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Preface

As part of this thesis, a preprint was written which appears as [24] in the bibliography. The
content of this work can be found in the Sections 3 and 4 of Chapter 6.
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Summary

Men pass away, but their deeds abide.

Augustin-Louis Cauchy (see [21], p.
147)

Legend has it that these words were the last ones of Augustin-Louis Cauchy before his death.
And most likely, there is hardly any mathematician in complex analysis for whom these
words are so much true as for Cauchy. One of his greatest achievements in this topic was
his integral formula, namely the representation of a holomorphic function f by means of a
suitable curve integral:

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ.

The function which f is integrated against has therefore also got a special name, it is the
Cauchy kernel ζ 7→ (ζ − z)−1. For this reason, integral transforms where this kernel is the
integration kernel are named Cauchy transforms and for our thesis, they will be the main
research subject. More precisely, we will investigate functions of the form

(Cµf)(z) = 1
2πi

∫ f(ζ)
ζ − z

dµ(ζ)

where µ is a suitable positive or complex Borel measure on R or C and f a suitable function
of one real or complex variable.

Cauchy transforms have wide applications in several disciplines of mathematical analysis,
for example in potential theory, approximation theory and partial differential equations (see
[8], p. 9, cf. [5] and [76]). Moreover, the subject has also gained significant attention in other
fields such as free probability theory and the theory of random matrices (see [71] and [6]).
Beginning with Cauchy’s integral formula in the middle of the 19th century (see [8, Preface]),
the study of Cauchy transforms has involved a wide range of mathematicians.

Sokhotski, Plemelj and Priwalow investigated the boundary behavior of holomorphic func-
tions with a special focus on Cauchy integrals. In 1873, Sokhotski presented in his PhD thesis
(see [70]) a first version of an explicit formula for the boundary values of a function repre-
sented by a Cauchy integral, cf. [8], p. 56. This formula was refined by Plemelj ([61]) and
Priwalow (see [63], p. 136) and is in literature also known as Sokhostki-Plemelj formula, see
[8], p. 56. It is important to remark that these results were first formulated for functions on
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the unit circle having bounded variation and afterwards generalized to measures on the unit
circle, see [9], p. 84.

The boundary behavior of Cauchy-type integrals is one of the key ingredients for finding
functions which can be represented by Cauchy transforms. Early results in this topic are
from the Brothers Riesz, see [9], p. 85, at least for the unit circle. Later on, mathematicians
like Markushevich (see [79]), Tumarkin (see [49]) and Havin ([32]) gave several conditions
and characterizations for Cauchy transforms of measures with compact support with the aid
of approximation and extremal problems. Havinson (see [33], cf. also [84], p. 187) presented
sufficient criteria basing on analytic properties of the corresponding compact set while Isaev
and Yulmukhametov investigated the Cauchy transforms of functionals on Bergman spaces
(see [37] and cf. also [55]).

Even though proper research on Cauchy transforms has been done, there are still a lot of
open questions. For example, in the case of representation theorems, i.e. the question when a
function can be represented as a Cauchy transform, there is ’still no completely satisfactory
answer’ ([9], p. 84). There are characterizations for measures on the circle as presented
in the monograph [7] and for general compactly supported measures on the complex plane
as presented in [27]. However, there seems to exist no systematic treatise of the Cauchy
transform as an operator on Lp spaces and weighted Lp spaces on the real axis.

This is the point where this thesis draws on and we are interested in developing several
characterizations for the representability of a function by Cauchy transforms of Lp functions.
Moreover, we will attack the issue of integrability of Cauchy transforms of functions and
measures, a topic which is only partly explored (see [43]). We will develop different approaches
involving Fourier transforms and potential theory and investigate into sufficient conditions
and characterizations.

For our purposes, we shall need some notation and the concept of Hardy spaces which
will be part of the preliminary Chapter 1. Moreover, we introduce Fourier transforms and
their complex analogue, namely Fourier-Laplace transforms. This will be of extraordinary
usage due to the close connection of Cauchy and Fourier(-Laplace) transforms.

In the second chapter we shall begin our research with a discussion of the Cauchy trans-
formation on the classical (unweighted) Lp spaces. Therefore, we start with the boundary
behavior of Cauchy transforms including an adapted version of the Sokhotski-Plemelj for-
mula. This result will turn out helpful for the determination of the image of the Cauchy
transformation under Lp(R) for p ∈ (1,∞). The cases p = 1 and p = ∞ are playing special
roles here which justifies a treatise in separate sections. For p = 1 we will involve the real
Hardy space H1(R) whereas the case p =∞ shall be attacked by an approach incorporating
intersections of Hardy spaces and certain subspaces of L∞(R).

The third chapter prepares ourselves for the study of the Cauchy transformation on
subspaces of Lp(R).We shall give a short overview of the basic facts about Cauchy transforms
of measures and then proceed to Cauchy transforms of functions with support in a closed set
X ⊂ R. Our goal is to build up the main theory on which we can fall back in the subsequent
chapters.

The fourth chapter deals with Cauchy transforms of functions and measures supported by
an unbounded interval which is not the entire real axis. For convenience we restrict ourselves
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to the interval [0,∞). Bringing once again the Fourier-Laplace transform into play, we deduce
complex characterizations for the Cauchy transforms of functions in L2(0,∞). Moreover, we
analyze the behavior of Cauchy transform on several half-planes and shall use these results
for a fairly general geometric characterization. In the second section of this chapter, we focus
on Cauchy transforms of measures with support in [0,∞). In this context, we shall derive a
reconstruction formula for these Cauchy transforms holding under pretty general conditions
as well as results on the behaviur on the left half-plane. We close this chapter by rather
technical real-type conditions and characterizations for Cauchy transforms of functions in
Lp(0,∞) basing on an approach in [82].

The most common case of Cauchy transforms, those of compactly supported functions or
measures, is the subject of Chapter 5. After complex and geometric characterizations origi-
nating from similar ideas as in the fourth chapter, we adapt a functional-analytic approach
in [27] to special measures, namely those with densities to a given complex measure µ. The
chapter is closed with a study of the Cauchy transformation on weighted Lp spaces. Here,
we choose an ansatz through the finite Hilbert transform on (−1, 1).

The sixth chapter is devoted to the issue of integrability of Cauchy transforms. Since
this topic has no comprehensive treatise in literature yet, we start with an introduction of
weighted Bergman spaces and general results on the interaction of the Cauchy transformation
in these spaces. Afterwards, we combine the theory of Zen spaces with Cauchy transforms by
using once again their connection with Fourier transforms. Here, we shall encounter general
Paley-Wiener theorems of the recent past. Lastly, we attack the issue of integrability of
Cauchy transforms by means of potential theory. Therefore, we derive a Fourier integral
formula for the logarithmic energy in one and multiple dimensions and give applications to
Fourier and hence Cauchy transforms.

Two appendices are annexed to this thesis. The first one covers important definitions
and results from measure theory with a special focus on complex measures. The second
appendix contains Cauchy transforms of frequently used measures and functions with detailed
calculations.
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Chapter 1

Preliminaries

Someone is sitting in the shade today
because someone planted a tree a long
time ago.

Warren Buffett

In this chapter, we will first introduce some notation and definitions that we will frequently
use in the following work. Beyond this, we establish the concept of Hardy spaces and Fourier
and Fourier-Laplace transforms.

1.1 Notation
In what follows, we need some notation that we briefly introduce in this section. We write C
for the set of complex numbers which is always equipped with the euclidian metric induced by
the euclidean length | · | and C∞ for the Riemann sphere which will be always equipped with
the chordal metric. For a set A ⊂ C∞ we denote by Ā its closure and by ∂A its boundary
which are both taken with respect to C∞. If Ω ⊂ C∞ is open, then we mean by H(Ω) the
set of all complex-valued holomorphic functions f on Ω. If ∞ ∈ Ω, we require in addition
f(∞) = 0. Here, a function f is said to be holomorphic at ∞ if g(z) := f

(
1
z

)
is holomorphic

at 0. We write f (n) for the n-th derivative of f ∈ H(Ω) and shortly f ′ instead of f (1) and f ′′
instead of f (2).

We shortly introduce some other important sets of numbers: N is the set of all natural
numbers, N0 the set of all natural numbers including 0 , Z is the set of all integers while Q
and R stand for the rational and real numbers, respectively. Finally, T := {z ∈ C : |z| = 1}
is the unit circle in C.

The space of all complex-valued, continuous functions on R is denoted by C(R) and C0(R)
is the subset of all continuous functions f which satisfy in addition lim

|x|→∞
f(x) = 0. If I ⊂ R

is an open interval and k ∈ N0 ∪ {∞} we write Ck(I) for the set of all complex-valued, k
times (real) differentiable functions on I. Again, f (n) stands for the n-th derivative of f.
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For p ∈ [1,∞), let Lp(Rn) be the space of all measurable functions f : Rn → C such that

‖f‖p :=
(∫

Rn
|f(x)|p dx

)1/p
< +∞.

Here we write dx for dλn(x), where λn is the Lebesgue measure on Rn. Unless stated other-
wise, the term almost everywhere (a.e.) will in the context of Rn always correspond to λn.
Moreover, L∞(Rn) is the space of all measurable functions f : Rn → C which are essentially
bounded, i.e.

‖f‖∞ := ess sup |f | := inf
N∈B(Rn)
λn(N)=0

sup
x∈Rn\N

|f(x)| < +∞.

If f : Rn → C is measurable and bounded, then

‖f‖∞ = max
x∈Rn
|f(x)|.

Upon identifying functions that equal almost everywhere, Lp(Rn) becomes the Banach space
Lp(Rn) which consists of all equivalence classes [f ] with f ∈ Lp(Rn). Nevertheless, we follow
the usual notation and often write f instead of [f ] if it does not matter which element of
[f ] is chosen (cf. [68], p. 67). In these cases we therefore speak again of functions. For
X ∈ B(Rn) (see A.2) we set

Lp(X) := {f ∈ Lp(R) : f1X = f}
Lp(X) := {f ∈ Lp(R) : f1X = f}.

Here, 1X is the indicator function of X, i.e. 1X(x) = 1 if x ∈ X and 1X(x) = 0 if x /∈ X.
Moreover, we write Lp,loc(X) for the set of all measurable functions f : Rn → C such that
f1X = f and f1K ∈ Lp(X) for all compact K ⊂ X.

Next, we want to establish some abbreviations for certain subsets of the complex plane
C. We set

Π+ := {z ∈ C : Im(z) > 0}
Π− := {z ∈ C : Im(z) < 0}.

Beyond this, we write C− for the cut plane, i.e. C− := C \ [0,∞). For ε > 0 and z ∈ C we
denote by Uε(z) the set of all w ∈ C satisfying |z − w| < ε. If a, b ∈ C we write [a, b] for the
line segment between a and b, i.e.

[a, b] := {(1− λ)a+ λb : λ ∈ [0, 1]}.

A piecewise differentiable mapping γ : I → C where I ⊂ R is an interval (not necessarily
bounded) is called a path in C. The set γ∗ := γ(I) is called the trace of γ and γ is called
closed if I = [a, b] for a, b ∈ R and γ(a) = γ(b). An important example for a closed path is
the mapping kr(a) : [0, 2π]→ C, kr(a)(t) = a+ reit where a ∈ C and r > 0. If f : γ∗ → C is
such that (f ◦ γ)γ′ ∈ L1(I), we set∫

γ
f :=

∫
γ
f(ζ) dζ :=

∫
I
f(γ(t))γ′(t) dt
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and ∫
γ
|f | :=

∫
γ
|f(ζ)| |dζ| :=

∫
I
|f(γ(t))| · |γ′(t)| dt.

Now, we want to consider generalizations of paths. If I is a finite set, we call a family of
paths γ = (γi)i∈I a chain in C and again γ∗ := ⋃

i∈I
γ∗i the trace of γ. If each γi is a closed

curve, we call γ a cycle in C.
For a function f : γ∗ → C such that (f ◦ γi)γ′i ∈ L1(Ii) for all i ∈ I (here γi : Ii → C) we set∫

γ
f :=

∫
γ
f(ζ) dζ :=

∑
i∈I

∫
γi
f

and ∫
γ
|f | :=

∫
γ
|f(ζ)| |dζ| :=

∑
i∈I

∫
γi
|f |.

If γ is a cycle in C, then the function indγ : C \ γ∗ → C, defined by

indγ(z) := 1
2πi

∫
γ

1
ζ − z

dζ (z ∈ C \ γ∗),

is called the index of γ. For a compact set K ⊂ C and an open set U ⊃ K a cycle γ is called
a Cauchy cycle if indγ(z) = 1 (z ∈ K) and indγ(z) = 0 (z ∈ C \ U).

Sometimes, we want to consider integrals over (half-)lines in C. If I = (a, b) is an interval
with a = −∞ or b = ∞ and γ(t) := c + tw (t ∈ I) with c, w ∈ C, then γ∗ is a (half-)line in
C. For f : γ∗ → C such that (f ◦ γ) ∈ L1(I), we set∫ c+b·w

c+a·w
f(ζ) dζ :=

∫
γ
f(ζ) dζ = w

∫ b

a
f(c+ tw) dt.

If U, V are vector spaces over K ∈ {R,C} such that U ∩ V = {0}, we write U ⊕ V for
the direct sum of U and V. Moreover, if (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are (semi-)normed spaces
and S : X → Y is a linear operator, we write ‖S‖op for the operator norm of S, i.e.

‖S‖op = sup
‖x‖X≤1

‖S(x)‖Y .

1.2 Hardy spaces
Hardy spaces belong to the most important spaces of analytic functions and have been studied
since the beginning of the last century. An early reference is [67] where the author considered
analytic functions on the unit disk. Since the unit disk is conformally invariant to any half-
plane it is no surprise that most of the theory transferred in an analogue way to the case
of analytic functions on half-planes. This theory will also play a crucial role throughout our
whole topic. Since we need Hardy spaces on multiple half-planes we use a general definition.
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Definition 1.2.1 For an angle α ∈ (−π, π] and p ∈ (0,∞), we define the Hardy space
Hp(eiαΠ+) as the set of all F ∈ H(eiαΠ+) satisfying

‖F‖Hp(eiαΠ+) :=
(

sup
y>0

∫
R
|F (eiα(x+ iy))|p dx

)1/p

< +∞.

Moreover, we set H∞(eiαΠ+) for the space of all F ∈ H(eiαΠ+) such that

‖F‖H∞(eiαΠ+) := sup
z∈eiαΠ+

|F (z)| < +∞.

Remark 1.2.2 1. The most important cases are α = 0, α = π, α = π/2 and α = −π/2,
i.e.

Hp(Π+) =

F ∈ H(Π+) : ‖F‖Hp(Π+) =
(

sup
y>0

∫
R
|F (x+ iy)|p dx

)1/p

< +∞


Hp(Π−) =

F ∈ H(Π−) : ‖F‖Hp(Π−) =
(

sup
y<0

∫
R
|F (x+ iy)|p dx

)1/p

< +∞


Hp(iΠ+) =

F ∈ H(iΠ+) : ‖F‖Hp(iΠ+) =
(

sup
x<0

∫
R
|F (x+ iy)|p dy

)1/p

< +∞


Hp(−iΠ+) =

F ∈ H(−iΠ+) : ‖F‖Hp(−iΠ+) =
(

sup
x>0

∫
R
|F (x+ iy)|p dy

)1/p

< +∞


2. For each α ∈ (−π, π] and p ∈ [1,∞] the space Hp(eiαΠ+) is a Banach space. This

follows from Montel’s theorem, see [7], p. 48.

3. Sometimes we may also consider Hardy spaces on shifted half-planes: Let a ∈ R. Then,
we denote by Hp(a+ iΠ+) the set of all F ∈ H(a+ iΠ+) such that F (·+ a) ∈ Hp(iΠ+)
and in this case we define

‖F‖Hp(a+iΠ+) := ‖F (·+ a)‖Hp(iΠ+) =
(
sup
x<a

∫
R
|F (x+ iy)|p dy

)1/p
.

Analogously, Hp(ia+Π+) denotes the set of those F ∈ H(ia+Π+) such that F (·+ia) ∈
Hp(Π+) and in this case we define

‖F‖Hp(ia+Π+) := ‖F (·+ ia)‖Hp(Π+) =
(
sup
y>a

∫
R
|F (x+ iy)|p dy

)1/p

.

The Hardy spaces Hp(a+ iΠ−) and Hp(ia+ Π−) are defined in a similar way.

Our focus will only lie on Hardy spaces for exponents p ∈ [1,∞]. The following proposition
contains important and well-known results for functions in the Hardy space Hp(Π+). These
results hold in an analogue way for other (shifted) Hardy spaces. We refer to [16], p. 189-192,
and [28, Chapter II, Theorem 4.4].
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Proposition 1.2.3 ([16]) Let p ∈ [1,∞] and F ∈ Hp(Π+).

1. The limit
F+(x) := lim

y→0+
F (x+ iy)

exists for almost every x ∈ R, F+ ∈ Lp(R) and if F 6= 0, also∫
R

ln |F+(x)|
1 + x2 dx > −∞.

Furthermore, ‖F‖Hp(Π+) = ‖F+‖p and in the case p ∈ [1,∞) also

lim
y→0+

∫
R
|F (x+ iy)− F+(x)|p dx = 0.

2. In the case p ∈ [1,∞), the integral means∫
R
|F (x+ iy)|p dx

are increasing as y ↓ 0 and therefore

‖F‖Hp(Π+) = lim
y→0+

(∫
R
|F (x+ iy)|p dx

) 1
p

.

Remark and Definition 1.2.4 Let p ∈ [1,∞].

1. If F ∈ Hp(Π+), we will call the function F+ in Proposition 1.2.3 the upper boundary
function of F.

2. If F ∈ Hp(Π−), then one can show that

F−(x) := lim
y→0−

F (x+ iy)

exists for almost every x ∈ R and in this case we call F− the lower boundary function
of F.

3. By the first part of Proposition 1.2.3 a boundary function of a function belonging to
Hp(Π+) (or any other Hardy space) cannot vanish on a set of positive measure.

We shall now introduce an important class of measures which play a crucial role in
interpolation theory.

Definition 1.2.5 A measure σ ∈ M∞,+(Π+) is called a Carleson measure (for Π+) if
there is a constant N(σ) such that

σ({x+ iy : x0 < x < x0 + h, 0 < y < h}) ≤ N(σ)h

for all x0 ∈ R and h > 0. The infimum over all such constants N(σ) is called the Carleson
norm of σ.
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Remark 1.2.6 Carleson measures on the lower half-plane Π− are defined in a similar way.

Remark 1.2.7 1. Let ω : (0,∞) → [0,∞] be a measurable function. If ν is the Borel
measure on Π+ defined by

ν(A) =
∫
A
ω(y) dx dy (A ∈ B(Π+)),

then ν is a Carleson measure if and only if ω ∈ L1(0,∞).

2. Let ω : R→ [0,∞] be a measurable function. If ν is the Borel measure on Π+ defined
by

ν(A) =
∫
A
ω(x) dx dy (A ∈ B(Π+)),

then ν is a Carleson measure if and only if ω ∈ L1(R).

3. The measure ν = δ0⊗ (1(0,∞)λ1) is a Carleson measure with Carleson norm equal to 1.

The following theorem goes back to Carleson and is a fundamental result in the analysis
of Hardy spaces. A proof can be found in [28, Chapter II, Theorem 3.9].

Theorem 1.2.8 (Carleson, [28]) For a positive measure σ ∈M∞,+(Π+), the following state-
ments are equivalent:

a) σ is a Carleson measure.

b) For all p ∈ (0,∞) there exists a constant Kp > 0 only depending on p and σ such that∫
Π+
|F |p dσ ≤ Kp‖F‖pHp(Π+) (F ∈ Hp(Π+)).

c) There exists p ∈ (0,∞) such that for all F ∈ Hp(Π+) we have∫
Π+
|F |p dσ < +∞.

Remark 1.2.9 The theorem holds mutatis mutandis for Carleson measures on the lower
half-plane Π−.

Remark and Definition 1.2.10 For α > 0 and t ∈ R we consider the cones

Γ+
α (t) := {z ∈ Π+ : |Re(z)− t| < αIm(z)}

Γ−α (t) := {z ∈ Π− : |Re(z)− t| < −αIm(z)}.

If g is a harmonic function on Π+, then the function g∗+,α : R→ [0,∞], defined by

g∗+,α(t) := sup
Γ+
α (t)
|g| (t ∈ R),

14



is called the nontangential maximal function of g. Similarly, if g is harmonic on Π−, we
set

g∗−,α(t) := sup
Γ−α (t)
|g| (t ∈ R).

If p ∈ (1,∞) and g ∈ Hp(Π+), then there is a constant Bp,α > 0 only depending on p and α
such that

‖g∗+,α‖pp ≤ Bp,α‖g‖pHp(Π+),

see [28, Chapter I, Theorem 5.1]. If g ∈ H1(Π+), then there is a constant B1,α > 0 only
depending on α such that

λ1({t ∈ R : g∗+,α(t) > M}) ≤ B1,α

M
‖g‖H1(Π+) (M > 0).

Similar statements hold for g ∈ Hp(Π−) and the constants Bp,α remain the same for symmetry
reasons. We write Bp := Bp,1 for p ∈ [1,∞).

Remark 1.2.11 The constant Kp > 0 in Theorem 1.2.8 can be chosen as the product of the
Carleson norm of the measure and the constant Bp.

1.3 Fourier and Fourier-Laplace transforms
In this section, we briefly introduce the concept of Fourier transforms, both real and analytic.
For α ∈ [0, π], p ∈ [1,∞) and µ ∈M∞(R) with supp(µ) ⊂ [0,∞), we consider the space

Eα,p(µ) := {f : eiα · R→ C : f |eiα·(−∞,0) = 0, f(eiα·)e−a· ∈ Lp(µ) for all a > 0}.

We shall call this space also exponential space of order p and angle α (with respect to
µ). For the sake of abbreviation, we write Eα,p instead of Eα,p

(
1(0,∞)λ1

)
.

Remark and Definition 1.3.1 Let α ∈ [0, π], µ ∈ M∞(R) with supp(µ) ⊂ [0,∞) and
f ∈ Eα,1(µ). Then, for each z ∈ C with Im(zeiα) > 0 we have∣∣∣∣∫ ∞

0
f(eiαt)eizeiαt dµ(t)

∣∣∣∣ ≤ ∫ ∞
0
|f(eiαt)|e−Im(zeiα)t d|µ|(t) < +∞.

Hence, the function Lα,µf : {z ∈ C : Im(zeiα) > 0} → C, defined by

(Lα,µf)(z) := 1
2π

∫ eiα·∞

0
f(ζ)eizζ dµ(ζ) = eiα

2π

∫ ∞
0

f(eiαt)eizeiαt dµ(t) (Im(zeiα) > 0)

is a holomorphic function. If µ = 1(0,∞)λ1, we simply write Lα instead of Lα,1(0,∞)λ1 .
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Remark and Definition 1.3.2 The most important cases for us are α = 0 and α = π. If
f : R → C is such that f1[0,∞) ∈ E0,1(µ) and f1(−∞,0] ∈ Eπ,1(µ), then we call the function
Lµf : C \ R→ C defined by

(Lµf)(z) :=


L0,µf(z) = 1

2π

∫ ∞
0

f(t)eizt dµ(t), z ∈ Π+

Lπ,µf(z) = − 1
2π

∫ ∞
0

f(−t)e−izt dµ(t), z ∈ Π−.

the (µ-)Fourier-Laplace transform of f. One can show that Lµf ∈ H(C\R) and we write
Lf instead of L1(0,∞)λ1f .

Remark 1.3.3 If f : R→ C is such that f1[0,∞) ∈ E0,1 and f1(−∞,0] ∈ Eπ,1, then we have

(Lf)(z) =


1

2π

∫ ∞
0

f(t)eizt dt, z ∈ Π+

− 1
2π

∫ 0

−∞
f(t)eizt dt, z ∈ Π−.

.

Remark and Definition 1.3.4 Let f ∈ L1(R). Then, (L0f)(z) exists for every z ∈ Π+ and
(Lπf)(z) exists for every z ∈ Π−. The function f̂ : R→ C defined by

f̂(x) := 2π((L0f)(−x)− (Lπf)(−x)) =
∫ ∞
−∞

f(t)e−ixt dt (x ∈ R)

is called the Fourier transform of f. By the dominated convergence theorem, one sees
that f̂ is a uniformly continuous function and the Riemann-Lebesgue lemma (see e.g. [68,
Theorem 9.6]) gives us that even f̂ ∈ C0(R). Moreover, we have ‖f̂‖∞ ≤ ‖f‖1. The mapping
F : L1(R) → C0(R), f 7→ f̂ is called the Fourier transformation (on L1(R)). One can
show that this mapping is injective, but not surjective.

Remark and Definition 1.3.5 Let µ ∈ M(Rn). Then, the function µ̂ : Rn → C defined
by

µ̂(x) :=
∫
Rn
e−ix·t dµ(t) (x ∈ Rn)

is called the Fourier transform of µ. Here, · denotes the usual inner product on Rn, i.e.
x · y =

n∑
k=1

xkyk whenever x, y ∈ Rn. By the dominated convergence theorem, one sees again
that µ̂ is a uniformly continuous function. Moreover, we have ‖µ̂‖∞ ≤ ‖µ‖.

Our next step is to define the Fourier transform on Lp(R) for p ∈ (1, 2].

Remark and Definition 1.3.6 If f ∈ L1(R)∩L2(R), then we have f̂ ∈ L2(R) and ‖f̂‖2 =
‖f‖2 (see [68, Theorem 9.13]). Since L1(R) ∩ L2(R) is a dense subspace of L2(R), one can
show that there is a unique isomorphism T : L2(R) → L2(R) such that Tf = f̂ for each
f ∈ L1(R)∩L2(R). This result is also known as Plancherel’s theorem and in the following
we always write Tf = f̂ for f ∈ L2(R) and call this mapping the Fourier transformation.
Instead of T we also use the symbol F .
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Remark and Definition 1.3.7 Let p ∈ (1, 2) and f ∈ Lp(R). Then, there are functions
f1 ∈ L1(R) and f2 ∈ L2(R) such that f = f1 + f2. We therefore define the Fourier transform
of f simply by f̂ = f̂1 + f̂2. Due to [50], p. 273, this definition does not depend on the
particular representation of f , i.e. if f = g1 + g2 with g1 ∈ L1(R) and g2 ∈ L2(R), we have

f̂1 + f̂2 = ĝ1 + ĝ2.

The Hausdorff-Young theorem (see, e.g., [50, Theorem 12.5]) tells us that f̂ ∈ Lq(R) where
q = p

p−1 is the conjugate exponent of p and moreover ‖f̂‖q ≤ ‖f‖p. Again, we call the mapping
F : Lp(R)→ Lq(R), f 7→ f̂ the Fourier transformation on Lp(R).
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Chapter 2

The Cauchy Transformation on the
Classical Lp Spaces

Nothing is brought about large-scale
But is begun small-scale.

Johann-Wolfgang von Goethe (cf. [66],
p. 167.)

It seems natural to begin with the study of Cauchy transforms of functions belonging to
Lp(R) for some p ∈ [1,∞). In this setting, we will discuss both representation theorems
and uniqueness and inversion theorems. An essential tool for these results is the boundary
behavior of Cauchy transforms which will be the starting point of this chapter.

2.1 Cauchy transforms and their boundary behavior
We first give a general definition of the Cauchy transform.

Definition 2.1.1 Let µ ∈M∞(R).We say that a measurable function f : R→ C isCauchy
transformable (with respect to µ) if

∫
R

|f(t)|
|t|+ 1 d|µ|(t) < +∞.

We write C (µ) for the set of all functions which are Cauchy transformable with respect to
µ. One easily sees that C (µ) is a vector space over C. For the sake of abbreviation we write
C instead of C (λ1) .

Remark 2.1.2 Let µ ∈M∞(R).

1. Since |t|+ 1 ≥ 1 (t ∈ R) one immediately sees that L1(µ) ⊂ C (µ).
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2. If p ∈ (1,∞] is such that ∫
R

1
(|t|+ 1)q d|µ|(t) < +∞

where q is the conjugate exponent of p, then we have Lp(µ) ⊂ C (µ). This follows from
Hölder’s inequality since

∫
R

|f(t)|
|t|+ 1 d|µ|(t) ≤ ‖f‖Lp(µ) ·

(∫
R

1
(|t|+ 1)q d|µ|(t)

)1/q

< +∞.

In particular, Lp(R) ⊂ C for all p ∈ [1,∞).

Remark and Definition 2.1.3 Let µ ∈M∞(R) and f ∈ C (µ). If z ∈ C \R, then we have
∫
R

∣∣∣∣ f(t)
t− z

∣∣∣∣ d|µ|(t) =
∫
R

|f(t)|
|t|+ 1 ·

|t|+ 1
|t− z|

d|µ|(t) < +∞.

and the function Cµf : C \ R→ C, with

(Cµf)(z) := 1
2πi

∫
R

f(t)
t− z

dµ(t) (z ∈ C \ R)

is called the (µ-)Cauchy transform of f. We clearly have Cµf ∈ H(C \ R) with

(Cµf)(n)(z) = n!
2πi

∫
R

f(t)
(t− z)n+1 dµ(t) (z ∈ C \ R, n ∈ N0),

which can be seen by differentiation under the integral sign. The map Cµ : C (µ)→ H(C\R)
is clearly linear and is called the (µ-)Cauchy transformation. Again, we write Cf instead
of Cλ1f and simply speak of the Cauchy transformation if we consider the map C : C →
H(C \ R).

With respect to the theory of classical integral transforms, three major questions imme-
diately arise:

1. Is a Cauchy transform uniquely determined by its initial function? That is to say: If
Cµf = 0, then it follows that f = 0?

2. What conditions are necessary and sufficient for a function to be representable as a
Cauchy transform?

3. How can one recover the initial function from its Cauchy transform?

The first question targets the injectivity of the Cauchy transformation and will be answered
(positively) for µ = λ1 in this section. Later on, we shall relate this topic to the injectivity
of the corresponding Fourier-Laplace transform Lµ. The second and the third question are
closely related and turn towards the issue of inverting the Cauchy transformation. This task
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will constitute a major part in this work and we start with the answer for Lp(R) in the next
section.

In order to prove the injectivity of the Cauchy transformation, we first establish the
so called Plemelj formulas which lead to a decomposition theorem for Lp functions. We
shall define another important integral transform which is crucially related to the Cauchy
transform.

Remark and Definition 2.1.4 Let f ∈ C . Then, the limit

(Hf)(x) := lim
ε→0

1
π

∫
|t−x|≥ε

f(t)
x− t

dt

exists for almost every x ∈ R (see, e.g [50], p. 307). The function Hf is called the Hilbert
transform of f. If p ∈ (1,∞) and f ∈ Lp(R), then we have additionally Hf ∈ Lp(R)
(see, e.g. [40], p. 128). Moreover, the mapping H : Lp(R) → Lp(R) is an isomorphism for
p ∈ (1,∞) satisfying HHf = −f (f ∈ Lp(R)).

In context of Cauchy transforms, one of the most important topics is their boundary
behavior towards the real axis. We therefore introduce two integral transforms which together
form the Cauchy transform.

Remark and Definition 2.1.5 Let µ ∈M∞(R) and f : R→ C be measurable such that∫
R

|f(t)|
1 + t2

d|µ|(t) < +∞.

Then, the function Pµf : C \ R→ C, defined by

(Pµf)(z) := 1
π

∫
R

y

(x− t)2 + y2f(t) dµ(t) (z = x+ iy ∈ C \ R)

is called the (µ-)Poisson transform of f. If µ = λ1, then we write shortly Pf instead of
Pλ1f and in this case we always have (see [50, Corollary 11.11])

lim
y→0+

(Pf)(x+ iy) = f(x)

lim
y→0−

(Pf)(x+ iy) = −f(x)

for almost every x ∈ R. Moreover, if f ∈ Lp(R) for some p ∈ [1,∞), then

sup
y>0

∫
R
|(Pf)(x+ iy)|p dx < +∞

sup
y<0

∫
R
|(Pf)(x+ iy)|p dx < +∞,

see [50, Corollary 10.12].
Now, let f ∈ C (µ). Then, the function Qµf : C \ R→ C, defined by

(Qµf)(z) := 1
π

∫
R

(x− t)
(x− t)2 + y2f(t) dµ(t) (z = x+ iy ∈ C \ R)
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is called the (µ)-conjugate Poisson transform of f. Since

y

(x− t)2 + y2 = i

2 ·
( 1
t− z̄

− 1
t− z

)
and

(x− t)
(x− t)2 + y2 = −1

2

( 1
t− z

+ 1
t− z̄

)
for every z = x+ iy ∈ C \ R, t ∈ R we see that

(Cµf)(z) = 1
2((Pµf)(z) + i(Qµf)(z)) (z ∈ C \ R).

Again we simply write Qf instead of Qλ1f and due to [50], p. 307, we have

lim
y→0+

(Qf)(x+ iy) = lim
y→0−

(Qf)(x+ iy) = (Hf)(x)

for almost every x ∈ R.

The main result concerning the boundary behavior of Cauchy integrals is now an imme-
diate consequence (see [61] and (even earlier) [70], cf. [50, Corollary 14.8]).

Proposition 2.1.6 (Plemelj formulas, [50]) Let f ∈ C . Then

lim
y→0+

(Cf)(x+ iy) = 1
2(f(x) + i(Hf)(x))

lim
y→0−

(Cf)(x+ iy) = 1
2(−f(x) + i(Hf)(x))

for almost every x ∈ R. In particular,

f(x) = lim
y→0+

(Cf)(x+ iy)− lim
y→0−

(Cf)(x+ iy)

for almost every x ∈ R.

Since the formulas above hold in C we can deduce the following

Corollary 2.1.7 If f ∈ C is such that Cf = 0 on C \ R, then f = 0 almost everywhere.

Remark 2.1.8 If one considers the Cauchy transformation as an operator from C to H(Π+),
i.e., C : C → H(Π+), then the statement of Corollary 2.1.7 is false. One reason is that any
function F ∈ Hp(Π+) satisfies

∫ ∞
−∞

F (t+ ia)
t− z

dt = 0 (z ∈ Π+)

for all a > 0, see [50, Lemma 13.1].
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If a function f ∈ C has support in a closed set X ⊂ R, then Cf has a holomorphic
continuation along C \X. An application of the Plemelj formulas shows that the converse is
true as well:

Lemma 2.1.9 Let f ∈ C . Then, for a closed set X ⊂ R, the following assertions are
equivalent:

a) Cf ∈ H(C \ R) has a holomorphic continuation along C \X.

b) f1X = f.

Proof. The inclusion b) ⇒ a) is clear. Furthermore, if Cf has an analytic continuation
along C \X, then the Plemelj formulas imply that

f(x) = lim
y→0+

(Cf)(x+ iy)− lim
y→0−

(Cf)(x+ iy) = 0

for almost every x ∈ R \X. Therefore f1X = f. 2

2.2 Inversion of the Cauchy transformation on Lp(R)
for p ∈ (1,∞)

One of the major tasks in this work is the determination and characterization of the image of
the mapping C under certain subspaces of C . This relates to the issue of solving the complex
integral equation

F (z) = 1
2πi

∫
R

f(t)
t− z

dt (z ∈ C \ R)

for a given F which is holomorphic in C \ R (or some open superset of C \ R). As we will
see shortly, this equation will always have a solution f ∈ Lp(R) for p ∈ [1,∞), provided that
F belongs to the Hardy space on the upper and lower half plane. Since these functions will
appear frequently, the corresponding space is worth a definition.

Remark and Definition 2.2.1 Let p ∈ [1,∞). Then we write Hp(C \ R) for the set of all
functions F ∈ H(C \ R) which satisfy

‖F‖Hp(C\R) :=
(

sup
y 6=0

∫
R
|F (x+ iy)|p dx

)1/p

< +∞.

Moreover, H∞(C \ R) is the space of all bounded F ∈ H(C \ R) endowed with the norm

‖F‖H∞(C\R) := sup
z∈C\R

|F (z)|.

It is easy to see that for each F ∈ Hp(C \ R), the following chain of inequalities is valid:

max{‖F‖Hp(Π+), ‖F‖Hp(Π−)} ≤ ‖F‖Hp(C\R) ≤ ‖F‖Hp(Π+) + ‖F‖Hp(Π−).
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Therefore, a function F ∈ H(C\R) belongs toHp(C\R) if and only if F |Π+ ∈ Hp(Π+), F |Π− ∈
Hp(Π−). For F ∈ Hp(C \ R) we can define almost everywhere the function

F̃ (x) := F+(x) + F−(x) = lim
y→0+

F (x+ iy) + lim
y→0−

F (x+ iy).

From the completeness of Hardy spaces and the inequality above we deduce

Proposition 2.2.2 Let p ∈ [1,∞]. Then, the space Hp(C \ R) is a Banach space.

Remark 2.2.3 It should be mentioned that we can regard H2(C\R) also as a Hilbert space.
Therefore, we consider the inner product on H2(C \ R) defined by

〈f, g〉 := 1
2 lim
y→0+

∫
R
f(x+ iy)g(x+ iy) dx+ 1

2 lim
y→0−

∫
R
f(x+ iy)g(x+ iy) dx

whenever f, g ∈ H2(C\R). This inner product induces an equivalent norm to ‖·‖H2(C\R) since
the integral means of functions in Hp(Π+) (Hp(Π−)) are decreasing (increasing) as y → 0,
see Proposition 1.2.3.

Our considerations on the image of Lp(R) under the Cauchy transformation C originate
from a well-known result (see, e.g., [50, Corollary 14.8] or [45, Section 19.3, Corollary 1])
which tells that if p ∈ (1,∞) and f ∈ Lp(R), then Cf |Π+ ∈ Hp(Π+) and Cf |Π− ∈ Hp(Π−).
In particular,

C(Lp(R)) ⊂ Hp(C \ R)
for p ∈ (1,∞).

In fact, Hp(C \ R) is actually equal to C(Lp(R)) in this case. This is what we want to
show next. One of the main tools for the proof is the so called Riesz factorization theorem
which gives a decomposition for Lp(R) if p ∈ (1,∞). However, this result fails in the case
p = 1! This suggests why the determination of C(L1(R)) is pretty much harder than the one
of C(Lp(R)) for p > 1.

We first introduce certain subspaces of Lp(R).

Remark and Definition 2.2.4 For p ∈ [1,∞), we set

H+
p (R) :=

{
f ∈ Lp(R) :

∫
R

f(t)
t− z

dt = 0 (z ∈ Π−)
}

H−p (R) :=
{
f ∈ Lp(R) :

∫
R

f(t)
t− z

dt = 0 (z ∈ Π+)
}
.

Due to [16, Theorem 11.8], the space H+
p (R) consists exactly of the functions f ∈ Lp(R)

which are the boundary function of some F ∈ Hp(Π+). Analogously, one sees that H−p (R)
is exactly the space of the functions f ∈ Lp(R) which are the boundary function of some
F ∈ Hp(Π−).

Remark 2.2.5 Let p ∈ [1,∞) and f ∈ Lp(R).
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1. It is clear that f ∈ H+
p (R) if and only if (Cf)(z) = (Pf)(z) for all z ∈ Π+. Hence, if

f ∈ H+
p (R), then

lim
y→0+

(Cf)(x+ iy) = lim
y→0+

(Pf)(x+ iy) = f(x)

for almost every x ∈ R by Remark and Definition 2.1.5. On the other hand, f ∈ H−p (R)
if and only if (Cf)(z) = (Pf)(z) for all z ∈ Π−. This implies by a similar argumentation
that if f ∈ H−p (R), then

lim
y→0−

(Cf)(x+ iy) = −f(x)

for almost every x ∈ R.

2. As a consequence we deduce that f belongs to H+
p (R) if and only if Hf = −if. Similar,

f belongs to H−p (R) if and only if Hf = if. This result appears in [64], p. 972, but
without proof and we shall give one for completeness.

Proof: We only prove the statement for H+
p (R). First notice that by 1. and

the Plemelj formulas we must have f = 1
2(f + iHf) and therefore Hf = −if.

Conversely, if Hf = −if, then lim
y→0−

(Cf)(x + iy) = 0 for almost every x ∈ R.

Since Hf ∈ Lp(R), [34, Theorem 3.1] implies that (Cf)(z) = (Pf)(z) for all
z ∈ Π+ and hence f ∈ H+

p (R) by 1.

This means

H+
p (R) = {f ∈ Lp(R) : Hf ∈ H+

p (R)}
H−p (R) = {f ∈ Lp(R) : Hf ∈ H−p (R)}.

3. We have H+
p (R) ∩H−p (R) = {0}. For, if f ∈ H+

p (R) ∩H−p (R), then (Cf)(z) = 0 for all
z ∈ C \ R. Proposition 2.1.7 implies that f = 0.

By the third part of the previous remark, we can say that

H+
p (R) +H−p (R) = H+

p (R)⊕H−p (R)

for p ∈ [1,∞). If p 6= 1, then this direct sum is actually equal to Lp(R). This is the statement
of the Riesz factorization theorem for Lp(R) (cf. [45, Section 19.3, Corollary 2]).

Proposition 2.2.6 (Riesz factorization theorem) Let p ∈ (1,∞). Then,

Lp(R) = H+
p (R)⊕H−p (R).

Hence, any f ∈ Lp(R) admits a unique decomposition

f = f1 + f2

where f1 ∈ H+
p (R), f2 ∈ H−p (R).
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Proof. If f ∈ Lp(R), then Cf |Π+ ∈ Hp(Π+) and Cf |Π− ∈ Hp(Π−), see the discussion before
Remark and Definition 2.2.4. The Plemelj formulas tell us that f = (Cf)+ − (Cf)−, hence
f ∈ H+

p (R)⊕H−p (R) by Remark and Definition 2.2.4. 2

The following result (see, e.g., [50, Theorem 13.2]) is not only crucial for our work, but
also states that the spaces H+

p (R), H−p (R) can be identified with the classical Hardy spaces
Hp(Π+),Hp(Π−).

Proposition 2.2.7 ([50]) Let p ∈ [1,∞). Then the following statements hold:

1. The mapping T : H+
p (R) → Hp(Π+), T f = Cf |Π+ is an isometric isomorphism with

inverse T−1 : Hp(Π+)→ H+
p (R) defined by

T−1(g) = g+ (g ∈ Hp(Π+)).

2. The mapping T : H−p (R) → Hp(Π−), T f = Cf |Π− is an isometric isomorphism with
inverse T−1 : Hp(Π−)→ H+

p (R) defined by

T−1(g) = −g− (g ∈ Hp(Π−)).

Remark 2.2.8 Let p ∈ [1,∞). By Proposition 2.2.7, the spaces H+
p (R) and H−p (R) are

Banach spaces. One could show this fact directly with the aid of Hölder’s inequality: Given
f ∈ Lp(R) and a sequence (fn)n∈N in H+

p (R) with fn → f, we know that∣∣∣∣ ∫
R

f(t)
t− z

dt
∣∣∣∣ =

∣∣∣∣ ∫
R

f(t)− fn(t)
t− z

dt
∣∣∣∣ ≤ ∫

R

1
|t− z|

· |fn(t)− f(t)| dt (z ∈ Π−).

But Hölder’s inequality and the fact fn ∈ H+
p (R) for all n ∈ N imply now that∫

R

1
|t− z|

· |fn(t)− f(t)| dt ≤ ‖fn − f‖p ·
∥∥∥∥ 1
· − z

∥∥∥∥
q
→ 0 (n→∞)

for any z ∈ Π−, here q is the conjugate exponent of p. This implies f ∈ H+
p (R). The proof

for H−p (R) is in the same manner.

Remark 2.2.9 There is an analogue of Proposition 2.2.7 for harmonic functions which builds
the fundament to prove these results. For p ∈ [1,∞) let hp(Π+) be the space of all harmonic
functions U on Π+ such that

‖U‖hp(Π+) :=
(
sup
y>0

∫
R
|U(x+ iy)|p dx

) 1
p

< +∞

and h∞(Π+) be the space of all bounded harmonic functions U on Π+ endowed with the
norm

‖U‖h∞(Π+) := sup
z∈Π+

|U(z)|.

The spaces hp(Π−) are defined in an analogue way. Then, the Poisson representation theorem
for Π+ (see [50, Theorem 11.6, Theorem 11.7]) asserts the following:
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1. A harmonic function U belongs to h1(Π+) if and only if there is µ ∈M(R) such that

U(z) = (Pµ1R)(z) = 1
π

∫
R

y

(x− t)2 + y2 dµ(t) (z = x+ iy ∈ Π+).

In this case, µ is unique and satisfies ‖µ‖ = ‖U‖h1(Π+).

2. For p ∈ (1,∞], a harmonic function U belongs to hp(Π+) if and only if there is f ∈ Lp(R)
such that

U(z) = (Pf)(z) = 1
π

∫
R

y

(x− t)2 + y2f(t) dt (z = x+ iy ∈ Π+).

In this case, f is unique and satisfies ‖f‖p = ‖U‖hp(Π+).

If a Banach space X admits a direct sum representation, i.e. X = U ⊕ V, then one can
naturally define a complete norm on X by

‖x‖⊕ := ‖u‖X + ‖v‖X (x = u+ v ∈ X).

For example, if we consider Lp(R), then by Proposition 2.2.6 a norm arises by taking

‖f‖⊕ := ‖f1‖p + ‖f2‖p (f = f1 + f2 ∈ Lp(R)).

Proposition 2.2.7 asserts in a particular way that the Cauchy transformation is a bounded
operator on Lp(R) if we take this direct sum norm. However, our goal is that the Cauchy
transformation is a bounded operator on Lp(R) with respect to the usual norm ‖ · ‖p. Hence,
we have to show that it does not matter which norm we take and this is exactly the statement
of

Lemma 2.2.10 Let (X, ‖ · ‖X) be a Banach space and U, V be closed subspaces of X such
that

X = U ⊕ V.
If

‖x‖⊕ := ‖u‖X + ‖v‖X (x = u+ v ∈ X),
then ‖ · ‖⊕ defines a complete norm on X which is equivalent to ‖ · ‖X .

Proof. We clearly have ‖x‖X ≤ ‖x‖⊕ (x ∈ X) and therefore the identity mapping I :
(X, ‖ · ‖⊕)→ (X, ‖ · ‖X) is continuous and bijective. Since (X, ‖ · ‖⊕) is a Banach space, the
Banach isomorphism theorem (see [68], p. 106) yields that I−1 is continuous. Hence, there
is a constant K > 0 with

‖x‖⊕ ≤ K‖x‖X (x ∈ X)
and we are done when we combine this with the first inequality. 2

We are now in the position to formulate the representation theorem for the Cauchy
transformation on Lp(R), p > 1.
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Theorem 2.2.11 Let p ∈ (1,∞). Then, the Cauchy transformation C : Lp(R)→ H(C \ R)
is an isomorphism onto Hp(C \ R). Thus, a function F ∈ H(C \ R) belongs to Hp(C \ R) if
and only if there is a f ∈ Lp(R) such that

F (z) = (Cf)(z) (z ∈ C \ R).

In this case, f is unique and there are constants Kp,1, Kp,2 > 0 only depending on p such that

‖F‖Hp(C\R) ≤ Kp,1‖f‖p ≤ Kp,2‖F‖Hp(C\R).

Proof. The injectivity has already been shown. For the surjectivity, fix F ∈ Hp(C \ R). By
Proposition 2.2.7, there exist functions f1 ∈ H+

p (R), f2 ∈ H−p (R) such that

F (z) = (Cf1)(z) (z ∈ Π+),
F (z) = (Cf2)(z) (z ∈ Π−).

But since ∫
R

f1(t)
t− z

dt = 0 (z ∈ Π−),∫
R

f2(t)
t− z

dt = 0 (z ∈ Π+)

we get
F (z) = C(f1 + f2)(z) (z ∈ C \ R).

Therefore,
C(H+

p (R)⊕H−p (R)) = Hp(C \ R)

and the surjectivity is clear by the Riesz factorization theorem. It remains to show the
continuity of C since then the Banach isomorphism theorem (see, e.g., [68, Theorem 5.10])
tells us that C−1 is continuous as well and C is an isomorphism. But for f = f1 +f2 ∈ Lp(R),
we know that

‖Cf‖Hp(C\R) ≤ ‖Cf1‖Hp(Π+) + ‖Cf2‖Hp(Π−) = ‖f1‖p + ‖f2‖p.

Together with Lemma 2.2.10, this implies that C is continuous and we are done. 2

Remark 2.2.12 For p ∈ (1,∞), the inverse C−1 of the Cauchy transformation is given by
the mapping C−1 : Hp(C \ R)→ Lp(R) with

C−1(F ) = F+ − F− (F ∈ Hp(C \ R)).

This is clear from the Plemelj formulas, since they tell us exactly that

C−1 ◦ C = idLp(R).
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2.3 The case p = 1 and Paley-Wiener theorems
We now turn to the case p = 1. In this case, the Cauchy transformation does not map L1(R)
into H1(C \ R). This is a consequence of

Proposition 2.3.1 Let p ∈ [1,∞) and f ∈ Lp(R). If Cf ∈ Hp(C \ R), then Hf ∈ Lp(R).

Proof. If Cf ∈ Hp(C \ R), then Cf+ ∈ Lp(R) and the Plemelj formulas imply that also
Hf ∈ Lp(R). 2

Hence, if the Riesz factorization theorem would hold for p = 1, we would haveHf ∈ L1(R)
for any f ∈ L1(R). This is certainly not the case, since if we take

f(x) = 1[0,1](x) (x ∈ R),

we get

(Hf)(x) = ln
(
|x|
|x− 1|

)
(x ∈ R \ {0, 1})

which is a function which is not integrable.
The analogue of Theorem 2.2.11 reads for p = 1 as follows:

Proposition 2.3.2 The Cauchy transformation C : H+
1 (R) ⊕ H−1 (R) → H(C \ R) is an

isomorphism onto H1(C \ R). Thus, a function F ∈ H(C \ R) belongs to H1(C \ R) if and
only if there is a f ∈ H+

1 (R)⊕H−1 (R) such that

F (z) = (Cf)(z) (z ∈ C \ R).

In this case, f is unique and there are constants K1, K2 > 0 not depending on f and g such
that

‖F‖H1(C\R) ≤ K1‖f‖H+
1 (R)⊕H−1 (R) ≤ K2‖F‖H1(C\R).

We omit the proof since it is similar to the one of Theorem 2.2.11. However, the fac-
torization space H+

1 ⊕ H−1 (R) is somewhat unhandy and like in the case p ∈ (1,∞) we are
interested in a precise description of this space. Proposition 2.3.1 suggests a necessary con-
dition for a function f ∈ L1(R) to belong to H+

1 (R)⊕H−1 (R). Namely, Hf has to belong to
L1(R) as well. The question arises if this condition is also sufficient. This will turn out to be
the case.

Remark and Definition 2.3.3 The space

H1(R) := {f ∈ L1(R) : Hf ∈ L1(R)}

is called the real Hardy space. It is a Banach space with respect to the norm

‖f‖H1(R) := ‖f‖1 + ‖Hf‖1 (f ∈ H1(R)),

see [26], p. 235.
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Remark 2.3.4 1. The space H1(R) has multiple characterizations and applications, see
[73]. A class of functions which belong to H1(R) can be obtained by taking decreasing,
positive functions g0 ∈ L1(0,∞) and considering functions of the form g := sign ·g0(| · |)
where sign is the signum function. This follows from the so called atomic decomposition
of functions in H1(R), see [73], p. 178.

2. As remarked before we do not have H(L1(R)) ⊂ L1(R) which explains in particular
that there is no inversion formula for the Hilbert transformation on L1(R). However,
the space H1(R) is here the natural substitute for L1(R) in the following sense: If
f ∈ H1(R), then HHf = −f (see [34], p. 344), and hence the Hilbert transformation
is an isometric automorphism on H1(R).

The real Hardy space will turn out to be equal to the direct sum H+
1 (R) ⊕ H−1 (R).

Clearly, by Proposition 2.2.7 and Proposition 2.3.1 we have H+
1 (R), H−1 (R) ⊂ H1(R), hence

also H+
1 (R) ⊕ H−1 (R) ⊂ H1(R) by the linearity of the Hilbert transformation. In order to

prove the other inclusion we shall need

Lemma 2.3.5 Let f ∈ H1(R). Then, Cf ∈ H1(C \ R).

Proof. If f ∈ H1(R), then [34, Theorem 3.1] implies that (Cf)(z) = (Pf)(z) for all z ∈ Π+
and similar (Cf)(z) = (Pf)(z) for all z ∈ Π−. But now by Remark and Definition 2.1.5 we
conclude that Cf |Π+ ∈ H1(Π+), Cf |Π− ∈ H1(Π−) and hence Cf ∈ H1(C \ R). 2

Proposition 2.3.6 The following statements hold:

1. H+
1 (R)⊕H−1 (R) = H1(R).

2. The Cauchy transformation establishes an isomorphism between H1(R) and H1(C \R).
In particular, a function F ∈ H(C \ R) belongs to H1(C \ R) if and only there is a
f ∈ H1(R) such that

F (z) = (Cf)(z) (z ∈ C \ R).
In this case, f is unique and there are constants K1, K2 > 0 independent of f such that

‖F‖H1(C\R) ≤ K1‖f‖H1(R) ≤ K2‖F‖H1(C\R).

Proof. In view of Proposition 2.3.2 and Remark and Definition 2.3.3 it suffices to show that
the first part holds. Since H+

1 (R)⊕H−1 (R) ⊂ H1(R) Lemma 2.3.5 implies that

C(H+
1 (R)⊕H−1 (R)) ⊂ C(H1(R)) ⊂ H1(C \ R).

By Proposition 2.3.2 we therefore must have C(H+
1 (R) ⊕ H−1 (R)) = C(H1(R)) and this

concludes the proof since C is injective on C , see Proposition 2.1.7. 2

We briefly turn to another approach to characterize Cauchy transforms of functions.
Therefore, we rely on a result which illustrates the close connection of Fourier and Cauchy
transforms and which will be exploited several times in this work. We refer to [50, Theorem
12.6].
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Proposition 2.3.7 Let p ∈ [1, 2]. Then

Lf̂ = Cf

for all f ∈ Lp(R).

Remark 2.3.8 Basing on Proposition 2.3.7 it is a short way to prove that

H+
p (R) = {f ∈ Lp(R) : f̂1(−∞,0] = 0},

H−p (R) = {f ∈ Lp(R) : f̂1[0,∞) = 0}

for each p ∈ [1, 2], see [50], p. 287-288. In particular, if f ∈ H1(R), then f has a vanishing
integral, i.e. ∫ ∞

−∞
f(t) dt = 0.

This follows from the continuity of Fourier transforms of L1 functions. Conversely, not every
function in L1(R) with a vanishing integral has to belong to H1(R). Take for example the
function g : R→ R,

g(t) = 1[0,1](t) (t ∈ R)

and a function ϕ ∈ C∞(R) with support in [0, 1] such that
∫
ϕ = 1. Then, the function

f := g − ϕ satisfies f ∈ L1(R),
∫
f = 0, but Hg /∈ L1(R). This can be seen as follows: Since

Hϕ ∈ L∞(R) (see, e.g., [50, Theorem 14.1]) it suffices to show that Hg /∈ L1(R) because∫ ∞
−∞
|(Hf)(x)| dx ≥

∫ ∞
−∞
|(Hg)(x)| dx− ‖ϕ‖∞.

But this is clear since

(Hg)(x) = ln
(
|x|
|x− 1|

)
(x ∈ R \ {0, 1}).

Proposition 2.3.9 The diagram

L2(R) H2(C \ R)

L2(R)

C

F L

is a commuting diagram of isomorphisms. Hence, for a function F ∈ H(C\R), the following
statements are equivalent:

a) There exists f ∈ L2(R) such that F = Cf.

b) There exists g ∈ L2(R) such that F = Lg.
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c) F ∈ H2(C \ R).

In this case, both f and g are uniquely determined.

We can now deduce the Paley-Wiener theorems:

Proposition 2.3.10 The following statements hold:

1. (Paley-Wiener for p = 1) If F ∈ H1(Π+), then there is a f ∈ C0(R) with f1(0,∞) = f
such that

F (z) = (Lf)(z) (z ∈ Π+).

2. (Paley-Wiener for p ∈ (1, 2)) Let p ∈ (1, 2). If F ∈ Hp(Π+), then there is a f ∈
Lq(0,∞) such that

F (z) = (Lf)(z) (z ∈ Π+).

Here, q is the conjugate exponent of p.

3. (Paley-Wiener for p = 2) A function F ∈ H(Π+) belongs to H2(Π+) if and only if
there is some f ∈ L2(0,∞) such that

F (z) = (Lf)(z) (z ∈ Π+).

In this case, f is unique and

‖F‖H2(Π+) =
√

2π‖f‖2.

Proof. We only have to prove 3. The Cauchy transform C establishes an isometric isomor-
phism between (H+

2 (R), ‖ · ‖2) and (H2(Π+), ‖ · ‖H2(Π+)). Moreover, the spaces H+
2 (R) and

L2(0,∞) are isomorphic via the Fourier transform F , see [50, Theorem 13.8]. Since

L = C ◦ F−1

the mapping L has to be an isometric isomorphism as well. 2

2.4 Intersection spaces and a short treatise of the case
p =∞

Unfortunately, the previous results make in general no sense if p =∞. This is because of the
fact that the Cauchy transform of an arbitrary f ∈ L∞(R) may not even be defined (take for
example a constant function). Moreover, even if Cf is defined for some f ∈ L∞(R), we will
in general not get a bounded function on C \ R.
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Example 2.4.1 Let f = 1[0,1]. Then, clearly f ∈ L∞ ∩ L1(R) and hence Cf is defined and
is even holomorphic on C \ [0, 1]. But, since

(Cf)(x) = 1
2πi(ln(|1− x|)− ln(|x|)) (x ∈ R \ [0, 1]),

Cf is clearly not bounded on C \ R or C \ [0, 1].

Hence, we can not expect to obtain a representation theorem for H∞(C\R) using Cauchy
transforms. One idea is however to ask for a representation theorem forH∞(C\R)∩Hp(C\R).
We shall see that this is indeed possible. The way to prove the corresponding result will
incorporate again the theory of Poisson integrals. Recall that for a function f ∈ H+

p (R) we
have

(Cf)(z) = (Pf)(z) = 1
π

∫
R

y

(x− t)2 + y2f(t) dt (z = x+ iy ∈ Π+).

In particular, Pf is analytic for each f ∈ H+
p (R) ∪ H−p (R). That the converse is also true

tells us the following lemma (see [16, Theorem 11.2]).
Lemma 2.4.2 ([16]) Let p ∈ [1,∞] and f ∈ Lp(R).

1. If the function F : Π+ → C, defined by

F (x+ iy) = (Pf)(z) (z ∈ Π+)

is analytic, then F ∈ Hp(Π+) and F+ = f.

2. If the function F : Π− → C, defined by

F (z) = (Pf)(z) (z ∈ Π−)

is analytic, then F ∈ Hp(Π−) and F− = −f.

We now consider for p1 ∈ [1,∞], p2 ∈ [1,∞) the intersection spaces

H+
p1,p2(R) := Lp1(R) ∩H+

p2(R)
H−p1,p2(R) := Lp1(R) ∩H−p2(R)

Endowed with the sum norm ‖ · ‖p1 + ‖ · ‖p2 , these spaces are Banach spaces. We shall
ask for the image of C under the direct sum H+

p1,p2(R)⊕H−p1,p2(R).
Theorem 2.4.3 Let p1 ∈ [1,∞] and p2 ∈ [1,∞). Then, the Cauchy transformation is an
isomorphism between H+

p1,p2(R) ⊕H−p1,p2(R) and Hp1(C \ R) ∩ Hp2(C \ R). Thus, a function
F ∈ H(C \ R) belongs to the intersection space Hp1(C \ R) ∩Hp2(C \ R) if and only if there
is a f = f1 + f2 ∈ H+

p1,p2(R)⊕H−p1,p2(R) such that

F (z) = (Cf)(z) (z ∈ C \ R).

In this case, f is unique and there is a constant Kp1,p2 > 0 only depending on p1 and p2 such
that

‖F‖Hp1 (C\R) + ‖F‖Hp2 (C\R) ≤ 2(‖f1‖p1 + ‖f1‖p2 + ‖f2‖p1 + ‖f2‖p2)
≤ 2Kp1,p2(‖F‖Hp1 (C\R) + ‖F‖Hp2 (C\R)).
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Proof. If F = Cf where f = f1 + f2 ∈ H+
p1,p2(R)⊕H−p1,p2(R), then clearly F ∈ Hp2(C \ R).

Moreover,
F (z) = (Pf1)(z) (z ∈ Π+)

and therefore F |Π+ ∈ Hp1(Π+) by Lemma 2.4.2. Similarly, one sees that F |Π− ∈ Hp1(Π−)
and therefore F ∈ Hp1(C \ R) ∩Hp2(C \ R). Together with Remark 2.2.9 we get

‖F‖Hp1 (C\R) + ‖F‖Hp2 (C\R) ≤ ‖F‖Hp1 (Π+) + ‖F‖Hp1 (Π−) + ‖F‖Hp2 (Π+) + ‖F‖Hp2 (Π−)

= 2(‖f1‖p1 + ‖f1‖p2 + ‖f2‖p1 + ‖f2‖p2).

Hence, we only have to show surjectivity since then the Banach isomorphism theorem yields
that C is an isomorphism, as desired. If F ∈ Hp1(C \R)∩Hp2(C \R), then there is a unique
f1 ∈ Lp1(R) such that

F (z) = (Pf1)(z) (z ∈ Π+).
This follows from Remark 2.2.9 if p1 = +∞ and from Proposition 2.2.7 if p1 ∈ [1,∞). On
the other hand, the same proposition implies that there is a unique g1 ∈ H+

p2(R) such that

F (z) = (Cg1)(z) = (Pg1)(z) (z ∈ Π+).

But now, by Lemma 2.4.2, we know that

F+ = f1 = g1

and hence, f1 ∈ H+
p1,p2(R). Similarly, one can show that there is a unique f2 ∈ H−p1,p2(R) such

that
F (z) = (Cf2)(z) (z ∈ Π−),

so we conclude by setting f := f1 + f2. 2

Corollary 2.4.4 Let p ∈ [1,∞) and f ∈ H+
∞,p(R)⊕H−∞,p(R). Then, Cf ∈ H∞(C \ R).

We deduce two important corollaries which consider again the Riesz factorization theorem.
The first corollary provides a decomposition for intersections of Lp spaces.
Corollary 2.4.5 The following statements hold:

1. If p1, p2 ∈ (1,∞), then

Lp1(R) ∩ Lp2(R) = H+
p1,p2(R)⊕H−p1,p2(R).

2. If p ∈ [1,∞), then
H1(R) ∩ Lp(R) = H+

p,1(R)⊕H−p,1(R).

Proof. We only prove the first part since the proof of the second part is similar. Notice that
the injectivity of the Cauchy transformation on C implies together with Theorem 2.2.11 that

C(Lp1(R) ∩ Lp2(R)) = Hp1(C \ R) ∩Hp2(C \ R).

But by Theorem 2.4.3

C(H+
p1,p2(R)⊕H−p1,p2(R)) = Hp1(C \ R) ∩Hp2(C \ R).

Hence, again by the injectivity of the Cauchy transformation we conclude that 1. holds. 2
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Remark 2.4.6 1. The first part of Corollary 2.4.5 is false if we allow that p1 = 1 or
p1 = ∞. For example, consider the function f : R → R, f(t) = 1

π(1 + t2) . Then

f ∈ L1(R) ∩ Lp(R) for every p ∈ (1,∞) but since (see Example B.5)

(Cf)(z) =


− 1

2πi(z + i) , z ∈ Π+

− 1
2πi(z − i) , z ∈ Π−.

we see that Cf /∈ H1(C \ R). Therefore, f /∈ H+
1,p(R)⊕H−1,p(R).

On the other hand, if we take f = 1[0,1], then f ∈ Lp(R) for all p ∈ [1,∞] but
f /∈ H+

∞,p(R)⊕H−∞,p(R) since Cf /∈ H∞(C \ R), see Example 2.4.1.

2. Similar, in the second part of Corollary 2.4.5 the statement is in general not true if
p =∞. This can be seen by taking for example f = 1[0,1] − 1[1,2]. Then,

(Hf)(x) = ln
(
|x|
|x− 1|

)
− ln

(
|x− 1|
|x− 2|

)
(x ∈ R \ {0, 1, 2})

and therefore Hf ∈ L1(R) which means f ∈ H1(R) ∩ L∞(R). But f /∈ H+
∞,1(R) ⊕

H−∞,1(R) since Cf /∈ H∞(C \ R).

Corollary 2.4.7 Let p ∈ (1,∞), f ∈ Lp(R) and f = f1 + f2 the unique decomposition of f
into f1 ∈ H+

p (R) and f2 ∈ H−p (R). Then, the following statements are equivalent:

a) f1, f2 ∈ L∞(R).

b) Cf ∈ H∞(C \ R).

Proof. If f1, f2 ∈ L∞(R), then clearly Cf ∈ H∞(C \ R) by Theorem 2.4.3. Conversely, if
Cf ∈ H∞(C\R), then there is a unique g = g1 +g2 ∈ H+

p,∞(R)⊕H−p,∞(R) such that Cg = Cf
and due to the uniqueness of the decomposition we conclude that f1 = g1 and f2 = g2. 2

We close this section with another approach to analyze Cauchy transforms of functions
in L∞(R). Instead of regarding intersection spaces one can also consider different subspaces
of L∞(R). This will lead to a certain symmetry relation of the Cauchy transform. Here is a
preparing lemma which generalizes a result in [50, Lemma 13.1].

Lemma 2.4.8 Let U ⊂ C be open with Π+ ⊂ U and ω ∈ H(U) with ω(z) 6= 0 (z ∈ U).
Moreover, suppose that for all β > 0 we have

lim
R→∞

∫ π−θR

θR

1
|ω(Reit − iβ)| dt = 0

where θR := arcsin(β/R). Then, for each F ∈ H∞(Π+) and β > 0∫ ∞
−∞

F (t+ iβ)
(t− z)ω(t) dt = 0 (z ∈ Π+).
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Proof. Let us fix β > 0 and z ∈ Π+. We choose R > β + |z| and consider the path ΓR,β
which consists of the two parts

γ1 : [−R cos(θR), R cos(θR)]→ C, γ1(t) = t+ iβ

γ2 : [θR, π − θR]→ C, γ2(t) = Reit.

and is obviously closed. Since 1/ω ∈ H(U), the Cauchy theorem implies that
∫

ΓR,β

F (ζ)
(ζ − iβ − z) · ω(ζ − iβ) dζ = 0,

hence ∫ R cos(θR)

−R cos(θR)

F (t+ iβ)
(t− z) · ω(t) dt = −

∫ π−θR

θR

F (Reit)
(Reit − iβ − z) · ω(Reit − iβ)iRe

it dt.

But now, ∣∣∣∣∣
∫ π−θR

θR

F (Reit)
(Reit − iβ − z)ω(Reit − iβ)iRe

it dt

∣∣∣∣∣
≤ ‖F‖∞R
R− (β + |z|)

∫ π−θR

θR

1
|ω(Reit − iβ)| dt→ 0 (R→∞)

and we conclude since R cos(θR)→∞ and −R cos(θR)→ −∞ (R→∞). 2

Remark 2.4.9 An important set of analytic functions which satisfy the condition in Lemma
2.4.8 is the set of all automorphisms on C whose root lies in the lower half-plane denoted by
Aut−(C) . In particular, we consider functions ω : C→ C, ω(z) = az+c, where a ∈ C∗, c ∈ C
are such that − c

a
∈ Π−. In this case, for fixed β > 0 and R > 0 sufficiently large

∫ π−θR

θR

1
|ω(Reit − iβ)| dt ≤

2π
|a|(R− β)− |c| → 0 (R→∞).

If ω ∈ Aut−(C), then we write

H̃+
∞,ω(R) :=

{
f ∈ L∞(R) :

∫
R

f(t)
(t− z)ω(t) dt = 0 (z ∈ Π−)

}
.

Due to Hölder’s inequality, this is a closed subspace of L∞(R): If (fn)n∈N is a sequence in
H̃+
∞,ω(R) such that ‖fn − f‖∞ → 0 for some f ∈ L∞(R), then∣∣∣∣∣

∫
R

f(t)
(t− z)ω(t) dt

∣∣∣∣∣ ≤ ‖fn − f‖∞ ·
(∫

R

1
|(t− z)ω(t)| dt

)
→ 0 (n→∞)

for all z ∈ Π−.
The following proposition is a generalization of a result in [50], p. 284.
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Proposition 2.4.10 Let ω ∈ Aut−(C). Then, the mapping S : H̃+
∞,ω(R)→ H∞(Π+), defined

by

(Sf)(z) := ω(z) ·
(
C
f

ω

)
(z) (z ∈ Π+),

is an isomorphism.

Proof. The main tool is the identity

y

(x− t)2 + y2 = 1
2i

(
ω(z)

(t− z)ω(t) −
ω(z)

(t− z)ω(t)

)
(z = x+ iy ∈ C, t ∈ R).

If f ∈ H̃+
∞,ω(R), then Sf = Pf ∈ H∞(Π+). So, let us fix some F ∈ H∞(Π+). Then, by

Remark 2.2.9 there is some f ∈ L∞(R) such that

F (x+ iy) = (Pf)(z) (z ∈ Π+)

and
lim
β→0

∫
R
ϕ(t)F (t+ iβ) dt =

∫
R
ϕ(t)f(t) dt

for all ϕ ∈ L1(R) by [50, Corollary 10.14]. In particular, if we put

ϕ(t) = 1
(t− z) · ω(t) ,

we obtain f ∈ H̃+
∞,ω(R) by Lemma 2.4.8. Therefore, F = Sf and the surjectivity is clear. The

injectivity of S follows from Proposition 2.1.7 and since ‖Sf‖H∞(Π+) ≤ ‖f‖∞, the Banach
isomorphism theorem gives us that S is indeed an isomorphism. 2

Remark 2.4.11 Let ω ∈ Aut−(C).

1. If we consider ω also as an element of L∞(R), then Proposition 2.4.10 implies in par-
ticular the symmetric relation

C
( 1
ω
· H̃+
∞,ω(R)

)
= 1
ω
· H∞(Π+).

2. Let f ∈ H̃+
∞,ω(Π+). Then, by Remark 2.2.9 and Proposition 2.4.10 one sees that f ∈

H̃+
∞,h(Π+) for all h ∈ Aut−(C) (cf. [50], p. 284).
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Chapter 3

The Cauchy Transformation on
Subspaces of Lp(R) (1 ≤ p <∞)

To create was a fundament, to
appreciate, a supplement.

Jeanette Winterson, see [83], p. 35

In this chapter, we will build the fundament for our investigation of the Cauchy transfor-
mation on several subspaces of Lp(R). Here, p belongs to [1,∞). Our main focus will be on
spaces of the form Lp(X) where X ⊂ R is closed. Therefore, we first introduce the most
important facts about Cauchy transforms of measures and discuss their boundary behavior.
Afterwards, we consider functions which belong to Lp(X) for a closed set X.With the results
of the previous chapter and a result about analytic continuation of Cauchy transforms we
will be able to determine the image of C under Lp(X) for p ∈ (1,∞) and to give also an
answer in the case p = 1.

3.1 Complex measures and their Cauchy transforms
The Cauchy transform of a measure µ ∈ M(R) has in some kind already been defined in
2.1.3. However, it is worth to define Cauchy transforms generally for Borel measures on C
since this is the original setting for applications in approximation theory.

Remark and Definition 3.1.1 Let µ ∈M∞(C) such that∫ 1
|ζ|+ 1 d|µ|(ζ) < +∞.

Then, the function Cµ : C \ supp(µ)→ C defined by

(Cµ)(z) = 1
2πi

∫ 1
ζ − z

dµ(ζ) (z ∈ C \ supp(µ))
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is called theCauchy transform of µ. If µ ∈Mc(C), then we also regard Cµ on C∞\supp(µ).
Clearly, we have Cµ ∈ H(C \ supp(µ)) with

(Cµ)(n)(z) = n!
2πi

∫ 1
(ζ − z)n+1 dµ(ζ) (z ∈ C \ supp(µ), n ∈ N0).

Remark 3.1.2 1. If µ ∈ M∞(R) (compare with Remark A.3) is such that 1R ∈ C (µ),
then Cµ = Cµ1R.

2. If f ∈ L1(R) and µ = fλ1, then

(Cµ)(z) = 1
2πi

∫
R

f(t)
t− z

dt = (Cf)(z) (z ∈ C \ R).

A special case appears if we consider measures with compact support.

Remark and Definition 3.1.3 For µ ∈ Mc(C), we define the function |C|µ : C→ [0,∞],
with

(|C|µ)(z) :=
∫ 1
|ζ − z|

d|µ|(ζ) (z ∈ C).

Since the function
C∗ 3 z 7→ 1

z

is in Lp,loc(C) for p ∈ [1, 2), one can use Fubini’s theorem and Jensen’s inequality to show
that |C|µ ∈ Lp,loc(C) for p ∈ [1, 2), see [27], p. 37. In particular, (|C|µ)(z) is finite for almost
every z ∈ C. Hence, the Cauchy transform

(Cµ)(z) = 1
2πi

∫ 1
ζ − z

dµ(ζ)

exists also for almost every z ∈ C. We shall need this fact in the formulation of Carleson’s
theorem, see 3.1.15.

Let us collect some important properties of the Cauchy transform of compactly supported
measures, see, e.g., [10, Section 18.5, Proposition 5.2], p. 193.

Proposition 3.1.4 ([10]) For µ ∈Mc(C) the following statements hold:

1. Cµ ∈ Lp,loc(C) for p ∈ [1, 2).

2. If R > 0 such that supp(µ) ⊂ UR(0), then

(Cµ)(z) = − 1
2πi

∞∑
n=0

mn(µ) 1
zn+1 (z ∈ C∞ \ UR(0)).

3. Cµ ∈ H(C∞ \ supp(µ)) and (Cµ)′(∞) = −µ(C).
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It is a natural question to ask when a given function F is the Cauchy transform of some
compactly supported measure. Several conditions and characterizations can be found in
[27]. In the next chapter, we shall put our focus only on the measures µ = fν (f having
a compact support and ν ∈ M(R)) and give characterizations of the Cauchy transforms of
these measures.

Similar to the case of functions, one can also show that Cauchy transforms of measures
have a specific boundary behavior. In particular, an analogue of the Plemelj formulas holds
in this case. We therefore extend the Hilbert transform to complex measures:

Remark and Definition 3.1.5 Let µ ∈M(R). Then, due to [46], the limit

(Hµ)(x) := lim
ε→0

1
π

∫
|x−t|≥ε

1
x− t

dµ(t)

exists for almost every x ∈ R. The function Hµ : R → C is called the Hilbert transform
of µ.

Remark and Definition 3.1.6 Let µ ∈ M(R). Then, we write Pµ instead of Pµ1R and
call this function the Poisson transform of µ. Due to [8, Theorem 10.4.2] we have

lim
y→0+

(Pµ)(·+ iy) = dµ

dλ1

lim
y→0−

(Pµ)(·+ iy) = − dµ

dλ1
.

Similar, the function Qµ := Qµ1R is called the conjugate Poisson transform of µ. It holds
that

1
2(Pµ)(z) + i

2(Qµ)(z) = (Cµ)(z) (z ∈ C \ supp(µ)).

Moreover,
lim
y→0+

(Qµ)(·+ iy) = lim
y→0−

(Qµ)(·+ iy) = (Hµ)

by [22, Theorem 1.2.7].

The following analogue of the Plemelj formulas holds, cf. [8, Proposition 10.4.2].

Proposition 3.1.7 Let µ ∈M(R). Then,

lim
y→0+

(Cµ)(·+ iy) = 1
2

(
dµ

dλ1
+ i(Hµ)

)

lim
y→0−

(Cµ)(·+ iy) = 1
2

(
− dµ

dλ1
+ i(Hµ)

)
.

In particular,
dµ

dλ1
= lim

y→0+
(Cµ)(·+ iy)− lim

y→0−
(Cµ)(·+ iy).
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Remark 3.1.8 There is a range of other results on the boundary behavior of Cauchy trans-
forms:

1. An application of the dominated convergence shows that for any µ ∈M(R) one has

lim
y→0

y(Cµ)(x+ iy) = iµ({x})

for all x ∈ R, see [22, Theorem 2.1.4]. In particular,

lim
y→0

y(Cµ)(x+ iy) = 0

for all x ∈ R if µ is absolutely continuous with respect to λ1.

2. Another result addresses certain singular measures (see [22, Theorem 2.1.11]): Let
(an)n∈N be a sequence in C and (bn)n∈N a sequence in (0, 1) such that

i)
∞∑
n=1
|an| < +∞,

ii)
∞∑
n=1

bn = 1,

iii)
∞∑
n=1

|an|
bn

< +∞.

If (cn)n∈N is a sequence in R and µ =
∞∑
n=1

anδcn , then

lim
y→0+

(Cµ)(x+ iy) =
∞∑
n=1

an
cn − x

for almost every x ∈ R.

It is important for us that an analogue of Proposition 2.3.7 holds. We refer to [50,
Theorem 10.1] for a proof.

Proposition 3.1.9 ([50]) Let µ ∈M(R). Then

Lµ̂ = Cµ.

Remark 3.1.10 The deep connection between Fourier-Laplace and Cauchy transforms gives
a short proof for the injectivity of the Cauchy transformation onM(R) : Let µ ∈M(R) with
Cµ = 0. By Proposition 3.1.9 we know that∫ ∞

0
µ̂(t)e−teixt dt = 0 =

∫ 0

−∞
µ̂(t)eteixt dt (x ∈ R).

Hence, F(µ̂1[0,∞)e
− ·) = 0 = F(µ̂1(−∞,0] exp) which implies µ̂ = 0. But this means µ = 0.

Usually this fact is proven for positive, finite measures by means of the so called Stielt-
jes inversion formula, see [71, Chapter 3, Theorem 6] (there formulated for probability
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measures, but a similar proof yields the formula for general finite positive measures): For all
a, b ∈ R with a < b we have

lim
y→0+

1
π

∫ b

a
Im((Cµ)(x+ iy)) dx = µ((a, b)) + 1

2µ({a, b}).

A consequence of the uniqueness of Cauchy transforms is that there is no nontrivial,
singular and finite measure whose Cauchy transform belongs toHp(C\R) for some p ∈ [1,∞).

Corollary 3.1.11 Let µ ∈M(R) such that µ ⊥ λ1 and p ∈ [1,∞). If Cµ ∈ Hp(C \R), then
µ = 0.

Proof. If Cµ ∈ Hp(C \ R), then Cµ = Cg where

g = lim
y→0+

(Cµ)(·+ iy)− (Cµ)(· − iy) = dµ

dλ1
= 0

by Proposition 3.1.7. Hence Cµ = 0 and this implies µ = 0. 2

The latter result gives us together with the Lebesgue decomposition of complex measures,
see Theorem A.11, a characterization when the Cauchy transform of a measure belongs to
Hp(C \ R). It turns out that all these measures have already been considered before.

Proposition 3.1.12 Let p ∈ (1,∞) and µ ∈M(R). Then, the following are equivalent:

a) Cµ ∈ Hp(C \ R).

b) µ� λ1 and dµ

dλ1
∈ Lp(R).

If p = 2, then we also have the equivalent statement

c) µ̂ ∈ L2(R).

Proof. Suppose that Cµ ∈ Hp(C \ R) and write µ = µa + µs where µa � λ1, µs ⊥ λ1. By
our assumption, we know that

dµ

dλ1
= lim

y→0+
(Cµ)(·+ iy)− (Cµ)(· − iy) ∈ H+

p (R)⊕H−p (R) = Lp(R)

and therefore Cµs = Cµ − Cµa ∈ Hp(C \ R). Corollary 3.1.11 gives us that µs = 0 and b)
holds. Since b) ⇒ a) is clear by Theorem 2.2.11 and Proposition 2.3.2, we have proven the
equivalence of a) and b). The equivalence of a) and c) is clear by the Paley Wiener theorem
2.3.10 and Proposition 3.1.9. 2

Remark 3.1.13 Under the assumptions of Proposition 3.1.12 one similarly proves the fol-
lowing equivalence:
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a) Cµ ∈ H1(C \ R).

b) µ� λ1 and dµ

dλ1
∈ H1(R).

However, one advantage of singular measures is that there is a simple inversion formula if
their support has no accumulation point.

Proposition 3.1.14 Let µ ∈ M(R) such that supp(µ) has no accumulation point. Then,
for every f ∈ C (µ) we have

f(ω)µ({ω}) = −
∫
γω

(Cµf)(ζ) dζ (ω ∈ R)

where γω is a cycle in C \ supp(µ) with indγω(ω) = 1, indγω(z) = 0 (z ∈ supp(µ) \ {ω}).

Proof. We write µ = ∑
z∈A

αzδz with A ⊂ R having no accumulation point. Let us fix ω ∈ R.

Since supp(µ) has no accumulation point, it is always possible to choose such a cycle γω for
each ω ∈ R. We have

−
∫
γω

(Cµf)(ζ) dζ =
∫
γω

∑
z∈A

αzf(z)
2πi(ζ − z) dζ =

∑
z∈A

αzf(z) 1
2πi

∫
γω

1
ζ − z

dζ.

If ω /∈ supp(µ), then by Cauchy’s integral formula

∑
z∈A

αzf(z) 1
2πi

∫
γω

1
ζ − z

dζ = 0 = f(ω)µ({ω}).

If ω ∈ supp(µ), then

∑
z∈A

αzf(z) 1
2πi

∫
γω

1
ζ − z

dζ = f(ω)αω = f(ω)µ({ω}),

again by Cauchy’s integral formula. 2

Clearly, if a measure µ ∈ M(R) has support in a closed set X, then Cµ has an analytic
continuation along C \ X. For our purposes, we shall need a converse of this statement.
Therefore, we present one fundamental result on Cauchy transforms of compactly supported
measures which goes back to Carleson. A proof can be found in [27, Chapter II, Corollary
1.3].

Theorem 3.1.15 (Carleson, [27]) Let µ ∈ Mc(C) and Ω ⊂ C be open. Furthermore let
F ∈ H(Ω). If Cµ = F almost everywhere, then |µ|(Ω) = 0.

Lemma 3.1.16 Let µ ∈M(R). Then, for a closed set X ⊂ R, the following statements are
equivalent:
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a) Cµ ∈ H(C \ R) has a holomorphic continuation along C \X.

b) supp(µ) ⊂ X.

Proof. The inclusion b) ⇒ a) is clear. Now, suppose that Cµ has an analytic continuation
G on C \X. For each x ∈ R \X, there is some open neighborhood Ux such that Ux ⊂ C \X.
Let us pick ρ ∈ N such that Ux ⊂ ρD. If we now write

µ1(A) =
∫
A∩R

1[−ρ,ρ] dµ (A ∈ B(C)),

and
µ2(A) =

∫
A∩R

1(−ρ,ρ)c dµ (A ∈ B(C)),

then µ(A) = µ1(A) + µ2(A) (A ∈ B(R)). If G denotes the analytic continuation of Cµ onto
C \X, we know that the function F defined by

F (z) := G(z)− 1
2πi

∫
(−ρ,ρ)c

1
t− z

dµ(t) (z ∈ (C \X) ∩ (C \ (−ρ, ρ)c))

is analytic in (C \ X) ∩ (C \ (−ρ, ρ)c). Since Cµ1 = F on C \ R and λ2(R) = 0, Theorem
3.1.15 gives us that

|µ1|(Ux) ≤ |µ1|((C \X) ∩ (C \ (−ρ, ρ)c)) = 0.

Clearly,
|µ2|(Ux) = 0

and hence
|µ|(Ux) = 0.

But this means x /∈ supp(µ) and we are done. 2

3.2 Functions vanishing outside a closed set
Our goal in this section is to develop a basic theory for Cauchy transforms of functions whose
support is not the entire real axis. Later, we will focus on the cases that the support lies in
[0,∞) (see Chapter 4) or a compact set K ⊂ R (see Chapter 5). Therefore, we consider for
a closed set X ⊂ R and p ∈ [1,∞] the space

Lp(X) := {f ∈ Lp(R) : f1X = f}.

Since the Cauchy transform of a function f ∈ Lp(X) (here p ∈ [1,∞)) has always an analytic
continuation along C\X, we will regard the Cauchy transformation on Lp(X) as an operator
into H(C \X).

Our first task is to determine the image of C under Lp(X). There is a natural candidate.
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Remark and Definition 3.2.1 Let X ⊂ R be closed. Then, for p ∈ [1,∞), we set

Hp(C \X) := {F ∈ H(C \X) : F |C\R ∈ Hp(C \ R)}.

Moreover, we write
‖F‖Hp(C\X) := ‖F‖Hp(C\R).

If X is in addition bounded, we set

Hp(C∞ \X) := {F ∈ H(C∞ \X) : F |C\R ∈ Hp(C \ R)}

and similar
‖F‖Hp(C∞\X) := ‖F‖Hp(C\R).

It is clear that this defines a norm onHp(C\X) andHp(C∞\X), respectively (the definiteness
is due to continuity if X 6= R). However, at first sight it is not clear if this norm is complete
if X 6= R. We shall later see that this is indeed the case.

As in the case X = R it turns out that the Cauchy transformation provides still an
isomorphism between Lp(X) and Hp(C \X) for any closed X ⊂ R and p ∈ (1,∞). A similar
statement holds for the case p = 1 if we consider for closed X ⊂ R the closed subspace

H1(X) := {f ∈ H1(R) : f1X = f}.

One of the main tools is the identity theorem for holomorphic functions which applies here
since C \X is connected for every closed X ( R.

Proposition 3.2.2 Let X ⊂ R be closed.

1. If p ∈ (1,∞), then the Cauchy transformation establishes an isomorphism between
Lp(X) and Hp(C \ X). Thus, a function F ∈ H(C \ X) belongs to Hp(C \ X) if and
only if there exists f ∈ Lp(X) such that

F (z) = (Cf)(z) (z ∈ C \X).

In this case, f is unique and there exist constants Kp,1, Kp,2 > 0 only depending on p
such that

‖F‖Hp(C\X) ≤ Kp,1‖f‖p ≤ Kp,2‖F‖Hp(C\X).

2. The Cauchy transformation establishes an isomorphism between H1(X) and H1(C\X).
Thus, a function F ∈ H(C \ X) belongs to H1(C \ X) if and only if there exists
f ∈ H1(X) such that

F (z) = (Cf)(z) (z ∈ C \X).

In this case, f is unique and there exist constants K1, K2 > 0 independent of f and F
such that

‖F‖H1(C\X) ≤ K1‖f‖H1(R) ≤ K2‖F‖H1(C\X).
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Proof. We only prove the first part since the second can be shown in a similar manner.
If f ∈ Lp(X), then clearly Cf ∈ Hp(C \ X) by Theorem 2.2.11. Thus, suppose that F ∈
Hp(C \X). By Theorem 2.2.11 there exists f ∈ Lp(R) such that

F (z) = (Cf)(z) (z ∈ C \ R).

But this means that Cf has an analytic continuation along C \ X which implies that f ∈
Lp(X) by Lemma 2.1.9. The uniqueness and the estimates follows from Theorem 2.2.11. 2

Remark 3.2.3 Let X ⊂ R be closed and p ∈ [1,∞). Then, Hp(C \X) is a Banach space by
Proposition 3.2.2. If X is in addition bounded, then one can replace Hp(C\X) in Proposition
3.2.2 by Hp(C∞\X). Thus, also Hp(C∞\X) is a Banach space. In this case, we shall usually
consider the Cauchy transformation as a mapping from Lp(X) to Hp(C∞ \X).

If X ∈ B(R) is such that λ1(X) = 0, then Lp(X) = {0}. Thus:

Corollary 3.2.4 Let p ∈ [1,∞) and X ⊂ R be a closed set with λ1(X) = 0. Then, any
function F ∈ H(C \X) which satisfies

sup
y 6=0

∫
R
|F (x+ iy)|p dx

1/p

< +∞

has to be the zero function.

Remark 3.2.5 Let X ⊂ R be closed.

1. The inclusions
Hq(C \X) ⊂ Hp(C \X)

hold for every 1 < p ≤ q ≤ ∞ if and only if λ1(X) < +∞. This follows from the fact
that

Lq(X) ⊂ Lp(X) (1 ≤ p ≤ q ≤ ∞)

holds if and only if λ1(X) < +∞, see [80, Theorem 2] (notice that the Lebesgue measure
is σ-finite).

2. Notice that for p ∈ (1,∞) we do not have Hp(C \ X) ⊂ H1(C \ X) if λ1(X) < +∞.
Consider for example the function f = 1[0,1]. Then, f ∈ Lp(R) for all p ∈ [1,∞] and
hence Cf ∈ Hp(C\ [−1, 1]) for all p ∈ (1,∞). But clearly Cf /∈ H1(C\ [−1, 1]) because
Hf /∈ L1(R), see Proposition 2.3.1.

3. If λ1(X) < +∞, then it follows from 1. that⋃
p≥1
Hp(C \X) ⊂ C(L1(X)).
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We briefly turn to the problem of separating singularities of holomorphic functions. A
famous theorem, first proved by Poincaré in 1892 (see [62]), says that if an open set Ω ⊂ C
is the intersection of two open sets Ω1,Ω2, then each f ∈ H(Ω) can be written as the sum
of two functions f1 ∈ H(Ω1), f2 ∈ H(Ω2). We want to prove an analogue with Hp(Ω1) and
Hp(Ω2) provided that Ω1,Ω2 contain the upper and lower half plane. Beyond this, we are
interested in a characterization in which case this decomposition is unique.

Lemma 3.2.6 Let X1, X2 ⊂ R be Borel sets and p ∈ [1,∞]. Then, the following statements
are equivalent:

a) Lp(X1 ∪X2) = Lp(X1)⊕ Lp(X2).

b) λ1(X1 ∩X2) = 0.

Proof. First note that we always have

Lp(X1 ∪X2) = Lp(X1) + Lp(X2).

We first show that a) implies b). Suppose to the contrary that λ1(X1 ∩ X2) > 0. Without
loss of generality, we may assume that λ1(X1 ∩X2) < +∞ (go to a suitable subset instead).
Then f = 1X1∩X2 is in Lp(X1) ∩ Lp(X2), but f 6= 0. If b) holds and f ∈ Lp(X1) ∩ Lp(X2),
then

f = f1X2 = (f1X1)1X2 = f1X1∩X2 = 0.

This implies a). 2

Proposition 3.2.7 Let Ω1,Ω2 ⊂ C be open sets containing C \R. Then every function F ∈
Hp(Ω1∩Ω2) can be written as the sum of F1 ∈ Hp(Ω1) and F2 ∈ Hp(Ω2). This decomposition
is unique if and only if

λ1(Ωc
1 ∩ Ωc

2) = 0.

Proof. Choose X1, X2 ⊂ R be closed with Ωi = C \ Xi (i = 1, 2), hence Ω1 ∩ Ω2 =
C \ (X1 ∪ X2). If g ∈ Hp(Ω1 ∩ Ω2), then g = Cf for some f ∈ Lp(X1 ∪ X2). But since
Lp(X1 ∪X2) = Lp(X1) + Lp(X2) we know that there exist f1 ∈ Lp(X1), f2 ∈ Lp(X2) with

f = f1 + f2.

The linearity of the Cauchy transformation implies together with Proposition 3.2.2 that F1 =
Cf1 and F2 = Cf2 give the desired decomposition. Now, let G1 +G2 another decomposition
of F. Then G1 = Cg1 for some g1 ∈ Lp(X1) and G2 = Cg2 for some g2 ∈ Lp(X2). Hence,
F1 +F2 = G1 +G2 if and only if f1 +f2 = g1 +g2. Due to Lemma 3.2.6 the latter is equivalent
to the fact that

λ1(Ωc
1 ∩ Ωc

2) = λ1(X1 ∩X2) = 0.

2
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Chapter 4

Cauchy Transforms of Functions and
Measures with Support in an
Unbounded Interval

It is better to solve one problem five
different ways, than to solve five
problems one way.

George Pólya

After we have set up a general theory for Cauchy transforms of functions supported in a
closed set X ⊂ R in the last chapter, we will now treat special cases. One of the most
important cases arises when we take X to be an unbounded interval which is not the entire
real axis. Without loss of generality we will consider the interval X = [0,∞) and hence
analytic functions on C− := C \ [0,∞).

Our schedule is as follows: First, we will focus on complex characterizations that will
once again involve the concept of Fourier-Laplace transforms. Moreover, we will present
a geometric condition that involves special curves in the complex plane. In particular, we
will discuss the behavior of a function g ∈ Hp(C−) on half-planes which are contained in
C−. Next, we will transfer this task to the case of measures with support in [0,∞). With
the aid of elliptic integrals we shall derive a reconstruction formula for Cauchy transforms
of measures by its values on the imaginary axis and analyze as well the behavior on half-
planes. After this, we will present an idea of Widder (see [82]) which leads to conditions
and characterizations of real-type. Here, we only put requirements on the restriction of the
analytic function to the negative half-axis (−∞, 0).

4.1 Complex and geometric characterizations
From a point of complex analysis, one is of course highly interested in having characterizations
of the space Hp(C−) which are of complex nature. This is the point where the analyticity
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of Cauchy transforms comes in. We shall start with a result which relates once again the
concept of Fourier-Laplace transforms to our topic.

The following proposition can be regarded as an improvement of a result in [82, Chapter
VIII, Theorem 4a] under certain additional conditions.

Proposition 4.1.1 Let α ∈ (0, π) and µ ∈ M∞(R) be such that supp(µ) ⊂ [0,∞) and |µ|
is σ-finite. If f ∈ C (µ) is such that f1[0,∞) ∈ E0,1(µ), then

(Cµf)(z) = −2πLα(Lµf)(−z)

for each z ∈ C with Im(zeiα) < 0.

Proof. By Fubini’s Theorem and our assumption we know that∫ ∞
0
|e−izeiαt(Lµf)(eiαt)| dt ≤

∫ ∞
0

∫ ∞
0
|f(x)ei(eiαxt)e−izeiαt| d|µ|(x) dt

=
∫ ∞

0

∫ ∞
0
|f(x)|e−Im(eiα)xteIm(zeiα)t d|µ|(x) dt

=
∫ ∞

0
|f(x)|

∫ ∞
0

e(Im(zeiα)−sin(α)x)t dt d|µ|(x)

=
∫ ∞

0

|f(x)|
sin(α)x− Im(zeiα) d|µ|(x) < +∞.

Therefore, we can apply again Fubini’s Theorem to see that∫ eiα·∞

0
e−izζ(Lµf)(ζ) dζ = eiα

2π

∫ ∞
0

e−ize
iαt(Lµf)(eiαt) dt

= eiα

(2π)2

∫ ∞
0

∫ ∞
0

f(x)eieiα(x−z)t dµ(x) dt

= eiα

(2π)2

∫ ∞
0

f(x)
∫ ∞

0
eie

iα(x−z)t dt dµ(x)

= 1
(2π)2i

∫ ∞
0

f(x)
z − x

dµ(x).

This was what we had to prove. 2

Remark 4.1.2 The proof of Proposition 4.1.1 shows that if f ∈ L1(µ), then we can also
allow α = 0 or α = π. In particular, upon choosing µ = 1(0,∞)λ1 and f ∈ L1(0,∞), we obtain

(Cf)(z) = −2π(Lπ(Lf))(−z) =
∫ ∞

0
(Lf)(−t)eizt dt = (Lf̂)(z) (z ∈ Π+),

as well as

(Cf)(z) = −2π(L0(Lf))(−z) = −
∫ ∞

0
(Lf)(t)e−izt dt = (Lf̂)(z) (z ∈ Π−).

This shows that Proposition 4.1.1 contains the formulas in Proposition 2.3.7 for the case
p = 1.
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The formula above illustrates that the uniqueness of Cauchy transforms is deeply related
to the uniqueness of Fourier-Laplace transforms. More precisely:

Corollary 4.1.3 Let µ ∈M(R) be such that supp(µ) ⊂ [0,∞) and |µ| is σ-finite. For a set
A ⊂ C (µ) ∩ E0,1(µ) the following statements are equivalent:

a) Cµ : A→ H(C−) is injective.

b) Lµ : A→ H(Π+) is injective.

Proof. Suppose first that a) is valid. If f, g ∈ A with Lµf = Lµg, then by Proposition 4.1.1
we have Cµf = Cµg on C− and hence f = g. Let now Lµ be injective on A and f, g ∈ A such
that Cµf = Cµg. Then, by Proposition 4.1.1 we know that Lπ

2
(Lµf)(−z) = Lπ

2
(Lµg)(−z) for

all z ∈ C with Re(z) < 0, i.e.∫ ∞
0

(Lµf)(it)ezt dt =
∫ ∞

0
(Lµg)(it)ezt dt (Re(z) < 0).

This implies in particular that

((Lµf)(i·) exp(− ·)1(0,∞))̂(−y) = ((Lµg)(i·) exp(− ·)1(0,∞))̂(−y) (y ∈ R)

and the uniqueness of Fourier transforms gives us that (Lµf)(it) = (Lµg)(it) for all t ∈ (0,∞).
By the identity theorem, we necessarily have (Lµf)(z) = (Lµg)(z) for all z ∈ Π+ and we
conclude that f = g. 2

Remark and Definition 4.1.4 For β ∈ R we write µβ = tβ1(0,∞)(t) dt and consider the
weighted Dirichlet space Dβ(Π+) which consists of all functions F ∈ H(Π+) satisfying∫ ∞

−∞

∫ ∞
0
|F ′(x+ iy)| dµβ(y) dx < +∞.

Let β > −1. If F ∈ Dβ(Π+), then by [17, Theorem 3] there exists a unique g ∈ L2((0,∞), µ1−β)
such that F = Lg. Setting f(t) := t1−βg(t) we see that∫ ∞

0
|f(t)|2 dµβ−1(t) =

∫ ∞
0
|g(t)|2 dµ1−β(t) < +∞

and F = Lµβ−1f. Conversely, if f ∈ L2((0,∞), µβ−1) and g(t) := tβ−1f(t), then∫ ∞
0
|g(t)|2 dµ1−β(t) =

∫ ∞
0
|f(t)|2 dµβ−1(t) < +∞

and [17, Theorem 3] gives us that Lµβ−1f ∈ Dβ(Π+). To sum it up: For β > −1, the mapping
Lµβ−1 is an isomorphism between L2((0,∞), µβ−1) and Dβ(Π+).

If β ∈ (0, 1) and f ∈ L2((0,∞), µβ−1), then∫ ∞
0

|f(t)|
t+ 1 dµβ−1(t) ≤

(∫ ∞
0
|f(t)|2 dµβ−1(t)

)
·
(∫ ∞

0

1
(t+ 1)2 dµβ−1(t)

)
< +∞

by the Cauchy-Schwarz inequality. In particular, we have L2((0,∞), µβ−1) ⊂ C (µβ−1). There-
fore, Proposition 4.1.1 and Corollary 4.1.3 imply
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Corollary 4.1.5 Let β ∈ (0, 1) and F ∈ H(C−). Then, the following statements are equiv-
alent:

a) There exists a unique f ∈ L2((0,∞), µβ−1) such that Cµβ−1f = F.

b) There exists a unique g ∈ Dβ(Π+) such that for all α ∈ (0, π) we have (Lαg)(−z) =
F (z) for all z ∈ C with Im(zeiα) < 0.

Remark 4.1.6 We remark that in general one does not have L2((0,∞), µβ−1) ⊂ C(µβ−1) for
all β ∈ (−1,∞). For example, if β = 0, then then the function f : (0,∞)→ R, defined by

f(t) = 1
| ln(t)|1(0, 1

2)(t) (t ∈ R),

belongs to L2((0,∞), µ−1) but since
∫ f(t)
t+ 1 dµ−1(t) ≥ 2

3

∫ 1
2

0

1
t| ln(t)| dt = +∞

clearly f /∈ C (µ−1).

From now on, we put our primary focus on the space L2(0,∞). In this case, we have
the famous Paley-Wiener theorem at hand. With this result in mind, we can now define the
Fourier-Laplace transform on the Hardy space H2(Π+). We will exploit the fact that any
z ∈ C− lies in some half-plane {z ∈ C : Im(zeiα) < 0} with α ∈ (0, π).

Remark and Definition 4.1.7 Let α ∈ (0, π). If F ∈ H(Π+) is such that F (eiα·)1eiα·[0,∞) ∈
Eα,1, then

(LαF )(z) := −2π(LαF )(−z)
(

= −
∫ eiα·∞

0
e−izζF (ζ) dζ

)

exists for every z ∈ C with Im(zeiα) < 0. Now let F ∈ H2(Π+). Then, by Proposition 2.3.10
we have F = Lf with f ∈ L2(0,∞) and Proposition 4.1.1 implies that

(LαF )(z) = (Cf)(z) (Im(zeiα) < 0).

Therefore, the function L F : C− → C, defined by

(L F )(z) := (LαF )(z) (Im(zeiα) < 0, α ∈ (0, π)),

is well-defined and holomorphic in C−. We call L F the Fourier-Laplace transform of F.
The mapping L : H2(Π+) → H(C−) is called the Fourier-Laplace transformation on
H2(Π+).

What is the image of the Fourier-Laplace transformation on H2(Π+)? Here is the answer:

Proposition 4.1.8 The diagram
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L2(0,∞) H2(C−)

H2(Π+)

C

L L

is a commuting diagram of isomorphisms, i.e.

L (Lf) = Cf (f ∈ L2(0,∞)).

Hence,
L (H2(Π+)) = H2(C−).

We now turn to an intuitive geometric condition that characterizes the functions in
Hp(C−). Therefore, it will be helpful to know more about the behavior of a function g ∈
Hp(C−) on other half-planes. The next proposition states not only that a function g ∈
Hp(C−) lies in the Hardy space of any half-plane contained in C− but gives also an uniform
estimation for the corresponding norms using the constants Bp from Remark 1.2.10.

Recall that a positive measure σ ∈M∞,+(Π+) is called a Carleson measure on Π+ if there
is a constant N(σ) such that

σ({x+ iy : x0 < x < x0 + h, 0 < y < h}) ≤ N(σ)h

for all x0 ∈ R and h > 0.

Theorem 4.1.9 Let p ∈ [1,∞) and F ∈ H(C−). Then, the following statements are equiv-
alent:

a) sup
α∈(0,π)

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx < +∞.

b) sup
α∈[0,π]

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx < +∞.

c) F ∈ Hp(C−).

Moreover, we have

sup
α∈(0,π)

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx ≤ sup

α∈[0,π]
sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx

≤
√

2Bp(‖F‖pHp(Π+) + ‖F‖pHp(Π−))

≤ 2
√

2Bp sup
α∈(0,π)

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx.

Proof. Suppose that a) holds. Then, for each y > 0 we have∫ ∞
−∞
|F (x+ iy)|p dx ≤ lim inf

α→0+,α<π

∫ ∞
−∞
|F (eiα(x+ iy))|p dx ≤ sup

α∈(0,π)
sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx
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by Fatou’s lemma. Analogously, one sees that∫ ∞
−∞
|F (x− iy)|p dx ≤ lim inf

α→π−,α>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx ≤ sup

α∈(0,π)
sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx.

Thus, b) holds as well.
If b) is true, then c) is trivial (consider α = 0 and α = π).
So let us now suppose that c) is true. Let α ∈ (0, π) and ε > 0. We set β := − cos(α)

sin(α) ε. Since

Im(eiα(x+ iε)) = sin(α)x+ cos(α)ε

the mapping Tα,ε : R→ C defined by Tα,ε(x) := eiα(x+ iε) (t ∈ R) maps (β,∞) into Π+ and
(−∞, β) into Π−. We write Tα,ε,1 = Tα,ε1(β,∞) and Tα,ε,2 = Tα,ε1(−∞,β). Then, ηα,ε,1 := λ

Tα,ε,1
1

is a Carleson measure on Π+ since for each x0 ∈ R, h > 0 we have

ηα,ε,1({z ∈ Π+ : Re(z) ∈ (x0, x0 + h), Im(z) ∈ (0, h)}) ≤


h

cos(α) , α ∈ [0, π4 ) ∪ (3
4π, π]

h
sin(α) , α ∈ [π4 ,

3
4π]

≤
√

2h.

In particular, the Carleson norm of ηα,ε,1 is at most
√

2. Similarly, one sees that ηα,ε,2 := λ
Tα,ε,2
1

is a Carleson measure on Π− with Carleson norm at most
√

2. Thus, by Theorem 1.2.8 and
Remark 1.2.11 we know that∫ ∞

−∞
|F (eiα(x+ iε))|p dx =

∫
Π+
|F (z)|p dηα,ε,1(z) +

∫
Π−
|F (z)|p dηα,ε,2(z)

≤
√

2Bp‖F‖pHp(Π+) +
√

2Bp‖F‖pHp(Π−).

Thus,
sup
α∈[0,π]

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy))|p dx < +∞

and we conclude. 2

Remark 4.1.10 1. In particular, if F ∈ Hp(C−), then we have

‖F‖pHp(iΠ+) ≤ Bp(‖F‖pHp(Π+) + ‖F‖pHp(Π−)).

This follows from the fact that the Carleson norms of the measures ηπ
2 ,ε,1 and ηπ

2 ,ε,2 are
equal to 1.

2. Theorem 4.1.9 is of course valid if we replace the assumption F ∈ Hp(C−) by F ∈
Hp(C \ I) where I is an arbitrary unbounded interval which is not the entire real axis.
In the case I = [a,∞), the result reads as

sup
α∈[0,π]

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy)− a)|p dx < +∞
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and in the case I = (−∞, a] as

sup
α∈[0,π]

sup
y>0

∫ ∞
−∞
|F (eiα(x+ iy) + a)|p dx < +∞.

In particular, we have
sup
x∈R\I

∫ ∞
−∞
|F (x+ iy)|p dy <∞.

This result also remains valid if we replace I by a union of two unbounded intervals
and this union is not the entire real axis. This follows from Minkowki’s inequality:
If I = I1 ∪ I2, we can assume without loss of generality that this union is disjoint
(otherwise we have I1 ⊂ I2 or I2 ⊂ I1). If F = Cf, then we write

f = f1I1 + f1I2 .

By the linearity of the Cauchy transformation we obtain∫ ∞
−∞
|F (x+ iy)|p dy ≤ 2p−1

(2π)p ·
(∫ ∞
−∞
|(Cf1I1)(x+ iy)|p dy +

∫ ∞
−∞
|(Cf1I2)(x+ iy)|p dy

)

for x ∈ R \ I. Therefore,

sup
x∈R\I

∫ ∞
−∞
|F (x+ iy)|p dy ≤ sup

x∈R\I1

∫ ∞
−∞
|(Cf1I1)(x+ iy)|p dy

+ sup
x∈R\I2

∫ ∞
−∞
|(Cf1I2)(x+ iy)|p dy

< ∞.

Remark 4.1.11 It is important to note that it is not enough to require that F ∈ Hp(eiαΠ+)
for some fixed α ∈ [0, π]. Take for example

F (z) =
√
−z

(z − 1)2 (z ∈ C−).

If x < 0, then
∫ ∞
−∞
|F (x+ iy)|2 dy =

∫ ∞
−∞

√
x2 + y2

((1− x)2 + y2)2 dy

≤
∫ ∞
−∞

√
x2 + (1− x)2 + y2

((1− x)2 + y2)2 dy

≤ |x|
∫ ∞
−∞

1
((1− x)2 + y2)2 dy +

∫ ∞
−∞

√
(1− x)2 + y2

((1− x)2 + y2)2 dy

= π|x|
2(1− x)3 + 2

(1− x)2
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= 4− (4 + π)x
2(1− x)3 .

Hence,
sup
x<0

∫ ∞
−∞
|F (x+ iy)|2 dy = 2 <∞

and F |iΠ+ ∈ H2(iΠ+). But for G(x) := lim
y→0+

F (x+ iy) we have

∫ ∞
0
|G(x)|2 dx =

∫ ∞
0

x

(x− 1)4 dx = +∞

and therefore F /∈ H2(C−) because G /∈ L2(R).

Geometric characterizations or conditions for Cauchy transforms form a problem that has
been attacked many ways in literature yet. There is a solution by Bourdon and Cima (see [8,
Theorem 5.6.3]) for finite complex measures on the unit circle based on harmonic functions
and conformal mappings. For general compactly supported, finite complex measures on the
plane there is a characterization involving certain grids in the complex plane which satisfy
a certain measure-theoretic condition, see [27, Chapter II, Theorem 2.3]. We shall come
back to this approach in Chapter 5. Unfortunately, our situation of Cauchy transforms of
functions in Lp(0,∞) or, more specific, functions in Hp(C−) does not fit into these cases and
we have to come up with another approach.

The definition of the Hardy space Hp(C−) by integral means along horizontal lines has
from a geometric point of view a line structure. Hence, if we are interested in a geometric
condition or characterization of this space it is natural to search for something which reflects
exactly this line structure. In terms of chains in the complex plane this leads to considering
polygonal chains.

Definition 4.1.12 Let Ω ⊂ C be open, n ∈ N and γ = (γj)j=1,...,n be a chain in Ω, i.e.
γj : Ij → Ω for each 1 ≤ j ≤ n.

1. γ is called a bounded polygonal chain (with n parts) if there are a0, . . . , an ∈ C such
that γ∗j = [aj−1, aj] for each 1 ≤ j ≤ n. We denote the set of all bounded polygonal
chains in Ω with n parts by Pn(Ω).

2. For n ≥ 2 we call γ an unbounded polygonal chain with two unbounded parts if
there are k, l ∈ {1, . . . , n} such that

i) (γj)j∈{1,...,n}\{k,l} is a bounded polygonal chain.
ii) Ik, Il are unbounded intervals and there are αk, αl ∈ [0, π], yk, yl ∈ R such that

γk(t) = eiαk(t+ iyk) (t ∈ Ik)
γl(t) = eiαl(t+ iyl) (t ∈ Il).

We denote the set of all unbounded polygonal chains in Ω with n parts from which two
are unbounded by Pn,∞,2(Ω).
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Remark 4.1.13 Let a, b > 0. An important example for an unbounded polygonal chain in
C− with two unbounded parts is given by the chain Ra,b = (Ra,b,1, Ra,b,2, Ra,b,3) where

Ra,b,1 : [−a,∞)→ C, Ra,b,1(t) = t+ ib

Ra,b,2 : [−b, b]→ C, Ra,b,2(t) = −a+ it

Ra,b,3 : [−a,∞)→ C, Ra,b,3(t) = t− ib.

Here, R∗a,b,2 = [−a − ib, a + ib] is the bounded part and R∗a,b,1 and R∗a,b,3 are the unbounded
parts. For a function g : R∗a,b → C such that (g ◦ Ra,b,1), (g ◦ Ra,b,3) ∈ L1(−a,∞) and
(g ◦Ra,b,2) ∈ L1(−b, b), we have

∫
Ra,b

g(ζ) dζ =
∫ ∞
−a

g(t+ ib) dt+
∫ ∞
−a

g(t− ib) dt+ i
∫ b

−b
g(−a+ it) dt.

-2 -1 1 2 3 4

-1.0

-0.5

0.5

1.0

Figure 4.1: Plots of R2,1 (blue), R 3
2 ,

3
4
(yellow), R1, 1

2
(green) and R 1

2 ,
1
4
(orange).

The chains Ra,b can be seen in some kind as a model for unbounded polygonal chains in
C−. More precisely, the following result is valid:

Theorem 4.1.14 Let p ∈ [1,∞) and F ∈ H(C−). Then, the following assertions are equiv-
alent:

a) F ∈ Hp(C−).

b) ‖F‖C−,p := sup


(∫

Ra,b

|F (ζ)|p |dζ|
) 1
p

: a ≥ b > 0

 < +∞.

c) For each n ≥ 2 we have

‖F‖C−,p,n := sup
{(∫

γ
|F (ζ)|p |dζ|

) 1
p

: γ ∈ Pn,∞,2(C−)
}
< +∞.
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In this case, each line in b) and c) defines a norm which is equivalent to ‖ · ‖Hp(C−), i.e. we
have for each n ≥ 2

‖F‖C−,p ≤ (2 + 2Bp)
1
p‖F‖Hp(C−) ≤ 2(2 + 2Bp)

1
p‖F‖C−,p

and
‖F‖C−,p,n ≤ (2n

√
2Bp)

1
p‖F‖Hp(C−) ≤ 2(2n

√
2Bp)

1
p‖F‖C−,p,n.

Proof. Let us first suppose that a) holds. Let n ∈ N and γ ∈ Pn,∞,2(C−). Then, there
are intervals Ij ⊂ R, αj ∈ [−π, π], aj ∈ R such that γj : Ij → C, γj(t) = eiαj(t + iaj) for
1 ≤ j ≤ n. Since γ∗ ⊂ C− it is always possible to choose the intervals such that either
αj ∈ (0, π] and aj > 0 or αj ∈ [−π, 0) and aj < 0. If we write J> := {j ∈ {1, . . . , n} : αj > 0}
and J< := {j ∈ {1, . . . , n} : αj < 0}, then

∫
γ
|F (ζ)|p |dζ| =

n∑
j=1

∫
Ij
|F (eiαj(t+ iaj))|p dt

≤
n∑
j=1

∫ ∞
−∞
|F (eiαj(t+ iaj))|p dt

=
∑
j∈J>

∫ ∞
−∞
|F (eiαj(t+ iaj))|p dt+

∑
j∈J<

∫ ∞
−∞
|F (eiαj(t+ iaj))|p dt

=
∑
j∈J>

∫ ∞
−∞
|F (eiαj(t+ iaj))|p dt+

∑
j∈J<

∫ ∞
−∞
|F (−eiαj(t− iaj))|p dt

=
∑
j∈J>

∫ ∞
−∞
|F (eiαj(t+ iaj))|p dt+

∑
j∈J<

∫ ∞
−∞
|F (eiπ+iαj(t− iaj))|p dt

≤
∑
j∈J>
‖F‖Hp(eiαjΠ+) +

∑
j∈J<
‖F‖Hp(ei(π+αj)Π+)

≤ n · sup
α∈[0,π]

‖F‖Hp(eiαΠ+)

≤ n
√

2Bp(‖F‖pHp(Π+) + ‖F‖pHp(Π−))

by Theorem 4.1.9. Hence, c) holds. By Remark 4.1.13 it is clear that c) implies b). Hence,
suppose that b) holds and fix y > 0. Then, by the monotone convergence theorem∫ ∞

−∞
|F (x+ iy)|p dx = lim

a→∞

∫ ∞
−a
|F (x+ iy)|p dx∫ ∞

−∞
|F (x− iy)|p dx = lim

a→∞

∫ ∞
−a
|F (x− iy)|p dx.

Let us fix δ ≥ y. By our assumption,∫ ∞
−δ
|F (x+ iy)|p dx ≤

∫
Rδ,y

|F (ζ)|p |dζ| ≤ ‖F‖C−,p∫ ∞
−δ
|F (x− iy)|p dx ≤

∫
Rδ,y

|F (ζ)|p |dζ| ≤ ‖F‖C−,p
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and we conclude by letting δ →∞ that a) is true.
Finally, for F ∈ Hp(C−), we have

‖F‖C−,p ≤
(
‖F‖pHp(Π+) + ‖F‖pHp(Π−) + ‖F‖pHp(iΠ+)

) 1
p

≤ (1 +Bp)
1
p

(
‖F‖pHp(Π+) + ‖F‖pHp(Π−)

) 1
p

≤ (2 + 2Bp)
1
p‖F‖Hp(C−)

≤ (2 + 2Bp)
1
p (‖F‖Hp(Π+) + ‖F‖Hp(Π−))

≤ 2(2 + 2Bp)
1
p‖F‖C−,p

and

‖F‖C−,p,n ≤ (n
√

2Bp)
1
p

(
(‖F‖pHp(Π+) + ‖F‖pHp(Π−))

) 1
p

≤ (2n
√

2Bp)
1
p‖F‖Hp(C−)

≤ 2(2n
√

2Bp)
1
p‖F‖C−,p

≤ 2(2n
√

2Bp)
1
p‖F‖C−,p,n.

This concludes the proof. 2

Remark 4.1.15 Theorem 4.1.9 is of course valid for p =∞ if we replace the conditions b)
and c) by

b’) ‖F‖C−,∞ := sup
{
‖F‖∞,(Ra,b)∗ : a ≥ b > 0

}
< +∞.

c’) For each n ≥ 2 we have

‖F‖C−,∞,n := sup {‖F‖∞,γ∗ : γ ∈ Pn,∞,2(C−)} < +∞.

4.2 Measures supported on a half-axis
The question arises which parts of the theory in the previous section can be adjusted to the
case of measures with support in [0,∞). In Chapter 3 we have already seen that the measures
µ (with support in [0,∞)) which satisfy Cµ ∈ Hp(C−) are exactly of the form µ = fλ1 where
f ∈ Lp(0,∞), cf. Proposition 3.1.12. However, in view of Theorem 4.1.9 one could also
ask for a condition when Cµ belongs to the Hardy space of any other half-plane in C−. For
the sake of simplicity, we will put our focus on the left half-plane iΠ+. Under additional
assumptions on the measure µ we shall derive a characterization which reflects in some kind
a similarity between Cauchy transforms of measures and functions. One key element for the
proof will be the theory of elliptic integrals.
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Definition 4.2.1 The incomplete elliptic integral of the first kind is defined by the
relation

F (x,m) =
∫ x

0

1√
(1−mt2) · (1− t2)

dt (x ∈ (0,∞),m ∈ (−∞, 1)).

We set K(m) := F (1,m) and call this function K the complete elliptic integral of the
first kind. Hence,

K(m) =
∫ 1

0

1√
(1−mt2) · (1− t2)

dt (m ∈ (−∞, 1)).

For our purposes, we shall need a shifted version of K, namely the function Ka : R →
[0,∞), defined by

Ka(s) :=


K

(
1− s2

a2

)
, s > 0

0, s ≤ 0

where a > 0. The following integrability result involves the asymptotic expansions of K at 1
and −∞.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.2: Plots of K1 (blue), K2 (yellow), K3 (green) and K4 (orange) on (0,∞).

Lemma 4.2.2 Let a ∈ (0,∞) and p ∈ (1,∞). Then, Ka ∈ Lp(0,∞).

Proof. Since Ka is obviously continuous on (0,∞) by the dominated convergence theorem,
we only have to show that Ka is locally p-integrable at ∞ and at 0. First, by [1, 17.3.29], we
know that

Ka(s) = 2
1 + s

a

K

(1− s
a

1 + s
a

)2
 (s ∈ (0,∞)).
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Hence, if we put ka(s) =
(

1− s
a

1 + s
a

)2

(s ∈ (0,∞)), we know that ka(s) ∈ (0, 1) and therefore

Ka(s) = 2
1 + s

a

K(ka(s)) ≤
(
π

2 − ln(
√

1− ka(s))
) 2

1 + s
a

(s ∈ (0,∞))

by [58, 19.9.1]. But now,

ln(
√

1− ka(s)) ≥ C1,a ln(s) (s ∈ (0, εa))

ln(
√

1− ka(s)) ≥ −C2,a ln(s) (s ∈ (Θa,∞))

for some C1,a, C2,a > 0, εa ∈ (0, 1),Θa > 1. We conclude that for p ∈ (1,∞)

‖Ka‖pp =
(∫ εa

0
+
∫ Θa

εa
+
∫ ∞

Θa

)
(Ka(s))p ds

≤ Ca,p +
∫ εa

0

(
π

2 − C1,a ln(s)
)p 2p

(1 + s
a
)p ds+

∫ ∞
Θa

(
π

2 + C2,a ln(s)
)p 2p

(1 + s
a
)p ds

< +∞

where the constant Ca,p only depends on εa,Θa and p. Hence, the function belongs to Lp(0,∞)
for all p ∈ (1,∞). 2

Remark 4.2.3 Let a > 0. Then, clearly Ka /∈ L∞(0,∞) since lim
s→0
s>0
Ka(s) = +∞. Moreover,

again by [58, 19.9.1], we have

Ka(s) ≥
2(ln(4)− ln(

√
1− ka(s)))

1 + s
a

(s ∈ (0,∞)).

Since
ln(
√

1− ka(s)) ≤ −C3,a ln(s) (s ∈ (∆a,∞))
for some C3,a > 0,∆a > 1, we see that∫ ∞

0
Ka(s) ds ≥ 2

∫ ∞
∆a

ln(4) + C3,a ln(s)
1 + s

a

ds = +∞.

Therefore, Ka /∈ L1(0,∞).

Lemma 4.2.4 Let s, a > 0. Then, the following statements hold:

1.
∫ ∞
−∞

1√
(s2 + t2)(t2 + a2)

dt = 2
a
Ka(s).

2.
∫ ∞
−∞

1
(s− it)(t− ia) dt = 2πi

s+ a
.
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Proof. We start with 1. If s < a, then the formula is valid by [1, 17.4.41] and the same
result implies in the case s > a that

K

(
1− a2

s2

)
= s

2

∫ ∞
−∞

1√
(s2 + t2)(t2 + a2)

dt.

But now, the substitution ϕ(t) =
√

1− t2 gives us that whenever s, a > 0, then

1
a
Ka(s) = 1

a

∫ 1

0

1√
(1−

(
1− s2

a2

)
t2)(1− t2)

dt

=
∫ 1

0

1√
(a2(1− t2) + s2t2)(1− t2)

dt

=
∫ 1

0

1√
(a2ϕ(t)2 + s2(1− ϕ(t)2))ϕ(t)2

dt

=
∫ 1

0

1√
(a2u2 + s2(1− u2))(1− u2)

du

= 1
s

∫ 1

0

1√
(1−

(
1− a2

s2

)
u2)(1− u2)

du

= 1
s
K

(
1− a2

s2

)
.

This concludes the proof of 1.
For 2. we consider the set Ω := {z ∈ C : Im(z) > −s} \ {ia} and the function f : Ω → C
defined by

f(z) = 1
(s− iz)(z − ia) (z ∈ Ω).

Then, f ∈ H(Ω) and f(z) = O (1/|z|2) (|z| → +∞, z ∈ Ω). Hence, we can apply [54,
Theorem 5.2.12] and get∫ ∞

−∞

1
(s− it)(t− ia) dt = 2πiRes(f, ia) = 2πi

s+ a
.

Here, Res(f, ia) denotes the residuum of f at ia. 2

In Section 4.1, we already saw that if F ∈ Hp(C−), then F |iΠ+ ∈ Hp(iΠ+). The theory
of Chapter 2 gives that if one knows the values of F on the imaginary axis, then one can
reconstruct the function F on the whole of iΠ+, namely by taking the Cauchy integral of
g(i·). It is not clear if an analogue holds for Cauchy transforms of measures supported in
[0,∞) since it may happen that the Cauchy integral of the function (Cµ)(i·) does not even
exist.

60



Basing on the theory of elliptic integrals and under further assumptions on µ we will be
able to show two things. First, the Cauchy integral of (Cµ)(i·) is defined, i.e. (Cµ)(i·) ∈ C .
And second: If one knows the values of Cµ on the imaginary axis, one can reconstruct Cµ
on the whole of iΠ+!

Theorem 4.2.5 Let µ ∈M∞(R) with supp(µ) ⊂ [0,∞) be such that |µ| is locally finite and
ln ∈ C (µ). Then (Cµ)(i·) ∈ C and

(Cµ)(iz) = C(Cµ(i·))(z) (z ∈ Π+).

Proof. We choose a > 0,Θ > 1 such that A| ln(t)| ≥ 1 for all t ∈ (Θ,∞). Then,
∫ 1
t+ 1 d|µ|(t) ≤ |µ|([0,Θ]) + A

∫ ∞
Θ

| ln(t)|
t+ 1 d|µ|(t) < +∞

which shows that Cµ is well-defined. In the following, we shortly write h : R → C, h(t) =
(Cµ)(it). If a > 0, then the first part of Lemma 4.2.4 gives us that∫ ∞

0

∫ ∞
−∞

1
|s− it| · |t− ia|

dt d|µ|(s) =
∫ ∞

0

∫ ∞
−∞

1√
(s2 + t2) · (t2 + a2)

dt d|µ|(s)

= 2
a

∫ ∞
0
Ka(s) d|µ|(s).

Let εa,Θa, C1, C2 > 0 be the constants in the proof of Lemma 4.2.2. Since ln ∈ C (µ), we
know that there is some ε > 0 such that

ε∫
0

| ln(t)| d|µ|(t) < +∞.

If we write ε̃ := min{ε, εa} < 1 and Θ̃ := max{Θ,Θa} > 1, then we have

∫ ∞
0

∫ ∞
−∞

1
|s− it| · |t− ia|

dt d|µ|(s) ≤ 2
a
·

∫ ε̃

0

(
π

2 − C1 ln(s)
)
d|µ|(s)

+ |µ|([ε̃, Θ̃]) · max
s∈[ε̃,Θ̃]

∣∣∣∣∣K
(

1− s2

a2

)∣∣∣∣∣
+

∫ ∞
Θ̃

(
π

2 + C2 ln(s)
) 1

(1 + s
a
) d|µ|(s)


< +∞.

Hence, the function h : R → C, h(t) = (Cµ)(it) belongs to C . An application of Fubini’s
theorem and the second part of Lemma 4.2.4 now show that

(Ch)(ia) = 1
2πi

∫ ∞
−∞

(Cµ)(it)
t− ia

dt = 1
2πi

∫ ∞
−∞

1
t− ia

·
( 1

2πi

∫ ∞
0

1
s− it

dµ(s)
)
dt
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= 1
2πi

∫ ∞
0

(
1

2πi

∫ ∞
−∞

1
(s− it) · (t− ia) dt

)
dµ(s)

= 1
2πi

∫ ∞
0

1
s+ a

dµ(s)

= (Cµ)(i2a).

Since a > 0 was arbitrary we conclude by the identity theorem that Ch = (Cµ)(i·) on Π+. 2

Corollary 4.2.6 Let µ ∈M∞(R) with supp(µ) ⊂ [0,∞) be such that |µ| is locally finite and
ln ∈ C (µ). Then for p ∈ (1,∞), the following statements are equivalent:

a) (Cµ)(i·)|R ∈ Lp(R).

b) Cµ|iΠ+ ∈ Hp(iΠ+).

Proof. If b) holds, then a) is valid by Proposition 1.2.3.
Now, suppose that a) is fulfilled. Then, by Theorem 4.2.5, we have (Cµ)(i·) = C(Cµ(i·))
on Π+. Theorem 2.2.11 therefore gives us that (Cµ)(i·) ∈ Hp(Π+) which is equivalent to
Cµ|iΠ+ ∈ Hp(iΠ+). 2

Remark 4.2.7 Under the assumptions of Corollary 4.2.6 one similarly proves the following
equivalence:

a) (Cµ)(i·)|R ∈ H1(R).

b) Cµ|iΠ+ ∈ H1(iΠ+).

An application of Minkowski’s and Jensen’s inequality gives simple sufficient conditions
when the Cauchy transform of a measure belongs to Hp(iΠ+).

Proposition 4.2.8 Let µ ∈M∞(R) with supp(µ) ⊂ [0,∞) and p ∈ (1,∞).

1. If |µ| is σ-finite and ∫ 1
t
p−1
p

d|µ|(t) < +∞,

then Cµ|iΠ+ ∈ Hp(iΠ+).

2. If µ is finite and ∫ 1
tp−1 d|µ|(t) < +∞,

then Cµ|iΠ+ ∈ Hp(iΠ+).

Proof. Fix x /∈ supp(µ). For 1. notice that by Minkowski’s inequality for integrals (see, e.g.,
[75, A.1])

(∫ ∞
−∞
|(Cµ)(x+ iy)|p dy

) 1
p

≤
(∫ ∞
−∞

(∫ 1
((x− t)2 + y2) 1

2
d|µ|(t)

)p
dy

) 1
p
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≤
∫ (∫ ∞

−∞

1
((x− t)2 + y2) p2

dy

) 1
p

d|µ|(t)

= Kp

∫ 1
|x− t|

p−1
p

d|µ|(t)

with some constant Kp > 0 only depending on p. Therefore,

sup
x<0

∫ ∞
−∞
|(Cµ)(x+ iy)|p dy ≤ sup

x<0
Kp

∫ 1
|x− t|

p−1
p

d|µ|(t) =
∫ 1
t
p−1
p

d|µ|(t)

by the monotone convergence theorem. Part 2. is an application of Jensen’s inequality. For
x /∈ supp(µ) it holds by Fubini’s theorem that∫ ∞

−∞
|(Cµ)(x+ iy)|p dy ≤ (|µ|(R))p−1

∫ ∞
−∞

∫ 1
((x− t)2 + y2) p2

d|µ|(t) dy

= (|µ|(R))p−1
∫ ∫ ∞

−∞

1
((x− t)2 + y2) p2

dy d|µ|(t)

= (|µ|(R))p−1Kp

∫ 1
|x− t|p−1 d|µ|(t)

with some constant Kp > 0 only depending on p. Again, we conclude by the monotone
convergence theorem. 2

Remark 4.2.9 1. Proposition 4.2.8 holds mutatis mutandis if we replace the interval
[0,∞) by any other unbounded interval which is not the entire real axis.

2. Proposition 4.2.8 is false for p = 1. Because then, the stated conditions reduce to the
condition that µ is finite. We may take µ = fλ1 where f is defined by

f(t) = 1√
t(t+ 1)

1(0,∞)(t) (t ∈ R).

Then, we have (see Example B.7)

(Cµ)(z) = 1
2i(−z +

√
−z) (z ∈ C−).

If Cµ|iΠ+ belonged to the space H1(iΠ+), then we would have

lim
x→0

∫ ∞
−∞
|(Cµ)(x+ iy)| dy = sup

x<0

∫ ∞
−∞
|(Cµ)(x+ iy)| dy < +∞.

Note that the limit and the supremum in general only coincide if the function belongs
to H1(iΠ+). But by Fatou’s lemma, we know that

lim
x→0

∫ ∞
−∞
|(Cµ)(x+ iy)| dy ≥ 1

2π

∫ ∞
−∞

1
| − iy +

√
−iy|

dy.
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Since |
√
−iy| = √y for y > 0, we see that

lim
x→0

∫ ∞
−∞
|(Cµ)(x+ iy)| dy ≥

∫ ∞
0

1
(y +√y) dy = +∞

which is a contradiction.

3. Note that the conditions in Proposition 4.2.8 are only sufficient, but not necessary.
Take for example µ = fλ1 where

f(t) = 1√
t| ln(t)|

1(0, 1
2)(t) (t ∈ R).

Then, µ is finite since f ∈ L1(R), the function Cµ|iΠ+ belongs to H2(iΠ+) by Theorem
4.1.9 since f ∈ L2(0,∞), but clearly

∫ 1√
t
dµ(t) =

∫ 1
2

0

1
t| ln(t)| dt = +∞.

4. The second part of Proposition 4.2.8 is false if the measure is not finite. Take for
example µ = fλ1 where f is defined by

f(t) =
√
t

t+ 11(0,∞)(t) (t ∈ R).

Then, ∫ 1
t
d|µ|(t) =

∫ ∞
0

1√
t(t+ 1)

dt < +∞.

One calculates (see Example B.8) that

(Cµ)(z) = 1−
√
−z

2i(z + 1) (z ∈ C−).

If Cµ|iΠ+ would belong to H2(iΠ+), then its boundary function towards the imaginary
axis must belong to L2(R). But

F (y) := lim
x→0

(Cµ)(x+ iy) = 1−
√
−iy

2i(iy + 1) (y ∈ R \ {0})

and thus ∫ ∞
−∞
|F (y)|2 dy ≥

∫ ∞
0

(1−
√
y√
2)2 + y

2

4(y2 + 1) dy = +∞.

Hence Cµ|iΠ+ /∈ H2(iΠ+). Notice that∫ 1√
t
dµ(t) =

∫ ∞
0

1
t+ 1 dt = +∞.
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Example 4.2.10 1. Consider the measure µ = fλ1 where

f(t) = t√
1− t2

1(0,1)(t) (t ∈ R).

Since f ∈ L1(R), we know that µ is finite and because∫ 1
t
dµ(t) =

∫ 1

0

1√
1− t2

dt = π

2 ,

we know that Cµ|iΠ+ ∈ H2(iΠ+). Note that f /∈ L2(0, 1) and hence Theorem 4.1.9 does
not apply.

2. Let µ = f# where # is the counting measure on R and

f(t) = t

(t+ 1)31N(t) (t ∈ R).

Then, ∫ 1
tp−1 dµ(t) =

∞∑
k=1

k2−p

(k + 1)3

and hence Cµ|iΠ+ ∈ Hp(iΠ+) for all p ∈ (1,∞).

4.3 Real conditions and characterizations
The main idea that we present in this section goes back to Widder, see [82]. It relies on
particular differential operators on the negative half-axis and will deliver a characterization
for Cauchy transforms of functions in Lp(0,∞) by only regarding the restriction of Cf to
(−∞, 0). Before stating this result, we need some further notation. For n ∈ N0, let Pn(x) :=
xn (x ∈ R) and for n ∈ −N, let Pn(x) := xn (x ∈ (−∞, 0)).
Definition 4.3.1 Let k ∈ N with k ≥ 2. Then, we define the Widder differential opera-
tor Wk by

Wkg := (−P1)k−1

k!(k − 2)! [Pkg](2k−1) (g ∈ C∞(−∞, 0)).

Clearly, each Wk is a linear operator from C∞(−∞, 0) to C∞(−∞, 0). As a matter of fact,
its kernel given by span({Pn : n ∈ {−k, . . . , k − 2}}) for each k ≥ 2, cf. [82], p. 381. Hence,
Wk is not injective for k ≥ 2.

In his monograph on the Laplace Transform (see [82]), Widder actually defined these
operators on the space C∞(0,∞). However, these operators only fit for the Stieltjes transform
which is the Cauchy transform with a change of variable. This is why we use a modified
version of these original operators.

Our first proposition is kind of a real-nature recipe how to reconstruct a function from
its Cauchy transform. It should be remarked that Widder stated an analogue of this result
with respect to the original operators. Since it is not clear at first sight if the result holds
for our modified operators, we give a detailed proof.
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Proposition 4.3.2 Let f ∈ L1,loc(0,∞) ∩ C . Then

lim
k→∞

[Wk(Cf)](−t) = f(t)

for almost every positive t.

Proof. Due to [82, Chapter VIII, Theorem 9 and Corollary 9.1] and the product rule it
holds for almost every positive t that

f(t) = lim
k→∞

(−t)k−1

k!(k − 2)!

2k−1∑
l=0

(
2k − 1
l

)
(Pk)(l)(t) · [Cf(−·)](2k−1−l)(t)

= lim
k→∞

(−t)k−1

k!(k − 2)!

2k−1∑
l=0

(−1)2k−1−l ·
(

2k − 1
l

)
(Pk)(l)(t) · (Cf)(2k−1−l)(−t)

But now, as
(Pk)(l)(x) = (−1)k+l(Pk)(l)(−x) (x ∈ R, k, l ∈ N0),

we see that

f(t) = lim
k→∞

(−1)k−1 (−t)k−1

k!(k − 2)!

2k−1∑
l=0

(
2k − 1
l

)
(Pk)(l)(−t) · (Cf)(2k−1−l)(−t)

= lim
k→∞

tk−1

k!(k − 2)!

2k−1∑
l=0

(
2k − 1
l

)
(Pk)(l)(−t) · (Cf)(2k−1−l)(−t)

= lim
k→∞

[Wk(Cf)](−t)

for almost every positive t. 2

Remark and Definition 4.3.3 Let p ∈ (1,∞). We write C∞p (−∞, 0) for the set of all
functions g ∈ C∞(−∞, 0) satisfying

a) lim
x→0−

xg(x) = 0,

b) sup
k≥2

∫ 0

−∞
|Wkg|p < +∞.

In contrast, we set C∞1 (−∞, 0) as the space of all functions g ∈ C∞(−∞, 0) satisfying

a) lim
x→0−

xg(x) = 0,

b) Wkg ∈ L1(−∞, 0) (k ∈ N),

c) lim
k,l→∞

∫ 0

−∞
|Wkg −Wlg| = 0.

We are now ready to extend our characterization of Cauchy transforms, basing on the
results in [82].
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Proposition 4.3.4 Let p ∈ (1,∞). Then
Hp(C−) = {F ∈ H(C−) : F |(−∞,0) ∈ C∞p (−∞, 0)}.

In other words, for a function F ∈ H(C−) the following are equivalent:
a) There exists some f ∈ Lp(0,∞) such that F = Cf.

b) F |(−∞,0) ∈ C∞p (−∞, 0).

c) F ∈ Hp(C−).
Proof. The equivalence of a) and c) is exactly Proposition 3.2.2. By [82, Chapter VIII,
Theorem 9a], condition b) is necessary and sufficient that

F (x) = (Cf)(x) (x ∈ (−∞, 0))
for some f ∈ Lp(0,∞). Hence, it is clear that a) implies b) and conversely b) implies a) by
the identity theorem since both functions are analytic in C−. 2

Proposition 4.3.5 For a function F ∈ H(C−) the following statements are equivalent:
a) There exists some f ∈ L1(0,∞) such that F = Cf.

b) F |(−∞,0) ∈ C∞1 (−∞, 0).
Proof. By [82, Chapter VIII, Theorem 21], condition b) is necessary and sufficient that

F (x) = (Cf)(x) (x ∈ (−∞, 0))
for some f ∈ L1(0,∞). Hence, it is clear that a) implies b) and conversely b) implies a) by
the identity theorem since both functions are analytic in C−. 2

We saw earlier that the Cauchy transform is injective on Lp(0,∞) for each p ∈ [1,∞).
Due to [82, Chapter VIII, Theorem 19b and Corollary 21] we even have
Proposition 4.3.6 (Widder, [82]) Let p ∈ [1,∞). Then,(

lim
k→∞

∫ 0

−∞
|Wk(Cf)|p

) 1
p

= ‖f‖p (f ∈ Lp(0,∞)).

Remark and Definition 4.3.7 Let p ∈ (1,∞). Then for F ∈ Hp(C−), we set

|||F |||Hp(C−) := lim
k→∞

(∫ 0

−∞
|WkF |p

) 1
p

.

One easily verifies that this defines a norm on Hp(C−): Proposition 3.2.2 and Proposi-
tion 4.3.6 assure that |||F |||Hp(C−) < +∞. Moreover, again by Proposition 3.2.2 we have
|||F |||Hp(C−) = 0 if and only if F = 0. Hence, for p ∈ (1,∞), the Cauchy transformation is
an isometric isomorphism between Lp(0,∞) and (Hp(C−), |||·|||Hp(C−)). Therefore, there are
constants Kp,1, Kp,2 > 0 only depending on p such that

‖F‖Hp(C−) ≤ Kp,1|||F |||Hp(C−) ≤ Kp,2‖F‖Hp(C−) (F ∈ Hp(C−)).
In particular, both norms are equivalent and complete.
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Chapter 5

Cauchy Transforms of Functions and
Measures with Compact Support

Mathematics is the science which uses
easy words for hard ideas.

Edward Kasner

The research on Cauchy transforms of compactly supported measure has a long history
and wide applications. For example, in polynomial and rational approximation one can
use Cauchy transforms in combination with the Hahn-Banach theorem to show the famous
theorem of Hartogs-Rosenthal, see [10, Chapter 18, Theorem 6.3]. In this chapter, we will
not treat the general case of compactly supported measures since this has been discussed in
literature (see [27]). Instead we shall focus on particular measures with compact support,
namely measures of the form fµ, where f is a compactly supported measurable function and
µ is a Borel measure on R.

A natural case is of course µ = λ1 as it will be in the first section where we establish
a complex and a geometric condition similar to Chapter 4. Afterwards, we turn towards a
functional-analytic approach for a representation theorem. Unsurprisingly, the Hahn-Banach
theorem will come into play here and by using Runge’s theorem we will also connect Cauchy
transforms and approximation theory in another way. In the last section of this chapter,
we will derive a representation theorem for weighted Lp spaces where we consider measures
which are generalizations of the arcsine distribution. Together with the theory of Jacobi
polynomials and orthonormal bases we will also give another theorem of Paley-Wiener type
basing on Cauchy transforms.

5.1 Complex and geometric characterizations
Since functions of compact support appear as a special case of functions supported on an
unbounded interval, one could expect that some elements and results of Chapter 4 should
transfer in a suitable way to the compact case. For the complex condition regarding Fourier-
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Laplace transforms and for the geometric condition in Theorem 4.1.14 basing on unbounded
polygonal chains this is indeed the case. We shall start with the approach using Fourier-
Laplace transforms. Therefore, we put our focus first on special compact sets on R, namely
symmetric intervals of the form [−A,A] where A > 0. In this setting, certain entire functions
play an important role.

Remark and Definition 5.1.1 Let A > 0. An entire function F is said to be of class
Exp(A) if there is a constant C > 0 such that

|F (z)| ≤ CeA|z| (z ∈ C).

If F ∈ Exp(A) for some A > 0, then F is also called a function of exponential type.
Moreover, for p ∈ [1,∞), let Expp(A) denote the class of all F ∈ Exp(A) such that F |R ∈
Lp(R). The space Expp(A) is a Banach space when equipped with the norm ‖ · ‖p (see [2], p.
202).

One of the main proceedings in the theory of functions of exponential type are the fol-
lowing results (see, e.g., [40], p. 132-135, and [48, Theorem 2]).

Theorem 5.1.2 (Paley-Wiener, [40]) Let A > 0.

1. An entire function F belongs to the class Exp2(A) if and only if there is some f ∈
L2(−A,A) such that

F (z) = (Lf)(z) = 1
2π

∫ A

−A
f(t)eizt dt (z ∈ C).

In this case, f is unique.

2. An entire function F belongs to the class Exp1(A) if and only if there is some f ∈
L1(−A,A) ∩ {f ∈ L1(R) : f̂ ∈ L1(R)} such that

F (z) = (Lf)(z) (z ∈ C).

In all cases, f is unique.

Theorem 5.1.3 (Paley-Wiener, [48]) Let A > 0 and p ∈ (1, 2). Then an entire function F
belongs to the class Expp(A) if and only if

F (z) = (Lf)(z) (z ∈ C)

with f ∈ Lq(−A,A) where q is the conjugate exponent of p and

∞∑
n=−∞

∣∣∣∣∣ 1
2A

∫ A

−A
f(t)e−inπt/A dt

∣∣∣∣∣
q

< +∞.

In this case, f is unique.
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Since every F ∈ Expp(A) is bounded on the real axis (see [2], p. 217) we can consider the
Fourier-Laplace transform L(F |R) of F |R. Analogously, to the case of unbounded intervals
this leads to another characterization of Cauchy transforms.

Proposition 5.1.4 Let A > 0 and F ∈ H(C \ [−A,A]). Then F ∈ H2(C \ [−A,A]) if and
only if there is G ∈ Exp2(A) such that

F (z) = L(G|R)(z) (z ∈ Π+).

In this case, G is unique.

Proof. This follows from Proposition 2.3.7 together with Theorem 5.1.2. 2

Remark 5.1.5 Let p ∈ (1, 2) and F ∈ Expp(A). Then, by Proposition 2.3.7 and Theorem
5.1.3 we know that LF has an extension to a function in Hq(C \ [−A,A]) where q is the
conjugate exponent of p.

Similarly to Proposition 5.1.4

Proposition 5.1.6 Let A > 0 and F ∈ H(C \ [−A,A]). Then, the following statements are
equivalent:

a) There exists f ∈ L1(−A,A) ∩ {f ∈ L1(R) : f̂ ∈ L1(R)} such that F = Cf.

b) There exists G ∈ Exp1(A) such that F = L(G|R) on Π+.

In this case, both f and G are unique.

We are now looking for an analogue of Theorem 4.1.14 where we considered unbounded
polygonal chains surrounding the unbounded interval [0,∞). In the case of compact sets it
seems more natural to consider bounded polygonal chains since the set of singularities of the
Cauchy transform is now bounded itself.

Remark 5.1.7 For A,B ∈ R with A ≤ B and C ∈ [0,∞) we consider the chain R̃A,B,C =
(R̃A,B,C,1, R̃A,B,C,2, R̃A,B,C,3, R̃A,B,C,4) where

R̃A,B,C,1 : [A,B]→ C, R̃A,B,C,1(t) = t+ iC

R̃A,B,C,2 : [−C,C]→ C, R̃A,B,C,2(t) = A+ it

R̃A,B,C,3 : [A,B]→ C, R̃A,B,C,3(t) = t− iC
R̃A,B,C,4 : [−C,C]→ C, R̃A,B,C,4(t) = B + it.

Then, R̃A,B,C belongs to P4(C \ [A,B]). For a function g : R̃∗A,B,C → C such that (g ◦
R̃A,B,C,1), (g ◦ R̃A,B,C,3) ∈ L1(A,B) and (g ◦ R̃A,B,C,2), g ◦ R̃A,B,C,4 ∈ L1(−C,C), we have∫

R̃A,B,C
g(ζ) dζ =

∫ B

A
g(t+ iC) + g(t− iC) dt+ i

∫ C

−C
g(A+ it) + g(B + it) dt.
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These chains R̃A,B,C can be seen as model for bounded polygonal chains in C∞ \K where
K ⊂ R is compact. This result is an analogue of Theorem 4.1.14.

Theorem 5.1.8 Let p ∈ [1,∞), K ⊂ R be compact and M := min
x∈K

x,N := max
x∈K

x. For a
function F ∈ H(C∞ \K), the following statements are equivalent:

a) F ∈ Hp(C∞ \K).

b) ‖F‖C∞\K,p := sup


(∫

R̃M−a,N+a,b
|F (ζ)|p |dζ|

) 1
p

: a ≥ b > 0

 < +∞.

c) For each n ≥ 2 we have

‖F‖C∞\K,p,n := sup
{(∫

γ
|F (ζ)|p |dζ|

) 1
p

: γ ∈ Pn(C \K)
}
< +∞.

In this case, each line in b) and c) defines a norm which is equivalent to ‖ · ‖Hp(C∞\K). More
precisely, we have for each n ≥ 2

‖F‖C∞\K,p ≤ (2 + 4Bp)
1
p‖F‖Hp(C∞\K) ≤ 2(2 + 4Bp)

1
p‖F‖C∞\K,p

and
‖F‖C∞\K,p,n ≤ (2n

√
2Bp)

1
p‖F‖Hp(C∞\K) ≤ 2(2n

√
2Bp)

1
p‖F‖C∞\K,p,n.

Proof. If a) holds and γ ∈ Pn(C \K), then we have∫
γ
|F (ζ)|p |dζ| ≤ n

√
2Bp(‖F‖pHp(Π+) + ‖F‖pHp(Π−))
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as in the proof of Theorem 4.1.14. Clearly, c) implies b) by Remark 5.1.7. Let us suppose
that b) is true and fix y > 0. Then, by the monotone convergence theorem∫ ∞

−∞
|F (x+ iy)|p dx = lim

a→∞

∫ N+a

M−a
|F (x+ iy)|p dx∫ ∞

−∞
|F (x− iy)|p dx = lim

a→∞

∫ N+a

M−a
|F (x− iy)|p dx.

Let us fix a ≥ y. By our assumption,∫ N+a

M−a
|F (x+ iy)|p dx ≤

∫
R̃M−a,N+a,y

|F (ζ)|p |dζ| ≤ ‖F‖C∞\K,p∫ N+a

M−a
|F (x− iy)|p dx ≤

∫
R̃M−a,N+a,y

|F (ζ)|p |dζ| ≤ ‖F‖C∞\K,p

and we conclude by letting a→∞ that a) is true.
Finally, for F ∈ Hp(C∞ \K), we have

‖F‖C∞\K,p ≤
(
‖F‖pHp(Π+) + ‖F‖pHp(Π−) + ‖F‖pHp(M+iΠ+) + ‖F‖pHp(N+iΠ−)

) 1
p

≤ (1 + 2Bp)
1
p

(
‖F‖pHp(Π+) + ‖F‖pHp(Π−)

) 1
p

≤ (2 + 4Bp)
1
p‖F‖Hp(C∞\K)

≤ (2 + 4Bp)
1
p (‖F‖Hp(Π+) + ‖F‖Hp(Π−))

≤ 2(2 + 4Bp)
1
p‖F‖C∞\K,p

and

‖F‖C∞\K,p,n ≤ (n
√

2Bp)
1
p

(
(‖F‖pHp(Π+) + ‖F‖pHp(Π−))

) 1
p

≤ (2n
√

2Bp)
1
p‖F‖Hp(C∞\K)

≤ 2(2n
√

2Bp)
1
p‖F‖C∞\K,p

≤ 2(2n
√

2Bp)
1
p‖F‖C∞\K,p,n.

This concludes the proof. 2

Remark 5.1.9 Theorem 5.1.8 is of course valid for p = ∞ if we replace the conditions b)
and c) by

b) ‖F‖C∞\K,∞ := sup
{
‖F‖∞,(R̃a,b)∗ : a ≥ b > 0

}
< +∞.

c) For each n ≥ 2 we have

‖F‖C∞\K,∞,n := sup {‖F‖∞,γ∗ : γ ∈ Pn(C∞ \K)} < +∞.
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Remark 5.1.10 In Section 4.1 we already mentioned a result in [27] which characterizes
Cauchy transforms of compactly supported measures. More precisely, if K ⊂ C is compact,
then a function F ∈ H(C∞ \K) is the Cauchy transform of some µ ∈ M(K) if and only if
there is a (so-called) admissible grid R (a collection of open rectangles satisfying a certain
measure-theoretic condition) such that∫

∂R
|F (ζ)| |dζ| < +∞, − 1

2πi

∫
∂R
F (ζ) dζ = µ(R)

for all R ∈ R. In Theorem 5.1.8 we can consider Cauchy transforms of measures of the form
fλ1 where f ∈ Lp(K) (if p > 1) or f ∈ H1(K) for a compact set K ⊂ R. These special cases
lead to far more restrictive characterizations of the form that there exists a constant M > 0
with ∫

∂R
|F (ζ)|p |dζ| ≤M < +∞

for all rectangles R in C \K. In particular, if f ∈ H1(K), then

sup
R⊂C\K

R rectangle

∫
∂R
|(Cf)(ζ)| |dζ| < +∞.

In general, Cauchy transforms of compactly supported measures do not need to satisfy this
condition. Take for example µ as the arcsine distribution, i.e. µ = fλ1 with

f(t) = 1
π
√

1− t2
1(−1,1)(t) (t ∈ R).

Then, we have (see Example B.4)

(Cµ)(z) = − 1
2πi
√
z2 − 1

(z ∈ C \ [−1, 1]).

If Cµ would satisfy this uniform estimation above, then we would especially have

lim
x→1

∫ ∞
−∞
|(Cµ)(x+ iy)| dy = sup

x>1

∫ ∞
−∞
|(Cµ)(x+ iy)| dy < +∞.

But by Fatou’s lemma,

lim
x→1

∫ ∞
−∞
|(Cµ)(x+ iy)| dy ≥ 1

2π

∫ ∞
−∞

1
|y2 − 2iy| 12

dy = 1
2π

∫ ∞
−∞

1
|y| 12 (y2 + 4) 1

4
dy = +∞

which is a contradiction. Notice that f /∈ H1([−1, 1]) since f̂(0) =
∫
f = 1 6= 0.

The question arises if one could replace the bounded polygonal chains in the previous
theorem by other cycles, for example circles or ellipses. In general, this is not possible.

Proposition 5.1.11 Let K ⊂ R be compact, µ ∈ M(K) and M := max
x∈K
|x|. Then, the

following statements are equivalent:
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a) sup
R>M

∫
kR(0)
|(Cµ)(ζ)|2 |dζ| = lim

R→M

∫
kR(0)
|(Cµ)(ζ)|2 |dζ| < +∞.

b)
∞∑
k=0

|mk(µ)|2
M2k < +∞.

Proof. Fix R > M. Then, by Proposition 3.1.4

∫
kR(0)
|(Cµ)(ζ)|2 |dζ| = R

4π2

∫ π

−π

∣∣∣∣∣
∞∑
k=0

mk(µ) · (Reit)−(k+1)
∣∣∣∣∣
2

dt

= 1
4π2

∫ π

−π

∣∣∣∣∣
∞∑
k=0

mk(µ)R−keikt
∣∣∣∣∣
2

dt.

If we set

ck(R) :=

R−kmk(µ), k ∈ N0

0, k < 0

then
∞∑

k=−∞
|ck(R)|2 =

∞∑
k=0
|ck(R)|2 ≤ ‖µ‖

∞∑
k=0

(
M

R

)k
< +∞.

By the Riesz-Fischer theorem (see [68, 4.26]) we know that there is a unique gR ∈ L2(−π, π)
such that

ĝR(k) := 1
2π

∫ π

−π
g(t)e−ikt dt = ck(R) (k ∈ Z).

Hence, by Parseval’s formula

∫
kR(0)
|(Cµ)(ζ)|2 |dζ| = 1

4π2

∫ π

−π

∣∣∣∣∣
∞∑
k=0

ĝR(k)eikt
∣∣∣∣∣
2

dt = 1
4π2

∞∑
k=0
|ck(R)|2

= 1
4π2

∞∑
k=0

|mk(µ)|2
R2k .

This concludes the proof. 2

Example 5.1.12 If K = [−1, 1] and f(t) = 1
π
√

1− t2
1(−1,1)(t), then

∞∑
n=0

∣∣∣∣∫ 1

−1
xnf(x) dx

∣∣∣∣2 =
∞∑
n=0

(
2n
n

)2 (1
2

)4n
=∞,

hence ∫
kR(0)
|(Cf)(ζ)|2 |dζ| =

∫
kR(0)

1
|ζ2 − 1| |dζ| → ∞ (R→ 1).
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5.2 A functional-analytic approach
Next, we want to set up for a functional analytic approach to characterize Cauchy transforms.
This leads to a pretty general characterization of Cauchy transforms using certain linear
mappings.

Definition 5.2.1 For A ⊂ C∞ we set

HA := {(F,U) : F ∈ H(U), U is an open neighborhood of A}.

If (F,U), (G, V ) ∈ HA, we write (F,U) ∼A (G, V ) if there is an open set W ⊂ C∞ with
A ⊂ W ⊂ U ∩ V and F |W = G|W . Then ∼A defines an equivalence relation on HA and the
set

H (A) := HA/∼A

is called the space of germs of holomorphic functions on A. In the following, we shall
write [(F,U)]A instead of [(F,U)]∼A .

Now consider a compact set K ⊂ C and a function F ∈ H(C∞ \K). Recall that a Cauchy
cycle for K in an open neighborhood Ω is a cycle in Ω satisfying indγ(z) = 1 for all z ∈ K
and indγ(z) = 0 for all z ∈ C \ Ω.

If (G1, U) ∼K (G2, V ), then we know that G1 = G2 on an open set W ⊂ C∞ satisfying
K ⊂ W ⊂ U ∩ V. Let γ1, γ2 and γ3 be Cauchy cycles for K in U, V and W, respectively. An
application of Cauchy’s theorem (cf., e.g., [68, Theorem 10.35]) implies that∫

γ1
F (ζ)G1(ζ) dζ =

∫
γ3
F (ζ)G1(ζ) dζ =

∫
γ3
F (ζ)G2(ζ) dζ =

∫
γ2
F (ζ)G2(ζ) dζ.

Therefore, the mapping ϕF : H (K)→ C, defined by

ϕF ([(G,U)]K) = − 1
2πi

∫
γ
F (ζ)G(ζ) dζ ([(G,U)]K ∈H (K)),

with γ being a Cauchy cycle for K in U , is well-defined since its values do neither depend on
the particular representative nor on the chosen Cauchy cycle. Moreover, ϕF is linear.

A famous theorem by Havin (see, e.g. [27, Chapter II, Theorem 3.5]) states that a function
F ∈ H(C∞ \K) is the Cauchy transform of some µ ∈ M(C) with supp(µ) ⊂ K if and only
if the mapping ϕF is continuous with respect to ‖ · ‖∞,K , i.e.

|ϕF ([(G,U)]K)| ≤ KF‖G‖∞,K ([(G,U)]K ∈H (K))

for some constant KF > 0.
We are interested in a refinement of this statement for compact sets K ⊂ R. In particular,

we want to characterize the µ-Cauchy transforms of functions f ∈ Lp(µ) where µ ∈M(R) is
such that supp(µ) ⊂ K. Let us start with the following observations. Suppose for p ∈ [1,∞],
a compact set K ⊂ R and µ ∈ M(R) with supp(µ) ⊂ K that a function F ∈ H(C∞ \ K)
admits a representation

F (z) = (Cµf)(z) (z ∈ C∞ \K),
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where f ∈ Lp(µ). In this case, we can apply the Fubini theorem and Cauchy’s integral formula
to get

ϕF ([(G,U)]K) = − 1
2πi

∫
γ
F (ζ)G(ζ) dζ

= − 1
2πi

∫
γ

(
1

2πi

∫
K

f(t)
t− ζ

dµ(t)
)
G(ζ) dζ

= 1
2πi

∫
K
f(t)

(
1

2πi

∫
γ

G(ζ)
ζ − t

dζ

)
dµ(t)

= 1
2πi

∫
K
f(t)G(t) dµ(t)

for all [(G,U)]K ∈H (K). By Hölder’s inequality, we conclude that

2π · |ϕF ([(G,U)]K)| ≤ ‖f‖Lp(µ) · ‖G‖Lq(µ) ([(G,U)]K ∈H (K)),

where q is the conjugate exponent of p. But this simply means that ϕF is continuous with
respect to ‖ · ‖Lq(µ). We shall now show that the converse is true as well if p > 1.

Theorem 5.2.2 Let p ∈ (1,∞], K ⊂ R be compact and µ ∈ M(R) with supp(µ) ⊂ K. For
a function F ∈ H(C∞ \K) the following are equivalent:

a) There is some f ∈ Lp(µ) such that F = Cµf.

b) ϕF is continuous with respect to ‖ · ‖Lq(µ), where q is the conjugate exponent of p.

In this case, f is unique and 2π‖ϕF‖op = ‖f‖Lp(µ).

Proof. Necessity has already been shown above. So, suppose that there is a constant KF

such that
|ϕF ([(G,U)]K)| ≤ KF‖G‖Lq(µ) ([(G,U)]K ∈H (K)).

Hence, if [(G1, U)]K , [(G2, V )]K satisfy G1|K = G2|K , then we must have ϕF ([(G1, U)]K) =
ϕF ([(G2, V )]K). Upon setting

H(K) := {h1K : [(h, U)]K ∈H (K)},

we see that the mapping ϕ : H(K)→ C, defined by

ϕ(h) = ϕF ([(H,U)]K) (h ∈ H(K)),

where U is an open neighborhood of K and H ∈ H(U) satisfies H1K = h, is well-defined,
linear and continuous. In particular, ‖ϕ‖op = ‖ϕF‖op. Since H(K) ⊂ Lq(µ), we can apply
the Hahn-Banach theorem and get a linear and continuous extension ψ : Lq(µ)→ C of ϕ of
the same norm. But now, by standard Lp duality theory (see, e.g. [68, Theorem 6.16] and
notice that q ∈ [1,∞)), we know that there is some f ∈ Lp(µ) such that

ψ(h) = 1
2πi

∫
K
f(t)h(t) dµ(t) (h ∈ Lq(µ)).
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Moreover, ‖f‖Lp(µ) = 2π‖ψ‖op = 2π‖ϕF‖op.
Now, let z ∈ C\K. We choose an open neighborhood U of K such that z /∈ U. If we consider
the function G : U → C, G(ζ) = (ζ − z)−1, then [(G,U)]K ∈ H (K). On the one hand, we
clearly have

ψ (G|K) = (Cµf)(z).

But, on the other hand, we also have

ψ (G|K) = ϕ (G|K) = ϕF ([(G,U)]K) = 1
2πi

∫
γ

F (ζ)
z − ζ

dζ = F (z)

by Cauchy’s integral formula, see [47, Theorem 9.7], cf. [4, Lemma 1.11]. 2

If K ⊂ R is compact, F ∈ H(C∞ \K) and G ∈ HK , i.e. (G,U) ∈ H(U) where U ⊃ K
is open, then one can always restrict G to an open neighborhood of K with connected
complement without changing the value of ϕF (G). This is the key observation when we now
want to bring in Runge’s theorem. The corresponding result, see Theorem 5.2.3 below, holds
at least partly for the unit circle (see [7, Theorem 5.5.1]) and for Cauchy transforms of
compactly supported measures (see [27, Chapter II, Corollary 3.6]). One advantage that we
encounter in our situation is that due to the fact that our measures have compact support
in R we can use polynomial approximation. The associated condition c) in this theorem is
therefore much easier to apply than condition b) relying on rational approximation.

If r := max
x∈K
|x|, then F has a Laurent expansion

F (z) =
0∑

k=−∞
ckz

k (|z| > r).

Here,
ck := 1

2πi

∫
kR(0)

F (ζ)ζ−k−1 dζ (k ∈ Z)

where R > r. Notice that if µ ∈M(R) with supp(µ) ⊂ K and F = Cµf for some f ∈ L1(µ),
then Proposition 3.1.4 implies that

ck =

0, k ≥ 0
−
∫
f(t)t−k−1 dµ(t), k ≤ −1.

In particular, c−k−1 = mk(fµ) whenever k ≥ 0.

Theorem 5.2.3 Let p ∈ (1,∞], q the conjugate exponent of p,K ⊂ R be compact and µ ∈
M(R) with supp(µ) ⊂ K. For a function F ∈ H(C∞ \ K), the following statements are
equivalent:

a) There is some f ∈ Lp(µ) with F = Cµf.

77



b) There is a constant C > 0 such that∣∣∣∣∣
n∑
k=1

αkF (wk)
∣∣∣∣∣ ≤ C ·

∥∥∥∥∥
n∑
k=1

αk
· − wk

∥∥∥∥∥
Lq(µ)

,

whenever n ∈ N, α1, . . . , αn ∈ C and w1, . . . , wn ∈ C \K.

c) There is a constant C > 0 such that∣∣∣∣∣
n∑
k=0

αkc−k−1

∣∣∣∣∣ ≤ C ·
∥∥∥∥∥
n∑
k=0

αk(·)k
∥∥∥∥∥
Lq(µ)

,

whenever n ∈ N, α1, . . . , αn ∈ C.

Moreover, f is unique and satisfies ‖f‖Lp(µ) ≤ 2πC.

Proof. We show a)⇔ b) and a)⇔ c). Let us start with the equivalence of a) and b).
First note that if α1, . . . , αn ∈ C, w1, . . . , wn ∈ C \K, we can choose an open neighborhood
U of K such that w1, . . . , wn ∈ C \ U. If we set

G(z) :=
n∑
k=1

αk
z − wk

(z ∈ U),

then
ϕF ([(G,U)]K) =

n∑
k=1

αkG(wk)

by [47, Theorem 9.7]. With this observation in mind, necessity of the condition is clear.
So let us turn to sufficiency. Let us fix some function G ∈ H(U) where U is an open
neighborhood of K. If γ is a Cauchy cycle for K in U, we choose a compact set V ⊂ U
such that K ∪ γ∗ ⊂ V. But then by a variant of Runge’s theorem (cf. [47, Theorem 10.2]
and [68, Theorem 13.9]), there is a sequence (Gm)m∈N of rational functions with simple poles
only in C \ V such that Gm → G uniformly on V. In particular, Gm → G uniformly on γ∗
which means ϕF (Gm)→ ϕF (G). Certainly, ‖Gm−G‖Lq(µ) → 0 since µ is finite, hence by our
assumption and the observation above, we see that ϕF is continuous with ‖ϕF‖ ≤ C.
For the proof of the equivalence of a) and c), first note that for each polynomial P

ϕF (p) = 1
2πi

∫
kR(0)

F (ζ)P (ζ) dζ (k ∈ Z),

where R > 0 is sufficiently large. Therefore, necessity of the condition is clear. So, let us
again prove sufficiency. Let us fix some function G ∈ H(U) with an open neighborhood U
of K. Without loss of generality, we can choose U to be such that C∞ \ U is connected (for
example let ε := inf{|z − w| : z ∈ K,w ∈ ∂U} and replace U by ⋃

z∈K
Uε/2(z)). Hence, there
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is a sequence of polynomials (Pm)m∈N such that Pm → G locally uniformly on U. But this
means that for any sufficiently large R > 0 and any Cauchy cycle γ for K in U we have

ϕF (Pm) = 1
2πi

∫
kR(0)

F (ζ)Pm(ζ) dζ = 1
2πi

∫
γ
F (ζ)Pm(ζ) dζ → ϕF (G).

On the other hand, clearly ‖Pm−G‖Lq(µ) → 0 and hence ϕF is continuous with ‖ϕF‖op ≤ C.
2

As a consequence we get conditions for the summability of moments of certain measures.
Recall that for a measure µ ∈M(X) where X ⊂ R and y ∈ [0,∞)

|my|(|µ|) =
∫
|x|y d|µ|(x) ∈ [0,+∞].

We remark that in Theorem 5.2.3 the necessity of condition c) holds also true in the case
p = 1.

Corollary 5.2.4 Let K ⊂ R be compact, µ ∈ M(R) with supp(µ) ⊂ K and (an)n∈N a
sequence in C. If p ∈ [1,∞] and f ∈ Lp(µ), the following statements hold:

i) If p > 1 and
∞∑
k=1
|akmk(fµ)|q · |mkq|(|µ|) < +∞,

where q is the conjugate exponent of p, then
∞∑
k=1
|ak||mk(fµ)|2 < +∞.

ii) If p = 1 and
∞∑
k=1
|ak||mk(fµ)|Mk < +∞,

where M := max
x∈K
|x|, then also

∞∑
k=1
|ak||mk(fµ)|2 < +∞.

Proof. Fix n ∈ N. If we pick αk = |ak|mk(fµ) (k = 1, . . . , n) in Theorem 5.2.3 (choose
F = Cµf and notice that c−k−1 = mk(fµ)), then

n∑
k=1
|ak||mk(fµ)|2 ≤ C

∥∥∥∥∥
n∑
k=1
|ak|mk(fµ)(·)k

∥∥∥∥∥
Lq(µ)

If p > 1, then∫
K

∣∣∣∣∣
n∑
k=1
|ak|mk(fµ)tk

∣∣∣∣∣
q

d|µ|(t) ≤ nq
∫
K

(
n∑
k=1

1
n
|akmk(fµ)| · |t|k

)q
d|µ|(t)
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≤
n∑
k=1
|akmk(fµ)|q

∫
K
|t|kq d|µ|(t)

=
n∑
k=1
|akmk(fµ)|q · |mkq|(|µ|)

by Jensen’s inequality. If p = 1, then q =∞ and hence
n∑
k=1
|ak||mk(fµ)|2 ≤ |µ|(K)

n∑
k=1
|ak||mk(fµ)|Mk.

2

We now turn to the case p = 1. In this case, the argumentation in Theorem 5.2.2 fails
since the dual of L∞(K) is not isomorphic to L1(K). This illustrates that we need a stronger
condition to characterize the Cauchy transforms by properties of induced linear mappings.
However, there is a solution:

Theorem 5.2.5 Let K ⊂ R be compact, µ ∈M(R) with supp(µ) ⊂ K and F ∈ H(C∞ \K).
Then the following statements are equivalent:

a) There is some f ∈ L1(µ) with F = Cµf.

b) There is a linear and continuous mapping L : L∞(µ)→ C such that

b1) L(H1K) = ϕF ([(H,U)]K) for all [(H,U)]K ∈H (K).
b2) L(hn)→ 0 for all bounded sequences (hn)n∈N in L∞(µ) satisfying hn → 0 |µ|-a.e.

In this case, f is unique and satisfies 2π‖L‖op = 2π‖ϕF‖op = ‖f‖L1(µ).

Proof. If F = Cµf for some f ∈ L1(µ), then L : L∞(µ)→ C, defined by

L(h) = 1
2πi

∫
K
f(t)h(t) dµ(t) (h ∈ L∞(µ)),

is obviously linear and continuous. If (hn)n∈N is a bounded sequence in L∞(µ) with hn → 0
a.e. (with respect to µ), then L(hn) → 0 by the dominated convergence theorem (use the
polar decomposition of µ).
On the other side, suppose that there is a linear and continuous functional L on L∞(µ) with
the properties in b). Then, by [15, Chapter IV, Section 8, Theorem 16], or [69, Proposition
4.13], there is an additive mapping ν : B(R)→ C such that

L(h) = 1
2πi

∫
K
h(t) dν(t) (h ∈ L∞(µ)).

For the integration with respect to a content we refer to [69], p. 17-21. Moreover, ν(A) = 0
for every A ∈ B(R) with |µ|(A) = 0. In particular, ν(A) = ν(A ∩ K) for all A ∈ B(R).
Our goal is to show that ν is even countably-additive, hence a finite complex measure. In
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this case, we can apply the Radon-Nikodym theorem to conclude the proof. So, let us fix a
sequence (An)n∈N of pairwise disjoint Borel sets on R and set

En :=
n⋃

m=1
Am (n ∈ N)

E :=
∞⋃
m=1

Am.

If we consider the sequence (hn)n∈N with hn := 1E\En , then clearly hn → 0 pointwise and
‖hn‖L∞(µ) ≤ 1. Therefore,

ν(E)−
n∑

m=1
ν(Am) =

∫
hn(t) dν(t) = 2πiL(hn)→ 0 (n→∞).

Hence, ν ∈M(R) and ‖ν‖ = 2π‖L‖op. Clearly, supp(ν) ⊂ K and ν is absolutely continuous
to |µ|. Therefore, a variant of the Radon-Nikodym theorem (see [68, 6.10]) guarantees the
existence of a unique r ∈ L1(µ) such that ν = r|µ|, so we can say that

L(h) = 1
2πi

∫
K
r(t)h(t) d|µ|(t) (h ∈ L∞(µ)).

If µ = s|µ| is a polar decomposition of µ, we get upon setting f = r
s
that

L(h) = 1
2πi

∫
K
f(t)h(t) dµ(t) (h ∈ L∞(µ)).

Clearly, we have f ∈ L1(µ) with ‖f‖L1(µ) = ‖ν‖. The rest of the proof is exactly the same
than in the proof for p > 1. 2

5.3 Weighted Lp spaces and another theorem of Paley-
Wiener type

The determination of the image of weighted Lp spaces under the Cauchy transformation C
is a far more delicate question than for the unweighted ones. If the corresponding weight
is integrable and has compact support, one can apply the results in Section 5.2. However,
we also want to attack this problem in a similar matter as for the unweighted Lp spaces.
Turning back to Chapter 2, we see that the key element was the boundary behavior of
Cauchy transforms: If p ∈ [1,∞) and f ∈ Lp(R), then (Cf)+ − (Cf)− = f and C̃f =
(Cf)+ +(Cf)− = iHf. In particular, if p > 1, then C̃f ∈ Lp(R). Therefore, also the function
C̃f reflects the behavior of the original function f.

In this section, we shall consider certain weighted Lp spaces where the corresponding
weight has support in the unit interval I = (−1, 1). Moreover, we will always have the
situation that these weighted spaces are contained in L2(I). This means that the image of
these weighted Lp spaces under C will be a space of functions F ∈ H2(C\ [−1, 1]) where only
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the behavior of F̃ = F+ +F− is crucial. Similar to the unweighted case, it shall turn out that
properties from the corresponding weighted Lp space are transferred to the function F̃1I .

If F = Cf where f ∈ L2(I), then F̃1I = (iHf)1I . This means that our subject is to
analyze the restriction of the Hilbert transform to the interval I. Since we also want f to
belong to some weighted Lp space, the question arises for which spaces this restriction is
defined.

Definition 5.3.1 Let p ∈ (1,∞). A weight ω : R → [0,∞] is said to satisfy the Ap,I-
condition with constant M > 0 if ω = ω1I and

sup
J⊂I

J interval

(
1

λ1(J)

∫
J
ω(x) dx

)
·
(

1
λ1(J)

∫
J
(ω(x))−

1
p−1 dx

)
≤M < +∞.

The results in the following remark can be found in [36], p. 231.

Remark 5.3.2 1. From Hölder’s inequality it follows that if a weight ω : R → [0,∞]
satisfies the Ap,I-condition for some p ∈ (1,∞) with constant M > 0, then it also
satisfies the Aq,I-condition with constant M > 0 whenever q > p > 1.

2. From the definition it follows directly that if a weight ω : R→ [0,∞] satisfies the Ap,I-
condition with constant M > 0 for some p ∈ (1,∞), then the weight ω−

1
p−1 satisfies

the Aq,I-condition with constant M
1
p−1 where q is the conjugate exponent of p.

Remark 5.3.3 An important class of weights satisfying the Ap,I-condition arises when con-
sidering weights ω of the form

ωα,β(x) =

(1− x)α(1 + x)β, x ∈ (−1, 1),
0, x ∈ R \ (−1, 1).

.

Due to [3], p. 1164, this weight ωα,β satisfies the Ap,I-condition if and only if α, β ∈ (−1, p−1).
In the following, we may write µα,β = ωα,βλ1.

Remark and Definition 5.3.4 Let p ∈ (1,∞) and ω satisfy the Ap,I-condition. Then,
Lp(I, ωλ1) ⊂ C . To see this, we consider the weight ω∗ : R→ [0,∞] defined by

ω∗(x) = ω((−1)n(x− 2n)) (x ∈ (2n− 1, 2n+ 1), n ∈ Z).

Due to [3], p. 1159, ω satisfies the Ap,I-condition if and only if ω∗ ∈ Ap, i.e.

sup
J⊂R

(
1

λ1(J)

∫
J
ω∗(x) dx

)
·
(

1
λ1(J)

∫
J
(ω∗(x))−

1
p−1 dx

)
≤M < +∞.

Hence, we can apply [36, Lemma 2] to see that indeed Lp(I, ωλ1) ⊂ C . Therefore, if f ∈
Lp(I, ωλ1), we can define the function HIf = (Hf)1I and call this function the finite
Hilbert transform of f. Since ω satisfies the Ap,I-condition, [3, Proposition 2.2] tells us
that the mapping HI : Lp(I, ωλ1)→ Lp(I, ωλ1) is well-defined and bounded.
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There is a wide theory on the finite Hilbert transform which goes back to Carleman. One
reason for the importance of the finite Hilbert transform lies in its appearance in the airfoil
equation. We shall put our focus on the special weights ωα,β and in this case, the following
result whose proof can be found in [3, Corollary 2.3] is valid.

Theorem 5.3.5 (Astala, Päivärinta, Saksman, [3]) Let p ∈ (1,∞), A,B ∈
(
−p

2 ,
p
2

)
and put

α = A+ p
2 − 1, β = B + p

2 − 1. For the mapping HI : Lp(I, µα,β)→ Lp(I, µα,β) the following
statement holds:

1. HI is an isomorphism if and only if AB < 0.

In the case AB ≥ 0, the following statements hold:

2. HI is surjective if and only if A,B > 0.

3. HI is injective if and only if A,B ≤ 0.

Remark 5.3.6 For the simplest case, namely p = 2 and α = β = 0, Proposition 5.3.5 says
that the mapping HI : L2(I)→ L2(I) is bounded and injective, but not surjective.

One of the most important functions in context with the finite Hilbert transform is the
density of the arcsine distribution

ω(x) = ω− 1
2 ,−

1
2
(x) =


1√

1− x2
, x ∈ (−1, 1)

0, x ∈ R \ (−1, 1)
.

The reason is that HIω = 0 and moreover, if p ∈ (1,∞) and a function g ∈ Lp(I) satisfies
HIg = 0, then we must have g = cω for some constant c ∈ C (see, e.g., [78], p. 176, or [11], p.
1840). In particular, if p > 1 and α, β < p− 1, then the kernel of the finite Hilbert transform
HI : Lp(I, µα,β) → Lp(I, µα,β) is either the null space or the one dimensional vector space
{cω : c ∈ C}.

One of the major problems arising in the study of the finite Hilbert transform is the
determination of its image. This corresponds to solving the integral equation

HIf = g

where f and g must belong to some (weighted) Lp space. Usually this integral equation is
called the airfoil equation, see, e.g., [78], p. 175.

Even for the simplest case p = 2, α = β = 0 this issue was unsolved for many years until
in 1991, the authors in [57] presented a characterization and closed this gap. Here is the
corresponding result (see [57, Theorem 4.2]).

Theorem 5.3.7 (Okada, Elliott, [57]) Let g ∈ L2(I)∩L1(I, ωλ1). Then, the following state-
ments are equivalent:

a) There is f ∈ L2(I) such that HIf = g.
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b) 1
ω
HI (gω) ∈ L2(I) and ∫

I
g(t)ω(t) dt = 0.

In this case, we have f = − 1
ω
HI (gω) .

Remark 5.3.8 In the recent past, several generalizations have arisen. For example, the
first author in [57] et al. consider in [11] a more general situation which involves so-called
rearrangement-invariant (r.i.) Banach function spaces on I. These spaces include
for example Lp(I) for p ∈ [1,∞], cf. [11], p. 1139. A Banach function space X on I is
a Banach space of functions on I such that if g ∈ X and |f | ≤ |g| a.e., then f ∈ X and
‖f‖X ≤ ‖g‖X . The rearrangement invariance means that if g ∈ X and f ∗ ≤ g∗, then f ∈ X
and ‖f‖X ≤ ‖g‖X . Here, f ∗ : [0, 2] → [0,∞] is the decreasing rearrangement of f, i.e. the
right continuous inverse of its distribution function x 7→ λ1(|f |−1(x,∞)). One of the main
results in the corresponding paper was that under certain circumstances the image of an r.i.
Banach function space X under the finite Hilbert transformation is the space of all functions
f ∈ X satisfying ∫

I
f(t)ω(t) dt = 0,

see [11, Theorem 3.3].

Unfortunately, the spaces Lp(I, µα,β) are in general not r.i. This is because of the fact
that any two indicator functions 1A,1B where A,B are any two measurable subsets of (−1, 1)
satisfying λ1(A) = λ1(B) have the same decreasing rearrangement but of course not the same
norm.

Nevertheless, the result in [11] is still valid for these weighted spaces. This is what we
want to prove next. For p ∈ [1,∞), α, β ∈ R we therefore consider the subspace

Lp,0(I, µα,β) :=
{
f ∈ Lp(I, µα,β) :

∫
I
f(t)ω(t) dt = 0

}
.

In order to apply Theorem 5.3.7 to our situation we need to know when Lp(I, µα,β) is
contained in L2(I)∩L1(I, ωλ1). The next two lemmas give sufficient conditions when this is
the case.

Lemma 5.3.9 Let p ∈ [1,∞) and α, β < p
2 − 1. Then, the following statements hold:

1. Lp(I, µα,β) ⊂ L1(I, ωλ1).

2. Lp,0(I, µα,β) is continuously embedded into Lp(I, µα,β).

Proof. The first statement is an application of Hölder’s inequality: If p > 1 and f ∈
Lp(I, µα,β), then

∫
I
|f(t)|ω(t) dt =

∫
I
|f(t)|ω(t) ·

ωα
p
,β
p
(t)

ωα
p
,β
p
(t) dt

84



≤
( ∫

I
|f(t)|p dµα,β(t)

) 1
p

·

∫
I

 1
ωα
p

+ 1
2 ,
β
p

+ 1
2
(t)


p
p−1

dt


p−1
p

=
( ∫

I
|f(t)|p dµα,β(t)

) 1
p

·

∫
I

1
ω 2α+p

2(p−1) ,
2β+p

2(p−1)
(t) dt


p−1
p

< +∞

since α, β < p
2 − 1. If p = 1, then by Hölder’s inequality

∫
I
|f(t)|ω(t) dt ≤

∫
I
|f(t)| dµα,β(t) ·max

t∈I

1
ωα+ 1

2 ,β+ 1
2
(t) < +∞.

For the second statement fix a sequence (fn)n∈N in Lp,0(I, µα,β). Then, there is f ∈ Lp(I, µα,β)
with fn → f in Lp(I, µα,β). But now∣∣∣∣∫ f(t)ω(t) dt

∣∣∣∣ =
∣∣∣∣∫ fn(t)− f(t)ω(t) dt

∣∣∣∣
≤

( ∫
I
|fn(t)− f(t)|p dµα,β(t)

) 1
p

·

∫
I

1
ω 2α+p

2(p−1) ,
2β+p

2(p−1)
(t) dt


p−1
p

→ 0.

This concludes the proof. 2

Lemma 5.3.10 Let p ∈ [2,∞) and α, β < p
2 − 1. Then, Lp(I, µα,β) ⊂ L2(I).

Proof. This is again an application of Hölder’s inequality. If f ∈ Lp(I, µα,β), then

∫
I
|f(t)|2 dt =

∫
I
|f(t)|2

ω 2α
p
, 2β
p

(t)
ω 2α

p
, 2β
p

(t) dt

≤
( ∫

I
|f(t)|p dµα,β(t)

) 2
p

·

∫
I

1
ω 2α
p−2 ,

2β
p−2

(t) dt


p−2
p

< +∞

since α, β < p
2 − 1. 2

Remark 5.3.11 It is important to notice that Lemma 5.3.10 is not valid for p ∈ [1, 2). We
even have Lp,0(I, µα,β) 6⊂ L2(I) for p ∈ [1, 2).
For example, take a sequence (εn)n∈N such that ε1 = 1, εn → 0 (n→∞) and∫ εn

εn+1

1
t
dt ≥ (n+ 1)3 (n ∈ N).
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Then, choose g : [0, 1] → R continuous such that g|[εn+1,εn] is linear for each n ∈ N with
g(εn+1) = 1

(n+ 1)2 , g(εn) = 1
n2 . We extend g onto [−1, 1] by setting g(x) = −g(−x) (x ∈

[−1, 0]). Now, let r ∈
(

1
2 ,

1
p

)
, α, β ∈ (−1, p/2− 1) with α = β and set

f(t) =
ω−α

p
,−β

p
(t)g(t)
|t|r

(t ∈ I).

Then, ∫
I
|f(t)|p dµα,β(t) =

∫
I

|g(t)|p
|t|rp

dt = 2
∞∑
n=1

∫ εn

εn+1

(g(t))p
trp

dt ≤ 4
1− rp

∞∑
n=1

1
n2p < +∞

while ∫
I
|f(t)|2 dt =

∫
I

(1− t2)−
2α
p |g(t)|2

|t|2r
dt ≥

∫ 1
2

0

(1− t2)−
2α
p |g(t)|2

t2r
dt

≥
(3

4

)−2α
p
∫ 1

2

0

(g(t))2

t
dt ≥

(3
4

)−2α
p

∞∑
n=N

∫ εn

εn+1

(g(t))2

t
dt

≥
(3

4

)−2α
p

∞∑
n=N

1
n+ 1 = +∞

where N ∈ N is chosen such that εN ≤ 1
2 . Moreover, by Lemma 5.3.9 we have f ∈

L1(I, µ− 1
2 ,−

1
2
) and since f is odd (because g is) we have∫

I
f(t)ω(t) dt = 0.

We are now in a position to determine the image of the finite Hilbert transform under
the weighted spaces Lp(I, µα,β). The corresponding result is a generalization of a theorem in
[81], p. 5.

Proposition 5.3.12 Let p ∈ [2,∞) and α, β ∈ (−1, p2−1). Then, the finite Hilbert transform
HI : Lp(I, µα,β)→ Lp,0(I, µα,β) is an isomorphism.

Proof. First, if f ∈ Lp(I, µα,β), then HIf ∈ Lp(I, µα,β) by Remark and Definition 5.3.4.
Thus, Lemma 5.3.9 implies that HIf ∈ L1(I, ωλ1) and Theorem 5.3.7 gives us that the
mapping is well-defined because Lp(I, µα,β) ⊂ L2(I) by Lemma 5.3.10. Choosing A = α −
p
2 + 1, B = β − p

2 + 1 in Theorem 5.3.5 (here we use α, β > −1), we see that HI is injective.
Since it is bounded by Remark and Definition 5.3.4 we only have to show surjectivity. The
continuity of the inverse follows then from the Banach isomorphism theorem because both
domain and range are Banach spaces.
So let g ∈ Lp,0(I, µα,β). Then, g1 := gω belongs to Lp(I, µ p

2 +α, p2 +β) since∫
I
|g1(t)|p dµ p

2 +α, p2 +β(t) =
∫
I
|g(t)|p dµα,β(t)

86



and the same holds for HIg1 by Remark and Definition 5.3.4. Hence, if p = 2, then∫
I
(1− t2)|(HIg1)(t)|2 dt ≤

∫
I
(1− t)1+α(1 + t)1+β|(HIg1)(t)|2 dt < +∞

where we have used the inequality (1 − t)−α(1 + t)−β ≤ 1 for t ∈ I and α, β ∈ (−1, 0). If
p > 2, then
∫
I
(1− t2) · |(HIg1)(t)|2 dt =

∫
I
|(HIg1)(t)|2

ω1+ 2α
p
,1+ 2β

p
(t)

ω 2α
p
, 2β
p

(t) dt

≤
(∫

I
|(HIg1)(t)|p dµ p

2 +α, p2 +β(t)
) 2
p

·

∫ 1

−1

 1
ω 2α

p
, 2β
p

(t)


p
p−2

dt


p−2
p

=
(∫

I
|(HIg1)(t)|p dµ p

2 +α, p2 +β(t)
) 2
p

·

∫
I

1
ω 2α
p−2 ,

2β
p−2

(t) dt


p−2
p

< +∞

by Hölder’s inequality. Theorem 5.3.7 guarantees us the existence of a unique f ∈ L2(I) such
that HIf = g and moreover, f = − 1

ω
HIg1. Thus, we have∫

I
|f(t)|p dµα,β(t) =

∫
I
|(HIg1)(t)|p dµ p

2 +α, p2 +β(t) < +∞

and therefore f ∈ Lp(I, µα,β). 2

Recall that for F ∈ Hp(C \ [−1, 1]) the function F̃ is defined almost everywhere by

F̃ (x) := F+(x) + F−(x) = lim
y→0+

F (x+ iy) + lim
y→0−

F (x+ iy).

From the Plemelj formulas, it is clear that if F = Cf with f ∈ Lp([−1, 1]), then F̃ = iHf.

Lemma 5.3.13 Let p, r ∈ [2,∞) and α, β ∈ (−1, p2 − 1). Then, the space

Hr,p,α,β(C \ [−1, 1]) := {F ∈ Hr(C \ [−1, 1]) : F̃1I ∈ Lp,0(I, µα,β)}

is a Banach space with respect to the norm

‖F‖Hr(C\[−1,1]) + ‖F̃‖Lp(I,µα,β).

Proof. Let (Fn)n∈N be a Cauchy sequence in Hr,p,α,β(C \ [−1, 1]) with respect to the given
norm. SinceHr(C\[−1, 1]) is a Banach space, we know that ‖Fn−F‖Hr(C\[−1,1]) → 0 (n→∞)
for some F ∈ Hr(C \ [−1, 1]). Since Lp,0(I, µα,β) is a Banach space (see Lemma 5.3.9), we
know that there is some h ∈ Lp,0(I, µα,β) such that ‖F̃n − h‖Lp(I,µα,β) → 0 (n → ∞). Let us
now show that F̃1I = h. We have

‖F̃ − h‖L2(I) ≤ ‖h− F̃n‖L2(I) + ‖F̃n − F̃‖L2(I)
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≤ Kp,α,β‖h− F̃n‖Lp(I,µα,β) +Kr,1‖F̃n − F̃‖Lr(I)
= Kp,α,β‖h− F̃n‖Lp(I,µα,β) +Kr,1‖HIC

−1(Fn − F )‖Lr(I)
≤ Kp,α,β‖h− F̃n‖Lp(I,µα,β) +Kr,2‖C−1(Fn − F )‖Lr(I)
→ 0 (n→∞)

where the constant Kp,α,β > 0 is chosen from Lemma 5.3.10, the constant Kr,1 > 0 from
the fact that Lr(I) ⊂ L2(I) for r ≥ 2 and Kr,2 > 0 from the continuity of the finite Hilbert
transformation HI on Lr(I) (see Remark and Definition 5.3.4). Notice that the last term
approaches 0 since the inverse Cauchy transformation is continuous on Lr(I). 2

It is now a short way to prove the following theorem.
Theorem 5.3.14 Let p ∈ [2,∞) and α, β ∈ (−1, p2 − 1). Then, the Cauchy transformation
establishes an isomorphism between Lp(I, µα,β) and H2,p,α,β(C\ [−1, 1]). In particular, a func-
tion F ∈ H(C\[−1, 1]) belongs to H2,p,α,β(C\[−1, 1]) if and only if there exists f ∈ Lp(I, µα,β)
such that

F (z) = (Cf)(z) (z ∈ C \ [−1, 1]).
In this case, f is unique and there are constants Kp,α,β,1, Kp,α,β,2 > 0 only depending on
p, α, β such that

‖F‖Hp(C\[−1,1]) + ‖F̃‖Lr(I,µα,β) ≤ Kp,α,β,1‖f‖Lp(I,µα,β)

≤ Kp,α,β,2 · (‖F‖Hp(C\[−1,1]) + ‖F̃‖Lr(I,µα,β)).

Proof. If f ∈ Lp(I, µα,β) ⊂ L2(I), then Cf ∈ H2(C \ [−1, 1]) and C̃f1I = iHIf. Therefore,
the mapping is well-defined by Proposition 5.3.12 and also injective since Lp(I, µα,β) ⊂ C .
Moreover, Proposition 3.2.2 and Proposition 5.3.12 imply that

‖Cf‖H2(C\[−1,1]) + ‖C̃f‖Lp(I,µα,β) ≤ Kp‖f‖L2(I) + ‖HIf‖Lp(I,µα,β)

≤ Kp,α,β · ‖f‖Lp(I,µα,β)

from which we conclude that C is continuous. Thus, we only have to show surjectivity since
then C must be an isomorphism by Lemma 5.3.13 and the Banach isomorphism theorem.
Therefore, we pick F ∈ H2,p,α,β(C \ [−1, 1]). Then, there is some f1 ∈ L2(I) such that
Cf1 = F and hence F̃ = iHIf1. Moreover, by Proposition 5.3.12 we know that there is some
f2 ∈ Lp(I, µα,β) such that F̃ = HIf2. Since the finite Hilbert transformation is injective on
L2(I) by Remark 5.3.6 we conclude that f1 = −if2 and therefore f1 ∈ Lp(I, µα,β). This
concludes the proof. 2

Let us turn back to our magic triangle in Proposition 2.3.7. Our goal is to deduce a
related Paley-Wiener theorem from the results above.
Remark and Definition 5.3.15 Let m ∈ N0 and α, β > −1. Then, the function P (α,β)

m :
I → R defined by

P (α,β)
m (x) := 1

2m
m∑
k=0

(
α +m

k

)(
β +m

m− k

)
(x− 1)m−k(x+ 1)k
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is called the m-th Jacobi polynomial (with parameters α and β). If α = β = −1
2 , then

the Jacobi polynomials become the Chebyshev polynomials (Tm)m∈N0 where Tm(x) =
cos(m arccos(x)) (x ∈ (−1, 1)). It is a well-known fact that the sequence (P (α,β)

m )m∈N0 forms
an orthogonal basis in L2(I, µα,β), see [1], p. 774.

Remark 5.3.16 Let α, β ∈ (−1, 0). Then, we have ‖f‖2 ≤ ‖f‖L2(I,µα,β) for all f ∈ L2(I, µα,β).
Since (P (α,β)

m )m∈N0 forms an orthogonal basis in L2(I, µα,β) we see by Plancherel’s theorem
that

F(L2(I, µα,β)) ⊂ span
{
P̂

(α,β)
m : m ∈ N0

}
where the closure is taken with respect to the norm ‖ · ‖2.

One question still remains: What are the Fourier transforms of the Jacobi polynomials?
The answer is given by the following result which can be found in [14, Theorem 3.1]. For
convenience we write

En(x) =
n∑
j=0

xj

j! (x ∈ R)

for the n-th partial sum of the exponential function. Moreover, for z ∈ C and k ∈ N the
number

(z)k :=
k−1∏
n=0

(z − n)

is called the falling factorial of z.

Proposition 5.3.17 (Dixit, Jiu, Moll, Vignat, [14]) Let m ∈ N0 and α, β > −1. Then,

P̂
(α,β)
m (t) = 2e−it(α + 1)m

m∑
k=0

(m+ α + β + 1)k
(m− k)!(α + 1)k

[
e2itEk(−2it)− 1

(2it)k+1

]

= 2
m∑
k=0

(m+ α + β + 1)k
(2it)k+1(m− k)! [(−1)m−keit(β + k + 1)m−k − e−it(α + k + 1)m−k]

for t ∈ R \ {0} and

P̂
(α,β)
m (0) = m+ α + β + 1

2

[(
α +m

m− 1

)
+ (−1)m−1

(
β +m

m− 1

)]
.

Example 5.3.18 For the Chebyshev polynomials (Tm)m∈N0 we get

T̂m(t) =
m∑
k=0

m2k(m+ k)!k!
(m− k)!(2k)!(m+ k)

(−1)m−keit − e−it
(it)k+1 (t ∈ R \ {0})

and

T̂m(0) =
∫ 1

−1
Tm(x) dx =


2, m = 0
0, m = 1
1 + (−1)m

1−m2 , m > 1.
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Now, we can deduce a Paley-Wiener theorem which brings everything together.

Proposition 5.3.19 Let α, β ∈ (−1, 0) and F ∈ H(Π+). If F extends to a function G ∈
H2,2,α,β(C \ [−1, 1]), then

F (z) = (Lf)(z) (z ∈ Π+)

for some f ∈ span
{

2e−it(α + 1)m
m∑
k=0

(m+ α + β + 1)k
(m− k)!(α + 1)k

[
e2itEk(−2it)− 1

(2it)k+1

]
: m ∈ N0

}
. In

this case, f is unique and we have

‖f‖2 ≤ K(‖G‖H2(C\[−1,1]) + ‖G̃‖L2(I,µα,β))

where the constant K > 0 does not depend on either f or G.

Proof. Due to Theorem 5.3.14 there is a unique h ∈ L2(I, µα,β) such that Ch = G. But now,
by Proposition 2.3.7 it holds that Lĥ = G = F on Π+ and we conclude by Proposition 5.3.17
that f = ĥ is as desired. The estimate follows from Plancherel’s theorem and and Theorem
5.3.14. 2

-10 -5 5 10

-1.0

-0.5

0.5

1.0

1.5

2.0

Figure 5.2: Plots of the real part of T̂0 (blue), T̂2 (yellow) and T̂4 (green).
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Figure 5.3: Plots of the imaginary part of T̂1 (blue), T̂3 (yellow) and T̂5 (green).
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Chapter 6

Integrability of Cauchy Transforms

Pure mathematics is, in its way, the
poetry of logical ideas.

Albert Einstein

Beside the Hardy spaces, there is another class of Banach spaces of analytic functions which
plays an important in complex analysis. There is talk of the Bergman spaces. These spaces
consist of analytic functions which are integrable on a certain open subset of the complex
plane subject to a certain measure on this set. If one considers Hardy and Bergman spaces
on the unit disk, then one sees close connections between these spaces, see [18]. However, the
situation changes a lot if one switches to the upper half-plane or to C \R. While the Cauchy
transform of a function f ∈ Lp(R) where p ∈ (1,∞) always belongs to the Hardy space
Hp(C \ R), it may happen that it does not belong to the (unweighted) Bergman space on
C \ R. Hence, it is a very delicate question whether and under which conditions the Cauchy
transform of a measure or a function is integrable with respect to a certain measure on the
upper (or lower) half-plane.

In order to answer this question, we shall first introduce weighted and unweighted Bergman
spaces and derive basic conditions when the Cauchy transform belongs to these spaces. Fur-
thermore, we will establish so-called Zen spaces which are kind of a refinement of Bergman
spaces. For our case of Cauchy transforms, Bergman and Zen spaces will however essentially
be the same. The reason why we put our focus on these spaces is that there has been a deep
investigation of Zen spaces in context with Fourier-Laplace transforms. In particular, the
authors in [31] or [60] have used the concept of Zen spaces to formulate generalized Paley-
Wiener theorems. Since Fourier transforms and Cauchy transforms are closely related we
shall see that the integrability of the Fourier transform will imply the integrability of the
corresponding Cauchy transform and vice versa. Finally, we will draw a connection between
Bergman spaces and potential theory. Therefore, we shall first show a formula for the log-
arithmic energy of a measure by means of its Fourier transform. Using Bessel functions,
one can generalize this formula to the multi-dimensional case which we will do in the last
section of this chapter. We will close with a result which gives a simple sufficient condition
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for integrability.
It should be remarked that the integrability of Cauchy transforms has been discussed

before, namely in [43]. Here, the authors considered the Cauchy transform Cµ on the space
L2(R, µ) for a locally finite, positive Borel measure µ on R. The task was to determine all
measures σ on Π+ such that Cµ is a bounded operator from L2(R, µ) to L2(Π+, σ). Their
approach based on so-called A2-conditions, dyadic grids and decomposition theorems. Our
research will differ in two main points. First, we will generally discuss the case of measures
and of functions in Lp(R). The results in [43] do not apply to this situation. And second,
we will also put our focus on the integrability of derivatives of Cauchy transforms which was
also not part of [43].

6.1 Weighted Bergman and Zen spaces
We start with a general definition of Bergman spaces.

Definition 6.1.1 Let Ω be an open set in the complex plane and p ∈ [1,∞). For ν ∈M∞(Ω),
we define the weighted Bergman space Apν(Ω) which is the set of all F ∈ H(Ω) that fulfill

‖F‖Apν(Ω) :=
(∫

Ω
|F (z)|p d|ν|(z)

) 1
p

< +∞.

Here, Ap(Ω) := Apλ2(Ω) is the (unweighted) Bergman space on Ω.

Remark 6.1.2 1. If p ∈ (1,∞) and f ∈ Lp(R), then Cf ∈ Hp(C\R) by Theorem 2.2.11.
Therefore, we have Cf ∈ Apλ1⊗ν(C \ R) for all ν ∈M(R) and in this case

‖Cf‖Ap
λ1⊗ν

(C\R) ≤ (|ν|(R))
1
p‖Cf‖Hp(C\R).

A similar argumentation shows that if f ∈ H1(R), then Cf ∈ A1
λ1⊗ν(C \ R) for all

ν ∈M(R) and in this case

‖Cf‖A1
λ1⊗ν

(C\R) ≤ |ν|(R)‖Cf‖H1(C\R).

2. Let p, r ∈ [1,∞). If f ∈ H+
p,∞(R)⊕H−p,∞(R), then Cf ∈ Arν(C\R) for all ν ∈M(C\R).

This follows from the fact that Cf is bounded on C \ R, see Corollary 2.4.4.

We shall now give a sufficient condition for the boundedness of derivatives of the Cauchy
transformation, both onM(R) and on Lp(R).

Proposition 6.1.3 Let p, r ∈ [1,∞) and n ∈ N0.

1. If µ ∈M(R), then (Cµ)(n) ∈ Arν(C \ R) for each ν ∈M∞(C \ R) satisfying∫ 1
|Im(z)|r(n+1) d|ν|(z) < +∞.
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2. If f ∈ Lp(R), then (Cf)(n) ∈ Arν(C \ R) for all ν ∈M∞(C \ R) satisfying

∫ (
1

|Im(z)|

) r
p

+rn

d|ν|(z) < +∞.

Proof. For the first statement, notice that

|(Cµ)(n)(z)|r ≤ n!r
(2π)r

(∫ 1
|t− z|n+1 d|µ|(t)

)r
≤ n!r‖µ‖r

(2π)r|Im(z)|r(n+1)

and the first statement follows. Hence, the second statement is clear for p = 1 and we only
have to treat the case p > 1. Here, Hölder’s inequality gives us

|(Cf)(n)(z)|r ≤ n!r
(2π)r

(∫ |f(t)|
|t− z|n+1 dt

)r
≤
(
n!‖f‖p

2π

)r
·
(∫

R

1
|t− z|q(n+1) dt

) r
q

,

where q is the conjugate exponent of p. But by the substitution t = Re(z) − Im(z)s we see
that

∫
R

1
|t− z|q(n+1) dt =

∫
R

(
1

|Im(z) · (s+ i)|

)q(n+1)

|Im(z)| ds

= 1
|Im(z)|q(n+1)−1

∫
R

( 1
s2 + 1

) q
2 (n+1)

ds

= Kq,n

|Im(z)|q(n+1)−1

with some constant Kq,n > 0 only depending on q and n. This concludes the proof since
r
q
(q(n+ 1)− 1) = r

p
+ rn. 2

Remark 6.1.4 The converse of Proposition 6.1.3 is false. Consider for example f : R→ C
with

f(t) = 1
π(1 + t2) (t ∈ R).

Then, we have (see Example B.5)

(Cf)(z) =


− 1

2πi(z + i) , z ∈ Π+

− 1
2πi(z − i) , z ∈ Π−.

.

Now if ν = λ1 ⊗ (gλ1) where g(y) = 1
y+11(0,∞)(y) (y ∈ R), then

∫
|(Cf)(z)|2 dν(z) =

∫ ∞
0

1
4π(y + 1)2 dy < +∞.

93



Therefore, Cf ∈ A2
ν(C \ R) but clearly∫ 1
|Im(z)|2 dν(z) =

∫ ∞
−∞

∫ ∞
0

1
y2(y + 1) dy dx = +∞∫ 1

|Im(z)| dν(z) =
∫ ∞
−∞

∫ ∞
0

1
y2 + y

dy dx = +∞.

We notice that Cf does not belong to the unweighted Bergman space A2(C \ R). But the
following is true: If ν ∈M∞(R) is such that∫ 1

|t|+ 1 d|ν|(t) < +∞,

then Cf ∈ A2
λ1⊗ν(C \ R). The same holds if ν ∈M∞(R) satisfies∫ ∞

−∞
|t|−1 d|ν|(t) < +∞.

We show that the observations in the latter remark are no coincidence.

Proposition 6.1.5 Let µ ∈M(R), p ∈ [1,∞) and n > 1
p
− 1. If ν ∈M∞(R) is σ-finite and

satisfies ∫ ∞
−∞
|t|1−p(n+1) d|ν|(t) < +∞,

then (Cµ)(n) ∈ Apλ1⊗ν(C \ R).

Proof. First notice that

|(Cµ)(n)(x+ iy)|p ≤ ‖µ‖p−1
(
n!
2π

)p
·
∫
R

1
|t− (x+ iy)|p(n+1) d|µ|(t),

by Jensen’s inequality. Now, notice that for fixed t ∈ R, y ∈ R \ {0}, we have∫
R

1
|t− (x+ iy)|p(n+1) dx = Kp,n

|y|p(n+1)−1

with some constant Kp,n > 0 only depending on p and n. If we put everything together and
apply the Fubini theorem, we get

∫
|(Cµ)(n)(x+ iy)|p dx d|ν|(y) ≤ Kp,n ·

(
n!‖µ‖

2π

)p
·
∫ ∞
−∞

1
|y|p(n+1)−1 d|ν|(y) < +∞.

2

Corollary 6.1.6 Let p ∈ [1,∞), n > 1
p
− 1 and ν ∈M∞(R) be σ-finite. Then, the following

are equivalent:

a) The mapping Cn :M(R)→ Apλ1⊗ν(C \ R), µ 7→ (Cµ)(n) is bounded.
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b) (Cµ)(n) ∈ Apλ1⊗ν(C \ R) for all µ ∈M(R).

c)
∫ ∞
−∞

t1−p(n+1) d|ν|(t) < +∞.

Proof. a) clearly implies b). Now, suppose that b) holds. If we take µ = δ0 we have

(Cµ)(z) = − 1
2πiz (z ∈ C∗)

and hence∫ ∞
−∞

∫ ∞
−∞
|(Cµ)(n)(x+ iy)|p dx d|ν|(y) = n!p

(2π)p
∫ ∞
−∞

∫ ∞
−∞

1
(x2 + y2)

p(n+1)
2

dx d|ν|(y)

= Kp,n

∫ ∞
−∞

1
|y|p(n+1)−1 d|ν|(y)

where the constant Kp,n only depends on p and n. Therefore, c) holds.
If c) holds, then a) is valid by Proposition 6.1.5. 2

Remark 6.1.7 It is not possible to formulate a characterization for the measures ν ∈
M∞(R) such that Cµ ∈ Apν⊗λ1(C \ R) for all µ ∈ M(R). Because such a measure must
satisfy ∫

R

1
|x|p−1 d|ν|(x) < +∞

which can again be seen by taking the Dirac measure δ0. But on the other side, the measure
ν = fλ1 where f(x) = |x|p−1

|x− 1|r(x2 + 1) where r = 2− p for p ∈ (1, 2) and r = 0 else satisfies
this condition but if µ = δ1, then

∫
Π+
|(Cµ)(z)|p d(ν ⊗ λ1)(z) = Kp


∫ ∞
−∞

|x|p−1

|x− 1|p−1+r(x2 + 1) dx = +∞, p < 2∫ ∞
−∞

|x|p−1

|x− 1|p−1(x2 + 1) dx = +∞, p ≥ 2

where the constant Kp > 0 only depends on p.

In what follows, we will introduce a refined version of Bergman spaces. Since we bring
once again the Fourier transformation into play, it is convenient to consider functions on the
upper half-plane (however modified results also hold for the lower half-plane). Therefore, we
shall only consider measures which satisfy a certain growth condition.

Definition 6.1.8 Let ν ∈ M∞,+(R) with supp(ν) ⊂ [0,∞). We say that ν satisfies the
∆2-condition if

sup
t>0

ν([0, 2t))
ν([0, t)) < +∞.

We denote byM∆2 the set of all positive measures which satisfy the ∆2-condition. Moreover,
M∆2,0 is the subset of all ν ∈M∆2 with the property that ν({0}) = 0.
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Example 6.1.9 1. The Dirac measure δ0 is a measure which satisfies the ∆2-condition.

2. The measure ωλ1 where ω(x) = 1
x+11[1,∞)(x) (x ∈ R) does not satisfy the ∆2-condition.

3. The Lebesgue measure λ1 satisfies the ∆2-condition.

Remark 6.1.10 Note that a measure ν ∈M∆2 is locally finite, hence (since we are dealing
with a measure on [0,∞)) σ-finite and the product measure λ1⊗ν is a regular Borel measure
on R× [0,∞) = Π+.

Definition 6.1.11 Let ν ∈ M∆2 . Then, for p ∈ [1,∞) a function F ∈ H(Π+) belongs to
the Zen space Zpν (Π+) if

‖F‖Zpν (Π+) := sup
r>0

(∫
Π+
|F (·+ ir)|p d(λ1 ⊗ ν)

) 1
p

< +∞.

Remark 6.1.12 If ν is the Dirac measure concentrated at 0, i.e. ν = δ0, then Zpν (Π+) is the
Hardy space on the upper half plane Hp(Π+).

The following useful characterization of Zen spaces can be found in [60, Corollary 4.2]:

Lemma 6.1.13 (Peloso, Salvatori, [60]) Let ν ∈ M∆2 and p ∈ [1,∞). Then, Zpν (Π+) is a
Banach space and the following statements hold:

1. If ν({0}) = 0, then

Zpν (Π+) =
⋂
a>0
Hp(ia+ Π+) ∩ Apλ1⊗ν(Π+).

2. If ν({0}) > 0, then
Zpν (Π+) = Hp(Π+) ∩ Lp(Π+, λ1 ⊗ ν).

In both cases, we have
‖F‖pZpν (Π+) =

∫
Π+
|F |p d(λ1 ⊗ ν).

Remark 6.1.14 Notice that by Lemma 6.1.13 we know that if ν({0}) > 0, then each F ∈
Zpν (Π+) admits a boundary function on the real axis.

For our purposes which always fit into the case ν({0}) = 0 the Zen spaces can therefore
be seen as refined Bergman spaces. Similar to the case of Bergman spaces also the Zen spaces
appear in context with the Fourier-Laplace transform. In order to use these results we want
to show that the Cauchy transform of a measure µ ∈ M(R) or a function f ∈ Lp(R) where
p ∈ [1, 2] belongs to the Zen space Z2

ν (Π+) if and only if it belongs to the corresponding
Bergman space A2

λ1⊗ν(Π+). We shall use the above characterization and start with a result
on the Fourier-Laplace transform.

Recall that for p ∈ [1,∞] the space E0,p consists of those measurable functions f : R→ C
satisfying f1[0,∞) = f and fe−a· ∈ Lp(0,∞) for all a > 0.
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Lemma 6.1.15 Let g ∈ E0,1 and y > 0. Then,∫ ∞
−∞
|(Lg)(n)(x+ iy)|2 dx = 1

2π

∫ ∞
0
|g(t)|2t2ne−2yt dt.

Proof. Let y > 0 and Gy(t) = g(t)(it)ne−yt. Then,∫ ∞
−∞
|Gy(t)| dt ≤ max

t∈(0,∞)
tne−

y
2 t ·

∫ ∞
0
|g(t)|e−

y
2 t dt < +∞

since g ∈ E0,1 and hence Gy ∈ L1(R). Furthermore,
∫ ∞
−∞
|(Lg)(n)(x+ iy)|2 dx =

∫ ∞
−∞

∣∣∣∣ 1
2π

∫ ∞
0

g(t)(it)ne−yteixt dt
∣∣∣∣2 dx = 1

4π2‖Ĝy‖2
2.

First, suppose that Gy ∈ L2(R). Then we can apply Plancherel’s theorem and get∫ ∞
−∞
|(Lg)(n)(x+ iy)|2 dx = 1

2π‖Gy‖2
2 = 1

2π

∫ ∞
0
|g(t)|2t2ne−2yt dt.

If Gy /∈ L2(R), then also Ĝy /∈ L2(R) (otherwise the fact that Gy ∈ L1(R) would imply
Gy ∈ L2(R)) and hence ∫ ∞

−∞
|(Lg)(n)(x+ iy)|2 dx = +∞.

2

One interesting consequence of Lemma 6.1.15 is that it allows characterizations when a
derivative of a Cauchy transform belongs to the Hardy space H2(Π+).

Corollary 6.1.16 Let n ∈ N0.

1. If µ ∈M(R), then (Cµ)(n) ∈ H2(Π+) if and only if∫ ∞
0
|µ̂(t)|2t2n dt < +∞

and in this case
‖(Cµ)(n)‖2

H2(Π+) = 1
2π

∫ ∞
0
|µ̂(t)|2t2n dt.

2. If p ∈ [1, 2] and f ∈ Lp(R), then (Cf)(n) ∈ H2(Π+) if and only if∫ ∞
0
|f̂(t)|2t2n dt < +∞

and in this case
‖(Cf)(n)‖2

H2(Π+) = 1
2π

∫ ∞
0
|f̂(t)|2t2n dt.
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Proof. Let µ ∈ M(R). Since µ̂1(0,∞) ∈ E0,1 (notice that µ̂ is bounded), Proposition 3.1.9,
Lemma 6.1.15 and the monotone convergence theorem imply that

sup
y>0

∫ ∞
−∞
|(Cµ)(n)(x+ iy)|2 dx = sup

y>0

1
2π

∫ ∞
0
|µ̂(t)|2t2ne−2yt dt = 1

2π

∫ ∞
0
|µ̂(t)|2t2n dt.

The second statement is therefore clear for p = 1. If f ∈ L2(R), then f̂1(0,∞) ∈ E0,1 by
Hölder’s inequality. If f ∈ Lp(R) where p ∈ (1, 2), then we write f = f1 + f2 with f1 ∈
L1(R), f2 ∈ L2(R). Since E0,1 is a vector space over C we see that f̂1(0,∞) ∈ E0,1 as well. The
rest of the proof is similar to the case of measures. 2

Proposition 6.1.17 Let p ∈ (1,∞), r ∈ [1, 2] and n ∈ N0. Then, the following statements
hold:

1. If µ ∈M(R), then (Cµ)(n) ∈ Hp(ia+ Π+) for all a > 0.

2. If f ∈ Lr(R), then (Cf)(n) ∈ H2(ia+ Π+) for all a > 0.

Proof. Let y > 0. For the first statement recall that∫
|(Cµ)(n)(x+ iy)|p dx ≤ Kp,n

(n!‖µ‖)p
(2π)p|y|p(n+1)−1

with some constant Kp,n > 0. This implies that the first statement is valid. The second
statement is therefore clear for p = 1. If f ∈ L2(R), then we use Proposition 2.3.7 and
Lemma 6.1.15 and see that for a > 0 we have

sup
y>a

∫ ∞
−∞
|(Cf)(n)(x+ iy)|2 dx ≤ 1

2π

∫ ∞
0
|f̂(t)|2t2ne−2at dt.

Thus, (Cf)(n) ∈ H2(ia+ Π+) for each n ∈ N0 and a > 0. If f ∈ Lr(R) where r ∈ (1, 2), then
there are functions f1 ∈ L1(R) and f2 ∈ L2(R) such that f = f1 + f2 and we conclude by the
linearity of the Cauchy transform that (Cf)(n) ∈ H2(ia+ Π+) for each a > 0. 2

The following corollary is crucial for the subsequent section.

Corollary 6.1.18 Let p ∈ (1,∞), r ∈ [1, 2], n ∈ N0 and ν ∈ M∆2,0. Then, the following
statements hold:

1. If µ ∈M(R), then (Cµ)(n) ∈ Zpν (Π+) if and only if (Cµ)(n) ∈ Apλ1⊗ν(Π+).

2. If f ∈ Lr(R), then (Cf)(n) ∈ Z2
ν (Π+) if and only if (Cf)(n) ∈ A2

λ1⊗ν(Π+).
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6.2 Integrability connections between Cauchy and Fourier
transforms

In the following, we say that a measure ν ∈ M∞,+(R) belongs to the set Mexp if it has
support in [0,∞) and

1
2π

∫ ∞
0

e−αy dν(y) < +∞

for every α ∈ (0,∞). This condition is also referred to as the exponential condition. In
this case, we write

wν,n(t) :=


t2n

2π

∫ ∞
0

e−2yt dν(y), t ∈ (0,∞)
0, t ∈ (−∞, 0]

for n ∈ N0 and call this function wν,n the exponential weight of ν of order n. We
shall consider two important subsets ofMexp. The first one is the setMeps consisting of all
measures ν = ωλ1 where ω : (0,∞)→ [0,∞] satisfies the ε-condition, that is ω > 0 almost
everywhere and for each 0 < a < b <∞ there exists some ε(a, b) > 0 such that∫ b

a
ω(y)−ε(a,b) dy < +∞

The second subset of Mexp that we consider is the set M∆2 . It is important to notice
that we neither haveM∆2 ⊂Meps norMeps ⊂M∆2 . For example, if ω(x) = x1[0,1](x) (x ∈
[0,∞)), then ωλ1 satisfies the ∆2-condition, but not the ε-condition. Conversely, the function
ω(x) = 1

x
1(0,∞)(x) (x ∈ [0,∞)) satisfies the ε-condition, but the measure ωλ1 does not fulfill

the ∆2-condition since it is not locally finite.
We start with a lemma which is an analogue of a result in [42, Theorem 1].

Lemma 6.2.1 Let ν ∈ Mexp and n ∈ N0. For g ∈ E0,1 the following statements are equiva-
lent:

a) g ∈ L2((0,∞), wν,nλ1).

b) (Lg)(n) ∈ A2
λ1⊗ν(Π+).

In this case,
‖(Lg)(n)‖A2

λ1⊗ν
(Π+) = ‖g‖L2((0,∞),wν,nλ1).

Proof. By Lemma 6.1.15 we have∫ ∞
0

∫ ∞
−∞
|(Lg)(n)(x+ iy)|2 dx dν(y) = 1

2π

∫ ∞
0

(∫ ∞
0
|g(t)|2t2ne−2yt dt

)
dν(y)

= ‖g‖2
L2((0,∞),wν,nλ1).

2
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Remark 6.2.2 Notice that in general for a measure ν ∈ Mexp it does not hold that
L2((0,∞), wν,nλ1) ⊂ E0,1. Take for example ν = δ1, the Dirac measure concentrated at
1. Then, wν,n(t) = t2ne−2t

2π 1(0,∞)(t) and thus, the function f(t) = e
t
21(0,∞)(t) belongs to

L2((0,∞), wν,nλ1) but not to E0,1.

Corollary 6.2.3 Let ν ∈Mexp, p ∈ [1, 2] and n ∈ N0.

1. If µ ∈ M(R) is such that µ̂1(0,∞) ∈ L2((0,∞), wν,nλ1), then (Cµ)(n) ∈ A2
λ1⊗ν(Π+) and

in this case
‖(Cµ)(n)‖A2

λ1⊗ν
(Π+) = ‖µ̂‖L2((0,∞),wν,nλ1).

2. If f ∈ Lp(R) is such that f̂1(0,∞) ∈ L2((0,∞), wν,nλ1), then (Cf)(n) ∈ A2
λ1⊗ν(Π+) and

in this case
‖(Cf)(n)‖A2

λ1⊗ν
(Π+) = ‖µ̂‖L2((0,∞),wν,nλ1).

Proof. This follows immediately from Proposition 2.3.7, Proposition 3.1.9 and Lemma 6.2.1.
2

The latter observations are crucial to illustrate the relation between Cauchy transforms
and real Fourier transforms. One could ask for a converse of the previous result. If we put
extra conditions on the measure, then a converse statement holds.

One of the main ingredients of the proof is a theorem of Paley-Wiener type which is due
to Harper and can be found in [31, Theorem 2.1].
Proposition 6.2.4 (Harper, [31]) Let ν ∈Meps. A function F ∈ H(Π+) belongs to A2

λ1⊗ν(Π+)
if and only if there is some g : R→ C such that∫ ∞

−∞
|g(t)|2 ·

(∫ ∞
0

e−2yt dν(y)
)
dt < +∞

and
F (z) = 1

2π

∫ ∞
−∞

g(t)eizt dt (z ∈ Π+).

In this case, g is unique and

‖F‖2
A2
λ1⊗ν

(Π+) = 1
2π

∫ ∞
−∞
|g(t)|2 ·

(∫ ∞
0

e−2ytdν(y)
)
dt.

Remark 6.2.5 By Proposition 6.2.4 the space A2
λ1⊗ν(Π+) is a Hilbert space for each ν ∈

Meps.

Remark 6.2.6 For α ∈ R we write µα = tα1(0,∞)(t) dt. Then, Proposition 6.2.4 implies that
for α > −1 we have an isomorphism between the space of all measurable functions g : R→ C
satisfying ∫ ∞

−∞
|g(t)|2 ·

(∫ ∞
0

yαe−2yt dy
)
dt < +∞

and A2
λ1⊗µα(Π+). But since such a function g has to satisfy supp(g) ⊂ (0,∞), we deduce in

particular that the Fourier-Laplace transformation is an isomorphism between L2((0,∞), µ−α−1)
and A2

λ1⊗µα(Π+) which was exactly what the authors in [17, Theorem 1] proved.
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In particular, the Fourier-Laplace transformation establishes an isomorphism between
the space L2((0,∞), dt/t) and the unweighted Bergman space A2(Π+). Applying similar
techniques for the lower half-plane Π− one sees that the Fourier-Laplace transformation is
also an isomorphism between L2(R, dt/|t|) and A2(C \ R). Combining this once again with
Proposition 2.3.7 and Proposition 3.1.9 we deduce

Corollary 6.2.7 The following statements hold:

1. Let µ ∈M(R). Then, Cµ ∈ A2(C \ R) if and only if µ̂ ∈ L2(R, dt/|t|).

2. Let p ∈ [1, 2] and f ∈ Lp(R). Then, Cf ∈ A2(C \ R) if and only if f̂ ∈ L2(R, dt/|t|).

Corollary 6.2.8 Let µ ∈M(R) with µ(R) 6= 0. Then, Cµ /∈ A2(C \ R).

Proof. Since µ̂(0) 6= 0 and µ̂ is continuous on R we know that |µ̂|2 ≥ K on some interval
(−ε, ε) for some constantK > 0. But this implies µ̂ /∈ L2(R, dt/|t|) and hence Cµ /∈ A2(C\R)
by Corollary 6.2.7. 2

The following theorem of Paley-Wiener type is due to Peloso and Salvatori and can be
found in [60, Theorem 4.3].

Proposition 6.2.9 (Peloso, Salvatori, [60]) Let ν ∈ M∆2 . A function F ∈ H(Π+) belongs
to Z2

ν (Π+) if and only if there exists some g ∈ L2((0,∞), wν,0λ1) such that

F (z) = (Lg)(z) (z ∈ Π+).

In this case, g is unique and

‖F‖Z2
ν (Π+) = ‖g‖L2((0,∞),wν,0λ1).

Remark 6.2.10 Proposition 6.2.9 states in particular that for α > −1

L(L2((0,∞), µ−α−1)) = Z2
µα(Π+).

But due to the injectivity of L and Remark 6.2.6 we conclude that A2
λ1⊗µα(Π+) = Z2

µα(Π+)
for all α > −1. In particular, the unweighted Bergman space coincides with the unweighted
Zen space.

Now, we are ready to prove converse statements to Corollary 6.2.3.

Proposition 6.2.11 Let ν ∈Meps ∪M∆2,0, p ∈ [1, 2] and n ∈ N0.

1. If µ ∈M(R) is such that (Cµ)(n) ∈ A2
λ1⊗ν(Π+), then µ̂1(0,∞) ∈ L2((0,∞), wν,nλ1) and

‖(Cµ)(n)‖A2
λ1⊗ν

(Π+) = ‖µ̂‖L2((0,∞),wν,nλ1).
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2. If f ∈ Lp(R) is such that (Cf)(n) ∈ A2
λ1⊗ν(Π+), then f̂1(0,∞) ∈ L2((0,∞), wν,nλ1) and

‖(Cf)(n)‖A2
λ1⊗ν

(Π+) = ‖f̂‖L2((0,∞),wν,nλ1).

Proof. We only prove 1. since 2. is similar. At first we remark that, according to Proposition
3.1.9, we have

(Cµ)(n)(z) = 1
2π

∫ ∞
0

µ̂(t)(it)neizt dt (z ∈ Π+).

Suppose first that ν ∈Meps. Since (Cµ)(n) ∈ A2
λ1⊗ν(Π+), we know by Proposition 6.2.4 that

there is a unique g such that

(Cµ)(n)(z) = (Lg)(z) (z ∈ Π+)

and
‖(Cµ)(n)‖2

A2
λ1⊗ν

(Π+) = 1
2π

∫ ∞
−∞
|g(t)|2 ·

(∫ ∞
0

e−2yt dν(y)
)
dt < +∞.

Hence, the Fourier transforms of the functions t 7→ µ̂(t)1(0,∞)(t)(it)n exp(−yt) and g exp(−y ·)
coincide for all y ∈ (0,∞), and by the uniqueness of Fourier transforms, we must have

g(t) = µ̂(t)(it)n1(0,∞)(t) (t ∈ R).

In particular, supp(g) ⊂ (0,∞) and∫ ∞
0
|µ̂(t)|2wν,n(t) dt =

∫ ∞
0
|g(t)|2wν,0(t) dt.

If ν ∈ M∆2,0, then (Cµ)(n) ∈ Z2
ν (Π+) by Lemma 6.1.17. Hence, Proposition 6.2.9 gives us a

unique g : (0,∞)→ C such that (Cµ)(n) = Lg on Π+ and moreover

‖(Cµ)(n)‖Z2
ν (Π+) = ‖(Cµ)(n)‖A2

λ1⊗ν
(Π+) = ‖g‖L2((0,∞),wν,0λ1) < +∞.

The rest of the proof is similar to the case ν ∈Meps. 2

Corollary 6.2.12 Let p ∈ [1, 2], n ∈ N0 and ν ∈ Meps ∪M∆2,0. Moreover, let F = Cf ∈
Hp(C \ R). Then F (n)|Π+ belongs to A2

λ1⊗ν(Π+) if and only if f̂1(0,∞) ∈ L2((0,∞), wν,nλ1)
and in this case

‖F (n)‖A2
λ1⊗ν

(Π+) = ‖f̂‖L2((0,∞),wν,nλ1).

Proof. If f̂1(0,∞) ∈ L2((0,∞), wν,nλ1), then F (n) = (Cf)(n) ∈ A2
λ1⊗ν(Π+) by Lemma 6.2.3

and
‖F (n)‖A2

λ1⊗ν
(Π+) = ‖f̂‖L2((0,∞),wν,nλ1).

Conversely, if F (n) ∈ A2
λ1⊗ν(Π+), then Proposition 6.2.11 implies f̂1(0,∞) ∈ L2((0,∞), wν,nλ1).

2

Due to Corollary 6.2.12, for p ∈ (1, 2], the Cauchy transform is also a bijective map
between the space {

f ∈ Lp(R) : f̂1(0,∞) ∈ L2((0,∞), wν,nλ1)
}
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and
{F ∈ Hp(C \ R) : F (n) ∈ A2

λ1⊗ν(Π+)}.
A similar statement can be said for the case p = 1. It is natural to ask if it is an isomorphism
as well, i.e., if both spaces are complete (and in which sense). This is indeed the case.

Lemma 6.2.13 Let p ∈ [1,∞), n ∈ N0 and ν ∈ Meps ∪ M∆2,0. Then, the space {F ∈
Hp(C \ R) : F (n) ∈ A2

λ1⊗ν(Π+)} is a Banach space with respect to the norm ‖F‖Hp(C\R) +
‖F (n)‖A2

λ1⊗ν
(Π+).

Proof. We pick a Cauchy sequence (Fk)k∈N which is Cauchy with respect to the given norm.
Then, it is Cauchy with respect to ‖ · ‖Hp(C\R) and hence there is some F ∈ Hp(C \ R) such
that ‖Fk −F‖Hp(C\R) → 0 (k →∞). In particular, F (n)

k → F (n) local uniformly on C \R, see
[50, Lemma 11.5]. On the other hand, since (Fk)n∈N is Cauchy with respect to ‖ · ‖A2

λ1⊗ν
(Π+),

we know that there is F̃ ∈ A2
λ1⊗ν(Π+) such that ‖F (n)

k − F̃‖A2
λ1⊗ν

(Π+) → 0 (here we used
Lemma 6.1.13 for the case that ν ∈ M∆2,0). In particular, F (n)

k → F̃ almost everywhere on
Π+, at least for a subsequence, and we conclude that F (n)|Π+ ∈ A2

λ1⊗ν(Π+). 2

Remark 6.2.14 Let n ∈ N0 and ν ∈ Meps ∪ M∆2,0. Then, Theorem 6.2.12 implies in
particular that the following assertions hold:

1. For p ∈ (1, 2] the space
{
f ∈ Lp(R) : f̂1(0,∞) ∈ L2((0,∞), wν,nλ1)

}
is a Banach space

with respect to the norm ‖f‖p + ‖f̂‖L2((0,∞),wν,nλ1).

2. The space
{
f ∈ H1(R) : f̂1(0,∞) ∈ L2((0,∞), wν,nλ1)

}
is a Banach space with respect

to the norm ‖f‖H1(R) + ‖f̂‖L2((0,∞),wν,nλ1).

Moreover, the Cauchy transformation is an isomorphism in Theorem 6.2.12 when the
spaces are equipped with the associated norms.

Remark 6.2.15 It can be proved by Lp theory and and the monotone convergence theorem
that for a measurable function ω : R → [0,∞] and ν = ωλ1 the following assertions are
equivalent:

a) The mapping
ι : L2(R)→ L2((0,∞), wν,0λ1), f 7→ f1(0,∞)

is bounded.

b) f1(0,∞) ∈ L2((0,∞), wν,0λ1) for each f ∈ L2(R).

c) ω ∈ L1(0,∞).

Corollary 6.2.12 gives another proof of this equivalence. We only have to prove that b)
implies c). If b) holds and f ∈ L2(R), then f̂1(0,∞) ∈ L2((0,∞), wν,0λ1) by our assumption
and Plancherel’s theorem. But by Lemma 6.2.3, we know that Cf ∈ A2

λ1⊗ν(Π+). Corollary
6.2.12 (or Lemma 2.2.7) now implies that H2(Π+) ⊂ A2

λ1⊗ν(Π+) and hence ω ∈ L1(0,∞) by
Carleson’s Theorem, see Theorem 1.2.8.
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6.3 An energy formula on the real line
We have seen earlier (Corollary 6.2.8) that if µ ∈ M(R) is such that µ(R) 6= 0, then Cµ /∈
A2(C \ R). In particular, our argument was that µ̂ /∈ L2(R, dt/|t|) since

∫
|t|≤1

|µ̂(t)|2
|t|

= +∞.

It is natural to ask what can be said about the integral
∫
|t|≥1

|µ̂(t)|2
|t|

dt.

Let us first take a look at the discrete analogue of this integral, i.e. if µ ∈ M(T) (here T
denotes the unit circle in C) we consider

∑
k∈Z\{0}

|ak|2

|k|

where
ak = 1

2π

∫
T
ζ−k dµ(ζ) (k ∈ Z)

are the Fourier coefficients of µ. A basic result (see [39], p. 35) states that if µ ∈ M(T) is
such that µ ≥ 0 or ∫ ∫

| ln(|z − w|)| d|µ|(z) d|µ|(w) < +∞,

then ∑
k∈Z\{0}

|ak|2

|k|
= 2

∫ ∫
ln
(

1
|z − w|

)
dµ(z) dµ(w). (6.3.1)

This gives especially a characterization when ∑
k∈Z\{0}

|ak|2
|k| is finite.

In the following, we shall derive a similar characterization for the finiteness of our integral.
It will hold under fairly general conditions and in particular for positive measures inMc(R).
Moreover, we will also answer the question when Cµ belongs to A2(C \ R).

Due to the continuity of µ̂ it is necessary that µ(R) = 0. Unfortunately, this condition is
not sufficient. For example, take µ = δ1 − δ−1. Then, µ(R) = 1− 1 = 0 but

∫
R

|µ̂(t)|2
|t|

dt = 4
∫
R

sin2(t)
|t|

dt = +∞.

This suggests that one needs some additional properties of the measure µ in order to formulate
a converse statement.

We write Mln(Rn) for the set of all µ ∈ M(Rn) such that one of the following two
conditions is fulfilled:
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i) µ ∈M+(Rn) and ∫ ∫
ln
(

1
|x− y|

)
dµ(y) dµ(x)

exists in [−∞,+∞],

ii) µ ∈M(Rn) and ∫ ∫ ∣∣∣∣∣ln
(

1
|x− y|

)∣∣∣∣∣ d|µ|(y) d|µ|(x) < +∞.

Definition 6.3.1 Let µ ∈Mln(Rn). Then,

pµ(x) :=
∫

ln
(

1
|x− y|

)
dµ(y)

exists in C ∪ {±∞} for µ-almost every x ∈ Rn and pµ is called the logarithmic potential
of µ. Moreover,

I(µ) :=
∫ ∫

ln
(

1
|x− y|

)
dµ(y) dµ̄(x) =

∫
pµ(x) dµ̄(x)

is called the logarithmic energy of µ.

Remark 6.3.2 1. If µ ∈M+(Rn) satisfies∫
ln(1 + |x|) dµ(x) < +∞,

then I(µ) ∈ (−∞,+∞] thanks to the inequality |x−y| ≤ (1+|x|)(1+|y|). In particular,
this shows thatMc,+(Rn) ⊂Mln(Rn).

2. Let µ, ν ∈Mln(Rn) be positive measures such that I(µ), I(ν) ∈ (−∞,+∞] or I(µ), I(ν) ∈
[−∞,+∞). Then, due to [52, Theorem 2.2], we have

2
∫ ∫

ln
(

1
|x− y|

)
dµ(x) dν(y) ≤ I(µ) + I(ν).

Moreover, if I(µ), I(ν) ∈ R, then the left side is finite as well. In particular, this implies
that if µ, ν ∈Mln(Rn) are complex measures, then∫ ∫ ∣∣∣∣∣ln

(
1

|x− y|

)∣∣∣∣∣ d|µ|(x) d|ν|(y) < +∞.

However, there exist µ, ν ∈M+(R)\Mln(R) such that
∫
pµ dν = −∞, see [52, Remark

2.3].

Remark and Definition 6.3.3 A subset E ⊂ Rn is called polar if I(µ) = +∞ for every
0 6= µ ∈ Mc,+(Rn) with support in E. For compact K ⊂ C(= R2), one can shows that K is
polar if and only if A2(C \K) = {0}, see [10, Chapter 21, Theorem 9.5].
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Remark and Definition 6.3.4 Let K ⊂ Rn be compact and non-polar. Then, see [65,
Theorem 3.3.2 and Theorem 3.7.6], there exists a unique probability measure ν with

I(ν) = inf{I(µ) : µ ∈M+(Rn), supp(µ) ⊂ K,µ(Rn) = 1}.

This measure is called the equilibrium measure forK. In this case, the number cK := e−I(ν)

is called the logarithmic capacity of K.

Example 6.3.5 1. If K = {x ∈ R2 : |x| = 1}, then the equilibrium measure for K is
(see [6, Example 4.2.9]) the normalized arc length measure on ∂K, i.e. the measure
2πm = λg1, where g : R→ R2, g(t) = (cos(t), sin(t))1[−π,π](t).

2. IfK = [−1, 1], then the equilibrium measure forK is (see [6, Example 4.2.9]) the arcsine
distribution,. i.e. the measure fλ1, where f : R→ R, f(t) = 1

π
√

1− t2
1(−1,1)(t).

In order to derive a formula which connects the Fourier transform of a measure and its
logarithmic energy we shall need some preparation. Our goal is that this formula holds both
in the case that the energy is finite and in the case that the energy is not a finite number.
We start with a lemma that will turn out quite helpful for the finite case.

Lemma 6.3.6 Let g ∈ L1,loc(0,∞) and u ∈ C. If t 7→ g(t)/t is improperly integrable at ∞
and t 7→ (g(t)− u)/t is improperly integrable at 0, then for arbitrary a > 0

lim
ε→0
N→∞

∫ N

ε

g(ra)− g(r)
r

dr = u ln
(1
a

)
.

If, in addition, g ∈ L∞(R), then∣∣∣∣∣
∫ N

ε

g(ra)− g(r)
r

dr

∣∣∣∣∣ ≤ 2(‖g‖∞ + |u|)| ln(a)|.

Proof. We may assume that 0 < a < 1. For fixed 0 < ε < N < +∞ we have
∫ N

ε

g(ra)− g(r)
r

dr =
∫ Na

εa

g(r)
r

dr −
∫ N

ε

g(r)
r

dr =
(∫ ε

εa
−
∫ N

Na

)
g(r)
r

dr

= u
∫ ε

εa

dr

r
+
∫ ε

εa

g(r)− u
r

dr −
∫ N

Na

g(r)
r

dr .

The first term is u ln(1/a). According to Cauchy’s criterion, the second term vanishes as ε
tends to 0 and the third as N tends to ∞. Moreover, if g is essentially bounded we obtain
that ∣∣∣∣∣

∫ N

ε

g(ra)− g(r)
r

dr

∣∣∣∣∣ ≤ 2(‖g‖∞ + |u|) |ln(a)| .

This concludes the proof. 2
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Corollary 6.3.7 Let a ∈ R \ {0}. Then, for 0 < ε < N <∞ we have

lim
ε→0
N→∞

∫ N

ε

cos(ra)− cos(r)
r

dr = ln
(

1
|a|

)
∣∣∣∣∣
∫ N

ε

cos(ra)− cos(r)
r

dr

∣∣∣∣∣ ≤ 2 |ln (|a|)| .

Proof. Take g = cos, u = 1 in Lemma 6.3.6 and use the symmetry of cos . 2

Remark 6.3.8 Due to [30, Lemma 4.2.5], we also have for a ∈ R \ {0} and 0 < ε < N <∞

lim
ε→0
N→∞

∫ N

ε

e−ira − cos(r)
r

dr = ln
(

1
|a|

)
− iπ2 sign(a),∣∣∣∣∣

∫ N

ε

e−ira − cos(r)
r

dr

∣∣∣∣∣ ≤ 2 |ln (|a|)|+ 4.

We take a short look to the situation on the unit circle. If µ ∈ M(S) satisfies
∞∑
k=1

|ak|2
k

<

+∞, then also
−1∑

k=−∞

|ak|2
|k| < +∞, see [41, Lemma 2]. This is of course clear for real-valued

measures since then one always has a−k = ak for all k ∈ Z but the point of the matter is that
the result also holds for complex measures. The question suggests oneself if an analogue may
be true for the continuous situation on the real axis. The answer is positive.

Proposition 6.3.9 Let µ ∈M(R). Then, the following are equivalent:

a)
∫ ∞

0

|µ̂(t)|2
t

dt < +∞.

b)
∫ 0

−∞

|µ̂(t)|2
|t|

dt < +∞.

Proof. For fixed 0 < ε < N < +∞ Fubini’s theorem gives us that∫ N

ε

|µ̂(t)|2
t

dt−
∫ −ε
−N

|µ̂(t)|2
−t

dt

=
∫ N

ε

(∫
e−ixt dµ(x)

)
·
(∫

eiyt dµ̄(y)
)
dt

t
−
∫ −ε
−N

(∫
e−ixt dµ(x)

)
·
(∫

eiyt dµ̄(y)
)
dt

−t

=
∫ ∫ (∫ N

ε

ei(y−x)t

t
dt−

∫ −ε
−N

ei(y−x)t

−t
dt

)
dµ(x) dµ̄(y)

= 2i
∫ ∫ ∫ N

ε

sin((y − x)t)
t

dt dµ(x) dµ̄(y)

If a) holds, then∣∣∣∣∣
∫ ∞

0

|µ̂(t)|2
t

dt−
∫ 0

−∞

|µ̂(t)|2
|t|

dt

∣∣∣∣∣ = 2

∣∣∣∣∣∣ lim
ε→0
N→∞

∫ ∫ ∫ N

ε

sin((x− y)t)
t

dt dµ(x) dµ̄(y)

∣∣∣∣∣∣ .
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Now, let (x, y) ∈ R2. By Remark 6.3.8 we know that

lim
ε→0
N→∞

∫ N

ε

sin((y − x)t)
t

dt = π

2 sign(y − x)

and that ∣∣∣∣∣
∫ N

ε

sin((y − x)t)
t

dt

∣∣∣∣∣ ≤ 4

for all 0 < ε < N < +∞. The dominated convergence theorem implies that∣∣∣∣∣
∫ ∞

0

|µ̂(t)|2
t

dt−
∫ 0

−∞

|µ̂(t)|2
|t|

dt

∣∣∣∣∣ ≤ π

∣∣∣∣∫ ∫
sign(y − x) dµ(x) dµ̄(y)

∣∣∣∣ ≤ 2π‖µ‖2.

Therefore, also b) holds and the reverse statement is true for symmetry reasons. 2

Corollary 6.3.10 Let µ ∈M(R). Then, the following are equivalent:

a) Cµ ∈ A2(Π+).

b) Cµ ∈ A2(Π−).

Remark 6.3.11 Let µ ∈M(R) and n ∈ N0. Then,

|µ̂(t)|2t2n
|t|2n+1 = |µ̂(t)|2

|t|
(t ∈ R \ {0})

and by Proposition 3.1.9 we have (Cµ)(n) = L(µ̂(i ·)n). Combining these facts with Proposi-
tion 6.3.9 and Remark 6.2.6 we deduce that the following statements are equivalent:

a)
∫ ∞

0

∫ ∞
−∞
|(Cµ)(n)(x+ iy)|2y2n dx dy < +∞.

b)
∫ 0

−∞

∫ ∞
−∞
|(Cµ)(n)(x+ iy)|2y2n dx dy < +∞.

This is a generalization of the Corollary 6.3.10.

We are now ready for a first integrability result for Cauchy transforms:

Proposition 6.3.12 Let K ⊂ R be compact and polar. For a measure µ ∈ M(R) with
supp(µ) ⊂ K, the following statements are equivalent:

a) Cµ ∈ A2(Π+).

b) µ = 0.
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Proof. If Cµ ∈ A2(Π+), then we also have Cµ ∈ A2(C \K) by Corollary 6.3.10. Therefore,
Remark and Definition 6.3.3 implies Cµ = 0 and hence µ = 0. 2

As mentioned before, so as not to exclude constantly any cases we want our formula to
hold when the energy of a measure is equal to +∞ or −∞. Actually, these cases will make
up the greater part of the proof. For the sake of readability we shall therefore outsource two
crucial facts into two lemmas.

Lemma 6.3.13 Let g ∈ L1,loc(0,∞) be real-valued with u := ess sup|g| < ∞ and such that
t 7→ (u− g(t))/t is integrable at 0. Then, for all N > 0 we have

∫ N

0

g(ra)− g(r)
r

dr

≥ 0, a ∈ [0, 1]
≤ 0, a ∈ [1,∞)

.

Proof. Fix N > 0. Then,∫ N

0

g(ra)− g(r)
r

dr = −
∫ N

0

g(0)− g(ra)
r

dr +
∫ N

0

g(0)− g(r)
r

dr

= −
∫ aN

0

g(0)− g(r)
r

dr +
∫ N

0

g(0)− g(r)
r

dr.

If a ∈ [0, 1], then ∫ N

0

g(ra)− g(r)
r

dr =
∫ N

aN

g(0)− g(r)
r

dr ≥ 0.

If a ∈ [1,∞), then ∫ N

0

g(ra)− g(r)
r

dr = −
∫ aN

N

g(0)− g(r)
r

dr ≤ 0.

2

Lemma 6.3.14 Let g satisfy the assumptions of Lemma 6.3.6 and Lemma 6.3.13 with the
same u. Then, there are R, c > 0 such that for each a > R and each 0 < ε < 1 < N∫ N

ε

g(at)− g(t)
t

dt ≤
∫ 1

0

u− g(t)
t

dt+ c.

Proof. We choose R > 0 such that ∣∣∣∣∣
∫ y

x

g(t)
t
dt

∣∣∣∣∣ ≤ 1

whenever x, y ≥ R. If a ∈ [R,∞) and N > 1 > ε > 0, then∫ N

ε

g(at)− g(t)
t

dt =
∫ 1

ε

g(at)− g(t)
t

dt+
∫ N

1

g(at)
t

dt−
∫ N

1

g(t)
t
dt

=
∫ 1

ε

g(at)− u
t

dt+
∫ 1

ε

u− g(t)
t

dt
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+
∫ aN

a

g(t)
t
dt−

∫ N

1

g(t)
t
dt

≤
∫ 1

0

u− g(t)
t

dt+ c

where the constant c > 0 is chosen such that sup
N>1

∫ N

1
t−1g(t) dt ≥ −c+ 1. 2

We have now all tools together to prove the energy formula for the logarithmic energy. In
this section, we will formulate the basic version which is a special case of the multidimensional
case in the next section. This version will give a general information on the logarithmic
integral of general product measures and will however need more preliminaries.

Theorem 6.3.15 Let µ, ν ∈M(R) with∫ ∫
|ln (|x− y|)| d|µ|(y) d|ν|(x) <∞

or µ, ν ∈M+(R) with the property that
∫
pµ dν exists in [−∞,+∞]. Then,

2
∫
pµ dν̄ = lim

ε→0
N→∞

∫
ε≤|t|≤N

µ̂(t) · ν̂(t)− µ(R)ν̄(R) cos(t)
|t|

dt.

In particular, for every µ ∈Mln(R) we have

2I(µ) = lim
ε→0
N→∞

∫
ε≤|t|≤N

|µ̂(t)|2 − |µ(R)|2 cos(t)
|t|

dt.

Proof. Fix 0 < ε < N <∞. Then, by Fubini’s theorem
∫
ε≤|t|≤N

µ̂(t) · ν̂(t)− µ(R)ν̄(R) cos(t)
|t|

dt

=
∫
ε≤|t|≤N

[(∫
e−ixt dµ(x)

)
·
(∫

eiyt dν̄(y)
)
− µ(R)ν̄(R) cos(t)

]
dt

|t|n

=
∫
R×R

∫
ε≤|t|≤N

eit(y−x) − cos(t)
|t|

dt d(µ⊗ ν̄)(x, y)

= 2
∫ (∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν̄)(x, y).

First, suppose that ∫ ∫
|ln (|x− y|)| d|µ|(x) d|ν|(y) < +∞.

This implies that (|µ| ⊗ |ν|)({(x, y) ∈ R2 : x = y}) = 0. If (x, y) ∈ R2 with x 6= y, then

lim
ε→0
N→∞

∫ N

ε

cos((x− y)t)− cos(t)
t

dt = ln
(

1
|x− y|

)
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∣∣∣∣∣
∫ N

ε

cos((x− y)t)− cos(t)
t

dt

∣∣∣∣∣ ≤ 2
∣∣∣∣∣ln
(

1
|x− y|

)∣∣∣∣∣
by Corollary 6.3.7. But now

∫
2
∣∣∣∣∣ln
(

1
|x− y|

)∣∣∣∣∣ d(|µ| ⊗ |ν|)(x, y) < +∞

because I(µ) ∈ C. Therefore, we can apply the dominated convergence theorem and get

lim
ε→0
N→∞

∫
ε≤|t|≤N

µ̂(t) · ν̂(t)− µ(R)ν̄(R) cos(t)
|t|

dt = 2
∫
pµ dν̄.

If µ and ν are positive measures such that
∫ ∫

ln
(

1
|x− y|

)
dµ(x) dν(y) = +∞,

then ∫
{|x−y|<1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = +∞

since ∫
{|x−y|≥1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) ∈ (−∞, 0].

The same argument implies together with Corollary 6.3.7 and the dominated convergence
theorem that

lim
ε→0
N→∞

∫
{|x−y|≥1}

(∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν)(x, y)

exists and is finite. Therefore, we only have to show that

lim inf
ε→0
N→∞

∫
{|x−y|<1}

(∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν)(x, y) = +∞.

If (x, y) ∈ R2 with |x− y| ∈ [0, 1) and N > 1 > ε > 0, then
∫ N

ε

cos((x− y)t)− cos(t)
t

dt =
∫ N

ε

cos(|x− y|t)− cos(t)
t

dt ≥ −
∫ ε

0

cos(|x− y|t)− cos(t)
t

dt

≥ −
∫ 1

0

cos(|x− y|t)− cos(t)
t

dt ≥ −
∫ 1

|x−y|

1− cos(t)
t

dt

≥ −
∫ 1

0

1− cos(t)
t

dt
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by Lemma 6.3.13 and since cos is an even function. Therefore, we can apply Fatou’s lemma
since µ⊗ ν is finite and get

lim inf
ε→0
N→∞

∫
{|x−y|<1}

(∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν)(x, y)

≥
∫
{x=y}

lim inf
ε→0
N→∞

(∫ N

ε

1− cos(t)
t

dt

)
d(µ⊗ ν)(x, y) +

∫
{0<|x−y|<1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y)

If (µ⊗ ν)({(x, y) ∈ R2 : x = y}) > 0, then the first integral is equal to +∞ since

lim inf
ε→0
N→∞

∫ N

ε

1− cos(t)
t

dt = +∞.

If (µ⊗ ν)({(x, y) ∈ R2 : x = y}) = 0, then the second integral is equal to +∞.
Suppose finally that µ and ν are positive measures with∫ ∫ ∣∣∣∣∣ln

(
1

|x− y|

)∣∣∣∣∣ dµ(x) dν(y) = −∞.

Then, ∫
{|x−y|≥T}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = −∞

for all T ≥ 1 since ∫
{|x−y|≤T}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) ∈ R.

The same argument implies together with Corollary 6.3.7 and the dominated convergence
theorem that

lim
ε→0
N→∞

∫
{|x−y|≤T}

(∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν)(x, y)

exists and is finite for all T ≥ 1. If we pick g = cos in Lemma 6.3.14, then there is some
R > 1 such that for all |x− y| ≥ R and 0 < ε < 1 < N∫ N

ε

cos((x− y)t)− cos(t)
t

dt =
∫ N

ε

cos(|x− y|t)− cos(t)
t

dt ≤
∫ 1

0

1− cos(t)
t

dt+ c

for some constant c ∈ R independent of x, y, ε and N. Therefore, we can apply Fatou’s lemma
since µ⊗ ν is finite and get

lim sup
ε→0
N→∞

∫
{|x−y|≥R}

(∫ N

ε

cos((x− y)t)− cos(t)
t

dt

)
d(µ⊗ ν)(x, y)

≤
∫
{|x−y|≥R}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = −∞.

This concludes the proof. 2
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Remark 6.3.16 1. If µ̂ ν̂ − µ(R)ν̄(R) is locally integrable at the origin with respect to
dt/|t|, then the same holds for µ̂ ν̂ − µ(R)ν̄(R) cos since cos(0) = 1. In this case, the
double-sided limit reduces to a one-sided limN→∞. This holds if µ̂ ν̂ is Dini continuous
at 0, which is, in particular, the case if µ and ν have compact support.

2. In particular, the proof of Theorem 6.3.15 shows together with Remark 6.3.8 that if
µ ∈Mln(R) is real-valued with I(µ) ∈ C, then∫

µ({x ∈ R : x > y})− µ({x ∈ R : x < y}) dµ(y) =
∫ ∫

sign(x− y) dµ(x) dµ(y) = 0.

3. Let µ = fλ1 where f(t) := 1
2e
−|t| (t ∈ R). Then,

µ̂(t) = 1
1 + t2

(t ∈ R),

see [20, 1.4 (1)], and due to symmetry we therefore have

I(µ) = lim
ε→0
N→∞

∫ N

ε

1
t(1 + t2)2 −

cos(t)
t

dt

Upon setting g(t) := 1
t(1+t2)2 − cos(t)

t
and

Ci(t) := −
∫ ∞
t

cos(x)
x

dx (t ∈ (0,∞)),

one sees that the function G : (0,∞)→ R, defined by

G(t) := ln(t)− ln(
√
t2 + 1) + 1

2(t2 + 1) − Ci(t) (t ∈ (0,∞)),

satisfies G′ = g and lim
t→∞

G(t) = 0. Since lim
t→0

G(t) = −γ + 1
2 (see [58], p. 150) where

γ = lim
n→∞

n∑
k=1

1
k
− ln(n)

is the Euler-Mascheroni constant we deduce that I(µ) = γ − 1
2 .

Remark 6.3.17 By [35], p. 278, we also have

lim
ε→0
N→∞

∫ N

ε

J0(at)− cos(bt)
t

dt = ln
(

2b
a

)

for all a, b > 0. This implies that the function cos in Theorem 6.3.15 may be replaced by
J0(2 ·).
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We now turn back to the question at the beginning of this section: What conditions
assure the finiteness of the integral ∫

|t|≥1

|µ̂(t)|2
|t|

dt

for a given µ ∈M(R)? Under certain circumstances this task is related to the energy of the
measure:

Corollary 6.3.18 Let µ ∈Mln(R) be a positive measure such that

lim
ε→0

∫
ε≤|t|≤1

|µ̂(t)|2 − |µ(R)|2
|t|

dt

exists in C. Then, the following are equivalent:

a) I(µ) ∈ C.

b)
∫
|t|≥1

|µ̂(t)|2
|t|

dt < +∞.

Proof. By Theorem 6.3.15 we know that

2I(µ) = lim
ε→0
N→∞

∫
ε≤|t|≤N

|µ̂(t)|2 − |µ(R)|2 cos(t)
|t|

dt.

According to our assumption and the smoothness of cos the limit in the equation above exists
if and only if

lim
N→∞

∫
1≤|t|≤N

|µ̂(t)|2 − |µ(R)|2 cos(t)
|t|

dt

exists. Now,
lim
N→∞

∫
1≤|t|≤N

cos(t)
|t|

dt = 2 lim
N→∞

∫ N

1

cos(t)
t

dt

is finite and we conclude that I(µ) ∈ C if and only if

lim
N→∞

∫
1≤|t|≤N

|µ̂(t)|2
|t|

dt =
∫
|t|≥1

|µ̂(t)|2
|t|

dt

exists in R. 2

Another important energy, often used in higher dimensions, is the Riesz energy. Let α ≥ 0.
Then, we writeMα(Rn) for the set of all measures µ ∈M(Rn) such that µ ∈M+(Rn) or∫ ∫ 1

|x− y|α
d|µ|(x) d|µ|(y) < +∞.
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Definition 6.3.19 Let α ≥ 0 and µ ∈Mα(Rn). Then,

pµ,α(x) :=
∫ 1
|x− y|α

dµ(y)

exists in C ∪ {+∞} for µ-almost every x ∈ Rn and pµ,α is called the Riesz potential of
order α of µ. Moreover,

Iα(µ) :=
∫ ∫ 1

|x− y|α
dµ(y) dµ̄(x) =

∫
pµ,α(x) dµ̄(x)

is called the Riesz energy of order α of µ.

Remark 6.3.20 By [52, 5.1] there exists a constant K > 0 such that whenever µ, ν ∈
M+(Rn), then

(∫
pµ,α dν

)2
≤ K ·

(∫ ∫ 1
|x− y|α

dµ(y) dµ(x)
)
·
(∫ ∫ 1

|x− y|α
dν(y) dν(x)

)
.

This implies in particular that ∫ ∫ 1
|x− y|α

d|µ|(x) d|ν|(y)

exists in C ∪ {+∞} whenever µ, ν ∈Mα(Rn).

It is a well-known fact (see [44], p. 353) that if α ∈ (0, n), and µ ∈Mα(Rn), then

γn,αIα(µ) =
∫ |µ̂(t)|2
|t|n−α

dt

where γn,α = 2απ
n
2 Γ(α2 )

Γ(n−α2 ) . The proof mainly uses the concept of approximate identities. We
present another proof of this formula for n = 1 and µ ∈Mα(R) based on similar calculations
as for the logarithmic energy.

Theorem 6.3.21 Let α ∈ (0, 1) and µ, ν ∈M+(R) or µ, ν ∈M(R) with∫ ∫ 1
|x− y|α

d|µ|(x) d|ν|(y) < +∞.

Then,
2Γ(α) cos

(
π

2α
) ∫

pµ,α dν̄ = lim
N→∞

∫
|t|≤N

|t|α−1µ̂(t)ν̂(t) dt.

In particular, for every µ ∈Mα(R) we have

2Γ(α) cos
(
π

2α
)
Iα(µ) =

∫
|t|α−1|µ̂(t)|2 dt.
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Proof. Let N > 0. Then, by Fubini’s theorem∫
|t|≤N

|t|α−1µ̂(t)ν̂(t) dt =
∫
|t|≤N

(∫
e−ixt dµ(x)

)
·
(∫

eiyt dν̄(y)
)
|t|α−1 dt

=
∫ ∫ ( ∫

|t|≤N
ei(y−x)t|t|α−1 dt

)
dµ(x) ν̄(y)

= 2
∫ (∫ N

0
cos(|x− y|t)tα−1 dt

)
d(µ⊗ ν̄)(x, y).

First, suppose that ∫ ∫ 1
|x− y|α

d|µ|(x) d|ν|(y) < +∞.

Then, we have (|µ| ⊗ |ν|)({(x, y) ∈ R2 : x = y}) = 0. If (x, y) ∈ R2 with x 6= y, then by [20,
6.5 (21)]

lim
N→∞

∫ N

0
cos(|x− y|t)tα−1 dt = lim

N→∞

1
|x− y|α

∫ |x−y|N
0

cos(t)tα−1 dt =
Γ(α) cos

(
π
2α
)

|x− y|α

and ∣∣∣∣∣
∫ N

0
cos(|x− y|t)tα−1 dt

∣∣∣∣∣ ≤ 1
|x− y|α

· sup
M>0

∣∣∣∣∣
∫ M

0
cos(t)tα−1 dt

∣∣∣∣∣ .
Therefore, the dominated convergence theorem implies that

lim
N→∞

∫
|t|≤N

|t|α−1µ̂(t)ν̂(t) dt = lim
N→∞

2
∫ (∫ N

0
cos(|x− y|t)tα−1 dt

)
d(µ⊗ ν̄)(x, y)

= 2Γ(α) cos
(
π

2α
) ∫ ∫ 1

|x− y|α
dµ(x) dν̄(y).

Now, let µ and ν be positive measures such that∫ 1
|x− y|α

d(µ⊗ ν)(x, y) = +∞.

Then, we necessarily have ∫
{|x−y|<1}

1
|x− y|α

d(µ⊗ ν)(x, y) = +∞

since ∫
{|x−y|≥1}

1
|x− y|α

d(µ⊗ ν)(x, y) ∈ [0,∞).

The same argument implies together with the dominated convergence theorem that

lim
N→∞

∫
{|x−y|≥1}

(∫ N

0
cos(|x− y|t)tα−1 dt

)
d(µ⊗ ν)(x, y)
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exists and is finite. Therefore, we only have to show that

lim inf
N→∞

∫
{|x−y|<1}

(∫ N

0
cos(|x− y|t)tα−1 dt

)
d(µ⊗ ν)(x, y) = +∞.

But since∫ N

0
cos(|x− y|t)tα−1 dt = 1

|x− y|α
∫ |x−y|N

0
cos(t)tα−1 dt ≥ inf

M>0

∫ M

0
cos(t)tα−1 dt

whenever |x− y| < 1, Fatou’s lemma (notice that µ⊗ ν is finite) gives us that

lim inf
N→∞

∫
{|x−y|<1}

(∫ N

0
cos(|x− y|t)tα−1 dt

)
d(µ⊗ ν)(x, y)

≥
∫
{x=y}

lim inf
N→∞

(∫ N

0
tα−1 dt

)
d(µ⊗ ν)(x, y) +

∫
{0<|x−y|<1}

1
|x− y|α

d(µ⊗ ν)(x, y).

If (µ⊗ ν)({(x, y) ∈ R2 : x = y}) > 0, then the first integral is equal to +∞ since

lim inf
N→∞

∫ N

0
tα−1 dt = +∞.

If (µ⊗ ν)({(x, y) ∈ R2 : x = y}) = 0, then the second integral is equal to +∞. 2

Remark 6.3.22 Theorem 6.3.21, Proposition 3.1.9 and Remark 6.2.6 imply that if α ∈ (0, 1)
and µ ∈Mα(R) satisfies Iα(µ) ∈ C, then∫ ∞

−∞

∫ ∞
0
|(Cµ)(x+ iy)|2y−α dy dx < +∞.

6.4 An energy formula in higher dimensions
We are interested in a generalization of our above results to the multidimensional case.
Therefore, we start with a lemma whose proof can be found in [23, Theorem 2.49]. We write

Sn−1 := {x ∈ Rn : |x| = 1}

for the unit sphere in Rn and σn−1 for the surface measure on Sn−1. Here, σ0 = δ1 + δ−1.

Moreover, ωn−1 = σn−1(Sn−1) = 2π
n
2

Γ(n2 ) denotes the area of Sn−1.

Lemma 6.4.1 Let f ∈ L1(Rn). Then,∫
Rn
f(x) dx =

∫ ∞
0

∫
Sn−1

f(rζ) dσn−1(ζ) rn−1 dr.

Remark 6.4.2 Let 0 < ε < N +∞. Replacing f by x 7→ f(x)1ε≤|x|≤N(x) in Lemma 6.4.1
the formula reads then as∫

ε≤|x|≤N
f(x) dx =

∫ N

ε

∫
Sn−1

f(rζ) dσn−1(ζ) rn−1 dr.

We shall need the substitution formula in this version.
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With this formula in mind, integrating with respect to the unit sphere Sn−1 will play a
central role. In particular, in view of the proof of the one-dimensional case we need to know
the Fourier transform of the spherical measure σn−1. Therefore, we introduce an important
class of functions.

Remark and Definition 6.4.3 Let α ∈ C. Then, the function Jα, defined by

Jα(x) :=
∞∑
k=0

(−1)k
(
x
2

)2k+α

Γ(α + k + 1)k! (x ∈ (0,∞))

is called Bessel function of the first kind and order α. It can be shown (see [1], p. 360)
that Jα is a solution for Bessel’s differential equation, i.e.

x2y′′(x) + xy′(x) + (x2 − α2)y(x) = 0.

With the aid of the Bessel functions, one can express the Fourier transform of the spherical
measure σn−1. We refer for the corresponding result to [74], p. 154, or [30, B. 4].

Lemma 6.4.4 Let n ∈ N. Then,∫
Sn−1

eiξx dσn−1(ξ) = (2π)n2 Jn
2−1(|x|) · |x|1−n2 (x ∈ Rn \ {0}).

Remark and Definition 6.4.5 1. Notice that the formula is also valid for n = 1 since
(see [58, 10.16.1])

J− 1
2
(x) =

√
2
πx

cos(x) (x ∈ (0,∞))

and cos is an even function. For n = 2 we get∫
S1
eiξx dσ1(ξ) = 2πJ0(|x|)

and for n = 3 we have by [58, 10.16.1]∫
S2
eiξx dσ2(ξ) = (2π) 3

2J 1
2
(|x|) · |x|− 1

2 = 4π sin(|x|)
|x|

.

2. We consider the generalized hypergeometric function Kn : C→ C, defined by

Kn(z) =
∞∑
k=0

(−1)k
(n/2, k)k!

(
z

2

)2k
(z ∈ C)

with the Pochhammer symbol (α, k) := Γ(α + k)/Γ(α). In particular, one obtains
K1 = cos and in the case n = 2, in which the logarithmic potential coincides with the
Newtonian, K2 = J0. More generally, Kn can be expressed in terms of Jn/2−1 as

Kn(t) = Γ(n/2)(|t|/2)1−n/2Jn/2−1(|t|) (t ∈ R).

This formula shows especially that Kn|R is the normalized Fourier transform of σn−1.
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3. Due to the fact that Jα(x) = O(x− 1
2 ) (R 3 x → ∞) for α ≥ 0 (see [58, 10.17.3]) one

sees directly that Kn|[0,∞) satisfies the assumptions of Lemma 6.3.6. In particular,

Kn(0) = σn−1(Sn−1)
ωn−1

= 1.

But since
−1 ≤ Kn(t) ≤ 1

ωn−1

∫
Sn−1

1 dσn−1(ξ) ≤ 1

and Kn(x) = Kn(0) + O(x2) (x→ 0) by Remark and Definition 6.4.3 we see also that
the assumptions of Lemma 6.3.13 are fulfilled if we take g = Kn.

4. Because K ′n(0) = 0 and K ′′n(0) < 0 we know that Kn is decreasing in some interval
[0, δ]. Writing ∆a(t) := Kn(at) −K(t), for a ∈ [0, 1) and N > 1 > δ > ε > 0 we thus
obtain by Lemma 6.3.13∫ N

ε

Kn(at)−Kn(t)
t

dt =
∫ N

0

∆a(t)
t

dt−
∫ ε

0

∆a(t)
t

dt ≥ −
∫ ε

0

∆a(t)
t

dt

≥ −
∫ δ

0

∆a(t)
t

dt ≥ −
∫ a

aδ

∆a(t)
t

dt

≥ −
∫ 1

0

1−Kn(t)
t

dt .

-10 -5 5 10

-1.0

-0.5

0.5

1.0

Figure 6.1: Plots of K1 (blue), K2 (yellow), K3 (green) and K4 (orange)

Now, we are in a position to formulate a generalized version of the energy formula in one
dimension.

Theorem 6.4.6 Let µ, ν ∈M(Rn) with∫ ∫
|ln (|x− y|)| d|µ|(y) d|ν|(x) <∞
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or µ, ν ∈M+(Rn) with the property that
∫
pµ dν exists in [−∞,+∞]. Then,

ωn−1

∫
pµ dν̄ = lim

ε→0
N→∞

∫
ε≤|t|≤N

(
µ̂(t) · ν̂(t)− µ(Rn)ν̄(Rn)Kn(|t|)

) dt

|t|n
.

In particular, for every µ ∈Mln(Rn) we have

ωn−1I(µ) = lim
ε→0
N→∞

∫
ε≤|t|≤N

(
|µ̂(t)|2 − |µ(Rn)|2Kn(|t|)

) dt

|t|n
.

Proof. Fix 0 < ε < N < +∞. Then, by Fubini’s theorem and Lemma 6.4.1∫
ε≤|t|≤N

(
µ̂(t) · ν̂(t)− µ(Rn)ν̄(Rn)Kn(|t|)

) dt

|t|n

=
∫
ε≤|t|≤N

[(∫
e−ixt dµ(x)

)
·
(∫

eiyt dν̄(y)
)
− µ(Rn)ν̄(Rn)Kn(|t|)

]
dt

|t|n

=
∫
Rn×Rn

∫
ε≤|t|≤N

eit(y−x) −Kn(|t|)
|t|n

dt d(µ⊗ ν̄)(x, y)

=
∫
Rn×Rn

∫
Sn−1

∫ N

ε

eirζ(y−x) −Kn(r)
r

dr dσn−1(ζ) d(µ⊗ ν̄)(x, y).

Another application of Fubini’s theorem and Lemma 6.4.4 give us∫
Rn×Rn

∫
Sn−1

∫ N

ε

eirζ(y−x) −Kn(r)
r

dr dσn−1(ζ) d(µ⊗ ν̄)(x, y)

=
∫
Rn×Rn

∫ N

ε

[( ∫
Sn−1

eir(y−x) dσn−1(ζ)
)
− ωn−1Kn(r)

]
dr

r
d(µ⊗ ν̄)(x, y)

= ωn−1

∫
Rn×Rn

∫ N

ε

Kn(r|x− y|)−Kn(r)
r

dr d(µ⊗ ν̄)(x, y).

First, suppose that ∫ ∫ ∣∣∣∣∣ln
(

1
|x− y|

)∣∣∣∣∣ d|µ|(x) d|ν|(y) < +∞.

Then, we necessarily have (|µ| ⊗ |ν|)({(x, y) ∈ Rn × Rn : x = y}) = 0. Therefore, if we take
g = Kn in Lemma 6.3.6 (see Remark 6.4.5), then the dominated convergence theorem yields
that

lim
ε→0
N→∞

ωn−1

∫
Rn×Rn

∫ N

ε

Kn(r|x− y|)−Kn(r)
r

dr d(µ⊗ ν̄)(x, y)

= ωn−1

∫
Rn×Rn

ln
(

1
|x− y|

)
d(µ⊗ ν̄)(x, y) = ωn−1

∫
Rn

∫
Rn

ln
(

1
|x− y|

)
dµ(x) dν̄(y).

Now, let µ, ν ∈M+(Rn) be such that∫ ∫
ln
(

1
|x− y|

)
dµ(x) dν(y) = +∞.

120



In this case, ∫
{|x−y|<1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = +∞

since ∫
{|x−y|≥1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) ∈ (−∞, 0].

The same argument implies together with Lemma 6.3.6, Remark 6.4.5 and the dominated
convergence theorem that

lim
ε→0
N→∞

∫
{|x−y|≥1}

(∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y)

exists and is finite. Therefore, we only have to show that

lim inf
ε→0
N→∞

∫
{|x−y|<1}

(∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y) = +∞.

By Remark 6.4.5, we know that∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr ≥ −
∫ 1

0

1−Kn(r)
r

dr

for |x− y| < 1 and sufficiently large N and small ε. Therefore, we can apply Fatou’s lemma
(notice that µ⊗ ν is finite) and get with Kn(0) = 1

lim inf
ε→0
N→∞

∫
{|x−y|<1}

(∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y)

≥
∫
{x=y}

lim inf
ε→0
N→∞

(∫ N

ε

1−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y) +

∫
{0<|x−y|<1}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y)

If (µ⊗ ν)({(x, y) ∈ Rn × Rn : x = y}) > 0, then the first integral is equal to +∞ since

lim inf
ε→0
N→∞

∫ N

ε

1−Kn(t)
t

dt = +∞.

If (µ⊗ ν)({(x, y) ∈ Rn × Rn : x = y}) = 0, then the second integral is equal to +∞.
Suppose finally that µ, ν ∈M+(Rn) and

∫ ∫
ln
(

1
|x− y|

)
dµ(x) dν(y) = −∞.

Then, ∫
{|x−y|≥T}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = −∞

121



for all T ≥ 1 since ∫
{|x−y|≤T}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) ∈ R.

The same argument implies together with Lemma 6.3.6 and the dominated convergence
theorem that

lim
ε→0
N→∞

∫
{|x−y|≤T}

(∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y)

exists and is finite for all T ≥ 1. If we pick g = Kn in Lemma 6.3.14, then there is some
R > 1 such that for all |x− y| ≥ R and 0 < ε < 1 < N∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr ≤
∫ 1

0

1−Kn(r)
r

dr + c

for some constant c ∈ R independent of x, y, ε and N. Therefore, we can apply Fatou’s lemma
since µ⊗ ν is finite and get

lim sup
ε→0
N→∞

∫
{|x−y|≥R}

(∫ N

ε

Kn(|x− y|r)−Kn(r)
r

dr

)
d(µ⊗ ν)(x, y)

≤
∫
{|x−y|≥R}

ln
(

1
|x− y|

)
d(µ⊗ ν)(x, y) = −∞.

This concludes the proof. 2

Remark 6.4.7 1. Similar to the one-dimensional case, the double-sided limit reduces to
a one-sided limN→∞ if µ̂ ν̂ − µ(Rn)ν̄(Rn) is locally integrable at the origin with respect
to dt/|t|n. This is a consequence of Kn(0) = 1 and holds if µ̂ ν̂ is Dini continuous at 0,
which is, in particular, the case if µ and ν have compact support.

2. According to Lemma 6.4.4, Theorem 6.4.6 and Lemma 6.4.1 imply that

I(σn−1) = ω2
n−1

∫ ∞
0

(K2
n(r)−Kn(r))dr

r
(n ∈ N).

Since K2 = J0 and since I(σ1) = 0 (see [53, Lemma 4.20]), we obtain

0 =
∫ ∞

0
(J2

0 (r)− J0(r))dr
r
. (6.4.1)

Applying Lemma 6.3.6 with g = J2
0 , we get, more generally,∫ ∞

0
(J2

0 (ar)− J0(r))dr
r

= ln
(1
a

)
(6.4.2)

for a > 0. Also, taking n = 1 in Theorem 6.4.6 and using (6.4.1) leads to

ln 2 =
∫ ∞

0
(J2

0 (r)− cos r) dr
r

=
∫ ∞

0
(J0(r)− cos r) dr

r
.
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According to Lemma 6.3.6, we end at∫ ∞
0

(J0(ar)− cos r)dr
r

= ln
(2
a

)
for arbitrary a > 0 (see e.g. [35], p. 278). In particular, this implies that for n = 1 the
function K0 = cos in Theorem 6.4.6 may be replaced by ξ 7→ J0(2|ξ|).

3. The standard one-dimensional example is the arcsine distribution µ = fλ1 where

f(t) = 1
π
√

1− t2
1(−1,1)(t) (t ∈ R).

Here is J0 = µ̂, see [20, 1.3 (8)]. Upon setting ν := µ⊗ δ0 we see that

ν̂(x1, x2) = µ̂(x1) = J0(x1) (x1, x2 ∈ R).

Choosing n = 2 in Theorem 6.4.6 and using (6.4.2), we have

I(ν) = I(µ) = 1
2π

∫ π

−π

∫ ∞
0

(J2
0 (r cos θ)− J0(r))dr

r
dθ = 2

π

∫ π/2

0
ln
( 1

cos θ

)
dθ = ln 2,

which is of course folklore but usually proved in a quite different way by exploiting
some amount of potential theory in the plane. More precisely, one shows that µ is the
equilibrium measure of [−1, 1], that is, µ minimizes logarithmic energy among all Borel
probability measures on [−1, 1], and that the minimum is ln 2 or, in other words, that
the logarithmic capacity of [−1, 1] is 1/2 = e− ln 2.

Similar to the case of one dimension, one consequence of the energy formula is a charac-
terization for the finiteness of the logarithmic energy.

Corollary 6.4.8 Let µ ∈Mln(Rn) a positive measure such that

lim
ε→0

∫
ε≤|t|≤1

|µ̂(t)|2 − |µ(Rn)|2
|t|n

dt

exists in R. Then, the following are equivalent:

a) I(µ) ∈ C.

b)
∫
|t|≥1

|µ̂(t)|2
|t|n

dt < +∞.

Proof. By Theorem 6.4.6 we know that

ωn−1I(µ) = lim
ε→0
N→∞

∫
ε≤|t|≤N

(
|µ̂(t)|2 − |µ(Rn)|2Kn(|t|)

) dt

|t|n
.

123



By our assumption and the smoothness of Kn the limit in the equation above exists if and
only if

lim
N→∞

∫
1≤|t|≤N

(
|µ̂(t)|2 − |µ(Rn)|2Kn(|t|)

) dt

|t|n

exists. Now, by Lemma 6.4.1

lim
N→∞

∫
1≤|t|≤N

Kn(|t|)
|t|n

dt = ωn−1 lim
N→∞

∫ N

1

Kn(r)
r

dr

is finite and we conclude that I(µ) ∈ C if and only if

lim
N→∞

∫
1≤|t|≤N

|µ̂(t)|2
|t|n

dt =
∫
|t|≥1

|µ̂(t)|2
|t|n

dt < +∞.

2

Let us now turn to another consequence of our formula for the logarithmic energy. We
consider therefore the space Mln,0(Rn) of all µ ∈ Mln(Rn) with vanishing total mass, i.e.
µ(Rn) = 0 . For µ ∈Mln,0(Rn) and arbitrary ν ∈Mln(Rn), Theorem 6.4.6 says that

ωn−1

∫
pµ dν̄ = lim

ε→0
N→∞

∫
ε≤|ξ|≤N

(µ̂ ν̂)(ξ) dξ

|ξ|n
.

In particular, for ν = µ we get

ωn−1I(µ) =
∫
|µ̂(ξ)|2 dξ

|ξ|n
∈ [0,∞) .

This may be seen as a continuous version of (6.3.1). It implies in particular (see Corollary
6.4.9 below) that the logarithmic energy integral is positive definite on the spaceMln,0(Rn).
This fact has already been proved in the case of compactly supported, signed (real) measures
inMln,0(Rn) (see [29, Chapter III, Theorem 3.1], [25], [12, 5, III.5]). Moreover (see [52, 3.3]),
if µ is a (not necessarily finite) signed (real) measure with µ(Rn) = 0 and∫ ∫

ln
(

1
|x− y|

)
dµ(x) dµ(y)

exists in [−∞,+∞], then this integral is either ≥ 0 or equal to +∞. The following corollary
can be seen as a generalization and completion of these known results which are now also
valid for complex measures.

Corollary 6.4.9 Let µ, ν ∈Mln(Rn) or µ, ν ∈M+(Rn) such that
∫
pµ dν exists in [−∞,+∞].

If µ̂ν̂ ≥ 0 almost everywhere and µ(Rn) · ν̄(Rn) = 0, then∫
pµ dν̄ ∈ [0,+∞].

In particular, I(µ) ≥ 0 for all µ ∈Mln,0(Rn). Moreover, if I(µ) = 0, then µ = 0.
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We now answer the question when the Cauchy transform of a measure belongs to the
unweighted Bergman space A2(C \ R). As seen before, it is necessary that µ(R) = 0 but
unfortunately this condition is in general not sufficient, see the discussion at the beginning
of the previous section. However, for the class of complex measures with finite logarithmic
energy this gives in fact a characterization and this result follows immediately from

Corollary 6.4.10 Let µ ∈Mln(Rn) with I(µ) ∈ C. Then, the following are equivalent:

a) µ(Rn) = 0.

b)
∫
Rn

|µ̂(t)|2
|t|n

dt < +∞.

In this case,

ωn−1I(µ) =
∫
Rn

|µ̂(t)|2
|t|n

dt.

Corollary 6.4.11 Let µ ∈Mln(R) with I(µ) ∈ C. Then, the following are equivalent:

a) µ(R) = 0.

b) Cµ ∈ A2(C \ R).

Similar to the case of one dimension, the above calculations hold in an analogue way for
the Riesz energy. However, our method only applies for exponents in the interval

(
0, n+1

2

)
due to the fact that Kn has to be (at least improperly) integrable at∞ with respect to tα−1dt.

Theorem 6.4.12 Let α ∈
(
0, n+1

2

)
and µ, ν ∈M+(Rn) or µ, ν ∈M(Rn) with

∫ ∫ 1
|x− y|α

d|µ|(x) d|ν|(y) < +∞.

Then,
γn,α

∫ ∫ 1
|x− y|α

dµ(x) dν̄(y) = lim
N→∞

∫
|t|≤N

|t|α−1µ̂(t)ν̂(t) dt.

In particular,
γn,αIα(µ) =

∫
|t|α−n|µ̂(t)|2 dt.

Proof. Let N > 0. Then, by Fubini’s theorem, Lemma 6.4.1 and Lemma 6.4.4∫
|t|≤N

|t|α−1µ̂(t)ν̂(t) dt =
∫
|t|≤N

(∫
e−ixt dµ(x)

)
·
(∫

eiyt dν̄(y)
)
|t|α−1 dt

=
∫ ∫ ( ∫

|t|≤N
ei(y−x)t|t|α−1 dt

)
dµ(x) ν̄(y)

=
∫ ∫ ( ∫

Sn−1

∫ N

0
eirζ(y−x)rα−1 dr dσn−1(ζ)

)
dµ(x) ν̄(y)
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= ωn−1

∫ (∫ N

0
Kn(r|x− y|)rα−1 dr

)
d(µ⊗ ν̄)(x, y).

First, suppose that ∫ ∫ 1
|x− y|α

d|µ|(x) d|ν|(y) < +∞.

Then, we have (|µ| ⊗ |ν|)({(x, y) ∈ Rn×Rn : x = y}) = 0. If (x, y) ∈ Rn with x 6= y, then by
definition of Kn and [58, 10.22.43]

lim
N→∞

∫ N

0
Kn(|x− y|t)tα−1 dt = lim

N→∞

Γ
(
n
2

)
2n

2−1

|x− y|α
∫ |x−y|N

0
Jn

2−1(t)tα−n2 dt

=
2α−1Γ

(
n
2

)
Γ
(
α
2

)
Γ
(
n−α

2

) 1
|x− y|α

and ∣∣∣∣∣
∫ N

0
Kn(|x− y|t)tα−1 dt

∣∣∣∣∣ ≤ 1
|x− y|α

· sup
M>0

∣∣∣∣∣
∫ M

0
Kn(t)tα−1 dt

∣∣∣∣∣ .
Therefore, the dominated convergence theorem implies that

lim
N→∞

∫
|t|≤N

|t|α−nµ̂(t)ν̂(t) dt = lim
N→∞

ωn−1

∫ (∫ N

0
Kn(r|x− y|)rα−1 dr

)
d(µ⊗ ν̄)(x, y)

=
2α−1ωn−1Γ

(
n
2

)
Γ
(
α
2

)
Γ
(
n−α

2

) ∫ ∫ 1
|x− y|α

dµ(x) dν̄(y)

= γn,α

∫ ∫ 1
|x− y|α

dµ(x) dν̄(y).

Now, let µ and ν be positive measures such that∫ 1
|x− y|α

d(µ⊗ ν)(x, y) = +∞.

Then, we necessarily have ∫
{|x−y|<1}

1
|x− y|α

d(µ⊗ ν)(x, y) = +∞

since ∫
{|x−y|≥1}

1
|x− y|α

d(µ⊗ ν)(x, y) ∈ [0,∞).

The same argument implies together with the dominated convergence theorem that

lim
N→∞

∫
{|x−y|≥1}

(∫ N

0
Kn(r|x− y|)rα−1 dr

)
d(µ⊗ ν)(x, y)
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exists and is finite. Therefore, we only have to show that

lim inf
N→∞

∫
{|x−y|<1}

(∫ N

0
Kn(r|x− y|)rα−1 dr

)
d(µ⊗ ν)(x, y) = +∞.

But since∫ N

0
Kn(r|x− y|)rα−1 dr = 1

|x− y|α
∫ |x−y|N

0
Kn(r)rα−1 dr ≥ inf

M>0

∫ M

0
Kn(r)rα−1 dr

whenever |x− y| < 1, Fatou’s lemma (notice that µ⊗ ν is finite) gives us that

lim inf
N→∞

∫
{|x−y|<1}

(∫ N

0
Kn(r|x− y|)rα−1 dr

)
d(µ⊗ ν)(x, y)

≥
∫
{x=y}

lim inf
N→∞

(∫ N

0
rα−1 dr

)
d(µ⊗ ν)(x, y) + γn,α

∫
{0<|x−y|<1}

1
|x− y|α

d(µ⊗ ν)(x, y).

If (µ⊗ ν)({(x, y) ∈ Rn × Rn : x = y}) > 0, then the first integral is equal to +∞ since

lim inf
N→∞

∫ N

0
rα−1 dr = +∞.

If (µ⊗ ν)({(x, y) ∈ Rn × Rn : x = y}) = 0, then the second integral is equal to +∞. 2

We deduce a corollary that illustrates a similarity between the logarithmic and the Riesz
energy. As a special case, it implies that the Riesz energy is positive definite on the space
Mα(Rn), see [44], p. 353.

Corollary 6.4.13 Let α ∈
(
0, n+1

2

)
and µ, ν ∈ Mα(Rn) with µ̂ν̂ ≥ 0 almost everywhere.

Then, ∫
pµ,αdν̄ ∈ [0,+∞].

In particular, Iα(µ) ≥ 0 for all µ ∈Mα(Rn) and if Iα(µ) = 0, then µ = 0.
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Appendix A

Results from Measure and Integration
Theory

In this appendix we give a rudimentary introduction into the topic of complex measures. We
therefore gather the most important definitions and results that will be of frequent use in
this work.

Definition A.1 Let (X,Σ) be a measurable space.

1. A function µ : Σ→ [0,+∞] is called a positive measure (on (X,Σ)), if

µ1) µ(∅) = 0.

µ2) µ
( ⋃
n∈N

An

)
= ∑

n∈N
µ(An) for each pairwise disjoint family (An)n∈N ∈ ΣN.

We shall writeM∞,+(X,Σ) for the set of all positive measures on (X,Σ) andM+(X,Σ)
for the set of all finite positive measures, i.e. those µ ∈ M∞,+(X,Σ) such that
∞ /∈ µ(Σ).

2. A function µ : Σ→ C is called a complex measure (on (X,Σ)), if

µ1) µ(∅) = 0.

µ2) µ
( ⋃
n∈N

An

)
= ∑

n∈N
µ(An) for each pairwise disjoint family (An)n∈N ∈ ΣN.

In this case, the series in µ2) are absolutely convergent. We shall write M(X,Σ) for
the set of all complex measures on (X,Σ). Moreover, let M∞(X,Σ) be the union of
M∞,+(X,Σ) andM(X,Σ).

Remark and Definition A.2 If X is a topological space and B(X) is the Borel σ alge-
bra on X, then we call a complex measure on (X,B(X)) also a complex Borel measure
on X and similar a (finite) positive measure on (X,B(X)) also a (finite) positive Borel
measure on X. Moreover, we write M∞(X) instead of M∞(X,B(X)),M(X) instead of
M(X,B(X)),M∞,+(X) instead ofM∞,+(X,B(X)) andM+(X) instead ofM+(X,B(X)).
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Remark A.3 Let X be a topological space and A ∈ B(X). If µ ∈ M∞(A), then there is
a unique ν ∈ M∞(X) such that ν|B(A) = µ, given by ν(B) = µ(B ∩ A) (B ∈ B(X)). We
therefore identify µ and ν and therefore consider Borel measures which are defined on A also
as Borel measures defined on X.

Definition A.4 Let X ⊂ C and µ ∈ M∞,+(X). Then, µ is called locally finite if µ(K) <
+∞ for all compact K ⊂ X.

Our main focus in this appendix will be on finite complex measures.

Remark and Definition A.5 Let (X,Σ) be a measurable space.

1. For µ ∈M∞(X,Σ) we set

|µ|(A) := sup

∑
n∈N
|µ(An)| : A =

⋃
n∈N

An, An ∩ Am = ∅ (n 6= m)

 .
Then, this defines a positive measure on (X,Σ), the so called total variation measure
of |µ|, see [68, Theorem 6.2]. One can show that |µ| is finite if µ ∈ M(X,Σ) (cf. [68,
Theorem 6.4]) and in this case there is a |µ|- almost unique function h : X → T such
that

µ(A) =
∫
A
h d|µ| (A ∈ Σ),

see [68, Theorem 6.12]. We write µ = h|µ|.

2. For µ ∈M(X,Σ), we write
‖µ‖ := |µ|(X).

Then, this defines a norm onM(X,Σ), the so called total variation norm.

Remark A.6 Let f ∈ L1(R). Then, this function naturally induces a complex measure by

µf (A) :=
∫
A∩R

f(t) dt (A ∈ B(C)).

Since
µf (A) =

∫
A
f(t) dν (A ∈ B(C))

where
ν(B) := λ1(B ∩ R) (B ∈ B(C)),

it follows from [68, Theorem 6.13], that

|µf |(A) =
∫
A∩R
|f(t)| dt (A ∈ B(C)).

In particular, ‖µf‖ = ‖f‖1.
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Definition A.7 Let (X,Σ) be a measurable space and p ∈ [1,∞]. For µ ∈ M∞(X,Σ) we
set Lp(X,Σ, µ) := Lp(X,Σ, |µ|) and for f ∈ Lp(µ) we define ‖f‖Lp(X,Σ,µ) := ‖f‖Lp(X,Σ,|µ|). If
X is a topological space and µ ∈M∞(X), then we write shortly Lp(X,µ) or Lp(µ). Finally,
in this case, if A ∈ B(X), we denote by Lp(A, µ) the subspace of all f ∈ Lp(µ) satisfying
f1A = f.

Definition A.8 Let X ⊂ C and µ ∈M∞(X). For k ∈ N0 we call

|mk|(|µ|) :=
∫
|z|k d|µ|(z) ∈ [0,+∞]

the k-th absolute moment of µ. If |mk|(|µ|) ∈ [0,∞), then we call

mk(µ) :=
∫
zk dµ(z)

the k-th moment of µ. If X ⊂ R and y ∈ [0,∞), we additionally set

|my|(|µ|) :=
∫
|x|y d|µ|(x) ∈ [0,+∞]

and in the case where |my|(|µ|) is finite also

my(µ) :=
∫
xy dµ(x).

Remark and Definition A.9 Let X be a separable metric space and µ ∈M∞,+(X). If we
set

N := {x ∈ X : there is some neighborhood Ux of x such that µ(Ux) = 0}.
then N is an open subset of X. For fixed x ∈ X, let us fix a neigborhood Ux of zero measure.
Then (Ux)x∈X is an open cover of N and since X is separable, we know that there is some
open subcover (Uk)k∈N. But now,

µ(N) ≤
∑
k∈N

µ(Uk) = 0.

The set
supp(µ) := X \N

is called the support of µ and is the smallest closed set F ⊂ X such that µ(X \ F ) = 0.
One can show that

supp(µ) = X \ V
where V is the union of all open sets of zero measure with respect to µ.
Lastly, if µ ∈M∞(X), then we set

supp(µ) := supp(|µ|)

and call this set again the support of µ. We write Mc(X) for the finite complex Borel
measures on X with compact support andMc,+(X) for the subset of its positive elements.
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Remark and Definition A.10 Let (X,Σ) be a measurable space and µ, ν ∈M∞(X,Σ).

1. We say that µ is concentrated on a set A ∈ Σ, if µ(E) = µ(A ∩ E) for all E ∈ Σ.

2. The measures µ and ν are calledmutually singular if there exist disjoint sets A,B ∈ Σ
such that µ is concentrated on A and ν is concentrated on B. In this case we write
µ ⊥ ν.

3. The measure µ is called absolutely continuous with respect to ν if µ(N) = 0 for all
N ∈ Σ with ν(N) = 0. In this case we write µ� ν.

4. If there exists a measurable function h : X → C such that

µ(A) =
∫
A
h dν (A ∈ Σ),

then µ� ν and we say that µ has the ν-density h. In this case, we also write µ = hν.

We close this part of the appendix with ’probably the most important theorem in measure
theory’ (see [68, Theorem 6.9]). It is the main result about absolute continuity and delivers
a decomposition of arbitrary measures.

Theorem A.11 (Lebesgue-Radon-Nikodym, [68]) Let (X,Σ) be a measurable space, µ ∈
M(X,Σ) and ν ∈M∞,+(X,Σ) be σ-finite.

1. There is unique pair (µa, µs) ∈M(X,Σ)×M(X,Σ) such that µa � ν, µs ⊥ ν and

µ = µa + µs.

Moreover, µa ⊥ µs.

2. There is unique h ∈ L1(ν) such that

µa(A) =
∫
A
h dν (A ∈ Σ).

Definition A.12 The unique function h in Theorem A.11 is called the Radon-Nikodym
derivative of µ and we often write dµ

dν
instead of h.
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Appendix B

Cauchy Transforms of Frequently
Used Functions and Measures

In this part of the appendix, we gather the Cauchy transforms of frequently used functions
and measures. We give a detailed calculation and present different techniques that can be
used to determine the Cauchy transform of a function or measure.

Example B.1 If a ∈ C and δa is the Dirac measure on C with respect to a, i.e.

δa(A) =

1, a ∈ A
0, a /∈ A.

for A ∈ B(C). Then,
(Cδa)(z) = 1

2πi(a− z) (z ∈ C \ {a}).

We now want to consider absolutely continuous measures and calculate their Cauchy
transform. For this purpose, we shall need the concept of complex roots. First notice that
there exists a unique holomorphic function g : C \ (−∞, 0]→ C such that

i) g2(z) = z (z ∈ C \ (−∞, 0]),

ii) g(z) > 0 (z ∈ (0,∞)).

In this case, g is called the principal branch of the square root and we often write
√
z

instead of g(z). One can also define square roots of other polynomials as the following lemma
shows:

Lemma B.2 There is a unique holomorphic function g : C \ [−1, 1]→ C such that

i) g2(z) = z2 − 1 (z ∈ C \ [−1, 1]).

ii) g(z) > 0 (z ∈ (1,∞)).
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Proof. Let G := C\((−∞,−1]∪ [1,∞)) and consider the mapping h : G→ C, h(z) = 1−z2.
Then, h is a holomorphic function on a simply connected domain and 0 /∈ h(G). Hence, there
is a unique holomorphic function ϕ : G → C such that ϕ2(z) = h(z) and ϕ(0) = 1, see [68,
Theorem 13.11]. If we put ψ : C \ [−1, 1]→ C, ψ(z) = ϕ

(
1
z

)
, then clearly

ψ2(z) = 1− 1
z2 = z2 − 1

z2 (z ∈ C \ [−1, 1]).

Therefore, the function g : C \ [−1, 1]→ C, g(z) = zψ(z), satisfies

g2(z) = z2 − 1 (z ∈ C \ [−1, 1])

and moreover g(z) > 0 for z ∈ (1,∞) by the choice of ϕ. The uniqueness is clear since any
holomorphic function f which satisfies both conditions has to fulfill the equation

f(x) =
√
x2 − 1 (x ∈ (1,∞)),

from which the uniqueness follows together with the identity theorem. 2

Remark B.3 For the function g in the previous lemma, we often write g(z) =
√
z2 − 1.

Example B.4 Let µ be the arcsine distribution, i.e. the measure with the λ1 density f
defined by

f(t) = 1
π
√

1− t2
1(−1,1)(t) (t ∈ R).

We want to calculate the Cauchy transform of µ. Since µ has compact support, we can use
Proposition 3.1.4:

(Cµ)(z) = − 1
2πi

∞∑
n=0

mn(µ)
zn+1 (|z| > 1),

where
mn(µ) =

∫ 1

−1
f(t)tn dt (n ∈ N0)

are the moments of the arcsine distribution. But since (see [56], p. 306)

m2n(µ) =
(

2n
n

)
·
(1

2

)2n
,m2n+1(µ) = 0

we see that

(Cµ)(z) = − 1
2πiz

∞∑
n=0

(
2n
n

)(1
2

)2n
z−2n = − 1

2πizϕ
(1
z

) (|z| > 1)

where ϕ is the function in the proof of B.2. This can be seen by the equality
∞∑
n=0

(
2n
n

)
xn = 1√

1− 4x

(
x ∈ R, |x| < 1

4

)
,
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see [13], p. 449, and the identity theorem. If |z| > 1, then the equality

√
z2 − 1 = zϕ

(1
z

)
holds. This is again a consequence of the identity theorem since the equation is satisfied if
z ∈ (1,∞). But this means

(Cµ)(z) = − 1
2πi
√
z2 − 1

(|z| > 1)

and again, by the identity theorem, for all z ∈ C \ [−1, 1].

Example B.5 Let µ be the Cauchy measure, i.e. µ = fλ1 where

f(t) = 1
π(1 + t2) (t ∈ R).

Since supp(µ) is not compact, we can not use Proposition 3.1.4 and have to try a direct
calculation. First, for z ∈ Π+ \ {i} we consider the set Ω := {z ∈ C : Im(z) > −1} \ {z, i}.
Then, the function F : Ω→ C defined by

f(z) = 1
π(w2 + 1)(w − z) (w ∈ Ω)

satisfies f(w) = O (1/|w|3) (|w| → +∞, w ∈ Ω). Hence, we can apply [54, Theorem 5.2.12]
and get

1
2πi

∫ ∞
−∞

1
π(t2 + 1)(t− z) dt = Res(f, z)+Res(f, i) = 1

π

(
1

z2 + 1 + 1
2i(i− z)

)
= − 1

2πi(z + i) .

A similar argument gives

(Cf)(z) = − 1
2πi(z − i) (z ∈ Π− \ {−i})

and therefore by the identity theorem

(Cµ)(z) =


− 1

2πi(z + i) , z ∈ Π+

− 1
2πi(z − i) , z ∈ Π−.

Example B.6 We consider the function f defined by

f(t) = 1√
t
1(0,∞)(t) (t ∈ R).
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Then, the substitution u =
√
t gives∫ ∞

0

1√
t(t+ 1)

dt = 2
∫ ∞

0

1
u2 + 1 du = π

and therefore f ∈ C . If a ∈ (−∞, 0), then again the substitution u =
√
t gives us that

(Cf)(a) = 1
2πi

∫ ∞
0

1√
t(t− a)

dt = 1
πi

∫ ∞
0

1
u2 − a

du = 1
2i
√
−a

.

The identity theorem gives us that

(Cf)(z) = 1
2i
√
−z

(z ∈ C−).

Example B.7 We consider the function f defined by

f(t) = 1√
t · (t+ 1)

1(0,∞)(t) (t ∈ R).

Since ∫ ∞
0

1√
t · (t+ 1)

dt = 2
∫ ∞

0

1
u2 + 1 du = π

we see that f ∈ C . Moreover, by substituting u =
√
t we have for a ∈ (−∞, 0) \ {−1} :

(Cf)(a) = 1
2πi

∫ ∞
0

1√
t(t+ 1)(t− a)

dt

= 1
πi

∫ ∞
0

1
(u2 + 1)(u2 − a) du

= 1
πi(−a− 1)

∫ ∞
0

1
u2 + 1 −

1
u2 − a

du

= 1
i(−a− 1) −

1
i(−a− 1)

√
−a

= 1
i(−a+

√
−a) .

By the identity theorem, we conclude that

(Cf)(z) = 1
i(−z +

√
−z) (z ∈ C−).

Example B.8 We consider the function f defined by

f(t) =
√
t

t+ 11(0,∞)(t) (t ∈ R).
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The substitution u =
√
t and [72], p. 110, imply that

∫ ∞
0

√
t

(t+ 1)2 dt = 2
∫ ∞

0

u

(u2 + 1)2 du = 2
∫ ∞

0

1
u2 + 1 du− 2

∫ ∞
0

1
(u2 + 1)2 du = π − π

2 = π

2

and therefore f ∈ C . Moreover, by substituting u =
√
t we have for a ∈ (−∞, 0) \ {−1} :

(Cf)(a) = 1
2πi

∫ ∞
0

√
t

(t+ 1)(t− a) dt

= 1
πi

∫ ∞
0

u2

(u2 + 1)(u2 − a) du

= −a
πi(−a− 1)

∫ ∞
0

1
u2 − a

du− 1
πi(−a− 1)

∫ ∞
0

1
u2 + 1 du

= 1
2πi(−a− 1)

(
π
√
−a− π

)
= 1−

√
−a

2i(a+ 1) .

By the identity theorem, we conclude that

(Cf)(z) = 1−
√
−z

2i(z + 1) (z ∈ C−).
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Nomenclature

Uε(z) open disk around z with radius ε, page 10

C set of all complex numbers, page 9

C− cut plane, i.e. C \ [0,∞), page 10

C∞ Riemann sphere, page 9

N set of all natural numbers, page 9

N0 set of all natural numbers including 0, page 9

Π+ open upper half-plane in C, page 10

Π− open lower half-plane in C, page 10

Q set of all rational numbers, page 9

R set of all real numbers, page 9

Z set of all integer numbers, page 9

Sn−1 unit sphere in Rn, page 117

T unit circle in C, page 9

1X indicator function of X, page 10

I(µ) logarithmic energy of µ, page 105

Iα(µ) Riesz energy of order α of µ, page 115

‖µ‖ total variation norm of µ, page 129

δa Dirac measure with respect to a, page 132
dµ
dν

Radon-Nikodym derivative of µ with respect to ν, page 131

λn Lebesgue measure on Rn, page 10
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µ� ν µ is absolutely continuous with respect to ν, page 131

µ ⊥ ν µ and ν are mutually singular, page 131

µα,β measure with λ1 density t 7→ (1− t)α(1 + t)β1(−1,1)(t), page 82

µβ measure with λ1 density t 7→ tβ1(0,∞)(t), page 49

ωn−1 area of Sn−1, page 117

σn−1 surface measure on Sn−1, page 117

|mk|(µ) k-th absolute moment of µ, page 130

|µ| total variation measure of µ, page 129

hν measure with ν-density h, page 131

mk(µ) k-th moment of µ, page 130

pµ,α Riesz potential of order α of µ, page 115

pµ logarithmic potential of µ, page 105

wν,n exponential weight of ν of order n, page 99

Bp constant for the nontangential maximal function, page 15

γn,α normalization constant for the Riesz kernel of order α, page 115

B(X) Borel σ algebra on a topological space X, page 128

M(X) set of all finite complex Borel measures on a topological space X, page 128

M+(X) set of all finite, positive Borel measures on a topological space X, page 128

M∆2,0 set of all ν ∈M∆2 with ν({0}) = 0, page 95

M∆2 set of all positive Borel measures on R satisfying the ∆2-condition, page 95

Mα(Rn) set of all µ ∈M(Rn) for which the Riesz energy Iα(µ) is defined, page 114

M∞,+(X) set of all positive Borel measures on a topological space X, page 128

M∞(X) set of all Borel measures on a topological space X which are either positive or
complex, page 128

Meps set of all positive Borel measures on R satisfying the ε-condition, page 99

Mexp set of all positive Borel measures on R satisfying the exponential condition, page 99
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Mln,0(Rn) set of all µ ∈Mln(Rn) with µ(Rn) = 0, page 124

Mln(Rn) set of all µ ∈M(Rn) for which the logarithmic energy I(µ) is defined, page 104

Mc,+(X) set of the positive elements ofMc(X), page 130

Mc(X) set of all compactly supported, finite complex Borel measures on a separable topo-
logical space X, page 130

Aut−(C) set of all automorphisms on C with root in Π−, page 35

H(Ω) set of all functions holomorphic on Ω, page 9

H1(R) real Hardy space, page 28

HA set of all functions which are holomorphic in an open neighborhood of A, page 75

H+
p (R) set of all boundary functions of functions in Hp(Π+), page 23

H−p (R) set of all boundary functions of functions in Hp(Π−), page 23

H1(X) set of all f ∈ H1(R) with f1X = f , page 44

H+
p1,p2(R) = Lp1(R) ∩H+

p2(R), page 32

H−p1,p2(R) = Lp1(R) ∩H−p2(R), page 32

U ⊕ V direct sum of U and V , page 11

Ap(Ω) = Apλ2(Ω), page 92

Apν(Ω) weighted Bergman space on Ω of order p with respect to ν, page 92

Hp(C \X) Hardy space of order p on C \X, page 44

Hp(C \ R) Hardy space of order p on C \ R, page 22

Hp(C∞ \X) Hardy space of order p on C∞ \X, page 44

Hp(eiαΠ+) Hardy space of order p on the half-plane eiαΠ+, page 12

Hr,p,α,β(C \ [−1, 1]) set of all F ∈ Hr(C \ [−1, 1]) satisfying F̃1(−1,1) ∈ Lp,0(I, µα,β), page 87

Zpν (Ω) Zen space of order p on Ω with respect to ν, page 96

C = C (λ1), page 18

C (µ) set of all functions which are Cauchy transformable with respect to µ, page 18

Eα,p = Eα,p(λ1), page 15
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Eα,p(µ) exponential space of order p and angle α (with respect to µ), page 15

Exp(A) space of all entire functions of exponential type at most A, page 69

Expp(A) set of all F ∈ Exp(A) with F ∈ Lp(R), page 69

H̃+
∞,ω(R) space of all f ∈ L∞(R) with C f

ω
= 0 on Π−, page 35

Cµf µ-Cauchy transform of f , page 19

Cf = Cλ1f , page 19

F+ upper boundary function of F ∈ Hp(Π+), page 13

F− lower boundary function of F ∈ Hp(Π−), page 13

HIf finite Hilbert transform of f , page 82

Hf Hilbert transform of f , page 20

Lα,µf µ-Fourier-Laplace transform of f on the ray eiα(0,∞), page 15

Lαf = Lα,1(0,∞)λ1f , page 15

Lµf = L0,µf1Π+ + Lπ,µf1Π− , µ-Fourier-Laplace transform of f , page 16

Lf Fourier-Laplace transform of f , page 16

Pµf µ-Poisson transform of f , page 20

Pf = Pλ1f , page 20

Qµf µ-conjugate Poisson transform of f , page 20

Qf = Qλ1f , page 21

L F Fourier-Laplace transform of F ∈ H2(Π+), page 50

f̂ Fourier transform of f , page 16

F̃ = F+ + F− for F ∈ Hp(C \X), page 23

Jα Bessel function of the first kind of order α, page 118

K(m) complete elliptic integral of the first kind at m, page 58

Kn generalized hypergeometric function, page 118

P (α,β)
m m-th Jacobi polynomial with parameters α and β, page 88

Tm m-th Chebyshev polynomial, page 89
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Ka shifted version of the complete elliptic integral of the first kind, page 58

RA,B,C model bounded polygonal chain in C, page 70

Ra,b model unbounded polygonal chain in C−, page 55

γ∗ trace of γ, page 11

Pn,∞,2(Ω) set of all unbounded polygonal chains in Ω with n parts from which two are
unbounded, page 54

Pn(Ω) set of all bounded polygonal chains in Ω with n parts, page 54

indγ index of γ, page 11

kr(a) path parametrizing the circle around a with radius r, page 10

Wk Widder differential operator of order k, page 65

ϕF linear functional induced by g, page 75

‖S‖op operator norm of S, page 11

‖ · ‖C∞\K,p,n norm on Hp(C∞ \K) induced by Pn(C \K), page 71

‖ · ‖C∞\K,p norm on Hp(C∞ \K) induced by cycles RA,B,C , page 71

‖f‖p p-norm of f , page 10

‖ · ‖C−,p,n norm on C− generated by Pn,∞,2(C−), page 55

‖ · ‖C−,p norm on C− generated by Ra,b where a ≥ b > 0, page 55

|||·|||Hp(C−) norm on Hp(C−) induced by (Wk)k∈N, page 67
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Index

Ap,I-condition, 82
∆2-condition, 95
ε-condition, 99

absolute moment, 130
absolutely continuous, 131

Bergman space
unweighted, 92
weighted, 92

Bessel function, 118
Bessel’s differential equation, 118

Carleson measure, 13
Cauchy cycle, 11
Cauchy transform

of a function, 19
of a measure, 38

Cauchy transformable, 18
Cauchy transformation, 19
chain, 11
Chebyshev polynomials, 89
complex measure, 128
concentrated, 131
cycle, 11

density, 131
Dirac measure, 132
direct sum, 11

elliptic integral of the first kind
complete, 58
incomplete, 58

energy
logarithmic energy, 105

Riesz energy, 115
equilibrium measure, 106
Euler-Mascheroni constant, 113
exponential condition, 99
exponential space of order p and angle α,

15
exponential type, 69
exponential weight, 99

falling factorial, 89
finite Hilbert transform, 82
finite positive measure, 128
Fourier transform

of a function, 16
of a measure, 16

Fourier transformation
on L2(R), 16
on L1(R), 16

Fourier-Laplace transform, 16, 50

generalized hypergeometric function, 118
germs of holomorphic functions, 75

Hardy space
on a half plane, 12

Hilbert transform, 20

index, 11
indicator function, 10

Jacobi polynomial, 89

locally finite, 129
logarithmic capacity, 106

moment, 130
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mutually singular, 131

nontangential maximal function, 15

operator norm, 11

path, 10
Plancherel’s theorem, 16
Plemelj formulas, 21
polar, 105
polygonal chain

bounded, 54
unbounded, 54

positive measure, 128
potential

logarithmic potential, 105
Riesz potential, 115

principal branch, 132

Radon-Nikodym derivative, 131
real Hardy space, 28
Riesz factorization theorem, 24

support, 130
surface measure, 117

total variation measure, 129
total variation norm, 129
trace, 10

unit sphere, 117

weighted Dirichlet space, 49
Widder differential operator, 65

Zen space, 96
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