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Abstract: Energy transition strategies in Germany have led to an expansion of energy crop cultivation
in landscape, with silage maize as most valuable feedstock. The changes in the traditional cropping
systems, with increasing shares of maize, raised concerns about the sustainability of agricultural
feedstock production regarding threats to soil health. However, spatially explicit data about silage
maize cultivation are missing; thus, implications for soil cannot be estimated in a precise way.
With this study, we firstly aimed to track the fields cultivated with maize based on remote sensing
data. Secondly, available soil data were target-specifically processed to determine the site-specific
vulnerability of the soils for erosion and compaction. The generated, spatially-explicit data served
as basis for a differentiated analysis of the development of the agricultural biogas sector, associated
maize cultivation and its implications for soil health. In the study area, located in a low mountain
range region in Western Germany, the number and capacity of biogas producing units increased by
25 installations and 10,163 kW from 2009 to 2016. The remote sensing-based classification approach
showed that the maize cultivation area was expanded by 16% from 7305 to 8447 hectares. Thus,
maize cultivation accounted for about 20% of the arable land use; however, with distinct local
differences. Significant shares of about 30% of the maize cultivation was done on fields that show
at least high potentials for soil erosion exceeding 25 t soil ha−1 a−1. Furthermore, about 10% of the
maize cultivation was done on fields that pedogenetically show an elevated risk for soil compaction.
In order to reach more sustainable cultivation systems of feedstock for anaerobic digestion, changes in
cultivated crops and management strategies are urgently required, particularly against first signs of
climate change. The presented approach can regionally be modified in order to develop site-adapted,
sustainable bioenergy cropping systems.

Keywords: biomethantion; biogas; environmental impact; land use; risk assessment; soil manage-
ment strategy

1. Introduction

The cultivation of energy crops on arable land aiming to substitute fossil fuels has
significantly increased during the past decade [1]. In the course of Germany’s energy
transition strategy, numerous farmers have taken the opportunity to integrate agricultural
energy production as a second mainstay with long-term governmentally guaranteed feed-
in-tariffs [2,3].

Since silage maize was identified to be the most economically important crop for
anaerobic digestion under temperate conditions, the cultivation area for energy crops
has been significantly expanded; in Germany for example, from 200,000 to more than
900,000 hectares (ha) in the last decade [4–8]. However, introducing energy crops as
a substrate for anaerobic digestion has implied changes in the traditional, cereal, and
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grassland dominated agricultural system. As a consequence, the share of silage maize in
crop rotations has increased and it is being cultivated on arable land, which has formerly
never been used for the growing of row crops.

In the course of rising awareness about negative externalities associated with energy
crop cultivation, the sustainability of silage maize cultivation has become a lively debate.
Aspects, such as depletion of soil organic matter, which would certainly counteract the
carbon dioxide saving targets, loss of agrobiodiversity, and the increased vulnerability of
maize stands to soil erosion and compaction, are currently discussed, mainly based on
statistical data about expanded silage maize cultivation [9–12]. However, using statistical
data referring to large-scale areas like national territories or federal states to describe
changes in the agricultural system and to evaluate consequences for the environment is
hardly helpful and largely ignores contributing factors governed by site-specific conditions.
For example, the erosion potential depends on the cultivated crop and specific management
operations like tillage intensity but also on the terrain inclination, texture-governed soil
erodibility, slope length, and erosivity of rainfall. Thus, a fact-based debate about hazards
and implications of silage maize cultivation necessarily requires spatially-explicit data of
the cultivated areas and additional information, including soil and climatic data, as well as
structural parameters of the landscape and the agroecosystem. Simultaneously, such an
approach requires to be conducted on a scale that allows matching spatially heterogeneity
of environmental factors.

The present study aimed to reach conclusions on the implications of expanded silage
maize cultivation for soil threats, particularly erosion and compaction in a low mountainous
agricultural region. However, spatially-explicit census data were not available. Thus, firstly,
a model application for detecting maize cultivation using RapidEye satellite images (Planet
Labs Inc., San Francisco, CA, USA) was established for the years 2009 and 2016. We
hypothesized that the established remote sensing-based classification approach allows
tracking changes in the maize cultivation area with progressing expansion of agricultural
biogas producing units (BPU). Therefore, additional data sources like statistical data and
registers about BPUs were systematically screened. Secondly, a target-specific analysis
of existing soil data was conducted to (i) identify pedotopes that are susceptible for soil
compaction during harvest of silage maize in late autumn and (ii) to model the susceptibility
of the soils for erosion by water (hereinafter referred to as ‘erosion’). In order to achieve
the overarching goal of this study, the results of the maize classification and the evaluation
of the hazard potential caused by maize cultivation on the soil resource were combined.
We hypothesized that the increased demand of feedstocks for anaerobic digestion led to
pressure on soil resources and an expansion of the maize cultivation on sites that appear
not suitable in a sustainable manner.

2. Materials and Methods
2.1. Characterization of the Study Area

The study was conducted in the administrative district ‘Eifelkreis Bitburg-Prüm’
(in the following referred to as ‘study area’), which is located in the Federal State of
Rhineland-Palatinate in the southwestern part of Germany. The rural nature of the study
area is underlined by a population density of 59.8 inhabitants km−2 and the dominance of
agricultural land use, which accounts for 53.2% of the total area [13]. The study area was
selected because statistical data indicate an intense development of the biogas sector from
two BPUs in the year 2000 to 62 BPUs in the year 2016; associated with a distinct increase
in silage maize cultivation (Figure 1) [14–16].
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Figure 1. Development of the land-use (cereals excluding silage maize) and of the agricultural
structure in the study region during the last decades based on census data [14,15].

The study area has a size of 1626 km2 and spans an inclined plateau; the elevation
climbs from 300 to 550 m a.s.l. in a south–north direction and peaks in the northern parts
with hills of nearly 700 m a.s.l. The plateau is pervaded by numerous deep valley incisions
with the main flow direction to the south. This pattern leads to a wavy, tightly structured
landscape [17,18].

As a result of the elevation profile, the climatic conditions in the study area show
a large latitudinal gradient (see Supplementary Material Table S1). Its southernmost
parts are influenced by the viticultural climate of the Moselle valley with mild winters
(mean annual temperature (MAT): 9.0 ◦C; mean annual precipitation (MAP): 861 mm a−1),
whereas the northern part shows a harsh low mountain range climate with distinctly
lower MAT, as well as cold and long-lasting, precipitation-rich winters (MAT: 7.0 ◦C;
MAP: 1250 mm a−1) [19]. This general pattern is disrupted by the deep valleys which are
characterized by considerably milder winters and warmer summers.

In the northern part of the study area, Devonian rocks are dominating whereas in the
southern part, a small-scale co-existence of Triassic and Jurassic rocks can be found which
are moreover partially overlaid by varying amounts of Quaternary sediments (loess) [20].
From these parent materials, in the northern part of the study area, silty to clayey Regosols
and Cambisols developed. Soils that developed from Lower Triassic sediment rocks in the
central and eastern part of the study area can be classified as sandy and clayey Regosols and
Cambisols with alternating levels of loess. The small scale variability of parent materials in
the southern part results in a mosaic of soils; the textures are mainly silt-loam, occasionally
sandy and clayey. A wide range of soil types are present: Regosols, Cambisols, Stagnosols,
Luvisols, and Vertisols whereby the both last mentioned soil types frequently tend to show
signs of stagnant water [20–22].

Due to the gradient in climatic conditions and soils, the agricultural land in the
northern part of the study area was traditionally dominated by grassland use whereas the
more southern parts were characterized by cereal-based crop cultivation. Grain maize is
not cultivated in the study area.

2.2. Remote Sensing Based Classification of Maize Fields

Farmers themselves, as well as governmental bodies, generally track crop types for
cultivated areas very thoroughly. This kind of data is, unfortunately, rarely available
to the public, nor to researchers, mostly because of privacy issues. Surveying the crop
types manually by going out to the field or by asking farmers to access their records
leads to a sparse or heavily spatially biased set of reference data. In order to have spatial
explicit data about silage maize cultivation at hand, a remote sensing-based classification
was conducted.



Land 2021, 10, 128 4 of 16

2.2.1. Selection and Pre-Processing of Remote Sensing Data

The classification approach was designed for a binary classification of maize and
non-maize cultivation. The availability of suitable, gap-free coverages of the entire study
area was of vital importance. The acquisition window was limited by the phenologic
cycle of maize, which reaches the peak vegetation cover around the end of August. Using
earlier imagery would result in emerging maize fields that show large soil fractions, while
after August, there is the potential of early harvests. The third major constraint was the
availability of high-resolution aerial photos on GoogleEarth, since these were used to
produce reference data. After reviewing all available products, two RapidEye scenes in
2009 and 2016 met all three requirements. These two scenes were then atmospherically
corrected based on the 5S algorithm [23] using the software AtCPro [24,25] and mosaicked
together to one single image per year. A flowchart showing the steps of data processing
and modeling is presented as Supplementary Material Figure S1.

2.2.2. Preparation of Reference Data

Since the classification of around 87,000 hectares of agricultural land requires a large
amount of uniformly distributed training data, a visual survey approach was pursued.
Based on GoogleEarth aerial imagery, it was trivial to distinguish maize fields from other
agricultural crops, mostly cereals, and grassland. This is because maize is a high-growing
row crop and has thus a very apparent texture which facilitates visual object recognition.

To guarantee an even distribution of training fields across the study area, it was split
in subdivisions with 9 by 12 grids, with each cell spanning 5 by 5 km (Figure 2). The main
goal was to select a representative set of training fields with at least three polygons, each
with and without maize in every grid. Overall 2566 polygons were digitized for both years
combined, amounting to almost 2000 hectares of maize fields per year. This represents
about 20% of the overall acreage; the grid-cell approach in selecting training field should
guarantee that the selected pixels are representative for the entire study area.

2.2.3. Pixel-Based Classification of Imagery

The classifications of all, roughly, 35,000,000 RapidEye pixels was done individually
for both years using the random forest implementation of the ranger package in R pro-
gramming language version 3.3.2 [26,27]. The random forest approach is a classifier that is
based on the votes of randomly generated decision trees [28]. This particular approach was
chosen because it scales well with a high number of features, as well as observations [27].
Furthermore, it is widely used for pixel-based land cover classification, because of its high
accuracy and insensitivity to overfitting [29]. The classifications of both years trained with
relatively high out-of-bag Cohens kappa values (index derived from expected agreement
by chance, and observed agreement of classification with ground truth), but the classifier
showed a slightly weaker performance in 2016 (Table 1). The high sensitivity values (true
positive rate: quotient of pixels correctly classified as maize and pixels that are truly maize)
mean that essentially all digitized maize fields where identified. The comparatively low
specificity (true negative rate: quotient of pixels correctly classified as nonmaize and pixels
that are truly nonmaize) indicates that there were a lot of false positives, meaning pixels
that were classified as maize, but digitized as non-maize. After the classification with
ranger, the probabilities where smoothed with a Gaussian kernel (see also Supplementary
Material Figure S1). In a nutshell, the Gaussian kernel is a probability function. In the pro-
cess of classifying a certain pixel, it takes into account the classification of the surrounding
pixels in order to reduces the amount of noise in the prediction.
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Table 1. Summary of parameters specifying the efficiency of the selected approach for classification
of maize fields.

Year Sensitivity Specificity Kappa

2009 >0.99 ~0.97 ~0.97
2016 >0.99 ~0.91 ~0.93

2.3. Agricultural Biogas Producing Units

As defined in our hypotheses, we assumed that agricultural biogas plants are the
main drivers for expanded silage maize cultivation. To be able to relate silage maize
cultivation and feedstock demands, the locations of all agricultural BPUs, as well as their
installed capacities in the course of time, were compiled based on (i) administrative data,
(ii) ‘grey’ directories, and (iii) surveys of plant operators from third parties for internal use
(references cannot be stated due to confidentiality agreement) due to the fact that no dataset
was complete and up-to date, and contradictory data existed. The installed capacities of
combined heat and power units located at remote places to supply local demands were
ascribed to the digestion units since the demand for substrates is given there.
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2.4. Determining of Pedotopes Susceptible for Compaction during Maize Harvesting

Soils that are particularly susceptible for soil compaction, with respect to maize
harvesting operations in late autumn typically belong to the classes of Stagnosols and
Planosols. These soils show horizons with very low permeability for water in the subsoil
(‘Sd’ or ‘Bg’ horizon, acc. to [30] and [31], respectively) and tend to show waterlogging
resulting from abundant autumn precipitation and low evaporation rates. Thus, in the
period of silage maize harvesting, i.e., in late autumn, Stagnosols and Planosols frequently
show high soil water contents resulting in low mechanical carrying capacities. These
circumstances commonly result in serious soil compaction and structural damages caused
by the heavy equipment used for silage maize harvesting.

For the purpose of this study, we performed a risk assessment for the soils concerning
their vulnerability for soil compaction. Classification of soil types was based on the site
specific sequence of soil horizons recorded in the framework of German land appraisal,
which still represents the data basis for soils with the highest resolution and coverage
(national law on farm land appraisal: [32]). The size of soil units in this framework is
about one hectare. The sequence of the soil horizons was compared to a self-developed,
predefined classification key using RStudio programming language version 3.3.2 [26]. In
case that the sequence of soil horizons was in compliance with the key, a soil type was
classified. Sequences of soil horizons that were not listed in the key were, as far as they
were interpretable and meaningful, manually added to the key in iterative steps (flowchart
of the classification presented as Supplementary Material Figure S2). However, data were
only available for 55.3% of the agricultural area and for 36.3% the data basis was sufficient
for soil type classification. For further analysis, soil types were grouped according to their
specific vulnerability for soil compaction during harvesting operations of silage maize in
late autumn as shown in Table 2.

Table 2. Classification of soil types regarding their susceptibility for soil compaction during harvest-
ing operations of silage maize.

Susceptibility for Soil
Compaction Soil Types

High Stagnosols, Planosols

Medium

• Transition soil types that show stagnic or gleyic properties but
are not assigned to the class of Stagnosols or Planosols such as
e.g., stagnic Cambisols, stagnic Fluvisol or stagnic Anthrosols.

• Soils that are influenced by groundwater like Gleysols

Low All other soil types

2.5. Determining of Site-Specific Susceptibility for Soil Erosion by Water

Natural proneness of the agricultural sites for soil erosion (Enat) was modeled on
pixel basis (grid resolution: 5 m × 5 m) according to [33], using a simplified version of the
universal soil loss equation (USLE) [34]. Modeling was done using ESRIs ArcMap 10.5.
Input variables were:

• Slope factor (S): Slopes were calculated based on a digital elevation model with a
resolution of 5 m (DEM5) provided by the [17]. The slope allowed calculating the
slope factor using equation 7 given in [33].

• Soil erodibility factor (K): Derived from the soil texture of the topsoil determined in
the framework of the German land appraisal. Textures were then assigned to K factors
and corrected by soil skeleton and organic carbon contents using Equations (3)–(6),
given in [33]. Values of the K factor for the study area with a raster resolution of 5 m by
5 m were provided by the State Office for Geology and Mining Rhineland Palatinate.

• Rainfall and runoff factor (R): R factors were calculated using the following regression
equation: R = 0.0788 * mean annual precipitation (in mm) * −2.82 which was valid
for the Federal Republic of Germany. Values of the R factor for the study area with a
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raster resolution of 1 km by 1 km were provided by the State Office for Geology and
Mining Rhineland Palatinate.

S, K, and R factors were multiplied for each raster cell. Enat values were classified
using the scheme presented in Table 3. Compared to the [33], the classes of erosion potential
were considerably enlarged in order to take into account the fact that the study region is
located in a low mountain region (consider also Figure 7).

Table 3. Assignment of calculated soil losses (Enat) to classes of erosion potential.

Soil Erosion Potential Soil Loss acc. to Enat
t ha−1 a−1

Very low <5
Low 5–10

Medium 10–25
High 25–50

Very high >50

2.6. Data Analysis and Mapping

The analysis of data was done using RStudio programming language version 3.3.2 [26]
and ArcMap 10.5 (ESRI Inc.). Maps were created using ArcMap 10.2.

3. Results and Discussions
3.1. Maize Classification

The classification approach to detect silage maize cropping sites has estimated a
cultivation area of 7305 ha in 2009 and 8447 ha in 2016. In contrast to that, the official
statistical records state values of 9147 ha and 11,496 ha in 2009 and 2016, respectively [15].
This means that the classifier underestimated the total maize cultivation area by roughly
2000 (2009) and 3000 ha (2016) compared to the official statistics (Table 4).

Table 4. Results of the silage maize classification approach using remote-sensing data compared to statistical data.

Year

Remote-Sensing
Based Approach Statistical Data Difference between stat. Data and Remote-Sensing

Based Approach

ha ha ha %

2009 7305 9147 −1842 −20.1
2016 8447 11496 −3049 −26.5

The substantial ‘underestimation’ of the classifier compared to the statistical data can
be traced back to different methodological approaches. Whereas statistical data are field
based, the remote-sensing classification approach provides pixel-based results. Thus, areas
in the maize fields exhibiting spots of bare soil due to late sowing dates, erosion processes,
damages by wild boars, and weak field emergence were (correctly) not classified as maize
but were included in the official statistics as maize (Figure 3).

Moreover, due to the south to north gradient in vegetative development (see Supple-
mentary Material Table S1), there is a quite short time slot suitable for classification based
on optical satellite images. This weakness of the chosen approach could be overcome by us-
ing radar data, which makes image recording independent from cloud coverage. Moreover,
a complete time series of maize cultivation sites would also allow answering the questions
of mono-cultural growth of silage maize. However, for the years of this investigation, no
suitable data, such as nowadays, e.g., provided by the Sentinel 2 platforms, were available.
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Figure 3. Visual clarification of different approaches of maize classification. Data included in the
official statistics include the whole area of the maize field as shown by the dashed lines including large
spots of bare soil as visible in the aerial photo. In contrast, the remote sensing-based classification
approach only classifies pixel as ‘maize’ that are in fact maize-covered as shown by the prediction in
green colour in the RapidEye composite.

3.2. Extent and Changes in Silage Maize Cultivation in the Study Area

In 2009 and 2016, 8.4 and 9.7% of the agricultural area were covered with maize,
respectively. By the fact that more than 50% of the agricultural area was grassland and
the size of arable land was increased from 36,610 ha to 42,439 ha in the same period
(Figure 1), the share of silage maize on arable land amounted to about 20% in both years.
However, large regional differences were observed (Figure 4). In 14 (2009) and 15 (2016)
municipalities, silage maize was not cultivated. In the municipality with the highest
share of silage maize, the cultivation area accounted for 29.9 (2009) and 34.2% (2016) of
the agricultural area. Unfortunately, the share of arable land on the agricultural area is
currently not available at municipal level, resulting in an inaccuracy in describing the
relative proportion of silage maize cultivation in landscape.

1 
 

 

4 
 
 
 

Figure 4. Representation of silage maize cultivation (black spots) and of the share of silage maize cultivation on agricultural
land use based on the municipalities of the study area. Moreover, the location and size of the biogas producing units (BPU)
is presented.
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The changes in silage maize cultivation at municipal level apparently correlate with
newly constructed or increased installed capacity of existing BPUs. Although, silage
maize cultivated as feedstock for BPUs cannot be gathered separately from silage maize
cultivated as fodder for ruminant production, there is evidence that the demands of BPUs
are the drivers for expanded cultivation. The cattle stock in the study area steadily declines
for around three decades (Figure 1). Moreover, regardless the final uses of the silage
maize, the effects on soils are similar as there is no difference in the cultivation system.
Figure 5 also implies that the feedstock sources for a certain BPU overlapped the borders
of municipalities. Hot spots of increased silage maize cultivation and BPU capacity from
2009 to 2016 were detected in municipalities in the north-western part of the study region.
These municipalities also showed the highest shares of silage maize on agricultural soil use
in 2016 (Figure 4). 

2 

 

5 
 
 
 
 

Figure 5. Representation of the changes in silage maize cultivation and the installed capacity of
biogas producing units (BPU) from 2009 to 2016.

3.3. Maize Cultivation on Pedotopes Susceptible for Soil Compaction

Overall, 36.3% or 31,706 ha of the total agricultural area could be classified according to
their susceptibility for soil compaction (Figure 6). Under the assumption that available data
are representative for the whole study area, this would mean that 90.7, 7.0, and 2.3% show a
low, medium, and high vulnerability for soil compaction, respectively (Table 5). Although
the approach for classification of soils that are particularly vulnerable for compaction was
suitable for an unbiased derivation of soil types from sequences of soil horizons given
in the data of Germanys’ land appraisal, the final results were not satisfying at all. The
dataset was incomplete, since numerous soil profile descriptions were not available in
a digital form or do not exist (M. Goldschmitt, Landesamt für Geologie und Bergbau
Rheinland-Pfalz, personal communication, 02.07.2015). Moreover, lots of site descriptions
showed apparent mistakes; thus, a classification was also not possible for these sites.
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Figure 6. Representation of the susceptibility of the agricultural sites for soil compaction during
harvesting action of silage maize. ‘Classification not possible’ refers to sites for which the soil profile
descriptions showed apparent mistakes. When soil profile descriptions were not existing or not
available in digital form, they were categorized as ‘No data available’. Areas shown in white colour
are non-agricultural sites.

Table 5. Parameters specifying the quality of the data basis for the soil type classification approach. Assignment of the
agricultural area as well as maize cultivation in 2009 and 2016 to the classified susceptibility for soil compaction.

Agricultural Area Maize
2009

Maize
2016

ha % ha % ha %

Total 87,422 100 7305 100 8447 100

Classifiable 31,706 36.3 2867 39.2 3249 38.5

Vulnerability for soil compaction
Low 28,758 90.7 2567 89.5 2997 92.2

Medium 2226 7.0 252 8.8 195 6.0
High 722 2.3 48 1.7 57 1.8

Based on the authors’ knowledge about soil type distribution in the study area, it
appears that the soil profile descriptions from German land appraisal poorly represent the
spatial heterogeneity of soil types. This becomes evident from large areas characterized
as a single soil type and may result from the fact that the soil units in the framework of
the German land appraisal should have a size of about one hectare (M. Beck, valuator of
land appraisal in the Federal District of St. Wendel, personal communication, 18.10.2018).
Likely, this particularly leads to an underestimation of Stagnosols, which show a patchy,
small-scale distribution in low-mountain regions, particularly in dips, on planes, and
at foots of slopes [35,36], which may not be well represented in the soil valuation units.
Thirdly, the borders of the local authorities (thick lines in Figure 6) also mark breaking lines.
It may be hypothesized that this indicates different pedological knowledge of the land



Land 2021, 10, 128 11 of 16

valuators. Generally, valuators of land appraisal in Germany are no experts in soil science
and may thus overlook redoximorphous features indicating stagnant water in soils [32].

In contrast to other approaches that coupled soil physical and hydrological models to
derive information about the trafficability of soils in the course of time [37], the approach
used in this study used a single information base aiming to conclude for the potential
susceptibility for compaction based on specific soil types associated with harvesting op-
erations of silage maize. Thus, the amount of input data necessary to conclude for soil
types is much lower compared for example to the approach of [38], who used pedotransfer
functions and data about bulk density and the pre-compression stress in order to estimate
the soil compaction hazard. Furthermore, sophisticated modeling approaches of the soils’
carrying capacity at specific points of time were not meaningful in this case because of
(i) the insufficient data basis, (ii) the large size of study area, and (ii) the impossibility to
validate the modelled data. Moreover, such approaches would add a temporal dimension
to the data analysis as soil water contents show a high temporal dynamics.

However, similar to the concept perused in this study, also the more sophisticated
approach of [38] does not allow deriving time-resolved maps of the risk for soil compaction.

As a result of the fragmentary data basis (Section 3.3, Figure 6), less than 40 %, or
2867 (2009) and 3249 ha (2016), of silage maize cultivation could be overlapped with the
map of soil compaction risk (Table 5). Thereof, 8.8 (2009) and 6.0% (2016) were cultivated
on soils with a medium risk for compaction and slightly less than 2.0 % in both years on
soils showing a high risk for compaction. Extrapolated to the whole study area, this would
mean that approximately 500 to 600 ha of silage maize cultivation was done on soils that
show a medium risk for soil compaction during silage maize harvesting. Another 150 to
160 ha of silage maize was grown on sites that are highly susceptible for compaction; both
assuming that the available data are representative for the whole study area.

Due to the above mentioned deficiencies in raw data, these values should be regarded
as a rough estimate. Furthermore, by extrapolating to the whole study area, the spatial
explicit character of the study approach gets lost. Nonetheless, the presented example
impressively shows the difficulties in conducting rather simple risk evaluations due to lim-
itations in suitable and available input data. Although comprehensive soil maps exist, they
were also finally based on the same basis of data and regionalized by geostatistical methods.
Thus, subject to these conditions, more complex and virtually more precise methods, such
as pedotransfer functions, are therefore currently not applicable in a landscape context.

To reduce the risk for soil compaction, a substitution from silage maize to perennial
energy crops (PECs) can be suggested. In this aspect the benefits of PECs result from
(i) earlier harvesting under dryer soil conditions and (ii) the permanent, intense routing
system both enhancing the carrying capacity of the soil [39,40].

3.4. Natural Susceptibility of the Soils for Erosion and Threats to Soil Due to Maize Cultivation

The modeling of the natural susceptibility of the soils for erosion processes revealed a
small-scale pattern typical for the conditions in a low mountain landscape with a mean
Enat value of 31.1 t ha−1 a−1 (Figure 7). A total of 20% of the agricultural sites were
classified to have a low or very low susceptibility for soil erosion with natural erosion
rates <10 t ha−1 a−1 (Table 6). At the same time, nearly 50% of the agricultural area were
classified to have a high to very high susceptibility for soil erosion (Enat > 25 t ha−1 a−1).
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Figure 7. Map showing the calculated natural potential for soil erosion (Enat) in the study area. Areas
shown in white colour are non-agricultural sites and were thus excluded from erosion modeling.

Table 6. Assignment of the total agricultural area as well as maize and non-maize (all agricultural soil uses except maize)
cultivation in 2009 and 2016 to the classified natural soil erosion potential (Enat).

Erosion Potential
Agricultural Area

2009 2016

Maize Non-Maize Maize Non-Maize

ha % ha % ha % ha % ha %

Very low 8335 9.5 724 10.4 7611 9.5 791 9.7 7545 9.5
Low 9268 10.6 1034 14.8 8233 10.2 1147 14.1 8121 10.2

Medium 29,414 33.7 3045 43.6 26,369 32.8 3508 43.2 25,906 32.7
High 25,126 28.8 1846 26.5 23,280 29.0 2249 27.7 22,877 28.9

Very high 15,256 17.5 330 4.7 14,926 18.6 426 5.3 14830 18.7
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The rainfall (‘R’) factor showed, similar to the topography (‘S’) factor, a distinct south
to north gradient finally leading to a high natural soil erosion potential throughout the
northern part of the study region. In contrast to that, the erodibility of the soils (K factor)
in the southern part of the study region is considerably elevated due to higher silt contents
of the soils. Nonetheless, in the southern part, the susceptibility for soil erosion is generally
lower than in the northern part resulting from the more gentle slopes. For the arable land in
Rhineland Palatinate, [41] calculated mean actual erosion rates (Enat values multiplied by
the cropping management factor C) of 11.2 ± 22.9 t ha−1 a−1. Thus, the values calculated
for the study region appear valid considering the low mountain character of the study
region and the large standard deviation stated by [41].

In 2009 and 2016, more than 30% of the total silage maize cultivation was done on sites
showing at least a high potential for soil erosion, whereby the area of silage maize cultivated
on these sites increased from 2176 to 2675 ha. The mean Enat value of fields cultivated with
silage maize increased from 21.1 to 21.9 t ha−1 a−1. Thus, it can be concluded that the silage
maize cultivation was distinctly expanded on sites that show high or very high erosion
potential—sites that are subject to the cross compliance regulations of the European Union
(CCwater1: Enat 15–27.5 t ha−1 a−1; CCwater2: Enat > 27.5 t ha−1 a−1) and national laws in
order to ‘prevent soil erosion’ [42–44].

Finally, this indicates that the cultivation of silage maize is done largely ignoring
the site conditions. On the one hand, this confirms the statement of [45] that “farmers
clearly did not consider erosion in their management decisions like field size or selection of
crops”. On the other hand, it expresses the scarcity of suitable agricultural land. Political
incentives for feedstock cultivation have made a crucial contribution to expand silage
maize cultivation to inadequate sites thus raising external costs of bioenergy production.
Although no data about the specific management practice are available, strategies to
prevent soil erosion are to our experience no common practice in the study area. For
example, undersown crops, minimum tillage methods, or changes in cultivated crops may
potentially reduce soil erosion rates by factors between two and ten [33,46,47].

Even worse, against the background of progressing climate change, with increased
frequency and intensity of heavy precipitation events, particularly in spring [48], when
maize fields show mostly bare soil, the calculated values for soil erosion rates are likely
no more than a conservative estimate. In particular, the erosivity of the rainfall seems to
be a weak point in soil erosion modeling likely leading to a significant underestimation of
the currently prevailing erosion rates. Recent research has shown that presently used rain
erosivity factors significantly underestimate the conditions by (i) methodological reasons
and (ii) resulting from climate changes. Firstly, state of the art methods (rain radar), have
revealed that R factors are about 60% higher than those presently used [49], which were
based on the analysis of ombrometers with a limited spatial data density [50]. Secondly, in
the course of climate change, erosivity of the rainfall has significantly increased compared
to data collection periods of [49] or [51] as a result of (i) higher change of thunderstorms,
(ii) larger size of the drops, (iii) reduced wind speed, and, thus, (iv) larger amounts of
precipitation per rain event [52]. Accordingly, [52] state that rain erosivity increases by a
rate of 10% every 6 years.

Summarizing, cultivation of silage maize at sites that show a high susceptibility for
soil erosion, as presented in Table 6, was underpinned, on one hand, by observing a huge
number of maize fields that visibly showed signs of erosion in aerial photos (Figure 3) and
on the other hand by the discrepancy of the maize cultivation area compared to statistical
data by remote-sensing based classification approach (Table 5). Areas of bare soil, like areas
of erosion, transport, and accumulation, were classified as non-maize pixels due to the soil
signal (Figure 3).

4. Conclusions

This spatial study depicts an illustrative example in which way political measures,
such as subsidies, may influence the agricultural land-use implying negative consequences
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for soil health. The additional demand for feedstocks in the study area has led to land-
use pressure and significant problems in sustaining soil health in the study region. The
combination of remote sensing-based maize classification and target-specific analysis of
the soils’ vulnerability allowed for a spatially explicit estimation of the site-specific hazard
potential. Unfortunately, the data quality for estimating the risk for soil compaction
was insufficient to a large extent. Nonetheless, soil erosion seems to represent the more
important threat to soil health. However, by the fact that eroded patches and areas with
weak field emergence were not detected as maize by the classification, the results certainly
present conservative estimates, particularly when considering the predicted impacts of
climate change.

The chosen approach to identify the site-specific vulnerability for soil compaction and
erosion presents a valuable tool for decision support, aiming for a strategically planned and
thus more sustainable energy crop cultivation. It can be used to initiate countermeasures
in order to meet the demands of both valuable feedstock production and soil protection, as
well as to sensitize farmers for the long-term consequences of soil degradation. A further
development of the presented concept may support farmers in their crop selection and
management strategy, e.g., in the form of a smartphone app. However, the availability of
comprehensive and small-scale valid soil data presents the bottleneck of the approach.

In the long term, sustaining or improving soil health is inevitable in order to maintain
the production function of agricultural soils.
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45X/10/2/128/s1, Table S1: Characterization of the climatic gradient present in the study area
on the basis of long-term mean monthly temperature and precipitation data (1981–2010) of three
meteorological stations located in the southern, central, and northern part of the study area. Data
derived from German Meteorological Service (2018). Figure S1: Flowchart explaining the steps and
methods for the remote sensing based classification of maize fields acc. to [53]. Figure S2: Flowchart
explaining the steps for classification of soil types based on site-specific sequences of soil horizons.
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