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Deutsche Zusammenfassung

Der Entwurf von Regeln, welche in Märkten mit mehreren unteilbaren Gütern effiziente Al-
lokation induzieren, ist eine der grundlegensten Fragestellungen in der Mechanismus-Design-
Theorie. In der vorliegenden Dissertation wird ebendieses Problem unter verschiedenen Ge-
sichtspunkten betrachtet. Die Dissertation leistet vorallem drei Forschungsbeiträge, die sich
alle mit der Implementierung von effizienten Allokationen befassen. Die zentrale Gemein-
samkeit der drei Forschungsarbeiten ist die Gegebenheit, dass die den Allokationsproblemen
zu Grunde liegenden kombinatorischen Strukturen im engen Zusammenhang zu Matroiden
stehen.
Im ersten Kapitel werden die notwendigen mathematischen Definitionen und Notationen

bereitgestellt, insbesondere aus der Matroid Theorie.
Das zweite Kapitel betrachtet das Problem der Implementierung wohlfahrtsmaximieren-

der Allokationen durch aufsteigende Auktionen im Falle, dass ein einzelner Verkäufer eine
Menge von Gütern an eine endliche Anzahl von Bietern auktioniert. Dabei sind die Be-
wertungsfunktionen der Bieter separable nichtfallende diskrete konkave Funktionen und die
Menge der zulässigen Allokationen ist durch die Basen eines ganzzahligen Polymatroids
gegeben. In diesem Kontext entwickeln wir eine aufsteigende Auktion, welche eine wohl-
fahrtsmaximierende Allokation implementiert. Unsere Auktion ist so gestaltet, dass sie in
Polynomialzeit abläuft und nur von einem wachsenden Preis abhängt, sowie den Bietern
den Anreiz setzt, gemäß ihrer wahren Bewertungen zu bieten.
Das dritte Kapitel befasst sich mit Verallgemeinerungen des Problems der Approximati-

onsgarantie des klassichen Greedy Algorithmus im Verhältnis zur optimalen Lösung beim
Finden einer gewichtsmaximalen Basis eines gewichteten Unabhängigkeitssystems. Dieses
eigentlich rein kombinatorisch-mathematische Problem ist unter anderem motiviert durch
die ökonomisch relevante Fragestellung, warum bei tatsächlich stattfindenden Auktionen der
heuristische Greedy Algorithmus oftmals sehr gute Lösungen liefert, obwohl die zu Grunde
liegende Menge zulässiger Allokationen nicht die Struktur eines Matroids, sondern nur eines
Unabhängigkeitssystems hat. Wir führen das Konzept der inneren Unabhängigkeitssysteme
ein und zeigen, dass die ebenso von uns eingeführte Verallgemeinerung des Rangquotienten
für Unabhängigkeitssysteme eine strenge Abschätzung für die schlechtest mögliche Appro-
ximationsgarantie des Greedy Algorithmus im Verhältniss zur optimalen Lösung liefert.
Weiterhin beweisen wir das überraschende Resultat, dass ebendiese Gütegarantie auf inne-
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ren Unabhängigkeitssystemen simultan besser sein kann als jene des Greedy Algorithmus
angewandt auf das ursprüngliche Unabhängigkeitssystem und jene des Greedy Algorithmus
angewandt auf das beste innere Matroid. Im Anschluss erweitern wir unsere Resultate auf
die Maximierung von nichtfallenden separablen diskret konkaven Zielfunktionen über ganz-
zahligen Packungsinstanzen und beweisen hier analoge Resultate zum Problem des Findens
einer gewichtsmaximalen Basis eines gewichteten Unabhängigkeitssystems.

Das vierte Kapitel befasst sich mit der Implementierung von wohlfahrtsmaximierenden
Allokationen durch so genannte dynamische Preise. In dem von uns betrachteten Kon-
text verkauft ein einzelner Verkäufer eine endliche Menge von unteilbaren Gütern an eine
endliche Anzahl von Käufern, welche öffentlich bekannte Bewertungsfunktionen haben. Die
Käufer erscheinen einmalig, sequentiell und in vorher unbekannter Reihenfolge, um von dem
Verkäufer Güter zu erwerben. Bevor der nächste Käufer erscheint, hat der Verkäufer die
Möglichkeit die Preise der verbliebenen Güter neu fest zu setzen. Das Ziel des Verkäufers ist
es, die Preise so zu wählen, dass der nächste jeweils erscheinende Käufer notwendigerweise
eine Menge von Gütern kauft, die ihm auch in einer wohlfahrtsmaximierenden Allokation
zugeteilt werden könnte. In diesem Rahmen zeigen wir, dass immer eine Folge von Preisen
existiert, die eine wohlfahrtsmaximierenden Allokation induziert, wenn die Bewertungsfunk-
tion eines jeden Käufers eine gewichtete uniforme Matroidrangfunktion ist und die Käufer
rational handeln, folglich Mengen kaufen, die ihren individuellen Nutzen maximieren.

vi



Chapter 1.

Introduction

Allocating scarce resources efficiently is a major task in mechanism design. One of the
most fundamental problems in mechanism design theory is the problem of selling a single
indivisible item to bidders with private valuations for the item. In this setting, the clas-
sic Vickrey auction of Vickrey [1961] describes a simple mechanism to implement a social
welfare maximizing allocation. The Vickrey auction for a single item asks every buyer to
report its valuation and allocates the item to the highest bidder for a price of the second
highest bid. This auction features some desirable properties, e.g., buyers cannot benefit
from misreporting their true value for the item (incentive compatibility) and the auction
can be executed in polynomial time. However, when there is more than one item for sale
and buyers’ valuations for sets of items are not additive or the set of feasible allocations
is constrained, then constructing mechanisms that implement efficient allocations and have
polynomial runtime might be very challenging. Consider a single seller selling n ∈ N hetero-
geneous indivisible items to several bidders. The Vickrey-Clarke-Groves auction generalizes
the idea of the Vickrey auction to this multi-item setting. Naturally, every bidder has an
intrinsic value for every subset of items. As in in the Vickrey auction, bidders report their
valuations (Now, for every subset of items!). Then, the auctioneer computes a social welfare
maximizing allocation according to the submitted bids and charges buyers the social cost of
their winning that is incurred by the rest of the buyers. (This is the analogue to charging
the second highest bid to the winning bidder in the single item Vickrey auction.) It turns
out that the Vickrey-Clarke-Groves auction is also incentive compatible but it poses some
problems: In fact, say for n = 40, bidders would have to submit 240 − 1 values (one value
for each nonempty subset of the ground set) in total. Thus, asking every bidder for its
valuation might be impossible due to time complexity issues. Therefore, even though the
Vickrey-Clarke-Groves auction implements a social welfare maximizing allocation in this
multi-item setting it might be impractical and there is need for alternative approaches to
implement social welfare maximizing allocations.
This dissertation represents the results of three independent research papers all of them

tackling the problem of implementing efficient allocations in different combinatorial set-
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Chapter 1. Introduction

tings. All these settings are related to the combinatorial structure of matroids. Matroids,
independently introduced by Whitney [1935] and by Nakasawa [1935], Nakasawa [1936a]
and Nakasawa [1936b], are some of the most fundamental objects studied in combinatorial
optimization since they abstract and generalize the notion of linear independence in vec-
tor spaces. Several important combinatorial optimization problems can be formulated as
matroid optimization problems, for example:

a) Given a matrix A with column weights, find a maximum weight linearly independent
set of columns of A.

b) Given a graph with edge weights, find a subgraph that is a maximum weight forest.

c) Given a graph with nonnegative node weights, find the maximum weighted set of
nodes that can be covered by a matching of the graph.

However, even more important, matroids are exactly the family of sets that, given non-
negative item weights, allows for a simple greedy algorithm to find a maximum weighted set
of the family. Greedy algorithms can be considered as the discrete version of the method
of steepest ascent making the locally optimal choice at each stage. Note that that the
greedy algorithm applied to the problems a)-c) at each stage chooses the most valuable fea-
sible item among the remaining items, but there obviously also exist matroid minimization
problems. On the one hand, the greedy algorithm solves matroid optimization problems
exactly. On the other hand, it is one of the most common heuristics to approximate op-
timal solutions of combinatorial optimization problems. Several important nonmatroidal
combinatorial optimization problems can be approximated by the greedy algorithm with
performance guarantees, e.g.,

• Finding a maximum weight matching in a graph.

• The knapsack problem. (Taking the maximum of the greedy solution and the most
valuable item.)

• The k-center clustering problem.

One of the most fundamental and general problems that can be approximated by the
greedy algorithm is the problem of finding a maximum weight basis of an independence
system. This problem is NP-hard since it includes e.g., the knapsack problem, the problem
of finding a maximum independence set in a graph and the traveling salesman problem
(define the feasible sets as the subgraphs of Hamiltonian cycles). We consider the problem
of finding a maximum weight basis of an independence system in detail in Chapter 3 and
propose a heuristic to improve the approximation guarantee of the greedy algorithm.
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1.1. Our Contribution

Consider a setting when there are many heterogeneous items to be sold by an auctioneer.
Even though the valuations of the bidders might be expressed compactly e.g., if they are
additive, there exist more reasons to avoid the direct application of Vickrey-Clarke-Groves
auctions. However, for reasons of privacy, bidders may not be willing to report their entire
valuation to the seller. Therefore, in multi-item settings, a reasonable alternative to the
Vickrey-Clarke-Groves mechanism are ascending auctions, which preserve more privacy than
the Vickrey-Clarke-Groves mechanism and additionally are group strategyproof (Milgrom
and Segal [2014]), hence no group of buyers can collude to misreport such that it makes
every member of the group better off. We consider ascending auctions in Chapter 2 under
the assumption that the seller is constrained to sell bases of a polymatroid and bidders’
valuations are the sum of concave and piecewise linear functions. In this context, we provide
an ascending auction that implements an efficient allocation.
Besides (ascending) auctions, posted prices are the fundamental real life mechanisms for

selling goods. Typical examples of auctions include sales at eBay, Google adwords auctions
and the classic English auction for selling works of art while the canonical example of
posted prices are goods sold in supermarkets or cars sold at car dealers for fixed prices. A
main drawback of auctions is that they need a central authority coordinating the market,
in particular, if ties occur, the market coordinator, e.g., the auctioneer, has to break ties
according to some rule and assign items to buyers. In contrast, in a posted price mechanism
buyers arrive sequentially and purchase some of their utility maximizing sets, given the
price, from the seller. In Chapter 4 we consider posted price mechanisms in a uniform
matroid setting when the seller is allowed to update the prices of the remaining items after
each buyer leaves and show how to implement efficient allocations in this context.

1.1. Our Contribution

In the second chapter we consider a single auctioneer who sells indivisible items to buyers
with private valuations. Even though every item to be auctioned has possibly multiple
identical copies, the set of feasible allocations is constrained to be an integer base polyhedron
and the buyers’ valuations are the sum of nondecreasing discrete concave functions. This
seemingly abstract setting is of theoretical relevance and has various interesting applications.
In this context, Bikhchandani et al. [2011] provide an ascending auction that returns the
Vickrey-Clarke-Groves outcome. Moreover, their auction is incentive compatible. Since
their original auction was designed for matroids, the applicability to integer polymatroids
is achieved by a transformation. Although it is the fastest known auction in this setting
it still runs in pseudo-polynomial time on integer polymatroids in the quantity of the item
with the most copies, using a pseudo-polynomial transformation from integer polymatroids
to matroids. In this context, we develop an ascending auction that implements a social
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Chapter 1. Introduction

welfare maximizing allocation and charges the buyers Vickrey-Clarke-Groves prices. Our
ascending auction is ex post incentive-compatible and has polynomial runtime in the number
of buyers, items and copies and relies only on a single increasing price and directly generalizes
the auction of Bikhchandani et al. [2011].

The third chapter provides a purely mathematical results regarding the approximation
guarantee of the well-known greedy algorithm. A classic result of Korte and Hausmann
[1978] and Jenkyns [1976] bounds the quality of the greedy solution to the problem of
finding a maximum weight basis of an independence system (E, I) in terms of the rank
quotient. We extend this result in two ways. First, we apply the greedy algorithm to an
inner independence system contained in I. Additionally, following an idea of Milgrom [2017],
we incorporate exogenously given prior information about the set of likely candidates for an
optimal basis in terms of a set O ⊆ I. We provide a generalization of the rank quotient that
yields a tight bound on the worst case performance of the greedy algorithm applied to the
inner independence system relative to the optimal solution in O. Furthermore, we show that
for a worst-case objective the inner independence system approximation may outperform
not only the standard greedy algorithm but also the inner matroid approximation proposed
by Milgrom [2017]. Second, we generalize the inner approximation framework to inner
approximation of packing instances in Zn+ by inner polymatroids and inner packing instances.
We consider the problem of maximizing a separable discrete concave function and show that
our inner approximation can be better than the greedy algorithm applied to the original
packing instance. Our result shows that the generalized rank-quotient lower bounds the
worst case approximation guarantee of the greedy algorithm to the optimal solution in this
more general setting and subsumes Malinov and Kovalyov [1980]. We remark that even
though our result seems primarily as a theoretic result in discrete mathematics, it is closely
related to mechanism design theory and the task of implementing efficient allocations in
markets. It is motivated by the question which circumstances makes greedy algorithms
perform well on (nonmatroidal) independence structures in real world auctions and was
raised by Milgrom [2017].
The fourth chapter considers the problem of supporting optimal allocations in combina-

torial markets by means of dynamic pricings. Consider one seller selling a finite number
of heterogeneous indivisible items to a finite set of buyers, each of them having a publicly
known valuation function. Then, the set of social welfare maximizing allocations regarding
the valuations can be determined. The seller sets item prices and buyers arrive one at a
time and sequentially to purchase one of their utility maximizing sets among the remaining
items from the seller. The order of the arriving buyers is unknown to the seller but he is
allowed to update the prices of the remaining items before the next buyer arrives. The goal
of the seller is to induce a social welfare maximizing allocation by setting the item prices
such that it is in the best interest of every arriving buyer to choose a set of items she gets

4



1.2. Fundamentals and Notations

allocated in some social welfare maximizing allocation. Any price such that every possibly
next arriving buyer necessarily has to chose a set of items she might get allocated in some
social welfare maximizing allocation is called a dynamic price and a sequence of dynamic
prices is called a dynamic pricing. Cohen-Addad et al. [2016] and Berger et al. [2020] show
that dynamic pricings exist in matching markets and in weighted uniform matroid markets
with at most three buyers. We substantially generalize their work by proving the existence
of dynamic pricings in general weighted uniform matroid markets. En route, we show that
every interior Walrasian price already is a dynamic price in matching markets, thereby
providing an independent proof of Cohen-Addad et al. [2016].
The research question of the second chapter extends a result of Bikhchandani et al.

[2011] by my advisor. Similarly, the research question of the third chapter was motivated
by de Vries and Vohra [2020] of my advisor. In contrast to the chapters two and three,
the research question of chapter four arose during my own studies. In the fourth chapter,
I completely solve an open problem in the theory of posted price mechanisms for which
several recent research publications only provide partial solutions for special cases.
All three papers which form the basis of the respective chapters are or will be submitted

for publication in mathematical journals. Chapter 4 is written in sole authorship while
Chapters 2 and 3 are written with co-authors.

1.2. Fundamentals and Notations

We fix some basic notations:

Definition 1.1. For a finite set E and a subset S ⊆ E we define the complement S := E\S
and denote by χS the characteristic vector of S in RE. Furthermore, we denote by 0|S
the zero vector in RS and for a set T that is disjoint to S we denote the disjoint union of
S and T by S t T . We denote the power set of E by 2E. For any pair of sets A,B ⊆ 2E

we define A⊕B := {s : s = a ∪ b, a ∈ A, b ∈ B}. We denote R+ := {x ∈ R : x ≥ 0}.

Next, we recall basic definitions from matroid theory, which are relevant for several chap-
ters of this dissertation.

Definition 1.2. An independence system is an ordered pair (E, I) where the finite set
E is the ground set and the independent sets I ⊆ 2E is a collection of subsets of E
satisfying:

(I1) ∅ ∈ I,

(I2) If T ∈ I and S ⊂ T then S ∈ I.

5



Chapter 1. Introduction

Given an independence system (E, I) every I ∈ I is called independent and every I /∈ I
is called dependent. A set B ∈ I is called a basis of S ⊆ E iff B ⊆ S and B ∪ {s} /∈ I
for all s ∈ S \ B. A basis of E is simply called a basis and the set of bases of E
is also called the set of bases of (E, I) and denoted BI . A set C ⊆ E that is minimal
dependent, hence C /∈ I and C \ {c} ∈ I for all c ∈ C is called a circuit. A subset
I of 2E for which holds {i} ∈ I for all i ∈ E is called normal, thus an independence
system (E, I) is called normal if it holds {i} ∈ I for all i ∈ E. The cardinality of the
largest basis of a set S ⊆ E is called the rank of S, hence r(S) := max{|I| : I ∈ I, I ⊆ S}
and the size of the smallest basis of a set S ⊆ E is called the lower rank of S, i.e.,
l(S) := min{|I| : I ∈ I, I ⊆ S, I ∪ {i} /∈ I for all i ∈ S \ I}. The rank quotient of the
independence system (E, I) is denoted by q(I) := minS⊆E : r(S)6=0

l(S)
r(S) . An independence

systems (E, I) can also be characterized via a rank function: Let r : 2E → N0 such that

(R1) r(∅) = 0 (normalized),

(R2) r(S) ≤ r(S ∪ {x}) ≤ r(S) + 1 for all S ⊂ E, x ∈ E \ S,

then, the pair (E, {I ⊆ E : r(I) = |I|}) is an independence system. If not clear from context,
we denote the rank function of the independence system (E, I) by rI .

Now that we have the basic definitions of independence systems we characterize matroids.

Definition 1.3. An independence system (E, I) is called a matroid M if q(I) = 1. For a
matroid M = (E, I) we also denote its ground set by E(M), its independent sets by I(M)
and its set of bases by B(M). There exist several equivalent characterizations of matroids
of which we make use of throughout this thesis. A matroid M is an independence system
(E, I) for which one of the following holds:

(Submodularity) The rank function r satisfies r(S)+r(S∪{x, y}) ≤ r(S∪{x})+r(S∪{y})
for all x, y ∈ E, S ⊆ E \ {x, y}.

(Basis Exchange) For every pair of bases B1, B2 ∈ B(M) and x ∈ B1 \ B2 there exists a
y ∈ B2 \B1 such that (B2 ∪ {x}) \ {y} is a basis.

(Augmention property) For all S, T ∈ I such that |S| < |T | there exists e ∈ T \ S with
S ∪ {e} ∈ I.

The dual of a matroid M = (E, I) is another matroid M∗ := (E, {I ⊆ E : there exists
B ∈ B(M) such that I ∩ B = ∅}. A set C∗ ⊆ E is a cocircuit of M = (E, I) if it holds
C∗ ∩ B 6= ∅ for all bases B ∈ B(M) and for all S ⊂ C∗ there exists a basis B ∈ B(M)
such that S ∩ B = ∅. We denote C∗(M) := {C∗ ⊆ E : C∗ is cocircuit}. Note that it holds
C∗(M) = C(M∗), hence the set of cocircuits of M is the set of circuits of the dual matroid

6



1.2. Fundamentals and Notations

M∗ of M . A loop is a circuit that is singleton and a coloop is a cocircuit that is singleton.
Notice that normal matroids have no loops, and vice versa. For a matroid M = (E, I)
the deletion of X ⊆ E from M is the matroid M \ X := (E \ X, {I ∈ I : I ⊆ E \ X}),
the restriction to X ⊆ E is the matroid M |X := M \ (E \ X) and the contraction
of X ⊆ E from M is the matroid M/X := (M∗ \ X)∗. Note that for X ∈ I it holds
that I(M/X) := {I ∈ I(M) : I t X ∈ I(M)} and the rank function of M/X is given by
rM/X(S) := r(S tX)− r(S).

We provide a standard example of a matroid.

Example 1.4. Let E a finite set and n ∈ Z+, n ≤ |E|, then, the uniform matroid on E
is given by UnE := (E, {S ⊆ E : |S| ≤ n}).

Matroid rank functions are special cases of nondecreasing submodular functions.

Definition 1.5. For the finite set E recall that f : 2E → R is called submodular iff

f(S) + f(S ∪ {x, y}) ≤ f(S ∪ {x}) + f(S ∪ {y}) for all x, y ∈ E,S ⊆ E \ {x, y}.

Further, we call f : 2E → R nondecreasing if for each S ⊆ T ⊆ E holds f(S) ≤ f(T ) and
normalized if it holds f(∅) = 0. Every normalized nondecreasing submodular function f

can be identified bijective with the polymatroid Pf ⊂ RE+, that is the polyhedron described
by the inequalities

∑
e∈S

xe ≤ f(S) for all S ⊆ E,

xe ≥ 0 for all e ∈ E.

We call a polymatroid normal if χ{e} ∈ Pf for all e ∈ E, hence if it holds f({e}) > 0 for
all e ∈ E. A basis of a polymatroid Pf is a vector x ∈ Pf with ∑e∈E xe = f(E) and the
base polyhedron Bf is the set of bases of the polymatroid Pf .

We are interested in maximizing the integer restriction of nondecreasing concave functions
f : Rn → R+ over polymatroids.

Definition 1.6. Call a function f : Z+ → R+ nondecreasing discrete concave if it holds
f(x + 1) − f(x) ≥ f(y + 1) − f(y) for x, y ∈ Z+, x ≤ y. For f : Z+ → R+ nondecreasing
discrete concave define the extension to the nonnegative real numbers of f by f̄ : R+ →
R+, f̄(x) := f(x) for x ∈ Z+ and f̄(x) := f(bxc) + (f(dxe)− f(bxc)) · (x−bxc). For n ∈ N
and i ∈ {1, ..., n} let fi : Z+ → R+ be a nondecreasing discrete concave function, then call
the function f : Zn+ → R+, f := ∑n

i=1 fi separable nondecreasing discrete concave.
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Chapter 1. Introduction

Note that for a nondecreasing discrete concave function f the extension f̄ is nondecreasing,
concave and piecewise linear with breakpoints exclusively integral (hence, there are at most
countable many breakpoints).
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Chapter 2.

An Ascending Vickrey Auction for Selling
Bases of an Integer Polymatroid

2.1. Introduction

In this chapter we consider a single auctioneer who wants to assign a set of indivisible goods,
each having possibly multiple copies, to bidders with private valuations. This problem has
been addressed frequently in the mechanism design literature in various contexts. In this
paper, we study the situation when the set of feasible allocations is constrained to be an
integer base polyhedron, hence the set of bases of an integer polymatroid, and bidders’
valuations are the sum of nondecreasing, concave functions. Our interest in this seemingly
abstract problem is twofold: From a practical perspective, it turns out to contain several
interesting applications and theoretically it is the most general multi-bidder, multi-item and
multi-unit structure in which a single price ascending auction can be used to determine the
optimal outcome.
Our primary goal is to allocate the goods efficiently, hence to determine an optimal

element of the base polyhedron regarding the valuations of the bidders. If the bidders’
valuations are public, an optimal allocation can be calculated trivially by a polymatroid
greedy algorithm. However, this does not apply in our setting. Therefore, we need to create
incentives for the bidders to reveal their true valuations. One method that implements an
optimal outcome and meets the incentive objective is the VCG auction, a special case of
a sealed-bid auction. It asks the bidders to report their entire (true) valuations, computes
an optimal allocation according to them and charges the bidders VCG payments. For
completeness, we briefly recap the concept of a VCG auction: Let A be a set of abstract
outcomes and each bidder j ∈ N reports a valuation vj : A → R+. Then, an efficient
allocation according to the reported valuations chooses a∗ ∈ arg maxa∈A

∑
j∈N vj(a). The

VCG payments for bidder j are defined as the loss in attainable welfare suffered by the rest
of the bidders, hence pj := maxa∈A

∑
k∈N\{j} vk(a) −∑k∈N\{j} vk(a∗). This induces the

bidders to report their valuation truthfully since the utility bidder j obtains from outcome

9
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b ∈ A is

∑
j∈N

vj(b)−max
a∈A

∑
k∈N\{j}

vk(a).

Hence, the utility of any bidder is clearly maximized if for b ∈ A an efficient allocation is
chosen and the VCG auction is dominant strategy incentive compatible, hence it provides
the incentive that every bidder reports truthfully, independent of other bidders’ reported
valuations.

2.1.1. Ascending Auctions

A common alternative to a sealed bid auction is an ascending auction, which we also propose
in this setting. Roughly speaking, an ascending auction works in the following way: The
seller (auctioneer) announces prices and bidders report their demand according to the prices.
If the demand of the bidders equals the supply the auction ends and bidders get their
demanded items and pay the prices. If the demand exceeds the supply the prices are adjusted
upwards. As the auction progresses, bidders are only allowed to reduce their demand. Our
ascending auction implements an optimal solution if bidders behave truthfully and truthful
behavior is an ex post equilibrium.
There are several advantages of ascending auctions over sealed-bid auctions. According

to Ausubel [2004] and Cramton [1998] advantages of ascending auctions include that

• they are more transparent,

• bidders reveal less private information,

• communication and computation costs for bidders may be lower,

• they may be better even with mild interdependencies among bidders.

Further, ascending auctions are easier to handle for buyers since they only require any bidder
to answer a yes or no question instead of specifying the entire valuation in advance.

There exist several ex post incentive compatible ascending auctions in the literature that
include our setting and implement the optimal outcome. However, they either make use
of exponentially many (in the number of items) prices (see Parkes and Ungar [2000], de
Vries et al. [2007]) or require superpolynomial time in the number of copies of an item
(see Bikhchandani et al. [2011]). In contrast, we provide a fully polynomial (in the number
of items, copies and bidders) incentive compatible ascending auction that implements the
optimal outcome and charges VCG prices.
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2.1.2. Related Literature

This paper continues the line of research on ascending price auctions on multiple objects.
Fundamental contributions to ascending auctions with gross substitutes valuations are Kelso
and Crawford [1982] and Gul and Stacchetti [2000]. Although these auctions implement the
efficient outcome when bidders behave truthfully they are not incentive compatible. The
work of Demange et al. [1986] which considers an ascending auction in a matching market
can be seen as the starting point for incentive compatible multi-object ascending auctions.
Subsequently, Ausubel [2004] and Ausubel [2006] analyze a multi-item and multi-bidder
environment for homogeneous respectively heterogeneous items without any combinatorial
constraints. A primal-dual ascending auction for heterogeneous items and bidders with
arbitrary valuations is provided by de Vries et al. [2007]. Finally, Bikhchandani et al. [2011]
generalizes the clinching auction of Ausubel [2004] to the setting that the set of feasible
allocations is constrained by a matroid. Their auction can be modified to be applied in our
setting, but has only pseudo-polynomial runtime in the highest quantity of any item.
Note that when auctioning only a single indivisible item to a set of bidders even the

famous English auction has complexity issues and only pseudo-polynomial runtime. This
follows easily since in the English auction the price increases by unit steps as long as at
least two players announce their willingness to pay the price but the bidders’ values for the
item are encoded logarithmically. However, by a binary search approach, Grigorieva et al.
[2007] provide an iterative auction that runs in polynomial time and implements the VCG
outcome in this setting.
The class of all ascending auctions for unit-demand bidders that terminate in an optimal

allocation and charge Walrasian prices was characterized by Andersson et al. [2013].
A possible approach to overcome computational issues in more complex auctions is to

restrict the valuation classes of the bidders: Candogan et al. [2015] prove that an iterative
auction yields an efficient allocation when bidders have tree valuations, a strict subset of
graphical valuations. Their auction has polynomial runtime in the number of items, bidders
and the highest unknown but fixed value of any node and edge of any agent’s underlying
graphical valuation but it is neither an ascending auction since it increases and reduces
prices iteratively by solving a certain integer program nor does it rely on a single price.
An important subset of ascending auctions is the class of deferred-acceptance auctions

introduced by Milgrom and Segal [2014], which are remarkable since they are obviously
strategyproof and group-strategyproof. Deferred-acceptance auctions were introduced in
binary settings (a bidder gets served or not) and subsequently generalized by Gkatzelis
et al. [2017] to bidders with multiple levels of services and various feasibility constraints
on the set of feasible outcomes. Further, Dütting et al. [2017] study deferred-acceptance
auctions from an approximation standpoint and measure the performance guarantee by
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comparing the outcome of deferred-acceptance auctions with the social welfare maximizing
allocation in various settings.

For quite some time there is also increasing interest in ascending auctions where bidders
are budget constrained. This additional constraint rules out the existence of an ascending
auction that is incentive compatible and simultaneously implements a Pareto optimal allo-
cation even in the simple case of a single-item and multi-unit auction and two bidders with
linear valuation functions, see Dobzinski et al. [2012]. It turns out that our mechanism is
similar to the one in Goel et al. [2015], which applies to a polymatroid environment where
bidders are constrained by publicly known budgets. However, they consider a market that
consists only of multiple copies of a single divisible good and bidders are restricted to have
linear valuations, which is in two ways less general than our setting. Further, the analysis
of our mechanism is closely related to Hirai and Sato [2022] which generalizes Goel et al.
[2015] and deals with auctions in two-sided markets with polymatroid constraints on the
set of edges.

2.1.3. Chapter Structure

We briefly outline the organization of this chapter: In Section 2.2 we recap the ascending
auction of Bikhchandani et al. [2011], which implements a VCG outcome when the set of
feasible allocations is constrained by a matroid. This auction is ex post incentive compatible
and has polynomial runtime in its long step version. Recall that the matroid environment
is a special case of our setting. We provide an alternative ascending auction for selling
bases of a matroid that is extendable to integer base polyhedrons. The advantages of our
auction over the one of Bikhchandani et al. [2011] are twofold. First, we are able to allocate
bundles of items in a single step instead of awarding items sequentially. Second, we avoid the
cocircuit terminology used by Bikhchandani et al. [2011], which is rather unwieldy in terms
of polymatroids and makes a direct application of their auction to our setting impossible.
We show that our auction implements the same outcome as the aforementioned and inherits
its incentive properties. Section 2.3 is dedicated to our main result. We elucidate that our
ascending auction for selling bases of a matroid, after a pseudo-polynomial transformation,
applies to polymatroids and yields a VCG outcome. Subsequently, we adapt our auction so
that it is directly applicable on polymatroids and show that the outcome of both auctions
coincide. The new auction performs directly on the integer polymatroid and has strongly
polynomial runtime in the number of items, bidders and time it takes to evaluate an oracle
call and therefore provides the first polynomial ascending auction in this setting. Afterwards,
we illustrate our algorithm by an example and in Section 2.4 we provide some applications.
We finish with a conclusion in Section 2.5.
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2.2. Selling Bases of a Matroid

In this section, we provide an ascending auction that implements a social welfare maximizing
allocation if the auctioneer is constrained to sell bases of a matroid.

2.2.1. Economic Model

We define the economic model in the matroid setting. Consider a seller and a finite set of
bidders N that are interested in purchasing indivisible goods of a finite set E of cardinality
m from the seller. The ground set E is partitioned into sets (Ej)j∈N , such that bidder j
is exclusively interested in the items Ej , hence there are no two bidders that demand the
same good. This assumption is without loss of generality (see the more general polymatroid
model in Section 2.3 for a proof of this). Furthermore, there is a normal matroidM = (E, I)
that constrains the feasible allocations. The seller is only allowed to sell combinations of
the elements of E that form a basis of the matroid. As usual, we assume that the matroid
M is given by an independence oracle, hence for any set S ⊆ E one can determine by
an oracle call if S is independent.

If bidder j acquires element e ∈ Ej it provides him with value ve ∈ R+ and a set S ⊆ Ej
provides him value vj(S) := ∑

e∈S ve. The goal of the seller is to identify a maximum
weight basis of M regarding the unknown values ve for e ∈ E, hence determine an element
of arg maxB∈B(M)

∑
e∈B ve. Obviously, the values ve are private information; otherwise, a

simple greedy algorithm would find an optimal solution.

We assume that a basis of M can be formed without allocating any elements to any fixed
bidder, hence for all j ∈ N and E−j := E \ Ej it holds rank(E) = rank(E−j). We call this
assumption no-monopoly. If this assumption is not fulfilled for some bidder j ∈ N she
would be able to block any feasible outcome. However, the idea of our ascending auction is
as follows: By price increments, we force bidders to give up interest in some items, hence
we delete these items from the matroid. Because of the deletion some bidders might achieve
for some of their items monopoly power. These uncontested elements are awarded to the
bidder at current price.

2.2.2. The Ascending Auction of Bikhchandani et al. [2011]

In the following we present the ascending auction of Bikhchandani et al. [2011] that finds
an optimal basis of the matroid M and implements VCG payments. Note that p is a price
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clock that gradually ascends.
Algorithm 1:
Require: A matroid M = (E, I) with a no-monopoly partition E = ⊔

j∈N Ej and
nonnegative integer valuations

1 a← 0, p← 0, r ← r(E), B = ∅
2 Choose an arbitrary ordering of N (for tie-breaking)
3 while a < r do
4 Ask bidders to determine F = {f1, ..., fk} ← {f ∈ I : vf = p} and label the

elements in increasing order according to the tie-breaking
5 for l← 1 to k do
6 if fl is contained in the groundset of M then
7 while there exists a bidder j ∈ N and a cocircuit C∗j of M \ {fl} with

C∗j ⊆ Ej do
8 Ask bidder j to determine arg maxe∈C∗j ve and let x be the most

valuable element from this set according to tie-breaking.
9 Award x to j and charge him p,

10 M ←M/{x}, B ← B ∪ {x}, a← a+ 1

11 M = M \ {fl}

12 p← p+ 1
Output : The optimal basis B.
We have added the if condition Line 6 to the original auction of Bikhchandani et al. [2011]

for additional clarity, otherwise for fl /∈ E(M) we can define M \ {fl} := M .
We remark that Bikhchandani et al. [2011] assumes the existence of a cocircuit oracle.

However, the existence of an independence oracle is the more natural and common assump-
tion. A cocircuit oracle can be implemented by polynomial many calls to an independence
oracle: It is well known for matroids that an independence oracle is polynomial equivalent to
a rank oracle, see e.g., Hausmann and Korte [1981]. To see that a rank oracle is polynomial
reducible to a cocircuit oracle observe that for any set C∗ ⊆ E it holds that C∗ is a cocircuit
iff it holds r(E \C∗) = r(E)− 1 and r(E \ (C∗ \ {c})) = r(E) for all c ∈ C∗. Therefore, for
any S ⊆ E it can be checked by at most |S|+ 1 rank oracle calls if S is a cocircuit.
The auction in Auction 1 runs pseudo-polynomial in the highest unknown but fixed value

maxe∈E ve and can be adapted to a polynomial auction by modifying the unit step increase
in the price p to a so called long step version (see [Bikhchandani et al., 2011]).

Theorem 2.1. [Bikhchandani et al., 2011] Auction 1 outputs an optimal basis and yields
VCG payments, independently of the ordering of F in Line 4 and the possible tie breaking
used.
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2.2.3. An Alternative Algorithm for Matroidal Settings

Our goal is to provide an ascending auction that efficiently allocates items when the set
of feasible allocations is constrained by an integer base polyhedron. To this end, we first
provide an alternative algorithm for selling bases of a matroid that generalizes well to
polymatroids. Unlike Auction 1, our algorithm avoids the cocircuit terminology which is
rather unwieldy in terms of polymatroids. However, to prove correctness of our auction we
will frequently use characterizations of cocircuits of matroid minors:

Lemma 2.2. [Oxley, 2006, Proposition 3.1.16, 3.1.17] LetM = (E, I) a matroid, C∗(M) its
set of cocircuits and T ⊆ E, then C∗(M/T ) := {C∗ ∈ C∗(M) : C∗ ⊆ E\T} and C∗(M \T ) :=
{C∗ \ T : C∗ ∈ C∗(M), @D∗ ∈ C∗(M) such that D∗ \ T ( C∗ \ T}.

In some sense, Auction 1 is based on the cocircuit-greedy algorithm introduced by Dawson
[1980]. Its correctness depends on the following Lemma.

Lemma 2.3. [Dawson, 1980]. Let M = (E, I) a matroid, I ∈ I and a ∈ E \ I. Then, it
holds I ∪ {a} ∈ I iff there exists a cocircuit C∗ ∈ C∗(M) with a ∈ C∗ and C∗ ∩ I = ∅.

A direct consequence of Lemmata 2.2 and 2.3 is:

Corollary 2.4. Let M = (E, I) a matroid, I ∈ I and a ∈ E \ I. Then, it holds I ∪{a} ∈ I
iff there exists a cocircuit C∗ ∈ C∗(M/I) with a ∈ C∗.

We want to show that one can formulate Lines 6 and 7 of Auction 1 in an equivalent
alternative way.

Definition 2.5. For a price p denote F p := {e ∈ E : ve = p} and F p−j := F p ∩ E−j and
omit the p if clear by context.

If Auction 1 chooses an item x to allocate it to bidder j, then the other bidders are not
negatively affected by this. Therefore, for each independent set I that consists exclusively of
items that provides strict positive utility to the agents interested in the items at the current
price and that is demanded by any set of bidders excluded j, there has to exist a basis
containing I and x, hence for all I ∈ I(M |E−j\F−j ) it holds I t {x} ∈ I(M). Conceptually,
this condition necessarily has to be implied by the cocircuit condition in Line 7 of Auction 1
and it provides a good intuition why Auction 1 works correctly and implements a social
welfare maximizing allocation. Before proving the equivalence of both conditions we first
reformulate our new condition in terms of matroid minors:

Lemma 2.6. Let M = (E, I) a matroid, S ⊆ E, x ∈ E \ S. Then, it holds {x} ∈ I(M/S)
iff for all I ∈ I(M |S) holds I t {x} ∈ I(M).
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Proof. Let {x} ∈ I(M/S), then it holds by definition of the rank function rM/S that rM (St
{x}) − rM (S) = 1. By the submodularity of rM it holds for all I ∈ I(M |S) that rM (I t
{x})− rM (I) ≥ rM (S t{x})− rM (S), hence rM (I t{x})− rM (I) ≥ 1 and therefore it holds
for all I ∈ I(M |S) that rM (I t {x}) = |I t {x}|, hence I ∪ {x} ∈ I(M).
Conversely, let for all I ∈ I(M |S) hold I t {x} ∈ I(M), then for B ∈ B(M |S) it clearly

holds B t {x} ∈ I(M), hence r(S ∪ {x}) − r(S) ≥ r(B ∪ {x}) − r(B) = 1 and therefore
x ∈ I(M/S) by definition.

Now, we provide an equivalent condition to the cocircuit condition in Line 7 of Auction 1.

Lemma 2.7. Let M = (E, I) a matroid, E = E′ tE′′, F ′′ ⊆ E′′. Then, for x ∈ E′ it holds
{x} ∈ I(M/(E′′ \ F ′′)) iff there exists a cocircuit C∗ ∈ C∗(M \ F ′′) with x ∈ C∗ ⊆ E′.

Proof. Let x ∈ E1 such that it holds {x} ∈ I(M/(E′′ \ F ′′)) and I ∈ B(M \ F ′′|E′′) ⊆
I(M \ F ′′), then, it holds that I ∪ {x} ∈ I(M \ F ′) by assumption and by Corollary 2.4
there has to exists a cocircuit C∗ ∈ C∗(M \F ′′/I) such that x ∈ C∗. Furthermore, it has to
hold C∗ ⊆ E′ by Lemma 2.3 since for all y ∈ E′′ \ (F ′′ ∪ I) it holds I ∪ {y} /∈ I(M \F ′′) by
the basis-assumption. Then, it follows directly by Lemma 2.2 that C∗ ∈ C∗(M \ F ′′).
Conversely, let C∗ ∈ C∗(M \ F ′′) with x ∈ C∗ ⊆ E′ and I ∈ I(M \ F ′′|E′′). It holds

C∗ ∩ I = ∅ and therefore I ∪ {x} ∈ I(M \ F 2) by Lemma 2.3. Then, it holds x ∈ I(M \
F ′′/(E′′ \ F ′′)) ⊆ I(M/(E′′ \ F ′′)) by Lemma 2.6.

As a direct consequence of Lemma 2.7 we can reformulate Lines 7 and 8 of Auction 1:
Ask bidder j to determine

arg max{ve : {e} ∈ I(M |Ej ) and {e} ∈ I(M/(E−j \ F−j))}

and let x be the most valuable element from this set according to tie-breaking.
Consequently, assuming that the set of items F−j ⊆ E−j drops out then every set of items

Tj ∈ I(M)|Ej that fulfills the condition Tj ∈ I(M/(E−j \F−j)) might be awarded to bidder
j without impairing the bidders in N \ {j}, hence bidder j has a monopoly for the set Tj .

Definition 2.8. For a matroidM = (EjtE−j , I) and F−j ⊆ E−j we denote byMonopolyM,E−j ,F−j ,Tj

the property that Tj ∈ I(M |Ej ) fulfills the condition Tj ∈ I(M/(E−j \ F−j)).

Note that in our economic model initially for all j ∈ N it holds that the only set for
which holds MonopolyM,E−j ,F−j ,Tj is Tj = ∅ due to the no-monopoly condition. We
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modify Auction 1 making use of the MonopolyM,E−j ,F−j ,Tj condition.

Algorithm 2:
Require: No-monopoly matroid M = (E, I) with nonnegative integer valuation and

a partition E = ⊔
j∈N Ej

1 a← 0, p← 0, r ← r(E)
2 Determine an (arbitrary) ordering of E (for tie-breaking)
3 while a < r do
4 Ask bidders to determine F = {f ∈ I : vf = p}
5 for j ∈ N do
6 if a < r then
7 find arg max{∑e∈Tj ve : Tj ∈ I(M |Ej ) with MonopolyM,E−j ,F−j ,Tj} and

let Sj be a maximal cardinality element of this set. Award Sj to j and
charge him |Sj | · p

8 M ←M/Sj , a← a+ |Sj |, B ← B ∪ Sj , F ← F \ Sj

9 M ←M \ F
10 p← p+ 1

Output : The optimal basis B.
We remark that the maximum cardinality condition in Line 7 is necessary (see Exam-

ple 2.26) and defer the explanation how to implement this condition to the analogous state-
ment in Section 2.3, in which bases of a polymatroid are auctioned. Notice that Auction 2,
in contrast to Auction 1, allocates all elements awardable to bidder j at price p in a single
step. In Theorem 2.10 we will show that a slight variation of Auction 2 has polynomial
runtime. Before that, we prove that Auction 2 outputs an optimal basis and yields VCG
payments.

Theorem 2.9. Auction 2 finds an optimal basis and implements VCG payments.

Proof. Notice that at price p there may exist cocircuits which are contained in F . For any
item contained in such a cocircuit it holds that the later it is ordered in F in Line 4 of
Auction 1, the more likely this item gets allocated before it gets deleted. Similarly, the
earlier the bidder that is interested in this item is ordered in Line 5 of Auction 2, the more
likely this item gets allocated before it gets deleted. We want the set F in Line 4 of Auction 1
and the set N in Line 5 of Auction 2 to be ordered such that any item that is more likely to
be allocated in Auction 1 is also more likely to be allocated in Auction 2. Therefore, let <
a total order on N and define σ : E → N such that for e ∈ E by σ(e) is denoted the unique
bidder that initially is interested in item e. Let ≺ a partial order on E ×E such that e ≺ f
if σ(e) < σ(f). Assume F ⊆ E in Line 4 of Auction 1 to be partially ordered by ≺ and the
for-loop in Line 5 of Auction 2 to be carried out in reverse to the order < on N ×N .
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Let p be the current price andM = (E, I) denote the matroid that coincides in both algo-
rithms before any element got deleted or awarded at p. Call a sequence ((b1, C∗1 ), . . . , (bl, C∗l ))
of element-cocircuit pairs suitable for Auction 1, if it can be constructed during an execution
of Auction 1 at price p and a set of elements {x1, . . . , xl} suitable for Auction 2 if it can be
awarded during an execution of Auction 1 at price p. Let (((b1, C∗1 ), . . . , (bl, C∗l )), {x1, . . . , xl})
a pair of a suitable sequence for Auction 1 and a suitable set for Auction 2 at price p such that
the index h of the first element bh for which holds bh /∈ {x1, . . . , xl} is maximal among all
pairs of suitable sequences and suitable sets at price p. Assume that the item bh gets awarded
at the j−th iteration of the for-loop in Line 6 of Auction 1 by choosing bh as a maximal
valued element of the circuit C∗h ∈ C∗(M \F j/Bh−1), C∗h ⊆ Eσ(bh) where F j := {f1, . . . , fj}
and Bh−1 := {b1, . . . , bh−1} and Bh−1

k := {b ∈ Bh−1 : σ(b) ≥ k} for k ∈ N .

If it holds σ(fj) < σ(bh), then it is F j ⊆ F−σ(bh) and by Lemma 2.2 there exists a
cocircuit D∗h ⊆ C∗h with D∗h ∈ C(M \ F−σ(bh)/B

h−1) and bh ∈ D∗h, hence D∗h ∈ C(M \
F−σ(bh)/B

h−1
σ(bh)) by Lemma 2.2 . Then, by Lemma 2.7 there exists a value maximal el-

ement eh ∈ D∗h that gets allocated to bidder σ(bh) by Auction 2, hence it has to hold
v(eh) = v(bh) and therefore Auction 1 could equivalently award item eh instead of bh and
((b1, C∗1 ), . . . , (eh, C∗h)) is a suitable subsequence and there obviously has to exist a suitable
sequence
((b1, C∗1 ), . . . , (bh−1, C

∗
h−1), (eh, C∗h), (b′h+1, C

′∗
h+1), . . . , (b′l, C ′∗l )) that could be awarded by Auc-

tion 1 in contrast to the maximality of the pair (((b1, C∗1 ), . . . , (bl, C∗l )), {x1, . . . , xl}).

If it holds σ(fj) > σ(bh) it has to hold vσ(bh)(bh) − p > 0 since otherwise bh already got
deleted in Line 10 in a previous iteration at a lower price than p. Then, by Lemma 2.2
there exists D∗h ∈ C∗(M \ (F−σ(bh) ∪ F j)/Bh−1) such that bh ∈ D∗h ⊆ C∗h and again by
Lemma 2.2 there exists G∗h ∈ C∗(M \ F−σ(bh)/B

h−1) such that G∗h \ (F j ∩ Fσ(bh)) = D∗h,
hence bh ∈ G∗h. Note that it may not hold G∗h ⊆ C∗h since it is possible that it holds
F j ∩ Fσ(bh) 6= ∅ but it holds {e ∈ G∗h : vσ(bh)(e) − p > 0} = {e ∈ D∗h : vσ(bh)(e) − p > 0}
by construction and therefore {e ∈ G∗h : vσ(bh)(e) − p > 0} ⊆ {e ∈ C∗h : vσ(bh)(e) − p > 0}.
However, by Lemma 2.7 there exists a value maximal element eh ∈ G∗h that gets allocated
to bidder σ(bh) by Auction 2, hence it has to hold v(eh) = v(bh) and therefore Auction 1
could equivalently award item eh instead of bh and ((b1, C∗1 ), . . . , (eh, C∗h)) is a suitable sub-
sequence and there obviously has to exist a suitable sequence due to the no-monopoly condi-
tion, ((b1, C∗1 ), . . . , (bh−1, C

∗
h−1), (eh, C∗h), (b′h+1, C

′∗
h+1), . . . , (b′l, C ′∗l )) that could be awarded

by Auction 1 in contrast to the maximality of the pair (((b1, C∗1 ), . . . , (bl, C∗l )), {x1, . . . , xl}).

Therefore, Auction 1 and 2 award the same elements if appropriate tie-breaking is used
in Auction 1 and therefore they also delete the same elements and the claim follows directly
by Theorem 2.1.

18



2.3. Selling Elements of an Integer Base Polyhedron

We remark that the runtime of Auction 2 is only pseudo-polynomial in the highest encoded
value maxe∈E ve since it uses unit step price increments to find the largest integer value.
However, it can be easily adapted to a polynomial auction, if we modify it to a long step
version by changing Line 10 to

Ask each bidder j ∈ N to determine pj := min{ve : e ∈ Ej} and set p← min{pj : j ∈ N}.

This bounds the number of price increments by |E| and makes Auction 2 a polynomial
auction.

Theorem 2.10. The long step version of Auction 2 runs in polynomial time in the number
of items |E| and the number of bidders |N |, if agents are truthful.

Proof. Note that the price increment rule forces at least one element to be deleted after
every price increase. Therefore, the While-Loop in Line 3 is carried out at most |E| times.
Clearly, the inner for-loop in Line 5 is carried out |N | times. The optimization problem
Line 7 can be solved easily by applying the greedy algorithm toM/(E−j \F−j) with weights
ve − p for e ∈ Ej , which clearly has runtime polynomial in the number of items and the
number of bidders. Furthermore, by the Lines 8 and 9, the matroid M is a minor of the
initial matroid, hence its rank function can easily be determined from the rank function
of the initial matroid and therefore the optimization problem Line 7 can also be solved in
polynomial oracle time and the claim follows.

Note that in the single item setting the long step version of Auction 2 is the Vickrey-
Clarke-Groves auction and has a runtime of O(n− 1).

2.3. Selling Elements of an Integer Base Polyhedron

In this chapter we present our main result, a polynomial runtime ascending auction for
selling bases of an integer polymatroid.

2.3.1. Economic Setting in the Polymatroid Environment

Similar to the matroid setting there is one seller and a set of bidders N = {1, . . . n}, n ∈ N
that are interested in purchasing indivisible goods of the finite set E := {1, . . . ,m}, m ∈ N
from the seller. For each good e ∈ E there are f({e}) identical copies available. Furthermore,
there is a nondecreasing, normalized submodular function f : 2E → Z+ determining the set
of feasible allocations given by the integer base polyhedron Bf ⊂ ZE+ and Pf is assumed to
be normal. The submodular function f is given by a (polynomial time) value giving oracle
and we denote by EOf the time it takes to evaluate f(S) for any given S ⊆ E.
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The ground set E is partitioned into sets (Ej)j∈N such that bidder j ∈ N is exclusively
interested in the items Ej , hence there are no two bidders interested in the same good.
This assumption is w.l.o.g. because, if necessary, we can split one item into two items with
a joint capacity constraint. For that, assume there are two bidders 1 and 2 interested in
e ∈ E. Consider the set (E \ {e}) t {e1, e2} and f̄ : 2(E\{e})t{e1,e2} → Z+ with

f̄(S) =

f(S) for S ∩ {e1, e2} = ∅,

f((S ∪ {e}) \ {e1, e2}) for S ∩ {e1, e2} 6= ∅.

Lemma 2.11. If f is submodular then the function f̄ is submodular.

Then, since f̄ obviously is nondecreasing and normal it holds that Pf̄ is a polymatroid
and for every x̄ ∈ Pf̄ it also holds x ∈ Pf if we define xi := x̄i for i 6= e and xe = x̄e1 + x̄e2 .
For every element e ∈ Ej that bidder j is interested in the bidder has a function vje

mapping the quantity xe of e to R+ expressing her value. We assume vje to be nonde-
creasing concave. Then, bidder j′s value for x ∈ Pf is given by vj(x) := ∑

e∈Ej v
j
e(xe)

and vj : REj+ → R+ is a separable concave function. Analogous to the matroid setting,
initially, the polymatroid Pf has to fulfill the following condition, which we also denote by
no-monopoly: No bidder is initially able to prevent that a basis of the polymatroid is sold,
therefore, for all j ∈ N it holds f(E−j) = f(E).

2.3.2. Applying Auction 2 to Integer Polymatroids

First, we show how to directly apply Auction 2 to the integer polymatroid setting. We
convert the integer polymatroid to a matroid via the following transformation:

Definition 2.12. Let Pf be an integer polymatroid on the ground set E. For e ∈ E let
Xe := {e} × {1, ..., f({e})} and X := ⋃

e∈E Xe and for j ∈ N let Xj := ⋃
e∈Ej Xe. Define

I := {I ⊆ X : ∑(e,b)∈I χ
{e} ∈ Pf} and the underlying matroid to Pf as M(Pf ) := (X, I).

Observe that (Xj)j∈N is the partition of the set X such that Xj is the set of items that
bidder j is exclusively interested in M(Pf ) and define X−j := X \Xj for j ∈ N .

Lemma 2.13. [Helgason, 1974] Let Pf be an integer polymatroid on the ground set E, then,
M(Pf ) is a matroid.

Proof. Let x, y ∈ E and S ⊆ E \ {x, y} and

Case 1: If (S ∪ {x, y}) ∩ {e1, e2} = ∅ it holds f̄(S ∪ {x, y})− f̄(S ∪ {x}) = f(S ∪ {x, y})−
f(S ∪ x) ≤ f(S ∪ {y})− f(S) = f̄(S ∪ {y})− f̄(S).

20



2.3. Selling Elements of an Integer Base Polyhedron

Case 2: If w.l.o.g. e1 ∈ S it holds f̄(S ∪{x, y})− f̄(S ∪{x}) = f((S ∪{x, y, e}) \ {e1, e2})−
f((S ∪ {x, e}) \ {e1, e2}) ≤ f((S \ {e1, e2}) ∪ {y, e})− f((S ∪ {e}) \ {e1, e2}) = f̄(S ∪
{y})− f̄(S).

Case 3: If e1 = x, e2 /∈ S∪{y}, it holds f̄(S∪{x, y})−f̄(S∪{x}) = f(S∪{y, e})−f(S∪{e}) ≥
f(S ∪ {y})− f(S) = f̄(S ∪ y)− f̄(S).

Case 4: If e1 = x, e2 = y, it holds f̄(S ∪{x, y})− f̄(S ∪{x}) = f(S ∪{e})− f((S ∪{e})) ≤
f(S ∪ {e})− f(S) = f̄(S ∪ {y})− f̄(S).

Definition 2.14. For a polymatroid Pf with underlying matroid M(Pf ) := (X, I) and
a ∈ Zn+, ae ≤ f({e}) we denote Al := {(e, b) ∈ X : b ≤ ae, e ∈ E} and Ar := {(e, b) ∈
X : b > f({e}) − ae, e ∈ E} and, if necessary, we identify the point a with the modular
function a : 2E → R+, a(S) = ∑

e∈S ae without explicitly stating it.

Set the values of (e, 1) ∈ E(X) as vj(e,1) := vje(1) and vj(e,b) := vje(b)− vje(b− 1) for e ∈ Ej
and 1 < b ≤ f({e}). Let B an optimal basis of M(Pf ). Define Be := {(e, k) ∈ B} for
e ∈ E and Bl := {(e, k) : e ∈ E, k ≤ |Be|}. Then, Bl is obviously also a basis of M(Pf ).
Furthermore, Bl is optimal regarding ∑j∈N v

j since for all e ∈ E it holds ∑(e,b)∈B χ
{e} =∑

(e,b)∈Bl χ
{e} and v(e,b) ≥ v(e,b+1) and for (e, k) ∈ B it either holds (e, k) ∈ Bl or there

exists (e, k′) ∈ Bl with k′ < k. Therefore, for every optimal basis B ∈ B(M(Pf )) it holds
that x := ∑

(e,b)∈B χ
{e} is an optimal basis for Pf with the same value as B and for every

optimal basis x ∈ Bf it holds that Bl := {(e, b) ∈ X : xe ≤ b, e ∈ E} is an optimal basis for
M(Pf ) with the same value as x.
Now, it is easy to see that applying Auction 2 on the underlying matroid has pseudo-

polynomial runtime in the highest encoded value maxe∈E f({e}) since a pseudo-polynomial
transformation is required: Storing maxe∈E f({e}) just requires log maxe∈E f({e}) bits for
which maxe∈E f({e}) elements are necessary in the matroid M(Pf ).

2.3.3. Polynomial Auction for Selling Bases of an Integer Polymatroid

We present our main result, a mechanism for selling bases of an integer polymatroid. In
contrast to Auction 2 our auction performs directly on the integer polymatroid. The main
idea of our algorithm is to generalize our nonimpairing condition from matroids to polyma-
troids. To show the correctness of our mechanism, we will prove that its output is equivalent
to the output of Auction 2, performed on the underlying matroid.
We start with some properties of submodular functions and polymatroids.

Lemma 2.15. Let f : 2E → R+ be a submodular function and d : 2E → R, d(S) := ∑
e∈S de

a modular function. Then, it holds that g : 2E → R+, g(S) := f(S) + d(S) is submodular.
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Proof. Let X ⊂ E and S ⊆ T ⊆ E \X, it holds

g(S ∪X)− g(S) =f(S ∪X)− f(S) + d(S ∪X)− d(S)

≥f(T ∪X)− f(T ) + d(T ∪X)− d(T ) = g(T ∪X)− g(T ).

Lemma 2.16. [Lovász, 1983, Theorem 2.5]. Let f : 2E → R+ be a submodular and
d : 2E → R, d(S) := ∑

e∈S de a modular function. Then, it holds that g : 2E → R+, g(S) :=
minK⊆S f(K) + d(S \K) is submodular.

We define analogously to polymatroids.

Definition 2.17. Let f : 2E → R+, then Pf := {x ∈ RE+ : ∑e∈S xe ≤ f(S) for all S ⊆ E}.

Lemma 2.18. [Schrijver, 2003, Subsection 44.4]. Let f : 2E → R+ be submodular and nor-
malized, then the function f ′ : 2E → R+, f

′(S) := minT⊇S f(T ) is submodular, normalized
and nondecreasing and it holds Pf = Pf ′.

Therefore, to every non nondecreasing normalized submodular function there can be
associated a polymatroid. However, in contrast to nondecreasing normalized submodular
functions there clearly exists no bijection between the set of polymatroids and the set of
normalized submodular functions. Note that the nondecreasing property for submodular
functions f is desirable since it allows for a simple polymatroid greedy algorithm to optimize
linear functions over Pf efficiently while for nonsubmodular functions a simple polymatroid
greedy algorithm may not work correctly in this setting.

Lemma 2.19. Let f : 2E → R+ be submodular, d : 2E → R+ modular and g : 2E →
R+, g(S) := minK⊆S

∑
e∈K d(e) + f(S \K). Then, it holds Pmin{f,d} = Pg, hence Pmin{f,d}

is a polymatroid.

Proof. Clearly, g is nondecreasing, submodular and integer valued and it holds Pg = {x ∈
RE+ : ∑e∈S xe ≤ minK⊆S

∑
e∈K d(e) + f(S \K) for S ⊆ E} by Lemmata 2.16 and 2.18. Let

y ∈ Pg, then it holds y ≤ f(S) for all S ⊆ E by choosing K = ∅ and it holds ye ≤ d(e) for
all e ∈ E by choosing K = {e} = S. Therefore, ∑e∈S ye ≤ min{f(S), d(S)} for all S ⊆ E.

Conversely, let y ∈ Pmin{f,d}, then for all K ⊆ S ⊆ E it holds ∑e∈K ye ≤
∑
e∈K de and∑

e∈S\K ye ≤ f(S \K), hence y ∈ Pg.

Assume one executes Auction 2 on a matroid M(Pf ). We show that awarding sets to
bidders (matroid contraction) and elements dropping out due to price increments (matroid
deletion) can also be expressed directly as operations on the polymatroid Pf .

Shrinking the polymatroid turns out to be equivalent to matroid contraction.
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Lemma 2.20. Let Pf be an integer polymatroid on the ground set E and M(Pf ) := (X, I)
its underlying matroid. Then, the matroid M(Pf )/Ar is the underlying matroid to the
integer polymatroid Pf−a := {x ∈ RE+ : ∑e∈S xe ≤ f(S)− a(S) for all S ⊆ E}.

Proof. It holds by Lemma 2.15 that f − a is normalized submodular and by Lemma 2.18
that Pf−a is a well-defined integer polymatroid. It follows

I ∈ I(M(Pf−a))⇔
∑

(e,b)∈I
χ{e} ∈ Pf−a ⇔

∑
e∈S

∑
(e,b)∈I

χ{e} ≤ f(S)− a(S) for all S ⊆ E

⇔
∑
e∈S

∑
(e,b)∈I

χ{e} +
∑
e∈S

ae ≤ f(S) for all S ⊆ E

⇔
∑
e∈S

∑
(e,b)∈I

χ{e} +
∑
e∈S

∑
(e,b)∈Ar

χ{e} ≤ f(S) for all S ⊆ E

⇔I tAr ∈M(Pf )⇔ I ∈M(Pf )/Ar.

Clearly, for a polymatroid Pf with underlying matroid M(Pf ) for e ∈ Ej and 1 < b <

f({e}) it holds vj(e,b) ≥ v
j
(e,b+1), hence agents prefer the set Al over the contracted set Ar in

Lemma 2.20. A direct consequence of the definition of M(Pf ) is:

Lemma 2.21. Let Pf be an integer polymatroid on the ground set E and M(Pf ) := (X, I)
its underlying matroid. Then, for a ∈ Pf it holds M(Pf )/Al 'M(Pf )/Ar.

Analogously to Lemma 2.20, truncating a polymatroid turns out to be equivalent to
deleting elements in the underlying matroid:

Lemma 2.22. Let Pf be an integer polymatroid on the ground set E and M(Pf ) := (X, I)
its underlying matroid, a ∈ Pf and and de := f({e})− ae for e ∈ E. Then, M(Pf ) \ Ar is
the underlying matroid to Pmin{f,d}.

Proof. By Lemma 2.19, it holds that Pmin{f,d} is an integer polymatroid. It follows

I ∈ I(M(Pf ) \Ar)⇔ I ∈ I(M(Pf )) and I ∩Ar = ∅

⇔
∑
e∈S

∑
(e,b)∈I

χ{e} ≤ f(S) for all S ⊆ E and
∑

(e,b)∈X
χ{e} ≤ f({e})−

∑
(e,b)∈Ar

χ{e} for all e ∈ E

⇔
∑
e∈S

∑
(e,b)∈I

χ{e} ≤ f(S) for all S ⊆ E and
∑

(e,b)∈X
χ{e} ≤ de for all e ∈ E

which, by Lemma 2.19, is equivalent to
∑

(e,b)∈I
χ{e} ∈ Pmin{f,d} ⇔ I ∈ I(M(Pmin{f,d})).

The correspondences between integer polymatroids and matroids can be summarized by
the following commutative diagram.

23



Chapter 2. An Ascending Vickrey Auction for Selling Bases of an Integer Polymatroid

Pf−a

Pf

M(Pf )/Ar

M(Pf )

− /

Pmin{f,
∑

e∈E(f({e})−ae)·χ{e}} M(Pf ) \Ar

\min

Next, we adapt Auction 2 to the polymatroid setting and state our mechanism for selling
bases of a polymatroid. Let Pf the polymatroid that constrains the feasible allocations at
current price p and a ∈ ZE+ the already awarded quantities. All bidders j ∈ N announce for
each item e ∈ Ej the minimum quantity

de := min{ye : ye ∈ arg max
xe≤f({e})

vje(xe + ae)− xe · p}

they would accept. Any additional unit of item e has no strict positive marginal gain for
bidder j at the current price p. Clearly, for F = {x ∈ X : vx = p} and (X, I) = M(Pf ) it
holds de = f({e})− |{k : (e, k) ∈ F}|. We remark that, in contrast to the matroidal setting,
the demanded amount of e explicitly depends on the quantity ae because of the possible
nonlinearity of vje.

We define analogous to the Monopoly condition:

Definition 2.23. For a polymatroid Pf given on a groundset E = Ej t E−j and d|E−j ∈
ZE−j+ we denote by P-MonopolyPf ,d|E−j ,xj the property that xj ∈ Pf |Ej fulfills the condition
(xj ,0|E−j) ∈ Pf−(0,d|E−j )|Ej .

Then, by the Lemmata 2.20 and 2.22 we can express the P-Monopoly condition equiv-
alently by the Monopoly condition and vice versa.

Corollary 2.24. For a polymatroid Pf with underlying matroid M(Pf ) it holds that xj ∈
Pf |Ej and P-MonopolyPf ,d|E−j ,xj iff Tj ∈ M(Pf )|Xj and MonopolyM(Pf ),X−j ,F−j ,Tj with
Tj = {(e, b) : e ∈ Ej , b ≤ xje} and F−j = {(e, b) ∈ X−j : (d|E−j )e < b ≤ f({e}), e ∈ E−j}.
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We adapt Auction 2 to the polymatroid setting making use of theP-Monopoly condition.
Algorithm 3:
Require: No-monopoly submodular function f : 2E → Z+ with a partition

E = ⊔
j∈N Ej of the ground set, valuations that are the sum of

nondecreasing, concave functions.
1 p← 0, ae ← 0, cj ← 0, r ← f(E)
2 while

∑
e∈E ae 6= r do

3 Ask bidders to determine de := min arg maxxe≤f({e}){vje(xe + ae)− p · xe}
4 for j ∈ N do
5 Ask bidder j to determine arg max{∑e∈Ej ve(x

j
e + ae) : xj ∈ ZNj+ such that

P-MonopolyPf ,d|E−j ,xj} and let qj ∈ NEj a norm-maximal element of that
set.

6 Award qj to j and charge him kj = ∑
e∈Ej p · q

j
e, cj ← cj + kj .

7 f ← f − (qj ,0|E−j )
8 for e ∈ Ej do
9 ae ← ae + qje

10 f ← min{f, d}
11 p← p+ 1

Output : a is the optimal allocation, c are the VCG payments
We prove the correctness of Auction 3.

Theorem 2.25. Auction 3 outputs a welfare maximizing allocation and charges VCG prices.

Proof. We can adapt Auction 2 such that for any Sj which is chosen in Line 7 it holds for
every e ∈ Ej the set {k : (e, k) ∈ Sj} is either the emptyset or a set of descending consecutive
integers starting with f({e}). Then, it follows directly by Lemmata 2.21 and 2.22 and
Corollary 2.24 that Auctions 2 and 3 produce the same welfare maximizing allocation, after
transforming the allocation obtained by Auction 2 onto the original space, and charge the
same prices. Then, the claim follows by Theorem 2.9.

We mention that the maximal value element in Line 5 that fulfills the P-Monopoly
condition has not to be unique. In order to obtain a basis of the polymatroid Pf , Auction 3
chooses a quantity such that its norm is maximal among all quantities that are contained
in the arg max. Otherwise, we might obtain a suboptimal allocation and the auction may
not terminate. To see this, consider the following example, which also applies to matroids:

Example 2.26. Let Pf := {x ∈ R2
+ : x1 +x2 ≤ 1} with bidder 1 interested in x1 and bidder

2 interested in x2 and both bidders j ∈ {1, 2} have the valuation vjxj (a) = a. Then, at price
p = 0 both bidders report the demand d0

xj = 1 and nothing will be awarded. When the price
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gets increased to 2 bidder j is indifferent about getting awarded a unit of j or not. If there is
no condition to take the maximum in Line 5 of Auction 3, it might happen that both bidders
j ∈ {1, 2} choose qxj = 0. They have to drop out of the auction since Pmin{f,d2} = ∅ and no
item was awarded and additionally Auction 3 does not terminate.

However, the auctioneer can ensure that norm-maximal elements are awarded in Line 6
of Auction 3.

Lemma 2.27. Bidders can not sabotage the auction by choosing non norm-maximal ele-
ments in Line 5 of Auction 3.

Proof. Let Pf be the polymatroid at Line 2 of Auction 3 and Pf̃ the polymatroid in Line 10
when bidders tried to manipulate the auction by choosing possibly non norm-maximal
elements qe for e ∈ E at price p. Then, the auctioneer can check if it holds f(E) =
f̃(E)+∑e∈E qe and if this is not the case he can award q̃ such that f(E) = f̃(E)+∑e∈E qe+q̃e
and Pf̃ = Pmin{f−(q+q̃),d} and charge the current price p for the additionally awarded quan-
tities q̃.
Note that in Theorem 2.30 we show that the quantities q can be computed efficiently and

obviously, the additional quantities q̃ can be calculated equivalently to the quantities q.

Long Step Version of Auction 3

We have seen that Auction 3 executed on an integer polymatroid yields the same allocation
as Auction 2 executed on the underlying matroid. It is rather obvious that the runtime
of Auction 3 is not polynomial in the highest encoded value maxe∈E vje(1), since we have
eventually to determine de for every smaller integer than maxe∈E vje(1). To overcome this
issue, we modify Auction 3 to a faster long step version. We can change Line 11 to ask each
bidder j ∈ N to determine

pj := arg min
e∈Ej ,f({e}) 6=0

vje(f({e})− vje(f({e})− 1) and set p← min
j∈N

pj .

Therefore, we ask every bidder for the smallest price change such that the demand for
any of the items she is interested in changes and set the new price as the minimum. No
bidder can profit from underreporting since it only delays the auction without allocating
anything.
However, there is a drawback of the long step version in contrast to the single step

version of Auction 3. In a single item setting the long step version turns out to be the
Vickrey-Clarke-Groves auction, while the single step version remains an ascending auction.
Therefore, the long step version should preferably be applied in settings with many items
and a moderate number of breakpoints of the separated valuation functions vje where it
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is unlikely that any winning bidder has to reveal the values of its smallest quantities to
preserve the bidder’s privacy.
We want to show that the long step version of Auction 3 has polynomial runtime in the

number of items, bidders and breakpoints of buyers’ valuation functions. The main difficulty
is to verify that Line 5 can be computed efficiently. To this end, we need some algorithmic
results regarding submodular functions.

Proposition 2.28. The minimum of a submodular function f : 2E → R+ can be calculated
in polynomial oracle time. Orlin [2009] showed that there exists an algorithm with runtime
O(m6 +m5 ·EOf ) and Lee et al. [2015] provides a strongly polynomial algorithm of runtime
O(m4 · logm+m3 · log2m · EOf ).

In order to compute Line 5 of Auction 3, every bidder has to maximize a separable
concave function over a polymatroid that is given by value oracle access to its associated
monotone nondecreasing submodular function. We outline a procedure, implicitly described
in Groenevelt [1991] and Nagano [2007], that is specifically tailored to this task.
Algorithm 4:
Require: Polymatroid Pf on the ground set E and a separable concave function

v : RE+ → R+.
1 Determine a solution y to the problem max{∑e∈E ve(xe) : ∑e∈E xe ≤ f(E), x ∈ RE+}.
2 Determine the unique inclusionwise maximal set

E′ ∈ arg min{f(S)−∑e∈S ye : S ⊆ E}.
3 return E′

Algorithm 5: Decomposition Algorithm
Require: Polymatroid Pf on the ground set E

1 Call Algorithm 4 on Pf
2 if E′ = E then
3 z|E = y

4 else
5 Call Algorithm 5 on Pf|E′ and v|E′ .
6 Set E′′ := E \ E′ and g : E′′ → R+, g(S) = f(S t E′)− f(E′).
7 Call Algorithm 5 on Pg and v|E′′ .

8 return z

The Decomposition Algorithm 5 is a recursion of Algorithm 4 that either states that
the solution y determined in Line 1 of Algorithm 4 is optimal and norm-maximal or it
decomposes the ground set nontrivially into two disjoint subsets to call Algorithm 5 on
these subsets again. Then, the solution to the original problem is given by joining the
solutions to the subproblems.
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Lemma 2.29. [Groenevelt, 1991], [Nagano, 2007] Maximizing a separable concave function
over a polymatroid given by its associated submodular function can be done by Algorithm 5
in polynomial oracle time.

Proof. Let f : 2E → R+ the function that describes the polymatroid. We refer to Groen-
evelt [1991] or Nagano [2007] for a detailed proof of the correctness of the Decomposition
Algorithm. Here, we outline that Algorithm 5 has polynomial runtime in m and makes just
polynomial many value oracle calls to the initial function f .

The single constraint problem in Line 1 can be solved in O(m · log( |f(E)|
m ) by Frederickson

and Johnson [1982] to determine y ∈ arg max{∑j∈E v
j
e(xe) : ∑e∈E xe ≤ f(E)}.

In Line 2 of Algorithm 4, one needs to find an inclusionwise maximal minimizer of g : 2E →
R+, g(S) := f(S) − ∑e∈S ye. The submodular function minimizing algorithms in Orlin
[2009] and Iwata et al. [2001] output a solution T ∈ arg min{g(S) : S ⊆ E)} and also a
vector z ∈ Bg and a presentation z = ∑

e∈E λebe, λe ≥ 0,∑e∈E λe = 1, be extreme point of
Pg, for which holds ∑e∈E min{ze, 0} = g(T ). The vectors z and b can be used to compute
a maximal minimizer of g in O(m3 · EOf ) additional time, see Murota [2003, Note 10.11].
Therefore, one can solve the problem in Line 2 of Algorithm 4 in O(m6 + (m5 +m3) ·EOf )
by the Algorithm in Orlin [2009] by Proposition 2.28. In contrast, the faster submodular
function minimization algorithm of Lee et al. [2015] does not output a vector z ∈ Bg from
which an inclusionwise maximal minimizer of g can be computed.
The Decomposition Algorithm is a recursion of Algorithm 4 that either states optimality

or decomposes the ground set nontrivially into two disjoint subsets to call Algorithm 4 again
on these subsets. The ground set E can be decomposed nontrivially at most n − 1 times,
hence n − 1 is an upper bound for the number of executions of Algorithm 4. In total, a
separable concave function f can be maximized over a polymatroid in O(m·(m·log( |f(E)|

m )+
m6 + (m5 +m3) · EOf ) = O(m2 · log( |f(E)|

m ) +m7 +m6 · EOf ).

We need that Line 5 of Auction 3 can be computed efficiently.

Theorem 2.30. Line 5 of Auction 3 can be calculated in polynomial time.

Proof. Proof. Recall that the initial function f is given via a value giving oracle and denote
p0 := 0, f0 = f and d0

e = f({e}) for e ∈ E and let (pi)1≤i≤k be a sequence of prices
computed during a run of (the long step version) of Auction 3. For 1 ≤ i ≤ k denote by
dpi ∈ ZE+ the demand and by qpi ∈ ZE+ the awarded quantities at price pi and by api ∈ ZE+
the already awarded quantities ∑i−1

j=0 q
pj . It holds by the Lines 7 and 10 for 1 ≤ i ≤ k

that fpi := min{fpi−1 − qpi−1 , dpi−1} describes the feasible allocations at price pi, hence
the polymatroid when the While-Loop in Line 2 is evaluated at price pi. Note that for
2 ≤ i ≤ k it holds fpi = min{min{fpi−2 − qpi−2 , dpi−2} − qpi−1 , dpi−1} = min{min{fpi−2 −
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qpi−2 − qpi−1 , dpi−2 − qpi−1}, dpi−1} = {min{fpi−2 − qpi−2 − qpi−1 , dpi−2 − qpi−1 , dpi−1} and
therefore by induction

fpi = min{f −
i−1∑
k=0

qpk ,min{dpj −
i−1∑

k=j+1
qpk , 0 ≤ j ≤ i− 1}} for 1 ≤ i ≤ k.

We assume w.l.o.g. that the for-loop in Line 4 is executed in lexicographic order and define
qpi<l := (qpi |⋃

1≤k<l Ek
,0|⋃

l≤k≤n Ek
) for l ∈ N , hence qpi<l equals the awarded quantities at

price pi after l − 1 iterations of the for loop in Line 4. Then, it holds that the polymatroid
that constrains the feasible allocations at the l-th iteration of the for loop in Line 4 at price
pi is given by

fpil := fpi − qpi<l = min{f −
i−1∑
k=0

qpk − qpi<l,min{dpj −
i−1∑

k=j+1
qpk − qpi<l, 0 ≤ j ≤ i− 1}} for 1 ≤ i ≤ k

and in Line 5 of Auction 3 agent l ∈ N has to compute

arg max{
∑
e∈El

ve(xle + api−1
e ) : xl ∈ Pfpi

l
−(0|El ,d

pi |E−l)|El}.

It holds that fpil − (0|El , dpi |E−l) = min{f −∑i−1
k=0 q

pk − qpi<l − (0|El , dpi |E−l),min{dpj −∑i−1
k=j+1 q

pk − qpi<l − (0|El , dpi |E−l), 0 ≤ j ≤ i − 1}}. We denote q̃pi<l := ∑i−1
k=0 q

pk + qpi<l +
(0|El , dpi |E−l) and d̃

pi
<l := min{dpj−∑i−1

k=j+1 q
pk−qpi<l−(0|El , dpi |E−l), 0 ≤ j ≤ i−1}, observe

that q̃pi<l and d̃pi<l can be computed easily out of the previously submitted demands and
awarded quantities and define f̄pil : 2E → Z+, f̄pil (S) := minK⊆S{(f− q̃pi<l)(K)}+ d̃pi<l(S \K)
and recall that Pfpi

l
−(0|El ,d

pi |E−l) = Pf̄pi
l

by Lemma 2.19.
Then, to calculate the quantity that bidder l is awarded at price pi she has to maximize

a separable concave function over the polymatroid Pf̄pi
l
|El which can be done in O(m2

l ·

log( |f(El)|
ml

) + m7
l + m6

l · EOf̄
pi
l

) ⊆ O(m2 · log( |f(E)|
m ) + m7 + m6 · EOf̄

pi
l

) where |El| = ml,
by Lemma 2.29. However, evaluating f̄pil (S) for S ⊆ El can be done in O(m4 · logm +
m3 · log2m · EOf ) by Proposition 2.28. Therefore, Line 5 of Auction 3 can be calculated in
O(m2 · log( |f(E)|

m ) + m7 + m6 · EOf̄
pi
l

) = O(m2 · log( |f(E)|
m ) + m7 + m6 · (m4 · logm + m3 ·

log2m · EOf ) = O(m2 · log( |f(E)|
m ) +m10 · logm+m9 · log2m · EOf ).

Now, the polynomial runtime of Auction 3 follows easily.

Theorem 2.31. The long step version of Auction 3 runs in polynomial time in m,n, f(E)
and |{vje(x)− vje(x− 1) : x is breakpoint of v̄je, e ∈ Ej , j ∈ N}| if bidders behave truthfully.

Proof. The outer While-loop in Line 2 is carried out at most the number of price incre-
ments times, which is at most the number of prices at which any function v̄je, e ∈ E has a
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breakpoint, hence |{vje(x) − vje(x − 1) : x is breakpoint of v̄je, e ∈ Ej , j ∈ N}|. (Notice that
there might exist j, k ∈ N , j 6= k and e ∈ Ej and f ∈ Ek and breakpoints x of vje and
y of vkf such that vje(x) − vje(x − 1) = vkf (y) − vkf (y − 1) and thus |{vje(x) − vje(x − 1) : x
is breakpoint of v̄je, e ∈ E}| ≤

∑
e∈E #(of integral breakpoints of v̄je).) The inner For-loop

in Line 4 is carried out n times. To show polynomial runtime it remains to show that
we are able to check the While-condition in Lines 2 and calculate Line 5 of Auction 3 in
polynomial time. Clearly, the While-Condition in Lines 2 can be checked easily e.g., by a
greedy algorithm and the most time consuming computation in Line 5 can be executed in
O(m2 · log( |f(E)|

m ) +m10 · logm+m9 · log2m · EOf ) by Theorem 2.30. In total, an optimal
allocation can be computed in O((m2 · log( |f(E)|

m ) + m10 · logm + m9 · log2m · EOf ) · n ·∑
e∈E #(of integral breakpoints of vje)).

We remark that the runtime of Auction 3 primarily depends on the time consuming
repeated application of submodular function minimization and that the bound obtained in
Theorem 2.31 holds for arbitrary submodular functions. Furthermore, in contrast to the
Auctions 1 and 2 applied to integer polymatroids, the runtime of Auction 3 does not depend
linearly on the highest encoded value maxe∈E f({e}).

2.3.4. Incentives

It was shown by Bikhchandani et al. [2011] that in Auction 1 truthful bidding forms an ex
post equilibrium. That is, no bidder can benefit by bidding untruthfully provided that all
other bidders bid truthfully. This is a stronger equilibrium property than Bayesian-Nash
equilibrium. Therefore, it follows directly by the observation made in Theorem 2.9 that the
awarded and deleted elements in Auction 1 and Auction 2 coincide at every price p and by
Corollary 2.24 that in Auction 3 truthful bidding forms an ex post equilibrium. However,
truthful bidding is not dominant strategy incentive compatible in Auction 3 since Auction 3
is vulnerable to biding in a way that is inconsistent with any valuation function, as shown
in the following example

Example 2.32. Let E := {E1 t E2} with E1 := {a, b} and E2 := {c, d}, N := {1, 2}
and Pf := {x ∈ RE+ : xa + xc ≤ 1, xa + xc ≤ 1}. Suppose now that the true valuations
of the bidders are v1

a(1) = 3, v1
b (1) = 10, v2

c (1) = 2, v2
a(1) = 5. Then, the optimal bases is

xa = xb = 1, xc = xd = 0. If both bidders bid truthfully then a gets allocated at a price of
2 and b gets allocated at a price of 5 by Auction 3. However, if bidder 2 bids inconsistent
with his valuation, e.g. he pretends to have a higher value for item d because of being mad
to have been forced to drop out of the competition for item c at price 2 it might occur that
bidder 1 had been better of by give up his interest in item a and secure item b for a price of
5 and a higher utility then he gets by only getting awarded item a or getting awarded item
b for a price higher than 6.
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2.3.5. Impossibly Beyond Polymatroids

We briefly mention that the polymatroid structure is essential so that any single price
ascending auction implements an efficient allocation, even if bidders valuations are separable
linear functions. Bikhchandani et al. [2011, Theorem 18] show, using a variant of Korte
and Lovász [1984, Theorem 4.1], that in every multi-item, single-unit (hence, every item
is unique) and multi bidder setting some truthful single price ascending auction is able
to find the optimal basis for all valuations iff the inclusionwise maximal feasible subsets
are the set of basis of some matroid. Then, it follows directly by the transformation from
integer polymatroids to matroids in Subsection 2.3.2 that there cannot exists an environment
beyond integer polymatroids for which a truthful single price ascending auction implements
an optimal allocation in a multi-item, multi-copy and multi-bidder setting.

2.3.6. An Example

We provide an example of the long step version of Auction 3.

Example 2.33. Let E := {E1 t E2} with E1 := {a, b} and E2 := {c, d}, N := {1, 2}, the
polymatroid that constraints the feasible allocations is given by

Pf := {x ∈ RE+ : xe ≤ 60 for e ∈ E, xa + xb + xc + xd ≤ 100, xa + xc ≤ 80}

and the concave valuation functions are depicted in the following table.

[0, 10] (10, 20] (20, 30] (30, 40] (40, 50] (50, 60]
v1
a(x) 50 · x 50 · x 50 · x 50 · x 25 · x 25 · x
v1
b (x) 30 · x 15 · x 15 · x 15 · x 15 · x 10 · x
v2
c (x) 40 · x 40 · x 40 · x 40 · x 40 · x 10 · x
v2
d(x) 25 · x 25 · x 25 · x 10 · x 10 · x 10 · x

Clearly, for j ∈ {1, 2} holds 100 = f(E−j) = f(E), hence no bidder can prevent that a
basis is sold.
Bidders announce the smallest price change such that the demand of any item changes and

the price is set to 10 and the updated demands are d10
a = 60, d10

b = 50, d10
c = 50 and d10

d = 30.
Then, bidder 1 can clinch 20 units from item a or item b since d10

c + d10
d = 80 = 100 − 20

and d10
c = 50 = 80 − 30. He gets awarded 20 units of item a because it maximizes the

valuation function of bidder 1. Bidder 2 gets awarded nothing since d10
a + d10

b ≥ 100. Then,
the polymatroid gets updated to

{x ∈ RE+ : xa ≤ 40, xb ≤ 50, xc ≤ 50, xd ≤ 30, xa + xb + xc + xd ≤ 80, xa + xc ≤ 60}
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and the relevant parts of the concave valuation functions at price 10 are depicted in the
following table:

[0, 10] (10, 20] (20, 30] (30, 40] (40, 50] Allocated Charged
v1
a(x+ 20) 50 · x 50 · x 25 · x 25 · x 20 200
v1
b (x) 30 · x 15 · x 15 · x 15 · x
v2
c (x) 40 · x 40 · x 40 · x 40 · x 40 · x
v2
d(x) 25 · x 25 · x 25 · x

The price increases to 15 and bidder 1 updates the demand d20
b = 10, hence d20

a +d20
b = 50

and bidder 2 gets allocated 20 units of item c and 10 units of item d (He cannot get 30 units
of item c since d20

a = 40 and xa + xc ≤ 60). Then, the polymatroid gets updated to

{xa ≤ 40, xb ≤ 10, xc ≤ 30, xd ≤ 20, xa + xb + xc + xd ≤ 50, xa + xc ≤ 40}

and the relevant parts of the concave valuation functions at price 15 are depicted in the
following table:

[0, 10] (10, 20] (20, 30] (30, 40] Allocated Charged
v1
a(x+ 20) 50 · x 50 · x 25 · x 25 · x 20 200
v1
b (x) 30 · x
v2
c (x+ 20) 40 · x 40 · x 40 · x 20 400
v2
d(x+ 10) 25 · x 25 · x 10 200

Next, the price increases to 25 and bidder 1 updates the demand d25
a = 20 and bidder 2

updates d25
d = 0 and bidder 1 gets allocated 10 items of a and 10 items of b (he cannot get

allocated 20 items of a since d25
c = 30 and xa+xc ≤ 40) and bidder 2 gets allocated 20 items

of c. Then, the polymatroid gets updated to

{xa ≤ 10, xb = 0, xc ≤ 10, xd = 0, xa + xc ≤ 10}

and the relevant parts of the concave valuation functions at price 25 are depicted in the
following table:

[0, 10] Allocated Charged
v1
a(x+ 30) 50 · x 30 450
v1
b (x+ 10) 10 250
v2
c (x+ 40) 40 · x 40 900
v2
d(x+ 10) 10 200

Next, the price increases to 40 and bidder 2 updates the demand d40
c = 0 and bidder 1

gets allocated 10 items of a for a cost of 400.
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The auction terminates with the allocation (xa = 40, xb = 10, xc = 40, xd = 10) for a social
welfare of v1

a(40) + v1
b (10) + v2

c (40) + v2
d(10) = 2300 + 1850 = 4150 and payments c1 = 1100

and c2 = 1085. This are exactly the VCG payments, since maxxa+xb=100 v
1
a(xa) + v1

b (xb) =
40 · 50 + 10 · 30 + 20 · 25 + 30 · 15 = 3385 and 3385 − 2300 = 1085 what equals the loss
suffered by bidder 1 and maxxc+xd=100 v

2
c (xc) + v2

d(xd) = 50 · 40 + 30 · 25 + 20 · 10 = 2950
and 2950− 1850 = 1100 what equals the loss suffered by bidder 2.

2.4. Applications

Clearly, Auction 3 applies to various matroidal settings considered in the literature, e.g.,
scheduling matroids (see Demange et al. [1986]), transversal matroids for kidney exchange
(see Roth et al. [2005]) or graphical matroids (see Bikhchandani et al. [2011]). However, in
all of these examples even the simpler Auctions 1 and 2 apply and to highlight the impact
of Auction 3 we provide some genuine polymatroid applications.
Auction 3 applies to submodular functions defined as the cut functions of a directed graph:

Consider the setting of a directed graph G = (V t{s}, A) where the bidders can be identified
with disjoint subsets of V and the seller is presented by the node s. The utility of bidder
j ∈ N is the sum of concave functions of the incoming flow xe into each of the agents’ nodes.
Every edge has a capacity and an allocation x ∈ RV+ is feasible iff for all S ⊆ V it holds
that ∑v∈S xv ≤ f(S) where f(S) denotes the minimal cut from s to S. It is well known
that f is submodular and therefore the set of feasible allocations is a polymatroid. Thus,
Auction 3 applies to this setting, and following Bikhchandani et al. [2011], as a practical
application one can interpret s as a company that provides video streams and every bidder
represents a group of friends that shares an account and wants to stream movies provided
by the company. In this setting, the allocation x represents the transmitted data, hence for
v ∈ V the incoming data is xv.

A more sophisticated polymatroid application arises from electricity markets. Following
the increase of the global gas price since March 2022 there are ongoing discussions about
the inefficiency of the German electricity day-ahead spot market prices. A daily day-ahead
auction to optimize energy production is held, hence, to determine which power plants
produce which amount at which price.
One of the main issues of the current auction format is that all producers get payed

the same price although in Northern Germany there is more energy production than con-
sumption while in Southern Germany there is more consumption than production and the
constrained capacity of the high voltage grid to transport the northern surplus to the south
is not taken into account. Simplified, one can represent this particular situation as a net-
work flow problem on the digraph (V t{n, s}, A) of which the set of feasible flows turns out
to be a polymatroid: There is one node n ∈ V for consumption in the north and one node
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s ∈ V for consumption in the south and for every energy producer (bidder) there is a node
v ∈ V . Bidders V = Vn t Vs are partitioned regarding their location, in which Vn is the set
of producers that are located in the north and Vs is the set of producers that are located in
the south. There is an arc (v, n) if producer v ∈ Vn and an arc (v, s) if v ∈ Vs Further, there
is an arc (n, s) with capacity c(n,s), which is the physical transportation capacity of the high
voltage cables connecting Northern Germany and Southern Germany. For each time inter-
val consumers in the north and south announce their demand, which is aggregated to the
respective consumption and corresponds to the node capacities c(n) and c(s) of the nodes
n and s. Then, the set of feasible allocations is the set of feasible flows from the producers
to s and n and from n to s that meet the node capacities c(n) and c(s). It turns out that
the set of feasible flows is a polymatroid. To see this, notice that the set of feasible flows is
constrained by the normalized nondecreasing submodular function f , given by

f : A→ Z+, f(S) =



0 if S = ∅,

c(n) + c(n,s) if ∅ 6= S ⊆ Vn,

c(n) + c(s) if S ∩ Vn 6= ∅, S ∩ Vs 6= ∅,

c(s) if ∅ 6= S ⊆ Vs.

To determine an efficient allocation one can apply our auction as follows: One starts with a
negative price at which buyers submit their potential production. Notice that in this setting
buyers purchase the duty to feed in energy for a in general negative price, hence they get
payed. Then, if the starting price is low enough, potential production exceeds demand and
increasing the price step by step yields reduction of the potential production and results in
an efficient production.

2.5. Conclusion

We presented a stronger polynomial time ascending auction for selling elements of an integer
base polyhedron. Our auction is incentive compatible and implements a social welfare
maximizing allocation if bidders behave truthfully.
Future research may extend from integer polymatroids to integer packing instances: Gen-

erally, applying our algorithm to packing instances may come at the cost of loosing the ex
post incentive compatibility and truthful bidding also may result in a non optimal allocation.
However, if the rank quotient of the integer packing instance is close to one then our

auction may be incentive compatible for basically all valuations and the output by the
auction is approximately optimal. In particular, consider a more elaborated model of the
electricity spot market. Then the set of feasible flows of the underlying network should be an
integer packing instance that is nearly a polymatroid. Thus, it seems worthy to investigate
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this model from a theoretical and practical perspective.
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Chapter 3.

On Inner Independence Systems

3.1. Introduction

In the first part of this chapter we examine the problem of determining a maximum weight
basis of an independence system. The problem is of course NP-hard and it is common to
resort to heuristics to solve it (or any of its special cases). The most well known heuristic
is the greedy algorithm, in which elements of the ground set with nonnegative weight are
selected in order of declining weight as long they form an independent set. A classic result
of Korte and Hausmann [1978] and Jenkyns [1976] bounds the value of the greedy solution
relative to the optimal value in terms of the rank quotient of the underlying independence
system.
We examine an alternative approximation approach. The idea is to find an ‘inner approx-

imation’ of the feasible region of the underlying optimization problem and optimize over
that. Milgrom [2017] and de Vries and Vohra [2020] examine this approach in the context of
independence systems. Specifically, find an inner matroid that approximates the underlying
independence system well. An inner matroid is a matroid with the property every one of its
basis sets is contained in a basis of the original independence system (but not conversely).
Then, apply the greedy algorithm to the inner matroid. It is well known that this will
recover the maximum weight basis of the inner matroid.
In this chapter, we propose to approximate the given independence system by an inner

independence system (defined in a similar way to inner matroid). Then, apply the greedy
algorithm to the inner independence system. At first blush, this appears silly. Surely, the
best inner independence system would be the given independence system itself? Second,
the greedy algorithm applied to the inner independence system is itself suboptimal. Hence,
one is introducing two sources of approximation error. First from the inner independence
system, and second, from the greedy solution itself. Surprisingly, this is not the case. We
show that an approximation by inner independence systems may simultaneously outperform
the approximation by inner matroids as well as direct application of the greedy algorithm
regarding a worst-case objective.
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The basic intuition is this. The greedy algorithm is suboptimal because it gets ‘stuck’ in a
low rank basis. An inner independence system can be obtained from the given independence
system by deleting some of the low rank basis, i.e., removing potential local optima.

The second part of this chapter extends the inner approximation idea to more general
combinatorial objects than independence systems, namely packing instances. To motivate
this generalization represent the independent sets of the independence system by their char-
acteristic vector. The set of these binary vectors forms an independence system if and only
they are downward closed. Specifically, if x is in the set, then any binary vector y ≤ x is
also in the set. The maximal vectors in this set correspond to the basis sets of the cor-
responding independence system. Packing problems correspond to collection of vectors in
ZE+ that are downward closed. We consider packing problems where the objective function
is separable discrete concave and show that the worst-case approximation guarantee of the
greedy algorithm can be outperformed by an approximation with inner polymatroids and
by inner integer packing instances.
In the next section we describe the greedy algorithm for independence systems and present

the approximation guarantee of inner approximation by independence systems. The subse-
quent section covers packing problems.

3.2. Greedy Algorithm and Inner Approximation by Independence
Systems

Let (E, I) a normal independence system with weights vi ∈ R+ for i ∈ E. Then, the
problem of finding a maximum weight basis of (E, I) is maxI∈I v(I) := maxI∈I

∑
i∈I vi. A

standard approach to solve the problem V ∗(I, v) := maxI∈I v(I) is the greedy algorithm:
Algorithm 6: Greedy algorithm for independence systems
Input : An independence system (E, I) given by an independence oracle. Weights

vi ∈ R+

Output: A basis Ig ∈ I
1 Order the elements of E in nondecreasing order such that v1 ≥ v2 ≥ · · · ≥ vE
2 Set I = ∅
3 for i← 1 to E do
4 if I ∪ {i} ∈ I (oracle call) then
5 I = I ∪ {i}

6 Set Ig = I and return

Let V greedy(I, v) denote the value of the worst possible (if ties occurs) greedy solution.
A common approach to evaluate the quality of an algorithm is to compare the value of its
output with the optimal value in the worst case, here minv∈RE+\{0}

V greedy(I,v)
V ∗(I,v) , if V ∗(I, v) >
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0.
Korte and Hausmann [1978] and Jenkyns [1976] showed

min
v∈RE+\{0}

V greedy(I, v)
V ∗(I, v) = q(I) for normal independence systems (E, I).

Motivated by Milgrom [2017], we incorporate exogenously given prior information about
the set of likely candidates for an optimal basis, denoted O ⊆ I.

Definition 3.1. We call O the acceptable set. If O = I we call this the zero prior
knowledge case.

In contrast to Milgrom [2017] we do not require O to be downward closed but will point
out where it becomes necessary.
For any acceptable set O we define O⊆ := {I ⊆ O : O ∈ O}. The optimal value with

respect to the acceptable set O is denoted by V ∗(O, v) := maxI∈O v(I). We consider an
independence system (E,J ) inside the independence system (E, I) (but not necessarily
containing all elements of O) and apply the greedy algorithm to find an optimal weight
basis in J . We call an independence system (E,J ) an inner independence system of
(E, I), if J ⊆ I and propose that the greedy solution to (E,J ) be used as a solution to
the problem of finding a maximum weight basis in O.

We want to evaluate the quality of the greedy solution of the inner independence system
to V ∗(O, v).

Definition 3.2. In the following, we abbreviate the condition (S ⊆ E,S 6= ∅) by S v E.

Assumption 3.3. For an independence system (E, I), an inner independence system (E,J )
and an acceptable set O we assume that O⊆ is normal, hence for every i ∈ E there exists
O ∈ O with i ∈ O.

Definition 3.4. We define the generalized rank-quotient as

ω(I,O,J ) := min
SvE

lJ (S)
max{|O| : O ⊆ S,O ∈ O⊆} = min

SvE

lJ (S)
rO⊆(S) .

The normality assumption of O⊆ is needed to ensure that ω(I,O,J ) is well defined.
Otherwise, there exists i ∈ E with {i} /∈ O⊆ such that lJ ({i})

max{|O| : O⊆{i},O∈O⊆} is undefined.
The definition of the generalized rank-quotient is similar to the rank-quotient and depends

only indirectly on I. We provide a bound on the quality of the solution V greedy(J , v) in
terms of ω(I,O,J )
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Theorem 3.5. Let (E, I) be an independence system, (E,J ) an inner independence system
of (E, I) and O the acceptable set. Then,

min
v∈RE+\{0}

V greedy(J , v)
V ∗(O, v) = ω(I,O,J ).

Proof. Let S∗ ∈ arg minSvE lJ (S)
rO⊆ (S) = ω(I,O,J ). Then, with v = 1S∗ holds lJ (S∗) =

V greedy(J ,1S∗) and rO⊆(S∗) = V *(O,1S∗) and minv∈RE+\{0}
V greedy(J ,v)
V ∗(O,v) ≤ ω(I,O,J ).

To prove minv∈RE+\{0}
V greedy(J ,v)
V ∗(O,v) ≥ minSvE lJ (S)

rO⊆ (S) we argue similar to Korte and Haus-
mann [1978]. Let v ∈ RE+ \ {0} and Xg a worst possible greedy solution for (E,J ) and O
the optimal solution for O. Let E be ordered such that v1 ≥ v2 ≥ · · · ≥ vn ≥ vn+1 := 0.
Define Ei := {1, . . . , i}. Then, for F ∈ I we can rewrite

v(F ) =
n∑
i=1
|F ∩ Ei|(vi − vi+1). (3.1)

Note that O ∩ Ei ⊆ O and therefore O ∩ Ei ∈ O⊆, hence rO⊆(Ei) ≥ |O ∩ Ei| for all i ∈ E.
Furthermore, Xg ∩Ei is a basis of Ei for J for all i ∈ E since it is generated by the greedy
algorithm. That implies |Xg ∩ Ei| ≥ lJ (Ei) for all i ∈ E. It follows

v(Xg)
v(O) =

∑n
i=1 |Xg ∩ Ei| · (vi − vi+1)∑n
i=1 |O ∩ Ei| · (vi − vi+1)

≥

∑n
i=1 lJ (Ei) · |O∩Ei|rO⊆ (Ei) · (vi − vi+1)∑n

i=1 |O ∩ Ei| · (vi − vi+1) =
∑n
i=1 |O ∩ Ei| · (vi − vi+1) · lJ (Ei)

rO⊆ (Ei)∑n
i=1 |O ∩ Ei| · (vi − vi+1)

≥

∑n
i=1 |O ∩ Ei| · (vi − vi+1) ·minSvE lJ (S)

rO⊆ (S)∑n
i=1 |O ∩ Ei| · (vi − vi+1)

=
∑n
i=1 |O ∩ Ei| · (vi − vi+1)∑n
i=1 |O ∩ Ei| · (vi − vi+1) ·min

SvE

lJ (S)
rO⊆(S)

= min
SvE

lJ (S)
rO⊆(S) .

The classic result of Hausmann et al. [1980] is a special case of Theorem 3.5 for O = I:

Corollary 3.6. For an independence system (E, I) it holds ω(I, I, I) = q(I).

Proof. It holds ω(I, I, I) = minSvE lI(S)
max{|O| : O⊆S,O∈I} = minSvE lI(S)

rI(S) = q(I).

Definition 3.7. Call (E,J ∗) a best inner independence system of an independence
system (E, I) and acceptable set O if

(E,J ∗) ∈ arg max
(E,J ) is independence system,J⊆I

ω(I,O,J ).
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We give an example which shows that an inner independence system approximation can
outperform the direct application of the greedy algorithm regarding a worst-case objective.

Example 3.8. Consider the independence system (E, I) with E = {a, b} ∪ C with C :=
{c1, ..., c10} defined via its set of bases BI = {{a, b}, C} ∪ ({{a}}⊕(C

5
)
) ∪ ({{b}}⊕(C

5
)
)

whilst
(C

5
)

:= {S ⊆ C : |S| = 5}. Let O = I, so that the acceptable set coincides with the
set of all independent sets. The ground set has a basis C of cardinality 10 and {a, b} is a
low rank basis of cardinality 2, therefore, q(I) ≤ 1

5 . We show for J := I \ {{a, b}} that
ω(I,O,J ) = 1

2 which yields a better worst case approximation guarantee than q(I). It is

BJ = {C} ∪ ({{a}}
⊕(

C

5

)
) ∪ ({{b}}

⊕(
C

5

)
).

For {a, b} it is lJ ({a,b})
rI({a,b}) = 1

2 since {a}, {b} ∈ J 63 {a, b}. Now, let S ⊆ E, S1 = S ∩ {a, b}
and S2 = S ∩ C. If S1 = ∅ then BJ (S) = {S2} and therefore lJ (S)

rI(S) = 1. If S1 = {a} (note
that this is equivalent to S1 = {b}) and |S2| ≤ 5 it is BJ (S) = {{a}}⊕{S2} and therefore
lJ (S)
rI(S) = 1 and if S1 = {a} and |S2| > 5 it is BJ (S) = ({{a}}⊕(C

5
)
) ∪ {S2} and therefore

lJ (S)
rI(S) ≥

5
rI(S) ≥

5
10 = 1

2 . It remains the case that S1 = {a, b}. Then, if |S2| < 5 it is
BJ (S) = ({{a}}⊕{S2}) ∪ ({{b}}⊕{S2}) and therefore lJ (S)

rI(S) ≥
1+|S2|
2+|S2| ≥

1
2 . If |S2| ≥ 5 it

is BJ (S) = ({{a}}⊕(C
5
)
)∪ ({{b}}⊕(C

5
)
)∪ {S2} and therefore lJ (S)

rI(S) ≥
5
10 = 1

2 . In total, it
follows

ω(I, I,J ) = 1
2 > q(I) = 1

5 .

It is obvious that (E,J ) is a best inner independence system: For any inner independence
system (E,J ′) with {a, b} ∈ J ′ holds ω(I, I,J ′) ≤ lJ ′ (E)

rI(E) = 2
10 and any independence

system J ′ ⊂ J cannot improve the approximation guarantee since ω(I, I,J ′) ≤ lJ ′ ({a,b})
rI({a,b}) ≤

1
2 .

One can extend Example 3.8 to show that there exist cases where the inner independence
system approximation yields an arbitrary better worst-case approximation guarantee than
the original independence system:

Example 3.9. For i ∈ N define the independence system (E2i, I2i) with E2i := {a, b} ∪
C2i and C2i := {c1, ..., c2i} via its set of bases BI = {{a, b}, C2i} ∪ ({{a}}⊕(C2i

i

)
) ∪

({{b}}⊕(C2i

i

)
). Let O = I and J 2i := I2i \ {{a, b}}. An analogous argument as in Exam-

ple 3.8 shows that q(I2i) = 2
2i and ω(I2i, I2i,J 2i) = 1

2 and therefore limi→∞
ω(I2i,I2i,J 2i)

q(I2i) =
limi→∞

i
2 →∞.
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3.3. Comparison to Inner Matroid Approximation

We compare our result with the inner matroid approximation proposed by Milgrom [2017]
and de Vries and Vohra [2020]. Milgrom [2017] considers an inner matroid (E,M) of
the independence system (E, I) with M ⊆ I and proposes the greedy solution to (E,M)
be used as a solution to the problem of finding a maximum weight basis in the downward
closed acceptable set O⊆ ⊆ I. He calls the term minS∈O⊆\{∅}

rM(S)
|S| =: ρ(I,O⊆,M) the

substitutability index ofM for I with respect to the acceptable set O⊆ ⊆ I. Note that
minS∈O⊆\{∅}

rM(S)
|S| = minS∈O\{∅}maxM∈M,M⊆S

|M |
|S| . Consequently, he defines the best

approximating matroid by

(E,M∗) ∈ arg max
(E,M) is matroid, M⊆I

min
S∈O⊆\{∅}

max
M∈M,M⊆S

|M |
|S|

.

We show that the definition of substitutability index is unsuitable when applied to inner
independence system instead of inner matroids.

Example 3.10. Let N := {1, 2, 3} be an independence system (E, I) whose bases are BI :=
{{1, 2}, {3}}, thus q(I) = 1

2 . Let the inner independence system (E,J ) coincide with (E, I)
and the acceptable set is O = BI . Clearly, ρ(I,O,J ) = 1. The greedy algorithm, however,
may fail to find an optimal basis. Assume v1 = v2 = 1, v3 = 1 + ε. Clearly, V ∗(J , v) =
2 = V ∗(O, v). The greedy algorithm carried out on J gets stuck with the low rank basis {3}
with V greedy(E,J ) = 1 + ε and therefore V greedy(E,J )

V ∗(O,v) = 1+ε
2 . Hence, the greedy algorithm

performs worse than ρ(I,O,J ) suggests.

However, the substitutability index ofM coincides with the generalized rank-quotient of
M in the case of (E,M) being an inner matroid and (E,O) a normal independence system.

Theorem 3.11. Let (E,M) an inner matroid of the independence system (E, I) and O ⊆
I an acceptable set such that (E,O) is a normal independence system. Then, it holds
ω(I,O,M) = ρ(I,O,M).

Proof. Clearly, for S ∈ O \ {∅} it holds lM(S)
|rO⊆ (S)| = rM(S)

|S| and therefore ω(I,O,M) ≥

ρ(I,O,M). Suppose S′ ∈ arg minSvE lM(S)
rO⊆ (S′) but S′ /∈ O⊆. Let F be upper rank basis

of S′ for O⊆, then F ⊂ S′ and rO⊆(S′) = rO⊆(F ). But since (E,M) is a matroid it
holds lM(F ) = rM(F ) ≤ rM(S′) = lM(S′) and therefore lM(F )

rO⊆ (F ) ≤
lM(S′)
rO⊆ (S′) , hence F ∈

arg minSvE lM(S)
rO⊆ (S) and it holds ω(I,O,M) ≤ ρ(I,O,M) and the claim follows.

As reported in Milgrom [2017] and de Vries and Vohra [2020], the substitutability index
can be used to bound the approximation quality of an inner matroid (E,M) if O is a normal
independence system.
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Corollary 3.12. [de Vries and Vohra, 2020, Milgrom, 2017] Let (E,M) an inner matroid
of the independence system (E, I). If O is a normal independence system then

min
v∈RE+\{0}

V ∗(M, v)
V ∗(O, v) = min

S∈O\{∅}

rM(S)
|S|

.

Proof. Follows directly from Theorems 3.5 and 3.11.

Remark 3.13. Note that in de Vries and Vohra [2020], the condition that O is an inde-
pendence system is omitted. The following explains, why the condition is necessary.
Let E = {1, 2, 3, 4, 5} and I = 2{1,2,3} ∪ 2{1,4,5} and BM = {{1, 2}{1, 3}, {1, 4}, {1, 5}}

and O = {{1, 2, 3}, {1, 4, 5}}. It is easy to see that minS∈O\{∅} rM(S)
|S| = 2

3 . However, setting
v1 = v2 = v3 = 0 and v4 = v5 = 1

2 yields V ∗(M, v) = 1
2 and V ∗(O, v) = 1 and therefore

minv∈∈RE+\{0}
V ∗(M,v)
V ∗(O,v) ≤

1
2

!
< 2

3 .

It is natural to ask if the inner independence system approximation outperforms the best
inner matroid approximation. In Example 3.8, this is not the case, as the following shows.

Example 3.14. Let (E, I) defined as in Example 3.8 and (E,M) defined by its bases BM :=(C
6
)
∪({{a}}⊕(C

5
)
)∪({{b}}⊕(C

5
)
). Verification of the basis exchange axiom (see Appendix)

would confirm that (E,M) is a matroid. An analogous argument as in Example 3.8 yields

ω(I, I,M) = 1
2 .

In spite of this, there exist examples, even in the zero prior knowledge case O = I, where
the approximation guarantee of the best inner independence system strictly dominates the
approximation guarantee of the best inner matroid. First, we provide some intuition for
why the later inequality might occur before giving an example in Theorem 3.15.
Suppose for some independence system (E, I) we know a nonmatroidal best approxi-

mating independence system (E,J ). Assume now that we want to construct an inner
matroid (E,M) contained in (E,J ) with the same approximation guarantee. Recall that
for any pair of rank function rM and lower rank function lM of a matroid it has to be that
lM(S) = rM(S) for every S ⊆ E. As (E, I) is nonmatroidal there exists S∗ ⊆ E such that
lJ (S∗) < rJ (S∗) with F lower rank basis of S∗ and G upper rank basis of S∗. Therefore, to
construct an inner matroid from (E,J ) one either has to reduce the rank of F to eliminate
the low rank basis F and make the newly independent subsets of F contained in a higher
rank basis of S∗, or one has to reduce the rank of G to obtain rM(S∗) = rM(F ) = rM(G).
Note that both ideas can be incorporated by adding circuits to J . If we follow the idea
to reduce the rank of F it might occur that r′M(F ′)

rO⊆ (F ′) < minS⊆E lJ (S)
rO⊆ (S) for some F ′ ⊆ F .

Conversely, in the case that we reduce the rank of G it could happen that we implicitly
reduce the rank of some A ⊃ G such that r′M(A)

rO⊆ (A) < minS⊆E lJ (S)
rO⊆ (S) .
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This explanation tacitly assumes that the best inner matroid is contained in the best
inner independence system. This need not be true because the best inner matroid could be
a superset of some best inner independence system. To see this, consider the independence
system (E, I) and the best inner matroid (E,M) defined as in Example 3.14. The inner
independence system (E,J ) given via its bases BJ := BM \ {{c1, c2, c3, c4, c5, c6}} is a best
inner independence system butM⊃ J .

In the next theorem we exhibit an independence system I which is a best inner indepen-
dence system which contains a best inner matroid.

Theorem 3.15. There exists an independence system (E, I) and an inner independence
system (E,J ) such that ω(I, I,J ) > ω(I, I,M) for every matroid (E,M) contained in
(E, I).

Proof. Let N := {1, 2, 3, 4, 5} and the independence system (E, I) defined via its bases
BI := {{1, 2, 3}, {1, 4}, {2, 5}}.

Claim 1: q(I) = 1
2 .

Proof of claim: Since {lI(S) : S v E} = {rI(S) : S v E} = {1, 2, 3} it has to hold q(I) ∈
{1

2 ,
1
3 ,

2
3}. It is q(I) ≤ l({1,3,5})

r({1,3,5}) = 1
2 . If there exists S ⊆ E with rI(E) = 3 it has to hold

E ⊇ {1, 2, 3}. It is lI({1, 2, 3}) = 3 and lI({1, 2, 3, 4}) = lI({1, 2, 3, 5}) = lI({1, 2, 3, 4, 5}) =
2. Therefore, there can not exist S ⊆ E with l(E)

r(E) = 1
3 and it follows q(I) = 1

2 . �

Claim 2: ω(I, I,J ) = 1
2 for a best inner independence system (E,J ).

Proof of claim: Since I is an independence system J := I itself is an inner independence
system with ω(I, I,J ) = 1

2 . Assume there exists a better approximating inner independent
system (N,J ′). Obviously, it either has to hold that the only basis of J ′ containing 4 is
{4} or {1, 4}. Either way, it is lJ ′ ({2,4,5})

max{|O| : O⊆{2,4,5},O∈I} ≤
1
2 and therefore ω(I, I,J ′) ≤ 1

2 . �

Claim 3: ω(I, I,M) = 1
3 for a best inner matroid (E,M).

Proof of claim: We argue that the uniform matroid U1
5 is the best inner matroid. Clearly,

a best inner matroid (E,M) has to be contained in (E, I). Consider E = {1, 4, 5} and
note that {5} is a low rank basis of E in (E, I). In order to construct rM out of rJ
we cannot reduce the rank of {5} since this would make {5} inapproximable. Therefore,
rM({1, 4, 5}) = 1, hence rM({1, 4}) = 1. Since {1, 4} /∈ M it must be that rM({4}) = 1
because setting rM({4}) = 0 would would make {4} inapproximable. Now, since {2, 4} /∈ I
and {3, 4} /∈ I it follows that rM({1, 2, 3, 4}) = rM({4}) = 1. Then, as {4, 5} /∈ I it
has to hold that {4} is a basis of {1, 2, 3, 4, 5} from which follows M = U1

5 . This yields
ω(I, I,M) = lM({1,2,3,4,5})

rI{1,2,3,4,5}, = lM({1})
rI({1,2,3}) = 1

3 . �
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In sum, we can conclude

max
M⊆I,(E,M) matroid

ω(I, I,M) = 1
3

!
<

1
2 = max

J⊆I,(E,J ) indpendence system
ω(I, I,J ).

Definition 3.16. An independence system (E, I) arises from a knapsack problem if there
exists W ∈ R+ and w : E → R+ such that I = {I ⊆ E : ∑x∈I w(x) ≤W}.

We remark that the independence system in Theorem 3.15, unlike that in Example 3.8,
can not arise from a knapsack problem.1 In a knapsack instance, either {1, 5} ∈ I or
{2, 4} ∈ I would be necessary, since for the weight function w it has to be that w(1) ≤ w(2)
or w(2) ≤ w(1). Therefore, we conjecture a connection between knapsack like independence
systems and the equivalence in the generalized rank-quotient of inner matroids and inner
independence systems.

Conjecture 3.17. For every knapsack instance the underlying independence system (E, I)
fulfills

max
J⊆I,(E,J ) independence system

ω(I, I,J ) = max
M⊆I,(E,M) matroid

ω(I, I,M).

However, the converse of Conjecture 3.17 is false.

Example 3.18. Consider the independence system (E, I) on the ground set E = {1, 2, 3, 4}
given by its bases BI := {{1, 2}, {3, 4}}. No knapsack instance can induce the indepen-
dence system (E, I): Assume w.l.o.g. that w1 ≤ wi for i ∈ {2, 3, 4}. Then, it has to hold
that {1, 3}, {1, 4} ∈ BI since w1+w3 ≤ w3+w4 and w1+w4 ≤ w3+w4. Nevertheless, it holds
maxJ⊆I,(E,J ) is independence system ω(I, I,J ) = q(I) = 1

2 = maxM⊆I,(E,M)is matroid ω(I, I,M)
= ω(I, I, U1

4 ).

We have seen in Theorem 3.15 that the best inner independence system may outperform
the best inner matroid, but the approximation guarantee of the best inner independence
system does not improve over the standard greedy algorithm. Example 3.8 and Remark 3.14
show that the best inner independence system may have the same approximation guarantee
as the best inner matroid but outperforms the standard greedy algorithm. Our goal is to
provide an example where the best inner independence system outperforms not only the
best inner matroid but the standard greedy algorithm as well.

Lemma 3.19. Let a, b, c, d ∈ R+, then, a
b ≤

c
d if and only if a

b ≤
a+c
b+d .

Proof. a
b ≤

c
d ⇔

ad
b ≤ c⇔

ad
b + ab

b ≤ c+ a⇔ a(d+b)
b ≤ c+ a⇔ a

b ≤
a+c
b+d .

1To see that the independence system in Example 3.8 is a knapsack problem set vci = 1 for all i ∈ {1, ..., 10},
va = vb = 5 and the capacity to 10.
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Lemma 3.20. Let (E1, I1) and (E2, I2) be independence systems with E1 ∩ E2 = ∅ and
(E, I) := (E1∪̇E2, I1

⊕
I2), where E1∪̇E2 denotes the disjoint union of E1 and E2. Then,

it holds q(I) = min{q(I1), q(I2)}. Furthermore, let (E1,J1) and (E2,J2) be inner inde-
pendence systems (matroids) and O1,O2 acceptable sets. Then, for the inner independence
system (matroid) (E,J ) := (E1∪̇E2,J1

⊕
J2} and acceptable set O := O1∪̇O2 we have

ω(I,O,J ) = min{ω(I1,O1,J1), ω(I2,O2,J2)}.

Proof. Let S ∈ arg minT⊆E lI(T )
rI(T ) with S1 = S∩E1, S2 = S∩E2 and w.l.o.g. let q(I1) ≤ q(I2).

It follows by Lemma 3.19 that

q(I) = lI(S)
rI(S) = lI1(S1) + lI2(S2)

rI1(S1) + rI2(S2) ≥ min
{
lI1(S1)
rI1(S1) ,

lI2(S2)
rI2(S2)

}
≥ min{q(I1), q(I2)}

and since clearly q(I) ≤ min{q(I1), q(I2)} it follows that q(I) = min{q(I1), q(I2)}.
Analogously, let F ∈ arg minSvE lJ (S)

rO⊆ (S) and T ∈ arg max{|O| : O ⊆ F,O ∈ O⊆} with
F1 = F ∩ E1, F2 = F ∩ E2, T1 = T ∩ E1 and T2 = T ∩ E2 and w.l.o.g. ω(I1,O1,J1) ≤
ω(I2,O2,J2). It holds by Lemma 3.19 that

ω(I,O,J ) = lJ (F )
|T |

= lJ1(F1) + lJ2(F2)
|T1|+ |T2|

≥ min
{
lJ1(F1)
|T1|

,
lJ2(F2)
|T2|

}
≥min{ω(I1,O1,J1), ω(I2,O2,J2)}

and since trivially holds ω(I,O,J ) ≤ min{ω(I1,O1,J1), ω(I2,O2,J2)} the claim follows.

We provide an independence system (E, I), a best inner matroid (E,M) and a best inner
independence system (E,J ) for which hold q(I) < ω(I, I,M} < ω(I, I,J ) by joining
Example 3.8 and Theorem 3.15.

Theorem 3.21. Let (E, I) the direct sum of the independence systems in Example 3.8
and Theorem 3.15, hence E1 = {a, b, c1, .., c10} with (E1, I1) given by the bases BI1 :=
{{a, b}, C} ∪ ({{a}}⊕(C

5
)
) ∪ ({{b}}⊕(C

5
)
) whilst C := {c1, ..., c10} and

(C
5
)

:= {S ⊂
C : |S| = 5} and E2 = {1, 2, 3, 4, 5} with (E2, I2) defined by its bases BI2 := {{1, 2, 3}, {1, 4},
{2, 5}} and (E, I) := (E1∪̇E2, {I : I = I1∪̇I2, I1 ∈ I1, I2 ∈ I2}, hence

BI := ({{a, b}, C} ∪ ({{a}}
⊕(

C

5

)
) ∪ ({{b}}

⊕(
C

5

)
))
⊕
{{1, 2, 3}, {1, 4}, {2, 5}}.

Then, q(I) < ω(I, I,M) < ω(I, I,J ) where (E,J ) and (E,M) are the best inner inde-
pendence system and best inner matroid, respectively.

Proof. Let BJ1 := {C} ∪ ({{a}}⊕(C
5
)
)∪ ({{b}}⊕(C

5
)
) and BJ2 := {{1, 2, 3}, {1, 4}, {2, 5}}
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be the set of bases of best inner independence systems regarding (E, I1) and (E, I2) (due
to Example 3.8 and Theorem 3.15). Then, since E1 and E2 are disjoint, it holds that BJ :=(
{C} ∪ ({{a}}⊕(C

5
)
) ∪ ({{b}}⊕(C

5
)
)
)⊕
{{1, 2, 3}, {1, 4}, {2, 5}} is the set of bases of a

best inner independence system regarding (E, I) by Lemma 3.20. Analogously, BM1 :=
(C

6
)
∪

({{a}}⊕(C
5
)
) ∪ ({{b}}⊕(C

5
)
) and BM2 := BU1

5
are best inner matroids regarding (E, I1)

respectively (E, I2) due to Remark 3.14 and Theorem 3.15. Then, again by Lemma 3.20, it
holds that BM := (

(C
6
)
∪ ({{a}}⊕(C

5
)
})∪ ({{b}}⊕(C

5
)
))⊕BU1

5
is the set of bases of a best

inner matroid regarding (E, I). It follows directly from Lemma 3.20 that q(I) = 1
5 <

1
3 =

ω(I, I,M} < 1
2 = ω(I, I,J ).

We have demonstrated that one can improve the performance guarantee of the greedy
algorithm by using an inner independence system. Next, we extend our findings to a more
general structure than independence systems.

3.4. Inner Approximations to Packing Instances

In the previous section we approximated independence systems by inner independence sys-
tems. Here we consider inner approximations of more general structures. Every indepen-
dence system (E, I) can be interpreted as a subset of {0, 1}n by identifying independent
sets I ∈ I with their characteristic vectors χI . We allow for multiplicities and generalize
independence systems:

Definition 3.22. A set D ⊂ Zn+ is called a packing instance if x ∈ D implies y ∈ D for
all y ∈ Zn+ such that y ≤ x (component wise). Consequently, G ⊆ D is an inner packing
instance of D if G is a packing instance. Call a packing instance normal, if it contains
all unit vectors.

Although, one can define packing instances over arbitrary posets, here we focus on the
special case of the poset (Zn+,≤).
For each i ∈ E := {1, ..., n} let there be a nondecreasing discrete concave function

fi : Z+ → R+ and f : Zn+ → R+, f := ∑n
i=1 fi, hence f is separable nondecreasing dis-

crete concave. We are interested in the problem maxx∈D f(x). Note, that this is more
general than maxx∈D

∑n
i=1 xi · vi with weights vi associated to i ∈ E.

Definition 3.23. For any packing instance D ⊂ Zn+, an element x ∈ D is called maximal
if x + ei /∈ D for all i ∈ {1, . . . , n} where ei denotes the i-th unit vector. Let D+ denote
the set of maximal elements of D and r(D) := max{∑i∈E xi : x ∈ D+} the maximal
height and l(D) := min{∑i∈E xi : x ∈ D+} the minimal height of D.
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In the following, assume D is normal and for α ∈ Zn+ define the α-truncated packing
instance Dα := {x ∈ D : xi ≤ αi for i ∈ E} and the height-quotient of D as

ρ(D) := min
α∈Zn+\{0}

l(Dα)
r(Dα) .

Clearly, ρ(D) = minα 6=0,α≤β
l(Dα)
r(Dα) with βi := maxx∈D xi, hence ρ(D) is well defined. The

packing instance D is called a polymatroid (see e.g., Dunstan and Welsh [1973]) iff ρ(D) =
1 and an inner polymatroid of a packing instance D is a polymatroid P ⊆ D.

This polymatroid definition coincides with the standard definition of a polymatroid (hence,
Definition 1.5), as the function g : 2E → R+, g(S) := maxx∈D{

∑
i∈S xi} turns out to be sub-

modular and D = {x ∈ Rn+ : ∑i∈S xi ≤ g(S) fo all S ⊆ E} (see e.g., [Schrijver, 2003,
Theorem 44.5]).
The solution of maxx∈D f(x) of a packing instance D can be approached by the following

greedy algorithm generalizing Algorithm 6 for independence systems, which yields an exact
solution if D is a polymatroid:
Algorithm 7: Greedy algorithm for integer packing instances
Input : A packing instance D ⊂ Zn+ given by a membership oracle. Separable

nondecreasing discrete concave function f : Zn+ → R+

Output: A maximal element xg ∈ D+

1 Set x = 0
2 while x is not maximal (oracle call) do
3 choose j ∈ arg maxi∈E : x+ei∈D (oracle call) f(x+ ei)
4 x = x+ ej

5 Set xg = x and return

Let V ∗(D, f) := maxx∈D
∑n
i=1 f(x) and V greedy(D, f) the worst possible (if tie breaking

occurs) solution obtained by Algorithm 7. Malinov and Kovalyov [1980] show that the
height-quotient ρ(D) to be the worst case approximation guarantee.

Theorem 3.24. [Malinov and Kovalyov, 1980] Let D ⊂ Zn+ be a normal packing instance
and f(x) := ∑n

i=1 fi(xi) with fi : Z+ → R+ being nondecreasing and discrete concave. Then,
V greedy(D,f)
V ∗(D,f) ≥ ρ(D). Furthermore, for any normal packing instance D ⊆ Zn+ there exists a

separable nondecreasing discrete concave function f such that

V greedy(D, f)
V ∗(D, f) = ρ(D). (3.2)

We want to approximate packing instances by inner packing instances respectively inner
polymatroids. For economy of exposition we assume that the whole of the packing instance
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is acceptable, so D = O. Our results easily generalize to other acceptable sets that are not
necessarily downward closed subsets of the packing instance D. So as to achieve a better
performance than Equation (3.2) we first search for an inner packing instance G contained
in D and then apply 7 to G. Our goal is to find G such that the worst case performance
of 7 on G is better than the worst case performance on D.

Definition 3.25. For a normal packing instance D ⊂ Zn+ and a packing instance G ⊆ D

we define the generalized height-quotient as

min
α∈Zn+\{0}

l(Gα)
r(Dα) =: ω(D,G).

The next result generalizes Theorem 3.5 and Equation (3.2).

Theorem 3.26. Let D,G ⊂ Zn+ packing instances such that D is normal, G ⊆ D and

C := {f : Zn+ → R+ : f is separable nondecreasing discrete concave}.

Then, for f ∈ C it holds

min
f∈C

V greedy(G, f)
V ∗(D, f) = ω(D,G).

Proof. Let β ∈ arg minα∈Zn+\{0}
l(Gα)
r(Dα) and u ∈ arg max{‖x‖1 : x ∈ D+

β }, hence ‖u‖1 = r(Dβ)
and v ∈ arg min{‖x‖1 : x ∈ G+

β }, hence ‖v‖1 = l(Gβ).
Define gi(xi) := 1

‖u‖1 · xi for xi ≤ βi and gi(xi) := βi
‖u‖1 for xi > βi and g(x) := ∑n

i gi(xi).
Hence, gi is a piecewise linear function in xi that has slope 1

‖u‖1 between 0 and βi in
xi and constant value βi

‖u‖ starting from βi. Observe that for y ∈ D \ Dβ holds g(y) =
maxx≤y,x∈D+

β
g(x), hence maxx∈D{g(x)} = maxx∈Dβ{g(x)}. For every x ∈ Dβ it holds

g(x) =
∑n

i=1 xi
‖u‖1 ≤

∑n

i=1 ui
‖u‖1 . Hence, V ∗(D, g) = ∑n

i=1 gi(ui) = ∑n
i=1

ui
‖u‖1 = 1. The worst case

greedy solution that Algorithm 7 may produce on G is V greedy(G, g) = g(v) = ∑n
i=1

vi
‖u‖ =

‖v‖1
‖u‖1 . In total, we get V greedy(G,g)

V ∗(D,g) = ‖v‖1
‖u‖1 and therefore minf∈C V

greedy(G,f)
V ∗(D,f) ≤ V greedy(G,g)

V ∗(D,g) =
‖v‖1
‖u‖1 = minα∈Zn+\{0}

l(Gα)
r(Dα) .

Conversely, let f ∈ C. Denote the marginal value of fi(·) of j by ∆fi(j) := fi(j)−fi(j−1)
for i ∈ E, 1 ≤ j ≤ k and totally order F := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ k)} such that
(i, j) is ordered before (u,w) if ∆fi(j) > ∆fu(w) and (i, j) is ordered before (i, j + 1) if
∆fi(j) = ∆fi(j + 1). Hence, F is ordered such that the higher the marginal value of an
additional unit of i added to (j − 1) the earlier (i, j) occurs. Let p : F → {1, . . . , n · m}
be such that p((i, j)) is the position of (i, j) according to the ordering. For 1 ≤ t ≤ n ·m
and i ∈ E define qi(t) := |{(i, j) : p((i, j)) ≤ t}|, which can be interpreted as the total
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number of units of i among the t most valuable units, and set q(t) := (q1(t), . . . , qn(t)).
Furthermore, for x ∈ Zn+ we set (q(t) ∧ x)i := min{xi, qi(t)}, hence (q(t) ∧ x)i counts how
many of the t best elements of f are among the xi best of i ∈ {1, . . . , n}. Consequently,
q(t) ∧ x = (q1(t) ∧ x, . . . , qn(t) ∧ x) and ‖q(t) ∧ x‖1 = ∑n

i=1(q(t) ∧ x)i. For convenience,
we define p−1(m · n + 1) := 0, h : F → R+, h((i, j)) := ∆fi(j) and thus for x ∈ Zn+ we can
rewrite analogous to Equation 3.1

f(x) =
m·n∑
t=1

(h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x‖1.

Now, let xg be a worst case greedy solution obtained by Algorithm 7 on G and x∗ an optimal
solution on D. Note that for x ∈ D or x ∈ G we can interpret q(t) ∧ x as the quantity of i
in x which also is contained in Dq(t) respectively Gq(t). Then, it holds q(t) ∧ xg ∈ Gq(t) and
q(t) ∧ xg + ei /∈ Gq(t) due to the definition of qgi (t). Hence, q(t) ∧ xg ∈ G+

q(t) what yields the
simple inequality l(Gq(t)) ≤ ‖q(t) ∧ xg‖1. Analogously, it holds that q(t) ∧ x∗ ∈ Dq(t) and
q(t)∧x∗+ ei /∈ Dq(t), therefore q(t)∧x∗ ∈ D+

q(t) what yields r(Dq(t)) ≥ ‖q(t)∧x∗‖1. We use
these two inequalities to show

f(xg)
f(x∗) =

∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ xg‖1∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1

≥

∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · l(Gq(t)) · ‖q(t)∧x

∗‖1
r(Dq(t))∑m·n

t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1

=
∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1 ·

l(Gq(t))
r(Dq(t))∑m·n

t=1 (p−1(t)′ − p−1(t+ 1)′ · ‖q(t) ∧ x∗‖1

≥

∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1 ·min1≤s≤m·n

l(Gq(s))
r(Dq(s))∑m·n

t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1

=
∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1∑m·n
t=1 (h(p−1(t))− h(p−1(t+ 1))) · ‖q(t) ∧ x∗‖1

· min
1≤s≤m·n

l(Gq(s))
r(Dq(s))

= min
1≤s≤m·n

l(Gq(s))
r(Dq(s))

= l(Gβ)
r(Dβ)

and the claim follows.

Note that Theorem 3.26 also implies the result of Theorem 3.24 and Theorem 3.5, hence
it also implies the classic result of Hausmann et al. [1980].
Next, we provide an example beyond independence systems in which the worst case

approximation guarantee of the best inner polymatroid approximation improves over Algo-
rithm 7, carried out on the original packing instance.
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Example 3.27. Let D ⊂ Z2
+ be defined by its set of maximal elements D+ := {(10, 2), (0, 3)}.

Then, ρ(D) ≤ l(D(10,3))
r(D(10,3))

= 3
12 = 1

4 .
Consider P ⊂ D given by its set of maximal element P+ := {(10, 2)}. Then, P is a box

and therefore a polymatroid.
To prove ω(D,P ) > ρ(D) observe that the unique maximal basis of Pα is given by

(min{α1, 10},min{α2, 2}) for α = (α1, α2) ≤ (10, 10). For α1 ≥ 1 it also holds that
(min{α1, 10},min{α2, 2}) are elements of maximal height of Dα, hence l(Dα)

r(Dα) = 1. In the
remaining case that α1 = 0, 1 ≤ α2 ≤ 10 it holds that (0,min{α2, 3}) is the unique maximal
height basis of Dα and hence l(Pα)

r(Dα) = min{α2,2}
min{α2,3} . Therefore, ω(D,P ) = l(P(0,3))

r(D(0,3))
= 2

3 , which
is better than ρ(D).
Note that P is a best inner polymatroid since any better polymatroid P ′ must contain

(0, 3) and (0, 3) has to be a maximal element of P ′ (see also Figure 4.1.), hence ω(D,P ′) ≤
l(P ′(10,10))
r(D(10,10))

= 3
12 = 1

4 .

x1

x2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

Figure 3.1.: Packing instance in Example 3.27 with D+ = {(0, 3), (10, 2)} and P+ =
{(10, 2)}.

As seen in Theorem 3.21, there exist cases in which the inner independence system ap-
proximation simultaneously outperforms the inner matroid approximation and the greedy
algorithm performed on the original independence system. For completeness, by combining
the ideas of Example 3.27 and of Theorem 3.15, we provide an additional, simultaneously
nonpolymatroidal nonindependent system example, in which the inner packing instance ap-
proximation outperforms simultaneously the direct application of Algorithm 7 to the original
packing instance and the inner polymatroid approximation. We make use of an analogue
to Lemma 3.20.

Lemma 3.28. Let E ⊂ Zn+ and F ⊂ Zm+ be packing instances. and H ⊆ E and I ⊆ F

inner packing instances and D := E
⊕
F and G := H

⊕
I. Then, it holds ω(D,G) =

min{ω(E,H), ω(F, I)}.

Proof. Let αn ∈ arg minω(E,H), αm ∈ arg minω(F, I) and w.l.o.g. ω(E,H) ≤ ω(F, I).
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For any β := (βn, βm) ∈ Zn+
⊕

Zm+ it is l(βn,βm)(G)
r(βn,βm)(D) = lβn (H)+lβm (I)

rβn (E)+rβm (F ) ≥
lαn (H)+lβm (I)
rαn (E)+rβm (F ) ≥

lαn (H)+lαm (I)
rαn (E)+rαm (F ) ≥

lαn (H)
rαn (E) = ω(E,H). Obviously ω(E,H) ≥ ω(D,G), therefore ω(E,H) =

ω(D,G) and this concludes the proof.

Note that Lemma 3.28 also implies ρ(D) = min{ρ(E), ρ(F )} since ρ(X) = ω(X,X) for
any packing instance X.

Example 3.29. Let D ⊂ Z7
+ given by its set of maximal elements

D+ := {(10, 2), (0, 3)}
⊕
{(1, 1, 1, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1)}.

Then, D is the direct sum of the packing instance in Example 3.27 and Theorem 3.15.
It follows by Lemma 3.28, Example 3.27 and Theorem 3.15 that P+ := {(10, 2)}⊕{x ∈
R5 : x = ei for 1 ≤ i ≤ 5} is the set of maximal elements of a best inner polymatroid,
G+ := {(10, 2)}⊕{(1, 1, 1, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1)} is the set of maximal elements of
a best inner packing instance and

ρ(D) ≤ 1
4 < max

P⊆D,P is polmatroid
ω(D,P ) = 1

3 < max
G⊆D,G is packing instance

ω(D,G) = 1
2 .

3.5. Conclusion

We studied the problem of maximizing a separable nondecreasing discrete concave function
over a packing instance and in particular the important special case of finding a maximum
weighted basis of an independence system.
The concept of inner independence systems respectively inner packing instances was in-

troduced and a generalization of the rank quotient of independence systems respectively the
height-quotient of packing instances was given to provide a bound on the approximation
quality of the greedy algorithm applied to inner independence systems respectively inner
packing instances to the optimal solution. We showed that the generalized rank-quotient and
the height-quotient provide tight bounds on the worst case performance of our algorithms.
Furthermore, we provided examples in which our approach concurrently outperforms the
standard greedy algorithm for independence systems and the approach of Milgrom [2017]
and de Vries and Vohra [2020] of approximating independence systems by inner matroids
in terms of worst case approximation guarantee. Analogously, we showed that our algo-
rithm may outperform the greedy algorithm applied to maximize a separable nondecreasing
discrete concave function over a packing instance.
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Chapter 4.

Dynamic Pricing in Weighted Uniform
Matroid Markets

4.1. Introduction

In this chapter, we examine the problem of implementing social welfare maximizing alloca-
tions in combinatorial markets through prices. Consider a finite set of buyers N who want
to acquire a finite subset of heterogeneous indivisible goods M from a single seller. Each
buyer j ∈ N has a publicly known valuation function that represents the buyer’s value for
every subset of M . The goal is to allocate items efficiently, hence in such a way that the
social welfare, the sum of the buyers’ values for the set of items they get allocated, is max-
imized. Clearly, with known valuation functions, a social welfare maximizing allocation,
in the following also called optimal allocation, can be easily determined. Moreover, this
can be done in polynomial oracle time, if the buyers’ valuations are gross substitutes1 (see
e.g., [Nisan and Segal, 2006]), a set of valuation functions that contains weighted matroid
rank functions, among others. In order to implement an efficient allocation, the seller sets
item prices. Buyers arrive one at a time and successively to purchase items from the seller,
taking any of their utility maximizing sets given the price (hence, their valuation for the set
minus the sum of the item prices of the items contained in the set) among the remaining
items. The order of the arriving buyers is unknown to the seller, but he is allowed to update
the prices of the remaining items before the next buyer arrives. The goal of the seller is to
induce a social welfare maximizing allocation by setting the item prices such that it is in
the best interest of the next arriving buyer to choose a set of items she gets allocated in
some social welfare maximizing allocation. Then, any price such that every possibly next
arriving buyer necessarily has to chose a set of items she might get allocated in some social
welfare maximizing allocation is called a dynamic price and a sequence of dynamic prices is
called a dynamic pricing.

1A function v : 2M → R+ is gross substitutes if it holds for all S, T ⊆ M , x ∈ S \ T that v(S) + v(T ) ≤
max{v(S \ {x}) + v(T ∪ {x}), maxy∈T\S v((S \ {x}) ∪ {y}) + v((T \ {y}) ∪ {x})}.
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It is well known, and also shown in the next example, that static prices (hence, the seller
sets item prices once at the beginning and is not allowed to update the prices before the
next buyer arrives) cannot induce an efficient allocation when buyers arrive successively,
even in markets composed of buyers with unweighted rank-1 matroids valuations.

Example 4.1. Consider a market composed of three items x, y, z and three buyers 1, 2, 3
with valuations v1(∅) = v2(∅) = v3(∅) = v1({x}) = v2({y}) = v3({z}) = 0 and vj(S) = 1
for j ∈ {1, 2, 3} and all other S ⊆ {x, y, z}. Then, it is easy to see that the set of optimal
allocations is {(S1 = {y}, S2 = {z}, S3 = {x}), (S1 = {z}, S2 = {x}, S3 = {y})} and every
optimal allocation provides a social welfare of 3. However, no static price can guarantee
more than 2

3 of the optimal welfare if buyers arrive sequentially. To see this, let w.l.o.g. 0 ≤
p(x) ≤ p(y) ≤ p(z) < 1. Assume buyer 1 arrives first and he purchases item y from the
seller and buyer 2 arrives next and purchases item x from the seller. Then, the remaining
buyer 3 will purchase nothing and the allocation (S1 = {y}, S2 = {x}, S3 = ∅) provides a
social welfare of 2.

Therefore, it is an important open question for which valuation classes the additional
ability of the seller to sequentially update the prices results in the power to induce optimal
allocations.

4.1.1. Markets with Dynamic Pricings

The only markets with an arbitrary number of items and bidders for which the existence of
dynamic pricings is known are markets composed of buyers with weighted rank-1 matroids,
also denoted as matching markets (Cohen-Addad et al. [2016]). For completeness, we present
a dynamic pricing for the matching market in Example 4.1.

Example 4.2 (continued). Consider the initial price 0 ≤ p(x) = p(y) = p(z) < 1 and
assume w.l.o.g. that buyer 1 arrives first to the market and purchases w.l.o.g. the item
y. Then, the seller updates the prices of the remaining items to 0 ≤ p(z) < p(x) < 1.
Then, if buyer 2 arrives next to the market he acquires z and if buyer 3 arrives next to the
market he acquires x. In either case, if the seller leaves the price of the remaining item
constant, the final buyer will purchase the remaining item and the final allocation will be
(S1 = {y}, S2 = {z}, S3 = {x}) which is optimal.

There are weak results regarding the existence of dynamic pricings in weighted uniform
matroid markets. Berger et al. [2020] proved the existence of dynamic pricings for weighted
uniform matroid markets with up to three three buyers and Bérczi et al. [2021b] showed the
existence of dynamic pricings for balanced (when the number of items equals the sum of
the rank functions of the buyers) weighted uniform matroid markets when the rank of each
buyer’s matroid is at most two under the assumption that every optimal allocation gives
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each buyer exactly its rank many items. Recently, Pashkovich and Xie [2022] extended
both results for balanced weighted uniform matroid markets under the same assumption
as Bérczi et al. [2021b] to four buyers and to buyers with rank at most three.
Further, Bérczi et al. [2021a] consider the dynamic pricing problem in weighted matroid

markets with 2 buyers under the assumption that there exists a pair of disjoint sets which
consists of one basis of each buyer’s underlying matroid. They prove the existence of dy-
namic pricings under this assumption if one of the underlying matroids is a partition matroid
or both underlying matroids are strongly base orderable.

4.1.2. Our Contribution

We prove that dynamic pricings always exist for weighted uniform matroid markets. In this
setting, we provide an algorithm to compute a dynamic price which runs in polynomial time
in the number of items and buyers. En route, we show that relative interior Walrasian prices
in weighted uniform matroid markets induce no unnecessary demand and that in matching
markets, every relative interior Walrasian price already is a dynamic price. In the following
table the results we generalize and our results are depicted:

Paper Result Conditions

Cohen-Addad et al. [2016] Existence of dynamic prices
for matching markets. Matroids have rank 1.

This chapter
Interior Walrasian prices

are dynamic
prices for matching markets.

Matroids have rank 1.

Berger et al. [2020]
Existence of

dynamic prices for
weighted uniform matroid markets.

Matroids have arbitrary rank,
|N | ≤ 3.

Bérczi et al. [2021b] ”

Matroids have rank ≤ 2,∑
j∈N rj = |M |,

every optimal allocation
allocates all items.

Pashkovich and Xie [2022] ”

Matroids have rank ≤ 3,∑
j∈N rj = |M |,

every optimal allocation
allocates all items.

Pashkovich and Xie [2022] ”

Matroids have arbitrary rank,
|N | ≤ 4, ∑j∈N rj = |M |,
every optimal allocation

allocates all items.

This chapter
Existence of

dynamic prices for
weighted uniform matroid markets.

Matroids have arbitrary rank.
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4.1.3. Walrasian Prices are not Dynamic Prices

Maximizing social welfare through prices is based on the concept of Walrasian equilibrium
and Walrasian prices. A Walrasian equilibrium is a pair of allocation and item prices
(called Walrasian prices) such that every buyer gets allocated a bundle that maximizes her
utility given the price, and every unallocated item has price zero. Then, it can be shown
easily that the allocation in a Walrasian equilibrium maximizes social welfare. Clearly, a
Walrasian equilibrium implies the desirable characteristic that no buyer strictly prefers any
other buyer’s allocated bundle at the Walrasian price. However, the main drawback of
Walrasian prices is that a central coordinator might be required to allocate the bundles to
the buyers since Walrasian prices might induce ties. Therefore, as also shown in the next
example, which turns out to be a weighted uniform matroid market, Walrasian prices are
not necessarily dynamic prices.

Example 4.3. Consider a market composed of three items M = {x, y, z} and two buyers
1, 2 with valuations v1(S) = 2 · |S| for |S| ≤ 2 and v1({x, y, z}) = 4 and v2(S) = |S| for
|S| ≤ 2 and v2({x, y, z}) = 2. Then, the set of optimal allocations is {(S1, S2) : |S1| =
2, S2 = M \ S1} and it is easy to see that the only Walrasian price for this market is p ≡ 1.
However, if buyers arrive successively and buyer 2 arrives first at price p, she might purchase
nothing or a set of cardinality two, which results in either way in a nonoptimal allocation.

Kelso and Crawford [1982] showed that every market with buyers with gross substitutes
valuations admits a Walrasian equilibrium. The maximal domain theorem of Gul and
Stacchetti [1999] states that for some buyer 1 with a non-gross substitutes valuation v1

on a set of items M there exists n ∈ N and a set of buyers {2, . . . , n} with unit-demand
valuations on M such that the resulting market composed of the buyers 1, . . . , n does not
have a Walrasian equilibrium. Inspired by this maximal domain theorem, it was shown
by Berger et al. [2020] that for some buyer 1 with a non-gross substitutes valuation v1 on
M there exists n ∈ N and a set of buyers {2, . . . , n} with unit-demand valuations on M

such that the resulting market composed of the buyers 1, . . . , n does not admit a dynamic
price. It is an open question whether the latter domain theorem is strict and there is little
known about the existence of dynamic prices even in (weighted) (uniform) matroid markets,
a small subset of gross substitutes markets.

4.1.4. Further Related Literature

The notion of Walrasian equilibria is due to Walras [1896]. Note that gross substitutes
valuations are also known asM \-concave functions in discrete convex analysis (e.g., [Murota,
2003]) and valuated matroids (e.g., [Dress and Wenzel, 1990]).
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Hsu et al. [2016] observed that minimal Walrasian prices promote indifferences and pro-
posed a genericity condition on valuations to reduce overdemand and Leme and Wong [2020]
showed that in markets where optimal allocations are unique and a Walrasian equilibrium
exists there also exist Walrasian prices that induce no overdemand and therefore serve as a
static instance of a dynamic pricing. However, these observations require strong conditions
and it is desirable to establish the existence of prices that induce social welfare maximizing
allocations without a central tie-breaking authority in more general settings.
To this end, Cohen-Addad et al. [2016] proposed dynamic pricings as an alternative to

static posted price mechanism (e.g., Walrasian prices). As already mentioned in Subsec-
tion 4.1.1, there are few existence results on markets that allow for social welfare maximizing
allocations induced by dynamic pricings. For completeness, we mention that to achieve their
result, Berger et al. [2020] also make use of auxiliary graphs but their techniques are very
different from ours and mainly inspired by the cycle-canceling algorithm of Murota [1996].
For completeness, we mention some work that is related to our results in a broader

sense: Applications of dynamic prices can be found in Cohen et al. [2014], which consid-
ers the k-server problem and provide an optimal k-competitive dynamic pricing scheme for
the k-server problem on the line and Cohen et al. [2019] extend this result to tree met-
ric spaces. Feldman et al. [2017] apply dynamic prices to makespan minimization in job
scheduling on multiple machines and provide tight results on the approximation guarantee
of dynamic pricing to the optimal solution.
Static pricing for social welfare maximization was considered in several papers. Ezra

et al. [2020] study the power and limits of static posted prices in terms of approximating
the maximizing social welfare in different markets. Feldman et al. [2014] show that there
exist posted prices that capture, in expectation, at least half of the optimal social welfare in
fractionally subadditive markets and Dutting et al. [2020] extend this work. Bundle pricing
that approximately maximizes social welfare in substitutes markets is considered in Feldman
et al. [2016] and Chawla et al. [2019] focus on bundle pricing in markets with complements.
There is also plenty of work on revenue maximizing static posted price mechanisms,

e.g., [Guruswami et al., 2005], [Chawla et al., 2007], [Chawla et al., 2010], [Babaioff et al.,
2015] and [Anshelevich and Sekar, 2017].

4.1.5. Chapter Structure

We briefly outline the organization of this chapter: We start with the economic setting and
introduce the dynamic pricing problem and previous results regarding dynamic pricing in
Section 4.2. In Section 4.3 we focus on Walrasian equilibria and show that in weighted
uniform matroid markets the prices in the relative interior of the polyhedron of Walrasian
prices avoid unnecessary demand and thereby avoid one, and in this setting the only, source
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of ties. On the one hand, this result leads us to conclude that interior Walrasian prices
are already dynamic prices in matching markets. On the other hand, in Section 4.4, we
interpret weighted uniform matroid markets via interior Walrasian prices as node capac-
itated bipartite graphs in which the set of optimal allocations is encoded as saturating
capacitated matchings respectively perfect capacitated matchings. We use a generalization
of Hall’s marriage theorem and establish combinatorial auxiliary results that apply to these
graphs. Subsequently, in Section 4.5, we show our main results, hence, prove the existence
of dynamic pricings in all weighted uniform matroid markets and provide an algorithm to
compute them in polynomial time in the number of items and buyers.

4.2. Preliminaries

4.2.1. Economic Setting

We present the economic setting. For convenience, we provide a list of the most frequently
used symbols and results of this chapter at the end of the chapter.

Definition 4.4. In the following, let m,n ∈ N and M = {1, . . . ,m} a finite set of items
N = {1, . . . , n} a finite set of buyers. (Note that throughout this chapter we denote the set
of items by M , since following standard notation we use the letter E for the set of edges in
graphs.) Each buyer j ∈ N has a valuation function vj : 2M → R+ that is nondecreasing
and normalized and maps every bundle S ⊆M to j’s value for the bundle. Given a matroid
(M, I) and weights ωx ∈ R for x ∈ M we define the weighted matroid valuation with
underlying matroid (M, I) by v : 2M → R+, v(S) := maxT⊆S,T∈I

∑
x∈T ωx, hence for the

uniform matroid U rM the weighted uniform matroid valuation is given by v : 2M → R+,
v(S) = maxT⊆S,|T |≤r

∑
x∈T ωx. We define a price p : M → R+ and the price of a bundle S ⊆

M as p(S) := ∑
i∈S p(i). Clearly, the set of prices can be identified with RM+ . For a buyer

j ∈ N and her valuation vj : 2M → R+, a set of items S ⊆M and a price p her quasilinear
utility of S at price p is denoted by uj(S, p) := vj(S) − p(S) and for ease of notation for
x ∈M we denote uj(x, p) := uj({x}, p). Then, buyer j’s utility maximizing sets at price
p, also called the demanded sets, are given by Dj(p) := arg maxS⊆M vj(S)− p(S) and the
by j demanded items at price p are defined as ⋃Dj(p) := ⋃

S∈Dj(p) S.
A market will be denoted by the 3-tuple U = (M,N,v) with v := (v1, . . . , vn) and

vj : 2M → R+ is the valuation of buyer j ∈ N . A market U = (M,N,v) is called a
weighted uniform matroid market if each buyer’s valuation is a weighted uniform ma-
troid valuation with domain M . For j ∈ N and a weighted uniform matroid valuation vj

let rj denote the rank of the underlying uniform matroid U rjM and ωj,x denotes the weight
of x ∈ M for j. Then, call a weighted uniform matroid market U = (M,N,v) balanced if
it holds ∑j∈N rj = |M | and with excess demand if it holds ∑j∈N rj > |M |.
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In a market U = (M,N,v) any A := (A1, . . . , An) ∈ 2MN such that for i, j ∈ N , i 6= j it
holds that Ai ∩Aj = ∅ is called an allocation. Notice that for j ∈ N any Aj ⊆M could be
allocated, but its value is going to be the value of the max{ri, |Ai|} best elements. Note that it
may hold ⊔nj=1Aj ( M . The social welfare of an allocation A = (A1, . . . , An) is defined
as ∑j∈N vj(Aj) and OptU := {A : A ∈ arg maxB=(B1,...,Bn) : B is allocation

∑
j∈N vj(Bj)} is

called the set of optimal allocations. For any buyer j ∈ N , the optimal sets for j are
given by OptUj := {A ⊆ M : A = Aj, A = (A1, . . . , An) ∈ OptU} and the optimal items
for j are ⋃OptUj := ⋃

A∈OptUj
A. For any buyer j ∈ N we say that any T such that there

exists S ⊇ T, S ∈ OptUj is an optimal subset for j and S is an strict optimal subset
for j if S is strict subset of an optimal set for j. For any x ∈ M we denote the set of
buyers that get allocated x in some optimal allocation by α(x) := {j ∈ N : x ∈

⋃OptUj }
and for some allocation A we denote by αA(x) the buyer that gets allocated the item x in
the allocation A. We say that some price p induces unnecessary demand if there exists
j ∈ N such that it holds ⋃Dj(p) 6=

⋃OptUj or it holds ⋂S∈Dj(p) S 6= {x ∈M : {j} = α(x)}.
(Hence, in the first case buyer j demands a set of items that contains some item that she
does not get allocated in any optimal allocation and in the second case j demands some
set of items which does not contain a certain item that she gets allocated in every optimal
allocation.)
In a market U = (M,N,v) a Walrasian equilibrium is a pair (p,A) which consist of a

price p and an allocation A = (A1, . . . , An) such that it holds Aj ∈ Dj(p) for all j ∈ N and
it holds p(x) = 0 for all x ∈ M \ ⋃j∈N Aj. Every price p which is part of some Walrasian
equilibrium (p,A) is called a Walrasian price.

Note that Walrasian equilibria exist in weighted uniform matroid markets. This follows
e.g., by the equivalence of gross substitutes valuations and M\-concave functions shown
by Fujishige and Yang [2003] and the facts that matroid rank functions are M\-concave
functions ([Fujishige, 2005, Theorem 17.15]) and Walrasian equilibria are guaranteed to
exist in gross substitutes markets ([Gul and Stacchetti, 1999]).
We recall the two fundamental theorems of welfare economics.

Theorem 4.5. In any market, it holds:

i) The allocation in a Walrasian equilibrium is optimal.

ii) Every pair (p,A) of some Walrasian price p and some optimal allocation A forms a
Walrasian equilibrium.

Proof. i) Let U = (M,N,v) a market and (p,A = (A1, . . . , An)) a Walrasian equi-
librium. Clearly, for every alternative allocation B = (B1, . . . , Bn) that allocates
all items, it holds for j ∈ N that vj(Aj) − p(Aj) ≥ vj(Bj) − p(Bj) and there-
fore ∑j∈N vj(Aj) −

∑
x∈M p(x) = ∑

j∈N vj(Aj) − p(Aj) ≥
∑
j∈N vj(Bj) − p(Aj) =
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∑
j∈N vj(Bj) −

∑
x∈M p(x), hence ∑j∈N vj(Aj) ≥

∑
j∈N vj(Bj) and A is an optimal

allocation.

ii) Now, let (p′,A′ = (A′1, . . . , A′n)) an alternative Walrasian equilibrium. Then, it is∑
j∈N vj(Aj)−

∑
x∈M p(x) = ∑

j∈N vj(A′j)−
∑
x∈M p(x) and there cannot exist j ∈ N

such that vj(Aj) − p(Aj) > vj(A′j) − p(A′j) since then there would have to exist
k ∈ N\{j} such that vj(Ak)−p(Ak) < vj(A′k)−p(A′k) in contrast to (p,A) is Walrasian
equilibrium, hence it holds for all j ∈ N that vj(Aj) − p(Aj) = vj(A′j) − p(A′j) and
therefore (p′,A) is a Walrasian equilibrium.

4.2.2. Dynamic Prices

We formalize the notion of dynamic prices.

Definition 4.6. In a weighted uniform matroid market U = (M,N,v) we call a price
p dynamic for buyer j ∈ N if it holds ∅ 6= Dj(p) ⊆ OptUj and dynamic if it holds
∅ 6= Dj(p) ⊆ OptUj for all j ∈ N .

Given the existence of a dynamic price for every weighted uniform matroid market and
assuming that buyers arrive once and sequentially to the market to acquire any of their
utility maximizing set of the current inventory at the current price, then there exists a
sequence of dynamic prices, called a dynamic pricing, such that every buyer j purchases
a set Aj of the optimal sets for j and therefore (A1, . . . , An) is an optimal allocation. This
follows inductively by the fact that every residual market of a weighted uniform matroid
market is again a weighted uniform matroid market. Therefore, since it suffices to prove
the existence of dynamic prices for weighted uniform matroid markets to guarantee the
existence of dynamic pricings, we focus on proving the existence of dynamic prices from
here on.
Note that the seller does not care about its revenue and given a dynamic price it might

be lower than in any minimal Walrasian price.

A Naïve Approach

The existence of a dynamic price in matching markets was shown by Cohen-Addad et al.
[2016]. A naïve approach to generalize this result to weighted uniform matroid markets
composed of matroids of arbitrary rank is as follows: Reduce the weighted uniform matroid
market to a matching market by artificially splitting every buyer j ∈ N into rj unit-demand
buyers and compute a dynamic price for the resulting matching market, which is candidate
to serve as a dynamic price for the original market. It is obvious that a dynamic price for
the original market also serve for dynamic price for the matching market. However, the
converse is not necessarily true, as the following example shows.
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Example 4.7. Consider a weighted uniform matroid market with the itemsM = {w, x, y, z}
and buyers N = {1, 2, 3} with valuations given by the table below on the left.

w x y z rank
v1 1 1 1 1 2
v2 1 1 0 0 1
v3 0 0 1 1 1

w x y z rank
v1a 1 1 1 1 1
v1b 1 1 1 1 1
v2 1 1 0 0 1
v3 0 0 1 1 1

Figure 4.1.: On the left the original market U and on the right the split market Ũ .

Then, the set of optimal allocations is given by {(A1, A2, A3) : Ai∩Aj = ∅ for 1 ≤ i < j ≤
3, |A1∩{w, x}| = 1, |A1∩{y, z}| = 1, |A2∩{w, x}| = 1, |A3∩{y, z}| = 1}. For completeness,
we observe that p ≡ 1 is the only Walrasian price for U , but p clearly does not serve as a
dynamic price since {y, z} ∈ D1(p)\OptUj . Now, assume that buyer 1 is split into the buyers
1a and 1b, each with unit-demand, then this results in the split market Ũ , given in the table
above on the right. It is easy to see that q ≡ 1 − ε for 0 < ε < 1 is a dynamic price for
Ũ since D1a(q) = {{w}, {x}, {y}, {z}} = OptŨ1a. However, q is not a dynamic price for the
original market U since it holds {w, x} ∈ D1(q) \OptU1 .
Notice, however, that for 0 < ε < 1 prices p1(w) = p1(y) = 1 − ε, p1(x) = p1(z) = 1 do

form a dynamic price for the original market. Clearly, it holds D1(p1) = {{w, y}} ⊆ OptU1
since ({w, y}, {x}, {z}) is an optimal allocation and D2(p1) = {w} ⊆ OptU2 since e.g.,
({x, y}, {w}, {z}) and D3(p1) = {y} ⊆ OptU3 since e.g., ({x, z}, {w}, {y}) is an optimal
allocation.

Therefore, this naïve approach may not succeed and a more sophisticated approach is
needed.

Sketch of our Approach

We briefly sketch how to construct a dynamic price in a weighted uniform matroid market:
Our algorithm starts with an arbitrary interior Walrasian price. As it will turn out, interior
Walrasian prices have the characteristic that for any buyer every demanded set contains only
items that the buyer gets allocated in some optimal allocation. Further, the set of all items,
given any interior Walrasian price, can be partitioned such that one part of the partition
contains every item that is demanded by exactly one buyer and the item is contained in every
demanded set of this buyer (hence, the item gets allocated to this buyer in every optimal
allocation) and the other part of the partition contains the items that are contained in some
demanded set of several buyers but are not contained in every demanded set of any buyer.
We successively adjust the interior Walrasian start price by either decreasing the price of a
well-chosen item slightly or increasing the price of all items slightly.
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The price decrease of a fixed item does not induce new demand for this item but makes
this item contained in every demanded set of every buyer who demanded this item before
the price increase, hence reduces the number of items that are not contained in every
demanded set for some buyer given the price. Therefore, the goal is to shrink sequentially
the cardinality of the set of items that are contained in some demanded set of several buyers
but not contained in every demanded set of some buyer given the price, until it becomes the
empty set. The main difficulty in the choice of the next item x, of which the price decreases,
is that if x is contained at the current price in the demanded items of e.g., the buyers i and
j and buyer i will acquire a set of items containing x from the seller, (the price decrease
will make x contained in every demanded set for i and j, hence the buyer necessarily will
acquire x) then buyer j can be compensated with another item of equal utility for j (given
the initial interior Walrasian price!) as x and vice versa.

Further, increasing the price of all items slightly forces any buyer, for whom the set of
items that is contained in every of its demanded sets already is a set she gets allocated in
some optimal allocation, to drop out of the competition.

4.2.3. Relevant and Trivial Markets

Definition 4.8. We call a weighted uniform matroid market U = (M,N,v) relevant if:

i) The market consists of at most ∑j∈N rj items.

ii) It holds ωj,x > 0 for all j ∈ N and x ∈ ⋃OptUj .

Note that a weighted uniform matroid market is relevant iff every optimal allocation
allocates all items.
For ease of presentation, we make the following assumption for weighted uniform matroid

markets:

Assumption 4.9. All markets are relevant (if not otherwise stated).

We briefly show that this assumption is w.l.o.g..

Lemma 4.10. If there exist a dynamic price in every relevant weighted uniform matroid
market, then there exists a dynamic price in every weighted uniform matroid market.

Proof. To see that i) of definition 4.8 is w.l.o.g. assume that U = (M,N,v) is a weighted
uniform matroid market with |M | > ∑

j∈N rj items. Clearly, there exists an optimal allo-
cation A = (A1, . . . , An) for U in which |Aj | = rj for all j ∈ N . Let M̃ := ⋃

j∈N Aj and
consider the market Ũ = (M̃,N,v|2M̃ ) and assume there exists a dynamic price p|M̃ for Ũ ,
then setting p(x) :=∞ for x ∈M \ M̃ yields a dynamic price p for U .
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To see that ii) of definition 4.8 is also w.l.o.g. assume there exists a weighted uniform
matroid market U = (M,N,v) and an optimal allocation A = (A1, . . . , An) and j ∈ N

and x ∈ Aj such that ωj,x = 0. Then, it holds p(x) = 0 and for M̃ := M \ {x} and
Ũ = (M̃,N,v|2M̃ ) it follows analogously to i) that if there exists a dynamic price p|M̃ for
Ũ , then setting p(x) :=∞ yields a dynamic price for U .

Next, we focus on trivial weighted uniform matroid markets.

Definition 4.11. For a relevant weighted uniform matroid market with Walrasian price p
we define

∆(p) := 1
2 ·min{|a− b| : a 6= b, a, b ∈ {0} ∪ {uj(x, p) : x ∈M, j ∈ N}}

which is one half of the minimum difference between different utility amounts of single
items at a given price and the utility of the empty set. We call a relevant weighted uniform
matroid market U = (M,N,v) trivial, if there exists a Walrasian price p such that 2·∆(p) =
min ∅ :=∞, hence ωj,x = p(x) for all j ∈ N and x ∈M .

Clearly, in any trivial weighted uniform matroid market there exists Walrasian price and
the existence of dynamic prices is guaranteed, as the following theorem shows.

Theorem 4.12. There exists a dynamic price for every trivial relevant weighted uniform
matroid market.

Proof. Let U = (M,N,v) a trivial relevant weighted uniform matroid market withWalrasian
price p. Clearly, every allocation that allocates all items in an arbitrary way is optimal.
Therefore, p− ε for 0 < ε < minx∈M p(x) is a dynamic price.

Assumption 4.13. All Markets are nontrivial.

4.2.4. Definitions from Graph Theory

For the exposition of our results we need some definitions and notations from graph theory.

Definition 4.14. For either a simple graph or a digraph G = (V,E) and a subset of edges
(arcs) F ⊆ E we denote by G[F ] the graph whose vertices are the vertices of G that are
contained in some e ∈ F and whose edges (arcs) are given by F and call it the by F induced
subgraph and for W ⊆ V we denote by G −W := (V \W, {{a, b} ∈ E : a, b /∈ W}) the
deletion of W from V . In a graph G = (V,E) the degree of a vertex v ∈ V is denoted by
degG(v) and in a digraph G = (V,E) the indegree of v ∈ V is denoted by indegG(v) and
its outdegree is denoted by outdegG(v). For ease of notation, in a digraph we interpret a
sequence of vertices (v1, v2, . . . , vk) such that vi 6= vj and (vi, vi+1) ∈ E for 1 ≤ i < j ≤ k
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as the path {(vi, vi+1) : 1 ≤ i < k} and call a (di)graph acyclic if it contains no cycles.
We call a bipartite graph G = (U,W,E) balanced, if it holds |U | = |W | and otherwise
unbalanced. In a bipartite graph G = (U,W,E) any subset of edges F ⊆ E such that
degG[F ](x) ≤ 1 for all x ∈ U ∪ W is called a matching. For S ⊆ U ∪ W a matching
F is called S-saturating if it holds degG[F ](x) = 1 for all x ∈ S. In any balanced graph
any U -saturating matching is also W -saturating and is called a perfect matching. We
extend the notion of matchings to node capacitated bipartite graphs: Given a bipartite graph
G = (U,W,E) equipped with node capacities rx ∈ Z+ for x ∈ U ∪W , any subset of edges
F ⊆ E such that degG[F ](x) ≤ rx for all x ∈ U ∪W is called a capacitated matching and
for S ⊆ U ∪W a capacitated matching F is called S-saturating if it holds degG[F ](x) = rx

for all x ∈ S. Call a node capacitated bipartite graph G = (U,W,E) equipped with capacities
rx for x ∈ U ∪W capacitated balanced if it holds ∑x∈U rx = ∑

x∈W rx and note that
in a capacitated balanced graph G = (U,W,E) it holds that any capacitated U -saturating
matching is also capacitated W -saturating and called perfect.

4.3. Interior Walrasian Prices

Recall that Walrasian prices exist in weighted uniform matroid markets. It is well known
that in every market the set of Walrasian prices is polyhedral. (Recall that the empty set is
also a polyhedron.) To see this, observe that, given an optimal allocation A = (A1, . . . , An)
for the market U = (M,N,v), the set of Walrasian prices can, by Theorem 4.5, be described
by

{p ∈ RM+ : uj(Aj , p) ≥ uj(T, p), for all T ⊆M, j ∈ N}

and therefore is the intersection of finitely many closed half-spaces. In this section, we focus
on Walrasian prices in the relative interior of this polyhedron.

Definition 4.15. For a market U = (M,N,v) denote the set of Walrasian prices by
W and call the relative interior of W defined by relint(W) := {p ∈ W : there exists ε > 0
such that Bε(p)∩ aff(W) ⊆ W}, where aff(W) is the affine hull of W and Bε(p) is the open
ball of radius ε centered on p, the set of interior Walrasian prices. Then, any price
p ∈ relint(W) is called an interior Walrasian price.

In this section, we show that in any weighted uniform matroid market any interior Wal-
rasian price induces no unnecessary demand, which clearly is a necessary condition for a
price to be dynamic. Not only does this result nearly directly imply that interior Walrasian
prices in relevant matching markets are already dynamic prices but it will be useful since
interior Walrasian prices share several important characteristics (e.g., inducing no unneces-
sary demand) with dynamic prices and makes any interior Walrasian price suited to serve
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as the starting price of our dynamic price algorithm in Section 4.5. However, even though
inducing no unnecessary demand is necessary for a price to be dynamic, it is not sufficient,
as it is demonstrated in the Examples 4.7 and 4.27.
We put the definition of dynamic prices in a bit more context to Walrasian prices: On the

one hand the notion of a Walrasian price is stronger in the sense that it supports allocations
in which no buyer envies the bundle that any other buyer gets allocated. On the other hand
the notion of a Walrasian price is weaker since for a given buyer it allows that the set of
demanded sets given the price contains nonoptimal sets while a dynamic price requires the
demanded sets to be a subset of the optimal sets.

4.3.1. Structure of Demand for Weighted Uniform Matroid Valuations

We explore the structure of the demanded sets and the demanded items of weighted uniform
matroid valuations.

Definition 4.16. Let j ∈ N and vj a (weighted uniform matroid) valuation and p a price.
We define Xj(p) := ⋂

S∈Dj(p) S as the strongly demanded items for j and Yj(p) :=
{x ∈

⋃
Dj(p) \Xj(p) : there exists S ∈ Dj(p) such that x ∈ S and |S| ≤ rj} as the weakly

demanded items for j. (Note that (Xj(p), Yj(p)) is not necessarily a partition of ⋃Dj(p)
since there might exist items with a price of zero which could be contained in ⋃Dj(p) but
there might already exist at least rj other items in ⋃Dj(p) which provide a strict higher
utility to the buyer.) In a (weighted uniform matroid) market U = (M,N,v) we define
X(p) := ⋃

j∈N Xj(p) as the set of strongly demanded items and Y (p) := ⋃
j∈N Yj(p) as

the set of weakly demanded items.

Clearly, in a weighted uniform matroid market with an arbitrary Walrasian price p it may
hold X(p)∩Y (p) 6= ∅ as it already can be seen by a simple one item and two buyers example.
Clearly, if both buyers have different values for the item, then setting the price p as the
lower of the buyers’ values is a Walrasian price but it holds X(p) ∩ Y (p) 6= ∅. However, it
will turn out that every interior Walrasian price p of a weighted uniform matroid market
induces no unnecessary demand, hence in particular it holds X(p) ∩ Y (p) = ∅.

Based on the distinction of some buyer’s strongly and weakly demanded items, given a
price, we state the rather simple but important property of buyers with weighted uniform
matroid valuations that any buyer’s weakly demanded items all provide the same utility to
her.

Lemma 4.17. Let j ∈ N and vj : 2M → R+ be a weighted uniform matroid valuation with
underlying matroid U rjM and p a price. Then, it holds

uj(x, p) = uj(y, p) for all x, y ∈ Yj(p).
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Proof. Assume there exists x, y ∈ Yj(p) such that uj(x, p) > uj(y, p) ≥ 0. Since x ∈
Yj(p) there has to exist A ∈ Dj(p) such that x /∈ A and |A| = rj . (If |A| < rj , by
uj(x, p) > 0, one could add x to A and improve j’s utility and if |A| > rj then for S ∈
arg maxT⊆A,|T |=rj uj(T, p) it holds uj(S, p) ≥ uj(A, p)) and in particular it holds y /∈ A

(otherwise, exchanging y with x yields a set with higher utility). Then, it has to hold
uj(z, p) ≥ uj(x, p) for all z ∈ A since if there exists z ∈ A with uj(z, p) < uj(x, p), then
it holds uj(A, p) < uj((A \ {z}) ∪ {x}, p) in contrast to A ∈ Dj(p). Then, for B ∈ Dj(p)
such that y ∈ B and |B| ≤ rj there exists z ∈ A \ B and it holds uj(z, p) ≥ uj(x, p) >
uj(y, p), hence exchanging y with z yields a set with higher utility contradicting B ∈ Dj(p).
Therefore, the assumption can not hold and the claim follows.

Note that it follows easily by the definition of the demanded sets and Lemma 4.17 that
for any weighted uniform matroid valuation vj and any price p and y ∈ Yj(p) and z ∈ M
such that uj(z, p) = uj(y, p) it clearly holds z ∈ Yj(p).

We give an example of the demanded sets of a weighted uniform matroid valuation to
develop some intuition for its specific structure.

Example 4.18. Let vj : 2{w,x,y,z} → R+ a weighted uniform matroid valuation with rj = 2
with its item weights and item prices given by the following table.

w x y z
vj 10 10 8 4
p 1 2 0 0

Figure 4.2.: Item weights of vj and item prices.

Then, it holds Dj(p) = {{w, x}, {w, x, y} {w, x, z}, {w, x, y, z}, {w, y}, {w, y, z}} and thus
Xj(p) = {w} and Yj(p) = {x, y}.

We define the direct sum of two families of sets to describe the demanded sets in a concise
way.

Definition 4.19. For any pair of sets A,B of sets we define A⊕B := {s : s = a ∪ b, a ∈
A, b ∈ B}.

It follows directly by Lemma 4.17:

Corollary 4.20. Let j ∈ N and vj : 2M → R+ a weighted uniform matroid valuation with
underlying matroid UMrj and p a price.

i) For all x ∈ Yj(p) it holds uj(x, p) > 0 iff Dj(p) = {A : A = Xj(p) t B,B ⊆ Yj(p),
|B| = rj − |Xj(p)|}

⊕
{K : K ⊆ {x ∈M \Xj(p) : p(x) = 0}}.
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ii) For all x ∈ Yj(p) it holds uj(x, p) = 0 iff Dj(p) = {A : A = (Xj(p) t B), B ⊆ Yj(p),
|B| ≤ rj − |Xj(p)|}

⊕
{K : K ⊆ {x ∈M \Xj(p) : p(x) = 0}}

Let vj a weighted uniform matroid valuation and p a price such that uj(x, p) > 0 for all
x ∈ Yj(p), then it necessarily holds |Yj(p)| > rj − |Xj(p)| by Corollary 4.20. Observe that
for vj it may hold Yj(p) ∩ {x ∈M : p(x) = 0} 6= ∅. Furthermore, if p is strict positive, then
the second ⊕-summand in Corollary 4.20 is empty.
As we consider only relevant markets it follows directly by Corollary 4.20, Theorem 4.5

and Assumption 4.9:

Corollary 4.21. Let U = (M,N,v) a weighted uniform matroid market and p a Walrasian
price. Then, it holds:

i) For j ∈ N such that uj(x, p) > 0 for x ∈ Yj(p) it holds that OptUj ⊆ {A : A =
(Xj(p) tB), B ⊆ Yj(p), |B| = rj} ⊆ Dj(p).

ii) For j ∈ N such that uj(x, p) = 0 for x ∈ Yj(p) it holds that OptUj ⊆ {A : A =
(Xj(p) tB), B ⊆ Yj(p), |B| ≤ rj} ⊆ Dj(p).

4.3.2. Equivalent Item Graph

For a weighted uniform matroid market U = (M,N,v) with Walrasian price p we fix some
optimal allocation A = (A1, . . . , An) ∈ OptU and introduce a directed auxiliary graph
GA(p) to represent transforms of A into other optimal allocations. The set of vertices of
GA(p) is M t N and the set of arcs is defined as follows: From every item x that, given
p, is weakly demanded by the buyer αA(x) there is an outgoing arc to every by αA(x)
weakly demanded item y /∈ AαA(x), hence the utility of αA(x) does not change by adding
y and giving up x (to someone yet undetermined; in fact one who chooses an arc into x).
Furthermore, if any item x ∈ Aj provides zero utility at price p to the buyer j she can give
up x without changing her utility. This will be represented by an arc going from x to the
vertex j. Conversely, for any buyer j such that |Aj | < rj and x ∈ Yj(p) \ Aj it necessarily
holds uj(x, p) = 0 by Theorem 4.5, hence buyer j can add x to Aj without changing her
utility and this is indicated by an arc going from j to x.

Definition 4.22. Let U = (M,N,v) a weighted uniform matroid market and (p,A =
(A1, . . . , An)) a Walrasian equilibrium. We define the directed equivalent item graph of
A by GA(p) with V (GA(p)) := M tN and

E(GA(p)) := {(x, y) : x ∈ Aj ∩ Yj(p), y ∈ Yj(p) \Aj , j ∈ N}

t{(x, j) : x ∈ Aj ∩ Yj(p), uj(x, p) = 0, j ∈ N}

t{(j, y) : |Aj | < rj , y ∈ Yj(p) \Aj , j ∈ N}.
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We say that we reallocate along an arc (x, y) ∈ E(GA(p)) iff for x, y ∈M we reallocate
item y to buyer αA(x) or for y ∈M and x ∈ N we additem y to buyer x or for x ∈M and
y ∈ N buyer y gives item x up.

Next, we show that all optimal allocations are encoded in GA(p).

Lemma 4.23. Let U = (M,N,v) a weighted uniform matroid market and (p,A) a Wal-
rasian equilibrium. Given F ⊆ E(GA(p)) such that indegGA(p)[F ](x) = outdegGA(p)[F ](x) ≤
1 for all x ∈ M and 0 ≤ |Aj | − indegGA(p)[F ](j) + outdegGA(p)[F ](j) ≤ rj for all j ∈ N

a reallocation along the arcs of F transforms A = (A1, . . . , An) into another optimal al-
location. Conversely, for every different optimal allocation B ∈ OptU there exist a set
F ⊆ E(GA(p)) such that indegGA(p)[F ](x) = outdegGA(p)[F ](x) ≤ 1 for all x ∈ M and
0 ≤ |Aj | − indegGA(p)[F ](j) + outdegGA(p)[F ](j) ≤ rj for all j ∈ N and reallocating along the
arcs of F transforms A to B.

Proof. Clearly, every F ⊆ E(GA(p)) such that indegGA(p)[F ](x) = outdegGA(p)[F ](x) ≤
1 for all x ∈ M and 0 ≤ |Aj | − indegGA(p)[F ](j) + outdegGA(p)[F ](j) ≤ rj allocates all
items and therefore transforms A into another optimal allocation due to Lemma 4.17 and
Corollary 4.21.
Conversely, for an alternative optimal allocation B = (B1, . . . , Bn) let F be constructed

as follows: For every j ∈ N such that |Aj | = |Bj | choose any bijection fj : Aj \Bj → Bj \Aj
and let (x, y) ∈ F iff fj(x) = y. For every j ∈ N such that |Aj | < |Bj | choose any
injective fj : Aj \ Bj → Bj \ Aj and let (x, y) ∈ F iff x ∈ Aj \ Bj and y = fj(x) or
x = j and y ∈ (Bj \ Aj) \ f(Aj). For every j ∈ N such that |Aj | > |Bj | choose any
injective fj : Bj \ Aj → Aj \ Bj and let (x, y) ∈ F iff y ∈ Bj \ Aj and fj(y) = x or y = j

and x ∈ (Aj \ Bj) \ f(Bj). Then, reallocating along the arcs of F transforms A to B by
construction and F fulfills indegGA(p)[F ](x) = outdegGA(p)[F ](x) ≤ 1 for all x ∈ M and
0 ≤ |Aj | − indegGA(p)[F ](j) + outdegGA(p)[F ](j) ≤ rj .

We remark that every set F in Lemma 4.23 is the disjoint union of cycles and (u, v)-paths
with u, v ∈ N . To see this, let B an alternative optimal allocation and F ⊆ E(GA(p))
such that reallocating along the arcs of F transforms A into B. Let x ∈ M such that
αA(x) 6= αB(x), hence indegGA(p)[F ](x) = outdegGA(p)[F ](x) = 1 and assume x not to be
contained in any cycle. Then, there exists y, z ∈M such that {(y, x), (x, z)} ⊆ F and since
M is finite and it holds indegGA(p)[F ](w) = outdegGA(p)[F ](w) ≤ 1 for all w ∈ M it follows
inductively that {(y, x), (x, z)} is contained in some (u, v)-path with u, v ∈ N .

For a directed graph, we formally define the set of vertices that are reachable by a path
from a given vertex.

Definition 4.24. For a digraph G = (V,E) we say an item y ∈ V is a successor of
x ∈ V in G if it holds x = y or there exist a path P = (x, . . . , y) ⊆ E. For x ∈ V we define
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RG(x) := {y ∈ V : y is a successor from x in G} and LG(x) := {y ∈ V : x is a successor
from y in G}.

The following corollary puts the concept of successor in relation with some fixed buyer’s
weakly demanded items in weighted uniform matroid markets.

Corollary 4.25. Let U = (M,N,v) a weighted uniform matroid market, (p,A) a Walrasian
equilibrium and x ∈ Y (p).

i) If it holds RGA(p)(x) ∩N = ∅ then for j ∈ α(RGA(p)(x)) it holds Yj(p) \
⋂
S∈OptUj

S ⊆
RGA(p)(x).

ii) If it holds LGA(p)(x) ∩N = ∅ then for j ∈ α(LGA(p)(x)) it holds Yj(p) ⊆ LGA(p)(x).

Proof. i) For every y ∈ RGA(p)(x) and j ∈ α(y) it either holds αA(y) = j or by
Lemma 4.23 there exists a cycle C ⊆ E(GA(p)) without N and reallocating along
the arcs of C yields an optimal allocation B with j = αB(y). In either case, it has
to exist z ∈ RGA(p)(x) with αA(z) = j. Then, it clearly holds RGA(p)(z) ∩ N = ∅
and therefore RGA(p)(t) ∩ N = ∅ for all t ∈ Yj(p) by the definition of GA(p). Thus,
by Lemma 4.23, every t ∈ Yj(p) \

⋂
S∈OptUj

S has to be contained in a cycle C =
(t = t1, t2, . . . , tk, t) and there exists a z − t path P = (z, t2, . . . , tk, t) and it follows
Yj(p) \

⋂
S∈OptUj

S ⊆ RGA(p)(x).

ii) For every y ∈ LGA(p)(x) and αA(y) 6= j it clearly holds (z, y) ∈ GA(p)(x) for all
z ∈ Yj(p) by the definition of GA(p)(x), hence z ∈ LGA(p)(x). For every y ∈ LGA(p)(x)
and j ∈ α(y) and αA(y) = j there exists a path P = (y = y1, y2, . . . , x) and it holds
(z, y2) ∈ E(GA(p)(x)) for every z ∈ Yj(p), hence z ∈ LGA(p)(x).

4.3.3. Interior Walrasian Prices Induce no Unnecessary Demand

Next, we make use of the equivalent item graph to show the main result of this section,
namely that in every weighted uniform matroid market all interior Walrasian prices induce
no unnecessary demand.

Theorem 4.26. Let U = (M,N,v) a weighted uniform matroid market and p an interior
Walrasian price. Then, for all j ∈ N it holds ⋃Dj(p) = ⋃OptUj and Xj(p) = {x ∈
M : α(x) = {j}}.

Proof. Let A = (A1, . . . , An) an arbitrary optimal allocation, thus ⊔j∈N Aj = M .

Claim 4: It holds p > 0.
Proof of claim: Suppose there exists x ∈M such that p(x) = 0. Then, it holds RGA(p)(x)∩
N = ∅ since if there exists v ∈ RGA(p)(x) ∩ N then there has to exist a (x, v)-path P and
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reallocating along the edges of P yields an alternative optimal allocation in which x remains
unallocated in contrast to U being relevant. Therefore, for j ∈ ⋃y∈RGA(p)(x) α(y) it holds
vj(z) − p(z) > 0 for all z ∈ Yj(p). Let p′ := p + ∆(p) · χRGA(p)(x), then it holds for all j ∈⋃
y∈RGA(p)(x) α(y) that Yj(p′) = (Yj(p)\

⋂
S∈OptUj

S)∪{x} and Xj(p′) = ⋂
S∈OptUj

S \{x} and
by Corollary 4.25 and the definition of ∆(p) and therefore it holds OptUj = OptUj ∩Dj(p) =
OptUj ∩Dj(p′) by Corollary 4.21. Clearly, for all j ∈ N \⋃y∈RGA(p)(x) α(y) it holds ⋃OptUj ⊆
M \ RGA(p)(x) and since p′ ≥ p it trivially holds OptUj = OptUj ∩Dj(p) = OptUj ∩Dj(p′),
thus p′ is a Walrasian price. However, for all ε > 0 it holds that p′′ := p− ε ·χRGA(p)(x) /∈ W
since p′′(x) < 0. This contradicts p ∈ relint(W). �

Claim 5: For every x ∈M it holds indegGA(p)(x) > 0 iff it holds outdegGA(p)(x) > 0.
Proof of claim: Assume there exists x ∈ M such that (y, x) ∈ E(GA(p)) and it holds
outdegGA(p)(x) = 0. Then, it holds α(x) = {αA(x)} and x ∈ XαA(x)(p) and therefore
p+ ∆(p) · χ{x} ∈ W and for ∆(p) > ε > 0 and p′ := p− ε · χ{x} it holds p′ > 0 by Claim 4.
As the price of x is lowered it holds x ∈ Xy(p′) if y ∈ N respectively x ∈ XαA(y)(p′) if
y ∈ M by Lemma 4.17 but x /∈

⋃OptUy respectively x /∈
⋃OptUαA(y) and therefore p′ /∈ W

by Theorem 4.5, hence p /∈ relint(W).
Analogously, assume there exists y ∈ M such that (y, x) ∈ E(GA(p)) and it holds

indegGA(p)(y) = 0. Then, it holds α(y) = {αA(y)} but y ∈ YαA(y)(p) and therefore
p−∆(p) ·χ{y} ∈ W but for ε > 0 and p′ := p+ ε ·χ{y} it holds y /∈ ⋃Dj(p′) by Lemma 4.17
and therefore p′ /∈ W by Theorem 4.5, hence p /∈ relint(W). �

Claim 6: Every (x, y) ∈ E(GA(p)) is contained in a cycle or a (u, v)-path with u, v ∈ N .
Proof of claim: Let F := {(x, y) ∈ E(GA(p)) : (x, y) is not contained in a cycle or a (u, v)-
path with u, v ∈ N} and F1 := {(x, y) ∈ F : LGA(p)(x) ∩ N = ∅} and F2 := {(x, y) ∈
F \F1 : RGA(p)(x)∩N = ∅}. If F1 6= ∅ let (x, y) ∈ F1 such that ⋃(w,z)∈F1{z}∩LGA(p)(x) = ∅.
(Clearly, such a (x, y) has to exist due to Claim 5 and the finiteness of M since otherwise
there would exist a cycle containing a subset of F1 contradicting the definition of F .) Notice
that for every z ∈ LGA(p)(x) \ {x} and (z, w) ∈ E(GA(p)) it holds (z, w) /∈ F since clearly
LGA(p)(z)∩N = ∅. Then, for p′ := p−∆(p)·χLGA(p)(x) it holds p′ > 0 by Claim 4 and for j ∈⋃
z∈LGA(p)(x) α(z) it holds Xj(p) = Xj(p′) and Yj(p) = Yj(p′) by Corollary 4.25 and therefore

OptUj = OptUj ∩Dj(p) = OptUj ∩Dj(p′) by Corollary 4.21 and for j ∈ N \ ⋃z∈LGA(p)(x) α(z)
it trivially holds Dj(p) = Dj(p′) and therefore holds p′ ∈ W. However, for ε > 0 and
p′′ := p + ε · χLGA(p)(x) it holds uαA(x)(x, p′′) < uαA(x)(y, p′′) and by Theorem 4.5 and the
Corollaries 4.20 and 4.21 this contradicts that p′′ is Walrasian. Therefore, p /∈ relint(W)
contrary to the assumption and F1 = ∅.

Analogously, if it holds F2 6= ∅ let (x, y) ∈ F2 such that ⋃(w,z)∈F2{w} ∩ RGA(p)(y) = ∅.
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Then, for p′ := p + ∆(p) · χRGA(p)(y) it holds that p′ ∈ W. However, for ∆(p) > ε > 0 and
p′′ := p − ε · χRGA(p)(y) it has to hold y ∈ XαA(x)(p′′) if x ∈ M respectively y ∈ Xx(p′′)
if x ∈ N by Lemma 4.17 and therefore p′′ /∈ W by Theorem 4.5 since the allocation A is
not supported by p′′. Hence, F2 6= ∅ contradicts p ∈ relint(W) and therefore holds F2 = ∅,
hence F = ∅ what yields the claim. �

Now, the theorem follows directly by Claim 6 and Lemma 4.23.

It follows directly by Theorem 4.26 that for every weighted uniform matroid market and
every interior Walrasian price p it holds that X(p) ∩ Y (p) = ∅.

For completeness, we note that the assumption in Theorem 4.26 is not sufficient to guar-
antee Walrasian prices to be contained in the relative interior, as the following example
shows:

Example 4.27. Consider the matching market U with item set M = {x, y} and buyers
N = {1, 2} given by the following table:

x y rank
v1 2 2 1
v2 1 1 1

Figure 4.3.: The market U .

Then, W = {p ∈ R2 : 0 ≤ p(x) = p(y) ≤ 1} and e.g., for p = (1, 1) it holds ⋃Dj(p) =⋃OptUj = {x, y} and Xj(p) = ∅ = {x ∈ M : α(x) = {j}} for j ∈ {1, 2} but p ∈ W \
relint(W).

We use the nice characterization of interior Walrasian prices given by Theorem 4.26 to
strengthen the main result of Cohen-Addad et al. [2016], which shows that dynamic prices
are guaranteed to exist in matching markets. To this end, we partition the set of buyers
into those that secure in every optimal allocation a bundle of their rank and those that do
not.

Definition 4.28. For a weighted uniform matroid market U = (M,N,v) we denote N= :=
{j ∈ N : |S| = rj for all S ∈ OptUj } and N< := N \ N= = {j ∈ N : |S| < rj for some
S ∈ OptUj }.

By Assumption 4.9 of relevance there cannot exists j ∈ N with S ∈ OptUj such that
|S| > rj .

Lemma 4.29. In a weighted uniform matroid market U = (M,N,v) for every p ∈ relint(W)
it holds:

i) uj(x, p) = 0 for j ∈ N< and x ∈ Yj(p),
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ii) uj(x, p) > 0 for j ∈ N= and x ∈ Yj(p).

Proof. Trivially, i) follows by Lemma 4.17. To see that ii) holds for true assume there exists
a weighted uniform matroid market U = (M,N,v) such that p ∈ relint(W) and j ∈ N=

and y ∈ Yj(p) such that uj(y, p) = 0. Let A = (A1, . . . , An) an optimal allocation such that
y ∈ Aj and recall that it holds (y, j) ∈ E(GA(p)). If it holds L(GA(p)(y)∩N = ∅, then it holds
p−∆(p)·χLGA(p)(y) ∈ W by Corollary 4.25 but for all ε > 0 it holds p′ := p+ε·χLGA(p)(y) /∈ W
since it holds uj(y, p′) < 0 what contradicts p ∈ relint(W). If it holds u ∈ LGA(p)(y)∩N then
it holds u 6= y by definition of GA(p) and there exists a path P = (u, . . . , y, . . . , j), thus by
Lemma 4.23 reallocating along the edges P yields an optimal allocation B = (B1, . . . , Bn)
such that |Bj | = rj − 1 contradicting j ∈ N=.

Now, a stronger version of the main result of Cohen-Addad et al. [2016] follows easily by
Theorem 4.26 and Lemma 4.29:

Corollary 4.30. Every interior Walrasian price of a weighted matching market is a dynamic
price.

Proof. Let U = (M,N,v) a matching market with p ∈ relint(W), then it holds for j ∈ N=

such that Xj(p) 6= ∅ that that there exists exactly one item x that j gets allocated in
every optimal allocation, hence Dj(p) = {Xj(p)} = {{x}} = OptUj . For j ∈ N= such that
Xj(p) = ∅ it holds that {{x} : x ∈ Yj(p)} = OptUj but clearly also Dj(p) = {{x} : x ∈ Yj(p)}.
For j ∈ N< it holds that in any optimal allocation j either gets allocated nothing or some
item of Yj(p), hence {∅}∪{{x} : x ∈ Yj(p)} = OptUj but clearly also Dj(p) = {∅}∪{{x} : x ∈
Yj(p)}.

We briefly rephrase the result of this section: Interior Walrasian prices in weighted uniform
matroid markets induce for any fixed buyer no demand for items that the buyer does not get
allocated in some optimal allocation and thus serve as dynamic prices for matching markets.
However, by Example 4.7, interior Walrasian prices in more general markets may induce
some buyers demand for sets that the buyer does not get allocated in optimal allocation
and thus generally do not serve as dynamic prices in weighted uniform matroid markets.

4.4. Interpreting Weighted Uniform Matroid Markets as Bipartite
Graphs

In this section we use interior Walrasian prices to interpret weighted uniform matroid mar-
kets as node capacitated bipartite graphs, which encode all optimal allocations through
their saturating capacitated matchings.
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Motivated by Lemma 4.17 and Theorem 4.26 we partition the set of items of a weighted
uniform matroid market depending on the set of buyers that receive an item in some optimal
allocation:

Definition 4.31. For a weighted uniform matroid market U = (M,N,v) and S ⊆ N we
define [S] := {x ∈M : S = α(x)}.

Clearly, M = ⊔
S⊆N [S] by Assumption 4.9. Furthermore, for every interior Walrasian

price p it holds X(p) = ⊔
j∈N [{j}] and Y (p) = M \X(p) by Theorem 4.26. Then, for every

optimal allocation A = (A1, . . . , An) and every S ⊆ N such that |S| ≥ 2 and |[S]| ≥ 2
and x, y ∈ [S], x 6= y it holds that exchanging the items x and y between αA(x) and
αA(y) still yields an optimal allocation by Corollary 4.21 and Theorem 4.12. (Note that
this clearly does not hold for general weighted matroid markets! See Appendix A.1 for
such an example.) Therefore, for S ⊆ N the set [S] forms an equivalence class of these
items which are in the set of optimal items of every buyer in S and not in the set of
optimal items of any buyer in N \ S. Then, in order to implement an arbitrary optimal
allocation it suffices to consider the equivalence class of an item without distinguishing the
members of the class. In the following, we identify the set of items M with {(S, k) : S ⊆
N, [S] 6= ∅, 1 ≤ k ≤ |[S]|} where (S, 1), . . . , (S, |[S]|) are the equivalent items of the class
[S]. Clearly, for any interior Walrasian price p and S ⊆ N it holds by Theorem 4.26 that
[S] = {x ∈M : x ∈ ⋂j∈S ⋃Dj(p), x /∈

⋃
j∈N\S

⋃
Dj(p)}.

Notice that the partition of M into the equivalence classes [S], S ⊆ N can be induced
by any interior Walrasian price and is independent of the concrete choice of the interior
Walrasian price.
Next, we associate every weighted uniform matroid market U = (M,N,v) a unique

bipartite node capacitated graph in which the vertices are the buyers and the items of the
market and there is an edge going from some buyer j to an item x iff it holds j ∈ α(x). We
denote

G(U) := (M,N, {{(S, k), j} : (S, k) ∈M, j ∈ S ⊆ N})

and call G(U) market graph associated to U . In the following, let the vertices V (G(U))
be equipped with node capacities rx = 1 for x ∈ M and rj for j ∈ N (recall that rj
is the rank oft the vj underlying matroid U

rj
M ). For x ∈ M and j ∈ N interpret the

edge {x, j} ∈ E(G(U)) as the allocation of x to j. This allows to identify any allocation
A = (A1, . . . , An) such that Aj ⊆

⋃OptUj , |Aj | ≤ rj for all j ∈ N with a capacitated
matching of G(U) by setting F := {{x, j} ∈ E(G(U)) : x ∈ Aj}. Therefore, it follows
directly by Corollary 4.21 and the Theorems 4.5 and 4.26 that all optimal allocations are
encoded by G(U) simultaneously:
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Lemma 4.32. For any weighted uniform matroid market U = (M,N,v) and its associated
market graph G(U) the set of optimal allocations can be identified with the set of M tN=-
saturating capacitated matchings of G(U).

Clearly, in every optimal allocation of every balanced weighted uniform matroid market
every buyer j gets allocated a set of exactly rank rj by Assumption 4.9. Therefore, it follows
directly by Lemma 4.32:

Corollary 4.33. In any balanced weighted uniform matroid market U the set of optimal
allocations can be identified with the set of perfect capacitated matchings of G(U).

It follows directly by Lemma 4.32 that a buyer’s optimal subsets are encoded in G(U).

Corollary 4.34. Let U = (M,N,v) a weighted uniform matroid market. Then, for all
F ⊆ G(U)} it holds that A = (A1, . . . , An) with Aj := {x ∈M : {x, j} ∈ F} for j ∈ N is an
allocation that can be completed to an optimal allocation iff there exists L ⊆ E(G(U)) such
that F ⊆ L and L is a M tN=-saturating capacitated matching.

In particular, Corollary 4.34 implies for the weighted uniform matroid market U =
(M,N,v) and j ∈ N that Aj is an optimal subset for j iff {{x, j} : x ∈ Aj} is subset
of some M tN=-saturating capacitated matching of G(U).

In weighted uniform matroid markets, we want to establish a combinatorial condition
that guarantees a set to be an optimal subset for a fixed buyer. To this end, we recall the
marriage theorem of Hall.

Theorem 4.35. [Hall, 1935] Let G = (U,W,E) a bipartite graph. Then, there exists a
W -saturating matching iff for all S ⊆W holds |NG(S)| ≥ |S|.

As we need a statement in the spirit of Hall’s theorem that applies to the market graph,
we generalize Hall’s theorem to node capacitated bipartite graphs.

Corollary 4.36. Let G = (U,W,E) a node-capacitated bipartite graph with capacities r ∈
ZUtW+ . Then, there exists a W -saturating capacitated matching iff for all S ⊆ W holds∑
i∈NG(S) ri ≥

∑
i∈S ri.

Proof. Let G′ = (U ′,W ′, E′) with U ′ := {(u, k) : u ∈ U, 1 ≤ j ≤ r(u)}, W ′ := {(w, k) : w ∈
W, 1 ≤ k ≤ r(p)} and E′ := {{(u, j), (w, k)} : (u, j) ∈ U ′, (w, k) ∈ W ′, {u,w} ∈ E}, then,
clearly, every W ′-saturating matching F ⊆ E can be easily transferred into a capacitated
W -saturating matching F ′ ⊆ E′ and vice versa.

Now, observe that for A′ ⊆ W ′ and T ′ := ⋃
(w,l)∈A′{(w, k) : 1 ≤ k ≤ rw} it holds

|NG′(A′)| = |NG′(T ′)| and |T ′| ≥ |A′| and therefore by Theorem 4.35 there exists a W ′-
saturating matching in G′ iff for all A′ ⊆W ′ such that for all w ∈W holds |A′∩{(w, k) : 1 ≤
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k ≤ rw}| ∈ {0, rw} holds |A′| ≤ |NG′(A′)|. Then, the claim follows directly since there
exists a bijection from 2W to {A′ ⊆ W ′ : A′ ∩ {(w, k) : 1 ≤ k ≤ rw}| ∈ {0, rw} for all
w ∈ W} and for S ⊆ W it clearly holds ∑i∈S ri = |{(w, k) : w ∈ S, 1 ≤ k ≤ rw}| and∑
i∈NG(S) ri = |NG′({(w, k) : w ∈ S, 1 ≤ k ≤ rw})|.

4.4.1. Hall’s Condition for Balanced Weighted Uniform Matroid Markets

Before we use Corollary 4.36 to provide a necessary and sufficient condition that a given
set of items is an optimal subset for a given buyer in a balanced weighted uniform matroid
market, we define for ease of notation:

Definition 4.37. Let U = (M,N,v) a balanced weighted uniform matroid market. For
S ⊆ N we denote ρ(S) := ⋃

T⊆S [T ] and σ(S) := ⋃
T⊆N : T∩S 6=∅[T ].

Therefore, for every subset of buyer S the set ρ(S) are those items which in every perfect
capacitated matching of the market graph get matched with some buyers of S and σ(S)
are those items which in at least one perfect capacitated matching of the market graph get
matched with some buyer of S. Notice that for j ∈ N it holds σ({j}) = ⋃OptUj , thus σ
generalizes the notion of any buyer’s optimal items from a single buyer to a set of buyers.
Observe that ρ and σ are nondecreasing and for S, T ⊆ N it holds:

• σ(S) = M \ ρ(S),

• σ({j}) = ⋃U
j for j ∈ N ,

• ρ(S)∩ρ(T ) = {x ∈M : α(x) ⊆ S and α(x) ⊆ T} = {x ∈M : α(x) ⊆ S∩T} = ρ(S∩T ),

• σ(S) ∪ σ(T ) = {x ∈ M : α(x) ∩ S 6= ∅ or α(x) ∩ T 6= ∅} = {x ∈ M : α(x) ∩ S ∪ T 6=
∅} = σ(S ∪ T ),

• ρ(S)∪ρ(T ) = {x ∈M : α(x) ⊆ S or α(x) ⊆ T} ⊆ {x ∈M : α(x) ⊆ S∪T} = ρ(S∪T ).

Lemma 4.38. Let U := (M,N,v) a balanced weighted uniform matroid market and j ∈ N
and I ⊆ σ({j}). Then, it holds that I is an optimal subset for j (hence, the allocation
A = (A1, . . . , An) with Aj = I, Ai = ∅ for i ∈ N \ {j} can be completed to an optimal
allocation) iff it holds

|σ(S) \ I| ≥
∑
i∈S

ri for all S ⊆ N \ {j}. (4.1)

Proof. Let r̄j = rj − |I| and r̄i = ri for i ∈ N \ {j}. Clearly, by Corollary 4.36, there exists
a perfect capacitated matching with the capacities r̄ in G(U) − I if it holds |σ(S) \ I| ≥∑
i∈S r̄i for all S ⊆ N . Since G(U) contains a perfect capacitated matching, it holds for
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all S ⊆ N that 0 ≤ |σ(S)| −∑i∈S ri by Corollary 4.36. For S 3 j the last term equals
|σ(S) \ I| − ∑i∈S r̄i and therefore it trivially holds |σ(S) \ I| ≥ ∑

i∈S r̄i for all S 3 j.
Therefore, iff Inequality (4.1) holds true for all S ⊆ N \ {j} then there exists a perfect
capacitated matching with the capacities r̄ in G(U) − I by Corollary 4.36. However, for
every perfect capacitated matching F for G(U)− I with capacities r̄ it holds that F t I is a
perfect capacitated matching of G(U) with capacities r and vice versa and the claim follows
directly.

Note that for any balanced weighted uniform matroid market U := (M,N,v) and j ∈ N
it follows directly by Lemma 4.38 that for I ⊆ σ({j}) it holds I ∈ OptUj iff Inequality (4.1)
is fulfilled for all S ⊆ N \ {j} and it holds |I| = rj .
Next, we observe that under the assumption of Lemma 4.38 the set of sets for which

Inequality 4.1 is tight has a specific structure.

Lemma 4.39. Let U = (M,N,v) a balanced weighted uniform matroid market, j ∈ N and
I an optimal subset for j. Then,

arg max{|S| :
∑
i∈S

ri = |σ(S) \ I|, S ⊆ N \ {j}} =: T is unique

and for every S ⊆ N \ ({j} t T ), S 6= ∅ holds ∑i∈S ri < |σ(S) \ I|.

Proof. Recall that it holds ∑i∈S ri ≤ |σ(S) \ I| for all S ⊆ N \ {j} by Lemma 4.38 and
assume that A1, A2 ∈ {S ⊆ N \{j} : ∑i∈S ri = |σ(S)\I|}. Then, by the inclusion-exclusion
principle it holds that

|σ(A1 ∪A2) \ I| = |σ(A1) \ I|+ |σ(A2) \ I| − |(σ(A1) ∩ σ(A2)) \ I|

=
∑
i∈A1

ri +
∑
i∈A2

ri − |(σ(A1) ∩ σ(A2)) \ I| ≤
∑
i∈A1

ri +
∑
i∈A2

ri −
∑

i∈A1∩A2

ri =
∑

i∈A1∪A2

ri.

Therefore, it holds that A1∪A2 ∈ {S ⊆ N \{j} : ∑i∈S ri = |σ(S)\I|} and the claim follows
directly.

4.5. Dynamic Prices for Weighted Uniform Matroid Markets

In this section, we apply the auxiliary results of Section 4.4 to establish our main result, the
existence of dynamic prices in weighted uniform matroid markets and a simple algorithm
to compute them in polynomial time in the number of items and buyers.

For any given price we partition the set of buyers into those that have a unique utility
maximizing set and those that have not.
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Definition 4.40. For a weighted uniform matroid market U = (M,N,v) and a price p call
buyer j ∈ N satisfied if it holds Dj(p) = {Xj(p)} and unsatisfied if j is not satisfied. We
denote by N s(p) the set of satisfied buyers at feasible price p and by Nu(p) = N \N s(p) the
set of unsatisfied buyers at price p.

4.5.1. Feasible Prices

We sequentially calculate prices (non-Walrasian!), that preserve the following important
characteristics with interior Walrasian prices. We mention per property where it was shown
for interior Walrasian prices.

Definition 4.41. In a weighted uniform matroid market U = (M,N,v) call a price p

feasible if it holds

• p > 0, (Claim 4)

• X(p) ∩ Y (p) = ∅, (After Theorem 4.26)

• [{j}] ⊆ Xj(p) and Xj(p) is an optimal subset for j for all j ∈ N (After Defini-
tion 4.31),

• Xj(p) ∈ OptUj for all j ∈ N s(p), (Definition of Walrasian price and Definition 4.40)

• Xj(p) = X(p) ∩ σ({j}) and Yj(p) = σ({j}) \Xj(p) for all j ∈ Nu(p), (Definition of
interior Walrasian price)

• uj(x, p) > 0 for all j ∈ N= and x ∈ Yj(p) and
uj(x, p) = 0 for all j ∈ N< and x ∈ Yj(p). (Lemma 4.29)

Recall that in any balanced weighted uniform matroid market U = (M,N,v) it holds
N= = N by Assumption 4.9, hence given any feasible price p it holds uj(x, p) > 0 for
all j ∈ N and x ∈ Yj(p). By Theorem 4.26 and Lemma 4.29 it holds that every interior
Walrasian price is feasible, hence the set of feasible prices is nonempty for every weighted
uniform matroid market. In contrast to Walrasian prices, for any feasible price p and buyers
i, j ∈ N , i 6= j it might hold (and frequently occurs!) thatXi(p)∩Xj(p) 6= ∅ and furthermore
X(p)tY (p) (M . Note that for any weighted uniform matroid market U = (M,N,v) with
feasible price p it holds

a) that p is a dynamic price for all j ∈ N s(p) (since Dj(p) = {Xj(p)} by the definition
of satisfied buyers and Xj(p) ∈ OptUj by the definition of feasible price) and thus p is
a dynamic price if it holds N s(p) = N .
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b) Dj(p) =

{S : S = Xj(p) t T, T ⊆ Yj(p), |T | = rj − |Xj(p)|} if j ∈ N= ∩Nu(p),

{S : S = Xj(p) t T, T ⊆ Yj(p), |T | ≤ rj − |Xj(p)|} if j ∈ N< ∩Nu(p)

by p > 0 and Corollary 4.21.

c) OptUj ∩Dj(p) 6= ∅ for all j ∈ N since for all j ∈ N s(p) trivially holds OptUj ∩Dj(p) 6= ∅
by a) and for j ∈ Nu(p) clearly holds ∅ 6= {S ∈ OptUj : Xj(p) ⊆ S} ⊆ Dj(p) by b)
Corollary 4.21 and the fact that Xj(p) is an optimal subset.

We briefly outline the importance of feasible prices for our algorithm to compute dynamic
prices: Assume in a weighted uniform matroid market U = (M,N,v) for every feasible price
p that is not already a dynamic price (hence, Nu(p) 6= ∅) it holds that there exists x ∈ Y (p)
and a feasible price p1 (that can be generated by taking p and decreasing p(x) slightly after
possibly increasing p slightly) such that it holds X(p1) = X(p) t {x}. Then, it follows
directly that Y (p1) ( Y (p) and by the finiteness of M one can construct inductively a
feasible price q such that Y (q) = ∅. However, this implies that the market allows for a
dynamic price since it has to hold Xj(q) ∈ OptUj for all j ∈ N by definition.

4.5.2. Balanced Markets

We show that the for any balanced weighted uniform matroid market U and for every feasible
but non dynamic price p there exists an item x such that decreasing the item price of x
slightly yields a feasible price p1 for which holds X(p1) = X(p)t {x}. To this end, we need
a definition in the spirit of Lemma 4.39.

Definition 4.42. Given a balanced weighted uniform matroid market U = (M,N,v) we
define the conflict function at feasible price p by

gp : Nu(p)→ 2N \ {N}, gp(j) := arg max
S⊆N\{j} :

∑
i∈S ri=|σ(S)\Xj(p)|

|S|.

The concept of the conflict function is crucial for the rest of this chapter and in particular
for the proof of our main statement. Clearly, for every feasible price p the function gp is
well defined by Lemma 4.39 as for j ∈ Nu(p) the set Xj(p) is a (strict!) optimal subset
for j ∈ Nu(p) by the definition of Nu(p) and the fact that U is balanced. Therefore, given
any feasible price p and any unsatisfied buyer j ∈ Nu(p) there exists a strict superset T
of Xj(p) such that T ∈ OptUj . Then, since gp(j) is the unique inclusionwise maximal set
for which Inequality 4.1 is tight, it is by Corollary 4.33 exactly the maximal set of buyers
for which every optimal allocation that allocates Xj(p) to j has to allocate every item in
σ(gp(j)) \Xj(p) to some buyer of gp(j). Therefore, σ(gp(j)) ∩ Y (p) is the set of items from
which buyer j is not allowed to get allocated any item on top of Xj(p) and gp(j) implicitly
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describes this set. Before we use the conflict function to describe the set of items from which
buyer j is allowed to get allocated any item on top of Xj(p), we give an example of the
mechanics of the conflict function.

Example 4.43. Recall the market of Example 4.7 and observe that p(x) = p(y) = p(z) = 1,
p(w) = 0.5 is a feasible price for U since D1(p) = {{w, x}, {w, y}, {w, z}, {w}} and OptU1 =
{{w, y}, {w, z}, {x, y}, {x, z}}, thus D1(p) ∩ OptU1 6= ∅ and D2(p) = {{w}} ⊂ OptU2 =
{{w}, {x}} and D3(p) = {{y}, {z}, ∅} and OptU3 = {{y}, {z}}, thus D3(p) ∩ OptU3 6= ∅ and
it holds that Nu(p) = {1, 3} and N s(p) = {2}. It is X3(p) = {∅} and gp(3) = N , hence
buyer 3 can get allocated any of her demanded items without hurting any other buyer. In
contrast, it is X1(p) = {w} and gp(1) = {2} since |σ({2}) \X1(p)| = |{x}| = r2.

The following corollary describes the set of items from which buyer j might get allocated
some item on top of Xj(p) and turns out to be essential to prove the guaranteed existence
of dynamic prices in weighted uniform matroid markets.
In the following, when clear by context, we drop the subscript p and abbreviate the

conflict function gp at price p by g.

Corollary 4.44. Let U = (M,N,v) a balanced weighted uniform matroid market, p a
feasible price and j ∈ Nu(p). Then, it holds that Xj(p) t {x} is an optimal subset for j iff

x ∈ σ({j}) ∩ ρ(g(j)) ∩ Y (p).

Proof. It holds by the definition of the conflict function and Corollary 4.33 that Xj(p)t{x}
is not an optimal subset for j iff x ∈ σ(g(j)) ∩ ρ(g(j)) ∩ Y (p). Note that Xj(p) is a strict
optimal subset for j: Clearly for j ∈ Nu(p) it trivially cannot hold |Xj(p)| > rj and it cannot
hold |Xj(p)| > rj by the definition of an unsatisfied buyer and p > 0, hence |Xj(p)| < rj .
However, since U is balanced it holds for all S ∈ OptUj that |S| = rj . Then, it has to hold
by the Corollaries 4.33 and 4.34 that (σ({j}) \ σ(g(j)) ∩ Y (p) 6= ∅ and Xj(p) t {x} is an
optimal subset for j iff x ∈ (σ({j}) \ σ(g(j))) ∩ Y (p). However, it holds by definition that
σ({j}) \ σ(g(j)) = σ({j}) ∩ ρ(g(j)) and the statement follows directly.

We want to show:

Theorem 4.45. Let U = (M,N,v) a balanced weighted uniform matroid market with fea-
sible price p such that Nu(p) 6= ∅. Then, there exists x ∈ σ(Nu(p)) ∩ Y (p) such that for all
j ∈ Nu(p) ∩ α(x) holds that Xj(p) t {x} is an optimal subset for j.

Before we get ready to prove Theorem 4.45 we mention a direct implication:

Corollary 4.46. There exists a dynamic price in every balanced weighted uniform matroid
market.
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Proof. Let U = (M,N,v) a balanced weighted uniform matroid market with feasible price
p. Then, it holds by Theorem 4.45 that there exists x ∈ σ(Nu(p)) ∩ Y (p) such that for
all j ∈ Nu(p) ∩ α(x) holds that Xj(p) t {x} is an optimal subset for j. It follows by
Lemma 4.17 and the definition of ∆(p) that p1 := p − ∆(p) · χ{x} is a feasible price such
that X(p1) = X(p) t {x} and Y (p1) ( Y (p) and the statement follows successively by the
finiteness of M and the definition of feasible prices.

Two Unsatisfied Buyers

In order to develop some intuition for the proof of Theorem 4.45 we start with the special
case of a balanced weighted uniform matroid market with a feasible price such that there
are only two unsatisfied buyers given the price.

Theorem 4.47. Let U = (M,N,v) a balanced weighted uniform matroid market and p a
feasible price and {1, 2} = Nu(p). Then, there exists x ∈ Y (p) ∩ σ({1, 2}) such that for all
j ∈ {1, 2} ∩ α(x) holds Xj(p) t {x} is an optimal subset for j.

Proof. Recall that since U is balanced it holds for j ∈ Nu(p) that Xj(p) is a strict optimal
subset for j and therefore σ({j}) ∩ ρ(g(j)) ∩ Y (p) 6= ∅ by Corollary 4.44.
We distinguish the cases that there exists j ∈ {1, 2} such that i ∈ g(j) for i = 3− j and

that it holds 1 /∈ g(2) and 2 /∈ g(1). We will show that there exists x ∈ Y (p) ∩ σ(Nu(p))
either with

Nu(p) ∩ α(x) = {j} and Xj(p) t {x} is an optimal subset for j in the first case,

Nu(p) ∩ α(x) = {1, 2} and Xj(p) t {x} is an optimal subset for j ∈ {1, 2}

in the second case.

Case1: W.l.o.g. let 2 ∈ g(1). Then it holds 2 /∈ g(1) and therefore ρ(g(1))∩σ({2}) = ∅.
Obviously, for every x ∈ σ({1}) ∩ ρ(g(1)) ∩ Y (p) 6= ∅ it holds that x ∈ ρ(g(1)), hence
x /∈ σ({2}). Therefore, it holds Nu(p) ∩ α(x) = {1} and since X1(p) t {x} is an optimal
subset for buyer 1 by Corollary 4.44 it follows directly that Xj(p)t{x} is an optimal subset
for all j ∈ {1, 2} ∩ α(x).
Case2: Now, assume 1 /∈ g(2) and 2 /∈ g(1), that is {1, 2} ⊆ g(1)∩ g(2). Recall that for

i ∈ {1, 2} it holds ∑j∈g(i) rj = |σ(g(i)) \Xi(p)| = |σ(g(i))| − |Xi(p) ∩ σ(g(i))| and therefore

∑
j∈g(1)

rj +
∑
j∈g(2)

rj = |σ(g(1))|+ |σ(g(2))| − |X1(p) ∩ σ(g(1))| − |X2(p) ∩ σ(g(2))|

= |M | − |ρ(g(1))|+ |M | − |ρ(g(2))| −
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))|
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⇔
∑
j∈g(1)

rj +
∑
j∈g(2)

rj = |ρ(g(1))|+ |ρ(g(2))|+
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))|

⇔
∑

j∈g(1)∪g(2)

rj +
∑

j∈g(1)∩g(2)

rj = |ρ(g(1)) ∪ ρ(g(2))|+ |ρ(g(1)) ∩ ρ(g(2))|

+
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))|. (4.2)

Observe that by the Corollaries 4.33 and 4.36 it trivially holds ∑
j∈g(1)∪g(2) rj ≥ |ρ(g(1)∪

g(2)| ≥ |ρ(g(1)) ∪ ρ(g(2))| and therefore it is

∑
j∈g(1)∩g(2)

rj ≤|ρ(g(1)) ∩ ρ(g(2))|+
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))| (4.3)

and again by the Corollaries 4.33 and 4.36 it trivially holds

∑
j∈(g(1)∩g(2))\{1,2}

rj ≥ |(ρ(g(1)) ∪ ρ(g(2)) \ σ({1, 2})|. (4.4)

Therefore, summing the Equations (4.3) and (4.4) yields

∑
j∈{1,2}

rj ≤|ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2})|+
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))|

=|ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2}) ∩X(p)|+ |ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2}) ∩ Y (p)|

+
∑

j∈{1,2}
|Xj(p) ∩ σ(g(j))|, (4.5)

where the last equation is due to σ({1, 2}) ⊆ X(p)t Y (p) by the definition of Nu(p). Now,
observe that for j ∈ {1, 2} it holds that ρ(g(j)) ∩ (Xj(p) ∩ σ(g(j))) = ∅ since ρ(g(j)) and
σ(g(j)) are disjoint by definition. Then, it follows

|ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2}) ∩Xj(p)|+ |Xj(p) ∩ σ(g(j))|

=|(ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2}) ∩Xj(p)) t (Xj(p) ∩ σ(g(j)))| ≤ |Xj(p)| < rj

and summing for j = 1, 2 yields

∑
j∈{1,2}

|ρ(g(1)) ∩ ρ(g(2)) ∩ σ({1, 2}) ∩Xj(p)|+ |Xj(p) ∩ σ(g(j))| <
∑

j∈{1,2}
rj . (4.6)

Furthermore, it obviously holds by the definition of feasible prices that |σ({1, 2})∩X(p)| =
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|σ({1, 2}) ∩ (X1(p) ∪X2(p))| ≤ |σ({1, 2}) ∩X1(p)|+ |σ({1, 2}) ∩X2(p)| and therefore

|(ρ(g(1)) ∩ ρ(g(2))) ∩ σ({1, 2}) ∩X(p)| ≤
∑

j∈{1,2}
|(ρ(g(1)) ∩ ρ(g(2))) ∩ σ({1, 2}) ∩Xj(p)|.

(4.7)

Then, summing the Inequalities (4.5), (4.6) and (4.7) yields 0 < |ρ(g(1)) ∩ ρ(g(2)) ∩
σ({1, 2})∩Y (p)|, hence ρ(g(1))∩ρ(g(2))∩σ({1, 2})∩Y (p) 6= ∅, and it holds by Corollary 4.44
for every x ∈ ρ(g(1))∩ρ(g(2))∩σ({1, 2})∩Y (p) and j ∈ {1, 2} that Xj(p)t{x} is an optimal
subset for j.

Existence of Dynamic Prices in Balanced Markets

Now, we extend the result of Theorem 4.47 from two unsatisfied buyers to an arbitrary
number of unsatisfied buyers and prove Theorem 4.45.

We investigate the case 2 ∈ g(1) from the proof of Theorem 4.47 in the general situation
in more detail to obtain an auxiliary results that will be necessary for Theorem 4.45.

Lemma 4.48. Let U = (M,N,v) a weighted uniform matroid market, p a feasible price and
i, j ∈ Nu(p), i 6= j such that it holds i ∈ g(j). Then, ρ(g(i)) ∪ ρ(g(j)) and Xi(p) ∩ σ(g(i))
are disjoint, i.e.:

|ρ(g(i)) ∪ ρ(g(j))|+ |Xi(p) ∩ σ(g(i))| = |(ρ(g(i)) ∪ ρ(g(j))) t (Xi(p) ∩ σ(g(i)))|.

Proof. By definition, it holds that ρ(g(i))∩ σ(g(i)) = ∅. It holds ρ(g(j))∩Xi(p) = ∅ by the
assumption i ∈ g(j)⇔ i /∈ g(j).

In order to develop some intuition for the general case we provide some consequences of
Lemma 4.48.

Corollary 4.49. Let U = (M,N,v) a weighted uniform matroid market, p a feasible price
and i, j ∈ Nu(p), i 6= j such that it holds i ∈ g(j). Then

∑
k∈g(i)∪g(j)

rk ≥ |ρ(g(i)) ∪ ρ(g(j))|+ |Xi(p) ∩ σ(g(i))|.

Proof. Recall that Xi(p) is a strict optimal subset for i by definition and it obviously holds
Xi(p) ∩ σ(g(i)) ⊆ Xi(p). Clearly, ρ(g(i)) ∪ ρ(g(j)) ⊆ ρ(g(i) ∪ g(j)) and in every optimal
allocation the set ρ(g(i) ∪ g(j)) gets allocated to g(i) ∪ g(j) by Lemma 4.32. Then, by
the Corollaries 4.33 and 4.36 and i ∈ g(i) (by definition), it holds that |(ρ(g(i)) ∪ g(j))) ∪
(Xi(p) ∩ σ(g(i)))| ≤∑

k∈g(i)∪g(j) rk and the claim follows by Lemma 4.48.
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Under the assumption of Theorem 4.47 and the additional conditions 2 ∈ g(1) and 1 ∈ g(2)
we strengthen the obvious fact that there exist some by buyer 1 weakly demanded item that
in every optimal allocation that allocates X1(p) to buyer 1 gets not allocated to some buyer
of buyer 1’s conflict set (hence, σ({1}) ∩ ρ(g(1)) ∩ Y (p) 6= ∅).

Corollary 4.50. Let U = (M,N,v) a weighted uniform matroid market, p a feasible price
and i, j ∈ Nu(p), i 6= j such that it holds i ∈ g(j) and j ∈ g(i). Then, it holds

σ({j}) ∩ ρ(g(i)) ∩ ρ(g(j)) ∩ Y (p) 6= ∅.

Proof. It holds by Corollary 4.49, Equation (4.2) and the fact that p is feasible that

∑
k∈g(i)∩g(j)

rk ≤|ρ(g(i)) ∩ ρ(g(j))|+ |Xj(p) ∩ σ(g(j)|

=|ρ(g(i)) ∩ ρ(g(j)) ∩ σ({j})|+ |(ρ(g(i)) ∩ ρ(g(j))) \ σ({j})|+ |Xj(p) ∩ σ(g(j)|

=|ρ(g(i)) ∩ ρ(g(j)) ∩Xj(p)|+ |ρ(g(i)) ∩ ρ(g(j))) ∩ Yj(p)|

+ |(ρ(g(i)) ∩ ρ(g(j))) \ σ({j})|+ |Xj(p) ∩ σ(g(j)|. (4.8)

Recall that for S, T ⊆ N , j ∈ S∩T it trivially holds (ρ(S)∩ρ(T ))\σ({j}) = ρ((S∩T )\{j})
and by the Corollaries 4.33 and 4.36 follows

|(ρ(g(i)) ∩ ρ(g(j))) \ σ({j})| = |(ρ(g(i) ∩ g(j)) \ {j})| ≤
∑

k∈(g(i)∩g(j))\{j}

rk. (4.9)

Then, summing the Inequalities (4.8) and (4.9) yields

rj ≤ |ρ(g(i)) ∩ ρ(g(j)) ∩Xj(p)|+ |ρ(g(i)) ∩ ρ(g(j)) ∩ Yj(p)|+ |Xj(p) ∩ σ(g(j)|. (4.10)

However, it is ρ(g(j)) ∩ σ(g(j)) = ∅ by definition and therefore

|ρ(g(i)) ∩ ρ(g(j)) ∩Xj(p)|+ |Xj(p) ∩ σ(g(j)| = |Xj(p) ∩ (ρ(g(i) ∩ g(j)) t σ(g(j)))|

≤|Xj(p)| < rj . (4.11)

Then, summing the Inequalities (4.10) and (4.11) yields |ρ(g(i))∩ρ(g(j))∩σ({j})∩Y (p)| > 0
concluding the proof.

Recall that in the proof of Theorem 4.47, instead of searching for a single item x ∈ Y (p)
such that for all j ∈ {1, 2} ∩ α(x) it holds Xj(p) t {x} is an optimal subset for j, we have
constructed a set of items H 6= ∅ such that it holds H ⊆ σ({1, 2}) ∩ Y (p) and for all
x ∈ H and j ∈ {1, 2} ∩ α(x) it holds Xj(p) t {x} that is an optimal subset for j. Now,
given a balanced weighted uniform matroid market U = (M,N,v) with feasible price p
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with Nu(p) > 2, we want to extend these results. To this end, we construct a sequence
of sequences (yki )1≤k≤k̄,1≤i≤lk of buyers of Nu(p) with yki 6= ylj for k 6= l or i 6= j such
that ρ(⋂k̄k=1

⋂lk
j=1 g(ykj )) ∩ σ(⋃k̄k=1{yklk}) ∩ Y (p) 6= ∅ and for all x ∈ ρ(⋂k̄k=1

⋂lk
j=1 g(ykj )) ∩

σ(⋃k̄k=1{yklk}) ∩ Y (p) and j ∈ α(x) ∩ Nu(p) it holds that Xj(p) t {x} is a feasible subset,
hence x fulfills the claim of Theorem 4.45. The sequence (yki )1≤k≤k̄,1≤i≤lk fulfills the following
properties:

• For 1 < k ≤ k̄ and 1 < i ≤ lk it holds that yki−1 ∈ g(yki ) and yki ∈
⋂i−1
j=1 g(ykj ) ⊆ g(yki−1).

(Two consecutive elements fulfill a stronger assumption then in Corollary 4.50.)

• For 1 ≤ k < k′ ≤ k̄ and 1 ≤ i ≤ lk
′ it holds that the pair yk

lk
, yk

′
i fulfills {yk

lk
, yk

′
i } ⊆

g(yk
lk

) ∩ g(yk′
lk′

). (The pair yk
lk
, yk

′
i fulfills the assumption of Case 2 in the proof of

Theorem 4.47.)

• For j ∈ Nu(p)\⋃k̄k=1
⋃lk
j=1{ykj } it holds j ∈

⋃k̄
k=1

⋃lk
i=1 g(yki ). (Every unsatisfied buyer

that is not contained in the sequence is contained in the conflict set of at least one
buyer that is contained in the sequence.)

Then, it clearly holds for every x ∈ ρ(⋂k̄k=1
⋂lk
j=1 g(ykj )) ∩ σ(⋃k̄k=1{yklk}) ∩ Y (p) and j ∈

α(x)∩Nu(p) that x ∈ ρ(g(j)), hence it follows directly by Corollary 4.44 thatXj(p)t{x} is a
feasible subset for j. However, even though the sequence (yki )1≤k≤k̄,1≤i≤lk can be constructed
easily, as stated in the following Algorithm 8, the main difficulty is to prove that it holds
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ρ(⋂k̄k=1
⋂lk
j=1 g(ykj )) ∩ σ(⋃k̄k=1{yklk}) ∩ Y (p) 6= ∅.

Algorithm 8:
Input : Balanced weighted uniform matroid market U = (M,N,v) and a feasible

but not dynamic price p.
Output: A nonempty set of items H ⊆ Y (p) ∩ σ(Nu(p)) so that for all x ∈ H and

for all j ∈ Nu(p) ∩ α(x) it holds Xj(p) t {x} is an optimal subset for j.
1 Set C ← Nu(p), k ← 1, i← 1, I ← ∅.
2 while C 6= ∅ do
3 if i = 1 then
4 Choose an arbitary j ∈ C.
5 yki ← j, I ← I t {j}, C ← C \ {j}, i← i+ 1
6 if C = ∅ then
7 k̄ = k

8 else if there exists j ∈ C such that yki−1 ∈ g(j), j ∈ g(yk1 ), . . . , g(yki−1) then
9 Choose such j ∈ C.

10 yki ← j, I ← I t {j}, C ← C \ {j}, i← i+ 1

11 else
12 Ik := I, T k := ⋂

j∈Ik g(ykj ), lk := i,
13 C ← {y ∈ C : yk

lk
∈ g(y), y ∈ g(yk1 ), . . . , g(yk

lk
)}

14 if C 6= ∅ then
15 k ← k + 1, i← 1, I ← ∅

16 else
17 k̄ = k

18 return, I := ⊔k̄
k=1 I

k, S := ⋃k̄
k=1{yklk}, T := ⋂k̄

k=1 T
k, H := ρ(T ) ∩ σ(S) ∩ Y (p).

Note that the output of Algorithm 8 is not necessarily unique and depends on the choice
of j in the Lines 4 and 9.
Clearly, for the output H of Algorithm 8 it holds for all x ∈ H and j ∈ α(x) ∩ Nu(p)

that Xj(p) t {x} is feasible subset for j. To show that H 6= ∅ we need a simple counting
argument, which follows from the inclusion-exclusion principle for two finite sets.

Lemma 4.51. For finite subsets A1, . . . An of a set E and rx ∈ Z+ for x ∈ E it holds that

n∑
i=1

∑
x∈Ai

rx =
n−1∑
i=1

∑
x∈
⋂i

j=1 Aj∪Ai+1

rx +
∑

x∈
⋂n

i=1 Ai

rx.

Proof. We prove by induction. Obviously, the statement holds for true for n = 1. Next, we
assume that the statement holds for true for some n ∈ N. Let A1, . . . , An+1 finite subsets
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of E, then it holds

n+1∑
i=1

∑
x∈Ai

rx =
n∑
i=1

∑
x∈Ai

rx +
∑

x∈An+1

rx =
n−1∑
i=1

∑
x∈
⋂i

j=1 Aj∪Ai+1

rx +
∑

x∈
⋂n

i=1 Ai

rx +
∑

x∈An+1

rx

=
n−1∑
i=1

∑
x∈
⋂i

j=1 Aj∪Ai+1

rx +
∑

x∈
⋂n

i=1 Ai∪An+1

rx +
∑

x∈
⋂n+1
i=1 Ai

rx

=
n∑
i=1

∑
x∈
⋂i

j=1 Aj∪Ai+1

rx +
∑

x∈
⋂n+1
i=1 Ai

rx.

Therefore, the statement also holds for true for n+ 1, hence for all m ∈ N.

Now, we are ready to prove Theorem 4.45.

Proof of Theorem 4.45. It remains to show that H 6= ∅ to prove the claim. To this end,
analogously to derivation of Equation (4.2), we reformulate

∑
i∈I

∑
j∈g(i)

rj =
∑
i∈I
|σ(g(i))| − |Xi(p) ∩ σ(g(i))|

=
∑
i∈I
|M | − |ρ(g(i))| − |Xi(p) ∩ σ(g(i))|

⇔
∑
i∈I

∑
j∈g(i)

rj =
∑
i∈I
|ρ(g(i))|+ |Xi(p) ∩ σ(g(i))|

⇔
I=
⋃k̄

k=1

⋃lk

i=1 y
k
i

k̄∑
k=1

lk∑
i=1

∑
j∈g(yki )

rj =
k̄∑
l=1

lk∑
i=1
|ρ(g(yki )|+ |Xyki

(p) ∩ σ(g(yki ))|. (4.12)

For 1 ≤ k ≤ k̄ define g(yk
lk+1) = ∅ and use that it holds ρ(S)∩ρ(T ) = ρ(S ∩T ) for arbitrary

S, T ⊆ N . Then, Equation (4.12) can be formulated by Lemma 4.51 as

k̄∑
k=1

lk∑
i=1

∑
h∈(
⋂i

j=1 g(y
k
j ))∪g(yki+1)

rh =
k̄∑
k=1

lk∑
i=1
|ρ(

i⋂
j=1

g(ykj )) ∪ ρ(g(yki+1))|+ |Xyki
(p) ∩ σ(g(yki ))|

=
k̄∑
k=1

lk−1∑
i=1
|ρ(

i⋂
j=1

g(ykj ) ∪ ρ(g(yki+1))|+ |Xyki
(p) ∩ σ(g(yki+1))|

+
k̄∑
k=1

ρ(
lk⋂
j=1

g(ykj ))|+ |Xyk
lk

(p) ∩ σ(g(yklk))|
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which, by rearranging the terms and defining sk := yk
lk

for 1 ≤ k ≤ k̄ can be formulated as

k̄∑
k=1

lk−1∑
i=1

 ∑
h∈
⋂i

j=1 g(y
k
j )∪g(yki+1)

rh − |ρ(
i⋂

j=1
g(ykj )) ∪ ρ(g(yki+1))| − |Xyki

(p) ∩ σ(g(yki ))|



=
k̄∑
k=1

|ρ(
lk⋂
j=1

g(ykj )|+ |Xsk(p) ∩ σ(g(sk))| −
∑

h∈
⋂lk

j=1 g(y
k
j )

rh

 . (4.13)

It holds by Lemma 4.48 that ρ(g(yki )) ∪ ρ(g(yki+1)) and Xyki
(p) ∩ σ(g(yki )) are disjoint and

since it trivially holds ⋂ij=1 g(ykj ) ⊆ g(yki ) it follows |ρ(⋂ij=1 g(ykj ))∪ ρ(g(yki+1))|+ |Xyki
(p)∩

σ(g(yki ))| = |(ρ(⋂ij=1 g(ykj )) ∪ ρ(g(yki+1))) t (Xyki
(p) ∩ σ(g(yki )))|. It follows analogously

to Corollary 4.49 that ∑
h∈
⋂i

j=1 g(y
k
j )∪g(yki+1) rh − |ρ(⋂ij=1 g(ykj ) ∪ ρ(g(yki+1))| − |Xyki

(p) ∩

σ(g(yki ))| ≥ 0, hence the left hand side of Equation (4.13) is nonnegative. Then, the right
hand side of Equation (4.13) also has to be nonnegative, hence it holds

k̄∑
k=1

∑
h∈Tk

rh − |Xsk(p) ∩ σ(g(sk))| ≤
k̄∑
k=1
|ρ(T k)|. (4.14)

From here on, the proof is a generalization of the proof of Case 2 of Theorem 4.47 from 2 to
k̄ buyers. We define T k̄+1 = ∅ and again apply Lemma 4.51 to reformulate Inequality (4.14)
as

k̄∑
k=1

∑
f∈
⋂k

h=1 T
h∪Tk+1

rf − |Xsk(p) ∩ σ(g(sk))| ≤
k̄∑
k=1
|
k⋂

h=1
ρ(T h) ∪ ρ(T h+1)|

⇔
k̄−1∑
k=1

∑
f∈
⋂k

h=1 T
h∪Tk+1

rf − |ρ(
k⋂

h=1
T h) ∪ ρ(T k+1)|+

∑
f∈T

rf ≤ |ρ(T )|+
k̄∑
k=1
|Xsk(p) ∩ σ(g(sk))|.

(4.15)

Observe that by the Corollaries 4.33 and 4.36 and the trivial inequality ρ(A ∪B) ⊇ ρ(A) ∪
ρ(B) holds

0 ≤
k̄−1∑
k=1

∑
f∈
⋂k

h=1 T
h∪Tk+1

rf − |ρ(
k⋂

h=1
T h) ∪ ρ(T k+1)|. (4.16)
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Then, summing the Inequalities (4.15) and (4.16) yields

∑
f∈T

rf ≤|ρ(T )|+
k̄∑
k=1
|Xsk(p) ∩ σ(g(sk))|

⇔
∑

f∈T\S
rf +

∑
f∈S

rf ≤|ρ(T ) ∩ σ(S)|+ |ρ(T ) ∩ σ(S)|+
∑
f∈S
|Xf (p) ∩ σ(g(f))|.

Again, it trivially holds |ρ(T )∩σ(S)| = |ρ(T )∩ρ(S)| = |ρ(T\S)| ≤∑f∈T\S rf , hence it has to
hold∑f∈S rf ≤ |ρ(T )∩σ(S)|+∑f∈S |Xf (p)∩σ(g(f))| and since it holds σ(S) ⊆ X(p)tY (p)
it follows

∑
f∈S

rf ≤ |ρ(T ) ∩ σ(S) ∩X(p)|+ |ρ(T ) ∩ σ(S) ∩ Y (p)|+
∑
f∈S
|Xf (p) ∩ σ(g(f))|. (4.17)

It holds σ(S)∩X(p) = ⋃
f∈S Xf (p) since p is feasible and S ⊆ Nu(p). Further, by definition,

it also holds that ρ(T ) and σ(g(S)) are disjoint, hence it follows

|ρ(T ) ∩ σ(S) ∩X(p)|+
∑
f∈S
|Xf (p) ∩ σ(g(f))| ≤

∑
f∈S
|ρ(T ) ∩Xf (p)|+ |

∑
f∈S
|Xf (p) ∩ σ(g(f))|

=
∑
f∈S
|Xf (p) ∩ (σ(g(f)) t ρ(T ))| ≤

∑
f∈S
|Xf (p)| <

∑
f∈S

rf . (4.18)

Summing the Inequality (4.17) and the l.h.s. and the r.h.s. of the strict Inequality (4.18)
yields

0 < |ρ(T ) ∩ σ(S) ∩ Y (p)| = |H|

and therefore it holds H 6= ∅ what concludes the proof.

4.5.3. Dynamic Prices in Markets with Excess Demand

We have proven that dynamic prices exist in balanced weighted uniform matroid markets.
In this subsection, we prove the existence of dynamic prices in weighted uniform matroid
markets with excess demand.

We can restate Lemma 4.38 for any weighted uniform matroid market with excess demand
U = (M,N,v): For j ∈ N it holds that I ⊆ ⋃OptUj is an optimal subset for j iff it holds

|{x ∈M : α(x) ∩ S 6= ∅} \ I| ≥
∑
i∈S

ri for all S ⊆ N= \ {j},∑
i∈S

ri − |I| ≥ |{x ∈M : α(x) ⊆ S} \ I| for all S ⊇ {j}.
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However, direct search for a M t N=-saturating capacitated matching in G(U) in order
to implement an optimal allocation seems complicated since there does not exist a direct
analogous to Theorem 4.45, as the following example shows.

Example 4.52. Consider the weighted uniform matroid market U = (M,N,v) of Exam-
ple 4.3 given by the following table:

x y z rank
v1 2 2 2 2
v2 1 1 1 2

Figure 4.4.: The market U .

Recall that the only Walrasian price for U is p ≡ 1. It is easy to see that, in the spirit
of Theorem 4.45 and the proof of Corollary 4.46, we can construct e.g., the feasible price
p1 defined by p1(x) := 0.5 and p1(y) = p1(z) := 1 starting from p. However, given p1, the
statement of Theorem 4.45 does not hold since 2 ∈ Nu(p1) = {1, 2} and Y (p1) = {y, z} and
2 ∈ α(y) = α(z) = {1, 2} but {x, y}, {x, z} /∈ OptU2 .

Further, Example 4.52 provides the insight that, starting with an arbitrary interior Wal-
rasian price and trying to compute a dynamic price for a market with excess demand iter-
atively, one necessarily has to increase some item prices at some point. Otherwise, e.g., in
Example 4.52, buyer 2 will definitely demand a set of cardinality two which is not optimal.

Therefore, in order to apply an analogous of Theorem 4.45 to a weighted uniform ma-
troid market with excess demand U = (M,N,v) we extend U by introducing ∑j∈N rj −m
additional virtual items which we assume to be exclusively demanded by the buyers in N<.

Definition 4.53. Let U := (M,N,v) a weighted uniform matroid market (with excess
demand). Denote the set of virtual items by Ñ< := {(N<, k) : |[N<]| < k ≤ |[N<]| +∑
j∈N rj−m}, M ′ := M t Ñ<. For j ∈ N= and x ∈ Ñ< set ωj,x = −∞ and for j ∈ N< and

x ∈ Ñ< set ωj,x = 0. Then, for j ∈ N define v′j as the weighted uniform matroid valuation
with ground set 2M ′, weights ωj,x and rank rj and call U ′ := (M,N,v′) the extended
market of U . Consequently, the bipartite extended market graph G(U ′) = (M ′, N,E′)
is constructed by adding the node set [Ñ<] and an edge {j, x} for every j ∈ N< and x ∈ Ñ<

to G(U). For ease of presentation for S ⊆ N denote [S]′ := {x ∈ M ′ : S = α(x)} and
ρ(S) := ⋃

T⊆N : T⊆S [T ]′ and σ(S) := ⋃
T⊆N : T∩S 6=∅[T ]′. For a set L ⊆ M and an allocation

A = (A1, . . . , An), define the intersection\difference of A and L as the componentwise
intersection\difference of Aj, j ∈ N with L and for another allocation B = (B1, . . . , Bn)
such that ⋃j∈N Aj ∩ ⋃j∈N Bj = ∅ define the disjoint union A t B as the componentwise
disjoint union.
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Note that every balanced weighted uniform matroid market coincides with its extended
market.
It follows directly by the notion of the extended market and the extended market graph:

Lemma 4.54. Let U := (M,N,v) a weighted uniform matroid market and U ′ = (M ′, N,v′)
its extended market, then it holds:

i) For every optimal allocation A = (A1, . . . , An) for U there exists an optimal allocation
A′ = (A′1, . . . , A′n) for U ′ (in fact usually several different allocations) that allocates
all items M ′ with A′ ∩ M = A. Conversely, for every optimal allocation A′ =
(A′1, . . . , A′n) for U ′ it holds that A ∩M is an optimal allocation for U .

ii) The set of optimal allocations of U ′ that allocate all items and give every buyer a set
of cardinality of its rank can be identified with the set of perfect capacitated matching
of G(U ′).

Note that in weighted uniform matroid markets with excess demand even though every
perfect capacitated matchings of the extended market graph encodes an optimal allocation of
the original market there generally does not exist a bijection between the optimal allocations
of the original market and the perfect capacitated matchings of the extended market graph,
as the allocation of the virtual items is nonunique.
Observe that for a weighted uniform matroid market with excess demand U its extended

market U ′ is not relevant, therefore we extend important notations to nonrelevant markets.

Definition 4.55. Let U = (M,N,v) a nonrelevant weighted uniform matroid market with
price p. Define the strongly demanded items and weakly demanded items given p
analogously to relevant markets and denote them by X(p) and Y (p) respectively. Define the
residual market Û := (M |{x : p(x) 6=0}, N,v|{x : p(x) 6=0}) and the price p̂ := p|{x : p(x) 6=0}. Then,
call a price p feasible for U if Û is relevant, the social welfare of an optimal allocation of
Û coincides with the social welfare of an optimal allocation of U and p̂ is a feasible price
for Û . Further, given a feasible price p for U , call a buyer j ∈ Npolymatroid satisfied if it
holds j ∈ N s(p̂) (for the residual market Û !) and unsatisfied if j ∈ Nu(p̂) and denote the
set of satisfied buyers of U by N s(p) and the set of unsatisfied buyers of U by Nu(p).

Therefore, for any weighted uniform matroid market with excess demand U = (M,N,v)
with feasible price p it holds that p′ := (p,0Ñ<) is a feasible price for its extended market
U ′ = (M ′, N,v′) and it holds Nu(p) = Nu(p′), hence N s(p) = N s(p′) and X(p) = X(p′)

and Y (p′) =

Y (p) t Ñ< if N< ∩Nu(p) 6= ∅,

Y (p) if N< ∩Nu(p) = ∅
.
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Definition 4.56. For a weighted uniform matroid market with excess demand U = (M,N,v)
define the conflict function at feasible price p by

gp : Nu(p)→ 2N \ {N}, gp(j) := arg max
S⊆N\{j} :

∑
i∈S ri=|σ(S)\Xj(p)|

|S|.

Recall that σ is defined with respect to the extended market (graph)!

Existence of Dynamic Prices in Markets with Excess Demand

We observe that it follows completely analogous to Theorem 4.45:

Theorem 4.57. Let U = (M,N,v) a weighted uniform matroid market with excess demand
and feasible price p such that Nu(p) 6= ∅. Then, for the feasible price p′ := (p,0|Ñ<) of
the extended market U ′ = (M ′, N,v′) there exists x ∈ σ(Nu(p′)) ∩ Y (p′) such that for all
j ∈ Nu(p′) ∩ α(x) holds that Xj(p′) t {x} is an optimal subset for j (in U ′).

Consider any weighted uniform matroid market with excess demand U = (M,N,v) with
feasible price p and its extended market U ′ = (M ′, N,v′) with feasible price p′ := (p,0|Ñ<)
and assume that there exists some x ∈ σ(Nu(p′))∩Y (p′)∩M such that for all j ∈ Nu(p′)∩
α(x) holds Xj(p′) t {x} is an optimal subset for j (in U ′). Then, it follows directly by
Corollary 4.60 that for all j ∈ Nu(p)∩α(x) holds Xj(p)t{x} is an optimal subset for j (in
U) and therefore analogously to the proof of Corollary 4.46 that p1 := p −∆(p) · χ{x} is a
feasible price for U such that X(p1) = X(p) t {x} and Y (p1) ( Y (p).
However, as also shown in the following example, it may occur that for all x ∈ σ(Nu(p′))∩

Y (p′) such that for all j ∈ Nu(p′) ∩ α(x) holds that Xj(p′) t {x} is an optimal subset for
j (in U ′) it already holds x ∈ Ñ< = M ′ \M . Then, we cannot argue like in the proof of
Corollary 4.46 since we cannot reduce the price of a virtual item and it might be impossible
to construct a feasible price p1 starting from p by simply decreasing the item price of some
item x ∈M slightly.

Example 4.58 (continued). Recall the market of Example 4.52 with its extended market
U ′, given by the following table:

x y z ({2}, 1) =: a rank
v1 2 2 2 −∞ 2
v2 1 1 1 0 2

Figure 4.5.: The extended market U ′.

Given the feasible price p(x) = 0, 5, p(y) = 1, p(z) = 1 for U for j ∈ {1, 2} it holds
Xj(p) = {x} and Yj(p) = {y, z}. Then, for the feasible price p′ := (p,0{a}) for U ′ it holds
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for j ∈ {1, 2} that Xj(p) = Xj(p′) and Y1(p′) = Y1(p) and Y2(p) = {a, y, z}. Further, the
only item w ∈ {a, y, z} for which Xj(p′) t {w} is an optimal subset for j (in U ′) for all
j ∈ Nu(p′) ∩ α(w) (here, in fact also an optimal set) is the virtual item a.

This issue faced in Example 4.58 yields to the idea to increase the prices of all items of
M slightly as soon as the only items that fulfill the condition of Theorem 4.57 are virtual
items.

Theorem 4.59. Let U = (M,N,v) a weighted uniform matroid market with excess demand
and p a feasible price such that for the feasible price p′ := (p,0|Ñ<) for the extended market
U ′ it holds ∅ 6= {x ∈ σ(Nu(p′)) ∩ Y (p′) : For all j ∈ Nu(p′) ∩ α(x) it holds Xj(p′) t {x} is
an optimal subset for j (in U ′)} ⊆ Ñ<. Then, it holds that p1 := p+ ∆(p) is a feasible price
(for U) such that it holds X(p) = X(p1) and Nu(p1) = Nu(p) ∩N=.

Before we prove Theorem 4.59 we observe that it directly implies:

Corollary 4.60. There exists a dynamic price in every weighted uniform matroid market.

Proof. Clearly, by Corollary 4.46, it remains to show the statement for markets with excess
demand. However, for any weighted uniform matroid market with excess demand U =
(M,N,v) it follows by Theorem 4.57, the proof of Corollary 4.46 and Theorem 4.59 that
there exists a feasible price p such that Nu(p) ⊆ N= (Recall that any dynamic price q fulfills
Nu(q) = ∅ ⊆ N=.). Then, since Nu(p) = Nu(p′), Theorem 4.57 guarantees the existence of
some x ∈ σ(Nu(p))∩Y (p), hence x ∈M , such that for all j ∈ Nu(p)∩α(x) holdsXj(p′)t{x}
is an optimal subset for j (in U ′), thus it holds by Lemma 4.54 and Corollary 4.36 that
Xj(p)t {x} is an optimal subset for all j ∈ Nu(p)∩ α(x) (in U !). Then, analogously to the
proof of Corollary 4.46, the claim follows inductively by Theorem 4.57.

Now, we prove Theorem 4.59.

Proof of Theorem 4.59. Clearly, for j ∈ N= it holds Dj(p) = Dj(p1) and for j ∈ N< it holds
Yj(p1) = ∅, hence X(p) = X(p1) and Dj(p1) = {Xj(p)}. Therefore it remains to show that
for j ∈ Nu(p) ∩N< it holds Xj(p) ∈ OptUj to prove the statement.

Let (yki )1≤k≤k̄,1≤i≤lk be any sequence computed in some run of Algorithm 8 applied to
the extended market U ′ with feasible price p′ with output Ik, I, S, T k, T and H defined as
in Algorithm 8 and sk := yk

lk
for 1 ≤ k ≤ k̄.

Claim 7: For every s ∈ S there exists an allocation A = (A1, . . . , An) such that As = Xs(p),⊔
j∈N Aj = M and Aj ⊆

⋃OptUj and |Aj | ≤ rj for all j ∈ N .
Proof of claim: It holds by the assumption ∅ 6= {x ∈ σ(Nu(p))∩Y (p′) : For all j ∈ Nu(p)∩
α(x) it holds Xj(p)t {x} is an optimal subset for j} ⊆ Ñ< that H ∩M = ∅ and g(i) ⊇ N<

for all i ∈ I, hence σ(g(I)) ⊆M .
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For 1 ≤ k ≤ k̄ and 1 ≤ i ≤ lk there exists an optimal allocation Ayki = (Ay
k
i

1 , . . . A
yki
n ) for

U with A
yki
yki
⊇ Xyki

(p), ⊔j∈N Aykij = M and |Ay
k
i
j | ≤ rj for all j ∈ N such that for all x ∈

(σ(g(yki ))\Xyki
(p))∩M holds αAyk

i (x) ∈ g(yki ) by Lemma 4.54 and Corollary 4.36. (Note that

it might hold Ayki ) Xyki
(p)!) Define Byki = (Byki

1 , . . . , B
yki
n ) := Ayki ∩(σ(g(yki ))\Xyki

(p)) and

Cyki := Byki \{x : x ∈ ⋃l∈N ⋃i−1
j=1B

ykj
l , 1 ≤ j ≤ i− 1} and Ck = (Ck1 , . . . , Ckn) := ⊔

1≤i≤lk Cyki .
Clearly, for 1 ≤ k ≤ k̄ and j ∈ N it holds that Ckj ≤ rj and for j ∈ N \g(Ik) it holds Ckj = ∅,
hence, in particular Ck

sk
= ∅. However, for 1 ≤ k ≤ k̄ we define Qk = (Qk1, . . . , Qkn) :=

(Ck1 , . . . , Xsk(p) \⋃j∈g(Ik)C
k
j , . . . , C

k
n) and show that ⊔j∈N Qkj = σ(g(Ik)) ∪Xsk(p)).

Assume there exists x ∈ σ(g(Ik)) such that x gets not allocated in Qk, then there has
to exist 1 ≤ i < lk such that x ∈ Xyki

(p). However, if i < lk, then it also has to hold
x ∈ Xyki+1(p) (since otherwise x would get allocated in Cyki+1 , hence in Qk) and inductively,
by finiteness of lk it holds that x ∈ Xsk(p). Therefore, x gets allocated to sk in Qk and Qk

allocates all items of σ(g(Ik)) ∪Xsk(p).
Now, for 1 ≤ k ≤ k̄ define Lk := Qk \ {x ∈ M : x gets allocated in ⋃k−1

i=1
⋃
j∈N Q

i
j} and

L = (L1, . . . , Ln) := ⊔k̄
k=1 Lk, then it holds for L that:

• |Lj | ≤ rj for all j ∈ N ,

• ⊔
j∈N Lj = σ(g(I)) ∪⋃s∈S Xs(p) ⊆M ,

• Ls ⊆ Xs(p) for s ∈ S,

• Lj = ∅ for j ∈ g(I) \ I.

Notice that it holds g(I) = T and recall that H ∩M = ∅ by assumption. Then, since it
trivially holds σ(S) = (σ(S)∩σ(T ))t(σ(S)∩ρ(T )) ⊇ σ(g(I)) and σ(S)∩ρ(T )∩Y (p′) = H, it
holds that all the items of σ(S)∩M get allocated by L and therefore ⊔j∈N Lj = σ(StT )∩M ,
hence M \⊔j∈N Lj = ρ(S ∩ T ) = ρ(T \ S) ⊆M .

Then, it holds that g(I) \ I = T \ S and M \ L = M \ σ(S t T ) = ρ(T \ S) and by
Corollary 4.36 and Lemma 4.32 the allocation L can be extended to an allocation F =
(F1, . . . , Fn) such that for every j ∈ N holds |Fj | ≤ rj ,

⋃
j∈ Fj = M and for s ∈ S holds

Fs ⊆ Xs(p). Then, for any fixed s ∈ S the allocation F obviously can be transformed
into an allocation A = (A1, . . . , An) such that for every j ∈ N it holds |Aj | ≤ rj , it holds⋃
j∈Aj = M and As = Xs(p). �

Claim 8: For s ∈ S there exists an optimal allocation A = (A1, . . . , An) such that As =
Xs(p)
Proof of claim: Let s ∈ S and among all optimal allocations A = (A1, . . . , An) such that
As ⊇ Xs(p) let A be chosen such that |As| is minimal. Furthermore, among all allocations
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B = (B1, . . . , Bn) such that Bs = Xs(p),
⊔
j∈N Bj = M , Bj ⊆ OptUj and |Bj | ≤ rj for all

j ∈ N (such an allocation is guaranteed to exist by Claim 7) let B be chosen such that∑
j∈N= |Aj \Bj | is minimal. Clearly, if it holds ∑j∈N= |Bj | =

∑
j∈N= rj then B is optimal,

hence assume ∑j∈N= |Bj | <
∑
j∈N= rj and thus it holds ∑j∈N= |Aj \Bj | > 0. We will show

a contradiction to the later strict inequality what implies∑j∈N= |Bj | =
∑
j∈N= rj and yields

the claim.
Let i ∈ N= such that |Bi| < ri. Create a digraph G = (V,E) as follows: Define V :=

(⋃j∈N= Aj \ Bj) t {i} and for j ∈ N= let fj : Bj \ Aj → Aj \ Bj any injective function (it
holds |Bj \ Aj | ≤ |Aj \ Bj |) and y ∈ Ai \ fi(Bi \ Ai). Clearly, y and fj for all j ∈ N are
well-defined. Define E := {(x, fj(x)) : j ∈ N=, x ∈ Bj \ Aj} ∪ {(i, y)}, then it holds E 6= ∅.
Then, if G has a cycle C we construct another allocation starting from B: For x ∈ V (C)
buyer αB(x) gives up the item x and for every (x, y) ∈ C buyer αB(x) adds the item y. This
yields an allocation B′ = (B′1, . . . , B′n) such that B′s ⊇ Xs(p),

⊔
j∈N B

′
j = M and |B′j | ≤ rj

and ∑j∈N= |Aj \ B
′
j | <

∑
j∈N= |Aj \ Bj | contradicting the minimality of ∑j∈N= |Aj \ Bj |.

Therefore, by the finiteness of V , there exists a path P = (i = t0, z = t1, . . . , th) in G

such that outdegG(th) = 0, hence αB(th) ∈ N<. Then, we can construct another allocation
starting from B by reallocating along the edges of P , hence for every y ∈ V (G[P ]) ∩M
and {x, y} ∈ E(G[p]), x ∈ M we take the item y from αB(y) and add it to αB(x) and we
take the item z from αB(z) and add it to i. This yields an allocation B′ = (B′1, . . . , B′n)
such that B′s ⊇ Xs(p),

⊔
j∈N B

′
j = M and |B′j | ≤ rj and

∑
j∈N= |Aj \B

′
j | <

∑
j∈N= |Aj \Bj |

contradicting the minimality of∑j∈N= |Aj \Bj |. Therefore, it has to hold∑j∈N= |Aj \Bj | =
0 what proofs the claim. �

Now, the statement follows directly by Claim 8.
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4.5.4. The Polynomial Runtime Dynamic Price Algorithm

Now, it is easy to provide an algorithm that computes a dynamic price in a weighted uniform
matroid market.
Algorithm 9: Dynamic price algorithm for weighted uniform matroid markets
Input : A weighted uniform matroid market U := (M,N,v) and an interior

Walrasian price p.
Output: A dynamic price for U .

1 X ← X(p), Y ← Y (p), ∆← ∆(p), Nu ← Nu(p), N s ← N s(p),
2 while N s 6= N do
3 if there exists x ∈ Y such that (X ∩ σ({j})) ∪ {x} ∈ I(OptUj ) for all

j ∈ Nu ∩ α(x) then
4 Choose such x ∈ Y .
5 Set p← p−∆ · χ{x}, X ← X ∪ {x}, Y ← Y (p), Nu ← Nu(p), N s ← N s(p),

∆← ∆
2

6 else
7 p← p+ ∆, Nu ← Nu(p), N s ← N s(p), ∆← ∆

2

8 return p

Clearly, it follows directly by the Theorems 4.47 and 4.59 and the Corollaries 4.46 and 4.60
that Algorithm 9 computes a dynamic price.
For completeness, we calculate a dynamic price in Example 4.52 by Algorithm 9.

Example 4.61 (continued). Given the feasible price p(x) = 0, 5.p(y) = p(z) = 1 we increase
the price of all items by ∆(p) = 0.25 to obtain the feasible price p1(x) = 0, 5.p1(y) = p1(z) =
1.25, which turns out to be already a dynamic price. However, for completeness we note
that ∆(p1) = 0.125 and compute the feasible price p2(x) = 0.5, p2(y) = 1.125, p2(z) = 1, 25
for which holds |Dj(p2)| = 1 for j ∈ {1, 2}.

Furthermore, we remark that it is easy to see that Algorithm 9 is suited to implement
a social welfare maximizing allocation through a dynamic pricing even if buyers arrive
sequentially and every buyer arrives at least once, hence the assumption that buyers exactly
arrive is stricter than necessary. Even though this observation has no impact on the pure
mathematical result it allows for an even more realistic real life interpretation.
For completeness, we briefly show that the runtime of Algorithm 9 is polynomial in the

number of buyers and items: First of all, a Walrasian price and a social welfare maximizing
allocation for U can be computed in polynomial time in m,n and oracle time in the value
oracle model in gross substitutes markets (e.g., Murota [1996] or Nisan and Segal [2006])
and even by adapting any algorithm for finding a perfect matching for weighted uniform
matroid markets. However, evaluating a weighted matroid valuation for an arbitrary set
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S ⊆ M can be done by a simple greedy algorithm and encoding the valuation requires
only the buyer’s weights for the items and the rank of the underlying matroid, hence m+ 1
different values. Furthermore, an interior Walrasian price can be obtained from an arbitrary
Walrasian price in polynomial time in a simple constructive way analogous to the proof of
Theorem 4.26.
For x ∈ M and j ∈ N we can check if it holds x ∈ ⋃OptUj by simply assigning x to j

and considering the residual market Ũ = (M \ {x}, N, ṽ) with ṽj(S) := vj(S ∪ {x}) and
ṽi(S) := vi(S) for i ∈ N \ {j} and for all S ⊆M \ {x}. Then, it clearly holds that a social
welfare maximizing allocation of U equals the value of a social welfare maximizing allocation
of Ũ iff it holds x ∈ ⋃OptUj . Therefore, for j ∈ N the set ⋃OptUj can be determined by
computing n · m + 1 social welfare maximizing allocations for weighted uniform matroid
markets, hence in polynomial time in n and m. Furthermore, the set ⋃OptUj , j ∈ N can be
used to determine the sets Xj(p), Yj(p) for the interior Walrasian start price p and the sets
Xj(p), Yj(p) can be used to compute N=, N< easily by Lemma 4.29.

At every price p that is computed during an execution of Algorithm 9 the sets Xj(p) and
Yj(p) for every j ∈ N can be determined easily either from the sets N= and N< (If the
If-loop in Line 3 evaluated to false at the previous price) or the buyers strongly and weakly
demanded items at the previous price and the item chosen in Line 4 (If the If-loop evaluated
to true at the previous price). Clearly, the sets Nu(p) and N s(p) can easily be determined
from the sets Xj(p) and Yj(p) for every j ∈ N .
There are at most m+ 1 iterations of the While-loop in Line 2 of Algorithm 9, since the

If-condition in Line 3 evaluates to false at most once and whenever the If-condition in Line 2
evaluates to true some item gets added to the set X and items will never be eliminated from
X.
To show that a dynamic price can be computed in polynomial time it only remains to

show that it can be checked efficiently if Line 3 evaluates to false and if the if condition
evaluates to true that some item that fulfills the condition in Line 3 can be determined in
polynomial time. We remark that Algorithm 8 was needed for technical purposes and it
can be shown that it also has polynomial runtime. However, given a feasible price p, an
easier approach to check if Line 3 of Algorithm 9 evaluates to false is simply choosing the
items in Y (p)∩σ(Nu(p))∩M sequentially and check if one of them can be chosen in Line 4.
Analogously to determining ⋃OptUj , it can be checked if the item x ∈ Y (p)∩σ(Nu(p))∩M
can be allocated to the buyer j ∈ Nu(p) ∩ α(x) in addition to Xj(p): Temporarily assign
Xj(p) ∪ {x} to buyer j and check if the value of a social welfare maximizing allocation
that assigns Xj(p) ∪ {x} to buyer j coincides with the value of a social welfare maximizing
allocation of the original market. Therefore, it can be checked if Line 3 evaluates to false
in Algorithm 9 and, if existent, some item that fulfills the condition in Line 4 can be found
by solving the social welfare maximizing allocation problem of not more than m · n many
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residual markets of U .
In total, a dynamic price for weighted uniform matroid markets can be computed by

Algorithm 9 in polynomial time in m and n since the most time consuming steps involved
are solving polynomial many in m and n social welfare maximizing allocation problems for
weighted uniform matroid markets.

4.6. Conclusion

We showed that dynamic prices are guaranteed to exist in weighted uniform matroid mar-
kets. En route, we showed that interior Walrasian prices do not induce unnecessary demand
in weighted uniform matroid markets and already suffice for dynamic prices in matching
markets.
The main open problem regarding dynamic prices remains to establish the maximal do-

main for which a dynamic price is guaranteed to exist. We remark that the techniques
established in Section 4.5 are not directly applicable to general weighted matroid markets
since Lemma 4.32 is essential for the existence of dynamic prices in weighted uniform matroid
markets but generally does not hold for true beyond weighted uniform matroid markets.
As a first step, it seems worthwhile to prove that interior Walrasian prices in gross substi-

tutes markets do not induce unnecessary demand. This may turn out to be useful in tackling
existence proofs of dynamic prices in more complex weighted matroid markets extending
the techniques of Section 4.5.

Frequently Used Notation Throughout This Chapter

• OptU := {A : A ∈ arg maxB=(B1,...,Bn) : B is allocation
∑
j∈N vj(Bj)} : Set of optimal

allocations.

• OptUj := {A ⊆ M : A = Aj , A = (A1, . . . , An) ∈ OptU} : Sets buyer j gets as part of
an optimal allocation.

• ⋃OptUj := ⋃
A∈OptUj

A.

• α(x) := {j ∈ N : x ∈
⋃OptUj } : Bidders who get allocated x as part of some optimal

allocation.

• Xj(p) := ⋂
S∈Dj(p) S : Strongly demanded items for j at price p.

• Yj(p) := {x ∈ ⋃Dj(p)\Xj(p) : there exists S ∈ Dj(p) such that x ∈ S and |S| ≤ rj} :
Weakly demanded items for j at price p.

• N= := {j ∈ N : |S| = rj for all S ∈ OptUj }.

97



Chapter 4. Dynamic Pricing in Weighted Uniform Matroid Markets

• N< := N \N= = {j ∈ N : |S| < rj for some S ∈ OptUj }.

• S ⊆ N then [S] := {x ∈M : α(x) = S} : Items that can get allocated to any buyer in
S but not allocated to some buyer of S.

• For balanced markets:

– S ⊆ N : [S] := {x ∈ M : α(x) = S} : Items that can get allocated to any buyer
in S but not allocated to some buyer of S to implement an optimal allocation.

– ρ(S) := ⋃
T⊆S [T ] : Set of items that in very optimal allocation get allocated to

a subset of S.

– σ(S) := ⋃
T⊆N : T∩S 6=∅[T ] : Set of items that in at least one optimal allocation

get allocated to a buyer of S but never to a buyer of S.

• For markets with excess demand:

– S ⊆ N : [S] := {x ∈M ′ : α(x) = S}.

– ρ(S) := ⋃
T⊆S [T ]′.

– σ(S) := ⋃
T⊆N : T∩S 6=∅[T ]′.

• N s(p) = {j ∈ N : Dj(p) = {Xj(p)}} : Set of satisfied buyers.

• Nu(p) = N \N s(p) : Set of unsatisfied buyers.

• gp : Nu(p) → 2N \ {N}, gp(j) := arg maxS⊆N\{j} :
∑

i∈S ri=|σ(S)\Xj(p)| |S| : gp(j) is the
maximal set S ⊆ N \{j} of buyers so that every optimal allocation that gives Xj(p) to
j gives σ(S)\Xj(p) to buyers of S ⇒ There is no optimal allocation giving Xj(p)t{x}
to j for all x ∈ σ(gp(j)) \Xj(p) but there is an optimal allocation giving Xj(p) t {x}
to j for all x ∈ ρ(gp(j)) \Xj(p).
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Appendix A.

Omitted Proofs and Examples

Proof that (E,M) is a matroid in Example 3.14.

Proof. Clearly, each of
(C

6
)
, {{a}}

⊕(C
5
)
and {{b}}⊕(C

5
)
is the set of bases of a (partition)

matroid with ground set C ∪ {a, b} and the bases have cardinality six. Therefore, to prove
the basis exchange axiom for matroids it suffices to consider any pair of basis Y, Z which is
not contained in the same matroid. Note that {{a}}⊕(C

5
)
and {{b}}⊕(C

5
)
are isomorphic.

Let Y ∈
(C

6
)
and Z ∈ {{a}}⊕(C

5
)
. Then, it holds that a ∈ Z \Y and for each y ∈ Y \Z it is

(Y \{y})∪{a} ∈ {{a}}⊕(C
5
)
. Conversely, for every y ∈ Y \Z it is (Y \{a})∪{y} ∈

(C
6
)
and

for z ∈ Z \ y and y ∈ Y \Z it is (Z \ {z})∪{y} ∈ {{a}}⊕(C
5
)
. It remains Y ∈ {{a}}⊕(C

5
)

and Z ∈ {{b}}⊕(C
5
)
. Clearly, it holds (Y \{a})∪{b} ∈ {{b}}⊕(C

5
)
and for y ∈ Y \Z, y 6= a

there has to exist z ∈ (Z \{b})\(Y \{a}) 6= ∅ and it holds (Y \{y})∪{z} ∈ {{a}}⊕(C
6
)
.

Exchanging items of the same equivalence class in nonuniform
weighted matroid markets may result in a suboptimal allocation

Example A.1. Consider a four items and two buyers weighted matroid market with M =
{a, b, c, d} and N = {1, 2} and ωj,k = 1 for j ∈ N, k ∈ M . The underlying matroid of
the valuation v1 is the uniform matroid U2

M and the set of bases of the underlying matroid
of v2 is given by {S ⊆ M : |S| = 2} \ {{a, b}}. Then, (A1 = {b, d}, A2 = {a, c}) and
(B1 = {a, c}, B2 = {b, d}) are optimal allocations of welfare 4 and thus it holds M '
[{1, 2}]. However, it clearly holds that exchanging b with c in the allocation (A1, A2) yields
the suboptimal allocation ({c, d}, {a, b}) of welfare 3.
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