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1. Introduction

The common gains from communication between mathematical theory and practical appli-
cation can be traced in the field of queueing theory especially well. Starting with Erlang’s
research at the beginning of the 20th century, this whole research area was born as the en-
deavour of building appropriate stochastic models for the performance analysis of technical
systems. The initial application area of telephone systems was soon enlarged by applications
in machine repair, inventory control, assessment of insurance risk and later the design and
analysis of computer systems, to name but a few. The close interaction between theory and
practice has remained a driving force for the development of queueing theory until today.

In this respect, the momentum coming from applicational demands in the field of telephone
networks has not lost its strength. The integrated transmission of voice, data and video sources
via the same channel crucially contributed to the shift from telephone networks of Erlang’s
times towards telecommunication systems of today. This required the use of more sophisti-
cated models for data streams than the now already classical Poisson process could provide.
At the end of the 1970s, Neuts [71] proposed a richer class of processes, which under the
name "Batch Markovian Arrival Processes” (shortly BMAPS) was notationally simplified by
Lucantoni [60] in 1991. This class of processes, which actually is a subset of of the class of
Markov—additive processes introduced by Cinlar [25] and even earlier by Ezhov, Skorokhod
[37] or Neveu [73], engendered a new direction in queueing theory using so—called matrix—
analytical methods.

The present thesis is motivated by a further step in the development of modern telecommu-
nication systems. The technical availability of wireless data transmission opened up the way
for mobile communication systems, which today are used by increasingly many subscribers.
At the same time, this development exhibited the need for queueing models that can reflect
the spatial distribution of the users in the system. These are indispensable in order to model
phenomena like spatially dependent service time distributions, user movements or the spa-
tial distribution of users in the system. The analysis of spatial queues yields such essential
values as the necessary cell capacities needed to guarantee a low outage probability or the
outage probability of an existing network. Such knowledge greatly improves the competence
of planning and operating mobile communication networks.

There have been several authors who introduced queueing models designed to explore the
spatial properties of mobile communication systems. Some of the recent notable contributions
are the following:
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In 1995, Cinlar [30] used the concept of Poisson random measures in order to obtain distri-
butions for the spatial/ /G /oo queue with Poisson arrivals in time and space. Furthermore,
mobility of customers is modelled using a method from Massey, Whitt [63], namely inte-
grating the stochastic location process with respect to the Poisson arrival process. The same
approach will be used in this thesis for a more general model (see section 5.3).

Two years later, Baccelli, Zuyev [9] introduced a sophisticated model for mobile communica-
tion networks using mainly concepts from the theory of point processes. Analytical results are
given only for models which are based on the Poisson process. One of the objectives of the
present thesis is to obtain explicite results for models more general than Poisson models.

Boucherie, Dijk, Mandjes [21, 22] developed a model for cellular mobile communication net-
works which is based on Jackson networks and more general product form networks. Thus
the analysis can be performed using known methods for queueing networks. The spatial dis-
tribution has a granularity as fine as the number of cells in the network.

The crucial ideas for large parts of this thesis came from Baum [16, 17]. In these papers, a
concept of spatial BMAPs is developed and the respective infinite server queue is analysed.
It is shown that this spatial generalization of BMAPS retains the properties of BMAPs which
yield a tractable analysis of such arrival processes and their respective queues. These ideas are
taken up in this thesis and lead to the construction of the so—called Spatial Markovian Arrival
Process (SMAP). It turns out that the analytical methods developed in Baum [14, 16, 17],
which were intended to be applied to queues with BMAP input, can be adapted to the analysis
of several practically relevant queues with SMAP input.

The aim of the present thesis in this context is to develop a unified theory of spatial queues,
which is broad enough to serve as a base for queueing models arising from applicational needs
in mobile communication networks, but also specific enough to yield concrete results for the
performance analysis of such networks. A particular objective is to develop the most natural
generalization of existing concepts (e.g. the BMAP) toward the needs of mobile communi-
cation networks. To these belong the spatial distribution of batch arrivals and users in the
system as well as time—inhomogeneous (e.g. periodic) arrival intensities and user movements.
The concepts used in this thesis will be embedded into existing mathematical concepts. Thus
it is possible to show the similarity of those to concepts used in classical queueing theory.
Furthermore, classical mathematical results can be applied in order to analyze spatial queues.

1.1. Summary

In this thesis, the groundwork is lain for designing queueing models for the application field
of mobile communication networks. Included are the following new concepts and results:
First, a class of spatial arrival processes (called Spatial Markovian Arrival Processes or shortly
SMAPs) is defined, which is general enough to model spatially distributed batch arrivals as
well as time—inhomogeneous (e.g. periodic) arrival rates and a general phase space. It is
shown that SMAPs are a natural generalization of BMAPs and retain the typical properties of
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BMAPs, which make them suitable for the matrix convolution calculus introduced by Baum
[14, 15].

Then some practically relevant queues, which are fed by SMAP inputs, are analyzed. These
queues feature the definition of spatially variable service time distributions, i.e. the service

time of a user may depend on its location at the time instant of arrival. Furthermore, their

analysis yields the spatial distribution of users in the system in the transient as well as in

the stationary case. Where applicable, loss formulae are given. A further new feature of the
gueueing models presented in this thesis is the possibility of including time—inhomogeneous
arrival intensities (e.g. periodic ones) and deriving the resulting transient and asymptotic

distributions for the respective queues. Since in mobile communication networks there are no
waiting users (if the line is busy, a user would give up or try again later), only spatial queues

with either infinitely many servers or zero waiting room capacity are examined.

In order to practically use stochastic models, it is necessary to obtain statistically validated
estimates of the model parameters. Hence, a routine for parameter estimation from empirical
arrival streams is derived in the present thesis, too. This estimation procedure is applicable
also for BMAPs, for which it is the only published estimation procedure up to now.

The main theoretical concepts, which are used in this thesis, are the theory of Markov jump
processes and the concept of stochastic point fields and their representation by counting func-
tions. Both are shortly introduced in appendices A and B. For special jump processes, new
results are presented in sections A.2 and A.3.

In mobile communication networks the integrated transmission of different data streams is of
standard use. Therefore, it seems appropriate to base models of such networks on the BMAP
concept in order to preserve the capability of modelling integrated service transmission. In the
present thesis, before application—oriented models are developed in terms of spatial queues,
the concept of BMAPs is generalized towards a special class of Markov jump processes in
chapter 2. For this class of so—called Markov—additive jump processes, several properties are
derived which allow the same methods of analysis to be used for spatial queues (as set forth
in this thesis) as well as for the very general class of queues on real vector spaces (instead
of the classical queues on the space of non—negative integers). This opens the way for the
application of queueing theory to many fields which cannot be modelled by classical one—
dimensional queues. Besides the extension of applicability of the theory, this chapter intends
to exhibit fundamental results on arrival processes on a fairly abstract level in order to further
explore the nature of Markov—additive jump processes as an own interest.

In chapter 3, the class of Spatial Markovian Arrival Processes (SMAPs) is defined. This
class will provide the arrrival processes for all queues analyzed in this thesis. SMAPs are a
generalization of BMAPSs which creates the possibility of modelling spatially distributed batch
arrivals, time—inhomogeneous (e.g. periodic) arrival rates and a general phase space. Although
this class of arrival processes is much more general than the class of BMAPS, it retains the
same crucial properties that make their analysis tractable. This is shown by the derivation
of the most important properties of SMAPs. At the end of this chapter, some examples for
SMAPs are given, among them the class of non—homogeneous (especially periodic) BMAPs.
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Queues with SMAP arrival processes will be treated as spatial queues. The class of Markovian
spatial queues (i.e. those queues which are Markov processes) is treated in chapter 4. For ease
of notational simplicity, this case is examined not in the most general setting, but in terms of
the SM AP/M,/c/c queue. Yet the same method of analysis applies t&thWed P/M;/c/c

queue with spatially variable service time distribution or$ié AP/ PH/c/c queue in a com-

pletely analogous way. Since these queues are loss systems, a formula for the loss probability
is derived, too. As an example for the utility of the concept of non—homogeneous BMAPs,
the periodicBM AP/M,/c queue is examined by the same analytical methods. Like all the
spatial queues introduced in the present thesis, this queue has not been analyzed before.

Chapter 5 covers the class of spatial infinite server queues. The method of analysis applied
to this class allows a variety of features of mobile communication networks to be included in
the model. The service time distribution may be general and spatially variable. Furthermore,
the arrival rates may depend on time (e.g. periodic) and even stochastic user movements can
be modeled in a natural way. A simple formula for the asymptotic distribution can be given
only for the case of homogeneous arrival rates without user movements. For the other cases,
approximations along with an estimation of the approximation error are given.

In the last chapter of this thesis, a routine for parameter estimation is introduced for SMAPs.
Although crucial for purposes of practical application, the problem of finding some statisti-
cally validated parameter estimation has not been solved yet, even for BMAPSs. The routine
introduced here is divided into three steps, each of which uses classical statistical methods of
inference. It can further be applied to BMAPs for which no other estimation routine has been
proposed yet.

1.2. Notations and Conventions

The set of positive integers is denoted By and the set of non—negative integers B,.

The positive real numbers are denoted By and the non—negative real numbers 15 .

The empty sum as well as the empty product shall always be defined as the neutral element.
Random variables are defined on an underlying probability space which is not mentioned
explicitly. The end of a proof is marked by a smiley.

Let (S, S) denote a measurable space ghtle a kernel ort x S. Thek-th iteration@Q* of Q
shall be defined by)° := I and iteratively

Q1 (x, A) = / QH(x. dy) Qy. A)

forallz € SandA € S, with I denoting the identity kernel. The latter is defined as

1 for x€ A
[z, 4) ‘:lA(‘”):{ 0 for ¢ A

forallz € SandA € S.

In the case of a discrete state space, the states will be denoted by letieisjak € S and
we write Q(i, j) instead ofQ(i, {j}).
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2. Markov-Additive Jump Processes

Inspired by a process developed in Ezhov, Skorokhod [37], the term "Markov-additive pro-
cess” has been coined by Cinlar [25] in 1972. It refers to a two-dimensional Markov process
with transition probabilities that depend on one dimension only. The marginal process in this
dimension is a Markov process, too, and shall be called phase process in the present thesis.
The marginal process in the other dimension is a process with conditionally independent in-
crements given the phase process.

The first idea of such a process goes back to Neveu [73] in 1961, whose so-called F-process is
the class of Markov-additive processes with a finite phase space. A special case of F-processes
is the class of BMAPs developed in Lucantoni [60] thirty years later, which are now widely
used in queueing theory. The founding work of Cinlar [25] on Markov-additive processes was
followed by several studies in the 1970s and 80s, e.g. Arjas, Speed [3], Cinlar [27], [28],
[29], or Ney, Nummelin [75] for discrete time. This chapter mainly goes along with the paper

by Pacheco, Prabhu [77], which was written after the BMAP concept proved successful as
a versatile arrival process for queues. The concept developed in Pacheco, Prabhu [77] will
be slightly generalized in this chapter and, most importantly, the inhomogeneous case will be
analyzed, too.

In this chapter, the focus is on Markov-additive processes which belong to the class of Markov
jump processes, since they are sufficient as arrival processes for queueing theory. In the first
section, these so-called Markov-additive jump processes are defined and the transition proba-
bilities are derived in terms of the infinitesimal transition rates. The next section states some
elementary properties, mostly resulting from the definition immediately. Under the assump-
tion that the additive part of the state space is a real vector space, Fourier transforms and
expectations are derived in section 2.3. The more specific assumption that the increments for
the additive part be non-negative integers in every component of the vector space leads to the
same derivations as in section 2.3 via the easier notion of z-transforms. These processes will
be called Markovian arrival processes and analyzed in section 2.4. In the last section of this
chapter, laws of large numbers are given for the special cases of periodic or homogeneous
Markov-additive jump processes on real vector spaces.



2. Markov-Additive Jump Processes
2.1. Definition

Markov-additive jump processes will be defined as two-dimensional Markov jump processes

which satisfy the condition that the transition probabilities depend on the second dimension
only. The first dimension is an (additive) semi-group and the marginal process on it turns

out to have conditionally independent increments given the marginal process in the second
dimension.

Definition 2.1 Let (N, J) = ((N,, J;) : t € IR;) be a two-dimensional Markov jump process
with state spacé := ¥ x ®. Leto(X) ando (®) bes-algebras o and®, respectively, which
satisfy{z} € o(X) and{y} € o(®) for all z € ¥ andy € ®. DenoteS := o(X) ® o(P)

as the product-algebra ofs(X) ando(®). Further, let(3, +) be a semi-group with neutral
element) € ¥. Assume that for alt € ¥ andA € ¢(X), we also haved — z := {s € ¥ :
s+x € A} € 0(X). Then(N, J) is calledMarkov-additive jump process if the transition
probabilities satisfy the condition

P(s,t;(x,y),Ax B) = P(s,t;(0,y),(A—2x) x B) (2.1)
foralls <t € IR, (z,y) € SandA x B € S. Define
P(s,t;y,Ax B) := P(s,t;(0,y), A x B)
foralls <t€ IR;,yc ®andA x B € S.

Remark 2.1 Definition A.1 postulates that the state space= > x ® of a Markov-additive

jump process be locally compact, separable and metric. Standard results in topology (cf.
Herrlich [48], p.224,118,117) yield thatsatisfies this condition if and only if the state spaces

Y and® of the marginal processes do so.

Remark 2.2 Because of equation 2.1, a Markov-additive jump prod€és/) is uniquely
determined by the probabilitig?(s, t; y, A x B). Since(N, .J) is a Markov jump process, the
infinitesimal transition rates

. Pt,t+h;(z,y),AxB)—1 2,y
q(t;(:c,w,AxB):}l%( ( )h ) — Lasn(z, y)

exist uniformly with respect t¢t, (z,y), A x B) and the equality
q(t; (z,y), A x B) = q(t; (0, y), (A — z) x B) (2.2)
follows from equation 2.1. Hence, we can define
q(t;y, A x B) :=q(t;(0,y), A x B)
forallt € IRj,y € ® andA x B € S, and as in definition A.2

v(t,y) = —q(t;y,{(0,9)})
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and

Y(t,y, A x B) == q(t;y, (A x B)\ {(0,)})

as well as

v(t,y,Ax B)

P22 for y(t,y) > 0
p(t,y, A x B) := v(ty) ’
( ) { 1A><B(07y) for ’Y(t, y) =0

Finally, define the kerngD(¢) onX x ® by
Q(t; (,y), Ax B) :=q(t;y, (A — z) x B)

forallt € IR}, (z,y) € SandA x B € S. The kernel)(t) is called thegenerator of (N, J)
at timet.

Remark 2.3 By definition, a Markov-additive jump process is translation invariant or ho-
mogeneous in the first component. This leads to a self-similar structure of the generators
(Q(t) : t € IRS), which can be illustrated in the case of an homogeneous Markov-additive
jump process withb being finite and~ = IN, (the so-called Batch Markovian Arrival Pro-
cess or BMAP, see Lucantoni [60]). Here, the generé&tpwhich is constant in time, takes

the form

Dy Dy Dy Ds
Dy Dy D,

Q= Dy D
Dy

with m x m-matrices(D,, : n € IN,), m being the size oft. Omitting the first row and

first column, one obtains the matr@@ again. This self-similarity yields many simplifica-
tions for the analysis of queues with BMAP arrivals. For a so-called level-dependent BMAP,
which does not possess this self-similarity, and for the analysis of queues with level-dependent
BMAP arrivals see Hofmann [50].

As in appendix A, the transition probabilities of the process will be derived as the solutions of
the Kolmogorov differential equations via the method of successive approximations by Picard
and Lindelof.

Theorem 2.1 Let (N, J) be a Markov-additive jump process. Then the Kolmogorov differen-
tial equations for(V, J) take the following form:

OP(s,t;y, A x B)
ot

= /qu(t;w, (A—wv) x B) P(s,t;y,d(v,w))
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for all ¢ > s (Kolmogorov’s forward equation) and

OP(stiy AXB) _ _ / Ps, ;w, (A —v) x B) q(s:y, d(v, )
0s Yxd

for all s < ¢t (Kolmogorov’s backward equation).

Proof: This is immediate from theorem A.4 and equations 2.1 and 2.2.

Both differential equations contain a convolution in the first dimension. This is a consequence
of the additivity which is defined on the marginal state spac&he convolution form will be

preserved in the transition probabilities, as the next theorems show.

Theorem 2.2 The transition probabilities of a Markov-additive jump process are uniquely

determined by the infinitesimal rate§&; y, A x B). They assume the form
P(s,t;y, Ax B) =Y P"(s,t;y, A x B)
n=0

with
Pb(o)(S,t; y,AX B) :=e" I8 YT 4 5 (0,y)

and recursively

n+1 (s t;y, A x B) / /2 . 9 tyw, (A —wv) X B)e_f307(7’9>d7fy(9,y,d(v,
X

for all n € IN, using the notations from remark 2.2.

Proof: See theorem A.5 and equations 2.1 and 2.2.

If one develops this iteration formula, one obtains

P()sty,AxB

O R

n mtegrals n mtegrals

.. e

_ run Yn—1)d _rt wiyn )du
funfl Pspn-1) ur)/(un;yn—lad(l‘nayn))@ Jun (i) d duy ...

w))de

du,,

as can be shown by induction. The transition probabilities can be computed iteratively by

starting with

PO(Sa ta Y, A x B) =e fst ’Y(Tay)dTleB(Ov y)

10
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and iterating

Poyi(sityy, Ax B):

// (04w, (A — v) x B)e~ 1000 4 d(w, w))do

e oty p0,y)

foralln € INyands < t € IRS. Then we have(s,t) = lim,_,, P,(s,t) forall s < t €
IR;.

Theorem 2.3 The transition probabilities of a Markov-additive jump process can also be ex-
pressed in the form

P(s,t;y,Ax B) =Y  P"(s,t;y, A x B)

with
PO (s, t;y, A x B) := 14,5(0,y)
and recursively
Pt (s t;y, A x B) / / (s, u;y,d(v,w))q(u;w, (A —v) x B)du
forall n € IN,.

Proof: See theorem A.6 and equations 2.1 and 2.2.
Again by induction, one can prove that

p<n>(s,t;y,AxB):/t/un.../u2 Q1) ... Qun)) (0, ), A x B) dus - .. du,

NV
n integrals

(2.3)

with @Q(u) denoting the generator at timec [s, t]. An iteration for computing the transition
probabilities is given by starting with

PO(Sat; yvA X B) = ]-AXB(an)
and iterating by

t
Poii(s,t;y, A X B) := / /Pn(s,u; Y, d(v,w))q(u;w, (A —v) X B)du+ 14xp5(0,y)
s S
(2.4)

for alln € IN,. Then we haveP (s, t) = lim,_,, P,(s,t) forall s < t € IR;. For the special

case of a finite state space, this formula reduces to the iteration given in Bellman [19], p.168,
or Kamke [53], p.52. In queueing theory, models with finite state spaces play an important
role, e.g. for finite capacity systems (see section 4.1).

11
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Remark 2.4 In order to illustrate the analogy to existing BMAP theory, define the following.
For everyA € o(X) andt € IR, defineD(t)4(y, B) := Q(t;y,A x B) foraly € &
andB € o(®). ThenD(t), is a kernel on® for every A € o(X). Define the function
A(t) : A = D(t)a ono(X) and writeA(t)4 := A(t)(A) = D(t)4. Further define a
convolution of such functions by

(A A0, 08) 1= [ [ Quiydsxa)Qiz (4= x B

forallu,v € IR§, A € o(X),y € ®andB € o(®). Then alsdA(u) * A(v)) , is a kernel on
O for everyA € ¢(X). By iteration, it is clear that

(Aug) * ..o Alungr)) 4 = (Aur) * ..o Auy)) * Alunt1)) 4

is again a kernel o® for every A € (X)) andn € IN,. The identity kernel with respect to
this convolution is given byd 4 := 14(0) - I, with I denoting the identity kernel of.

Now the transition probabilities from timeto timet can be expressed by

P(s,t):;itlun.../sui(A(ul)*...*A(un)) du . du,

n integrals

meaning that for every € ®, A € ¢(X) andB € o(®), we have

Pls,t:y, A x B) = i/:/sun.../Sui(A(ul)*...*A(un))A duy . ..duy | (v, B)

n=0

n integrals

In the case of an homogeneous Markov—additive jump process, we can AéfireId and
iteratively A*("+1) .= A*” « A. Then the above observation and theorem A.8 yield

P(s,t) = 279 =

n=0

which forYX = INg and® = {1,... ,m} reduces to the BMAP theory exposed in Baum [14].

(t—s)"
n!

1
AA

2.2. Elementary Properties

Some elementary properties for Markov—additive jump processes can be taken from Cinlar
[25] and Ezhov, Skorokhod [37], who examined the more general class of Markov—additive
processes. This section contains some properties which mostly are immediate consequences
of the definition 2.1. Obviously, the basic sample path properties of Markov jump processes
hold for the subclass of Markov-additive jump processes, too. Furthermore, the distribution
of the holding time in a state of the additive spacean be given.

12
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Theorem 2.4 Let (N, J) be a Markov—additive jump process with state spaced. Then the
marginal process is a Markov jump process with state spak@nd transition probabilities

P®(s,t;y, B) = P(s,1;y,% x B)
foralls <t € IRj,y € ®andB € o(P).

Proof: This follows immediately from definitions 2.1 and A.1.

Remark 2.5 The above observation gives rise to a method of analysis which regards the
marginal procesd as the independent underlying Markov jump process that conditions the
additive processV. The marginal state spade shall be calledohase spaceof (N, J), a
single element ofb is called aphase The marginal procesg shall be calledphase pro-
cessof (N, J), while N shall be callecadditive processof (N, .J). The next theorem shows
that N has conditionally independent increments giverFurthermore, theorem 2.6 yields a
representation of the generator as the product of two kernels.

Theorem 2.5 Let (N, J) be a Markov-additive jump process with state space ®. Define
T :=inf{t € IR" : N; # Ny} as the holding time of the marginal proceSsin a state oft_.
Further, define the sub-Markov kerne(T" > t) on ® by

P(T > t)(y,B) := P(T >t,J, € BlJ, =)
forallt € IR",y € ® andB € o(®). Then foralls,t € IR,
P(T>t+s)=P(T >t)P(T > s)

and furthermore,

P(T > t)(y Z// / (Qo(u1) ... Qo(un)) (y, B) duy ... du,  (2.5)

n mtegrals

with
Qo(t)(y, B) :== Q(t;y, {0} x B)
forallt € IR;,y € ® andB € o(®).
Proof: The first equation follows from the definition &f(7" > t) and the fact that/V, J)
is a Markov-additive jump process. For the second equation, note that the holdirfj tane

identical to the first hitting tim&’, of the setd := ¥ \ {0} x ®. Writing A = {0} x &,
theorem A.19 yields that

P,(Ty > t,J, € B) =

o A A e SR

n zntegrals n zntegrals

e I 1 d(0, ) e e I Gy,

13



2. Markov-Additive Jump Processes

for everyt € IR", initial state(0,y) € ¥ x ® and measurable sé& € o(®). This equals
the transition probability of a (sub-)Markov jump process with state sgaaad generator
(Qo(t) : t € IR{). According to equation A.2, statement 2.5 is merely an alternative form for

this transition probability.
©

Remark 2.6 This result contains the statements of theorems 6.9 and 6.11 in Pacheco, Prabhu
[77] as the special case @V, .J) being homogeneou§, = IN| and® being countable. This
follows from theorem A.8.

Remark 2.7 The above theorem and formula 2.5 could serve to define a generalization of the
phase—type or PH distribution (see Neuts [72], pp.231-248). The PH distribution is defined
as the probability measure of the time until an homogeneous continuous—time Markov chain
leaves a finite set of transient states. The generalization implied by formula 2.5 would yield the
probability measure of the time until a general continuous—time Markov jump process leaves
a general set of transient states. The exit rate vector in this generalization would be defined as
n(t,y) = —Qo(t;y, S) and hence be dependent on time.

For later use, a fundamental theorem will be stated which asserts the existence of a represen-
tation of the infinitesimal transition rates (resp. the transition probabilities) as the product of a
kernel on the phase spa@gwhich is a functiond x o(®) — [0, 1]) and a kernel fron® into

the additive spac& (which is a function® x o(X) — [0, 1]).

Theorem 2.6 For everyt € IR{ andy € @, there is a kernek, : ® x o(X) — IR such that
Q(t;y, A x B) = / Qt;y, ¥ x dz) Ky y(2, A)
B

forall A € o(X) and B € o(®). Furthermore, for every < ¢ € IR; andy € @, there is a
kernelL;,, : ® x o(X) — IR such that

P(s,t;y,Ax B) = / P(s,t;y, ¥ x dz)Lg (2, A)
B

forall A € o(X) and B € o(®). The kernelsk,, and L,,, are almost surely uniquely
determined.

Proof: See Bauer [13], p.397 (with = ¥ x o(®)), or Bourbaki [23], p.39 (withp = pr),
since the charg€(t; v, .) can be represented as the difference of two finite measures.

2.3. Markov-Additive Jump Processes on a Real
Vector Space

Now assume that:, +) is a real vector space. ThéR, +) has a basé; : i € I) with some
index set/, and every element € ¥ has a unique representation : i € I) in IR’ with

14



2.3. MAJPs on a Real Vector Space

respect to this base (cf. Nef [70], p.46). Denote the bijective mapping between an element
z € ¥ and its representatiofa; : i € I) by f : ¥ — IR’. In order to simplify the notation in

the following, an element € X and its representatiof{z) € IR’ shall be identified. Further,
denote the projection fronfR’ to thei-th component byr; : IR" — IR.

Under this assumption, transforms as well as expectations can be derived for the marginal
processN of a Markov-additive jump process¢#/,.7). Using the structure of the vector
space, we can define the expectation of a Markov-additive jump process with stat&spéace

as follows:

Definition 2.2 Let (N, .J) be a Markov-additive jump process with state space ¢ and
assume thatX:, +) is a real vector space. Thexpectation E(N; — N,) of the marginal
processV during the time intervals, ¢] is defined as the kernel ahwith entries

E(N, — N)(y, B) == (E(pri(N; — N;) - 1p(J)[Js = y) 1 1 € I)

For real valued random variables, the Fourier transform has proved very useful, especially
for determining moments (cf. Bauer [13], pp.183-223). The same analytical method shall be
applied here for every dimension of the vector space

Definition 2.3 Let (N, .J) be a Markov-additive jump process with state space & and
let (X, +) be a real vector space. Then tReurier transform N7, of (IV, .J) over the time
interval]s, t] shall be defined as the functien— N7 ,(r) with

Vo) B) o= ([ Plsstiypr ae) < By e 1)

oo

forallr € IR,y € ® andB € o(®), with 7 denoting the imaginary unit in the spa€eof
complex numbers.

Remark 2.8 Note that by theorem 2.6, the distributiét{s, ; y, pr; ' (dc) x B) in ¢ € IR can
be written as

P(s,t; y,prj_l(dc) X B) = / P(s,t;y,X X dz)Lgy,(2,dc)
B
with some kerneL, ; , from ® to IR. Hence the representation
pri(N;,(r) // e Ly1y(z,dc) P(s,t;y, % x dz2)
holds and thus every component (N, ,(r)) is a kernel onb.

Theorem 2.7 For everyj € I, r € IR andt € IRy, define the kerneby ), () on @ by its
entries

oo (), B) = /ml“@uym '(de) x B)

// ¢ Kiy(z,pry ' (de) Q(ty, S x d2)

15



2. Markov-Additive Jump Processes

forall y € ® and B € o(®), with some kernek,, from ® to ¥ (see theorem 2.6 for the
second equality). Then the Fourier transform(af, J) over the time intervals, ¢t] can be
written as

Ns*t Z/ / / QOQ(]) (u1) .(pQ(j)(un)(T) du1 R dun : j el

TLO\

n mtegrals

for all r € IR, with the summand far = 0 being the identity kerndl on ®.

Proof: Fix j € I aswellasy € ® andB € o(®). According to formula 2.3, thgth
component ofV;,(r)(y, B) equals

pri(Ngy(r) Z/ e P! (s, t;y, pry'(de) x B)
= i:o/ / //OO e (Q(u1) ... Q(un)) ((0,), pry'(de) x B) duy ... du,,

TV
n integrals

00 t Un, uUo -
= Z/ / .. / Q(us; y,pr;l(dcl) X dy;)e" ..
n—0vs Vs s Rx®

Q(unfl; Yn—2, pr;l(dcnfl) X dynil)ei-rcn_l
Rx®

Q(Unp; yn_1,prj_1(dcn) X dyy ) e duy . . . du,
RxB

by writing out the convolutior = ¢; +. . . + ¢, explicitly. Further, application of theorem 2.6
leads to

N;i(r)(y, B)) =
i/ /- /// 7 Koy (1,27 H(d6)) Qs 9, X ) -

erren Ky, z(yn—lvprj_l(dcn—l))Q(un—l; Yn—2, 5 X dyp_1)

/ / T K 7 () Qo 1, ) st
= / / PQU) (uy) ya dyl) / <PQ(1>(un)(T)(yn71, dyn) duy ...du,

e
io/ / / SOQU)(UI)(?“) . --WQ(n(un)(r)) (y, B) duy ... du,

pr(
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2.3. MAJPs on a Real Vector Space

Theorem 2.8 Define the kerned/ /) () on® by

oo

MO, B) = [ cQUty.pr;de) x B)

— 00

forallt € IR, j € I,y € ®andB € o(®). Then the expectation of the marginal procéss
over the time intervals, ¢] is given by

E(N, - N,) = (/t P®(s,u) MY (u) P®(u,t) du: j € I)

Proof: The expectatio®( N, — N,) can be computed as

od
E(Nt — Ns) = —1- aNs’t(’l")

r=0

recognizing that the differentiation can be performed component-wise. Thethtkempo-
nent of E(N; — N;) is

pri(E(Ny — Ny))

0 t Un u2 d
:_Z’.Z// / 5(QOQ(j)(ul)(T)“‘SOQ(j)(Un)(T))

n=1

duy ...du,

r=0

n integrals

according to the preceding theorem 2.7. Applying the product rule of differentiation, this
equals

oo t Un uy N
pri(E(N; — N,)) = —i - Z/ / / ZWQ(J»(UI)(O) P (1) (0)
s Js 5 1=

n=1

n integrals

d
<%90Q(f)(ul)(r) > QOQ(J')(WH)(O) ce @Q(j)(un)(()) duy . ..du,
r=0
0 X t  prun Ujy2 LU LU u2
= Z Z/ / .. / / / . / QOQ(]‘)(UI)(O) e @Q(j)(ul_l)(())dul e d'LLl_l
=1 n=t & 25 Y5 VS s s
n—I integrals [—1 integrals

. d
(—z . %ggQ(j)(ul)(r) > dur Q0 (uy,,1)(0) - - - P (un) (0) duryr ... duy,

r=0

Acknowledging that

d

-t %WQ(J»(W)(T) (y, B) = /_ ¢ Q(Uz;y,pTg‘_l(dC) x B) = MY (u)(y, B)

r=0

17



2. Markov-Additive Jump Processes

is the expectation kernel of thi#gh component and
(pQ(j)(u) (0)(y7 B) = Q(U’a Y, ¥ X B)
is the infinitesimal transition rate of the phase process, leads to

pri(BE(Ny — Ny)) =

t o ug u2 .
= / Z/ RN / SOQ(j)(ul)(O) ce @Q(j)(uzfl)(o) du1 ce dul,1 M(])(UZ)
s =1 S s

[—1 integrals

o t Un, Up+2
Z/ / e / gpQ(j)(ulH)(O) .. .ch(j)(un)(O) dugyq .. .duy, | duy
n=l Jw Ju u

n—I integrals

t
_ / P (s, 1) M (1) P (s, 1) d

©

Example 2.1 The previous results can be exemplified by the following processQt dte the
generator of an homogeneous Markov jump prodesdth measurable state spagk, o(®)).
This will be the phase process. Assume thdtas a stationary distribution, i.e. 7Q® = 0.
Further, letr be some probability distribution diiR, B) with B denoting the Boret—algebra
on IR. Specify(X, +) to be the real linéIR, +), i.e. ¥ has dimension 1. Choosing a function
A IRy x @ — IRy of time—dependent arrival rates withp, .+ 5 A(f,y) < 00, we can
define a Markov—additive jump process by

q(t;y, A x B) :=14(0) - Q% (y, B) + 15(y) - At,y)(0(A) — 14(0))

forallt € IR;,y € ®, A € BandB € o(®). This process may be called a fluid compound
MMPP with homogeneous phase process. The mean marginal rate of the additive process at
timet and in phase equals

o0

M(1)(y, @) = / ¢ A(ty) do() = Mty) - E(0)

o0

with E (o) denoting the first moment of the distribution For this process, the expectation of
the marginal process on = IR over the time intervals, ¢] starting in phase equilibrium at
time s equals

[ rtanp - N6 =[x [ M6 9) do
= [ [t atin) du- B0

according to theorem 2.8.
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2.4. Markovian Arrival Processes

2.4. Markovian Arrival Processes

In queueing theory, the most important variable is that of the number of users or customers
in the system (which is the queue or the queueing network). The values of this are limited to
the setIN, of non-negative integers. Thus for most applications in queueing theory, the use
of Markov-additive processésV, .J) on real vector spaces (of dimensigdt) with IV }-valued
marginal process/ suffices.

If the support of the marginal proceasis onIN, i.e. if P(pr;(N,) € INy) = 1 foralli € T

andt € IR;, then the easier notion of a z-transform serves the same purposes as the Fourier
transform. In this section, the same analysis as in the preceding section 2.3 shall be carried
out using z-transforms.

Definition 2.4 Let (N, .J) be a Markov-additive jump process with state space ® and let
(3, +) be areal vector space having a bése i € I). If the marginal procesd has support
IN, then(N, J) shall be calledMarkovian arrival process.

Remark 2.9 The homogeneity of the first component implies that Markovian arrival pro-
cesses have only non-negative increments in the first dimension. This follows from property
2.1, since for every. € X3, k € IN and any dimensione [ of the vector space,

P(s,t; (n,y),pr;l(pn(n) — k) x B) = P(s,t; y,pr;l(—k) x B) =0
because ofr; ' (—k) ¢ IN;.

Definition 2.5 Let (XN, J) be a Markovian arrival process. Define théransform of (XN, J)
over the time intervals, ] as the functionr — N (s, ¢; z) with values being the kernels d@n
which are determined by

N(s,t;2)(y : <ZPprl Ny)=n,J; € B|J; =y) 2" :iEI)

forall z € Cwith |z| <1,y € ® andB € o(®).
Theorem 2.9 For everyi € I, k € IN, andt € IR, define the kernel@? (t) on ® by

QY My, B) == Qt;y,pr (k) x B)

forall y € ® andB € o(®). Then the z-transform ¢fV, .J) over the time intervals, ¢| can
be written as

N(s,t; 2) Z// /22Qk uy)z ___Zngi)(un)zkdul...dun:iel
k=0

n mtegrals

forall z € Cwith |z| < 1.
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2. Markov-Additive Jump Processes

Remark 2.10 Note that) ;| Q,(j)(uj)z’C is a kernel on® for every; € IN and thus every
product> > QW (uy)z* ... 32 QY (u,)2* is a kernel onb, too.

Proof: Fixi € I aswellasy € ® andB € o(®). According to formula 2.3, théth
component ofV (s, t; z)(y, B) equals

pri (N(s,t;2)(y ZZP (s,t;y,pr; (k) x B) - 2*

k=0 n=0

=§gk/j/f~-/Sui(@wl)...@(un))((o,y>,pri1(k> < B dus .y

n integrals

—Z// /ui S (@) Q) (4, B) - 2 duy .. du,

S k=0 ki+...+kn=Fk

n zntegrals

_Z// / (ZQk )z ...Z:Q,Q(un)zk)(y,B)dul...dun

TLO\

n zntegrals

since the z-transform of the convolution of the kerr@{8(u., ) . .. , @\’ (u.,) equals the prod-

uct of the z-transforms @@y (u1), ... , Q\ (u..).
©

Theorem 2.10 The expectation of the marginal procegver the time intervals, ¢] is given
by

E(N; — N;) = (/ P%(s,u) Zk Qk u) P®(u,t) du : zEI)

Proof: The expectatio®(N; — N,) can be computed as

d
E(Nt - Ns) = EN(SJ; Z)

z=1

recognizing that the differentiation can be performed component-wise. Théthtbempo-
nent of E(N; — Ny) is

pri(E(Ny — Nj)

_Z// / (i@k )2 k...?%@f?(%)z'“)

n mtegrals

duy . ..du,

z=1
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2.5. Laws of Large Numbers

Denote the generator of the phase process atdimeQ® (u) and note that

=5 QP W)
k=0

is independent of € 1. Applying the product rule of differentiation yields

pri(E(
B Z/ / /u2 ZQq)(UI) Q% () (Z kQ?(w)) Q% (1) ... Q% (uy)
=1 k=1
n'mte rals

duy . ..du, ’
B B *( )duy - duy

llnz;// / / / / Q% (w) - (Ul1)u1 U1

n— lmtegrals - lmtegrals
(Zk ) dw Q% (urs1) - - Q% (un) dugys . . . duy,
k=1

t o uy e .
:/ Z/ / Q% (u Q% (w_1)duy . .. duy_y ZkQ/(CZ)(Ul)
s =1 I8 k=1

[—1 integrals

00 t Uy, U2
Z/ / / Q% (wit1) ... Q% (un) duryy . .. du, | du,
n:l\ul up uy .,

n— lw:tregrals
t
:/ P®(s,u) (Zka w ) P (w;, t) duy

rgmembering that the transition probabilities of the phase process are dendt&dsby).

Remark 2.11 The first moment formulae given in Pacheco, Prabhu [77], theorem 6.15 and
corollary 6.16(a), can be obtained from this theorem as the special c&3& .#f being ho-
mogeneousy. = IN; and® being countable.

2.5. Laws of Large Numbers

For some special cases of Markov-additive jump processes on real vector spaces, the asymp-
totic behaviour can be described in terms of strong laws of large numbers. First, this will be
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2. Markov-Additive Jump Processes

done for processes with periodic generators (cf. appendix A.3). The case of homogeneous
processes shall turn out to be a corollary of the periodic case. In this section, convergence on
the vector spac® shall be defined in a weak sense as convergence in every dimension of

Theorem 2.11 Let (N, .J) denote a periodic Markov-additive jump process with pefioand

be (X, +) a real vector space with bagé; : i € I). Let the phase processhave a periodic
family of asymptotic distributionsr; : ¢ € [0, T']) as defined in appendix A.3. Define the mean
rate vector during a period length by

Aim (% /OTLdm(y) /_ZCQ(t;y,pr;I(dc) X B)dt i€ r>

Assume thaflpr;(E(N,))|| < M(t) < oo forall i € I andt € [0,7T]. Then

N,
Tt—m as t— oo

P-almost surely for all initial distributions.

Proof: Because of property 2.1, the evolution of the procg§sJ) depends only on the
initial distribution i of J, on the phase spade Since further for every initial valu&/, # 0
the quotientN, /¢t vanishes fot — oo, we can assum@&, = 0 almost surely without loss of
generality. LetV/" denote the marginal proceasat timet under initial phase distributiopn.
Further, letp; = uP®(0,t) denote the distribution of the phase process at time

Choose any > 0. Then there is a numbére IN such that|uP®(0,nT) — || < e for all
n > k and the representation
N, 1
Tt = 3 (NkT + (Nyyrjr — Nir) + (N — NLt/TjT))
1 1 1
= NkT + N(Lt/TJ wr T 7 (Nt Niyrr)
holds because of the perlod|C|ty of the process. Since the expectation k€niglis bounded
for all s € IRy, the first and the last term will vanish for— oo almost surely. The second
term equals

| 1 1 A 1
PkT To PrT—T0 _ - o PrT—T0
NG = sNGmpr + NG Cor =7 D N+ NG Cr

m=k
sincery = o P®(0, T) is invariant. The first term of this sum tends to

[t/T]-1 [t/T]

([t/T] — k)T 1

lim - N = i NZo
oo ¢ 7;3 T 1500 / (Lt/TJ—k)Tm;rl T
_ o (/T -kK)T 1 ~
= ATl 2 M
]' T
= TE(NTO):)\

22



2.5. Laws of Large Numbers

almost surely, according to Kolmogorov’s law of large numbers (cf. Bauer [13], p.86) and
theorem 2.8. The assumptitip P® (0, kT') — || <  implies

P<N@§/TTJ k)T 7£N7B/T k)T ) <€
which means that

NWkT o _ N@AT Nﬂo

(lt/T]=k)T (Lt/T]=k)T (t/7)-kyr =0

with probabilityl — . Hence with probability — ¢, the convergenc@t& — A holds. Since

can be chosen arbitrarily small, there can be na\setith P(N) > 0 such tha@ # A for

allw e N.
©

Remark 2.12 If there is a norm orE (e.g. the supremum nortx:|| := sup,.; |pr;i(z)| for

all z € ¥) and¥ is complete with respect to this norm, i.e.3ifis a Banach space, then the
above theorem is valid for convergence in terms of the nori,doo. This can be proven in
exactly the same way by using the strong law of large numbers on Banach spaces (cf. Mourier
[68] or Beck [18]) instead of Kolmogorov’s law of large numbers, which is a statement for
real-valued random variables.

Theorem 2.12 Let (N, J) denote an homogeneous Markov-additive jump process and be
(X,+) a real vector space with basg; : i € I). Assume that the phase proceb$as
an asymptotic distribution. Define the mean rate vector by

e (/q) dn(y) /_Zc@(y,pfil(dc) X ®B):ic [)

If ||pri(E(Ny))|| < M < oo foralli € I, then

N,
Tt—m as t— oo

P-almost surely for all initial distributions.

Proof: This follows immediately from theorem 2.11, since an homogeneous process with
asymptotic distributiomr is a periodic process with arbitrary period length> 0 and periodic
family (m, = 7 : t € [0,T]) of asymptotic distributions. Furthermore,

Ldﬂ(y) /ZCQ(y,pTZ( / /dﬂt / Q(t;y,pr ' (de) x @) dt

%olds for alli € I, sinceQ(t; y, pr; ' (dc) x ®) = Q(y, pr; ' (dc) x ®) is constant irt.

Remark 2.13 The statement of this theorem is the same as the result in Pacheco, Prabhu [77],
theorem 6.17, if one specifiés= IN; and® being countable.
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3. Spatial Markovian Arrival
Processes

The recent rise of mobile communication systems gave reason to the development of queue-
ing models which are capable of incorporating spatial features. Introducing spatial arrival
processes is of great help for modelling mobile communication networks, since users can be
characterized more adequately by properties depending on their position. To this end, the con-
cept of a time-space process is needed, which is able to describe the time dynamics of arrivals
as well as their distribution in space.

In this chapter, the concept of Batch Markovian Arrival Processes (or shortly BMAPS, see
Lucantoni [60]) will be generalized towards a class of such time-space processes, which shall
be called Spatial Markovian Arrival Processes (or shortly SMAPS). This generalization points
in three directions. First, the phase space is allowed to be general. Second, the generator of
an SMAP may depend on time, i.e. SMAPs provide for time-inhomogeneous behaviour. And
finally, the attribute "spatial” appearing in the name stems from the feature that arrivals may
assume a location in some space. Thus they are distributed not only with respect to time but
also with respect to their location in a so—called arrival space. This is important for modelling
mobile communication networks, for which the spatial distribution of users is of relevance
and often the arrival intensities and service requirements may depend on the location a user
calls from. Furthermore, spatial distributions of users typically will include spatial correlations
among the different locations of arrivals in a batch. The spatial features of SMAPs are inspired
by and based upon an earlier concept of Markovian spatial arrival processes introduced by
Baum [16]. SMAPs keep the most important structural properties of BMAPS, such that the
computations necessary for analyzing them and the respective queues are still tractable.

In section 3.1, the class of spatial Markovian arrival processes is defined and constructed from
basic ingredients. The most important properties of SMAPs are derived in section 3.2. In
particular, the transition probabilities of SMAPs are specified and a law of large numbers is
given for periodic SMAPs. The last section contains some simple examples.

3.1. Definition and Construction

In this section, the so—called spatial Markovian arrival process (or shortly SMAP) will be
introduced. This shall be done by using the concept of stochastic point fields developed in
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3. Spatial Markovian Arrival Processes

appendix B. The space of counting functions on some arrival space will take the place of the
additive space of a Markovian arrival process as defined in definition 2.4. Thus, point fields
serve as a description for the spatial distribution of arrivals for SMAPs and henceforth, they
shall be calledarrival fields.

After defining spatial Markovian arrival processes as a special case of Markovian arrival pro-
cesses, a way of constructing SMAPs from a given generator of the phase process and a set of
finite-dimensional marginal distributions of the arrival fields is described.

Definition 3.1 Let R be a Polish space and R) the Borelo-algebra onRk. Further, letC
denote the space of counting functions(@ o(R)). Leto(C) be thes-algebra orC which

is constructed in theorem B.3. Further, detlenote a separable metric space, which is locally
compact, and let(®) denote ar-algebra onb. A Markov-additive jump processV, .J) with
state spac# := C x ® shall be calledpatial Markovian arrival process (or shortlySMAP)
with arrival space (R, o(R)).

Remark 3.1 SinceC C zzvg““), a spatial Markovian arrival proce$8/, J) is a special kind
of Markovian arrival processes as defined in definition 2.4. Hence we ca ¢th# phase
space and the phase process ¥V, .J).

Remark 3.2 The batch Markovian arrival process (or shortly BMAP) developed by Lucantoni
[60] is an homogeneous SMAP with a trivial arrival spaée= {q} consisting of only one
element and a finite phase spake= {1,... ,m}. Hence, all results for SMAPs and queues
with SMAPSs are valid for BMAPs and queues with BMAPSs, too. This observation will be
illustrated in sections 4.2 and 6.4.

The remaining results show a way of constructing an SMAP. First, conversely to theorem
2.6, a generator on the state spé@ce ® is composed of a kernel ob and a kernel from

® to o(C). After that, it is shown that the second kernel (which includes a measure on the
space’ of counting functions) can be determined uniquely by a sufficiently large set of finite-
dimensional marginal distributions.

Theorem 3.1 Let D®(t) be the (time-dependent) generator of a Markov jump procesk.on
Further, letK,, : ® x o(C) — [0, 1] be a Markov kernel for every € ® andt € IR . Define

D(t;y, A x B) := / Kiy(z, A) D‘I’(t;y,dz)
B

forallt € IR;,y € ®, A € o(C) andB € o(®). ThenD(t) is the (time-dependent) generator
of a spatial Markovian arrival process.

Proof: Define the same norm on the space of kernel§' @s in remark A.1, namely

K] := sup [K(z,A)]

2€S,ACS
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3.1. Definition and Construction

for every kernelK on S. SinceD®(t) is a generator, the functian— D®(¢) is bounded by
theorem A.1. Becausk,, is a Markov kernel for every € ® andt € IR, this implies that
the functiont — D(t) is bounded, too.

Fix anyt € IR;. Then

ID(+ 1)~ DO = s |D(t+ iy, Ax B)— Ditsy, A x B)
yES,AX BES
< sup |D*(t+h;y,B)—D*(t;y,B)|
yES,BEa (D)

sincek,, is a Markov kernel, i.eK;,(z, A) € [0,1] forall z € ® andA € ¢(C). Since the
functiont — D®(t) is continuous, we have

ID(t + h) = D#)|| < [|ID*(t +h) = D*(t)]| = 0
ash — 0. Hence, the function — D(t) is continuous.

Now the statement follows by remark A.8.
©

Remark 3.3 According to definition A.2 and section A.1, a generditr can be constructed
by choosing values(t,y) € IR" for all y € ® andt € IR} and jump kernel(t;.,.) :
® x o(®) — [0,1] for all ¢ € IR such that the conditions in definition A.7 are fulfilled.

In order to uniquely determine the measure payi, (2, .) of the kernelk,,, it suffices to
specify the finite-dimensional marginal measures.

Definition 3.2 Forn € IN, Sy,...,S, € o(R) andky, ... , k, € IN,, define
pT{sll,...,sn)(k17 C ,kn) = {N eC: N(Sl) = kl Vi € {1, C ,TL}}

as the inverse image of the projection of function€ito values atSi, ... ,S,). Further,
denote the stochastic point fields

iy = Kiy(z,.)
and their finite-dimensional marginal distributiong &t, ... , S,,) by
iy (St Sn) (ke S k) = thy,z(pr(sllwsn)(kl, oy k)
forallt € IR§ andy, z € ®.

Theorem 3.2 An SMAP(N, J) on (R, o(R)) is uniquely determined by the generafof (¢)

of its phase process and the marginal distributidhg, .(S1,. .. , S,) of its arrival fields on
finite families of disjoint subsets,, ..., S, € o(R) from a semi-ring of bounded sets gener-
atingo(R).

Proof: According to theorem B.4, the measdig, , = K,,(z,.) is uniquely determined
by its marginal measurd$, , .(S51, ... , S,) on finite families of disjoint subsets,, ..., S, €
o(R) from a semi-ring of bounded sets generatiti@). With this, the statement follows from
tgeorem 3.1.
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3. Spatial Markovian Arrival Processes

3.2. Properties

In this section, the most important properties of SMAPs shall be derived. It turns out that
it suffices to consider a sufficiently large set of finite-dimensional marginal processes of an
SMAP, in order to describe the whole process. Formulae for the transition probabilities,
which uniquely determine an SMAP, are taken from the more general concept of Markovian
arrival processes and specified for the case of SMAPs. As for Markovian arrival processes,
the concept of z—transforms leads to an expression for the expectation kernel of an SMAP. For
periodic and homogeneous SMAPS, strong laws of large numbers describe their asymptotic
behaviour.

3.2.1. Marginal Processes

The state space of the marginal procass the spac€ of counting functions. Since a prob-
ability measure oft is uniquely determined by a sufficiently large set of finite-dimensional
marginal distributions (see theorem B.4), it is possible to uniquely deteriibg a set of
finite-dimensional marginal processesof

Definition 3.3 Define the stochastic processes

N(Sh . ,Sn) = pT(sl,...,sn)(N)

foralln € IN andSy,...,S, € o(R). Then the proces&V(Si, ... ,S,), J) shall be called
themarginal processof (N, .J) on(Si,...,S,).

Theorem3.3Fort € IR;,n € IN, Si,...,S, € o(R) andky,... ,k, € IN,, define the
kernelsDy, .k, (t;S1,...,S,) on® by

Dkl,...,kn (ta 517 s JSTL)(y7 A) = D(ta yapT(igll,...,Sn)(kla s 7kn) X A)
forall y € ® and A € o(®). Then the sequence
A(t, Sl; . 7Sn) = (Dkl,...,kn(t; Sl; . 7Sn) . kla . ,I{;n € Wo)

uniquely determines the generator of the marginal pro¢ééss,, . .. , S, ), J) and thus the
procesg N (Si,...,S,),J) itself.

Proof: This follows from the definitions oDy, ... x, (¢; S1,...,S,) andN(Sy, ..., S,).

Definition 3.4 The time-dependent sequen&é€; Sy, . .. , S,) shall be calledjenerating se-
quenceof the marginal processV(Si, ... ,Sy), J).

Theorem 3.4 An SMAP(N, .J) is uniquely determined by the time—dependent generating se-
quences\(¢; Sy, ... , S,) of the marginal processdsV (S, ..., S,),J) on all finite families
of disjoint subsets’, ..., S, € o(R) from a semi-ring of bounded sets generatind).

Proof: This follows from theorems 3.3 and B.4.
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3.2. Properties

3.2.2. Transition Probabilities

In order to determine the transition probabilities of an SMAR .J), a description of distribu-
tions on the spacé by means of finite-dimensional marginal distributions is helpful again. In
this subsection, the transition probabilitieq &f, .7) are given in terms of the transition proba-
bilities of the marginal processéd/(Sy, ... ,S,),J) foranyn € IN andSy, ..., S, € o(R).

This method further yields explicit formulae to compute those transition probabilities via con-
volutions of kernels o® which are indexed withidV for somen € IN.

Definition 3.5 Define the kerneN (s, ¢; C') on @ by
N(s,t;C)(y, A) := P(s,t;y,C x A)
for everyy € ® andA € o(®). Further define for any € IN andS, ..., S, € o(R)
Niy o ko (8,851, ..., S,) == N(s, tQpT(tqll,...,sn)(kh )
as a kernel or.

Remark 3.4 Note that by property 2.1, the kerngld/(s,#;.) : s < t € IR;) uniquely
determine all transition probabilities ¢fV, .J). Furthermore, these are already determined
by the transition probability kernel® (s, ¢; Sy, . .. , .S,) on finite families of disjoint subsets
Si,...,S, € o(R) from a semi-ring of bounded sets generatiié), as theorem B.4 implies.

In the case of finite-dimensional marginal processes of an SMAP, the convolution formulae
for the transition probabilities, which are derived as the solutions of the Kolmogorov forward
equations, take the following form:

Definition 3.6 Foralls < ¢ € IR{,n € IN andS,, ... ,S, € o(R) set

1 ford ) im=0,y€cA
Ni(lo,)...,in(sat; Sla fee 7Sn)(ya A) = { 0 Z a%herwise

foriy,... i, € INg,y € ® andA € o(®P). Further, define the sequence
t
NW(s,t;8,...,Sn) ::/ Au; Sy, ... ,S,)du
and recursively forn € IN

Nm™ (s,t;51,...,5) =

B1yeen oin

Z Z/ Nm ,ljn S , Uy Sl,... ,Sn)Dil_jl,___7in_jn(u; Sl,... ,Sn)du

Jj1=0 Jn=0

foralli(,... i, € INg.

29



3. Spatial Markovian Arrival Processes

Theorem 3.5 For everys < t € IR{, the transition probability kerneN (s, t) := N(s,t;.) is
given by

forall £,... ,k, € IN,.

Proof. Since SMAPs are special Markov-additive jump processes, the transition probabilities
are given in theorem 2.3. For the case of finite-dimensional marginal processes of an SMAP,
they assume the above form.

Theorem 3.6 An iteration formula for the computation of the transition probabilities

N(s,t;S1,...,Sn)(y, A) is given by starting with

Nz[?}ﬂ,n(sa t’ Sla LRI Sn)(ya A) = ]-{0}><A <Z ima y)

m=1

B 1 ford) im=0,ycA
o 0 otherwise

and iterating by

NI™ (5481, .., 8,) =

21 yeeeyln

o Z Z/ N]:r: T]' S u; Sl" e ’S”)Dilfjly---,in*jn(u; Sla' .. JSTL)dU’

Jj1=0 Jn=0
n
+ Lo}xa (Z im,y>
m=1

forall iy,...,i, € INoandm € IN.

Proof: This is merely the form of the iteration formula 2.4 for this special case.

Remark 3.5 For the special case of a finite state space, this formula reduces to the iteration
given in Bellman [19], p.168, or Kamke [53], p.52.

In the case of homogeneous SMAPS, the above formulae assume a somewhat simpler form.

For a special class of homogeneous SMAPs with finite phase space, this form has been derived
in Baum [14, 16].
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3.2. Properties

Let (V, J) denote an homogeneous SMAP with arrival sp@ées(R)). Then for alln € IN
ands,,...,S, € o(R), the generating sequences

A(Sl, cee ,Sn) = A(t, 51, cee ,Sn) = (Dkl,.__,kn(Sl, cee ;Sn) : (lﬁ, ce ,kn) S (Wo)n)
are constantin timee IR .
Definition 3.7 For alln € IN andSi,..., S, € o(R) set

" 1 forYt ki=0,y€ A
A(Sla s JSn)kl,---,kn (y7 A) T { 0 otherwise

forky, ...k, € INg,y € ® andA € o(®). Further, define the sequence
A(Sy, ..., Sn) = A(S,...,Sh)
and recursively forn € IN
k1 kn
A(Sty o S =YY U A(S e S Dyt a1, (St -, Si)
11=0 ln=0

Theorem 3.7 For an homogeneous SMAP, the finite-dimensional transition probability ker-
nelsN(s,t; S1,...,S,) can be written as

N(s,t;S,...,S,) = e 25 (t=9)

which means that the probability 6f arrivalsin S; (for: = 1, ... , n) during the time interval
|s,t] is

Nkl,...,kn(sat; Sla s 7Sn) = Z

A(Sl, sy Sn)z:r,l,kn

with the above definition 3.7 of the convolution operator

Proof: The formulae in theorem 3.5 can be reduced to this exponential form for the homoge-
neous case, as is shown in theorem A.8.

Remark 3.6 In the homogeneous case, a computation of the transition probabilities can be
pursued by solving the Kolmogorov forward differential equations

0
QN(s,t;SI,... ,Sn) = N(s,851,...,5,) « A(S1,...,S)
with initial value N (s, s; S,...,S,) = I via the Runge—Kutta method. This is possible in

a straightforward way without encountering numerical problems (cf. Asmussen [6], Gilbert
[43] or Moler, van Loan [67]).
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3. Spatial Markovian Arrival Processes

Example 3.1 Assume that there is a function: IR — IR such thatA(t) = A(t) - A for
allt € IR;. Then the transition probability kernel from timec IR; to timet > s can be
simplified to the form

N(S, t) — e*A-fst A(u)du

according to remark A.9 and theorem A.21. This means that the probabilityasfivals in
S; € o(R) (fori =1,...,n)during the time intervals, t| can be written as

) “Nud mn
Nkl,...,kn(s,t; 51, R ,Sn) = Z M

m=0

A(Sl, ey Sn)lt?,t,kn

m!
using definition 3.7 for the convolution operator

As a useful corollary, which will be important for the estimation procedure in chapter 6, we
get

Theorem 3.8 For an homogeneous SMAP with finite phase space, the distribution of the in-
terarrival times on the finite familysS;, . .. , S,,) of sets is phase—type and determined by

Proof: The formula follows immediately from the above theorem 3.7 and the definition 3.7
of the convolution operatot. If the distribution of the phases at timas given by the prob-
ability vector, then it is easy to verify that the time duration froanuntil the first arrival in
(S1,...,Sy) afters has phase—type distribution with representationD, .. o(S1, ... ,S)).

goor

3.2.3. Z-Transform and Expectation

All results in this subsection are mere specifications of properties which hold for general
Markovian arrival processes and were derived in chapter 2. First, a z-transform is given for
SMAPs. This is used to determine the expectation of the marginal prodgs3, .J) for any

setS € o(R).

Definition 3.8 Let (V, J) be an SMAP with arrival spadg?, o(R)). According to definition
2.5, the z-transform of NV, J) over the time intervals, t] is defined as the function —
N (s, t; z) with values being the kernels dnwhich are determined by

N(s,t;2)(y, B) := (i P(prs(Ny — Ng) =n,J, € BlJg=y) 2" : S € 0(R)>

forally € ®, B € o(®) andz € Cwith |z| < 1.
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3.2. Properties

Theorem 3.9 The z-transform of NV, .J) over the time interva]s, ¢] has the form

N(s,t;2) = (N®(s,t;2) : S € 0(R))

with
00 t pun uy OO 00
N¥(s,t;2) :Z/ / / ZDk(ul;S)zk...ZDk(un;S)zk duy . ..duy,
n=05_* 5 5 _ k=0 k=0

n integrals

forall S € o(R) andz € Cwith |z| < 1.

Proof: see theorem 2.9

Remembering definition 2.2, the expectation kernel of an SMAP (which is a kernel on the
phase spac®) can be written as follows:

Theorem 3.10 The expectation kernel of the marginal proc@ssver the time intervals, ¢|
is given by

E(N; — N,) = (/t P®(s,u) ik - Dy(u; S) P®(u,t) du: S € a(R)>

forall s <t e IR].

Proof: see theorem 2.10

Example 3.2 As in example 3.1, assume that there is a function/kR; — IR such that

A(t) = A(t) - Aforall t € IR§. Further assume that the phase process is homogeneous with
stationary distributionr. Then the expectatioR, (N, — N;) of the marginal proces¥ over

the time intervals, ¢] given a phase distribution at times is

BNy~ V) = ( [ A e [k D)0 drt) 5 € a<R>>

k=1

forall s < ¢t € IR§. This is an obvious consequence of theorem 3.10 notingrthé( s, u) =
mandP?®(u,t)(y, ®) = 1 forall u € [s, t].

3.2.4. Periodic SMAPs

Now assume thatV, .J) is a periodic SMAP. This means that there is a period lefigth 0
such that the generator ON, .J) satisfiesD(t + T) = D(t) for all t € IR;. If further the
phase proces$ has a periodic family of asymptotic distributions (cf. appendix A.3), then
some important asymptotic properties can be proveiifor/).
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3. Spatial Markovian Arrival Processes

Under the condition that the phase process is (periodically) stationary, the expectation has

a simpler representation than in the general case. In this subsection, a strong law of large

numbers is given which shows that the mean values of the process over long durations tend

against this phase-stationary mean rate over a period length. Further, since homogeneous
SMAPSs are merely special periodic SMAPs, the same results are valid for the homogeneous

case, although they assume a simpler form.

Theorem 3.11 Let (N, J) be a periodic SMAP with arrival spaceR,s(R)) and period

lengthT > 0. Assume that the phase procekss asymptotic with a periodic familyr, :
€ [0, T'|) of asymptotic distributions. Then the expectation of the marginal pro¥esfter

one period length in phase equilibrium (i.e. with initial phase distributighis given by

E. (Ngp) = (/ /dm ZnD (t; S)(y, ®)dt : SEU(R))

Proof:  This follows from theorem 3.10 witk = 0 andt = T if one acknowledges
moP?(0,u) = 7, forallu € [0, 7] as well asP? (u, T) (y, ®) = 1 forall y € ® andu € [0, T].

Theorem 3.12 Let (N, .J) be a periodic SMAP with arrival spaceR,o(R)) and period
length” > 0. Assume that the phase procekss asymptotic with a periodic familyr; :

€ [0, T) of asymptotic distributions. For every sgtc o(R), define the mean arrival rate
at S during a period length by

-1 / / dri(y) Y nDy(t; S)(y, ®)dt

Then for any sef € o(R), the convergence

Ni(9)
t

— A(S) ast — oo

holds P-almost surely for all initial distributions.

Proof: This is a corollary to theorem 2.11.

Remark 3.7 As in remark 2.12, the convergence in the above theorem can be proven to hold
in terms of a norn| - || on the spacdr”® | if (IR || - ||) is a Banach space. In this case,
define) : o(R) — IR as the global mean rate otiR). Then the convergence

N
Tt—m as t — 0o

with respect to the norrfi- || on IR°(®) holds P-almost surely for all initial distributions.
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3.3. Examples

Example 3.3 Assume that there is B—periodic function\ : RS — IR such thatA(t) =
A(t) - Afor all t € IR . Then the mean rat§(S) can be computed as

NS =7 [ e [ S5 nDu(S)(. Bhin(y)

forall S € o(R).

Since an homogeneous process with asymptotic distribatiera periodic process with arbi-
trary period lengtfl” > 0 and periodic family(r, = 7 : t € [0, T'[) of asymptotic distributions,
the same result holds for homogeneous SMAPs, assuming a simpler form:

Theorem 3.13 Let (NN, J) be an homogeneous SMAP with arrival spaec(R)). Assume
that the phase proceskis asymptotic with stationary distributian For every sefS € o(R),
define the mean arrival rate &t by

\S) 1= [ dn() Ym0 (5)(0. D)

Then for any sef € o(R), the convergence

Ni(9)
t

— A(S) ast —

holds P-almost surely for all initial distributions.

Proof: This is a corollary to theorem 2.12.

Example 3.4 In the case of a BMAP with representatiol,, : n € IN,) andm phases, we
have the mean rate

A= AR) = WZnDnlm
n=1

with 7 denoting the stationary probability vector of the phase processa(de, -, D,, = 0)
and1,, denoting then—dimensional column vector with all entries being 1.

3.3. Examples

Throughout this section, all transition ratBg, ___ x, (S1, ..., S.)(y, A) which are not defined
explicitly, shall be assumed as zero.
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3. Spatial Markovian Arrival Processes

Example 3.5 If the arrival spacek = {r} of an SMAP (N, J) is trivial, i.e. consisting of
only one element, thef, J) shall be called ayeneralized BMAP or shortlygBMAP. A
generalized BMAP which is periodic with some period length- 0 shall be callegeriodic
BMAP or shortlypBMAP . The most important difference to the BMAP concept introduced
by Lucantoni [60] is that generalized BMAPs provide for inhomogeneous transition rates.

By specification of the arrival spacB = {r}, chapter 4 includes an analysis of the
pBMAP/M/c queue with periodic service rates and chapter 5 contains an examination of the
gBMAP/G/> queue as a special case.

Example 3.6 Let the arrival spacé be separable and choose any upper baund IR" for

the arrival intensities at any point iR. Then the spacé€'(R) of continuous functions from

R into the compact intervdl, M| is a compact and separable metric space. This follows
from standard topological results (cf. Herrlich [48], pp.206,118,117) and the fact that any
continuous function is determined by its values on a countable dense subset of the separable
spaceR. Define the phase space to de= C'(R) and leto(P) denote the Boreb-algebra

on ®. Since every functiorf € @ is continuous and hence uniquely determined by its values

on a countable dense subsetifit follows that{f} € o(®) for everyf € ® (cf. Neveu

[74], p.103). Phases out of this space can serve as intensity functions for arrivals distributed
by inhomogeneous Poisson point fields (see Kingman [55]).

A spatial Markov modulated Poisson procesgor shortly spatial MMPP) can be defined

as follows: LetD denote the generator of an homogeneous Markov jump process with state
space® as described above aftl an inhomogenous Poisson process/oisee Kingman

[55]) with intensity [, f(z)du(z) for S € o(R). Further, lety; > 0 forall f € ® such that
supseq 7 < 00. The transition rates are defined as

Do,..0(S1, .., Sn)(f, A) i= D(f, A) = (1 = T(S1,..., 5n) (0., 0))
for A € o(®) andf € A,
Do,..0(S1,-- -, Su)(f, A) := D(f, A)
for A€ o(®)andf ¢ Aand

Dkl,___,kn(SI, . ,Sn)(f, A) = ’}/f . Hf(Sl, . ,Sn)(l{?l, . ,]Cn)
for> " ki>1,Aco(®)andf € A.

Obviously,IT; does not need to be a Poisson proces&@nd could be chosen as any other
modulated random point field instead.

Example 3.7 If the phase spac® = {¢} of an SMAP (N, J) is trivial, i.e. consisting of
only one element, theflV, .J) shall be calledjeneral Poisson process with spatial arrivals
For these special SMAPs, the kernélg, ;. (S1,...,S,) on ® become real numbers and
all computations are much more tractable. If even more the arrival dpace{r} is trivial
and (N, J) is homogeneous in time, théw, .J) is a Poisson process with independent and
identically distributed batch arrivals.
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Example 3.8 A more complicated, but still naturally appearing example is the followsey
tially ordered superposition of independent BMAPs

Let A = {A : k € IN} denote a denumerable partition®fwith A, € o(R) for all k¥ € IN.
For everyA;, define a BMAP by its generating sequerde,(Ax) : n € IN,}. Denote by
o(A) the smallest-algebra on the set systesh Assume thad "~ | || Do(Ax)|| < oo with
| D|| denoting the maximum norm of a matrix.

The spatially ordered superposition of the above BMAPs yields an SMAP. Its phaseb
can be described by functiops: IN — IN, with ¢(k) denoting the phase of the BMAP over
Ay

ForS € o(A) andp € ®, the one-dimensional transition rates are given as follows:

Dy (S)(e, {¢}) = (k) (Ar)
forn € INy, Ax C S, (k) # p(k) andy(m) = o(m) for all m # k,

Do(S) (0 {U}) = Dusiry.wey (Ar)

for A, C R\ S, ¢(k) # p(k) andy(m) = p(m) for all m # k, and

Du(S) (0, {}) = > Doty oty (Ar)
A CS

forn € IN.

The diagonal elements are

ARCR\S n=1

For A € o(®) andy € P, the set of functiong), for which {k € IN : (k) # o(k)}
has at most one element, is countable. Since for all other functiothe transition rates
D, (S)(p, {1}) are zero, the sums in

=Y Du(S) (. {¢})
Pew
are well-defined for alh € IN.

The transition rates on finite families of disjoint sets can be expressed in terms of the one-
dimensional transition rates as follows:

Ben € IN andSi,...,S, € o(R) disjoint. Since for a superposition, there can be at most
one batch arrival in one set during an infinitesimal time interval, we can define

Dkl,...,kn (Slv cr Sn)(gpv {w}) = Dkz(sl)(cpa {,9/}})7
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3. Spatial Markovian Arrival Processes

if k; =0forallj # i, Ay C S, (k) # p(k) andy(m) = ¢(m) for all m # £,

n

Diy,o (15 Sa) (@, {¥0}) := Dy <U Si) (o, {#}),

=1

S0 b= 0, A © R\ UL, Si (k) # (k) andys(m) = (m) for all m # F,
Dkl,...,kn (Sla s ,Sn)(cp, {90}) = Dkz(SZ)(gpv {90})?

if £; € IN andk; = 0 for all 7 # ¢, and

n

Diy,o ke (S1y -, Sa) (0, {}) := Do <U Si) (p, {#}),

=1

Again, the sums in
Dy, e (S1, -+, Sn) (0, ) = Z Dy, e (15, Sn) (0, {¥})
Yew
are countable and thus well-defined.

If the distribution of the spatial arrivals is neglected, then, analogously to the case of a su-
perposition of finitely many BMAPs (see Baum [14]), the generating sequangg of the
superposition over the whole spaBas the Kronecker sum of the generating sequences of its
component BMAPSs.
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4. Markovian Spatial Queues

In most textbooks on queueing theory, Markovian queues are the first ones that are analyzed.
This clearly is a result of the easy structure of Markovian queues, which can be analyzed as
a Markov jump process in a straightforward manner. For this reason, in the present thesis
Markovian queues will be examined first. However, this will be done on a more general level,
covering the important case of periodic Markovian queues.

A typical property of communication traffic is the dependence of its arrival rates on time. This
aspect incites the use of time-inhomogeneous processes and queues for modelling communi-
cation networks. Typically, a periodic dependence of the arrival rates and/or the service time
distribution can be assumed with period lengths of a day or a week.

While queues with periodic input naturally reflect the time-dependent amount of traffic that
arrives in communication networks, the analysis of queues with inhomogeneous arrival rates
is far less developed than the one for homogeneous queues. Some of the existing results in
the literature are given in Asmussen and Thorisson [5], Bambos and Walrand [10], Falin [38],
Harrison and Lemoine [46], Hasofer [47], Heyman and Whitt [49], Lemoine [57, 56], Rolski
[82, 83], and Willie [94].

In this chapter, two Markovian queues, which have not been analyzed before, will be ex-
amined. The first one is the spati&M AP/M,/c/c queue with a spatial Markovian arrival
process, a general (i.e. possibly inhomogeneous) Poisson service prosessrs and an

equal system capacity. The last condition prevents an arriving user, who findseaiters

busy, from entering the system, such that this job is lost. This is a natural assumption for the
application field of mobile communication systems, since a telephone customer who finds a
busy line will not wait but choose another net provider. For this queue, a loss formula will be
derived. If one wishes to approximate a non-Poisson service process, the same method of anal-
ysis can be applied to th&A/ AP/ P H,/c/c queue with phase—type service time distribution

P H, that may have time—dependent rates (see remark 2.7).

The second queue to be examined in this chapter is the perdtliel P/M,/c queue with
periodic service rates. This is a special case oftheA P/M,/c queue with inhomogeneous
service rates. Whereas t&\/ AP/M,/c/c queue with finite phase space is a finite state
Markov jump process and hence has an asymptotic distribution, a stability condition must be
derived for the periodid3M AP/M,;/c queue. The same method of analysis applies to the
periodic BM AP/PH,/c queue if one wishes to further approximate a non-Poisson service
process.
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4. Markovian Spatial Queues

4.1. The SMAP/M,;/c/c Queue

The queue examined in this section is defined as follows. The arrival process is an SMAP.
The numbetr of servers is finite and equals the system capacity for users. This means that
whenever an arriving user finds all servers busy, he cannot enter the system and is rejected.
Hence there are no waiting users in the queue. Every server is equal, and the service time
distribution functionB, for a user arriving at time € IR] is defined by

By(t—s)i=1—¢ Jsman

forallt > s, with 11, € IR{ for all u € [s, ¢]. This means that the service process without idle
periods would be an inhomogeneous Poisson process with(fates € IRy ).

The SMAP/M,/c/c queue is a natural model for a cell of an FDMA or a TDMA mobile
communication network (cf. Gibson [42] or Rappaport [81]). For such a cell, which remains
of constant size over time (unlike a CDMA cell, cf. Yang [96] or Viterbi [93]), the arrival
spaceR of the queue would be the landscape covered by the cell. The nundfeservers

would be the number of available channels, i.e. the ratio of the total band width to a single
frequency lot assigned to every user (in the FDMA case). The assumption that no user is
waiting appears natural, as remarked above. Furthermore, usually the arrival process will be
periodic with the period length being a day or a week.

In order to derive the simplest possible form of a loss formula (see section 4.1.3), the rejection
policy of the communication network to be modelled shall be defined as follows. A rejection
shall be conceived to occur only in the event that the system capacity is totally filled, i.e. that
there are: users in the system. Thus, if there &re: ¢ users in the system and a batch arrival

of sizeh with k£ + h > ¢ occurs, then this will not be rejected although it cannot be totally
served by the system. In this case, the queue will be filled to its full capacifhis can

be interpreted as reflecting the interest of the network provider to partially serve an incoming
user instead of rejecting him, even if the total amount of service that the user requires would
exceed the system capacity. It is possible to derive transient and asymptotic distributions as
well as a loss formula for any other rejection policy using the same methods, but this would
result in more complicated formulae.

Let (N, J) denote the SMAP of the queue with arrival spéec(R)) and
(A(t;S1,...,S,) :te R, n€ IN,S,,...,S, €a(R))

denoting the generating sequences§f.J) (see definition 3.4). Further, €L, : ¢t € IR])
denote the time-dependent service rate, which shall be equal for all servers.

For ease of notation, the queue distribution shall be derived only for one-dimensional marginal
processes)(S), i.e. only one subset € o(R) will be described. For higher-dimensional
marginal distributions or{S, ..., S,) with n > 1, the method of analysis is completely
analogous.
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4.1. TheSMAP/M,/c/c Queue

Denote the joint queueing process in the subBasdS by Q(R, S) = (Q:(R, S) : t € IRy).
The infinitesimal generata¥ (¢; R, S) of Q(R, S) can be written in a block matrix with entries
being the kernels

( kpg - I for h=1+1<c¢, k=n+1<I[l+1

(h— k) - I for h=1+1<c¢, k=n<I
Doo(t: R,S) — hpy -1 for h=l<e, k=n<I
Doy(t; R, S) — hpuy - 1

. . y t
Gy, (5 1, §) = +3°% Di(t; R) for h=1l=c¢, k=n<I

Dy phni(t;R,S) for h<li<e, E<n<l
Sy Dink(t; R,S) for h<l=¢, k<n<lI
0 otherwise

forall h,k,1,n € {0,...,c}, with 0 andl denoting the zero and identity kernel, respectively.

Remember that th®,,,(¢; R, S) are kernels on the phase spadeef the SMAP (X, J) with

D,,(t; R, S)(y, A) denoting the infinitesimal transition rate at tithin phasey to change to

some phase € A and observe: arrivals inS as well asl arrivals in R. Thus the above
definition of the generator means that a phase transition may occur even if the arrival occuring
at the same time is rejected.

4.1.1. Transient Distribution

As a Markov jump process, the queue allows a description of its transient distribution in terms
of the transition probabilities. First, this shall be expressed by formula A.2. Then, the obtained
general form will be simplified for special cases.

The multiplication of two block matrice&” and L with kernel entries is defined by

(KL) iyt (0, A) =D /q) K1), i) (Y5 d2) L ), 0,0) (2, A)

i=0 j=0

which for the above generators can be simplified to

(KL)h ), 1m)(y, A) = Z Z /q) Ky (i) (Y5 d2) Lii gy 1.m) (2, A)

i=0 j=0
forall bk, l,n € {0,... ,c},y € ®andA € o(P).

Define Py, xy.a.n) (s, t)(y, A) as the transition probability of having, ») users in(R, S) and
being in some phasec A at timet > s under the condition of having, k) users in(R, S)
and being in phasg at times. Further define?, x) ) (s,t) as the sub-Markov kernel on
the phase spacé which results from the probabilitieB, 1), (s, t)(y, A) and P(s,t) =
(Pihky,a,m (s, 1)) as the block matrix with kernel entrig$y, ) 1.n)(s, t).
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4. Markovian Spatial Queues

Theorem 4.1 The transition probability kerneP (s, t; R, S) of the queu&)(R, S) from time
s to timet can be written as

00 t Up u
P(s,t;R,S):Z/ / / G(uy;; R, S)...G(ug; R, S) duy . .. duy (4.2)
k::()\s S S ,

k integrals

defining the summand fér= 0 as the identity matrixd with entriesjy,, - I.

Proof: The queue procesg(R, S) is a Markov jump process. Hence, formula A.2 applies

for the transition probabilities.
©

Now, fix a timet € IR, at which the queue is to be observed. Denote the initial distribution
of the queue process at time= 0 by v. Let Q. (¢; R, S)(y, A) denote the probability that
the queue hag, n) users in(R, S) and is in some phasee A at timet¢ under the condition

of having (0, 0) users in(R, .S) and being in phasg at time 0. Further defin€, ,(t; R, S)

as the sub-Markov kernel on the phase sphaeehich results from the transient probabilities
Qunm(t; R, S)(y, A) attimet € IR andQ,(R,S) = (Qun(t; R, S)) as the block matrix
with kernel entrie€) ;) (¢; R, S). Then the transient distribution at timés determined by

Qu(R,S) = / dwP(0,1: R, S)

o t U ug
:/duZ/o/o /0 Guy; R, S)...G(up; R, S) duy . .. duy
ICZO\ 7

k integrals

defining the summand fdr = 0 as the identity matriXd. This expression assumes a simpler
form for the following special cases.

The simplest form can be arrived at in the homogeneous case. Then the transition probabilities
assume the usual exponential form which holds for homogeneous Markov jump processes.

Theorem 4.2 For homogeneous arrival and service rates, the generator
G(R,S) := G(t;R,S) is constant int and the transient distribution at time € IR" is
determined by

o0

k
Qu(R, 5) = / dl/Z%G(R, S)f = / dy eCRS)t
k=0 "

with G(R, S)* denoting the:-th power of the kernel matri(R, S).

Proof: This is immediate from theorem A.8.

Remark 4.1 According to theorem A.9, it is possible to approximate the general case by a
sequence of piecewise homogeneous processes. For this approximation, the transient distribu-
tion can be computed as a product of exponential forms.
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4.1. TheSMAP/M,/c/c Queue

Another case of simplification is that of quasi-commutable generators (see definition A.8).
Here, an exponential form is assumed, too, although with a more complicated exponent.

Theorem 4.3 If the generatordG(t; R, S) : t € IRS) are quasi-commutable, which means
that the equation

*([ten.sw)

holds for allk € IN andt € IR], the transient distribution af (R, S) with initial distribution
v takes the form

Qu(R, S) :/dui<

k=0

k k-1

— k- (/OtG(u; R, S)du) G(t: R, S)

" k
JiGu; R, S)du)
!

:/dV 6f(;tG(u;R,S)du

Proof: see theorem A.22

Remark 4.2 A simple form of quasi-commutability is given if the generators have the form
G(t;R,S) = \t)-G(R,S)

forall t € IRj, with A\ : IR; — IRJ being a non—-negative function in time a6{R, S)

denoting a generator which is constant in time (cf. remark A.9). This would for example be

the case if the arrival process satisfiett) = A(¢) - A, with A being constant in time, and the
service rates were constant.

Most important for applications in modelling mobile communication networks is the case of
periodic arrival and service rates. In this case, a computation of the transient distribution can be
simplified as follows. For ease of notation, writés, t) := P(s,t; R, S) forall s < t € IR;.

The periodicity of the generator yields

P(0,nT) = P(0,(n—1)T)P((n—1)T,nT) = P(0,(n—1)T)P(0,T) = P(0,T)"
Let v denote the initial distribution of the queue procésDefine
|t/T] := max{n € INy: nT <t}

as the number of period lengths that have passed until time IR*. Now the transient
distribution of@ with initial distributionv is given by

Qt”:/duP(O, [t/T)T)P([t/T|T,1) z/va(O,T)“/TJP(O,t— [t/T]T)

This expression allows a computation of the transient distribution at any t@mg& ™ without
needing to integrate over ranges larger than the pd&ridéor computing the remaining terms
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4. Markovian Spatial Queues

P(0,s) with s < T, one can use the following iteration as given in Bellman [19], p.168:
Starting withIy(u) := Id for all u < s, the iteration

Inyq(u) ::/ I,(v)G(v; R, S)dv + Id
0

leads to the limit

P(0,s) = lim I,(s)

n—0o0

foralls <T.

Example 4.1 Assume that the parameters are given as follows:A_efenote the generating
sequence of an homogeneous SMAP and choose servicgratess IR*. Further, letl’ > 0
denote a period length and set

A(t) = (1 + sin (%ﬂ)) A

oy for t<T/2
FE= e for t>T/2

as well as

for all ¢ € [0,7]. Then the generators are periodic with peribcand piecewise quasi—
commutable (or0,7/2] and on[T/2,T[). DenoteG, := G(0;R,S) as well asGy :=
G(T/2; R, S). Acccording to example A.4, we then obtain

P(0,5) = exp <<s+ % (1 _ cos (%ﬂ))) -G1>

for s < T'/2 and

p-en((§2)e)on (- & (oe(3))) )

fors > T/2.

4.1.2. Asymptotic Distributions

In the case of a periodi§ M AP/M,/c/c queue with finite phase space, a periodic family of
asymptotic distributions can be given. This is an immediate consequence of the results for
periodic Markov jump processes in section A.3.

Let () denote ar6 M AP/M,/c/c queue with finite phase spade= {1, ... ,m}. Further, let
S € o(R) denote any subset of the arrival space i, S) the marginal process @p on
the subset& andS. Assume tha®) (R, S) is periodic with period lengtii™ > 0.
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4.1. TheSMAP/M,/c/c Queue

Let Y(R,S) = (Y,(R,S) : n € IN,) be the homogeneous discrete time Markov chain with
transition kernel

e T u; U2
P(0,T;R,S) :Z/ / / G(ui; R, S)...G(uj; R, S)duy . .. du,
=00 Jo 0

Then the main result is

Theorem 4.4 The Markov chainy’(R, S) has an asymptotic distributioa(R, S), and the
marginal queue proces3(R, S) has a periodic familyg;(R, S) : s € [0,T]) of asymptotic
distributions (see definition A.13) assuming the form

as(R, S) = q(R, S)P(0, 5; R, S)
for all s € [0, T[. The distributiony(R, S) is determined by the equilibrium equation

q(R,S) =¢q(R,S)P(0,T;R,S)

Proof: Since the phase spadeis finite and the queue has finite capacity, the state space
of the queue process is finite, too. It follows that the Markov ch&i®, S) has finite state
space and hence an asymptotic distributioR, S). The rest follows from theorem A.28 and

remark A.11.
©

The homogeneou§ M AP/M/c/c queue can be seen as a special case of the periodic
SMAP/M,/c/c queue with arbitrary period length > 0 and generator&/(R, S) which
are constant in time. This leads to

Theorem 4.5 Let () be an homogeneous SMAP/M/c/c queue with finite phase space
{1,...,m} and generatoG(R, S) for the marginal proces§(R, S). ThenQ(R, S) has an
asymptotic distributior(R, S) with

¢(R,S)G(R,S)=0

Proof: This follows from the above theorem 4.4 and the form

X 4
P(0,t; R, S) = 5t =} %G(R, S)J
§=0
for the transition probability kernel @ (R, S) (see theorem A.8). The homogeneous Markov
chainY (R, S) defined above has an asymptotic distributigi®, S), since the state space
is finite. This satisfieg/(R, S)G(R,S) = 0 and because of the above exponential form
%(R, S)P(0,s; R,S)=q(R,S) forall s € [0,T].
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4. Markovian Spatial Queues

Remark 4.3 In the homogeneous case, the generator matrix

G(R,S) = (G(h,k),(l,n)(R’ S))ogkghgc,ogngzgc

can be arranged according to the indi¢esn). This results in anV//G /1-type matrix and
hence the distributiog( R, S) can be found by the method introduced in Ramaswami [80] and
generalized by Hofmann [50].

4.1.3. A Loss Formula

The SMAP/M;/c/c queue is doss system This means that arriving users who find all
servers busy are rejected and since they do not retry to enter the queue, they can be regarded a
lost. One of the most important performance measures of loss systems is the loss probability,
which is defined as the long time fraction of lost, i.e. rejected users to all users having arrived.
For the application field of mobile communcation networks, the meaning of this probability

as a criterion of quality is immediate.

For M/G/c/c loss systems, the loss probability is the asymptotic probabilityf havingc

users in the system, which is the same event as all servers being busy. This result is indepen-
dent of the service time distribution and was first exhibited by Sevast’yanov [86] in 1957. It
follows easily from the PASTA property for queues with Poisson arrival processes (cf. Wolff
[95], pp.271-273). In this subsection, the loss probability will be derived using the law of
large numbers for periodic SMAPs (theorem 2.11). It turns out that an analogous result holds,
although the PASTA property does not hold for $%/ AP/M,/c/c queue (for a more general
treatment of the PASTA problem see Melamed, Yao [65]).

Definition 4.1 Let Q denote a loss system. Denote the number of users, that have arrived
at@ until time ¢ € IR{, by N, and the number of rejected users until time IR} by L;.
Assume that) has an asymptotic distribution. Then tloss probability p; of @ is defined as

the fraction

pr = lim il
t—o00 Nt

of the number of rejected users over the number of all users having arrived in the long run.

Now let ) denote the periodi& M AP/M;/c/c queue with arrival spacéR, o(R)), finite

phase spac® = {1,...,m} and period lengtil” > 0. As usual, notational convenience is

the reason for analyzing only the one-dimensional marginal processes on any measurable set
S € o(R). Denote the SMAP arrival process on the sulssby (N (S), J) and define it by its
generating sequend®,,(S) : I,n € INy). ThenD := "> D, (S) is the generator of the

phase process$. This has a periodic familyr, : s € [0, T) of asymptotic distributions, since

the phase space is finite. Furthermore, the finiteness ®fallows to represent the measures

T, as row vectors inR™ and the kernel®,,(S) and D asm x m matrices with real-valued
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4.1. TheSMAP/M,/c/c Queue

entries. Define the column vectoy, € IR™ as the one with all entries being 1. Finally,
assume that the asymptotic mean arrival rate during one period length

IR
A(S) = T/o TrthDn(t; S)1,,dt < 0o
n=1

is finite. Then the main result is

Theorem 4.6 Let () denote a periodicSM AP/M,/c/c loss system with finite phase space
¢ = {1,...,m}, arrival space(R, o(R)) and period lengtlf" > 0. Let the SMAP of) have

a generating sequendd,, (S) : n € IN,) on the subset € o(R). Assume thaf)(R) has a
periodic family(gs : s € [0, T]) of asymptotic distributions and defipgc) € IR™ as the row
vector withith entryg;(c, i). Then the loss probability @ on the subse$ is

b= Sy a(e) 200 nDy(t: ) 1dt
Jo T S0 nDy(t;S) et

forall S € o(R).

Proof: For ease of notation, we shall writé := N,(S), L, := L;(S) andD,(t) := D,(t; S)
in this proof. By definition, the arrival procegg(S) in S is a one-dimensional Markovian
arrival process. Thus, the strong law of large numbers (theorem 2.11) applies and yields

T 00
lim — = —/ T ZnDn(t)lmdt (4.2)
0 n=1

almost surely.

The procesd.(S) = (L; : t € IR]) which counts the number of rejected users can be
described by a thinned Markovian arrival process. The infinitesimal transition rafesSof
are given by

P(Qt(R) = (C: i)a Nisar — Ny =n, Jypar = j|Jt = Z)

Ry(t;i,5) = lim

At—0 At
T P(Nigar — Ny =n, Jypar = §lQu(R) = (c,4), J, = i)
= 11m

At—0 At

- P(Qi(R) = (¢, i)|J: =)
Y P(Nt+At — Ny =n,Jiyn = j|Jt = Z)
= lim
At—0 At
= Dy(t;4,5) - P(Qu(R) = (¢,)|J; = 9)

for everyn € IN, since the arrival processvV(S), .J) only depends on the phase but not on
the number of users iR. Furthermore, we have

- P(Qu(R) = (¢, )| Jy = i)

Ro(t;,§) = Do(t:i,5) + 3 Dalt iy 1) - (1 = P(Qu(R) = (e, )| T, = 1))

n=1
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4. Markovian Spatial Queues

Writing ¢t = kT + s and lettingk — oo, the asymptotic rates are

lim Ry (KT + 531, j) = Da(si, ) quj;i)

foralls € [0,7],n € IN andi, j € ® and

lim Ro(KT + 5317, ) = Dols7, /) + S Da(s31,5) - (1 - qS(C’.Z))

k—00 (1)

forall s € [0,7] andi, j € . Obviously, the generator of the phase procesk(cf) equals

n=1

> Ru(t;i,§) = D(t;4, )
n=0

which is the generator of. Hence, by theorem 2.11, the strong law of large numbers assures
the convergence

L 1T & 1" S
tlggo? = T/o Wt;an(t)lmdt = T/o qt(c);nDn(t)lmdt (4.3)

almost surely.

Combining the results 4.2 and 4.3, the loss probability is determined by

Lot fy a(0) 300 nDy(t)Ldt

p = lim — - — =
tooo & Ny [T, 5% D, (t)1,dt

©

As usual, the case of an homogeneous queue can be regarded as the special periodic queus
with arbitrary period lengtil” > 0 and a generator which is constant in time. Thus, the result
for homogeneous queues follows immediately from the above theorem.

Theorem 4.7 Let Q denote an homogeneous SMAP/M/c/c loss system with arrival space
(R,0(R)). Let the SMAP of) have a generating sequen(®,,(S) : n € IN,) on the subset

S € o(R). Assume thaf)(R) has an asymptotic distributiopand defingy(c¢) € IR™ as the

row vector withith entryg(c, 7). Then the loss probability @ on the subse$ is

~q(e) X2 nDu(S)1
P S DS 1

forall S € o(R).

Proof: This merely is the form op, (derived in the above theorem 4.6) for the special case
of an homogeneous queue.
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4.2. The Periodi@3M AP/M;/c Queue
4.2. The Periodic BM AP/M,/c Queue

Let@Q = (Q; : t € IRy) denote a periodi&3 M AP/M,/c queue with periodic BMAP input
having finite phase spadé, ... , m} (see example 3.5), exponential service time distributions
with periodic service rates, amdervers. Arrival process and service rates shall have the same
periodT. Define the arrival process by its transition rate matrides(t) : n € IN,,t € IR;)

having dimensionn and periodl’. Further, let(y, : ¢t € IR;) denote the time-dependent
service rates, which shall be equal for all servers. Periodicity of the service rates means
pser = ps forall s € [0, T7.

4.2.1. Transient Distributions

As a Markovian queue, the system can be analyzed like an (inhomogeneous) Markov jump
process. The infinitesimal generataft) of the queu&) can be written as afiV, x IN, block
matrix with entries

( 0 for k>n+1
kg - 1 for k=n+1<c¢
Ginlt) = ¢ cpg - 1 for k=n+1>c¢

Do(t) — kpy- I for k=n<c
Dy(t) —cuy -1 for k=n>c
D, «(t) for k<n

\

for k,n € IN, with 0 and/ denoting the zero and identity matrix, respectively. Note that the
entries aren x m matrices. Denote th@, j)th entry of the matridxGy,, (t) by Gi.(t) (4, 7).

The multiplication of twolN, x IN, block matricesA and B is defined by

(AB)n (i, 7) ZZAmZhBlth)

(=0 h=1
for everyk,n € INgandi, j € {1,... ,m}.

Define Py, (s, t)(i,j) as the probability of having € IN, users in the queue and being in
phasej at timet > s under the condition of having € IN, users in the queue and being in
phase at times. Further defing?, (s, t) as them x m matrix with entriesP;,, (s, t) (7, j) and
P(s,t) = (Pin(s,t))knew, asthelNy x IN, block matrix with entries,, (s, ).

According to theorem A.6 and formula A.2, the transition probabilities of the queue can be

written as
(s,t) Z/ / / (w1) ...G(ug)duy ... dug

k mtegrals
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4. Markovian Spatial Queues

Let v denote the initial distribution of the queue procéssThe transient distribution a@ is
given as in section A.3 by

Q; = /de(O,T)WTJP(O,t— [t/T|T)

This expression allows a computation of the transient distribution at any tgmg& ™ without
needing to integrate over ranges larger than the périod

Example 4.2 Assume thatD,,(t) = (1 +sin (%£t)) D, for all t € IR andn € IN,, with

A = (D, : n € INy) being the generating sequence of an homogeneous BMAP. Further,
set the service rate to be constant in time, ug= p for all t € IR;. Denote the resulting
generator at time O bg := G(0). Then according to example A.4, the transient distribution

is determined by
T 2
P(0,s) = exp <<s+ oy (1 — cos <?s>>) -G)

foralls < T.

4.2.2. Stability and Asymptotic Distributions

In difference taS M AP/M,/c/c queues with finitely many phases and hence finite state space,
the asymptotic analysis of theM AP/M,/c queue first requires the derivation of an ergodic-
ity condition, before asymptotic distribution can be given.

One of the most important criteria for ergodicity of Markov chains occuring in queueing theory
is Foster’s condition (see Foster [40], [41]). This has been extended in various directions
afterwards (see Pakes [78], Mauldon [62], Marlin [61], Rosberg [84], Tweedie [90], [91] or
Asmussen [4], p.18f). In Fayolle, Malyshev, Menshikov [39], a version of Foster’s criterion
for state spaceBV, x {1,...,m}, hence for Markovian BMAP gueues, can be found.

This shall be used in this section in order to prove a necessary and sufficient condition of er-
godicity for the periodidB M AP/M,/c queue. After that, the periodic families of asymptotic
distributions are given for the case of ergodicity.

LetQ := (Q, : t € IRJ) denote a periodi&@ M AP/M,/c queue with period lengti > 0.
Denote the time—dependent generating sequence of the periodic BMAPJ§Y) : n €
INy,t € [0,T]) and lety, denote the service rate at timeDefine the homogeneous Markov
chainY = (Y, : n € INg) by Y, := Q,r for all n € IN,. Furthermore, denote the phase
process ofy), which coincides with that of the BMAPN, .J), by J. Since the phase space
is finite, the homogeneous Markov chdifh,; : n € IN) has an asymptotic and stationary
distribution which shall be denoted by = (7y,...,7,). Finally, let1,, denote them—
dimensional column vector with all entries being 1 and denoteittheanonical row base
vector of IR™ by e;.
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4.2. The Periodi@3M AP/M;/c Queue

Theorem 4.8 Assume that the phase procekss irreducible. Then the Markov chaini is
ergodic if and only if the stability condition

T oo T
/ ﬂZnDn(t)lm dt < c- / oy dt (4.4)
(I — 0

holds.

Proof: LetA = (A;:t € IR7) andB = (B, : t € IR]) denote the BMAP arrival process
into @ and the Poisson process with rates : ¢ € IR]), respectively. That meand, is the
random variable of all arrivals into the queue. Defiie= A — B as the difference of these
independent processes. Théns a periodic Markov jump process and by theorem 3.11, the
mean expectation over one period length in phase equilibrium equals

B(Zr) = E(Ay) — E(By) = /OTW S 0D, ()L i - /OT wdi (45)

In order to show the necessity of condition 4.4, assumeftiat-) > 0. Since the state space
of Zis Z x {1,... ,m}, but the chairt” has a barrier at the zero level, we have

E(Y1) > E(Zr) > 0

for initial distributions with suppor{0} x {1,...,m}. Starting in phase equlibrium, the
asymptotic expectation

i E07) = Jim 3 0) =

diverges to infinity. Hence, there is no asymptotic distributionfor

Now we show sufficiency. Denote the transition probability matrix of the homogeneous
Markov chain(Z,r : n € IN,) by p?. SinceZ is homogeneous in the second component, we
can define

Py (i, j) = p(ZO,i),(k,j) = P(Zr = (k, j)|Zo = (0,17))

forall k € ZZ andi, j € {1,... ,m}. The above observation 4.5 yields

m m

Sm S ki) <0

=1 keZ j=1
According to Fayolle, Malyshev, Menshikov [39], p.35, there iscan- 0 and a positive
function f such that

m

Zzp(zkﬂ),(w) ’ f(n7]) - f(kal) < —€

n=0 j=1
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for almost all stategk, i) € INy x {1,...,m}. Furthermore, there are numbess. .. ,a,,
such thatf (k, i) = k + a; for almost all stateék, 7).

Define the event
R(n):={3te[nT,(n+ 1)T[: Q; =0}

for all n € IN,. Then the transition probabilities of the homogeneous ciaian be decom-
posed in

pz;,z’),(l,j) = PYap = (0)|Y0 = (k1))
= P(YVarr = (,))|Yn = (k1) R(n)) - P(R(n)[Y, = (K, 1))
AP (Vo1 = (1,)[Ya = (k,4), R(n)°) - P(R(n)[Y, = (k1))
= PYo1 = (,))[Yn = (k,9), R(n)) - P(R(n)|Y, = (k, )
TPy (1,5) P(R(n)“|Y, = (k,1))

forall n € IN,. Since

there is a, € IN such that
£
2- M
forall k > ko, with M’ := M + > |a;|. Furthermore, condition 4.4 implies

P(R(n)[Yy = (k,i)) <

ie{l,...,m}

T 00
max / eiZnDn(t)lm dt < M < oo
0 n=1
and thus the estimation

SN P(Yair = (L5)|Ya = (kyi), R(n)) - f(n, j)

< ZZP(YTHA = (laj)|Yn = (k,z),R(n)) . <l + z; |al|)

=0 j=1
m
i=1

holds. Using the positive functiofy we now have

S Dliyngy - f(0,9) = F(k,0)

n=0 j=1

n=0 j=1
< €
2
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4.2. The Periodi@3M AP/M;/c Queue

for almost all stategk,i) € IN, x {1,...,m}. Now Foster’s criterion as stated in Fayolle,
Malyshev, Menshikov [39], p.29, assures thais ergodic.
©

In the case ot” being positive recurrent we can proceed as in the previous section in order to
determine the asymptotic distribution. Thus we conclude this chapter with

Theorem 4.9 If the stability condition 4.4 holds, thep has a periodic family of asymptotic
distributions assuming the form

qs = qP(0, s)

for all s € [0,T[, with ¢ being the asymptotic distribution of the embedded homogeneous
Markov chainY” = (Y,, : n € IN,) defined by}, := Q1 for all n € IN,.

Proof: This follows immediately from the above theorem 4.8 and from theorem A.28.
Example 4.3 Resuming example 4.2, we obtait{0, T') = ¢”"“ and hence
qP(0,T)=q <= ¢G=0

for the distribution g. This and the formula fé(0, s) in example 4.2 imply further that

omn{(sE(-on () )

for all s € [0, t[. Hence the queue given in this example has the same asymptotic behaviour as
the homogeneous queue it is derived from.
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5. Spatial Queues with Infinitely Many
Servers

Spatial Queues with infinitely many servers arise naturally as models for the planning process

of mobile communication networks. A very useful concept has been developed by Cinlar [30],
partly on the basis of Massey and Whitt [63]. This assumes single arrivals distributed in time

as a non-homogeneous Poisson process. Every arrival chooses a position in space according
to a (time-dependent) distribution on the space and independent of all other users. Since the
arrival process is a multi-dimensional Poisson process on the product space of time and arrival
space, the queue process is Poisson as well, and the mean measures can be computed in a
straightforward manner. This yields a nice solution to the queue process.

Mobile communication networks with parallel data streams of different types (e.g. voice, data,
video) and group arrivals which are not independent in space require a more general treatment.
As the BMAP-concept (see Lucantoni [60]) shows for non-spatial queueing models, parallel
data types can be modeled by using phases. This will be done here, too. Furthermore, phases
can be used to model special system characteristics. Spatial dependence in the positioning of
group arrivals can be acknowledged by using Spatial Markovian Arrival Processes (SMAPS)
as introduced in chapter 3.

In this chapter, spatial infinite server queues shall be examined in three stages of generality.
Essentially, the same method of determining the queue process applies to all of them. In a first
step (section 5.1), this method will be shown for the simplest model of homogeneous arrival

rates in time and non-moving users. A first generalization in section 5.2 treats general (i.e.

possibly non-homogeneous) arrival rates, but still non-moving users. In section 5.3, a last step
provides for user movement as well general arrival rates.

5.1. Homogeneous Arrival Rates without User
Movements

In this section, spatial queues with homogeneous arrival rates and constant user positions are
examined. Let) denote a queue with an SMAP arrival procéas .J) and infinitely many
independent servers. Denote the arrival spacémy (R)) and let{A(Sy,...,S,) : n €
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5. Spatial Queues with Infinitely Many Servers

IN,S; € o(R)} be the generating sequences determir{iNg.7). Every incoming user is
served immediately, i.e. there is no waiting time and the queue length is always zero.

For an introduction of the method of analysis, the service times will be assumed as general
and iid in section 5.1.1, i.e. they do not depend on the user’s position. In section 5.1.2, the
model provides for service time distributions depending on the user’s position.

5.1.1. 1ID Service Time Distributions

For ease of notation, the queue will be observed in only one sisbset (R) first. Observa-

tions in finitely many subsets will be derived in section 5.1.3 by the same method used in this
section. Lett € IR" denote the time instant arftl € o(R) the subset the queue is observed

at. Further, let7 denote the service time distribution function.

Define®; (s, t; S)(y, A) as the probability of observingusers being served it at timet and
the system being in some phase A under the condition that at time < ¢ there were no
users being served ifi and the system was in phagec ®. Let Q;(s, t;.S) denote the kernel
on & with entriesQ; (s, t; S)(y, A). Further define the sequen€Xs, t; S) := (Qi(s,t;S) :

i € INy) and set)(t; S) := Q(0,t;S).

Remark 5.1 If N(du; S) denotes the infinitesimal arrival rate $hat timew, then a stochastic
integral describing the queue process at tinsegiven by

as)= [ B(GE(t — ), N(du: S))

with G° := 1 — G denoting the complement of the service time distribution function and
B ((G¢(t — u), N(du; S)) being a random variable which is distributed binomially with suc-
cess probability7¢(t — u) and N (du; S) trials. This integral is defined pathwise (cf. Liptser,
Shiryayev [59], p.90), i.e. for every € )

/OB(GC(t—u),N(du;S))(w) ::/0 B (GE(t — u), N(du; S)(w)) (w).

Although this integral form gives a short and nice representation of the queue, its evaluation is
not easy. Therefore, another approach is taken for the computation of the transient distribution.

Fix any timet € IR; the queue shall be observed at. In any infinitesimal time intetvak
limy, o |u, u + h] with u € [0, ¢[, batch arrivals occur with rates(S) = (D;(S) : i € INy)
according to the SMAP arrival process. Given that an arrival of batchnsize IV occured
duringlu, u + h] with u € [0, ¢[, the probability ofi € {0,... ,m} arrivals still being served
at timet is distributed binomially by

(”7) GO((t —u)=)'G((t — u)—)™",

?
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5.1. Homogeneous Arrival Rates without User Movements

denotingG((t — u)—) := lim,_,o G(t — (u + h)) andG°(t) :== 1 — G(¢t).

Conditioning upon the batch arrival rates, the total ratéartivals during a time intervalu
which are still in service at timeis

R0 1:8) = 3 Dy(S) (m) GE((t — u) =) G(( — u)— )™ (5.1)

for everyu € [0,¢] andi € IN,.

The sequenc®(u,t; S) := (R;(u,t;S) : i € INy) can be interpreted as the time-dependent
generating sequence of an inhomogeneous SNMIAR) = (H;s)(u) : v < t) which at time

u = t coincides with the infinite server queue that is to be examined. Note that for every
timet € IRy the queue is observed at, the sequeR¢e, ¢; S) and hence the SMAP;s,

is different. The transient distribution of the marginal queue process in the stilzset( R)

at timet € IRy is determined by)(¢;S) = H.s)(t). Formula A.2 yields the following
representation:

Theorem 5.1 The transient distribution of the marginal queue proces$)oh the subset
S € o(R) attimet € IR is determined by

00 t U u
Q(t; S) :Z/ / / R(uy,t;8) % ... % R(ug, t;S) duy . .. duy (5.2)
k=00 0 0

k in'?e;ggrals

defining the case of zero integrals as the sequdrte= (/,0,0,...) with I denoting the
identity kernel and) the zero kernel o, and further defining the convolution sequence
C =AxBhy

Cn = io: Aan,Z

for any two sequences, B of kernels onb.

Proof: This was derived above.

A great disadvantage in the above formula 5.2 lies in the fact that the sequeficess)
need to be determined separately for every tirgelR?; the queue shall be observed at. In the
next theorem, a closed form for all times of observance is obtained:

Theorem 5.2 The transient distribution of the marginal queue process)ah the subset
S € o(R) attimet € IR] can be written as

. S) = T R S) e B(ugs S) dus .
Q(t; S) ;\/0/0 /0 jR(ul, ) s ..ok R(ug; S) dug . .. duy (5.3)

k intggrals
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5. Spatial Queues with Infinitely Many Servers

with
R(u;S) == R(t — u,t; )

being independent &f> w.

Proof: By equation 5.1, the rates
Ri(u; S) == Ri(t — u,t; S) ZD < > “(u—)'G(u—)""
are independent af> u. Starting from equation 5.2, we have

o0 t U ug
Qt;S) = Z/o/o /0 R(uqy,t;S) x ... % R(ug, t; S) duy ... dug

k int%rgrals

— Z// / R(uy,t;S) x ... % R(ug, t; S) dug . . . duy

= Z// / 7R(t—ul,t;S)*...*R(t—uk,t;S)duk...dul
—o 0 Jo 0

which proves the statement.
©

Remark 5.2 The representation 5.3 is from the point of view that one looks backward in time
from time¢ until time 0. Thus, equation 5.3 gives the transition kernel of a process running
backward in time with the phase process still running forward.

Example 5.1 Assume that the service time distribution is deterministic, Ge= J; is the
Dirac measure with suppost> 0. Then

= o | Di(S) for u<s
Ri(u,S)—{ dio-D for u>s

for alli € IN,, denoting the Kronecker function ldyand the generator of the phase process
by D = 3>, D,(S). Thus we obtairz(u; S) = A(S) foru < sandR(u;S) = D - Id =
(D,0,0,...)foru > s and hence

eA(S)t for t<s
Q(t;5) = { P®(0,t — 5)e ) for t>s

forallt € IR, with P® denoting the transition probability kernel of the phase process.

The next two theorems yield expressions for the expectation kernel of the marginal queue
processV at any time of observance.
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5.1. Homogeneous Arrival Rates without User Movements

Theorem 5.3 Assume that the arrival rate ifi is finite for any phase < 9, i.e.
ZnD ) < M < o0 (5.4)

for all y € ®. Then the expectation kernel of the marginal queue procegs-ef N, .J) in the
subsetS € o(R) attimet € IR is given by

B(N,) = /0 PP(0,u) S 0D, ()PP (s ) GE((t — w)—) du (5.5)

n=1

with P?® denoting the transition kernel of the phase process.

Proof: Fix atimet € IR;. SinceQ(t; S) equals the distribution of the SMAH ;.5 at time
t, the expectation kernel at tintas given by theorem 3.10 as

E(N,) = / PH0,0) S nRa 85 8) PP (u, ) d

0 n=1
9

— /p%u 130" Du(s) ( ) “((t— w)=)"G((t — w)—)" P (u,1) du

1 m=n

Abbreviatingp(u) := G°((t — u)—) andg(u) := G((t — u)—), we have

E(N,) = / PP0,u gngDm (’;"‘>pn(u)qm—n(u)p¢(u,t) du

= /0 P‘I’(O, w) Z Z nD,,(S) #!_n)!pn(u)qmn(U)P@(u, 1) du

N

P*(0,u Z mD,, (S)p(u) Z = (IT; -_(2!— n)!pn_l(u)qm_n(u)PQ(U, t) du

n=

I
S~

P®(0,u) Y mDy(S)G((t — u)—)P* (u,t) du

since
) m-l | ! men S — 1 n m—1-n
nz::l(”_(l)!'(nz—n)!pn_ (u)q (u):nz::()n!-(( _1)_ n),P (u)q (u)
sums up to 1.
©

Theorem 5.4 If condition 5.4 holds and the phase process has stationary distributitmen
the expectation of the additive processfS) at timet € IR starting in phase equlibrium
IS

Er(N,, J, € ®) = / (dy) ZnD y,@)-/th(u—) du (5.6)
0
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5. Spatial Queues with Infinitely Many Servers

Proof: This follows from the above theorem 5.3. SineB®(0,u) = 7 for all u € IR and
P2(u,t)(y,®) = 1forally € ® andu < t € IR;, we have

Eo(N,J, € ) = /0/q)ﬂ(dy)ZnDn(S)(y,é)Gc((t—u)—) du

-/ w(dwgwn(sxy,@)- [ ety

after substituting :=t — .
©

5.1.2. Spatially Variable Service Time Distributions

Let{S; : k € IN} with S, € o(R), S, NS, = 0 for k # 1, andJ,~, S, = R be a partition of
the arrival spacd?. For everyk € IN, assign a service time distribution functi6f, which
is valid onS,.

Let S € o(R) be measurable anll € IN such thatS ¢ [J_, Si. The queue process if
can be described as the convolution of the queue processes iy, ... , S N Sk. Thus, for
everyt € IR the distributionQ(¢; S) of users in subsef at timet can be described in terms
of the distributions)(¢; S N S) of users in the subsefsnN Sy, at timet. This results in

Q(t;S) = *i_; Q(t; SN Sy)

Here, the generating sequendeg; S N S;) which determine the sequencést; S N S)
for k € {1,...,K} are determined as in the preceding section 5.1.1. The convohitien
defined iteratively as; _, A;, := A, and

Kt Ay = (Rp_ Ag) * A

foralln € IN and sequence$,, ..., A, of kernels ond.

5.1.3.  Common Distribution in Finitely Many Subsets

The same method as in section 5.1.1 can be applied in order to determine the joint (transient)
distribution of the queue process in finitely many subsets of the arrival sRaatea time

t € IR". Ben € IN andS, € o(R) for k € {1,...,n} measurable subsets. The joint
distribution(¢; S, . .. , S,,) of users in service after timeshall be defined as the distribution

of the INj-valued random variable indicating the number of users;ix ... x S, at timet.

Fix a timet € IR" and subsets|, ..., S, € o(R) the queue is to be observed at. In any
infinitesimal time intervaliu = lim,_,y |u,u + h] with u € [0, ¢], batch arrivals occur with
rate A(Sy,...,S,) = (Dj,....i,(S1,...,S,) 1 i € IN,) according to the SMAP arrival pro-
cess. Given that an arrival of batch size,, ... ,m,) € IN" occured durindu, v + h], the
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5.1. Homogeneous Arrival Rates without User Movements

probability of (i1, ... ,i,) € [[i_{0,...,ms} arrivals still being served ifSi,... ,S,) at
timet is distributed by

I (") 6t - w-yGite = -y
again denoting((t — u)—) := limy,_,o G(t — (u + h)) andG*(t) := 1 — G(1).

Conditioning upon the batch arrival rates, the total ratéof .. ,i,) arrivals into the family
(Si,...,Sy,) of subsets during a time intervéd which are still in service at timeis

Ril,...,in (ua ta Sla RS Sn) =

n

= Z . Z Dml,---,mn(sla . ,Sn) H (mk) Gc((t . u)_)sz((t _ u)_)mk—ik

i
M= Mn=in k=1 \ 'k

for everyu € [0,t[ andiy, ... ,i, € IN,.
As in the one-dimensional case, the time—dependent (n—dimensional) sequence
R(U,t; 51, - ,Sn) = (Rihm,in(u,t; Sl, - ,Sn) : il, - ,in € Z]Vo)

can be interpreted as the generating sequence of an inhomogeneous BMAP ¢, =

(Hs,,... s (w) - uw < t) which at timeu = t coincides with the infinite server queue that is
to be examined.

With definitions and arguments completely analogous to those in section 5.1.1, one derives
the following result:

Theorem 5.5 The transient distribution of the marginal queue procesg)ah the subsets
Sy,...,S, € o(R) attimet € IRy is determined by

Qt: Sy, ..., S,) = (5.7)

0 t 751 Uk—1 _ _
:Z// / R(uy; Sy, ..., Sp) % ... % R(ug; Shy ..., Sy) duy...duy
0 J0 Jo 0o

k int‘ergrals

with

R(u; Sy,...,Sn) == R(t —u,t;S1,...,Sn)

being independent of > u. The case of zero integrals shall be defined as the sequence
Id=(Id,,, ; :t,...,i, € INg) with entries

a1 ford ,_ix,=0
iein S Y otherwise
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5. Spatial Queues with Infinitely Many Servers

and I (resp. 0) denoting the identity kernel (resp. the zero kernel)donFurthermore, the
convolution sequencé = A x B shall be defined by

i1 in
Cil:---yin = E : e E :Ajl:---:jnBil—jly---7in—jn

Jj1=0 Jn=0

for any two sequences, B of kernels onb.

5.1.4. Stability and Asymptotic Distribution

The asymptotic behaviour of the homogenedud AP/G /oo queue already is apparent in
formulae 5.3 and 5.5 of the transient distributions and expectation kernels, respectively. The
marginal expectatio’(V;) remains finite fort — oc if and only if the mean service time
E(G) as well as the mean arrival rate are finite. As will be shown in this section, these
conditions are, as intuition would suggest, the main ingredients of a stability condition for the
homogeneou§ M AP/G /oo queue.

After first defining stability for homogeneous queues, the asymptotic distribution and marginal
expectation of users in the queue are given for stdBleA P/G /oo queues. Finally, a neces-

sary and sufficient stability condition is proven for the case of a countable phase space at the
end of this section.

Definition 5.1 An homogeneous queu@ = (Q; : t € IR") shall be calledstable if the
asymptotic distribution := lim,_, ., ); does exist and the marginal asymptotic distribution of
users in the queue has finite expectation.

Theorem 5.6 If Q = (N, J) has an asymptotic distribution, it is determined by the kernel

> S u1 Uk—1 _ N
Q(S):Z/O /0 /0 R(uy; S) * ... % R(uy; S) duy ... duy
k=0 .

k infégrals

for everyS € o(R). Denote the asymptotic distribution of the phase prodelsg . Then the
asymptotic expectation of the marginal procééss given by

B(N(S),J € ®) = im E(N(S), € 9) = E(G) - [ 7(dy) > nDu(8)(1,)

for everyS € o(R), independent of the initial distribution.

Proof: The first statement follows immediately from formula 5.3 and the existence of the limit
Q(S) = lim;_,», Q(t; S). The second formula follows from equation 5.5 if one recognizes that
with ¢ growing to infinity, the termG¢((¢t — u)—) tends to zero for the timesduring which

tcge phase process is not in equilibrium yet.
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5.1. Homogeneous Arrival Rates without User Movements

Example 5.2 As in example 5.1, assume that the service times are deterministicafyr-
ther assume that the phase process is asymptotic with asymptotic distributidhen the
asymptotic distribution of) under initial distributiorv is given by

Q(9) = lim, [ dvQ(t:S) = (&f?o / dVPq’(o,w) A = A

forall S € o(R).

Remark 5.3 In order to compute the asymptotic distribution@f = (N, .J), it might be
advantageous to use renewal theoretic methods as follows. Assundeish@iuntable, which

is sufficient for most practical applications. LgE, : n € IN,) denote the stopping times

Ty := inf{t € IR : N, = 0} andT,,,, := inf{t > T,,|N; = 0,3 s € [T,,, ] : N, # 0} for all

n € INy. Further defing X,, : n € IN,) by X,, := Jg, forall n € IN,. Then the discrete—
time procesg X, T') is a Markov—renewal process afdis a semi-regenerative process (see
Cinlar [26], pp.313,343). Hence one can use theorem 6.12 in Cinlar [26], p.347, to compute
the asymptotic distribution aj.

Assume without restriction of generality thas := 0. If Q has an asymptotic distribution,
then the procesX = (X,, : n € IN,) has an invariant probability measure Define the
mean valuesn(j) := E(T1|X, = j) for all j € ® and letm denote the vector with entries
m(j). Further, denote

Ki(j,A) =P(Q, € A, Ty, > t| Xy =7)

forallt € IR}, j € ® andA € S. The kernelsk, as well as the distribution and the vector

m are determined as follows. Defirfét(,'z)(n) as the probability kernel ot that7; > « and
thatk € IN, batch arrivals inS € o(R) are observed until time < ¢ € IR], of whichn
single arrivals remain in the system until tirhneJsing the Kronecker functiofy we obtain

K(O)(n) =6, 6Do(S)u

t,u

and iteratively

KD () = / S K m—m) Y D(s)
0 m=0 1>m,[£0

(Gt =) TGt — )™ = 8000 G (u — v)!) P gy

forallu <t € IR{,n € INgandk € IN,. LetA = {n} x Bwithn € IN, andB € o(®).
Then we have

Ki(j, A) =Y K (n)(j, B)
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5. Spatial Queues with Infinitely Many Servers

for all j € ®. Define the kerneP (7, > t) on® by

oo

P(Ty > t)(i,B) := > K(i,{n} x B)

n=0

foralli € ® andB € o(®). Then the distributiom is given as the solution of
V:V/oodP(Tl =t)
0
Further, the mean vectat is given by its entries
mii) = /OO P(T, > t)(i, @) dt
0

forall; € ®.

Using the above values, the asymptotic distributio)a$ given by

o) = fim QuA) = S () [ Kl ) e

jED

forall A € S, provided that the right—hand expression does exist.

In the rest of this section, a stability condition is derived for the case of the phase &pace
being finite.

Theorem 5.7 Let @ = (N, J) denote an homogeneous SMARKfueue with finite phase
space®. Assume that the phase procekss irreducible and has stationary distribution
Denote the number of phases#yand them—dimensional vector with all entries being 1 by
1,.. Then( is stable if and only if the stability condition

WinDn(R)lm -E(G) < >0 (5.8)

holds.

Proof: First we show necessity. Assume that the queue is stable. Then the asymptotic
expectation of the marginal proceSg R) is given by

E(N(R),J € ®) = E(G) -ﬂinDn(R)lm < 00

according to the above theorem 5.6. This yields the necessity of condition 5.8.
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5.1. Homogeneous Arrival Rates without User Movements

Sufficiency will be shown by comparison to thé/G /oo queue. Sincé) is stable if and only
if Q(R) is stable, it suffices to refer t@(R) only. Denote the work load process@fR) by
W = (W, : t € IR{) and define

Ymax := —min Dy (R)(i,4) = max |Do(R)(i,1)]

1ed® 1e®

as the maximal exit rate over all phases. Defipas the followingM /G /oo queue. The
arrival process of) shall be a Poisson process with ratg,.. Letin., € ® denote a phase
with the highest expectation of the arrival batch size, i.e.

1
fyz max

> D) i) = 2= D, (R, 9)

n=1

forall j € ®. Since there are no absorbing states, the exityate is a positive number.
Define the service time distribution ¢f by

- 1 &
G = - > " Du(R)(imax, @)G™"

n=1

denoting the service time distribution @fby G' and then—fold convolution ofG by G*™. The

M /G /oo queue constructed in this way has an arrival rate which is an upper bound of the
phase specific arrival rates 6f R). Furthermore, the batch arrivals @ R) are interpreted

as single arrivals id) with only one server working off the accrued service requirement of all
the users in the batch arrival. Thus the work la&id= (W, : t € IR]) of () is certainly at

least as high as the work lodt of ). Since by Wald’s equation

E(G) = ! > " Du(R)(imax, ) - nE(G) = 1

f)/ilnax n=1 fyin')a,x

. E(G) . ZTLD”(R) (imaxa (I))

we haveE(é) < oo by assumption of the stability condition. Ag... < oo is finite, t00,Q is
stable. This implies that’ is positive recurrent. i.e. the expected duration between the time
instants ofi¥” reaching the state 0 is finite. Since

W, >W, >0

certainly for allt € IR, the work load procesB’ of @ is positive recurrent, too. Hencg

has an asymptotic distribution. The finiteness of the asymptotic expectation of the marginal
processV (R) is immediate from theorem 5.6 and the stability condition.

©

Remark 5.4 The plausibility of condition 5.8 results from the obvious analogy to the stability
condition for the resultind3AM/ AP/G /oo queue on the sek. Of course, the&M AP/G /oo
queue on( R, o(R)) is stable if and only if the resultin@ M AP/G /oo queue on the seR is
stable.
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5.2. General Arrival Rates without User Movements

In mobile communication networks, the typical characteristics of the arrival stream change
in time periodically (e.g. over the course of the day). Stochastic models reflect this best
by inhomogeneous arrival processes. The concept of SMAPSs introduced in chapter 3 does
provide for arrival rates varying in time and hence can be used to model this phenomenon.
An examination analogous to the homogeneous case yields a solution for the corresponding
spatial infinite server queue.

In this section, the same method of analysis as in the preceding section 5.1 shall be applied to
spatial infinite server queues with general arrival rates. User movements will be examined in
the next section. After the derivation of the transient distribution, an approximation method
for the distribution at arbitrary time instants will be given.

5.2.1. Transient Distribution

The infinite server queue fed by an inhomogeneous SMAP can be analyzed analogously to the
homogeneous case in section 5.1. Let

Q= (Q(;S1;...,S,):t€IRf,neIN,Sy;...,S, € o(R))

denote a spatial queue with general SMAP inf\t J), general service time distributiak
and infinitely many servers. The arrival procé3§ .J) shall be defined by its time-dependent
generating sequencéA(t; Sy;...,S,) :t € IR§,n € IN,Sy;...,S, € o(R)).

Again, the reason for restriction to a single subset and spatially constant service time distri-
butions is ease of notation. The generalizations towards spatially variable service times and
joint distributions in finitely many subsets are straightforward in the same way as in section
5.1. Bet € IR" the time instant and € o(R) the subset the queue is observed at. While
the integral representation of the queue process in remark 5.1 remains valid, the arrival rates
attimess € [0, t] are not constant anymore, but depend on the time instant

The total rate of arrivals during a time intervalu = limy, .o Ju, u + h] IS
- m c 7 m—i
Ri(u,t; ) = ;Dm(u, S) ( Z, )G ((t—w)=)'G((t —u)—)

for everyu € [0,¢[ andi € IN,y. As in the case of homogeneous arrival rates, the sequence
R(u,t;S) = (Ri(u,t;S) : i € INy) can be interpreted as the time-dependent sequence of
transition rates of an inhomogeneous SMAR.sy = (Hs) : v < t) which at timeu =t
coincides with the infinite server queue that is to be examined.

The same arguments as in section 5.1.1 lead to the result
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5.2. General Arrival Rates without User Movements

Theorem 5.8 The transient distribution of the marginal queue process)ah the subset
S € o(R) attimet € IRy is determined by

00 t U u
Q(t; S) :Z/ / / R(uy,t;S) % ... % R(ug, t;S) duy ... duy (5.9)
i—0Jo Jo 0

k intggrals

defining the case of zero integrals as the sequdrte= (/,0,0,...) with I denoting the
identity kernel and) the zero kernel o, and further defining the convolution sequence
C =AxBhy

Cn = zn: Aan,Z
1=0

for any two sequences, B of kernels onb.

Remark 5.5 Unfortunately, a unification of the above formula analogous to formula 5.3 can-
not be achieved in general. This is due to the fact that

m

R(t —u,t; S) = Z Dm(t —u; S) ( >GC(U—)iG(u—)m_i

]

still depends o if the arrival rates are inhomogeneous.

On the other hand, it is possible to extend the theory towards time—dependent service time
distribution functions. This would lead to rates of the form

oo

Ri(1,1:5) = 3 Do) () Gillt = 1) Gt — )

m=i

for everyu € [0, t[ andi € IN,, with G, denoting the service time distribution function which
holds for users arriving during the infinitesimal time interval

5.2.2. An Approximation

This section shows an approximation method which can be used in order to determine the
distribution of the queue process at an arbitrary time IR; without needing to integrate

over the whole rang@), t[. The approximation regards only arrivals up to a certain time
distance into the past. All arrivals which have occured before are neglected. Thus, this method
approximates the service time distribution by a distribution with cut tail.

Conditions for this approximation are the standard assumptions of finite mean service time
and finite arrival rates. First, it is shown that the kernels of the generating sequekge, pf
are uniformly bounded. Then, this result is used to estimate the approximation error.
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5. Spatial Queues with Infinitely Many Servers

Assume in this chapter that the mean service time
E(G) = / G(u) du < o0 (5.10)
0
is finite. Further assume that the arrival rate in the whole arrival space

imDm(t; R)(y,®) < M < 00

is finite for allt € IR™ andy € ®.
The next result gives the decisive bound for the approximation following.

Theorem 5.9 For everyz > 0, there is a time distanc&(s) € IR" such that the inequality

‘/ R, (u,t;S) du
0

holds for alln € INy ands <t — T'(¢), with || K|| := sup, 4 K (y, ®) denoting the row norm
for kernels ond.

<M -e

Proof: Choose any > 0. By assumption 5.10, there islgs) € IR" such that

/ G(u—)du<e

Fixanyy € ® ands < t—T(e). Since all elements ak,,(u, t; S) are positive for alk € [0, ]
andn € IN, we have

/ZR (u,t;S) du /Zan(u,t;S)du

Analogously to the proof of theorem 5.3, one can show that

/ZnR (u,t; ) du—/ ZnD (u; S) G°((t — u)—) du

Because 7 nD,(u;S) < Y07 nD,(u; R) forall S € o(R) andu € IR, the estimation

<

‘/Ost(U,t; S) du|| < /OsiRn(u,t;S) du
s /inD w: R) G((t — u)—) du
= Go((t — u)—) du

<M/Gct—u ) du
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5.2. General Arrival Rates without User Movements

holds for allk € IN. Substituting := ¢ — u leads to

‘ ZRutSdu <M/GC

< M/ G(v=)dv< M -¢

<

/ Ri(u,t;S) du

0

Since

/ > Rl t58) 0 Wi = — [ R ), )

0

for all s € IRy, the proof is complete.
©

Using this bound, we can prove the following approximation:

Theorem 5.10 At any timet € IR™ and for everyy € ®, the distribution of the queue process
can be approximated by

Q(t; ) (y, ®) = Q0,1 9)(y, ) ~ Q(t — T'(¢), 1 5)(y, ®)

The approximation error is at most

|Qn(t;5)(y, ®) — Qu(t =T(2), 1 9)(y, ®)| < M - €
forall n € INyandy € ®.

Proof:. For everyk € IN, the difference between the respectivéold integrals appearing in
formula 5.9 is

/ / R(ug, t;S) * ... x R(u,t;S) dug . .. duy

/ / R(ug,t;S) * ... x R(uy,t;S) dug . .. duy
(E)

t T
/ / / R(ug,t;S) * ... x R(uy,t;S) dug . .. duy
0 0
T(e)
:/ R(ug, t; S) duk*/ / R(ug 1,t;S) % ... % R(uy,t;5) dug_1 ...duy
0

Summing up over alk € IN, yields

Q(t;5) = Q(t = T'(e), £ 5) (v,

t—T(¢)
/ R(u,t;S) du *Z/ / R(ug, t;S) * ... x R(u,t;S) dug . .. duy
0

t—T(¢e)
/ R(u,t;S) du Q(t; S)
0
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5. Spatial Queues with Infinitely Many Servers

Hence, for anyy € ® andn € IN, we have
1Qn(t;9)(y, @) — Qu(t —T(e),1;5)(y, ®)|
/ [ R 9 ao)tu @, 1) 9

t—T(e
/ / (u; S)(y, dz) du

since for every: € @ the probabilityd 7 [Q.—;(; S) (2, ®)| does not exceed 1. Because

,...

t—T(e) t—T(e)
[ RS depa | RS @ <o
0

according to theorem 5.9, the proof is complete.
©

5.3. General Arrival Rates with User Movements

User movements shall be modeled following the idea of Cinlar [30], pp.112f. Divide the
spaceR into a finite partition(Sy, ... ,Sx) € (o(R))* with K € IN, JX,S; = R and
S;nS; = 0fori # j. Each set of this partition represents a spatial unit which is homo-
geneous in motion. Thus for times< ¢ € IR", subsetsS;, S € o(R) andn,k € IN,,

one can define a probabilit(.S;, s, n; S, ¢, k) that under the condition that users arrive in

S; at times, k£ of them will be located inS at timet. At the time a user has finished using
the network (i.e. its service time is over), it shall disappear and take on the poSitiork.

This impliesP(S;,s,n; RU{Y},t,n) = 1forall S; € o(R), s < t € IR" andn € IN,.
Further, spatially variable service times can be subsumed;ty = P(S;,0,1; R,¢,0) or

(’]j) GS()*Gi(t)™* = P(S;,0,m; R, t, k) for batch arrivals. This convention allows a model
of user movements which is analogous to the model for spatially variable service time distri-
butions in section 5.1.2.

The transient distribution of the queue process can be calculated as a convolution over all
i€ {1,..., K} ofthe distributions of users which arrived in the Sgtntil time ¢ and assume
a location inS at timet.

As in equation 5.1, the total rate bfusers arriving inS; during the infinitesimal time interval
du = limy,_,o]u, u + h] and being located i at timet is determined by

Ri(u, £ S:,S) = Dy (u; Si) P(Si, u+,m; S, t, k)
m=k

for everyu € [0,t[, k € INg andS; € o(R), denotingu+ := lim,, o, u + %

70



5.3. General Arrival Rates with User Movements

Defining R(u, t; S;, S) = (Ry(u,t;S;,S) : k € IN,) for everyu € [0,t], the above rates
determine the distribution@(¢; S;, S) of users arriving in5; duringdu and being located i
at timet. The same arguments leading to formula 5.2 yield the expression

Q(t; S;,S) = / / / R(uqy,t;8;,S) % ... R(ug,t;S;,S) duy . .. duy

k mtegrals

The distribution of the queue as a convolution of these single distributions is

Q(tS) =*2, Q(t: S:,5)

An approximation of this expression is possible by the same idea as in section 5.2.2. In order
to obtain a bound for the approximation error, we need the following

Theorem 5.11 Assume that the mean service time is finite, i.e. that equation 5.10 holds. Be
e > 0 and determind’(¢) as in theorem 5.10. Then the inequalitiy

< K- -Meg

K
[]@n(0.;5:5) - HQn ), t: S;, S)
i=1

holds for alln,, ... ,ng € IN,, with [[K|| := sup,.4 K (y,®) denoting the row norm for
kernels ond.

Proof: This is proven by induction. Fak' = 1 the statement is proven in the same way as
in theorem 5.10. Assume the statement is true for@ny 1. Choose any € ®. To shorten
the notation, defing; := Q,.(0,¢;S;,5)(y, ®) andp; := Q,,(t — T(¢),t; S;, S)(y, ®). As
probabilities, allp; andp; have values if0, 1]. Then

K K K-1 K-1 K-l
Hpi—Hﬁi Hpi(pK—ﬁK)+ (Hpi— H@) P
i=1 i=1 i=1 i=1 i=1

K-1

< [ pi-Me+(K—-1)-Me-jx

1=1

by induction hypothesis. quq ) pl < 1andpg < 1, the induction step is proven.

Since the combinatorial possibilities of creatinge IV, users out ofK different sources
grows withn, an error for the approximation @j,,(¢; S) can only be given dependent on the
numbern of users.

Theorem 5.12 The distribution of the queue process can be approximated by

Q(Oa l; S)(yv (I)) ~ Q(t - T(é‘), l; S)(yv (I))
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5. Spatial Queues with Infinitely Many Servers

For everyi € IN,, the approximation error is at most

K+n-1

Qu(0.58) (0.0 - @l =T 8w < (KT v

Proof: Using the same definitions fey, andp, as in the previous proof, the approximation
error is

S In- X e

ni+...4+ng=n k=1 ni+...+ng=n k=1

Z ﬁpk—lﬁﬁk

ni+..+tng=n k=1

by theorem 5.11. As can be proven by inductionfonthe number of combinations of sum-
ming upn; + ... +nx =nis (""71).

©

5.4. Application: Planning a Mobile Communication
Network

The results which have been obtained in this chapter can be applied to support the planning
procedure of a mobile communication network. Assume that anfaisdo be covered with

base stations such as to provide network service for all users in it. This shall be achieved with
a maximum outage probability ef which means that a user at any locatioriijpwho wants

to use the network, will find it busy with a probability of at maest

Then the analysis of spatial infinite server queues can help to derive a capacity function
C. : o(R) x IR" — IN, which yields for every subse® € o(R) and every timg € IR"

a numberC. (S, t) such that if the network has the capacity of servings, ¢) users inS at

time ¢, then the quality of service with respect to the given maximum outage probadility

is guaranteed. Hence, in order to build a network that can guarantee the maximum outage
probabilitye, it suffices to provide service capacity according to the funationin practical
applications, a finite partitioSy, ... , Sx) of R will be fine enough to answer all relevant
questions concerning network planning. This implies thd@t) may be chosen as finite, too,
which greatly simplifies computation of the functiéh.

In order to determin€’,, one can proceed as follows. Define &/ AP/G /oo queue with

arrival spacé R, o(R)) on an appropriate level regarding time—dependence of arrival rates and
user movements. An estimation procedure for the parameters of an SMAP can be found in the
next chapter of this thesis. Then either the stationary distribution (in the homogeneous case)
or the distributions at a given time of day (in the case of periodic arrival rates with period
length being a day) can be represented by a set of funciipns (R) x INy — [0, 1] which
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5.4. Application: Planning a Mobile Communication Network

yields for a given seb € o(R) the probabilityP,(S, n) of n users being served ifi at day
time t. For the homogeneous case, we have a fundionstead of a setP, : ¢t € [0, 24]) of
functions which depend on the day time.

These are the distributions for an infinite server queue, which means that the probabilities
were derived under the assumption that every user can be served. Hence the load for any real
network with some positive outage probability would be lower. It thus suffices to determine the
capacity functiorC. for the infinite server queue in order to find a sufficient capacity function

for any real network. Since the outage probabilitysually will be chosen very small, the
approximation by an infinite server queue seems reasonably sharp.

Now the capacity function for the infinite server queue can easily be determined as

C.(S,t) :== min {n € INy : io: P,(S, k) < 6}

k=n+1

forallt € IR" andS € o(R). This means that the valu& (S, t) of the capacity function at a
subsetS € o(R) at a timet is given by the lowest numberof users such that the probability

of more thamn users being served il would be smaller thaa for the respective infinite
server queue. Since the load of any real network is lower than the load for the infinite server
queue, the outage probability of a network satisfying this capacity function can be guaranteed
to stay smaller than the given thresheld
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6. Parameter Estimation

In order to apply the concept of SMAPs and their respective queues, it is necessary to estimate
the arrival parameters from real data streams. In general, this problem has not been solved yet.
The problem of estimating parameters is more complex for SMAPs than for Batch Marko-
vian Arrival Processes (BMAPs, see Lucantoni [60]) , since homogeneous SMAPSs generalize
BMAPs towards a larger phase space and - most importantly - spatial batch arrivals. However,
for certain subclasses of SMAPs estimation procedures can be derived.

Even for BMAPSs a unified procedure for parameter estimation has not been developed yet. A
survey of estimation methods is given in Asmussen [7]. His emphasis is on maximum like-
lihood estimation and its implementation via the EM algorithm. For the Markov Modulated
Poisson Process (MMPP), an EM algorithm has been developed in Ryden [85], whereas As-
mussen [6] contains a fitting procedure for phase-type distributions via the EM algorithm. An
interesting different approach is given by Botta et al. [20] and Chauveau et al. [24]. They
introduce the class of generalized hyperexponential distributions and derive statistical fitting
methods by means of inversion of transforms.

In this chapter, an estimation procedure is introduced for the subclass of homogeneous SMAPs
which have only finitely many phases and a finitealgebras ( R) on the arrival spac&. For

this class of SMAPs, the counting function of an arrival is reduced to a vétter IN

with K = |o(R)| denoting the number of elementsdiiR). Since BMAPs belong to this
subclass of SMAPs as a special case, the proposed estimation procedure yields a new result
for BMAPs, too. This will be explicated in section 6.4.

Let m denote the number of phases of the SMAP which is to be estimated. The estimation
procedure introduced in this chapter requires the measurement of the arrival time instants and
the counting functions of the arrivals. LEE, : n € {0, ..., N}) denote the empirical arrival
instants andC,, : n € {0,..., N}) the respective empirical counting functions of the spatial
arrivals at timeg7,, : n € {0,..., N}). Define without loss of generaliffj, := 0.

The estimation works in three steps, each of which uses classical statistical methods. First, the
empirical interarrival times are used to estimate the numbefphases and the matriX, (R).

Those can be interpreted as a sample of a phase—type distribution andihgecan be
estimated by an EM-algorithm (see Dempster et al. [34] or for this special case Asmussen et
al. [6]). If the number of phases is unknown, then the above maximum likelihood estimation
can be repeated with increasing phase spaces until the likelihood gain does not exceed a certain
threshhold (cf. Jewell [52]). In a second step, for every empirical arrival instant the probability
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6. Parameter Estimation

distribution of being in a certain phase at this instant is estimated using discriminant analysis
(see Titterington et al. [89]). In the last step, the derived estimators of the first two steps
are used in order to calculate the empirical estimator for the generator matrix. This is done
according to standard estimators for Markov chains (see Anderson, Goodman [2]).

6.1. Arrival Rates

Let (z, := T, — Tn—1 : n € {1,...,N}) denote the empirical interarrival times. Assume
first that the number of phases is known and denotedibyAccording to theorem 3.8, the
interarrival times of an SMAP are distributed phase—type with genefatoR). Hence the
(2, :m € {1,...,N}) are a sample of a phase—type distribution with density

2(t) = el By (R)

fort € IR,. Here,m = (m,...,mn) iS the steady—state distribution of the phase process
at arrival instants ang(R) := —D,(R)1,, is the so—called exit vector of the phase—type
distribution with representatiofrr, Dy(R)).

If m is known, there is a maximum likelihood estimator foand D, (R). The solution of the
estimating equations can be approximated iteratively by an EM algorithm (cf. Dempster et al.
[34] or McLachlan, Krishnan [64]), which was derived for this special case by Asmussen et
al. [6] and proceeds as follows.

For ease of notation, we write in this and the following sectigninstead of Dy(R) and
n instead ofn(R). Denote theith unit column vector by; and its transposition (i.e. the
respective row vector) by?.

Starting from an intuitive first estimater(", D) of the representation of the phase—type
distribution, the recursions

N
(k+1) i ﬂ—i(k)b'gk)(zn)
i N — 7?0k (z,)
n=
N k) (k) N k
pE+D _ Z 03iCij (%) Z et (20)
W g Wp (z,) [ e w2,

for i # j and
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6.2. Phases at Arrival Instants

along with the relation

D = =Y Z D

0327
J=L1j#i

and the definitions
a(k)(zn) — ,/T(lc)ep(()k)zn
b(k:) (Zn) — eD(()k')zn,r](k)

(k) #n (k) (k)

. (k) ,Dg ’u, T Dy’ (zn—u)

¢ij (#n) .—/ e Mee; e n du
0

fori,j € {1,...,m}undk € IN lead to monotonically increasing likelihoods.

In Asmussen et al. [6], it is proposed to compute the valueg'dfz,), b*)(z,) andc!?(z,)
numerically as the solution to a linear system of homogeneous differential equations. Ac-
cording to their paper, this is possible achieving high precision by standard methods. The
implementation by Gilbert [43] shows that, too.

The convergence of the EM algorithm is examined in Dempster et al. [34], chapter 3, as well
as in McLachlan, Krishnan [64]. Improvements of the convergence rates are given in Meng,
Dyk [66] and Jamshidian, Jennrich [51]. Titterington [88] gives an alternative recursion which
is faster but not as stable.

A satisfying standard procedure for estimating the numbef phases has not been found
yet. A feasible method without a prior estimationrafis proposed in Jewell [52]. Denote

the maximum likelihood estimators of the representation of the phase—type distribution (as
approximated by the EM algorithm described above) for an assumed numlpéiphases by
(7(k), Do(k)). Further denote the resulting estimate of the exit vectay(gy := — Dy (k)1,5,
Estimating the parameters by the above method for increasjrand stopping as soon as the
likelihood gain

N
Hwk+1) Dolk+1)zn sk 1) H (k)
n=1 n=1

is smaller than a threshold value leads to a reasonable model fitting. Since the adaptation of
the model increases with the assumed number of phases, the likelihood gain is always positive.
The threshold value reflects the limit of accuracy beyond which the gain in model adaptation
is not worth the additional computation time.

6.2. Phases at Arrival Instants

Using the estimatdft, D,) from the last section, the distribution of the non—observable phases
at times(7,, : n € IN) can be estimated using discriminant analysis in a standard way (cf.
Titterington et al. [89], pp.168f).

77
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For a given empirical arrival instarit,, let 7, := T,, — T,, ; and R,,_; denote the random
variables of the last interarrival time and of the phase immediately after the last arrival in-
stant7,,_,, respectively. LetP(Z,, R,_1) denote their joint distribution ané#(Z,|R,_1),
P(R,-1|Z,) the conditional distributions.

Since(Z, : n € {1,..., N}) is given empirically by the time seri¢g,, : n € {0,...,N}),
it suffices to estimate the distributid(R,,_,|Z,, = z,) for everyn € {1,..., N — 1}. This
distribution is discrete, because by assumption there are only finitely many phases.

Bayes'’ formulayields foy € {1,...,m} andn € {1,...,N}

>t P(Zy = za| Ry = i) - P(Ryq = i)

Since the interarrival timeg,, are distributed phase—type, the expressiB(g,|R, 1) exist
as conditional densities with respect to the Lebesgue measure on

The expressions on the right hand can be estimated via the estimated paramédigisand
the resulting vectof). Hence, for every arrival instaft,_; the estimator for the conditional
distribution of the phase &t,_; given the interarrival time&,, = T,, — T,,_; is given by

eZ-TeDf’Z" eZ-TeDf’Z" 1

A . M- T T - n
PRy =ilZy = ) = a2 = T
23:16]'6 /L remT

foreveryi € {1,... ,m}andn € {1,...,N}.

Furthermore, it will be necessary to estimate the phase immediately before an arrival instant.
This can be done by the same method. Denote the respective conditional distribution by
P(R,—|Z,). Then we get the estimation

ﬁef’oznei . 771 ﬁef’oznei : ﬁz

P(Ry_ = i|Zy = 2,) = -

Yo FePorme; -y welomng)

foreveryi € {1,... ,m}andn € {1,...,N}.

6.3. Generator Matrix

Since the phase spade= {1,... ,m} as well as the—algebrar (R) is finite, the infinitesimal
transition rates are determined by the values for

for everyi,j € {1,...,m}andC € IN[.

Denote the zero vector ifiVy by 0. In order to complete the estimation of the generator
matrix, it suffices to estimate the parametetg, C') for C' # 0. Without any further assump-
tions regarding these, use of the empirical estimator is standard. This is given in Anderson,
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Goodman [2]. Since in the present statistical model the phase process is hidden, the phase at
each arrival instant cannot be observed but must be estimated. For this, the results of the last
section are used.

For everyk € {1,...,N — 1}, let R, and R, denote the random variable of the (non-
observable) phase at the empirical arrival instgnand immediately before it, respectively.

In the last section, estimators for the conditional distributions ofthand R,._ were given.

Let 9 denote the Kronecker function for testing equality of counting functions and remember
thatC} denotes the empirical counting function of thté spatial arrival. Define

=

Nz(j, C) . p(Rk_ = Z|Zk = Zk) . 6Ck,C . P(Rk = j|Zk+1 = Zk:—i—l)
1

=
Il

and

=

Ni=> P(Re-=ilZy=2)= Y ZN j,C

1 Ccenlk j=1

=
Il

for C € INf andi,j € {1,...,m}. In an SMAP, the random variablg®,_ and R;, are
dependent in any non—trivial case. Since in the present model the phases are non—observable,
this dependency can only be reflected by conditioning on the consecutive empirical interarrival
timesz, andz; 1.

Because of

P(Rk:f :ZJCkZCJRk:]) . P(ka:%ck%o)
P(Ry- =i,Cy #0) P(Ry— = 1)

forallk € {1,..., N — 1}, the empirical estimator fa¥;(j, C') is given by
N(],C) . ﬁz

~

N; —Dy (i, 1)

pi(j,C) =

for everyC ¢ INK\ {0} andi,j € {1,...,m}.

For applications in the modelling of mobile communication networks, it usually suffices to set
o(R) == o({Sy,...,Sk}) with S, ..., S, being a finite partition of?, i.e. R = S¢S,
andS; N S; = 0 fori # j. As the discreter-algebra over a finite set of subset$R) will

then be finite, too. In such an application field, the subSgtiescribe entities with roughly
homogeneous call behaviour like big buildings, housing blocks, roads, landscape areas etc.

6.4. Estimation for BMAPSs

For the special case that the arrival spateonsists of only one element, i.e. for the non-
spatial version of the SMAPs considered in this chapter, we have BMAPs since the phase
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space is finite. Hence, the estimation procedure described above yields a method of parameter
estimation for BMAPs as well.

While the first two steps of the procedure are exactly the same for the special case of BMAPs,
the notation can be simplified in the third step. Instead of counting functions over the arrival
space, the empirical data for BMAPs would only yield the size of batches which arrive in
the whole (queueing) system. Thus, instead of counting functiops & € {0,... ,N}) it
suffices to measure the sizgg : £ € {0,...,N}), b; € IN, of batch arrivals into the system.

The generator matrix assumes the easier form

Dy Dy Dy Ds
Dy Dy D,

Q = Dy D,
Dy

with (m x m)-matrices

Defining
N—1
ni(n, j) := P(Ry— =i|Zk = 2z) - Oppn - P(Rk = j|Zks1 = Zk41)
k=1
and
N—1 0 m

ni=Y PRi =ilZy=2)=>_ Y nin,j)

k=1 n=1 j=1

forn € IN andi,j € {1,...,m}, the empirical estimator for the infinitesimal transition rates
(pi(n,j7) :n € IN,i,j € {1,...,m}) can be written as

pi(n,j) = p '—f)o(z‘,z‘)

A test of the described estimation procedure can be obtained as follows. First, a time series
is generated by a so—called input BMAP with given and known parameters. This time series
serves as the data for the estimation procedure. Then the BMAP that is estimated via the
procedure is compared to the input BMAP. The following results have been computed on a
Pentium Il computer with 500 MHz and 128 MB RAM. The length of the time series was
always/N = 10, 000 arrivals.

In order to judge the quality of the estimations, two facts need to be considered. The Phase—
type distribution as well as BMAPs are over—parametrized (cf. Botta et al. [20]), which implies
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that two BMAPs with different parameters can have the same distribution. Hence for a given
input BMAP it is not always possible to distinguish a single best estimation. Furthermore,
the proposed estimation procedure is based on maximum likelihood estimation. Thus the
estimated BMAP should be compared to the input BMAP by the rAtf their respective
likelihoods of the generated time series. This ratio with respect to the nuWloérarrivals

in the time series (i.eR'/"Y) is given in each table as well as the computation time for the
estimation.

The first two tables (see page 82) give typical examples of input BMAPs and the respective
estimate. It can be seen that although the parameters differ, the likelihood of the generated
time series in table 1 is even higher for the estimation than for the input BMAP.

The next two tables (see page 83) show the main observable weakness of the estimation pro-
cedure. Namely, if many parameters of the input BMAP are zero, then these are not estimated
as zero and the likelihood of the time series for the estimated BMAP remains short of the
likelihood for the input BMAP.

Finally, the last two tables (page 84) show that the estimated number of phases does not always
coincide with the number of phases of the input BMAP.

As can be seen, the run times are very short. This does not change for BMAPs of more than
two phases. Usually, a likelihood ratio per arrival of more than 0.90 can be achieved. For a
detailed description of the implementation and many more numerical examples, see Gilbert
[43].

6.5. Remarks

Remark 1: A straightforward method of deriving a maximum likelihood estimator for SMAPs
(and thus for BMAPS, too) is an immediate application of the EM algorithm on the transition
rates(D,,(S)(i,7) : S € o(R),n € INy,i,j € {1,...,m}) of the arrival process. This can be
done using the maximum likelihood estimators for Markov processes derived in Albert [1].

However, the critical point of the estimation procedure are the run time and the storage require-
ments of the EM algorithm (see Meng, Dyk [66]). The straightforward method of estimation

via an EM algorithm would apply this algorithm to a much larger set of parameters, which
would lead to larger run time as well as storage requirements. The number of parameters
which are to be determined iteratively via the EM algorithm is greatly reduced by dividing the
estimation procedure into three steps as described in the sections above. It seems reasonable
to expect considerable improvements in run time performance, if the statistical model that is

to be estimated by the EM algorithm is as simple as possible.

Remark 2: The model which is examined in this paper is a special case of a hidden Markov
model (see e.g. Leroux [58]). Here, the hidden Markov chain is the phase process at arrival
instants and the observed variables are the consecutive interarrival times and the sizes of the
batch arrivals. These are conditionally independent given the phase process. The conditional
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Table 1

Input BMAP | Estimated BMAP
Dy=|-1.000 0.100 -1.046 0.171
3.300 -10.000 3.376 -8.958
D,=] 0400 0.050 0.265 0.174
1.650 1.700 1.499 1.067
D,=] 0.200 0.025 0.136 0.088
0.825 0.850 0.778 0.543
D;=1] 0.120 0.015 0.075 0.049
0.495 0.510 0.461 0.330
D,=] 0.072 0.009 0.047 0.031
0.297 0.306 0.289 0.203
0.008 0.001 0.006 0.004
0.033 0.034 0.031 0.021

run time: 34 seconds
likelihood ratio per arrival: 1.005

Ds

Table 2

Input BMAP | Estimated BMAP
Dy=] -5.000 0.100 -5.048 0.770
3.300 -65.000 11.691 -62.871
D,=] 1.100 0.400 0.623 0.701
11.200 7.40Q 6.721 8.453
D, =] 0.200 2.000 0.387 1.333
6.800 2.100 4.237 8.094
D;=] 0.100 0.000 0.140 0.133
12.100 4.30Q 4.907 5.072
D,=] 0.600 0.200 0.315 0.346
7.800 3.500 4.211 4.590
Ds=1] 0.050 0.250 0.073 0.228
1.300 5.200 1.229 3.665

run time: 19 seconds
likelihood ratio per arrival: 0.941
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Estimated BMAP

-1.053 0.168
3.554 -9.615

Table 3
Input BMAP
Dy, = | -1.000 0.000
0.000 -10.000
D, =1 0.900 0.100
3.300 6.700

0.529 0.356
3.283 2.777

run time: 36 seconds
likelihood ratio per arrival

:0.973

Estimated BMAP

-1.032 0.154
1.722 -9.903

Table 4
Input BMAP
Dy = | -1.000 0.000
0.000 -10.000Q
D, = 0.000 1.000
10.000 0.000

0.216 0.662
3.755 4.426

run time: 10 seco

nds

likelihood ratio per arrival: 0.746

distributions of the interarrival times given the phase process belong to the family of phase—

type distributions.

6.5. Remarks
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Table 5

Input BMAP Estimated BMAP
Dy=1]-1.000 0.100 0.010 0.090-868.7 308.8
1.000 -10.00 3.000 4.0000.170 -1.130

25.00 25.00 -100.0 25.00

499.0 1.000 1.000 -1000
D,=] 0300 0.050 0.010 0.050 101.9 173.7
0.250 0.250 0.250 0.250 0.150 0.330

5.500 5.500 0.500 1.000

1245 0.250 0.250 1245
D, =| 0.150 0.030 0.000 0.02051.34 85.58
0.130 0.130 0.130 0.13p 0.080 0.170

2.750 2.750 0.250 0.500

62.25 0.130 0.130 62.25
D;=1] 0.090 0.020 0.000 0.010 34.44 54.29
0.080 0.080 0.080 0.08p 0.040 0.010

1.650 1.650 0.150 0.300

37.35 0.080 0.080 37.3b6
D,=| 0.050 0.010 0.000 0.010 18.99 33.28
0.050 0.050 0.050 0.05p 0.020 0.060

0.990 0.990 0.090 0.180

22.41 0.050 0.050 22.41
Ds =] 0.010 0.000 0.000 0.000 2.420 3.890
0.010 0.010 0.010 0.01p 0.000 0.010

0.110 0.110 0.010 0.020

2.490 0.010 0.010 2.490

run time: 29 seconds
likelihood ratio per arrival: 1.034

Table 6
Input BMAP Estimated BMAP
Dy =|-105.0 5.000 -107.3 4.075 16.4¢
2.000 -52.00 3.160 -89.32 11.2%
4.310 3.051 -51.76
D, =] 100.0 0.000 47.73 20.99 18.0%
0.000 50.00 41.12 18.10 15.66
24.24 10.71 9.44%

OO0 OO

run time: 449 seconds
likelihood ratio per arrival: 0.988
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A. Markov Jump Processes

In queueing theory, Markov jump processes play a very important role. All Markovian queues
can be modeled by Markov jump processes. Furthermore, since Doob’s observation (cf. Doob
[36], p.401-403) that the inter-arrival times of calls by many independent subscribers to a
telephone network are distributed exponentially, Markov jump process have become the most
important type of arrival processes in queueing models.

As a main foundation for the rest of the present thesis and for convenience of reference, this
chapter collects some classical results for (inhomogeneous) Markov jump processes with a
general state space. Following mainly Gikhman, Skorokhod [44], the first section provides
a sound definition, the most important sample path properties and a canonical way of con-
structing Markov jump processes. The second section treats the special case for which the
generators satisfy a property called quasi-commutability. The chapter concludes with a short
section exploring the case of periodic transition rates.

Markov Jump Processes will be used in this thesis in order to define Markov-additive jump
processes in chapter 2 and, based on these, Spatial Markovian Arrival Processes in chapter 3.
Further, an analysis of (periodic) Markovian queues will be performed using the results from
this chapter.

A.1. Definition and Properties

In this section, Markov jump processes will be defined as Markov processes with transition
probabilities that satisfy certain regularity conditions. These allow the definition of unique
transition rates and lead to first elementary results. The most important results are the Kol-
mogorov differential equations, which allow the derivation of the transition probabilities.
Since these determine the finite-dimensional marginal distribution of the process and hence
the distribution of the process itself, the section can be concluded with the assertion that the
definition at the beginning leads to a unique distribution of the process.

Definition A.1 Be X = (X, : t € IR]) a Markov process with a separable locally compact
metric state spac8 and transition probabilitie® (s, t;z, A) := P(X(t) € A|X(s) = x).
Assume that the state spagédias ao-algebraS with {z} € S for everyx € S. The process

X shall be calledMarkov jump process if the following conditions hold:
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A. Markov Jump Processes

1. The limits

q(t;z, A) = 11%1 :

exist uniformly with respect t¢t, z, A).

2. The functiont — ¢(t; z, A) is uniformly continuous or$ x S.

For every timet € IR, statex € S and state setl € S, the limit ¢(¢;z, A) shall be
calledinfinitesimal transition rate from z to A at timet. The kernelQ(¢) on S defined by
Q(t)(x, A) := q(t; z, A) shall be calledjenerator of X at timet.

If X istime-homogeneous, i.e.gft;z, A) = ¢(x, A) is constantirt € IR, then the process
is calledhomogeneous Markov jump process

Remark A.1 Define a norm on the space of all kernelshy

K] i= sup _|K(x,4)

reES,AE

for any kerneliX. Denote the transition probability kernel from timéo timet > s by P(s, ).
Then the conditions of the above definition can be written as follows:

1. The limits

. P(t,t+h)—1Id

exist uniformly with respect te.

2. The functiont — Q(¢) is continuous.

Remark A.2 The first condition leads to the forward Kolmogorov differential equations (see
theorem A.4). The second condition guarantees that these can be solved via the iteration
method by Picard and Lindelof (see Kamke [53], S.38). Then the transition probability kernels
can be expressed in terms of the generators as will be shown in this section.

Remark A.3 Although the infinitesimal rates are defined via transition probabilities, in prac-
tice itis not necessary to know the latter in order to determine the former. In order to construct
a Markov jump process, it suffices to define values for the infinitesimal rates which satisfy
certain conditions. A way of constructing a Markov jump process is described at the end of
this section.

The infinitesimal transition rate(¢; x, A) can be regarded as the tendency of the process at
timet € IRy tojump from a state € S to some statg € A € S. The greater the infinitesimal
transition rate, the higher the probability that the process performs this jump in an interval of
time. For transition rates of ever greater size, this can lead to so-called explosions which
means an accumulation point of jump times. The above definition excludes explosions and
highly irregular behaviour, as is seenin
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A.1. Definition and Properties

Theorem A.1 The above definition implies the boundedness of the infinitesimal transition
rates, i.e. there is ail/ < oo with

lq(t;z, A)| < M

forallt € IR;,z € SandA € S.

Proof: The uniform convergence implies that there 52 0 such that

<1

‘P(t,t—kh;x,A)—lA(x) gtz A)

h

forallt € IRj,z € S, A € Sandh < §. Fix such am < §. Since
|P(t,t +h;z,A) — 1a(2)| < 1

the estimation

P(t7t+ h;l‘,A) — 1A(x)
h

gl 3, A)] < 1+\

holds.
©

The definition of a Markov jump processes immediately yields some first properties of the in-
finitesimal rates and gives reason for some further definitions. In the following, the difference
of two finite measures on the same measurable space shall be celiacha

Theorem A.2 For everyt € IR} andx € S, the infinitesimal ratey(¢; z, A) as a function in
A'is a charge orS. Further the properties

q(t;z, ) =0
. P(t,t+h;z, A)
. — >
q(t;z, A) = 11%1 . >0

for z ¢ A, and finally

q(t;z, {z}) = —q(t;z, S\ {z}) <0
hold.

Proof: see Gikhman, Skorokhod [44], p.312

Definition A.2 For everyt € IR] andz € S, define the values

v(t,z) == —q(t; z, {x})
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A. Markov Jump Processes

and
Y(t, A) = q(t; 2, A\ {x})
as well as
{0
forall A € S.

Theorem A.3 For fixed(t, z) € IR§ x S, the above defined?, z, A) as a function in4 is a
probability measure o with support sefS' \ {x}. For y(t, z) > 0, the representation

Pttt hya, A\ {2))
plt, v, A) = li%w P(t,t+h;z,S\ {z})

holds forallA € S.

Proof: For~(t,z) = 0, p(t,x, A) = 1(x) is a probability measure. Let(t,z) > 0. By
theorem A.2 4(t;x, A) is a charge or§ andq(t;x, A) > 0 for ¢ A. This means that
v(t,z, A) is a finite measure, sinegt; z, A) is bounded according to theorem A.1. Hence,

p(t,z, A) = 222 is a probability measure, becaug@; =, {z}) = —q(t;z,5 \ {x}) by
theorem A.2. he representation as a limit results from

vt A) gtz A\{z})  q(tz, A\ {z})
v(t, z) —q(t;z,{z})  qlt;z, S\ {z}) .
_ (lim P(t,t+ h;x, A\ {x})) . (lim P(t,t + h;x, S\ {x}))

) h ) h

p(t,z, A)

lim P(t,t+ h;x, A\ {z})
0 P(t,t+ h;x,S\ {z})

©

Remark A.4 Define P(t) by P(t)(x, A) := p(t;x,A) forallt € IR;, v € SandA € S.

Sinceq(t; z, A) is uniformly continuous in(z, A) by definition andp(¢; z, .) is a probability
measure o by theorem A.3P(t) is a probability kernel ot for all ¢ € IR . P(t) shall be
calledjump kernel of X attimet.

The most important results of this chapter are the so-called Kolmogorov differential equa-
tions. They state that the transition probabilities are differentiable backward and forward in

the following sense:
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A.1. Definition and Properties

Theorem A.4 For everys € IR, x € S and A € S, the transition probabilityP (s, ¢; z, A)
is differentiable with respect tg and

ob(s,tz, A) /q(t;y,A)P(s,t;x,dy)
ot s

= —/Sv(t,y)P(s,t;x,dy)+/Sv(t,y)p(t,y,A)P(s,t;x,dy)

for all t > s (Kolmogorov’s forward equation).
Further, for everyt € IR;, z € S and A € S, the transition probabilityP (s, t; z, A) is
differentiable with respect te, and

op(s,t;z, A) = —/P(s,t;y,A)q(S;%dy)
Os S

= fsn) (Plostiz ) = [ Plsti Aot )
S
for s < t (Kolmogorov’s backward equation).

Proof: see Gikhman, Skorokhod [44], p.314 and 316 (corollaries)

These differential equations lead to expressions of the transition probabilities in terms of the
infinitesimal transition rates. This can be proven by solving the Kolmogorov differential equa-
tions via the method of successive approximations by Picard and Lindel6f. The solutions are
stated in the following theorems.

Theorem A.5 The transition probabilities of a Markov jump process are uniquely determined
by the infinitesimal rateg(¢; z, A). They are computed as

P(s,t;x, A) ZPnstxA
n=0

with
P,)(())(s, tix, A) :=e” fstV(T’@dTlA(x)

and recursively

P (s, b0, A) / / )6, 1y, Ao 9D (0 4 dy)d6
forall n € IN,.

Proof: see Gikhman, Skorokhod [44], p.318f (corollary and remark)
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A. Markov Jump Processes

If one develops this iteration formula, one obtains

(5,7, A) // //// Ry 1 d)

n zntegrals n mtegrals

(A.1)

— [un U Ty —1)du _rt .
fun—l Y(uszpn—1) fun v (uszn)du dU/n . dU1

..e Y(Up; 1, dzy,)e

as can be shown by induction. The transition probabilities can be computed iteratively by
starting with

Pols, t;m, A) 1= e~ Je1(2)dry ()
and iterating

t
Pus(sstia A) = [ [ Pubtiy, ) 0 ., gyt + e H00 L )
s S

foralln € INy ands < t € IR§. In the limit, this leads td’(s, t) = lim,_, Py (s,1).

The above form of the transition probabilities was derived via the Kolmogorov backward
equations and a substitutid?(s, t; 2, A) = exp(— f: v(r,2)dT) - gs(x). Another form of the
transition probabilities can be derived via the forward equations. They can be solved using the
following iteration.

Theorem A.6 Be X a Markov jump process with infinitesimal ratg3; =, A). The transition
probabilities of X being in some statg ¢ A after timet € IR* under the condition of having
been in state: at times < ¢ are given as

P(s,t;x,A) = Z P (s,t; 2, A)

with

and recursively

PO (st 1, A) // (s, u; x, dy)q(u; y, A)du
foralln € INgands <t € IR;.

Proof: By definition, the infinitesimal rateg(t; z, A) are continuous irt for everyz € S
andA € S. Induction byn yields thatP™ (s, t; z, A) is differentiable irt for everyn € IN,,.
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Now, direct validation shows

0 & A
— PW(st;x,A) = —Y PW(s t;x, A
at; st ‘%; e
o0 a t
— ot ), Js

_ Z/p(”1)(3,t;$,dy)Q(t;y7A)
n=1"5

= / q(t;y, 4) Y P (st 2, dy)
S

n=1
I.e. the Kolmogorov forward equation is satisfied. According to Gikhman, Skorokhod [44],
%317 (theorem 3), the solution to the Kolmogorov forward equation is unique.

Again by induction, one can prove that

P®(s, t: 3, A) :/t// (Qus) ... Q) (2, A) dus . .. du, (A2)

n integrals

with Q(u) denoting the generator at timec [s, ¢t]. An iteration for computing the transition
probabilities is given by starting witRy (s, ¢; z, A) := 14(x) and iterating by

t
Poii(s,t;x, A) ::/ /Pn(s,u;x,dy)q(u; y, A)du+ 14(x)
s S

foralln € INg ands < t € IR;. In the limit, this leads td’(s, ) = lim,,_, Py(s,t). This
iteration reflects the method of successive approximation by Picard and Lindel6f for solving
the Kolmogorov forward differential equations. For the special case of a finite state space, this
formula reduces to the iteration given in Bellman [19], p.168, or Kamke [53], p.52.

In the usual manner, the transition probabilities derived above determine the finite-dimensional
marginal probabilities which by Kolmogorov’s extension theorem (see Gikhman, Skorokhod
[44], p.108) uniquely determine the distribution of the process.

Theorem A.7 The distribution of a Markov jump process = (X (¢) : ¢t € IRy) is uniquely
determined by its infinitesimal rategt; z, A) via its transition probabilities. The finite-
dimensional marginal distribution ok at timest;, < ... < t, € IR§ withn € IN is
given by

P(X(t) € Ay,... ., X(t,) € A,) =

/W(dxo)/ P(tOJtl;xO;dxl)---/ P(tn—o,tn—1;Tn—2,dTy_1)P(tn_1,tn; Tn_1, Apn)
S Ay An_1

if = denotes an initial distribution at tim&g < ¢;.
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A. Markov Jump Processes

Proof: see Gikhman, Skorokhod [44], p.142

Thus definition A.1 uniquely determines a stochastic process. lts finite-dimensional marginal
distributions can be computed knowing the initial distribution at a tigraaad the infinitesimal
transition rates.

For the case of an homogeneous Markov jump process, the infinitesimal transition rates are
constant in time, and we can define

q(z, A) :== q(t;z, A)

forallt € IRf, x € SandA € S. Further, the conditional probabilitiegt; z, A) from
definition A.2 are constant ity and we can write

p(z, A) == p(t;z, A)

forallt € IR{,z € SandA € S. Further define the kernefg and P by Q(z, A) := ¢(z, A)
andP(z, A) ;= p(x,A) forallz € SandA € S. The kernek) shall be called the generator
of X. The kernelP is called the jump kernel ok .

Then the transition probability kernel assumes a particularly tractable form:

Theorem A.8 Let X denote an homogeneous Markov jump process with infinitesimal tran-
sition rates(q(z, A) : € S, A € §). Then the transition probability kerné?(s, t) can be
written as

P(s,t) = QU= = f: - S)ka

k!
k=0

forall s < t.

Proof: It suffices to prove

(t—s)"
R

forall £ € INy,ands < t¢. This is done by induction oh. Beginning with the obvious equality

PO (s,t) =T = (t;)f)OQO, the iteration step of theorem A.6 leads to

t
P*D (s -2, A) = //P(k)(s’wxady)Q(U;y,A) du
s S

B /:/S%Qk(%dy)q(y,fl) du

for all £ € IN, by induction hypothesis and homogeneity of the transition rates. This yields
further

P®)(s,t) =

P (s, 0, 4) = /t (u;!S)kd“[ng(x,dy)Q(yaA)

t— )Mt
= ﬁ@ (z,4)
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which proves the induction step.
©

Remark A.5 In the homogeneous case, the computation of the transition probabilities can be
accomplished by solving the Kolmogorov forward differential equations

%P(s,t) = P(s,1)Q

with initial value P(s, s) = I via the Runge—Kutta method. This is possible in a straightfor-
ward way without encountering numerical problems (see Asmussen [6], Gilbert [43] or Moler,
van Loan [67]).

In some cases the computation of the transition probabilities of general Markov jump pro-
cesses can be reduced to computing some combination of transition probability kernels of
homogeneous Markov jump processes. This shall be described in the following.

Choose some time intervgl, ¢| over which to compute the transition probability kernel. As-
sume that there is a step functign: t — Q(t), with Q(¢) being a generator for evetywhich
approximates the functio : t — Q(¢) uniformly in s, ¢, i.e.

1Q =@l = swp Q) = QM) = sup Q) A) = Qu)(a. A)] < ¢

s<u<t,x€S,AES

for somes > 0. Then the following approximation holds:

Theorem A.9 LetQ : u — Q(u) be a step function such th4® — Q||,, < = andQ(u) is a
generator on(S, S) for everyu € [s,t]. Then the transition probability kernél(s, ¢) can be
approximated by

Ps,t) = [[ e
i=1

for sy := s, s, := t andQ being defined by)(u) = Q; onu €s;_y,s;] fori e {1,... ,n}.
The error of this approximation is bounded by

||I5(s,t) — P(s,t)]| <e-(t—ys)
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A. Markov Jump Processes

Proof: Write Q(u) = Q(u) + A(u) for all u € [s, t]. Then by assumptiofA(u)| < e for
all u € [s,t]. Now theorem A.6, formula A.2 and theorem A.8 yield

P(s,1)

t)
- Z/s / / (u1) + Aluq)) .. (Qug) + Alug)) duy ... duy,

k zntegrals

_Z/s/ /Qul Qux) dus ... duy

k mtegrals

Z// / Qur) .. Qlux ) A(ug) duy .. duy

k mtegrals

+Z/s / / Oua) - Ol ) A 1)Q(ux) dus - .- dug

k mtegrals

+ f:/st /SUk - /ji@(ul) o Qup—3) A(up—2) Q(up—1)Q(uy) duy . . . duy,

TV
k integrals

+..
:ki;/:ﬁ( // /Qu1 Q(ug) duy ... duy, du

k mtegrals

by a similar calculation as in the end of the proof of theorem 2.8. Hence we have
t
P(s,t) — P(s,1) = / Pls,w)A(u)P(u, ) du
and because dfP (s, u)|| = ||P(u,t)|| = 1 for all u € [s, ], we get

||P(Sat) - P(Sat)“ <e- (t - S)
which proves the approximation bound.
©
Remark A.6 Since the functior® : ¢ — Q(t) is continuous with respect to the supremum
norm (see remark A.1l), the existence of an approximating step fun@ias assumed in

theorem A.9 is immediate. The functigh defines a piecewise homogeneous Markov jump
process.
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In the rest of this section, the main properties of the sample paths are derived. It turns out that
the paths behave in an intuitively lucid way: Starting in some state at an initial time, a path
remains in that state for a positive holding time, for which the distribution can be determined.
Then it jumps to another state according to the probability law given by the jump kernel at the
jump time. Remaining in this state for a positive duration, the path jumps again, and so on.

In order to examine path properties, it is necessary to obtain versions of the process which
have certain features of their sample paths that make them easier to analyze. This does not
pose a real problem, since it is possible to choose those versions such that the probability law
of the process is not altered. Hence all the path properties derived are valid almost surely with
respect to the distribution of the process (i.e. for all finite-dimensional marginal distributions,
according to Kolmogorov's extension theorem).

Definition A.3 Two stochastic processés = (X, : t € IRj) andY = (Y; : t € IR]) are
calledstochastically equivalent if their finite-dimensional marginal distributions coincide,
l.e. if for everyn € IN andtq,... ,t, the distributions

P(X(t1),...,X(tp)) = P(Y(t1),...,Y(tn))

are equal. IfX andY” are equivalent, thel is called aversion of X.

In order to further examine the properties of Markov jump process, it is necessary to introduce
the concept of separability. For separable processes, limits over continuous sets (such as
inf{t € IR} : X(t) € A}) are still measurable and path properties such as first hitting times
can be explored.

Definition A.4 A stochastic proces¥ = ((X(t) : t € IR]) with state spacé is called
separable if there is a countable and everywhere dense subét/lz; and a negligible set
N C Q such that for every open sétC IR and every closed sét C S the set difference

{X(t) e FYte GNS}\{X(t) e FYVte G} C N
Is negligible. The se$ is calledset of separability.

Definition A.5 Let X = ((X(¢) : t € IR ) be a stochastic process with metric state spgace
Denote the metric it by p. The process is calledstochastically continuousif for every
timet € IR; and every: > 0 the limit

IlbiLI[I)P(p(X(t),X(t +h))>¢e)=0

holds.

Theorem A.10 A Markov jump process is stochastically continuous.

Proof: see Gikhman, Skorokhod [44], p.347 (lemma 1)
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Theorem A.11 For a Markov jump procesX = ((X(¢) : t € IRS) with a separable and
locally compact metric state spac¢eand for every countable and everywhere dense subset
S C IR§, there is an equivalent proce$s= ((Y (¢) : t € IR]) which is separable and has
the set of separability.

Proof. see Gikhman, Skorokhod [44], p.153 (theorem 2), p.155 (theorem 5) and the above
theorem A.10

Now the first result for the sample path behaviour can be derived. In the following, we always
examine the separable version of a Markov jump process. A natural generalization of the
distribution of holding times for homogeneous Markov jump processes is given by

Theorem A.12 For a separable versioiX of a Markov jump process, the holding time distri-
bution in a stater € S'is

P(X(r) = 2 V7 € [,8]| X (5) = z) = ¢ Js 1(dr

for everys < t.

Proof: see Gikhman, Skorokhod [44], p.348 (lemma 2)

For further path properties, one needs to require right continuity of the paths, which can be
done without altering the probability law of the process:

Theorem A.13 For a separable Markov jump process there exists an equivalent process with
sample paths that are continuous from the right with probability 1.

Proof: see Gikhman, Skorokhod [44], p.349 (corollary 1)

Theorem A.14 If X is a separable Markov jump process alidt) = z, then with probability
1 there exists an interval of tinjg ¢ + h[ during whichX (¢) = z for all 7 € [¢,t + hl[.

Proof: see Gikhman, Skorokhod [44], p.349 (corollary 2)

Assume in the following that the Markov jump proceksis a separable version which has
only paths that are continuous from the right. Then the next theorems yield a more accurate
description of its sample path behaviour than the finite-dimensional marginal distributions can
give:

Theorem A.15 Denote the times between jumps¥oby (7, : n € IN) starting with the first
jump after a time instantty € IR{. Ben € IN, t4,... ,t, € IR{ andA,,... ,A, € S. LetB
denote the event

B:{Vke{l,...,n}: Vt €

k—1 k
to+ > Tito+ Y T [ DX (1) = &
j=1 j=1

/\X(to+27j) =& N &G F & NG EA N Tk<tk}

i=1
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Then the conditional probability @8 under the hypothesis that(¢,) = x, is given by

F(tl,... ,tn;Al,... ;An|t0;$0) =

to+t1 51 J s1+t2 fsf) ( Y
- - [>2 x
:/ e~ Jto 7(mw0) Tdsl/ v(sl,xo,dxl)/ e Jor M g,
to Ay

S1

Sn—l+tn
— [P y(Tmp_1)dr
) / e Jen—1 dspY(Sny Tn-1, An)

Sn—1

Proof: see Gikhman, Skorokhod [44], p.351f (formula 8)

Theorem A.16 With probability 1, the Markov jump process has only finitely many jumps
in any finite interval of time.

Proof: see Gikhman, Skorokhod [44], p.353 (corollary 1)

Theorem A.17 The sample paths of the separable version of a Markov jump process that is
continuous from the right have with probability 1 the following structure: There is a sequence
of positive random variablegy, : k£ € IN) with

m
lim E T = 00
m—00

k=1

and for every time with

m+1

zm:’/"k <t < ZTk
k=1 k=1

the state at time is X (t) = X (7,,,).

Proof. see Gikhman, Skorokhod [44], p.354 (corollary 2)

Remark A.7 The above theorem shows the probabilistic meaning of the infinitesimal rates.
Starting in some state € S at an initial timet, := 0, almost every path remains in this
state for a time duration which is distributed according to theorem A.12. Upon a time instant
r € IR{ at which the state: is left, some new statg € A is assumed according to the
probability p(7, z, A). Then the path behaves in the same way again, starting inystatd

with initial time 7.

The following theorem proves the intuitive meaning of the componé?ﬁi)s(s, t) appearing
in the form A.1 of the transition probabilities.

99



A. Markov Jump Processes

Theorem A.18 Let X be a Markov jump process with measurable state sp&cs§). Denote
the times between jumps &fby (7,, : n € IN) starting with the first jump after a time instant
s€IRf.Ben € INg, s <tec IR andA,,... A, € 8. LetC(n,s,t) denote the event

C(n,s, t) ={Vte[s,s+n[: X(t) ==z
k1

k

s+ZTj,s+ZTj[: X(t) € Ay
7=1 7j=1

s+zrj,t] : X(t) eAn}

j=1

AVEe{l,...,n—1}: Vte

AVt €

Then the conditional probability af'(n, s, t) under the hypothesis that(s) = x is given by

t t t
Pagn)(s, t, Al; - 7An) :/ / . / / N / - fsul ’Y(u;x)duf)/(ul; x, dl‘l) o
s u1 Up—1 J Ay An

n integrals n integrals

— [un UL 1)du _rt .
..e Jagi ! ) Y(tp; Tp_1, dry)e Sy v (5n ) duy, . .. duy

Proof: This is shown by induction on. Forn = 1, the eventC'(n, s, t) means that there
is exactly one jump durings, t] and at this instantX changes from state to some state
xr; € A;. By theorem A.12, the density of the holding time in a state S with respect to the
Lebesgue measure on the time axis is

. PJ(T € [t,t+h]) e Jiv(wsz)du - JE y(usw) du [ (usm)du
T h B

sincey(.;x) : t — ~(t; x) is continuous by definition. Under the condition that the holding
time inz is from s to uy, the eventC(n, s, t) occurs if and only if the holding time in the new
stater; is at least fromu; to . Remembering definition A.2 and conditioning on the holding
time in the initial stater leads to

t Y | |
P:L(al) (87 t; Al) — / 67 fs 1 v(u;m)du’Y(Ul; x) ° / p(u’la ZL', dl‘l) . 6_ ful ’Y(u,l‘l)du du,l
s A
t . t |
= / / e [t 7(u;m)du7(u1; x, d$1)€7 Juy V(wsw1)du du,
s JA;

Now assume that the statement is truesfor IN. The eventC'(n + 1, s, t) means that there
is exactly one jump from the initial stateto some state; € A; atatimeu; €|s,t] and after
this the even€'(n, uy, t) occurs under initial state, . Conditioning on the holding time in the
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initial statex and using the induction hypothesis leads to
PO (st Ay, Apyy) =

t
= / e s IW(U;m)dUV(Ul;x) / p(ui; x, dzy) - P:E?)(Ubt;fb, oy Apgr) duy
S

Ay
_ ! — [P y(uz)du cx.d ! ! — [ y(usz)du . d
= e Js v(ur; x, dzy) e Jur v(ug; 1, dxs) . ..
s JA; Jur un J Az An+lj

n integrals n integrals

t
o= Fin 1 Y(usza)d S

Y(Uni1; T, dTpyq)e Aty g1 . . . dugduy

which completes the induction step.
©

Definition A.6 Let X be a Markov jump process with measurable state sp&c§) and
A € § some measurable subset. Thenftrst hitting time of A is defined by

Ty:=inf{t € IR" : X(t) € A}

Theorem A.19 The first hitting timél’, is measurable and has the distribution

00 t t t
px(TA>t,XteB):Z/ / / / / /e—foW“;’”)d“v(ul;x,dm)...
n:O\O U1 'u.n_lj c cJB

n integrals n integrals

o Jumy VWit —1)du du

Y(Un; Tp_1,dwy)e” S 1(50) du,, . . . du,

for everyt € IR™, initial statex € A°and finalsetB C A, B € S.

Proof: T, is measurable, becau&eis separable (theorem A.11). The form of the distribution
follows from theorem A.18 by summing up over the numbef jumps in]o, ¢].
©

As already mentioned in remark A.3, a Markov jump process usually cannot be constructed
by specifying the transition probabilities or finite-dimensional marginal distributions, since
these are not available. Even more, these belong to the values one wishes to derive from the
stochastic model. The most intuitive values that one can start from are the tendencies of a
Markov jump process at a certain time and in a certain state, i.e. the infinitesimal transition
rates. The rest of this section shortly describes how to do that.

Definition A.7 Any family (¢(t;x, A) : t € IR,z € S, A € S) of real numbers that satisfies
q(t;z, A) = —y(t, 2)1a(z) + (¢, 2, A)

forallt € IRj,x € S, A € S, and further the conditions
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1. For fixedt € IR; andx € S, the functiony(t,z, A) on S is a finite measure and
v(t, ) =~y(t, x, S).

2. For fixed(z, A) € S x S the functiony(¢, z, A) is continuous ir.

3. For fixedz € S, the measure(t, z,.) is continuous int (with respect to the vague
topology).

4. The values/(t, z) are bounded itit, z) € IR§ x S.

is called a family ofregular rates .

Remark A.8 Denote the space of generators®hy G. Using the same norm on the space of
kernels onS as introduced in remark A.1, the above conditions can be summarized as follows:
A bounded continuous functio) : IR; — G is called aregular generator function. A
regular generator function provides a family of regular rateg(byr, A) := Q(¢)(x, A).

Consider the space of sequen€es- {w = (§,,7, :n € IN) : & € Ay, 7 € IR }. On the
algebra of cylindrical sets ift introduce the measur as follows. Using the distributiof’
from theorem A.15, define

P(C) ::/F(tl,... s Avs - A0, ) p(da)
S
for every set

C={&€eA,....€A;n <t,..., 7 <ta}

and any initial distribution, on S which is assumed at time 0.

According to Kolmogorov’s extension theorem (see Gikhman, Skorokhod [44], p.108), the
measureP can be extended to thealgebraF generated by the cylindrical setsdh This
defines a probability spadé€, F, P). Now define a random functiok = (X (¢) : t € IR])

by

X(t,w) =& (w)

for all

k k+1

Yon) <t <> nw)

j=1

ThenX has the following properties:
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Theorem A.20 The processX constructed above is a Markov process and has almost cer-
tainly sample paths which are continuous from the right. The transition probabiliti&sare
given by

P(s,t;x, A) ZP (s,t;2,A) (A.3)

with
Pb(o)(s, tix, A) :=e” fstV(T’@dTlA(x)

and
nH (s,t;x, A) / / 9 t;y, A ffV(T@WT’y(G,x,dy)d@

forall s <t € IRf,r € SandA € S. They satisfy the Kolmogorov backward equation

oP(s,tw, 4) _ / P(s, t;, A)q(t; v, dy)
0s s

with boundary condition
ligl P(s,t;x, A) = 14(x)
Finally, the equation

lim P(t,t+ hyxz, A) — 14(x)
h10 h

=q(t; 2, A)
holds uniformly with respect to(for 0 < ¢ < T with arbitrary T) for fixedz € SandA € S.

Proof: see Gikhman, Skorokhod [44], p.364 (theorem 4) and p.363

Hence the process constructed in the described way is a Markov jump process with the desired
infinitesimal transition rates.

A.2. Quasi-Commutability of Generators

A special case of Markov jump processes is given, if the following equation A.4 is satisfied
for the generators. This condition states that the differentiation rule for a function of the
generators can be applied as if the generators were commutable. Therefore the condition shall
be called quasi-commutability of the generators.

As in the homogeneous case, the transition probabilities as well as the transient distribution
assume a rather simple form, which is derived first. After that, two special cases are examined
for which this simple form leads to the computation of asymptotic distributions.
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Definition A.8 If the equation

7 (/Q du> =k (/Q du) Q(t) (A.4)

holds for allk € IN ands < t, the generator$Q(t) : ¢t € IR;) shall be callecjuasi-
commutable.

Remark A.9 A sufficient condition for equation A.4 is given if for evegy< t € IR§ the
kernelsQ(t) andf Q(u)du are commutable. A sufficient condition for this is the speC|aI form

Q(t) = At) - Q

for the generator§)(t) of X, with \ : IR; — IR, describing some time—dependent intensity
and@ : S x § — IR denoting any generator.

Theorem A.21 If the generators oX are quasi-commutable, then the transition probabilities
P(s,t) assume the form

P(s,t) = els Qudu

Proof: For everyk € IN it will be shown that

// / Q(u1) ... Q(ug)du, .. duk:M

k zntegrals

is implied by equation A.4. Fok = 0 this holds by definition and fok = 1 this is obvious.
The induction step fok 41 is seen by first applying the induction hypothesis and then equation
A.4in

Uk+1 t ( [Uk+1 d k
// / Qur) ... Q(ugs1)duy .. duk—i—l:/ Us C]i,(U) ) Q(tpg1)dug1

k+1 mtegrals
1 t k+1
+ 1)) </ Q(“)d“>

1 1 d Uk 41 h
= | — d d =
K ), &+ 1 duge ( QW) “) Ukt =

Now the statement follows by theorem A.6.
©

Example A.1 Assume that there is a function: IR — IR such thaiQ(t) = \(¢) - Q for

all t € IR{. Then the transition probability kernel from timec IR to timet > s can be
simplified to the form

¢ k
P(s, 1) = S @0 — §° ORI o

k!
k=0
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Definition A.9 For a stochastic process = (X, : t € IR;) with initial distributionr at time
to := 0 and transition probabilitie® (s, t; z, A), thetransient distribution at timet € IR
is defined as

X[ = PXt = /d7r P(0,1)
S

forall t € IRy .

Theorem A.22 If condition A.4 is satisfied, then the transient distribution under initial distri-
butionm assumes the form

Proof: This is immediate by theorem A.21.

Concluding this section, the results for asymptotic distributions in special cases are shown,
after first some estimations need to be proven.

Definition A.10 Define the norm ofotal variation by

vl = oI(S) = [ div
S
for all charges’ on S.

Definition A.11 Using the norm of total variation for charges, define shpremum norm
for kernels by

K| := sup | K (z,.)|| = sup |K(z,.)[(5)
TES T€S

for all kernelsK on S x S.

Theorem A.23 Let K denote a kernel o8 x S with |K|| < . Then for every probability
measureu on S, the estimation

o~ 1) <22

holds with/ denoting the identity kernel.

Proof: Forn = 1, the inequality||xK™|| < ™ is valid, sinceu is a probability measure.
Assume that this inequality holds for somes IN. Then

K] = H/Sdu(:c)K"“(x,.)H = ‘ /Sd(uK”)(x)K(:v,.)H <e-|jukm| < et
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completes the induction step. Hence,

li (e =D =|nd_—|| < W@E—K%
n=1 n=1

©

Theorem A.24 Let X denote a Markov jump process with generaft) at timet € IR; .
Assume that the generator converges in the following strong sense: There is a gegrator
with || Q|| > 0 such that for every > 0 there is a timg, € IR" with

1tQ(u)du —Q - (t—to)

for all ¢ > t,. Further assume that the homogeneous Markov jump process with gen@rator
is positive recurrent with stationary distributian Theng is the asymptotic distribution for
X, i.e. for every initial distributionr,

|IX[ —¢q|| =0 ast —

Proof: Choose any > 0 andt, € IR' such that‘

ft w)du — (t — tp) QH < ¢ for all

t > t,. SinceQ is positive recurrent, there is a time € ZR+ such thatl|re® — ¢|| < & for
allt > ¢,. SetT := max{to, t; }. Then fort > T and any initial distributionr of X,

+ || XFe@ 1) — g

H X (6f; Qu)du _ 6@'('5—?50)) H G

IXF < |[XpebhQuan — xgeQ-w

AbbreviatingA := fT uw)duandB := @ - (t — T'), the remaining term can be estimated via
the argument

= Ak — Bk = ((A- B)+ B)t — B*
e ="l = |2 = :‘Z i
00 (A—B)k 00 Zk: (k)(A_B)llekfl
= kz:; k! (A_B)Z - k!
-1 pk—1
ENCE R ) ) gt B B
=1 k=l
: S IIA—Blll‘1 . ||B||’“
< (6—1)+8'Z =) Z u

k=0
< (ef=1)4+e-e-1<4e
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Using this, the estimation

X7 —qll < 5e
holds for allt > T', sinceX7 is a probability distribution.
©

Example A.2 Assume that the generator function has the fap) = @ + ﬁR for all

t € IR$, with constant generatorg and R. Further assume that the homogeneous Markov
jump process with generat@y is positive recurrent with stationary distributign Then the
above theorem applies (choage= ﬁ) and the Markov jump process with generagir)

has asymptotic distributiogpn

Theorem A.25 Let X denote a Markov jump process with generaiitt) at timet € IR . If
the integral

= [ Qudu

yields a kernel with|Q|| < oo, then the asymptotic distribution &f under initial distribution
7 is given by

q :/dﬂ elo” Qu)du
S

Proof: Choose any > 0. The assumptiof] [, Q(u)du|| < oo implies that there is a time
to € IR" such that| [ Q(u)dul|| < = forall ¢ > t,. Then

holds for allt € IR". By theorem A.23, the estimatigif — e/i” 2w || < 2¢ is valid for all
t > t,. SinceX[ = relo Qv is g probability measure for alle IR*, it follows that

X7 —all = ‘ medo Quldu _ 7o f5* Qu)du

~els Qu)du ( I Q(U)dU>

X7 =gl = HX;r ([ _ ) Q(u)du>

‘<25

forall ¢t > ¢,.
©

Remark A.10 Note that this asymptotic distribution is not independent of the initial distribu-

tion 7. The above theorem represents the pathological case of all states becoming absorbing
as the time proceeds. Thus every path of the process reaches an absorbing state at some time.
For illustration, one can say that the process falls asleep.

Example A.3 Let R denote the generator of a positive recurrent homogeneous Markov jump
process. For the generator functi@it) = A - e=* R with A > 0, we have[,* Q(u)du = R.
Hence the Markov jump process with generagt) has the same asymptotic distribution as
the homogeneous Markov jump process with gener&tor
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A.3. Periodic Markov Jump Processes

If the infinitesimal transition rates of a Markov jump process are periodic, the Markov jump
process will be called periodic. The transient and asymptotic distributions for this special case
can be determined by examining the imbedded homogeneous Markov chain at times which
are multiples of the period length.

For the transient distribution one can prove a recursion formula which simplifies its compu-
tation by reducing the time range of integration in formula A.2 to at most the period length.
An asymptotic distribution does exist if the imbedded Markov chain is positive recurrent. Fur-
thermore, conditions for aperiodicity and uniform recurrence of the imbedded Markov chain
are derived.

Definition A.12 A Markov jump processX with generator) is calledperiodic with period
T>0if Q(s) =Q(s+T)forall s € [0,T7.

The computation of the transient distribution can be simplified as follows. The periodicity of
the generator yields

P(0,nT) = P(0,(n—1)T)P((n—1)T,nT) = P(0,(n—1)T)P(0,T) = P(0,T)"
Let = denote the initial distribution of the queue procésDefine
|t/T] := max{n € INy: nT <t}

as the number of period lengths that have passed until time IR*. Now the transient
distribution of (@ is given by

X7 — /de(O, /T |T)P(t/T|T,t) = /dwp(o,T)Lt/TJp(o,t— +/T|T)

This expression allows a computation of the transient distribution at any tem& " without
needing to integrate over ranges larger than the péridéor computing the remaining terms
P(0,s) with s < T, one can use the following iteration as given in Bellman [19], p.168:
Starting withI,(u) := I for all u < s, the iteration

Ly (1) = / L(0)Qv)dv + I
0
leads to the limit
P(0,s) = lim I,(s)

foralls < T.
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Example A.4 Assume that the generator function is given®t) := (1 + sin (2:¢)) @ for
all t € IR, with some constant generatQr Then the termg¢(0, s) can be expressed by

P05 = e ((s+ [(an(Fu)an) Q)
-l L)) 9

for all s < T, according to theorem A.21. Hence the transient distribution at time/R™
with initial distributionr is given by

e [t (o (o (59))) 9
fors:=t— [t/T| T

The next theorem contains a recursion formula which yields a structural decomposition of the
transition probabilities. Define

Py(n) := O nT) /nT/ / Quy) ... Qux)duy . . . dug

k mtegrals

forall k&, n € IN,. Now we can prove

Theorem A.26 The following recursion formula holds for &l n € IN:
k
=Y P j(n)P(1) (A.5)
j=0

Proof: By definition, the partition

n+1
P(n+1) = / / / Q(uy) ... Qux) duy ... duy
n+1

= Py(n) + / Pi—1(n)Q (ug) duy,

/n+1 / / Q(uy) ... Qug) duy . .. duy
_ ]zk%\/nrﬂw/n:.../niipkj(n)Q(ul)...Q(uj) duy ... du,

TV
j integrals

holds for allk, n € IN, defining the case of zero integralsiagn). Exploiting the periodicity
%f the generatof)(¢) leads to formula A.5.
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The initial values for this recursion ai(n) = I for all n € INy and P, (0) = o - I for all
k € IN,. This results in first iterates

Pu(n) = /0 " Qwdu

T Up U
Pk(l):/()/o /0 Q(ur) ... Quy) dus ... du
forall k,n € IN.

Before examining the asymptotic behaviour of periodic Markov jump processes, one needs to
define the term asymptotic distribution for periodic processes. The norm to be used will be
the total variation as defined in definition A.10.

and

Definition A.13 Let X denote a periodic Markov jump process with peribd A family
(g5 : s € [0,T]) of probability distributions shall be calledperiodic family of asymptotic
distributions if

| Xnrss — as|l =0 asn — oo

for all s € [0, T, independently from the initial distributian

Theorem A.27 If it exists, the periodic familyg; : s € [0, 7[) of asymptotic distributions is
unique.

Proof: Assume thatq, : s € [0,7]) is another periodic family of asymptotic distributions.
Then for everys € [0, T'[ and an arbitrary probability measure

lgs — a5ll < llgs = Xarpll + Mg = Xopy ol = 0

asn — oo.
©

Now the main result can be given. It reduces the existence of an asymptotic distribution for
the periodic Markov jump procesk to the existence of an asymptotic distribution for the
embedded Markov chaili at multiples of the period length. Definé = (Y, : n € IN) as

the homogeneous Markov chain with transition maf?ig0, 7) and letY™ = (Y," : n € IN)
denote the version df with initial distribution.

Theorem A.28 Let X denote a periodic Markov jump process with peribd If X has a
periodic family of asymptotic distributions, théhhas a stationary distributiop. If Y has
an asymptotic distributiog, then X has a periodic family of asymptotic distributions which
is uniquely determined by

%Z/@P@@

forall s € [0, 77.
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Proof: Let 7 denote the initial distribution ok at timet, := 0 and assume that; : s €
[0, T7]) is a periodic family of asymptotic distributions. A necessary property oS

¢ = lim [ drP(0,nT) = (lim /dﬂP(O, (n— 1)T)> P(0,T) = /quP(O,T)

n—00 n—00
which means thagt = ¢, is a stationary distribution af .

Now let ¢ be the asymptotic distribution &f. Then

@ = lim [ drP(0,nT) = lim [ dnP(0,7)" = lim Y] =¢q

n—oo n—o0 n—o0
does exist.

Using this distributiony, the periodic family of asymptotic distributionig, : s € [0,71]) is
given by

¢s = lim [ drP(0,nT)P(nT,nT + s) = (lim /dﬂP(O,nT)) P(0,s) = /qu(o,s)

n— 00 n— 00

©

Remark A.11 If Y can be shown to be-recurrent for some—finite measure) on S (see
Orey [76], p.4), then the above theorem stat&shas a periodic family of asymptotic distri-
butions if and only ifY” is positive recurrent with respect go(see Orey [76], p.30).

Example A.5 Resuming example A.4 and further assuming thas ¢-recurrent and there is
a measure with ¢@Q = 0 (which impliesge™ @ = ¢), we get a periodic family of asymptotic
distributions(g¢, : s € [0,71]) given by

o Jorn{(o+ £ e (3))) 9

Concluding this section, the following theorems give sufficient conditions for aperiodicity and
uniform recurrence (see Orey [76], pp.15,26) of the embedded Markov ¢hairterms of
the jump kernel$P(t) : t € [0,T]) and the jump rate6y(t;x) : t € [0,T],z € S).

forall s € [0,T7].

Theorem A.29 Let X denote a periodic Markov jump process with peribdand bounded
jump ratesd) < m < v(t r) = —q(t;z,{z}) < M < < forallz € S andt € IR}. Be
(z, A) € S x Swith¢(A) > 0. If there is a numbek € IN, with

/ / / P(ug))(z, A) duy . ..dug > 0 (A.6)

k zntegrals

then
P0,T)(z,A) >0
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Proof: Using formula A.1 for the transition probabilit® (0, 7"), which has only positive
components, we have

T T T w
(k) (07 T; x? A) :/ / ... / / P / / 6_ fs ! 7(u7x)dur)/(u1; :L-’ dxl) -
0 Ul up_1 J S SJA

k int:zrgrals k integrals
_ [Uk d
Y UTE—1)au u;T )du
fuk 1 ( 1) ’Y(Uk; Th_1, dl‘k) f“k ¥(ws k) duk o du1

/ / / / //e [ )y (1 ) s, ) -

k mtegrals k integrals

(A.7)

= JuF | v(uwme oy )du - f,fk y(u;zy ) du d

Y (ur; T—1)D(Uk; Tp—1, Ty )e U - . . duq

.. €
Remembering < m < v(t;z) < M < oo, the term

— [¥1 y(u;z)du . = [k v(usmg—1)du . fft Y(uszy )du
o Ny 5 0) e e g e

> 6_M(t—s)7(u1; z) ...y (ug; Tp—1)

is a continuous function of the vectoy(u:; x), . .. , v(ux; xx_1)) With positive values. Hence,
it assumes a positive minimum at some point in the compadtset/]*. It follows that

P(0,T;xz,A) > P¥(0,T;z, A) > 0
©
Remark A.12 If for all (z, A) € S x S with ¢(A) > 0 there is a numbek € IN, such that

condition A.6 holds, then it follows by the above theorem thas aperiodic ang-irreducible.
In this case}” has a C-set according to Orey [76], pp.7-10.

Theorem A.30 Let X denote a periodic Markov jump process with bounded jump rates
m < vy(t;x) < M < coforall z € S andt € IR . If for any setd € S with ¢(A) > 0 there
Is a numberK € IN such that

ki::/OT/:.../:—l(P(ul)...P(uk))(x,A) duy...dup > ¢

k integrals

for a positivez > 0 and for allz € S, thenY is aperiodic and uniformly-recurrent.

Proof: By theorem A.29 and remark A.12; is aperiodic. Choose any sdt € S with
#(A) > 0. By assumption, there is a numkEre IN such that

Z/ / / / // (wrs 2, day) - . (g Tpr, dag) dun . . . dug > &

k mtegrals k integrals
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for a fixede > 0 and for allx € S. For everyk € IN,, the term

— [¥1 . — ["k  y(uszp_1)du _rt 1 )d
e fs 7(’“‘7I)dury(u1; x) ..e fu’k’—l ( k 1) )6 fuk 7(11. Ik) U

Y (ug; Tp—1

> 6_1\4(1t—s)7(u1; z) ..y (ug; Tp—1)

is a continuous function of the vect¢y(u;x),. .. ,v(ux; xx_1)) With positive values and
assumes a minimum at some point in the compacksed/|*. Denote this minimum by,
and set/ := min;<,<x I;. Note thatd < /7 < 1 and | is independent of € S. Then by
equation A.7, it follows that

P(0,T;z,A) >

>ZIk / / / / //p uy; x, dey) .. p(ug; Te—1, drg) dug ... duy,
Js  Jsia

k mtegrals k integrals

K T ,T T
Z['Z/ / / (P(uy) ... P(ug))(z,A) duy ... dug >T-¢>0
k:0¥0 Ul uk_lJ

k integrals

for all z € S. Now the probability fort” of never reaching the settfrom a stater € S'is
lim P, (Y, € A°Vk € {1,...,n}) = lim / / (0,T;x,dxy) ... P(0,T; xp—1,dxy)
n—00 n—00 c c

n mtegrals

<lim(1—-T-8)"=0

n—oo

This means that starting from any statec S the setA will be reached with probability 1.
Furthermore, the probability

P ea) = 1-(1-op

k=1

converges to 1 uniformly with respectto< S. This completes the proof.
©

Remark A.13 Uniform ¢—recurrence implies positive recurrence with respegt &amd a ge-
ometric convergence rate towards the asymptotic distributian (see Orey [76], p.31).
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B. Stochastic Point Fields

Stochastic point fields can be regarded as stochastic point processes with parameter sets not
necessarily being the time axis (as the word "process” hints at) but a general space. They
are a very useful concept in many application fields such as astronomy (Babu, Feigelson [8]),
ecology (Thompson [87], Barnett, Turkman [11, 12]), the modelling of populations (Moyal
[69]), rain fall (Cowpertwait [31], Phelan [79]) and mobile communication networks (Baum

[16, 17]). An extensive list of references is given in Cressie [32]. Although in the rest of this
thesis the focus shall rest on spatial queues arising from applicational demands in the field
of mobile communication networks, it should not be forgotten that the use in other fields of
application may turn out to be fruitful as well.

In spatial queueing theory, point fields can be used as a model for spatially distributed batch
arrivals into a queue. Since arrivals in queues are always finite, we shall restrict ourselves to
the theory of finite point fields. This section collects some classical results on stochastic point
fields by Moyal [69] and Daley, Vere-Jones [33]. The first two subsections contain two alter-
native but equivalent ways of defining point fields. Subsection B.3 describes the construction
of point fields from a given set of finite-dimensional marginal distributions. Finally, examples
of point fields are given in the last subsection.

B.1. Set Version

A point field can be defined in two ways which are both useful for analyzing spatial arrival
processes and spatial queues respectively. The most immediate way is that of defining a prob-
ability measure on the set of all finite point families.

Definition B.1 Let R denote an arbitrary space. point family on R is a collection
{z1,...,z,} of elementszy,... ,z, € R with the possibility ofz; = =z, fori # j €

{1,...,n}.

Remark B.1 In difference to a set, a family may contain some elements more than once. In
terms of points in a field, this means that there can be several points at the same position.

In order to define a measure on the set of all finite point families, a suitahlgebra needs to
be constructed. This must provide for the possibility of several points having the same location
as well as for the indistinguishability of points.
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B. Stochastic Point Fields

Let R := o(R) denote ar-algebra onk and forn € IN, let

R" = é R
k=1

denote the n-th produet-algebra ofR on R". Further, letR’ := {(} and’R° denote the

trivial o-algebra onk?’. Define
R =0 (U ’R")
n=0

as the minimab-algebra onkR” := | J°7 , R" containing all sets iff)°” , R".

Theorem B.1 Theo-algebraR" consists of all subset$ = >~ | A, of R” such that4,, €
R" for everyn € IN,.

Proof: see Moyal [69], p.3f

Since a family of points is seen not as an ordered n-tuple but its members are indistinguishable
from one another, we need to restrict thalgebraR" on R" to symmetric families only.
Thus, by defining

Rg:=R"N{A € R": Asymmetri¢

a suitables-algebra for a measure on finite point families has been found. Now, any proba-
bility measurells on R determines a probability spa¢&-, R, I1s) which is suitable for
describing a point field.

B.2. Version for Counting Functions

Another way to see point families is in terms of counting functions. A counting function yields
for every subsetl of the basic spac& the number of elements of the point family that are
contained inA.

In this section, a point field shall be defined in terms of counting functions. After formally
defining counting functions, a bijection between point families and counting functions shall
be constructed. This bijection will be used in order to transfer the point field definition from
the setting of point families into terms of counting functions.

Definition B.2 Let (R, o(R)) be a measurable space with} € o(R) for everyxz € R. A
function N : o(R) — IN, is calledcounting function if for any collection(A4; : i € I) of
disjoint measurable subsets Bf

1. there are at most finitely many subsdts, . .. , A, for which N(4;,) > 1.
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2. the equality

N (Z AZ-> =Y N(4) =) N(4;,)

el el k=1
holds.
Let C denote the space of all counting functionsien

Remark B.2 If the number of points in the measurable det o(R) is represented by¥ (A),

then any family of points has a unique representation by a counting funstiorhis is only
true because of the restriction that every singldtohis contained in the-algebrao (R) (see
Moyal [69], p.9).

Now the mentioned bijection between the space of finite point families and the class of count-
ing functions shall be constructed. Define ieac measureatx € R by

1 for z€ A
5I(A)‘_{O for ¢ A

forall A € o(R).

Theorem B.2 Foralln € IN and allzy,... ,z, € R, define

T({z,...,z,}) = Z O,

Then the mappind is a bijection between the space of all finite point familiesband the
classC of counting functions or.

Proof: see Moyal [69], p.7

Using this bijectionl’, ac-algebra orC can be defined by (C) := T(R3), i.e. by all sets of
counting functions whose inverse image unfiet belongs taR .

Theorem B.3 Theo-algebrac(C) = T(Ry3) is the smallest-algebra containing all sets of
the form

(NeC:NA) =k Vie{l,....n}}

withn € IN and A; € o(R) measurablek; € IN, forall i € {1,... ,n}.

Proof: see Moyal [69], p.8

Defining a probability measufé. ono(C) by T (A) := IT5(T~'(A)), the probability space
(C,0(C),11¢) is equivalent tq R, Rg, I15) and hence suitable to define a point field.
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B. Stochastic Point Fields

Definition B.3 Any one of the equivalent probability spadgs o (C), I1) and(R”, R, I1s)
shall be calledboint field. The first one will be referred to as theersion for counting
functions, the second one &gt version

Remark B.3 In the following, the standard version referred to shall be the version for count-
ing functions, since it is easier to describe the main properties of point fields in terms of this
version. Thus, if nothing else is stated, a point field shall be defined in terms of counting
functions from now on.

B.3. Construction

In order to construct a point field on a spagdrom distributions on finitely many subsets of

R, we will use results from Daley,Vere-Jones [33], chapter 6. In this, it is assumed that the
spaceR be Polish (see Daley,Vere-Jones [33], p.153). Hence, the same assumptions are made
here, although they might not be necessary.

Definition B.4 A complete separable metric spakds called aPolish space The smallest
o-algebra containing all open subsetddis called theBorel o-algebraon R. A set which is
an element of the Borel-algebra onR is called aBorel setof R.

Remark B.4 If R is a Polish space and R) the Borelo-algebra onR, then every singleton
{z} is contained inr(R). This follows from

~ 1
- (B -
1= (=)
with B(z,d) := {y € R : d(x,y) < d} denoting the set of points€ R having a distance less
thand from z. That means that the condition efiR) appearing in definition B.2 is satisfied.

The first immediate result confirms the unique representation of a point field by a sufficiently
large set of finite-dimensional marginal distributions.

Theorem B.4 Let R be a Polish space and(R) the Borelo-algebra onR. Define
(St ..., Sp)(k1, ... ky) =TIc({N € C: N(S;) =k; Vie{l,...,n}})

Then the probability measurél is uniquely determined by the marginal distributions
I1(Sy,...,S,) on finite families of disjoint sets,,...,S, € o(R) from a semi-ring of
bounded sets generatindR).

Proof. see Daley,Vere-Jones [33], p.167

The main result states sufficient and necessary conditions for the existence of a point field,
if the set of finite-dimensional marginal distributions is given. The first condition is merely
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notational. The second condition is the consistency condition for Kolmogorov’s extension
theorem, which ensures that a probability measure having the given marginal distributions
can be constructed. The last two conditions guarantee that the support set of the constructed
probability measure is exactly the spatef counting functions.

Theorem B.5 Let R be a Polish space and(R) the Borelo-algebra onR. Further, let
(I1(S4,...,S,) :n€IN,Sy,..., S, € o(R))

denote the set of all finite-dimensional distributions. Then there is a point figldn
(R,o(R)) such that

1Sy, Su)(kry. o k) =TIe({N € C: N(S)) = k; Vie{1,....n}}).

if and only if the following conditions are satisfied:

1. Foralln € IN and every permutatiofiy, ... ,4,) of the integerg1, ... , n), the distri-
butions

I(Sy,...,S,) =1(S;,,...,Si,)
are equal.
2. Foreveryn € IN andSy, ..., S, € o(R), the consistency condition

(St oy Snt) bty oo k1) = Y TSty Sa) (Rt ke, k)

00
k=0

holds.

3. Foreveryn € IN andSy,...,S, € o(R), the measurél(S,, ..., S,) has supporiNy.
4. For disjoint Borel setsi, B € o(R) and integers:, [ € IN,, the equality

TI(A, B, A+ B)(k, 1,k +1) = TI(A, B)(k, 1)

holds.

Proof: The necessity is shown first: Condition 1 is a mere notational requirement. Condi-
tion 2 expresses the consistency requirement needed in Kolmogorov’s extension theorem (see
Gikhman, Skorokhod [44], p.108 (theorem 3)). If it were not satisfied, the given distributions
could not be marginal distributions of the same measure. Condition 3 is necessary, because
if for some measurél(S;,. .., S,) the support would exceefNy, then the support of any
measure ofR, o(R)) with marginal measuré(S;, ..., S,) would exceeng(R) and hence

the spacé€ C ZNS(R) of counting functions. Finally, if condition 4 fails to hold, any measure

on (R, o(R)) with marginal measure§(A, B, A + B) andII(A, B) would have a support set
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that violates the second property in definition B.2 and hence is greater than the set of counting
functions.

Now we show sufficiency: According to Kolmogorov’s extension theorem (see Gikhman,
Skorokhod [44], p.108 (theorem 3)), the first two conditions guarantee that a probability mea-
surells on (R, o(R)) with marginal measur8(Sy, ..., S,) can be constructed. Condition 3

implies that the support di. is on zzvg<R> and further

> T(R)(n) =1

which ensures the first property in definition B.2. Condition 4 states that for any two disjoint
Borel setsd, B € o(R),

He({N €C:NA)+ NB)=NA+B)}) =1

Since the Boreb-algebra of a Polish space can be generated by a countable semi-ring (see
Daley, Vere-Jones [33], p.608 (theorem A2.1.111)), this implies that the second property in
definition B.2 holds almost surely with respectliipg. Hence Il is a probability measure on

the setC of counting functions.
&)

B.4. Examples

Concluding this section, some examples of stochastic point fields are given. The first one is
the well-known Poisson field, which assumes independence of the point positions. The next
two examples are widely used variations of the Poisson field. Example B.4 is rather a general
framework for the design of finite point fields than a specific example. For more examples see
Cressie [32], Upton, Fingleton [92] or Diggle [35].

Example B.1 Let (R, o(R)) be a measurable space with} € o(R) for everyz € R. If the
distribution of points in disjoint sets is independent, i.e. if

(S, ..., S (i, ... kn) = HH(Si)(ki)

for any disjoint setsSy, ..., S, € o(R), and if for all setsS € o(R) the distributionlI(S) is

a Poisson distribution with some paramegtéf) € [0, o], then the point fieldC, o (C), 1)
shall be called @oisson point fieldon (R,o(R)). These are examined in Kingman [55].
Some important basic properties are given in the following theorems.

Theorem B.6 The functionu : o(R) — [0, 00|, which yields the parameteys(S) of the
Poisson distributiongI(S), is a measure ofR,o(R)). On the other hand, if. is a non-
atomic measure ofR, o(R)) which can be expressed in the form

p=> i
n=1
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with ., (R) < oo for everyn € IN, then there is a Poisson point field, o(C), 1<) on
(R,o(R)) withII(S) having parameter.(.S).

Proof: see Kingman [55], p.11f,23
SinceE(T1(S)) = u(S), the measure is called themean measureof (C, o(C), I1¢).

Theorem B.7 Let i be a non-atomic finite measure 6R, o(R)). Further, letf : R — IR,
be a bounded-measurable function. Then the measu@efined by

) = [ Fauta)
forall A € o(R) is a mean measure in the sense of theorem B.6.

Proof: It is immediate to check the assumptions of theorem B.6.

The functionf shall be called théntensity function with respect tou. The valuef(z) is
calledintensity of x € R.

Example B.2 If the mean measure of a Poisson point field is allowed to be random in the same

probability space as the point field itself, then the resulting point field shall be callaka

field. For a more formal definition and properties of Cox fields, see Cressie [32], pp.657-661,

or Grandell [45].

Example B.3 Another point field which is derived from the Poisson point field isRbesson
cluster field. It is defined by the following construction:

1. Parent events are realized from an inhomogeneous Poisson point figlevitn some
mean measurg.

2. Each parent produces a random number of offspring.
3. The offspring are positioned arbitrarily i

4. The final process is composed of the superposition of offspring only.

A special kind of Poisson cluster fields is tNeyman—Scott processA Poisson cluster field
onR = IR% is called a Neyman—Scott process if

1. The random numbek™ of offspring is realized independently and identically for each

parent according to a discrete probability distributipp: & € INy).

2. The positions of the offspring relative to their parents are independently and identically

distributed according to édimensional density functiofi : IR — IR .

For properties of Neyman—Scott processes, see Cressie [32], pp.662-669.
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B. Stochastic Point Fields

Example B.4 An easy and constructive way to specify finite point fields can be found in
Daley, Vere-Jones [33], chapter 5.3. By this method, first the probapjlitf the numbenmn

of points in R is given and then, conditioned on> 1, a probability distributioril,, of the
locations of the points. The indistinguishability implies that evérymust be symmetric.

Theorem B.8 Let (R, o(R)) be a Polish space with its Boretalgebra. Then a finite point
field is given by a discrete probability distributidp, : n € IN,) and, for each integer
n € IN, a symmetric probability distributiofl,, on thes-algebras(R)™ of R".

Proof: see Daley, Vere-Jones [33], p.126 (proposition 5.3.11)
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