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A B S T R A C T

This paper mainly studies two topics: linear complementarity problems for modeling electricity market
equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot
models of electricity markets and study their robustifications using strict robustness and the 𝛤 -approach. For
three out of the four combinations of economic competition and robustification, we derive algorithmically
tractable convex optimization counterparts that have a clear-cut economic interpretation. In the case of perfect
competition, this result corresponds to the two classic welfare theorems, which also apply in both considered
robust cases that again yield convex robustified problems. Using the mentioned counterparts, we can also
prove the existence and, in some cases, uniqueness of robust equilibria. Surprisingly, it turns out that there
is no such economic sensible counterpart for the case of 𝛤 -robustifications of Nash–Cournot models. Thus, an
analog of the welfare theorems does not hold in this case. Finally, we provide a computational case study that
illustrates the different effects of the combination of economic competition and uncertainty modeling.
1. Introduction

Modeling of equilibria of liberalized electricity markets and solving
these models is of great practical relevance. One of the most important
mathematical tools for formulating these equilibrium models are linear
complementarity problems (LCPs). These problems are typically ob-
tained by (i) modeling the optimization problem of every player in the
market, by (ii) characterizing the optimal actions of these players using
their optimality conditions, and by (iii) equilibrating these actions
using tailored market-clearing conditions. For a general survey of the
theory, applications, and algorithms for LCPs see the book [1]. For a
very recent discussion on the importance of complementarity problems
in the electricity sector, we refer to [2]. Moreover, the very many
examples in [3] also highlight the importance of complementarity
modeling in this field of application. One important property of LCPs
for modeling electricity market equilibria is that they allow to capture
the underlying transmission network if the physics are modeled in a
suitable way. Hence, there is a large branch of literature that studies
different topics of electricity markets in combination with the transmis-
sion system infrastructure; see, e.g., [4–6], to name only a few. Another
seminal paper in this field is [7], where a very comprehensive literature
survey is given as well. A general tutorial for modeling (electricity)
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market equilibria using complementarity problems can be found in [8]
and in the book [3]. Based on these LCP papers many authors developed
and discussed more complicated techniques for modeling electricity
market equilibria using, e.g., mathematical programs with equilibrium
constraints (MPECs), generalized Nash equilibria, or (quasi-)variational
inequalities. As a primer see, e.g., [9–13] as well as the references
therein.

Using LCPs for modeling market equilibria has another important
feature that is especially appealing for practice. In many situations, by
means of the integrability or symmetry principle of variational inequal-
ities (see, e.g., [14]) a solution of an LCP can be obtained by solving
a convex quadratic optimization problem; see, e.g., [1,3,8]. Thus, the
approach scales well for large markets and large transmission systems.
Moreover, this equivalent optimization model often has a clear-cut
economic interpretation, e.g., it corresponds to welfare maximization
in the case of suitable LCP models for perfectly competitive markets.

In order to state the above discussed LCPs for modeling electricity
markets one has to consider many parameters like consumer’s demand
in dependence of prices, production and investment costs of suppliers,
or technical parameters of the transmission network. Certainly, many
of these parameters are uncertain. For example, the willingness to
pay of consumers in the future is not known today and many of the
technical parameters of the network are more based on educated
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guesses than on certain knowledge. We refer to [15], where uncertain
LCPs for electricity markets are modeled as well. In the latter article,
the consumers’ demand functions are considered to be uncertain, which
is the same setting as discussed in this paper.

Mathematical optimization provides many techniques for tackling
optimization problems under uncertainty out of which two are very
prominent: stochastic and robust optimization. In stochastic optimiza-
tion, the strategy is to resort to assumptions about the distribution
of uncertain model parameters and one then solves for, e.g., minimal
expected costs or maximal expected profits. Stochastic optimization
has a long tradition due to the practical relevance of the solutions
that it provides and because this approach of modeling is quite nat-
ural for many practitioners. The literature is by far too broad to be
reviewed here. Readers interested in the general topic of stochastic
optimization are referred to the textbook [16]. Compared to stochastic
optimization, robust optimization is a much younger field. The first
robust optimization approach goes back to [17]. One of the most
comprehensive treatments is given in the book [18], which mainly
considers continuous robust optimization as we do in this paper. A
survey about tractability of robust counterparts for linear programming
(LP), quadratic programming (QP), and even more general but still
convex problems is given in [19], which also provides many more
references to the literature. Robust discrete optimization dates back
to [20] and has been further investigated in, e.g., [21] and the PhD
thesis [22]. The main criticism on robust optimization is that it leads
to highly conservative solutions. There have been made many attempts
to resolve this criticism. One of the earliest is the so-called flexible
𝛤 -approach in [23], where the authors presented a first approach to
ecrease what they call the ‘‘price of robustness’’. There have also
een other attempts for mitigating the conservatism of robust solutions;
.g., recoverable robustness [24], light robustness [25], or adjustable
obustness [26]. Finally, a recent survey on robust optimization with
dditional references is given in [27].

Due to the strong connection between LCPs and optimization it
eems natural that there are also many papers that consider LCPs under
ncertainty. As it was the case in optimization, the first LCPs under
ncertainty have been studied using stochastic optimization, i.e., the
CP data are considered to be random vectors and matrices; see, e.g.,
28]. Since the existence of solutions can typically not be guaranteed in
hese settings, many authors resort to the residual or gap function for-
ulation of an LCP and then consider what is called ‘‘expected residual
inimization’’ in the literature. This or other alternative formulations

re studied in, e.g., [29–31].
Although addressing the worst-case is often important in applica-

ions, much less literature focuses on robust equilibrium problems or
obust LCPs. For instance, to the best of the authors’ knowledge, the
arliest paper on robust LCPs is [32], where the authors point out
hat equilibria in the classic robust sense do not need to exist (even
f the nominal problem has an equilibrium). Hence, they propose the
otion of 𝜌-robust counterparts and 𝜌-robust solutions of uncertain

LCPs, which is a relaxation of complementarity. Moreover, the authors
discuss different types of uncertainty sets like intervals, ellipsoids, or
intersections of ellipsoids. Besides the introduction of robust LCPs, the
main contribution of [32] is that the authors prove necessary and
sufficient conditions for 𝜌-robust solutions for bounded uncertainty sets,
that they characterize 𝜌-robust solutions for ellipsoidal uncertainty sets,
and that they give sufficient conditions for 𝜌-robust solutions in the
case of uncertainty sets represented by intersections of ellipsoids. Very
recent papers on robust LCPs are [33–35] and [36,37]. In the latter
two papers, the authors also consider the gap function formulation of
LCPs and study robust solutions of LCPs as the ones that minimize
the worst-case of the gap function. The authors also note an exam-
ple of Nash–Cournot games in networked power markets and briefly
consider the related robustified setting by discussing an uncertain
Nash–Cournot LCP. For this case, we show the existence of robust equi-
2

libria, discuss uniqueness properties, and provide tractable counterparts
from convex quadratic programming that possess a clear-cut economic
interpretation in this paper.

The field of robust equilibrium models and LCPs is also related
to the young field of robust game theory, which has been introduced
in [38]. In this paper, the authors present distribution-free models of
incomplete-information games, where the players’ payoff uncertainty
is modeled by robust optimization. Other papers dealing with robust
games or robust Nash equilibria include [39–43]. The concept of ro-
bustness has also been applied to Wardrop equilibria; see [44] for a
primer.

In contrast to the many papers on stochastic electricity market
equilibrium models (see, e.g., [45–50]), only a few publications deal
with robust optimization in the electricity sector. Moreover, all existing
literature is very recent. For example, [51] considers a two-stage adap-
tive robust optimization approach for electricity transmission network
expansion. A related study of robust transmission network expansion
planning with uncertain renewable generation and loads is given in
[52]. The most prominent application of robust optimization in the
power sector seems to be the unit commitment problem; cf., e.g., [53–
56]. Many of these studies consider the net load to be uncertain,
which is comparable to what we do in this paper. Adjustable robust
optimization for capacity planning is discussed in [57]. Finally, [58]
considers robust optimal offering strategies for a price-taking power
producer, where uncertainty is taken into account using the flexible 𝛤 -
pproach for MIPs that has been proposed in [21,23] and that we also
onsider in this paper. In contrast to what we aim for in this paper, the
entioned papers all consider ‘‘standard’’ robust optimization (albeit
ith different uncertainty sets and different types of robustifications

uch as strict or adjustable robustness) but do not consider robust
quilibria in the sense of complementarity solutions. In the context
f robust equilibrium modeling for electricity market models we are
nly aware of [15] and the paper [59]. In the latter paper, the authors
onsider a networked electricity market model of Cournot–Bertrand
ype and robustify the inverse demand functions of consumers as we do
n this paper. They exploit the general insights developed in [37] and
olve a convex optimization problem to obtain robustified equilibria.
inally, let us also mention the paper [60], in which possibility theory
s used to account for demand function uncertainty in the context of
ournot equilibrium models for electricity markets. In summary, the
iscussion of the literature both on complementarity problems as well
s on robustness shows that these aspects are of great importance for
he electricity sector and the combination of these aspects thus leads to
elevant models.

In this paper, we combine and extend many of the contributions of
he literature discussed so far. Our contribution is the following:

(1) We state robust counterparts of electricity market equilibrium
models on a transport network that is modeled using the classic
DC power flow approximation; cf., e.g., [61,62].

(2) We consider two different types of economic competition mod-
els. First, we study perfectly competitive markets and after-
ward discuss Nash–Cournot equilibria. Thus, our framework also
allows to address issues of market power under uncertainty.

(3) We study two different types of robustness: strict robustness
and the more flexible 𝛤 -approach. The strictly robust frame-
work serves as a primer and can also be found, in a related
setting, in [59]. In contrast, the case of flexible 𝛤 -robust equi-
librium models is more involved and has—to the best of our
knowledge—not yet been studied in the literature.

For all four considered combinations of economic competition and
uncertainty modeling the following question arises. In the nominal, i.e.,
deterministic, setting it is folklore knowledge that both the perfectly
competitive as well as the Nash–Cournot competition model can be
solved by solving a properly chosen convex optimization problem.
Consider now the market equilibrium problem consisting of all the
optimization problems of the players of the market. Our main research

question is now as follows:
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Does the robustification of these player’s models allow for an LCP
formulation that is equivalent to the robustified convex optimization
counterpart of the nominal case?

Note that this does not only correspond to the question whether an
equilibrium problem possesses an equivalent optimization problem but
that the order of robustification and the transition from the equilibrium
to the optimization problem has no effect. For the case of perfect
competition, the question above is the same as whether the two clas-
sic welfare theorems also hold in robustified settings. We prove that
this is the case for three out of the four combinations of considered
robustifications and economic competition models. By doing so, we
also show the tractability of these robust equilibrium models. More
specifically, we prove that the tractable counterparts of the strictly
robust equilibrium models are convex quadratic problems, whereas
those of the 𝛤 -robust equilibrium models are convex quadratically
constrained quadratic problems (QCQPs). This is of special importance
for practice because it allows to solve large-scale robust equilibrium
models by exploiting the equivalent robust convex optimization coun-
terparts. Interestingly, all these results cannot be obtained for the
case of 𝛤 -robustification of Nash–Cournot models. In this setting, the
complementarity system modeling the robust equilibrium problem is
not the same as the robustified optimization counterpart. Moreover, it is
not possible to derive an optimization counterpart that is equivalent to
the robustified equilibrium model, i.e., the above mentioned principle
of symmetric Jacobians is not applicable. Finally, we also provide a
computational case study on an academic test case that illustrates the
effects of the combination of different robustifications with different
types of market models.

The remainder of the paper is structured as follows. In Section 2
we present the networked market equilibrium model under perfect
competition and review the well-known relation to welfare maximiza-
tion problems. In Section 3 we then develop both strict and 𝛤 -robust
counterparts of the perfectly competitive setting, derive the LCPs
modeling the robust equilibrium problem, and prove the equivalence
of robustified equilibria and robustified welfare maximal solutions.
Afterward, in Section 4 we study the same topics for the case of Nash–
Cournot competition among the producers of the market. Surprisingly,
the above mentioned equivalence only holds in the strictly robust case
but fails to hold for the 𝛤 -approach. Section 5 then discusses the
effects of the combination of different robustness concepts and different
competition models applied to an academic network before we close the
paper with some concluding remarks and some ideas for future research
in Section 6.

2. Equilibrium modeling of perfectly competitive markets

We consider electricity networks that we model by using a con-
nected digraph 𝐺 ∶= (𝑁,𝐴) with node set 𝑁 and arc set 𝐴. Subse-
uently, all player problems of our market model are stated. Since we
irst consider perfectly competitive markets, all players are price takers
nd their optimization problems are formulated using exogenously
iven market prices 𝜋𝑢,𝑡 at every node 𝑢 ∈ 𝑁 in each time period
∈ [𝑇 ] ∶= {1,… , 𝑇 }, 𝑇 ∈ N. The model is based on standard electricity
arket models as discussed in, e.g., [3,8].

The first type of players are electricity producers. Without loss of
enerality, we assume that there exists exactly one producer at each
ode 𝑢 ∈ 𝑁 , which we model by fixed variable production costs
var
𝑢 > 0 and investment costs 𝑤inv

𝑢 > 0. The assumption of a single
roducer per node is only used to simplify the presentation. In practice,
ultiple producers at one node can simply be split by introducing

rtificial nodes that are connected to the original node by lines with
‘infinite’’ capacity. Moreover, we restrict ourselves here to the case
n which each firm is only acting at a single node. In practice, firms
an produce at different locations in the network (e.g., in different
ountries). Studying such settings would complicate the analysis (see,
3

.g., [63]) and is, thus, out of scope of this paper. Production at node
in each time period 𝑡 ∈ [𝑇 ] is denoted by 𝑦𝑢,𝑡 ≥ 0 and is bounded

from above by the time-independent generation capacity variable �̄�𝑢.
The objective of the producer at node 𝑢 is to maximize its profit and,
thus, its linear optimization problem reads

max
𝑦𝑢 ,�̄�𝑢

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑦𝑢,𝑡 −

∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ].

(1)

ote that we consider purely continuous problems here that, in partic-
lar, do not contain any integrality restrictions regarding production
nd investment decisions. Thus, the solutions of (1) are characterized
y the corresponding Karush–Kuhn–Tucker (KKT) conditions

𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 𝜋𝑢,𝑡 −𝑤var

𝑢 + 𝛽−𝑢,𝑡 − 𝛽
+
𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ], (2a)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ], (2b)

here 𝛽±𝑢,𝑡 are the dual variables of the production constraints. Here and
n what follows, we use the standard ⟂-notation, where 0 ≤ 𝑎 ⟂ 𝑏 ≥ 0
bbreviates 0 ≤ 𝑎, 𝑏 ≥ 0, 𝑎⊤𝑏 = 0 for 𝑎, 𝑏 ∈ R𝑛. Moreover, a variable
ithout time index denotes the vector containing all corresponding
ode or arc variables, e.g., 𝑦𝑢 ∶=

(

𝑦𝑢,𝑡
)

𝑡∈[𝑇 ].
Consumers, as our second players, are also located at the nodes

∈ 𝑁 and decide on their demand 𝑑𝑢,𝑡 ≥ 0. Their demand elasticity
s modeled by inverse demand functions 𝑝𝑢,𝑡 ∶ R≥0 → R, for which we
ake the following assumption.

ssumption 1. All inverse demand functions 𝑝𝑢,𝑡, 𝑢 ∈ 𝑁 , 𝑡 ∈ [𝑇 ], are
trictly decreasing and continuous.

Under Assumption 1, the continuous and concave problem of a
urplus maximizing consumer at node 𝑢 is given by

max
𝑑𝑢

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
𝑝𝑢,𝑡(𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡 s.t. 0 ≤ 𝑑𝑢,𝑡, 𝑡 ∈ [𝑇 ], (3)

nd its again necessary and sufficient first-order optimality conditions
omprise

𝑢,𝑡(𝑑𝑢,𝑡) − 𝜋𝑢,𝑡 + 𝛼𝑢,𝑡 = 0, 0 ≤ 𝑑𝑢,𝑡 ⟂ 𝛼𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ], (4)

here 𝛼𝑢,𝑡 is the dual variable of the lower demand bound.
The third player in our market model is the transmission system

perator (TSO). He operates the transmission network, in which every
rc 𝑎 ∈ 𝐴 is described by its susceptance 𝐵𝑎 and its transmission
apacity 𝑓+

𝑎 > 0. The latter bounds the flows 𝑓𝑎,𝑡, 𝑡 ∈ [𝑇 ], by |𝑓𝑎,𝑡| ≤ 𝑓+
𝑎 .

he goal of the TSO is to transport electricity from low- to high-price
egions and the earnings to be maximized result from the corresponding
rice differences; cf., e.g., [8]. Power flow in the network is modeled
sing the standard linear lossless DC approximation—cf., e.g., [61,
2]—which is often used for economic analysis, e.g., in [11,64]. Thus,
e obtain additional phase angle variables 𝛩𝑢,𝑡 for all nodes 𝑢 ∈ 𝑁
nd time periods 𝑡 ∈ [𝑇 ]. With this notation the continuous and linear
roblem of the TSO reads

ax
𝑓,𝛩

∑

𝑡∈[𝑇 ]

∑

𝑎=(𝑢,𝑣)∈𝐴
(𝜋𝑣,𝑡 − 𝜋𝑢,𝑡)𝑓𝑎,𝑡 (5a)

s.t. − 𝑓+
𝑎 ≤ 𝑓𝑎,𝑡 ≤ 𝑓+

𝑎 , 𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡), 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ].
(5b)

he last constraints in (5b) model the linear lossless DC flow ap-
roximation and 𝜀𝑎,𝑡 are the corresponding dual variables. The first
onstraints in (5b) reflect the network’s transmission capacities and
ave the dual variables 𝛿±𝑎,𝑡. The optimality conditions of (5) are given



Operations Research Perspectives 8 (2021) 100197A. Kramer et al.

w
𝐴

w
a

𝑥

by

𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡), 𝜋𝑣,𝑡 − 𝜋𝑢,𝑡 + 𝛿−𝑎,𝑡 − 𝛿
+
𝑎,𝑡 + 𝜀𝑎,𝑡 = 0, 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ],

∑

𝑎∈𝛿out(𝑢)
𝐵𝑎𝜀𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝐵𝑎𝜀𝑎,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

0 ≤ 𝑓𝑎,𝑡 + 𝑓+
𝑎 ⟂ 𝛿−𝑎,𝑡 ≥ 0, 0 ≤ 𝑓+

𝑎 − 𝑓𝑎,𝑡 ⟂ 𝛿+𝑎,𝑡 ≥ 0, 𝑎 ∈ 𝐴, 𝑡 ∈ [𝑇 ].

(6)

Here we use the standard 𝛿-notation for the in- and outgoing arcs of
a node 𝑢 ∈ 𝑁 , i.e., 𝛿in(𝑢) ∶= {(𝑣, 𝑢) ∈ 𝐴} and 𝛿out(𝑢) ∶= {(𝑢, 𝑣) ∈ 𝐴}.
Putting all first-order optimality conditions as well as the flow balance
conditions

0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (7)

together, we obtain the mixed complementarity problem

Producers: (2), Consumers: (4), TSO: (6), Market Clearing: (7), (8)

which models the wholesale electricity market under consideration for
the case of perfect competition. Hence, solutions of (8) are market
equilibria. It can be easily seen that this complementarity system is
equivalent to the welfare maximization problem

max
𝑑,𝑦,�̄�,𝑓 ,𝛩

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
𝑝𝑢,𝑡(𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 (9a)

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 0 ≤ 𝑑𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (9b)

− 𝑓+
𝑎 ≤ 𝑓𝑎,𝑡 ≤ 𝑓+

𝑎 , 𝑎 ∈ 𝐴, 𝑡 ∈ [𝑇 ], (9c)

0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (9d)

𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡), 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ]. (9e)

The equivalence can be shown by comparing the first-order opti-
mality conditions of Problem (9) with the mixed complementarity
system (8) and by identifying the dual variables of the flow balance
constraints (9d) with the equilibrium prices 𝜋𝑢,𝑡 of the complemen-
tarity problem. Further, we need that the KKT conditions are again
necessary and sufficient optimality conditions of Problem (9) under
Assumption 1.

Let us briefly comment on why we choose this model setup. First,
we consider a long-run model, i.e., we take capacity expansion for
producers explicitly into account, because uncertainty is much more
important when it comes to long-run investment decisions compared
to short-run production decisions. Second, we study a networked setup
for being as close as possible to the related literature [37,59]. Third,
and finally, we consider static investment problems. This means that
the investment decisions are taken once at the very beginning of the
time horizon. We are aware of that in the current context of the rapid
development of renewable energy technologies, investment costs may
change on a yearly basis, which is not covered by our model. We make
this assumption here, however, to keep both the robustification of the
models as well as their analysis tractable and postpone the study of
more dynamic investment aspects to our future work.

3. Robust counterparts under perfect competition

In this section, we study robustified equilibrium models under
perfect competition. As it is shown in the last section, the solutions
of the corresponding LCP can be computed by solving the welfare
maximization problem (9). In other words: Solving the LCP can be
replaced by solving a convex optimization problem, which is mainly
based on the symmetry principle for variational inequalities; cf. [14].
The main question that we will answer is whether this is also possible
in the case of robust equilibrium models, in which the uncertain
consumers’ demand is robustified using the concepts of strict and 𝛤 -
4

robustness. Second, we also answer the question on how to obtain the
Fig. 1. Overview of the considered models.

robust optimization problem that can be solved as a surrogate for the
robust equilibrium model. The overall situation is depicted in Fig. 1.
There are two different possibilities on how to obtain the mentioned
surrogate model:

(1) One first replaces the nominal LCP (8) by the corresponding
welfare maximization problem (9) and then robustifies this
problem.

(2) One first robustifies the separate optimal optimization problems
of the players with uncertain data and then derives an LCP and
an equivalent surrogate model, if possible at all.

For the case of perfect competition, we prove in this section that
both approaches yield the same robustified welfare maximization prob-
lem, i.e., the diagram in Fig. 1 ‘‘commutes’’.

3.1. Strict robustness

Before we study the robustification of the models discussed in Sec-
tion 2, let us briefly introduce the basic notions of robust optimization.
To this end, we consider a convex quadratic program (QP) of the form

max
𝑥∈R𝑛

1
2
𝑥⊤𝑄𝑥 + 𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑, (10)

here 𝑄 ∈ R𝑛×𝑛 is a symmetric and positive semi-definite matrix and
∈ R𝑚×𝑛, 𝐶 ∈ R𝑘×𝑛 as well as 𝑏 ∈ R𝑚, 𝑑 ∈ R𝑘, 𝑐 ∈ R𝑛 are matrices and

vectors of suitable dimension. In robust optimization, one takes into
account that the QP data (𝑄,𝐴, 𝐶, 𝑐, 𝑏, 𝑑) is uncertain, i.e., the matrices
and vectors are not known exactly. In particular, one assumes that they
are contained in a given uncertainty set  . This yields the so-called
uncertain convex QP
{

max
𝑥∈R𝑛

{1
2
𝑥⊤𝑄𝑥 + 𝑐⊤𝑥∶ 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑

}

}

(𝑄,𝐴,𝐶,𝑐,𝑏,𝑑)∈
, (11)

hich is a family of optimization problems of type (10). Using the
bbreviation 𝑢 ∶= (𝑄,𝐴, 𝐶, 𝑐, 𝑏, 𝑑), the problem

max
∈R𝑛

{

inf
𝑢∈

{1
2
𝑥⊤𝑄𝑥 + 𝑐⊤𝑥∶ 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑 ∀𝑢 ∈ 

}

}

is called the robust counterpart of (10).
Our goal in the following is to apply this concept to the models

given in Section 2, where we introduced the models of all players that
act in the market. In particular, we want to study the case in which the
demand functions 𝑝𝑢,𝑡 of the consumers are uncertain. This corresponds
to the special case of (11), in which only objective function data is
subject to uncertainty. Thus, we study the case in which 𝑄 and 𝑐 are
uncertain and obtain

max
𝑥∈R𝑛

{

inf
(𝑄,𝑐)∈

{1
2
𝑥⊤𝑄𝑥 + 𝑐⊤𝑥∶ 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑 ∀(𝑄, 𝑐) ∈ 

}

}

.

From now on we assume that the inverse demand functions are
linear, i.e., 𝑝 (𝑥) = �̄� + �̄� 𝑥 holds for all consumers 𝑢 in every
𝑢,𝑡 ∶ 𝑢,𝑡 𝑢,𝑡
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time period 𝑡. Thus, �̄�𝑢,𝑡 ≥ 0 is the price-intercept and �̄�𝑢,𝑡 < 0 is the
lope of the function. Here we already used the notation �̄�, �̄� for so-
alled nominal values. Since we consider uncertain demands, the true
alues 𝑎, 𝑏 for price-intercepts and slopes are not known explicitly but
ontained in a given uncertainty set. We consider the case of box-
ncertainties, i.e., for all consumers 𝑢 ∈ 𝑁 and every time period
𝑡 ∈ [𝑇 ], we have

(𝑎𝑢,𝑡, 𝑏𝑢,𝑡) ∈ 𝑢,𝑡 ∶=
[

𝑎−𝑢,𝑡, 𝑎
+
𝑢,𝑡

]

×
[

𝑏−𝑢,𝑡, 𝑏
+
𝑢,𝑡

]

. (12)

In order to obtain a well-defined economic setting, we make the
following assumption.

Assumption 2. For all consumers 𝑢 ∈ 𝑁 and every time period 𝑡 ∈ [𝑇 ]
it holds (𝑎𝑢,𝑡, 𝑏𝑢,𝑡) ∈ 𝑢,𝑡 and both 𝑎−𝑢,𝑡 ≥ 0 and 𝑏+𝑢,𝑡 < 0 is satisfied.

With these notations and definitions, we can state the robust coun-
terpart of the consumer’s model (3):

max
𝑑𝑢

{

inf
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥

−
∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡 ∶ 𝑑𝑢,𝑡 ≥ 0 ∀𝑡 ∈ [𝑇 ], ∀(𝑎𝑢,𝑡, 𝑏𝑢,𝑡) ∈ 𝑢,𝑡

}}

.
(13)

This robust counterpart is an optimization problem that is not tractable
as it is stated in (13). Fortunately, there is an equivalent and tractable
robust counterpart.

Theorem 3.1. Let 𝑢 ∈ 𝑁 be a consumer with uncertainty set (12) for all
𝑡 ∈ [𝑇 ] and suppose Assumption 2 holds. Then, the robust counterpart (13)
is equivalent to the convex optimization problem

max
𝑑𝑢

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡 s.t. 0 ≤ 𝑑𝑢,𝑡, 𝑡 ∈ [𝑇 ].

(14)

The proof is given in Appendix A. The theorem reveals that we ob-
tain the tractable robust counterpart by simply using the lower bounds
of the uncertain sets. Since the robust counterpart of a consumer 𝑢 ∈ 𝑁
is convex, its necessary first-order optimality conditions

𝑎−𝑢,𝑡 + 𝑏
−
𝑢,𝑡𝑑𝑢,𝑡 − 𝜋𝑢,𝑡 + 𝛼𝑢,𝑡 = 0, 0 ≤ 𝑑𝑢,𝑡 ⟂ 𝛼𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ], (15)

are sufficient. In (15), 𝛼𝑢,𝑡 denotes the dual variable of the consumer’s
lower demand bound.

Note that the optimization problems of all other market participants
are subject to certain data. Putting all first-order optimality conditions
as well as the flow balance conditions (7) together, we obtain the
robustified market equilibrium problem (RMEP)

Producers: (2), Robustified consumers: (15),

TSO: (6), Market clearing: (7), (16)

which models the wholesale electricity market for the case of perfect
competition and consumers that face demand uncertainties. In general,
the techniques discussed in this paper can be used to study uncertainties
of other data such as, e.g., future production or investment costs as
well. We focus on uncertain demand functions for two reasons. First,
this parameter is very important in equilibrium models (with elastic
demand) since demand influences prices, which themselves influence
generation and thus investment. Second, considering future demand
parameters as uncertain is also of great importance for practice; see,
e.g., [53,56,59].

In the nominal case discussed in Section 2, it holds that the nominal
mixed LCP is equivalent to the nominal welfare maximization prob-
lem (9). We now answer the question whether this is also true in the
robustified setting. To this end, we robustify the welfare maximization
problem (9) and afterward show that it is equivalent to the RMEP (16).
5

The robust counterpart of the welfare maximization problem (9) reads

max
𝑑,𝑦,�̄�,𝑓 ,𝛩,𝜆

𝜆 (17a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 (17b)

−
∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢, for all (𝑎𝑢,𝑡, 𝑏𝑢,𝑡) ∈ 𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 0 ≤ 𝑑𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (17c)
− 𝑓+

𝑎 ≤ 𝑓𝑎,𝑡 ≤ 𝑓+
𝑎 , 𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡),

𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ], (17d)
0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +

∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ].

(17e)

s it is the case for the consumers, this robust counterpart can be
eformulated in a tractable way.

heorem 3.2. Let an uncertainty set (12) be given for every consumer
∈ 𝑁 and every time period 𝑡 ∈ [𝑇 ]. Suppose further Assumption 2 holds.
hen, the robust counterpart (17) of the welfare maximization problem is
quivalent to

max
,𝑦,�̄�,𝑓 ,𝛩

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

(18a)

s.t. (17c)–(17e) (18b)

The proof is given in Appendix B. The final question now is whether
he robustified welfare maximization problem of Theorem 3.2 is equiva-
ent to the RMEP (16). The answer is positive and can be easily obtained
y comparing the KKT conditions of (18) with the RMEP.

orollary 3.3. The robust market equilibrium problem (16) and the robust
elfare maximization problem (18) are equivalent.

Note that the latter corollary is in line with the two welfare the-
rems, which hold for convex player problems (if robustified or not)
nder perfect competition. We close this section with a final remark on
he uniqueness of robust market equilibria.

emark 3.4. A typical question in the context of market equilibrium
odels is whether the resulting equilibrium is unique or not. For

he nominal case of a market model upon an underlying network
tructure—as discussed in Section 2—this question has been studied
n [65–67]. In these papers that do not consider uncertainties, the
niqueness of the market equilibrium depends on the used model of the
ransport network. In [65] it is shown that the long-run equilibrium is
nique on a capacitated network with a standard linear flow model.
or short-run models, i.e., for producer models without endogenous
apacity investments, this also holds if the transport model additionally
aptures some special type of transport costs; see [67]. In contrast,
n [66] it is shown that short-run models incorporating a DC network
low model (like we do in this paper) possess multiple solutions.

Since the structure of the robust counterparts do not differ from the
tructure of the nominal models, the uniqueness and multiplicity results
rom the nominal settings directly carry over to the strictly robust case
iscussed in this section.

(1) The RMEP (16) has a unique solution if we neglect the DC
constraint in (5b). In this case, both the short- and long-run
equilibria are unique under suitable assumptions.

(2) The DC-constrained RMEP (16) has a unique solution on elec-
tricity networks that are trees and in the short-run. On general
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graphs, it has multiple equilibria. Whether the long-run equilib-
rium is unique on networks that are tree-shaped is, to the best
of our knowledge, not known. However, our hypothesis is that
uniqueness can be shown by using the techniques from [65].

Finally, in [68,69] uniqueness is shown for electricity spot markets with
transmission losses. The results can be directly applied to the robust
setting of this section.

3.2. The 𝛤 -approach

The main criticism of the concept of strict robustness is that it leads,
due to its worst-case character, to very conservative solutions. One
remedy is the so-called 𝛤 -approach, which has been proposed in [21–
3]. This approach does not assume that all parameters are subject
o uncertainty but that only a subset of these parameters are to be
onsidered using a worst-case approach. The cardinality of this subset
s typically called 𝛤 ∈ N, which gives the approach its name.

Let us briefly discuss this notion of robustness for a general convex
P, as we did in Section 3.1. To this end, we consider an arbitrary
onvex QP as given in (10) and assume that only objective function
ata (𝑄, 𝑐) is not exactly known. In this setting, the 𝛤 -approach hedges
gainst 𝛤𝑄 many uncertain entries in 𝑄 and against 𝛤𝑐 many uncertain
ntries in 𝑐. The main point now is that we only know these maximum
umbers of uncertain parameters but do not know which parameters
re subject to change. Thus, using the notation 𝑁 ∶= {1,… , 𝑛}, the
𝛤 -robust counterpart is given by

max
𝑥∈R𝑛

1
2
𝑥⊤𝑄𝑥 + 𝑐⊤𝑥 − max

{𝑆𝑐⊆𝑁 ∶ |𝑆𝑐 |≤𝛤𝑐}

∑

𝑗∈𝑆𝑐

𝛥𝑐𝑗𝑥𝑗

− max
{𝑆𝑄⊆𝑁×𝑁 ∶ |𝑆𝑄|≤𝛤𝑄}

∑

(𝑖,𝑗)∈𝑆𝑄

1
2
𝛥𝑞𝑖𝑗𝑥𝑖𝑥𝑗

s.t. 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑,

here 𝛥𝑐𝑗 is the deviation of the nominal parameter 𝑐𝑗—and analogous
or 𝛥𝑞𝑖𝑗 .

As in Section 3.1 we consider consumers that face uncertain de-
and, which is assumed to lie in a two-dimensional box-uncertainty set

s given in (12). Here, we additionally assume that this box is centered
round the nominal values, i.e.,
−
𝑢,𝑡 = �̄�𝑢,𝑡 − 𝛥𝑎𝑢,𝑡, 𝑎+𝑢,𝑡 = �̄�𝑢,𝑡 + 𝛥𝑎𝑢,𝑡, 𝛥𝑎𝑢,𝑡 ≥ 0, (19a)

𝑏−𝑢,𝑡 = �̄�𝑢,𝑡 − 𝛥𝑏𝑢,𝑡, 𝑏+𝑢,𝑡 = �̄�𝑢,𝑡 + 𝛥𝑏𝑢,𝑡, 𝛥𝑏𝑢,𝑡 ≥ 0, (19b)

nd that Assumption 2 still holds. In order to state the 𝛤 -robust counter-
art of the consumer model (3), we need some more notation. For every
onsumer 𝑢 ∈ 𝑁 let 𝛬𝑢 ∈ N with 𝛬𝑢 ≤ 𝑇 be the number of scenarios
n which the actual price-intercepts of the inverse demand functions
ay deviate from their nominal value. In analogy, 𝛤𝑢 ∈ 𝑁 with 𝛤𝑢 ≤ 𝑇

denotes the number of time periods in which the actual slopes of the
inverse demand functions may deviate from their nominal value. With
these notations at hand, we can state the 𝛤 -robust counterpart of the
model of a consumer located at node 𝑢 ∈ 𝑁 :

max
𝑑𝑢≥0

{

∑

𝑡∈[𝑇 ]
�̄�𝑢,𝑡𝑑𝑢,𝑡 − max

{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡

}

+
∑

𝑡∈[𝑇 ]

1
2
�̄�𝑢,𝑡𝑑

2
𝑢,𝑡 − max

{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

−
∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡

}

.

(20)

his robust counterpart can be reformulated in a tractable way.

heorem 3.5. For the consumer at node 𝑢 ∈ 𝑁 let an uncertainty set be
iven as in (12) and (19). Then, the robust counterpart (20) is equivalent
6

o

max
𝑢 ,𝜇𝑢 ,𝜂𝑢 ,𝜈𝑢 ,𝜏𝑢

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡

−
∑

𝑡∈[𝑇 ]
(𝜇𝑢,𝑡 + 𝜈𝑢,𝑡) − 𝜂𝑢𝛬𝑢 − 𝜏𝑢𝛤𝑢,

s.t. 0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡, 𝑡 ∈ [𝑇 ], (21a)
0 ≤ 𝑑𝑢,𝑡, 0 ≤ 𝜂𝑢, 0 ≤ 𝜏𝑢, 0 ≤ 𝜇𝑢,𝑡, 0 ≤ 𝜈𝑢,𝑡, 𝑡 ∈ [𝑇 ]

(21b)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡, 𝑡 ∈ [𝑇 ]. (21c)

roof. The proof mainly follows the technique developed in [22]. First,
e rewrite the robust counterpart (20) as

max
𝑑𝑢≥0,𝜆

𝜆 (22a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]
�̄�𝑢,𝑡𝑑𝑢,𝑡 − max

{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡

}

(22b)

+
∑

𝑡∈[𝑇 ]

1
2
�̄�𝑢,𝑡𝑑

2
𝑢,𝑡 − max

{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

−
∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡.

ext, we reformulate the inner maximization problems that are part of
onstraint (22b), state their dual problems, and use strong duality to
eplace the inner maximization problems with the dual minimization
roblems. An equivalent formulation of

max
𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡

}

s given by

max
𝑧𝑢

∑

𝑡∈[𝑇 ]
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡𝑧𝑢,𝑡 s.t.

∑

𝑡∈[𝑇 ]
𝑧𝑢,𝑡 ≤ 𝛬𝑢, 0 ≤ 𝑧𝑢,𝑡 ≤ 1, 𝑡 ∈ [𝑇 ].

(23)

his is a linear optimization problem in 𝑧𝑢 and its dual problem reads

min
𝜇𝑢 ,𝜂𝑢

∑

𝑡∈[𝑇 ]
𝜇𝑢,𝑡 + 𝜂𝑢𝛬𝑢

s.t. 𝜇𝑢,𝑡 + 𝜂𝑢 ≥ 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡, 𝜇𝑢,𝑡 ≥ 0 𝑡 ∈ [𝑇 ], 𝜂𝑢 ≥ 0,

here 𝜂𝑢 is the dual variable of the first constraint in (23) and 𝜇𝑢,𝑡
re the dual variables of the second group of constraints. Using the
quivalent formulation

max
𝑧𝑢

∑

𝑡∈[𝑇 ]

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡𝑧𝑢,𝑡 s.t.

∑

𝑡∈[𝑇 ]
𝑧𝑢,𝑡 ≤ 𝛤𝑢, 0 ≤ 𝑧𝑢,𝑡 ≤ 1, 𝑡 ∈ [𝑇 ],

(24)

of

max
{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

−
∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡,

e obtain the second dual optimization problem

min
𝜈𝑢 ,𝜏𝑢

∑

𝑡∈[𝑇 ]
𝜈𝑢,𝑡+𝜏𝑢𝛤𝑢 s.t. 𝜈𝑢,𝑡+𝜏𝑢 ≥

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡, 𝜈𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ], 𝜏𝑢 ≥ 0.

(25)

ere, 𝜏𝑢 and 𝜈𝑢,𝑡 are the dual variables of the constraints of Prob-
em (24). We can now apply the strong duality theorem and replace
he inner maximization problems in (22b) by the corresponding dual
inimization problems. Furthermore, it is easy to see that we can re-
lace these minimization problems by simply stating feasibility, which
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is given by

𝜆 ≤
∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡

−
∑

𝑡∈[𝑇 ]
𝜇𝑢,𝑡 − 𝜂𝑢𝛬𝑢 −

∑

𝑡∈[𝑇 ]
𝜈𝑢,𝑡 − 𝜏𝑢𝛤𝑢,

0 ≤ 𝑑𝑢,𝑡, 0 ≤ 𝜇𝑢,𝑡, 0 ≤ 𝜈𝑢,𝑡, 𝑡 ∈ [𝑇 ], 0 ≤ 𝜂𝑢, 0 ≤ 𝜏𝑢,

0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡, 0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡, 𝑡 ∈ [𝑇 ],

instead of Constraint (22b) and the claim follows. □

If we take a closer look at the robust counterpart (21) we see that the
structure, compared with the nominal problem, has changed. We obtain
new variables, constraints, and objective function terms. This is always
the case when the 𝛤 -approach is used; cf. [22]. However, (21) is not a
QP anymore but a quadratically constraint quadratic program (QCQP).
The nonlinear constraint is (21c). Fortunately, the right-hand side of
this constraint is a concave function, yielding the following corollary.

Corollary 3.6. Suppose that Assumption 1 holds. Then, the 𝛤 -robust
counterpart (21) is a convex optimization problem for every consumer
𝑢 ∈ 𝑁 .

Due to this corollary, the KKT conditions of (21) are necessary and
sufficient first-order optimality conditions. They are given by

�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑑𝑢,𝑡 − 𝜋𝑢,𝑡 + 𝛼𝑢,𝑡 − 𝛥𝑎𝑢,𝑡𝜎𝑢,𝑡 − 𝛥𝑏𝑢,𝑡𝑑𝑢,𝑡𝜁𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],

−1 + 𝜎𝑢,𝑡 + 𝜉𝑢,𝑡 = 0, −1 + 𝜁𝑢,𝑡 + 𝜌𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],

−𝛬𝑢 +
∑

𝑡∈[𝑇 ]
𝜎𝑢,𝑡 + 𝜒𝑢 = 0, −𝛤𝑢 + 𝜓𝑢 +

∑

𝑡∈[𝑇 ]
𝜁𝑢,𝑡 = 0,

0 ≤ 𝑑𝑢,𝑡 ⟂ 𝛼𝑢,𝑡 ≥ 0, 0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡 ⟂ 𝜎𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜂𝑢 ⟂ 𝜒𝑢 ≥ 0, 0 ≤ 𝜏𝑢 ⟂ 𝜓𝑢 ≥ 0,

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡 ⟂ 𝜁𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜇𝑢,𝑡 ⟂ 𝜉𝑢,𝑡 ≥ 0, 0 ≤ 𝜈𝑢,𝑡 ⟂ 𝜌𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(26)

where 𝜁𝑢, 𝛼𝑢, 𝜎𝑢, 𝜉𝑢, 𝜌𝑢, 𝜒𝑢, and 𝜓𝑢 are the dual variables of constraints
n Problem (21). We thus obtain the 𝛤 -robustified market equilibrium
roblem (𝛤 -RMEP)

roducers: (2), Robustified consumers: (26),

TSO: (6), Market clearing: (7), (27)

hich models the wholesale electricity market for the case of perfect
ompetition and consumers that hedge themselves against demand
ncertainty using the 𝛤 -approach. Note that this complementarity
roblem is not linear due to the quadratic complementarity constraints.

The main question again is whether this 𝛤 -RMEP is equivalent to a
-robustified welfare maximization problem. To answer this question,
e now consider the 𝛤 -robustification of the welfare maximization
roblem (9) and prove that the answer is positive. The 𝛤 -robust
ounterpart of Problem (9) reads

max
,𝑦,�̄�,𝑓 ,𝛩,𝜆

𝜆 (28a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡

−
∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 −

∑

𝑢∈𝑁
max

{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡

}

(28b)

−
∑

𝑢∈𝑁
max

{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆

1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

,

(9b)–(9e). (28c)

gain, we state a reformulation of this robust counterpart.
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Theorem 3.7. For all consumers at the nodes 𝑢 ∈ 𝑁 let an uncertainty set
be given as in (12) and (19). Then, the 𝛤 -robust counterpart (28) of the
welfare maximization problem (9) is equivalent to

max
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝜇𝑢,𝑡 −

∑

𝑢∈𝑁
𝜂𝑢𝛬𝑢 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝜈𝑢,𝑡 −

∑

𝑢∈𝑁
𝜏𝑢𝛤𝑢,

(29a)

s.t. (9b)–(9e), (29b)
0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡, 0 ≤ 𝜇𝑢,𝑡, 0 ≤ 𝜈𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

(29c)

0 ≤ 𝜂𝑢, 0 ≤ 𝜏𝑢, 𝑢 ∈ 𝑁, 0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡𝑑

2
𝑢,𝑡,

𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ]. (29d)

uppose further that Assumption 1 holds. Then, (29) is a convex optimiza-
ion problem.

roof. We use the reformulations and dual problems (23)–(25) for
very consumer with the same variable names as in the proof of
heorem 3.5. Replacing the corresponding maximization problems in
onstraint (28b) of the robust counterpart yields the claim. Finally, we
bserve that the quadratic constraint again yields a convex feasible set
nd that we thus obtain a convex problem. □

As a consequence, necessary and sufficient first-order optimality
onditions of the robust welfare maximization problem with robust
onsumers in the flexible 𝛤 -setting (29) are given by the KKT conditions
6) as well as (2), (7), (26) for all 𝑢 ∈ 𝑁 , if we use the same names for
he dual variables as for the single player problems and if we identify
he nodal prices 𝜋𝑢,𝑡 with the dual variable of the corresponding nodal
arket-clearing conditions. As a result, we obtain the positive answer

or our main question.

orollary 3.8. The 𝛤 -RMEP (27) and the 𝛤 -robust welfare maximization
roblem (29) are equivalent.

We close this section with a brief discussion about the uniqueness
f 𝛤 -robust equilibria. Unfortunately, no results from the literature that
e are aware of can be used to prove uniqueness. The problem is that

he papers [65–67] discussed in Remark 3.4 cannot be used in this
etting because the quadratic constraints 0 ≤ 𝜈𝑢,𝑡+𝜏𝑢−1∕2𝛥𝑏𝑢,𝑡𝑑2𝑢,𝑡 for all
∈ 𝑁 , 𝑡 ∈ [𝑇 ], yield a completely different problem structure, which
revents the application of the results in the cited papers. Nevertheless,
xistence of robust market equilibria is guaranteed by the existence of
olutions of (29).

. Robust counterparts under Nash–Cournot competition

In this section, we study the same questions as in Section 3 but
eplace the assumption of a perfectly competitive market by a Nash–
ournot assumption. The nominal Nash–Cournot model is derived in
ection 4.1. The case of strictly robust Nash–Cournot equilibria is
fterward discussed in Section 4.2, whereas the 𝛤 -approach is topic of
ection 4.3.

.1. The nominal model with Nash–Cournot competition

In this section we derive a model in which we drop the economic
ssumption of perfect competition but assume Nash–Cournot competi-
ion for the producers in our model. Thus, we assume that a producer
i) anticipates the reactions of the consumers to changes in the price but
hat the producer (ii) naively assumes that the other producers and the
SO do not modify their actions depending on the producer’s decision.
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For a tutorial of modeling Nash–Cournot competition for electricity
markets see [3,8] and the references therein. The TSO, however, is still
assumed to be a price taker; cf., e.g., [8].

As it is typically the case for Nash–Cournot models we assume
that all consumers have a strictly positive demand and refrain from
explicitly stating this demand constraint; cf., e.g., Section 3.4.2.5 in [3].
Hence, the consumer model (3) becomes the unconstrained optimiza-
tion model

max
𝑑𝑢

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
𝑝𝑢,𝑡(𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡.

Its optimal solution is characterized by the first-order conditions
𝑝𝑢,𝑡(𝑑𝑢,𝑡) = 𝜋𝑢,𝑡 for all 𝑡 ∈ [𝑇 ]. Hence, the consumer’s demand is unique
in dependence of the given prices 𝜋𝑢,𝑡. As usual, we will later substitute
these first-order conditions into the optimization problems of the
producers.

Next, we state the Nash–Cournot model of a producer. To this end,
we need to modify the usage of exogenously given prices 𝜋𝑢,𝑡 in (1) and
replace these prices by the inverse demand function of the consumer at
that node. This yields the problem

max
𝑦𝑢 ,�̄�𝑢

∑

𝑡∈[𝑇 ]
𝑝𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡 −
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢

(30a)

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ], (30b)

in which we explicitly used the market-clearing condition (7) to sub-
stitute the nodal demand 𝑑𝑢,𝑡 into the inverse demand function of the
objective. By doing so, the producer anticipates that the price depends
on his own supply level and on the supply levels of the other producers.
The latter are implicitly given by the in- and outflows at the node at
which the producer is located.

We still use the assumption that the inverse demand functions are
given as linear functions 𝑝𝑢,𝑡(𝑥) = 𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥 and thus obtain the
producer’s KKT conditions

𝑝𝑢,𝑡
⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

+ 𝑏𝑢,𝑡𝑦𝑢,𝑡 −𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 = 0,

𝑡 ∈ [𝑇 ], (31a)
−𝑤inv

𝑢 +
∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0,

𝑡 ∈ [𝑇 ]. (31b)

Finally, the TSO’s model, who still acts as a price taker, is given by (5)
and the necessary and sufficient conditions are given by System (6).

Since both the optimal reactions of the consumers and the market
clearing are already substituted into the two discussed models, we
obtain the LCP

Nash–Cournot Producers: (31), Price-taking TSO: (6) (32)

for modeling Nash–Cournot equilibria.
Note again that we assumed that all demands 𝑑𝑢,𝑡 are positive.

In this situation, it is well-known that the Nash–Cournot equilibrium
model (32) can be equivalently replaced by a single optimization
problem—see [70] as well as [8]—which is given by

max
𝑑,𝑦,�̄�,𝑓 ,𝛩

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
𝑝𝑢,𝑡(𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 (33a)

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
𝑏𝑢,𝑡𝑦

2
𝑢,𝑡

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (33b)
− 𝑓+

𝑎 ≤ 𝑓𝑎,𝑡 ≤ 𝑓+
𝑎 , 𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡),

𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ], (33c)
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0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ].

(33d)

There are two differences w.r.t. the welfare maximization problem (9).
By assumption, the demand constraints in (9b) are neglected and we
obtain the additional production-depending quadratic objective terms
1∕2𝑏𝑢,𝑡𝑦2𝑢,𝑡 for every producer and every time period. We finally again
remark that the equivalence between (32) and (33) only holds under
the positivity assumption for the demands. The reason is that, other-
wise, the inverse demand functions 𝑝𝑢,𝑡(⋅) do not necessarily equal nodal
prices; cf. (4).

Before we start the discussion of robust Nash–Cournot equilibria,
we state and prove uniqueness of nominal Nash–Cournot equilibria.

Theorem 4.1. Suppose that Assumption 1 holds and that the phase
ngles 𝛩𝑟,𝑡 are fixed for all 𝑡 ∈ [𝑇 ] at an arbitrary reference node 𝑟 ∈ 𝑁 .
hen, the Nash–Cournot equilibrium of (32) is unique.

roof. Since the LCP (32) and the QP (33) are equivalent, we can
onsider the latter to prove uniqueness of the equilibrium of (32).
he objective function of (33) is strictly concave in the demands 𝑑𝑢,𝑡
nd the productions 𝑦𝑢,𝑡 for all 𝑢 ∈ 𝑁 and 𝑡 ∈ [𝑇 ]. In this case, the
niqueness of these quantities follows from [71]. Thus, it remains
o show the uniqueness of the capacities �̄�𝑢. For every node 𝑢 ∈ 𝑁 ,
t holds �̄�𝑢 = max{𝑦𝑢,𝑡 ∶ 𝑡 ∈ [𝑇 ]} by optimality. This also proves the
niqueness of �̄�𝑢. The uniqueness of the flows and phase angles follows
rom Theorem 3.1 in [66]. □

.2. Strict robustness

In this section, we again use the concept of strictly robust opti-
ization for studying the case in which the demand functions 𝑝𝑢,𝑡 of

he consumers are uncertain. Thus, we follow the same road as in
ection 3.1 but replace the economic assumption of perfect competi-
ion by Nash–Cournot competition. That is, we robustify the nominal
odels developed in the last section. We use the same notation as in

ection 3.1.
In contrast to Section 3.1, the Nash–Cournot models (30) of the

roducers now depend on the uncertain inverse demand functions. This
s why we now have to consider the corresponding robust counterparts,
hich are given by

max
𝑢 ,�̄�𝑢 ,𝜆

𝜆 (34a)

s.t. 𝜆 ≤ −
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 + min
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∑

𝑡∈[𝑇 ]
𝑎𝑢,𝑡𝑦𝑢,𝑡 (34b)

+
∑

𝑡∈[𝑇 ]
𝑏𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡

⎫

⎪

⎬

⎪

⎭

0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ]. (34c)

s before, we can rewrite this problem in a tractable way.

heorem 4.2. Let (12) be the uncertainty set for consumer 𝑢 ∈ 𝑁 for all
∈ [𝑇 ] and suppose Assumption 2 holds. Then, the robust counterpart (34)

s equivalent to the convex problem

ax
𝑦𝑢 ,�̄�𝑢

∑

𝑡∈[𝑇 ]
𝑎−𝑢,𝑡𝑦𝑢,𝑡 +

∑

𝑡∈[𝑇 ]
𝑏−𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡 (35a)

−
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ]. (35b)
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T
f
(

The proof is given in Appendix C. As a consequence, necessary and
sufficient first-order optimality conditions of a robust Nash–Cournot
producer are given by the KKT conditions

𝑎−𝑢,𝑡 + 𝑏
−
𝑢,𝑡

(

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

)

+ 𝑏−𝑢,𝑡𝑦𝑢,𝑡

−𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ], (36a)

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, (36b)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ]. (36c)

As the optimization problem (5) of the TSO does not depend on the
uncertain inverse demand functions of the consumers, no robustifica-
tion needs to be done for the TSO model. In total, we obtain the robust
Nash–Cournot-LCP

Robustified Cournot producers: (36), Price-taking TSO: (6), (37)

which models the wholesale electricity market for the case of Nash–
Cournot competition as well as consumers that face demand uncer-
tainties. As before, we now answer the question whether the strictly
robust counterpart of the Nash–Cournot QP (33) is equivalent to the
RMEP (37) or not.

The robust counterpart of the Nash–Cournot QP (33) reads

max
𝑑,𝑦,�̄�,𝑓 ,𝛩,𝜆

𝜆 (38a)

s.t. 𝜆 ≤ min
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

𝑎𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

)

(38b)

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
𝑏𝑢,𝑡𝑦

2
𝑢,𝑡

}

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢,

(33b)–(33d). (38c)

heorem 4.3. Let (12) be the uncertainty set for every consumer 𝑢 ∈ 𝑁
or all 𝑡 ∈ [𝑇 ] and suppose Assumption 2 holds. Then, the robust counterpart
38) is equivalent to the convex problem

max
𝑑,𝑦,�̄�,𝑓 ,𝛩

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

𝑎−𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏−𝑢,𝑡𝑑

2
𝑢,𝑡

)

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
𝑏−𝑢,𝑡𝑦

2
𝑢,𝑡

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

s.t. (33b)–(33d).

(39)

The proof can be found in Appendix D. Thus, the first-order condi-
tions are necessary and sufficient for the robust counterpart (39) of the
Nash–Cournot QP and are given by

𝑎−𝑢,𝑡 + 𝑏
−
𝑢,𝑡𝑑𝑢,𝑡 − 𝜆𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (40a)

𝑏−𝑢,𝑡𝑦𝑢,𝑡 −𝑤
var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 + 𝜆𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (40b)

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, (40c)

𝛿−𝑎,𝑡 − 𝛿
+
𝑎,𝑡 − 𝜆𝑢,𝑡 + 𝜆𝑣,𝑡 + 𝜀𝑎,𝑡 = 0, 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ],

(40d)
∑

𝑎∈𝛿out(𝑢)
𝐵𝑎𝜀𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝐵𝑎𝜀𝑎,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (40e)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (40f)

0 ≤ 𝑓𝑎,𝑡 + 𝑓+
𝑎 ⟂ 𝛿−𝑎,𝑡 ≥ 0, 0 ≤ 𝑓+

𝑎 − 𝑓𝑎,𝑡 ⟂ 𝛿+𝑎,𝑡 ≥ 0, 𝑎 ∈ 𝐴, 𝑡 ∈ [𝑇 ], (40g)

0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (40h)

𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡), 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ].
(40i)
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Comparing these KKT conditions with the RMEP (37), we see that
these problems are equivalent as well.

Theorem 4.4. The RMEP (37) and the strictly robust Nash–Cournot
QP (39) are equivalent.

Proof. We identify all dual variables with the same names in both
systems (37) and (40) and further identify the dual variables 𝜆𝑢,𝑡 in (40)
with 𝜋𝑢,𝑡 in System (37). Finally, using the market-clearing condition
yields the claim. □

Since the structure of the robustified Nash–Cournot QP is the same
as for the nominal QP, Theorem 4.1 also holds for (39) and we obtain
the uniqueness of the robust Nash–Cournot equilibria. Note that this is
a stronger statement compared to what we can say about the unique-
ness of robust equilibria in the perfectly competitive case since the
uniqueness does not depend on the network model for Nash–Cournot
models.

4.3. The 𝛤 -approach

In this section, we again consider the 𝛤 -approach as in Section 3.2
to robustify the Nash–Cournot setting introduced in Section 4.1. Both
for the modeling of uncertainty and Nash–Cournot competition we use
the same notation as before.

The robust counterpart of the Nash–Cournot producer (30) reads

max
𝑦𝑢 ,�̄�𝑢 ,𝜆

𝜆 (41a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]

(

�̄�𝑢,𝑡𝑦𝑢,𝑡 + �̄�𝑢,𝑡

(

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)

𝑓𝑎,𝑡

)

𝑦𝑢,𝑡

)

(41b)

−
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 − max
{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑦𝑢,𝑡

}

− max
{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆
𝛥𝑏𝑢,𝑡

(

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)

𝑓𝑎,𝑡

)

𝑦𝑢,𝑡

}

,

0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ]. (41c)

As usual, we rewrite this problem to obtain a tractable counterpart.

Theorem 4.5. For the consumer at node 𝑢 ∈ 𝑁 let an uncertainty set
be given as in (12) and (19). Then, the 𝛤 -robust counterpart (41) of the
Nash–Cournot producer (30) is equivalent to

max
𝑧

∑

𝑡∈[𝑇 ]
�̄�𝑢,𝑡𝑦𝑢,𝑡 +

∑

𝑡∈[𝑇 ]
�̄�𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡 (42a)

−
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 −
∑

𝑡∈[𝑇 ]
𝜇𝑢,𝑡 − 𝜂𝑢𝛬𝑢 −

∑

𝑡∈[𝑇 ]
𝜈𝑢,𝑡 − 𝜏𝑢𝛤𝑢

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑦𝑢,𝑡, 0 ≤ 𝜇𝑢,𝑡, 0 ≤ 𝜈𝑢,𝑡,

𝑡 ∈ [𝑇 ], (42b)

0 ≤ 𝜂𝑢, 0 ≤ 𝜏𝑢, (42c)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 − 𝛥𝑏𝑢,𝑡
⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡, 𝑡 ∈ [𝑇 ],

(42d)

where the variable vector is abbreviated as 𝑧 ∶= (𝑦𝑢, �̄�𝑢, 𝜇𝑢, 𝜂𝑢, 𝜈𝑢, 𝜏𝑢).
Suppose further that Assumption 1 holds for consumer 𝑢 ∈ 𝑁 . Then, (42)
is a convex QCQP.

Proof. As in Section 3.2 we reformulate the inner maximization
problems that are part of Constraint (41b), state their dual problems,
and use strong duality to replace the inner maximization problems with
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the dual minimization problems. The dual problem of

max
{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑦𝑢,𝑡

}

can be written as

min
𝜇𝑢 ,𝜂𝑢

∑

𝑡∈[𝑇 ]
𝜇𝑢,𝑡 + 𝜂𝑢𝛬𝑢

s.t. 𝜇𝑢,𝑡 + 𝜂𝑢 ≥ 𝛥𝑎𝑢,𝑡𝑦𝑢,𝑡, 𝜇𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ], 𝜂𝑢 ≥ 0,

cf., e.g., the proof of Theorem 3.5. To obtain the dual of the second
inner maximization problem

max
{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

⎧

⎪

⎨

⎪

⎩

∑

𝑡∈𝑆
𝛥𝑏𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡

⎫

⎪

⎬

⎪

⎭

we rewrite it as an equivalent linear program

max
𝑧𝑢

∑

𝑡∈[𝑇 ]
𝛥𝑏𝑢,𝑡𝑦𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑧𝑢,𝑡

s.t.
∑

𝑡∈[𝑇 ]
𝑧𝑢,𝑡 ≤ 𝛤𝑢, 0 ≤ 𝑧𝑢,𝑡 ≤ 1, 𝑡 ∈ [𝑇 ],

for which the dual reads

min
𝜏𝑢 ,𝜈𝑢

𝛤𝑢𝜏𝑢 +
∑

𝑡∈[𝑇 ]
𝜈𝑢,𝑡

s.t. 0 ≤ 𝜏𝑢 + 𝜈𝑢,𝑡 − 𝛥𝑏𝑢,𝑡𝑦𝑢,𝑡
⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜏𝑢, 0 ≤ 𝜈𝑢,𝑡, 𝑡 ∈ [𝑇 ].

e can now apply the strong duality theorem and replace the inner
aximization problems in (41) by the corresponding dual maximiza-

ion problems and the claim of the theorem follows. □

Due to this result, the KKT conditions of (42) are necessary and
ufficient first-order optimality conditions. They are given by

�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑦𝑢,𝑡 + �̄�𝑢,𝑡

(

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

)

− 𝛥𝑎𝑢,𝑡𝜎𝑢,𝑡

−𝛥𝑏𝑢,𝑡

(

2𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

)

𝜁𝑢,𝑡

−𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],

(43a)
−𝑤inv

𝑢 +
∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, −1 + 𝜎𝑢,𝑡 + 𝜉𝑢,𝑡 = 0, −1 + 𝜁𝑢,𝑡 + 𝜌𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],

(43b)

−𝛬𝑢 +
∑

𝑡∈[𝑇 ]
𝜎𝑢,𝑡 + 𝜒𝑢 = 0, −𝛤𝑢 + 𝜓𝑢 +

∑

𝑡∈[𝑇 ]
𝜁𝑢,𝑡 = 0, (43c)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(43d)
0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑦𝑢,𝑡 ⟂ 𝜎𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(43e)

0 ≤ 𝜂𝑢 ⟂ 𝜒𝑢 ≥ 0, 0 ≤ 𝜏𝑢 ⟂ 𝜓𝑢 ≥ 0, (43f)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 − 𝛥𝑏𝑢,𝑡

(

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

)

𝑦𝑢,𝑡 ⟂ 𝜁𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(43g)
0 ≤ 𝜇𝑢,𝑡 ⟂ 𝜉𝑢,𝑡 ≥ 0, 0 ≤ 𝜈𝑢,𝑡 ⟂ 𝜌𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ].

(43h)

As in Section 3.2 we now obtain the 𝛤 -RMEP
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Robustified Nash–Cournot Producers: (43), Price-taking TSO: (6),
(44)

which models the wholesale electricity market for the case of Nash–
Cournot competition and the 𝛤 -approach. Again, our main goal is to
answer the question whether the 𝛤 -robust counterpart of the Nash–
Cournot QP (33) is equivalent to the 𝛤 -RMEP (44) or not. Thus, we
consider the 𝛤 -robustification of the Nash–Cournot QP (33), which
reads

max
𝑑,𝑦,�̄�,𝑓 ,𝛩,𝜆

𝜆 (45a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 (45b)

−
∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 +

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
�̄�𝑢,𝑡𝑦

2
𝑢,𝑡

−
∑

𝑢∈𝑁
max

{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬𝑢}

{

∑

𝑡∈𝐼
𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡

}

−
∑

𝑢∈𝑁
max

{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤𝑢}

{

∑

𝑡∈𝑆

1
2
𝛥𝑏𝑢,𝑡

(

𝑑2𝑢,𝑡 + 𝑦
2
𝑢,𝑡

)

}

,

(33b)–(33d). (45c)

First of all, we write the latter robust counterpart in a tractable way.

heorem 4.6. For all consumers 𝑢 ∈ 𝑁 let an uncertainty set be given as
n (12) and (19). Then, the 𝛤 -robust counterpart (45) is equivalent to

max
,𝑦,�̄�,𝑓 ,𝛩,𝜇,𝜂,𝜈,𝜏

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡

−
∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 +

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
�̄�𝑢,𝑡𝑦

2
𝑢,𝑡

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝜇𝑢,𝑡 −

∑

𝑢∈𝑁
𝜂𝑢𝛬𝑢 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝜈𝑢,𝑡 −

∑

𝑢∈𝑁
𝜏𝑢𝛤𝑢

(46a)

.t. (33b)–(33d), (46b)

0 ≤ 𝜇𝑢,𝑡, 𝜈𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (46c)

0 ≤ 𝜂𝑢, 𝜏𝑢, 𝑢 ∈ 𝑁, (46d)

0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (46e)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡

(

𝑑2𝑢,𝑡 + 𝑦
2
𝑢,𝑡

)

, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ]. (46f)

uppose further that Assumption 2 holds. Then, (46) is a convex optimiza-
ion problem.

roof. The proof can be carried out in analogy to the one of Theo-
em 4.5. □

Hence, the KKT conditions of (46) are necessary and sufficient
onditions and read

�̄�𝑢,𝑡 + �̄�𝑢,𝑡𝑑𝑢,𝑡 − 𝛾𝑢,𝑡 − 𝛥𝑎𝑢,𝑡𝜎𝑢,𝑡 − 𝛥𝑏𝑢,𝑡𝑑𝑢,𝑡𝜁𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47a)

−𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 + 𝛾𝑢,𝑡 + �̄�𝑢,𝑡𝑦𝑢,𝑡 − 𝛥𝑏𝑢,𝑡𝑦𝑢,𝑡𝜁𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47b)

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, (47c)

−1 + 𝜎𝑢,𝑡 + 𝜉𝑢,𝑡 = 0, −1 + 𝜁𝑢,𝑡 + 𝜌𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47d)

𝛬𝑢 +
∑

𝑡∈[𝑇 ]
𝜎𝑢,𝑡 + 𝜒𝑢 = 0, −𝛤𝑢 + 𝜓𝑢 +

∑

𝑡∈[𝑇 ]
𝜁𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, (47e)

𝛿−𝑎,𝑡 − 𝛿
+
𝑎,𝑡 + 𝜀𝑎,𝑡 − 𝛾𝑢,𝑡 + 𝛾𝑣,𝑡 = 0, 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ],

(47f)
∑

𝑎∈𝛿out(𝑢)
𝐵𝑎𝜀𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝐵𝑎𝜀𝑎,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47g)
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𝑓𝑎,𝑡 = 𝐵𝑎(𝛩𝑢,𝑡 − 𝛩𝑣,𝑡), 𝑎 = (𝑢, 𝑣) ∈ 𝐴, 𝑡 ∈ [𝑇 ],

(47h)

0 = 𝑑𝑢,𝑡 − 𝑦𝑢,𝑡 +
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡 −

∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47i)

0 ≤ 𝑓𝑎,𝑡 + 𝑓+
𝑎 ⟂ 𝛿−𝑎,𝑡 ≥ 0, 0 ≤ 𝑓+

𝑎 − 𝑓𝑎,𝑡 ⟂ 𝛿+𝑎,𝑡 ≥ 0, 𝑎 ∈ 𝐴, 𝑡 ∈ [𝑇 ], (47j)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47k)

0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝑎𝑢,𝑡𝑑𝑢,𝑡 ⟂ 𝜎𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47l)

0 ≤ 𝜂𝑢 ⟂ 𝜒𝑢 ≥ 0, 0 ≤ 𝜏𝑢 ⟂ 𝜓𝑢 ≥ 0, 𝑢 ∈ 𝑁, (47m)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 −
1
2
𝛥𝑏𝑢,𝑡

(

𝑦2𝑢,𝑡 + 𝑑
2
𝑢,𝑡

)

⟂ 𝜁𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (47n)

0 ≤ 𝜇𝑢,𝑡 ⟂ 𝜉𝑢,𝑡 ≥ 0, 0 ≤ 𝜈𝑢,𝑡 ⟂ 𝜌𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ]. (47o)

n order to prove or disprove the equivalence between the 𝛤 -robust
CP (44) and the KKT conditions (47) of the 𝛤 -robustified Nash–
ournot QP, we again compare these systems. First, the KKT condi-
ions (47a) and (47b) of the Nash–Cournot QP together are equivalent
o the KKT condition (43a) of the Nash–Cournot producer. To this
nd, one needs to eliminate the demands again by using the market-
learing condition (47i). Furthermore, we again have to identify the
ual variables 𝛾𝑢,𝑡 of this market-clearing condition with the exoge-
ously given prices that the TSO sees in his optimization problem; cf.
roblem (5). Note that for obtaining a 1:1 correspondence between the
-RMEP equilibria and the robust QCQP solutions, the above discussed

dentifications are necessary.
We are then left with the pairs of conditions (47l) and (43e) as well

s (47n) and (43g). We start with the first pair of conditions, which
re equivalent if and only if 𝛥𝑎𝑢,𝑡(𝑦𝑢,𝑡 − 𝑑𝑢,𝑡) = 0 holds. This is either

the case if 𝛥𝑎𝑢,𝑡 = 0 or 𝑦𝑢,𝑡 = 𝑑𝑢,𝑡 holds. The former corresponds to
ertain price-intercepts whereas the latter contradicts the presence of
he transport network. The second pair of conditions are equivalent if
nd only if − 1

2𝛥𝑏𝑢,𝑡(𝑦
2
𝑢,𝑡 + 𝑑2𝑢,𝑡) = −𝛥𝑏𝑢,𝑡𝑑𝑢,𝑡𝑦𝑢,𝑡 holds. This is the case

if either 𝛥𝑏𝑢,𝑡 = 0 or 𝑦𝑢,𝑡 = 𝑑𝑢,𝑡 holds. Again, both is false and so the
systems are not equivalent due to the same reasons as above.

Summarizing, we observe a very interesting phenomenon. Both
robustifications in the case of perfect competition are well-posed in
the sense that the RMEPs are equivalent to the robustified welfare
optimization counterparts. This is also the case for Nash–Cournot com-
petition and a strictly robust approach for handling data uncertainties.
However, and somehow surprisingly, this does not hold anymore for
the case of 𝛤 -robustified Nash–Cournot equilibrium models. To be more
specific, this shows that solving the 𝛤 -robustification of the nominal
optimization counterpart does not give a solution of the 𝛤 -robustified
market equilibrium problem. Moreover, it is not possible to state an
optimization model that possesses KKT conditions that are equivalent
to the 𝛤 -RMEP (44). Mathematically speaking, this means that the
symmetry principle (cf. Theorem 1.3.1 in [14]) cannot be applied. This
implies, that there is no tractable optimization counterpart of the entire
𝛤 -RMEP that also has clear-cut economic interpretation. Let us finally
note that the observed failure does not depend on the presence of
the transport network but that it is inherent to 𝛤 -robustifications of
general Nash–Cournot models; cf. Appendix E where the same failure
is observed for a network-free model of Nash–Cournot competition.

5. Computational case study

In this section we study the effects of different robustification tech-
niques and economic competition models using a stylized example on
a 3-node network, which is given—together with all relevant nominal
data—in Fig. 2. We consider four time periods that can be roughly
interpreted as the four seasons. The demand data given in Fig. 2
corresponds to the consumers’ willingness to pay in spring and autumn.
Demand data for winter and summer are obtained by multiplying the
price-intercept values with 1.5 and 0.5, respectively. Production and
11

line data stays the same over all time periods. The uncertainty sets
Fig. 2. 3-node network with the technical, economic, and uncertainty data used in the
computational study.

Table 1
Welfare values.

Competition model Uncertainty model Welfare

Perfect competition nominal 3137.87
Perfect competition strictly robust 1778.68
Perfect competition 𝛤 -robust 2105.71

Nash–Cournot nominal 1722.19
Nash–Cournot strictly robust 1023.35

are modeled such that both price- and quantity-intercepts may vary
between ±10% of the nominal values.

All models have been implemented in Python 2.7.10 and have
been solved using Gurobi 7.0.1 on a MacBook Pro with 3.1GHz Inter

ore i7 processor and 16GB RAM. The LP files of all models are
ublicly available on GitHub at https://github.com/m-schmidt-math-
pt/robust-electricity-market-equilibria.

We start by discussing the results of the three different models for
he case of perfect competition, i.e., the nominal, the strictly robust,
nd the 𝛤 -robust model. The corresponding welfare values are given
n Table 1. The nominal model obtains the largest welfare of 3137.87,
he strictly robust model yields the smallest value (1778.68), and the
-approach with 𝛤 = 2 yields a value in between (2105.71). This result
as to be expected. The strictly robust model captures the worst-case in

erms of the consumers’ willingness to pay. Since less willingness to pay
ields less demand, this decreases the overall welfare. For 𝛤 = 2, the 𝛤 -
pproach represents a level of uncertainty between the nominal and the
orst-case setting and thus delivers a welfare value in between. Hence,

he 𝛤 -approach serves as a suitable equilibrium model that allows for
oderate and 𝛤 -parameterized uncertainty effects as it is the case for

lassic optimization models.
We now consider the demand and production values as well as the

esulting prices in more detail. Fig. 3 (top left) displays the demands
ver all four time periods at all three nodes for all uncertainty models.
oughly speaking, demand is highest where the willingness to pay is
ighest and the demand pattern over the four seasons is reasonable.
emand in spring and autumn are equal. In summer, demand is lowest
nd highest in the winter period. Moreover and as expected, nominal
emand is higher than 𝛤 -robust demand, which is higher than the
trictly robust demand. Interestingly, demand in winter at node 1 is
ess than in spring and autumn. We think that the reason is that, for the
iven capacity and production levels, demand is shifted from node 1 to
ode 3 since the willingness to pay is much higher at this node and
hus allows for a larger welfare gain. Production levels mainly follows
he ordering of variable production costs; cf. Fig. 2. Most interestingly,
ll uncertainty models deliver almost the same prices at the nodes. This
s a result of the uncertainty level of 10%. The nodal price differences
etween the different uncertainty models increase for increasing uncer-
ainty sets. However, the prices are almost the same across the nodes of
he network for fixed a uncertainty model. This is surprising since we
se a capacitated DC power flow model that might yield different nodal

https://github.com/m-schmidt-math-opt/robust-electricity-market-equilibria
https://github.com/m-schmidt-math-opt/robust-electricity-market-equilibria
https://github.com/m-schmidt-math-opt/robust-electricity-market-equilibria
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Fig. 3. Nodal demands, prices, and productions for the case of perfect competition (top) and Nash–Cournot competition (bottom).
w

𝜆

rices. Thus, it seems to be the case that uncertainty reduces nodal price
ifferences that occur due to the network.

The corresponding results for the Nash–Cournot models are given
n Table 1 and Fig. 3 (bottom). Note that we only compare the
ominal and strictly robust model since we do not have a tractable
ounterpart for the 𝛤 -robust case; see Section 4.3. We do not discuss
he results in the same detail as for the perfectly competitive cases
ecause the results are rather comparable. Moreover, the classic effects
f Cournot competition can be seen. First, welfare values decrease
ecause Nash–Cournot producers do not act in a socially optimal way.
econd, Cournot producers tend to produce less in order to obtain
igher market prices, which finally yields less demand as compared to
he perfectly competitive setting. All these effects can be seen in Fig. 3
bottom). Finally, one sees that uncertain Nash–Cournot models tend to
ield larger price differences than uncertain and perfectly competitive
quilibrium models.

. Conclusion

Although uncertainty plays an increasingly important role in elec-
ricity markets, the concept of robust optimization has only been
pplied to equilibrium models—at least to the best of our knowledge—
n the two papers [15,59]. Thus, we investigated basic properties of
obustified equilibrium models of electricity markets. To this end, we
tudied strictly as well as 𝛤 -robust counterparts in the contexts of
erfectly competitive as well as Nash–Cournot models of the market.
or all but the combination of Nash–Cournot competition and 𝛤 -

robustness we derived tractable counterparts that also have a clear-cut
economic interpretation. In particular, this corresponds to both classic
welfare theorems applied to the robustified but still convex problems in
the perfectly competitive setting and an analogous result is established
for strictly robust Nash–Cournot equilibria. Finally, we also obtained
several existence and uniqueness results by applying already existing
results from the literature. Interestingly, the only case in which a
tractable counterpart cannot be derived is the one of 𝛤 -robustified
Nash–Cournot models. In this case, the questions of existence and
uniqueness of equilibria is open.

The field of robust equilibria is very young and, thus, many in-
teresting questions still need to be answered. Examples include the
consideration of other robustification techniques to equilibrium models
as well as the application of robust concepts to large-scale real-world
equilibrium models of electricity markets. Moreover, the extension of
our results to uncertain nonlinear inverse demand functions as well as
to other uncertain data of the model such as investment or production
12
costs are interesting topics of future research. Finally, in this paper we
considered the case of a static investment problem, i.e., a problem in
which the investment decisions are taken once at the very beginning
of the time horizon. However, in the current context of the rapid
development of renewable energy technologies, investment costs may
change on a yearly basis, which is not covered by our model. Thus, the
study of an extension of the model where more dynamic investment
aspects are reflected is an important topic for future research as well.
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Appendix A. Proof of Theorem 3.1

First, we rewrite the robust counterpart (13) as

max
𝑑𝑢≥0,𝜆

𝜆 (48a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡 ∀(𝑎𝑢,𝑡, 𝑏𝑢,𝑡) ∈ 𝑢,𝑡,

𝑡 ∈ [𝑇 ]. (48b)

The uncertainty only appears in Constraint (48b), which is equivalent
to

𝜆 ≤ min
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡 ,𝑡∈[𝑇 ]

{

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡

}

,

hich, again, is the same as

≤
∑

𝑡∈[𝑇 ]
min

(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥

}

−
∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡.
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Using the structure of the uncertainty set (12), we obtain

min
𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥

}

= min
𝑎𝑢,𝑡∈

[

𝑎−𝑢,𝑡 ,𝑎
+
𝑢,𝑡

]

,

𝑏𝑢,𝑡∈
[

𝑏−𝑢,𝑡 ,𝑏
+
𝑢,𝑡

]

{

𝑎𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

and, as we only consider feasible demands 𝑑𝑢,𝑡 ≥ 0, this yields

min
𝑎𝑢,𝑡∈

[

𝑎−𝑢,𝑡 ,𝑎
+
𝑢,𝑡

]

,

𝑏𝑢,𝑡∈
[

𝑏−𝑢,𝑡 ,𝑏
+
𝑢,𝑡

]

{

𝑎𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

}

= 𝑎−𝑢,𝑡𝑑𝑢,𝑡+
1
2
𝑏−𝑢,𝑡𝑑

2
𝑢,𝑡 = ∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡+𝑏

−
𝑢,𝑡𝑥) d𝑥

or all time periods 𝑡 ∈ [𝑇 ]. Thus, the robust counterpart (48) is
quivalent to

max
𝑢≥0,𝜆

𝜆 s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡,

which is the same as

max
𝑑𝑢

∑

𝑡∈[𝑇 ]
∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]
𝜋𝑢,𝑡𝑑𝑢,𝑡 s.t. 0 ≤ 𝑑𝑢,𝑡, 𝑡 ∈ [𝑇 ].

Appendix B. Proof of Theorem 3.2

As the uncertainty only appears in (17b) we only consider these
constraints and rewrite them as

𝜆 ≤ min
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡 )∈𝑢,𝑡 ,
𝑢∈𝑁, 𝑡∈[𝑇 ]

{

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥 −

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

}

.

his can be simplified, yielding

≤
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
min

(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥

}

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢.

sing the structure of the uncertainty set 𝑢,𝑡 for all 𝑢 ∈ 𝑁 and 𝑡 ∈ [𝑇 ]
s well as the fact that 𝑑𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁 , 𝑡 ∈ [𝑇 ], we obtain

min
𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∫

𝑑𝑢,𝑡

0
(𝑎𝑢,𝑡 + 𝑏𝑢,𝑡𝑥) d𝑥

}

= ∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥.

hus, the robust counterpart of the welfare model reads

max
,𝑦,�̄�,𝑓 ,𝛩,𝜆

𝜆

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
∫

𝑑𝑢,𝑡

0
(𝑎−𝑢,𝑡 + 𝑏

−
𝑢,𝑡𝑥) d𝑥

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢,

(17c)–(17e),

hich is equivalent to (18).

ppendix C. Proof of Theorem 4.2

We only have to consider Constraint (34b). Using the definition of
he uncertainty set (12), its right-hand side reads

−
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 + min
𝑎𝑢,𝑡∈

[

𝑎−𝑢,𝑡 ,𝑎
+
𝑢,𝑡

]

{

∑

𝑡∈[𝑇 ]
𝑎𝑢,𝑡𝑦𝑢,𝑡

}

+ min
𝑏𝑢,𝑡∈

[

𝑏−𝑢,𝑡 ,𝑏
+
𝑢,𝑡

]

⎧

⎪

⎨

⎪

⎩

∑

𝑡∈[𝑇 ]
𝑏𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡

⎫

⎪

⎬

⎪

⎭

.

(49)

Exploiting Assumption 2, the market-clearing condition (7), the
assumption 𝑑𝑢,𝑡 > 0 for all 𝑡 ∈ [𝑇 ], and the constraint 𝑦𝑢,𝑡 ≥ 0, we
can explicitly state the minima in (49) and obtain

min
𝑎𝑢,𝑡∈

[

𝑎−𝑢,𝑡 ,𝑎
+
𝑢,𝑡

]

{

∑

𝑡∈[𝑇 ]
𝑎𝑢,𝑡𝑦𝑢,𝑡

}

=
∑

𝑡∈[𝑇 ]
𝑎−𝑢,𝑡𝑦𝑢,𝑡
13
as well as

min
𝑏𝑢,𝑡∈

[

𝑏−𝑢,𝑡 ,𝑏
+
𝑢,𝑡

]

⎧

⎪

⎨

⎪

⎩

∑

𝑡∈[𝑇 ]
𝑏𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡

⎫

⎪

⎬

⎪

⎭

=
∑

𝑡∈[𝑇 ]
𝑏−𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡.

Thus, we can write

𝜆 ≤
∑

𝑡∈[𝑇 ]
𝑎−𝑢,𝑡𝑦𝑢,𝑡 +

∑

𝑡∈[𝑇 ]
𝑏−𝑢,𝑡

⎛

⎜

⎜

⎝

𝑦𝑢,𝑡 +
∑

𝑎∈𝛿in(𝑢)

𝑓𝑎,𝑡 −
∑

𝑎∈𝛿out(𝑢)
𝑓𝑎,𝑡

⎞

⎟

⎟

⎠

𝑦𝑢,𝑡

−
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢

instead of (34b) and the claim follows.

Appendix D. Proof of Theorem 4.3

As in the other proofs, we only have to consider and reformulate
the minimum in Constraint (38b). By the definition of the uncertainty
set (12) of every consumer, we have

min
(𝑎𝑢,𝑡 ,𝑏𝑢,𝑡)∈𝑢,𝑡

{

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

𝑎𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏𝑢,𝑡𝑑

2
𝑢,𝑡

)

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
𝑏𝑢,𝑡𝑦

2
𝑢,𝑡

}

=
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

min
𝑎𝑢,𝑡∈[𝑎−𝑢,𝑡 ,𝑎

+
𝑢,𝑡]

{

𝑎𝑢,𝑡𝑑𝑢,𝑡
}

+ 1
2

min
𝑏𝑢,𝑡∈[𝑏−𝑢,𝑡 ,𝑏

+
𝑢,𝑡]

{

𝑏𝑢,𝑡(𝑑2𝑢,𝑡 + 𝑦
2
𝑢,𝑡)

}

)

.

hen, using Assumption 2 and 𝑑𝑢,𝑡 > 0 for all 𝑡 ∈ [𝑇 ], we obtain

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

min
𝑎𝑢,𝑡∈[𝑎−𝑢,𝑡 ,𝑎

+
𝑢,𝑡]

{

𝑎𝑢,𝑡𝑑𝑢,𝑡
}

+ 1
2

min
𝑏𝑢,𝑡∈[𝑏−𝑢,𝑡 ,𝑏

+
𝑢,𝑡]

{

𝑏𝑢,𝑡(𝑑2𝑢,𝑡 + 𝑦
2
𝑢,𝑡)

}

)

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

(

𝑎−𝑢,𝑡𝑑𝑢,𝑡 +
1
2
𝑏−𝑢,𝑡(𝑑

2
𝑢,𝑡 + 𝑦

2
𝑢,𝑡)

)

.

his yields the first claim. Because all slopes of the inverse demand
unctions are negative, the robustified Nash–Cournot QP (39) is a
onvex optimization problem.

ppendix E. The 𝜞 approach for Nash–Cournot competition with-
ut a network

In Section 4.3 we observed that the equivalence between the robus-
ified equilibrium model (stated as a robust LCP) and the robustified
ash–Cournot QP does not hold in the case of the 𝛤 -approach. In

his section, we briefly show that the reason for this failure is not the
ransport network by discussing the network-free case of Nash–Cournot
ompetition and the 𝛤 -approach. We omit all proofs in this appendix.
ll results can be obtained using the same techniques as in the other
arts of this paper.

For the network-free case, we consider an aggregated consumer
ith an aggregated inverse market demand function 𝑃𝑡(𝐷𝑡) = 𝐴𝑡 +𝐵𝑡𝐷𝑡
ith 𝐴𝑡 ≥ 0 and 𝐵𝑡 < 0 for all 𝑡 ∈ [𝑇 ] and still assume that the
ggregated demand 𝐷𝑡 is positive for all time periods 𝑡 ∈ [𝑇 ]. Following
he same principles as in Section 4.1 we then obtain the optimization
roblem

max
𝑦𝑢 ,�̄�𝑢

∑

𝑡∈[𝑇 ]
𝑃𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡 −
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢,

𝑡 ∈ [𝑇 ], (50)

f the producer located at node 𝑢 ∈ 𝑁 . Note that the price function can
e stated explicitly via

𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

= 𝐴𝑡 + 𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

.
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As usual, the Nash–Cournot-LCP is made up of the necessary and
sufficient KKT conditions

𝐴𝑡 + 𝐵𝑡𝑦𝑢,𝑡 + 𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

−𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 𝑢 ∈ 𝑁,

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ]

of Problem (50) for every producer, i.e., for every 𝑢 ∈ 𝑁 . As before, we
also obtain an equivalent Nash–Cournot QP that now reads

max
𝑦,�̄�

∑

𝑡∈[𝑇 ]
∫

𝑌𝑡

0
𝑃𝑡(𝑥) d𝑥 +

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
𝐵𝑡𝑦

2
𝑢,𝑡

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢 (51a)

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (51b)

here 𝑌𝑡 ∶=
∑

𝑢∈𝑁 𝑦𝑢,𝑡 abbreviates total production (and thus total
emand) in time period 𝑡 ∈ [𝑇 ]. Next, we consider the robustification
f the producer model (50),

max
𝑢 ,�̄�𝑢 ,𝜆

𝜆 (52a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]
�̄�𝑡𝑦𝑢,𝑡 + �̄�𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡 −
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢 (52b)

− max
{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬}

{

∑

𝑡∈𝐼
𝛥𝐴𝑡𝑦𝑢,𝑡

}

− max
{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤 }

{

∑

𝑡∈𝑆
𝛥𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡

}

,

0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ], (52c)

for which we can also state a tractable version.

Theorem E.1. For the aggregated consumer let an uncertainty set be
given as in (12) and (19). Then, the 𝛤 -robust counterpart (52) of the
Nash–Cournot producer (50) is equivalent to

max
𝑦𝑢 ,�̄�𝑢 ,𝜏𝑢 ,𝜂𝑢 ,𝜈𝑢 ,𝜇𝑢

∑

𝑡∈[𝑇 ]
�̄�𝑡𝑦𝑢,𝑡 + �̄�𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡 −
∑

𝑡∈[𝑇 ]
𝑤var
𝑢 𝑦𝑢,𝑡 −𝑤inv

𝑢 �̄�𝑢

− 𝜏𝑢𝛤 −
∑

𝑡∈[𝑇 ]
𝜈𝑢,𝑡 − 𝜂𝑢𝛬 −

∑

𝑡∈[𝑇 ]
𝜇𝑢,𝑡 (53a)

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ], (53b)

0 ≤ 𝜏𝑢, 𝜂𝑢, (53c)

0 ≤ 𝜈𝑢,𝑡, 𝜇𝑢,𝑡, 𝑡 ∈ [𝑇 ], (53d)

0 ≤ 𝜂𝑢 + 𝜇𝑢,𝑡 − 𝛥𝐴𝑡𝑦𝑢,𝑡, 𝑡 ∈ [𝑇 ], (53e)

0 ≤ 𝜏𝑢 + 𝜈𝑢,𝑡 − 𝛥𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡, 𝑡 ∈ [𝑇 ]. (53f)

Furthermore, (53) is a convex optimization problem if Assumption 2 holds.

Hence, the KKT conditions

�̄�𝑡 + �̄�𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

+ �̄�𝑡𝑦𝑢,𝑡 −𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 − 𝛥𝐴𝑡𝜎𝑢,𝑡

−𝛥𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝜁𝑢,𝑡 − 𝛥𝐵𝑡𝑦𝑢,𝑡𝜁𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],

(54a)

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, (54b)

−1 + 𝜎𝑢,𝑡 + 𝜉𝑢,𝑡 = 0, −1 + 𝜁𝑢,𝑡 + 𝜌𝑢,𝑡 = 0, 𝑡 ∈ [𝑇 ],
(54c)
14
−𝛬 +
∑

𝑡∈[𝑇 ]
𝜎𝑢,𝑡 + 𝜒𝑢 = 0, −𝛤 + 𝜓𝑢 +

∑

𝑡∈[𝑇 ]
𝜁𝑢,𝑡 = 0, (54d)

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(54e)
0 ≤ 𝜇𝑢,𝑡 + 𝜂𝑢 − 𝛥𝐴𝑡𝑦𝑢,𝑡 ⟂ 𝜎𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(54f)

0 ≤ 𝜂𝑢 ⟂ 𝜒𝑢 ≥ 0, 0 ≤ 𝜏𝑢 ⟂ 𝜓𝑢 ≥ 0, (54g)

0 ≤ 𝜈𝑢,𝑡 + 𝜏𝑢 − 𝛥𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝑦𝑢,𝑡 ⟂ 𝜁𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(54h)
0 ≤ 𝜇𝑢,𝑡 ⟂ 𝜉𝑢,𝑡 ≥ 0, 0 ≤ 𝜈𝑢,𝑡 ⟂ 𝜌𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

(54i)

of (53) are necessary and sufficient conditions. Thus, the robust Nash–
Cournot-LCP is obtained by collecting the Conditions (54) for every
producer, i.e., for every 𝑢 ∈ 𝑁 . As before, we now also derive the
𝛤 -robust counterpart of the Nash–Cournot QP (51) and then ana-
lyze whether there is a 1:1 correspondence between the latter model
and the corresponding robust LCP. The 𝛤 -robust counterpart of the
Nash–Cournot QP (51) reads

max
𝑦,�̄�,𝜆

𝜆 (55a)

s.t. 𝜆 ≤
∑

𝑡∈[𝑇 ]
�̄�𝑡

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)

+ 1
2

∑

𝑡∈[𝑇 ]
�̄�𝑡

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)2

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
�̄�𝑡𝑦

2
𝑢,𝑡

(55b)
−

∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

− max
{𝐼⊆[𝑇 ]∶ |𝐼|≤𝛬}

{

∑

𝑡∈𝐼
𝛥𝐴𝑡

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)}

− max
{𝑆⊆[𝑇 ]∶ |𝑆|≤𝛤 }

⎧

⎪

⎨

⎪

⎩

∑

𝑡∈𝑆

1
2
𝛥𝐵𝑡

⎛

⎜

⎜

⎝

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)2

+
∑

𝑢∈𝑁
𝑦2𝑢,𝑡

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑡 ∈ [𝑇 ]. (55c)

A tractable version of this robustified model can be derived as before.

Theorem E.2. For the aggregated consumer let an uncertainty set be given
as in (12) and (19). Then, the 𝛤 -robust counterpart (55) is equivalent to

max
𝑦,�̄�,𝜏,𝜂,𝜈,𝜇

∑

𝑡∈[𝑇 ]
�̄�𝑡

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)

+ 1
2

∑

𝑡∈[𝑇 ]
�̄�𝑡

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)2

+
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁

1
2
�̄�𝑡𝑦

2
𝑢,𝑡

−
∑

𝑡∈[𝑇 ]

∑

𝑢∈𝑁
𝑤var
𝑢 𝑦𝑢,𝑡 −

∑

𝑢∈𝑁
𝑤inv
𝑢 �̄�𝑢

− 𝜏𝛤 −
∑

𝑡∈[𝑇 ]
𝜈𝑡 − 𝜂𝛬 −

∑

𝑡∈[𝑇 ]
𝜇𝑡 (56a)

s.t. 0 ≤ 𝑦𝑢,𝑡 ≤ �̄�𝑢, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ], (56b)

0 ≤ 𝜏, 𝜂, (56c)

0 ≤ 𝜈𝑡, 𝜇𝑡, 𝑡 ∈ [𝑇 ], (56d)

0 ≤ 𝜂 + 𝜇𝑡 − 𝛥𝐴𝑡
∑

𝑢∈𝑁
𝑦𝑢,𝑡, 𝑡 ∈ [𝑇 ], (56e)

0 ≤ 𝜏 + 𝜈𝑡 −
1
2
𝛥𝐵𝑡

⎛

⎜

⎜

⎝

(

∑

𝑢∈𝑁
𝑦𝑢,𝑡

)2

+
∑

𝑢∈𝑁
𝑦2𝑢,𝑡

⎞

⎟

⎟

⎠

, 𝑡 ∈ [𝑇 ]. (56f)

Furthermore, (56) is a convex optimization problem if Assumption 2
olds.



Operations Research Perspectives 8 (2021) 100197A. Kramer et al.
Thus, the KKT conditions of (56) are necessary and sufficient
first-order optimality conditions. They are given by

�̄�𝑡 + �̄�𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

+ �̄�𝑡𝑦𝑢,𝑡 −𝑤var
𝑢 + 𝛽−𝑢,𝑡 − 𝛽

+
𝑢,𝑡 − 𝛥𝐴𝑡𝜎𝑡

−𝛥𝐵𝑡

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)

𝜁𝑡 − 𝛥𝐵𝑡𝑦𝑢,𝑡𝜁𝑡 = 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

−𝑤inv
𝑢 +

∑

𝑡∈[𝑇 ]
𝛽+𝑢,𝑡 = 0, 𝑢 ∈ 𝑁,

−1 + 𝜎𝑡 + 𝜉𝑡 = 0, −1 + 𝜁𝑡 + 𝜌𝑡 = 0, 𝑡 ∈ [𝑇 ],

−𝛬 +
∑

𝑡∈[𝑇 ]
𝜎𝑡 + 𝜒 = 0, −𝛤 + 𝜓 +

∑

𝑡∈[𝑇 ]
𝜁𝑡 = 0,

0 ≤ 𝑦𝑢,𝑡 ⟂ 𝛽−𝑢,𝑡 ≥ 0, 0 ≤ �̄�𝑢 − 𝑦𝑢,𝑡 ⟂ 𝛽+𝑢,𝑡 ≥ 0, 𝑢 ∈ 𝑁, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜇𝑡 + 𝜂 − 𝛥𝐴𝑡
∑

𝑣∈𝑁
𝑦𝑣,𝑡 ⟂ 𝜎𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜂 ⟂ 𝜒 ≥ 0, 0 ≤ 𝜏 ⟂ 𝜓 ≥ 0,

0 ≤ 𝜈𝑡 + 𝜏 −
1
2
𝛥𝐵𝑡

⎛

⎜

⎜

⎝

(

∑

𝑣∈𝑁
𝑦𝑣,𝑡

)2

+
∑

𝑣∈𝑁
𝑦2𝑣,𝑡

⎞

⎟

⎟

⎠

⟂ 𝜁𝑢,𝑡 ≥ 0, 𝑡 ∈ [𝑇 ],

0 ≤ 𝜇𝑡 ⟂ 𝜉𝑡 ≥ 0, 0 ≤ 𝜈𝑡 ⟂ 𝜌𝑡 ≥ 0, 𝑡 ∈ [𝑇 ].

It is again easy to see that these KKT conditions are not the same as
those in (54) for every producer. The main reason is the Nash–Cournot
markup terms 1

2𝐵𝑡𝑦
2
𝑢,𝑡 in the objective of the Nash–Cournot QP (51).

These are not present in the single producer problems (50) and are
thus not robustified in the robust LCP. This is, however, the case in the
robustified Nash–Cournot QP, which clearly leads to different solutions.
Thus, the failure of the desired equivalence is not due to network effects
but is inherent to 𝛤 -robustifications of general Nash–Cournot models.
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