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0 Introduction

In differential geometry, smooth manifolds can be classified according to their de Rham
cohomology classes, which also provide topological information of the manifold. The aim
of this dissertation is to study the de Rham cohomology for foliated differential forms
of a smooth foliated manifold and to develop tools for the computation of the so called
foliated de Rham cohomology. Among these results, there is a Künneth formula for
foliated de Rham cohomology ([Ber11]), which states a connection of the foliated de Rham
cohomology of the product foliation on the product manifold of foliated manifolds with
the cohomology of its factors. Trying to relax the requirements of this theorem leads us to
the SK-Theory, developed by D. Vogt to investigate the splitting of exact sequences in the
category of Fréchet spaces. We show that the Cartan-differential is an SK-homomorphism
by using strictness of projective spectra. Unfortunately, this proof does not transfer to the
foliated Cartan-differential in general, which would be required for a generalization of the
Künneth formula. At least, there is a sufficient condition to guarantee that the foliated
Cartan-differential is an SK-homomorphism.
To achieve these results, an interaction of different mathematical areas is needed. The
reader should have a basic understanding of category theory and functors. Apart from
that, knowledge about topology, differential geometry, homological algebra and functional
analysis is recommended. Anyhow, we are making an effort to explain everything for a
reader, who has no extensive background.

Let us begin with a motivation and an overview of each chapter. Some definitions
are mentioned, without being written out in detail, to give the reader a first impression of
the presented theories. For details we always refer to the considered chapter.
We start with the definition of smooth manifolds and smooth maps between smooth
manifolds in the preliminaries. Without further saying, all manifolds are assumed to be
connected. After that, we introduce smooth vector bundles and smooth sections in chapter
2, which are frequently used in differential geometry. The most elementary smooth vector
bundle is the tangent bundle of a smooth manifold. Smooth sections of the tangent bundle
are precisely vector fields. Further important examples of vector bundles are constructed
out of the tangent bundle, for example the cotangent bundle or the alternating k-tensor
bundle of the tangent bundle. The sections of this bundle are differential k-forms, which
are probably the most interesting objects in differential geometry. One can imagine
differential k-forms at each point of a smooth manifold as a signed (sub-)volume function
acting on k many tangent vectors of the tangent space at the considered point. There is
also the Cartan differential d, which is a linear map that sends a differential k-form to
some k + 1-form. Since the composition d ◦ d is always zero, the Cartan differential is a
coboundary operator of the cochain complex given by differential k-forms. It therefore
allows the definition of the de Rham cohomology.
Thus, concerned by the wideness of applications of smooth vector bundles and sections,
we study them mostly abstractly in chapter 2. A smooth R-vector bundle of rank N
consists of a smooth surjective map π : E → M between smooth manifolds such that all
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preimages Ex := π−1({x)} are N -dimensional R-vector spaces and all points x ∈ M have
a smooth local trivialization, which is a certain diffeomorphism, defined on some open
neighbourhood U of x onto U × RN . In 2.1, we define morphisms between smooth vector
bundles and form the category of smooth vector bundles. We deduce a local representation
of vector bundle morphisms and show that a transition function between smooth local
trivializations is also smooth.
Next, we introduce smooth sections and frames of smooth vector bundles in 2.2. A smooth
local section of a vector bundle π : E → M is a smooth right inverse σ : U → E of
the projection map π, defined on some open U ⊆ M , i.e. π ◦ σ = idU . An ordered tuple
(σ1, ..., σN) of smooth local sections σj : U → E is called a frame, if σ1(x), ..., σN(x)
form a basis of Ex for all x ∈ U . An equivalent condition for smooth vector bundles on
frames instead of smooth local trivializations follows. A frame allows locally a unique
representation of a local section and similar to a change of basis in linear algebra, there
is change of frames between frames over the same open set. Locally, smooth sections are
isomorphic as vector spaces to smooth functions. Later, we will use this isomorphism to
define a topology on the local (and also global) sections, which will make the space of
sections into a Fréchet space.
Chapter 2.3 is dedicated to the constructions of smooth vector bundles. The main tool for
the verification of a smooth vector bundle is the Vector Bundle Construction Lemma. We
introduce the subbundle of a smooth vector bundle and the quotient bundle of a smooth
vector bundle by a subbundle. Whereas the definition of a subbundle easily implies that
it is a smooth vector bundle, the verification of the quotient bundle as a smooth vector
bundle is more subtle and involves the Vector Bundle Construction Lemma. To construct
more vector bundle from old ones, we adopt an abstract approach from [Eur] and [Tan14],
where the vector bundles are induced by so called manifold-enriched functors. As an
application, we obtain that the dual bundle and the (alternating) k-tensor bundle of a
smooth vector bundle is also a smooth vector bundle.
We consider the category VBM of smooth vector bundles over a fixed base space M in
2.4 and remark that it is not an abelian category. After classifying the homomorphisms
in VBM , we define a short exact sequence of smooth vector bundle over M . If one of the
equivalent assertions of the Splitting Lemma is satisfied, we say that the exact sequence
splits. By the previous work, we can show that every short exact sequences of vector
bundles over the same base space M splits.
In 2.5 we want to build a functor from VBM to Fréchet, the category of Fréchet spaces
with continuous and linear maps by assigning the space of smooth sections to a given
smooth vector bundle over M . So first of all, we equip the space of smooth sections
Γ(M,E) with a directed system of seminorms such that it becomes a Fréchet space. This
structure is induced locally by the Fréchet space of smooth functions in Euclidean space.
We also provide certain continuity criteria to obtain the continuity of the pushforward
f∗ : Γ(M,E) → Γ(M,F ), σ 7→ f ◦ σ of a smooth vector bundle M -morphism f : E → F .
Therefore, the section functor is indeed a covariant functor from VBM to Fréchet. It
is also an exact functor, i.e. a short exact sequence of vector bundles is send to a short
exact sequence of Fréchet spaces, which also splits by functoriality since the short exact
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sequences of vector bundles over M splits. We end up this chapter by an isomorphism
between the section of a quotient bundle and the quotient space of the spaces of sections,
which will be used later to show that two alternative definitions of foliated differential
forms are isomorphic.

We proceed with the main chapter 3 about foliated differential forms and foliated
cohomologies. Foliated manifolds generalize the concept of manifolds in the sense that
each manifold M can be made into a foliated manifold by its one leaf foliation F = {M}.
In general, a smooth (p, q)-foliated manifold is a smooth manifold M together with
a foliation F = {Lα}α∈A on M , which is a decomposition of M into connected and
disjoint p-dimensional submanifolds Lα, called leaves. The foliation is locally modelled
on the decomposition of an open V ×W ⊆ Rp × Rq into its cosets V × {c} where c runs
through W . Besides the trivial one leaf foliation, there is also always the discrete foliation
F = {{x} : x ∈M} by points of M .
Foliations are closely related to the solvability of systems of first-order differential
equations. For instance, the integral manifolds of a non-vanishing vector field X, which
are the images of the integral curves of X, are forming a (1, n − 1)-foliation on an
n-dimensional manifold M . Here, an integral curve of a vector field X on M (passing
through x ∈ M) is a smooth map u : I → M satisfying u′(t) = Xu(t) on some open
interval I (and u(t0) = x for some t0 ∈ I). Hence, integral curves are the solutions of a
system of first-order ordinary differential equations and their existence is guaranteed by
the Picard-Lindelöf Theorem. A non-vanishing vector field X on M is a global frame of an
one-dimensional subbundle of the tangent bundle of M , such that this subbundle is equal
to the so called foliated tangential subbundle of the foliation induced by X, given
by the disjoint union of the tangent spaces of the leaves of the foliation. More general,
consider pointwise linearly independent vector fields X1, ..., Xp of M , where p ≤ n. These
vector fields span a p-dimensional subbundle of TM , denoted by span{X1, ..., Xp}. The
Frobenius Theorem states that there is an underlying smooth (p, n − p)-foliation F of
M such that its foliated tangential subbundle is equal to span{X1, ..., Xp} if and only
if this subbundle is involutive. That means, for all smooth sections X and Y in the
subbundle E = span{X1, ..., Xp} of TM , their Lie-bracket [X, Y ] : M → TM , which is
pointwise defined to be the derivation1 [X, Y ]x(f) = Xx(Yx(f)) − Yx(Xx(f)) for x ∈ M
and f ∈ C∞(M), is also a section in the subbundle E of TM or equivalently [X i, Xj] can
be written as a linear combination of X1, ..., Xp for all i 6= j. The involutivity condition
arises as a generalization of the commutativity of partial derivatives. In that case, the
underlying foliation F consists of the integral manifolds of X1, ..., Xp, which are the
images of smooth maps u : W ⊆ Rp → M on open domains W ⊆ Rp solving the system
of first-order partial differential equations ∂u

∂xi
(x) = X i

u(x) (i = 1, ..., p). These connections
are illustrated in Examples 3.2.2.
We start in 3.1 with the definition of foliations and continue with transverse maps to
a foliation, which allows to pullback a foliation of the target manifold to produce more

1See 2.1.4 (3) for a definition of the tangent space as derivations.
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examples of foliations by old ones. In particular, a smooth submersion is transverse to any
foliation on the target manifold and the pullback foliation of the discrete foliation yields a
foliation of the domain manifold, given by the connected components of the level sets of
the submersion. Locally, every foliation is of that type. For the existence of the pullback
foliation, we use the Local Submersion Theorem, which is based on the Inverse Function
Theorem. We list some examples of foliations.
Next, we want to define the foliated differential forms of a foliated manifold in 3.2. Recall,
the disjoint union of the tangent spaces of all leaves gives rise to a smooth subbundle TF
of the tangent bundle of M , which is called the foliated tangential subbundle. Using
the constructions of chapter 2, we can build further vector bundles as the normal bundle,
which is the quotient bundle of the tangent bundle by the foliated tangential subbundle.
Moreover, we can define the dual bundle and more general the alternating k-tensor bundle
of the foliated tangential subbundle, which we call the foliated alternating k-tensor
bundle. As we clarify, it can be seen as a quotient bundle of the alternating k-tensor
bundle of the tangent bundle by a subbundle, called the k-annihilator of TF . This
observation gives rise to two alternative definitions of foliated differential forms, namely
the smooth sections of the foliated alternating k-tensor bundle and the quotient space of
differential forms by the subspace of sections of the annihilator of TF , respectively. We
show that both constructions end up with isomorphic Fréchet spaces.
As differential forms can be better understood by the Cartan-differential, which allows
a local representation, we are also interested to obtain a similar exterior derivative for
foliated differential forms in 3.3. Aside from that, the Cartan-differential is used to
build the de Rham cohomology of manifolds, which we want to generalize for foliated
manifolds. The definition of the so called foliated Cartan-differential dF is based on
the differential of an R-valued smooth function defined on a smooth manifold and the
inclusion morphism iTF : TF → TM of smooth vector bundles over M . The existence
and uniqueness of the foliated Cartan-differential is shown including the most important
properties of dF such as the commutativity with pullbacks of foliated maps, a local
representation and the coboundary property dF ◦ dF = 0.
This allows the definition of the so called foliated de Rham cohomology in 3.4 similar
to the definition of the (classical) de Rham cohomology. By the coboundary operator
property, Im(dk−1

F ) ⊆ Ωk(M,F) is a subspace of the vector space Ker(dkF) ⊆ Ωk(M,F),
such that we can define the kth foliated de Rham cohomology group of a foliated
manifold as the quotient space Hk(M,F) = Ker(dkF )/Im(dk−1F ). The term group is common
since in homological algebra (co)homologies classes are principally just groups, but we
are actually dealing with vector spaces. Because of dimensional reasons, we can conclude
that Hk(M,F) = 0 if k < 0 or k > p for a (p, q)-foliated manifold. Further, H0(M,F)
is the space of leafwise constant functions, i.e. the space of smooth R-valued functions
on M such that the restriction to any leaf is constant. For the product manifold of
connected smooth manifolds F × T foliated by FT (F ) = {F × {t} : t ∈ T}, we obtain
H0(F × T,FT (F )) ∼= C∞(T ), which is of course not a finite dimensional vector space. The
leafwise constant functions can vary on the transversal manifold. We proceed with induced
cohomology maps of smooth foliated maps, defined as the pullback of smooth foliated
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maps on the equivalence classes. Together with the assignment (M,F) → Hk(M,F),
we obtain a functor from the category FolMfld of smooth foliated manifolds with
smooth foliated maps to the category VectR of R-vector spaces with linear maps, the so
called foliated de Rham functor. This yields the foliated diffeomorphism invariance
of the foliated de Rham cohomology, i.e. if f : (M,F) → (N,G) is a smooth foliated
diffeomorphism between smooth manifolds, then Hk(M,F) ∼= Hk(N,G) for all k ∈ N0.
The classical de Rham cohomology is even a homotopy invariance. This is not true for
the foliated de Rham cohomology as we see in an example, even if the homotopy map is
foliated. Nevertheless, there is a stronger type of homotopy, called integrable homotopy,
which yields an invariance of the foliated de Rham cohomology. Two smooth foliated
maps f, g : (M,F) → (N,G) are integrable homotopic, if there is a smooth foliated map
H : (M ×R, π∗(F))→ (N,G) such that H(x, t) = f(x) if t ≤ 0 and H(x, t) = g(x) if t ≥ 1
for all x ∈M . The important point is to consider the pullback foliation π∗(F) on M × R,
where π : M × R → M is the projection map, such that the leaves are given by {L × R}
for L ∈ F . As we have seen in the example before, the foliation {L × {t} : L ∈ F , t ∈ R}
on M × R does not yield a homotopy invariance. The proof of the integrable homotopy
invariance is then quite similar to the homotopy invariance of the de Rham cohomology. At
first, we show the existence of a homotopy operator h : Ωk(M ×R, π∗(F))→ Ωk−1(M,F).
Then, we deduce that two smooth foliated maps which are integrable homotopic induce
the same cohomology maps between foliated de Rham cohomologies. Together with the
foliated de Rham functor, this gives the integrable homotopy invariance. We can use this
fact by proving a Poincaré Lemma for a star-shaped foliation by points. To be more
precise, let M be a star-shaped open subset of Rp with center c ∈ M and N a smooth
manifold. Consider the M -foliation FN(M) = {M × {y} : y ∈ N} by points of N on
M × N , then {c} × N is an integrable deformation retract of (M × N,FN(M)) and the
only non-zero foliated cohomology group is H0(M ×N,FN(M)) ∼= C∞(N).
A very powerful tool to compute de Rham cohomologies is the Mayer-Vietoris Theorem,
which states a connection between the de Rham cohomology of a union U ∪ V and the
cohomologies of submanifolds U, V of some smooth manifold M as well as their inter-
section U ∩ V ordered in a long exact sequence. We have to assume some transversality
conditions on the inclusion maps such that they become foliated maps and can conclude
a similar result for the foliated de Rham cohomology. However, open subsets satisfy
these assumptions. The long exact sequence is built from short exact sequences for each
k ∈ N together with connecting maps obtained by the ZigZag Lemma (also known as
Snake Lemma). Once again, we consider the M -foliation FN(M) by points of N on the
product manifold M × N , with the only assumption for M that it has a finite good
cover. A good cover consists of open sets such that all open sets and all finite non-empty
intersections of the cover are diffeomorphic to Rm, if M is a manifold of dimension m.
Every smooth manifold has a good cover. If the manifold is compact, the good cover
may be chosen to be finite. The de Rham cohomology of a manifold, which has a finite
good cover, is finite dimensional. As we have seen, this is not the case for foliated de
Rham cohomology. Returning to the foliation FN(M) on M × N , we can show with an
application of the Mayer-Vietoris Theorem that Hk(M ×N,FN(M)) ∼= Hk(M)⊗ C∞(N)
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for each k ∈ N, which generalizes the Poincaré Lemma for a star-shaped foliation by
points, since H0(M) ∼= R and otherwise Hk(M) = 0 for a star-shaped M by the (classical)
Poincaré Lemma. Since Hk(S1) ∼= R for k = 0, 1, we can easily compute the foliated
the Rahm cohomology of the torus T = S1 × S1, foliated by points of a circle, namely
Hk(T2,FS1(S1)) = C∞(S1) for k = 0, 1.
To achieve a generalization of the Mayer-Vietoris sequence that deals with more than two
open sets, we introduce the Čech complex, which is a cochain complex with a so called
cover operator δ as coboundary operator, depending on an open cover of (countably
many) sets and a presheaf. In short, a (VectR-valued) presheaf G on a topological space X
is contravariant functor from the category Open(X) of open sets in X with inclusions as
morphisms to the category VectR of R-vector spaces with linear maps. For instance, on a
smooth (foliated) manifold, there is the presheaf of (foliated) differential k-forms and the
presheaf of the kth (foliated) de Rham cohomology. Here, we need for the foliated versions
that the inclusion iU : U →M of an open subset U ⊆M is transversal to any foliation F
on M , such that it becomes a foliated map iU : (U,F|U) → (M,F) with respect to the
pullback foliation F|U = i∗U(F). The Čech complex of an open cover U = (Uα)α∈J with
values in the presheaf G is defined by

Č`(U ,G ) =
∏

α0<···<α`

G

(⋂̀
j=0

Uαj

)
for each ` ∈ N0.

Similar to the classical case of just smooth manifolds, we can show that the augmented
sequence of the Čech complex with values in the presheaf Ωk

F of foliated differential k-
forms is exact, such that the Čech cohomology vanishes identically for this presheaf. The
two cochain complexes, the foliated de Rham complex and the Čech complex with values
in the presheaf Ωk

F , give rise to a double cochain complex, called the foliated Čech-de
Rham complex. As specified, one can build also a single cochain complex by forming the
discrete sums Aj =

⊕
k+`=j

Č`(U ,Ωk
F) over the anti-diagonal lines of the double complex and

setting Dω = δ`ω+ (−1)kdkFω for ω ∈ Č`(U ,Ωk
F). We proceed with the generalized Mayer-

Vietoris principle, which tells us that the cohomology of the foliated Čech-de Rham complex
is isomorphic to the foliated de Rham cohomology. Analysing the proof and augmenting
the double complex by an initial row, we get by a consequence of the Poincaré Lemma for
a star-shaped foliation by points a further result for an underlying good cover: The Čech
cohomology with values in the presheaf of leafwise constant functions G lc

F of a good cover is
isomorphic to the Čech-de Rham cohomology and therefore also isomorphic to the foliated
de Rham cohomology. These isomorphisms does not seem to be explicitly discussed in the
literature. If one defines the Čech cohomology Ȟ∗(M,G ) of the whole manifold M as the
direct limit of the Čech cohomology of all covers, preordered by refinements, then we can
conclude by the previous result that Ȟ∗(M,G lc

F ) is isomorphic to the foliated de Rham
cohomology since good covers are cofinal in the set of all covers of a manifold. Considering
the one leaf foliation of a smooth manifold, we also obtain these results for the (classical)
de Rham and Čech cohomologies.
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In 3.6 we discuss the prospects of a Künneth formula for the foliated de Rham cohomology.
Formulas of the (co)homology of the product of two objects related to the (co)homologies
of the single objects are called a Künneth formula. The formula for the foliated the
Rham cohomology of (M ×N,FN(M)) suggests for foliated manifolds (M,F) and (N,G ):

Hk(M ×N,F × G) ∼=
⊕
i+j=k

H i(M,F)⊗Hj(N,G) for k ∈ N0.

But as we remark, if the foliated cohomologies of both factors are not finite dimensional,
we have to substitute the algebraic tensor product ⊗ by a topological tensor product ⊗̂ in
order to expect a valid formula. Recall that the foliated de Rham cohomology was defined
as a quotient space of the kernel by the image according to the foliated Cartan-differential.
Only if dF has a closed image, the cohomology groups are Hausdorff and in particular a
Fréchet space, such that a topological tensor product can be defined. Fortunately, we are
actually dealing with nuclear Fréchet spaces in that case, such that the (in general different)
injective and projective topologies coincide on the algebraic tensor product. Nevertheless,
the image of dF is not closed in general as we see for the example of the Kronecker foliation
Fα of the torus T2 for a slope α which is a Liouville number. We compute the foliated de
Rham cohomologies in the cases of an irrational slope, which is a Liouville number or not.
We obtain H1(T2,Fα) ∼= R if α ∈ R \ Q is not a Liouville number, but if α is a Liouville
number, H1(T2,Fα) is infinite-dimensional and non-Hausdorff, such that the image of dFα
is not closed, or equivalently dFα is no homomorphism. We present the Künneth formula in
two situations, which are shown in [Ber11]. The second version requires finite dimensionality
of the foliated de Rham cohomology of one factor and that the manifold of that factor is
compact. The proof uses a continuous right inverse of dF , which is guaranteed by a Splitting
Theorem in that case of an underlying compact manifold. dF would also have a continuous
right inverse, if one can show, that it is a so called SK-homomorphism. In that case, the
compactness of the underlying manifold is not required for the Künneth formula. We end
this chapter by presenting the Splitting theorems and the involved invariants (DN), (Ω),
(DNloc) and (Ωloc).
As motivated in the third chapter, we are interested in the property of dF being an SK-
homomorphism in Chapter 4. In 4.1 we will introduce the SK-theory, developed by D. Vogt,
to investigate the splitting of exact sequences in the category Fréchet. In particular, we
are interested in the existence of a continuous linear right inverse of some continuous and
linear map between locally convex spaces. If that is the case, we observe a certain condition
in which the seminorm kernels play a central role. Hence, one is interested the induced
topology of the system of seminorm kernels, called the SK-topology. The observation
in the case of the existence of a continuous linear right inverse is then just the condition
to be a homomorphism with respect to the SK-topologies of the locally convex spaces,
which we will call an SK-homomorphism. We proceed with some compatibility properties
of the SK-topology and see in an example that the SK-topology of the quotient topology
can be strictly coarser than the quotient topology of the SK-topology. If the topologies
coincide on the quotient space formed by a closed subspace, this subspace is called an SK-
subspace and we give a characterization of that property. We prove that the k-annihilator
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of a foliated manifold is an SK-subspace of the space of differential k-forms, such that
the corresponding quotient map is an SK-homomorphism. Using the construction of the
foliated differential forms as quotient spaces, gives rise to an alternative foliated Cartan-
differential. Due to the fact that the composition g ◦ f of SK-homomorphisms requires
Ker(g) ⊆ Im(f) to be also an SK-homomorphism, we can conclude, that the foliated
Cartan-differential dF : Ωk(M,F) → Ωk+1(M,F) is an SK-homomorphism if the (k + 1)-
annihilator Ωk+1

� (M,F) is a subset of Im(d) ⊆ Ωk+1(M), the image of the (classical)
Cartan-differential and if d is an SK-homomorphism. Then we characterize d being an
SK-homomorphism and obtain a so called strictness condition on the kernel spectrum of
d, which we will verify later.
In 4.2 we introduce strictness of a general projective spectrum and also their projective
limits. A projective spectrum X = (Xn, %

n
m) is a sequence (Xn)n∈N of linear spaces

together with linear maps %nm : Xm → Xn, the linking maps, satisfying %nn = idXn and
%kn ◦ %nm = %km for k ≤ n ≤ m. X is called strict, if

∀ n ∈ N ∃m ≥ n ∀ ` ≥ m : %nm(Xm) ⊆ %n` (X`).

Note that in that case, the subsets are actually equal by the linking map property. Hence,
one can think of the strictness condition to be a kind of eventual surjectivity of the linking
maps. The projective limit of a projective spectrum X is defined by

Proj(X ) =

{
(xn)n∈N ∈

∏
n∈N

Xn : %nm(xm) = xn for all m ≥ n

}
and we can characterize the strictness of X to the condition

∀ n ∈ N ∃m ≥ n : %nm(Xm) ⊆ %n(Proj(X )),

where %n : Proj(X ) → Xn denotes the projection onto the nth-component. Next we
investigate the effects of strict projective spectra in an exact sequence of projective spectra
for the remaining spectra. The image spectrum of a strict spectrum is also strict and if
the left and right projective spectrum is strict, then also the spectrum in the middle is
strict. To finally conclude, that the kernel spectrum of d is strict, it suffices to show the
strictness of the image spectrum of d and the strictness of the projective spectrum of de
Rham cohomology. The last strictness follows by a discrete Mittag-Leffler condition based
on the fact that for an open and relatively compact subset N of a smooth manifold M , the
restriction map % : Hk(M) → Hk(N) has finite dimensional image for each k ∈ N0. Here
we use a good cover of M , such that the compact closure N has a finite good cover and
the restriction % factorizes through a finite dimensional de Rham cohomology. It should
be remarked that we can not transfer this result to foliated de Rham cohomology. Putting
everything together, we finally obtain that the kernel spectrum of d, the projective spectrum
of closed forms, is strict, such that d is indeed an SK-homomorphism. As explained before,
we can state the corollary, that dF : Ωk(M,F)→ Ωk+1(M,F) is an SK-homomorphism if
Ωk+1

� (M,F) ⊆ d(Ωk(M)) holds. We finish with a remark about the Čech cohomology of
leafwise constant functions, where we reject a nearby replacement for the finite dimensional
image of the restriction map % between foliated de Rham cohomologies.
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1 Preliminaries

Let X be a topological space. If X has a countable basis of topology, it is called second
countable. X is said to be locally Euclidean of dimension n ∈ N if for every point x ∈ X
there is an open set U ⊆ X containing x, together with a homeomorphism ϕ : U → V
onto an open subset V of Rn. In that case, (U,ϕ) is called a chart. A second countable,
topological space with the Hausdorff property (different points can be separated by
disjunct neighbourhoods) that is locally Euclidean of dimension n is called a topological
manifold of dimension n. If (U1, ϕ1) and (U2, ϕ2) are charts with U1 ∩ U2 6= ∅, the so
called transition functions, ϕ2

1 := ϕ2 ◦ ϕ−1
1 |ϕ1(U1∩U2) : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) and

ϕ1
2, defined analogously, are homeomorphisms between open subsets of Rn. We say two

charts (U1, ϕ1), (U2, ϕ2) are C∞-compatible if their transition functions ϕ2
1 and ϕ1

2 are of
class C∞. A C∞-atlas on a topological manifold M is a collection {(Uα, ϕα) : α ∈ I} of
pairwise C∞-compatible charts such that M =

⋃
α∈I

Uα. If the union of two C∞-atlases is

a C∞-atlas we say the atlases are C∞-compatible. This defines an equivalence relation
on the C∞-atlases and an equivalence class of a C∞-atlas is called a smooth differential
structure on the manifold. A smooth manifold M of dimension n is an n-dimensional
topological manifold with a smooth differentiable structure and the charts of a C∞-atlas
which represents the differentiable structure, are called smooth charts of M . We could
also require only Ck-compatibility (k ∈ N) of the charts such that we get a Ck-atlas.
But a famous Theorem of Whitney tells us, that for each k ∈ N every Ck-atlas contains
a C∞-subatlas.2 Therefore it is convenient to consider always smooth manifolds. In
general, a manifold needs not to be connected. But every manifold is a disjoint union
of its connected components, which are connected. If not other mentioned, we assume a
manifold to be connected.
A map f : M → M̃ between smooth manifolds is called smooth, if for every x ∈ M there
exist smooth charts (U,ϕ) of M and (Ũ , ϕ̃) of M̃ with x ∈ U and f(U) ⊆ Ũ such that
the coordinate representation ϕ̃ ◦ f ◦ ϕ−1 : ϕ(U) → ϕ̃(Ũ) between open sets of Euclidean
spaces is smooth. The space of smooth maps f : M → M̃ will be denoted by C∞(M, M̃)
and we simply write C∞(M) for C∞(M,R).

2See [Whi36, Theorem 1].
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2 Smooth Vector Bundles and Sections

Our aim in this chapter is to introduce smooth vector bundles and smooth sections, which
generalize smooth functions and provide therefore more applications in differential geo-
metry. First of all, we need to define a smooth vector bundle over a smooth manifold.
The reader should have in mind the example of the tangent bundle or the vector bundle
of alternating k-tensors on the tangent spaces of a manifold, which is also called vector
bundle of exterior k-forms. The sections of these bundles are precisely vector fields and
differential k-forms, respectively. After defining the space of smooth sections, we equip it
with a system of seminorms such that it becomes a Fréchet space.

2.1 Introduction of Smooth Vector Bundles

2.1.1 Definition (Smooth Vector Bundle)

Let M be an n-dimensional smooth manifold. A smooth R-vector bundle ξ of rank N
over M is a triple (E, π,M), where E is a smooth manifold and π : E →M is a surjective
smooth map (called projection) such that for every x ∈M :

(VB1) The set Ex := π−1({x}) ⊆ E (called fibre of E over x) has the structure of an
N -dimensional R-vector space and

(VB2) there exists a smooth local trivialization (U,Φ) for x, i.e. U is an open neighbour-
hood of x and Φ : π−1(U)→ U ×RN is a diffeomorphism such that prI ◦Φ = π|π−1(U)

holds for the projection prI : U×RN → U and further for every y ∈ U , the restriction
Φ|Ey is an isomorphism of Ey onto {y} × RN ∼= RN .

In that case, E is called the total space and M the base space of the bundle.
If there is a smooth local trivialization (M,Φ), this Φ is a smooth global trivialization
and we call ξ a trivial vector bundle.

Figure 1: Trivial R-vector bundle of rank 1 over M = S1.
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2.1.2 Remark (Smooth Vector Bundles)

(1) C-vector bundles are defined similarly by replacing R with C everywhere in the defi-
nition, but we will treat only real vector bundles and henceforth we omit the field in
the notation of a vector bundle.

(2) If (U,Φ) is a smooth local trivialization and V 6= ∅ is an open subset of U , then
(V,Φ|π−1(V )) is also a smooth local trivialization, which we will denote, by abuse of
terminology, simply as (V,Φ). If {Uα}α∈A is an open cover of M , we just write Eα for
π−1(Uα), such that {Eα}α∈A is an open cover of E.

(3) The dimension of the manifold E has to be n + N since the open set π−1(U) in E is
diffeomorphic to an open subset of Rn × RN by the composition of smooth maps

π−1(U) Φ // U × RN
ϕ×idRN// ϕ(U)× RN ,

where (U,ϕ) is a smooth chart of M and (U,Φ) a smooth trivialization.

(4) The projection π : E → M of a smooth vector bundle is necessarily a submersion
by (VB2), i.e. its differential3 is surjective at each point. (For each x ∈ M , there is
a smooth local trivialization (U,Φ) such that for every νx ∈ Ex, we obtain dπνx =
d
(
π|π−1(U)

)
νx

= d(prI ◦Φ)νx , which is a surjective map since prI ◦Φ is a submersion.)

(5) One may ask why (VB1) is required since (VB2) allows a way to equip the fibres with
a vector space structure induced by a trivialization Φ. Concretely, define on a fibre Ex
the operations u + v = Φ−1(Φ(u) + Φ(v)) and r · v = Φ−1(rΦ(v)), where u, v ∈ Ex,
r ∈ R. This makes Ex into a vector space but this vector space structure will be
different to the structure induced by another trivialization Ψ since Φ and Ψ are not
linear as diffeomorphisms in general. However, Lemma 2.1.7 shows, that two smooth
trivializations with overlapping domains transform in terms of so called transition
functions.

(6) In many examples, the total space is defined as a disjoint union of vector spaces over
all points of the base space M . The disjoint union of a collection {Vx}x∈M of sets is
defined to be the set ⊔

x∈M

Vx =
⋃
x∈M

{x} × Vx. (2.1)

Thus, for every v ∈
⊔
x∈M

Vx there is a unique vx ∈ Vx corresponding to a unique x ∈M

with v = (x, vx), such that we can identify v with vx. The map π :
⊔
x∈M

Vx →M , defined

3See Example 2.1.4, (3) for the definition.
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by vx 7→ x, is clearly surjective and is the canonical candidate for the projection map
of the bundle. Note that, even if all Vx are vector spaces, the total space has not yet a
structure of a smooth manifold and talking about smoothness or the differential of π
is meaningless. It is part of the Vector Bundle Construction Lemma (2.3.2) to specify
these things.

Before giving examples, we introduce morphisms between smooth vector bundles.

2.1.3 Definition (Smooth Vector Bundle Morphism)

Let ξE = (E, πE,M) and ξF = (F, πF ,M
′) be two smooth vector bundles. A pair (f, g) of

smooth maps f : E → F and g : M →M ′ is called a smooth vector bundle morphism
from ξE to ξF if fx = f |Ex : Ex → Fg(x) is a linear map between the fibres for each x ∈M
and g ◦ πE = πF ◦ f holds, i.e. the following diagram commutes:

E
f //

πE
��

F

πF
��

M g
//M ′

The composition (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1) of smooth vector bundle morphisms
(f1, g1) from ξE to ξF and (f2, g2) from ξF to ξG defines a smooth vector bundle morphism
from ξE to ξG. Together with this composition of smooth vector bundle morphisms, the
class of smooth vector bundles is a category which will be denoted by VB. So we have
the notion of isomorphisms and we use a characterization for the definition: A smooth
vector bundle morphism (f, g) from ξE to ξF is a smooth vector bundle isomorphism
if f, g are diffeomorphisms and fx is an isomorphism of vector spaces for each x ∈ M .
(ξE and ξF are isomorphic smooth vector bundles if and only if the manifolds E and F ,
M and M ′, respectively, are isomorphic as smooth manifolds and the corresponding fi-
bres are isomorphic as vector spaces. In that case, the rank of ξE and ξF has to be the same.)

If (f, idM) is a smooth vector bundle morphism between smooth vector bundles
(E, πE,M) and (F, πF ,M) over the same base space M , we call f a smooth vector
bundle M-morphism. The category of smooth vector bundles over a fixed base space
M and smooth vector bundle M -morphisms will be denoted by VBM .
The rank of a smooth vector bundle M -morphism f is a function rank(f) : M → N0,
which assigns to each x ∈M the dimension of the linear space fx(Ex).
A smooth vector bundle M -morphism f (of necessarily constant rank) is called injective
(surjective, bijective, respectively) if fx is injective (surjective, bijective, respectively)
for all x ∈M .
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2.1.4 Examples (Smooth Vector Bundles)

In the following, let M be a smooth n-dimensional manifold.

(1) Trivial Vector Bundle:
The projection prI : M×RN →M is smooth and (M×RN , prI ,M) is a trivial vector
bundle of rank N since the fibres are pr−1

I ({x}) = {x} × RN ∼= RN for each x ∈ M
and the identity on M×RN yields a smooth global trivialization. Moreover, a smooth
vector bundle ξ = (E, πE,M) of rank N is trivial if and only if it is isomorphic to
(M × RN , prI ,M). (For a smooth global trivialization Φ : E → M × RN the pair
(Φ,idM) defines a smooth vector bundle isomorphism and vice versa, if (f, g) is a
smooth vector bundle isomorphism from ξ to (M × RN , prI ,M), a smooth global
trivialization of E is given by f .)
Let A : M → RL×N be a smooth matrix-valued map, i.e. all entries are smooth
functions on M . Then, fA : M × RN → M × RL, (x, λ) 7→ (x,A(x)λ) defines a
smooth vector bundle M -morphism between the trivial vector bundles.

(2) Restricted Vector Bundle:
Let ξ = (E, πE,M) be a smooth vector bundle of rank N and ∅ 6= U ⊆ M be open.
Define EU = π−1

E (U) and πEU = π|EU : EU → U , then we obtain a smooth vector
bundle ξ|U = (EU , πEU , U) of rank N , called the restriction of ξ to U . The pair of
inclusions iEU : EU → E and iU : U →M defines a smooth vector bundle morphism
from ξ|U to ξ since the following diagram commutes:

EU
iEU //

πEU
��

E

πE
��

U
iU
//M

For another non-empty open subset V ⊆ U of M , we obtain (ξ|U)|V = ξ|V by
π−1
E (V ) ⊆ π−1

E (U). Note that for a smooth local trivialization (U,Φ) of E, the restric-
ted vector bundle on U is a trivial vector bundle. This relation enables an auspicious
strategy for working with vector bundles. More precisely, given an open cover (Uα)α∈A

of M such that there are smooth local trivializations (Uα,Φα) of E, we can work on
the restricted trivial vector bundles, where things are typically easier to handle. Ho-
pefully, we can use a partition of unity subordinate to the open cover to get global
results. But, in order to obtain well defined objects for the original vector bundle, we
have to verify that the constructions are independent of the choice of trivializations.
For that purpose, the transition functions between local trivializations (Lemma 2.1.7)
are significant.
Given a smooth vector bundle M -morphism between vector bundles (E, πE,M) and
(F, πF ,M), we simply write fU for the restriction f |EU : EU → FU , which is a
smooth vector bundle U -morphism between the restricted vector bundles. Further, if
{Uα}α∈A is an open cover of M , we write fα for the restriction of f to Eα = π−1(Uα).
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(3) Tangent Bundle:
The tangent bundle of a smooth manifold is a prime example of a smooth vector
bundle in differential geometry. Other important vector bundles are constructed out
of it, e.g. (4) and (5). For a detailed introduction including alternative definitions,
we refer to [Lee13, Chapter 3, p. 50ff., p. 65ff., p. 71f. and Proposition 10.4, p. 252].
A linear function νx : C∞(M)→ R is called a derivation at x ∈M if it satisfies for
all f, g ∈ C∞(M)

νx(fg) = f(x)νx(g) + g(x)νx(f). (2.2)

The set of all derivations at x ∈ M is defined to be the tangent space TxM of x. It
has the structure of an n-dimensional R-vector space. Define

TM =
⊔
x∈M

TxM and τM : TM →M, (x, νx) 7→ x.

To see that TM is a smooth manifold, note that once we have chosen a smooth chart
(U,ϕ = (x1, ..., xn)) of M , we get canonically a basis of the tangent space TxM for
each x ∈ U by the partial derivatives ∂

∂xi

∣∣
p

(i = 1, ..., n). The ith partial derivative is

defined for f ∈ C∞(M) by
∂

∂xi

∣∣∣∣
x

(f) =
∂(f ◦ ϕ−1)

∂xi

∣∣∣∣
ϕ(x)

. Define for π−1(U) =
⊔
x∈U

TxM :

ϕ̃ : π−1(U)→ ϕ(U)× Rn,

(
x,

n∑
i=1

vi(x)
∂

∂xi

∣∣∣∣
x

)
7→ (ϕ(x), v1(x), ..., vn(x)), (2.3)

Φ : π−1(U)→ U × Rn,

(
x,

n∑
i=1

vi(x)
∂

∂xi

∣∣∣∣
x

)
7→ (x, v1(x), ..., vn(x)). (2.4)

By running through a smooth atlas (Uα, ϕα)α∈A of M , we receive a smooth atlas
(π−1(Uα), ϕ̃α) of TM and a family of smooth local trivializations (Uα,Φα)α∈A . The
coordinate representations of τM corresponding to these charts are obviously smooth.
Hence, (TM, τM ,M) is a smooth R-vector bundle of rank n, called the tangent
bundle of M .
For a smooth map F : M → N between smooth manifolds and x ∈M define

dFx : TxM → TF (x)N, by dFx(νx)(f) = νx(f ◦ F ), (2.5)

where νx ∈ TxM and f ∈ C∞(N). This even defines a smooth map dF : TM → TN ,
called the differential, derivative or pushforward of F and is sometimes denoted
by F∗. Moreover, the diagram

TM dF //

τM
��

TN

τN
��

M
F

// N
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commutes, such that (dF, F ) is a smooth vector bundle morphism from (TM, τM ,M)
to (TN, τN , N). The smooth map F is called an immersion (a submersion, resp.),
if dFx is injective (surjective, resp.) for every x ∈M .

(4) Cotangent Bundle
The cotangent bundle is the dual bundle4 of the tangent bundle. For each x ∈ M ,
the cotangent space T ∗xM is defined as (TxM)∗, the (algebraic) dual space of TxM ,
namely the set of linear functions from TxM to R.5 Let T ∗M be the disjoint union of
T ∗xM over x ∈M and π : T ∗M →M the canonical projection. Then (T ∗M,π,M) is
a smooth vector bundle of rank n, called the cotangent bundle of M . For a detailed
introduction, we refer to [Lee13, Chapter 11].

(5) Vector Bundle of Exterior k-Forms /Alternating k-Tensor Bundle:
Let k ∈ N. For x ∈ M denote by Λk(T ∗xM) the space of multilinear alternating6

functions ωx : (TxM)k → R and by Λk(T ∗M) the disjoint union of all Λk(T ∗xM).
Together with the canonical projection π : Λk(T ∗M) → M , we will see in Corollary
2.3.13 (c) that this defines a smooth vector bundle of rank

(
n
k

)
, called vector bundle

of exterior k-forms or alternating k-tensor bundle. We list some special cases:

Λ0(T ∗M) = M × R, since Λ0(T ∗xM) = R for all x ∈M ; (2.6)

Λ1(T ∗M) = T ∗M, since alternation in one argument is no constraint; (2.7)

Λk(T ∗M) = M × {0}, if k > n, since thenΛk(T ∗xM) = {0} for all x ∈M. (2.8)

As we have seen in example 2.1.4 (1), a smooth matrix-valued map induces a smooth
vector bundle M -morphism between trivial vector bundles. Vice versa, we will show in
Lemma 2.1.6, every smooth vector bundle M -morphism is locally induced by a smooth
matrix-valued map. The following Lemma allows one to assume an open cover consisting
of domains of charts and also local trivializations.

2.1.5 Lemma (Domains of Local Trivializations and Charts)

Let (E, π,M) be a smooth vector bundle of rank N . Then there is a countable locally finite
open covering (Ui)i∈I of M such that:

(DTC) For each i ∈ I there are a smooth local trivialization Φi : π−1(Ui) → Ui × RN of E
over Ui and a smooth chart ϕi : Ui → Wi ⊆ Rn of M .

Proof. The (VB2)-property yields an open covering (Vx)x∈M of M together with local
trivializations Φx of E over Vx. Since M is a separable locally compact metrizable space
as a manifold, there exists a countable locally finite open covering (Ui)i∈I of M , which is

4See Corollary 2.3.13 (a).
5The notation T ∗xM for (TxM)∗ seems unnecessary but turns out to be useful to keep further expressions

(as in the alternating k-tensor bundle) simpler without the brackets.
6The value of the function changes its sign whenever two arguments are permuted, see Remark 2.3.8.
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finer than (Vx)x∈M , i.e. for every i ∈ I there is some Vx with Ui ⊆ Vx.
7 Further, we can

assume that each Vi is the domain of a chart of M . (For each open covering of a differential
manifold there exists a countable locally finite finer open covering consisting of domains
of charts.)8 So, for each i ∈ I, there is a chart ϕi : Ui → Wi ⊆ Rn. Because (Ui)i∈I is finer
than (Vx)x∈M , there is for each i ∈ I a Vx containing Ui. Hence π−1(Ui) ⊆ π−1(Vx) and
Φi = Φx|π−1(Ui) : π−1(Ui)→ Ui×RN defines a smooth local trivialization of E over Ui.

2.1.6 Lemma (Local Representations of Vector Bundle M-Morphisms)

Let (E, πE,M) and (F, πF ,M) be smooth vector bundles of rank N and L, respectively.
Moreover, let U ⊆M be open such that there are

(1) a chart (U,ϕ) of M ,

(2) a smooth local trivialization (U,ΦE) of E over U and

(3) a smooth local trivialization (U,ΦF ) of F over U .

For a smooth vector bundle M -morphism f : E → F , there is a smooth matrix-valued
map Af : U → RL×N satisfying

ΦF ◦ f ◦ Φ−1
E (x, λ) = (x,Af (x)λ) on U × RN , (2.9)

where each Af (x) is unique according to the standard basis of RN and RL, respectively.

Proof.
We have the following commutative diagram for fU = f |π−1

E (U) and f̃U = ΦF ◦ fU ◦ Φ−1
E :

π−1
E (U)

ΦE
��

πE

%%

fU // π−1
F (U)

ΦF
��

πF

yy

U × RN

prI
��

f̃U

// U × RL

prI
��

U
idU

// U

In particular, prI ◦f̃U = prI holds, such that there is a smooth function γ : U × RN → RL
satisfying f̃U(x, λ) = (x, γ(x, λ)). For every fixed x ∈ U , the map λ 7→ γ(x, λ) from RN
to RL is linear since f̃U is a composition of fibrewise linear maps. Hence, according to
the standard basis of RN and RL, respectively, there is a unique matrix Af (x) ∈ RL×N
representing λ 7→ γ(x, λ), i.e. f̃U(x, λ) = (x,Af (x)λ). The entries (Af (x))i,j = πi(γ(x, ej))
are smooth maps from U to R, since each projection πi : RL → R onto the i-th coordinate
is smooth, such that Af : U → RL×N is indeed a smooth map.

7This general topological result can be found in [Die76, 12.6.1].
8See [Die72, 16.1.4].
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2.1.7 Lemma (Existence of Transition Functions between Localizations)

Let (E, πE,M) be a smooth vector bundle of rank N . For any two smooth trivializations
(U,Φ) and (V,Ψ) with U ∩V 6= ∅ there exists a unique smooth map τ : U ∩V → GL(R, N)
such that the composition Φ ◦Ψ−1 : (U ∩ V )× RN → (U ∩ V )× RN is given by

Φ ◦Ψ−1(x, λ) = (x, τ(x)λ), (2.10)

In that case, we call τ the transition function between Φ and Ψ.

Proof. Since U ∩ V 6= ∅ is open and the restrictions of Φ and Ψ to U ∩ V are smooth local
trivializations of E, we can assume U = V = U ∩V without loss of generality. The identity
idE : E → E is clearly a vector bundle M -morphism. Hence, by Lemma 2.1.6, there is a
unique smooth map τ : U → RN×N satisfying:

Φ ◦Ψ−1(x, λ) = Φ ◦ idE ◦Ψ−1(x, λ) = (x, τ(x)λ)

Smooth local trivializations are fibrewise linear isomorphisms, such that the representing
matrix τ(x) is invertible for each x ∈ U .

2.1.8 Remark (Transition Function)

(1) Note that the transition function between Ψ and Φ is given by the pointwise inverse
matrix τ(x)−1, if τ is the transition function between Φ and Ψ.

(2) For any finite dimensional R-vector space V of dimension N , the space End(V ) of
endomorphisms on V is a finite dimensional R-vector space of dimension N2 and hence
a smooth manifold.9 The set Aut(V ) of automorphisms, the isomorphisms from V into
V , is an open subset of End(V ) and therefore also a smooth manifold. A choice of
basis of V induces a diffeomorphism between Aut(V ) and GL(R, N) by building the
representation matrix w.r.t. the chosen basis. Hence, we can replace the target space
of a transition function τ by Aut(V ) and write τ(x)(λ) instead of the matrix vector
multiplication in (2.10).

2.2 Smooth Sections and Frames of Vector Bundles

2.2.1 Definition (Smooth Sections and Frames of Vector Bundles)

Let ξ = (E, π,M) be a smooth vector bundle of rank N over a smooth n-dimensional
manifold M and let U ⊆M be an open subset.

(a) A smooth local section σ : U → E of ξ is a smooth right inverse of the projection
π, i.e. π ◦ σ = idU . Addition and scalar multiplication, defined pointwise in the cor-
responding fibre, make the set of smooth local sections of E over U into an R-vector

9See Example 2.3.10 (1) for more details.
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space, which will be denoted by Γ(U,E). Further, the pointwise multiplication in the
corresponding fibre with a smooth function ϕ : U → R is again a smooth local section,
such that Γ(U,E) can also be seen as a module over the ring of smooth functions
C∞(U). Elements of Γ(M,E) are called smooth global sections of ξ.

(b) A frame of E over U is an ordered tuple (σj)
N
j=1 = (σ1, ..., σN) of smooth local

sections σj ∈ Γ(U,E), such that σ1(x), ..., σN(x) form a basis of Ex for each x ∈ U . In
that case, we will write (U, (σj)

N
j=1) for a frame of E.

(c) Let (U, (σj)
N
j=1) and (V, (%j)

N
j=1) be frames of E with non-empty intersection U ∩ V . If

the map τ : U ∩ V → GL(R, N), given pointwise by the transition matrix from the
basis (σj(x))Nj=1 to (%j(x))Nj=1 for x ∈ U ∩V , is a smooth map, then we call τ a change
of frames from (σj)

N
j=1 to (%j)

N
j=1. For every x ∈ U ∩ V , the transition matrix yields

for each vector v =
N∑
j=1

λjσj(x) ∈ Ex a representation

v =
N∑
k=1

µk%k(x), where

µ1

...
µN

 = τ(x)

λ1

...
λN

 . (2.11)

Local trivializations are naturally connected with local frames such that we can express
conditions on trivializations equivalently in terms of frames:

2.2.2 Lemma (Equivalent Conditions on Frames Instead of Trivializations)

Let (E, π,M) be a smooth vector bundle of rank N .

(a) (1) If (U,Φ) is a smooth local trivialization of E, then σj = Φ−1(·, ej) defines a
frame of E over U , the so called associated frame of Φ, where ej denotes the
jth unitvector in RN .

(2) If (U, (σj)
N
j=1) is a frame of E, then

Φ : π−1(U)→ U × RN ,
N∑
j=1

λjσj(x) 7→ (x, λ1, ..., λN) (2.12)

defines a smooth local trivialization over U , which we call the associated
trivialization of (σj)

N
j=1.

In particular, the condition (VB2) of 2.1.1 is equivalent to

(VB2’) For every x ∈ M there is a frame (σj)
N
j=1 of E over some open neighbourhood

U ⊆M of x.

Moreover, this shows that a vector bundle (E, π,M) is trivial if and only if there is
a global frame of E over M .
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(b) Let (U,Φ) and (V,Ψ) be smooth local trivializations of E with U ∩V 6= ∅ and denote
their associated frames by (V, (σj = Ψ−1(·, ej))Nj=1) and (U, (%j = Φ−1(·, ej))Nj=1).
Then τ : U ∩ V → GL(R, N) is the transition function between Φ and Ψ if and only
if τ is the change of their associated frames from (σj)

N
j=1 to (%j)

N
j=1. In particular, a

change of frames with overlapping domains always exists and is unique.

Proof. (a) (1) The smoothness of σj : U → E, σj(x) = Φ−1(x, ej) is inherited from Φ−1

and since Φ−1(x, ej) ∈ Ex for each x ∈ U , it follows that π ◦ σj = idU . The restriction Φ|Ex
is a linear isomorphism for fixed x ∈ U , such that (σj(x))Nj=1 is a basis of Ex if and only if
Φ|Ex maps it to a basis of {x} × RN ∼= RN , which is true since (Φ|Ex(σj(x)) = (x, ej))

N
j=1

is a basis of {x} × RN .

(2) Φ : π−1(U)→ U ×RN ,
N∑
j=1

λjσj(x) 7→ (x, λ1, ..., λN) is bijective because σ1(x), ..., σN(x)

is a basis of Ex for each x ∈ U . In addition, Φ|Ey is a linear isomorphism of Ey onto
{y} ×RN ∼= RN for each y ∈ U and πI ◦Φ = π holds for the projection πI : U ×RN → U .
So if we can show, that Φ is a diffeomorphism, it is already a local trivialization of E.
Due to bijectivity, it suffices to show that Φ is locally a diffeomorphism. Thus, we choose
for x ∈ U a local trivialization (V,Ψ) of E such that x ∈ V ⊆ U and we will verify
that Ψ ◦ Φ−1|V×RN is a diffeomorphism from V × RN to itself. Since each composition
Ψ ◦ σj : V → V × RN is smooth, there are smooth functions σ1

j , ..., σ
N
j : V → R such that

Ψ ◦ σj(y) = (y, σ1
j (y), ..., σNj (y)). The map S : V → GL(R, N), defined by (S(y))j,` = σ`j(y)

is well defined because Ψ ◦ σ1(y), ...,Ψ ◦ σN(y) is a basis of {y} × RN ∼= RN and S is also
smooth because all entries are smooth. Since σj(y) = Φ−1(x, ej), the commutative diagram

V × RN

πI
))

Φ−1|
V×RN // π−1(V )

π

��

Ψ // V × RN

πI
uuV

shows, that on V × RN ,

Ψ ◦ Φ−1(y, λ1, ..., λN) = (y, (S(y)λ)T ), (2.13)

where λ = [λ1, ..., λN ]T and (·)T denotes the (smooth) matrix transposition, such that the
smoothness follows.
Matrix inversion is also smooth (Cramer´s rule), thus we obtain on V ×RN smoothness of
the inverse

(Ψ ◦ Φ−1)−1(y, µ1, ..., µN) = (y,
(
S−1(y)µ

)T
),

where µ = [µ1, ..., µN ]T .
(b) Let τ : U ∩ V → GL(R, N) be the transition function between Φ and Ψ, hence

Φ ◦ Ψ−1(x, λ) = (x, τ(x)λ) on (U ∩ V ) × RN . Fix x ∈ U ∩ V and v =
N∑
j=1

λjσj(x). Since
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Ψ|−1
Ex

is linear and σj(x) = Ψ−1(x, ej) by definition, we obtain

v = Ψ|−1
Ex

(
x,

N∑
j=1

λjej

)
= Ψ−1(x, λ). (2.14)

For µk = (τ(x)λ)k, the kth-coordinate of τ(x)λ, we get

v = Φ−1 ◦
(
Φ ◦Ψ−1

)
(x, λ) = Φ−1(x, τ(x)λ) =

N∑
k=1

(τ(x)λ)k%k(x) =
N∑
k=1

µk%k(x). (2.15)

Otherwise, let τ be a change of frames from (σj)
N
j=1 to (%j)

N
j=1. Then, for x ∈ U ∩ V , we

have Ψ−1(x, ej) = σj(x) =
N∑
k=1

(τ(x)ej)
k%k(x). By linearity of Φ|Ex , this gives

Φ ◦Ψ−1(x, ej) =

(
x,

N∑
k=1

(τ(x)ej)
kΦ|Ex(%k(x))

)
=

(
x,

N∑
k=1

(τ(x)ej)
kek

)
. (2.16)

It already implies Φ ◦ Ψ−1(x, λ) = (x, τ(x)λ) on (U ∩ V ) × RN , since ΦEx ◦ Ψ|−1
Ex

is linear
from {x} × RN to itself. In particular, existence and uniqueness of change of frames with
overlapping domains follows by Lemma 2.1.7.

2.2.3 Lemma (Representation of Smooth Local Sections)

Let (E, π,M) be a smooth vector bundle of rank N .

(a) A frame (U, (σj)
N
j=1) of E is a basis of the C∞(U)-module Γ(U,E),

i.e. every γ ∈ Γ(U,E) has a unique representation

γ =
N∑
j=1

fjσj with smooth functions fj : U → R. (2.17)

(b) Let τ : U∩V → GL(R, N) be a change of frames from ((σj)
N
j=1, U) to ((%j)

N
j=1, V ) with

U ∩ V 6= ∅. Every γ =
N∑
j=1

fjσj ∈ Γ(U ∩ V,E) can be written as γ =
N∑
j=1

gj%j, where[
g1
...
gN

]
= τ

[
f1
...
fN

]
is defined pointwise as matrix-vector-multiplication and consists of

smooth functions gj : U ∩ V → R.

Proof. (a) Let (U,Φ) be the associated trivialization of (U, (σj)
N
j=1) and prj : U ×RN → R,

(x, λ1, · · ·λN) → λj be the projection onto the jth-coordinate. For γ ∈ Γ(U,E) define
fj = prj ◦Φ ◦ γ, such that fj is smooth as composition of smooth functions. Furthermore,
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for each x ∈ U there are unique λ1, ..., λN ∈ R with γ(x) =
N∑
j=1

λjσj(x). By linearity

of Φ|Ex it follows, that Φ ◦ γ(x) =
∑
λjΦ|Ex(σj(x)) = (x, λ1, ..., λN). Hence, we obtain

fj(x) = prj(x, λ
1, ..., λN) = λj as required.

(b) This follows immediately by definition of a change of frames and part (a).

2.2.4 Lemma (Smooth Sections are Locally Isomorphic to Smooth Functions)

Let (E, π,M) be a smooth vector bundle of rank N and let U ⊆ M be open such that
there are

(1) a chart (ϕ,U) of M and

(2) a smooth local trivialization (ΦE, U) of E over U .

Then Γ(U,E) and C∞(ϕ(U),RN) are isomorphic R-vector spaces by the linear maps

TE : Γ(U,E)→ C∞(ϕ(U),RN), σ 7→ prII ◦ΦE ◦ σ ◦ ϕ−1 and its inverse (2.18)

T−1
E : C∞(ϕ(U),RN)→ Γ(U,E), g 7→ Φ−1

E ◦ (idU ×(g ◦ ϕ)), (2.19)

where prII denotes the projection of U × RN onto RN .

Proof. Both functions are well defined, since all involved functions are smooth and

πE ◦ T−1
E (g) = prI ◦(idU ×(g ◦ ϕ)) = idU (2.20)

holds. The vector space structure on Γ(U,E) is defined pointwise in each fibre such that
the linearity of TE and T−1

E already follows by the fibrewise linearity of ΦE. So it remains
to show the inversion identities:

TE ◦ T−1
E (g) = prII ◦ΦE ◦ (Φ−1

E ◦ (idU ×(g ◦ ϕ))) ◦ ϕ−1 = prII ◦(ϕ−1, g) = g; (2.21)

T−1
E ◦ TE(σ) = Φ−1

E ◦ (idU ×(prII ◦ΦE ◦ σ ◦ ϕ−1 ◦ ϕ) (2.22)

= Φ−1
E ◦ ((πE ◦ σ), prII ◦ΦE ◦ σ)

πE=prI ◦ΦE= Φ−1
E ◦ ΦE ◦ σ = σ. (2.23)

2.3 Constructions of Smooth Vector Bundles

In this subsection we present some useful tools to construct smooth vector bundles.

The following lemma can be found in [Lee13, Lemma 1.35, p.21] and will be used
in the proof of the Vector Bundle Construction Lemma to equip the total space with the
structure of a smooth manifold. We will skip the proof.
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2.3.1 Smooth Manifold Chart Lemma

Let M be a set and {Uα}α∈A a collection of subsets of M together with injective maps
ϕα : Uα → Rn satisfying:

(1) ϕα(Uα) and ϕα(Uα ∩ Uβ) are open in Rn for each α, β ∈ A .

(2) ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is a diffeomorphism whenever Uα ∩ Uβ 6= ∅.

(3) M is covered by countably many of the sets Uα.

(4) For all distinct x, y ∈M , either there exists some Uα containing x and y or there exist
disjoint sets Uα, Uβ with x ∈ Uα and y ∈ Uβ.

Then M has a unique smooth manifold structure such that A = {(Uα, ϕα) : α ∈ A } is a
C∞-atlas.

The next lemma can be found in [Lee13, Lemma 10.6, p.253] and is a very import-
ant tool to construct smooth vector bundles.

2.3.2 Vector Bundle Construction Lemma

Let M be a smooth manifold and E =
⊔
x∈M

Ex, where Ex is a p-dimensional R-vector space

for each x ∈M . Define π : E →M by π(vx) = x if vx ∈ Ex. Further, suppose there are

(1) an open cover {Uα}α∈A of M ;

(2) a bijective map Φα : π−1(Uα)→ Uα×Rp for each α ∈ A such that the restriction to
each Ex (x ∈ Uα) is a linear isomorphism from Ex to {x} × Rp ∼= Rp;

(3) for each α, β ∈ A with Uα,β = Uα ∩Uβ 6= ∅, a smooth map τ : Uα,β → GL(R, p) such
that the composite map Φα ◦ Φ−1

β from (Uα,β)× Rp to itself has the form

Φα ◦ Φ−1
β (x, λ) = (x, τ(x)λ). (2.24)

Then E has a unique smooth manifold structure such that (E, π,M) becomes a smooth
vector bundle of rank p with smooth local trivializations given by Φα (α ∈ A ).

Proof. For each x ∈ M , choose some Uα containing x and choose a smooth chart (Vx, ϕx)
of M such that x ∈ Vx ⊆ Uα. Set Ṽx = ϕx(Vx) ⊆ Rn, where n is the dimension of M and
define ϕ̃x : π−1(Vx)→ Ṽx × Rp by ϕ̃x = (ϕx × idRp) ◦ Φα, i.e.

π−1(Vx)
Φα // Vx × Rp

ϕx×idRp// Ṽx × Rp.
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We will verify the conditions of the Smooth Manifold Chart Lemma 2.3.1 to show, that
the collection {(π−1(Vx), ϕ̃x) : x ∈M} makes E into a smooth manifold.
ϕ̃x is bijective as a composition of bijective maps. The images ϕ̃x(π

−1(Vx) = ϕx(Vx) × Rp
and ϕ̃x(π

−1(Vx) ∩ π−1(Vy)) = ϕx(Vx ∩ Vy) × Rp are open for all x, y ∈ M . Further, if
π−1(Vx) ∩ π−1(Vy) = π−1(Vx ∩ Vy) 6= ∅, we obtain for β ∈ A with Vy ⊆ Uβ:

ϕ̃x ◦ ϕ̃−1
y = (ϕx × idRp) ◦ (Φα ◦ Φ−1

β ) ◦ (ϕx × idRp)
−1. (2.25)

Hence, ϕ̃x ◦ ϕ̃−1
y is smooth as a composition of smooth maps. Since {Vx : x ∈ M} has a

countable subcover {Vx : x ∈ I}, {π−1(Vx) : x ∈ I} is a countable subcover of E. If u, v ∈ E
lie in the same fibre Ex, then it follows that already u, v ∈ π−1(Vx). Otherwise u ∈ Ex and
v ∈ Ey for distinct x, y ∈M . Then, by the Hausdorff property of M , we can choose disjoint
open neighbourhoods Vx of x and Vy of y, respectively, such that π−1(Vx) and π−1(Vy) are
disjoint neighbourhoods of u and v, respectively. Thus E has the structure of a smooth
manifold induced by the C∞-atlas {(π−1(Vx), ϕ̃x) : x ∈ M}. Note that the coordinate
representation of Φα with respect to the charts (π−1(Vx), ϕ̃x) of E and (Vx×Rp, ϕp× idRp)
of Vx×Rp, is the identity map, such that Φα is smooth. π is also smooth since the coordinate
representation ϕx ◦ π ◦ ϕ̃−1

x maps (λ, µ) ∈ ϕx(Vx) × Rp to λ ∈ ϕx(Vx), which is smooth.
Moreover, Φα maps Ex to {x}×Rp, such that πI ◦Φα = π follows and Φα is by hypothesis
linear on the fibres. Hence Φα is indeed a smooth local trivialization of E.

For a given smooth vector bundle (E, π,M), we have seen in Example 2.1.4 (2) how we can
get by restriction a bundle over a smaller base space. The definition of a subbundle tells us
when we can get a bundle over a smaller total space. It is indeed a smooth vectorbundle
as clarified in Lemma 2.3.5.

2.3.3 Definition (Subbundle)

Let ξ = (E, π,M) be a smooth vector bundle of rank N and G ⊆ E. The triple (G, π|G,M)
is called a (smooth) p-subbundle of ξ if:

(SB1) For each x ∈M , the set Gx = Ex ∩G is a p-dimensional R-subspace of Ex.

(SB2) Each x ∈ M has a smooth local trivialization Φ : π−1(U) → U × RN of E over an
open neighbourhood U of x such that Φ(π−1(U) ∩G) = U × Rp × {0 ∈ RN−p}.

Note that by Lemma 2.2.2 (a), (SB2) is equivalent to the following condition in terms of
local frames:

(SB2’) For each x ∈M , there is frame {σj}Nj=1 of E over some open neighbourhood U ⊆M
of x such that {σj}pj=1 is a frame of G over U .

In order to give a few examples, we introduce the kernel and image vector bundle of a
smooth vector bundle M -morphism, which is only well-defined if the rank of the morphism,
defined in Definition 2.1.3, is constant:

23



2.3.4 Definition (Kernel and Image Vector Bundle)

Consider a smooth vector bundle M -morphism f from an N -ranked vector bundle ξE to
ξF . Then, Ker(f) defined as the disjoint union of all Ker(fx) with the canonical projection
defines an (N − r)-subbundle of ξE if and only if rank(f) is constant of value r. Similarly,
Im(f) defined as the disjoint union of all Im(fx) together with the canonical projection is
an r-subbundle of ξF if and only if rank(f) is constant of value r.

2.3.5 Lemma (Properties of a Subbundle)

Let (G, π|G,M) be a p-subbundle of a smooth vector bundle (E, π,M) of rank N over the
smooth n-dimensional manifold M . Then

(a) G is a smooth (n + p)-dimensional embedded submanifold of the smooth (n + N)-
dimensional manifold E, i.e.:

(SM) Each g ∈ G has a chart (V, ψ) in E with g ∈ V such that ψ : V → Rn+N satisfies
ψ(V ∩G) = ψ(V ) ∩ (Rn+p × {0 ∈ RN−p})

(b) (G, π|G,M) is a smooth vector bundle of rank p.

(c) The inclusion i : G → E, defined fibrewise by ix : Gx → Ex, y → y, is an injective
smooth vector bundle M -morphism and has a left inverse smooth vector bundle M -
morphism ` : E → G, i.e. ` ◦ i = idG.

(d) The transition function τ : U ∩ V → GL(R, N) between local trivializations Φ and Ψ
according to (SB2) has the form

τ(x) =

[
A(x) C(x)

0 B(x)

]
, (2.26)

where A : U ∩ V → GL(R, p), B : U ∩ V → GL(R, N − p) and C : U ∩ V → Rp×(N−p)

are smooth maps.

Proof. (a) As mentioned in Remark 2.1.2 (1), E has necessarily dimension n+N . Imitating
the proof of 2.1.5 using (SB2) instead of (VB2), one gets a countable open covering (Uα)α∈A

of M such that for each α ∈ A there are a smooth chart ϕα : Uα → Wα ⊆ Rn of M and
a diffeomorphism Φα : Eα → Uα × RN with Φα(Gα) = Uα × Rp × {0 ∈ RN−p}, where
Eα = π−1(Uα) and Gα = π|−1

G (Uα). Since Uα is diffeomorphic by the chart ϕα to some open
set Wα ⊆ Rn, we obtain a diffeomorphism Ψα = (ϕα×idRN )◦Φα : Eα → Wα×RN ⊆ Rn+N ,
such that Ψα(Gα) = Ψα(Eα) ∩ (Rn+p × {0 ∈ RN−p}). {Eα}α∈A is an open covering of E
since π is continuous. In particular, each g ∈ G ⊆ E is contained in some Eα and the
corresponding diffeomorphism Ψα is a chart with the required property.
(b) (SB1) gives (VB1) with fibre dimension p and (VB2’) follows immediately by (SB2’).
(c) The inclusion i : G → E is clearly continuous because of π ◦ i = π|G, such that
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i−1(π−1(U)) = π−1|G(U) for every open U ⊆M . Moreover, i is smooth since the coordinate
representations are inclusions between open subsets of Rn+p and Rn+N , which are smooth.
Further, i is injective because the restrictions ix = i|Gx : Gx → Ex are injective and linear
as well for all x ∈M , such that i is indeed an injective smooth vector bundle M -morphism.
For the construction of a left inverse, consider an open cover {Uα}α∈A of M , such that
{Gα = π|−1

G (Uα)} is an open cover of G. Define iI : Rp → Rp×{0 ∈ RN−p}, λ 7→ (λ, 0) and
prI : RN → Rp, (µ1, ..., µN) 7→ (µ1, ..., µp) such that

iI ◦ prI : RN → Rp × {0 ∈ RN−p} and iI ◦ prI |Rp×{0} = idRp×{0} . (2.27)

For α ∈ A , there is a smooth local trivialization Φα : Eα → Uα ×RN according to (SB2),
hence Φα(Gα) = Uα×Rp×{0}. Define `α = Φ−1

α ◦ (idUα ×(iI ◦prI)) ◦Φα). Then, by (2.27),
`α is a map from Eα to Gα satisfying `α◦iα = `α|Gα = idGα . As a composition of continuous
and smooth maps, `α is also continuous and smooth. Moreover, `α is linear on each fibre
Ex for x ∈ Uα and π|G ◦ `α = π holds. For a partition of unity {χα}α∈A subordinate to the
open cover {Uα}α∈A , define ` =

∑
α∈A

χα`α. It is easy to check by the properties of each `α,

that ` is a smooth vector bundle M -morphism and ` ◦ i =
∑
α∈A

χα idGα = idG.

(d) For x ∈ U ∩ V , consider τ(x) as a block matrix

τ(x) =

[
A(x) C(x)
D(x) B(x)

]
, (2.28)

where A(x) ∈ Rp×p, B(x) ∈ R(N−p)×(N−p), C(x) ∈ Rp×(N−p) and D(x) ∈ R(N−p)×p. All
block matrices are smooth functions on U∩V because all entries are smooth and if D(x) = 0
for all x ∈ U ∩V , it follows that A(x) and B(x) are regular on U ∩V since τ(x) is regular.
Note that for local trivializations Φ and Ψ according to (SB2), the restriction of Φ◦Ψ−1 to
(U∩V )×Rp×{0} maps to (U∩V )×Rp×{0}. Hence, because of Φ◦Ψ−1(x, λ) = (x, τ(x)λ),
this already implies D(x) = 0 on U ∩ V .

Given a subbundle of a smooth vector bundle, we can form a quotient bundle, defined
fibrewise by the quotient vector spaces. It is indeed a smooth vector bundle as we see in
Lemma 2.3.7.

2.3.6 Definition (Quotient Bundle)

Let (G, π|G,M) be a p-subbundle of a smooth vector bundle (E, π,M) of rank N .
Define E/G =

⊔
x∈M

Ex/Gx and πE/G : E/G → M , vx 7→ x if vx ∈ Ex/Gx. Moreover, define

q : E → E/G, where q|Ex is the quotient map of Ex onto Ex/Gx.
(E/G, πE/G,M) is called the quotient bundle of (E, π,M) by (the subbundle) (G, π|G,M)
and q is called the quotient bundle map. This is justified by the following result.
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2.3.7 Lemma (Properties of a Quotient Bundle)

Let (G, π|G, B) be a smooth p-subbundle of a smooth N -ranked vector bundle (E, π,B).
Then:

(a) The quotient bundle (E/G, πE/G,M) is a smooth R-vector bundle of rank N − p.

(b) The quotient bundle map q is a surjective smooth vector bundle M -morphism and it
has a smooth vector bundle M -morphism right inverse r : E/G→ E, i.e. q ◦ r = idE/G.

Proof.
(a) We will verify the conditions of the Vector Bundle Construction Lemma. We choose an
open cover {Uα}α∈A of M together with smooth local trivializations Φα : Eα → Uα × RN
according to (SB2), i.e.

Φα(Gα) = Uα × Rp × {0 ∈ RN−p}. (2.29)

Define prII : RN → RN−p, (λ1, ..., λN) 7→ (λp+1, ..., λN) and iII : RN−p → RN ,
(µ1, ..., µN−p) 7→ (0, ..., 0, µ1, ..., µN−p), such that

prII ◦iII = idRN−p and (2.30)

iII ◦ prII : RN → {0 ∈ Rp} × RN−p, (λ1, ..., λN) 7→ (0, ..., 0, λp+1, ..., λN). (2.31)

For fixed α ∈ A , define the map fα = (idUα × prII) ◦ Φα : Eα → Uα × RN−p. By (2.29),
the restriction fx = fα|Ex is constant on equivalence classes of Ex/Gx for each x ∈ Uα, such
that there is a linear map Ψα,x : Ex/Gx → {x} × RN−p satisfying Ψα,x ◦ q|Ex = fα|Ex for
each x ∈ Uα. This defines a map (Ψα : E/G)α → Uα ×RN−p by Ψα|Ex/Gx = Ψα,x such that

Ψα ◦ qα = fα = (idUα × prII) ◦ Φα on Eα. (2.32)

Moreover, Ψα is bijective, where its inverse is given by Ψ−1
α = qα ◦Φ−1

α ◦(idUα ×iII). Indeed,

Ψα ◦Ψ−1
α = (Ψα ◦ q) ◦ Φ−1

α ◦ (idUα ×iII)
(2.32)
= (idUα × prII) ◦ (Φα ◦ Φ−1

α ) ◦ (idUα ×iII)

= idUα ×(prII ◦iII)
(2.30)
= idUα×RN−p .

For the other identiy, it sufficies to show Ψ−1
α ◦ Ψα ◦ qα = id(E/G)α ◦qα on Eα since qx is

surjective for all x ∈ Uα. Therefore, define gα = Φ−1
α ◦ (idUα ×(iII ◦ prII)) ◦ Φα, such that

Ψ−1
α ◦Ψα ◦ qα = qα ◦ gα on Eα. For x ∈ Uα and vx ∈ Ex, we obtain by fibrewise linearity,

gα(vx)− vx = Φ−1
α ((idUα ×(iII ◦ prII)) ◦ Φα(vx)− Φα(vx)) (2.33)

= Φ−1
α (idUα ×(iII ◦ prII − idRN ))(Φα(vx)) ∈ Gx, (2.34)

because (iII ◦ prII − idRN ) maps to Rp × {0} by (2.31) and Φ−1
α (Uα × Rp × {0}) = Gα.

Hence, we obtain Ψ−1
α ◦ Ψα ◦ qα = qα ◦ gα = id(E/G)α ◦qα on Eα. In addition, gx = gα|Ex
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is constant on equivalence classes of Ex/Gx for each x ∈ Uα by (2.29) such that there is
a fibrewise linear map rα : (E/G)α → Eα satisfying rα ◦ qα = gα on Eα, which implies
qα ◦ rα = id(E/G)α .10 To sum up, for each α ∈ A , we have a bijective map Ψα such that
for all x ∈ Uα, the restriction to Ex/Gx is a linear isomorphism onto {x} × RN−p ∼= RN−p.
Now, for α, β ∈ A with Uα,β = Uα ∩Uβ 6= ∅, the transition function τ between Φα and Φβ

according to (SB2) is of the form τ(x) =

[
A(x) C(x)

0 B(x)

]
by Lemma 2.3.5 (d). Hence, we

obtain for (x, λ) ∈ Uα,β × RN−p,

Ψα ◦Ψ−1
β (x, λ) = (Ψα ◦ q) ◦ Φ−1

β ((idUα,β ×iII)(x, λ) (2.35)

= (idUα,β × prII) ◦ Φα ◦ Φ−1
β (x, (0, λ)) (2.36)

= (idUα,β × prII)
(
x, τ(x)

[
0
λ

])
= (x,B(x)λ), (2.37)

where B : Uα,β → GL(R, N − p) is a smooth map by Lemma 2.3.5 (d) such that all condi-
tions of the Vector Bundle Construction Lemma are satisfied and therefore (E/G, πE/Q,M)

is a smooth vector bundle of rank N − p with smooth local trivializations {(Uα,Ψα)}α∈A .
(b) The quotient bundle map q : E → E/G is surjective since it is surjective on each fibre.
Consider an open cover {Uα}α∈A of M and for each α ∈ A the map rα as in part (a), then
we have the following commutative diagrams for each α ∈ A :

E
q //

π

��

E/G

πE/G
��

(E/G)α
rα //

(πE/G)
α
��

Eα

π

��
M

idM
//M Uα idUα

// Uα

Hence, q is continuous because of q−1(π−1
E/G

(U)) = (πE/G ◦ q)−1(U) = π−1(U) for any open
U ⊆ M . Analogously, rα is also continuous. To check smoothness, we recall that for a
C∞-atlas of M , consisting of charts ϕα : Uα → Vα ⊆ Rn, a C∞-atlas of E is given by charts
ϕ̃α = (ϕα × idRN ) ◦ Φα. As we can see in the proof of the Vector Bundle Construction
Lemma, ψ̃α = (ϕα × idRN−p) ◦Ψα defines a chart of an C∞-atlas of E/G, where Φα and Ψα

are smooth local trivializations of the underlying bundles as in part (a). The corresponding
coordinate representation of q becomes

ψ̃α ◦ qα ◦ ϕ̃−1
α = (ϕα × idRN−p) ◦ (Ψα ◦ qα) ◦ ((ϕα × idRN ) ◦ Φα)−1 (2.38)

(2.32)
= (ϕα × idRN−p) ◦ (idUα × prII) ◦ Φα ◦ Φ−1

α ◦ (ϕ−1
α × idRN ) (2.39)

= (ϕα ◦ ϕ−1
α )× prII = idVα × prII , (2.40)

which is truly a smooth map from Vα × RN to Vα × RN−p.
10We will construct a right inverse r of q in (ii) using rα.
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Since rα ◦ qα = gα = Φ−1
α ◦ (idUα ×(iII ◦ prII)) ◦ Φα, we obtain,

ϕ̃α ◦ rα ◦ ψ̃−1
α = ϕ̃α ◦ rα ◦Ψ−1

α ◦ (ϕ−1
α × idRN−p) (2.41)

= ϕ̃α ◦ rα ◦Ψ−1
α ◦ (ϕ−1

α × idRN−p) (2.42)

= ϕ̃α ◦ (rα ◦ qα) ◦ Φ−1
α ◦ (idUα ×iII) ◦ (ϕ−1

α × idRN−p) (2.43)

= ϕ̃α ◦ Φ−1
α ◦ (ϕ−1

α × (iII ◦ (prII ◦iII))) (2.44)

= (ϕα × idRN ) ◦ Φα ◦ Φ−1
α ◦ (ϕ−1

α × iII) = idVα ×iII , (2.45)

which is a smooth map from Vα×RN−p to Vα×RN . Let (χα)α∈A be a smooth partition of
unity subordinate to {Uα}α∈A , then r =

∑
α∈A

χαrα defines a smooth map r : E/G→ E such

that q ◦ r = idE/G Indeed, since the partition of unity is locally finite, the identity follows
pointwise by linearity of q on each fibre and qα ◦ rα = id(E/G)α for each α ∈ A .

In order to verify that the dual bundle or (alternating) k-tensor bundle is indeed a vector
bundle, we want to use an abstract approach to construct vector bundles from old ones,
induced by so called manifold-enriched functors. This procedure is adopted from [Eur],
which is based on lecture notes by Hiro Lee Tanaka [Tan14]. We start with a remark about
the vector space of alternating tensors, including definitions and an induced basis.

2.3.8 Remark (Alternating Tensors)

For k ∈ N0 and an R-vector space V of dimension N , the vector space of alternating
k-tensors Λk(V ∗) is the set of alternating multilinear functions ν : V k → R. Alternating
means that the function changes its sign whenever two arguments are interchanged. The R-
vector space structure is defined by pointwise addition and pointwise scalar multiplication.
Note that Λ0(V ∗) = R and Λk(V ∗) = {0} for k > N . Further, Λ1(V ∗) = V ∗ is just the
(algebraic) dual space of V . We refer to [Lee13, p. 350 ff.] for details and summarize a few
facts. Let Ikinc(N) be the set of increasing multi-indices I = (i1, ..., ik) of length k ≤ N , i.e.
1 ≤ i1 < ... < ik ≤ N . If {b1, ..., bN} is a basis of V and {b∗1, .., b∗N} is its dual basis, we define
for I = (i1, ..., ik) ∈ Ikinc(N) a so called elementary alternating tensor βI ∈ Λk(V ∗) by

βI(v1, ..., vk) = det

b∗i1(v1) · · · b∗i1(vk)
...

. . .
...

b∗ik(v1) · · · b∗ik(vk)

 . (2.46)

The family {βI}I∈Ikinc(N) constitutes a basis of Λk(V ∗), hence Λk(V ∗) is of dimension
(
N
k

)
.

2.3.9 Definition (Manifold-Enriched Category and Functor)

(a) A category C is called manifold-enriched if for any two objects A,B ∈ Obj(C),
the set of morphisms Mor(A,B) has a structure of a smooth manifold.
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(b) A functor F between two manifold-enriched categories C and C′ is called manifold-
enriched if for any two objects A,B ∈ Obj(C), the mapping f 7→ F (f)

FA,B : Mor(A,B)→ Mor(F (A),F (B)) if F is covariant, (2.47)

FA,B : Mor(A,B)→ Mor(F (B),F (A)) if F is contravariant, respectively, (2.48)

is smooth.

2.3.10 Example (Manifold-Enriched Categories and Functors)

(1) For our purpose, the category of interest is Vectf .d.R consisting of finite dimensional
R-vector spaces as objects and linear maps as morphisms with the usual composition.
Note that Mor(V,W ) = {f : V → W linear } is again a finite dimensional vector
space and therefore it has the structure of a smooth manifold. To be more precise,
let (a1, ..., an) be a basis of V and (b1, ..., bm) a basis of W . Then, the linear functions
γi,j : V → W , γi,j(v) = a∗j(v)bi for i = 1, ..., n and j = 1, ...,m define a basis of
Mor(V,W ), where a∗j denotes the jth basis vector of the dual basis of (a1, ..., an).
Hence, dim(Mor(V,W )) = dim(V ) · dim(W ). Further, f ∈ Mor(V,W ) has the unique

representation f =
n∑
i=1

m∑
j=1

λi,jγi,j with γ∗i,j(f) = λi,j ∈ R. The map

ϕ : Mor(V,W )→ Rn·m, ϕ(f) = (γ∗1,1(f), ..., γ∗n,1(f), ..., γ∗1,m(f), ..., γ∗n,m(f)) (2.49)

defines a linear bijection. Starting with different bases of V and W , one obtains a
C∞-compatible chart for ϕ since the transition functions are linear, hence continuous
and smooth. Thus, Mor(V,W ) is indeed a smooth manifold of dimension n ·m.

(2) Let V,W be finite dimensional R-vector spaces and f : V → W be a linear map.
The following (contravariant) functors from Vectf .d.R to itself are manifold-enriched:

(i) Dual Functor F ∗

F ∗(V ) = V ∗ = {ϕ : V → R linear} (dual vector space), dim(V ∗) = dim(V );
F ∗(f) = f ∗ : W ∗ → V ∗, f ∗(ψ) = ψ ◦ f (transposed, pullback).

(ii) k-Tensor Functor F k
⊗

F k
⊗(V ) =

⊗k(V ∗) = {µ : V k → R multilinear}, dim(
⊗k(V ∗)) = dim(V )k;

F k
⊗(f) = f ∗ :

⊗k(W ∗)→
⊗k(V ∗), f ∗(ω) : V k → R,

defined by f ∗(ω)(v1, ..., vk) = ω(f(v1), ..., f(vk)) (pullback).

(iii) Alternating k-Tensor FunctorF k
∧

F k
∧(V ) = Λk(V ∗) = {µ : V k → R alternating multilinear}, dim(Λk(V ∗)) =

(
dim(V )

k

)
;

F k
∧(f) = f ∗ : Λk(W ∗)→ Λk(V ∗), f ∗(ω) : V k → R,

defined by f ∗(ω)(v1, ..., vk) = ω(f(v1), ..., f(vk)) as in (ii) (pullback).

The pullbacks are linear and the (global) representative of the mapping f 7→ F (f) from
Mor(V,W ) to Mor(F (W ),F (V )) corresponding to the (linear) charts in (1) are also linear
and therefore continuous and smooth in all cases.
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2.3.11 Remark (Motivation of Manifold-Enrichment)

The next theorem shows, that we can extend a manifold-enriched functor between Vectf .d.R
to a functor between VBM , the category of smooth vector bundles over a fixed base
space M with smooth vector bundle M -morphisms. So far, one wonders why we require
in Definition 2.3.9 a smooth manifold structure on the set of morphisms and smoothness
of the map assignment by a functor since in our examples, the set of morphisms are finite
dimensional vector spaces and the map assignments are linear maps between these vector
spaces. The key point is that Aut(RN) is not a vector (sub)space but an open submanifold
of Mor(RN ,RN) such that the restriction of the map

FRN ,RN : Mor(RN ,RN)→ Mor(F (RN),F (RN)) (2.50)

to Aut(RN) is also a smooth map.

2.3.12 Theorem (Extension of a Manifold-Enriched Functor)

Let F be a manifold-enriched functor from Vectf .d.R to Vectf .d.R .

(a) Let ξ = (E, πE,M) be a smooth vector bundle of rank N . Then F (E) =
⊔
x∈M

F (Ex)

has a unique topology and smooth structure such that F (ξ) = (F (E), π,M) is a
smooth vector bundle of rank dim(F (RN)), where π denotes the canonical projection.

(b) Let f be a vector bundle M -morphism from ξE to ξF .
(1) If F is covariant, the map F (f) : F (ξE)→ F (ξF ) defined fibrewise by

F (f)x : {x} ×F (Ex)→ {x} ×F (Fx), (x, v) 7→ (x,F (fx)(v)), (2.51)

is smooth and a vector bundle M -morphism.
(2) If F is contravariant, the map F (f) : F (ξF )→ F (ξE) defined fibrewise by

F (f)x : {x} ×F (Fx)→ {x} ×F (Ex), (x,w) 7→ (x,F (fx)(w)), (2.52)

is smooth and a vector bundle M -morphism.

In this way, F extends to a functor from VBM to VBM for a fixed base space M , i.e. the
assignment preserves composition and identity morphisms.

Proof. (a) The proof is an application of the Vector Bundle Construction Lemma 2.3.2.
Let (Uα)α∈A be a cover of M such that there is a smooth local trivialization (Uα,Φα) of E
for each α ∈ A . In particular, the restrictions

(Φα)x : Ex → {x} × RN ∼= RN (2.53)
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(treated with target space RN in the following) are isomorphisms of vector spaces for all
α ∈ A , x ∈ Uα. Define

Ψα,x =

{
F ((Φα)x), if F is covariant;

F ((Φα)−1
x ), if F is contravariant.

(2.54)

By functoriality, Ψα,x : F (Ex) → F (RN) is also an isomorphism of vector spaces for
all α ∈ A and x ∈ Uα. Now, we define F (Φα) : π−1(Uα) → Uα × F (RN) fibrewise by
F (Φα)x : {x}×F (Ex)→ {x}×F (RN), (x, vx) 7→ (x,Ψα,x(vx)). Then F (Φα) is linear on
each fibre and bijective. If Uα,β = Uα ∩ Uβ 6= ∅ for some α, β ∈ A , there are the smooth
transition functions τα,β, τβ,α : Uα,β → Aut(RN) according to Remark 2.1.8 (2). Since
FRN ,RN |Aut(RN ) : Aut(RN) → Aut(F (RN)) is smooth as a restriction of a smooth map to
an open submanifold, we obtain the smooth composition τ̃α,β : Uα,β → Aut(F (RN)),

τ̃α,β =

{
FRN ,RN |Aut(RN ) ◦ τα,β, if F is covariant;

FRN ,RN |Aut(RN ) ◦ τβ,α, if F is contravariant.
(2.55)

Then, for x ∈ Uα,β and w ∈ RN , we obtain

F (Φα) ◦F (Φβ)−1(x,w) = F (Φα)x(x,Ψ
−1
β,x(w)) = (x,Ψα,x(Ψ

−1
β,x)(w))) (2.56)

= (x, τ̃α,β(x)(w)). (2.57)

(b) Except the smoothness, it is easy to check, that F (f) is a vector bundle M -morphism.
We only show the smoothness if F is contravariant. Let (U,ΦE) and (U,ΦF ) be smooth
local trivializations of ξE and ξF , respectively. Under the notations of (a), the composition

F (ΦE) ◦F (f) ◦F (ΦF )−1 : U ×F (RL)→ U ×F (RN), (2.58)

(x,w) 7→ (x,F ((ΦE)−1
x ) ◦F (fx) ◦F ((ΦF )x)(w)) (2.59)

is clearly smooth where the domain and range are considered as product manifolds, such
that the smoothness of F (f) follows.
Let g be another M -morphism between ξF and ξG. We obtain F (g ◦ f) = F (g) ◦F (f) if
F is covariant just by definition as well as F (g ◦ f) = F (f) ◦F (g) if F is contravariant.
Further, the identity on ξE is mapped to the identity on F (ξE).

2.3.13 Corollary (Smooth Vector Bundles)

Let ξ = (E, πE,M) be a smooth vector bundle of rank N and k ∈ N0. Under the notations
of Theorem 2.3.12 and Example 2.3.10, we obtain the following smooth vector bundles

(a) F ∗(ξ) of rank N , called the dual bundle of ξ;

(b) F k
⊗(ξ) of rank Nk, called the k-tensor bundle of ξ;
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(c) F k
∧(ξ) of rank

(
N
k

)
, called the alternating k-tensor bundle of ξ.

Moreover, if f : E → F is a smooth vector bundle M -morphism between smooth vector
bundles over M , the pullback of alternating k-tensors f ∗ : Λk(F ∗) → Λk(E∗), defined
fibrewise by

f ∗x(ωx)(v1, ..., vk) = ωx(fx(v1), ..., fx(vk)), where x ∈M, ωx ∈ Λk(F ∗x ), vi ∈ Ex,
(2.60)

is a smooth vector bundle M -morphism and of constant rank, if f is of constant rank.

2.4 Short Exact Sequences of Vector Bundles

2.4.1 Remark (No Abelian Category)

The category VBM , consisting of smooth vector bundles over the same base space M as
objects and smooth vector bundle M -morphisms as morphisms is not an abelian category
since kernels and images only exist if the M -morphism has constant rank. Note that the
composition of M -morphisms with constant ranks does not have constant rank in general:
For example, let I = (0, 1) and ϕ : I → R be a smooth function equal to 0 on

(
0, 1

3

)
and

equal to 1 on
(

2
3
, 1
)
. Define A,B : I → R2×2 by

A =

[
ϕ (1− ϕ)

0 0

]
and B =

[
1 0
0 0

]
. (2.61)

Then fA, fB : I×R2 → I×R2, fA(t, x) = (t, A(t)x) and fB(t, x) = (t, B(t)x)) define vector
bundle morphisms of constant rank 1 between the trivial vector bundle I×R2, but fA ◦ fB
does not have constant rank, since fA ◦ fB(t, x) = (t, A(t)B(t)x) and A(t)B(t) =

[
ϕ 0

0 0

]
.

Thus, all M -morphisms with constant rank do not serve as morphisms of a category.
However, the M -morphisms with constant rank are the homomorphisms of VBM :

2.4.2 Lemma (Vector Bundle Homomorphisms)

Let f : E → F be a smooth vector bundle M -morphism of constant rank d between two
smooth vector bundles (E, πE,M) and (F, πF ,M). Then, f is a homomorphism in the
category VBM . This means that the induced bijection

f̃ : E/Ker(f)→ Im(f) (2.62)

is an isomorphism of smooth vector bundle M -morphisms, i.e. (f̃ , idM) is a smooth vector
bundle isomorphism.

Proof. For ease of notation, denote f̃ with g. Then, for each x ∈ X, the linear map
gx : Ex/Ker(fx) → Im(fx), gx([vx])) = fx(vx) is an isomorphism of vector spaces such that
there is a linear inverse g−1

x . This defines a map g−1 : Im(f) → E/Ker(f) satisfying the
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inversion equalities and πE ◦ g−1 = πF since πE = πF ◦ g. To check smoothness, consider
an open subset U ⊆ M such that there are a smooth chart (U,ϕ) of M and a smooth
local trivializations (ΦE, U) and (ΦF , U) over both bundles. By Lemma (2.1.6) of local
representation, there is a smooth function Ag : U → Rd×d satisfying

ΦF ◦ g ◦ Φ−1
E (x, λ) = (x,Ag(x) · λ) on U × Rd. (2.63)

In particular, Ag maps to GL(R, d) because each gx is an isomorphism of vector spaces.
Hence, we obtain by inverting:

ΦE ◦ g−1 ◦ Φ−1
F (x, λ) = (x, (Ag(x))−1 · λ) on U × Rd. (2.64)

Since the inversion of a matrix is a smooth map from GL(R, d) to itself as a consequence
of Cramer’s Rule, we have a smooth map Ag−1 : U → GL(R, d), Ag−1(x) = (Ag(x))−1, such
that the coordinate representations of g−1 are smooth.

2.4.3 Definition (Short Exact Sequence of Smooth Vector Bundles over M)

A sequence

· · · fk−1
// Ek−1 fk // Ek fk+1

// Ek+1 f
k+2
// · · · (∗)

consisting of total spaces of smooth vector bundles over the same base space M together
with smooth vector bundle M -morphisms is called a sequence of smooth vector
bundles over M . Such a sequence is called exact at Ek, if fk and fk+1 are of constant
rank and satisfy Im(fk) = Ker(fk+1), i.e. Im(fkx ) = Ker(fk+1

x ), for each x ∈ M . The
sequence (∗) is called exact if it is exact at each total space.
Denote the trivial vector bundle M × {0} simply by 0. A sequence of smooth vector

bundles over M 0 // E
f // F

g // G // 0 is called short.

Note that a smooth vector bundle M -morphism f : E → F is injective (resp. surjective)11

if and only if 0 // E
f // F (resp. E

f // F // 0 ) is an exact sequence.

By abuse of language, we call the total space of a smooth vector bundle over M a
smooth vector bundle.

2.4.4 Splitting Lemma

Consider a short exact sequence of smooth vector bundles over M

0 // E
f // F

g // G // 0.

The following assertions are equivalent:

11This means that all fx are injective (resp. surjective), see Definition 2.1.3.
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(a) g has a right inverse in VBM , i.e. there is a smooth vector bundle M -morphism

r : G→ F with g ◦ r = idG .

(b) f has a left inverse in VBM , i.e. there is a smooth vector bundle M -morphism

` : F → E with ` ◦ f = idE .

(c) There is a smooth vector bundle M -morphism P : F → F (of constant rank), which
is a projection, i.e. P ◦ P = P such that Im(P ) = Ker(g) = Im(f).

(d) There is a complemented smooth vector bundle of Ker(g) = Im(f), i.e. a subbundle H
of F with Ker(g) ∩H = M × {0} and Ker(g) +H = F such that the map

S : Ker(g)×H → F, (ξ, η) 7→ ξ + η, (2.65)

is a smooth isomorphism of M -morphisms.

If one of the equivalent conditions is satisfied, we say that the exact sequence of vector

bundles over M 0 // E
f // F

g // G // 0 splits.

Proof. Throughout this proof, we call a smooth vector bundle M -morphism just an M -
morphism and the projection M -morphism in (c) just an M -projection.
(a) ⇒ (c) Define Q = r ◦ g, then Q is an M -morphism of constant rank because g is
surjective and further Q ◦ Q = r ◦ (g ◦ r) ◦ g = Q. Since r is injective as a right inverse
of g, we obtain Ker(Q) = Ker(g) because it holds fibrewise. Then P = idF −Q is again an
M -projection with Im(P ) = Ker(Q) = Ker(g).
(c) ⇒ (a) The restriction g|Ker(P ) : Ker(P )→ G is bijective:
Let x ∈ M and ν ∈ Ker(gx) ∩ Ker(Px) = Im(Px) ∩ Ker(Px), such that there is µ ∈ Fx
with Px(µ) = ν and Px(ν) = 0 ∈ Fx, hence ν = P (µ) = P ◦ P (µ) = P (ν) = 0 ∈ Fx yields
injectivity. For % ∈ Gx there is σ ∈ Fx with gx(σ) = %. Moreover,

gx(σ) = gx(Px(σ)) + gx(σ − Px(σ)) = gx(σ − Px(σ)) (2.66)

and (σ − Px(σ)) ∈ Ker(Px), which yields surjectivity. So, g|Ker(P ) is an isomorphism of
M -morphisms by Lemma 2.4.2, such that r = g−1

Ker(P ) : G → Ker(P ) is an M -morphism
and satisfies g ◦ r = idG.
(b) ⇒ (c) Define P = f ◦ `, then P is analogously an M -projection of constant rank and
the surjectivity of ` as a left inverse, implies Im(P ) = Im(f) = Ker(g).
(c) ⇒ (b) Since f is injective and of constant rank, the induced bijection f : E → Im(f)
is an isomorphism of M -morphisms such that f−1 : Im(f) → E is an M -morphism of
constant rank. Define ` = f−1 ◦ P such that ` is an M -morphism of constant rank. Due
to Im(P ) = Im(f), we obtain P (f(µ)) = f(µ) for all µ ∈ E and therefore also ` ◦ f(ν) =
f−1(P (f(µ))) = f−1 ◦ f(µ) = µ on E.
(c) ⇒ (d) Define H = Ker(P ), then H is a subbundle of F . By the projection property,
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P ◦P = P , it follows by fibrewise inspection that M×{0} = Im(P )∩Ker(P ) = Ker(g)∩H
and Ker(g) + H = Im(P ) + Ker(P ) = F holds, where addition is fibrewise defined. In
particular, for every x ∈ M each νx ∈ Fx has a unique representation νx = ξx + ηx with
ξx ∈ Ker(gx) and ηx ∈ Hx such that S : Ker(g) × H → F , (ξ, η) 7→ µ + ν is bijective
and linear on each fibre. The addition in F , defined fibrewise, is also smooth such that S
is a bijective M -morphism and consequently an isomorphism of M -morphisms by Lemma
2.4.2. The inverse is given by T : F → Ker(g)×H, ν 7→ (P (ν), ν − P (ν)).
(d) ⇒ (c) Fix x ∈ M . Every νx ∈ Fx can be uniquely written as νx = ξx + ηx with
ξx ∈ Ker(gx) and ηx ∈ Hx since Ker(gx) and Hx are algebraically complemented vector
spaces. Moreover, the linear map Px : Fx → Fx, νx 7→ ξx if νx = ξx + ηx, is a projection
with Im(Px) = Ker(gx) such that the induced map P : F → F is also a projection
and has constant rank. On the other hand, P is the first component of the M -morphism
S−1 : F → Ker(g)×H such that P is also an M -morphism.

2.4.5 Lemma (Splitting of Short Exact Sequence)

Every short exact sequence 0 // E
f // F

g // G // 0 of smooth vector bundles over
M splits.

Proof. Since f is injective and g is surjective, there are natural smooth isomorphisms of
M -morphisms by Lemma 2.4.2:

f̃ : E → Im(f) and g̃ : F/Ker(g)→ G, (2.67)

where Im(f) = Ker(g) is a subbundle of F . Therefore it is sufficient to show the splitting
of the canonical short exact sequence 0 // E

i // F
q // F/E // 0 for a subbundle

E of a smooth vector bundle F with the inclusion morphism i and the quotient morphism
q. But this is clear by Lemma 2.3.5 or 2.3.7.

2.5 Functor of Sections

For a fixed base space M , we want to construct a functor from VBM , the category of
smooth vector bundles over M with smooth vector bundle M -morphisms to Fréchet, the
category of Fréchet spaces with linear and continuous maps as morphisms. The functor
will preserve exact sequences (Lemma 2.5.15). In that case, a short exact sequence of
vector bundles that splits, yields a short exact sequence of Fréchet spaces that also splits
by functoriality.
First of all, we have to equip the R-vector space of sections with a system of seminorms
such that it becomes a Fréchet space. This will be part of the next subsection. By Lemma
2.2.4, we already know that, under a choice of chart and trivialization, smooth sections are
locally isomorphic as R-vector spaces to smooth functions of an open domain of some Rn
to some RN . This enables, at least locally, a way to define seminorms on smooth sections,
inherited by seminorms of smooth functions, which induce a Fréchet topology. However,
in order to construct a well defined topology on sections over arbitrary open subsets of
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a manifold, we have to verify that the induced topology is independent of the choices of
charts and trivializations. It will be reasonable to start with the Fréchet space of smooth
functions on an open domain of Rn.

The order of a multi-index α = (α1, ..., αn) ∈ Nn0 is defined by |α| =
n∑
j=1

αj.

Further, define for α ∈ Nn0 and a smooth function f ∈ C∞(V,R) on some open V ⊆ Rn
the α-partial derivative evaluated at x ∈ V by

f (α)(x) =
∂α1 · · · ∂αn(f)

∂x1 · · · ∂xn

∣∣∣∣
x

. (2.68)

2.5.1 Remark (Fréchet Space of Smooth Functions)

(1) Let V ⊆ Rn be open. For a compact set K ⊆ V and a number ` ∈ N0, the maximal
order of multi-indices involved, define

qK,`(f) = sup
{
|f (α)(x)| : x ∈ K,α ∈ N0

n, |α| ≤ `
}

(2.69)

on C∞(V,R). The system QV = {qK,` : K ⊆ V compact, ` ∈ N0} of seminorms is
equivalent to the countable system of seminorms QV ((Kj)j∈N0) = {qKj ,` : j, ` ∈ N0},
where (Kj)j∈N0 is a compact exhaustion of V , i.e. Kj ⊆ Kj+1 ⊆ V are compact such

that V =
⋃
j∈N0

◦
Kj. (Every compact K ⊆ V is contained in some Kj). Therefore, the

induced topology does not depend on the choice of exhaustion and is metrizable. It
is well known that these seminorms induce a Fréchet topology on C∞(V,R).12

A countable product of Fréchet spaces is a Fréchet space with respect to the product
topology. Further, C∞(V,RN) is isomorphic to the product (C∞(V,R))N by f 7→ (fk)

N
k=1

such that we obtain:

(2) Under the same notations as in (1), C∞(V,RN) equipped with the system of semi-
norms QNV ((Kj)j) = {qNKj ,` : j, ` ∈ N0} defined by

qNKj ,`(f) = sup

{
max

k=1,...,N
|f (α)
k (x)| : x ∈ Kj, α ∈ N0

n, |α| ≤ `

}
, (2.70)

is also a Fréchet space. Further, QNV = {qNK,` : K ⊆ V compact, ` ∈ N0} is an
equivalent system of seminorms, such that the induced topology is independent of
the choice of exhaustions.

For later applications, we are interested in the continuity of certain linear operators bet-
ween spaces of smooth functions. Instead of struggling with formulas for (mixed) partial
derivatives, we will use a continuity criterion, which is an application of the closed graph
theorem.

12We refer to [MV97, Examples 5.18 (4)] for instance.
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2.5.2 Lemma (Continuity-Criterion)

Let X, Y, Z be Fréchet spaces and I : Y → Z be an injective continuous map.
Then a linear map T : X → Y is continuous if and only if I ◦ T : X → Z is continuous.

Proof. Suppose I ◦ T is continuous. The map J : X × Y → X × Y, (x, y) 7→ (x, I(y))
is continuous (with respect to the product topology) since I is continuous. Because Z is
in particular a Hausdorff-space, the graph of the continuous function I ◦ T , denoted by
graph(I ◦ T ), is closed. Hence, the following set is also closed:

J−1(graph(I ◦ T )) = {(x, y) ∈ X × Y : (x, I(y)) ∈ graph(I ◦ T )} (2.71)

= {(x, y) ∈ X × Y : I(y) = I(T (x))} (2.72)

= {(x, y) ∈ X × Y : y = T (x)} = graph(T ). (2.73)

The continuity of T follows now by the closed graph theorem. The other implication is
trivially true since compositions of continuous functions are continuous.

2.5.3 Lemma (Continuity of an Induced Operator)

Let V ⊆ Rn be open, N,L ∈ N and A : V → RL×N a smooth map (all entries are smooth R-
valued functions). Then the induced linear map SA : C∞(V,RN) → C∞(V,RL), f 7→ SAf
defined by pointwise matrix-vector-multiplication SAf(y) = A(y) · f(y), is continuous.
In particular, if A : V → GL(R, N) is smooth, the induced map SA is an isomorphism of
Fréchet spaces.

Proof. Endow C(V,RL) = {f : V → RL : f continuous} with the system of seminorms
{qLK,0 : K ⊆ V compact}. As in the smooth case, C(V,RL) is isomorphic to the product
(C(V,R))L, which is a Fréchet space as a finite product of the Fréchet spaces C(V,R) 13.
The inclusion I : C∞(V,RL) → C(V,RL), f 7→ f is clearly continuous such that we only
have to verify the continuity of I ◦ SA : C∞(V,RN) → C(V,RL) due to the Continuity-
Criterion, Lemma 2.5.2.
Equip RL with the norm ‖·‖max,L, defined by ‖y‖max,L = max

k=1,...,L
|yk| and RN with ‖·‖max,N ,

respectively. For a matrix B ∈ RL×N , denote its operatornorm by

‖B‖op = sup{‖Bλ‖L : λ ∈ RN , ‖λ‖N ≤ 1}, (2.74)

such that

‖Bλ‖max,L ≤ ‖B‖op ‖λ‖max,N for all λ ∈ RN . (2.75)

Let K ⊆ V be compact, then

cK = sup{‖A(y)‖op : y ∈ K} <∞ (2.76)

13[MV97], Examples 5.18 (2) for instance.
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by continuity of A : V → RL×N and we obtain:

qLK,0(I ◦ SA(f)) = sup{‖SAf(y)‖max,L : y ∈ K} (2.77)

= sup{‖A(y) · f(y)‖max,L : y ∈ K} (2.78)

≤ sup{‖A(y)‖op ‖f(y)‖max,N : y ∈ K} (2.79)

≤ cK pNK,0(f). (2.80)

Thus, the continuity of SA has been proven.
Note that if B : V → RN×M is another smooth map, the pointwise product defines a
smooth map AB : V → RL×M , AB(x) = A(x) · B(x) and SA ◦ SB = SAB holds. In
the special case of a smooth map A : V → GL(R, N), the pointwise inverse matrix map
A−1 : V → GL(R, N) is also smooth by Cramer’s Rule. Their induced linear continuous
maps satisfy SA ◦ SA−1 = SIN , which is the identity on C∞(V,RN).

2.5.4 Lemma (Continuity of the Pullback of Smooth Functions)

Let ϕ : V → W be a smooth map between open sets V ⊆ Rn and W ⊆ Rm.
The pullback ϕ∗ : C∞(W,RN)→ C∞(V,RN), ϕ∗f = f ◦ ϕ is linear and continuous.
For another smooth map ψ : U → V on U ⊆ R` open, we have ψ∗ ◦ ϕ∗ = (ϕ ◦ ψ)∗ and id∗V
is the identity on C∞(V,RN).
In particular, the pullback of a diffeomorphism is an isomorphism of Fréchet spaces.

Proof. The linearity of ϕ∗ is clear. As in the proof of Lemma 2.5.3, by Lemma 2.5.2 it
suffices to show the continuity of I ◦ ϕ∗ : C∞(W,RN) → C(V,RN), where I denotes the
continuous inclusion from C∞(V,RN) into C(V,RN). Let K ⊆ V be compact, then

qNK,0(ϕ∗f) = sup

{
max

k=1,...,N
|fk(ϕ(x))| : x ∈ K

}
(2.81)

=qNϕ(K),0(f). (2.82)

Since ϕ is continuous, ϕ(K) is compact, which shows the continuity of I ◦ϕ∗. Just by defi-
nition, ψ∗◦ϕ∗ = (ϕ◦ψ)∗ and idV = idC∞(V,RN ) follow and imply for a diffeomorphism ϕ and
its inverse ψ = ϕ−1 the inverse identities, such that the pullback becomes an isomorphism
of Fréchet spaces.

We refer to [MV97, Chapter 24] for the concept of projective topologies on locally convex
spaces. It can be seen as a generalization of the product topology or the subspace topology
and allows to define a topology on a common domain of a family of linear maps, which map
to (possible different) locally convex spaces. The projective topology is also called initial,
weak or limit topology. We consider only R-vector spaces.
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2.5.5 Definition/Remark (Projective Topology)

A vector space X, together with a family of locally convex spaces (Xi)i∈I and linear maps
πi : X → Xi (i ∈ I), is called a projective system, if for each x ∈ X \ {0}, there is an
i ∈ I with πi(x) 6= 0. If Pi denotes a system of seminorms on Xi, we call

PR((Pi)i∈I) =

{
p = max

i∈J
pi ◦ πi : J ⊆ I finite, pi ∈ Pi

}
. (2.83)

the system of projective seminorms of the projective system (π : X → Xi)i∈I inherited
by (Pi)i∈I . It induces a locally convex topology on X, the so called projective topology.
We call Θ : X →

∏
ı∈I
Xi, x 7→ (πi(x))i∈I the evaluation map of a projective system. It is

an isomorphism of topological vector spaces onto its image with respect to the projective
topology on X and the subspace topology of the product topology on Θ(X), respectively.
(Θ is clearly linear and injective by the defining property of the projective system. The
continuity of Θ and Θ−1 : Θ(X)→ X follows just by definition of the seminorms.)
The projective topology on X is therefore the coarsest topology such that all maps πi are
continuous.

2.5.6 Definition (Local Choice and Seminorms on Local Sections)

Let ξ = (E, π,M) be a smooth vector bundle of rank N over a smooth n-manifold M .

(a) We will call U = (U,ϕ,Φ, (Kj)j∈N0) a local choice of ξ (over U), if

(LC1) U ⊆M is open;

(LC2) (U,ϕ) is a smooth chart of M ;

(LC3) (U,Φ) is a local trivialization of E over U ;

(LC4) (Kj)j∈N0 is a compact exhaustion of ϕ(U) ⊆ Rn.

(b) For a local choice U = (U,ϕ,Φ, (Kj)j∈N0) of ξ, we define a system of seminorms on
Γ(U,E) by

PU = PR(QNϕ(U)((Kj)j∈N0)) = {pUj,` = qNKj ,` ◦ TU : j, ` ∈ N0}, (2.84)

where TU : Γ(U,E) → C∞(ϕ(U),RN) denotes the isomorphism of vector spaces
according to Lemma (2.2.4) induced by (U,ϕ) and (U,Φ).

2.5.7 Lemma (Fréchet space of Local Sections)

Let U = (U,ϕ,Φ, (Kj)j∈N0) be a local choice of a smooth vector bundle (E, π,M).
Then (Γ(U,E),PU) is a Fréchet space.
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Proof. Denote by TU : Γ(U,E)→ C∞(ϕ(U),RN) the isomorphism of vector spaces accor-
ding to Lemma (2.2.4) induced by (U,ϕ) and (U,Φ). Since TU is in particular injective, it
defines a projective system. By definition, PU is the system of projective seminorms of the
projective system TU : Γ(U,E)→ C∞(ϕ(U),RN) inherited by QNϕ(U)((Kj)j). Moreover, the
evaluation map Θ is just TU , which is also surjective. Hence, we have an isomorphism of
topological vector spaces TU : (Γ(U,E),PU)→ (C∞(ϕ(U),RN),QNϕ(U)). Since PU is counta-

ble and (C∞(ϕ(U),RN),QNϕ(U)((Kj)j)) is a Fréchet space, we can follow the assertion.

The induced topology does not depend on the choice of the compact exhaustion of ϕ(U),
since PU is equivalent to {pUK,` = qNK,` ◦TU : K ⊆ ϕ(U) compact, ` ∈ N0}. But we also have
to check, whether the topology depends on the choice of chart and trivialization, which
will be expressed in a lemma:

2.5.8 Lemma (Independence of Local Choices)

Let Uα = (U,ϕα,Φα, (K
α
j )j∈N0) and Uβ = (U,ϕβ,Φβ, (K

β
j )j∈N0) be local choices of a smooth

vector bundle (E, π,M) over an open subset U ⊆ M . Then PUα and PUβ are equivalent
systems of seminorms on Γ(U,E).

Proof. We already know that the transition map ϕβα = ϕβ ◦ ϕ−1
α from ϕα(U) to ϕβ(U)

is a diffeomorphism, such that its pullback is an isomorphism between Fréchet spaces
(ϕβα)∗ : C∞(ϕβ(U),RN) → C∞(ϕα(U),RN), f 7→ f ◦ ϕβα by Lemma 2.5.4. Thus,

QNϕα(U)(K
α
j )j∈N0 and QNϕβ(U)(K

β
j )j∈N0 are equivalent systems of seminorms. Therefore the

projective topology on Γ(U,E) is independent of the compact exhaustion.
It remains to show, that id : (Γ(U,E),PUα) → (Γ(U,E),PUβ) is an isomorphism of
Fréchet spaces. Denote by Tα and Tβ the isomorphisms of Lemma 2.2.4 corresponding
to ϕα,Φα and ϕβ,Φβ, respectively. In addition, they are isomorphisms of Fréchet spaces
onto C∞(ϕα(U),RN) and C∞(ϕβ(U),RN), respectively. Hence, we have the following com-
mutative diagram with isomorphisms of Fréchet spaces in the columns:

(Γ(U,E),PUα)

Tα
��

id // (Γ(U,E),PUβ)

Tβ
��

C∞(ϕα(U),RN)

Sβα **

C∞(ϕβ(U),RN)

(ϕβα)∗

��
C∞(ϕα(U),RN).

Therefore, it suffices to show that Sβα = (ϕβα)∗ ◦ Tβ ◦ T−1
α is an isomorphism of Fréchet
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spaces. We compute for f ∈ C∞(ϕα(U),RN):

Tβ ◦ T−1
α (f) = prII ◦Φβ ◦ (T−1

α (f)) ◦ ϕ−1
β (2.85)

= prII ◦Φβ ◦ (Φ−1
α ◦ (idU ×(f ◦ ϕα))) ◦ ϕ−1

β (2.86)

= prII ◦(Φβ ◦ Φ−1
α ) ◦ (ϕ−1

β × (f ◦ ϕαβ)). (2.87)

Using the transition function τβα : U → GL(R, N) between Φβ and Φα according to Lemma
2.1.7, we obtain for y ∈ ϕα(U):

Tβ ◦ T−1
α (f)(y) = τβα (ϕ−1

β (y)) · f(ϕαβ(y)). (2.88)

Applying the pullback (ϕβα)∗, gives

Sβαf(y) =τβα (ϕ−1
β ◦ ϕ

β
α(y)) · f(ϕαβ ◦ ϕβα(y)) (2.89)

=τβα (ϕ−1
α (y)) · f(y). (2.90)

For V = ϕα(U), the composition A = τβα ◦ ϕ−1
α : V → GL(R, N) is smooth. By Lemma

2.5.3, the induced map SA = Sβα is an isomorphism of Fréchet spaces.
(Note that if id : (Γ(U,E),PUα) → (Γ(U,E),PUβ) is a continuous map, it is already an
isomorphism of Fréchet spaces by the open mapping theorem. To achieve this, one can
show the continuity of Sβα. However, by the previous results, this is not much less work
than showing that it is already an isomorphism of Fréchet spaces.)

2.5.9 Definition (Seminorms on the Space of (Global) Sections)

Let ξ = (E, π,M) be a smooth vector bundle of rank N over a smooth n-manifold M .

(a) We call UA = (Uα)α∈A a cover of local choices of ξ over M , if

(CLC1) Uα = (Uα, ϕα,Φα, (K
α
j )j∈N0) is a local choice of ξ over an open subset Uα ⊆ M

for each α ∈ A ;

(CLC2) M =
⋃
α∈A

Uα.

Another cover of local choices VB = (Vβ = (Vβ, ψβ,Ψβ, (L
β
j )j∈N0))β∈B of ξ over M is

called a local choice refinement of UA , if

(LCR) for each α ∈ A , there is a subset Bα ⊆ B such that VBα = (Vβα)βα∈Bα is a cover
of local choices of the restricted vector bundle ξ|Uα over Uα and B =

⋃
α∈A

Bα.

(b) Let UA = (Uα)α∈A a cover of local choices of ξ over M . For each α ∈ A define
the restriction map %α : Γ(M,E) → Γ(Uα, E), σ 7→ σ|Uα = σ ◦ ια, where ια de-
notes the smooth inclusion of Uα into M . The restriction maps and Fréchet spaces
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(Γ(Uα, E),PUα) make Γ(M,E) into a projective system. For UA , we define PUA
to

be the system of projective seminorms inherited by (PUα)α∈A , i.e.

PUA
=PR((PUα)α∈A ) (2.91)

=

{
pIjI ,`I = max

α∈I
pUαjα,`α ◦ %

α : I ⊆ A finite, jα, `α ∈ N0 for all α ∈ I
}
. (2.92)

2.5.10 Lemma (Topology Invariant Under Refinement)

Let VB be a local choice refinement of a cover UA of local choices of ξ over M . Then the
systems of seminorms PUA

and PVB
on Γ(M,E) are equivalent.

Proof. We will show:

(1) PR((PVBα
)α∈A ) = PVB

;

(2) If U = (U,ϕ,Φ, (Kj)j∈N0) is a local choice of a vector bundle ξ = (E, π,M) over U
and UA = (Uα)α∈A is a cover of local choices of ξ|U = (EU , πEU , U) over U , then PU
and PUA

are equivalent.

Then we can conclude that PVBα
and PUα are equivalent for each α ∈ A . It is easy to see,

that two systems of projective seminorms inherited by equivalent systems of seminorms
are again equivalent. Therefore, PUA

and PR((PVBα
)α∈A ) = PVB

are equivalent.

(1) After applying the definitions and using %βαα ◦ %α = %βα , a seminorm of

PR((PVBα
)α∈A ) is given by p(Iα)α∈J = max

α∈J
max
βα∈Iα

p
Vβα
jβα ,`βα

◦%βα for finite subsets J ⊆ A ,

Iα ⊆ Bα and jβα , `βα ∈ N0 for all α ∈ J and βα ∈ Iα. Define I =
⋃
α∈J

Iα. Then I ⊆ B

is finite and p(Iα)α∈J = max
β∈I

p
Vβ
jβ ,`β
◦ %β ∈ PVB

.

Othersides, a seminorm of PVB
is given by pIjI ,`I = max

β∈I
p
Vβ
jβ ,`β
◦ %β for a finite subset

I ⊆ B and jβ, `β ∈ N0. Since I ⊆
⋃
α∈A

Bα is finite, there is a finite subset J ⊆ A ,

such that I ⊆
⋃
α∈J

Bα. We divide I into subsets Iα = I \

( ⋃
α 6=β∈J

Bβ

)
⊆ Bα, which

are also finite. Then, we obtain pIjI ,`I = p(Iα)α∈J ∈ PR((PVBα
)α∈A ).

(2) Let I ⊆ A be finite and jα, `α ∈ N0 for all α ∈ I. The finite union K =
⋃
α∈I

Kjα is

a compact set in U such that there is a j ∈ N0 with K ⊆ Kj. For ` = max
α∈I

`α, we

clearly have pIjI ,`I (σ) = max
α∈I

pUαjα,`α ◦ %
α(σ) ≤ pj,`(σ) for all σ ∈ Γ(U,E).

Otherwise, let j, ` ∈ N0 be arbitrary. The compactness of Kj ⊆ U =
⋃
α∈A

Uα yields a
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finite subset I ⊆ A with Kj ⊆
⋃
α∈I

Uα. For α ∈ I, define

K̃α = Kj \

 ⋃
β∈I\{α}

Uβ

 . (2.93)

Each K̃α is a compact subset of Uα, since it is a closed subset of a compact set in a
Hausdorff space. Hence, there is a jα ∈ N0 with K̃α ⊆ Kjα for each α ∈ I. Setting
`α = ` for α ∈ I, we now obtain pj,`(σ) ≤ max

α∈I
pUαjα,`α ◦ %

α(σ) on Γ(U,E).

2.5.11 Lemma (Fréchet Space of Global Sections)

Let UA = (Uα = (Uα, ϕα,Φα, (K
α
j )j∈N0))α∈A be a cover of local choices of ξ = (E, π,M)

over M . Then, (Γ(M,E), PUA
) is a Fréchet space.

In particular, (Γ(M,E),PUA
) is isomorphic to the Fréchet space:

XUA
=

{
(σα)α∈A ∈

∏
α∈A

Γ(Uα, E) : σα|Uα,β = σβ|Uα,β for all (α, β) ∈ OD(A )

}
, (2.94)

where OD(A ) = {(α, β) ∈ A × A : Uα,β = Uα ∩ Uβ 6= ∅} denotes the set of indices
with overlapping domains and the topology on XU is the subspace topology of the product
topology.

Proof. According to Lemma 2.5.7, each space of local sections Γ(Uα, E), equipped with
PUα , is a Fréchet space. Hence, the countable product

∏
α∈A

(Γ(Uα, E),PUα) of local sections

is also a Fréchet space with respect to the product topology, induced by the projections
πα :

∏
β∈A

Γ(Uβ, E)→ Γ(Uα, E), (σβ)β∈A 7→ σα.

By definition, PUA
is PR((PUα)α∈A ), the system of projective seminorms inherited by

(PUα)α∈A . Therefore, the evaluation map ΘUA
: Γ(M,E)→

∏
α∈A

Γ(Uα, E), σ 7→ (%α(σ))α∈A

is a linear homeomorphism onto its image, which is equal to XUA
.

(Im(ΘUA
) is contained in XUA

since restrictions commute. If otherwise (σα)α∈A is an ele-
ment of XUA

, the mapping x 7→ σα(x) if x ∈ Uα, yields a well defined smooth section
σ ∈ Γ(M,E). Indeed, for any other β ∈ A with x ∈ Uβ, the local sections σα and σβ are
equal on the open intersection Uα,β = Uα ∩ Uβ.)
We will show, that XUA

is a closed subspace of the product space. By restricting to a
non-empty intersection Uα,β = Uα ∩ Uβ, we receive charts (Uα,β, ϕ̃α), (Uα,β, ϕ̃β) and trivia-

lizations (Uα,β, Φ̃α), (Uα,β, Φ̃β). Further, (K̃α,β)j∈N0 = (ϕ−1
α (Kα

j+k)∩ϕ−1
β (Kβ

j+k))j∈N0 defines

a compact exhaustion of Uα,β, where k = min{j ∈ N0 : ϕ−1
α (Kα

j ) ∩ ϕ−1
β (Kβ

j ) 6= ∅}. So

Uαα,β = (Uα,β, ϕ̃α, Φ̃α, (ϕ̃α(K̃α,β
j ))j∈N0) and Uβα,β = (Uα,β, ϕ̃β, Φ̃β, (ϕ̃β(K̃α,β

j ))j∈N0) (2.95)
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are local choices of ξ over Uα,β. The maps,

%α,βα : (Γ(Uα, E),PUα)→ (Γ(Uα,β, E),PUαα,β), σα 7→ σα|Uα,β = σα ◦ ιαα,β ; (2.96)

%α,ββ : (Γ(Uβ, E),PUβ)→ (Γ(Uα,β, E),PUβα,β), σβ 7→ σβ|Uα,β = σβ ◦ ιβα,β (2.97)

are continuous. (Indeed, for p
Uα,β
j,` ∈ PUαα,β the seminorm pUαj+k,` ∈ PUα satisfies

p
Uα,β
j,` (%α,βα (σ)) ≤ pUαj+k,`(σ) for all σ ∈ Γ(Uα, E) since ϕ̃α(K̃α,β

j ) ⊆ Kα
j+k. The continuity

of %α,ββ follows analogously.) But, by Lemma 2.5.8, PUαα,β and PUβα,β are equivalent, such

that they induce the same topology on Γ(Uα,β, E). Now, we can write XUA
as a countable

intersection of kernels of continuous and linear functions, which are closed subspaces:

XUA
=

⋂
(α,β)∈OD(A )

Ker(%α,βα ◦ πα − %
α,β
β ◦ πβ). (2.98)

Hence, Im(ΘUA
) is a Fréchet space with respect to the subspace topology of the product

topology on
∏
α∈A

Γ(Uα, E). Since ΘUA
is a homeomorphism onto its image, (Γ(U,E),PU)

is also a Fréchet space.

2.5.12 Lemma (Independence of the Topology of Sections)

Let ξ = (E, π,M) be a smooth vector bundle over M . Two covers of local choices

UA = (Uα = (Uα, ϕα,Φα, (K
α
j )j∈N0))α∈A ,VB = (Vβ = (Vβ, ψβ,Ψβ, (L

β
j )j∈N0))β∈B (2.99)

over M induce equivalent systems of seminorms PUA
and PVB

on Γ(M,E).

Proof. We will construct local choice refinements of UA and VB, respectively. By restricting
to a non-empty intersection Wα,β = Uα ∩ Vβ, we receive charts (Wα,β, ϕ̃α), (Wα,β, ψ̃β, ) and

trivializations (Wα,β, Φ̃α), (Wα,β, Ψ̃β, ). Moreover, K̃α,β
j = ϕ−1

α (Kα
j+k)∩ψ−1

β (Lβj+k) defines a

compact exhaustion of Wα,β for k = min{j ∈ N0 : ϕ−1
α (Kα

j ) ∩ ψ−1
β (Lβj ) 6= ∅}. Hence,

Wα
α,β = (Wα,β, ϕ̃α, Φ̃α, (ϕ̃α(K̃α,β

j ))j∈N0) and Wβ
α,β = (Wα,β, ψ̃β, Ψ̃β, (ψ̃β(K̃α,β

j ))j∈N0)

(2.100)

are local choices of ξ over Wα,β for all (α, β) ∈ (A ,B) = {(α, β) ∈ A × B : Wα,β =
Uα ∩ Vβ 6= ∅}. Moreover, for fixed α ∈ A define Bα = {β ∈ B : (α, β) ∈ (A ,B)}
and for fixed β ∈ B define Aβ = {α ∈ A : (α, β) ∈ (A ,B)}, respectively. Then,
WA

A ,B = (Wα
α,β)(α,β)∈(A ,B) is a local choice refinement of UA such that by Lemma 2.5.10,

PUA
and PWA

A ,B
are equivalent systems of seminorms on Γ(M,E). Analogously, PVB

and

PWB
A ,B

are equivalent. Finally, by Lemma 2.5.8, PWα
α,β

and PWβ
α,β

are equivalent for each

(α, β) ∈ (A ,B), such that their corresponding system of projective seminorms PWA
A ,B

and

PWB
A ,B

are also equivalent.
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2.5.13 Remark (Comparison to Smooth Functions on Euclidean Space)

As we have seen in the construction of the Fréchet space structure on global sections, all
seminorms arise locally only from compact exhaustions of typically small open sets, on which
smooth trivializations and charts exist. This is a difference to the Fréchet space structure of
C∞(V ) for any open V ⊆ Rn. In this case, the seminorms arise from a compact exhaustion
of the whole set V , such that one might call this situation semi-global in difference to the
local origin of the Fréchet space of global sections.

2.5.14 Remark (Section Functor)

A smooth vector bundle (E, π,M) of rank N gives rise to the Fréchet-space of sections
Γ(M,E) by the previous lemmas. For a smooth vector bundle M -morphism f : E → F ,
define the pushforward f∗ : Γ(M,E) → Γ(M,F ) by f∗(σ) = f ◦ σ. Since the vector
space structure of sections is defined pointwise in each fibre and f restricts to a linear
map on each fibre, the linearity of f∗ follows. For the continuity, suppose an open cover
(Uα)α∈A of M such that there are a chart (Uα, ϕα) of M and smooth local trivializations
(Uα,Φα) of E and (Uα,Ψα) of F , respectively. Locally, we have the following commutative
diagram for Vα = ϕα(Uα) ⊆ Rn and (f̃α)∗ = TF,α ◦ (fα)∗ ◦ T−1

E,α, where T−1
E,α and TF,α are

the isomorphisms of Lemma (2.2.4):

Γ(Uα, E)

TE,α
��

(fα)∗ // Γ(Uα, F )

TF,α
��

C∞(Vα,RN)
(f̃α)∗

// C∞(Vα,RL)

By construction of the topology on spaces of sections, we obtain that f∗ is continuous if
and only if (f̃α)∗ is continuous from C∞(Vα,RN) to C∞(Vα,RL) for all α ∈ A . To show
this, Lemma 2.1.6 gives a smooth map Afα : Uα → RL×N satisfying Ψα ◦ fα ◦ Φ−1

α (x, λ) =
(x,Afα(x) · λ) on Uα × RN . Using all the definitions, we obtain for g ∈ C∞(Vα,RN) and
y ∈ Vα:

(f̃α)∗(g)(y) = (TF,α ◦ (fα)∗ ◦ T−1
E,α(g))(y) = (Afα ◦ ϕ−1)(y) · g(y). (2.101)

Since Afα ◦ϕ−1 : Vα → RL×N is smooth, we obtain the continuity of (f̃α)∗ by Lemma 2.5.3
for each α ∈ A and consequently the continuity of the push-forward f∗
For another smooth vector bundle M -morphism h : F → G, we clearly have (h◦f)∗ = h∗◦f∗
and further, the identity is also preserved. To summarize, we have constructed a covariant
functor from VBM to Fréchet, the category of Fréchet spaces with continuous and linear
maps.
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2.5.15 Lemma (Section-Functor is Exact)

Let 0 // E
f // F

g // G // 0 be a short exact sequence of smooth vector bundles
over M , then the sequence of Fréchet spaces with linear and continuous maps,

0 // Γ(M,E)
f∗ // Γ(M,F )

g∗ // Γ(M,G) // 0 , (2.102)

is exact and splits.
In particular, if (E, πE,M) is a subbundle of (F, πF ,M), we obtain for the canonical se-
quence, consisting of the inclusion morphism i and the quotient morphism q, a short exact
sequence that splits:

0 // Γ(M,E)
i∗ // Γ(M,F )

q∗ // Γ(M, F/E) // 0 . (2.103)

Proof. We show the exactness:
(1) Let % ∈ Ker(f∗), i.e. % ∈ Γ(M,E) with f∗(%) = 0. Then 0 = f∗(%)(x) = f(%(x)) for
every x ∈M , such that %(x) = 0 on M , by injectivity of f .
(2) Now, let σ ∈ Im(f∗), i.e. there is % ∈ Γ(M,E) with σ = f∗(%) = f ◦ %. Then, we have
g∗(σ) = g ◦ f ◦ % = 0 ∈ Γ(M,G) since Im(f) = Ker(g), which yields Im(f∗) ⊆ Ker(g∗). For
σ ∈ Ker(g∗), we obtain 0 = g∗(σ)(x) = g(σ(x)), such that σ(x) ∈ Ker(gx) = Im(fx) for
every x ∈M . Pick a frame {%j}pj=1 of E over some open subset U ⊆M . Then {f ◦ %j} is a

frame of Im(f) by injectivity of f such that σ|U has a local representation σ|U =
p∑
j=1

λjf ◦%j

for some smooth functions λj ∈ C∞(U,R). Define %U =
p∑
j=1

λj%j, then %U ∈ Γ(U,E) with

f∗(%) = σ|U by fibrewise linearity of f . Moreover, for an open cover (Uα)α∈A of M such that
there is a frame of E over each Uα. Pick a smooth locally finite partition of unity (χα)α∈A

subordinate to (Uα)α∈A . The preceding shows that there are %α ∈ Γ(Uα, E) satisfying
f∗(%α) = σ|Uα . Since supp(χα) ⊆ Uα we can extend each χα%α smoothly by zero outside of
Uα and obtain a smooth section % =

∑
α∈A

χα%α ∈ Γ(M,E) with f∗(%) = σ.

(3) By an analogously partition of unity argument, it is sufficient to show the surjectivity
of g∗ locally. So let U be an open subset of M such that {σj}Nj=1 is a frame of F over U

where {σj}pj=1 is a frame of Ker(g)(
(2)
= Im(f)) over U . Hence, {τj = g ◦ σj+p}N−pj=1 defines

a frame of G over U since g is surjective. Every τU ∈ Γ(U,G) has a local representation

τU =
N−p∑
j=1

λjτj with smooth functions λj ∈ C∞(U,R) such that σU =
N+p∑
j=1

λjσj+p defines a

smooth section in Γ(U, F ) satisfying g ◦ σU = τU by fibrewise linearity.

Lemma 2.4.5 yields the splitting of 0 // E
f // F

g // G // 0 , such that there are a
left inverse M -morphism ` : F → E of f and a right inverse M -morphism r : F → E of
g. By functoriality, we obtain that `∗ is a left inverse of f∗ and r∗ is a right inverse of g∗,
respectively.
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2.5.16 Lemma (Sections of Quotient bundle and Quotient of Sections)

Let (E, πE,M) be a subbundle of a smooth vector bundle (F, πF ,M).
Then Γ(M,E) is a closed subspace of Γ(M,F ) and Γ(M, F/E) is an isomorphic Fréchet
space of Γ(M,F )/Γ(M,E). Moreover, the quotient map q̃ : Γ(M,F )→ Γ(M,F )/Γ(M,E) has a
linear and continuous right inverse r̃.

Proof. The short exact sequence (2.103) implies Γ(M,E) = Im(i∗) = Ker(q∗), which is
a closed subspace since q∗ is continuous. Therefore, Γ(M,F )/Γ(M,E) is a Fréchet space
and the surjective linear and continuous quotient map q̃ : Γ(M,F ) → Γ(M,F )/Γ(M,E) is
a topological homomorphism with Ker(q̃) = Γ(M,E) = Ker(q∗). Further, the sequence
(2.103) splits, such that there are linear and continuous maps `∗, a left inverse of i∗, and
r∗, a right inverse of q∗. This gives the following commutative diagram with short exact
sequences of Fréchet-spaces in each row:

0 // Γ(M,E)
OO

id
��

i∗ --
Γ(M,F )

OO

id
��

`∗
mm

q∗ ..
Γ(M, F/E)

r∗
mm // 0

0 // Γ(M,E)
i∗ --

Γ(M,F )
`∗
mm

q̃ // Γ(M,F )/Γ(M,E) // 0

. (2.104)

Since `∗ is also a left inverse of i∗ in the lower sequence, the Splitting Lemma (2.4.4)
gives a linear and continuous right inverse r̃ : Γ(M,F )/Γ(M,E) → Γ(M,F ) of q̃. The linear
and continuous compositions q̃ ◦ r∗ and q∗ ◦ r̃ are inverse functions, such that we have an
isomorphism of Fréchet spaces between Γ(M, F/E) and Γ(M,F )/Γ(M,E).
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3 Forms and Cohomology of Foliated Manifolds

3.1 Introduction of Smooth Foliations

We refer to [Lee13, Chapter 5, p. 98 ff.] for an introduction of smooth submanifolds and
collect some basics. An immersed submanifold of a smooth manifold M is the image of
an injective immersion f : N →M , i.e. a smooth injective map between smooth manifolds
such that the differential dfx at each x ∈ N is injective 14. The topology of an immer-
sed submanifold may be different from the subspace topology inherited from M . If f is a
topological embedding, such that its image has the subspace topology of M , the image of
f is called an embedded submanifold. Locally, an immersed submanifold looks like an
embedded one, but globally they can look different.
The idea of a foliation is a decomposition of a manifold into disjoint connected immersed
submanifolds of a fixed dimension, called leaves of the foliation. Locally, this decomposi-
tion can be seen in charts as (lower dimensional) parallelized surfaces. Roughly speaking,
a book as a 3-dimensional object is decomposed by its 2-dimensional pages as leaves.
Foliations arise in differential geometry as collections of solutions of (underdetermined)
systems of differential equations if they satisfy an integrability condition, known as invo-
lutivity. This connection is described by the Frobenius Theorem, named after Ferdinand
Georg Frobenius. As John Milnor has recommended,15 a more appropriate name would be
Deahna-Clebsch-Frobenius Theorem. We will not go into details, but refer to [Mil70] or
[Lee13, Chapter 19] for an elaboration. However, we include an example of a first-order
partial differential equation to illustrate the importance of foliations in that area.

3.1.1 Definition (Smooth Foliation)

Let M be a smooth manifold and F = {Lα}α∈A be a partition of M into disjoint, connec-
ted, immersed k-dimensional submanifolds of M . A (smooth) foliated chart (U,ϕ) is
a diffeomorphism ϕ : U → V ×W between open subsets U ⊆ M , V ⊆ Rp and W ⊆ Rq
with the following property: For each α ∈ A and each connected component (U ∩Lα)β of
U ∩ Lα there exists a constant cβα ∈ W ⊆ Rq such that ϕ((U ∩ Lα)β) = V × {cβα}.
We call (M,F) a (smooth) (p, q)-foliated manifold if each point has a foliated chart,
where p is called the dimension of the foliation and q the codimension. In this case, the
partition F = {Lα}α∈A is called a (smooth) foliation of M and Lα is called a leaf of F .
Since {Lα}α∈A is a partition of M into disjoint sets, each x ∈ M is contained in exactly
one leaf, which will be denoted by Fx. Hence, the mapping x 7→ Fx from M → F is a
function that satisfies Fx = Fy if and only if x and y lie in the same leaf. We call this the
leaf function of F .
A smooth foliated map f : (M,F) → (N,G) between smooth foliated manifolds is a
smooth map f : M → N such that the image of each leaf of F is contained in some
leaf of G, i.e. for every F ∈ F there is some G ∈ G such that f(F ) ⊆ G or equivalently,

14See also Examples 2.1.4 (3) for the introduction of an immersion.
15See [Mil70, p. 10].
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f(Fx) ⊆ Gf(x) for all x ∈M .
Note that every smooth manifold M of dimension m is also a smooth (m, 0)-dimensional
foliation, given by one leaf M itself. But we could also define a smooth (0,m)-foliation by
points of M , i.e. {{x} : x ∈M}. In order to construct more interesting foliations, we start
with transversal maps, which allow to pull back a foliation from the target manifold.

3.1.2 Definition (Transverse Map to a Foliation)

A smooth map f : M → N between smooth manifolds is called transverse to a smooth
foliation G of N if

Tf(x)N = Tf(x)Gf(x) + dfx(TxM) for all x ∈M. (3.1)

Here, df : TM → TN is the differential16 of f , defined fibrewise dfx : TxM → Tf(x)N by

dfx(νx)(g) = νx(g ◦ f) for νx ∈ TxM and g ∈ C∞(N). (3.2)

Note that the sum does not to be a direct sum in the definition. Moreover, if M = dim(M),
n = dim(N) and G is a (p, q)-foliation of N , the existence of a transverse map f : M → N
to G implies

n ≤ p+m and therefore q = n− p ≤ m. (3.3)

3.1.3 Remark (Submersion)

If f : M → N is a submersion, then dfx is surjective (or equivalently of full rank dim(N))
at each point x ∈ M , such that f is clearly transverse to any foliation of N . If m ≥ n,
the projection map prII : Rm−n × Rn → Rn, (x, y) 7→ y is a submersion. The following
result states that each submersion can be transformed locally into a projection by a dif-
feomorphism, which is a consequence of the Inverse Function Theorem17. It is called the
Local (or Canonical) Submersion Theorem and we use it to proof Proposition 3.1.5.
The Local Submersion Theorem is a special case of the so called Rank Theorem18, where
f : M → N needs to be a smooth map such that the differential df : TM → TN has a
constant rank.

3.1.4 Theorem (Local Submersion Theorem)

Let V ⊆ Rm and W ⊆ Rq be open sets. If f : V → W is a submersion (at x ∈ V ),
then there exist open subsets Ṽ ⊆ V ⊆ Rm, W1 ⊆ Rm−q, W2 ⊆ Rq (with x ∈ Ṽ ) and a
diffeomorphism κ : W1 ×W2 → Ṽ such that

f ◦ κ(w1, w2) = w2 for all (w1, w2) ∈ W1 ×W2. (3.4)

16See also Examples 2.1.4 (3).
17See [Lee13, Theorem C.34, p. 657] for instance.
18See [Lee13, Theorem 4.12, p. 81] for instance.
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Proof. Since f is a submersion, q ≤ m necessarily. The Jacobian matrix∇f(x) at x ∈ V is a

(q×m)-matrix of rank q with entries

(
fi
∂xj

(x)

)
(i = 1, ..., q, j = 1, ...,m). There is a (linear)

diffeomorphism τ : Rm → Rm, given by a change of basis such that f̃ = f ◦τ : τ−1(V )→ W
is a submersion and the left (q × q)-block of its Jacobian matrix at x̃ = τ−1(x),

A =

(
f̃i
∂xj

(x̃)

)
1≤i,j≤q

, (3.5)

is regular. Now, we define

g : τ−1(V )→ Rm by g(x1, ..., xm) = (xq+1, ..., xm, f̃(x1, ..., xq)). (3.6)

For the projection prII : Rm−q × Rq → Rq, prII(a, b) = b, we get f̃ = prII ◦g. Further, g is
smooth and its Jacobian matrix at x̃ is given by

∇g(x̃) =
[

0 Im−q
A 0

]
,which is invertible with inverse (∇g(x̃))−1 =

[
0 A−1

Im−q 0

]
. (3.7)

Therefore, the Inverse Function Theorem yields an open neighbourhood U ⊆ τ−1(V ) of x̃
such that g|U is a diffeomorphism. In particular, g(U) is open. Hence, there are open sets
W1 ⊆ Rm−q and W2 ⊆ Rq such that g(x̃) ∈ W1 ×W2 ⊆ g(U). Ũ = (g|U)−1(W1 ×W2) ⊆ U
is open in Rm with x̃ ∈ Ũ and g|Ũ is also a diffeomorphism. Moreover, κ = τ ◦ (g|Ũ)−1 is a
diffeomorphism between open sets from W1 ×W2 onto Ṽ = τ(Ũ) with x = τ(x̃) ∈ Ṽ . By
f ◦ τ = prII ◦g, we finally obtain

f ◦ κ(w1, w2) = w2 for all (w1, w2) ∈ W1 ×W2. (3.8)

3.1.5 Proposition (Pullback Foliation of a Transverse Map)

Let M be a smooth manifold of dimension m and (N,G) a smooth (p, q)-foliation. Further,
let f : M → N be a smooth map transverse to G.
Then, there is a smooth (m − q, q)-foliation f ∗(G) of M , called the pullback foliation
of f induced by G. The leaves are given by the connected components of the preimages
f−1(L) = {y ∈ M : f(y) ∈ L}, where L ranges over the leaves of G which intersect the
image f(M) ⊆ N .

Proof. Let x ∈ M , ψM : UM → VM be a chart of x and (ψpN , ψ
q
N) : UN → W p ×W q be a

foliated chart of (N,G) with f(x) ∈ UN . By shrinking the domain of ψM , we can assume
UM ⊆ f−1(UN). The second component function of the foliated chart, ψqN : UN → W q ⊆ Rq,
is a submersion and since f is transverse to G, the composition ψqN ◦ f |f−1(UN ) is also a

submersion. Further, f̃ = ψqN ◦ f |UM ◦ ψ
−1
M : VM ⊆ Rm → W q ⊆ Rq is a submersion

between open subsets, such that the Local Submersion Theorem 3.1.4 provides open sets
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ṼM ⊆ VM ⊆ Rm, W1 ×W2 ⊆ Rm−q × Rq with ψM(x) ∈ ṼM and a smooth diffeomorphism
κ : W1 ×W2 → ṼM satisfying

f̃ ◦ κ(w1, w2) = w2 for all (w1, w2) ∈ W1 ×W2. (3.9)

Set ŨM = ψ−1
M (ṼM) and ϕ = κ−1◦ψM |ŨM . We will verify, that (ŨM , ϕ) is a foliated chart for

x of an (m−q, q)-foliation of M . ϕ is a diffeomorphism as composition of diffeomorphisms.
Fix a leaf L ∈ G. If f−1(L) ∩ ŨM = ∅, there is nothing to show. Otherwise, let y ∈ ŨM
with f(y) ∈ L. Then, there is a (unique) pair (w1, w2) = ϕ(y) ∈ W1 ×W2 satisfying

w2 = f̃ ◦ κ(w1, w2) = f̃ ◦ ψM(y) = ψqN ◦ f(y) (3.10)

If [ŨM ∩ f−1(L)]α is a connected component, then by f(ŨM ∩ f−1(L)) ⊆ UN ∩ L and
the continuity of f , the image, f([ŨM ∩ f−1(L)]α) is connected in UN ∩ L and therefore
contained in some connected component [UN ∩ L]β(α) on which ψqN is of a constant value
cβ(α) ∈ W q ⊆ Rq. Together with (3.10), this gives ϕ([ŨM ∩ f−1(L)]α) = W1 × {cβ(α)}.

3.1.6 Corollary (Foliations of Submersions)

Let S : M → N be a submersion between smooth manifolds of dimension m and n, thus
m ≥ n necessarily. Then, there is a smooth ((m − n), n)-foliation of M , given by the
connected components of the level sets S−1({c}) = {x ∈ M : S(x) = c} as leaves, where c
ranges over the image S(M) ⊆ N .

Proof. Let G = {{y} : y ∈ N} be the (0, n)-foliation by points of N . Since S is a submer-
sion, it is also transverse to G. By proposition 3.1.5, the pullback foliation S∗(G) is the
desired foliation on M .

Note that every p-foliation of an m-dimensional manifold M is locally given by the connec-
ted components of the level sets of a submersion. More precisely, define for a foliated chart
ϕ : U → V ×W ⊆ Rp × Rm−p the map SU = prII ◦ϕ : U → W , where prII is the pro-
jection of V ×W onto W . Then SU is a submersion as a composition of submersions and
S−1
U ({cβα}) = ϕ−1(pr−1

II ({cβα})) = ϕ−1(V × {cβα}) = (U ∩ Lα)β for any α and β.

3.1.7 Examples (Foliations)

(1) Foliation by Points
Let M and N be smooth manifolds of dimension m and n, respectively.
Then FN(M) = {M × {y} : y ∈ N} is a smooth (m,n)-foliation on the product
manifold M × N , called the M-foliation by points of N . A foliated chart is given
by (V ×W, (ϕ ◦ πV , ψ ◦ πW )), where πV , πW are the projections from V ×W , (V, ϕ)
and (W,ψ) are smooth charts of M and N , respectively.
Note that each smooth (p, q)-foliation (M,F) is locally isomorphic to a V -foliation by
points of W with open subsets V ⊆ Rp and W ⊆ Rq by a foliated chart ϕ : U → V ×W
of (M,F).
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(2) Foliation induced by Submersion:
Let S : R2 \ {0} → R, S(x, y) = xy. Then, S is a submersion since at each point
(x, y) ∈ R2 \ {0} the differential dS(x,y) : R2 → R is given by

dS(x,y)(a, b) = ∂xS(x, y)a+ ∂yS(x, y)b = ya+ xb, (3.11)

which has rank 1. Thus, the connected components of the level sets {(x, y) : xy = c}
(c ∈ R) of S induce a foliation on R2 \ {0}.

Figure 2: Foliation of the level sets of (x, y) 7→ xy on R2 \ {0}.

(3) Pullback Foliation
Let (M,F) be a smooth (p, q)-foliation and π : M × R → M the projection map,
which is a submersion. Then, the pullback foliation π∗(F) on M × R is given by
{L × R : L ∈ F}. We will need this specific foliation on the product manifold M × R
later for a type of homotopy. It satisfies the following property:

(∗) For any t ∈ R the smooth injective inclusion map Jt : M →M ×R, x 7→ (x, t) is
also a foliated map from (M,F) to (M × R, π∗(F)).

(4) Restricted Foliation
Let S be a smooth immersed submanifold of a smooth manifold M . If the inclusion
iS : S → M is transverse to a (p, q)-foliation F of M , then F|U = i∗S(F), given by
the connected components of all leaf intersections with S, is a (s − q, q)-foliation of
S, where s denotes the dimension of the manifold S. Note that, if U ⊆ M is an open
subset, then diU : TxU → TxM is an isomorphism for each x ∈ U (e.g. by [Lee13,
Proposition 3.9]). In this case, the inclusion is transversal to any foliation of M .
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(5) Foliation of the Tangent Bundle:
Let (M,F) be a smooth (p, q)-foliated manifold. Then, (TM, τ ∗M(F)) is a smooth fo-
liated manifold of dimension (2p + q, q). (By Remark 2.1.2 (4), τM : TM → M is a
submersion as the projection of a smooth vector bundle. The manifold dimension of
TM is 2(p+ q) and Proposition 3.1.5 yields the assertion.)

3.2 Foliated Differential Forms

In this chapter, let F = {Lα}α∈A be a smooth (p, q)-foliation on an n-dimensional manifold
M and k ∈ N0. Recall that a differential form ω ∈ Ωk(M) is a section of the alternating
k-tensor bundle of the tangent bundle of M , i.e. ωx = ω(x) : (TxM)k → R is a multilinear
alternating map for every x ∈ M . A 0-form is just a C∞ function M → R. The C∞-
topology provides Ωk(M) with the structure of a Fréchet space.
There are two ways to introduce the so called smooth foliated differential k-forms on a
foliated manifold.19 We will show that both constructions will lead to isomorphic Fréchet
spaces.

3.2.1 Definition (Some Vector Bundles Induced By a Foliation)

(a) Foliated Tangential Subbundle
All leaves are immersed submanifolds of dimension p, such that we can identify the
tangent space TxFx with a p-dimensional subspace of TxM for each x ∈ M . Define
TF =

⊔
x∈M

TxFx and τF = τM |TF . Then (TF , τF ,M) is a p-subbundle of the n-rank

tangent bundle (TM, τM ,M), called the foliated tangential subbundle of (M,F).

(b) Transversal Bundle
The quotient bundle (TF⊥, τF⊥ ,M) = (TM/TF , πTM/TF ,M) of the tangent bundle by
the foliated tangential p-subbundle is called the transversal or normal bundle of
M and has rank n− p.

(c) Foliated Alternating k-Tensor Bundle
Applying the alternating k-tensor functor (see Corollary 2.3.13 (c)) to the folia-
ted tangential subbundle, we obtain the foliated alternating k-tensor bundle
(Λk(T ∗F),Λk(π),M) of rank

(
p
k

)
. The inclusion M -morphism i : TF → TM induces

a restriction map i∗ : Λk(T ∗M) → Λk(T ∗F) by its pullback, which is a smooth
vector bundle M -morphism with constant rank

(
p
k

)
. Hence, i∗ is surjective and its

image vector bundle is the foliated alternating k-tensor bundle. By Lemma 2.4.2, it
is isomorphic to the quotient bundle of (Λk(T ∗M),Λk(π),M) by the kernel vector
bundle of i∗. This motivates the following vector bundle:

19Compare to [Ber01] and [Ber11].
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(d) k-Annihilator
Define the k-annihilator of TF to be the kernel vector bundle of the smooth vector
bundle M -morphism i∗ : Λk(T ∗M)→ Λk(T ∗F), which is the pullback of the inclusion
M -morphism i : TF → TM . To be more precise, define

Λk
(T ∗M �TF) =

⊔
x∈M

Λk
(T ∗xM �TxFx), where

Λk
(T ∗xM �TxFx) ={ω ∈ Λk

(T ∗xM) : ω(v1, ..., vk) = 0 ∀ v1, ..., vk ∈ TxFx} (x ∈M),

For k = 0, we set Λ0(T ∗xM �TxFx) = {0} such that Λ0(T ∗M �TF) = M×{0}. Together
with the canonical projection, it is a smooth

((
n
k

)
−
(
p
k

))
-subbundle of the

(
n
k

)
-ranked

smooth vector bundle (Λk(T ∗M),Λk(π),M).

Foliations arise in the solvability theory of differential equations. We refer to [Lee13, Chap-
ter 19] for a general elaboration and illustrate the connections between foliations and
systems of differential equations in some examples.

3.2.2 Examples (Connections of Foliations to Differential Equations)

Consider a vector field X on a smooth manifold M of dimension n. For each point x ∈M ,
there is some open interval I and a smooth map u : I → M such that for all t ∈ I, the
equation Xu(t) = u′(t)(∈ Tu(t)M) holds, and u(t0) = x is satisfied for some t0 ∈ I by [Lee13,
Proposition 9.2 ]. This u is called an integral curve of X through the point x ∈ M and
the image of u is called an integral manifold of X at x ∈ M . If the vector field X
vanishes nowhere, it spans a one-dimensional subbundle of TM over M which is equal to
the foliated tangential subbundle of an (1, n − 1)-foliation, where the leaves are given by
the maximal integral manifolds of X. For instance, to find the integral curve u : I → R2,
u(t) = (x(t), y(t)) of the vector field X on R2 defined by X = y ∂

∂x
− x ∂

∂y
, we have to solve

X(x(t),y(t)) = u′(t) = x′(t)
∂u

∂x
+ y′(t)

∂u

∂y
. (3.12)

Comparison of coefficients yields the equivalent system of first-order ordinary differential
equations

x′(t) = y(t), y′(t) = −x(t). (3.13)

The solutions are x(t) = a sin(t) + b cos(t) and y(t) = a cos(t) − b sin(t) with constants
a, b ∈ R. If we want to obtain the integral curve through (x0, y0) ∈ R2, u(0) = (b, a)
yields a = y0 and b = x0. The maximal interval of u can be chosen to be R and the
integral manifold through (x0, y0) ∈ R2 \ {(0, 0)} is a circle through that point with center
(0, 0), which is a one-dimensional manifold. The integral manifold through (0, 0), where
the vector field vanishes, is just the origin, which is a zero-dimensional manifold. So X
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induces a (1, 1)-foliation only on R2 \ {(0, 0)} given by circles. For each parameter t ∈ R,
we can define the flow ϕt : R2 → R2 of X at time t ∈ R by setting

ϕt(x, y) = (y sin(t) + x cos(t), y cos(t)− x sin(t)). (3.14)

Intuitively, the flow of X tells us that a particle (x, y) ∈ R2 at time t0 = 0 is moved to the
coordinates ϕt(x, y) after time t by the impact of X. For a higher dimensional foliation,
we consider M = R3 and two vector fields X and Y defined by

X =
∂

∂x
+ y

∂

∂z
, Y =

∂

∂y
+ x

∂

∂z
. (3.15)

X and Y are pointwise linearly independent vector fields on R3. Hence, the span of X
and Y , denoted by span{X, Y }, defines a 2-subbundle of TR3. The question whether the
span of these two vector fields arise as the foliated tangential subbundle of some (2, 1)-
foliation of R3 is answered by the Frobenius Theorem. The answer is affirmative if and
only if the subbundle span{X, Y } is involutive, which means that the Lie-bracket [A,B]
of any two vector fields A,B ∈ Γ(M, span{X, Y }) in span{X, Y }, defined pointwise by
[A,B]x(f) = Ax(Bx(f)) − Bx(Ax(f)) for x ∈ M and f ∈ C∞(M), is again a section of
span{X, Y }. Equivalently, [X, Y ] can be written as a linear combination of X and Y . In
our example, we can compute

X ◦ Y =
∂2

∂x∂y
+

∂

∂z
+ x

∂2

∂x∂z
+ y

∂2

∂y∂z
+ xy

∂2

∂z2
= Y ◦X, (3.16)

such that X and Y even commute, which is equivalent to [X, Y ] = 0. To obtain the
underlying foliation of span{X, Y }, we form the flows ϕt, ψs : R3 → R3 of the corresponding
vector fields and get a parametrization of the integral manifold through (x, y, z) ∈ R3 by the
function Φ(s, t) = ψs ◦ ϕt(x, y, z), defined on IX × IY , where IX and IY are the (maximal)
open intervals of the integral curves corresponding to X and Y , respectively. Note that
the flows of X and Y commute if and only if the vector fields X and Y commute, see for
instance [Lee13, Theorem 9.44]. In the case, 0 6= [X, Y ] ∈ Γ(M, span{X, Y }), one has to
find vector fields X̃ and Ỹ which generate span{X, Y } and commute, in order to compute
a parametrization of the integral manifolds20. In our example, we can calculate the integral
curves and flows of X and Y through (x, y, z) ∈ R3 to be:

u, v : R→ R3, u(t) = (t+ x, y, yt+ z), v(s) = (x, s+ y, xs+ z), (3.17)

ϕt, ψs : R3 → R3, ϕt(x, y, z) = (t+ x, y, yt+ z), ψs(x, y, z) = (x, s+ y, xs+ z) (3.18)

for t, s ∈ R. Hence, Φ : R2 → R3, Φ(s, t) = ψs ◦ϕt(x, y, z) = (t+ x, s+ y, (t+ x)s+ yt+ z)
yields a parametrization of the integral manifold through (x, y, z) ∈ R3.

20Compare to [Lee13, Example 19.14].
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3.2.3 Definition (Foliated Differential k-Forms)

(a) Define Ωk(M,F) to be the Fréchet space of sections of the foliated alternating k-tensor
bundle Λk(T ∗F):

Ωk(M,F) = Γ
(
M,Λk

(T ∗F)
)
. (3.19)

(b) Consider Λk(T ∗M �TF), the k-annihilator of TF and i∗ : Λk(T ∗M) → Λk(T ∗F),
defined in Definition 3.2.1 (d). Applying the section functor (Remark 2.5.14), we ob-
tain the continuous pushforward (i∗)∗ : Ωk(M) → Ωk(M,F). The space of sections
Ωk

�(M,F) = Γ(M,Λk(T ∗M �TF)) is exactly the kernel of (i∗)∗ and therefore a closed

subspace of the Fréchet space Ωk(M). Now, we define the quotient space

Ωk
fol(M,F) = Ωk(M)/Ωk �(M,F), (3.20)

which is also a Fréchet space.

3.2.4 Lemma (Isomorphic Constructions of Foliated Forms)

There is an isomorphism of Fréchet spaces between Ωk
fol(M,F) and Ωk(M,F) for each

k ∈ N0.

Proof. For k = 0 both spaces are C∞(M), so assume k ∈ N. As we have mentioned
in Definition 3.2.1 (c), the induced bijection of the surjective smooth vector bundle M -
morphism % = i∗ : Λk(T ∗M)→ Λk(T ∗F),

%̃ : Λk(T ∗M)/Λk(T ∗M �TF)→ Λk(T ∗F) (3.21)

is an isomorphism of smooth vector bundle M -morphisms by Lemma 2.4.2. By applying
the section functor, the pushforward %̃∗ : Γ(M, Λk(T ∗M)/Λk(T ∗M �TF)) → Ωk(M,F) is
an isomorphism of Fréchet spaces. Further, Γ(M, Λk(T ∗M)/Λk(T ∗M �TF)) is an isomorphic
Fréchet space of Ωk(M)/Ωk �(M,F) = Ωk

fol(M,F) by Lemma 2.5.16, which completes the
proof.

3.2.5 Example (Foliated Forms on a Foliation Induced by Submersions)

Consider a submersion S : U → Rn of an open set U ⊆ Rn+1. We know by Lemma 3.1.6
that a 1-dimensional foliation F on U is given by the connected components of the level
sets as leaves. It is well known, that the gradients of the component functions S1, ..., Sn
are orthogonal to these level sets. For simplification we suppose that the Euclidean norm
of the gradients in each point of U is equal 1. Fix any ξ ∈ U . Then there is a unique
leaf Fξ (a connected component of a level set) which contains ξ. The cross product of
ν1(ξ) := ∇S1(ξ), ..., νn(ξ) := ∇Sn(ξ) complements these vectors to a basis of the (n + 1)
dimensional tangent space TξU . So νn+1(ξ) = ν1(ξ) × · · · × νn(ξ) is an orthonormal basis
of the 1-dimensional tangent space TξFξ.
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We obtain a basis of T ∗ξ U , the dual space of TξU , by building the dual basis ν1(ξ), ..., νn+1(ξ)
of the basis ν1(ξ), ..., νn+1(ξ) (such that νi(νj(ξ)) = δi,j).
In this way, we receive for each ξ ∈ U a basis ν1(ξ), ..., νn+1(ξ) of T ∗ξ U , such that νn+1(ξ)
is an orthonormal basis of T ∗ξ Fξ. Therefore a foliated 1 form ω can be represented as the
product of some C∞-function λ : U → R with the 1-form νn+1:

Ω1(U,F) = {ω = λ νn+1 : λ ∈ C∞(U)} (3.22)

Thus Ω1
fol(U,F) is isomorphic to C∞(U) by λ νn+1 7→ λ. We can compute the quotient map

Ω1(U)→ Ω1
fol(U,F) as a projection ω 7→ 〈ω, νn+1〉νn+1 =

(
n+1∑
j=1

ωj(ν
n+1)j

)
νn+1.

If ω = dg =
n+1∑
j=1

∂jg for some g ∈ C∞(U), we obtain by using the projection and isomor-

phism above a differential operator d̃ : C∞(U) → C∞(U), g 7→
n+1∑
j=1

(νn+1)j ∂jg, such that

the following diagram commutes:

Ω0
fol(U,F)

d̃F //
OO

id
��

Ω1
fol(U,F)
OO

w
��

C∞(U)
d̃

// C∞(U).

Here, the upper map d̃F : Ω0
fol(U,F)→ Ω1

fol(U,F) is the composition q1 ◦ d of the quotient
map q1 : Ω1(U,F)→ Ω1

fol(U,F) and the Cartan-differential d : C∞(U)→ Ω1(U).
Hence, Ω1

fol(M,F)/Im(dF ) is Hausdorff if and only if the differential operator d̃ (with com-

ponents of νn+1 as non constant coefficients) has closed range.
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3.3 Foliated Cartan-Differential

Next, we want to define an exterior derivative between foliated differential forms similar
to the Cartan-differential between differential forms. If one uses the spaces Ωk

fol(M,F),
defined as quotient spaces (Definition 3.2.3 (b)) and qk+1 denotes the quotient map from
Ωk+1(M) onto Ωk+1

fol (M,F), a linear and continuous map d̃F : Ω : folk(M,F)→ Ωk
fol(M,F)

is induced by the composition qk+1 ◦ d. This d̃F is well-defined since the composition is
constant on equivalence classes of Ωk

fol(M,F) because the Cartan-differential d commutes
with restrictions, which are pullbacks of inclusions of the leaves. It might be reasonable to
achieve also a foliated Cartan-differential between the foliated differential forms Ωk(M,F)
obtained by Definition 3.2.3 (a). We will do this elementary without using the just defined
d̃F and the isomorphism between the two ways of definition to avoid forming quotient spaces
completely. Our approach is based on the introduction of the classical Cartan-differential
that can be found in [Lee13, Exterior Derivatives, p. 362 ff.]. As a positive side effect, we
obtain the classical Cartan-differential between differential forms by considering the trivial
one-leaf foliation L = {M}.

3.3.1 Remark (Differential of a Smooth Function)

Recall, the differential of a smooth function f : M → R on a smooth manifold is a
smooth section df of the cotangent bundle T ∗M , i.e. df ∈ Ω1(M) defined by

(df)x(νx) = νx(f) for x ∈M and a derivation νx ∈ TxM. (3.23)

If (U, (x1, ..., xn)) is a chart of M , the coordinate representation of df is:

df |U =
n∑
i=1

∂f

∂xi
dxi, (3.24)

where dxi is the differential of the ith-coordinate function xi. Furthermore, (dx1, ..., dxn)
is a frame of T ∗M over U which is dual to the frame

(
∂
∂x1 , ...,

∂
∂xn

)
of TM over U in the

sense, that dxi
(
∂
∂xj

)
= δi,j on U .21 The coordinate representation yields therefore also the

continuity of d : C∞(M)→ Ω1(M).
Involving the wedge product, one gets also a frame of the exterior k-form vector bundle
Λk(T ∗M) over U22, such that a 1-forms dxi can be seen as an elementary building block of
differential forms. Besides, the differential of a function enables a definition of the exterior
derivative in terms of local representations. Since TF is a subbundle of TM , it is quite
natural to look at the restriction of df and expect similar results for the theory of foliated
forms.

21We refer to [Lee13, Chapter 6, p.132 ff.] for details.
22The frame consists of elementary alternating tensors (Remark 2.3.8) built of a frame and its dual

frame.
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3.3.2 Definition (Foliated Differential of a Smooth Function)

Denote by iTF : TF → TM the inclusion of TF , which is a smooth injective vector bundle
M -morphism. The foliated differential dFf : M → T ∗F of a smooth function f : M → R
is defined as the pushforward23 of the pullback of iTF evaluated at df :

(dFf) = (i∗TF)∗(df) = i∗TF ◦ df, i.e. (3.25)

(dFf)x(νx) = νx(f |Fx) for x ∈M and a derivation νx ∈ TxFx. (3.26)

It follows by Remark 2.5.14, that dF : C∞(M)→ Ω1(M,F) is continuous and linear even
by definition.

3.3.3 Proposition (Local Representation of the Foliated Differential)

Let (U, (x1, ..., xn)) be a smooth foliated chart of (M,F) and f ∈ C∞(M), then

(dFf)|U =

p∑
i=1

∂f

∂xi
dFx

i. (3.27)

Moreover, (U, dFx
1, ..., dFx

p) is a frame of T ∗F .

Proof. The foliated chart induces the frame
(
U,
{

∂
∂xi

}p
i=1

)
of TF . Define sections λ1, ..., λp :

U → T ∗F by the equations λj
(
∂
∂xj

)
= δi,j for i, j = 1, ..., p. To be precise, λjx(νx) = gi(x)

for x ∈ U and ν =
p∑
j=1

gj
∂
∂xj
∈ Γ(U, TF), such that λj is a smooth section of T ∗F . Moreover,

(λ1
x, ..., λ

p
x) is the dual basis of

(
∂
∂x1

∣∣
x
, ..., ∂

∂xp

∣∣
x

)
for each x ∈ U , such that (U, {λj}pj=1) is a

frame of T ∗F . Since dFf ∈ Γ(M,T ∗F) = Ω1(M,F), we obtain dFf |U =
p∑
j=1

cjλ
j for some

component functions cj ∈ C∞(U), which we can compute by cj(x) = (dFf)x
(
∂
∂xj

)
= ∂f

∂xj

∣∣
x

for x ∈ U . Finally, the foliated differential of a local coordinate yields

(dFx
i)|U =

p∑
j=1

∂xi

∂xj
λj =

p∑
j=1

δi,jλ
j = λi. (3.28)

Therefore, (U, dFx
1, ..., dFx

p) is the dual frame of (U,
(
U,
{

∂
∂xi

}p
i=1

)
) and in particular a

frame of T ∗F over U .

A frame of T ∗F allows one to construct a frame of Λk(T ∗F) using the wedge-product for
foliated forms, which is defined pointwise. This constructed frame will be the same as the
elementary alternating k-tensors described in Remark 2.3.8 for frames instead of just a
basis.24 This gives the following corollary.

23See Remark 2.5.14 (section functor).
24See [Lee13, Proposition 14.11 (d), p. 356] for instance.
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3.3.4 Corollary (Local Representation of Foliated Forms)

Let (U, (x1, ..., xn)) be a smooth foliated chart of (M,F) and denote

dFx
I = (dFx

i1) ∧ ... ∧ (dFx
ik) (3.29)

for a (not necessarily increasing) multi-index I = (i1, ..., ik) ∈ {1, ..., p}k.
Then

(
U, {dFxI}I∈Ikinc(p)

)
is a local frame of Λk(T ∗F) and ω ∈ Ωk(M,F) has the local

representation

ω|U =
∑

I∈Ikinc(p)

ωI dFx
I , (3.30)

where ωI ∈ C∞(U) is given by ωI(x) = ωx
(

∂
∂x1

∣∣
x
, ..., ∂

∂xk

∣∣
x

)
.

Differential forms can be pulled back by smooth functions. In order to pull back
foliated forms, one needs smooth foliated maps, which are the morphisms in the category
of foliated manifolds. Recall that, under the notation of leaf functions, a foliated map
f : (M,F)→ (N,G) needs to satisfy:

∀x ∈M : f(Fx) ⊆ Gf(x), (3.31)

where Fx ∈ F denotes the leaf with x ∈ Fx and Gf(x) ∈ G denotes the leaf with f(x) ∈ Gf(x).

3.3.5 Definition (Pushforward and Pullback of Foliated Maps)

Let f : (M,F)→ (N,G) be a smooth foliated map between foliated manifolds.

(a) The pushforward f∗ : TF → TG of the foliated map f is defined by

(f∗)x : TxFx → Tf(x)Gf(x), (f∗)x(νx)(g) = νx(g ◦ f |Fx), (3.32)

where Fx ∈ F denotes the leaf containing x ∈ M , Gf(x) ∈ G denotes the leaf contai-
ning f(x) (and therefore also f(Fx)), νx ∈ TxFx is a derivation and g ∈ C∞(Gf(x)).
(Alternatively, f∗ could be defined in terms of derivatives of curves through x by
(f∗)x(γ

′(0)) = (f ◦ γ)′(0), where γ is a smooth curve in Fx with γ(0) = x.)

(b) The pullback f ∗ : Ωk(N,G)→ Ωk(M,F) of the foliated map f is defined by

f ∗g = g ◦ f, if g ∈ Ω0(N,G) = C∞(N), (3.33)

(f ∗ω)x = (f∗)
∗
x(ωf(x)), if ω ∈ Ωk(N,G), x ∈M, (3.34)

(f∗)
∗(ωf(x))(ν

1
x, ..., ν

k
x) = ωf(x)((f∗)x(ν

1
x), ..., (f∗)x(ν

k
x)) for νjx ∈ TxFx. (3.35)

Here, (f∗)
∗
x : Λk

(
Tf(x)Gf(x)

)
→ Λk (TxFx) is the pullback map of the linear map

(f∗)x : TfFx → Tf(x)Gf(x), which we already know from example 2.3.10 (2) (iii).
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3.3.6 Lemma (Properties of Foliated Pullback)

Let f : (M,F)→ (N,G) be a smooth foliated map between foliated manifolds. Then:

(a) dF(f ∗g) = f ∗(dGg) for all g ∈ C∞(N).

(b) If (V, ψ = (y1, ..., yr+s)) is a smooth foliated chart of the (r, s)-foliated manifold (N,G),
we have the following local representation of f ∗ : Ωk(N,G)→ Ωk(M,F)

f ∗

 ∑
I∈Ikinc(r)

gI dGy
i1 ∧ ... ∧ dGyik

 =
∑

I∈Ikinc(r)

(gI ◦ f) dF(yi1 ◦ f) ∧ ... ∧ dF(yik ◦ f).

(3.36)

(c) If g : (N,G)→ (P,H) is another smooth foliated map, then

(g ◦ f)∗ = f ∗ ◦ g∗ (3.37)

and id∗M is the identity map on Ωk(M,F).

Proof. (a) Let g ∈ C∞(N), x ∈M and νx ∈ TxF(x). We obtain

(dF(f ∗g))x(νx) = dF(g ◦ f)x(νx) (3.38)

= νx((g ◦ f)|Fx), (3.39)

and on the other hand

(f ∗(dGg))x(νx) = f ∗((dGg)f(x))(νx) (3.40)

= (dGg)f(x)((f∗)x(νx) (3.41)

= (f∗)x(νx)(g|Gf(x)
) (3.42)

= νx(g|Gf(x)
◦ f |Fx), (3.43)

which is the same since f(Fx) ⊆ Gf(x) for a foliated map f .
(b) Since f ∗ is linear and f ∗(ω∧η) = (f ∗ω)∧(f ∗η) for foliated forms on (N,G), the formula
follows by (a) using f ∗(dGy

j) = dF(f ∗yj) = dF(yj ◦ f).
(c) If k = 0, this is clear, hence assume k > 0. Note that the pushforward satisfies ((g ◦
f)∗)x = (g∗)f(x) ◦ (f∗)x for x ∈ M . The alternating k-tensor functor of example 2.3.10 (2)
(iii) is contravariant and yields therefore, ((g ◦ f)∗)

∗
x = (f∗)

∗
x ◦ (g∗)

∗
f(x). For η ∈ Ωk(P,H),

we get

((g ◦ f)∗η)x = ((g ◦ f)∗)
∗
x(ηg(f(x))) = (f∗)

∗
x

(
(g∗)

∗
f(x)(ηg(f(x)))

)
(3.44)

= (f∗)
∗
x((g

∗η)f(x)) = (f ∗(g∗η))x, (3.45)

which gives (g ◦ f)∗ = f ∗ ◦ g∗. If idM : (M,F) → (M,F) is the identity, the pushforward
(idM)∗ : TF → TF is the identity on TF and therefore, id∗M is the identity map on
Ωk(M,F).

In order to define a Cartan-differential for arbitrary foliated forms, we consider first the
local case of a foliation and collect some properties.
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3.3.7 Definition (Local Version of Foliated Cartan-Differential)

Let V ⊆ Rp, W ⊆ Rq be open subsets and (x1, ..., xp) the Euclidean basis of Rp. Consider
on V × W the V -foliation F = FW (V ) = {V × {w} : w ∈ W} by points of W . For
ω ∈ Ωk(V ×W,FW (V )) we have the representation

ω =
∑

I∈Ikinc(p)

ωI dFx
I (3.46)

and define the foliated Cartan-differential dF : Ωk(V ×W,F)→ Ωk+1(V ×W,F) by

dFω =
∑

I∈Ikinc(p)

(dFωI) ∧ (dFx
I), (3.47)

On Ω0(V ×W,F) = C∞(V ×W ), dF is given by the foliated differential of definition 3.3.2.

3.3.8 Proposition (Properties of Local Foliated Cartan-Differential)

In the setting of definition 3.3.7 the following holds:

(a) dF : Ωk(V ×W,F)→ Ωk+1(V ×W,F) is R-linear.

(b) If ω ∈ Ωk(V ×W,F) and η ∈ Ω`(V ×W,F), then

dF(ω ∧ η) = (dFω) ∧ η + (−1)kω ∧ (dFη). (3.48)

(c) dF ◦ dF = 0.

(d) The foliated Cartan-differential commutes with pullbacks of foliated maps:
If Ṽ ⊆ Rp̃, W̃ ⊆ Rq̃ are open, F̃ = FW̃ (Ṽ ) is the Ṽ -foliation by points of W̃ and
f : (V ×W,F)→ (Ṽ × W̃ , F̃) is a smooth foliated map, then

f ∗(dF̃µ) = dF(f ∗µ) for µ ∈ Ωk(Ṽ × W̃ , F̃ ). (3.49)

Proof. (a) The linearity follows by definition and linearity of the foliated differential on
smooth functions.
(b) By linearity, it will be sufficient to show (b) for ω = ωI dFx

I ∈ Ωk(V × W,F) and
η = ηJ dFx

J ∈ Ω`(V ×W,F). Note that the product rule for functions yields

dF(ωIηJ) = dFωI ηJ + ωI dFηJ . (3.50)

Next, we show dF(ωI dFx
I) = (dFωI)∧(dFx

I) for a (not necessarily increasing) multi-index
I ∈ {1, ..., p}k. If I contains repeated indices, both sides are 0. Otherwise, there exists a
permutation σ sending I to an increasing multi-index K ∈ Ikinc(p) such that dFx

I =
sgn(σ)dFx

K and we obtain

dF(ωI dFx
I) = sgn(σ)dF(ωI dFx

K) = sgn(σ)(dFωI) ∧ (dFx
K) = (dFωI) ∧ (dFx

I). (3.51)
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Now, we can compute

dF(ω ∧ η) = dF((ωI dFx
I) ∧ (ηJ dFx

J)) (3.52)

= dF(ωIηJ (dFx
I) ∧ (dFx

J)) (3.53)

= (dFωI ηJ + ωI dFηJ) ∧ (dFx
I) ∧ (dFx

J) (3.54)

= (dFωI) ∧ (dFx
I) ∧ (ηJ dx

J) + dFηJ ∧ (ωI dFx
I) ∧ (dFx

J) (3.55)

= (dFω) ∧ η + (−1)kω ∧ (dFηJ ∧ dFxJ) (3.56)

= (dFω) ∧ η + (−1)kω ∧ (dFη). (3.57)

(c) For f ∈ C∞(V ×W ) = Ω0(V ×W,F) we obtain by Schwarz’s Theorem,

dF(dFf) = dF

(
p∑
j=1

∂f

∂xj
dFx

j

)
(3.58)

=

p∑
j=1

p∑
i=1

∂2f

∂xi∂xj
(dFx

i) ∧ (dFx
j) (3.59)

=
∑

1≤i<j≤p

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
(dFx

i) ∧ (dFx
j) = 0. (3.60)

In particular, dF(dFx
i)) = 0. More generally, we show dF(dFx

I) = 0 for I ∈ Ikinc(p) by
induction over k. Assume this is the case for k − 1, then by the anti-derivation property
(b), we obtain for I = (i1, ..., ik) ∈ Ikinc(p) and J = (i2, ..., ik) ∈ Ik−1

inc (p),

dF(dFx
I) = dF((dFx

i1) ∧ (dFx
J)) (3.61)

= dF(dFx
i1) ∧ (dFx

J)− (dFx
i1) ∧ dF(dFx

J) = 0. (3.62)

Together with (b) this yields for ω = ωI dx
I ∈ Ωk(V ×W,F),

dF(dFω) = dF
(
(dFωI) ∧ (dFx

I)
)

(3.63)

= dF(dFωI) ∧ (dFx
I)− (dFωI) ∧ dF(dFx

I) = 0. (3.64)

By linearity of dF , (c) follows.
(d) Denote the Euclidean basis of Rp̃ by (y1, ..., yp̃). Again by linearity, it sufficies to consider
only forms µ = µI dy

I ∈ Ωk(Ṽ × W̃ , F̃). We get by Lemma 3.3.6 (a)

f ∗(dF̃µ) = f ∗((dF̃µI) ∧ (dF̃y
I)) (3.65)

= dF(µI ◦ f) ∧ dF(yi1 ◦ f) ∧ ... ∧ dF(yik ◦ f). (3.66)

On the other hand, Lemma 3.3.6 (b) yields

dF(f ∗µ) = dF
(
(µI ◦ f) dF(yi1 ◦ f) ∧ ... ∧ dF(yik ◦ f)

)
(3.67)

= dF(µI ◦ f) ∧ dF(yi1 ◦ f) ∧ ... ∧ dF(yik ◦ f). (3.68)
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3.3.9 Theorem (Existence and Uniqueness of Foliated Cartan-Differential)

Let (M,F) be a smooth (p, q)-foliated manifold. For each k ∈ N0 there is a unique map
dF : Ωk(M,F)→ Ωk+1(M,F), called the foliated Cartan-differential, satisfying:

(a) dF is R-linear.

(b) If ω ∈ Ωk(M,F) and η ∈ Ω`(M,F), then

dF(ω ∧ η) = (dFω) ∧ η + (−1)kω ∧ (dFη). (3.69)

(c) dF ◦ dF = 0.

(d) For k = 0, dF is the foliated differential of definition 3.3.2.

(e) For k ≥ 1 and a foliated chart (U, (x1, ..., xn)) of (M,F), dF is locally given by

dF

 ∑
I∈Ikinc(p)

ωI dFx
I

 =
∑

I∈Ikinc(p)

(dFωI) ∧ (dFx
I). (3.70)

(f) dF is continuous.

(g) The foliated Cartan-differential commutes with pullpacks of foliated maps:
If f : (M,F) → (N,G) is a smooth foliated map between smooth foliated manifolds,
then

f ∗(dGµ) = dF(f ∗µ) for µ ∈ Ωk(N,G). (3.71)

Proof. We start with existence. If ω ∈ Ωk(M,F) and ϕ : U → V ×W is a foliated chart of
(M,F), then (ϕ−1)∗ω|U ∈ Ωk(V ×W,FW (V )) and we define the foliated Cartan-differential
by

(dFω)|U = ϕ∗dFW (V )((ϕ
−1)∗ω|U). (3.72)

For well-definition, suppose ψ : U → Ṽ ×W̃ is also a foliated chart of (M,F). Then ψ◦ϕ−1

is a foliated diffeomorphism from (V ×W,FW (V )) to (Ṽ × W̃ ,FW̃ (Ṽ )). Proposition 3.3.8
(d) and (ψ ◦ ϕ−1)∗ ◦ (ψ−1)∗ = (ϕ−1)∗ yields

(ψ ◦ ϕ−1)∗dFW̃ (Ṽ )((ψ
−1)∗ω|U) = dFW (V )((ϕ

−1)∗ω|U). (3.73)

Together with ϕ∗ ◦ (ψ ◦ ϕ−1)∗ = ψ∗, we obtain

ψ∗dFW̃ (Ṽ )((ψ
−1)∗ω|U) = ϕ∗dFW (V )((ϕ

−1)∗ω|U). (3.74)

Now, properties (a)-(d) follow by definition and proposition 3.3.8 (a)-(c).
Before proving the remaining properties, we show that dF is already uniquely defined.
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Suppose d is any map satisfying properties (a)-(d). Then d is locally determined, i.e. if
ω1, ω2 ∈ Ωk(M,F) satisfy ω1|U = ω2|U on some open U ⊆ M , then (dω1)|U = (dω2)|U .
Let x ∈ U be arbitrary and χ ∈ C∞(M) be a bump function which is identically 1 on
some open neighbourhood of x with supp(χ) ⊆ U . For η = ω1 − ω2 we obtain that χη is
identically 0 everywhere. By properties (b) and (d): 0 = d(χη) = dFχ ∧ η + χdη. Using
χ(x) = 1, (dFχ)x = 0 and (a), we get (dω1)|x − (dω2)x = (dη)x = 0.
Let ω ∈ Ωk(M,F) and (U,ϕ = (x1, ..., xn)) be a foliated chart of (M,F) such that

ω|U =
∑

I∈Ikinc(p)

ωI dFx
I . (3.75)

For any x ∈ U and a bump function χ ∈ C∞(M) which is identically 1 on an open
neighbourhood V ⊆ U of x with supp(χ) ⊆ U , we can extend ωI |V and xi|V to global
smooth functions ω̃I , x̃

i ∈ C∞(M). Setting dF x̃
I = dF x̃

i1 ∧ · · · ∧ dF x̃ik ∈ Ωk(M,F) for a
multi-index I = (i1, ..., ik), we obtain

ω̃ =
∑

I∈Ikinc(p)

ω̃I dF x̃
I ∈ Ωk(M,F) with ω̃|V = ω|V . (3.76)

By (b)-(d), it follows that d(ω̃I dF x̃
I) = (dF ω̃I) ∧ (dF x̃

I). Since d is locally determined,
this gives with (a) for the evaluation in x

(dω)x = (dω̃)x =
∑

I∈Ikinc(p)

(dFωI)x ∧ (dFx
I)x. (3.77)

Since x ∈ U was arbitrary, we have proven uniqueness and (e).
The continuity of dF follows by (e). To see this elementary, use the representation
of dFωI and compute the component functions of (dω)|U with respect to the frame(
U, {dFxJ}J∈Ik+1

inc (p)

)
. These component functions are less than p many plus and minus

combinations of some ∂ωI
∂xj

such that the order of differentiation is only increased by one.
Hence, increasing the maximal differentiation order of a seminorm by one and setting the
continuity constant equals p will yield continuity locally, which suffices to show for (f).
To prove (g), let ϕ : U → V ×W and ψ : Ũ → Ṽ × W̃ be smooth foliated charts of (M,F)
and (N,G), respectively. The coordinate representation ψ◦f ◦ϕ−1 is then a smooth foliated
map from (V ×W,FW (V )) to (Ṽ × W̃ ,FW̃ (Ṽ )) such that we can apply 3.3.8 (d). Together
with (3.72) twice, this gives for ω ∈ Ωk(N,G) on U ∩ f−1(Ũ):

f ∗(dGω) = f ∗ψ∗dFW̃ (Ṽ )((ψ
−1)∗ω) (3.78)

= ϕ∗ ◦ (ψ ◦ f ◦ ϕ−1)∗dFW̃ (Ṽ )((ψ
−1)∗ω) (3.79)

= ϕ∗dFW (V )((ψ ◦ f ◦ ϕ−1)∗(ψ−1)∗ω) (3.80)

= ϕ∗dFW (V )((ϕ
−1)∗f ∗ω) (3.81)

= dF(f ∗ω). (3.82)
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3.3.10 Corollary (Connection with Cartan-Differential)

Considering the one leaf foliation {M} of a smooth manifold M , there exists a unique
map d : Ωk(M) → Ωk+1(M) with likewise properties (a)-(g) of Theorem 3.3.9, called the
(classical) Cartan-differential.
If (M,F) is a foliated manifold and %k = (i∗TF)∗ : Ωk(M) → Ωk(M,F) denotes the push-
forward (as in the definition of the section functor) of the pullback of alternating k-tensor
bundles, i∗TF : Λk(T ∗M)→ Λk(T ∗F), the following diagram commutes:

Ωk(M) d //

%k

��

Ωk+1(M)

%k+1

��
Ωk(M,F)

dF
// Ωk+1(M,F).

Proof. The existence and uniqueness of d is a consequence of the considered special case
of a one leaf foliation since foliated differential forms are just differential forms. For the
second part, let (M,F) be a foliated manifold. Since each leave Lα of F is contained in
M , the identity map idM : (M,F)→ (M, {M}) is a smooth foliated map. Its pushforward
(idM)∗ : TF → TM is just the inclusion morphism iTF of vector bundles and its pullback
id∗M : Ωk(M) → Ωk(M,F) agrees with the (section functor) pushforward of the pullback
of i∗TF : Λk(T ∗M) → Λk(T ∗F), such that %k = id∗M and we obtain the commutativity of
the diagram as a special case of Theorem 3.3.9 (g).

66



3.4 Foliated De Rham Cohomology

The de Rham cohomology of a smooth manifold is a useful tool to classify smooth manifolds
and gives information about their geometry and topology as well. Although, the foliated de
Rham cohomology will not be that illuminative for foliated manifolds, we will develop tools
to compute the foliated cohomology in some cases. The main results in this chapter are the
integrable homotopy invariance (Corollary 3.4.9), the Poincaré Lemma (Lemma 3.4.10), the
Mayer-Vietoris Theorem for foliated cohomology (Theorem 3.4.11) and Theorem 3.4.14 to
compute the foliated de Rham cohomology of foliations by points.

3.4.1 Definition (Foliated de Rham Cohomology)

Let (M,F) be a smooth (p, q)-foliated manifold. A foliated k-form ω ∈ Ωk(M,F) with
dFω = 0 will be called closed. A foliated k-form η ∈ Ωk(M,F) will be called exact if
there is a foliated (k − 1)-form µ ∈ Ωk−1(M,F) with η = dFµ. We define the spaces of
closed and exact foliated k-forms by

Zk(M,F) = Ker(dF : Ωk(M,F)→ Ωk+1(M,F)) = {closed k-forms on (M,F)}, (3.83)

Bk(M,F) = Im(dF : Ωk−1(M,F)→ Ωk(M,F)) = {exact k-forms on (M,F)}. (3.84)

Both are R-vector spaces by linearity of dF . If k < 0 or k > p, Ωk(M,F) is just the zero
space such that Zp(M,F) = Ωp(M,F) and B0(M,F) = 0, in particular. Since dF ◦dF = 0,
we have Bk(M,F) ⊆ Zk(M,F), i.e. every exact form is closed. This allows the definition
of the kth foliated de Rham cohomology group of (M,F) to be the quotient vector
space

Hk(M,F) = Zk(M,F)/Bk(M,F). (3.85)

(It is indeed an R-vector space and in particular a group under its addition. But most
cohomology theories produce only groups, such that we use the traditional term of a co-
homology group and keep in mind, that we are dealing with vector spaces.)
If k < 0 or k > p, it follows Hk(M,F) = 0 by Ωk(M,F) = 0.
Further, H0(M,F) = Z0(M,F) = {f ∈ C∞(M) : f |L is constant for each L ∈ F}.
(Since ∂f

∂xj
= 0 for j = 1, ..., p in every foliated chart (U, (x1, ..., xn)) and leaves are connec-

ted.)

3.4.2 Example (Foliation by Points)

Let F and T be (connected) smooth manifolds of dimension p and q, respectively. Consider
the F -foliation FT (F ) = {F × {t} : t ∈ T} by points of T on F × T . Then,

H0(F × T,FT (F )) ∼= C∞(T ). (3.86)

(The smooth projection πT : F×T → T, (x, t) 7→ t between manifolds induces the pullback
π∗T : C∞(T ) → C∞(F × T ), π∗Tg = g ◦ πT . This map is linear and also injective since πT
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is surjective. We show Im(π∗T ) = H0(F × T,FT (F )). If g ∈ C∞(T ), then g ◦ πT |F×{t} is
of constant value g(t) for each t ∈ T . Otherwise, if f ∈ C∞(F × T ) such that f |F×{t}
is of constant value ct for each t ∈ T , we can define a smooth map g : T → R by
g(t) = ct satisfying g ◦ πT = f . Hence, π∗T is an isomorphism of vector spaces from C∞(T )
to H0(F × T,FT (F )).)

3.4.3 Proposition (Induced Cohomology Maps and Foliated de Rham Functor)

For a smooth foliated map f : (M,F) → (N,G) between smooth foliated manifolds, the
pullback f ∗ : Ωk(N,G) → Ωk(M,F) maps Zk(N,G) into Zk(M,F) and Bk(N,G) into
Bk(M,F). This gives rise to a well-defined linear map between cohomologies

f ∗ : Hk(N,G)→ Hk(M,F), f ∗[ω] = [f ∗ω], (3.87)

called induced cohomology map. Together with the assignment (M,F) 7→ Hk(M,F),
this defines a contravariant functor, called foliated de Rham functor, from the category
FolMfld of smooth foliated manifolds with smooth foliated maps to the category VectR
of R-vector spaces with linear maps, i.e.

(a) if g : (N,G)→ (P,H) is another smooth foliated map, then

(g ◦ f)∗ = f ∗ ◦ g∗ : Hk(P,H)→ Hk(M,F) (3.88)

(b) and id∗M is the identity map on Hk(M,F).

Proof. By naturality with pullbacks (proposition 3.3.9 (g)), we obtain for ω ∈ Zk(N,G),
dF(f ∗ω) = f ∗(dGω) = 0 and if η ∈ Ωk−1(N,G), then f ∗(dGη) = dF(f ∗η) ∈ Bk(M,F) since
f ∗η ∈ Ωk−1(M,F). Further, if ω̃ = ω+dGη ∈ Zk(N,G), then [f ∗ω̃] = [f ∗ω+d(f ∗η)] = [f ∗ω].
Thus, the induced cohomology map is well defined. (a) and (b) follow by Lemma 3.3.6
(c).

3.4.4 Corollary (Foliated Diffeomorphism Invariance)

If f : (M,F) → (N,G) is a smooth foliated diffeomorphism between smooth foliated
manifolds, then

Hk(M,F) ∼= Hk(N,G) for all k ∈ N0. (3.89)

Proof. For every k ∈ N0, the induced cohomology maps of f and its inverse are isomor-
phisms of vector spaces by proposition 3.4.3 (a) and (b).

The de Rham groups of homotopy equivalent manifolds (without a foliation) are also iso-
morphic (as vector spaces). Regarding the next example, even a smooth foliated homotopy
map will not yield an invariance. We need a stronger type of homotopy, which we will call
integrable homotopy. This type of homotopy was introduced by Haefliger, [Hae71] and
named homotopy intégrable by El Kacimi-Alaoui, [KA83]. We will show, that integrable
homotopic maps induce the same cohomology maps. For that purpose, we use a homotopy
operator.
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3.4.5 Example (Foliated De Rham Cohomology Not a Homotopy Invariance)

Consider M = S1×R with the S1-foliation FM = FR(S1) by points of R and S = S1×{0}
with the 1-leaf foliation FS = {S}. Then, S is a deformation retract of M but

Hk(M,FM) ∼= C∞(R) � R ∼= Hk(S,FS) for k = 0, 1. (3.90)

Proof. Denote the inclusion from S into M by iS and let r : M → S, r(z, s) = (z, 0). Then,
r ◦ iS = idS and we show, that iS ◦ r is homotopic to idM . Let be ψ ∈ C∞(R) with ψ(t) = 0
if t ≤ 0 and ψ(t) = 1 if t ≥ 1. Define H : M × R → M by H((z, s), t) = (z, ψ(t)s) such
that H((z, s), t) = (z, 0) = iS ◦ r(z, s) for t ≤ 0 and H((z, s), t) = (z, s) = idM(z, s) for
k ≥ 1. Note that H is a smooth map and if one considers the foliation G = {S1×{(s, t)} :
(s, t) ∈ R2} on M ×R, H is also a foliated map between (M ×R,G)→ (M,FM), mapping
the leaf S1 × {(s, t)} into the leaf S1 × {ψ(t)s}. In summary, S is a deformation retract of
M , where the used homotopy map is also a smooth foliated map.
The map f : (S,FS)→ (S1, {S1}), f(z, 0) = z is clearly a smooth foliated diffeomorphism
such that Hk(S,FS) = Hk(S1) ∼= R for k = 0, 1 because the foliated de Rham cohomology
of the 1-leaf foliation is just the usual de Rham cohomology. On the other hand, we know
H0(M,FM) ∼= C∞(R) by example 3.4.2. For k = 1, we refer to the later result 3.4.14.

3.4.6 Definition (Integrable Homotopy)

(a) Let f, g : (M,F)→ (N,G) be smooth foliated maps between smooth foliated manifolds
and let π : M ×R→M be the projection map. We call f integrable homotopic to
g, if there is a smooth foliated map H : (M × R, π∗(F))→ (N,G) such that

H(x, t) = f(x), if t ≤ 0 and (3.91)

H(x, t) = g(x), if t ≥ 1. (3.92)

In this case, H is called an integrable homotopy from f to g.

(b) Two smooth foliated manifolds (M,F) and (N,G) will be called integrable homo-
topy equivalent if there exist two smooth foliated maps f : (M,F) → (N,G) and
g : (N,G)→ (M,F) such that g◦f is integrable homotopic to idM and f◦g is integrable
homotopic to idN . Then, f and g are called integrable homotopy inverse.

(c) Let (M,F) be a smooth foliated manifold and S a smooth immersed submanifold of
M such that the inclusion map iS : S → M is transverse to F , i.e. for all x ∈ S, we
have TxM = d iS(TxS) + TxFx. A smooth foliated map r : (M,F) → (S,F|S) will be
called an integrable deformation retraction if iS and r are integrable homotopy
inverse, where F|S = i∗S(F) is the considered foliation on S, given by the connected
components of all leaf intersections with S. In this case, S is called an integrable
deformation retract of (M,F).

Recall from example 3.1.7, (3), that π∗(F) = {L × R : L ∈ F} satisfies:

(∗) For any t ∈ R the smooth injective inclusion map Jt : M → M × R, x 7→ (x, t) is
also a foliated map from (M,F) to (M × R, π∗(F)).
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3.4.7 Proposition (Existence of a Homotopy Operator)

Let (M,F) be a smooth (p, q)-foliated manifold and π : M ×R→M the projection map.
Then, for each k ∈ N0 there is a linear map h : Ωk(M×R, π∗(F))→ Ωk−1(M,F) satisfying

dF ◦ h+ h ◦ dπ∗(F) = J∗1 − J∗0 , (3.93)

where J∗0 , J
∗
1 : Ωk(M × R, π∗(F)) → Ωk(M,F) are the foliated pullback maps of the

inclusion maps mentioned in (∗) and Ω−1(M,F) = {0} by convention. Such a map h is
called a homotopy operator between J0 and J1.

Proof. (1) We start with the local version.
Let V ⊆ Rp, W ⊆ Rq be open subsets and (x1, ..., xp) the Euclidean basis of Rp. Consider
on M = V ×W the V -foliation F = FW (V ) = {V ×{w} : w ∈ W} by points of W . Then,
π∗(F) = {V × {w} × R : w ∈ W} is the pullback foliation on M × R. If f ∈ C∞(M × R),
set h(f) = 0. For k ∈ N, any ω ∈ Ωk(M×R, π∗(F)) can be written as a linear combination
of the following two types of k-forms:

(α) α = a dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik , where a ∈ C∞(M × R);

(β) β = b dπ∗(F)t ∧ dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik−1 , where b ∈ C∞(M × R).

We set h(α) = 0 and h(β) =
1∫
0

b(·, t)dt dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik−1 ∈ Ωk−1(M,F). Define

h : Ωk(M × R, π∗(F))→ Ωk−1(M,F) by linear extension. Then,

(dF ◦ h+ h ◦ dπ∗(F))(f) =

1∫
0

∂f

∂t
dt = f(·, 1)− f(·, 0) (3.94)

= f ◦ J1 − f ◦ J0 = (J∗1 − J∗0 )(f), if f ∈ C∞(M × R). (3.95)

Further, dF ◦ h(α) = 0 and

h ◦ dπ∗(F)(α) =

 1∫
0

∂a

∂t
dt

 dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik = (J∗1 − J∗0 )(α). (3.96)

Moreover, J∗1 (β) = J∗0 (β) = 0 and

dF ◦ h(β) =
∑
j=1p

 1∫
0

∂b

∂xj
dt

 dπ∗(F)x
j ∧ dπ∗(F)x

i1 ∧ · · · ∧ xik−1 , (3.97)

h ◦ dπ∗(F)(β) = h

(
p∑
j=1

∂b

∂xj
dπ∗(F)x

j ∧ dπ∗(F)t ∧ dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik−1

)
(3.98)

= −
p∑
j=1

(∫ 1

0

∂b

∂xj
dt

)
dπ∗(F)x

j ∧ dπ∗(F)x
i1 ∧ · · · ∧ dπ∗(F)x

ik−1 , (3.99)
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where the minus sign comes from dπ∗(F)x
j ∧ dπ∗(F)t = −dπ∗(F)t ∧ dπ∗(F)x

j. Hence, (3.93)
follows in the considered special case.

(2) Before we treat the global case, we look at foliated transition functions:
Let V, Ṽ ⊆ Rp, W, W̃ ⊆ Rq be open sets and τ : (V ×W,FW (V ))→ (Ṽ × W̃ ,FW̃ (Ṽ )) be
a foliated diffeomorphism. Then,

τ̃ : (V ×W × R, π∗(FW (V )))→ (Ṽ × W̃ × R, π̃∗(FW̃ (Ṽ ))), τ̃(u, v, t) = (τ(u, v), t)
(3.100)

defines a foliated diffeomorphism, where π and π̃ denote the projections onto V ×W and
Ṽ × W̃ , respectively. Moreover, we get on Ωk(Ṽ × Ṽ × R, π̃(FW̃ (V ))) for each k ∈ N0:

τ ∗ ◦ h = h ◦ τ̃ ∗. (3.101)

Indeed, on smooth functions, both sides are 0. τ̃ ∗ maps k-forms of type α to k-forms
of type α such that in this case also both sides are 0. As well, τ̃ ∗ preserves k-forms of
type β and it is easy to compute the component function of both sides equal

∫ 1

0
b(ϕ(·), t)dt.

(3) Now, consider the global case. Define h : Ωk(M × R, π∗(F)) → Ωk−1(M,F) in
terms of foliated charts, i.e. if ϕ : U → V ×W is a foliated chart of (M,F), we set

(h(ω))|U = ϕ∗ ◦ h ◦ (ϕ̃−1)∗(ω|U×R). (3.102)

Here, ϕ̃ : U × R → V ×W × R, ϕ̃(x, t) = (ϕ(x), t) and h on the right side is the map
from (1). For well-definition, suppose there is another foliated chart ψ : U → Ṽ × W̃ .
Since τ = ψ ◦ϕ−1 is a foliated diffeomorphism as desired in (2), (3.101) gives together with
τ̃ ∗ ◦ (ψ̃−1)∗ = (ϕ̃−1)∗:

τ ∗ ◦ h ◦ (ψ̃−1)∗(ω|U×R) = h ◦ (ϕ̃−1)∗(ω|U×R). (3.103)

We obtain by ϕ∗ ◦ (ψ ◦ ϕ−1)∗ = ψ∗,

ψ∗ ◦ h ◦ (ψ̃−1)∗(ω|U×R) = ϕ∗ ◦ h ◦ (ϕ̃−1)∗(ω|U×R). (3.104)

To prove (3.93), it sufficies to show the identity on open sets of a foliated atlas. Again, let
ϕ : U → V ×W be a foliated chart of (M,F). Denote the inclusions of the local case by
J̃t : U → U × R, the projection from V ×W × R onto V ×W by π̃ and set F̃ = FW (V ).
Then, ϕ̃−1◦ J̃t◦ϕ(x) = ϕ̃−1(ϕ(x), t) = (x, t) = Jt(x) for x ∈ U and t ∈ R. Since the foliated
differential commutes with pullbacks, we obtain for ω ∈ Ωk(M × R, π∗(F)),

(dF ◦ h(ω) + h ◦ dπ∗(F)(ω))|U = dF((h(ω))|U) + (h ◦ dπ∗(F)(ω))|U (3.105)

= (dF ◦ ϕ∗) ◦ h ◦ (ϕ̃−1)∗(ω|U×R) + ϕ∗ ◦ h ◦ ((ϕ̃−1)∗ ◦ dπ∗(F))(ω|U×R) (3.106)

= ϕ∗ ◦
(
dF̃ ◦ h+ h ◦ dπ̃∗(F̃)

) (
(ϕ̃−1)∗(ω|U×R)

)
(3.107)

(1)
= ϕ∗ ◦ (J̃∗1 − J̃∗0 ) ◦ (ϕ̃−1)∗(ω|U×R) = (J∗1 − J∗0 )(ω|U×R) (3.108)

= ((J∗1 − J∗0 )(ω)) |U . (3.109)
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3.4.8 Proposition (Cohomology Maps of Integrable Homotopic Maps)

Let f, g : (M,F) → (N,G) be smooth foliated maps between smooth foliated manifolds.
If f is integrable homotopic to g, then for every k ∈ N0, the induced cohomology maps f ∗

and g∗ from Hk(N,G) to Hk(M,F) are equal.

Proof. At first, we show the assertion for the inclusion maps J0, J1 : M →M × R.
Let ω ∈ Ωk(M × R, π∗(F)) be closed, i.e. dπ∗(F)(ω) = 0. The homotopy operator h of
proposition 3.4.7 yields

J∗1 (ω)− J∗0 (ω) = dF(h(ω)) + h(dπ∗(F)(ω)) = dF(h(ω)) ∈ Bk(M,F), (3.110)

because h(ω) ∈ Ωk(M,F). Hence, the induced cohomology maps are equal.
Now, let H : (M × R, π∗(F)) → (N,G) be an integrable homotopy from f to g. Since
f = H ◦ J0 and g = H ◦ J1, we get by funtoriality (proposition (3.4.3),

f ∗ = J∗0 ◦H∗ = J∗1 ◦H∗ = g∗. (3.111)

3.4.9 Corollary (Integrable Homotopy Invariance)

If (M,F) and (N,G) are integrable homotopy equivalent smooth foliated manifolds, then

Hk(M,F) ∼= Hk(N,G) for all k ∈ N0. (3.112)

In particular, if S is an integrable deformation retract of (M,F), then

Hk(M,F) ∼= Hk(S,F|S) for all k ∈ N0. (3.113)

Proof. There exist smooth foliated maps f : (M,F) → (N,G) and g : (N,G) → (M,F)
such that g ◦ f is integrable homotopic to idM and f ◦ g is integrable homotopic to idN .
The preceding proposition and proposition 3.4.3 imply

f ∗ ◦ g∗ = (g ◦ f)∗ = (idM)∗ = idHk(M,F) and (3.114)

g∗ ◦ f ∗ = (f ◦ g)∗ = (idN)∗ = idHk(N,G) . (3.115)

If S is an integrable deformation retract of (M,F), then (S,F|S) and (M,F) are in parti-
cular integrable homotopy equivalent.

3.4.10 Lemma (Poincaré Lemma for Star-Shaped Foliation by Points)

Let M be a star-shaped open subset of Rp with center c ∈M and let N be a q-dimensional
smooth manifold. Then, {c} ×N is an integrable deformation retract of (M ×N,FN(M))
and

Hk(M ×N,FN(M)) ∼= Hk({c} ×N,FN({c})) ∼=

{
C∞(N) if k = 0;

{0} otherwise.
(3.116)
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Proof. We will verify S = {c}×N as an integrable deformation retract of (M×N,FN(M)).
The inclusion iS : S →M ×N is transversal to FN(M) since the differential of iS is injec-
tive and its q-dimensional image of T(c,y) ({c} ×N) interesects the p-dimensional foliated
tangent space T(c,y) (M × {y}) only at zero for each point (c, y) of S. The induced foliation
i∗S(FN(M)) is just FN({c}) = {{(c, y)} : y ∈ N}. Define

r : (M ×N,FN(M))→ (S,FN({c})) by r(x, y) = (c, y). (3.117)

Then, r is a smooth foliated map and satisfies r ◦ iS(c, y) = (c, y) = idS(c, y) on S. In order
to define an integrable homotopy from iS ◦ r to idM×N , let ϕ : R → [0, 1] be a smooth
function which is equal to 0 on (−∞, 0] and to 1 on [1,∞). Denote the projection from
(M ×N)× R to M ×N by π and define

H : ((M ×N)× R, π∗(FN(M)))→ (M ×N,FN(M)) by (3.118)

H((x, y), t) = (c+ ϕ(t)(x− c), y). (3.119)

Since M is star-shaped, H is well-defined. It is also a smooth foliated map satisfying

H((x, y), t) = (c, y) = iS ◦ r(c, y) if t ≤ 0 and (3.120)

H((x, y), t) = (x, y) = idM×N if t ≥ 1. (3.121)

Thus, S is an integrable deformation retract of (M ×N,FN(M)) and Hk(M ×N,FN(M))
is isomorphic to Hk(S,FN({c})) for each k ∈ N0. Moreover, (S,FN({c})) is diffeomorphic
to the smooth foliated manifold (N, {{y} : y ∈ N}) of dimension 0, such that for k ≥ 1 all
foliated cohomology groups are {0} and for k = 0, we have

H0(N, {{y} : y ∈ N}) = {f ∈ C∞(N) : f |{y} is constant for each y ∈ N} = C∞(N).
(3.122)

One powerful tool for computing the de Rham cohomology is the Mayer-Vietoris Theorem.
If U and V are submanifolds of some smooth manifold M , the theorem connects the de
Rham cohomology of the union U ∪ V with the cohomologies of U and V involving also
the cohomology of their intersection U ∩ V , ordered in a long exact sequence. In [KA83]
there is a version of a foliated Mayer-Vietoris Theorem for two submanifolds of M which
have the same boundary such that this boundary is transverse to the foliation F on M
and admits a tubular neighbourhood such that the boundary is an integrable deformation
retract of that neighbourhood. Our version needs some assumptions of transversality but is
applicable in more general situations. The proof is similar to the unfoliated case with a few
replacements. Basically, one needs an induced foliation on the submanifolds such that the
inclusion becomes a smooth foliated map. As we clarify in Remark 3.4.12, the assumptions
are satisfied for open submanifolds and we can also obtain the classical Mayer-Vietoris
Theorem for (unfoliated) smooth manifolds.
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3.4.11 Theorem (Mayer-Vietoris for Foliated Cohomology)

Let (M,F) be a smooth foliated manifold. Further, let U and V be immersed submanifolds
of M with U ∪ V = M such that the inclusion maps satisfy

(1) iU : U →M and iV : V →M are transverse to F ;

(2) iU : U ∩ V → U is transverse to F|U ;

(3) iV : U ∩ V → V is transverse to F|V .

Then, for each k ∈ N0, there is a linear map δ : Hk(U ∩ V,F|U∩V ) → Hk+1(M,F) such
that the following sequence of vector spaces, called foliated Mayer-Vietoris sequence,
is exact:

· · · δ // Hk(M,F)
i∗U⊕i

∗
V // Hk(U,F|U)⊕Hk(V,F|V )

(iU )∗−(iV )∗// Hk(U ∩ V,F|U∩V )

δ // Hk+1(M,F)
i∗U⊕i

∗
V// Hk+1(U,F|U)⊕Hk+1(V,F|V )

(iU )∗−(iV )∗ // · · ·
Proof. We have the following commutative diagram of smooth foliated inclusion maps:

(U,F|U)
iU

%%
(U ∩ V,F|U∩V )

iU
66

iV ((

(M,F)

(V,F|V )

iV

99

This gives for each k ∈ N0 the following commutative diagram of foliated pullbacks:

Ωk(U,F|U)
(iU )∗

((
Ωk(M,F)

i∗U
77

i∗V ''

Ωk(U ∩ V,F|U∩V )

Ωk(V,F|V )
(iV )∗

66

Notice that the diagram has been mirrored due to the contravariance. Define for each
k ∈ N0 the linear maps

f = i∗U ⊕ i∗V : Ωk(M,F)→ Ωk(U,F|U)⊕ Ωk(V,F|V ), (3.123)

f(ω) = (i∗U(ω), i∗V (ω)) = (ω|U , ωV ) and (3.124)

g = ((iU)∗ − (iV )∗) : Ωk(U,F|U)⊕ Ωk(V,F|V )→ Ωk(U ∩ V,FU∩V ) (3.125)

g(µ, ν) = (iU)∗(µ)− (iV )∗(ν) = µ|U∩V − ν|U∩V . (3.126)

We will show, that the short sequence
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(∗) 0 // Ωk(M,F)
f // Ωk(U,F|U)⊕ Ωk(V,F|V )

g // Ωk(U ∩ V,F|U∩V ) // 0

is exact.
f is injective: f(ω) = (0, 0) yields ω|U = 0 and ω|V = 0 such that ω = 0 since U ∩ V = M .
Im(f) = Ker(g): ⊆ follows by

(g ◦ f)(ω) = (iU)∗ − (iV )∗(ω|U , ω|V ) = ω|U∩V − ω|U∩V = 0. (3.127)

Now, suppose (µ, ν) ∈ Ωk(U,F|U)⊕ Ωk(V,F|V ) satisfies g(µ, ν) = 0. Then µ|U∩V = ν|U∩V
and we can define a foliated k-form on M = U ∪ V by

ω =

{
µ on U,

ν on V,
(3.128)

such that f(ω) = (ω|U , ω|V ) = (µ, ν).
g is surjective: Let be η ∈ Ωk(U ∩ V,F|U∩V ) and let {ϕU , ϕV } be a smooth partition of
unity subordinate to the open cover {U, V }. Define

µ =

{
ϕV η on U ∩ V,
0 on U \ supp(ϕV ),

and ν =

{
−ϕU η on U ∩ V,
0 on V \ supp(ϕU).

(3.129)

Note that on (U ∩ V ) \ supp(ϕV ), where both definitions of µ overlap, they both are zero.
Hence µ ∈ Ωk(U,F|U) and analogous ν ∈ Ωk(V,F|V ). Finally, we obtain

g(µ, ν) = µ|U∩V − ν|U∩V = ϕV η − (−ϕUη) = η. (3.130)

Therefore, the exactness of the sequence (∗) has been proven. Since pullbacks commute
with the foliated differential, we obtain the short exact sequence in foliated de Rham
cohomology with induced cohomology maps

(∗) 0 // Hk(M,F)
i∗U⊕i

∗
V// Hk(U,F|U)⊕Hk(V,F|V )

(iU )∗−(iV )∗// Hk(U ∩ V,F|U∩V ) // 0.

The Zigzag Lemma25 (also known as Snake Lemma), which is proved by diagram chasing,
yields now the linear connecting maps

δ : Hk(U ∩ V,F|U∩V )→ Hk+1(M,F), (3.131)

such that the Mayer-Vietoris sequence of foliated cohomology is exact.

25See [Lee13, Lemma 17.40, p. 461] for instance.
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3.4.12 Remark (Foliated Mayer Vietoris Sequence)

(1) If U, V ⊆M are open subsets, then all required inclusions in (1)-(3) are transversal for
any foliation of their target manifold. Indeed, if i : U →M is the inclusion of an open
subset U ⊆ M , the map dix : TxU → TxM , dix(νx)(g) = νx(g ◦ i), where νx ∈ TxU
and g ∈ C∞(M) is an isomorphism for each x ∈ U by [Lee13, Proposition 3.9, p. 56].
Even if U = ∅, this holds since otherwise there would be some x ∈ ∅ at which point
the differential is no isomorphism.

(2) The connecting linear map δ : Hk(U ∩V,F|U∩V )→ Hk+1(M,F) in the Mayer-Vietoris
sequence of foliated cohomology can be described as follows:
By surjectivity, for each η ∈ Zk(U ∩ V,F|U∩V ), there are µ ∈ Ωk(U,F|U) and
ν ∈ Ωk(V,F|V ) such that η = µ|U∩V − ν|U∩V . Then δ[η] = [σ], where σ ∈ Ωk+1(M,F)
is equal to dF|Uµ on U and to dF|V ν on V . Note that on U ∩ V , both definitions agree
since 0 = dF|U∩V µ− dF|U∩V ν. If {ϕU , ϕV } is a smooth partition of unity subordinate to
{U, V }, it is possible to take µ = ϕV η and ν = −ϕUη, both extended by zero outside
of the supports of ϕV and ϕU , respectively. This is a consequence of a characterization
of the connecting linear map of the Zigzag Lemma and coincides with the unfoliated
case. For instance, see [Lee13, Lemma 17.40 and Corollary 17.42].

(3) If we consider the one leaf foliation F = {M} of M , all inclusions of (1)-(3) are trans-
versal and we obtain the classical Mayer-Vietoris sequence of (unfoliated) de Rham
cohomology.

3.4.13 Remark (Good Cover of a Manifold)

A good cover (Uα)α∈I of a smooth manifold M of dimension n is a collection of open sets
Uα such that all sets and all finite non-empty intersections Uα0 ∩ ... ∩ Uα` of the cover are
diffeomorphic to Rn. By [BT82, Theorem 5.1, p.42], every smooth manifold has a good cover
and if the manifold is compact, the good cover may be chosen to be finite. Moreover, if a
smooth manifold has a finite good cover, then its de Rham cohomology is finite dimensional.
(This can be proved by an induction on the cardinality of a good cover together with the
Mayer-Vietoris sequence and the Poincaré Lemma, see [BT82, Proposition 5.3.1, p.43].
Another proof uses an isomorphism between the de Rham cohomology and the Čech-
cohomology of a good cover together with the observation that the Čech-cohomology of a
finite cover is finite dimensional. We obtain this result later by Corollary 3.5.15.)

3.4.14 Theorem (Foliated Cohomology of Foliation by Points)

Let M and N be smooth manifolds of dimension p and q, respectively. Assume M has a
finite good cover (and consequently a finite dimensional de Rham cohomology), then

Hk(M ×N,FN(M)) ∼= Hk(M)⊗ C∞(N) for each k ∈ N0, (3.132)

where Hk(M) denotes the usual de Rham cohomology group of the smooth manifold M .
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Proof. The proof is inspired by the proof of the Künneth Formula for (unfoliated) de Rham
cohomology that can be found in [BT82, p.47 ff.].
Let FM = {M} be the smooth (p, 0)-foliation of M and FN = {{y} : y ∈ N} be the
smooth (0, q)-foliation of N , such that the projections πM and πN from (M ×N,FN(M))
onto (M,FM) and (N,FN), respectively, are smooth foliated maps. For k, ` ∈ N0 with
k ≥ `, this allows the definition of

ϕk,` : Ωk(M,FM)× Ωk−`(N,FN)→ Ω`(M ×N,FN(M)), (µ, ν) 7→ π∗M(µ) ∧ π∗N(ν).
(3.133)

Note that Ωk(M,FM) = Ωk(M) for all k ∈ N0, Ω0(N,FN) = C∞(N) and Ω`(N,FN) = {0}
for all ` ≥ 1 because FN is of dimension 0. Moreover, ϕk,0 is bilinear such that the universal
property of the tensor product induces an R-linear map

ψk : Ωk(M)⊗ C∞(N)→ Ωk(M ×N,FN(M)), µ⊗ f 7→ π∗M(µ) ∧ π∗N(f) = π∗N(f) π∗M(µ).
(3.134)

Next, define d̃ : Ωk(M) ⊗ C∞(N) → Ωk+1(M) ⊗ C∞(N) by d̃(µ ⊗ f) = (dµ) ⊗ f for each
k ∈ N0, where d : Ωk(M) → Ωk+1(M) is the Cartan-differential on k-forms. Hence, d̃ is
linear and satisifes d̃◦d̃ = 0 such that we obtain cohomology groups Hk(M)⊗C∞(N), which
are also R-vector spaces. Since the (foliated and unfoliated) Cartan-differential commutes
with pullbacks, we can compute for µ⊗ f ∈ Ωk(M)⊗ C∞(N),

ψk+1 ◦ d̃(µ⊗ f) = π∗Nf π
∗
M(dµ) = π∗Nf d

∗
FN (M)(π

∗
Mµ) = dFN (M) ◦ ψk(µ⊗ f). (3.135)

Therefore, we receive for each k ∈ N0 a linear map in cohomology

Ψk : Hk(M)⊗ C∞(N)→ Hk(M,×N,FM(N)), [µ]⊗ f 7→ [ψk(µ⊗ f)]. (3.136)

We will show, that Ψk is an isomorphism. If M is a star-shaped open subset of Rp, this
is just the Poincaré Lemma for foliated cohomology. This can be used together with the
Mayer-Vietoris sequence of a good cover, requiring a finite good cover for an induction
argument. Let U, V ⊆ M be open subsets such that we have the exact Mayer-Vietoris
sequence

· · · → Hk(U ∪ V )→ Hk(U)⊕Hk(V )→ Hk(U ∩ V )→ · · · . (3.137)

Tensoring with the vector space C∞(N) preserves exactness. Moreover, U ×N and V ×N
are open subsets of M ×N , such that the Mayer-Vietoris sequence of foliated cohomology
is exact. This gives the following diagram with exact rows,

· · · // Hk(U ∪ V )⊗ C∞(N) //

Ψk

��

(Hk(U)⊗ C∞(N))⊕ (Hk(V )⊗ C∞(N)) //

Ψk⊕Ψk

��

Hk(U ∩ V )⊗ C∞(N) //

Ψk

��

· · ·

· · · // Hk((U ∪ V )×N,FN (U ∪ V )) // Hk(U ×N,FN (U))⊕Hk(V ×N,FN (V )) // Hk((U ∩ V )×N,FN (U ∩ V ))) // · · ·
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and it is also commutative. This follows essentially by the commutativity of the (foliated)
Cartan-differential with pullbacks. However, the square containing the connecting linear
maps of the Mayer-Vietoris sequences,

Hk(U ∩ V )⊗ C∞(N)
δ̃⊗id //

Ψk

��

Hk+1(U ∪ V )⊗ C∞(N)

Ψk+1

��
Hk((U ∩ V )×N,FN(U ∩ V ))) δ // Hk+1((U ∪ V )×N,FN(U ∪ V )),

requires a closer look. Let {ϕU , ϕV } be a smooth partition of unity subordinate to the open
cover {U, V } and let [η]⊗ f ∈ Hk(U ∩V )⊗C∞(N), then by Remark 3.4.12 (2), δ̃[η] = [σ̃],
where σ̃ = d(ϕV η) on U and σ̃ = d(−ϕUη) on V (extended by zero outside the supports
of ϕU and ϕV , respectively). Hence,

Ψk+1 ◦ (δ̃ ⊗ id)([η]⊗ f) = Ψk+1(δ̃[η]⊗ f) = [π∗N(f)π∗U∪V (σ̃)] (3.138)

=

{
[π∗N(f)π∗U∪V (d(ϕV η))] on U,

[π∗N(f)π∗U∪V (d(−ϕUη))] on V.
(3.139)

Since {π∗U∪V (ϕU), π∗U∪V (ϕV )} is a smooth partition of unity subordinate to the open cover
{U ×N, V ×N} of (U ∪ V )×N , we obtain again by Remark 3.4.12 (2)

δ ◦Ψk([η]⊗ f) = δ[π∗N(f)π∗U∩V (η)] = [σ], (3.140)

where σ is given on U by

dFN (U) (π∗U∪V (ϕV ) π∗N(f) π∗U∪V (η)) = π∗N(f)dFN (U)(π
∗
U∪V (ϕV η)) (3.141)

= π∗N(f) π∗U∪V (d(ϕV η)). (3.142)

At the first step, we used the antiderivation property together with dFN (U)(π
∗
N(f)) = 0 and

the commutativity of pullbacks with products. Analogously, σ is given on V by

dFN (U) (π∗U∪V (−ϕU) π∗N(f) π∗U∪V (η)) = π∗N(f)dFN (U)(π
∗
U∪V (−ϕUη)) (3.143)

= π∗N(f) π∗U∪V (d(−ϕUη)). (3.144)

Thus, the square diagram commutes and therefore also the huge diagram with the long
exact rows is commutative. By the Five Lemma, it suffices to prove that Ψk is an iso-
morphism for U, V and U ∩ V , then it is also true for U ∪ V . Therefore, by induction on
the cardinality L of a finite good cover {Uj}Lj=1 of M , we can conclude together with the
Poincaré Lemma for star shaped foliations by points, that

Ψk : Hk(M)⊗ C∞(N)→ Hk(M,×N,FM(N)) (3.145)

is an isomorphism for each k ∈ N0, if M has a finite good cover.

Proposition III.1a of [KA83] states the same formula of Theorem 3.4.14 without assuming
a finite good cover. The proof requires some knowledge about spectral sequences which we
could avoid.
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3.4.15 Example (Torus Foliated by Points of a Circle)

Consider the torus T2 = S1 × S1. The leaves of a S1-foliation by points of S1 are either
{x} × S1 for x ∈ S1 or S1 × {y} for y ∈ S1, depending over which factor we parametrize.
However, both foliations are isomorphic in the sense that Φ : T2 → T2, Φ(x, y) = (y, x) is
a diffeomorphism which is also a foliated map with respect to mentioned foliations. Since
S1 is compact, such that it has a finite good cover and its non-zero de Rham cohomology
groups are Hk(S1) ∼= R (k = 0, 1), we obtain by Theorem 3.4.14

Hk(T2,FS1(S1)) = Hk(S1)⊗ C∞(S1) = C∞(S1) for k = 0, 1. (3.146)

In Example 3.6.2 we consider more interesting foliations of the torus.

3.5 Čech Cohomology and Generalized Mayer-Vietoris

We want to generalize the Mayer-Vietoris sequence of just two open sets to a cover of
countable many open sets. This generalization will involve foliated forms restricted to
intersections of finitely many open sets of the cover. These spaces arise as special cases of
the so called Čech complex, which is a differential complex depending on an open cover
of a topological space and a presheaf.

3.5.1 Definition (Presheaf, Čech complex and Cover Operator)

(a) In general, a (VectR-valued) presheaf G on a toplogical space X is a contravariant
functor from the category Open (X), consisting of open sets in X as objects and
inclusions of open sets as morphisms to the category VectR, consisting of R-vector
spaces and R-linear maps as morphisms. This means, if V ⊆ U are open sets in X,
then G assigns to the inclusion

iUV : V → U (3.147)

an R-linear map, called restriction

%VU = G (iUV ) : G (U)→ G (V ) (3.148)

satisfying %VV = G (iVV ) = idG (V ) and if W ⊆ V ⊆ U are all open in X, then

%WU = G (iUW ) = G (iUV ◦ iVW ) = G (iVW ) ◦ G (iUV ) = %WV ◦ %VU . (3.149)

A morphism of presheaves, f : G1 → G2, is a natural transformation between
functors from Open (X) to VectR. To be precise, for every open U ⊆ X, there
is a linear function fU : G1(U) → G2(U) such that for all inclusions of open sets
iUV : V → U the following diagram with restrictions is commutative:

G1(U)
fU //

(%1)VU
��

G2(U)

(%2)VU
��

G1(V )
fV // G2(V )
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A morphism of presheaves, f : G1 → G2, is called an isomorphism of presheaves,
if it is a natural isomorphism between functors, i.e. fU : G1(U) → G2(U) is an
isomorphism of vector spaces for all open U ⊆ X and we call G1 and G2 isomorphic
presheaves in that case.
For a fixed R-vector space A, the so called trivial presheaf associated to A is the
presheaf which associates to every open set of X the vector space A and to every
inclusion V ⊆ U of open sets the identity map idA on A. If a presheaf is isomorphic
to the trivial presheaf associated to A, we call it a constant presheaf associated
to A. Moreover, we call a presheaf G a locally constant presheaf associated to
A, if every x ∈ X has an open neighbourhood U ⊆ X such that G |U , defined on
Open(U), is a constant presheaf associated to A.

(b) Let U = (Uα)α∈J be an open cover of a topological space X, where J is an ordered
countable set. For ` ∈ N0 and α0, ..., α` ∈ J , we write

Uα0,...,α` =
⋂̀
j=0

Uαj and Uα0,...,α̂i,...,α` =
⋂̀
j=0
j 6=i

Uαj . (3.150)

Let G be a presheaf on X. For ` ∈ N0 define the `-cochains of the cover U with values
in the presheaf G by

Č`(U ,G ) =
∏

α0<...<α`

G (Uα0,...,α`), (3.151)

where all indices of type α and αj are supposed to be in J without further mentio-
ning. Each inclusion from Uα into X induces a restriction %UαX . We define the global
restriction map to be r : G (X) → Č0(U ,G ) by (rω)α = %UαX (ω) for all α ∈ J .
Further, we denote for i ∈ {0, ..., `} the inclusion map from Uα0,...,α` into Uα0,...,α̂i,...,α`

by ∂`i . This induces a restriction map

δ`i = G (∂`i ) : G (Uα0,...,α̂i,...,α`)→ G (Uα0,...,α`). (3.152)

Now, we define for ` ∈ N0 the cover operator

δ` : Č`(U ,G )→ Č`+1(U ,G ) (3.153)

which maps an `-cochain ω ∈ Č`(U ,G ) with entries ωα0,...,α` ∈ G (Uα0,...,α`) to an
` + 1-cochain δ`ω ∈ Č`+1(U ,G ) where the entries are given by the alternating sum
of restrictions

(δ`ω)α0,...,α`+1
=
∑̀
i=0

(−1)iδ`+1
i (ωα0,...,α̂i,...,α`+1

), (3.154)

where the hat on αi indicates that this index is omitted. As we will show below,
the cover operator is a coboundary operator (δ`+1 ◦ δ` = 0) of the cochain complex
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Č∗(U ,G ) =
⊕
`∈N0

Č`(U ,G ), which we will call the Čech complex of the cover U

with values in the presheaf G . Further, we denote by

Ȟ∗(U ,G ) =
⊕
`∈N0

Ȟ`(U ,G ) where Ȟ`(U ,G ) = Ker(δ`+1)/Im(δ`), (3.155)

the Čech cohomology of the cover U with values in the presheaf G .

3.5.2 Lemma (Cover Operator Is a Coboundary Operator)

In the setting of 3.5.1 (b), the cover operator satisfies δ`+1 ◦ δ` = 0 for each ` ∈ N0.

Proof. Let ω ∈ Č`(U ,G ). For ease of notation, we denote the following entry of ω with two
omitted indices by

ei,j = ωα0,...,α̂i,...,α̂j ,...,α`+2
if 0 ≤ i < j ≤ `+ 2. (3.156)

Using the definition of δ`, we compute for j ∈ {0, ..., `+ 2}

(δ`ω)α0,...,α̂j ,...,α`+2
=

j−1∑
i=0

(−1)iδ`+1
i (ei,j) +

`+1∑
i=j

(−1)iδ`+1
i (ej,i+1) (3.157)

=

j−1∑
i=0

(−1)iδ`+1
i (ei,j)−

`+2∑
i=j+1

(−1)iδ`+1
i (ej,i). (3.158)

Of course, for j = 0 the first sum vanishes as well as the second sum vanishes for j = `+ 2.
Together with the linearity of δ`+2

j , we get

(δ`+1(δ`ω))α0,...,α`+2
=

`+2∑
j=0

(−1)jδ`+2
j ((δ`ω)α0,...,α̂j ,...,α`+2

) (3.159)

=
`+2∑
j=1

j−1∑
i=0

(−1)i+jδ`+2
j (δ`+1

i (ei,j))−
`+2∑
j=0

`+1∑
i=j+1

(−1)i+jδ`+2
j (δ`+1

i (ej,i))

=
∑

0≤i<j≤`+2

(−1)i+jδ`+2
j (δ`+1

i (ei,j))−
∑

0≤j<i≤`+2

(−1)i+jδ`+2
j (δ`+1

i (ej,i))

= 0, (3.160)

since δ`+2
j (δ`+1

i (ej,i)) = %
Uα0,...,α̂j ,...,α̂i,...,α`+2

Uα0,...,α`+2
(ej,i) = δ`+2

i (δ`+1
j (ej,i)) in the last sum.
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3.5.3 Examples (Presheaves)

(1) (Presheaf of Sections)
Consider a smooth vector bundle (E, π,M) over a smooth manifold M . For an open
subset U ⊆ M , the space of smooth sections Γ(U,E) is an R-vector space (even a
Fréchet space). If iUV : V ⊆ U is an inclusion of open sets, the restriction map given by
the pullback, %VU = (iUV )∗ : Γ(U,E)→ Γ(V,E), %VU (σ) = σ ◦ iUV = σ|V , is a (continuous)
linear map. The linking properties of the restrictions also satisfied, such that we have
defined a (even a Fréchet-valued) presheaf on M , called the presheaf of sections of
E over M and denoted by ΓE. Each point x ∈M has an open neighbourhood U ⊆M
such that Γ(U,E) is isomorphic (even as Fréchet spaces) to C∞(Rn,RN) by Lemma
2.2.4 using smooth charts diffeomorphic to Rn, where N is the rank of E and n the
dimension of the manifold M . Hence, Γ|E is a locally constant presheaf associated to
C∞(Rn,RN). It is only a constant presheaf, if there is a global smooth chart and the
vector bundle is trivial. We want to emphasize two presheaves of sections:

(2) (Presheaf of Differential Forms)
Let M be a smooth manifold and k ∈ N0. We denote the presheaf of sections of
the alternating k-tensor bundle Λk(T ∗M) over M by Ωk and call it the presheaf of
differential k-forms on M .

(3) (Presheaf of Foliated Differential Forms)
This is the most important example for us and we repeat the definition of the presheaf
of sections in this situation. Consider a smooth foliated manifold (M,F). Since every
open set U ⊆ M is transversal to the foliation F , we can pullback the foliation F by
the inclusion map iU : U → M , such that F|U = i∗U(F) is a foliation on U and the
inclusion becomes a smooth foliated map. For each k ∈ N0 we can define a presheaf
Ωk
F on M by setting Ωk

F(U) = Ωk(U,F|U) for an open set U ⊆ M and if iVU : U → V
is an inclusion of open sets, then Ωk

F(iVU ) = (iVU )∗ : Ωk
F(V ) → Ωk

F(U) is the restriction
of foliated k-forms, given by the pullback of the foliated inclusion map. We call Ωk

F
the presheaf of foliated differential k-forms. Note that we obtain for the trivial
foliation F = {M} on a manifold M the same presheaf as in (2).

(4) (Presheaf of (foliated) de Rham Cohomology)
Let (M,F) be a smooth foliated manifold and k ∈ N0. As in (3), for an open subset
U ⊆ M , (U,F|U) is a smooth (p, q)-foliated manifold and we define Hk

F(U) to be
the kth foliated de Rham cohomology group Hk(U,F|U), which is a vector space as
we know. Moreover, we set Hk

F(iUV ) = (iUV )∗ : Hk
F(U) → Hk

F(V ), which is the linear
induced cohomology map of the inclusion iUV : V → U of open sets. This defines the
presheaf Hk

F of the kth foliated de Rham cohomology. Further, if F = {M}
is the trivial foliation on M , we omit the sub index F since we obtain the classical
unfoliated de Rham cohomology and call Hk the presheaf of the kth de Rham
cohomology.
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3.5.4 Remark (Convention for Arbitrary Indices)

So far, the entries ωα0,...,α` ∈ G (Uα0,...,α`) of an `-cochain ω ∈ Č`(U ,G ) appear only for
increasing indices in J . By the following convention, we can allow more general indices of
any order, even with repetitions.
Convention: Whenever two indices are changed, the entry become its negative, hence

ω...,α,...,β,... = −ω...,β,...,α,.... (3.161)

As a consequence, an entry with repeated indices is 0. Otherwise, there is a permutation
σ which puts α0, ..., α` in an increasing order ασ(0) < ... < ασ(`) such that

ωα0,...,α` = sgn(σ) ωασ(0),...,ασ(`)
. (3.162)

Note that this convention is consistent with the definition of the cover operator δ.

3.5.5 Lemma (The Generalized Mayer-Vietoris Sequence)

Let (M,F) be a smooth foliated manifold and U = (Uα)α∈J an open cover of M indexed by
a countable ordered set J . The sequence of the Čech complex with values in the presheaf
of foliated differential k-forms, augmented by the global restriction map r (see 3.5.1, (b)
for definition),

0→ Ωk
F(M)

r→ Č0(U ,Ωk
F)

δ0

→ Č1(U ,Ωk
F)

δ1

→ Č2(U ,Ωk
F)→ · · · (3.163)

is exact. In other words, the Čech cohomology with values in the presheaf of foliated
differential k-forms vanishes identically.

Proof. If the restriction of a foliated global form is constantly zero on every set of the open
cover, the global form must be constantly zero. Hence, r is injective.
We show δ0 ◦ r = 0. Let ω ∈ Ωk

F(M) be a global foliated form, then

(δ0(rω))α0,α1 = δ1
0((rω)α1)− δ1

1((rω)α0) (3.164)

= %
Uα0,α1
Uα1

◦ %Uα1
X (ω)− %Uα0,α1

Uα0
◦ %Uα0

X (ω) = 0. (3.165)

Therefore, Im(r) ⊆ Ker(δ0). If µ = (µα)α∈J ∈ Ker(δ0), then µα|Uα,β = µβ|Uα,β for all α < β
in J with Uα,β 6= ∅. Hence, µ defines a global foliated form ω ∈ Ωk

F(M) with r(ω) = µ such
that we can conclude Im(r) = Ker(δ0).
It remains to be shown that Ker(δ`+1) ⊆ Im(δ`) for ` ∈ N0. Let (χα)α∈J be a smooth
partition of unity subordinate to the open cover {Uα}α∈J . Suppose ω is an (`+ 1)-cocycle,
i.e. ω ∈ Č`+1(U ,Ωk

F) with δ`+1ω = 0. We define a cochain τ ∈ Č`(U ,Ωk
F) by

τα0,...,α` =
∑
α∈J

χα ωα,α0,...,α` , (3.166)
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where we use the convention above for non increasing indices. We compute,

(δ`τ)α0,...,α`+1
=

`+1∑
i=0

(−1)iτα0,...,α̂i,...,α`+1
(3.167)

=
∑
α∈J

χα

`+1∑
i=0

(−1)iωα,α0,...,α̂i,...,α`+1
. (3.168)

Since ω is a cocycle,

0 = (δ`+1ω)α,α0,...,α`+1
= ωα0,...,α`+1

+
`+1∑
i=0

(−1)i+1ωα,α0,...,α̂i,...,α`+1
. (3.169)

Finally,

(δ`τ)α0,...,α`+1
=
∑
α∈J

χα ωα0,...,α`+1
= ωα0,...,α`+1

. (3.170)

Combining the foliated de Rham complex and the Čech complex with values in the presheaf
of foliated forms will lead us to a double complex:

3.5.6 Definition (Foliated Čech-de Rham Complex and Cohomology)

Define the spaces

Kk,` = Č`(U ,Ωk
F) =

∏
α0<...<α`

Ωk(Uα0,...,α` ,Fα0,...,α`) for k, ` ∈ N0, (3.171)

consisting of the `-cochains of the cover U with values in the foliated k-forms.
The cover operator δ` : Kk,` → Kk,`+1 as horizontal operator and the foliated Cartan-
differential dF : Kk,` → Kk+1,` as vertical operator turn Č∗(U ,Ω∗F) =

⊕
k,`∈N0

Kk,` into a

double complex, called the foliated Čech-de Rham complex.
By setting

D :
⊕
k+`=j

Kk,` →
⊕

k+`=j+1

Kk,`, Dω = δ`ω + (−1)kdFω if ω ∈ Kk,`, (3.172)

the double complex can be made into a single cochain complex consisting of the anti-
diagonal lines Aj =

⊕
k+`=j

Kk,` of the double complex together with D as coboundary

operator. For j ∈ N0 define the jth foliated Čech-de Rham cohomology group by

Hj
D{Č

∗(U ,Ω∗F)} = Ker(D : Aj → Aj+1)/Im(D : Aj−1 → Aj). (3.173)
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Figure 3: The foliated Čech-de Rham double complex.

A D-cocycle ω ∈ Aj is a sum ω =
∑

k+`=j

ωk,` with ωk,` ∈ Kk,` and Dω = 0, which is

equivalent to

dFω
j,0 = 0, δωk,` = (−1)k+1dFω

k−1,`+1 and δω0,j = 0. (3.174)

A D-coboundary η ∈ Aj is a sum η =
∑

k+`=j

ηk,` with ηk,` ∈ Kk,` such that there exists

ω ∈ Aj−1 with Dω = η, which is equivalent to

ηj,0 = (−1)jdFω
j−1,0, ηk,` = δωk,`−1 + (−1)kdFω

k−1,` and η0,j = δω0,j−1. (3.175)

We call ω ∈ Aj D-cohomologous to ω̃ ∈ Aj, if ω and ω̃ differ by a D-coboundary, i.e.
there is some η ∈ Aj−1 with ω − ω̃ = Dη.

The exactness of all rows of the double complex (Lemma 3.5.5) yields the following lemma.

3.5.7 Lemma (D-Cohomologous Cocycles and Coboundaries)

Consider the foliated Čech-de Rham complex Č∗(U ,Ω∗F) =
⊕

k,`∈N0

Kk,`, then:

(1) Every D-cocycle ω =
∑

k+`=j

ωk,` ∈ Aj is D-cohomologous to a D-cocycle ω̃ ∈ Kj,0 ⊆ Aj,

consisting only of a top component.
(2) If the D-coboundary ω = Dν ∈ Kj,0 ⊆ Aj of ν ∈ Aj−1 has only a top component, then
ν is D-cohomologous to some ν̃ ∈ Kj−1,0 which has only a top component and satisfies
Dν̃ = ω.

Proof. (1) Set ω0 = ω. If ωi =
∑

k+`=j
k≥i

ωk,`i ∈ Aj is a D-cocycle, then since δωi,j−i = 0 there

is by δ-exactness a µi ∈ Ki,j−1−i ⊆ Aj−1 with δµi = wi,j−1
i . Then ωi+1 = ωi − Dµi is
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D-cohomologous to ωi and of the form ωi+1 =
∑

k+`=j
k≥i+1

ωk,`i+1. Iterating this procedure at most

j-times, any D-cocycle ω ∈ Aj is D-cohomologous to ω̃ = ω − D
(
j−1∑
i=0

µi

)
∈ Kj,0 where

µi ∈ Ki,j−1−i.
(2) Set ν0 = ν. If νi =

∑
k+`=j−1
k≥i

νk,` for 0 ≤ i < j − 1 satisfies Dνi = ω, then

0 = (Dν)i,j−i = δνi,j−i−1 + (−1)i−1dFν
i−1,j−i = δνi,j−i−1. (3.176)

Thus, by δ-exactness, there is some µi ∈ Ki,j−i−2 with δµi = νi,j−i−1. Now, νi+1 = νi−Dµi
satisfies Dνi+1 = Dνi = ω. Moreover, νi+1 is D-cohomologous to νi and of the form
νi+1 =

∑
k+`=j−1
k≥i+1

νk,`i+1. Iterating this procedure at most (j − 1)-times, we end up with

ν̃ = νj−1 = ν −D

(
j−2∑
i=0

µi

)
∈ Kj−1,0 satisfying Dν̃ = Dν. (3.177)

In [BT82, Proposition 8.8, p. 96] it is shown that the de Rham cohomology is isomorphic to
the Čech-de Rham cohomology. This is also true for the corresponding foliated cohomologies
by a similar proof using Lemmas 3.5.5 and 3.5.7.

3.5.8 Theorem (Generalized Mayer-Vietoris Principle)

The restriction map r : Ω∗F(M)→ Č∗(U ,Ω∗F), defined for k ∈ N0 by the global restriction
map r : Ωk

F(M)→ Č0(U ,Ωk
F), induces an isomorphism between the foliated de Rham co-

homology and the foliated Čech-de Rham cohomology, i.e. for each j ∈ N0 the cohomology
map r∗ : Hj(M,F)→ Hj

D{Č∗(U ,Ω∗F)} is an isomorphism of vector spaces.

Proof. Since δ0 ◦ r = 0 on each Ωk
F(M) and dF commutes with restrictions, we obtain

D ◦ r = (−1)kdF ◦ r = (−1)kr ◦ dF on Ωk
F(M). (3.178)

Hence, r maps dF -cocycles to D-cocycles and dF -coboundaries to D-coboundaries,
respectively such that r induces for each j ∈ N0 a linear map between cohomologies
r∗ : Hj(M,F) → Hj

D{Č∗(U ,Ω∗F)}. We augment the double complex by an initial column
consisting of global foliated forms such that all rows of the augmented double complex are
exact by Lemma 3.5.5.
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Figure 4: The augmented foliated Čech-de Rham double complex.

(1) r∗ is surjective:
Let ω ∈ Aj be a D-cocycle. By Lemma 3.5.7 (1) there is some D-cocycle ω̃ ∈ Kj,0

which is in the same D-cohomology class as ω. Since δω̃ = 0, Lemma 3.5.5 yields
ω̃ ∈ Ωj(M,F). Moreover, dF ω̃ = 0 such that ω̃ is a dF -cocycle with r∗([ω̃]dF ) =
[ω̃]D = [ω]D.

(2) r∗ is injective:
Let be µ ∈ Ωj(M,F) with dFµ = 0 satisfying r(µ) = Dν for some ν ∈ Aj−1. Since
the D-coboundary η = Dν is in particular a D-cocycle, Lemma 3.5.7 (1) yields a
D-cohomologous coboundary with only a top component η̃ = Dν̃ ∈ Kj,0, satisfying
r(µ) = Dν̃. By Lemma 3.5.7 (2) we can assume ν̃ ∈ Kj−1,0 having only a top
component. Now δν̃ = 0 gives a global form λ ∈ Ωj−1(M,F) with r(λ) = ν̃, such
that

r(µ) = Dν̃ = D ◦ r(λ) = r((−1)j−1dF(λ)). (3.179)

Since r is injective, µ = dF((−1)j−1λ) is a dF -coboundary.

3.5.9 Remark (General Argument for Augmented Double Complex)

Combining Lemma 3.5.7 and Theorem 3.5.8, we have proven:
If all the rows of a double complex, augmented by an initial column, are exact, then the
D-cohomology of the double complex is isomorphic to the cohomology of the initial column
of the augmented double complex.
By switching the indices of the double complex and changing the horizontal and vertical
operator, we get a similar result:
If all the columns of a double complex, augmented by an initial row, are exact, then the
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D-cohomology of the double complex is isomorphic to the cohomology of the initial row of
the augmented double complex.

We can augment the Čech-de Rham complex by an initial row. Note that the follo-
wing presheaf of leafwise constant smooth functions is just H0

F , the presheaf of the zeroth
foliated de Rham cohomology, defined in Examples 3.5.3 (d).

3.5.10 Definition (Čech Complex of Leafwise Constant Functions)

If (M,F) is a smooth foliated manifold, we define a presheaf on M by

G lc
F (U) = Ker(dF|U : Ω0(U,F|U) = C∞(U)→ Ω1(U,F|U)) ⊆ C∞(U), (3.180)

which is the space of leafwise constant smooth functions on U . Further, if iUV : V → U
is an inclusion of sets, then G lc

F (iUV ) = (iUV )∗ : Ker(dF|U ) → Ker(dF|V ) is the restriction
of smooth functions. It is well-defined since dF commutes with restrictions. We call G lc

F
the presheaf of leafwise constant smooth functions. The Čech complex Č∗(U ,G lc

F )
of an open cover U = (Uα)α∈J with values in the presheaf of leafwise constant smooth
functions augments the Čech-de Rham complex by an initial row such that each inclusion
Č`(U ,G lc

F )→ Č`(U ,Ω0
F) is injective.

3.5.11 Lemma (Exact Columns under Good Covers)

If U = (Uα)α∈J is a good cover, then the augmented columns of the Čech-de Rham complex
are exact. To be precise, for each ` ∈ N0, the following sequence is exact:

0→ Č`(U ,G lc
F )→ Č`(U,Ω0

F)
dF→ Č`(U,Ω1

F)
dF→ Č`(U,Ω2

F)
dF→ · · · . (3.181)

Proof. The exactness at Č`(U ,G lc
F ) and Č`(U,Ω0

F) is clear by definiton. For k ∈ N, the
failure of exactness at Č`(U,Ωk

F) is measured by the cohomology∏
α0<...<α`

Hk(Uα0,...,α` ,F|Uα0,...,α`
). (3.182)

Since all sets of the good cover and their finite non-empty intersections are contractible,
we obtain by the Poincaré Lemma 3.4.10, that the cohomology vanishes for k ∈ N. Hence,
the sequence above is exact.

Combining the last results, we get:
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3.5.12 Theorem (Foliated Cohomology Isomorphic to Čech Cohomology)

Let (M,F) be a smooth foliated manifold and U = (Uα)α∈J a good cover of M , indexed by
a countable ordered set J . Then, the foliated de Rham cohomology of (M,F) is isomorphic
to the Čech cohomology of the good cover with values in the presheaf of leafwise constant
smooth functions, i.e. for each j ∈ N0 we have

Hj(M,F) ∼= Hj
D{Č

∗(U ,Ω∗F)} ∼= Ȟj(U ,G lc
F ). (3.183)

Proof. By Remark 3.5.9, Lemma 3.5.11 yields an isomorphism between each Ȟj(U ,G lc
F )

and Hj
D{Č∗(U ,Ω∗F)}, which is isomorphic to Hj(M,F) by Proposition 3.5.8.

3.5.13 Definition/Remark (Direct Limit of Čech-Cohomology)

Recall, an open cover U = (Uα)α∈J of M is called a refinement of another open cover
V = (Vβ)β∈I of M , if for each α ∈ J , there is a β ∈ I with Uα ⊆ Vβ. This relation defines a
partial order on OC(M), the system of all open covers of M . Since two open covers always
have a refinement given by the intersections, OC(M) together with the partial order given
by refinements, is a directed set. If U is a refinement of V , then there is a well-defined map
in cohomology, induced by inclusions:

%UV : Ȟ∗(V ,G lc
F )→ Ȟ∗(U ,G lc

F ). (3.184)

This makes {H∗(U ,G lc
F )}U∈OC(M) into a direct system of groups and we define Ȟ∗(M,G lc

F )
to be the direct limit of this system:

Ȟj(M,G lc
F ) = lim

U∈OC(M)
Ȟj(U ,G lc

F ). (3.185)

Since every open cover has a refinement, which is a good cover (the good covers are cofinal
in the set of all covers of a manifold)26, we receive the following corollary of Theorem 3.5.12:

3.5.14 Corollary (Čech-Cohomology of Space)

Let (M,F) be a smooth foliated manifold. Then, for every good cover U of M , we have

Ȟj(M,G lc
F ) = Ȟj(U ,G lc

F ) ∼= Hj(M,F). (3.186)

We can also obtain results for the unfoliated case, which can be found in [BT82, Theorem
8.9 and Corollary 8.9.3, p. 98-99]:

26See [BT82, Corollary 5.2, p. 43].
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3.5.15 Corollary (De Rham and Čech Cohomology in Unfoliated Case)

If U is a good cover of a smooth manifold M , then its (unfoliated) de Rham cohomology
Hj(M) is isomorphic to Ȟj(U ,R), the Čech cohomology of the good cover with values in
the presheaf of locally constant functions.
Moreover, if U is a finite good cover, then H∗(M) is finite dimensional.

Proof. We consider the trivial 1-leaf foliation F = {M} on M . Then the Čech complex of
leafwise constant functions Č(U ,G lc

F ) is the Čech complex with values in the presheaf of
locally constant functions Č(U ,R) and we receive the first assertion by Theorem 3.5.12.
Further, for a finite good cover, it is easy to see, that Ȟ∗(U ,R) is finite dimensional, such
that H∗(M) must be also finite dimensional.

3.6 Künneth Formula For Foliated Cohomology

If we consider two foliated smooth manifolds (M,F) and (N,G), then there is a foliation
F×G given by the products of leaves on the product manifold M×N . A statement relating
the (co)homology of a product of two objects with the (co)homology of these objects is
called a Künneth formula. The formula of Theorem 3.4.14 suggestes

Hk(M ×N,F × G) ∼=
⊕
i+j=k

H i(M,F)⊗Hj(N,G) for k ∈ N0. (3.187)

We have to be careful. If we consider the discrete foliation F = {{x} : x ∈ R} of R, then
H0(R,F) = C∞(R). Since F ×F = {{(x, y)} : (x, y) ∈ R2} is the discrete foliation on R2,
we have H0(R2,F × F) = C∞(R2). But the injection C∞(R) ⊗ C∞(R) → C∞(R2) is not
surjective. The function f(x, y) = exp(xy) can not be written as a finite linear combination
of functions in C∞(R)⊗C∞(R), for example.27 Only if we consider a so called topological
tensor product ⊗̂, we get an isomorphism between C∞(R)⊗̂C∞(R) and C∞(R2). In general,
we have no topology yet on the cohomology to build a topological tensor product. The
coboundary operator dF is a linear and continuous map from Ωk(M,F) to Ωk+1(M,F),
which are Fréchet spaces. Since Ker(dF) is a closed subpsace, it is also a Fréchet space. But
the quotient spaces of the cohomology are only Fréchet spaces if dF has closed image which
is by the open mapping theorem equivalent to dF being a homomorphism. In general, this
does not have to be the case as we see in Example 3.6.2 for a slope α which is a Liouville
number. A Liouville number is an irrational number α ∈ R \ Q such that for all k ∈ N0

there are relatively prime numbers m,n ∈ Z, n ≥ 2 satisfying∣∣∣α− m

n

∣∣∣ < 1

|n|k
. (3.188)

For example Liouville’s constant
∞∑
k=1

10−k! is a Liouville number. We need the following

characterization of a Liouville number for Example 3.6.2.

27See [MSE17] for a contradiction to such a representation.
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3.6.1 Lemma (Characterization of a Liouville Number)

An irrational number α ∈ R \Q is a Liouville number if and only if

∀ k ∈ N ∃m,n ∈ Z, n ≥ 2 : |αn+m| < 1

(|n|+ |m|)k
. (3.189)

Proof. (Let be k ∈ N. If (3.189) holds, then there are some m,n ∈ Z, n ≥ 2 such that we
obtain after dividing by n for m̃ = −m∣∣∣∣α− m̃

n

∣∣∣∣ < 1

n(|n|+ |m|)k
<

1

nk
. (3.190)

The other implication is more subtle. Let α be a Liouville number and k ∈ N. Choose
` ∈ N such that 2` > |α|k. The Liouville condition yields for j + 1 ≥ 3k + ` + 1 some
m,n ∈ Z, n ≥ 2 satisfying |αn−m| ≤ n−j. (Note that we can assume α and m to have the

same sign for j sufficiently large.) If αn < m, then m−αn < 1/2, such that n > m−1/2
α

> 0
follows. Since n|m−1/2| ≥ |m| for all m ∈ Z, n ≥ 2, we can conclude n2 >

∣∣m
α

∣∣. Otherwise,
αn > m and in particular n2 ≥

∣∣m
α

∣∣. Since n3 > n + n2 for n ≥ 2, we finally obtain for
m̃ = −m

|αn+ m̃| < 1

nj
<

1

n`(|n|+ |m/α|)k
<

1

(|n|+ |m|)k
, (3.191)

where the last inequality follows by an estimation based on the binomial theorem and
n` ≥ 2` > |α|k by the choice of `

n`(|n|+ |m/α|)k > n`+k + |m|k n
`

|α|k
> |n|k + |m|k. (3.192)

3.6.2 Example (Kronecker Foliation of the Torus)

The torus T2 = S1 × S1 can be obtained as a quotient space R2/Z2 where x, y ∈ R2 are
equivalent if x − y ∈ Z2. More figurative, one can glue the opposite edges of a rectangle
R = [0, 1]2 together along the same orientations, such that one can imagine T2 as the
surface of a round tire or a donut. Consider the foliation of R2 (or R) by parallel lines of
a fixed slope α ∈ R. This induces a foliation Fα on T2, called Kronecker foliation of
the torus. (The translation of a line in R2 by a pair of integers represents the same set in
R2/Z2 as the originally line.) The leaves of Fα are images of curves twisting spirally around
the torus, given by {γα,θ(t) =

(
eit, ei(αt+θ

)
: t ∈ R} as θ ranges over R (or just [0, 2π)). If

α ∈ Q, the curves are closed and the leaves of Fα are circles. (For α = 0, we obtain the
S1-foliation of T2 by points of S1, see Example 3.4.15.) Otherwise, if α ∈ R \Q, the curves
are not closed, such that each leaf is a dense line on the torus.28 Smooth functions on T2

28See [Lee13, Example 19.18 (Foliations) (e), p. 502].
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which are constant on these dense leaves are constant on T2, such that H0(M,Fα) ∼= R for
an irrational α. Surprisingly, the first foliated de Rham cohomology H1(T2,Fα) is not the
same for all irrational numbers α. As we see below, if α ∈ R \Q is not a Liouville number,
H1(T2,Fα) ∼= R, i.e. the first foliated cohomology is 1-dimensional and Hausdorff. But if
α is a Liouville number, H1(T2,Fα) is infinite-dimensional and non-Hausdorff. (In that
case, the image of dF can not be closed or equivalently be a homomorphism between
Fréchet spaces.)
The present author was not able to find a proof of the result as stated, by following the
references [MS06] and [Hae80] given in [Ber11]. Hence, we include a detailed proof, also
based on the work of Greenfield and Wallach, who considered global hypoellipticity of a
constant coefficient differential operator P on the torus in [GW72]. P is said to be globally
hypoelliptic on T2 if for any g ∈ C∞(T2) and a distribution f ∈ D′(T2) with Pf = g
already follows that f ∈ C∞(T2). They proved for an irrational number α that the vector
field P = D1 − αD2 is globally hypoelliptic if and only if α is not a Liouville number.
There is also mentioned a connection to the work of Herz on divergence. Herz showed in
[Her70, Example 1] that the Lie algebra of derivations induced by constant multiples of
vector fields, locally given by L = α ∂

∂x
+ β ∂

∂y
, has a closed divergence if and only if α

β
is

not a Liouville number. Both articles considered the Fourier expansions and deduced a
system of equations for the Fourier coefficients, which is solvable depending on whether
the slope is a Liouville number or not.

A C∞-atlas on T2 is given by smooth charts of the following type, referred to as
standard coordinates, which are the inverse of the most natural local parametrization of
the torus: (x, y) : U → I1×I2 is a diffeomorphism from an open set U ⊆ T2 onto a rectangle
with open intervals Ii of length shorter than 2π as edges such that πI ◦ x−1(r) = eir and
πII ◦ y−1(s) = eis for the projections πI , πII : T2 → S1.
There is a global vector field Xα ∈ Γ(T2, TT2) with local representation Xα|U = ∂

∂x
+α ∂

∂y
,

such that the leaves of Fα are exactly the images of the integral curves of the vector field
Xα, i.e. γ′α,θ(t) = Xα

γα,θ(t)(∈ Tγα,θ(t)T2) for all t ∈ R. In particular, Xα is a global frame of

the foliated tangent bundle TFα. Now, there is the global coframe ξα = (Xα)∗ dual to Xα,
which is a global frame of T ∗Fα satisfying ξα(Xα) = 1 on T2. In standard coordinates, ξα

is the foliated differential of the first coordinate x : U → R, i.e. ξα|U = dFαx because for
any z ∈ U ,

(dx)z(X
α
z ) = dxz

(
∂

∂x

∣∣∣∣
z

)
+ α dxz

(
∂

∂y

∣∣∣∣
z

)
= 1 (3.193)

and by definition, we have dFα = i∗TFα ◦d on C∞(T2). Hence, for each ω ∈ Ω1(T2,Fα) there
is some f ∈ C∞(T2) with ω = f · ξα. Since Fα is a (1, 1)-foliation of T2, every foliated
1-form is already closed. Moreover, ω = f · ξα is exact, if there is some g ∈ C∞(T2) with
f · ξα = dFαg = Xα(g) · ξα, which is equivalent to f = Xα(g). On the other hand, we can
consider f, g ∈ C∞(T2) as smooth functions from R2 to R with f((u, v) + κ) = f((u, v)),
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g((u, v) + κ) = g((u, v)) for all (u, v) ∈ R2 and κ ∈ Z2. Their Fourier expansions

f(u, v) =
∑
m,n∈Z

f̂(m,n) e2πi(mu+nv) and g(u, v) =
∑
m,n∈Z

ĝ(m,n) e2πi(mu+nv) (3.194)

yield the characterization of f = Xα(g) by the system of equations

f̂(m,n) = 2πi(m+ αn)ĝ(m,n) for (m,n) ∈ Z2, or equivalently by (3.195)

ĝ(m,n) =
f̂(m,n)

2πi(m+ αn)
for (m,n) ∈ Z2 \ {(0, 0)} and f̂(0, 0) = 0. (3.196)

Hence, ω = f · ξα is exact if and only if f̂(0, 0) = 0 and ĝ(m,n) = f̂(m,n)(2πi(m+ αn))−1

are the Fourier coefficients for (0, 0) 6= (m,n) ∈ Z2 of a smooth function g ∈ C∞(T2), i.e.
for each j ∈ N there is a C > 0 such that

|f̂(m,n)|
2π|m+ αn|

= |ĝ(m,n)| ≤ C

(|m|+ |n|)j
for sufficiently large |m|, |n|. (3.197)

We refer to [Gra08, Chapter 3] for details about Fourier analysis on the torus.

(1) α ∈ R \Q is not a Liouville number:
Let be f ∈ C∞(T2) with f(0, 0) = 0. The negation of (3.189) yields some k ∈ N such
that |αn+m| > (|n|+ |m|)−k for all m,n ∈ Z, n ≥ 2. Let j ∈ N. Since f ∈ C∞(T2),
its Fourier coefficients satisfy for i = j + k and some constant C̃ > 0 the inequalities
|f̂(m,n)| ≤ C̃(|m|+ |n|)−i for |m|, |n| sufficiently large. This gives

|ĝ(m,n)| = |f̂(m,n)|
2π|m+ αn|

<
1

2π
(|n|+ |m|)k|f̂(m,n)| (3.198)

≤ C̃

2π

(|m|+ |n|)k

(|m|+ |n|)i
=

C

(|m|+ |n|)j
(3.199)

for |m|, |n| sufficiently large and C = C̃
2π

. Thus, there is solution g ∈ C∞(T2) of
X(g) = f , such that f · ξα ∈ Ω1(M,Fα) is exact whenever f0,0 = 0.
If 0 6= f0,0, then f must be constant on T2 since otherwise

f0,0 =

∫
T2

f =

∫ 2π

0

∫ 2π

0

f(eir, eis)dr ds = 0 (3.200)

by the fundamental theorem of calculus and the 2π-periodicity of t 7→ eit. Therefore,
H1(T2,Fα) ∼= R if α is not a Liouville number.

(2) α ∈ R \Q is a Liouville number:

According to (3.189), there is a sequence (mk, nk)k∈N ∈ (Z2 \ {(0, 0)})N such that
|αnk +mk| ≤ (|nk|+ |mk|)−k. For each ` ∈ N,

f`(u, v) =
∑
k∈N

|αnk +mk|1/` e2πi(mku+nkv) (3.201)
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defines a smooth function f` ∈ C∞(T2). Indeed, let be j ∈ N and k ≥ ` · j, then

|f̂`(mk, nk)| = |αnk +mk|1/` ≤
1

(|nk|+ |mk|)k/`
≤ 1

(|nk|+ |mk|)j
. (3.202)

But X(g`) = f` has no solution g` ∈ C∞(T2) for any ` ∈ N, because

|ĝ`(mk, nk)| =
|f̂`(mk, nk)|

2π|αnk +mk|
=

1

2π|αnk +mk|1−1/`
≥ 1

2π
(|nk|+ |mk|)k(1−1/`)

(3.203)

does not even tend to zero. By linearity of the Fourier transformation, it suffices to
verify that (f̂` : Z2 → C)`∈N is linearly independent to obtain linearly independence
of the family (f`)`∈N. Denote ck = |αnk + mk| > 0 for each k ∈ N and let J ⊆ N be
a finite subset. If λ` ∈ R for ` ∈ J such that

∑̀
∈J
λ`f̂` = 0, we obtain

0 =
∑
`∈J

λ` f̂`(mk, nk) =
∑
`∈J

λ` c
1/`
k for each k ∈ N. (3.204)

Hence, for each j ∈ J ,

λj = −
∑

`∈J\{j}

λ` c
1
`
− 1
j

k for each k ∈ N. (3.205)

One can show by induction on the cardinality of J that λj is constant for each k ∈ N
only if all λ` for ` ∈ J \ {j} (and consequently also λj) are zero. We have shown
that there are infinitely many linearly independent functions f` ∈ C∞(T2) such that
the closed 1-forms f` · ξα ∈ Ω1(M,Fα) are not exact. Consequently, H1(T2,Fα) is
infinite-dimensional if α is a Liouville number.

3.6.3 Remark (Topological Tensor Product)

To enable a topological tensor product for the Künneth formula, we need the Hausdorff-
property, such that we require dF to be a homomorphism. As clarified in [Ber11, p. 259 ff.],
Ωk(M,F) is a nuclear Fréchet space. Subspaces and quotient spaces by closed subspaces
of nuclear spaces are also nuclear.29 If one factor is a nuclear Fréchet space, the two natu-
ral ways to construct a topological tensor product will yield the same topological tensor
product, which we denote by ⊗̂.30

29See [Tre67, Proposition 50.1, p. 514].
30See [Tre67, Theorem 50.1, p.511].
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3.6.4 Definition (Topological Tensor Product Cochain Complex)

Let E = (Ej, d jE)j∈N0 and F = (F j, d jF )j∈N0 be two cochain complexes consisting of nuclear
Fréchet spaces with coboundary operators d jE and djF , respectively, which are all homomor-
phisms. The topological tensor product cochain complex E⊗̂F is defined by

(E⊗̂F )j =
⊕
k+`=j

Ek⊗̂F ` (3.206)

with coboundary operator Dj =
∑

k+`=j

dkE⊗̂ idF ` +(−1)k idEk ⊗̂d`F .

In [Ber11] it is shown that there is a Künneth formula for foliated de Rham coho-
mology in two situations:

3.6.5 Theorem (Künneth Formula for Foliated Cohomology)

Let (M,F) and (N,G) be two smooth foliated manifolds.

(1) If dF and dG are homomorphisms, then

Hj(M ×N,F × G) ∼=
⊕
k+`=j

Hk(M,F)⊗̂H`(N,G). (3.207)

(2) If the foliated de Rham cohomology of one factor is finite dimensional and the un-
derlying manifold of that factor is compact, then the Künneth formula with only the
(algebraic) tensor product is valid

Hj(M ×N,F × G) ∼=
⊕
k+`=j

Hk(M,F)⊗H`(N,G). (3.208)

For (2), the proof requires a continuous right inverse of the foliated Cartan differential on
the compact manifold, which is obtained by using the following splitting theorem of exact
sequences of Fréchet spaces, Theorem 3.6.7. It can be found in [MV97, Theorem 30.1, p.
378] and uses the properties (DN) and (Ω) of Fréchet spaces, which we will now define 31.
We also present the closely related properties (DNloc) and (Ωloc) which are used in Theorem
3.6.8 and can be found in [Vog04, Definition 2.1 and Definition 2.4, p. 815 f.]

3.6.6 Definition (Properties (DN), (Ω), (DN)loc and (Ω)loc )

A Fréchet space X with an increasing fundamental system of seminorms (‖ · ‖n)n∈N is said
to have property

(DN) if there is a so called dominating norm ‖ ·‖ on X, which is a continuous norm such
that for every k ∈ N there are K ∈ N and C > 0 satisfying ‖ · ‖2

k ≤ C‖ · ‖ ‖ · ‖K ;

31See [MV97, Definition, p. 359 and p. 367]
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(Ω) if for every k ∈ N there is some m ∈ N such that for every n ∈ N there are 0 < θ < 1
and C > 0 such that the dual seminorms satisfy ‖ · ‖∗m ≤ C (‖ · ‖∗k)

1−θ (‖ · ‖∗n)θ;

(DN)loc if for every n ∈ N the quotient map qn : X → X/Ker(‖ · ‖n) factorizes through a Fréchet
space Y with property (DN), i.e. there are linear and continuous maps f : X → Y
and g : Y → X/Ker(‖ · ‖n) with qn = g ◦ f ;

(Ω)loc if X has property (Ω) and for every k ∈ N there are some K ∈ N, K ≥ k and a
Fréchet space Z with property (Ω) such that Ker(‖ · ‖K) ⊆ Z ⊆ Ker(‖ · ‖k) with
continuous inclusions.

Note that (Ω)loc is a stronger property than (Ω) while (DN)loc is weaker than (DN).

3.6.7 Theorem (Splitting Theorem)

Let E,F,G be Fréchet-Hilbert spaces and let 0 → F → G → E → 0 be a short exact
sequence of continuous linear maps. If E has property (DN) and F has property (Ω), then
the sequence splits.

We refer to [Ber11, p. 270 ff.] why this theorem is applicable. In short, by the compactness
of the manifold, the foliated differential forms are isomorphic, as a topological vector

space, to the Schwartz space s = {(xj)j∈N :
∞∑
j=1

|xj|2j2k < ∞ ∀k ∈ N} which satisfies the

invariants (DN) and (Ω). If the manifold is not compact, then the foliated differential
k-forms are isomorphic as topological vector spaces to sN, which does not any more satisfy
the property (DN). But sN satisfies the properties (DNloc) and (Ωloc).

32 In this situation,
another splitting theorem33 might be applicable, if one can show that the foliated Cartan
differential is an SK-homomorphism:

3.6.8 Theorem (Splitting Theorem)

Let 0 → G → E
A→ F → 0 be an exact sequence of nuclear Fréchet spaces and A

an SK-homomorphism. If F has property (DNloc) and G has property (Ωloc), then the
sequence splits.

We will have a closer look at the splitting theory and SK-properties in the next
chapter.

32[Vog04, Lemma 2.2 and Lemma 2.5, p. 815 ff.].
33[Vog04, Theorem 3.5, p. 820].
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4 Splitting Theory

4.1 SK-Topology

A locally convex space X is a vector space over R (or C) with a directed system of semi-
norms P , i.e. for each p, q ∈ P there is r ∈ P with r ≥ p and r ≥ q, such that the topology
T , induced by the seminorm balls Bp(x, ε) = {y ∈ X : p(x−y) < ε} (p ∈ P , x ∈ X, ε > 0),
is Hausdorff or equivalently for each x ∈ X \ {0} there is p ∈ P with p(x) 6= 0. Of course,
every p ∈ P is continuous with respect to this topology and the set CS(X) of all continuous
seminorms generates the same topology such that P is often assumed to be the system of
all continuous seminorms on X, which we will denote by CS(X). Note that CS(X) is a
directed system since finite sums of continuous seminorms are continuous seminorms. We
refer to [Vog04] and [Mei10] for an introduction of the presented SK-theory in this chapter.

4.1.1 Motivation

Let f : X → Y be a continuous linear map between locally convex spaces X and Y . In
general, a (linear) right inverse R : Im(f) → X of f will not be continuous. But, if we
consider a continuous linear right inverse R, then for each p ∈ CS(X) there is q ∈ CS(Y )
such that q ≥ p ◦R on Im(f). Hence,

Ker(q) ∩ Im(f) ⊆ {y ∈ Im(f) : p(R(y)) = 0} = f({x ∈ X : p(x) = 0}) = f(Ker(p)).
(4.209)

Therefore, the condition

∀p ∈ CS(X) ∃ q ∈ CS(Y ) : Ker(q) ∩ Im(f) ⊆ f(Ker(p)) (4.210)

is necessary for the existence of a continuous linear right inverse of f . Moreover, since f is
a continuous linear map, we obtain,

∀q ∈ CS(Y ) ∃ p(= q ◦ f) ∈ CS(X) : f(Ker p) ⊆ Ker q. (4.211)

In both observations, the kernels of seminorms play a central role, such that it is advisable
to study the system of seminorm kernels SK(X) = {Ker(p) : p ∈ CS(X)}. This collection
is stable under finite intersections by adding seminorms but fails to be stable under unions,
hence it is not a topology yet. However, we can construct the coarsest topology containing
SK(X), the so called SK-topology, such that the seminorm kernels are neighbourhoods
of zero. The condition (4.211) is then just the continuity of f with respect to the SK-
topologies. In that case, f is a homomorphism with respect to the SK-topologies iff (4.210)
holds. We collect these considerations in the following definition:
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4.1.2 Definition (SK-Topology)

Let X, Y be locally convex spaces and f : X → Y be a linear map.

(a) The topology,

T SK = {U ⊆ X : ∀x ∈ U ∃ p ∈ CS(X) with x+ Ker(p) ⊆ U}, (4.212)

induced by the system of seminorm kernels SK(X) = {Ker(p) : p ∈ CS(X)}, is called
the SK-topology of X.

(b) f is called SK-continuous, if

∀q ∈ CS(Y ) ∃ p ∈ CS(X) : f(Ker p) ⊆ Ker q. (4.213)

(c) f is called an SK-homomorphism, if it is SK-continuous and

∀p ∈ CS(X) ∃ q ∈ CS(Y ) : Ker(q) ∩ Im(f) ⊆ f(Ker(p)). (4.214)

4.1.3 Lemma (SK-Topology and Additive Hausdorff-Group)

Let X be a locally convex space. Then T SK is a topology on X such that SK(X) is a base
of 0-neighbourhoods. Moreover, (X, T SK,+) is a topological Hausdorff group, i.e. the maps
+ : X ×X → X (x, y) 7→ x + y and − : X → X, x 7→ −x are continuous with respect to
T SK and (X, T SK) is a Hausdorff space.
If a system of seminorms P on X is equivalent to CS(X), then

T sk = {U ⊆ X : ∀x ∈ U ∃ p ∈ P with x+ Ker(p) ⊆ U}. (4.215)

Proof. ∅, X ∈ T SK and the stability under unions follow straight from the definition of
T SK. We have to verify that U ∩ V ∈ T SK for U, V ∈ T SK. For each x ∈ U ∩ V there are
p, q ∈ CS(X) such that x+ Ker(p) ⊆ U and x+ Ker(q) ⊆ V . Then r = p+ q ∈ CS(X) and
Ker(r) = Ker(p) ∩Ker(q). Hence x+ Ker(r) = (x+ Ker(p)) ∩ (x+ Ker(q)) ⊆ U ∩ V , such
that T SK is indeed a topology.
Let x, y ∈ X and W ∈ T SK be a neighbourhood of x+ y, then there is a p ∈ CS(X) such
that (x+ y) + Ker(p) ⊆ W . Since Ker(p) + Ker(p) ⊆ Ker(p), by the triangle inequality, it
follows that (x+ Ker(p)) + (y + Ker(p)) ⊆ (x+ y) + Ker(p).
Let P be a system of seminorms which is equivalent to CS(X). It suffices to show, that
{Ker(p) : p ∈ P} is equivalent to SK(X). Let p ∈ P , then there is a C > 0 and a q ∈ CS(X)
with p ≤ C q. Hence, Ker(q) ⊆ Ker(p). On the other hand, if q ∈ CS(X), then there is a
C > 0 and a p ∈ P with q ≤ C p. Then Ker(p) ⊆ Ker(p). Therefore, the induced topologies
coincide.

98



4.1.4 Lemma (Compatibility)

(a) Let (Xi, Ti)i∈I be a family of locally convex spaces, then the SK-topology of the
product topology is the product topology of the SK-topologies,(∏

i∈I

Ti

)SK

=
∏
i∈I

T SK
i . (4.216)

(b) Let Y be a subspace of a locally convex space (X, T ), then the SK-topology of the
relative topology is the relative topology of the SK-topology,

(T |Y )SK = (T SK)|Y . (4.217)

(c) Let Y be a closed subspace of a locally convex space (X, T ), then the SK-topology
of the quotient topology is coarser than the quotient topology of the SK-topology,(

TX/Y
)SK

⊆
(
T SK

)
X/Y

. (4.218)

(d) Let (X, T ) be a locally convex space, then the SK-topology is finer than the originally
topology T ,

T ⊆ T SK. (4.219)

Proof. (a) Let U ⊆
∏
i∈I
Xi be a (

∏
i∈I
Ti)SK-neighbourhood of zero. Then there is a continuos

seminorm p on
∏
i∈I
Xi with Ker(p) ⊆ U . The continuity yields a finite subset E ⊆ I, C > 0

and pi ∈ CS(Xi) for each i ∈ E, such that

p((xi)i∈I) ≤ C sup{pi(xi) : i ∈ E} for all (xi)i∈I ∈
∏
i∈I

Xi. (4.220)

Therefore, we obtain
∏
i∈E

Ker(pi) ×
∏

i∈I\E
Xi ⊆ Ker(p) ⊆ U , which implies that U is a(∏

i∈I
T SK
i

)
-neighbourhood of zero.

Vice versa, a

(∏
i∈I
T SK
i

)
-neighbourhood of zero U yields a finite set E ⊆ I and pi ∈ CS(Xi)

for each i ∈ I with
∏
i∈E

Ker(pi)×
∏

i∈I\E
Xi ⊆ U . Then, p((xi)i∈I) = sup{pi(xi) : i ∈ E} defines

a continuous seminorm on
∏
i∈I
Xi with Ker(p) ⊆ U .

(b) Let U ⊆ Y be a (T |Y )SK-neighbourhood of zero. Hence, there is a p ∈ CS(X) with
Ker(p|Y ) ⊆ U . Since Y ∩ Ker(p) = Ker(p|Y ), this is equivalent to U being a (T SK)|Y -
neighbourhood of zero.
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(c) Let U ⊆ X/Y be a (TX/Y )SK-neighbourhood of zero, hence there is p ∈ CS(X) defining

p̃ ∈ CS(X/Y ) by p̃([x]) = inf{p(x + y) : y ∈ Y } such that Ker(p̃) ⊆ U . For the quotient
map π : X → X/Y , we obtain Ker(p) ⊆ π−1(U) such that π−1(U) is a T SK-neighbourhood
of zero and U is a (T SK)X/Y -neighbourhood of zero.

(d) Let U ⊆ X be a T -neighbourhood of zero. Then, there are an ε > 0 and a p ∈ CS(X)
with Bp(0, ε) = {x ∈ X : p(x) < ε} ⊆ U . Therefore, Ker(p) ⊆ U follows, such that U is a
T SK-neighbourhood of zero.

4.1.5 Remarks/Examples

(1) (SK-Theory for Normed Spaces)
If X has a norm ‖ · ‖ ∈ CS(X), then {0} is a T SK-neighbourhood of zero, since
Ker(‖ · ‖) ⊆ {0}. Therefore, T SK is the discrete topology on X. On the other hand,
if T SK is the discrete topology on X, then there is a p ∈ CS(X) with Ker(p) ⊆ {0},
such that p is indeed a norm on X.
If Y has a norm ‖·‖ ∈ CS(Y ), then every Φ ∈ L(X, Y ) is already an SK-homomorphism
because,

{0} = Ker ‖ · ‖ ∩ Im(Φ) ⊆ Φ(Ker(p)) for every p ∈ CS(X). (4.221)

(2) (Topological homomorphism that is no SK-homomorphism)
Consider the linear function

Φ : C∞([−1, 1])→ RN0 ,Φ(f) = (f (n)(0))n∈N0 . (4.222)

By a classical Theorem of E. Borel34, Φ is a surjective map. Since Φ is a map between
Fréchet spaces it is also a topological homomorphism by the open mapping theorem.
Since [−1, 1] is compact, there is a continuous norm on C∞([−1, 1]), given by

‖f‖ := sup{|f(x)| : x ∈ [−1, 1]}. (4.223)

Assume Φ is an SK-homomorphism, then there is a q ∈ CS(RN0) satisfying

Ker(q) ⊆ Φ(Ker ‖ · ‖)) = {0}. (4.224)

Hence, q would be a continuous norm. But there is no norm on RN0 :
A fundamentalsystem of seminorms on RN0 is given by (pk)k∈N0 defined by

pk((xn)n∈N0) = sup{|xi| : i = 0, ..., k}. (4.225)

So the continuity of q yields a C > 0 and a k ∈ N0 with q ≤ C pk on RN0 . But for
n ≥ k + 1 and (en)i = δn,i (i ∈ N0), we obtain a contradiction,

q(en) > 0 = C pk(en). (4.226)

34For instance, see [MV97, Proposition 26.29.]
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More generally, we have seen, a surjective map Φ ∈ L(X, Y ) can not be an SK-
homomorphism, if the domain has a norm but the range does not. Further, the quo-
tient space of C∞([−1, 1]) by its closed subspace Ker(Φ) is an example, where the
SK-topology of the quotient topology is strictly coarser than the quotient topology of
the SK-topology.

4.1.6 Lemma (Characterization of SK-Homomorphism)

Let f : X → Y be a linear and continuous map between locally convex spaces (X, TX) and
(Y, TY ). The following assertions are equivalent:

(a) f is an SK-homomorphism.

(b) f : X → Im(f) is an SK-homomorphism.

(c) For all p ∈ CS(X) there is q ∈ CS(Y ) with f−1(Ker(q)) ⊆ Ker(p) + Ker(f).

Proof.

(a)⇒(b): Let p ∈ CS(X), then there is q ∈ CS(Y ) with Ker(q)∩ (Im(f)) ⊆ f(Ker(p). But then
q|Im(f) ∈ CS(Im(f)) satisfies Ker(q|Im(f)) ∩ Im(f) = Ker(q) ∩ Im(f) ⊆ f(Ker(p)).

(b)⇒(c) Let p ∈ CS(X), then there is a q|Im(f) ∈ CS(Im(f)) induced by q ∈ CS(Y ) satisfying
Ker(q) ∩ Im(f) = Ker(q|Im(f)) ∩ Im(f) ⊆ f(Ker(p)). For x ∈ f−1(Ker(q)) we know
f(x) ∈ Ker(q)∩Im(f) ⊆ f(Ker(p)), such that there is a x̃ ∈ Ker(p) with f(x) = f(x̃).
Hence, x = x̃+ (x− x̃) ∈ Ker(p) + Ker(f).

(c)⇒(a) Let p ∈ CS(X), then there is a q ∈ CS(X) with f−1(Ker(q)) ⊆ Ker(p) + Ker(f).
Applying f yields already Ker(q) ∩ Im(f) ⊆ f(Ker(p)).

4.1.7 Lemma (Composition of SK-Homomorphisms)

Let f : X → Y and g : Y → Z be linear and continuous maps between locally convex
spaces. If f and g are SK-homomorphisms and Ker(g) ⊆ Im(f), then g ◦ f is an SK-
homomorphism.

Proof.
It follows by Ker(g) ⊆ Im(f) that

g(V ) ∩ g(Im(f)) ⊆ g(V ∩ Im(f)) for V ⊆ Y. (4.227)

(For v ∈ V and x ∈ X with z = g(v) = g(f(x)) it follows, that v−f(x) ∈ Ker(g) ⊆ Im(f).
So, there is a ∈ X with f(a) = v−f(x) such that v = f(a+x) ∈ Im(f)∩V and g(v) = z.)
Now start with p ∈ CS(X), then the SK-property of f yields an r ∈ CS(Y ) satisfying

Ker(r) ∩ Im(f) ⊆ f(Ker(p)). (4.228)

101



By the SK-property of g, there is q ∈ CS(Z) with

Ker(q) ∩ Im(g) ⊆ g(Ker(r)). (4.229)

Further, since Im(g ◦ f) = g(Im(f)) ⊆ Im(g), we obtain

Ker(q) ∩ Im(g ◦ f) ⊆ g(Ker(r)) ∩ g(Im(f))
(4.227)

⊆ g(Ker(r) ∩ Im(f)) ⊆ g ◦ f(Ker(p)).
(4.230)

4.1.8 Lemma (SK-Homomorphism Criterion)

Consider the following commutative diagram of linear and continuous maps between locally
convex spaces:

X
f //

h
��

Z

Y

g

>> . (4.231)

If f is an SK-homomorphism and h is surjective, then g is an SK-homomorphism.
In particular, if Y is a closed subspace of X, and f : X → Z is a linear and continuous
SK-homomorphism that is constant on equivalence classes of X/Y , then the induced linear
and continuous map f̃ : X/Y → Z is an SK-homomorphism.

Proof. Let be p ∈ CS(Y ), then there is r ∈ CS(X) with

h(Ker(r)) ⊆ Ker(p) (4.232)

since h is SK-continuous. Because f is an SK-homomorphism, there is q ∈ CS(Z) satisfying

Ker(q) ∩ Im(f) ⊆ f(Ker(r)). (4.233)

The surjectivity of h and f = g ◦ h implies Im(f) = Im(g) and we obtain

Ker(q) ∩ Im(g) ⊆ g(h(Ker(r))) ⊆ g(Ker(p)), (4.234)

such that g is an SK-homomorphism. Finally, the special case follows immediately for g
being the surjective quotient map from X to X/Y .

Next, we want to characterize the closed subspaces Y of a locally convex space (X, T ),

such that
(
TX/Y

)SK

= (T SK)X/Y holds. We call such a subspace an SK-subspace.

For p ∈ CS(X) we set

Tp := {U ⊆ X : ∀ x ∈ U ∃ ε > 0 such that Bp(x, ε) ⊆ U}. (4.235)

Tp is a topology on X induced by the system of p-balls and for a subset S ⊆ X, we denote

by S
p

the closure of S with respect to the topology Tp. For instance {0}
p

= Ker(p).
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4.1.9 Lemma (Characterization SK-Subspaces)

Let Y be a closed subspace of a locally convex space (X, T ). Then the following are
equivalent:

(a)
(
TX/Y

)SK

= (T SK)X/Y .

(b) For every p ∈ CS(X) there is a q ∈ CS(X) with Y
q ⊆ Ker(p) + Y .

(c) The quotient map π : X → X/Y is an SK-homomorphism.

Proof. Every p ∈ CS(X) induces a p̃ ∈ CS(X/Y ) by setting p̃([x]) = inf{p(x+ y) : y ∈ Y }.
Then:

(∗) π−1(Ker(p̃)) ⊆ Ker(p) + Y.

(Let x ∈ X \ Y with p̃(π(x)) = 0 and suppose x /∈ Ker(p). Since p is Tp-continuous, its

kernel is Tp-closed (Ker(p) = Ker(p)
p
). Hence there is an ε > 0 with Bp(x, ε)∩Ker(p) = ∅.

But since p̃(π(x)) = 0, there is a y ∈ Y with p(x− y) < ε and we obtain a contradiction.)

(a)⇒(b) Let p ∈ CS(X). Since p̃ ∈ CS(X/Y ), we get for Ker(p̃) ∈ (T )SK
X/Y

an U ∈ (T SK)X/Y
with U ⊆ Ker(p̃) by (a). Then, π−1(U) ∈ T SK by definition of the quotient topology,
such that there is a q0 ∈ CS(X) with Ker(q0) ⊆ π−1(U). If we set q = q̃0 ◦ π, then

q ∈ CS(X) and Y ∈ Ker(q). Since, Ker(q)
q

= Ker(q), we obtain

Y
q ⊆ Ker(q) = Ker(q̃0 ◦ π) = π−1(Ker(q̃0)) (4.236)

(∗)
⊆ Ker(q0) + Y ⊆ π−1(U) ⊆ π−1(Ker(p̃)) (4.237)

(∗)
⊆ Ker(p) + Y. (4.238)

(b)⇒ (c) Let p ∈ CS(X). By (2), there is a q ∈ CS(X) with Y
q ⊆ Ker(p) + Y . Then,

Ker(q̃) ⊆ π(Y
q
). (Otherwise there is a x ∈ X with q̃(π(x)) = 0 and x /∈ Y q

. The
last condition yields an ε > 0 with Bq(x, ε) ∩ F = ∅. But this is a contradiction to
q̃(π(x)) = 0, because there is a y ∈ Y with p(x+y) < ε.) This yields the SK-condition,

Ker(q̃) ⊆ π(Y
q
) ⊆ π(Ker(p)). (4.239)

(c)⇒ (a) By 4.1.4 (c), we have only to show (T SK)X/Y ⊆ (TX/Y )SK. Let U be a (T SK)X/Y -

neighbourhood of zero. Then, π−1(U) is a T SK-neighbourhood of zero, such that
there is a p ∈ CS(X) with Ker(p) ⊆ π−1(U). By (3), there is a q ∈ CS(X/Y ) with
Ker(q) ⊆ π(Ker(p)) ⊆ U. Hence, U is a (TX/Y )SK-neighbourhood of zero.

We will verify that the closed subspace Ωk

�(M,F) = Γ(M,Λk(T ∗M �TF)) of Ωk(M) is
an SK-subspace. The sections in the k-annihilator vector bundle were used to give an
isomorphic construction of the foliated differential k-forms. See 4.1.10 and 3.2.3 for details.
At first, we deal with the local situation:
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4.1.10 Lemma (k-Annihilator Criterion)

Let F = {Lα}α∈A be a p-foliation of an n-manifold M and let (X1, ..., Xn) be a frame of
TM over some open set U ⊆M such that (Xn−p+1, ..., Xn) is a frame of TF over U .
For any compact L ⊆ U and pL,0 ∈ CS(Ωk(M)), defined by

pL,0(ω) = sup{|ωx(Xn−p+1(x), ..., Xn(x))| : x ∈ L}, (4.240)

we have the following inclusion:

{ω ∈ Ωk(M) : supp(ω) ⊆ Int(L)} ∩ Ωk

�(M,F)
pL,0 ⊆ Ωk

�(M,F), (4.241)

where Ωk

�(M,F)
pL,0

denotes the closure of Ωk

�(M,F) in Ωk(M) w.r.t TpL,0 .

Proof. For any ω ∈ Ωk(M), the local representation on U is given by

ω|U =
∑

1≤i1<...<ik≤n

ci1...ik(ω)dXi1 ∧ ... ∧ dXik , (4.242)

where ci1...ik(ω) ∈ C∞(U) is defined by ci1...ik(ω)(x) = ωx(Xi1(x), ..., Xik(x)).
If ω ∈ Ωk

�(M,F), we have i∗αω = 0 for each inclusion iα : Lα → M . So the local represen-
tation becomes

ω|U =

n−p∑
j=1

dXj ∧ θj (4.243)

with θj =
∑

j<i2<...<ik≤n
cji2...ik(ω)dXi2 ∧ ... ∧ dXik ∈ Ωk−1(U).

On the other hand, if V ⊆ U is open and ω ∈ Ωk(M) with supp(ω) ⊆ V has a local
representation on V of the form (4.243), it is also an element of Ωk

�(M,F).

Now let L ⊆ U be compact and ω ∈ Ωk

�(M,F)
pL,0

with supp(ω) ⊆ Int(L).

So there is a sequence (ωr)r∈N ∈ Ωk

�(M,F)N such that pL,0(ωr − ω) → 0 for r → ∞,
i.e. ci1...ik(ωr) → ci1...ik(ω) uniformly on L for all ordered indices 1 ≤ i1 < ... < ik ≤ n.
But since ωr ∈ Ωk

�(M,F), we obtain ci1...ik(ω) = lim
r→∞

ci1...ik(ωr) = 0 for all i1 > n − p by

(4.243). Thus,

ω|Int(L) =
∑

1≤i1<···<ik≤n

ci1···ik(ω)dXi1 ∧ · · · ∧ dXik (4.244)

=

n−p∑
j=1

∑
j<i2<···<ik≤n

cj i2···ik(ω)dXj ∧ dXi2 · · · ∧ dXik (4.245)

=

n−p∑
j=1

dXj ∧

( ∑
j<i2<···<ik≤n

cj i2···ik(ω)dXi2 · · · ∧ dXik

)
. (4.246)
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4.1.11 Proposition (k-Annihilator is an SK-Subspace)

Let F = {Lα}α∈A be a p-foliation of an n-manifold M . Then Ωk

�(M,F) is an SK-subspace

of Ωk(M) for any k ∈ N0.

Proof. For p ∈ CS(Ωk(M)) there is some finite set I such that for every i ∈ I there are

(1) a frame {X i
j}nj=1 of TM over some open Ui ⊆M , such that {X i

j}nj=n−p+1 is a frame of
TF over Ui,

(2) a compact subset Ki ⊆ Ui and an order of differentiation `i ∈ N0,

such that p = max{pKi,`i : i ∈ I}. Recall, that pKi,`i is defined for ω ∈ Ωk(M) by its local
representation ω|Ui =

∑
1≤i1<...<ik≤n

cii1...ik(ω)dX i
i1
∧ ...∧ dX i

ik
with smooth coefficients on Ui,

x 7→ cii1...ik(ω)(x) = ωx(X
i
i1

(x), ..., X i
ik

(x)), such that

pKi,`i(ω) = sup{sup{|Dα(cii1···ik(ω))(x)| : x ∈ Ki, |α| ≤ `i} : 1 ≤ i1 < · · · < ik ≤ n}.
(4.247)

Let Li ⊆ Ui be compact with Ki ⊆ Int(Li) for each i ∈ I. Hence, q = max{pLi,0 : i ∈ I}
defines a continuous seminorm on Ωk(M). The finite union K =

⋃
i∈I
Ki is compact and

there is a finite partition of unity {ϕi}i∈I such that supp(ϕi) ⊆ Int(Li) and
∑
i∈I
ϕi = 1 on K.

We will show Ωk

�(M,F)
q
⊆ Ωk

�(M,F) + Ker(p): So let ω ∈ Ωk

�(M,F)
q
, i.e. ω ∈ Ωk(M)

and there is a sequence (ωr)r∈N ∈ Ωk

�(M,F)N with q(ωr−ω)→ 0 for r →∞. This means,

cii1...ik(ωr) → cii1...ik(ω) uniformly on Li for each i ∈ I. Because of
∑
i∈I
ϕi = 1 on K, we

obtain

(
1−

∑
i∈I
ϕi

)
ω ∈ Ker(p). By the decomposition

ω =
∑
i∈I

ϕiω +

(
1−

∑
i∈I

ϕi

)
ω, (4.248)

it remains to show
∑
i∈I
ϕiω ∈ Ωk

�(M,F). Since each ϕi is bounded and pLi,0 ≤ q, it follows

that pLi,0(ϕiωr−ϕiω)→ 0, i.e. ϕiω ∈ Ωk

�(M,F)
pLi,0 . Moreover, supp(ϕiω) ⊆ Int(Li) such

that Lemma 4.1.10 yields ϕiω ∈ Ωk

�(M,F) for each i ∈ I, hence
∑
i∈I
ϕiω ∈ Ωk

�(M,F).

Now, we have proven (b) of Lemma 4.1.9 and Ωk

�(M,F) is an SK subspace.

4.1.12 Remark (Alternative Foliated Cartan-Differential)

Originally, we were interested in the question if the foliated Cartan-differential is an SK-
homomorphism. If we use the definition Ωk

fol(M,F) = Ωk(M)/Ωk �(M,F) of foliated forms as

quotient spaces and denote the quotient map by qk : Ωk(M)→ Ωk
fol(M,F), then since

qk+1 ◦ d : Ωk(M)→ Ωk+1
fol (M,F) (4.249)
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is constantly zero on Ωk

�(M,F) by i∗Lα ◦ d = d ◦ i∗Lα , there is a linear continuous map

d̃F : Ωk
fol(M,F)→ Ωk+1

fol (M,F) (4.250)

satisfying d̃F ◦ qk = qk+1 ◦ d. Moreover, using the isomorphisms of Fréchet spaces
Φk : Ωk

fol(M,F) → Ωk(M,F), which exist by Lemma 3.2.4, dF = Φk+1 ◦ d̃F ◦ (Φk)−1

holds. Since isomorphisms of Fréchet spaces are in particular sk-homomorphisms, we ob-
tain by Lemma 4.1.7 that dF is an SK-homomorphism if and only if d̃F is one.
By Lemma 4.1.8, d̃F is an SK-homomorphism if qk+1 ◦ d is one. We already know that
qk is an SK-homomorphism for each k ∈ N0 by the previous proposition. However, even
if d is an SK-homomorphism, Lemma 4.1.7 requires Ωk+1

� (M,F) = Ker(qk+1) ⊆ Im(d) to

conclude that the composition qk+1 ◦ d is also an SK-homomorphism. Even if the inclusion
is not satisfied in general, we will investigate whether the (unfoliated) Cartan-differential
is an SK-homomorphism.

4.1.13 Remark (SK-Condition for Cartan-Differential)

Denote the set of open and relatively compact subsets of a manifold M by Trc(M). An
open and relatively compact exhaustion of M is a sequence of sets Mj ∈ Trc(M) such that
Mj ⊆ Mj+1 and M =

⋃
j∈N

Mj. Every (relatively) compact set A ⊆ M is contained in some

Mn since A ⊆
⋃
j∈N

Mj yields an n ∈ N with A ⊆
n⋃
j=1

Mj = Mn. The kernel of a seminorm

on spaces of C∞-sections consists of sections vanishing on some compact set A ⊆ M .
So, an equivalent system of zero neighbourhoods for the SK-topology is given by sections
that vanish on some open relatively compact set and the SK-homomorphism condition for
d : Ωk(M)→ Ωk+1(M) becomes

∀ U ∈ Trc(M) ∃ V ∈ Trc(M) ∀ ω ∈ Ωk(M) :

dω|V = 0⇒ ∃ ν ∈ Ωk(M) : dω = dν and ν|U = 0. (4.251)

4.1.14 Lemma (Characterization Cartan-Differential SK-Homomorphism)

Let M be a manifold with an open and relatively compact exhaustion (Mj)j∈N and k ≥ 0.
Then the following are equivalent:

(a) d : Ωk(M)→ Ωk+1(M) is an SK-homomorphism.

(b) ∀ U ∈ Trc(M) ∃ V ∈ Trc(M) (U ⊆ V ): %UV (Ωk
cl(V )) ⊆ %UM(Ωk

cl(M)).

(c) ∀ n ∈ N ∃m ≥ n : %nm
(
Ωk

cl(Mm)
)
⊆ %nM

(
Ωk

cl(M)
)
.

Proof. (a)⇒ (b): Let U ∈ Trc(M), then there is W ∈ Trc(M) according to (4.251). Choose
V ∈ Trc(M) such that W ⊆ V and let χ ∈ C∞(M) be a bump function with χ|W = 1
and supp(χ) ⊆ V . For ω ∈ Ωk

cl(V ) define ω̃ = χω ∈ Ωk(M) such that dω̃|W = dω|W = 0.
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By (4.251) there is ν ∈ Ωk(M) such that ν|U = 0 and dν = dω̃. Set η = ω̃ − ν, then
%UM(η) = ω̃|U − ν|U = ω|U = %UV (ω) and dη = dω̃ − dν = 0.
(b) ⇒ (c): Let n ∈ N. For U = Mn ∈ Trc(M) there is V ∈ Trc(M) such that
%nV (Ωk

cl(V )) ⊆ %nM(Ωk
cl(M)). Now there is m ≥ n with V ⊆ Mm and by %nm = %nV ◦ %Vm

it follows %nm
(
Ωk

cl(Mm)
)
⊆ %nV

(
Ωk

cl(V )
)
⊆ %nM

(
Ωk

cl(M)
)
.

(c) ⇒ (a): Let U ∈ Trc(M), then there is n ∈ N such that U ⊆ Mn. For this n it exists
m ≥ n such that V = Mm contains U and satisfies %Un ◦ %nV

(
Ωk

cl(V )
)
⊆ %Un ◦ %nM

(
Ωk

cl(M)
)
.

If dω|V = 0 for some ω ∈ Ωk(M), then ω|V ∈ Ωk
cl(V ) and it exists η ∈ Ωk

cl(M) satisfying
ω|U = η|U . Setting ν = ω − η ∈ Ωk(M) gives ν|U = ω|U − η|U = 0 and dν = dω − dη = dω
since η is closed.

The last condition (c), is a so called strictness condition of a projective spectrum induced
by an open and relatively compact exhaustion of the manifold. We will have a closer look
at the theory of projective spectra and the strictness condition to finally conclude that the
Cartan-differential is indeed an SK-homomorphism.

4.2 Projective Limit

The introduction of projective spectra and projective limits is based on [Wen03, Chapter
3]. As we have seen before, we are interested in a so called strictness condition which can
be defined for projective spectra and can be interpreted as a relaxation of the surjectivity
of the linking maps.

4.2.1 Definition (Projective Spectrum)

A projective spectrum X = (Xn, %
n
m) is a sequence (Xn)n∈N of linear spaces (over the

same scalar field) together with linear maps %nm : Xm → Xn for n ≤ m such that %nn = idXn
and %kn ◦ %nm = %km for k ≤ n ≤ m.
A morphism f = (fn)n∈N : X → Y between two projective spectra X = (Xn, %

n
m) and

Y = (Yn, σ
n
m) is a sequence of linear maps fn : Xn → Yn such that fn ◦ %nm = σnm ◦ fm for

n ≤ m, i.e. the diagram

Xn
fn // Yn

Xm fm
//

%nm

OO

Ym

σnm

OO

commutes.
The composition of two morphisms f : (Xn, %

n
m)→ (Yn, σ

n
m) and g : (Yn, σ

n
m)→ (Zn, τ

n
m) is

defined by composing the components g ◦ f = (gn ◦ fn)n∈N.
We call Y = (Yn, σ

n
m) a subsequence of a projective spectrum X = (Xn, σ

n
m) if there

is a strictly increasing sequence (k(n))n∈N of natural numbers such that Yn = Xk(n) and

107



σnm = %
k(n)
k(m). A projective spectrum X = (Xn, %

n
m) is called strict, if it satisfies

∀ n ∈ N ∃m ≥ n ∀ ` ≥ m : %nm(Xm) ⊆ %n` (X`). (4.252)

Notice that %n` (X`) = %nm(%m` (X`)) ⊆ %nm(Xm) is always satisfied for ` ≥ m ≥ n.
A short sequence of projective spectra

0→X
f→ Y

g→ Z → 0 (4.253)

is exact if it consists of short exact sequences of linear spaces such that the following
diagram is commutative for every m ≥ n:

0 // Xn
fn // Yn

gn // Zn // 0

0 // Xm fm
//

%nm

OO

Ym //

σnm

OO

gm
// Zn

τnm

OO

// 0.

4.2.2 Lemma (Strictness-Invariance under Subsequences)

Let X = (Xn, %
n
m) be a projective spectrum. Then the following are equivalent:

(a) X is strict;

(b) Every subsequence of X is strict;

(c) There is a strict subsequence of X .

Proof.
(a)⇒ (b) Let (k(n))n∈N be a strictly increasing sequence of natural numbers and let n ∈ N.

The strictness of X provides for k(n) ∈ N an M ∈ N such that %
k(n)
M (XM) ⊆ %

k(n)
` (X`)

for every ` ≥ M holds. Since the sequence is strictly increasing there is m ≥ n such that
k(m) ≥M and for every ` ≥ m it follows:

%
k(n)
k(m)

(
Xk(m)

)
= %

k(n)
M

(
%Mk(m)(Xk(m))

)
⊆ %

k(n)
M (XM) ⊆ %

k(n)
k(`)

(
Xk(`)

)
. (4.254)

(b) ⇒ (c) is trivially true.
(c)⇒ (a) Let (k(n))n∈N be a strictly increasing sequence of natural numbers such that the
corresponding subsequence of X is strict and let n ∈ N. There is N ∈ N with k(N) ≥ n
and the strictness provides an M ≥ N such that for m = k(M) ≥ k(N) and every L ≥M :

%nm (Xm) = %nk(N) ◦ %k(N)
m (Xm) ⊆ %nk(N) ◦ %

k(N)
k(L)

(
Xk(L)

)
= %nk(L)

(
Xk(L)

)
. (4.255)

Given ` ≥ m there is some L ≥M with k(L) ≥ `. Hence we obtain

%nm (Xm) ⊆ %nk(L)

(
Xk(L)

)
= %n`

(
%`k(L)

(
Xk(L)

))
⊆ %n` (X`) . (4.256)
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4.2.3 Definition (Projective Limit)

For a projective spectrum X = (Xn, %
n
m) we define its projective limit by

Proj X = lim
←−

Xn =

{
(xn)n∈N ∈

∏
n∈N

Xn : %nm(xm) = xn for all m ≥ n

}
. (4.257)

We denote by %n : Proj X → Xn the projection onto the nth-component. For a morphism
f = (fn)n∈N : X → Y between two projective spectra, we set

Proj f : Proj X → Proj Y , (xn)n∈N 7→ (fn(xn))n∈N. (4.258)

4.2.4 Remark (Proj-functor)

The linking property of the restrictions implies that Proj X is the kernel of the linear map

Ψ = ΨX :
∏
n∈N

Xn →
∏
n∈N

Xn, (xn)n∈N 7→
(
xn − %nn+1(xn+1)

)
n∈N .

Furthermore, Proj f is a well-defined linear map since f is a morphism of projective spectra
and for another morphism g = (gn)n∈N : Y → Z the composition Proj g ◦ Proj f equals
Proj(g ◦ f). In addition, Proj idX = idProj X such that Proj is a covariant functor acting
on the category of projective spectra with values in the category of linear spaces.

If Y =
(
Xk(n), %

k(n)
k(m)

)
is a subsequence of X , there is a morphism f = (fn)n∈N : Y →X

defined by fn = %nk(n) : Xk(n) → Xn such that the induced map Proj f : Proj Y → Proj X ,

(xk(n))n∈N 7→
(
%nk(n)(xk(n))

)
n∈N

is bijective where its inverse is given by ϕ : Proj X →
Proj Y , (xn)n∈N 7→ (xk(n))n∈N. We can use this in the following:

4.2.5 Lemma (Mittag-Leffler Lemma of Algebra)

Let X = (Xn, %
n
m) be a projective spectrum. Then X is strict if and only if

∀ n ∈ N ∃m ≥ n : %nm (Xm) ⊆ %n (Proj X ) . (4.259)

Proof. Let n ∈ N. Assume that (4.259) holds, then there is some m ≥ n such
that %nm(Xm) ⊆ %n (Proj X ). So for every xm ∈ Xm, there is y ∈ Proj X with
%nm(xm) = yn = %n` (y`) for every ` ≥ n since y ∈ Proj X . Hence X is strict.

(1) At first, we show that the condition (4.259) is satisfied if it holds for some sub-
sequence of X . So let (k(n))n∈N be a strictly increasing sequence of natural numbers and

Y =
(
Xk(n), %

k(n)
k(m)

)
such that:

∀ N ∈ N ∃M ∈ N : %
k(N)
k(M)

(
Xk(M)

)
⊆ %k(N) (Proj Y ) . (4.260)
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Let n ∈ N. For N ∈ N with k(N) ≥ n there is M ∈ N such that for m = k(M) ≥ k(N):

%nm(Xm) = %nk(N)

(
%k(N)
m (Xm)

)
⊆ %nk(N)

(
%k(N) (Proj Y )

)
. (4.261)

As mentioned before, there is a bijection Proj f : Proj Y → Proj X , defined by

(xk(n))n∈N 7→
(
%nk(n)(xk(n))

)
n∈N

. Moreover, %k(n)(Proj Y ) = %k(n) (Proj f(Proj Y )) =

%k(n)(Proj X ) for each n ∈ N such that (4.259) follows.

Now let X be strict. By passing to a subsequence, we can assume the strictness
condition in the following way:

∀ n ∈ N, ` ≥ n+ 1 : %nn+1 (Xn+1) ⊆ %n` (X`). (4.262)

Let n ∈ N and put m = n+ 1. For xm ∈ Xm and j ∈ {1, ..., n} define yj = %jm(xm).
According to (4.262), we can construct inductively (xj)j≥n+2 ∈

∏
j≥n+2

Xj such that

%jj+1(xj+1) = %jj+2(xj+2) holds for every j ≥ n. Setting yj = %jj+1(xj+1) for j ≥ n + 1

defines an element y = (yj)j∈N ∈ Proj X since %jj+1(yj+1) = yj for each j ∈ N and it
satisfies %n(y) = %nm(xm).

4.2.6 Lemma (Strictness of the Image of a Strict Projective Spectrum)

Let X
f→ Y → 0 be an exact sequence of projective spectra. If X is strict, then Y is

also strict.

Proof. The strictness of X = (Xn, %
n
m) implies for n ∈ N

(1) ∃m ≥ n ∀ k ≥ m : %nm(Xm) ⊆ %nk(Xk).

For y ∈ Ym there is x ∈ Xm with y = fm(x) because of the exactness. Consider the
following commutative diagram with exact rows for k ≥ m:

Xn
fn // Yn // 0

Xm
fm //

%nm

OO

Ym //

σnm

OO

0

Xk
fk //

%mk

OO

Yk //

σmk

OO

0.

So σnm(y) = σnm(fm(x)) = fn(%nm(x)) ∈ fn(%nm(Xm))
(1)

⊆ fn(%nk(Xk)) = σnk (fk(Xk)) = σnk (Yk).
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4.2.7 Lemma (Strictness-Criterion for the Middle)

Let X
f→ Y

g→ Z → 0 be an exact sequence of projective spectra. If X and Z are strict,
then Y is also strict.

Proof. We have to show the strictness condition for Y = (Yn, σ
n
m). So let n ∈ N.

X = (Xn, %
n
m) being strict implies

(1) ∃ ` ≥ n ∀ k ≥ ` : %n` (X`) ⊆ %nk(Xk)

and for this ` the strictness of Z = (Zn, τ
n
m) provides

(2) ∃m ≥ ` ∀ k ≥ m : τ `m(Zm) ⊆ τ `k(Zk).

It suffices to show for k ≥ m and y ∈ Ym that σnm(y) ∈ σnk (Yk). Consider the following
commutative diagram with exact rows:

Xn
fn // Yn

gn // Zn // 0

X`
f` //

%n`

OO

Y`
g` //

σn`

OO

Z` //

τn`

OO

0

Xm
fm //

%`m

OO

Ym
gm //

σ`m

OO

Zm //

τ`m

OO

0

Xk
fk //

%mk

OO

Yk
gk //

σmk

OO

Zk //

τmk

OO

0.

Then g`(σ
`
m(y)) = τ `m(gm(y)) ∈ τ `m(gm(Ym))=τ `m(Zm)

(2)

⊆ τ `k(Zk) = τ `k(gk(Yk)) yields ỹ ∈ Yk
such that g`(σ

`
m(y)) = τ `k(gk(ỹ)) = g`(σ

`
k(ỹ)). Therefore σ`m(y)− σ`k(ỹ) ∈ Ker(g`) = Im(f`).

So there is x ∈ X` satisfying σ`m(y)− σ`k(ỹ) = f`(x).

Hence σnm(y) − σnk (ỹ) = σn` (σ`m(y) − σ`k(ỹ)) = σn` (f`(x)) = fn(%n` (x)) ∈ fn(%n` (X`))
(1)

⊆
fn(%nk(Xk)) and it exists x̃ ∈ Xk with σnm(y) − σnk (ỹ) = fn(%nk(x̃)) = σnk (fk(x̃)). Finally
σnm(y) = σnk (ỹ + fk(x̃)) ∈ σnk (Yk).

4.2.8 Lemma (Linking Maps With Finite Dimensional Images)

Let X = (Xn, %
n
m) be a projective spectrum with finite dimensional images %nm(Xm) for all

m ≥ n. Then X is strict.

Proof. Let n ∈ N. Define xk = dim(%nk(Xk)) for k ≥ n then (xk)k≥n is a monotone de-
creasing sequence of natural numbers since %nk(Xk) = %nm(%mk (Xk)) ⊆ %nm(Xm) for k ≥ m.
Hence there is m ≥ n such that xk = xm for all k ≥ m, i.e. %nm(Xm) = %mk (Xk) because
their dimensions agree.
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Recall that a good cover (Uα)α∈I of a smooth manifold M of dimension n is a collection
of open sets Uα such that all sets and all finite non-empty intersections Uα0 ∩ ... ∩ Uα` of
the cover are diffeomorphic to Rn. As mentioned in Remark 3.4.13, every smooth manifold
has a good cover and if the manifold is compact, the good cover may be chosen to be finite.
Moreover, if a smooth manifold has a finite good cover, then its de Rham cohomology is
finite dimensional by Corollary 3.5.15.

4.2.9 Lemma (Restrictions in Cohomology Got Finite Dimensional Image)

Let M be a smooth manifold and N ⊆ M be open and relatively compact. Then the
restriction % : Hk(M)→ Hk(N) has finite dimensional image for each k ∈ N0.

Proof. Let (Uα)α∈I be a good cover of M . Since N is compact in M , there is a finite subset
E ⊆ I such that N ⊆

⋃
α∈E

Uα. Define V =
⋃
α∈E

Uα. Then V is a submanifold of M with

a finite good cover, namely (Uα)α∈E and consequently its de Rahm cohomologies Hk(V )
are finite dimensional. Now % : Hk(M)→ Hk(N) factorizes through the finite dimensional
space Hk(V ) such that % has finite dimensional image.

For k ∈ N0 and a smooth manifold M , we denote the closed and exact k-forms by

Ωk
cl(M) = Ker(d : Ωk(M)→ Ωk+1(M)) and (4.263)

Ωk
ex(M) = Im(d : Ωk−1(M)→ Ωk(M)). (4.264)

4.2.10 Examples (Strict Projective Spectra)

Let M be a smooth manifold and (Mn)n∈N be an open and relatively compact exhaustion of
M , i.e. Mn ⊆M open and realtively compact, Mn ⊆Mn+1 for each n ∈ N and M =

⋃
n∈N

Mn.

Then the following projective spectra are strict for each k ∈ N0:

(1) (Ωk(Mn), %nm); (2) (Ωk
ex(Mn), %nm); (3) (Hk(Mn), %nm); (4) (Ωk

cl(Mn), %nm),

where %nm denotes the restriction between the corresponding spaces, induced by the pullback
of the inclusion imn : Mn ↪→Mm for m ≥ n.

Proof. (1) Let n ∈ N, ` ≥ n + 1 and ω ∈ Ωk(Mn+1). For a bump function ϕ ∈ C∞(M)
with supp(ϕ) ⊆Mn+1 and ϕ|Mn ≡ 1 define η = (ϕ ω)|M`

. Then, η ∈ Ω`(M`) and %nn+1(ω) =
ω|Mn = (ϕ ω)|Mn = %n` (η).
(2) The exterior derivatives dn : Ωk−1(Mn)→ Ωk

ex(Mn) give rise to a morphism d = (dn)n∈N

of projective spectra such that (Ωk−1(Mn))n∈N
d→ (Ωk

ex(Mn))n∈N → 0 is exact. Now (1)
implies (2) by Lemma 4.2.6.
(3) The restriction %nm : Hk(Mm)→ Hk(Mn) has finite dimensional image for each m ≥ n
by Lemma 4.2.9. Hence the assertion follows by Lemma 4.2.8.
(4) For each n ∈ N, the sequence 0 → Ωk

ex(Mn) ↪→ Ωk
cl(Mn) → Hk(Mn) → 0 with the
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inclusion and quotientmap is exact, such that there is an exact sequence of projective
spectra:

0→ (Ωk
ex(Mn))n∈N ↪→ (Ωk

cl(Mn))n∈N → (Hk(Mn))n∈N → 0.

Thus, (Ωk
cl(Mn))n∈N is strict because of (2), (3) and Lemma 4.2.7.

4.2.11 Theorem (Exterior Derivative is an Sk-Homomorphism)

Let M be a manifold and k ∈ N0. Then d : Ωk(M)→ Ωk+1(M) is an SK-homomorphism.

Proof. Let (Mn)n∈N be an open and relatively compact exhaustion of M. By example 4.2.10
and Lemma 4.2.5 we obtain:

∀ n ∈ N ∃m ≥ n : %nm(Ωk
cl(Mm)) ⊆ %n

(
Proj(Ωk

cl(Mn), %nm)
)
.

The map ϕ : Ωk
cl(M) → Proj(Ωk

cl(Mn), %nm), ω 7→ (%nM(ω))n∈N is a bijection. Injectivity
follows by locality, i.e. if a form coincides on open sets, it coincides on their union and
surjectivity follows by glueing, using a partition of unity subordinate to (Mn)n∈N. Since
%n ◦ ϕ = %nM we conclude

∀ n ∈ N ∃m ≥ n : %nm
(
Ωk

cl(Mm)
)
⊆ %nM

(
Ωk

cl(M)
)
. (4.265)

Finally, d is an SK-homomorphism by Lemma 4.1.14.

4.2.12 Corollary (Foliated Cartan-Differential SK-Homomorphism Criterion)

Let (M,F) be a smooth foliated manifold and k ∈ N0. If Ωk+1

� (M,F) ⊆ d(Ωk(M)) is

satisfied, then dF : Ωk(M,F)→ Ωk+1(M,F) is an SK-homomorphism.

Proof. This follows by Remark 4.1.12 and the previous theorem.
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4.2.13 Remark (Čech Cohomology of Leafwise Constant Functions)

As in 4.1.14, the foliated Cartan differential will be also an SK-homomorphism if the kernel
spectrum is strict. In the unfoliated case, we used the strictness of the projective spectrum
of the de Rham cohomology. Therefore, we showed that the linking/restriction maps got
finite dimensional images, which was basically a consequence of the fact, that the de Rham
cohomology is finite dimensional if there exists a finite good cover. The foliated de Rham
cohomology of a finite good cover is not finite dimensional in general and we need a repla-
cement. We would like to show:
If (M,F) is a smooth foliated manifold with finite dimensional foliated de Rham coho-
mology and P ⊆ N ⊆ M are relatively open and compact, then the restriction map
% : Hk(N,F|N)→ Hk(P,F|P ) has finite dimensional image.
If we consider the Kronecker foliation (Example 3.6.2) on the torus corresponding to an
irrational slope α which is not a Liouville number, then the foliated de Rham cohomology is
finite dimensional. But if we take a zylinder on T2, Z = {(eiα, eiβ) : α ∈ (0, π), β ∈ [0, 2π]},
then it is an open and relatively compact subset of T2. A dense leaf on the torus is
cut into uncountable many lines by restricting to Z. (Z,Fα|Z) is foliated isomorphic to
(S1 × R,FS1(R)) such that we obtain by Theorem 3.4.14,

Hk(Z,Fα|Z) ∼= Hk(R)⊗ C∞(S1) =

{
C∞(S1), if k = 0

0, else.
(4.266)

Hence, the restriction map % : Hk(T2,Fα)→ Hk(Z,Fα|Z) can not be surjective for k = 0.
One wants also to know, what happens if we take a (finite) subset I ⊆ J and set V =
(Uα)α∈I . Then for each ` ∈ N0 there is the projection map

%` : Č`(U ,G lc
F )→ Č`(V ,G lc

F ), %`(ω)α0,...,α` = ωα0,...,α` , (4.267)

which satisfies %`+1 ◦ δ` = δ` ◦ %`. Hence it is a δ-cochain map. The map

τ ` : Č`(V ,G lc
F )→ Č`(U ,G lc

F ), τ `(µ) =

{
µα0,...,α` , if α0, ..., α0 ∈ I
0, else .

(4.268)

is a right inverse of %`, but it is not a δ-cochain map: If exactly one index αi is in J \ I and
α0, ..., α̂i, ..., α`+1 ∈ I, then (δ` ◦ τ `(ν))α0,...,α` = δ`+1

i (να0,...,α̂i,...,α`+1
) which is in general not

0 = (τ `+1 ◦ δ`(ν))α0,...,α`+1
. Therefore the induced map of %` in Čech-cohomology needs not

to be surjective.
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tinuous norms. Journal of Mathematical Analysis and Applications, 297(2):812–
832, 2004.

[Wen03] Jochen Wengenroth. Derived functors in functional analysis. Springer, 2003.

[Whi36] Hassler Whitney. Differentiable manifolds. Annals of Mathematics, pages 645–
680, 1936.

116



Danksagung

Bei der Erstellung dieser Arbeit haben mich einige Personen auf verschiedene Weisen un-
terstützt, wofür ich sehr dankbar bin!

An erster Stelle danke ich meinem Doktorvater Prof. Dr. Jochen Wengenroth für die äußerst
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