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1. Introduction

The common gains from communication between mathematical theory and practical appli-
cation can be traced in the field of queueing theory especially well. Starting with Erlang’s
research at the beginning of the 20th century, this whole research area was born as the en-
deavour of building appropriate stochastic models for the performance analysis of technical
systems. The initial application area of telephone systems was soon enlarged by applications
in machine repair, inventory control, assessment of insurance risk and later the design and
analysis of computer systems, to name but a few. The close interaction between theory and
practice has remained a driving force for the development of queueing theory until today.

In this respect, the momentum coming from applicational demands in the field of telephone
networks has not lost its strength. The integrated transmission of voice, data and video sources
via the same channel crucially contributed to the shift from telephone networks of Erlang’s
times towards telecommunication systems of today. This required the use of more sophisti-
cated models for data streams than the now already classical Poisson process could provide.
At the end of the 1970s, Neuts [71] proposed a richer class of processes, which under the
name ”Batch Markovian Arrival Processes” (shortly BMAPs) was notationally simplified by
Lucantoni [60] in 1991. This class of processes, which actually is a subset of of the class of
Markov–additive processes introduced by Çinlar [25] and even earlier by Ezhov, Skorokhod
[37] or Neveu [73], engendered a new direction in queueing theory using so–called matrix–
analytical methods.

The present thesis is motivated by a further step in the development of modern telecommu-
nication systems. The technical availability of wireless data transmission opened up the way
for mobile communication systems, which today are used by increasingly many subscribers.
At the same time, this development exhibited the need for queueing models that can reflect
the spatial distribution of the users in the system. These are indispensable in order to model
phenomena like spatially dependent service time distributions, user movements or the spa-
tial distribution of users in the system. The analysis of spatial queues yields such essential
values as the necessary cell capacities needed to guarantee a low outage probability or the
outage probability of an existing network. Such knowledge greatly improves the competence
of planning and operating mobile communication networks.

There have been several authors who introduced queueing models designed to explore the
spatial properties of mobile communication systems. Some of the recent notable contributions
are the following:
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1. Introduction

In 1995, Çinlar [30] used the concept of Poisson random measures in order to obtain distri-
butions for the spatialM=G=1 queue with Poisson arrivals in time and space. Furthermore,
mobility of customers is modelled using a method from Massey, Whitt [63], namely inte-
grating the stochastic location process with respect to the Poisson arrival process. The same
approach will be used in this thesis for a more general model (see section 5.3).

Two years later, Baccelli, Zuyev [9] introduced a sophisticated model for mobile communica-
tion networks using mainly concepts from the theory of point processes. Analytical results are
given only for models which are based on the Poisson process. One of the objectives of the
present thesis is to obtain explicite results for models more general than Poisson models.

Boucherie, Dijk, Mandjes [21, 22] developed a model for cellular mobile communication net-
works which is based on Jackson networks and more general product form networks. Thus
the analysis can be performed using known methods for queueing networks. The spatial dis-
tribution has a granularity as fine as the number of cells in the network.

The crucial ideas for large parts of this thesis came from Baum [16, 17]. In these papers, a
concept of spatial BMAPs is developed and the respective infinite server queue is analysed.
It is shown that this spatial generalization of BMAPs retains the properties of BMAPs which
yield a tractable analysis of such arrival processes and their respective queues. These ideas are
taken up in this thesis and lead to the construction of the so–called Spatial Markovian Arrival
Process (SMAP). It turns out that the analytical methods developed in Baum [14, 16, 17],
which were intended to be applied to queues with BMAP input, can be adapted to the analysis
of several practically relevant queues with SMAP input.

The aim of the present thesis in this context is to develop a unified theory of spatial queues,
which is broad enough to serve as a base for queueing models arising from applicational needs
in mobile communication networks, but also specific enough to yield concrete results for the
performance analysis of such networks. A particular objective is to develop the most natural
generalization of existing concepts (e.g. the BMAP) toward the needs of mobile communi-
cation networks. To these belong the spatial distribution of batch arrivals and users in the
system as well as time–inhomogeneous (e.g. periodic) arrival intensities and user movements.
The concepts used in this thesis will be embedded into existing mathematical concepts. Thus
it is possible to show the similarity of those to concepts used in classical queueing theory.
Furthermore, classical mathematical results can be applied in order to analyze spatial queues.

1.1. Summary

In this thesis, the groundwork is lain for designing queueing models for the application field
of mobile communication networks. Included are the following new concepts and results:
First, a class of spatial arrival processes (called Spatial Markovian Arrival Processes or shortly
SMAPs) is defined, which is general enough to model spatially distributed batch arrivals as
well as time–inhomogeneous (e.g. periodic) arrival rates and a general phase space. It is
shown that SMAPs are a natural generalization of BMAPs and retain the typical properties of
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1.1. Summary

BMAPs, which make them suitable for the matrix convolution calculus introduced by Baum
[14, 15].

Then some practically relevant queues, which are fed by SMAP inputs, are analyzed. These
queues feature the definition of spatially variable service time distributions, i.e. the service
time of a user may depend on its location at the time instant of arrival. Furthermore, their
analysis yields the spatial distribution of users in the system in the transient as well as in
the stationary case. Where applicable, loss formulae are given. A further new feature of the
queueing models presented in this thesis is the possibility of including time–inhomogeneous
arrival intensities (e.g. periodic ones) and deriving the resulting transient and asymptotic
distributions for the respective queues. Since in mobile communication networks there are no
waiting users (if the line is busy, a user would give up or try again later), only spatial queues
with either infinitely many servers or zero waiting room capacity are examined.

In order to practically use stochastic models, it is necessary to obtain statistically validated
estimates of the model parameters. Hence, a routine for parameter estimation from empirical
arrival streams is derived in the present thesis, too. This estimation procedure is applicable
also for BMAPs, for which it is the only published estimation procedure up to now.

The main theoretical concepts, which are used in this thesis, are the theory of Markov jump
processes and the concept of stochastic point fields and their representation by counting func-
tions. Both are shortly introduced in appendices A and B. For special jump processes, new
results are presented in sections A.2 and A.3.

In mobile communication networks the integrated transmission of different data streams is of
standard use. Therefore, it seems appropriate to base models of such networks on the BMAP
concept in order to preserve the capability of modelling integrated service transmission. In the
present thesis, before application–oriented models are developed in terms of spatial queues,
the concept of BMAPs is generalized towards a special class of Markov jump processes in
chapter 2. For this class of so–called Markov–additive jump processes, several properties are
derived which allow the same methods of analysis to be used for spatial queues (as set forth
in this thesis) as well as for the very general class of queues on real vector spaces (instead
of the classical queues on the space of non–negative integers). This opens the way for the
application of queueing theory to many fields which cannot be modelled by classical one–
dimensional queues. Besides the extension of applicability of the theory, this chapter intends
to exhibit fundamental results on arrival processes on a fairly abstract level in order to further
explore the nature of Markov–additive jump processes as an own interest.

In chapter 3, the class of Spatial Markovian Arrival Processes (SMAPs) is defined. This
class will provide the arrrival processes for all queues analyzed in this thesis. SMAPs are a
generalization of BMAPs which creates the possibility of modelling spatially distributed batch
arrivals, time–inhomogeneous (e.g. periodic) arrival rates and a general phase space. Although
this class of arrival processes is much more general than the class of BMAPs, it retains the
same crucial properties that make their analysis tractable. This is shown by the derivation
of the most important properties of SMAPs. At the end of this chapter, some examples for
SMAPs are given, among them the class of non–homogeneous (especially periodic) BMAPs.

3



1. Introduction

Queues with SMAP arrival processes will be treated as spatial queues. The class of Markovian
spatial queues (i.e. those queues which are Markov processes) is treated in chapter 4. For ease
of notational simplicity, this case is examined not in the most general setting, but in terms of
theSMAP=Mt=c=c queue. Yet the same method of analysis applies to theSMAP=Mt=c=c
queue with spatially variable service time distribution or theSMAP=PH=c=c queue in a com-
pletely analogous way. Since these queues are loss systems, a formula for the loss probability
is derived, too. As an example for the utility of the concept of non–homogeneous BMAPs,
the periodicBMAP=Mt=c queue is examined by the same analytical methods. Like all the
spatial queues introduced in the present thesis, this queue has not been analyzed before.

Chapter 5 covers the class of spatial infinite server queues. The method of analysis applied
to this class allows a variety of features of mobile communication networks to be included in
the model. The service time distribution may be general and spatially variable. Furthermore,
the arrival rates may depend on time (e.g. periodic) and even stochastic user movements can
be modeled in a natural way. A simple formula for the asymptotic distribution can be given
only for the case of homogeneous arrival rates without user movements. For the other cases,
approximations along with an estimation of the approximation error are given.

In the last chapter of this thesis, a routine for parameter estimation is introduced for SMAPs.
Although crucial for purposes of practical application, the problem of finding some statisti-
cally validated parameter estimation has not been solved yet, even for BMAPs. The routine
introduced here is divided into three steps, each of which uses classical statistical methods of
inference. It can further be applied to BMAPs for which no other estimation routine has been
proposed yet.

1.2. Notations and Conventions

The set of positive integers is denoted byIN and the set of non–negative integers byIN 0.
The positive real numbers are denoted byIR+ and the non–negative real numbers byIR+

0 .
The empty sum as well as the empty product shall always be defined as the neutral element.
Random variables are defined on an underlying probability space which is not mentioned
explicitly. The end of a proof is marked by a smiley.

Let (S;S) denote a measurable space andQ be a kernel onS �S. Thek-th iterationQk of Q
shall be defined byQ0 := I and iteratively

Qk+1(x;A) :=

Z
S

Qk(x; dy) Q(y; A)

for all x 2 S andA 2 S, with I denoting the identity kernel. The latter is defined as

I(x;A) := 1A(x) =

�
1 for x 2 A
0 for x 62 A

for all x 2 S andA 2 S.

In the case of a discrete state space, the states will be denoted by letters ash; i; j; k 2 S and
we writeQ(i; j) instead ofQ(i; fjg).
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2. Markov-Additive Jump Processes

Inspired by a process developed in Ezhov, Skorokhod [37], the term ”Markov-additive pro-
cess” has been coined by Çinlar [25] in 1972. It refers to a two-dimensional Markov process
with transition probabilities that depend on one dimension only. The marginal process in this
dimension is a Markov process, too, and shall be called phase process in the present thesis.
The marginal process in the other dimension is a process with conditionally independent in-
crements given the phase process.

The first idea of such a process goes back to Neveu [73] in 1961, whose so-called F-process is
the class of Markov-additive processes with a finite phase space. A special case of F-processes
is the class of BMAPs developed in Lucantoni [60] thirty years later, which are now widely
used in queueing theory. The founding work of Çinlar [25] on Markov-additive processes was
followed by several studies in the 1970s and 80s, e.g. Arjas, Speed [3], Çinlar [27], [28],
[29], or Ney, Nummelin [75] for discrete time. This chapter mainly goes along with the paper
by Pacheco, Prabhu [77], which was written after the BMAP concept proved successful as
a versatile arrival process for queues. The concept developed in Pacheco, Prabhu [77] will
be slightly generalized in this chapter and, most importantly, the inhomogeneous case will be
analyzed, too.

In this chapter, the focus is on Markov-additive processes which belong to the class of Markov
jump processes, since they are sufficient as arrival processes for queueing theory. In the first
section, these so-called Markov-additive jump processes are defined and the transition proba-
bilities are derived in terms of the infinitesimal transition rates. The next section states some
elementary properties, mostly resulting from the definition immediately. Under the assump-
tion that the additive part of the state space is a real vector space, Fourier transforms and
expectations are derived in section 2.3. The more specific assumption that the increments for
the additive part be non-negative integers in every component of the vector space leads to the
same derivations as in section 2.3 via the easier notion of z-transforms. These processes will
be called Markovian arrival processes and analyzed in section 2.4. In the last section of this
chapter, laws of large numbers are given for the special cases of periodic or homogeneous
Markov-additive jump processes on real vector spaces.
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2. Markov-Additive Jump Processes

2.1. Definition

Markov-additive jump processes will be defined as two-dimensional Markov jump processes
which satisfy the condition that the transition probabilities depend on the second dimension
only. The first dimension is an (additive) semi-group and the marginal process on it turns
out to have conditionally independent increments given the marginal process in the second
dimension.

Definition 2.1 Let (N; J) = ((Nt; Jt) : t 2 IR
+
0 ) be a two-dimensional Markov jump process

with state spaceS := ���. Let�(�) and�(�) be�-algebras on� and�, respectively, which
satisfyfxg 2 �(�) andfyg 2 �(�) for all x 2 � andy 2 �. DenoteS := �(�) 
 �(�)
as the product�-algebra of�(�) and�(�). Further, let(�;+) be a semi-group with neutral
element0 2 �. Assume that for allx 2 � andA 2 �(�), we also haveA � x := fs 2 � :
s + x 2 Ag 2 �(�). Then(N; J) is calledMarkov-additive jump process if the transition
probabilities satisfy the condition

P (s; t; (x; y); A� B) = P (s; t; (0; y); (A� x)� B) (2.1)

for all s < t 2 IR+
0 , (x; y) 2 S andA� B 2 S. Define

P (s; t; y; A� B) := P (s; t; (0; y); A� B)

for all s < t 2 IR+
0 , y 2 � andA�B 2 S.

Remark 2.1 Definition A.1 postulates that the state spaceS := �� � of a Markov-additive
jump process be locally compact, separable and metric. Standard results in topology (cf.
Herrlich [48], p.224,118,117) yield thatS satisfies this condition if and only if the state spaces
� and� of the marginal processes do so.

Remark 2.2 Because of equation 2.1, a Markov-additive jump process(N; J) is uniquely
determined by the probabilitiesP (s; t; y; A�B). Since(N; J) is a Markov jump process, the
infinitesimal transition rates

q(t; (x; y); A� B) = lim
h!0

P (t; t+ h; (x; y); A�B)� 1A�B(x; y)

h

exist uniformly with respect to(t; (x; y); A� B) and the equality

q(t; (x; y); A� B) = q(t; (0; y); (A� x)�B) (2.2)

follows from equation 2.1. Hence, we can define

q(t; y; A� B) := q(t; (0; y); A� B)

for all t 2 IR+
0 , y 2 � andA�B 2 S, and as in definition A.2


(t; y) := �q(t; y; f(0; y)g)

8



2.1. Definition

and


(t; y; A�B) := q(t; y; (A�B) n f(0; y)g)

as well as

p(t; y; A� B) :=

(

(t;y;A�B)


(t;y)
for 
(t; y) > 0

1A�B(0; y) for 
(t; y) = 0

Finally, define the kernelQ(t) on�� � by

Q(t; (x; y); A� B) := q(t; y; (A� x)�B)

for all t 2 IR+
0 , (x; y) 2 S andA�B 2 S. The kernelQ(t) is called thegeneratorof (N; J)

at timet.

Remark 2.3 By definition, a Markov-additive jump process is translation invariant or ho-
mogeneous in the first component. This leads to a self-similar structure of the generators
(Q(t) : t 2 IR+

0 ), which can be illustrated in the case of an homogeneous Markov-additive
jump process with� being finite and� = IN 0 (the so-called Batch Markovian Arrival Pro-
cess or BMAP, see Lucantoni [60]). Here, the generatorQ, which is constant in time, takes
the form

Q =

0
BBBBBB@

D0 D1 D2 D3 : : :
D0 D1 D2 : : :

D0 D1
. . .

D0
. . .
. . .

1
CCCCCCA

with m � m-matrices(Dn : n 2 IN0), m being the size of�. Omitting the first row and
first column, one obtains the matrixQ again. This self-similarity yields many simplifica-
tions for the analysis of queues with BMAP arrivals. For a so-called level-dependent BMAP,
which does not possess this self-similarity, and for the analysis of queues with level-dependent
BMAP arrivals see Hofmann [50].

As in appendix A, the transition probabilities of the process will be derived as the solutions of
the Kolmogorov differential equations via the method of successive approximations by Picard
and Lindelöf.

Theorem 2.1 Let (N; J) be a Markov-additive jump process. Then the Kolmogorov differen-
tial equations for(N; J) take the following form:

@P (s; t; y; A�B)

@t
=

Z
���

q(t;w; (A� v)� B) P (s; t; y; d(v; w))

9



2. Markov-Additive Jump Processes

for all t > s (Kolmogorov’s forward equation) and

@P (s; t; y; A�B)

@s
= �

Z
���

P (s; t;w; (A� v)� B) q(s; y; d(v; w))

for all s < t (Kolmogorov’s backward equation).

Proof: This is immediate from theorem A.4 and equations 2.1 and 2.2.

Both differential equations contain a convolution in the first dimension. This is a consequence
of the additivity which is defined on the marginal state space�. The convolution form will be
preserved in the transition probabilities, as the next theorems show.

Theorem 2.2 The transition probabilities of a Markov-additive jump process are uniquely
determined by the infinitesimal ratesq(t; y; A�B). They assume the form

P (s; t; y; A�B) =
1X
n=0

P
(n)
b (s; t; y; A�B)

with

P
(0)
b (s; t; y; A� B) := e�

R t
s

(�;y)d�1A�B(0; y)

and recursively

P
(n+1)
b (s; t; y; A� B) :=

Z t

s

Z
���

P
(n)
b (�; t;w; (A� v)�B)e�

R �
s

(�;y)d�
(�; y; d(v; w))d�

for all n 2 IN 0, using the notations from remark 2.2.

Proof: See theorem A.5 and equations 2.1 and 2.2.

If one develops this iteration formula, one obtains

P
(n)
b (s; t; y; A�B) =

=

Z t

s

Z t

u1

: : :

Z t

un�1| {z }
n integrals

Z
S

: : :

Z
S

Z
(A�

Pn�1
i=1 xi)�B| {z }

n integrals

e�
R u1
s


(u;y)du
(u1; y; d(x1; y1)) : : :

: : : e
�
R un
un�1


(u;yn�1)du
(un; yn�1; d(xn; yn))e
�
R t
un


(u;yn)du du1 : : : dun

as can be shown by induction. The transition probabilities can be computed iteratively by
starting with

P0(s; t; y; A� B) := e�
R t
s

(�;y)d�1A�B(0; y)

10



2.1. Definition

and iterating

Pn+1(s; t; y; A� B) :=

=

Z t

s

Z
S

Pn(�; t;w; (A� v)�B)e�
R �
s

(�;y)d�
(�; y; d(v; w))d�

+ e�
R t
s

(�;y)d�1A�B(0; y)

for all n 2 IN 0 ands < t 2 IR+
0 . Then we haveP (s; t) = limn!1 Pn(s; t) for all s < t 2

IR+
0 .

Theorem 2.3 The transition probabilities of a Markov-additive jump process can also be ex-
pressed in the form

P (s; t; y; A� B) =
1X
n=0

P (n)(s; t; y; A� B)

with

P (0)(s; t; y; A� B) := 1A�B(0; y)

and recursively

P (n+1)(s; t; y; A� B) :=

Z t

s

Z
���

P (n)(s; u; y; d(v; w))q(u;w; (A� v)� B)du

for all n 2 IN0.

Proof: See theorem A.6 and equations 2.1 and 2.2.

Again by induction, one can prove that

P (n)(s; t; y; A� B) =

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

(Q(u1) : : :Q(un)) ((0; y); A� B) du1 : : : dun

(2.3)

with Q(u) denoting the generator at timeu 2 [s; t]. An iteration for computing the transition
probabilities is given by starting with

P0(s; t; y; A� B) := 1A�B(0; y)

and iterating by

Pn+1(s; t; y; A� B) :=

Z t

s

Z
S

Pn(s; u; y; d(v; w))q(u;w; (A� v)� B)du+ 1A�B(0; y)

(2.4)

for all n 2 IN0. Then we haveP (s; t) = limn!1 Pn(s; t) for all s < t 2 IR+
0 . For the special

case of a finite state space, this formula reduces to the iteration given in Bellman [19], p.168,
or Kamke [53], p.52. In queueing theory, models with finite state spaces play an important
role, e.g. for finite capacity systems (see section 4.1).

11



2. Markov-Additive Jump Processes

Remark 2.4 In order to illustrate the analogy to existing BMAP theory, define the following.
For everyA 2 �(�) and t 2 IR+

0 , defineD(t)A(y; B) := Q(t; y; A � B) for all y 2 �
andB 2 �(�). ThenD(t)A is a kernel on� for everyA 2 �(�). Define the function
�(t) : A ! D(t)A on �(�) and write�(t)A := �(t)(A) = D(t)A. Further define a
convolution of such functions by

(�(u) ��(v))A (y; B) :=

Z
s2�

Z
z2�

Q(u; y; ds� dz)Q(v; z; (A� s)� B)

for all u; v 2 IR+
0 , A 2 �(�), y 2 � andB 2 �(�). Then also(�(u) ��(v))A is a kernel on

� for everyA 2 �(�). By iteration, it is clear that

(�(u1) � : : : ��(un+1))A := ((�(u1) � : : : ��(un)) ��(un+1))A

is again a kernel on� for everyA 2 �(�) andn 2 IN 0. The identity kernel with respect to
this convolution is given byIdA := 1A(0) � I, with I denoting the identity kernel on�.

Now the transition probabilities from times to timet can be expressed by

P (s; t) =
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

(�(u1) � : : : ��(un)) du1 : : : dun

meaning that for everyy 2 �, A 2 �(�) andB 2 �(�), we have

P (s; t; y; A�B) =

0
BBB@

1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

(�(u1) � : : : ��(un))A du1 : : : dun

1
CCCA (y; B)

In the case of an homogeneous Markov–additive jump process, we can define�0 := Id and
iteratively��(n+1) := ��n ��. Then the above observation and theorem A.8 yield

P (s; t) = e���(t�s) =
1X
n=0

(t� s)n

n!
��n
A

which for� = IN 0 and� = f1; : : : ; mg reduces to the BMAP theory exposed in Baum [14].

2.2. Elementary Properties

Some elementary properties for Markov–additive jump processes can be taken from Çinlar
[25] and Ezhov, Skorokhod [37], who examined the more general class of Markov–additive
processes. This section contains some properties which mostly are immediate consequences
of the definition 2.1. Obviously, the basic sample path properties of Markov jump processes
hold for the subclass of Markov-additive jump processes, too. Furthermore, the distribution
of the holding time in a state of the additive space� can be given.

12



2.2. Elementary Properties

Theorem 2.4 Let(N; J) be a Markov–additive jump process with state space���. Then the
marginal processJ is a Markov jump process with state space� and transition probabilities

P�(s; t; y; B) = P (s; t; y;�� B)

for all s < t 2 IR+
0 , y 2 � andB 2 �(�).

Proof: This follows immediately from definitions 2.1 and A.1.

Remark 2.5 The above observation gives rise to a method of analysis which regards the
marginal processJ as the independent underlying Markov jump process that conditions the
additive processN . The marginal state space� shall be calledphase spaceof (N; J), a
single element of� is called aphase. The marginal processJ shall be calledphase pro-
cessof (N; J), whileN shall be calledadditive processof (N; J). The next theorem shows
thatN has conditionally independent increments givenJ . Furthermore, theorem 2.6 yields a
representation of the generator as the product of two kernels.

Theorem 2.5 Let (N; J) be a Markov-additive jump process with state space� � �. Define
T := infft 2 IR+ : Nt 6= N0g as the holding time of the marginal processN in a state of�.
Further, define the sub-Markov kernelP (T > t) on� by

P (T > t)(y; B) := P (T > t; Jt 2 BjJ0 = y)

for all t 2 IR+, y 2 � andB 2 �(�). Then for alls; t 2 IR+,

P (T > t+ s) = P (T > t)P (T > s)

and furthermore,

P (T > t)(y; B) =
1X
n=0

Z t

0

Z un

0

: : :

Z u2

0| {z }
n integrals

(Q0(u1) : : : Q0(un)) (y; B) du1 : : : dun (2.5)

with

Q0(t)(y; B) := Q(t; y; f0g � B)

for all t 2 IR+
0 , y 2 � andB 2 �(�).

Proof: The first equation follows from the definition ofP (T > t) and the fact that(N; J)
is a Markov-additive jump process. For the second equation, note that the holding timeT is
identical to the first hitting timeTA of the setA := � n f0g � �. Writing Ac = f0g � �,
theorem A.19 yields that

Py(TA > t; Jt 2 B) =

=
1X
n=0

Z t

0

Z t

u1

: : :

Z t

un�1| {z }
n integrals

Z
Ac

: : :

Z
Ac

Z
f0g�B| {z }

n integrals

e�
R u1
0 
(u;y)du
(u1; y; d(0; y1)) : : :

: : : e
�
R un
un�1


(u;yn�1)du
(un; yn�1; d(0; yn))e
�
R t
un


(u;yn)du du1 : : : dun

13



2. Markov-Additive Jump Processes

for everyt 2 IR+, initial state(0; y) 2 � � � and measurable setB 2 �(�). This equals
the transition probability of a (sub-)Markov jump process with state space� and generator
(Q0(t) : t 2 IR

+
0 ). According to equation A.2, statement 2.5 is merely an alternative form for

this transition probability.
f��
�

Remark 2.6 This result contains the statements of theorems 6.9 and 6.11 in Pacheco, Prabhu
[77] as the special case of(N; J) being homogeneous,� = IN r

0 and� being countable. This
follows from theorem A.8.

Remark 2.7 The above theorem and formula 2.5 could serve to define a generalization of the
phase–type or PH distribution (see Neuts [72], pp.231–248). The PH distribution is defined
as the probability measure of the time until an homogeneous continuous–time Markov chain
leaves a finite set of transient states. The generalization implied by formula 2.5 would yield the
probability measure of the time until a general continuous–time Markov jump process leaves
a general set of transient states. The exit rate vector in this generalization would be defined as
�(t; y) := �Q0(t; y; S) and hence be dependent on time.

For later use, a fundamental theorem will be stated which asserts the existence of a represen-
tation of the infinitesimal transition rates (resp. the transition probabilities) as the product of a
kernel on the phase space� (which is a function�� �(�)! [0; 1]) and a kernel from� into
the additive space� (which is a function�� �(�)! [0; 1]).

Theorem 2.6 For everyt 2 IR+
0 andy 2 �, there is a kernelKt;y : ���(�)! IR such that

Q(t; y; A� B) =

Z
B

Q(t; y;�� dz)Kt;y(z; A)

for all A 2 �(�) andB 2 �(�). Furthermore, for everys < t 2 IR+
0 andy 2 �, there is a

kernelLs;t;y : �� �(�)! IR such that

P (s; t; y; A� B) =

Z
B

P (s; t; y;�� dz)Ls;t;y(z; A)

for all A 2 �(�) andB 2 �(�). The kernelsKt;y andLs;t;y are almost surely uniquely
determined.

Proof: See Bauer [13], p.397 (withC = � � �(�)), or Bourbaki [23], p.39 (withp = pr2),
since the chargeQ(t; y; :) can be represented as the difference of two finite measures.

2.3. Markov-Additive Jump Processes on a Real
Vector Space

Now assume that(�;+) is a real vector space. Then(�;+) has a base(bi : i 2 I) with some
index setI, and every elementx 2 � has a unique representation(ci : i 2 I) in IRI with

14



2.3. MAJPs on a Real Vector Space

respect to this base (cf. Nef [70], p.46). Denote the bijective mapping between an element
x 2 � and its representation(ci : i 2 I) by f : � ! IRI . In order to simplify the notation in
the following, an elementx 2 � and its representationf(x) 2 IRI shall be identified. Further,
denote the projection fromIRI to thei-th component bypri : IR

I ! IR.

Under this assumption, transforms as well as expectations can be derived for the marginal
processN of a Markov-additive jump processes(N; J). Using the structure of the vector
space, we can define the expectation of a Markov-additive jump process with state space���
as follows:

Definition 2.2 Let (N; J) be a Markov-additive jump process with state space� � � and
assume that(�;+) is a real vector space. TheexpectationE(Nt � Ns) of the marginal
processN during the time interval]s; t] is defined as the kernel on� with entries

E(Nt �Ns)(y; B) := (E(pri(Nt �Ns) � 1B(Jt)jJs = y) : i 2 I)

For real valued random variables, the Fourier transform has proved very useful, especially
for determining moments (cf. Bauer [13], pp.183-223). The same analytical method shall be
applied here for every dimension of the vector space�.

Definition 2.3 Let (N; J) be a Markov-additive jump process with state space� � � and
let (�;+) be a real vector space. Then theFourier transform N�

s;t of (N; J) over the time
interval]s; t] shall be defined as the functionr ! N�

s;t(r) with

N�
s;t(r)(y; B) :=

�Z 1

�1

ei�rc P (s; t; y; pr�1j (dc)�B) : j 2 I

�
for all r 2 IR, y 2 � andB 2 �(�), with i denoting the imaginary unit in the spaceC of
complex numbers.

Remark 2.8 Note that by theorem 2.6, the distributionP (s; t; y; pr�1j (dc)�B) in c 2 IR can
be written as

P (s; t; y; pr�1j (dc)�B) =

Z
B

P (s; t; y;�� dz)Ls;t;y(z; dc)

with some kernelLs;t;y from� to IR. Hence the representation

prj(N
�
s;t(r)(y; B)) =

Z
B

Z 1

�1

ei�rc Ls;t;y(z; dc) P (s; t; y;�� dz)

holds and thus every componentprj(N
�
s;t(r)) is a kernel on�.

Theorem 2.7 For everyj 2 I, r 2 IR and t 2 IR+
0 , define the kernel'Q(j)(t)(r) on� by its

entries

'Q(j)(t)(r)(y; B) :=

Z 1

�1

ei�rc Q(t; y; pr�1j (dc)�B)

=

Z
B

Z 1

�1

ei�rc Kt;y(z; pr
�1
j (dc)) Q(t; y;�� dz)

15



2. Markov-Additive Jump Processes

for all y 2 � andB 2 �(�), with some kernelKt;y from � to � (see theorem 2.6 for the
second equality). Then the Fourier transform of(N; J) over the time interval]s; t] can be
written as

N�
s;t(r) =

0
BBB@

1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

'Q(j)(u1)(r) : : : 'Q(j)(un)(r) du1 : : : dun : j 2 I

1
CCCA

for all r 2 IR, with the summand forn = 0 being the identity kernelI on�.

Proof: Fix j 2 I as well asy 2 � andB 2 �(�). According to formula 2.3, thejth
component ofN�

s;t(r)(y; B) equals

prj(N
�
s;t(r)(y; B)) =

1X
n=0

Z 1

�1

ei�rc P (n)(s; t; y; pr�1j (dc)� B)

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

Z 1

�1

ei�rc (Q(u1) : : :Q(un)) ((0; y); pr
�1
j (dc)� B) du1 : : : dun

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s

Z
IR��

Q(u1; y; pr
�1
j (dc1)� dy1)e

i�rc1 : : :

: : :

Z
IR��

Q(un�1; yn�2; pr
�1
j (dcn�1)� dyn�1)e

i�rcn�1Z
IR�B

Q(un; yn�1; pr
�1
j (dcn)� dyn)e

i�rcn du1 : : : dun

by writing out the convolutionc = c1+ : : :+ cn explicitly. Further, application of theorem 2.6
leads to

prj(N
�
s;t(r)(y; B)) =

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s

Z
�

Z 1

�1

ei�rc1Ku1;y(y1; pr
�1
j (dc1))Q(u1; y;�� dy1)) : : :

: : :

Z
�

Z 1

�1

ei�rcn�1Kun�1;yn�2(yn�1; pr
�1
j (dcn�1))Q(un�1; yn�2;�� dyn�1)Z

B

Z 1

�1

ei�rcnKun;yn�1(yn; pr
�1
j (dcn))Q(un; yn�1;�� dyn) du1 : : : dun

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s

Z
�

'Q(j)(u1)(r)(y; dy1) : : :

Z
B

'Q(j)(un)(r)(yn�1; dyn) du1 : : : dun

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s

�
'Q(j)(u1)(r) : : : 'Q(j)(un)(r)

�
(y; B) du1 : : : dun

f��
�
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2.3. MAJPs on a Real Vector Space

Theorem 2.8 Define the kernelM (j)(t) on� by

M (j)(t)(y; B) :=

Z 1

�1

c Q(t; y; pr�1j (dc)� B)

for all t 2 IR, j 2 I, y 2 � andB 2 �(�). Then the expectation of the marginal processN
over the time interval]s; t] is given by

E(Nt �Ns) =

�Z t

s

P�(s; u)M (j)(u) P�(u; t) du : j 2 I

�

Proof: The expectationE(Nt �Ns) can be computed as

E(Nt �Ns) = �i �
d

dr
N�
s;t(r)

����
r=0

recognizing that the differentiation can be performed component-wise. Then thejth compo-
nent ofE(Nt �Ns) is

prj(E(Nt �Ns)) =

= �i �
1X
n=1

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

d

dr

�
'Q(j)(u1)(r) : : : 'Q(j)(un)(r)

�����
r=0

du1 : : : dun

according to the preceding theorem 2.7. Applying the product rule of differentiation, this
equals

prj(E(Nt �Ns)) = �i �
1X
n=1

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

nX
l=1

'Q(j)(u1)(0) : : : 'Q(j)(ul�1)
(0)

�
d

dr
'Q(j)(ul)

(r)

����
r=0

�
'Q(j)(ul+1)

(0) : : : 'Q(j)(un)(0) du1 : : : dun

=
1X
l=1

1X
n=l

Z t

s

Z un

s

: : :

Z ul+2

s| {z }
n�l integrals

Z ul+1

s

Z ul

s

: : :

Z u2

s| {z }
l�1 integrals

'Q(j)(u1)(0) : : : 'Q(j)(ul�1)
(0)du1 : : : dul�1

�
�i �

d

dr
'Q(j)(ul)

(r)

����
r=0

�
dul 'Q(j)(ul+1)

(0) : : : 'Q(j)(un)(0) dul+1 : : : dun

Acknowledging that

�i �
d

dr
'Q(j)(ul)

(r)

����
r=0

(y; B) =

Z 1

�1

c Q(ul; y; pr
�1
j (dc)� B) =M (j)(ul)(y; B)
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2. Markov-Additive Jump Processes

is the expectation kernel of thejth component and

'Q(j)(u)(0)(y; B) = Q(u; y;�� B)

is the infinitesimal transition rate of the phase process, leads to

prj(E(Nt �Ns)) =

=

Z t

s

0
BBB@

1X
l=1

Z ul

s

: : :

Z u2

s| {z }
l�1 integrals

'Q(j)(u1)(0) : : : 'Q(j)(ul�1)
(0) du1 : : : dul�1

1
CCCAM (j)(ul)

0
BBB@

1X
n=l

Z t

ul

Z un

ul

: : :

Z ul+2

ul| {z }
n�l integrals

'Q(j)(ul+1)
(0) : : : 'Q(j)(un)(0) dul+1 : : : dun

1
CCCA dul

=

Z t

s

P�(s; ul)M
(j)(ul)P

�(ul; t) dul

f��
�

Example 2.1 The previous results can be exemplified by the following process. LetQ� be the
generator of an homogeneous Markov jump processJ with measurable state space(�; �(�)).
This will be the phase process. Assume thatJ has a stationary distribution�, i.e. �Q� = 0.
Further, let� be some probability distribution on(IR;B) with B denoting the Borel�–algebra
on IR. Specify(�;+) to be the real line(IR;+), i.e.� has dimension 1. Choosing a function
� : IR+

0 � � ! IR+
0 of time–dependent arrival rates withsupt2IR+0 ;y2� �(t; y) < 1, we can

define a Markov–additive jump process by

q(t; y; A� B) := 1A(0) �Q
�(y; B) + 1B(y) � �(t; y)(�(A)� 1A(0))

for all t 2 IR+
0 ; y 2 �; A 2 B andB 2 �(�). This process may be called a fluid compound

MMPP with homogeneous phase process. The mean marginal rate of the additive process at
time t and in phasey equals

M(t)(y;�) =

Z 1

�1

c � �(t; y) d�(c) = �(t; y) �E(�)

with E(�) denoting the first moment of the distribution�. For this process, the expectation of
the marginal process on� = IR over the time interval]s; t] starting in phase equilibrium at
times equalsZ

�

�(dy)E(Nt �Ns)(y;�) =

Z
�

�(dy)

Z t

s

M(t)(y;�) du

=

Z t

s

Z
�

�(t; y) �(dy) du � E(�)

according to theorem 2.8.
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2.4. Markovian Arrival Processes

In queueing theory, the most important variable is that of the number of users or customers
in the system (which is the queue or the queueing network). The values of this are limited to
the setIN0 of non-negative integers. Thus for most applications in queueing theory, the use
of Markov-additive processes(N; J) on real vector spaces (of dimensionjIj) with IN I

0-valued
marginal processN suffices.

If the support of the marginal processN is onIN I
0, i.e. if P (pri(Nt) 2 IN0) = 1 for all i 2 I

andt 2 IR+
0 , then the easier notion of a z-transform serves the same purposes as the Fourier

transform. In this section, the same analysis as in the preceding section 2.3 shall be carried
out using z-transforms.

Definition 2.4 Let (N; J) be a Markov-additive jump process with state space�� � and let
(�;+) be a real vector space having a base(bi : i 2 I). If the marginal processN has support
IN I

0, then(N; J) shall be calledMarkovian arrival process.

Remark 2.9 The homogeneity of the first component implies that Markovian arrival pro-
cesses have only non-negative increments in the first dimension. This follows from property
2.1, since for everyn 2 �, k 2 IN and any dimensioni 2 I of the vector space,

P (s; t; (n; y); pr�1i (pri(n)� k)� B) = P (s; t; y; pr�1i (�k)� B) = 0

because ofpr�1i (�k) 62 IN I
0.

Definition 2.5 Let (N; J) be a Markovian arrival process. Define thez-transform of (N; J)
over the time interval]s; t] as the functionz ! N(s; t; z) with values being the kernels on�
which are determined by

N(s; t; z)(y; B) :=

 
1X
n=0

P (pri(Nt �Ns) = n; Jt 2 BjJs = y) zn : i 2 I

!

for all z 2 Cwith jzj � 1, y 2 � andB 2 �(�).

Theorem 2.9 For everyi 2 I, k 2 IN0 andt 2 IR+
0 , define the kernelsQ(i)

k (t) on� by

Q
(i)
k (t)(y; B) := Q(t; y; pr�1i (k)�B)

for all y 2 � andB 2 �(�). Then the z-transform of(N; J) over the time interval]s; t] can
be written as

N(s; t; z) =

0
BBB@

1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

1X
k=0

Q
(i)
k (u1)z

k : : :
1X
k=0

Q
(i)
k (un)z

k du1 : : : dun : i 2 I

1
CCCA

for all z 2 Cwith jzj � 1.

19
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Remark 2.10 Note that
P1

k=0Q
(i)
k (uj)z

k is a kernel on� for everyj 2 IN and thus every
product

P1
k=0Q

(i)
k (u1)z

k : : :
P1

k=0Q
(i)
k (un)z

k is a kernel on�, too.

Proof: Fix i 2 I as well asy 2 � andB 2 �(�). According to formula 2.3, theith
component ofN(s; t; z)(y; B) equals

pri (N(s; t; z)(y; B)) =
1X
k=0

1X
n=0

P (n)(s; t; y; pr�1i (k)�B) � zk

=
1X
k=0

1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

(Q(u1) : : : Q(un)) ((0; y); pr
�1
i (k)� B) du1 : : : dun � z

k

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

1X
k=0

X
k1+:::+kn=k

�
Q(i)
k1
(u1) : : : Q

(i)
kn
(un)

�
(y; B) � zk du1 : : : dun

=
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

 
1X
k=0

Q
(i)
k (u1)z

k : : :
1X
k=0

Q
(i)
k (un)z

k

!
(y; B) du1 : : : dun

since the z-transform of the convolution of the kernelsQ
(i)
k1
(u1; ) : : : ; Q

(i)
kn
(un) equals the prod-

uct of the z-transforms ofQ(i)
k1
(u1); : : : ; Q

(i)
kn
(un).

f��
�

Theorem 2.10 The expectation of the marginal processN over the time interval]s; t] is given
by

E(Nt �Ns) =

 Z t

s

P�(s; u)
1X
k=1

k �Q
(i)
k (u) P�(u; t) du : i 2 I

!

Proof: The expectationE(Nt �Ns) can be computed as

E(Nt �Ns) =
d

dz
N(s; t; z)

����
z=1

recognizing that the differentiation can be performed component-wise. Then theith compo-
nent ofE(Nt �Ns) is

pri(E(Nt �Ns)) =

=
1X
n=1

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

d

dz

 
1X
k=0

Q
(i)
k (u1)z

k : : :
1X
k=0

Q
(i)
k (un)z

k

!�����
z=1

du1 : : : dun
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2.5. Laws of Large Numbers

Denote the generator of the phase process at timeu byQ�(u) and note that

Q�(u) =
1X
k=0

Q(i)
k (u)

is independent ofi 2 I. Applying the product rule of differentiation yields

pri(E(Nt �Ns)) =

=
1X
n=1

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

nX
l=1

Q�(u1) : : : Q
�(ul�1)

 
1X
k=1

kQ
(i)
k (ul)

!
Q�(ul+1) : : : Q

�(un)

du1 : : : dun

=
1X
l=1

1X
n=l

Z t

s

Z un

s

: : :

Z ul+2

s| {z }
n�l integrals

Z ul+1

s

Z ul

s

: : :

Z u2

s| {z }
l�1 integrals

Q�(u1) : : : Q
�(ul�1)du1 : : : dul�1

 
1X
k=1

kQ
(i)
k (ul)

!
dulQ

�(ul+1) : : : Q
�(un) dul+1 : : : dun

=

Z t

s

0
BBB@

1X
l=1

Z ul

s

: : :

Z u2

s| {z }
l�1 integrals

Q�(u1) : : : Q
�(ul�1)du1 : : : dul�1

1
CCCA

1X
k=1

kQ
(i)
k (ul)

0
BBB@

1X
n=l

Z t

ul

Z un

ul

: : :

Z ul+2

ul| {z }
n�l integrals

Q�(ul+1) : : :Q
�(un) dul+1 : : : dun

1
CCCA dul

=

Z t

s

P�(s; ul)

 
1X
k=1

kQ
(i)
k (ul)

!
P�(ul; t) dul

remembering that the transition probabilities of the phase process are denoted byP�(s; t).
f��
�

Remark 2.11 The first moment formulae given in Pacheco, Prabhu [77], theorem 6.15 and
corollary 6.16(a), can be obtained from this theorem as the special case of(N; J) being ho-
mogeneous,� = IN r

0 and� being countable.

2.5. Laws of Large Numbers

For some special cases of Markov-additive jump processes on real vector spaces, the asymp-
totic behaviour can be described in terms of strong laws of large numbers. First, this will be
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2. Markov-Additive Jump Processes

done for processes with periodic generators (cf. appendix A.3). The case of homogeneous
processes shall turn out to be a corollary of the periodic case. In this section, convergence on
the vector space� shall be defined in a weak sense as convergence in every dimension of�.

Theorem 2.11 Let(N; J) denote a periodic Markov-additive jump process with periodT and
be(�;+) a real vector space with base(bi : i 2 I). Let the phase processJ have a periodic
family of asymptotic distributions(�t : t 2 [0; T [) as defined in appendix A.3. Define the mean
rate vector during a period length by

� :=

�
1

T

Z T

0

Z
�

d�t(y)

Z 1

�1

c Q(t; y; pr�1i (dc)� �) dt : i 2 I

�
Assume thatkpri(E(Nt))k < M(t) <1 for all i 2 I andt 2 [0; T ]. Then

Nt

t
! � as t!1

P -almost surely for all initial distributions.

Proof: Because of property 2.1, the evolution of the process(N; J) depends only on the
initial distribution� of J0 on the phase space�. Since further for every initial valueN0 6= 0
the quotientN0=t vanishes fort ! 1, we can assumeN0 = 0 almost surely without loss of
generality. LetN�

t denote the marginal processN at timet under initial phase distribution�.
Further, let't = �P�(0; t) denote the distribution of the phase process at timet.

Choose any" > 0. Then there is a numberk 2 IN such thatk�P�(0; nT )� �0k < " for all
n � k and the representation

Nt

t
=

1

t

�
NkT + (Nbt=T cT �NkT ) + (Nt �Nbt=T cT )

�
=

1

t
NkT +

1

t
N'kT

(bt=T c�k)T +
1

t
(Nt �Nbt=T cT )

holds because of the periodicity of the process. Since the expectation kernelE(Ns) is bounded
for all s 2 IR0, the first and the last term will vanish fort ! 1 almost surely. The second
term equals

1

t
N'kT

(bt=T c�k)T =
1

t
N�0

(bt=T c�k)T +
1

t
N'kT��0

(bt=T c�k)T =
1

t

bt=T c�1X
m=k

N�0
T +

1

t
N'kT��0

(bt=T c�k)T

since�0 = �0P
�(0; T ) is invariant. The first term of this sum tends to

lim
t!1

1

t

bt=T c�1X
m=k

N�0
T = lim

t!1

(bt=T c � k)T

t

1

(bt=T c � k)T

bt=T cX
m=k+1

N�0
T

= lim
t!1

(bt=T c � k)T

t
� lim
n!1

1

(n� k)T

nX
m=k+1

N�0
T

=
1

T
E(N�0

T ) = �
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2.5. Laws of Large Numbers

almost surely, according to Kolmogorov’s law of large numbers (cf. Bauer [13], p.86) and
theorem 2.8. The assumptionk�P�(0; kT )� �0k < " implies

P
�
N'kT

(bt=T c�k)T 6= N�0
(bt=T c�k)T

�
< "

which means that

N'kT��0
(bt=T c�k)T = N'kT

(bt=T c�k)T �N�0
(bt=T c�k)T = 0

with probability1� ". Hence with probability1� ", the convergenceNt

t
! � holds. Since"

can be chosen arbitrarily small, there can be no setN with P (N) > 0 such thatNt(!)
t

6! � for
all ! 2 N .
f��
�

Remark 2.12 If there is a norm on� (e.g. the supremum normkxk := supi2I jpri(x)j for
all x 2 �) and� is complete with respect to this norm, i.e. if� is a Banach space, then the
above theorem is valid for convergence in terms of the norm on�, too. This can be proven in
exactly the same way by using the strong law of large numbers on Banach spaces (cf. Mourier
[68] or Beck [18]) instead of Kolmogorov’s law of large numbers, which is a statement for
real-valued random variables.

Theorem 2.12 Let (N; J) denote an homogeneous Markov-additive jump process and be
(�;+) a real vector space with base(bi : i 2 I). Assume that the phase processJ has
an asymptotic distribution�. Define the mean rate vector by

� :=

�Z
�

d�(y)

Z 1

�1

c Q(y; pr�1i (dc)� �) : i 2 I

�
If kpri(E(N1))k < M <1 for all i 2 I, then

Nt

t
! � as t!1

P -almost surely for all initial distributions.

Proof: This follows immediately from theorem 2.11, since an homogeneous process with
asymptotic distribution� is a periodic process with arbitrary period lengthT > 0 and periodic
family (�t = � : t 2 [0; T [) of asymptotic distributions. Furthermore,Z

�

d�(y)

Z 1

�1

c Q(y; pr�1i (dc)� �) =
1

T

Z T

0

Z
�

d�t(y)

Z 1

�1

c Q(t; y; pr�1i (dc)� �) dt

holds for alli 2 I, sinceQ(t; y; pr�1i (dc)� �) = Q(y; pr�1i (dc)� �) is constant int.
f��
�

Remark 2.13 The statement of this theorem is the same as the result in Pacheco, Prabhu [77],
theorem 6.17, if one specifies� = IN r

0 and� being countable.
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3. Spatial Markovian Arrival
Processes

The recent rise of mobile communication systems gave reason to the development of queue-
ing models which are capable of incorporating spatial features. Introducing spatial arrival
processes is of great help for modelling mobile communication networks, since users can be
characterized more adequately by properties depending on their position. To this end, the con-
cept of a time-space process is needed, which is able to describe the time dynamics of arrivals
as well as their distribution in space.

In this chapter, the concept of Batch Markovian Arrival Processes (or shortly BMAPs, see
Lucantoni [60]) will be generalized towards a class of such time-space processes, which shall
be called Spatial Markovian Arrival Processes (or shortly SMAPs). This generalization points
in three directions. First, the phase space is allowed to be general. Second, the generator of
an SMAP may depend on time, i.e. SMAPs provide for time-inhomogeneous behaviour. And
finally, the attribute ”spatial” appearing in the name stems from the feature that arrivals may
assume a location in some space. Thus they are distributed not only with respect to time but
also with respect to their location in a so–called arrival space. This is important for modelling
mobile communication networks, for which the spatial distribution of users is of relevance
and often the arrival intensities and service requirements may depend on the location a user
calls from. Furthermore, spatial distributions of users typically will include spatial correlations
among the different locations of arrivals in a batch. The spatial features of SMAPs are inspired
by and based upon an earlier concept of Markovian spatial arrival processes introduced by
Baum [16]. SMAPs keep the most important structural properties of BMAPs, such that the
computations necessary for analyzing them and the respective queues are still tractable.

In section 3.1, the class of spatial Markovian arrival processes is defined and constructed from
basic ingredients. The most important properties of SMAPs are derived in section 3.2. In
particular, the transition probabilities of SMAPs are specified and a law of large numbers is
given for periodic SMAPs. The last section contains some simple examples.

3.1. Definition and Construction

In this section, the so–called spatial Markovian arrival process (or shortly SMAP) will be
introduced. This shall be done by using the concept of stochastic point fields developed in
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3. Spatial Markovian Arrival Processes

appendix B. The space of counting functions on some arrival space will take the place of the
additive space of a Markovian arrival process as defined in definition 2.4. Thus, point fields
serve as a description for the spatial distribution of arrivals for SMAPs and henceforth, they
shall be calledarrival fields .

After defining spatial Markovian arrival processes as a special case of Markovian arrival pro-
cesses, a way of constructing SMAPs from a given generator of the phase process and a set of
finite-dimensional marginal distributions of the arrival fields is described.

Definition 3.1 Let R be a Polish space and�(R) the Borel�-algebra onR. Further, letC
denote the space of counting functions on(R; �(R)). Let �(C) be the�-algebra onC which
is constructed in theorem B.3. Further, let� denote a separable metric space, which is locally
compact, and let�(�) denote a�-algebra on�. A Markov-additive jump process(N; J) with
state spaceS := C�� shall be calledspatial Markovian arrival process (or shortlySMAP)
with arrival space (R; �(R)).

Remark 3.1 SinceC � IN
�(R)
0 , a spatial Markovian arrival process(N; J) is a special kind

of Markovian arrival processes as defined in definition 2.4. Hence we can call� the phase
space andJ the phase process of(N; J).

Remark 3.2 The batch Markovian arrival process (or shortly BMAP) developed by Lucantoni
[60] is an homogeneous SMAP with a trivial arrival spaceR = fqg consisting of only one
element and a finite phase space� = f1; : : : ; mg. Hence, all results for SMAPs and queues
with SMAPs are valid for BMAPs and queues with BMAPs, too. This observation will be
illustrated in sections 4.2 and 6.4.

The remaining results show a way of constructing an SMAP. First, conversely to theorem
2.6, a generator on the state spaceC � � is composed of a kernel on� and a kernel from
� to �(C). After that, it is shown that the second kernel (which includes a measure on the
spaceC of counting functions) can be determined uniquely by a sufficiently large set of finite-
dimensional marginal distributions.

Theorem 3.1 LetD�(t) be the (time-dependent) generator of a Markov jump process on�.
Further, letKt;y : �� �(C)! [0; 1] be a Markov kernel for everyy 2 � andt 2 IR+

0 . Define

D(t; y; A� B) :=

Z
B

Kt;y(z; A) D
�(t; y; dz)

for all t 2 IR+
0 , y 2 �,A 2 �(C) andB 2 �(�). ThenD(t) is the (time-dependent) generator

of a spatial Markovian arrival process.

Proof: Define the same norm on the space of kernels onS as in remark A.1, namely

kKk := sup
x2S;A2S

jK(x;A)j
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3.1. Definition and Construction

for every kernelK onS. SinceD�(t) is a generator, the functiont ! D�(t) is bounded by
theorem A.1. BecauseKt;y is a Markov kernel for everyy 2 � andt 2 IR+

0 , this implies that
the functiont! D(t) is bounded, too.

Fix anyt 2 IR+
0 . Then

kD(t+ h)�D(t)k = sup
y2S;A�B2S

jD(t+ h; y; A�B)�D(t; y; A�B)j

� sup
y2S;B2�(�)

jD�(t+ h; y; B)�D�(t; y; B)j

sinceKt;y is a Markov kernel, i.e.Kt;y(z; A) 2 [0; 1] for all z 2 � andA 2 �(C). Since the
functiont! D�(t) is continuous, we have

kD(t+ h)�D(t)k � kD�(t+ h)�D�(t)k ! 0

ash! 0. Hence, the functiont! D(t) is continuous.

Now the statement follows by remark A.8.
f��
�

Remark 3.3 According to definition A.2 and section A.1, a generatorD� can be constructed
by choosing values
(t; y) 2 IR+ for all y 2 � and t 2 IR+

0 and jump kernelsp(t; :; :) :
�� �(�)! [0; 1] for all t 2 IR+

0 such that the conditions in definition A.7 are fulfilled.

In order to uniquely determine the measure partKt;y(z; :) of the kernelKt;y, it suffices to
specify the finite-dimensional marginal measures.

Definition 3.2 Forn 2 IN , S1; : : : ; Sn 2 �(R) andk1; : : : ; kn 2 IN 0, define

pr�1(S1;::: ;Sn)
(k1; : : : ; kn) := fN 2 C : N(Si) = ki 8i 2 f1; : : : ; ngg

as the inverse image of the projection of functions inC to values at(S1; : : : ; Sn). Further,
denote the stochastic point fields

�t;y;z := Kt;y(z; :)

and their finite-dimensional marginal distributions at(S1; : : : ; Sn) by

�t;y;z(S1; : : : ; Sn)(k1; : : : ; kn) := �t;y;z(pr
�1
(S1;::: ;Sn)

(k1; : : : ; kn))

for all t 2 IR+
0 andy; z 2 �.

Theorem 3.2 An SMAP(N; J) on (R; �(R)) is uniquely determined by the generatorD�(t)
of its phase process and the marginal distributions�t;y;z(S1; : : : ; Sn) of its arrival fields on
finite families of disjoint subsetsS1; : : : ; Sn 2 �(R) from a semi-ring of bounded sets gener-
ating�(R).

Proof: According to theorem B.4, the measure�t;y;z = Kt;y(z; :) is uniquely determined
by its marginal measures�t;y;z(S1; : : : ; Sn) on finite families of disjoint subsetsS1; : : : ; Sn 2
�(R) from a semi-ring of bounded sets generating�(R). With this, the statement follows from
theorem 3.1.
f��
�
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3. Spatial Markovian Arrival Processes

3.2. Properties

In this section, the most important properties of SMAPs shall be derived. It turns out that
it suffices to consider a sufficiently large set of finite-dimensional marginal processes of an
SMAP, in order to describe the whole process. Formulae for the transition probabilities,
which uniquely determine an SMAP, are taken from the more general concept of Markovian
arrival processes and specified for the case of SMAPs. As for Markovian arrival processes,
the concept of z–transforms leads to an expression for the expectation kernel of an SMAP. For
periodic and homogeneous SMAPs, strong laws of large numbers describe their asymptotic
behaviour.

3.2.1. Marginal Processes

The state space of the marginal processN is the spaceC of counting functions. Since a prob-
ability measure onC is uniquely determined by a sufficiently large set of finite-dimensional
marginal distributions (see theorem B.4), it is possible to uniquely determineN by a set of
finite-dimensional marginal processes ofN .

Definition 3.3 Define the stochastic processes

N(S1; : : : ; Sn) := pr(S1;::: ;Sn)(N)

for all n 2 IN andS1; : : : ; Sn 2 �(R). Then the process(N(S1; : : : ; Sn); J) shall be called
themarginal processof (N; J) on (S1; : : : ; Sn).

Theorem 3.3 For t 2 IR+
0 , n 2 IN , S1; : : : ; Sn 2 �(R) andk1; : : : ; kn 2 IN 0, define the

kernelsDk1;::: ;kn(t;S1; : : : ; Sn) on� by

Dk1;::: ;kn(t;S1; : : : ; Sn)(y; A) := D(t; y; pr�1(S1;::: ;Sn)
(k1; : : : ; kn)� A)

for all y 2 � andA 2 �(�). Then the sequence

�(t;S1; : : : ; Sn) := (Dk1;::: ;kn(t;S1; : : : ; Sn) : k1; : : : ; kn 2 IN0)

uniquely determines the generator of the marginal process(N(S1; : : : ; Sn); J) and thus the
process(N(S1; : : : ; Sn); J) itself.

Proof: This follows from the definitions ofDk1;::: ;kn(t;S1; : : : ; Sn) andN(S1; : : : ; Sn).

Definition 3.4 The time-dependent sequence�(t;S1; : : : ; Sn) shall be calledgenerating se-
quenceof the marginal process(N(S1; : : : ; Sn); J).

Theorem 3.4 An SMAP(N; J) is uniquely determined by the time–dependent generating se-
quences�(t;S1; : : : ; Sn) of the marginal processes(N(S1; : : : ; Sn); J) on all finite families
of disjoint subsetsS1; : : : ; Sn 2 �(R) from a semi–ring of bounded sets generating�(R).

Proof: This follows from theorems 3.3 and B.4.
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3.2. Properties

3.2.2. Transition Probabilities

In order to determine the transition probabilities of an SMAP(N; J), a description of distribu-
tions on the spaceC by means of finite-dimensional marginal distributions is helpful again. In
this subsection, the transition probabilities of(N; J) are given in terms of the transition proba-
bilities of the marginal processes(N(S1; : : : ; Sn); J) for anyn 2 IN andS1; : : : ; Sn 2 �(R).
This method further yields explicit formulae to compute those transition probabilities via con-
volutions of kernels on� which are indexed withinINn

0 for somen 2 IN .

Definition 3.5 Define the kernelN(s; t;C) on� by

N(s; t;C)(y; A) := P (s; t; y; C � A)

for everyy 2 � andA 2 �(�). Further define for anyn 2 IN andS1; : : : ; Sn 2 �(R)

Nk1;::: ;kn(s; t;S1; : : : ; Sn) := N(s; t; pr�1(S1;::: ;Sn)
(k1; : : : ; kn))

as a kernel on�.

Remark 3.4 Note that by property 2.1, the kernels(N(s; t; :) : s < t 2 IR+
0 ) uniquely

determine all transition probabilities of(N; J). Furthermore, these are already determined
by the transition probability kernelsN(s; t;S1; : : : ; Sn) on finite families of disjoint subsets
S1; : : : ; Sn 2 �(R) from a semi-ring of bounded sets generating�(R), as theorem B.4 implies.

In the case of finite-dimensional marginal processes of an SMAP, the convolution formulae
for the transition probabilities, which are derived as the solutions of the Kolmogorov forward
equations, take the following form:

Definition 3.6 For all s < t 2 IR+
0 , n 2 IN andS1; : : : ; Sn 2 �(R) set

N
(0)
i1;::: ;in

(s; t;S1; : : : ; Sn)(y; A) :=

�
1 for

Pn
m=1 im = 0, y 2 A

0 otherwise

for i1; : : : ; in 2 IN 0, y 2 � andA 2 �(�). Further, define the sequence

N (1)(s; t;S1; : : : ; Sn) :=

Z t

s

�(u;S1; : : : ; Sn)du

and recursively form 2 IN

N
(m)
i1;::: ;in

(s; t;S1; : : : ; Sn) :=

i1X
j1=0

: : :
inX

jn=0

Z t

s

N
(m�1)
j1;::: ;jn

(s; u;S1; : : : ; Sn)Di1�j1;::: ;in�jn(u;S1; : : : ; Sn)du

for all i1; : : : ; in 2 IN0.
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3. Spatial Markovian Arrival Processes

Theorem 3.5 For everys < t 2 IR+
0 , the transition probability kernelN(s; t) := N(s; t; :) is

given by

N(s; t) =
1X
m=0

N (m)(s; t);

meaning that forn 2 IN andS1; : : : ; Sn 2 �(R)

Nk1;::: ;kn(s; t;S1; : : : ; Sn) =
1X
m=0

N
(m)
k1;::: ;kn

(s; t;S1; : : : ; Sn)

for all k1; : : : ; kn 2 IN0.

Proof: Since SMAPs are special Markov-additive jump processes, the transition probabilities
are given in theorem 2.3. For the case of finite-dimensional marginal processes of an SMAP,
they assume the above form.

Theorem 3.6 An iteration formula for the computation of the transition probabilities
N(s; t;S1; : : : ; Sn)(y; A) is given by starting with

N
[0]
i1;::: ;in

(s; t;S1; : : : ; Sn)(y; A) := 1f0g�A

 
nX

m=1

im; y

!

=

�
1 for

Pn
m=1 im = 0, y 2 A

0 otherwise

and iterating by

N
[m]
i1;::: ;in

(s; t;S1; : : : ; Sn) :=

=
i1X

j1=0

: : :
inX

jn=0

Z t

s

N [m�1]
j1;::: ;jn

(s; u;S1; : : : ; Sn)Di1�j1;::: ;in�jn(u;S1; : : : ; Sn)du

+ 1f0g�A

 
nX

m=1

im; y

!

for all i1; : : : ; in 2 IN0 andm 2 IN .

Proof: This is merely the form of the iteration formula 2.4 for this special case.

Remark 3.5 For the special case of a finite state space, this formula reduces to the iteration
given in Bellman [19], p.168, or Kamke [53], p.52.

In the case of homogeneous SMAPs, the above formulae assume a somewhat simpler form.
For a special class of homogeneous SMAPs with finite phase space, this form has been derived
in Baum [14, 16].
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Let (N; J) denote an homogeneous SMAP with arrival space(R; �(R)). Then for alln 2 IN
andS1; : : : ; Sn 2 �(R), the generating sequences

�(S1; : : : ; Sn) := �(t;S1; : : : ; Sn) = (Dk1;::: ;kn(S1; : : : ; Sn) : (k1; : : : ; kn) 2 (IN 0)
n)

are constant in timet 2 IR+
0 .

Definition 3.7 For alln 2 IN andS1; : : : ; Sn 2 �(R) set

�(S1; : : : ; Sn)
�0
k1;::: ;kn(y; A) :=

�
1 for

Pn
i=1 ki = 0, y 2 A

0 otherwise

for k1; : : : ; kn 2 IN 0, y 2 � andA 2 �(�). Further, define the sequence

�(S1; : : : ; Sn)
�1 := �(S1; : : : ; Sn)

and recursively form 2 IN

�(S1; : : : ; Sn)
�m
k1;::: ;kn :=

k1X
l1=0

: : :
knX
ln=0

�(S1; : : : ; Sn)
�m�1
l1;::: ;ln

Dk1�l1;::: ;kn�ln(S1; : : : ; Sn)

Theorem 3.7 For an homogeneous SMAP, the finite-dimensional transition probability ker-
nelsN(s; t;S1; : : : ; Sn) can be written as

N(s; t;S1; : : : ; Sn) = e��(S1;::: ;Sn)�(t�s);

which means that the probability ofki arrivals inSi (for i = 1; : : : ; n) during the time interval
]s; t] is

Nk1;::: ;kn(s; t;S1; : : : ; Sn) =
1X
m=0

(t� s)m

m!
�(S1; : : : ; Sn)

�m
k1;::: ;kn

with the above definition 3.7 of the convolution operator�.

Proof: The formulae in theorem 3.5 can be reduced to this exponential form for the homoge-
neous case, as is shown in theorem A.8.

Remark 3.6 In the homogeneous case, a computation of the transition probabilities can be
pursued by solving the Kolmogorov forward differential equations

@

@t
N(s; t;S1; : : : ; Sn) = N(s; t;S1; : : : ; Sn) ��(S1; : : : ; Sn)

with initial valueN(s; s;S1; : : : ; Sn) = I via the Runge–Kutta method. This is possible in
a straightforward way without encountering numerical problems (cf. Asmussen [6], Gilbert
[43] or Moler, van Loan [67]).
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3. Spatial Markovian Arrival Processes

Example 3.1 Assume that there is a function� : IR+
0 ! IR+

0 such that�(t) = �(t) �� for
all t 2 IR+

0 . Then the transition probability kernel from times 2 IR+
0 to time t > s can be

simplified to the form

N(s; t) = e���
R t
s
�(u)du

according to remark A.9 and theorem A.21. This means that the probability ofki arrivals in
Si 2 �(R) (for i = 1; : : : ; n) during the time interval]s; t] can be written as

Nk1;::: ;kn(s; t;S1; : : : ; Sn) =
1X
m=0

�R t
s
�(u)du

�m
m!

�(S1; : : : ; Sn)
�m
k1;::: ;kn

using definition 3.7 for the convolution operator�.

As a useful corollary, which will be important for the estimation procedure in chapter 6, we
get

Theorem 3.8 For an homogeneous SMAP with finite phase space, the distribution of the in-
terarrival times on the finite family(S1; : : : ; Sn) of sets is phase–type and determined by

N0;::: ;0(s; t;S1; : : : ; Sn) = eD0;::: ;0(S1;::: ;Sn)(t�s)

Proof: The formula follows immediately from the above theorem 3.7 and the definition 3.7
of the convolution operator�. If the distribution of the phases at times is given by the prob-
ability vector�, then it is easy to verify that the time duration froms until the first arrival in
(S1; : : : ; Sn) afters has phase–type distribution with representation(�;D0;::: ;0(S1; : : : ; Sn)).

3.2.3. Z-Transform and Expectation

All results in this subsection are mere specifications of properties which hold for general
Markovian arrival processes and were derived in chapter 2. First, a z-transform is given for
SMAPs. This is used to determine the expectation of the marginal process(N(S); J) for any
setS 2 �(R).

Definition 3.8 Let (N; J) be an SMAP with arrival space(R; �(R)). According to definition
2.5, the z-transform of(N; J) over the time interval]s; t] is defined as the functionz !
N(s; t; z) with values being the kernels on� which are determined by

N(s; t; z)(y; B) :=

 
1X
n=0

P (prS(Nt �Ns) = n; Jt 2 BjJs = y) zn : S 2 �(R)

!

for all y 2 �, B 2 �(�) andz 2 Cwith jzj � 1.
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3.2. Properties

Theorem 3.9 The z-transform of(N; J) over the time interval]s; t] has the form

N(s; t; z) =
�
NS(s; t; z) : S 2 �(R)

�
with

NS(s; t; z) =
1X
n=0

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

1X
k=0

Dk(u1;S)z
k : : :

1X
k=0

Dk(un;S)z
k du1 : : : dun

for all S 2 �(R) andz 2 Cwith jzj � 1.

Proof: see theorem 2.9

Remembering definition 2.2, the expectation kernel of an SMAP (which is a kernel on the
phase space�) can be written as follows:

Theorem 3.10 The expectation kernel of the marginal processN over the time interval]s; t]
is given by

E(Nt �Ns) =

 Z t

s

P�(s; u)
1X
k=1

k �Dk(u;S) P
�(u; t) du : S 2 �(R)

!

for all s < t 2 IR+
0 .

Proof: see theorem 2.10

Example 3.2 As in example 3.1, assume that there is a function� : IR+
0 ! IR+

0 such that
�(t) = �(t) �� for all t 2 IR+

0 . Further assume that the phase process is homogeneous with
stationary distribution�. Then the expectationE�(Nt � Ns) of the marginal processN over
the time interval]s; t] given a phase distribution� at times is

E�(Nt �Ns) =

 Z t

s

�(u) du �

Z
�

1X
k=1

k �Dk(S)(y;�) d�(y) : S 2 �(R)

!

for all s < t 2 IR+
0 . This is an obvious consequence of theorem 3.10 noting that�P�(s; u) =

� andP�(u; t)(y;�) = 1 for all u 2 [s; t].

3.2.4. Periodic SMAPs

Now assume that(N; J) is a periodic SMAP. This means that there is a period lengthT > 0
such that the generator of(N; J) satisfiesD(t + T ) = D(t) for all t 2 IR+

0 . If further the
phase processJ has a periodic family of asymptotic distributions (cf. appendix A.3), then
some important asymptotic properties can be proven for(N; J).
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3. Spatial Markovian Arrival Processes

Under the condition that the phase process is (periodically) stationary, the expectation has
a simpler representation than in the general case. In this subsection, a strong law of large
numbers is given which shows that the mean values of the process over long durations tend
against this phase-stationary mean rate over a period length. Further, since homogeneous
SMAPs are merely special periodic SMAPs, the same results are valid for the homogeneous
case, although they assume a simpler form.

Theorem 3.11 Let (N; J) be a periodic SMAP with arrival space(R; �(R)) and period
lengthT > 0. Assume that the phase processJ is asymptotic with a periodic family(�t :
t 2 [0; T [) of asymptotic distributions. Then the expectation of the marginal processN after
one period length in phase equilibrium (i.e. with initial phase distribution�0) is given by

E�0(NT ) =

 Z T

0

Z
�

d�t(y)
1X
n=1

nDn(t;S)(y;�)dt : S 2 �(R)

!

Proof: This follows from theorem 3.10 withs = 0 and t = T if one acknowledges
�0P

�(0; u) = �u for all u 2 [0; T ] as well asP�(u; T )(y;�) = 1 for all y 2 � andu 2 [0; T ].

Theorem 3.12 Let (N; J) be a periodic SMAP with arrival space(R; �(R)) and period
lengthT > 0. Assume that the phase processJ is asymptotic with a periodic family(�t :
t 2 [0; T [) of asymptotic distributions. For every setS 2 �(R), define the mean arrival rate
at S during a period length by

�(S) :=
1

T

Z T

0

Z
�

d�t(y)
1X
n=1

nDn(t;S)(y;�)dt

Then for any setS 2 �(R), the convergence

Nt(S)

t
! �(S) as t!1

holds P-almost surely for all initial distributions.

Proof: This is a corollary to theorem 2.11.

Remark 3.7 As in remark 2.12, the convergence in the above theorem can be proven to hold
in terms of a normk � k on the spaceIR�(R), if (IR�(R); k � k) is a Banach space. In this case,
define� : �(R)! IR as the global mean rate on�(R). Then the convergence

Nt

t
! � as t!1

with respect to the normk � k on IR�(R) holds P-almost surely for all initial distributions.
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3.3. Examples

Example 3.3 Assume that there is aT–periodic function� : IR+
0 ! IR+

0 such that�(t) =
�(t) �� for all t 2 IR+

0 . Then the mean rate�(S) can be computed as

�(S) =
1

T

Z T

0

�(t) dt �

Z
�

1X
n=1

nDn(S)(y;�)d�(y)

for all S 2 �(R).

Since an homogeneous process with asymptotic distribution� is a periodic process with arbi-
trary period lengthT > 0 and periodic family(�t = � : t 2 [0; T [) of asymptotic distributions,
the same result holds for homogeneous SMAPs, assuming a simpler form:

Theorem 3.13 Let (N; J) be an homogeneous SMAP with arrival space(R; �(R)). Assume
that the phase processJ is asymptotic with stationary distribution�. For every setS 2 �(R),
define the mean arrival rate atS by

�(S) :=

Z
�

d�(y)
1X
n=1

nDn(S)(y;�)

Then for any setS 2 �(R), the convergence

Nt(S)

t
! �(S) as t!1

holds P-almost surely for all initial distributions.

Proof: This is a corollary to theorem 2.12.

Example 3.4 In the case of a BMAP with representation(Dn : n 2 IN0) andm phases, we
have the mean rate

� = �(R) = �
1X
n=1

nDn1m

with � denoting the stationary probability vector of the phase process (i.e.�
P1

n=0Dn = 0)
and1m denoting them–dimensional column vector with all entries being 1.

3.3. Examples

Throughout this section, all transition ratesDk1;::: ;kn(S1; : : : ; Sn)(y; A) which are not defined
explicitly, shall be assumed as zero.
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3. Spatial Markovian Arrival Processes

Example 3.5 If the arrival spaceR = frg of an SMAP(N; J) is trivial, i.e. consisting of
only one element, then(N; J) shall be called ageneralized BMAP or shortlygBMAP. A
generalized BMAP which is periodic with some period lengthT > 0 shall be calledperiodic
BMAP or shortlypBMAP . The most important difference to the BMAP concept introduced
by Lucantoni [60] is that generalized BMAPs provide for inhomogeneous transition rates.

By specification of the arrival spaceR = frg, chapter 4 includes an analysis of the
pBMAP/M/c queue with periodic service rates and chapter 5 contains an examination of the
gBMAP/G/1 queue as a special case.

Example 3.6 Let the arrival spaceR be separable and choose any upper boundM 2 IR+ for
the arrival intensities at any point inR. Then the spaceC(R) of continuous functions from
R into the compact interval[0;M ] is a compact and separable metric space. This follows
from standard topological results (cf. Herrlich [48], pp.206,118,117) and the fact that any
continuous function is determined by its values on a countable dense subset of the separable
spaceR. Define the phase space to be� := C(R) and let�(�) denote the Borel�-algebra
on�. Since every functionf 2 � is continuous and hence uniquely determined by its values
on a countable dense subset ofR, it follows thatffg 2 �(�) for everyf 2 � (cf. Neveu
[74], p.103). Phases out of this space can serve as intensity functions for arrivals distributed
by inhomogeneous Poisson point fields (see Kingman [55]).

A spatial Markov modulated Poisson process(or shortlyspatial MMPP) can be defined
as follows: LetD denote the generator of an homogeneous Markov jump process with state
space� as described above and�f an inhomogenous Poisson process onR (see Kingman
[55]) with intensity

R
S
f(x)d�(x) for S 2 �(R). Further, let
f > 0 for all f 2 � such that

supf2� 
f <1. The transition rates are defined as

D0;::: ;0(S1; : : : ; Sn)(f; A) := D(f; A)� 
f(1� �f (S1; : : : ; Sn)(0; : : : ; 0))

for A 2 �(�) andf 2 A,

D0;::: ;0(S1; : : : ; Sn)(f; A) := D(f; A)

for A 2 �(�) andf =2 A and

Dk1;::: ;kn(S1; : : : ; Sn)(f; A) := 
f � �f (S1; : : : ; Sn)(k1; : : : ; kn)

for
Pn

i=1 ki � 1,A 2 �(�) andf 2 A.

Obviously,�f does not need to be a Poisson process onR and could be chosen as any other
modulated random point field instead.

Example 3.7 If the phase space� = f'g of an SMAP(N; J) is trivial, i.e. consisting of
only one element, then(N; J) shall be calledgeneral Poisson process with spatial arrivals.
For these special SMAPs, the kernelsDk1;::: ;kn(S1; : : : ; Sn) on � become real numbers and
all computations are much more tractable. If even more the arrival spaceR = frg is trivial
and(N; J) is homogeneous in time, then(N; J) is a Poisson process with independent and
identically distributed batch arrivals.
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3.3. Examples

Example 3.8 A more complicated, but still naturally appearing example is the followingspa-
tially ordered superposition of independent BMAPs:

LetA = fAk : k 2 INg denote a denumerable partition ofR with Ak 2 �(R) for all k 2 IN .
For everyAk, define a BMAP by its generating sequencefDn(Ak) : n 2 IN 0g. Denote by
�(A) the smallest�-algebra on the set systemA. Assume that

P1
k=1 kD0(Ak)k < 1 with

kDk denoting the maximum norm of a matrixD.

The spatially ordered superposition of the above BMAPs yields an SMAP. Its phases' 2 �
can be described by functions' : IN ! IN , with '(k) denoting the phase of the BMAP over
Ak.

ForS 2 �(A) and' 2 �, the one-dimensional transition rates are given as follows:

Dn(S)('; f g) = Dn;'(k); (k)(Ak)

for n 2 IN 0, Ak � S,  (k) 6= '(k) and (m) = '(m) for all m 6= k,

D0(S)('; f g) =
1X
n=0

Dn;'(k); (k)(Ak)

for Ak � R n S,  (k) 6= '(k) and (m) = '(m) for all m 6= k, and

Dn(S)('; f'g) =
X
Ak�S

Dn;'(k);'(k)(Ak)

for n 2 IN .

The diagonal elements are

D0(S)('; f'g) =
1X
k=1

D0;'(k);'(k)(Ak) +
X

Ak�RnS

1X
n=1

Dn;'(k);'(k)(Ak)

For A 2 �(�) and' 2 �, the set of functions , for which fk 2 IN :  (k) 6= '(k)g
has at most one element, is countable. Since for all other functions the transition rates
Dn(S)('; f g) are zero, the sums in

Dn(S)(';	) =
X
 2	

Dn(S)('; f g)

are well-defined for alln 2 IN 0.

The transition rates on finite families of disjoint sets can be expressed in terms of the one-
dimensional transition rates as follows:

Be n 2 IN andS1; : : : ; Sn 2 �(R) disjoint. Since for a superposition, there can be at most
one batch arrival in one set during an infinitesimal time interval, we can define

Dk1;::: ;kn(S1; : : : ; Sn)('; f g) := Dki(Si)('; f g);
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3. Spatial Markovian Arrival Processes

if kj = 0 for all j 6= i, Ak � Si,  (k) 6= '(k) and (m) = '(m) for all m 6= k,

Dk1;::: ;kn(S1; : : : ; Sn)('; f g) := D0

 
n[
i=1

Si

!
('; f g);

if
Pn

i=1 ki = 0,Ak � R n
Sn
i=1 Si,  (k) 6= '(k) and (m) = '(m) for all m 6= k,

Dk1;::: ;kn(S1; : : : ; Sn)('; f'g) := Dki(Si)('; f'g);

if ki 2 IN andkj = 0 for all j 6= i, and

Dk1;::: ;kn(S1; : : : ; Sn)('; f'g) := D0

 
n[
i=1

Si

!
('; f'g);

if
Pn

i=1 ki = 0.

Again, the sums in

Dk1;::: ;kn(S1; : : : ; Sn)(';	) =
X
 2	

Dk1;::: ;kn(S1; : : : ; Sn)('; f g)

are countable and thus well-defined.

If the distribution of the spatial arrivals is neglected, then, analogously to the case of a su-
perposition of finitely many BMAPs (see Baum [14]), the generating sequence�(R) of the
superposition over the whole spaceR is the Kronecker sum of the generating sequences of its
component BMAPs.
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4. Markovian Spatial Queues

In most textbooks on queueing theory, Markovian queues are the first ones that are analyzed.
This clearly is a result of the easy structure of Markovian queues, which can be analyzed as
a Markov jump process in a straightforward manner. For this reason, in the present thesis
Markovian queues will be examined first. However, this will be done on a more general level,
covering the important case of periodic Markovian queues.

A typical property of communication traffic is the dependence of its arrival rates on time. This
aspect incites the use of time-inhomogeneous processes and queues for modelling communi-
cation networks. Typically, a periodic dependence of the arrival rates and/or the service time
distribution can be assumed with period lengths of a day or a week.

While queues with periodic input naturally reflect the time-dependent amount of traffic that
arrives in communication networks, the analysis of queues with inhomogeneous arrival rates
is far less developed than the one for homogeneous queues. Some of the existing results in
the literature are given in Asmussen and Thorisson [5], Bambos and Walrand [10], Falin [38],
Harrison and Lemoine [46], Hasofer [47], Heyman and Whitt [49], Lemoine [57, 56], Rolski
[82, 83], and Willie [94].

In this chapter, two Markovian queues, which have not been analyzed before, will be ex-
amined. The first one is the spatialSMAP=Mt=c=c queue with a spatial Markovian arrival
process, a general (i.e. possibly inhomogeneous) Poisson service process,c servers and an
equal system capacity. The last condition prevents an arriving user, who finds allc servers
busy, from entering the system, such that this job is lost. This is a natural assumption for the
application field of mobile communication systems, since a telephone customer who finds a
busy line will not wait but choose another net provider. For this queue, a loss formula will be
derived. If one wishes to approximate a non-Poisson service process, the same method of anal-
ysis can be applied to theSMAP=PHt=c=c queue with phase–type service time distribution
PHt that may have time–dependent rates (see remark 2.7).

The second queue to be examined in this chapter is the periodicBMAP=Mt=c queue with
periodic service rates. This is a special case of theSMAP=Mt=c queue with inhomogeneous
service rates. Whereas theSMAP=Mt=c=c queue with finite phase space is a finite state
Markov jump process and hence has an asymptotic distribution, a stability condition must be
derived for the periodicBMAP=Mt=c queue. The same method of analysis applies to the
periodicBMAP=PHt=c queue if one wishes to further approximate a non-Poisson service
process.
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4. Markovian Spatial Queues

4.1. The SMAP=Mt=c=c Queue

The queue examined in this section is defined as follows. The arrival process is an SMAP.
The numberc of servers is finite and equals the system capacity for users. This means that
whenever an arriving user finds all servers busy, he cannot enter the system and is rejected.
Hence there are no waiting users in the queue. Every server is equal, and the service time
distribution functionBs for a user arriving at times 2 IR+

0 is defined by

Bs(t� s) := 1� e�
R t
s
�udu

for all t > s, with �u 2 IR
+
0 for all u 2 [s; t]. This means that the service process without idle

periods would be an inhomogeneous Poisson process with rates(�t : t 2 IR
+
0 ).

TheSMAP=Mt=c=c queue is a natural model for a cell of an FDMA or a TDMA mobile
communication network (cf. Gibson [42] or Rappaport [81]). For such a cell, which remains
of constant size over time (unlike a CDMA cell, cf. Yang [96] or Viterbi [93]), the arrival
spaceR of the queue would be the landscape covered by the cell. The numberc of servers
would be the number of available channels, i.e. the ratio of the total band width to a single
frequency lot assigned to every user (in the FDMA case). The assumption that no user is
waiting appears natural, as remarked above. Furthermore, usually the arrival process will be
periodic with the period length being a day or a week.

In order to derive the simplest possible form of a loss formula (see section 4.1.3), the rejection
policy of the communication network to be modelled shall be defined as follows. A rejection
shall be conceived to occur only in the event that the system capacity is totally filled, i.e. that
there arec users in the system. Thus, if there arek < c users in the system and a batch arrival
of sizeh with k + h > c occurs, then this will not be rejected although it cannot be totally
served by the system. In this case, the queue will be filled to its full capacityc. This can
be interpreted as reflecting the interest of the network provider to partially serve an incoming
user instead of rejecting him, even if the total amount of service that the user requires would
exceed the system capacity. It is possible to derive transient and asymptotic distributions as
well as a loss formula for any other rejection policy using the same methods, but this would
result in more complicated formulae.

Let (N; J) denote the SMAP of the queue with arrival space(R; �(R)) and

(�(t;S1; : : : ; Sn) : t 2 IR
+
0 ; n 2 IN; S1; : : : ; Sn 2 �(R))

denoting the generating sequences of(N; J) (see definition 3.4). Further, let(�t : t 2 IR+
0 )

denote the time-dependent service rate, which shall be equal for all servers.

For ease of notation, the queue distribution shall be derived only for one-dimensional marginal
processesQ(S), i.e. only one subsetS 2 �(R) will be described. For higher-dimensional
marginal distributions on(S1; : : : ; Sn) with n > 1, the method of analysis is completely
analogous.
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4.1. TheSMAP=Mt=c=c Queue

Denote the joint queueing process in the subsetsR andS byQ(R; S) = (Qt(R; S) : t 2 IR
+
0 ).

The infinitesimal generatorG(t;R; S) ofQ(R; S) can be written in a block matrix with entries
being the kernels

G(h;k);(l;n)(t;R; S) =

8>>>>>>>>>><
>>>>>>>>>>:

k�t � I for h = l + 1 � c; k = n + 1 � l + 1
(h� k)�t � I for h = l + 1 � c; k = n � l

D0;0(t;R; S)� h�t � I for h = l < c; k = n � l
D0;0(t;R; S)� h�t � I

+
P1

i=1Di(t;R) for h = l = c; k = n � l
Dl�h;n�k(t;R; S) for h < l < c; k � n � lP1
i=c�hDi;n�k(t;R; S) for h < l = c; k � n � l

0 otherwise

for all h; k; l; n 2 f0; : : : ; cg, with 0 andI denoting the zero and identity kernel, respectively.

Remember that theDl;n(t;R; S) are kernels on the phase space� of the SMAP(N; J) with
Dl;n(t;R; S)(y; A) denoting the infinitesimal transition rate at timet in phasey to change to
some phasez 2 A and observen arrivals inS as well asl arrivals inR. Thus the above
definition of the generator means that a phase transition may occur even if the arrival occuring
at the same time is rejected.

4.1.1. Transient Distribution

As a Markov jump process, the queue allows a description of its transient distribution in terms
of the transition probabilities. First, this shall be expressed by formula A.2. Then, the obtained
general form will be simplified for special cases.

The multiplication of two block matricesK andL with kernel entries is defined by

(KL)(h;k);(l;n)(y; A) :=
1X
i=0

1X
j=0

Z
�

K(h;k);(i;j)(y; dz)L(i;j);(l;n)(z; A)

which for the above generators can be simplified to

(KL)(h;k);(l;n)(y; A) =
cX
i=0

iX
j=0

Z
�

K(h;k);(i;j)(y; dz)L(i;j);(l;n)(z; A)

for all h; k; l; n 2 f0; : : : ; cg, y 2 � andA 2 �(�).

DefineP(h;k);(l;n)(s; t)(y; A) as the transition probability of having(l; n) users in(R; S) and
being in some phasez 2 A at timet > s under the condition of having(h; k) users in(R; S)
and being in phasey at times. Further defineP(h;k);(l;n)(s; t) as the sub-Markov kernel on
the phase space� which results from the probabilitiesP(h;k);(l;n)(s; t)(y; A) andP (s; t) =
(P(h;k);(l;n)(s; t)) as the block matrix with kernel entriesP(h;k);(l;n)(s; t).
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4. Markovian Spatial Queues

Theorem 4.1 The transition probability kernelP (s; t;R; S) of the queueQ(R; S) from time
s to timet can be written as

P (s; t;R; S) =
1X
k=0

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

G(u1;R; S) : : :G(uk;R; S) du1 : : : duk (4.1)

defining the summand fork = 0 as the identity matrixId with entriesÆkn � I.

Proof: The queue processQ(R; S) is a Markov jump process. Hence, formula A.2 applies
for the transition probabilities.
f��
�

Now, fix a timet 2 IR+
0 at which the queue is to be observed. Denote the initial distribution

of the queue process at times := 0 by �. LetQ(l;n)(t;R; S)(y; A) denote the probability that
the queue has(l; n) users in(R; S) and is in some phasez 2 A at timet under the condition
of having(0; 0) users in(R; S) and being in phasey at time 0. Further defineQ(l;n)(t;R; S)
as the sub-Markov kernel on the phase space� which results from the transient probabilities
Q(l;n)(t;R; S)(y; A) at time t 2 IR+ andQt(R; S) = (Q(l;n)(t;R; S)) as the block matrix
with kernel entriesQ(l;n)(t;R; S). Then the transient distribution at timet is determined by

Qt(R; S) =

Z
d�P (0; t;R; S)

=

Z
d�

1X
k=0

Z t

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

G(u1;R; S) : : :G(uk;R; S) du1 : : : duk

defining the summand fork = 0 as the identity matrixId. This expression assumes a simpler
form for the following special cases.

The simplest form can be arrived at in the homogeneous case. Then the transition probabilities
assume the usual exponential form which holds for homogeneous Markov jump processes.

Theorem 4.2 For homogeneous arrival and service rates, the generator
G(R; S) := G(t;R; S) is constant int and the transient distribution at timet 2 IR+ is
determined by

Qt(R; S) =

Z
d�

1X
k=0

tk

k!
G(R; S)k =

Z
d� eG(R;S)�t

withG(R; S)k denoting thek-th power of the kernel matrixG(R; S).

Proof: This is immediate from theorem A.8.

Remark 4.1 According to theorem A.9, it is possible to approximate the general case by a
sequence of piecewise homogeneous processes. For this approximation, the transient distribu-
tion can be computed as a product of exponential forms.
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4.1. TheSMAP=Mt=c=c Queue

Another case of simplification is that of quasi-commutable generators (see definition A.8).
Here, an exponential form is assumed, too, although with a more complicated exponent.

Theorem 4.3 If the generators(G(t;R; S) : t 2 IR+
0 ) are quasi-commutable, which means

that the equation

d

dt

�Z t

0

G(u;R; S)du

�k
= k �

�Z t

0

G(u;R; S)du

�k�1
G(t;R; S)

holds for allk 2 IN andt 2 IR+
0 , the transient distribution ofQ(R; S) with initial distribution

� takes the form

Qt(R; S) =

Z
d�

1X
k=0

�R t
0
G(u;R; S)du

�k
k!

=

Z
d� e

R t
0
G(u;R;S)du

Proof: see theorem A.22

Remark 4.2 A simple form of quasi–commutability is given if the generators have the form

G(t;R; S) = �(t) �G(R; S)

for all t 2 IR+
0 , with � : IR+

0 ! IR+
0 being a non–negative function in time andG(R; S)

denoting a generator which is constant in time (cf. remark A.9). This would for example be
the case if the arrival process satisfied�(t) = �(t) ��, with� being constant in time, and the
service rates were constant.

Most important for applications in modelling mobile communication networks is the case of
periodic arrival and service rates. In this case, a computation of the transient distribution can be
simplified as follows. For ease of notation, writeP (s; t) := P (s; t;R; S) for all s < t 2 IR+

0 .
The periodicity of the generator yields

P (0; nT ) = P (0; (n� 1)T )P ((n� 1)T; nT ) = P (0; (n� 1)T )P (0; T ) = P (0; T )n

Let � denote the initial distribution of the queue processQ. Define

bt=T c := maxfn 2 IN0 : nT � tg

as the number of period lengths that have passed until timet 2 IR+. Now the transient
distribution ofQ with initial distribution� is given by

Q�
t =

Z
d�P (0; bt=T cT )P (bt=T cT; t) =

Z
d�P (0; T )bt=T cP (0; t� bt=T cT )

This expression allows a computation of the transient distribution at any timet 2 IR+ without
needing to integrate over ranges larger than the periodT . For computing the remaining terms

43



4. Markovian Spatial Queues

P (0; s) with s � T , one can use the following iteration as given in Bellman [19], p.168:
Starting withI0(u) := Id for all u � s, the iteration

In+1(u) :=

Z u

0

In(v)G(v;R; S)dv + Id

leads to the limit

P (0; s) = lim
n!1

In(s)

for all s � T .

Example 4.1 Assume that the parameters are given as follows: Let� denote the generating
sequence of an homogeneous SMAP and choose service rates�1; �2 2 IR

+. Further, letT > 0
denote a period length and set

�(t) =

�
1 + sin

�
2�

T
t

��
��

as well as

�t =

�
�1 for t < T=2
�2 for t � T=2

for all t 2 [0; T [. Then the generators are periodic with periodT and piecewise quasi–
commutable (on[0; T=2[ and on[T=2; T [). DenoteG1 := G(0;R; S) as well asG2 :=
G(T=2;R; S). Acccording to example A.4, we then obtain

P (0; s) = exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�G1

�

for s < T=2 and

P (0; s) = exp

��
T

2
+
T

�

�
G1

�
exp

��
s�

T

2
�

T

2�

�
1 + cos

�
2�

T
s

���
�G2

�
for s � T=2.

4.1.2. Asymptotic Distributions

In the case of a periodicSMAP=Mt=c=c queue with finite phase space, a periodic family of
asymptotic distributions can be given. This is an immediate consequence of the results for
periodic Markov jump processes in section A.3.

LetQ denote anSMAP=Mt=c=c queue with finite phase space� = f1; : : : ; mg. Further, let
S 2 �(R) denote any subset of the arrival space andQ(R; S) the marginal process ofQ on
the subsetsR andS. Assume thatQ(R; S) is periodic with period lengthT > 0.
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4.1. TheSMAP=Mt=c=c Queue

Let Y (R; S) = (Yn(R; S) : n 2 IN0) be the homogeneous discrete time Markov chain with
transition kernel

P (0; T ;R; S) =
1X
j=0

Z T

0

Z uj

0

: : :

Z u2

0

G(u1;R; S) : : :G(uj;R; S)du1 : : : duj

Then the main result is

Theorem 4.4 The Markov chainY (R; S) has an asymptotic distributionq(R; S), and the
marginal queue processQ(R; S) has a periodic family(qs(R; S) : s 2 [0; T [) of asymptotic
distributions (see definition A.13) assuming the form

qs(R; S) = q(R; S)P (0; s;R; S)

for all s 2 [0; T [. The distributionq(R; S) is determined by the equilibrium equation

q(R; S) = q(R; S)P (0; T ;R; S)

Proof: Since the phase space� is finite and the queue has finite capacity, the state space
of the queue process is finite, too. It follows that the Markov chainY (R; S) has finite state
space and hence an asymptotic distributionq(R; S). The rest follows from theorem A.28 and
remark A.11.
f��
�

The homogeneousSMAP=M=c=c queue can be seen as a special case of the periodic
SMAP=Mt=c=c queue with arbitrary period lengthT > 0 and generatorsG(R; S) which
are constant in time. This leads to

Theorem 4.5 Let Q be an homogeneous SMAP/M/c/c queue with finite phase space� =
f1; : : : ; mg and generatorG(R; S) for the marginal processQ(R; S). ThenQ(R; S) has an
asymptotic distributionq(R; S) with

q(R; S)G(R; S) = 0

Proof: This follows from the above theorem 4.4 and the form

P (0; t;R; S) = eG(R;S)�t =
1X
j=0

tj

j!
G(R; S)j

for the transition probability kernel ofQ(R; S) (see theorem A.8). The homogeneous Markov
chainY (R; S) defined above has an asymptotic distributionq(R; S), since the state space
is finite. This satisfiesq(R; S)G(R; S) = 0 and because of the above exponential form
q(R; S)P (0; s;R; S) = q(R; S) for all s 2 [0; T [.
f��
�
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4. Markovian Spatial Queues

Remark 4.3 In the homogeneous case, the generator matrix

G(R; S) =
�
G(h;k);(l;n)(R; S)

�
0�k�h�c;0�n�l�c

can be arranged according to the indices(k; n). This results in anM=G=1–type matrix and
hence the distributionq(R; S) can be found by the method introduced in Ramaswami [80] and
generalized by Hofmann [50].

4.1.3. A Loss Formula

The SMAP=Mt=c=c queue is aloss system. This means that arriving users who find all
servers busy are rejected and since they do not retry to enter the queue, they can be regarded as
lost. One of the most important performance measures of loss systems is the loss probability,
which is defined as the long time fraction of lost, i.e. rejected users to all users having arrived.
For the application field of mobile communcation networks, the meaning of this probability
as a criterion of quality is immediate.

ForM=G=c=c loss systems, the loss probability is the asymptotic probabilitypc of havingc
users in the system, which is the same event as all servers being busy. This result is indepen-
dent of the service time distribution and was first exhibited by Sevast’yanov [86] in 1957. It
follows easily from the PASTA property for queues with Poisson arrival processes (cf. Wolff
[95], pp.271-273). In this subsection, the loss probability will be derived using the law of
large numbers for periodic SMAPs (theorem 2.11). It turns out that an analogous result holds,
although the PASTA property does not hold for theSMAP=Mt=c=c queue (for a more general
treatment of the PASTA problem see Melamed, Yao [65]).

Definition 4.1 Let Q denote a loss system. Denote the number of users, that have arrived
atQ until time t 2 IR+

0 , by Nt and the number of rejected users until timet 2 IR+
0 by Lt.

Assume thatQ has an asymptotic distribution. Then theloss probability pl of Q is defined as
the fraction

pl := lim
t!1

Lt
Nt

of the number of rejected users over the number of all users having arrived in the long run.

Now let Q denote the periodicSMAP=Mt=c=c queue with arrival space(R; �(R)), finite
phase space� = f1; : : : ; mg and period lengthT > 0. As usual, notational convenience is
the reason for analyzing only the one-dimensional marginal processes on any measurable set
S 2 �(R). Denote the SMAP arrival process on the subsetS by (N(S); J) and define it by its
generating sequence(Dn(S) : l; n 2 IN 0). ThenD :=

P1
n=0Dn(S) is the generator of the

phase processJ . This has a periodic family(�s : s 2 [0; T [) of asymptotic distributions, since
the phase space� is finite. Furthermore, the finiteness of� allows to represent the measures
�s as row vectors inIRm and the kernelsDn(S) andD asm � m matrices with real-valued
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4.1. TheSMAP=Mt=c=c Queue

entries. Define the column vector1m 2 IRm as the one with all entries being 1. Finally,
assume that the asymptotic mean arrival rate during one period length

�(S) :=
1

T

Z T

0

�t

1X
n=1

nDn(t;S)1mdt <1

is finite. Then the main result is

Theorem 4.6 Let Q denote a periodicSMAP=Mt=c=c loss system with finite phase space
� = f1; : : : ; mg, arrival space(R; �(R)) and period lengthT > 0. Let the SMAP ofQ have
a generating sequence(Dn(S) : n 2 IN 0) on the subsetS 2 �(R). Assume thatQ(R) has a
periodic family(qs : s 2 [0; T [) of asymptotic distributions and defineqt(c) 2 IR

m as the row
vector withith entryqt(c; i). Then the loss probability ofQ on the subsetS is

pl =

R T
0
qt(c)

P1
n=1 nDn(t;S)1mdtR T

0
�t
P1

n=1 nDn(t;S)1mdt

for all S 2 �(R).

Proof: For ease of notation, we shall writeNt := Nt(S),Lt := Lt(S) andDn(t) := Dn(t;S)
in this proof. By definition, the arrival processN(S) in S is a one-dimensional Markovian
arrival process. Thus, the strong law of large numbers (theorem 2.11) applies and yields

lim
t!1

Nt

t
=

1

T

Z T

0

�t

1X
n=1

nDn(t)1mdt (4.2)

almost surely.

The processL(S) = (Lt : t 2 IR+
0 ) which counts the number of rejected users can be

described by a thinned Markovian arrival process. The infinitesimal transition rates ofL(S)
are given by

Rn(t; i; j) = lim
�t!0

P (Qt(R) = (c; i); Nt+�t �Nt = n; Jt+�t = jjJt = i)

�t

= lim
�t!0

P (Nt+�t �Nt = n; Jt+�t = jjQt(R) = (c; i); Jt = i)

�t
� P (Qt(R) = (c; i)jJt = i)

= lim
�t!0

P (Nt+�t �Nt = n; Jt+�t = jjJt = i)

�t
� P (Qt(R) = (c; i)jJt = i)

= Dn(t; i; j) � P (Qt(R) = (c; i)jJt = i)

for everyn 2 IN , since the arrival process(N(S); J) only depends on the phase but not on
the number of users inR. Furthermore, we have

R0(t; i; j) = D0(t; i; j) +
1X
n=1

Dn(t; i; j) � (1� P (Qt(R) = (c; i)jJt = i))
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4. Markovian Spatial Queues

Writing t = kT + s and lettingk !1, the asymptotic rates are

lim
k!1

Rn(kT + s; i; j) = Dn(s; i; j) �
qs(c; i)

�s(i)

for all s 2 [0; T [, n 2 IN andi; j 2 � and

lim
k!1

R0(kT + s; i; j) = D0(s; i; j) +
1X
n=1

Dn(s; i; j) �

�
1�

qs(c; i)

�s(i)

�

for all s 2 [0; T [ andi; j 2 �. Obviously, the generator of the phase process ofR(S) equals

1X
n=0

Rn(t; i; j) = D(t; i; j)

which is the generator ofJ . Hence, by theorem 2.11, the strong law of large numbers assures
the convergence

lim
t!1

Lt
t

=
1

T

Z T

0

�t

1X
n=1

nRn(t)1mdt =
1

T

Z T

0

qt(c)
1X
n=1

nDn(t)1mdt (4.3)

almost surely.

Combining the results 4.2 and 4.3, the loss probability is determined by

pl = lim
t!1

Lt
t
�
t

Nt
=

R T
0
qt(c)

P1
n=1 nDn(t)1mdtR T

0
�t
P1

n=1 nDn(t)1mdt

f��
�

As usual, the case of an homogeneous queue can be regarded as the special periodic queue
with arbitrary period lengthT > 0 and a generator which is constant in time. Thus, the result
for homogeneous queues follows immediately from the above theorem.

Theorem 4.7 Let Q denote an homogeneous SMAP/M/c/c loss system with arrival space
(R; �(R)). Let the SMAP ofQ have a generating sequence(Dn(S) : n 2 IN 0) on the subset
S 2 �(R). Assume thatQ(R) has an asymptotic distributionq and defineq(c) 2 IRm as the
row vector withith entryq(c; i). Then the loss probability ofQ on the subsetS is

pl =
q(c)

P1
n=1 nDn(S)1m

�
P1

n=1 nDn(S)1m

for all S 2 �(R).

Proof: This merely is the form ofpl (derived in the above theorem 4.6) for the special case
of an homogeneous queue.
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4.2. The PeriodicBMAP=Mt=c Queue

4.2. The Periodic BMAP=Mt=c Queue

Let Q = (Qt : t 2 IR+
0 ) denote a periodicBMAP=Mt=c queue with periodic BMAP input

having finite phase spacef1; : : : ; mg (see example 3.5), exponential service time distributions
with periodic service rates, andc servers. Arrival process and service rates shall have the same
periodT . Define the arrival process by its transition rate matrices(Dn(t) : n 2 IN 0; t 2 IR

+
0 )

having dimensionm and periodT . Further, let(�t : t 2 IR+
0 ) denote the time-dependent

service rates, which shall be equal for all servers. Periodicity of the service rates means
�s+T = �s for all s 2 [0; T [.

4.2.1. Transient Distributions

As a Markovian queue, the system can be analyzed like an (inhomogeneous) Markov jump
process. The infinitesimal generatorG(t) of the queueQ can be written as anIN 0�IN 0 block
matrix with entries

Gkn(t) =

8>>>>>><
>>>>>>:

0 for k > n+ 1
k�t � I for k = n+ 1 � c
c�t � I for k = n+ 1 > c

D0(t)� k�t � I for k = n � c
D0(t)� c�t � I for k = n > c

Dn�k(t) for k < n

for k; n 2 IN0, with 0 andI denoting the zero and identity matrix, respectively. Note that the
entries arem�m matrices. Denote the(i; j)th entry of the matrixGkn(t) byGkn(t)(i; j).

The multiplication of twoIN 0 � IN 0 block matricesA andB is defined by

(AB)kn(i; j) :=
1X
l=0

mX
h=1

Akl(i; h)Bln(h; j)

for everyk; n 2 IN 0 andi; j 2 f1; : : : ; mg.

DefinePkn(s; t)(i; j) as the probability of havingn 2 IN 0 users in the queue and being in
phasej at timet > s under the condition of havingk 2 IN0 users in the queue and being in
phasei at times. Further definePkn(s; t) as them�m matrix with entriesPkn(s; t)(i; j) and
P (s; t) = (Pkn(s; t))k;n2IN0 as theIN0 � IN0 block matrix with entriesPkn(s; t).

According to theorem A.6 and formula A.2, the transition probabilities of the queue can be
written as

P (s; t) =
1X
k=0

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

G(u1) : : :G(uk)du1 : : : duk
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Let � denote the initial distribution of the queue processQ. The transient distribution ofQ is
given as in section A.3 by

Qt =

Z
d�P (0; T )bt=T cP (0; t� bt=T cT )

This expression allows a computation of the transient distribution at any timet 2 IR+ without
needing to integrate over ranges larger than the periodT .

Example 4.2 Assume thatDn(t) =
�
1 + sin

�
2�
T
t
��
Dn for all t 2 IR+

0 andn 2 IN 0, with
� = (Dn : n 2 IN0) being the generating sequence of an homogeneous BMAP. Further,
set the service rate to be constant in time, i.e.�t = � for all t 2 IR+

0 . Denote the resulting
generator at time 0 byG := G(0). Then according to example A.4, the transient distribution
is determined by

P (0; s) = exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�G

�

for all s � T .

4.2.2. Stability and Asymptotic Distributions

In difference toSMAP=Mt=c=c queues with finitely many phases and hence finite state space,
the asymptotic analysis of theBMAP=Mt=c queue first requires the derivation of an ergodic-
ity condition, before asymptotic distribution can be given.

One of the most important criteria for ergodicity of Markov chains occuring in queueing theory
is Foster’s condition (see Foster [40], [41]). This has been extended in various directions
afterwards (see Pakes [78], Mauldon [62], Marlin [61], Rosberg [84], Tweedie [90], [91] or
Asmussen [4], p.18f). In Fayolle, Malyshev, Menshikov [39], a version of Foster’s criterion
for state spacesIN 0 � f1; : : : ; mg, hence for Markovian BMAP queues, can be found.

This shall be used in this section in order to prove a necessary and sufficient condition of er-
godicity for the periodicBMAP=Mt=c queue. After that, the periodic families of asymptotic
distributions are given for the case of ergodicity.

Let Q := (Qt : t 2 IR+
0 ) denote a periodicBMAP=Mt=c queue with period lengthT > 0.

Denote the time–dependent generating sequence of the periodic BMAP by(Dn(t) : n 2
IN0; t 2 [0; T [) and let�t denote the service rate at timet. Define the homogeneous Markov
chainY = (Yn : n 2 IN 0) by Yn := QnT for all n 2 IN0. Furthermore, denote the phase
process ofQ, which coincides with that of the BMAP(N; J), by J . Since the phase space
is finite, the homogeneous Markov chain(JnT : n 2 IN) has an asymptotic and stationary
distribution which shall be denoted by� = (�1; : : : ; �m). Finally, let 1m denote them–
dimensional column vector with all entries being 1 and denote theith canonical row base
vector ofIRm by ei.
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4.2. The PeriodicBMAP=Mt=c Queue

Theorem 4.8 Assume that the phase processJ is irreducible. Then the Markov chainY is
ergodic if and only if the stability conditionZ T

0

�
1X
n=1

nDn(t)1m dt < c �

Z T

0

�t dt (4.4)

holds.

Proof: Let A = (At : t 2 IR+
0 ) andB = (Bt : t 2 IR+

0 ) denote the BMAP arrival process
intoQ and the Poisson process with rates(�t : t 2 IR+

0 ), respectively. That means,At is the
random variable of all arrivals into the queue. DefineZ := A � B as the difference of these
independent processes. ThenZ is a periodic Markov jump process and by theorem 3.11, the
mean expectation over one period length in phase equilibrium equals

E(ZT ) = E(AT )� E(BT ) =

Z T

0

�
1X
n=1

nDn(t)1m dt� c �

Z T

0

�t dt (4.5)

In order to show the necessity of condition 4.4, assume thatE(ZT ) � 0. Since the state space
of Z isZZ � f1; : : : ; mg, but the chainY has a barrier at the zero level, we have

E(Y1) > E(ZT ) � 0

for initial distributions with supportf0g � f1; : : : ; mg. Starting in phase equlibrium, the
asymptotic expectation

lim
n!1

E(Yn) = lim
n!1

nX
k=1

E(Y1) =1

diverges to infinity. Hence, there is no asymptotic distribution forY .

Now we show sufficiency. Denote the transition probability matrix of the homogeneous
Markov chain(ZnT : n 2 IN0) by pZ . SinceZ is homogeneous in the second component, we
can define

pZk (i; j) := pZ(0;i);(k;j) = P (ZT = (k; j)jZ0 = (0; i))

for all k 2 ZZ andi; j 2 f1; : : : ; mg. The above observation 4.5 yields

mX
i=1

�i
X
k2ZZ

mX
j=1

k � pZk (i; j) < 0

According to Fayolle, Malyshev, Menshikov [39], p.35, there is an" > 0 and a positive
functionf such that

1X
n=0

mX
j=1

pZ(k;i);(n;j) � f(n; j)� f(k; i) < �"
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for almost all states(k; i) 2 IN0 � f1; : : : ; mg. Furthermore, there are numbersa1; : : : ; am
such thatf(k; i) = k + ai for almost all states(k; i).

Define the event

R(n) := f9 t 2 [nT; (n + 1)T [: Qt = 0g

for all n 2 IN 0. Then the transition probabilities of the homogeneous chainY can be decom-
posed in

pY(k;i);(l;j) := P (Yn+1 = (l; j)jYn = (k; i))

= P (Yn+1 = (l; j)jYn = (k; i); R(n)) � P (R(n)jYn = (k; i))

+P (Yn+1 = (l; j)jYn = (k; i); R(n)c) � P (R(n)cjYn = (k; i))

= P (Yn+1 = (l; j)jYn = (k; i); R(n)) � P (R(n)jYn = (k; i))

+pZ(k;i)(l;j) � P (R(n)
cjYn = (k; i))

for all n 2 IN 0. Since

lim
k!1

P (R(n)jYn = (k; i)) = 0

there is ak0 2 IN such that

P (R(n)jYn = (k; i)) <
"

2 �M 0

for all k > k0, withM 0 :=M +
Pm

i=1 jaij. Furthermore, condition 4.4 implies

max
i2f1;::: ;mg

Z T

0

ei

1X
n=1

nDn(t)1m dt < M <1

and thus the estimation
1X
l=0

mX
j=1

P (Yn+1 = (l; j)jYn = (k; i); R(n)) � f(n; j)

�
1X
l=0

mX
j=1

P (Yn+1 = (l; j)jYn = (k; i); R(n)) �

 
l +

mX
i=1

jaij

!

< M +
mX
i=1

jaij

holds. Using the positive functionf , we now have

1X
n=0

mX
j=1

pY(k;i);(n;j) � f(n; j)� f(k; i)

<
1X
n=0

mX
j=1

pZ(k;i);(n;j) � f(n; j)� f(k; i) +
"

2 �M 0
�

 
M +

mX
i=1

ai

!

< �
"

2
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for almost all states(k; i) 2 IN 0 � f1; : : : ; mg. Now Foster’s criterion as stated in Fayolle,
Malyshev, Menshikov [39], p.29, assures thatY is ergodic.
f��
�

In the case ofY being positive recurrent we can proceed as in the previous section in order to
determine the asymptotic distribution. Thus we conclude this chapter with

Theorem 4.9 If the stability condition 4.4 holds, thenQ has a periodic family of asymptotic
distributions assuming the form

qs = qP (0; s)

for all s 2 [0; T [, with q being the asymptotic distribution of the embedded homogeneous
Markov chainY = (Yn : n 2 IN 0) defined byYn := QnT for all n 2 IN0.

Proof: This follows immediately from the above theorem 4.8 and from theorem A.28.

Example 4.3 Resuming example 4.2, we obtainP (0; T ) = eT �G and hence

qP (0; T ) = q () qG = 0

for the distribution q. This and the formula forP (0; s) in example 4.2 imply further that

qs = q exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�G

�
= q

for all s 2 [0; t[. Hence the queue given in this example has the same asymptotic behaviour as
the homogeneous queue it is derived from.
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5. Spatial Queues with Infinitely Many
Servers

Spatial Queues with infinitely many servers arise naturally as models for the planning process
of mobile communication networks. A very useful concept has been developed by Çinlar [30],
partly on the basis of Massey and Whitt [63]. This assumes single arrivals distributed in time
as a non-homogeneous Poisson process. Every arrival chooses a position in space according
to a (time-dependent) distribution on the space and independent of all other users. Since the
arrival process is a multi-dimensional Poisson process on the product space of time and arrival
space, the queue process is Poisson as well, and the mean measures can be computed in a
straightforward manner. This yields a nice solution to the queue process.

Mobile communication networks with parallel data streams of different types (e.g. voice, data,
video) and group arrivals which are not independent in space require a more general treatment.
As the BMAP-concept (see Lucantoni [60]) shows for non-spatial queueing models, parallel
data types can be modeled by using phases. This will be done here, too. Furthermore, phases
can be used to model special system characteristics. Spatial dependence in the positioning of
group arrivals can be acknowledged by using Spatial Markovian Arrival Processes (SMAPs)
as introduced in chapter 3.

In this chapter, spatial infinite server queues shall be examined in three stages of generality.
Essentially, the same method of determining the queue process applies to all of them. In a first
step (section 5.1), this method will be shown for the simplest model of homogeneous arrival
rates in time and non-moving users. A first generalization in section 5.2 treats general (i.e.
possibly non-homogeneous) arrival rates, but still non-moving users. In section 5.3, a last step
provides for user movement as well general arrival rates.

5.1. Homogeneous Arrival Rates without User
Movements

In this section, spatial queues with homogeneous arrival rates and constant user positions are
examined. LetQ denote a queue with an SMAP arrival process(N; J) and infinitely many
independent servers. Denote the arrival space by(R; �(R)) and letf�(S1; : : : ; Sn) : n 2
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5. Spatial Queues with Infinitely Many Servers

IN; Si 2 �(R)g be the generating sequences determining(N; J). Every incoming user is
served immediately, i.e. there is no waiting time and the queue length is always zero.

For an introduction of the method of analysis, the service times will be assumed as general
and iid in section 5.1.1, i.e. they do not depend on the user’s position. In section 5.1.2, the
model provides for service time distributions depending on the user’s position.

5.1.1. IID Service Time Distributions

For ease of notation, the queue will be observed in only one subsetS 2 �(R) first. Observa-
tions in finitely many subsets will be derived in section 5.1.3 by the same method used in this
section. Lett 2 IR+ denote the time instant andS 2 �(R) the subset the queue is observed
at. Further, letG denote the service time distribution function.

DefineQi(s; t;S)(y; A) as the probability of observingi users being served inS at timet and
the system being in some phasez 2 A under the condition that at times < t there were no
users being served inS and the system was in phasey 2 �. LetQi(s; t;S) denote the kernel
on � with entriesQi(s; t;S)(y; A). Further define the sequenceQ(s; t;S) := (Qi(s; t;S) :
i 2 IN0) and setQ(t;S) := Q(0; t;S).

Remark 5.1 If N(du;S) denotes the infinitesimal arrival rate inS at timeu, then a stochastic
integral describing the queue process at timet is given by

Q(t;S) =

Z t

0

B (Gc(t� u); N(du;S))

with Gc := 1 � G denoting the complement of the service time distribution function and
B ((Gc(t� u); N(du;S)) being a random variable which is distributed binomially with suc-
cess probabilityGc(t � u) andN(du;S) trials. This integral is defined pathwise (cf. Liptser,
Shiryayev [59], p.90), i.e. for every! 2 
Z t

0

B (Gc(t� u); N(du;S)) (!) :=

Z t

0

B (Gc(t� u); N(du;S)(!)) (!):

Although this integral form gives a short and nice representation of the queue, its evaluation is
not easy. Therefore, another approach is taken for the computation of the transient distribution.

Fix any timet 2 IR+
0 the queue shall be observed at. In any infinitesimal time intervaldu =

limh!0 ]u; u + h] with u 2 [0; t[, batch arrivals occur with rates�(S) = (Di(S) : i 2 IN 0)
according to the SMAP arrival process. Given that an arrival of batch sizem 2 IN occured
during ]u; u + h] with u 2 [0; t[, the probability ofi 2 f0; : : : ; mg arrivals still being served
at timet is distributed binomially by�

m

i

�
Gc((t� u)�)iG((t� u)�)m�i;
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5.1. Homogeneous Arrival Rates without User Movements

denotingG((t� u)�) := limh!0G(t� (u+ h)) andGc(t) := 1�G(t).

Conditioning upon the batch arrival rates, the total rate ofi arrivals during a time intervaldu
which are still in service at timet is

Ri(u; t;S) =
1X
m=i

Dm(S)

�
m

i

�
Gc((t� u)�)iG((t� u)�)m�i (5.1)

for everyu 2 [0; t[ andi 2 IN0.

The sequenceR(u; t;S) := (Ri(u; t;S) : i 2 IN 0) can be interpreted as the time-dependent
generating sequence of an inhomogeneous SMAPH(t;S) = (H(t;S)(u) : u � t) which at time
u = t coincides with the infinite server queue that is to be examined. Note that for every
time t 2 IR+

0 the queue is observed at, the sequenceR(u; t;S) and hence the SMAPH(t;S)

is different. The transient distribution of the marginal queue process in the subsetS 2 �(R)
at time t 2 IR+

0 is determined byQ(t;S) = H(t;S)(t). Formula A.2 yields the following
representation:

Theorem 5.1 The transient distribution of the marginal queue process ofQ in the subset
S 2 �(R) at timet 2 IR+

0 is determined by

Q(t;S) =
1X
k=0

Z t

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

R(u1; t;S) � : : : �R(uk; t;S) du1 : : : duk (5.2)

defining the case of zero integrals as the sequenceId = (I; 0; 0; : : : ) with I denoting the
identity kernel and0 the zero kernel on�, and further defining the convolution sequence
C = A �B by

Cn :=
nX
i=0

AiBn�i

for any two sequencesA;B of kernels on�.

Proof: This was derived above.

A great disadvantage in the above formula 5.2 lies in the fact that the sequencesR(u; t;S)
need to be determined separately for every timet 2 IR+

0 the queue shall be observed at. In the
next theorem, a closed form for all times of observance is obtained:

Theorem 5.2 The transient distribution of the marginal queue process ofQ in the subset
S 2 �(R) at timet 2 IR+

0 can be written as

Q(t;S) =
1X
k=0

Z t

0

Z u1

0

: : :

Z uk�1

0| {z }
k integrals

~R(u1;S) � : : : � ~R(uk;S) duk : : : du1 (5.3)
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5. Spatial Queues with Infinitely Many Servers

with

~R(u;S) := R(t� u; t;S)

being independent oft > u.

Proof: By equation 5.1, the rates

~Ri(u;S) := Ri(t� u; t;S) =
1X
m=i

Dm(S)

�
m

i

�
Gc(u�)iG(u�)m�i

are independent oft > u. Starting from equation 5.2, we have

Q(t;S) =
1X
k=0

Z t

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

R(u1; t;S) � : : : �R(uk; t;S) du1 : : : duk

=
1X
k=0

Z t

0

Z t

u1

: : :

Z t

uk�1

R(u1; t;S) � : : : �R(uk; t;S) duk : : : du1

=
1X
k=0

Z t

0

Z u1

0

: : :

Z uk�1

0

R(t� u1; t;S) � : : : �R(t� uk; t;S) duk : : : du1

which proves the statement.
f��
�

Remark 5.2 The representation 5.3 is from the point of view that one looks backward in time
from time t until time 0. Thus, equation 5.3 gives the transition kernel of a process running
backward in time with the phase process still running forward.

Example 5.1 Assume that the service time distribution is deterministic, i.e.G = Æs is the
Dirac measure with supports > 0. Then

~Ri(u;S) =

�
Di(S) for u < s
Æi;0 �D for u � s

for all i 2 IN 0, denoting the Kronecker function byÆ and the generator of the phase process
byD =

P1
n=0Dn(S). Thus we obtain~R(u;S) = �(S) for u < s and ~R(u;S) = D � Id =

(D; 0; 0; : : : ) for u � s and hence

Q(t;S) =

�
e�(S)�t for t < s
P�(0; t� s)e�(S)�s for t � s

for all t 2 IR+
0 , with P� denoting the transition probability kernel of the phase process.

The next two theorems yield expressions for the expectation kernel of the marginal queue
processN at any time of observance.
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5.1. Homogeneous Arrival Rates without User Movements

Theorem 5.3 Assume that the arrival rate inS is finite for any phasey 2 �, i.e.
1X
n=1

nDn(S)(y;�) < M <1 (5.4)

for all y 2 �. Then the expectation kernel of the marginal queue process ofQ = (N; J) in the
subsetS 2 �(R) at timet 2 IR+

0 is given by

E(Nt) =

Z t

0

P�(0; u)
1X
n=1

nDn(S)P
�(u; t) Gc((t� u)�) du (5.5)

with P� denoting the transition kernel of the phase process.

Proof: Fix a timet 2 IR+
0 . SinceQ(t;S) equals the distribution of the SMAPH(t;S) at time

t, the expectation kernel at timet is given by theorem 3.10 as

E(Nt) =

Z t

0

P�(0; u)
1X
n=1

nRn(u; t;S)P
�(u; t) du

=

Z t

0

P�(0; u)
1X
n=1

n
1X
m=n

Dm(S)

�
m

n

�
Gc((t� u)�)nG((t� u)�)m�nP�(u; t) du

Abbreviatingp(u) := Gc((t� u)�) andq(u) := G((t� u)�), we have

E(Nt) =

Z t

0

P�(0; u)
1X
n=1

n
1X
m=n

Dm(S)

�
m

n

�
pn(u)qm�n(u)P�(u; t) du

=

Z t

0

P�(0; u)
1X
m=1

mX
n=1

nDm(S)
m!

n! � (m� n)!
pn(u)qm�n(u)P�(u; t) du

=

Z t

0

P�(0; u)

1X
m=1

mDm(S)p(u)

mX
n=1

(m� 1)!

(n� 1)! � (m� n)!
pn�1(u)qm�n(u)P�(u; t) du

=

Z t

0

P�(0; u)
1X
m=1

mDm(S)G
c((t� u)�)P�(u; t) du

since
mX
n=1

(m� 1)!

(n� 1)! � (m� n)!
pn�1(u)qm�n(u) =

m�1X
n=0

(m� 1)!

n! � (m� 1� n)!
pn(u)qm�1�n(u)

sums up to 1.
f��
�

Theorem 5.4 If condition 5.4 holds and the phase process has stationary distribution�, then
the expectation of the additive process ofQ(S) at timet 2 IR+

0 starting in phase equlibrium
is

E�(Nt; Jt 2 �) =

Z
�

�(dy)
1X
n=1

nDn(S)(y;�) �

Z t

0

Gc(u�) du (5.6)
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5. Spatial Queues with Infinitely Many Servers

Proof: This follows from the above theorem 5.3. Since�P�(0; u) = � for all u 2 IR+
0 and

P�(u; t)(y;�) = 1 for all y 2 � andu < t 2 IR+
0 , we have

E�(Nt; Jt 2 �) =

Z t

0

Z
�

�(dy)
1X
n=1

nDn(S)(y;�)G
c((t� u)�) du

=

Z
�

�(dy)
1X
n=1

nDn(S)(y;�) �

Z t

0

Gc(v�) dv

after substitutingv := t� u.
f��
�

5.1.2. Spatially Variable Service Time Distributions

Let fSk : k 2 INg with Sk 2 �(R), Sk \ Sl = ; for k 6= l, and
S1
k=1 Sk = R be a partition of

the arrival spaceR. For everyk 2 IN , assign a service time distribution functionGk, which
is valid onSk.

Let S 2 �(R) be measurable andK 2 IN such thatS �
SK
k=1 Sk. The queue process inS

can be described as the convolution of the queue processes inS \ S1; : : : ; S \ SK . Thus, for
everyt 2 IR+ the distributionQ(t;S) of users in subsetS at timet can be described in terms
of the distributionsQ(t;S \ Sk) of users in the subsetsS \ Sk at timet. This results in

Q(t;S) = �
K
k=1 Q(t;S \ Sk)

Here, the generating sequences~R(t;S \ Sk) which determine the sequencesQ(t;S \ Sk)
for k 2 f1; : : : ; Kg are determined as in the preceding section 5.1.1. The convolution� is
defined iteratively as�1

k=1Ak := A1 and

�
n+1
k=1Ak := (�nk=1Ak) � An+1

for all n 2 IN and sequencesA1; : : : ; An+1 of kernels on�.

5.1.3. Common Distribution in Finitely Many Subsets

The same method as in section 5.1.1 can be applied in order to determine the joint (transient)
distribution of the queue process in finitely many subsets of the arrival spaceR at a time
t 2 IR+. Be n 2 IN andSk 2 �(R) for k 2 f1; : : : ; ng measurable subsets. The joint
distributionQ(t;S1; : : : ; Sn) of users in service after timet shall be defined as the distribution
of theINn

0 -valued random variable indicating the number of users inS1 � : : :� Sn at timet.

Fix a timet 2 IR+ and subsetsS1; : : : ; Sn 2 �(R) the queue is to be observed at. In any
infinitesimal time intervaldu = limh!0 ]u; u + h] with u 2 [0; t[, batch arrivals occur with
rate�(S1; : : : ; Sn) = (Di1;::: ;in(S1; : : : ; Sn) : i 2 IN0) according to the SMAP arrival pro-
cess. Given that an arrival of batch size(m1; : : : ; mn) 2 INn occured during]u; u + h], the
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5.1. Homogeneous Arrival Rates without User Movements

probability of (i1; : : : ; in) 2
Qn

k=1f0; : : : ; mkg arrivals still being served in(S1; : : : ; Sn) at
time t is distributed by

nY
k=1

�
mk

ik

�
Gc((t� u)�)ikG((t� u)�)mk�ik ;

again denotingG((t� u)�) := limh!0G(t� (u+ h)) andGc(t) := 1�G(t).

Conditioning upon the batch arrival rates, the total rate of(i1; : : : ; in) arrivals into the family
(S1; : : : ; Sn) of subsets during a time intervaldu which are still in service at timet is

Ri1;::: ;in(u; t;S1; : : : ; Sn) =

=
1X

m1=i1

: : :
1X

mn=in

Dm1;::: ;mn(S1; : : : ; Sn)
nY
k=1

�
mk

ik

�
Gc((t� u)�)ikG((t� u)�)mk�ik

for everyu 2 [0; t[ andi1; : : : ; in 2 IN 0.

As in the one-dimensional case, the time–dependent (n–dimensional) sequence

R(u; t;S1; : : : ; Sn) := (Ri1;::: ;in(u; t;S1; : : : ; Sn) : i1; : : : ; in 2 IN0)

can be interpreted as the generating sequence of an inhomogeneous SMAPH(t;S1;::: ;Sn) =
(H(t;S1;::: ;Sn)(u) : u � t) which at timeu = t coincides with the infinite server queue that is
to be examined.

With definitions and arguments completely analogous to those in section 5.1.1, one derives
the following result:

Theorem 5.5 The transient distribution of the marginal queue process ofQ in the subsets
S1; : : : ; Sn 2 �(R) at timet 2 IR+

0 is determined by

Q(t;S1; : : : ; Sn) = (5.7)

=
1X
k=0

Z t

0

Z u1

0

: : :

Z uk�1

0| {z }
k integrals

~R(u1;S1; : : : ; Sn) � : : : � ~R(uk;S1; : : : ; Sn) duk : : : du1

with

~R(u;S1; : : : ; Sn) := R(t� u; t;S1; : : : ; Sn)

being independent oft > u. The case of zero integrals shall be defined as the sequence
Id = (Idi1;::: ;in : i1; : : : ; in 2 IN0) with entries

Idi1;::: ;in :=

�
I for

Pn
k=1 ik = 0

0 otherwise

61



5. Spatial Queues with Infinitely Many Servers

and I (resp. 0) denoting the identity kernel (resp. the zero kernel) on�. Furthermore, the
convolution sequenceC = A �B shall be defined by

Ci1;::: ;in :=
i1X

j1=0

: : :
inX

jn=0

Aj1;::: ;jnBi1�j1;::: ;in�jn

for any two sequencesA;B of kernels on�.

5.1.4. Stability and Asymptotic Distribution

The asymptotic behaviour of the homogeneousSMAP=G=1 queue already is apparent in
formulae 5.3 and 5.5 of the transient distributions and expectation kernels, respectively. The
marginal expectationE(Nt) remains finite fort ! 1 if and only if the mean service time
E(G) as well as the mean arrival rate are finite. As will be shown in this section, these
conditions are, as intuition would suggest, the main ingredients of a stability condition for the
homogeneousSMAP=G=1 queue.

After first defining stability for homogeneous queues, the asymptotic distribution and marginal
expectation of users in the queue are given for stableSMAP=G=1 queues. Finally, a neces-
sary and sufficient stability condition is proven for the case of a countable phase space at the
end of this section.

Definition 5.1 An homogeneous queueQ = (Qt : t 2 IR+) shall be calledstable if the
asymptotic distributionq := limt!1Qt does exist and the marginal asymptotic distribution of
users in the queue has finite expectation.

Theorem 5.6 If Q = (N; J) has an asymptotic distribution, it is determined by the kernel

Q(S) =
1X
k=0

Z 1

0

Z u1

0

: : :

Z uk�1

0| {z }
k integrals

~R(u1;S) � : : : � ~R(uk;S) duk : : : du1

for everyS 2 �(R). Denote the asymptotic distribution of the phase processJ by�. Then the
asymptotic expectation of the marginal processN is given by

E(N(S); J 2 �) := lim
t!1

E(Nt(S); Jt 2 �) = E(G) �

Z
�

�(dy)
1X
n=1

nDn(S)(y;�)

for everyS 2 �(R), independent of the initial distribution.

Proof: The first statement follows immediately from formula 5.3 and the existence of the limit
Q(S) = limt!1Q(t;S). The second formula follows from equation 5.5 if one recognizes that
with t growing to infinity, the termGc((t � u)�) tends to zero for the timesu during which
the phase process is not in equilibrium yet.
f��
�
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5.1. Homogeneous Arrival Rates without User Movements

Example 5.2 As in example 5.1, assume that the service times are deterministicallys. Fur-
ther assume that the phase process is asymptotic with asymptotic distribution�. Then the
asymptotic distribution ofQ under initial distribution� is given by

Q(S) = lim
t!1

Z
d�Q(t;S) =

�
lim
t!1

Z
d�P�(0; t)

�
e�(S)�s = �e�(S)�s

for all S 2 �(R).

Remark 5.3 In order to compute the asymptotic distribution ofQ = (N; J), it might be
advantageous to use renewal theoretic methods as follows. Assume that� is countable, which
is sufficient for most practical applications. Let(Tn : n 2 IN 0) denote the stopping times
T0 := infft 2 IR+

0 : Nt = 0g andTn+1 := infft > TnjNt = 0; 9 s 2 [Tn; t] : Ns 6= 0g for all
n 2 IN0. Further define(Xn : n 2 IN0) by Xn := JTn for all n 2 IN0. Then the discrete–
time process(X; T ) is a Markov–renewal process andQ is a semi–regenerative process (see
Çinlar [26], pp.313,343). Hence one can use theorem 6.12 in Çinlar [26], p.347, to compute
the asymptotic distribution ofQ.

Assume without restriction of generality thatT0 := 0. If Q has an asymptotic distribution,
then the processX = (Xn : n 2 IN 0) has an invariant probability measure�. Define the
mean valuesm(j) := E(T1jX0 = j) for all j 2 � and letm denote the vector with entries
m(j). Further, denote

Kt(j; A) = P (Qt 2 A; T1 > tjX0 = j)

for all t 2 IR+
0 , j 2 � andA 2 S. The kernelsKt as well as the distribution� and the vector

m are determined as follows. DefineK(k)
t;u (n) as the probability kernel on� thatT1 > u and

thatk 2 IN0 batch arrivals inS 2 �(R) are observed until timeu < t 2 IR+
0 , of whichn

single arrivals remain in the system until timet. Using the Kronecker functionÆ, we obtain

K
(0)
t;u (n) = Æn;0 � e

D0(S)u

and iteratively

K(k+1)
t;u (n) =

Z u

0

nX
m=0

K(k)
t;v (n�m)

X
l�m;l 6=0

Dl(S)

�
�
G(t� v)l�mGc(t� v)m � Æn;0Æm;0G(u� v)l

�
eD0(S)(u�v) dv

for all u � t 2 IR+
0 , n 2 IN 0 andk 2 IN 0. LetA = fng � B with n 2 IN0 andB 2 �(�).

Then we have

Kt(j; A) =
1X
k=0

K
(k)
t;t (n)(j; B)
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5. Spatial Queues with Infinitely Many Servers

for all j 2 �. Define the kernelP (T1 > t) on� by

P (T1 > t)(i; B) :=
1X
n=0

Kt(i; fng �B)

for all i 2 � andB 2 �(�). Then the distribution� is given as the solution of

� = �

Z 1

0

dP (T1 = t)

Further, the mean vectorm is given by its entries

m(i) =

Z 1

0

P (T1 > t)(i;�) dt

for all i 2 �.

Using the above values, the asymptotic distribution ofQ is given by

q(A) = lim
t!1

Qt(A) =
1

�m

X
j2�

�(j)

Z 1

0

Kt(j; A) dt

for all A 2 S, provided that the right–hand expression does exist.

In the rest of this section, a stability condition is derived for the case of the phase space�
being finite.

Theorem 5.7 LetQ = (N; J) denote an homogeneous SMAP/G/1 queue with finite phase
space�. Assume that the phase processJ is irreducible and has stationary distribution�.
Denote the number of phases bym and them–dimensional vector with all entries being 1 by
1m. ThenQ is stable if and only if the stability condition

�
1X
n=1

nDn(R)1m �E(G) <1 (5.8)

holds.

Proof: First we show necessity. Assume that the queue is stable. Then the asymptotic
expectation of the marginal processN(R) is given by

E(N(R); J 2 �) = E(G) � �
1X
n=1

nDn(R)1m <1

according to the above theorem 5.6. This yields the necessity of condition 5.8.
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5.1. Homogeneous Arrival Rates without User Movements

Sufficiency will be shown by comparison to theM=G=1 queue. SinceQ is stable if and only
if Q(R) is stable, it suffices to refer toQ(R) only. Denote the work load process ofQ(R) by
W = (Wt : t 2 IR

+
0 ) and define


max := �min
i2�

D0(R)(i; i) = max
i2�

jD0(R)(i; i)j

as the maximal exit rate over all phases. Define~Q as the followingM=G=1 queue. The
arrival process of~Q shall be a Poisson process with rate
max. Let imax 2 � denote a phase
with the highest expectation of the arrival batch size, i.e.

1


imax

1X
n=1

nDn(R)(imax;�) �
1


j

1X
n=1

nDn(R)(j;�)

for all j 2 �. Since there are no absorbing states, the exit rate
imax is a positive number.
Define the service time distribution of~Q by

~G :=
1


imax

1X
n=1

Dn(R)(imax;�)G
�n

denoting the service time distribution ofQ byG and then–fold convolution ofG byG�n. The
M=G=1 queue constructed in this way has an arrival rate which is an upper bound of the
phase specific arrival rates ofQ(R). Furthermore, the batch arrivals ofQ(R) are interpreted
as single arrivals in~Q with only one server working off the accrued service requirement of all
the users in the batch arrival. Thus the work load~W = ( ~Wt : t 2 IR+

0 ) of ~Q is certainly at
least as high as the work loadW of Q. Since by Wald’s equation

E( ~G) =
1


imax

1X
n=1

Dn(R)(imax;�) � nE(G) =
1


imax
� E(G) �

1X
n=1

nDn(R)(imax;�)

we haveE( ~G) <1 by assumption of the stability condition. As
max <1 is finite, too, ~Q is
stable. This implies that~W is positive recurrent. i.e. the expected duration between the time
instants of~W reaching the state 0 is finite. Since

~Wt � Wt � 0

certainly for allt 2 IR+
0 , the work load processW of Q is positive recurrent, too. HenceQ

has an asymptotic distribution. The finiteness of the asymptotic expectation of the marginal
processN(R) is immediate from theorem 5.6 and the stability condition.
f��
�

Remark 5.4 The plausibility of condition 5.8 results from the obvious analogy to the stability
condition for the resultingBMAP=G=1 queue on the setR. Of course, theSMAP=G=1
queue on(R; �(R)) is stable if and only if the resultingBMAP=G=1 queue on the setR is
stable.
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5.2. General Arrival Rates without User Movements

In mobile communication networks, the typical characteristics of the arrival stream change
in time periodically (e.g. over the course of the day). Stochastic models reflect this best
by inhomogeneous arrival processes. The concept of SMAPs introduced in chapter 3 does
provide for arrival rates varying in time and hence can be used to model this phenomenon.
An examination analogous to the homogeneous case yields a solution for the corresponding
spatial infinite server queue.

In this section, the same method of analysis as in the preceding section 5.1 shall be applied to
spatial infinite server queues with general arrival rates. User movements will be examined in
the next section. After the derivation of the transient distribution, an approximation method
for the distribution at arbitrary time instants will be given.

5.2.1. Transient Distribution

The infinite server queue fed by an inhomogeneous SMAP can be analyzed analogously to the
homogeneous case in section 5.1. Let

Q = (Q(t;S1; : : : ; Sn) : t 2 IR
+
0 ; n 2 IN; S1; : : : ; Sn 2 �(R))

denote a spatial queue with general SMAP input(N; J), general service time distributionG
and infinitely many servers. The arrival process(N; J) shall be defined by its time-dependent
generating sequences(�(t;S1; : : : ; Sn) : t 2 IR

+
0 ; n 2 IN; S1; : : : ; Sn 2 �(R)).

Again, the reason for restriction to a single subset and spatially constant service time distri-
butions is ease of notation. The generalizations towards spatially variable service times and
joint distributions in finitely many subsets are straightforward in the same way as in section
5.1. Bet 2 IR+ the time instant andS 2 �(R) the subset the queue is observed at. While
the integral representation of the queue process in remark 5.1 remains valid, the arrival rates
at timess 2 [0; t] are not constant anymore, but depend on the time instants.

The total rate ofi arrivals during a time intervaldu = limh!0 ]u; u+ h] is

Ri(u; t;S) =
1X
m=i

Dm(u;S)

�
m

i

�
Gc((t� u)�)iG((t� u)�)m�i

for everyu 2 [0; t[ andi 2 IN 0. As in the case of homogeneous arrival rates, the sequence
R(u; t;S) = (Ri(u; t;S) : i 2 IN0) can be interpreted as the time-dependent sequence of
transition rates of an inhomogeneous SMAPH(t;S) = (H(t;S) : u � t) which at timeu = t
coincides with the infinite server queue that is to be examined.

The same arguments as in section 5.1.1 lead to the result
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5.2. General Arrival Rates without User Movements

Theorem 5.8 The transient distribution of the marginal queue process ofQ in the subset
S 2 �(R) at timet 2 IR+

0 is determined by

Q(t;S) =
1X
k=0

Z t

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

R(u1; t;S) � : : : �R(uk; t;S) du1 : : : duk (5.9)

defining the case of zero integrals as the sequenceId = (I; 0; 0; : : : ) with I denoting the
identity kernel and0 the zero kernel on�, and further defining the convolution sequence
C = A �B by

Cn :=
nX
i=0

AiBn�i

for any two sequencesA;B of kernels on�.

Remark 5.5 Unfortunately, a unification of the above formula analogous to formula 5.3 can-
not be achieved in general. This is due to the fact that

R(t� u; t;S) =
1X
m=i

Dm(t� u;S)

�
m

i

�
Gc(u�)iG(u�)m�i

still depends ont if the arrival rates are inhomogeneous.

On the other hand, it is possible to extend the theory towards time–dependent service time
distribution functions. This would lead to rates of the form

Ri(u; t;S) =
1X
m=i

Dm(u;S)

�
m

i

�
Gc
u((t� u)�)iGu((t� u)�)m�i

for everyu 2 [0; t[ andi 2 IN 0, withGu denoting the service time distribution function which
holds for users arriving during the infinitesimal time intervaldu.

5.2.2. An Approximation

This section shows an approximation method which can be used in order to determine the
distribution of the queue process at an arbitrary timet 2 IR+

0 without needing to integrate
over the whole range[0; t[. The approximation regards only arrivals up to a certain time
distance into the past. All arrivals which have occured before are neglected. Thus, this method
approximates the service time distribution by a distribution with cut tail.

Conditions for this approximation are the standard assumptions of finite mean service time
and finite arrival rates. First, it is shown that the kernels of the generating sequence ofH(t;S)

are uniformly bounded. Then, this result is used to estimate the approximation error.
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5. Spatial Queues with Infinitely Many Servers

Assume in this chapter that the mean service time

E(G) =

Z 1

0

Gc(u) du <1 (5.10)

is finite. Further assume that the arrival rate in the whole arrival spaceR

1X
m=1

mDm(t;R)(y;�) < M <1

is finite for all t 2 IR+ andy 2 �.

The next result gives the decisive bound for the approximation following.

Theorem 5.9 For every" > 0, there is a time distanceT (") 2 IR+ such that the inequality




Z s

0

Rn(u; t;S) du





 < M � "

holds for alln 2 IN0 ands � t� T ("), with kKk := supy2�K(y;�) denoting the row norm
for kernels on�.

Proof: Choose any" > 0. By assumption 5.10, there is aT (") 2 IR+ such thatZ 1

T (")

Gc(u�) du < "

Fix anyy 2 � ands � t�T ("). Since all elements ofRn(u; t;S) are positive for allu 2 [0; t]
andn 2 IN , we have






Z s

0

1X
n=1

Rn(u; t;S) du






 �






Z s

0

1X
n=1

nRn(u; t;S) du







Analogously to the proof of theorem 5.3, one can show thatZ s

0

1X
n=1

nRn(u; t;S) du =

Z s

0

1X
n=1

nDn(u;S) G
c((t� u)�) du

Because
P1

n=1 nDn(u;S) �
P1

n=1 nDn(u;R) for all S 2 �(R) andu 2 IR+
0 , the estimation





Z s

0

Rk(u; t;S) du





 �







Z s

0

1X
n=1

Rn(u; t;S) du







�







Z s

0

1X
n=1

nDn(u;R) G
c((t� u)�) du







�

Z s

0







1X
n=1

nDn(u;R)






 Gc((t� u)�) du

< M �

Z s

0

Gc((t� u)�) du
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holds for allk 2 IN . Substitutingv := t� u leads to




Z s

0

Rk(u; t;S) du





 �







Z s

0

1X
n=1

Rn(u; t;S) du






 < M �

Z t

t�s

Gc(v�) dv

� M �

Z 1

T (")

Gc(v�) dv < M � "

Since Z s

0

1X
n=1

Rn(u; t;S)(y;�)du = �

Z s

0

R0(u; t;S)(y;�)du

for all s 2 IR+
0 , the proof is complete.

f��
�

Using this bound, we can prove the following approximation:

Theorem 5.10 At any timet 2 IR+ and for everyy 2 �, the distribution of the queue process
can be approximated by

Q(t;S)(y;�) = Q(0; t;S)(y;�) � Q(t� T ("); t;S)(y;�)

The approximation error is at most

jQn(t;S)(y;�)�Qn(t� T ("); t;S)(y;�)j < M � "

for all n 2 IN0 andy 2 �.

Proof: For everyk 2 IN , the difference between the respectivek-fold integrals appearing in
formula 5.9 isZ t

0

: : :

Z uk�1

0

R(uk; t;S) � : : : �R(u1; t;S) duk : : : du1

�

Z t

t�T (")

: : :

Z uk�1

t�T (")

R(uk; t;S) � : : : �R(u1; t;S) duk : : : du1

=

Z t

0

: : :

Z uk�2

0

Z t�T (")

0

R(uk; t;S) � : : : �R(u1; t;S) duk : : : du1

=

Z t�T (")

0

R(uk; t;S) duk �

Z t

0

: : :

Z uk�2

0

R(uk�1; t;S) � : : : �R(u1; t;S) duk�1 : : : du1

Summing up over allk 2 IN0 yields

Q(t;S)�Q(t� T ("); t;S)(y;�) =

=

Z t�T (")

0

R(u; t;S) du �
1X
k=0

Z t

0

: : :

Z uk�1

0

R(uk; t;S) � : : : �R(u1; t;S) duk : : : du1

=

Z t�T (")

0

R(u; t;S) du �Q(t;S)
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Hence, for anyy 2 � andn 2 IN 0 we have

jQn(t;S)(y;�)�Qn(t� T ("); t;S)(y;�)j

=

�����
nX
j=0

Z t�T (")

u=0

Z
�

Rj(u;S)(y; dz)du Qn�j(t;S)(z;�)

�����
� max

j=0;::: ;n

�����
Z t�T (")

0

Z
�

Rj(u;S)(y; dz) du

�����
since for everyz 2 � the probability

Pn
j=0 jQn�j(t;S)(z;�)j does not exceed 1. Because

max
j=0;::: ;n

�����
Z t�T (")

0

Z
�

Rj(u;S)(y; dz)du

����� = max
j=0;::: ;n

�����
Z t�T (")

0

Rj(u;S)(y;�)du

����� < M � "

according to theorem 5.9, the proof is complete.
f��
�

5.3. General Arrival Rates with User Movements

User movements shall be modeled following the idea of Çinlar [30], pp.112f. Divide the
spaceR into a finite partition(S1; : : : ; SK) 2 (�(R))K with K 2 IN ,

SK
i=1 Si = R and

Si \ Sj = ; for i 6= j. Each set of this partition represents a spatial unit which is homo-
geneous in motion. Thus for timess < t 2 IR+, subsetsSi; S 2 �(R) andn; k 2 IN 0,
one can define a probabilityP (Si; s; n;S; t; k) that under the condition thatn users arrive in
Si at times, k of them will be located inS at timet. At the time a user has finished using
the network (i.e. its service time is over), it shall disappear and take on the position� =2 R.
This impliesP (Si; s; n;R [ f�g; t; n) = 1 for all Si 2 �(R), s < t 2 IR+ andn 2 IN 0.
Further, spatially variable service times can be subsumed byGi(t) = P (Si; 0; 1;R; t; 0) or�
m
k

�
Gc
i(t)

kGi(t)
m�k = P (Si; 0; m;R; t; k) for batch arrivals. This convention allows a model

of user movements which is analogous to the model for spatially variable service time distri-
butions in section 5.1.2.

The transient distribution of the queue process can be calculated as a convolution over all
i 2 f1; : : : ; Kg of the distributions of users which arrived in the setSi until timet and assume
a location inS at timet.

As in equation 5.1, the total rate ofk users arriving inSi during the infinitesimal time interval
du = limh!0]u; u+ h] and being located inS at timet is determined by

Rk(u; t;Si; S) =
1X
m=k

Dm(u;Si)P (Si; u+; m;S; t; k)

for everyu 2 [0; t[, k 2 IN0 andSi 2 �(R), denotingu+ := limn!1 u+ 1
n
.
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5.3. General Arrival Rates with User Movements

DefiningR(u; t;Si; S) := (Rk(u; t;Si; S) : k 2 IN 0) for everyu 2 [0; t[, the above rates
determine the distributionsQ(t;Si; S) of users arriving inSi duringdu and being located inS
at timet. The same arguments leading to formula 5.2 yield the expression

Q(t;Si; S) =
1X
k=0

Z t

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

R(u1; t;Si; S) � : : : �R(uk; t;Si; S) du1 : : : duk

The distribution of the queue as a convolution of these single distributions is

Q(t;S) = �
K
i=1 Q(t;Si; S)

An approximation of this expression is possible by the same idea as in section 5.2.2. In order
to obtain a bound for the approximation error, we need the following

Theorem 5.11 Assume that the mean service time is finite, i.e. that equation 5.10 holds. Be
" > 0 and determineT (") as in theorem 5.10. Then the inequalitiy






KY
i=1

Qni(0; t;Si; S)�
KY
i=1

Qni(t� T ("); t;Si; S)






 < K �M"

holds for all n1; : : : ; nK 2 IN 0, with kKk := supy2�K(y;�) denoting the row norm for
kernels on�.

Proof: This is proven by induction. ForK = 1 the statement is proven in the same way as
in theorem 5.10. Assume the statement is true for anyK � 1. Choose anyy 2 �. To shorten
the notation, definepi := Qni(0; t;Si; S)(y;�) and ~pi := Qni(t � T ("); t;Si; S)(y;�). As
probabilities, allpi and~pi have values in[0; 1]. Then�����

KY
i=1

pi �
KY
i=1

~pi

����� =

�����
K�1Y
i=1

pi(pK � ~pK) +

 
K�1Y
i=1

pi �
K�1Y
i=1

~pi

!
~pK

�����
<

K�1Y
i=1

pi �M" + (K � 1) �M" � ~pK

by induction hypothesis. Since
QK�1

i=1 pi � 1 and~pK � 1, the induction step is proven.
f��
�

Since the combinatorial possibilities of creatingn 2 IN 0 users out ofK different sources
grows withn, an error for the approximation ofQn(t;S) can only be given dependent on the
numbern of users.

Theorem 5.12 The distribution of the queue process can be approximated by

Q(0; t;S)(y;�) � Q(t� T ("); t;S)(y;�)
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5. Spatial Queues with Infinitely Many Servers

For everyi 2 IN0, the approximation error is at most

jQn(0; t;S)(y;�)�Qn(t� T ("); t;S)(y;�)j <

�
K + n� 1

K � 1

�
�K �M"

Proof: Using the same definitions forpk and~pk as in the previous proof, the approximation
error is ����� X

n1+:::+nK=n

KY
k=1

pk �
X

n1+:::+nK=n

KY
k=1

~pk

����� =

����� X
n1+:::+nK=n

KY
k=1

pk �
KY
k=1

~pk

�����
<

X
n1+:::+nK=n

K �M"

by theorem 5.11. As can be proven by induction onK, the number of combinations of sum-
ming upn1 + : : :+ nK = n is

�
K+n�1
K�1

�
.

f��
�

5.4. Application: Planning a Mobile Communication
Network

The results which have been obtained in this chapter can be applied to support the planning
procedure of a mobile communication network. Assume that an areaR is to be covered with
base stations such as to provide network service for all users in it. This shall be achieved with
a maximum outage probability of", which means that a user at any location inR, who wants
to use the network, will find it busy with a probability of at most".

Then the analysis of spatial infinite server queues can help to derive a capacity function
C" : �(R) � IR+ ! IN 0 which yields for every subsetS 2 �(R) and every timet 2 IR+

a numberC"(S; t) such that if the network has the capacity of servingC"(S; t) users inS at
time t, then the quality of service with respect to the given maximum outage probability"
is guaranteed. Hence, in order to build a network that can guarantee the maximum outage
probability", it suffices to provide service capacity according to the functionC". In practical
applications, a finite partition(S1; : : : ; SK) of R will be fine enough to answer all relevant
questions concerning network planning. This implies that�(R) may be chosen as finite, too,
which greatly simplifies computation of the functionC".

In order to determineC", one can proceed as follows. Define anSMAP=G=1 queue with
arrival space(R; �(R)) on an appropriate level regarding time–dependence of arrival rates and
user movements. An estimation procedure for the parameters of an SMAP can be found in the
next chapter of this thesis. Then either the stationary distribution (in the homogeneous case)
or the distributions at a given time of day (in the case of periodic arrival rates with period
length being a day) can be represented by a set of functionsPt : �(R) � IN0 ! [0; 1] which
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yields for a given setS 2 �(R) the probabilityPt(S; n) of n users being served inS at day
time t. For the homogeneous case, we have a functionP instead of a set(Pt : t 2 [0; 24]) of
functions which depend on the day time.

These are the distributions for an infinite server queue, which means that the probabilities
were derived under the assumption that every user can be served. Hence the load for any real
network with some positive outage probability would be lower. It thus suffices to determine the
capacity functionC" for the infinite server queue in order to find a sufficient capacity function
for any real network. Since the outage probability" usually will be chosen very small, the
approximation by an infinite server queue seems reasonably sharp.

Now the capacity function for the infinite server queue can easily be determined as

C"(S; t) := min

(
n 2 IN0 :

1X
k=n+1

Pt(S; k) < "

)

for all t 2 IR+ andS 2 �(R). This means that the valueC"(S; t) of the capacity function at a
subsetS 2 �(R) at a timet is given by the lowest numbern of users such that the probability
of more thann users being served inS would be smaller than" for the respective infinite
server queue. Since the load of any real network is lower than the load for the infinite server
queue, the outage probability of a network satisfying this capacity function can be guaranteed
to stay smaller than the given threshold".
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6. Parameter Estimation

In order to apply the concept of SMAPs and their respective queues, it is necessary to estimate
the arrival parameters from real data streams. In general, this problem has not been solved yet.
The problem of estimating parameters is more complex for SMAPs than for Batch Marko-
vian Arrival Processes (BMAPs, see Lucantoni [60]) , since homogeneous SMAPs generalize
BMAPs towards a larger phase space and - most importantly - spatial batch arrivals. However,
for certain subclasses of SMAPs estimation procedures can be derived.

Even for BMAPs a unified procedure for parameter estimation has not been developed yet. A
survey of estimation methods is given in Asmussen [7]. His emphasis is on maximum like-
lihood estimation and its implementation via the EM algorithm. For the Markov Modulated
Poisson Process (MMPP), an EM algorithm has been developed in Ryden [85], whereas As-
mussen [6] contains a fitting procedure for phase-type distributions via the EM algorithm. An
interesting different approach is given by Botta et al. [20] and Chauveau et al. [24]. They
introduce the class of generalized hyperexponential distributions and derive statistical fitting
methods by means of inversion of transforms.

In this chapter, an estimation procedure is introduced for the subclass of homogeneous SMAPs
which have only finitely many phases and a finite�–algebra�(R) on the arrival spaceR. For
this class of SMAPs, the counting function of an arrival is reduced to a vectorC 2 INK

0

with K = j�(R)j denoting the number of elements in�(R). Since BMAPs belong to this
subclass of SMAPs as a special case, the proposed estimation procedure yields a new result
for BMAPs, too. This will be explicated in section 6.4.

Let m denote the number of phases of the SMAP which is to be estimated. The estimation
procedure introduced in this chapter requires the measurement of the arrival time instants and
the counting functions of the arrivals. Let(Tn : n 2 f0; : : : ; Ng) denote the empirical arrival
instants and(Cn : n 2 f0; : : : ; Ng) the respective empirical counting functions of the spatial
arrivals at times(Tn : n 2 f0; : : : ; Ng). Define without loss of generalityT0 := 0.

The estimation works in three steps, each of which uses classical statistical methods. First, the
empirical interarrival times are used to estimate the numberm of phases and the matrixD0(R).
Those can be interpreted as a sample of a phase–type distribution and henceD0(R) can be
estimated by an EM-algorithm (see Dempster et al. [34] or for this special case Asmussen et
al. [6]). If the number of phases is unknown, then the above maximum likelihood estimation
can be repeated with increasing phase spaces until the likelihood gain does not exceed a certain
threshhold (cf. Jewell [52]). In a second step, for every empirical arrival instant the probability
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6. Parameter Estimation

distribution of being in a certain phase at this instant is estimated using discriminant analysis
(see Titterington et al. [89]). In the last step, the derived estimators of the first two steps
are used in order to calculate the empirical estimator for the generator matrix. This is done
according to standard estimators for Markov chains (see Anderson, Goodman [2]).

6.1. Arrival Rates

Let (zn := Tn � Tn�1 : n 2 f1; : : : ; Ng) denote the empirical interarrival times. Assume
first that the number of phases is known and denoted bym. According to theorem 3.8, the
interarrival times of an SMAP are distributed phase–type with generatorD0(R). Hence the
(zn : n 2 f1; : : : ; Ng) are a sample of a phase–type distribution with density

z(t) = �eD0(R)t�(R)

for t 2 IR+. Here,� = (�1; : : : ; �m) is the steady–state distribution of the phase process
at arrival instants and�(R) := �D0(R)1m is the so–called exit vector of the phase–type
distribution with representation(�;D0(R)).

If m is known, there is a maximum likelihood estimator for� andD0(R). The solution of the
estimating equations can be approximated iteratively by an EM algorithm (cf. Dempster et al.
[34] or McLachlan, Krishnan [64]), which was derived for this special case by Asmussen et
al. [6] and proceeds as follows.

For ease of notation, we write in this and the following sectionD0 instead ofD0(R) and
� instead of�(R). Denote theith unit column vector byei and its transposition (i.e. the
respective row vector) byeTi .

Starting from an intuitive first estimate(�(1); D(1)
0 ) of the representation of the phase–type

distribution, the recursions

�
(k+1)
i =

1

N

NX
n=1

�
(k)
i b

(k)
i (zn)

�(k)b(k)(zn)

D
(k+1)
0;ij =

NX
n=1

D
(k)
0;ijc

(k)
ij (zn)

�(k)b(k)(zn)

,
NX
i=1

c
(k)
ii (zn)

�(k)b(k)(zn)

for i 6= j and

�
(k+1)
i =

NX
n=1

�
(k)
i a

(k)
i (zn)

�(k)b(k)(zn)

,
NX
i=1

c
(k)
ii (zn)

�(k)b(k)(zn)
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along with the relation

D
(k+1)
0;ii = ��(k+1)i �

mX
j=1;j 6=i

D
(k+1)
0;ij

and the definitions

a(k)(zn) := �(k)eD
(k)
0 zn

b(k)(zn) := eD
(k)
0 zn�(k)

c
(k)
ij (zn) :=

Z zn

0

�(k)eD
(k)
0 ueie

T
j e

D
(k)
0 (zn�u)� du

for i; j 2 f1; : : : ; mg undk 2 IN lead to monotonically increasing likelihoods.

In Asmussen et al. [6], it is proposed to compute the values ofa(k)(zn), b(k)(zn) andc(k)ij (zn)
numerically as the solution to a linear system of homogeneous differential equations. Ac-
cording to their paper, this is possible achieving high precision by standard methods. The
implementation by Gilbert [43] shows that, too.

The convergence of the EM algorithm is examined in Dempster et al. [34], chapter 3, as well
as in McLachlan, Krishnan [64]. Improvements of the convergence rates are given in Meng,
Dyk [66] and Jamshidian, Jennrich [51]. Titterington [88] gives an alternative recursion which
is faster but not as stable.

A satisfying standard procedure for estimating the numberm of phases has not been found
yet. A feasible method without a prior estimation ofm is proposed in Jewell [52]. Denote
the maximum likelihood estimators of the representation of the phase–type distribution (as
approximated by the EM algorithm described above) for an assumed numbermk of phases by
(�̂(k); D̂0(k)). Further denote the resulting estimate of the exit vector by�̂(k) := �D̂0(k)1mk

.
Estimating the parameters by the above method for increasingmk and stopping as soon as the
likelihood gain

NY
n=1

�̂(k + 1)eD̂0(k+1)zn �̂(k + 1)�
NY
n=1

�̂(k)eD̂0(k)zn �̂(k)

is smaller than a threshold value leads to a reasonable model fitting. Since the adaptation of
the model increases with the assumed number of phases, the likelihood gain is always positive.
The threshold value reflects the limit of accuracy beyond which the gain in model adaptation
is not worth the additional computation time.

6.2. Phases at Arrival Instants

Using the estimator(�̂; D̂0) from the last section, the distribution of the non–observable phases
at times(Tn : n 2 IN) can be estimated using discriminant analysis in a standard way (cf.
Titterington et al. [89], pp.168f).
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For a given empirical arrival instantTn, let Zn := Tn � Tn�1 andRn�1 denote the random
variables of the last interarrival time and of the phase immediately after the last arrival in-
stantTn�1, respectively. LetP (Zn; Rn�1) denote their joint distribution andP (ZnjRn�1),
P (Rn�1jZn) the conditional distributions.

Since(Zn : n 2 f1; : : : ; Ng) is given empirically by the time series(Tn : n 2 f0; : : : ; Ng),
it suffices to estimate the distributionP (Rn�1jZn = zn) for everyn 2 f1; : : : ; N � 1g. This
distribution is discrete, because by assumption there are only finitely many phases.

Bayes’ formula yields forj 2 f1; : : : ; mg andn 2 f1; : : : ; Ng

P (Rn�1 = jjZn = zn) =
P (Zn = znjRn�1 = j) � P (Rn�1 = j)Pm
i=1 P (Zn = znjRn�1 = i) � P (Rn�1 = i)

Since the interarrival timesZn are distributed phase–type, the expressionsP (ZnjRn�1) exist
as conditional densities with respect to the Lebesgue measure onIR.

The expressions on the right hand can be estimated via the estimated parameters(�̂; D̂0) and
the resulting vector̂�. Hence, for every arrival instantTn�1 the estimator for the conditional
distribution of the phase atTn�1 given the interarrival timeZn = Tn � Tn�1 is given by

P̂ (Rn�1 = ijZn = zn) =
eTi e

D̂0zn �̂ � �̂iPm
j=1 e

T
j e

D̂0zn �̂ � �̂j
=
�̂i � e

T
i e

D̂0zn �̂

�̂eD̂0zn �̂

for everyi 2 f1; : : : ; mg andn 2 f1; : : : ; Ng.

Furthermore, it will be necessary to estimate the phase immediately before an arrival instant.
This can be done by the same method. Denote the respective conditional distribution by
P (Rn�jZn). Then we get the estimation

P̂ (Rn� = ijZn = zn) =
�̂eD̂0znei � �̂iPm
j=1 �̂e

D̂0znej � �̂j
=
�̂eD̂0znei � �̂i

�̂eD̂0zn �̂

for everyi 2 f1; : : : ; mg andn 2 f1; : : : ; Ng.

6.3. Generator Matrix

Since the phase space� = f1; : : : ; mg as well as the�–algebra�(R) is finite, the infinitesimal
transition rates are determined by the values for

D(i; j; C) = �i � pi(j; C)

for everyi; j 2 f1; : : : ; mg andC 2 INK
0 .

Denote the zero vector inINK
0 by 0. In order to complete the estimation of the generator

matrix, it suffices to estimate the parameterspi(j; C) for C 6= 0. Without any further assump-
tions regarding these, use of the empirical estimator is standard. This is given in Anderson,
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6.4. Estimation for BMAPs

Goodman [2]. Since in the present statistical model the phase process is hidden, the phase at
each arrival instant cannot be observed but must be estimated. For this, the results of the last
section are used.

For everyk 2 f1; : : : ; N � 1g, let Rk andRk� denote the random variable of the (non-
observable) phase at the empirical arrival instantTk and immediately before it, respectively.
In the last section, estimators for the conditional distributions of theRk andRk� were given.
Let Æ denote the Kronecker function for testing equality of counting functions and remember
thatCk denotes the empirical counting function of thekth spatial arrival. Define

Ni(j; C) :=
N�1X
k=1

P̂ (Rk� = ijZk = zk) � ÆCk;C � P̂ (Rk = jjZk+1 = zk+1)

and

Ni :=
N�1X
k=1

P̂ (Rk� = ijZk = zk) =
X
C2INK

0

mX
j=1

Ni(j; C)

for C 2 INK
0 and i; j 2 f1; : : : ; mg. In an SMAP, the random variablesRk� andRk are

dependent in any non–trivial case. Since in the present model the phases are non–observable,
this dependency can only be reflected by conditioning on the consecutive empirical interarrival
timeszk andzk+1.

Because of

pi(j; C) =
P (Rk� = i; Ck = C;Rk = j)

P (Rk� = i; Ck 6= 0)
�
P (Rk� = i; Ck 6= 0)

P (Rk� = i)

for all k 2 f1; : : : ; N � 1g, the empirical estimator forpi(j; C) is given by

p̂i(j; C) :=
Ni(j; C)

Ni
�

�̂i

�D̂0(i; i)

for everyC 2 INK
0 n f0g andi; j 2 f1; : : : ; mg.

For applications in the modelling of mobile communication networks, it usually suffices to set
�(R) := �(fS1; : : : ; Skg) with S1; : : : ; Sk being a finite partition ofR, i.e. R =

Pk
i=1 Si

andSi \ Sj = ; for i 6= j. As the discrete�-algebra over a finite set of subsets,�(R) will
then be finite, too. In such an application field, the subsetsSi describe entities with roughly
homogeneous call behaviour like big buildings, housing blocks, roads, landscape areas etc.

6.4. Estimation for BMAPs

For the special case that the arrival spaceR consists of only one element, i.e. for the non-
spatial version of the SMAPs considered in this chapter, we have BMAPs since the phase
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6. Parameter Estimation

space is finite. Hence, the estimation procedure described above yields a method of parameter
estimation for BMAPs as well.

While the first two steps of the procedure are exactly the same for the special case of BMAPs,
the notation can be simplified in the third step. Instead of counting functions over the arrival
space, the empirical data for BMAPs would only yield the size of batches which arrive in
the whole (queueing) system. Thus, instead of counting functions(Ck : k 2 f0; : : : ; Ng) it
suffices to measure the sizes(bk : k 2 f0; : : : ; Ng), bi 2 IN , of batch arrivals into the system.

The generator matrix assumes the easier form

Q =

0
BBBBBB@

D0 D1 D2 D3 : : :
D0 D1 D2 : : :

D0 D1
. . .

D0
. . .
. . .

1
CCCCCCA

with (m�m)-matrices

Dn;ij = �i � pi(n; j)

Defining

ni(n; j) :=
N�1X
k=1

P̂ (Rk� = ijZk = zk) � Æbk;n � P̂ (Rk = jjZk+1 = zk+1)

and

ni :=
N�1X
k=1

P̂ (Rk� = ijZk = zk) =
1X
n=1

mX
j=1

ni(n; j)

for n 2 IN andi; j 2 f1; : : : ; mg, the empirical estimator for the infinitesimal transition rates
(pi(n; j) : n 2 IN; i; j 2 f1; : : : ; mg) can be written as

p̂i(n; j) =
ni(n; j)

ni
�

�̂i

�D̂0(i; i)

A test of the described estimation procedure can be obtained as follows. First, a time series
is generated by a so–called input BMAP with given and known parameters. This time series
serves as the data for the estimation procedure. Then the BMAP that is estimated via the
procedure is compared to the input BMAP. The following results have been computed on a
Pentium III computer with 500 MHz and 128 MB RAM. The length of the time series was
alwaysN = 10; 000 arrivals.

In order to judge the quality of the estimations, two facts need to be considered. The Phase–
type distribution as well as BMAPs are over–parametrized (cf. Botta et al. [20]), which implies
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6.5. Remarks

that two BMAPs with different parameters can have the same distribution. Hence for a given
input BMAP it is not always possible to distinguish a single best estimation. Furthermore,
the proposed estimation procedure is based on maximum likelihood estimation. Thus the
estimated BMAP should be compared to the input BMAP by the ratioR of their respective
likelihoods of the generated time series. This ratio with respect to the numberN of arrivals
in the time series (i.e.R1=N ) is given in each table as well as the computation time for the
estimation.

The first two tables (see page 82) give typical examples of input BMAPs and the respective
estimate. It can be seen that although the parameters differ, the likelihood of the generated
time series in table 1 is even higher for the estimation than for the input BMAP.

The next two tables (see page 83) show the main observable weakness of the estimation pro-
cedure. Namely, if many parameters of the input BMAP are zero, then these are not estimated
as zero and the likelihood of the time series for the estimated BMAP remains short of the
likelihood for the input BMAP.

Finally, the last two tables (page 84) show that the estimated number of phases does not always
coincide with the number of phases of the input BMAP.

As can be seen, the run times are very short. This does not change for BMAPs of more than
two phases. Usually, a likelihood ratio per arrival of more than 0.90 can be achieved. For a
detailed description of the implementation and many more numerical examples, see Gilbert
[43].

6.5. Remarks

Remark 1: A straightforward method of deriving a maximum likelihood estimator for SMAPs
(and thus for BMAPs, too) is an immediate application of the EM algorithm on the transition
rates(Dn(S)(i; j) : S 2 �(R); n 2 IN 0; i; j 2 f1; : : : ; mg) of the arrival process. This can be
done using the maximum likelihood estimators for Markov processes derived in Albert [1].

However, the critical point of the estimation procedure are the run time and the storage require-
ments of the EM algorithm (see Meng, Dyk [66]). The straightforward method of estimation
via an EM algorithm would apply this algorithm to a much larger set of parameters, which
would lead to larger run time as well as storage requirements. The number of parameters
which are to be determined iteratively via the EM algorithm is greatly reduced by dividing the
estimation procedure into three steps as described in the sections above. It seems reasonable
to expect considerable improvements in run time performance, if the statistical model that is
to be estimated by the EM algorithm is as simple as possible.

Remark 2: The model which is examined in this paper is a special case of a hidden Markov
model (see e.g. Leroux [58]). Here, the hidden Markov chain is the phase process at arrival
instants and the observed variables are the consecutive interarrival times and the sizes of the
batch arrivals. These are conditionally independent given the phase process. The conditional
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6. Parameter Estimation

Table 1

Input BMAP Estimated BMAP
D0 = -1.000 0.100 -1.046 0.171

3.300 -10.000 3.376 -8.958
D1 = 0.400 0.050 0.265 0.174

1.650 1.700 1.499 1.067
D2 = 0.200 0.025 0.136 0.088

0.825 0.850 0.778 0.543
D3 = 0.120 0.015 0.075 0.049

0.495 0.510 0.461 0.330
D4 = 0.072 0.009 0.047 0.031

0.297 0.306 0.289 0.203
D5 = 0.008 0.001 0.006 0.004

0.033 0.034 0.031 0.021

run time: 34 seconds
likelihood ratio per arrival: 1.005

Table 2

Input BMAP Estimated BMAP
D0 = -5.000 0.100 -5.048 0.770

3.300 -65.000 11.691 -62.871
D1 = 1.100 0.400 0.623 0.701

11.200 7.400 6.721 8.453
D2 = 0.200 2.000 0.387 1.333

6.800 2.100 4.237 8.094
D3 = 0.100 0.000 0.140 0.133

12.100 4.300 4.907 5.072
D4 = 0.600 0.200 0.315 0.346

7.800 3.500 4.211 4.590
D5 = 0.050 0.250 0.073 0.228

1.300 5.200 1.229 3.665

run time: 19 seconds
likelihood ratio per arrival: 0.941
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Table 3

Input BMAP Estimated BMAP
D0 = -1.000 0.000 -1.053 0.168

0.000 -10.000 3.554 -9.615
D1 = 0.900 0.100 0.529 0.356

3.300 6.700 3.283 2.777

run time: 36 seconds
likelihood ratio per arrival: 0.973

Table 4

Input BMAP Estimated BMAP
D0 = -1.000 0.000 -1.032 0.154

0.000 -10.000 1.722 -9.903
D1 = 0.000 1.000 0.216 0.662

10.000 0.000 3.755 4.426

run time: 10 seconds
likelihood ratio per arrival: 0.746

distributions of the interarrival times given the phase process belong to the family of phase–
type distributions.
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Table 5

Input BMAP Estimated BMAP
D0 = -1.000 0.100 0.010 0.090-868.7 308.8

1.000 -10.00 3.000 4.000 0.170 -1.130
25.00 25.00 -100.0 25.00
499.0 1.000 1.000 -1000

D1 = 0.300 0.050 0.010 0.050 101.9 173.7
0.250 0.250 0.250 0.250 0.150 0.330
5.500 5.500 0.500 1.000
124.5 0.250 0.250 124.5

D2 = 0.150 0.030 0.000 0.020 51.34 85.58
0.130 0.130 0.130 0.130 0.080 0.170
2.750 2.750 0.250 0.500
62.25 0.130 0.130 62.25

D3 = 0.090 0.020 0.000 0.010 34.44 54.29
0.080 0.080 0.080 0.080 0.040 0.010
1.650 1.650 0.150 0.300
37.35 0.080 0.080 37.35

D4 = 0.050 0.010 0.000 0.010 18.99 33.28
0.050 0.050 0.050 0.050 0.020 0.060
0.990 0.990 0.090 0.180
22.41 0.050 0.050 22.41

D5 = 0.010 0.000 0.000 0.000 2.420 3.890
0.010 0.010 0.010 0.010 0.000 0.010
0.110 0.110 0.010 0.020
2.490 0.010 0.010 2.490

run time: 29 seconds
likelihood ratio per arrival: 1.034

Table 6

Input BMAP Estimated BMAP
D0 = -105.0 5.000 -107.3 4.075 16.49

2.000 -52.00 3.160 -89.32 11.28
4.310 3.051 -51.76

D1 = 100.0 0.000 47.73 20.99 18.05
0.000 50.00 41.12 18.10 15.66

24.24 10.71 9.445

run time: 449 seconds
likelihood ratio per arrival: 0.988
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A. Markov Jump Processes

In queueing theory, Markov jump processes play a very important role. All Markovian queues
can be modeled by Markov jump processes. Furthermore, since Doob’s observation (cf. Doob
[36], p.401-403) that the inter-arrival times of calls by many independent subscribers to a
telephone network are distributed exponentially, Markov jump process have become the most
important type of arrival processes in queueing models.

As a main foundation for the rest of the present thesis and for convenience of reference, this
chapter collects some classical results for (inhomogeneous) Markov jump processes with a
general state space. Following mainly Gikhman, Skorokhod [44], the first section provides
a sound definition, the most important sample path properties and a canonical way of con-
structing Markov jump processes. The second section treats the special case for which the
generators satisfy a property called quasi-commutability. The chapter concludes with a short
section exploring the case of periodic transition rates.

Markov Jump Processes will be used in this thesis in order to define Markov-additive jump
processes in chapter 2 and, based on these, Spatial Markovian Arrival Processes in chapter 3.
Further, an analysis of (periodic) Markovian queues will be performed using the results from
this chapter.

A.1. Definition and Properties

In this section, Markov jump processes will be defined as Markov processes with transition
probabilities that satisfy certain regularity conditions. These allow the definition of unique
transition rates and lead to first elementary results. The most important results are the Kol-
mogorov differential equations, which allow the derivation of the transition probabilities.
Since these determine the finite-dimensional marginal distribution of the process and hence
the distribution of the process itself, the section can be concluded with the assertion that the
definition at the beginning leads to a unique distribution of the process.

Definition A.1 BeX = (Xt : t 2 IR+
0 ) a Markov process with a separable locally compact

metric state spaceS and transition probabilitiesP (s; t; x;A) := P (X(t) 2 AjX(s) = x).
Assume that the state spaceS has a�-algebraS with fxg 2 S for everyx 2 S. The process
X shall be calledMarkov jump process if the following conditions hold:
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1. The limits

q(t; x;A) := lim
h#0

P (t; t+ h; x;A)� 1A(x)

h

exist uniformly with respect to(t; x; A).

2. The functiont! q(t; x;A) is uniformly continuous onS � S.

For every timet 2 IR+
0 , statex 2 S and state setA 2 S, the limit q(t; x;A) shall be

called infinitesimal transition rate from x to A at timet. The kernelQ(t) onS defined by
Q(t)(x;A) := q(t; x;A) shall be calledgenerator of X at timet.

If X is time-homogeneous, i.e. ifq(t; x;A) = q(x;A) is constant int 2 IR+
0 , then the process

is calledhomogeneous Markov jump process.

Remark A.1 Define a norm on the space of all kernels onS by

kKk := sup
x2S;A2S

jK(x;A)j

for any kernelK. Denote the transition probability kernel from times to timet > s byP (s; t).
Then the conditions of the above definition can be written as follows:

1. The limits

Q(t) := lim
h#0

P (t; t+ h)� Id

h

exist uniformly with respect tot.

2. The functiont! Q(t) is continuous.

Remark A.2 The first condition leads to the forward Kolmogorov differential equations (see
theorem A.4). The second condition guarantees that these can be solved via the iteration
method by Picard and Lindelöf (see Kamke [53], S.38). Then the transition probability kernels
can be expressed in terms of the generators as will be shown in this section.

Remark A.3 Although the infinitesimal rates are defined via transition probabilities, in prac-
tice it is not necessary to know the latter in order to determine the former. In order to construct
a Markov jump process, it suffices to define values for the infinitesimal rates which satisfy
certain conditions. A way of constructing a Markov jump process is described at the end of
this section.

The infinitesimal transition rateq(t; x;A) can be regarded as the tendency of the process at
timet 2 IR+

0 to jump from a statex 2 S to some statey 2 A 2 S. The greater the infinitesimal
transition rate, the higher the probability that the process performs this jump in an interval of
time. For transition rates of ever greater size, this can lead to so-called explosions which
means an accumulation point of jump times. The above definition excludes explosions and
highly irregular behaviour, as is seen in
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Theorem A.1 The above definition implies the boundedness of the infinitesimal transition
rates, i.e. there is anM <1 with

jq(t; x;A)j < M

for all t 2 IR+
0 , x 2 S andA 2 S.

Proof: The uniform convergence implies that there is aÆ > 0 such that����P (t; t+ h; x;A)� 1A(x)

h
� q(t; x;A)

���� < 1

for all t 2 IR+
0 , x 2 S, A 2 S andh < Æ. Fix such anh < Æ. Since

jP (t; t+ h; x;A)� 1A(x)j � 1

the estimation

jq(t; x;A)j < 1 +

����P (t; t+ h; x;A)� 1A(x)

h

���� � 1 +
1

h
=:M

holds.
f��
�

The definition of a Markov jump processes immediately yields some first properties of the in-
finitesimal rates and gives reason for some further definitions. In the following, the difference
of two finite measures on the same measurable space shall be called acharge.

Theorem A.2 For everyt 2 IR+
0 andx 2 S, the infinitesimal rateq(t; x;A) as a function in

A is a charge onS. Further the properties

q(t; x; S) = 0

q(t; x;A) = lim
h#0

P (t; t+ h; x;A)

h
� 0

for x =2 A, and finally

q(t; x; fxg) = �q(t; x; S n fxg) � 0

hold.

Proof: see Gikhman, Skorokhod [44], p.312

Definition A.2 For everyt 2 IR+
0 andx 2 S, define the values


(t; x) := �q(t; x; fxg)
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and


(t; x; A) := q(t; x;A n fxg)

as well as

p(t; x; A) :=

(

(t;x;A)

(t;x)

for 
(t; x) > 0

1A(x) for 
(t; x) = 0

for all A 2 S.

Theorem A.3 For fixed(t; x) 2 IR+
0 � S, the above definedp(t; x; A) as a function inA is a

probability measure onS with support setS n fxg. For 
(t; x) > 0, the representation

p(t; x; A) = lim
h#0

P (t; t+ h; x;A n fxg)

P (t; t+ h; x; S n fxg)

holds for allA 2 S.

Proof: For 
(t; x) = 0, p(t; x; A) = 1A(x) is a probability measure. Let
(t; x) > 0. By
theorem A.2 ,q(t; x;A) is a charge onS and q(t; x;A) � 0 for x =2 A. This means that

(t; x; A) is a finite measure, sinceq(t; x;A) is bounded according to theorem A.1. Hence,
p(t; x; A) = 
(t;x;A)


(t;x)
is a probability measure, becauseq(t; x; fxg) = �q(t; x; S n fxg) by

theorem A.2. The representation as a limit results from

p(t; x; A) =

(t; x; A)


(t; x)
=
q(t; x;A n fxg)

�q(t; x; fxg)
=
q(t; x;A n fxg)

q(t; x; S n fxg)

=

�
lim
h#0

P (t; t+ h; x;A n fxg)

h

�
�

�
lim
h#0

P (t; t+ h; x; S n fxg)

h

��1
= lim

h#0

P (t; t+ h; x;A n fxg)

P (t; t+ h; x; S n fxg)

f��
�

Remark A.4 DefineP (t) by P (t)(x;A) := p(t; x;A) for all t 2 IR+
0 , x 2 S andA 2 S.

Sinceq(t; x;A) is uniformly continuous in(x;A) by definition andp(t; x; :) is a probability
measure onS by theorem A.3,P (t) is a probability kernel onS for all t 2 IR+

0 . P (t) shall be
calledjump kernel of X at timet.

The most important results of this chapter are the so-called Kolmogorov differential equa-
tions. They state that the transition probabilities are differentiable backward and forward in
the following sense:
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Theorem A.4 For everys 2 IR+
0 , x 2 S andA 2 S, the transition probabilityP (s; t; x;A)

is differentiable with respect tot, and

@P (s; t; x;A)

@t
=

Z
S

q(t; y; A)P (s; t; x; dy)

= �

Z
S


(t; y)P (s; t; x; dy) +

Z
S


(t; y)p(t; y; A)P (s; t; x; dy)

for all t > s (Kolmogorov’s forward equation).
Further, for everyt 2 IR+

0 , x 2 S andA 2 S, the transition probabilityP (s; t; x;A) is
differentiable with respect tos, and

@P (s; t; x;A)

@s
= �

Z
S

P (s; t; y; A)q(s; x; dy)

= 
(s; x)

�
P (s; t; x;A)�

Z
S

P (s; t; y; A)p(s; x; dy)

�

for s < t (Kolmogorov’s backward equation).

Proof: see Gikhman, Skorokhod [44], p.314 and 316 (corollaries)

These differential equations lead to expressions of the transition probabilities in terms of the
infinitesimal transition rates. This can be proven by solving the Kolmogorov differential equa-
tions via the method of successive approximations by Picard and Lindelöf. The solutions are
stated in the following theorems.

Theorem A.5 The transition probabilities of a Markov jump process are uniquely determined
by the infinitesimal ratesq(t; x;A). They are computed as

P (s; t; x;A) =
1X
n=0

P
(n)
b (s; t; x;A)

with

P
(0)
b (s; t; x;A) := e�

R t
s

(�;x)d�1A(x)

and recursively

P
(n+1)
b (s; t; x;A) :=

Z t

s

Z
S

P
(n)
b (�; t; y; A)e�

R �
s

(�;x)d�
(�; x; dy)d�

for all n 2 IN0.

Proof: see Gikhman, Skorokhod [44], p.318f (corollary and remark)
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If one develops this iteration formula, one obtains

P
(n)
b (s; t; x;A) =

Z t

s

Z t

u1

: : :

Z t

un�1| {z }
n integrals

Z
S

: : :

Z
S

Z
A| {z }

n integrals

e�
R u1
s


(u;x)du
(u1; x; dx1) : : :

: : : e
�
R un
un�1


(u;xn�1)du
(un; xn�1; dxn)e
�
R t
un


(u;xn)du dun : : : du1

(A.1)

as can be shown by induction. The transition probabilities can be computed iteratively by
starting with

P0(s; t; x;A) := e�
R t
s

(�;x)d�1A(x)

and iterating

Pn+1(s; t; x;A) :=

Z t

s

Z
S

Pn(�; t; y; A)e
�
R �
s

(�;x)d�
(�; x; dy)d� + e�

R t
s

(�;x)d�1A(x)

for all n 2 IN 0 ands < t 2 IR+
0 . In the limit, this leads toP (s; t) = limn!1 Pn(s; t).

The above form of the transition probabilities was derived via the Kolmogorov backward
equations and a substitutionP (s; t; x;A) = exp(�

R t
s

(�; x)d�) � gs(x). Another form of the

transition probabilities can be derived via the forward equations. They can be solved using the
following iteration.

Theorem A.6 BeX a Markov jump process with infinitesimal ratesq(t; x;A). The transition
probabilities ofX being in some statey 2 A after timet 2 IR+ under the condition of having
been in statex at times < t are given as

P (s; t; x;A) =
1X
n=0

P (n)(s; t; x;A)

with

P (0)(s; t; x;A) := 1A(x)

and recursively

P (n+1)(s; t; x;A) :=

Z t

s

Z
S

P (n)(s; u; x; dy)q(u; y; A)du

for all n 2 IN 0 ands < t 2 IR+
0 .

Proof: By definition, the infinitesimal ratesq(t; x;A) are continuous int for everyx 2 S
andA 2 S. Induction byn yields thatP (n)(s; t; x;A) is differentiable int for everyn 2 IN 0.
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Now, direct validation shows

@

@t

1X
n=0

P (n)(s; t; x;A) =
@

@t

1X
n=1

P (n)(s; t; x;A)

=
1X
n=1

@

@t

Z t

s

Z
S

P (n�1)(s; u; x; dy)q(u; y; A)du

=
1X
n=1

Z
S

P (n�1)(s; t; x; dy)q(t; y; A)

=

Z
S

q(t; y; A)
1X
n=1

P (n�1)(s; t; x; dy)

i.e. the Kolmogorov forward equation is satisfied. According to Gikhman, Skorokhod [44],
p.317 (theorem 3), the solution to the Kolmogorov forward equation is unique.
f��
�

Again by induction, one can prove that

P (n)(s; t; x;A) =

Z t

s

Z un

s

: : :

Z u2

s| {z }
n integrals

(Q(u1) : : : Q(un)) (x;A) du1 : : : dun (A.2)

with Q(u) denoting the generator at timeu 2 [s; t]. An iteration for computing the transition
probabilities is given by starting withP0(s; t; x;A) := 1A(x) and iterating by

Pn+1(s; t; x;A) :=

Z t

s

Z
S

Pn(s; u; x; dy)q(u; y; A)du+ 1A(x)

for all n 2 IN0 ands < t 2 IR+
0 . In the limit, this leads toP (s; t) = limn!1 Pn(s; t). This

iteration reflects the method of successive approximation by Picard and Lindelöf for solving
the Kolmogorov forward differential equations. For the special case of a finite state space, this
formula reduces to the iteration given in Bellman [19], p.168, or Kamke [53], p.52.

In the usual manner, the transition probabilities derived above determine the finite-dimensional
marginal probabilities which by Kolmogorov’s extension theorem (see Gikhman, Skorokhod
[44], p.108) uniquely determine the distribution of the process.

Theorem A.7 The distribution of a Markov jump processX = (X(t) : t 2 IR+
0 ) is uniquely

determined by its infinitesimal ratesq(t; x;A) via its transition probabilities. The finite-
dimensional marginal distribution ofX at timest1 < : : : < tn 2 IR+

0 with n 2 IN is
given by

P (X(t1) 2 A1; : : : ; X(tn) 2 An) =Z
S

�(dx0)

Z
A1

P (t0; t1; x0; dx1) : : :

Z
An�1

P (tn�2; tn�1; xn�2; dxn�1)P (tn�1; tn; xn�1; An)

if � denotes an initial distribution at timet0 < t1.
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Proof: see Gikhman, Skorokhod [44], p.142

Thus definition A.1 uniquely determines a stochastic process. Its finite-dimensional marginal
distributions can be computed knowing the initial distribution at a timet0 and the infinitesimal
transition rates.

For the case of an homogeneous Markov jump process, the infinitesimal transition rates are
constant in time, and we can define

q(x;A) := q(t; x;A)

for all t 2 IR+
0 , x 2 S andA 2 S. Further, the conditional probabilitiesp(t; x;A) from

definition A.2 are constant int, and we can write

p(x;A) := p(t; x;A)

for all t 2 IR+
0 , x 2 S andA 2 S. Further define the kernelsQ andP byQ(x;A) := q(x;A)

andP (x;A) := p(x;A) for all x 2 S andA 2 S. The kernelQ shall be called the generator
of X. The kernelP is called the jump kernel ofX.

Then the transition probability kernel assumes a particularly tractable form:

Theorem A.8 LetX denote an homogeneous Markov jump process with infinitesimal tran-
sition rates(q(x;A) : x 2 S;A 2 S). Then the transition probability kernelP (s; t) can be
written as

P (s; t) = eQ(t�s) :=
1X
k=0

(t� s)k

k!
Qk

for all s < t.

Proof: It suffices to prove

P (k)(s; t) =
(t� s)k

k!
Qk

for all k 2 IN0 ands < t. This is done by induction onk. Beginning with the obvious equality
P (0)(s; t) = I = (t�s)0

0!
Q0, the iteration step of theorem A.6 leads to

P (k+1)(s; t; x;A) =

Z t

s

Z
S

P (k)(s; u; x; dy)q(u; y; A) du

=

Z t

s

Z
S

(u� s)k

k!
Qk(x; dy)q(y; A) du

for all k 2 IN0 by induction hypothesis and homogeneity of the transition rates. This yields
further

P (k+1)(s; t; x;A) =

Z t

s

(u� s)k

k!
du

Z
S

Qk(x; dy)q(y; A)

=
(t� s)k+1

(k + 1)!
Qk+1(x;A)
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which proves the induction step.
f��
�

Remark A.5 In the homogeneous case, the computation of the transition probabilities can be
accomplished by solving the Kolmogorov forward differential equations

@

@t
P (s; t) = P (s; t)Q

with initial valueP (s; s) = I via the Runge–Kutta method. This is possible in a straightfor-
ward way without encountering numerical problems (see Asmussen [6], Gilbert [43] or Moler,
van Loan [67]).

In some cases the computation of the transition probabilities of general Markov jump pro-
cesses can be reduced to computing some combination of transition probability kernels of
homogeneous Markov jump processes. This shall be described in the following.

Choose some time interval]s; t] over which to compute the transition probability kernel. As-
sume that there is a step function̂Q : t! Q̂(t), with Q̂(t) being a generator for everyt, which
approximates the functionQ : t! Q(t) uniformly in ]s; t], i.e.

kQ̂�Qks;t := sup
s�u�t

kQ̂(u)�Q(u)k = sup
s�u�t;x2S;A2S

jQ̂(u)(x;A)�Q(u)(x;A)j < "

for some" > 0. Then the following approximation holds:

Theorem A.9 Let Q̂ : u! Q̂(u) be a step function such thatkQ̂� Qks;t < " andQ̂(u) is a
generator on(S;S) for everyu 2 [s; t]. Then the transition probability kernelP (s; t) can be
approximated by

P̂ (s; t) =
nY
i=1

eQ̂i�(si�si�1)

for s0 := s, sn := t andQ̂ being defined bŷQ(u) = Q̂i on u 2]si�1; si] for i 2 f1; : : : ; ng.
The error of this approximation is bounded by

kP̂ (s; t)� P (s; t)k < " � (t� s)

95



A. Markov Jump Processes

Proof: Write Q̂(u) = Q(u) + �(u) for all u 2 [s; t]. Then by assumptionk�(u)k < " for
all u 2 [s; t]. Now theorem A.6, formula A.2 and theorem A.8 yield

P̂ (s; t)� P (s; t) =

=
1X
k=0

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

(Q(u1) + �(u1)) : : : (Q(uk) + �(uk)) du1 : : : duk

�
1X
k=0

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

Q(u1) : : : Q(uk) du1 : : : duk

=
1X
k=1

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

Q̂(u1) : : : Q̂(uk�1)�(uk) du1 : : : duk

+
1X
k=2

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

Q̂(u1) : : : Q̂(uk�2)�(uk�1)Q(uk) du1 : : : duk

+
1X
k=3

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

Q̂(u1) : : : Q̂(uk�3)�(uk�2)Q(uk�1)Q(uk) du1 : : : duk

+ : : :

=
1X
k=0

Z t

s

P̂ (s; u)�(u)

Z t

u

Z uk

u

: : :

Z u2

u| {z }
k integrals

Q(u1) : : : Q(uk) du1 : : : duk du

by a similar calculation as in the end of the proof of theorem 2.8. Hence we have

P̂ (s; t)� P (s; t) =

Z t

s

P̂ (s; u)�(u)P (u; t) du

and because ofkP̂ (s; u)k = kP (u; t)k = 1 for all u 2 [s; t], we get

kP̂ (s; t)� P (s; t)k < " � (t� s)

which proves the approximation bound.
f��
�

Remark A.6 Since the functionQ : t ! Q(t) is continuous with respect to the supremum
norm (see remark A.1), the existence of an approximating step functionQ̂ as assumed in
theorem A.9 is immediate. The function̂Q defines a piecewise homogeneous Markov jump
process.
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In the rest of this section, the main properties of the sample paths are derived. It turns out that
the paths behave in an intuitively lucid way: Starting in some state at an initial time, a path
remains in that state for a positive holding time, for which the distribution can be determined.
Then it jumps to another state according to the probability law given by the jump kernel at the
jump time. Remaining in this state for a positive duration, the path jumps again, and so on.

In order to examine path properties, it is necessary to obtain versions of the process which
have certain features of their sample paths that make them easier to analyze. This does not
pose a real problem, since it is possible to choose those versions such that the probability law
of the process is not altered. Hence all the path properties derived are valid almost surely with
respect to the distribution of the process (i.e. for all finite-dimensional marginal distributions,
according to Kolmogorov’s extension theorem).

Definition A.3 Two stochastic processesX = (Xt : t 2 IR+
0 ) andY = (Yt : t 2 IR+

0 ) are
calledstochastically equivalent if their finite-dimensional marginal distributions coincide,
i.e. if for everyn 2 IN andt1; : : : ; tn the distributions

P (X(t1); : : : ; X(tn)) = P (Y (t1); : : : ; Y (tn))

are equal. IfX andY are equivalent, thenY is called aversion of X.

In order to further examine the properties of Markov jump process, it is necessary to introduce
the concept of separability. For separable processes, limits over continuous sets (such as
infft 2 IR+

0 : X(t) 2 Ag) are still measurable and path properties such as first hitting times
can be explored.

Definition A.4 A stochastic processX = ((X(t) : t 2 IR+
0 ) with state spaceS is called

separable if there is a countable and everywhere dense subsetS of IR+
0 and a negligible set

N � 
 such that for every open setG � IR+
0 and every closed setF � S the set difference

fX(t) 2 F 8t 2 G \ Sg n fX(t) 2 F 8t 2 Gg � N

is negligible. The setS is calledset of separability.

Definition A.5 LetX = ((X(t) : t 2 IR+
0 ) be a stochastic process with metric state spaceS.

Denote the metric inS by �. The processX is calledstochastically continuous if for every
time t 2 IR+

0 and every" > 0 the limit

lim
h!0

P (�(X(t); X(t+ h)) > ") = 0

holds.

Theorem A.10 A Markov jump process is stochastically continuous.

Proof: see Gikhman, Skorokhod [44], p.347 (lemma 1)
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Theorem A.11 For a Markov jump processX = ((X(t) : t 2 IR+
0 ) with a separable and

locally compact metric state spaceS and for every countable and everywhere dense subset
S � IR+

0 , there is an equivalent processY = ((Y (t) : t 2 IR+
0 ) which is separable and has

the set of separabilityS.

Proof: see Gikhman, Skorokhod [44], p.153 (theorem 2), p.155 (theorem 5) and the above
theorem A.10

Now the first result for the sample path behaviour can be derived. In the following, we always
examine the separable version of a Markov jump process. A natural generalization of the
distribution of holding times for homogeneous Markov jump processes is given by

Theorem A.12 For a separable versionX of a Markov jump process, the holding time distri-
bution in a statex 2 S is

P (X(�) = x 8� 2 [s; t]jX(s) = x) = e�
R t
s

(�;x)d�

for everys < t.

Proof: see Gikhman, Skorokhod [44], p.348 (lemma 2)

For further path properties, one needs to require right continuity of the paths, which can be
done without altering the probability law of the process:

Theorem A.13 For a separable Markov jump process there exists an equivalent process with
sample paths that are continuous from the right with probability 1.

Proof: see Gikhman, Skorokhod [44], p.349 (corollary 1)

Theorem A.14 If X is a separable Markov jump process andX(t) = x, then with probability
1 there exists an interval of time[t; t+ h[ during whichX(t) = x for all � 2 [t; t+ h[.

Proof: see Gikhman, Skorokhod [44], p.349 (corollary 2)

Assume in the following that the Markov jump processX is a separable version which has
only paths that are continuous from the right. Then the next theorems yield a more accurate
description of its sample path behaviour than the finite-dimensional marginal distributions can
give:

Theorem A.15 Denote the times between jumps ofX by (�n : n 2 IN) starting with the first
jump after a time instantt0 2 IR

+
0 . Ben 2 IN , t1; : : : ; tn 2 IR

+
0 andA1; : : : ; An 2 S. LetB

denote the event

B =

(
8k 2 f1; : : : ; ng : 8t 2

"
t0 +

k�1X
j=1

�j; t0 +
kX
j=1

�j

"
: X(t) = �k�1

^ X

 
t0 +

nX
j=1

�j

!
= �n ^ �k�1 6= �k ^ �k 2 Ak ^ �k < tk

)

98



A.1. Definition and Properties

Then the conditional probability ofB under the hypothesis thatX(t0) = x0 is given by

F (t1; : : : ; tn;A1; : : : ; Anjt0; x0) =

=

Z t0+t1

t0

e�
R s1
t0


(�;x0)d�ds1

Z
A1


(s1; x0; dx1)

Z s1+t2

s1

e�
R s2
s1


(�;x1)d�ds2 : : :

: : :

Z sn�1+tn

sn�1

e
�
R sn
sn�1


(�;xn�1)d�dsn
(sn; xn�1; An)

Proof: see Gikhman, Skorokhod [44], p.351f (formula 8)

Theorem A.16 With probability 1, the Markov jump processX has only finitely many jumps
in any finite interval of time.

Proof: see Gikhman, Skorokhod [44], p.353 (corollary 1)

Theorem A.17 The sample paths of the separable version of a Markov jump process that is
continuous from the right have with probability 1 the following structure: There is a sequence
of positive random variables(�k : k 2 IN) with

lim
m!1

mX
k=1

�k =1

and for every timet with

mX
k=1

�k � t <
m+1X
k=1

�k

the state at timet isX(t) = X(�m).

Proof: see Gikhman, Skorokhod [44], p.354 (corollary 2)

Remark A.7 The above theorem shows the probabilistic meaning of the infinitesimal rates.
Starting in some statex 2 S at an initial timet0 := 0, almost every path remains in this
state for a time duration which is distributed according to theorem A.12. Upon a time instant
� 2 IR+

0 at which the statex is left, some new statey 2 A is assumed according to the
probabilityp(�; x; A). Then the path behaves in the same way again, starting in statey and
with initial time � .

The following theorem proves the intuitive meaning of the componentsP
(n)
b (s; t) appearing

in the form A.1 of the transition probabilities.
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Theorem A.18 LetX be a Markov jump process with measurable state space(S;S). Denote
the times between jumps ofX by (�n : n 2 IN) starting with the first jump after a time instant
s 2 IR+

0 . Ben 2 IN 0, s < t 2 IR+ andA1; : : : ; An 2 S. LetC(n; s; t) denote the event

C(n; s; t) = f8t 2 [s; s+ �1[: X(t) = x

^ 8k 2 f1; : : : ; n� 1g : 8t 2

"
s +

kX
j=1

�j; s+
k+1X
j=1

�j

"
: X(t) 2 Ak

^ 8t 2

"
s+

nX
j=1

�j; t

#
: X(t) 2 An

)

Then the conditional probability ofC(n; s; t) under the hypothesis thatX(s) = x is given by

P (n)
x (s; t;A1; : : : ; An) =

Z t

s

Z t

u1

: : :

Z t

un�1| {z }
n integrals

Z
A1

: : :

Z
An| {z }

n integrals

e�
R u1
s


(u;x)du
(u1; x; dx1) : : :

: : : e
�
R un
un�1


(u;xn�1)du
(un; xn�1; dxn)e
�
R t
un


(u;xn)du dun : : : du1

Proof: This is shown by induction onn. For n = 1, the eventC(n; s; t) means that there
is exactly one jump during]s; t] and at this instant,X changes from statex to some state
x1 2 A1. By theorem A.12, the density of the holding time in a statex 2 S with respect to the
Lebesgue measure on the time axis is

lim
h!0

Px(T 2 [t; t+ h])

h
= lim

h!0

e�
R t
s

(u;x)du � e�

R t+h
s


(u;x)du

h
= e�

R t
s

(u;x)du � 
(t; x)

since
(:; x) : t ! 
(t; x) is continuous by definition. Under the condition that the holding
time inx is from s to u1, the eventC(n; s; t) occurs if and only if the holding time in the new
statex1 is at least fromu1 to t. Remembering definition A.2 and conditioning on the holding
time in the initial statex leads to

P (1)
x (s; t;A1) =

Z t

s

e�
R u1
s


(u;x)du
(u1; x) �

Z
A1

p(u1; x; dx1) � e
�
R t
u1

(u;x1)du du1

=

Z t

s

Z
A1

e�
R u1
s


(u;x)du
(u1; x; dx1)e
�
R t
u1

(u;x1)du du1

Now assume that the statement is true forn 2 IN . The eventC(n + 1; s; t) means that there
is exactly one jump from the initial statex to some statex1 2 A1 at a timeu1 2]s; t] and after
this the eventC(n; u1; t) occurs under initial statex1. Conditioning on the holding time in the
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initial statex and using the induction hypothesis leads to

P (n+1)
x (s; t;A1; : : : ; An+1) =

=

Z t

s

e�
R u1
s


(u;x)du
(u1; x) �

Z
A1

p(u1; x; dx1) � P
(n)
x1

(u1; t;A2; : : : ; An+1) du1

=

Z t

s

Z
A1

e�
R u1
s


(u;x)du
(u1; x; dx1)

Z t

u1

: : :

Z t

un| {z }
n integrals

Z
A2

: : :

Z
An+1| {z }

n integrals

e�
R u2
u1


(u;x)du
(u2; x1; dx2) : : :

: : : e�
R un+1
un


(u;xn)du
(un+1; xn; dxn+1)e
�
R t
un+1


(u;xn+1)du dun+1 : : : du2du1

which completes the induction step.
f��
�

Definition A.6 Let X be a Markov jump process with measurable state space(S;S) and
A 2 S some measurable subset. Then thefirst hitting time of A is defined by

TA := infft 2 IR+ : X(t) 2 Ag

Theorem A.19 The first hitting timeTA is measurable and has the distribution

Px(TA > t;Xt 2 B) =
1X
n=0

Z t

0

Z t

u1

: : :

Z t

un�1| {z }
n integrals

Z
Ac

: : :

Z
Ac

Z
B| {z }

n integrals

e�
R u1
0 
(u;x)du
(u1; x; dx1) : : :

: : : e
�
R un
un�1


(u;xn�1)du
(un; xn�1; dxn)e
�
R t
un


(u;xn)du dun : : : du1

for everyt 2 IR+, initial statex 2 Ac and final setB � A,B 2 S.

Proof: TA is measurable, becauseX is separable (theorem A.11). The form of the distribution
follows from theorem A.18 by summing up over the numbern of jumps in]0; t].
f��
�

As already mentioned in remark A.3, a Markov jump process usually cannot be constructed
by specifying the transition probabilities or finite-dimensional marginal distributions, since
these are not available. Even more, these belong to the values one wishes to derive from the
stochastic model. The most intuitive values that one can start from are the tendencies of a
Markov jump process at a certain time and in a certain state, i.e. the infinitesimal transition
rates. The rest of this section shortly describes how to do that.

Definition A.7 Any family (q(t; x;A) : t 2 IR+
0 ; x 2 S;A 2 S) of real numbers that satisfies

q(t; x;A) = �
(t; x)1A(x) + 
(t; x; A)

for all t 2 IR+
0 , x 2 S, A 2 S, and further the conditions
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1. For fixedt 2 IR+
0 andx 2 S, the function
(t; x; A) on S is a finite measure and


(t; x) = 
(t; x; S).

2. For fixed(x;A) 2 S � S the function
(t; x; A) is continuous int.

3. For fixedx 2 S, the measure
(t; x; :) is continuous int (with respect to the vague
topology).

4. The values
(t; x) are bounded in(t; x) 2 IR+
0 � S.

is called a family ofregular rates .

Remark A.8 Denote the space of generators onS byG. Using the same norm on the space of
kernels onS as introduced in remark A.1, the above conditions can be summarized as follows:
A bounded continuous functionQ : IR+

0 ! G is called aregular generator function. A
regular generator function provides a family of regular rates byq(t; x;A) := Q(t)(x;A).

Consider the space of sequences
 = f! = (�n; �n : n 2 IN) : �k 2 Ak; �k 2 IR+
0 g. On the

algebra of cylindrical sets in
 introduce the measureP as follows. Using the distributionF
from theorem A.15, define

P (C) :=

Z
S

F (t1; : : : ; tn;A1; : : : ; Anj0; x)�(dx)

for every set

C = f�1 2 A1; : : : ; �n 2 An; �1 � t1; : : : ; �n � tng

and any initial distribution� onS which is assumed at time 0.

According to Kolmogorov’s extension theorem (see Gikhman, Skorokhod [44], p.108), the
measureP can be extended to the�-algebraF generated by the cylindrical sets in
. This
defines a probability space(
;F ; P ). Now define a random functionX = (X(t) : t 2 IR+

0 )
by

X(t; !) := �k(!)

for all

kX
j=1

�j(!) � t <
k+1X
j=1

�j(!)

ThenX has the following properties:
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Theorem A.20 The processX constructed above is a Markov process and has almost cer-
tainly sample paths which are continuous from the right. The transition probabilities ofX are
given by

P (s; t; x;A) =
1X
n=0

P
(n)
b (s; t; x;A) (A.3)

with

P (0)
b (s; t; x;A) := e�

R t
s

(�;x)d�1A(x)

and

P (n+1)
b (s; t; x;A) :=

Z t

s

Z
S

P (n)
b (�; t; y; A)e�

R �
s

(�;x)d�
(�; x; dy)d�

for all s < t 2 IR+
0 , x 2 S andA 2 S. They satisfy the Kolmogorov backward equation

@P (s; t; x;A)

@s
= �

Z
S

P (s; t; y; A)q(t; x; dy)

with boundary condition

lim
s"t

P (s; t; x;A) = 1A(x)

Finally, the equation

lim
h#0

P (t; t+ h; x;A)� 1A(x)

h
= q(t; x;A)

holds uniformly with respect tot (for 0 � t � T with arbitrary T) for fixedx 2 S andA 2 S.

Proof: see Gikhman, Skorokhod [44], p.364 (theorem 4) and p.363

Hence the process constructed in the described way is a Markov jump process with the desired
infinitesimal transition rates.

A.2. Quasi-Commutability of Generators

A special case of Markov jump processes is given, if the following equation A.4 is satisfied
for the generators. This condition states that the differentiation rule for a function of the
generators can be applied as if the generators were commutable. Therefore the condition shall
be called quasi-commutability of the generators.

As in the homogeneous case, the transition probabilities as well as the transient distribution
assume a rather simple form, which is derived first. After that, two special cases are examined
for which this simple form leads to the computation of asymptotic distributions.
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Definition A.8 If the equation

d

dt

�Z t

s

Q(u)du

�k
= k �

�Z t

s

Q(u)du

�k�1
Q(t) (A.4)

holds for allk 2 IN and s < t, the generators(Q(t) : t 2 IR+
0 ) shall be calledquasi-

commutable.

Remark A.9 A sufficient condition for equation A.4 is given if for everys < t 2 IR+
0 the

kernelsQ(t) and
R t
s
Q(u)du are commutable. A sufficient condition for this is the special form

Q(t) = �(t) �Q

for the generatorsQ(t) of X, with � : IR+
0 ! IR+

0 describing some time–dependent intensity
andQ : S � S ! IR denoting any generator.

Theorem A.21 If the generators ofX are quasi-commutable, then the transition probabilities
P (s; t) assume the form

P (s; t) = e
R t
s
Q(u)du

Proof: For everyk 2 IN it will be shown that

Z t

s

Z uk

s

: : :

Z u2

s| {z }
k integrals

Q(u1) : : : Q(uk)du1 : : : duk =

�R t
s
Q(u)du

�k
k!

is implied by equation A.4. Fork = 0 this holds by definition and fork = 1 this is obvious.
The induction step fork+1 is seen by first applying the induction hypothesis and then equation
A.4 inZ t

s

Z uk+1

s

: : :

Z u2

s| {z }
k+1 integrals

Q(u1) : : :Q(uk+1)du1 : : : duk+1 =

Z t

s

�R uk+1
s

Q(u)du
�k

k!
Q(uk+1)duk+1

=
1

k!

Z t

s

1

k + 1

d

duk+1

�Z uk+1

s

Q(u)du

�k+1
duk+1 =

1

(k + 1)!

�Z t

s

Q(u)du

�k+1
Now the statement follows by theorem A.6.
f��
�

Example A.1 Assume that there is a function� : IR+
0 ! IR+

0 such thatQ(t) = �(t) � Q for
all t 2 IR+

0 . Then the transition probability kernel from times 2 IR+
0 to time t > s can be

simplified to the form

P (s; t) = e
R t
s
�(u)du�Q =

1X
k=0

�R t
s
�(u)du

�k
k!

Qk
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Definition A.9 For a stochastic processX = (Xt : t 2 IR
+
0 ) with initial distribution� at time

t0 := 0 and transition probabilitiesP (s; t; x;A), thetransient distribution at timet 2 IR+
0

is defined as

X�
t := PXt

� =

Z
S

d� P (0; t)

for all t 2 IR+
0 .

Theorem A.22 If condition A.4 is satisfied, then the transient distribution under initial distri-
bution� assumes the form

X�
t =

Z
d�

1X
k=0

�R t
0
Q(u)du

�k
k!

=

Z
d� e

R t
0
Q(u)du

Proof: This is immediate by theorem A.21.

Concluding this section, the results for asymptotic distributions in special cases are shown,
after first some estimations need to be proven.

Definition A.10 Define the norm oftotal variation by

k�k := j�j(S) :=

Z
S

dj�j

for all charges� onS.

Definition A.11 Using the norm of total variation for charges, define thesupremum norm
for kernels by

kKk := sup
x2S

kK(x; :)k = sup
x2S

jK(x; :)j(S)

for all kernelsK onS � S.

Theorem A.23 LetK denote a kernel onS � S with kKk < ". Then for every probability
measure� onS, the estimation 

� �eK � I

�

 < 2"

holds withI denoting the identity kernel.

Proof: For n = 1, the inequalityk�Knk < "n is valid, since� is a probability measure.
Assume that this inequality holds for somen 2 IN . Then

k�Kn+1k =






Z
S

d�(x)Kn+1(x; :)





 =





Z
S

d(�Kn)(x)K(x; :)





 � " � k�Knk < "n+1
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completes the induction step. Hence,



� �eK � I
�

 =






�
1X
n=1

Kn

n!






 �
1X
n=1

k�Knk

n!
< e" � 1 < 2"

f��
�

Theorem A.24 LetX denote a Markov jump process with generatorQ(t) at timet 2 IR+
0 .

Assume that the generator converges in the following strong sense: There is a generatorQ
with kQk > 0 such that for every" > 0 there is a timet0 2 IR

+ with




Z t

t0

Q(u)du�Q � (t� t0)





 < "

for all t � t0. Further assume that the homogeneous Markov jump process with generatorQ
is positive recurrent with stationary distributionq. Thenq is the asymptotic distribution for
X, i.e. for every initial distribution�,

kX�
t � qk ! 0 as t!1

Proof: Choose any" > 0 and t0 2 IR+ such that



R tt0 Q(u)du� (t� t0)Q




 < " for all

t � t0. SinceQ is positive recurrent, there is a timet1 2 IR+ such that


�eQt � q



 < " for
all t � t1. SetT := maxft0; t1g. Then fort > T and any initial distribution� of X,

kX�
t � qk �




X�
T e
R t
T
Q(u)du �X�

T e
Q�(t�t0)




 + 

X�
T e

Q�(t�t0) � q




<



X�

T

�
e
R t
T
Q(u)du � eQ�(t�t0)

�


 + "

AbbreviatingA :=
R t
T
Q(u)du andB := Q � (t� T ), the remaining term can be estimated via

the argument



eA � eB


 =







1X
k=1

Ak �Bk

k!






 =







1X
k=1

((A� B) +B)k � Bk

k!







�







1X
k=1

(A�B)k

k!






 +





(A� B)

1X
k=1

Pk
l=1

�
k
l

�
(A� B)l�1Bk�l

k!







< (e" � 1) + " �







1X
l=1

1X
k=l

(A� B)l�1Bk�l

l!(k � l)!







< (e" � 1) + " �

1X
l=1

kA� Bkl�1

(l � 1)!
�

1X
k=0

kBkk

k!

� (e" � 1) + " � e" � 1 < 4"

106



A.2. Quasi-Commutability of Generators

Using this, the estimation

kX�
t � qk < 5"

holds for allt > T , sinceX�
T is a probability distribution.

f��
�

Example A.2 Assume that the generator function has the formQ(t) = Q + 1
t2+1

R for all
t 2 IR+

0 , with constant generatorsQ andR. Further assume that the homogeneous Markov
jump process with generatorQ is positive recurrent with stationary distributionq. Then the
above theorem applies (chooset0 := 2

"�kRk
) and the Markov jump process with generatorQ(t)

has asymptotic distributionq.

Theorem A.25 LetX denote a Markov jump process with generatorQ(t) at timet 2 IR+
0 . If

the integral

Q :=

Z 1

0

Q(u)du

yields a kernel withkQk <1, then the asymptotic distribution ofX under initial distribution
� is given by

q =

Z
S

d� e
R
1

0 Q(u)du

Proof: Choose any" > 0. The assumption


R1

0
Q(u)du



 < 1 implies that there is a time
t0 2 IR

+ such that


R1

t
Q(u)du



 < " for all t � t0. Then

kX�
t � qk =




�eR t0 Q(u)du � �e
R
1

0 Q(u)du



 = 


�eR t0 Q(u)du �I � e

R
1

t
Q(u)du

�



holds for allt 2 IR+. By theorem A.23, the estimation



I � e
R
1

t
Q(u)du



 < 2" is valid for all

t > t0. SinceX�
t = �e

R t
0 Q(u)du is a probability measure for allt 2 IR+, it follows that

kX�
t � qk =




X�
t

�
I � e

R
1

t
Q(u)du

�


 < 2"

for all t > t0.
f��
�

Remark A.10 Note that this asymptotic distribution is not independent of the initial distribu-
tion �. The above theorem represents the pathological case of all states becoming absorbing
as the time proceeds. Thus every path of the process reaches an absorbing state at some time.
For illustration, one can say that the process falls asleep.

Example A.3 LetR denote the generator of a positive recurrent homogeneous Markov jump
process. For the generator functionQ(t) = � � e��tR with � > 0, we have

R1
0
Q(u)du = R.

Hence the Markov jump process with generatorQ(t) has the same asymptotic distribution as
the homogeneous Markov jump process with generatorR.
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A.3. Periodic Markov Jump Processes

If the infinitesimal transition rates of a Markov jump process are periodic, the Markov jump
process will be called periodic. The transient and asymptotic distributions for this special case
can be determined by examining the imbedded homogeneous Markov chain at times which
are multiples of the period length.

For the transient distribution one can prove a recursion formula which simplifies its compu-
tation by reducing the time range of integration in formula A.2 to at most the period length.
An asymptotic distribution does exist if the imbedded Markov chain is positive recurrent. Fur-
thermore, conditions for aperiodicity and uniform recurrence of the imbedded Markov chain
are derived.

Definition A.12 A Markov jump processX with generatorQ is calledperiodic with period
T > 0 if Q(s) = Q(s + T ) for all s 2 [0; T [.

The computation of the transient distribution can be simplified as follows. The periodicity of
the generator yields

P (0; nT ) = P (0; (n� 1)T )P ((n� 1)T; nT ) = P (0; (n� 1)T )P (0; T ) = P (0; T )n

Let � denote the initial distribution of the queue processQ. Define

bt=T c := maxfn 2 IN0 : nT � tg

as the number of period lengths that have passed until timet 2 IR+. Now the transient
distribution ofQ is given by

X�
t =

Z
d�P (0; bt=T cT )P (bt=T cT; t) =

Z
d�P (0; T )bt=T cP (0; t� bt=T cT )

This expression allows a computation of the transient distribution at any timet 2 IR+ without
needing to integrate over ranges larger than the periodT . For computing the remaining terms
P (0; s) with s � T , one can use the following iteration as given in Bellman [19], p.168:
Starting withI0(u) := I for all u � s, the iteration

In+1(u) :=

Z u

0

In(v)Q(v)dv + I

leads to the limit

P (0; s) = lim
n!1

In(s)

for all s � T .
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Example A.4 Assume that the generator function is given byQ(t) :=
�
1 + sin

�
2�
T
t
��
Q for

all t 2 IR+
0 , with some constant generatorQ. Then the termsP (0; s) can be expressed by

P (0; s) = exp

��
s+

Z s

0

sin

�
2�

T
u

�
du

�
�Q

�

= exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�Q

�
for all s � T , according to theorem A.21. Hence the transient distribution at timet 2 IR+

with initial distribution� is given by

X�
t =

Z
d�
�
eT �Q

�bt=T c
exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�Q

�
for s := t� bt=T c � T .

The next theorem contains a recursion formula which yields a structural decomposition of the
transition probabilities. Define

Pk(n) := P (k)(0; nT ) =

Z nT

0

Z uk

0

: : :

Z u2

0| {z }
k integrals

Q(u1) : : :Q(uk)du1 : : : duk

for all k; n 2 IN0. Now we can prove

Theorem A.26 The following recursion formula holds for allk; n 2 IN 0:

Pk(n+ 1) =
kX
j=0

Pk�j(n)Pj(1) (A.5)

Proof: By definition, the partition

Pk(n+ 1) = Pk(n) +

Z (n+1)T

nT

Z uk

0

: : :

Z u2

0

Q(u1) : : : Q(uk) du1 : : : duk

= Pk(n) +

Z (n+1)T

nT

Pk�1(n)Q(uk)duk

+

Z (n+1)T

nT

Z uk

nT

: : :

Z u2

0

Q(u1) : : :Q(uk) du1 : : : duk

= : : :

=
kX
j=0

Z (n+1)T

nT

Z uj

nT

: : :

Z u2

nT| {z }
j integrals

Pk�j(n)Q(u1) : : : Q(uj) du1 : : : duj

holds for allk; n 2 IN0, defining the case of zero integrals asPk(n). Exploiting the periodicity
of the generatorQ(t) leads to formula A.5.
f��
�
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The initial values for this recursion areP0(n) = I for all n 2 IN0 andPk(0) = Æk0 � I for all
k 2 IN0. This results in first iterates

P1(n) =

Z nT

0

Q(u)du

and

Pk(1) =

Z T

0

Z uk

0

: : :

Z u2

0

Q(u1) : : : Q(uk) du1 : : : duk

for all k; n 2 IN .

Before examining the asymptotic behaviour of periodic Markov jump processes, one needs to
define the term asymptotic distribution for periodic processes. The norm to be used will be
the total variation as defined in definition A.10.

Definition A.13 Let X denote a periodic Markov jump process with periodT . A family
(qs : s 2 [0; T [) of probability distributions shall be called aperiodic family of asymptotic
distributions if

kX�
nT+s � qsk ! 0 as n!1

for all s 2 [0; T [, independently from the initial distribution�.

Theorem A.27 If it exists, the periodic family(qs : s 2 [0; T [) of asymptotic distributions is
unique.

Proof: Assume that(q0s : s 2 [0; T [) is another periodic family of asymptotic distributions.
Then for everys 2 [0; T [ and an arbitrary probability measure� ,

kqs � q0sk � kqs �X�
nT+sk+ kq0s �X�

nT+sk ! 0

asn!1.
f��
�

Now the main result can be given. It reduces the existence of an asymptotic distribution for
the periodic Markov jump processX to the existence of an asymptotic distribution for the
embedded Markov chainY at multiples of the period length. DefineY = (Yn : n 2 IN) as
the homogeneous Markov chain with transition matrixP (0; T ) and letY � = (Y �

n : n 2 IN)
denote the version ofY with initial distribution�.

Theorem A.28 Let X denote a periodic Markov jump process with periodT . If X has a
periodic family of asymptotic distributions, thenY has a stationary distributionp. If Y has
an asymptotic distributionq, thenX has a periodic family of asymptotic distributions which
is uniquely determined by

qs =

Z
dq P (0; s)

for all s 2 [0; T [.
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Proof: Let � denote the initial distribution ofX at timet0 := 0 and assume that(qs : s 2
[0; T [) is a periodic family of asymptotic distributions. A necessary property ofq0 is

q0 = lim
n!1

Z
d�P (0; nT ) =

�
lim
n!1

Z
d�P (0; (n� 1)T )

�
P (0; T ) =

Z
dq0P (0; T )

which means thatp = q0 is a stationary distribution ofY .

Now let q be the asymptotic distribution ofY . Then

q0 = lim
n!1

Z
d�P (0; nT ) = lim

n!1

Z
d�P (0; T )n = lim

n!1
Y �
n = q

does exist.

Using this distributionq, the periodic family of asymptotic distributions(qs : s 2 [0; T ]) is
given by

qs = lim
n!1

Z
d�P (0; nT )P (nT; nT + s) =

�
lim
n!1

Z
d�P (0; nT )

�
P (0; s) =

Z
dqP (0; s)

f��
�

Remark A.11 If Y can be shown to be�-recurrent for some�–finite measure� on S (see
Orey [76], p.4), then the above theorem states:X has a periodic family of asymptotic distri-
butions if and only ifY is positive recurrent with respect to� (see Orey [76], p.30).

Example A.5 Resuming example A.4 and further assuming thatQ is �-recurrent and there is
a measureq with qQ = 0 (which impliesqeT �Q = q), we get a periodic family of asymptotic
distributions(qs : s 2 [0; T ]) given by

qs =

Z
dq exp

��
s+

T

2�

�
1� cos

�
2�

T
s

���
�Q

�
for all s 2 [0; T [.

Concluding this section, the following theorems give sufficient conditions for aperiodicity and
uniform recurrence (see Orey [76], pp.15,26) of the embedded Markov chainY in terms of
the jump kernels(P (t) : t 2 [0; T ]) and the jump rates(
(t; x) : t 2 [0; T ]; x 2 S).

Theorem A.29 Let X denote a periodic Markov jump process with periodT and bounded
jump rates0 < m � 
(t; x) := �q(t; x; fxg) � M < 1 for all x 2 S and t 2 IR+

0 . Be
(x;A) 2 S � S with �(A) > 0. If there is a numberk 2 IN0 withZ T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

(P (u1) : : : P (uk))(x;A) du1 : : : duk > 0 (A.6)

then

P (0; T )(x;A) > 0
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Proof: Using formula A.1 for the transition probabilityP (0; T ), which has only positive
components, we have

P (k)
b (0; T ; x;A) =

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

Z
S

: : :

Z
S

Z
A| {z }

k integrals

e�
R u1
s


(u;x)du
(u1; x; dx1) : : :

: : : e
�
R uk
uk�1


(u;xk�1)du
(uk; xk�1; dxk)e
�
R t
uk

(u;xk)du duk : : : du1

=

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

Z
S

: : :

Z
S

Z
A| {z }

k integrals

e�
R u1
s


(u;x)du
(u1; x)p(u1; x; dx1) : : :

: : : e
�
R uk
uk�1


(u;xk�1)du
(uk; xk�1)p(uk; xk�1; dxk)e
�
R t
uk

(u;xk)du duk : : : du1

(A.7)

Remembering0 < m � 
(t; x) �M <1, the term

e�
R u1
s


(u;x)du
(u1; x) : : : e
�
R uk
uk�1


(u;xk�1)du
(uk; xk�1)e
�
R t
uk

(u;xk)du

� e�M(t�s)
(u1; x) : : : 
(uk; xk�1)

is a continuous function of the vector(
(u1; x); : : : ; 
(uk; xk�1)) with positive values. Hence,
it assumes a positive minimum at some point in the compact set[m;M ]k. It follows that

P (0; T ; x;A) � P
(k)
b (0; T ; x;A) > 0

f��
�

Remark A.12 If for all (x;A) 2 S � S with �(A) > 0 there is a numberk 2 IN0 such that
condition A.6 holds, then it follows by the above theorem thatY is aperiodic and�-irreducible.
In this case,Y has a C-set according to Orey [76], pp.7–10.

Theorem A.30 LetX denote a periodic Markov jump process with bounded jump rates0 <
m � 
(t; x) � M <1 for all x 2 S andt 2 IR+

0 . If for any setA 2 S with �(A) > 0 there
is a numberK 2 IN such that

KX
k=0

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

(P (u1) : : : P (uk))(x;A) du1 : : : duk > "

for a positive" > 0 and for allx 2 S, thenY is aperiodic and uniformly�-recurrent.

Proof: By theorem A.29 and remark A.12,Y is aperiodic. Choose any setA 2 S with
�(A) > 0. By assumption, there is a numberK 2 IN such that

KX
k=0

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

Z
S

: : :

Z
S

Z
A| {z }

k integrals

p(u1; x; dx1) : : : p(uk; xk�1; dxk) du1 : : : duk > "
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for a fixed" > 0 and for allx 2 S. For everyk 2 IN0, the term

e�
R u1
s


(u;x)du
(u1; x) : : : e
�
R uk
uk�1


(u;xk�1)du
(uk; xk�1)e
�
R t
uk

(u;xk)du

� e�M(t�s)
(u1; x) : : : 
(uk; xk�1)

is a continuous function of the vector(
(u1; x); : : : ; 
(uk; xk�1)) with positive values and
assumes a minimum at some point in the compact set[m;M ]k. Denote this minimum byIk
and setI := min1�k�K Ik. Note that0 < I � 1 and I is independent ofx 2 S. Then by
equation A.7, it follows that

P (0; T ; x;A) �

�
KX
k=0

Ik �

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

Z
S

: : :

Z
S

Z
A| {z }

k integrals

p(u1; x; dx1) : : : p(uk; xk�1; dxk) du1 : : : duk

� I �
KX
k=0

Z T

0

Z T

u1

: : :

Z T

uk�1| {z }
k integrals

(P (u1) : : : P (uk))(x;A) du1 : : : duk > I � " > 0

for all x 2 S. Now the probability forY of never reaching the setA from a statex 2 S is

lim
n!1

Px(Yk 2 A
c 8k 2 f1; : : : ; ng) = lim

n!1

Z
Ac

: : :

Z
Ac| {z }

n integrals

P (0; T ; x; dx1) : : : P (0; T ; xn�1; dxn)

� lim
n!1

(1� I � ")n = 0

This means that starting from any statex 2 S the setA will be reached with probability 1.
Furthermore, the probability

Px(
n[
k=1

fYk 2 Ag) � 1� (1� ")n

converges to 1 uniformly with respect tox 2 S. This completes the proof.
f��
�

Remark A.13 Uniform �–recurrence implies positive recurrence with respect to� and a ge-
ometric convergence rate towards the asymptotic distribution ofY (see Orey [76], p.31).
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B. Stochastic Point Fields

Stochastic point fields can be regarded as stochastic point processes with parameter sets not
necessarily being the time axis (as the word ”process” hints at) but a general space. They
are a very useful concept in many application fields such as astronomy (Babu, Feigelson [8]),
ecology (Thompson [87], Barnett, Turkman [11, 12]), the modelling of populations (Moyal
[69]), rain fall (Cowpertwait [31], Phelan [79]) and mobile communication networks (Baum
[16, 17]). An extensive list of references is given in Cressie [32]. Although in the rest of this
thesis the focus shall rest on spatial queues arising from applicational demands in the field
of mobile communication networks, it should not be forgotten that the use in other fields of
application may turn out to be fruitful as well.

In spatial queueing theory, point fields can be used as a model for spatially distributed batch
arrivals into a queue. Since arrivals in queues are always finite, we shall restrict ourselves to
the theory of finite point fields. This section collects some classical results on stochastic point
fields by Moyal [69] and Daley, Vere-Jones [33]. The first two subsections contain two alter-
native but equivalent ways of defining point fields. Subsection B.3 describes the construction
of point fields from a given set of finite-dimensional marginal distributions. Finally, examples
of point fields are given in the last subsection.

B.1. Set Version

A point field can be defined in two ways which are both useful for analyzing spatial arrival
processes and spatial queues respectively. The most immediate way is that of defining a prob-
ability measure on the set of all finite point families.

Definition B.1 Let R denote an arbitrary space. Apoint family on R is a collection
fx1; : : : ; xng of elementsx1; : : : ; xn 2 R with the possibility ofxi = xj for i 6= j 2
f1; : : : ; ng.

Remark B.1 In difference to a set, a family may contain some elements more than once. In
terms of points in a field, this means that there can be several points at the same position.

In order to define a measure on the set of all finite point families, a suitable�-algebra needs to
be constructed. This must provide for the possibility of several points having the same location
as well as for the indistinguishability of points.
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LetR := �(R) denote a�-algebra onR and forn 2 IN , let

Rn :=
nO
k=1

R

denote the n-th product�-algebra ofR on Rn. Further, letR0 := f;g andR0 denote the
trivial �-algebra onR0. Define

R[ := �

 
1[
n=0

Rn

!

as the minimal�-algebra onR[ :=
S1
n=0R

n containing all sets in
S1
n=0R

n.

Theorem B.1 The�-algebraR[ consists of all subsetsA =
P1

n=0An ofR[ such thatAn 2
Rn for everyn 2 IN 0.

Proof: see Moyal [69], p.3f

Since a family of points is seen not as an ordered n-tuple but its members are indistinguishable
from one another, we need to restrict the�-algebraR[ on R[ to symmetric families only.
Thus, by defining

R[
S := R[ \ fA 2 R[ : A symmetricg

a suitable�-algebra for a measure on finite point families has been found. Now, any proba-
bility measure�S onR[

S determines a probability space(R[;R[
S;�S) which is suitable for

describing a point field.

B.2. Version for Counting Functions

Another way to see point families is in terms of counting functions. A counting function yields
for every subsetA of the basic spaceR the number of elements of the point family that are
contained inA.

In this section, a point field shall be defined in terms of counting functions. After formally
defining counting functions, a bijection between point families and counting functions shall
be constructed. This bijection will be used in order to transfer the point field definition from
the setting of point families into terms of counting functions.

Definition B.2 Let (R; �(R)) be a measurable space withfxg 2 �(R) for everyx 2 R. A
functionN : �(R) ! IN 0 is calledcounting function if for any collection(Ai : i 2 I) of
disjoint measurable subsets ofR,

1. there are at most finitely many subsetsAi1; : : : ; Ain for whichN(Aik) � 1.
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2. the equality

N

 X
i2I

Ai

!
=
X
i2I

N(Ai) =
nX
k=1

N(Aik)

holds.

Let C denote the space of all counting functions onR.

Remark B.2 If the number of points in the measurable setA 2 �(R) is represented byN(A),
then any family of points has a unique representation by a counting functionN . This is only
true because of the restriction that every singletonfxg is contained in the�-algebra�(R) (see
Moyal [69], p.9).

Now the mentioned bijection between the space of finite point families and the class of count-
ing functions shall be constructed. Define theDirac measureatx 2 R by

Æx(A) :=

�
1 for x 2 A
0 for x 62 A

for all A 2 �(R).

Theorem B.2 For all n 2 IN and allx1; : : : ; xn 2 R, define

T (fx1; : : : ; xng) :=
nX
i=1

Æxi

Then the mappingT is a bijection between the space of all finite point families onR and the
classC of counting functions onR.

Proof: see Moyal [69], p.7

Using this bijectionT , a�-algebra onC can be defined by�(C) := T (R[
S), i.e. by all sets of

counting functions whose inverse image underT�1 belongs toR[
S.

Theorem B.3 The�-algebra�(C) = T (R[
S) is the smallest�-algebra containing all sets of

the form

fN 2 C : N(Ai) = ki 8i 2 f1; : : : ; ngg

with n 2 IN andAi 2 �(R) measurable,ki 2 IN 0 for all i 2 f1; : : : ; ng.

Proof: see Moyal [69], p.8

Defining a probability measure�C on�(C) by�C(A) := �S(T
�1(A)), the probability space

(C; �(C);�C) is equivalent to(R[;R[
S ;�S) and hence suitable to define a point field.
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Definition B.3 Any one of the equivalent probability spaces(C; �(C);�C) and(R[;R[
S ;�S)

shall be calledpoint field. The first one will be referred to as theversion for counting
functions, the second one asset version.

Remark B.3 In the following, the standard version referred to shall be the version for count-
ing functions, since it is easier to describe the main properties of point fields in terms of this
version. Thus, if nothing else is stated, a point field shall be defined in terms of counting
functions from now on.

B.3. Construction

In order to construct a point field on a spaceR from distributions on finitely many subsets of
R, we will use results from Daley,Vere-Jones [33], chapter 6. In this, it is assumed that the
spaceR be Polish (see Daley,Vere-Jones [33], p.153). Hence, the same assumptions are made
here, although they might not be necessary.

Definition B.4 A complete separable metric spaceR is called aPolish space. The smallest
�-algebra containing all open subsets ofR is called theBorel �-algebraonR. A set which is
an element of the Borel�-algebra onR is called aBorel setof R.

Remark B.4 If R is a Polish space and�(R) the Borel�-algebra onR, then every singleton
fxg is contained in�(R). This follows from

fxg =
1\
n=1

B

�
x;

1

n

�

withB(x; d) := fy 2 R : d(x; y) < dg denoting the set of pointsy 2 R having a distance less
thand from x. That means that the condition on�(R) appearing in definition B.2 is satisfied.

The first immediate result confirms the unique representation of a point field by a sufficiently
large set of finite-dimensional marginal distributions.

Theorem B.4 LetR be a Polish space and�(R) the Borel�-algebra onR. Define

�(S1; : : : ; Sn)(k1; : : : ; kn) := �C(fN 2 C : N(Si) = ki 8i 2 f1; : : : ; ngg)

Then the probability measure�C is uniquely determined by the marginal distributions
�(S1; : : : ; Sn) on finite families of disjoint setsS1; : : : ; Sn 2 �(R) from a semi-ring of
bounded sets generating�(R).

Proof: see Daley,Vere-Jones [33], p.167

The main result states sufficient and necessary conditions for the existence of a point field,
if the set of finite-dimensional marginal distributions is given. The first condition is merely
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notational. The second condition is the consistency condition for Kolmogorov’s extension
theorem, which ensures that a probability measure having the given marginal distributions
can be constructed. The last two conditions guarantee that the support set of the constructed
probability measure is exactly the spaceC of counting functions.

Theorem B.5 LetR be a Polish space and�(R) the Borel�-algebra onR. Further, let

(�(S1; : : : ; Sn) : n 2 IN; S1; : : : ; Sn 2 �(R))

denote the set of all finite-dimensional distributions. Then there is a point field�C on
(R; �(R)) such that

�(S1; : : : ; Sn)(k1; : : : ; kn) = �C(fN 2 C : N(Si) = ki 8i 2 f1; : : : ; ngg):

if and only if the following conditions are satisfied:

1. For all n 2 IN and every permutation(i1; : : : ; in) of the integers(1; : : : ; n), the distri-
butions

�(S1; : : : ; Sn) = �(Si1; : : : ; Sin)

are equal.

2. For everyn 2 IN andS1; : : : ; Sn 2 �(R), the consistency condition

�(S1; : : : ; Sn�1)(k1; : : : ; kn�1) =
1X
k=0

�(S1; : : : ; Sn)(k1; : : : ; kn�1; k)

holds.

3. For everyn 2 IN andS1; : : : ; Sn 2 �(R), the measure�(S1; : : : ; Sn) has supportINn
0 .

4. For disjoint Borel setsA;B 2 �(R) and integersk; l 2 IN0, the equality

�(A;B;A+B)(k; l; k + l) = �(A;B)(k; l)

holds.

Proof: The necessity is shown first: Condition 1 is a mere notational requirement. Condi-
tion 2 expresses the consistency requirement needed in Kolmogorov’s extension theorem (see
Gikhman, Skorokhod [44], p.108 (theorem 3)). If it were not satisfied, the given distributions
could not be marginal distributions of the same measure. Condition 3 is necessary, because
if for some measure�(S1; : : : ; Sn) the support would exceedINn

0 , then the support of any
measure on(R; �(R)) with marginal measure�(S1; : : : ; Sn) would exceedIN�(R)

0 and hence
the spaceC � IN

�(R)
0 of counting functions. Finally, if condition 4 fails to hold, any measure

on (R; �(R)) with marginal measures�(A;B;A+B) and�(A;B) would have a support set
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that violates the second property in definition B.2 and hence is greater than the set of counting
functions.

Now we show sufficiency: According to Kolmogorov’s extension theorem (see Gikhman,
Skorokhod [44], p.108 (theorem 3)), the first two conditions guarantee that a probability mea-
sure�C on (R; �(R)) with marginal measure�(S1; : : : ; Sn) can be constructed. Condition 3
implies that the support of�C is onIN�(R)

0 and further
1X
n=0

�(R)(n) = 1

which ensures the first property in definition B.2. Condition 4 states that for any two disjoint
Borel setsA;B 2 �(R),

�C(fN 2 C : N(A) +N(B) = N(A +B)g) = 1

Since the Borel�-algebra of a Polish space can be generated by a countable semi-ring (see
Daley, Vere-Jones [33], p.608 (theorem A2.1.III)), this implies that the second property in
definition B.2 holds almost surely with respect to�C . Hence,�C is a probability measure on
the setC of counting functions.
f��
�

B.4. Examples

Concluding this section, some examples of stochastic point fields are given. The first one is
the well-known Poisson field, which assumes independence of the point positions. The next
two examples are widely used variations of the Poisson field. Example B.4 is rather a general
framework for the design of finite point fields than a specific example. For more examples see
Cressie [32], Upton, Fingleton [92] or Diggle [35].

Example B.1 Let (R; �(R)) be a measurable space withfxg 2 �(R) for everyx 2 R. If the
distribution of points in disjoint sets is independent, i.e. if

�(S1; : : : ; Sn)(k1; : : : ; kn) =
kY
i=1

�(Si)(ki)

for any disjoint setsS1; : : : ; Sn 2 �(R), and if for all setsS 2 �(R) the distribution�(S) is
a Poisson distribution with some parameter�(S) 2 [0;1], then the point field(C; �(C);�C)
shall be called aPoisson point fieldon (R; �(R)). These are examined in Kingman [55].
Some important basic properties are given in the following theorems.

Theorem B.6 The function� : �(R) ! [0;1], which yields the parameters�(S) of the
Poisson distributions�(S), is a measure on(R; �(R)). On the other hand, if� is a non-
atomic measure on(R; �(R)) which can be expressed in the form

� =
1X
n=1

�n
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with �n(R) < 1 for everyn 2 IN , then there is a Poisson point field(C; �(C);�C) on
(R; �(R)) with�(S) having parameter�(S).

Proof: see Kingman [55], p.11f,23

SinceE(�(S)) = �(S), the measure� is called themean measureof (C; �(C);�C).

Theorem B.7 Let� be a non-atomic finite measure on(R; �(R)). Further, letf : R ! IR+
0

be a bounded�-measurable function. Then the measure� defined by

�(A) =

Z
A

f(x)d�(x)

for all A 2 �(R) is a mean measure in the sense of theorem B.6.

Proof: It is immediate to check the assumptions of theorem B.6.

The functionf shall be called theintensity function with respect to�. The valuef(x) is
calledintensity of x 2 R.

Example B.2 If the mean measure of a Poisson point field is allowed to be random in the same
probability space as the point field itself, then the resulting point field shall be called aCox
field. For a more formal definition and properties of Cox fields, see Cressie [32], pp.657-661,
or Grandell [45].

Example B.3 Another point field which is derived from the Poisson point field is thePoisson
cluster field. It is defined by the following construction:

1. Parent events are realized from an inhomogeneous Poisson point field onR with some
mean measure�.

2. Each parent produces a random number of offspring.

3. The offspring are positioned arbitrarily inR.

4. The final process is composed of the superposition of offspring only.

A special kind of Poisson cluster fields is theNeyman–Scott process. A Poisson cluster field
onR = IRd is called a Neyman–Scott process if

1. The random numberK of offspring is realized independently and identically for each
parent according to a discrete probability distribution(pk : k 2 IN0).

2. The positions of the offspring relative to their parents are independently and identically
distributed according to ad-dimensional density functionf : IRd ! IR+

0 .

For properties of Neyman–Scott processes, see Cressie [32], pp.662-669.
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Example B.4 An easy and constructive way to specify finite point fields can be found in
Daley, Vere-Jones [33], chapter 5.3. By this method, first the probabilitypn of the numbern
of points inR is given and then, conditioned onn � 1, a probability distribution�n of the
locations of the points. The indistinguishability implies that every�n must be symmetric.

Theorem B.8 Let (R; �(R)) be a Polish space with its Borel�-algebra. Then a finite point
field is given by a discrete probability distribution(pn : n 2 IN 0) and, for each integer
n 2 IN , a symmetric probability distribution�n on the�-algebra�(R)n ofRn.

Proof: see Daley, Vere-Jones [33], p.126 (proposition 5.3.II)
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