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A B S T R A C T

Estimation and therefore prediction – both in traditional statistics and
machine learning – encounters often problems when done on survey
data, i.e. on data gathered from a random subset of a finite population.
Additional to the stochastic generation of the data in the finite popu-
lation (based on a superpopulation model), the subsetting represents a
second randomization process, and adds further noise to the estimation.
The character and impact of the additional noise on the estimation pro-
cedure depends on the specific probability law for subsetting, i.e. the
survey design. Especially when the design is complex or the population
data is not generated by a Gaussian distribution, established methods
must be re-thought. Both phenomena can be found in business surveys,
and their combined occurrence poses challenges to the estimation.

This work introduces selected topics linked to relevant use cases of
business surveys and discusses the role of survey design therein: First,
consider micro-econometrics using business surveys. Regression analy-
sis under the peculiarities of non-normal data and complex survey de-
sign is discussed. The focus lies on mixed models, which are able to cap-
ture unobserved heterogeneity e.g. between economic sectors, when the
dependent variable is not conditionally normally distributed. An algo-
rithm for survey-weighted model estimation in this setting is provided
and applied to business data.

Second, in official statistics, the classical sampling randomization and
estimators for finite population totals are relevant. The variance estima-
tion of estimators for (finite) population totals plays a major role in this
framework in order to decide on the reliability of survey data. When
the survey design is complex, and the number of variables is large for
which an estimated total is required, generalized variance functions are
popular for variance estimation. They allow to circumvent cumbersome
theoretical design-based variance formulae or computer-intensive resam-
pling. A synthesis of the superpopulation-based motivation and the sur-
vey framework is elaborated. To the author’s knowledge, such a synthe-
sis is studied for the first time both theoretically and empirically.

Third, the self-organizing map – an unsupervised machine learning
algorithm for data visualization, clustering and even probability estima-
tion – is introduced. A link to Markov random fields is outlined, which
to the author’s knowledge has not yet been established, and a density
estimator is derived. The latter is evaluated in terms of a Monte-Carlo
simulation and then applied to real world business data.
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Part I

E S T I M AT O R S F O R R E G R E S S I O N , F I N I T E
P O P U L AT I O N VA R I A N C E A N D

P R O B A B I L I T Y D E N S I T Y





1
I N T R O D U C T I O N T O C H A L L E N G E S I N E S T I M AT I O N
I N B U S I N E S S S U RV E Y S

1.1 motivation

The inherent difference between business surveys and other surveys is
the nature of the sampling unit: For example, social surveys sample per-
sons or households and ecological surveys sample plants or animals.
Businesses, however, are organizational entities. Like other entities such
as households or non-human sampling units, a deputy respondent that
speaks for the surveyed units. Furthermore, the nature of an organiza-
tional entity like the size and composition of manpower, the operating
sector or returns are much more fluid than in other entities, say house-
holds. These properties require sometimes special survey designs to cap-
ture enough of the variability between businesses and within businesses
over time without overloading the respective deputy respondent, espe-
cially in small businesses.

What is a business and when is a survey a business survey? In the fol-
lowing, we shall understand a survey as a random subsetting process of
a finite index set where each index is assigned to one business unit, that
is an organizational unit that provides goods and services in exchange
for monetary funds. This means, that in the following, we exclude unlike
Cox and Chinnappa [1995] institutions from the definition of business
surveys because the peculiarites of businesses like properties of own-
ers and topmanagers (cf. Section 2.3) or skewness of monetary flows (cf.
Section 4.9) are not generally applicable for institutions.The terms ‘firm’
and ‘business’ are used interchangeably in the following.

Besides problems that are common to most surveys - such as missing
data, frictions between sampling and study population, or the auxiliary
use of administrative data - business surveys face very specific problems:
Business sizes are highly skewed and whilst large businesses are often
sampled with probability close to one [Cox and Chinnappa, 1995], there
are often cut-off rules for the smallest firms [Bee et al., 2007]. This leads
to extreme designs with very diverging design weights [Burgard et al.,
2014] or sample informativity that can affect the quality of estimators
[Pfeffermann and Sverchkov, 2007]. This becomes even more problem-
atic when the variable of interest to be estimated is demanded for small
geographic areas or business domains [Cox and Chinnappa, 1995, Rao
and Choudhry, 1995] and in addition is not (conditionally) normally dis-
tributed [Chandra et al., 2009, Fabrizi et al., 2017].
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4 introduction

Skewed distributions of the variable of interest lead to problematic es-
timators: Variances for the common Horvitz-Thompson Estimator (HT)
[Horvitz and Thompson, 1952] increase and variance estimators can be-
come instable. Alternative estimators like the Generalized Regression
Estimator (GREG) can be applied [Deville and Särndal, 1992] because - us-
ing auxiliary information - they have possibly smaller variances than the
HT. The possible efficiency gain using the GREG was demonstrated in a
simulation study based on business survey data by Lee and Croal [1989].
Though asymptotically unbiased, Hedlin et al. [2001] demonstrate that
an appropriate model choice is essential for the reliability of the GREG
in practice. Furthermore, the GREG relies heavily on a linear relationship
between the auxiliary data and the variable of interest. An inappropri-
ate assisting linear model when there is a nonlinear relation between
the variable of interest and the auxiliaries, can counteract the desired
efficiency gain.

Regression analysis – both, an interest per se and the foundation of
model-assisted (like the GREG )and model-based estimators in finite pop-
ulations – with business data has challenges, too: When data do not meet
normality assumptions and when the survey design is complex, classi-
cal estimators based on least squares or Maximum Likelihood (ML) do
not rely anymore on correct distributional assumptions and can return
(even asymptotically) biased results. The focus in this work shall lie on
the violation of (conditional) distributive assumptions on the dependent
variable. We consider skewed continuous random variables distributed
according to a (modified) power-normal distribution and non-normal
elements of the exponential family. Both types of dependent random
variables cannot be modelled adequately using a standard linear model,
but appplying Generalized Linear Models (GLMs) or linear models under
data transformations.

It is possible that the data analyist desires, in addition, a mixed model
structure, i.e. a combination between fixed and random effects, to ac-
count for unobserved heterogeneity, between, for example, different ge-
ographic locations (e.g. relevant in Small Area Estimation (SAE)) or eco-
nomic sectors or between units in panel-structured data. Then, extreme
survey designs are difficult to adjust for. The quality of the estimated
model translates directly to the quality of predictions arising therefrom,
which is relevant for finite population estimators relying on models [Val-
liant et al., 2000]. An illustration for estimators based on Gaussian Mix-
ture Models (GMMs) is given in Burgard and Dörr [2018]. Furthermore,
nonlinear transformations of the dependent variable prohibit the simple
plug-in solution for conditional expectations/ predictions. A computa-
tionally feasible alternative has thus to be found when such models are
of interest.
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SAE can also serve as a link to another problem that is discussed in
this work: Whilst the already named difficulties arise mostly in unit-lavel
SAE, area-level SAE [Fay and Herriot, 1979] especially in business sur-
veys encounter another problem: They theoretically require variances of
the direct estimators, usually the HT, that are not available in practice.
Plugging in estimators thereof, however, is problematic because they
might be unstable due to small sample sizes and skewness of the vari-
able of interest. Amongst others, Maples et al. [2009] and Kubacki and
Jędrzejczak [2012] suggest to use Generalized Variance Function (GVF)
predictions in the Fay-Herriot Estimator (FH) estimator to stabilize the
point estimation.

Though GVFs have consequently even an application in point estima-
tion, they might be of interest for second order statistics as well: Besides
a reduced computational effort in case of complex survey designs, the
assumption of a functional relation between an estimator’s expectation
and variance adds additional information to the estimation and there-
fore can reduce instabilities in variance estimation. Even when the sam-
ple size is adequate for a reliable first order statistics (that is, when SAE is
not necessary), it might be insufficient for higher order statistics that are
nonetheless important to judge the estimator’s quality. Instabilities can
result from extreme designs and peculiarities of business-related vari-
ables and may thus occur in business surveys. The behaviour of GVFs
as an interesting alternative to direct variance estimators should conse-
quently be studied theortically and using simulations.

In the subsequent chapters, the synthesis of distributional assump-
tions on the characteristics observed and survey design play therefore
a major role: Both the estimation of model parameters from a complex
survey design and prediction for non-observed units from the finite pop-
ulation must account for the additional randomness implied by the draw
of a sub-sample under a probability law. We understand statistics under
distributional assumptions on the characteristics attributed to an index
in the finite population as model-based statistics. In contrast, statistics on
the finite population concerned with the random subsetting process, is
referred to as design-based statistics. The underlying probability space
has as consequence also different settings for estimators. For the syn-
thesis of model- and design based statistics, a joint probability law is
required and will be defined in Section 1.3 together with implications
on point estimation theory.

The probability law underlying the characteristics of the finite popu-
lation, the so called Data Generating Process (DGP) is not always known.
Sometimes neither information on a family of distributions character-
ized by a parameter space, which the DGP belongs to, is available. A
non-parametric estimator of the distribution can thus be of interest, too,
especially in multivariate statistics in order to get an explorative idea of
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the data. A new estimator based on a machine learning algorithm, the
Self-organizing Map (SOM) is introduced and serves as a contrast to tra-
ditional problems in model- and design-based statistics like parameter
(point) and variance estimation for estimators of finite population totals
under complex survey designs.

1.2 outline

The different chapters of this thesis aim at the study of the research
questions implied by the challenges on business surveys named above.
Though inherently connected through the application to business sur-
veys, the research topics, i.e. mixed models under survey design, the-
ory and simulation on GVFs under a joint mode-design framework and
machine-learning based probability estimation can be distinctively split-
ted into different chapters. These are briefly introduced in the following.

A regression parameter estimator for Generalized Linear Mixed Mod-
els (GLMMs) and Linear Mixed Models (LMMs) under dual and Box-Cox
transformation, introduced in Burgard and Dörr [2018] and Dörr and
Burgard [2019] is outlined in Chapter 2. The properties of the estima-
tor are studied and compared to existing methods in novel simulation
studies and the estimator is applied to business data. The simulation
set-up is such that it corresponds to the joint design-model probability
measure introduced in Section 1.3. The Monte-Carlo simulations under
finite populations demonstrate that accounting for complex designs by
survey-weighting of the estimators does barely harm efficiency when
weighting is not necessary and improves the estimation in case of in-
formativity.

Chapter 3 gives an overview about GVFs: The theoretical motivation
of GVFs is discussed, their relation to survey design and an error decom-
position of GVFs. As the theoretical motivation, which is model-based,
diverges from the GVFs’ application, i.e. design-based statistics, again
the joint model-design probability measure introduced in Section 1.3 is
required to put GVFs into a consistent framework. Comprehensive simu-
lation studies round the analysis of GVFs off. As the true functional rela-
tion between an estimator’s expectation and variance – when existing –
is usually unknown to the analyst, the performance of various common
GVFs is compared on different types of variables. Furthermore, GVFs are
compared with the direct variance estimator. These problems relate to
the model-based aspects of GVFs. However, there are also design-based
aspects to be studied: Usually, the impact of survey design on the pre-
dictive quality of GVFs are not discussed in the literature and often, sim-
ulations are only run on one sample realization. The simulation studies
here thus constitute a novelty as the repeated drawing from a finite pop-
ulation under different survey designs allows to separate the effect of
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a single survey realization from the general behaviour of GVF. Classical
indicators for the adequacy of GVFs are studied as well.

Finally SOMs are discussed in Chapter 4, and how they can serve in
multivariate density estimation. This chapter goes beyond most of the
typical SOM literature and studies variations of SOMs as an optimization
problem. A new link to Markov Random Fields (MRFs) is uncovered that
will help to relate the original optimization problem to a computation-
ally easier one. Inherent to the optimization problem, a density estimator
can be identified is related to classical density estimators, namely GMMs:
This relation helps to get an idea about the convergence properties of
the machine learning based estimator. This last chapter may be seen as
building a bridge between traditional problems of statistical inference –
including point estimation in case of Chapter 2 and variance estimation
in Chapter 3 – and a new frontier in statistics with topics in machine
learning and big data.

The rest of this chapter is dedicated to a brief introduction into survey
sampling – a branch of applied statistics that is omnipresent in this work.
Design-based statistics and model-based statistics and point estimation
therein are discussed and finally synthesized. In that introduction, the
mathematical notation is established that is used throughout this thesis
except noted otherwise.

1.3 introduction to point estimation theory and survey

sampling

First, we introduce the mathematical notation linked to the main features
of a survey that are named in Särndal et al. [1992, Chapter 1.2 & 1.3]. A
finite index set U = {1, . . . ,N} is called the finite population (of size N).
In practice, the finite population needs to be defined precisely in order
to identify all unit i = 1, . . . ,N that belong to U. For example, it must be
clarified whether those persons with a permanent (legal) residence (U1)
or with the nation’s citizenship (U2) constitute a country’s population as
U1 6= U2. To each unit i in a well defined populationU, there is attributed
a vector of characteristics (yi, zi) ∈ Y× Z ⊆ Rp+p ′

, where the array of
characteristics y = (yi : i = 1, . . . ,N) is called the variable of interest and
the array z = (zi : i = 1, . . . ,N) is an array of auxiliary information. We
set ×Ni=1(Y×Z) =: YN×ZN = Ω. In the case of regression modelling, we
replace yi ∈ Y ⊆ Rp by yi ∈ Y ⊂ R and use partially xi ∈ X ⊆ Rp instead
of zi ∈ Z ⊆ Rp′ like it is convention.

A statistic of interest is the value of function gU(y) with

gU : ×Nk=1Y→ Rq, y 7→ gU (y) . (1.1)

Delimiting the term ‘statistic’ in that way differs slightly from Särndal
et al. [1992, p. 33]. However, later an interaction between survey sam-
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pling and classical statistical models M are introduced and assuming
that (y, z) are outcomes of a random process, the original understanding
of ‘statistic’ is restablished. For the joint model-design approach to be
introduced later, it is required that gU be measurable in ×Nk=1Y with re-
spect to a probability measure PMθ to be defined later. In the framework
of Rubin-Bleuer and Kratina [2005] this means Borel measurability but
we seek to generalize the definitions given there. An example statistic of
interest is the population total τy or population mean µy

τy :=
∑
i∈U

yi, µy :=
1

N
τy . (1.2)

A survey realization is a subset s ⊆ U, where s is a realization of a ran-
dom variable S ∼ PD. By this, we exclude all non-probability surveys. We
set S = idS and assume therefore S to be PD-measurable random variable
mapping from the subset S of 2U with

∑
s∈S PD(s) = 1 and PD(s) > 0 for

all s ∈ S. PD is called in the following a survey design, and might fur-
thermore depend on the population variables z, PD = PD (·; (y, z)), that
are also called design variables in this context. Note that the inclusion
of the variable of interest y in PD is not usual but will help us define
sample informativity later on.

The probability space of S is thus (S, 2S,PD). S can be equivalently
represented by the random vector 1S := (1S(i) : i ∈ U), where 1A is
the indicator variable equal to 1 if the argument is included in A and 0

otherwise. As there are only finitely many state spaces of 1S (due to the
finiteness of S, |S| 6 2N), all moments of the random variable 1S exist
and PD is completely described by the moments of 1S. We can therefore
state S ' 1S and (S, 2S,PD) ' ({0, 1}N, 2{0,1}

N
,PD).

The expectation of the ith element in 1S is called the first order inclu-
sion probability for unit i ∈ U is

πi := PD (i ∈ S; (y, z)) =
∑
s∈S

PD (S = s; (y, z)) · 1s(i) = ED [1S(i)]

(1.3)

and the i-j-th second moment is the second order inclusion probability

πij := PD(i ∈ S ∧ j ∈ S; z) =
∑
s∈S

PD (S = s; (y, z)) · 1s(i) · 1s(j)

= ED [1S(i) · 1S(j)] . (1.4)

Depending on the design, the second and higher order statistics of 1S
can be difficult to calculate and are often not released. This is in so far
critical as they are required for variance estimation of point estimators
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under PD (cf. Section 3.1). If the expected sample size ED(|S|) is set to n,
we thus get the property [Robinson and Särndal, 1983]

n = ED[|S|] =
∑
s∈S

PD (S = s; (y, z)) ·
∑
i∈U

1s(i)

=
∑
i∈U

∑
s∈S

PD (S = s; (y, z)) · 1s(i) =
∑
i∈U

πi (1.5)

and for the design weights wi := 1
πi

it holds that

ED

[∑
i∈U

wi · 1S(i)

]
=
∑
s∈S

PD (S = s; (y, z))
∑
i∈U

wi · 1s(i)

=
∑
i∈U

wi
∑
s∈S

1s(i) · PD (S = s; (y, z))

=
∑
i∈U

wiPD(i ∈ S) = N , (1.6)

where subscripts on E refer to the underlying probability measure. In
general, sampling can take place with and without replacement where
the second case is common in practice whereas ‘with replacement’ is
comfortable for theoretical analysis. However, the definition of our prob-
ability space is not applicable to sampling with replacement because in
that case, mathematical set theory cannot be as the number of draws of
a unit matters, i.e. with replacement, the sample {i, i, j}, i, j ∈ U is possi-
ble and not equal to {i, j}. To keep the mathematical notation simple, we
assume throughout this thesis sampling without replacement.

An estimator in the context of survey sampling is thus a function gS
that aims at statements about gU(y, z) [Rubin-Bleuer and Kratina, 2005].
Formally, we have

gS : S×Ω→ Rq

or equivalently

gS : {0, 1}N ×Ω→ Rq . (1.7)

Note the different input spaces of gS and gU: Not only does the esti-
mator gS take as input a realization of the random variable S, but also
auxiliary information. This shall help in the estimation process but is not
necessary for the finite population statistic. If the sample size fixed by
PD, i.e. |S| ≡ n, we might also take as input space ×nk=1(Y× Z). We ab-
breviate a sub-array with elements s ⊂ U of y and z by ys := (yi : i ∈ s)
and zs := (zi : i ∈ s) respectively. The input space of the sub-arrays
(Yi,Zi : i ∈ s) is denoted by Ωs = Ys ×Zs.

Such an estimator has to be analysed with respect to the probability
law PD. However, like the population statistic (1.1), it is important that
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gS(s, ·) be measurable for any s ∈ S in its second argument with respect
to a probability measure PMθ to be defined later in order to adjust it later
to a joint probability measure. The analytical computation of estimator
gS’s k-th moment under PD is

ED
[
gS (S, y, z)k

]
=
∑
s∈S

PD (S = s; (y, z)) · gS (s, y, z)k . (1.8)

Going back to the population total τy as statistic of interest, it is thanks
to the representation of the design through 1S easy to define the HT
[Horvitz and Thompson, 1952] as

τ̂y(s, y) ,
∑
i∈U

1

πi
· 1s(i) · yi , (1.9)

whose variance and the estimation thereof will play a role in Chapter
3. Another commonly used estimator is the GREG [Deville and Särndal,
1992]. The GREG requires knowledge about the population totals of the
auxiliary variables z. Then, we can define

τ̂GREG
y (s, y, z) , τ̂y +BTs (τ̂z − τz) (1.10)

where

Bs ,

(∑
i∈U

1s(i)

πi
zizTi

)−1∑
i∈U

1s(i)

πi
ziyTi .

The product BTs τ̂z – and Bs is a nonlinear statistic of S itself – complicates
the analysis of moments of τ̂GREGy . The unbiasedness (cf. Definition 1) is
therefore no longer assured.

Definition 1 (Design unbiasedness). An estimator gS : S ×Ω → Rq is
design unbiased if

ED [gS(S, y, z)] =
∑
s∈S

gS(s, y, z) · PD (S = s; (y, z)) = gU(y) (1.11)

(cf. Lehmann [1983, p. 5] adapted to survey sampling).

Nonetheless, comfortable asymptotic results for the GREG can be de-
rived, leading to another problem of estimators on S: Common asymp-
totic properties are not possible to state due to the finiteness of U and
therefore the upper bound of |S|.

The finiteness of U requires special attention for statements on asymp-
totic statistical properties such as consistency or central limit theorems.
For better distinction in the next paragraph, denote U of size N as
UN. The upper bound of S is possible to grow for nested populations



1.3 introduction to point estimation theory and survey sampling 11

. . . ⊂ UN ⊂ UN+1 ⊂ . . . when the sampling rules in PD (switch to no-
tation PDN) are adjusted to the population size N. Boistard et al. [2015]
give an overview about the necessary theoretical set-up to establish cen-
tral limit theorems for the HT [Horvitz and Thompson, 1952]. This set-up
is similar to that in Rubin-Bleuer and Kratina [2005], seeks to unify infi-
nite and finite population statistics and shall be briefly introduced and
adapted to our requirements in the following, because it is related to the
statistical models used in Chapters 2 and 3.

The survey design PDN on a finite population UN may depend – as
already mentioned – on design variables (y, z) ∈ ×Ni=1(Y× Z) =: ΩN ⊆
RN×(p+p ′). Boistard et al. [2015] assume the design variables to be non-
negative, but this is due to convention: None of the proofs in Boistard
et al. [2015] requires the design variables to be non-negative and we will
drop the non-negativity assumption. In the following, it is only neces-
sary that PDN be measurable with respect to a sigma-field AN on ΩN.
When this is the case, PDN defines a Markov kernel.

In the following, the key additional assumption is that the variables
(yi, zi) ∈ Y×Z, i ∈ UN, are realizations of a random process (Yi,Zi) ∼iid
PMθ , ⊗Ni=1PMθ = PNMθ on the space (ΩN,AN). To simplify the analysis
later on, we assume that AN is a product sigma-field of the fields Ay on
YN and Az on ZN. If required, let analogously to the outcomes y and
z denote Z = (Zi : i ∈ U) and Y = (Yi : i ∈ U) to be short cuts for
projections from ΩN to ZN and YN respectively, Z = projz ◦ (Y,Z) and
Y = projy ◦ (Y,Z). Sub-arrays Ys and Zs are the projections projsy ◦ (Y,Z)
and projsz ◦ (Y,Z) mapping from ΩN to Ys = ×i∈sY and Zs = ×i∈sZ
respectively. The projection projs maps from ΩN to Ωs = ×i∈s(Y× Z) =

Ys × Zs. As we assume product sigma-fields, let As = Ays ⊗Azs be the
field on Ωs, i.e. the field on projs(ΩN).

As Y is the variable of interest, it is sometimes useful to define the
conditional probability of Y given Z rather than the joint probability: Let
A = Ay × Az be an arbitrary element of AN such that proj−1z (Az) =

YN ×Az ∈ A. If PNMθ
(
proj−1z (Az)

)
> 0, the conditional probability

PNMθ (Y ∈ Ay|Z ∈ Az) is defined as

PNMθ (Y ∈ Ay|Z ∈ Az) =
PNMθ(Ay ×Az)

PNMθ

(
proj−1z (Az)

) . (1.12)

If no A ∈ AN is specified, we refer to the conditional probability as
PNMθ

(
proj−1y · |projz

)
. Note that PNMθ

(
proj−1z (Az)

)
is the marginal proba-

bility that the event Az occurs.
The law PNMθ enables us to define a joint model-design probability mea-

sure PMθ,DN on the product algebra AN on ΩN for design variables and
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variables of interest, ((Yi,Zi) : i ∈ UN) =: (Y,Z) and S, and the sample
variable S defined on

(
2U, 2(∈

U),PD
)

as

PMθ,DN(s×A) :=
∫
A
PDN(S = s; (Y,Z)(ω))PNMθ(dω) (1.13)

for any A ∈ AN [Rubin-Bleuer and Kratina, 2005, Boistard et al., 2015].
We need 2U rather than S for the input space as the survey design
is conditioned on Z and it may hold that PD(s; (Y,Z)(ω1)) = 0 but
PD(s; (Y,Z)(ω2)) > 0. This is unproblematic because for given (Y,Z) =

(y, z) any samples in 2U \ S can be assigned probabilities equal to zero.
Note that the definition (1.13) differs slightly from the original one in

Rubin-Bleuer and Kratina [2005], due to the fact that we allow for in-
formative designs as mentioned previously. The joint probability spaces(
2U ×ΩN, 2(∈

U) ⊗AN,PMθ,DN

)
require the introduction of new projec-

tions projs and projsy from 2U ×ΩN to 2U and 2U × YN respectively.
Note the difference of projs mapping from ΩN to Ωs and projs.

If no asymptotics are considered, i.e. the limit behavior is not under
study, we refer like previously to UN as U, (1.13) is simply PMθ,D, PDN
becomes PD and (ΩN,AN) is abbreviated to (Ω,A).
PMθ,DN allows to study statistical models that rely on subsets of sam-

ple realizations that were generated by a scheme PD. However, the prob-
ability measure (1.13), also allows to assume N → ∞ and for adequate
PDN asymptotic results can be derived. If we assume that UN ⊂ UN+1

for all N ∈N, we can interpret

{(Yi,Zi)}i∈N and
{
PMθ,DN

}
N∈N

as stochastic processes. For the analysis in the limits, often
{{(Yi,Zi) : i ∈ UN}}N∈N is considered.
PDN together with the data growth rule PNMθ allows us thus to define

design consistency of estimators gS,N : SN ×ΩN → Rq as N and n go to
infinity.

Definition 2 (Design consistency). A sequence of estimators {gS,N}N∈N where
gS,N : SN ×ΩN → Rq for a statistic gUN is design consistent if for every

ω ∈ ΩN that is not element of the joint null sets of the elements in
{
PNMθ

}
N∈N

and arbitrary ε > 0

lim
N→∞PDN(|gS,N (S, Y(ω),Z(ω)) − gUN (Y(ω))| > ε;Z(ω)) = 0 .

(1.14)

[Pfeffermann, 1993, Definition 2].

Possibly Definition 2 is too restrictive as we require this property for
all elements that are not element of joint null sets, i.e. (Y,Z) be adapted to
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a complete filtration of the probability space
(
ΩN,AN,PN

Mθ

)
. However,

for less restrictive definitions – that are not required in the following – a
more detailed study on the limit behavior on null sets of AN is required.

Remark 1 (Design consistency of the HT). The HT converges in L2 to the
finite population total and thus converges in probability under the conditions
on the design PD and Y given in Chauvet [2014]. Convergence in probability
means that the HT is design consistent.

Remark 2 (Design consistency of the GREG). If the HT is
√
n-consistent and

the calibration weights converge uniformly (cf. conditions C.2 and C.3 in Kim
and Park [2010]), the GREG is design consistent [Kim and Park, 2010, Theorem
1 and Equation 15].

The definition of PMθ,D also requires an adaption of the Definition of
design unbiasedness to the model-design context.

Definition 3 (Design consistency (revised)). An estimator gS : S×Ω →
Rq for a statistic gU is design consistent if for almost every ω ∈ Ω under
S ∼ PD

ED [gS (S, (Y,Z)(ω))] = gU (Y(ω)) . (1.15)

Often, findings on the asymptotic behavior of finite population estima-
tors have requirements on the sampling design PD [Chauvet, 2014, for
example]. In that context the design entropy is of special concern.

Definition 4 (Entropy). The entropy of a survey design PD is defined as

H (PD) , −
∑
s∈S

PD(s) logPD(s) (1.16)

with the convention that 0 log 0 = 0 [Berger, 1998].

The unique design P̃DN with maximum entropy amongst those with
fixed sample size |S| ≡ n is rejective sampling. Rejective sampling draws
units from UN with a pre-specified probability and with replacement. If
a unit is drawn twice, the complete sample is rejected. The procedure is
repeated until n different units are drawn. For central limit theorems on
the HT, Berger [1998] shows that such a characteristic of the design is the
‘high entropy’ property:

Definition 5 (High Entropy Design). A survey design PDN has high entropy
when the Kullback-Leibler divergence between PDN and P̃DN

D
(
PDN , P̃DN

)
,
∑
s∈SN

PDN(s) log
(
PDN(s)

P̃DN(s)

)
goes to zero.
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If the entropy is high, Berger [1998] shows the asymptotic normality of
the HT. Amongst the other well studied designs are stratified two-stage
sampling designs [Krewski and Rao, 1981] and some unequal probability
designs like the rejective sampling P̃DN [Berger, 1998].

Another remark is on sample informativity: Both Rubin-Bleuer and
Kratina [2005] and Boistard et al. [2015] require for their analysis the
sampling design to be independent of Y, i.e. PD(·; Y,Z) = PD(·;Z) or
equivalently Y ⊥ S. In the next chapter, we will call this non-informativity
of the design. Though the independence is a necessary condition for
their analysis, it is nonetheless thinkable that the condition does not
hold. In the following, we introduce sample informativity concepts in
the framework of the joint probability law.

Assume now that the estimator gS,N aims to estimate the value gMθ(θ)
of a statistic gMθ : Θ→ Rq where ((Yi,Zi) : i ∈ UN) ∼ PNMθ for all N ∈N

and θ ∈ Θ is unknown. In that case, we can introduce model-design
consistency.

Definition 6 (Model-design consistency). Assume a sequence of estimators
{gS,N}N∈N with gS,N : SN×ΩN → Θ̃ ⊃ Θ for a statistic gMθ . The sequence is
model-design consistent if

lim
N→∞PMθ,DN

(
|gS,N (S, Y,Z) − gMθ(θ)| > ε

)
= 0 (1.17)

for every ε > 0 and θ ∈ Θ.

If we set PD = 1U, that is S ≡ U almost surely, we call such an estima-
tor gU,N := gUN simply model consistent. The law PMθ,DN = PMθ,D allows
us also to define model-design unbiasedness analogously to Definition
3.

Definition 7 (Model-design unbiasedness). An estimator gS : S×Ω→ Θ̃

is model-design unbiased for a statistic gMθ if for every θ ∈ Θ it holds that

EMθ,D [gS(S, Y,Z)] =
∫
S×Ω

gS (s, Y,Z) dPMθ,D = gMθ(θ) . (1.18)

Again assuming a sequence of laws {PMθ,DN}N∈N, unbiasedness can
also hold asymptotically. Again, if PD = 1U and S ≡ U almost surely,
that is, a ‘degenerate’ survey design, the estimator gS , gU is simply
called model unbiased if Definition 7 holds.

In the context of mixed models or GVFs, we often find the term predic-
tor. This notion is often used without a precise definition. A predictor
is usually a special estimator for a finite population statistic gU under
a model Mθ. In order to provide an exact reference for the following
chapters, we give here Definition 8.
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Definition 8 (Predictor). A function gS : S×Ω→ Rq is a predictor for the
non-sampled units U \ S if the estimand is YU\S or a function gU

(
(YU\S, yS)

)
.

In contrast to estimation, the statistical proximity of a predictor gS
with respect to gU

(
(YU\S, yS)

)
must be a proximity criterion of PNMθ,D-

measurable, non-constant functions. For an estimator gS in model-based
statistics, the function that is proxied in a statistical sense is a constant,
namely gMθ(θ). The attempt to make statements on gU as a random
variable under a model M rather than on a constant statistic is the
biggest difference between a predictor and an estimator in model-based
statistics. This peculiarity of predictors needs an adjustment of model-
design unbiasedness and consistency to model-based predictors: Defi-
nition 6 is applicable to predictors if the statistic gMθ(θ) is replaced by
EMθ,D [gU(Y)] = EMθ [gU(Y)] [Isaki and Fuller, 1982]. Similarly, replace in
Definition 7 gMθ(θ) with E [g(Y)]. Though the estimand is gU

(
YU\S, yS

)
a

replacement in the definitions with EMθ,D
[
gU
(
YU\S, yS

)]
makes no sense

because S is variable and therefore the indices in the sub-arrays YU\S and
yS change; requiring once to condition on Yi = yi for S = s and once to
integrate Yi for S = s′. This, however, means that the consistency and
unbiasedness of a predictor heavily depends on the correct choice of the
model family M and a good parameter estimator for θ.





2
M U LT I L E V E L R E G R E S S I O N A N A LY S I S I N B U S I N E S S
S U RV E Y S

2.1 introduction to design-sensitive regression analysis

This chapter builds upon the discussion papers Burgard and Dörr [2019]
and Dörr and Burgard [2019]. Though the topic of design-sensitive re-
gression modelling is not new in the literature [Fuller, 1975, Isaki and
Fuller, 1982, Pfeffermann, 1993, Kott, 2018, e.g.], and even not to the
(generalized) LMM literature [Pfeffermann et al., 1998, Rabe-Hesketh and
Skrondal, 2006, e.g.], the introduced algorithm in Burgard and Dörr
[2019] and extended in Dörr and Burgard [2019] has some peculiarities.
But before discussing the special case of random effects models and the
stochastic optimization employed in the later discussed algorithm, we
first review the role of survey design in regression analysis in general.

As already mentioned in Section 1.3, empirical researchers often use
an estimator gS in regression analysis that is an element of a sequence of
estimators {gUN}N∈N for a statistic gMθ(θ) with model parameter θ ∈ Θ.
It is assumed that the population only consists of the sample S, i.e.
PD = 1U and S ≡ U almost surely, which is rarely the case. The problem
then lies often in the assumption that good statistical properties of the
sequence {gUN}N∈N apply on gS regardless the design PD. This assump-
tion, however, is only justified when the sample design is non-informative.

Definition 9 (Sample Informativity). A survey design PD(·; (Y,Z)) is non-
informative if it holds for every s ∈ 2U and A ∈ A and almost every z ∈
projz(A)

PMθ,D
({
U×

(
projsy(A)× YU\s

)}
|projz

)
= PNMθ

(
projsy(A)× YU\s|projz

)
, (2.1)

Otherwise, the survey design is informative.

Pfeffermann [1993, Definition 3] gives almost the same definition us-
ing the density of PMθ,D. However, he has forgotten to account for the
variability of S in his condition. That means, that the condition in Pf-
effermann [1993, Definition 3] needs to hold for every sample s ∈ 2U.
Furthermore, Y ⊥ S|Z is equivalent to the design being non-informative
and both is shown in Appendix A.

Remark 3. Definition 9 for a non-informative design is equivalent to the state-
ment that Y ⊥ S given the information Z.

17
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As U ∈ 2U, it follows from Definition 9 that we can simplify the defi-
nition of design non-informativity.

Remark 4. A survey design PD(·; (Y,Z)) is non-informative if the marginal
distribution of Y given Z under PNMθ is the same as under PMθ,D, i.e. for any
A ∈ A and almost every z,

PNMθ

(
proj−1y ∈ A|projz

)
= PMθ,D

(
proj−1sy ∈ {U×A} · |projz

)
When the inference based on PNMθ and PMθ,D given the auxiliary infor-

mation is identical, it is possible to choose for a drawn sample S = s the
appropriate element n from a sequence of estimators {gUN}N∈N where
|Un| = |s|, set gS = gUn and to rely on the properties of the estimator
on PNMθ

(
projsy

−1 ∈ ·|projz
)

. For example, known (asymptotic) behavior
of gUk for the moments can be applied with Remark 5 noting that for
non-informative PD, ED [gUn (Ys)] = gUn (Ys).

Remark 5. Assume that first and second PNMθ-moments of gS(s, Y,Z) exist for
every s ∈ 2U. In that case, in Appendix A it is shown that

EMθ,D [gS(S, Y,Z)] = EMθ [ED [gS(S, Y,Z)]] (2.2)

and

VarMθ,D [gS(S, Y,Z)] = VarMθ [ED [gS(S, Y,Z)]]
+ EMθ [VarD [gS(S, Y,Z)]] . (2.3)

That means, a design unbiased estimator for the statistic gU(Y) which
is in turn model-unbiased for the statistic gMθ(θ) is model-design unbi-
ased. Furthermore, there is a decomposition for the triple

(
gS,gU,gMθ(θ)

)
into the effect of using gU for the estimation of gMθ(θ) (inter-group vari-
ance – the variance of the expected finite population estimator) and the
effect of only having a random subset available, i.e. using gS instead of
gU (intra-group variance – the expected sample variance). However, note
that the added stochasticity by the subsetting process does not bother the
expectation if as estimator a design unbiased gS is used rather than the
complete realization (meaning gU), but adds variability to the estimation
procedure.

When the probability laws PNMθ and PD are combined like in Equa-
tion (1.13), two questions arise consequently: First, what happens to an
estimator gS ∈ {gUN}N∈N when the assumption of non-informativity is
violated and second, is there an alternative estimator g̃S that accounts
for informativity?

In the rest of the chapter, focus lies on regression analysis. Like in-
dicated in the introduction, we thus shift the notation from (Y,Z) to
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(Y,X) with Xi being a Rp-valued random vector with realization x =

(xi : i ∈ U) and Yi taking values in R for each i ∈ U. Kott [2018] gives
an overview about design-sensitive (generalized) linear models – and fo-
cuses on regression models where design-sensitivity is achieved by the
use of survey weights

wi ≈
1

ED[1S(i)]
. (2.4)

Survey weights can differ from design weights 1
ED[1S(i)]

due to calibra-
tion and non-response adjustements. In general, survey and design weights
should be close to each other, though. In his analysis, he even accounts
for the case of calibrated weights in regression analysis and outlines the
consistency of estimated regression parameters under weighting. From
Section 2.2 on, we focus on weights that return the HT model-design
unbiased and call these also survey weights.

The weighting becomes necessary in Kott’s (2018) analysis if there is
an i ∈ U such that we have for the zero-centered and independently
distributed error εi a conditional expectation EMθ,D(εi|Xi,wi) 6= 0. An
alternative derivation for weighted linear regression estimators is as fol-
lows with estimand β and VarMθ [εi] ≡ σ

2:
The classical Ordinary Least Squares (OLS) regression estimator β̂S,

given the data x ∈ XN ⊂ RN×p and the sample matrix diag(1S) with
diagonal vector 1S = (1S(i) : i ∈ U) and zero else, is

β̂S =
(

xT diag(1S)x
)−1

xT diag(1S)Y Y , (Yi : i ∈ U)

Assume that the sample design is non-informative. In that case, we have
(given X = x fixed)

EMθ,D

[
β̂S|X = x

]
=

∫
S×R

β̂S dPMθ,D(·|X = x)

=

∫
S

∫
R

β̂S dPNMθ(·|X = x)dPD

=

∫
S

EMθ

[(
xT diag(1S)x

)−1
xT diag(1S)(xβ+ ε) |X = x

]
dPD

=

∫
S

βdPD = β . (2.5)
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Furthermore, β̂S is model-design consistent for non-informative PD be-
cause for any η > 0 and almost every X, we have

PNMθ,D

(
‖β̂S −β‖ > η|X = x

)
6 EMθ,D

[
tr
((

xT diag(1S)x
)−1
· εεT

)
|X = x

]
1

η2

= EMθ,D

[
tr
((

xT diag(1S)x
)−1)

|X = x
]
σ2

η2

6 tr
(

EMθ,D

[
xT diag(1S)x|X = x

])−1 σ2
η2

6
1∑

i∈U πix
T
i xi

σ2

η2
(2.6)

and for n,N→∞ where Xi ∼iid P
proj−1x
Mθ

, this last term goes to zero.
If the sample is informative, on the other hand, the second equality

in (2.5) and the third line in (2.6) is not valid any more because PD =

PD(·; (Y,X)) 6= PD(·;X) and the OLS estimator is biased and inconsistent.
To see the latter, note that the design is informative if there exists a
nonlinear, non-negative function f such that PD = f(ε). If the design
remains informative in the limit, this relation remains as N → ∞. The
PMθ,D-expectation of the minimization problem

1

N
·
∑
i∈U

1S(i) · (Yi − xTi β)
2 (2.7)

is then constantly different from the finite population based minimiza-
tion problem and does not even converge to zero for N→∞. Then, the
solution to the minimization problem (2.7) also deviates systematically
from the finite population solution β̂U even in the limit.

With survey weights w = (w1, . . . ,wN), wi = 1
ED[1S(i)]

the weighted
OLS estimator,

β̂
w
S =

(
xTWSx

)−1
xTWSY

WS = diag(w1 · 1S(1), . . . ,wN · 1S(N)) ,

on the other hand, is the outcome of the stochastic minimization prob-
lem given X = x

1

N
·
∑
i∈U

1S(i) ·wi · (Yi − xTi β)
2 (2.8)

and we get as the PMθ,D-expectation of the gradient of (2.8)

−2

N
·
∑
i∈U

1S(i) ·wi · (Yi − xTi β)xi
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the vector
−2

N

∑
s∈2U

∫
YN

PD(s; (Y,X))
∑
i∈U

1s(i) ·wi · (Yi − xTi β)xi dPNMθ(·|x)

=
−2

N

∫
YN

∑
s∈2U

PD(s; (Y,X))
∑
i∈U

1s(i) ·wi · (Yi − xTi β)xi

dPNMθ(·|x)

=
−2

N

∫
YN

∑
i∈U

(Yi − xTi β)xi dPNMθ(·|X = x)

ind
=

−2

N

∑
i∈U

EMθ [εi|X = x] xi = 0 ,

which is equal to the first order condition for the finite population OLS
estimator β̂U, namely −2

N

∑
i∈U Yi − xTi β̂U = 0 which in turn yields a

model-unbiased estimator for β.
With Remark 5, we find thus that the survey-weighted gradient is

model-design unbiased for the finite population first order condition.
Furthermore, we get as model-design covariance matrix of the gradi-
ent the diagonal matrix 4

N2
IN · σ2, which converges to the zero matrix.

Thus, the survey-weighted gradient is model-design consistent (apply
Markov’s inequality to show this). Confer Lumley [2010, Chapter 5] for
a more detailed derivation of β̂

w
S .

The unbiasedness and consistency of β̂
w
S without the non-informativity

of the design. We can thus conclude that even in the simplest case of
regression analysis, informative designs can be problematic when esti-
mates for superpopulation parameters are desired. Survey-weighting of
parameter estimators, though, gives a certain advantage with respect
to desirable statistical properties in contrast to unweighted estimators
because the joint model-design distribution is explicitly taken into ac-
count. In the next section, survey-weighting is discussed for a more
complex regression problem. In the statistical problem formulation pre-
sented below, OLS is no more applicable due to the introduction of ad-
ditional random effects into the model. Instead, (Pseudo-)ML estimators
are used. The procedure, however, is similar: One seeks to find a design-
unbiased estimator for the objective function that theoretically would be
optimized on the complete finite population if the latter had been ob-
served. A discussion for ML estimation in a finite population context is
given in Royall [1976].

2.2 survey-weighted mixed models

2.2.1 Model Formulation at the Population Level

Assume that to each unit i ∈ U, a vector of characteristics (yi, xTi , zi)T is
attributed and yi ∈ Y ⊂ R, xi ∈ X ⊂ Rp and zi ∈ Z ⊂ Rq. Both arrays,
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x and z, are explanatories, but will play different roles in the following.
Like in the previous section, the random process of the explanatories
x := (xi : i ∈ U) and z := (zi : i ∈ U) shall be disregarded – the analysis
is conditional on x and z. In this section, we assume as DGP mixed effect
models of the type

ηi|G ∼ind N
(

xTi β+ zTiG,ϕ2
)

, ϕ2 ∈ [0,∞) (2.9a)

G ∼ N (0,Σ) (2.9b)

Yi ∼ind F(h
−1(ηi; λ),σ2) for alli ∈ U, (2.9c)

where N(m,C) represents the (multivariate) normal distribution with
expectation (vector) m and variance (covariance matrix) C. F is a distri-
bution that will be discussed in the following.

We differentiate between two scenarios: First, consider the distribution
of ηi|G to be degenerate, i.e. ϕ2 = 0. In that case, be h−1 an inverse link
function and let F belong to the exponential family. In this case, the DGP
from (2.9a) to (2.9c) describes a Generalized Linear Mixed Model (GLMM)
[McCulloch, 1997, Booth and Hobert, 1999]. For some distributions F
from the normal family, another scaling parameter 1 6= σ2 > 0 is re-
quired.

The second scenario considers ϕ2 > 0 and h−1 to be the inverse of the
Box-Cox or Dual transformation where in both cases h : (0,∞)→ R and

hBC(y; λ) =

yλ−1
λ , if λ 6= 0

logy, if λ = 0
(2.10)

for the family of Box-Cox transformations [Box and Cox, 1964] and

hD(y; λ) =

yλ−y−λ

2λ , if λ > 0

logy, if λ = 0
(2.11)

for the family of Dual transformations [Yang, 2006]. When we have gen-
eral notation with h ∈ {hBC,hD}, we omit the subscript. Then, (2.9a) to
(2.9c) describe (approximately) a mixed model under data transforma-
tion with Yi following an element F from the family of power distribu-

tions such that h(Yi, λ) ∼ind
d
= ηi. In that case, F does not require an addi-

tional scaling parameter σ2. That means, in the first setting, the scaling is
determined by σ2 and in the second by ϕ2. We refer in the following to
the scaling parameter simply by σ2. From the context, it should be clear
whether a scaling parameter in (2.9a) or (2.9c) is meant.

The approximation results from the fact that in Equations (2.10) and
(2.11), λ > 0 requires for the inverse h−1 that the dependent variable
be greater than zero. For normally distributed random variables (such
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as the conditional distribution of η = (ηi ∈ U)), this is not the case
but holds with high probability for high expectations and relatively
small variances. The precise model formulation for scenario two there-
fore would require a truncated normal distribution in (2.9a). This second
type of mixed models is studied in Gurka et al. [2006] and Rojas-Perilla
et al. [2017].

The symmetric variance-covariance matrix Σ is built of at most q(q+1)2

different elements summarized in the vector ρ. The model M’s parame-
ter vector is thus θ = (βT ,ρT ,σ2, λ)T , where λ might be omitted depend-
ing on the particular model set-up.

Note that in Section 1.3, we required an identically and independently
distributed (iid) structure for the random variables (Yi,Zi). Usually, G
can be splitted into sub-vectors,
GT = (GT11, . . . ,G

T
1q1

,GT21, . . . ,G
T
2q2

, . . . ,GTkqk) such that Gl1m1 ∼iid Gl2m2
if l1 = l2 and Gl1m1 ⊥ Gl2m2 for any l1 6= l2 and m1,m2. For l1 = l2
and m1 6= m2, such sub-vectors are (by the construction of Z = z) added
to different units i ∈ U. Define an isomorphic map to the partitions of
{1, . . . ,q}

ι : {(l,m) : l = 1, . . . ,k, m = 1, . . . ,qm}→ {C : ∪· C∈CC = {1, . . . ,q}}

such that the conditions above are fulfilled for the corresponding sub-
vectors of G. Stacking together such units i ∈ U that share the same ran-
dom sub-vectors of G, i.e. (Ỹι(l,m) := (Yi : Zi,ι(l,m) 6≡ 0)) we can restablish
the iid assumptions for (Ỹ, X̃, Z̃). In that case, ML estimators for ρ are con-
sistent if no additional covariance structure is imposed on Glm.Because
the model law is not any more a product measure for (Y,X,Z), we re-
fer in the following to the joint distribution of (Y,X,Z) simply as PMθ
instead of PNMθ .

Let γ be a realization of G. The finite population joint log-likelihood
that would be used for parameter estimation under a purely model-
based framework ignoring PD (say gU in the previous section), is

LL(y,γ; θ) ,
∑
i∈U

vi︸ ︷︷ ︸
=:A

+B (2.12a)

with

vi ,

(
ηiyi − b(ηi) + c(yi)

a(λ)

)
(2.12b)
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in the GLMM setting and

vi ,

(
−
(ηi − xTi β− zTi γ)

2

2σ2
+ log

∂h(yi; λ)
∂yi

−
1

2
log(2π) −

1

2
logσ2

)
(2.12c)

in the power transformation setting and

B = −
1

2
log detΣ−

1

2
γTΣ−1γ−

q

2
log(2π) . (2.12d)

For GLMMs, the functions a, b and c are known and depend on the
distribution F. The fact that the first term in (2.12b) is ηiyi implies that we
consider here canonical link functions h. Note that ηi is fixed conditional
on γ in the GLMM framework whilst it is a normal random variable
with variance σ2 under the power transformation framework. Due to the
positivity requirement for power transformations, the population log-
likelihood (2.12c) is only approximate, ignoring the truncation.

Both shapes in (2.12) reveal the nice property that – assuming that γ
could be observed – optimization of LL with respect to ρ is indepen-
dent from that of the fixed effects parameters (βT ,σ2, λ), which eases the
computational burden.

For the GLMM setting, note that the Hessian of (2.12b) is globally con-
cave in the fixed model parameters and consequently, the maximizer

θ̂pop = arg maxLL(y,γ; θ) (2.13)

is unique given that ρ is such that Σ is unique. For example, ρ̂ is unique
when G is block diagonal with repeating blocks and without a struc-
ture other than symmetry and positive definiteness imposed on disjoint
blocks. A proof can be found in the Appendix A. Like in the GLM set-
ting [Wedderburn, 1976], thus, GLMMs have unique joint maximum like-
lihood estimators under the canonical link, with unstructured random
effects covariance matrix.

For the setting under Box-Cox and Dual transformations, however,
the log-likelihood is more problematic: First of all, note that the log-
likelihood (2.12c) is for a ‘true’ λ 6= 0 only approximative because the
support of h(Yi; λ) is bounded for the Box-Cox transformation, which
is in contrast to a Gaussian random variable’s support [Hernandez and
Johnson, 1980b, Yang, 2006].

Second, for a well-defined maximum likelihood estimator, the param-
eter space of λ must be necessarily restricted to [0,∞) for the Dual trans-
formation to make models identifiable. This restriction is not always
mentioned in the literature [Yang, 2006].

Third, though β̂U and ρ̂U for the finite population are uniquely de-
termined given λ̂U, the concentrated log-likelihood has second order
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derivatives with respect to λ that are only concave in an environment
around λ̂U. This is in so far problematic as numerical optimization al-
gorithms act locally and depend on the choice of starting values. The
partial differentiation of (2.12c) with respect to (βT , λ) yields the score
function. For the Box-Cox transformation, the score is equivalent to the
estimating equations discussed in Foster et al. [2001]. The score’s roots
on [0,∞) for λ are not necessarily unique in expectation, thus, the ML
is not PMθ-consistent if the compact interval I ⊂ [0,∞ in which one
searches for λ is too large.

Hernandez and Johnson [1980b] give conditions under which (2.12c)
yields strongly consistent parameter estimators under Box-Cox transfor-
mations for the fixed effects – amongst others, a unique global maximum
of EMθ [LL] must exist. The findings in Hernandez and Johnson [1980b]
are easily transferable to the mixed effect model as shown in Appendix
A.

Assuming that the consistency conditions hold for θ and its parameter
space Θ, we can thus go on to introduce a survey design PD. Again, the
aim is to have a PMθ,D-consistent estimator for θ.

2.2.2 Likelihood Approach under Survey Sampling

From the finite population U, a random sample S ⊂ U is drawn with
survey design PD, S ∼ PD(·; (Y,X,Z)). Because of a possible design in-
formativity (cf. Section 2.1), it is thus desirable to construct an estimator
gS for the model parameter θ, that is not only consistent for S ⊥ Y

given X and Z (cf. Remark 3) but also in the general case. Let PMθ,D
be defined like in (1.13). The iid assumption comes from rearranging to
(Ỹ, X̃, Z̃) like in the previous section. We define further the random sub-
set S̃ ⊆ {(l,m) : l = 1, . . . ,k, m = 1, . . . ,ql} where S̃(S) := {(l,m) : ∃i ∈ S :

Ziι(l,m) 6≡ 0}. This means that S̃ captures the indices whose correspond-
ing element in G appears also impacts YS. GS is the sub-vector of G such
that there are units in S which have added elements from GS.

The unweighted sample likelihood LLS is

LLS(y,γ; θ) ,
∑
i∈U

1S(i) · vi︸ ︷︷ ︸
=:AS

+BS (2.14)

where

BS , −
1

2
log detΣS −

1

2
γTSΣ

−1
S γS −

dimΣs

2
log(2π) (2.15)
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and

ΣS , diag

 Σ1, . . . ,Σ1︸ ︷︷ ︸∑q1
m=1 1S̃((1,m))- times

, . . . , Σk, . . . ,Σk︸ ︷︷ ︸∑qk
m=1 1S̃((k,m))- times

 .

(2.16)

In a first step, assume that the survey design is such that the probability
equals one that the outcome zS := (zi : i ∈ S) has full column rank q.
This means that PD is constructed such that for a grouping j = 1, . . . ,k
in G, GT = (GT11, . . . ,G

T
1q1

, . . . ,GTk1, . . . ,G
T
kqk

) with
∑k
j=1 |Gj1| = q, and

for all Gjm ∼ Gjν and Gjm ⊥ Gj′ν, at least one observation of the finite
population U enters the sample, i.e. S̃ ≡ {1, . . . ,q}. Then we can simplify
from BS to B. For example, this is the case when the survey design is
stratified.
S can also be represented by the vector 1S (cf. Section 1.3); one gets

therefore for the first moment in such designs

EMθ,D [LLS|X,Z] =
∫
S×Ω

LLS dPMθ,D(·|X,Z)

Eq.(1.13)
=

∑
s∈S

∫
Ω
LLs · PD (s; Y,X,Z) dPMθ(·|X,Z)

=

∫
Ω

∑
s∈S

LLs · PD (1s; Y,X,Z) dPMθ(·|X,Z)

=

∫
Ω

∑
i∈U

PD(i ∈ S; Y,X,Z) · vi +BdPMθ(·|X,Z) (2.17)

6=
∫
Ω

∑
i∈U

vi +BdPMθ = EMθ [LL|X,Z] . (2.18)

For a non-informative design, however, the integrals conditioned on
(X,Z) can be interchanged and we get for (2.17) the same maximizer
due to the separability of the optimization of ρ and (β, λ,σ2). Theorem
5.1 from Rubin-Bleuer and Kratina [2005] holds and thus, the ML esti-
mators conditional on (X,Z) defined by arg maxLLS converge in PMθ,D-
probability to θ under the conditions that are required for convergence
in PMθ . Note, though, that the maintenance of strong consistency is not
proven.

Because Theorem 5.1 from Rubin-Bleuer and Kratina [2005] is not
applicable under non-informative design, alternatives to the estimator
arg maxLLS for θ are required that account for survey design. Note that
LL has the shape of a population total (A =

∑
i∈U vi) plus a constant (B)

that can – under a stratified design like outlined above – be estimated
by the HT-estimator [Horvitz and Thompson, 1952]

L̂L(y,γ,S; θ) :=
∑
i∈U

wi · 1S(i) · vi +B (2.19)
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where B is independent from the sample because of the design assump-
tion on PD. Clearly,

ED
[
L̂L
]
= LL . (2.20)

Furthermore, as shown in Appendix A, the application of Remark 5

yields

EMθ,D

[
L̂L|X,Z

]
= EMθ [LL|X,Z] . (2.21)

The finite population estimator 1
NLL is consistent due to the law of large

numbers, LL
N

PMθ−−−−→
N→∞ EMθ [LL], for a population growth where also the

dimension of Z grows (q → ∞) because the iid assumption holds for
(Ỹ, X̃, Z̃). Furthermore, Remark 1 states the consistency of the HT estima-
tor under certain survey designs. Stratified Random Sampling (StratRS)
belongs to these designs when the number of strata (i.e. the groupings
j = 1, . . . ,k of G) increases and the sample size within strata is fixed/
increases slower than the growth rate of stratum size [Chauvet, 2014,
Proposition 3.1]. We can thus conclude from the second-order differen-
tiability of LL the continuity of arg maxLL and therefore the model-
design consistency of

θ̂ = arg max
θ̃

L̂L(Y,G,S; θ̃) . (2.22)

In a next step, assume that the survey design PD is not necessarily
stratified. In that case, it is not assured anymore that observations con-
taining information on Gjν, ν = 1, . . . ,qj enter the sample S (S̃ is in
that case not a partition of {1, . . . ,q}). In that case, B 6= BS does not
enter as such the sample likelihood, because only observations YS con-
taining information from the random sub-vector γS are in the sample
S. Consequently, also the sample variance-covariance matrix ΣS (2.16) is
random. If the survey design depends on G, i.e. PD = PD(·; Y,G,X,Z) 6=
PD(·; Y,X,Z), the unweighted ML covariance matrix (cf. the derivation
thereof in the Appendix A) is not consistent any more.

Though ΣS resembles in its structure the variance-covariance matrix
Σ, it is usually of lower dimension as some of the block matrices Σj
(or the m-th repetition thereof, cf. Equation (2.16)) are missing. Survey-
weighting of the first component in (2.19) thus yields a disproportion
between the terms AwS =

∑
i∈Uwi · 1S(i) · vi and BS in the sense that it

does not correspond – in expectation – to the relation between A and B
in Equation (2.12), which can distort parameter estimation if the survey
design is informative (but not informative on G).

Assume therefore that there is a smaller finite population Un with
n = ED[|S|] generated by the same statistical model Mθ. Obviously, the
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asymptotic findings hold for the estimators of this population, too, as
Un ∈ {UN}N∈N. Then, the scaled joint log-likelihood

L̃L(y,γ,S; θ) ,
∑
i∈U

w̃i · 1S(i)vi +BS (2.23)

w̃i ,
wi∑

i∈U 1S(i) ·wi
|S| (2.24)

can be interpreted as an estimator of this reduced population joint log-
likelihood if S ⊥ G|Y,X,Z. This seems a plausible assumption in practice
as the term G is usually referred to as ‘unobserved’ heterogeneity - it is
thus a theoretical concept. If clustering or stratification is part of PD, this
is therefore rather implemented using the observables (Y,X,Z).

An alternative to the rescaling of the HT joint log-likelihood would
be a weighting procedure for the terms in BS, leading to a weighted
covariance matrix. This would be complicated, though, as one would
require PD(ι(j,m) ∈ S̃) at least for those random sub-vectors that are in
S̃. This is however the probability that PD

(
Cjm ⊂ S

)
where

Cjm =
{
i ∈ U : Zi,ι(jm) 6≡ 0

}
, requiring to know higher order inclusion

probabilities of the units in U.
In the following, we use for generalization γS, remembering that γS =

γ and ΣS = Σ under Z-stratified designs. Furthermore, we omit the
explanatories x and z, though the analysis is conditioned on the random
outcomes.

2.2.3 Maximization of the HT Joint Log-likelihood

The difficulty of ML estimation in this context is that the random vec-
tor realization γ is not observed in practice. The Expectation Maximiza-
tion (EM)-algorithm [Dempster et al., 1977], though, offers a chance to
get the ML estimator given a good starting value θ0 for the iterative op-
timization procedure. For GLMMs, the likelihood is globablly concave (cf.
Subsection2.2.1) meaning that LL only has one stationary point equal to
its global maximum – EM-maximization of L̃L therefore should yield a
model-design consistent estimator. For LMMs under power transforma-
tions, on the other hand, global concavity is not given and the choice of
θ0 is more important.

The EM algorithm iterates, within the survey sampling framework, for
a given realization s and y between the calculus of the expectation of
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the joint log-likelihood given parameter estimate θk, sample s and the
observed information ys = (yi : i ∈ s)

EMθ,D

[
L̃L(y,G, s; θ)|θk

]
,∫

R|s̃|

∑
i∈U

w̃i · 1S(i) · vi +BS dPMθk (proj
s
G
−1)

(2.25a)

and the maximization of this conditional expectation

θk+1 = arg max
θ∈Θ

EMθ,D

[
L̃L(y,G, s; θ)|θk

]
.

(2.25b)

The applications of the EM algorithm for unobserved heterogeneity in
longitudinal studies dates back to Laird and Ware [1982], where the au-
thor discussed precisely a LMM framework. Wu [1983] shows that the
EM algorithm converges to a stationary point of the joint log-likelihood
under conditions that are fulfilled here, namely the continuity of
EMθ,D

[
L̃L(y,G, s; θ)|θk

]
and ∇θEMθ,D

[
L̃L(y,G, s; θ)|θk

]
in both θ and

θk. In the GLMM framework, even convergence to the global maximum
is guaranteed due to the unimodality of L̃L [Wu, 1983]. In consequence,
at least for an appropriate choice of θ0 in an environment around θ, con-
vergence to the ML estimators for the rescaled HT joint log-likelihood
(2.23) is assured, which implies the model-design consistency of the EM
estimators for the number of optimization steps k going to infinity.

The E-step (2.25a) is problematic, though. If h 6= id, the conditional
density of γs given s and ys is not normal anymore. Even for h = id,
the (conditional) normality assumption for the unobserved heterogene-
ity can be violated for a complex design PD. Thus, contrary to the argu-
ment in Laird and Ware [1982] who ignored survey design, analytical
integration can become cumbersome. When the dimension of the ran-
dom effects q is large, also numerical approximation loses accuracy and
can become impractical. A possible solution to that problem is Monte
Carlo (MC) integration, which has already been applied successfully
to GLMMs [McCulloch, 1997, Booth and Hobert, 1999, Zipunnikov and
Booth, 2006]. However, note that none of the named studies used Monte
Carlo integration when survey weights or transformations on the de-
pendent variable were required. When the E-step of the EM algorithm
is approximated by MC integration, this modified algorithm is called
Monte Carlo Expectation Maximization (MCEM) algorithm [Wei and Tan-
ner, 1990]. In summary, the idea is to sample in E-step k b = 1, . . . ,Bk
times

G
(b)
s ∼ F(G|y, s; θk) (2.26a)
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and to use the MC mean in step k as an estimator for the integral:

ÊMθ,D

[
L̃L
]
,
1

Bk

Bk∑
b=1

L̃L
(

y,G(b), s; θ
)

(2.26b)

and to maximize this approximation in the subsequent M-step:

θk+1 , arg max
θ

ÊMθ,D

[
L̃L
]

(2.26c)

[Neath, 2013]. Equation (2.26b) converges for Bk →∞ by the strong law
of large numbers with probability one, if G ⊥ S|X, Y,Z to the expectation
of (2.23). Remember that the conditional orthogonality is necessary for
L̃L to be a consistent estimator for the reduced finite population. The
law of large numbers, however, is only applicable for Bk →∞within one
E-step k. For k → ∞, the behavior is not so obvious. Furthermore, for
consistency results on PMθ,D, also the number of observations, |S| needs
tend to infinity which requires a profounder study of the convergence
behaviour of MCEM. Neath [2013] summarizes conditions under which
the MCEM algorithm converges for curved exponential families. However,
these are not the models considered here and thus, we refer to Sherman
et al. [1999, Assumptions A1’ and A2’]. For almost sure convergence of
{θk}k∈N, it must hold for some δ > 0 and Bk ≡ B

lim
B→∞Bδ EMθ,D

[
sup
θk

‖arg max
θ ′

ÊMθ,D

[
L̃L(y,G, s; θ ′)|θk

]
−

arg max
θ ′

EMθ,D

[
L̃L(y,G, s; θ ′)|θk

]
‖

]
<∞

(2.27a)

and

arg max
θ

EMθ,D

[
L̃L(y,G, s; θ)|θk

]
is Lipschitz in θk. (2.27b)

Sherman et al. [1999] add to the requirements another limit which is
because they employ a Gibbs sampler for the MC E-step. Depending on
the Lipschitz constant, different requirements on δ are imposed to guar-
antee almost sure convergence of the MCEM. In the next paragraph, we
employ independent sampling for G(b), b = 1, . . . ,B, so we omit this
limit condition here. Condition (2.27a) means that uniform convergence
in L1 is required for the MC integration – the optimizer θk+1 of the MC
E-step must be close to that one of the original E-step under all possible
predecessors θk with a certain speed faster than O(Bδ). Condition (2.27b)
assures good (and stricter than usual) properties of the original EM al-
gorithm that become necessary to link EM and MCEM: It is equivalent
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to requiring that the set of estimators based on θk ∈ Θ are equicontin-
uous sets. If (2.27b) holds with a Lipschitz constant < 1, the sequence
arg max EMθ,D

[
L̃L(y,G, s; θ)

]
has a fix point for any θ0 ∈ Θ implying a

set of stationary points. In condition i) of Theorem 1 in Sherman et al.
[1999], the rate with whom the number of MC samples B must increase
for k→∞ is given for contractions. If the Lipschitz constant is greater or
equal to one, however, Sherman et al. [1999] provide faster growth rates
for B. Booth and Hobert [1999] state convergence of MCEM for GLMMs,
too, but do not give the necessary growth rates for B. For an overview
about additional convergence results for MCEM, see Neath [2013].

Though we do not give a proof for the consistency of MCEM in the
situation presented here, we have the following intuition: arg max is im-
plicitly defined by the solution to the first order conditions and is contin-
uous in its argument. For Θ compact and because PMθ is also continuous
in θ, there exists a θk ∈ Θ such that

sup
θ̃

‖arg max
θ

ÊMθ,D

[
L̃L(y,G, s; θ)|θ̃

]
−

arg max
θ

EMθ,D

[
L̃L(y,G, s; θ)|θ̃

]
‖

=‖arg max
θ ′

ÊMθ,D

[
L̃L(y,G, s; θ ′)|θk

]
−

arg max
θ ′

EMθ,D

[
L̃L(y,G, s; θ ′)|θk

]
‖

As B → ∞, this term converges in probability to zero. If one can now
show uniform integrability, it follows the L1 convergence, i.e. Condi-
tion 2.27a. Furthermore, we have argued for the local convergence of
the EM algorithm. This implies an environment around θ for which
arg max EMθ,D

[
L̃L(y,G, s; θ)|θ̃

]
is a contraction and no additional re-

quirements on δ are needed.
Note further that convergence also requires the sequence {Bk}k∈N needs

to increase: Otherwise, the MC error persists and might for close to op-
timal θ̂ be so large that with positive probability, one quits the optimal
neighborhood [Neath, 2013].

Still, the MCEM composed of the iterative application of Equations
(2.26) poses a problem in practice: Sampling from the conditional distri-
bution ofG given S = s and the observable random variables, F(G|y, s; θk),
is not straightforward – the distribution Fmight even be unknown. How-
ever, we have the relation

F(G|Y,S; θk) =
F(Y,G,S; θk)
F(Y,S; θk)

(2.28)

where the numerator is the joint distribution of Y, G and S and the
denominator is the joint distribution of Y and S; G is integrated out.
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Consequently, F(G|Y,S; θk) is proportional to exp(L̃L). It is thus possi-
ble to generate random draws γ(b), b = 1, . . . ,B from a proposal with
the same support as F (which is RdimΣs) and to reweight the realizations
in function of exp

(
L̃L(γ(b))

)
and b = 1, . . . ,Bk. This is an importance

sampling approach where the normalizing constant F(Y,S; θk) is not nec-
essary, i.e. self-normalized importance sampling [Owen, 2013, Chapter

9.2] with importance weights in step k for realization γ(b) of G(b) d
= G

equal to

ω
(b)
k ,

exp
(
L̃L(y,G(b),s;θk)

)
/h(γ(b)|y,s;θk)∑B

ι=1
exp

(
L̃L(y,G(ι),s;θk)

)
/h(γ(ι)|y,s;θk)

, (2.29)

where h is the proposal density, possibly with parameters based on the
available information or current parameter estimate θk. If importance
sampling is used, Equations (2.26a) and (2.26b) must be replaced by

G(b) ∼ H(G|y, s; θk) (2.30a)

and

ÊMθ,D

[
L̃L
]
,
1

B

B∑
b=1

ω
(b)
k L̃L

(
y,G(b), s; θ

)
. (2.30b)

There exist several suggestions for proposal distributions. Booth and
Hobert [1999] argue that the joint likelihood – in their case, without
(scaled) survey weighting – equals the product of the distribution of Y|G
and the distribution of G. Using henceN(0,Σk) as proposal in step k sim-
plifies the computation of the survey weights as the importance weight
(2.29) for realization b in iteration step k reduces to

exp
(
A

(b)
s

)
∑Bk
ι=1 exp

(
A

(ι)
s

) .

However, for moderately large diagonals in Σ, the ‘true’, unobserved
realizations γ may lie so far from the expectation 0 that this proposal
becomes very inefficient. Again, the MC can then be too large to get
close to optimal estimates. The same holds for the suggested rejection
sampling or sequential MC sampling [Booth and Hobert, 1999] which
can take a lot of iterations to pass through the sample space of G.

Instead, Pinheiro and Bates [1995] and Booth and Hobert [1999] sug-
gest to center a symmetric distribution around the mode γk in iteration
k of L̃L(y,γ, s; θk) in MCEM-step k and to use as variance-covariance ma-

trix of the proposal H the inverse of the negative Hessian −
(
∇2L̃L

)−1
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at γk. The proposal is motivated by a second order Taylor approximation
of L̃L around γk:

L̃L(y,γ,S; θk) ≈ L̃L(y,γk,S; θk) +∇T L̃L(y,γk,S; θk)︸ ︷︷ ︸
=0

· (γ− γk)

−
1

2
(γ− γk)

T

(
−
(
∇2L̃L(y,γk,S; θk)

)−1)−1

· (γ− γk) .

(2.31)

Taking the exponential, we get a term that is proportional to a multi-
variate normal distribution with the named parameter values. Whilst
Booth and Hobert [1999] recommend the multivariate t-distribution to
favor sampling from the tails, Pinheiro and Bates [1995] proposes the
multivariate normal distribution. The simulation studies in Burgard and
Dörr [2019] and Dörr and Burgard [2019], suggest that the multivariate
normal distribution is a good proposal.

From a computational point of view, this proposal is burdensome be-
cause an additional optimization must take place in each E-step k to
determine the mode γk. Furthermore, as multivariate normals are gener-
ated from the standard normal by multiplication with the covariance ma-
trix’ square root and addition of the expectation, a matrix C is required

such that CCT = −
(
∇2L̃L(y,γk,S; θk)

)−1
. Powell [1987] elaborates a

version of the BFGS algorithm that returns such a matrix C as the square
root of a working Hessian. Together with the importance sampling and
the BFGS-algorithm suggested in Powell [1987], the MCEM algorithm is
summarized in Algorithm 2.1.

The importance sampling approach and the suggested proposal dis-
tribution have another advantage: Even the simulation of the random
effects accounts for the survey design as it is a function of L̃L. This is
by purpose as integration shall be done with respect to PMθ,D. Alterna-
tive weighted estimators – for example You and Rao [2002] elaborate a
weighted fixed effects estimator β̂ given the estimated variance compo-
nents ρ̂ and σ̂2 that were estimated from an unweighted model – do not
account for the design when estimating ρ. Other weighted estimators are
either restricted to LMMs or a diagonal random effects covariance matrix
Σ [Pfeffermann et al., 1998] or at least restricted to a nested random
effects structure [Rabe-Hesketh and Skrondal, 2006].

2.2.4 Simulation Studies

2.2.4.1 Simulation Set-up

data generating process

The importance of survey weighting in regression analysis receives in-
creasing attention. Olson et al. [2003] and Fairlie and Robb [2009] are
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Algorithm 2.1 MCEM Algorithm with Importance Sampling

Require: Training data, survey weights, start values θ0, convergence cri-
terion, K ∈N, B0 ∈N

Ensure: Vector of parameter estimators θ̂
for k = 0, . . . ,K do

Determine γk = arg max L̃L(y,γ,S; θk) and store C with CCT =

−
(
∇2L̃L(y,γk,S; θk)

)−1
. [Powell, 1987]

Sample b = 1, . . . ,Bk−1 . (E-Step)

U(b) ∼ N (0, Iq)

and generate

G(b) ← γk +C ·U(b)

Calculate importance weights:

ω
(b)
k ←

exp L̃L
(

y,G(b),S, ; θk
)

exp
(
−1
2

(
G(b) − γk

)T
(CCT )

(
G(b) − γk

))
ω

(b)
k ←

ω
(b)
k∑Bk

ι=1ω
(ι)
k

. (The rest of the proposal cancels out due to self-normalization)
Determine

θk+1 ← arg max
θ∈Θ

1

Bk

Bk∑
b=1

ω
(b)
k L̃L

(
y,G(b),S; θ

)
. (M-Step)

if convergence criterion is met then
break

end if
Increase Bk+1 > Bk

end for
Set θ̂← θk
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examples for the use of weights in regression analysis on business sur-
veys. But for regression in combination with a mixed effects structure
and possibly a non-normal dependent variable, though, the impact of
the sample design is not yet intensively studied. In addition, the func-
tioning of the presented MCEM algorithm must be validated. Hence, we
describe in the following simulation studies similar to Burgard and Dörr
[2019] and Dörr and Burgard [2019]. For scenarios with other distribu-
tions from the exponential family or the Box-Cox transformation, consult
these references.

Examples for informative designs in simulation studies are given in
Pfeffermann et al. [1998] and Rabe-Hesketh and Skrondal [2006]. Similar
to these, the design informativity in our simulation study will be based
on the idiosyncratic error Yi − h−1(ηi) given G = γ, h−1 being either the
inverse link function or the inverse of the data transformation. However,
both Pfeffermann et al. [1998] and Rabe-Hesketh and Skrondal [2006]
also employ design informativity based on G, which is not plausible in
practice and for which the previous analysis of our estimation algorithm
is not applicable. We ignore design informativity at this level.

The DGP (which will be reproduced in each simulation run r = 1, . . . ,
1000) is

ηi = β0 + x1,iβ1 + x2,iβ2 +G1,d + (1, x1,i)TG2,g (2.32a)

G1,d ∼iid N
(
0,σ21

)
, d = 1, . . . , 10 (2.32b)

G2,g ∼iid N

(
0,

(
σ22 ρ

ρ σ23

))
, g = 1, . . . , 20 (2.32c)

if unit i is assumed to be in Ud ∩Ug where both sets stem from pos-
sibly independent partitions of the finite population, U = ∪· 10d=1Ud and
U = ∪· 2g=10Ug. The population size is |U| = N = 1000 and the assignment
of unit i to the subsets Ud, d = 1, . . . , 10 and Ug, g = 1, . . . , 20 are com-
pletely random and generated once for all 1000 runs. Furthermore, the
subsets have different (random) sizes – which often destabilizes vari-
ance estimation. The cross-combination of partitions {Ug}g=1,...,20 and
{Ud}d=1,...,10 are given in Table B.2 in Appendix B.

The parameters are set to βT = (β0,β1,β2) = (7,−1, 1) and ρT =

(σ21,σ
2
2, ρ,σ23) = (0.5625, 0.7, 0.3, 0.5). In a first scenario, a generalized lin-

ear mixed model with a Gamma distributed dependent variable with
scale 0.5 and expectation EMθ[Yi|G1,G2] =

1
ηi

is assumed, which means
that the DGP continues with

Y
(1)
i ∼ Γ (1/ηi, 0.5) , (2.32d)

where negative realizations ηi are disregarded in the simulation; remem-
ber that LL was only an approximation for a truncated normal under
power transformations.
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In a second scenario, a mixed effects model with a dual transforma-
tion, the DGP goes on with

h
(
Y
(2)
i ; λ

)
∼ N (ηi, 0.16) (2.32e)

and λ = 0.3 and h is defined in Equation (2.11). Both scenarios generate
a (positive-valued) skewed variable of interest in the population like
they can be found in business surveys, for example variables such as
‘investment’ or ‘return of sales’. Note that the auxiliary variables X1,i ∼
Unif[−0.5, 0.5] and X2,i ∼ Unif[0, 1] are generated once for each i ∈ U and
kept constant across the R = 1000 simulation runs.

sampling randomization

From each of the r = 1, . . . , 1000 generated populations, three samples
with fixed sample size n = 200 are drawn under three different survey
designs. The first design is non-informative and is a Probability Propor-
tional to Size (pps) (without replacement) design with

PD0(i ∈ S; X) ∝ x2,i . (2.33)

The other two designs are informative with respect to the DGP. Specif-
ically, they are functions of the errors of the dependent variable Y(j),
j = 1, 2

ε
l)
i , Y(l)i − EMθ

[
Y
(l)
i |G1,G2, xi, zi

]
(2.34a)

e
(l)
i ,



6 if ε(l)i < F−1N (0.25)

4 if ε(l)i ∈
[
F−1N (0.25), F−1N (0.5)

)
2 if ε(l)i ∈

[
F−1N (0.5), F−1N (0.75)

)
1 else

(2.34b)

PDl(i ∈ S; X, Y(j)) ∝ e(l)i l = 1, 2. (2.34c)

FN denotes here the empirical Cumulative Distribution Function (cdf) on
the finite population. For similar informative designs based on the de-
pendent variable’s error, see Rabe-Hesketh and Skrondal [2006] and Bur-
gard and Dörr [2019] and Dörr and Burgard [2019]. For the dual trans-
formation, the expectation EMθ

[
Y
(j)
i |G1,G2, xi, zi

]
was calculated via MC-

integration. Note that the designs PD1 and PD2 need to be generated in
each simulation run. All three survey designs do not reflect the partition-
ing of the finite population: Neither {Ud}d=1,...,10 nor {Ug}g=1,...,20 serve as
strata or Primary Sampling Units (PSUs).

All sampling designs PDj , j = 0, 1, 2, were implemented using the R-
package sampling [Tillé and Matei, 2016]. As a benchmark, the GLMM is
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also estimated with lme4 using penalized weighted least squares [Bates,
2018]. For the mixed model under the dual transformation, the estima-
tion procedure introduced in Gurka et al. [2006] for Box-Cox transforma-
tions and extended by Rojas-Perilla et al. [2017] to dual transformations
was programmed by the author. The code is based on lme4. An inaccu-
racy in Gurka et al. [2006] and adopted by Rojas-Perilla et al. [2017] that
leads to small estimation biases is discussed in Appendix A. We circum-
vent this inaccuracy by the optimization via grid-search of the stated,
original log-likelihood depending on λ. As start values for Algorithm
2.1, we set the results of lme4 with the survey weights plugged into the
heteroskedasticity weighting procedure.

2.2.4.2 Simulation Results

The simulation results are summarized in Figures 2.1 to 2.5. Boxplot
2.1 reveals that both estimation methods (the MCEM and lme4) perform
well in the fixed parameter estimation for the non-informative desgin
when the dependent variable is conditionally Gamma distributed. Fur-
thermore, the inclusion of survey weights does not impact the efficiency
of the estimator as can be concluded from the inter-quartile length. Un-
der informative design PD1 , however, both lme4 and Algorithm 2.1 with-
out weights perform similarly bad in the estimation of the slope parame-
ter, although the unweighted MCEM proves a little stabler in the slope pa-
rameter estimation. The inclusion of survey weights in the MCEM reduce
on the other hand the bias in the intercept under informative design
almost completely. For the random effects components, however, lme4

Figure 2.1: MC-Distribution of β̂ under Y(1)i ∼ Γ (1/ηi, 0.5)
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yields even for the non-informative design biased results under the con-
ditional Gamma distribution (Boxplot 2.2). The bias is sometimes even
higher than for the informative design, which gives a hint that the vari-
ability of the estimator is very high, even under favorable designs. The
MCEM is both, weighted and unweighted, closer to the true parameter
values. For the random effects components, the weighting does not play
a role because the information in PD1 does not account for the random
effects. N In the dual case, on the other hand, the MCEM yields similar

Figure 2.2: MC-Distribution of ρ̂ under Y(1)i ∼ Γ (1/ηi, 0.5)
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results for λ̂ for non-informative and informative designs PD0 and PD2
as can be seen in Boxplot 2.3. The lme4-based estimator slightly overes-
timates the true parameter λ = 0.3. For the fixed effects parameters, es-
pecially the unweighted method using lme4 yields a biased intercept (cf.
Figure 2.4) – even under the non-informative design. When the transfor-
mation parameter λ is estimated biasedly, as happened in Figure 2.3, this
translates directly to biased fixed parameter estimators. The bias due to
the informative design, though, is hardly observable in the results. The
average intercept estimate for the weighted and unweighted MCEM differ
only slightly. However, it can be learned that the outliers are fewer and
less extrem under weighting. For the random effects components ρ, the
same that was already observed for the GLMM can also be found in Fig-
ure 2.5: Whilst due to the biases in λ̂ and β̂0, lme4 cannot return reliable
estimators for the variance components, the MCEM yields estimators that
are close to the true values. Only the variance component σ23 seems to be
more biased. Comparing the weighted and the unweighted MCEM, the



2.2 survey-weighted mixed models 39

Figure 2.3: MC-Distribution of λ̂ under h(Y(2)i ) ∼ N(0, 0.16)
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Figure 2.4: MC-Distribution of β̂ under h(Y(2)i ) ∼ N(0, 0.16)
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use of survey weights especially improves the estimation of σ23 but has
no impact to the estimation of ρ due to the reasons discussed above.

Figure 2.5: MC-Distribution of ρ̂ under h(Y(2)i ) ∼ N(0, 0.16)
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2.3 application to business surveys

The introduced GLMMs are applied to a real business Public Use Micro-
data (PUM) file and the question whether a firm’s access to finance or
credit/ loan approval depends on the gender of the top manager/ gen-
der decomposition of the owners. Note that the inference based on the
presented results has to be evaluated critically due to the difficulties in
standard error estimation for the MCEM [Burgard and Dörr, 2018].

2.3.1 Theoretical Background

The role of the leading persons’ gender for a firm’s access to finance
gained a lot of popularity in the 1990s and early 2000s with ambigu-
ous results [Fay and Williams, 1993, Fabowale et al., 1995, Wilson et al.,
2007, Carter et al., 2007]: Whilst Fay and Williams [1993] found a mod-
erate impact of gender for less educated business owners on credit ap-
provals, neither Fabowale et al. [1995] nor Wilson et al. [2007] do so. The
diverging results may also be due to the different disciplines and respec-
tive methodologies involved in this research. Furthermore, psychological
and sociological models also motivate qualitative research [Wilson et al.,
2007].
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When empirical data are used, sample sizes are often small and only
hypothesis tests for equal means can be implemented, which is often
done in the cited literature. Time period and location vary strongly be-
tween the empirical studies: Fabowale et al. [1995] studies Canadian
businesses, Fay and Williams [1993] analyzes the situation in New Zea-
land and the studies of Wilson et al. [2007] and Carter et al. [2007] seem
to rely on the same data gathered in the United Kingdom. The data
set used here studies firms from Central Asia and Eastern Europe and
includes several countries.

As often only means are statistically compared, the economic sector
where the businesses act, may also play a major role [Fay and Williams,
1993, Rosa et al., 1996]. These differ across the studies but concentrate
mainly on business service [Fay and Williams, 1993, Chell and Baines,
1998]. Here, manufacturing sectors as well as business services are con-
sidered and the economic sector is controlled for via a random intercept.

The access of finance may also translate to a firm’s performance: Rosa
et al. [1996] and Chell and Baines [1998] study the role of the owner’s
gender on small business performance and though their focus does not
lie on ‘access to finance’ as a determinant, this can clearly be considered
a factor on a firm’s development. A rather similar performance of firms
regardless the owners’ gender might be a hint that the access to finance
is not biased: Otherwise, women run businesses would possibly perform
worse due to inadequate financial equipment.

Also for firm performance, the impact of gender is found to be am-
biguous. Chell and Baines [1998] do not find a gender difference whilst
Rosa et al. [1996], find gender differences in terms of sales turnover and
capital assets – a gender gap in these performance measures that persists
even when the firm’s age is accounted for, which may also be a major
variable [Rosa et al., 1996]. However, note that the model used was a sim-
ple linear regression model, ignoring the skewness of these data. Other
results may be found using Box-Cox or Dual transformations like dis-
cussed previously.

Note that the cited studies focus mostly on small businesses. The data
set which is available for our analysis has a survey cut-off level for firms
with less than 5 employees and also includes larger firms. In that case,
it is often the case that businesses are owned by more than one or two
owners. For these reasons and because there exists only an indicator for
the existence of female firm owners (and no decomposition of the owner-
ship), we will rely on the gender of the firm’s topmanager. Consequently,
the data used here differs in terms of the sampling population (more eco-
nomic sectors, larger firms, other countries and time periods) as well as
in terms of available variables (gender of topmanager vs. owner), which
might add new aspects to the open research question of the role of gen-
der for a firm’s access to the financial market.
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2.3.2 Data Description

The PUM used is the enterprise survey of the World Bank1, restricted to
central Asian and Eastern European countries, i.e. the Business Environ-
ment and Enterprise Performance Surveyss (BEEPSs). These surveys are
a joint project of the World Bank, the European Bank for Reconstruction
and Development, the European Investment Bank, and the European
Commission. Survey years included in the panel are 2002, 2005, 2007

and 2009. The survey design is stratified and ignores firms with less
than 5 employees [World Bank, 2009]. The strata are cross-classifications
of economic sectors, firm size and geographical location. Depending on
the size of the concerned country’s economy, some of the strata are col-
lapsed.

After a data editing process that omitted missing observations in the
dependent and explanatory variables, there remain only observations
from 2009 from 22 different countries in 17 economic sectors. The data
editing process is given in the electronic appendix (cf. Table B.1), the
overview on model variables is given in Table 2.1.

As learned from the theoretical discussion in Section 2.1 and the pre-
ceeding simulation study, the design can be considered to be non-in-
formative when the design variables are adequately considered in the
regression analysis [Pfeffermann, 1993]. This is an advantage because
the stratification variables are included in the PUM whilst survey weights
are not available for every observation.

2.3.3 Estimation and Evaluation

We run four different regressions on the introduced data set. All models
use the same explanatory variables but partly rely on different subsets
of the PUM. The variables used and their abbrevations are listed in Ta-
ble 2.1. The explanatories were chosen either to account for the design
(economic sector and country) or because they were found to be indica-
tors in previous studies (such as the firm’s age [Rosa et al., 1996], size
of firm [Riding and Swift, 1990], economic sectors) or because they were
judged to be indicators for the economic performance (capacity utiliza-
tion, share of exports shows the international competitivity, investment
in research and development and growth of sales indicate the growth/
expansion tendency) or the firm’s assessment on the financial market
(are collaterals necessary?). Alternatively, if a collateral was asked for
the most recent credit, this can give a hint to riskier activities that are
less probable to be approved. In addition, Riding and Swift [1990] found
that to women, higher collateral requirements are posed. Furthermore,
we account for the top-manager’s experience; if women have on aver-

1 https://www.enterprisesurveys.org/, 30 March 2020

https://www.enterprisesurveys.org/
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age less years of experience, that would also be reason to refuse a loan
or credit. Furthermore, Fay and Williams [1993] pointed out the role of
education for loan granting, especially in interaction with gender. How-
ever, in a pre-analysis of the data, the interaction between both the col-
lateral requirement and gender as well as experience and gender did
not prove to be significant. An overview on the model variables and
their abbreviations is given in Table 2.1. As mentioned previously, sur-

Table 2.1: Exogeneous Variables for Regression Models

Short Name Description

finance high obstacle Access to finance is considered to be a ma-
jor or very severe obstacle to the current
operations

pessimistic approval Firm did not apply for loan or grant be-
cause of negative approval was anticipated

loan rejected Firm applied for a loan or credit in the last
fiscal year that was rejected

female topmanager Firm’s topmanager is female

collateral required Financing required a collateral for the most
recent loan or credit

b7 Topmanager’s years of experience working
in this sector

l1 Permanent, full-time employees end of last
fiscal year

age firm Number of years since firm began opera-
tions

invest rd Firm invested last year directly or indi-
rectly in research and development

sales growth Average growth rate of total annual sales
over last two fiscal years (calculated from
LCU)

f1 Firm’s capacity utilization in last fiscal year
(percent)

d3d Share of direct and indirect exports to an-
nual sales last fiscal year

a4b Industry Sector (17 Sectors) (random inter-
cept)

country Firm’s location (random intercept)

vey weights are not available for each observation in the PUM. Therefore
we account for the survey design by the inclusion of the stratifiers ‘num-
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ber of employees’, ‘country’ and ‘economic sector’. As no weights are
used, an alternative estimation procedure to 2.1 is the R-package lme4.
However, note that in previous simulation studies Burgard and Dörr
[2019] demonstrated shortcomings of the glmer command due to inte-
gral approximations. Therefore, we include both estimators – based on
lme4 and Algorithm 2.1 – in our analysis. This also allows us to get
an idea about statistical significance, as the lme4 estimators performed
better than the expected Fisher information in Burgard and Dörr [2018]
for non-informative designs. As Algorithm 2.1 yields a stochastic opti-
mization, we run the algorithm 100 times on the PUM to evaluate the
volatility of the point estimates. Here, the average of the MCEM results
are presented in Table 2.2.

In general, we find that the estimates stemming from Algorithm 2.1
and lme4 are similar. Most differences can be found for the intercept and
the random effects variances, the latter was also found in the simulation
study. Because of the overall agreement of the estimation methods on
the fixed effects parameter, those statistically significant (p < 0.01 :∗∗∗,
p < 0.05 :∗∗, p < 0.1 :∗) under the standard errors estimated by lme4,
are marked. The correct estimation of standard errors under the MCEM
algorithm is still future work.

Table 2.2: Point Estimates for the Logit Mixed Models

Explanatory Significance
under lme4

Avrg.
MCEM

Estimate

Estimate
lme4

Dependent variable: finance_high_obstacle

(Intercept) -0.40 -0.55

age_firm -0.00 0.15

b7 -0.00 0.42

collateral_requiredTRUE 0.44 -0.00

d3d -0.00 -0.00

f1 *** -0.01 1.09

female_topmanagerTRUE 0.16 -0.00

invest_rdTRUE 0.27 0.25

l1 -0.00 0.05

loan_rejectedTRUE *** 1.08 -0.01

sales_growth 0.05 -0.00

a4b (RE, σ2a4b) 0.0031 0.1573

country (RE, σ2country) 0.0105 0.0000

Dependent variable: finance_high_obstacle
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Table 2.2: Point Estimates for the Logit Mixed Models

Explanatory Significance
under lme4

Avrg.
MCEM

Estimate

Estimate
lme4

(Intercept) 0.03 -0.04

age_firm -0.00 0.05

b7 -0.01 0.49

collateral_requiredTRUE ** 0.54 -0.00

d3d -0.00 -0.00

f1 *** -0.02 -0.00

female_topmanagerTRUE 0.05 0.20

invest_rdTRUE 0.20 0.03

l1 * -0.00 -0.02

sales_growth 0.03 -0.00

a4b (RE, σ2a4b) 0.0022 0.1081

country (RE, σ2country) 0.0099 0.0000

Dependent variable: pessimistic_approval

(Intercept) 1.83 2.56

age_firm 0.00 0.27

b7 -0.08 1.24

collateral_requiredTRUE 0.61 -0.11

d3d -0.02 -0.11

f1 -0.05 0.00

female_topmanagerTRUE 0.64 -0.08

finance_high_obstacleTRUE -0.81 -0.08

invest_rdTRUE -0.33 -0.06

l1 -0.09 -0.03

sales_growth -0.10 -1.18

a4b (RE, σ2a4b) 0.0101 1.8058

country (RE, σ2country) 0.0100 0.1052

Dependent variable: loan_rejected

(Intercept) *** -1.59 -1.86

age_firm -0.00 -0.09

b7 -0.02 0.58

collateral_requiredTRUE 0.61 -0.01

d3d -0.00 -0.00
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Table 2.2: Point Estimates for the Logit Mixed Models

Explanatory Significance
under lme4

Avrg.
MCEM

Estimate

Estimate
lme4

f1 -0.01 -0.00

female_topmanagerTRUE 0.03 0.22

invest_rdTRUE 0.27 -0.06

l1 -0.00 -0.01

sales_growth -0.07 -0.00

a4b (RE, σ2a4b) 0.0049 0.3812

country (RE, σ2country) 0.0126 0.0000

A look on the random effects variance for all four regression models
reveals that the role of the economic sector for the firm’s situation on
the financial market, though, seems to be overstated in contrast to the
previous studies – the random effects variance is often very close to
zero. This might be due to the fact, that different economic sectors differ
mostly in the operating firms’ structure, which is already accounted for
by the fixed effects for firm size and age. Developing economic sectors
– and declining economic sectors as well – may already be summarized
in a firm’s average growth of total sales or capacity utilization. In the
following, we discuss the results for the fixed effects.

To start with, prior to a model for the probability of credit approval,
we estimated a model to control whether female business leaders con-
sider access to finance generally more problematic than male. This idea
is due to the finding in Fabowale et al. [1995] that women do not seem
to be discriminated by loan officers but sometimes feel inappropriately
treated by loan officers. This model is estimated twice, first using a sub-
set of firms that applied for a loan in the last fiscal year. There, it is
found that an indicator for the economic situation of the firm – capacity
utilizatio – is a significant variable for the perception of financial access.
Firms that are economically healthier tend to look at access to finance
less critically. Also female run businesses perceive access to finance more
difficult though the result is – according to lme4 – not significant. Note
however, that the size of the effect and the sign depends on the estima-
tion algorithm.

Furthermore, firms that were not granted the loan perceive access to
finance significantly (in terms of lme4) more problematic. As this obser-
vation is very intuitive but might bias the firms perception, a control
model is estimated leaving out this variable and therefor the data set be-
comes a larger subset of firms, including those that did not apply for a
loan or credit. In that control regression, other factors that give hints on
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the economic situation of the firm such as number of full-time employees
and the posed requirement for collaterals become relevant. When a firm
is asked for a collateral in order to receive a loan, the financial institution
seems to evaluate the credit as risky due to the firm’s economic situation.
Though the sign of the parameter for the gender has the expected sign,
we can neither in the first nor in the control regression confirm that fe-
male top-managers perceive access to finance more difficult than males
(note however, that it was not always the top-manager that responded to
the survey).

Next, Wilson et al. [2007] pointed out that female business leaders
may possibly feel discouraged to even apply for a credit or loan, so
the third regression model checks whether women led businesses are
less optimistic to apply for loans and therefore did not even enter the
PUM subset of the first regression. Again, the slope parameter for the
top-managers has the expected sign (in contrast to the lme4 result) but
does not seem to be significant. Neither are other explanatory variables.
Nonetheless, the sign of the gender variable changes comparing to lme4

and even the size of the effect enlarges. This is in accordance with the
first and second regression where women led businesses also considered
access to finance more often an obstacle, though not significantly. This
requires further analysis in future social science research.

Finally, we do not find that the rejection of a loan application is signifi-
cantly more probable when the topmanager is female (cf. Table 2.2), and
it is noteworthy that the MCEM algorithm yields a much smaller value
than lme4 for the parameter which indicates that further inspection in
future research may be necessary. Note that the reduced effect using
MCEM is consistent with the third regression and indicates that the hy-
pothesis of Wilson et al. [2007] seems plausible – if women do not apply
for credits because they are pessimistic, it does not matter that they are
finally not discriminated. So the fourth regression in combination with
the third one doubts the lme4 results.

We conclude our real data study thus without finding a clear sig-
nificant discrimination of women business leader in the financial sec-
tor, adding therefore to the evidence of Riding and Swift [1990] and
Fabowale et al. [1995] also for larger businesses and in other countries.
However, the diverging results for the top-manager variable between
lme4 and MCEM in size and even in the estimate’s sign are in accordance
with the hypothesis in Wilson et al. [2007] and indicate that still fur-
ther research, for example in reliable MCEM standard error estimators, is
needed for a more profound assessment.
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G E N E R A L I Z E D VA R I A N C E F U N C T I O N S F O R
VA R I A N C E E S T I M AT I O N I N B U S I N E S S S U RV E Y S

3.1 introduction to variance estimation

Holland [1986] differentiates between causal and associative inference in
statistics. Whilst the preceding chapter dealt with the relation between
variables, where one variable Yi was considered to be the response of
the ‘exposure’ to variables Zi (and Xi), this chapter takes a look on as-
sociative statistics in the terms of Holland [1986], on a finite population,
variables are purely descriptive and randomness enters the framework
through random subsetting. In the terminology of this work, we deal
here thus with concepts of design-based statistics.

Though correct point estimation like it was discussed in the previ-
ous chapter is essential to infer correctly from a complex sample, the
estimation of an estimator’s second moments is essential, too: Without
information on an estimator’s expected squared deviation, conclusions
about the distance between the statistic of interest and its estimator gS,
for example in terms of confidence intervals or hypotheses testing, are
not feasible. In causal inference, this squared deviation is used to assess
the relevance of the exposure to control variables. In associative statis-
tics, on the other hand, second moments of gS capture the insecurity
about finite population characteristics when only parts thereof are ob-
served. Second moments, though, require knowledge of the unobserved
characteristics to assess the variability of gS and are therefore also unob-
servable in practice. Consequently, estimators for second order statistics
become necessary.

In large scale surveys, however, the amount of variables or the con-
struction of nonlinear indicators out of linear estimators (meaning that
the statistic gU is not linear in its argument) challenges the estimation of
second moments of an estimator gS for gU. This is especially true when
the survey design PD is complex. When a survey’s outcome must be pub-
lished [German Federal Statistical Office, 2009, for example] in terms of
point and variance estimate of summary statistics, the mass of variables
can then lead to a computational burden due to the possible complexity
of PD or gS.

Sometimes, a combination of these two complexities can be reduced
to a problem of the former thanks to linearization methods for gS. In the

49
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following, we study therefore first linear estimators gS. Thus, assume a
complex design PD and a linear estimator gS in y, i.e.

gS : S×Ω→ Rq, gS(s, y, z) =
∑
i∈U

wi · 1s(i) · aTi · yi

with a := (ai : i ∈ U), ai ∈ Rq×p. Without any restriction let ai ≡ Ip, that
is, consider the HT estimator (1.9) for the p variables of interest, gS = τ̂y.
We use the fact that PD can also be described by the moments of 1S =

(1S(i) : i ∈ U). We get consequently with wi = π−1i , w = (wi : i ∈ U), for
the variance of τ̂y [Haziza et al., 2008]

VarD [τ̂y] = VarD

[∑
i∈U

1S(i)

πi
yi

]
= yTWVarD [1S]Wy, W := diag(w)

=
∑
i∈U

∑
j∈U

(
πij − πi · πj

) 1
πi

1

πj
yiyTj (3.1)

And for the second moment of 1S, we have

VarD [1S] = ED
[
1S1TS

]
− ED [1S]ED [1S]

T =: Π (3.2a)

[Π]ij = PD(i ∈ S∧ j ∈ S) − PD(i ∈ S) · PD(j ∈ S)
= πij − πi · πj (3.2b)

Equation (3.1) encompasses three problems: First, y is only observed for
those units that enter the sample, i.e. only yS is known to the researcher.
Second, πij, that is the second order inclusion probability (cf. Section 1.3),
can be difficult to compute or difficult to store electronically for N � 0.
Third, even if the inclusion probabilites were known, they would often
be published only for i ∈ s with sample realization S = s. This makes
the development of variance estimators necessary. Variance estimators
that solve the problem of unknown inclusion probabilitys for units in
U \ S are the HT variance estimator

V̂arD [τ̂y] =
∑
i∈U

∑
j∈U

1S(i) · 1S(j) ·
(
πij − πi · πj

πij

)
1

πi

1

πj
yiyTj (3.3a)

and for |S| = ED [|S|] the Sen-Yates-Grundy variance estimator

V̂arD [τ̂y] = −
1

2

∑
i∈U

∑
j∈U

1S(i) · 1S(j) ·
(
πij − πi · πj

πij

)

·
(
1

πi
yi −

1

πj
yj

)(
1

πi
yi −

1

πj
yj

)T
(3.3b)
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[Haziza et al., 2008]. Though the Estimators 3.3 only rely on observed
information, both Equations 3.3a and 3.3b still require second order in-
clusion probabilities, which are not always known. Matei and Tillé [2005]
and Haziza et al. [2008] present an overview of existing methods to ap-
proximate πij through πi and πj and mention the conditions on PD under
which these approximations hold: Amongst others the design must be
pps and∑

i∈UN

πi · (1− πi) −−−−→
N→∞ ∞ (3.4)

and PD must be a ‘high entropy design’ [Haziza et al., 2008], confer
Definitions 4 and 5.

Concerning the nonlinearity of some estimators gS, amongst others
Woodruff [1971] suggests to linearize the estimator using a first order
Taylor approximation. For not twice continuously differentiable gS, gen-
eralizations like the Gâteaux-Differential in the influcence function ap-
proach may be used [Hampel, 1974, Deville, 1999]. However, these tech-
niques require that the variance estimators for linear statistics are easily
copmuted under PD. If this is not the case, other methods must first
be used to get (at least approximate) variance estimators for linear lin-
ear statistics. Amongst these methods are resampling techniques and
GVFs. The most popular resampling techniques are the jackknife method
Quenouille [1956] and variations thereof as well as the bootstrap [Efron,
1979].

The basic idea of the jackknife is to measure the impact of each ran-
dom variable realization 1S(i) · yi entering the estimator gS by the ‘resid-
ual’ difference gS(yS) − gS

(
(yj : j ∈ S∧ j 6= i)

)
where the second term is

a version of the estimator gS that uses one sample unit less. The average
squared impact is then used as a variance estimator [Efron and Stein,
1981, Shao and Wu, 1989]. Like for the original bootstrap, the original
assumption was that PD is a Simple Random Sampling (SRS) without
replacement because both ideas stem from model-based statistics. Defin-
ing a probability measure Py := 1

N

∑N
i=1 1{yi}, though, allows to transfer

the model-based origins to a more design-based view where the statistic
of interest is considered to be a function of Py, gU(Py) and an estima-
tor gS is considered to be a function of an estimator P̂y, i.e. gS = gU(P̂y).
Though more elaborated extensions to design-based statistics exist, there
are also counter examples for which the classical delete-1-jackknife is not
consistent under more complex survey designs or for non-smooth statis-
tics gU [Shao and Wu, 1989].

For the bootstrap, the theoretical principle is that for i = 1, . . . ,n real-
izations Yi ∼iid F, the distributions of

gS(Y), Yi ∼iid F
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and

gS(Y
(b)), Y

(b)
i ∼iid F̂n ,

where F̂n is the empirical cdf, should behave similarly. Note that the for-
mulation again dates back to the origins of the bootstrap in model-based
statistics. As F̂ is known for a sample y, the properties of gS(y(b)) can ei-
ther be studied analytically or through MC methods with b = 1, . . . ,B
and B � 0. Again, the SRS assumption is problematic for survey sam-
pling and extensions are necessary [Preston, 2009, for example] because
the random variable in survey statistics is S and from one realization s
of S, PD cannot be restablished as the design variables or variables of
interest are unknown for U \ S. Survey bootstrap are therefore an ap-
proximation to the survey design PD. For example, Preston [2009] might
be interpreted to mimic the sampling design at least up to the first (and
possibly second order) moments by simple sampling rules on the alter-
native population s and is thus very mechanical.

A third alternative besides linearization and resampling – that can
also be combined with the former – are Generalized Variance Func-
tions (GVFs). Assuming a functional relationship between an estimator’s
expectation and its variance allows to predict variances given only a few
tuples of point and variance estimates for the estimation of the func-
tional relation. The theoretical motivation lying behind this assumption,
some analytical results concerning the statistical properties of GVFs and
extensive simulation studies are presented in the subsequent sections.

3.2 theoretical background of the gvf

3.2.1 A Model-based Motivation of the GVF

Early works on GVFs date back to [Wolter, 1985, Chapter 5] and one of
the first applications was the Current Population Survey in the US [Val-
liant, 1987]. Basically, the idea of GVFs is to publish predicted squared
sampling errors based on a model that relates the sample estimator to
its variance. The use of GVFs therefore leads to a shift from estimation to
prediction and the prediction is based on a model Mθ that is assumed
to underly the (survey) estimator’s input data. As the input data is a
subset of the finite population, this means that Mθ is assumed to have
generated the finite population. Estimating the model, statements on the
unobserved part of the population are therefore possbile (cf. Definition
8). In the context of GVFs, these statements concern the sampling vari-
ance.
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Under some DGPs, there is a relation between a random variable’s
expectation and its variance. For example,

Y ∼ Bin(n,p)⇒EM[Y] = np and

VarM[Y] = EM[Y] −
1

n
EM[Y]2 (3.5)

Y ∼ Pois(λ)⇒EM[Y] = λ and VarM[Y] = EM[Y] (3.6)
Y ∼ G(α,β)⇒EM[Y] = αβ and VarM[Y] = β · EM[Y] . (3.7)

Let thus be all characteristics yi, i ∈ U, outcomes of such random vari-
ables Yi that are iid under PMθ with parameter vector θ. Define the rela-
tion between EMθ[Yi] and VarMθ[Yi] by f̃:

f̃Y → Rp×p; f̃
(
EMθ [Yi] ; θ

)
= VarMθ[Yi]

We define an additional parameter vector ψ that includes θ and possibly
parameters of the survey design PD or the finite population (such as N).
We have then for the HT estimator - under a non-informative design and
using Remark 5 and the variance of the HT (3.1) -

EMθ,D

[∑
i∈U

wi · 1S(i) · Yi

]
= EMθ

[
N∑
i=1

Yi

]
︸ ︷︷ ︸
=ED[τ̂y]

= NEMθ[Y1] (3.8a)

VarMθ,D

[∑
i∈U

wi · 1S(i) · Yi

]
= VarMθ

[
N∑
i=1

Yi

]

+
∑
i∈U

∑
j∈U

πij − πi · πj
πi · πj

EMθ

[
Yi · YTj

]
= N · f̃

(
EMθ[Y1]; θ

)
+
∑
i∈U

1

πi
· f̃
(
EMθ [Y1] ; θ

)
+ EMθ [Y1] · EMθ

[
YT1

]
·
∑
i∈U

∑
j∈U

πij − πi · πj
πi · πj

=: f
(
EMθ [Y1] ;ψ

)
(3.8b)

Given that the assumed model is true, it is thus possible to establish a
relation between the HT’s expectation and its variance when the design
is known up to the second moments. Note that the design PD thus also
plays a role for the GVF, which is often ignored in the application.

Example 1. Let

Yi ∼iid Pois(λ)

and

PD(s) :=


1

(Nn)
, if |s| = n

0, else
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that is a SRS design without replacement. Hence, EMθ[Y1] = VarMθ[Y1] = λ

and we have therefore πi ≡ n
N and πij ≡ n2−n

N2−N
for the HT

VarMθ,D [τ̂y] = Nλ+
N2

n
λ−

N−n

(N− 1)n
· λ2 .

Note that the relationship is thus quadratic although the underlying relationship
between expectation and variance is linear and the finite population estimator
is linear.

From (3.8b) we can nonetheless conclude that if the survey design is
such that πij − πiπj →N→∞ 0 the last term approaches zero and in that
case, VarMθ,D [τ̂y] approximates a linear relationship to f̃

(
EMθ[Y1]; θ

)
.

Remark 6. Assume that g(j)S , j ∈ Q are unbiased estimators for the population
total and that for Yi ∼iid PMθ it holds that VarMθ[Y1] = f̃

(
EMθ[Y1]; θ

)
. When

the survey design PD is SRS without replacement and fixed sample size, the GVF
f in (3.8b) simplifies to

VarMθ,D

[
g
(j)
S (S, Y)

]
=

(
N+

N2

n

)
· f̃
(
EMθ[Y1]; θ

)
−

N−n

(N− 1)n
EMθ [Y1] · EMθ

[
YT1

]
.

Similar results hold for the GREG (1.10): For a slope matrix B, we set∑
i∈U

yi − zTi B︸ ︷︷ ︸
=:ei

.

Note that B is in this context not the parameter (zTz)−1zTy from (1.10)
but a model parameter of θ and the finite population version is an esti-
mator thereof. If ei is interpreted as the realization of an iid zero centered
L2-integrable random variable εi (VarMθ [εi] =: Σ for all i ∈ U), we get
(given the realization z = (zi : i ∈ U) of Z)

VarMθ,D

[
τ̂GREG
y

]
= VarMθ,D

[∑
i∈U

wi · 1S(i) · εi

]

= VarMθ

[
ED

[∑
i∈U

wi · 1S(i) · εi

]]

+ EMθ

[
VarD

[∑
i∈U

wi · 1S(i) · εi

]]
(3.9a)

= NΣ+

(∑
i∈U

1

πi

)
Σ =: f

(
EMθ[Y1];ψ

)
(3.9b)
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which is a constant function of EMθ[Y1] with the constant depending
on PD. Note that using B̂ = (zTz)−1zTy yields

∑
i∈U ei = 0 regardless

whether there is a linear relationship between Y and Z. Therefore, the
design unbiasedness would hold using B̂ instead of B and the first term
in (3.9a) would still equal zero. However, if the model assumption is
violated (i.e. EMθ[εi] 6= 0, using B̂ does not equal anymore Σ

∑
i∈U

1
πi

but

EMθ[ε1] · EMθ[ε1]
T
∑
i,j∈U

(πij−πiπj)
πiπj

.
The GREG has therefore one advantage and one inconvenient if the

model is true: Then, only first order inclusion probabilities are required;
which is handy in application. However, in that case the expectation of
Y (and therefore also of τ̂GREG

y ) has no predictive power on the variance,
which contradicts the idea of GVF usage.

When we consider in the following estimators gS of the population
total that are (at least approximately) unbiased, we can plug
N−1EMθ,D [gS(S, Y,Z)] into (3.8b) and get therefore a (approximate) rela-
tion between VarMθ,D [gS(S, Y,Z)] and EMθ,D [gS(S, Y,Z)].

The problem with relation f is therefore first, that it depends on PD
and second, relates to f̃ but is not of the same type as shown in Exam-
ple 1 for medium size finite populations or unfavorable survey designs.
Furthermore, not even f̃ may be known. Therefore, ψ is estimated and a
relation f is simply assumed to hold. For estimation, different variables
of interest, Y(j)i , i ∈ U and j ∈ Q are required such that for some j ∈ Q̃ ⊂ Q,
EMθ [gS(S, Y,Z)] and the variance VarMθ [gS(S, Y,Z)] are known. In prac-
tice, these values are unknown neither and estimators are plugged into
the estimation method for ψ.

In the following, we shall focus on a general family of estimators{
g
(j)
S

}
j∈Q

that are approximately unbiased for the population total in

order to justify GVFs like above. Though auxiliary variables Z may be
used in g(j)S , j ∈ Q, we omit the auxiliary variables in the following for
better readability. Obviously, variables {Y(j)S }j∈Q should originate from the
same model Mθ and underlie the same subsetting process PD in order
to get good estimators for ψ.

The idea of GVFs is then that for a set of similar estimators g(j)S , j ∈ Q,
it is possible to determine the parameter vector ψ, and to avoid direct
calculus of VarMθ,D

[
g
(ι)
S (S, Y(ι))

]
through the use of the prediction

Ṽar
?

Mθ,D

[
g
(ι)
S (S, Y(ι))

]
= f

(
EMθ,D

[
g
(ι)
S (S, Y(ι))

]
;ψ
)

(3.10)

for an index ι ∈ Q. If f and ψ were correct and EMθ,D

[
g
(ι)
S (S, Y(ι))

]
known, we would have Ṽar

?

Mθ,D

[
g
(ι)
S (S, Y(ι))

]
= VarMθ,D

[
g
(ι)
S (S, Y(ι))

]
.
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This is the optimal case. In summary, Equation (3.10), though, includes
four main difficulties: First, the integrals are with respect to PMθ,D, im-
plying that not only the estimators g(ι)S must be similar (i.e. approxi-
mately unbiased for the population total) but also the random variables
Y(ι) must follow the same probability law. Second, the relationship f

is not necessarily known to the data analyst. National Statistical Insti-
tutes (NSIs) and other applicants of GVFs, though, often recur to very
general families F that encompass many relations f stemming from
common distribution functions (for example, confer Valliant et al. [2000,
Chapter 10.3] or Di Consiglio et al. [2013]). Third, the equality in (3.8a)
and (3.8b) only holds for a given design PD. Fourth, for all j ∈ Q, nei-
ther EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
nor VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
are usually known

which entroubles the estimation of ψ. Given these problems, one can
formulate conditions on PD and PMθ under which GVFs that are imple-
mentable in practice are consistent. Valliant [1987] gives such conditions
for stratified two-stage designs. These conditions include amongst oth-
ers a certain limit behaviour of PDN under growing populations UN (so
that the last term in the last but one line of (3.8b) approaches zero), de-
sign non-informativity, PMθ,DN-unbiasedness of g(j)S for all j ∈ Q and the
correct choice of f. Note that the decomposition in (3.8b) is more general:
If it is possible to estimate ψ consistently, which is the case when f is a
homeomorphism in θ and EMθ[Y1] and known, then predictions

ṼarMθ,D [gS(S, Y,Z)] := f
(
gS(S, Y,Z); ψ̂

)
should be consistent, too. Given that f is chosen correctly by the data
analyst, we conduct in the following an error decomposition of realistic
implementations of GVFs similar to Cho et al. [2002].

3.2.2 Error Decomposition of the GVF Prediction

First, note that g(j)S needs to be a model-design unbiased estimator such

that the exchange between NEMθ

[
Y
(j)
1

]
and EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
like in

(3.8b) is valid. Assume furthermore that it is a PMθ,D-consistent estimator.
As both, expectation and variance of g(j)S are usually not even known for
a subset j ∈ Q̃ ⊂ Q, a plug-in estimator for the estimation of ψ is usually
used. That is, a variance estimator V̂arD

[
g
(j)
S

(
S, Y(j)

)]
and g(j)S

(
S, Y(j)

)
replace the true variance and expectation and yield the estimator

ψ̂ , arg min
ψ̃∈Ψ

∑
j∈Q̃

`j

(
V̂arD

[
g
(j)
S

(
S, Y(j)

)]
, f
(
g
(j)
S

(
S, Y(j)

)
; ψ̃
))

,

(3.11)
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where Ψ is the parameter space of ψ, ` a loss function and ξj a random
variable that accounts for the error stemming from the replacement of
the expectation of g(j)S

(
S, Y(j)

)
by its estimator. In fact, we get

ξj , f
(

EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
;ψ
)
− f
(
g
(j)
S

(
S, Y(j)

)
;ψ
)

. (3.12)

If f is linear, we conclude thus that ξj is zero centered and its second mo-

ment exists if that of g(j)S
(
S, Y(j)

)
exists (which is assured if VarMθ

[
Y(j)
]

exists). If f is nonlinear but continuous, f
(
g
(j)
S

(
S, Y(j)

)
;ψ
)

is a consis-
tent but not necessarily unbiased estimator. In that case, we can only

state that ξj
PMθ,DN−−−−−→
N→∞ 0.

In a next step, it must be analysed to what extent the replacement
of the ‘true’ variance with a variance estimator affects the estimation
of ψ and thus finally the prediction. Remark 5 states that in expectation,
VarD [gS(S, Y,Z)] is smaller than VarMθ,D

[
g
(j)
S (S, Y(j),Z)

]
. This means that

the Estimator (3.11) yields a bias for ψ with respect to the estimator re-
sulting from

ψ̂
?
,

arg min
ψ̃∈Ψ

∑
j∈Q̃

`j

(
VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
, f
(
g
(j)
S

(
S, Y(j)

)
; ψ̃
))

(3.13)

because V̂arD
[
gS(j)

(
S, Y(j)

)]
may be seen as an (usually consistent) es-

timator for EMθ
[
VarD

[
gS(j)

(
S, Y(j)

)]]
but does not account for the first

term in (2.3). However, note that the first term in (3.8b), which corre-
sponds to the first term in (2.3), becomes negligible if the design is such
that

∑
i∈U

1
πi

grows faster than linearly and again πij − ππj → 0 and
therefore, the estimator ψ̂ gets better with increasing N and n.

These studies demonstrate that the realistic GVF predictor

ṼarMθ,D

[
g
(j)
S (S, Y(j))

]
= f

(
g
(ι)
S (S, Y(j)); ψ̂

)
(3.14)
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induces several errors into the prediction process. We suggest the follow-
ing decomposition:

VarMθ,D

[
g
(j)
S (S, Y(j))

]
− ṼarMθ,D

[
g
(j)
S (S, Y(j))

]
=(

f
(

EMθ,D

[
g
(j)
S (S, Y(j))

]
;ψ
)
− f
(
g
(j)
S (S, Y(j));ψ

))
︸ ︷︷ ︸

=:ξj

+
(
f
(
g
(j)
S (S, Y(j));ψ

)
− f
(
g
(j)
S (S, Y(j)); ψ̂

?
))

︸ ︷︷ ︸
=:Aj

+
(
f
(
g
(j)
S (S, Y(j)); ψ̂

?
)
− f
(
g
(j)
S (S, Y(j)); ψ̂

))
︸ ︷︷ ︸

=:Bj

. (3.15)

The term Aj is the error that stems from the estimation process of ψ
when the correct model-design variance (or an unbiased estimator there-
of) was used. Under the conditions under which the loss minimization
(3.13) yields a consistent estimator (that is especially an increasing train-
ing size |Q̃|), this term should go to zero in probablitiy, too. Hence, the
only possible bias – under the correct choice of f – is term Bj, which

stems from using V̂arD
[
g
(j)
S

(
S, Y(j)

)]
instead of VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
due to the underestimation of the model-design variance by the design
estimator. Note thus, that we require for consistency of GVF predictions
not only the consistency of gS (for the reduction of ξj in probability) and
its variance estimator (for the reduction of Bj), but also an increasing
number of variables j ∈ Q in general and in the training set Q̃ (for the
reduction of Aj.

This decomposition differs from Cho et al. [2002] in that sense that
Cho et al. [2002] contrast the GVF prediction with the direct variance
estimator V̂arD

[
g
(j)
S

(
S, Y(j)

)]
, whilst in (3.15), the design variance only

enters the estimator ψ̂. As the aim of GVFs is to predict correctly the esti-
mator’s variance, the contrast to the ‘true’ model-design variance seems
more plausible, especially when later on efficiency comparisons with
estimators V̂arD

[
g
(j),
S

(
S, Y(j)

)]
are envisaged. Furthermore, the decom-

position in Cho et al. [2002] can be misleading because the probability
law that is assumed remains unclear: From their efficiency comparisons,
it seems that PD is the law to be studied but from their GVF definition,
the estimators’ variance is assumed to be a random variable implying
that the law applied there is PMθ,D. The derivation of GVFs in Valliant
et al. [2000, Chapter 10.3] also suggests that the underlying probability
law is PMθ,D, in accordance with the analysis given here.

The error decomposition in (3.15) allows to derive an approximate
formula for the Mean Squared Error (MSE) of GVFs under the assump-
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tion that f is twice continuously differentiable. In that case, a first order
Taylor approximation yields

MSEMθ,D

[
ṼarMθ,D

[
g
(j)
S

(
S, Y(j)

)]]
≈
(
∇f
(

EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
,ψ
))T
·MSE

[(
g
(j)
S

(
S, Y(j)

)
ψ̂

)]
·
(
∇f
(

EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
,ψ
))

, (3.16)

where terms A2j (approximately the variance of ψ̂) and B2j (approxi-

mately the squared bias of ψ̂) are found in the product of MSE
[
ψ̂
]

with the first derivative and ξ2j appears in the multiplication of

MSE
[
g
(j)
S

(
S, Y(j)

)]
with the first derivative. The matrix notation is used

to account for a possible covariance between the estimation error of ψ̂
and g(j)S

(
S, Y(j)

)
but for least squares estimation of ψ̂, the covariance is

usually zero.
Ignoring a possibly non-zero covariance with the estimated param-

eter vector, the MSE of the GVF predictor is thus a linear function in
VarMθ

[
g
(j)
S

(
S, Y(j)

)]
. For the model-design MSE of the design-based vari-

ance estimator, we have

MSEMθ,D

[
V̂arD

[
g
(j)
S

(
S, Y(j)

)]]
= EMθ,D

[(
V̂D

[
g
(j)
S

(
S, Y(j)

)]
− EMθ

[
VarD

[
g
(j)
S

(
S, Y(j)

)]])2]
+ VarMθ

[
ED
[
g
(j)
S

(
S, Y(j)

)]]2
(3.17)

If thus the shape of f is favorable, PMθ and the population size are such
that the variance of the population total is relatively large, whilst PD re-
turns a great variability in the sample (cf. the stratified Two-Stage Clus-
ter Sampling (TSC) with PMθ ∈ {Pois(24), Γ(8, 3)} in the simulation study),
there are noticeable efficiency gains.

Note that the preceding analysis can be relatively easily applied to
estimators like the HT or GREG, for which the stated assumptions hold.
Using linearization methods, the derivations also become applicable to
nonlinear statistics, when the GVF are applied on the linearized vari-
ables whose population total then become of interest. Valliant [1992]
uses another approach for nonlinear statistics: He first determines the
variance of the nonlinear statistic as a function of the statistic itself under
a pre-defined probability model PMθ and estimates the model directly.
Of course, this approach is also valid, but theoretically more cumber-
some than application of the GVF to the linearized estimators, for which
functional relations f̃ and f are then assumed.
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3.2.3 GVFs and the Design Effect

Most of the preceding analysis simlifies a lot under SRS, as examplifies
the scenario in Example 1. If there is a relation between variance and
expectation of an estimator under SRS,

VarMθ,srs

[
g
(j)
S

(
S, Y(j)

)]
= f

(
EMθ,srs

[
g
(j)
S

(
S, Y(j)

)]
,ψ
)

, (3.18)

then the use of the design effect [Kish, 1965]

deffD ,
VarD

[
g
(j)
S

(
S, Y(j)

)]
Varsrs

[
g
(j)
S

(
S, Y(j)

)] (3.19)

can help to motivate the use of GVFs under complex designs, too. First
assume that the expectation of g(j)S is the same under both PMθ,srs and
PMθ,D, which holds, for example, for the HT or the GREG. Then, it is easy
to adjust for the design in (3.18): We get

VarD
[
g
(j)
S

(
S, Y(j)

)]
=
f
(

EMθ,srs

[
g
(j)
S

(
S, Y(j)

)]
,ψ
)

deffD
. (3.20)

Cao et al. [2012] do this for the case of binary Y(j). For a logartihmic
model (take the logarithm on both sides of (3.20)), the negative loga-
rithmic design effect becomes a summand and hence, the design effect
simply impacts the regression intercept when log f is a linear regression.
If the linear regression intercept is zero under f and SRS (for example, un-
der the binomial, exponential or Poisson distribution), the size of the de-
sign effect then can be directly estimated. For example, Cao et al. [2012]
relate their GVF for binary data to the design effect.

Note that in this set-up – as can alread be learned from the fact that
the left hand side of (3.19), the design effect has to be constant for all
variables j ∈ Q, again underpinning the importance that variable set
Q only contains variables where expectation and variance relate in the
same way and with the same parameters.

Accounting for deffD is important as most of the samples used for GVF
application are stratified two stage samples [Johnson and King, 1987,
Cao et al., 2012]. If on the other hand, estimates of the design effect are
available (the true value is usually unknown), they may also be used in
estimating the GVF as is motivated by Equation (3.20).

However, note that the fact that the design effect is estimated adds
again an explanatory with measurement error. In the case that the es-
timator for the design effect is unstable, the inclusion of deffD into the
GVF might be more destablizing than helpful.
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3.2.4 GVFs in a Design-based Framework

In practice, GVFs are used in a design-based framework, where the vari-
ance of an estimator for an unknown finite population statistic has to
estimated. The justification of GVFs under such a set-up is

VarD
[
g
(j)
S

(
S, y(j)

)]
= g

(j)
S

(
S, y(j)

)2
− ED

[
g
(j)
S

(
S, y(j)

)]2
+ ξj

where

ξj , ED

[
g
(j)
S

(
S, y(j)

)2]
− g

(j)
S

(
S, y(j)

)2
.

Obviously, the error is unbiased, ED
[
ξj
]
= 0. Knowing that for a consis-

tent variance estimator V̂arD
[
g
(j)
S

(
S, y(j)

)]
, we have [Cho et al., 2002]

V̂arD
[
g
(j)
S

(
S, y(j)

)]
= VarD

[
g
(j)
S

(
S, y(j)

)]
+ ζj (3.21)

with ζj converging to 0 in probability. Consequently,

V̂arD
[
g
(j)
S

(
S, y(j)

)]
= g

(j)
S

(
S, y(j)

)2
− ED

[
g
(j)
S

(
S, y(j)

)]2
+ ξj + ζj . (3.22)

Note that this relation holds always independently from the DGP of y
and the design PD, but the distribution of ξj + ζj is unknown and as
ED[ζj] is not necessarily zero because the variance estimator is only
asymptotically unbiased, the sum has not necessarily zero expectation
neither.

Hence, the application of the design effect, in this context, complicates
the analysis as then in

V̂arD
[
g
(j)
S

(
S, y(j)

)]
= deffD · g

(j)
S

(
S, y(j)

)2
− deffD · Esrs

[
g
(j)
S

(
S, y(j)

)]2
+ ξj

the estimator g(j)S and the error ξj would be evaluated under S ∼ Psrs,

even when ED
[
g
(j)
S

(
S, Y(j)

)]
= Esrs

[
g
(j)
S

(
S, Y(j)

)]
, and such a sample

realization is usually not available when S ∼ PD 6= Psrs. Consequently,
the interpretation of regression coefficients as average design effect like
in Johnson and King [1987] or Cao et al. [2012] is not applicable, as the
intercept of the regression needs always to be non-positive (which does
not always happen in practice) and is a product of two terms where the
design effect is only a component of. Nonetheless, an estimator of the de-
sign effect could be derived from the regression result. Therefore, these
works can be put into the previously outlined model-design context.
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From Equation (3.22), it follows that the functional relation f there-
fore is always quadratic with restricted slope parameters and for re-
gression estimation, it is furthermore hoped that V̂arD

[
g
(j)
S

(
S, y(j)

)]
=

f
(
g
(j)
S

(
S, y(j)

)
;ψ
)
+ εj has a normally distributed error εj ∼ N(0,σ2j )

with εj = ξj + ζj. A logarithmic transformation as it is discussed in Sec-
tion 3.3.1 is not theortically justifiable in a purely design-based frame-
work; in contrast to the relative variance regressed on the inverse point
estimator.

For the estimation of the parameter vector ψ, in addition, it has to be
kept in mind that {g(j)S

(
S, Y(j)

)
}j∈Q are correlated as they stem from the

same sample S, as classical estimation methods assume that the input
data are independent. Furthermore, Model (3.22) imposes
ED
[
g
(j)
S

(
S, y(j)

)]
≡ c for all j ∈ Q. This is a very restrictive assumption,

but is similar to the assumption Y(j) ∼ PMθ ∀j ∈ Q in the model-design
framework.

From (3.21) it is obvious that the MSE of the design variance is ED
[
ζ2j

]
.

For a GVF prediction

Ṽar
?

D

[
g
(j)
S

(
S, y(j)

)]
= g

(j)
S

(
S, y(j)

)2
− ED

[
g
(j)
S

(
S, y(j)

)]
(ignoring that the second term has to be estimated) stemming from
(3.22), we have on the other hand

MSED
[
ṼarD

[
g
(j)
S

(
S, y(j)

)]]
= MSED

[
ξj + ζj

]
and it is not a priori clear which MSE is smaller: If the two errors are neg-
atively correlated, one could observe an efficiency gain in using the GVF
prediction, otherwise, there is an efficiency loss even without accounting

for the need to estimate ED
[
g
(j)
S

(
S, y(j)

)]2
via OLS.

3.3 gvfs in practice

In this section, the application of GVFs in practice is discussed. Especially,
the most common GVF shapes and their motivation are presented. The
problem of the preceding analysis is that GVFs cannot be evaluated in
practice because the estimator’s ‘true’ variances, both the design and the
model-design variance, are unknown. Therefore, other indicators for a
GVF model’s predictive power that can be used in practice are necessary.
Such quality measures are discussed in the Subsection 3.3.2.

GVFs are most often used in large-scale household surveys like the Cur-
rent Population Survey [Wolter, 1985, Chapter 5], the American Commu-
nity Survey [Fuller and Tersine Jr, 2010] and the Consumer Expenditure
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Survey [Eltinge and Sukasih, 2001]. However, they were also studied in
the Current Employment Statistics [Cho et al., 2014] and in school sur-
veys [Salvucci et al., 1995] – as schools are institutions, the latter would
already be interpreted as business survey in Cox and Chinnappa [1995].
Applications that come closest to business surveys like they are consid-
ered here (i.e. without institutions) are found in Alegria and Scott [1991]
and Filiberti et al. [2007], both looking at the economic sector of forestry
and agriculture. Pavone and Russo [1999] apply GVFs to classical busi-
ness variables such as ‘annual turnover’, ‘value added’, ‘labor costs’ and
‘investments’.

3.3.1 Common Shapes of GVFs

Many GVF applications are motivated by the binary case (cf. Model (3.5))
where the relative variance, i.e. the variance of random variable divided
by its squared expectation, equals

relVarMθ
[
θ̂
]
=
1− θ

N · θ
,

where θ̂ is the estimator of the success probability θ and N is the num-
ber of independent trials. A more general shape that encompasses this
relative variance as a special case is then for j ∈ Q

relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
= ψ0 +ψ1

1

g
(j)
S

(
S, Y(j)

) +ψ2 1

g
(j)
S

(
S, Y(j)

)2
+ εj , (3.23a)

where the estimator g(j)S takes the place of the original parameter. εj is
here and in the subsequent equations considered to be a zero-centered
random error resulting from using g(j)S

(
S, Y(j)

)
instead of its expectation.

It encompasses the errors that were discussed in Section 3.2. Model (3.13)
encomapsses mean estimators not only for binomially, but also Poisson
(3.6) and Gamma (3.7) distributed variables Y(j). And given the results
from Section 3.2.4, this shape is also justifiable with the design-based
framework in which GVFs are usually used in. Salvucci et al. [1995] es-
timates a square root version of (3.23a) – as the square is a nonlinear
function, the choice between the relative variance and the coefficient of
variation as dependent variable in Model (3.23a) depends on the statis-
tic that shall be estimated unbiasedly under otherwise correct model
assumptions. Copeland et al. [2006] discusses Model (3.23a), too.

Note, however, the difference: The shape is motivated using PMθ whilst
the discussion in Section 3.2 relied on PMθ,D and as seen in Equation
(3.8b), we have only f = O

(
Nf̃
)

and not f ∝ f̃ even under ‘good’ survey
designs when the population size is too small. Theoretical motivation
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of GVF models other than (3.23a) are therefore only approximative and
suggestive.

Model (3.23a), however, does not prevent predictions from becoming
negative. This motivates the log-log regression model

log VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
= ψ0 +ψ1 logg(j)S

(
S, Y(j)

)
+ εj ,

(3.23b)

from which predictions are always positive due to the exponentiation.
Pavone and Russo [1999] and Cho et al. [2002] use the log-log regression
and also the Australian Bureau of Statistics as well as Statistics Canada
[Di Consiglio et al., 2013]. Substracting on both sides 2 logg(j)S

(
S, Y(j)

)
yields

log relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
= ψ0 + (ψ1 − 1) log

(
1

g
(j)
S

(
S, Y(j)

)
)

+ εj ,

which is the log-log version of the regression model (3.23a) with ψ2 = 0.
Alegria and Scott [1991] investigate other shapes for GVFs, which are

partially nonlinear and require knowledge of some standard errors in
advance. Note though that their Model (4) corresponds to Model (3.23b).
These models, however, do not seem to be used in other applications of
GVFs. Finally, Di Consiglio et al. [2013] mentions that a nonlinear regres-
sion of the type

relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
=

ψ0

gS
(
S, Y(j)

)ψ1 + εj (3.23c)

is used by the Greek Statistical Authority. This model can also be cap-
tured by Model 3.23b when the different distributional assumptions on
the error εj are ignored. The base model, of which the afore discussed
models can be seen as a transformation, is the linear regression with
quadratic term of gS

(
S, Y(j)

)
,

VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
= ψ0 +ψ1 · g

(j)
S

(
S, Y(j)

)
+ψ2 · g

(j)
S

(
S, Y(j)

)2
+ εj . (3.23d)

Otto and Bell [1995] use this regression model in GVF estimation, which
are again used for other estimations.

Note though that the choice to use the coefficient of variation or the
relative variance or the basic quadratic model or a logarithmic transfor-
mation thereon depends on the distributional assumptions on the error
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term εj. The respective model, though, is usually chosen such that nor-

mality, εj ∼ N
(
0,σ2j

)
, holds approximately as most often, the loss func-

tion `j (cf. Equation (3.11)), is the squared error. Of course, the Models
(3.23) can all include additional information, for example in terms of an
estimated design effect [Pavone and Russo, 1999, for example] or the
sample size [Cho et al., 2002].

Another issue when the relative variance or the logarithmic variance
is used as dependent variable in the regression, is back-transformation
for the GVF prediction. Let PGVF

Mθ,D denote the probability law for the GVF
given the design PD and the DGP PMθ .

If the logarithmic regression for the model-design variance is assumed
to be correct (Model (3.23b)), PGVF

Mθ,D is the log-normal distribution of the
random variable

exp(ψ0) · g
(j)
S

(
S, Y(j)

)ψ1
.

Then, the correct prediction is EGVF

[
exp(ψ0) · g

(j)
S

(
S, Y(j)

)ψ1]
under the

model, given Y and S

EGVF

[
exp

(
ψ0 +ψ1 · logg(j)S

(
S, Y(j)

)
+ εj

)
|S, Y(j)

]
= g

(j)
S

(
S, Y(j)

)ψ1
· exp

(
ψ0 +

σ2j

2

)
(3.24)

6= g(j)S
(
S, Y(j)

)ψ1
· exp (ψ0)

(cf. Definition 8). Thus, back-transformation must account for nonlinear-
ities. If, in contrast, Model (3.23a) is assumed to be correct, it follows
that

EGVF

[
ψ0g

(j)
S

(
S, Y(j)

)2
+ψ1g

(j)
S

(
S, Y(j)

)
+ψ2

+εjg
(j)
S

(
S, Y(j)

)2
|S, Y(j)

]
= ψ0 · g

(j)
S

(
S, Y(j)

)2
+ψ1 · g

(j)
S

(
S, Y(j)

)
+ψ2

as one model assumption is εj ⊥ g
(j)
S

(
S, Y(j)

)
. The variance of the pre-

diction is, though, σ2j · g
(j)
S

(
S, Y(j)

)
. That means that even if εj is ho-

moskedastic, this does not hold for the variance prediction.

3.3.2 Quality Measures

Like already mentioned, an error analysis like in (3.15) is not feasible
in practice because the model-design variance VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
is
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unknown. Thus, the question arises how a practitioner can assess the
predictive quality of her estimated GVF model. As the GVF are usually
considered to be a regression problem (cf. Section 3.3.1), it is common
practice to use quality measures for regression.

The most frequently used measure is the (adjusted) R2, that is, the
share of variation explained by the model, used for example by Salvucci
et al. [1995] and Hinrichs [2003]. If the inclusion of additional auxiliary
information is at discussion, the Akaike Information Criterion (AIC) is
a measure, for example, for model selection. However, in contrast to
the R2, the AIC only allows to compare GVFs of the same shape with
a varying number of explanatories. This is why the right hand side
of the regression models in Otto and Bell [1995] differ extremely (par-
tially involving highly nonlinear regression), but the left hand sides of
the GVF equal constantly V̂arD

[
g
(j)
S

(
S, Y(j)

)]
. The AIC is based on the

negative log-likelihood of the regression model, it is thus not surpris-
ing that the log-likelihood has been used to assess GVFs, too [Maples
et al., 2009]. The problem with all these measures is that they give
information about the model fit to the training data (here the tuples(
gS

(
S, Y(j)

)
, V̂arD

[
g
(j)
S

(
S, Y(j)

)])
with j ∈ Q̃) but are limited in the as-

sessment of predictive quality – the prediction error is downward biased
when observations are used both, prediction assessment and training.
This underlines that the choice of the training subset Q̃ ⊂ Q whose tu-
ples are used to estimate ψ should be a good choice of variables from
Q: In practice, often sub-population counts are of interest, e.g. differenti-
ated by age group and gender. If then only tuples(
gS

(
S, Y(j)

)
, V̂arD

[
g
(j)
S

(
S, Y(j)

)])
of age×gender categories are used for

training, but Q also includes sub-population counts, say for employment
status, the estimated model has poor adjustment to Q \ Q̃.

Gershunskaya and Dorfman [2013] offer a new quality measure par-
ticularly for GVFs, which does not originate from regression analysis.
Their approach has the nice property that it allows to re-adjust GVF pre-
dictions if these are found to (over-) underestimate structurally the true
variances, where the bias is detected based on this new quality measure
that we call henceforth δ̄1−α, where 1− α is a typical confidence level,
here 1− α = 0.95. Let g(j)S

(
S, Y(j)

)
be the HT of the variable of interest

Y(j). Berger [1998] proves that for high entropy sampling designs PD, the
asymptotic normality of the HT holds,

g
(j)
S

(
S, Y(j)

)
− EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
√

VarMθ,D

[
g
(j)
S

(
S, Y(j)

)] −→
d
N(0, 1) .



3.3 gvfs in practice 67

If the distribution of the standardized HT is approximately standard nor-
mal for large n and N and all j ∈ Q, Gershunskaya and Dorfman [2013]
argue that this implies that standardization of the HT by the square root
of good GVF predictions ṼarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
,

zj ,
g
(j)
S

(
S, Y(j)

)
− EMθ,D

[
g
(j)
S

(
S, Y(j)

)]
√

ṼarMθ,D

[
g
(j)
S

(
S, Y(j)

)] (3.25a)

or an estimator thereof

ẑj ,
g
(j)
S

(
S, Y(j)

)
− g̃

(j)
S

(
S, Y(j)

)
√

ṼarMθ,D

[
g
(j)
S

(
S, Y(j)

)] , (3.25b)

(g̃(j)S
(
S, Y(j)

)
being another unbiased estimator of

∑N
i=1 Yi) should yield

approximately for (1 − α) · 100 percent of the variables a value in the
100 · (1− α) standard normal confidence interval I(1−α) = (zα/2, z1−α/2).
We define therefore the estimated quality measure

δ ,
1

|Q|

∑
j∈Q

1I(1−α)(ẑj) . (3.26)

For g̃(j)S in (3.25b), Gershunskaya and Dorfman [2013] use a balanced
half sample replication; arguing that only one replication is needed as it
is not intended to do variance estimation, and errors should cancel out
amongst the variables {Y

(j)
j∈Q}. Therefore, the computational burden for

the quality measure δ̄1−α is manageable.
If δ̄1−α does not approximately equal 1 − α, adjustments to the GVF

are necessary under the normality assumption because then the predic-
tions are structurally too high (δ̄1−α > 1− α) or too low (δ̄1−α < 1− α).
Adjustments can be done either by calibration [Gershunskaya and Dorf-
man, 2013] or possibly another shape is more adequate. Note however,
that the quality of the measure δ̄1−α relies on asymptotic assumptions
for the HT which need not necessarily hold for PD and U.

Concerning the transferability of δ̄1−α, when the GREG rather than the
HT is employed in the large scale survey, Kim and Park [2010] states that
τ̂GREGy is asymptotically equivalent to the HT (cf. Remark 2) and therefore
also normal, because convergence in probability implies convergence in
distribution. So δ̄1−α is also applicable for the GREG. For other estima-
tors, though, asymptotic normality must be proved to argue the use of
δ̄1−α. However, the applicability of GVFs to other estimators with possi-
bly other estimands than the population total must be studied a priori,
too. Furthermore, note that δ̄1−α also allows to check the asymptotic
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assumptions: Different values for α could be plugged in and if there
are different conclusions for different values in α, this indicates that the
asymptotics might not hold.

3.3.3 Estimation of GVFs

As the shapes of GVFs introduced in Section 3.3.1, are (non-)linear re-
gressions, standard regression estimators are usually used to estimate
the parameter vector ψ. Indeed, OLS is common practice to determine ψ̂
[Valliant et al., 2000, chapter 10.3]. However, this requires the additional
assumption that not only εj ∼ind N(0,σ2j ) but also σ2j ≡ σ2 for all j ∈ Q.

A less restrictive assumption is

σ2j ∝ relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)]2
which is, for example, suggested in Wolter [1985, Chapter 5.4] and Val-
liant et al. [2000, Chapter 10.3]. The assumption is motivated by the ob-
servation that the variance is estimated less stably as the point estimator
(and thus presumably its expectation) increases. Then, a good estimation
method for ψ is weighted OLS, in practice the estimated relative variance

is used rather than relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)]2
.

Alternatively, noting that the proportionality of σj is with the depen-
dent variable, Wolter [1985] suggests to use an iterative estimation algo-
rithm assuming that

σ2j ∝ ṼarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
.

In words, this assumption means that first and second moment of the
GVF prediction are assumed to be in a linear relation.

As a last weighting scheme for weighted OLS, Copeland et al. [2006]
uses as weights the logarithmic relative variance, which corresponds to
the assumption that

σ2j ∝
1

log relVarMθ,D

[
g
(j)
S

(
S, Y(j)

)] ,

which is hard to justify from a theoretical point of view: Observations
Q̃ that have a higher relative variance are weighted higher, contrary to
the assumptions in Wolter [1985] and Valliant et al. [2000]. Furthermore,
it might happen, that such weights become negative when the relative
variance is smaller than 1.

Note that such weighting schemes are in contrast with the necessary
assumption that for all j ∈ Q, we have Y(j) ∼ PMθ . In addition, the fact
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that estimators for the correct heteroskedasticity weights are used be-
cause the (relative) variances are not available, can counteract the goal
to stabilize estimation.

Valliant et al. [2000, Chapter 10.3] further notes that in practice, as we
have pointed out in Section 3.2, rather than the model-design variance,
an estimator V̂arD

[
g
(j)
S

(
S, Y(j)

)]
is used. Similarly, not the the expecta-

tion of the final population statistic, EMθ

[
g
(j)
U

(
Y(j)
)]

, is the estimand of

the HT, but the random finite population outcome g(j)U
(
Y(j)
)

of but an
estimator thereof is used. Hence, one could think of an error-in-variables
model to estimate the GVF. However, such a model requires additional
assumptions about the kind of error in variables – that adds another
source of possible bias when violated.

3.3.4 GVFs in Small Area Estimation

Besides their application in large-scale surveys with a big number of
variables of interest, a typical application of GVFs is area-level SAE. The
basic set-up here consists of the FH [Fay and Herriot, 1979]. The goal of
SAE is to estimate/ predict finite population statistics for m = 1, . . . ,M
pairwise disjoint subsets of the population U = ∪·Mm=1Um of size |Um| =:

Nm,

gUm : ×Nmk=1R
p → Rq (yi : i ∈ Ud) 7→ gUm ((yi : i ∈ Um)) (3.27)

In the following, we assume gUm to be a sub-population total
∑
i∈Um yi

with yi ∈ R. For each indexm = 1, . . . ,M, the Fay-Herriot Estimator (FH)
assumes two models to hold for the sub-population totals of interest τym
and the HT thereof, namely

τym ∼ind N
(
τTxmβ,σ2

)
(3.28a)

τ̂ym ∼ind N (τym , VarD [τ̂ym ]) , (3.28b)

where τxm is the known sub-population total of the p-dimensional aux-
iliary variables. Obviously, the models for m = 1, . . . ,M all share the
parameters β and σ2. This assumption of a common structure in the DGP
can yield efficiency gains because then observations from additional do-
mains l = 1, . . . ,M, l 6= m, can included in the estimation process for
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τym , thus increasing implicitely the sample size for the domain m. Con-
sequently, the MSE of the FH estimator

τ̂FH
y , τ̃x

(
τ̃TxV

−1τ̃x

)−1
τ̃TxV

−1(τ̂ym : m = 1, . . . ,M) (3.28c)

τ̃x ,

 τx1...
τxM

 , V , diag
(
σ2 + VarD [τ̂ym ] : m = 1, . . . ,M

)

is smaller than VarD [(τ̂ym : m = 1, . . . ,M)].
Note the link between model and design in the FH: The sub-population

total is a realization of a normal random variable with expectation τTxmβ
and variance σ2. In the notation of Remark 5, σ2 = VarMθ [ED [τ̂ym ]] and
given y, EMθ [VarD [τ̂ym ] |Y = y] = VarD [τ̂ym ].

However, in real world application, VarD [(τ̂ym : m = 1, . . . ,M)] is not
available and must be estimated from a random subset S∩Um by
V̂arD [τ̂ym ] and then plugged into (3.28c) [Otto and Bell, 1995]. This prac-
tice reveals a paradox, though: Whilst the FH is motivated by the HT’s
inefficiency (i.e. high variance) for small sample sizes Um ∩ S, an esti-
mated second order statistic of τ̂ym , which is even less stable than an
estimator for first order statistics, is used in the estimation process. Note
that this is again under the condition that the sub-population variances
relate equally to the sub-population expectations and that the design PD
has the same impact on all sub-samples S∩Um.

As it was outlined in the previous section, GVFs can yield stabler vari-
ance predictions than the direct variance estimator in a model-design
framework and therefore stabilize also small area estimators. Even in
the original work, Fay and Herriot [1979] use a GVF prediction of the
shape (3.23c) and plugged the estimate into (3.28c). Otto and Bell [1995],
Maples et al. [2009] and Hawala and Lahiri [2010] use GVFs as well,
mostly for poverty statistics in small areas.

3.4 simulation study

As the theoretical analysis of GVFs takes place under the probability law
PMθ,D although the application in practice is under PD, the illustrative
simulation study in this section has two steps: The data used in every
simulation run are repeatedly generated by superpopulation models Mθ.
In a second step, different shapes of GVFs are studied with respect to
their predictive power under different laws PMθ,D. Using varying su-
perpopulation models Mθ (different parameters θ1, θ2 ∈ Θ and differ-
ent shapes for M), the sensitivity of the predictive power to the shape-
parameter-choice can be studied. The impact of survey design, stated
in Section 3.2, is also studied as three different designs are simulated.
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Furthermore, it can be evaluated whether the GVF prediction is much
harmed when the underlying data originates from different superpop-
ulation models, i.e. when the assumption Y(j) ∼ PMθ for all j ∈ Q is
violated.

3.4.1 DGP in the Model-design Framework

model-based finite population

This simulation study on GVFs deals with theoretical aspects of the set-
up. Consequently, in each of the r = 1, . . . , 1500 simulation runs, a finite
population U, and |U| = N = 10000, is generated under the following
DGP for all j ∈ U

Y
(j)
i ∼iid G(3, 2), j = 1, . . . , 50 (3.29a)

Y
(j)
i ∼iid G(8, 3), j = 51, . . . , 100 (3.29b)

Y
(j)
i ∼iid Pois(6), j = 101, . . . , 150 (3.29c)

Y
(j)
i ∼iid Pois(24), j = 151, . . . , 200 (3.29d)

This set-up is interesting because EMθ

[
Y
(1)
i

]
= EMθ

[
Y
(101)
i

]
and

EMθ

[
Y
(51)
i

]
= EMθ

[
Y
(151)
i

]
and thus the same holds for the HT under

PMθ,D, too. Furthermore, the functional relation between variance and
expectation in the DGP are not the same but similar between Poisson
and Gamma distribution (cf. Equations 3.6 and 3.7).

First, these properties allow us to study the quality of the GVF, when
the assumptions on the DGP hold (i.e. when one accounts for the differ-
ent structures between Gamma and Poisson distributions and different
parameters within these families). Second, the impact on GVFs can be
studied when these assumptions only hold approximately (i.e. when ei-
ther the variables do not originate from the same class of distributions or
have different moments). Furthermore, it can be studied whether some
GVF shapes are more sensitive to assumption violations.

sampling randomization

Whilst the relational similarity between a random variable’s Y(j)i PMθ-
expectation and variance is most easily transferred to the model-design
setting under SRS (cf. Example 1), the impact of differing sampling de-
signs is of interest in the simulation study, too. Therefore, not only SRS
is implemented, but also a Stratified Random Sampling (StratRS) and a
stratified Two-Stage Cluster Sampling (TSC). The assignment to strata
and clusters is as follows: Units are assigned randomly to a partition
{Uµ}µ=1,...,25 of the finite population. The disjoint subsets are of vari-
able size and the assignments to the partition sets is kept constant over
all R = 1500 MC runs. A second partition {Ũν}ν=1,...,5 is defined with
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Ũ1 = ∪· 5µ=1Uµ, . . . , Ũ5 = ∪· 25µ=21Uµ. A detailed overview about the alloca-
tions to the partitions can be found in Appendix B.

For the StratRS, units are drawn randomly from each sub-population
Uµ, µ = 1, . . . , 25, with proportional allocation

nµ ,

⌈
n ·

|Ũµ|

|U|

⌉
.

n =
∑25
µ=1 nµ = 253 is the fixed sample size for SRS. For the stratified

TSC the partition {Ũν}ν serves for stratification, and on the first sampling
stage, two subsets Uµ are chosen from each Ũν. Then, on the second
stage, roughly 30% of the units (but at least one) in the drawn Ũµ are
selected at random and enter the survey sample S. The expected sample
size for the TSC design is comparable (but not exactly the same) to the
fixed sample size n in SRS and StratRS.

gvf prediction

The GVF shapes under study are the Models (3.23a), (3.23b), (3.23c) and
(3.23d). If it is accounted for the different original distributions of Y(j)i in
the GVF model, this is done by the inclusion of indicator variables, for
example in shape (3.23b) as

log VarMθ,D

[
g
(j)
S

(
S, Y(j)

)]
=∑

P∈{G(2,3),G(8,3),Pois(6),Pois(24)}

ψ0,P · 1(Y(j) ∼ P)

+ψ1,P · 1(Y(j) ∼ P) · logg(j)S
(
S, Y(j)

)
+ εj, εj ∼ind N(0,σ2j ) .

That means, that in this case, the assumption violation is only in terms
of the variance of εj. Use of indicators in a model are indicated in the
summarizing Figures by the hint ‘indicators’. Models are designated by
their dependent variable.

GVFs are estimated on a random subset Q̃ ⊂ Q, |Q̃| = 20 of variables,
where it is assured that from each distribution type, 5 variables are in-
cluded so that the indicator models are always estimable. Due to the
common use in practice, weighted OLS are run with the assumption of
proportionality between σ2j and the squared relative variance. Due to
the possible instabilities mentioned in Section 3.3.3, the weighted OLS is
compared to unweighted estimation.

3.4.2 Objectives of the Study

The predictive power of various GVF models is compared to the diret
HT variance estimator given in (3.3a), and replicate weights. Replicate
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weights are matrices in R+
0
n×B and each column b = 1, . . . ,B summa-

rizes a realization of a pre-specified resampling algorithm such as men-
tioned in Section 3.1. Here, the replicate weights are generated using the
R package survey [Lumley, 2019]. For the GVF model estimation, though,
the direct HT variance estimate is used and not the resampling variance
estimate, although this would have been possible, too. All variance es-
timators/ predictors are considered under the criteria of Monte-Carlo
relative bias (3.30) and relative MSE.

The relative bias is the expectation of

RelErr
[
Var′Mθ,D

[
g
(j)
S (S, Y(j))

]]
,

ṼarMθ,D

[
g
(j)
S (S, Y(j))

]
VarMθ,D

[
g
(j)
S (S, Y(j))

] − 1 (3.30)

where Var′Mθ,D ∈ {ṼarMθ,D, V̂arD, V̂ar
rw
D } and superscript rw stands for

replicate weight estimator. The relative MSE is then the expectation of
the squared (3.30) expression.

In addition, the R2 coefficient is stored (when applicable) to analyse
its property as quality measure. Finally, the quality measure δ̄1−α of Ger-
shunskaya and Dorfman [2013] is calculated with α = 0.05 and stored.
Here, the question is whether the asymptotics already hold under the
three different survey designs and allow the use of δ̄1−α to evaluate and
choose GVFs.

3.4.3 Simulation Results

For StratRS and the stratified TSC, some clusters and strata must be put
together when sample sizes therein equal 1. Whilst this has no notable
impact for StratRS, this leads to an overestimation of variance for strat-
ified TSC as can be seen in Figure B.1 in Appendix B, where the MC
distribution of the direct variance estimators are contrasted with the MC
variance of the HTs.

The number of models in combination with the choice whether to in-
clude indicator variables or whether to use weights in OLS is too high
to be exposed in a single figure. Thus, the GVF shapes will first be con-
trasted to each other in terms of the MC mean of the relative error. The
best GVF models are then compared to the classical HT variance estimator
and the resampling estimator.

The complete summary statistics are given in Tables B.4 to B.15 in
Appendix B. The MC mean of (3.30) results when both the numerator and
the denominator are MC outcomes: As the finite population is known in
each simulation run, the true HT variances can be estimated for each
generated finite population (and also the GVF for the generated sample
from the finite population). Averaging over the finite populations yields
an estimator for EMθ,D [VarD [τ̂y]] (or of the GVF prediction respectively).
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The nonlinear regression (3.23c) encountered several problems, es-
pecially convergence to an optimal parameter estimate was seldomly
achieved when indicator variables were included as explanatories, which
led to the exclusion of Model (3.23c) with indicator variables. But also
when all variables of interest were merged in the regression model, the
estimation sometimes would not always converge with arbitrary starting
values given certain realizations S = s. If a GVF of that shape is used in
practice, the estimation thus requires additional fine tuning that cannot
be provided in a routine running 1500 times.

The other classical linear regression models (3.23a), (3.23b) and (3.23d)
performed, on the other hand, very similar in terms of average relative
error. This can be explained as follows: These shapes differ mainly on
the underlying assumption of the error distribution of εj, j ∈ Q. However,
potential heteroskedasticity in the linear model (that might be compen-
sated using (3.23a)) does not affect neither the point estimation nor the
prediction. The possible bias due to log-transformation is accounted for
(cf. Section 3.3.1).

Concerning the average squared relative error, though, the log-log
regression slightly outperforms Model (3.23a) and both of them have
slightly lower squared error than the linear model, which can be checked
in the electronic appendix.

Furthermore, we find in general that the GVFs are sensitive to the viola-
tion of assumptions, that is, when no indicator variables are included to
account for the different DGPs of the original data. Additionally, weight-
ing does not reduce (squared) prediction error for SRS and StratRS in
average. In fact, there can be observed a slight deterioration in the me-
dian relative error in Figure 3.1 and Tables B.4, B.5, B.7 and B.8. For these
designs, Figure B.1 shows also that the direct variance estimator (3.3a) re-
turns very reliable estimates (i.e. a low relative error). For stratified TSC,
however, the direct estimator yields higher errors due to the merging
of strata. Consequently, downweighting high relative variance variables
j ∈ Q̃ in weighted OLS yields a better regression model and thus better
GVF predictions in average. Furthermore

In a next step, the GVF predictions of Models (3.23a) and (3.23b) – with
indicator variables and estimated by weighted OLS – are compared to the
performance of the direct estimator and the resampling estimator. The
MC distribution of the relative error is plotted in Figure 3.1

Especially for the stratified designs, the resampling estimator perform
surprisingly bad. This might be due to the fact that the finite population
correction is quite significant in this set-up, and the bootstrap chosen for
the generation of replicate weights cannot appropriately account for that.
The fact that the bias is positive for the stratified designs is an argument
for this hypothesis. On the other hand, alternative replicate weight meth-
ods in survey were not applicable to the design as only two units per
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Figure 3.1: MC Relative Error of Variance Estimators
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stratum were chosen in the stratified TSC and also for StratRS, sometimes
only one unit per stratum was chosen. The log-log GVF performs quite
similar to the direct estimator, there is only a slight bias in the prediction
and variance of the prediction error is very small. The regression using
the relative variance as endogeneous variable, on the other hand, yields
predictions with higher variability. Though often comparable to the log-
log GVF in average, the spread of prediction errors is larger, which, on
the other hand, makes it more often cover the real HT model-design
variance within the inter-quartile range. Furthermore, it is more easily
theoretically justifiable. If the model assumptions are fulfilled, Figure 3.1
suggests that GVFs under a wisely chosen shape represent an alternative
to the direct variance estimator, not only concerning the computational
effort but also the prediction efficiency.

But the possible gain in efficiency, is hardly an advantage if there is no
measure that allows to assess whether the chosen GVF shape yields such
good predictions. Figure 3.2 plots the average share of explained varia-
tion (R2) of the GVF regression of all GVF models against the average rel-
ative squared prediction error. Obviously, the previously named models
that are considered best – the log-log regression and the regression us-
ing the relative variance, estimated by (weighted) OLS and accounting by
indicator variables for the different distributions of the input variables
– yield only partially high R2 close to one: The model with the relative
variance as dependent variable, Model (3.23a), has for both weighted
and unweighted regression a medium R2 for stratified TSC. On the other
hand, the linear models always have high R2, for stratified TSC this holds
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Figure 3.2: Average R2 of the GVF Regression vs. Average Relative Prediction
Error
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even for the model without indicator variables. The distinction between
good and bad shape decisions is thus not clear-cut. Note however, that
this mainly holds for the stratified TSC. Under the simpler designs, the
R2 is capable to find the importance of indicator variables. Consequently,
the share of explained variation gives an indication for good GVF shapes
but is not always a good advice, especially when the designs become
complexer.

Completely different results can be found for δ̄0.95 suggested by Ger-
shunskaya and Dorfman [2013], summarized in Figure 3.3. Calculating
this indicator with the direct variance estimates yields a 0% and roughly
21% coverage with a nominal level of 95% for SRS and stratified TSC re-
spectively which can be seen as an indication that the asymptotics may
not yet hold for these survey designs. When the asymptotics do not
hold, it is consequently not surprising that the average δ̄0.95 are low al-
though GVF predictions can be good. It is then interesting that the δ̄0.95
of the different GVF predictions yield similar values like when the di-
rect estimator (3.3a) is plugged in for SRS and stratified TSC, which are
independent from the average relative MSE and not close to the nomi-
nal level of 0.95. For StratRS, on the other hand, where the asymptotics
seem to hold (δ̄0.95 is close to the nominal level when the direct HT vari-
ance estimator is used for the computation), the quality measure also
achieves the nominal level for the GVFs. But the MC average δ̄0.95 values
are similar for all GVF shapes and therefore cannot help to choose be-
tween the shapes and weighted and unweighted estimation. Especially
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Figure 3.3: Average δ̄0.95 of the GVF Regression vs. Average Relative
Prediction Error
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for the logarithmic regression, the indicator δ̄0.95 is not capable to find
that the lack of indicator variables is inadequate. Nonetheless, it indi-
cates that the linear model and Model (3.23a) without indicators is not
appropriate. Nonetheless, it seems that – in contrast to R2 – one can de-
termine a priori whether δ̄0.95 is usable by plugging the square root of
the direct HT variance estimator (3.3a) into (3.26). If the nominal level is
not achieved for the direct estimator, one cannot rely on the result of the
quality measure for GVFs.

To summarize the simulation study, the GVF predictions are a stable
and reliable alternative to direct variance estimation if the model as-
sumptions hold, that is, when the input HT are generated from identi-
cally distributed random variables. Then, barely a difference between
the shapes can be found, though the logarithmic regression and the re-
gression using relative variances were slightly on top. When the survey
design is easy, weighted OLS does not help in the estimation of GVFs as
the input data are already reliable and the weights are generated using
estimates. However, under stratified TSC, regression weighting helps to
improve estimation, especially when the variances of the underlying DGP
are large.





4
A M U LT I VA R I AT E P R O B A B I L I T Y D E N S I T Y
E S T I M AT O R U S I N G S O M S

4.1 introduction to soms

Both, Chapter 2 and 3 dealt not only with classical problems of applied
statistics, but also solved them using classical approaches. Chapter 4

breaks this pattern: Though the problem of estimating unknown proba-
bilities (non-parametrically) is old, the offered solution belongs to the up-
coming field of machine learning. Therefore, Chapter 4 can be seen like
a synthesis of classical statistical estimation theory and novel, computer-
intensive methods that still lack sometimes a thorough theoretical foun-
dation. This reconciliation is demonstrated here on the Self-organizing
Map.

The Self-organizing Map (SOM) originates from Kohonen [1982] and
was intended to mimic ‘input-driven self organization’ of brain cells
to specialize for different cognitive functions [Kohonen, 2013]. Notwith-
standing this originally biological motivation, SOMs are currently applied
in exploratory data analysis, text structure analysis [Kohonen, 2013] and
data visualization [Kangas and Kohonen, 1996]. They have been applied
to impute survey data as well [Fessant and Midenet, 2002], which raises
the question of how survey data should be treated in machine learning
in general and in SOMs in particular when data involve a complex survey
design PD (cf. Section 4.7).

The SOM Algorithm is a competitive learning algorithm that aims at
structuring the input data in an unsupervised manner. Like the k-means,
SOMs aim at the identification of ‘hidden’ clusters in the data, that is,
output sub-spaces in which random realizations of Y resemble more an-
other than between categories. In contrast to usual vector quantization
methods, though, SOMs have the advantage that the vector quantizers are
arranged on an undirected graph G = (VG,EG) and the edges between in-
dexed units indicate neighborhoods in the input data space [Alahakoon
et al., 2000]. This gives additional information on the input data space
than the mere assignment of Y to vector quantizers.

This makes the algorithm especially interesting when too few infor-
mation about the data is available to adopt parametric distributional
assumptions, i.e. the concept Y ∼ PMθ and PMθ ∈

{
PMϑ : ϑ ∈ Θ

}
: The

algorithm does not only find representatives that summarize local infor-
mation, but also arranges this local information within neighborhoods,
which raises the question on the relation between the graph’s topology
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and that of the input data space. Kangas and Kohonen [1996] name the
SOM a ‘kind of nonlinear projection of a probability density function
of high-dimensional input data onto a two-dimensional array’. If the
information that gets lost on this projection consists mainly of noise, re-
construction of the high-dimensional probability distribution function
could be feasible. The relatively efficient storage and easy training of
SOMs then would turn the algorithm to an attractive instrument for mul-
tivariate probability distribution estimation. In this Chapter, SOMs are
studied under this point of view.

Especially from Section 4.4 on, the focus turns to modifications of
the original SOM algorithm that are favorable for probability estimation.
We will present an estimator similar to the semi-parametric method of
Gaussian mixtures. In fact, the provided estimator comes in the shape of
a density estimator, thus at least requiring that the probability measure
P is approximatable by a Lebesgue density.

In the following, we introduce the basic SOM algorithm and a batch
variant thereof as well as important findings and shortcomings in the
asymptotic behaviour, which might hinder its application in probability
distribution estimation. Then, extensions of the algorithm are discussed
that shall remedy these pitfalls.

4.2 the basic som

4.2.1 Algorithmic Description

First, additional notation for this chapter must be introduced. For this
introductory section, assume that the graph G = (VG,EG) is a finite grid
on Zk where k is usually a small positive integer, most often k = 2. The
size of the grid is |VG| = NG and the set EG denotes the edges between
to nodes (m1, . . . ,ml, . . . ,mk) and (m1, . . . ,ml ± 1, . . . ,mk).

Let again Yi ∈ Y be a p-dimensional real-valued random variable and
Y := (Y1, . . . , YN) where N is the size of a finite index set U. Assume
that Yi are iid for i ∈ U and their probability law P is of interest. As the
generating model M is unknown, we omit here the subscript Mθ for the
DGP.

To each node j of the grid G on which a SOM for Y shall be trained,
there is attributed in each training step κ = 0, 1, . . . a feature vector
u(κ)
j ∈ Rp, and the ensemble be U(κ) =

{
u(κ)
j

}
j∈VG

. In each training step,

a training data point yi, i ∈ S, that is considered to be a realization of Yi,
is presented to the elements of U and the best matching unit (bmu)

b(·,U(κ)) : Rp → G, b(yi,U(κ)) = arg min
j∈VG

d
(

yi, u(κ)
j

)
(4.1)
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Figure 4.1: Concept of the SOM

Source: Hajjar and Hamdan [2011]

that is the node whose feature vector has minimal distance d to yi, and
its neighbors are updated to better resemble the training data. Neigh-
borhood of j ∈ VG is here defined by the set of nodes ι ∈ VG for which
the distance δ(j, ι) is below a certain level. The distance is often the Eu-
cledian distance [Kangas and Kohonen, 1996] but could also correspond
to the length of the shortest path. The shortest path will prove to be a
useful metric when we relate SOMs to MRFs. When VG ⊂ Zk, the shortest
path metric corresponds to the `1 metric.

The vectors’ update is dynamic in the iteration step κ due to a learn-
ing rate α > 0 and depends additionally on the neighborhood function
h > 0 that incorporates the distance between the trained node ι and the
Best Matching Unit (bmu) δ

(
ι,b(yi,U(κ))

)
. Note that b is not necessar-

ily well defined as it might happen that more than one feature vector
has minimal distance. Implications thereof will be discussed in the next
sections and the phenomenon is in this introductory section disregarded.
This procedure, already described in words, is summarized in Algorithm
4.1.

Also Figure 4.1 illustrates the working of the SOM: There, data from
a 3-dimensonal input data space that will be mapped nonlinearly to
points in a two-dimensional grid. To each point in the grid, a feature
vector is attributed indicated by the green and red colored arrows. A
nonlinear map then assigns input data close to a feature vector to the
corresponding element of the grid. The learning rule (4.2) trains at the
same time feature vectors that belong to neighboured points in the grid
such that those feature vectors shall become similar. In that sense, using
eucledian distance, the feature vectors in Figure 4.1 do not yet seem well
trained.
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Algorithm 4.1 On-line SOM

Require: {yi}i∈S, δ : G → [0,∞), d : Rp → [0,∞), G ⊂ Zk, U(0), h :

[0,∞)→ [0, 1], α : N0 → [0, 1]
Ensure: A SOM that is completely described by (U,G)

for κ = 1, 2, . . . ,K do
Draw randomly i ∈ S
Find the bmu bκ(yi) := b

(
yi,U(κ)

)
Update for each j ∈ VG

u(κ)
j = u(κ−1)

j + h (δ (j,bκ(yi))) ·α(κ) · (yi − u(κ−1)
j ) (4.2)

if Convergence then
break

end if
end for
Set U =

{
uj
}
j∈VG

←
{

uκj
}
j∈VG

Note that Algorithm 4.1 is also applicable for a discrete but perma-
nent input data stream, i.e. in each training step κ, a random realization
yκ could be presented to the algorithm. In accordance with the survey
statistical context and the subsequent algorithms that require a finite
training data set, however, we referred to a training data set S.

A priori, it is not known whether Algorithm 4.1 converges. In fact,
convergence depends on the properties of P, h, α and the input data
dimension p, and will be discussed in the next section.

The difference between the SOM and classical vector quantization is
that in general, the neighborhood function has a support of more than
one point, h 6≡ 1{0} [Fort et al., 2001, Kohonen, 2013]. The neighborhood
function h is a reinforcement rule, meaning that the adaption is big-
ger for nodes closer to b(yi,U(κ)), yielding (approximate) neighborhood
preservation, which is also often referred to as (approximate) topology-
preservation. Though the Gaussian kernel is a common choice for h [To-
lat, 1990, Kohonen, 2013, for example].

An alternative to the described on-line algorithm are batch-type vari-
ants of the SOM, and the one internally linked to Algorithm 4.1 is de-
scribed in Algorithm 4.2 and can be found in Fort et al. [2001]. The
batch algorithm is derived from an equilibrium state that the on-line
algorithm reaches if convergent. Fort et al. [2001] argues that the Batch-
SOM would also converge when Algorithm 4.1 converges (which still
has to be discussed), the argument is given in the Appendix A, includ-
ing some theoretical aspects that are missing in Fort et al. [2001]. It is
important that Fort et al. [2001] states not that the equilibria agree.
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Algorithm 4.2 Batch SOM

Require: {yi}i∈S, δ : G → [0,∞), d : Rp → [0,∞), G ⊂ Zk, {u(0)
j }j∈G,

h : [0,∞)→ [0, 1]
Ensure: SOM

{
uj
}
j∈VG

for κ = 1, 2, . . . ,K do
Determine best matching units for all i ∈ S
Update each j ∈ VG by

u(κ)
j =

∑
ι∈VG

∑
i∈S h (δ (b(yi), j)) yi∑

ι∈VG
∑
i∈S h (δ (b(yi), j))

(4.3)

end for

This is due to the fact that the learning rule (4.2) is not transferable to a
globally convex energy function [Heskes, 1999] and thus, there are many
local minima possible and the converged SOM need not agree with the
Batch Self-organizing Map (BSOM). Fort et al. [2001] and Fort et al. [2002]
observe a better ordering of the on-line variant because the stochasticity
allows to leave local minima. However, as in each learning step, only one
observation is presented to the SOM, learning is slower for the on-line
algorithm when a given set S of observations exists and no additional
information arrives during the training process [Fort et al., 2001].

The definition of the bmu in (4.1) – which is commonly used in vector
quantization – is closely related to the concept of Voronoi tesselation
[Kohonen, 2013]. The Voronoi region of a node j is defined as

Vj , {x ∈ Rp : b(x,U) = j} , (4.4)

which depends on U and therefore varies for each training step κ. In fact,
if the Algorithm 4.1 converges, it can be seen as a local minimization of
the approximate energy function

L ,
1

2

∑
j∈VG

h (δ (j,b(Y,U)))
∫
Vj

‖Y − uj‖2 dP , (4.5)

implying that the employed metric is the Eucledian distance. Remember
that the Voronoi region Vj is a function of all feature vectors uι, ι ∈ VG,
too, due to its definition via b. Thus, a correct differentiation of L with
respect to uι is not straight forward [Heskes, 1999] and the update rule
is only an approximate gradient descent step.

Besides the choice between batch and on-line training, Algorithms 4.1
and 4.2 raise several questions that shall be picked up in the next sec-
tions: First, there are several possible choices for the neighborhood func-
tion (though the Gaussian kernel is very common, Kangas and Kohonen
[1996], Kohonen [2013, for example]). However, in order to prove con-
vergence, often a finite support is necessary [Sadeghi, 2001]. In the case
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of the on-line algorithm, the learning rate needs to be determined, too.
Yin and Allinson [1995] give some necessary properties concerning the
decay rate of α for another proof of convergence. Sadeghi [2001], on the
other hand, requires the learning rate to be constant for his proof for
convergence in distribution.

In addition, the metrics d and δ and the size of the grid, NG must
be chosen prior to training. The first problem, the choice of metrics δ
and d, can play a role in the training as they determine the neighbor-
hoods that will be updated. Update rules (4.2) and (4.3) assume implic-
itly that d is the squared Eucledian distance. Otherwise, the update di-
rection

(
Yi − u(κ)

j

)
must be replaced by 1

2∇yd
(
Yi, u(κ)

j

)
[Tolat, 1990]. As

the chosen metrics play a major role for the interpretation of SOMs with
alternative update rules, common metrics used for SOMs are discussed in
Section 4.3. The second problem is discussed in Section 4.5, and the sug-
gested dynamic solution is the main remedy to control magnification.

4.2.2 Properties of the SOM

There are two aspects when talking about (asymptotic) properties of
SOMs. As we consider in the following finished algorithms, we leave the
iteration superscript κ. First, the organization of the map, i.e. conver-
gence related to its topology, which stems from h 6= 1{0}. Kohonen [1982]
and Tolat [1990] denote this organization a ‘topologically correct’ map-
ping. An ordered state can be stated at most when p = k, that is the
dimension of input and output space are equal [Tolat, 1990, Erwin et al.,
1992]. Tolat [1990] also names the option that p > k but Yi lies on a k-
dimensional subspace. But already for p = 2, when an ordered state is
achieved, the exit probability can be positive for particular neighborhood
definitions [Cottrell et al., 2016]. When p = k = 1, however, the conver-
gence to an ordered state can almost surely be assured. If p > k, the
neighborhood preservation can only hold approximately. These results
hold for lattices G and are not studied for general graphs.

Second, the vector quantization quality may be assessed by the aver-
age quantization error, that is for Eucledian distance, the average squared
deviation of inputs within the Voronoi regions Vι from the centers uj,
j, ι ∈ VG,

E [dist(Y,U)] =
∑
j∈VG

∫
Vj

d(Y, uj)dP . (4.6)

When the neighborhood function has a compact support, i.e. when
h(δ(j, ι)) = 0 if δ(j, ι) > c, c > 0, the expected loss function∑

j∈VG

∑
ι∈VG

h(δ(j, ι))
∫
Vj

d(Y, uι)dP . (4.7)
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reduces to a weighted error between Yi and uι in the joint Voronoi region
∪ι∈NjVι, and therefore its minimization contributes to the reduction of
the quantization error (though the optimization problems are not equiv-
alent).

Vesanto et al. [2003] call (4.7) the distortion measure and gives a de-
composition of it into a sort of quantization error and a disorganization
penalty. They argue that this reflects the trade-off between finding good
representative feature vectors and the similarity of feature vectors within
a neighborhood. We shall see a similar decomposition in Section 4.4. This
trade-off is reflected by h 6≡ 1{0} and its implication for density estima-
tion is discussed in Heskes [2001] and will be picked up later. In the
following, we will focus on convergence concerning the representative
feature vectors U.

Rarely for SOMs, statements can be found for general P, α, d, δ, h, p
and k. Due to the increasing complexity, early analyses were restricted
to the case where p = k = 1 [Erwin et al., 1992]. Yin and Allinson [1995]
and Sadeghi [2001] give some limited results for the higher dimensional
input space.

Sadeghi [2001] shows that the on-line learning is an aperiodic T-chain
and using Markov chain theory, the convergence of the feature vectors
distribution to a finite invariant measure is demonstrated that depends
on the constant learning rate α (which is in contrast to the convergence
results of Yin and Allinson [1995]). Like in Yin and Allinson [1995], it is
shown that a Central Limit Theorem (CLT) holds for the feature vectors.
However, the findings are only valid for a neighborhood function h with
finite support and supp Yi must be bounded, Yi being piecewise contin-
uous on (multidimensional) intervals. In that case, elements in U take
values in a bounded and convex set that is a superset of supp Yi. Besides
these restrictions, these results are on properties of U that do not depend
on P (except for the named conditions). Therefore, these results are only
limitedly useful for probability estimation of P.

Yin and Allinson [1995], on the other hand, rewrite the on-line algo-
rithm as a sum of (time dependently) weighted independent random
variables (which is in disagreement with our assumption that i ∈ S and
therefore, draws in training steps are not independent). Under the as-
sumption of not too fast decaying learning rates and h being a step func-
tion 1Nj with shrinking neighborhood size Nj for each j ∈ VG, they man-
age to show L2-convergence of {uj}j∈VG to the conditional expectations
of Yi if there are no zero-hit nodes. There are no explicit requirements
on the properties of P and Yi, besides the existence of all moments of
Yi. Note that some steps in their proof remain unclear, as discussed in
Appendix A.

If the input variables are discrete, though, it can be shown that the
loss function L in fact is an energy function for the update rule (4.2).
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This is not the case for continuous random variables, though [Heskes,
1999]. The existence of a global energy function simplifies the analysis
of the learning rule because then, the update can be interpreted as a (lo-
cal) gradient descent step and known (local) convergence results become
applicable.

As already mentioned, the convergence might depend on the choice
between on-line and batch algorithm. The convergence of the on-line
variant motivates the update rule in the BSOM. If the on-line algorithm
converges in L2, none of the feature vectors uj, j ∈ G would change in
expectation, which can be translated into

∀j ∈ VG
∑
ι∈VG

∫
Vι

h (δ(b(Y,U), j))
(
Y − uj

)
dP

=
∑
ι∈VG

h(δ(ι, j))
∫
Vι

(Y − uj)dP = 0 (4.8)

[Fort et al., 2001]. Fort et al. [2001] argues that a rearrangement yields
(cf. Equation (A.9))

uj =

∑
ι∈VG h (δ(j, ι))

∫
Vι
Y dP∑

ι∈VG h (δ(j, ι))P(Y ∈ Vι)

=

∑
ι∈VG h (δ(j, ι))P(Y ∈ Vι)E[Y|Y ∈ Vι]∑

ι∈VG h (δ(j, ι))P(Y ∈ Vι)
, (4.9)

which leads to the empirical update rule (4.3) when empirical means are
used ∑

ι∈VG h(δ(j, ι))
∑
i∈S 1Vι(Yi) · Yi∑

ι∈VG h(δ(j, ι))
∑
i∈S 1Vι(Yi)

=

∑
i∈S
∑
ι∈VG 1Vι(Yi) · h (δ(j,b(Yi,U))) · Yi∑
i∈S 1Vι(Yi) · h (δ(j,b(Yi,U)))

.

Note that this rearrangement assumes that uj does not depend on P,
which means pointwise convergence of uj to a constant function. A cor-
rect re-formulation of the converged state in Fort et al. [2001] thus would
be ∑

ι∈G
h (δ(j, ι)) · P(Y ∈ Vι) · E

[
uj|Y ∈ Vι

]
=
∑
ι∈G
h (δ(j, ι)) · P(Y ∈ Vι) · E [Y|Y ∈ Vι] (4.10)

and when Y is presented to the SOM after training, E
[
uj|Y ∈ Vι

]
= E

[
uj
]
.

This implies that in the converged state, we have in fact that the expected
feature vectors correspond to a locally re-weighted expectation of Y and
convergence means L1-convergence.
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A link that seems not to have been made up to now is the identifica-
tion of SOMs with Markov Random Field (MRF), though the process of
weight updates was identified with Markov processes. When the neigh-
borhood function is chosen such that supph is compact, the impact of a
random outcome of Yi is locally bounded on the graph.

Then, possibly a joint probability measure on the σ-field over G× Y

can be constructed that reflects the joint distribution of 1Vj(Y) and Y

under certain conditions. Therefore, we must bring into accordance the
terms used here with those of MRF theory. We start with the definition
of neighorhood relations and cliques.

Definition 10 (Neighborhood). On a graph G = (VG,EG) endowed with
metric δ, a c-neighborhood (c > 0) of a node j, Nj, is defined as the union of
nodes ι in VG with δ(j, ι) 6 c

Nj := {ι ∈ VG : δ(j, ι) 6 c} .

If ι ∈ Nj, we have an equivalence relation and write ι ∼ j.

When the feature vectors uj are clearly identified with their corre-
sponding nodes, fixed U are sites on the graph G with proximities given
by the neighborhoods in G.

Definition 11 (Clique). Assume a finite set G and a measurable, symmetric
and reflexive relation ∼ between elements x,y ∈ G. A subset Γ ⊂ G is called a
clique if ∀x ∈ Γ : ∀y ∈ Γ : x ∼ y.

For c < diam(G), we have pairwise different cliques. If we can then
identify the distortion measure (4.7) with a nearest-neighbor potential
with sites U, neighborhood relation ∼ and configurations Y there exists
a Markov Random Field (MRF) (under further conditions to be specified
later) [Isham, 1981]. Then, there exists a function f such that P(Y|Vj) =

f(uι : ι ∈ Nj) [Isham, 1981]. Difficulties arise as the configuration space
Y is not necessarily finite and discrete.

4.3 distance measures in soms

The choice of δ determines the proximity of nodes in the output data
space and in combination with the neighborhood function h, the met-
ric on G is consequently essential for the training of the feature vec-
tors. That the update depends on δ via h ◦ δ makes the difference be-
tween SOMs and Neural Gas algorithms [Villmann and Claussen, 2006,
Arnonkijpanich et al., 2008]. The dependence of the update rules (4.2)
and (4.3) on δ impacts the problem of magnification error: As two nodes
in G may be neighbored with a distance disproportional to their distance
in the input space, the learning of their feature vectors on a training data
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Y is not proportional to the original distance neither. This can lead to an
over-representation of low-density areas by relatively many feature vec-
tors [Ritter and Schulten, 1986, Villmann and Claussen, 2006].

The distance plugged into h is often the absolute distance between
nodes j and ι in the two-dimensional space. This is in so far sensible as
the arrangement of G is usually on a grid with edges linking those units
j and ιwith |j− ι| = 1. However, note that there is no necessity to arrange
the nodes in Z. Therefore, it makes also sense to define δ based on the
existence of edges between two nodes j and ι without focusing on the
absolute length of the edge.

In Section 4.5, a dynamic SOM introduced by Fritzke [1994] will be dis-
cussed. As in this case a low-dimensional simplex defines a local neigh-
borhood, the metric between j and ι can be defined as the minimal path
length over the edges in EG

δ(j, ι) , min |ρ(j, ι)| , (4.11)

which is also applicable on lattices. Alternatively, when VG ⊂ Zk, the
Eucledian distance might be used. This has the inconvenient that there
exists a difference between a lattice in Zk or, say (2Z)k, as the edge
length doubles though the relative position of nodes in VG can still be
the same. Output space metric (4.11) allows us to find

Remark 7. In a two-dimensional, finite lattice G with j = (j1, j2), m =

(m1,m2) ∈ VG where j ∼ m if (j1 ± 1, j2) = (m1,m2) or (j1, j2 ± 1) =

(m1,m2), all cliques in the graph are subsets Γ ⊂ G with |Γ | 6 2 [Isham, 1981].

For the SOM’s input data space – that is, the image space of Y – and the
corresponding metric d, on the other hand, things are different. Though
the most often used metric is the (squared) Eucledian [Kohonen, 2013],
this choice is not unproblematic: The squared Eucledian distance is not
scale invariant, d(λy1, λy2) = λ4d(y1, y2) for some λ ∈ R. This might be
critical, for possibly varying input measures (say cm or m). Especially
when Y is p-variate with p > 1, different scales of vector elements in
Y = (Y1, . . . , Yp) impact their influence on the training process [Pacifico
and de Carvalho, 2011]. When the training is then stopped too early,
adaptation of the feature vectors U to low-scale elements in Y might not
be sufficient because training took first place for those vector elements
with large scale. Therefore, sometimes the the input data is normalized.
Blayo [1992], however, questions this common practice in the case that
p→∞. For fixed p, on the other hand, his arguments are not valid and
the normalization can be useful. If the data are normalized, an alterna-
tive and frequently used distance is the dot product, that is, the angle
between Y and the elements of U in the input space [Tolat, 1990, Blayo,
1992, Kohonen, 2013], which simplifies calculus.
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If the realizations of Y lie on a curved manifold with a dimension
smaller than p, on the other hand, the Eucledian distance does not return
the distance between these two points on the manifold. In addition, a
mapping onto a finite subset of Zk cannot be achieved, what yields the
approximate neighborhood preservation discussed previously. Then, d
should be the natural metric on that manifold [Ritter, 1999]. However, if
the data analysis is explorative and barely something is known about P,
unusual choices for the metric d are difficult to justify.

Notwithstanding the problems with the Eucledian distance, (squared)
metrics based on scalar products in Rp (d(y1, y2) = ‖y1, y2‖2Λ , 〈y1 −
y2, y1 − y2〉Λ where Λ is a symmetric, positive definite matrix) have a
good statistical interpretation such as the Mahalanobis distance. There-
fore, in the following, we will focus on generalizations of the Eucledian
distance.

A metric that corrects for the scaling problem of random variables is
the Mahalanobis distance with the inverse covariance matrix of Y, say
Σ−1 = Λ in the previous description. This has been used in SOM training
as well [Paul and Gupta, 2013, Hajjar and Hamdan, 2011]. If the nor-
malization of the input data is Σ−1/2Y, the normalization corresponds
together with the squared Eucledian distance corresponds to the use of
the Mahalanobis distance with non-standardized Y. Note that the batch
update rule (4.3) does not change in that case when derived by the equi-
librium condition.

A normalization by the multiplication from the right of Y with Σ−1/2

has the inconvenient though, that it does not take into account neither
the local behavior of Y in a Voronoi region Vj nor the (possibly still un-
ordered) state of the SOM. Arnonkijpanich et al. [2008] therefore suggest
to use adaptive distances that vary within Voronoi regions: For node j,
we have then dΛj(Y, uj) = 〈Y − uj, Y − uj〉Λj where Λj is a symmetric,
positive definite matrix with detΛj = 1 for all j ∈ VG. To make the set
d ' {dΛj}j∈VG a proper metric, define

d : Rp ×Rp → [0,∞),

d(x, y) =

dΛj(x, y), if x ∈ Vj ∧ y ∈ Vj
dΛj(x, uj) + dΛι(y, uι) + ‖uj − uι‖2,

(4.12)

if x ∈ Vj ∧ y ∈ Vι and j 6= ι

where ‖·‖ denotes the Eucledian norm. The properties of a metric then
persist for {dΛj}j∈VG as shown in Appendix A. A similar approach to
Arnonkijpanich et al. [2008] was suggested by Pacifico and de Carvalho
[2011]. Their algorithm however implies that all Λj, j ∈ VG must be
diagonal, too.

This choice of metric has however a negative impact on the theoretical
properties of the topographic map and the optimal feature vectors as
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the centres of the Voronoi regions cannot be compared easily any more,
as will be discussed later. Therefore, a compromise between the classi-
cal Mahalanobis and the local adaptive distances is suggested: d(x, y)
is set to 〈x − y, x − y〉Λ where Λ is a symmetric and positive definite
matrix that minimizes the distortion measure given (U,V). This means
that Λ must be updated during the training and the distance is there-
fore adaptive. This additional computational burden, though, allows a
more flexible density estimator for dP in later sections. As the proposed
density estimator introduced below has similarity to Gaussian Mixture
Model (GMM), it is furthermore attractive to fix the determinant of Λ
proportionally to the determinant of the inverse covariance matrix of Y
instead of 1. In addition, as will be discussed in Section 4.5 and sum-
marized in Section 4.6, we will grow the graph G dynamically. With an
increased number of nodes, the number of grid points increases and dis-
tribute on a convex superset of the support of Y (not necessarily bounded
when suppP is not bounded). In order not to make Λ cover these richer
details of (G,U), we will in the final algorithm fix the proportion between
Λ and Var[Y] to |VG|. The idea is that the average distance between the
nodes and Y (hence, division by |VG|) should be of the same size as
Var[Y] and Λ is interpreted as proportional to the estimator’s inverse
covariance matrix.

4.4 variations of the som

4.4.1 Simplex Arrangements

It is common to arrange the graph G as a lattice on Z2. However, as has
already become clear by the general formulation, this needs not be the
case. Kohonen [2013] for example illustrates a hexagonal neighborhood
structure in Z2. Many convergence studies for example arrange G on
a line which allows to identify easily the quality of the SOM’s ordering
when Y is univariate [Ritter and Schulten, 1986, Erwin et al., 1992].

In the following, we will focus on another arrangement based on sim-
plices. Fritzke [1994] suggests to arrange the nodes in simplices as the
number of new edges, when a new node is inserted, grows only lin-
early, in contrast to when G is a hypercube. This will become relevant in
Section 4.5. Also Ritter [1999] suggests a triangulation instead of the 2-
dimensional hypercube arrangement of G. In consequence they suggest
– in accordance with the triangulation of G and coordinates of the nodes
on the hyperbolic plane – to use the Poincaré metric for δ and to set h
to a multiple of 1[0,σ] where σ is called the ‘neighborhood radius’. Be-
sides the linear growth rate made possible by the triangulation, the two-
dimensional simplex architecture has thus the advantage to mimic the
distribution of random variables occuring in a non-Eucledian subspace



4.4 variations of the som 91

of Rp, when used with the appropriate metric. Note that the arrange-
ment in simplices does not change qualitatively the clique-architecture
of the graph G.

Remark 8. In a two-dimensional, finite graph G where edges form triangles

and neighbors are defined by j ∼ ι
def
⇔ minρ |ρ(j, ι)| = 1, all cliques in the graph

are subsets Γ ⊂ G with |Γ | 6 3.

4.4.2 Related Energies and Random Field Theory

The main problem with the SOM is that the update rule generally does
not correspond to a stochastic gradient descent step of a loss function
[Heskes, 1999]. A bad adaptation of the final map to the input data thus
indicates convergence to a (possibly bad) local minimum and requires to
re-train the SOM with another start set of feature vectors U(0), which is a
trial-and-error approach. Thus, formulations of a loss function that leads
to similar update rules, retains the specific properties of the original SOM
but with better mathematical properties represent an alternative with
simplified theoretical analysis.

A naive guess for the (expected) loss function corresponding to the
update (4.2) would be Equation (4.5) and is incorrect for continuous Y
[Heskes, 1999]. Therefore, Heskes [1999] suggests either a reformulation
of the bmu to

b(Y,U) = arg min
j∈VG

∑
ι∈G
h(δ(j, ι)) · d(Y, uι) (4.13)

or a soft assignment approach, i.e. replacing the indicator 1Vj(Y) by a
fuzzy-assignment of Y to each node in VG. The same soft assignments
are used for a deterministic annealing approach in Graepel et al. [1998].

As the matching rule (4.13) yields the underlying energy function
which shall be minimized, continuous, we adopt this rule in the follow-
ing analysis. The new rule allows to define similary to (4.5) the empirical
distortion as

Ẽ(Y;U,V) :=
∑
j∈VG

h(δ(j,b(Y,U))) · d(Y, uj)

=
∑
j∈VG

1Vj(Y) ·
∑
ι∈VG

h(δ(j, ι)) · d(Y, uι) , (4.14)

which is no longer an approximation but the true loss function to whom
the update rule (4.2) is a gradient descent step [Heskes, 1999] where
Vj = {y ∈ Rp : b(y,U) = j} under (4.13).

Equation (4.14) is then easily differentiable with respect to the ele-
ments of U for the first order conditions on optimization, but has still
the problem of non-convexity, which bears the risk of getting stuck into
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local optima when using a gradient descent algorithm. Heskes [1999]
suggests therefore to apply rather than hard assignments {1Vj(·)}j∈G soft
assignments {pj}j∈G which are in the |VG|− 1 unit simplex. Graepel et al.
[1998] suggests the same procedure. In combination with an entropy
term and a temeperature T > 0, this suggestion,∑

j∈VG

pj
∑
ι∈VG

h(δ(j, ι)) · d (Y, uι) +
1

T
· pj · logpj ,

leads the authors to derive expressions for pj that remind of Gibbs mea-
sures. However, the properties of Ẽ and G are never explicitely studied
as Markov Random Field (MRF) that would imply the existence of such
a measure. Furthermore, pj are often erroneously taken as equivalents
to P(Y ∈ Vj). In general, this does not hold, though, as shall be demon-
strated in the following. For that reason, we first integrate in the follow-
ing the distortion (4.14) in the framework of MRFs, which then allows us
to motivate the induced Gibbs measure and to relate it to the iterative
solution in Heskes [1999] and Heskes [2001]. To the best of the author’s
knowledge, the topographic maps based on versions of the SOMs, have
not yet been interpreted in the context of random fields. To start with,
we give the (original) definition of a MRF for discrete random variables.

Definition 12 (Markov random field). Let x1, . . . , xn be random variables
on a discrete sample space Ω endowed with a neighborhood relation ∼. A prob-
ability measure P on Ω is a Markov Random Field (MRF) if the conditional
probability of an arbitrary outcome ζ of a random variable xi given all other
random variables, P

(
xi = ζ|xj : j 6= i

)
equals the conditional probability given

all neighbors of xi, P
(
xi = ζ|xj : j ∼ i

)
[Isham, 1981].

Now given U and V = {Vj}j∈VG (remember that V = V(U)), the feature
vectors are arranged on a graph with a neighborhood relation and one
could interpret {Y|Vj}j∈VG (assuming the measurability of the Voronoi
regions) as the random variables taking some values. Ignoring the fact
that Y is possibly continuous, we would have a MRF if for arbitrary A ∈
Ay, we had P(Y|Vj ∈ A|Y|Vι ∈ A : ι ∈ VG) = P(Y|Vj ∈ A|Y|Vι ∈ A : ι ∼ j).

For the classical MRF (that is, with Y being discrete) the MRF can be as-
sured by the existence of a nearest neighbor potential [Isham, 1981]; and
for traditional MRFs there exist Gibbs measures due to the Hammersley-
Griffet theorem [Grimmett, 1973] that relate the nearest neighbor poten-
tial at a configuration with the probability of the configuration to occur,
allowing us to state a formula for the distributions of {Y|Vj}j∈VG and
therefore Y.
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To advance with the MRF theory, define for the metric (4.11) the neigh-
borhood

h : [0,∞)→ [0,∞), h(a) =


γ1, if a = 0

γ2, if 0 < a 6 c

0, else

(4.15)

where a is the length of the shortest path between nodes j, ι ∈ VG:

a = min
ρ

|ρ(j, ι)|

and γ1 > γ2 > 0, i.e. h is a step function. For c = 1, we approach the
context of Pasurek [2007] and Kondratiev et al. [2010] as the distortion
measure becomes∑

j∈VG

∑
ι∼j

h(δ(j, ι)) · d
(
Y|Vj , uι

)
,

we get something close to a nearest neighbor potential where we set
Y|Vj := 1Vj(Y) · Y. Note that we have to assume that there is no mass
point of P at zero. Otherwise, we have for the j ∈ VG with 0 ∈ Vj that

P
(
Y|Vj = 0

)
6= 1− P(Y ∈ Vj). Under this assumption, we have for any

A ∈ Ay and ι ∈ VG P(Y|Vι ∈ A) = P(Y ∈ A|Y ∈ Vι).
If there exists a Gibbs measure, it is then similar to the optimization

problem that we consider in Section 4.4.3 based on the already men-
tioned soft assignments {pj}j∈VG . Let us define the Gibbs measure in
general.

Definition 13 (Gibbs Measure). A probability measure µ ∈ Prob
(
(Y,Ay)VG

)
is a Gibbs measure if it solves at temperature T the equation

µ(A) =

∫
Y

πΓ (A|y)dµ(y)

where πΓ is defined for Γ ⊂ VG as

πΓ (A|y) := Z−1
Γ (y)

∫
YΓ

1A ((yΓ , yΓc)) · exp
(
−
1

T
H (yΓ , yΓc)

)
d yΓ ,

if y belongs to the tempered subset of Y (values that return for infinite graphs
finite values ofH – for |VG| <∞ the tempered sets equal Y) and zero else. ZΓ (y)
is a normalizing constant and H is a Hamiltonian to be specified later. YΓ is the
projection from YVG to the sample space for all nodes in Γ . πΓ is called a local
specification based on the Hamiltonian H [Pasurek, 2007, Definition 2.4 and
Equation 2.21].
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The problem is that Y needs not be a discrete and bounded random
variable (which would be necessary construct a classical MRF from which
to conclude on P). When random field theory shall be applied to the
modified topographic map, some modifications to the basic MRF are nec-
essary. In the following, we rely for this on Pasurek [2007] and Kon-
dratiev et al. [2010]. As these authors also allow infinite graphs, their
results may be also conclusive as we will grow later on dynamically the
SOM with the modified matching rule.

Kondratiev et al. [2010, Equation 1] defines the Hamiltonian (adapted
to our notation) as a function of the shape

H(Y) :=
∑
j∈VG

V
(
Y|Vj

)
+
∑
ι∼j

W
(
Y|Vj , Y|Vι

)
. (4.16)

We must thus define functions V and W such that the distortion mea-
sure (4.7) can be identified with a Hamiltonian in order to apply the
results of Kondratiev et al. [2010]. In Appendix A, we check whether the
assumptions in Kondratiev et al. [2010] hold for which type of random
variables. As no interaction of the restricted random variables appear in
Ẽ, we set W ≡ 0 and Ẽ = V and take the feature vectors U and Voronoi
regions V = V(U) as given.

In the following, we consider the graph G to be finite, i.e. we do not
consider the limit behavior of the dynamically growing Algorithm 4.3
that will be discussed later. In that case, requiring that given U and V
and

1. Voronoi regions only overlap on null sets of P (meaning that b is
almost everywhere well defined)

2. h is as in (4.15) with c = 1

3. δ is the metric of shortest paths on G

4. P has no mass point at 0

5. all second moments of Y exist

we can apply Theorem 1 of Kondratiev et al. [2010] and conclude that
a Gibbs measure exists (i.e. a Gibbs or equilibrium state) on Ẽ(Y;U,V).
Applying then Kondratiev et al. [2010, Equation 13] to P, we get then for
Γ = VG (cf. Definition 13) and arbitrary A ∈ ⊗j∈VGAy

πVG(A) =
1

ZVG
·
∫
YVG

1A

(
y · 1Vj (y)

)
· exp

(
−Ẽ(y;U,V)

)
d λ(y)

(4.17)

and πVG(A) = P
(
{Y · 1Vj(Y)}j ∈ A

)
[Kondratiev et al., 2010, Definition

2]. If we have thus another Ã ∈ Ay and plug in A = Ã× Y× ·× Y we get
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from (4.17) πVG(A) = P(A|V1) and other conditional probabilities based
on the position of Ã.

This motivates a density estimator for the law P given that y ∈ Vj

d̂P(y|y ∈ Vj) ∝ exp

−
∑
ι∈VG

h(δ(j, ι)) · d(uι, ūj) − cj · d(y, ūj)


(4.18)

with

ūj := c−1j ·
∑
ι∈VG

h(δ(j, ι)) · uι, cj :=
∑
ι∈G
h(δ(j, ι)) .

(4.19)

and this piecewise density estimator can simply be stuck together for all
components Vj ∈ V when P(Y ∈ Vj) ≡ 1

|VG|
, yielding as a global density

estimator

d̂P(y) ∝
∑
j∈VG

exp

−
∑
ι∈VG

h(δ(j, ι)) · d(uι, ūj) − cj · d(y, ūj)

 .

(4.20)

This shape reminds of Gaussian kernels, which can get arbitrarily close
to a wide class of probabilities with Lebesgue density [Nguyen and
McLachlan, 2019], though a continuity requirement for P is not directly
found in Kondratiev et al. [2010] and would also oppose the origins of
MRFs from the discrete case.

Another aspect is that Kŭrková [1992] points out that Kolmogorov’s
representation theorem for continuous functions on the p-dimensional
hypercube is also applicable to three-layered neural networks. Though
the original SOM is not a classical neural network (which is a supervised
machine learning algorithm), the definition of a global energy function
Ẽ and a neighborhood function h of the type (4.15) may lead to its in-
terpretation as a neural network. Under this viewpoint, the requirement
on P for a density approximation by (4.20) is that P has a continuous
Lebesgue density and a bounded support.

We can thus conclude that there are several arguments coming from
different directions (MRFs, GMMs and neural network theory) that argue
for the working of the proposed density estimator and due to the various
origins of the arguments, the type of probability laws P, for which (4.20)
is possibly applicable, is relatively broad – it must be assured only that
P(Y ∈ Vj) = 1

|VG|
for all j ∈ G, which we seek to achieve by a dynamic

adaption of the graph G on the training realizations of Y and therefore
the underlying distribution P. Such a growth rule is discussed in Section
4.5.
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The existence of a Gibbs measure, and its interrelation to the original
P, gives rise to the variational principle. The variational principle of ther-
modynamics states that an equilibrium state maximizes the entropy (un-
der some conditions on the corresponding equilibrium measure). If there
is another Gibbs measure, the relative entropy between those equals zero.
The entropy here is maximal when there is uniform assignment to the
Voronoi regions. The assignment to bmus depends here on U, but under
the simplifying assumption that the assignment probabilities are a priori
independent from U, we get an alternative, easier-to-solve optimization
problem, which exhibits nonetheless similiarities to the Gibbs measure
introduced here.

4.4.3 Optimization of an Alternative Energy Function

Besides the discussion about the existence of a Gibbs measure, there
are still feature vectors to be optimized in the expected loss, i.e. the
distortion measure (4.7). We study here first the locally optimal feature
vectors to link them in a second step to the (locally) optimal feature
vectors of an alternative optimization problem.

The alternative assignment rule (4.13) yields with a metric of type
d(y, uj) = 〈y − uj, y − uj〉Λ (cf. Section 4.3) the gradient

∇ujE
[
Ẽ(Y;U,V)

]
= −2Λ

·
∑
ι∈VG

P(Y ∈ Vι) · E
[
h(δ(j, ι)) ·

(
Y − uj

)
|Y ∈ Vι

]
[Heskes, 1999]. Setting the gradient to zero, this yields as optimal uj Ex-
pression (4.9) (in expectations). Under the condition P(Y ∈ Vj) ≡ 1

|VG|
,

and a neighborhood function (4.15) with γ1 = γ2 and c = 1, these op-
timal feature vectors correspond to conditional expectations of joined
Voronoi regions,

E
[
uj
]
= E

[
Y| ∪ι∼j Vι

]
, (4.21)

where ι ∼ j denotes a neighbor ι of node j, i.e. the existence of an arc (j, ι)
in EG. This then again makes ūj (4.19) a conditional expectation, too.

The optimization problem

min
U

Ẽ(Y;U,V) (4.22)

s.t. V = V(U)

is non-trivial and can be stuck easily in local optima when gradient de-
scent methods are applied to an arbitrary initialization. For that reason,
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Graepel et al. [1998] and Heskes [1999] introduced for SOMs an alterna-
tive optimization problem

min
U,p

∑
j∈VG

pj ·
∑
ι∈G
h(δ(j, ι)) · d(Y, uι) + T(pj · logpj) (4.23)

s.t.
∑
j∈VG

pj = 1

pj ∈ [0, 1] ∀j ∈ VG .

Using the Lagrangien, this optimization problem yields as optimal solu-
tion for pj, j ∈ VG given U

pj =
exp

(
− 1
T

∑
ι∈VG h(δ(j, ι)) · d(Y, uι)

)
∑
l∈VG exp

(
− 1
T

∑
ι∈VG h(δ(l, ι)) · d(Y, uι)

) . (4.24)

This unit simplex {pj}j∈VG is often referred to as Gibbs measure and it is
assumed that pj = P(Y ∈ VG) [Graepel et al., 1998], though it does not
correspond to

1

ZVG
·
∫
Vj

exp

−
∑
ι∈VG

h(δ(j, ι)) · d(y, uι)

 d y , (4.25)

which would result from (4.17). Nonetheless, Equation (4.24) looks like
an empirical version of (4.25) for T = 1. Furthermore, Graepel et al.
[1998] argues that for T → 0, the original optimization problem (4.22) is
recovered whereas for T →∞, the optimization problem (4.23) becomes
globally concave.

Though given the optimal p = {pj}j∈VG , there can also be (locally) op-
timal feature vectors be derived, we shall first discuss the interpretation
of pj as assignment probability P(Y ∈ Vj): Whilst P(Y ∈ Vj) does not
contain anymore the random variable Y, pj does so. This suggests the
interpretation of p = {pj}j∈VG as a set of a posteriori assignment proba-
bilities: Given an a priori assignment probability implicitely by (4.23) set
to uniformity, and the sample realization Y = y, the assignment prob-
ability is updated as if the assignment did not depend a priori on the
feature vectors. If the average p̄j of pij, i ∈ S, is taken where pij corre-
sponds to the a posteriori assignment probability (4.24) of independent

Yi with Yi
d
= Y ∼ P for all i ∈ S, p̄j would, on the other hand, remind of

an empirical integral for (4.25).
Furthermore, note that the density estimator (4.20) reminds of a Gauss-

ian mixture with mixture components

πj := exp

−
1

T

∑
ι∈VG

h(δ(j, ι)) · d(uι, ūj)

 (4.26)
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for T = 1 where assignment to a mixture component j ∈ VG is not
known for any realization of Y. Again with T = 1, these components are
recovered as the optimal mixtures for the optimization problem (4.23)
and are a compromise between the uniformity requirement (resulting
from the T -weighted entropy therm) and the quantization error.

Any distribution P that is absolutely continuous on the Lebesgue mea-
sure can be approximated by continuous Gaussian mixtures [Nguyen
and McLachlan, 2019, Corollary 6]. Here, we consider a subclass of dis-
tributions such that the second moment of Y exists and in that case,
mixing need not be continuous and we have even an approximation on
a sub-manifold of p-dimensional GMMs depending on U (and the metric-
matrix Λ). Note that Corollary 6 in Nguyen and McLachlan [2019] has
the continuous mixing component as a function of the mixtures’ central
parameter (i.e. the conditional expectations for Gaussian kernels), which
is also the case here with (4.26) depending on {ūj}j∈VG . This is another
indication that with the modified SOMs, we observe a melting pot of
different theories such as GMMs and MRFs.

Second, let us study the optimal feature vectors for (4.23): Plugging
in (4.24) into the Lagrangien of (4.23) yields

− log

∑
j∈VG

exp

−
1

T

∑
ι∈VG

h(δ(j, ι)) · d(Y, uι)

 , (4.27)

which is the negative of a Gaussian mixture likelihood with mixing com-
ponents (4.26) just as in the proposed density estimator (4.20). Optimiz-
ing (4.23) can therefore be considered as the direct optimization of the
Gibbs measure underlying (P,G) (which exists for every (U,V(U)) yield-
ing almost surely a partition). This is also in accordance with the pre-
viously (and not further studied) variational principle claiming that the
Gibbs measure maximizes the entropy under a given map (U,G).

The (locally) optimal feature vector uj for arbitrary j ∈ VG is conse-
quently

uj =

∑
ι∈VG h(δ(j, ι)) · pι · Y∑
ι∈VG h(δ(j, ι)) · pι

, (4.28)

where the prefactor does not cancel out when there are |S| > 2 iid real-
izations of Y, that is, when the optimization problem (4.23) becomes

min
U,{pi}i∈S

1

|S|

∑
i∈S

∑
j∈VG

pij

∑
ι∈VG

h(δ(j, ι)) · d(Yi, uι) + T · pij · logpij ,

(4.29)

where pi = {pij}i∈S.
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Note that the optimal U and p have an internality problem due to the
term p in (4.28). Usually, this problem is solved in statistics iteratively,
i.e. using iteratively the optimal p from (4.24) to be plugged into (4.28)
and the other way around, leading to an EM-type procedure, where the
components p lie on a sub-manifold of the (|VG|− 1)-dimensional unit
simplex, as they depend on U through a specific shape. Though, the
risk function to be minimized is not a log-likelihood but a penalized
log-likelihood (cf. Appendix A).

Taking expectations under the previously named neighborhood func-
tion with compact support, yields that ūj corresponds to the conditional
expectation given that Y ∈ ∪ι∈jVι when pj → 1Vj pointwise. As we as-
sumed P(Y ∈ Vj) ≡ 1

|VG|
, a good indication for this behavior is suggested

as p̄j ≈ 1
|VG|

for all j ∈ VG.
Considering the empirical optimization problem (4.23) as an approxi-

mation to some expected loss, we consider in a third step the expected
alternative energy function:

min
U,p

∑
j∈VG

pj · E

∑
ι∈VG

h(δ(j, ι)) · d(Y, uι)

+ T · pj logpj (4.30)

s.t.
∑
j∈VG

pj = 1

pj ∈ [0, 1] ∀j ∈ VG .

Independent optimization of the variables U and p yields as optimal pj,
j ∈ VG,

pj =
exp

(
− 1
T E
[∑

ι∈VG h(δ(j, ι)) · d(Y, uι)
])

∑
l∈VG exp

(
− 1
T E
[∑

ι∈VG h(δ(l, ι)) · d(Y, uι)
]) . (4.31)

Due to Jensen’s inequality and (4.25), we can thus conclude that pj 6=
P(Y ∈ Vj) for the non-empirical optimization problem as well and that
the independent optimization of U and p is also in theory an approxima-
tion. Nonetheless, note that we get pij for each i ∈ S and thus, averaging
p̄j converges only in probability to (4.31) but is conceptually closer to
(4.25).

Next, we consider the optimal solution to the feature vectors. The opti-
mal U under the optimization problem (4.30) can then be P almost surely
defined by

uj =

∑
ι∈VG h(δ(j, ι)) · pι · E[Y]∑

ι∈VG h(δ(j, ι)) · pι
, (4.32)

which is presumably to much centered towards E[Y] in contrast to the
conditional expectations. We conclude therefore, that for the modified
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SOMs, it is more worthwhile to study the properties of the empirical al-
ternative energy from the perspective to simplify the original optimiza-
tion problem based on the distortion measure (4.7) than to formulate an
alternative risk function that is then sought to be optimized empirically.

Recall the important assumption that P(Y ∈ Vj) ≡ 1
|VG|

, which links
the alternative energy to the Gibbs measure. For given U and training
data, this requirement cannot be assured, but by the empirical means
{p̄j}j∈VG , it can be assessed to which extend it is possibly violated. This
is for the reason that p̄j resembles the empirical version of the Gibbs
measure (4.25). It is thus essential to modify the Algorithm 4.2 besides
the discussed metrics, the alternative bmu definition, and the alternative
energy, in order to assure p̄j ≈ 1

|VG|
. This leads to a dynamically growing

topographic map like it is discussed in Section 4.5.

4.5 growing soms

An important inconvenient of the classical SOM is that the graph size
must be determined a priori, which is problematic when barely some-
thing of the data is known and the analysis shall be explorative. For
example, if P is already originally a Gaussian mixture with a fixed num-
ber of components, less nodes are presumably required than otherwise.
Also, as outlined in Section 4.4, for a mathematical statistical interpre-
tation of the variations of the SOM, it is necessary that in the empirical
optimization p̄j ≈ 1

|VG|
.

Due to the problem of a pre-defined graph size, dynamic algorithms
that grow the graph during the training were proposed, for example
by Fritzke [1994], Fritzke [1995] and Alahakoon et al. [2000]. Alahakoon
et al. [2000] suggest to grow the SOM on the boundaries of the graph
(which are defined when G is a lattice) such that a new node reduces the
local quantization error when the latter trespasses a pre-defined thresh-
old s. If – based on the quantization error criterion – the insertion could
take place anywhere in the graph G, this would allow to bound the L2

distance between an estimated probability measure based on U and the
original distribution of Y. However, for VG ⊂ Z2, growth everywhere on
the graph is hard to realize, because insertion between nodes is not possi-
ble. So Alahakoon et al. [2000] only grow the grid at its boundary, which
does not prevent from high quantization errors in the interior. A growth
rule exclusively on the boundary can therefore lead to a problem known
as magnification error [Ritter and Schulten, 1986]: Low-density areas of
P are over-represented in the SOM because the trained feature vectors U
accumulate themselves in areas with a relatively low probability mass.
This problem already exists with the classical SOM because the size of
the update depends on the metric δ and not on d, but can be reinforced
by the growth rule of Alahakoon et al. [2000].



4.5 growing soms 101

Alternative growth rules are suggested by Fritzke [1994] and Fritzke
[1995]. These dynamic extensions of the SOM aim at a uniform distribu-
tion of b(Y,U) on VG. The author proposes to grow the SOM around
nodes that are overproportionally often hit, i.e. nodes jl ∈ VG with
P (b(Y,U) = j) � 1

|VG|
, and the insertion of new nodes is as follows.

Assume that j is very often a bmu. A new node j′ is then inserted be-
tween this most often bmu j and a neighbor ι. ι is chosen as the neighbor
node with d

(
uj, uι

)
= minl∈Nj d

(
uj, ul

)
, as between these feature vector

values – presumably close in the input space due to approximate topol-
ogy preservation – there is much agitation of the probability function
assumed. On the other hand, nodes that are never bmu can be removed
in Fritzke [1994], which allows to reflect zero density areas of P. The
deletion rule is not implemented in the final modified mini-batch SOM
Algorithm 4.3, but would be conceptually possible in future work.

Also this update rule reduces, in principle, the average distance be-
tween input and feature weights, because those nodes in ‘high density
areas’ of the probability function become more and more similar to the
input data. Nonetheless, these nodse are not necessarily those with the
most distorted feature vectors. Fritzke [1994] claims that the dynamic
growth rule maximizes the entropy but lacks a mathematical proof. Nota
bene, the insertion of nodes in high density areas of P also counteracts
the magnification problem. And the possibility to insert nodes in the
interior of the graph allows to tackle magnification, too.

The way to re-arrange the neighborhood after the insertion of j′ differs
in Fritzke [1995] from Fritzke [1994]. In Fritzke [1995], the indices in
VG are like in the traditional algorithm arranged in a two-dimensional
lattice. Inserting j′ then requires the insertion of a completely new row
or column respectively between j and ι. This leads to an exponential
growth in the number of nodes [Fritzke, 1994]. In addition, nodes other
than j′ in the new row/ column are possibly not required and make the
SOM training unnecessarily computer intensive.

Fritzke [1994], on the other hand, arranges G as a set of linked, low-
dimensional simplices. When triangles are chosen as structure, this leads
to an triangularization of Image(Y). Neighbours are those nodes that
share a vertex, that is δ is of the type (4.11). The insertion of a new node
j′ thus means that simpleces that include the most-hit node j and its
neighbor ι, must be dissolved. New simpleces that include j and j′ and
new simpleces involving j′ and ι are created, leading to a slow, linear
growth of the network structure.

Recall the alternative optimization problem (4.23) from Section 4.4.3.
Like already mentioned, the concentrated empirical risk (4.27), where
the optimal p is plugged in, reminds of a GMM with additional penalty
terms. The iterative update of Equations (4.24) and (4.28) (cf. the Sum-
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mary (A.10)) then yield an expected maximum penalized likelihood al-
gorithm.

Geman and Hwang [1982] relate penalized ML to the method of sieves
and for many infinite dimensional estimation problems, the method of
sieves yields consistent estimators when the restrictions are relaxed ‘suf-
ficiently slowly’ [Geman and Hwang, 1982]. Adding new mixture com-
ponents changes the likelihood surface and the EM-type algorithm that
often gets stuck in local optima may exit such local optima due to the
change of surface [Priebe and Marchette, 1993]. Priebe and Marchette
[1993] also introduces dynamic growth rules for Gaussian mixture model
estimation and requires to ‘wait long enough between [mixture compo-
nent] creation’, too. This cannot be assured for an exponential growth
rate, at least when there is no maximum number of nodes defined. The
relation to the method of sieves thus favors the simplex arrangement
and growth rule in Fritzke [1994].

Fritzke [1994] notes that other update rules than high accumulation
on a node can serve as an update rule, too. For example, the growth
decision of Alahakoon et al. [2000] (i.e. high distortion of U) is also ap-
plicable with the growth rule in Fritzke [1994]. This makes the suggested
dynamic extension more flexible than the one developped in Alahakoon
et al. [2000]. In Priebe [1994], the author suggests to use a growth rule
that either creates an additional node when the local standardized quan-
tization error trespasses a threshold, which corresponds to the growth
rule of Alahakoon et al. [2000]. Or a stochastic growth rule might be im-
plemented similar to simulated annealing [Priebe, 1994]. This then has
also similiarities to the chosen update rule in (4.33b): Let Gκ = (VGκ ,EGκ)
denote the graph in training step κ. As we require pj ≈ 1

|VG|
, we create

an additional node if maxj∈VGκ p̄j deviates too much from 1
|VGκ |

. Denote
by G the function describing the growth decision. We have, for a growth
decision based on units S′ ⊆ S

G
(
YS′ ;U(κ),p(κ)S′

)
=

1, if positive growth decision

0, else
(4.33a)

and in particular for Algorithm 4.3

G
(
YS′ ;U(κ),p(κ)S′

)
=

1− 1[0,ε]

max
j∈VGκ

∣∣∣∣∣∣
1

|VGκ |
− p̄

(κ)
j

1+ 1
|VGκ |

∣∣∣∣∣∣
 · 1[0,nGmax)

(|VGκ |)

(4.33b)

where

p̄
(κ)
j =

1

|S′|

∑
i∈S′

p
i(κ)
j .
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That is, due to the structure of the optimal simplex p(κ) in step κ, the
growth decision ressembles a sort of deterministic annealing rather than
the simulated annealing suggested in Priebe [1994]. Note however the
similiarties between the update rules suggested in Fritzke [1994], Ala-
hakoon et al. [2000] and Priebe [1994] though the studies are in different
fields of statistics/ machine learning. This underpins again that there
is a link between MRFs, penalized ML of GMMs, the method of sieves for
GMMs and SOMs. There remains the question on how many nodes should
there be at maximum: The method of sieves requires a sufficiently slow
growth [Geman and Hwang, 1982, Priebe and Marchette, 1993] and an
unbounded growth of nodes (because the stopping criterion may not be
met) might be possible. The similarity of the proposed density estima-
tor to Gaussian mixture approximation suggests to apply a growth rule
for the mixture components to the growth of the graph G. Nguyen and
McLachlan [2019, Remark 27] states that the optimal number of mixture
components is O

(√
n
)

where |S| = n.
Like in Alahakoon et al. [2000], removal of nodes that are never ad-

dressed as bmu is possible in Fritzke [1994]. The removal has the advan-
tage that if Image(Y) is not convex, feature vectors that are not even close
to suppP are removed. Such vectors might occur due to the averaging
in the training (cf. Equation 4.3) or the initialization of the feature vector
of a newly added node as a convex combination of persisting feature
vectors.

4.6 summary of the final algorithm and theory

As some modifications of the original batch Algorithm 4.2 were pro-
posed in the preceeding sections, we summarize here all those that are
finally applied in the simulation and application sections 4.8 and 4.9 re-
spectively. The modifications encompass the alternative assignment rule
(4.13) [Heskes, 1999] (Section 4.4.2), updates with the simplified alterna-
tive energy function [Heskes, 1999] (Section 4.4.3), the adaptive distances
suggested in Arnonkijpanich et al. [2008] (Section 4.3) and the simplex
arrangement and growth rule of Fritzke [1994] (Section 4.5). The updates
of U done in each step are based on the alternative energy function dis-
cussed in Section 4.4 first proposed by Graepel et al. [1998] and Heskes
[1999].

Furthermore, a mini-batch version is suggested, that allows to com-
bine the improved convergence of the batch algorithm [Fort et al., 2002,
Kohonen, 2013] with faster computations in each training step like in
the on-line algorithm. That means, the calculus in each training step κ is
done only for a random subset S′ ⊂ S with |S′| < |S|. Another argument
for a mini-batch version is that the batch version ressembles an EM-type
algorithm of a GMM [Heskes, 2001, Kostiainen and Lampinen, 2002, Ver-



104 a multivariate probability density estimator using soms

beek et al., 2005], and a stochastic version thereof can help to overcome
local optima [Jank, 2006, for pure EM].

The final algorithm is described in Algorithm 4.3. The growth decision
G in training step κ is described by (4.33b). In words, if the maximum
posterior assignment probability in training step κ, p̄(κ)j , exceeds the uni-
form assignment probability 1

|VGκ |
, we have a positive growth decision as

far as the number of nodes does not trespass the maximum number of
nodes nGmax . Deviation from uniformity is measured by an error compro-
mising between the relative and absolute error by a value greater than
ε.

The convergence criterion checks whether the maximal relative change
from U(κ) to U(κ+1) for nodes existing in VGκ and VGκ+1 trespasses a cer-
tain level. Alternatively, the Algorithm stops when the maximum num-
ber of iterations K ∈ N is reached. The idea to update the metric in the
input space stems from the fact that elements in a p-dimensional random
vector may vary in scale. In order not to overfit on one variable with a
large variance, a sort of Mahalanobis distance is employed. However, we
remark that not the sample mean is used as location parameter, but U,
thus it is sensible to adjust the scale parameter with respect to these like
in Arnonkijpanich et al. [2008].

The weighting components (that can be interpreted like posterior prob-
abilities) pi = {pij}j∈VG , i ∈ S′, on the other hand, originate from the prob-
lem that the original update rule is generally not based on an energy
function. As the definition of an alternative assignment rule solves the
problem but still yields the optimization problematic due to involving
indicator variables {1Vj}j∈VG that rely on U, an easier energy function
(4.23) has been defined. This easier energy function, however, shares un-
der certain conditions optimality criteria similar to the original problem
and is nonetheless easier to optimize (locally). Furthermore, the alterna-
tive energy function (4.23) returns the negative of a Gaussian mixture
likelihood when the optimal weighting components pij, i ∈ S, j ∈ G are
plugged in.

This mixture model suggests a density estimator that corresponds to
the one motivated by the Gibbs measure of the original optimization
problem. G is a finite graph (with therefore also finite vertex degree).
Therefore, the summands of the energy function (4.14) can be consid-
ered to be a potential with state space equal to the vertices in G and
a configuration space equal to the sample space of Y conditioned on a
Voronoi partition of Y. The pair potential is then constantly set to zero (cf.
Appendix A. Due to the finiteness of the graph, the energy is uniformly
bounded from below by zero in any subset of G. Having this global sta-
bility [Kondratiev et al., 2010], one can state that the set of tempered
Gibbs measures on G with the corresponding energy function (4.14) is
non-empty. For finite G and Y ∈ L2 (Y,Ay,P), the tempered Gibbs mea-
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Algorithm 4.3 Extended SOM Mini-Batch Algorithm

Require: Training data {yi}i∈S, initial set of simplices G0 =
(
VG0 ,EG0

)
,

initial feature vectors U(0) := {u(0)
j }j∈VG0

, metric δ on G, neighborhood
function h, weight matrix Λ(0) = Var[Y]−1

Ensure: Topographic map (G,U)
for κ = 0, 1, 2, . . . ,K do

Draw randomly a subset S′ ⊂ S
Calculate for all j ∈ VGκ and i ∈ S′

p
i(κ)
j =

exp
(
− 1
T

∑
ι∈VGκ

h(δ(j, ι)) · dΛ(κ)(yi, u(κ)
ι )
)

∑
l∈VGκ

· exp
(
− 1
T

∑
ι∈VGκ

h(δ(l, ι)) · dΛ(κ)(yi, u(κ)
ι )
)

Update the feature vectors j ∈ VGκ according to

u(κ+1)
j =

∑
i∈S′

∑
ι∈VGκ

p
i(κ)
ι h(δ(ι, j))

−1

∑
i∈S′

∑
ι∈VGκ

p
i(κ)
ι h(δ(ι, j))yi


Update the weighting matrix

D←
∑
i∈S′

∑
j∈VGκ

p
i(κ)
j

∑
ι∈VGκ

h(δ(j, ι)) ·
(

yi − u(κ+1)
ι

)(
yi − u(κ+1)

ι

)T
Λ(κ+1) = D−1 ·

(
detD · |VGκ |

det Var[Y]

)1/p
Calculate p(κ+1)S′ on Gκ

if Positive growth decision (i.e. G
(

yS′ ;U(κ+1),p(κ+1)S′

)
= 1) then

Find j = arg maxι
1
|S′|

∑
i∈S′ p

i(κ)
ι

Find j̃ = arg maxι∈Nj‖uj − uι‖2

Dissolve simplices including both j and j̃
Initialize u(κ+1)

j′ = 0.5 · (u(κ+1)
j + u(κ+1)

j̃
)

Gκ+1 ←
(
V ∪ j′,E \ {(j, j̃)}∪ {(j, j′), (j̃, j′)}

)
end if
κ← κ+ 1

if Convergence criterion is met then
break

end if
end for
U← U(κ), G← Gκ, Λ← Λ(κ)



106 a multivariate probability density estimator using soms

sures correspond to the general Gibbs measures. If the feature vectors
in U are such that P(Y ∈ Vj(U)) = 1

|VG|
for all j ∈ VG, the Gibbs mea-

sure yields the same Lebesgue density as the Gaussian mixture model
stemming from (4.27).

In order to ensure the uniformity of the assignment probabilities to
Voronoi regions, the dynamic growth rule is established. This dynamic
growth rule is that one suggested in Fritzke [1994], but ignores the dele-
tion of unnecessary nodes. P(Y ∈ Vj) = 1

|VG|
(proxied by {p̄j}j∈VG) is re-

quired for the justification of the proposed density estimator. Therefore,
the growth decision should rather rely on P(Y ∈ Vj) and the weighting
components in (4.24) than on quantization error. The number of nodes
should be linked to the sample size |S|: Priebe and Marchette [1993] re-
quires a slow growth for the method of sieves for mixture models, which
can also be linked to the modified mini-batch SOM Algorithm 4.3. This
similarity to Gaussian mixture approximation might give a hint for the
maximal number of nodes. As Nguyen and McLachlan [2019, Remark
27] noted, the number of mixture components should be O

(√
|S|
)

.
As a mini-batch training is employed, it is not always the case that

for each Voronoi region there is at least one observation falling into it.
Therefore, the non-parametric estimators 1

|S′| ·
∑
i∈S′ 1Vj(Yi), j ∈ VG, are

unstable and not recommended for the evaluation of the assignment
probabilities. Hence, the average of the parametric estimators (4.24) are
used in order to stabilize the estimation process. The reasoning is that if
yi 6∈ ∪ι∼jVι, the pij gets close to 0 and close to 1 otherwise, which equals
in fact the traditional empirical mean.

4.7 machine learning with survey data

Like other machine learning algorithms, SOMs might encounter prob-
lems when applied to survey data: Basic machine learning algorithms
such as artificial neural networks with one node can be identified with re-
gression models [Marsland, 2015, Chapter 3] and therefore should share
the same problems as in Pfeffermann [1993]. Furthermore, one major
role of machine learning with survey data is imputation [Fessant and
Midenet, 2002, Mallinson and Gammerman, 2003]. However, Reiter et al.
[2006] states the importance to account for the sampling design PD for
the completion of missing data.

Nonetheless, survey design in machine learning seems to be a white
spot on the research landscape. The only report known to the author that
accounts for the survey design when using a machine learning algorithm
is written by Amer [2007] and the design considered is classicalStratRS.
Though, the report’s type of publication remains unclear. These argu-
ments concern mostly neural networks and support vector machines as
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supervised learning algorithms. Although SOMs are an unsupervised al-
gorithm, the identification of the suggested density estimator (4.20) with
a Gaussian mixture model based on the negative log-likelihood (4.27)
suggests that the same problem can occur with complex designs PD gen-
erating S.

One possible way to approach the problem would be to weight the
concentrated energy function (4.27) noting that it is equivalent to a neg-
ative log-likelihood. This would result in a pseudo-ML estimator like in
Chapter 2. However, this approach would require a batch optimization
of (4.27) or the corresponding EM-type algorithm, and increase the com-
putational effort. Furthermore, it would be necessary to re-study the
correspondence between the alternative optimization problem and the
original one and the applicability of random field theory.

Alternatively, one could use the fact that stochastic optimization based
on the random sub-sampling S′ ⊂ S. If the stochastic optimization in the
machine learning algorithm was run on the finite population U as the
original sample from a superpopulation model P (cf. Section 1.3 and
Chapter 2), the probability to be drawn into a mini-batch S′ ⊂ U should
be constant for each i ∈ U and equal to |S′|

N . When the probability P′D of
unit i to be drawn into a mini-batch S′ given that i is in survey sample
S ⊂ U, S ∼ PD is set to

P′D(i ∈ S′|i ∈ S) ∝
1

PD(i ∈ S)
,

the joint probability that i ∈ S′ ∩ S is again constant by P′D(i ∈ S′|i ∈
S) · PD(i ∈ S) = const. Then, we get as marginal probability that i ∈ S′

P′D(i ∈ S′) =
∑
s∈S

Prob(i ∈ S′ ∩ s) = |S| · const.

where S is again the set of survey samples with PD(s) > 0. From this
derivation, it seems plausible to draw units into the mini-batch S′ with a
probability proportional to their design weights, which are the inverse of
the inclusion probabilities. However, this is only a first order correction
and variances will usually be different from a SOM applied to the finite
population {Yi}i∈U.

4.8 simulation study

4.8.1 Simulation Set-up

The following simulation study aims at the evaluation of the elaborated
Algorithm 4.3 and to compare it with established density estimation
methods such as kernel density estimation [Chacón and Duong, 2018]
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and classical GMMs [Scrucca et al., 2016]. Often, multivariate Gaussians
or Gaussian mixtures are evaluated in comparative simulation studies
for multivariate density estimation [Ćwik and Koronacki, 1996, 1997,
Hwang et al., 1994, Wand and Jones, 1994, Duong and Hazelton, 2005,
Zhang et al., 2006, Lu et al., 2013]. Sometimes, mixtures of multivariate
t-distributions are used as well [Hwang et al., 1994, Zhang et al., 2006].
Recurring to these distributions is mostly based on the fact that the qual-
ity measures for density estimators need to evaluate functionals: The
outcome d̂P(x; y) depends on the evaluation point x and the training
data y. I.e. for almost every y ∈ Y the random outcome is a function
d̂P(·; y) on a superset of Y. For the true density dP such a quality mea-
sure is the Mean Integrated Squared Error (MISE)

MISE
[
d̂P, dP

]
:=

∫ ∫ (
d̂P(x; y) − dP(x)

)2
P (d x) P (d y) (4.34)

and the Kullback-Leibler divergence

KL
[
d̂P, dP

]
:=

∫ ∫
log

(
dP(y)

d̂P(x; y)

)
P (d x) P (d y) . (4.35)

These require integration that becomes burdensome in higher-dimensional
settings and are difficult to compute for non-standard multivariate dis-
tributions. The standard scenario with multivariate Gaussian mixtures
– though computationally convenient in evaluation – has the disadvan-
tage that many of the density estimators rely on Gaussian kernels and
therefore, simulation results can be misleading. Non-standard scenarios,
though, make it difficult to evaluate (4.34) and (4.35) as in every simula-
tion run b = 1, . . . ,B one would still need to compute

MISE(b)
[
d̂P, dP

]
:=

∫ (
d̂P(x; y(b)) − dP(x)

)2
P (d x)

and

KL(b)
[
d̂P, dP

]
:=

∫
log

(
dP(x)

d̂P(x; y(b))

)
P (d x) .

Zhang et al. [2006] and Lu et al. [2013] solve this problem by Monte-
Carlo integration. This means, in each of the b = 1, . . . ,B simulation

runs with a density estimate d̂Pb := ̂dP
(
·; y(b)

)
, there are ν = 1, . . . ,nB

realizations from Xν ∼iid P and the MC versions

MISE(b)
MC

[
d̂Pb, dP

]
:=

1

nB

nB∑
ν=1

(
d̂Pb(Xν) − dP(Xν)

)2
(4.36)
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and

KL(b)
MC

[
d̂Pb, dP

]
:=

1

nB

nB∑
ν=1

log

(
dP(Xν)

d̂P(Xν)

)
(4.37)

are evaluated. The distribution over b = 1, . . . ,B simulation runs then
gives us information about the distribution of the Kullback-Leibler and
MISE functionals∫ (

d̂P(x; ·) − dP(y)
)2
P (d x)

and ∫
log

(
dP(x)

d̂P(x; ·)

)
P (d x)

In our simulation study, we set nB = 3000 and B = 500.
In this simulation study, we investigate the performance of the pro-

posed density estimator for three different bivariate densities. Like in
previous studies, one of the distributions under study, P1, is a GMM:

P1 :=
1

6
·N


(
0

0

)
︸ ︷︷ ︸
=:µ1

,

(
1 0

0 1

)
︸ ︷︷ ︸

=:Σ1

+
1

3
·N


(
1

1

)
︸ ︷︷ ︸
=:µ2

,

(
3 1

1 2

)
︸ ︷︷ ︸

=:Σ2

+

+
1

2
·N


(
7

7

)
︸ ︷︷ ︸
µ3

,

(
9 4

4 4

)
︸ ︷︷ ︸

=:Σ3

 . (4.38a)

The pdf dP1 =: f1 is thus defined for x ∈ R2 as

f1(x) ,
1

6
·φ (x) +

1

3
·φ
(
Σ
−1/2
2 (x − µ2)

)
+
1

2
·φ
(
Σ
−1/2
3 (x − µ3)

)
,

(4.38b)

where φ is the density of the multivariate standard normal distribution.
The second distribution under study is chosen due to the nature of

business surveys: There, positive and skewed random variables that are
correlated with each other are common, for example ‘research and devel-
opment investments’ and ‘return on investment’. Therefore, we combine
the exponential distribution (with parameter λ = 3) with the log-normal
distribution and have as second density dP2 =: f2 for x = (x1, x2) ∈
(0,∞)× (0∞)

f2(x1, x2) =
λ√
2π
· 1
x2
· e−

(x2−x1)
2

2 · e−λx1 (4.39)
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and zero else.
The third distribution P3 is bivariate logistic (that is, a two-dimensonal

extreme value distribution) with symmetric marginal densities dP3(x1×
R) = dP3(R× x), x ∈ R, set to

dP3(x×R) = −e−x · e−e−x , (4.40)

which is the univariate Gumbel distribution with location parameter 0

and scale parameter 1. The data are generated by the R-package evd

[Stephenson, 2002]. Also, the evaluation of the density dP3 =: f3 is done
using evd. The dependency parameter between the two Gumbel distrib-
tuions is set to 0.3.

The performance of the proposed estimator (4.20) is evaluated using
the distribution of MC-MISE (4.36) and MC-Kullback-Leibler divergence
(4.37). The estimator is contrasted with classical GMMs where the num-
ber of components is chosen by the Bayesian Information criterion (R-
package mclust, Scrucca et al. [2016]) and the multivariate kernel den-
sity estimator (R-package ks, Chacón and Duong [2018]). The standard
settings are chosen for both competing estimators. In order to check
whether the estimators converge weakly as foreseen by the theory, the
size of the training data Y ∼iid Pm, m = 1, 2, 3, increases from 50 over 100

to 150, i.e. |S| ∈ {50, 100, 150}. The number of maximum nodes for the pro-
posed estimator is set to O

(√
|S|
)

. The choice of temperature T depends
on the distribution under study and was set after visual inspection of
the marignal density estimators and can be learned from the electronic
appendix. An automated choice of the temperature T could be topic of
future research.

4.8.2 Simulation Results

The simulation results are presented in Figures 4.2 to 4.4. For the estab-
lished estimators, we can observe that both the Kullback-Leibler diver-
gence and the MISE reduce when sample size increases from 50 to 150.
For the SOM based estimator, more differentiation is necessary.

The proposed algorithm seems to have troubles with the decrease of
MISE and Kullback-Leibler divergence as the sample size grows for the
GMM model although the estimator was designed from a subclass of
Gaussian mixtures, confer Figure 4.2. Contrary to the discussed theory,
we cannot observe a decrease neither in MISE nor the Kullback-Leibler
divergence with an increase of the sample size. First of all, it cannot be
excluded that this lack of decrease is due to MC errors, as the Monte-
Carlo averages for all sample sizes are still close to each other. Alter-
natively, this might be due to the topographic nature: Neither mixture
components nor the conditional means {ūj}j∈VG are independent from
each other for the proposed estimator, though this is the case for the
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Figure 4.2: MISE and KL of Estimators for P1
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DGP. Possibly there is also an interaction between sample size and hy-
perparameters (number of iterations, temperature) that would make it
necessary to adjust the latter with growing sample size. Note however,
that the proximity of the MISE to that of the GMM and kernel density
estimator is promising. Furthermore, large outliers like for the GMM do
not occur. For the second distribution under study, it can be observed,
on the other hand, that the SOM based estimator is favorable in terms of
MISE and the squared error also decreases with increasing sample size as
foreseen by the theory. However, this cannot be verified for the Kullback-
Leibler divergence. The Kullback-Leibler divergence as loss function for
density estimation is known to be driven by the tail behavior of the un-
derlying distribution (and the kernels, when the estimator is a kernel
density estimator) [Hall, 1987]. As the problem of increasing Kullback-
Leibler divergence especially occurs with P2, which is very skew, this
might be a possible explanation: The Kullback-Leibler divergence even
goes to zero when f2(x1, x2)→ 0 and the estimator d̂P2(x1, x2) does not,
but penalizes divergence of f2 and d̂P2 in the tails. So if the proposed es-
timator adjusted better than GMM and kernel density estimation in high
density areas, but performed worse in the tails, this would explain the
contrary behavior of MISE and Kullback-Leibler divergence in Figure 4.3.
For the bivariate extreme value distribution P3, neither such boundary
nor tail effects can be observed. For the GMM estimator, there are such
outliers in the Kullback-Leibler divergence for |S| = 50 that the MC mean
does not fit into the plot. Furthermore, we observe an advantage of the
proposed estimator for small sample sizes and the traditional estima-
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Figure 4.3: MISE and KL of Estimators for P2
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tors only catch up with increasing sample size. Nonetheless, we observe
(almost) slight decreases in both the MISE and the Kullback-Leibler di-
vergence for the proposed estimator like predicted by the theory.

4.8.3 Some Remarks on the Simulation Study

The choice of hyperparameters has proved to be essential for the perfor-
mance of the proposed estimator in previous simulation runs. Beyond
the scope of this work, their choice surely can be optimized or heuristics
be developed. Especially with the Gaussian mixture model, the size of
the mini-batch |S′| appeared to be important as the likelihood of Gauss-
ian mixtures have many local optima and a smaller batch size allows
the algorithm to generalize from the training data. On the other hand,
smaller mini-batches increase the number of iterations to get a stable
topographic map and when stopped to early, the resulting estimator be-
comes more variable.

Setting Λ proportional to the inverse map size (cf. Section 4.3) leads
to increased inversion problems that we observed to ease when setting
the temperature T to a higher value. Also the choice of temperature gets
important as it has an impact on the covariance matrix used in Estimator
(4.20). The more nodes are used, the smaller the bandwidth or (inverse)
covariance matrix can get without destabilizing the estimator. Further-
more, the composition of the energy function (4.23) suggests – identify-
ing the first term as a sum of conditional squared errors – that the tem-
perature may interrelate with the random variable’s second moment. In
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Figure 4.4: MISE and KL of Estimators for P3
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fact, we observe for E [X1|P1] =
67
36 and E [X2|P1] =

53
36 a temperature that

makes the SOM based estimator in MISE terms competitive and lies in be-
tween the temperatures chosen for P2 with E [X1|P2] =

1
3 and E [X2|P2] =

exp(9)
9 − exp

(
9
2

)
respectively and for P3 with E [X1|P3] = E [X1|P3] =

π2

6 .
This suggests a negative interrelation between a ‘good’ temperature and
the variance.

4.9 application to business surveys

The application of proposed new estimation methods to real world data
is always an essential step for the establishment into the tool kit of
proven methods. Real world data have often the defect that the DGP
is unknown so they are not adequate to control for the reliability of
methods in contrast to simulation studies. However, we can compare Es-
timator (4.20) again with other tools such as kernel density estimation
and GMMs.

Like in Section 2.3, we choose for the difficulties of non-normal data
a business survey; it is again the BEEPS. In the data set, variables for the
total turnover from sales for the last fiscal year (variable d2) and three
fiscal years ago (variable n2) are available and are supposedly highly cor-
related. In order to include as many observations as possible, the vari-
ables were transformed from local currency to US dollar so that the data
set can contain firms from different countries. The World Bank’s official
exchange rate two years (or five years respectively) before the interview
year were taken because the questionnaire for the 2009 survey usually
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refers to 2007 and for the other years, we assume likewise. A more de-
tailed data description can be found in Section 2.3.2. Data points that
have a survey weight available were chosen in order to contrast classical
estimation results with that one discussed in Section 4.7. Like in Chap-
ter 2, the problem of Algorithm 4.3 is the stochasticity, this time due to
the mini-batches. Therefore, the algorithm is run 100 times with a subse-
quent estimation of dP. The density is evaluated on a two-dimensional
grid for each of the 100 runs and results presented here are the aver-
age of those 100 algorithm runs. Hyperparameters such as mini-batch
size, maximum grid size |VG| and temperature were chosen to make the
marginal density estimate similar to the univariate kernel density esti-
mate. As convergence results do not hold for accumulation points and
zero is often such an accumulation point in real-world data sets, only
observations with a total of sales greater than zero in both fiscal years
were used.

The results are presented in Figure 4.5 and 4.6. Whilst the density es-
timator (4.20) based on topographic maps has a similar shape and func-
tional values to the kernel density estimator, the GMM estimator has a
much steeper and skewer shape, such that for better interpretability, the
plots had to be cut on the vertical axis. Knowing that the GMM seems
to be prone to outliers (cf. especially Figures 4.2 and 4.4), the similarity
between the kernel density and the SOM based estimator may be con-
sidered a hint for their reliability. On the other hand, the SOM based
estimator flattens faster in the tails than the other two estimators as can
be seen especially on the third panel – this is also in accordance with the
interpretation of the Kullback-Leibler behavior in Figure 4.3. For better
readability and to check whether there is positive correlation between
the total sales three fiscal years ago and last fiscal year (approximately
0.6825), we plot the contours of the density estimators in Figure 4.5 as
well. We see that all estimators reflect the correlation though the GMM
estimator is extremely concentrated.

The use of survey weights showed to be problematic – given the hyper-
parameter choice for the Algorithm 4.3, none of the 100 runs succeeded
for the weighted mini-batch selection. However, for another seed, we
were able to finish one run of the Algorithm. The result is contrasted
with the unweighted version from Figure 4.5 and plotted in Figure 4.6.

As the data reveal a negative correlation between survey weights and
total sales (-0.15 for the last fiscal year), firms with less total sales are
drawn with higher probability in each training step. The firm size is
a stratifier in the survey design and correlates with total sales (correla-
tion between number of permanent full-time employees and total sales:
0.3495). Therefore, the design can even be considered to be informative
if the sampling fractions differ between the strata, because the stratifier
variable is not taken into account in the estimation. Therefore, it is not
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Figure 4.5: Density Estimation of Total Sales – I
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Figure 4.6: Density Estimation of Total Sales – Weighted

surprising that the weighted density estimator is steeper than the un-
weighted one, as can be seen in Figure 4.6. The package ks also allows
the inclusion of (not clearer specified) weights. The kernel density esti-
mator using these weights is also plotted in Figure 4.6. Interestingly, the
SOM based estimator is in that case a little steeper than the kernel den-
sity estimator. Note, however, that the proportions of both estimators are
again similar.

4.10 conclusion

The in depth study of SOMs and derivations thereof have revealed through
the theory of MRFs a link to the random variable’s underlying probability
measure that goes beyond previous studies [Graepel et al., 1998, Heskes,
2001, Kostiainen and Lampinen, 2002]. The proximity to the theory of
Gaussian mixture approximations has furthermore given a hint about
the weak convergence behavior of the suggested density estimator that
was partly confirmed by a subsequent simulation study, especially also
on the requirements on the distribution to be estimated (such as Y ∈ L2

and PY having a Lebesgue density). Nonetheless, a thorough analysis
of convergence behavior should follow this work as the optimization
for each grid size is iterative through an EM-type algorithm. In addi-
tion, one could also use the same argumentation as in Chapter 2: When
the sample size increases, it would also become necessary to increase
the mini-batch size because otherwise the constant MC error could hin-
der convergence. A dynamic growth rule allows the density estimator
to adapt subsequently on the complexity of the training data. An over-
all convergence behavior thus depends on the interaction of the growth
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rate of |S′|, the growth rate of nodes |VG|, the number of training steps
between node creation and the growth of the sample size |S|.

In terms of MISE, the new estimator has proved to perform compet-
itively to well established density estimators, especially when the data
is not Gaussian. The behavior of the Kullback-Leibler divergence on the
other hand is only partly explainable by the theory given here. This and
the appropriate choice of the hyperparameters |S′|, maximal graph size
and T still require a closer inspection, though there seems to be an in-
terdependency with the second moments of the random variable to be
studied.

Finally, the discussed way to deal with survey design in machine learn-
ing (cf. Section 4.7) has returned a weighted density estimator similar
to weighted kernel density estimation (where the type of weight is not
clearly specified) and different from the unweighted version. This indi-
cates that dealing with survey design is important and that the stochastic
optimization offers a way to account for survey design (at least in point
estimation).





5
S U M M A RY A N D O U T L O O K

Like many other survey data, business surveys serve for different pur-
poses: Whilst econometricians may run regression analysis in order to
reveal statistically relevant relationships between business variables, of-
ficial statistics focus on the provision of summary statistics such as finite
population totals. This work has discussed problems that arise when
complex survey designs that are common for business surveys [Cox and
Chinnappa, 1995, Burgard et al., 2014] are used and confounded with
classical statistical inference. Besides the problem of extreme (and possi-
bly informative) designs, challenges when data are non-Gaussian were
discussed.

Chapter 2 has discussed extensions of the linear mixed model to
other families of the exponential distribution and under power trans-
formations to restablish normality assumptions. Furthermore we took
into account the implementability of crossed random effects structures
and the inclusion of survey weights. In terms of point estimation, the
proposed algorithm showed to be competitive to existing software in
a simulation study; though much more computer intensive. The simula-
tion study further revealed that the survey weighting becomes necessary
when it cannot be excluded that the survey design is informative for the
aimed regression analysis. However, the proposed MCEM algorithm suf-
fered nonetheless from slight stochastic and/or numeric instabilities that
should be tackled in future. Previous research [Burgard and Dörr, 2019]
demonstrated in addition that the Fisher information does not – at least
under the chosen set-up – yield a reliable estimator for the standard
error, though it was suggested in earlier literature [Booth and Hobert,
1999]. For useful application of the suggested algorithm in statistical in-
ference, thus, the development of reliable standard error estimators is es-
sential. Finally, the MCEM algorithm was applied on a PUM of the World
Bank: the BEEPS. Accounting for the economic sectors and an establish-
ment’s location (country) as crossed random effects, the question was
studied whether firms that were led by women suffer from higher ob-
stacles for access to finance. The lack of reliable standard estimators led
to an analysis that was combined with established software. No statisti-
cally significant impact of gender on the loan and credit approval was
found, though the results have to be interpreted carefully, and we had
partially results diverging from standard software. These were, however,
consistent with previous theoretical studies of the topic.
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Chapter 3 reconciled the use of GVFs in survey statistics with their
motivation originating from classical randomization. This reconciliation
also allowed an error decomposition that goes beyond the one already
known [Cho et al., 2002]. The role of survey design for the performance
of a GVF prediction – a component that is often neglected – was high-
lighted. First, the relation of a population total estimator (the HT or GREG)
to its variance was elaborated under the model-design framework. The
often cited design effect was put in this context, too. The role of design
was also underlined by the concluding MC simulation that studied both
the performance of common GVF shapes and whether the quality mea-
sures applied in practice really give information on the GVFs’ prediction
quality. Like common in business surveys, the estimation process was
complicated by the non-normality of the data. It was found that due to
the positivity and skew distributions of variance estimators, it is usually
advantageous to use the logarithmic or the relative variance estimator re-
spectively when fitting the GVF, though the predictions are often biased.
The common quality measures, are not so reliable that in practice, when
the true variance of a point estimator is not known, they barely indicate
an appropriate choice for the shape of the GVF. Therefore, without a lot
of experience or extensive prior Monte-Carlo research, it seems critical to
apply GVFs in practice. A future project would thus be to develop more
reliable quality measures for GVFs.

Chapter 4 finally, introduced the popular self-organizing maps and
extended the theoretical knowledge about them as a link to MRFs was es-
tablished. The MRF literature suggests the existence of a Gibbs measure,
which in turn easily motivates a density estimator that could already by
derived in Heskes [2001] and Kostiainen and Lampinen [2002] but only
under simplifying assumptions. Like in Heskes [1999, 2001] and Kosti-
ainen and Lampinen [2002], the link to Gaussian mixture models was
made, which gives additional hints on both the weak convergence of the
proposed estimator and the requirements on the underlying distribution.
The original algorithm was extended to grow dynamically and to adapt
its metric on the requirements of the data. In a simulation study, the
behavior of the new estimator was studied and compared to established
density estimation methods for different sampling distributions. Espe-
cially for skewed data like they occur in business surveys, the results
were promising for the new method. However, the estimator’s behavior
for mixture distributions is complicated and the results for the Kullback-
Leibler divergence disagree with the competitive performance in terms
of MISE. This might be due to an interplay of sample size and hyperpa-
rameter choice which still has to be studied. Especially the choice of a
good temperature is relevant for the estimator’s performance and not
clear a priori. Also, how to account for survey design remains an open
question, though first thoughts were expressed and tried on a real world
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data set. Again, using the BEEPS of the World Bank, the bivariate distribu-
tion of time-delayed sales turnover was estimated. The proposed estima-
tor returned similar results like the kernel density estimator. The result
changed into the expected direction when the design (that is possibly
informative for the estimator) was accounted for and kept similarity to
a weighted kernel density estimator.

To conclude, this work has discussed several fields where survey de-
sign and non-normality may play a major role in statistics. The promis-
ing results in all three chapters underline that statistical research has
progressed so far that scientists in empirical research, official statistics
or even machine learning can and should leave unrealistic assumptions
on data normality and survey non-informativity and turn to more mod-
ern, possibly computer-intensive methods that are less restrictive on data
requirements.
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A P P E N D I X





A
P R O O F S

sample informativity and non-orthogonality

First we show that Definition 9 is equivalent to Pfeffermann [1993, Def-
inition 3]. Let pθ denote a density of PMθ with respect to a measure µ.
If both Yi and Zi are either continuous or discrete, µ equals either the
Lebesgue or the count measure. If this is not the case, µ is a mixture
measure composed of the two. We can then combine pθ with PD to get
a joint mixture density pθ,D

pθ,D(s; y, z) := PD(s; (y, z)) · pθ(y, z)

which yields with A ∈ A and s ∈ 2U

PMθ,D(s×A) =
∫
A
PD(s; (y, z)) · pθ(y, z)dµ(y, z)

=

∫
A
PD(s; (Y,Z))dPNMθ ,

i.e. the definition of the joint model-design measure (1.13). Let pθ(z)
be the marginal density of Z at z, i.e. the density of PNMθ(proj

−1
z ∈ ·)

and pθ(y|z) be the conditional density of Y at y given Z = z, pθ(y|z) =

pθ(y, z)/pθ(z). Then it is possible to define also the conditional probabil-
ity of Y|Z ∈ projz(A) lying in projy(A) on (YN,Ay) through the projec-
tions from the joint space Ω and arbitrary A ∈ A

PNMθ (Y ∈ projy(A)|Z ∈ projz(A)) =
PNMθ ((Y,Z) ∈ A)

PNMθ
((Y,Z) ∈ (YN × projz(A)))

cf. Equation (1.12) or equivalently through the density pθ(·|z)

PNMθ (Y ∈ projy(A)|Z ∈ projz(A))

=

∫
projz(A)

∫
projy(A)

pθ(y|z)dµ(y)pθ(z)dµ(z) (A.1)

for any A ∈ A with z ∈ projz(A). For the model-design density condi-
tioning on Z = z is analoguous.

Then, we have thanks to the product structure of the algebras for a
A ∈ A and projy(A) =: Ay ∈ Ay for almost every z

PNMθ

(
projs(Ay)× YU\s|Z = z

)
=

∫
(projs(Ay)×YU\s)

pθ(y|z)dµ(y),

(A.2)
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which corresponds to the marginal probability of Ys given Z = z and
yields the same joint density of Ys and Z as Pfeffermann [1993, Equation
3.3] by multiplication with pθ(z) because Ay ∈ Ay is arbitrary. On the
other hand, we have

PMθ,D({2
U ×

(
projs(Ay)× YU\s

)
}|Z = z)

=
∑
s∈2U

∫
(projs(Ay)×YU\s)

pθ,D(s; y|z)dµ(y)

=
∑
s∈2U

∫
(projs(Ay)×YU\s)

PD(s; y, z) · pθ(y|z)dµ(y) , (A.3)

which is identical to the marginal distribution of Ys given Z = z under
PMθ if PD(·; (Y,Z)) = PD(·;Z) almost surely. The term∫
(projs(Ay)×YU\s)

PD(s; y, z) · pθ(y|z) · pθ(z)dµ(y) yields the joint density
of Ys and S like in Pfeffermann [1993, Equation 3.2]. The same inference
occurs when integrating out S from that joint distribution yields the
same marginal distribution for Ys like above. This exactly the case if
PD(·; (Y,Z)) = PD(·;Z) which means Y ⊥ S|Z. Therefore, Remark 3 is
proven.

proof of remark 5

It holds for an estimator gS

EMθ,D [gS (S, Y,Z))] =
∫
S×Ω

gS(S, Y,Z)dPMθ,D

=
∑
s∈2U

∫
Ω
PD(s; (Y,Z)) · gS(s, Y,Z)dPNMθ

=

∫
Ω

∑
s∈2U

PD(s; (Y,Z)) · gS(s, Y,Z)dPNMθ

=

∫
Ω
ED [gS(S, Y,Z)] dPNMθ

= EMθ [ED [gS(S, Y,Z)]] . (A.4)

The conditional expectation of gS given (Y,Z) is therefore
EMθ,D [gS(S, Y,Z) |(Y,Z)] = ED [gS(S, Y,Z)] and VarMθ,D [gS(S, Y,Z) |(Y,Z)] =
VarD [gS(S, Y,Z)]. We get by the law of total variance

VarMθ,D [gS(S, Y,Z)] = VarMθ,D
[
EMθ,D [gS(S, Y,Z) |(Y,Z)]

]
+ EMθ,D

[
VarMθ,D [gS(S, Y,Z) |(Y,Z)]

]
= VarMθ,D [ED [gS(S, Y,Z)]] + EMθ,D [VarD [gS(S, Y,Z)]]
= VarMθ [ED [gS(S, Y,Z)]] + EMθ [VarD [gS(S, Y,Z)]] (A.5)
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and for a design unbiased estimator gS for the statistic gU(Y)

= VarMθ [gU(Y)] + EMθ [VarD [gS(S, Y,Z)]] . (A.6)

uniqueness of ml variance-covariance matrix

Assume that the random vector G can be written as

GT = (GT11, . . . ,G
T
1q1

,GT21, . . . ,G
T
2q2

, . . . ,GTkqk)

where qj represents the qj-th repetition of a random vector Gj1 (meaning
that Gj,m1 ∼ Gj,m2 , m1,m2 = 1, . . . ,qj) and

∑k
j=1 qj · |Gj1| = q. Then, Σ

has the following structure

Σ = diag

Σ1, . . . ,Σ1︸ ︷︷ ︸
q1-times

, . . . ,Σk, . . . ,Σk︸ ︷︷ ︸
qk-times


where Σj has the dimension of |Gj1| × |Gj1|. By choosing an adequate
size of the sub-vectors Gjm, it is possible to assume them pairwise inde-
pendent. Then, ρT , (ρT1 , . . . ,ρTk) where ρj collects the unique elements

from Σj of maximal size (dimΣj)·(dimΣj+1)
2 . This dimension is achieved

when no additional assumptions on Σj other than symmetry are im-
posed. Due to the independency, the problem thus reduces to ML esti-
mation of Σ1, . . . ,Σk with random vector realizations of G11, . . . ,G1q1 to
Gk1, . . . ,Gkqk with known expectation 0. The log-likelihood under mul-
tivariate normality for the random variables Gj1, . . . ,Gjqj is therefore

−
qj · dimΣj

2
log(2π) −

qj

2
log detΣj −

1

2

qj∑
ν=1

γTjνΣ
−1
j γjν .

A symmetric deviation dΣj such that Σj − dΣj remains positive definite
yields the following differential change in the log-likelihood

−
qj

2
tr
(
Σ−1j dΣj

)
+
1

2

qj∑
ν=1

γTjνΣ
−1
j dΣjΣ

−1
j γjν

due to Jacobi’s formula and the fact that adj(Σj) = (detΣj)Σ−1j . This
differential equals

qj

2
tr

(
Σ−1j dΣj

(
qjI− Σ

−1
j

qj∑
ν=1

γjνγ
T
jν

))

and this term equals zero for arbitrary small dΣj if and only if the second
factor equals zero. Thus, the (symmetric) ML estimator 1

qj

∑qj
ν=1

∑qj
ν=1 γjνγ

T
jν
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is unique. We do not prove here that the second order conditions hold,
too. Then, however, as the solution for ρ̂j is unique for all j = 1, . . . ,k,
the solution for ρ̂ = (ρ̂T1 , . . . , ρ̂Tk)

T is unique, too.

(strong) ml consistency for mixed models under box-cox

and dual transformations

Under both, the Box-Cox and the Dual transformation, the population
joint log-likelihood LL meets the requirements of Theorem 1 in Rubin
[1956] if the vector Y is splitted like in the previous proof and we assume
θ ∈ Θ with Θ compact:

For the Box-Cox transformation, nothing changes from the deriva-
tion in Hernandez and Johnson [1980a], except for the added term B

(cf. Equation (2.12)), which is bounded by an integrable function and
equicontinuous in ρ. Note that this requires to bound all parameters β,
λ and σ2 on (multivariate) intervals. A good definition, however, of these
intervals can be compplicated as already mentioned for the parameter λ
in the main text.

In a next step, we check the conditions required in Rubin [1956] for the
Dual transformation. This is easily verified because Rubin’s conditions
(1956) were studied for Box-Cox transformations in Hernandez and John-
son [1980b] and for any compact Θ such that the compact interval for λ
is symmetric around 0, we have for λgeq0 that

hD(·; λ) =

hBC(;λ)−hBC(;−λ)
2 , if λ > 0

hBC(; λ), if λ = 0 .
(A.7)

Obviously, LL is therefore continuous in θ and measurable in Y’s sam-
ple space also under this transformation. The equicontinuity required in
Rubin [1956] follows from the same argument like in Hernandez and
Johnson [1980a]. As the likelihood differs from a classical LMM only by
the sum of logarithmic first order derivatives of the transformation h,
we get due to the triangle inequality as an uppder bound for LL

const. +
∑
i∈U

|log
∂hD(yi; λ)
∂yi

|
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and this term is PNMθ-integrable as the logarithm is concave and∫∑
i∈U

∣∣∣∣log
∂hD(Yi; λ)
∂Yi

∣∣∣∣ dPMθ

6 λ+
∫∑
i∈U

∣∣1{Yi<1}(−λ− 1) log Yi + 1{Yi>1}(λ− 1) log Yi
∣∣ dPNMθ

6
∫∑
i∈U

∣∣∣∣log Yi dPNMθ +
∫
1{Yi>1}λ log Yi − λ1{Yi<1} log Yi

∣∣∣∣ dPNMθ

6
∫∑
i∈U

(1+ λ)

∫
|log Yi| dPMθ

and because

EMθ

[
1

N

∑
i∈U

λ log Yi

]
= EMθ

[
1

N

∑
i∈U

log Yλi

]

6 EMθ

[
log

(
1

N

∑
i∈U

Yλi

)]
6 log EMθ

[
1

N

∑
i∈U

Yλi

]
,

the population joint log-likelihood is PNMθ-integrable as the moments of
Yλi exist: We have correspondence between the λ moment of Yi and the
moments of Box-Cox transformed distributions (cf. Equation (A.7)). The
latter exist [Freeman and Modarres, 2006]. Hence, Theorem 1 from Rubin
[1956] is applicable and therefore, the average population log-likelihood
converges (for an increasing number of groupings in G) almost surely to
the expected joint log-likelihood.

As arg max is a continuous function for LL (LL is twice continuously
differentiable and thus, the implicit function ∇θLL = 0 which is equiv-
alent to arg max is continuous), arg maxLL converges with probability
one, too, within compact Θ.

model-design unbiasedness of L̂L

First, note that for any a ∈ RN, ai 6= 0 for all i = 1, . . . ,N, it holds that

ED
[
aT1S

]
= aTED [1S] =

∑
i∈U

aiED [1S(i)] =
∑
i∈U

ai · PD(i ∈ S)
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and consequently, we get, according to the DGP (2.9) that G ⊥ (X,Z),

EMθ,D

[
L̂L|X,Z

]
=

∫
S×YN

L̂LdPMθ,D(·|X,Z)

Eq.(1.13)
=

∑
s∈S

∫
YN

PD(s; Y,X,Z) · L̂LdPMθ(·|X,Z)

=

∫
YN

∑
s∈S

(∑
i∈U

1s(i) ·wi · vi

)
· PD(s; Y,X,Z)dPMθ(·|X,Z)

+

∫
YN

∑
s∈S

B · PD(s; Y,X,Z)dPMθ(·|X,Z)

=

∫
Ω

∑
i∈U

ED [1S(i)] ·wi · vi dPMθ +
∫

RN
BPMθ(G|X,Z)

=

∫
YN

∑
i∈U

vi dPMθ(·|X,Z) + EMθ [B]

= EMθ

[
L̂L|X,Z

]
(A.8)

unweighted ml optimization of mixed models under power

transformations

Gurka et al. [2006] suggest for mixed model estimation under Box-Cox
transformations a rescaling procedure in order to apply standard statisti-
cal software. In the following, we ignore survey design in order to focus
on the problem of that rescaling procedure. The dependent variable Y is
in that setting divided by

(∏N
i=1

dh(yi;λ)
dyi

)
=: Ỹ in order to make the log-

likelihood criterion of the regression model resemble the classical LMM
log-likelihood. This is, however, erronuous: The first order condition for
β̂ are for the rescaled problem in Gurka et al. [2006, Equation (7)], using
our notation

xT
(

zΣzT + σ2IN
)−1

(h(y; λ)/ỹ− xβ) = 0

and for the original problem Equation (4) in Gurka et al. [2006]

xT
(

zΣzT + σ2IN
)−1

(h(y) − xβ) = 0 .

Conditional on λ, the estimator β̂ can therefore be restablished from the
rescaled problem by multiplication with ỹ. If therefore the optimal solu-
tions for λ are also identical, we have the relation stated in Gurka et al.
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[2006] and Rojas-Perilla et al. [2017]. However, the first order conditions
for the estimation of λ are for the rescaled problem N∑

j=1

∂2h(yj; λ)
∂yj∂ λ

N∏
i=1
i 6=j

∂h(yi; λ)
∂yi

∇λh(y; λ)

·
(

zΣzT + σ2IN
)−1

(h(y; λ)/ỹ− xβ) = 0

and for the original problem

∇λh(y; λ)
(

zΣzT + σ2IN
)−1

(h(y; λ)/ỹ− xβ)

+

N∑
i=1

1
∂h(yi;λ)
∂yi

· ∂
2 h(yi; λ)
∂yi∂ λ

= 0

If λ0 was a solution to the first and second equation, we would get -
plugging in this into the first equation -

−

 N∑
j=1

∂2h(yj; λ0)
∂yj∂ λ0

N∏
i=1
i 6=j

∂h(yi; λ0)
∂yi

 ·
 N∑
i=1

1
∂h(yi;λ0)
∂yi

· ∂
2 h(yi; λ0)
∂yi∂ λ0


= −

N∑
k,j=1

∂2h(yj; λ0)
∂yj∂ λ0

· ∂
2h(yk; λ0)
∂yk∂ λ0

· 1
∂h(yk;λ0)
∂yk

·
N∏
i=1
i 6=j

∂h(yi; λ)
∂yi

which is generally unequal to zero for arbitrary realizations from the
sample space and parameter λ0 as the case N = 2 demonstrates: In that
case the sum above equals

−

(∂2h(y1; λ0)
∂y1∂λ0

)2
·
∂h(y2;λ0)
∂y2

∂h(y1;λ0)
∂y1

+ 2
∂2h(y1; λ0)
∂y1∂ λ0

· ∂
2h(y2; λ0)
∂y2∂ λ0

+

(
∂2h(y2; λ0)
∂y2∂λ0

)2
·
∂h(y1;λ0)
∂y1

∂h(y2;λ0)
∂y2

 6= 0
and therefore λ0 cannot be an interior solution to the rescaled optimiza-
tion problem and it results a contradiction.

on-line som convergence implies batch som convergence

Fort et al. [2001] considers convergence in expectation: Assume that
E
[
u(κ+1)
j − u(κ)

j

]
holds for all j ∈ VG. This means for all nodes j ∈
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VG and their neighbors ι defined by the criterion h(δ(j, ι)) > 0, Nj :=
∪ι∈VG:h(δ(j,ι))>0{ι} that

0 =
∑
ι∈Nj

h(δ(j, ι)) · P
(
Yi ∈ V

(κ)
ι

)
· E
[
Yi − u(κ)

j |Yi ∈ V
(κ−1)
ι

]
implying

u(κ)
j =

∑
ι∈Nj h(δ(j, ι)) · P

(
Yi ∈ V

(κ)
ι

)
· E
[
Yi|Yi ∈ V

(κ−1)
ι

]
∑
ι∈Nj h(δ(j, ι))

· P
(
Yi ∈ V

(κ)
ι

)
, (A.9)

where the superscript on the Voronoi region indicates their dependence
on U(κ−1). Fort et al. [2001] argues now that for bounded Yi, the feature
vectors are bounded and then there exists a convergent sub-sequence of
(A.9). This convergent sub-sequence then goes to a stationary point of
the on-line Batch algorithm. This, however, does not imply convergence
of the overall sequence. But

∑
ι∈Nj h(δ(j, ι)) · E

[
Yi − u(κ)

j |Yi ∈ V
(κ−1)
ι

]
can

be seen as the local gradient of
1
2

∑
ι∈Nj h(δ(j, ι)) ·E

[
‖Yi − u(κ)

j ‖
2|Yi ∈ V

(κ−1)
ι

]
and the latter is locally Lip-

schitz continuous in E [Yi|Yi ∈ Vι]. Then, the Picard-Lindelöf Theorem is
applicable, proving the existence of a locally unique solution for U(κ),
which then equals (A.9). The update rule (4.3) can then be considered to
be an empirical version of (A.9).

discussion of theorem 4 .1 in Yin and Allinson [1995]
Theorem 4.1 in Yin and Allinson [1995] relies on Equation A.1 in Yin and
Allinson [1995] that states for some β ∈ (0, 1) and δ > 0

exp(iX) = 1+ iX−
X2

2
+β

|X|2+δ

2δ
,

where X is considered to be a univariate, real-valued random variable
and i =

√
−1. This is, however, not true because | exp(iX)|2 = 1 for any

value of X and∣∣∣∣1+ iX−
X2

2
+β

|X|2+δ

2δ

∣∣∣∣2 = (1− X22 +β
|X|2+δ

2δ

)2
+X2 6= 1 .

This questions their complete proof.

adaptive distances for soms

We show that d = {dΛj}j∈G meets the conditions of a metric. Take thus
x, y, z ∈ Rp.
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1. The symmetry of d follows from the fact that each dΛj is symmet-
ric.

2. Obviously, for all j ∈ G, dΛj(x, y) > 0. If x = y, then they fall into
the same Voronoi region ι and thus d(x, y) = dΛι(x, y) = 0. If, on
the other hand d(x, y) = 0, then at least for one ι ∈ G, dΛι(x, y) = 0
and consequently, x = y.

3. Assume that x, y and z fall into the same Voronoi region j. Then
the triangle inequality holds:

d(x, y) = dΛj(x, y) 6 dΛj(x, z) + dΛj(z, y) = d(x, y) + d(z, y)

Assume now that x ∈ Vj and y ∈ Vj and z ∈ Vι, j 6= ι.

d(x, y) = dΛj(x, y) 6 dΛj(x, uj) + dΛj(uj, z) + 2‖uj − uι‖2

+ 2dΛι(uι, z)
= d(x, z) + d(z, y)

and

d(x, z) = dΛj(x, uj) + dΛι(z, uι) + ‖uj − uι‖2

6 dΛ(x, y) + dΛj(y, uj) + dΛι(z, uι) + ‖uj − uι‖2

= d(x, y) + d(y, z) .

If, on the other hand, x ∈ Vj, y ∈ Vl and z ∈ Vι with j 6= ι and ι 6= l
and j 6= l

d(x, y) = dΛj(x, uj) + dΛl(y, ul) + ‖uj − ul‖2

6 dΛj(x, uj) + dΛl(y, ul) + 2dΛι(z, uι) + ‖uj − uι‖2

+ ‖uι − ul‖2

= d(x, z) + d(z, y) .

Consequently, d is a metric.

properties of the distortion measure in terms of mrfs

In this paragraph, we extend the Assumption 1 of Kondratiev et al.
[2010] to the multivariate configuration space (as Y ⊂ Rp) and check
whether these assumptions hold for the distortion measure. For finite
graphs, part i) of Assumption 1 is trivial. In part ii), it is required that
for every u, v ∈ Y it holds for some Iw, Jw, r > 0 that

|W(u, v)| 6
1

2
(Iw + Jw (|u|r + |v|r)) ,
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where | · | denotes the Eucledian norm. Note that there is a misprint in
Kondratiev et al. [2010, Equation 6], as can be learned from Kondratiev
et al. [2010, Equation 22], Pasurek [2007, Equation 2.6] and Daletskii et al.
[2014, Equation 3.1]. As here, W ≡ 0, this holds for arbitrary small r.

Then there remains part iii). For finite graphs, the edge degree is
bounded and therefore the requirement translates to

Ẽ(Y;U,V) > a|Y|q − c

for fixed a, c > 0 and q > r. This is, however, unproblematic for q > 2

as Ẽ is quadratic for each site j ∈ VG.
We state thus, that the only requirement that we have to pose on P is

that there is no mass point at 0. The proofs in Kondratiev et al. [2010] re-
quire furthermore (applied to our Hamiltonian) that Y ∈ Lp (Y,Ay,P) for
every p ∈ (0, 2), that is, the assumptions hold when the second moments
of Y exist.

local convergence for the iterative solution on (4 .29)
Consider the optimization procedure based on (4.29) for all i ∈ S and
j ∈ VG

u(κ+1)
j =

∑
i∈S
∑
ι∈VG h(δ(j, ι)) · p

i(κ)
ι · Yi∑

i∈S
∑
ι∈VG h(δ(j, ι)) · p

i(κ)
ι

(A.10a)

p
i(κ+1)
j =

exp
(
− 1
T

∑
ι∈VG h(δ(j, ι)) · d

(
Yi, u(κ+1)

ι

))
∑
l∈VG exp

(
− 1
T

∑
ι∈VG h(δ(l, ι)) · d

(
Yi, u(κ+1)

ι

)) .

(A.10b)

Assume with metric || · ||Λ the DGP (up to a constant ‘const.’) to be the
GMM ∑

j∈VG

pj· exp
(
−
cj

T
d(Y, ūj)

)
(A.11a)

meaning that

Y|1j ∼ N

(
ūj,
T

cj
Λ−1

)
(A.11b)

{1j}j∈VG ∼ Multi(1,pj : j ∈ VG) , (A.11c)

where it is important that 1j 6= 1Vj(Y) and the assignment 1j be inde-
pendent from U and Definition of cj and ūj obey (4.19). With a penalty
term

−
1

T

∑
j∈VG

1j
∑
ι∈VG

h(δ(j, ι)) · d(uι, ūj) , (A.11d)
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we get optimization problem (4.23) as the expected penalized log-like-
lihood. The update rules (A.10) then correspond to the steps of an ex-
pected maximum penalized likelihood algorithm. Hero and Fessler [1995,
Theorem 1] discuss convergence properties of such EM type algorithms
(which can be achieved locally under certain regularity conditions). This
means that we achieve (local) minimization of the penalized log-likelihood.
Note that due to (4.27), this minimum yields again with T = 1 the nega-
tive logarithm of the Gibbs measure’s density.
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A D D I T I O N A L I N F O R M AT I O N O N ( S I M U L AT I O N )
D ATA

Table B.1: Overview on the Electronic Appendices

The codes are available on https://github.com/s4padoer/

design-estimation-business-surveys/

Folder File Description

chapter2 sim mixed effects

regression.R

Simulation set-up de-
scribed in chapter 2

chapter2 merge mixed effects

regression.R

Editing of the simulation
results from chapter 2

chapter2 optim lmer.R Function doing a grid
search to find the best Box-
Cox/ Dual transformation
with respect to the data
log-likelihood

chapter3 sim modelbased gvf.R Simulation set-up de-
scribed in chapter 3

chapter3 merge modelbased

gvf.R

Editing of the simulation
results from chapter 3

chapter3 varfu.R Variance estimators for
SRS, StratRS and TSC. Func-
tions doing balanced
half-sampling for the
quality indicator of Ger-
shunskaya and Dorfman
[2013].

chapter4 sim density

estimation.R

Simulation set-up de-
scribed in chapter 4

chapter4 merge density

estimation.R

Editing of the simulation
results from chapter 4

chapter4 merged density

estimation.RData

Data file storing the edited
simulation results from
chapter 4

137
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Table B.1: Overview on the Electronic Appendices

Folder File Description

chapter4 som simplex.cpp C++ functions to speed up
training the topographic
map (Algorithm 4.3)

chapter4 som simplex.R R function implementing
the topographic map (Al-
gorithm 4.3)

chapter4 distributions

som simplex.cpp

Function returning
marginal and joint (and
some conditional) densi-
ties based on Estimator
(4.20)

application beeps edit data beeps.R Editing of the PUM

application beeps beeps pre

regression.R

Model selection and data
analysis using lme4

application beeps beeps regression.R Code for running the
MCEM based estimation
method 100 times

application beeps merge beeps

regression.R

Editing and plotting of the
100 regression estimates

application beeps AppliedLoans.RData Data file storing the edited
subsets of the PUM

application beeps lme4

regressions.RData

Data file storing the cho-
sen regressions estimated
with lme4

application beeps BEEPS Panel 2002

2005 2009 19 Aug

2010.dta

Original PUM

application beeps worldbank exchange

rate.csv

Official World Bank ex-
change rates from LCUs to
US Dollar (downloaded 17

March 2020)

application beeps worldbank exchange

rate edited.csv

Exchange rates from LCUs
to US Dollar edited to
merge with PUM

application beeps beeps density.R Code for runnig 100 times
Estimator 4.20 on the
BEEPS PUM
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Table B.1: Overview on the Electronic Appendices

Folder File Description

application beeps beeps pre

density.RData

Data file storing the bi-
variate kernel density and
GMM density estimates for
the bivariate total sales

application beeps beeps density.RData Data file storing all bivari-
ate density estimates for
the bivariate total sales

application beeps merge beeps

density.R

Code for merging the 100

estimates of the bivariate
density of total sales

lib wmm Self-authored R-package
wmm running the weighted
mixed effects model
estimation
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Table B.2: Partitions in the Simulation Study in Chapter 2

Ud

Ug
1 2 3 4 5 6 7 8 9 10

1 3 9 3 3 1 9 8 7 7 9

2 2 2 6 4 3 4 8 6 13 7

3 4 2 3 1 3 9 8 9 5 10

4 1 5 2 4 1 11 9 11 8 8

5 5 1 1 0 3 7 5 6 6 9

6 5 4 3 5 2 7 4 5 2 9

7 1 2 1 2 1 4 9 10 9 11

8 5 3 2 3 3 5 11 8 4 11

9 1 4 3 3 2 7 10 6 11 8

10 1 1 4 2 5 5 5 6 4 9

11 4 2 1 4 4 7 4 7 6 4

12 5 2 2 0 3 6 7 7 11 6

13 1 1 3 1 1 7 6 3 7 10

14 2 2 1 0 2 10 12 7 7 5

15 0 0 3 2 1 3 5 8 5 11

16 3 5 3 0 2 8 6 11 5 10

17 4 4 2 2 2 12 12 10 6 6

18 1 0 2 2 4 8 4 11 11 5

19 1 4 3 3 0 9 8 5 8 8

20 4 4 2 2 2 8 3 6 12 10

Table B.3: Partitions in the Simulation Study in Chapter 3

µ mod5
ν

1 2 3 4 5

1 2 71 235 448 803

2 6 109 276 516 886

3 15 130 331 532 947

4 38 174 353 627 998

0 55 185 408 715 1140
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Table B.4: MC Relative Error of GVF Prediction - Model (3.23a) - under SRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.022 -0.007 0.007 0.013 0.025 0.088

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.119 -0.053 -0.045 -0.045 -0.034 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.049 -0.030 -0.024 -0.025 -0.019 0.005

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.046 -0.033 -0.026 -0.026 -0.022 -0.004

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.417 -0.414 -0.412 -0.412 -0.411 -0.409

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.616 -0.615 -0.614 -0.614 -0.614 -0.612

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.158 0.160 0.163 0.164 0.166 0.174

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.159 0.162 0.163 0.163 0.164 0.167

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.022 -0.005 0.007 0.013 0.021 0.088

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.116 -0.053 -0.041 -0.044 -0.034 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.048 -0.029 -0.021 -0.023 -0.017 0.008

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.042 -0.030 -0.024 -0.024 -0.020 -0.001

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.279 -0.274 -0.271 -0.272 -0.270 -0.267

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.354 -0.353 -0.352 -0.352 -0.351 -0.349

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.431 0.438 0.441 0.441 0.444 0.451

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.953 0.956 0.958 0.958 0.959 0.963
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Table B.5: MC Relative Error of GVF Prediction - Model (3.23a) - under StratRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.066 -0.043 -0.033 -0.033 -0.020 0.004

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.066 -0.040 -0.032 -0.032 -0.024 -0.010

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.061 -0.040 -0.028 -0.031 -0.022 -0.002

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.050 -0.035 -0.028 -0.027 -0.019 0.001

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.427 -0.422 -0.421 -0.421 -0.420 -0.418

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.616 -0.615 -0.614 -0.614 -0.613 -0.611

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.155 0.159 0.161 0.161 0.163 0.167

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.157 0.160 0.161 0.162 0.162 0.167

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.063 -0.041 -0.032 -0.032 -0.021 0.008

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.060 -0.036 -0.028 -0.028 -0.020 -0.005

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.060 -0.038 -0.027 -0.030 -0.021 -0.006

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.046 -0.032 -0.026 -0.025 -0.017 0.004

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.289 -0.282 -0.280 -0.280 -0.278 -0.274

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.354 -0.352 -0.351 -0.351 -0.350 -0.346

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.433 0.439 0.443 0.442 0.445 0.449

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.950 0.955 0.957 0.957 0.958 0.964
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Table B.6: MC Relative Error of GVF Prediction - Model (3.23a) - under
Stratified TSC

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.053 0.035 0.058 0.058 0.077 0.170

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.044 0.074 0.085 0.086 0.102 0.116

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.046 0.104 0.122 0.123 0.145 0.185

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.100 0.106 0.113 0.113 0.118 0.128

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.006 -0.003 0.000 -0.001 0.001 0.005

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.066 0.067 0.067 0.067 0.068 0.069

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.049 0.052 0.053 0.053 0.055 0.058

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.098 0.099 0.099 0.099 0.099 0.100

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.032 0.040 0.065 0.062 0.085 0.166

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.052 0.080 0.091 0.093 0.108 0.130

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.057 0.115 0.130 0.131 0.148 0.205

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.102 0.109 0.116 0.116 0.120 0.133

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.070 0.073 0.076 0.075 0.077 0.082

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.099 0.100 0.101 0.101 0.101 0.102

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.129 0.132 0.133 0.133 0.134 0.138

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.132 0.133 0.133 0.133 0.134 0.134
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Table B.7: MC Relative Error of GVF Prediction - Model (3.23b) - under SRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.038 -0.032 -0.030 -0.030 -0.029 -0.026

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.037 -0.035 -0.034 -0.034 -0.032 -0.026

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.035 -0.032 -0.031 -0.031 -0.030 -0.028

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.031 -0.029 -0.028 -0.028 -0.027 -0.024

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.413 -0.412 -0.412 -0.412 -0.412 -0.411

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.622 -0.622 -0.621 -0.621 -0.621 -0.621

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.172 0.173 0.173 0.173 0.174 0.175

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.144 0.144 0.144 0.144 0.145 0.145

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.025 -0.019 -0.017 -0.018 -0.016 -0.012

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.027 -0.025 -0.024 -0.023 -0.022 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.025 -0.022 -0.021 -0.021 -0.020 -0.018

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.021 -0.019 -0.018 -0.018 -0.017 -0.014

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.224 -0.223 -0.223 -0.223 -0.222 -0.221

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.369 -0.369 -0.369 -0.369 -0.368 -0.368

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.549 0.550 0.550 0.551 0.551 0.554

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.907 0.908 0.909 0.909 0.910 0.911
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Table B.8: MC Relative Error of GVF Prediction - Model (3.23b) - under StratRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.046 -0.040 -0.038 -0.038 -0.037 -0.031

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.037 -0.034 -0.033 -0.033 -0.032 -0.027

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.033 -0.030 -0.030 -0.030 -0.028 -0.026

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.031 -0.028 -0.027 -0.027 -0.026 -0.021

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.421 -0.420 -0.420 -0.420 -0.419 -0.418

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.622 -0.621 -0.621 -0.621 -0.621 -0.621

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.170 0.171 0.172 0.171 0.172 0.173

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.142 0.142 0.143 0.143 0.143 0.143

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.033 -0.026 -0.025 -0.025 -0.024 -0.017

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.025 -0.022 -0.021 -0.021 -0.020 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.023 -0.020 -0.019 -0.019 -0.018 -0.015

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.020 -0.018 -0.016 -0.016 -0.015 -0.011

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.232 -0.231 -0.230 -0.230 -0.230 -0.228

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.368 -0.367 -0.367 -0.367 -0.367 -0.366

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.551 0.553 0.554 0.553 0.554 0.556

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.906 0.908 0.909 0.909 0.909 0.910
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Table B.9: MC Relative Error of GVF Prediction - Model (3.23b) - under
Stratified TSC

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.025 0.036 0.040 0.044 0.044 0.170

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.083 0.090 0.093 0.092 0.094 0.100

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.072 0.079 0.083 0.083 0.086 0.101

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.120 0.124 0.125 0.125 0.126 0.129

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.020 -0.019 -0.018 -0.018 -0.018 -0.016

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.075 0.076 0.077 0.077 0.077 0.078

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.033 0.034 0.035 0.035 0.035 0.037

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.107 0.108 0.109 0.109 0.109 0.109

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.096 0.107 0.111 0.112 0.116 0.148

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.117 0.124 0.126 0.126 0.128 0.135

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.114 0.121 0.125 0.124 0.127 0.133

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.134 0.137 0.138 0.138 0.139 0.142

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.067 0.068 0.069 0.069 0.069 0.071

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.109 0.110 0.110 0.110 0.111 0.112

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.125 0.126 0.126 0.127 0.127 0.129

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.142 0.143 0.143 0.143 0.143 0.144

Table B.10: MC Relative Error of GVF Prediction - Model (3.23c) - under SRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.422 -0.422 -0.421 -0.421 -0.421 -0.420

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.617 -0.617 -0.617 -0.617 -0.616 -0.616

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.154 0.154 0.154 0.155 0.155 0.157

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.158 0.159 0.159 0.159 0.159 0.160

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -1.881 -0.268 -0.258 -0.286 -0.248 -0.165

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.95 -0.95 -0.95 -0.95 -0.95 -0.95

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.360 0.404 0.409 0.417 0.416 0.754

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.850 -0.849 -0.849 -0.849 -0.849 -0.848
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Figure B.1: MC Performance of Direct Variance Estimators
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Table B.11: MC Relative Error of GVF Prediction - Model (3.23c) - under
StratRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.429 -0.429 -0.429 -0.428 -0.428 -0.427

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.617 -0.616 -0.616 -0.616 -0.616 -0.616

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.152 0.153 0.154 0.153 0.154 0.155

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.156 0.157 0.157 0.157 0.158 0.158

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.637 -0.280 -0.266 -0.268 -0.257 -0.051

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.954 -0.954 -0.954 -0.954 -0.954 -0.953

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.335 0.400 0.407 0.404 0.413 0.435

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.861 -0.861 -0.861 -0.861 -0.860 -0.860
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Table B.12: MC Relative Error of GVF Prediction - Model (3.23c) - under
Stratified TSC

Min. 1st Qu. Median Mean 3rd Qu. Max.

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.271 -0.105 -0.069 0.193 -0.036 11.759

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.863 -0.862 -0.862 -0.862 -0.862 -0.861

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.558 -0.074 -0.049 -0.058 -0.017 0.086

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.858 -0.858 -0.858 -0.858 -0.858 -0.857

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.495 -0.010 0.010 -0.003 0.028 0.237

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.894 -0.894 -0.894 -0.894 -0.894 -0.893

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.086 0.025 0.037 0.053 0.066 0.231

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.891 -0.891 -0.891 -0.891 -0.891 -0.890

Table B.13: MC Relative Error of GVF Prediction - Model (3.23d) - under SRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.032 -0.016 -0.007 -0.005 0.003 0.035

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.118 -0.053 -0.044 -0.045 -0.034 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.049 -0.030 -0.024 -0.025 -0.018 0.005

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.046 -0.033 -0.027 -0.026 -0.022 -0.005

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.431 -0.419 -0.414 -0.415 -0.411 -0.402

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.611 -0.607 -0.606 -0.605 -0.604 -0.597

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.137 0.154 0.161 0.161 0.170 0.186

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.168 0.174 0.179 0.178 0.182 0.187

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.022 -0.006 0.007 0.013 0.021 0.088

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.116 -0.053 -0.041 -0.044 -0.033 -0.016

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.048 -0.029 -0.021 -0.023 -0.017 0.008

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.042 -0.030 -0.024 -0.024 -0.020 -0.002

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.280 -0.270 -0.265 -0.265 -0.260 -0.247

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.369 -0.366 -0.364 -0.363 -0.361 -0.353

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.433 0.449 0.457 0.458 0.465 0.493

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.895 0.901 0.906 0.906 0.910 0.918
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Table B.14: MC Relative Error of GVF Prediction - Model (3.23d) - under
StratRS

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.066 -0.043 -0.033 -0.033 -0.020 0.004

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.065 -0.040 -0.032 -0.032 -0.024 -0.009

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.061 -0.040 -0.028 -0.031 -0.022 -0.002

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.050 -0.035 -0.028 -0.027 -0.019 0.001

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.441 -0.427 -0.424 -0.424 -0.420 -0.410

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.609 -0.606 -0.604 -0.604 -0.602 -0.597

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.139 0.156 0.162 0.163 0.167 0.191

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.168 0.177 0.181 0.181 0.185 0.189

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.063 -0.041 -0.031 -0.032 -0.021 0.008

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.060 -0.036 -0.028 -0.028 -0.020 -0.005

{j ∈ Q : Y
(j)
i ∼ Pois(6)} -0.060 -0.038 -0.027 -0.030 -0.021 -0.006

{j ∈ Q : Y
(j)
i ∼ Pois(24)} -0.046 -0.032 -0.026 -0.025 -0.017 0.004

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.296 -0.278 -0.274 -0.274 -0.269 -0.253

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} -0.367 -0.362 -0.360 -0.360 -0.358 -0.351

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.429 0.454 0.460 0.462 0.469 0.497

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.900 0.910 0.914 0.914 0.918 0.924
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Table B.15: MC Relative Error of GVF Prediction - Model (3.23d) - under
Stratified TSC

Min. 1st Qu. Median Mean 3rd Qu. Max.

Using Indicators in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.053 0.035 0.058 0.058 0.077 0.169

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.045 0.074 0.085 0.086 0.102 0.116

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.046 0.104 0.122 0.123 0.145 0.185

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.100 0.106 0.113 0.113 0.118 0.128

Merging all Variables in the Model & Weighted OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.031 -0.019 -0.012 -0.012 -0.005 0.003

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.068 0.070 0.071 0.071 0.072 0.076

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.024 0.040 0.044 0.043 0.047 0.055

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.101 0.102 0.103 0.103 0.103 0.104

Using Indicators in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} -0.031 0.040 0.065 0.062 0.085 0.165

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.052 0.080 0.091 0.093 0.108 0.130

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.057 0.116 0.130 0.131 0.148 0.205

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.102 0.109 0.116 0.116 0.120 0.133

Merging all Variables in the Model & OLS

{j ∈ Q : Y
(j)
i ∼ G(3, 2)} 0.051 0.069 0.073 0.074 0.082 0.092

{j ∈ Q : Y
(j)
i ∼ G(8, 3)} 0.098 0.099 0.100 0.101 0.102 0.1052

{j ∈ Q : Y
(j)
i ∼ Pois(6)} 0.114 0.130 0.134 0.134 0.139 0.145

{j ∈ Q : Y
(j)
i ∼ Pois(24)} 0.131 0.132 0.133 0.133 0.133 0.134
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Jan Ćwik and Jacek Koronacki. Probability density estimation using a
gaussian clustering algorithm. Neural Computing & Applications, 4(3):
149–160, 1996.
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