighbors
κ ∈ [1 :m] and an exponent p ≥ 1 we define weights for i ∈ [1 :κ] by

wX
i (y) ,

1{j}(i) if there is some j ∈ [1 :κ] such that x(j)y = y,

1
‖x(i)y−y‖p

otherwise,

and set the corresponding Shepard interpolation operator Iκ,pX,V supported on X with node
values specified by V to be

Iκ,pX,V(y) ,

∑κ
i=1w

X
i (y) · v(i)y∑κ

i=1w
X
i (y)

for y ∈ Rd. �

While the first interpolation operator is standard given the above references on quantization-based
methods, the latter interpolation method is a variant of the one commonly referred to as Shepard’s
interpolation method or inverse distance weighting ; we refer, e.g., to [She68] for further details.
Note that it assigns higher weights to those values vi that correspond to points xi which are
closer to the point of interest y; for large values of p only the closest points have a noticeable
contribution to the overall interpolation result. Further observe that I1,p

X,V, p ≥ 1, can be identified
with INN

X,V.112 �

With these tools at hand, we can now turn to a description of a ready-to-implement algorithm
that mimics the theoretical outline in (3.22)-(3.24). Note that it successively builds up a hierarchy
of levels each of which essentially consists of a finite number of (stochastic) interpolation nodes,
referred to as Voronoi centers in the following, and corresponding value function estimates.

Throughout the remainder of this section we fix a probability measure γ on (X,B(X)), also
referred to as the algorithm’s exploration distribution; we let q ∈ [0, 1] be a probability parameter;
and we require the following additional assumption to hold:

Assumption 3.3.5. The considered probability space (Ω,F,P) supports

(a) a family {C`,mt }t∈[0:T ], `,m∈N0
of i.i.d. Bernoulli(q)-distributed random variables,

(b) a family {Y `,m
t }t∈[0:T ], `,m∈N0

of i.i.d. random variables with distribution γ, and

(c) a family {Z`,m,nt }t∈[1:T ], `,m,n∈N0
of i.i.d. random variables with distribution µ.

These three sequences are assumed to be mutually independent as well as independent of all
random variables that have occurred thus far. �

Moreover, we fix

• a number of levels L ∈ N,

111In case that points within X exhibit equal distance to some point y ∈ Rd the problem of ambiguity arises once
again; however, as explained above, it does not pose a problem for our implementation below, and thus we take an
arbitrary order statistic to be given.

112Here, the considered order statistics implicitly determines to which cell CX
i of the underlying Voronoi partition a

point on a region boundary belongs.



106 Chapter 3. A Heuristic Approach to Discrete-Time Impulse Control

• a non-decreasing finite sequence {M`}`∈[0:L] ⊂ N; M` denotes the number of considered
Voronoi centers at each instant of time within [0 :T ] on level `;

• a finite sequence {N`}`∈[0:L] ⊂ N; N` denotes the sample size used for Monte Carlo
estimations on level `;

• and interpolation parameters κ ∈ [1 :M0] and p ≥ 1 as explained in Definition 3.3.4(ii).

Our practical algorithm thus consists of the following steps:

. (I) Initialization:

(I-1) For t = 0, . . . , T and m ∈ [1 :M0] define the initial Voronoi centers by113, 114

X0,m
t ,

Y0,m if t = 0,

φ(t− 1, X0,m
t−1 , Z

0,m,0
t ) if t ∈ [1 :T ],

and collect them in X0
t , {X0,m

t }m∈[1:M0].

(I-2) Define v̂0(T, x) , Ψ(x) for x ∈ X and set recursively for t = T − 1, . . . , 0 and m ∈ [1 :M0]

the node values to

v̂0,m
t , ψ(t,X0,m

t ) +
1

N0

N0∑
n=1

v̂0

(
t+ 1, φ(t,X0,m

t , Z0,m,n
t+1 )

)
,

and collect them in V0
t , {v̂0,m

t }m∈[1:M0].

(I-3) Set v̂0(t, x) , Iκ,p
X0
t ,V

0
t
(x) for (t, x) ∈ [0 :T )× X.

. (II) Policy Iteration: For ` = 1, . . . , L+ 1 repeat the following steps:

 Policy Improvement:

(II-1) For t = 0, ..., T − 1 and m ∈ [1 :M`−1] choose

(m̂`−1,m
t , ĝ`−1,m

t ) ∈ arg max
{
v̂`−1,m′

t − c(t,X`−1,m
t , a) :

(m′, a) ∈
(
[1 :M`−1] \ {m}

)
× Γ◦(t,X`−1,m

t ),

ξ(X`−1,m
t , a) = X`−1,m′

t

}
,

if it exists; otherwise set m̂`−1,m
t , 0 and ĝ`−1,m

t , �. Correspondingly, set

M̂ `−1,m
t ,

−∞ if m̂`−1,m
t = 0,

v̂`−1,m′

t − c(t,X`−1,m
t , ĝ`−1,m

t ) else, where m′ = m̂`−1,m
t ,

and collect these values in M`−1
t , {M̂ `−1,m

t }m∈[1:M`−1].

113Note that we write t = 0, . . . , T − 1 (or T ) to indicate that the corresponding loop runs forward in time, whereas
t = T − 1, . . . , 0 corresponds to a loop running backward in time.

114Without loss of generality, we can assume that all Voronoi centers on a specific level and at a specific time are
pairwise different: If in the course of the algorithm two centers with different indexes happen to coincide, we
implicitly assume that the algorithm replaces the redundant one in a suitable way.
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(II-2) Set M̂`−1
t [v̂`−1](t, x) , Iκ,p

X`−1
t ,M`−1

t

(x) for (t, x) ∈ [0 :T )× X.

 If ` = L+ 1 stop; otherwise continue with the following steps:

 Adjustment of Voronoi Centers:

(II-3) For m ∈ [1 :M`−1] set the preliminary initial Voronoi centers to X̃`,m
0 , X`−1,m

T .

(II-4) For t = 0, . . . , T − 1 and m ∈ [1 :M`−1] let m1 , idxX
`−1
t (X̃`,m

t ) be the index of the
Voronoi center closest to X̃`,m

t on level ` − 1 and m2 , m̂`−1,m1
t be the index of the

corresponding best target Voronoi center starting from center m1. Define J `,mt , 0 and
set

X̃`,m
t+1 ,

φ(t, X̃`,m
t , Z`,m,0t+1 ) if v̂`−1(t, X̃`,m

t ) > M̂`−1
t [v̂`−1](t, X̃`,m

t ) or m2 = 0,

φ(t, X̃`−1,m2
t , Z`,m,0t+1 ) else. In this case redefine J `,mt , 1.

(II-5) For t = 0, . . . , T and m ∈ [1 :M`−1] define the new Voronoi centers as follows: Set

X`,m
t , X̃`,m

t if J `,mt = 1 or C`,mt = 1 or t = T ;

otherwise identify indexes m1, . . . ,mκ ∈ [1 :M`−1] corresponding to κ nearest neighbors
of X̃`,m

t among preliminary Voronoi centers on level `, i.e. 0 = ‖X̃`,m1
t − X̃`,m

t ‖ ≤ . . . ≤
‖X̃`,mκ

t − X̃`,m
t ‖, and set

X`,m
t ,


Y `,m
t if

κ∑
i=1

J `,mit = 0,

X̃`,m
t else.

(II-6) If M`−1 < M`, for t = 0, . . . , T and m ∈ (M`−1 :M`] set the additional Voronoi centers,
i.e. define

X`,m
t , Y `,m

t .

(II-7) For each t ∈ [0 :T ] collect all corresponding Voronoi centers in X`
t , {X`,m

t }m∈[1:M`].

 Policy Evaluation:

(II-8) Define v̂`(T, x) , Ψ(x) for x ∈ X and set, recursively for t = T − 1, ..., 0 and m ∈ [1 :M`],
the node values as follows: Let m1 , idxX

`−1
t (X`,m

t ) be the index of the Voronoi center
closest to X`,m

t on level `− 1 and m2 , m̂
`−1,m1
t be the index of the corresponding best

target Voronoi center starting from center m1. Set

v̂`,mt , ψ(t,X`,m
t ) +

1

N`

N∑̀
n=1

v̂`
(
t+ 1, φ(t,X`,m

t , Z`,m,nt+1 )
)

if v̂`−1(t,X`,m
t ) > M̂`−1

t [v̂`−1](t,X`,m
t ), or if m2 = 0, or if there is no a ∈ Γ◦(t,X`,m

t )

such that ξ(X`,m
t , a) = X`−1,m2

t ; otherwise determine115 ā ∈ Γ◦(t,X`,m
t ) such that

115In case that there is more than one feasible action one should identify and consider the “cheapest” one.
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ξ(X`,m
t , ā) = X`−1,m2

t and define

v̂`,mt ,
[
ψ(t,X`−1,m2

t )− c(t,X`,m
t , ā) +

1

N`

N∑̀
n=1

v̂`
(
t+ 1, φ(t,X`−1,m2

t , Z`,m,nt+1 )
)]

∨
[
ψ(t,X`,m

t ) +
1

N`

N∑̀
n=1

v̂`
(
t+ 1, φ(t,X`,m

t , Z`,m,nt+1 )
)]

;

and collect the resulting values in V`
t , {v̂`,mt }m∈[1:M`].

(II-9) Set v̂`(t, x) , Iκ,p
X`
t ,V

`
t
(x) for (t, x) ∈ [0 :T )× X. �

Albeit the functioning of the preceding algorithm is in principle in line with the theoretical
outline given in (3.22)-(3.24), some of the steps warrant a brief comment: In contrast to its
theoretical counterpart and as necessarily required to be run on a computer, the algorithm
estimates the relevant functions v` andM[v`] only at finitely many (stochastic) interpolation
nodes which are referred to as Voronoi centers ; for function interpolation the operators introduced
in Definition 3.3.4 are employed; see Steps (I-3),(II-2) and (II-9).

Initially, these Voronoi centers are determined using independent copies of the uncontrolled state
process, the initial conditions of which are distributed according to γ; see Step (I-1).116 For
each subsequent level ` ∈ [1 :L], the algorithm similarly derives preliminary centers based on
pre-intervention states of (conditionally) independent copies of the state process controlled by the
respective level’s prevailing intervention strategy; see Step (II-4).117 Depending on φ and µ, this
approach tends to move interpolation nodes into the continuation region; see also the discussion
on page 119 below. However, to avoid their accumulation therein, Step (II-5) randomly discards
preliminary centers that are located in the currently available approximation of the continuation
region if all of their relevant (preliminary) neighbors are also located therein; those centers are
then replaced with independent samples from the exploration distribution γ. The parameter
q ∈ [0, 1] thus controls the algorithm’s propensity to stick to preliminary Voronoi centers.

Furthermore, note that for policy improvement only interventions that start from and lead to
Voronoi centers belonging to the respective preceding level are taken into account; see Step (II-1).
Accordingly, for a given Voronoi center X`,m

t on level `, in case of a suggested intervention, i.e. if
v̂`−1(t,X`,m

t ) ≤ M̂`−1
t [v̂`−1](t,X`,m

t ), policy evaluation first determines the nearest Voronoi center
among those on the previous level (`− 1) and then assesses whether and how the subsequently
determined corresponding target point can be reached by a feasible jump; see Step (II-8).

Finally, observe that expectations appearing in the evaluation of the continuation operator C[v`],
cf. (3.22) and (3.24), are estimated by means of non-nested Monte Carlo simulation; see Steps (I-2)
and (II-8), where the latter makes use of common random numbers for both arguments of the
computed maximum. �

116Note that the construction of interpolation nodes is conceptually similar to the notion of a stochastic mesh, as
considered, e.g., in [BGH00] or [BG04a].

117With regard to the choice of initial preliminary Voronoi centers in Step (II-3) we also refer to our remarks on
page 119 below.
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3.4 Numerical Results

In this section we showcase the effectiveness of the proposed algorithm. As an example we
consider some variants of the problem of impulse control of Brownian motion in discrete time and
for a finite time horizon. This problem is classical given the literature, but usually addressed in
continuous time and for an infinite time horizon; see, e.g., [CR78], [HST83] or §1.2/3 in [Die09].

3.4.1 Impulse Control of Brownian Motion towards Zero

With a slight abuse of notation, we consider the stochastic impulse control problem118

E
[ n−1∑
k=0

(
cψ‖Wα

tk
+ αtk‖22 + (c0 · 1αtk 6=0 + ‖C1 · αtk‖2)

)
+ cΨ‖Wα

T ‖22
]
−→

α∈A(0,x)
min! (BM)

on an equidistant grid Π , [0 = t0, t1, . . . , tn = T ] with step size h , T/n, i.e. tk , k · T/n for
k ∈ [0 :n], and T > 0; cψ, cΨ ≥ 0 and c0 > 0 are constants; C1 ∈ Rd×d is a matrix; A(0, x) is
defined as above – with feasible actions chosen to be unrestricted; andWα denotes a d-dimensional
controlled Brownian motion in discrete time (see below).
Using the notation of Section 3.1, the stated problem (BM) corresponds to the following specifi-
cation of the model ingredients:

(X,X) , (Z,Z) , (A,A) , (Rd,B(Rd)), φ(t, x, z) , x+
√
hz, µ , Nd(0, Id×d),

ψ(t, x) , −cψ‖x‖22, c(t, x, a) , c0 · 1{a6=0} + ‖C1 · a‖2, Ψ(x) , −cΨ‖x‖22,
Γ(t, x) , Rd, ξ(x, a) , x+ a, � , 0. (3.25)

Unlike before, the considered impulse control problem (BM) is now formulated as a minimization
problem; hence we speak of (running and terminal) costs rather than of (negative) rewards.119

The state process Wα starting in Wα
0 = x ∈ Rd at time t0 = 0 and given an admissible strategy

α = {αtk}k∈[0:n) ∈ A(0, x) is thus recursively defined by

Wα
tk

= Wα
tk−1

+ αtk−1
+
√
h · Zk for k ∈ [1 :n], (3.26)

where Z1, . . . , Zn
i.i.d.∼ Nd(0, Id×d).120

In view of the relevant model assumptions note that Assumption 3.2.3 is automatically satisfied;
a sufficient condition for Assumption 3.1.1 in the sense of Remark 3.1.2 could be obtained, e.g.,
by restricting the feasible actions to the set Γ(t, x) = B‖x‖2(−x).121 Nevertheless, our numerical
results below are based on the specification of Γ as stated in (3.25).

All numerical computations are based on the implementation of our algorithm as outlined in

118As already pointed out in Footnote 88, the stated problem is considered on a time grid Π in place of [0 :T ], but
can easily be reformulated in terms of the setup of Section 3.1.

119Nevertheless, to be consistent with the preceding sections of this chapter, the signs of these costs are reversed in
the specification of the relevant parameters; see (3.25).

120Note that the discrete dynamics (3.26) can be regarded as the Euler-Maruyama discretization of a (controlled)
Brownian motion.

121Note that Assumption 3.2.3 is also valid for this restrictive choice of feasible actions.
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Section 3.3.2; our implementation is in Python.122

Our results are displayed in Sections 3.4.1.1 through 3.4.1.3 and 3.4.2; each section contains a
table reporting all relevant parameters.
The plots displayed below show heat maps; for each problem instance we compute an approximation
of its continuation (green) and intervention region (red). More precisely, in dimension 1 and 2

the plots consist of a rectangular grid: First, for each level ` ∈ [0 :L] a cell with midpoint (t, x) is
colored red if and only if v̂`(t, x) ≤ M̂`

t[v̂`](t, x); otherwise the cell is colored green. Afterwards,
we compute the equally weighted average of the resulting (L+ 1) RGB values per cell to obtain
a heat map as an approximation of the regions. In higher dimensions, all but two coordinates
within (t, x) ∈ [0 :T ]×Rd are fixed to a priori specified values and the corresponding figures show
cuts along the non-fixed coordinates; see Section 3.4.1.3 below.

For the sake of comparison, we also plotted the boundaries between the theoretical continuation
and intervention region in dimensions 1 and 2; see the white lines in 1D or the bold white lines
in 2D, respectively; these boundaries are obtained by classical Bellman backward induction and a
numerical integration scheme, i.e. via solving (DP) numerically.122 The white dots (1D) or thin
white lines (2D), respectively, in the interior of each connected component of the continuation
region correspond to the target points to which actions taken at points in the intervention region
lead; black crosses (×) indicate target Voronoi centers of our algorithm based on the centers of
the final level ` = L.

Finally, we attached the running time of a single run of our algorithm to the respective figure.123

Note that each problem instance is solved on the entire time grid Π.

3.4.1.1 A One-Dimensional Example without Proportional Costs

We consider the problem (BM) without proportional costs in dimension 1. Our first instance does
not have terminal costs, the second one does. Their relevant common parameters are reported in
Table 3.1; for individual parameters we refer to the caption of the respective figure; see Figures 3.4
and 3.5.

Parameter d T n cψ c0 C1 L M` N` κ p q γ
Value 1 1 10 1 1 0 10 50 100 5 2 0.5 U([−5, 5])

Table 3.1: Model and numerical parameters for Figures 3.4 and 3.5.

122 We use Python 3.7.3 ([Pyt19, Oli07, MA11], Anaconda package manager conda (v4.7.12, [Ana19])) with
NumPy (v1.17.3, [Oli06, vCV11]) and IPython (v7.9.0, [PG07]); IDE: Spyder (v3.3.6, [Spy19]).
Plots are generated with matplotlib (v3.1.1, [Hun07]).
For some tasks we use packages from SciPy (v1.3.1, [VGO+20]): Nearest-neighbor search queries are performed using
k-d trees via spatial.cKDTree(.query) (for details see https://docs.scipy.org/doc/scipy-1.3.1/reference/
generated/scipy.spatial.cKDTree.html (accessed: 2020-05-31, 2251) and the references therein), and numerical
integration for the classical Bellman equation (DP) in 1D and 2D makes use of the convolution procedures
signal.convolve and signal.convolve2d, respectively.
Our implementation does not involve explicit parallelization; OS: Linux Mint 18.1 Serena.
Hardware: Intel Core i7-6700 CPU @ 3.40 GHz (4 cores) with 32 GiB RAM capacity.

123All stated running times are wall-clock times measured as a timedelta using datetime in Python; they only
include the time span our algorithm required to solve the respective problem instance; problem initialization,
computation and plotting of heat maps as well as the numerical solution of (DP) (in 1D and 2D) are excluded.

https://docs.scipy.org/doc/scipy-1.3.1/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy-1.3.1/reference/generated/scipy.spatial.cKDTree.html
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Figure 3.4: Controlled Brownian motion (BM) in 1D without proportional and without terminal
costs; C1 = 0, cΨ = 0.
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Figure 3.5: Controlled Brownian motion (BM) in 1D without proportional, but with terminal
costs; C1 = 0, cΨ = 0.2.
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3.4.1.2 A One-Dimensional Example with Fixed and Proportional Costs

Once again, we consider (BM) in dimension 1, but with both non-vanishing fixed and proportional
costs; see Table 3.2 for the relevant common parameters, and Figures 3.6 and 3.7 for our results.

Parameter d T n cψ cΨ c0 C1 L M` N` p q γ
Value 1 1 10 1 0 0.1 0.2 10 50 100 2 0.5 U([−5, 5])

Table 3.2: Model and numerical parameters for Figures 3.6 and 3.7.

Note that in Figure 3.7 we also plotted all Voronoi centers on level L = 10 in grey.
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Figure 3.6: Controlled Brownian motion (BM) in 1D with fixed and proportional costs; κ = 5.
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Figure 3.7: Controlled Brownian motion (BM) in 1D with fixed and proportional costs; κ = 1.

3.4.1.3 Some Examples in Higher Dimensions

Problem (BM) can also be considered in higher dimensions and with an asymmetric specification
of proportional costs; more precisely, we let the corresponding parameter matrix C1 ∈ Rd×d be
given by the diagonal matrix C1 = diag(C11 · I d

2
× d

2
, C22 · I d

2
× d

2
) where C11, C22 ≥ 0.

The relevant parameters can be found in Tables 3.3, 3.4 and 3.5; our results are displayed in
Figures 3.8, 3.9 and 3.10.
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A Two-Dimensional Example
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Figure 3.8: Controlled Brownian motion (BM) in 2D with asymmetric costs.

Parameter d T n cψ cΨ c0 C11 C22 L M` N` κ p q γ

Value 2 1 10 1 0 0.5 1 0.5 10 100 100 20 5 0.5 U([−10, 10]2)

Table 3.3: Model and numerical parameters for Figure 3.8.
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A Four-Dimensional Example
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Figure 3.9: Controlled Brownian motion (BM) in 4D with asymmetric costs (cuts along x1 and
x4, remaining spatial coordinates fixed to 0).

Parameter d T n cψ cΨ c0 C11 C22 L M` N` κ p q γ

Value 4 1 10 1 0 0.5 1 0.5 10 200 100 20 5 0.2 U([−10, 10]4)

Table 3.4: Model and numerical parameters for Figure 3.9.
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An Eight-Dimensional Example
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Figure 3.10: Controlled Brownian motion (BM) in 8D with asymmetric costs (cuts along x3 and
x6, remaining spatial coordinates fixed to 0).

Parameter d T n cψ cΨ c0 C11 C22 L M` N` κ p q γ

Value 8 1 10 1 0 0.5 1 0.5 10 600 100 20 5 0.2 U([−12.5, 12.5]8)

Table 3.5: Model and numerical parameters for Figure 3.10.
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3.4.2 A Problem with Disconnected Continuation Region

We alter problem (BM) in dimension 1 to obtain an example whose continuation region exhibits
two connected components for all times before T ; more specifically, we consider the following
control problem:

E
[ n−1∑
k=0

(
cψ · 1[b∗,b∗]c(|Wα

tk
|) + (c0 · 1αtk 6=0 + c1 · |αtk |)

)
+ cΨ · 1[b∗,b∗]c(|Wα

T |)
]
−→

α∈A(0,x)
min! (BM[)

Mutatis mutandis, the explanations in Section 3.4.1 remain valid; note in particular that cψ, b∗
and b∗ are nonnegative constants and feasible actions are still taken to be unconstrained. The
relevant parameters are reported in Table 3.6; our result is displayed in Figure 3.11.

Parameter d T n cψ cΨ c0 c1 b∗ b∗ L M` N` κ p q γ
Value 1 1 10 10 10 1 1 2.5 5 10 100 100 5 2 0.2 U([−10, 10])

Table 3.6: Model and numerical parameters for Figure 3.11.
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Figure 3.11: Controlled Brownian motion (BM[) in 1D: Penalization when being outside of a
certain region.
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3.4.3 A Short Remark on the Numerical Results

First recall that our algorithm has no a priori information about the solution at all; only the
relevant model ingredients as described in Section 3.1 are provided as input; therefore, it solely
relies on knowledge that it acquires by itself during its iterations.
For all low-dimensional problem instances considered above, the algorithm is able to estimate the
continuation and intervention region within a reasonable period of time. Note that in dimensions
1 and 2 the accuracy of the results is remarkably high compared to the benchmark solution of the
classical Bellman equation (DP) obtained by numerical integration.
In higher dimensions, results are less accurate, albeit they point in the right direction: There
is obviously room for improvement and future research; some related remarks and ideas will be
sketched in the next and final section of this chapter.

Conclusion and Outlook

This chapter has derived a reformulation of the classical Bellman equation for discrete-time impulse
control problems with finite time horizon in terms of a QVI in the spirit of Bensoussan [Ben08],
including a corresponding verification theorem. Inspired by the resulting optimal impulse control,
we have devised a non-nested Monte Carlo algorithm based on policy iteration which gradually
learns the behavior of the optimally controlled state process and constructs a spatial discretization
to explore the state space of its input problem instance by itself. Finally, we have showcased the
effectiveness of our algorithm in several variants of a classical example problem.

There are many open questions for future research to address among which the following appear
most prominent to us:

• It is of utmost interest to provide sufficient conditions for the convergence of the stated
algorithm – both for the theoretical outline (3.22)-(3.24) in Section 3.3.1 and its implemen-
tation in Section 3.3.2. Furthermore, it would be interesting to investigate whether the
stabilization via averaging of levels that we used for our numerical results is really necessary
to obtain convergence, whether the sequence {v`}`∈N0 (or a corresponding sequence of
weighted averages) exhibits monotonicity in some sense, and at what speed the relevant
sequence converges. Additionally, for more precise numerical results, an explicit relation
between the numerical parameters L, M` and N` and the obtained output accuracy would
be desirable.

• Our algorithm is open to a combination with variance reduction techniques.124 Aside from
the obvious potential to use parallelization to distribute independent simulations across
multiple cores, concepts such as control variates or importance sampling seem intuitively
worth considering in order to induce faster convergence and hence to reduce the overall
running time.

124For details on these (and other) variance reduction principles we refer, e.g., to Chapter 4 in [Gla03] or §3.3/4 in
[KKK10].
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• As the numerical results indicate that our algorithm suffers from an error propagation that
renders estimates at earlier points in time less accurate (see in particular the examples
in dimensions beyond 1 in Figures 3.8, 3.9 and 3.10), further investigations should, e.g.,
attempt to replace the Bellman-style backward recursions in (3.22) and (3.24) by forward
simulation. Note that (3.24) leads to a nested simulation that rapidly becomes compu-
tationally intractable. However, there might be a reformulation of the latter evaluation
equation that allows for non-nested simulation and still yields a high accuracy of results;
we think, e.g., of dropping the term “C[v`](t, x)∨ ” in the second case of (3.24) which we
“only” used to derive the “fixed-point property” in Proposition 3.3.2.

• Our examples (BM) and (BM[) can be considered as toy problems. Beyond the fact that
they are symmetric, in particular they do not encounter any complications resulting from
constrained action sets Γ(t, x). However, as the latter prevail in realistic models – one
may, e.g., think of admissibility and self-financing conditions that limit the set of feasible
transactions in case of portfolio optimization with transaction costs – further investigations
should try to broaden the applicability of our algorithm to such more involved application
problems.

• The validity of the choice of the preliminary initial Voronoi centers in Step (II-3) should be
taken with a grain of salt as the selected initial centers tend to be located in the continuation
region. We are aware that this choice could be misleading in general – especially for problems
with non-symmetric continuation and intervention region; see also the next item of this
list. Hence, we think that the aforementioned step of our algorithm merits some further
investigations: The choice of centers made in this step should be replaced by a rule that
depends on a priori knowledge of the solution (if available) or exploits already gathered
information from previous levels. Beyond the generic approach that draws independent
samples from the exploration distribution γ at each level, i.e. X̃`,m

0 , Y `,m
0 , it is, e.g.,

conceivable that one uses the approximation of the intervention region from the respective
preceding level to intensify exploration efforts therein.

• Step (II-5) of our algorithm can be regarded as a means of triggering new exploration
efforts as soon as preliminary Voronoi centers do not promise any gain of information in
subsequent iterations. Without this mechanism, exploration of the intervention region is
usually insufficient as centers tend to accumulate within the continuation region – potentially
leading to poor results; see, e.g., Figures 3.12 and 3.13. Although this accumulation effect is
desirable to some extent since it stabilizes the algorithm by providing accurate interpolation
results within the continuation region, exploiting mostly information from centers in the
interior of the latter is likely to be misleading in later iterations as, e.g., more complex
geometric shapes of its boundary could not be detected.
Furthermore, note that in its current implementation our thinning strategy merely discards
non-promising Voronoi centers and replaces them by samples from the exploration distribu-
tion γ. Additionally, it is also conceivable to transfer knowledge from those removed centers
to close neighbors leading to some kind of coalescence of centers.

• Last but not least, it appears tempting to us to combine our algorithm with well-known
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techniques from machine learning that successively update their respective value function
approximations by newly acquired information. For instance, the concept of Q-learning
(see, e.g., [WD92] or §8.2 in [Pow07]) could help to retain more information from previous
levels than just using the preceding one as a basis of decision-making.125

Note that the latter three items somewhat reflect a well-known issue in the context of ma-
chine/reinforcement learning, namely the problem of finding a balance between exploration and
exploitation.126 For our algorithm we leave a thorough analysis of related issues for future research;
we expect it to yield substantial improvements of the results, especially for problems in higher
dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

t

−4

−2

0

2

4

x

Running time: 26 sec

Figure 3.12: Controlled Brownian motion (BM) in 1D with fixed and proportional costs; κ = 1;
q = 1; the remaining parameters are chosen as in Table 3.2 (Voronoi centers on level L = 10 in
grey): The effect of insufficient exploration.127

125For a comprehensive account of approximate dynamic programming we refer, e.g., to the monograph [Pow07].
126see, e.g., Chapter 10 in [Pow07] for an introduction.

We also refer to the recent paper [CS19] that addresses exploration vs. exploitation issues for continuous-time
impulse control problems in a diffusive setup with unknown drift.

127compare Figures 3.7 and 3.12.
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Figure 3.13: Controlled Brownian motion (BM) in 2D with asymmetric costs; q = 1; the remaining
parameters are chosen as in Table 3.3 (Voronoi centers on level L = 10 in grey): The effect of
insufficient exploration.128

128compare Figures 3.8 and 3.13.
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Appendix A

Some Auxiliary Results

This part of the appendix collects some auxiliary results referred to in Chapters 1 and 2 (as well
as Appendix D). Let (Ω,A, {Ft}t∈[0,T ],P) be a filtered probability space such that the filtration F

satisfies the usual conditions of P-completeness and right-continuity. Furthermore, we fix some
T > 0 and denote by Leb the one-dimensional Lebesgue measure on ([0,∞),B([0,∞))).

A.1 Modifications and Integrals

In Sections 1.4 and 2.1-2.3 we frequently switch between a càdlàg integrand process and its
respective left-limit counterpart if the latter is a modification of the former and whenever it is
more convenient or notationally less cumbersome. A rigorous justification for that is given by the
following auxiliary result:

Lemma A.1 (Modification of Integrands). Let {Xt}t∈[0,T ] and {Yt}t∈[0,T ] be F-progressively
measurable stochastic processes taking values in some measurable space (S,S). Assume that X
and Y are modifications of each other, i.e.

Xt = Yt P-a.s. for all t ∈ [0, T ].

Then it holds
Xt(ω) = Yt(ω) for Leb⊗ P-a.e. (t, ω) ∈ [0, T ]× Ω. (A.1)

Furthermore, for every bounded B([0, T ])⊗S-measurable function f : [0, T ]× S→ R we have∫ t

0
f(s,Xs)ds =

∫ t

0
f(s, Ys)ds for all t ∈ [0, T ] P-a.s.

and ∫ t

0
f(s,Xs)dWs =

∫ t

0
f(s, Ys)dWs for all t ∈ [0, T ] P-a.s.,

where W = {Wt}t∈[0,T ] is a one-dimensional (F,P)-Brownian motion.

123
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Proof. Observe that Tonelli’s theorem129 yields

(Leb⊗ P)
(
{(t, ω) ∈ [0, T ]× Ω : Xt(ω) 6= Yt(ω)}

)
=

∫
[0,T ]×Ω

1{(t,ω)∈[0,T ]×Ω: Xt(ω) 6=Yt(ω)}(t, ω) (Leb⊗ P)(d(t, ω))

=

∫ T

0
P(Xt 6= Yt)︸ ︷︷ ︸

=0

dt = 0; (A.1)

this proves the first assertion.
Next, let f : [0, T ]× S→ R be a bounded B([0, T ])⊗S-measurable function and note that for
all t ∈ [0, T ] and A ∈ A it holds

E
[
1A ·

∫ t

0
f(s,Xs)ds

]
=

∫
[0,T ]×Ω

1A(ω) · f(s,Xs(ω)) (Leb⊗ P)(d(s, ω))

=

∫
[0,T ]×Ω

1A(ω) · f(s, Ys(ω)) (Leb⊗ P)(d(s, ω))

= E
[
1A ·

∫ t

0
f(s, Ys)ds

]
.

Thus, upon considering the cases A ∈ {A1, A2} separately, where

A1 =
{∫ t

0
f(s,Xs)ds <

∫ t

0
f(s, Ys)ds

}
and A2 =

{∫ t

0
f(s,Xs)ds >

∫ t

0
f(s, Ys)ds

}
,

we have that
∫ t

0 f(s,Xs)ds =
∫ t

0 f(s,Xs)ds P-a.s. for all t ∈ [0, T ]. As due to dominated
convergence both sides of this identity define continuous processes, their indistinguishability
follows. Since Leb⊗ P is the Doléans measure of W the final assertion follows immediately from
(A.1) and the construction of Brownian stochastic integrals; see, e.g., §3.2 in [KS98] or Exkurs 2
in [KK01].

A.2 Counting Processes

Unless explicitly stated otherwise, whenever counting processes are involved in Chapters 1 and 2,
we resort to the following definition:

Definition A.2 (Counting Process, Intensity). (a) A càdlàg and F-adapted stochastic process
{Nt}t∈[0,T ] is called a counting process if it is P-a.s. N0-valued, nondecreasing and satisfies
N0 = 0.

(b) If λ = {λt}t∈[0,T ] is a nonnegative, F-progressively measurable process such that

N̄t , Nt −
∫ t

0
λsds, t ∈ [0, T ]

is a local (F,P)-martingale, then λ is called an (F,P)-intensity of N . In that regard, N̄ is
also referred to as a compensated counting process. �

129In fact, this argument can be regarded as an application of Cavalieri’s principle; see, e.g., §V.1.3 in [Els09].
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The preceding definition is a ramification of the one of a non-explosive counting process as stated
in Definition II.3.D7 in [Bré81]; see also [Bré81, p.18/19] and Theorems II.3.T8/9 in [Bré81].

It is a natural question to ask whether an integral with respect to a compensated counting process
is an honest martingale. The following result turns out to be sufficient for our purposes:

Lemma A.3. Let N be an (F,P)-counting process with intensity λ = {λt}t∈[0,T ]. If H =

{Ht}t∈[0,T ] is F-predictable and with E[
∫ T

0 |Hs|λsds] < +∞, then the process M = {Mt}t∈[0,T ],

Mt ,
∫

(0,t]
HsdN̄s for t ∈ [0, T ]

is an (F,P)-martingale.

Proof. See Theorem II.3.T8(β) in [Bré81].
However, in this thesis we require only the case where λ and H are bounded where we can argue
as follows: Since N̄ = N −

∫ ·
0 λsds is a local (F,P)-martingale and H is (locally) bounded and

F-predictable, Theorem IV.29 in [Pro04] implies that both M = H • N̄ and H2 • N̄ are local
(F,P)-martingales. Since N is a counting process, it is nondecreasing and moreover we have
[N̄ ] = [N ] = N ; in particular, [N̄ ]−

∫ ·
0 λsds = N −

∫ ·
0 λsds is a local (F,P)-martingale and thus

by Proposition 3.64 and Corollaries 3.53 and 3.65 in [Med07] the predictable quadratic variation
of N is given by 〈N̄〉 =

∫ ·
0 λsds. As a consequence, with the help of Theorem 3.52 in [Med07],

we obtain

E
[
[M ]T

]
= E

[∫
(0,T ]

H2
sd[N̄ ]s

]
= E

[∫
(0,T ]

H2
sd〈N̄〉s

]
= E

[∫ T

0
H2
sλsds

]
<∞.

Thus, M is an L2-martingale by Corollary 3 in [Pro04, p.73].

Finally, in the setup of Sections 1.4 and 2.1-2.3 we make use of the following result that renders
Lemma A.1 applicable:

Lemma A.4. Let {Nt}t∈[0,T ] be a counting process with progressively measurable intensity
process {λt}t∈[0,T ] such that E

[∫ T
0 λsds

]
< +∞. Then it holds ∆Nt = 0 P-a.s. for all t ∈ [0, T ].

In particular, the preceding result applies if N has a bounded intensity process λ. �

Proof of Lemma A.4. Recall that N0− = N0 = 0 and let t ∈ (0, T ] in the following. With the
help of monotone and dominated convergence and Lemma A.3 we obtain:

P(∆Nt 6= 0) = E[∆Nt] = E[Nt −Nt−] = lim
s↑t

E[Nt −Ns]

= lim
s↑t

E
[∫ t

s
λudu

]
= E

[
lim
s↑t

∫ t

s
λudu

]
= 0.

This proves the stated assertion.
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A.3 Carathéodory Solutions of ODEs

As already pointed out in Footnote 60, all ODEs in Chapter 2 (and Appendix D) are taken in
the sense of Carathéodory. Therefore, as a point of reference and for the sake of completeness, we
provide a brief outline of the relevant definitions and results. For details we refer, e.g., to §I.5
in [Hal80] or Supplement II of III.§10 in [Wal98]; note that this section is mainly based on and
collects the results stated in the first of these two references.

For an open set D ⊆ Rd+1, some initial configuration (t0, x0) ∈ D and a Borel measurable
function f : D → Rd we consider the initial value problem

ẋ(t) = f(t, x(t)) for t ∈ I, x(t0) = x0, (IVP)

where I ⊆ R denotes some real interval with t0 ∈ I. A Carathéodory solution of (IVP) is defined
as follows (see [Hal80, p.28]):

Definition A.5 (Carathéodory Conditions, Carathéodory Solution). Let D ⊆ Rd+1 be an open
set and f : D → Rd be a Borel measurable function.

(a) The function f is said to satisfy the Carathéodory conditions on D if the following three
conditions are met:

(i) f( · , x) is Borel measurable for each fixed x.

(ii) f(t, · ) is continuous for each fixed t.

(iii) For each compact set U ⊂ D there is an integrable function mU such that

‖f(t, x)‖ ≤ mU (t) for all (t, x) ∈ U.

(b) An absolutely continuous function x : I → Rd, defined on some real interval I ⊆ R with
t0 ∈ I satisfying (t, x(t)) ∈ D for every t ∈ I, is said to be a Carathéodory solution of (IVP)
if

x(t) = x0 +

∫ t

t0

f(s, x(s))ds for all t ∈ I. (IVP)

holds. �

Note that the concept of a Carathéodory solution considers the differential equation (IVP) solely
as an integral equation.130 Existence and uniqueness of Carathéodory solutions is established by
the following result (see Theorem I.5.3 in [Hal80]):

Theorem A.6 (Existence and Uniqueness). Let D ⊆ Rd+1 be open set and suppose that
f : D → Rd is a Borel measurable function that satisfies the Carathéodory conditions on D.
Moreover assume that for every compact set U ⊂ D there is an integrable function kU such that
the Lipschitz condition

‖f(t, x1)− f(t, x2)‖ ≤ kU (t) · ‖x1 − x2‖ for all (t, x1), (t, x2) ∈ U (A.2)
130For differentiability (Leb-a.e.) of absolutely continuous functions and a corresponding version of the fundamental

theorem of calculus we refer, e.g., to Theorem 7.20 in [Rud87] or Theorem VII.4.14 in [Els09].
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is satisfied. Then, for any (t0, x0) ∈ U , there is a unique Carathéodory solution of (IVP) passing
through (t0, x0).131 �

Note that if one omits the stated Lipschitz condition (A.2) in the preceding result, one can still
derive existence of a Carathéodory solution of (IVP); see Theorem I.5.1 in [Hal80]. However,
uniqueness might fail to hold. �
Furthermore, Carathéodory solutions can be extended up to the boundary of the domain D of
the right-hand side f (see Theorem I.5.2 in [Hal80]):

Theorem A.7 (Continuation/Maximal Interval of Existence). Let D ⊆ Rd+1 be open set and
suppose that f : D → Rd is a Borel measurable function that satisfies the Carathéodory conditions
on D. Furthermore, let x denote a Carathéodory solution of (IVP) on some interval I ⊆ R. Then
there is a continuation of x to a maximal interval of existence (α, β) ⊆ R; this extension tends to
the boundaries of D as soon as t→ α or t→ β. �

For our purposes the following remark will be of interest:

Remark A.8 (Global Existence and Uniqueness). Let ∅ 6= I ⊂ R be a compact interval.

(a) Suppose that f : I ×Rd → Rd is a Borel measurable function that satisfies the assumptions
of Theorem A.6, i.e. f fulfills the Carathéodory conditions and a Lipschitz condition (A.2).
Moreover, assume that f is linearly bounded, i.e. for some constants a, b ≥ 0 it holds

‖f(t, x)‖ ≤ a+ b · ‖x‖ for all (t, x) ∈ I × Rd. (A.3)

Clearly, by Theorem A.6 in conjunction with Theorem A.7 there is a unique Carathéodory
solution x of (IVP) on some maximal interval of existence (α, β) ⊆ I̊. Moreover, by (A.3)
it holds

‖x(t)‖ ≤ ‖x0‖+

∫ t

t0

‖f(s, x(s)‖ds ≤ ‖x0‖+ a(t− t0) + b ·
∫ t

t0

‖x(s)‖ds for t ∈ (α, β)

and thus Gronwall’s inequality132. implies

‖x(t)‖ ≤
(
‖x0‖+ a(t− t0)

)
· eb(t−t0) for t ∈ (α, β).

In particular, it holds supt∈(α,β) ‖x(t)‖ < +∞ and, as a result, we obtain from Theorem A.7
that (α, β) = I̊ which, in turn, implies global existence and uniqueness of x on I.

(b) Let E ⊆ Rd be a compact set and define D , I ×E. Moreover, suppose that f : D → Rd

is a Borel measurable function which satisfies the assumptions of Theorem A.6 with a
global Lipschitz condition (A.2), i.e. the functions kU reduce to a positive constant (uniform
across t and U). Then, Theorem A.6 can be proved in the same way as the celebrated
Picard-Lindelöf theorem for classical solutions of ODEs; see, e.g., Theorem II.6.I in [Wal98]
for details on the proof of this standard result. In particular, one obtains global existence
and uniqueness of a solution of (IVP) in the sense of Carathéodory on I. �

131Moreover, continuous dependence on the initial data (t0, x0) ∈ D can be shown.
132see, e.g., Lemma I.6.2 and p.37 in [Hal80]
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Appendix B

Branching Diffusions and Nonlocal
Dirichlet Problems

In Section 1.1 we have derived a branching diffusion representation of classical solutions of
nonlocal PDEs of type (PDE) subject to a terminal condition (TC); see Theorem 1.1.6. Inspired
by [AC18], it is also possible to tackle a certain class of nonlocal Dirichlet problems with analytic
nonlinearities on bounded spatial domains with the help of our branching methodology. In this
part of the appendix we provide a brief outline of a corresponding representation result.

Let D ( Rd be a non-empty, open and bounded domain and µ : D → Rd and σ : D → Rd×d be
Lipschitz continuous functions. Keeping notation, mutatis mutandis, as in Section 1.1, we let A
be the infinitesimal generator of the time-homogeneous Itō diffusion with dynamics

dX
x
t = µ

(
X
x
t

)
dt+ σ

(
X
x
t

)
dW t, X

x
0 = x, for x ∈ D,

and consider the Dirichlet problem

A[u](x) +

∫
Ξ
f(x, ξ,J [u](x, ξ))γ(dξ) = 0 for x ∈ D,

u(x) = g(x) for x ∈ ∂D ∪DI;

(D)

the jump maps Γ` : D × Ξ → Rd, ` ∈ [1 :m], and the coefficients ci : D × Ξ → R, i ∈ I, are
assumed to be jointly measurable; ci, i ∈ I, is furthermore assumed to be bounded and continuous
with respect to x ∈ D; the interaction domain is defined by DI ,

⋃m
`=1

(
Γ`(D × Ξ) \D

)
;133 and

the function g : ∂D ∪DI → R is assumed to be bounded and continuous.

For a point x ∈ D and a Brownian motion W we define the first exit time of Xx from D by

τx,WD , inf{t ≥ 0 : X
x
t 6∈ D},

133Note that DI comprises all target points y = Γ`(x, ξ) 6∈ D that can be reached by a jump from a point x ∈ D (and
given a jump mark in ξ ∈ Ξ) via some jump map Γ`, ` ∈ [1 :m]. In other words, the point y 6∈ D interacts with
some point x ∈ D, and thus the set of all such outside points is commonly referred to as interaction domain in the
literature on nonlocal models and operators; for details we refer, e.g., to [DGLZ12], [DGLZ13] or [SV19] and the
references therein.

129
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and assume that E
[
τx,WD

]
< +∞.134 By continuity of Xx we have

X
x
t ∈ D for t ∈

[
0, τx,WD

)
and X

x

τx,WD

∈ ∂D.

Let u ∈ C2(D) ∩ C0(D) be a classical solution of (D) and fix some x ∈ D. From Itō’s lemma135

we obtain the Feynman-Kač representation

u(x) = E
[
g
(
X
x

τx,WD

)
+

∫ τx,WD

0

∫
Ξ
f
(
X
x
s , ξ,J [u](X

x
s , ξ)

)
γ(dξ)ds

]
= E

[
g
(
X
x

τx,WD

)
+

∫ τx,WD

0

∫
Ξ

∑
i∈I

ci(X
x
s , ξ)J [u](X

x
s , ξ)

iγ(dξ)ds
]
. (B.1)

Accordingly, under suitable conditions,136 with the same ingredients and by proceeding similarly
as in Section 1.1, we thus introduce particles k ∈ N with branching times T (k) recursively given
by T∅ , 0 and

T (k) ,

T (k−) + τ (k) if τ (k) < τ
(k)
D ,

T (k−) + τ
(k)
D else,

where τ (k)
D , τ

X
(k)

T (k−)
,W (k)

D .

A particle k only comes into existence if its respective initial condition is feasible: Its dynamics
start in either X(1)

0 , x ∈ D if k = (1), or X(k)

T (k−) , ΓJ(k)

(
X

(k−)

T (k−) ,∆
(k−)

)
whenever k 6= (1) and

X
(k−)

T (k−) , X
(k)

T (k−) ∈ D, respectively, and – in these cases – obey

dX
(k)
t = µ(X

(k)
t )dt+ σ(X

(k)
t )dW

(k)
t for t ∈ [T (k−), T (k)];

a particle k branches into |I(k)| shadow offspring particles with jump marks according to I(k)

(see Section 1.1.2) whenever X(k)

T (k) ∈ D; otherwise, it ceases to exist without branching; shadow
offspring particles with infeasible initial conditions are immediately discarded (see above), and
only the remaining ones turn into particles.137

We define the set of all particles to be Kx and introduce the set K∂x , {k ∈ Kx : X
(k)

T (k) ∈ ∂D}
of particles hitting the boundary of D before branching; for each particle k in the complement,
i.e. if k ∈ Kx \ K∂x, we define the set of infeasible jump marks by Loutx (k) , {` ∈ [1 : m] :

Γ`(X
(k)

T (k) ,∆
(k)) ∈ DI}.

Then, under analogous (integrability) assumptions,138 we can mimic the proof of Theorem 1.1.6
above, see in particular (1.14), and rewrite (B.1) to obtain the representation

134Note that τx,WD is an FX
x

-stopping time since Xx is continuous and Rd \D is closed.
135For technical details we refer, e.g., to Theorem II.2.1 in [Fre85].
136see also, e.g., Assumptions 2.1-2.3 in [AC18].
137Note that, unlike in Section 1.1, the branching mechanism itself is now affected by the branching diffusion dynamics.

We refer to §2.2 in [AC18] for a similar construction of a marked branching diffusion with absorption (albeit without
jumps); see also, e.g., §3.1.1 in [BCL+15].

138For further details see also the related discussions in [AC18].
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u(x) = E
[ ∏
k∈K∂x

g(X
(k)

T (k))

F (T (k) − T (k−))

×
∏

k∈Kx\K∂x

cI(k)(X
(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

∏
`∈Loutx (k)

g(Γ`(X
(k)

T (k) ,∆
(k)))I

(k)
`

]
. (B.2)

Note that this representation is in line with and partially extends existing results on local Dirichlet
problems to the nonlocal case; see, e.g., Propositions 3.1 and 4.1 in [AC18]. �
To conclude this part of the appendix, let us observe that the numerical efficiency of Monte Carlo
simulation of (B.2) heavily relies on the ability to decide computationally fast whether a given
point x ∈ Rd satisfies x ∈ D or not; in other words, one needs to be able to compute the indicator
1D of the underlying domain D efficiently. This is, e.g., the case for special domains such as
hyperrectangles or balls.

Note also that such a simulation has to be formally justified by deriving a viscosity solution
property of (B.2) similarly as in Section 1.2; we leave this issue for future research and refer,
e.g., to Theorems 3.1 and 4.1 in [AC18] for corresponding results in the case of local Dirichlet
problems.
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Appendix C

Counterparties and Pricing PDEs

In this part of the appendix, we consider the setup of Section 1.4. For the sake of completeness
and comparison we state the relevant pricing PDEs for the considered benchmark scenarios in
Section 1.4.3 in synopsis: Let λ† , λ denote the default intensity function of the SIB counterparty.
Supplemented with the terminal condition u(T, x) = g◦(x), x ∈ [0,∞)d, where ◦ ∈ {short, long},
a fair price of the derivative g◦(XT ) is obtained by solving one of the following equations on
[0, T )× [0,∞)d:

(i) in case of a defaultable SIB counterparty:

∂tu(t, x) +A?[u](t, x)− r(t, x)u(t, x)

+ λ†(t, x)

∫
E

(
h ◦ u

(
t, (Id×d + diag(z))x

)
− u(t, x)

)
γ(dz) = 0. (1.28)

(ii) in case of a defaultable non-SIB counterparty with distinct139 default intensity function
λ# : [0, T ]× [0,∞)d → [0,∞):

∂tu(t, x) +A†[u](t, x)− r(t, x)u(t, x) + λ#(t, x)
(
h ◦ u(t, x)− u(t, x)

)
= 0. (C.1)

(iii) in case of a default-free counterparty:

∂tu(t, x) +A†[u](t, x)− r(t, x)u(t, x) = 0. (C.2)

Here, A† denotes the infinitesimal generator of the underlying risky asset prices X (see (1.27)),
i.e.

A†[u](t, x) , µ(t, x)T diag(x)∇xu(t, x) +
1

2
tr
[
diag(x)σ(t, x)σ(t, x)T diag(x)∇2

xu(t, x)
]

+ λ†(t, x)

∫
E

(
u
(
t, (Id×d + diag(z))x

)
− u(t, x)

)
γ(dz)

= A?[u](t, x) + λ†(t, x)

∫
E

(
u
(
t, (Id×d + diag(z))x

)
− u(t, x)

)
γ(dz).

139Note that, for reasons of comparability, we choose λ† ≡ λ# ≡ λ in all our considerations; see Section 1.4.3.

133



134 Appendix C. Counterparties and Pricing PDEs

The link between each of these equations and a suitable risk-neutral pricing formula is estab-
lished via a Feynman-Kač representation of a corresponding classical solution.140 The proof
of Theorem 1.4.1 considers case (i) of a defaultable SIB counterparty and links PDE (1.28) to
formula (1.25); its arguments are readily adapted to cover the other two cases.
Note that while in the case of a default-free counterparty pricing boils down to solving a (standard,
albeit nonlocal) linear PDE141 (see (C.2)), the corresponding equation becomes nonlinear as soon
as the counterparty is defaultable and credit risk needs to be taken into account (see (C.1));
if the contract’s counterparty is furthermore modeled as systemically important the additional
complication of a nonlocal nonlinearity emerges (see (1.28)).

With regard to branching and our simulation results in Section 1.4.3, note that (1.28) is solved as
outlined in Section 1.4.2; analogously, the nonlinearity of (C.1) is approximated by a polynomial
as discussed in §5 in [Hen12a]; and the one of the linear PDE (C.2) is of polynomial type anyway.
Note that the branching estimators of the latter two equations lead to branching jump-diffusions
– without any conceptual difference with regard to the branching methodology.

140This approach is standard given the literature; see, e.g., §4.8 in [Eth02], Chapter 6 in [Shr04] or [BJR05].
141In fact, in the specific setup of Section 1.4.3 this PDE can be solved explicitly; see, e.g., [Kou02].



Appendix D

Existence of Mean Field Equilibria

In this part of the appendix we provide a proof of Theorem 2.3.6 together with relevant assumptions
and auxiliary results. Throughout, we consider the setup of Chapter 2 and fix some time horizon
T > 0 and a number of common noise events n ∈ N0. We set Π , {π = [T0, T1, . . . , Tn, Tn+1] :

0 = T0 < T1 < · · · < Tn < Tn+1 = T}.

Assumption D.1 (Lipschitz Conditions).

(i) The terminal reward function Ψ is Lipschitz continuous with respect to m, i.e.

‖Ψ(w,m1)−Ψ(w,m2)‖ ≤ LΨ · ‖m1 −m2‖ (LΨ)

for all w ∈Wn and m1,m2 ∈M.

(ii) The reduced-form running reward function ψ̂ is jointly Lipschitz continuous with respect to
m and v, i.e.

‖ψ̂(t, w,m1, v1)− ψ̂(t, w,m2, v2)‖ ≤ L
ψ̂
·
(
‖m1 −m2‖+ ‖v1 − v2‖

)
(L
ψ̂
)

for all t ∈ [0, T ], w ∈Wn, m1,m2 ∈M and v1, v2 ∈ Rd.

(iii) The reduced-form intensity matrix function Q̂ is jointly Lipschitz continuous with respect
to m and v, i.e.

∥∥Q̂(t, w,m1, v1)− Q̂(t, w,m2, v2)
∥∥ ≤ L

Q̂
·
(
‖m1 −m2‖+ ‖v1 − v2‖

)
(L
Q̂
)

for all t ∈ [0, T ], w ∈Wn, m1,m2 ∈M and v1, v2 ∈ Rd.

(iv) For each π ∈ Π and k ∈ [1 :n] the transition kernels κk satisfy the Lipschitz condition∣∣∣∣ ∑
w̄k∈W

(
κk
(
w̄k|w1, . . . , wk−1,m1

)
· vJi(Tk,(w−k,w̄k),m1)

− κk
(
w̄k|w1, . . . , wk−1,m2

)
· vJi(Tk,(w−k,w̄k),m2)

)∣∣∣∣ ≤ Lκ · ‖m1 −m2‖ (Lκ)
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for all i ∈ S, w ∈Wn, m1,m2 ∈M and v ∈ Rd with ‖v‖ ≤ vmax, where

vmax ,
(
Ψmax + T · ψmax

)
· eQmax·T . (vmax)

(v) For each π ∈ Π, k ∈ [1 :n] and w ∈Wn the map69 Φk(w, · ) is Lipschitz continuous, i.e.

‖Φk(w,m1)− Φk(w,m2)‖ ≤ LΦ · ‖m1 −m2‖ (LΦ)

for all w ∈Wn and m1,m2 ∈M. �

Since all norms on Rd are equivalent, the concrete specification is immaterial for Assumption D.1.
However, the following results partially depend on the sizes of the relevant constants; to be
concrete, in the following we use the maximum norm on Rd and a compatible142 matrix norm on
Rd×d; moreover, we suppose that (L

Q̂
) holds for both Q̂ and Q̂T.143 The constants in (vmax) are

given by144

Qmax , sup
t∈[0,T ], w∈Wn,

m∈M, v∈Rd

∥∥Q̂(t, w,m, v)
∥∥ ∨ ∥∥Q̂(t, w,m, v)T

∥∥,
ψmax , sup

t∈[0,T ], w∈Wn,

m∈M, v∈Rd

∥∥ψ̂(t, w,m, v)
∥∥ and Ψmax , sup

m∈M,
w∈Wn

‖Ψ(w,m)‖.
(D.1)

Remark D.2. Sufficient conditions for Assumption D.1(i)-(iii) in terms of the model’s primitives
can be found in, e.g., [GMS13] or [CF20]. Furthermore, in the special case where the jump map
J is independent of m ∈M, Assumption D.1(v) is trivially satisfied, and a sufficient condition for
Assumption D.1(iv) is given by the condition that the map

M 3 m 7→
∑
w̄k∈ ·

κk(w̄k|w1, . . . , wk−1,m) ∈ Prob(W)

is Lipschitz continuous in total variation norm. �

Let p ∈ N and E ⊆ Rp. We consider the Skorokhod space

D(E) ,
{
f : [0, T ]×Wn → E : f is càdlàg

}
together with the norm ‖f‖sup , supt∈[0,T ], w∈Wn ‖f(t, w)‖ for f ∈ D(E), and for π ∈ Π we define

69With a slight abuse of notation, here and in the following we write

Φk(w,m) , Φk(w,m,m) for k ∈ [1 :n], w ∈Wn and m ∈ M,

where the right-hand side is defined in (Φk) above.
142A matrix norm is said to be compatible if ‖Ax‖ ≤ ‖A‖ · ‖x‖ for every A ∈ Rd×d and x ∈ Rd; for example, one

could consider the operator norm corresponding to ‖ · ‖∞, i.e. the maximum absolute row sum.
143For the concrete specification of the norm, i.e. for ‖ · ‖ = ‖ · ‖∞, and if one considers the corresponding operator

norm on Rd×d, i.e. the maximum absolute row sum, one can easily derive the Lipschitz condition for Q̂T from the
one for Q̂ by using equivalence of ‖ · ‖∞ and ‖ · ‖1 on Rd; recall that the operator norm corresponding to ‖ · ‖1 is
given by the maximum absolute column sum.

144We implicitly assume ψmax > 0; otherwise this constant must be replaced by an arbitrary positive number.
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the linear subspace

Dπ(E) ,
{
f : [0, T ]×Wn → E : f is càdlàg and non-anticipative

}
⊆ D(E).

By elementary results, it is clear that D(E) is a Banach space provided E ⊆ Rp is closed;
correspondingly, as the property of being non-anticipative with respect to a fixed grid π ∈ Π is
preserved by pointwise limits, Dπ(E) is also a Banach space in this case; the linear subspace of
regular non-anticipative functions is denoted by Regπ(E) ⊆ Dπ(E).145

Lemma D.3 (Forward/Backward Gronwall Estimates). Let π ∈ Π, f ∈ Dπ([0,∞)) and δ ≥ 0.

(a) Let �
α,

�
β ≥ 0 and �

γ ≥ 1, and suppose that f(0) = 0,

f(t, w) ≤ f(Tk, w) +
�
α(t− Tk) · δ +

∫ t

Tk

�
β · f(s, w)ds, for t ∈ [Tk, Tk+1〉, w ∈Wn, (D.2)

for k ∈ [0 :n], and
f(Tk, w) ≤ �

γ · f(Tk−, w) for w ∈Wn, (D.3)

for k ∈ [1 :n]. Then we have

f(t, w) ≤
�
C · δ for all (t, w) ∈ [0, T ]×Wn,

where
�
C ,

�
α ·
(�
γ
)n · e�

βT · T.

(b) Let �
ρ,

�
α,

�
β,

�
ε ≥ 0 and suppose that f(T−, w) = f(T,w) ≤ �

ρ · δ for w ∈Wn,

f(t, w) ≤ f(Tk+1−, w) +
�
α(Tk+1− t) · δ+

∫ Tk+1

t

�
β · f(s, w)ds, for t ∈ [Tk, Tk+1〉, w ∈Wn,

(D.4)
for k ∈ [0 :n], and

f(Tk−, w) ≤
∑
w̄k∈W

�
γk(w1, . . . , wk−1, w̄k) · f(Tk, (w−k, w̄k)) +

�
ε · δ, for w ∈Wn, (D.5)

for k ∈ [1 : n], where for all w1, . . . , wk−1 ∈ W the family {�γk(w1, . . . , wk−1, w̄k)}w̄k∈W
consists of probability weights on W. Then we have

f(t, w) ≤
�
C · δ for all (t, w) ∈ [0, T ]×Wn,

where
�
C ,

(�
ρ +

�
α · T + n · �ε

)
· e

�
βT .

Importantly, the constants
�
C and

�
C do not depend on π ∈ Π. In particular, we have

C ,
�
C ·

�
C < 1 whenever T > 0 is sufficiently small. (D.6)

145cf. Definitions 2.1.1 and 2.1.2.
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Proof. First we prove part (a): We recursively define
�
C0 , 0 and

�
Ck+1 ,


�
γ ·
(�
Ck +

�
α(Tk+1 − Tk)

)
· e

�
β(Tk+1−Tk) for k ∈ [0 :n),(�

Cn +
�
α(T − Tn)

)
· e

�
β(T−Tn) for k = n.

Note that the sequence {
�
Ck}k∈[0:(n+1)] is non-decreasing and, by iterating the above recursion,

it follows that
�
Cn+1 =

�
α ·∑n

k=0

(�
γ
)n−k · e�

β(T−Tk) · (Tk+1 − Tk). Hence it holds
�
Cn+1 ≤

�
C. As a

consequence it suffices to show that

f(t, w) ≤
�
Ck+1 · δ for all (t, w) ∈ [Tk, Tk+1〉 ×Wn, k ∈ [0 :n]. (D.7)

It is clear that f(T0) = f(0) = 0. Next let k ∈ [0 :n] and

f(Tk, w) ≤
�
Ck · δ for all w ∈Wn.

It follows from (D.2) and Gronwall’s inequality146 that for (t, w) ∈ [Tk, Tk+1〉 ×Wn

f(t, w) ≤
(
f(Tk, w) +

�
α(t− Tk) · δ

)
· e

�
β(t−Tk)

≤
(�
Ck +

�
α(Tk+1 − Tk)

)
· e

�
β(Tk+1−Tk) · δ (D.8)

≤
�
Ck+1 · δ.

In particular, if k ∈ [0 :n), (D.3) and (D.8) yield

f(Tk+1, w) ≤ �
γ · f(Tk+1−, w)

≤ �
γ ·
(�
Ck +

�
α(Tk+1 − Tk)

)
· e

�
β(Tk+1−Tk) · δ =

�
Ck+1 · δ,

and consequently it holds

f(t, w) ≤
�
Ck+1 · δ for all (t, w) ∈ [Tk, Tk+1]×Wn.

Thus (D.7) follows by induction on k ∈ [0 :n] and the proof of part (a) is finished.

Part (b) follows by analogous arguments upon time reversal; for the sake of completeness we

nevertheless state its proof in full detail: We recursively define
�
Cn+1 ,

�
ρ and

�
Ck ,


(�
Ck+1 +

�
α(Tk+1 − Tk) +

�
ε
)
· e

�
β(Tk+1−Tk) for k ∈ (0 :n],(�

C1 +
�
α(T1 − T0)

)
· e

�
β(T1−T0) for k = 0.

Note that the sequence {
�
Ck}k∈[0:n] is non-increasing and, by iterating the above recursion it

follows that
�
C0 =

�
ρ · e

�
βT +

�
α ·∑n

k=0(Tk+1−Tk) · e
�
βTk+1 +

�
ε ·∑n

k=1 e
�
βTk+1 . Hence it holds

�
C0 ≤

�
C.

146see, e.g., Lemma I.6.2 and p.37 in [Hal80].
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As a consequence it suffices to show that

f(t, w) ≤
�
Ck · δ for all (t, w) ∈ [Tk, Tk+1〉 ×Wn, k ∈ [0 :n]. (D.9)

It is clear that f(Tn+1−, w) = f(T,w) ≤ �
ρ · δ for all w ∈Wn. Next let k ∈ [0 :n] and

f(Tk+1−, w) ≤
�
Ck+1 · δ for all w ∈Wn.

It follows from (D.4) and Gronwall’s inequality146 (applied backward in time) that for all
(t, w) ∈ [Tk, Tk+1〉 ×Wn

f(t, w) ≤
(
f(Tk+1−, w) +

�
α(Tk+1 − t) · δ

)
· e

�
β(Tk+1−t)

≤
(�
Ck+1 +

�
α(Tk+1 − Tk)

)
· e

�
β(Tk+1−Tk) · δ (D.10)

≤
�
Ck · δ.

In particular, if k ∈ (0 :n], (D.5) and (D.10) yield

f(Tk−, w) ≤
∑
w̄k∈W

�
γk(w1, . . . , wk−1, w̄k) · f(Tk, (w−k, w̄k)) +

�
ε · δ

≤
(�
Ck+1 +

�
α(Tk+1 − Tk) +

�
ε
)
· e

�
β(Tk+1−Tk) · δ

=
�
Ck · δ

and hence (D.9) follows by backward induction on k = n, n− 1, . . . , 0; this finishes the proof of
part (b).

In the following, we first consider the backward system (E2), (E4), (E6) and subsequently the
forward system (E1), (E3), (E5).

Lemma D.4 (Backward System: Existence and Uniqueness). Suppose that Assumptions D.1(ii)
and (iii) hold and let π ∈ Π and µ ∈ Dπ(M). Then there exists a unique solution v̄ of (E2)
subject to (E4) and (E6). Moreover, we have v̄ ∈ Regπ(Rd) and ‖v̄(t, w)‖ ≤ vmax for all
(t, w) ∈ [0, T ]×Wn where vmax is given by (vmax).

In view of Definition 2.2.2 and Theorem 2.2.4, note that Lemma D.4 in particular establishes
existence of a partial equilibrium v̄ ∈ Regπ(Rd) given the representative agent’s ex ante beliefs
µ ∈ Dπ(M). �

Proof of Lemma D.4. We divide the proof into two steps.

Step 1: Construction of v̄. We construct v̄ by backward induction on k ∈ [0 :n] on each segment
[Tk, Tk+1〉 ×Wn. First, we set v̄(T,w) , Ψ(w, µ(T,w)) for w ∈Wn.
Suppose that k ∈ [0 : n], fix w ∈ Wn, and let ṽ(Tk+1, wTk) ∈ Rd be given and independent of
wk+1, . . . , wn. Using (L

ψ̂
), (L

Q̂
) and (D.1) we obtain for t ∈ [Tk, Tk+1〉 and v1, v2 ∈ BR(0) (for

an arbitrary radius R > 0)
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∥∥ψ̂(t, wTk , µ(t, wTk), v1) + Q̂(t, wTk , µ(t, wTk), v1) · v1

∥∥ ≤ ψmax +Qmax · ‖v1‖ (D.11)

≤ ψmax +Qmax ·R

and

∥∥ψ̂(t, wTk , µ(t, wTk), v1) + Q̂(t, wTk , µ(t, wTk), v1) · v1

− ψ̂(t, wTk , µ(t, wTk), v2)− Q̂(t, wTk , µ(t, wTk), v2) · v2

∥∥
≤
∥∥ψ̂(t, wTk , µ(t, wTk), v1)− ψ̂(t, wTk , µ(t, wTk), v2)

∥∥
+
∥∥Q̂(t, wTk , µ(t, wTk), v1)

∥∥ · ‖v1 − v2‖
+
∥∥Q̂(t, wTk , µ(t, wTk), v1)− Q̂(t, wTk , µ(t, wTk), v2)

∥∥ · ‖v2‖
≤ (L

ψ̂
+Qmax + L

Q̂
·R) · ‖v1 − v2‖.

Thus it follows that the Carathéodory conditions147 are satisfied, so Theorem I.5.3 in conjunction
with Theorem I.5.2 in [Hal80]148 yields the unique Carathéodory solution ṽ( · , wTk) : [Tk, Tk+1]→
Rd of

ṽ(t, wTk) = ṽ(Tk+1, wTk) +

∫ Tk+1

t

(
ψ̂
(
s, wTk , µ(s, wTk), ṽ(s, wTk)

)
+ Q̂

(
s, wTk , µ(s, wTk), ṽ(s, wTk)

)
· ṽ(s, wTk)

)
ds

= ṽ(Tk+1, wTk) +

∫ Tk+1

t

(
ψ̂
(
s, w, µ(s, w), ṽ(s, wTk)

)
+ Q̂

(
s, w, µ(s, w), ṽ(s, wTk)

)
· ṽ(s, wTk)

)
ds, t ∈ [Tk, Tk+1],

where the final identity is due to the fact that µ and for all (m̄, v̄) ∈M× Rd both ψ̂( · , · , m̄, v̄)

and Q̂( · , · , m̄, v̄) are non-anticipative. We define

v̄(t, w) , ṽ(t, wTk) for t ∈ [Tk, Tk+1〉.

By construction, v̄( · , w) solves (E2) on [Tk, Tk+1〉 and does not depend on wk+1, . . . , wn.
Having constructed v̄ on [Tk, Tk+1〉 ×Wn, in case of k > 0, we use (E4) and define

ṽ(Tk, wTk−1
) , Ψk(w, µ(Tk−, w), v̄(Tk, · )) for w ∈Wn.

By construction, (Ψk) and the fact that µ and J are non-anticipative, it follows that this
definition does not depend on wk, . . . , wn. Consequently, the above construction can be iterated,
and hence we obtain v̄ as the unique solution of (E2) subject to (E4) and (E6). By definition, v̄
is non-anticipative and regular, i.e. v̄ ∈ Regπ(Rd).

147see [Hal80, p.28] and Definition A.5(a).
148see also Theorem A.6 and A.7 as well as Remark A.8(a). Note that the right-hand side of the ODE is linearly

bounded by (D.11).
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Step 2: A priori bound. For k ∈ [0 :n] and (t, w) ∈ [Tk, Tk+1〉 ×Wn we have

‖v̄(t, w)‖ ≤ ‖v̄(Tk+1−, w)‖

+

∫ Tk+1

t

(∥∥ψ̂(s, w, µ(s, w), v̄(s, w))
∥∥+

∥∥Q̂(s, w, µ(s, w), v̄(s, w))
∥∥ · ‖v̄(s, w)‖

)
ds

≤ ‖v̄(Tk+1−, w)‖+ ψmax · (Tk+1 − t) +Qmax ·
∫ Tk+1

t
‖v̄(s, w)‖ds. (D.12)

On the other hand, for k ∈ [1 :n], w ∈Wn and i ∈ S we observe from (Ψk) that

‖v̄(Tk−, w)‖ ≤
∑
w̄k∈W

κk(w̄k|w1, . . . , wk−1, µ(Tk−, wTk−)) · ‖v̄(Tk, (w−k, w̄k)‖. (D.13)

Since ‖v̄(T−, w)‖ = ‖v̄(T,w)‖ = ‖Ψ(w, µ(T,w))‖ ≤ Ψmax it follows from (D.12), (D.13) and

Lemma D.3(b) (see (D.4) and (D.5)) with �
ρ , Ψmax/ψmax,

�
α = 1,

�
β = Qmax,

�
ε = 0 and δ , ψmax

that

‖v̄(t, w)‖ ≤
�
C · δ =

(
Ψmax + T · ψmax

)
· eQmax·T = vmax for all (t, w) ∈ [0, T ]×Wn.

Lemma D.5 (Forward System: Existence and Uniqueness). Suppose that Assumption D.1(iii)
is satisfied and let π ∈ Π and v ∈ Dπ(Rd). Then there is a unique solution µ̄ of (E1) subject to
(E3) and (E5), and we have µ̄ ∈ Regπ(M).

Proof. The proof is analogous to (but somewhat simpler than) that of Lemma D.4. For the sake
of completeness we nevertheless state it in full detail: We construct µ̄ by forward induction on
k ∈ [0 : n] on each segment [Tk, Tk+1〉 ×Wn. First, we set µ̄(0, w) , m0 ∈M for w ∈Wn.
Suppose that k ∈ [0 : n], fix w ∈ Wn and let µ̃(Tk, wTk) ∈ M be given and independent of
wk+1, . . . , wn. By (L

Q̂
) and (D.1) we obtain for t ∈ [Tk, Tk+1〉 and m1,m2 ∈M

∥∥Q̂(t, wTk ,m1, v(t, wTk))T ·mT
1

∥∥ ≤ ∥∥Q̂(t, wTk ,m1, v(t, wTk))T
∥∥ · ‖m1‖ ≤ Qmax

and

∥∥Q̂(t, wTk ,m1, v(t, wTk))T ·mT
1 − Q̂(t, wTk ,m2, v(t, wTk))T ·mT

2

∥∥
≤
∥∥Q̂(t, wTk ,m1, v(t, wTk))T − Q̂(t, w,m2, v(t, wTk))T

∥∥ · ‖m1‖
+
∥∥Q̂(t, wTk ,m2, v(t, wTk))T

∥∥ · ‖m1 −m2‖
≤ (L

Q̂
+Qmax) · ‖m1 −m2‖, (D.14)

and thus the Carathéodory conditions147 are satisfied, so Theorem I.5.3 in [Hal80]149 yields the
unique Carathéodory solution µ̃( · , wTk) : [Tk, Tk+1]→ Rd of

µ̃(t, wTk) = µ̃(Tk, wTk) +

∫ t

Tk

µ̃(s, wTk) · Q̂
(
s, wTk , µ̃(s, wTk), v(s, wTk)

)
ds

149see also Theorem A.6 and Remark A.8(b). Note that the right-hand side of the ODE is globally Lipschitz continuous
by (D.14).
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= µ̃(Tk, wTk) +

∫ t

Tk

µ̃(s, wTk) · Q̂
(
s, w, µ̃(s, wTk), v(s, w)

)
ds for t ∈ [Tk, Tk+1],

where the final identity follows as v and, for all (m̄, v̄) ∈ M × Rd, the map Q̂( · , · , m̄, v̄) are
non-anticipative. Observe that both µ̃(Tk, wTk) ∈M and the intensity matrix condition guarantee
µ̃(t, wTk) ∈M for t ∈ [Tk, Tk+1]; indeed, we have

d∑
i=1

d∑
j=1

µ̃j(s, wTk) · Q̂ji(s, wTk , µ̃(s, wTk), v̄(s, wTk))

=
d∑
j=1

µ̃j(s, wTk) ·
d∑
i=1

Q̂ji(s, wTk , µ̃(s, wTk), v̄(s, wTk)) = 0 for all s ∈ [Tk, Tk+1].

We define
µ̄(t, w) , µ̃(t, wTk) ∈M for t ∈ [Tk, Tk+1〉.

By construction, µ̄( · , w) solves (E1) on [Tk, Tk+1〉 and does not depend on wk+1, . . . , wn. Having
constructed µ̄ on [Tk, Tk+1〉 ×Wn, in case of k < n, we use (E3) and define

µ̃(Tk+1, wTk+1
) , Φk+1

(
w, µ̄(Tk+1−, w)

)
for w ∈Wn.

By construction, (Φk)69 and since J is non-anticipative, it follows that this definition does not
depend on wl for l > k + 1. Moreover, note that µ̃(Tk+1, wTk+1

) ∈ M since, thanks to (Φk),
it holds

∑d
i=1 µ̃

i(Tk+1, wTk+1
) =

∑d
j=1 µ̄

j(Tk+1, wTk)
∑d

i=1 P
ji(w, µ̄(Tk+1, wTk)) = 1. Hence, the

above construction can be iterated and we obtain µ̄ as the unique solution of (E1) subject to (E3)
and (E5). By construction, µ̄ is non-anticipative, regular and M-valued, i.e. µ̄ ∈ Regπ(M).

We are now in a position to establish existence of a mean field equilibrium, i.e. to prove Theo-
rem 2.3.6. For convenience we repeat its statement:

Theorem 2.3.6 (Existence of Equilibria). Fix n ∈ N0 and let Assumption D.1 be satisfied.150

Then there exists T ? > 0 such that for every time horizon T ≤ T ? and every choice of common
noise times 0 = T0 < T1 < · · · < Tn < Tn+1 = T there is a unique solution of the equilibrium
system (E1)-(E6).

As already pointed out above, the following proof is a ramification of the one of Theorem 6 in
[CF20]; it extends the latter result to the present setup which includes common noise. �

Proof of Theorem 2.3.6. Let T > 0 be as in (D.6) below Lemma D.3, where the relevant coeffi-
cients are given by

�
α = L

Q̂
,

�
β = Qmax + L

Q̂
,

�
γ = LΦ + 1,

�
ρ = LΨ,

�
α = L

ψ̂
+ L

Q̂
· vmax,

�
β = L

ψ̂
+Qmax + L

Q̂
· vmax,

�
ε = Lκ,

and fix some arbitrary π ∈ Π.

150Formally, we suppose that Assumption D.1 is satisfied for the given fixed n ∈ N0 and some T > 0.
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Step 1: Solution operators. We define

�
χ : Dπ(M)→ Regπ(Rd), �

χ[µ] , v̄,

where v̄ ∈ Regπ(Rd) is the unique solution of (E2) subject to (E4) and (E6) given µ ∈ Dπ(M); �
χ

is well-defined by Lemma D.4 and it holds ‖�χ[µ](t, w)‖ ≤ vmax for all (t, w) ∈ [0, T ]×Wn and
µ ∈ Dπ(M). Moreover, let

�
χ : Dπ(Rd)→ Regπ(M),

�
χ[v] , µ̄,

where µ̄ ∈ Regπ(M) is the unique solution of (E1) subject to (E3) and (E5) given v ∈ Dπ(Rd); �
χ

is well-defined by Lemma D.5.

Step 2: Lipschitz continuity of
�
χ. Let µ1, µ2 ∈ Dπ(M) and set v̄1 ,

�
χ[µ1] and v̄2 ,

�
χ[µ2]. Using

(L
ψ̂
), (L

Q̂
) and (D.1) it follows that for all k ∈ [0 :n] and (t, w) ∈ [Tk, Tk+1〉 ×Wn we have

∥∥v̄1(t, w)− v̄2(t, w)
∥∥ ≤ ∥∥v̄1(Tk+1−, w)− v̄2(Tk+1−, w)

∥∥
+

∫ Tk+1

t

∥∥ψ̂(s, w, µ1(s, w), v̄1(s, w)
)
− ψ̂

(
s, w, µ2(s, w), v̄2(s, w)

)∥∥ds

+

∫ Tk+1

t

∥∥Q̂(s, w, µ1(s, w), v̄1(s, w)
)
· v̄1(s, w)− Q̂

(
s, w, µ2(s, w), v̄2(s, w)

)
· v̄2(s, w)

∥∥ds

≤
∥∥v̄1(Tk+1−, w)− v̄2(Tk+1−, w)

∥∥
+

∫ Tk+1

t
L
ψ̂
·
(∥∥µ1(s, w)− µ2(s, w)

∥∥+
∥∥v̄1(s, w)− v̄2(s, w)

∥∥)ds
+

∫ Tk+1

t

(
L
Q̂
·
(∥∥µ1(s, w)− µ2(s, w)

∥∥+
∥∥v̄1(s, w)− v̄2(s, w)

∥∥) · ∥∥v̄1(s, w)
∥∥

+
∥∥Q̂(s, w, µ2(s, w), v̄2(s, w)

)∥∥ · ∥∥v̄1(s, w)− v̄2(s, w)
∥∥)ds

≤
∥∥v̄1(Tk+1−, w)− v̄2(Tk+1−, w)

∥∥+
(
L
ψ̂

+ L
Q̂
· vmax

)
· (Tk+1 − t) · ‖µ1 − µ2‖sup

+
(
L
ψ̂

+ L
Q̂
· vmax +Qmax

)
·
∫ Tk+1

t

∥∥v̄1(s, w)− v̄2(s, w)
∥∥ds. (D.15)

On the other hand for k ∈ [1 :n] we obtain from (Ψk) and (Lκ) that for every i ∈ S and w ∈Wn

∣∣v̄i1(Tk−, w)− v̄i2(Tk−, w)
∣∣

=

∣∣∣∣ ∑
w̄k∈W

(
κk
(
w̄k|w1, . . . , wk−1, µ1(Tk−, wTk−)

)
· v̄J

i(Tk,(w−k,w̄k),µ1(Tk−,w))
1 (Tk, (w−k, w̄k))

− κk
(
w̄k|w1, . . . , wk−1, µ2(Tk−, wTk−)

)
· v̄J

i(Tk,(w−k,w̄k),µ2(Tk−,w))
2 (Tk, (w−k, w̄k))

)∣∣∣∣
≤
∑
w̄k∈W

κk
(
w̄k|w1, . . . , wk−1, µ1(Tk−, wTk−)

)
·
∣∣∣v̄Ji(Tk,(w−k,w̄k),µ1(Tk−,wTk−))

1 (Tk, (w−k, w̄k))

− v̄J
i(Tk,(w−k,w̄k),µ1(Tk−,wTk−))

2 (Tk, (w−k, w̄k))
∣∣∣

+

∣∣∣∣ ∑
w̄k∈W

(
κk
(
w̄k|w1, . . . , wk−1, µ1(Tk−, wTk−)

)
· v̄J

i(Tk,(w−k,w̄k),µ1(Tk−,wTk−))

2 (Tk, (w−k, w̄k))
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− κk
(
w̄k|w1, . . . , wk−1, µ2(Tk−, wTk−)

)
· v̄J

i(Tk,(w−k,w̄k),µ2(Tk−,wTk−))

2 (Tk, (w−k, w̄k))
)∣∣∣∣

≤
∑
w̄k∈W

κk
(
w̄k|w1, . . . , wk−1, µ1(Tk−, wTk−)

)
·
∥∥v̄1(Tk, (w−k, w̄k))− v̄2(Tk, (w−k, w̄k))

∥∥
+ Lκ · ‖µ1(Tk−, wTk−)− µ2(Tk−, wTk−)‖.

As a consequence it holds for every w ∈Wn

∥∥v̄1(Tk−, w)− v̄2(Tk−, w)
∥∥

≤
∑
w̄k∈W

κk
(
w̄k|w1, . . . , wk−1, µ1(Tk−, wTk−)

)
·
∥∥v̄1(Tk, (w−k, w̄k))− v̄2(Tk, (w−k, w̄k))

∥∥
+ Lκ · ‖µ1 − µ2‖sup. (D.16)

Finally, for w ∈Wn by (LΨ) we have

‖v̄1(T−, w)− v̄2(T−, w)‖ = ‖v̄1(T,w)− v̄2(T,w)‖
= ‖Ψ(w, µ1(T,w))−Ψ(w, µ2(T,w))‖ ≤ LΨ · ‖µ1 − µ2‖sup. (D.17)

In view of (D.15), (D.16) and (D.17) it follows from Lemma D.3(b) with δ , ‖µ1 − µ2‖sup that

‖v̄1(t, w)− v̄2(t, w)‖ ≤
�
C · ‖µ1 − µ2‖sup for all (t, w) ∈ [0, T ]×Wn,

and thus ∥∥�
χ[µ1]− �

χ[µ2]
∥∥

sup
= ‖v̄1 − v̄2‖sup ≤

�
C · ‖µ1 − µ2‖sup. (D.18)

Step 3: Lipschitz continuity of
�
χ. Let v1, v2 ∈ Dπ(Rd) and set µ̄1 ,

�
χ[v1] and µ̄2 ,

�
χ[v2]. By

(L
Q̂
) and (D.1) we have for k ∈ [0 :n] and (t, w) ∈ [Tk, Tk+1〉 ×Wn

∥∥µ̄1(t, w)− µ̄2(t, w)
∥∥ ≤ ∥∥µ̄1(Tk, w)− µ̄2(Tk, w)

∥∥
+

∫ t

Tk

∥∥µ̄1(s, w) · Q̂(s, w, µ̄1(s, w), v1(s, w))− µ̄2(s, w) · Q̂(s, w, µ̄2(s, w), v2(s, w))
∥∥ds

≤
∥∥µ̄1(Tk, w)− µ̄2(Tk, w)

∥∥
+

∫ t

Tk

L
Q̂
·
(∥∥µ̄1(s, w)− µ̄2(s, w)

∥∥+
∥∥v1(s, w)− v2(s, w)

∥∥) · ∥∥µ̄1(s, w)
∥∥ds

+

∫ t

Tk

∥∥Q̂(s, w, µ̄2(s, w), v2(s, w))T
∥∥ · ∥∥µ̄1(s, w)− µ̄2(s, w)

∥∥ds

≤ ‖µ̄1(Tk, w)− µ̄2(Tk, w)‖+ L
Q̂
· (t− Tk) · ‖v1 − v2‖sup

+ (L
Q̂

+Qmax) ·
∫ t

Tk

∥∥µ̄1(s, w)− µ̄2(s, w)
∥∥ds. (D.19)

On the other hand, by (LΦ) we have for k ∈ [1 :n] and w ∈Wn

‖µ̄1(Tk, w)− µ̄2(Tk, w)‖ = ‖Φk(w, µ̄1(Tk−, w))− Φk(w, µ̄2(Tk−, w))‖
≤ LΦ · ‖µ̄1(Tk−, w)− µ̄2(Tk−, w)‖. (D.20)
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Since µ̄1(0) = µ̄2(0) = m0, it follows from (D.19), (D.20)151 and Lemma D.3(a) with δ ,

‖v1 − v2‖sup that

‖µ̄1(t, w)− µ̄2(t, w)‖ ≤
�
C · ‖v1 − v2‖sup for all (t, w) ∈ [0, T ]×Wn,

and consequently

∥∥�
χ[v1]− �

χ[v2]
∥∥

sup
= ‖µ̄1 − µ̄2‖sup ≤

�
C · ‖v1 − v2‖sup. (D.21)

Step 4: Construction of the fixed point. Let χ : Dπ(M)→ Regπ(M), χ ,
�
χ ◦ �

χ and note that by
(D.18) and (D.21) we have

‖χ[µ1]− χ[µ2]‖sup ≤ C · ‖µ1 − µ2‖sup for all µ1, µ2 ∈ Dπ(M),

where C =
�
C ·

�
C < 1 by (D.6). Thus Banach’s fixed point theorem yields a unique fixed

point µ ∈ Dπ(M) of χ. Finally, note that by setting v ,
�
χ[µ] ∈ Regπ(Rd) it follows that

µ =
�
χ[v] ∈ Regπ(M) and that (µ, v) is a solution of (E1)-(E6).

151Note that
�
γ = LΦ + 1 ≥ 1.
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Appendix E

The Master Equation

An alternative characterization of a mean field equilibrium (see Definition 2.3.5) can be obtained
via the so-called master equation, a first-order partial differential equation. For the sake of
completeness, we briefly outline this approach within the framework of Chapter 2 in this part of
the appendix.

The master equation is oftentimes considered in a diffusive continuous-state setup; see, e.g.,
Chapters 4 and 5 in [CD18b] or [CDLL19] for corresponding general discussions. Nevertheless, it
has also been addressed in the literature on finite-state mean field games; we refer, e.g., to [Gué11],
[GVW14] or §7.2 in [CD18a] for the case without common noise; and for recent developments
including common noise see, e.g., [BCCD19], [BLL19] or [BLL20]. Note in particular that the
master equation in Definition E.2 below is related to the ones stated in [GVW14, (1.1)] and
[BLL19, (11)].

Definition E.1 (Hamiltonian). The function H : [0, T ]×Wn ×M× Rd × U→ Rd,

Hi(t, w,m, v, u) , ψi(t, w,m, u) +Qi•(t, w,m, u) · v

is called the Hamiltonian. The reduced Hamiltonian Ĥ : [0, T ]×Wn ×M× Rd → Rd is defined
via

Ĥi(t, w,m, v) , sup
u∈U
Hi(t, w,m, v, u) = ψ̂i(t, w,m, v) + Q̂i•(t, w,m, v) · v. �

Note that using the Hamiltonian, the reduced DPE (DPµ) for the agent’s optimization problem (Pµ)
can be rewritten as follows:

v̇(t, w) + Ĥ
(
t, w, µ(t, w), v(t, w)

)
= 0, (t, w) ∈ [Tk, Tk+1〉 ×Wn, k ∈ [0 :n].

Definition E.2 (Solution of the Master Equation). Let U : [0, T ]×Wn ×M→ Rd be such that

(i) U( · , · ,m) is non-anticipative for every m ∈M,

(ii) U( · , w, · ) is continuous on [Tk, Tk+1〉 ×M, extends continuously to [Tk, Tk+1]×M, and is
continuously differentiable on (Tk, Tk+1)×M for k ∈ [1 :n] and every w ∈Wn.152

152For a discussion of differentiability with respect to probability distributions, i.e. elements m ∈ M, we refer, e.g., to
[CD18a, p.653/654] or §3.2.1 in [BCCD19]. As this part of the appendix is only intended to give a brief outline,
for the sake of simplicity, we require U to be defined in an open neighborhood of M ⊂ R1×d.
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If for every i ∈ S and (t, w,m) ∈ (Tk, Tk+1)×Wn ×M, k ∈ [0 :n], we have

∂tU i(t, w,m) + Ĥi (t, w,m,U(t, w,m)) +m · Q̂ (t, w,m,U(t, w,m)) · ∇mU i(t, w,m) = 0 (M-E)

and U further satisfies the consistency and terminal conditions

U(Tk−, w,m) = Ψk(w,m, v̄k( · ,m)) with v̄k(w,m) , U
(
Tk, w,Φk(w,m)

)
(M-CC)

U(T,w,m) = Ψ(w,m) (M-TC)

for (w,m) ∈Wn ×M and k ∈ [1 :n], where the functions Ψk and Φk, k ∈ [1 :n], are defined in
(Ψk) and (Φk)69, respectively, then U is called a solution of the master equation. �

Similarly as in Propostion 7.7 in [CD18a] in a setting without common noise, a solution of the
master equation induces a mean field equilibrium via the following result:

Theorem E.3 (Master Equation). Suppose that U : [0, T ]×Wn ×M→ Rd is a solution of the
master equation. Let µ : [0, T ]×Wn →M be a piecewise smooth, non-anticipative solution of
the Kolmogorov forward equation

µ̇(t, w) = µ(t, w) · Q̂
(
t, w, µ(t, w),U(t, w, µ(t, w)

)
(M-K)

for (t, w) ∈ [Tk, Tk+1〉 ×Wn, k ∈ [0 :n], subject to the initial condition

µ(0, w) = m0, (M-M0)

and the consistency conditions

µ(Tk, w) = Φk

(
w, µ(Tk−, w)

)
(M-Mk)

for w ∈ Wn and k ∈ [1 :n], where the functions Φk, k ∈ [1 :n], are given by (Mk).69 Moreover,
define v : [0, T ]×Wn → Rd via

v(t, w) , U
(
t, w, µ(t, w)

)
for (t, w) ∈ [0, T ]×Wn. (M-V)

Then, the pair (µ, v) is a solution of the equilibrium system (E1)-(E6), i.e. it constitutes a rational
expectations equilibrium.

Proof. First note that v is non-anticipative and regular (in fact, piecewise smooth) by construction.
Using (M-E) and (M-K) we compute for each i ∈ S with the chain rule

v̇i(t, w) = ∂tU i (t, w, µ(t, w)) +∇mU i (t, w, µ(t, w))T · ∂tµ(t, w)T

= ∂tU i (t, w, µ(t, w)) + µ(t, w) · Q̂ (t, w, µ(t, w),U(t, w, µ(t, w)) · ∇mU i (t, w, µ(t, w))

= −Ĥi (t, w, µ(t, w),U (t, w, µ(t, w))) = −Ĥi (t, w, µ(t, w), v(t, w))

for (t, w) ∈ (Tk, Tk+1)×Wn, k ∈ [0 :n], and thus v satisfies (DPµ). The consistency conditions
(CCµ) follow immediately from part (ii) of Definition E.2 and (M-CC), as for w ∈ Wn and



149

k ∈ [1 :n] we have

v(Tk−, w) = lim
t↑Tk

v(t, w) = lim
t↑Tk
U(t, w, µ(t, w)) = lim

t↑Tk
U
(
t, w, µ(Tk−, w)

)
= Ψk

(
w, µ(Tk−, w), v̄k( · , µ(Tk−, w))

)
= Ψk

(
w, µ(Tk−, w), v(Tk, · )

)
where the last identity follows from (M-Mk) via

v̄k(w, µ(Tk−, w)) = U
(
Tk, w,Φk(w, µ(Tk−, w))

)
= U

(
Tk, w, µ(Tk, w)

)
= v(Tk, w).

The terminal condition (TCµ) is readily derived from (M-TC) as it holds

v(T,w) = U
(
T,w, µ(T,w)

)
= Ψ

(
w, µ(T,w)

)
.

Thus v solves (DPµ) and is subject to (CCµ), (TCµ) with µ defined by (M-K) subject to (M-M0),
(M-Mk); hence the pair (µ, v) is a solution of the equilibrium system (E1)-(E6).
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