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Summary
Traditional workflow management systems support process participants in
fulfilling business tasks through guidance along a predefined workflow model.
Flexibility has gained a lot of attention in recent decades through a shift from
mass production to customization. Various approaches to workflow flexibility
exist that either require extensive knowledge acquisition and modelling effort
or an active intervention during execution and re-modelling of deviating
behaviour. The pursuit of flexibility by deviation is to compensate both
of these disadvantages through allowing alternative unforeseen execution
paths at run time without demanding the process participant to adapt the
workflow model. However, the implementation of this approach has been
little researched so far.
This work proposes a novel approach to flexibility by deviation. The

approach aims at supporting process participants during the execution of
a workflow through suggesting work items based on predefined strategies
or experiential knowledge even in case of deviations. The developed con-
cepts combine two renowned methods from the field of artificial intelligence
- constraint satisfaction problem solving with process-oriented case-based
reasoning. This mainly consists of a constraint-based workflow engine in
combination with a case-based deviation management. The declarative
representation of workflows through constraints allows for implicit flexi-
bility and a simple possibility to restore consistency in case of deviations.
Furthermore, the combined model, integrating procedural with declarative
structures through a transformation function, increases the capabilities for
flexibility. For an adequate handling of deviations the methodology of case-
based reasoning fits perfectly, through its approach that similar problems
have similar solutions. Thus, previous made experiences are transferred to
currently regarded problems, under the assumption that a similar deviation
has been handled successfully in the past.

Necessary foundations from the field of workflow management with a focus
on flexibility are presented first. As formal foundation, a constraint-based
workflow model was developed that allows for a declarative specification of
foremost sequential dependencies of tasks. Procedural and declarative models
can be combined in the approach, as a transformation function was specified
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that converts procedural workflow models to declarative constraints. One
main component of the approach is the constraint-based workflow engine that
utilizes this declarative model as input for a constraint solving algorithm.
This algorithm computes the worklist, which is proposed to the process
participant during workflow execution. With predefined deviation handling
strategies that determine how the constraint model is modified in order to
restore consistency, the support is continuous even in case of deviations.
The second major component of the proposed approach constitutes the

case-based deviation management, which aims at improving the support
of process participants on the basis of experiential knowledge. For the
retrieve phase, a sophisticated similarity measure was developed that inte-
grates specific characteristics of deviating workflows and combines several
sequence similarity measures. Two alternative methods for the reuse phase
were developed, a null adaptation and a generative adaptation. The null
adaptation simply proposes tasks from the most similar workflow as work
items, whereas the generative adaptation modifies the constraint-based work-
flow model based on the most similar workflow in order to re-enable the
constraint-based workflow engine to suggest work items.

The experimental evaluation of the approach consisted of a simulation of
several types of process participants in the exemplary domain of deficiency
management in construction. The results showed high utility values and a
promising potential for an investigation of the transfer on other domains and
the applicability in practice, which is part of future work. Concluding, the
contributions are summarized and research perspectives are pointed out.
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1. Introduction
The introductory chapter of this thesis outlines the key topic of the presented
work. This includes a motivational statement and a description of the issues
that are tackled by this work in Section 1.1. Subsequently in Section 1.2,
the resulting research questions in conjunction with the aims that are to
be achieved are elaborated. Section 1.3 describes the applied design science
methodology and single steps that were performed to create useful artifacts.
The main contributions that emerged during this work are summarized in
this context as well. In Section 1.4, two research projects are presented
briefly, as the developed artifacts primarily were part of these. The outline of
the remaining chapters of this thesis and their content is concisely depicted
in the concluding Section 1.5.

1.1. Motivation
Small and Medium-Sized Enterprises (SMEs), i.e. companies with no more
than 250 employees, are the mainstays of the European economy. They
constitute 99% of all businesses in the European Union [45] covering two
thirds of total employment from 2013 to 2019 [6].
Currently, the digital revolution is ongoing, but in contrast to large

companies, SMEs appear to be lagging behind. The Leibniz Centre for
European Economic Research (ZEW) concludes in a survey from the year
2016 [156] that digitalization in the mid-sized sector still has major potential
and until now progresses with rather slow pace. According to this study, only
one fifth of SMEs have begun digital networking of products and services,
mostly because of a lack of competencies. Two years later in 2018, several
investigations confirm the trend of the ongoing digital revolution. A survey
from the Kreditanstalt für Wiederaufbau (KfW) [78] states that the number
of realized digitalization projects is increasing over the last few years, though
larger companies tend to carry out such undertakings almost twice as often
(< 5 vs. > 50 employees). Additionally, SMEs with more than 50 employees
invest 24 times the amount for digitalization than that of smaller enterprises,
which indicates an outpacing of the smallest companies [78].
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Digitalization substantially contributes to a fast, full, and transparent
order processing and hence, execution of operational processes as a basis for
good customer relations. For this purpose, the design of currently applied
information systems plays a significant role. Process-Aware Information
Systems (PAISs) [42] address the management and integration of business
documents, data, and processes through digital support and are substantial
to accomplish digitalization. The main incentive of using such systems is
to increase efficacy as well as efficiency of operational processes. Another
benefit of PAISs is the possibility of supervision and control of all running and
completed transactions, allowing traceability [146, p. 4] and transparency.
Traditional PAISs perfectly fit the needs of large companies, but are scarcely
applicable for SMEs.

Large companies differ from SMEs in several characteristics. Their business
processes and documents are usually standardized due to a huge amount
of homogeneity. Their workforce is much bigger and consequently, more
capacity for manifold expert knowledge is available. Furthermore, due to
these increased opportunities, especially considering financial scope, large
companies are ahead in the progress of digitalization. The use of information
systems, like e.g. PAISs, is prevalent. Although SMEs share the same
objectives that PAISs could fulfil, such systems are not established, as there
are various reasons for the unsuitability of traditional PAISs for SMEs.

In contrast to large companies, SMEs have to deal with a highly dynamic
business environment. The amount of business transactions of SMEs is
substantially smaller and processes are less standardized, but rather weakly
structured [177]. Additionally, compared to large companies, the number
of served customers is much smaller and their relationship is much closer.
Generally, an optimal satisfaction of customers’ needs, which are constantly
changing, constitutes a key success factor in the future [36, 127]. One of
the most important criteria for profitability is therefore fulfilling individual
needs. Due to this, the conducted workflows may vary significantly from
case to case. They are characterized by specific surrounding conditions,
special incidents, or even coincidences due to customers’ needs or changing
circumstances. Thus, a higher degree of flexibility might be a competitive
advantage [85, 127, 157] as ideally a faster and customized processing of
business cases is achieved.

Traditional PAISs rarely support this desired flexibility but rather control
workflow execution by means of traditional engines [31, 83, 183, 199]. They
prescribe the course of action without any possibility to deviate [30] [205, p.
310], as it is assumed that workflows can be modelled to a great extent prior
to execution [31]. However, in reality all upcoming situations and evolving



1.1. Motivation 3

circumstances can neither be modelled nor be anticipated [64, 110]. Such
systems are thus rapidly considered to be a burden as they restrict users in
their workflow and users tend to become frustrated [205, p. 311]. This in
turn results either in so-called workarounds, where in the worst case users
bypass the system [159, 183], or in a suboptimal workflow execution [31].
The error rate might increase [183] [205, p. 311] and transparency as well as
traceability is neglected [31]. Hence, the advantages of digitalization and
introducing an information system, especially efficiency, are thwarted [83].

Another important characteristic of SMEs refers to the available expertise
and corresponding knowledge transfer. Employees are quite versatile and
tend to work as generalists rather than specialists [177]. Established processes
and knowledge about how things are done are implicit, not stored digitally
and tacit knowledge is often only shared orally. Employees execute processes
like best practices on the basis of informal rules and procedures. Experts
mostly pursue workflows due to their experiential knowledge and even
deviate without affecting the outcome especially without losing control or
missing the objective, but rather optimizing the process [21, 29]. Apart
from that, inexperienced employees need to rely on support from colleagues
concerning the aspect of knowledge transfer. A solution for this issue would
be an effortful modelling of expert knowledge, resulting in a large effort for
knowledge acquisition and leading to a high demand of several resources
for maintenance, which is not feasible for SMEs and indicates a further
impediment.
This implies another obstacle for SMEs which is the lack of various

resources such as financial or personnel for realizing the adoption of an
information system. The required overhead concerning employee capacities
for workflow modelling, control, and maintenance, which is significant, is
not manageable. Furthermore, no expert knowledge is existent concerning
process management or even no explicit business processes are obvious. A
further challenge poses the employee resistance to accept new technologies, as
the operating employees rarely get in touch with technical systems, especially
in certain sectors, like the craft sector.

This work investigates how to create an easy-to-maintain flexible workflow
system that meets these requirements of SMEs. For this purpose, supporting
operators in fulfilling their tasks successfully even in case of unforeseen
deviations, especially without the need for a huge effort, constitutes the key
challenge. To address this issue several partial aims are pursued and research
questions need to be answered that are elucidated in the next section.
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1.2. Research Aims
The main objective of this work is to develop a novel approach for a flexible
workflow management that particularly meets specific requirements of SMEs.
Here, the previously indicated requirements are considered in particular. This
includes flexibility for a customized processing of business cases, knowledge
transfer for explicitly storing tacit knowledge, and a low effort to deploy
the workflow approach in order to preserve resources. Therefore, a more
efficient supervision of customized business processes and enhanced assistance
possibilities is pursued. Several flexible workflow approaches exist that either
require complete knowledge about all possible workflow executions at build
time or demand a remodelling at run time. Realizing flexibility in such
a manner is inappropriate for SMEs. Flexibility in the context of SMEs
should mainly imply the ability to deviate from the prescribed course of
action due to unexpected circumstances during run time without required
actions for manually adapting the process instance. The approach flexibility
by deviation [166] exactly matches these desired characteristics. Hence, the
main objective of this work is to adopt and implement this concept in such
a way that it is suitable for SMEs concerning the previously mentioned
requirements. This results in the following key research question, which is
investigated in this work:

RQ0: How can flexibility by deviation be implemented to support specific
requirements of SMEs, such as flexibility, knowledge transfer and low effort?

To answer this question, several partial aims need to be addressed. For
the approach flexibility by deviation, the foremost prerequisite is to tolerate
deviations during workflow execution that have not been intended by the
designed ideal process model. In common workflow systems, either the
possibility to deviate is not provided or deviations lead to exceptional states,
which need to be handled. Thus, the process flow is disrupted and not
supported continuously. This in turn leads to a decreased user acceptance
and a tendency to circumvent the system [21], such that the actual process
flow can neither be controlled nor retraced. Therefore the workflow model
should serve as a guideline that assists rather than restricts. This requires a
formal workflow model that allows for deviations during execution without
leading to exceptional states or deadlocks. For this purpose, the following
question needs to be addressed.

RQ1.1: How can a formal workflow model be designed in such a way that
deviations can be allowed?
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Additionally, another important aspect concerning adequate workflow
representation for SMEs needs to be considered. Workflow modelling is
usually based on procedural paradigms, e.g. the most commonly used
Business Process Model and Notation (BPMN) [193]. With such a language,
processes can be expressed in an intuitive way, but are rigid considering their
execution [46, 138]. For the use of specific workflow modelling languages
that are more flexible, i.e. declarative approaches, expert knowledge is
required, which presupposes further resources that SMEs cannot afford.
Therefore, the designed workflow approach should not require knowledge
about a formal language, but rather a low user effort to achieve flexibility.
Standard procedurally defined workflow models should serve as basis for the
approach, but nevertheless the specification of simple constraints, which are
additionally considered, should be possible. Consequently, a further question
arises.

RQ1.2: How can established procedural models be transformed to be used by
the designed workflow approach and how can these models be enhanced with
additionally specified constraints?

As the resulting workflow model is able to allow deviations, consequently
these deviations need to be considered for further workflow control. Hence,
the crucial point is to facilitate a successful workflow termination in case
of a deviation by suggesting appropriate work items. To manage upcoming
deviations, various existing approaches apply previously specified rules, which
require a cumbersome modelling of expert knowledge [4, 22, 29, 40, 53, 124,
201]. This results in a large effort for knowledge acquisition and leads to
high costs for maintenance.

Strategies need to be determined that decide automatically how to continue
with the workflow. Thus, it will be investigated how predefined strategies can
be formulated domain-independently. Therefore, another research question
needs to be addressed.

RQ1.3: How can a successful completion of a deviating workflow be achieved
in a controlled and automated manner?

Moreover to improve this support in undesired or unpredictable situations,
it is explored how decisions can additionally base on domain-specific know-
ledge with a minimum necessary effort for knowledge acquisition. In real
life, if unexpected situations occur, experienced users might be aware of how
to cope with the situation, while inexperienced users need to rely on their
support. Hence, one issue that will be investigated relates to incorporating
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previous experiences in the decision process, such that experiential data is
used to enhance the workflow control. The aim is to derive decision-relevant
knowledge from historical data, e.g. terminated processes that have been
traced. It is assumed that through this, the workflow system is able to
help experienced but likewise inexperienced users. As another expected
benefit, knowledge transfer would be guaranteed and the preservation or
even establishment of so-called best practices would be assured. This leads
to two issues. First, the following question needs to be addressed.

RQ2.1: How can one or several similar and reusable terminated processes be
identified in order to derive and propose work items to resolve the deviating
situation?

To this end, an adequate similarity measure needs to be defined. Since
these similar processes might not be applicable in a straightforward way, an
adaptation method needs to be designed. As a result, these previous experi-
ences can be exploited for adjusting to the current situation appropriately.

RQ2.2: How can the currently regarded process be adapted through identifying
and transferring valuable process execution characteristics from the most
similar retrieved processes in order to generate an adapted process that can
offer support until termination?

The main intention of the pursued workflow approach is to find an optimal
balance between control and flexibility, to provide both guidance as well
as low restriction and to offer support and likewise foster user acceptance.
Traceability should not be neglected and adaptability should be increased.

The overall approach intends to lead to a continuous process improvement
[197], as the ideal process can be learned through analysing all occurring
executions and thus, optimization potentials can be exploited. Ultimately,
an intelligent learning workflow engine should be created.
Artificial Intelligence (AI) [155] is a key technology for various support

strategies in Business Process Management (BPM) [205], as it allows for
automated decision making and thus, facilitates the users work. To create
artifacts that address the previously presented research aims, renowned AI
methods, namely Constraint Satisfaction Problem (CSP) solving [153] as
well as Case-Based Reasoning (CBR) [1, 149], are applied as key technology
for handling unforeseen occurring deviations, automated decision making,
and controlling worklist suggestions.
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1.3. Methodology
This research work was carried out according to the methodology of design
science in information systems [69, 130]. Design science “supports a prag-
matic research paradigm that calls for the creation of innovative artifacts
to solve real-world problems”[68, p. 9]. The goal of design-science research
is to gain insights into objectives of information systems and to seek for,
develop, and evaluate adequate solutions to accomplish a certain purpose.
Design science “addresses important unsolved problems in unique or inno-
vative ways or solved problems in more effective or efficient ways” [69, p.
81]. This problem-solving paradigm aims at designing novel and innovative
artifacts for the application in information technology through rigorous and
practice-relevant research [69].
Utility and rigor are the two most important characteristics, which are

to be considered during a design-science research work. The utility of a
developed artifact, as essentially pursued benefit, needs to be assessed and
particularly improved through a “build-and-evaluate-loop”[69, p. 78] in order
to achieve effectiveness and efficiency. Rigor refers to the chosen research
methodologies and used theoretical foundations. According to Österle et al.
[130] there are four main steps: analysis, design, evaluation, and diffusion. In
the analysis phase, the research gap and issue are identified while considering
actual business needs. Afterwards, artifacts are to be designed through
rigorously applying recognized methodologies and theoretical foundations,
which can result in a construct, a model, a method, or an instantiation.
These created artifacts are subsequently evaluated concerning their quality,
efficacy, and most importantly utility. These scientific findings and results
should be published to achieve a knowledge diffusion. The described steps
should be repeated iteratively to improve the created artifacts.
The main objective of this work is the development of a novel concept

for flexibility by deviation. In the analysis phase, requirements of SMEs for
a useful workflow support have been identified based on related literature
as well as face-to-face meetings with project partners. Accordingly, several
desired characteristics of the pursued approach have been derived.
In order to allow for a deviant workflow execution to evade prescribed

workflow models, a constraint-based workflow engine is designed, which is
the first artifact of this work. Therefore the proven technique of constraint
solving was transferred to serve the purpose of a workflow engine. As formal
basis, a constraint-based workflow representation is defined. A transfor-
mation function for block-oriented workflows into constraints is developed,
which is evaluated in a proof. A constraint satisfaction problem algorithm
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which builds upon the previously mentioned constraint net, represents an
artifact of the type model. This CSP in turn constitutes the basis of the
constraint-based workflow engine. This workflow engine is responsible for
computing the work items in a specific and possibly exceptional state of a
running workflow based on several strategies that restore consistency. Its
prototypical implementation represents an instantiation artifact that was
evaluated concerning runtime and compared to similar approaches.
So far, the suggestions of how to continue with a running workflow in-

stance in case of a deviation are not based on sound knowledge but rather
arbitrary applied strategies in order to restore a consistent constraint net.
Therefore, the approach is evolved in a further step, which involves experien-
tial knowledge to improve the utility. A concept for a case-based deviation
management that extends the constraint-based workflow engine is developed.
This approach exploits the established methodology of case-based reason-
ing. This comprises several artifacts. A similarity measure for comparing
sequential execution traces as well as two different adaptation mechanism to
reuse one or several retrieved similar cases as solution are proposed. Based
on both of these adaptation approaches, the worklist suggestions build on
former experiences and entail customized and ideally optimized workflow
termination.
In summary, the main goal of the presented approach is to provide work

items to the process participant even in case of deviations. These work items
can be calculated either through the constraint-based workflow engine, or one
of two adaptation methods that based on the sequence similarity measure,
which are a null adaptation variant and a generative constraint-based adapta-
tion of the workflow instance. These three different approaches are evaluated
and compared concerning their utility for process participants. A technical
experiment in combination with an illustrative scenario is performed. To
this end, a synthetic data set of workflow traces is created on the basis of
the investigated use case scenario deficiency management in construction.
This data set is divided into a training set and a test data set, which is used
as case base, that serves as data basis for the algorithms, while performing a
ten-fold cross validation. For each query, the workflow execution is simulated
by means of the application of the workflow engine. In order to evaluate the
utility for all common kinds of process participants, distinct realistic user
types are defined, each applying a different strategy of how to continue with
the workflow after a deviation. Ultimately, the results of this experiment
give indications for possible improvements and further evolutions, in order
to start a new iteration of the build-and-evaluate-loop as follow-up of this
thesis.
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1.4. Research Projects
Substantial contributions to the presented work result from the authors’
participation in two research projects. Both will be presented in the following
in more detail.

1.4.1. SEMAFLEX
SEMAFLEX1 was a research project aiming for a semantic integration of
flexible workflow and document management [59]. This project was a joint
research work from Trier University and Trier University of Applied Sciences.
The main goal of this project was to support SMEs in managing flexible
processes by semantically integrating workflow and knowledge-based docu-
ment management. With application partners from a construction company,
we investigated the process of deficiency management, as it is a highly flexi-
ble but also a supervised process. Methods of document classification and
information extraction were applied to upcoming documents. These were
subsequently mapped to parts of the workflow. As a result, executed tasks
could be traced automatically. This logged workflow can contain deviations,
which were handled by an intelligent flexible workflow engine in order to
continue and terminate the workflow successfully. This workflow engine
builds the foundation of this thesis.

1.4.2. SEMANAS
SEMANAS2 was a research project with the aim of a semantic support for
grant application processes [60] and was carried out at the Trier University
of Applied Sciences. The main objective was to achieve flexibility in data-
centric and knowledge-intensive processes through the semantic integration
of process and document knowledge. Through the use of an ontology for
knowledge collection, the derivation of context-relevant new knowledge based
on inference mechanisms and through this, process support is enabled. As a
use case scenario, the application for subsidy procedures in the agriculture
sector was regarded. In this context, the flexible workflow engine was
enhanced and refined through a case-based deviation management.

1SEMAFLEX was funded by Stiftung Rheinland-Pfalz für Innovation, grant no. 1158,
German: “Integriertes semantisches Management von Prozessen und Geschäftsdoku-
menten zur Unterstützung flexibler Geschäftsabläufe im Mittelstand”

2SEMANAS was funded by Federal Ministry of Education and Research (BMBF), grant
no. 13FH013IX6, German: “Semantisch unterstütztes Antragsassistenzsystem”
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1.5. Outline
The remaining chapters of this thesis describe the necessary foundations, the
developed concepts, and the results of the evaluation. Chapter 2 deals with
the main topic, which reflects the subject of this work. Workflow management
with a focus on flexibility is elucidated and relevant characteristics are
sketched. Furthermore, related approaches that address flexible workflow
management in a similar manner are discussed in this chapter.

Chapter 3 introduces the domain deficiency management in construction,
which is regarded as use case in this work. On this basis the potentials and
necessities of a flexible workflow approach are emphasized. The main goals
and a general concept for workflow flexibility by deviation for SMEs are
exemplified with the presented use case. Subsequently in Chapter 4, formal
notations for workflows and all essential dependencies are defined as basis
for the concept.

In Chapter 5, the constraint-based workflow engine is explained in detail.
Initially, the necessary foundations are introduced. This comprises not
only the constraint satisfaction problem in general, but also the specific
definition of the applied constraint model. The workflow engine as such is
depicted by the constraint solving algorithm for computing work items as
well as supporting methods such as handling loops, detecting deviations or
restoring consistency. To conclude this chapter, related work concerning
constraint-based approaches for workflow flexibility is sketched.

Chapter 6 illustrates the approach for a case-based deviation management
that enhances the constraint-based workflow engine with regard to a holistic
workflow solution. This chapter starts with an introduction to case-based
reasoning and time-series similarity measures as basis for the approach.
Subsequently, deviation management is sketched in the context of the CBR
cycle to provide a brief insight into the realization of each phase. As a
main necessity for the retrieval phase, the designed similarity measure,
which is based on time series, is described in detail. Furthermore, the
reuse phase, in which one of two different adaptation algorithms is applied,
either a null adaptation or a generative adaptation based on constraints, is
illustrated. Concluding this chapter, related approaches concerning case-
based management of deviations will be discussed.
The prototypical implementation of this flexible workflow approach is

presented in Chapter 7. This includes an overview of the overall concept, a
characterization of the proposed architecture and a detailed description of
the single implemented components.
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The following Chapter 8 revolves around the evaluation. First, the contri-
butions of this thesis are summed up and research question RQ0 is addressed.
Subsequently, the regarded evaluation criteria and assessed hypotheses are
stated. The experimental setup is outlined including a description of the data
generation. Results from the conducted evaluation of the proposed flexible
workflow approach are shown, analysed, and finally discussed critically.

The thesis concludes with the final Chapter 9, which comprises a summary
of the contributions, a discussion of the achieved aims, but also entailed
drawbacks, and an outlook on potential improvements as well as promising
future fields of research.





2. Foundations on Flexible
Workflow Management

Before presenting the pursued concept for a flexible workflow approach,
relevant foundations are introduced. This chapter primarily focusses on
workflow management with necessary prerequisites and in particular workflow
flexibility. Foundations that concern the adopted methods and technologies of
the presented concept are introduced in subsequent chapters, more specifically
CSPs in Section 5.3 and CBR as well as time-series similarity measures in
Section 6.1, respectively Section 6.2.
In this chapter, starting from the most general, namely process-aware

information systems in Section 2.1, more specific systems are introduced,
continuing with business process management and finally going into detail
about workflow management. In Section 2.2 business processes as such are
characterised and the business process lifecycle is described from different
perspectives. The section concludes by sketching the differences of business
processes and workflows. Subsequently, Section 2.3 comprises relevant as-
pects of workflow management such as workflow classification and modelling
paradigms. Workflow terminology foremost in the context of flexibility
and its different types are elucidated in-depth in Section 2.4. The chapter
concludes with related work concerning flexible workflow approaches and a
discussion about their different concepts and shortcomings in Section 2.5.

2.1. Process Aware Information Systems
The latest general paradigm shift in the modern working world refers to
the conversion from the industrial society to the information society. This
transformation process was strongly influenced by the movement of business
re-engineering and is based on the computerisation of economy and society
[129, p. 14]. Potentials due to novel business solutions are exploited that
change whole economic sectors [129, p. 9]. Through this computerisation,
processes, leadership, products, interorganizational coordination, and mar-
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kets were changed [129, p. 11]. The business re-engineering movement began
in the early 1990s and reconsidered the common practice used up to then.
In the 1970s to 1990s, information systems were strongly focussed on

the sole management of data, particularly saving and enabling access to
information [42, p. XIII]. The used approaches were foremost data-driven. In
a company, it was common to employ several standalone information systems
for the separate management of diverse information, e.g. Enterprise Resource
Planning (ERP) systems or Customer Relationship Management (CRM)
systems. This resulted in several disadvantages and inefficiencies. The “logic
of business processes was spread across multiple software applications and
manual procedures”[42, p. 5]. Work had to be coordinated manually and
some data needed to be stored redundantly, which easily lead to inconsisten-
cies or even errors [42, p. 4]. In some cases the employees were not aware of
any explicit process, but the workflows implicitly resulted from intuitively
dealing with tasks and through interaction with colleagues and systems
[42, p. 7]. Hammer and Champy were the pioneers that first proposed to
integrate business processes and information technology [146, p. V] and
recognized the arising potential. Processes were seen as novel model for
organising businesses through linking business strategy with information
systems and are thus able to provide new entrepreneurial solutions [129].
Process-orientation in information systems continuously increased and

consequently, PAISs evolved.

Definition 2.1 (Process-Aware Information System). A process-aware in-
formation system (PAIS) is “a software system that manages and executes
operational processes involving people, applications, and/or information
sources on the basis of process models.” [42, p. 7]

The use of a PAIS allows for the integrated management of various
resources such as activities, employees, data, and services in order to achieve
added value [146, p. V]. On the other hand it enables the “splitting of
monolithic applications into smaller components and services, which can
then be orchestrated by PAIS.” [146, p. 4] Thus, this entails a separation
of concerns, which implies several benefits. Process logic and application
code are segregated and can therefore be adapted individually without
affecting the other one [42, p. 7][146, p. 4]. Nevertheless, standardized
interfaces ensure a smooth communication and the integrity of data through
the integration of these single components. Frequent procedures may be
mapped to explicit models, create a common understanding of the work
for all people involved in the process, and decrease misunderstandings
[42, p. 7]. The processes mapped to a formal model can additionally be
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enacted in an automated manner and, as a result, provide further benefits.
This includes increased efficiency through, among other aspects, allocation
and optimization of resources, such as information or services [42, p. 7].
Furthermore, through the depiction of the actually happening process in the
system, the management department can get insights into the status of the
work that is done at any time and in a rather uncomplicated way. Thus,
monitoring and verification purposes are enabled [42].
PAIS can have different forms and focuses. They vary from groupware,

which simply supports the communication between several participants, to
business process management systems, which completely control the course
of actions. In this work, the partial aspect of business process management
is regarded and therefore will be explained in more detail in the following
section.

2.2. Business Process Management
The foremost goal of each company is to achieve profit in order to guarantee
its existence and foster competitiveness. Each company produces some kind
of value in their daily work. This includes material goods and marketed
products such as cars or food, as well as immaterial services, e.g. consulting
or health care. To create each of these, several activities need to be performed
by different employees, usually in a coordinated way. Additionally, there are
various other necessary organizational procedures to organize and coordinate
work structures, e.g. travel expense claims or employee recruitment, which
are relevant for added value to a lower extent. But nevertheless, several
tasks need to be synchronized for a smooth operating. All these can be put
into process form. “Business processes are the key instrument of organizing
these activities”[205, p. 4].

2.2.1. Business Processes
Manifold definitions of business processes with various distinct focuses exist,
which will be shortly presented in the following.

One business process consists of one to many activities [205, p. 83]. One
activity is seen as a unit of work. The goal of the business process can
either be a physical product or a service [150, p. 23]. Another integral part
are relevant data objects that are processed during enactment as input or
output of activities [7]. Hammer describes a process as “end-to-end work
across an enterprise that creates customer value.”[63, p. 4] Thereby the
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necessary cross-sectoral work to achieve added value is emphasized. The
scheduling of activities, which is denoted as control-flow, is defined through
the order of the connected activities and controlling structures [7][129, p. 62].
Scheer and Jost emphasize the content-related and temporal dependencies of
activities [76]. Österle adds that the execution of a process is represented by
a sequence of activities that are supported through information technology
[129, p. 63]. A definition that includes all previously mentioned aspects,
which are concisely summarized, and that is used throughout this thesis is
as follows.

Definition 2.2 (Business Process). A Business Process (BP) consists of a
set of activities that are performed in coordination in an organizational and
technical environment. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it may interact with
business processes performed by other organizations. [205, p. 5]

To handle business processes and all aspects that need to be considered,
business process management (BPM) is established. BPM supports compa-
nies on the operational level, to achieve strategic goals, through the use of
information systems. “Business process management is a customer-centered
approach to organizational management.”[63, p. 6] BPM is not only re-
sponsible for coordinating work, but also entailing aspects like analysis and
monitoring. Essentially, its potential is to improve productivity and therefore
efficiency as well as reducing costs [182].

Definition 2.3 (Business Process Management). Business process man-
agement (BPM) includes concepts, methods, and techniques to support the
design, administration, configuration, enactment, and analysis of business
processes. [205, p. 5]

2.2.2. Business Process Life Cycle
Each business process undergoes a life cycle that typically consists of four
phases (see Fig. 2.1), where each phase has some output that is processed
in the next step (see side notes). First, in the design and analysis phase, the
business goal to be achieved is defined in an informal specification. This
model is further transferred to a first process model in a formal language
as well as refined in several iterations. Therefore, the formal model can be
analysed and simulated in order to validate and verify the designed process
concerning syntactic and semantic correctness. Furthermore, the actually
created process can be checked against the desired behaviour and possibly
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be adjusted or improved before deployment. The result of this step in the
business process life cycle is a process model.

Design &
Analysis

Evaluation

Enactment

Process Model

Executable Process

Feedback

Event Log

Configuration

Figure 2.1.: Business Process Life Cycle adopted from Weske [205, p. 12] and
based on Di Ciccio et al. [25]

The next phase comprises the configuration. The designed business process
is implemented, to be executable by a software system. The previously
designed formal model is enhanced with required technical specifications.
Moreover, the software system needs to be configured in order to be able to
handle the process enactment appropriately. This includes the integration
of necessary services, the provision of suitable interfaces for the process
participants, and the management of data transactions [205, p. 13]. Once
the implementation is completed, the execution of the business process can
be tested. The outcome of this phase is an executable process.
The enactment of the business process represents the third phase of

the business process life cycle. Here, process models are transposed to
process instances at run time, representing one single concrete business
case. The software system controls the process execution, by initiating
activity enactments and providing resources according to the process model.
Furthermore during this phase, the current status of the process can be
monitored through various statistics or visualisation techniques. After
enacting a business process, an event log arises that records what actually
happened.
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In the last phase, evaluation, collected data about the process, such as event
logs, can be analysed, e.g. through applying process mining techniques. The
results are used for improvements, optimization, or a complete redesign of
the process. Subsequently, the cycle starts all over integrating the generated
feedback.

2.2.3. Build vs. Run Time
In traditional business process management there is a strict differentiation
between build time and run time (see Fig. 2.2). At build time, processes are
designed and specified as formal models. These process models can further
be configured and verified at build time [146, p. 31]. If a process activation
is triggered, such a process model is instantiated and hence, transposed to
run time but without connection to the original process model. A process
engine creates a process instance on the basis of this process model, executes
and manages it [146, p. 33]. This approach ideally fits to static control
structures [205, p. 310]. Dynamic adaptations are not supported, as they
imply modifications of the process model, which affect the process instance
during run time [205, p. 310].

Run Time

Build Time Process 
Model

Process
Instance

Figure 2.2.: Build Time vs. Run Time

Therefore, business processes are distinguished into model and instance.

Definition 2.4 (Business Process Model and Instance). A business process
model consists of a set of activity models and execution constraints between
them. A business process instance represents a concrete case in the operational
business of a company, consisting of activity instances. Each business process
model acts as a blueprint for a set of business process instances, and each
activity model acts as a blueprint for a set of activity instances.[205, p. 7]
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A process model thus tries to represent all different possible valid ways
of handling a certain issue [182]. Several distinct process instances can
stem from this one model, which each reflect the state of execution for a
single process instance. Alternatively, process models are denoted as type or
schema, but throughout this work the notion process model is used.
In Fig. 2.1 the phases of BPM are shown in an abstracted way. On the

basis of build and run time, and the distinction between process model and
instance, the process life cycle is refined. Fig. 2.3 rather focuses on the
user and data perspectives, showing involved persons and illustrating the
handling of processes. Still, this is a simplified visualisation, but nevertheless
represents the essential aspects.

First, a model that represents a certain process to achieve some business
goal is designed by a process engineer at build time (see (1)). Each model
can be instantiated at run time, resulting in the creation of a process
instance (see (2)). Based on this instance, activities, which are enabled for
execution, can now be suggested to the process participants (see (3)). The
process participant processes any of these work items, by choosing one task,
completing it, and thus, triggering an update of the instance (see (4)). At
run time, process instances are not completed, but in progress. This data is
denoted as pre mortem data [182]. All terminated instances are stored as
event logs that record “all relevant events occurring during the execution
of a process instance” [146, p. 35] (see (5)). These event logs, called post
mortem data [182], enable the process engineer to monitor and analyse the
process performance (see (6)), potentially resulting in improvements through
adaptations of the process model, which is called evolutionary change [146,
p. 41] (see (7)). At build time, off line process mining techniques for analysis
can be applied [182].
In this process life cycle, no flexibility is possible. The instances rigidly

follow one model. If an evolutionary change is made, a new independent
model evolves. To indicate that deviations might occur between designed
model and actual instance, van der Aalst explicitly differentiates between
de jure and de facto model [181]. The de jure model describes the ideal
handling of the issue, hence what process participants are prescribed to do
[182]. In contrast, the de facto model reflects the reality, thus, how the
process is actually handled [182]. In this approach, as deviations from the
de jure model are allowed explicitly, process instances are referred to as de
facto workflows, which represent the traced process instances independent
from the process model.
Cugola further differentiates process instances by introducing the terms

observed and actual process [28]. The observed process corresponds to the
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Figure 2.3.: Detailed Business Process Life Cycle based on Reichert and Weber
[146, p. 41]

traced sequence of tasks, whereas the actual process also includes tasks, that
were executed by the process participant but without notice and control of
the system, thus, bypassing it. Though, the actual process maps the reality
exactly, unfortunately the system is not aware about activities that happen
outside the system. Consequently, the de facto workflow as observed process
is used as data basis. More details about the actual workflow approach are
explained in Chapter 3.

2.2.4. Business Process Management System
Information systems are the main digital support for managing and embed-
ding business processes in the organizations’ environment. To achieve set
business goals, employees need to interact and work with systems. Business
processes are established for this coordination and to facilitate this synergy.
The efficacy and efficiency mainly depends on this interplay of these resources
[205, p. 4]. Information systems specialized for business processes are called
business process management systems and are defined as follows.

Definition 2.5 (Business Process Management System). A Business Process
Management System (BPMS) is a generic software system that is driven
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by explicit process representations to coordinate the enactment of business
processes.[205, p. 6]

“BPMS are created to narrow the gap between business goals and their
realization by means of information technology.”[205, p. 112]
While business process management and workflow management is some-

time considered the same and these notions are used in a similar context, in
this thesis a slight difference is exposed, as also stated in some other work.
The notions process and workflow are used in this thesis according to the
made definitions.

2.3. Workflow Management
A business process represents the real world course of actions, while a work-
flow takes place in an automated manner through the use of an information
system [150, p. 28]. Workflow Management (WfM) is settled on the op-
erational level of the company [48, p. 3]. Business process management
rather takes the economic perspective of a process, specifying how to reach
defined strategies at the organizational level, and workflow management
refines these processes by enhancing them with concrete specifications about
automating the execution, coordination of activities at the operational level
[205, p. 111], and adequate disposition as well as distribution of resources.
Not all kinds of business processes can be handled reasonably by WfM. A
main characteristic is the possibility of partial automatization capabilities
and a certain regular frequency of occurrence of the process.

2.3.1. Benefits of Workflow Management
The use of WfM promises several advantages to enterprises. The utmost goal
is to create a high-performance process [63, p. 7] resulting in various benefits.
The foremost impact is an improvement of process handling, including,
among other aspects, shorter throughput times, increased productivity,
higher transparency, quality assurance, and ultimately better customer
service [150, p. 32]. From an economic perspective this yields lower costs,
reduced assets, faster speeds and greater accuracy [63]. Ultimately, the
overall enterprise performance is improved [63].
The goals of WfM are manifold and some advantageous aspects are in-

herent. Through a higher transparency of the current workflow status, an
increased customer satisfaction can be achieved, as the processing of its
request is obvious [48, p. 48] [63, p. 7]. The same holds for the companies’
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management or other responsible employees, who can inform themselves
whenever required [48, p. 49]. As process participants are more guided and
supported through the provision of necessary resources as data or services,
an improved quality and reduction of errors is expected [48, p. 48].

The coordination of the work or part of the work is simplified and partly
done in an automated manner. This includes parallelization of activities,
dynamic allocation of available resources and thus, avoidance of standby and
downtime, which leads to a shortening and consequently to an optimization
of throughput times [48, p. 49]. This in turn results in a reduction of costs.
Workflow management systems represent a middleware for the integration
of various hard- and software components to simplify the interaction [48, p.
49] and to guarantee data integrity.

Due to monitoring capabilities, the actual state can be compared to the
target state continuously, which allows for an assurance of performance
quality [48, p. 48]. An impact for the employees of the company is a
unification of graphical user interfaces and therefore better usability [48, p.
49]. Another objective is adaptability to organisational or external changes
[48, p. 49]. However, the ultimate goal of workflow management is the
automation of process control [48, p. 49].

2.3.2. Workflows
The most important distinction criteria between business processes and
workflows is the automation, which is emphasized in the following definition.

Definition 2.6 (Workflow). A workflow is “the automation of a business
process, in whole or part, during which documents, information or tasks
are passed from one participant to another for action, according to a set of
procedural rules.”[210]

Alonso et al. [7] describe a workflow as “a representation of the business
process in a machine readable format.” This aspect is also emphasized by
Weske [205, p. 306], who mentions the additional information about technical
aspects to make a business process automatically executable. This indicates
the use of an information system for workflow control. As described in
Subsect. 2.2.3, build and run time can be transferred to workflows. Workflow
models are specified at build time and instantiated to workflow instances
transposing to run time.

Analogous to BPMS and slightly more specifically, workflow management
systems are defined as follows.
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Definition 2.7 (Workflow Management System). A Workflow Management
System (WfMS) is “a system that defines, creates and manages the execution
of workflows through the use of software, running on one or more workflow
engines, which is able to interpret the process definition, interact with
workflow participants and, where required, invoke the use of IT tools and
applications.” [210]

Thus, a WfMS represents the operational environment for workflow man-
agement, including design, execution and monitoring of workflows [64]. In
addition, the WfMS is responsible for ensuring the correct enactment and
distribution of resources [48, p. 228]. Wainer et al. find an appropriate
formulation, by designating the WfMS as a “dispatcher” when workflows are
executed [196]. Which components are typically part of a WfMS is described
by the workflow reference model.

2.3.3. Workflow Reference Model
Due to various distinct developments of WfMSs during their emergence
and the necessary integration and collaboration of several components, the
demand for a standardization arose [150, p. 161]. For this reason, the
Workflow Management Coalition (WfMC) was founded in 1993. One of their
main contributions was the workflow reference model [209]. It represents a
generic architecture for WfMS with the intention of establishing standardized
components and interfaces (see Fig. 2.4) [209]. It is constructed modularly
to offer and simplify interchangeability as well as compatibility with various
software or hardware constructs. There are six main components and five
interfaces with different responsibilities. For communication between the
different components, a workflow API and interchange formats (see Fig. 2.4)
are supplied such that transmission of data is standardized.

The centerpiece is the workflow enactment service (see Fig. 2.4), which is
responsible for the assignment of resources such as persons, applications or
services [150, p. 142]. The necessary interaction between process participant
and the system is coordinated by this module [150, p. 142]. The service
is build upon one to several workflow engines. These workflow engines
are responsible for controlling workflow execution at run time [48, p. 231].
First, workflows are instantiated and initialized based upon their models
that are interpreted. The workflow engine is in charge of synchronizing and
computing the status of workflow instances due to the information from
external triggers.
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Figure 2.4.: Workflow Reference Model - Components & Interfaces based on the
Workflow Management Coalition [209]

To create a process model that may be instantiated, process definition
tools (see Fig. 2.4) are used. Here, the workflow including its structure and
detailed task specifications need to be defined based on a certain workflow
modelling language, which is decoupled and therefore independent from the
execution context. These tools additionally allow for an analysis of process
models, e.g. simulation or verification of syntax. The process models can be
imported by the workflow API to be executable.

The operator uses the WfMS through different workflow client applications
(see Fig. 2.4). The most popular one is the so called worklist, which contains
the pending tasks that are executable. The worklist of one process participant
contains work items that represent tasks that are executable and for which
the specific process participant is qualified for [146, p. 37]. One work item
can be part of several worklists. If one work item is chosen for execution
by a process participant and thus, allocated, all other worklists containing
the same item are updated by removing the concrete item [146, p. 38].
Furthermore, necessary services that are involved in the task enactment
are provided as client application [146, p. 38]. The process participant
receives notifications about a status change of the workflow through these
client applications. The workflow enactment service provides the necessary
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data or even services through the interface that connects both modules. In
the opposite direction, status updates are sent that are processed by the
workflow engine. This includes terminated tasks, modified or created data
objects.
Besides, other applications may be invoked by the workflow engine, in

case tasks comprise automated services (see invoked applications in Fig. 2.4).
The workflow enactment service also may cooperate with other independent
workflow enactment services, comprising several workflow engines. This
comes into play, when several processes are interwoven across the correspond-
ing WfMSs and interoperability, i.e. exchange of data, needs to be achieved
[48, p. 232].
Finally, workflow progress can be monitored, analysed, and supervised

through administration and monitoring tools (see Fig. 2.4), accessing in-
formation from the workflow enactment service through another interface.
Thus, various tools are conceivable. For instance, optimization potentials
can be discovered or error detection can be used for a future prevention of
the former mentioned. Additionally, this interface can be used to handle
unexpected issues, set parameters, or allocate resources [182].

The issue that is regarded in this work concerns the handling of upcoming
deviations, but yet a continuous support for workflow execution. The
objective is to compute adequate work items considering the current situation.
Thus, the component workflow engine plays the most important role for this
work.

Definition 2.8 (Workflow Engine). A workflow engine is a software service
or “engine” that provides the run time execution environment for a workflow
instance.”[209]

The workflow engine is responsible for interpreting the workflow model,
which includes instantiating a corresponding workflow instance and comput-
ing work items. The work items, which form the worklist, are distributed to
responsible employees by a separate component, the worklist handler, which
is part of a client application [209].

2.3.4. Workflow Classification
Workflows can be classified into several categories. There are a few dif-
ferent distinctions depending on the considered characteristics. An early
classification by Hammer distinguished three process types: core, support,
and governing processes [63, p. 11]. The core processes are responsible for
creating the actual value for the customers and are thus essential for business
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[63, p. 11]. They are also named primary processes [187, p. 9]. Support
processes, additionally denoted as enabling or secondary [187, p. 10], rep-
resent internal auxiliary procedures, e.g. personnel matters as recruitment
or travel expense claims [63, p. 11]. Governing, or managerial [187, p. 10],
processes include all management issues, like strategic planning [63, p. 11].
This classification has evolved considering different aspects and is trans-

ferred to workflows. Four distinct types have been established: production,
administrative, collaborative, and ad hoc workflows. Depending on the char-
acteristics of the workflow, the suitability of support through traditional
WfMSs and the necessary functionalities and focusses vary.

These workflow types can be classified depending on the frequency of
execution, i.e. whether the same workflows occur very often or are rather
unique, and on their business value or objective, i.e. whether the outcome
of the workflow contributes to the added value of the business or is more of
a supportive procedure. For this comparison see Fig. 2.5.
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Figure 2.5.: Workflow Classification with regard to Business Value and Fre-
quency based on Alonso et al. [7]

Another main differentiation relates to the predictability or degree of
structuring that is possible at build time, in contrast to the complexity of
tasks and the workflow itself (see Fig. 2.6) [42, p. 14].

A detailed description of the four workflow types is given in the following:

• Production workflows represent the core processes of a company that
are directly related to the business goal [7], i.e. building a house for
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Figure 2.6.: Workflow Classification with regard to Task Complexity and Task
Structure based on Alonso et al. [7]

a construction company. These workflows are highly repetitive and
predictable. Therefore the course of action is completely structurable
with no degree of freedom for the operator [48, p. 43]. Dumas et al.
underline as important characteristic of production workflows the “more
or less complex but highly stable task coordination rules”[42, p. 14].

• Administrative workflows are repetitive as well as predictable and consist
of simple task coordination rules that are known by participants [7].
Usually these workflows are standardized and occur very frequently. The
most common example for these workflows are bureaucratic processes,
such as travel expense claims.

• Collaborative workflows, as indicated by the notion, require coordination
with a high number of participants. They represent iterative tasks until
an agreement is found, which is not always a simple forward progress but
rather several iterations [7] and therefore can hardly be structured.

• Ad hoc workflows are not predefined and in some cases limited to data
provision. Usually each workflow is unique [7], as the activities cannot be
structured in advance [48, p. 43]. The coordination is done by participants
instead of system support.

Some classifications only take one dimension into account. For instance,
van der Aalst [182] sorts workflows according to their possible amount of
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prespecification and model-conformity. Unframed workflows are not explicitly
specified as a process model [182]. Ad hoc framed implies a model that is
only used once for instantiation before it is adapted or abandoned [182].
Loosely framed workflows are defined in a process model, but deviations
are permitted [182]. Tightly framed workflows follow the traditional idea of
WfM, as a model is defined that is strictly adhered to [182].

A similar distinction is made on the basis of structurability, through the
terms ad hoc, semi-structured and structured. Ad hoc describes the same as
in the above taxonomy, notably a low repetition rate and a high complexity
[71]. Structured is comparable to the previously defined tightly-framed and
semi-structured is somewhere in-between with a high frequency and a pre-
determined structure, but also possible deviations [71]. Processes that can
hardly be predefined are associated with knowledge-intensive processes [146,
p. 44]. They essentially require expert knowledge of the process participants
for task handling, decision making and process control [25].

2.3.5. Workflow Modelling
Workflow modelling is the prerequisite for a workflow execution as general
conditions are determined. Therefore several perspectives with varying
purposes have to be regarded. Moreover the used language with the respec-
tive paradigm is an essential factor for the expressive power and available
functionality. Both aspects are presented in detail subsequently.

Perspectives

For a holistic contemplation of a process, different perspectives have to be
considered. Each of them is modelled individually to reduce complexity
and guarantee a separation of concerns. The basic modelling perspectives
were manifested in business engineering [129, p. 30] and are represented in
the ARIS model [164]. This includes three aspects: function, organization
and data. Meanwhile, six fundamental perspectives are established that
refine these previously mentioned three aspects through adding behaviour,
operation and time.

• Function: The function perspective encompasses the specification of single
process components, from atomic to complex activities or subprocesses
[146, p. 21f]. These represent units of work at different aggregation levels
[205, p. 77] and can be defined informally or formally, e.g. syntactically
or semantically [205, p. 78].
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• Behaviour: The behaviour perspective deals with the relation between
these previously defined process components. This concerns the order of
activities or other constraints like preliminary conditions, called control-
flow [146, p. 22-25]. Therefore, van der Aalst uses the term control-flow
perspective and describes it as the “backbone of a process model.”[182]

• Information: The information perspective, denoted as data perspective
in the ARIS model, adds data objects to the activity perspectives. Input
and output relations are specified, describing the data-flow [146, p. 25f].
This includes data dependencies as well as decision-relevant data [205, p.
78].

• Organization: The organization perspective comprises competencies,
responsibilities and permissions due to the organizational structure of the
business. It covers roles of individuals or whole departments concerning
the hierarchy, authority and substitution in case of absence or hindrance
[146, p. 26f].

• Operation: The operation perspective allows for an incorporation of tool
or system support. Services that are linked to activities can be specified
in this context [146, p. 27ff].

• Time: The time perspective includes temporal constraints such as dura-
tions or deadlines of activities and actions to be taken in case of exceedance
like escalation stages or notifications [146, p. 29][182]. Moreover, tempo-
ral restrictions can also refer to resources or process participants, such as
availability times or working hours [42, p. 25]

These perspectives are potentially complemented with additional relevant
ones depending on the use case and business context. Dumas et al. [42]
mention in particular business rules that represent organizational policies
and compliance demands independent from specific processes [42, p. 25f], as
well as exception handling with recovery measures or mechanisms, which is
not included in a traditional workflow model [42, p. 26].

Paradigms

“A process modelling language provides concepts for representing processes.”
[46]. It “provides appropriate syntax and semantics to precisely specify
business process requirements, in order to support automated process verifi-
cation, validation, simulation and process automation.” [94] There are three
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different abstraction levels for varying purposes when creating a process
model.
The levels range from a conceptual view to a formal or an execution

description [182]. Formal models base on mathematical theory and are
necessary for a precise definition. They form the basis for an automated
processing. Conceptual models are a means of simplifying the modelling pro-
cess to a meta level, abstracting from formal details. Conceptual languages
adopt workflow patterns that were defined to describe key functionalities
language-independent [186]. Thus, a common ground is established for un-
derstandability and comparability of different languages. Conceptual models
are used by process stakeholders for a first specification. The description on
the execution level is in a machine-readable format, which can be executed
automatically and is used by the workflow engine.

A differentiation is additionally made between modelling paradigms, where
the two extremes of paradigms are procedural, also denoted as imperative,
and declarative [46]. Procedural modelling is also called “inside-to-outside
approach” [182]. When using this paradigm, it is explicitly described which
activities are to be executed in which order and under which circumstances.
Procedurally modelled workflows explicitly specify the allowed behaviour,
and in consequence all possible allowed execution paths represented as
sequential information [46]. Here, the control flow of tasks as well as the
related flow of data items is modelled, which results in a high complexity
and a huge modelling effort. However, an advantage of those models is
the explicit mapping of procedural execution paths and thus, an intuitive
understanding is simplified even for non-professionals. Various languages
have been established, ranging from Petri nets [148] over Unified Modeling
Language (UML) [44], and Event-Driven Process Chains (EPCs) [77] to
the most commonly used BPMN [193] or the execution language Business
Process Execution Language (BPEL) [9]. These languages are in most cases
graph-based [94], as their formal basis is graph theory, using Petri nets [148].

With declarative process modelling, paraphrased as “outside-to-inside ap-
proach” [182], however, forbidden behaviour and states of the workflow are
defined. Thus, circumstantial information is specified [46]. This paradigm ide-
ally fits to modelling loosely structured processes. When adding a constraint,
the valid state space usually is restricted. In contrast to graph-based ap-
proaches, declarative languages are denoted as rule-based, formally basing on
formal logic. An established method is called Event-Condition-Action (ECA)
rules [94]. ConDec [136, 137] is a constraint-based declarative workflow
modelling language that is used by the prototypical workflow system DE-
CLARE [135, 184, 207]. It is based on Linear Temporal Logic (LTL) as
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formal foundation.
Procedural workflows explicitly describe valid procedures, while it is almost

impossible to cover all alternatives. Therefore, procedural models lack a
subset of accepted execution orders in most cases. In contrast, declarative
constructs describe specific undesired states, leading to the acceptance of
every other state [134], and thus, implicitly providing flexibility concerning
workflow execution. Declarative models may be much more simple but
still flexible. A drawback of this approach is the lack of explicitly specified
procedural executions. Therefore no obvious task suggestions can be made
in any state of the workflow. Furthermore, minimizing complexity, keeping
track and preserving maintainability becomes more difficult with increasing
size of the model, i.e. the amount of constraints [62, 111].

Concerning flexibility, procedural and declarative languages differ signifi-
cantly. This is illustrated in Fig. 2.7.

Valid

Invalid

Procedural
State Space

Optional

Declarative
State Space

Figure 2.7.: Possible Workflow State Space based on Pešić [134]

The rectangle represents the whole state space of one workflow. The grey
coloured areas indicate invalid states, while dark grey outlines strictly for-
bidden behaviour and light grey shows undesired but potentially permissible
states. With a procedural language only a subset of possibly valid states is
defined in a model (see oval with dashed frame in Fig. 2.7), as all execution
paths need to be specified explicitly. Every possible behaviour cannot be
anticipated and knowledge about a workflow is rarely complete. In case a
new valid execution path arises, it must be integrated explicitly into the
model, to stretch the accepted state space. In contrast, declarative models
define the invalid states through obligatory constraints and possibly ones
that optionally should be adhered to (see grey coloured triangles in Fig. 2.7).
The allowed state space comprises every state except the invalid ones (see
shape with dotted frame in Fig. 2.7). The implicit flexibility that is offered
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through declarative workflow modelling needs to be restricted by adding
constraints.

Besides these two presented contrasting paradigms, there exists a variety
of other approaches that partially are a mixture of both, but also some
that have a completely different focus. Object-oriented or artifact-centric
approaches are some examples [182]. Moreover, a refinement of declarative
approaches is possible as well, e.g. in constraint-based, rule-based or case
handling [109], depending on the applied modelling technique.

2.3.6. Limitations of Traditional Workflow Management
Systems

Traditional WfMSs, with foremost procedural modelling languages, have one
main drawback, which is the unability to deal with flexibility. The long-time
prevalent way of workflow management was as sketched in Fig. 2.8.

results in

discrepancies  
exist

Envisioned Business
Process

no feedback  
is fed

De Facto Process

is enacted

De Jure Process

Figure 2.8.: Prevalent Way of Workflow Management based on Han et al.[64]

A certain business process was envisioned by a company, in particular by
process stakeholders, as an ideal procedure to achieve some specific goal. This
implicit knowledge of the composition of activities is then cast into a process
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model, the de jure process. This de jure process is used by operators to
fulfil a task. Enacting this process results in one or generally several process
instances, the de facto processes. Usually there is no feedback transfer about
occurred inconsistencies between de jure and de facto process, but the de
jure process is simply left as is and never adjusted. Due to several and
diverse reasons, the de facto process does not comply with the envisioned
business process most of the time, but more or less severe discrepancies
exist. “Every good process eventually becomes a bad process.” [63, p. 12]
This shift can have manifold reasons, e.g. varying customer needs, evolving
technologies or simply competition [63, p. 12]. A continuously changing
business environment [205, p. 4] or unexpected incidents are some more
issues that need to be tackled, but also increasing market demands [109]
require flexibility.
Furthermore, traditional WfMSs focus on support for repetitive and pre-

dictable processes [146, p. 43] and are sometimes rather limited to certain
sections like banking or insurance [42, p. 9].
There are several possible regulations to improve this situation that can

all be summarized under the term flexibility. Flexibility “allows reducing
the gap between process models [...] and what is happening in the real
world” [109]. Before introducing techniques for achieving workflow flexibility,
the notion as such and a necessary dissociation to relating terminology is
presented in the following.

2.4. Workflow Flexibility
Workflow flexibility has gained much attention in recent research and the
need for integration in PAISs and its importance is stated frequently [65,
147]. Flexible approaches concerning workflow management have been
focused in research for more than a decade [166] and are investigated and
applied in various branches, e.g. healthcare [103]. Flexibility techniques and
their impacts are manifold. In summary, flexibility deals with adaptability,
variability, and evolution [146, p. 43]. The essence of flexibility is to decide
about the adequate amount and choice of untouched versus adaptable process
parts [182].

2.4.1. Terminology
In the context of workflow flexibility, there are various notions that are
used frequently. The terminology is often applied inconsistently in research
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literature. Therefore, there are several definitions of these frequently used
notions with slight differences such that only a vague common understanding
is established. To establish the used vocabulary and their interpreted
definitions in this thesis, notions are clarified in this section and put into
relation, grounded in various references.

Dynamism

The property dynamic is paraphrased as “something is true at a given time,
but false some time later”[7]. This can be related to the business environment
in which a process is executed and where a flexible reaction is necessary
for success. Dynamic change is narrowed down to “handling old cases in a
new workflow process definition”[183], where the problem that comes with
evolutionary changes is referred to (see Subsection 2.4.2)).

Evolution

Workflow evolution concerns the “ability of the process implemented in a
PAIS to change when the corresponding business process evolves.” [146, p.
47] Thus, a new workflow model emerges that creates variability.

Variability

Every change in a process model results either in a new version or in a
new variant of this definition. A new version will be established after a
transition period such that at a certain point in time all process instances
will be transacted according to this new version, thus, the process model
evolved. However, a new process variant exists simultaneously to the original
process model and the instances will build upon either of them, as long as
they are valid. Which variant is executed is sometimes not known prior to
instantiation, as the values of decisive parameters are initially unclear [146,
p. 45]. Variants are based on the same core process but some parts vary
depending on certain conditions, but nevertheless can be specified [146, p.
45]. Variants emerge due to reuse and subsequent refinement of processes
[146, p. 89].

Adaptability

Adaptability “represents the ability of a PAIS to adapt the process and its
structure [...] to emerging events.” [146, p. 46] These events can be exceptions
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or special situations and they can either be anticipated or unexpected [146,
p. 46]. Adaptation is one method to create a flexible workflow management.

Looseness

Looseness describes that only the objective of a process is determined, but
the procedure to get there is not known or rather unpredictable [146, p. 46].

Flexibility

Flexibility “describes the ability of a process to change”[141]. Mejri et al.
[109] and van der Aalst [182] add that both foreseen as well as unforeseen
changes that are caused by the business environment should be handled.
Burkhardt and Loos [20] describe handling flexibility issues as a simplifying
process, but without adding complexity. Thus, flexibility is a rather abstract
notion and needs to be categorized more clearly.

2.4.2. Classification of Change
The notion flexibility can refer to several aspects of business processes.
Flexibility can affect various characteristics and have different impacts. A
classification of criteria that can be subject to those changes according to
Regev et al. [141] is shown in Fig. 2.9.
A main criteria is the abstraction level of change. On the one hand,

changes can be made to process models. This affects all future as well as
possibly running process instances. The need for such changes, denoted as
process type or schema evolution [199] is typically caused by a redefinition
of intentions such as the process goal or business strategy [141]. On the
other hand, changes can be applied directly on the instance level to single
instantiated processes. This so-called instance evolution becomes necessary
due to unusual or exceptional situations [141]. Soffer [173] distinguishes
flexibility according to this criteria as well. She denotes schema evolution as
long-term flexibility and instance evolution as short-term flexibility [173].

Another important aspect is the perspective in which the change takes
place. Five subjects are differentiated by Regev et al. [141] that refer to a
subset of the modelling perspectives introduced in Subsection 2.3.5. The
functional perspective relates to the overall goal of the process, whereas
operational changes apply to parts of the process, mostly single activities
as well as their characteristics and specifications. Behavioural considers the
interrelations and dependencies between activities such as preconditions.
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Figure 2.9.: Notions of Change by Regev et al. [141]

The informational perspective additionally takes the information flow into
account. Participants and their roles are captured by the organizational
perspective.
A third dimension of classification refers to the properties of changes.

A process can be changed incrementally, which means the old process is
transformed into a new one, or revolutionary, which means the old process
is completely exchanged by a new one. Changes can be temporary or
permanent, see duration. They can be deployed immediately or in a deferred
way, see swiftness. This depends on the abstraction level. For running
process instances a decision has to be made, whether the made changes
are transferred or only impact newly created instances. Changes can also
be distinguished considering the question of anticipation, i.e. whether the
changes are planned or ad hoc.

Van der Aalst and Jablonski [183] set up a slightly different classification
of change considering six disparate criteria, which are partly interrelated (see
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Fig. 2.10). The first distinction is made based upon the reason of change.
Changes might have external triggers, such as shifts in the business, legal
or technological context. Whereas reasons that come from the inside might
result from logical design errors or technical problems within the information
system. Another dimension is the effect a change has, which can be just
momentary, affecting single processes, or evolutionary, which impacts all
future processes. This is comparable to the temporary or permanent duration
of change in Fig. 2.9. Change can affect different perspectives, which are
relevant in process management (cf. Subsect. 2.3.5). The process perspective
concerns the process itself and modifications of the tasks and their relations.
Changed roles or resources that are responsible for certain tasks related
to the organization perspective. Every change that involves control data
belongs to the information perspective. The operational perspective includes
modifications on operations themselves and the integration perspective is
responsible for linking all other four perspectives together. Thus, changes in
this perspective reflect altered relations of single perspectives.
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Transfer
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Figure 2.10.: Classification of Change based on van der Aalst and Jablonski
[183]

The implication of changes can be manifold. They can trigger the ex-
tension, reduction, replacement, or re-linking of some parts of the process.
Furthermore, the point in time of changes is differentiated. Changes can
either be applied at entry time, thus before instantiation or on-the-fly at
any time during execution. The sixth characteristic of change refers to
the handling of changes in a process model and their transfer to ongoing
and future instances. Forward recovery describes the abortion of running
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instances followed by an offline handling and termination. Backward recovery
is similar, as running instances are interrupted, but corrective measures are
taken that reset the process and enable a restart. Proceed implies no special
action that is taken, but ongoing processes are terminated according their
version of a process model and all future instances are started taken the new
version into account. Transfer is a more complex strategy, as the changes
are also transferred to running instances. With a detour only the changed
instance is affected, while every other process instance is left untouched.
For Rosemann and Recker [152] flexibility not only consists of the type

of change but also of the trigger or the reason for the necessary flexibility.
They speak about those two parts as the “extrinsic trigger for change”
and the “intrinsic process adaptation” [152]. Kumar and Narasipuram
[86] divide flexibility into three different parts as well. They describe the
previously mentioned extrinsic trigger for change as the “stimulus that
generates requirements for flexibility” and the intrinsic process adaptation
as “strategies or tactics employed to achieve flexibility”. Additionally they
see the flexibility itself as a third part [86]. These three perspectives should
build upon each other to achieve the adequate flexibility.

This in-depth description of characteristics of change showed that flexibility
can have manifold forms. Various aspects need to be regarded in order
to choose the right focus and an adequate specific manifestation for the
considered domain and use case. The next section introduces flexibility types
and their characteristics.

2.4.3. Taxonomy of Flexibility
A taxonomy of flexibility is shown in Fig. 2.11 with different labels for
concepts and methods. Heinl et al. [65] differentiate mainly between two
different concepts of workflow flexibility, derived from the definition of flexible
in a dictionary: Flexibility by Selection and Flexibility by Adaption. Both
approaches differ in the manner of how flexibility is achieved.
Flexibility by Selection is paraphrased as “end user flexibility” [65] and

comprises every alternative execution path that is within the scope of the
defined process model. “A user should have the freedom to choose between
different execution paths if necessary.” [65] This type of flexibility describes
the ability to generate different process instances at run time, if those were
integrated at build time in the process model. It refers to the expressive power
of the used modelling language in such a way that workflow evolution is not
necessary for handling situations [127]. This entails the main drawback that
only anticipated scenarios can be mapped and thus, supported. Every other
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Figure 2.11.: Taxonomy of Flexibility by Heinl et al. [65] and Schonenberg et
al. [166] based on Pešić [134]

situation will lead to an exception and cannot be handled. Van der Aalst and
Jablonski [183] denote this as Flexibility by Configuration. They argue that
the best to do is to prevent changes and for this purpose offer a modelling
language that is adequate to map the desired flexible characteristics for
process execution. Other notions used in the same context are pre-designed
flexibility [86] or a priori flexibility [74, 127].

Flexibility by Selection can be offered through advanced or late modelling.
Advanced modelling describes the predefinition of all possible alternative
execution paths before run time, whereas through late modelling some parts
of the process model can be left undefined as black-box. In both types of
flexibility by selection, the possible amount of flexibility clearly depends on
the scope of the workflow modelling language.
Flexibility by Adaption comes into play when flexibility by selection

cannot be applied, but the circumstances require workflows, either the model
or instance, to be adapted. “It must be possible to change the workflow
management application during runtime.”[65] This strategy is used to handle
necessary changes successfully [183]. An alternative expression is just-in-time
responsive flexibility [86] or a posteriori flexibility [74, 127].

Here, type adaption is distinguished from instance adaption. Type adaption
impacts every future instance, whereas instance adaption can differ in the
extent of where changes are integrated. This comes down to some of the
instances, all running instances that have not encountered the changes, yet
or solely all future instances. The authors omit so-called ad-hoc modelling
in their classification scheme, as this possibility is not feasible according to
their opinion [65].



40 2. Foundations on Flexible Workflow Management

A more common classification of process flexibility is presented by Scho-
nenberg et al. [166]. They distinguish four main principles. For an overview
of all presented concepts see Fig. 2.11.

Flexibility by Design

Flexibility by design describes the incorporation of all possible alternative
execution paths at build time in the process model. Therefore all execution
paths need to be known prior to execution. At run time the process partici-
pant can choose from several alternative activities at some points of time
in the process. As a result, workflow models tend to become very complex
and even confusing. Furthermore, integrating required compliant process
fragments into these models may result in so-called process pollution [169].
But still, unpredictable situations or frequently changing circumstances
cannot be supported. This flexibility corresponds to the method of advance
modelling of the concept flexibility by selection and is rather limited. The
implementation possibilities depend on the modelling paradigm. A simple
example in an imperative language is the choice construct, where at one step
the process participant can choose between different ways to continue such
that at minimum two distinct workflow instances are possible considering the
order of activities. The term flexibility by definition is used synonymously
[182].

Flexibility by Underspecification

When certain parts of the execution of a process are unknown at build
time, flexibility by underspecification fits perfectly. The process model is left
incomplete with placeholders for these parts, but nevertheless can be started
and instantiated. During run time, when encountering such an undefined
part, concrete activities that fill the blank need to be specified to be able to
continue and ultimately complete the workflow. Thus, the choice of activities
and their execution order is deferred. Two types of underspecification are
distinguished: late binding and late modelling. Late binding requires a
predefined set of possible fragments to choose from, which are specified at
build time, where the flexibility simply comes into play through selection.
Through late modelling the process participants can freely specify the process
part from scratch or reuse previously defined process parts. A main drawback
of this kind of flexibility is that either a set of possible placeholder fills need
to be obvious at build time or modelling expertise is required at run time
from the process participants. Besides, no structural changes are supported.
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Flexibility by Change

With flexibility by change the process participant is able to change the process
model at run time according to his specific needs. This type of flexibility
is reflected by the previously introduced flexibility by adaption. Flexibility
by change can be implemented in various ways depending on the situation
and its requirements. It needs to be determined if changes are made on
model or instance level and if they affect only certain chosen instances or all
future ones. In some cases process instances need to be migrated, depending
on the progress compared to the position of changes. The main drawback
of this approach is that process participants need to intervene manually
and take charge of adjustments by themselves and therefore require process
modelling expertise. The user acceptance in practice is thus rather low.
Another important aspect is the compliance, which needs to be checked after
changes were made. This compliance check might be more easy to automate
at run time, as at this point in time more specific information is apparent
that can be consulted for validation [157].

Flexibility by Deviation

Flexibility by deviation describes the possibility of not pursuing proposed
execution paths during run time but rather deviating from the prescribed
process model without modifying it. This type of flexibility is rather largely
unresearched and only a few approaches with concrete implementations are
available. Therefore no prevailing methods exist. One system that partially
adopts this approach is FLOWer [188], which allows the process participant
to insert tasks at run time. These tasks handle the enactment of other tasks
of the currently executed workflow, like skip, undo or redo. However, this is
very restrictive and the process participant has to intervene manually.

Example

To illustrate the different flexibility types, a simple example and its variants
are shown in Fig. 2.12. Here the desired workflow instance contains an
activity d that is not contained in the model, but should replace activity
b (see line 1). Each necessary change is marked in yellow. With flexibility
by design, this desired execution path is integrated at build time in the
model, by enhancing the model with an alternative routing possibility to
activity b. Flexibility by change would allow for an adaptation of the model
at run time, such that the desired instance is valid. In the example in
Fig. 2.12 activity b is substituted by d. Another possible remodelling could
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result in the model from flexibility by design, which is not listed for the
sake of simplicity. Through flexibility by underspecification, an adaptation
is necessary at build time, in such a way that activity b is replaced by a
placeholder, either left completely unknown (see upper row in line 4) or
keeping fragments from which the process participant can choose (see lower
row in line 4, b or d) in case late binding is used as method. With flexibility
by deviation the workflow model is completely left untouched. Nevertheless,
the process participant is allowed to deviate at run time and can enact
the desired workflow instance. This is enabled in various ways. Hence, no
specific approach is shown in this example.
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Figure 2.12.: Examples of Flexibility Types

Alternative Notions

Besides this taxonomy of flexibility, there are various other classifications.
One of them is worth mentioning, but is based on a different definition of
flexibility itself and is therefore rather limited. According to Sadiq et al.
[158] the term flexibility comprises only the possibility of an incomplete
process model at build time, which is then complemented at run time due
to specific needs. Flexibility is differentiated further into three different
types of flexibility, namely by definition, by granularity and by templates.
This definition is rather limited, as these three mentioned kinds of flexibility
are contained in the previously specified flexibility by design and by change
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and rather describe specific methods for achieving changes. Flexibility
by definition is equivalent to flexibility by design, as it encompasses the
alternative execution paths that are included at build time in the process
model. Flexibility by granularity describes the ability to include abstract
parts in the process model that can be specified in detail at run time,
which corresponds to flexibility by underspecification, more specifically late
modelling or binding. Flexibility by templates means that several different
simple templates are defined for one process model instead of trying to
include all possible alternatives into one complex and unmanageable model,
making it more easy to find the perfect fitting one. This type of flexibility
relates to process variants.

This work will be build upon the classification by Schonenberg et al. [166],
as it is up-to-date and the most reasonable and all-inclusive differentiation.
To expose the unique features of the presented flexibility types, a comparison
will be made in the next section.

2.4.4. Flexibility Type Comparison
When comparing the different flexibility types, some characteristics are
different, whereas some are relatively similar. When relating the process
model completeness with the point in time, when flexibility is achieved, i.e.
build time in contrast to run time, the classification in Fig. 2.13 emerges.
Flexibility by underspecification allows a partial process model and both
integration of flexible constructs at build and run time. Flexibility by design
builds upon a full process model and the possible amount of flexibility is
determined at build time. Requiring a full process model, but still being able
to allow flexibility at run time, holds for both flexibility by change as well
as deviation. Thus, with this comparison, the unique feature of flexibility by
deviation does not become clear.

Comparing the point in time when flexibility is achieved with the degree
of impact, either influencing process model or process instance, all types
overlap to some extent (see Fig. 2.14). Flexibility by underspecification
can affect the process model at build time as well as at run time, whereas
flexibility by design only influences the design of the process model at build
time. Flexibility by change takes place exclusively at run time, but can have
an effect on the process model as well as on the process instance. In contrast,
through flexibility by deviation solely the process instance can be changed
at run time.

To clarify the difference between flexibility by change and by deviation, a
further differentiation concerning necessary user experience is made (see Fig.
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Figure 2.13.: Flexibility Type Spectrum with regard to Flexibility Configura-
tion and Process Model Completeness based on Schonenberg et al.
[167]

2.15). Here, the main advantage of flexibility by deviation is emphasized, as
it is the only type that allows flexibility at run time without the need of a
high user experience or expertise.
Concluding, there are various types of workflow flexibility that differ

concerning several aspects. The challenge is to find the flexibility type that
is adequate for the specific considered requirements, which are sometimes
even conflicting [109].
Flexibility by design, change and underspecification either require an

entire awareness about all possible upcoming situations at build time in
order to manually model all possible alternatives, or a remodelling of the
workflow is necessary at run time. Both strategies are nearly impossible for
SMEs. One reason is that unforeseen situations or unexpected circumstances
can happen at any time. Moreover, remodelling a workflow requires certain
expertise. This includes detailed knowledge about the process itself and the
impacts that the changes can entail. Process participants are usually only
aware of a specific part of the process that relates to the tasks they need to
accomplish, but the remaining parts are like black boxes. Thus, undesirable
side effects may occur due to this superficial knowledge and inexperience.
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Figure 2.14.: Flexibility Type Spectrum with regard to Flexibility Configura-
tion and Degree of Impact based on van der Aalst [182]

Furthermore, process participants lack process modelling know-how in order
to be able to remodel the workflow. With flexibility by deviation, the process
participant is able to execute tasks that are not suggested as next activity,
as the worklist is only seen as a guideline. An increased user acceptance is
therefore assumed. Single instances may not fit to the process model. This
however raises the problem of deciding how to continue with the deviating
workflow to achieve a successful completion. To solve this problem a workflow
engine that facilitates flexibility by deviation is presented in this work.

Moreover, when achieving flexibility for processes, it is inevitable to regard
to which extent and what type of flexibility is necessary and appropriate for
the specific use case [20]. In either direction, usability decreases, whereas
too much flexibility additionally decreases support in most cases [50, 135]

2.4.5. Flexibility Trade-Off
When modelling workflows, it is generally important to find the ideal balance
between control and flexibility depending on the domain in which the WfMS
is applied. The benefit is significantly dependent on this trade-off. Flexibility
and support seem to be two opposing properties of a WfM (see Fig. 2.16)
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[134, 167]. Here, support describes the extent to which the system is
responsible for decision making and to which extent the user can decide
independently [134]. Thus, support behaves proportionally to the extent of
pre-definition. The more is predefined, the more the user is supported, but
the less flexible behaviour is permitted. The challenge is to find the right
balance between these two properties.

This also affects the aspect of usability that decreases in either direction,
starting from the most balanced point. Too much flexibility impedes the
acceptance of a system due to a lack of guidance, whereas too much support
might restrict and lead to a workaround and a bypassing of the system.
Bider [19] argues similarly and uses the notion rigidity. He argues that
rigidity also needs to be balanced with flexibility to achieve a high user
acceptance [19]. As the perfect amount of rigidity cannot be accomplished
from the beginning, flexibility needs to be enabled in the background. For an
easy-to-use system, the user needs to be guided in a simple way. Thus, too
much flexibility from the beginning on is also counterproductive for usability.

Another important point that indirectly relates to support is compliance.
The more flexibility is allowed the more effort is necessary to validate



2.5. Related Work 47

Flexibility Support

Extent of Pre-Definition

Figure 2.16.: Trade-Off between Flexibility and Support due to the Extent of
Pre-Definition based on Pešić [134]

compliance [157]. As resources are often scarce, a trade-off has to be made
as well. A high flexibility but potentially no compliance needs to be weighed
against rigid workflow behaviour that is compliant.

For creating an adequate flexible workflow management, all these aspects
need to be considered and required characteristics and applied methods need
to be assessed. The concept of the developed flexible workflow approach for
the use case that is regarded in this thesis will be presented in Chapter 5.

2.5. Related Work
Workflow flexibility has been focused on in research for more than a decade
now and thus many approaches exist. As the previous section has shown,
there are various characteristics and aspects that can be investigated and
concentrated on. But still some issues fall short, notably flexibility by devia-
tion or, broadly speaking, the automated handling of unforeseen situations
and exceptions. Nonetheless, there is potential for future research.
In the following, an overview of related approaches will be given.
Besides established modelling languages, like BPMN, rather novel declara-

tive languages for handling flexibility issues emerge, i.e. flexibility by design,
as they offer implicit flexibility to some extent.

Freeflow is a constraint-based language that is based on an extended state
model of activities in order to separate the user view from the system view
[41]. Due to these extended capabilities of specifying dependencies, a more
flexible design of workflows is possible that results in flexibility at run time.



48 2. Foundations on Flexible Workflow Management

Tucupi is a workflow approach based on constraints that specify pre and
post conditions [196]. Hence, the sequence of activities is dynamically build
at run time during execution. Additionally, authorized users are able to
adapt specific constraints at run time. Nevertheless, these constraints are
very simple and neither repetition of activities nor temporal constraints
except regarding order are possible.
Khomyakov and Bider [79] pursue a similar rule-based approach. They

create the workflow through dynamic planning at run time after each executed
activity. At build time, three different types of rules need to be specified, i.e.
obligations, prohibitions and recommendations [79]

ESProNa (Engine for Semantic Process Navigation) is a workflow engine
that builds upon a novel constraint-based modelling language [73]. The
constraints can be specified for each of the process perspectives presented
in Subsection 2.3.5 and can additionally be enhanced with semantic and
relational knowledge on the basis of Resource Description Framework (RDF)
data graphs. The workflow approach applies reasoning in combination with a
planning component to automatically evaluate the process model concerning
executability on the basis of the specified constraints.
Klingemann [84] proposes an approach that additionally allows for a

modelling of non-structural goals. Modelling elements are enhanced by
so called flexible elements (FE) that contain execution alternatives. The
workflow engine optimizes the workflow model during run time, thereby
balancing goals that are to be achieved. These can base on quality criteria,
structural aspects as well as combined parameters.

A main disadvantage of these approaches is that they are based on know-
ledge that needs to be specified effortfully beforehand. Aside from that, it is
unclear or rather unrealistic that the known information is sufficient to map
all upcoming situations.

With flexibility by change, process participants are enabled to adapt the
running instance due to altered conditions. Various approaches exist that
apply different methods to supervise these adaptations in order to ensure
valid and consistent results and to guarantee legitimacy. However, knowledge
or rules need to be specified beforehand for this purpose, which additionally
creates overhead.

ADEPT is an adaptive WfMS that mainly implements flexibility by change
[144]. A graph-based modelling language is used that builds upon block
structuring to ensure correctness by construction [142]. ADEPTflex as part
of the WfMS includes a set of possible change operations, i.e. insert, omit or
skip the order of activities [143]. Modelled pre and post conditions for these
operations allow for evaluating correctness and consistency, and thus, decide



2.5. Related Work 49

about denying or allowing the specific change [143]. Additionally ADEPT
offers schema evolution with techniques for a safe propagation of changes
to running instances [144]. Furthermore, it allows for specifying temporal
constraints of tasks, like maximum duration or deadlines that are observed
through temporal constraint networks [144].
In the ensuing project ADEPT2, the possible ad hoc change operations

were further refined and extended [30, 145]. Furthermore, the modelling
capabilities were enhanced, as additionally process fragments can be reused
through plug & play [30]. The ADEPT platform has been further elaborated
and subsequently transformed to a commercial product, which is already
used by different industries, the AristaFlow BPM Suite [32].
KitCom is a prototypical implementation and extends the AristaFlow

BPM Suite [81, 157]. It uses the FlexCom method to guarantee compliance
and flexibility simultaneously. At build time, individual control processes
concerning compliance measures are implemented with parameters that are
connected to the procedural workflow model. During execution, if these
conditions come into effect, the modelled control process is injected auto-
matically into the workflow instance to meet the compliance requirements.
Hence, this approach allows for automated dynamic change.
MOKASSIN is another flexible workflow approach that focusses on the

distributed and collaborative execution [74]. They define so called control-
flow dependencies to extend and relax the standard execution semantics. As
formal basis, ECA rules are used, which describe the control-flow and the
dependencies. Additionally, these ECA rules are used to support dynamic
changes, but to a limited extent.
Vieira et al. pursue a similar rule-based approach but for handling

a different obstacle, in particular dealing with incomplete and negative
information [192]. As formal basis they use an ontology where semantic
knowledge is stored, such as semantic rules or proximity properties. Two
mechanisms that exploit this ontology are applied, on the one hand to
compute presuppositions, and on the other hand for choosing and evaluating
alternatives, for instance subworkflows, resources, or users [191].
WASA is a workflow approach that has been developed specifically for

scientific applications that supports flexibility by change [194, 204]. The
user can actively intervene in the execution process by skipping, stopping or
repeating an activity [203]. Dynamic changes are allowed through including
modelling activities in the workflow model at build time for such process parts
that are unknown, which corresponds to flexibility by underspecification
[203]. Furthermore during run time, the user is able to integrate these
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modelling activities at any time in the process, allowing him to adapt some
parts at run time [203].
Wagner applies a different technique to yield flexible run time changes

[195]. The approach agentworkflow is based on hierarchical nested subwork-
flows that can be substituted under consideration of different aspect. One
agent is responsible for the flawless connection and (re-)configuration of the
subworkflows and each of these subworkflows is controlled by another agent,
formally basing on Petri nets.
Worklets are similar to agentworkflows, as they represent self-contained

subworkflows that can be nested and dynamically connected at run time [3].
Worklets can be specified with Yet Another Workflow Language (YAWL)
and a service evaluates at run time on the basis of contextual data, which
worklets can substitute a task of the workflow instance.

With CF4BPMN, which is an extension for BPMN, controlled flexibility
is enabled [107]. Possible changes are specified as constraints, defining roles
with authorizations such that compliance is ensured. These possible changes
are marked in BPMN models. The unique aspect of this approach is the
graphical component of visualising possible parts of the process where the
process participant is allowed to apply changes.
DECLARE is a constraint-based workflow approach using ConDec [137]

as declarative modelling language [135, 184, 207]. The language is formally
based on linear temporal logic formulae that are translated to automata.
The approach is suitable for loosely structured processes and allows ad hoc
changes at run time by adapting constraint models.

Approaches that implement flexibility by underspecification are a kind of
mixture of flexibility by design and by change, as they on the one hand require
flexible modelling aspects for placeholders and late binding capabilities at
build time, but on the other hand modelling expertise is necessary at run
time, at least to a certain extent.

The approach called pockets of flexibility perfectly fits to the type flexibility
by underspecification [158]. The workflow is divided in the core process and
the integrated pockets of flexibility. These pockets represent placeholders
that are concretised at run time. One pocket of flexibility consists of workflow
fragments and a build activity that defines through declarative constraints
how the pocket can be composed. Thus, procedural and declarative modelling
constructs are combined in one model. Late modelling and late binding are
both implemented through this approach.

WorkWare is a flow-based modelling language that allows unspecified parts
[75]. The pursued concept intends an interactive decision making involving
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the process participants where necessary and thereby supporting emergent
workflow behaviour.

Schmalen [165] proposes a reference model for adaptive WfM that allows
ad hoc changes through late modelling. Through introducing the concept of
breakpoints, parts of the workflow instance can be blocked during execution
and thereby enabling structural modifications at run time, at least in the
disabled subworkflow. Predefined adaptation rules ensure that consistency
is preserved despite the made changes. In the work of Minor et al. [115], a
concept is introduced that enhances the previously described approach as
ad-hoc changes of ongoing workflows are supported by means of case-based
reasoning. Therefore, new concepts for a workflow modelling language and
a workflow enactment service are described and a similarity measure on
the basis of a graph edit distance is specified to allow for a reuse of change
experience.
YAWL is a novel modelling language, allowing a variety of workflow

patterns [185]. Control-flow as well as other dependencies including all of
the existing modelling perspectives (cf. Subsection 2.3.5) can be specified.
The formal basis for the language are extended workflow nets. Worklets, as
described before, can be used for dynamic changes during run time [2].

Case handling was developed as a new paradigm with focus on data and
what can be done instead of how it can be done [188]. The overall workflow,
denoted as case, is always regarded as a whole. Process participants are
aware of every information available instead of concentrating on one work
item. Tasks are activated on the basis of available information in contrast
to terminated activities as precondition. Data can be added or modified at
any time of the workflow independent from related tasks. Furthermore, the
concept of roles and authorizations is expanded to executing, skipping and
redoing activities. Thus, the approach allows controlled deviations on task
and process level.
FLOWer is a system that applies the case handling paradigm and offers

a modelling language to define several different relations between tasks
and data [188]. The previously mentioned aspects are also implemented in
FLOWer, most importantly the possibility to deviate flexibly at run time
without losing control, which is limited to skip, redo, undo, and creating a
new instance of a task.
PHILharmonicFlows is a workflow framework for the support of object-

aware processes [23, 88]. The focus is on the data flow similar to the
case handling paradigm. Process modelling is based on the specification of
relations between tasks, data, functions, and users.
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Concerning flexibility by deviation, no approaches exist that are able to
cope without manually predefined knowledge or a necessary active interfer-
ence of the process participant to achieve a deviation. Some approaches
concerning exception handling exist that will be presented in Chapter 6.



3. Domain & Potentials
This chapter gives an overview of the main concept, which allows for workflow
flexibility by deviation, and its potentials in the regarded domain of deficiency
management in construction. In the first Section 3.1, an exemplary typical,
ideal but simple workflow for deficiency management in construction will be
presented. On the basis of an extended workflow, which aims at mapping
all possible occurring situations, the gap between ideal and factual state
space is revealed. Due to this discrepancy, arising potentials and general
necessities of a flexible approach that is adequate for SMEs are pointed out
in the subsequent Section 3.2. Finally in Section 3.3, the pursued flexible
workflow approach is sketched in comparison to the traditional process cycle.

3.1. Deficiency Management in Construction
As elucidated in the introduction of this thesis, SMEs are the target group
of the designed approach. To emphasize the potential of a flexible workflow
system for SMEs, one concrete real-world use case is presented in this
section, which is also referred to as running example and used throughout
the evaluation of the approach.
Deficiency management in construction has proven potential as use case

for handling with a flexible PAIS [51]. In the research project SEMAFLEX,
we cooperated with a construction company that gave us a first insight into
the process. As they did not use any information system so far, there was
no process model available. Therefore, we developed a simple ideal workflow
model in consultation with the employees that represents the standard way
of handling a deficiency in construction (see Fig. 3.1). The workflow is seen
from the perspective of a construction management.

3.1.1. Simple Ideal Workflow Model for Deficiency
Management in Construction

In the shown workflow in Fig. 3.1, tasks are represented as rectangles,
whereas ovals indicate data nodes. Control-flow nodes (e.g. exclusive blocks
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marked with an “×”) are shown as rhombuses. The solid lines represent the
control-flow and dashed lines mark data-flow. Each data node represents a
document, which consists of several data attributes that influence different
other tasks. Some annotations are written next to control-flow edges, to add
information about the decisions taken and their impact. These annotations
refer to information that can be drawn from the documents in most cases.

The ordinary processing of a case concerning deficiency management starts
with receiving a notice of defects. The subsequent activities correspond to
checking preconditions for a possible repair on the basis of different data,
e.g. the contract. This includes verifying the scope of work and warranty,
as well as inspecting the reported defect. For this purpose, documents
such as the approval or photos of the inspected defect are involved. After
checking the competence, the scope of responsibility of the affected part
of the building is investigated. Subsequently, the reported defect is either
forwarded to the subcontractor who is responsible for the affected unit of
work or the defect is processed further by the own company. If the latter
applies, the cause and thus, the responsibility has to be identified. If the
defect was caused by the company, the repair is planned, performed, and
then either accepted or these steps are repeated until acceptance. In case
the responsibility is on the subcontractors’ side, the following step after
notification is receiving the information about a terminated repair. The
workflow finishes in both cases (own company or subcontractor repairing the
defect) with a customer notification about the completed repair process and
the corresponding corrected or declined defect, if no other exception caused
a termination priorly.
This workflow describes the ideal scenario and processing of a workflow.

Nevertheless, unusual situations happen and circumstances change contin-
uously, whether due to varying customer requirements or modified legal
restrictions and obligations. The range of possible deviations is rather com-
plex. To map as many deviations as possible, obviously only foreseeable
ones, we developed a second workflow model (cf. Fig. 3.2 - 3.5).

3.1.2. Extended Workflow Model for Deficiency
Management in Construction

Based on the simple workflow model, we increased the degree of detail and
tried to consider all possible alternative, realistic, and frequent scenarios.
This lead to a very large and complex workflow model trying to capture the
reality. This complex model resulted foremost from various discussions with
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Figure 3.1.: Simple Ideal Workflow Model for Deficiency Management in Con-
struction
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an architect who frequently takes on the task of construction supervision
and as a consequence is responsible for deficiency management.
The more complex and detailed workflow for deficiency management in

construction allows more alternative executions paths that not only mix up
the order of tasks but also contain newly introduced process parts. One main
difference concerns the start of the workflow. In many cases the customer
only sends an informal message that something was not build properly or
that a defect appeared. Depending on the companies’ guiding principles,
a formal notice of defects, containing a deadline and urgency among other
things, is subsequently requested, or the defect handling is based on the
informal message. Afterwards, in contrast to the simple model, several
checks can be made, but can also be omitted, e.g. in case of tacit awareness
about the required decision knowledge. Furthermore, the tasks Check Scope
of Work and Check Warranty can be executed in parallel.

Another differing aspect in some cases is the lack of a clear division
or assignment of one unit of work regarding a possible subcontractor. An
agreement with the involved subcontractor might be required before repairing
the defect. Furthermore, two additional alternatives are integrated into the
model, which mainly concern the billing of the repair. This results either in
requesting an insurance for bearing the incurred costs or suggesting to pay
a compensation to the customer, e.g. in case the defect is not severe.

In this detailed model some additional documents and data objects appear,
but without impact on the control-flow. In most cases some alternative
documents were added, which serve as input for some tasks, but with an
optional character, as one of those documents is sufficient to obtain the
required information. For instance, the contractual relationship can be
checked on the basis of a confirmation of order, an invoice, an offer, the
contract itself, or even a verbal confirmation.

These dependencies partially result from the point of time during the
project, at which some of the documents do not exist yet. In some cases,
tasks can be handled without explicit documents and decisions are made
on the basis of other data. One example is the so-called fictitious approval,
which is depicted as data object in Fig. 3.3, but it rather arises due to
specific circumstance, for instance the occupancy of the building or the
timeline. Some decisions prior to control-flow nodes are more sophisticated
due to the influence of several or additional data attributes.

As can be seen from this detailed workflow model, the complexity increases
rapidly when adding new alternatives, as there are various interdependencies,
e.g. between data objects. Deviating from the prescribed path of the simple
workflow model without deeper knowledge or predetermined strategies is
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Figure 3.2.: Extended Workflow Model for Deficiency Management in Construc-
tion, Part 1



58 3. Domain & Potentials

ye
s

ye
s

W
ar

ra
nt

y 
/ 

S
co

pe
 o

f 
W

or
k 

ex
is

ts
? 

O
r 

G
oo

dw
ill

?

no

no

O
ut

so
ur

ce
d?

ye
s

C
on

tr
ac

t 
ex

is
ts

?

Ti
me

 
Sh

ee
t

No
ti

fy
 

Cu
st

om
er

(F
ic

ti
ti

ou
s)

 
Ap

pr
ov
al

No
 C

on
tr

ac
t 

/ 
Or

de
r

No
ti

fy
 

Su
bc

on
tr

ac
to

r

Co
mp

le
te

d 
Da

ma
ge
 

Re
pa

ir
In

fo
rm
at

io
n

In
sp

ec
t 

/ 
Ve

ri
fy
 

De
fe

ct

Se
rv

ic
e 

Sp
ec

if
ic

at
io

ns

Ch
ec

k 
Wa

rr
an
ty

In
vo

ic
e

No
ti

fy
 

Cu
st

om
er

Re
ce

iv
e 

No
ti

ce
 

of
 R

ep
ai

r

Ch
ec

k 
Co

mp
et
en

ce

Of
fe

r
Or

de
r 

Co
nf

ir
ma

ti
on

Co
nt

ra
ct

ua
l 

Re
la

ti
on

sh
ip

No
 W

ar
ra

nt
y 

/ 
Sc

op
e 
of

 W
or

k

Co
nt

ra
ct

 
Su

bc
on
tr

ac
to

r

Ch
ec

k 
Sc

op
e 

of
 W

or
k

Figure 3.3.: Extended Workflow Model for Deficiency Management in Construc-
tion, Part 2



3.1. Deficiency Management in Construction 59

Ac
tu

al
 D

ef
ec

t?
 

O
th

er
 O

ri
gi

n?

ye
s

N
o 

S
ub

co
nt

ra
ct

or

Ad
di

tio
na

l 
C
om

pa
ni

es
 

In
vo

lv
ed

?

ye
s

no

no

no
Su

bc
on

tr
ac

to
r

No
ti
fy

 
Cu

st
om

er

Co
ns
ul

ta
ti

on
 

of
 S

ub
co

nt
ra

ct
or

s

Pl
an
 o

f 
Da

ma
ge
 R

ep
ai

r

Re
qu
es

t 
In

su
ra
nc

e

Ch
ec

k 
Re

sp
on

si
bi

li
ty

De
cl
in

e 
De

fe
ct

Ph
ot
os

Co
mp
en

sa
ti
on

 
Ag

re
em
en

tPl
an
 

Da
ma

ge
 

Re
pa
ir

In
qu

ir
y 

to
 

Cu
st
om

er
 

co
nc
er

ni
ng
 P

la
n

Re
pa
ir

 
De

fe
ct

Co
mp
en

sa
ti
on

 /
 C

re
di

t 
/ 

Ca
nc

el
la

ti
on

 /
 D

is
co
un

t

No
 

Re
pa
ir

Re
po
rt

Figure 3.4.: Extended Workflow Model for Deficiency Management in Construc-
tion, Part 3



60 3. Domain & Potentials

Assumes 
Damage?

no

yes

yes

Approved? 
Received Amount?

no

Issue 
Invoice

Approve 
Damage 
Repair

Forward 
Invoice

Invoice

tos

Approval 
/ Report

Invoice 
Amount 

of Damage 

Release 
Residual 
Amount

(see Fig. 3.4)

(see Fig. 3.4)

(see Fig. 3.3)

(see Fig. 3.3)

Figure 3.5.: Extended Workflow Model for Deficiency Management in Construc-
tion, Part 4



3.2. Potentials of a Flexible Workflow Approach 61

challenging and raises questions about how to proceed. Nevertheless, as
it is practically impossible to consider all possible upcoming situations,
deviations need to be supported in an automated manner in order not to
impede efficacy, efficiency, and ultimately flexibility.

3.2. Potentials of a Flexible Workflow Approach
The potentials of a flexible workflow approach are derived by analysing
the current state of the art in SMEs. Furthermore, some examples are
described that present actual use cases of a flexible approach. Based on this,
requirements are listed.

3.2.1. State of the Art
The current way of handling deviations in the company with which we
cooperated during the SEMAFLEX project is rather rudimentary and does
not consider any of these desired aspects. It is assumed that a majority
of SMEs, especially in certain industries like the craft sector, are compara-
ble, particularly regarding the prevalence of digitalization and the use of
information systems. So far, the reported deficiencies were registered and
updated locally in a document with tabular form. Updates that come from
different sources, whether from the worker at the construction site or from a
secretary in a bureau, are integrated in a cumbersome way. Obtaining some
necessary information along the way is rather inconvenient and additionally
requires a lot of communication.
Furthermore, the way of handling a deficiency is only available as tacit

knowledge. Our interview with the construction company during the SE-
MAFLEX project showed that no explicit processes exist. The knowledge
about how things are done and particularly how to solve problems is tacit
and only known by experienced employees. Especially when exceptions
or unusual situations occur, newly introduced employees are quickly over-
strained and need to rely on support by long-term employees, which requires
additional effort. Knowledge transfer, sharing, and reuse is so far done
manually.
Thus, the introduction of a PAIS would yield several benefits. Never-

theless, standard PAISs with a traditional workflow integration raise some
downsides. Above all, the lack of flexibility is the main drawback. In SMEs,
the processes are not standardized, but rather individually adapted to cus-
tomers needs. As employees tend to be more versatile and cover several
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competencies, unbureaucratic decisions and deviations are common. In case
process participants undergo an unknown situation during the use of stan-
dard WfMS, they need to stick to the standard procedure or circumvent the
system, which neglects flexibility and results in workarounds or suboptimal
situations.

Another prerequisite for the use of a PAIS is the necessary knowledge and
overhead concerning usage and maintenance. Both aspects need to be kept
quite low in order to achieve an effective application and simultaneously
a high acceptance, as SMEs rather have few personnel resources and no
experience concerning workflow management and PAISs. Hence, a flexible
workflow system adequate for SMEs should be easy to use and maintain.

3.2.2. Exemplary Use Cases
A typical use case where flexibility by deviation is beneficial is if a construc-
tion worker is on site and gets aware of a defect. S/he very likely implicitly
knows about the scope of work and warranty without checking the contract
additionally, and hence, avoiding the bureaucratic burden. Thus, s/he is
able to directly inspect and verify the defect by taking some photos. With
a flexible PAIS, that could run in an instance on his mobile phone, the
employee is enabled to directly upload these photos and inform the system
about the task execution. All previous tasks can be marked as skipped or
implicitly executed depending on the context or set preferences. On the basis
of an adapted workflow instance, new task suggestions can be computed. In
this example, flexibility would lead to an increased efficiency and acceptance.
Thus, the system is no burden for the experienced process participant,

as unlike in standard WfMSs not every step has to be executed explicitly
from the beginning on. Actually enacted tasks are monitored and even if
deviations occur, possible succeeding work items are computed and proposed,
as in this example: Check Competence. Additionally, conclusions considering
implicit semantic information can be drawn from the workflow model, taking
preceding skipped activities into account. Here, the system would derive
that a contract exists between customer and company and that the reported
defect is in the scope of work and included in warranty.

Two different workflow models were shown in the previous section. Com-
mon practice is that a very simple workflow, which represents the ideal
course of action, is modelled (cf. Subsect. 3.1.1), whereas in reality a variety
of other situations can occur that do not match the implemented workflow
(cf. Subsect. 3.1.2 and additional unpredictable execution paths). With the
presented approach it should be possible to apply such a simplified ideal
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workflow model to the WfMS. Nevertheless during execution, deviations
from this model are allowed. Still, the flexible WfMS should support the
user on the basis of, e.g. previously made experiences or simply by restoring
model consistency due to defined strategies.
For instance, when considering the start of the workflow, the possibility

of receiving solely an informal message about a deficiency is not included
in the simple workflow model. An inexperienced employee is not aware of
how to handle such a situation. If an experienced operator encountered
such circumstances before and decided to simply proceed with the workflow
without requesting a formal notice of defects, this terminated workflow
instance can be used for knowledge transfer. The vision is to reuse these
previously executed tasks after the deviation as proposal in order to increase
support and efficiency. In the example, Check Contractual Relationship
would be suggested among other tasks. Thus, exceptions, deadlocks, and
workarounds are prevented.

3.2.3. Requirements
In summary, the following requirements for a flexible workflow approach
that supports SMEs in particular exemplified by the workflow of deficiency
management in construction are derived:

RE1: Flexibility
• Allowed Deviations
• Continuous Support

RE2: Knowledge Transfer
• Preservation
• Sharing
• Reuse

RE3: Low Effort
• Usability
• Maintainability
• Experience

One main required aspect of the presented approach is flexibility. Deviations
from the predefined workflow model should be allowed. However, continuous
support during workflow execution should be guaranteed without leading to
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deadlocks or requiring workarounds. The second essential aspect addresses
the basis for the success of such a continuous support that is to say knowledge
transfer. Previously made experiences by process participants should not
remain tacit, but necessarily be preserved somehow in order to share this
knowledge and ultimately to reuse it for a profound decision making. An
additional impact of this knowledge transfer is the possibility to identify
and establish “best practices”. The third substantial requirement that is
important for a successful deployment in SMEs concerns a low effort to
achieve the previously mentioned points, i.e. flexibility and knowledge
transfer. No expert knowledge or past experiences should be required in
order to be able to use and maintain the presented WfMS.
The recognized demands are consistent with the research by Gessinger

and Bergmann [51] to a great extent. In this work three main requirements
for systems to be adequate for deficiency management in construction are
identified. Two of them are relevant for the presented work. The first one
considers a support for process flexibility, which is the essential aspect that
is tackled by this work. The third requirement regards the preservation
and sharing of knowledge about best-practice processes, which is another
substantial point of this work. Knowledge transfer is the technique that
simplifies a controlled support of a flexible execution and thus, it is a necessary
prerequisite and an improvement to the quality of support. Gessinger and
Bergmann [51] emphasize that this knowledge sharing and reuse is essential
to adequately deal with the continuously rising demand for decision support
in processes.
To integrate the described flexibility, the standard workflow cycle needs

to be modified, which is introduced in the following section.

3.3. Main Concept
The main drawback of the standard workflow cycle (cf. Fig. 2.3) is the lack
of deviation possibilities. A main aspect that is allowed in the developed
concept of this work is the ability to deviate. This means that the enacted
task does not comply with the proposed elements in the worklist. This
issue is represented in Fig. 3.6. Due to this occurred deviation, the flexible
workflow engine is forced to interfere by adapting the workflow instance in
order to re-enable worklist computations. A more detailed description of
the functionality of the workflow engine and applied methods is given in
the following chapters. Chapter 5 elucidates the constraint-based workflow
engine, which is foremost responsible for offering flexibility. Furthermore,
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the constraint-based language is introduced, through which it is possible
to automatically generate workflow models on the basis of procedurally
modelled workflows. Hence, no deeper knowledge about a formal language is
necessary and no additional effort has to be taken to allow deviations. The
case-based deviation management, which is explained in Chapter 6, further
refines the handling of deviations by integrating experiential knowledge into
the process of computing work items.

Model
(1)

Process  
Engineer

Process  
Participant

(5)
Instance

(2)(6)

Event Logs

(7)

Build Time

Run Time

Worklist

Task

Deviation

Flexible 
Workflow 
Engine

Figure 3.6.: Business Process Life Cycle with Flexible Workflow Engine

The high topicality of the regarded issue in BPM research is also reflected
by a survey of van der Aalst [182]. He presented several core issues con-
sidered in BPM research [182]. In this work some of them are investigated
and concepts are introduced that can be categorized into the presented
classification by van der Aalst [182]. In the auditing field the activity detect
is tackled by the constraint-based workflow engine that detects deviations
from the process model by comparing the de facto instances to the de jure
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process model. In a subsequent step promote is regarded. To establish
best practices, all terminated process instances can be mined to a new
process model and parts can be transferred to the previous de jure workflow.
Concerning navigation the activity explore is supported by this approach.
Running instances are compared to terminated ones to initiate actions at run
time, e.g. recommending deviating tasks. Recommend is only partly assisted,
as there is no concrete optimization goal in the considered workflows, but
only success. In this concern the most promising steps are chosen to be
suggested to the process participant for execution.



4. Prerequisites
This chapter addresses necessary prerequisites. For a formal specification
of the developed approach, some basic definitions are crucial. Workflows
are described as a special form of graphs, which are defined in Sect. 4.1.
The approach is not applicable to all forms of workflows, but limited to
block-oriented workflows. Therefore, this restriction to block-orientation is
specified and exemplified with small instances in Sect. 4.2. Furthermore,
to clarify the execution semantics, which are characterized in Sect. 4.4,
execution paths and operators are defined preliminarily in Sect. 4.3.

4.1. Graphs
Workflows describe the way of how to reach one specific goal through the
execution of several tasks. These tasks are connected in a specific direction
and order. Directed graphs serve this purpose precisely and thus, are used as
a formal basis for workflows. The subsequent definitions are made according
to Cormen et al. [27].

Definition 4.1 (Directed Graph). A directed graph G is a pair (N,E),
where N is a finite set and E is a binary relation on N : E ⊆ N ×N . The
set N is called the node set of G, and its elements are called nodes. The set
E is called the edge set of G, and its elements are called edges.

Graphs can further be decomposed into subgraphs, which only represent
parts of the original graph.

Definition 4.2 (Subgraph). Let G = (N,E) be a graph, then G′ = (N ′, E′)
is a subgraph of G, iff it holds that N ′ ⊆ N and E′ ⊆ E.

Further, as one important property of nodes, the degree with two special-
izations is introduced.

Definition 4.3 (Degree, In-Degree, Out-Degree). In a directed graph, the
out-degree of a node is the number of edges leaving it, out-degree(n) = |(n,m)|
with n,m ∈ N and (n,m) ∈ E, and the in-degree of a node is the number
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of edges entering it, in-degree(n) = |(m,n)| with n,m ∈ N and (m,n) ∈ E.
The degree of a node in a directed graph is its in-degree plus its out-degree.

To specify the composition of nodes and edges, this property can be
restricted through values that are valid.

4.2. Block-Oriented Workflows
A definition of block-oriented workflows is presented on the basis of a
graph-based definition of workflows in general. Workflows are composed of
tasks that interact with data objects. These tasks are connected, defining
dependencies such as order. Control-flow nodes are responsible for splitting
up one task sequence into two sequences or inversely joining two sequences
into one. These control-flow nodes reflect a logical operation, such as “and”
to express parallel tasks. Different edge types are used to connect these
workflow elements. Data-flow edges indicate the input or output of a data
object for a task. Control-flow edges specify the order among tasks or
between a task and a control-flow node.

Definition 4.4 (Workflow). A workflow is a directed graph W = (N,E)
where N is a set of nodes and E ⊆ N × N is a set of edges. Nodes
N = ND ∪NT ∪NC can be data nodes ND, task nodes NT , or control-flow
nodes NC . In addition, NS = NT ∪NC is referred to as the set of sequence
nodes, i.e., task nodes as well as control-flow nodes. Edges E = EC ∪ ED

can be control-flow edges EC ⊆ NS × NS, which define the order of the
sequence nodes, or data-flow edges ED ⊆ (ND ×NS) ∪ (NS ×ND), which
define how data is shared between the tasks.

An example workflow graph is shown in Fig. 4.1. Task nodes NT =
{t1, t2, t3, t4} are represented by rectangles and data nodes ND = {d1, d2}
are depicted as ovals. Rhombuses indicate control-flow nodes NC = {cs, cj},
in this case a parallel control-flow block (“+”) with a split cs and a join
node cj. Control-flow edges connect task and control-flow nodes. Dashed
lines mark data-flow edges that represent input or output relationships.
The exemplary workflow simultaneously fulfils every criteria of block-

oriented workflows, which are introduced subsequently. The designed work-
flow engine is able to handle these specific kind of workflows. The paradigm
of regular block structuring was introduced by Reichert [142] to guarantee
model correctness by construction [80, 120]. This additionally enables an
easily ensured consistency when adapting such workflows.
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cs

t2
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cjt1 t4

d1 d2

cs cj

Figure 4.1.: Example of a Workflow Graph

A block-oriented workflow is composed of single blocks that comprise
various types. These blocks can in turn contain several blocks or be nested
in one another. The most important property of these blocks is being
well-formed due to a single definite starting and ending point.

The definition of block-oriented workflows that is made in this work
only integrates some types of workflow blocks. In particular, such types
are considered that conform to the most common and essential control-
flow patterns that are part of prevalent workflow modelling languages [205,
p. 126–130]. This is done in order to simplify the introduction of the
approach and to reduce complexity. Furthermore, a study showed that
business process modellers only use a fraction of languages like BPMN [216].
Thus, it is assumed that the used subset of patterns offers basic sufficient
functionality. Further patterns, which are required in a specific domain,
might be introduced in future work.

The main element of block-oriented workflows is a workflow block, which
is defined as follows.

Definition 4.5 (Workflow Block). Let W = (N,E) be a workflow. A
workflow subgraph B = (NS

B , E
C
B ) is called workflow block, if it holds NS

B ⊆
NS and EC

B = {(n, n′)|(n, n′) ∈ EC ∧ n, n′ ∈ NS
B} and it has one of the

forms, which are defined in Def. 4.6 - 4.9 together with the definition of
their first and last element, first(B) ∈ NS

B and last(B) ∈ NS
B.

The simplest form of a workflow block comprises only one task node.

Definition 4.6 (Single Task Block). A single task block consists of a
single task node B = Bt. Then we define NS

B = {t} and EC
B = ∅ with

first(B) = last(B) = {t}

Fig. 4.2 shows a single task block with task t.
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t

Figure 4.2.: Single Task Block

To allow more than one task as a workflow block, two workflow blocks can
be connected sequentially.

Definition 4.7 (Sequence Block). A sequence block consists of a sequence of
two workflow blocks B = B(B1,B2) with B1 = (NS

B1
, EC

B1
), B2 = (NS

B2
, EC

B2
)

as workflow blocks of B and a control-flow edge e = (last(B1), first(B2))
and it holds EC

B = {e} ∪ EC
B1
∪ EC

B2
and NS

B = NS
B1
∪ NS

B2
. For the

first and last elements of the block B we define first(B) = first(B1) and
last(B) = last(B2).

Fig. 4.3 shows an example of a sequence block, where blocks B1 and B2

(dashed rectangles) are concatenated sequentially, connected with a directed
control-flow edge. This indicates that block B1 has to be completed before
block B2 is enabled and can be started. B1 and B2 can in turn be any kind
of workflow block according to Def. 4.6 - 4.9. The sequence block conforms
with the sequence workflow pattern [205, p. 126–128].

B1 B2

Figure 4.3.: Sequence Block

Additionally to the sequential connection of two workflow blocks, control-
flow nodes can be linked to workflow blocks, to serve different purposes and
meanings.

Definition 4.8 (Exclusive or Parallel Control-Flow Block). A control-flow
block can be either an exclusive or a parallel block B = B

(B1,B2)
XOR /B =

B
(B1,B2)
AND , with B1 = (NS

B1
, EC

B1
), B2 = (NS

B2
, EC

B2
) as workflow blocks

of B. B contains an opening control-flow node cs ∈ NC
B (control-

flow split) with an out-degree of two, two branches, which are outgo-
ing from cs, each containing a workflow block (B1 and B2), whose
control-flow lead to a matching closing control-flow node cj ∈ NC

B

(control-flow join) with an in-degree of two. The control-flow nodes
and block elements are connected through the following set of edges:
EC′

B = {(cs, first(B1)), (cs, first(B2)), (last(B1), cj), (last(B2), cj)} and
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it holds EC
B = EC′

B ∪ EC
B1
∪ EC

B2
and NS

B = {cs} ∪ {cj} ∪ NS
B1
∪ NS

B2
.

First and last elements are the control-flow nodes: first(B) = cs and
last(B) = cj.

Fig. 4.4 shows two exemplary control-flow blocks. Workflow blocks
are represented as rectangles with dashed lines and control-flow nodes as
rhombuses. Exclusive control-flow nodes are marked with an “×” and parallel
control-flow nodes with a “+”. The first control-flow node in each of the
blocks indicates the control-flow split (named cs in Def. 4.8) and the last
control-flow node indicates the control-flow join (named cj in Def. 4.8).
This corresponds to the control flow patterns named and split, and join, xor
split and xor join [205, p. 130f]. Here, the and patterns indicate that two
concurrent branches are either opened up or merged again. In contrast, the
two branches that follow an xor split are exclusive, such that one branch is
chosen and the other one discarded. The xor join simply implies that the
chosen branch is terminated, but in contrast to the and pattern no active
synchronization of both branches takes place [205, p. 128f].

B1

B2

B1

B2
cs cj cs cj

Figure 4.4.: Parallel and Exclusive Control-Flow Block

A special form of the exclusive control-flow block contains only one work-
flow block in one path, whereas the other path is left empty to indicate the
conditional execution of the workflow block.

Definition 4.9 (Single-Branch Exclusive Control-Flow Block). A single-
branch exclusive control-flow block is an exclusive block B = BB1

XOR, where
B1 = (NS

B1
, EC

B1
) is a workflow block of B, containing an opening control-

flow node cs ∈ NC
B with an out-degree of two, one branch with a work-

flow block (B1), an empty branch and a matching closing control-flow
node cj ∈ NC

B with an in-degree of two. The control-flow nodes and
block elements are connected through the following set of edges: EC′

B =
{(cs, first(B1)), (last(B1), cj), (cs, cj)} and it holds EC

B = EC′
B ∪ EC

B1
and

NS
B = NS

B1
∪ {cs} ∪ {cj}. The first and last element are the control-flow

nodes: first(B) = cs and last(B) = cj.
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Fig. 4.5 shows an exemplary single-branch exclusive block, where the
control-flow split node has two outgoing edges, but only one of them leads
to another workflow block, whereas the other one directly connects with the
control-flow join node.

B1
cs cj

Figure 4.5.: Single-Branch Exclusive Block

On the basis of these definitions for possible workflow blocks, the concept
of block-oriented workflows can be specified accordingly.

Definition 4.10 (Block-Oriented Workflow). A workflow W = (N,E) is
called block-oriented workflow, if it consists of a single workflow block.

4.3. Execution Paths and Operators
For a definition of the execution semantics of block-oriented workflows, the
general notion of execution paths and possible operators are introduced first.

Definition 4.11 (Execution Path, Execution Path Set). For a set of
tasks N , an execution path Fi = 〈f1, ..., fn〉 is a sequence of tasks with
{f1, ..., fn} ⊆ N . The function pos(fi) specifies the position of the element
fi in the sequence. F = {F1, ..., Fm} is called execution path set, which
contains several execution paths.

For example, consider a set N = {a, b, c, d}, then F1 = 〈a, c, d〉 is an
execution path with pos(c) = 2.
In the following, we define operators on execution paths and execution

path sets.

Definition 4.12 (Sequential Execution Paths). Execution paths can be
linked by the following operator: “◦” combining both sets of activities se-
quentially in order as specified by the expression. Let F1 = 〈f1, f2, ..., fn〉
and F2 = 〈g1, g2, ..., gm〉 be execution paths and F2 is appended to F1,
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then the overall sequential execution path is defined as follows: F1 ◦ F2 :=
〈f1, f2, ..., fn, g1, g2, ..., gm〉.

As an example, consider two execution paths F1 = 〈a, b, c〉 and F2 = 〈d, e〉.
Then, F1 ◦ F2 = 〈a, b, c, d, e〉.

Definition 4.13 (Sequential Combination of Execution Path Sets). A
sequential linking of execution path sets, indicated with the operator “�”,
describes all possible concatenations of single valid execution paths. Let F1

and F2 be execution path sets, then F1�F2 := {F1 ◦F2|F1 ∈ F1 ∧F2 ∈ F2}.

As an example, consider two execution path sets F1 = {〈a, b, c〉, 〈m,n〉}
and F2 = {〈d, e〉, 〈o, p, q〉}. Then, F1 � F2 = {〈a, b, c, d, e〉, 〈m,n, d, e〉,
〈a, b, c, o, p, q〉, 〈m,n, o, p, q〉}.

Definition 4.14 (Parallel Execution Paths). Let F1 = 〈f1, f2, ..., fn〉 and
F2 = 〈g1, g2, ..., gm〉 be execution paths, then F1 ./ F2 is the execution path
set consisting of all possible serializations of F1 and F2. This indicates the
arbitrary merging of both paths into a single one, given that each sequential
orders are adhered to. The operator is defined as follows: F1 ./ F2 := {〈f1〉 ◦
rest1|rest1 ∈ (〈f2, ..., fn〉 ./ F2)}∪ {〈g1〉 ◦ rest2|rest2 ∈ (F1 ./ 〈g2, ..., gm〉)}.
It holds: F1 ./ F2 = F2 ./ F1.

As an example, consider two execution paths F1 = 〈a, b〉 and F2 = 〈c, d〉.
Then, F1 ./ F2 = {〈a, b, c, d〉, 〈a, c, b, d〉, 〈a, c, d, b〉, 〈c, a, b, d〉, 〈c, a, d, b〉,
〈c, d, a, b〉}.

Definition 4.15 (Parallel Combination of Execution Path Sets). Let F1 and
F2 be execution path sets. Then, a parallel combination of single elements
of both sets is denoted through the following symbol: F1|F2 :=

⋃
F1 ./ F2

with F1 ∈ F1 and F2 ∈ F2. It holds: F1|F2 = F2|F1.

As an example, consider two execution path sets F1 = {〈a, b, c〉, 〈m,n〉}
and F2 = {〈d, e〉, 〈o, p, q〉}. Then, F1|F2 = 〈a, b, c〉 ./ 〈d, e〉 ∪ 〈a, b, c〉 ./
〈o, p, q〉 ∪ 〈m,n〉 ./ 〈d, e〉 ∪ 〈m,n〉 ./ 〈o, p, q〉.

4.4. Execution Semantics of Workflow Blocks
Execution semantics of workflow blocks express how the execution of workflow
instances is handled. These execution semantics are specified on the basis of
the previously described execution paths and operators.
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Definition 4.16 (Execution Path Set of Workflows). Let W = (N,E) be
a block-oriented workflow with sequence nodes NS = NT ∪ NC . Then,
an execution path set F(W ) = {F1(W ), ..., Fm(W )} is a set containing all
possible valid execution paths of W , where each Fi(W ) = 〈f1, ..., fn〉 with
{f1, ..., fn} ⊆ NS describes one valid and complete execution path of W as
a sequence of activities, which represents the execution of certain sequence
nodes from NS. For an execution path Fi(W ), every node that is not
contained in Fi(W ) is not considered as executed to achieve this single valid
execution of W .

Every valid execution path starts with the first element and ends with the
last element of the workflow block

Definition 4.17 (First and Last Element of an Execution Path). Let B be
a workflow block. For a valid execution path Fi(B) = 〈g1, . . . , gn〉 we define
first(B) := g1 and last(B) := gn.

Let B be a workflow block of W . Then, valid execution paths F(B) for
B are defined in Def. 4.18-4.22 depending on the type of B. No element can
occur multiple times in an execution path, as repeated executions are not
considered yet.
The execution path set of a single task block is rather simple, as it only

contains one element.

Definition 4.18 (Execution Path Set of a Single Task Block). Let B be a
single task node t according to Def. 4.6, then F(B) = F(Bt) := {〈t〉}, which
means task t has to be executed.

For the execution of a sequence block, there exist various valid execution
paths.

Definition 4.19 (Execution Path Set of a Sequence Block). Let B be a
sequence of two workflow blocks B = B(B1,B2) according to Def. 4.7. Then,
F(B) = F(B(B1,B2)) := F(B1)�F(B2).

This means that the execution of block B1 has to terminate before block
B2 can be started. This implies the termination of every executed sequence
element s1 ∈ NS

B1
before activating any sequence element s2 ∈ NS

B2
. Let

Fi(B1) be a valid execution path of block element B1 and let Fj(B2) be a
valid execution path of block element B2, then both valid orders combined
consecutively form an overall valid order.
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Definition 4.20 (Execution Path Set of an Exclusive Control-Flow Block).
Let B be an exclusive control-flow block B = B

(B1,B2)
XOR according to Def. 4.8.

Then, F(B) = F(B(B1,B2)
XOR ) := {〈cs〉} � F(B1)� {〈cj〉} ∪ {〈cs〉} � F(B2)�

{〈cj〉}.

This means that the executions of both blocks are mutually exclusive.
This results in two sets of possible valid execution paths. Let Fi(B1) be a
valid execution order of block element B1 and let Fj(B2) be a valid execution
order of block element B2. Either B1 is executed, preventing the enactment
of any task of B2, or B2 is executed, which in turn prevents the enactment
of any task of B1.

Definition 4.21 (Execution Path Set of a Parallel Control-Flow Block).
Let B be a parallel control-flow block B = B

(B1,B2)
AND according to Def. 4.8.

Then, F(B) = F(B(B1,B2)
AND ) := {〈cs〉} � F(B1)|F(B2)� {〈cj〉}.

This means that two block elements are executed concurrently. Both
blocks have to be executed and terminated prior to the activation of possible
following blocks and thus, prior to the activation of the control-flow join
node cj. Temporal dependencies between single elements of the different
blocks do not exist, but sequential orderings of both blocks themselves need
to be adhered to.

Definition 4.22 (Execution Path Set of a Single-Branch Exclusive Control-
Flow Block). Let B be a single-branch exclusive control-flow block B = BB1

XOR.
Then, F(B) = F(BB1

XOR) := {〈cs, cj〉} ∪ {〈cs〉} � F(B1)� {〈cj〉}.

An exclusive control-flow block which comprises only one block element is
synonymous to an option. Either block B1 is executed or it is skipped. If
the block element is executed, the workflow block needs to terminate before
activating the control-flow join node cj. Otherwise, if B1 is skipped, the
control-flow split “cs” and join node “cj” denote the beginning and end of
the control-flow block.





5. Constraint-Based Workflow
Engine

The constraint-based workflow engine, as one core element of this thesis, is
described in this chapter. The concrete specification and composition of the
CSP, which performs the task of the workflow engine, have been introduced
in previous works [55, 56, 58]. These definitions and algorithms are adopted
to a great extent, but with slight adjustments due to some refinements and
advancements.
First in Section 5.1, the concept is briefly introduced. This includes

an overview of generally provided features and possible or necessary inter-
actions between process participants and the system. In Section 5.2 the
workflow model that builds the formal foundation for the workflow engine
and its applied algorithms is specified. The de jure workflow as well as
the declarative constraints, which can be integrated, are described initially.
As prerequisite for the constraint-based workflow engine, foundations on
constraint satisfaction problems are introduced in Section 5.3. Subsequently
in Section 5.4, several algorithms are explained. Based on constraint solving,
the work items are computed. The CSP itself and its elements are specified
in detail. The transformation function that allows procedurally modelled
workflows to be processed by the workflow engine is explained subsequently.
Another algorithm is responsible for an extension of the CSP, in case a loop
construct is encountered or tasks are repeated unexpectedly. The following
Section 5.5 depicts a simple method for deviation detection concerning the
CSP. Typical scenarios are listed and strategies for restoring consistency are
pointed out. The concluding Section 5.6 sketches related work considering
flexible constraint-based workflow approaches.

5.1. Concept of the Workflow Engine
Considering the standard process cycle (see Fig. 2.3), this concept for a
flexible workflow management integrates several additional components and
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processing steps in order to achieve an adequate handling of deviations. The
novel elements are shown in Fig. 5.1 as refined version of Fig. 3.6.

Model

Instance

F: De Facto Workflow

J: De Jure Workflow P: Constraints

C: Constraint Net
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Figure 5.1.: Flexible Workflow Approach with a Constraint-Based Workflow
Engine

In comparison with the standard cycle from Fig. 2.3, the flexible workflow
system builds upon a model and instance that both consist of two elements.
Additionally to the de jure workflow, which can be modelled with a procedural
language, declarative constraints can be specified. This model with all its
elements is transposed to an instance when run time starts (see (2) in Fig.
5.1). The instance consists of the de facto workflow, which simply represents
the executed and traced tasks in a sequential way, and a constraint net. The
constraint net is essential for the workflow engine, as it is utilized as data
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input for the CSP algorithm. During instantiation, the de jure workflow
J and the constraints P are translated into the constraint net C, which is
enhanced on the basis of the de facto workflow during execution. Thus, one
main element of the flexible approach is the transformation function that
converts a procedural block-oriented workflow to a logical formula (see a© in
Fig. 5.1).
The procedure that includes the following steps (see (3) to (10) in Fig.

5.1) stays the same: computing a worklist, executing a task, enhancing the
workflow instance resulting in an event log, which might trigger an evolution
of the workflow model. The main difference of this flexible approach in
contrast to the standard process cycle is that an occurred deviation results
in additional steps. A deviation, which means that the executed task is not
part of the worklist, activates the flexible workflow engine (see (11) in Fig.
5.1). In this case, the constraint algorithm is not able to produce a solution
any more, as one or several constraints are violated. Consistency needs to be
restored in the constraint net (see c© in Fig. 5.1). Thereby the instantiated
constraint net is adapted (see (12) in Fig. 5.1) in order to re-enable the
workflow engine to compute work items (see b© in Fig. 5.1). This allows the
process cycle to start all over with the run time part at step (3).

The implementation of flexibility by deviation as presented in this thesis
was embedded in the architecture of the SEMAFLEX [59] and the SEM-
ANAS project [60]. An important characteristic of this approach is that the
information about a task enactment (cf. (6) in Fig. 5.1) can result from
various sources. This is either a user interaction, e.g. a manual selection of
a task being performed, or due to upcoming documents, which are analysed
automatically and mapped to a certain task, whose enactment is derived
subsequently. The latter could be realized in future work through the integra-
tion and combination of methods for document classification and information
extraction from Schwinn [170], as envisioned and prototypically implemented
in SEMAFLEX and SEMANAS. In this work, it is simply assumed that
a terminated task enactment is registered by the flexible workflow system,
regardless of the source of this information.

These logged task enactments construct the actually conducted workflow
as a sequence of activities that have been performed. While the workflow
engine proposes tasks which should be done next, the process participant is
not forced to follow these suggestions. In principle, the process participant
is able to do what s/he wants and in which order s/he wants. S/he can
either follow the tasks in the worklist, suggesting the standard course of
action, or do something else. Through both, the actual workflow can then
be recorded and identified. Progress in turn affects the workflow engine,
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including detected deviations.
For a suitable representation of the workflows regarding this viewpoint, a

modelled workflow, de jure workflow, and an executed workflow, de facto
workflow, are explicitly differentiated similar to van der Aalst [181]. In this
work, the notion de facto workflow is used for an enacted instance, which
stores the actually conducted transactions sequentially and might deviate
from those instances that conform with the de jure workflow. If all de
facto workflows are summarized to one workflow model, reflecting the actual
behaviour of the workflow and not the desired one, this would represent the
de facto model, as introduced by van der Aalst [181].

5.2. Workflow Model
For the workflow model, an approach is pursued that combines procedural and
declarative paradigms. Thus, the workflow model consists of two elements,
which are sketched in Fig. 5.2. The de jure workflow J, which represents the
ideal way of handling the considered issue, is modelled with a procedural
business process modelling language, e.g. BPMN. Additionally, declarative
constraints P can be specified manually to represent particular requirements
where special attention is necessary. Those constraints affect parts of the
process, such as a subset of tasks, and are not necessarily included in the
de jure workflow. They are implemented on the basis of the DECLARE
language [184].

Model

J: De Jure Workflow P: Constraints

Figure 5.2.: Workflow Model for the Flexible Workflow Approach

The presented workflow model and as a consequence the concept of the
workflow engine as well focuses on the functional, behavioural and informa-
tional perspectives. This mainly relates to the task representation itself 3,

3In Chapter 6, a data structure is presented that enables each task to be enhanced by
semantic information.
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the control-flow and data-flow of activities. Organizational, operational and
time perspectives are not part of this research work.

5.2.1. De Jure Workflow
In the presented concept for a flexible workflow management, the de jure
workflow is only of descriptive nature. It is utilized for specifying an initial
simple model that contains the ideal order of tasks and known alternatives.
The de jure workflow is not considered to map the entire state space of
possible situations. Its purpose is foremost guidance in order to support
rather than strictly prescribe. Thus, deviations are still allowed. This relates
to the inner circle shown by a dashed line of the possible workflow state
space presented in Fig. 2.7, which is denoted as procedural state space.

Procedural modelling is used for this de jure workflow, as it is more intuitive
and comprehensible than declarative modelling [138]. Task sequences that
every process participant is aware of can be modelled straightforwardly.
Thus, the presumable lack of expertise in SMEs can be accommodated.
The implemented constraint-based workflow engine is currently restricted
to the handling of block-oriented workflows (cf. Def. 4.10), as they are
well-formed and therefore, easier to handle. Consequently, J corresponds to
a block-oriented workflow J = (NJ , EJ) with nodes NJ and edges EJ .

An example for such a block-oriented de jure workflow is shown in Fig. 3.1,
which represents the simple ideal workflow model for deficiency management
in construction illustrated in a similar but simplified fashion compared to
BPMN.

5.2.2. Additional Constraints
The de jure workflow is used to control the suggested execution order of
tasks, but this order is not regarded as mandatory and consequently can be
violated. Hence, the de jure workflow is only considered as guidance, but
deviations are tolerated. Nevertheless, some deviations are undesired or even
critical and should never occur, especially when compliance or safety aspects
are regarded. For this reason, additional constraints P can be modelled
manually, to explicitly specify undesired or even invalid workflow states.
This relates to the declarative state space depicted in Fig. 2.7. Consequently,
the invalid state space can be reduced or even marginalised.
Following the presented concept of flexibility by deviation, those con-

straints might actually be violated by the user, as the workflow engine never
prescribes an activity and thus, is not able to actively prevent violations.
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Nevertheless, the violation of constraints and therefore, the occurrence of
specific undesired situations can be detected easily. Depending on the kind
of constraint violation the workflow engine must react adequately. When a
deviation is detected, the workflow engine must reason about the next task
and propose it without entering an exceptional state. In future work this
reparation step might be evolved in order to take more detailed information
into account. This can involve a severity specification, a warning message or
even a proposed corrective measure. But such a mechanism is outside of the
scope of this work.

The most probable deviations include the five following ones: skip, undo,
redo, create an additional instance, and invoke a task. For the modelling of
constraints that countervail these types of deviations, declarative constructs
are used. A main advantage of declarative models is that one constraint easily
represents single relations of tasks. Constraints can be regarded separately
but can be combined as well without the need of a connection. This implies
another benefit of declarative workflow models that is exploited for the
presented approach. Declarative constraints implicitly offer flexibility. This
characteristic transferred to flexibility by deviation can be interpreted in the
following way: If a deviation occurs, it is rather easy to omit the violated
constraints and simply consider all remaining ones in order to restore a
consistent state. A procedural model that encounters a deviation needs to
be remodelled, which is a complex task, in order to eliminate inconsistencies
and as a result to be applicable for the workflow engine.
For the declarative constraints, which can be modelled additionally, five

different constraint types of the DECLARE language [184] are utilized, which
countervail possible deviations. For the definitions, two tasks t1 and t2 with
{t1, t2} ⊆ NS

J and one number x ∈ N are necessary.

• Precedence(t1, t2): Task t2 can only be executed after t1.

• Response(t1, t2): Task t1 requires the subsequent enactment of t2.

• Existence(t1): Task t1 is mandatory.

• Not Co-Existence(t1, t2): Task t1 and t2 exclude each other.

• Absence(t1, x): Task t1 can only be executed x times.

The set of constraints P is part of the workflow model (see Fig. 5.2) and can
contain any number of those constraints, which are additionally modelled.
Precedence and Response prevent undesirable skipping, concerning previous

or subsequent tasks. These two constraints relate to the formulation of pre-
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and post-conditions. Existence contradicts the skipping and undoing of a
task. Redoing and creating additional instances of a task are intercepted
by the constraint Absence, as it restricts the number of executions. Not
Co-Existence avoids invoking undesired task enactments, at least depending
on the enactment of another task.
When such constraints are modelled additionally, it is ensured that they

comply with the de jure workflow and do not contradict parts of this model.
Otherwise the addition is rejected, as it would lead to an inconsistent model
and further hinder the workflow engine.
An alternative way of handling such discrepancies is to integrate these

constraints despite possible conflicts, but as optional. Through this vol-
untary nature, the workflow engine is still able to compute work items
by ignoring or rather violating these constraints when finding a solution.
Nevertheless, these constraints can be valuable knowledge for the case-based
deviation management, which will be presented in Chapter 6. Consider an
occurred deviation that violates some constraints. If those were previously
contradicting the “optional” constraints and are then removed in order to
restore consistency, these optional constraints might become relevant and
could be reactivated for a profound control of the workflow execution. This
abstract idea needs to be investigated in future work, as its elaboration is
not part of this work.

With the proposed workflow model, research question RQ1.1 (see Section
1.2) is addressed. The de jure workflow is seen as guideline and deviations
are tolerated. It is complemented by constraints that can easily be omitted
in case of non-compliance, such that no exceptional state will occur, but the
workflow engine can proceed. How this continuous support will be achieved,
is explained in subsequent chapters.

Preventing the user from deviating with this flexible workflow approach
can only be achieved if the user manually chooses tasks from the worklist,
as only tasks are proposed that lead to a valid workflow state. Deciding
what can be executed next is easy for procedurally modelled workflows, if
no deviations are possible. However, if a deviation occurs, one would not
be able to suggest an appropriate further proceeding. Constraints suit this
situation perfectly, as even if one is violated it might be retracted, and still
valid suggestions can be computed on the basis of remaining constraints. To
take advantage of the implicit flexibility that such a declarative approach
offers, each construct of the de jure workflow, modelled imperatively, is
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automatically transformed into corresponding declarative expressions as
prerequisite for the presented enactment approach.
In the next section, constraint satisfaction problems are introduced in

general as foundation for the presented workflow engine.

5.3. Foundations on Constraint Satisfaction
Problems

A Constraint Satisfaction Problem (CSP) is a powerful formulation in the
wide field of AI that is used for problem representation and solving. It
formally represents one particular issue that can be solved by finding a
valid state under given restricting conditions and relations of some entities
and their characteristics. The solving process is of combinatorial nature
and additionally involves optimization criteria in many cases. CSP solving
has been researched for many years. This class of problem is applicable in
various domains, e.g. logistics [151] or aircraft [179, 189], and is utilized by
other problem solving paradigms such as planning and scheduling [153].

According to Russell and Norvig [154, p. 137] a CSP is defined as follows:

Definition 5.1 (Constraint Satisfaction Problem). A constraint satisfaction
problem CSP = (X,D,C) consists of a set of decision variables X =
{X1, X2, . . . , Xn}, a set of constraints C = {C1, C2, . . . , Cm} and a set of
domains D = {D1, D2, . . . Dn}. Each decision variable has a domain Di,
which is a non-empty set of possible values for Xi. A constraint Cj is a
relation over a subset of the variables {Xk, ..., Xl} ⊆ X, specifying the set of
combination of allowed values.

As shown schematically in Fig. 5.3, the problem which is to be solved is
formally expressed by a set of variables that can be assigned values of its
domain, whose validity is restricted by a set of constraints.
The CSP itself is characterized by these three sets of variables, domains,

and constraints, which all can have distinct forms. The variables and their
domains can have different characteristics [154, p. 139]. Discrete variables
can have finite, in the simplest form boolean variables with the domain
{true, false}, or infinite domains. Continuous domains are common as well
depending on the considered problem and its model.
Furthermore, constraints can be of different types [154, p. 140]. This

concerns on the one hand the number of variables involved and on the other
hand the obligation of fulfilment. Unary constraints only consider one single
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Figure 5.3.: Constraint Satisfaction Problem Solving based on Squalli et al.
[174]

variable, binary ones relate two variables, whereas higher order constraints
affect the value assignment of several or in the most extreme case all of
the variables. If constraints are mandatory in such a way that a solution
strictly needs to comply, they are denoted as absolute. In contrast, the term
preference constraint indicates the desire of fulfilment, but no obligation
exists. This property can simplify the choice between several solutions or
allow for more possibilities that are accepted.

On this specification of a CSP, an algorithm is applied in order to compute
a solution to the initially identified problem statement. A solution is defined
as follows [154, p. 137]:

Definition 5.2 (Solution). An assignment of values to some or all of the
variables V = (X1 = a1, . . . , Xk = ak) with a1 ∈ D1, . . . , ak ∈ Dk is called
state of the problem that is denoted as consistent, if it does not violate any
constraint. If values are assigned to every variable, the assignment is named
complete. A consistent and simultaneously complete assignment is called
solution sol. For a variable Xi, the notation [Xi]

sol stands for the value ai
assigned to Xi.

In general, the class of CSPs, and thus, the algorithm for finding a solution,
is NP-complete. To deal with the vast state space of a CSP, different
algorithms can be applied. The technique of constraint propagation [87] is
applied to explore and to simultaneously reduce the state space. For CSPs
with discrete variables and finite domains, all types of search algorithms, for
instance backtracking [87], can be used effectively in order to find a solution.
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As most of these methods are rather inefficient for large problems, certain
heuristics need to be adopted to speed up the solving process.
A CSP serves as the core method for identifying valid task suggestions

on the basis of the previously defined workflow model (cf. Sect. 5.2). This
proposed workflow engine will be explained in the following section.

5.4. Workflow Engine
The workflow engine with the necessary input data is pictured in Fig. 5.4.
When a workflow is started, a workflow instance is created. This includes the
de facto workflow F = (NF , EF ), which tracks enacted tasks and is therefore
continuously complemented during progress. This workflow is a special type
of block-oriented workflow, as it only consists of sequential control-flow due
to the successive tracking of enacted tasks.
Furthermore, the workflow instance contains a constraint net C that

formally bases on logical formulae. C is fed by both the de facto workflow
F and the combined workflow model, i.e. J and P . This constraint net is
used as input for the workflow engine, whose functionality is implemented
through a constraint satisfaction problem CSPW and several algorithms
exploiting this CSP.

Model

Instance

F: De Facto Workflow

J: De Jure Workflow P: Constraints

C: Constraint Net

CSPW:
Workflow
Engine

Build Time

Run Time

Figure 5.4.: Workflow Model and Instance for the Flexible Workflow Approach

All elements shown in Fig. 5.4 are explained in detail in the following
section. First, the constraint satisfaction problem in general is defined in
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Section 5.3. Subsequently in Subsection 5.4.1, a concrete CSP that is utilized
to compute work items is presented. Furthermore, the composition of the
used constraint net is specified. It essentially builds upon a transformation
function, specified in Subsection 5.4.2, that is able to transform procedural
block-oriented workflows into declarative constraints, which can be handled
by the workflow engine. This declarative representation is proven to repre-
sent the same traces as procedural block-oriented workflows, elucidated in
Appendix A. Concluding in Subsection 5.4.3, the strategy of handling loops
and repeated executions of tasks is described.

5.4.1. Computing Work Items
In case of an unforeseen deviation during workflow execution, traditional
workflow approaches often fail in offering continuous user support. Con-
sequences are exceptional states or in the worst case dead ends. Flexible
approaches try to improve this decreased or even lack of support. In the
presented flexible workflow concept, CSP solving is exploited to avoid such
undesirable situations. The concrete problem which is regarded as CSP is
to compute work items based on the previously defined workflow model and
instance (cf. Fig. 5.7). In case of an occurrence of a deviation, violated
constraints need to be retracted in order to re-enable the workflow engine.
But due to the declarative nature of the data model, this necessary change
is rather simple.
In this section, the transfer of the CSP solving paradigm to the general

task of the workflow engine, to be more precise the computation of all valid
work items in a specific state of the workflow at one specific point in time,
is introduced. How deviations are handled is described in the subsequent
section 5.5.

Problem Description CSPW

The issue of computing work items, thus, the responsibility of the constraint-
based workflow engine, is defined as CSPW = (X,D,C). An abstract
specification is given in Fig. 5.5.

As mentioned previously, a main aspect of the pursued workflow approach
is that tasks are traced sequentially one after another during execution,
building the de facto workflow of the workflow instance. This characteristic
is exploited for the CSP definition of the workflow engine CSPW . The
solution of CSPW corresponds to one valid execution path Fi(J) of the
workflow J , which specifies one valid sequential order of tasks. From this
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Figure 5.5.: Constraint Satisfaction Problem for Computing Work Items

execution path, a work item can be derived that is appropriate for the
current status of the de facto workflow. For this purpose, sequence nodes are
regarded as decision variables s, the domains contain values that represent
the elements’ positions pos(fj) in Fi(J) and the constraints specify order
dependencies. Each of these parts of the CSP are elucidated with a formal
description in the following paragraphs.4
The input data for the algorithm comprises

1. the de facto workflow F , specifying a partially completed workflow,

2. the de jure workflow J , that represents the ideal course of events and

3. possibly additional constraints P .

Decision Variables

For the definition of the set of decision variables, the de jure workflow
J = (NJ , EJ) with NS

J = NT
J ∪NC

J is essential. Workflow tasks and control-
flow nodes, summarized as sequence nodes NS

J , are regarded as decision
variables. For each sequence node si ∈ NS

J = {s1, . . . , sn}, a discrete variable
with the same identifier si is created and added to S′.5

S′ = {si|si ∈ NS
J } (5.1)

4In order to simplify the explanation of the algorithm only single executions of tasks are
regarded until now. In Subsect. 5.4.3, CSPW is extended to enable the handling of
loop patterns and repeated task executions.

5The task nodes, previously denoted as NT
J = {t1, . . . , tn}, and control-flow nodes, so

far indicated through cs for control-flow split and cj for control-flow join nodes, are
summarized through unified identifiers si to simplify expressions, as no differentiation
between the two types is necessary.
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Subsequently, S′ is supplemented with one single variable send to be able to
determine whether the workflow has completed, such that6

S = S′ ∪ {send} (5.2)

This is necessary, as some constraint violation explicitly depends upon
workflow completion. During CSP solving each variable is assigned a value
reflecting the ordinal number of the task in the execution sequence and thus,
each task is positioned sequentially related to all other tasks. On the basis
of the variable send, the CSP is able to assert several aspects. Considering
the solution of CSPW , every task that is assigned a higher integer value
than send is regarded as not enacted and derived from that, these tasks are
not part of Fi(J). Consequently, on the one hand, a mandatory enactment
of a task can be mapped through forcing the assignment of a value to the
task variable lower than to send. On the other hand, it can be assured
that some tasks have not been conducted through allocating values higher
than the value of send. Through these basic properties, more complex
relations can be verified as well, for instance a required execution of a task
after a certain one, relating to the DECLARE constraint Response, can be
expressed through specifying the sequential order and depending on that a
mandatory enactment of the second task.

A simple example of the significance of send is illustrated in Table 5.1. The
exemplary workflow W contains four task nodes that are partly nested in an
exclusive control-flow block with two control-flow nodes. The characteristic
of the exclusive control-flow block is mapped through the use of the variable
send. During execution, one of the two tasks t2 or t3 needs to be excluded from
enactment, which is reflected by the two possible valid execution paths F1(W )
and F2(W ) (see row 2 in Table 5.1). Therefore, special conditions need to be
included in the constraint set besides the order relations. These particular
prerequisites specify that the excluded task, either t2 or t3, is assigned a
higher value than send (see second and third line in row “Constraints” in
Table 5.1). For a better comprehension, the valid solutions sol1(W ) and
sol2(W ) to the corresponding CSPW that applies those constraints are
shown in row 4 of Table 5.1. Here, it becomes obvious that the tasks with
higher values than send are not part of the execution paths and thus do not
contribute to a valid enactment of the workflow.

6The set of decision variables is preliminarily denoted as S to simplify the explanation
of the construction of the CSP, but will be extended with some other variables in
subsequent sections, in order to complement the set X.
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Table 5.1.: Exemplary Use of the Variable send in CSPW

Workflow W

cs

t2

t3

cjt1 t4

cs cj

Execution
Paths
F1(W ) 〈t1, cs, t2, cj, t4〉
F2(W ) 〈t1, cs, t3, cj, t4〉

{t1 < cs, cs < t2, cs < t3,
((t2 < cj ∧ send < t3)∨
(t3 < t4 ∧ send < t2)),

Constraints cj < t4, t4 < send}
Solutions
sol1(W ) (t1 = 1, cs = 2, t2 = 3, cj = 4, t4 = 5, send = 6, t3 = 7)
sol2(W ) (t1 = 1, cs = 2, t3 = 3, cj = 4, t4 = 5, send = 6, t2 = 7)

Domains

The assignment of values to variables represents a sequential order of all
tasks. This not only includes already executed tasks, which are part of
the de facto workflow, but also possible future executions of tasks until
termination of the workflow. Thus, a valid order, determined by ascending
integer values, of tasks is calculated. As it is only of interest which task can
be executed next at a specific point in time, it is negligible if any other tasks
might be or have been executed in parallel. Consequently, the domain for
each decision variable si is finite and represented by a set of integer values
with n as the number of sequence nodes extracted from the de jure workflow
and an additional value included in each Dsi for the variable send.

{d1, . . . , dn, dn+1} ⊆ Dsi ⊆ N with |Dsi | ≥ n+ 1 and n = |NS
J | (5.3)

In the simplest case, each domain is a series of integers starting from 1,
adding one up until n+ 1, thus, Dsi = {1, 2, ..., n, n+ 1}. Nevertheless, any
other set of values with different offsets or minimum/maximum value are
permissible as long as all values are distinct such that sequential relations
can be expressed. Therefore, the domain sets need to contain at least n+ 1
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numbers to ensure that only unique values are assigned. This variability
of possible domain values is exploited to show the equivalence of execution
semantics of block-oriented workflows and the designed case-based workflow
engine and will be explained in more detail in the Appendix A.

Algorithm

To identify all tasks that might be enacted next, a solution to CSPW is
searched for. An algorithm is applied that utilizes CSP solving in order to
compute the worklist. Therefore several CSPs with different configurations
need to be solved.
In the example in Fig. 5.6, the de facto workflow F contains three tasks

that were enacted so far. Each task that is a valid work item could be
assigned to position 4, denoted as current. This aspect is exploited in the
CSP algorithm. For each task that has not been executed so far, it is
validated if an assignment of the current position would lead to a valid
solution of the CSP. If so, it is a valid work item and can be added to this
set. If no solution exists, the task is not valid at the currently regarded
position in the de facto workflow.

t1 t2 t3

pos=zi

F

1 2 3

current

4

?

Figure 5.6.: De Facto Workflow with Next Position

The CSP solving algorithm is applied during workflow execution at the
initialization of each workflow and after each task enactment.

The algorithm, which is shown in Algo. 5.1, receives the previously defined
CSPW = (X,D,C) and the current de facto workflow F = (NF , EF ) as
input. As output, the variable workItems is introduced, which represents
the set of tasks that can be enacted next without violating constraints.
For each task that has not been executed so far, a solution is searched.

These tasks can be found easily, as they exist in the set of all sequence nodes
S, but not in F , yet. In each iteration, one of these decision variables is
chosen (x) and declared with a value. The value of this possible assignment
to tasks, denoted here as current, is determined by the size of the de facto
workflow F adding one (see line 3 in Algo. 5.1), which can also be expressed
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Algorithm 5.1: computeWorkItems(CSPW , F )
Input :CSPW = (X,D,C), F = (NF , EF )
Output :workItems: Tasks that might be executed next

1 workItems← ∅;
2 foreach x ∈ S \NS

F do
3 current← Dx[|NS

F |+ 1];
4 if solveCSP (X,D,C ∪ {x = current}) 6= ∅ then
5 workItems← workItems ∪ {x}
6 return workItems;

as the number of nodes, as this is the position that will be occupied in the
execution path by the task that is executed next (cf. Fig. 5.6). The value in
the domain at this position is assigned to current.
This assignment is added temporarily to the set of constraints (see line

4 in Algo. 5.1). Thus, it is checked if the specific task is a valid next task
of the de facto workflow. As one solution of the CSP can only validate
one task, a worklist with all valid work items can be generated through
applying the CSP algorithm several times with different configurations. If
every solution to CSPW would be computed, this would result in redundant
and unnecessary computations. To accelerate proceedings, only one solution
for each of these configurations is necessary to determine the validity of the
task being added to the worklist. It is only of interest if the task is valid at
this exact position, whereas the rest of the solution is irrelevant.
If the CSP solving algorithm finds a solution, this task can be executed

next and is therefore appended to workItems (see line 5 in Algo. 5.1). If
no solution is found, the process participant must not execute the task as
next step and thus, it is not proposed. The result, meaning the work items,
are contained in the variable workItems when the algorithm terminates. In
the following, all constraints that are used in CSPW are introduced.

Constraints

The utilized constraint set is composed of different single sets. Figure 5.7
gives an overview of their origins. Additionally, these sets differ in the
included types of constraints and their purposes.
Thus, C is defined as follows:

C = {alldifferent(S)} ∪ CM ∪ CA ∪ CI (5.4)
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Figure 5.7.: Workflow Model and Instance for the Flexible Workflow Approach

The x-variable constraint alldifferent(S) ensures that each sequence node
variable is assigned a distinct value and thus, the solution represents one
unique sequential execution path, as a bijective mapping of domain values
to decision variables is achieved.
The first set CM represents the procedural workflow model itself, the de

jure workflow J . CA comprises the constraints that can be modelled directly
in declarative form additionally to the de jure workflow P . CI maps the
de facto workflow F and its fixed order of already executed and tracked
tasks. This set of constraints continuously evolves, as the de facto workflow
is enhanced while logging the current execution state.

Model Constraints Constraints that arise from the model can be split up
into three different subsets.

CM = Dec(J, send) ∪ CDF ∪ CCF (5.5)

The first set Dec(J, send) is represented by a function that takes all sequential
dependencies of task and control-flow nodes into account and is responsible
for the correct order. The function is elaborated in Subsection 5.4.2.

Data-Flow-Dependent Constraints CDF concerns sequential reliances that
stem from data objects. Additional constraints are generated on the basis
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of data-flow dependencies, as they implicitly indicate task orders [205, p.
268]. Thus, if some data object d is output of task s1 and input of task
s2, as in Fig. 4.1, s1 necessarily precedes s2, as otherwise the status of d
would be inconsistent or falsified and hence, lead to an undesired state.7
As assigned values are mapped to the position in the execution path and
ascending values indicate a sequential order, the value of the preceding task
should be lower than of the subsequent one. A binary constraint relating
the two task variables with a less-than relation is created for this purpose.

CDF = {s1 < s2|s1, s2 ∈ NT
J : ∃d ∈ ND

J : (s1, d), (d, s2) ∈ ED
J } (5.6)

Control-Flow-Dependent Constraints Due to the construction of the CSP,
it is possible to influence the control of the workflow on the basis of additional
information that is represented by a control variable. The purpose of control-
flow nodes is additionally transferred to constraints in order to further
automate the support. On this basis, tasks are excluded from enactment
proposals, if the control variable is allocated a certain value.
For these decisions, a set of control variables A is introduced.

A = {a1, ..., ah} with h ∈ N (5.7)

These control variables are added to the set of decision variables as boolean
variables.

X = S ∪A (5.8)

Consequently, the domain for each of these control variables only consists of
the values true and false.

Da = {true, false} for all a ∈ A (5.9)

For each xor or loop construct (see Fig. 5.8), two constraints are included
(see Equ. 5.10).

With a control variable a that represents a boolean decision variable and
either takes true or false as value, it can be derived which path in the
workflow should be followed. Concerning workflow control, the execution of
the oppositional path is prevented, e.g. if the information of a is known to
be true, task s2 should not be enacted (send < s2).

7It is assumed, that output data objects are foremost available for further access, when
the producing task has terminated. This property is called “control flow follows data
flow” [205, p.269].
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Figure 5.8.: Xor and Loop Construct Including Additional Information

CCF ={(a = true)⇒ (send < s2) ∧ (a = false)⇒ (send < s1)|
a ∈ A ∧ s1, s2 ∈ NT

J : ∃s3, s4 ∈ NC
J : ((s3, s1), (s3, s2) ∈ EC

J ∨
(s3, s4), (s3, s2), (s4, s1) ∈ EC

J )∧
out-degree(s3) = 2 ∧ in-degree(s4) = 2}

(5.10)

Additional Constraints The constraints that can be modelled manually
in addition to the ones resulting from the de jure workflow, which were
presented in Subsection 5.2.2, are transferred to logical formulae. Each
type of constraint has a corresponding formal definition to be used in the
CSP solving algorithm. Thus, the set CA results from these translations.
Depending on the type of constraint, some are transferred to several binary
relations that are connected either disjunctively or conjunctively (see Equ.
5.12-5.14).

CA ={s1 < s2 |Precedence(s1, s2) ∈ P}

(5.11)
∪{(send < s1) ∨ (s1 < s2 ∧ s2 < send) |Response(s1, s2) ∈ P} (5.12)
∪{s1 < send |Existence(s1) ∈ P} (5.13)
∪{(send < s1) ∨ (send < s2) |Not Co-Existence(s1, s2) ∈ P}

(5.14)

As so far no repetitive execution of tasks is supported, the constraint
Absence(s1, x) is not defined yet, but it will be introduced in Subsection
5.4.3 in the context of loop handling.
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Instance Constraints The third constraint set maps the current state of
the de facto workflow. At a specific point in time during execution of
the workflow, some tasks are already enacted. Their sequential execution
position in the de facto workflow is determined and therefore the respective
variables si have a fixed assignment of a constant value zi. This is an
immutable property of the CSP, as it represents the past. Thus, through
these unary constraints, a partial solution for the CSP is described that
cannot be modified.

CI = {si = zi|si ∈ NS
F ∧ pos(si) = zi} (5.15)

5.4.2. Transforming Procedural Block-Oriented Workflows
to Declarative Formulae

A prerequisite for the presented enactment approach is that each construct
of the de jure workflow, modelled imperatively, is automatically transformed
into corresponding declarative expressions by the function Dec(B, send).
The resulting formula is integrated in the constraint set C of CSPW and
consequently can be handled by the proposed constraint-based workflow
engine.

Auxiliary Function not(B, send)

First, an auxiliary function is described, in order to simplify the definition
of the actual transformation function. Input of this function is a workflow
block B and it delivers constraints as logical formula, which are suitable
for the CSP algorithm and represent the prevention of an execution of the
respective block element. Therefore, an important characteristic of CSPWF

is utilized, namely, that every task assigned a higher value than send is
considered not to be enacted.

Definition 5.3 (Prevention of the Execution of a Block). To prevent the
execution of a block, constraints are created according to the following
function:

not(B, send) =



{send < t} if B = Bt

{not(B1, send), not(B2, send)} if B = B(B1,B2)

{send < cs, send < cj, not(B1, send), if B ∈ {B(B1,B2)
XOR ,

not(B2, send)} B
(B1,B2)
AND }

{send < cs, send < cj, not(B1, send)} if B = BB1

XOR
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If block B consists of an individual task node, one single constraint is
sufficient to prevent the execution by assigning a higher value than send
to the task variable itself. For a sequence of two workflow blocks, the
function not(B, send) needs to be called recursively with both blocks and
both recursively dissolved formulae need to hold. The strategy for control-
flow blocks is similar. Additional to the recursive calls, a literal is created
for each control-flow node. Through these, higher values are assigned to
the variables of the control-flow split and join cs, cj compared to send.
Those constraints are combined with recursively calling not(B, send) for the
contained workflow blocks.

Transformation Function Dec(B, send)

The following function creates a set of constraints, which restricts the
sequential orders of the tasks, considering a block-oriented workflow. This
constraint set can then be used as part of the overall constraint set for
calculating the worklist (see Equation 5.5). For a more clear overview, the
function for each of the workflow block types is specified separately.

Definition 5.4 (Declarative Formula for a Task Node). Let B be a single
task node t according to Def. 4.6, then

Dec(B, send) = Dec(Bt, send) = {t < send}

If a workflow block consists of a single task node, it only needs to be
ensured that this task is executed prior to termination of the workflow, thus,
the task variable needs to be assigned a value lower than the value of the
variable send.

Definition 5.5 (Declarative Formula for a Sequence Block). Let B be a
sequence of two workflow blocks B = B(B1,B2) according to Def. 4.7. Then,

Dec(B, send) = Dec(B(B1,B2), send) =

{last(B1) < first(B2), Dec(B1, send), Dec(B2, send),

last(B2) < send}

For a sequential block, both formulae that result from the recursive call
need to be adhered to and the last element of the first block needs to occur
prior to the first element of the second block.
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Definition 5.6 (Declarative Formula for an Exclusive Control-Flow Block).
Let B be an exclusive control-flow block B = B

(B1,B2)
XOR according to Def. 4.8.

Then,

Dec(B, send) = Dec(B
(B1,B2)
XOR , send) =

{((cs < first(B1) ∧ last(B1) < cj ∧Dec(B1, send) ∧ not(B2, send))∨
(cs < first(B2) ∧ last(B2) < cj ∧Dec(B2, send) ∧ not(B1, send))),

cj < send}

An exclusive workflow block allows for two different ways of execution.
Either the first block is performed, which excludes the second block, ensured
through the use of the function not, or vice versa. Sequential orders are
guaranteed through arranging the values of the control-flow nodes compared
to the first and last element of the executed workflow block. Furthermore,
the formulae of the block that is executed need to be integrated recursively,
through the use of e.g. Dec(B1, send).

Definition 5.7 (Declarative Formula for a Parallel Control-Flow Block).
Let B be a parallel control-flow block B = B

(B1,B2)
AND according to Def. 4.8.

Then,

Dec(B, send) = Dec(B
(B1,B2)
AND , send) =

{cs < first(B1), last(B1) < cj,Dec(B1, send),

cs < first(B2), last(B2) < cj,Dec(B2, send),

cj < send}

The formula for a parallel control-flow block is similar to the exclusive
block. None of the blocks are excluded but both paths need to fulfil the
correct order, as previously described for one of the blocks.

Definition 5.8 (Declarative Formula for a Single-Branch Exclusive Block).
Let B be a single-branch exclusive block B = BB1

XOR according to Def. 4.9.
Then,

Dec(B, send) = Dec(B
(B1)
XOR, send) =

{((cs < cj ∧ not(B1, send))∨
(cs < first(B1) ∧ last(B1) < cj ∧Dec(B1, send))),

cj < send}



5.4. Workflow Engine 99

The particularity of a single-branch exclusive block is that one possible
option is not to execute the contained workflow block, thus the control-flow
join node succeeds the split node directly. This entails that the execution
of the workflow block is prevented, obtained through not(B1, send). The
other possibility and therefore disjunctively connected is represented by the
execution of the workflow block within the control-flow blocks resulting in
the same formula as described in the previous definitions.
This transformation function Dec(B, send)

8, which is the basis for trans-
forming a procedural model into a declarative formula, addresses research
question RQ1.2 (see Section 1.2). To this end, the result of the function is
combined with the manually modelled constraints P , explained in Subsection
5.2.2, and used as input for the workflow engine.

Example

cs

t2

t3

cjt1 t4

d1 d2 B1t1 t4

cs

t2

t3

cj

B1:

B2t1

B2:

B1 t4cs cj

Figure 5.9.: Example of a Workflow Graph Decomposed into Workflow Blocks

In order to illustrate the operating principle of the transformation function
Dec(B, send), the simple workflow from Fig. 4.1 is used. In Fig. 5.9, the
original workflow is abstracted step by step through workflow blocks, such
that the recursive calls and decomposition are traceable.
The original workflow on the left side in Fig. 5.9 can be abstracted by

enclosing all elements of the control-flow block to a workflow block B1 (cf.
middle part in Fig. 5.9). The last two blocks of this abstracted sequence
can be enclosed to a block B2 (see right part of Fig. 5.9).
The following listings specify the appropriate CSP description for the

exemplary workflow.
CSPWF = (X,D,C) (5.16)

8A proof of trace equivalence for the declarative and procedural execution semantics is
presented in detail in Appendix A.



100 5. Constraint-Based Workflow Engine

The decision variables are composed of the sequence nodes S′ and the
additional variable send, but as no control variable is included in the control-
flow structure no other variable is added.

S′ = {t1, t2, t3, t4, cs, cj} (5.17)
S = S′ ∪ {send} (5.18)
X = S (5.19)

The values of the domains are the same for each of the variables and contain
seven different numbers. This can be for instance the following ones:

∀ti ∈ S : Di(ti) = {1, 2, 3, 4, 5, 6, 7} (5.20)

The constraint set comprises three different sets, other than the alldifferent
constraint. While there are no additional, manually modelled constraints,
the instance constraint set is empty, as the workflow just started and thus,
the de facto workflow has just been initialized without any tasks. The
constituent parts of the constraint set that represents the model are three
single sets. Control-flow structures with control variables are not present
in the exemplary workflow and only one data-flow dependency results from
data object d1, which is output of task t1 and input of task t2.

C = {alldifferent(t1, t2, t3, t4, cs, cj, tend)} ∪ CM ∪ CA ∪ CI (5.21)
CA = ∅ (5.22)
CI = ∅ (5.23)
CM = Dec(J, send) ∪ CDF ∪ CCF (5.24)
CDF = {t1 < t2} (5.25)
CCF = ∅ (5.26)

A detailed dissolution of the transformation function Dec(B, send) is shown
in the following. The first step is to resolve the sequence B(t1,B2) on the
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basis of Def. 4.7.

Dec(J, send) = Dec(B(t1,B2), send)

= {last(t1) < first(B2), Dec(Bt1 , send), Dec(B2, send),

last(B2) < send}
= {t1 < first(B1), t1 < send, Dec(B2, send),

last(t4) < send}
= {t1 < cs, t1 < send, Dec(B2, send), t4 < send}

(5.27)

The function call with block B2 applies the resolution of the sequence B(B1,t4)

on the basis of Def. 4.7 and of the single task block Bt4 on the basis of Def.
4.6.

Dec(B2, send) = Dec(B(B1,t4), send)

= {last(B1) < first(t4), Dec(B1, send), Dec(Bt4 , send),

last(t4) < send}
= {cj < t4, Dec(B1, send), t4 < send, t4 < send}

(5.28)

Lastly, the transformation function for the control-flow block B1 needs to be
resolved for the sequence B

(t2,t3)
AND on the basis of Def. 4.8 and for the blocks

Bt2 and Bt3 on the basis of Def. 4.6.

Dec(B1, send) = Dec(B
(t2,t3)
AND , send)

= {cs < first(t2), last(t2) < cj,Dec(Bt2 , send),

cs < first(t3), last(t3) < cj,Dec(Bt3 , send), cj < send}
= {cs < t2, t2 < cj, t2 < send,

cs < t3, t3 < cj, t3 < send, cj < send}
(5.29)

Now that the CSP is defined, work items can be determined. In Table 5.2
two runs of Algorithm 5.1 are exemplified. The values of some variables that
change or that are of interest are indicated at the time of the start of the
workflow and after the execution of the first proposed work item t1.

At the start of the workflow, the node and edge sets are both empty.
Derived from that, the starting position current in the de facto workflow is
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Table 5.2.: Exemplary Computation of Work Items according to Algorithm 5.1,
1st and 2nd Iteration

At Start After Execution of t1
NS

F ∅ {t1}
EC

F ∅ ∅
current 1 2
sol for x =

t1

(t1 = 1, cs = 2, t2 = 3,
–cj = 4, t4 = 5)

send = 6, t3 = 7)
t2 ∅ ∅
t3 ∅ ∅
t4 ∅ ∅
send ∅ ∅

cs ∅
(t1 = 1, cs = 2, t2 = 3,
cj = 4, t4 = 5,
send = 6, t3 = 7)

cj ∅ ∅
workItems {t1} {cs}

1. For each decision variable, a solution is searched under the assumption
that the current value is assigned. Only for t1 a solution exists (see row 6 in
Tab. 5.2). Consequently, t1 is added to the set of work items.

The third column in Tab. 5.2 shows the values after the execution of
t1. The nodes of the de facto workflow are supplemented with t1 and the
position of the possible subsequent task is increased by 1, such that current
= 2. Solutions are then again assessed for all decision variables, except t1,
as this task has already been executed. In this case, only for cs a solution is
found (see Tab. 5.2). No other decision variable could be assigned the value
2 and still lead to a valid solution. Hence, the list of work items consists
solely of cs after the execution of t1.

5.4.3. Loop Handling
So far, the flexible workflow approach is limited to a singular execution of
tasks and not incorporating loop constructs or considering deviations like
redoing a task. Prerequisites as well as an algorithm to be able to handle
the previously mentioned scenarios are explained in the following section.
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First, the loop construct is formally defined as a workflow block.

Definition 5.9 (Loop Control-Flow Block). A loop control-flow block B =
BB1

LOOP , with B1 = (NS
B1

, EC
B1

) as workflow block of B contains an opening
control-flow node cs ∈ NC

B (control-flow split) with an out-degree of two, one
branch incoming to cs, containing a workflow block (B1), whose incoming
control-flow is outgoing from a matching closing control-flow node cj ∈ NC

B

(control-flow join) with an in-degree of two and an empty path that leads
back from the opening control-flow node cs to the closing node cj. The
control-flow nodes and block elements are connected through the following
set of edges: EC′

B = {(cj, first(B1)), (last(B1), cs), (cs, cj)} ⊆ EC
B . Thus,

EC
B = EC′

B ∪ EC
B1

and NS
B = {cs} ∪ {cj} ∪NS

B1
. First and last elements are

the control-flow nodes: first(B) = cj and last(B) = cs.

Fig. 5.10 shows an exemplary loop control-flow block. Loop control-flow
nodes are marked with an “×”. On the first sight it looks rather similar to a
single-path exclusive control-flow pattern, but the straight edge between the
two control-flow nodes is reversed. Therefore, in a loop block, the control-
flow nodes are reversed compared to other control-flow block types. The
first one is a join node cj as it joins the path prior to the loop block with
the connection from the previous loop run. The loop ends with a split node
cs, as two ways to continue are possible, either resulting in an additional
loop run or leading to the subsequent path. This described loop control-flow
block corresponds to the control flow pattern named structured loop with a
“post-test” [205, p. 138ff] that refers to a do-while-loop. This restriction is
necessary to adhere to block-orientation.

X B1

cs cj

Figure 5.10.: Loop Control-Flow Block

To differentiate between individual task instances in case of a repeated
enactment, the decision variables that represent task nodes {sn|sn ∈ X ∧s ∈
NT

J } are extended with a second index variable l, e.g. s(n,l), denoting the
numbering of task instances referencing one single task, here sn, of the de
jure workflow.
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This second index also simplifies the validation of the constraint
Absence(s1, x), because x might be compared to the second index l of
the tasks that have already been executed. Thus, for each such constraint
Absence(s1, x) the following formula needs to be checked during constraint
validation: ∀s(n,l) ∈ NT

F : l ≤ x. If this evaluates to false, the corresponding
Absence constraint is violated.
For including recurring tasks in the CSP algorithm, another algorithm

is needed which alters the input sets for Algo. 5.1. The trigger for this
processing (cf. Algo. 5.2) is an enactment of task sn of the de jure workflow.

Algorithm 5.2: extendCSP(sn)

Input :Task sn
Output :X, D, C

1 if s(n,l) /∈ X \NT
F then

2 find s(n,l) in NT
F ;

3 if sn ∈ NT
B1

with NT
B1
∈ B1 and B = BB1

LOOP then
4 integrateNewLoopRun(s(n,l));
5 else
6 X ← X ∪ {s(n,l+1)};
7 foreach Dsi ∈ D do Dsi ← Dsi ∪ {max(Dsi) + 1};
8 else if isLastNodeInLoop(sn) then
9 integrateNewLoopRun(s(n,l));

At first it is evaluated if a variable s(n,l) corresponding to task sn exists
in the set of variables that were not executed yet (see line 1 in Algo. 5.2).
If such a variable does not exist, it is an unexpected repetition of a task,
thus a deviation. Hence, the previous execution of the specific task needs
to be found in order to determine the index number (see line 2 in Algo.
5.2). If the variable is part of a loop construct (see line 3 in Algo. 5.2), a
possible new loop run has to be integrated in the constraint problem (see
line 4 in Algo. 5.2), as explained in Algo. 5.3. Otherwise, as Algo. 5.1 has
to cope with unexpected repeated enactments as well, a new variable with
an increased index l + 1 has to be created and added to X (see line 6 in
Algo. 5.2). Domains of the variable of the sequence nodes si have to be
extended with one additional value for the new variable (see line 7 in Algo.
5.2). Therefore, the maximum value in the domain is searched; this value
is then increased by one and added. The last condition checks in case the
corresponding variable exists and hence, no deviation occurred, whether the
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executed task was the last node of a loop construct (see line 8 in Algo. 5.2).
Thus, a new possible regular loop run has to be integrated in the constraint
problem, which is implemented by Algo. 5.3.

Algorithm 5.3: integrateNewLoopRun(s(n,l))

Input :Task s(n,l)
Output :X, D, C

1 foreach sm ∈ NT
B1

with NT
B1
∈ B1 and B = BB1

LOOP do
2 X ← X ∪ {s(m,l+1)};
3 foreach Dsi ∈ D do
4 Dsi = Dsi ∪ {max(Dsi) + 1};
5 addConstraints();

For each task sm in the loop a new decision variable s(m,l+1) is included
with an increased index variable (l+1) (see line 2 in Algo. 5.3). Domains have
to be expanded (see line 4 in Algo. 5.3) and constraints considering the new
loop tasks have to be incorporated. The method addConstraints() considers
three important aspects. A second loop run itself should be constrained
regarding the workflow block within the control-flow block. Furthermore,
the first loop needs to terminate before the second iteration is allowed to
start. Hence, this dependency needs to be established. Moreover, if a second
iteration is entered, this loop sequence needs to terminate before the workflow
block subsequent to the loop block can be activated. Nevertheless, a second
iteration should be optional with regard to continuing after the loop block
and executing the remaining tasks.

X B2 B3B1

Figure 5.11.: Exemplary Workflow Block with a Loop

Table 5.3 shows the generated constraint set that is added by the function
addConstraints() for the abstract block-oriented workflow with a loop
control-flow block shown in Fig. 5.11. All of the constraints in the right
column are added to the set CM . For a better understanding the table
is subdivided into several lines, whose constraint subsets serve different
purposes.



106 5. Constraint-Based Workflow Engine

Table 5.3.: Mapping Loop Pattern to Logical Formula with Possible Second
Iteration (addConstraints())

Purpose Constraints
no 2nd iteration {(not(B2,2, send) ∧ not(cj2, send) ∧ not(cs2, send))∨

(cj2 < first(B2,2) ∧Dec(B2,2, send)∧
2nd iteration last(B2,2) < cs2∧
pre-condition cs1 < cj2∧
post-condition cs2 < first(B3))}

The first row describes that a possible second iteration is not executed,
therefore preventing the execution of all elements from this second iteration
with the function not(B, send). As alternative and hence connected with a
logical “or”, the remaining rows in contrast consider the execution of the
second iteration. This formula contains three subsets. The content of the
loop itself is specified in row 2 that corresponds to a sequential connection
of control-flow nodes and the block B2,2. The pre-condition defines that
the control-flow split node cs1 of the first iteration has to terminate before
the control-flow join node of the second iteration cj2 can be activated. The
post-condition represents the fact that the workflow block within the loop
needs to be completed, and thus, in this case the last node cs2, before the
subsequent block B3 can be started.

5.5. Deviation Handling
Up to now the constraint-based workflow engine was described and the used
language based on logical formulae was specified. Algorithms were defined
that exploit CSP solving for identifying valid work items. Deviations that
lead to an inconsistent constraint net have not been regarded so far. The
defined functionality does not differ from a traditional workflow engine. In
the following sections on the one hand an algorithm that detects deviations
and identifies affected constraints is introduced, and on the other hand some
simple strategies are presented that restore consistency in the constraint net
and allow the workflow engine to resume its duty by leaving the exceptional
state and re-enabling CSP solving.

A task enactment first triggers an update of different data objects of the
workflow instance. After this update, deviations can be detected. Therefore
an algorithm is introduced that is responsible for this update and that
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furthermore links all previously explained algorithms in an appropriate
invocation order.

Algorithm 5.4: updateCSP(s, F, CSPW )

Input :Task s, F, CSPW

1 NS
F ← NS

F ∪ {s};
2 EC

F ← EC
F ∪ (last(F ), s);

3 current← Ds[|NS
F |];

4 if isPrecedentToCFNode(s) then
5 foreach cFNode do
6 NS

F ← NS
F ∪ {cFNode};

7 EC
F ← EC

F ∪ (last(F ), cFNode);
8 current← Ds[|NS

F |];
9 C ← C ∪ {cFNode = current};

10 C ← C ∪ {s = current};
11 detectDeviations(s, F, CSPW );
12 computeWorkItems(CSPW , F );
13 extendCSP (s);

The currently enacted task s, the de facto workflow F and the CSP serve
as input. First, the task enactment triggers an update of different data.
The corresponding sequence node s is included in the de facto workflow F
(see line 1 in Algo. 5.4), as well as an edge connecting the previous last
element with the new sequence element (see line 2 in Algo. 5.4). Next, the
length of the de facto workflow needs to be determined. The value in the
domain at this position identifies the assigned value to the variable of the
currently enacted task within the CSP (see line 3 in Algo. 5.4). After this
update concerning enacted task it needs to be checked if control-flow nodes
are involved. If a control-flow node is directly precedent to the task s in the
de jure workflow, each of these control-flow nodes are integrated into the
de facto workflow (see lines 4-7 in Algo. 5.4) and an instance constraint is
added, as the position of the control-flow element is thus determined (see
lines 8,9 in Algo. 5.4). Constraints are extended with the value assignment
of current to s (see line 10 in Algo. 5.4). Subsequently, deviations can
be detected (see line 11 in Algo. 5.5), work items can be computed (see
line 12 in Algo. 5.1) and the CSP can be checked for a necessary extension
concerning repeated tasks or loop executions (see line 13 in Algo. 5.3).
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5.5.1. Deviation Detection
How deviations are detected and violated constraints are identified is de-
scribed by the algorithm that is introduced in the following. Deviations
can only occur if a task has been enacted that was not part of the worklist.
Algorithm 5.5 illustrates this procedure.

As prerequisite, an additional attribute for each constraint needs to be
introduced, namely its status, that can be assigned three different values.
The function Status specifies this property.

Status : C → {indefinite,valid,violated} (5.30)

The algorithm is triggered after a task enactment, as this might result in
a constraint violation, and consequently, in an inconsistent workflow state.
Therefore, all constraints need to be evaluated. This can simply be achieved
through searching for a solution to the updated CSP (see line 1 in Algo. 5.5).
If no solution is found, the violated constraint or even a set of constraints
needs to be identified and retracted from C to restore consistency.

Algorithm 5.5: detectDeviations(s, F, CSP )

Input :Task s, F , CSPW

1 if !solveCSP(X,D,C) then
2 inconsistent← true;
3 foreach Ci ∈ C do
4 if Status(Ci) = indefinite ∧ Ci = s1 < s2 then
5 if s1 = s then
6 Status(Ci)← valid;
7 else if s2 = s then
8 Status(Ci)← violated;
9 if inconsistent then

10 restoreConsistency();

Therefore after each task enactment, the status of single constraints in the
constraint set can be assigned in order to prevent unnecessary computations.
Based on the value assignments due to the de facto workflow, which will
never change for a workflow instance, some constraints will always resolve
to true, while other parts always resolve to false, even without constraint
violations, e.g. disjunctive associated propositions.

At the initialization of the CSP the default value for each constraint is
indefinite. When a constraint status is updated to valid or violated, this



5.5. Deviation Handling 109

status is definite and will not change, as it depends on the value assignments
derived from the de facto workflow.

Assuming that the constraint set is available in conjunctive normal form
C = C1 ∧ ... ∧ Cn, clauses Ci are linked conjunctively and each clause
represents a disjunction of literals Ci = l1 ∨ ... ∨ ln. The literals mostly
result from the transformation of declarative workflow constructs to logical
representations and thus, relate two tasks with the ordering relation ”<”.
Other literals may be equations, such as t1 = 0, depicting the de facto
workflow, or alldifferent(S) due to the construction of the CSP. The literals
of interest for the status assignment are the first ones. Thus, the constraint
set is scanned for constraints that have an indefinite status and the following
form: Ci = s1 < s2 (see line 4 in Algo. 5.5).
If a task enactment of task s occurs, the status of all clauses with s on

the left side (e.g. s < s2) in one of the literals can be marked as valid, as
this clause will resolve to true in any case. Furthermore, single literals that
contain s on the right side, e.g. s1 < s, are violated. Those will never be
fulfilled, but the remaining literals in the clause have to be.

One impact of this status changing strategy after each task enactment is
that violated constraints can be determined easily. A clause consisting of a
single literal, e.g. s1 < s, where the currently enacted task s is on the right
side, is violated as s1 has not yet been enacted, otherwise the clause would
have been assigned a valid status previously and thus, would be excluded
during this check.

As violated constraints have been identified, they can simply be retracted
in order to allow the workflow engine to compute work items on the basis
of remaining constraints that form a consistent constraint net (see function
restoreConsistency() in line 10 in Algo. 5.5). However, impacts of simply
omitting one small part in a complex formula based on disjunctive and
conjunctive connected subformulae are hardly predictable. Therefore the
next section introduces two different scenarios with specific deviations that
are related to different strategies of how to restore consistency.

5.5.2. Strategies for Restoring Consistency
Two different and very simple constraint violation scenarios will be pre-
sented in combination with strategies, which are implemented, for restoring
consistency in the CSP.
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Sequential Constraint Violation

For handling detected deviations in a simple sequential workflow or in
sequential parts of a workflow, two different strategies are developed for
restoring consistency. Consider the example in Fig. 5.12, where the first row
shows the initial situation and the second row represents one step further
with an additional executed task. Rectangles indicate tasks, whereas edges
represent the execution order. Blue-coloured nodes were already executed,

Figure 5.12.: Exemplary Sequential Workflow with Deviation

green ones are currently recommended and grey nodes are not activated yet.
In the lower row there is a task executed that is not in a valid order, meaning
a deviation occurred. This situation can be detected in case a literal consists
of a single constraint in the following form: Ci = s1 < s2. The cause of
the violation is not explicit without semantic knowledge and can only be
specified by the process participant. Without necessary intervention of the
process participant two possible reasons can be derived, which are handled
in different strategies.

1. Skipped Tasks. Tasks either have become obsolete and are therefore
skipped or have been executed but without notice of the system (cf.
Fig. 5.13a). All constraints concerning skipped tasks are irrelevant for
continuing with the workflow and simply may be omitted.

2. Changed Order. Task order may have changed due to unknown rea-
sons. Remaining tasks need to be connected sequentially, as if the current
executed task (second blue one) had been inserted after the last executed
one (first blue one, cf. new edges in Fig. 5.13b). Therefore, the con-
straint set needs to be extended to map the newly introduced sequential
dependencies.

Which strategy is applied needs to be determined either prior to the
start of a workflow or at run time. If the applied strategies differ for single
deviations of the same type, further interaction from the process participant
is necessary for each occurrence at run time, which reduces the advantages
of allowed flexibility and an additional obstacle for an easy-to-use system
emerges.
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(a) Skipped Tasks (b) Changed Order

Figure 5.13.: Possible Strategies for Handling Sequential Deviations

Exclusive Constraint Violation

Another exemplary scenario of a simple violation that might occur is depicted
in Fig. 5.14. In this simplified sketch at first both exclusive paths might
be chosen, followed by the execution of the upper task, which implies the
exclusion of the lower tasks. The deviation occurs in the last step, as
nevertheless a task of the lower path has been executed.

Figure 5.14.: Exemplary Workflow with Exclusive Pattern and Deviation

Which path should be pursued for workflow continuation without further
knowledge can only be guessed by the system. Possible reasons are that either
some task was completed by mistake or eventually certain circumstances
changed that demand an adjustment and caused the execution of an excluded
task or rather whole path. Constraints need to be adapted in case of such a

(a) Continuing with the Upper Path (b) Continuing with the Lower Path

Figure 5.15.: Possible Strategies for Handling Deviations in Exclusive Patterns

violation according to one of the strategies pointed out in Fig. 5.15a and
5.15b that draw new sequential connections. The same issues arise compared
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to the first scenario. Deciding which strategy to apply is not reasonably
possible without further knowledge about the cause and purpose of the
deviation. Expertise or up-to-date knowledge about the current situation is
necessary that most likely will be introduced by process participants.

The described scenarios have shown two types of deviations and thus con-
straint violations with a simple structure and a limited number of resolving
possibilities. These strategies are straight-forward and easy to implement,
but require interaction from the process participant. Besides, deviations
might lead to additional deviations or even might be more complex from
ground up, which makes it impossible to determine similar strategies to
handle all possible deviation scenarios. Furthermore, the intention of this
work is not to construct strategies that need to be picked by the process par-
ticipant. The objective is rather to construct methods that can be applied in
an automated manner and support the process participant invisibly without
the need of manual intervention. As further knowledge about a possible
cause and the purpose of the deviation is necessary to make a well-founded
decision for choosing a strategy, the next chapter introduces an approach
that focuses on case-based reasoning as technique to overcome the previously
mentioned disadvantages.
Nevertheless, the proposed deviation detection and handling approach

addresses research question RQ1.3 (see Section 1.2) with the limitation of a
partial automation due to the necessary manual choice of applied strategies.

5.6. Related Work
Using constraints in the context of workflow management is prevalent and
research in manifold directions exists. Constraints serve different purposes
and address various aspects. They are foremost utilized for a specification of
the formal basis for a WfMS or for an enhancement of traditional approaches.
The most popular declarative workflow approach, DECLARE [135, 184,

207], uses the ConDec language for the description, evaluation, and execution
of constraint models [136, 137]. The formal basis are LTL formulae represent-
ing constraints. These LTL formulae are further transformed into finite-state
automata, which are used for constraint validation and consequently as
workflow engine. Though there is a differentiation between mandatory and
optional constraints, and optional constraints may be violated, a possibility
to retract constraints is not specified and therefore no unforeseen situations
can be handled flexibly.
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The concept of Dynamic Condition Response (DCR) graphs [70] is a
declarative process model that is based on a mapping of these special
graphs, which contain four different relations, to Büchi automata similar to
DECLARE. The approach is described as offering more flexibility, but also
has no possibility to restore consistency after deviations.
In later work Maggi et al. [100] developed an approach called Mobucon

that is based on colored automata. Main advantages are the ability to
detect deviations and to support continuously through various strategies. A
drawback of this approach is that these strategies need to be determined
beforehand and cannot be changed during run time, as the construction of
a new automaton would take too long (for 30-50 constraints 5-10 seconds)
[100]. Algorithms developed by Westergaard [206] improve this issue with
efficient run time modifications, e.g. models with up to 50 constraints are
handled in fewer seconds.
A main drawback of approaches that base on LTL is a poor scalability.

When models are expanded, the state space increases exponentially with the
consequences of a decreased efficiency [33]. The approach ReFlex tries to
solve this issue with an efficient graph based rule engine [33]. Models are
specified based on ConDec constraints that are compiled to graphs. During
execution the rule engine interacts with the graph for updating activity states
and verifying the rules that are mapped in this graph [33]. Runtime changes
are not supported, but on the basis of the presented runtime environment and
a clear distinction of modelling and execution phase, rules would need to be
adapted manually, compiled again to a graph, which would then be utilized
by the rule engine to propose activities. Therefore, achieving flexibility by
deviation through this declarative approach is rather tedious.

This significant drawback of existing declarative approaches for flexibility
by deviation is solved in the presented work. The aim is to achieve efficient
automated runtime modifications. Constraints can be added or retracted
ad-hoc, without the need of a time-consuming recompilation of the model.
Consistent models can then be used for a determination of the worklist
through the formulated CSP. Here, the bottleneck concerning computation
time is the solving of several CSPs, whereas it has been shown that the
necessary time is acceptable for realistic scenarios [58]. A main aspect of this
approach, foremost for the suitability for inexperienced process participants
and a preservation of intuitive workflow modelling, is the transformation
of procedurally modelled workflows to a declarative representation. Some
related approaches exist.

Wedemeijer [202] presents an approach that transforms imperative work-
flow models to declarative business rules on the basis of relation algebra. At
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run time the rule set can be adapted, either by removing or adding some of
the rules. Here, a high effort is necessary to evaluate the rules.
Ständer et al. [175] describe an approach for adaptive workflows in

smart environments, where imperative and declarative workflow models are
combined and also translated into each other to achieve flexibility when
modelling the behaviour of a smart item. This combination and integration
of distinct modelling paradigms sounds rather similar to the presented
workflow concept. Unfortunately published research only consists of a very
abstract description and lacks concrete specification. Therefore a profound
comparison is impossible.
Declarative workflow approaches that incorporate constraints have been

part of research for several years. Some approaches that relate in some way
to the proposed constraint-based workflow concept are briefly described in
the following.

Grambow et al. introduce a method for an automated semantically driven
workflow generation using declarative modelling [54]. The user specifies
single constraints, more complex building blocks and a set of activities. On
this basis and depending on the current situation, the system automatically
derives valid workflows on the fly through ontology reasoning. Single de-
pendencies of elements need to be specified prior to execution, which is why
usability is doubtful, at least for inexperienced users.

The Declarative Process Intermediate Language (DPIL) uses a rule-based
model to specify multi-perspective constraints [168]. Three different perspec-
tives are considered: control-flow, data, resources. Furthermore a distinction
is made between mandatory (“ensure”) and recommended (“advice”) con-
straints.
Constraints are exploited for different aspects. Some approaches are

presented that focus on improving flexibility.
Lu et al. [96] utilize constraints for defining temporal aspects considering

scheduling through temporal constraint networks in order to increase work-
flow flexibility. “Instance customization” is allowed through a remodelling by
the process participant, whereas the constraint network is used to validate
consistency.

Another approach by Lu et al. [95] allows for specifying constraints at build
time that describe selection dependencies of tasks for process adaptation at
instance level. Task selection is coded in a rather simple fashion by tuples
of 0 and 1 that can be combined through some operators, increasing the
expressiveness.

The Process Constraint Ontology (ProContO) and the Process Constraint
Language (PCL) use constraints in order to concern non-functional or



5.6. Related Work 115

domain-specific requirements such as geospatial dependencies [93]. These
semantic technologies are applied alongside traditional WfMS. Constraints
are connected to involved process elements and specified through PCL on
the basis of concepts defined in ProContO.
Kuziemsky et al. [89] propose a data-driven and flexible approach for

clinical practice guidelines. Constraints are used for the prevention of
data incompleteness and inconsistencies in these guidelines for each patient.
Missing or corrected data is suggested to the user as solution in order to
improve data quality. Ultimately, this should assist the medical professional
in choosing an adequate or even optimal treatment.

Barba et al. [11] enhance the ConDec Language through temporal aspects.
The proposed language TConDec-R includes properties such as deadlines
or limited validity of a process element in order to optimize the run time
through generating enactment plans.





6. Case-Based Deviation
Management

To improve the user support for workflow flexibility by deviation, the pre-
sented approach, which consists of a constraint-based workflow engine up
to here, is complemented with a case-based deviation management. To this
end, previous experiences are exploited for a sophisticated decision process
on how to continue with the workflow execution after a deviation occurred.
This case-based approach is regarded as learning component of the presented
flexible workflow concept. The main idea and the necessary similarity mea-
sures have been presented in previous work [57, 162, 163]. Both are adopted
to a great extent and described in more detail in this work. Additionally, the
case-based approach for deviation management is enhanced by adaptation
algorithms.
This chapter starts with necessary preliminaries, which is followed by a

description of the overall concept. Subsequently, concrete realizations such
as the specification of the similarity measures, adaptation methods, and
associated algorithms are presented. In the first Section 6.1, the foundations
on case-based reasoning as such and process-oriented case-based reasoning
as a special form are introduced. Subsequently, fundamentals on time-
series similarity measures are presented in Section 6.2. In Section 6.3, the
envisioned concept of a deviation management is contextualized with the
CBR cycle. As integral part of this approach, the two phases of retrieval and
reuse are introduced. The similarity measure is conceived and specified in
Section 6.4. In this context, some algorithms are explained, which includes
a pre-processing of the case base. In addition, two adaptation methods are
defined in Section 6.5 that allow for an identification of work items. This
encompasses a null adaptation and a generative variant that exploits the
constraint set resulting from the workflow engine during execution. The
chapter concludes in Section 6.6 with an overview of related approaches
that exploit CBR methods for flexible workflows and similar research work
concerning deviation handling.
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6.1. Foundations on Case-Based Reasoning
Case-Based Reasoning (CBR) [149] is a powerful problem solving methodol-
ogy in the field of AI that can be implemented through different technologies,
e.g. neural networks or CSP [198]. It is broadly applicable as the under-
lying idea corresponds to natural problem solving, which is inspired by
human thinking. Therefore, it is an intuitive methodology that benefits from
available resources that machines provide, such as memory and speed [149,
p. 3]. CBR intends “to solve a new problem by remembering a previous
similar situation and by reusing information and knowledge of that situation”
[1]. The methodology is based on the assumption that similar problems
have similar solutions [13]. Summarized concisely, CBR fulfils the task of
“problem solving and learning from experiences” [1].

CBR is prevalent and applied in various domains in order to solve manifold
issues. Recent developments include for instance optimization of training
plans in sports [47], proposing treatments in healthcare [10], and even
identifying countermeasures to crop failure due to climate change [178].
In contrast to other AI approaches that solely build upon predefined

general knowledge, CBR foremost considers experiential knowledge [1]. As
integral part, this entails continuous learning and thus, self-improvement
[1]. Encountered problems that were solved through CBR are integrated as
experiential knowledge to increase the informativeness [13]. Compared to
other AI approaches, such as deep learning, which require a huge amount
of training data in order to produce a generally applicable model, a small
data set suffices for CBR, as it is an instance-based approach. Besides,
the learning process is much more simple and efficient, since only one new
experience needs to be integrated in the data set when one problem is solved.
This contrasts with other approaches where a completely new model needs
to be trained. Consequently, a main advantage of CBR is that the effortful
knowledge acquisition process becomes superfluous, as the main data basis
is build upon experiences that emerge during operation [117].

6.1.1. Case Representation
An experience of a problem is considered a case. A case usually consists of a
problem and a solution part. Cases can be separated in positive cases C+

and negative cases C− [149, p. 20]. Positive cases were handled successfully
and can be reused. Negative ones failed in solving the problem, which can
also help in deciding about a solution for a new problem, foremost to prevent
the identical failure.
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All cases are stored in a case base CB. The actually regarded problem
case, for which a solution is searched, is denoted as query.
A successful problem solving with CBR, which implies effectiveness and

efficiency at the same time, mainly depends on the representation of the
cases and, in particular, on which properties that are relevant for obtaining
similar cases are stored, as well as their organization in or the structure of
the case base [1].
There are three main types of case representations that differ depending

on aspects of the considered problem and concerning their solving strat-
egy. Structural CBR handles structured cases that can be for instance
attribute-value pairs, object-oriented representations, graphs or a set of
atomic formulae [13]. Textual CBR considers natural language in text form,
e.g. in documents, which additionally requires information retrieval and
other text processing methods [91]. Conversational CBR involves the user
through a list of questions that need to be answered. The resulting question
answer pairs form the cases and are utilized in order to find an adequate
solution [13].

6.1.2. CBR Cycle
The traditional CBR process consists of four sequential steps. Summarized,
these are denoted as CBR cycle, since they are performed iteratively as one
solved problem influences the handling of a subsequent issue by retaining
these made experiences. This CBR cycle with its four phases is shown in
Fig. 6.1.

The substantial parts, which are accessed by each of the process steps, are
the knowledge containers. They consist of previously experienced cases, the
case base, and general domain-specific knowledge, e.g. taxonomies or rules.
These are explained in more detail in Subsect. 6.1.3.

The starting point in the CBR cycle is the formulation of a problem that
needs to be solved. Ideally, this query is specified in the same representation
format as the elements in the case base. Each of the four steps, also denoted
as the four “RE’s”, is described in the following.

Retrieve

In the retrieval phase, a case search and matching is performed [1]. In the
simplest form, this is done via a k-nearest neighbour algorithm. The result
can be either the most similar case, or k most similar cases, or even all cases
that have at least a similarity higher than a specified value x [149, p. 168].
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Figure 6.1.: CBR Cycle by Aamodt and Plaza [1]

Several strategies for this search can be applied. A brute force technique
simply compares all cases sequentially, which can lead to inefficiencies, in
particular when considering large case bases. Improvements can be achieved
through a two-level retrieval. Popular methods are clustering of cases or a
MAC/FAC (“many are called but few are chosen”) approach, where a first
selection process concentrates on one specific property, whereas a complete
similarity assessment is performed on this reduced set of cases [17],[149, p.
171f].

Similarity, as an integral part of the retrieval phase, is presented in more
detail in Subsect. 6.1.4.
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Reuse

The most similar cases, which result from the retrieval, are reused for finding
a solution to the new case. The reuse principle is displayed in Fig. 6.2,
where an old problem is retrieved. Its solution is further adapted to fit
the new problem. If the similarity of the new case and the retrieved case
is at maximum, meaning that they are equal, the solution can be easily
transferred. Otherwise, in case of a lower similarity value, the old solution
needs to be adapted to fit the new problem. The reuse step results in a
suggested solution.

New Problem Old Problem

New Solution Old Solution

Retrieval

Adaptation

Figure 6.2.: Reuse Principle by Richter and Weber [149, p. 30]

More details about adaptation are given in Subsect. 6.1.5.

Revise

In the revise phase, the outcome or rather success of the adapted solution
that was applied to the new problem is evaluated. This can be done manually
or in an automated manner. If the solution failed, it eventually is repaired,
to learn from the mistakes that were made. Hence, the tested or repaired
case results in a confirmed solution.

Retain

The last phase of the CBR cycle retains the learned case. It is not necessarily
reasonable to store all upcoming cases in the case base, as this increases
the size of the case base, possibly leads to redundancy and as a result
decelerates the retrieval phase and ultimately decreases efficiency. Therefore
a trade-off should be made between a necessary minimum amount of cases
and the informativeness. Some methods exist, such as generalization of
cases, that decrease the size of the case base, e.g. through abstracting and
clustering or rather aggregating cases, but nevertheless preserve information
content. In addition, the retain phase can include the learning of knowledge
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concerning similarity and adaptation, e.g. through applying machine learning
algorithms.

6.1.3. Knowledge Containers
Besides this process view of CBR, the knowledge view is essential. The
different knowledge containers, which are shown as one block in the middle
of the CBR cycle in Fig. 6.1, are accessed and combined for the different
phases and used for manifold purposes. In Fig. 6.3, the knowledge is split
up into four distinct parts.

Knowledge

Case BaseAdaptationSimilarityVocabulary

General Knowledge

Figure 6.3.: CBR Knowledge Containers by Richter and Weber [149, p. 34]

The knowledge can be stored explicitly or implicitly, for instance in form
of algorithms [149, p. 34].

Case Base

The case base comprises past experiences and is quite naturally domain-
specific. As previously mentioned, it includes positive and successful cases,
as well as negative, failed ones. These cases can originate from a real context,
they can be variations from these real cases or even completely consist of
synthetically generated data [149, p. 36]. The case base is involved foremost
in the retrieval phase and eventually in the retain phase, if the learned case
is preserved in order to be used in future problem solving.

General knowledge can be split up into three individual containers: vo-
cabulary, similarity, and adaptation.
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Vocabulary

The vocabulary contains knowledge about the elements of the cases and their
structure. This can be for instance an ontology that defines the value range
of one attribute and their relationships [13]. The vocabulary is particularly
utilized to support the similarity assessment and adaptation strategies.

Similarity Measures

Knowledge about how to assess the similarity of two cases is essential for
the retrieval phase. Similarity measures need to be defined for the cases
as such, as well as for each element type of one case, if it is a composite
object. Usually, the similarity is formalized as a function with two input
parameters, i.e. the two cases that are to be compared, that results in a real
value sim ∈ [0, 1] [13]. More details are given in Subsection 6.1.4.

Adaptation Knowledge

The adaptation knowledge is accessed in the reuse phase, where the solution
of the retrieved case is transferred to the new case. If this solution is not
directly applicable, because the cases are not equal, adaptation becomes
necessary. Therefore, the existence of adaptation knowledge leads to a
reduced amount of cases that is required for an effective problem solving.
More details about adaptation are given in Subsect. 6.1.5.

6.1.4. Similarity
For finding the most suitable problem in the case base compared to the
currently regarded problem, the similarity is decisive [149]. To this end, the
specification of similarity and how it is measured are essential for retrieving
a useful case. It is usually formalized as a function that compares two cases.
A high value implies a high similarity, whereas a low value indicates nearly
no similarity at all. The values are mapped to an interval between 0 and 1.

sim : CB × CB → [0, 1] (6.1)

The similarity value ultimately indicates utility and preference [13]. The
concrete resulting value has no meaning but rather indicates a preference
through an ordering of cases. Similarity assessment can be done in a number
of ways and it is dependent on the type of data and the element structures.
Bergmann proposes several similarity measures not only for rather simple
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types, such as numeric attributes, but also for object-oriented and graph
representations [12].
A simple example for assessing the similarity of two integer values a, b

is through calculating the absolute distance. To achieve a similarity result
between 0 and 1, the value needs to be normalized through a division of
the interval range (max-min). Furthermore, as distance has the opposite
meaning compared to similarity (zero distance equals a high similarity), the
resulting distance is subtracted from 1.

sim(a, b) = 1− |a− b|
max−min

(6.2)

Thus, if two values 2 and 6 of the interval [0,10] are compared, the
similarity value is sim(2, 6) = 1− |2−6|

10−0 = 1− 0, 4 = 0, 6.
An important technique for similarity assessment concerning cases that

are composite objects and consist of more than one attribute is the local-
global principle. Separate local similarity functions are used for each single
attribute, whose results are then combined into one global similarity value.
Therefore, an amalgamation function is used [149, p. 138]. This can be for
instance in the simplest case a weighted average of all attributes, where the
weights indicate the importance and the relevance of individual attributes
[149, p. 28].

sim(a, b) =

n∑
i=1

ωi ∗ simi(ai, bi) (6.3)

where ωi defines a weight for each attribute and simi specifies the local
similarity value of one attribute ai and bi [149, p. 134].
When matching graphs, more elaborate techniques need to be applied.

There are rather simple methods that investigate the property isomorphism,
but the assessment result is binary and thus, restricted to either 0 or 1 [12,
p. 132]. Another kind of graph similarity can be computed through the
use of edit distances, which is transferred to nodes and edges in order to
transform one graph into the other one [12, p. 134f]. However, this procedure
is computationally expensive.
Similarity concerning processes will be regarded in Subsect. 6.1.6.

6.1.5. Adaptation
Since the resulting case from the retrieval phase is only approximately
appropriate, adaptation is necessary in almost all cases. Further reasons
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why adaptation is indispensable are the probable lack of adequate cases and
hence, a missing case that is sufficient similar; an approximate solution that
was applied to the retained case; or an insufficient formulation of the query
that leads to erroneously similar cases [149, p. 191].

Two main adaptation strategies are distinguished. Transformational reuse
aims at applying the old solution with slight adjustments to fit the context of
the new case. This can be for instance adaptation rules or operators [13][149,
p. 36]. Generative or derivational adaptation makes use of analogies by
replaying the solving strategy that was applied to the old case to the new
case [1].
Generally, adaptation can vary from none, called “null adaptation”, to

the construction of a completely new solution [149, p. 191]. An appropriate
adaptation technique allows for a rigorous decrease of the size of the case
base [149, p. 36], as this lack of informativeness can be compensated.

6.1.6. Process-Oriented Case-Based Reasoning
A special type of CBR concerns procedural knowledge and is thus named
Process-Oriented Case-Based Reasoning (POCBR) [114]. POCBR focusses
on reasoning with workflows and allows for an integration of PAIS and
CBR [15]. It is applied in various domains such as cooking [122], scientific
workflows [214] or logistics [67].

The positive cases in a case base of a POCBR approach can be regarded
as best practices, as they comprise only successfully terminated workflows
of one specific domain [15]. The reasoning process aims at creating new
workflows based on previous experiences, in this case terminated workflow
instances, due to some demand that arises. The issue that is regarded in this
work concerns an upcoming deviation, which requires an adapted workflow
to enable worklist recommendations. The approach presented in this work
can be classified as structural POCBR. Several case representations exist
that can represent workflows. In this work, a specific graph-based structure
is adopted, which is denoted as semantic workflows.

Semantic Workflows as Case Representation

Semantic workflows are used as case representation, as they allow for an
enrichment of semantic descriptions for nodes, edges, and the workflow as
such. Since the similarity assessment is additionally based on these semantic
annotations, it is more sophisticated.
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The utilized specification of semantic workflows is denoted as NESTGraph,
which contains the same elements as block-oriented workflows, but is addi-
tionally enriched by semantic metadata. According to Bergmann and Gil
[15], a NESTGraph is defined as follows:

Definition 6.1 (NESTGraph). A semantic workflow graph, shortly de-
noted as NESTGraph, is a semantically labelled directed graph, specified as
quadruple W = (N,E, S, T ) where

• N is a set of nodes and

• E ⊆ N ×N is a set of edges.

• S : N ∪ E → Σ associates to each node and each edge a semantic
description from a semantic metadata language Σ.

• T : N ∪ E → Ω associates to each node and each edge a type from Ω.

• Ω contains the following types of nodes: workflow, task, data, control-flow
node and the following types of edges: part-of, data-flow, control-flow and
constraint edge.

Fig. 6.4 shows an excerpt of a workflow instance, which is used for
evaluating the presented approach. It is related to the workflow model
illustrated in Fig. 3.2 - 3.5.
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Figure 6.4.: Exemplary Block-Oriented Semantic Workflow Graph
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This workflow consists of six task nodes (rectangles), five data nodes (ovals)
and one workflow node (rhombus), thus N = {w1, t1, t2, t3, t4, t5, t6, d1, d2,
d3, d4, d5}. Control-flow nodes are missing in the example, as only a simple
sequence is presented. Each node is labelled with its id (cf. “ID”) and
the name that is part of the semantic description. The edges denote either
control-flow (solid black lines), data-flow (dashed lines, input/output relation)
or part-of edges (solid grey lines) and jointly represent the set of edges E.
Constraint edges are non-existent in the example.
Furthermore, each node is associated with a semantic description (grey

rectangles), which contains additional information. In Fig. 6.4, some
exemplary semantic descriptions are shown. The workflow node relates to
some general information that concerns the whole workflow and not only
individual task or data nodes. In the example, the customer name and
the address of the concerned object is stored in this semantic description.
The tasks’ semantic descriptions only contain the name. The additional
information of data nodes differ concerning the attributes. For instance in
data node d1 further details are provided about the description of defect such
as concern and defect, or in data object d5 the amount of price reduction is
specified.
Another central aspect of each CBR approach is the applied similarity

measure. For POCBR, a specific measure that is able to compare workflows
is required.

Workflow Similarity

Besides local similarity measures that compare single attributes, the most
interesting similarity measure for the presented approach concerns workflows.
In research, many approaches exist that compare entire process models.
Workflows are represented through a complex structure and therefore,

require more complex methods for retrieval and adaptation compared to
simple case representations such as attribute-value pairs. As workflows are
commonly represented in a graph-based structure, prevalent methods apply
similarity measures for graph matching through a mapping of elements or
through assessing the edit distance.
A mapping of two workflow models is created through assigning each

element of the first model to an element of the second model. To this
end, a local similarity function is used that compares individual elements
to achieve the best possible mapping. Subsequently, these local similarity
values for mapped elements can be aggregated to one global similarity score.
There are various approaches that apply this method [15, 37, 128, 208].
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These approaches generally give good results, however, finding the best
mapping is non trivial and exhaustive search approaches are not feasible in
most applications due to inefficiency. This issue can be limited by utilizing
heuristics to find the best mapping [15, 213].

Besides graph matching, finding the edit distance between workflow models
is a well-known approach, which is inspired by the Levenshtein distance [92]
that is used to compare strings [90].

For semantic workflows, which were previously introduced as case represen-
tation, Bergmann and Gil propose a similarity measure that is based on an
A*-search algorithm for finding the best possible mapping of graph elements
[15]. This algorithm utilizes the local-global principle, where similarities of
semantic descriptions are mainly used for mapping single elements and thus,
substantially contribute to the global similarity value [15]. Nevertheless,
A*-search is rather inefficient for large case bases.

However, de facto workflows constitute a special type of workflows, as
they only consist of sequentially connected nodes. Thus, this restriction can
be considered when evaluating adequate similarity measures. The myCBR
system [176] provides a sequence similarity measure that was developed by
Lupiani et al. [99]. Events are considered to be atomic and, consequently,
an adapted Levenshtein distance is calculated between them [92]. Dijkman
et al. developed a similar method [37].

Workflow Adaptation

Existing approaches for workflow adaptation mainly focus on the change of
workflow models.

Minor et al. propose so-called adaptation cases that store knowledge about
the transformation process of one workflow to a target workflow through
adding or deleting certain workflow fragments [113].
Müller [120] investigated several adaptation methods for business work-

flows, such as structural and substitutional adaptation, which were trans-
ferred to the domain of scientific workflows by Zeyen et al. [214]. As a
structural approach, workflow streams are extracted from workflow models
that represent significant subworkflows with a certain input and output [121].
These workflow streams can be exchanged through subworkflows with similar
properties.
Substitutional adaptation mainly depends on generalization and special-

ization of certain elements of the case [123]. Knowledge about the possible
state space that is represented as taxonomies are exploited for the adaptation
itself.
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In the proposed approach for workflow flexibility, the focus is on comparing
de facto workflows. These workflows can be interpreted as event sequences,
where single tasks represent one event. Event sequences resemble time
series and therefore, related similarity measures are considered. Before the
designed similarity measure is presented, necessary foundations on some
time-series similarity measures that are adopted are explained.

6.2. Foundations on Time-Series Similarity
Measures

For comparing time series, most of the existing approaches can be distin-
guished into two categories. Similar to graph matching algorithms, some
approaches directly compare the two objects by searching for the alignment
while comparing individual elements. Similarity assessment is subsequently
realised through the local-global principle, by aggregating local similarity
values of single aligned elements into one global score. Prevalent approaches
that follow this method are Dynamic Time Warping (DTW) [160] and the
Smith-Waterman-Algorithm (SWA) [172]. A similar approach that applies
the SWA is called Trace-Based Reasoning (TBR) [112].

The second type of time-series similarity measures transform these series
into a different representation format, such as an n-dimensional vector.
Subsequently, adequate similarity measures, e.g. cosine similarity for vectors,
can then be applied. Hence, the similarity assessment can be accomplished
in a much more efficient way, but nevertheless some information might get
lost due to the transformation into a simpler structure.
The main intention of these methods is to limit the series’ complexities

in order to subsequently compare the representations with a very efficient
established measure. For instance, Agrawal et al. [5] apply the Discrete
Fourier Transform to extract some features from a series and subsequently
only compare a small number of the extracted features. Gundersen [61] uses
a vector representation that specifies the temporal distribution of events
in the series. Through a weighting factor, events with a greater temporal
distance have lower influence on the similarity outcome than those with
temporal proximity.

These related and promising approaches will be introduced in more detail
in the following sections.
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6.2.1. Dynamic Time Warping
Dynamic Time Warping (DTW) was originally developed in the context
of speech recognition in order to properly align distorted time series data
that is collected from voice recordings [18, 160]. Conventional methods for
comparing time series only assess the similarity between elements with the
same timestamp, whereas DTW allows elements to be warped onto elements
with different timestamps, but nevertheless preserving the sequential order
of elements. Therefore, this similarity measure is resistant to noise, e.g. to
compression and stretching.
DTW is already applied in various CBR approaches, for instance for

patient case matching in the medical domain [180].
The DTW algorithm is able to compare two sequences X with |X| = n

and n ∈ N, and Y with |Y | = m and m ∈ N and consists of the following
steps:

1. Determine a local distance or similarity function.

2. Initialize the scoring matrix.

3. Calculate the remaining entries in the scoring matrix on the basis of the
initial starting values and the defined local similarity measure.

4. Find the highest similarity value and the ideal warping path through
backtracking.

To exemplify the algorithm, these steps are explained in detail on the
basis of two string sequences XD = 〈a, b, c, d, e〉 with |XD| = 5 and YD =
〈a, f, b, c, e, g〉 with |YD| = 6. The scoring matrix and its filling is illustrated
in Fig. 6.5

1. Local Similarity Measure

Originally, DTW is defined using distance functions, however, since distances
can be losslessly converted into similarity scores, the algorithm will be
presented using a similarity function. For the sake of simplification, in this
example a primitive local similarity measure is used that assigns a value
of 1 if the two characters match, otherwise a value of 0. For all elements
xi ∈ XD and yj ∈ YD the similarity values are assessed as follows:

sim(xi, yj) =

{
1 if xi = yj

0 otherwise
(6.4)
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In general, every similarity measure can be applied that is adequate for the
elements of the time series. Ideally this should be optimized for the specific
domain. In the context of de facto workflows, this local similarity measure
should be able to compare tasks and their properties.
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Figure 6.5.: Exemplary Similarity Assessment with DTW based on Schake [162]

2. Initialization of the Scoring Matrix

A scoring matrix H = (hi,j) ∈ R(n+1,m+1) is constructed (see Fig. 6.5)
with n+ 1 columns and m+ 1 rows. The columns represent an element of
the first case, whereas the rows refer to elements of the second case. One
additional row and column is needed for the initialization of the matrix
(cf. ‘-’ in Fig. 6.5). The first row and column are initialized with zero:
∀i ∈ {0, . . . , n}, j ∈ {0, . . . ,m} : hi,0 = h0,j = 0. In the remaining cells, one
element of the first series is contrasted with an element of the second series.
The calculation of these cells in the matrix is based on the initial values in
the first row and column.
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3. Calculation of the Scores in the Matrix

The entries in the scoring matrix H are computed by a recursive function.
As a consequence, each cells’ value is dependent on the previously assessed
scores, which represent a comparison of subsequences up to the corresponding
elements and therefore include all preceding mappings. Thus, one value in
the matrix hi,j is either derived from a matching of elements (cf. diagonal
step in the matrix, see 1© in Fig. 6.5) or a warp either from an element
of the second series to a previously matched element of the first series (cf.
vertical step, see 2© in Fig. 6.5 with sim(a, f) = 0) or from an element
of the first series to a previously matched element of the second series (cf.
horizontal step, see 3© in Fig. 6.5 with sim(c, c) = 1). For all of these cases
the previous score depending on the operation (cf. score origin in Fig. 6.5) is
added to the similarity of the currently regarded elements. If these elements
are mapped onto each other, the similarity value is weighted twice in order
to prefer this operation rather than a warp. The maximum value out of
these three options determines the currently regarded cells’ score:

hi,j = max


hi,j−1 + sim(xi, yj), warp (vertical)
hi−1,j−1 + 2 ∗ sim(xi, yj), mapping
hi−1,j + sim(xi, yj), warp (horizontal)
0 otherwise

4. Similarity Value and Warping Path

The value of a cell hi,j in the matrix is interpreted as the similarity score
between the subsequences 〈x1, x2, . . . , xi〉 and 〈y1, y2, . . . , yj〉. When the
matrix is filled entirely, the cell with the maximum score determines the
similarity value for the best matching subsequences. If the calculation of
the scoring matrix is as presented here, this will be in all cases the right
cell in the bottom row, as the scoring function only increases the values
but never subtracts any values. In the example, the similarity value is
sim(XD, YD) = 9. Note that, since the value is not normalized, it is higher
than 1.
The warping path can be reproduced by backtracking in the inverted

direction of each cell’s original calculation. Consequently, the alignment of
both series can be determined by starting from the cell with the maximum
score and subsequently backtracking to the cell of both first elements (see
green alignment in 4. and the illustrated resulting alignment in the bottom
of Fig. 6.5).
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The complexity of DTW lies in O(n2) due to the construction of the
matrix, but some algorithms exist that optimize the computation time [119].

6.2.2. Smith-Waterman-Algorithm
Another popular method for finding subsequence alignments is the Smith-
Waterman-Algorithm (SWA) [172], which was originally invented for match-
ing protein sequences in the context of DNA analysis. It was developed by
Smith and Waterman in 1981 as an extension of the Needleman-Wunsch-
Algorithm (NWA) [125]. The NWA finds global alignments through matching
whole sequences, whereas the SWA is able to find local alignments through
matching subsequences. Similar to the Levenshtein distance, the alignment
is found by successively either matching, inserting, or deleting elements from
one series in order to match the other series. Thus, compared to DTW,
the interpretation of the alignment is slightly different. Instead of multiple
warps from elements to one element, each element is either matched with an
element or a gap, representing an insertion or a deletion.

The general proceeding is similar to DTW, with one additional parameter
that is determined.

1. Determine a local distance or similarity function.

2. Determine a gap penalty function.

3. Initialize the scoring matrix.

4. Calculate the remaining entries in the scoring matrix on the basis of the
initial starting values and the defined local similarity measure.

5. Find the highest similarity value and the optimal alignment through
backtracking.

These steps are illustrated in Fig. 6.6 and described in more detail in
the following on the basis of an example. The sequences of the previous
example of DTW are slightly adjusted to XS = 〈a, b, c, d, e〉 with |XS | = 5
and YS = 〈a, f, b, c, e, f〉 with |YS | = 6.
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Figure 6.6.: Exemplary Similarity Assessment with the SWA based on Schake
[162]

1. Local Similarity Measure

To illustrate the operating principle of the SWA, the same simple local
similarity measure that is used in the subsection about DTW is utilized. It
assigns 1 if the two strings are equal and 0 in all other cases.

sim(xi, yj) =

{
1 if xi = yj

0 otherwise
(6.5)

2. Gap Penalty Function

As elements are not mapped in each case, compared to a warp when using
DTW, a score needs to be determined that is integrated in the assessment
when elements of the series are matched with a gap. This gap represents the
insertion or deletion of an element. Therefore, the gap penalty function is
introduced that is added instead of the similarity value of two elements. In
this example a constant value G is used.

G = −0, 5 (6.6)
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For each mapping with a gap, the similarity score is decreased by 0,5.
Depending on the domain, functions can be utilized as gap penalty that
depend on specific properties of the elements, such as their position in the
sequence.

3. Initialization of the Scoring Matrix

The initialization of the scoring matrix H = (hi,j) is conducted equivalently
to DTW, as the values in the first column and the first row are set to 0 (see
2. in Fig. 6.5): ∀i ∈ {0, . . . , n}, j ∈ {0, . . . ,m} : hi,0 = h0,j = 0.

4. Calculation of the Scores in the Matrix

The calculation of the remaining scores in the matrix, however, differentiates
the two approaches. Horizontal and vertical steps in the matrix represent
either deletion or insertion (indels) of an element, while diagonal steps are
interpreted as matching two elements. For any indel operation, the specified
gap penalty is added to the preceding value, whereas the similarity score is
added in case of a match. The scoring matrix is constructed in the following
way:

Hi,j = max


Hi,j−1 +G, insertion
Hi−1,j−1 + sim(xi, yj), match/mismatch
Hi−1,j +G, deletion
0 otherwise

(6.7)

5. Similarity Value and Alignment

The similarity value is represented by the highest score in the matrix. In
contrast to DTW, the alignment path, which can be found through back-
tracking, is not interpreted as mapping of elements, only diagonal steps
represent an alignment. Values that originate from horizontal or vertical
steps in the matrix indicate an insertion or deletion of elements concerning
sequence XS .
In the example in Fig. 6.6 the resulting similarity value is 3. The

alignment is shown in the bottom line of Fig. 6.6.

Two main differences between the SWA and DTW are obvious. Whereas
DTW matches all elements of both series on the basis of warping, the SWA
omits elements at the end of one series if the mapping of the subsequence
yields the best result. Moreover, some of the individual elements are mapped
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with a gap instead of a multiple mapping as in DTW. Thus, the SWA is
noise-resistant. To this end, depending on the definition of the gap penalty,
outliers can have a lower influence, whereas in DTW the rating is fix, as
it bases on the similarity measure. Furthermore, this results in different
interpretations of the alignments. DTW regards stretched or compressed
sequences to be equal, whereas the SWA considers a subsequence to be equal
to a sequence, if it is part of this sequence [163].

Both algorithms have in common that their output includes an alignment
path besides the similarity score, which can be exploited in the reuse phase
of CBR. Furthermore, computational complexity is not different, as it lies
in O(n2) for both approaches.

Which algorithm fits best needs to be determined depending on the domain
and use case. Both have specific properties that come with some advantages
and disadvantages.
Both approaches can be adapted to specific needs of a domain, e.g. by

altering the gap penalty function and local similarity measures. For the
presented case-based deviation management, both will be evaluated according
their suitability and are adopted to fit the characteristics of the pursued
similarity measure.
Zarka et al. [212] adopt the SWA for an approach called trace-based

reasoning.

6.2.3. Trace-Based Reasoning
TBR, which was first introduced by Mille [112], is a special form of case-
based reasoning where traces serve as case base. An important aspect as
extension to standard CBR is the introduction of a temporal aspect. In TBR
similarity measures are used that base upon temporal sequences of elements,
which are defined as traces. Cordier et al. [26] and Zarka [211] presented
an approach with the objective of finding contextual recommendations for
process participants that interact with web applications.
To this end, an algorithm was developed that is based on the SWA and

was adapted for retrieving similar traces. The SWA is used for local sequence
alignment and compares traces in all possible lengths. This characteristic
perfectly matches the requirements of trace-based reasoning as terminated
instances have to be compared to ongoing and not completed processes,
which are only subsequences and will not match exactly considering the
length. Several local similarity measures are used for each attribute of the
observed elements, which are part of the traces. For each observed element
a global similarity value is computed on the basis of local values with use
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of a weighted average function. These similarity values of single elements
are furthermore used in the SWA to calculate the overall similarity of traces.
This method can be transferred to the pursued deviation management, if
de facto workflows are considered as traces, at least for retrieving the best
matching cases.

As adaptation method, Zarka [211] proposes a simple extraction method
that takes a subsequence of actions from the most similar retrieved case,
which follows the part of the matched trace. Some values of this subsequence
are adapted by more adequate ones on the basis of contextual information.
As last step in the adaptation process, actions are filtered, e.g. invalid
actions or unnecessary repetitions.

Zarka utilizes this method in order to find suggestions for workflow contin-
uation in a mobile video editing suite by also incorporating a CBR approach.
However, the context of deviations or adaptation methods are not considered
by the authors [211].

Transferred to deviation management, this subsequence can be extracted
from the retrieved de facto workflow and first tasks of this subsequence can
then be recommended as work items. Furthermore, if case and query do
not match exactly, edit steps, which are necessary for aligning query and
case, are part of the solution of the SWA. These additional differences relate
to previously happened deviations, but might be required for a successful
completion of the workflow as well. Therefore, these edit steps possibly
might be transformed adequately into additional work items to ultimately
provide further workflow control.
A completely different approach is introduced by Gundersen [61].

6.2.4. Weighted Vector Similarity
Unlike the other two approaches that find series alignments through directly
comparing the sequences, Gundersen adopts a similarity measure that trans-
forms event sequences into a vector representation [61]. These vectors can
then be compared with efficient vector similarity measures such as cosine
similarity [61].

This approach was developed on the basis of requirements for recognizing
failure causes and recommending adequate solutions in the oil-well drilling
domain as part of a real-time analysis. As specific characteristics of this
domain are addressed, the approach is not generally applicable, but some
properties might be transferable.
This approach is based on the assumption that recent tasks to a certain

point of interest are most important when comparing event sequences. The
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importance of events decreases the longer ago they occurred. This is realized
by a weighting function that considers the position of events related to the
start and end of a sequence. In the simplest case, the end of a sequence
is regarded as point of interest. Consequently, the closer the occurrence of
an event is to the end of a sequence, the higher the weight value. For each
event type this weight is computed as sum of single weights of single event
occurrences. These weights of event types are then combined into a vector,
where each dimension represents one event. This vector can be compared to
other sequences and their weight vectors.
The general proceeding includes the following steps:

1. Calculate the weight of each event.

2. Calculate the total weight for each event type.

3. Assess the similarity value by comparing the weight vectors.

The similarity assessment is explained in detail and exemplified through
the comparison of two sequences XV = 〈a, b, c, c〉 with |X| = n ∈ N and
YV = 〈a, c, b, c, d〉 with |Y | = m ∈ N.

1. Calculate Event Weight

A weight value wi is assessed for each event in the sequence indicating its
temporal position posi related to the end of the sequence. Let end be the
last position in the sequence. Then, the weight is calculated as follows [61]:

wi =
1

2
end−posi

h

(6.8)

The halving distance h defines the position of an event related to the last
element of the sequence, where its weight is 0,5, i.e. the half of the maximum
weight value 1. Thus, the weight of an event at the end of the sequence is 1,
the weight of an event i with posi = end− h is 0,5, and for all events prior
to the latter the weight is lower than 0,5 [162].
For the example, let h = 2. The weight variables for the characters c at

position posi = 3 in XV and for d in YV have the following values:

wc =
1

2
4−3
2

=
1

2
1
2

≈ 0, 71 (6.9)

wd =
1

2
5−5
2

=
1

2
0
2

= 1 (6.10)
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2. Calculate Total Weight

Each sequence is transformed to a vector V with l dimensions. The number
of elements l of this vector results from the number of existing element
types and is thus, completely independent from the size of the individual
sequences, but each sequence is transformed to a vector with the same
number of dimensions.

Consequently, derived from the individual elements’ weights, a total weight
for each event type needs to be assessed in order to build the vector. This
total weight is computed as follows [61], where p is the number of weights in
the sequence with the same event type k:

Wk =

p∑
i=1

wi (6.11)

Then, the vector V results and contains all total weights:

V = (W1,W2, ...,Wl) (6.12)

Consequently for the exemplary sequences X and Y the following two
vectors result:

VX =


Wa

Wb

Wc

Wd

 =


0, 35
0, 5
1, 71
0

 (6.13)

VY =


Wa

Wb

Wc

Wd

 =


0, 25
0, 5
1, 06
1

 (6.14)

The value of event type d of the sequence YV conforms with the previously
exemplary computation for the single event, as only one element of d occurs.
In contrast, the value of event type c of sequence XV is composed of the
individual weights of both occurrences of c, and thus, is higher than the
previously exemplary calculated one (cf. Equ. 6.9).

3. Similarity Assessment of Vectors

These weighted vector representations can now be compared by utilizing
measures such as cosine similarity and relative component fraction [61].
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Gundersen proposes a combination of both, as cosine does not differentiate
magnitudes and parallel shifts [61].
For the exemplary sequences X and Y a similarity value of 0,76 is deter-

mined with the cosine similarity measure.

sim(X,Y ) = cos(VX , VY ) =
VX · VY

||VX || · ||VY ||
=

2, 15

1, 82 · 1, 56
=

2, 15

2, 84
= 0, 76

(6.15)
The main strength of this measure is its efficiency due to its low com-

putational complexity of O(n). Major drawbacks however include that the
approach lacks the possibility to obtain semantic similarity between single
tasks, as only entire sequences are compared considering their properties of
task occurrences. Only self-referential characteristics of tasks can be included
in the single weights of tasks, like e.g. importance or severity. Moreover,
similar to DTW, all elements of the sequences are compared, independent
of their lengths.
Besides, one event type that is completely missing in the sequence has

a strong influence on the similarity outcome, as this dimension is assigned
a zero, whereas in DTW or the SWA a missing task can be compensated
partly through warping or an indel operation. How heavy this difference
is weighed is specified individually, depending on the gap penalty or the
similarity assessment.
Furthermore depending on the use case, this vector representation does

not necessarily incorporate all events since start of the sequence, but can
also only integrate a specific time window from a certain point t until end of
the sequence.

6.3. Case-Based Approach to Deviation
Management

The methodology of CBR is transferred to the problem of deviation manage-
ment. In order to support process participants during workflow execution,
in particular when deviations occur, similar terminated workflow instances
are searched and reused for recommending adequate work items despite
these anomalies. Through this case-based approach, the tedious definition
of strategies to overcome exceptional situations becomes superfluous. It is
expected that the lack of expert knowledge can be compensated through
a case-based deviation management that allows for a more sophisticated
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and individual situation-dependent decision. Thus, in contrast to existing
approaches (see Section 6.6), this will be achieved without necessary user
interaction or prior knowledge acquisition.

Before the overall concept is presented, the notion of deviation is shortly
introduced, as it is used equivocally in research, and deviation management
as such is abstractly sketched.

6.3.1. Deviation Management
The notion of deviation is not clearly defined and often included in the term
exception, as a special type. To clarify the classification of exceptions and
deviations in this work, several specifications will be quoted.

A process deviation is defined by da Silva et al. [29] as mismatch between
executed process and process model. They state that deviations cannot be
anticipated and explicitly put exceptional behaviour in contrast. According
to Marrella et al. [106], exception handling is implemented manually at
build time, whereas deviation handling requires ad-hoc changes at run
time. Eder and Liebhart [43] describe unexpected exceptions, in their work
denoted as deviations, as an important aspect that should be handled to gain
possible benefits. Depaire et al. [35] categorize deviations into exceptions and
anomalies, whereas explicit exceptions are implemented as part of the process
model or defined as business rules. This definition does not conform with
how it is used in the context of the presented work, as explicit exceptions are
included in the notion deviation. In this work, the term deviation excludes
explicit exceptions, as they are predictable, but includes implicit exceptions
and anomalies as described by Depaire et al. [35].

Hence, the presented approach conforms with the specification of da Silva
et al. [29], as the notion of deviation is regarded as a mismatch between
process instance and process model that cannot be anticipated.

Deviation management in general can be split up into 3 phases: deviation
detection, deviation handling and deviation analysis. In this work, the part of
deviation detection as well as deviation handling, at least to a limited extent,
has been presented in Section 5.5. The aim of this case-based approach is a
more elaborate deviation handling. Deviation analysis is part of future work,
as it refers to the last phase in the business process life cycle: evaluation.
For that purpose, event logs are analyzed and exploited for improvements
and optimization, foremost of the process model.
The notion workaround [8] is related to deviation, specifically how it is

interpreted in this work, as unexpected situation. Outmazgin and Soffer
describe a workaround as “incompliant behaviour, where employees inten-
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tionally decide to deviate” [131]. Thus, deviations can be workarounds
themselves if no external trigger caused the deviation, but deviations in
terms of changed circumstances require workarounds. The objective of
the proposed approach is to support these workarounds or to make them
unnecessary, as the system guides despite deviation.

6.3.2. Deviation Management in the Context of the CBR
Cycle

The overall case-based approach that is pursued for a deviation management
is sketched in Fig. 6.7.

Retrieved Case

De Jure

De Facto

Query

Case  
Base

Retrieval

?

De Jure

De Facto Solution

Constraints Constraints

∅ sol={sol1,sol2,sol3} 
SolutionsSolutions

Reuse

Null
Adaptation

Generative 
Adaptation

Figure 6.7.: Case-Based Approach for Handling Deviations partially based on
Grumbach and Bergmann [57]

Case Structure

Terminated workflows are regarded as cases. Each workflow case is a tuple
WC = (JC , FC , CSPC , solC) with
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• De jure workflow as NESTGraph JC ,

• De facto workflow as NESTGraph FC ,

• Constraint problem CSPC = (XC , DC , CC) with
– Decision variables XC

– Set of domains DC

– Constraints CC = {alldifferent(S)} ∪ CM ∪ CA ∪ CI and

• Set of solutions solC .

A workflow case contains the de jure workflow, which is the default for
suggesting an execution order. Furthermore, the workflow instance is part of
the workflow case and comprises a corresponding specific de facto workflow,
the constraint set and its solutions. The de facto workflow represents one
simple sequence of tasks that were traced at run time. Both the de jure
workflow and the de facto workflow are represented as semantic workflows in
the form of NESTGraphs. The constraint problem consists of the decision
variables XC , the set of domains DC and the constraint set CC with its
different subsets, which were presented in Subsect. 5.4.1.
One would assume that for a terminated de facto workflow, where tasks

have a specific position, the solution set consists of one single solution.
However, some more valid solutions are possible when regarding the tasks
that have not been enacted. Those are assigned a value higher than send
and there still might be several valid variants.

The case base CB = {WC1,WC2, . . . ,WCn} consists of several workflow
cases WCi = (JC , FC , CSPC , solC) for i ∈ {1, . . . , n}. Workflows both with
or without deviations are included, as both cases might be useful for task
recommendation.

Query

The problem to be solved with this CBR approach is the recommendation
of adequate work items in case of a deviation. Hence, a running workflow
with a de facto workflow that is not completed yet will be used as the
query: Q = (JQ, FQ, CSPQ, solQ), where FQ is not final and is continuously
complemented with traced tasks and data nodes that served as input or
output during execution. This instance is a subsequence of a completed de
facto workflow and contains at least one deviation concerning its de jure
workflow (see orange-coloured node in Fig. 6.7) that occurred at the time of
the request. The associated de jure workflow is also available. In Fig 6.7, the
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executed trace in the de jure workflow is indicated through dotted lines that
connect to the tasks of the de facto workflow. The lack of compliance and
its resulting deviation is illustrated through the red-coloured flash symbol.

Due to the occurred deviation, the constraint net, as part of the constraint
problem CSPQ, is inconsistent and no solution can be found, hence, solQ =
∅. Moreover, due to the running status of the workflow, some constraints
can be assigned a definite status, while some constraints remain indefinite
(see different colours for constraint nodes in Fig. 6.7, detailed explanations
follow in Subsect. 6.5.2).

All phases of the CBR cycle are important for a holistic view of deviation
management and lead to a self-learning system.

Retrieve

When a query is performed, the case base is searched through on the basis
of an adequate similarity measure. The objective is to find similar de facto
workflows whose subsequences match the current instance (see de facto
workflows with blue and orange nodes in Fig. 6.7), containing a similar
deviation (orange node) compared to the query. In the retrieved cases, the
subsequences that succeed the deviation (see green-coloured nodes in Fig.
6.7) should not be considered when assessing the similarity, as this part is
not existent in the query, but is rather a solution candidate.

Reuse

This most similar case or even several similar cases are then used to recom-
mend tasks. One possibility is to propose those tasks of the case that followed
the subsequence that ended with the deviation (see green-coloured nodes in
Fig. 6.7), which is categorized as null adaptation. In some circumstances a
simple transfer of the solution is not reasonable, but rather an adaptation
of the recommended remaining workflow part is necessary. To this end,
a constraint-based method is proposed as generative adaptation approach.
Thereby, the constraint problems of case and query are aligned and adapted
in order to re-enable the workflow engine to compute new solutions of the
constraint problem for determining work items.

Revise

As tasks are only recommended and not strictly prescribed, the process
participant is still able to execute a task that was not part of the solution
resulting from the reuse step. Thus, by continuing the query workflow, the
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solution can be revised. But still, the final evaluation of the terminated
workflow is pending. This assessment decides whether the revised case can
be retained as successful or failed case.

Retain

When the query workflow has terminated, its de facto workflow, containing
the actual execution, can be integrated in the case base. Ideally, some kind
of validation, positive or negative, is stored with the case in order to draw
the correct conclusions in subsequent reuse steps. Before integrating single
cases, it needs to be evaluated whether the informativeness can be increased
or whether this additional knowledge is already covered by adaptation
methods. Nevertheless, the case base can be enhanced continuously, which
ultimately leads to a learning system.

This work focusses on the retrieval and reuse phase. On account of this,
a similarity measure and two adaptation methods are presented in the
following. With this case-based approach, it is possible to recommend work
items after deviations. This is done on the basis of a sophisticated decision
that takes previously made experiences into account. The revise and retain
phase are part of future work and are therefore only presented abstractly as
idea.

6.4. Retrieving Similar Workflows for Flexibility by
Deviation

For retrieving similar workflows that are adequate for a reuse in situations
where deviations occur, a similarity measure has to be defined. In this
section, this retrieval phase is described. First, in Subsect. 6.4.1, specific
important characteristics of the flexible workflow approach are concretised
and requirements for the similarity measure are derived on this basis. A pre-
processing of the cases, which is part of achieving a meaningful comparison, is
described in Subsect. 6.4.2. Subsequently, the developed similarity measure
is introduced in detail in Subsect. 6.4.3. It combines, integrates and extends
several properties of the previously presented similarity measures for time
series (cf. Sect. 6.2), in order to create an adequate adoption and to fit the
needs of the pursued case-based deviation management.
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6.4.1. Characteristics of Similarity for Deviating Workflows
When designing a similarity measure, properties of the cases and the overall
objective of the approach need to be considered. As prerequisite, the
definition of similarity in this context needs to be defined. Specific properties
of flexibility by deviation that are important for determining similarity are
sketched. On this basis, requirements for the similarity measure can be
derived.

In the proposed approach, the focus of assessing similarity solely lies on a
comparison of the de facto workflows. This is a special type of a workflow, as
it only contains traced tasks and consequently, is represented as sequentially
ordered series of tasks without control-flow branches. Existing approaches
for workflow similarity in most cases apply graph matching algorithms that
tend to be rather inefficient, in particular for large graphs (see Subsect.
6.1.6). Due to the sequential structure of de facto workflows, which is much
more simple, other types of similarity measures are more adequate and less
complex. When abstracting from the workflow structure, de facto workflows
resemble complex event sequences. Hence, they can be perceived as time
series that consist of tasks with additional semantic information. Due to
these reasons, the application of a time-series-based method seems to be
promising (see Sect. 6.2).

Another important property of the de facto workflow of the query refers to
its state. As the comparison is required during run time, the query comprises
a running workflow. Consequently, its de facto workflow is incomplete,
whereas all cases contain terminated workflows. The part of interest, which
is the deviation itself, is situated at the end of the query, but possibly right
in the middle of a case. The similarity measure has to deal with a subset
relation between query and case, for which the support of partial mappings
is required. An additional reason why only subsets of the case should be
mapped concerns the reuse phase. Considering such a mapping of elements
up to the deviation, the remaining sequence of the case workflow can be
used to derive a solution or rather to propose work items. If all elements are
mapped, no elements remain for a reuse.
Moreover, an important aspect of the pursued similarity is that under

certain conditions some mismatches of subsequences of case and query should
have low or rather no influence on the similarity score. This refers to two
aspects.
On the one hand, it is assumed that differences with a greater temporal

distance to the occurrence of the deviation should have a lower impact on
the similarity, as they are less related.
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On the other hand, a novel property of a case or query is incorporated that
is introduced by the notion model-consistency. Any de facto workflow or any
subsequence of a de facto workflow without a deviation, but conforming to
the de jure workflow, is denoted as model-consistent. This property can be
exploited to ignore some parts of the workflow during similarity assessment.

Consider a parallel workflow block, where two tasks are executed in parallel.
During tracing of the de facto workflow, the first task that terminates is
arranged sequentially prior to the second task, even if the point of termination
only differed minimally and the execution took place primarily in parallel.
If there are two cases containing opposite sequences of tasks, these two
subsequences are nevertheless model-consistent. In this case, the omission
of those tasks of the parallel workflow block during similarity assessment
is reasonable, as the order of the tasks may have no relevance as most of
the execution time was in parallel. Thus, through ignoring model-consistent
parts in parallel workflow blocks, such inaccuracies can be eliminated that
are introduced through the sequential tracing of tasks.

Besides, the similarity measure should comprise both task and data objects,
as the data-flow between tasks contributes as much to the similarity value
as the description of the tasks themselves, and hence, allows for a more
significant comparison of workflows and its elements.
Summarized from these presented characteristics, the following require-

ments can be derived:

RS1 - Comparison of Sequences: The similarity measure should be able
to compare sequences, as the de facto workflows consist of a sequence of
tasks.

RS2 - Comparison of Subsequences: The similarity measure should be
able to compare subsequences, as the running workflow is compared to
terminated ones.

RS3 - Temporal Weighting: The similarity measure should be able to con-
sider the temporal ordering of tasks and allow for a derived differentiated
weighting.

RS4 - Exclusion of Model-Consistent Subsequences: The similarity mea-
sure should be able to detect model-consistent parts that are eliminated
before the similarity is assessed.

RS5 - Comparison of Tasks and Data Objects: The similarity measure
should be able to compare both task and data nodes.
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Before the actual similarity assessment is explained in detail, a pre-
processing algorithm that is applied to the case base and the query is
introduced.

6.4.2. Pre-Processing
The pre-processing algorithm is used to identify irrelevant workflow blocks
in case and query, which are excluded from similarity assessment by deleting
these subsequences prior to comparison. This refers to requirement RS4 (cf.
Subsect. 6.4.1), in order to achieve an omission of model-consistent parts.
The pre-processing of the case base results in reduced cases and consequently,
similarity can be assessed faster and with lower complexity. Pre-processing
can be done at build time, at least partially, such that retrieval time is
not affected but rather accelerated. Besides, the size of the case base can
be decreased potentially, as redundant cases might be the result of case
reduction and can therefore be removed.

For a reasonable reduction of case and query and the subsequent similarity
assessment, both workflows need to be based on the same de jure workflow,
such subsequences that are derived from the corresponding subworkflow can
be excluded.
First, the pre-processing algorithm enhances the cases in the case base

with further information that is used for comparison and reduction when a
query arises. As the overall approach is limited to block-oriented workflows,
the block structuring is exploited for this purpose.

The pre-processing steps are listed abstractly in the following and described
in detail subsequently:

1. Label elements of de jure workflow.

2. Transfer labels to de facto workflows.

3. Check for model-consistency.

4. Reduce workflows.

An example is presented in Fig. 6.8, which is used to exemplify each of
the described steps.

1. Label Elements of De Jure Workflow

First, the nodes of the de jure workflow of each case are labelled to identify
both the position of each task node within the workflow blocks that contain
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Figure 6.8.: Exemplary Pre-Processing based on Schake et al. [163]
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the task and what types of workflow blocks are involved. To this end,
different labels are introduced. The set idsb is a set of natural numbers that
contains one unique id for each of the control-flow node pairs.

idsb = {1, . . . , b} ⊆ N with |idsb| = b =
|NC

J |
2

(6.16)

Each control-flow node pair, i.e. split cs and join node cj, is assigned a
unique id idb with idb ∈ idsb.

idb : NC
J → idsb with idb(cj) = idb(cs) (6.17)

In the example in Fig. 6.8, only one control-flow block exists and therefore,
the set of possible block ids has one element idsb = {1}. This id is assigned
to both contained control-flow nodes, as they comprise the split and join
node of the same control-flow block, idb(cs) = idb(cj) = 1.

Furthermore, the task nodes are assigned two labels. This includes a set of
ids, denoted as levels. These ids refer to the id idb of each of the control-flow
blocks they are nested in. This concerns not only the directly connected
control-flow nodes, but also the ones that are on a higher hierarchical level,
up to the highest level (start and end node of the workflow). Consequently,
this includes the ids of all preceding control-flow split nodes that have not
been joined until the currently regarded task node, as well as the value ‘0’
for the top level, where no control-flow is split up yet and consequently, each
task is subordinate.

levels : NT
J → P(idsb) ∪ {0} (6.18)

The highest level is specified through the value ‘0’, e.g. for task t1 in Fig.
6.8 levels(t1) = {0}. Tasks t2 and t3 additionally are assigned the value 1
as levels, as they are part of the parallel control-flow block with idb = 1,
hence, levels(t2) = levels(t3) = {0, 1}.

In addition to the ids of the levels, tasks are assigned the operator of the
nearest control-flow block. The operator op specifies the type of control-flow
block in which the task is directly nested. Hence, this results in the type of
the nearest preceding control-flow node.

op : NT
J → {+,×, ◦, \} (6.19)

Parallel control-flow is specified through the symbol “+”, exclusive control-
flow is represented by “×”, loop control-flow blocks are marked with “◦” and



6.4. Retrieving Similar Workflows for Flexibility by Deviation 151

the highest level, where no control-flow block is involved, is labelled with
“\”. In the example in Fig. 6.8, the operator of t2 and t3 is ‘+’, as both
tasks are part of the control-flow that is directly connected to the parallel
control-flow nodes without further interference of other control-flow nodes.
All other tasks, that are not nested in any control-flow blocks but are on
the highest level (cf. t1, t4, t5) are allocated the operator ‘\’.

2. Transfer Labels to De Facto Workflows

These labels, which are complemented in the de jure workflow, are subse-
quently transferred to the de facto workflows of the cases. Each task in the
de facto workflow is assigned the same labels as its corresponding task of
the workflow model. This can be done easily, since each task node in the
de facto contains a reference id of the specific task of the de jure workflow.
This transfer step is illustrated in Fig. 6.8 as second step for the de facto
workflows of an exemplary case and query. Note that the orange-coloured
node indicates an existent deviation and as a result, the following task is
left unclear in the query workflow.

3. Check for Model-Consistency

As soon as the nodes of the de facto workflows are labelled, model-consistency
can be checked for the workflows. This property holds for subsequences of
the de facto workflow due to their conformity to one workflow block of the
de jure workflow. Therefore, for each level of workflow blocks, and thus for
each value id ∈ idsb ∪ {0}, a set of tasks Tid from the de facto workflow is
extracted that belong to this level.

Tid = {t|t ∈ NT
F ∧ id ∈ levels(t)} (6.20)

Based on this subset of tasks of the original workflow, a reduced de facto
workflow can be constructed. Edges are completely reset and created newly
on the basis of their order in the original de facto workflow. The result is a
subsequence where the sequential order of tasks is preserved. These resulting
workflow sequences (cf. for the exemplary case in Fig. 6.8, two sequences
can be extracted, see 3.) can then be validated by the constraint-based
workflow engine, which was introduced in Subsect. 5.4.1.If the workflow
engine finds a solution for this reduced CSP, the subsequence is model-
consistent. Consequently, every id of consistent control-flow blocks is stored
in a set consistent ⊆ idsb ∪ {0}.
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In the example in Fig. 6.8, this is illustrated for the case workflow. The
sequence for id = 0 is not model-consistent, as a deviation is included (cf.
position of t5), whereas the subsequence for id = 1 is model-consistent, and
consequently, this id is added to consistentC . The same procedure will
be applied to the de facto workflow of the query, resulting in the same set
consistentQ = {1} .

4. Reduce Workflows

The previously determined property of model-consistency can be used to
reduce query and cases prior to similarity assessment. If any id coincides in
the set consistent of both query and case, every task t where id ∈ level(t)
can be deleted from the de facto workflows and the remaining tasks need
to be reconnected sequentially, if this deletion concerns a part right in the
middle. Hence, the deleted tasks do not affect the similarity score.

In the following, these adapted elements are formally specified for the de
facto workflow. N consistent

F represents the set of tasks, that can be deleted.

N consistent
F = {t|t ∈ NT

F : ∃id ∈ consistent : id ∈ levels(t)} (6.21)

Thus, the original set of nodes is reduced by this set and results in a
reduced set.

Nreduced
F = NF \N consistent

F (6.22)

Subsequently, the edges need to be adjusted, as some nodes of edges are
not existent any more, and in order to reconnect the control-flow, some edges
need to be integrated, which is abstractly specified as Ereconnected

F .

Ereduced
F = EF \ {(t1, t2)|t1 ∈ N consistent

F ∨ t2 ∈ N consistent
F } ∪ Ereconnected

F

(6.23)
Consequently, the reduced de facto workflow is composed as follows:

F reduced = (Nreduced
F , Ereduced

F , SF , TF ) (6.24)

In the example in Fig. 6.8, id = 1 ∈ consistentC = consistentQ and
thus, t2 and t3 are deleted from both de facto workflows and t1 and t5 are
reconnected through a new edge. In this case, the omission of tasks of the
parallel workflow block is reasonable, since the order of the tasks may only
differ due to the sequential tracing of terminated tasks, whereas in reality
in both cases tasks t2 and t3 might be executed in parallel. Thus, this pre-
processing is able to eliminate the inaccuracies that are introduced through
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the sequential tracing of tasks. Furthermore, as the deviation does not occur
until after the parallel block, the difference in the preceding part might have
no impact on the deviation and the right choice to continue. Therefore, this
partial mismatch is simply ignored when assessing the similarity.
The example showed a parallel control-flow block. But even in case of

another type of control-flow block, e.g. an exclusive pattern with f3 =
〈t1, t2, t4〉 and f4 = 〈t1, t3, t4〉, both sequences could be regarded as highly
similar. It is assumed, that the deviation is foremost related to the elements
in the specific workflow block where the deviation occurs. If other workflow
blocks are concluded prior to the deviation, those are probably irrelevant.
Thus, in the proposed approach no differentiation is made between different
kinds of control-flow blocks for reducing cases. Nevertheless, if additional
requirements concerning a necessary differentiation arise in a certain domain,
a condition can be integrated in order to reduce cases and query only for
specific operators such as parallel control-flow blocks, using the introduced
label op.
Steps 1-3 of the pre-processing as exemplified in Fig. 6.8 can be made

offline before the start of the workflow engine, when a case base is available.
The retraction of workflow parts needs to be done depending on the query
and its model-consistent subsequences. This can be done during workflow
execution with progressing state of the workflows. Consequently, model-
consistent parts that emerge prior to the deviation, can be reduced earlier
on as well. Through pre-processing, computation time is not influenced
severely.

6.4.3. Similarity Assessment
For the actual similarity assessment between two de facto workflows, which
are represented in the NESTGraph format, query FQ = (NFQ

, EFQ
, SFQ

, TFQ
)

with |NT
FQ
| = n and case FC = (NFC

, EFC
, SFC

, TFC
) with |NT

FC
| = m, a

combined approach of the previously mentioned techniques is proposed in
order to take advantage of each algorithm’s specific strengths and address all
specified requirements. This includes a dynamic programming approach that
utilizes either the SWA or DTW, which both meet requirement RS1 (cf.
Subsect. 6.4.1), as the similarity measures compare sequences. Comparing
subsequences, which is demanded by requirement RS2 (cf. Subsect. 6.4.1),
is implicitly done by using the SWA and can also be achieved through a
slight modification of DTW.
Moreover, an extension is made to DTW and the SWA that comprises

the idea of a weighting function considering temporal ordering to address
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requirement RS3 (cf. Subsect. 6.4.1). Furthermore, local task similarities
include data-flow and semantic information for a more sophisticated com-
parison of single elements, which responds to requirement RS5 (cf. Subsect.
6.4.1).
The similarity assessment can either be applied to reduced cases or non-

reduced ones depending on the importance of every single difference or a
rather block-oriented view.

Local Task Similarity

The local task similarity, which is used during the calculation of the cell
values in the scoring matrix, is composed of different values.

As prerequisite, local node similarity is defined according to Bergmann
and Gil [15]. It is assessed by comparing the semantic descriptions of
both nodes. Let nQ ∈ NFQ

and nC ∈ NFC
with semantic descriptors

SQ(n
Q), SC(n

C) ∈ Σ. simΣ depicts the similarity value when comparing
two semantic descriptors SQ(n

Q) and SC(n
C).

simΣ : Σ× Σ→ [0, 1] (6.25)

Node similarity simN adopts this similarity of the semantic description in
case the types of the nodes correspond. Otherwise the similarity is zero, as
the elements cannot be mapped.

simN (nQ, nC) =

{
simΣ(SQ(n

Q), SC(n
C)) if T (nQ) = T (nC)

0 otherwise
(6.26)

Additional to this narrow focus on the task description itself, data-flow
is included in the local similarity measure for tasks. This is necessary to
increase the significance of the global similarity result, as the similarity
assessment of the whole sequences with either DTW or the SWA is limited
to the comparison of sequential elements. This solely comprises the tasks
when transferring this paradigm to de facto workflows. Thus, referring to
requirement RS5 (cf. Subsect. 6.4.1), the similarity of data objects that
are connected to the tasks influence the local similarity values of the tasks.
To this end, the sets of incoming and outgoing data nodes of one task are
defined as follows:

NDin
t = {d|d ∈ ND∃t ∈ NT : (d, t) ∈ ED} (6.27)

NDout
t = {d|d ∈ ND∃t ∈ NT : (t, d) ∈ ED} (6.28)
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The similarity of data-flow is defined as simD and maps two sets of data
nodes:

simD : P(ND)× P(ND)→ [0, 1] (6.29)

Both sets are compared by finding the best mapping of nodes. To this end,
each of the query nodes is mapped to one similar case node, but one case
node cannot be mapped to several query nodes in order to achieve a unique
mapping. Subsequently, local data node similarities, determined through
simN , are aggregated and normalized to a final similarity value, which is
between 0 and 1. Local task similarity simT of two task nodes tQ ∈ NT

FQ

and tC ∈ NT
FC

is then defined as follows [162]:

simT (t
Q, tC) =

lt ∗ simN (tQ, tC) + li ∗ simD(NDin

tQ
, NDin

tC
) + lo ∗ simD(NDout

tQ
, NDout

tC
)

lt + li + lo
(6.30)

This value is composed of the similarity of the task itself, its input and
output objects, each assigned a respective weight lt, li, lo ∈ R+ for adapting
the importance of the individual scores. simN represents an aggregated
similarity score of the semantic description of the task nodes, as specified in
Equation 6.26. simD describes the similarity of input and output data nodes,
which is calculated as described previously on the basis of the mapping of
data nodes as specified in Equation 6.29. The local task similarity consists
of the sum of these three weighted local similarities, which are normalized
through the aggregated weights.

This local task similarity is subsequently used to determine the values in
the scoring matrix for the SWA and DTW.

Scoring Matrix

The optimal alignment of the two de facto workflows is computed through the
scoring matrix H = (hi,j) ∈ Rn+1,m+1. The values within are determined
either on the basis of DTW or the SWA, similar to the traditional specifica-
tion presented in Subsections 6.2.1 and 6.2.2. A slight modification, in order
to optimally fit the scenario of upcoming deviations, is the combination with
a temporal weighting factor wTempi. This fits the requirement RS3 (cf.
Subsect. 6.4.1) in order to lower the impact of dissimilarities that are more
distant in time. To this end, a similar weighting function that was proposed
by Gundersen [61] is adopted.
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For DTW, the values in the matrix are calculated as follows:

hDTW
i,j = max


hDTW
i,j−1 + wTempi ∗ simT (t

Q
i , t

C
j ), warp (vertical)

hDTW
i−1,j−1 + wTempi ∗ 2 ∗ simT (t

Q
i , t

C
j ), mapping

hDTW
i−1,j + wTempi ∗ simT (t

Q
i , t

C
j ), warp (horizontal)

0 otherwise
(6.31)

For the SWA the values in the matrix are calculated as follows:

hSWA
i,j =

max


hSWA
i,j−1 + wTempi ∗ penaltyInsertion(tQi ), insertion

hSWA
i−1,j−1 + wTempi ∗ simT (t

Q
i , t

C
j ), match/mismatch

hSWA
i−1,j + wTempi ∗ penaltyDeletion(tCi ), deletion

0 otherwise
(6.32)

The gap penalties penaltyInsertion and penaltyDeletion can be specified
as needed, e.g. as constant or function. In previous experiments with two
domains where different values were evaluated, a penalty value of -0,2 for
both insertion and deletion turned out to lead to the best results [162].

The local similarity scores as well as the gap penalty are further multiplied
by the weight depending on temporal distance. Therefore, equation 6.8
will be adapted as follows. Here, n is the length of the query, as this
workflow should be mapped completely during the similarity calculation.
The halving time as a parameter is assigned a value h ∈ [0, n]. Again,
previous experiments that evaluated different values for this parameter
showed that h = 0, 2n, which means 20 % of length of the query, to lead to
the best results [162].

wTempi =
1

2
n−i
h

(6.33)

Similarity Score

The maximum value in the last row of the matrix represents the non-
normalized global similarity score simraw. In order to ensure that the
alignment ends with the last task of the query and remaining elements of
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the case are not mapped any more, the search of this maximum value is
restricted to hn,j for 0 < j ≤ m [162].

simraw(FQ, FC) = max
0<j≤m

hn,j (6.34)

To normalize the obtained score, it must be divided by the maximum
possible score with regard to the query. The SWA only aggregates local
similarity values, when elements are matched and thus, originate from a
diagonal step in the matrix. Consequently, the maximum similarity score
that is possible can be computed through the number of diagonal steps in the
alignment [162]. In contrast, DTW adds a positive value to the score when
stepping in either direction, even twice the value if elements are mapped
[163].
The alignment can be found according to the original implementation of

the SWA and DTW. Beginning from the cell that contains the maximum
value in the last row up to a cell of the first row, while the origin of the
computation of the value is decisive for backtracking.
Let align = {(0, 0), . . . , (n, k)} denote all cells from the alignment path.

Let diag = {(i0, j0), . . . , (ip, jp)} ⊆ align include all cells that origin from a
diagonal step and let other = align \ diag denote all cells with assignments
resulting from vertical or horizontal steps. It is assumed that the local
similarity values are all normalized to an interval of [0,1]. Then, normalized
similarity for two de facto workflows simF is calculated as follows [163]:

simSWA
F (FQ, FC) =

simraw(FQ, FC)∑
(i,j)∈diag

wTempi
(6.35)

simDTW
F (FQ, FC) =

simraw(FQ, FC)∑
(i,j)∈diag

2 ∗ wTempi +
∑

(i,j)∈other

wTempi
(6.36)

Based on these assessed similarity values, the k most similar cases can
then be determined.9
Consequently, this designed similarity measure in two different forms

addresses research question RQ2.1 (see Section 1.2), as based on the results

9Note that, in the presented concept, a precondition for a case to be retrieved is that the
de jure workflows of query and case are equal, as the similarity assessment is solely
based on the de facto workflow, while the workflow model is not included therein.
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from the retrieval some terminated processes are identified to be reused in a
subsequent step.

6.5. Reuse for Deriving Work Items
Based on these retrieved cases, whose de facto workflow is similar to the
de facto workflow of the query, a solution can be derived. The objective of
this reuse is to determine work items that can be proposed to the process
participant for workflow continuation. To this end, an adaptation method is
required that fulfils the following requirements:

RA1 - Reuse of Work Items: The adaptation method should allow for a
reuse of work items in order to support the process participant in continuing
with the workflow in case of a deviation.

RA2 - Re-Enable the Workflow Engine: The adaptation method should
re-enable the workflow engine by resolving inconsistencies and providing a
consistent constraint net in order to support the process participant until
termination of the workflow.

RA3 - Restore Flexibility: The adaptation method should restore flexibility,
which is reflected by the number of work items or rather number of execution
paths that can be proposed as solution for terminating the workflow.

RA4 - Retain Unaffected Constraints: The adaptation method should re-
tain constraints of the query workflow that are not affected by the deviation
in order to preserve the initially specified relations.

To address these requirements, two different adaptation methods are
proposed. The first one is classified as null adaptation, whereas the second
one applies a generative adaptation strategy. The null adaptation directly
applies the solution of the case to the query. To this end, the mapping
of tasks that results from the similarity assessment is considered and the
tasks that follow the last mapped element are proposed as work items (cf.
green-coloured nodes in Fig. 6.7). This method is presented in detail in
Subsect. 6.5.1.
The generative adaptation pursues a different approach, which is elab-

orated in Subsect. 6.5.2. The constraint problems of query and case are
compared and some constraints from the case are added to the query, whereas
some constraints of the query are excluded. Thereby, the constraint problem
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regains consistency and the constraint-based workflow engine can be reacti-
vated for the support of the continuation of the workflow until termination.
In contrast, through applying the null adaptation method, for every task
execution a retrieval and adaptation has to be done. The generative method
transfers order relations without prescribing fixed positions of constraints
and thus, creates more variety, but still preserves existing constraints. In
the following, both methods are presented in detail.

6.5.1. Null Adaptation
With the previously presented similarity measure, simF , the most similar
terminated workflow or a set of workflows can be retrieved from the case
base. This can also include several distinct cases with the same similarity
score. Let retrievedQ be the set of retrieved cases with the highest similarity
values. From these case workflows, work items can be derived.

Let WCi ∈ retrievedQ be one of the similar cases. Then, one work item
can be derived from the alignment in the scoring matrix. The position in
the de facto workflow of the case that was aligned with the deviating task
of the query needs to be determined (cf. orange-coloured node in Fig. 6.7).
Let align = {(0, 0), . . . , (n, k)} denote the alignment path. Then, the task
tClast ∈ NT

FC
with position pos(tClast) = k is the task of the case workflow that

was the last to be aligned with an element of the query workflow. All tasks
that are subsequent to tClast were not aligned to tasks of the query. The next
one of these tasks can be recommended to the process participant as the
next task, thus at pos(tnext) = k+1 (cf. green-coloured nodes in Fig. 6.7).

workItems ={tnext|tnext ∈ NT
C ∧ pos(tnext) = pos(tClast) + 1∧

WCi = ((NT
C , E, S, T ), FC , CSPC , solC) ∈ retrievedQ}

(6.37)

Consider the example in Fig. 6.6 that demonstrated the SWA, where
simple string sequences are used instead of tasks. When the issue of deriving
work items is transferred to this example, it can be determined which string
should be appended to the end of the query. Let XS = 〈a, b, c, d, e〉 be the
query and YS = 〈a, f, b, c, e, f〉 the case. Then, the last element of case and
query that was aligned is the e. The following element in the case can be
proposed as next element, in this case f .
This adaptation method is efficient, as it simply bases on the mapping

that origins from the retrieval phase without requiring additional handling.
However, it only fulfils requirement RA1, as a proposal of work items is
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enabled. Moreover, this presented method of determining work items only
temporarily solves the problem that arises when a deviation occurs. The
constraint set and thus, the model that is used by the workflow engine remains
inconsistent. After executing the derived work item, the constraint-based
workflow engine continues to be in a deadlock, as no solution can be found.
Thus, after executing the proposed task, the retrieval and reuse step needs to
be repeated for determining new work items until termination. Alternatively,
instead of proposing only one single work item, a whole subsequence of tasks
can be derived from the retrieved case. This can be done by additionally
extracting those tasks that follow the work item until workflow termination.
However, this results in a limited variety of execution possibilities of exactly
one and ultimately decreases the overall goal of flexibility.

Furthermore, as the retrieved similar cases are most probable not exactly
the same as the query, proposing to end the workflow with the exact same
subsequence of tasks is rather limited and might not be adequate.
Another drawback of this straightforward approach is that differences

between case and query are not regarded. Consider the following example
with two execution paths of query F (FQ) = 〈a, b, c, e, f〉 and retrieved
case F (FC) = 〈a, b, c, f, e, g〉, where f is the deviating task. The following
mapping results from applying the SWA:

F (FQ) : a b c e f
F (FC) : a b c - f e g

The mapping ends with the task f , with the result that the following task
from the case e will be proposed as work item. However, the task e might
then be executed redundantly, as it is already part of the de facto workflow
of the query. Therefore, slight adjustments of the derived work items might
be necessary and a more sophisticated adaptation method is proposed, in
order to fulfil the remaining requirements (RA2-RA4).

6.5.2. Generative Adaptation
Adaptation in general is applied to transfer the solution of a previous case
to the currently regarded problem, the query. In this proposed generative
constraint-based adaptation, the objective is to restore consistency in the
constraint net of the running workflow instance after a deviation occurred.
This is a prerequisite for re-enabling the workflow engine to compute and
propose work items without leading to an exceptional state. Its purpose
is similar to the deviation handling that is described in Section 5.5, but in
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contrast to those predefined strategies, this approach is based on experiential
knowledge in form of terminated workflows.
The restoration process is implemented through the adaptation of the

constraint net of the query. For this purpose, the constraint net of the
most similar case, which has been retrieved on the basis of the previously
presented similarity measures, is reused. This constraint net is adopted
such that some constraints are transferred to the constraints of the query.
Thereby, parts of the solution strategy of the case are applied on the query,
and the problem solver in form of the constraint-based workflow engine is
able to find a solution. Hence, this constraint-based adaptation method can
be classified as generative adaptation.
It is assumed that this leads to some improvements compared to the

determination of work items on the basis of the alignment of either the SWA
or DTW. The adaptation method is supposed to extend the locally limited
and rigid recommendation of work items or a single subsequence that is
suggested to continue and terminate the workflow. It is assumed that the
state space can be increased as through the adapted constraint set more
execution paths become valid. Consequently, flexibility may be restored.
Another main difference regarding the strategy of the null adaptation is

that the generative adaptation approach adopts constraints that constitute
relations instead of simply proposing tasks for a fixed position in the de
facto workflow. To illustrate one resulting benefit, the previous example
with F (FQ) and F (FC) is considered. Considering the de facto workflows,
the following instance constraints are part of the respective constraint sets:

CI
Q = {a = 1, b = 2, c = 3, e = 4, f = 5}

CI
C = {a = 1, b = 2, c = 3, f = 4, e = 5, g = 6}

Instead of proposing predefined sequential orders that follow the last
mapped element in the de facto workflow of the retrieved case (in the
example 〈f, e, g〉), this subsequence is transferred as constraints. Hence
following the deviating task f , a dependency of e and g would be derived
as constraint con = e < g. This constraint is then transferred to the query,
while violated ones are removed, and the constraint-based workflow engine
is activated to compute work items. According to Algorithm 5.1 in the
current situation of the example, each task is assigned the value 6 once
and a solution is searched. For task g, a solution can be found as con is
fulfilled, since e with e = 4 is already part of the de facto workflow. Thus,
the worklist consists of g, and e is not proposed redundantly.
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To this end, a generative adaptation approach based on the constraint net
of the workflows is proposed to reactivate the workflow engine and propose
a wider variety of possible workflow completions, ultimately increasing
flexibility.

Furthermore, the adaptation of the constraint net seems to be promising
in terms of complexity and efficiency, as no structural adaptation of a
procedural workflow model needs to be done, which is non-trivial and rather
time-consuming. The insertion or deletion of constraints is rather simple
and resource-saving. Thus, the workflow engine can still base upon the
constraint-based workflow representation and flexibility is retained.
Figure 6.7 schematically shows the generative adaptation and its inte-

gration in the case-based approach. The deviation not only leads to an
inconsistency between de jure and de facto workflow as indicated by the red
flash symbol, but also to an empty set of solutions due to an inconsistent
constraint set. Besides that, Fig. 6.7 shows that not all constraints of the
query have a definite state due to the incomplete de facto workflow (indicated
by a red for violated or turquoise fill for valid in contrast to blank nodes
that have an indefinite status), whereas in the constraint net of the retrieved
case all constraints have a definite state. Furthermore, it is possible that
both sets differ in terms of which constraints are contained, e.g. due to
additionally added constraints.
Before the actual generative adaptation method is introduced in detail,

some related work that concerns the integration of CBR and CSP is sketched.

Integrating CBR and CSP

There are several approaches that combine CSP and CBR methods in
different ways and for different purposes, e.g. [104, 140, 190].
Marling et al. identify two ways of combining CBR with CSP [104]. On

the one hand, this includes utilizing CBR techniques for the initialization
of a CSP [104]. Through a pre-selection of promising value assignments on
the basis of similar cases, the solution space can be reduced, leading to an
increased efficiency. Thus, a case retrieval is applied for supporting or rather
simplifying the constraint solving process. On the other hand, CSP methods
can be exploited during adaptation in CBR [104]. In this approach, CSP is
seen as part of the reuse phase of CBR.
The objective of the presented work is to find a technique for case adap-

tation where cases consist of CSPs, in order to restore consistency in the
query’s CSP. Thus, this issue is correlated to the second type of integration
of CSP and CBR. But few related approaches exist in research. To this
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end, a repair algorithm is required that considers similar cases and possibly
combines several cases or rather parts of them.
Purvis and Pu [140] developed an approach that combines several CSPs

into one, called case combination. They evaluate the approach in the domain
of assembly sequences, but assume their approach to be generally applicable.
From these several cases that are integrated, each fits partially to the regarded
problem and a solution exists for each case. However, in case a solution
cannot be applied to a combined CSP, they apply the minimum conflicts
algorithm [116]. This is a repair algorithm for a CSP with a given solution,
where constraints have changed or been added. New constraints are added
one by one and the solution is validated. If the solution becomes unsuitable,
the values of the variables are modified in order to adapt the solution in
such a way that a maximum number of constraints can be fulfilled. It is
regarded as a heuristic to find a solution, as the search space is reduced.
Consequently, one found solution is sufficient.

The objective to somehow try to repair an inconsistent CSP is similar to
the use case regarded here, but nevertheless slightly different concerning its
purpose and the necessary adaptation.
There are several reasons why the minimum conflicts algorithm is not

adequate in this case. The trigger that requires an adaptation differs.
An upcoming task that is added to the de facto workflow entails a value
assignment to the specific variable of the task. This causes the solver to be
unable to find a solution to the CSP, which results in a required adaptation of
the constraints. This is necessary in order to again fit this partial immutable
solution and to be able to assess several solutions for determining work items.
The solution that is the result of the adaptation is a consistent constraint
net, in contrast to one valid solution for the CSP that is the outcome of the
proposed adaptation of Purvis and Pu [140].
Furthermore, different elements of the CSP need to be adapted. Some

variables have fixed assignments and hence, some constraints and their status
are immutable. Consequently, a part of the solution is unchangeable. In this
case, it is the set of constraints that needs to be adapted such that several
solutions can be found, rather than adapting the solution in order to fulfil
as many constraints as possible according to the approach by Purvis and Pu
[140].

Eventually, the goal of the required adaptation step is to fulfil the maximum
number of relevant constraints when combining case and query. This means
choosing adequate ones from the case to add and choosing adequate ones
from the query to retract.
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Nevertheless, retracting or adding constraints simply based on the criterion
of how many constraints are dependent and thus, violated, might be not
adequate. Therefore, a deviation-dependent approach is proposed.
To enable a constraint-based adaptation method, the query and case

format has to be extended.

Constraint-Based Adaptation

For the constraint-based adaptation approach, the query and case structure
is identical to the one presented in Subsect. 6.3.2.

The query as a special form of a case has some peculiarities. As mentioned
before, the presented approach is limited to cases that share the same de
jure workflow. Consequently, JQ = JC . Furthermore, the de facto workflow
is not terminated. As the workflow is in an exceptional state, the workflow
engine is not able to determine a solution to the CSP, hence, solQ = ∅.
Nevertheless, a partial solution is existent as well as a part of the instance
constraint set (cf. CI

Q), due to the subsequence of the de facto workflow
prior to the deviation.

The intended output of the adaptation algorithm is a modified constraint
problem of the query CSP ∗

Q, to re-enable the computation of solutions and
ultimately, to offer task recommendations. The set of solutions of the query
is affected indirectly, as, through the altered set of constraints, some valid
solutions result in opposition to the previously empty set of solutions.
To this end, constraints that are dependent on the deviating task are

adapted. Constraints that are directly related to those constraints, i.e.
through contained tasks, are transferred from the case to the query. This can
be propagated for arbitrary levels of related constraints, which is explained
in the following subsection.
This re-enables the workflow engine to compute work items and find

new solutions. First, the approach is described abstractly and a detailed
formalization is presented subsequently. For each of the steps, a small
example is given that is based on the sequential workflow model J and two
de facto workflows of query FQ and case FC , presented in Fig. 6.9. As
the adaptation is initiated during workflow execution in order to compute
work items when a deviation occurs, the currently regarded deviating task
of the query in this example is t4. One previous deviation exists in FQ, as
t2 and t1 are switched in order, but this deviation was handled earlier. In
the example, it is assumed that FC has been retrieved as similar case and is
used for adaptation. Query and case were chosen in the example in such a
way that the adaptation can be illustrated in the best possible way.
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t2t1 t3 t4 t5 t6

t1t2 t4

t2t1 t6 t4 t5 t7

J:

FC:

FQ:

Figure 6.9.: Exemplary De Jure Workflow with Query and Case

The following steps are applied in order to obtain an adapted constraint
net of the query:

1. Initialization
In the initialization phase, the constraints that describe the fixed assign-
ments of values in the de facto workflows are transformed to abstract
order relations.
a) Create derived constraint set for query and case.

For both constraint sets an additional set, denoted as derived con-
straints CD, is generated and added. This set represents the order of
tasks in the de facto workflow. For this purpose, an order relation is
added for each two consecutive tasks.
For the exemplary de facto workflows in Fig. 6.9, the following
constraints are derived: CD

Q = {t2 < t1, t1 < t4} and CD
C = {t1 <

t2, t2 < t6, t6 < t4, t4 < t5, t5 < t7}. Hence, the de facto workflow
is included in the constraint set as relational dependencies between
tasks, which may be reused in the constraint net of the query.

b) Exclude instance constraint set of case.
In contrast to the addition of derived constraints, the instance con-
straints (cf. CI in Subsect. 5.4.1) of the case are excluded. Transfer-
ring instance constraints to the query would assign a fixed position
to some tasks, even to ones that were not executed. When case and
query do not conform to each other exactly, a transfer of instance
constraints would lead to conflicts. Furthermore, this is not reason-
able, since the presented workflow approach should allow a flexible
execution, which is contradicting the fixed assignments.
For the example in Fig. 6.9, the following instance constraint sets
exist: CI

Q = {t2 = 1, t1 = 2, t4 = 3} and CI
C = {t1 = 1, t2 = 2, t6 =

3, t4 = 4, t5 = 5, t7 = 6}. If those constraint sets are combined, a
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conflict would arise immediately, as task positions do not conform to
each other, e.g. t2 = 1 holds for the query, while t2 = 2 holds for the
case.

2. Pre-Processing
The pre-processing phase is responsible for aligning the sets of decision
variables and corresponding domains. Constraints from the case that
conflict the constraints of the queries are excluded from adaptation.
a) Extend set of decision variables and corresponding domains.

In case the tasks of case and query do not correspond exactly, e.g.,
due to a repeated task execution or an unexpected task that was
not part of the de jure workflow, the CSP of the query needs to be
aligned to allow for these additional deviations that are part of the
retrieved case and for a possible adoption of constraints that regard
these additional tasks. This concerns the set of decision variables that
needs to be complemented by missing variables and, correspondingly,
the domains of the task variables that need to be extended.
In the example in Fig. 6.9, the de facto workflow of the case contains
an additional task t7 that was not part of the de jure workflow. Thus,
the set of decision variables as well as the set of domains of the query
need to be extended in the following way:

X∗
Q = XQ ∪ {t7} = {t1, t2, t3, t4, t5, t6, t7}

D∗
Q = DQ ∪ {7} = {1, 2, 3, 4, 5, 6, 7}

b) Ignore conflicting constraints.
As the query workflow has been executed partially, some constraints
already have a definite and valid status. All constraints of the case
that contradict these valid constraints are no candidate for transfer, as
they would simply add inconsistencies and prevent finding a solution
for the CSP of the query. To this end, these valid constraints are
extracted from the constraint net of the query and each of the case
constraints are validated against this constraint set. If no solution
can be found when adding such a case constraint to this valid set of
constraints of the query, then this case constraint is excluded from
adaptation.
In the example in Fig. 6.9, this is applicable to the constraint
(t1 < t2) ∈ CD

C . If this constraint is combined with the constraint
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set of the query CD
Q = {t2 < t1, t1 < t4}10, no solution can be found,

as (t1 < t2) and (t2 < t1) contradict each other. Thus, (t1 < t2) is
excluded from a possible transfer during adaptation.

3. Adaptation
In the actual adaptation phase, some constraints of the retrieved case
are directly transferred to the constraint set of the query, while some
constraints derived from existing ones are added, whereas others are
deleted from the original constraint set of the query. This transfer of
relations of tasks, instead of fixed positions, ensures a higher flexibility
and hence, addresses requirement RA3 (cf. Section 6.5). The adaptation
results in an adapted and consistent constraint net of the query, which
re-enables the constraint-based workflow engine to compute work items
and thus, requirement RA2 (cf. Section 6.5) is fulfilled.
a) Insertion of directly related constraints.

From these filtered case constraints that result from pre-processing,
constraints can be chosen that directly involve the deviating task
and that are therefore most likely related to the deviation. These
constraints are added to the constraint set of the query.
In the example in Fig. 6.9, the regarded deviating task of the query
workflow is t4. Considering the derived constraint set of the case,
such a directly related constraint where t4 is involved is (t4 < t5).
Thus, (t4 < t5) can be transferred to the set of constraints of the
query.

b) Insertion of constraints that include directly related tasks.
Constraints that are directly related to the deviating task involve
other tasks that are indirectly related to the deviating task. These
indirectly related tasks can be extracted and, subsequently, valid
constraints that include these indirectly related tasks can be extracted
and used for a transfer to the set of constraints of the query.
In the example in Fig. 6.9, constraints that involve the task t5 are
transferred. This concerns the constraint (t5 < t7) ∈ CD

C .
c) Insertion of negation of violated constraints that include directly

related tasks.
Constraints of the case that involve the previously described indirectly
related tasks but have a violated status can also be used for an

10Note that the constraints that are derived from the de facto workflow always have
a valid status. For the sake of simplification, only the set of derived constraints is
regarded in this example.
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adaptation of the constraint set of the query. It is assumed that
the opposite of violated constraints should apply, as this held in
the case with the same deviating task. To this end, the extracted
constraints of the case with a violated status are reversed and added
to the constraint set of the query. Thus, additional deviations that
result from the de facto workflow of the case are induced, as they are
supposed to be related to the currently regarded deviating task and
are considered as a contribution that leads to a successful termination
of the workflow.
In the example in Fig. 6.9, this concerns the constraint (t5 < t6) ∈
CM

C , as task t6 is executed before t5. Hence, the opposite of this
constraint (t6 < t5) is added to the constraint set of the query.

d) Removal of violated constraints that result from insertion.
For the constraint set that was added previously and results from
the reversed violated constraints, the original constraints need to be
retracted from the constraint set of the query.
In the example in Fig. 6.9, the violated constraint (t5 < t6), which
was determined in the previous step, needs to be deleted from the
constraint set of the query.

So far, the description of the adaptation only involved the transfer of con-
straints that are either directly related to the deviating task or indirectly
related via a transitive relation. This transitivity can be exploited to transfer
further constraints, starting from the indirectly related constraints and their
contained tasks.

In the presented work, this transfer of constraints is limited to the directly
and indirectly related constraints concerning the deviating task and its
transitive relations, because it is assumed that directly related constraints
are more important than those with a higher temporal distance. Analogously
to the temporal weighting factor that is integrated in the proposed similarity
measure and that concerns the past, this relatedness-level-based adaptation
influences the future outcome. Moreover, the effect of the adaptation is locally
limited and not arbitrary, as it regards related constraints but preserves parts
of the original CSP that are unrelated to the deviation. Hence, requirement
RA4 (cf. Section 6.5) is fulfilled. In case all constraints in the transitive
closure are regarded for a transfer, the complete de facto workflow of the case
would also be prescribed in the query, which results in neglecting flexibility.

In the following, each of the previously described phases is explained in
more detail based on formal descriptions.
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1. Initialization

a) In the initialization phase, the set of derived constraints (cf. Equ. 6.38)
is created for both query and case and added to the constraints of the
CSP respectively.
This set CD is derived from the de facto workflow and represents im-
plicitly the same as CI , but in an abstract way, as it only specifies
dependencies instead of specific positions or concrete value assignments.
These constraints are defined as follows:

CD = {t1 < t2|t1, t2 ∈ NT
F ∧ (t1, t2) ∈ EC

F } (6.38)

The constraint sets of query and case then both are extended with this
set of derived constraints, leading to an extended constraint set Cextended

C

and Cextended
Q .

Cextended
C = CC ∪ CD

C (6.39)

Cextended
Q = CQ ∪ CD

Q (6.40)

b) The instance constraints of the case will be excluded, as they specify
the exact positions of tasks in the de facto workflow of the case and
hence, very likely contradict the de facto workflow of the query, except
if both are equal. Consequently, they are irrelevant for adaptation, as
the objective is not to transfer the exact sequential position of tasks to
the query, but rather relational interdependencies.

Crelational
C = Cextended

C \ CI
C (6.41)

After the initialization, the constraint sets are adjusted. Subsequently,
some pre-processing steps are performed that exclude single constraints
from a possible reuse.

2. Pre-Processing

Prior to combining parts of both constraint sets, each constraint is assigned
two additional attributes that declare its origin and its type. These properties
are utilized in order to distinguish those constraints in the integrated set
during adaptation such that they can be handled differently. To this end,
the function Orig specifies whether the constraint was originally part of the
query or case.

Orig : C → {query, case} (6.42)
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Type indicates for which purpose the constraint was created, relating to the
different sets that Cextended consists of.

Type : C → {model, additional, instance, derived} with

∀c ∈ C : Type(c) =


model if c ∈ CM

additional if c ∈ CA

instance if c ∈ CI

derived if c ∈ CD

(6.43)

a) As prerequisite for combining parts of both constraint sets, the set of
decision variables and corresponding domains need to be aligned. It is
possible that there are some additional variables in either of these sets,
due to repetitions of tasks or newly introduced tasks. Thus, the set of
decision variables of the query needs to be complemented with further
variables that only exist in the set of decision variables of the case.

X∗
Q = XQ ∪XC (6.44)

Furthermore, the domains of the task variables need to be adjusted to
the newly created decision variables. Therefore, the extended domains
are simply instantiated completely new and contain ascending values
with the same number as variables.

D∗
Q = {1, . . . , |X∗

Q|} (6.45)

b) Before parts of both constraint sets can be combined, each of the con-
straints in the case that is possibly transferred needs to be checked
for compliance with those constraints of the query that have a definite
and valid status. Only those constraints of the case are validated that
have a valid status, as violated constraints will not be adopted anyway.
Furthermore, this concerns solely constraints that were derived from the
workflow instance of the case or additionally modelled constraints, as all
other constraints, which originate from the de jure workflow, are equal
in case and query.
To this end, a constraint net is extracted from the query that contains
all constraints with status = valid.

Cvalid
Q = {c|c ∈ CQ ∧ Status(c) = valid} (6.46)
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On this basis, it can be checked if any constraint of the remaining case
constraints, which are possibly transferred, conflicts this set of valid
constraints of the query. Therefore, each case constraint is added once
to the valid query constraints and the resulting CSP is validated. If
no solution can be found, this specific case constraint contradicts the
valid constraints of the query, and consequently, this constraint does not
constitute a candidate for transfer. All constraints that conflict these
valid constraints of the query are ignored and hence, removed from the
case constraints.

Cconflicting
C ={c|c ∈ Crelational

C ∧ Status(c) = valid ∧ sol(Q) = ∅}
with CSPQ = (XQ, DQ, C

valid
Q ∪ c) for sol(Q)

(6.47)

All conflicting constraints are removed from the case constraints, leading
to the residual constraints Cvalidated

C .

Cvalidated
C = Crelational

C \ Cconflicting
C (6.48)

These constraints are candidates for an adoption in the constraint set
of the query. The adaptation method is based on this extracted set of
transferable, validated constraints of the case.

3. Adaptation

The starting point for the adaptation are the two sets Cvalidated
C and

Cextended
Q . The idea is to add some of the constraints that are related

and dependent on the deviating task, which is generally known in constraint
programming as “restriction” of the solution set, while some are removed
from the set of constraints, denoted as “relaxation”[34].
An adaptation method based on a generally applicable method from

the constraint programming field, such as finding Minimal Unsatisfiable
Cores (MUCs) [66] of an inconsistent constraint net when combining the set
of case and query constraints, can be implemented. However, an adaption on
the basis of such a method would not lead to adequate results, as explained
below. Applying finding MUCs would result in a retraction of randomly
picked conflicting constraints and would not consider any dependencies. In
the worst case, this would either lead to a complete adoption of derived
constraints of the case, which only allows for an exact repetition of this task
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sequence, or to simply retaining the model constraints, which would result
in ignoring deviations in the case that occurred after the regarded deviation.
For developing the similarity measure, the assumption was made that

differences close to the deviation are more severe than those in far distance.
Similarly, it is assumed that tasks nearby a deviation are related to a greater
extent and should more likely be proposed than those far away. Therefore,
a local adaptation with a customizable extent is proposed, originating from
the deviation itself and its dependencies.

a) In a first step, case constraints that are directly related to the deviating
task devTask are transferred to the set of query constraints.

CdirectlyRelated
C = {c|c ∈ Cvalidated

C : ∃s ∈ NT
C : c = (devTask < s)

∧ Status(c) = valid}
(6.49)

b) Subsequently, tasks are extracted that are part of these constraints and
are therefore related to the deviating task.

N
TdirectlyRelated

C = {t|t ∈ NT
C : ∃s ∈ NT

C : (s < t) ∈ CdirectlyRelated
C }

(6.50)
Derived from that, all constraints that are related to those tasks can be
extracted and transferred to the constraint set of the query. This relates
only to constraints that are valid in the set of constraints of the case.

Crelated+
C = {c|c ∈ Cvalidated

C : ∃t ∈ N
TdirectlyRelated

C ∃s ∈ NT
C : c = (t < s)

Status(c) = valid}
(6.51)

When adding each constraint from the case to the constraint net of
the query, the CSP needs to be checked for consistency, as the new
constraint may contradict existing dependencies. If no solution can be
found after an addition, conflicting constraints need to be retracted. This
is done through applying a simplified version of the algorithm for finding
minimum unsatisfiable cores of a constraint problem. In the regarded
scenario, only some of the constraints need to be considered to eliminate
conflicts. Let (t1 < t2) be a constraint that was transferred from the
constraint net of the case to the constraint net of the query, then those
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constraints of the query that contain either t1 or t2 are considered for
retraction, as other constraints are not concerned, at least primarily.

c) Violated constraints from the case can also be transferred to the query
in such a way that their opposite is added. In this regard as well, only
constraints that involve deviation-related tasks are transferred.

Crelated−
C = {(s < t)|t ∈ N

TdirectlyRelated

C ∧ s ∈ NT
C : ∃c ∈ Cvalidated

C :

c = (t < s) ∧ Status(c) = violated}
(6.52)

d) Additionally, those constraints for which the opposite has been added
need to be retracted from the constraints of the query, if they exist.
Therefore, the set of these violated constraints is extracted from the
query.

Cviolated
Q = {c|c ∈ Cvalidated

C ∧ c ∈ CQ : ∃t ∈ N
TdirectlyRelated

C ∃s ∈ NT
C :

c = (t < s) ∧ Status(c) = violated}
(6.53)

Consequently, the following adapted constraint net arises, when combining
the previously defined sets.

C∗
Q = CQ ∪ CdirectlyRelated

C ∪ Crelated+
C ∪ Crelated−

C \ Cviolated
Q (6.54)

This consistent constraint set can be used as input for the constraint-based
workflow engine, in order to compute work items.

The previously mentioned propagation extent can be customized according
to the use case. If more than one level of transitively related constraints
starting from the deviating task should be considered for adaptation, the
extraction of the previously describes constraint sets can be repeated on the
basis of previously extracted tasks in constraints (cf. Equation 6.50, 6.51,
and 6.52).

Selection Criterion

As the retrieval results in several similar cases, a selection criterion needs to
be defined that decides which case is adopted to solve the query. To this
end, several strategies are conceivable.
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Adaptability

The adaptability of the query concerning the case can be measured through
compatibility of the partial solution of the query with the constraint net of
each case. Therefore, it is checked whether a solution can be found for the
CSP of each case that also incorporates the derived constraint set of the
query.

C ′
C = CC ∪ CD

Q (6.55)

With this combined set of constraints, it can be evaluated whether the
constraint set of the case can be transferred to the de facto workflow without
contradictions. If a solution to the adapted CSP exists, the previously stated
condition holds.

sol 6= ∅ for CSP = (XC , DC , C
′
C) (6.56)

In case the solution set is empty, the comparison can be made based upon
the number of conflicts that arise when searching for a solution. The case
with a minimum number of conflicts might then be the most adequate case to
be reused for a solution of the query. The number of conflicts is determined
through applying the algorithm for finding MUCs [66].
If, however, no best choice can be identified based on the presented

properties, one case can be chosen at random.

Frequency

On the other hand, the least conflicting case might not be the best choice,
as the extent of adaptation may not be an indicator for the quality and
success of the outcome. A different property of cases that might influence
the selection is the frequency. The most frequent workflow of the most
similar ones should be chosen for adaptation, as it has been established and
possibly represents a “best practice” workflow.

Additional ideas, which are part of future work, include a more elaborated
selection of those constraints that are transferred, instead of choosing ran-
domly at one specific point in the adaptation process which constraints to
retain and which ones to discard.
A differentiation could be made based upon the constraint origins. A

violation of those that result from data dependencies might be more severe
than those which are simply derived from sequential control-flow.
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Furthermore, a prioritisation of constraints could also be possible. Con-
straints that are not directly affected by the deviation-dependent choice could
be integrated as optional constraints and further influence the weighting of
conflicts and hence, those constraints that are discarded.

Both of the proposed adaptation methods address research question RQ2.2
(see Section 1.2) through transferring valuable process execution character-
istics from one or several retrieved workflow cases. Concerning the null
adaptation this transfer solely consists of work items, whereas the generative
adaptation combines and integrates the constraint sets.

6.6. Related Work
In this section related work is presented. All known approaches consider
manually created knowledge or even require manual intervention in a running
workflow for the management of deviations. As the addressed target group
in this work are SMEs, where employees have low experience of process
modelling, the presented case-based approach aims at automatically adapting
to changing circumstances without the need of modelling process fragments
or adaptation knowledge in any form. Consequently, the approach relies on
experience, which means previously executed workflows, and the exploitation
of available data to provide further workflow control and recommendations
of work items even in unexpected situations.
The most important aspect of flexibility by deviation, which is essential

for a successful support of the process participant, is the management of
deviations, i.e. deviation detection, handling and analysis. The presented
work focusses mainly on deviation handling strategies.

Several related approaches exist in research; most of these works focus
on the detection and handling of deviations by either adapting running
workflow instances or proposing corrective measures. Furthermore, the type
of regarded deviations varies. In the presented work foremost deviations in
control-flow, considering the order of tasks, are regarded, whereas some of
the related work refer to other perspectives of the workflow model, such as
exceeded deadlines or non-conforming context variables.
PROSYT represents an early approach that is related to flexibility by

deviation, as the focus lies on support of unexpected deviations without
adapting the model at run time [28]. Processes are modelled on the basis of
an artifact-based language that is enhanced through finite-state machines.
Four types of deviations are distinguished, such that for each type one out
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of five policies can be determined. When encountering such a deviation, this
policy is consequently triggered.

Several existing approaches utilise ECA rules [22, 40, 72, 124] to determine
a reaction to detected deviations. However, these rules need to be specified
at build time, which is a time-consuming and knowledge-intensive task.

As advancement to these simple ECA rules, Grambow et al. [53] present a
flexible variant of ECA rules, which is enhanced through contextual semantic
information and reasoning. Actions to perform are additionally adapted on
the basis of semantic knowledge through the use of an ontology, a reasoner and
Semantic Web Rule Language (SWRL) rules. Nevertheless, this approach
requires a tedious manual specification of applicable knowledge.
Luo et al. [98] propose an extension of ECA rules to justified ECA,

abbreviated as JECA, rules that are able to map uncertain parts. Through
these rules, the workflow itself and possible exceptions are specified as graph
structure. Moreover, they integrate a CBR component that is able to retrieve
similar exception handlers.
Döhring and Zimmermann [39] developed an extension to BPMN called

vBPMN (variant BPMN). Adaptation patterns can be applied thereon that
are specified through ECA rules. vBPMN is widely applicable, as it is
BPMN2 compliant due to an existing model transformation [38].
Another rule-based approach is pursued by Da Silva et al. [29]. Logical

formulae are used as rule basis for the detection of deviations. Correction
plans are subsequently created by a planning algorithm and recommended
to guide the process participant to fix the workflow. In addition, they
implemented a risk assessment that is able to determine the impact of an
unhandled deviation to the goal of the process in order to prioritize necessary
corrective measures.
A similar approach is developed by Adams et al. [4]. The manual

handling of deviation is circumvented by so-called worklets, which represent
exception handling patterns that are inserted automatically in running
workflow instances on the basis of contextual information.

Marrella et al. [105, 106] developed a planner that integrates recovery
procedures when deviations occur. In this approach, which was developed
in the context of cyber-physical systems, pre-specified domain knowledge is
necessary, which needs to be modelled manually.

Mourão and Antunes [118] focus on a collaborative way of handling unex-
pected exceptions. They propose to integrate recovery as well as monitoring
actions at the same time and regard the resolving of exceptions as an iter-
ative process. Changes to the deviating process are applied manually and
consequently can only be made by experienced employees.
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Zhu et al. [215] developed a process behaviour space expression based on
algebra to identify deviations and provide simple methods like tolerating or
adjusting deviations that handle such exceptions to a limited extent.
A novel approach that completely dispenses workflow models, but still

enables detecting deviations, is presented by Lu et al. [97]. They propose
an approach that is solely based on event logs, foremost applicable in the
case where no model exists. To this end, event logs are transformed to
execution graphs that are used as case representation. Common behaviour
and derived from that deviating tasks, which occur rather infrequently in a
specific context, are identified through a mapping and clustering of execution
graphs.
Depaire et al. [35] focus on deviation diagnosis or as they refer to the

“managerial view”. They investigate and analyse characteristics of deviations
on purpose of searching for control weaknesses. Workflow instances are mined
and business rules representing the deviations are derived subsequently. This
results in a drastically reduced amount of data, which in turn may be
analysed.

Eder and Liebhart [43] developed the transaction-oriented workflow activ-
ity model (WAMO), where expected exceptions can be integrated directly
into the workflow model through compensation tasks.

Klein and Dellarocas [82] propose an approach where exception handling
is integrated during workflow modelling. These exception patterns, which
are reflected by knowledge about which exceptions exist, how to detect and
how to handle them, needs to be specified at build time in a time-consuming
and effortful manner. Furthermore, solely anticipated deviations can be
integrated, which distinguishes it from the approach that is pursued by this
work.

These are two of several approaches that focus on expected exceptions. As
this is not the type of deviations that are handled by the proposed approach,
more related approaches are not listed in this work.
Samiri et al. [161] propose an approach for automated adaptation of

workflows that is based on reinforcement learning and forecasting controlled
through a collaborative multi-agent system.

CBRFlow [200, 201] is a system that exploits conversational CBR to react
to changing circumstances. In this approach a case base is combined with a
rule base. Cases consist of question-answer pairs that describe the reasons
for the deviations and the corresponding performed actions. Business rules
are used to model necessary run time changes of workflows and may then
be recommended in similar future situations. Nevertheless, the process
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participant has to intervene manually to trigger a deviation and to resolve
the issues.

Montani [117] presents an approach that combines workflow management
and CBR methods as well. Cases are represented through hierarchical graphs
and are stored after a generalization step to so-called prototypes. Through
retrieving a similar process schema at run time, end users are enabled and
supported in changing the process instance ad-hoc. A drawback of this
approach is that process participants are burdened with the remodelling
task, which can lead to excessive demands and an avoidable intricacy.
A related approach that solely concerns the restoration of a consistent

model is pursued by Di Ciccio et al. [24]. They propose an approach that
resolves inconsistencies that arise during declarative process discovery. They
therefore apply techniques that base on automata-product monoid, as LTL
constructs are used as formal language that can be translated to automata.
Though, compared to the presented approach, the use case is quite distinct
and the underlying formalisation differs.



7. Prototype
This chapter gives an overview of the prototypical implementation of the
presented flexible workflow approach. The envisioned concept for a flexible
workflow system that is able to handle deviations including all previously
presented functionalities is sketched in the context of the process cycle
in Section 7.1. Furthermore, an architecture is proposed in Section 7.2
which serves as basis for the prototypical implementation. Concluding,
implementation details, utilized frameworks, and libraries are introduced in
Section 7.3.

7.1. Flexible Workflow Approach
Summing up all previously presented components, the overall flexible work-
flow approach with different alternative methods for deviation handling is
presented in Fig. 7.1 from a user perspective, as extension of Fig. 5.1.
Necessary interactions of process engineers and the process participants are
shown as well as the functionalities of the flexible workflow system. The first
step where the system is incorporated in the workflow process is when the
process engineer sets up the workflow model, called de jure workflow, and
possibly additional constraints (see (1)). This procedurally modelled work-
flow is transformed by the system to a constraint-based workflow language,
which builds the formal foundation for the developed methods (see a©). This
transformation function is explained in more detail in Subsection 5.4.2. The
de jure workflow and constraint net together form the model. These steps
constitute the design phase.
At the time at which the workflow execution is triggered, the model

is instantiated, to be more specific, the constraint net is initialized (see
(2)). This instantiated constraint net is then used as input (see (3)) for
the constraint algorithm (see b©) that is designed to compute the worklist,
which consists of those tasks that represent a valid next execution step (see
(4)). This algorithm is presented in Subsection 5.4.1. These work items
are suggested to the process participant (see (5)). Normally, the process
participant chooses one of those tasks to execute (see (6)). In the proposed
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flexible workflow system, the executed tasks are simply traced. This recorded
sequence of tasks represents the de facto workflow. Furthermore, the task
enactment affects the constraint net, as variable values are set and influence
possible remaining variable assignments (see (7)).

Model
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F: De Facto Workflow

J: De Jure Workflow P: Constraints

C: Constraint Net

Workflow  
Engine
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Process  
Engineer
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Figure 7.1.: Flexible Workflow System for Handling Deviations

Afterwards, the workflow engine is activated again and the cycle starts all
over (from step (3) to (7)), until the workflow terminates. When the end of
the workflow is reached, its trace is stored in the event log (see (8)). The
event log, which contains multiple terminated workflow instances, is used by
the process engineer (see (9)) for performance analysis and optimization of
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the workflow model (see (10)). This overall procedure holds for standard
operations without exceptional situations.
As deviations during workflow executions are allowed in this approach,

the executed task may not match the ones contained in the worklist. Such
a deviation triggers the workflow engine (see (11)), as the constraint net
has become inconsistent and the initial constraint algorithm cannot find
a solution any more and therefore proposes an empty worklist. In this
work three different deviation handling approaches are proposed (see c©, d©,
e©). The first approach (see c©) is simply based on the constraint net and
proposes different strategies to restore consistency by retracting violated
constraints and possibly adding some others. Thus, the constraint net is
adapted (see (12)) and the initial constraint algorithm is subsequently re-
enabled to compute the worklist (see (3)). These strategies are explained in
Subsection 5.5.2.
The case-based deviation management constitutes the two other ap-

proaches, which are both adaptation methods with a retrieval phase as
precondition. In this retrieval phase, a similarity measure using time series
comparison is used to find the most similar terminated process in the event
logs (see (13)). The principle of the similarity measure is presented in
Section 6.4. Based on this most similar workflow trace, new work items
can be derived. This can be done via a rather simple method denoted as
null adaptation (see d©), which is introduced in Subsect. 6.5.1, whereas
the generative constraint-based adaptation (see e©), which is presented in
Subsection 6.5.2, is more sophisticated. It takes several most similar workflow
traces into account and adapts the constraint net of the regarded workflow
instance accordingly. Thus, more information influences the computation
of the work items, leading to a restoration of consistency and the ability to
use this adapted constraint net until termination of the workflow, whereas
after retrieval and null adaptation only single work items are exchanged and
the constraint net is left untouched and thus, still inconsistent. Hence, after
task execution another interference of the workflow engine is necessary.

7.2. Architecture
As architecture for a flexible workflow system that is able to handle deviations,
a client-server model is proposed. The structure with its single components,
which are distributed on three different layers, is shown in Fig. 7.2.

The presentation layer on the client side contains different user interfaces
for providing basic functionality of a WfMS. The client communicates with
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Figure 7.2.: Architecture of the Prototypical Implementation of a Flexible
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the server through requesting specific information. The application layer
is addressed first and accesses data from the knowledge layer in order to
compute return values.

Presentation Layer

The presentation layer consists of several Graphical User Interfaces (GUIs)
for different purposes that meet the demands of distinct users:

• Editor: The editor view can be used by the process engineer who is
responsible for specifying or adapting a process model.

• Worklist: The worklist is primarily used by the process participant who
is assigned activated tasks and subsequently is enabled to execute them.
The functionality provided for the worklist, thus, computing work items,
is the main focus of the presented work.

• Monitoring: The monitoring view can be utilized by the process en-
gineer for supervising running and terminated workflows, for analysing
arising issues or inefficiencies, and ultimately for identifying optimization
potentials.

Application Layer

The application layer consists of several components that handle the ex-
ecution of a workflow. This essentially includes three parts, which are
highlighted in Fig. 7.2 in the same colour as in the illustration of the process
cycle (cf. Fig. 7.1).

• Transformation Manager: The transformation manager is responsible
for transforming defined de jure workflows, including additionally specified
constraints, into one declarative formula according to equation 5.4.

• Knowledge Engine: The knowledge engine includes two substantial
case-based components, which are the retrieval and the adaptation man-
ager that apply a time-series based similarity measure and two adaptation
methods, null and generative.

• Workflow Engine: The workflow engine is part of the application
layer as essential component for controlling workflow execution and
consequently, computing of the worklist.
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The application layer is mainly supported by the integration of two external
libraries. The knowledge engine is based on the Process-Oriented Case-Based
Knowledge Engine (ProCAKE) framework, whereas Choco-Solver is applied
for constraint solving. Both are explained in more detail in the subsequent
section about implementation details.

Knowledge Layer

The knowledge layer comprises the four knowledge containers of CBR. This
includes as vocabulary some domain knowledge about the workflow itself,
including its tasks and data objects. Besides, the structure of the cases is
specified. Furthermore, necessary knowledge for adaptation methods and
similarity measures are persisted, as well as the event logs that contain
terminated workflows and are accordingly used as case base.

7.3. Prototypical Implementation
The presented concept for a flexible workflow system is realized as prototype
that complies with the proposed architecture. The prototypical implementa-
tion is generic and can be adopted in any specific domain. The domain of
deficiency management in construction, as introduced in Sect. 3.1, is utilized
for an exemplification of the proposed approach and for evaluation purposes.
The client is realized as a web application, which is implemented in

JavaScript. The application layer is fully implemented in Java, whereas
data persistence is ensured through Extensible Markup Language (XML) or
JavaScript Object Notation (JSON) files. The communication between client
and server is completely based on an Application Programming Interface
(API) that is based on the Representational State Transfer (REST) principle
to ensure separation of concerns. As serialization of data that is send to and
from the client, JSON is used as easy way to translate java objects.

In this section two external libraries, Choco-Solver and ProCAKE, which
are used by the prototype, are introduced. Implementation details and an
overview of selected GUIs are given in the following subsections.

7.3.1. Choco-Solver
Choco-Solver11 is an open-source java library for constraint programming
[139]. It provides basic functionality for constraint modelling and solving as

11https://choco-solver.org/ - In the prototypical implementation, version 4.10.2 is used.

https://choco-solver.org/
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well as interfaces for integrating custom implementations such as propagators
or search heuristics.

For a specific use case, necessary variables, domains, and constraints need
to be defined in a central model object. Some data types are provided such
as IntVar for integer values or BoolVar for boolean variables. Bounded
domains for integer variables can be specified by simply declaring two values
that limit the interval through a minimum and maximum number. The
domain of boolean variables is self-explanatorily predetermined as true or
false.

For constraint specification, various options are offered, such as arithmeti-
cal relations between two numerical variables or even scheduling constraints
that restrict the start, end, or duration of a task variable. Furthermore,
boolean variables or constraints can be linked through a logical expression
and again form a constraint. A differentiation between mandatory and
optional constraints is not possible, but through reifying, constraints can
be associated with boolean variables and consequently, the state of the
constraint is part of the solution.
Choco-Solver offers a constraint propagation algorithm that enables a

reduction of domains without assigning values to variables. This allows
for a preliminary check for contradictions of constraints that indicate an
inconsistent constraint net and ultimately, for determining the impossibility
of solving the problem.

Based on this specified model, a solver can be created and initiated. The
default search strategy for finding a solution is creating a binary search tree
based on depth first search. Nevertheless, some other heuristics and search
strategies are implemented and can be chosen. Those are responsible for
identifying the next variable that is assigned a value or determining the
value to be assigned based on a certain criteria. Besides available selectors,
custom ones can be implemented and embedded through provided interfaces.
The solving process can additionally include an optimization goal, through
specifying the objective in context of a variable, e.g. maximization. Moreover,
a multi-threaded resolution can be deployed, where different search strategies
are applied to the problem in parallel, which during the process share some
significant information in order to increase efficiency.
Choco-Solver also offers a statistics component, which allows for an analysis

of the search that happened during the solving process. Several information
can be retrieved, such as the number of backtracks, fails, or the depth of the
search tree.
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7.3.2. ProCAKE
ProCAKE12 is a domain-independent framework for structural and process-
oriented CBR [16]. It is developed at the Department of Business Infor-
mation Systems II at the Trier University and evolved throughout several
research projects. ProCAKE was extracted as the core knowledge engine
of the Collaborative Agile Knowledge Engine (CAKE) [14] and is applied
in prototypes of various research projects of different domains, such as
social workflows [52], cooking workflows [120], scientific workflows [214],
or even adaptive production processes in the context of Industry 4.0 and
cyber-physical systems [101].
ProCAKE includes miscellaneous syntactic and semantic similarity mea-

sures as well as several retrieval algorithms. For defining the structure of the
case representation, ProCAKE provides a data model that contains several
data types. For a domain model, these predefined primitive data types can
be combined and enclosed arbitrarily to define custom classes.

Data Model

Maximini developed the CAKE data model that consists of basic data types,
such as string or integers [108]. In Fig. 7.3, this data model is shown with
the inheritance hierarchy of the data types. All types are based on the
abstract root class Data and split up into Atomic and compound types such
as Collection or Interval.
For an object-oriented structure Aggregate classes can be utilized that

allow for a specification of composite data objects, by assembling attributes
that are either of those simple data types or aggregate objects again. Thus,
an arbitrary nesting of attributes is possible.
These system classes were extended later with the NESTGraph and its

elements to handle semantic workflows. Figure 7.4 shows these elements and
their hierarchy, except different forms of NESTControlflowNode for the sake
of simplification.
The NESTGraph itself and its elements as NESTGraphItem are defined.

NESTGraphItem further splits into nodes and edges, NESTNode and NEST-
Edge, and their different manifestations. Each of these elements can be linked
to a so-called semantic description that is specified as object of a user-defined
class. As substantial part of a semantic workflow, these descriptions are
mainly used for comparison during similarity assessment.

12http://procake.uni-trier.de - In the prototypical implementation, version 1.3.1 is used.

http://procake.uni-trier.de
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Figure 7.3.: System Classes of the CAKE Data Model according to Maximini
[108]

Similarity and Retrieval

ProCAKE provides manifold similarity measures for each of these data types,
which can be chosen to be applied during retrieval. To name but two, this
ranges from a simple StringEquals measure, which delivers a binary result as
it only evaluates equality, to complex mapping algorithms for NESTGraphs
such as A*.

Several retrieval algorithms can be utilized, where the most important ones
comprise a simple LinearRetriever, a ParallelRetriever, which uses multiple
cores concurrently for a more efficient retrieval, and a MACFACRetriever,
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Figure 7.4.: Extension of the System Classes of the CAKE Data Model with
NESTGraph elements

which applies a filtering method based on a predefined characteristic in a
first step in order to reduce the retrieval time for evaluating the complete
remaining case base in the second step.

Adaptation methods are not part of the generic ProCAKE framework so
far, as only domain-specific methods were implemented during past research
projects. Nevertheless, own implementations can be integrated by connecting
them to the interface of the provisioned adaptation manager.

The configuration of an instance of ProCAKE, which consists of the used
data types, the similarity measures with the parameters that are applied for
the cases and their attributes, and the case base itself for a specific domain,
can be specified through XML files.

7.3.3. Web Application
The user interface of the prototypical implementation of the presented
flexible workflow approach is implemented as web application, using different
libraries, such as Angular13 for the main structure and vis.js14 for visualizing
the workflow graphs. This web application contains four different views. At

13https://angular.io/
14https://visjs.org/

https://angular.io/
https://visjs.org/
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start, an overview of all running workflow instances and all workflow models
is shown, as overview for the process engineer (see Fig. 7.5).

Figure 7.5.: Start Page of the Web Application - GUI with a List of Workflow
Models and Instances

In this view, workflows can be started through choosing and initializing a
workflow model, and new workflow models can be created. Furthermore, the
detail views can be accessed. By clicking on a workflow model, the editor is
opened. When selecting a workflow instance, the execution view is shown,
which contains the worklist among other aspects. Besides, through this view,
the monitoring page can be accessed.

Editor

The editor component shows one selected workflow model and is divided into
a main view for the de jure workflow and a tab for constraint specification,
which can be folded out sidewards from the right.

The main view in Fig. 7.6 shows the block-oriented de jure workflow.
For a modification of this workflow graph, buttons in the upper left corner
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can be used to insert different nodes into the graph. Existent nodes can be
deleted through selecting a specific node which activates a delete button.
Descriptions of nodes or edges can be modified through double-clicking. In
this case, a dialogue for editing appears. An overview of the de jure workflow
can be seen in the lower right corner, which is helpful when editing large
graphs. Through this map, the current position is apparent and the focussed
section can be shifted.

Figure 7.6.: Editor View for Modelling De Jure Workflows

The expandable tab on the right side, where constraints can be specified,
modified or deleted, is shown in Fig. 7.7. These constraints refer to the
additional DECLARE constraints of the set CA, which is described on page
95. A simple table represents this constraint set, where each row represents
one stored constraint. In the bottom row, new constraints can be added.
An integrated view for the workflow graph and the constraints in the

main graphical view exists and can be toggled. The constraints are shown
thereupon integrated in the workflow graph indicated as additional edges,
at least Precedence, Response through green-coloured directed edges and
Non-Existence through red-coloured bidirectional edges. In Fig. 7.7, an
exemplary constraint is added and can be seen in the workflow graph as
green-coloured edge.
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Figure 7.7.: Editor View for Modelling De Jure Workflows with Constraint Tab

Worklist

The GUI that is foremost used by the process participant and that controls
the execution of the process contains an overview of the workflow model
and the worklist (see Fig. 7.8). The de jure workflow is shown in the editor
view with an adapted colouring of nodes depending on the execution state
of the workflow. In this example, the first task has been executed and
is coloured in green, whereas all other tasks remain to be executed and
are coloured in grey. The worklist is presented in the right tab view in a
table format. In this specific case, where flexibility by deviation should be
allowed, the worklist contains on the one hand the determined work items
that are ideally executed next. Consequently, they are positioned at the
top and highlighted with yellow colour. On the other hand, a list of the
remaining tasks complements these work items, as they can nevertheless
be enacted, which then leads to a deviation. Furthermore, tasks that were
already enacted remain part of the worklist, but with a changed action label
in the button, named Reenact to indicate the potential repeated execution
(cf. row 4, task: Receive Notice of Defects).

This design choice was made in this prototypical implementation, as there
is no other possibility to become aware of executed and deviating task in
case only valid work items can be chosen by the process participant. As
intended in the SEMAFLEX project, where for instance an update about
an execution of a specific task is derived from incoming documents that are
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Figure 7.8.: Execution View with Worklist and De Jure Workflow

classified and from which information is extracted, it is reasonable to only
show valid work items in order to not actively mislead process participants
to deviate.

Monitoring

The monitoring view (see Fig. 7.9) contains various details about one
workflow instance. The view can either be invoked after termination of the
workflow or during execution. The de facto workflow is shown as well as the
de jure workflow. Furthermore, the worklist is shown as in the execution
view and a list of all constraints that are part of the generated CSP, including
their current status, is presented.
Two functions for further analysis are implemented in the prototype.

With the button Enhance in the de facto view, the sequence of tasks of the
de facto workflow can be enhanced by control-flow nodes, that were on the
path when replaying the de facto on the de jure workflow. Besides, Color
Nodes in the de jure view allows for a mapping of the de facto workflow to
be integrated into the view of de jure workflow. Here, the nodes in the de
jure workflow are coloured depending on their execution status (green for
correctly executed, yellow for deviations concerning order, grey for not exe-
cuted yet). In the example in Fig. 7.9, this function is activated and the two
first tasks are executed in the correct order, as can be seen in the de jure view.
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Figure 7.9.: Monitoring View with Information about the Workflow Instance

The client communicates with the server through a REST API. The
implementation on the server side is also supported by the use of some
frameworks, such as RestEasy15 for the REST API or Jetty16 as web server.
Thus, the client interacts via requests with the server, which activates
the specific components with the required functionality. Each of these
components is subsequently explained in detail.

7.3.4. Transformation Manager
The first component on the application layer that is triggered when initializ-
ing a workflow instance is the transformation manager. During run time,
the block-oriented de jure workflow, which is specified as NESTGraph, is
translated to a Formula object. The class structure which is used for this
purpose is presented in Fig. 7.10. The formula consists of either a Term or
an atomic Constraint. A term comprises several formulae that are linked
with a conjunctive or disjunctive connector con. This allows for an arbitrary
encapsulation of terms and atomic constraints.

These atomic constraints can be of different types and have some specific
attributes that are necessary for an adequate handling of the workflow as
described in previous chapters. Besides the DECLARE constraints, an
additional constraint EqualsConstraint is provided to enable the mapping

15https://resteasy.dev/
16https://www.eclipse.org/jetty/

https://resteasy.dev/
https://www.eclipse.org/jetty/
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Term

+ con: Connector

+ formula: ArrayList<Formula>

BinaryConstraint

+ secondTask: NESTTaskNodeObject

Constraint

+ firstTask: NESTTaskNodeObject

+ status: ConstraintStatus

+ type: ConstraintType

ResponseConstraint

NotCoExistenceConstraint

AbsenceConstraint

+ maxRepetitions: int

EqualsConstraint

+ value: String

ConstraintStatus

"VALID"

"VIOLATED"

"INDEFINITE"

ConstraintType

"MODEL"

"ADDITIONAL"

"DERIVED"

Connector

"AND"

"OR"

ExistenceConstraint

Formula

PrecedenceConstraint

Figure 7.10.: Class Diagram of the Declarative Formula for Transformation
Process

of control variables and their value assignments. The transformation of
sequential dependencies into order relations is mapped through Precedence-
Constraints, as the semantic is equal. Consequently, the relation (t1 < t2) for
two sequential tasks t1 and t2, which possibly results from the transformation
function Dec (cf. Subsect. 5.4.2), is stored as PrecedenceConstraint with
the NESTTaskNodeObject of t1 as firstTask and the NESTTaskNodeObject
of t2 as secondTask.

The formula is stored independent from the constraint representation that
is used by the constraint solver in order to allow for storing the additionally
defined attributes, such as type and status. Furthermore, not all constraints
are part of the CSP, but it is determined depending on the status of the
constraint whether a constraint is included in the CSP and thus, in the
solving process. The originally created constraints can still be accessed
through the formula object.
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7.3.5. Workflow Engine
As the essential part of the workflow engine is the CSP which is used for
determining work items, this component is mainly based on a constraint
solver. To this end, Choco-Solver [139] is utilized.

The model object is initialized according to the specification of the CSPW

in Subsect. 5.4.1. As variables, IntV ar is used for the elements of the set
of sequence tasks S and BoolV ar for the control variables A. Domains are
set up appropriately. Based on the previously presented Formula object,
constraints are generated in the respective representation that the solver
can handle and use for finding a solution.

To determine work items, the solver runs several times with a varying set
of constraints, where in each of the runs one constraint is added to evaluate
if one task is a valid candidate for next task execution. During workflow
progress, the sets of the CSPW may also be extended, which is done through
a new model object, as no dynamic extension or reduction is possible in
Choco-Solver. The solution search is started with the default configuration,
which means a binary search tree with depth first search.17

During workflow progress, the de facto workflow is enhanced by traced
executed tasks, which is done by extending the respective NESTGraph object
during run time. Terminated workflows are persisted in XML files to serve as
case base for a further processing by the knowledge engine. Their structure
is explained in subsequent sections concerning the knowledge layer.

7.3.6. Knowledge Engine
The two components of the knowledge engine are responsible for the case-
based deviation management and essentially base on the ProCAKE frame-
work. To this end, ProCAKE was extended with a similarity measure in two
different forms (cf. Section 6.4) and two adaptation algorithms (cf. Section
6.5).

The retrieval manager is responsible for initiating the preprocessing algo-
rithm. For calculating the similarity between de facto workflows, the two

17Note that, as the focus of this work is not performance optimization, there is room for
improvement in future work. To this end, different search strategies and heuristics can
be validated and compared concerning their run time.
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similarity measures SMGraphSWA and SMGraphDTW are provided.18.
A simple linear retriever is used for retrieval.19

The specification of all knowledge containers that are used by the know-
ledge engine are presented in the following section.

7.3.7. Knowledge Layer
The knowledge layer contains several components that are used to initialize
ProCAKE. Each of these configuration files is persisted in XML format and
at run time deserialized to objects.

The case structure is stored in a model object. An excerpt of the specified
domain model is shown in Listing 7.1.

In the domain of flexible workflows, a case constitutes a workflow instance.
It is represented by a composite object DeviatingWorkflow, which consists
of the workflow model wfModel and the de facto workflow deFacto, which
is a NESTGraph object (see lines 1-4 in Listing 7.1). The de jure workflow
deJure as NESTGraph object and a set of constraints constraints together
form the workflow model (see lines 6-9 in Listing 7.1). Constraints can have
different types, which conform with the available classes on the application
layer, with some common but also some distinct attributes. All specific
constraints therefore inherit from the super class Constraint (see line 15-19
in Listing 7.1) and relate to one task firstTask, a status and a type, where
values of the classes ConstraintStatus and ConstraintType are predefined
(see lines 33-39 and 41-47 in Listing 7.1). Two exemplary specific constraint
types are shown in Listing 7.1 (see lines 21-31). PrecedenceConstraint has
an additional attribute secondTask that refers to the second involved task,
whereas EqualsConstraint requires the specification of the value of the task.

1 <AggregateClass name="DeviatingWorkflow">
2 <Attribute name="wfModel" class="WorkflowModel"/>
3 <Attribute name="deFacto" class="NESTGraph"/>
4 </AggregateClass>
5
6 <AggregateClass name="WorkflowModel">

18Both similarity measures are available in the public repository of ProCAKE (see https:
//gitlab.rlp.net/procake/procake-framework). Furthermore, a generalized version of
both measures exists, to compare sequences of arbitrary elements (see SMListSWA
and SMListDTW ).

19Note that the focus of this work is not to optimize the computation time. Different
retrievers can be evaluated in future work in order to gain improvements. For instance,
a ParallelRetriever that is offered by ProCAKE could be applied and exchanged with
low effort.

https://gitlab.rlp.net/procake/procake-framework
https://gitlab.rlp.net/procake/procake-framework
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7 <Attribute name="deJure" class="NESTGraph"/>
8 <Attribute name="constraints" class="ConstraintSet"/>
9 </AggregateClass>

10
11 <SetClass name="ConstraintSet">
12 <ElementClass name="Constraint"/>
13 </SetClass>
14
15 <AggregateClass name="Constraint">
16 <Attribute name="firstTask" class="String"/>
17 <Attribute name="status" class="ConstraintStatus"/>
18 <Attribute name="type" class="ConstraintType"/>
19 </AggregateClass>
20
21 <AggregateClass name="PrecedenceConstraint"
22 superClass="Constraint">
23 <Attribute name="secondTask" class="String"/>
24 </AggregateClass>
25 .
26 .
27 .
28 <AggregateClass name="EqualsConstraint"
29 superClass="Constraint">
30 <Attribute name="value" class="Integer"/>
31 </AggregateClass>
32
33 <StringClass name="ConstraintStatus">
34 <InstanceEnumerationPredicate>
35 <Value v="VALID"/>
36 <Value v="VIOLATED"/>
37 <Value v="INDEFINITE"/>
38 </InstanceEnumerationPredicate>
39 </StringClass>
40
41 <StringClass name="ConstraintType">
42 <InstanceEnumerationPredicate>
43 <Value v="MODEL"/>
44 <Value v="ADDITIONAL"/>
45 <Value v="DERIVED"/>
46 </InstanceEnumerationPredicate>
47 </StringClass>

Listing 7.1: Excerpt from the Domain Model representing the Case Structure
for Flexible Workflows

The constraints are only persisted as set without logical connections, because
the point of interest is their status. The logical formulae can be rebuild by
the transformation manager on the basis of the de jure workflow and hence,
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each constraint status can be retrieved for elements of this formula at run
time. Compared to the constraint objects in the formula implementation,
here only a reference id of the tasks is stored, as the task node is part of
the de jure workflow and thus, a redundant persistence is prevented. Other
constraint types are specified analogously to PrecedenceConstraint.

In addition to defining the case structure as such, each contained element
of the NESTGraph is connected to a semantic description that needs to
be specified in the domain model. Whereas the case structure of flexible
workflows is generic and applicable in every domain, these semantic descrip-
tions are domain-specific. They represent the properties of nodes and edges,
which are substantial for similarity assessment. The composition is shown
in Listing 7.2.
1 <AggregateClass name="WorkflowSemantic">
2 <Attribute name="name" class="String"/>
3 </AggregateClass>
4
5 <AggregateClass name="TaskSemantic">
6 <Attribute name="name" class="String"/>
7 </AggregateClass>
8
9 <AggregateClass name="ExecutedTaskSemantic"

10 superClass="TaskSemantic">
11 <Attribute name="deJureId" class="String"/>
12 <Attribute name="index" class="String"/>
13 </AggregateClass>
14
15 <AggregateClass name="DataSemantic">
16 <Attribute name="data" class="DataflowElement"/>
17 </AggregateClass>
18
19 <AggregateClass name="DataflowElement">
20 <Attribute name="name" class="String"/>
21 </AggregateClass>
22
23 <AggregateClass name="DataValue"
24 superClass="DataflowElement">
25 <Attribute name="value" class="String"/>
26 </AggregateClass>
27
28 <AggregateClass name="ControlEdgeSemantic">
29 <Attribute name="description" class="String"/>
30 </AggregateClass>

Listing 7.2: Excerpt from the Domain Model for Flexible Workflows with
Semantic Descriptions for NESTGraph Elements
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TaskSemantic refers to the description of task nodes (see lines 5-7 in Listing
7.2). In the domain model for deficiency management in construction only
the name of the task itself is stored as simple string. A special form of
this semantic description, which is generally applicable, is represented by
ExecutedTaskSemantic (see lines 9-13 in Listing 7.2), which stores details
about tasks of a de facto workflow, where additionally the reference id of
the task in the de jure workflow deJureId and its index are stored.
DataSemantic (see lines 15-17 in Listing 7.2) for data nodes is encapsulated

into a DataflowElement that can contain only a name (see lines 19-21 in
Listing 7.2), but can also be an object of its subclass DataValue, which
describes a concrete information with a value (see lines 23-26 in Listing 7.2).
Control-flow edges can contain additional information that refer to the

control variables of control-flow nodes, specified as ControlEdgeSemantic
(see lines 28-30 in Listing 7.2).

In the domain model for deficiency management in construction, simple
strings are used for task and data descriptions. Nevertheless, with slight
modifications it is possible to use semantic information that is stored in
a taxonomy or an ontology. In ProCAKE, several similarity measures for
both data types exist, such that this extension can be adopted very easily
by modifying the data types in the domain model, specifying the semantic
model and determining applied similarity measures.

In the similarity model, the similarity measures that are applied during
retrieval, including used parameters, are determined for each of the data
types that are defined in the domain model. Listing 7.3 shows an excerpt of
the similarity model for flexible workflows.
The similarity model contains both generally applicable measures for all

types of flexible workflows, referring to the NESTGraph similarity measures,
as well as domain-specific, chosen similarity measures concerning domain-
specific parts of the model, such as DataSemantic.
The most important similarity measures are those for NESTGraphs. In

the similarity model three different definitions are made for the measures
that are based on A*, the SWA and DTW. As A* measure, the third variant
is applied that uses a specific heuristic [213] and the maximum used queue
size is set to five (see lines 6 and 7 in Listing 7.3). For both the SWA and
DTW (see lines 8-17 in Listing 7.3), the similarity measure that is used for
comparing data or task nodes is specified (cf. taskSimName, dataSimName).
It is further specified that the alignment ends with the query, such that
following tasks in the case are not considered in the similarity assessment (cf.
endWithQuery). The SWA requires a value for the penalties for insertion
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and deletion, as well as for the halving distance, which is also defined for
DTW.
String attributes are compared on the basis of the Levenshtein distance

(see lines 23-24 in Listing 7.3).

1 <AggregateAverage name="wfSemSim"
2 class="WorkflowSemantic">
3 <AggWeight att="name" weight="1"/>
4 </AggregateAverage>
5
6 <GraphAStarThree name="SMGraph" class="NESTGraph"
7 maxQueueSize="5"/>
8 <GraphSWA class="NESTGraph" name="GraphSWA"
9 taskSimName="taskSim" dataSimName="dataSim"

10 constInsertionPenalty="-0.5"
11 constDeletionPenalty="-0.5"
12 halvingDist="0.5"
13 endWithQuery="false"/>
14 <GraphDTW class="NESTGraph" name="GraphDTW"
15 taskSimName="taskSim" dataSimName="dataSim"
16 halvingDist="0.5"
17 endWithQuery="false"/>
18
19 <AggregateAverage name="dataSim" class="DataSemantic">
20 <AggWeight att="data" weight="1"/>
21 </AggregateAverage>
22
23 <StringLevenshtein name="stringSim" class="String"
24 caseSensitive="false"/>

Listing 7.3: Excerpt from the Similarity Model for Flexible Workflows

The cases as such are also persisted in an XML file, which is used as in-
and output of ProCAKE. Listing 7.4 represents an excerpt of a case base,
denoted as event log in Fig. 7.2, with the de jure workflow of deficiency
management in construction shown in Fig. 3.1. Different nodes and edges
are included with their semantic description according to the previously
shown definitions. The structure of the NESTGraph definition is generic,
but is exemplified with the regarded use case of deficiency management in
construction.

1 <nest:NESTGraph id="Deficiency Management"
2 c="NESTWorkflow">
3 <nest:Nodes>
4 <nest:Node id="END_20" c="NESTXorEndNode"
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5 refId="20"></nest:Node>
6 <nest:Node id="t14" c="NESTTaskNode">
7 <cdol:Agg c="TaskSemantic">
8 <cdol:AA n="name" v="Notify Subcontractor">
9 </cdol:AA>

10 </cdol:Agg>
11 </nest:Node>
12 <nest:Node id="d6" c="NESTDataNode">
13 <cdol:Agg c="DataSemantic">
14 <cdol:OA n="data">
15 <cdol:Agg>
16 <cdol:AA n="name" v="Approval"></cdol:AA>
17 </cdol:Agg>
18 </cdol:OA>
19 </cdol:Agg>
20 </nest:Node>
21 <nest:Node id="t12" c="NESTTaskNode">
22 <cdol:Agg c="TaskSemantic">
23 <cdol:AA n="name" v="Decline Defect"></cdol:AA>
24 </cdol:Agg>
25 </nest:Node>
26 <nest:Node id="d16" c="NESTDataNode">
27 <cdol:Agg c="DataSemantic">
28 <cdol:OA n="data">
29 <cdol:Agg>
30 <cdol:AA n="name" v="No Repair"></cdol:AA>
31 </cdol:Agg>
32 </cdol:OA>
33 </cdol:Agg>
34 </nest:Node>
35 .
36 .
37 .
38 </nest:Nodes>
39 <nest:Edges>
40 <nest:Edge id="e22" pre="d14" post="t16"
41 c="NESTDataflowEdge"></nest:Edge>
42 <nest:Edge id="e83" pre="t10" post="WORKFLOW_27"
43 c="NESTPartOfEdge"></nest:Edge>
44 <nest:Edge id="e61" pre="23" post="t10"
45 c="NESTControlflowEdge">
46 <cdol:Agg c="ControlEdgeSemantic">
47 <cdol:AA n="description" v="no"></cdol:AA>
48 </cdol:Agg>
49 </nest:Edge>
50 .
51 .
52 .
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53 </nest:Edges>
54 </nest:NESTGraph>

Listing 7.4: Excerpt from the Case Base for Flexible Workflows

Each element is identified through a unique identifier id and a class for
specifying the type of the element. Moreover, edges include the ids of the
preceding and subsequent node (pre and post).
An evaluation, which is presented in the next chapter, is done based on

this prototypical implementation and the use case deficiency management
in construction.



8. Evaluation
Design science research creates artifacts that represent solutions to some
specific issues [133]. Consequently, an evaluation is necessary to “observe
and measure how well the artifact supports a solution to the problem” [133].
Different criteria should be subject of investigation, such as functionality,
performance, usability and many more [69]. The evaluation of the presented
constraint-based workflow engine with a case-based deviation management
is subject of this chapter. Parts of the approach were assessed in previous
experiments [58, 163], whereas this evaluation focuses on the utility of the
overall flexible workflow approach. To this end, a technical experiment in
combination with an illustrative scenario [132] on the basis of synthetic data
was performed.

This chapter introduces the evaluation setup and stated hypotheses, and
analyses the results and their implications. First, as a short recap, the
contributions of the presented work are subsumed in Section 8.1. The initial
main research question is subsequently taken up in Section 8.2 and it is
addressed how some requirements of a flexible workflow approach for SMEs
are met. The criteria that are investigated in the evaluation are presented
in Section 8.3. On this basis, several hypotheses that address different
aspects are formulated in Section 8.4. Section 8.5 describes the generation
of synthetic data, which is derived from a real-world use case, and the
performed experiments, which consist of a simulation of workflow executions
for several specified types of process participants. Subsequently, in Section
8.6, the results of the experiments are shown, analysed and interpreted.
Section 8.7 concludes the chapter with a summary of the findings resulting
from the evaluation of the proposed approach.

8.1. Contributions
This section briefly recaps the created artifacts of the presented work, which
are subject of the evaluation.
One essential characteristic of a developed artifact that needs to be

evaluated is its utility. The utility of the proposed flexible workflow approach
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mainly results from the work items that are produced. To this end, three
different variants for flexible workflows with deviation management and a
continuous support of the process participant have been developed. This
encompasses the following artifacts:

• Constraint-Based Workflow Engine
The designed constraint-based workflow engine includes a method that
detects deviations in terms of violated constraints, which are removed
from the constraint net in order to restore consistency. The result is a
reduced constraint net that serves as input for the CSP and, consequently,
re-enables the workflow engine to compute work items.

• Null Adaptation Based on a Retrieved Case Using a Sequence
Similarity Measure
The sequence similarity measures based on DTW or the SWA can both
be used to compare de facto workflows, more precisely to search for the
most similar terminated workflow on the basis of the currently running
workflow where a deviation has occurred. A subsequence of tasks or one
task of this retrieved case can then be extracted and suggested to the
process participant for workflow continuation.

• Generative Constraint-Based Adaptation Based on a Retrieved
Case Using a Sequence Similarity Measure
The generative adaptation method builds upon one of the two previously
mentioned approaches for similarity assessment. As input, the case
retrieved on the basis of the sequence similarity measure, either the SWA
or DTW, is used. Its constraint net is aligned with the constraint net of
the query, resulting in a consistent, adapted constraint net. The latter
can be used by the constraint-based workflow engine to compute work
items.

Minor artifacts such as the translation function are a means to an end
and are included in or rather are prerequisites for these major artifacts.

With this evaluation, it is shown to which extent all of these three variants
of flexibly computing work items can support a process participant in success-
fully terminating workflows. This includes both conforming and deviating
workflow executions. Each of the different methods considers distinct input,
such as the constraint-based transformation function, experiential knowledge
in form of workflow traces, or rules for constraint set combination.

A main motivation behind this approach is to enable flexibility by deviation,
in order to supersede flexibility by design and change through intelligent
methods such as CSP and CBR.
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8.2. Research Question RQ0
The key research question of this work RQ0 (see Section 1.2) has been left
open to be answered until now. The requirements of SMEs were presented in
Subsect. 3.2.3. Concluding from the presented concepts, these requirements
are fulfilled by the different methods of the presented flexible workflow engine.
This concerns the following aspects:

RE1: Flexibility

Requirement RE1 is met by all of the proposed variants of the flexible
workflow engine. Each of them allows for deviations from the prescribed
model at run time without entering an exceptional state. Despite these
deviations, work items are proposed subsequently. Therefore, continuous
support is guaranteed.

RE2: Knowledge Transfer

Knowledge transfer is enabled through the case-base methods, as experiential
knowledge is integrated into the decisions of the workflow engine. Through
the retain step of the CBR cycle, terminated workflows can be included
in the case base and are preserved for future access. As these workflows
serve as cases for the null or generative adaptation, they are simultaneously
shared and reused for work item proposal. Consequently, requirement RE2
is fulfilled by the case-based modes of the workflow engine.

RE3: Low Effort

The presented approach is likewise usable for experienced as well as in-
experienced process participants, as no manual interference of the user is
necessary, e.g. to handle deviations, such that low effort (cf. requirement
RE3) is required in order to be able to adopt this flexible workflow system.
Furthermore through the retain phase, terminated workflow instances are
integrated automatically without the need of manual interaction, such that
the necessary effort for maintenance is minimized. Through the integrated
workflow model, which combines procedural and declarative aspects, and
through the transformation function, the most intuitive paradigm according
to the specific process engineer can be chosen in order to ease the modelling
effort.
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8.3. Evaluation Criteria
In order to be able to assess what has been achieved by the presented
research, different criteria are investigated in this evaluation. The main
objective is to prove the utility of the created artifacts. Various aspects that
have non-functional influence on usability or work capability are observed,
such as computation time. Other properties that deliver valuable feedback
and have an impact on the utility, such as the necessary size of the case base,
are inspected. Each of these regarded criteria is presented in more detail in
the following.

8.3.1. Computation Time
The computation time is an essential aspect to ensure the applicability in
practical use and to counteract an instant rejection of a newly introduced
system, at least when considering WfMSs as interactive systems. It should
rather encourage the willingness of a process participant to use the system. A
workflow approach should support her/him through controlling and guiding
the execution of tasks. If the necessary computations for generating a
worklist are too time-consuming, the process participant is apt to circumvent
the system.

According to Nielsen [126], 10 seconds is the limit for a response time of a
system, such that the user is not distracted, but keeps the focus. Longer
waiting times are perceived as unreliable and the user will turn to another
task. Consequently, a maximum of 10 seconds can be seen as a guideline
for the computation of the work items for an immediate response of the
system, such that the waiting time is reduced to a minimum after a process
participant executed a task.20

8.3.2. Utility
The second essential criteria is the utility, which is interpreted in this domain
of flexible workflows as the degree to which the workflow can be terminated
successfully in standard cases or even despite deviations. The overall utility
can be determined through measuring the utility of work items during
20In this evaluation the computation time will be investigated on the basis of an exemplary

use case that is simulated on only one machine. However, as the computation time
depends on several parameters, such as size of the workflows, number of constraints,
amount of cases in the case base and the performance of the machine where the workflow
system is deployed on, the results are not generally valid but can only indicate a rough
guide.
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execution. To assess this property, various types of process participants
need to be taken into account in order to investigate and evaluate different
behaviour of process participants and the corresponding reaction of the
system. Consequently, the criteria of utility needs to be evaluated in a
differentiated way. Before describing the derived utility definitions, these
distinct types of process participants are presented.

Types of Process Participants

• Experienced
The experienced process participant constitutes an expert and knows
how to handle any situation during process execution. This not only
includes the ideal way of completing a workflow, but also recovering after
deviations in case the WfMS is in an exceptional state without proper
task suggestions. Her/his expectations of a flexible workflow system
concern the support of those workflow instances that s/he would produce,
foremost in terms of traceability and reporting. In case the system offers
no support, a circumvention of the system would be hazarded or even
triggered.

• Inexperienced
The inexperienced process participant, who can be regarded as a novice,
relies on the support of the workflow engine, as s/he is not aware of
the correct workflow execution and does not know how to handle unex-
pected situations and how to continue after deviations. Each workflow
instance executed by him/her is strictly adhering the suggested work
items. This concerns both ways of completing a workflow, either con-
forming to the model or continuing after a deviation. Consequently, the
success of an inexperienced process participant completely depends on
the appropriateness of the work items proposed by the workflow engine.

• Non-Conforming
The non-conforming process participant executes his workflows in a non-
conforming way, which includes executing tasks that are not within the
proposed list of work items, thus causing deviations from the de jure
workflow with unknown consequences. This might happen on purpose,
unintentionally or even unknowingly. The expectation of using a flexi-
ble workflow system is that, when encountering one of those undesired
deviations, the guidance leads to a better outcome.
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On the basis of these types of process participants, a more sophisticated
definition of utility is specified correspondingly.

Utility for the Experienced Process Participant

The workflow engine is useful for the experienced process participant if the
proposed work items correspond to the task executions s/he has in mind.
Hence, utility of the workflow engine is measured as amount of support
in contrast to misguidance. This is assessed by comparing the pursued
task execution of the experienced process participant with the proposed
work items of the workflow engine. If the task is not among the list of
proposed work items, the workflow engine would lead to a miscontrol, which
is not useful. The utility can then be assessed on the basis of the ratio
of the number of miscontrols (nrOfMiscontrols) and the number of task
executions (nrOfTasks) in a workflow as degree of support:

utilityexperienced = 1− nrOfMiscontrols

nrOfTasks
(8.1)

Utility for the Inexperienced Process Participant

As the inexperienced process participant completely relies on the workflow
engine, the workflow instances that can result from the execution of proposed
work items are the basis to assess the degree of utility. Therefore, these
resulting workflow instances can be compared to valid workflow instances.
The minimum edit distance [92] gives information about the amount of
conformance. Relating this edit distance (editDistance) to the total number
of executed tasks (nrOfTasks) in the workflow instance indicates the utility
of one proposed workflow instance:

utilityinexperienced = 1− editDistance

nrOfTasks
(8.2)

Utility for the Non-Conforming Process Participant

Successfully supporting a non-conforming process participant is interpreted
as putting him/her back on the right track. The workflow engine should
provide work items in order to recover from an undesired deviation. Taking a
workflow instance with more than one deviation as starting point and letting
the process participant complete the workflow instance, always following
the work items proposed by the workflow engine after the first deviation,
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an adapted workflow instance emerges. In this case utility is defined as
the improvement with respect to the workflow instance the user would
create without support of the workflow engine, indicated by the reduction
of necessary edit steps. Therefore, the minimum edit distance to a valid
workflow of both the workflow instances that emerge with and without
support of the workflow engine can be compared.

utilitynon−conforming = 1−
( editDistanceNew

nrOfTasksNew )

( editDistanceOriginal
nrOfTasksOriginal )

(8.3)

Conforming workflow instances should be supported as well as deviating
ones. The objective of this approach is to overcome the need for flexibility by
design and flexibility by change through implementing flexibility by deviation.
In this context, utility means that with a simple model as input for the
designed workflow approach and the use of previous made experiences, a
support for an extended set of workflow instances is offered, superseding a
tedious modelling of the workflow model through flexibility by design or a
necessary manual remodelling with flexibility by change, as deviations are
handled automatically.

8.4. Hypotheses
The following hypotheses constitute the assumptions and reflect the goals
that are pursued in this research work. These are investigated during the
evaluation for the different variants of the workflow engine21.

H1 (Computation Time): The computation of the worklist completes suffi-
ciently fast for interactive systems.

For a usable interactive system, the work items should be computed in real-
time to be of adequate value for the process participant. If the determination
of task suggestions takes too long, it might have several negative impacts.
The acceptance to use the system, as well as the trust in the system for being
a support might be decreased. The risk that the system is circumvented and
detached decisions are taken by the process participant might increase and
ultimately might lead to an ineffective or failed result of the workflow. Thus,

21Note that if a hypothesis refers to the workflow engine or computing work items and
this is not further differentiated, it refers to all variants of the workflow engine, where
each of them is evaluated separately.
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the computation of work items should be completed in a timely manner.
The limit for a user to keep focus without distraction is 10 seconds [126], as
described in Subsection 8.3.1.

H2 (Experienced Process Participant): When replaying a valid workflow, the
executed tasks are mostly proposed by the workflow engine. Consequently,
the workflow engine achieves a high utility for the experienced process
participant.

The workflow engine is assumed to support various types of process par-
ticipants. In SMEs, best practices that manifested over time through the
work of experienced employees are mostly implicitly accepted, but might
not be depicted by the workflow model. The proposed workflow approach
should support these best practices and even propose them to inexperienced
process participants. To this end, the expertise, in form of experiential know-
ledge, which in this case consists of previous workflow executions, should be
considered and integrated when computing work items.

H3 (Inexperienced Process Participant): After a deviation from the workflow
model, workflows can be terminated similarly to valid workflows based on
the suggestions of the workflow engine. Consequently, the edit distance
of proposed workflow instances compared to the most similar case of valid
previous executions is small, which leads to a high utility for the inexperienced
process participant.

The workflow approach should be robust in order to still propose an adequate
termination of the workflow in case of a deviation. This concerns foremost
the support of inexperienced process participants who are not aware of
successful alternatives, lack experience, and cannot help themselves out of
such a situation.

H4 (Non-Conforming Process Participant): The workflow engine can im-
prove the outcome of workflow instances that have been terminated previ-
ously leading to an invalid workflow. Workflow instances that are terminated
according to the proposed work items by the workflow engine after the
first deviation have a smaller edit distance to the most similar valid work-
flow than the original workflow instance. Consequently, the utility for the
non-conforming process participant is high.

This hypothesis considers a process participant who deviated in a non-
conforming way for whatever reasons. First and foremost, if this deviation
was unintentional, the workflow approach should be able to recover and still
propose a good way of ending the workflow if such a solution exists.
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H5 (Comparison of Computation Time and Utility Concerning Different
Variants of the Workflow Engine): The utility for each type of process
participant is significantly higher with the case-based methods of the work-
flow engine than with the constraint-based workflow engine, whereas the
computation time is not significantly higher.

The case-based deviation management in form of either null or generative
adaptation to determine work items originates out of the pursuit to better
adapt the needs of the process participant by means of exploiting experiential
knowledge. In order to achieve an improvement, the computation time of the
case-based methods should be equal to or lower than that of the constraint-
based workflow engine, whereas the utility of the work items of the case-based
methods should be significantly higher than that of the constraint-based
workflow engine.

H6 (Comparison of Utility Concerning Sizes of the Case Base): The utility
of the case-based deviation management when using 50% of all known valid
workflow instance as input is significantly higher than with a smaller case
base (10%), but not significantly worse than with a larger case base (e.g.
90%).

With this hypothesis it is elaborated how many of all valid workflow instances
are needed as case base for the case-based deviation management to achieve
high utility values. In a real-world scenario a high coverage of all valid
workflow executions is not possible at launch of the flexible workflow system,
as the experiential knowledge needs to be build up through the learning of
cases. The variety of workflow instances increases by itself with the period
of use. Thus, this hypothesis aims at evaluating the learning curve of the
system and with which size of the case base the system can be deployed to
provide benefit to the process participant.

8.5. Setup
To evaluate the presented hypotheses, a technical experiment in combination
with an illustrative scenario is conducted [132]. To this end, a synthetic data
set is generated that represents possible de facto workflows. Based on this
data set, a ten-fold cross validation is performed. The de facto workflows of
the test set are simulated through a trace replay, while the training set is
used as case base. The trace replays are carried out several times in different
ways, representing distinct types of process participants, in order to cover
all usual real-world usage scenarios.
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8.5.1. Data Generation
As described in Section 3.1, a workflow from the exemplary domain of
deficiency management in construction is used to demonstrate the application
of the proposed flexible workflow approach. A simple workflow model that
represents the ideal handling of deficiencies was defined first (cf. Fig. 3.1).
In consultation with an architect as domain expert, this model was refined
and extended by all alternative cases (cf. Fig. 3.2 - 3.5) that are conceivable
and represent a correct handling.
When implementing flexibility by design, this extended workflow model

would need to be modelled at build time, whereas the incomplete and
simplified ideal workflow would be used as model in order to realize flexibility
by change. Nevertheless in the latter case, when encountering irregularities
during execution, the workflow model would need to be modified manually
at run time in order to support the process participant.

The objective of flexibility by deviation is to avoid both of these drawbacks
such that neither an extensive modelling phase is required, nor a manual
remodelling is necessary.
Reusing the diagram that relates declarative and imperative paradigms

for modelling workflows (cf. Fig. 2.7), the simple and extended model and
the different paradigms can be put into relation (cf. Fig. 8.1).

Extended
Model 

Invalid

Simple Ideal
Model

Optional

Flexibility by
Deviation

Figure 8.1.: De Facto Workflow Spectrum related to Fig. 2.7 based on Pešić
[134]

The simple ideal model represents only a subset of all possible valid
workflow instances (cf. oval with dashed line in Fig. 8.1). In contrast, the
extended model is assumed to map all valid workflow instances (cf. white-
coloured shape in Fig. 8.1), which would need to be modelled when applying
the approach of flexibility by design. Nevertheless, as it is not possible to
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think of all valid alternatives at build time, some de facto workflows remain
unknown, but should be supported with flexibility by deviation (cf. shape
with dotted line in Fig. 8.1).

In the presented evaluation, the implementation of the advantages of
flexibility by deviation are validated. To this end, the simple ideal workflow
model is used as workflow model by the flexible workflow approach, whereas
all or some possible de facto workflows of the extended model are only fed as
experiential knowledge to the case-based methods. This is done in order to
evaluate the capability of the proposed approach to automatically support
valid de facto workflows of the extended model.

As prerequisite for the conducted experiment, all possible valid de facto
workflows of the extended model were generated through the constraint-based
workflow engine. Furthermore, the simple model was slightly adjusted by
integrating some deviations, which leads to a manipulated workflow model.
Thus, few negative cases are generated as well (cf. dark grey triangles
denoted as invalid in Fig. 8.1). To this end, the simple workflow model for
deficiency management in construction was manipulated through integrating
two deviations22. Several modified models arise from this with different
deviations. By generating all possible traces from these models, negative
traces were created.

Based on this synthetic data set, a validation of the workflow engine was
conducted. Ultimately, five workflow instances were generated out of the
simple model, 2.184 traces of the extended model and 12 negative cases.

8.5.2. Experiment
The experiments were made on a laptop with (QuadCore) Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz 2.30 GHz and 16 GB RAM on a 64 bit system
and Windows 10.

Figure 8.2 shows the overall setting of the experimental evaluation. Based
on previously generated de facto workflows, workflow executions are simu-
lated for different types of process participants and the different modes of
the workflow engine. Additionally, different sizes of the case base are used
as input for the retrieval phase of the case-based variants, and positive as
well as negative cases are used as queries. The resulting event log contains
various information that is analysed regarding the evaluation criteria and
the assumed hypotheses.

22This was done in several ways, e.g. switching the order of tasks for two different task
pairs, omitting two tasks or integrating unknown tasks.
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Figure 8.2.: Setup of Simulation Experiments

As described in Subsection 8.5.1, the total list of valid cases that is shown
in the centre of Fig. 8.2 contains all possible de facto workflow traces that
were generated based on the extended model of deficiency management in
construction (cf. Fig. 3.2 - 3.5). The experiment is done as a ten-fold cross
validation, such that for each single validation run 10% of the cases in the
total list of cases form the test set, which are used as queries. The remaining
cases serve as the training data set, which is used as case base. Each query
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is simulated as a trace replay several times with different parameters. These
parameters include:

• Mode of Workflow Engine ( a©- d©)

• Size of Case Base (10/50/90%)

• Type of Query (+©/ -©)

• Type of Process Participant ((I)/(II)/(III))

This simulation produces an event log that is analysed concerning the
assumed hypotheses. Each of the parameters is explained in more detail in
the following.

Mode of Workflow Engine

During the trace replay of one query, the worklist is computed after each
task, for each of the different methods that are able to compute work items,
denoted here as modes of the workflow engine:

a© Constraint-Based Workflow Engine

b© Null Adaptation Based on a Retrieved Case using the SWA

c© Null Adaptation Based on a Retrieved Case using DTW

d© Workflow Engine with Generative Constraint-Based Adaptation using
the SWA during Retrieval

The resulting worklist is stored in the event log for a comparison of tasks
in the de facto workflow and the corresponding work items. In some cases
the trace replay is influenced by the items contained in the worklist, which is
explained later when introducing the different types of process participants.

These modes of the workflow engine only use the simple model of deficiency
management in construction (cf. Fig. 3.1) and the remaining training data
set of the case base as input, see component workflow engine in Fig. 8.2.

In this experiment, the null adaptation variants consider all cases with the
highest similarity for reuse. The generative adaptation uses the retrieved
cases with highest similarity on the basis of the SWA, while one case is
chosen randomly for reuse if there are several with the same similarity value.
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Size of Case Base

For the three modes of the workflow engine that include case-based methods
( b©- d©), the size of the case base is varied and the simulation is done for
each of these different sizes, in order to investigate which size is required to
achieve good results. This involves the following sizes of the training data
set in relation to the total list of valid cases:

• 10%

• 50%

• 90%

For a reasonable comparison, the test data set consists of the same 10%
of the remaining case base for each of the different sizes.

Type of Query

In the experiment, two different lists of cases are used for simulations, that
have a specific type:

+© Positive

-© Negative

As mentioned before, the type of the query depends on its origin, either the
extended model or the modified simple model. They are used to differentiate
between different types of process participants. Positively rated queries
are simulated for the experienced and inexperienced process participants,
whereas negatively rated queries are simulated for the non-conforming process
participant.

Process Participant

The trace replay of the queries is conducted in several distinct ways, to
evaluate the behaviour of the workflow engine in different situations and its
support for all kinds of process participants. To this end, different types
of process participants that react differently when facing a deviation are
specified based on realistic assumptions, as described in Subsection 8.3.2.

(I) Experienced

(II) Inexperienced

(III) Non-Conforming
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Experienced The proposed flexible workflow approach supports the ex-
perienced process participant if the proposals of the workflow engine are
conforming to his/her previously executed workflow instances, as they are
most likely equal to those that will be executed in the future. These previ-
ously terminated instances are part of the case base as experiential knowledge.
To validate this assumption, a replay of the cases in the test set is simulated
as presented in Fig. 8.3.

Workflow
Engine

Experienced

Total List 
of Valid
Cases

10%

Query

Number of
Deviations

Simulation

Process  
Participant

Test

A
B
C

Work  
List

∈? ∈? ∈?

Replay
10%

A
B
C

A
B
CTrain

Case 
Base

50%

90%

Figure 8.3.: Experiential Evaluation for the Experienced Process Participant

For the experienced process participant, the exact trace is replayed for
each query. During this trace replay, for each task that is replayed and added
to the de facto workflow, it is checked if it is contained in the proposed work
items of the workflow engine. When the trace replay terminates, the utility
for experienced process participants is computed, denoting the number of
deviations.

Inexperienced The inexperienced process participant mainly profits from
the proposed work items of the workflow engine. To investigate this resulting
utility, the trace replay is conducted differently compared to the experienced
process participant. The simulation is visualized in Fig. 8.4.

In a first step, the query workflows are re-enacted as trace replay. For this
purpose, the constraint-based workflow engine is used as ideal workflow exe-
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Figure 8.4.: Experiential Evaluation for the Inexperienced Process Participant

cution reference using the simple model as input. The point of investigation
concerning utility starts when a deviation occurs, in terms of a task in the
replay that is not part of the work items proposed on the basis of the simple
model. At this point in time, the proposed novel modes of the workflow
engine are activated and simulate the replay until the end. Thus, the replay
is completed following the suggestions of the worklist for each of the solve
modes (see blue-coloured nodes of Replay in Fig. 8.4). Work items are picked
randomly. When the worklist is empty, the workflow instance concludes.
This emerging workflow instance, which results from the replay considering
the proposed work items, can be rated considering its similarity compared to
the total list of valid cases. As objective and quantifiable similarity measure,
the edit distance based on Levenshtein distance [92] is chosen, that indicates
the utility for the inexperienced process participant as described previously.

Non-Conforming The non-conforming process participant executes work-
flow instances with unknown or unwanted deviations. Thus, the simulation
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is not based on the test set of the total list of valid cases that resulted from
the extended workflow model, but the regarded query workflows are negative
cases that were generated on the basis of the manipulated simple workflow
model (see Fig. 8.5).
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Figure 8.5.: Experiential Evaluation for the Non-Conforming Process Partici-
pant

The simulation itself is done in the same way as for the inexperienced
process participant. The query workflow is replayed until a deviation occurs,
according to the constraint-based workflow engine with the simple model as
input. After this deviation, the workflow instance is completed by randomly
picking work items generated by the workflow engine until termination of the
workflow. This is done for each of the modes of the workflow engine. The
similarity of the emerging workflow instance can then be assessed compared
to the total list of valid cases. Again, the edit distance is chosen as similarity
measure. Here, the resulting value can be compared to the edit distance of
the original query and the improvement can be quantified, which leads to
the utility assessment.
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Simulation of the Process Participant

The simulation component (cf. Fig. 8.2) takes all these parameters as input
and performs the trace replay according to the previous description. The
simulation is done as ten-fold cross validation with an overall number of
2.184 positively rated traces and 12 negatively rated traces. Thus, the test
set consists for six folds out of 218 traces and for four folds out of 219 traces
positively rated traces, adding in each case the 12 negatively rated traces as
queries.

Event Log

During the simulation, log files are generated that trace all set parameters,
all events, and different upcoming or computed values, such as similarity
values, computation time, or simply the conformance of a task to a worklist,
to allow for an in-depth analysis. Derived from that, average values can be
assessed or proportional relations can be determined.

8.6. Simulation Results
In summary, 44.880 trace replays resulted from the experiment in which the
process participants were simulated with the previously described parameters,
which are combined in all possible ways.23

Fig. 8.6 shows the distribution of number of task enactments for each of
the trace replays. Here, the values are outlined in a box plot where the main
distribution of data points becomes obvious. The box itself visualizes 50%
of the middle data points with the cross in the middle representing the mean
and the line representing the median. In addition, the whiskers represent
the majority of the remaining 50% of all values, whereas they solely include
data points within a distance of one and a half times the range of the box
at maximum, while some dots occurring outside these lines mark outliers.
Considering task enactments in Fig. 8.6, ten tasks were replayed on average,
at maximum 26 and at least two tasks.
In order to validate the assumed hypotheses, the logged traces and addi-

tional data are analysed with regard to the evaluation criteria. The results
are presented in the following.

23Note that the constraint-based workflow engine was not simulated with different sizes
of the cases, as the case base is no input for this mode of the workflow engine, and
therefore varying sizes make no difference.
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Figure 8.6.: Number of Tasks for Each Replay

8.6.1. Computation Time
During the trace replays and for each task enactment, computation times
that indicate how long it takes to determine a worklist are logged.

Figure 8.7.: Maximum Computation Time for Each Replay



222 8. Evaluation

Fig. 8.7 shows the distribution of the maximum computation times in
milliseconds for each replay when using a size of the case base of 10%.
The values range from almost 0 to 55 seconds. As can be seen in Fig. 8.8

Figure 8.8.: Maximum Computation Time for Each Replay Zoomed in on
0 - 1.000 ms

where the y-axis is limited to 1.000ms, the main distribution of values
is concentrated on the segment of 150ms to 250ms, which indicates an
immediate response of the system.

Splitting this set up concerning different parameters, some differentiations
can be made concerning the modes of the workflow engine. In Fig. 8.9 this
data is broken down for each of the modes of the workflow engine in form of
box plots.
The results of one method clearly stand out. This distinction exposes

much higher maximum values for the generative adaptation (see yellow bar
and points in Fig. 8.9) compared to the remaining modes of the workflow
engine. Consequently, process participants would have to wait up to one
minute in the worst case for a worklist to be computed, which completely
thwarts the practical suitability. These comparatively high computation
times result from the multiple necessary computations of a solution for the
different CSPs during the adaptation process.
Nevertheless, this method should not be excluded from further investi-

gation solely concluding from this property. As the focus of the presented



8.6. Simulation Results 223

Figure 8.9.: Maximum Computation Time for Each Replay for All Different
Modes of the Workflow Engine

work was finding a valuable solution rather than optimizing the computation
time, this aspect can still be improved in future work.
Fig. 8.10 shows the maximum values for all remaining modes of the

workflow engine, zoomed in to the interval of 0 - 1.200ms.
This more detailed comparison indicates that the maximum of both null

adaptation methods is slightly lower, exactly under 400 milliseconds, whereas
the vast majority of maximum values of all modes are under 400ms. The
constraint-based workflow engine has maximum computation times of up to
1.200ms, which is still quite low.

Thus, for the constraint-based workflow engine and both methods that
apply null adaptation either with the SWA or DTW computation times
are low. Each computation of work items takes at most 1.200 milliseconds
and consequently, a fast feedback to the process participant with work item
proposals is possible. Hence, hypothesis H1 is confirmed for those methods.
Furthermore, it provides operational capability and prevents a circumvention
of the system. For the generative adaptation, the computation times are
much too high and the process participants will be distracted or focus on
other tasks. Thus, hypothesis H1 is partly rejected. However, this might be
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Figure 8.10.: Maximum Computation Time for Each Replay for Different
Modes of the Workflow Engine Zoomed in on 0 - 1.200 ms

no disadvantage depending on the domain or the organisation of work. For
instance, in case one employee is not only concerned with the execution of
one process, but with several ones at the same time, the chance that her/his
worklist is empty is rather low.

So far, only maximum values of one replay were regarded. To reinforce
these low computation times, Fig. 8.11 additionally indicates the average
computation times for determining work items for the different solve modes.
Analogously to the maximum computation times, the mode of generative
adaptation performs much poorer than the other methods with an average
computation time of 11 seconds.
Zooming in to the interval of 0 - 300ms (see Fig. 8.12), the constraint-

based workflow engine is faster on average. As all values are lower than
200ms, the difference is not perceivable by the process participant when
using the system. No waiting time occurs, as at most 200ms is close to an
immediate response.

While both null adaptation methods are slower on average, the maximum
computation time is considerably lower than the computation time of the
constraint-based workflow engine. Nevertheless, the range of computation
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Figure 8.11.: Average Computation Time for Each Replay for Different Modes
of the Workflow Engine

Figure 8.12.: Average Computation Time for Each Replay for Different Modes
of the Workflow Engine Zoomed in on 0 - 300 ms

times is overall acceptable except for the generative adaptation, meaning un-
der one second, and thus, does not cause idle time for the process participant
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or contradict usability or acceptance.
For the case-based methods, different sizes of the case base were used as

input for the simulation of the process participant.
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Figure 8.13.: Average and Maximum Computation Time for Different Sizes of
the Case Base for Both Null Adaptation Variants

Fig. 8.13 shows the average and maximum computation times for com-
puting work items for different sizes of the case base, both null adaptation
methods of either the SWA or DTW are included. The generative adaptation
is not part of this comparison, as it builds upon the retrieval with either the
SWA or DTW, which is compared in Fig. 8.13, but adds some CSP solving
for the adaptation part, whose computation time is not influenced by the
size of the case base.

The average computation time still lies under one second even for a case
base of 90%, but the maximum increases to nearly three seconds, which might
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impact the behaviour of the process participant and induce a circumvention
of the system in some individual cases.

8.6.2. Utility for the Experienced Process Participant
For the experienced process participant, it is essential that the workflow
engine supplying work items supports the best practices that are enacted by
her/him. To this end, the traces are replayed and each task in the replay is
compared to the suggestions of the workflow engine.

Figure 8.14.: Total Number of Deviations for Each Replay for the Experienced
Process Participant

Fig. 8.14 shows the total number of occurring deviations per replay as a
box plot, where a deviation is defined as a task in the trace not being part
of the suggested worklist during the trace replay.
The number of deviations range from 0 to 11, with an average of four

deviations.
Fig. 8.15 shows the single distributions of values regarding the different

modes of the workflow engine. It can be seen that the proposals of the
null adaptation with the SWA show the most conformance with the traces,
as the number of deviations is lower than for the other three methods for
determining work items.
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Figure 8.15.: Total Number of Deviations for Each Replay for Different Modes
of the Workflow Engine for the Experienced Process Participant

Based on this, the utility for the experienced process participant
(utilityexperienced, see Equation 8.1) can be computed. Fig. 8.16 shows the
results, which confirm the previously made observations.
For the null adaptation method based on a retrieval with the SWA, the

utility is very high, as in most cases over 80% of the tasks were proposed
by the workflow engine, whereas this holds for only 45% on average when
computing the worklist on the basis of the constraint-based workflow engine.
The utility is also high for the generative adaptation and slightly lower for
the null adaptation with DTW.

The poor performance of the constraint-based workflow engine concerning
deviations can be explained due to the differing inputs of the methods. The
only input for the constraint-based approach is the simplified workflow model
with a reduced set of tasks compared to the extended model. Consequently,
work items are only derived from this reduced set, while all additional tasks
are not part of the build CSPs and therefore cannot be part of the solution.
In contrast, all other methods rely on the experiential knowledge in form of
workflow traces, which includes all tasks of the extended model.

Hence, hypothesis H2 is predominantly confirmed, excluding the
constraint-based workflow engine. However, especially for the null adap-
tation with the SWA, the workflow traces are largely compliant with the
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Figure 8.16.: Utility for the Experienced Process Participant for Each Replay
for Different Modes of the Workflow Engine

proposed work items, which verifies a great support for the experienced
process participants.
The case-based modes of the workflow engine clearly outperform the

constraint-based workflow engine, as they incorporate the previous experi-
ences better and are able to propose those. Consequently, for the experienced
process participant the case-based methods offer a higher utility of work
items and a better support. Hence, hypothesis H5 is confirmed for the
experienced process participant.
Fig. 8.17 shows the average utility value split up concerning sizes of the

case base. The average utility slightly increases with a larger case base
of 50% for the null adaptation with DTW, while the value for the null
adaptation with the SWA increases significantly by 0,06. In contrast, the
average utility decreases for the generative adaptation when considering
larger case bases. Hence, hypothesis H6 can be confirmed for the null
adaptation with the SWA, but is rejected for the generative adaptation. For
the null adaptation with DTW, the size of the case base has no influence on
the outcome, as the average utility remains relatively static. Nevertheless,
absolutely speaking, the generative adaptation performs slightly better than
the DTW but worse than the SWA.
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Figure 8.17.: Average Utility for the Experienced Process Participant for
Different Case-Based Modes of the Workflow Engine and Different
Sizes of the Case Base

8.6.3. Utility for the Inexperienced Process Participant
The inexperienced process participant follows the work items after facing
a deviation, as s/he is not aware of how to continue the workflow. Thus,
the criteria of interest is the resulting trace when following the work item
suggestions. To this end, the traces are replayed on the basis of the simple
workflow model until a deviation occurs and are afterwards completed on
the basis of the work item suggestions of the different modes of the workflow
engine. The resulting trace can be compared to the total list of valid cases
and the edit distance of the most similar case can be assessed in order to
determine the utility.

Fig. 8.18 shows the ratio of the edit distance and number of executed tasks
for all replays for the simulation of the inexperienced process participant.
The assessed amount of necessary edit steps compared to number of tasks
is quite low with a main distribution of values in between 0 and 0,3, which
means that at maximum one third of all tasks needed to be edited in order to
align the de facto workflows. This indicates an overall high similarity between
resulting traces and the total list of valid cases containing all possible traces
from the extended workflow model. Nevertheless, some outliers are visible
with a maximum ratio of 2, meaning that the most similar trace might have
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Figure 8.18.: Edit Distance in Relation to Number of Executed Tasks for the
Inexperienced Process Participant for Each Replay

a length three times that of the original query trace.
Fig. 8.19 shows the derived utility value for each trace (utilityinexperienced,

see Equation 8.2), split up for the different modes of the workflow engine.
With an average value of more than 0,85 for both null adaptation variants,
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Figure 8.19.: Utility for the Inexperienced Process Participant of Each Replay
and Different Modes of the Workflow Engine
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the utility is high and consequently, hypothesis H3 is confirmed for those
two methods.
In contrast, the constraint-based workflow engine and the generative

adaptation perform not as good concerning this aspect. With an average
value of 0,7, the constraint-based workflow engine still works better than
the generative adaptation with an average similarity of 0,35, which is quite
low in comparison. Furthermore, the values of both methods have a higher
variance, which decreases the reliability. Consequently, hypothesis H3
is rejected for the constraint-based workflow engine and the generative
adaptation. However, hypothesis H5 is partially confirmed, since both null
adaptation methods perform significantly better than the two remaining
methods.
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Figure 8.20.: Average Utility for the Inexperienced Process Participant for
Different Case-Based Modes of the Workflow Engine and Different
Sizes of the Case Base

Fig. 8.20 shows the average utility for the different sizes of the case base
and the different case-based modes of the workflow engine. The values do
not differ significantly. A slight increase for a case base size of 50% can
be seen for the null adaptation with DTW and the generative adaptation,
but only of about 2 or 3%. However, the average utility slightly decreases
for case bases of 90%. This may be explained by an increased variance
of work items when considering more cases for similarity assessment and
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therefore the resulting traces differ to a higher degree, as work items are
chosen randomly. Consequently, hypothesis H6 is not confirmed for the
inexperienced process participant, as the size of the case base does not lead
to any significant difference in results.
Derived from that, one can argue that both null adaptation variants,

foremost the one applying the SWA, can achieve a high utility even with
a small case base and thus, are able to support an inexperienced process
participant at an early stage of deploying the flexible workflow approach
where only a few workflows have been terminated, at least in this exemplary
domain.

8.6.4. Utility for the Non-Conforming Process Participant
The non-conforming process participant deviated multiple times from the
suggested tasks in the past. When replaying these workflows, it is validated
if the proposals of the workflow engine lead to workflow traces with a higher
similarity to the total list of valid cases, which is assessed through computing
the edit distance. Similar to the simulation of the inexperienced process
participant, the queries, in this case resulting from the modified simple
workflow model, are replayed and after the first occurring deviation, the
work item suggestions of the workflow engine were followed, resulting in new
traces. These traces were then compared to the total list of valid cases and
the resulting similarity values are assumed to improve in contrast to the
similarity value of the original query trace. On this basis, the utility can be
computed.
Fig. 8.21 shows the distribution of the improvement of the edit distance.

Here, positive values indicate an improvement through the workflow engine,
meaning less necessary edit steps, while negative ones reveal the opposite,
meaning more necessary edit steps. As can be seen, there are several
improvements, but also some deterioration. Nevertheless, the average value
is slightly positive, around 1, indicating a tendency.

Fig. 8.22 differentiates the results according to the different modes of the
workflow engine and shows the derived utility (utilitynon−conforming, see
Equation 8.3). Both null adaptation variants with either the SWA or DTW
yield overall high utility values around 0,5 and higher. The constraint-based
workflow engine and the generative adaptation mostly lead to a negative
utility value, which means both are tending to decrease the similarity value
or increase the edit distance slightly, resulting in an impairment of the
support for the non-conforming process participant, as the original trace is
more similar to the most similar valid workflow. Consequently, hypothesis
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Figure 8.21.: Improvement of the Edit Distance and Number of Executed Tasks
for the Non-Conforming Process Participant for Each Replay
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Figure 8.22.: Utility for the Non-Conforming Process Participant for Each
Replay for Different Modes of the Workflow Engine

H4 can be confirmed for both null adaptation methods, but is denied for the
constraint-based workflow engine and the generative adaptation. However,
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similar to the inexperienced process participant, hypothesis H5 can only
be partially confirmed for both null adaptation methods as they clearly
create high utility, whereas the generative adaptation is even worse than the
constraint-based workflow engine.

0,46

0,62

-0,39

0,54
0,59

-0,35

0,54

0,63

-0,33

-0,50

-0,40

-0,30

-0,20

-0,10

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

Null Adaptation with DTW Null Adaptation with SWA Generative Adaptation

10 % 50 % 90 %

𝑢
𝑡𝑖
𝑙𝑖
𝑡𝑦

𝑛
𝑜
𝑛
−
𝑐
𝑜
𝑛
𝑓
𝑜
𝑟
𝑚
𝑖𝑛
𝑔

Figure 8.23.: Average Utility for the Non-Conforming Process Participant for
Different Case-Based Modes of the Workflow Engine and Different
Sizes of the Case Base

Average utility values split up for different sizes of the case base and the
different modes of the workflow engine are presented in Fig. 8.23. Concerning
the null adaptation variant with DTW, an increase of 0,08 for the average
utility can be identified, when comparing a size of 10 and 50% of the case
base. The same direction holds for the generative adaptation. Nevertheless,
for the null adaptation with the SWA, the average utility value slightly
decreases by 0,03, but not significantly. Moreover, no impact of the sizes of
the case base of 50 and 90% is recognized. Consequently, the 50% increase
is worth it and can significantly improve the utility foremost for the null
adaptation with DTW, whereas 90% yields no significant improvement,
which confirms hypothesis H6 partially.

8.7. Conclusion of Evaluation
In summary, the results of the evaluation are promising, as all hypotheses
can be confirmed, some completely and others partially.
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Concerning utility of work items, the null adaptation with the SWA
achieved the best results and outperformed the three other methods for all
types of process participants. The null adaptation with DTW was slightly
but not significantly worse, which might result from the domain and be
different for other domains.
For both null adaptation methods, a 50% coverage of all valid traces

as case base is sufficient to lead to good results for a support for the
process participant through work items. 90% coverage yields no significant
improvement, but requires a much higher effort for knowledge acquisition,
e.g. time for learning new experiences in form of adding cases to the case
base.
An unexpected result of the experiment was the relatively poor per-

formance of the generative adaptation, as it originally was developed in
order to improve the null adaptation variants. Consequently, the generative
adaptation needs some major improvements to be of utility for the process
participant. On the one hand, the method requires a huge decrease of the
computation time to be applicable in practice. This bad performance mainly
stems from the multiple solving of CSPs, which has not been optimized
considering runtime. Hence, there is still potential, such that this is not a
valid criteria to abandon the proposed generative adaptation method.

On the other hand, a further in-depth analysis of the adaptation strategy is
necessary to achieve an improvement of utility, as results concerning proposed
work items get worse compared to the null adaptation, even though the same
retrieved cases are used.
One limitation of the experiment for the generative adaptation, which

can be used to explain the poor performance, is that only one retrieved
case with the highest similarity was reused. It is assumed that results will
improve when all cases with the highest similarity are adapted. Hence, all
single worklists that result from solving each of the adapted CSPs can be
combined. However, this will entail an increase of the computation time by
a multiple of the number of retrieved cases.

Nevertheless, when regarding the experienced process participant, results
are not bad. This indicates a broad mapping of possible work items. In
contrast, the similarity values of the trace replays from the simulated in-
experienced process participant are not high. Both results indicate a vast
variance of the work item proposals, which is confirmed when analysing
the size of the generated worklists. The generative adaptation produces a
higher number of work items, on average 8, compared to the constraint-based
workflow engine and both null adaptation variants, which compute two work
items on average.
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Taking a closer look at these work items, it can be observed that tasks
from workflow blocks which are positioned further away are allowed much
earlier than expected. The constraint-based adaptation method only includes
constraints that are related to the deviating task and constraints that are
related to those constraints. Transitive dependencies are not re-established
and the nested structure of the constraint formula is ignored. This results
in the disconnection of some relations and preconditions and, consequently,
in larger worklists with unexpected work items.
Future work should therefore focus on modifying constraints within the

formula and restoring transitive dependencies in order to remove those
undesired side effects. Hence, the concept of the constraint-based adaptation
should be more restrictive.





9. Conclusion
Most of the existing flexible workflow approaches either require comprising
knowledge about all possible execution paths at build time or demand a
remodelling at run time. When considering users without expert knowledge
concerning process management, both of these aspects are drawbacks and
impossible to handle. Nevertheless, the possibility of a flexible handling of
processes at run time in order to react to unpredictable circumstances or
customer needs is important, which holds foremost for all SMEs.

This thesis proposes a novel workflow approach for flexibility by deviation
that tries to overcome these disadvantages. The main objectives are allowing
flexible deviations at run time, while still offering continuous support for the
process participant without the need of a manual intervention.
This chapter summarizes the main contributions in Section 9.1 and pro-

poses research perspectives in Section 9.2.

9.1. Summary
Only few workflow approaches exist in research that implement flexibility by
deviation. The automated handling of deviations is rather limited, as either
knowledge needs to be modelled manually or process participants need to
actively intervene in order to achieve deviations, as described in Sections 5.6
and 6.6.

9.1.1. Contributions
The main contribution of this thesis is a novel concept for workflow flexibility
by deviation that consists of several artifacts and addresses the overall
research question RQ0 (see Section 1.2). The conducted research complies
with the design-science research methodology, as described in Section 1.3.
Rigor is ensured, as two renowned AI methods, Constraint Satisfaction
Problem (CSP) solving and Case-Based Reasoning (CBR), are applied as
theoretical foundation in the proposed concept.
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During the analysis phase, requirements for an approach that suits SMEs
best were identified. This includes foremost flexibility, knowledge transfer,
and low effort. Additionally, an analysis was made for the single artifacts
of the case-based deviation management, where requirements were derived
from the specific characteristics and needs of flexibility by deviation, defined
in Sections 6.4.1 and 6.5.

To meet these requirements, several artifacts were designed that incorpo-
rate specific features. One developed artifact is the constraint-based workflow
engine, which itself combines other artifacts. The constraint-based workflow
model, which is described in Sections 5.2 and 5.4, combines procedural and
declarative models that allow for an intuitive modelling without required
expert knowledge. Referring to research question RQ1.1 (see Section 1.2),
the model allows for deviations without leading to an exceptional state, as
declarative models implicitly offer flexibility and violated constraints can
simply be retracted in order to restore consistency.

An important contribution in this context is the transformation function,
defined in Subsection 5.4.2, that converts procedurally modelled workflows,
limited to block-oriented ones, into declarative formulae. This is a prerequi-
site for a combination of procedural and declarative models, and to allow for
an automated handling through a CSP. This transformation function, which
is applied to a block-oriented workflow in combination with additionally
specified constraints, gives an answer to the formulated research question
RQ1.2 (see Section 1.2), as the resulting combined constraint set is used as
input by the workflow engine.

On this basis, another artifact was developed. The workflow engine, which
is defined in Section 5.4, builds upon the established method of CSP solving
and exploits the sequential tracing of flexibility by deviation in combination
with the introduced constraint-based workflow model.

The transformation function represents a novel contribution in the field of
workflow management. Most of the related work that applies a constraint-
based approach and allows deviations utilize LTL and finite-state-automata
as theoretical foundation [136, 137]. Converting block-oriented workflows and
additional constraints to one overall constraint set and the CSP model, which
is constructed for the determination of work items, is a novel perspective in
workflow management and has not been considered in research so far.

On top of this workflow engine, deviation handling strategies are presented
in order to resolve occurring inconsistencies. This deviation management
presented in Section 5.5 solves research question RQ1.3 (see Section 1.2) to
a limited extent, as an intervention of the process participant is necessary.
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Therefore, the constraint-based workflow engine has been complemented
with a case-based deviation management to achieve improvements. For a
more sophisticated decision about handling deviations, experiential know-
ledge is integrated.
To identify reusable knowledge in form of similar previous workflow in-

stances, a similarity measure in two different forms has been developed,
which resolves research question RQ2.1 (see Section 1.2). For the compari-
son of workflows, several approaches, particularly based on graph matching,
exist in research. However, the workflow instances that need to be compared
in this scenario have a much simpler structure due to the sequential tracing
of task executions and therefore, resemble time series. Consequently, a
similarity measure based on sequence similarity has been designed, which
is presented in Section 6.4. This sophisticated comparison of sequentially
traced workflows, integrating specific characteristics of the approach of flexi-
bility by deviation through utilizing trace-based reasoning in combination
with a vector similarity measure for event sequences, constitutes a novel
contribution in the field of POCBR.

To exploit the retrieved cases, two adaptation methods have been designed
as artifacts that allow for a proposal of work items based on experiential
knowledge, addressing research question RQ2.2 (see Section 1.2). The
null adaptation, which is explained in Subsection 6.5.1, directly applies the
solution of the similar case in form of work items to the running workflow
instance, whereas the generative adaptation, which is specified in Subsection
6.5.2, combines both constraint nets, offering a consistent input for the
constraint-based workflow engine. The constraint-based adaptation was
assumed to achieve better results than the null adaptation, which proved to
be wrong. In order to achieve an improvement of the generative adaptation,
an in-depth analysis is necessary. However, some weaknesses and starting
points have already been identified. Nevertheless, both adaptation methods
allow for a continuous support of the process participant after a deviation
by providing a more informed decision than the constraint-based workflow
engine as such.

The combination of CSP solving and CBR is primarily applied in research
to the domain of product configuration. This integration of both methods
concerning the proposed generative adaptation represents a novel contribu-
tion in the context of POCBR as well as flexible workflow management.
So far, the developed artifacts have been evaluated in a simulated envi-

ronment and promising results could be achieved, as presented in Chapter 8.
The main object of investigation was the utility for the process participant,
which consists of the support of the workflow engine during workflow execu-



242 9. Conclusion

tion in form of proposed work items. In different scenarios, it was foremost
the null adaptation variant that proposes similar workflow execution paths
compared to synthetically generated terminated workflows, which represent
previously made experiences. However, the generative adaptation method
performed worse compared to the constraint-based workflow engine and
the null adaptation variants, demanding a redesign in order to improve its
utility.

9.1.2. Exemplary Use Cases
In Subsection 3.2.2, two exemplary use cases were sketched in combination
with the pursued concept. After presenting the proposed approach, these
use cases and how they are covered can be addressed directly.
The first use case described the skipping of tasks that were implicitly

handled due to the knowledge of the process participant. The explicit
task enactment traced by the system starts later than the workflow model
expects and proposes. Nevertheless, it is intended that the flexible workflow
system notices this deviation in form of skipped tasks and instead proposes
the subsequent tasks concerning the currently enacted one. The proposed
constraint-based workflow engine is capable to react and offer support
accordingly. With the enactment of the task, deviation resolving strategies
are triggered and the respective strategy that interprets this situation of
a task being executed too early as skipped previous tasks can be chosen,
which will suggest tasks that follow the deviating task in order to eliminate
the exception.
The second use case focuses on providing execution alternatives on the

basis of experiential knowledge. In this case, the process participant is
confronted with a deviation that consists of a task that is not included in the
workflow model. A traditional workflow system would cause an exception
and would stop providing support for the process participant. However,
in case this task is part of terminated workflows that have been enacted
previously, it is included as knowledge for the proposed case-based approach.
Nevertheless, work items can be suggested on this basis thereby reactivating
the support of the process participant.
Consequently, both exemplary use cases are addressed by the proposed

flexible workflow approach.
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9.2. Research Perspectives
The results of the evaluation revealed some shortcomings of the presented
artifacts. Some apparent potential improvements and promising evolutions
were simply out of the scope of this research work, but could be regarded in
future work. This concerns various aspects that are outlined in the following.

Case-Based Deviation Management

The case-based deviation management can be evolved and improved con-
cerning several characteristics.

Due to the bad results of the generative adaptation, this method needs a
major revision to be applicable and, in particular, to be useful in practice.
The constraint transfer needs to be integrated into the formula that is
generated by the transformation function in order to restore connections
between single workflow blocks that get lost through the constraint violations
occurring due to a deviation. To this end, an in-depth analysis is necessary.
A further promising improvement can be derived from the applied sim-

ilarity measure that applies the SWA. The alignment resulting from the
computation can be exploited to propose corrective measures, as it produces
edit steps. Deletion steps, which are part of the alignment, can deliver valu-
able information. For a simple example, consider these two execution paths
of query F (FQ) = 〈a, b, c, e, f〉 and retrieved case F (FC) = 〈a, b, c, f, e, g〉,
where f is the deviating task. If the tasks subsequent to the deviation are
proposed without adaptation, the task e might be executed redundantly,
as it is already part of the de facto workflow of the query. Therefore,
slight adjustments of the derived work items might be necessary in certain
circumstances.
In contrast, insertion steps can initiate to catch up on a skipped task in

the query that was executed in the similar case. Consider the two execution
paths of the query F (FQ) = 〈a, b, d〉 and case F (FC) = 〈a, b, c, d, e〉. In this
example, d constitutes the deviation. According to the case, e would be
suggested as next task for execution. An additional difference between the
two execution paths is the lack of task c in the query. It is possible that c
and e are interdependent and e requires a prior execution of c. Consequently,
in some cases it might be reasonable to first propose such tasks that are
part of insertion steps of the alignment. In the presented example, c could
be suggested as work item as well. However, these further proposals are not
based on experiential knowledge; they are simply proposed tasks that were
omitted in the query workflow, but occurred in the case workflow up to the
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deviation. The decision about when to suggest such tasks needs to base on
further knowledge, e.g. about dependencies of tasks and data.
Furthermore, in the described approach it is assumed that the case base

only consists of successfully terminated workflows that share the same
workflow model. But workflows that were terminated without success can
also deliver valuable information, as they prove how workflow instances should
not be executed. Instead the opposite should hold and thus, constraints can
be derived and transferred to the running workflow instance. Considering
workflow traces from other workflow models during workflow retrieval can
help in finding the correct model, if e.g. an inexperienced process participant
unintentionally chose the wrong model for instantiation. In such a case, the
instantiated workflow model could be exchanged and consistency could be
restored easily.

Another potential, which can be investigated in future work, is a possible
optimization of the worklist through using the proposed case-based methods
even if no deviation occurs, e.g. through a priorization and ranking of work
items. Potentially, deviations could even be triggered explicitly.

Extension of the Constraint-Based Model

The constraint-based model is substantial as input for the workflow engine.
Up to now, when regarding the transformation of a procedural workflow, it
focusses on the valid sequential order of tasks and only indirectly considers
dependencies that arise from data- and control-flow decisions. As the
data-flow indicates substantial preconditions and restrictions, it should be
integrated in the constraint-based approach more thoroughly. The remaining
workflow perspectives that have not been regarded in this thesis, namely
the organizational, operational and time perspective, could support this
integration. For instance resource constraints, which result from data input
and output relations, might have an extensive impact on valid task execution
sequences. For a holistic approach of focusing data-flow besides control-flow,
the case-based deviation management should integrate this perspective as
well by extending the similarity measure and the adaptation methods.

Furthermore, only five constraints from the DECLARE language can be
used as manually modelled constraints. This set of possible constraint types
can be extended by more complex constraints to provide a higher flexibility
during workflow modelling. Nevertheless, this needs to be analysed in more
detail and compatibility with the defined CSP algorithm needs to be checked.
The differentiation between mandatory and optional constraints should

be incorporated into the approach as well, in order to increase the flexibility
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of workflow modelling and to allow for diversification of possible reactions
to different types of constraint violations. This can involve a severity
specification, a warning message or even a proposed recovery measure.
Furthermore, this distinction of mandatory and optional constraints can be
integrated in the generative adaptation aiming at different transfer strategies
concerning this constraint property.

Holistic View of the Business Process Life Cycle

The remaining phases of the business process life cycle, which have not
been focussed in this work, should be elaborated in more detail. A mon-
itoring of running workflow instances should be provided to the process
engineer in order to analyse occurring deviations. To this end, a concise
and expressive visualization of workflow model and instance in contrast
depicting the deviations is required. In the prototypical implementation,
a rudimentary illustration is integrated, which needs further elaboration.
Existing approaches [49, 102] should be considered and analysed for their
suitability.

This monitoring view considers the online phase of workflow management,
whereas offline analysis of terminated workflows pursues an optimization of
the workflow model. Process mining techniques address this objective. Thus,
deviations that occur on a regular basis can be identified and, in case they
are valid, be integrated in the workflow model, such that they become part
of the work items. Moreover, additional information could be derived from
process mining to improve the workflow model, e.g. enhancing control-flow
decisions. Regarding a data perspective, the method of decision mining,
which derives decision relevant knowledge from historic process information,
seems promising. First results in this context [171] can be evolved and
further elaborated.

Combination with Document Management

In order to exploit the full potential of flexibility by deviation following the
approach of the SEMAFLEX project, an integration with methods from
document management could be beneficial. By automatically classifying
upcoming documents and, derived from that, reasoning about task executions,
deviations could be detected automatically. To this end, an integration of the
proposed flexible workflow approach with the work of Schwinn [170] could
be pursued. Additionally integrating methods from text mining, which could
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for instance analyse the contents of received mails, would further enhance
the approach.

Evaluation

Despite the promising results of the conducted technical experiment with
synthetically generated data and simulated process participants, the utility
in a real-world scenario still needs to be proven. This requires an elaborate
user study in a real-world environment. Furthermore, the experiment
solely handled the demonstration use case of deficiency management in
construction, such that a transferability to other domains needs further
investigation. A generally applicable approach should be pursued in future
work.

Concluding, the proposed approach addressing workflow flexibility by
deviation combines two renowned AI methods, and the currently designed
integration of a constraint-based workflow engine with a case-based deviation
management can be seen as a starting point for various optimizations and
enhancements in different directions and for specializations considering
manifold domains and types of process participants.



A. Proof of Trace Equivalence
As the function Dec(B, send) should express the same execution orders as
procedurally modelled block-oriented workflows, it should be proven that
resulting traces are equivalent. Hence, with a proof it will be verified that
for a block-oriented workflow B the execution path set F(B) cf. Def. 4.18
- 4.22 is equivalent to solutions sol(B) of CSPB = (S,D,Dec(C, send)) cf.
Def. 5.4 - 5.8.

Prior to the actual proof some necessary ancillary definitions and corollaries
are introduced.

Solution solm(B) to CSPB

A solution solm(B) to CSPB according to Def. 5.2 with C = Dec(B, send)
is an assignment of all variables S = {s1, . . . , sn, send}. Hereby [si]

sol and
[send]

sol denote the value of the variable assignments in solm(B) with
[si]

sol ∈ Di ⊆ N with Di ≥ |n+ 1|. sol(B) represents the set of all possible
solutions of the workflow block B.

Adapted Solution sol*

Any solution sol or a part of sol to CSPB as well as its domains Di ∈ D
can be “shifted” and still preserve validity and completeness in terms of
workflow execution. Constraints only express relations between variables
and these remain unchanged, when either the absolute distance of assigned
values is increased or all assigned values are increased by the same value. A
shift can be made through adding a constant value k ∈ N to all variables in
the solution or a subset of the solution, but this subset must not be arbitrary
but needs to fulfil a certain property. When adapting a solution through
such a “shift”, all domains Di are increased by this offset and enhanced with
k values. Furthermore, all variables, or variables that are assigned a value
over a certain threshold b are incremented by the constant k in order to
preserve the sequential relations. This adapted solution sol* is defined as
follows.
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Definition A.1 (Adapted CSPB*). Let solm(B) be a solution to CSPB =
(S,D,Dec(B, send)) with S = {s1, ..., sn, send} and Di = {d1, ..., dn, dn+1}.
Adapting sol with offset k ∈ N and threshold b ∈ N results in ex-
tended domains Di*= {d1, ..., dn, dn+1, ..., dn+k+1} and an adapted solution
solm*(B, b, k) for which holds ∀[si]sol with si ∈ S and [si]

sol ≥ b, k is added
to the former values of the solution assignments: [si]

sol*= [si]
sol + k.

For example, let solm(B) = ([s1]
sol = 0, [s2]

sol = 1, [s3]
sol = 2, [s4]

sol =
3) with Di = {0, 1, 2, 3}. If all values on and above the threshold b = 2
in this solution are shifted by the constant value k = 3, the adapted
solution solm*(B, 2, 3) = ([s1]

sol*= 0, [s2]
sol*= 1, [s3]

sol*= 5, [s4]
sol*= 6)

with Di*= {0, 1, 2, 3, 4, 5, 6} remains valid, as the relational ordering is left
untouched (cf. valid execution path in both cases F (B) = 〈s1, s2, s3, s4〉).

Considering Definitions 4.10, 5.1, 5.2, 5.3 and 5.4-5.8 three corollaries
can be derived.

Corollary A.1. Let B be a workflow block and sol a solution to CSPB. It
holds ∀s ∈ NS

B \ {first(B)} : [first(B)]sol < [s]sol.

Corollary A.2. Let B be a workflow block and sol a solution to CSPB. It
holds ∀s ∈ NS

B \ {last(B)} : [s]sol < [last(B)]sol ∨ [send]
sol < [s]sol.

Corollary A.3. Let B be a workflow block and sol a solution to not(B, send).
It holds ∀s ∈ NS

B : [send]
sol < [s]sol

To prove the trace equivalence of block-oriented workflows and the gener-
ated logical formula that is used by CSPB , the following theorem has to be
proven.

Theorem 1 (CSPB ⇐⇒ F(B)). Let B = (N,E) be a block-oriented
workflow with sequence nodes NS

B = {s1, . . . , sn}. Let M ⊆ N be a set of
natural numbers with |M | ≥ n+ 1.
solq(B) = (s1 = [s1]

sol, . . . , sn = [sn]
sol, send = [send]

sol) ∈ sol(B)
with ∀i ∈ {1, . . . , n} : Di(si) = M , i.e. is a solution to CSPB,
iff an execution path Fj(B) = 〈sj1 , . . . , sjk〉 ∈ F(B) exists, such that
(Condition 1)24 ∀l ∈ {1, . . . , k − 1} : [sjl ]sol < [sjl+1

]sol < [send]
sol∧

(Condition 2)25 ∀p ∈ {1, . . . , n} \ {j1, . . . , jk} : [sp]sol > [send]
sol.

To prove Theorem 1, the proof is divided into two parts. As X ⇔ Y
corresponds to X ⇒ Y ∧X ⇐ Y , these single implications are to be proven.
24Condition 1: The order of tasks match.
25Condition 2: Variables whose assigned values are higher than the value of send do not

occur in the execution path.
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Proof of Theorem 1

Due to the recursive structure of block oriented workflows, the proof will
be conducted by induction starting with the base case that B consists of
a single task. In the induction step, equality will be shown for all possible
remaining block elements according to Def. 4.5.

Part 1 (X ⇒ Y : ∀solq(B) ∈ sol(B)∃Fj(B) ∈ F(B)). Let B = (N,E) be
a block-oriented workflow with sequence nodes NS

B = {s1, . . . , sn}.
Let M ⊆ N be a set of natural numbers with |M | ≥ n+ 1.
Let solq(B) = (s1 = [s1]

sol, . . . , sn = [sn]
sol, send = [send]

sol) ∈ sol(B)
with ∀i ∈ {1, ..., n} : Di(si) = M , i.e. is a solution to CSPB.
Then, there exists an execution path Fj(B) = 〈sj1 , . . . , sjk〉 ∈ F(B) such that
(Condition 1) ∀l ∈ {1, . . . , k − 1} : [sjl ]sol < [sjl+1

]sol < [send]
sol∧

(Condition 2) ∀p ∈ {1, . . . , n} \ {j1, . . . , jk} : [sp]sol > [send]
sol.

Case 1: B = Bt. Let B be a single task, thus NS
B = {t}.

• According to Definition 5.4, Dec(Bt, send) = {t < send} and thus C =
{alldifferent({t, send})} ∪ {t < send}.

• For sol1(B) = ([t]sol = 1, [send]
sol = 2), it holds [t]sol < [send]

sol.

• Thus, sol1(B) ∈ sol(B).

• According to Definition 4.18, the only valid execution path for B = Bt is
F (B) = 〈t〉.

• Thus, conditions 1 and 2 hold.

Case 2: B = B(B1,B2). Let B be a sequence of two workflow blocks B1 with
|NS

B1
| = n1 and B2 with |NS

B2
| = n2.

• According to Definition 5.5, Dec(B, send) = Dec(B(B1,B2), send) =
{last(B1) < first(B2), Dec(B1, send), Dec(B2, send), last(B2) < send}.

• Let sol1(B) be a solution to CSPB with C = Dec(B, send)∪
{alldifferent(NS

B ∪ send)}.

• sol1(B) comprises a solution to CSPB1
and CSPB2

.
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• Due to the induction hypothesis, an execution path F (B1) = 〈sj1 , . . . , sjv 〉
∈ F(B1) exists, such that conditions 1 and 2 hold: ∀l ∈ {1, . . . , v −
1} : [sjl ]sol < [sjl+1

]sol < [send]
sol∧ and ∀p ∈ {1, . . . , n1} \ {j1, . . . , jv} :

[sp]
sol > [send]

sol.

• Accordingly, an execution path F (B2) = 〈sjv+1 , . . . , sjw〉 ∈ F(B2) exists,
such that conditions 1 and 2 hold: ∀l ∈ {v + 1, . . . , w − 1} : [sjl ]sol <
[sjl+1

]sol < [send]
sol and ∀p ∈ {1, . . . , n2} \ {jv+1, . . . , jw} : [sp]

sol >
[send]

sol.

• As last(B1) < first(B2) must be fulfilled, it follows [sjv ]sol < [sjv+1
]sol.

• As last(B2) < send holds, it follows [sjw ]sol < [send]
sol.

• Thus, the combined execution path is F (B) = 〈sj1 , . . . , sjw〉 = F (B1) ◦
F (B2) ∈ F(B) = F(B(B1,B2)).

• Then, condition 1 holds for the execution path F (B): ∀l ∈ {1, . . . , v−1} :
[sjl ]

sol < [sjl+1
]sol < [send]

sol.

• Further, condition 2: ∀p ∈ {1, . . . , n} \ {j1, . . . , jw} : [sp]sol > [send]
sol

holds for the combined execution path, as the condition holds for workflow
blocks B1 and B2 respectively.

Case 3: B = B
(B1,B2)
XOR . Let B be an exclusive control-flow block containing

two workflow blocks B1 with |NS
B1
| = n1 and B2 with |NS

B2
| = n2.

• According to Definition 5.6, Dec(B, send) = Dec(B
(B1,B2)
XOR , send) =

{((cs < first(B1)∧last(B1) < cj∧Dec(B1, send)∧not(B2, send))∨(cs <
first(B2) ∧ last(B2) < cj ∧Dec(B2, send) ∧ not(B1, send))), cj < send}.

• Let sol1(B) be a solution to CSPB with C = Dec(B, send)∪
{alldifferent(NS

B ∪ send)}.

• Dec(B, send) can be split up into two cases. Thus, it holds either
(i) {cs < first(B1), last(B1) < cj,Dec(B1, send), not(B2, send), cj <

send}, or it holds
(ii) {cs < first(B2), last(B2) < cj,Dec(B2, send), not(B1, send), cj <

send},
but never both.
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• For case (i):
a) sol1(B) is a solution to (i).
b) Thus, sol1(B) fulfils all constraints of Dec(B1, send) and comprises

a solution to B1.
c) Due to the induction hypothesis, an execution path F (B1) =
〈sj1 , . . . , sjv 〉 ∈ F(B1) exists, such that conditions 1 and 2 hold:
∀l ∈ {1, . . . , v − 1} : [sjl ]

sol < [sjl+1
]sol < [send]

sol and ∀p ∈
{1, . . . , n1} \ {j1, . . . , jv} : [sp]sol > [send]

sol.
d) As cs < first(B1) must be fulfilled, it follows [cs]sol < [sj1 ]

sol.
e) As last(B1) < cj must be fulfilled, it follows [sjv ]sol < [cj]sol.
f) As cj < send holds, it follows [cj]sol < [send]

sol.
g) As not(B2, send) must be fulfilled and according to Cor. A.3 it holds,

that ∀s ∈ NS
B2

: [send]
sol < [s]sol.

h) Thus, B2 is not part of the execution path.
i) Thus, the combined execution path is F (B) = 〈cs, sj1 , . . . , sjv , cj〉 =
〈cs〉 ◦ F (B1) ◦ 〈cj〉.

j) Considering d)-f) and that condition 1 is valid for F (B1), condition 1
holds as well for the combined execution path F (B).

k) Further, condition 2 holds for the combined execution path F (B),
as condition 2 holds for the execution path F (B1) and due to g):
∀s ∈ NS

B \ {cs, cj, sj1 , . . . , sjv} : [s]sol > [send]
sol.

• For case (ii) the argumentation is analogously to case (i) with B1 and B2

switched.

Case 4: B = B
(B1,B2)
AND . Let B be a parallel control-flow block containing two

workflow blocks B1 with |NS
B1
| = n1 and B2 with |NS

B2
| = n2.

• According to Definition 5.7, Dec(B, send) = Dec(B
(B1,B2)
AND , send) = {cs <

first(B1), last(B1) < cj,Dec(B1, send), cs < first(B2), last(B2) <
cj,Dec(B2, send), cj < send}.

• Let sol1(B) be a solution to CSPB with C = Dec(B, send)∪
{alldifferent(NS

B ∪ send)}.

• sol1(B) comprises a solution to CSPB1
and CSPB2

.
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• Due to the induction hypothesis, an execution path F (B1) = 〈sj1 , . . . , sjv 〉
∈ F(B1) exists, such that conditions 1 and 2 hold: ∀l ∈ {1, . . . , v −
1} : [sjl ]sol < [sjl+1

]sol < [send]
sol∧ and ∀p ∈ {1, . . . , n1} \ {j1, . . . , jv} :

[sp]
sol > [send]

sol.

• Accordingly, an execution path F (B2) = 〈sjv+1 , . . . , sjw〉 ∈ F(B2) exists,
such that conditions 1 and 2 hold: ∀l ∈ {v + 1, . . . , w − 1} : [sjl ]sol <
[sjl+1

]sol < [send]
sol∧ and ∀p ∈ {1, . . . , n2} \ {jv+1, . . . , jw} : [sp]

sol >
[send]

sol.

• As {cs < first(B1), last(B1) < cj} must be fulfilled, it follows [cs]sol <
[sj1 ]

sol and [sjv ]
sol < [cj]sol.

• As {cs < first(B2), last(B2) < cj} must be fulfilled, it follows [cs]sol <
[sjv+1

]sol and [sjw ]
sol < [cj]sol.

• As cj < send holds, it follows [cj]sol < [send]
sol.

• Thus, the combined execution path is F (B) = 〈cs, s1, . . . , sk, cj〉 with
∀i ∈ {1, . . . , k} : si ∈ F (B1) ∨ si ∈ F (B2).

• It follows 〈s1, . . . , sk〉 ∈ F (B1) ./ F (B2).

• By induction hypothesis holds F (B1) ∈ F(B1) and F (B2) ∈ F(B2), thus,
F (B) ∈ {〈cs〉} � F(B1)|F(B2)� {〈cj〉}.

• Then, condition 1 holds for the execution path F (B): ∀l ∈ {1, . . . , k−1} :
[sl]

sol < [sl+1]
sol < [send]

sol.

• Further, condition 2: ∀p ∈ {1, . . . , n} \ {j1, . . . , jw} : [sp]sol > [send]
sol

holds for the combined execution path, as the condition holds for workflow
blocks B1 and B2 respectively.

Case 5: B = BB1

XOR. Let B be a single-branch exclusive control-flow block
containing one workflow block B1 with |NS

B1
| = n1.

• According to Definition 5.8, Dec(B, send) = Dec(B
(B1)
XOR, send) =

{((cs < cj ∧ not(B1, send)) ∨ (cs < first(B1) ∧ last(B1) < cj ∧
Dec(B1, send))), cj < send}.

• Let sol1(B) be a solution to CSPB with C = Dec(B, send)∪
{alldifferent(NS

B ∪ send)}.
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• Dec(B, send) can be split up into two cases. Thus, it holds either
(i) {cs < cj, not(B1, send), cj < send}, or it holds
(ii) {cs < first(B1), last(B1) < cj,Dec(B1, send), cj < send}.

but never both.

• For case (i):
a) As cs < cj must be fulfilled, it follows [cs]sol < [cj]sol.
b) As cj < send must be fulfilled, it follows [cj]sol < [send]

sol.
c) Thus, the execution path is F (B) = 〈cs, cj〉.
d) Condition 1 holds for F (B), as [cs]sol < [cj]sol < [send]

sol.
e) As not(B1, send) must be fulfilled and according to Cor. A.3 it holds,

that ∀s ∈ NS
B1

: [send]
sol < [s]sol. Thus, condition 2 is fulfilled for

F (B).

• For case (ii):
a) sol1(B) is a solution to (i).
b) Thus, sol1(B) fulfils all constraints of Dec(B1, send) and comprises

a solution to B1.
c) Due to the induction hypothesis, an execution path F (B1) =
〈sj1 , . . . , sjv 〉 ∈ F(B1) exists, such that conditions 1 and 2 hold:
∀l ∈ {1, . . . , v − 1} : [sjl ]

sol < [sjl+1
]sol < [send]

sol∧ and ∀p ∈
{1, . . . , n1} \ {j1, . . . , jv} : [sp]sol > [send]

sol.
d) As cs < first(B1) must be fulfilled, it follows [cs]sol < [sj1 ]

sol.
e) As last(B1) < cj must be fulfilled, it follows [sjv ]sol < [cj]sol.
f) As cj < send holds, it follows [cj]sol < [send]

sol.
g) Thus, the combined execution path is F (B) = 〈cs, sj1 , . . . , sjv , cj〉 =
〈cs〉 ◦ F (B1) ◦ 〈cj〉.

h) Considering d)-f) and that condition 1 is valid for F (B1), condition 1
holds as well for the combined execution path F (B).

i) Further, condition 2 holds for the combined execution path F (B),
as condition 2 holds for the execution path F (B1) and B contains
no more sequence nodes other than cs, cj which are part of F (B):
NS

B \ (NS
B1
∪ {cs, cj}) = ∅.
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Part 2 (Y ⇒ X : ∀Fj(B) ∈ F(B)∃solq(B) ∈ sol(B)). Let B = (N,E) be
a block-oriented workflow with sequence nodes NS

B = {s1, . . . , sn}.
Let M ⊆ N be a set of natural numbers with |M | ≥ n+ 1.
Let Fj(B) = 〈sj1 , . . . , sjk〉 ∈ F(B) be a valid execution path.
Then, there exists a solution solq(B) = (s1 = [s1]

sol, . . . , sn = [sn]
sol, send =

[send]
sol) ∈ sol(B)

with ∀i ∈ {1, . . . , n} : Di(si) = M to CSPB such that
(Condition 1) ∀l ∈ {1, . . . , k − 1} : [sjl ]sol < [sjl+1

]sol < [send]
sol∧

(Condition 2) ∀p ∈ {1, . . . , n} \ {j1, . . . , jk} : [sp]sol > [send]
sol.

Case 1: B = Bt. Let B be single task, thus NS
B = {t}.

• Let F (B) ∈ F(B), then F (B) = 〈t〉, according to Definition 4.18.

• According to Definition 5.4, Dec(Bt, send) = {t < send}.

• Thus, [t]sol = a and [send]
sol = a+ b with a, b ∈ N, M = {a, a+ b} and

|M | = 2 is a solution to CSPB .

• Therefore, conditions 1 and 2 hold.

Case 2: B = B(B1,B2). Let B be a sequence of two workflow blocks B1 with
|NS

B1
| = n1 and B2 with |NS

B2
| = n2.

• Let F (B) ∈ F(B) := F(B1)�F(B2), then F (B) = F (B1) ◦ F (B2) with
F (B1) ∈ F(B1) and F (B2) ∈ F(B2), according to Definition 4.19.

• Let F (B1) = 〈sB1
1 , . . . , sB1

q 〉 and F (B2) = 〈sB2
1 , . . . , sB2

r 〉 and thus,
F (B) = 〈sB1

1 , . . . , sB1
q , sB2

1 , . . . , sB2
r 〉.

• Due to the induction hypothesis, there exists a solution sol1(B1) =
([sB1

1 ]sol = aB1
1 , . . . , [sB1

q ]sol = aB1
q , [sB1

end]
sol = aB1

end, [s
B1
q+2]

sol = aB1
q+2, . . . ,

[sB1
n1

]sol = aB1
n1

) to CSPB1
with M1 = {aB1

1 , . . . , aB1
n1
} ⊆ N, such that

conditions 1 and 2 hold, as ∀l ∈ {1, . . . , q − 1} : al < al+1 < aend and
∀p ∈ {1, . . . , n1} \ {1, . . . , q} : ap > aend.

• Accordingly, a solution sol2(B2) = ([sB2
1 ]sol = aB2

1 , . . . , [sB2
r ]sol =

aB2
r , [sB2

end]
sol = aB2

end, [s
B2
r+2]

sol = aB2
r+2, . . . , [s

B2
n2

]sol = aB2
n2

) to CSPB2

with M2 = {aB2
1 , . . . , aB2

n2
} ⊆ N exists, such that conditions 1 and 2 hold,

as ∀l ∈ {1, . . . , r−1} : al < al+1 < aend and ∀p ∈ {1, . . . , n2}\{1, . . . , r} :
ap > aend.
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• In order to create a combined solution sol(B) for the overall execution
path F (B) that fulfils the necessary conditions and constraints, several
shifts of the single solutions for B1 and B2 are required.

• sol2(B2) is shifted by an offset k1 = [sB1
q ]sol and threshold b1 = [sB2

1 ],
such that all contained elements of path F (B2) are assigned higher values
than the elements of F (B1) in the solution.
This results in an adapted solution
sol2*(B2, b1, k1) =sol2*(B2, [s

B2
1 ], [sB1

q ]sol) =

([sB2
1 ]sol∗ = aB2

1 + [sB1
q ]sol, . . . , [sB2

r ]sol∗ = aB2
r + [sB1

q ]sol,

[sB2

end]
sol∗ = aB2

end + [sB1
q ]sol, [sB2

r+2]
sol∗ = aB2

r+2 + [sB1
q ]sol, . . . ,

[sB2
n2

]sol∗ = aB2
n2

+ [sB1
q ]sol)

to CSPB2
with M2*= {aB2

1 , . . . , aB2
n2

, . . . , aB2
n2

+ [sB1
q ]sol} ⊆ N, such that

condition 1 can be adhered to, when combining single solutions of B1

and B2.

• sol1(B1) is shifted by an offset k2 = [sB2
n2

]sol + [sB1
q ]sol and threshold

b2 = [sB1
q+2]

sol, such that all elements of B1 not contained in the execution
path F (B1) are assigned higher values of all elements of B2.
This results in an adapted solution
sol1*(B1, b2, k2) =sol1*(B1, [s

B1
q+2]

sol, [sB2
n2

]sol + [sB1
q ]sol) =

([sB1
1 ]sol∗ = aB1

1 , . . . , [sB1
q ]sol∗ = aB1

q , [sB1

end]
sol∗ = aB1

end,

[sB1
q+2]

sol∗ = aB1
q+2 + [sB2

n2
]sol + [sB1

q ]sol, . . . ,

[sB1
n1

]sol∗ = aB1
n1

+ [sB2
n2

]sol + [sB1
q ]sol)

to CSPB1
with M1*= {aB1

1 , . . . , aB1
n1

, . . . , aB1
n1

+ [sB2
n2

]sol + [sB1
q ]sol} ⊆ N,

such that alldifferent(NS
B1
∪NS

B2
) holds.

• In the combined solution only one variable is necessary, that marks the
end of the de facto workflow. Thus, sB1

end is ignored.

• The overall solution sol0(B) is constructed by
sol0(B)=(sol1*(B1, b2, k2) \ {[sB1

end]
sol∗})∪ sol2*(B2, b1, k1) =

([sB1
1 ]sol∗ = aB1

1 , . . . , [sB1
q ]sol∗ = aB1

q , [sB2
1 ]sol∗ = aB2

1 + [sB1
q ]sol, . . . ,

[sB2
r ]sol∗ = aB2

r + [sB1
q ]sol, [sB2

end]
sol∗ = aB2

end + [sB1
q ]sol,

[sB2
r+2]

sol∗ = aB2
r+2 + [sB1

q ]sol, . . . , [sB2
n2

]sol∗ = aB2
n2

+ [sB1
q ]sol,

[sB1
q+2]

sol∗ = aB1
q+2 + [sB2

n2
]sol + [sB1

q ]sol, . . . ,

[sB1
n1

]sol∗ = aB1
n1

+ [sB2
n2

]sol + [sB1
q ]sol)

to CSPB with M = M1*∪M2*= {aB2
1 , . . . , aB2

n2
, . . . , aB2

n2
+ [sB1

q ]sol,
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aB1
1 , . . . , aB1

n1
, . . . , aB1

n1
+ [sB2

n2
]sol + [sB1

q ]sol} ⊆ N such that conditions 1
and 2 hold.

Case 3: B = B
(B1,B2)
XOR . Let B be an exclusive control-flow block containing

two workflow blocks B1 with |NS
B1
| = n1 and B2 with |NS

B2
| = n2.

• Let F (B) ∈ F(B) := {〈cs〉} �F(B1)� {〈cj〉} ∪ {〈cs〉} �F(B2)� {〈cj〉}
according to Definition 4.20, then either

(i) F (B) = 〈cs〉 ◦ F (B1) ◦ 〈cj〉 or
(ii) F (B) = 〈cs〉 ◦ F (B2) ◦ 〈cj〉

with F (B1) ∈ F(B1) and F (B2) ∈ F(B2) but never both.

• Let F (B1) = 〈sB1
1 , . . . , sB1

q 〉 and F (B2) = 〈sB2
1 , . . . , sB2

r 〉.

• Due to the induction hypothesis, there exists a solution sol1(B1) =
([sB1

1 ]sol = aB1
1 , . . . , [sB1

q ]sol = aB1
q , [sB1

end]
sol = aB1

end, [s
B1
q+2]

sol = aB1
q+2, . . . ,

[sB1
n1

]sol = aB1
n1

) to CSPB1
with M1 = {aB1

1 , . . . , aB1
n1
} ⊆ N, such that

conditions 1 and 2 hold, as ∀l ∈ {1, . . . , q − 1} : al < al+1 < aend and
∀p ∈ {1, . . . , n1} \ {1, . . . , q} : ap > aend.

• Accordingly, a solution sol2(B2) = ([sB2
1 ]sol = aB2

1 , . . . , [sB2
r ]sol =

aB2
r , [sB2

end]
sol = aB2

end, [s
B2
r+2]

sol = aB2
r+2, . . . , [s

B2
n2

]sol = aB2
n2

) to CSPB2

with M2 = {aB2
1 , . . . , aB2

n2
} ⊆ N exists, such that conditions 1 and 2 hold,

as ∀l ∈ {1, . . . , r−1} : al < al+1 < aend and ∀p ∈ {1, . . . , n2}\{1, . . . , r} :
ap > aend.

• For case (i):
a) The combined execution path is: F (B) = 〈cs, sB1

1 , . . . , sB1
q , cj〉.

b) In order to create a combined solution sol(B) for the overall execution
path F (B) that fulfils the necessary conditions and constraints, several
shifts of the single solutions for B1 and B2 are required.

c) sol1(B1) is shifted by an offset k1 = 1 and threshold b1 = [sB1
1 ]sol,

such that cs can be assigned the value 1 in the combined solution
and all values of the elements of B1 are higher than this value.
This results in an adapted solution
sol1*(B1, b1, k1) =sol1*(B1, [s

B1
1 ]sol, 1) =

([sB1
1 ]sol∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗ = aB1

q + 1,

[sB1

end]
sol∗ = aB1

end + 1, [sB1
q+2]

sol∗ = aB1
q+2 + 1, . . . , [sB1

n1
]sol∗ = aB1

n1
+ 1)

to CSPB1
with M1*= {aB1

1 , . . . , aB1
n1

+ 1} ⊆ N.
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d) sol1*(B1, b1, k1) is again shifted by an offset k2 = 1 and threshold
b2 = [sB1

end]
sol∗, such that cj can be assigned the value [sB1

q ]sol∗ +1 in
the combined solution and the values of all elements that are not part
of F (B1) are increased by one to ensure the alldifferent constraint.
This results in an adapted solution
sol1**(B1, b2, k2) =sol1**(B1, [s

B1

end]
sol∗, 1) =

([sB1
1 ]sol∗∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗∗ = aB1

q + 1,

[sB1

end]
sol∗∗ = aB1

end+2, [sB1
q+2]

sol∗∗ = aB1
q+2+2, . . . , [sB1

n1
]sol∗∗ = aB1

n1
+2)

to CSPB1
with M1**= {aB1

1 , . . . , aB1
n1

+ 2} ⊆ N.
e) sol2(B2) is shifted by an offset k3 = [sB1

n1
]sol∗∗ and threshold b3 =

[sB2
1 ], such that all elements of B2 are assigned higher values than

the elements of B1.
This results in an adapted solution
sol2*(B2, b3, k3) =sol2*(B2, [s

B2
1 ], [sB1

n1
]sol∗∗) =

([sB2
1 ]sol∗ = aB2

1 + [sB1
n1

]sol∗∗, . . . , [sB2
r ]sol∗ = aB2

r + [sB1
n1

]sol∗∗,

[sB2

end]
sol∗ = aB2

end + [sB1
n1

]sol∗∗, [sB2
r+2]

sol∗ = aB2
r+2 + [sB1

n1
]sol∗∗, . . . ,

[sB2
n2

]sol∗ = aB2
n2

+ [sB1
n1

]sol∗∗)

to CSPB2 with M2*= {aB2
1 , . . . , aB2

n2
+ [sB1

n1
]sol∗∗} ⊆ N.

f) In the combined solution only one variable is necessary, that marks
the end of the de facto workflow. Thus, sB2

end is ignored and sB1

end

marks the end of the workflow.
g) The overall solution sol0(B) is constructed by

sol0(B) =sol1**(B1, b2, k2) ∪ (sol2*(B2, b3, k3) \ {[sB2

end]
sol∗})∪

{[cs]sol = 1, [cj]sol = [sB1
q ]sol + 2} =

([cs]sol = 1, [sB1
1 ]sol∗∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗∗ = aB1

q + 1,

[cj]sol = [sB1
q ]sol+2, [sB1

end]
sol∗∗ = aB1

end+2, [sB1
q+2]

sol∗∗ = aB1
q+2+2, . . . ,

[sB1
n1

]sol∗∗ = aB1
n1

+ 2, [sB2
1 ]sol∗ = aB2

1 + [sB1
n1

]sol∗∗, . . . ,

[sB2
r ]sol∗ = aB2

r + [sB1
n1

]sol∗∗, [sB2
r+2]

sol∗ = aB2
r+2 + [sB1

n1
]sol∗∗, . . . ,

[sB2
n2

]sol∗ = aB2
n2

+ [sB1
n1

]sol∗∗)

to CSPB with M = M1**∪M2*∪{1} = {1, aB1
1 , . . . , aB1

n1
+2, aB2

1 , . . . ,
aB2
n2

+ [sB1
n1

]sol∗∗} ⊆ N such that conditions 1 and 2 hold.

• For case (ii) the argumentation is analogously to case (i) with B1 and B2

switched.

Case 4: B = B
(B1,B2)
AND . Let B be a parallel control-flow block containing two

workflow blocks B1 with |NS
B1
| = n1 and B2 with |NS

B2
| = n2.
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• Let F (B) ∈ F(B) := {〈cs〉} � F(B1)|F(B2) � {〈cj〉}, then F (B) ∈
{cs}�F (B1) ./ F (B2)�{cj} with F (B1) ∈ F(B1) and F (B2) ∈ F(B2),
according to Definition 4.21.

• Let F (B1) = 〈sB1
1 , . . . , sB1

q 〉 and F (B2) = 〈sB2
1 , . . . , sB2

r 〉.

• Due to the induction hypothesis, there exists a solution sol1(B1) =
([sB1

1 ]sol = aB1
1 , . . . , [sB1

q ]sol = aB1
q , [sB1

end]
sol = aB1

end, [s
B1
q+2]

sol = aB1
q+2, . . . ,

[sB1
n1

]sol = aB1
n1

) to CSPB1
with M1 = {aB1

1 , . . . , aB1
n1
} ⊆ N, such that

conditions 1 and 2 hold, as ∀l ∈ {1, . . . , q − 1} : al < al+1 < aend and
∀p ∈ {1, . . . , n1} \ {1, . . . , q} : ap > aend.

• Accordingly, a solution sol2(B2) = ([sB2
1 ]sol = aB2

1 , . . . , [sB2
r ]sol =

aB2
r , [sB2

end]
sol = aB2

end, [s
B2
r+2]

sol = aB2
r+2, . . . , [s

B2
n2

]sol = aB2
n2

) to CSPB2

with M2 = {aB2
1 , . . . , aB2

n2
} ⊆ N exists, such that conditions 1 and 2 hold,

as ∀l ∈ {1, . . . , r−1} : al < al+1 < aend and ∀p ∈ {1, . . . , n2}\{1, . . . , r} :
ap > aend.

• In order to create a combined solution sol(B) for the overall execution
path F (B) that fulfils the necessary conditions and constraints, several
shifts of the single solutions for B1 and B2 are required.

• One shift of both sol1(B1) and sol2(B2) is necessary, such that cs can
be assigned the value 1 in the combined solution and all values of the
elements of B1 and B2 are higher than this value.
a) sol1(B1) is shifted by an offset k1 = 1 and threshold b1 = [sB1

1 ]sol,
which results in an adapted solution
sol1*(B1, b1, k1) =sol1*(B1, [s

B1
1 ]sol, 1) =

([sB1
1 ]sol∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗ = aB1

q + 1,

[sB1

end]
sol∗ = aB1

end + 1, [sB1
q+2]

sol∗ = aB1
q+2 + 1, . . . ,

[sB1
n1

]sol∗ = aB1
n1

+ 1)

to CSPB1 with M1*= {aB1
1 , . . . , aB1

n1
+ 1} ⊆ N.

b) Analogously, sol2(B2) is shifted by an offset k2 = 1 and threshold
b2 = [sB2

1 ]sol, which results in an adapted solution
sol2*(B2, b2, k2) =sol2*(B2, [s

B2
1 ]sol, 1) =

([sB2
1 ]sol∗ = aB2

1 + 1, . . . , [sB2
r ]sol∗ = aB2

r + 1,
[sB2

end]
sol∗ = aB2

end + 1, [sB2
r+2]

sol∗ = aB2
r+2 + 1, . . . ,

[sB2
n2

]sol∗ = aB2
n2

+ 1)

to CSPB2 with M2*= {aB2
1 , . . . , aB2

n2
+ 1} ⊆ N.
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• According to Def. 4.14 F (B1) ./ F (B2) is resolved to either
(i) {first(B1) ◦ rest1|rest1 ∈ (F (B1) \ first(B1) ./ F (B2))} or
(ii) {first(B2) ◦ rest2|rest2 ∈ (F (B1) ./ F (B2) \ first(B2))}.

• For case (i):
a) sol2*(B2) is shifted by an offset k3 = [first(B1)]

sol∗ and threshold
b3 = [first(B2)]

sol∗, such that all elements of B2 and all elements of
B1 except the first in F (B1) are assigned higher values than the first
element of F (B1).
This results in an adapted solution
sol2**(B2, b3, k3) =sol2**(B2, [first(B2)]

sol∗, [first(B1)]
sol∗) =

([sB2
1 ]sol∗∗ = aB2

1 + 1 + [first(B1)]
sol∗, . . . ,

[sB2
r ]sol∗∗ = aB2

r + 1 + [first(B1)]
sol∗,

[sB2

end]
sol∗∗ = aB2

end + 1 + [first(B1)]
sol∗,

[sB2
r+2]

sol∗∗ = aB2
r+2 + 1 + [first(B1)]

sol∗, . . . ,
[sB2

n2
]sol∗∗ = aB2

n2
+ 1 + [first(B1)]

sol∗)

to CSPB2
with M2**= {aB2

1 , . . . , aB2
n2

+1, aB2
n2

+1+[first(B1)]
sol∗} ⊆

N.

• For case (ii) the shift is done analogously to case (i) with B1 and B2

switched.

• These shifts for either case (i) or (ii) are repeated with (i) F (B1) \
first(B1) ./ F (B2) or (ii) F (B1) ./ F (B2)\first(B2) until rest1, rest2 =
∅, such that all elements of F (B1) and F (B2) are assigned ascend-
ing and distinct values in the combined solution, resulting in solutions
sol+

1 (B1, b
+
1 , k

+
1 ) to CSPB1

with M+
1 and sol+

2 (B2, b
+
2 , k

+
2 ) to CSPB2

with M+
2 .

• Then, one partial shift of both sol+
1 (B1) and sol+

2 (B2) is necessary,
such that [cj]sol = [sB1

end]
sol+ + [sB2

end]
sol+ in the combined solution and to

ensure the alldifferent constraint:

a) sol+
1 (B1, b

+
1 , k

+
1 ) is shifted by an offset k4 = 1 and threshold b4 =

[sB1

end]
sol+, such that all elements that are not part of F (B1) are

assigned higher values than cj.
This results in an adapted solution
sol++

1 (B1, b4, k4) =sol++
1 (B1, [s

B1

end]
sol+, 1) =

([sB1
1 ]sol++ = [sB1

1 ]sol+, . . . , [sB1
q ]sol++ = [sB1

q ]sol+,

[sB1

end]
sol++ = [sB1

end]
sol+ + 1, [sB1

q+2]
sol++ = [sB1

q+2]
sol+ + 1, . . . ,
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[sB1
n1

]sol++ = [sB1
n1

]sol+ + 1)

to CSPB1 with M++
1 = {aB1

1 , . . . , [sB1
n1

]sol+ + 1} ⊆ N.

b) Analogously, sol+
2 (B2, b

+
2 , k

+
2 ) is shifted by an offset k5 = 1 and

threshold b5 = [sB2

end]
sol+, such that all elements that are not part of

F (B2) are assigned higher values than cj.
This results in an adapted solution
sol++

2 (B2, b5, k5) =sol++
2 (B2, [s

B2

end]
sol+, 1) =

([sB2
1 ]sol++ = [sB2

1 ]sol+, . . . , [sB2
r ]sol++ = [sB2

r ]sol+,
[sB2

end]
sol++ = [sB2

end]
sol+ + 1, [sB2

r+2]
sol++ = [sB2

r+2]
sol+ + 1, . . . ,

[sB2
n2

]sol++ = [sB2
n2

]sol+ + 1)

to CSPB2 with M++
2 = {aB2

1 , . . . , [sB2
n2

]sol+ + 1} ⊆ N.

• Lastly, solution sol++
2 (B2, b5, k5) is shifted by an offset k6 = [sB1

n1
]sol++

and threshold b6 = [sB2

end]
sol++, such that all elements of B2 that are

not part of F (B2) are assigned higher values than the elements of B1 to
ensure the alldifferent constraint.
This results in an adapted solution
sol+++

2 (B2, b6, k6) =sol+++
2 (B2, [s

B2

end]
sol++, [sB1

n1
]sol++) =

([sB2
1 ]sol+++ = [sB2

1 ]sol+, . . . , [sB2
r ]sol+++ = [sB2

r ]sol+, [sB2

end]
sol+++ =

[sB2

end]
sol++1+[sB1

n1
]sol++, [sB2

r+2]
sol+++ = [sB2

r+2]
sol++1+[sB1

n1
]sol++, . . . ,

[sB2
n2

]sol+++ = [sB2
n2

]sol+ + 1 + [sB1
n1

]sol++)

to CSPB2
with M+++

2 = {aB2
1 , . . . , [sB2

n2
]sol+ + 1 + [sB1

n1
]sol++} ⊆ N.

• In the combined solution only one variable is necessary, that marks the
end of the de facto workflow. Thus, sB2

end is ignored and sB1

end marks the
end of the workflow.

• The combined solution sol0(B) is constructed by
sol0(B) =sol++

1 (B1, b4, k4) ∪ (sol+++
2 (B2, b6, k6) \ {[sB2

end]
sol+++})∪

{[cs]sol = 1, [cj]sol = [sB1

end]
sol+ + [sB2

end]
sol+}

to CSPB with M = M++
1 ∪M+++

2 ∪ {1} =
{1, aB1

1 , . . . , [sB1
n1

]sol+ + 1, aB2
1 , . . . , [sB2

n2
]sol+ + 1 + [sB1

n1
]sol++} ⊆ N such

that conditions 1 and 2 hold.

Case 5: B = BB1

XOR. Let B be a single-branch exclusive control-flow block
containing one workflow block B1 with |NS

B1
| = n1.

• Let F (B) ∈ F(B) := {〈cs, cj〉} ∪ {〈cs〉} � F(B1)� {〈cj〉}, then either
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(i) F (B) = 〈cs〉 ◦ 〈cj〉 or
(ii) F (B) = 〈cs〉 ◦ F (B1) ◦ 〈cj〉

with F (B1) ∈ F(B1) but never both, according to Definition 4.22.

• Let F (B1) = 〈sB1
1 , . . . , sB1

q 〉.

• Due to the induction hypothesis, there exists a solution sol1(B1) =
([sB1

1 ]sol = aB1
1 , . . . , [sB1

q ]sol = aB1
q , [sB1

end]
sol = aB1

end, [s
B1
q+2]

sol = aB1
q+2, . . . ,

[sB1
n1

]sol = aB1
n1

) to CSPB1
with M1 = {aB1

1 , . . . , aB1
n1
} ⊆ N, such that

conditions 1 and 2 hold, as ∀l ∈ {1, . . . , q − 1} : al < al+1 < aend and
∀p ∈ {1, . . . , n1} \ {1, . . . , q} : ap > aend.

• For case (i):
a) The combined execution path is: F (B) = 〈cs, cj〉.
b) To fulfil the necessary conditions, the solution sol(B1) is shifted.
c) sol1(B1) is shifted by an offset k1 = 3 and threshold b1 = [sB1

1 ]sol,
such that all elements of B1 are assigned higher values than cj.
This results in an adapted solution
sol1*(B1, b1, k1) =sol1*(B1, [s

B1
1 ]sol, 3) =

([sB1
1 ]sol∗ = aB1

1 + 3, . . . , [sB1
q ]sol∗ = aB1

q + 3,

[sB1

end]
sol∗ = aB1

end + 3, [sB1
q+2]

sol∗ = aB1
q+2 + 3, . . . , [sB1

n1
]sol∗ = aB1

n1
+ 3)

to CSPB1
with M1*= {aB1

1 , . . . , aB1
n1

+ 3} ⊆ N.
d) For the combined solution, a new variable send is introduced that

marks the end of the workflow instance, whereas sB1

end is ignored.
e) The overall solution sol0(B) is constructed by

sol0(B) =(sol1*(B1, b1, k1) \ {[sB2

end]
sol∗}) ∪ {[cs]sol = 1, [cj]sol =

2, [send]
sol = 3} =

([cs]sol = 1, [cj]sol = 2, [send]
sol = 3, [sB1

1 ]sol∗ = aB1
1 + 3, . . . ,

[sB1
q ]sol∗ = aB1

q + 3, [sB1

end]
sol∗ = aB1

end + 3, [sB1
q+2]

sol∗ = aB1
q+2 + 3, . . . ,

[sB1
n1

]sol∗ = aB1
n1

+ 3)
to CSPB with M = M1*∪{1, 2, 3} ⊆ N such that conditions 1 and 2
hold.

• For case (ii):
a) The combined execution path is: F (B) = 〈cs, sB1

1 , . . . , sB1
q , cj〉.

b) In order to create a combined solution sol(B) for the overall execution
path F (B) that fulfils the necessary conditions and constraints, several
shifts of the single solutions for B1 are required.
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c) sol1(B1) is shifted by an offset k1 = 1 and threshold b1 = [sB1
1 ]sol,

such that cs can be assigned the value 1 in the combined solution
and all values of the elements of B1 are higher than this value.
This results in an adapted solution
sol1*(B1, b1, k1) =sol1*(B1, [s

B1
1 ]sol, 1) =

([sB1
1 ]sol∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗ = aB1

q + 1,

[sB1

end]
sol∗ = aB1

end + 1, [sB1
q+2]

sol∗ = aB1
q+2 + 1, . . . , [sB1

n1
]sol∗ = aB1

n1
+ 1)

to CSPB1
with M1*= {aB1

1 , . . . , aB1
n1

+ 1} ⊆ N.
d) sol1*(B1, b1, k1) is again shifted by an offset k2 = 1 and threshold

b2 = [sB1

end]
sol∗, such that cj can be assigned the value [sB1

q ]sol∗ +1 in
the combined solution and the values of all elements that are not part
of F (B1) are increased by one to ensure the alldifferent constraint.
This results in an adapted solution
sol1**(B1, b2, k2) =sol1**(B1, [s

B1

end]
sol∗, 1) =

([sB1
1 ]sol∗∗ = aB1

1 + 1, . . . , [sB1
q ]sol∗∗ = aB1

q + 1,

[sB1

end]
sol∗∗ = aB1

end+2, [sB1
q+2]

sol∗∗ = aB1
q+2+2, . . . , [sB1

n1
]sol∗∗ = aB1

n1
+2)

to CSPB1
with M1**= {aB1

1 , . . . , aB1
n1

+ 2} ⊆ N.
e) The overall solution sol0(B) is constructed by

sol0(B) =sol**1(B1, b2, k2)∪
{[cs]sol = 1, [cj]sol = [sB1

q ]sol + 2} =
([cs]sol = 1, [sB1

1 ]sol∗∗ = aB1
1 + 1, . . . , [sB1

q ]sol∗∗ = aB1
q + 1,

[cj]sol = aB1
q + 2, [sB1

end]
sol∗∗ = aB1

end + 2, [sB1
q+2]

sol∗∗ = aB1
q+2 + 2, . . . ,

[sB1
n1

]sol∗∗ = aB1
n1

+ 2)

to CSPB with M = M1**∪{1} = {1, aB1
1 , . . . , aB1

n1
+ 2} ⊆ N such

that conditions 1 and 2 hold.

Proof. As a block-oriented workflow W consists of a single root block element
B, Theorem 1 holds for whole block-oriented workflows.
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