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Zusammenfassung der Arbeit

Diese Arbeit beschäftigt sich mit typischen mathematischen Herausforderungen, wel-
che im Bereich der Modellierung und Simulation von Fertigungsprozessen der Pa-
pierproduktion oder technischer Textilien auftauchen. Im Besonderen widmet sich
der vorliegende Text einerseits approximativen Modellen für die Bewegung kleiner
trägheitsbehafteter Partikel in einem inkompressiblen Newtonschen Fluid. Des Wei-
teren werden effektive makroskopische Approximationen verdünnter Partikelsuspen-
sionen in einem beschränkten Gebiet betrachtet, die sowohl allgemeine Verteilungen
als auch Partikelträgheit berücksichtigen. Außerdem werden Methoden zur Reduzie-
rung der Rechenzeit bei Simulationen dünner elastischer Fäden in einer turbulenten
Strömung betrachtet.

Wir untersuchen das über die Partikeloberfläche gekoppelte Partikel-Fluid Problem,
welches durch die Navier-Stokes Gleichungen in Kombination mit den Impulsbilanz-
gleichungen eines starren Körpers beschrieben wird. Durch die Wahl einer bestimm-
ten asymptotischen Skalierung für das Verhältnis der Partikel- und Fluiddichte sowie
der Anwendung der asymptotischen Entwicklung der Lösungskomponenten, leiten wir
Näherungen des Ausgangsproblems her. Die resultierenden approximierenden Systeme
unterscheiden sich je nach gewählter Dichteskalierung im physikalischen Verhalten, was
uns die Charakterisierung der jeweiligen Trägheitsregime erlaubt.

Des Weiteren wenden wir das asymptotische Vorgehen auch auf den Fall vieler Par-
tikel an, welche von einem Newtonschen Fluid umgeben sind. Unter einer Reihe von
Annahmen an die Kombination von Partikelgröße und -anzahl, leiten wir asymptoti-
sche Approximationen des Gesamtsystems her. Diese Näherungssysteme beschreiben
auch die Partikelbewegung, wodurch wir mit Hilfe eines Mean-Field Ansatzes imstande
sind, die Kontinuitätsgleichung für die Wahrscheinlichkeitsdichte der Partikel herzulei-
ten. Die Kopplung der Letzteren an die Approximation der Impulsbilanz des Fluids
ergibt die makroskopische Suspensionsbeschreibung, welche sowohl nicht-gleichmäßige
Partikelverteilungen als auch kleine Trägheitseffekte der Partikel berücksichtigt.

Ein dünner Faden, welcher einer turbulenten Luftströmung ausgesetzt ist, kann
als stochastischer, nicht dehnbarer, eindimensional parametrisierter Kirchhoff-Balken
modelliert werden. Das heißt, er wird durch eine stochastische, partielle differenti-
alalgebraische Gleichung beschrieben. Die Simulation solcher Modelle erfordert das
Lösen großer, nicht linearer Gleichungssysteme durch das Newton-Verfahren. Um die
benötigte Rechenzeit solcher Simulationen zu verringern, untersuchen wir unterschied-
liche Lösungsschätzer für das Newton-Verfahren. Zusätzlich erforschen wir die Auswir-
kungen unterschiedlicher Glättungsmethoden des Wiener Prozesses, welche die trei-
bende stochastische Kraft regularisieren, auf die Lösung und die Performanz der Fa-
densimulation. Des Weiteren untersuchen wir die Anwendbarkeit der “Wiener chaos
expansion” zur Simulation stochastischer Fadendynamik.
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Abstract

This work studies typical mathematical challenges occurring in the modeling and sim-
ulation of manufacturing processes of paper or industrial textiles. In particular, we
consider three topics: approximate models for the motion of small inertial particles in
an incompressible Newtonian fluid, effective macroscopic approximations for a dilute
particle suspension contained in a bounded domain accounting for a non-uniform par-
ticle distribution and particle inertia, and possibilities for a reduction of computational
cost in the simulations of slender elastic fibers moving in a turbulent fluid flow.

We consider the full particle-fluid interface problem given in terms of the Navier-
Stokes equations coupled to momentum equations of a small rigid body. By choosing
an appropriate asymptotic scaling for the particle-fluid density ratio and using an
asymptotic expansion for the solution components, we derive approximations of the
original interface problem. The approximate systems differ according to the chosen
scaling of the density ratio in their physical behavior allowing the characterization of
different inertial regimes.

We extend the asymptotic approach to the case of many particles suspended in a
Newtonian fluid. Under specific assumptions for the combination of particle size and
particle number, we derive asymptotic approximations of this system. The approximate
systems describe the particle motion which allows to use a mean field approach in order
to formulate the continuity equation for the particle probability density function. The
coupling of the latter with the approximation for the fluid momentum equation then
reveals a macroscopic suspension description which accounts for non-uniform particle
distributions in space and for small particle inertia.

A slender fiber in a turbulent air flow can be modeled as a stochastic inextensible
one-dimensionally parametrized Kirchhoff beam, i.e., by a stochastic partial differential
algebraic equation. Its simulations involve the solution of large non-linear systems
of equations by Newton’s method. In order to decrease the computational time, we
explore different methods for the estimation of the solution. Additionally, we apply
smoothing techniques to the Wiener Process in order to regularize the stochastic force
driving the fiber, exploring their respective impact on the solution and performance.
We also explore the applicability of the Wiener chaos expansion as a solution technique
for the simulation of the fiber dynamics.
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1 Introduction

1.1 Motivation

An important key for sustainable prosperity of modern societies is the resource effi-
cient manufacturing of goods. A major element here is the usage of materials with
properties tailored to the specific application. Carbon fiber reinforced plastics, as an
example, play a substantial role in weight reduction for aircraft fuselage or for the body
of automobiles, while at the same time possessing the stability of classical metal alloys
preserving the necessary safety requirements in these fields of mobility [3, 22, 43, 123].
Such architectured materials range from exactly engineered metamaterials with struc-
tures designed on nanoscale [76, 94] over hybrid materials built of layers of different base
materials with an optimized distribution with respect to desired properties [6, 74] to
virtually infinitely long mats of non-woven fabrics with stochastic micro-structure [54].
Due to the availability and computational power of modern computers, it is possible
to design and adjust such materials in a very cost and resource efficient way by using
numerical simulations. However, in order to achieve meaningful and realistic predic-
tions and allow the precise control of material properties, the corresponding simulation
tools must combine different mathematical models which depict the production steps
of the complete manufacturing process [54, 122]. Such models are in general valid on
different length and time scales which makes it difficult to combine them directly. A
non-woven fabric for example consists of around 105 fibers per m2 of final material [54].
The formation of this mat is achieved by the deposition of fibers by a turbulent air
flow onto a conveyor belt. While being subjected to the stochastic fluid flow, the fibers
move with velocities of around 30m/s. Being elastic, they possess inner dynamics and
interact with the carrier fluid, possibly disturbing it. As soon as they reach the con-
veyor belt, they are transported with merely 0.03m/s with no relevant changes to the
local structure of the fabric. Hence, during the interaction with the air flow, the prob-
lem description consists of instationary coupled stochastic partial differential equations,
where the large number of degrees of freedom poses a severe numerical challenge. After
the deposition the product is characterized by the stochastic topology of the resulting
graph. The relevant material properties on the other hand are determined by tensile
strength tests whose exact description consists of stationary solutions of a large system
of partial differential equations with prescribed shifts of the material at the boundaries
of the stochastic graph. Thus, although only the net force is relevant for the behavior
of the final product, the full mathematical description determines every individual fiber
load, making a full scale simulation impracticable. These challenges motivate advances
in mathematical modeling, analysis and algorithmic development. Just to name a few
examples in the field of industrial textiles from recent years, such developments involve
advances in modeling and simulation in melt-blowing processes [67], spinning processes

1



and viscoelastic jets [87], numerical schemes for growing viscoelastic jets [5], analysis
and numerics for partial differential algebraic equations of elastic fibers [56], process
simulation of aerodynamic manufacturing of textiles [54], versatile numerical strategies
for viscous jets subject to high elongations [109], simulation of industrial melt-blowing
processes under turbulence [124].

1.2 Objectives

This work is related to different aspects of particle- and fiber-laden fluid flows which
occur in the manufacturing of paper or industrial textiles. In particular, we pursue
three major objectives. The first is an extension of asymptotic results for the system
describing the motion of an isolated particle suspended in a Newtonian incompressible
fluid with regard to finite particle inertia. The second objective is the derivation
of an effective macroscopic suspension model which approximates a dilute particle
suspension within an incompressible Newtonian carrier fluid, accounting for particle
inertia effects and for non-uniform particle distributions. Finally, we also seek to
increase the efficiency of numerical fiber simulations in the case of elastic inextensible
Kirchhoff beams subjected to stochastic forces by presenting algorithmic extensions to
modern numerical schemes.

1.3 Structure

Since this three topics address different mathematical areas and differ in their scope and
methodology, this work is divided into three chapters, corresponding to the objectives
laid out above. Each chapter has its own introduction with the classification of the
topic, an overview of the literature and a detailed explanation of its structure. Similarly,
each chapter also has its own conclusion stating and discussing the relevant results.
Here we give only a brief overview of each section.

In the first part, Sec. 2, we start with the discussion of the dynamics of a small rigid
particle of arbitrary shape suspended in an incompressible Newtonian fluid. The math-
ematical model describing this problem is given by the Navier-Stokes equations coupled
with the linear and angular momentum balances of the particle. We use asymptotic
expansions of the solution components in powers of the particle size parameter in order
to derive a hierarchy of equations, which approximate the original problem. Different
inertial effects are realized by an appropriate asymptotic scaling of the density ratio
between the particle and the fluid. The resulting approximate systems then reveal dif-
ferent models depending on the chosen inertial regime in accordance with the expected
physical behavior.

In Sec. 3 we extend the results derived in Sec. 2 to the case of a large but finite
number of isolated particles whose linear and angular momenta are coupled to the
Navier-Stokes equations describing the surrounding fluid. The model accounts for
hydrodynamic particle interaction and for particle inertia, neglecting direct particle-
particle interactions, i.e., impacts or particle clusters connected by friction or adhesive
forces. We again derive an asymptotic approximation which accounts for small particle
inertia, exploring the boundaries of this approach. Then we formulate a mean field
model which approximates the suspension as the number of particles goes to infinity
while the particle size decreases to zero. The resulting model consists of a Navier-
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Stokes-like momentum equation for the fluid coupled to a continuity equation for the
probability density function of particle position and orientation. The resulting model
simplifies to classical models for prolate ellipsoids or spheres, given the corresponding
assumptions on the particle shape and distribution in space.

In Sec. 4, we consider the dynamics of a slender elastic fiber modeled as a one-
dimensionally parametrized inextensible Kirchhoff beam. The fiber dynamics is gov-
erned by a partial differential algebraic equation of hyperbolic type with a small el-
liptic regularization term. The system becomes stochastic if the aerodynamic force is
assumed turbulent. We use a spatial semi-discretization by finite volumes combined
with finite differences on a staggered grid in order to discretize the problem. The time-
integration is performed by the implicit Euler scheme due to stability reasons. In order
to reduce the computation time, we study estimation methods for the associated New-
ton iteration, which are motivated by semi-explicit integration schemes. In addition,
we explore the effects of different regularization methods for the white noise as well as
the applicability of the Wiener chaos expansion as a direct solution technique.

The appendix App. A is dedicated to collect properties of (skew-)symmetric ma-
trices and rotation matrices often used in the arguments of this work, it additionally
contains the essential definitions and statements connected with manifolds and matrix
Lie-groups which play an important role in the mean field description of the suspen-
sion. Appendix B collects statements concerning the stationary Stokes problem; in
particular, the analytical solutions for the Stokes problem in the exterior domain of
an ellipsoid. Finally, App. C encapsulates additional numerical simulation data of the
stochastic fiber simulations in order to increase readability of Sec. 4. Accordingly, the
appendices App. A and App. B are mainly used in Sec. 2 and Sec. 3, while App. C is
associated with Sec. 4.

1.4 Main results

The main result of the first part of this work is the extension of asymptotic approxi-
mations for the coupled system of a small rigid particle moving in an incompressible
Newtonian fluid with regard to small particle inertia. By introducing an asymptotic
scaling of the density ratio, we deduce different asymptotic models which show physi-
cally meaningful behavior while preserving the mathematical structure of the approx-
imation.

In the second part we derive an asymptotic mean field description of a suspension of
small rigid particles suspended in an incompressible Newtonian fluid. Instead of using
classical techniques of statistical modeling, we rely only on asymptotic analysis and
rigorous restriction on particle size and their minimal distance of separation. This way
we are able to derive an effective description which consists of a Navier-Stokes like mo-
mentum equation for the fluid coupled with a continuity equation for the particle phase
space. The latter is composed of the particle position and its orientation in the special
orthogonal group. The macroscopic description simplifies to classical models in case
of a uniform particle distribution in space and under neglect of hydrodynamic interac-
tion, yet it is also able to depict non-uniform particle distributions and hydrodynamic
particle interaction.

In the third part we explore different strategies for the reduction of computational
costs in numerical fiber simulations of elastic inextensible Kirchhoff beams subjected to
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stochastic forces. In particular, we present two novel predictor methods for the Newton
iteration which solves the non-linear equations associated with the discretized partial
differential algebraic equations describing the fiber motion. Both methods yield an
estimation for the first Newton iteration and lead to a moderate reduction of the overall
computational time. We also investigate the effect of various correlation techniques for
the white noise driving the fiber. We observe that the correlated stochastic fields reduce
the computational cost by a smaller amount than the usage of the already mentioned
predictor techniques. Finally, we also successfully apply the Wiener chaos expansion
to the stochastic, inextensible fiber model with a linear air-drag force term.

The publications which provide the basis of this work are listed in the following.

Publications preceding this thesis

Journal articles

• A. Vibe, N. Marheineke. “Impact of weak particle inertia on a dilute suspension
of ellipsoids”. In: Journal of Computational and Theoretical Transport 45(5)
(2016), pp. 396–409. [117]

• F. Lindner, N. Marheineke, H. Stroot, A. Vibe, R. Wegener. “Stochastic dynam-
ics for inextensible fibers in a spatially semi-discrete setting”. In: Stochastics and
Dynamics 17(2) (2017). [84]

• A. Vibe, N. Marheineke. “Modeling of macroscopic stresses in a dilute suspension
of small weakly inertial particles”. In: Kinetic & Related Models 11(6) (2018),
pp. 1443–1474. [119]

Proceedings and book contributions

• A. Vibe, N. Marheineke. “Wiener chaos expansion for an inextensible Kirchhoff
beam driven by stochastic forces”. In: Progress in Industrial Mathematics at
ECMI 2016. Ed. by P. Quintela et al. Springer, 2017, pp. 761–768. [120]

• A. Vibe, N. Marheineke. “Mean field surrogate model of a dilute and chaotic
particle suspension”. In: PAMM – Proceedings in Applied Mathematics and
Mechanics. Ed. by J. Eberhardsteiner and M. Schöberl. Vol. 19. Wiley-VCH,
2019. [118]

The articles [117] and [119] are connected with the first two parts of the present
work, Sec. 2 and Sec. 3. In [117] we study the asymptotic one-particle models in
detail by using numerical simulations of the resulting particle equations of motion.
In [119] we present the asymptotic approximation of a particle suspension, where we
rely strongly on the hypothesis of ergodicity, finding similar macroscopic models to the
ones presented in Sec. 3 in the present thesis. The proceeding [118], which accompanies
a presentation at the 90th Annual Meeting of the International Association of Applied
Mathematics and Mechanics (GAMM 2019), presents the fully coupled macroscopic
mean field models derived in Sec. 3.4.2.

The article [84] deals with the analysis and numerics of the semi-discretized system
describing the motion of the stochastic, inextensible Kirchhoff beam discussed through-
out the last part of the present work, Sec. 4. It is a collaboration with Prof. Dr. Felix
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Lindner, Prof. Dr. Nicole Marheineke, Dr. Raimund Wegener, and Dr. Holger Stroot.
The proof of existence and uniqueness of a global strong solution presented in [84] is
based largely on the ideas of Dr. Stroot who used this topic in his dissertation [113].
The numerical experiments which are examined in [84] and which are similarly used in
Sec. 4.5.4 of the present work, on the other hand, were largely provided by myself.

Finally, the proceeding [120] connected with a presentation at the 19th European
Conference on Mathematics for Industry focuses on the Wiener chaos expansion for
the stochastic partial differential algebraic equation of the stochastic Kirchhoff fiber;
it is utilized in Sec. 4.4.2 and Sec. 4.5.6 in the final part of this work.
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2 Asymptotics for inertial particles

2.1 Introduction

The analysis of the motion of a single particle in a Newtonian fluid and its influence
on the solvent plays a crucial role in the understanding of the behavior of a particle
suspension. In the field of rigid particles, Stokes [112] found an analytical solution for
the disturbance flow generated by a rigid sphere which moves with a constant trans-
lational velocity in a linear ambient velocity field in an unbounded domain. Oberbeck
extended this work in [96] by considering an ellipsoidal particle. His results were gen-
eralized by Edwardes, who added constant rotational motion of the particle in [40].
Jeffery found in [70] the description of the evolution of the principal axis of a prolate
ellipsoid of revolution in a linear surrounding flow. He derived his famous equation
(Jeffery’s equation) by using analytical solutions of the stationary Stokes problem in
the unbounded exterior of the ellipsoidal particle with linear boundary conditions on
the particle boundary.

All this classical results hold for the case of a stationary ambient velocity field and
an inertia-free particle in an unbounded domain. The general case of an inertial,
arbitrarily shaped particle moving through a Newtonian fluid of finite Reynolds number
(ratio between fluid inertia and viscosity) in a bounded domain does neither admit
analytical solutions for the disturbance velocity field, nor for the particle motion. Junk
& Illner [71] proposed in this case an asymptotic approach for inertia-free particles. By
using asymptotic expansions in the small size ratio (ratio between the characteristic
particle length scale and the one associated to the fluid) they derived lower order
corrections to an undisturbed incompressible Navier-Stokes flow in a bounded domain
which approximate the effect of the particle presence. At the same time this approach
yields approximations for the particle motion, revealing Jeffery’s equation as a special
case.

Our aim in this chapter is to extend the asymptotic approach of [71] with regard to
particle inertia. In particular, we desire to derive lower order asymptotic approxima-
tions to an undisturbed flow, which are still valid if the particle and the fluid have dif-
ferent densities. Similarly to the original approach, our resulting approximating model
should also provide an approximate description of the particle motion which accounts
for particle inertia. We achieve this goal by introducing an appropriate asymptotic
scaling for the density ratio (density of the rigid body with respect to the one of the
fluid), which does not affect the validity of the asymptotic approach. The resulting
model describes the particles as tracer particles in leading approximation order, i.e.,
they follow the streamlines of the undisturbed fluid flow. The first order corrections
of particle velocity then consist of contributions which depend on the chosen scaling
of the density. This allows the characterization of different inertial regimes for which
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Figure 2.1.: Cutout of the velocity in the vicinity of an ellipsoidal particle moving with
the fluid.

the asymptotic approach is valid. The velocity corrections to the undisturbed flow also
depend on the chosen inertial regime, while still preserving the structure of the orig-
inal approximation by [71]. In particular, the disturbance velocity fields are given as
solutions of stationary Stokes equations in the exterior of the particle domain embed-
ded into the bounded fluid domain (see Fig. 2.1 for the velocity approximation in the
vicinity of an ellipsoid). Furthermore, any approximation order depends only on the
lower orders allowing a hierarchical computation of the approximation. The novelty of
this work consists in the extension of asymptotic models for the particle motion in a
surrounding incompressible Newtonian fluid to the case of different particle and fluid
density, exploring the boundaries of this asymptotic method.

This chapter is based on the preliminary works [116, 117, 119] and is structured
as follows: we introduce the physical system of the coupled interface problem in Sec-
tion 2.2, where we also discuss an extension of the Newtonian stresses onto the particle
domain, which is redundant in this chapter, but is necessary later for the suspension
model. After stating the dimensionless formulation in Sec. 2.2.5, we propose an asymp-
totic model for different types of inertial regimes in Section 2.3, where we also discuss
the asymptotic approach according to [71] with the necessary modifications in our case.
We formulate the general asymptotic result in Sec. 2.3.3 and discuss a slightly different
asymptotic approach which is based on [41] in Sec. 2.3.4. In Section 2.4 we apply
our results to the well-known example of ellipsoidal particles and study the proposed
asymptotic models for the particle motion focusing on the different inertia regimes. In
Section 2.5 we briefly discuss our results and observations.

2.2 Particle-fluid model

We first introduce the particle-fluid model by identifying the physical quantities which
describe the motion of the particle, adapting the well-known Navier-Stokes equations
as the description of a Newtonian fluid and coupling the particle and fluid motion
via Newton’s second law. Additionally, also introduce a redundant description of the
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particle motion at the end of this section which we need later in Section 3.4.

2.2.1 Particle Kinematics

We model a particle as a rigid body, i.e., forces acting on the particle do not introduce
deformations which also implies that the spacing between particle points does not
change in time, [55]. We also assume that the particle has a uniform mass distribution
and therefore a uniform particle density ρp > 0. We choose the particle reference state
[39] as a bounded open domain E ⊂ R3 with a smooth boundary ∂E and the center of
mass lying in the origin, i.e., ∫

E
y dy = 0 .

Furthermore, we assume that the position of any material point is determined by a
time-dependent translation c : R+

0 → R3 and an orthonormal right-handed director
triad di : R+

0 → S2, i = 1, 2, 3. Denoting by ei, i = 1, 2, 3 the Cartesian unit vectors, we
introduce the rotation matrix (R(t))ij = ei · dj(t), i, j = 1, 2, 3 and a time-dependent
rigid body motion x : R3 ×R+

0 → R3 given by

x(y, t) = R(t) · y + c(t) . (2.1)

Then, the time-dependent particle domain is given as the image of the reference state
under the rigid motion (2.1), E(t) = x(E , t) for any t ≥ 0. This way, the dynamical
behavior of the particle can be fully described by the dynamics of the center of mass
and the director triad.

Under the assumption that the particle moves smoothly in time, we find for a fixed
y ∈ E the velocity of the corresponding material point x = x(y, t) given by

v̂(t;x) =
d

dt
x(y, t) = ∂tx(y, t) .

Denoting by y(., t) the inverse mapping of x(., t) for any t ≥ 0, we therefore introduce
the Eulerian velocity field

ṽ(x, t) = ∂tx(y(x, t), t) =
d

dt
R(t) · RT (t) · (x− c(t)) +

d

dt
c(t) (2.2)

for any x ∈ E(t), t ≥ 0. As shown in the appendix, the matrix appearing in (2.2) is
skew-symmetric and can be identified with a unique angular velocity vector ω : R+

0 →
R3 according to Lemma A.55 by using the identity

B(ω(t)) =
d

dt
R(t) · RT (t) ,

where B : R3 → R3×3 is a parametrization of the skew-symmetric matrices in R3 as
defined in appendix A.2. Furthermore, we denote the time derivative of the center of
mass as v = dc/dt. This allows the definition of the linear and angular momenta of
the particle:

i(t) =

∫
E(t)

ρpṽ(x, t) dx = ρp|E|
d

dt
c(t) = ρp|E|v(t) , (2.3)
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`(t) =

∫
E(t)

(x− c(t))× ρpṽ(x, t) dx = −
∫
E(t)

B(x− c(t))2 dx · ρpω(t)

= R(t) ·
∫
E
‖y‖2I− y ⊗ y dy · RT (t) · ρpω(t) (2.4)

= ρp|E|R(t) · Ĵ · R(t)T · ω(t) = ρp|E|J(t) · ω(t) ,

where we used (A.10d) and abbreviated the inertia tensor by J(t) = R(t) · Ĵ · R(t)T

with the time-independent part

Ĵ = |E|−1

∫
E
‖y‖2I− y ⊗ y dy . (2.5)

2.2.2 Fluid model

We model the fluid which contains the particle as incompressible with the density
ρf > 0 and Newtonian with dynamic viscosity µf > 0. Both, the particle and the fluid
are located in a regular open domain Ω with the fluid domain denoted by Ω(t) = Ω\E(t).
The fluid behavior is completely described by the dynamics of its solenoidal velocity
u : Ω(t) × R+

0 → R3. Assuming no outer forces except gravity, the fluid dynamics is
described by the Navier-Stokes equations [47] given by

ρfDtu(x, t) = ∇ · S[u](x, t)T + gρfeg , ∇ · u(x, t) = 0 for x ∈ Ω(t) . (2.6a)

We denote by Dtu = ∂tu+ [u · ∇]u the material derivative, by S[u] = −pI +µf (∇u+
∇uT ) the Newtonian stress tensor with the pressure p : Ω(t)×R+

0 → R denoting the
Lagrangian multiplier to the incompressibility, and the direction of gravity as well as
the gravitational acceleration by eg, resp. g. The symmetric deformation gradient of u
is often abbreviated as E[u] = 0.5(∇u + ∇uT ) throughout this work. The system is
completed by an initial condition on Ω(0), boundary conditions on ∂Ω and the no-slip
boundary condition on ∂E(t). The latter is given for t ≥ 0 as

u(x, t) = ω(t)× (x− c(t)) + v(t) . (2.6b)

2.2.3 Particle dynamics

The particle is accelerated by gravity and hydrodynamic forces. Thus, the particle
dynamics are given by

d

dt
i(t) =

∫
∂E(t)

S[u](x, t) · n ds+ gρp|E|eg , (2.6c)

d

dt
`(t) =

∫
∂E(t)

(x− c(t))× S[u](x, t) · n ds . (2.6d)

The vector n denotes the outer normal vector to the particle surface pointing into the
fluid domain. The complete system is then given by (2.6) together with boundary con-
ditions of the fluid on ∂Ω and initial conditions for the fluid velocity, particle velocity,
its position and orientation.
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2.2.4 Extension of the Stokes system to the particle domain

In Section 3.4 we derive a macroscopic suspension model which requires the definition
of velocities and stresses on the whole domain Ω, including the interior of the particle.
Thus, we consider here also the Eulerian description of the velocity in the particle
domain. Following the approach of [99], we treat the particle as a fluid with a rigidity
constraint. Its velocity ṽ : E(t)×R+

0 → R3 as given in (2.2) obeys

ρpDtṽ = ∇ · TT + ρpgeg , ∇ṽ +∇ṽT = 0 , x ∈ E(t) , (2.7a)

ṽ = u , T · n = S[u] · n , x ∈ ∂E(t) . (2.7b)

Here, T : E(t)×R+
0 → R3×3 denotes the non-Newtonian stress which acts as Lagrange

multiplier to the rigidity constraint in (2.7a). It can be expressed as symmetric gradient
field of the three-dimensional unknown λ : E(t)×R+

0 → R3, i.e., T = T[λ] = ∇λ+∇λT
[99]. Given the solution c,R and u of (2.6), we use (2.2) as well as Lemma A.55 which
simplifies (2.7) to a boundary value problem for T, resp. λ:

ρp

((
d2

dt2
R

)
· RT · (x− c) +

d

dt
v

)
= ∇ · T[λ]T + ρpgeg , x ∈ E(t) , (2.8a)

T[λ] · n = S[u] · n , x ∈ ∂E(t) . (2.8b)

Remark 1. There are other possibilities of an extension of stresses and velocities
to the particle domain. One is to consider E as a part of the fluid domain and use
singularity solutions which express the Stokes solutions by means of the Oseen-Burgers
tensor (Green’s dyadic) [72]. Solutions of this kind have the disadvantage of not being
bounded in the neighborhood of the origin, which is an important requirement in our
modeling as we will see in Section 3. Alternatively, one could also think of a continuous
extension of the Dirichlet conditions (2.6b) to E and model the stresses as Newtonian.
This leads to a discontinuity in the stresses at the particle boundary which contradicts
the desire for at least a continuous macroscopic stress on Ω.

2.2.5 Dimensionless formulation

In order to analyze the problem we introduce characteristic scales of the system and
derive the dimensionless formulation of the problem. In order to keep a simple notation
we do not distinguish between the physical quantities equipped with units and non-
dimensionalized functions which will be used from here on. We model a small freely
moving particle in an ambient fluid. Therefore, we assume that the particle and fluid
motion take place on the same time and space scale, whereas the size of the particle
domain is much smaller than that of the fluid domain. Hence, we set x, y as the
characteristic lengths of the fluid and the particle assuming that their ratio fulfills
ε = y/x� 1. This way, the rigid body motion (2.1) and its inverse become

x(y, t; ε) = εR(t) · y + c(t) , (2.9a)

y(x, t; ε) = ε−1RT (t) · (x− c(t)) . (2.9b)

This also implies that the time-dependent particle domain is ε-dependent, which we
emphasize by the corresponding subscript, i.e., Eε(t) = x(E , t; ε) with the reference
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particle domain E being independent of ε. In particular, the volume fulfills |Eε(t)| =
ε3|E|. Consistently also the fluid domain containing the small particle is denoted by
Ωε(t) = Ω \ E ε(t) with ε-independent domain Ω.

Using u as the characteristic velocity of both, particle and fluid motion and t = x/u
as characteristic time, we introduce the dimensionless quantities which characterize the
system. The Reynolds number which describes the ratio of inertial and viscous forces
of the fluid is given as Re = ρfux/µf . The Froude number describing the ratio of
inertial and gravitational effects is set as Fr = u/

√
xg. Finally, we scale the pressure

by p = uµf/x and arrive at the dimensionless system

Re Dtu = ∇ · S[u]T + Re Fr−2 eg , ∇ · u = 0 , x ∈ Ωε , (2.10a)

u = ω × (x− c) + v , x ∈ ∂Eε , (2.10b)

d

dt
c = v ,

d

dt
R = B(ω) · R , (2.10c)

ρεRe |E| d
dt
v =

∫
∂E

S[u] · R · n ds+ ρεRe Fr−2 |E|eg , (2.10d)

ρε2 Re |E| d
dt

(J · ω) = R ·
∫
∂E
y ×

(
RT · S[u] · R · n

)
ds . (2.10e)

The density ratio of particle and fluid is given by ρ = ρp/ρf . In contrast to Section 2.2.2
and 2.2.3, the Newtonian stress tensor is given here and in the following by S[u] = −pI+
∇u+∇uT . The inertia tensor is given analogously to (2.5). The functions appearing
in model (2.10) are assumed being smooth on their respective domains of definition,
which allows to use Taylor expansions in order to construct approximations to the
complete system. We note that the integrals in (2.10d) and (2.10e) are transformed to
the reference domain E , this implies that the Newtonian stress tensor is evaluated at
x = x(y, t; ε) with y ∈ E .

In order to formulate also the boundary value problem for the stress in the particle
domain (2.8) in dimensionless form, we scale the non-Newtonian stress tensor analo-
gously to the pressure by T = µfu/x. Setting T(x, t) = R(t) · T̃(y(x, t; ε), t) · RT (t)
and transforming the equations onto the reference domain E the system (2.8) becomes

ρRe

(
d2

dt2
(εR(t) · y + c(t))− Fr−2 eg

)
= ε−1R(t) · ∇ · T̃T

(y, t) , y ∈ E , (2.11a)

RT (t) · S[u](x(y, t; ε), t) · R(t) · n = T̃(y, t) · n , y ∈ ∂E . (2.11b)

2.3 Asymptotic approaches

In this section we use formal asymptotic expansions to derive an approximation of the
solution to the system (2.10). We generalize the asymptotic approach of [71] by taking
into account particle inertia. In order to do this, we first introduce a classification of
inertial regimes considered in this work.

2.3.1 Tracer particles of different inertial type

As we will state in Lemma 4, our asymptotic approach results in particles which mainly
follow the streamlines of the surrounding fluid. Hence, we refer to them as “tracer
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αρ(ε) = εr Name of type Behavior of density ratio

r ≥ 1 light weighted tracer particles ρε → 0

r = 0 normal tracer particles ρε ≡ const

r = −1 heavy tracer particles ρε →∞

Table 2.1.: Classification of inertial types by means of the density scaling function for
ε→ 0, cf. (2.12).

particles” (TP). To distinguish between different types of inertial regimes, we introduce
an ε-dependent density scaling function αρ(ε) and consider an ε-dependent density ratio
ρε given by

ρε = αρ(ε)ρ . (2.12)

The freely selectable density scaling function has no physical meaning, but allows
to balance the inertial terms in the particle momentum balance in different ways by
replacing the actual density ratio in (2.10) and (2.11) with ρε. This yields several
models of inertial particles. In particular, we set αρ(ε) = εr, r ∈ Z, and define three
inertial regimes with respect to the behavior of the density ratio in the limit ε → 0,
i.e., heavy (r = −1), normal (r = 0) and light weighted (r ≥ 1) tracer particles, see
Table 2.1. For r = 0 the density ratio satisfies ρε ≡ const leading to the inertia-free
particle model that was investigated in [71]. The cases r ≤ −2 are not covered by the
asymptotic simplification as we will comment on in Remark 7.

2.3.2 Asymptotic expansion

We assume that under the considered inertia types the particle influences the carrier
flow locally but not globally. This way we follow [71] and make the following assump-
tions.

Assumption 2 (Particle-fluid interaction).

1) The fluid is essentially undisturbed by the particle.

2) The fluid motion induces a rotation of the particle of O(1).

3) The particle is far away from the boundary of the fluid domain ∂Ω.

In particular, Assumption 2 implies that the fluid velocity, pressure, and the particle
motion described by (2.10) raise from an undisturbed Navier-Stokes problem on the
complete domain Ω whose velocity and pressure, (u0, p0) : Ω×R+

0 → R3×R are given
by

Re Dtu0 = ∇ · S[u0]T + Re Fr−2 eg , ∇ · u0 = 0 (2.13)

for (x, t) ∈ Ω×R+ with prescribed initial and boundary conditions. The initial as well
as the boundary conditions on ∂Eε(t) of u are then derived from u0 and it holds u = u0

on ∂Ω. The relation of the disturbed to the undisturbed problem is investigated in the
following asymptotic analysis.
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For the quantities of the particle we take a regular expansion in powers of ε, while
the fields of the fluid flow are separated in a global and a local part:

a =
∞∑
i=0

εiai for a ∈ {c,v,ω,R} , u = u0 + R · uloc , p = p0 + ploc .

The local fields of the fluid quantities are expressed in the local coordinates of the
particle reference state

uloc(x, t; ε) =
∞∑
i=1

εiuloc,i(y(x, t; ε), t) , ploc(x, t; ε) =
∞∑
i=1

εi−1ploc,i(y(x, t; ε), t) .

The scaling is chosen in such a way that the gradient of the pressure balances the
Laplacian of the velocity. It is a consequence of the fact that the bijective mapping
between the reference and time-dependent state is ε-dependent, see (2.9b). (This way
the chain rule generates a factor of ε−1 every time uloc is being differentiated with
respect to x or t.)

In order to derive an asymptotic system for the description of the non-Newtonian
stresses in the particle domain described by (2.11), we set T̃ similar to the fluid quan-
tities as a composition of the Newtonian stress of u0 and some disturbance,

T̃(y, t; ε) = RT (t) · S[u0](x(y, t; ε), t) · R(t) + Tloc(y, t; ε) . (2.14)

The asymptotic expansion of Tloc is then chosen analogously to the local pressure ploc.

2.3.3 Asymptotic analysis

Our goal is to formulate a solution of the complete system (2.10) up to an error of
O(ε). Therefore, we consider only a finite number of asymptotic coefficients in the
expansions. To address them we set

ae =
2∑
i=0

εiai for a ∈ {c,v} , ae =
1∑
i=0

εiai for a ∈ {ω,R} , (2.15a)

ue = u0 + Re
2∑
i=1

εiuloc,i , pe = p0 +
2∑
i=1

εi−1ploc,i . (2.15b)

Inserting the truncated expansion into (2.9) yields the following form of the bijective
mapping between the reference and the time-dependent state:

xe(y, t; ε) = εRe(t; ε) · y + ce(t; ε) , ye(x, t; ε) = ε−1 (Re(t; ε))−1 · (x− ce(t; ε)) .

It is shown in ([71], Lemma 5) that (Re)−1 = (Re)T + O(ε2) and ‖ (Re)−1 ‖ = O(1),
thus ye is well-defined. The asymptotic coefficients of the mapping xe are particularly
given by

xe(y, t; ε) =
2∑
i=0

εixi(y, t) ,
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with x0(y, t) ≡ c0(t), xi(y, t) = Ri−1(t) · y + ci(t) , i = 1, 2 .

Moreover, in the following we use Taylor expansions for smooth functions of the form
f(x(y, t; ε)) in c0, i.e.,

f(x) = f(c0) +
[(
εx1 + ε2x2

)
· ∇
]
f(c0)

+ 0.5
[(
εx1 + ε2x2

)
⊗
(
εx1 + ε2x2

)
: ∇2

]
f(c0) +O(ε3)

=
2∑
i=0

εiDif(c0) +O(ε3) ,

with the differential operators Di = Di(y, t) determined as

D0 ≡ 1 , D1 = x1 · ∇ , D2 = x2 · ∇+ 0.5x1 ⊗ x1 : ∇2 .

To emphasize the general structure of the asymptotic result in the subsequent lemma
and to stress the relevance of certain terms which appear in a similar way in the
context of suspension modeling in Section 3.3.2 we introduce abbreviations for some
expressions.

Abbreviation 3. Throughout this chapter we consider the following model-relevant
functions for αρ(ε) = εr, r ≥ −1, they describe Dirichlet conditions hi, force contribu-
tions fi and torque contributions gi:

h1 = RT
0 · (v1 +B(ω0) · R0 · y −D1u0) ,

h2 = RT
0 · (v2 + (B(ω0) · R1 +B(ω1) · R0) · y −D2u0 − R1 · uloc,1) ,

f1 =

{
0, r ≥ 0

k0, r = −1
,

f2 = −RT
0 · R1 · f1 − |E|RT

0 · ∇ · S[u0]T +


0, r ≥ 1

k0, r = 0

k1, r = −1

,

g1 = 0, r ≥ −1 ,

g2 = −RT
0 · R1 · g1 −

∫
∂E
y ×

(
RT

0 ·D1S[u0] · R0 · n
)

ds+

{
0, r ≥ 0

`0, r = −1
,

where the linear and angular accelerations, ki resp. `0 are abbreviated by

k0 = ρ|E|RT
0 · ∇ · S[u0], k1 = ρRe |E|RT

0 ·
d

dt
v1 ,

`0 = ρRe |E|RT
0 ·

d

dt

(
R0 · Ĵ · RT

0 · ω0

)
.

The derivatives of the global flow u0 and the Newtonian stresses are evaluated in c0.

Lemma 4 (Asymptotic one-particle model). Assume that the following four require-
ments (R1)-(R4) hold, then ue, pe, ce, ve, ωe, and Re defined in (2.15) are a solution
of the complete system (2.10) up to an order of O(ε) for ε ↓ 0.

14



(R1) The global flow velocity u0 and pressure p0 are smooth solutions of the incom-
pressible Navier-Stokes equations (2.13) with prescribed boundary conditions on
∂Ω and a sufficiently smooth initial condition u0(., 0).

(R2) The particle related coefficients satisfy the following set of conditions: The center
of mass obeys

d

dt
ci(t) = vi(t) , i = 0, 1, 2 (2.16a)

with the initial conditions c0(0) = c(0), ci(0) = 0, i = 1, 2 and with the zero-order
velocity fulfilling the so-called “tracer condition”

v0(t) = u0(c0(t), t) . (2.16b)

Additionally, the matrices R0, R1 solve the differential equations

d

dt
R0 = B(ω0) · R0 ,

d

dt
R1 = B(ω1) · R0 +B(ω0) · R1 (2.16c)

with the initial conditions R0(0) = R(0) and R1(0) = 0.

(R3) For every t > 0 the local fields indicated by i = 1, 2 solve the stationary Stokes
equations on the unbounded exterior of E

∇ploc,i = ∆uloc,i , ∇ · uloc,i = 0 (2.17a)

with the following Dirichlet, integral and decay conditions

uloc,i(y, t) = hi(y, t) , y ∈ ∂E , (2.17b)∫
∂E

S[uloc,i] · n ds = fi , (2.17c)∫
∂E
y × (S[uloc,i] · n) ds = gi , (2.17d)

‖uloc,i‖ ∈ O(‖y‖−1) , ‖∇uloc,i‖, |ploc,i| ∈ O(‖y‖−2) as ‖y‖ → ∞ . (2.17e)

The functions hi, fi, and gi are given in Abbreviation 3.

(R4) The density scaling function (2.12) is given as αρ(ε) = εr with r ≥ −1.

Proof. The proof results from a straight forward computation where the asymptotic
coefficients are inserted into the full system (2.10) and Taylor expansions are applied for
the global flow fields, whenever they are evaluated at the particle boundary as carried
out in [71] for normal tracer particles. The introduction of the different inertial types
does not change the general mathematical structure of the problem but only affects
the linear and angular momentum balances of the particle, i.e., the functions fi, gi in
(R3). We sketch the steps of the proof for the sake of completeness.

Inserting the asymptotic expansions for c, v, ω and R in (2.10c) and applying (2.16a),
(2.16c) shows that the particle kinematics (2.10c) is fulfilled up to an order of O(ε2).

The conservation of mass in (2.10a) is fulfilled exactly since each local velocity field
is assumed to be divergence-free.
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Considering the no-slip equation (2.10b), the use of the asymptotic expansions and
the Taylor series of u0 in c0 results in the following conditions that are exactly the
Dirichlet conditions of uloc,i (2.17b) and the tracer condition (2.16b),

u0(c0(t), t) = v0 ,

R0 · uloc,1(y, t) = v1 +B(ω0) · R0 · y −D1u0(c0(t), t) ,

R0 · uloc,2(y, t) = v2 + (B(ω0) · R1 +B(ω1) · R0) · y −D2u0(c0(t), t)− R1 · uloc,1(y, t) .

Inserting the asymptotic expansion in the momentum equation of the fluid and ap-
plying the chain rule for the local fields yields

Re(∂tu0 + (u0 · ∇)u0)−∇ · S[u0]T − Re Fr−2 eg

= Re · ∇ ·
(
ε−1S[uloc,1]T + S[uloc,2]T

)
+O(ε) .

Since u0 satisfies the Navier-Stokes equations and the local fields satisfy the stationary
Stokes equations according to (R1) and (R3), the momentum balance holds up to an
error of O(ε).

As for the momentum balances of the particle, we insert the asymptotic expansion
on both sides of the equations. On the right-hand side we use a Taylor series for the
term S[u0] in c0 and keep the integrals for the local fields, this leads to

ρRe |E|εr+1RT
0 ·
(

d

dt
v0 −

1

Fr2eg + ε
d

dt
v1

)
(2.18a)

=

∫
∂E

S[uloc,1] · n ds+ ε

∫
∂E

(
RT

0 ·D1S[u0] · R0 + RT
0 · R1 · S[uloc,1] + S[uloc,2]

)
· n ds

for the linear momentum and

ρRe |E|εr+2RT
0 ·
( d

dt

(
R0 · Ĵ · RT

0 · ω0

)
+ ε

d

dt

(
R0 · Ĵ · RT

0 · ω1 +
(

R0 · Ĵ · RT
1 + R1 · Ĵ · RT

0

)
· ω0

))
=

∫
∂E
y × S[uloc,1] · n ds+ ε

(∫
∂E
y ×

(
RT

0 ·D1S[u0] · R0 + S[uloc,2]
)
· n ds

+ RT
0 · R1 ·

∫
∂E
y ×

(
S[uloc,1] · n

)
ds
)

(2.18b)

for the angular momentum. In combination with the tracer condition (2.16b) and
the Navier-Stokes equations (2.13), these form exactly the integral conditions (2.17c)
and (2.17d).

The requirement (R4) is needed to avoid contradictory conditions as we explain in
Remark 7.

In Lemma 4 we assume that (R3) is fulfilled despite the fact that the problem seems
to be overdetermined at first glance by the presence of Dirichlet as well as integral
conditions on ∂E . In fact, Remark B.9 in Appendix B.2 shows that there is a one-
to-one relation between the forces and torques fi, gi and the velocity at the particle
boundary hi. This relationship yields a system of ordinary differential equations for
the asymptotic coefficients of the particle position and orientation as we will comment
on in Remark 6. The coupling is given by the following Lemma.
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Lemma 5 (Solvability conditions of Stokes problem). Let wq, pq, q = 1, . . . , 6, be
the solutions of the following six stationary Stokes problems related to the boundary
conditions of the three elementary translations and rotations:

∇ · S[wq]
T = 0 , ∇ ·wq = 0 , q = 1, . . . , 6 , y ∈ R3 \ E ,
wq = eq , wq+3 = Bq · y , q = 1, 2, 3 , y ∈ ∂E ,

‖wq‖ ∈ O(‖y‖−1) , ‖∇wq‖, |pq| ∈ O(‖y‖−2) , ‖y‖ → ∞ , (2.19)

with {Bq}q denoting the basis of skew-symmetric matrices in R3×3 given in (A.8b) in
App. A.2. Set the following surface moments associated with wq, q = 1, . . . , 6 to be

sq =

∫
∂E
y × (S[wq] · n) ds , tq =

∫
∂E

(S[wq] · n) ds ,

Vq =

∫
∂E
y ⊗ (S[wq] · n) ds , Wq =

∫
∂E
y ⊗ y ⊗ (S[wq] · n) ds .

1) Let (R3) of Lemma 4 be fulfilled, then the following solvability conditions hold:(
sq
tq

)
·
(

RT
0 · ω0

RT
0 · v1

)
(2.20a)

=
(
RT

0 · ∂xuT0 · R0

)
: Vq +

(
RT

0 · ∂xu0 · c1

)
· tq +

{
eq · f1 q = 1, 2, 3

eq−3 · g1/
√

2 q = 4, 5, 6
,(

sq
tq

)
·
(

RT
0 · ω1

RT
0 · v2

)
(2.20b)

=
(

RT
1 ·
(
B(ω0) + ∂xu

T
0

)
· R0 − RT

0 ·
(
B(ω0) + ∂xu

T
0

)
· R0 · RT

1 · R0 + L
)

: Vq

+
(

RT
0 ·
(

R1 · RT
0 ·
(
v1 − ∂xu0 · c1

)
+ 0.5[c1 ⊗ c1 : ∇2]u0 + ∂xu0 · c2

))
· tq

+
∑
k,`,m

Kk`m(Wq)k`m +

{
eq · f2 q = 1, 2, 3

eq−3 · g2/
√

2 q = 4, 5, 6

with (R0)ij = ei ·pj, (L)ij = [pi⊗c1 : ∇2](u0 ·pj) and with the third order tensor
Kk`m = 0.5[pk ⊗ p` : ∇2](u0 · pm).

2) Let (2.20) hold. Let (uloc,i, ploc,i) be the solution of the stationary Stokes problem
(2.17a) with the Dirichlet condition (2.17b) and with the decay property (2.17e),
then the integral conditions (2.17c) and (2.17d) are fulfilled.

3) Let (2.20) hold. Let (uloc,i, ploc,i) be the solution of the stationary Stokes prob-
lem (2.17a) with the integral conditions (2.17c) and (2.17d) and with the decay
property (2.17e), then the Dirichlet condition (2.17b) is fulfilled.

4) The linear systems (2.20) are invertible.

Proof. The key ingredient for this proof is the existence of the Green formula for
solutions of the Stokes problem, Lemma B.1, Appendix B.1 which connects the stresses
and boundary conditions of two Stokes solutions and needs the decay properties (2.17e)
as well as those in (2.19).
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For 1): The equations (2.17c) and (2.17d) are equivalent to

eq · fi = eq ·
∫
∂E

S[uloc,i] · n ds =

∫
∂E
wq · (S[uloc,i] · n) ds , (2.21a)

eq · gi = eq ·
∫
∂E
B(y) · S[uloc,i] · n ds =

∫
∂E

(
B(y)T · eq

)
· (S[uloc,i] · n) ds

=

∫
∂E

(eq × y) · (S[uloc,i] · n) ds =
√

2

∫
∂E
wq+3 · (S[uloc,i] · n) ds (2.21b)

for q = 1, 2, 3. With the help of the Green formula the roles of wq and uloc,i in the
right-hand sides of (2.21) can be interchanged. Thus, relations (2.21) are equivalent to

eq · fi =

∫
∂E
hi · S[wq] · n ds ,

1√
2
eq · gi =

∫
∂E
hi · S[wq+3] · n ds (2.22)

for q = 1, 2, 3. We note that for i = 1, 2 the terms hi of Abbreviation 3 have the form

hi = RT
0 · vi + RT

0 ·B(ωi−1) · R0 · y − ri = RT
0 · vi +B(RT

0 · ωi−1) · y − ri ,

where we used (A.10c), and abbreviated r1 = RT
0 · D1u0 as well as r2 = RT

0 ·
(

R1 ·

uloc,1 +D2u0−B(ω0) ·R1 ·y
)

. Inserting hi and sorting the resultant terms with respect

to ωi−1 and vi leads to

(
RT

0 · ωi−1

)
· sq +

(
RT

0 · vi
)
· tq =

∫
∂E
ri · S[wq] · n ds+

{
eq · fi q = 1, 2, 3

eq−3 · gi/
√

2 q = 4, 5, 6
,

(2.23)

which directly results in (2.20).
For 2): We consider the relation (2.20) which is equivalent to (2.23) and thus to (2.22)

since hi is the Dirichlet condition of uloc,i by assumption. Applying the Green formula
we then get (2.21), which are exactly the integral conditions.

For 3): As already shown (2.20) is equivalent to (2.22). The assumption that the
integral conditions are fulfilled is equivalent to (2.21). Combining both results gives
the equalities ∫

∂E
wq · (S[uloc,i] · n) ds =

∫
∂E
hi · S[wq] · n ds ,∫

∂E
wq+3 · (S[uloc,i] · n) ds =

∫
∂E
hi · S[wq+3] · n ds .

Since uloc,i and wq fulfill the decay property the above equations imply uloc,i = hi on
∂E by means of the Green formula.

For 4): Considering the matrix given as Mij = (ti, si)j, i, j = 1, . . . , 6 we immediately
find

M =
ˆ̃
A ·
[

I √
2I

]
with

ˆ̃
A being a negative definite matrix as shown in Remark B.9 in Appendix B.2. This

implies linear independence of the six vectors (tq, sq), q = 1, . . . , 6, thus the system
(2.20) is invertible for all right-hand sides.

18



`\r −3 −2 −1 0 1
−2 k0 = 0
−1 k1 = 0 k0 = 0
0 k2 = mv

1 k1 = mv
1 k0 = mv

1 0 = mv
1 0 = mv

1

1 k3 = mv
2 k2 = mv

2 k1 = mv
2 k0 = mv

2 0 = mv
2

`\r −3 −2 −1 0 1
−1 `0 = 0
0 `1 = mω

1 `0 = mω
1 0 = mω

1 0 = mω
1 0 = mω

1

1 `2 = mω
2 `1 = mω

2 `0 = mω
2 0 = mω

2 0 = mω
2

Table 2.2.: Balances of the accelerations with the integral terms (given in Remark 7)
in (2.24) for the different inertial regimes. Each row shows the O(ε`)-
correction of the momentum equations and each column corresponds to
the choice of the density scaling function αρ(ε) = εr.

Remark 6.

1) The solvability conditions (2.20) together with the particle related equations (2.16)
build a system of nonlinear ordinary differential equations (ODEs) for ci and
Ri−1, i = 1, 2, where the ODE for the ith asymptotic coefficient depends on lower
order coefficients, while the surface moments depend only on the geometry of
the particle. The order of the corresponding ODEs depends on the choice of the
density scaling function αρ. In the case αρ(ε) = ε−2, for example, f1 depends
on dv1/dt and thus the ODE (2.16a) together with (2.20a) becomes second order
for c1 with an additional initial condition v1(0) = 0. However, under suitable
regularity assumptions on u0, the corresponding right-hand sides of the ODE
systems are at least continuous and thus at least local solutions exist by Theorem
of Peano.

2) Solving the solvability conditions of the Stokes problems (2.20) determines the
Dirichlet conditions (2.17b). However, it is not our aim to examine the existence,
uniqueness and regularity of the Stokes solutions given by (2.17b), (2.17e) in
general. Instead, we discuss a very important special case in Section 2.4 where
analytical solutions are available.

3) Just like in [71], Lemma 4 and 5 imply a procedure for constructing a O(ε)-appro-
ximation to the solution of (2.10): First, the Navier-Stokes equations (2.13) are
solved to get u0 and p0, then the path c0 of the particle is obtained from the tracer
condition (2.16b). The solution of the solvability conditions (2.20a) together with
the corresponding differential equations (2.16) for i = 1 provides the coefficients
c1, v1 and ω0, R0 that define the Dirichlet condition (2.17b). The stationary
Stokes problem (2.17) for i = 1 is solved. Finally, the last two steps are repeated
to get uloc,2 which completes the procedure.
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Remark 7 (Density ratio scaling). We want to point out the effect of the density ratio
scaling introduced in (2.12). The momentum balances of the particle (2.18) can be
written as

εr+1

∞∑
i=0

εiki =
∞∑
i=0

εimv
i+1 , εr+2

∞∑
i=0

εi`i =
∞∑
i=0

εimω
i+1 , (2.24)

where ki and `i denote the linear and angular accelerations of the particle (see Abbre-
viation 3) and mv

i+1,m
ω
i+1 describe the corresponding integral terms appearing on the

right-hand sides of (2.18a) and (2.18b). The integral terms connect the accelerations
to the Dirichlet conditions of the corresponding local flow fields via the solvability con-
ditions (2.20); see Table 2.2 for the effect of the density ratio scaling. Since the tracer
condition (2.16b) arises from the Dirichlet condition on the particle boundary, it is in-
dependent of the density scaling function αρ. This implies that for r ≤ −2 the particle
momentum balance yields the condition ∇ · S[u0] = 0 (see Table 2.2) in contradiction
to the claim, u0 solving the Navier-Stokes equations in Ω, corresponding to (R1) of
Lemma 4. This fact indicates that in this regime Assumption 2, 1) does not hold any-
more, since the inertial effects of the particle are too strong and the perturbation of the
surrounding fluid is of the same order as u0. Thus, consistent with the asymptotic,
we restrict our classification of inertial types in Table 2.1 and throughout this work to
r ≥ −1.

Finally, we also formulate a result for the non-Newtonian stresses in the particle
domain given in (2.11). Analogously to the case of the fluid quantities we use a Taylor
series in c0 for the Newtonian part in (2.14), i.e., for S[u0](x(y, t; ε), t). The truncated
expansion then reads as

T̃
e

= Tloc,1 + RT
0 · S[u0] · R0

+ ε
(
Tloc,2 + RT

0 ·D1S[u0] · R0 + RT
1 · S[u0] · R0 + RT

0 · S[u0] · R1

)
and we formulate the asymptotic model for the stresses in the following Lemma 8.

Lemma 8 (Asymptotic model of stresses in particle domain). Let the requirements
of Lemma 4 be fulfilled. Let Tloc,i = ∇λloc,i +∇λTloc,i, i = 1, 2 be the solutions of the
following boundary value problems for t > 0

∇ · TT
loc,i = f̂i , y ∈ E , (2.25a)

Tloc,i · n = S[uloc,i] · n , y ∈ ∂E , (2.25b)

where the force terms are given by

f̂1 =

{
0 , r ≥ 0

|E|−1k0 , r = −1
,

f̂2 = −RT
0 · ∇ · S[u0]T − RT

0 · R1 · f̂1 +


0 , r ≥ 1

|E|−1k0 , r = 0

ρRe RT
0 ·
(

d
dt
v1 + d2

dt2
R0 · y

)
, r = −1

.

Then T̃
e
, Re, ce solve the system (2.11) at least up to an error of O(ε).
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Proof. Similarly to the proof of Lemma 4, the approximation order follows from a
straight forward computation.

Inserting T̃
e

on the left side of (2.11b), using the expansion described in the proof
of Lemma 4 for S[u] on the right-hand side and taking (2.25b) into account yields
that (2.11b) holds up to O(ε2).

When taking the divergence of T̃
e

with respect to y, the terms of the form Ri ·S[u0] ·
Rj vanish, since the Newtonian stresses are evaluated at c0. With the asymptotic
expansions of R and c (2.11a) is fulfilled up to O(ε) provided that (2.25a) holds.

Remark 9 (Local velocity fields and forces in particle domain).

1) By construction, the stress T induces a rigid body velocity ṽ = ε(dR/dt) · y + v
in E, while its approximation Te = Re · T̃e · ReT results in the approximation of
ṽ, namely

ṽe = v0 + ε

(
d

dt
R0 · y + v1

)
+ ε2

(
d

dt
R1 · y + v2

)
, y ∈ E .

Since the functions vi and Ri do not depend on y, we can rewrite ṽe as

ṽe = u0(x(y, t, ε), t) + εRe(h1(y, t) + εh2(y, t)) +O(ε3)

using Abbreviation 3, where hi(y, t) is the continuous extension of the Dirichlet
conditions of uloc,i from Lemma 4 to E. This way we can extend the local distur-
bance velocity fields to E by setting uloc,i = hi. The so defined velocity is bounded
by the assumptions of Lemma 4.

2) The force terms f̂i are not equal to fi of Abbreviation 3, but
∫
E f̂idy = fi holds

true consistent with (2.25b).

2.3.4 Alternative asymptotic expansion

There exist also other asymptotic reductions of the coupled particle-fluid problem (2.10).
In [41] steady ambient flows are considered, for which analytical results for the overall
torque on the particle exist, see, e.g., [70, 72]. Einarsson et al. [41] apply an asymp-
totic expansion in the Stokes number St on the angular particle velocity and insert the
corresponding expressions into (2.10e). The Stokes number denotes the ratio of the
particle relaxation time (which is proportional to the particle mass divided by its typi-
cal length and the fluid dynamic viscosity, in case of small particles) with respect to the
fluid relaxation time (proportional to the typical fluid velocity gradient rate, ‖∇u‖).
This results in an evolution equation for the particle orientation with Jeffery’s angular
velocity in leading order and a correction term of O(St). The linear particle motion is
neglected since stationary linear ambient flows are treated. Although this is a rather
different approach, we can easily adapt the idea to our framework by expanding the
linear and angular velocities according to (2.15a), without using an ε-expansion for the
center of mass c and the rotation R. Performing the asymptotic analysis analogously
to Section 2.3.3 we arrive at the ε-dependent equations for the particle motion

d

dt
c = v0 + εv1 + ε2v2 ,

d

dt
R = B(ω0) · R + εB(ω1) · R , (2.26)
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which replace the equations for the particle center of mass (2.16a) and rotation (2.16c).
The leading order velocity, v0 is still given by the tracer condition v0(t) = u0(c(t), t).
The terms for Dirichlet and integral conditions of the local fields read similarly to
Abbreviation 3 as

h1 = RT · v1 +B(RT · ω0) · y − RT · ∂xu0 · R · y ,
h2 = RT · v2 +B(RT · ω1) · y − 0.5[R · y ⊗ R · y : ∇2]u0 ,

f1 =

{
0 , r ≥ 0

k0 , r = −1
, f2 = −|E|RT · ∇ · S[u0]T +


0 , r ≥ 1

k0 , r = 0

k1 , r = −1

,

g1 = 0 , g2 =

{
0 , r ≥ 0

`0 , r = −1
,

with the linear and angular accelerations

k0 = ρRe |E|RT ·
(

d

dt
v0 − Fr−2 eg

)
, k1 = ρRe |E|RT · d

dt
v1 ,

`0 = ρRe |E|RT · d

dt

(
R · Ĵ · RT · ω0

)
.

The compatibility conditions of Lemma 5 also formally simplify to(
sq
tq

)
·
(

RT · ωi−1

RT · vi

)
=

{(
RT · ∂xuT0 · R

)
: Vq , i = 1∑

k,`,mKk`m(Wq)k`m , i = 2
+

{
eq · fi , q = 1, 2, 3

eq−3 · gi/
√

2 , q = 4, 5, 6

for i = 1, 2.
There are, however, two major differences to the systems in Lemma 4. In the latter,

the differential equations are hierarchical, i.e., c0 is obtained from the tracer condition,
which determines the needed values of the carrier flow and its derivatives in the other
equations. Then R0 is obtained from the SO(3)-equation and so on. In contrast to
this, the system (2.26) is fully coupled in general. This is due to the fact that u0 is
evaluated at c which enters the equation for the rotation. Additionally, in the heavy
tracer particles regime the derivative of v1 enters the system, which behaves like dk0/dt
due to the linear dependence in the compatibility conditions. Thus, the equation for the
center of mass in (2.26) becomes second order. Additionally, since the second derivative
is scaled with ε2, the ODE for c changes its nature to a singularly perturbed problem.
This behavior can be avoided by using the initial expansion v = v0 +εv1 +ε2v2 +O(ε3)
and neglecting terms of higher order, since

ε2
d2

dt2
c = ε2Dtu0 +O(ε3) . (2.27)

2.4 Numerical study of asymptotic particle model for ellipsoidal
geometry

In this section we apply the asymptotic model for inertial particles given in Lemma 4
to the case of ellipsoidal particles. This shape has the property that it is simple
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enough, such that analytical solutions for the local velocity fields are available while
the geometry is sufficiently complex such that orientation plays an important role.
Moreover, it is often used as a supplemental model for more complicated objects such
as blood cells [37], rigid rods [30], or fibers [85]. Thus, various macroscopic models for
particle and fiber suspensions are based on the behavior of ellipsoids. Therefore, we
want to examine, how our asymptotic particle model behaves in this important case.

As explained in Remark 6 3), the particle behavior according to Lemma 4 is deter-
mined by solving the compatibility conditions of Lemma 5. In order to achieve this, we
have to calculate the surface moments appearing in (2.20); Appendix B.3 covers this
task. Here, we only present the relevant results.

2.4.1 General properties

An ellipsoid is given as E = DB1, where B1 denotes the unit ball in R3 and D is the
diagonal matrix carrying the lengths of the semi axes di > 0, i = 1, 2, 3, given as
D = diag(d1, d2, d3). The surface moments of Lemma 5 are given as

sq = 0 , sq+3 = ζq+3|E|(D2 − tr(D2)I) · eq , tq = 3ζq|E|eq , tq+3 = 0 ,

Vq = 0 , Vq+3 = ζq+3|E|D2 ·B(eq) , Wq = ζq|E|D2 ⊗ eq , Wq+3 = 0 ,

with the geometry dependent constants ζq, q = 1, 2, 3. The explicit expressions for ζq in
the general case are stated in Appendix B.3. From (2.20) we see that the structure of
the surface moments implies a decoupling of the conditions for the linear and angular
velocities. We are particularly interested in the case of prolate ellipsoids.

2.4.2 Prolate ellipsoids

For a prolate ellipsoid the lengths of the semi axes satisfy d1 > d2 = d3 > 0. It
is convenient to introduce the aspect ratio ar = d1/d2 > 1 and the parameter ν =
(a2
r − 1)(a2

r + 1)−1. The time-invariant inertia tensor reads as

Ĵ =
d2

2

5
diag(2 , a2

r + 1 , a2
r + 1) .

Furthermore, we set the vectors pi = R0 ·ei and qi = R1 ·ei associated with the rotation
and introduce the quantities

θ =
1

2ar(a2
r − 1)1/2

ln
ar + (a2

r − 1)1/2

ar − (a2
r − 1)1/2

, χo =
2arθ

d2

,

αo1 =
1

d1d2
2

2

a2
r − 1

(
a2
rθ − 1

)
, αo2 =

1

d1d2
2

a2
r

a2
r − 1

(−θ + 1) ,

Z = −12|E|(d1d
2
2)−1 diag(χo + d2

1α
o
1 , χ

o + d2
2α

o
2 , χ

o + d2
2α

o
2)−1 , (2.28a)

H = −4|E|(d1d
2
2)−1 diag(2d2

2α
o
2 , d

2
1α

o
1 + d2

2α
o
2 , d

2
1α

o
1 + d2

2α
o
2)−1 . (2.28b)

This way, we can express the velocities vi, i = 1, 2 of Lemma 5 as

v1 = ∂xu0 · c1 + R0 · Z−1 · f1 , (2.29a)
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v2 = ∂xu0 · c2 + R1 · Z−1 · f1 + 0.5[c1 ⊗ c1 : ∇2]u0 +
1

6
[R0 ·D2 · RT

0 : ∇2]u0

+ R0 · Z−1 · f2 , (2.29b)

and the angular velocities ω0,ω1 as

ω0 = 0.5∇× u0 + νp1 × E[u0] · p1 , (2.29c)

ω1 = ν (p1 × (E[u0] · q1)− (E[u0] · p1)× q1) + ω̃1 , (2.29d)

ω̃1 = 0.2R0 · Ĵ
−1
·H−1 · g2 − 0.5[c1 · ∇](p2 · (∂xu0 − ∂xuT0 ) · p3)p1

+ (a2
r + 1)−1p1 × (a2

r[p1 ⊗ c1 : ∇2]u0 − [c1 · ∇2](u0 · p1)) .

Remark 10 (Jeffery equation). The expression for ω0 in (2.29c) together with the
differential equation for the first director,

d

dt
p1 = ω0 × p1 ,

is often called Jeffery’s equation in remembrance of [70]. In the asymptotic context the
equation was derived for normal tracer ellipsoids in the work of Junk & Illner [71].

Remark 11 (Velocities of the alternative asymptotic approach). In the case of the
asymptotic expansion discussed in Section 2.3.4, ω0 is formally still the Jeffery angular
velocity while the other velocities are given as

v1 = R · Z−1 · f1 , v2 =
1

6
[
(
R ·D2 · RT

)
: ∇2]u0 + R · Z−1 · f2 ,

ω1 = 0.2R · Ĵ
−1
·H−1 · g2 ,

with u0 evaluated at c as pointed out in Section 2.3.4.

2.4.3 Numerics

To study the performance of the asymptotic micro-scale models and the impact of
weak inertia, we perform numerical simulations for rotational and translational particle
motions. We particularly focus on linear stationary carrier flows in an unbounded
domain Ω = R3, already revealing some important properties of the asymptotic models.
In general, u0(x) = A ·x+b solves the Navier-Stokes equations (2.13), if tr(A) = 0 and
A2 is symmetric. The pressure is then given as p0 = −0.5 Rex ·A2 · x+ Re Fr−2 h · x,
where h = eg − Fr2 A · b.

For the numerical treatment we introduce a convenient parametrization for the
particle-associated directors in (2.16c). Since R0 is an orthogonal matrix, we para-
metrize the SO(3)-group via the three Euler angles ψ : R+

0 → R3, see, e.g., [27, 51],
yielding

M1 ·
d

dt
ψ = ω(ψ) , M1 =

 0 − sin(ψ1) sin(ψ3) − cos(ψ1)
0 − cos(ψ1) sin(ψ3) sin(ψ1)
−1 − cos(ψ3) 0

 . (2.30)

As for the equation for R1 we use the fact that R1 · RT
0 is skew-symmetric [71]. Thus,

we apply (A.9) and consider τ : R+
0 → R3 given as τ = B−1(R1 · RT

0 ). By using

d

dt
B(τ ) = B(ω0) ·B(τ ) +B(ω1)−B(τ ) ·B(ω0) = B(ω0 × τ + ω1)
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we arrive at the evolution equation for τ , i.e.,

d

dt
τ =

(
B(ω0) + ν (B(E[u0] · p1) ·B(p1)−B(p1) · E[u0] ·B(p1))

)
· τ + ω̃1 , (2.31)

with τ (0) = 0.

Remark 12 (Equations associated with the alternative asymptotic expansion for
steady linear flows). A big disadvantage of the asymptotic approach introduced in Sec-
tion 2.3.4 is the coupling between the equations for the linear motion and the rotation.
In the special case of linear stationary flows, the derivatives of u0 do not depend on
the position. This implies that the rotation equation (2.26) becomes independent of the
evolution of c. In particular, the asymptotic angular velocities read as

ω0 = 0.5∇× u0 + νp1 × E[u0] · p1, ω1 = 0.2ρ|E|Re R · Ĵ
−1

H−1 · RT ·M2 ·
d

dt
p1 ,

M2 =

[
d2

2(1− a2
r)

5
((p1 · ω0)I + p1 ⊗ ω0) + νR0 · Ĵ · RT

0 · (B(p1) · E−B(E · p1))

]
,

where p1 = R · e1. Using the SO(3)-group parametrization (2.30), we obtain

M
d

dt
ψ = ω0, M = M1 − 0.2ερ|E|Re R · (Ĵ ·H)−1 · RT ·M2 ·M3 , (2.32)

where M3·dψ/dt = dp1/dt. For the linear motion, we introduce the following quantities

N1 = R · Z−1 · RT , N2 = B(ω) ·N1 −N1 ·B(ω)

with ω = ω0 + εω1, yielding the inertia-associated equations for the particle center of
mass c for the light-weighted (lTP), normal (nTP) and heavy (hTP) tracer particles

d

dt
c = u0 + ε2|E|N1 · ∇p0 , lTP, (2.33a)

d

dt
c = u0 + ε2|E|(1− ρ)N1 · ∇p0 (2.33b)

+ ε2ρRe |E|N1 · A ·
(

d

dt
c− u0

)
, nTP,

d

dt
c = u0 + ε2|E|N1 · ∇p0 (2.33c)

− ερRe |E|N1 · (I + ερRe |E|N2) · Fr−2 eg , hTP, if ερRe A = 0 .

Finally, for ερRe A 6= 0 in the heavy TP regime, the linear motion is given by the
singularly disturbed system

d

dt
c = v , (2.33d)

A · d

dt
v = −(ερRe |E|N1)−2 ·

(
u0 − v + ε|E|(ε− ρ)N1 · ∇p0

− (ερ|E|)2 Re N1 ·N2 · ∇p0 − ερRe |E|N1 · A · (u0 − v)

− (ερRe |E|)2N1 ·N2 · A · (u0 − v)
)
.
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Using the expression (2.26) and dropping terms of order O(ε3), we get the approximative
equations

d

dt
c = u0 + ε2|E|N1 · ∇p0 , lTP, (2.34a)

d

dt
c = u0 + ε2|E|(1− ρ)N1 · ∇p0 , nTP, (2.34b)

d

dt
c = u0 + ε|E|(ε− ρ)N1 · ∇p0 − (ερ|E|)2 Re N1 · (A ·N1 + N2) · ∇p0 (2.34c)

+ (ερRe |E|N1)2 · A2 · u0 , hTP

We integrate the resulting systems (2.16), (2.30), (2.31), respectively (2.32) and (2.33)
by the application of different quadrature rules: By using a trapezoidal rule for the
equations of the center of mass in the case of light-weighted and normal TP model we
preserve periodical trajectories in the case of a rotational ambient fluid flow studied
in the following. The equations associated with the rotation and the heavy TP model
are solved via the implicit Euler method. The solution of the corresponding nonlinear
equations is done by a Newton iteration. Since the ODEs related to the orthogonal
group (2.30) and (2.32) may involve a singular Jacobian, we apply the singular value
decomposition to solve a least-squares problem for the Newton update.

Rotational behavior We investigate the impact of the different inertia regimes on
the orientational behavior of the ellipsoid. Since for normal and light-weighted tracer
ellipsoids the source term in (2.31), ω̃1, vanishes, we have τ (t) ≡ 0 for all t ≥ 0. Thus,
the rotatory behavior is completely given by R0, which is characterized by the well-
known Jeffery’s angular velocity ω0, see [70]. For the case of heavy TP, we discuss our
asymptotic results with respect to the work [41]. For a comparable scaling, we note
that the Stokes number St and particle Reynolds number Rep used in [41] become∗

St = ρεε
2|E|Re = ερ|E|Re , Rep = arρ

−1
ε St = arε

2|E|Re .

For the simulations we choose a shear flow u0 = x2e1 and neglect gravity (Fr → ∞).
Additionally, we set c(0) = 0, which implies v0(t) ≡ v1(t) ≡ v2(t) ≡ 0. The other
parameters are exemplarily taken as Re = 10−2, d1 = 5, ε = 0.1, ρ = 0.25αY /(Re ε|E|),
where αY = 40πd1a

2
rY

C/(a2
r +1) with the “resistance function” Y C according to [72, p.

64]. Figure 2.2 shows that the first director of the ellipsoid moves to an orbit near to the
equator owing to the inertial particle effects – independent of the chosen asymptotic
approach. However, since in our framework R0 + εR1 is not an orthogonal matrix,
the impact of R1 grows tremendously with time as clearly seen in the error ‖de‖ − 1
in Fig. 2.2, revealing its role as a “secular term” [65]. Hence, the approximation
R ≈ R0 + εR1 is not valid for t of order t� ε−1. The alternative asymptotic expansion
discussed in Section 2.3.4 and Remark 12 overcomes this limitation and yields very
promising results in comparison to [41], see Fig. 2.3.

∗To link the parameters considered in this Section with those in [41], we scale the particle volume
by the length of the small semi-axis (thus d2 = 1), choose the typical flow-gradient rate as the
ratio of characteristic velocity with respect to the characteristic length x, and use the density
scaling (2.12).

†The Lambert azimuthal projection is defined as (X1, X2)(p) = (p1, p2)
√

2/(1 + p3), [41].

26



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

0 10.50-0.5-1 -1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

0 50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2.2.: Orientation of an ellipsoid in a shear flow. Top: 3d trajectory of de = p1 +
εq1 (blue) and Jeffery orbit (red, bold). Bottom, left: Lambert azimuthal
projection† of the orientation trajectory to the 2d plane. Orientation de

according to (2.16c) (blue, dotted), Jeffery orbit projection (red, solid),
orientation according to [41] (yellow, dashed), initial configuration (blue
dot), and the equator (black, thin). Bottom, right: Deviation of de from
the unit sphere w.r.t. time.
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Figure 2.3.: Left: Projected† trajectory of p1 according to (2.32) (blue, dashed) and
to [41] (red, solid) as well as the norm of the resulting angular velocities
(right).

Translational behavior To understand what happens for the translational particle
motion, we take gravity into account. We set eg = −e3 and consider a rotational flow
u0 = −x2e1 + x1e2. For the other parameters we exemplarily take Fr = 1, Re = 5,
ε = 0.1, d1 = 2, d2 = 1. We note that the light-weighted inertia regime is independent
of the density ratio ρ. Furthermore, since for ρ = 0 the accelerations k0,k1 vanish, the
normal and heavy TP behave the same way as the light-weighted ones. In this case,
the particle initially moves upwards and additionally to the center of the e1-e2-plane,
since it is subject to a buoyancy force and thus follows the negative pressure gradient
(Fig. 2.4). This behavior can be also observed for normal TP in the case ρ < 1. For ρ ≡
1, the particle moves at a periodical path according to u0. For ρ > 1, the gravity and
inertial drift being oriented to the outward in the e1-e2-plane dominate. For heavy TP
and ρ > 1, this effect strongly dominates over pressure and buoyancy. Therefore, the
overall behavior is qualitatively in agreement with the physical expectations. However,
also here the limitations on the time scale where the asymptotics is reasonable become
obvious. In the light-weighted TP-regime, the particle does not stay at the origin of the
e1-e2-plane, instead after some time the drift starts to dominate. This is a consequence
of the fact that the equation for the second order velocity is only dependent on c0, thus
the approximation ve ≈ v0 + εv1 + ε2v2 is dominated by the contribution of the secular
term for t� ε−1 (Fig. 2.5). Analogously to the rotational case, this shortcoming does
not appear in the particle motion corresponding to the alternative asymptotic approach
(Remark 12, Fig. 2.6).
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2.5 Conculsion

We dedicated the studies in this chapter to the extension of an asymptotic description
of the particle-fluid problem to the case of inertial particles. The underlying problem
is given by the incompressible Navier-Stokes equations in a bounded domain coupled
to the second order ordinary differential equations describing the momentum balances
of an arbitrarily shaped rigid body moving in the fluid. The characteristic length
scale of the particle is much smaller than that of the surrounding fluid flow, which
motivates the asymptotic expansion of the solution components in the size ratio ε
(ratio of particle size with respect to the characteristic length scale of the flow). The
underlying asymptotic analysis was presented in [71] for inertialess particles. In order
to take inertia into account, we introduced an appropriate asymptotic scaling of the
density ratio as summarized in Tab. 2.1 and derived an asymptotic approximation of
the full problem (Lemma 4, Lemma 5, Lemma 8) for ε→ 0 which retains the structure
of the original approximation given in [71] but accounts for small inertial effects.

The problem under consideration describes an incompressible Newtonian fluid con-
tained in a bounded domain with a small immersed rigid particle interacting with the
flow. Particle and fluid interact by hydrodynamic forces. As outer forces only gravity
is considered. In order to extend the asymptotic results for a macroscopic suspension
model in Sec. 3.4, we also consider a model which extends the viscous stresses onto
the particle domain in Sec. 2.2.4 as proposed by [99]. We reformulate both systems,
the particle-fluid system and the one describing the stresses on the particle domain, in
dimensionless form in Sec. 2.2.5 using the Reynolds number (defined with respect to
the fluid quantities), the Froude number, the density and size ratios ρ, ε. While the
size ratio is assumed small ε� 1, the density ratio is rescaled artificially in Sec. 2.3.1
by powers of ε in order to allow different asymptotic models. To be exact, we charac-
terize three inertial regimes (light-weighted, normal and heavy tracer particle regime).
Despite this modification, we keep the basic assumptions of [71] regarding the system
behavior. In particular, we still assume that due to the vanishing particle volume the
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fluid is essentially undisturbed by the particle. We also do not take boundary effects
into account. These assumptions allow the usage of the same asymptotic ansatz for
the solution components as in [71], namely a regular expansion in powers of ε for the
particle quantities and a splitting of the fluid quantities into a global and a local part.
The global part is assumed independent of ε, while the local one as being of O(ε)-
magnitude. Furthermore, the local contributions are expressed in terms of the local
particle coordinates and expanded in powers of ε.

The asymptotic approximation then follows by plugging the truncated expansions
into the full problems and deducing the needed balance laws for the expansion coef-
ficients. As for the particle-fluid problem (2.10), the resulting approximation is sum-
marized in Lemma 4 and Lemma 5. Here, the first order approximation consists of
stationary Stokes problems on the exterior of the particle domain which define the local
velocity and pressure contributions for the fluid, and which are coupled to an undis-
turbed incompressible Navier-Stokes problem on the bounded domain. The particle
motion is approximated by a tracer condition in the lowest order corrected by small
velocity contributions which strongly depend on the chosen density scaling. This influ-
ence is discussed in detail in Rem. 7. The corresponding asymptotic approximation for
the stresses in the particle domain (2.11) is stated in Lemma 8 and consists of a sta-
tionary boundary value problem depending on the approximation of (2.10) described
by Lemma 4.

As seen later in the numerical studies in Sec. 2.4, the investigated asymptotic expan-
sion can lead to secular terms which dominate the dynamic particle behavior, despite
being assumed as higher order corrections. Hence, we also investigate a modified
asymptotic expansion in Sec. 2.3.4, where the particle center of mass and orientation
are not expanded. This leads to a coupling in the approximation of the particle equa-
tions. Nonetheless, the central results formulated in Lemma 4, Lemma 5 and Lemma 8
hold with accordingly modified equations.

In Sec. 2.4 we examine both asymptotic approaches by applying them to the well-
studied case of ellipsoidal particles. In particular, we consider prolate ellipsoidal geom-
etry and investigate the influence of the prescribed inertial scaling on the translational
particle motion as well as on the dynamic orientation behavior. We recover the famous
Jeffery’s equation for the dynamical behavior of the principal axis of a prolate ellipsoid
for normal and light-weighted particles. In the case of heavy tracer ellipsoids, Jeffery’s
angular velocity is still present in the equations but is disturbed by the correction
terms. We observe meaningful physical behavior for both asymptotical approaches.
In particular, the translational particle motion behaves according to the prescribed
inertial regime, i.e., heavy particles are dominated by inertial drift, light-weighted par-
ticles show buoyant behavior and normal tracer particles with ρ ≡ 1 follow the fluid
streamlines. Considering the orientation behavior, the observations are consistent with
results from literature.

Despite the validity of the asymptotic results for the heavy particles regime as intro-
duced in Sec. 2.3.1, the particles are still tracer particles in leading order approximation
in both asymptotic expansion variants. Therefore, the asymptotic description is un-
able to depict true inertial behavior and recover particle equations of motion driven
by a drag force. If the corresponding assumption on the particle influence is dropped
(Assumption 2, 1)), the effect of particle presence on the surrounding fluid strongly de-
pends on the relative velocity and fluid viscosity, i.e., on the Reynolds number defined
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with respect to the relative velocity and the particle length scale. This not only im-
plies that the dimensionless formulation in Sec. 2.2.5 is no longer valid, but it also leads
to instationary local velocities already at moderate Reynolds numbers (e.g., Kármán
vortex streets at Re ' 80 for cylindrical objects [110]). This completely changes the
structure of the approximation compared to Lemma 4 and needs approaches tailored to
the chosen Reynolds number. The derived asymptotic model presented here therefore
lies between the inertialess motion of tracer particles and fully inertial movement of
particles driven by a Stokes drag. Another major drawback of the presented approaches
in this chapter is that the asymptotic scaling of the density ratio is artificial, thus, we
can not decide on the basis of a given set of physical parameters, which inertial regime
is suitable for the approximation of the corresponding scenario. Instead, the resulting
simulations must be compared to observations from experiments in order to decide,
which inertial regime is applicable. The already mentioned problem in the long-time
behavior of the asymptotic approximation which stems from the expansion of the par-
ticle center of mass and its rotation can be eliminated by the alternative asymptotic
expansion of Sec. 2.3.4 at the cost of more sophisticated coupling in the approximation.

The novelty of the presented work lies in the addition of small inertial effects in
asymptotic approaches for the coupled particle-fluid problem describing an immersed
rigid body in a surrounding incompressible Newtonian fluid. We introduced a concept
of asymptotic particle inertia which admits meaningful solutions in the framework
of [71]. We found that the asymptotic procedure proposed by [71], which is based on
asymptotic expansions in the size ratio ε and does neither demand the surrounding fluid
to be inertialess, nor to be located in an infinite domain, is indeed also applicable to the
case of particles with a density different to that of the surrounding fluid. Moreover, we
also showed that this procedure admits more complex models, inspired by [41], which
are capable of portraying the physical behavior of the particle on a larger time scale
by avoiding secular terms due to approximations in the particle center-of-mass and
rotation. This way we provide the foundation of a consistent asymptotic suspension
model in Section 3.

32



3 Modeling of suspension flows

3.1 Introduction

Fluids with small suspended particles or fibers play an important role in various fields
of natural sciences and engineering. Fiber-loaden flows, for example, are used to pro-
duce nonwoven materials or paper [54, 86, 88], red blood cells, plankton or ash are
transported in the corresponding media and domains [37, 57, 106]. Such problems
connect aspects of fluid mechanics, statistical physics and, depending on the particu-
lar application, further scientific fields as, e.g., electrodynamics or acoustics [1, 107].
One very important task associated with the analysis of suspensions is the modeling of
the particle influence on the surrounding carrier flow. This influence is dependent on
the particle size and mass, the inter-particle spacing and on the characteristics of the
flow. Considering a physical model, also the scale of interest is of crucial importance.
In general, the particles are initially distributed stochastically in the space domain,
they then interact with the fluid and each other being perturbed by fluctuations in a
turbulent flow. On smaller scales also thermodynamic effects introduce probabilistic
particle motions. On microscale where every particle has a significant size and thus an
important impact on the streamlines, a cut-out of the suspension domain is strongly
dominated by stochastic effects. On macroscale on the other hand, where the size of
the particles is small compared to the dimensions of the flow, the suspension may be de-
scribed as a homogeneous, non-Newtonian fluid. The model for the particle influence is
then given by an expression for the stresses, resp. forces which balance the momentum
equation for the homogeneous suspension velocity. The derivation of such models range
from imposing an ad hoc material model [18] to coupling a Fokker-Planck equation de-
duced from microscale properties with a fluid momentum balance equation [8]. The
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Figure 3.1.: (a) Fiber suspension flow in an air-lay process for nonwoven production.
(b) Sketch of meso-scale suspension model: small particles induce local
perturbations of the surrounding fluid. (c) Fluid and particle velocity
according to asymptotic micro-scale model. (d) Particle trajectory due to
inertia.
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latter methods account for the fluid micro-structure and try to derive the macroscopic
properties directly from the microscopic particle behavior as exemplarily sketched in
Fig. 3.1.

Einstein [42] formulated the macroscopic description of a dilute suspension of small
rigid spheres in a stationary Newtonian fluid as a change in viscosity of the carrier fluid.
He derived his results by first considering the motion of a single particle in a sufficiently
small region of the suspension domain, where the flow of the carrier fluid may be treated
as linear, and then solving the stationary Stokes equations for the disturbance flow.
The contribution of many particles then followed by a superposition of every single
disturbance velocity field. A mathematical proof of the increase in viscosity for the
case of a finite domain was presented in [58]. Jeffery used an analogous approach for
ellipsoidal inertia-free particles in [70]. These results were generalized by Batchelor in
[12]. Using ensemble averages, the latter presented a general framework for modeling
of stresses in a suspension of rigid particles in an incompressible Navier-Stokes flow. He
applied his theory to a dilute suspension of ellipsoidal inertia-free particles and derived
an analytical term for the particle-stresses in the macroscopic description by using
results of Jeffery. The study of non-dilute suspensions involves the modeling of the
interactions between particles as, e.g., in [11, 35, 46, 80]. Another general approach for
suspension modeling was presented in [126], where Cauchy’s stress principle was applied
to the suspension, reproducing classical results as well as showing additional effects
induced by spatial non-uniformities of the dispersed phase. The influence of particle
concentration was also considered in [103, 104]. Rigorous asymptotical homogenization
strategies for suspensions were used, for example, in [15, 17, 49].

We aim for the derivation of a model that approximates a suspension of small rigid
particles in a Newtonian incompressible fluid flow which interact only by hydrodynamic
forces and where no outer forces except of gravity are present. The model should be able
to take small inertial effects into account and describe both, the particle motion due to
the fluid and the effect of the particle presence onto the fluid dynamics. The derivation
is based on the asymptotic approach of [71] and on the procedure for the derivation
of mean field models due to [20, 53]. The final model then consists of the momentum
equation for the fluid coupled with a transport equation for the particle probability
on the respective phase space. The novelty of this work is the consideration of small
particle inertia in the macroscopic suspension description as well as the derivation of
the corresponding macroscopic model from a fully coupled deterministic particles-fluid
problem using an asymptotic expansion in the small size ratio parameter ε without
applying the ergodicity assumption for the particle dynamics in space.

This chapter is based mainly on [118, 119] and the preliminary master’s thesis [116].
It is structured as follows: we extend the mathematical model of a single particle
in an incompressible Newtonian fluid presented in Section 2.2 to the case of many
particles which interact only by hydrodynamic forces in Section 3.2 also discussing
the topic of concentration regimes in Section 3.2.2, subsequently in Section 3.3 we
introduce the asymptotic expansion which forms the foundation of the asymptotic and
kinetic models in this chapter. The asymptotic ansatz is given as an extension of the
one in Section 2.3 and leads to the Theorem 21 describing the suspension behavior
in Section 3.3.2 which is similar to the result (Lemma 4) of the one particle case
of Section 2.3.3. By analyzing the resulting asymptotic approximation we derive a
characterization of the particle phase which consists of a system of equations of motion
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for the particles whose velocities are algebraic functions of the leading order fluid
velocity. This observation gives raise to the derivation of a transport equation for the
particle probability on the corresponding phase space in Section 3.4.1, where also the
needed notation for the kinetic model is introduced. Then in Section 3.4.2, we finally
derive the kinetic model which encompasses the model due to Batchelor [12] as well
as the one derived in [119]. The main results are summarized in Theorems 36, 38, 40
and the connection to [119] is found in Corollary 42. Finally, we illustrate the results
by applying the models to special geometries in Section 3.5 and discuss the results in
Section 3.6.

3.2 Full-scale suspension model

In this section we extend the particle-fluid model presented in Sec. 2.2.5 to the case of N
particles suspended in the fluid stating the system of equations we aim to approximate.
We also discuss the topic of concentration regimes associated with suspensions in the
context of the asymptotic framework.

3.2.1 Model equations

Following the particle-fluid model (2.10) of Section 2.2.5, we consider a suspension as
a system of Nε particles of the same shape and density in a Newtonian fluid. The
particle number is modeled as being dependent on the size ratio ε, its precise definition
is discussed in Section 3.2.2. The joint bounded domain of particles and fluid is denoted

by Ω ⊂ R3. By Ωε = Ω \∪iE
i

ε we abbreviate the domain of the Newtonian fluid, where
E iε is the domain of ith particle. Similarly to (2.9), we introduce the scaled rigid body
motion of each particle by means of the following mappings:

x : R3 ×R3 × SO(3)×R+ → R3 , (y, z,R, ε) 7→ εR · y + z ,

y : R3 ×R3 × SO(3)×R+ → R3 , (x, z,R, ε) 7→ ε−1RT · (x− z) .

Denoting by ci,Ri the center of mass and orientation of ith particle and presupposing
an ε-independent particle shape domain E ⊂ R3, it holds E iε(t) = x(E , ci(t),Ri(t), ε) and
E = y(E iε(t), ci,Ri(t), ε). To shorten notation, we often use the abbreviation xi(y) ≡
x(y, ci(t),Ri(t), ε) and analogously yi(x), with the dependencies on t and ε being
understood. Especially the dependence of functions on the time parameter is often
suppressed throughout this chapter. As outer forces we consider only gravity, and we
assume that particles influence each other only by hydrodynamic interaction, thus, the
distance between particles is always sufficiently high, such that surface tension and
direct impacts of particles may be ignored. We keep the characteristic values defined
with respect to the fluid quantities. Therefore, the Reynolds and Froude number
describe the inertial effects in relation to viscosity resp. gravity and ρε denotes the
scaled density according to (2.12). The complete suspension dynamics is then given
by the Navier-Stokes equations in Ωε, the no-slip conditions on each particle boundary,
suitable boundary conditions for the fluid velocity on ∂Ω and the equations of motion
for each particle, i.e., for i = 1, . . . , Nε and t ∈ (0, T ) for some T > 0:

Re Dtu = ∇ · S[u]T + Re Fr−2 eg , ∇ · u = 0 , x ∈ Ωε , (3.1a)
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u = ωi ×
(
x− ci

)
+ vi , x ∈ ∂E iε , (3.1b)

d

dt
ci = vi ,

d

dt
Ri = B(ωi) · Ri , (3.1c)

ρεεRe |E| d
dt
vi =

∫
∂E

S[u] · Ri · n ds+ ρεεRe Fr−2 |E|eg , (3.1d)

ρεε
2 Re |E| d

dt

(
Ji · ωi

)
= Ri ·

∫
∂E
y ×

(
RiT · S[u] · Ri · n

)
ds , (3.1e)

with the Newtonian stresses of u in (3.1d), (3.1e) evaluated at xi(y). The boundary
condition at ∂Ω is given by u = u∂Ω and the initial conditions are prescribed as
(ci,Ri,vi,ωi)(0) and u(., 0) consistent to the boundary conditions at ∂Ωε(0). We
define also the inner-particle stresses analogously to (2.11) for i = 1, . . . , Nε as the
solution of

ρε Re

(
d2

dt2
xi(y)− Fr−2 eg

)
= ε−1Ri(t) · ∇y · T̃

iT
(y, t) , y ∈ E , (3.2a)

RiT (t) · S[u](xi(y), t) · Ri(t) · n = T̃
i
(y, t) · n , y ∈ ∂E . (3.2b)

Remark 13. Unlike in Section 2, in this chapter we deal with functions which si-
multaneously depend explicitly on the global variable x ∈ Ω and on the local variable
y ∈ R3 ⊃ E, say f ∈ C1(Ω × R3;R). The term “global” here refers to the role of the
variable referencing the position of f in the system domain Ω aiming to parametrize the
macroscopic behavior of f . While the “local” variable addresses microscopic variations
of f on the scale of the particle size ε which generally decay far away from the particle
center of mass. In order to distinguish the respective differential operators, we use the
subscript .y for the differentiation with respect to the local variable. The differential
operators without this subscript are associated with the global variable x, i.e.,

∇f =
∑
i

ei∂xif , ∇yf =
∑
i

ei∂yif .

This notation for the gradient is transferred in a natural way to the divergence and
Laplace operators, and to the symmetric deformation gradient, i.e., for f ∈ C2(Ω ×
R3;R3)

∇y · f =
∑
i

∂yifi , ∆yf = ∇y · ∇yf , Ey[f ] =
1

2

(
∇yf +∇yfT

)
.

In particular, this motivates also the notation of the Newtonian stress tensor with
respect to the local variable, i.e., for a solenoidal velocity u ∈ C1(Ω × R3;R3) and an
associated pressure p

Sy[u] = 2Ey[u]− pI .

Although this distinction is needed only in Section 3.4, we use it throughout this chapter
and apply this notation also for functions which depend solely on the local coordinates,
as done in (3.2a).
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3.2.2 Concentration regimes

Before deriving an asymptotical model for (3.1), we have to introduce further quantities
which characterize a suspension. In particular, we have to make assumptions on the
distance between particles which is closely related to the topic of the solid concentration
in the suspension. Usually, one characterizes the suspension behavior roughly by three
different regimes: the concentrated, semi-dilute and dilute concentration regime [35].
In “concentrated” suspensions the volume fraction φε ∈ [0, 1], given by

φε =
Nεε

3|E|
|Ω|

, (3.3)

may approach φε = 1. In this case, direct particle interactions dominate the overall
behavior and the suspension exhibits solid-like behavior. In the “semi-dilute” case, par-
ticles cannot move freely in the solvent but direct inertial particle interactions are rare,
while hydrodynamic interactions must be taken into account, in this case the suspen-
sion behaves visco-elastic. Finally, one calls a suspension in which the particles move
freely and do not interact with each other “dilute”. In general circumstances, such a
characterisation cannot be applied, since the particle distribution may be inhomoge-
neous with areas highly populated with solids as well as regions filled completely with
the solvent. Additionally, even under the assumption of a homogeneous suspension,
exact boundaries on φε depend on the particle geometry. For cylinders or prolate ellip-
soidal particles the concentration regimes can be characterized by means of the aspect
ratio of the corresponding semi-axes by considering the mean interparticle distance, or
analogously the mean free space occupied by only one particle. Such characterisations
yield finite bounds on the volume fraction, the particle number concentration, or the
mean particle distance [35, 36].

As already pointed out, the suspension model (3.1) only accounts for hydrodynamic
particle interactions, which implies that we only consider dilute or semi-dilute suspen-
sions. In particular, we call a suspension described by (3.1) dilute if hydrodynamic
interaction between particles can be neglected and semi-dilute otherwise. To make
this distinction precise in the asymptotic context, we first consider the mean particle
distance ιε which is subject to the condition ι3εNε + | ∪i E iε | ≤ |Ω|, this yields

ιε ≤
(
|Ω|
Nε

− ε3|E|
)1/3

.

Thus, for ε small enough the mean particle distance is bounded by N
−1/3
ε . Since we

are only interested in the behavior of ιε as ε → 0, we may set geometry dependent
constants to unity and

ιε = N−1/3
ε . (3.4)

Additionally, we use ιε not as a statistical quantity of the average particle distance
but instead as a minimal distance between particle centers, i.e., we demand that the
particle configuration for all ε > 0 and all t ≥ 0 fulfills

‖ci − cj‖ > ιε , i 6= j , i, j = 1, . . . , Nε . (3.5)
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Furthermore, we set Nε = ε−β with β ∈ [0, 3) which not only implies that the volume
fraction fulfills φε < 1, but even φε → 0 for ε → 0 as seen in (3.3). This choice also
implies

ε ∈ o(ιε) as ε→ 0 . (3.6)

As we see in the following, the vanishing of φε still allows for hydrodynamic particle
interactions, it therefore covers also the semi-dilute case to some extent.

Remark 14 (Particle distance). The condition on the particle distance as given in (3.5)
only accounts for the particle centers of mass and not for the actual particle distance
d(E iε , E jε ) with d given by

d(A,B) = inf
x∈A,y∈B

‖x− y‖

for A,B ⊂ R3. Because of (3.6) and the boundedness of E there exists an ε > 0 such
that ιε/ε > 2 supy∈E ‖(Ri − Rj) · y‖ and due to (3.5) it follows

ε−1‖ci − cj‖ > ιε/ε > 2 sup
y∈E
‖(Ri − Rj) · y‖ .

This way, we find for x ∈ E iε and z ∈ E jε

‖x− z‖ = ‖ε(Ri − Rj) · y + ci − cj‖ ≥ ε|ε−1‖ci − cj‖ − ‖(Ri − Rj) · y‖|
> 0.5‖ci − cj‖ .

Thus, d(E iε , E jε ) ≥ 0.5‖ci − cj‖ for ε small enough, i.e., conditions on the particle
distance and on the separation of the centers of mass differ only in a constant factor,
yielding the same behavior as ε→ 0.

3.3 Leading order asymptotic approximation

In this section we adapt our asymptotic approach of Section 2.3 to a multi-particle
system. Under an appropriate set of assumptions on the particle configuration, we
formulate an asymptotic approximation to the solution of the fully coupled fluid-Nε-
particle system.

3.3.1 Assumptions and asymptotic expansion

The underlying assumptions for the asymptotic approximation of (3.1) are given in
Assumption 15.

Assumption 15 (Particle fluid interaction in suspension).

1) The fluid is essentially undisturbed by the particles.

2) The fluid motion induces a rotation of each particle of order O(1).

3) The minimal distance between particles and between each particle and the bound-
ary is given by ιε > 0.
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4) The suspension is dilute or semi-dilute.

The points 1), 2) of Assumption 15 are identical to the one particle case and allow the
asymptotic approximation of the suspension model by an undisturbed Navier-Stokes
flow as well as postulating the rotational particle behavior as ε → 0. The demand of
a minimal particle distance ensures that particles are sufficiently far from each other.
In particular, we use relation (3.4) for ιε. The last point allows the construction of the
asymptotic solution to (3.1) as a superposition of the single particle contributions of
Section 2.3. This implies especially that the solution of (3.1) is a small perturbation of
(u0, p0) : Ω× [0, T ]→ R3×R which solve the Navier-Stokes system (2.13) in Ω× [0, T ]
with prescribed boundary and initial data. Under these assumptions, it is again our
task to relate the asymptotic quantities of the multi particle system to the undisturbed
velocity u0 and pressure p0.

In order to shorten notation, we take the asymptotic expansion of Section 2.3.4 not
expanding the center of mass and the rotation of each particle. However, the following
considerations can be analogously carried out in the case of the full expansion used in
Section 2.3.2 for a single particle. Additionally, we also use a regular expansion for the
particle accelerations. In total, we have

vi =
∞∑
j=0

εjvij , ωi =
∞∑
j=0

εjωij ,

d

dt
vi =

∞∑
j=0

εjaij ,
d

dt
(Ji · ωi) =

∞∑
j=0

εjψi
j

for i = 1, . . . , Nε. The fluid velocity and pressure are split in a global, undisturbed part
and a local contribution due to the particle presence,

u = u0 + uloc , p = p0 + ploc .

The local fields are set as a superposition of each particle contribution, uiloc, which
possess a regular expansion in ε, i.e.,

uloc(x, t, ε) =
Nε∑
i=1

∞∑
j=1

εjRi · uiloc,j(y
i(x), t) ,

ploc(x, t, ε) =
Nε∑
i=1

∞∑
j=1

εj−1piloc,j(y
i(x), t) .

3.3.2 Asymptotic suspension approximation

Before we formulate the asymptotic solution to (3.1), we first state two auxiliary results.
The first one is related to the well-definition of the superposition of the local velocity
fields.

Lemma 16 (Estimations on the local fields). Let ui, i = 1, . . . , Nε, be CK(R3 \E ;R3)-
functions continuous at ∂E with uniformly bounded boundary values ui|∂E . Furthermore,

we assume that the following decay property holds: For all y ∈ R3 with ‖y‖ > 2R for
an R > 1/2 such that E ⊂ BR(0), the velocity fields ui fulfill

‖∇k
yu

i(y)‖ ≤ c(E , k)‖ui‖1,∂E‖y‖−(`+k) (3.7)
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for some ` ≥ 1 and all 0 ≤ k ≤ K. The particle number is given by Nε = ε−β, β ∈ [0, 3)
and the minimal particle distance fulfills (3.5) with ιε given by (3.4). Then there exists
an ε > 0 such that for all 0 < ε < ε the following estimations for x ∈ Ωε hold.

C1) Assume the following conditions on β for all k ≤ K: β ≤ `− 1 for `+ k ∈ [1, 3),
β < `−1 for `+k = 3 (β = 0 for ` = 1, k = 2), β ≤ 3(`−1)/(`+k) for `+k > 3.
Then

ε−1−k
∑
j∈I

∥∥∇k
yu

j(yj(x))
∥∥ ≤ c sup

i
‖ui‖1,∂E , (3.8)

where I = {1, . . . , Nε} if ‖x − ci‖ ≥ ιε for all i and I = {1, . . . , Nε} \ {i} if
‖x− ci‖ < ιε for an 1 ≤ i ≤ Nε.

C2) Assume the following conditions on β for all k ≤ K: β ≤ ` for ` + k ∈ [1, 3),
β < ` for `+ k = 3, β ≤ 3`/(`+ k) for `+ k > 3. Then

ε−k
∑
j∈I

∥∥∇k
yu

j(yj(x))
∥∥ ≤ c sup

i
‖ui‖1,∂E , (3.9)

where I = {1, . . . , Nε} if ‖x − ci‖ ≥ ιε for all i and I = {1, . . . , Nε} \ {i} if
‖x− ci‖ < ιε for an 1 ≤ i ≤ Nε.

The constants c in (3.8)-(3.9) do not depend on ε and ui.

Proof. We group particles by considering the following cover of Ω by spherical shells
around any x ∈ Ω

Ukx = {z ∈ Ω | (k − 1)ιε ≤ ‖z − x‖ < kιε} , k = 1, . . . , NU .

Since Ω is a bounded domain, the number of shells needed to cover Ω is bounded by
NU = diam(Ω)ι−1

ε . The volume of kth shell can be bounded by

|Ukx| ≤
28

3
πι3εk

2 . (3.10)

Since the suspension is assumed to possess property (3.5), the number of particles in
each shell, Nk, must fulfill ι3εNk + ε3Nk|E| ≤ |Ukx|. In combination with (3.10) and (3.5)
we thus find for ε small enough

Nk ≤
28

3
πk2 .

Finally, we introduce the index sets Ikx = {i ∈ {1, . . . , Nε} | ci ∈ Ukx}. Now, we fix
i ∈ {1, . . . , Nε} and let x ∈ ∂E iε , then x = xi(y) for y ∈ ∂E and applying (3.5), (3.6)
we find for i 6= j

‖yj(xi(y))‖ = ‖ε−1RjT · (ci − cj) + RjT · Ri · y‖ ≥ |ε−1‖ci − cj‖ − ‖y‖|
> 0.5ε−1‖ci − cj‖ (3.11)

for ε small enough. Then, noting that I1
ci = {i} and using the decay property of uj

given by (3.7), we find

ε−k
∑
j 6=i

∥∥∇k
yu

j(yj(x))
∥∥ ≤ ε−k

NU∑
m=2

∑
j∈Im

ci

‖∇k
yu

j(yj(xi(y)))‖
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≤ c sup
i
‖ui‖1,∂Eε

`

NU∑
m=2

∑
j∈Im

ci

‖ci − cj‖−(`+k)

≤ c sup
i
‖ui‖1,∂Eε

`ι−(`+k)
ε

NU∑
m=2

m2

(m− 1)`+k

≤ c sup
i
‖ui‖1,∂Eε

`ι−(`+k)
ε

NU−1∑
m=1

m2−(`+k) (3.12)

with c independent of ε. For an arbitrary x ∈ Ωε, if ‖x − ci‖ < ιε for some i ∈
{1, . . . , Nε}, I1

x = {i} and (3.12) holds. Otherwise

‖yj(x)‖ = ε−1‖x− cj‖ ≥ ε−1ιε

for all j = 1, . . . , Nε, thus I1
x = ∅ and

ε−k
Nε∑
j=1

∥∥∇k
yu

j(yj(x))
∥∥ ≤ c sup

i
‖ui‖1,∂Eε

`ι−(`+k)
ε

NU−1∑
m=1

m2−(`+k) .

For `+ k ∈ [1, 2], m2−(`+k) ≤ N
2−(`+k)
U , therefore we find in combination with (3.4)

ε`ι−(`+k)
ε

NU−1∑
m=1

m2−(`+k) ≤ cε`ι−(`+k)
ε N

3−(`+k)
U ≤ cε`ι−3

ε = cε`−β ∈

{
O(ε) for C1)

O(1) for C2)

with c independent of ε. For ` + k ∈ (2, 3) and ` + k = 3 we find by means of the
Euler-Maclaurin formula, see, e.g., [2]

NU−1∑
m=1

m2−(`+k) ≤ cN
3−(`+k)
U , for `+ k ∈ (2, 3) , and

NU−1∑
m=1

m−1 ≤ c ln(NU) ,

with c = c(`) but independent of ε. Thus, for `+ k ∈ (2, 3) again

ε`ι−(`+k)
ε

NU−1∑
m=1

m2−(`+k) ≤ ε`−β ∈

{
O(ε) for C1)

O(1) for C2)

and for `+ k = 3

ε`ι−3
ε

NU−1∑
m=1

m−1 ≤ cε`ι−3
ε ln(NU) ≤ cε`−β ln(ε−β/3) ∈

{
o(ε) for C1)

o(1) for C2)
.

For `+ k > 3, the series
∑∞

m=1 m
2−(`+k) <∞, thus

ε`ι−(`+k)
ε

NU−1∑
m=1

m2−` ≤ cε`−(`+k)β/3 ∈

{
O(ε) for C1)

O(1) for C2)
.

Hence, we showed (3.8) and (3.9).
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Next, we state a second auxiliary statement, which is connected to the well-posedness
of the particle related local stationary Stokes problems. In the following lemma we of-
ten deal with functions which depend on variables in (Ω×SO(3))Nε that are sufficiently
regular for any ε > 0, say f ∈ CK((Ω × SO(3))Nε ;R). In this case ‖f‖CK < c with a
constant c which in general depends on Nε and might be unbounded as ε approaches
zero. The asymptotic approximations are meaningful only if the corresponding con-
stants are bounded uniformly in ε. Hence, we define the following function space in
order to shorten notation.

Definition 17 (CKN -functions). For K ≥ 0 and n,N ≥ 1, consider a function f ∈
CK((Ω×SO(3))N ×R;Rn). Then f ∈ CKN if for all (zi,Vi) ∈ C∞(R; Ω×SO(3)) with
maxi ‖zi‖CK < c1, maxi ‖Vi‖CK < c1 for some c1 > 0 independent of N , there exists a
constant c2 <∞ independent of N , such that∥∥t 7→ f(z1(t),V1(t), . . . ,zN(t),VN(t), t)

∥∥
CK(R;Rn)

< c2.

Additionally, we also introduce the following abbreviations for the forces and torques
on each particle, which are related to the expansion of the particle accelerations and
are similar to those in Abbreviation 3.

Abbreviation 18. We set for i = 1, . . . , Nε

kik = 0 for k < 0 ,

ki0 = ρRe |E|RiT · (ai0 − Fr−2 eg) ,

kik = ρRe |E|RiT · aik for k ≥ 1 ,

`ik = 0 for k < 0 ,

`ik = ρRe |E|RiT ·ψi
k for k ≥ 0 .

Then, the forces and torques depend on the density scaling function αρ(ε) = εr and are
given as f i1 = ki−1−r, g

i
1 = `i−2−r and for k ≥ 2

f ik = − 1

(k − 2)!
RiT ·

∫
E
[Ri · y · ∇]k−2∇ · S[u0] dy + kik−2−r , (3.13a)

gik = − 1

(k − 2)!

∫
E
y × RiT · [Ri · y · ∇]k−2∇ · S[u0] dy + `ik−3−r , (3.13b)

where the derivatives of u0 are evaluated at (ci(t), t).

Lemma 19 (Asymptotic solution to particle related equations up to order n). We
make the following set of assumptions.

R1) The functions u0 ∈ C∞(Ω×(0, T );R3) and p0 ∈ C∞(Ω×(0, T );R) denote a given
solenoidal velocity in Ω and a corresponding pressure.

R2) The minimal particle distance fulfills (3.5) with ιε given by (3.4). The density
scaling function (2.12) is given as αρ(ε) = εr with r ≥ −1.

R3) For i = 1, . . . , Nε and k = 1, . . . , n, uiloc,k(., t) ∈ C∞(R3 \ E ;R3), continuous at

∂E, piloc,k(., t) ∈ C∞(R3 \ E ;R) are for each t ∈ [0, T ] solutions of the stationary
Stokes equations,

∆yu
i
loc,k = ∇ypiloc,k , ∇y · uiloc,k = 0 . (3.14)

42



The boundary conditions for y ∈ ∂E are given as

uiloc,k(y) = RiT ·
(
vik +B(ωik−1) · Ri · y − 1

k!
[Ri · y · ∇]ku0 − rik(y)

)
, (3.15a)

where the derivatives of u0 are evaluated at (ci(t), t) and with the velocity vectors
rik set as

ri1 ≡ 0 ,

rik(y) = ε−1
∑
j 6=i

Rj · ujloc,k−1(yj(xi(y))) for k ≥ 2 . (3.15b)

The decay properties for ‖y‖ → ∞ as well as the integral conditions read as

∇m
y u

i
loc,k ∈ O(‖y‖−(1+m)) , m = 0, 1 , piloc,k ∈ O(‖y‖−2) , (3.15c)∫

∂E
Sy[uiloc,k] · n ds = f ik ,

∫
∂E
y × Sy[uiloc,k] · n ds = gik , (3.15d)

with f ik, g
i
k given in Abbreviation 18.

R4) The particle centers of mass and their orientations behave according to

d

dt
ci =

n∑
k=0

εkvik ,
d

dt
Ri =

n−1∑
k=0

εkB(ωik) · Ri (3.16)

for t > 0 with initial data ci(0),Ri(0) for i ∈ {1, . . . , Nε} and where the velocities
vik,ω

i
k−1 ∈ Cmin(K+3+r−k,K)((0, T );R3) are uniformly bounded for each t ≥ 0.

R5) The particle number fulfills one of the following assumptions: The particle number
Nε is constant independent of ε. Alternatively, if the condition for the quadratic
decay of the local velocity fields (B.3) of Corollary B.4, Appendix B.2 holds for
all uiloc,k, k ∈ {1, . . . , n − 1} and i = 1, . . . , Nε, then the particle number is

given by Nε = ε−β with β subject to the conditions C1) of Lemma 16 for K =
max(n− 2− r, 1), ` = 2.

Then, the truncated expansions

vie =
n∑
j=0

εjvij , ωie =
n−1∑
j=0

εjωij , (3.17a)

(
d

dt
vi
)e

=
n−1∑
j=0

εjaij ,

(
d

dt
(Ji · ωi)

)e
=

n−2∑
j=0

εjψi
j , (3.17b)

ue = u0 + ueloc , p = p0 + peloc , (3.17c)

ueloc =
Nε∑
i=1

n∑
j=1

εjRi · uiloc,j , peloc =
Nε∑
i=1

n∑
j=1

εj−1piloc,j (3.17d)

yield the following approximation orders for the particle related equations (3.1b)-(3.1e)

ue = ωie ×
(
x− ci

)
+ vie +O(εn+1) , x ∈ ∂E iε , (3.18a)
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d

dt
ci = vie +O(εn+1) ,

d

dt
Ri = B(ωie) · Ri +O(εn) , (3.18b)

ρεεRe |E|
(

d

dt
vi
)e

=

∫
∂E

S[ue] · Ri · n ds+ ρεεRe Fr−2 |E|eg +O(εn) , (3.18c)

ρεε
2 Re |E|

(
d

dt
(Ji · ωi)

)e
= Ri ·

∫
∂E
y ×

(
RiT · S[uie] · Ri · n

)
ds+O(εn) (3.18d)

with the linear and angular velocities for any t ≥ 0 given as

vi0(t) = u0(ci(t), t) , (3.19a)

(vik(t),ω
i
k−1(t)) = F i

k(c
1(t),R1(t), . . . , cNε(t),RNε(t), t) (3.19b)

with functions F i
k ∈ C

min(K+3+r−k,K)
Nε

, k = 1, . . . , n and i = 1, . . . , Nε.

Proof. First of all, we note that due to ri1 ≡ 0 and R1), uiloc,1 |∂E ∈ C(∂E) and
Lemma B.3 in Appendix B.2 is applicable for each t ≥ 0. Thus, Corollary B.4 holds,
i.e.,

‖∇m
y u

i
loc,1(y)‖ ≤ c‖uiloc,1‖1,∂E‖y‖−(`+m) (3.20)

with c = c(E ,m) for all m ≥ 0 and ` ∈ {1, 2} according to R5). Due to (3.15a) we find

‖uiloc,1‖1,∂E ≤ c
(
‖vi1‖+ ‖ωi0‖+ ‖∇u0(ci, t)‖

)
with c = c(E). Applying R1) and R4) then yields a uniform bound on uiloc,1|∂E , which
implies that Lemma 16 holds. This ensures that ri2 given by (3.15b) is well-defined,
continuous at ∂E and bounded. Therefore, we can repeat each of the above argu-
ments and deduce a uniform bound on uiloc,2|∂E in terms of the bound in R4) and
maxm=1,2 supx∈Ω ‖∇mu0(x, t)‖. Iteration of this chain shows: For each t ≥ 0, the ve-
locity fields uiloc,k|∂E , k = 1, . . . , n are uniformly bounded and Lemma 16 holds, which
implies that rik is well-defined for all k ≤ n and all ε > 0.

Analyzing the system of particle related equations, we start with the no-slip condi-
tion (3.1b). Inserting the expansions of the velocities and using a Taylor expansion for
u0 at ci for x = xi(y) = ci + εRi · y with y ∈ ∂E yields

n∑
k=0

εk
1

k!
[Ri · y · ∇]ku0(ci, t) +

∑
j 6=i

n∑
k=1

εkRj · ujloc,k +
n∑
k=1

εkRi · uiloc,k

=
n∑
k=1

εkB(ωik−1) · Ri · y +
n∑
k=0

εkvik +O(εn+1) .

Using the relations (3.19a) and (3.15a) the approximation order (3.18a) follows. Next,
we insert the velocity expansions into (3.1c) finding

d

dt
ci =

n∑
j=0

εjvij +O(εn+1) ,
d

dt
Ri = B

(
n−1∑
j=0

εjωij

)
· Ri +O(εn) ,

which in combination with (3.16) shows (3.18b).
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Considering the balance of momenta for each particle, we insert the expansions for
the particle acceleration on the left-hand sides and for the fluid velocity on the right-
hand sides. This yields

ρεεRe |E|

(
n−1∑
j=0

εjaij − Fr−2 eg

)

= ε−2

∫
∂Eiε

S[u0] · n ds+
n∑
k=1

εk−1Ri ·
∫
∂E

Sy[uiloc,k] · n ds

+
∑
j 6=i

n∑
k=1

εk−3Rj ·
∫
∂Eiε

Sy[ujloc,k] · R
jT · n ds+O(εn)

= ε−2

∫
Eiε
∇ · S[u0] dx+

n∑
k=1

εk−1Ri ·
∫
∂E

Sy[uiloc,k] · n ds

+
∑
j 6=i

n∑
k=1

εk−4Rj ·
∫
Eiε
∇y · Sy[ujloc,k] dx+O(εn) (3.21)

in case of (3.1d) and

ρεε
2 Re |E|

n−2∑
j=0

εjψi
j

= ε−3

∫
∂Eiε

(x− ci)× S[u0] · n ds+
n∑
k=1

εk−1Ri ·
∫
∂E
y × Sy[uiloc,k] · n ds

+
∑
j 6=i

n∑
k=1

εk−4

∫
∂Eiε

(x− ci)× Rj · Sy[ujloc,k] · R
jT · n ds+O(εn)

= ε−3

∫
Eiε

(x− ci)×∇ · S[u0] dx+
n∑
k=1

εk−1Ri ·
∫
∂E
y × Sy[uiloc,k] · n ds

+
∑
j 6=i

n∑
k=1

εk−5

∫
Eiε

(x− ci)× Rj · ∇y · Sy[ujloc,k] dx+O(εn) (3.22)

for (3.1e). We used here the following property of functions with values in the space
of symmetric matrices S ∈ C1(E ;Msym) (see Appendix A.2):∫

∂E
y × S · n ds =

∫
E
∇y · (B(y) · S)T dy

=

∫
E
B(y) · ∇y · S dy +

3∑
i=1

∫
E

√
2ei(Bi : S) dy ,

where {Bi}i=1,2,3 is a basis of skew-symmetric matrices and the last term vanishes due
to orthogonality (see (A.8b) and (A.8c) in the appendix). Since uiloc,k, p

i
loc,k solve the

stationary Stokes equations, the summation terms over j 6= i in (3.21) and (3.22) are
identical to zero and applying a Taylor expansion of ∇ ·S[u0] in ci yields the relations
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n−1∑
k=0

εk
∫
∂E

Sy[uiloc,k+1] · n ds

= −
n−1∑
k=1

εk

(k − 1)!
RiT ·

∫
E
[Ri · y · ∇]k−1∇ · S[u0] dy

+ ρεεRe |E|RiT ·

(
n−1∑
k=0

εkaik − Fr−2 eg

)
+O(εn) (3.23)

n−1∑
k=0

εk
∫
∂E
y × Sy[uiloc,k+1] · n ds

= −
n−1∑
k=1

εk

(k − 1)!

∫
E
y × RiT · [Ri · y · ∇]k−1∇ · S[u0] dy

+ ρεεRe |E|RiT ·
n−1∑
k=1

εkψi
k−1 +O(εn) . (3.24)

This shows in combination with (3.15d) the approximation orders of (3.18c) and (3.18d).
In order to show the well-definition of the velocities vik,ω

i
k−1, i.e., the relation (3.19b)

we first note that the tracer condition vi0 = u0(ci, t) generates an ε-dependence of
dvi0/dt. Therefore, we introduce an additional expansion for dvik/dt of the following
form

d

dt
vik =

n∑
`=0

ε`v̇ik,` +O(εn+1)

with v̇ik,` being not explicitly dependent on ε. Therefore, the acceleration reads as

d

dt
vi =

n−1∑
k=0

εk
k∑
`=0

v̇i`,k−` +O(εn) =
n−1∑
k=0

εkaik +O(εn) . (3.25)

In case of angular velocity, we use an analogous approach setting

d

dt
ωik =

n−1∑
`=0

ε`ω̇ik,` +O(εn) ,

we also note that

d

dt
(Ji · ωi) = Ji · d

dt
ωi +B(ωi) · Ji · ωi .

Thus, the relation for the angular acceleration reads as

d

dt
(Ji · ωi) =

n−2∑
k=0

εk
k∑
`=0

Ji · ω̇i`,k−` +B(ωi`) · Ji · ωik−` +O(εn−1)

=
n−2∑
k=0

εkψi
k +O(εn−1) . (3.26)
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Using the relation between the integral and boundary conditions for uiloc,k stated in
Lem. 5, we find(

vik
ωik−1

)
=

[
Ri

Ri

]
· A−1 ·

([
I

1√
2
I

]
·
(
f ik
gik

)
+Di

ku0 + uik

)
, with (3.27)

Di
ku0 =

1

k!

(∫
∂E

RiT · [Ri · y · ∇]ku0 · Sy[wq] · n ds

)
q=1,...,6

,

uik =

(∫
∂E

RiT · rik(y) · Sy[wq] · n ds

)
q=1,...,6

,

A = (tq, sq)q=1,...,6 ,

where wq, tq, sq are given in Lemma 5. Now we have to show that the right-hand
side of the equation for vik,ω

i
k−1 is indeed independent of vj` ,ω

j
`−1 for ` ≥ k and

all j ∈ {1, . . . , Nε}. Thus, we show that (vik,ω
i
k−1) = F i

k(c
1, . . . ,RNε , t), F i

k being a
sufficiently smooth function for each k = 1, . . . , n and i ≤ Nε. In the following we use
the partition F i

k = (F i
k,v, F

i
k,ω) to address the components belonging to the linear and

angular velocities.
We make the following considerations only for the heavy particle case, i.e., r = −1.

For r ≥ 0, the following arguments can be applied analogously. We start with k = 1:
In this case, gi1 = 0 and ui1 = 0, while f i1 = ki0 which depends on ai0. Since

d

dt
vi0 = Dtu0 +

n∑
k=1

εk∂xu0 · vik +O(εn+1) ,

we identify ai0 = v̇i0,0 = Dtu0 and v̇i0,k = ∂xu0 · vik for k ≥ 1. Therefore, (vi1,ω
i
0) =

F1(ci,Ri, t) = F i
1(c1, . . . ,RNε , t), which is a smooth mapping since u0 is smooth. In

order to move on to the general case, we first show that the interaction term ui2 is indeed
expressible as a sufficiently smooth function (R3 × SO(3))Nε × R+ → R6. Therefore,
we analyze the term ri2. Taking the time dependence into account, we have

ri2(y, t) = ε−1
∑
j 6=i

Rj(t) · ujloc,1(y(x(y, ci(t),Ri(t), ε), cj(t),Rj(t), ε), t)

where the time dependence of the local fields is due to the boundary conditions. For
the multi-index κ ∈ {1, 2, 3}m and m ≥ 2, we set wκ, pκ as the solution to

∆ywκ −∇ypκ = 0 , ∇y ·wκ = 0 , y ∈ R3 \ E , (3.28)

wκ(y) = eκ1

m∏
i=2

yκi , y ∈ ∂E

with decay properties (3.15c) and wκ, pκ for κ ∈ {1, 2, 3} given in (2.19). Then, the
boundary condition for uiloc,1 can be expressed as

uiloc,1

∣∣
∂E =

3∑
`=1

(RiT · vi1)`e` +
3∑

`,m=1

(
B(RiT · ωi0)− RiT · ∂xu0 · Ri

)
`m
e`ym .
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By the linearity of the homogeneous stationary Stokes equations, we therefore can
express the local field as

uiloc,1(y, t) =
3∑
`=1

(
RiT (t) · F1,v(c

i(t),Ri(t), t)
)
`
w`(y)

+
3∑

`,m=1

(
B(RiT (t) · F1,ω(ci(t),Ri(t), t))

− RiT (t) · ∂xu0(ci(t), t) · Ri(t)
)
`m
w`m(y)

= Uloc,1(y, ci(t),Ri(t), t) (3.29)

withUloc,1 ∈ C∞(R3\E×Ω×R3×3×R+;R3) since u0 is assumed smooth and Lemma B.3
applies to every wκ. Therefore, we have

ri2(y, t) = ε−1
∑
j 6=i

Rj(t) ·Uloc,1(y(x(y, ci(t),Ri(t), ε), cj(t),Rj(t), ε), cj(t),Rj(t), t)

= Ri
2(y, c1, . . . ,RNε , t)

where Ri
2 : B0.5ιε/ε× (Ω×R3×3)Nε×R+ → R3. As Uloc,1 is smooth in every variable, so

is Ri
2 for every ε > 0. We have to check, whether Ri

2 ∈ CKNε . The kth time derivative
of ri2 involves terms of the form

ε−1−`
∑
j 6=i
∇`
yu

j
loc,1(yj(xi(y))) (3.30)

for 0 ≤ ` ≤ k, these are bounded independent of ε due to R5) and Lemma 16 whenever
k ≤ K = max(n− 2− r, 1). As already mentioned, we consider only the case r = −1
here, r ≥ 0 resulting in similar results with accordingly weaker constraints on the
particle number. Therefore, we have K = max(n − 1, 1) with the cases of n ∈ {0, 1}
already considered. Thus, K = n − 1 ≥ 1 is assumed from here on. As shown above,
Ri

2 is smooth in all variables and thus Ri
2 ∈ CK(B0.5ιε/ε × (Ω × R3×3)Nε × R+;R3).

Moreover, Ri
2(y, .) ∈ CKNε , as (3.30) is finite for 0 ≤ ` ≤ K. This implies that ui2 is

expressible as a CKNε-function. The vectors (f i2, g
i
2) are given in terms of Ri,u0(ci, t),

and ki1, `
i
0. The latter fulfill

ki1 = ρRe |E|RiT · ai1 = ρRe |E|RiT · (v̇i0,1 + v̇i1,0) ,

`i0 = ρRe |E|RiT ·ψi
0 = ρRe |E|RiT · (Ji · ω̇i0,0 +B(ω0) · Ji · ωi0)

with v̇i0,1 = ∂xu0(ci, t) · vi1, and where (v̇i1,0, ω̇
i
0,0) are the leading order terms of

d

dt
(vi1,ω

i
0) = ∂cF

i
1 ·

n∑
k=0

εkvik +
n−1∑
k=0

εk
3∑

`,m=1

∂R`mF
i
1(B(ωik) · Ri)`m + ∂tF

i
1 +O(εn) .

Thus, the velocities (vi2,ω
i
1) are given as

(vi2,ω
i
1) = F i

2(c1, . . . ,RNε , t) = F2(ci,Ri, t) +

[
Ri

Ri

]
· A−1 · ui2(c1, . . . ,RNε , t)
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with a smooth function F2. Therefore, F i
2 ∈ CKNε holds. Next, we assume the following

regularities:

Ri
k ∈ CK+2−k(B0.5ιε/ε × (Ω×R3×3)Nε ×R+;R3) ,

Ri
k(y, .) ∈ CK+2−k

Nε
,

and (vik,ω
i
k−1) = F i

k(c
1, . . . ,RNε , t) with F i

k ∈ CK+2−k
Nε

for all 2 ≤ k ≤ m for an
m ≤ n− 1. Then we find for all k ≤ m

d

dt
(vik,ω

i
k−1) =

Nε∑
j=1

∂cjF
i
k · vj + ∂RjF

i
k : B(ωj) · Rj + ∂tF

i
k

= ∂tF
i
k +

m−1∑
`=0

ε`
Nε∑
j=1

∂cjF
i
k · v

j
` + ∂RjF

i
k : B(ωj` ) · R

j +O(εm) .

We therefore identify

(v̇ik,`, ω̇
i
k−1,`) = δ`,0∂tF

i
k +

Nε∑
j=1

∂cjF
i
k · v

j
` + ∂RjF

i
k : B(ωj` ) · R

j (3.31)

= δ`,0∂tF
i
k +

Nε∑
j=1

∂cjF
i
k · F

j
`,v + ∂RjF

i
k : B(F j

`+1,ω) · Rj = Gi
k,`

for k ≤ m and ` ≤ m−1. The functionGi
k,` = Gi

k,`(c
1, . . . ,RNε , t) is in Cmin(K+1−`,K+1−k)

Nε
.

Now we consider k = m+ 1, then (vim+1,ω
i
m) are given by (3.27), thus they depend on

uim+1 which is determined by rim+1, and on f im+1 as well as gim+1. The latter two are
expressed in terms of aim and ψi

m−1 which depend on

v̇i0,m, (v̇
i
1,m−1, ω̇

i
0,m−1), . . . , (v̇im,0, ω̇

i
m−1,0) ,

ωi0,ω
i
1, . . . ,ω

i
m−1 .

As shown above, v̇i0,m = ∂xu0 · vim = ∂xu0 · F i
m,v and for k = 1, . . . ,m the relation

(v̇ik,m−k, ω̇
i
k−1,m−k) = Gi

k,m−k(c
1, . . . ,RNε , t) holds. Since K+1−k ≥ K+1−m as well

as K + 1− (m− k) > K + 1−m for k = 1, . . . ,m and K + 2−m > K + 1−m, the
terms f im+1, g

i
m+1 therefore can be expressed as functions in CK+1−m

Nε
. The interaction

term, on the other hand, can be expressed as

rim+1(y, t) = ε−1
∑
j 6=i

Rj(t) ·U j
loc,m(y(x(y, ci(t),Ri(t), ε), cj(t),Rj(t), ε), cj(t),Rj(t), t)

= Ri
m+1(y, c1, . . . ,RNε , t)

with U i
loc,m : R3 \ E × (Ω×R3×3)Nε ×R+ → R3 given as

U i
loc,m =

3∑
a=1

(RiT · F i
m,v)awa +

3∑
a,b=1

(B(RiT · F i
m,ω))abwab

− 1

m!

3∑
a,b=1

3∑
q1,...,qm=1
r1,...,rm=1

Ri
ba

m∏
c=1

Ri
qcrc∂xq1 ,...,xqm (u0)bwa,r1,...,rm − RiT · him .
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Here, him : R3 \ E × (Ω × R3×3)Nε × R+ → R3 is the velocity field which solves the
homogeneous stationary Stokes equations with decay properties (3.15c) and with the
boundary condition him = Ri

m on ∂E . Since Ri
m is not a polynomial function on ∂E , we

use a more general argument in order to show the regularity of him which involves the
fundamental solution of the stationary Stokes equations on the exterior of a compact do-
main. The underlying theorems are found in Appendix B.2. Since Ri

m(y, .) ∈ CK+2−m
Nε

and continuous in y, Lemma B.2 yields a surface density ψ[Ri
m](y, .) ∈ CK+2−m

Nε
, con-

tinuous in y. Then Lemma B.3 shows that him(., c1, . . . ,RNε , t) ∈ C∞(R3 \ E ;R3),
inheriting the regularity on (Ω×R3×3)Nε ×R+ from the surface density on ∂E . Thus,
U i

loc,m ∈ CK+2−m(R3 \ E × (Ω×R3×3)Nε ×R+;R3) follows. In particular, this implies

Ri
m+1 ∈ CK+1−m(B0.5ιε/ε × (Ω×R3×3)Nε ×R+;R3) and Ri

m+1(y, .) ∈ CK+1−m
Nε

.

Therefore, (vim+1,ω
i
m) = F i

m+1(c1, . . . ,RNε , t) with a function F i
m+1 ∈ CK+1−m

Nε
in-

dependent of vj` ,ω
j
`−1 for ` ≥ m + 1 and j ≤ Nε by induction. This shows (3.19b)

and the well-posedness of the stationary Stokes equations for the local fields in case
of heavy particles. Considering the cases for r ≥ 0 we note that the regularity of F i

k

for k ≥ 2 can never exceed the regularity of the interaction term given by K, hence
F i
k ∈ C

min(K+3+r−k,K)
Nε

.

Remark 20. We note that the statements of Lemma 19 do not necessarily need C∞ in
space and time. In fact, we see from (3.27) and (3.13) that

u0 ∈ Cmax(b n
2+r
c,1)((0, T ); Cn+1(Ω;R3))

p0 ∈ Cmax(bn−2−r
2+r

c,0)((0, T ); Cn(Ω;R))

is sufficient for R1) of Lemma 19, where bαc = maxk∈N{k ≤ α} for any α ∈ R is the
floor function.

Now, we are able to formulate a first order approximation for the complete suspension
problem (3.1).

Theorem 21 (Asymptotic solution of a dilute particle suspension). Let the assump-
tions of Lemma 19 hold for n = 2 with u0, p0 be smooth solutions of the Navier-Stokes
problem in Ω for t > 0:

Re Dtu0 = ∇ · S[u0] + Re Fr−2 eg , ∇ · u0 = 0 (3.32)

with boundary conditions at ∂Ω and an initial condition for t = 0. Then the sys-
tem (3.1) is approximated up to an order of O(ε) by the expansions given in (3.17).

Proof. Since Lemma 19 already states an approximation of at least order O(ε) for the
relations (3.1b)-(3.1e) in case n = 2, we only have to examine the approximation order
for the momentum balance and mass conservation (3.1a). Mass conservation follows
immediately, since u0 as well as uiloc,k are assumed divergence free, thus

∇ · ue = O(ε2) .

For the left-hand side of the momentum balance in Ωε in (3.1a) we find
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Re Dtu0 + Re
n−1∑
k=0

Nε∑
i=1

εkRi · ∂yuiloc,k+1 · RiT · u0 (3.33)

− Re
n−1∑
k=0

Nε∑
i=1

εkRi · ∂yuiloc,k+1 · RiT · (B(ωi) · (x− ci) + vi)

+ Re
n−1∑
k=1

Nε∑
i=1

εk(B(ωi) · Ri · uiloc,k + Ri · ∂tuiloc,k + ∂xu0 · Ri · uiloc,k)

+ Re
n−1∑
k=1

Nε∑
i,j=1

εk
k−1∑
`=0

Ri · ∂yuiloc,k−` · RiT · Rj · ujloc,`+1 +O(εn)

= Re Dtu0 + Re
Nε∑
i=1

Ri · ∂yuiloc,1 · RiT · (u0 −B(ωi) · (x− ci)− vi) +O(ε)

since all terms are bounded due to Lemma 16. Assuming ‖x − ci‖ < ιε for some
i ∈ {1, . . . , Nε}, it holds

Nε∑
j=1

Rj · ∂yujloc,1 · R
jT ·

(
u0 −B(ωj) · (x− cj)− vj

)
= Ri · ∂yuiloc,1 · RiT ·

(
u0 −B(ωi) · (x− ci)− vi

)
+O(ε) (3.34)

due to (3.8), the fact that ‖vj‖ ≤ maxx∈Ω ‖u0‖ + O(ε) < ∞, and ‖ωj0‖ ∈ O(1) by
assumption. Now we fix an arbitrary R > 0 and assume ‖x−ci‖ < εR, then u0(x, t) =
u0(ci(t), t) + O(εR) and the remaining term in (3.34) is of order O(εR). Otherwise,
ιε > ‖x − ci‖ > εR and we can again use the property ε ∈ o(ιε) in combination with
the decay properties of the local fields (3.7)∥∥∥Ri · ∂yuiloc,1 · RiT ·

(
u0 −B(ωi) · (x− ci)− vi

)∥∥∥ ≤ c‖∂yuiloc,1‖‖x− ci‖

≤ cε`+1‖x− ci‖−(`+1)‖x− ci‖ < cεR−`

with c depending on R but independent of ε. The remaining case of ‖x− ci‖ > ιε for
all i = 1, . . . , Nε implies that the left-hand side in (3.34) is O(ε) due to (3.8). Thus,
the momentum balance in (3.1a) is given by

Re Dtu0 = ∇ · S[u0] + Re Fr−2 eg +
2∑

k=1

εk−2

Nε∑
i=1

Ri · ∇y · Sy[uiloc,k] +O(ε) . (3.35)

Applying the assumption on u0 and (3.14), we immediately conclude that the momen-
tum balance is fulfilled up to O(ε).

Remark 22 (Coupling of the asymptotic system).

1) The coupling of boundary conditions and forces on the particle boundary implies
that the velocities vi2,ω

i
1 depend on Nε − 1 local velocity fields ujloc,1. Since the
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latter depend on vj1,ω
j
0 and thus on u0(cj(t), t), the evolution of ci depends on

the behavior of all other particles in the system due to (3.27). This forms a
hydrodynamic interaction of particles, but since the interaction takes place in the
second order system, the particle rotation is not affected in leading order. Thus,
there is no particle interaction up to O(ε). Therefore, we call this concentration
regime dilute.

2) An application of the asymptotic expansion of Section 2.3.3 used in Lemma 4 leads
again to a complete decoupling of the equations belonging to the approximation
order k = 0, 1, 2. Thus, in this case we recover the hierarchical structure explained
in Remark 6 3).

Remark 23 (Extension of the asymptotical model to the semi-dilute regime). Analyz-
ing the formal proof of Lemma 19, we see that we can mitigate the restrictions on Nε

in (R2) by imposing condition C2) of Lemma 16 on β. In this case, the velocity term
rik, previously given by (3.15b), becomes dependent on the local velocity contributions
of order k instead of order k − 1,

rik(y) =
∑
j 6=i

Rj · ujloc,k(y
j(xi(y)))

due to (3.9) and introduces a coupling between all particle velocities within kth approx-
imation order. This implies that uik in (3.27), the term which contains rik, becomes
dependent on vik,ω

i
k−1, precisely the quantities which are defined by (3.27). Hence,

(3.27) becomes a coupled nonlinear equation for vik,ω
i
k−1, i = 1, . . . , Nε. The solv-

ability of this system depends on the configuration of the particle system. Under the
assumption, that a solution vk = (v1

k,ω
1
k−1, . . . ,v

Nε
k ,ωNεk−1) exists for every k and the

corresponding nonlinear function Fk : (Ω × SO(3))Nε × (R3 × R3)Nε → (R3 × R3)Nε

has the property that ∂v1,ω1,...,vNε ,ωNεFk is regular at vk, one can still show that the
right-hand side of the equation is independent of higher order velocities vi`,ω

i
`−1 for

` > k.

Remark 24 (Chaos assumption). The requirement R5) of Lemma 19 in general re-
stricts the particle number Nε to a constant number. As we see later (see Remark 37),
this prevents us from deriving a connection between mean field models and the original
system (3.1). We point out, that R5) is needed in order to ensure that the hydrody-
namic interaction (3.15b) is always well-defined, i.e., rik is bounded despite the fact,
that the superposition is scaled by ε−1. On the other hand, the only possibility in order
to avoid the factor ε−1 leads to the problem discussed in Remark 23, i.e., to a large,
coupled, nonlinear system of equations for all particle velocities of kth order. Thus, the
only way to mitigate the condition R5), is to set an assumption on the particle config-
uration itself. In particular, we say that the suspension fulfills the chaos assumption,
if the following estimations hold with a constant c <∞ independent of ε:

max
i

{
‖ri2‖C1 , . . . , ‖rin‖C1

}
≤ c . (3.36a)

Additionally, in case of heavy particles

max
i

{
‖ri2‖Cn−1 , ‖ri3‖Cn−2 , . . . , ‖rin‖C1

}
≤ c (3.36b)
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or, in case of normal particles and n = 2m, m ∈ N

max
i

{
‖ri2‖Cm , ‖ri3‖Cm−1 , ‖ri4‖Cm−1 , . . . , ‖rin−1‖C1 , ‖rin‖C1

}
≤ c (3.36c)

or, in case of normal particles and n = 2m+ 1, m ∈ N

max
i

{
‖ri2‖Cm , ‖ri3‖Cm , . . . , ‖rin−1‖C1 , ‖rin‖C1

}
≤ c . (3.36d)

The set Ck denotes here Ck = Ck(R3 \ E × (0, T );R3). The light-weighted particles
regime also needs assumptions on higher order derivatives of the interaction term if
n ≥ 4 + r but since we do not consider such approximation orders in what follows, we
omit these conditions.

Due to (3.36a), the interaction (3.15b) is well-defined for all k ≤ n, hence the
first part of the proof of Lemma 19 dedicated to the well-definition of the boundary
conditions of uiloc,k works without Lemma 16. The last part of the proof uses (3.8)

again in order to show that Ri
k ∈ CK+2−k

Nε
by using the definition of Ri

k in terms of

U j
loc,k−1. By replacing requirement R5) with (3.36), this approach is out of reach, since

we can not guarantee that ‖Ri
k‖ is small for particle configurations essentially different

to (c1, . . . ,RNε). Instead, we consider the following argument: Fix ε > 0 and take
(z1, . . . ,VNε) in a small neighborhood U ⊂ (Ω × R3×3)Nε of (c1, . . . ,RNε), such that∑Nε

i=1 ‖ci − zi‖2 + ‖Ri − Vi‖2 < ε2/N2
ε . Since Uloc,1(y, z,R, t) as given in (3.29) is a

smooth function, we have

‖Ri
2(y, z1, . . . ,VNε , t)‖ ≤ ‖Ri

2(y, c1, . . . ,RNε , t)‖+ cε−1
∑
j 6=i

ε

Nε

= ‖ri2(y, t)‖+ c

with c independent of Nε. Similarly, by imposing (3.36b) we can show that

‖t 7→ Ri
2(y, z1(t), . . . ,VNε(t), t)‖CK(R;R3) < c

with c independent of Nε for all smooth curves t 7→ (z1(t), . . . ,VNε(t)) ∈ U . This then
leads to the conclusion that although F i

2 6∈ CKNε, we still have F i
2 ∈ CK((Ω× R3×3)Nε ×

(0, T );R6) and the expression ‖t 7→ F i
2(z1(t), . . . ,VNε(t), t)‖CK(R;R3) is bounded inde-

pendent of Nε for all test functions with values in U . Hence, we can repeat the final
induction steps in the proof of Lemma 19 by using this generalization of CKNε to test func-
tions in a small neighborhood of the chaotic particle configuration. Thus, by replacing
R5) with the chaos assumption, Lemma 19 holds in an accordingly weaker sense, i.e.,
the functions F i

k are only well-defined in a small neighborhood of (c1, . . . ,RNε).
Since we directly assume that the interaction terms are small instead of using Lem. 16,

we do not have natural restrictions on the particle number and thus β → 3 becomes a
viable option in this case. Nevertheless, we use the restriction Nε = ε−β with β < 1.
This is the natural choice in case of Lemma 16 for ` = 2, K = 1. Moreover, in [68]
the analysis of sedimentation of rigid spherical particles in a viscous fluid yields the
characterization of a dilute suspension regime by the condition

Nε �
(ιε
ε

)3/2

. (3.37)

By using (3.4) condition (3.37) yields Nε � ε−1, which is fulfilled if β < 1 is chosen.
Additionally, in this case (3.9) is fulfilled for ` = 1 and K = 1 which means that we do
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not need additional assumptions in order to estimate the sums in (3.33) (Theorem 21).
This implies that Theorem 21 holds without modification even if we replace R5) of
Lemma 19 with the chaos assumption.

We emphasize that the combination of the chaos assumption and the equations of
motion for the particles can very well lead to a contradicting model in general situations
as conditions (3.36) are a priori neither easy to prove nor to falsify.

The stresses in the particle domain (3.2) can be handled analogously to Lemma 8.
We set the expansion of the stress terms as

T̃
ie

=
n−1∑
k=0

εkTi
loc,k+1 + εkRiT ·

( 1

k!
[Ri · y · ∇]kS[u0] +

∑
j 6=i

S[εRj · ujloc,k+1]
)
· Ri (3.38)

and formulate the following result:

Lemma 25 (Asymptotic model of stresses in particle domain of a suspension). Let the
requirements of Lemma 19 be fulfilled. Let Ti

loc,k = ∇yλiloc,k +∇yλiTloc,k, k = 1, . . . , n,
i = 1, . . . , Nε be the solutions of the following boundary value problems for t > 0

∇y · TiT
loc,k = f̂ ik, y ∈ E , (3.39a)

Ti
loc,k · n = Sy[uiloc,k] · n, y ∈ ∂E , (3.39b)

where the force terms f̂ ik are given as

f̂ i1 = k̂i−1−r ,

f̂ ik = − 1

(k − 2)!
RiT · [Ri · y · ∇]k−2∇ · S[u0] + k̂ik−2−r for k ≥ 2 ,

and where k̂ik are set as

k̂ik = 0 for k < 0 ,

k̂i0 = ρRe RiT · (Dtu0(ci, t)− Fr−2 eg) ,

k̂ik = ρRe RiT ·
k∑

m=0

v̇im,k−m

+ ρRe RiT ·
k−1∑
m=0

(
B(ω̇im,k−m−1) +B(ωim) ·B(ωik−m−1)

)
· Ri · y for k ≥ 1

with the terms v̇im,k−m, ω̇
i
m,k−m−1 given in (3.31).

Then T̃
ie

solve the system (3.2) at least up to an error of O(εn−1).

Proof. The proof is analogous to Lemma 8. Using the expansion of the fluid veloc-
ity (3.17) on the left-hand side of the boundary condition (3.2b) and applying a Taylor
expansion of S[u0] in ci, we get

54



n−1∑
k=0

εk

k!
RiT · [Ri · y · ∇]kS[u0] · Ri · n

+
n∑
k=1

RiT ·
∑
j 6=i

S[εkRj · ujloc,k] · R
i · n+

n∑
k=1

εk−1Sy[uiloc,k] · n+O(εn)

= T̃
ie · n+O(εn) .

Application of (3.38) and (3.39b) then shows that the boundary condition is fulfilled
up to O(εn). For the accelerations, we use an analogous expansion as in the proof of
Lemma 19:

d2

dt2
xi(y) =

n−1∑
m=1

εm
m−1∑
k=0

B(ω̇ik,m−k−1) · Ri · y +B(ωik) ·B(ωim−k−1) · Ri · y

+
n−1∑
m=0

εm
m∑
k=0

v̇ik,m−k +O(εn) =
n−1∑
m=0

εmâim +O(εn) .

Applying this expansion in (3.2a) and using (3.38) we get

ρε Re
( n−1∑
k=0

εkâik − Fr−2 eg

)
+O(εn−1)

=
n−1∑
k=0

εk−1Ri · ∇y · TiT
loc,k+1 +

n−1∑
k=1

εk−1

(k − 1)!
[Ri · y · ∇]k−1∇ · S[u0]

+
∑
j 6=i

n−1∑
k=0

εk−1RiT · Rj · ∇y · Sy[ujloc,k+1]T .

With (3.14) and (3.39a), the momentum equation for the particle domain is then
fulfilled up to an error of O(εn−1).

Remark 26. Just as in Remark 9, the force terms f̂ ik in Lemma 25 are related to the
forces and torques (3.13) of Lemma 19 by∫

E
f̂ ik dy = f ik ,

∫
E
y × f̂ ik dy = gik (3.40)

as can be seen by integrating. We show here only the relation for the gik terms. We

note that the claim is identical to `ik =
∫
E y × k̂

i
k+1 dy for k ≥ 0. Therefore,∫

E
y × k̂ik+1 dy − `ik

= ρRe

∫
E
B(y) · RiT ·

k∑
m=0

(
B(ω̇im,k−m) +B(ωim) ·B(ωik−m)

)
· Ri · y dy

− ρRe |E|RiT ·
k∑

m=0

Ji · ω̇im,k−m +B(ωim) · Ji · ωik−m
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= ρRe |E|RiT ·
k∑

m=0

( 1

|E|

∫
E
B(Ri · y) ·B(ω̇im,k−m) · Ri · y dy − Ji · ω̇im,k−m

+
1

|E|

∫
E
B(Ri · y) ·B(ωim) ·B(ωik−m) · Ri · y dy −B(ωim) · Ji · ωik−m

)
= ρRe |E|RiT ·

k∑
m=0

(−1

|E|

∫
E
B(Ri · y)2 dy · ω̇im,k−m − Ji · ω̇im,k−m

+B(ωim) · −1

|E|

∫
E
B(Ri · y)2 dy · ωik−m −B(ωim) · Ji · ωik−m

− 1

|E|

∫
E

Ri · y ⊗ Ri · y dy · (ωim × ωik−m)
)

where we used (A.10d). Since |E|−1
∫
E B(Ri · y)2 dy = −Ji, see (2.5) and (A.10d), it

follows∫
E
y × k̂ik+1 dy − `ik = −ρRe RiT ·

∫
E

Ri · y ⊗ Ri · y dy ·
k∑

m=0

ωim × ωik−m .

Finally, since v × v = 0 for all v ∈ R3,

k∑
m=0

ωim × ωik−m =
∑

0≤m<k/2
ωim × ωik−m −

∑
k/2<m≤k

ωik−m × ωim

=
∑

0≤m<k/2
ωim × ωik−m −

∑
0≤`<k/2

ωi` × ωik−` = 0 .

3.4 Kinetic suspension model

In Theorem 21 and Remark 23 we found that given the solution of a Navier-Stokes
problem u0, p0 in Ω, we can approximate a dilute or semi-dilute suspension given
by (3.1) up to an error of O(ε) by a superposition of stationary Stokes fields and
expressing the velocity of the particle in terms of u0. In order to construct higher order
corrections, we could introduce higher order local velocity fields which then incorporate
the time derivatives of the superposition of the lower order local velocity fields and the
corresponding convective terms as source terms. Instead, we want to propose a different
approach which uses a mean field description for the particle behavior but preserves
the structure of Theorem 21.

3.4.1 Mean field approximation for particle dynamics

As a preliminary step, we introduce the empirical measure µNε on Ω × SO(3) for Nε

given positions ci ∈ Ω and rotations Ri ∈ SO(3) given as

µNε(A×B) =
1

Nε

Nε∑
j=1

δcj(A)δRj(B) (3.41)

for any A × B ∈ A, A denoting the Borel σ-Algebra on Ω × SO(3) and δci , δRi the
respective Dirac-measures. We note that the centers of mass as well as the rotations
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in the context of the present work are time-dependent in general, thus, so is µNε .
Parameter-dependencies of measures are indicated by appropriate indices, hence, µNε =
µNε,t. However, as stated at the beginning of this chapter we often suppress the time-
dependency of quantities if it is obvious from context or if a detailed discussion of
the regularity of the dependency is not needed. The proof of Lemma 19 shows that
(vi1,ω

i
0) = F1(ci,Ri, t) with F1 being a smooth function not depending on the particle

index. The explicit dependence of the functions F i
k on i for k ≥ 2 is a consequence of

the particle interaction (3.15b). Using the empirical measure and the expression for
uiloc,1 given in (3.29) we can set

r2[µNε ](x, t) = ε−1Nε

∫
Ω×SO(3)

R ·Uloc,1(y(x, z,R, ε), z,R, t)χ(ι−1
ε RT · (x− z)) dµNε(z,R) ,

where the mapping χ denotes a smooth cutoff function with χ = 1 on R3 \ B1/2 and
χ = 0 on B1/4. Then due to (3.6), ε/ιε becomes arbitrarily small as ε→ 0. In particular,
for any y ∈ E it holds for all sufficiently small ε

‖ι−1
ε RiT · (xi(y)− ci)‖ ≤ ε

ιε
sup
y∈E
‖y‖ < 1

4
.

Using this relation and (3.5), we also have for any y ∈ E and i 6= j

1

2
‖ci − cj‖ − ε‖y‖ > ιε

(
1

2
− ε

ιε
sup
y∈E
‖y‖

)
>
ιε
4
> 0 .

This immediately implies for any y ∈ E and i 6= j the following relation

‖ι−1
ε RjT · (xi(y)− cj)‖ ≥ ι−1

ε |‖ci − cj‖ − ε‖y‖| >
‖ci − cj‖

2ιε
>

1

2
.

These estimations imply for x = xi(y) the identity r2[µNε ](x
i(y), t) ≡ ri2(y, t), the

latter stated in (3.15b). This also shows

F i
2(c1,R1, . . . , cNε ,RNε , t) = F2[µNε ](c

i,Ri, t) ,

where F2 is given analogously to the discussion in proof of Lemma 19 as

F2[µNε ](c,R, t) =

[
R

R

]
· A−1 ·

([
I

1√
2
I

]
·
(
f2

g2

)
+D2u0 + u2[µNε ]

)
(c,R, t) ,

with the terms

u2[µNε ](c,R, t) =

(∫
∂E

RT · r2[µNε ](x(y, c,R, ε), t) · Sy[wq](y) · n dsy

)
q=1,...,6

,

Dku0(c,R, t) =
1

k!

(∫
∂E

RT · [R · y · ∇]ku0(c, t) · Sy[wq](y) · n dsy

)
q=1,...,6

,

f2(c,R, t) = −|E|RT · ∇ · S[u0](c, t)

+ ρRe |E|RT · (∂xu0(c, t) · F1,v(c,R, t) +G1,0,v(c,R, t)) ,
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g2(c,R, t) = −
∫
E
y × RT · ∇ · S[u0](c, t) dy + ρRe |E|RT ·

(
J(R) ·G1,0,ω(c,R, t)

+B(F1,ω(c,R, t)) · J(R) · F1,ω(c,R, t)
)
,

where J(R) = R · Ĵ · RT with Ĵ given in (2.5) and where G1,0 is set as

G1,0(c,R, t) = (G1,0,v, G1,0,ω)(c,R, t) = ∂tF1(c,R, t) + ∂cF1(c,R, t) · u0(c, t)

+
3∑

m,n=1

∂RmnF1(c,R, t)(B(F1,ω(c,R, t)) · R)mn .

For k > 2, F i
k can be expressed in a similar way as

F i
k(c

1, . . . ,RNε , t) = Fk[µNε ](c
i,Ri, t).

In these cases uiloc,k−1(y, t) = Uloc,k−1[µNε ](y, c
i,Ri, t), thus rk[µNε ] is an iterated in-

tegral operator with respect to the measure µNε . Additionally, also the force terms
(f ik, g

i
k) = (fk, gk)[µNε ](c

i,Ri, t) are integral operators acting on the empirical mea-
sure, as they incorporate the expressions of the type (3.30). Using these expressions,
we formulate the following lemma.

Lemma 27 (Mean field pde of the particle description). Let the assumptions of Lemma
19 be fulfilled. Then the system

d

dt
ci(t) = u0(ci(t), t) +

n∑
k=1

εkF i
k,v(c

1(t), . . . ,RNε(t), t) (3.42a)

d

dt
Ri(t) =

n−1∑
k=0

εkB
(
F i
k+1,ω(c1(t), . . . ,RNε(t), t)

)
· Ri(t) (3.42b)

with initial data (c1(0), . . . ,RNε(0)) ∈ (Ω×SO(3))Nε has a unique solution (c1, . . . ,RNε)
with (c1, . . . ,RNε) ∈ C1(R+; (Ω× SO(3))Nε). Moreover, the empirical measure

µNε,t =
1

Nε

Nε∑
j=1

δcj(t)δRj(t)

is a weak solution in the sense of distributions to the mean field equation (see Re-
mark A.38 in Appendix A.1)

∂tψε +∇x · (u0ψε) +
n∑
k=1

εk∇x · (Fk,v[ψε]ψε)−
n−1∑
k=0

εkL[B(Fk+1,ω[ψε])](ψε)

−
n−1∑
k=0

εkdivG(L[B(Fk+1,ω[ψε])])ψε = 0 . (3.43)

The terms L[M](x, ., t) ∈ T SO(3) for a skew-symmetric matrix M denote the vector
fields associated to the left Lie derivative on SO(3) and divG(L) the corresponding
divergence on SO(3) discussed in Remark A.32.
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Proof. Since Lemma 19 holds, the right-hand side of the system (3.42) is at least in C1
Nε

and as Ω and SO(3) are bounded, the right-hand side of (3.42) is Lipschitz-continuous
in (Ω×SO(3))Nε and continuous in t. Thus, the first claim follows by Picard-Lindelöf.

For the second part, we consider the weak form of (3.43) (see (A.6) in Remark A.38).
Let a test function σ ∈ C1(Ω× SO(3);R) be given, then the empirical measure fulfills

d

dt

∫
Ω×SO(3)

σ dµNε,t =
1

Nε

Nε∑
i=1

d

dt
σ(ci(t),Ri(t)) .

By Remark A.37 and (3.42b), the right-hand side can be expressed as

d

dt

∫
Ω×SO(3)

σ dµNε,t =
1

Nε

Nε∑
i=1

∂xσ · d

dt
ci(t)− L

[
n−1∑
k=0

εkB
(
F i
k+1,ω

)]∣∣∣∣∣
Ri(t)

(σ(ci(t), .))

 .

Since F i
k(c

1, . . . ,RNε , t) = Fk[µNε,t](c
i,Ri, t) and due to (3.42a) as well as Lemma A.28,

we then find

d

dt

∫
Ω×SO(3)

σ(x,R) dµNε,t(x,R) =

∫
Ω×SO(3)

∂xσ ·

(
u0 +

n∑
k=1

εkFk,v[µNε,t]

)
(x,R) dµNε,t(x,R)

−
n−1∑
k=0

εk
∫

Ω×SO(3)

L[B(Fk+1,ω[µNε,t])](σ(x, .))(x,R) dµNε,t(x,R) ,

which is exactly the weak form of (3.43).

Next, we expand the operators Fk onto a larger class of measures. By P(Ω) we
denote the set of all Borel probability measures over Ω, analogously P(SO(3)) is the
set of Borel probability measures over SO(3). In order to proceed, we first note that
the Dirichlet boundary conditions (3.15a) can be expressed as

uiloc,k(y) = Uloc,k,∂E [µNε ](y, c
i,Ri, t)

with Uloc,k,∂E [µNε ] given in terms of Fk[µNε ], rk[µNε ], and u0. Then we find the following
result for the operators Fk, k ≥ 0 in case of general Borel probability measures in
P(Ω)× P(SO(3)).

Lemma 28. Let the assumptions of Lemma 19 hold under the sharper condition on β
given as

β ≤ 3
`− 1

`+K + 3

then the operators Fk fulfill ‖Fk[ψ]‖Cmk (Ω×SO(3)×(0,T );R6) < c independent of ε with mk =
min(K + 3 + r − k,K), k = 0, . . . , n for any ψ ∈ P(Ω)× P(SO(3)).

Proof. Following the discussion from the beginning of Section 3.4.1, we start with F0.
Since F0 = (u0,0) = (u0,0)(x, t) and F1 = F1(x,R, t), with F0 ∈ C∞(Ω×(0, T );R6) as
well as F1 ∈ C∞(Ω× SO(3)× (0, T );R6) and F0, F1 not depending on the interaction
terms, there is nothing to show in these cases. As for F2, it depends on r2[ψ], the
latter being a smooth function for any finite ε > 0. We have to check, under which
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conditions ‖r2[ψ]‖CK is bounded independent of ε for ψ ∈ P(Ω) × P(SO(3)), which
then immediately shows the corresponding bound for F2[ψ] ∈ CK(Ω×SO(3)×R+;R6).
For x ∈ Ω and t > 0 we find for 0 ≤ k ≤ K

‖∂kt r2[ψ](x, t)‖ ≤ ε−1Nε

∫
Ω\Bιε/4(x)×SO(3)

‖∂ktUloc,1(y(x, z,R, ε), z,R, t)χ(ι−1
ε RT · (x− z))‖ dψ

since χ(ι−1
ε RT · (x − z)) = 0 if ‖x − z‖ ≤ ιε/4. Next, since χ is a smooth cut-off

function and due to ‖y(x, z,R, ε)‖ ≥ ιεε
−1/4 in combination with the decay properties

of Uloc,1 given in Corollary B.4,

‖∂kt r2[ψ](x, t)‖ ≤ cε−1Nε

(
ε

ιε

)` ∫
Ω\Bιε/4(x)×SO(3)

‖∂ktUloc,1,∂E(., z,R, t)‖1,∂E dψ

≤ cε−1Nε

(
ε

ιε

)` ∫
Ω×SO(3)

‖∂ktUloc,1,∂E(., z,R, t)‖1,∂E dψ

for some ` ≥ 1 and c = c(E , χ). Since Uloc,1,∂E is given in terms of F1 and u0 which are
smooth, we have a well-defined

C = max
0≤k≤K

sup
(z,R,t)∈Ω×SO(3)×(0,T )

‖∂ktUloc,1,∂E(., z,R, t)‖1,∂E <∞

which is independent of ε. Thus,

‖∂kt r2[ψ](x, t)‖ ≤ cε−1Nε

(
ε

ιε

)`
C

∫
Ω×SO(3)

dψ = cCε−1+`N1+`/3
ε = cCε`−1−β(1+`/3)

by applying (3.4) and Nε = ε−β. This way we find that ‖∂kt r2[ψ](x, t)‖ < c independent
of ε for any k ≥ 0 and (x, t) ∈ Ω × (0, T ) if β ≤ 3(` − 1)/(` + 3), which is true as
K ≥ 1. Similarly, we find

‖∇kr2[ψ](x, t)‖ ≤ cε−1−kNε

∫
Ω\Bιε/2(x)×SO(3)

‖∇k
yUloc,1(y(x, z,R, ε), z,R, t)‖ dψ

+ cε−1Nε

k∑
m=0

∫
Bιε/2(x)\Bιε/4(x)×SO(3)

ε−k+mι−mε ‖∇k−m
y Uloc,1(y(x, z,R, ε), z,R, t)‖ dψ

with c depending on ∇m
y χ for m = 0, . . . , k. Using once again the decay properties of

Uloc,1, we find

‖∇kr2[ψ](x, t)‖ ≤ cε−1−kNε

(
ε

ιε

)`+k ∫
Ω\Bιε/2(x)×SO(3)

‖Uloc,1,∂E(., z,R, t)‖1,∂E dψ

+ cε−1Nε

k∑
m=0

ε−k+mι−mε

(
ε

ιε

)`+k−m ∫
Bιε/2(x)\Bιε/4(x)×SO(3)

‖Uloc,1,∂E(., z,R, t)‖1,∂E dψ

≤ cCε−1+`Nει
−`−k
ε = cCε−1+`ε−β(3+`+k)/3 .

Hence, ‖∇kr2[ψ](x, t)‖ < ∞ if β ≤ 3(` − 1)/(` + k + 3). In total, the CK(Ω ×
(0, T );R3)-norm of r2[ψ] is bounded independent of ε, given β ≤ 3(`− 1)/(`+K + 3).
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Then also F2[ψ] ∈ CK(Ω × SO(3) × (0, T );R6) as well as Uloc,2,∂E [ψ] ∈ CK(∂E × Ω ×
SO(3) × (0, T );R3) with norms bounded independent of ε. Applying Lemma B.3 for
any (z,R, t) ∈ Ω×SO(3)× (0, T ), Uloc,2[ψ](., z,R, t) ∈ C∞(R3 \ E ;R3) and Uloc,2[ψ] ∈
CK(R3 \ E × Ω× SO(3)× (0, T );R3). Since

C = max
0≤k≤K

sup
(z,R,t)∈Ω×SO(3)×(0,T )

‖∂ktUloc,2,∂E(., z,R, t)‖1,∂E <∞

we can repeat each step in the analysis of r2[ψ] and arrive analogously at r3[ψ] ∈
CK(Ω× (0, T )). However, in case of heavy particles we lose regularity in F3[ψ] due to
the fact that F3 incorporates the terms (f3, g3)[ψ] which depend on partial derivatives
of F2[ψ] in the heavy particles regime. Hence, we find only ‖F3[ψ]‖CK−1 < c. By
iterating this procedure, we find Fk[ψ] ∈ CK+2−k(Ω× SO(3)× (0, T );R6) is uniformly
bounded for 0 ≤ k ≤ n in case of heavy particles. In case of the remaining inertial
regimes, we again have the property that the interaction terms restrict the maximal
regularity and hence Fk[ψ] ∈ Cmin(K+3+r−k,K)(Ω×SO(3)× (0, T );R6) as proposed.

Remark 29 (Transport operators in case of chaos assumption). In Remark 24 we
discussed that Lemma 19 still holds if we replace the condition on the particle number
by the chaos assumption for the hydrodynamic interaction terms rik. Similarly, it is
desirable to replace the condition on β in Lemma 28 by an appropriate condition on
rk[ψ]. In fact, the conditions (3.36) are not sufficient to derive uniform bounds for
rk[ψ], since (3.36) only imply that ‖rk(x, t)‖ is bounded independent of ε if ψ = µNε
and for x ∈ E iε for each i ∈ {1, . . . , Nε}. Hence, in order to have well-defined Fk, we
have to expand (3.36) by the assumption

‖rk[ψ]‖Cmin(K+3+r−k,K) < c (3.44)

for k = 2, . . . , n with c independent of ε.

3.4.2 Mean field approximation for the complete system

Now that we have formulated a mean field approximation for (3.1b)-(3.1e), we aim for
an analogous result incorporating the momentum equation for the fluid (3.1a) which
is based on Lemma 19. Since we are deriving an expression for an equation which
will govern the dynamics of u0, we emphasize the dependence of various participating
terms on u0 by expanding the notation accordingly, i.e., we write for example Fk =
Fk[ψ,u0] in this section. In order to derive the governing macroscopic equations, we
note that (3.33) in the proof of Theorem 21 contains the relevant terms which must
be incorporated into the dynamic equation for u0 for a corresponding error behavior
in Ωε. In every E iε , on the other hand, the velocity is given as a continuation of the
boundary condition to the particle domain. Thus, we denote the continuation of the
local velocity fields onto R3 by

Ũloc,k[µNε ,u0](y, c,R, t) = Uloc,k[µNε ,u0](y, c,R, t)1R3\E(y)

+Uloc,k,∂E [µNε ,u0](y, c,R, t)1E(y) .

This way, Ũloc,k[µNε ,u0](., c,R, t) ∈ W1,p
loc (R3;R3) for any p ≥ 1 and we can express the

left-hand side of (3.1a) for any x ∈ Ω analogously to (3.33) as
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Re Dtu0 + Re
n−1∑
k=0

εkNε

∫
Ω×SO(3)

R · ∂yŨloc,k+1[µNε,t,u0] · RT dµNε,t · u0

− Re
n−1∑
k=0

εkNε

k∑
`=0

∫
Ω×SO(3)

R · ∂yŨloc,k+1−`[µNε,t,u0] · RT

· (B(F`+1,ω[µNε,t,u0]) · (x− z) + F`,v[µNε,t,u0]) dµNε,t

+ Re
n−1∑
k=1

εkNε

k−1∑
`=0

∫
Ω×SO(3)

B(F`+1,ω[µNε,t,u0]) · R · Ũloc,k[µNε ,u0] dµNε,t

+ Re
n−1∑
k=1

εkNε

∫
Ω×SO(3)

R · ∂tŨloc,k[µNε,t,u0] dµNε,t

+ Re
n−1∑
k=1

εkNε∂xu0 ·
∫

Ω×SO(3)

R · Ũloc,k[µNε,t,u0] dµNε,t

+ Re
n−1∑
k=1

εkN2
ε

k−1∑
`=0

∫
Ω×SO(3)

R · ∂yŨloc,k−`[µNε,t,u0] · RT dµNε,t

·
∫

Ω×SO(3)

R · Ũloc,`+1[µNε,t,u0] dµNε,t

= Re Dtu0 + Re
n−1∑
k=0

εkHk[µNε ,u0] .

Considering the right-hand side of (3.1a) the stresses in Ωε are given naturally as
Newtonian. For x ∈ E iε we apply the model for stresses in the particle domain, and use
the results of Lemma 25. Thus, the complete stress tensor reads as

Σ =
(

S[u0] +
Nε∑
i=1

n−1∑
k=0

εkRi · Sy[uiloc,k+1] · RiT
)
1Ωε

+
Nε∑
i=1

(
S[u0] +

n−1∑
k=0

(
εkRi · Ti

loc,k+1 · RiT +
∑
j 6=i

εkRj · Sy[ujloc,k+1] · RjT
))
1Eiε

(3.45)

= S[u0] +
Nε∑
i=1

n−1∑
k=0

εkRi · Sy[uiloc,k+1] · RiT1Ω\Eiε +
Nε∑
i=1

n−1∑
k=0

εkRi · Ti
loc,k+1 · RiT1Eiε .

This way, the stresses in the domain are continuous in the normal direction across the
boundary of each particle and, although Σ(., t) 6∈ W1,p(Ω) for any p ≥ 1 due to the
jump in the stresses, we still have for any φ ∈ C1(Ω;R) vanishing on ∂Ω∑

`

∫
Ω

∂x`φ (Σj` − S[u0]j`) dx = −ej ·
Nε∑
i=1

n−1∑
k=0

εk−1Ri ·
∫
Eiε
φ∇y · Ti

loc,k+1dx

and hence a meaningful notion of divergence. Thus, the forces in Ω are given as

∇ ·Σ = ∇ · S[u0] +
Nε∑
i=1

n−1∑
k=0

εk−1Ri · ∇y · Ti
loc,k+11Eiε . (3.46)
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Analogously to the local velocity fields also the pressures piloc,k can be understood as
functionals of u0 and the empirical measure, evaluated at a given position c ∈ Ω and
rotation R ∈ SO(3), i.e., piloc,k(y, t) = Ploc,k[µNε ,u0](y, ci,Ri, t). Hence, the Newtonian
stress of the local fields becomes a functional acting on Uloc,k, Ploc,k. Since the terms

f̂ ik in Lemma 25 can also be expressed by functionals f̂k[µNε ,u0](y, ci,Ri, t) similar to
fk, gk in Section 3.4.1, we can set Ti

loc,k(y, t) = Tloc,k[µNε ,u0](y, ci,Ri, t). Now we can
express Σ with the help of the empirical measure as

Σ[µNε ,u0] = S[u0]

−Nε

n−1∑
k=0

εk
∫

Ω×SO(3)

Ploc,k+1[µNε ,u0]I1R3\E(y(x, z,R, ε)) dµNε (3.47a)

+
n−1∑
k=0

εk2E

[
Nεε

∫
Ω×SO(3)

R · Ũloc,k+1[µNε ,u0] dµNε

]
(3.47b)

+Nε

n−1∑
k=0

εk
∫

Ω×SO(3)

R ·
(

Tloc,k+1[µNε ,u0] (3.47c)

− 2Ey[Uloc,k+1,∂E [µNε ,u0]]
)
· RT1E(y(x, z,R, ε)) dµNε

= S[u0] +
n−1∑
k=0

εkΣk[µNε ,u0]

since Ũloc,k[µNε ,u0](., c,R, t) ∈ W1,p(R3;R3). Similarly, the forces due to Σ in Ω, (3.46)
are given as

∇ ·Σ[µNε ,u0] = ∇ · S[u0] (3.48)

+
n−1∑
k=0

εk−1Nε

∫
Ω×SO(3)

R · ∇y · Tloc,k+1[µNε ,u0]1E(y(x, z,R, ε)) dµNε .

We stress that ∇·Σ[µNε ,u0] given in (3.48) is indeed the weak divergence of Σ[µNε ,u0]
given in (3.47): Testing ej · Σ[µNε ,u0] for any j = 1, 2, 3 with the gradient of a test
function φ over Ω, we get an expression which depends on the empirical measure µNε .
Inserting the definition of the latter yields (3.45) tested by ∇φ over Ω, which is exactely
the expression of the weak divergence of Σ, which in turn is stated in (3.46). In total
we have

∑
`

∫
Ω

∂x`φΣj`[µNε ,u0]dx = −ej ·
∫

Ω

φ∇ · S[u0] +
n−1∑
k=0

Nε∑
i=1

εk−1φRi · ∇y · Ti
loc,k+11Eiεdx

= −ej ·
∫

Ω

φ∇ · S[u0]dx

− ej ·
∫

Ω

φ
n−1∑
k=0

εk−1Nε

∫
Ω×SO(3)

R · ∇y · Tloc,k+1[µNε ,u0]1E(y(x, z,R, ε))dµNεdx

which is the jth component of (3.48) tested by φ over Ω.
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Remark 30 (Limitations of the model). Having formulated an expression for the
stresses in the domain as well as for the convective terms of (3.1a), it is desirable
to expand the operators Hk and Σk onto a larger class of measures and consider the
coupled mean field problem of the form

Re Dtu0 + Re
n−1∑
k=0

εkHk[ψε,u0]−∇ · S[u0]−
n−1∑
k=0

εk∇ ·Σk[ψε,u0] = 0 , x ∈ Ω ,

∇ · u0 = 0 , x ∈ Ω ,

with the partial differential equation for ψε given as

∂tψε +∇x · (u0ψε) +
n∑
k=1

εk∇x · (Fk,v[ψε,u0]ψε) +
n−1∑
k=0

εkL[−B(Fk+1,ω[ψε,u0])](ψε)

+
n−1∑
k=0

εkdivG(L[−B(Fk+1,ω[ψε,u0])])ψε = 0 , (x,R) ∈ Ω× SO(3) ,

for t ∈ (0, T ) with an initial condition for u0, ψε as well as boundary conditions on ∂Ω
for u0 and ψε. But since we used Taylor expansions of u0 in our approach, the operators
Hk,Σk, Fk carry higher order time and space derivatives of u0 for higher values of k.
To be precise, in case of heavy particles, F2 (and as a consequence H1,Σ1) incorporates
second order time and space derivatives of u0 and in any case, F3 (as well as H2,Σ2)
carries at least the third order space derivatives of u0 as can be seen from proof of
Lemma 19. Since those higher order derivatives appear multiplied with powers of ε, we
have to consider singular perturbation problems in the corresponding cases which require
additional initial and boundary conditions. The latter are not naturally occurring in
the suspension problem (3.1), which is the reason, why we use the restriction n ≤ 1 for
heavy particles and n ≤ 2 for normal and light-weighted ones from here on.

Next, we expand the operators Hk,Σk to a larger class of measures analogously to
the procedure for Fk in Lemma 28. In this case, however, we do not use general Borel
probability measures. Instead, we consider a particular subset of Borel measures over
Ω, PC(Ω) ⊂ P(Ω), namely the set of Borel probability measures which are absolutely
continuous with respect to the Lebesgue measure and whose Radon derivatives % are
at least continuously differentiable and fulfill ‖%‖C(Ω) < C. Thus, any ψ ∈ PC(Ω) ×
P(SO(3)) fulfills for Borel sets A ∈ B(Ω), B ∈ B(SO(3))

ψ(A×B) =

∫
A

ψz(B) dz , (3.49)

with z 7→ ψz(SO(3)) being at least continuously differentiable and fulfilling the prop-
erty ψz(SO(3)) < C for all z ∈ Ω. We point out that the Radon derivative of ψ
with respect to the Lebesgue measure over Ω, ψz, is in itself a measure over SO(3).
Hence, its spatial dependency is denoted as a parametric dependency for measures as
stated at the beginning of Section 3.4.1. As usual, ψz is additionally time-dependent,
i.e. ψz = ψz,t. However, this notation is suppressed whenever this dependency is clear
from context and if the regularity of the mapping is not important.
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Lemma 31. Let the assumptions of Lemma 28 hold for K ≥ 1, then

Hk[ψ,u0] ∈ Lp(Ω× (0, T );R3) ,

Σk[ψ,u0] ∈ Lp(Ω× (0, T );R3×3)

for k = 0 in case of heavy particles and k ∈ {0, 1} for normal or light-weighted particles
for any ψ ∈ PC(Ω)× P(SO(3)) and any p ∈ [1,∞].

Proof. We start with H0. Since u0, F1 are smooth, we have

‖H0[ψ,u0](x, t)‖ ≤ cNε

∫
Ω×SO(3)

‖∂yŨloc,1‖(‖u0‖+ ‖F1,ω[u0]‖) dψ ≤ cNε

∫
Ω×SO(3)

‖∂yŨloc,1‖ dψ

The constant c depends on u0 and E but is independent of ε. As ιε = N
−1/3
ε > N−1

ε for
all Nε > 1 we can decompose Ω into the direct sum Ω = (Ω \Bιε)∪ (Bιε \B1/Nε)∪B1/Nε

with balls around x. On the first two sets we use the decay properties of ∂yUloc,1

(Corollary B.4) and on the last one, we estimate ∂yŨloc,1 by the L1-norm of Uloc,1 on
∂E for z ∈ B1/Nε \ Eε and by the maximum of ∂yUloc,1,∂E for z ∈ Eε. Then, by setting

D = max
k∈{0,1}

sup
(y,z,R,t)∈E×Ω×SO(3)×(0,T )

‖∇kUloc,1,∂E(y, z,R, t)‖ ,

with D independent of ε and D <∞, we get

‖H0[ψ,u0](x, t)‖ ≤ cDNε

(∫
Ω\Bιε

(ει−1
ε )`+1ψz dz +

∫
Bιε\B1/Nε

(εNε)
`+1ψz dz +

∫
B1/Nε

ψz dz

)
.

Finally, applying the estimation ψz ≤ C and using the definitions of Nε, ιε, we get

‖H0[ψ,u0](x, t)‖ ≤ cCD
(
ε`+1−β/3(`+4) + ε(`+1)(1−β) + ε2β

)
which is bounded, given

β ≤ 3
`+ 1

`+ 4
. (3.50)

The relation (3.50) is true as due to Lemma 28

β ≤ 3
`− 1

`+K + 3
≤ 3

`− 1

`+ 4
< 3

`+ 1

`+ 4
< 1 .

Hence, the term ‖H0[ψ,u0]‖ is bounded independent of ε for all (x, t) ∈ Ω × (0, T ).
In case of normal or light-weighted particles, we first note that Lemma 28 shows
‖Uloc,2,∂E [ψ,u0]‖C1 <∞ independent of ε, thus

D = max
i∈{1,2}

max
0≤j+k≤1

j,k≥0

sup
(y,z,R,t)∈E×Ω×SO(3)×(0,T )

‖∂jt∇k
yUloc,i,∂E(y, z,R, t)‖ <∞

and ‖F2‖C1 < c holds independent of ε. Thus, we find analogously to H0

‖H1[ψ,u0]‖ ≤ cCD(ε(1−β)` + ε`+1−β(`+4)/3 + ε`−β(`+3)/3 + ε2β) ,
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which is uniformly bounded for any ε > 0, if

β ≤ 3
`

`+ 3
< 3

`+ 1

`+ 4
. (3.51)

The relation (3.51) is true since β fulfills

β ≤ 3
`− 1

`+ 4
< 3

`

`+ 3
.

As for the stresses, we find similarly for i ∈ {0, 1}

‖Σi[ψ,u0]‖ ≤ cCD(ε`+1−β(`+4)/3 + ε(`+1)(1−β) + ε2β + ε3−β) ,

which is finite since (3.50) is true.

Next, we approximate the terms (3.47c) of Σk in Lp(Ω). To be precise, given a

function f ∈ Lp(Ω;Rn) we are looking for some f̃ ∈ Lp(Ω;Rn), such that∥∥∥∥∫
Ω

(f̃ − f)θdx

∥∥∥∥ ≤ cεr

for all θ ∈ C∞0 (Ω;R). In order to keep the notation short, we write in this case

f
?
= f̃ +O(εr) .

Lemma 32. Let the assumptions of Lemma 31 hold and let ψ ∈ PC(Ω)× P(SO(3)).
Then the following relations hold on Lp(Ω) for p ∈ (1,∞):

Nε

∫
Ω×SO(3)

R ·
(

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]]
)
· RT1E(y(x, z,R, t)) dψ

?
= ε3Nε

∫
SO(3)

R ·
∫
E

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]] dy · RT dψx +O(ε4Nε)

for k = 1 in case of heavy particles and 1 ≤ k ≤ 2 for normal or light-weighted ones.
In case of normal or light-weighted particles we additionally have

Nε

∫
Ω×SO(3)

R ·
(

Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]
)
· RT1E(y(x, z,R, t)) dψ

?
= ε3Nε

∫
SO(3)

R ·
∫
E

Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]] dy · RT dψx

− ε4Nε

∑
`m

∂x`

∫
SO(3)

R ·
∫
E

(Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]) ym dy · RTRT
m` dψx

+O(ε5Nε) .

Proof. Before showing the claims, we note that for fixed z ∈ Ω and all x ∈ Ω the
following identity hold

1E(y(x, z,R, ε)) = 1Eε(z)(x) .
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For any θ ∈ C∞0 (Ω;R) we find in case of (3.47c)∫
Ω

θNε

∫
Ω×SO(3)

R ·
(

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]]
)
· RT1E(y(x, z,R, ε)) dψ dx

= Nε

∫
Ω×SO(3)

R ·
∫

Ω

θ
(

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]]
)
· RT1Eε(z)(x) dx dψ

= Nε

∫
Ω×SO(3)

R ·
∫
Eε(z)

θ
(

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]]
)

dx · RT dψ .

In this relation θ is evaluated at x. Since x ∈ Eε(z), x = z + εR · y with y ∈ E
and as θ is smooth, θ(x) = θ(z) + O(ε). Moreover, the matrices are evaluated at
(y(x, z,R, ε), z,R, t) = (y, z,R, t). Thus, we get the following overall relation∫

Ω

θNε

∫
Ω×SO(3)

R ·
(

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]]
)
· RT1E(y(x, z,R, ε)) dψ dx

=

∫
Ω×SO(3)

θ(z)ε3NεR ·
∫
E

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]] dy · RT dψ +O(ε4Nε)

=

∫
Ω

θε3Nε

∫
SO(3)

R ·
∫
E

Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]] dy · RT dψx dx+O(ε4Nε)

for k = 1 in case of heavy particles and 1 ≤ k ≤ 2 for normal or light-weighted
ones. In the latter case, we have to add another approximation order to the expression
associated with k = 1. In this case we have∫

Ω

θNε

∫
Ω×SO(3)

R ·
(

Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]
)
· RT1E(y(x, z,R, t)) dψ dx

−
∫

Ω

θε3Nε

∫
SO(3)

R ·
∫
E

Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]] dy · RT dψx dx

=

∫
Ω

∂x`θε
4Nε

∫
SO(3)

R ·
∫
E

(Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]) ym dy · RTRT
m` dψz dz

+O(ε5Nε) .

Since z 7→ ψz(SO(3)) ∈ C1(Ω;R), Tloc,1 ∈ C1(E × Ω × SO(3) × (0, T );R3×3) and
Uloc,1,∂E ∈ C∞(E × Ω× SO(3)× (0, T );R3) we finally have∫

Ω

∂x`θε
4Nε

∫
SO(3)

R ·
∫
E

(Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]) ym dy · RTRT
m` dψz dz

= −
∫

Ω

θε4Nε∂x`

∫
SO(3)

R ·
∫
E

(Tloc,1[ψ,u0]− 2Ey[Uloc,1,∂E [ψ,u0]]) ym dy · RTRT
m`dψxdx .

Lemma 32 shows that the terms associated with the particle stresses in Σk can be
approximated by integral values of Tloc,k. Since Tloc,k as well as uloc,k,∂E are at least
continuously differentiable in E , we can apply the following relations analogously to [12]∑

j

∫
E
∇y · (Tijykej)dy =

∫
E
(∇y · TT )iykdy +

∫
E
Tikdy ,
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∫
E
∂yjui dy =

∫
E
∇y · (uiej) dy =

∫
∂E
uinj ds

which hold for a matrix T ∈ C1(E ;R3×3) and a velocity u ∈ C1(E ;R3). This yields
together with the boundary condition for the particle stresses (3.39b)∫

E
Tloc,k[ψ,u0]− 2Ey[Uloc,k,∂E [ψ,u0]] dy (3.52)

=

∫
∂E

Sy[Uloc,k] · n⊗ y −Uloc,k,∂E [ψ,u0]⊗ n− n⊗Uloc,k,∂E [ψ,u0] ds(y)

−
∫
E
∇y · Tloc,k[ψ,u0]⊗ y dy .

Remark 33 (Pressure terms in Σk). The expressions for Σk contain the pressures
Ploc,k in (3.47a). In Lemma 31 we showed that the corresponding expressions are in
Lp(Ω). Analogously to Lemma 32 it holds that the weak derivative of (3.47a) is given
by

∇p̃k = Nε∇
∫

Ω×SO(3)

Ploc,k[ψ,u0](y(x, z,R, ε), z,R, t)1R3\E(y(x, z,R, ε)) dψ

?
= ε2Nε

∫
SO(3)

R ·
∫
∂E
Ploc,k[ψ,u0](y,x,R, t)n ds(y) dψx(R)

− ε3Nε∇ ·
(∫
SO(3)

R ·
∫
∂E
Ploc,k[ψ,u0](y,x,R, t)n⊗ y ds(y) · RT dψx(R)

)T
+ ε−1Nε

∫
Ω×SO(3)

R · ∇yPloc,k[ψ,u0](y(x, z,R, ε), z,R, t)1R3\E(y(x, z,R, ε)) dψ

+O(ε4Nε) .

Analogously to Lemma 31, it holds∥∥∥∥ε−1Nε

∫
Ω×SO(3)

R · ∇yPloc,k[ψ,u0](y(x, z,R, ε), z,R, t)1R3\E(y(x, z,R, ε)) dψ

∥∥∥∥
≤ cCD(ε`+1−β(`+5)/3 + ε`+1−β(`+2) + ε2β−1) .

Hence, for β ≥ 0.5 and β ≤ (`+ 1)/(`+ 2), we get a uniform bound on ∇p̃k and thus
p̃k ∈ W1,p(Ω;R) is a well-defined force term. However, since any force given as the
gradient of a scalar field in Ω is canceled out by the pressure generated by the condition
of solenoidity, we do not consider the terms p̃k explicitly in the final model analogously
to [12]. Therefore, we also don’t impose further conditions on β which would ensure
that ∇p̃k is well-defined.

Remark 34 (Velocity fluctuations, additional force terms). The expression (3.47b)
contains the term

ε2NεŨk = Nεε

∫
Ω×SO(3)

R · Ũloc,k+1[ψ,u0] dψ

originating in the superposition of local particle velocities. Usually in suspension mod-
eling, the analogous terms associated with the superposition are modeled as a velocity
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fluctuation with zero mean, cf. [12, 119]. In the present case we don’t apply ensemble
averaging and keep the corresponding terms in the model. Analogously to the approach
in the proof of Lemma 31, we find

‖ε2NεŨk‖ ≤ c(ε`+1−β(`+3)/3 + ε`+1−β` + ε2β+1) ,

‖∇ε2NεŨk‖ ≤ c(ε`+1−β(`+4)/3 + ε(`+1)(1−β) + ε2β) ,

‖∇2ε2NεŨk‖ ≤ c(ε`+1−β(`+2)/3 + ε(`+1)(1−β) + ε3β−1) .

The expressions are bounded independent of ε if β ≥ 1/3 and due to Lemma 28.
It should be noted, that the interplay of the pressure contributions (3.47a), the veloc-

ities Ũk (3.47b) and the particle stresses (3.47c) together generate the force (3.48). By
combining the pressure terms with the global pressure (see Remark 33) and using the
approximation of the terms carrying the particle stresses due to Lemma 32, we have a
valid approximation of the stress Σk but we lose the property (3.48). In fact, it holds
for any θ ∈ C1

0(Ω;R) and k ≥ 0∫
Ω

θεk−1Nε

∫
Ω×SO(3)

R · ∇y · Tloc,k+1[ψ,u0]1E(y(x, z,R, ε)) dψ dx

= εk−1Nε

∫
Ω×SO(3)

R ·
∫
Eε(z)

θ∇y · Tloc,k+1[ψ,u0] dx dψ

= εk+2Nε

∫
Ω

θ

∫
SO(3)

R · fk+1[ψ,u0] dψx dx

− εk+3Nε

∫
Ω

θ∇ ·
(∫
SO(3)

R ·
∫
E
f̂k+1[ψ,u0]⊗ y dy · RT dψx

)T
dx

+O(ε4Nε)

where we used Remark 26 and (3.39a). The second term of the above expression can be
found as the divergence of the stress terms in Lemma 32 by applying (3.52). The term

bk+1[ψ,u0] = εk+2Nε

∫
SO(3)

R · fk+1[ψ,u0] dψx , (3.53)

however is not recovered. It is also not part of ∇ · 2Nεε
2E[Ũk], as, e.g.,

∇ · 2Nεε
2E[Ũ0] = c

∫
Ω×SO(3)

R ·∆yUloc,1(y(x, z,R, ε), z,R, t)1R3\E(y(x, z,R, ε)) dψ

which does not admit an approximation of the form (3.53). Hence, we incorporate bk+1

as an additional force besides the approximation of ∇ ·ΣT
k in the momentum equation

of the fluid.
For normal or light-weighted particles, we also might consider an additional term in

the residual for k = 0, but since ∇y · Tloc,1 ≡ 0 in this case, we find b1 ≡ 0.

For the following theorem we introduce the following additional abbreviations.

Abbreviation 35. For ψ ∈ PC(Ω)× P(SO(3)) and u ∈ C1(Ω× (0, T );R3)

Ũk[ψ,u](x, t) = ε−1

∫
Ω×SO(3)

R · Ũloc,k+1[ψ,u](y(x, z,R, ε), z,R, t) dψ(z,R) ,
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H̃0[ψ,u](x, t) = ε−1

∫
Ω×SO(3)

(u(x, t)− u(z, t)−B(F1,ω[u](z,R, t)))

⊗ R · Ũloc,1[u](y(x, z,R, ε), z,R, t) dψ(z,R) ,

Σp
k[ψ,u](x, t) =

|Ω|
|E|

∫
SO(3)

R ·
∫
∂E

Sy[Uloc,k[ψ,u]](y,x,R, t) · n⊗ y

−Uloc,k,∂E [ψ,u](y,x,R, t)⊗ n
− n⊗Uloc,k,∂E [ψ,u](y,x,R, t) ds(y) · RT dψx(R)

with Ũloc,1[ψ,u] = Ũloc,1[u].

In order to forumlate our central Theorems for the particle approximation, we
have to introduce a metric for measures. We apply here the Wasserstein (or Monge-
Kantorovich) metric [52, 53] which is given as

d(ψ1, ψ2) = sup
θ∈Lip(Ω×SO(3))

Lip(θ)≤1

∣∣∣∣∫
Ω×SO(3)

θ(z,R) dψ1(z,R)−
∫

Ω×SO(3)

θ(z,R) dψ2(z,R)

∣∣∣∣ (3.54)

with Lip(A) denoting the set of Lipschitz continuous functions θ over a set A with
Lipschitz constant Lip(θ).

Theorem 36 (Mean field approximation of a particle suspension up to O(ε) for nor-
mal or light-weighted particles). Let the density scaling function (2.12) be given as
αρ(ε) = εr with r ≥ 0, the particle number as Nε = ε−β with β ≥ 1/3 subject to
the condition of Lemma 28 for K = 1 as well as φε given by (3.3). Assume that
u0 ∈ C1((0, T ); C3(Ω;R3)), p0 ∈ C0((0, T ); C2(Ω;R)), and the time-parametrized mea-
sure ψt ∈ PC(Ω) × P(SO(3)), with its spatial Radon derivative (see (3.49)) fulfilling
(x, t) 7→ ψx,t(SO(3)) ∈ C1(Ω× (0, T );R+

0 ), solve

Re Dtu0 = ∇ · S[u0] + φε∇ ·Σp
0[ψt,u0] + 2Nεε

2∇ · E[Ũ0[ψt,u0]] (3.55a)

+ Re Fr−2 eg

+ φε|Ω|ψx,t(SO(3))
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
−Nεε

2 Re∇ · H̃0[ψt,u0] ,

∇ · u0 = 0 , (3.55b)

in Ω× (0, T ) coupled with the weak formulation (A.6) of

∂tψt +∇x · (u0ψt) + ε∇x · (F1,v[u0]ψt) = L[B(F1,ω[u0])](ψt) (3.55c)

+ divG(L[B(F1,ω[u0])])ψt

in Ω×SO(3) with boundary data for u0, ψt at ∂Ω as well as initial conditions u0(., 0), ψ0.
Additionally, let (ci,Ri) ∈ C2((0, T ); Ω× SO(3)), i = 1, . . . , Nε be given subject to the
condition (3.5) and whose empirical measure fulfills

d(µNε,t, ψt) < cε4Nε (3.56)

with c = c(T ) but independent of ε. Then (3.55) is an approximation of the suspension
problem (3.1) up to an error of O(ε).

70



Proof. First, by using (ci(t),Ri(t)) we set the particle domains as E iε = x(E , ci,Ri, ε).
Then since b 2

2+r
c ≤ 1 for r ≥ 0 and b −r

2+r
c ≤ 0 we can apply Remark 20 for n = 2 and

hence construct an asymptotic solution to the particle related equations (3.1b)-(3.1e)
by means of Lemma 19 up to an error of O(ε2). Since the empirical measure, µNε,t, of
(ci,Ri) fulfills (3.56) and u0, F1 are at least C1, we have for any θ ∈ C2(Ω× SO(3))

d

dt

∫
Ω×SO(3)

θ dψt −
∫

Ω×SO(3)

∇xθ · (u0 + εF1,v[u0]) + L[B(−F1,ω[u0])](θ) dψt

=
d

dt

∫
Ω×SO(3)

θ dµNε,t −
∫

Ω×SO(3)

∇xθ · (u0 + εF1,v[u0]) + L[B(−F1,ω[u0])](θ) dµNε,t

+O(ε4Nε) .

The terms dθ(ci,Ri)/dt can be related to the directional derivatives of θ in Ω×SO(3) by
using the fact that ∂/∂xi and the Lie derivatives span the tangent space T(x,R)Ω×SO(3),
see Rem. A.37. In particular, we have

d

dt
θ(ci,Ri) =

[
d

dt
ci · ∇x

]
θ(ci,Ri)− L

[
d

dt
Ri · RiT

]∣∣∣∣
Ri

(θ(ci, .)) .

Due to the linearity of the differential operators appearing here (see Lemma A.28), it
follows up to an error of cε4Nε

1

Nε

Nε∑
i=1

[(
d

dt
ci − (u0(ci, t) + εF1,v[u0](ci,Ri, t))

)
· ∇x

]
θ(ci,Ri)

− L
[

d

dt
Ri · RiT −B(F1,ω[u0](ci,Ri, t))

]∣∣∣∣
Ri

(θ(ci, .)) = 0 . (3.57)

The relation (3.57) holds for any θ ∈ C2(Ω × SO(3)) and therefore specifically for
any θ ∈ C2(Ω × R3×3). This way the Lie derivatives can be directly related to partial
derivatives on R3×3 by applying the definition of the Lie derivative and the chain
rule. Thus, the relation (3.57) becomes a scalar product for vectors in R12Nε . Since
‖ci − cj‖ > ιε, for any Z ∈ R12Nε we can construct a θ ∈ C2(Ω×R3×3) such that

(∂x,Rθ(c
1,R1), . . . , ∂x,Rθ(c

Nε ,RNε)) = Z ,

thus (3.57) is true if and only if

d

dt
ci = u0 + εF1,v[u0](ci,Ri, t) ,

d

dt
Ri = B(F1,ω[u0])(ci,Ri, t) · Ri (3.58)

with initial conditions (ci(0),Ri(0)) for all i = 1, . . . , Nε. In fact, the relation (3.58)
equals (3.16) with the velocity expressions (3.19) up to an error of O(ε).

As for the fluid momentum equation, we note that (3.55a) implies for any divergence-
free θ ∈ C2

0(Ω)
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∫
Ω

(
Re Dtu0 −∇ · S[u0]− Re Fr−2 eg

)
· θ dx

= −
∫

Ω

ε3Nε
|E|
|Ω|

Σp
0[ψt,u0] : ∇θ dx+

∫
Ω

εŨ0[ψt,u0] ·∆θ dx

+

∫
Ω

θ ·
∫
SO(3)

ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dψx,t(R) dx

+

∫
Ω

Nεε
2 Re H̃0[ψt,u0] : ∇θT dx .

Since Ũloc,1[µNε ,u0](., c,R, t) ∈ W1,∞(R3;R3) and smooth in the arguments c,R, the

mapping (c,R) 7→ Ũloc,k[µNε ,u0](y(x, c,R, ε), c,R, t) ∈ W1,∞(Ω × SO(3);R3) for any
x ∈ Ω. By Sobolev inequality [45], the latter mapping has a Lipschitz continuous

version and therefore H̃0[ψt,u0] = H̃0[µNε,t,u0]+O(ε4Nε) and analogously Ũ0[ψt,u0] =

Ũ0[µNε,t,u0] +O(ε4Nε). Additionally, we have∫
Ω

θ ·
∫
SO(3)

ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dψx,t(R) dx

=

∫
Ω×SO(3)

θ · ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dψt(x,R)

=

∫
Ω×SO(3)

θ · ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dµNε,t(x,R) +O(ε4Nε)

since the integrands are at least C1. Analogously we find∫
Ω

ε3Nε
|E|
|Ω|

Σp
0[ψt,u0] : ∇θ dx

=

∫
Ω×SO(3)

ε3NεR ·
∫
∂E

Sy[Uloc,1[ψ,u]](y,x,R, t) · n⊗ y −Uloc,1,∂E [ψ,u](y,x,R, t)⊗ n

− n⊗Uloc,1,∂E [ψ,u](y,x,R, t) ds(y) · RT : ∇θ dµNε,t(x,R) +O(ε4Nε) .

Using the transformation (3.52) and the property
∫
E ∇y · Tloc,1 ⊗ y dy = 0 we get∫

Ω

ε3Nε
|E|
|Ω|

Σp
0[ψt,u0] : ∇θ dx

=

∫
Ω×SO(3)

ε3NεR ·
∫
E

Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]] dy · RT : ∇θ dµNε,t(x,R) +O(ε4Nε) .

Using the definition of the empirical measure, we continue by repeating the steps in
the proof of Lemma 32 in reversed order∫

Ω×SO(3)

ε3NεR ·
∫
E

Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]] dy · RT : ∇θ dµNε,t(x,R)

=
Nε∑
i=1

ε3Ri ·
∫
E

(
Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]]

)
(y, ci,Ri, t) dy · RiT : ∇θ(ci)
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=
Nε∑
i=1

Ri ·
∫
Eiε

(
Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]]

)
(y(x, ci,Ri, ε), ci,Ri, t) : ∇θ(x) dx · RiT

+O(ε4Nε)

=

∫
Ω

∫
Ω×SO(3)

NεR ·
(

Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]]
)

(y(x, c,R, ε), c,R, t) · RT

· 1E(y(x, c,R, ε)) dµNε,t : ∇θ(x) dx+O(ε4Nε) .

Therefore, in total we have up to an error of O(ε4Nε)∫
Ω

(
Re Dtu0 −∇ · S[u0]− Re Fr−2 eg

)
· θ dx

= −
∫

Ω

∫
Ω×SO(3)

NεR ·
(

Tloc,1[u0]− 2Ey[Uloc,1,∂E [u0]]
)
· RT · 1E(y(x, c,R, ε)) dµNε,t : ∇θ dx

−
∫

Ω

2E

[
Nεε

∫
Ω×SO(3)

R · Ũloc,1[u0] dµNε,t

]
: ∇θ dx

+

∫
Ω×SO(3)

θ · ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dµNε,t(x,R)

−
∫

Ω

Nεε
2 Re∇ · H̃0[µNε,t,u0] · θ dx .

The next step is now to recover the pressure, but first we note that the expression∫
Ω×SO(3)

θ · ε3Nε|E|
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
dµNε,t(x,R)

stems from the observation in Remark 34 that by approximating the stresses in the
suspension, we neglected a force which was generated by fluctuations on the small
particle domains, i.e.,∫

Ω

θ ·
∫

Ω×SO(3)

ε−1NεR ·
(
∇y · Tloc,1[u0] + ε∇y · Tloc,2

)
1E(y(x, z,R, t)) dµNε,t(z,R) dx

By recovering the original expression for the stresses, we drop this correction term.
Finally, by adding the pressure term (3.47a) tested with ∇θ, we recover the complete
Σ0[µNε,t,u0] from (3.47), i.e.,∫

Ω

(
Re Dtu0 −∇ · S[u0]− Re Fr−2 eg

)
· θ dx

= −
∫

Ω

Σ0[µNε,t,u0] : ∇θ dx−
∫

Ω

Nεε
2 Re∇ · H̃0[µNε,t,u0] · θ dx .

Considering the last term, we have due to the solenoidity of u0

Nεε
2∇ · H̃0[µNε,t,u0](x, t)

= Nε

∫
Ω×SO(3)

R · ∂yŨloc,1[u0] · RT ·
(
u(x, t)− u(z, t)−B(F1,ω[u](z,R, t))

)
dµNε,t

= H0[µNε,t,u0] .
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Since θ was arbitrary, u0 solves up to an error of O(ε4Nε)

Re Dtu0 + ReH0[µNε,t,u0] = ∇ ·Σ0[µNε,t,u0] +∇ · S[u0] + Re Fr−2 eg

in Ω. Hence, it holds in Ωε

0 = Re Dtu0 + ReH0[µNε,t,u0]−∇ ·Σ0[µNε,t,u0]−∇ · S[u0]− Re Fr−2 eg

= Re Dtu
e −∇ · S[ue]− Re Fr−2 eg +O(ε)

and therefore, ue is an approximation up to O(ε) of (3.1a).

Remark 37 (Comparison between mean field and asymptotic approximation). We
note that Theorem 36 and Theorem 21 yield the same approximation order. Moreover,
the latter holds also for heavy particles, is determined by a less complicated momentum
equation for the fluid and has only a three-dimensional problem domain in comparison
with the six-dimensional Ω × SO(3) of (3.55). However, Theorem 21 also needs the
construction of Nε local velocity fields by Lemma 19 together with corresponding particle
paths and rotations unlike the mean field model of Theorem 36. We also note that for
ε → 0, the system (3.55) approaches the undisturbed Navier-Stokes equations (3.32),
as all terms depending on the transport equation (3.55c) drop out and the latter then
depends on the former but not vice versa. Therefore, (3.55) can be seen as a continuous
model for the large system of equations of Theorem 21.

Considering the heavy particles regime, we know from Lemma 19 that it is charac-
terized by f1 ∼ Re Dtu0 − Re Fr−2 eg which is not zero unless Re = 0, the case of no
inertia. Due to (3.27) this implies that v1 6= 0 which leads to a non-vanishing O(‖y‖−1)
term in the local velocity uloc,1. Thus, the decay constant in Lemma 16 is ` = 1 and
the only admissible condition on β in the definition of the particle number is β = 0
(condition C1) of Lemma 16). This of course implies a constant particle number which
is completely fine in case of the asymptotic approximation of Theorem 21. In combi-
nation with condition (3.56) on the other hand, this results in a contradiction since
we can not approximate the integral of every Lipschitz continuous function by a finite
number of fixed points: If we assume that the empirical measure µN,t for N ≡ const
fulfills (3.56) with ψt ∈ PC(Ω) × P(SO(3)), we can take θ(z,R) ≡ θ̃1(z) as a test
function with θ̃1 ≥ 0 being a Lipschitz continuous function in Ω with supp(θ̃1) = Bδ(c1)
and θ̃1(c1) = 0.5δ = ‖θ̃1‖C(Ω) for any δ < ιε = N−1/3 ≡ const. Then, we have∣∣∣∣∫

Ω×SO(3)

θ dψt

∣∣∣∣ =

∣∣∣∣∫
Bδ(c1)

θ̃1ψx,t(SO(3)) dx

∣∣∣∣ ≤ 0.5δ4|B1| max
x∈Bδ(c1)

|ψx,t(SO(3))|

≤ 0.5δ4|B1|‖x 7→ ψx,t(SO(3))‖C(Ω) = 0.5δ4|B1|C

with C independent of ε and δ. Since
∫

Ω×SO(3)
θ dµN,t = 0.5δ/N it holds

d(µN,t, ψt) ≥
∣∣∣∣ 1

2N
δ − 1

2
δ4|B1|C

∣∣∣∣
and thus for a fixed δ < (2N |B1|C)−1/3, d(µN,t, ψt) ≥ 0.25δ/N which is a contradiction
to (3.56) for ε small enough.
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In order to derive an analogous result for the heavy particle regime or to get a higher
order approximation in case of normal or light-weighted particles, we have to drop the
strict condition N ≡ const as discussed in Remark 37. From the relations (3.50)
and (3.51) in Lemma 31 we find that H0,Σ0 have uniform Lp-bounds for all β < 1,
given that the chaos assumption (3.44) of Remark 29 holds. The same is true for H1,Σ1

if β < 3/4. Thus Lemma 32 holds, i.e., Σp
k is well-defined. Moreover, the estimations in

Remark 34 show that ‖∇`ε2NεŨk‖ < c independent of ε without additional assumptions
for ` ∈ 0, 1, 2. Thus, we have the following two Theorems with proofs completely
analogous to Theorem 36.

Theorem 38 (Mean field approximation of a particle suspension up to O(ε) for heavy
particles). Let the density scaling function (2.12) be given as αρ(ε) = ε−1, the particle
number as Nε = ε−β with 1/3 ≤ β < 1 and φε given by (3.3). Let also (3.44) hold for
K = 1, n = 2. Assume that u0 ∈ C2((0, T ); C3(Ω;R3)) and p0 ∈ C1((0, T ); C2(Ω;R)),
ψt ∈ PC(Ω)× P(SO(3)) with (x, t) 7→ ψx,t(SO(3)) ∈ C1(Ω× (0, T );R+

0 ) solve (3.55).
Additionally, let (ci,Ri) ∈ C2((0, T ); Ω × SO(3)), i = 1, . . . , Nε be given subject to
the condition (3.5) and whose empirical measure fulfills (3.56). Then (3.55) is an
approximation of the suspension problem (3.1) up to an error of O(ε).

For the second theorem we need additional Abbreviations:

Abbreviation 39. For ψ ∈ PC(Ω)× P(SO(3)) and u ∈ C1(Ω× (0, T );R3)

H̃1[ψ,u](x, t)

= ε−1

∫
Ω×SO(3)

(u(x, t)− u(z, t)−B(F1,ω[u](z,R, t)))⊗ R · Ũloc,2[ψ,u](y(x), z,R, t)

− (F1,v[u](z,R, t) +B(F2,ω[ψ,u](z,R, t)) · (x− z))⊗ R · Ũloc,1[u](z,R, t) dψ(z,R) ,

Σ̃
p

1[ψ,u](x, t) =
|Ω|
|E|
∑
`m

∂x`

∫
SO(3)

R ·
∫
E

(
Tloc,1[u](y,x,R, t)

− 2Ey[Uloc,1,∂E [u]](y,x,R, t)
)
ym ds(y) · RTRT

m` dψx ,

G̃1[ψ,u](x, t) = ε−1

∫
Ω×SO(3)

(∂xu(x, t) +B(F1,ω[u](z,R, t))) · R · Ũloc,1[u](y(x), z,R, t)

+ R · ∂tŨloc,1[u](y(x), z,R, t) dµ(z,R)

with the (z,R)-dependent abbreviation y(x) ≡ y(x, z,R, ε).

Theorem 40 (Mean field approximation of a particle suspension up to O(ε2) for
normal or light-weighted particles). Let the density scaling function (2.12) be given as
αρ(ε) = εr, r ≥ 0, the particle number as Nε = ε−β with 1/3 ≤ β < 1 and φε given
by (3.3). Let also (3.44) hold for K = 1, n = 3. Assume that u0 ∈ C1((0, T ); C4(Ω;R3))
and p0 ∈ C0((0, T ); C3(Ω;R)), ψt ∈ PC(Ω) × P(SO(3)) with (x, t) 7→ ψx,t(SO(3)) ∈
C1(Ω× (0, T );R+

0 ) solve
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Re Dtu0 = ∇ · S[u0] + φε∇ ·Σp
0[ψt,u0] + εφε∇ · (Σp

1 − Σ̃
p

1)[ψt,u0] (3.59a)

+ 2Nεε
2∇ · E[Ũ0[ψt,u0]] + 2Nεε

3∇ · E[Ũ1[ψt,u0]]

+ Re Fr−2 eg

+ φε|Ω|ψx,t(SO(3))
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
−Nεε

2 Re∇ · (H̃0[ψt,u0] + εH̃1[ψt,u0]) ,

−N2
ε ε

4 Re Ũ0[ψ,u] · ∇Ũ0[ψ,u]

−Nεε
2 Re G̃1[ψ,u]

∇ · u0 = 0 , (3.59b)

in Ω× (0, T ) coupled with the weak formulation (A.6) of

∂tψt +∇x · (u0ψt) +
2∑

k=1

εk∇x · (Fk,v[u0]ψt) =
2∑

k=1

εk−1(L[B(Fk,ω[u0]](ψt) (3.59c)

+ divG(L[B(Fk,ω[u0])])ψt

in Ω×SO(3) with boundary data for u0, ψt at ∂Ω as well as initial conditions u0(., 0), ψ0.
Additionally, let (ci,Ri) ∈ C3((0, T ); Ω× SO(3)), i = 1, . . . , Nε be given subject to the
condition (3.5) and whose empirical measure fulfills

d(µNε,t, ψt) < cε5Nε (3.60)

with c = c(T ) but independent of ε. Then (3.59) is an approximation of the suspension
problem (3.1) up to an error of O(ε2).

Remark 41 (Estimation of interaction terms in momentum equation). We can improve

the estimations for Ũ0 (Remark 34) and H̃0 (Lemma 31). In fact, we find

‖Ũ0‖ ≤ c(ε`−1−β`/3 + ε(`−1)(1−β) + ε3β−1) .

Hence, for β ∈ [1/3, 1) with β ≤ 3(` − 1)/`, ‖Ũ0‖ is bounded independent of ε. The

same holds for H̃0. If the decay constant of the Stokes fields is ` = 1, this bound is not
useful. In this case we can use the chaos assumption. It holds for k ≥ 1∥∥∥N−1

ε rk+1[ψ,u]− Ũk−1[ψ,u]
∥∥∥ =

∥∥∥∥ε−1

∫
Ω×SO(3)

R ·
(
Uloc,k[ψ,u]χ− Ũloc,k[ψ,u]

)
dψ

∥∥∥∥
= ε−1

∥∥∥∫
B0.5ιε\B0.25ιε×SO(3)

(χ− 1)R ·Uloc,k[ψ,u] dψ −
∫
B0.25ιε\B1/Nε×SO(3)

R ·Uloc,k[ψ,u] dψ

−
∫
B1/Nε×SO(3)

R · Ũloc,k[ψ,u] dψ
∥∥∥

≤ cCε−1

(∫
B0.5ιε\B0.25ιε

ε‖x− z‖−1 dz +

∫
B0.25ιε\B1/Nε

ε‖x− z‖−1 dz +
1

N3
ε

)
≤ cι2ε + cNει

3
ε + c

1

εN3
ε

.
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By choosing Nε = ε−β with β ≥ 1/3, we thus find a uniform bound for ‖N−1
ε rk+1[ψ,u]−

Ũk−1[ψ,u]‖. Then by imposing condition (3.44) of Remark 29, we find

‖Ũk−1[ψ,u]‖ ≤ ‖N−1
ε rk+1[ψ,u]‖+

∥∥∥Ũk−1[ψ,u]−N−1
ε rk+1[ψ,u]

∥∥∥ ≤ c

independent of ε. The same procedure for H̃0 is not applicable without further assump-
tions. Instead, we construct a bound for a particular case. We choose β = 0.5, then
ε2Nε = ε4/3ε1/6 and ε1/6H̃0 fulfills

‖ε1/6H̃0‖ ≤ c(ε0 + ε1/6 + ε2/3) < 3c .

Therefore (3.55a) reads formally as

Re Dtu0 − Re Fr−2 eg = ∇ · S[u0] + φε∇ ·Σp
0[ψt,u0] + 2ε3/2∇ · E[Ũ0[ψt,u0]]

+ φε|Ω|ψx,t(SO(3))
(
ρε Re(Dtu0 − Fr−2 eg)−∇ · S[u0]

)
− ε4/3 Re∇ · H̃0[ψt,u0] .

Since φε = Nεε
3 = ε5/2 and ρε = ε−rρ = O(ε−1) in case of heavy particles,

φερε(Re Dtu0 − Re Fr−2 eg) = φερε∇ · S[u0] +O(ε4) +O(ε3) +O(ε2+5/6)

= φερε∇ · S[u0] + o(φε) .

Thus, we can further approximate the momentum equation as

Re Dtu0 − Re Fr−2 eg = ∇ · S[u0] + φε∇ ·Σp
0[ψt,u0] + 2ε3/2∇ · E[Ũ0[ψt,u0]] (3.61)

+ φε(ρε − 1)|Ω|ψx,t(SO(3))∇ · S[u0]

− ε4/3 Re∇ · H̃0[ψt,u0] + o(φε) .

Applying the estimations of Remark 41, we formulate the following corollary to
Theorem 36 and Theorem 38.

Corollary 42. Let the assumptions of Theorem 36 or Theorem 38 hold with the sharper
condition β = 1/2. Furthermore, assume that the spatial particle distribution is uni-

form, ψ(x,R, t) ≡ |Ω|−1ψ̃(R, t). Then the momentum equation for the fluid (3.55a)
reads as

Re Dtu0 = (1 + φε(ρε − 1))∇ · S[u0] + Re Fr−2 eg + φε∇ ·Σp
0[ψt,u0]

+ 2ε3/2∇ · E[Ũ0[ψt,u0]]− ε4/3 Re∇ · H̃0[ψt,u0]

with Ũ0, H̃0 given in Abbreviation 35 and Σp
0 given as the mean value with respect to

the measure on SO(3), ψ̃:

Σp
0[ψ,u0](x, t) =

1

|E|
E
[
R 7→ R ·

∫
∂E

Sy[Uloc,1[u0]](y,x,R, t) · n⊗ y

−Uloc,1,∂E [u0](y,x,R, t)⊗ n

− n⊗Uloc,1,∂E [u0](y,x,R, t) ds(y) · RT
]
.
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Remark 43 (Differences to [119]). We point out, that the particle extra stress ten-
sor Σp

0 in Corollary 42 corresponds to the one derived by Batchelor [12] in case of an
inertia-free suspension in an unbounded domain. It was also recovered in our previ-
ous work [119] in the case of a homogeneous uniform distribution of inertial particles
and under the assumption of ergodicity. In this case, there exists for any x ∈ Ω a
representative averaging volume, V(x, t) containing Nε(x, t) particles, such that

E[R 7→ f(x,R, t)] =
1

|V(x, t)|

Nε(x,t)∑
k=1

f(x,Rk, t) .

Using this assumption, we also derived additional force terms due to particle inertia.
In Corollary 42 we recover only one part of the latter found in [119], namely the term
belonging to the fluid viscosity,

φε(ρε − 1)∇ · S[u0] .

The missing term compared to [119] belongs to b2[ψ,u0] (as does φε(ρε − 1)∇ · S[u0])
given in (3.53) in the case of heavy particles. To be precise, it is the term associated to
G1,0,v(c,R, t) (see discussion at the beginning of Section 3.4.1) which carries the time
derivative of F1 and thus the second time derivative of u0. Due to the limitations of
the model discussed in Remark 30, we can’t account for this additional force although
it is of order O(ε3/2), as this would change the type of the equations significantly.

Another difference is the presence of the terms due to interaction, Ũ0, H̃0. In [119]
they are omitted as the local velocity fields are modeled as small velocity fluctua-
tions, whose superposition equals to the vanishing mean value. Thus, we can recon-
struct this behavior in Corollary 42 by intensifying the chaos assumption (3.44) to
‖rk[ψ]‖Cmin(K+3+r−k,K) = 0.

3.5 Applications to special particle geometries

Suspensions of particles that have the same density as the surrounding viscous carrier
fluid and possess a highly symmetrical shape, e.g., spherical or ellipsoidal geometry, are
often discussed in literature. The structure of the stresses due to particles is well-known
in these cases, see [12] and [81]. They also often serve as proof-of-concept examples
for newly derived models, as, e.g., in [34] and [64]. In this section we illustrate our
kinetic suspension model based on the asymptotical approach which accounts for small
particle inertia by comparing the model with the classical results of [42] and [12].

In order to present closed analytic expressions for the transport operators and stress
tensors in the corresponding theorems from Section 3.4.1 and 3.4.2, we first introduce
fundamental solutions of the stationary Stokes problems on the considered geometries,
calculate the resulting surface moments afterwards, and finally show the resulting ex-
pressions for the operators appearing in the macroscopic description of the suspension.

3.5.1 Rigid spheres

Stokes solutions and surface moments A rigid sphere of radius 1 is given as
E = B1. In this case uc,u` : R3 \ E → R3 and pc, p` : R3 \ E → R given as

uc(y) =
3

4
‖y‖−1

(
v + ‖y‖−2(y · v)y +

1

3
‖y‖−2v − ‖y‖−4(y · v)y

)
, (3.62a)
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u`(y) =
5

2
‖y‖−5

(
1− ‖y‖−2

)
(y · C · y)y +

1

2
‖y‖−3

(
C− CT + ‖y‖−2

(
C + CT

))
· y ,

(3.62b)

pc =
3

2
(y · v)‖y‖−3 , p` = 5(y · C · y)‖y‖−5 (3.62c)

for v ∈ R3 and C ∈ R3×3 with tr(C) = 0 are smooth solutions of the homogeneous
stationary Stokes equations on the exterior of E with boundary conditions uc(y) = v
and u`(y) = C ·y on ∂E (e.g., see [72]). The viscous stresses at the boundary in normal
direction are then given as

Sy[uc](y) · n = −3

2
v , Sy[u`](y) · n = −3C · y , y ∈ ∂E .

The model-relevant surface moments then follow as∫
∂E

Sy[uc] · n ds = −6πv ,

∫
∂E

Sy[u`] · n ds = 0 ,∫
∂E
y × Sy[uc] · n ds = 0 ,

∫
∂E
y × Sy[u`] · n ds = −4πB−1(C− CT ) ,∫

∂E
y ⊗ Sy[uc] · n ds = 0 ,

∫
∂E
y ⊗ Sy[u`] · n ds = −4πCT .

Where we used the definition of the reference state, i.e.,
∫
E y dy = 0, the relation∫

∂B yiyj ds = 4π/3δij due to the divergence theorem, and∫
∂E
y × C · y ds =

∑
ijk`

eiεijkCk`

∫
∂E
yjy` ds =

4

3
π
∑
ijk

eiεijkCkj =
4

3
π
√

2
∑
i

ei(Bi : C)

=
4

6
π
√

2
∑
i

ei(Bi : (C− CT )) =
4

3
πB−1(C− CT )

with {Bi}i being an orthonormal basis of the skew-symmetric matrices and B−1 being
the inverse of B given in (A.9b) (cf. Appendix A.2). This way we can express the
vectors tq, sq for q = 1, . . . , 6 given in Lemma 5 as

tq = −6πeq , sq+3 = −4π
√

2eq , tq+3 = 0 = sq , q = 1, 2, 3 ,

since Bq − BT
q = 2Bq and 2B−1(Bq) =

√
2eq. The matrix A = (tq, sq)q=1,...,6 is then

given as

A =

[
−6π13×3

−4π
√

213×3

]
.

Transport operators and particle extra stress tensor Similarly to the deter-
mination of the surface moments we find for D1u0 given in (3.27) for q = 1, 2, 3 the
relations eq ·D1u0 = 0 and

eq+3 ·D1u0 = (RT · ∂xuT0 · R) : (4πBq) = −2π(RT · (∂xu0 − ∂xuT0 ) · R) : Bq .

Applying (A.10c), we find for any skew-symmetric matrix M

RT ·M · R = RT ·B ◦B−1(M) · R = B(RT ·B−1(M)) .
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Additionally, since B(∇× u0) = ∂xu0 − ∂xuT0 , we have

RT · (∂xu0 − ∂xuT0 ) · R = B(RT · ∇ × u0) =
√

2
∑
i

ei · (RT · ∇ × u0)Bi .

Therefore, it holdsD1u0 = (0,−2π
√

2RT ·∇×u0). The term F1 then follows from (3.27)
as

F1(c,R, t) =

{(
−2

9
ρRe(Dtu0(c, t)− Fr−2 eg

)
, 1

2
∇× u0(c, t)) , r = −1(

0 , 1
2
∇× u0(c, t)

)
, r ≥ 0

, (3.63)

hence, F1(c,R, t) = F1(c, t). From (3.63) we note that the angular velocity is given as
the local vorticity of the fluid, while the first order correction of the linear velocity is
zero in normal and light-weighted regimes and is given by the fluid inertia scaled with
the density ratio in the case of heavy particles. The boundary condition on the first
order disturbance velocity follows due to (3.15a) as

Uloc,1,∂E [u0](y, c,R, t) = RT · v1[u0](c, t)− RT · E[u0](c, t) · R · y , (3.64)

with v1 ≡ 0 for r ≥ 0 and v1 = −2ρRe(Dtu0 − Fr−2 eg)/9 for heavy particles. Thus,
Uloc,1 is completely determined by (3.62) with v,C given via the velocity terms in (3.64).
It holds

R ·
∫
∂E
Uloc,1,∂E [u0]⊗ n ds = v1(c, t)⊗

∫
∂E
n ds− E[u0](c, t) · R ·

∫
∂E
y ⊗ n ds

= −4

3
πE[u0](c, t) · R ,∫

∂E
Sy[Uloc,1[u0]] · n⊗ y ds = 4πRT · E[u0](c, t) · R .

Hence, we get an analytical expression for Σp
0, given in Abbreviation 35, as

Σp
0[ψ,u0](x, t) =

20

3
π
|Ω|
|E|

∫
SO(3)

E[u0](x, t) dψx,t(R) =
5

2
|Ω|ψx,t(SO(3))2E[u0](x, t) .

This way we get the following follow-up to Corollary 42.

Corollary 44. Let the assumptions of Corollary 42 hold and E = B1. Then the
momentum equation for the fluid (3.55a) reads as

Re Dtu0 = (1 + φε(ρε − 1))∇ · S[u0] +
5

2
φε∆u0 + Re Fr−2 eg

+ 2ε3/2∇ · E[Ũ0[ψt,u0]]− ε4/3 Re∇ · H̃0[ψt,u0] .

Apart from the inertial terms and the terms due to interaction, the momentum
equation in Corollary 44 contains the well-known 2.5φε increase of viscosity found by
Einstein [42], which is proven for bounded domains and stationary Stokes equations
in [58] and further studied, e.g., in [49].

Remark 45 (Applicability of quadratic decay assumption). In case of normal or light-
weighted particles (3.63) shows that Uloc,1,∂E has only a linear part, which implies that
Uloc,1 is completely given by (3.62b) with C = −RT · E[u0](c, t) · R. This implies
that ‖Uloc,1‖ ∈ O(‖y−2‖) for large ‖y‖. Thus, Theorem 36 holds without the chaos
assumption.
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Remark 46 (Solution to the continuity equation). The solvability of the coupled sys-
tem (3.55) is out of scope of this work. Under the assumption, that a sufficiently regular
solution exists, we can state an explicit expression for the solution of (3.55c) using clas-
sical results for the continuity equation in order to illustrate our model. For example,
assume that ψt,u0, p0 solve the System of Corrollary 44 with periodic boundary condi-
tions on ∂Ω. The characteristics of the underlying ordinary differential equations, see,
e.g., [20], are for s, t ∈ [0, T ] solutions of the problem

d

dt
c(t) = a(c(t), t) ,

d

dt
R(t) = B (ω(c(t), t)) · R(t) , (3.65)

c(s) = x , R(s) = P

with a = u0 + εv1[u0] and ω = 1
2
∇×u0. Thus, the characteristic flow in Ω is given as

X(t, s,x) = c(t). Due to the periodicity of the boundary conditions, X(t, s,x) ∈ Ω for
all t, s ∈ [0, T ] and x ∈ Ω, moreover X(t, s, .) is a C1 diffeomorphism of Ω with inverse
X(s, t, .) that fulfills

X(t1, t2, X(t2, t3,x)) = X(t1, t3,x) (3.66)

for all x ∈ Ω and t1, t2, t3 ∈ [0, T ]. Hence, the following relations hold

∂tX(t, s,x) = a(X(t, s,x), t) , (3.67)

∂sX(t, s,x) = −∂xX(t, s,x) · a(x, s) , (3.68)

the first stems from the definition, the second from differentiating (3.66) with respect
to t2 and applying a change of variables. Taking the space derivative of (3.66) and
applying the determinant yields for J(t, s,x) = det(∇xX(t, s,x)) the relation

J(t1, t2, X(t2, t3,x))J(t2, t3,x) = J(t1, t3,x) . (3.69)

Similarily to the behavior of X one can show [20]

∂tJ(t, s,x) = (ε∇x · v1[u0])(X(t, s,x), t)J(t, s,x) , (3.70)

∂sJ(t, s,x) = −∇x · (J(t, s,x)a(x, s)) . (3.71)

In the present case, ω is independent of R but as the following considerations are rather
general, we allow explicitly ω = ω(x,R, t). The characteristic flow in SO(3) is denoted
by Y (t, s,x,P) = R(t), which depends on X(t, s,x) and fulfills

∂tY (t, s,x,P) = B(ω(X(t, s,x), Y (t, s,x,P), t)) · Y (t, s,x,P) , Y (s, s,x,P) = P .
(3.72)

By definition of Y it holds

Y (t1, t2, X(t2, t3,x), Y (t2, t3,x,R)) = Y (t1, t3,x,R) (3.73)

for all t1, t2, t3 ∈ [0, T ], and (x,R) ∈ Ω×SO(3). Hence, Y (t, s,x, .) is a C1 diffeomor-
phism on SO(3) with inverse Y (s, t,X(t, s,x), .). Differentiating (3.73) with respect to
t2 yields

0 = ∂sYij + [∂tX(t2, t3,x) · ∇x]Yij + dY (., t3,x,R)t2

(
∂

∂t

∣∣∣∣
t2

)
(Yij(t1, t2, X(t2, t3,x), .)) ,
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with dY (., t3,x,R)t2 denoting the differential of the curve Y (., t3,x,R) as defined in
Definition A.14. By using Remark A.37 and the relations (3.67) as well as (3.72) and
using the substitutions x = X(t3, t2,x

′),R = Y (t3, t2,x
′,R′), t = t1, s = t2, we then

find

∂sYij(t, s,x
′,R′) = −[a(x′, s) · ∇x]Yij(t, s,x

′,R′) + L[B(ω(x′,R′, s))]|R′ (Yij(t, s,x
′, .)) .

(3.74)

Next, we consider the function K(t, s,x,R) = det(C[Y (t, s,x, .)](R)) with the mapping
C[Y (t, s,x, .)] : SO(3)→ R3×3 defined in Theorem A.50 of Appendix A.1. It fulfills

∂

∂t
(C[Y (t, s,x, .)](R))ji =

∂

∂t

∑
k`m

(Bj)m`Ykm(t, s,x,R) R[Bi]|R (Yk`(t, s,x, .))

=
∑
k`mn

(Bj)m`B(ω)knYnm(t, s,x,R) R[Bi]|R (Yk`(t, s,x, .))

+
∑
k`m

(Bj)m`Ykm(t, s,x,R)
∂

∂t

∂

∂τ
Yk`(t, s,x,R · exp(τBi))

∣∣∣∣
τ=0

where we used (3.72) with ω = ω(X(t, s,x), Y (t, s,x,R), t) and the definition of the
right Lie derivative. Since Yk` is C1 in each of its variables, it follows with (3.72)

∂

∂t

∂

∂τ
Yk`(t, s,x,R · exp(τBi))

∣∣∣∣
τ=0

=
∑
n

∂

∂τ
B(ω(X(t, s,x), Y (t, s,x,R · exp(τBi)), t))knYn`(t, s,x,R · exp(τBi))

∣∣∣∣
τ=0

=
∑
n

B(ω(X(t, s,x), Y (t, s,x,R), t))kn R[Bi]|R (Yn`(t, s,x, .))

+
∑
np

√
2(Bp)knYn`(t, s,x,R)

∂

∂τ
ωp(X(t, s,x), Y (t, s,x,R · exp(τBi)), t)

∣∣∣∣
τ=0

,

where we applied the expression (A.9a) of the skew-symmetric mapping B(.) in terms
of the orthonormal basis {B1,B2,B3} of the Lie algebra of the special orthogonal group,
so(3). In order to evaluate the derivative of the component ωp, we use the chain rule
stated in Lemma A.51, which reveals

∂

∂τ
ωp(X(t, s,x), Y (t, s,x,R · exp(τBi)), t)

∣∣∣∣
τ=0

=
∑
q

(C[Y (t, s,x, .)](R))qi R[Bq]|Y (t,s,x,R) (ωp(X(t, s,x), ., t)) .

In total, the time derivative of Cji[Y (t, s,x, .)] reads as

∂

∂t
Cji[Y (t, s,x, .)](R) =

∑
k`

(
B(ω) · Y · Bj +B(ω)T · Y · Bj

)
k`
R[Bi]|R (Yk`(t, s,x, .))

+
√

2
∑
pq

tr
(
Y · Bj · Y T · BT

p

)
Cqi[Y (t, s,x, .)](R) R[Bq]|Y (t,s,x,R) (ωp(X(t, s,x), ., t)) .
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Due to the skew-symmetry of B(.), the first sum in the identity above vanishes. Con-
sidering the second sum, we find from (A.9a), Bi = B(ei)/

√
2. Applying (A.10b) and

the Grassmann identity (A.10d) shows

Y · Bj · Y T · BT
p = −1

2
B(Y · ej) ·B(ep) = −1

2
(ep ⊗ Y · ej − ep · Y · ejI) .

The trace of this expression then follows as tr(Y ·Bj · Y T ·BT
p ) = ep · Y · ej. Next, we

express the right Lie derivative with the left one using Lemma A.29, which gives

R[Bq]|Y (ωp(X(t, s,x), ., t)) = −
∑
n

(Y · Bq · Y T ) : Bn L[Bn]|Y (ωp(X(t, s,x), ., t))

=
−1√

2

∑
n

B(Y · eq) : Bn L[Bn]|Y (ωp(X(t, s,x), ., t))

= −
∑
`n

e` · Y · eq(B` : Bn) L[Bn]|Y (ωp(X(t, s,x), ., t))

= −
∑
n

en · Y · eq L[Bn]|Y (ωp(X(t, s,x), ., t)) ,

where we again used (A.9a), (A.10b) and the orthonormality of {Bi}i. Thus, we con-
clude

∂

∂t
(C[Y (t, s,x, .)](R))ji

= −
√

2
∑
npq

YpjYnq (C[Y (t, s,x, .)](R))qi L[Bn]|Y (ωp(X(t, s,x), ., t)) .

Using Jacobi’s formula [105], we then find for the time derivative of the determinant

∂

∂t
K(t, s,x,R) =

∑
ij

(adj(C[Y (t, s,x, .)](R)))ij ·
(
∂

∂t
C[Y (t, s,x, .)](R)

)
ji

= K(t, s,x,R)

(
−
√

2
∑
jnpq

YpjYnqδqj L[Bn]|Y (ωp(X(t, s,x), ., t))

)

= −K(t, s,x,R)

(∑
n

L[Bn]|Y (
√

2ωn(X(t, s,x), ., t))

)

where adj denotes the transpose of the cofactor matrix, i.e., adj(C) · C = C · adj(C) =
det(C)I for any invertible matrix C. Using the divergence operator given in Rem. A.32,
we find in total

∂

∂t
K(t, s,x,R) = −K(t, s,x,R)divG(L[B(ω(X(t, s,x), ., t))])(Y (t, s,x,R)) . (3.75)

Since Y (s, s,x,R) = R, a direct calculation shows C[Y (s, s,x, .)](R) = I. Thus,
K(s, s,x,R) = 1, which immediately implies K(t, s,x,R) > 0. On the other hand,
the application of the operator C[.] to (3.73) gives
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(C[Y (t1, t3,x, .)](R))ij

=
∑
k`m

(Bi)m`Ykm(t1, t3,x,R)
d

dτ
Yk`(t1, t2, X(t2, t3,x), Y (t2, t3,x,R · exp(τBj)))

∣∣∣∣
τ=0

,

which combined with the chain rule of Lemma A.51 shows

C[Y (t1, t2, X(t2, t3,x), .)](Y (t2, t3,x,R)) · C[Y (t2, t3,x, .)](R) = C[Y (t1, t3,x, .)](R) .

Applying the determinant to this identity implies for K

K(t1, t2, X(t2, t3,x), Y (t2, t3,x,R))K(t2, t3,x,R) = K(t1, t3,x,R) . (3.76)

In order to derive the equation for ∂sK, we differentiate (3.76) with respect to t2, where
we again use Definition A.14 and Remark A.37 for the calculation of

d

dτ
(τ 7→ K(t1, t2, X(t2, t3,x), Y (τ, t3,x,R))) .

Applying (3.67), (3.72), (3.75), the positivity of K and using the substitutions x =
X(t3, t2,x

′), R = Y (t3, t2,x
′,R′), t = t1, s = t2, then yields

∂sK(t, s,x′,R′) = −[a(x′, s) · ∇x]K(t, s,x′,R′) + L[B(ω(x′,R′, s))](K(t, s,x′, .))

+K(t, s,x′,R′)divG(L[B(ω(x′, ., s))])(R′) . (3.77)

Due to (3.66) and (3.73), the characteristic flow Z in Ω × SO(3), given in terms of
X, Y as Z(t, s, (x,R)) = (X(t, s,x), Y (t, s,x,R)), fulfills for all t1, t2, t3 ∈ [0, T ] and
(x,R) ∈ Ω× SO(3)

Z(t1, t2, Z(t2, t3, (x,R))) = Z(t1, t2, (X(t2, t3,x), Y (t2, t3,x,R)))

=
(
X(t1, t2, X(t2, t3,x)), Y (t1, t2, X(t2, t3,x), Y (t2, t3,x,R))

)
= (x,R) .

Thus, Z is one-to-one and the push-forward measure [111], ψt(.) = ψ0(Z−1(t, 0, .)),
fulfills

ψt(Ω× SO(3)) = ψ0(Z−1(t, 0,Ω× SO(3))) = ψ0(Ω× SO(3)) = 1 .

Furthermore, ψt is a solution to (3.55c) as for all φ ∈ C1
0(Ω)× C1(SO(3)) it holds

d

dt

∫
Ω×SO(3)

φ(x,R) dψt =
d

dt

∫
Z−1(t,0,Ω×SO(3))

φ(x,R) dψt =
d

dt

∫
Ω×SO(3)

φ(X(t, 0,x), Y (t, 0,x,R)) dψ0

=

∫
Ω×SO(3)

a(X(t, 0,x), t) · ∇xφ(X(t, 0,x), Y (t, 0,x,R))

− L [B (ω(X(t, 0,x), Y (t, 0,x,R), t))] (φ)(X(t, 0,x), Y (t, 0,x,R)) dψ0

=

∫
Ω×SO(3)

a(x, t) · ∇xφ(x,R)− L [B (ω(x,R, t))] (φ)(x,R) dψt
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due to the change of variables formula [111] and Remark A.37. Let, additionally, ψt
being absolutely continuous with respect to λ(A)h(B) for A × B ∈ B(Ω) × B(SO(3)),
λ denoting the Lebesgue measure on Ω and h the Haar measure on SO(3). Denote the
Radon derivative of ψt with respect to λh by % ∈ C1(Ω×SO(3)× (0, T );R+

0 ). Then the
transport equation (3.55c) reads as

∂t%+∇x · (a%) = L [B (ω)] (%) + %divG(L[B(ω)]) (3.78)

with initial condition %0. We set

%(x,R, t) = %0(X(0, t,x), Y (0, t,x,R))J(0, t,x)K(0, t,x,R) .

Due to (3.70), J > 0, K > 0 for all (x,R) ∈ Ω × SO(3) and hence %(x,R, t) ≥ 0 for
all (x,R, t) ∈ Ω× SO(3)× [0, T ]. In fact, % is a solution to (3.78): A straightforward
calculation shows with application of (3.68), (3.71) and (3.77)

∂t% = −∇x · (a%) + L [B (ω)] (%) + %divG(L[B(ω)]) + JKE ,

where the residual term E is given by

E(0, t,x,R) =

(
d

ds
%0(X(0, t,x), Y (0, s,x,R))

∣∣∣∣
s=t

(3.79)

+
∑
i

ai(x, t)
d

dzi
%0(X(0, t,x), Y (0, t,z,R))

∣∣∣∣
z=x

− d

dτ
%0(X(0, t,x), Y (0, t,x, exp(−τB(ω)) · R))

∣∣∣∣
τ=0

)
.

In order to show that E ≡ 0, we first note that since Y ∈ SO(3), the following relations
hold by Lemma A.30

Y (0, s,x,R)T · ∂sY (0, s,x,R) ∈ so(3) , Y (0, s,x,R)T · ∂xiY (0, s,x,R) ∈ so(3) .

Using Remark A.36 this implies

d

ds
%0(X(0, t,x), Y (0, s,x,R))

∣∣∣∣
s=t

=
∑
jk`m

(Bj)kmY
T
k`∂sY`m R [Bj]|Y (%0(X(0, t,x), .)) ,

d

dzi
%0(X(0, t,x), Y (0, t,z,R))

∣∣∣∣
z=x

=
∑
jk`m

(Bj)kmY
T
k`∂xiY`m R[Bj]|Y (%0(X(0, t,x), .))

with Y = Y (0, t,x,R). In order to evaluate the last term in (3.79), we note that by
Prop. A.20, the relation (A.10c) and the linearity of B(.)

exp(−τB(ω)) · R = R · exp(τB(−RT · ω)) .

Therefore, the chain rule of Lemma A.51 is applicable, and we find
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d

dτ
%0(X(0, t,x), Y (0, t,x, exp(−τB(ω)) · R))

∣∣∣∣
τ=0

=
∑
ijk`m

(
B(−RT · ω) : Bi

)
(Bj)kmY

T
k` R[Bi]|R (Y`m(0, t,x, .)) R[Bj]|Y (%0(X(0, t,x), .)) .

Using Lemma A.29, the identity Bi = B(ei)/
√

2 and (A.10b), we get∑
i

(
B(−RT · ω) : Bi

)
R[Bi]|R =

√
2
∑
ijk`n

R`iR
T
jkωk (Bj : Bi) (B` : Bn) L[Bn]|R

=
∑
n

√
2ωn L[Bn]|R = L[B(ω)]|R .

Thus, combining the expressions above, the relation (3.79) is given as

E =
∑
jk`m

(Bj)kmY
T
k` R [Bj]|Y (%0(X(0, t,x), .))

(
∂sY`m

+
∑
i

ai∂xiY`m − L[B(ω)]|R (Y`m(0, t,x, .))
)

which is zero by (3.74).
In the present case, according to (3.63), F1,ω = ω is independent of R, thus it holds

divG(L[B(ω)]) = 0 and due to (3.75), K = 1. Moreover, the characteristic flow X is
preserving Lebesgue measure if

0 = ∇x · εv1[u0] =
2

9
ερRe

{
0.5‖∇ × u0‖2 − ‖E[u0]‖2

F , r = −1

0 , r ≥ 0
. (3.80)

Thus, in case of heavy particles only if the square vorticity magnitude of the fluid is
balanced by the square shear rate magnitude for all (x, t) ∈ Ω× [0, T ]. The preservation
of Lebesgue measure under X(t, s, .) is a prequisite of ergodicity in space [21], which
is an important assumption for the models in [119]. Another important assumption
in [119] is that of a uniform distribution in space for all t ∈ [0, T ]. If (3.80) holds, and
if the initial particle distribution is uniform in Ω, i.e., %0(x,R) = |Ω|−1%̂0(R) with the
probability density function %̂0 on SO(3), it stays uniform: In this case we have∫
A×SO(3)

%(x,R, t) dxdh(R) = |Ω|−1

∫
X(t,0,X(0,t,A))×SO(3)

%̂0(Y (0, t,x,R)) dxdh(R)

= |Ω|−1

∫
X(0,t,A)×SO(3)

%̂0(Y (0, t, X(t, 0,x),R)) dxdh(R) = |Ω|−1

∫
X(0,t,A)×Y (t,0,x,SO(3))

%̂0(Y (0, t, X(t, 0,x),R)) dxdh(R)

= |Ω|−1

∫
X(0,t,A)×SO(3)

%̂0(R)K(t, 0,x, Y (t, 0,x,R)) dxdh(R) = |Ω|−1

∫
X(0,t,A)×SO(3)

%̂0(R) dxdh(R) = |Ω|−1

∫
A

dx

where we used Theorem A.50 and the property of the determinants J = 1 = K.
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3.5.2 Rigid ellipsoids

Stokes solutions and surface moments The ellipsoidal geometry was already
discussed in Section 2.4 with details in the Appendix B.3. Here we only briefly collect
the essential results. An ellipsoid is given as E = DB1 with a diagonal matrix D =
diag(d1, d2, d3) with the lengths of the semi-axes given as di > 0. By using ellipsoidal
coordinates we can define similarly to the case of a rigid sphere (3.62) two velocity
fields uOb,uJe (due to Oberbeck [96] and Jeffery [70]) which form solutions of the
homogeneous stationary Stokes equations on the exterior of E and fulfill boundary
conditions uOb(y) = v,uJe(y) = C · y for given vector v ∈ R3 and a trace-free matrix
C ∈ R3×3 (Lemma B.11). The surface moments tq, sq,Vq (see Lemma 5) are then given
as

tq = 3ζq|E|eq , sq+3 = ζq+3|E|(D2 − tr(D2)I) · eq , tq+3 = 0 = sq , q = 1, 2, 3 ,

with constants ζq given in Appendix B.3. The matrix A is then again given as a
diagonal matrix,

A =

[
3|E| diag(ζq, q = 1, 2, 3)

|E| diag(ζq+3(d2
q − tr(D2)), q = 1, 2, 3)

]
.

Transport operators and particle extra stress tensor Additionally, since the
surface moment Vq fulfills

Vq = 0 , Vq+3 = ζq+3|E|D2 ·B(eq) = ζq+3|E|
[
d2

1e1 × eq , d2
2e2 × eq , d2

3e3 × eq
]T

,

for q = 1, 2, 3, it holds eq ·D1u0 = 0, q = 1, 2, 3 and

eq+3 ·D1u0 = (RT · ∂xuT0 · R) : Vq+3 = ζq+3|E|
∑
i,j

[pi · ∇](pj · u0)d2
i (ei × eq · ej)

= −ζq+3|E|
∑
i,j

d2
i [pi · ∇](pj · u0)εqij = −ζq+3|E|

∑
i,j

εqijd
2
ipj · ∂xu0 · pi

= −ζq+3|E|
∑
i,j

εqijd
2
ipj ·B(

1

2
∇× u0) · pi − ζq+3|E|

∑
i,j

εqijd
2
ipj · E[u0] · pi ,

where we denoted the columns of the rotation matrix as pi = R · ei. By expressing the
angular velocity in terms of pk, we get∑
i,j

εqijd
2
ipj ·B

(
1

2
∇× u0

)
· pi =

∑
i,j,k

(
1

2
∇× u0 · pk)εqijεkijd2

i

=
∑
i,k

(
1

2
∇× u0 · pk)(δqkδii − δqiδik)d2

i = eq · (tr(D2)I−D2) · RT · 1

2
∇× u0 =: eq · ω̃0 .

On the other hand, it holds

∑
i,j,q

eqεqijd
2
ipj · E[u0] · pi =

d2
2 − d2

3

d2
3 − d2

1

d2
1 − d2

2

 ·
p3 · E[u0] · p2

p1 · E[u0] · p3

p2 · E[u0] · p1

 =: ω̂0 .
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Finally, D1u0 = (0 , −|E| diag(ζq+3, q = 1, 2, 3) · (ω̃0 + ω̂0)) follows. The term F1 is
then given as

F1 = (v1 ,
1

2
∇× u0 + R · (tr(D2)I−D2)−1 · ω̂0) (3.81)

with v1 ≡ 0 for r ≥ 0 and v1 = ρRe R ·diag(ζ−1
q , q = 1, 2, 3) ·RT ·(Dtu0−Fr−2 eg)/3 for

heavy particles. It is not hard to see that we recover F1 for rigid spheres, if d1 = d2 = d3.
The boundary velocity then follows as

Uloc,1,∂E = RT · v1 +
(
B((tr(D2)I−D2)−1 · ω̂0)− RT · E[u0] · R

)
· y

= RT · v1 + A1 · y ,

with the matrix A1 given as

A1 =


−p1 · E[u0] · p1 − 2d2

1

d2
1+d2

2
p1 · E[u0] · p2 − 2d2

1

d2
3+d2

1
p1 · E[u0] · p3

− 2d2
2

d2
1+d2

2
p2 · E[u0] · p1 −p2 · E[u0] · p2 − 2d2

2

d2
2+d2

3
p2 · E[u0] · p3

− 2d2
3

d2
3+d2

1
p3 · E[u0] · p1 − 2d2

3

d2
2+d2

3
p3 · E[u0] · p2 −p3 · E[u0] · p3

 .

Analogously to the case of rigid spheres, the boundary velocity is given by a constant
(in y) and linear velocity. Thus, the local velocity field Uloc,1 is given by the linear com-
bination of the Oberbeck and Jeffery solutions given in Lemma B.11 in Appendix B.3
with the corresponding velocity components given by RT · v1 = RT · v1(c,R, t) and
A1 = A1(c,R, t). This yields the following relation that can be computed by means of
the techniques provided in Appendix B.3,∫

∂E
Sy[Uloc,1[u0]] · n⊗ y −Uloc,1[u0]⊗ n− n⊗Uloc,1[u0]ds

= |E|
(

8

δ
M− 4(M : diag(αo1, α

o
2, α

o
3))I

)
, (3.82)

where δ = d1d2d3. For the definition of the geometry dependent scalars αoi and matrix
M we refer to Appendix B.3.

Prolate ellipsoids In the general case (3.82) admits no further simplifications, but
for prolate ellipsoids the lengths of the semi axes satisfy d1 > d2 = d3 > 0, which leads
to a much simpler form of (3.82) and thus, Σp

0. As introduced in Section 2.4.2, we use
the aspect ratio ar = d1/d2 > 1 and the parameter ν = (a2

r − 1)(a2
r + 1)−1 in this case.

Then F1 becomes

F1 = (v1 ,
1

2
∇× u0 + νp1 × E[u0] · p1) ,

now carrying the Jeffery-velocity term, see Remark 10. As for the term associated
with the particle-stresses Σp

0 given (3.82), it can be shown by a technical but straight
forward calculation [116] that

4

δ
R ·M · RT = a1p1 ⊗ p1 ⊗ p1 ⊗ p1 : E[u0] + a2(p1 ⊗ p1 · E[u0] + E[u0] · p1 ⊗ p1)

+ a3E[u0] , (3.83)

with δ = d1d
2
2 and the geometry dependent constants ai given in Abbreviation 47 (cf.

Appendix B.3).
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Abbreviation 47 (Geometrical parameters for ellipsoidal geometry). The geometrical
parameters a1, a2, a3 of (3.83) are given as (cf. [50, 101])

a1 =
4

d1d2
2

(
γo1

4γo2β
o
1d

2
2

− 2b1 − b2

)
, a2 =

4b1

d1d2
2

, a3 =
4b2

d1d2
2

in terms of the following quantities

b1 =
a2
r(2a

2
rθ − θ − 1)

2d1d2
2(a4

r − 1)βo2(d2
2α

o
2 + d2

1α
o
1)
− b2 , b2 =

1

4βo1d
2
2

,

θ =
1

2ar(a2
r − 1)1/2

ln
ar + (a2

r − 1)1/2

ar − (a2
r − 1)1/2

,

αo1 =
1

d1d2
2

2

a2
r − 1

(
a2
rθ − 1

)
, αo2 =

1

d1d2
2

a2
r

a2
r − 1

(−θ + 1) ,

βo1 =
1

d1d4
2

a2
r

4(a2
r − 1)2

(
3θ + 2a2

r − 5
)
, βo2 =

1

d1d4
2

1

(a2
r − 1)2

(
−3a2

rθ + a2
r + 2

)
,

γo1 =
1

d1d2
2

a2
r

4(a2
r − 1)2

(
−(4a2

r − 1)θ + 2a2
r + 1

)
, γo2 =

1

d1d2
2

a2
r

(a2
r − 1)2

(
(2a2

r + 1)θ − 3
)
.

The isotropic part in (3.82), (M : diag(αo1, α
o
2, α

o
3)) can be analogously expressed in

terms of p1 and E[u0]. But since it forms a scalar function depending on c,R, t, entering
the system by its spatial gradient, we can shift the isotropic part into the pressure of the
Newtonian stresses as already done in Remark 33 with the local pressures. Using (3.82)
and (3.83) in the expression of the particle extra stresses in Abbreviation 35, we find

Σp
0[ψ,u](x, t) = 2|Ω|

∫
SO(3)

a1p1 ⊗ p1 ⊗ p1 ⊗ p1 : E[u0](x, t)

+ a2(p1 ⊗ p1 · E[u0](x, t) + E[u0](x, t) · p1 ⊗ p1) + a3E[u0](x, t) dψx

= 2|Ω|
(
a1E[p1 ⊗ p1 ⊗ p1 ⊗ p1] : E[u0]

+ a2(E[p1 ⊗ p1] · E[u0] + E[u0] · E[p1 ⊗ p1]) + a3E[u0]
)

(x, t)

with E denoting the expectation with respect to the marginal probability ψx,t on SO(3).
It should be noted that E[.] = E[.](x, t) as ψx,t is depending on the position and time.
In case of a uniform particle distribution in space we get the well-known form of the
particle-stresses (e.g., see [81]) as stated in the following corollary.

Corollary 48. Let the assumptions of Corollary 42 hold and E = DB1 with D =
diag(d1, d2, d2), di > 0. Then the momentum equation for the fluid (3.55a) reads as

Re Dtu0 = (1 + φε(ρε − 1))∇ · S[u0] + 2φε∇ · Σ̃ + Re Fr−2 eg

+ 2ε3/2∇ · E[Ũ0[ψt,u0]]− ε4/3 Re∇ · H̃0[ψt,u0] ,

where the stress tensor is given by

Σ̃(x, t) = a1E[p1 ⊗ p1 ⊗ p1 ⊗ p1] : E[u0](x, t)

+ a2(E[p1 ⊗ p1] · E[u0](x, t) + E[u0](x, t) · E[p1 ⊗ p1]) + a3E[u0](x, t) ,

with constants ai given in Abbreviation 47.
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Remark 49 (Quadratic decay and transport equation).

1) Similarly to Remark 45 we find from (3.81) and Lemma B.11 that for normal
and light-weighted particles the local velocity Uloc,1 decays as ‖y‖−2. Hence the
chaos assumption is not needed for Theorem 36 to hold.

2) In order to illustrate the transport equation (3.55c) in case of normal or light-
weighted particles, we use an analogous problem to the one in Remark 46. Thus,
we consider for the system (3.65) with a(x, t) = u0(x, t) and ω(x,R, t) = 0.5∇×
u0(x, t) + νp1 × E[u0](x, t) · p1, the corresponding characteristic flows X(t, s,x)
in Ω and Y (t, s,x,R) on SO(3) as well as the combined flow Z(t, s, (x,R)) are
defined analogously to Remark 46. As we allowed ω to depend on R in Remark 46,
we immediately find that the push-forward measure of ψt(.) = ψ0 ◦ Z(t, 0, .)−1 is
a weak solution to (3.55c) and indeed fulfills ψt(Ω × SO(3)) = 1. Additionally,
if ψt is absolutely continuous with respect to the product of Lebesgue and Haar
measure, then its density % solves (3.55c) in the strong sense and is given in
terms of the initial condition, the characteristic flow Z and the determinants of
the Jacobians of X and Y , J respectively K. Since ∇x · u0 = 0, J ≡ 1 but in
contrast to the case of Remark 46 as ω depends on p1 = R · e1

divG(L[B(ω)]) = −
∑
ijm

(
∂

∂Rj1

ωi

)
εjimRm1

= −ν
∑
ijm

εij`(E[u0])`nRn1εjimRm1 + εin`(E[u0])`jRn1εjimRm1

= 3νp1 · E[u0] · p1 6= 0

if the shear rate is not zero and thus, K 6= 1 in general.

In case of heavy particles the velocity v1 depends also on the rotation R, implying
that X and Y are mutually coupled. Hence, Z is still a one-to-one characteristic
flow on Ω × SO(3), but in order to derive similar conditions to (3.80) for the
preservation of Lebesgue measure, the approach of Remark 46 must be extended
to contribute for the additional coupling, which we not pursue at this point.

3.6 Conclusion

Our aim was to derive an approximation of the full deterministic suspension sys-
tem (3.1). The latter models Nε small particles suspended in an incompressible New-
tonian carrier fluid, which interact only through the fluid medium. The fluid itself is
influenced by the particle presence as free fluid flow is only possible in the fluid domain
Ωε, while the velocity in the particle domain, Ω\Ωε, is restricted by the condition of rigid
body motion. The approximation presented, as summarized in Theorems 36, 38, 40
and Corollaries 42, 44, 48, consists of a momentum equation for the effective fluid
in Ω which contains the particle effects as additional force terms and describes the
particle motion by the corresponding continuity equation on the particle phase space
Ω×SO(3). The model accounts not only for small particle inertia, that is modeled by
an appropriate choosing of the density scaling function introduced in the one-particle
model in Section 2.12, but also for particle interaction.
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The foundation of the model is an extension of the asymptotic approach presented
in [71], i.e., an expansion of the involved unknowns in the particle size ratio ε. In
order to justify the expansion in case of the fluid quantities, we assume that the fluid
flow is essentially undisturbed by the particles. Thus, we presume a global and a
local contribution, the latter is generated by the particle presence and lies in O(ε).
Moreover, by assuming a dilute or semi-dilute suspension, a terminology that describes
whether the hydrodynamic particle interaction is of orderO(ε) (dilute) or ofO(1) (semi-
dilute), complemented by a minimal distance assumption we are able to consider the
local part as a superposition of each particle contribution. Using the resulting ansatz
in the full problem (3.1), we find a suitable system of equations which describes the
particle motion, given the global velocity is sufficiently smooth (Lemma 19, Remark 20).
This immediately leads to the approximation of the full system if the global fluid flow
is given by a smooth Navier-Stokes solution (Theorem 21). Both results hold for
heavy particles under the condition that the particle number is chosen accordingly. In
the heavy particles regime, this condition allows only a constant particle number as
ε→ 0. In order to circumvent this fact, we discuss the assumption of a chaotic particle
distribution in space, which is characterized by presuming that the interaction terms
are sufficiently smooth (Remark 24). At this point we have an approximation of the
full problem which consists of the incompressible Navier-Stokes equations in space and
a large system of equations which describe the motion of each particle and its local
contribution to the overall fluid flow.

In order to get a model of the suspension as a homogeneous medium, we apply
a mean field approach similar to [20, 53]. More precisely: by using the empirical
measure for the particle positions and rotations, we identify the equations of motion
of the particles as characteristics of a continuity equation for the empirical measure
(Lemma 27) with advection operators of integro-differential kind that depend on the
measure itself as well as on the global velocity and pressure. Similarly, we can also
interpret the superposition of the local particle contributions to the overall velocity
and pressure as an integral operator depending on the empirical measure as well as
on the global quantities. Plugging the original expansion into the fluid momentum
equation and expressing the resulting terms as the corresponding integral operators
results in integro-differential operators in the momentum equation for the global fluid
velocity. The transport operators in the continuity equation for the measure as well
as the operators in the momentum equation for the global velocity can be extended
onto a class of more regular Borel measures (Lemma 28, Lemma 31, Remark 29, Re-
mark 30). Additionally, we approximate (Lemma 32, Remark 33, Remark 34) some
of the operators in the L2 norm in order to get more regular force terms which still
encompass the macroscopic effects of the suspension. This leads then to the complete
macroscopic description in Theorem 36 which consists of a modified Navier-Stokes sys-
tem for the fluid velocity and a continuity equation for the probability measure of the
particle phase space, which consists of position in space and orientation in the special
orthogonal group. The connection to the original problem is established by assuming
that there exists an empirical measure such that its Wasserstein distance to the regular
probability measure is small.

We showed that this approach leads to similar results as in our previous work [119],
which heavily relies on the ergodicity of the suspension in space (Corollary 42, Re-
mark 43), an assumption which is not needed in the presented approach here. This
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also implies that the momentum equation for the fluid velocity in our model includes
the well-known viscosity increase found by Einstein [42] as well as the particle extra
stress tensor due to Bachelor [12]. This is illustrated by applying our model to rigid
spheres (Corollary 44) and prolate ellipsoids (Corollary 48).

There are different limitations of the approach. The first being the chaos assump-
tion which is necessary in case of heavy particles (Theorem 38) and in case of the
O(ε2) approximation of the suspension of normal or light-weighted particles (Theo-
rem 40). This assumption essentially ensures that the superposition of local particle
velocities scaled by the large factor ε−1 is still bounded independent of ε. As discussed
in Remark 24 and Remark 37 we can not mitigate this requirement as otherwise either
the approximation property of the continuum model (Theorem 38, 40) or the well-
definition of the particle equations (Lemma 19) is lost. It is hard to check, whether
a given particle configuration fulfills (3.36), and, moreover, does it for all t ∈ [0, T ],
especially considering that we allow for small particle inertia. The minimal distance
assumption (Assumption 15, 3)) leads to a similar problem. As we assume that the
particles are always sufficiently separated, we are able to use simple Stokes solutions in
order to approximate the generated velocity fields. Both of these assumptions are due
to the chosen ansatz for the local velocity induced by the particle presence. In order to
circumvent them, one could study a partition of the domain, where in each subdomain
a sufficiently small number of interacting particles is present, while the interaction of
the subdomains is modeled by an effective law. The next limitation is the assumption
on the Wasserstein distance between the regular Borel measure of the continuus model
and a suitable empirical measure, which is needed in order to connect the continuum
model (3.55) to the full model (3.1) and, thus, establish the approximation property.
We note, that in this work we assume this distance being small for all t ∈ [0, T ]. In
similar problems it is possible to show that the distance for t > 0 is controllable by the
initial distance. As a consequence, the empirical measure then converges in the weak
topology of measures to the measure of the continuum model as Nε → ∞, [53]. This
then results in the easier problem of checking the assumption for the initial configu-
ration. The extension of the corresponding results to the product space Ω × SO(3)
would directly lead to an analogous result in our context. However, as the study of
this non-trivial problem does not fit the context of the present thesis, we omit it to a
possible later work.

Other limitations in the present work are less severe. We considered here only
particles of the same shape. Each operator in the equations of the continuum model
which depends on the particle shape is essentially defined as a sum over all particles
in the domain. In case of particles of different kind, we can partition the summation
into parts belonging to each species and hence write the corresponding operator as an
integral with respect to the probability measure belonging to the corresponding particle
type. This leads to a system of continuity equations coupled by interaction terms with
each other and also with a Navier-Stokes like equation similar to the presented one
in this work. Another limitation is that of deterministic forces. As mentioned in the
introduction of this chapter, the motion of the particles might be perturbed by effects
on much smaller scales which are modeled as stochastic forces. In our context this
would imply that the particle equations of motion in Lemma 19 have noisy linear
and angular velocities, i.e., the equations of motions become stochastic differential
equations. As the equations of motion play the role of characteristics of the continuity
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equation for the probability measure, we get in case of stochastic differential equations
instead a Fokker-Planck equation for the description of the probability measure [26,
31]. Additionally, the noise also enters the momentum balance of the fluid.

The novelty of this work lies in the generalization of classical suspension descrip-
tions to the case of a non-homogeneous, non-ergodic dilute suspension of orientable
small tracer particles in a bounded domain. Unlike in classical approaches we persued
the approximation of the deterministic multi particle system which is coupled to the
Navier-Stokes equations and paid attention to the hydrodynamic particle interaction.
We also discussed, how to classify different concentration regimes in the asymptotical
deterministic context and explored, to what degree we can extend our results to the
semi-dilute concentration regime. Additionally, we allowed the particle density to differ
significantly from the fluid density in the asymptotical context and were therefore able
to account for small effects of particle inertia. We point out, that in all of our con-
siderations the particles still essentially follow the streamlines of the surrounding flow.
Thus, their motion is completely determined by the velocity of the carrier fluid and so
is their retroactive effect on the fluid. This implies that we do not have a Brinkman
like force term in the momentum equation as, for example, in [20] or [49] which persue
similar approaches, but where the particle motion can differ significantly from the fluid
flow. Nonetheless, we find that the impact of the depicted small inertia and of inter-
action is at least of the same asymptotical order as the classical particle extra stress
tensor found by Batchelor in [12]. Therefore, our model is only applicable to the case
of nearly inertialess particles. If inertia plays a more important role, Brinkman like
models as in [20, 49] are more suitable. In the latter case the momentum equation for
the fluid has to be coupled to a homogenized momentum equation for the particle im-
pulse, according to the actio-reactio principle of Newton, as, e.g., carried out in [28] for
fibers. Then both equations must be coupled to a continuity equation for the particle
phase space, consisting of the position, momentum and, possibly, rotation and angular
momentum.
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4 Numerics of stochastic fiber dynamics

4.1 Introduction

Non-woven fabric materials appear in many applications and products for personal,
medical as well as industrial use. Examples are filters for respiration masks, wipes,
absorbent hygiene products, surgical gowns or face masks, wound dressings, support
and insulation layers in mattresses, insulation panels or fire-blockers, but also engine
fuel filters or light-weight and durable interior parts of cars [25, 32]. The production
methods of the corresponding materials depend on the particular application [100, 122],
one of which being the air-lay process. In the latter, numerous short fibers are inserted
into a turbulent air flow, which entangles them and transports them onto a perforated
conveyor belt, where a random, three-dimensional web is formed. The resulting mat
is then subjected to additional steps, such as thermobonding in order generate the
final material [54]. The material properties of the resulting product depend strongly
on the micro-structure generated during the fiber lay down. The ability to predict
the material properties by a numerical simulation of such production processes [19, 54,
73, 92] enables the manufacturers to optimize their product in a very cost and time
efficient way. Such simulations often demand fast and accurate numerical computations
of a large number of fibers moving in a turbulent air flow, possibly interacting with
each other and influencing the carrier fluid. It is therefore of great interest, how the
necessary computational costs in the fiber simulation might be decreased.

The fiber in the sketched air-lay process typically has a length ` of a few centime-
ters, a diameter d at the scale of micrometers and is made of wool or polyester. Since
it is also subjected to turbulence, its motion can be described by the dynamics of
a stochastic fiber which is thin and elastic [54]. Due to the slenderness of the fiber
(ε = d/` � 1), it can be modeled as an inextensible, one-dimensionally parametrized
elastic beam. Thus, the resulting momentum equation for the fiber is a stochastic
partial differential algebraic equation (SPDAE) for the parametrized fiber position in
the Euclidean space. It can be viewed as a reformulation of the Kirchhoff-Love equa-
tions [78] that describe the asymptotic limit model of an elastic Euler-Bernoulli rod
as ε and the Mach number (ratio between fiber velocity and typical speed of sound)
approach zero [14]. Rigorous derivations of such inextensible Kirchhoff beam models
from three-dimensional hyper-elasticity can be found in [29, 95]. The solvability of
extensible stochastic beam equations is studied in, e.g., [13, 23, 31]. Deterministic
inextensible fiber models are investigated in [38, 56, 97, 102] analytically and numeri-
cally. Deterministic elastic flows of constrained curves in different model variants are
also a topic of recent numerical investigations, see [7, 9, 10, 33]. An error analysis
for a spatially semi-discrete scheme is performed for closed parametrized curves with
preservation of the global length in [33]. A fully implicit finite element method with
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equidistribution of vertices is explored in [7]. Curves with local length preservation are
handled in [9, 10] by employing a temporal semi-discretization and studying the result-
ing sequence of partial differential equations in space. A rigorous convergence analysis
for this setting can be found in [56]. A framework for the rigorous formulation and
analysis of the spatially semi-discrete inextensible stochastic beam model accompanied
by the proof of existence and uniqueness of a global strong solution is given in [84],
where we contributed numerical studies to the analytical investigations.

We aim for the reduction of computational costs in the simulation of a stochastic
inextensible fiber. In order to achieve this goal, we investigate three possible techniques.
The first one is a predictor-corrector method, where the solution to the implicit Euler
time integration step is predicted by a different, inexpensive scheme. This leads to a
reduction of needed Newton iterations in each step and hence to a reduction of overall
computational time. The second technique is the replacement of the underlying white
noise by a correlated noise process. The correlation is carried out by different methods,
which are characterized as a direct smoothing of the corresponding Wiener process.
This leads to a more regular force term, slightly reducing the needed computational
time, while still generating suitable approximations of the mean of the fiber position.
Finally, we also apply the Wiener chaos expansion [44] to the constrained fiber model,
which separates the stochastic and deterministic influences, allowing a nearly instant
generation of stochastic realizations and directly generating the mean of the solution
components. The novelty of the present work is the study of explicit estimators in
the simulation of stochastic inextensible fiber models, the extension of the correlation
methods for the white noise and the study of their impact on the solution of spatially
semi-discretized SPDAE and the derivation of the Wiener chaos expansion for the
constrained SPDE with an inextensibility constraint.

This chapter is mainly based on the preliminary works [120] and [84]. It is struc-
tured as follows: in the spirit of Section 2.2 and 3.2 we first derive the mathematical
model for the deterministic fiber in Section 4.2.1 starting from a general system of
equations which describe a special Cosserat rod following [90]. Here we also introduce
the characteristic quantities of the resulting system and formulate the dimensionless
partial differential equation. In Sec. 4.2.2, we introduce the model for the stochastic
force, which is a simplified model motivated by [90]. In Sec. 4.2.3 we then present the
used spatial semi-discretization, which is based on a finite volume discretization of the
one-dimensionally parametrized fiber combined with finite differences on a staggered
grid, which allows small discretization stencils. We also state the rigorous meaning
of the semi-discretized stochastic system following [84] in terms of a manifold-valued
Itô-type stochastic differential equation. Afterwards, in Sec. 4.2.4 we discuss the typ-
ical parameters of the air-lay process setting given in [54], which forms the basis for
the parameter choice in the numerical experiments. In Sec. 4.3 we present the used
time integration schemes for the semi-discretized system as well as the predictor meth-
ods for the implicit Euler method. The two presented methods are derived from the
explicit Euler method on the one hand and from the Lobatto IIIA-IIIB pair on the
other. Section 4.4 is dedicated to the introduction of the different smoothing tech-
niques of the white noise (Sec. 4.4.1), which are partly discussed in [16], as well as for
the Wiener chaos expansion (Sec. 4.4.2), which was studied for the stationary, extensi-
ble and inertialess fiber in [16]. The numerical investigations are collected in Sec. 4.5,
where we first validate the convergence behavior of the different integration schemes
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Figure 4.1.: A special Cosserat rod in reference state (top), subject to dilatation and
flexure (bottom left) and subject to shear and torsion (bottom right). The
rod is parametrized by the centerline r (red, dashed) and its cross sections
(here at s = 0, s = `/2, s = `), which are characterized by the family of
director triads d1,d2,d3 (green, yellow and blue arrows respectively).

and discuss the solution behavior under the chosen benchmark scenarios (Sec. 4.5.1
and Sec. 4.5.2). The validation of the integration schemes in the stochastic case is
carried out in Sec. 4.5.3. Thereafter, in Sec. 4.5.4 we study the different predictors to
the implicit Euler scheme, in Sec. 4.5.5 the smoothing techniques and in Sec. 4.5.6 the
results of the Wiener chaos, which we apply to a model with a simplified, Stokes-like
air-drag model. Finally, in Sec. 4.6 we discuss the results of our simulation results.

4.2 Elastic fiber

In this section we first present the model of the deterministic elastic fiber following [90].
Then we modify the fiber dynamics by adding noise in Sec. 4.2.2 and, after the pre-
sentation of the spatial semi-discretization in Sec. 4.2.3, discuss the typical parameter
setting in case of an air-lay process in Sec. 4.2.4.

4.2.1 Deterministic model

The dynamics of an elastic fiber can be described using the Kirchhoff-Love theory for
Cosserat rods [78, 90], which allows flexure, torsion and shear of the body. This model
uses a one dimensional parametrization of the rod by a time-dependent centerline
r(s, t) ∈ R3, (s, t) ∈ [0, `]× [0, T ], and by a description of each (rigid) cross section in
terms of a family of local orthonormal directors [d1,d2,d1×d2](s, t) = R(s, t) ∈ SO(3).
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Thus, in case of circular cross sections of constant diameter d, each point of the body
is given as z(y, s, t) = r(s, t) + R(s, t) · y for y ∈ S1

d/2, see Fig. 4.1. The dynamics
of the rod of constant density ρ, given by the linear and angular momentum balance,
then simplify to a second order partial differential system of equations for r and R

ρA∂ttr = ∂sq + f , ρI
2∑
i=1

(∂ttdi × di) = ∂sm+ ∂sr × q + `

with an outer line force f and an outer line torque∗ `. The system is closed by
constitutive laws for the inner forces q and moments m. The term A denotes the
cross-sectional area, A = πd2/4 and I = πd4/64 the moment of inertia. In case of
a long, slender fiber, i.e., ε = d/` � 1, elongation or compression as well as shear
are negligible compared to flexure effects. This is modeled by the algebraic constraint
‖∂sr(s, t)‖2 = 1 for all s, t, which also enforces global length conservation, as well as
d1 × d2 = ∂sr. For further simplifications, the following assumptions are met and the
characteristic system quantities are chosen accordingly:

• The characteristic time scale t allows motion on the complete length scale of the
fiber, u = `/t.

• The characteristic force F induces acceleration of the complete fiber within the
characteristic time scale, F = ρA`u/t.

• Due to inextensibility, the characteristic fiber length is the same as the charac-
teristic parametrization length s, and is set to the total fiber length s = `.

The characteristic inner moment, inner force, outer torque density and outer force den-
sity are denoted by m, q, l, f , respectively. The non-dimensionalization of the system†

has the consequence that the angular momentum balance reads as

1

16
ε2

2∑
i=1

(∂ttdi × di) =
m

F`
∂sm+

q

F
∂sr × q +

l

F
` . (4.1)

Since the inner force q must contain a force contribution which enforces the inextensibil-
ity constraint, it must be of the same magnitude as the characteristic force independent
of the slenderness parameter, q/F � ε. Neglecting the O(ε2) term in (4.1) leads to a
stationary system for the inner forces balancing the torques and inner moments. This
system can be further simplified by using the linear Bernoulli-Euler beam theory for
the inner moments, m(R,κ) = (m`)−1R · diag(EI,EI,GJ) · κ with E,G, J denoting
respectively the Young’s and shear moduli as well as the moment of inertia, the latter
fulfilling J = 2I. The vector family κ = (κ1, κ2, τ)(s, t) contains the dimension-free
flexures κ1, κ2 and torsion τ , i.e.,

∂sR = B(R · κ) · R .

∗The force and torque are given here as line densities, i.e., [f ]SI = N/m, [`]SI = N.
†Similarly to Section 2.2.5 we do not distinguish between the physical quantities equipped with units

and non-dimensionalized functions which will be used from here on.
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By plugging the expression for m into (4.1) neglecting the O(ε2) term, setting the
outer torques ` = 0 and using the inextensibility constraint, the inner force q follows
as

q = λ∂sr −
EI

q`2
∂sssr +

GJ

q`2
τ0∂sr × ∂ssr (4.2)

with τ0 being a constant torsion applied throughout the fiber. The scalar-valued func-
tion λ = λ(s, t) denotes the intensity and direction of an inner force solely acting
tangential to the fiber curve. Due to the inextensibility constraint, any force acting
on the fiber at r(s, t) parallel to ∂sr(s, t) must be canceled out, hence, λ can be read
as the Lagrangian multiplier to the inextensibility constraint. Setting the constant
torsion τ0 = 0 and using the expression for the inner force in (4.2), we then arrive at
the following description of a long, slender, elastic and inextensible fiber [90]:

∂ttr = ∂s(λ∂sr)− EI

F`2
∂ssssr +

`f

F
f , ‖∂sr‖2

2 = 1 , (4.3)

where we rescaled the Lagrangian multiplier λ by the factor q/F . In our context,
the fiber is moving in an air flow. Thus, the force density f consists of gravity and
aerodynamic forces, ff = ρAgeg + fafa with g, eg the gravitational acceleration and
direction and the aerodynamic force density fa = fa(r(s, t), ∂tr(s, t), ∂sr(s, t), t), [90,
92]. In order to characterize the system, we use the following dimensionless quantities:
the Froude number Fr = u/

√
`g (ratio of inertial and gravitational forces, analogously

to Section 2.2.5), the bending number α = `u
√
ρA/(EI) (ratio of inertia and bending)

and the drag number Dr = u
√
ρA/(`fa) (ratio of inertial and aerodynamic forces), [84].

Finally, we denote the terms in the right-hand side of the momentum equation in (4.3)
as

fo(s, t) =
`

F

(
ρAgeg + fafa(r(s, t), ∂tr(s, t), ∂sr(s, t), t)

)
= Fr−2eg + Dr−2fa(r(s, t), ∂tr(s, t), ∂sr(s, t), t) , (4.4a)

φ(s, t) = λ(s, t)∂sr(s, t)− EI

F`2
∂sssr(s, t)

= λ(s, t)∂sr(s, t)− α−2∂sssr(s, t) . (4.4b)

Hence, the problem we consider in this chapter is given as

∂ttr(s, t) = ∂sφ(s, t) + fo(s, t) , (4.5a)

‖∂sr‖2
2 = 1 , (4.5b)

for (s, t) ∈ [0, L] × [0, T ] with L, T ∈ R+. Due to our choice of the relation be-
tween the total fiber length and the characteristic length, the dimensionless total
length fulfills L = 1. Nonetheless, we keep L as a parameter in the remainder of this
chapter in order to keep the considerations as general as possible‡. Initial conditions

‡Another possibility to allow different dimensionless fiber lengths is to set ` = sL. In this case we
would also introduce additional freedom in the choice of appropriate time and force scales, which
we do not pursue here.
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r(., 0), ∂tr(., 0), λ(., 0) and boundary conditions at s ∈ {0, L} complete the system. We
particularly use

r(0, t) = r̂ , ∂sr(0, t) = τ̂ , ‖τ̂‖ = 1,

λ(L, t) = 0 , ∂ssr(L, t) = 0 , ∂sssr(L, t) = 0
(4.6a)

in case of a fiber clamped at one end (s = 0) and stress-free at the other end (s = L)
as well as

λ(s, t) = 0 , ∂ssr(s, t) = 0, ∂sssr(s, t) = 0, s ∈ {0, L} (4.6b)

in case of a free moving fiber.

Remark 50 (2d-Setting). We sketched the derivation for a three-dimensional rod.
Nonetheless, the model (4.5) is also valid in case of a two-dimensional setting. Assume,
for example, r(., t) · e3 ≡ 0 for some t ∈ [0, T ], then the kth partial derivative, ∂ksr,
fulfills ∂ksr(., t) · e3 ≡ 0 for any k implying ∂sφ(., t) · e3 ≡ 0. Hence, if additionally
fo(., t) · e3 ≡ 0 holds, there is no acceleration in direction of e3 at this point in time.
If, moreover, ∂tr(., t) · e3 ≡ 0, there is also no inertial drift in this direction. Thus,
r(., τ)·e3 ≡ 0 must hold for some neighborhood of t. Therefore, demanding r(., 0)·e3 ≡
0, ∂tr(., 0) · e3 ≡ 0 and fo(., t) · e3 ≡ 0 for all t ∈ [0, T ] yields a completely two-
dimensional setting. Thus, r ∈ Rd, d ∈ {2, 3} is assumed in the following sections.

Remark 51 (Stress free boundary condition). Due to the algebraic constraint (4.5b)
it holds ∂sr · ∂ssr = 0 and therefore

‖∂ssr‖2 = −∂sr · ∂sssr .

The expression for the inner forces (4.2) then implies for τ0 = 0

q · ∂sr = λ− c∂sssr · ∂sr = λ+ c‖∂ssr‖2
2 ,

q · ∂sr⊥ = −c∂sssr · ∂sr⊥

with some constant c and where ∂sr
⊥ is any orthogonal vector to ∂sr. Hence, the

boundary conditions λ = 0, ∂sssr = 0 imply no stress at the boundary, q = 0 with
∂ssr = 0 being a compatibility condition.

Remark 52 (Energy formulation). In case of a purely conservative outer force, i.e.,
fa = 0 in our setting, the system (4.5) is conservative. In this case, the kinetic and
potential energy of the fiber are given as

Ekin(s, t) = 0.5‖∂tr(s, t)‖2 , Epot(s, t) = Epot,g(s, t) + Epot,b(s, t) ,

Epot,g(s, t) = −Fr−2eg · r(s, t) , Epot,b(s, t) = α−20.5‖∂ssr(s, t)‖2 .

The Lagrangian function reads as

M(r, τ ,υ,w) = 0.5‖w‖2 + Fr−2eg · r − α−20.5‖υ‖2 − 0.5λ(‖τ‖2 − 1) ,

with the Lagrangian functional

L(r) =

∫ T

0

∫ L

0

M(r(s, t), ∂sr(s, t), ∂ssr(s, t), ∂tr(s, t)) dsdt .
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For any smooth function with compact support, ρ ∈ C∞c ([0, L]×[0, T ];Rd), the variation
of the Lagrangian then follows as

DL(r + hρ)|h=0 =

∫ T

0

∫ L

0

∂rM · ρ+ ∂τM · ∂sρ+ ∂υM · ∂ssρ+ ∂wM · ∂tρ dsdt .

In the case of a clamped fiber at s = 0, ρ(0, t) = 0 = ∂sρ(0, t). Since an initial
condition is given, it also holds ρ(s, 0) = 0 = ∂tρ(s, 0). Partial integration yields

DL(r + hρ)|h=0 =

∫ T

0

∫ L

0

(∂rM − ∂s (∂τM) + ∂ss (∂υM)− ∂t (∂wM)) · ρ dsdt

+

∫ T

0

(∂τM · ρ+ ∂υM · ∂sρ− ∂s (∂υM) · ρ) |s=Ls=0 dt

+

∫ L

0

∂wM · ρ|t=Tt=0 ds .

The boundary conditions and the properties of the test function reveal

DL(r + hρ)|h=0 =

∫ T

0

∫ L

0

(∂rM − ∂s (∂τM) + ∂ss (∂υM)− ∂t (∂wM)) · ρ dsdt

and the fundamental lemma of calculus of variations [105] leads to the Lagrange’s
equations

∂t (∂wM) = ∂rM − ∂s (∂τM) + ∂ss (∂υM)

subject to the inextensibility constraint 0.5λ(‖∂sr‖2−1) = 0, which is identical to (4.5).
On the other hand, multiplying (4.5) with ∂tr and integrating over space and time, we
find ∫ T

0

∫ L

0

∂t
(
0.5‖∂tr‖2

)
dsdt

=

∫ T

0

∫ L

0

∂t
(
Fr−2eg · r − α−20.5‖∂ssr‖2 − 0.5λ(‖∂sr‖2 − 1)

)
dsdt

+ α−2

∫ T

0

(∂ssr · ∂str − ∂sssr · ∂tr)|s=Ls=0 dt

+

∫ T

0

∫ L

0

0.5∂tλ(‖∂sr‖2 − 1) dsdt+

∫ T

0

(λ∂sr · ∂tr)|s=Ls=0 dt .

Applying the boundary conditions, the identity ∂tr(0, t) = ∂str(0, t) = 0, since r(0, t)
is assumed fixed, ∂sr(0, t) ≡ τ̂ and the constraint, we find∫ L

0

Ekin(s, T ) + Epot(s, T ) ds =

∫ L

0

Ekin(s, 0) + Epot(s, 0) ds .

Thus, the equations (4.5) preserves energy.
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4.2.2 Stochastic model

In the scenario of a turbulent air flow, the aerodynamic drag can be modeled as the
superposition of a deterministic drag originating from the mean velocity of the fluid
and an additional stochastic drag due to turbulence [90, 92]. In particular, given a
probability space (Ω,A, ς), the aerodynamic drag is given for any ω ∈ Ω as

fa = fad(r(s, t), ∂tr(s, t), ∂sr(s, t), t) + βA(r(s, t), ∂tr(s, t), ∂sr(s, t), t) · ξ(s, t, ω) .

The term ξ denotes a multiplicative vector-valued space-time Gaussian white noise
with a flow-dependent amplitude A, characterized by the dimensionless number β, the
turbulent fluctuation number [84]. In this case, the fiber curve becomes a random field
r : [0, L]× [0, T ]×Ω→ Rd, d ∈ {2, 3} whose dynamics are described by the stochastic
partial differential algebraic equation formally given as (4.5). In the following we will
suppress the dependence of the involved functions on ω. In order to differentiate
between the deterministic drag and stochastic forces, we split the two contributions by
modifying (4.4a) in the following way

fo(s, t) = fod(s, t) + D(s, t) · ξ(s, t) , (4.8a)

fod(s, t) = Fr−2eg + Dr−2fad(r(s, t), ∂tr(s, t), ∂sr(s, t), t) , (4.8b)

D(s, t) = βDr−2A(r(s, t), ∂tr(s, t), ∂sr(s, t), t) . (4.8c)

We also define the planar Wiener process as following, [84, 125].

Definition 53 (Gaussian white noise, planar Wiener process). Consider L2(Ω,A, ς;Rd)
to be the space of Rd-valued random variables with finite second moments on a suffi-
ciently rich probability space (Ω,A, ς), and let B([0, L] × [0, T ]) be the family of Borel
sets on [0, L]× [0, T ]. Then a mapping ξ : B([0, L]× [0, T ])→ L2(Ω,A, ς;Rd) is called
Gaussian white noise, if it fulfills:

1. For any set B ∈ B, ξ(B) is a N (0, |B|I) distributed random variable.

2. For any disjoint sets B,C ∈ B, ξ(B) and ξ(C) are independent and ξ(B ∪C) =
ξ(B) + ξ(C) holds.

Furthermore, w : [0, L]× [0, T ]→ L2(Ω,A, ς;Rd) given by w(s, t) = ξ((0, s]× (0, t]) is
called a planar Wiener process. The associated filtration is denoted by Fs,t for 0 ≤ s ≤
L and 0 ≤ t ≤ T .

Since ξ is a random measure, ξ(s, t) is not naturally defined, instead the equa-
tions (4.5) must be read as an Itô-type stochastic partial differential equation (for the
construction of a multi-parameter Itô integral see, e.g., [69, 125]). Moreover, as the
driving force of the fiber is irregular in space and time, so is the Lagrangian multiplier,
hence ∂sλ is not well-defined. Therefore, by speaking of a solution of (4.5) with fo
given in (4.8a), we presume, that the solutions of the semi-discrete system presented
in Sec. 4.2.3 converge to Fs,t-measurable random fields r(s, t) ∈ L2(Ω,FL,T , ς;Rd) and
λ(s, t) ∈ L2(Ω,FL,T , ς;R) as ∆s → 0 with sufficient regularity in space, as in [56] for
the deterministic case.
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4.2.3 Semidiscretized system

The fiber model (4.5) is a wave-like system with elliptic regularization. For the spatial
discretization of the deterministic version different approaches can be found in litera-
ture, such as, e.g., geometric Lagrangian methods [79], finite element schemes [7, 10,
56] or finite volume approaches [122]. We apply a finite volume method in combi-
nation with a finite difference approximation for the constraint [84]. The usage of a
staggered grid allows particularly for small discretization stencils. In the deterministic
case, it is a conservative first-order scheme. A rigorous interpretation of the stochastic
semi-discrete system is given in [84].

For the following, we denote the fiber velocity as ∂tr = v, this implies ∂ttr = ∂tv.
We consider a finite volume discretization that is based on a conforming partition
of [0, L] into subintervals (control cells) Ii of length ∆s. The partition is identified
with the sequence of nodes {si}i. The idea is to formally integrate the evolution
equations in (4.5) over the control cells Ii = [si−1/2, si+1/2], si±1/2 = si ± ∆s/2 for
i = 1, ..., N , and to set up a stochastic differential system in time for the cell averages
ϕi(t) =

∫
Ii
ϕ(s, t)ds/∆s of the unknowns ϕ ∈ {r,v}. In this way the fiber position

and velocity are assigned to the cell nodes, ri(t), vi(t), whereas we assign the inner
traction, and consequently also the constraint, to the cell edges, λi±1/2(t) = λ(si±1/2, t).
The integral equations yield

d

dt
ri(t) = vi(t) , (4.9)

d

dt
vi(t) =

1

∆s

(
φ(si+1/2, t)− φ(si−1/2, t) +

∫
Ii

fod(s, t) ds+

∫
Ii

D(s, t) · ξ(s, t) ds

)
,

‖∂sr(si−1/2, t)‖ = 1 .

We evaluate the remaining integrals by means of trapezoidal quadrature rules,∫
Ii

fod(s, t) ds ≈ 1

2
(fod(si+1/2, t) + fod(si−1/2, t))∆s , (4.10a)∫

Ii

D(s, t)ξ(s, t) ds ≈ 1

2
(D(si+1/2, t) + D(si−1/2, t)) ·

∫
Ii

ξ(s, t) ds . (4.10b)

Moreover, we approximate all function values of r, v as well as ∂sr, ∂ssr, ∂sssr occurring
at the cell edges si±1/2 by a linear interpolation over the neighboring cells and first order
finite differences, respectively, i.e.,

ϕ(si−1/2, t) ≈ (ϕi(t) +ϕi−1(t))/2, ϕ ∈ {r,v},
∂sr(si−1/2, t) ≈ (ri(t)− ri−1(t))(∆s)−1,

∂ssr(si−1/2, t) ≈ (ri+1(t)− ri(t)− ri−1(t) + ri−2(t))(∆s)−2/2,

∂sssr(si−1/2, t) ≈ (ri+1(t)− 3ri(t) + 3ri−1(t)− ri−2(t))(∆s)−3.

Consequently, plugging the discretization stencils into the integral equations yields a
semi-discrete system for ri, vi and λi−1/2. The traction λi−1/2(t) appearing in the
flux term acts particularly as Lagrange multiplier to the discretized inextensibility
constraint

‖ri(t)− ri−1(t)‖ = ∆s.
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Due to the constraint, the spatially discrete fiber becomes a polygon line with a fixed ge-
ometrical spacing for the fiber points. In the sequel we denote the used approximations
of the function values at the cell edges by the index i±1/2, e.g., Di±1/2(t) ≈ D(si±1/2, t).

To incorporate the boundary conditions (4.6) into the scheme, we introduce ghost
points, i.e., artificial points which are not governed by the dynamical system (4.5). This
way we do not have to adapt the discretization stencils. The spatial grid for a one-
sided clamped fiber (4.6a) is visualized in Fig. 4.2. We realize the clamped boundary
condition of a fixed position r̂ and tangent τ̂ at s = 0 by setting the node s1 = 1.5∆s,
where ∆s = L/(N + 1), and introducing the additional nodes s−1 = −0.5∆s and
s0 = 0.5∆s. The associated fiber points ri, i = −1, 0 are then given algebraically at
every time t ≥ 0, they are coupled with the dynamical system via the constraint for
the unknown traction λ1/2,

r−1 + r0 = 2r̂ , r0 − r−1 = ∆sτ̂ , ‖r1 − r0‖ = ∆s . (4.11)

In particular, r0 = r̂ + ∆sτ̂/2 is constant and hence considered as a ghost point
although s0 ∈ [0, L]. The associated velocity of the ghost points at s−1, s0 is prescribed
as v−1 = v0 = 0, as τ̂ and r̂ are assumed constant in time. For the realization of a
stress-free boundary at s = L, we set sN = L− 0.5∆s and add sN+i = L+ (i− 0.5)∆s,
i = 1, 2. According to the discretization stencils the corresponding fiber points and
traction fulfill

rN+2 − 3rN+1 + 3rN − rN−1 = 0, rN+2 − rN+1 − rN + rN−1 = 0, λN+1/2 = 0 .
(4.12)

The equations for the velocities at the ghost points sN+1, sN+2 are chosen accordingly.
Note that this approach also ensures that the additional points fulfill the length con-
straint. In case of a free moving fiber (4.6b) the handling of the stress-free boundary
conditions for both ends is straightforward.

bc bc × × × × × × bc bc

s = 0

s−1 s0 s1 sN sN+1 sN+2

s = L

Figure 4.2.: Spatial grid for semi-discretization of one-sided clamped fiber. Crosses
mark the dynamical grid points, whereas circles label the ghost points due
to the realization of the boundary conditions (4.6a).

In what follows we will focus on the analysis of the one-sided clamped fiber as this
case covers the difficulties of both types of boundary conditions.

We denote the polygon line as r = (ri)i=1,...,N and its velocity by v = (vi)i=1,...,N .
The vector of the discrete Lagrangian multipliers is given by λ = (λi−1/2)i=1,...,N and
the holonomic constraint by the function g : RdN → RN , g(r) = (gi−1/2(r))i=1,...,N with

g1/2(x) = 0.5

(
1− ‖r0 − x1‖2

2

∆s2

)
, gi−1/2(x) = 0.5

(
1− ‖xi−1 − xi‖2

2

∆s2

)
for i = 2, . . . , N and any x = (x1, . . . ,xN) ∈ RdN . Then we have in the deterministic
case for (4.5) the resulting high dimensional differential algebraic equation (DAE)

d

dt
r = v , (4.13a)
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d

dt
v = a+∇g(r) · λ , (4.13b)

g(r) = 0 (4.13c)

for all t ∈ (0, T ) where the driving force a = a(r, v, t) = (ai(r, v, t))i=1,...,N is given in
terms of

ai(r, v, t) = −ri+2 − 4ri+1 + 6ri − 4ri−1 + ri−2

α2∆s4
+
fod(si+1/2, t) + fod(si−1/2, t)

2
,

fod(si−1/2,t) = Fr−2eg + Dr−2fad

(
ri−1 + ri

2
,
vi−1 + vi

2
,
ri − ri−1

∆s
, t

)
.

In [84] it is shown that in case of fo given by (4.8a), the semi-discrete system be-
longing to (4.5) can be interpreted as an Itô-type stochastic differential equation. To
be precise, the formal expression

1

2∆s

∫ τ

0

(
D(si+1/2, t) + D(si−1/2, t)

)
·
∫
Ii

ξ(s, t) ds dt (4.14)

from (4.10b) is read as an integral with respect to the measure ξ, formally ξ(s, t)dsdt =
dξ presuming continuity and Fs,t-adaptness of Di−1/2(t). Using Def. 53, we have

ξ((si−1/2, si+1/2]× (0, t]) = ξ((0, si+1/2]× (0, t])− ξ((0, si−1/2]× (0, t])

= w(si+1/2, t)−w(si−1/2, t)

and as ξ((si−1/2, si+1/2] × (0, t]) ∼ N (0, t∆sI), we set the standard Rd-valued Wiener

process in time as wi(t) = (w(si+1/2, t)−w(si−1/2, t))/
√

∆s. Then, due to our approx-
imation (4.10b) of the amplitude D in space, the stated interpretation of (4.14) (and
therefore of (4.8a)) is given by∫

Ii×[0,τ ]

D(si+1/2, t) + D(si−1/2, t)

2∆s
· dξ =

∫ τ

0

D(si+1/2, t) + D(si−1/2, t)

2
√

∆s
· dwi(t) ,

(4.15)

i.e., by an Itô integral with respect to a standard one-parameter, Rd-valued Wiener
process. Similarly, as stated before (see Section 4.2.2), the Lagrangian multiplier is
not a regular random field in the stochastic setting. Thus, the time integral over the
corresponding term in the semi-discretization of the flux φ, see (4.9), namely

1

∆s

∫ τ

0

λi+1/2
ri+1 − ri

∆s
− λi−1/2

ri − ri−1

∆s
dt (4.16)

is also interpreted as a stochastic integral. Formally, λi−1/2(t)dt = dµi−1/2(t), where
(µi−1/2(t))t≥0 ⊂ R is a family of continuous and FL,t-adapted semi-martingales. Then,
the integral in (4.16) is given by∫ τ

0

ri+1 − ri
∆s2

dµi+1/2 −
∫ τ

0

ri − ri−1

∆s2
dµi−1/2 (4.17)

which is well-defined, given (ri(t))t≥0 is continuous and FL,t-adapted, [84]. Using
the abbreviation µ = (µi−1/2)i=1,...,N and w = (wi)i=1,...,N , we finally state the semi-
discretized system as the Itô-type stochastic DAE

dr = v dt , (4.18a)
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dv = a dt+B · dw +∇g(r) · dµ , (4.18b)

g(r) = 0 , (4.18c)

with the stochastic amplitude B = B(r, v, t) = (Bij(r, v, t))i,j=1,...,N given in terms of

Bij(r, v, t) =
1

2
√

∆s

(
Di+1/2(t) + Di−1/2(t)

)
δij ,

Di−1/2(t) = βDr−2A

(
ri−1 + ri

2
,
vi−1 + vi

2
,
ri − ri−1

∆s
, t

)
.

Both systems, (4.13) and (4.18) are completed with consistent initial conditions for
r(0), v(0), and λ(0) or µ(0), respectively. Considering the solvability of (4.13), we refer
to [56], in case of the system (4.18), we cite the main result of [84]:

Proposition 54 (Existence and uniqueness of a global solution to (4.18)). For any
T,R > 0, let a,B be Lipschitz-continuous in r, v and possess at most linear growth, i.e.
there exist c1 = c1(T,R) ≥ 1 and c2 = c2(T ) ≥ 1, such that

‖a(r1, v1, t)− a(r2, v2, t)‖+ ‖B(r1, v1, t)−B(r2, v2, t)‖ ≤ c1‖(r1, v1)− (r2, v2)‖ ,
‖a(t, r, v)‖+ ‖B(t, r, v)‖ ≤ c2(1 + ‖(r, v)‖) .

for all ‖(ri, vi)‖ ≤ R, i = 1, 2, all (r, v) ∈ R2dN and any t ∈ [0, T ]. Let the initial
condition r0 ∈ RdN be given, such that g(r0) = 0 with an admissible initial velocity
v0 ∈ RdN . Then, there exists a unique global solution (r, v, µ) to (4.18) with r(0) =
r0, v(0) = v0. Additionally, the following equality holds ς-almost surely for all t ∈ [0, T ]
with ς denoting the measure on the probability space of Def. 53:

µ(t) = −
∫ t

0

G−1(r(τ)) ·
(

[a(r(τ), v(τ), τ) · ∇]g(r(τ)) + [v(τ) · ∇]2g(r(τ))
)

dτ

−
∫ t

0

G−1(r(τ)) · ∇g(r(τ))T ·B(r(τ), v(τ), τ) · dw(τ)

with the N × N Gram matrix G(r) = (∇gT · ∇g)(r). Finally, there exists a c > 0
independent of T , such that

E[ sup
t∈[0,T ]

‖(r(t), v(t))‖4] ≤ c(‖(r0, v0)‖4 + c2
2T

3) exp(cc2
2T

3) ,

for all T ≥ 1.

Remark 55 (Energy preservation of the discrete system). As stated in the beginning
of this section, the deterministic discrete system (4.13) is conservative. Thus, if fo is
conservative (fa ≡ 0), the energies in the system are given as (see also Remark 52)

Ekin(t) = 0.5‖v(t)‖2 , Epot(t) = Epot,g(t) + Epot,b(t) , (4.19a)

Epot,g(t) = −Fr−2Eg · r(t) , Epot,b(t) = α−20.5‖X · r(t) + b‖2 , (4.19b)

where Eg = (eg, eg, . . . , eg) ∈ RdN , and b = (r0/∆s
2,0, . . . ,0) ∈ RdN as well as

X ∈ RdN×dN belong to the following discretization of ∂ssr(si, t):

(X · r + b)i =
ri−1 − 2ri + ri+1

∆s2
, for i = 1, . . . , N − 1
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and (X · r + b)N = 0. Hence, X is given by

X =
1

∆s2



−2I I
I −2I I

I −2I I
. . . . . . . . .

I −2I I
I −2I I

0 0


with 0, I = (δij)ij ∈ Rd×d. Note that the boundary condition (4.6a) states ∂ssr(s, t) = 0
for s = sN+1/2, instead for s = sN . But it holds

∂ssr(sN , t) = ∂ssr(sN+1/2, t)−
∆s

2
∂sssr(sN+1/2, t) +O(∆s2) = O(∆s2)

due to the boundary conditions on the free end, which is consistent with the accuracy
of the central difference for ∂ssr(si, t) chosen here. Similarly, we express the vectors
∂sr(si−1/2, t), as

(Z · r − b∆s)i =
ri − ri−1

∆s
.

Therefore, the RdN×dN -matrix Z is given by

Z =
1

∆s


I
−I I
−I I

. . . . . .

−I I

 ∈ RdN×dN .

This way, the constraint force can be expressed as

1

∆s

(
ri+1 − ri

∆s
λi+1/2 −

ri − ri−1

∆s
λi−1/2

)
=
(
− ZT · Λ · (Z · r − b∆s)

)
i
,

with Λ = diag(λ1/2I, . . . , λN−1/2I). Considering the bending force, it holds

(XT · (X · r + b))1 =
r−1 − 4r0 + 6r1 − 4r2 + r3

∆s4
− r−1 − 2r0 + r1

∆s4
,

(XT · (X · r + b))i =
ri+2 − 4ri+1 + 6ri − 4ri−1 + ri−2

∆s4
, i = 2, N − 2 ,

(XT · (X · r + b))N−1 =
rN−3 − 4rN−2 + 6rN−1 − 4rN + rN+1

∆s4

− rN−1 − 2rN + rN+1

∆s4
,

(XT · (X · r + b))N =
rN−2 − 4rN−1 + 6rN − 4rN+1 + rN+2

∆s4

− −2rN−1 + 5rN − 4rN+1 + rN+2

∆s4
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and we find from (4.12)

rN−1 − 2rN + rN+1 = 0 , −2rN−1 + 5rN − 4rN+1 + rN+2 = 0 .

Considering i = 1, we have by definition of r1 as cell average and due to (4.11):

r−1 − 2r0 + r1 = −r̂ − 3

2
∆sτ̂ +

1

∆s

∫ 2∆s

∆s

r(s, t) ds

= −r̂ − 3

2
∆sτ̂ +

1

∆s

∫ 2∆s

∆s

r̂ + τ̂s+
4∑

k=2

1

k!
∂ksr(0, t)sk ds+O(∆s5) .

Hence, if the continuous solution is sufficiently regular, i.e., ∂ksr(0, t) vanish for k ∈
{2, 3, 4}, we find§ r−1 − 2r0 + r1 = O(∆s5). In total, if fa ≡ 0, the system (4.13) is
equivalent to

d2

dt2
r = −α−2XT · (X · r + b)− ZT · Λ · (Z · r − b∆s) + Fr−2Eg . (4.20)

Multiplying (4.20) with the velocity and integrating over t yields the conservation of
energy:

Ekin(t)− Ekin(0) =

∫ t

0

d

dt

1

2

∥∥∥∥ d

dt
r

∥∥∥∥2

dt

=

∫ t

0

d

dt

(
−α

−2

2
‖X · r + b‖2 + Fr−2Eg · r

)
dt

−
N∑
i=1

∫ t

0

λi−1/2

2

d

dt
‖(Z · r − b∆s)i‖2 dt

= −Epot(t) + Epot(0) ,

since due to the constraint ‖(Z · r − b∆s)i‖2 ≡ 1.

4.2.4 Typical setting

In what follows, we examine different numerical schemes in order to approximate and
solve (4.13) and (4.18). In order to formulate a benchmark setting for the numerical
experiments, we choose the model parameters typical for the application in an air-lay
process. In particular, we use a setting similar to the one presented in [54], where short,
slender synthetic polyester fibers (PES/PET) are put into a turbulent air flow. The
characteristic quantities in this case are listed in Tab. 4.1. As the air drag model, we
take the regularized universal drag model proposed in [92]. For small turbulent kinetic
energy, the deterministic air drag on a fiber can be modeled as

fafad =
ρairν

2
air

d
g

(
∂sr,

ud

νair
(u(r, t)− ∂tr)

)
, with (4.21)

§Note that ∂k
s r(0, t) for k ∈ {2, 3, 4} is not part of the model. Nonetheless, this assumption is

reasonable as a smooth clamped fiber with finite bending stiffness leaves the mounting point as a
straight line.
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g(τ ,w) = rn(wn)
(

I− τ ⊗ τ
)
·w + rτ (wn)τ ⊗ τ ·w ,

wn = wn(τ ,w) =
√
‖w‖2 − (w · τ )2

and drag related resistance coefficients rn, rτ whose behavior is seen in Fig. 4.3. The
latter depend on the normal velocity component and on the nonlinear drag coefficients
cn, cτ and are given as

rn(wn) =

{∑3
j=0 sn,jw

j
n , wn < w0

wncn(wn) , wn ≥ w0

, rτ (wn) =

{∑3
j=0 sτ,jw

j
n , wn < w0

wncτ (wn) , wn ≥ w0

where w0 is a transition velocity given in (4.22) and sn,j, sτ,j are the following constants

sn,0 = rn,s , sn,1 = 0 , sτ,0 = rτ,s , sτ,1 = 0 ,

sn,2 =
2w0cn(w0)− w2

0c
′
n(w0)− 3rn,s

w2
0

, sτ,2 =
2w0cτ (w0)− w2

0c
′
τ (w0)− 3rτ,s

w2
0

,

sn,3 =
−w0cn(w0) + w2

0c
′
n(w0) + 2rn,s

w3
0

, sτ,3 =
−w0cτ (w0) + w2

0c
′
τ (w0) + 2rτ,s

w3
0

rn,s = π
4− (ln(4ε−1))−1

ln(4ε−1)
, rτ,s = 2π

1 + (4 ln(4ε−1))−1

ln(4ε−1)
,

with the slenderness parameter ε = d/`. The drag coefficients cn, cτ are given as

cn(wn) =


4π

S(wn)wn

(
1− S(wn)2−S(wn)/2+5/16

32S(wn)
w2
n

)
, wn < w1

exp(
∑3

j=0 pn,j lnj(wn)) , wn ∈ [w1, w2]
2√
wn

+ 1
2
, wn > w2

cτ (wn) =


4π

wn(2S(wn)−1)

(
1− 2S(wn)2−2S(wn)+1

16(2S(wn)−1)
w2
n

)
, wn < w1

exp(
∑3

j=0 pτ,j lnj(wn)) , wn ∈ [w1, w2]
2√
wn
, wn > w2

with S(wn) = 2.0022− ln(wn) and the constants

pn,0 = 1.6911 , pn,1 = −6.7222 · 10−1 , pn,2 = 3.3287 · 10−2 , pn,3 = 3.5015 · 10−3 ,

pτ,0 = 1.1552 , pτ,1 = −6.8479 · 10−1 , pτ,2 = 1.4884 · 10−2 , pτ,3 = 7.4966 · 10−4 .

The transition velocities are given as

w0 = 2 exp(2.0022− 4πr−1
n,s) , w1 = 0.1 , w2 = 100 . (4.22)

In the particular application of an air-lay process, the air flow possess approximately
room temperature, hence its kinematic viscosity is assumed constant. Additionally, also
the air density in the application is approximately constant. Both quantities are given
in Tab. 4.1. The typical relative velocity is then characterized by the dimensionless
number

γ =
ud

νair
= 4.6 · 10 .
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Figure 4.3.: Behavior of the resistance coefficients rn, rτ with the transition velocities
w1 (solid line), w2 (dashed line), w3 (dashed and dotted line).

The typical aerodynamic force fa can now be defined in terms of the air density, vis-
cosity and fiber diameter according to (4.21). However, since the typical aerodynamic
force depends on the relative velocity, we consider instead the scaled quantity

γfa = γ
ρairν

2
air

d
= 5.4 · 10−4 kg

s2
.

This defines the scaled drag number D̂r = Dr/
√
γ given in Tab. 4.1. The resulting

model for fad is then given by

fad = g(∂sr, γ(u(r, t)− ∂tr)) .

Since our test scenarios will not use actual simulation data and instead apply aca-
demic examples as the outer air flow u, we use a simplified, linear model for the
stochastic amplitude. In particular, we set

βDr−2A = βDr−2γC(∂sr) (4.23)

with C and β chosen artificially in order to scale the deterministic and stochastic
influences.

As can be seen from Tab. 4.1 and (4.8a), the typical situation in an air-lay process is
that of a fiber driven mostly by air drag with a small force due to bending, γDr−2 �
Fr−2 � α−2.

Remark 56 (Self-penetration of the fiber). We point out, that the system (4.5a) with
the discussed force terms does not possess any possibility to prevent the fiber curve
from overlapping, see Fig. 4.19 which is of course not meaningful for a physical object.
This could be corrected by detecting overlapping of the curve and applying opposing
constraint forces at the neighboring fiber points at an earlier time step. However, since
such situations are not very likely in a full 3d simulation with real flow data and due to
the significant additional computational cost the mentioned solution possibility is not
pursued here.
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Name Symbol Value SI unit

Fiber Length ` 6.0 · 10−2 m

Fiber Diameter d 2.3 · 10−5 m

Fiber Density ρ 1.3 · 103 kg/m3

Young’s modulus E 3.0 · 109 N/m2

Mean velocity u 3.0 · 10 m/s

Gravitational acceleration g 9.8 m/s2

Air density ρair 1.2 kg/m3

Air kinematic viscosity νair 1.5 · 10−5 m2/s

Typical air drag γfa 5.4 · 10−4 kg/s2

Froude number Fr 3.9 · 10

Bending number α 2.1 · 102

Relative velocity γ 4.6 · 10

Scaled Drag number Dr/
√
γ 3.9

Table 4.1.: Characteristic quantities typical for an air-lay process, [54, 91] and resulting
model parameters.

4.3 Time integration schemes

Here, we present the time integration techniques which are used in the numerical
investigations. For the time discretization, we partition the finite time interval [0, T ]
into subintervals [tn, tn+1], n = 0, ...,M − 1, of fixed length ∆t = T/M . The numerical
approximation to the solution at a time level tn is indicated by the respective index n,
e.g., rn ≈ r(tn).

4.3.1 Implicit Euler, Euler-Maruyama

The system of equations (4.13) is a differential-algebraic equation of differentiation
index 3, which generally have worse convergence behavior than systems of index 2,
cf. [59]. Hence, we use the Gear-Gupta-Leimkuhler (GGL) formulation [48] of (4.13).
The latter enforces the so-called hidden constraint which arises analytically as

0 =
d

dt
g(r(t)) = ∂xg(r(t)) · v(t) . (4.24)

In order to account for this additional constraint an additional Lagrangian multiplier
is added and the following index 2 system is used in the deterministic case

d

dt
r = v +∇g(r) · κ , (4.25a)

d

dt
v = a+∇g(r) · λ , (4.25b)
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g(r) = 0 , (4.25c)

v · ∇g(r) = 0 . (4.25d)

Due to (4.25d) and the regularity of G(r) = ∂xg(r) ·∇g(r), κ = 0 for the exact solution.
A first order discretization of (4.25) by the implicit Euler method is given by

rn+1 = rn + ∆tvn+1 + ∆t∇g(rn+1) · κn+1 , (4.26a)

vn+1 = vn + ∆tan+1 + ∆t∇g(rn+1) · λn+1 , (4.26b)

g(rn+1) = 0 , vn+1 · ∇g(rn+1) = 0 . (4.26c)

It is a one stage Radau IIA method, with convergence rate p = 1 for both, the dynamic
variables r, v and the algebraic ones, κ, λ [61]. In case of the stochastic system, we apply
the analogous Euler-Maruyama scheme [75], still treating λn+1 = (µn+1−µn)/∆t as the
Lagrangian multiplier to g(rn+1) = 0. The amplitude of the white noise is evaluated
explicitly in this case. In total, we have

rn+1 = rn + ∆tvn+1 + ∆t∇g(rn+1) · κn+1 , (4.27a)

vn+1 = vn + ∆tan+1 + ∆t∇g(rn+1) · λn+1 +Bn · (wn+1 − wn) , (4.27b)

g(rn+1) = 0 , vn+1 · ∇g(rn+1) = 0 . (4.27c)

In the numerical investigations, we call solutions generated by (4.26) and (4.27) implicit
Euler-Gear-Gupta-Leimkuhler (IEGGL).

4.3.2 Energy preserving midpoint rule

As stated earlier (see Rem. 52, Rem. 55), the fiber system is energy preserving under
conservative forces. The time integration scheme (4.26) does not preserve this property.
Hence, we also consider an energy preserving modification of the classical midpoint
rule, [83] given as

rn+1 − rn

∆t
=

1

2
(vn+1 + vn) +

1

2

(
∇g(rn+1) +∇g(rn)

)
· κn+1 , (4.28a)

vn+1 − vn

∆t
=

1

2
(an+1 + an) +

1

2

(
∇g(rn+1) +∇g(rn)

)
· λn+1

− 1

2

(
∇g(vn+1) +∇g(vn)

)
· κn+1 (4.28b)

g(rn+1) = 0 , vn+1 · ∇g(rn+1) = 0 . (4.28c)

Multiplying (4.28b) by the displacement rn+1 − rn yields the energy conservation, i.e.,
E(t) = E(0) with E(t) = Ekin(t) + Epot(t) given in (4.19). We call results of (4.28)
“conservative midpoint GGL” (cMPGGL).

4.3.3 Semi-explicit projection based schemes and estimators

Deterministic case Differential algebraic equations with the present holonomic con-
straint are often dealt with in the field of Molecular Dynamics [93]. Here, the dynamics
is given by a constrained Hamiltonian system, such that the driving force solely de-
pends on the position and not on velocity. The SHAKE algorithm of [108] is based
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on the Störmer (Verlet, leapfrog) time integration combined with a simplified Newton
method for the realization of the constraint. If the Newton iteration matrix is not
approximated, this procedure is called M-SHAKE [77]. The RATTLE-algorithm [4] is
a modification of SHAKE combined with a projection of the velocity in order to fulfill
the hidden constraint. In particular, it can be seen as the special case of the symplectic
partitioned Runge-Kutta method given by the two stage Lobatto IIIA-IIIB pair [61].
The latter is given for (4.13)¶ by

vn+1/2 = vn +
∆t

2
(a(rn, vn+1/2, tn+1/2) +∇g(rn) · κn+1) , (4.29a)

rn+1 = rn + ∆tvn+1/2 , (4.29b)

g(rn+1) = 0 , (4.29c)

vn+1 = vn+1/2 +
∆t

2
(a(rn+1, vn+1/2, tn+1) +∇g(rn+1) · λn+1) , (4.29d)

vn+1 · ∇g(rn+1) = 0 . (4.29e)

The scheme (4.29) is convergent with order p = 2 for the dynamic variables, [60]. In
the conservative case, a depends only on r, which implies that (4.29) then consists of
two nonlinear equations for each time step. First, the position is integrated explicitly,
then a projection onto the solution manifold is carried out by using Newton’s method
whereupon the new velocity is calculated by an explicit integration and subsequent
projection.

All stated methods from Molecular Dynamics rely on the following approximation
in order to calculate rn+1 in the conservative case

g(rn+1) = g(r̃n+1 + 0.5∆t2∇g(rn) · κn+1)

= g(r̃n+1) +
1

2
∆t2∂xg(r̃n+1) · ∇g(rn) · κn+1 +O(∆t4) (4.30)

which follows from (4.29a)-(4.29c), where r̃n+1 depends on the particular scheme. Ne-
glecting the error term in (4.30) then leads to a Newton iteration method in order to
determine rn+1 fulfilling g(rn+1) = 0. Since in general ker(∂xg(r̃n+1))⊥ 6= im(∂xg(rn)T ),
∆t must be chosen sufficiently small in order to find rn+1 by (4.30) in our setting which
contradicts the desire for simulations with large step sizes ∆t and sufficiently small ∆s.
Additionally, in the non-conservative case (4.29a)-(4.29c) is already a non-linear system
of the same dimension as the systems IEGGL and cMPGGL, and another non-linear
system given by (4.29d)-(4.29e) must be solved. Hence, the scheme (4.29) is much more
costly without providing any benefits in the non-conservative case. Therefore, we ex-
plore a modification of (4.29) by evaluating ∇g in (4.29a) at rn+1 and the acceleration
a fully explicit in (4.29a) and implicit in (4.29d):

vn+1/2 = vn +
∆t

2
(a(rn, vn, tn) +∇g(rn+1) · κn+1) , (4.31a)

rn+1 = rn + ∆tvn+1/2 , (4.31b)

¶Note that (4.29) is indeed a Lobatto IIIA-IIIB formulation of the original index 3-system, instead
of its GGL-stabilized version (4.25), since the partitioned Runge-Kutta methods for constrained
systems as defined by [61] automatically introduce additional Lagrangian multipliers in order to
enforce algebraic constraints for the interim integration steps.
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g(rn+1) = 0 , (4.31c)

vn+1 = vn+1/2 +
∆t

2
(a(rn+1, vn+1, tn+1) +∇g(rn+1) · λn+1) , (4.31d)

vn+1 · ∇g(rn+1) = 0 . (4.31e)

We address the original system (4.29) by “velocity Strömer-Verlet” (VSV) and the mod-
ification (4.31) by “VSVm”. We emphasize that the Lagrangian multipliers in (4.29a)
and (4.31a) are not the same as in (4.25a), (4.25b). Unlike cMPGGL, the non-linear
system associated with VSVm is decoupled and might provide a reduction in compu-
tational cost also in case of stochastic simulations. In order to adapt (4.31) for the
stochastic case, we add 0.5Bn · (wn+1 − wn) to both velocity equations (4.31a) and
to (4.31d). Thus, the noise is kept constant during the full step from tn to tn+1.

Next, we also consider a fully explicit scheme combined with projections onto the
solution manifold after each iteration. Differentiating the hidden constraint (4.24)
yields the relation ∂xg · d

dt
v = −[v · ∇]2g implying an expression for the Lagrangian

multiplier in (4.13b)

λ = −G−1 · (∂xg · a+ [v · ∇]2g) , (4.32)

with G = ∇g · ∂xg. Setting the projector P = I −∇g · G−1 · ∂xg we thus find for the
deterministic system (4.13) the index 1 formulation

d

dt
r = v ,

d

dt
v = P · a−∇g ·G−1 · [v · ∇]2g . (4.33)

The system (4.33) can now be integrated explicitly, i.e.,

r̃n+1 = rn + ∆tvn , (4.34a)

ṽn+1 = vn + ∆t(P (rn) · an −∇g(rn) ·G−1(rn) · [vn · ∇]2g(rn)) . (4.34b)

Using (4.34) directly in order to solve (4.13) leads to drift-off effects in both constraints.
Hence, in order to find the corresponding rn+1 which fulfills the constraint, we solve

min
g(rn+1)=0

1

2
‖rn+1 − r̃n+1‖2

2 (4.35)

by using the Karush-Kuhn-Tucker conditions of (4.35). In order to reduce the com-
putational costs even more, instead of applying Newton’s method to the N(d + 1)-
dimensional non-linear system rn+1 = r̃n+1 + ∇g(rn+1) · k, with g(rn+1) = 0 and the
corresponding Lagrangian multiplier k ∈ RN , we adopt the ideas of the before men-
tioned algorithms from Molecular Dynamics and assume that rn+1 − r̃n+1 is small.
Then, for h ∈ ker(∂xg(r̃n+1))⊥, i.e. h = ∇g(r̃n+1) · k, with ‖k‖ � 1 it holds

g(r̃n+1 + h) ≈ g(r̃n+1) +G(r̃n+1) · k ,

which we apply iteratively to find rn+1 = r̃n+1 +∇g(r̃n+1) · k fulfilling the constraint.
Afterwards we project ṽn+1 orthogonally onto the tangent space of the manifold at
rn+1, i.e. vn+1 = P (rn+1) · ṽn+1. We address this method in the following as “explicit
Euler, projection based” (EEP). We note that the Lagrangian multiplier k is not related
to λ of (4.13), the latter being determined by (4.32).
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Stochastic case In the stochastic case, the Lagrangian multiplier is given in Propo-
sition 54 explicitly as

dµ = −G−1 ·
(
∂xg · (a dt+B · dw) + [v · ∇]2g dt

)
(4.36)

and similarly to (4.33), the stochastic algebraic equation (4.18) equivalently reads as

dr = v dt , dv = P · (a dt+B · dw)−∇g ·G−1 · [v · ∇]2g dt .

This results in the analogue to the first explicit scheme (4.34)

r̃n+1 = rn + ∆tvn , (4.37a)

ṽn+1 = vn + ∆t
(
P (rn) ·

(
an +Bn · w

n+1 − wn

∆t

)
−∇g(rn) ·G−1(rn) · [vn · ∇]2g(rn)

)
, (4.37b)

with subsequent determination of rn+1 and vn+1.

Predictor-corrector schemes Implicit schemes are generally much more stable
than explicit ones and allow larger step sizes. However, the increase in step size is
paid by also increasing the computational time in each time step due to a higher
amount of Newton iterations for the solution of the non-linear systems. Thus, we also
compare different estimators for IEGGL in the stochastic case. In particular, we study
the effect of predicting the new solution by an explicit step by EEP without projecting
r̃n+1 to the solution manifold, i.e.,

rn+1
est = r̃n+1 , vn+1

est = P (rn+1
est ) · ṽn+1

with (r̃n+1, ṽn+1) given by (4.37), which we address as “EEP predictor”. Another possi-
bility is motivated by VSV(m) and the modification of RATTLE, called WIGGLE [82]
where the forces in (4.31a) and (4.31d) are first projected onto the tangent space of
the solution manifold. In particular, we use

vn+1/2 = vn +
∆t

2

(
P (rn) ·

(
an +Bn · w

n+1 − wn

∆t

)
−∇g(rn) ·G−1(rn) · [vn · ∇]2g(rn)

)
,

r̃n+1 = rn + ∆tvn+1/2 ,

ṽn+1 = vn+1/2 +
∆t

2
P (r̃n+1) ·

(
a(r̃n+1, vn+1/2, tn+1) +Bn · w

n+1 − wn

∆t

)
,

rn+1
est = r̃n+1 , vn+1

est = P (rn+1
est ) · ṽn+1 .

In the expression for ṽn+1 we omitted the term associated with [vn+1/2 · ∇]2g(r̃n+1),
since it lies in the image of ∇g(r̃n+1) and P (rn+1

est )·∇g(r̃n+1) = 0. We call this estimator
“VSV predictor”. In both cases the Lagrangian multipliers are estimated as follows:
The multiplier in the momentum equation, formally given as λn+1 = (µn+1 − µn)/∆t
can be estimated by (4.36) as
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λ
n+1
est = −G−1(rn+1

est ) · ∂xg(rn+1
est ) ·

(
a(rn+1

est , v
n+1
est , tn+1) +Bn · w

n+1 − wn

∆t

)
−G−1(rn+1

est ) · [ṽn+1 · ∇]2g(rn+1
est ) .

The multiplier in the equation for the position can be estimated by multiplying (4.27a)
with ∂xg, which yields

κn+1
est =

1

∆t
G−1(rn+1

est ) · ∂xg(rn+1
est ) · (rn+1

est − rn −∆tvn+1
est ) .

Both estimation schemes involve no Newton iterations, but a number of N ×N linear
equations associated with the Gram-matrix G. In total, both predictors have to solve
4 linear systems: EEP needs two for v and one for each Lagrangian multiplier, while
the VSV predictor needs one for r, one for v and one for each Lagrangian multiplier.
The VSV predictor is still more expensive, since it evaluates the driving force a three
times instead of two as in case of EEP.

4.4 Approximation of white noise

4.4.1 Smoothing techniques

As we will see in the numerical simulations, adding noise to the force not only decreases
the order of convergence, it makes it also more difficult to carry out each integration
step since Newton’s method needs much more iterations to find a suitable solution.
One should note, however, that due to the inextensibility constraint, the finite bending
stiffness and the fiber inertia, the acceleration of neighboring fiber points is highly
correlated in space and time. Due to Newton’s laws of motion this implies that the
superposition of the constraint and turbulent forces also constitute a correlated force
in space and time. We can incorporate this fact by replacing the white noise by a
correlated random force field. Hence, we investigate different smoothing methods for
the white noise and study the effect of its approximation. There are several methods
we propose here, which we first introduce for an ordinary, one-parameter scalar-valued
Wiener process w. In the following we search for a suitable approximation σ∆t(ti) for
the random measure ξi = ξ((ti−1, ti]) ∼ N (0,∆t) for a given equidistant discretization
of [0, T ]. Afterwards, we generalize these methods to the case of a R-valued planar
Wiener process, the extension to Rd-valued processes is then given by the applying the
techniques to each component.

Forward-backward averaging The first smoothing method is based on the average
force in a time interval. Thus, instead of using the random measure of the time interval,∫ ti

ti−1

dw = w(ti)− w(ti−1) = ξi ,

as stochastic force we use the arithmetic mean over 2Nt+1 intervals, with Nt denoting
the smoothing length, i.e.

σfba
∆t (ti) =

1

2Nt + 1

(
ξi +

Nt∑
k=1

ξi+k + ξi−k

)
=

1

2Nt + 1

∫ ti+Nt

ti−1−Nt

dw . (4.38)
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Figure 4.4.: Forward-backward averging for w generated with 30 random variables.
Left: Nt = 1, right: Nt = 4.

This can be viewed as the approximation

ξ((ti−1, ti]) ≈
ξ((ti−1−Nt , ti+Nt ])

2Nt + 1
, (4.39)

which is exactly true for the Lebesgue measure, while yielding a correlated force in
case of the random measure. Using this averaging method, we need Nt additional
random variables at each boundary of the time interval, which is equivalent to assuming
that w is a normalized cut-out of a Wiener process w̃ on the larger time-interval
[−Nt∆t, T +Nt∆t]. Then, w is given as w(t) = w̃(t)− w̃(0) for t ∈ [−Nt∆t, T +Nt∆t].
Given theM+2Nt increments ξi ∼ N (0,∆t), i = 1−Nt, . . . ,M+Nt, the Wiener process
fulfills w(ti) =

∑i
k=1 ξk, for i = 1, . . . ,M . Due to the averaging of the increments (4.38),

we also get a smoothed discrete version of the Wiener process, given as

wfba
∆t (ti) =

i∑
k=1

σfba
∆t (tk) =

1

2Nt + 1

(
w(ti) +

Nt∑
`=1

w(ti+`)− w(t`) + w(ti−`)− w(t−`)

)

=
1

2Nt + 1

Nt∑
`=−Nt

w(ti+`)−
1

2Nt + 1

Nt∑
`=−Nt

w(t`) .

The effect of the smoothing technique for Nt ∈ {1, 4} is shown in Fig. 4.4 for a discrete
approximation of a Wiener process generated by 30 random variables.

Coarser resolution of Wiener Process The next possibility is to consider a
coarser resolution of the Wiener Process and assign the average force to all time in-
tervals within the averaging interval. Assume (0, T ] = ∪M−1

i=0 (ti, ti+1] = ∪Mt
j=1 ∪

Nt−1
i=0

(t(j−1)Nt+i, t(j−1)Nt+i+1], where M = MtNt. Then we set for any i ∈ {0, . . . , Nt−1} and
j ∈ {1, . . . ,Mt}

ξ((t(j−1)Nt+i, t(j−1)Nt+i+1]) ≈
ξ((t(j−1)Nt , tjNt ])

Nt

(4.40)
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Figure 4.5.: Coarser resolution for w generated with 30 random variables. Left: Mt =
15, Nt = 2, right: Mt = 6, Nt = 5.

which is again exactly true for the Lebesgue measure. This results in the approximation

σcoa
∆t (t(j−1)Nt+i+1) =

1

Nt

Nt−1∑
k=0

ξ(j−1)Nt+k+1 =
w(tjNt)− w(t(j−1)Nt)

Nt

for all i = 0, . . . , Nt− 1. The resulting approximation of the Wiener process is given as

wcoa
∆t (t(j−1)Nt+i) =

j−1∑
k=1

Nt−1∑
`=0

σcoa
∆t (t(k−1)Nt+`+1) +

i−1∑
`=0

σcoa
∆t (t(j−1)Nt+`+1)

=

j−1∑
k=1

Nt−1∑
`=0

w(tkNt)− w(t(k−1)Nt)

Nt

+
i−1∑
`=0

w(tjNt)− w(t(j−1)Nt)

Nt

= w(t(j−1)Nt) +
w(tjNt)− w(t(j−1)Nt)

Nt

i

since w(t0) = w(0) = 0. Hence, wcoa
∆t is a discretized linear interpolation spline of w

on the scale of the averaging discretization. Two realizations of wcoa
∆t can be seen in

Fig. 4.5.

Convolution of the Wiener Process Finally, we also consider the smoothing of
the Wiener process directly by the convolution of w with a smoothing kernel which
was studied in [16]. For two functions φ, f ∈ L2(R), the convolution is denoted as

(ϕ ? f)(τ) =

∫
R

ϕ(τ − t)f(t)dt .

As smoothing kernels we choose different probability densities over R with compact
support. Additionally, for a given smoothing kernel ϕ with supp(ϕ) = S ⊂ R and
a scaling factor δ > 0, we set the scaled kernel ϕδ(t) = δ−1ϕ(tδ−1). The latter is a
probability density and fulfills supp(ϕδ) = δS. As scaling factor we use δ = Nt∆t for
Nt ≥ 1. The discrete smoothed approximation of the Wiener process is then given as
w?(ti) = (ϕδ ? w)(ti) and the force approximation as σ?(ti) = w?(ti)− w?(ti−1). Since
w is known only on the grid points ti, we use the trapezoidal rule for the quadrature
of the convolution integral, which results in approximations for w? and σ?.
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Figure 4.6.: Convolution with central constant kernel for w generated with 30 random
variables. Left: Nt = 1, right: Nt = 4.

Convolution with central constant kernel Setting ϕ(t) = 0.5χ[−1,1](t), i.e., a
central constant kernel yields

(ϕNt∆t ? w)(ti) =
1

2Nt∆t

∫ ti+Nt∆t

ti−Nt∆t
w(t) dt =

1

2Nt∆t

Nt∑
k=1

(∫ ti−k+1

ti−k

w(t) dt+

∫ ti+k

ti+k−1

w(t) dt

)
.

Using the trapezoidal rule for the quadrature, we get

(ϕNt∆t ? w)(ti) ≈
1

4Nt

Nt∑
k=1

(w(ti−k+1) + w(ti−k) + w(ti+k) + w(ti+k−1))

=
1

2Nt

Nt∑
`=−Nt

w(ti+`)−
w(ti+Nt) + w(ti−Nt)

4Nt

= wcck
∆t (ti)

which yields the approximation σcck∆t . Similarly to the case of forward-backward aver-
aging, here we also need to interpret w as a cut-out of a Wiener process w̃ on the time
interval [−Nt∆t, T +Nt∆t]. Two realizations of this technique are seen in Fig. 4.6.

Convolution with forward constant kernel In case of ϕ(t) = χ[−1,0](t), which we
denote as a forward constant kernel, we get

(ϕNt∆t ? w)(ti) =
1

Nt∆t

∫ ti+Nt

ti

w(t)dt ≈ 1

2Nt

Ns∑
j=1

(w(ti+j−1) + w(ti+j))

=
1

Nt

Nt∑
`=0

w(ti+`)−
w(ti+Nt) + w(ti)

2Nt

= wfck
∆t(ti) .

The behavior of the convolution with the constant forward kernel is seen in Fig. 4.7.
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Figure 4.7.: Convolution with constant forward kernel for w generated with 30 random
variables. Left: Nt = 1, right: Nt = 4.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.8.: Convolution with hat function kernel for w generated with 30 random
variables. Left: Nt = 2, right: Nt = 5.

Convolution with hat functions Taking the hat functions as the integration kernel,
ϕ(t) = (1− |t|)χ[−1,1], results in

(ϕNt∆t ? w)(ti) =
1

Nt∆t

∫ ti+Nt

ti−Nt

(
1− |ti − t|

Nt∆t

)
w(t) dt

≈ 1

Nt

(
w(ti) +

Nt−1∑
k=1

Nt − k
Nt

(w(ti−k) + w(ti+k))

)

=
1

Nt

Nt−1∑
`=−Nt+1

Nt − |`|
Nt

w(ti+`) = whfk
∆t (ti) .

The behavior can be seen in Fig. 4.8.
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Figure 4.9.: Convolution with Gaussian kernel for w generated with 30 random vari-
ables. Left: Nt = 2, right: Nt = 5.

Convolution with Gaussian kernel Taking the Gaussian kernel, ϕ(t) = C exp((t2−
1)−1)χ(−1,1) with C being the normalizing constant, gives

(ϕNt∆t ? w)(ti) =
1

Nt∆t

∫ ti+Nt

ti−Nt

ϕ

(
ti − t
Nt∆t

)
w(t) dt

≈ 1

Nt

(
ϕ(0)w(ti) +

Nt−1∑
k=1

ϕ

(
k

Nt

)
(w(ti−k) + w(ti+k))

)

=
1

Nt

Nt−1∑
`=−Nt+1

φ

(
`

Nt

)
w(ti+`) = wgfk

∆t (ti)

due to symmetry and limt→±1 φ(t) = 0. The behavior can be seen in Fig. 4.9.

Extension of smoothing techniques to a planar Wiener process The extension
of the forward-backward averaging technique to the 2d case follows by applying (4.39)
to a planar random measure. In this case the rectangle (si−1−Ns , si+Ns ]×(tj−1−Nt , tj+Nt ]
with Ns, Nt ≥ 1 consists of (2Ns + 1)(2Nt + 1) rectangles of Lebesgue measure ∆s∆t,
hence we use the approximation

ξ((si−1, si]× (tj−1, tj]) ≈
ξ((si−1−Ns , si+Ns ]× (tj−1−Nt , tj+Nt ])

(2Nt + 1)(2Ns + 1)
.

Setting ξi,j = ξ((si−1, si]× (tj−1, tj]), this results in the approximation of the force and
of the Wiener process given as

σfba
∆s,∆t(si, tj) =

Ns∑
k=1

Nt∑
`=1

ξi+k,j+` + ξi+k,j−`+1 + ξi−k+1,j+` + ξi−k+1,j−`+1

(2Nt + 1)(2Ns + 1)

+
Ns∑
k=1

ξi+k,j−Nt + ξi−k+1,j−Nt
(2Nt + 1)(2Ns + 1)

+
Nt∑
`=1

ξi−Ns,j+` + ξi−Ns,j−`+1

(2Nt + 1)(2Ns + 1)
+

ξi−Ns,j−Nt
(2Nt + 1)(2Ns + 1)

,

120



wfba
∆s,∆t(si, tj) =

Ns∑
k=−Ns

Nt∑
`=−Nt

w(si+k, tj+`) + w(sk, t`)− w(sk, tj+`)− w(si+k, t`)

(2Nt + 1)(2Ns + 1)
.

In order to define values of w(s, t) for s < 0, t < 0, we consider w(s, t) on [0, L]×[0, T ] as
a normalized cut-out of a Wiener process w̃ on [−Ns∆s, L+Ns∆s]×[−Nt∆t, T+Nt∆t]
given as w(s, t) = w̃(s, t)− w̃(0, t)− w̃(s, 0) + w̃(0, 0), analogously to the 1d case.

Similarly, the coarser resolution follows by first considering the partition of (0, L]×
(0, T ] given as

(0, L]× (0, T ] = ∪N−1
i=0 ∪M−1

j=0 (si, si+1]× (tj, tj+1]

= ∪Ms
i=1 ∪

Ns−1
k=0 ∪

Mt
j=1 ∪

Nt−1
`=0 (s(i−1)Ns+k, s(i−1)Ns+k+1]× (t(j−1)Nt+`, t(j−1)Nt+`+1] ,

with N = MsNs,M = MtNt. Analogously to (4.40) we then use the approximation

ξ((s(i−1)Ns+k, s(i−1)Ns+k+1]× (t(j−1)Nt+`, t(j−1)Nt+`+1])

≈
ξ((s(i−1)Ns , siNs ]× (t(j−1)Nt , tjNt ])

NtNs

for all i, j, k, `. This results in the approximation for the force given as

σcoa
∆s,∆t(s(i−1)Ns+k+1, t(j−1)Nt+`+1) =

1

NsNt

Ns−1∑
m=0

Nt−1∑
n=0

ξ(i−1)Ns+m+1,(j−1)Nt+n+1

=
w(siNs , tjNt) + w(s(i−1)Ns , t(j−1)Nt)− w(s(i−1)Ns , tjNt)− w(siNs , t(j−1)Nt)

NsNt

for all i, j, k, `. The smooth approximation of the Wiener process then follows as the
local bilinear approximation

wcoa
∆s,∆t(s(i−1)Ns+k, t(j−1)Nt+`)

=
1

NtNs

(
w(s(i−1)Ns , t(j−1)Nt)(Ns − k)(Nt − `) + w(siNs , t(j−1)Nt)k(Nt − `)

+ w(s(i−1)Ns , tjNt)(Ns − k)`+ w(siNs , tjNt)k`
)
.

Considering the convolution based techniques, we use the product of two smoothing
kernels φ, ψ on R as a kernel on R2 given as ϕ(s, t) = φ(s)ψ(t). In fact, if φ, ψ
are compactly supported in R, the support of ϕ is compact in R2 and if φ, ψ are
probability densities on R, so is ϕ on R2. Given two scaling factors δ1, δ2 > 0, we set
ϕδ1,δ2(s, t) = (δ1δ2)−1φ(s/δ1)ψ(t/δ2). We explore here only products of the same kind
of kernels. In this case, the usage of the central constant kernel in combination with
the trapezoidal rule in each dimension leads to

(ϕNs∆s,Nt∆t ? w)(si, tj) ≈
1

16NsNt

Ns−1∑
k=−Ns

Nt−1∑
`=−Nt

(
w(si+k+1, tj+`+1) + w(si+k, tj+`)

+ w(si+k+1, tj+`) + w(si+k, tj+`+1)
)

= wcck
∆s,∆t .
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coa fba cck fck hfk gfk

1d p ≈ 0.52 p ≈ 0.49 p ≈ 0.51 p ≈ 0.50 p ≈ 0.53 p ≈ 0.44

2d p ≈ 0.54 p ≈ 0.46 p ≈ 0.50 p ≈ 0.50 p ≈ 0.57 p ≈ 0.53

Table 4.2.: Measured exponent of the relative error emethod
1,δ = cNp

t .

In case of the forward constant kernel the approximation follows as

(ϕNs∆s,Nt∆t ? w)(si, tj) ≈
1

4NsNt

Ns∑
k=1

Nt∑
`=1

(
w(si+k, tj+`) + w(si+k−1, tj+`−1)

+ w(si+k, tj+`−1) + w(si+k−1, tj+`)
)

= wfck
∆s,∆t .

Similarly, since the hat function and Gauss kernels are symmetric and both fulfill
φ(1) = 0, we have

(ϕNs∆s,Nt∆t ? w)(si, tj) ≈
Ns−1∑

k=−Ns+1

Nt−1∑
`=−Nt+1

w(si+k, tj+`)

NsNt

φ

(
k

Ns

)
φ

(
`

Nt

)
= w

hfk/gfk
∆s,∆t .

Summary of smoothing techniques The behavior of the relative error with respect
to the Wiener process,

emethod
1,δ =

‖w − wmethod
δ ‖
‖w‖

,

with ‖w‖2 =
∑M

i=0w(ti)
2∆t in the 1d case and ‖w‖2 =

∑N
i=0

∑M
j=0 w(si, tj)

2∆s∆t in
the 2d case, is seen in Fig. 4.11 for the different smoothing techniques. The error
behaves for all methods as

√
Nt in 1d and

√
Ns+

√
Nt in the planar case, the measured

least squares exponents are listed in Tab. 4.2. Additionally, the error has approximately
the same amplitude for all methods. The approximation by the hat function kernel is
closest to the original process, while generating very smooth fields as seen in Fig. 4.8
and Fig. 4.10. Since we replace the Wiener process by a more regular field in order to
improve the computation cost and increase the regularity of the resulting fiber curve,
a relatively large error eδ is expected. Since it is not practicable to draw the complete
Wiener process on a fine scale, apply the smoothing technique and afterwards adapt
the approximation to the desired, coarse spatial and time discretization, the smoothing
technique is applied to the coarsely discretized Wiener process directly. Hence, it is
of interest, whether the smooth approximation wmethod

δ with a fixed correlation length
Ns, Nt converges as δ → 0. In order to examine this behavior, we generate a reference
field wmethod

δfine
and consider the error with respect to this reference field,

emethod
2,δ =

‖wmethod
δfine

− wmethod
δ ‖

‖wmethod
δfine

‖

for δ > δfine. As seen in Fig. 4.12, emethod
2,∆t ∈ O(

√
∆t) as ∆t → ∆tfine in the 1d case

and similarly emethod
2,∆s∆t ∈ O(

√
∆s+

√
∆t) as ∆s→ ∆sfine, ∆t→ ∆tfine for all considered

smoothing methods.
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Figure 4.10.: Different smoothing techniques applied to a planar Wiener process. Top
original process generated with ∆s = 10−2,∆t = 10−3 with T = 1 = L.
From top to bottom, from left to right: Forward-backward averaging, with
Ns = 10, Nt = 20; coarser resolution with Ns = 5, Nt = 10; convolution
with central constant kernel, forward constant kernel, hat function kernel
and Gaussian kernel with Ns = 10, Nt = 20.
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coa fba cck fck hfk gfk

1d, Nt = 2 p ≈ 0.49 p ≈ 0.57 p ≈ 0.58 p ≈ 0.57 p ≈ 0.55 p ≈ 0.55

2d, Nt = 2 p ≈ 0.49 p ≈ 0.64 p ≈ 0.65 p ≈ 0.65 p ≈ 0.59 p ≈ 0.59

1d, Nt = 4 p ≈ 0.52 p ≈ 0.58 p ≈ 0.59 p ≈ 0.58 p ≈ 0.59 p ≈ 0.59

2d, Nt = 4 p ≈ 0.54 p ≈ 0.64 p ≈ 0.66 p ≈ 0.67 p ≈ 0.66 p ≈ 0.66

1d, Nt = 8 p ≈ 0.53 p ≈ 0.59 p ≈ 0.58 p ≈ 0.58 p ≈ 0.60 p ≈ 0.59

2d, Nt = 8 p ≈ 0.57 p ≈ 0.65 p ≈ 0.66 p ≈ 0.66 p ≈ 0.69 p ≈ 0.68

Table 4.3.: Measured exponent of the relative error emethod
2,δ = cδp.
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Figure 4.11.: Error behavior of the Wiener Process: Error with respect to w. Ap-
proximation by coarser resolution (“coa”), forward-backward averaging
(“fba”) and convolution by central constant (“cck”), forward constant
(“fck”), hat function (“hfk”) and Gaussian (“gfk”) kernels. Left: 1d case,
T = 1,∆t = 2−14. Right: 2d case, T = L = 1,∆t = ∆s = 2−7.
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Figure 4.12.: Error behavior of the Wiener Process: Error with respect to ws. Ap-
proximation by coarser resolution (“coa”), forward-backward averaging
(“fba”) and convolution by central constant (“cck”), forward constant
(“fck”), hat function (“hfk”) and Gaussian (“gfk”) kernels. Left: 1d case,
T = 1, reference generated with ∆t = 2−14. Right: 2d case, T = L = 1,
Nt = Ns, reference generated with ∆t = ∆s = 2−11. Top: Nt = 2; center:
Nt = 4; bottom: Nt = 8.
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4.4.2 Wiener chaos expansion

The so-called Wiener chaos expansion (WCE) for stochastic differential equations yields
an effective splitting between deterministic and stochastic effects, allowing an efficient
computation of the mean behavior of the system under consideration. It is based
on a Fourier expansion of the underlying white noise with respect to a deterministic
basis, giving stochastic coefficients. Expanding the unknowns in polynomials of these
white noise coefficients leads then to a deterministic system of differential equations
which inherits the complete information of the stochastic system [44, 66, 89]. In order
to explore the feasibility of a WCE-based numerical method for the Kirchhoff beam
model (4.5) under the influence of a planar white noise, we consider a simplified, linear
aerodynamic drag by using

fad(r, ∂tr, ∂sr, t) = γ(u(r, t)− ∂tr)

in (4.8b) instead of the universal drag model. As outer flow field we use a time-
independent linear flow, u(r, t) ≡ u(r) = A ·r. Additionally, we consider only additive
white noise by setting C ≡ I for the stochastic amplitude (4.23). Since we introduced
the scaled drag number D̂r which fulfills Dr = D̂r

√
γ (see Section 4.2.4), γ cancels out

in the resulting momentum equation, and we arrive at the resulting system

∂ttr = ∂s(λ∂sr)− α−2∂ssssr + D̂r
−2

(A · r − ∂tr) + βD̂r
−2
ξ , ‖∂sr‖2 = 1 (4.41)

with boundary and initial conditions (4.6). As stated before (see Section 4.2.2), we
assume that the solution components (r, λ) of (4.41) are Fs,t-measurable random fields
with ri(s, t), λ(s, t) ∈ L2(Ω,FL,T , µ;R), i ∈ {1, . . . , d}.

The Wiener chaos expansion is based on an orthogonal decomposition of the under-
lying space L2(Ω,A, µ;R). Following [44] we denote by H a Gaussian Hilbert space,
i.e., a complete linear subspace of L2(Ω,A, µ;R) containing centered Gaussian random
variables. Then the set Pn(H) of M -variate polynomials p(κ1, . . . , κM) for M ∈ N of
degree deg(p) ≤ n with κi ∈ H is a linear subspace of L2. This holds also for its clo-
sure P n(H). Setting H0 = P 0(H) and Hn = P n(H) ∩ P⊥n−1 for n ≥ 1, with orthogonal
complement ⊥, we arrive at a pairwise orthogonal decomposition of L2(Ω, σ(H), µ;R)
with σ-algebra σ(H) generated by H. For σ(H) = A, the Cameron-Martin theo-
rem [24] holds, stating L2(Ω,A, µ;R) = ∪nHn. This statement can be extended to
L2(Ω,A, µ;Rd), since every component of a d-dimensional random variable has a finite
second moment on the corresponding one-dimensional space. To derive an appropriate
set H, we follow [66] and introduce the Fourier expansion of the planar white noise.

Definition 57 (Fourier expansion of planar white noise). Let {bij}i,j∈N be an orthonor-
mal basis of L2([0, L]× [0, T ];R) with bij(s, t) = φi(s)ψj(t), where {φi}i∈N and {ψi}i∈N
form orthonormal bases of L2([0, L];R) and L2([0, T ];R) respectively. The Fourier ex-
pansion of the white noise components (w)i = wi , 1 ≤ i ≤ d is given in terms of
stochastic coefficients κik` that are determined by an Itô integral,

wi(s, t, ω) =
∑
k`

κik`(ω, L, T )

∫ s

0

∫ t

0

φk(σ)ψ`(τ) dσdτ , κik` =

∫ L

0

∫ T

0

φkψ` dξi .
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Remark 58 (Properties of the Fourier expansion).

1. The stochastic coefficients of the white noise are independent identically dis-
tributed N (0, 1) random variables as can be shown using the Itô-isometry [125].

2. For the trigonometric basis φ1(s) ≡ L−1/2, φi(s) = (2/L)1/2 cos((i − 1)πs/L),
i ≥ 2, analogously for ψi, the mean square error of the truncated expansion wai
of the white noise behaves as E[wi − wai ]2 = O(LT (N−1

L +N−1
T )), where NL and

NT denote the number of basis functions φi and ψi, respectively.

For the construction of the orthogonal polynomial basis, we choose the Gaussian
Hilbert space as H = span{κik`} and introduce a bijective mapping η : {1, . . . , d} ×
N ×N → N to enumerate each component. In this case FL,T = σ(H) holds [69] and
the system of orthonormal polynomials on L2(Ω,FL,T , µ;Rd) is given by products of
Hermite polynomials [44]. We denote by hn : R→ R the nth order Hermite polynomial
which is normalized with respect to the Gaussian measure [114], i.e., {hn} fulfill∫

R

hn(x)hm(x)(2π)−1/2e−x
2/2 dx = δnm ,

with Kronecker delta δnm. Furthermore, we consider a set of multi-indices J ⊂ NN0 by
J = {ι = (ιi)i≥1|ιi ∈ N0, |ι| < ∞} with 0J = (0, 0, . . .) ∈ J , |ι| =

∑
i ιi and introduce

the so-called Wick polynomial pι(κ) = Π∞i=1hιi(κη−1(i)) indicated by ι ∈ J for a multi-
variable κ ∈ Rd × RN × RN. This way we can conclude the following statement from
the Cameron-Martin-Theorem.

Lemma 59. For (s, t) ∈ [0, L] × [0, T ] let ri(s, t), λ(s, t) ∈ L2(Ω,FL,T , µ;R), i =
1, . . . , d be Fs,t adapted solutions of (4.41). Then r and λ are given as

r(s, t, ω) =
∑
ι∈J
rι(s, t)pι(κ(ω)) , λ(s, t, ω) =

∑
ι∈J

λι(s, t)pι(κ(ω)) , (4.42)

with the deterministic coefficients rι = E[rpι], λι = E[λpι] and κ as in Def. 57.

We aim a system of equations that describes the behavior of the deterministic coeffi-
cients of the expansion (4.42). Therefore, we formally rewrite the momentum equation
in (4.41) into a system of first order partial differential equations in space or time, in-
tegrate over suitable time and space intervals accounting for the initial and boundary
conditions, multiply each equation with the polynomial pι and take the expectation.
The algebraic constraint in (4.41) is handled by inserting the Fourier-Hermite expan-
sion, multiplying with pι and taking the expectation. To obtain the final system of
equations, we apply the following properties of Wick polynomials [89].

Lemma 60. The product of two random variables a, b which are expressed in terms
of their Fourier-Hermite expansion fulfills

ab =
∑
ι

(∑
µ

∑
0J≤ν≤ι

C(ι, µ, ν)aι−ν+µbν+µ

)
pι ,

C(ι, µ, ν) =

[(
ι
ν

)(
µ+ ν
µ

)(
ι+ µ− ν

µ

)]1/2

,
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where the operators +,−,≤ are defined component-wise and ι! = ι1!ι2! · · · . The ex-
pectations of the product of two Wick polynomials and of the product of the Wiener
process and a Wick polynomial satisfy

E[pι(κ)pµ(κ)] = δι,µ , with δι,µ = Πiδιi,µi ,

E[pιwi(s, t)] =
∑
k`

δι,ν

∫ s

0

∫ t

0

φkψ` dσdτ , with ν = (δη(i,k,`),j)j∈N .

Consequently, the deterministic coefficients associated to the Kirchhoff beam model
are described by

∂ttrι =
∑
µ

∑
0J≤ν≤ι

C(ι, µ, ν)∂s(λι−ν+µ∂srν+µ)− α−2∂ssssrι + δι,0JFr−2eg (4.43a)

+ Dr−2(A · rι − ∂trι) + βDr−2
∑
k`

d∑
i=1

eiδι,(δη(i,k,`),j)j∈Nφkψ` ,∑
µ

∑
0J≤ν≤ι

C(ι, µ, ν)∂srι−ν+µ · ∂srν+µ = 0 . (4.43b)

System (4.43) is completed by the boundary and initial conditions (4.6) for r0J and
λ0J and vanishing boundary and initial conditions for ι 6= 0J .

We use the same spatial and temporal discretization for both, the WCE system (4.43)
and the original constrained stochastic system (4.41). In time we take an implicit Euler
scheme. We choose a truncation of the expansion (4.42). For that purpose, we fix
Ns, Nt ∈ N and consider a subset of the basis on L2([0, L]× [0, T ]) given by {φiψj} for
i ≤ Ns, j ≤ Nt. In addition, we restrict the degree of the Wick polynomials by setting
|ι| ≤ n ∈ N, which results in the truncated multi-index set JNsNt,n.

4.5 Numerical simulations

All numerical simulations in this section were carried out on a PC equipped with
an Intel R© CoreTM i7-8700 CPU and 32 GiB RAM. We used Matlab R© R2019a for
the calculations. In particular, the linear systems appearing in all numerical schemes
except for the Wiener chaos expansion in Sec. 4.5.6 were solved using the band solver
implemented in Matlab’s backslash-operator. Due to the coupling of the WCE-system
in Sec. 4.5.6 we used the LU-decomposition instead. The absolute tolerance of Newton’s
method, which was the stopping criterion, was set for all simulations to 10−10.

The structure of this section takes an increasing degree of model difficulty into ac-
count: We start with the conservative case in Sec. 4.5.1, verifying the principal numer-
ical schemes which are used in this section as well as the model properties itself. We
then add aerodynamic drag into the system in Sec. 4.5.2 and afterwards also stochas-
tic forces in Sec. 4.5.3. This gradually increases the complexity of the problem and
leads to an increase of computational time of the numerical simulations. The follow-
ing Sections 4.5.4-4.5.6 are then dedicated to the numerical studies of possible reduc-
tion techniques for the computational costs as discussed in Sec. 4.3.3, Sec. 4.4.1 and
Sec. 4.4.2.
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Figure 4.13.: Fiber behavior in the conservative scenario.

4.5.1 Conservative model

At first, we verify the numerical schemes cMPGGL (4.28), IEGGL (4.26), VSV (4.29),
VSVm (4.31) and EEP (4.34). In order to do so, we apply them to the conservative
case. We set the aerodynamic forces to zero and use the following model parameters in
order to define a benchmark scenario: L = 1,Fr = 40, α = 200, T = 300. We consider
a 2d setting and assume that the direction of gravity is eg = −e2. The fiber is fixed
at the origin, r̂ = 0, and its direction of the nozzle is τ̂ = e1. The initial condition is
that of a stress free fiber at rest, given by r(s, 0) = se1, s ∈ [0, 1] and ∂tr(s, 0) = 0.

The dynamic behavior of the fiber is seen in Figure 4.13, where the simulation was
carried out with ∆s = 10−2 = ∆t by the energy-preserving time integration scheme
cMPGGL, (4.28). In Fig. 4.14 we see a direct comparison between the solutions of the
different numerical schemes at T = 300 for different space discretizations ∆s calculated
with ∆t = 10−2. We see that the projection based explicit scheme EEP stays stable for
∆s = 10−1. For finer space discretizations, simulations with EEP demand much smaller
time step sizes ∆t� ∆s2 in order to be feasible. On the other hand, the methods VSV
and VSVm, which are both similar to EEP in the conservative case, as the acceleration
does not depend on the velocity, are much more stable and lead to similar results
compared to the implicit methods cMPGGL and IEGGL. However, as the equation for
the position (4.29a) of VSV evaluates ∇g at rn instead of rn+1, Newton’s method is
unable to find sufficiently small solutions for ∆s = 10−2 if ∆t = 10−2. The fully implicit
scheme deviates slightly in the velocity from cMPGGL and VSVm (as well as VSV) as
seen in the velocity magnitude, nonetheless, this deviation is much smaller than that
of EEP. Considering the energy conservation, we see in Fig. 4.15 similar behavior to
the case of ordinary differential equations, namely the explicit Euler increases the total
energy, the fully implicit scheme IEGGL shows numerical dissipation, while cMPGGL
and VSV preserve it. The modified VSV scheme, VSVm acts also slightly dissipative.

In order to examine the numerical convergence, we use the discrete L2([0, L])-norm

‖z‖2
L2 =

N∑
i=1

‖zi‖2∆s , (4.44)

where zi ∈ Rd for z ∈ {r, v} and zi ∈ R for z ∈ {λ, κ}. We consider the relative
L2 errors for the dynamic components and the absolute L2 errors for the Lagrangian
multipliers at t = T with respect to a reference solution. Thus, for a given solution
generated with ∆t, z∆t(t) ∈ RnN and a reference solution zref (t) ∈ RnN , the relative
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Figure 4.14.: Solutions of the conservative scenario at t = T generated by different
time integration schemes with ∆t = 10−2. Left: fiber, Right: velocity
magnitude. Top: ∆s = 10−1, center: ∆s = 0.5 · 10−1, bottom ∆s = 10−2.
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Figure 4.15.: Total energy of the conservative scenario, generated by different time
integration schemes with ∆t = 10−2. Left: ∆s = 10−1, Right: ∆s = 10−2.

and absolute errors are given as

erel(∆t) =
‖z∆t(T )− zref (T )‖L2

‖zref (T )‖L2

, eabs(∆t) = ‖z∆t(T )− zref (T )‖L2 ,

where n = d, if z ∈ {r, v} and n = 1, if z ∈ {λ, κ}. As reference we use a numerical
solution generated with a finer time discretization. Both, z∆t and zref are generated
by the same integration scheme.

The convergence behavior of the different schemes is seen in Fig. 4.16 and Fig. 4.17,
the least squares fit of the measured convergence orders is given in Tab. 4.4 and Tab. 4.5.
The reference solutions are generated with ∆t = 2−15. We observe that the conver-
gence order of the dynamical variables r, v is p = 2 for VSV as well as p = 1 for
IEGGL in accordance with the expected values. The schemes EEP and VSVm are
of first order. The conservative cMPGGL scheme converges with p = 2, although for
∆s = 1/100 this rate is achieved for the velocity only for ∆t / 10−4. Considering the
algebraic variables, we observe that λ converges linearly for all schemes. The second
Lagrangian multiplier, κ, converges with p = 2 in case of cMPGGL and p = 1 for the
other schemes. We emphasize that in case of VSV and VSVm, κ and λ together have
the role of the constraint force in (4.13b) at different points in time, which explains,
why there is a huge difference in κ compared to the one generated by cMPGGL as seen
in Figure 4.17. In fact, this is the reason, why we omitted the projection vector k of
EEP, since it is a purely artificial quantity with the amplitude of the constraint force
being given by (4.32) which converges with p = 1 since r and v do.

Finally, we compare the computational cost of the different schemes. The number
of equations, i.e., the dimension of the corresponding Jacobian as well as the number
of non-zero entries in the Jacobian for each scheme is given in Tab. 4.6. The average
number of Newton-iterations and the average time per integration step needed to gen-
erate the solutions shown in Fig. 4.14 are given in Tab. 4.7. The conservative midpoint
rule has the same dimension of the Jacobian as IEGGL but 20% more entries for large
N , which is also seen in the corresponding increase of computational time of around
20%.
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Figure 4.16.: Numerical convergence of dynamical variables for different time integra-
tion schemes. Top: ∆s = 10−1, bottom: ∆s = 10−2. Triangles denote
relative error with respect to cMPGGL.

∆s = 10−1 ∆s = 10−2

cMPGGL pr ≈ 2.03, pv ≈ 2.04 pr ≈ 1.77, pv ≈ 1.11

IEGGL pr ≈ 1.14, pv ≈ 1.08 pr ≈ 1.10, pv ≈ 1.05

VSVm pr ≈ 1.11, pv ≈ 1.11 pr ≈ 1.11, pv ≈ 1.11

VSV pr ≈ 2.04, pv ≈ 2.04 -

EEP pr ≈ 1.12, pv ≈ 1.13 -

Table 4.4.: Measured convergence orders of the different integration schemes for the
dynamic components.
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Figure 4.17.: Behavior of the Lagrangian multipliers λ (left) and κ (right), absolute
error. Top: ∆s = 10−1, bottom: ∆s = 10−2. Triangles denote the error
with respect to cMPGGL.

∆s = 10−1 ∆s = 10−2

cMPGGL pλ ≈ 1.12, pκ ≈ 2.03 pλ ≈ 1.01, pκ ≈ 2.01

IEGGL pλ ≈ 1.04, pκ ≈ 1.03 pλ ≈ 0.96, pκ ≈ 1.07

VSVm pλ ≈ 1.06, pκ ≈ 1.17 pλ ≈ 1.07, pκ ≈ 1.08

VSV pλ ≈ 0.94, pκ ≈ 0.99 -

Table 4.5.: Measured convergence orders of the different integration schemes for the
Lagrangian multipliers.
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Scheme Number of equations Non-zero entries of Jacobian

cMPGGL 2(d+ 1)(N + 4) 8d(3N + 2) + 8

IEGGL 2(d+ 1)(N + 4) 4d(5N + 4) + 8

VSVm (d+ 1)(N + 4) d(7N + 8) + 4

VSV N d(3N − 2)

EEP N d(3N − 2)

Table 4.6.: Dimension and number of non-zero entries of the Jacobian for different time
integration schemes in the conservative scenario.

Scheme ∆s = 10−1 ∆s = 0.5 · 10−1 ∆s = 10−2

cMPGGL 2.00, 0.63 ms 2.00, 0.73 ms 2.56, 1.93 ms

IEGGL 2.00, 0.53 ms 2.00, 0.58 ms 2.53, 1.61 ms

VSVm 2.00, 0.40 ms 2.00, 0.42 ms 2.04, 0.66 ms

VSV 1.00, 0.22 ms 1.32, 0.26 ms -

EEP 1.00, 0.14 ms - -

Table 4.7.: Average number of Newton-iterations and average time per integration step
in the conservative scenario.

The semi-explicit schemes, EEP and VSV demand the solution of a non-linear sys-
tem with only N equations but like VSVm they also imply a projection step for the
calculation of vn+1, which is equivalent to solving one N ×N linear equation, which is
also carried out in every Newton iteration step. Nonetheless, due to much smaller di-
mension, the needed computational time is less than one half of IEGGL for both, EEP
and VSV. The modified scheme VSVm has only one half of the equations of IEGGL,
since the velocity is evaluated explicitly in the conservative case, which provides a
significant decrease in computational time.

4.5.2 Deterministic air drag

In order to examine the deterministic, non-conservative case we use the aerodynamic
drag model presented in Sec. 4.2.4. We choose the model parameters as L = 1,Fr =
40, α = 200, γ = 45,Dr/

√
γ = 4. We use a 2d setting with direction of gravity

eg = −e2. The fiber orientation is given by r̂ = 0, τ̂ = −e2 with the initial condition
r(s, 0) = −se2 for s ∈ [0, L]. The fiber is initially at rest and stress free. The dynamic
behavior of the fiber depends in this case strongly on the prescribed outer flow u. We
use here only stationary and linear flows, which may result in a stationary solution as
seen in Fig 4.18 for ui(x) = Ai · x+ ci, i ∈ {1, 2} with

A1 =
1

10
(e1 ⊗ e2 − e2 ⊗ e1) , c1 = − 1

20
e1 ,

A2 =
1

10
e1 ⊗ e2 , c2 =

1

20
e1 .
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Figure 4.18.: Fiber position and behavior of external forces fex (gravity and aerody-
namic drag), bending forces fb as well as of the acceleration at t = T for
outer flow u1 (top) and u2 (bottom). Simulation generated by cMPGGL
with T = 200,∆t = 10−2,∆s = 0.5 · 10−2.

Thus, u1 is a rotational flow with u1 = 0 for x = (0, 1/2) and u2 is a shear flow with
u2 = 0 for all x ∈ Rd with x · e2 = −1/2. In order to avoid the stationary solution
in the convergence tests, we choose T sufficiently small (T = 50) and also consider
the following (non-physical) scenario, which admits no stationary solution. Under the
rotational flow u3 given in terms of

A3 =
1

5
(e1 ⊗ e2 − e2 ⊗ e1) , c3 = 0

the fiber overlaps itself and generates loops, while following the fluid flow continuously
as seen in Fig. 4.19 (generated by cMPGGL with ∆s = 10−2 = ∆t).

In Fig. 4.20 and Fig. 4.21 we see the convergence behavior of the different integration
schemes for the outer flow fields u1 and u3. We observe similar results to the conser-
vative case: cMPGGL shows second order convergence in the dynamic variables (for
∆t / 2 · 10−4 for ∆s = 1/100), while IEGGL, VSVm and EEP are of first order. The
Lagrangian multipliers converge with p = 1 in all schemes except cMPGGL, where κ
shows second order convergence for sufficiently small ∆t. The measured least squares
fits in Tab. 4.8 and Tab. 4.9 show smaller convergence orders in case of cMPGGL and
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Figure 4.19.: Fiber behavior in the non-conservative scenario with outer flow u3.

∆s = 10−1, u1 ∆s = 10−2, u1 ∆s = 10−2, u3

cMPGGL pr ≈ 2.04, pv ≈ 2.08 pr ≈ 0.77, pv ≈ 0.46 pr ≈ 1.65, pv ≈ 1.58

IEGGL pr ≈ 1.02, pv ≈ 1.04 pr ≈ 1.11, pv ≈ 1.11 pr ≈ 1.07, pv ≈ 1.07

VSVm pr ≈ 1.10, pv ≈ 1.10 pr ≈ 1.11, pv ≈ 0.85 pr ≈ 1.08, pv ≈ 1.06

EEP pr ≈ 1.24, pv ≈ 1.19 - -

Table 4.8.: Measured convergence orders of the different integration schemes for the
dynamic components.

VSVm, since they account for all discretizations depicted in Fig. 4.20 and Fig. 4.21.
The reference solutions for the convergence studies were generated by ∆t = 2−15 for
the u1 cases and by ∆t = 2−18 in the u3 case.

Considering the numerical costs, the number of equations is the same as in the
conservative case for cMPGGL, IEGGL and EEP. In case of VSVm, we now evaluate
the velocity implicitly, thus introducing a second non-linear equation of dimension
(d + 1)(N + 4) which is independent of the projection step. The number of non-zero
entries now increased for the implicit schemes due to the derivative of the aerodynamic
drag as shown in Tab. 4.10.

∆s = 10−1, u1 ∆s = 10−2, u1 ∆s = 10−2, u3

cMPGGL pλ ≈ 1.16, pκ ≈ 1.46 pλ ≈ 0.38, pκ ≈ 1.16 pλ ≈ 1.07, pκ ≈ 1.35

IEGGL pλ ≈ 1.04, pκ ≈ 0.97 pλ ≈ 1.30, pκ ≈ 1.11 pλ ≈ 1.07, pκ ≈ 1.07

VSVm pλ ≈ 1.08, pκ ≈ 1.08 pλ ≈ 0.67, pκ ≈ 0.57 pλ ≈ 1.04, pκ ≈ 1.04

Table 4.9.: Measured convergence orders of the different integration schemes for the
Lagrangian multipliers.
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Figure 4.20.: Numerical convergence of dynamical variables for different time integra-
tion schemes. Top: ∆s = 10−1, u1; center: ∆s = 10−2, u1; bottom:
∆s = 10−2, u3. Triangles denote relative error with respect to cMPGGL.
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Figure 4.21.: Behavior of the Lagrangian multipliers λ (left) and κ (right), absolute
error. Top: ∆s = 10−1, u1; center: ∆s = 10−2, u1; bottom: ∆s = 10−2,
u3. Triangles denote the error with respect to cMPGGL.
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Scheme Number of equations Non-zero entries of Jacobian

cMPGGL 2(d+ 1)(N + 4) 6d2N + 2d(9N + 8) + 8

IEGGL 2(d+ 1)(N + 4) 6d2N + 16d(N + 1) + 8

VSVm, r-eq. (d+ 1)(N + 4) d(7N + 8) + 4

VSVm, v-eq. (d+ 1)(N + 4) 3d2N + 4d(N + 2) + 4

EEP N d(3N − 2)

Table 4.10.: Dimension and number of non-zero entries of the Jacobian for different
time integration schemes in the non-conservative scenario.

Scheme ∆s = 10−1, u1 ∆s = 10−2, u1 ∆s = 10−2, u3

cMPGGL 2, 2.53 ms 2.45, 4.84 ms 2.99, 5.56 ms

IEGGL 2, 2.12 ms 2.45, 3.89 ms 2.99, 4.48 ms

VSVm 1.59, 2, 2.28 ms 1.97, 2.31, 3.39 ms 2, 2.99, 3.54 ms

EEP 1, 0.48 ms - -

Table 4.11.: Average number of Newton-iterations and average time per integration
step in the non-conservative scenario. VSVm has two Newton-iteration
entries, since it consists of two non-linear systems in the non-conservative
case.

4.5.3 Stochastic air drag, direct simulations

In order to verify the numerical schemes in the stochastic case, we use a similar setup
to the one used in Sec. 4.5.2. As the outer flow, we consider only shear flow, u2 and
as the stochastic amplitude, we explore two simplified models:

C1(τ ) ≡ I , C2(τ ) = rn(0)(I− τ ⊗ τ ) + rτ (0)τ ⊗ τ ,

with rn, rτ denoting the non-linear resistance coefficients of the universal drag model
given in Sec. 4.2.4. In Fig. 4.22 we see the behavior of two stochastic realizations for
β ∈ {0.2, 0.6}. In this section we choose the turbulent fluctuation number as β = 0.2
and the final time as T = 1. In Fig. 4.23 and Tab. 4.12 we see that the dynamic
variables converge with approximately p = 1, while λ behaves irregular as seen in
Fig. 4.24. This is also to be expected, as formally λ = −G−1 · ∂xg · (a − dw/dt),
i.e., λ behaves as a vector of independent random variables. The second Lagrangian
multiplier still converges for cMPGGL and IEGGL, since it approaches zero as ∆t→ 0
due to its role in the GGL formulation. The reference solution was generated here with
∆t = 2−19 and the study consisted of 20 Monte-Carlo simulations.

Considering the numerical costs, neither the dimensions of the non-linear equations
nor the non-zero entries of the Jacobians changed compared to the non-conservative
case considered in Sec. 4.5.2. But due to the irregularity of the force, the Newton
method needs much more iterations in order to find a solution. In fact, also the Armijo
line search triggers in nearly every step if ∆t = 10−3 with every integration scheme
which increases the computation time significantly as seen in Tab. 4.13.
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Figure 4.22.: Fiber behavior in the stochastic scenario with stochastic amplitude C2

and β = 0.2 (left), β = 0.6 (right).

∆s = 10−1, C1 ∆s = 10−2, C1 ∆s = 10−1, C2 ∆s = 10−2, C2

cMPGGL pr ≈ 1.05 pr ≈ 0.90 pr ≈ 1.04 pr ≈ 0.81

pv ≈ 0.99 pv ≈ 0.86 pv ≈ 0.99 pv ≈ 0.76

IEGGL pr ≈ 1.07 pr ≈ 0.53 pr ≈ 1.07 pr ≈ 0.45

pv ≈ 1.07 pv ≈ 0.32 pv ≈ 1.07 pv ≈ 0.23

VSVm pr ≈ 1.06 pr ≈ 0.83 pr ≈ 1.07 pr ≈ 0.77

pv ≈ 1.03 pv ≈ 0.71 pv ≈ 1.04 pv ≈ 0.64

EEP pr ≈ 1.08 - pr ≈ 1.08 -

pv ≈ 1.07 - pv ≈ 1.07 -

Table 4.12.: Measured convergence orders of the different integration schemes for the
dynamic components.

∆s = 10−1, C1 ∆s = 10−2, C1 ∆s = 10−1, C2 ∆s = 10−2, C2

cMPGGL 2.09, 2.49 ms 5.50, 10.71 ms 2.17, 3.00 ms 5.76, 12.92 ms

IEGGL 2.06, 1.94 ms 3.03, 4.47 ms 2.18, 2.53 ms 3.12, 5.25 ms

VSVm 2, 2, 2.36 ms 2, 3.62, 3.58 ms 2, 2, 2.61 ms 2, 3.91, 3.86 ms

EEP 1.00, 0.41 ms - 1.00, 0.60 ms -

Table 4.13.: Average number of Newton-iterations and average time per integration
step in the stochastic scenario. VSVm has two Newton-iteration entries,
since it consists of two non-linear systems in the non-conservative case.
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Figure 4.23.: Numerical convergence of dynamical variables for different time integra-
tion schemes, stochastic case. From top to bottom: ∆s = 10−1,C1,
∆s = 10−2,C1, ∆s = 10−1,C2, ∆s = 10−2,C2. Triangles denote relative
error with respect to cMPGGL.
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Figure 4.24.: Behavior of the Lagrangian multipliers λ (left) and κ (right) in the
stochastic case, absolute error. From top to bottom: ∆s = 10−1,C1,
∆s = 10−2,C1, ∆s = 10−1,C2, ∆s = 10−2,C2. Triangles denote the error
with respect to cMPGGL.

142



4.5.4 Stochastic air drag, predictor-corrector schemes

The simulations used for the generation of the measurements of Tab. 4.13 were carried
out using the values of r and v from the previous time step as estimator for the Newton
method, while λ and κ were estimated by zero. As stated in Section 4.3.3, one possibility
to decrease the computational costs is to use one explicit time integration step as an
estimator for the actual integration by an implicit method. We explore here the impact
of different estimators combined with IEGGL. In order to do so, we once again use a
similar scenario to the one used in Section 4.5.2 with the shear flow u2 as air velocity and
with the orientation dependent stochastic amplitude C2 given in Sec. 4.5.3. We choose
T = 50 as final time for the simulation and ∆t = 10−2 as time resolution. In Fig. 4.25
we see the average number of iterations and average computational time needed for one
time integration step by IEGGL with different estimators and for different stochastic
turbulence numbers β. The estimators are labeled as “type” followed by the variables
which are determined by the predictor “type”, the remaining variables are estimated
by zero. The possible predictor types are given as “old”, denoting estimation by the
solution of the previous time step, “VSV” for the VSV predictor and “EEP” for the
EEP predictor presented in Section 4.3.3. Figure 4.26 and Fig. C.1,C.2 in the appendix
show the average L2-distances between the estimator yest(tn) for the component y ∈
{ri, vi, λ, κ}, i = 1, 2 and the actual solution y(tn) at the corresponding time step tn, i.e.
‖yest(tn)− y(tn)‖L2 with the discrete L2-norm given in (4.44). We generated the data
by 20 Monte-Carlo simulations for each predictor type and used the same stochastic
noise for all predictor types given a fixed space resolution N . Hence, if a data point is
missing in the corresponding plot, it indicates that at least one simulation failed under
the given β,N and estimator type.

The L2 distances show that the VSV predictor yields the best position approximation
for all considered values of β and N , while the estimate by the preceding time step
leads to poor estimations in comparison. A similar statement for velocity estimation
is no more valid for N = 150, here the old time step is much closer to the real solution
than both estimator types. This is also true for the estimation of λ, here however
the estimation by zero is, in fact, even closer to the final solution than any other
estimation. In case of the second Lagrangian multiplier, κ, VSV gives the best results
in case N ∈ {10, 50} while for N ∈ {100, 150}, the old value is much closer to the final
solution. Thus, we expect that VSV leads to the least amount of Newton iterations in
case of N ∈ {10, 50}, while the estimation by the old time step gives best results for
N = 150. This is confirmed in Fig. 4.25: For N = 10, VSV reduces the number of
Newton iterations by one and for N = 50 by approximately 2 compared to the usual
estimation by the old time step. For N = 150, the VSV and EEP estimators increase
the number of Newton iterations, nearly doubling the computational cost in case of
VSV. For N = 100 however, VSV is still decreasing the needed number of iterations
by 1-2. The reason for this behavior is that the explicit schemes fail to be stable
for large N and not sufficiently small ∆t, which leads to poor estimations especially
of the velocity as well as of the Lagrangian multipliers, which are given by algebraic
expressions depending on the velocity estimation.
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Figure 4.25.: Iterations and computation time for one integration step. Top: β = 0.2,
center: β = 0.4, bottom: β = 0.6.
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Figure 4.26.: Average L2([0, L]) distance between y and yest for y ∈ {r1, r2, v1, v2, λ, κ},
β = 0.2.
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4.5.5 Stochastic air drag, smoothing techniques

In order to examine the smoothing techniques presented in Sec. 4.4.1, we use the IEGGL
scheme and first verify the convergence of the resulting model. For this we employ the
stochastic scenario used in Sec. 4.5.3 with the stochastic amplitude given by C2. Since
all smoothing techniques behave very similarly in the approximation of the Wiener
process, we use only the methods which differ by the underlying approximation idea,
i.e., the coarse resolution, the forward-backward averaging and the convolution. For the
latter, we choose the hat function kernel, since it provides the closest approximation to
the discretized white noise as found in Sec. 4.4.1. We study both, the case of smoothing
in space only (1d case), and the application of the smoothing techniques in space and
time (2d case). We use 20 Monte-Carlo simulations for this study. Figures 4.27,
and C.3 show the convergence behavior of the dynamic variables for N ∈ {32, 128},
with Tab. 4.14 showing the measured least squares fit of the convergence order. The
scheme converges for all considered smoothing lengths and techniques with convergence
rate p ≈ 0.5 for position and velocity. The Lagrangian multiplier κ converges linearly
as seen in Fig. C.4 and C.5, while λ still behaves as O(1) similarly to the white noise
case.

By replacing the white noise with a correlated force term, we can not expect to get a
close pathwise approximation of the original solution. In fact, Fig. 4.28 and C.6 in the
appendix show that the solutions generated with correlated noise do not converge to
the stochastic solution, regardless of the smoothing techniques. Especially the velocity
and λ (see Fig. C.7, C.8) differ significantly from the stochastic solution. Since the
Lagrangian multiplier κ converges to zero as ∆t → 0, for any force term, it shows
convergent behavior.

As we see from the pathwise behavior, the relative error of the solutions in position
is less than 10% and up to 100% in the velocity for β = 0.2 and N ∈ {32, 128}, T = 1.
In technical applications the statistical properties of the solution are of more interest
than the pathwise behavior of the fiber. Hence, we increase the time interval to T = 5
and consider a coarse time discretization for the simulation chosen as ∆t = 10−2. For
the tests, we use β ∈ {0.2, 0.4, 0.6}, N ∈ {10, 50, 100, 150} and consider convolution
with hat functions with Ns = 2 (Nt = 2 in the 2d smoothing case) as smoothing
technique. Tab. 4.15, C.1 and C.2 show that the mean value of the position is well
approximated by the smoothed solutions with L2 distances of a few percent, given
that N is sufficiently large. In case of a coarse spatial discretization (N = 10), the
impact of the additional stochastic increments leads to the significant change of the
mean behavior of the fiber position. The mean value of the velocity, however, differs
significantly from the stochastic solution. At the same time, the considered correlation
techniques have only a small impact on the number of Newton iterations for N = 10
and N = 150 with even an increase of the average iteration number by 0.02 in the 1d
smoothing case for N = 150, β = 0.2. For N ∈ {50, 100}, the correlated noise reduces
the iteration number by up to 0.84 iterations.
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Figure 4.27.: Relative error of the dynamic variables for N = 32. Left: r, right: v.
Top: Smoothing in space, bottom smoothing in space and time.
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1d-smoothing

Ns = 2 Ns = 8

coa fba hfk coa fba hfk

N = 32, pr 0.55 0.53 0.55 0.51 0.50 0.51

N = 32, pv 0.56 0.55 0.55 0.57 0.55 0.54

N = 128, pr 0.52 0.53 0.54 0.53 0.52 0.52

N = 128, pv 0.38 0.54 0.56 0.57 0.59 0.58

2d-smoothing

Ns = 2 = Nt Ns = 8 = Nt

coa fba hfk coa fba hfk

N = 32, pr 0.55 0.55 0.56 0.51 0.55 0.55

N = 32, pv 0.56 0.56 0.55 0.57 0.60 0.57

N = 128, pr 0.52 0.53 0.54 0.53 0.54 0.53

N = 128, pv 0.38 0.54 0.56 0.57 0.61 0.60

Table 4.14.: Convergence rates of the dynamic variables for different smoothing tech-
niques.

Smoothing dim. r v λ κ Newton-it.

N = 10 1d 12.39% 33.64% 37.42% 41.17% 2.98

N = 10 2d 12.39% 33.57% 49.68% 41.39% 2.96

N = 50 1d 1.33% 4.78% 28.18% 40.54% 3.88

N = 50 2d 1.35% 4.92% 36.61% 41.77% 3.79

N = 100 1d 0.49% 3.20% 21.07% 23.07% 4.34

N = 100 2d 0.57% 3.63% 36.21% 28.23% 4.20

N = 150 1d 0.19% 2.05% 9.35% 12.61% 4.62

N = 150 2d 0.28% 2.57% 31.70% 21.79% 4.30

Table 4.15.: Relative L2-distance of solution components and average Newton-
iterations for smoothing by convolution with hat functions for different
space resolutions and smoothing dimensions. Simulation with β = 0.2,
T = 5, ∆t = 10−2, Ns = 2 and Nt = 2 in the 2d-case. Average Newton
iterations without smoothing: 2.99, 4.62, 4.96, 4.60 for N = 10, N = 50,
N = 100, N = 150 respectively.
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Figure 4.28.: Relative error of the dynamic variables with respect to the stochastic
solution for N = 32. Left: r, right: v. Top: Smoothing in space, bottom
smoothing in space and time.
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4.5.6 Stochastic air drag, Wiener chaos expansion

In order to test the Wiener chaos expansion presented in Sec. 4.4.2 we use the model
parameters α, D̂r,Fr as well as the boundary and initial conditions used in Sec. 4.5.2.
As outer flow we take the rotational flow A = 10 · (e1⊗e2−e2⊗e1), the gravitational
direction is kept as eg = −e2. The turbulent fluctuation number is chosen as β = 1,
the final time as T = 1 and the spatial and temporal grid size as ∆s = 10−2 and
∆t = 5 · 10−3, respectively. For the Fourier expansion of the Wiener process we choose
the trigonometric basis, see Rem. 58.

Solving the WCE system (4.43) once allows the creation of an arbitrary number
of stochastic realizations of (4.41) by generating the corresponding Wiener processes,
calculating their Fourier stochastic coefficients and applying Lem. 59. Additionally,
the expressions (4.42) and Lem. 60 yield algebraic formulas for the calculation of the
first and second moments of r and λ in terms of polynomials of their deterministic
coefficients. Thus, the WCE approach is in principle efficiently superior to classical
Monte-Carlo simulations (MCS). To study the feasibility of WCE for the constrained
stochastic beam model in industrial applications we investigate the performance of the
approach (accuracy, computational costs) in comparison to MCS. The results from 1000
MCS turn out to be suitable as reference. In Fig. 4.29 we see that WCE with first order
Wick polynomials yields solutions which catch the overall behavior of the fiber curve r.
In fact, first and second moments (Fig. 4.30) show a deviation of up to 10% in the mean
and up to 20% in the variance of the position for n = 1 and Ns = Nt = 10 which is
a comparably coarse resolution. On the other hand, the increase of polynomial degree
without a refinement of the Fourier basis seems not to increase the approximation
quality. However, first order Wick polynomials with larger Ns and Nt are not able to
improve the approximation quality of the constraint, instead we observe a deterioration.
This is also seen in the behavior of the Lagrangian multiplier λ, Fig. 4.31.

The results indicate that the WCE approach (4.43) yields only reasonable approxi-
mations of the constrained system (4.41), given higher order polynomials (and Ns, Nt

sufficiently large) are used. This poses a severe numerical challenge, since the number
of coefficient systems grows as (n + z)!/(n!z!) with z = dNsNt, d ∈ {2, 3}. Thus,
in cases where the number of degrees of freedom is large due to the required spatial
resolution, the WCE approach becomes impracticable in contrast to MCS. Addition-
ally, the variables are strongly coupled as seen in the structure of the Jacobian of the
non-linear system in Fig. 4.32. Another restriction on the applicability of WCE in in-
dustrial problems is given by the evaluation of the mixed moment of the force term and
a Wick polynomial E[fpι] (and the treatment of the stochastic amplitude). The drag
forces depend in general on fluid flow simulations in complicated geometries. Hence,
an approximation of such forces is required to formulate a closed WCE system anal-
ogously to (4.43). Consequently, WCE is not suited as a direct numerical technique
for accurate stochastic fiber simulations but instead it could be applied for moment
approximation or for variance reduction in a hybrid WCE-MCS approach as proposed
in [89].
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Figure 4.29.: Fiber curve r(., T, ω). Solution of original system (4.41) (Euler-
Maruyama method, E.-M.) and WCE system (4.43) for different Ns, Nt

and n.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.30.: Relative error for expectation E[r(., T )] (left) and second moment E[(r⊗
r)(., T )] (right) between WCE-approximations and (reference) results
from 1000 MCS.

4.6 Conclusion

Our aim was to explore different methods for the reduction of computational cost in
the simulation of the stochastic partial differential algebraic equation (4.5) with the
stochastic force (4.8). The system under consideration describes the dynamics of a
slender, inextensible fiber subjected to a turbulent air flow with boundary and initial
conditions (4.6) realizing a fixed or freely moving fiber. The fiber is 1d-parametrized
and thus characterized by its position r : [0, L]× [0, T ]× Ω→ Rd with d ∈ {2, 3} and
(Ω,A, ς) denoting the probability space. After a semi-discretization in space by finite
volumes, the resulting system is given by a (2d+1)N -dimensional stochastic differential
algebraic equation, with N denoting the number of cells in the discretization. We
stated two predictor methods for the implicit Euler-Maruyama integration scheme in
Sec. 4.3.3 which are able to reduce the computational cost of the fiber simulation as
seen in Sec. 4.5.4. The usage of a correlated noise, which is generated by various
methods given in Sec. 4.4.1 leads to a much smaller effect on the computational cost,
nonetheless it shows to be a viable technique as seen in Sec. 4.5.5. The Wiener chaos
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Figure 4.31.: Left: Error in the algebraic constraint of the solution to (4.41) (E.-M.) and
the WCE-approximations at t = T . Right: Absolute error for expectation
E[λ(., T )] between WCE-approximations and (reference) result from 1000
MCS.

Figure 4.32.: Structure of non-zero entries of Jacobian for Ns = Nt = 3, n = 2 and
N = 10. Total number of variables: 12350.

expansion presented in Sec. 4.4.2 leads naturally to the most cost-efficient results. Its
applicability, however, is limited to only a special class of problems.

The used fiber model is characterized by three dimensionless quantities: the drag
number Dr (ratio of fiber inertia and aerodynamic forces), the bending number α
(ratio of inertia and bending) and the Froude number Fr (ratio of inertia and gravity).
Its behavior ranges from a nearly stationary and stiff 1d-rod with little to no effect
of outer forces (Dr � 1 or Fr � 1, α � 1) to a nearly inertialess chain of mass
points following the outer forces instantly similar to a polymer chain (Dr � 1 or
Fr � 1, α � 1) as explored in [16]. Hence, the computational costs differ heavily,
depending on the choice of the model parameters which also affects the usefulness of
the corresponding cost reduction technique. Therefore, we discussed the typical setting
of an air-lay process in Sec. 4.2.4 also defining the aerodynamic drag model used in
all numerical investigations except for the Wiener chaos expansion. All subsequent
numerical simulations were carried out with parameters chosen in range of this typical
setting. In Sec. 4.3 we first presented the Gear-Gupta-Leimkuhler formulation of the
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original semi-discretized fiber problem, which leads to better convergence behavior of
integration schemes due to the reduction of the differentiation index [60]. Additionally,
it also allows a fair comparison of the solutions generated by implicit schemes, such as
the implicit Euler method given in Sec. 4.3.1, with projection based methods, where the
velocity is projected onto the tangential space of the solution manifold (see Sec. 4.3.3).
We then presented the mainly used integration scheme for the fiber equation given as
the implicit Euler(-Maruyama) method as well as a modification which ensures energy
preservation in case of a deterministic and conservative problem. The implicit Euler-
Maruyama method is well suited for the integration of the stochastic fiber model as it is
much more stable than any explicit method, while still being the cheapest of the implicit
methods. The non-linear system equations associated with the Euler scheme is solved
by applying the Newton method. As the latter is only locally convergent, a well-chosen
initial guess for the solution is highly important in the computation. The default choice
for the initial guess is the solution of the previous time step for the dynamic variables.
Due to the stochastic nature of the Lagrangian multipliers, we estimate them with
zero in the default case. In order to derive better suited predictors, we also present
the explicit Euler method, based on the expression for the Lagrangian multiplier given
in [84], as well as the Lobatto IIIA-IIIB pair, whose variants are often used in the field
of Molecular Dynamics, in Sec. 4.3.3 amending a modification better suited for efficient
fiber simulations. We verified the presented schemes in Sec. 4.5.1 for the deterministic
conservative case, in Sec. 4.5.2 for the deterministic case with air drag and in Sec. 4.5.3
for the stochastic case by checking the numerical convergence behavior of the semi-
discrete system as ∆t → 0. We also briefly discussed the dynamical behavior of the
fiber as well as the computational costs needed by each integration scheme.

The first predictor method (EEP) investigated in this work is based on the explicit
Euler integration scheme (4.37), the second technique (VSV) has its foundation in
the Lobatto IIIA-IIIB pair (4.29). Since the latter is an implicit method in case of
forces which depend on the velocity, we modified the expression for the estimator
in a way which avoids implicit velocity evaluations and projects the force onto the
tangent space of the solution manifold. The final estimation is given as one explicit
step by the respective method, which in both methods amounts to up to 4 solutions
of linear equations of dimension N × N . We compared the estimation quality for
each component with the default guess by the solution of the previous time step in
Sec. 4.5.4. We observed that the estimation by VSV leads to the best estimation in
the position for a wide range of spatial discretizations. Similarly, also the velocity
is estimated best by VSV as long as the spatial discretization is coarse enough. If
the time discretization fulfills ∆t � 1/N , the underlying explicit scheme becomes
sufficiently unstable, such that even one step leads to disastrous estimations. In this
case the previous time step leads to the best estimation. The estimations by EEP are
for all considered cases in between the performance of VSV and the default estimation.
Considering the Lagrangian multipliers, again, the estimation by VSV leads to the
best estimations as long as N is small enough. For N = 150, which was the maximal
spatial discretization tested here, the activation of the λ estimation by VSV even led
to the breakdown of the Newton method. In this case, the estimation by zero for both
Lagrangian multipliers yielded the best results. In the best cases, VSV reduced the
average needed number of iterations from 5 to 3, while EEP reduced them only by
1 iteration. This can lead to a significant decrease of computational time, here up
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to ≈ 26% less than in the default case. However, as it strongly depends on whether
the chosen discretization is appropriate for VSV, using it as a default estimator would
not result in a robust integration scheme. This recovers our findings presented in [84],
where we only explored the EEP predictor and observed a similar behavior under a
simplified scenario. In order to use the VSV predictor in a robust way, it can be used
in an adaptive strategy, which checks whether the full VSV estimation is feasible and
beneficial, if not, it might be still viable to use the VSV estimation for the position
(this requires only one solution of the N ×N linear system), the previous value of the
velocity and zero for the Lagrangian multipliers. If this hybrid prediction is also not
usable or leads to more Newton iterations than the default estimator, then the latter
is used. Performing this check at the beginning of the simulation would retain the
robustness of the implicit scheme and benefit from possible speedup by the proposed
VSV predictor.

The idea for the correlation of the white noise by the methods presented in Sec. 4.4.1
stems from the fact that due to the inextensibility constraint and the bending stiffness,
the acceleration of the fiber is strongly correlated for neighboring points, i.e., on the
length scale of a few ∆s = 1/N . Due to Newton’s laws of motion, the combination of
the constraint force and the white noise acting on the fiber is therefore also a correlated
force on this length scale. Since the exact reconstruction of the constraint force, which
is a virtual quantity, is not relevant for any industrial or physical application, we can
therefore exchange the white noise by a more suitable, correlated stochastic field. The
investigated correlation methods presented in Sec. 4.4.1 consist of the averaging of the
noise increments, of the usage of a coarser resolution of the Wiener Process and of con-
volution of the Wiener Process with chosen integration kernels. All of these methods
can be read as a smoothing technique for the Wiener Process and although they lead
to different regularized stochastic fields, the qualitative behavior is the same for all
investigated methods. The error between the regularized field and the original Wiener
Process behaves as O(

√
Ns), where Ns∆s is the corresponding correlation length. If

the regularization is applied at each time level, the resulting regularized fields converge
as O(

√
∆s) for ∆s→ 0. As studied in Sec. 4.5.5, the discretized fiber model with the

regularized random force field also converges as ∆t → 0. However, the convergence
order is decreased (given as O(

√
∆t)) compared to the original stochastic system which

converges linearly in the dynamic variables. Moreover, the pathwise solutions do not
converge to the original stochastic solutions. However, the mean behavior is well ap-
proximated by the regularized model and even for small correlation lengths of 3∆s a
reduction in the Newton iterations of up to 1 iteration can be observed. These obser-
vations are consistent with the experiments performed in [16], where the smoothing by
convolution was examined for the fiber model in a different setting. The major problem
of the smoothing approach is that the choice of the particular method and of the length
scale are arbitrary combined with the fact that even small correlation lengths lead to
significant deviations from the original Wiener Process. This way it is hard to argue,
whether a particular choice still leads to solutions which catch all necessary physical
properties of the fiber dynamics. Hence, in order to retain the notion of a well-defined
solution, the correlation method and length should be considered as part of the fiber
model instead of an algorithmic tool. The choice of the particular technique should
then account for the physical quantities such as the bending stiffness, fiber inertia and
characteristic length scale.
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The Wiener chaos expansion presented in Sec. 4.4.2 takes advantage of the Fourier
expansion of the Wiener Process and of a finite dimensional polynomial approxima-
tion of the solution domain of the SPDAE. By expressing the fiber position and the
Lagrangian multiplier in the original SPDAE as a series of products of deterministic co-
efficient functions with Wick polynomials which depend only on the Fourier coefficients
of the Wiener Process, the stochastic and deterministic influence is separated. Since
the Wick polynomials form an orthonormal basis of the solution space, the description
of the dynamics of the deterministic coefficients follows by testing the original SPDAE
with these random polynomials and taking the expectation. This last step implies that
the method is only applicable, if the expectation of the outer force multiplied with a
Wick polynomial can be calculated efficiently. Already in case of the universal drag
model given in Sec. 4.2.4 combined with the used stationary flow fields, the analytical
computation of such mean values is a highly complicated task, which is the reason why
we used a linear, Stokes-like air drag model for the investigation of the applicability of
WCE, which is given in (4.41). This simplification avoids a non-linear, analytic force
term but still preserves the quadratic constraint. The resulting system of equations
then consists of a coupled system of deterministic partial differential algebraic equations
(PDAE) for the coefficient functions. In order to arrive at a finite dimensional system,
first the expansion of the Wiener Process is truncated which restricts the solution space
to polynomials of arbitrary degree but with finite number of arguments. Hence, addi-
tionally the degree of the Wick polynomials is restricted. The final finite dimensional
system then follows by a spatial semi-discretization. In Sec. 4.5.6 we observed that the
WCE approach leads to reasonable approximations of the first and second moments
of fiber position already for coarse discretizations of the solution space. However, the
pathwise approximations do not fulfill the inextensibility constraint unless the degree
of the Wick polynomials is sufficiently large. This observations are consistent to the
findings in [120], where we investigated the WCE method in a similar scenario. The
advantage of the WCE method is that once the solution of the deterministic coeffi-
cient system is solved, an arbitrary number of stochastic realizations can be generated
nearly instantly just by generating the Fourier coefficients of the Wiener Process and
evaluating the truncated superposition of products of the coefficients with the Wick
polynomials. There are, however, two major problems of this approach. The first one
being that the number of coefficient systems grows as (n + z)!/(n!z!) with z = dNsNt

with Ns, Nt denoting the number of basis functions in space and time of the Fourier
expansion and n the degree of the Wick polynomials. This implies that even for a
two-dimensional setting with n = 4, and 5 basis functions in space and time, there are
over 3 · 105 coupled coefficient systems. A spatial semi-discretization with only N = 10
then results in ≈ 1.6 · 107 variables. Hence, the direct application of the WCE method
is only viable, if a small degree of Wick polynomials is sufficient for the approximation.
The second problem is given by the fact that the mean value of the outer forces multi-
plied with the Wick polynomials is needed in order to state the coefficient system. In
real applications this is not possible analytically, since the fluid flow is given in terms
of simulation data. This expectation can then be computed only by Monte-Carlo sim-
ulations, which contradicts the idea of replacing the Monte-Carlo simulations by the
WCE method.

The novelty of the presented work consists of the study of suitable estimators for the
simulation of inextensible elastic Kirchoff fibers tailored to increase the efficiency of the
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computations. The basis of the presented prediction techniques are novel analytical
insights into the solution theory of stochastic differential equations subject to holonomic
constraints [84] as well as classical numerical methods especially in the field of Molecular
Dynamics [4]. The investigation of additional correlation techniques not based on
convolution and the investigation of their influence on the dynamic behavior in the
context of an air-lay process poses a natural extension of the studies in [16]. Finally,
the extension of the WCE approach, which was successfully applied to a stationary
fourth order elliptic partial differential equation by [16], to SPDAEs driven by a planar
Wiener Process is a novel approach to the simulation of elastic inextensible Kirchhoff
fibers.
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A Matrix spaces

In this part we collect some essential statements concerning symmetric and skew-
symmetric matrices and the special orthogonal group. The latter is a matrix Lie group
and therefore a manifold, which is the reason why we also recap some basic definitions
and statements regarding manifolds and matrix Lie groups in Sec. A.1.

A.1 Manifolds and Matrix Lie groups

In this section we first briefly recap the basic definitions needed to justify probability
measures and transport on the SO(3) group.

Basics on manifolds

To introduce the corresponding concepts regarding manifolds, we follow [121].

Definition A.1 (Coordinate map, coordinate system). Let (M,O) be a second count-
able Hausdorff topological space. A k-dimensional coordinate map (chart) φ on M is
a homeomorphism φ : U → V, where U ⊂ M,V ⊂ Rk for k ≥ 1 are open sets and Rk

is equipped with the Euclidean topology. The pair (U , φ) is called a coordinate system.

Definition A.2 (Differentiable structure, atlas). A differentiable structure A of class
C` (a maximal C`-atlas), ` ≥ 1 is a collection of coordinate systems, {(Uα, φα)|α ∈ I}
for some index set I, with the properties

(i) the coordinate systems cover M: ∪α∈IUα =M,

(ii) the transition map φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ) is C` for all α, β ∈ I,

(iii) the collection is maximal, i.e., if a coordinate system (U , φ) fulfills that both,
φ ◦ φ−1

α , and φα ◦ φ−1 are C`, then it belongs to A.

Definition A.3 (k-dimensional smooth manifold). We call a topological space (M,O)
as in Definition A.1 equipped with a differentiable structure A, built of k-dimensional
coordinate maps, a k-dimensional differentiable manifold of class C`.

Proposition A.4 (Product of manifolds). Let Mi equipped with smooth structures
Ai, i = 1, 2, be smooth di-dimensional manifolds. Then M =M1 ×M2 equipped with
the product topology and smooth structure made of local coordinate systems (U , φ) of
the form U = U1 × U2, φ(p, q) = (φ1(p), φ2(q)), (Ui, φi) ∈ Ai, is a smooth (d1 + d2)-
dimensional manifold.
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Remark A.5 (Short notation, smooth manifold).

1) Since we discuss neither the underlying topology on M, nor the corresponding
smooth structure, we shorten the notation calling the set M a k-dimensional
manifold of class C` with the topology and smooth structure understood.

2) In case ` =∞, we call the manifold smooth.

Definition A.6 (Differentiable function on manifold). Consider two manifoldsM1,M2

of dimension d1, d2 and of class C` as well as a mapping f : M1 → M2. We call f
m-times continuously differentiable or f ∈ Cm(M1;M2), m ≤ `, if φ2 ◦ f ◦ φ−1

1 ∈
Cm(Rd1 ;Rd2) for all coordinate maps φ1 on M1 and φ2 on M2. In case M2 = R, we
write briefly f ∈ Cm(M1) and call f an m-times differentiable function or Cm-function
on M1.

Remark A.7. The following definitions, which depend on the regularity of the under-
lying manifolds, are introduced for the smooth case. It is, however, also possible to
introduce the corresponding objects with respect to less regular structures, by carrying
the class of the manifold in the definitions.

Definition A.8 (Germ). Let M be a smooth manifold, p ∈M. For two C1-functions
f, g defined on a neighborhood V of p, we define the equivalence relation f ∼p g if there
exists a neighborhood U ⊂ V of p, such that f = g on U . We call the equivalence
classes, [f ]p, germs and the set of germs at p is denoted by Fp.
Proposition A.9. The quotient set Fp forms an algebra over R.

Definition A.10 (Tangent vector, tangent space). Given a smooth manifold M, a
tangent vector v at p ∈ M is a linear, real valued map, v ∈ Lin(Fp;R) fulfilling the
product rule

v([f ]p[g]p) = v([f ]p)[g]p(p) + [f ]p(p)v([g]p) .

The set of tangent vectors at p is called tangent space (to M at p) and is denoted by
TpM.

Proposition A.11 (Properties of tangent space). The tangent space TpM to a k-
dimensional smooth manifold M is a real vector space of dimension k.

Remark A.12 (Application of tangent vectors to functions). In order to keep a simple
notation, we apply tangent vectors to representatives of germs throughout this work.
Thus, we set

V (f) = v([f ]p)

for any C1, real valued function on a neighborhood of p ∈ M. The notation of the
tangent space is kept, i.e., V ∈ TpM.

Remark A.13 (Notation for special tangent vectors). Given a k-dimensional smooth
manifold M, a coordinate system (U , φ) and p ∈ U , we set for any i = 1, . . . , k the
tangent vectors

∂

∂φi

∣∣∣∣
p

∈ TpM as
∂

∂φi

∣∣∣∣
p

(f) =
∂

∂xi
(f ◦ φ−1)

∣∣∣∣
φ(p)

for any C1-function f on a neighborhood of p. The tangent vectors ∂/∂φi |p form a basis
of TpM.
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Definition A.14 (Differential at a point). Consider a C1-function between two smooth
manifolds of dimension d1, d2, f : M1 → M2. For p ∈ M1 we call the linear map
dfp ∈ Lin(TpM1; Tf(p)M2) differential of f at p, defined as

dfp(V )(g) = V (g ◦ f)

for all tangent vectors V ∈ TpM1 and all real valued functions g :M2 → R which are
C1 on a neighborhood of f(p).

Remark A.15 (Properties of the differential).

P1) Let f1 :M1 →M2 and f2 :M2 →M3 be C1-functions between smooth manifolds
Mi. Then

d(f2 ◦ f1)|p = df2|f1(p) ◦ df1|p ∈ Lin(TpM1; Tf2◦f1(p)M3) ,

which is the chain rule on manifolds.

P2) For a C1-curve, i.e., a C1-mapping γ : (a, b) → M, the differential at point t,
dγt(d/dt|t) ∈ Tγ(t)M, reads for any t ∈ (a, b), as

dγt

(
d

dt

∣∣∣∣
t

)
(f) =

d

dt
(f ◦ γ)

∣∣∣∣
t

.

Proposition A.16 (Tangent bundles). Let M be a smooth k-dimensional manifold,
set

TM = ∪p∈MTpM .

Then there exists a topology O and a smooth differentiable structure G on TM, such
that TM is a smooth 2k-dimensional manifold.

Definition A.17 (Vector field). Let π : TM→M be the projection given as π(W ) =
p for all W ∈ TpM. A map V : U → TM for an open set U ⊂M which fulfills

π ◦ V (p) = p

for all p ∈ U is called a vector field.

Basics on Lie groups

Following [62], we briefly discuss the properties of matrix Lie groups.

Definition A.18 (General linear group). The general linear group, GL(n;R) is the
set of all regular matrices in Rn×n.

Definition A.19 (Matrix Lie group). Let G ⊂ GL(n;R) be a subgroup. We call
G a matrix Lie group, if the limes of any convergent sequence {Am}m ⊂ G, i.e.,
limm→∞(Am)ij = (A)ij for i, j = 1, . . . , n, is either in G or not regular.
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Proposition A.20 (Matrix exponential, [62, 63]). Let M be any n × n real matrix,
then the matrix exponential,

exp(M) =
∞∑
k=0

1

k!
Mk

is a smooth function exp : Rn×n → Rn×n. It fulfills

exp(G ·M ·G−1) = G · exp(M) ·G−1

for any invertible matrix G ∈ Rn×n. Furthermore, t 7→ exp(tM) is a smooth curve in
the set of n× n matrices with real entries and

d

dt
exp(tM) = M · exp(tM) = exp(tM) ·M .

Definition A.21 (Lie algebra of matrix Lie group). Let G be a matrix Lie group. The
set of all matrices M such that exp(tM) ∈ G for all t ∈ R is called Lie algebra of G,
denoted by g.

Proposition A.22 (Exponential parametrization). Let G ⊂ GL(n,R) be a matrix Lie
group with Lie algebra g. Set Uε = {M ∈ Rn×n | ‖M‖ < ε}, with ‖.‖ denoting the
Frobenius norm and the corresponding neighborhood of I, Vε = exp(Uε ∩ g) ⊂ G. Then
there exists ε ∈ (0, ln 2), such that exp : Uε ∩ g→ Vε is a C∞-diffeomorphism.

Proposition A.23 (Dimension of Lie group). Every matrix Lie group G ⊂ GL(n,R)
is a smooth k-dimensional manifold with k ≤ n2.

Proposition A.24 (Dimension of Lie algebra). If G is a k-dimensional manifold, the
matrix Lie algebra g is a linear vector space of dimension k. Furthermore, g = TIG.

Definition A.25 (Compact Lie group). A matrix Lie group G is called compact, if it
is closed and bounded in any matrix norm.

Lie derivatives

In order to define the notion of Lie derivatives and integration on Lie groups, we
follow [27].

Definition A.26 (Lie derivative). For a matrix M ∈ g the left and right Lie derivatives
L[M ]|G, resp. R[M ]|G are given by

L[M ]|G (f) =
d

dτ
f(exp(−τM) ·G)

∣∣∣∣
τ=0

,

R[M ]|G (f) =
d

dτ
f(G · exp(τM))

∣∣∣∣
τ=0

for all f ∈ C1(G;R).

Lemma A.27 (Properties of Lie derivative). The left and right Lie derivatives are
tangent vectors and span TGG.
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Proof. Let U ⊂ G be a neighborhood of G ∈ G and f, g ∈ C1(U ;R). Due to Prop. A.20
τ 7→ f(G · exp(τM)) ∈ C1(R;R) (analogously for g). Then for any a, b ∈ R it holds

R[M ]|G (af + bg) =
d

dτ
(af + bg)(G · exp(τM))

∣∣∣∣
τ=0

= a
d

dτ
f(G · exp(τM))

∣∣∣∣
τ=0

+ b
d

dτ
g(G · exp(τM))

∣∣∣∣
τ=0

,

R[M ]|G (fg) =
d

dτ
(fg)(G · exp(τM))

∣∣∣∣
τ=0

= g(G)
d

dτ
f(G · exp(τM))

∣∣∣∣
τ=0

+ f(G)
d

dτ
g(G · exp(τM))

∣∣∣∣
τ=0

which follows from the linearity and the product rule for derivatives of functions f̃ :
C1(R;R). Thus, according to Def. A.10 and Rem. A.12, R[M ]|G ∈ TGG (analogously
for L[M ]|G).

Let G ⊂ GL(n;R) be a k-dimensional manifold, by Prop. A.11, the linear vector
space TGG is also k-dimensional as is g by Prop. A.24. Hence, let {Ei}i=1,...,k be an
orthonormal basis of g with respect to the Frobenius scalar product over Rn×n, i.e.,
(Ei : Ej) =

∑n
k,`=1(Ei)k`(Ej)k` = δij, we show that BR = {R[Ei]|G}i is a basis of TGG.

Let λ1, . . . , λk ∈ R be arbitrary and assume that
∑

i λi R[Ei]|G = 0. By definition, for
any f ∈ C1(G;R) it holds

0 =
k∑
i=1

λi R[Ei]|G (f) =
k∑
i=1

λi
d

dτ
f(G · exp(τEi))

∣∣∣∣
τ=0

.

Since C1(Rn×n;R) ⊂ C1(G;R), the above relation holds for f chosen as

f(Z) =
k∑
i=1

λi(G
−T · Ei) : Z

on a neighborhood U of G, U ⊂ Rn×n. Then,

0 =
k∑
i=1

λi
∑
j`

∂Zj`f
∣∣
Z=G

(G · Ei)j` =
k∑
i=1

λi
∑
j`

k∑
m=1

λm(G−T · Em)j`(G · Ei)j`

=
k∑

i,m=1

λiλm
∑
j`op

(G−T )jo(Em)o`(G)jp(Ei)p` =
k∑

i,m=1

λiλm(Em : Ei) = ‖λ‖2

by Prop. A.20 and due to G−1 · G = I. Thus, BR is a basis of TGG. An analogous
calculation shows that the left Lie derivatives also form a basis of TGG for each G ∈
G.

Lemma A.28 (Expression of Lie derivatives). Let M ∈ g, M =
∑k

i=1 xiEi with a
given basis {E1, . . . , Ek} of g, then the left and right Lie derivatives can be expressed
as

L[M ]|G =
k∑
i=1

xi L[Ei]|G ,
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R[M ]|G =
k∑
i=1

xi R[Ei]|G .

Proof. By Lemma A.27, R[M ]|G ∈ TGG and span{R[Ei]|G}i = TGG. Thus, there is a
µ ∈ Rk, such that ∑

i

µi R[Ei]|G (f)− R[M ]|G (f) = 0

for all f ∈ C1(G;R). In particular, this is true for any f ∈ C1(Rn×n;R) and hence

0 =
∑
ij

(
∂Gijf(G)(G ·M)ij −

k∑
`=1

µ`∂Gijf(G)(G · E`)ij

)

=
k∑
`=1

(x` − µ`)
∑
ij

∂Gijf(G)(G · E`)ij .

Taking f(Z) =
∑k

i=1(xi − µi)(G
−T · Ei) : Z for all Z in a neighborhood U ⊂ Rn×n

with G ∈ U analogously to the proof of Lemma A.27, it follows x = µ. An analogous
calculation shows the claim for L[M ]|G.

Lemma A.29 (Transformation of Lie derivatives). Let G be an element of the matrix
Lie group G ⊂ Rn×n and g = span({E1, . . . , Ek}) with orthonormal basis elements Ei,
then

R[Ei]|G = −
k∑
j=1

(
(G · Ei ·G−1) : Ej

)
L[Ej]|G

for any i ∈ {1, . . . , k}.

Proof. By Lemma A.27 there exists a λ ∈ Rk such that for all f ∈ C1(Rn×n)

0 = R[Ei]|G (f)−
k∑
j=1

λj L[Ej]|G (f) =
∑
k`

∂Gk`f(G)

(
G · Ei +

k∑
j=1

λjEj ·G

)
k`

.

Since f can be chosen arbitrary and Ej form an orthonormal basis it holds

−(G · Ei ·G−1) : E` = λ`

for any ` ∈ {1, . . . , k} which implies the claim.

Lemma A.30 (Smooth curves in G). Let G be a matrix Lie group with a k-dimensional
Lie algebra g. Assume that G ∈ C1(R;G) is a curve in G. Then it holds

G(t)−1 · d

dt
G(t) ∈ g ,

d

dt
G(t) ·G(t)−1 ∈ g .

Proof. Let ε > 0 be chosen such that Prop. A.22 holds, i.e., the matrix exponential
maps Uε ∩ g diffeomorphicly onto Vε = exp(Uε ∩ g). Since G(.) and the matrix mul-
tiplication are continuous and I ∈ Vε, for any t0 ∈ R there exists a τ > 0, with
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G(t0)−1 · G(t) ∈ Vε for all t ∈ (t0 − τ, t0 + τ). Due to Prop. A.22, there is a unique
M = M(t0, t) ∈ g ∩ Uε with

G(t0)−1 ·G(t) = exp(M(t0, t))

which is a continuously differentiable curve for t ∈ (t0 − τ, t0 + τ). Since I = exp(0),
M(t0, t0) = 0 and due to the regularity of the mapping t 7→ M(t0, t), the Taylor
expansion of M around t0 gives M(t0, t0 + δ) = δM1(t0) + R(t0, δ) with R ∈ o(δ) as
δ → 0 and M1(t0) ∈ g since g is a linear vector space. Since the matrix exponential is
smooth, also

exp(M(t0, t0 + δ)) = exp(δM1(t0)) + o(δ)

holds and therefore

d

dt
exp(M(t0, t))

∣∣∣∣
t=t0

= lim
δ→0

exp(M(t0, t0 + δ))− I
δ

= lim
δ→0

exp(δM1(t0))− I
δ

=
d

dt
exp(tM1(t0))

∣∣∣∣
t=0

= M1(t0) ∈ g .

We therefore conclude that

d

dt

(
G(t0)−1 ·G(t)

)∣∣∣∣
t=t0

= G(t0)−1 · d

dt
G(t)

∣∣∣∣
t=t0

∈ g .

As t0 was arbitrary, the claim follows. For dG(t)/dt ·G(t)−1 ∈ g an analogous calcula-
tion can be carried out as also G(t) ·G(t0)−1 ∈ Vε.

Lemma A.31 (Smooth curves and Lie derivatives). Let G ⊂ GL(n,R) be a matrix
Lie group and (U , φ) a local coordinate system with φ ∈ C1(U ;V), V ⊂ Rk and cor-
responding inverse G : V → U . Then there exist ωi ∈ C0(Rk;Rk), i = 1, . . . , k such
that

G(q)−1 · ∂
∂qi

G(q) =
k∑
`=1

ωi`(q)E`

where {E`}` is an orthonormal basis with respect to the Frobenius scalar product of g.
Additionally, the differential fulfills

dGq

(
∂

∂qi

∣∣∣∣
q

)
= R

[
k∑
`=1

ωi`(q)E`

]∣∣∣∣∣
G(q)

.

Proof. For the first part, we fix qj, j 6= i, then qi 7→ G(q1, . . . , qi−1, qi, qi+1, . . . , qk) is a
C1(Vi;U) curve with Vi ⊂ V . Therefore, Lemma A.30 holds and

ωi(q) =
k∑
`=1

((
G(q)−1 · ∂

∂qi
G(q)

)
: E`

)
e`

163



with a continuous right-hand side in q. For the second part, we note that dGq ∈
Lin(TqRk; TG(q)G). Hence, for any ∂/∂qi|q ∈ TqRk,

dGq

(
∂

∂qi

∣∣∣∣
q

)
∈ TG(q)G .

Using Prop. A.27, there exists a $i ∈ Rk with

dGq

(
∂

∂qi

∣∣∣∣
q

)
=

k∑
`=1

$i
` R [E`]|G(q) .

Thus, for all f ∈ C1(G;R) it holds

0 = dGq

(
∂

∂qi

∣∣∣∣
q

)
(f)−

k∑
`=1

$i
` R [E`]|G(q) (f) =

∂

∂qi
(f ◦G)

∣∣∣∣
q

−
k∑
`=1

$i
` R [E`]|G(q) (f) .

In particular, we find for f ∈ C1(Rn×n;R)

∂

∂qi
(f ◦G)

∣∣∣∣
q

=
∑
jk

∂Gjkf(G)(G ·G−1 · ∂qiG)jk =
k∑

m=1

ωim
∑
jk`

∂Gjkf(G)Gj`(Em)`k

=
k∑

m=1

ωim
d

dτ
f(G · exp(τEm))

∣∣∣∣
τ=0

=
k∑

m=1

ωim R[Em]|G(q) (f) .

By choosing f ∈ C1(Rn×n;R) similarly to the proof of Prop. A.28 immediately shows
$i = ωi.

Remark A.32 (Lie derivative, vector field, divergence). We note, that in the definition
of the Lie derivative the parameter τ plays the role of the infinitesimal step size in the
direction of M in the tangent space to G. Hence, we can consider G × R+-dependent
coordinate functions xi with the corresponding function M : G × R+ → g given by
M(G, t) =

∑
i xi(G, t)Ei and define a time-dependent vector field L ∈ T G given as

L[M ](G, t) = L[M(G, t)]|G. Then it still holds

L[M ](G, t) =
k∑
i=1

xi(G, t) L[Ei]|G .

Next, if xi(., t) ∈ C1(G;R) for all t, we can define the following divergence operator
associated with L

divG(L[M ])(G, t) =
k∑
i=1

L[Ei]|G (xi(., t)) .

Proposition A.33 (Haar measure). On any compact Lie group, there exists a unique
left- and right-invariant Borel probability measure h, called Haar measure, i.e., h(GA) =
h(AG) for all Borel sets A and any fixed G ∈ G.
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Proposition A.34 (Partial integration on Lie group). Let f1, f2 ∈ C1(G;R) and denote
by h the Haar measure on the compact Lie group G, then∫

G
L[Ei]|G (f1)f2(G) dh(G) = −

∫
G
L[Ei]|G (f2)f1(G) dh(G) .

From Proposition A.34 and Remark A.32 we then immediately find

Corollary A.35. Let M(G) =
∑

i xi(G)Ei ∈ g with xi ∈ C1(G;R), and f1, f2 ∈
C1(G;R), then∫

G
L[M ](f1)f2 dh = −

∫
G
L[M ](f2)f1 + divG(L[M ])f1f2 dh .

Remark A.36 (Ordinary differential equations on Lie group and Lie derivatives).
We often apply a differentiable function to a smooth curve in a matrix Lie group and
calculate the derivative with respect to the parameter of the curve. Hence, for f ∈
C1(G;R) and G ∈ C1(R;G), we consider df(G(t))/dt. Using the definition of the
differential, Def. A.14 and Lemma A.31 we find

d

dt
f ◦G(t) =

d

dt
(f ◦G)

∣∣∣∣
t

= dGt

(
d

dt

∣∣∣∣
t

)
(f) = R[M(t)]|G(t) (f)

where the matrix-valued function M(t) =
∑

i ωi(t)Ei ∈ g is defined by the evolution
equation

d

dt
G(t) = G(t) ·M(t) .

An analogous result follows for the left Lie derivative and the function N : R → g
governing the equation

d

dt
G(t) = N(t) ·G(t) .

In this case we find

d

dt
f ◦G(t) = − L[N(t)]|G(t) (f) .

Remark A.37 (The product space R` ×G). By Prop. A.4, the product space R` ×G,
where G is a matrix Lie group and the vector space R` is equipped with the euclidean
topology, is an ` + k-dimensional smooth manifold (with k being the dimension of g).
For (x,G) ∈ R` × G set the tangent vectors ∂/∂xi|(x,G) , L[Ej]|(x,G) ∈ T(x,G)R

` × G,
i = 1, . . . , `, j = 1, . . . , k as

∂

∂xi

∣∣∣∣
(x,G)

(f) =
∂

∂xi
f(x,G) , L[Ej]|(x,G) (f) = L[Ej]|G (f(x, .))

for any f ∈ C1(R`×G) and consider the set BL = {∂/∂xi |x , L[Ej]|G}ij. By Prop. A.11,
dim(T(x,G)R

` × G) = `+ k, and by choosing test functions similar to the ones in proof
of Lemma A.27, one can immediately show the linear independence of the vectors in
BL. Thus, BL is a basis of T(x,G)R

` × G. This implies that we can relate ordinary
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differential equations on R` × G to directional derivatives similarly to Rem. A.37 in
the following way: Let N ∈ C0(R; g), v ∈ C0(R;R`) and the differentiable curve z =
(c,G) ∈ C1(R;R` × G) fulfilling

d

dt
c(t) = v(t) ,

d

dt
G(t) = N(t) ·G(t) ,

then for any f ∈ C1(R` × G) it holds

d

dt
f ◦ z(t) = dzt

(
d

dt

∣∣∣∣
t

)
(f) =

∑̀
i=1

vi
∂

∂xi

∣∣∣∣
(x,G)

(f)−
k∑
j=1

(N : Ej) L[Ej]|(x,G) (f)

= [v · ∇x]f(x,G)− L[N ]|G (f(x, .)) .

Remark A.38 (Transport equations on Lie group, weak forms). Having the notion
of directional derivatives, of an invariant measure and partial integration, we next
consider transport equations on a compact Lie group. Therefore, let M ∈ C1(G×R+; g)
and the initial data ψ0 ∈ C1(G;R). Then we assume that ψ ∈ C1(G×R+;R) is a solution
to

∂tψ + L[M ](ψ) = 0 , in G ×R+ (A.1)

and ψ(., 0) = ψ0. By multiplying (A.1) with an arbitrary f ∈ C1(G;R) and applying
the partial integration from Corollary A.35, as well as denoting by (f1, f2) =

∫
G f1f2 dh

the scalar product on G with respect to the Haar measure, we get the weak form of the
transport equation (A.1) as

d

dt
(ψ, f) = (ψ,L[M ](f)) + (ψ, divG(L[M ])f) . (A.2)

Similarly, the weak form of

∂tψ + L[M ](ψ) + divG(L[M ])ψ = 0 (A.3)

is given by

d

dt
(ψ, f) = (ψ,L[M ](f)) . (A.4)

In the more general case, where ψ is a time-dependent Borel probability measure on G,
i.e., ψ = ψt(A) for all A ∈ B(G) and t ∈ R+, the weak forms of (A.1) and (A.3) in
the sense of distributions are respectively given as

d

dt

∫
G
f(G) dψt(G) =

∫
G
L[M(G, t)]|G (f) + f(G)divG(L[M ])(G, t) dψt(G) , (A.5)

d

dt

∫
G
f(G) dψt(G) =

∫
G
L[M(G, t)]|G (f) dψt(G) . (A.6)

We note that if ψt possess a Radon derivative with respect to the Haar measure with
density φ : G×R+

0 → R+
0 integrable in the first argument and continuously differentiable

in the second, the relations (A.5) and (A.2) are equivalent as are (A.6) and (A.4).
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Expression of Haar measure with respect to Lebesgue measure, Change of
variables formula

The change of variables formula for Lebesgue integrable functions onRn is an important
tool in analysis. In order to derive a similar result for the Haar measure on compact
Lie groups, we need an explicit expression of the Radon derivative of the Haar measure
with respect to the Lebesgue measure. The corresponding statements demand the
definition of additional objects stated similarly to [26] in this section.

Definition A.39 (Permutations). We denote a permutation of n elements as a bijec-
tive map π : {1, . . . , n} → {1, . . . , n}. The set of all such permutations is denoted as
Πn.

Proposition A.40 (Symmetric group). The set of permutations together with the
operation of the composition, (Πn, ◦), where

(π ◦$)(k) = π($(k))

for any π,$ ∈ Πn and k ∈ {1, . . . , n}, is a group called the symmetric group. The
neutral element, π0, is given as the identity mapping π0(i) = i, for i ∈ {1, . . . , n}.

Definition A.41 (Transposition). A permutation π ∈ Πn which swaps exactly two
elements is called a transposition.

Proposition A.42 (Signature of permutation). Let π ∈ Πn, then there exist transpo-
sitions $1, . . . , $k ∈ Πn such that

π = $1 ◦$2 ◦ . . . ◦$k ◦ π0

and the number sign(π) = (−1)k is well-defined.

Definition A.43 (Exterior product). Let V be an n-dimensional vector space and
v1, . . . , vk ∈ V with k ≤ n. Then

v1 ∧ v2 ∧ . . . ∧ vk =
1

k!

∑
π∈Πk

sign(π)vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(k)

is called a k-vector. The vector space of all k-vectors over V , the kth exterior power of
V , is denoted as Λk(V ).

Proposition A.44 (Dimension of exterior power over V ). Let V be an n-dimensional
vector space and k ≤ n, then

dim(Λk(V )) =

(
n
k

)
.

Proposition A.45 (Determinant and exterior product). Let A ∈ Rn×n and the vectors
v1, . . . , vn ∈ Rn, then it holds

(A · v1) ∧ (A · v2) ∧ . . . ∧ (A · vn) = det(A)(v1 ∧ v2 ∧ . . . ∧ vn) .

Next, we follow [27] and introduce the abbreviation for the identification of a k-
dimensional Lie algebra g and Rk.
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Notation A.46 (The “vee” operator). Let g be a k-dimensional Lie algebra, M ∈ g ⊂
Rn×n, {Ei}i an orthonormal basis of g with respect to the Frobenius scalar product on
Rn×n. Then we set

(M)∨ =
k∑
i=1

(M : Ei)ei ,

where ei ∈ Rk are the Cartesian unit vectors.

Remark A.47. The following statements are carried out assuming one global parame-
trization of the group G. In case of the SO(3) group, which is most relevant in this
work, the exponential map yields a global smooth parametrization up to a set of measure
zero [27]. In general, a partition of unity of G subordinate to a locally finite open cover
by coordinate systems (Uα, φα)α∈I is used to define the integral over the manifold [63].
In this case the following considerations can be carried out analogously using the local
charts on each Uα.

Proposition A.48 (Radon derivative of Haar measure on compact matrix Lie groups).
Let G be a compact matrix Lie group with a global parametrization G ∈ C∞(Rk;G) with
chart φ ∈ C∞(G;Rk), i.e., G(φ(R)) = R ∈ G and φ(G(q)) = q ∈ Rk. Then the Haar
measure on G is given in terms of the Lebesgue measure as

h(A) =

∫
φ(A)

(
G−1(q) · ∂q1G(q)

)∨ ∧ (G−1(q) · ∂q2G(q)
)∨ ∧ . . . ∧ (G−1(q) · ∂qkG(q)

)∨
dq

for all Borel sets A ∈ B(G) and where G−1 denotes the inverse of the group element G.

Remark A.49 (Volume form of Haar measure). We note that the expression for h in
Prop. A.48 involves a k-vector, which is given in terms of

vi(q) =
(
G−1(q) · ∂qiG(q)

)∨
=

k∑
`=1

e`(E` :
(
G−1(q) · ∂qiG(q)

)
) = ωi(q) ∈ Rk ,

where we used Notation A.46 and Lemma A.31. As stated in Prop. A.44, the vector
space of this k-vectors is one-dimensional, i.e., v1(q)∧ . . .∧ vk(q) can be identified with
a scalar-valued function w : Rk → R.

Theorem A.50 (Change of variables formula). For a compact matrix Lie group G with
a k-dimensional Lie algebra g = span{E1, . . . , Ek}, with (Ei : Ej) = δij, let Φ : G → G
be a C1-diffeomorphism. Set the matrix valued mapping C[Φ] : G → Rk×k as

(C[Φ])pm(R) =
∑
j`r

(Ep)r`
(
Φ(R)−1

)
rj
R [Em]|R (Φj`) .

Then it holds for all integrable functions f : G → R∫
R∈Φ(A)

f(R) dh(R) =

∫
H∈A

f(Φ(H)) det(C[Φ](Φ(H))) dh(H) .
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Proof. Let f : G → R be a Haar-integrable function and A ∈ B(G). In order to
distinguish between the group inverse and the inverse of the diffeomorphism, we denote
the former by Φ−1 and the latter by Ψ, i.e., Φ−1 ·Φ = I and Ψ◦Φ(R) = R. Analogously,
the chart φ is the inverse to the parametrization G, while G−1 · G = I. Since Φ is
continuous, Φ(A) ∈ B and∫

R∈Φ(A)

f(R) dh(R) =

∫
H∈A

f(Φ(H)) dh ◦ Φ(H)

where H = Ψ(R). Since G̃ = Φ ◦G : Rk → G is a new parametrization of class C1 with

chart φ̃ = φ ◦Ψ, the expression in Prop. A.48 is still well-defined and for B = Φ(A) it
holds

h(B) =

∫
q∈φ̃(B)

w(G̃(q)) dq .

The function w is given as the k-vector (see Rem. A.49) in terms of the vectors vi =
vi(q) ∈ Rk,

vi(q) =
k∑
p=1

((
G̃(q)−1 · ∂

∂qi
G̃(q)

)
: Ep

)
ep .

Since G̃j` ∈ C1(R3;R) and Φj` ∈ C1(G;R), it holds by Def. A.13 and Def. A.14

∂

∂qi
G̃j`(q) =

∂

∂qi
G̃j`

∣∣∣∣
q

=
∂

∂qi

∣∣∣∣
q

(Φj` ◦G) = dGq

(
∂

∂qi

∣∣∣∣
q

)
(Φj`) .

Lemma A.31 in combination with Lem. A.28 then reveal

∂

∂qi
G̃j`(q) =

k∑
m=1

ωim(q) R [Em]|G(q) (Φj`) .

Thus, the elements of the k-vector are given as

vi(q) =
k∑

m=1

ωim(q)
k∑
p=1

∑
j`r

(
(Ep)r`

(
Φ(G(q))−1

)
rj
R [Em]|G(q) (Φj`)

)
ep .

Setting C[Φ](G(q)) ∈ Rk×k as (C[Φ])pm =
∑

j`r(Ep)r` (Φ(G(q))−1)rj R [Em]|G(q) (Φj`),

it holds vi(q) = C[Φ](G(q)) · ωi(q). Applying Prop. A.45 then yields

v1(q) ∧ v2(q) ∧ . . . ∧ vk(q) = det(C[Φ](G(q)))ω1(q) ∧ ω2(q) . . . ∧ ωk(q)
= det(C[Φ](G(q)))w(G(q))

and therefore

h ◦ Φ(A) =

∫
q∈φ(A)

det(C[Φ](G(q)))w(G(q)) dq .

Which also implies due to Φ(H) = R = G(q)∫
R∈Φ(A)

f(R) dh(R) =

∫
H∈A

f(Φ(H)) det(C[Φ](Φ(H))) dh(H) .
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In order to derive the connection between the Jacobi determinant of a time-dependent
diffeomorphism and the divergence of its driving velocity in Sec. 3.5, we need an addi-
tional statement regarding the chain rule stated in the following lemma.

Lemma A.51. Let Φ be a C1-diffeomorphism on a Lie group G, f ∈ C1(G) and
{E1, . . . , Ek} an orthonormal basis of g. Then it holds for all m = 1, . . . , k and G ∈ G

d

dt
f(Φ(G · exp(tEm)))

∣∣∣∣
t=0

=
k∑
`=1

(C[Φ])`m(G) R[E`]|Φ(G) (f)

with C[Φ] : G → Rk×k given in Theorem A.50. Additionally, if N ∈ g with N =∑k
m=1 xmEm, then

d

dt
f(Φ(G · exp(tN)))

∣∣∣∣
t=0

=
k∑
`=1

(C[Φ](G) · x)` R[E`]|Φ(G) (f) .

Proof. Fix G ∈ G, N ∈ g and set ΦN(t) = Φ(G · exp(tN)). Then ΦN ∈ C1(R;G) and
dΦN

t ∈ Lin(TtR; TΦN (t)G), thus due to Rem. A.36 there exists an M = M(t) ∈ g such
that

dΦN
t

(
∂

∂t

∣∣∣∣
t

)
= R[M(t)]|ΦN (t) .

Thus, for any g ∈ C1(Rn×n) ⊂ C1(G) it holds

0 = dΦN
t

(
∂

∂t

∣∣∣∣
t

)
(g)− R[M(t)]|ΦN (t) (g) =

d

dt
g(ΦN(t))− d

dτ
g(ΦN(t) · exp(τM(t)))

∣∣∣∣
τ=0

=
∑
ij

∂Gijg(ΦN(t))

(
d

dt
ΦN(t)− ΦN(t) ·M(t)

)
ij

.

Using g(G) = ei ⊗ ej : G for fixed i, j as test functions, with {ei}i being the Cartesian
basis of Rn, implies that

M(t) = (ΦN(t))−1 · d

dt
ΦN(t) .

This results in particular in

Mij(0) =
∑
p

(
(ΦN(0))−1

)
ip

d

dt
ΦN
pj(t)

∣∣∣∣
t=0

=
∑
p

(
Φ(G)−1

)
ip

d

dt
Φpj(G · exp(tN))

∣∣∣∣
t=0

=
∑
p

(
Φ(G)−1

)
ip
R[N ]|G (Φpj) .

Since M(0) ∈ g and {E`}` is an orthonormal basis, it also holds M(0) =
∑k

`=1(M(0) :
E`)E` and thus by Lemma A.28

M(0) =
k∑
`=1

(∑
ijp

(
Φ(G)−1

)
ip
R[N ]|G (Φpj)(E`)ij

)
E`
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=
k∑

m=1

xm

k∑
`=1

(∑
ijp

(
Φ(G)−1

)
ip
R[Em]|G (Φpj)(E`)ij

)
E`

=
k∑
`=1

(C[Φ](G) · x)`E`

which implies the claims.

A.2 Symmetric, skew-symmetric and trace-free matrices

The following set of matrices forms an orthonormal basis of the matrix space R3×3

under the Frobenius scalar product given as A : B =
∑

ij AijBij

(Bi)k` =
1√
2
εi`k , i = 1, 2, 3 , (Bi)k` =

1√
2
ε2(i−3)`k , i = 4, 5, 6 , (A.7a)

(B7)k` =
1√
2

(δ1kδ1` − δ2kδ2`) , (B8)k` =
1√
6

(δ1kδ1` + δ2kδ2` − 2δ3kδ3`) , (A.7b)

(B9)k` =
1√
3
δk` . (A.7c)

In particular, we may specify the real vector spaces of trace-free, skew-symmetric and
symmetric matrices as

span(B1, . . . ,B8) = {M ∈ R3×3 | tr(M) = 0} =Mtr , (A.8a)

span(B1,B2,B3) = {M ∈ R3×3 | MT = −M} =Mskew , (A.8b)

span(B4, . . . ,B9) = {M ∈ R3×3 | MT = M} =Msym , (A.8c)

span(B4, . . . ,B8) = {M ∈ R3×3 | MT = M, tr(M) = 0} =Msym,tr . (A.8d)

By means of (A.8b) we can identify the cross-product in R3 as

ei × v =
√

2Bi · v , i = 1, 2, 3

for any v ∈ R3. This way, we define the linear map between Mskew and R3 which
characterizes the cross-product as

B : R3 →Mskew , v 7→
√

2
3∑
i=1

(v · ei)Bi , (A.9a)

B−1 :Mskew → R3 , M 7→ 1√
2

3∑
i=1

(M : Bi)ei . (A.9b)

Proposition A.52 (Properties of the skew-symmetric mapping). The skew-symmetric
linear mapping B(.) given in (A.9a) has the following properties for any v,w ∈ R3 and
any orthogonal matrix R ∈ SO(3)

B(v) ·w = v ×w , (A.10a)

B(R · v) = R ·B(v) · RT , (A.10b)
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B(RT · v) = RT ·B(v) · R , (A.10c)

B(v) ·B(w) = w ⊗ v − (v ·w)I , (A.10d)

Additionally, B(.) is an orthogonal map between (R3, ·) and (Mskew, :
?), with the scaled

Frobenius scalar product given as (A :? B) = 0.5(A : B).

Proof. The first property (A.10a) follows directly from (A.9a). To show the transforma-
tion under rotations (A.10b), we denote the columns of an arbitrary orthogonal matrix
R ∈ SO(3) by ri, i = 1, 2, 3. By definition they form a right-handed orthonormal basis
of R3, thus

(B(R · ei))jk = (B(ri))jk =
√

2
∑
`

(ri · e`)(B`)jk =
∑
`

(ri · e`)ε`kj

=
∑
`

(ri · e`)e` · (ek × ej) =
∑
n,m

(ek · rm)(ej · rn)ri · (rm × rn)

=
∑
n,m

(ek · rm)(ej · rn)εimn =
√

2
∑
`,m,n

(ek · rm)(ej · rn)(ei · e`)(B`)nm

= (R ·B(ei) · RT )jk .

By linearity of B(.) the claim holds for any v ∈ R3. The transformation under the
inverse rotation (A.10c) follows immediately by applying (A.10b) to w = RT · v. The
relation (A.10d) is the Grassmann identity (see e.g. [98]), i.e., for any u,v,w ∈ R3 it
holds

B(v) ·B(w) · u = v × (w × u) = (v · u)w − (v ·w)u = (w ⊗ v − (v ·w)I) · u

which proofs the claim. The last claim follows by direct computation and (A.9a).

Remark A.53 (Inverse of skew-symmetric mapping). SinceMskew is three-dimension-
al and B(.) an orthogonal mapping, it is also bijective and therefore its inverse (A.9b)
is well-defined. In particular, for any skew-symmetric matrix M ∈ Mskew there exists
a unique v ∈ R3 with M = B(v).

Next, we set the linear mapping between R8 and Mtr as

M : R8 →Mtr , v 7→
8∑
i=1

(v · ei)Bi , (A.11a)

M−1 :Mtr → R8 , M 7→
8∑
i=1

(M : Bi)ei , (A.11b)

where ei denotes the ith Cartesian unit vector in R8.

Remark A.54. The mapping M(.) is an orthogonal mapping between the Euclidean
space (R8, ·) and (Mtr, :) as direct computation and (A.8a) show, thus (A.11b) is
well-defined. Extending the domain of M−1 to the whole R3×3, the linear map given
by M ◦ M−1 forms an orthogonal projection onto Mtr and it follows for arbitrary
M1 ∈ R3×3,M2 ∈Mtr

M1 : M2 = M ◦M−1(M1) : M2 = M−1(M1) ·M−1(M2) .
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A.3 Special orthogonal group

Here, we briefly discuss the properties of the special orthogonal group SO(3) needed
in this work.

Lemma A.55 (Angular velocity). Let R : R+
0 → SO(3) be a continuously differentiable

mapping and denote the columns of the rotation by ri, i = 1, 2, 3, then there exists a
uniquely defined continuous function ω : R+

0 → R3, such that

d

dt
ri = ω × ri (A.12)

for all i = 1, 2, 3.

Proof. Since R(t) ∈ SO(3) for all t ≥ 0, it holds

0 =
d

dt

(
R(t) · RT (t)

)
=

(
d

dt
R(t)

)
· RT (t) +

((
d

dt
R(t)

)
· RT (t)

)T
.

Thus, the matrix dR/dt · RT is skew-symmetric and by Remark A.53, there exists a
unique ω(t) ∈ R3, such that

B(ω(t)) =

(
d

dt
R(t)

)
· RT (t) (A.13)

for all t ≥ 0. Since the right-hand side of (A.13) is continuous in time and B−1(.) is a
linear mapping, t 7→ ω(t) is continuous.

Proposition A.56 (Properties of SO(3)).

1) The SO(3) group is a path-connected, compact Lie group.

2) The three-dimensional skew-symmetric matrices, Mskew, form the Lie algebra of
SO(3).

Proposition A.57 (Eulerian angles). Given a fixed Cartesian coordinate system e1,
e2, e3, we set the three elemental rotations around the three axis R1(φ1),R2(φ2),R3(φ3)
by three independent angles φ1, φ2, φ3 ∈ R as

R1(φ1) =

1 0 0
0 cos(φ1) − sin(φ1)
0 sin(φ1) cos(φ1)

 , R2(φ2) =

cos(φ2) 0 − sin(φ2)
0 1 0

sin(φ2) 0 cos(φ2)

 ,

R3(φ3) =

cos(φ3) − sin(φ3) 0
sin(φ3) cos(φ3) 0

0 0 1

 .

Then, the mapping R : R3 → SO(3), R(φ) = R1(φ1) · R2(φ2) · R3(φ3) is surjective.
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B Properties of stationary Stokes systems

In this appendix, we collect statements related to the stationary Stokes problem which
are needed in Sec. 2 and Sec. 3.

B.1 General properties of Stokes systems

First we state some important results which hold for stationary Stokes systems on
general domains. One such property is a Green identity summarized in the following
lemma.

Lemma B.1 (Green formula for the Stokes-system [47, 115]). Let Ω be an open bounded
or exterior domain with boundary ∂Ω of class C1 and ui, pi, i = 1, 2 sufficiently smooth
solenoidal velocity fields and scalar fields. If Ω is an exterior domain, ui, pi are assumed
to fulfill the decay properties

∇kui ∈ O(‖x‖−(1+k)) , ∇pi ∈ O(‖x‖−2)

for k = 1, 2 and ‖x‖ → ∞. Then setting ∆ui −∇pi = fi in Ω it holds∫
∂Ω

u2 · (∂nu1 − p1n) ds−
∫

Ω

u2 · f1 dx

=

∫
∂Ω

u1 · (∂nu2 − p2n) ds−
∫

Ω

u1 · f2 dx

=

∫
Ω

∇u1 : ∇u2 dx , (B.1a)

and similarly for the Newtonian stress tensor S[ui] = 2E[ui]− piI with the symmetric
deformation gradient E[ui] = 0.5(∇ui +∇uTi )∫

∂Ω

u2 · S[u1] · n ds−
∫

Ω

u2 · f1 dx

=

∫
∂Ω

u1 · S[u2] · n ds−
∫

Ω

u1 · f2 dx

= 2

∫
Ω

E[u1] : E[u2] dx . (B.1b)

In order to establish direct expressions for the Stokes solutions we follow [72, 115]
and first introduce the Stokes fundamental tensor (Oseen tensor), as well as the corre-
sponding pressure field tensor as

G(x) =
1

8π

(
‖x‖−3x⊗ x+ ‖x‖−1I

)
, p(x) =

1

4π
‖x‖−3x . (B.2)
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In this case we find for x 6= 0

∂xkGij(x) =
1

8π

(
−3‖x‖−5xixjxk + ‖x‖−3(δikxj + δjkxi − δijxk)

)
∑
i

∂xiGij(x) = 0

∆Gij(x) =
1

4π

(
−3‖x‖−5xixj + ‖x‖−3δij

)
= ∂xipj(x)

∇ · p = 0 , ∆p = 0 .

This implies, that the velocity fields uj = (Gij)i are solenoidal as well as ∆uj−∇qj = 0
for x 6= 0. Next we consider a smooth vector field v and scalar field q which solve

∆v = ∇q , ∇ · v = 0 , y ∈ Ω

for an open bounded or exterior domain Ω ⊂ R3. For a fixed x ∈ R3 and j = 1, 2, 3,
we set vj(y) = uj(x − y), qj(y) = −pj(x − y) as well as v4(y) = p(x − y), q4 = 0.
Then each vj is a solenoidal field and

∆yvj −∇yqj = 0

for all y 6= x. If x 6∈ Ω we then can apply (B.1b) and we find∫
∂Ω

v · Sy[vj] · n dsy =

∫
∂Ω

vj · Sy[v] · n dsy

On the other hand, if x ∈ Ω, then there exists an r > 0, such that Br(x) ⊂ Ω
and (B.1b) is applicable on Ω \ Bρ(x) for all ρ ∈ (0, r) yielding

0 =

∫
∂(Ω\Bρ)

v · Sy[vj] · n dsy −
∫
∂(Ω\Bρ)

vj · Sy[v] · n dsy

=

∫
∂Ω

v · Sy[vj] · n dsy −
∫
∂Ω

vj · Sy[v] · n dsy

−
∫
∂Bρ
v · Sy[vj] · n dsy +

∫
∂Bρ
vj · Sy[v] · n dsy .

For the last two integrals we note that n = (y − x)/ρ and it holds for j ≤ 3∫
∂Bρ
v · Sy[vj] · n dsy = −

∑
ik

∫
∂Bρ

vi(∂xkGij + ∂xiGkj − δikpj)nk dsy

= − 3

4πρ4

∑
i

∫
∂Bρ

vi(y)(x− y)i(x− y)j dsy

= − 3

4πρ4

∑
i

∫
∂Bρ(0)

vi(x− z)zizj dsz

= − 3

4πρ3

∑
i

∫
Bρ(0)

∂zi(vi(x− z)zj) dz

= − 3

4πρ3

∫
Bρ(0)

vj(x− z) dz = −vj(x) +O(ρ2)
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since v ∈ C2(Ω) and Bρ ⊂ Ω. The second integral then similarly yields∫
∂Bρ
vj · Sy[v] · n dsy =

1

8πρ

∑
ik

∫
∂Bρ

(
ρ−2(x− y)i(x− y)j + δij

)
(Sy[v])iknk dsy

=
1

8πρ3

∑
ik

∫
Bρ
∂yk ((x− y)i(x− y)j(Sy[v])ik) dy

+
1

8πρ

∫
Bρ
∇y · Sy[v] dy · ej

=
1

8πρ3

∫
Bρ

tr(Sy[v])(x− y)j dy

+
1

8πρ3

∫
Bρ

(x− y) · Sy[v] dy · ej

+
1

8πρ3

∫
Bρ

(x− y)j(x− y) · (∇y · Sy[v]) dy

= −3ρ

8π

∫
B1(0)

q(x− ρz)zj dz

+
ρ

8π

∫
B1(0)

z · Sy[v](x− ρz) dz · ej

= O(ρ) .

In case j = 4, we find∫
∂Bρ
v · Sy[vj] · n dsy = − 1

2πρ3

∫
∂Bρ
v · (−3n⊗ n+ I) · n dsy

=
1

πρ3

∫
∂Bρ
v · n dsy = 0∫

∂Bρ
vj · Sy[v] · n dsy =

1

4πρ3

∫
∂Bρ

(x− y) · Sy[v] · n dsy

=
1

4πρ3

∫
Bρ
− tr(Sy[v]) + (x− y) · ∇y · Sy[v] dy

=
3

4πρ3

∫
Bρ(0)

q(x− z) dz = q(x) +O(ρ) .

Taking the limit ρ→ 0, we therefore get∫
∂Ω

v · Sy[vj] · n dsy −
∫
∂Ω

vj · Sy[v] · n dsy =

{
−(v(x), q(x))j x ∈ Ω

0 x 6∈ Ω
.

If we set D(x,y) = (Sy[vj](x,y) · n(y))j ∈ R4×3, we can express D as

Dij(x,y) =
3

4π
‖x− y‖−5(x− y)i(x− y)j(x− y) · n(y) , i = 1, 2, 3

D4j(x,y) =
1

2π

(
3‖x− y‖−5(x− y)j(x− y) · n(y)− ‖x− y‖−3nj(y)

)
.
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Additionally, we set E(x,y) ∈ R4×3 as Eij(x,y) = Gij(x − y) for i = 1, 2, 3 and
E4j(x,y) = pj(x− y), then∫

∂Ω

D · v dsy −
∫
∂Ω

E · Sy[v] · n dsy =

{
−(v(x), q(x)) x ∈ Ω

0 x 6∈ Ω
.

This way we may express the values of the velocity and pressure in Ω by their boundary
values and boundary stresses. In case of an exterior domain, this expression also allows
to calculate the stresses on the boundary by knowing only the boundary condition
v ∈ ∂Ω and having the decay properties at infinity. This then allows expressing
(v, q) as a functional of v|∂Ω solely. This fact is summarized in the following Section,
Lemma B.3.

B.2 Single particle in unbounded domain

Here, we collect some important results considering the solutions of stationary Stokes
systems in the exterior of a bounded domain. The following statements will often
use the notation of Appendix A, in particular, the basis Bi of the space of trace-free
matricesMtr and the orthogonal mapping M :Mtr → R8 as well as its inverse (A.11).

First we state a solution theorem for a Fredholm equation on the particle boundary
followed by an existence theorem for the Stokes problem on exterior domains and a
corresponding expression for the solution, see [115].

Lemma B.2 (Surface density equation). Let E ⊂ R3 be an open and bounded domain
of class C2 and uΓ ∈ C(∂E) a given function. Then for any η > 0 there exists a unique
solution ψ ∈ C(∂E) to

uΓ = Kψ

with K ∈ Lin(C(∂E); C(∂E)) being an integral operator given as

Kψ = −1

2
ψ −

∫
∂E

[
diag(1, 1, 1) 0

]
· (D(x,y) + ηE(x,y)) ·ψ(y) dsy .

Lemma B.3 (Classical solution of stationary Stokes equations on exterior domains).
Let Ω = R3 \ E with E being an open and bounded domain of class C2. Then for any
uΓ ∈ C(∂E), the homogeneous stationary Stokes problem

∆u−∇p = 0 , ∇ · u = 0 , x ∈ Ω

u = uΓ , x ∈ ∂E ,
∇ku ∈ O(‖x‖−(1+k)) , k = 0, 1 , p ∈ O(‖x‖−2)

possesses a unique solution u ∈ C∞(Ω) ∩ C(Ω), p ∈ C∞(Ω). The solution can be
expressed by means of a hydrodynamical surface potential as

(u, p)(x) = S[uΓ](x) = −
∫
∂Ω

(D(x,y) + ηE(x,y)) ·ψ[uΓ](y) dsy

for x ∈ Ω, where D,E are given in Section B.1, η > 0 is a constant and ψ[uΓ] ∈
C(∂E ;R3) is the uniquely determined source density of Lemma B.2 satisfying

‖ψ[uΓ]‖p,∂Ω ≤ c(p, E)‖uΓ‖p,∂Ω , p ∈ [1,∞) .
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Due to Lemma B.3, we find for all x ∈ R3 with ‖x‖ > 2R > max(1, diam(E)), where
E ⊂ BR(0)

‖u(x)‖ ≤ c(η)

∫
∂E

(
‖x− y‖−1 + ‖x− y‖−2

)
‖ψ[uΓ](y)‖ dsy

≤ c(η)‖x‖−1

∫
∂E
‖ψ[uΓ](y)‖ dsy ≤ c(E , η)‖uΓ‖1,∂E‖x‖−1 .

Analogously we find similar estimations for ∇ku and ∇kp which we summarize in the
following corollary.

Corollary B.4 (Decay properties of classical solutions of the stationary Stokes prob-
lem). Let Lemma B.3 be fulfilled and take R > 1/2 such that E ⊂ BR(0). Then for any
0 ≤ k <∞ it holds for all x ∈ R3 with ‖x‖ > 2R

‖∇ku(x)‖ ≤ c(E , η, k)‖uΓ‖1,∂E‖x‖−(1+k) ,

‖∇kp(x)‖ ≤ c(E , η, k)‖uΓ‖1,∂E‖x‖−(2+k) .

Furthermore, if ∫
∂Ω

E ·ψ dsy = 0 (B.3)

for all x ∈ Ω, then

‖∇ku(x)‖ ≤ c(E , η, k)‖uΓ‖1,∂E‖x‖−(2+k) ,

‖∇kp(x)‖ ≤ c(E , η, k)‖uΓ‖1,∂E‖x‖−(3+k)

for all ‖x‖ > 2R.

Lemma B.5 (Properties of the 1-particle Compatibility matrix). Let E ⊂ R3 be an
open domain with a smooth boundary ∂E. Consider wi, pi as the 11 solutions of the
systems

4wi −∇pi = 0 , ∇ ·wi = 0 , x ∈ R3 \ E ,
wi = ŵi , x ∈ ∂E , ‖wi‖ → 0 , ‖x‖ → ∞

with ŵi = ei for i = 1, 2, 3 and ŵi+3 = Bi · x for i = 1, . . . , 8. Then the matrix
A ∈ R11×11 given by

Aij =

∫
∂E
∂nwi − pin ds · ej , j = 1, 2, 3 ,

Ai,j+3 =

∫
∂E

(∂nwi − pin)⊗ x ds : Bj , j = 1, . . . , 8

is negative definite.

Proof. Take an arbitrary z ∈ R11 and set v =
∑3

i=1 eizi as well as C =
∑8

i=1 Bizi+3,
then

z · A · z =
∑
i

zi

(∫
∂E

(∂nwi − pin) · v ds+

∫
∂E

(∂nwi − pin) · C · x ds

)
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=

∫
∂E

(∂nw + pn) ·w ds

with w, p denoting the single particle Stokes solution with boundary condition w =
v + C · x at ∂E . Noting that n points into the fluid domain, we find from (B.1a)

z · A · z = −‖∇w‖2
2,R3\E ≤ 0 .

Since ‖∇w‖2,R3\E = 0 if and only if w = const a.e. we conclude by the boundary
condition z · A · z < 0 for z 6= 0.

Remark B.6. If we consider the Newtonian stress tensor in the direction of the
outer normal instead of the force term in the integrals of the compatibility matrix in
Lemma B.5, i.e.,

Ãij =

∫
∂E

S[wi] · n ds · ej , j = 1, 2, 3 , (B.4a)

Ãi,j+3 =

∫
∂E

(S[wi] · n)⊗ x ds : Bj , j = 1, . . . , 8 (B.4b)

then we may apply (B.1b), showing z · Ã · z < 0 since E[w] = 0 if and only if w is a
rigid body motion a.e. contradicting the boundary condition at infinity.

Lemma B.7 (Compatibility conditions of a single particle). Let Lemma B.5 hold and
u, p shall solve

4u−∇p = 0 , ∇ · u = 0 , x ∈ R3 \ E ,
u = v + C · x , x ∈ ∂E , ‖u‖ → 0 , ‖x‖ → ∞ ,

with v ∈ R3,C ∈Mtr. Then it holds (f ,M−1(F)) = A · (v,M−1(C)) for the two force
moments

f =

∫
∂E
∂nu− pn ds , F =

∫
∂E

(∂nu− pn)⊗ x ds

and the matrix A given in Lemma B.5.

Proof. For i = 1, 2, 3 it holds by applying (B.1a)

ei · f =

∫
∂E

(∂nu− pn) ·wi ds =

∫
∂E
∂nwi − pin ds · v +

∫
∂E

(∂nwi − pin)⊗ x ds : C

=
3∑
j=1

∫
∂E
∂nwi − pin ds · ejvj +

8∑
j=1

∫
∂E

(∂nwi − pin)⊗ x ds : BjM
−1
j (C) .

Similarly, for i = 1, . . . , 8

ei ·M−1(F) = F : Bi =

∫
∂E

(∂nu− pn) ·wi+3 ds

=
3∑
j=1

∫
∂E
∂nwi+3 − pi+3n ds · ejvj

+
8∑
j=1

∫
∂E

(∂nwi+3 − pi+3n)⊗ x ds : BjM
−1(C) · ej .
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Corollary B.8 (Compatibility conditions in the case of rigid body motion). Let
Lemma B.7 hold, if C ∈Mskew, then the forces and torques

f =

∫
∂E
∂nu− pn ds , t =

∫
∂E
x× (∂nu− pn) ds

fulfill (f , t/
√

2) = Â · (v,
√

2ω) with ω = B−1(C) and the regular matrix Â ∈ R6×6

given as Âij = Aij for i, j = 1, . . . , 6.

Proof. Noting that since z · A · z < 0 for any z 6= 0, this holds especially for all z
with zi = 0 for i = 7, . . . , 11, thus Â is negative definite and the definition of the
skew-symmetric mapping B with respect to the basis of Mtr, (A.9) completes the
proof.

Remark B.9. Following Remark B.6, we may use the Newtonian stress tensor in
Lemma B.7 and get an analogous result with matrix Ã defined in Remark B.6, i.e., it
holds (f̃ ,M−1(F̃)) = Ã · (v,M−1(C)) with∫

∂E
S[u] · n ds = f̃ ,∫

∂E
S[u] · n⊗ x ds = F̃ .

Analogously, Corollary B.8 implies (f̃ , t̃/
√

2) =
ˆ̃
A · (v,

√
2ω) with the negative definite

matrix
ˆ̃
Aij = Ãij for i, j = 1, . . . , 6 and∫

∂E
x× S[u] · n ds = t̃ .

B.3 Details on ellipsoidal geometry and related problems

Here we summarize some fundamental results of different works for ellipsoidal particles,
the individual results are from Oberbeck [96], Edwardes [40], Jeffery [70] and Junk &
Illner [71]. First we introduce all relevant functions needed to formulate the solutions
of Oberbeck and Jeffery in Lemma B.11, also analyzing the decay properties of the
involved quantities in Lemma B.10. Next, we briefly present the necessary steps for
the analytical computation of the surface moments arising in the solvability conditions
of Lemma 5 by using Lemma B.11.

Oberbeck and Jeffery solutions

As stated in Section 2.4, an ellipsoid is a set E = DB1 with D = diag(d1, d2, d3), di > 0
and unit ball B1 in R3. This implies E = {y ∈ R3| ‖D−1y‖2 < 1}. Consider the
function λ : R3 \ E → R+

0 defined as

y2
1

d2
1 + λ(y)

+
y2

2

d2
2 + λ(y)

+
y2

3

d2
3 + λ(y)

= 1 (B.5a)
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whose existence and regularity are guaranteed by the implicit function theorem. The
formulation of solutions for the Stokes problems in R3 \ E are based on the following
geometry associated functions

δ(λ) = det(Dλ)
1/2, χ(λ) =

∫ ∞
λ

δ(s)−1 ds, αj(λ) =

∫ ∞
λ

(d2
j + s)−1δ(s)−1 ds,

βj(λ) =

∫ ∞
λ

(d2
j + s)δ(s)−3 ds, γj(λ) =

∫ ∞
λ

(d2
j + s)sδ(s)−3 ds (B.5b)

for j = 1, 2, 3, with Dλ = Dλ(λ) = diag(d2
i + λ, i = 1, 2, 3). When αj, βj, γj and χ

are evaluated at zero, we abbreviate the function value with the index o, e.g. χo =∫∞
0
δ(s)−1 ds. Additionally, we introduce ψj(y) = βj(λ(y))yky`, where (j, k, `) is a

permutation of (1, 2, 3), and ω(y) =
∫∞
λ(y)

δ(s)−1fel(y, s) ds, where fel(y, λ) = y ·D−1
λ ·

y − 1. In the following some derivatives of the above functions are needed. We set
µ(y, λ) = (y ·D−2

λ · y)−1, in other words ∂λfel = −µ−1. It follows for y ∈ R3 \ E

∂yχ(λ(y)) = −2
µ

δ
y ·D−1

λ , ∂yω = 2y · diag(α1, α2, α3), (B.6a)

∂yyχ(λ(y)) = −2
µ

δ

(
D−1
λ − 2µ

(
D−2
λ · y ⊗D−1

λ · y + D−1
λ · y ⊗D−2

λ · y
))

(B.6b)

− 2
µ2

δ

(
− tr(D−1

λ ) + 4µy ·D−3
λ · y)D−1

λ · y ⊗D−1
λ · y

)
,

∂yyω = 2 diag(α1, α2, α3)− 4
µ

δ

(
D−1
λ · y ⊗D−1

λ · y
)
, (B.6c)

∂yiyjykω = −4
µ

δ

(
δjkyi

(d2
i + λ)(d2

j + λ)
+

δijyk + δikyj
(d2
j + λ)(d2

k + λ)

)
(B.6d)

+ 8
µ2

δ

yiyjyk

(∑
`∈{i,j,k}(d

2
` + λ)−1 + 0.5 tr(D−1

λ )− 2µy ·D−3
λ · y

)
(d2
i + λ)(d2

j + λ)(d2
k + λ)

.

Let (i, j, k) be an even permutation of (1, 2, 3), the derivatives of ψi read as:

∂y`ψi = −2
µ

δ3
(Dλ)ii(D

−1
λ · y)`yjyk + βi(δ`jyk + δ`kyj), (B.6e)

∂ymy`ψi = βi(δ`jδkm + δ`kδjm) (B.6f)

− 2yjyk
µ

δ3

(
2µ(D−1

λ · y)m(D−1
λ · y)` + (Dλ)ii(D

−1
λ )`m

)
− 2

µ

δ3
(Dλ)ii

(
(D−1

λ · y)m(δ`jyk + δ`kyj) + (D−1
λ · y)`(δjmyk + δkmyj)

)
+ 4yjyk

µ2

δ3
(Dλ)ii

(
(D−2

λ · y)`(D
−1
λ · y)m + (D−2

λ · y)m(D−1
λ · y)`

)
− 2yjyk

µ2

δ3
(Dλ)ii(4µy ·D−3

λ · y − 3 tr(D−1
λ ))(D−1

λ · y)`(D
−1
λ · y)m.

From (B.6b), (B.6c) and (B.6f) it follows

∆yχ = −2
µ

δ
(tr(D−1

λ )− 4µy ·D−3
λ · y + (− tr(D−1

λ ) + 4µy ·D−3
λ · y)) = 0, (B.7a)
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∆yψi = −4
µ

δ3
(Dλ)iiyjyk(tr(D

−1
λ )− (D−1

λ )ii)− 2
µ

δ3
yjyk(2 + (Dλ)ii tr(D

−1
λ ))

+ 8
µ2

δ3
(Dλ)iiyjyky ·D−3

λ · y − 2
µ

δ3
(Dλ)iiyjyk(4µy ·D−3

λ · y − 3 tr(D−1
λ ))

= 0, (B.7b)

∆yω = −4

(
−1

2

∫ ∞
λ(y)

tr(D−1
s )

δ
ds+

1

δ

)
= −4

(∫ ∞
λ(y)

∂s
1

δ
ds+

1

δ

)
= 0, (B.7c)

since ∂λδ
−1 = −0.5δ−1 tr(D−1

λ ) and lims→∞ δ−1 = 0. This is an important feature of
the functions, which will be used in Lemma B.11. Next, we present some asymptotic
properties of these functions for ‖y‖ → ∞.

Lemma B.10 (Asymptotical properties). The geometry associated functions defined
in (B.5) fulfill the following properties for r = ‖y‖, r →∞:

λ ∼ r2, αi ∼
2

3
r−3, βi ∼

2

5
r−5, γi ∼

2

3
r−3, χ ∼ 2r−1, δ ∼ r3, µ ∼ r2,

where the notation f ∼ φ stands for f = φ+ o(φ).

Proof. From the definition of λ(y), it holds

1 = y ·D−1
λ · y

{
≤ (mini d

2
i + λ)−1r2

≥ (maxi d
2
i + λ)−1r2

,

and thus 0 ≤ mini d
2
i ≤ r2 − λ ≤ maxi d

2
i , which implies

lim
r→∞

r2 − λ
r2

= 0.

Set d̂ = maxi di, then the behavior of the algebraic functions δ and µ results as

δ − r3

r3
≤ r−3

(
(d̂2 + λ)3/2 − r3

)
=

(
d̂2

r2
+
λ

r2

)3/2

− 1→ 0,

µ− r2

r2
≤ r−2

(∑
i

y2
i /(d̂

2 + λ)2

)−1

− 1 = r−4(d̂2 + λ)2 − 1→ 0.

For the integral functions the following statement is used: Let g : (0,∞) → R+ be a

continuous function with
∫∞

0
g ds <∞. Define f(t, Q) =

∫ Q
t
g ds, then for any Q ∈ R+

it holds

f(λ(y), Q)− f(r2(y), Q) =

∫ r2(y)

λ(y)

g ds ≤ (r2 − λ) max
s∈[λ,r2]

g ≤ d̂2 max
s∈[λ,r2]

g.

Since Q was arbitrary, this is still true for Q → ∞. Another statement also needed
is: Let α, a, s > 0 then 1 − (a/s + 1)−α ≤ αa/s. This can be directly concluded
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from the fact that the function f(s) = αa/s + (a/s + 1)−α is strictly decreasing and
lims→∞ f = 1. Consequently,∣∣∣∣χ− 2r−1

2r−1

∣∣∣∣ ≤ 1

2r−1

∣∣∣∣∣
∫ r2

λ

δ(s)−1 ds

∣∣∣∣∣+
1

2r−1

∣∣∣∣∫ ∞
r2

δ(s)−1 − s−3/2 ds

∣∣∣∣
≤ d̂2

2r−1
max
s∈[λ,r2]

δ(s)−1 +
1

2r−1

∫ ∞
r2

s−3/2 − δ(s)−1 ds

≤ d̂2λ−3/2

2r−1
+

1

2r−1

∫ ∞
r2

s−3/2

(
1−

(
d̂2s−1 + 1

)−3/2
)

ds

≤ d̂2

2
r−2

(
λ

r2

)−3/2

+
1

2r−1

∫ ∞
r2

s−3/2 3

2
d̂2s−1 ds

=
d̂2

2

(
r−2

(
λ

r2

)−3/2

+ r−2

)
→ 0.

The same steps lead to∣∣∣∣αi − 2/3r−3

2/3r−3

∣∣∣∣ ≤ d̂2

2/3
r−2

((
λ

r2

)−5/2

+ 1

)
→ 0,

∣∣∣∣βi − 2/5r−5

2/5r−5

∣∣∣∣ ≤ d̂2

2/5
r−2

((
λ

r2

)−7/2

+ 1

)
→ 0,

∣∣∣∣γi − 2/3r−3

2/3r−3

∣∣∣∣ ≤ d̂2

2/3
r−2

((
λ

r2

)−5/2

+
7

5

)
→ 0.

We summarize some results of [40, 70, 96] for the disturbance flow of an ellipsoid in
a Stokes flow in Lemma B.11.

Lemma B.11 (Oberbeck and Jeffery solutions). Consider an ellipsoid with its ge-
ometry associated functions. Let v ∈ R3,A ∈ R3×3 be a constant vector, respectively
matrix, where tr(A) = 0. Define

uOb = (χI−∇yχ⊗ y + 0.5∂yyω ·D2) ·O · v, (B.8)

uJe =

∂y1ψ1 ∂y1ψ2 ∂y1ψ3

∂y2ψ1 ∂y2ψ2 ∂y2ψ3

∂y3ψ1 ∂y3ψ2 ∂y3ψ3

 ·
RS
T

+∇y ×

Uψ1

V ψ2

Wψ3


+ ∂yyω ·MT · y −M · ∇yω, (B.9)

as well as pOb = −2∇yχ ·O · v and pJe = 2M : ∂yyω with the matrices

O = diag(χo + d2
iα

o
i , i = 1, 2, 3)−1, M =

 A H G?

H? B F
G F ? C


and the corresponding coefficients given by

A = −2γo1A11 − γo2A22 − γo3A33

6(γo2γ
o
3 + γo1γ

o
3 + γo1γ

o
2)

,
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B = −2γo2A22 − γo3A33 − γo1A11

6(γo2γ
o
3 + γo1γ

o
3 + γo1γ

o
2)

,

C = −2γo3A33 − γo1A11 − γo2A22

6(γo2γ
o
3 + γo1γ

o
3 + γo1γ

o
2)

,

F = −α
o
2(A23 + A32)/2− d2

3β
o
1(A32 − A23)/2

2βo1(d2
2α

o
2 + d2

3α
o
3)

,

F ? = −α
o
3(A23 + A32)/2 + d2

2β
o
1(A32 − A23)/2

2βo1(d2
2α

o
2 + d2

3α
o
3)

,

G = −α
o
3(A13 + A31)/2− d2

1β
o
2(A13 − A31)/2

2βo2(d2
3α

o
3 + d2

1α
o
1)

,

G? = −α
o
1(A13 + A31)/2 + d2

3β
o
2(A13 − A31)/2

2βo2(d2
3α

o
3 + d2

1α
o
1)

,

H = −α
o
1(A12 + A21)/2− d2

2β
o
3(A21 − A12)/2

2βo3(d2
1α

o
1 + d2

2α
o
2)

,

H? = −α
o
2(A12 + A21)/2 + d2

1β
o
3(A21 − A12)/2

2βo3(d2
1α

o
1 + d2

2α
o
2)

R = (A23 + A32)/(2βo1), S = (A13 + A31)/(2βo2), T = (A12 + A21)/(2βo3),

U = 2d2
2B − 2d2

3C, V = 2d2
3C − 2d2

1A, W = 2d2
1A− 2d2

2B.

Then (u, p) ∈ {(uOb, pOb), (uJe, pJe)} is a solution of

∇y · S[u]T = 0, ∇y · u = 0, y ∈ R3 \ E ,
u = h, y ∈ ∂E ,
u→ 0, ‖y‖ → ∞,

with the decay properties ‖u‖ ≤ c‖y‖−1 and ‖∇yu‖, |p| ≤ ĉ‖y‖−2, c, ĉ ≥ 0. The
Dirichlet condition reads as h = v for u = uOb and h = A · y for u = uJe.

Proof. The proof of this lemma can be found in [96] for the translational boundary
condition and in [70] for the linear one. For the sake of completeness, we show the
relevant steps here. First, using 0 = ∆yχ = ∆yω = ∆yψj from (B.7) implies

∇y · uOb =
(
∇yχ−∇yχ− y∆yχ+ 0.5∇y∆yω ·D2

)
·O · v = 0,

∇y · uJe =
∑
j

∆yψja
R
j +∇y∆yω ·MT · y + M : ∂yyω −M : ∂yyω = 0.

by means of the identity ∇ · ∇ × w = 0 for any vector w. Here, aR = (R, S, T )T .
Moreover,

∆yuOb =
(
∆yχI−∇y∆yχ⊗ y − 2∂yyχ+ 0.5∂yy∆yω ·D2

)
·O · v

= ∇y(−2∇yχ ·O · v),

∆yuJe = ∇y
∑
j

∆yψja
R
j +∇y × (U∆yψ1, V∆yψ2,W∆yψ3)T + ∂yy∆yω ·MT · y

+ 2∇y∂yyω : MT −M · ∇y∆yω = ∇y(2∂yyω : M).
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The matrices O, A and the coefficients R, . . . ,W are chosen in a way such that the
boundary conditions on ∂E hold:

uOb =

(
χoI + 2

(y ·D−4 · y)−1

det(D)
D−2 · y ⊗ y,

+ 0.5

(
2 diag(αoi , i = 1, 2, 3)− 4

(y ·D−4 · y)−1

det(D)
D−2 · y ⊗D−2 · y

)
D2

)
·O · v

=
(
χoI + diag(αoi , i = 1, 2, 3) ·D2

)
· diag(χo + d2

iα
o
i , i = 1, 2, 3)−1 · v = v,

analogously for uJe. Last, the decreasing properties for r = ‖y‖ → ∞ are shown. This
follows from the definition of the velocities (B.8) and (B.9) as well as the corresponding
pressures,

‖uOb‖ ≤ c(|χ|+ ‖∂yχ‖r + ‖∂yyω‖), |pOb| ≤ c‖∂yχ‖,
‖uJe‖ ≤ c(max

k
‖∂yψk‖+ ‖∂yyω‖r + ‖∂yω‖), |pJe| ≤ c‖∂yyω‖,

‖∂yuOb‖ ≤ c(‖∂yχ‖+ ‖∂yyχ‖r + ‖∂yyyω‖),
‖∂yuJe‖ ≤ c(max

k
‖∂yyψk‖+ ‖∂yyyω‖r + ‖∂yyω‖),

with appropriate constants c > 0. For r sufficiently big, it is known from (B.6),
Lemma B.10 that

|χ| ≤ cr−1, ‖∂yχ‖ ≤ cr−2, ‖∂yyχ‖ ≤ cr−3, ‖∂yω‖ ≤ cr−2

‖∂yyω‖ ≤ cr−3, ‖∂yyyω‖ ≤ cr−4, ‖∂yψk‖ ≤ cr−4, ‖∂yyψk‖ ≤ cr−5,

yielding the proposed decay properties:

‖uOb‖ ≤ cr−1, |pOb| ≤ cr−2, ‖∂yuOb‖ ≤ cr−2,

‖uJe‖ ≤ cr−2, |pJe| ≤ cr−3, ‖∂yuJe‖ ≤ cr−3.

Determination of surface moments

For the solvability conditions (2.20) we provide the surface moments of an ellipsoid.
Computing the Newtonian stresses of Oberbeck and Jeffery solutions for the Stokes
problems (Lemma B.11) on ∂E yields

S[uOb](y) =
4µ

δ

(
− (ṽ ·D−2 · y)I− ṽ ⊗D−2 · y −D−2 · y ⊗ ṽ

+ 2µ(ṽ ·D−2 · y)D−2 · y ⊗D−2 · y
)
,

S[uJe](y) = A + AT − 16
µ2

δ
(y ·D−2 ·M ·D−2 · y)D−2 · y ⊗D−2 · y

+
8µ

δ

(
M ·D−2 · y ⊗D−2 · y + D−2 · y ⊗M ·D−2 · y

)
− 4M : (diag(αo1, α

o
2, α

o
3)− 2

µ

δ
D−2 · y ⊗D−2 · y)I,
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where µ = (y ·D−4 ·y)−1, δ = det(D) and ṽ = O ·v. For z ∈ S2
1 the following identities

hold:

S[uOb](D · z) ·D−1 · z = −4

δ
ṽ, (B.10a)

S[uJe](D · z) ·D−1 · z =

(
A + AT +

8

δ
M− 4(M : diag(αoi , i = 1, 2, 3))I

)
·D−1 · z.

The last result simplifies further, if A is skew-symmetric, i.e., A = B(v) for some
v ∈ R3. Then,

S[uJe](D · z) ·D−1 · z = −4

δ
B(diag(ci, i = 1, 2, 3) · v) ·D · z, (B.10b)

with the constants ci = (d2
jα

o
j + d2

kα
o
k)
−1, where (i, j, k) is a permutation of (1, 2, 3).

To evaluate the integrals over the surface of an ellipsoid we transform them to the
unit sphere. According to [71] it holds:∫

∂E
F(y) · n(y)ds(y) =

∫
∂E

F(y) · D−2 · y
‖D−2 · y‖

ds(y)

=

∫
S2

1

F(D · z) · D−1 · z
‖D−1 · z‖

det(D)‖D−1 · z‖ds(z)

= δ

∫
S2

1

F(D · z) ·D−1 · zds(z), (B.11)

for an integrable function F : R3 → R3 ×R3.
Now consider the six Stokes problems in Lemma 5. According to Lemma B.11 the

analytical solutions (wq, pq) are given by (B.8) with v = eq for q = 1, 2, 3 and by (B.9)
with A = 1/

√
2B(eq−3) for q = 4, 5, 6. To calculate the surface moments sq, tq,Vq

and Wq, we first apply the transformation to the unit sphere (B.11) and afterwards
use (B.10a) or (B.10b) for the corresponding moments:

sq =

∫
∂E
B(y) · S[wq] · n ds(y) = −4

∫
S2

1

B(D · z) · vq(z)ds(z),

tq =

∫
∂E

S[wq] · n ds(y) = −4

∫
S2

1

vq(z)ds(z),

(Vq)ij =

(∫
∂E
yiS[wq] · n ds(y)

)
j

= −4

(∫
S2

1

(D · z)ivq(z)ds(z)

)
j

,

(Wq)ijk =

(∫
∂E
yiyjS[wq] · n ds(y)

)
k

= −4

(∫
S2

1

(D · z)i(D · z)j · vq(z)ds(z)

)
k

,

with vq = O · eq and vq+3 = cq/
√

2B(eq) ·D · z for q = 1, 2, 3. Since the integral of a
homogeneous polynomial p(z) fulfills

∫
S2

1
p(z)ds(z) = 0 if p has odd degree, it follows

sq = 0, Vq = 0, for q = 1, 2, 3,

tq = 0, Wq = 0, for q = 4, 5, 6.
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The other moments follow, considering
∫
S2

1
(D·z)i(D·z)jds = (D2)ij4π/3 and |S2

1| = 4π,

(sq+3)k = − 16π

3
√

2

∑
i,j,`,m

(cqeq)`εjkiεj`m(D2)im

= − 16π

3
√

2

∑
i`m

(cqeq)`(δk`δim − δkmδi`)(D2)im

= cq
16π

3
√

2

((
D2 − tr(D2)I

)
· eq
)
k

= ζq+3|E|
((

D2 − tr(D2)I
)
· eq
)
k
,

(Vq+3)ij = − 16π

3
√

2

∑
k,`

(D2)i`εk`j(cqeq)k = cq
16π

3
√

2
(D2 ·B(eq))ij

= ζq+3|E|(D2 ·B(eq))ij,

tq = −16πO · eq = 3ζq|E|eq,

(Wq)ijk = −16π

3
D2
ij(O · eq)k = ζq|E|(D2 ⊗ eq)ijk,

for q = 1, 2, 3, where ζq = −4 det(D)−1Oqq and ζq+3 = 4 det(D)−1cq/
√

2, with O given
in Lemma B.11 and the constants ci = (d2

jα
o
j + d2

kα
o
k)
−1, here (i, j, k) is a permutation

of (1, 2, 3).
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C Additional simulation data

C.1 Predictor-corrector schemes

In order to complement the numerical observations of Sec. 4.5.4 we provide additional
simulation data to for the behavior of the estimators. In particular, Fig. C.1 and
Fig. C.2 show the average L2 distances between the estimated component and the
actual solution by the IEGGL scheme for the benchmark scenario of Sec. 4.5.4 in cases
β ∈ {0.4, 0.6}.

Figure C.1.: Average L2([0, L]) distance between y and yest for y ∈ {r1, r2, v1, v2, λ, κ},
β = 0.4.
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Figure C.2.: Average ([0, L]) distance between y and yest for y ∈ {r1, r2, v1, v2, λ, κ},
β = 0.6.
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C.2 Smoothing techniques

In case of the study of smoothing techniques of Sec. 4.5.5, we provide an additional
convergence study for N = 128 in Fig. C.3 as well as the behavior of the Lagrangian
multipliers in Fig. C.4 and Fig. C.5 forN = 32 andN = 128, respectively. Furthermore,
Fig. C.6 shows the relative distances of the dynamic components with respect to the
stochastic solution for N = 128. The distances of the Lagrangian multipliers with
respect to the stochastic solution are presented in Fig. C.7 and Fig. C.8 for N = 32
resp. N = 128.

The tables Tab. C.1 and Tab. C.2 show the relative distance between the expectation
generated by the regularized stochastic field and the one generated by the white noise.
Additionally, the average number of Newton iterations needed in the simulation is
shown.
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Figure C.3.: Relative error of the dynamic variables for N = 128. Left: r, right: v.
Top: Smoothing in space, bottom smoothing in space and time.
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Top: Smoothing in space, bottom smoothing in space and time.
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Figure C.5.: Absolute error of the algebraic variables for N = 128. Left: λ, right: κ.
Top: Smoothing in space, bottom smoothing in space and time.
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Figure C.6.: Relative error of the dynamic variables with respect to the stochastic so-
lution for N = 128. Left: r, right: v. Top: Smoothing in space, bottom
smoothing in space and time.

Smoothing dim. r v λ κ Newton-it.

N = 10 1d 29.79% 35.17% 49.20% 37.45% 2.99

N = 10 2d 29.79% 34.92% 50.68% 37.96% 2.99

N = 50 1d 4.09% 12.34% 57.77% 40.07% 4.22

N = 50 2d 4.16% 12.55% 68.79% 42.60% 4.24

N = 100 1d 1.55% 9.02% 42.20% 23.46% 4.98

N = 100 2d 1.79% 9.34% 43.10% 29.79% 4.89

N = 150 1d 0.48% 6.81% 34.64% 13.24% 5.01

N = 150 2d 0.80% 7.83% 38.12% 22.60% 4.95

Table C.1.: Relative L2-distance of solution components and average Newton-iterations
for smoothing by convolution with hat functions for different space res-
olutions and smoothing dimensions. Simulation with β = 0.4, T = 5,
∆t = 10−2, Ns = 2 and Nt = 2 in the 2d-case. Average Newton iterations
without smoothing: 3.00, 5.06, 5.08, 5.01 for N = 10, N = 50, N = 100,
N = 150 respectively.
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Figure C.7.: Absolute error of the algebraic variables with respect to the stochastic
solution for N = 32. Left: λ, right: κ. Top: Smoothing in space, bottom
smoothing in space and time.

Smoothing dim. r v λ κ Newton-it.

N = 10 1d 48.19% 26.59% 55.01% 36.94% 2.99

N = 10 2d 48.21% 26.52% 52.20% 37.78% 2.99

N = 50 1d 8.65% 13.20% 55.03% 37.06% 4.70

N = 50 2d 8.94% 12.82% 66.54% 37.39% 4.66

N = 100 1d 2.33% 13.40% 53.68% 24.89% 5.10

N = 100 2d 2.82% 12.98% 45.46% 31.70% 5.05

N = 150 1d 0.84% 10.93% 29.16% 13.95% 5.17

N = 150 2d 1.38% 9.99% 34.51% 24.40% 5.07

Table C.2.: Relative L2-distance of solution components and average Newton-iterations
for smoothing by convolution with hat functions for different space res-
olutions and smoothing dimensions. Simulation with β = 0.6, T = 5,
∆t = 10−2, Ns = 2 and Nt = 2 in the 2d-case. Average Newton iterations
without smoothing: 3.00, 5.48, 5.83, 5.16 for N = 10, N = 50, N = 100,
N = 150 respectively.
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Figure C.8.: Absolute error of the algebraic variables with respect to the stochastic
solution for N = 128. Left: λ, right: κ. Top: Smoothing in space, bottom
smoothing in space and time.
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Notation

The following notation was used throughout this work:

Sets, scalars, vectors, matrices and higher order tensors

N (N0) Natural numbers, N = {1, 2, . . .} (with zero)
Z Integer numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}
R (R+

0 ) Real numbers (positive real numbers with zero)
Rn n-dimensional real vector space
Rn×m nm-dimensional real vector space of matrices with n rows

and m columns

E Set, Class
∂E Boundary of set E
E Closure of set E
B(r, x),Br(x) Ball of radius r around point x
Br,B(r, 0) Ball of radius r around origin
Sk, ∂B1 k-dimensional unit sphere
Skr k-dimensional sphere of radius r around origin

x, x, x̂ Scalar quantity, element of a set

x Element of R3

X Matrix in R3×3

X Higher order tensor
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Indices, subscripts, superscripts

ai a ∈ Rn ith entry of vector a
(a)i = ai a ∈ R3 ith entry of a ∈ R3

Mi,j = Mij M ∈ Rn×m Element in ith row and jth column of ma-
trix M

(M)ij = Mij M ∈ R3×3 Element in ith row and jth column of ma-
trix M

(ai)j ai ∈ Rn jth entry of vector ai
(ai)j ai ∈ R3 jth entry of vector ai
(aji )k aji ∈ R3 kth entry of vector aji
(Ei)jk Ei ∈ Rn×m Element in jth row and kth column of ma-

trix Ei
(Ei)jk Ei ∈ R3×3 Element in jth row and kth column of ma-

trix Ei

Declaration of vectors, matrices and vector/matrix families

(a1, . . . , an) ai ∈ R Declaration of vector a ∈ Rn

(ai)i=1,...,n ai ∈ R Declaration of vector a ∈ Rn

(ai)i ai ∈ R Short notation for (ai)i=1,...,n if dimension is
obvious from context

(Mij) i=1,...,n
j=1,...,m

Mij ∈ R Declaration of matrix M ∈ Rn×m

(Mij)ij Mij ∈ R Short version of (Mij) i=1,...,n
j=1,...,m

if dimensions

are obvious from context
{v1, . . . , vk} vi ∈ Rn Declaration of a subset of Rn

{vi}i=1,...,k vi ∈ Rn Alternative notation for {v1, . . . , vk}
{vi}i vi ∈ Rn Short notation for {v1, . . . , vk} if number of

elements is obvious from context
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Operators

δij i, j ∈ N Kronecker delta, δij = 1 if and only if i = j
εijk i, j, k ∈ N Levi-Civita symbol:

εijk = 1 if (i, j, k) ∈ {(1, 2, 3) , (2, 3, 1) , (3, 1, 2)};
εijk = −1 if (i, j, k) ∈ {(1, 3, 2) , (2, 1, 3) , (3, 2, 1)};
εijk = 0 if i = j, or i = k, or j = k

a · b a, b ∈ Rn Scalar product: a · b =
∑n

j=1 aibi
a⊗ b a, b ∈ Rn Dyadic product: (a⊗ b) · c = (b · c)a for any c ∈ Rn

a× b
A : B A,B ∈ Rn×m Frobenius scalar product A : B =

∑n
i=1

∑m
j=1AijBij

X1 ×X2 X1,X2 sets Cartesian product of two sets∏n
i=1Xi Xi, i = 1, . . . , n

sets
Cartesian product of n sets

A · b A ∈
∏k

i=1R
ni ,

b ∈ Rnk

Application of linear mapping A · b ∈
∏k−1

i=1 R
ni

b · A A ∈
∏k

i=1R
ni ,

b ∈ Rn1

Application of linear mapping b · A ∈
∏k

i=2R
ni

AT A ∈ Rn×m Transpose of matrix A
tr(A) A ∈ Rn×n Trace of matrix A
adj(A) A ∈ Rn×n Transpose of cofactor matrix of matrix A
diag(v) v ∈ Rn Diagonal matrix with (diag(v))ij = vi
B(x) x ∈ R3 Skew-symmetric matrix in R3×3 fulfilling B(x) ·y =

x× y for all x,y ∈ R3

diam(A) A domain Diameter of A

f ∈ O(g) f, g : Rn → R Landau notation for asymptotic behavior of func-
tions as x→ x0; there exist C > 0, R > 0, such that
|f | ≤ C|g| for all x ∈ BR(x0)

f ∈ o(g) f, g : Rn → R Landau notation for asymptotic behavior of func-
tions as x → x0; for any C > 0, there exists an
R > 0, such that |f | < C|g| for all x ∈ BR(x0)
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Differential operators

∂xkf f : Rn → Rm partial derivative with respect to xk, k ∈
{1, . . . , n}

∂xf f : Rn → Rm Jacobian of f , ∂xf ∈ Rm×n

∇f f : Rn → Rm Gradient of f , ∇f = ∂xf
T ∈ Rn×m; if m =

1, then ∇f = ∂xf
∇xf f : Rn → Rm Gradient of f with respect to variable x,

used in order to emphasize the difference
between local and global coordinates

[a · ∇]f f : Rn → Rm Directional derivative of f in direction a ∈
Rn, [a · ∇]f = ∂xf · a

∂kxf f : Rn → R kth order derivative of f with respect to x,
∂kxf ∈

∏k
i=1R

n

∂x, . . . , x︸ ︷︷ ︸
k times

f f : Rn → R kth order derivative of f ; used if k is small

[A : ∇2]f f : Rn → Rm,
A ∈ Rn×n

[A : ∇2]f =
∑n

i=1

∑n
j=1Aij∂xixjf

∇ · u u : Rn → Rn Divergence of vector field u,∇·u =
∑

i ∂xiui
S[u] u : R3 → R3 Newtonian stress tensor of solenoidal veloc-

ity field u and associated pressure p
E[u] u : R3 → R3 Symmetric deformation gradient of u,

E[u] = 0.5(∇u+∇uT )
Dtf f : Rn+1 → Rn Material derivative of f , Dtf = ∂tf+[f ·∇]f
∆f f : Rn → Rn Laplacian of f , ∆f =

∑
i ∂xixif

L[M ]G(f) M ∈ g, G ∈ G,
f : G → R

Left Lie derivative for differentiable func-
tion f over Lie group G with Lie algebra g
at point G ∈ G

R[M ]G(f) M ∈ g, G ∈ G,
f : G → R

Right Lie derivative for differentiable func-
tion f over Lie group G with Lie algebra g
at point G ∈ G

divG(L[M ])(G) M : G → g, G ∈
G

Divergence of vector field given by the left
Lie derivative operator determined by a dif-
ferentiable function M with values in the
Lie algebra g of Lie group G, evaluated at
G ∈ G
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Special mappings, norms

|x| x ∈ R Absolute value
|E| E ⊂ Rn Lebesgue measure of E
‖x‖ x ∈ Rn Euclidean norm of x
‖x‖p x ∈ Rn finite dimensional p-norm of x:

‖x‖pp =
∑

i x
p
i for p ∈ [1,∞)

‖x‖∞ = maxi |xi|
‖M‖ M ∈ Rn×n Frobenius norm of M

‖f‖Ck,Ω f : Ω→ Rm Norm of k times continuously differentiable
function f over Ω ⊂ Rn, k ∈ N0:
‖f‖Ck,Ω = max0≤‖α‖1≤k maxx∈Ω ‖∂αx f‖ with
multi-index α = (α1, . . . , αn) and ∂αx f =
∂α1
x1
∂α2
x2
. . . ∂αnxn f

‖f‖Ck f : Ω→ Rm Short notation for ‖f‖Ck,Ω, if domain is ob-
vious from context

‖f‖p,Ω f : Ω→ Rm Lp-norm for Lebesgue measurable function
f :
‖f‖pp,Ω =

∫
Ω
‖f‖p dx for p ∈ [1,∞);

‖f‖∞,Ω = inf{C ≥ 0 | λ({x ∈ Ω | ‖f(x)‖ >
C}) = 0} with λ denoting the Lebesgue
measure over Ω

‖f‖p f : Ω→ Rm Short notation of ‖f‖p,Ω, if domain of inte-
gration is obvious from context

1E(x) E a set, x a point Indicator function of E
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Function spaces

Ck(Ω;Rm) Ω ⊂ Rn Space of k times continuously differentiable
functions over Ω, k ∈ N0 i.e., ‖f‖Ck,Ω <∞
for all f ∈ Ck(Ω;Rm)

C∞(Ω;Rm) Ω ⊂ Rn Space of smooth functions over Ω, i.e.,
‖f‖Ck,Ω < ∞ for all k ∈ N0 for all f ∈
C∞(Ω;Rm)

Ck(Ω) Ω ⊂ Rn Short notation for Ck(Ω;Rm), if image is
obvious from context

Ck Short notation for Ck(Ω;Rm), if domain and
image are obvious from context

C Short notation for continuous functions, C0

CkN
Lp(Ω;Rm) Ω ⊂ Rn Space of Lebesgue measurable functions

with ‖f‖p,Ω <∞ for all f ∈ Lp(Ω;Rm)
Lp(Ω),Lp Short notations for Lp(Ω;Rm) if the corre-

sponding sets are obvious from context
Wp,q(Ω;Rm) Ω ⊂ Rn Sobolev space of Lebesgue measurable func-

tions over Ω whose weak derivatives up
to pth order are Lebesgue measurable and
have finite Lq-norm

Wp,q
loc (Ω;Rm) Ω ⊂ Rn Sobolev space of Lebesgue measurable func-

tions over Ω whose weak derivatives up
to pth order are Lebesgue measurable and
have finite Lq-norm on any compact set
A ⊂ Ω
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