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Chapter 1 Introduction 

1.1 Remote sensing of forest environments 
A significant progress has been realised in the remote sensing of forests in recent years linked 
to technological advances in sensor design, growth in information extraction techniques and 
increasing requirement to quantitatively describe and understand our environment (Wulder & 
Franklin, 2003). Remote sensing instruments measure the radiation that is emitted or reflected 
from the earth’s surface. The diversity of instruments available at present and in the future 
provide data with broad to fine spectral resolution, with large to small spatial resolution and 
other characteristics (e.g., multi-directionality) suitable for the quantitative and qualitative 
analysis of forests (Peterson & Running, 1989). A relatively new optical sensor type, the 
imaging spectrometer, represents a technological advance in remote sensing, as it measures 
the reflected signal with a very fine spectral resolution (Curran, 1994). These hyperspectral 
measurements need to be transformed into vegetation attributes in order to use such data for 
certain applications.  

As a result of the technological and methodological advances the need of information derived 
from forest remote sensing has risen considerably in applications such as forest inventory and 
management, monitoring of forest fire and disease and environmental change assessment. 
While traditionally forest information for inventory purposes was gathered in situ or through 
air photography, remote sensing is becoming central, as an increasing spatial and temporal 
resolution of observations is desired (Cihlar et al., 2003). The increasing demand for 
information on the productivity of the world’s forests has led to new approaches beyond 
traditional ground-based forest inventory techniques. The development of physiologically-
based process models together with digital remote sensing methodologies allow for a better 
prediction of forest growth patterns across landscapes (Coops & White, 2003). Remotely 
sensed forest attributes may be used to initialise, update, and validate ecosystem simulation 
models. As a key variable, leaf area index is often used to couple remote sensing with process 
models. The determination of forest attributes by means of remote sensing requires the usage 
of appropriate sensors and methodologies. Current concepts to remotely sense ecosystem-
relevant forest attributes are schematically illustrated in Figure 1.1. 
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While previously pre-processing of remote sensing images, such as geometric and radiometric 
adjustments, occupied a large portion of the information extraction process, image analysis 
has become increasingly able to process the available data into the actual information desired 
(Wulder & Franklin, 2003). Information extraction from remote sensing data can be described 
in terms of models of the sensor, atmosphere, and the scene (Strahler et al., 1986; Franklin et 
al., 2003): In remote sensing of forests, the scene comprises a forested portion of the earth 
surface viewed at a specific scale. An appropriate image processing strategy is applied 
depending on whether the attribute to be mapped occurs over spatial extents that are larger or 
smaller than the spatial resolution of the sensor (Figure 1.2). Mapping of the attribute ‘forest 
type’ (e.g. tree species, age class) assumes that the image pixel is completely covered by one 
forest type and thus, many pixels form a forest stand. In this case, image classification would 
be a suitable processing algorithm. Multispectral classification techniques are used to map 

 
Figure 1.1: Vegetation parameters in forests with relevance to ecosystem simulation models, 
i.e. biogeochemical (BGC) models, that are open to remote sensing include cover type, leaf 
area index (LAI), and leaf nitrogen content (LNC). Cover type is usually mapped at the 
landscape or canopy level using image classification techniques of multispectral satellite 
imagery. LAI and other structural attributes can be estimated through statistical or physical 
modeling approaches where both multi- and hyperspectral data may be implemented. Efforts 
to determine leaf chemical attributes, such as LNC or chlorophyll content commonly start at 
the leaf level and try to progress towards the canopy and landscape levels. 
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qualitative attributes into distinct classes. When the focus of the analysis is on attributes that 
vary within a stand on a sub-pixel level (e.g. leaf area index, canopy cover, biomass or 
chlorophyll concentration), quantitative processing algorithms have to be chosen. Quantitative 
attributes can generally be derived through statistical (empirical) or physical approaches. The 
empirical approach relates measurements of reflectance or vegetation indices to the desired 
forest variable through a statistically-derived equation. The physicalapproach calculates 
reflectance from leaf, canopy and stand characteristics using mathematical equations based on 
physical principles. These reflectance models can be either used in the “forward mode” to 
simulate reflectance characteristics from given object properties or in the “inverse mode” to 
estimate the object property from given reflectance data (Goel, 1989; Asner et al., 2003). 
Opposed to empirical regression, physically-based approaches have the advantage that they 
can take into account effects of varying canopy structure, canopy shadow, understorey and 
soil that all influence the radiation measurements. Spectral mixture analysis uses simple 
reflectance models to estimate the fractional cover of major types of materials within image 
pixels. 

Forests are generally challenging targets as a consequence of tree dimensions, architectural 
heterogeneity and spatial-temporal foliage dynamics. Remote sensing of forest structural and 

 
Figure 1.2: Strategies to extract forest attributes from remote sensing data as implemented 
within the framework of this research. See text and section 1.4 for further details. 
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chemical attributes is further complicated by the contribution of understorey vegetation, litter, 
soil, bark as well as plant and relief shadow, all of which influence the whole radiometric 
signal (Spanner et al., 1990; Chen et al., 1999; Soudani et al., 2002). Mapping of forest cover 
becomes a particularly difficult task when trees of different species and age form mixed 
stands. Managed forests, in particularly coniferous stands exhibit a number of advantages to 
remote sensing. The forest stands have a relatively homogenous structure as trees within a 
single stand are of the same species and age. Coniferous trees, such as Norway spruce (Picea 
abies L. Karst.), with its relatively large number of foliage age classes, do not show very 
pronounced seasonal changes in stand structure (Vose et al., 1994) and are well suited to 
combine remotely sensed imagery with field-measured data. 

There is a substantial interest in forest monitoring at continental, regional, and local scales. 
However, the present availability of hyperspectral remote sensing imagery of highest data 
quality (e.g., the HyMap sensor) is limited to airborne systems which collect data of limited 
spatial extent. Therefore, the focus of this research is on areas that can be covered by single 
HyMap scenes and thus, on local studies. 

1.2 Hyperspectral remote sensing 
Hyperspectral remote sensing or imaging spectrometry refers to the recording of remote 
sensing data using imaging spectrometers. These instruments collect radiance values in many 
narrow bands forming continuous spectra. As imaging spectrometer data is characterised by a 
high spectral resolution compared to multispectral data it is also called hyperspectral. The 
concept of imaging spectrometry is shown in Figure 1.3. Reflected solar radiation from the 
earth’s surface is dispersed in a spectrometer and recorded in 100-200 spectral images of the 
scene. For each pixel of the scene a continuous reflectance spectrum is obtained (Vane & 
Goetz, 1988).  

Imaging spectrometry originated from the merging of spectroscopy and imaging. Reflectance 
spectroscopy, the study of reflected light as a function of wavelength, has been used as a 
quantitative tool in the laboratory for many years. Optical imaging sensors have been 
developed since the 1970s (e.g. Landsat MSS, Landsat TM). The first images from an 
airborne imaging spectrometer (AIS) were acquired in the early 1980s and up to now a wide 
range of systems have been developed. Several airborne hyperspectral sensors, such as 
AVIRIS or HyMap, have operated successfully. Spaceborne hyperspectral sensor face certain 
limitations compared to airborne systems: the lower signal-to-noise ratio (SNR), significantly 
more atmosphere effects, and detector calibration issues. Nonetheless, first space-borne 
sensors of more or less hyperspectral type designed for land imaging were launched during 
the last years. On board of the TERRA platform (launch: 1999) are the Advanced Spaceborne 
Thermal Emission and Reflectance Radiometer (ASTER) and the Moderate resolution 
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imaging spectroradiometer (MODIS). EO-1 (launch 2000) hosts the Hyperion hyperspectral 
imager and the Advanced Land Imager (ALI). In 2002, Envisat which carries the MERIS 
(Medium Resolution Imaging Spectrometer) instrument was launched by the European Space 
Agency. Multi-angular systems, that collect spectral data observed under different directions, 
help to determine structural vegetation characteristics. Examples of such systems are the 
hyperspectral sensor CHRIS on PROBA (launched in October 2001) and POLDER on 
ADEOS-2 (launch scheduled for late 2002). Despite an emerging fleet of satellites providing 
frequent, high spectral resolution data to users, airborne systems will continue to play an 
important role in forest remote sensing due to their high data quality and their flexible use. 

Imaging spectrometry was used initially in geological, then in aquatic and later in ecological 
and atmospheric research (Curran, 1994). The motivation for the development of imaging 
spectrometry was mineral identification through diagnostic absorption features (Van der 
Meer, 1994). These narrow spectral features can not be resolved by multispectral sensors such 
as Landsat TM because its spectral bandwidth is too wide and the bands are not contiguous 
(Vane & Goetz, 1988). Plants, in contrast, are composed of the same few chemical 
compounds and therefore have similar spectral signatures. The spectral variability of 
vegetation is mainly located within three to five wavelengths regions and the same number of 
well-placed wavebands could account for most of it. The usage of hyperspectral data to 
determine forest attributes is based on the assumption that improved identification of 
particular spectral features will lead to improved discrimination of forest attributes (Lefsky & 
Cohen, 2003). Curran (2001) states an idealised point of view of the advantage of a 
hyperspectral over a multispectral sensor in vegetation studies: Whereas a multispectral 

 
Figure 1.3: The concept of imaging spectrometry (after Vane & Goetz, 1988). 
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sensor is suitable to identify the type of vegetation observed, the information about the 
condition of that vegetation resides within narrow spectral features which can be identified 
solely by sensors with many narrow wavebands. 

Useful reviews of the application of imaging spectrometry are provided by Vane & Goetz 
(1993), Curran (1994), Hill & Megier (1994), Treitz & Howarth (1999) and Van der Meer & 
De Jong (2001). Past and current research in the field of ecology is mainly concentrating on 
estimating foliar chemical concentrations of plant leaves (Card et al., 1988; Elvidge, 1990; 
Curran et al. 1992; Jacquemoud et al., 1996; Fourty & Baret, 1998; Curran et al. 2001) and of 
canopies (Peterson et al., 1988; Wessman et al., 1988; Serrano et al., 2002; Zarco-Tejada et 
al., 2004), the estimation of structural canopy attributes (Gong et al., 2003; Lee et al., 2004), 
and cover type (Franklin, 1994; Martin et al., 1998). Despite intensive research and increasing 
literature available in the field of hyperspectral remote sensing, it is not yet clear, to what 
extent hyperspectral remote sensing a) can improve derivation of structural forest attributes 
compared to traditional sensor types and b) allows determination of chemical forest attributes.  

1.3 Forest characteristics for ecosystem modeling and inventory 
Terrestrial ecosystems play an important role in the exchange of matter and energy between 
soil, vegetation and the atmosphere (Mooney et al., 1987; Schimel et al., 2001). In this 
context, the Earth’s forests and woodlands are of particular importance, as they cover 
approximately 40 percent of the global land surface and provide around 70 percent of the 
annual net accumulation of terrestrial carbon (Peterson & Running, 1989). Most of the forests 
located in the mid-latitudes of the Northern Hemisphere act as a carbon sink, however, with 
considerable spatial and temporal variations and uncertainties (Valentini et al., 2000; Schimel 
et al., 2000; Canadell et al., 2000). In recent times, these forest ecosystems have been exposed 
to increasing pressure from environmental changes such as global warming and human 
population growth. With an increasing need to understand the role of forests in the global 
carbon budget (e.g. Kyoto protocol) and to assess the impact of environmental changes, these 
ecosystems have to be quantitatively analysed in order to better understand the prevailing 
processes. The most important processes occurring in forests include carbon exchange 
processes (photosynthesis and respiration), evapotranspiration, and nutrient cycling (Waring 
& Running, 1998). Already at the local level, these processes are difficult to measure 
(Baldocchi et al. 1996). At regional to global scales, processes are no longer measurable at all 
(Tenhunen et al., 1998). Consequently, models have been developed which simulate the 
fluxes of matter and energy. These simulation models require as inputs or for validation 
purposes accurate estimates of forest structural and chemical properties. Collecting this 
information by traditional field sampling methods is impracticable to do over regional to 
global scales (Wessman, 1994; Schimel, 1995). Using remotely sensed information about the 
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structural and chemical state of the canopy, it is possible to apply ecosystem simulation 
models to landscapes and regions (Ustin et al., 1991; Wicks & Curran, 2003). Canopy 
attributes relevant to ecosystem simulation modeling that can be derived from remote sensing 
are land cover, leaf area index (LAI), and standing biomass (Curran, 1994a). More recently, 
leaf nitrogen concentration (LNC) has been identified as another major state variable 
potentially open to remote sensing (Lucas & Curran, 1999). The accurate mapping of the 
forest into distinct classes of forest types is essential to parameterise an ecosystem model with 
a suitable set of parameters corresponding to each class (Hall et al., 1995). 

One example of process-level ecosystem simulation model is Forest-BGC (Running & 
Coughlan, 1988). Forest-BGC (Forest-biogeochemical cycles) simulates the cycling of 
carbon, water, and nitrogen through forest ecosystems. Its generalised clone Biome-BGC 
(Kimball et al., 1997) is applicable for a range of ecosystems. To run the model requires the 
input of driving variables, state variables, and parameters. Climatic variables, such as 
temperature and precipitation are used to drive the model. State variables, such as LAI or 
transpiration, are controlled by the driving variables. LAI is used within the model to control 
the absorption of photosynthetically active radiation (PAR), estimate the canopy conductance 
and regulate the interception of precipitation (Waring & Running, 1999). LNC or leaf 
chlorophyll concentration controls the photosynthetic capacity of the foliage and, together 
with absorbed PAR, determines the upper limit for gross photosynthesis. The annual turnover 
of leaves is also correlated with LAI, LNC, and specific leaf area (Waring & Running, 1999). 
Finally the model uses parameters, such as specific leaf area or stomatal conductance that are 
species-specific and assumed to remain constant over time (Running & Gower, 1991).  

Forest inventories provide relevant information about the composition, structure and 
productivity of forest stands (Fournier et al., 2003). Forest inventory data typically exist as 
quantitative attributes collected from ground surveys or as forest cover maps interpreted 
directly from aerial photographs. Ground survey attributes include tree heights, stem 
densities, volumes, species, age classes, among others. Traditionally, forest inventories have 
been repeated every 10 years or longer while forest ecosystem processes respond on shorter 
time scales (minutes, days, and years). To monitor the effects of these processes, observation 
strategies providing appropriate temporal resolutions are required (Cihlar et al., 2003).  

In Germany, forest inventories typically exist for forest owned by the state or municipalities, 
but not for privately owned forest. For instance, in the state of Rhineland-Palatinate about a 
quarter of the total forest is private (Bundesministerium für Verbraucherschutz, Ernährung 
und Landwirtschaft, 2004). As private forests may be of great economical and ecological 
importance, there is a considerable interest of the local and state forest authorities in such 
inventory data. Consequently, a remote sensing approach capable of mapping important forest 
attributes such as species type, age class, crown volume and biomass would be of great value. 
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1.4 Objectives and structure of thesis  
The main objective of the research was to determine how forest attributes relevant to forest 
ecosystem simulation modeling and forest inventory purposes can be estimated from 
hyperspectral reflectance data. The study was restricted to forest plantations where stands are 
composed of trees of single species and age type to avoid problems related to mixed stands, 
stand heterogeneity and temporal dynamics. The investigated species, Norway spruce (Picea 
abies L. Kars.), is widespread throughout Europe and covers more than 50 percent of the 
Idarwald test site and is also the predominant tree species at Gerolstein test site. 

The investigated attributes belong to three categories: Cover type, structural attributes and 
chemical attributes. The specific research objectives were: 

 To investigate whether the forest cover type can be reliably derived from HyMap data 
using image classification. In this context data with broad to fine spectral resolution 
and large to small spatial resolution is compared (Chapter 5). 

 To investigate the relationship between HyMap reflectance and structural canopy 
attributes with two different approaches (Chapter 6): 1) predictive models based on 
vegetation indices, 2) inversion of a forest reflectance model. 

 To investigate the relationship between reflectance and chemical attributes using 
multivariate statistical analysis and to assess the reliability of scaling-up from leaf to 
canopy level (Chapter 7). 

The outline of the study is as follows: Chapter 2 briefly describes the basic principles of 
optical remote sensing and the spectral properties of vegetation components followed by a 
review of the literature relevant to the remote sensing of forest attributes. Chapter 3 introduces 
the Idarwald and Gerolstein study sites and provides a description of the used material 
including field and laboratory measurements along with the acquisition and pre-processing of 
the image data. Chapter 4 outlines the methodologies used to derive the forest attributes from 
the reflectance data. Details are given on the employed image processing techniques, the 
empirical-statistical methods and the reflectance models. Chapters 5, 6, and 7 present and 
discuss the results obtained for cover type, structural attributes and chemical attributes. The 
different results are compared with respect to the applied methods and the characteristics of 
the input data. Chapter 8 provides conclusions derived from the research and closes with 
recommendations for future investigations. Summaries in English and German are given at 
the end of the work. 
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Chapter 2 Fundamentals 

The aim of this chapter is to describe the fundamentals and review the literature relevant to 
the research. In the first section the basic principles of optical remote sensing are presented in 
brief. Atmospheric effects and their correction are discussed as it is required for a quantitative 
interpretation of airborne or satellite image data. Geometric effects are also considered. The 
next section describes the spectral properties of vegetation components with particular 
emphasis given to conifers at the needle, branch, and canopy level. In the last section the 
literature relevant to the remote sensing of forest attributes is reviewed. 

2.1 Remote sensing 

2.1.1 Physical principles 

Remote sensing is defined as the extraction of information about an object without coming 
into physical contact with it (Schott, 1997). In the environmental sciences, remote sensing 
usually refers to the use of sensors to record images of the environment which can be 
interpreted to get useful information (Curran, 1985). This information is transferred from the 
object to the sensor through electromagnetic radiation. In the domain of passive optical 
remote sensing the Sun is the source of radiation. Radiation from the Sun reaches objects on 
the Earth’s surface and is reflected. The amount of reflected radiation depends on the 
properties of those objects. The reflected energy passing through the atmosphere is modified 
by scattering and absorption processes before it is recorded by a sensor. To understand how 
reflectance can be measured in remote sensing, basic physical and radiometric principles have 
to be considered. These are extracted from the textbooks of Curran (1985), Kraus & 
Schneider (1988), Schott (1997), and Lillesand & Kiefer (2000). 

Wave theory describes electromagnetic energy as waves of wavelength λ [μm] and frequency 
ν [s-1] travelling at the speed of light c [ms-1]. 

λν=c
 

2.1 

where wavelength is the distance between one peak and the next, frequency is the number of 
cycles that pass a fixed point in 1 s, and the speed of light in vacuum has a constant value of 
2.998∗108 ms-1. It follows that waves with a short wavelength have a high frequency. 
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Quantum theory describes electromagnetic energy as being transferred in terms of energy 
packets or quanta. The energy Q [J] of a quantum is given as 

λ
ν hchQ ==

 
2.2 

where, again, ν [s-1] is the frequency and h [Js] is the Planck’s constant with a value of 
6.626∗10-34 Js. It can be concluded that waves with a short wavelengths have a high energy. 
To compare measurements of energy over different periods of time, the radiant flux Φ [W] 
defines the rate at which the energy is propagating as the first derivative of the radiant energy 
Q [J] with respect to time t [s]: 

dt
dQ

=Φ
 

2.3 

The total energy flux radiated onto a unit area, e.g. of the Earth’s surface, from all directions 
is expressed as the irradiance E [Wm-2] and in the same way the total energy flux radiated 
away from a unit area in all directions is defined as the radiant exitance M [Wm-2]: 

dA
dE Φ

=
 

2.4 

dA
dM Φ

=
 

2.5 

Both irradiance and exitance do not provide any angular or directional information of the 
radiant flux. To quantify what is measured by a sensor, the radiant flux Φ [W] is related to the 
unit projected area dA cosθ  [m-2] and the unit solid angle dΩ [sr-1]. The radiance L [Wm-2sr-1] 
is defined as 

Ω⋅
Φ

=
ddA

dL
θcos

2

 
2.6 

As the flux is spectrally variable, each of the radiometric terms will vary with wavelength. 
Therefore, L(λ) [Wm-2sr-1μm-1] is the spectral radiance, E(λ) [Wm-2μm-1] is the spectral 
irradiance, and M(λ) [Wm-2μm-1] is the spectral exitance within a wavelength band.  

To characterise an object in remote sensing, the spectral radiant exitance leaving the surface 
of the object Mρ(λ) has to be described as proportion of the incoming spectral irradiance E(λ). 
This ratio, the spectral reflectance ρ(λ), is the ability of the material to turn an incident flux 
back into the hemisphere above the material.  

)(
)(

)(
λ
λ

λρ ρ

E
M

=
 

2.7 
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A plot of the spectral reflectance of an object as a function of wavelength is called a spectral 
reflectance curve. From the spectral characteristics described by the spectral reflectance curve 
conclusions can be drawn towards various qualitative and quantitative object properties. The 
wavelengths of reflected electromagnetic radiation particularly valuable in environmental 
remote sensing are in the visible, near infrared and mid infrared wavebands. 

Similarly to reflectance, transmittance τ is the ratio of the transmitted exitance Mτ at the back 
of a sample to the incoming irradiance, and absorbance α is the ratio of the absorbed flux per 
unit area incident on a surface Mα to the irradiance onto the surface. Since the conservation of 
energy requires all the incident flux to be either reflected, transmitted, or absorbed, we have  

1)()()( =++ λαλτλρ
 

2.8 

Reflectance specifies the proportion of the incident energy which is reflected, but not the 
direction of the reflected radiation. Reflection can be either of the specular or diffuse type, or 
a mixture of both. In specular reflection, produced by smooth mirrorlike surfaces, all of the 
incident radiation is reflected towards the direction opposite to the incident angle. In that case, 
no interaction of the radiation with the surface takes place and little information is delivered 
to the sensor. The radiance reflected from diffuse reflectors, also called Lambertian surfaces, 
is the same in all directions. Most of the natural surfaces appear rough at visible and near 
infrared wavelengths and have a reflectance behaviour somewhat between the two extremes. 
Consequently, the reflected radiation reaching a sensor depends on the illumination and 
viewing geometry (section 2.2.4). However, Lambertian assumptions are often used as an 
approximation of reality. In that case, the relationship between the exitance M from a surface 
and the radiance L from that surface can be simplified, so that L becomes independent of the 
observation angle θ: 

LdLdMM πθ =Ω== ∫∫ cos
 

2.9 

Substitution of equation 2.9 into Equation 2.7 gives the spectral reflectance of Lambertian 
surfaces:  

π
λ
λλρ

)(
)()(

E
L

=
 

2.10 

There are basically two types of reflectance measurements, hemispherical and directional. In 
bi-hemispherical measurements the incident radiation is arriving from all directions and the 
reflected radiation is collected over all directions (laboratory measurement using an 
integrating sphere). In bi-directional measurements the angles of incidence and collection 
refer to one direction only (field or satellite measurement). As reflectance varies for non-
Lambertian surfaces with illumination and viewing angle, a complete description of an 
object’s reflectance properties requires measuring the bi-directional reflectance at all possible 
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combinations of angles. This is achieved by the bi-directional reflectance distribution function 
(BRDF). To approximate a measurement of bi-directional reflectance in the laboratory or 
field, the ratio between the spectral radiance L(λ) at a certain angle to the object of interest 
and a diffuse reflector (with known reflectance properties) at the same angle is used instead.  

Remote sensors, such as imaging spectrometers, record radiance values spatially registered 
and in a digital form. To extract spectral reflectance from remotely sensed images, corrections 
for the effects of the atmosphere and the image geometry have to be made. 

2.1.2 Atmospheric effects 

When radiation is passing through the atmosphere, it is partly absorbed or scattered. The 
element of fractional flux attenuated by extinction (absorption and scattering) at a certain 
location can be expressed as (Schott, 1997): 

dzzd
ext ),( λβ−=

Φ
Φ

 
2.11 

where βext(z,λ) [m-1] is the spectral extinction coefficient and dz [m] is an element of path 
length. For propagation along a finite path starting at distance zero where we have initial flux 
Φ0 to distance z where we have flux Φz, we have 

∫∫ −=
Φ
ΦΦ

Φ
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This can be solved for the simplified case of a homogenous medium to 

zz exte )(

0
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Φ
Φ
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2.13 

which is known as Lambert-Beer law. The term Φz/Φ0 is a definition of transmittance τ. The 
product of the spectral extinction coefficient and path length βext(λ) z is generally referred to 
as the spectral optical depth or thickness δ(λ) of a gas layer (Schott, 1997). It stands for the 
total extinction of a light beam passing through an air mass of thickness z. Spectral extinction 
coefficient and spectral optical depth both depend on the density and size distribution of 
molecules and aerosols in the atmosphere. The spectral extinction coefficient βext(λ) is the 
sum of the absorption coefficient )(λβα  and the scattering coefficients for Rayleigh 
scattering )(λβ r , Mie scattering )(λβ a  and non-selective scattering )(λβns : 

)()()()()( λβλβλβλβλβ α nsarext +++=
 

2.14 

Atmospheric absorption results in the loss of energy to atmospheric constituents. The most 
efficient absorbers of solar radiation are water vapour (H2O), carbon dioxide (CO2), and 
ozone (O3). As these gases absorb radiation in specific wavelength bands, optical remote 
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sensing is limited to wavelength ranges in which the atmosphere is transmissive, the so called 
atmospheric windows. Atmospheric scattering merely alters the direction of the radiation. 
Three types of scattering mechanisms can be distinguished: Rayleigh scatter occurs when 
radiation interacts with atmospheric molecules (N2, O2, Ar) that are much smaller in diameter 
than the wavelength of the interacting radiation. The Rayleigh scattering coefficient βr is 
inversely proportional to the fourth power of wavelength λ (Kraus & Schneider, 1988): 

))cos1(1(),( 2
4 θ
λ

λθβ += kr
 

2.15 

where k is a constant factor and θ is the scattering angle (deflection angle from beam 
direction). As short blue wavelength of about 400 nm are much stronger scattered than longer 
red wavelengths, the sky, which would appear black in the absence of scattering, appears 
blue. Mie scatter takes place when the atmospheric particle diameters are approximately equal 
to the wavelength of the radiation. This scattering effect, caused by aerosols such as water 
vapour and dust, depends on wavelength according to (Kraus & Schneider, 1988): 

b
a k −= λλθβ ),(

 
2.16 

where k is a constant factor and b varies between 0 and 4. As this function decreases slower 

 
Figure 2.1: Interactions of incoming solar radiation with the atmosphere and the 
contamination of the satellite-measured radiance (from Tanré et al., 1985; modified after Hill, 
1993). Refer to text for further explanations. 
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with increasing wavelength than the Rayleigh scatter function, Mie scatter tends to influence 
longer wavelengths. Non-selective scatter occurs when the atmospheric particles are much 
larger than the radiation wavelengths. It is caused by water droplets in clouds and fog which 
scatter all visible and near to mid infrared wavelengths about equally (βns(θ,λ) = constant), 
resulting in a white appearance of clouds. 

As the incoming solar irradiance interacts with the atmosphere due to the mentioned 
absorption and scattering processes, the signal measured at the satellite is contaminated. In 
order to correct a remotely sensed image, several atmospheric effects have to be considered. 
There are basically three relevant irradiance and three radiance terms (Figure 2.1): The direct 
irradiance term (1) is the part of the solar irradiance not affected by absorption or scattering 
arriving at the Earth’s surface. The scattered solar irradiance, the skylight (2), additionally 
illuminates the target. To a smaller extent, a fraction of already ground-reflected radiation that 
is again reflected from the atmosphere, arrive at the surface and is named environmental 
illumination (3). Together, these terms comprise the total irradiance onto the target. The 
satellite measured radiance L* is mainly composed of the radiance reflected by the target Ltar 
(4) which is the part of the signal carrying the target information (target radiance). 
Additionally, a part of the incoming solar irradiance is backscattered towards the sensor 
without being in contact with the target before (atmospheric radiance, Latm) (5). Finally, 
reflected irradiance from the environment surrounding the target Lenv (background radiance) 
(6) is also directed into the sensor’s field of view (Tanré et al., 1985). Setting the at-satellite 
radiance to L* = Ltar + Latm + Lenv and the irradiance onto the target to E = E0 cosθ, the at-
satellite reflectance ρ* is derived from equation 2.10 (ignoring atmospheric effects) as: 
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where E0 is the extraterrestrial irradiance, θ is the solar zenith angle and ds is the earth-sun 
distance in astronomical units. Various researches have attempted to model the effects of the 
atmosphere on radiation with the aim of removing those effects from the signal. They 
developed so called radiative transfer models. For instance, Tanré et al. (1990) developed a 
model called the 5S code (Simulation of Satellite Signal in the Solar Spectrum). The 5S code 
computes the solar radiation reflected by the Earth-atmosphere system at satellite altitude in 
various illumination and observation conditions. The following simplifying assumptions are 
made (Hill, 1993): The atmosphere is considered to be horizontally homogenous and 
variations occur only in the vertical direction. The Earth’s surface is assumed to have 
Lambertian reflectance properties; bi-directional effects are neglected. In analogy to the 
abovementioned terms of radiance (Ltar, Lenv, Latm), the corresponding reflectance terms are 
used for convenience. The at-satellite reflectance ρ* is expressed as a function of the target’s 
bi-directional reflectance ρtar, the mean reflectance of the surrounding area ρenv, and the 
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atmospheric reflectance ρatm (Tanré et al., 1990) (the wavelength dependence has been 
omitted for the sake of clarity.): 
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where τα↓↑ is the transmittance due to absorption of radiation for the double path from the Sun 
to the Earth’s surface (downward) and from the Earth’s surface to the sensor (upward), τdir↑ is 
the upward direct transmittance due to scattering, τdif↑ is the upward diffuse transmittance due 
to scattering (both depend on the observation zenith angle), and τdir,dif↓ is the downward direct 
and diffuse transmittance due to scattering (depends on the sun zenith angle). The factor ρsph 
denotes the spherical albedo of the atmosphere; the term (1-ρenvρsph)-1 increases ρ* due to 
radiance reflected by the surrounding area which is then again reflected by the atmosphere 
towards the target at the Earth’s surface, the so called adjacency effect (Kaufman, 1989). 

Target reflectance ρtar is derived from the measured at-satellite reflectance ρ* by solving 
equation 2.18 for ρtar. The transmittance terms τdir,dif↓, τdir↑, τdif↑, and the reflectance terms ρatm 
and ρsph can be calculated from the optical thickness δ(λ) (equation 2.13). While the Rayleigh 
optical thickness δr is spatially and temporally invariant (at constant air pressure), the aerosol 
optical thickness δa strongly varies in space and time and thus, is the main unknown variable 
in the atmospheric effects on remotely sensed imagery. Its value can be either derived from 
sun photometer measurements, inversion of the radiative transfer equation or from the image 
data itself (scene-based). One scene-based approach (Ahern et al., 1977) makes use of the 
principle that clear water is almost completely black in the near-infrared region of the 
spectrum. The at-satellite radiance measured in the near-infrared is assumed to be solely 
caused by scattering effects and consequently, can be used to estimate the aerosol optical 
thickness at this wavelength. This can be achieved in an iterative process using equation 2.18; 
the appropriate value of δa(λ) is found when the apparent reflectance of the water surface 
computed by the model equals the measured image reflectance. The approach has been 
successfully applied on multispectral satellite data (Hill, 1993). 

2.1.3 Topographic effects 

Measured reflectance of ground objects is, apart of the object’s reflectance properties, also 
influenced by the slope and the aspect of the image terrain. Slopes facing away from the sun 
appear relatively dark, and sun facing slopes with the same type of cover appear relatively 
bright. If the surface behaves as a Lambertian reflector, this topographic effect can be 
corrected using a cosine function which calculates the cosine of the solar zenith angle relative 
to the local terrain. However, the approach tends to produce overcorrected images especially 
when the angle between the Sun and the Earth’s surface is larger than 55° (Hill et al., 1995). 
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This can be attributed to the fact that most surfaces are of a non-Lambertian type and that the 
cosine correction can be applied only to the direct part of the solar irradiance. Therefore, 
correction of the topographic effect should be directly integrated into atmospheric correction 
models as they can provide realistic estimates of the direct and diffuse radiation (Hill et al., 
1995). 

2.1.4 Geometric effects 

Raw digital image data usually contain geometric distortions that stem from the image 
acquisition process. The sources of these distortions are related to variations in the altitude, 
attitude, and velocity of the sensor platform or are due to factors such as panoramic distortion, 
earth curvature, atmospheric refraction, relief displacement, or non-linearities in the sweep of 
the sensor instantaneous field of view (Lillesand & Kiefer, 2000). The aim of geometric 
correction or image rectification is to make the image conform to a map projection system 
that represents the surface of the Earth on a plane. Such a procedure is essential to ensure that 
the position of samples collected in the field can be identified correctly in the image.  

Imaging spectrometry data measured by airborne scanning systems particularly suffer from 
geometric distortions due to variations of the flight path and also of the attitude (roll, pitch, 
and heading) of the aircraft. These systematic, non-linear distortions can not be compensated 
for by a traditional polynomial image transformation. Instead, their correction has to be 
performed on a pixel wise calculation. The parametric geocoding software PARGE (Schläpfer 
et al., 1998) exactly reconstructs the scanning geometry for each image pixel based on 
position, attitude, and terrain elevation data and then puts each image pixel to its correct 
position. The position and attitude of the aircraft has to be recorded during the overflight. A 
digital elevation model (DEM) of high quality is required. Apart from its geocoding 
capability, PARGE can also integrate the DEM data into the geometry of the scanner to 
perform a correction of the terrain induced illumination effects (section 2.1.3). 

2.2 Spectral reflectance properties of forests 
A successful use of quantitative remote sensing in forestry requires an understanding of the 
spectral properties of the involved vegetation components. The interaction of electromagnetic 
radiation with the components of a forest canopy has to be considered on the molecular, 
cellular, leaf, branch, and canopy level. This summary is based primarily on reviews by Goel 
(1988), Guyot (1990), Baret (1991), Howard (1991), and Atzberger (1998). 
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2.2.1 The molecular level 

Absorption bands in the spectra of materials are generally caused by electronic and vibrational 
processes. Isolated atoms and ions have discrete energy states. Electronic processes occur 
when photons of a specific wavelength are absorbed to shift electrons from a lower to a higher 
energy state. (Clark, 1999). In plant tissue, electronic transitions occur around the magnesium 
atom of chlorophyll resulting in strong absorption bands in the visible part of the spectrum. 
Chlorophylls are magnesium-containing porphyrins (organic pigments characterized by the 
possession of a cyclic group of four linked nitrogen-containing rings), chemically related to 
haemoglobin (Oxford Reference Online, 2004). Chlorophyll a (and similarly, chlorophyll b) 
has strong absorption bands in the visible domain at 430 nm and 660 nm. 

When atoms form molecules, additional energy states are available through vibrational 
processes along the molecular bonds. The frequency of vibration depends on the strength of 
the bonds and the masses of the atoms bound together. For a molecule with N atoms, there are 
3∗N−6 normal modes of vibrations called fundamentals. The energy transitions of 
fundamentals occur between the ground state and the first level excited vibrational state. 
Additional vibrations can also take place at approximately multiples of the original 
fundamental frequency. They are called overtones or harmonics when they involve multiples 
of a single fundamental mode, and combinations when different fundamental modes are 
involved (Clark, 1999).  

The energy transitions of overtones are between the ground state and the second or third level 
excited vibrational state. Because transitions to higher energy states are successively less 
likely to occur, each overtone is successively weaker in intensity (Weyer, 1985). As the 
transition to second or third level energy states requires roughly twice or three time more 

 
Figure 2.2: Absorption features of organic materials and water (from Weyer, 1985). 



CHAPTER 2 FUNDAMENTALS 18 

energy than it is needed to reach a first level state, the absorption bands occur at twice and 
three times of the frequency (one-half and one-third of the wavelength) of the fundamental 
(Weyer, 1985). The most prominent overtone bands observed in the near-IR and mid-IR 
domains are related to O-H, C-H, and N-H groups (stretch, bend, deformation). Combination 
bands usually involve stretch combined with one or more bending modes. As many different 
combinations are possible the near-IR to mid-IR region is very complex (Weyer, 1985). 

Absorption bands caused by molecular vibrations are much weaker than those related to 
electronic processes. In plant tissue, water and organic materials (cellulose, lignin, protein, 
sugar, starch, tannin, and waxes) show absorption features related to vibrational processes 
(Figure 2.2). Cellulose is a polysaccharide (straight-chain D-glucose polymer) found in the 
cell walls of plants and forms 30 to 50 percent of the dry weight of most plants. It has near-
IR/mid-IR absorptions at 1220, 1480, 1780, 1930, 2100, 2280, 2340, and 2480 nm (Elvidge, 
1990). Lignin is a complex polymer of phenylpropanoid units and forms 10 to 35 percent of 
the dry weight in plant materials. It has near-IR/mid-IR absorptions at 1450, 1680, 1930 nm, 
and around 2100, 2300, and 2500 nm (Elvidge, 1990). Starch, a polysaccharide (D-glucose), 
is the principal food storage molecule in plants and not a major component of most leaf 
material. It has near-IR/mid-IR absorptions similar to those of cellulose plus absorptions at 
990, 1560, and 1700 (Elvidge, 1990). Proteins contain many amino acids linked together by 

peptide bonds. The amide group (−CONH2), formed by the reaction between adjacent 
carboxyl (–COOH) and amino (–NH2) groups, contains C–N, C=O, and N–H bonds that all 
contribute to the characteristic absorptions related to the peptide linkage (Kokaly, 2001).The 
protein D-ribulose 1-5-diphosphate carboxylase is the most abundant nitrogen bearing 
compound in green leaves (30 to 50 percent of leaf nitrogen) and plays the central role in the 
carbon fixation in photosynthesis. It has minor absorptions in the mid-IR at 1500, 1680, 1740, 
1940, 2050, 2170, 2290, and 2470 nm (Elvidge, 1990). Only leaf water has major absorption 
bands in the mid-IR and largely influences the overall reflectance in that spectral region. Leaf 
water can obscure absorption features related to protein (and other leaf chemicals) in green 
leaf materials with considerable consequences for its estimation from reflectance spectra. As 
protein is difficult to measure directly it is usually derived from total organic nitrogen by 
multiplying with a factor of 6.25 as plant protein roughly contain 16 percent nitrogen (Allen, 
1991, cited from Kupiec, 1994). Absorption features related to nitrogen are summarised in 
Table 2.1. 
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2.2.2 The leaf level 

Leaves represent the main surfaces of plant canopies where energy and gas are exchanged. 
Hence, their optical properties are essential to understand the transport of photons within 
vegetation (Despan & Jacquemoud, 2004). The general shape of reflectance and transmittance 
curves for green leaves is similar for all species (Figure 2.3). It is controlled by absorption 
features of specific molecules (section 2.2.1) and the cellular structure of the leaf tissue (Ustin 
et al, 1999).  

The internal tissue of a leaf blade (lamina) is called mesophyll and consists of parenchyma 
cells. There are two distinct forms. Palisade mesophyll lies just beneath the upper epidermis 

Table 2.1: Absorption features in vegetation reflectance spectra related to leaf nitrogen 
concentration (Adapted from Curran, 1989 and Lucas & Curran, 1999) 

Wavelength [nm] Cause of absorption Chemicals 

430 Electron transition Chlorophyll a 

460 Electron transition Chlorophyll b 

640 Electron transition Chlorophyll b 

660 Electron transition Chlorophyll a 

910 C-H stretch, 3rd overtone Protein 

1020 N-H stretch Protein 

1510 N-H stretch, 1st overtone Protein, Nitrogen 

1690 C-H stretch, 1st overtone Lignin, Starch, Protein, 
Nitrogen 

1940 O-H stretch, O-H deformation Water, Lignin, Protein, 
Nitrogen, Starch, 
Cellulose 

1980 N-H asymmetry Protein 

2060 N-H bend, 2nd overtone /  
N-H bend / N-H stretch 

Protein, Nitrogen 

2130 N-H stretch Protein 

2180 N-H bend, 2nd overtone / 
C-H stretch / C-O stretch  
C-O stretch / C-N stretch 

Protein, Nitrogen 

2240 C-H stretch Protein 

2300 N-H stretch / C-H stretch / 
C-H bend, 2nd overtone 

Protein, Nitrogen 

2350 CH2 bend, 2nd overtone / 
C-H deformation, 2nd overtone 

Cellulose, Protein, 
Nitrogen 
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and consists of cells elongated at right angles to the leaf surface. They contain a large number 
of chloroplasts and their principal function is photosynthesis. Spongy mesophyll occupies 
most of the remainder of the lamina. It consists of spherical loosely arranged cells containing 
fewer chloroplasts than the palisade mesophyll. Between these cells are air spaces leading to 
the stomata (Oxford Reference Online, 2005). Due to the random orientation of cells and the 
large number of air-cell interfaces, the diffusion of light mainly takes place in the spongy 
mesophyll (Guyot, 1990; Figure 2.4). 

Three spectral domains can be distinguished: In the visible domain (400-700 nm) absorption 
by leaf pigments is the most important process leading to low reflectance and transmittance 
values. The main light absorbing pigments are chlorophyll a and b, carotenoids, xantophylls, 
and polyphenols. Chlorophyll a is the major pigment of higher plants and together with 
chlorophyll b account for 65 percent of the total pigments. Chlorophyll a and b have 
absorption bands in the blue at around 430/450 nm and in the red domain at around 660/640 
nm (Figure 2.5). These strong absorption bands induce a reflectance peak in the green domain 
at about 550 nm. Carotenoids and xantophylls absorb mainly in the blue and are responsible 
for the colour of flowers, fruits, and the yellow colour of leaves in autumn. Polyphenols 
(brown pigments) absorb with decreasing intensity from the blue to the red and appear when 
the leaf is dead (Verdebout et al, 1994). 

In the near-infrared domain (near-IR: 700-1300 nm) leaf pigments and cellulose are almost 
transparent, so that absorption is very low and reflectance and transmittance reach their 
maximum values. The level of reflectance on the near-IR plateau increases with increasing 

 
Figure 2.3: Typical spectra of leaf reflectance, transmittance and absorptance (from 
Atzberger, 1998). 
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number of intercell spaces, cell layers, and cell size. Scattering occurs mainly due to multiple 
refractions and reflections at the boundary between hydrated cellular walls and air spaces 
(Guyot, 1990). 

The red edge is located between the absorption minimum in the red domain and the 
reflectance plateau in the near-IR region. This abrupt increase in reflectance, defined by the 
point of maximum slope, is generally referred to as the red edge (Horler et al., 1983). The 
wavelength position of the red edge, named red edge inflection point (REIP), occurs between 
680 and 740 nm. The REIP depends on the amount of chlorophyll seen by the sensor 
(Dawson & Curran, 1998). The chlorophyll amount present in a vegetation canopy is 
characterised by the chlorophyll concentration of the leaves and the leaf area index (LAI). On 
a leaf level, solely the chlorophyll concentration determines the amount of chlorophyll. An 
increase in chlorophyll amount increases the chlorophyll absorption and broadens the 
associated chlorophyll-a absorption feature located at about 680 nm (Salisbury et al., 1987). 
As a consequence, the point of maximum slope (REIP) is moved towards longer wavelengths 
and a so-called red-shift of the inflection point is observed. Consequently, a decrease in 
chlorophyll amount will lead to a decrease of the chlorophyll absorption and will shift the 
REIP towards shorter wavelengths (blue shift). 

In the mid-infrared domain (mid-IR: 1300-2500 nm), also called shortwave-infrared (SWIR), 
leaf optical properties are mainly affected by water and other foliar constituents. The major 
water absorption bands occur at 1450, 1940, and 2700 nm and secondary features at 960, 
1120, 1540, 1670, and 2200 nm (Ustin et al, 1999). Water largely influences the overall 
reflectance in the mid-IR domain but also has an indirect effect on the visible and near-IR 
reflectances. Protein, cellulose, lignin, and starch also influence leaf reflectance in the mid-IR. 

 
Figure 2.4: Internal structure of a dicotyledonous leaf (from Govaerts et al., 1996) and 
interaction of leaf tissues with incoming radiation (after Guyot, 1990). 
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However, the absorption peaks of those organic substances are rather weak as they result from 
overtones or combinations related to fundamental molecular absorptions in the region 5 to 8 
μm (Curran, 1989; section 2.2.1). The molecular absorptions are associated with certain 
chemical bonds, such as C-H, N-H, C-O, and O-H. In fresh leaves, spectral features related to 
organic substances are masked by the leaf water, so that estimation of leaf constituents is 
difficult (Verdebout et al, 1994).  

Indirect factors, such as plant type, leaf age, and leaf health also determine the leaf optical 
properties as they can affect the leaf structure and the concentrations of absorbers. The leaf 
structure varies for different plant types (genera and species). Gymnosperms are mainly 
characterised by needle-shaped leaves. Angiosperms can be divided into the monocotyledons 
and the dicotyledons. Leaves from dicotyledon species reflect and transmit greater amounts of 
radiation than leaves of monocotyledon species of the same thickness (Guyot, 1990). Within a 
certain species, differences in structure occur between sun leaves and shade leaves (Howard, 
1991). Leaf age strongly affects the optical properties of conifer needles as the chlorophyll 
content increases from year to year. Leaves of deciduous trees or annual plants, apart from the 
juvenile stage and senescence, have practically constant optical properties throughout the 
major part of their life (Guyot, 1990). Leaf health may be affected by mineral deficiencies, 
drought, pests and diseases. Drought can reduce the leaf water content; however, in natural 
conditions, it is necessary to have an extremely severe water stress to affect the leaf optical 
properties. Nitrogen deficiency reduces the chlorophyll content, the number of cell layers and 
thus, changes the whole reflectance spectrum (Guyot, 1990). Chlorosis, caused by conditions 
that prevent the formation of chlorophyll (e.g. lack of light or a deficiency of iron or 
magnesium) mainly affects leaf reflectance in the visible domain (Oxford Reference Online, 
2005a). Plants affected by chlorosis are typically pale green or even yellow.  

 
Figure 2.5: Spectrum of specific absorption coefficients of in vivo chlorophyll a+b and in vivo 
carotenoids (from Jacquemoud & Baret, 1990). 
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Leave reflectance also exhibits directional characteristics. For incidence angles normal to the 
leaf surface the reflectance is diffuse. For large incidence angles, reflectance is formed by a 
diffuse and a specular component; the latter is reflected by the cuticle and increases with 
increasing incidence angles. The specular component is practically the same in the visible and 
near-IR, whereas the diffuse component is low in the visible and high in the near-IR. This 
implies, that the relative portion of specular reflected radiation at the total reflected radiation 
is much lower in the near-IR than in the visible. Consequently, in the near-IR leaves can be 
considered Lambertian reflectors but in the visible they show strong directional effects 
(Guyot, 1990). Specularly reflected radiation will not contain any information on the internal 
biochemical composition of the leaf since no interaction has been occurred.  

2.2.3 Soil optical properties 

Apart from the leaf optical properties, soil optical properties also affect the reflectance of a 
forest canopy. In general, the reflectance of a bare soil increases progressively from the 
visible to the mid-IR and then decreases in the mid-IR with deep valleys at the water 
absorption bands. The main factors affecting soil reflectance are moisture content, soil 
texture, surface roughness, iron content, and organic matter content (Guyot, 1990).  

With increasing soil moisture content the reflectance decreases for the whole spectrum due to 
the trapping effect. When particle size increases the soil reflectance increases for all the 
wavelengths, but the effect is weaker than that of moisture. Both soil moisture and soil texture 
are strongly related to each other: coarse, sandy soils are usually well drained, resulting in low 
moisture content and relatively high reflectances; fine, poorly drained clays typically have 
lower reflectances (Lillesand & Kiefer, 2000).  

As a bare soil is not a Lambertian reflector, reflectance depends on the illumination and 
viewing geometry: reflectance values observed in the direction of the sun are enhanced (hot 
spot effect) whereas it is reduced in the direction opposite to the sun, because of the shadows 

 
Figure 2.6: Classification of soil spectral curves into five general types (from Baumgardner et 
al., 1985). 
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recorded. With increasing soil roughness reflectance decreases in the whole spectrum due to 
an enlarged occurrence of shadows (Baret, 1991). 

Based on their spectral curve forms soils can be divided into 5 main types (Figure 2.6): 
organic dominated (a), minimally altered (b), iron affected (c), organic affected (d), iron 
dominated (e) (Baumgardner et al., 1985). Although dense forest canopies may mask the 
effect of the soil spectral curve on canopy reflectance spectra, factors such as fertility, 
drainage, and moisture-holding-capacity tend to influence the vegetation growth on a soil 
(Baumgardner et al., 1985) and thus, forest canopy reflectance.  

2.2.4 The canopy level 

The optical properties of a forest canopy depend mainly on the optical properties of the 
canopy constituents and on the canopy structure. The most important canopy elements are the 
leaves and the underlying soil. Optical properties of other parts of the plants, such as bark, 
flowers, fruit, etc. will not be considered in the following elaborations. When a plant canopy 
grows, the contribution of the soil to the observed total signal progressively decreases as the 
reflectance spectrum of the bare soil is gradually replaced by that of the plant. As a 
consequence, during growth the visible and middle-infrared (mid-IR) reflectances decrease 
and the near-infrared (near-IR) reflectances increase (Figure 2.7); the reverse phenomenon is 
observed during senescence or selective cutting of trees (Guyot, 1990). This behaviour is 
mainly due to the contrast between leaf and soil optical properties. In the red domain, soil 

 
Figure 2.7: Schematic representation of the changes in canopy reflectance during growth and 
senescence (after Guyot, 1990). See text for details. 
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reflectance is generally higher than leaf reflectance whereas the reverse case is true in the 
near-IR domain (Baret, 1991). Under a dense forest canopy, the soil will be completely 
covered by tree crowns, understorey vegetation, and litter and is unlikely to contribute to the 
recorded signal. With a sparse tree canopy, the soil can be expected to contribute significantly 
(Howard, 1991).  

The canopy structure is primarily defined by the leaf area index (LAI) and the leaf angle 
distribution (LAD). The LAI is defined as the total one-sided leaf area per unit ground area 
and represents the leaf amount of a canopy. When the amount of vegetation increases during 
growth, the canopy reflectance can reach saturation levels (Figure 2.8). In the case of annual 
crops, plots of reflectance as a function of the LAI show that in the visible the saturation level 
is reached for LAI of about 2 to 3, and in the near-IR for LAI around 5 to 6. These differences 
are mainly an effect of leaf transmittance, which is low in the visible and mid-IR while it is 
high in the near-IR (Guyot, 1990). In the near-IR, a number of leaf layers are required to 
obtain full extinction of the incident radiation while in the red domain almost no radiation 
penetrates through a single leaf layer (Baret, 1991). The value of LAI where saturation occurs 
also depends on the LAD: Plants with erect leaves need higher LAI values to saturate than 
plants having horizontal leaves (Guyot, 1990). For conifers, different observations were made. 
Peterson et al. (1987) found that the saturation level was reached at an LAI of approximately 
8 in the red domain. Other results suggest a saturation of the NDVI at an LAI of about 5 
(Chen & Cihlar, 1996) or no saturation effect at all in the case of the RVI (Chen et al., 2002). 
A possible explanation for these findings is that conifer stands with high LAI generally have 

 
Figure 2.8: Schematic variation of canopy reflectance as a function of leaf area index for the 
red and near-IR domain (after Guyot, 1990; from Atzberger, 1998). 
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large tree crowns and large crown shadow fractions and thus appear dark in the red domain 
but bright in the near-IR domain due to strong multiple scattering, causing large RVI values 
(Chen et al., 2002). 

LAD, the main factor characterizing the geometry of a plant canopy, is described by the leaf 
inclination and azimuth angles. The leaf inclination is the angle between the leaf normal (the 
perpendicular to the leaf surface) and the vertical axis. It generally changes from 0° for 

 
Figure 2.9: Oblique (left) and nadir (right) view of black spruce (Picea mariana) 
demonstrating the gap effect. See text for details. From Sandmeier (2004). Photos by 
D. W. Deering. 

 
Figure 2.10: Black spruce (Picea mariana) observed in backward scattering (left) and forward 
scattering (right) direction. See text for details. From Sandmeier (2004). Photos by 
D. W. Deering. 
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horizontal leaves (planophile) to 90° for vertical leaves (erectophile). The leaf azimuth angle 
is the orientation of the leaf towards a horizontal reference axis (e.g. north direction) and 
varies between 0° and 360°. The LAD changes the probability of gap through the entire 
canopy, which determines if the incident and outgoing radiation will be intercepted by the 
vegetation. LAD also determines the magnitude of the hot spot effect, which is the peak in the 
reflectance when the sun is directly behind the sensor. Another effect of canopy geometry 
occurs when leaves are clumped together rather than uniformly distributed. The clumping 
increases the probability of a gap which increases the influence of the vegetation in lower 
layers and of the soil. The reflectance of a forest canopy will also be influenced by the shape 
and size of the tree crowns (Goel, 1988).  

As vegetation canopies are not perfect Lambertian reflectors the bi-directional reflectance of a 
canopy is affected by the illumination-viewing geometry. The illumination zenith angle is 
defined as the angle between the surface normal and the sun direction. It controls the amount 
of shadow present in a scene. The view zenith angle is defined as the angle between the 
surface normal and the sensor direction. It controls the relative portions of green vegetation 
and background seen by the sensor.  

Bi-directional reflectance effects in vegetation canopies are primarily caused by the 
distribution of shadows. The amount of shadows observed under specific illumination and 
viewing angles is controlled the canopy architecture (LAI, LAD, and other structural 

 
Figure 2.11: Causes for directional reflectance anisotropy of vegetation canopies and the 
associated typical shapes of the BRDF on the principal solar plane. From Lucht (2004).  
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attributes) which are influenced by plant species, phenology and health conditions. The 
influence of the canopy architecture on spectral BRDF data can be explained by the gap and 
backshadow effects and multiple scattering (Kimes, 1983; Sandmeier et al., 1998). The gap 
effect (Figure 2.9) occurs particularly in canopies with a vertically oriented (erectophile) 
structure such as grass lawns or conifer forests. At low view zenith angles, the lower less 
illuminated canopy levels are visible whereas at large view zenith angles, the well illuminated 
top layers of the canopy are seen. The gap effect alone leads to an azimuthally symmetric 
bowl shape centred around the nadir view angle (Sandmeier, 2004). The backshadow effect 
(Figure 2.10) causes the sensor to see the unilluminated shadowed vegetation surfaces in 
forward scattering direction. If only this effect was present in a scene, the lowest reflectance 
in a conifer forest would occur in the largest view zenith angle in forward scattering direction. 
In reality, the transmittance of leaves reduces the backshadow effect and under extreme 
viewing angles, the gap effect becomes dominant, shifting the minimum reflectance to small 
view zenith angles in forward scattering direction (Sandmeier, 2004). From the combination 
of gap and backshadow effect, densely vegetated erectophile canopies show i) the minimum 
reflectance near nadir view angles in the forward direction, ii) maximum reflectance (hot 
spot) in the backscatter direction at view zenith angle equal to the illumination zenith angle 
and iii) a general bowl shape of the BRDF (Figure 2.11). The bowl shape (a rise of reflectance 
with increasing view zenith angles) is caused by the gap effect and in dense forests, by mutual 
shadowing and obscuring of neighbouring trees (Meister et al. 2004).  

The forward scattering component is increased by some specular reflection in most vegetation 
canopies. Both, gap and backshadow effects, are more pronounced at large illumination zenith 
angles and show stronger effects in spectral domains with lack of multiple scattering (e.g. red 
wavebands). The amount of multiple scattering regulates the darkness of the shadow in a 
vegetation canopy. In the near-IR and also the green, radiance reflected or transmitted by the 
leaves generates a diffuse secondary irradiance that brightens the shadow fractions and 
reduces the contrast between illuminated and shadowed fractions. Consequently, BRDF 
effects are less pronounced in the green and near-IR wavebands and strong in red and blue 
bands (Sandmeier, 2004). 
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Figure 2.12: Variation of simulated forest canopy reflectance as a function of: A) leaf 
chlorophyll a+b content (mg m-2), B) leaf water content (g m-2), C) nitrogen content (g m-2), 
D) single tree leaf area index (m2m-2), E) average leaf inclination angle (°), F) stem density 
(ha-1), G) tree height (m), H) crown diameter (m). Spectral reflectances were simulated by the 
INFORM model using the following parameter values: CAB = 200 mg m-2, CW = 50 g m-2, 
CN = 1 g m-2, LAIs = 6 m2 m-2, ALA = 55°, SD = 700 ha-1, H = 10 m, CD = 5 m, θs = 35°, 
θo = 0°, ψ = 0°, skyl = 0.1. 
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Reflectance models are useful tools for analysing the effects of forest canopy attributes on 
reflectance signatures. By analysing the sensitivity of forest reflectance to the input variables, 
one can assess the error that may be caused by inaccurate input data. The variation of forest 
canopy reflectance with changes in certain canopy attributes as modelled by the INFORM 
model is shown in Figure 2.12.  

2.2.5 Spectral reflectance properties of Norway spruce 

Spectra of Norway spruce and other tree species show a dramatic decrease of reflectance from 
the needle to the branch to the canopy level in the near-IR and visible domain (Figure 2.13). 
In the visible changes in reflectance can be attributed to the influence of increased shadowing 
within the total scene from the needle to the canopy level. In the near-IR region, although 
reflectance generally increases with increasing canopy density or LAI due to the high 
reflectance and transmittance, four significant factors may account for a reduction in near-IR 
reflectance at the branch and canopy level: i) shadowing; ii) absorption of radiation by the 
twigs, branches, bark, and litter; iii) needle age; and iv) the clustering of needles on the 
branches which may enhance the trapping of radiation (Williams, 1991). With increasing LAI 
(or number of branches), reflectance in the near-IR domain is increasing; saturation occurs at 
an LAI of about 7-9 (Figure 2.14). 

 
Figure 2.13: Measured reflectance spectra of Norway spruce at the needle, branch, and 
canopy level (modified from Williams, 1991). 
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2.2.6 Age dependence of forest reflectance 

Forest age largely controls the structural parameters that determine the spectral reflectance of 
a forest stand. The age dependence of Norway spruce forest reflectance has been derived from 
airborne reflectance measurements and through forest reflectance model simulations by 
Nilson & Peterson (1994). The analysis of airborne data revealed a relatively fast reflectance 
decrease up to a saturation point at 20 years and 80 years for red and near-IR reflectances, 
respectively (Figure 2.15). This behaviour was explained by the fact that the amount of shade 
increases with stand age as the roughness of the forest canopy is increasing. Generally, 
simulated reflectances agreed with measured reflectances; however, some essential 
differences were observed by the authors: i) simulated reflectance slightly increased from an 
age of 30 onwards (red and near-IR domain), ii) in the near-IR domain, simulated reflectance 
increased during the first 10 years of stand development. Despite a certain disagreement 
between measured and simulated reflectances, simulated age courses of the scene component 
proportions (sunlit crowns, shaded crowns, sunlit ground, and shaded ground) largely 
explained the observed temporal reflectance variation: During the first 20-30 years of stand 
development, where a fast decrease in reflectance was observed (particularly in the red 
domain), the proportion of sunlit crowns increased (with increasing canopy cover), whereas 
the proportion of sunlit ground dramatically decreased. The proportion of shaded ground was 
constantly increasing with stand age and could be responsible for the observed reflectance 
decrease in the near-IR domain up to the end of the succession (Nilson & Peterson, 1994). 
However, the proportion of the shaded crowns did not increase between 40 and 100 years in 

 
Figure 2.14: Measured reflectance spectra of Norway spruce for changing numbers of 
branches and corresponding values of cumulative LAI (modified from Williams, 1991). 
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the simulation, which is not in harmony with the theory of the increasing shade within the 
crowns.  

Nilson & Peterson (1994) identified the following driving factors of the reflectance age course 
of a forest stand from their simulation studies: species composition of the main tree storey, 
canopy cover, tree-storey LAI, understorey vegetation, leaf/supporting tissue ratio in the tree 
storey. According to the authors, also the height distribution of the tree layer (shade effects) 
and the needle age distribution (effect of different needle optical properties) contribute to the 
temporal reflectance changes. 

2.3 Remote sensing of forest attributes 

2.3.1 Classes of forest attributes 

There are several classes of attributes to be remotely sensed in forests that share related 
mechanisms of, and limitations on, their remote estimation. Lefsky & Cohen (2003) defined 
classes of attributes related to: canopy cover, stand structure, stand composition, and 
disturbance. Attributes related to canopy cover include foliage or canopy cover, fraction of 
absorbed photosynthetically active radiation (FAPAR), and leaf area index (LAI). The attributes 
related to cover, although their formal definition and their estimation in the field differ, have a 

 
Figure 2.15: Canopy reflectance of Norway spruce as a function of stand age. Regression 
lines of type y=a+bexp(-cx) were fitted through measured reflectance data (not shown) with 
R2>0.8 (modified after Nilson & Peterson, 1994). 
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similar, clear link with the remotely sensed signal: An increase of a cover related attribute will 
be indicated by decreased reflectance in the red and increased reflectance in the near-IR. 
However, the relationship between canopy cover and LAI is asymptotic; with each additional 
layer of leaves the amount of additional cover becomes smaller. As changes in reflectance are 
mostly driven by change in cover, the relationship between reflectance and LAI is also 
asymptotic (Lefsky & Cohen, 2003; Figure 2.8). Attributes related to cover have been most 
frequently the target of research in terrestrial remote sensing (section 2.3.3). Attributes related 
to canopy height or stand age include tree volume, aboveground biomass, basal area, 
diameter-at-breast-height, and stem density. With the exception of very low productivity 
stands, canopy closure occurs early in most stands while attributes related to canopy height 
continue to change. Estimation of these attributes is limited to the period of changing canopy 
cover. Thus, accurate estimation of height-related attributes is one of the most difficult tasks 
in the remote sensing of moderate to high biomass forests. In some conifer stands, the 
structural canopy properties that can be observed continue throughout stand development, and 
determination of height-related variables is more successful (Lefsky & Cohen, 2003). 
Attributes related to composition comprise physiognomy (e.g. trees, shrubs, and herbs), 
phenological types (decidiuous and evergreen), species composition, and various cover type 
classifications (such as stand age classes). Attributes related to disturbance include attributes 
useful to monitor stand replacement, fires, thinning, etc. 

Within this research work the classification proposed by Lefsky & Cohen (2003) was 
modified. Compositional attributes were denoted as attributes related to forest type. Both, 
attributes related to cover and attributes related to canopy height, were combined to structural 
forest attributes. Additionally, a class denominated chemical forest attributes comprising 
concentrations or contents of leaf constituents was created. Attributes related to disturbance 
involve the analysis of multitemporal data sets and were not considered. 

2.3.2 Attributes related to forest type 

Multispectral satellite data have shown a good capability for mapping broad forest type 
classes, such as hardwoods, softwoods, mixed woods, open wetlands and clearcuts (Bryant et 
al., 1980). Some conifer species discrimination capabilities have been reported, but consistent 
discrimination has not been possible (Leckie, 1990). For instance, Walsh (1980) identified 
seven classes of coniferous tree species through the use of Landsat MSS data with an average 
accuracy of 88.8 percent. Results obtained by Coleman et al. (1990) revealed that TM 
imagery was inadequate for differentiating among pine species, but suitable to differentiate 
five pine age classes (four age classes out of the five age classes had a class mean of less than 
20 years, overall classification accuracy was 59.2 percent and 44.6 percent for two sites). 
Separation of age classes in spruce stands younger than 50 years was achieved by Vohland 
(1997) using TM data, but discrimination of older stands proofed to be problematic.  
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Few studies have reported on the use of hyperspectral data in mapping forest species. Franklin 
(1994) compared panchromatic SPOT, multispectral TM and hyperspectral CASI data for 
discrimination of 9 types of forest species; the obtained overall classification accuracy were 
49.2 percent using SPOT data and about 81 percent for both TM and CASI data. In attempting 
to discriminate age classes of Douglas fir with CASI data, Niemann (1995) concluded that a 
limited separation based on age is feasible but that discrimination of stands older than 40 
years is not possible. Image classification of 11 forest cover types, including pure and mixed 
stands of deciduous and conifer species using AVIRIS data yielded an overall classification 
accuracy of 75 percent (Martin et al., 1998). The study used 11 spectral bands for species 
classification which were closely correlated with field measured canopy nitrogen and lignin 
concentrations. Pediction of forest age from TM data and additional topographic information 
using neural networks resulted in rms errors about 5 years for 50 year old stands (Kimes et al., 
1996). In situ hyperspectral data has also been explored to discriminate conifer (Gong et al., 
1997) and tropical species (Cochrane, 2000).  

It can be concluded that detailed information suitable for forest inventories can only partly be 
derived from remote sensing data. While discrimination of young to medium aged forest 
stands was shown to be possible with both, multi- and hyperspectral data, separation of 
medium aged to old stands could not be achieved. 

2.3.3 Structural attributes 

Field estimation of leaf area index 

To derive LAI maps from remote sensing data accurate field estimation of LAI is essential. 
Canopy LAI is difficult to assess in forests through direct methods, such as stratified clipping 
techniques, litter collections, and allometric relationships. These methods are often site 
specific and have a limited spatial and temporal validity (Soudani et al, 2002). For instance, 
allometric relationships between LAI and diameter at breast height are inherently 
unresponsive to seasonal change, as they are typically derived from variables collected at 
various times throughout the growing season (Lucas, 1995). To overcome such difficulties, 
indirect optical methods have been developed. Ground-based LAI measurements using optical 
instruments have become a standard as they allow for intensive spatial and temporal sampling 
over large areas (Soudani et al, 2002). The LAI-2000 plant canopy analyser (Li-Cor Inc., 
Lincoln, USA) (Welles & Norman, 1991) has an optical sensor that consists of five detectors, 
arranged in concentric rings, which measure radiation (below 490 nm) from different sections 
of the sky. Canopy transmittance for these different sections is calculated as the ratio between 
below-canopy and above-canopy readings for each detector ring (Stenberg, 1996). From these 
transmittance values (gap fraction) LAI is estimated using an approximation of the Lambert-
Beer law (see section 2.1.2). This estimation is based on the assumption of randomly 
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distributed leaves in the crown and does not consider other shading elements such as stems. In 
reality however, conifer stands show a non-random leaf distribution, as needles are grouped 
(clumped) first in shoots and shoots are further grouped into branches and crowns (Chen et al, 
2002). Therefore, LAI estimates from optical methods are effective plant area indices (LAIeff), 
which account neither for clumping nor for separating leaves from non-green material, nor for 
distinguishing species (Soudani et al., 2002). LAIeff represents the equivalent leaf area of a 
canopy with a random foliage distribution to produce the same light interception as the true 
LAI (Fernandes et al., 2002). LAIeff generally differs considerably from the true LAI. An 
underestimation of the true LAI results from clumping as it increases the canopy gap fraction 
for a given leaf area. An overestimation can be attributed to the fact that the instrument 
considers not only the leaves but also woody canopy parts such as stems (Stenberg, 1996). 
Several correction factors were developed to derive the true LAI from LAIeff in forests 
(Fassnacht et al., 1994; Stenberg, 1996; Chen, 1996). According to Chen & Cihlar (1996), 
from a remote sensing perspective LAIeff has several advantages over the true LAI: first, the 
effective LAI was better correlated to vegetation indices (RVI, NDVI) than the true LAI 
(Chen & Cihlar, 1996); second, the true LAI varied by about 10-30% while LAIeff remained 
virtually unchanged in the course of a year as the new needles grew on top of the old needles 
and did not reduce the canopy gap fraction significantly (Chen, 1996). Therefore, in this 
research work the focus is on mapping LAIeff instead of the true LAI. As suggested by 
Fernandes et al. (2002) it is possible to convert maps of LAIeff to true LAI using correction 
factors estimated at the site or given in the literature. For simplicity, in this study the term 
LAI is used when referring to either effective or true LAI. 

Empirical approaches 

The majority of studies for extracting structural attributes from remotely sensed data have 
used empirical techniques to relate the spectral measurements to the variable of interest 
(Treitz & Howarth, 1999). Spectral measurements are usually converted to spectral vegetation 
indices (VIs) as these simple transformations are more closely related with plant biophysical 
properties. If structural parameters are strongly correlated with remotely sensed VIs, the 
remote sensing imagery can be used to predict those structural characteristics over large areas. 
A lot of research has been done on the estimation of forest LAI from remote sensing data 
within about the last 15 years. A selection of literature results is presented in Table 2.2. Most 
of the studies on forests have used broadband VIs to derive LAI of conifer forest stands; 
however, with varying success. Several authors found good correlations between the 
normalized difference vegetation index (NDVI) or the ratio vegetation index (RVI) derived 
from TM or AVHRR images and field-measured LAI (Running et al., 1986; Peterson et al., 
1987; Spanner et al., 1990a; Curran et al., 1992a; White et al., 1997; Franklin et al., 1997). In 
all of these studies the range in canopy LAI was very large. Those studies where the LAI 
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range was rather limited generally show a smaller correlation or no relationship (Badhwar et 
al., 1986; Spanner et al., 1990; Herwitz et al., 1990; Hall et al., 1995; Chen & Cihlar; 1996). 
Better relationships where found even for small variations in canopy LAI when using 
modified VIs, such as the reduced simple ratio or the normalised difference between near-IR 
and mid-IR (Brown et al., 2000; Chen et al., 2002; Boyd et al.; 2000) or when multiple linear 
regression was employed (Fassnacht et al., 1997).  

Few studies looked at the suitability of high spectral resolution remote sensing data to derive 
the LAI of conifer forests. Gong et al. (1995) tested CASI data using univariate and 
multivariate regression and a VI based algorithm and found strong relationships with 
reasonable low errors. Danson & Plummer (1995) tested if the red edge inflection point 
(REIP) is primarily controlled by forest canopy LAI using helicopter-borne spectroradiometer 
data and found a strong non-linear correlation between plot LAI and the REIP for Sitka spruce 
(Picea sitchensis). For the same tree species, forest LAI was recently related to the canopy 
REIP computed from imaging spectrometer data (CASI) with success (Lucas et al., 2000).  

A systematic investigation on the performance of various broadband multispectral and narrow 
band hyperspectral vegetation indices has been done on agricultural crops (Boegh et al., 2002; 
Broge & Mortensen, 2002) and very recently, also in forests. For instance, Gong et al. (2003) 
estimated forest LAI using vegetation indices derived from Hyperion hyperspectral data. Lee 
et al. (2004) performed a comparative analysis of hyperspectral versus multispectral data for 
estimating LAI in four different biomes. Using canonical correlation analysis, the authors 
found that individual, narrow bands of AVIRIS data yielded better relationships with LAI 
than broadband data for grassland and forest biomes. Given the few studies undertaken, it is 
still not sufficiently investigated whether the high spectral resolution data offer advantages 
over broadband data.  

Generally, relationships between the reflectance of a vegetation canopy and its LAI can suffer 
from effects of internal and external variables. For instance, Spanner et al. (1990; 1990a) 
found linear and strongly positive relationships between near-IR radiance and LAI only for 
stands with a canopy cover greater 89% whereas old growth stands with incomplete 
overstories had low near-IR radiances as a result of less reflective forest litter and shadows. 
However, in more open stands the exhibition of highly reflective understorey vegetation could 
also increase near-IR radiance. Soudani et al. (2002) found that the understorey LAI 
contributed 37-42% to the total LAI in pine forests. Chen & Cihlar (1996) observed that late 
spring TM images were superior to summer images for determining overstorey LAI in boreal 
conifer stands because the effect of the understorey was minimized in the spring before the 
full growth of the understorey and moss cover. On semi-natural forest sites with a wide range 
of green vegetation amount, canopy cover or LAI was considered the most important variable 
to control canopy reflectance, even with variable understorey (e.g., Spanner et al., 1990a). On 
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the contrary, in coniferous forest plantations, which are managed to maintain a large amount 
of green vegetation with little spatial variation (and thus, low ranges in LAI) the relation 
between LAI and canopy reflectance may be weaker, as also other structural stand 
characteristics (stem density, tree height) determine the stand spectral response (Danson & 
Curran, 1993; Treitz & Howarth, 1999). 

To overcome these problems various strategies were suggested. Through stratification by 
forest cover type, Franklin et al. (1997) yielded more precise LAI estimates from TM data. 
They also found that the GIS-based implementation of additional information on stem density 

Table 2.2: Selected literature results on the estimation of forest structural attributes. Sensors: 
ATM = Airborne Thematic Mapper, TM = Thematic Mapper, AVHRR = Advanced Very 
High Resolution Radiometer, CASI = Compact Airborne Spectral Imager, DAIS = Digital 
Airborne Imaging Spectrometer; Vegetation Index (VI): RVI = Ratio Vegetation Index, 
NDVI = Normalised Difference Vegetation Index, RSR = Reduced Simple Ratio, REIP = Red 
edge inflection point, VI3 = (near-IR – mid-IR) / (near-IR + mid-IR); Method: 
BRA = Bivariate regression analysis, MLR = Multiple linear regression, IRM = Inversion of 
reflectance model, CCA = Canonical correlation analysis 

Sensor VI/ 
Method Variable Range N Relation Reference 

ATM RVI/BRA LAI (various 
conifers) 1-16 18 R2 = 0.82 

Running et al., 1986, 
Peterson et al., 1987 

TM ρred, ρnear-IR 
/BRA LAI (aspen) 0.5-3.5 29 No relation Badhwar et al., 1986 

AVHRR NDVI/BRA LAI (various 
conifers) 1-13 19 R2 = 0.70-0.79 Spanner et al., 1990 

TM NDVI/BRA LAI (various 
conifers) 1-16 73 r = 0.60 Spanner et al., 1990a

TM RVI/BRA LAI (pine) 4-7 15 No relation Herwitz et al., 1990 

TM NDVI/BRA LAI (pine) 2-10 16 R2 = 0.35-0.86, 
rmse = 0.74 Curran et al., 1992 

CASI NDVI/MLR LAI (various 
conifers) 1-12 30 R2 > 0.80,  

rmse < 1.0 Gong et al., 1995 

Helicopter-
borne data REIP/BRA LAI (spruce) 5-11 14 r = 0.91 Danson & Plummer, 

1995 

TM NDVI/BRA 
RVI /BRA 

LAI 
Cover  
(various conif.) 

0.5-3.5 
0.05-0.85 22 R2 = 0.38-0.66 

R2 = 0.26-0.63 Chen & Cihlar, 1996 

TM RVI/MLR 
NDVI/MLR 

LAI (various 
conifers) 1.0-4.5 10 R2 = 0.71 

R2 = 0.91 
Fassnacht et al., 
1997 

TM RVI, NDVI 
/BRA 

LAI (various 
vegetation types) 2-15 39 R2 = 0.65-0.90 White et al., 1997 

TM NDVI/BRA LAI (various 
forest types) Not specified 17 

R2 = 0.15 (all spec.) 
R2 = 0.93 (conifers) 

Franklin et al., 1997 

TM IRM LAI (various 
vegetation types) 0-7 Not 

specified 

LAI pattern in good 
accordance to the 
land use map 

Kuusk, 1998 
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increased the accuracy of the LAI estimates and that multiple linear regressions using NDVI 
and stem density improved correlations with LAI in comparison to the simple correlations. 
Chen et al. (2002) identified accurate information about subpixel mixture of the various cover 
types as a key to improving the accuracy of LAI estimates. Badhwar et al. (1986) 
recommended the use of canopy reflectance models to understand the understorey effects on 
forest reflectance. 

Physically based approaches 

It is believed that simple empirical relationships need to be replaced by physically based 
forest reflectance models as a model inversion approach may provide a more robust method 
for estimating structural characteristics (Gemmell et al. 2002, Treitz & Howarth, 1999). The 
effects of internal and external variables might be taken into account in the inversion process 
if such information is available.  

In particular in the case of forests, physically based approaches have not yet been widely 
tested. In the forward mode the CR model computes the spectral reflectance for a certain set 
of leaf or canopy parameters. Forward modeling provides an efficient way to investigate the 
effects of forest canopy variables on reflectance signatures and may improve the 
understanding of how the canopy structure influences the radiation field (e.g., Rautiainen et 
al., 2004; Schlerf & Atzberger, 2002). For the retrieval of those canopy attributes from 
measured signals it is necessary to invert the model. Inversion has been mostly considered as 

Table 2.2 (continued) 

TM RSR/BRA LAI (pine, 
spruce) 0.5-6.0 35 R2 = 0.55-0.70 Brown et al., 2000 

AVHRR NDVI/BRA 
VI3/BRA 

LAI (pine, aspen, 
spruce) 2.0-4.0 10 R2 = 0.46 

R2 = 0.76 Boyd et al., 2000 

CASI REIP/BRA LAI (spruce, 
pine) 3-12 16 r = 0.94 Lucas et al., 2000 

CASI IRM LAI (various 
conifers) 1.0-3.0 20 R2 = 0.51-0.86 Hu et al., 2000 

CASI IRM LAI (pine) 1.0-3.0 20 R2 = 0.16-0.67 Fernandes et al., 
2002 

TM IRM Cover (pine) 0.1-1.0 33 R = 0.33-0.38 Gemmell et al., 2002

AVHRR RSR/BRA LAI (various 
conifers) 0.5-10.5 > 50 R2 = 0.62 

rmse = 1.48 Chen et al., 2002 

Hyperion VI LAI Not specified Not 
specified Not specified Gong et al., 2003 

AVIRIS CCA LAI (various 
biomes) 1.9-5.1 Not 

specified Not specified Lee et al., 2004 

CASI IRM LAI (pine, 
spruce) 1-6 46 Relative rmse = 14% 

(spruce) 
Fernandes et al., 
2004 

DAIS IRM LAI (poplar) 1.0-3.5 26 rmse = 0.40 Meroni et al., 2004 

DAIS IRM LAI (pine) 2-4 4 rmse = 0.5 Kötz et al., 2004 
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a way to validate radiative transfer models but has rarely been used as an alternative to extract 
canopy attributes from measured reflectance (Jacquemoud et al., 2000). Most of these works 
concern the retrieval of canopy structural attributes (LAI, leaf angle distribution) by using 
multi-angle reflectances (Goel & Thompson, 1984; Goel & Deering, 1985; Iaquinta et al., 
1997; Bicheron & Leroy, 1999). Recently, hyperspectral reflectances have been increasingly 
used as an input to model inversion for estimation of structural and chemical vegetation 
attributes (Jacquemoud et al., 2000; Hu et al. 2000; Zarco-Tejada et al., 2001; Meroni et al., 
2004; Fernandes et al., 2004; Kötz et al., 2004).  

The majority of the aforementioned and other inversion studies focused on agricultural crops 
but only some on forests. According to Zarco-Tejada et al (2001), until recent, no validation 
has been found in the literature reporting results in forest canopies from airborne or satellite-
measured reflectance with ground truth. For instance, Woodcock et al. (1994) estimated tree 
size and cover from TM data using the Li-Strahler model but results were not validated with 
measured field data. Kuusk (1998) inverted the MCRM model on reflectance in five TM 
bands to estimate LAI, average leaf angle, and chlorophyll content for various vegetation 
types. Ground truth data was not available. He found the estimated LAI to be in good 
accordance with the land use map but had to concede that the LAI particularly of conifer 
forests was probably underestimated by the model.  

For the past five years, an increasing number of successful LAI and crown cover estimation 
results were reported. Gemmell & Varjo (1999) were unable to provide accurate estimates of 
LAI and canopy cover in boreal forests; when background reflectance was considered, 
estimation of canopy cover succeeded with good accuracy (Gemmell, 1999). The use of 
multi-angle ASAS data further improved estimates of forest canopy cover (Gemmell, 2000). 
Hu et al. (2000) derived LAI of boreal forest canopies through inversion of a modified FLIM 
model using hyperspectral CASI data. Validation results showed moderate to high 
correlations between estimated and field-measured canopy LAI; increased correlations were 
found when the understorey reflectance was allowed to vary within the range of variability as 
determined by field measurements. In combination with a multispectral clustering approach, 
the modified FLIM was used to map spatial patterns of effective LAI within boreal forest 
stands. Depending on the site, correlations between estimated and measured LAI were poor to 
moderate (Fernandes et al., 2002). Zarco-Tejada et al. (2001) found acceptable relations 
between estimated and measured leaf pigment content of closed forest canopies using CASI 
data and coupled SAILH and PROSPECT models. Meroni et al. (2004) estimated LAI of 
poplar plantations from DAIS data using the SAIL model coupled with the PROSPECT 
model and obtained an rmse of 0.40-0.45 against ground truth. Fernandes et al. (2004) report a 
relative rmse of 14% for black spruce sites using CASI data and the FLIM-CLUS algorithm. 
Kötz et al. (2004) report an rmse of 0.5 for estimating LAI in pine stands from DAIS data 
through inversion of a coupled GeoSAIL and PROSPECT models. 
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Due to the complex character of a CR model an analytical solution is not possible and 
inversion strategies had to be developed. A successful inversion of a reflectance model 
requires three factors: a good model, an appropriate inversion procedure, and a set of 
calibrated reflectances (Jacquemoud et al., 2000). Traditional inversion of reflectance models 
employs an optimisation technique to estimate the model parameters by minimising a merit 
function (Goel, 1989). An iterative process is necessary to find the optimal estimates of these 
parameters. The main drawbacks of this method are i) difficulty in achieving globally optimal 
and stable results, ii) difficulty in retrieving more than 2 parameters simultaneously (Gong et 
al., 1999), and iii) computational inefficiencies that prohibit an operational application on a 
per-pixel basis for regional or global studies (Kimes et al., 2002).  

Recently, Artificial Neural Networks (ANN) have been employed for reflectance model 
inversion (Gong et al., 1999; Udelhoven et al., 2000; Kimes et al., 2002) in order to overcome 
the above mentioned limitations. Gong et al. (1999) found the Coupled Atmosphere and 
Canopy (CAC) model extremely difficult to use for the retrieval of structural parameters with 
ordinary (numerical or look-up table) inversion methods. They employed an ANN on 
simulated multi-angle reflectances and were able to retrieve many parameters simultaneously; 
this is usually a problem with numerical inversion methods. It was further concluded that the 
LAI retrieval could be done accurately with only one directional reflectance, while eight or 
more directional reflectances were required to accurately retrieve the LAD (leaf angle 
distribution) parameters. Kimes et al. (2002) inverted a complex 3D model (DART) for a 
wide range of simulated forest canopies. They compared a traditional inversion approach with 
the neural network method and found the ANN method to be more accurate. The ANN 
approach proofed to be computationally efficient when inverting a complex reflectance model 
and could be applied on a per-pixel basis. Udelhoven et al. (2000) inverted the INFORM 
model using hyperspectral DAIS data and found the estimated structural forest attributes to 
have reasonable values.  

2.3.4 Chemical attributes 

Assuming no constraints related to climatic conditions, water availability, nutrient availability 
or other potentially limiting factors, many of the biogeochemical processes in terrestrial 
ecosystems are related to the content of chemicals in leaves (Waring & Running, 1998). For 
instance, net primary production depends strongly on the availability of nitrogen (Vitousek, 
1982). Litter decomposition is governed by the leaf C/N ratio (Melillo et al., 1982) and also 
by the leaf lignin content. Photosynthesis is largely controlled by chlorophyll pigments. 
Therefore, quantifying foliar chemicals within vegetation should help assessing the 
physiological status of vegetation, monitoring phenological characteristics, and estimating 
productivity (Blackburn, 1998).  
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Leaves are the most important plant surface interacting with solar energy. Besides canopy 
structure, the concentrations of the leaf chemical constituents (pigments, water, protein, 
cellulose, and lignin) shape the canopy reflectance spectra (section 2.2). Reflectance spectra 
can be recorded by airborne or spaceborne spectrometers and converted to information on 
foliar chemical constituents. This information can then be used to model forest ecosystem 
processes. Estimation of foliar biochemicals can be done at three different levels based on 
reflectance spectra either from dried leaves, fresh leaves, or canopies. An overview of 
literature results on the estimation of foliar chemicals from spectral variables using different 

Table 2.3: Selected literature results on the estimation of foliar chemicals from spectral 
variables using different methodologies. Chemical attributes: L = Lignin, N = Nitrogen, 
P = Protein, C = Cellulose, W = Water, DM = Dry matter, Chl = Chlorophyll; Level: 
D = Dried, ground leaves, F = Fresh, whole leaves, C = Canopy, G = Ground, A = Airborne, 
S = Synthetic; Methodology: MSR = Multiple stepwise regression, BLR = Bivariate linear 
regression, IRM = Inversion of reflectance model, ANN = Artificial neural network; Spectral 
variable: R = Reflectance, R’ = First derivative of reflectance, diff = Reflectance differences 
at neighbouring bands, REIP = Red edge inflection point, BDN = Band depth normalization, 
VI = Vegetation index 

Che-
mical 

Species Level Method-
ology 

Spectral 
Variable 

Wavelengths [nm] and/or relation 
(MSR: R2>0.5, if not specified) 

Reference 

N, L Deciduous D 
F 
C (A) 

MSR log(1/R) various (N); various (L) 
1240 (N) ; 1225, 2305, 2365 (L) 
none (N), 1500-1700 (L) 

Peterson et al., 
1988 

L Various C (A) MSR log(1/R)’ 1256, 1311, 1555 (L) Wessman et al., 
1988 

N ; L Deciduous C (A) MSR diff' 1265, 1555 (N) ; 1256, 1592 (L) Wessman et al., 
1989 

Chl Amaranthus F MSR R’ 710, 718, 724 Curran et al., 
1992a 

Chl Sugar beet C (G) IRM R Good accuracy Jacquemoud & 
Baret, 1993 

Chl, W Sunflower F BLR R-ratios 680, 430 (Chl) ; 979, 900 (W) Penuelas et al., 
1994 

N, Chl, 
L 

Conifers C (A) MSR R’ 552, 1184, 2164 (N);  
1069, 1683, 858 (Chl) 

Johnson et al., 
1994 

N, L Pine D 
C (A) 

MSR log(1/R) 2180, 2230 (N);  
Validation on AVIRIS-spectra:  
r=0.74 (N), r=0.55 (L) 

Gastellu-
Etchegorry et 
al., 1995 

P, C, L Various D, F MSR R’, 
log(1/R) 

5 λ; no typical wavelengths associated 
with absorption features; dry samples 
performed better than fresh material 

Jacquemoud et 
al., 1995 

Chl, 
C+L 

Various D 
F 

IRM R R2=0.84 (C+L) 
R2=0.50 (C+L); 0.65 (Chl) 

Jacquemoud et 
al., 1996 

DM Various D IRM R DM (g per unit leaf area) is the only 
accurately retrieved parameter 

Fourty et al., 
1996 

N, L, C Various D, F MSR log(1/R)’, 
log(1/R)’’ 

6 bands selected were not related to 
known absorption features;  
R2 were not significantly higher than 
for randomized N-log(1/R)’ datasets 

Grossman et al., 
1996 
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methodologies is given in Table 2.3. 

Dry leaf level 

Remote sensing of chemical attributes started with spectrometric laboratory analysis of dried 
ground foliage. The methodology has been used to successfully derive protein, lignin, and 
other leaf constituents (Norris et al., 1976). Strong relationships between the concentration of 
foliar chemicals and reflectance were also found by other researchers for dry and ground 
leaves using multiple regression techniques (Card et al., 1988; Elvidge, 1990). More reliably 
results were obtained when normalised band depths were used instead of reflectance values 
(Kokaly & Clark, 1999; Curran et al., 2001). The inversion of a leaf reflectance model 
(PROSPECT) showed results of varying success. While Jacquemoud et al. (1996) obtained 
reasonable estimates on dry (but not on fresh) leaves, Fourty et al. (1996) were not able to 

Table 2.3 (continued) 

DM, W Synthetic C (S) MSR 
ANN 

R Selection of 5-8 wavelengths not 
related to known absorption features;  
ANN performed better than MSR 

Fourty & Baret, 
1997 

DM, W Various F MSR log(1/R), 
log(1/T) 

1910, 1380, 900 (W); 2310, 2160, 
1870 (DM); P, L, C not accessible 
from fresh leaf reflectance or 
transmittance 

Fourty & Baret, 
1998 

L+C, N Pine F ANN R 1240, 1720 (L+C); 1510, 2180 (N) Dawson et al., 
1998a 

Chl Eucalypt F BLR R ratios 550, 672, 708 Datt, 1998 

Chl Bracken C (G) Exp. 
Regr. 

R ratios 800, 680, 635, 470 Blackburn, 1998 

Chl Grassland C (A) BLR REIP r=0.71 , rmse=0.42 mg g-1 Jago et al., 1999 

N, L, C Various D MSR BDN 1730, 2100, 2300 (N, L, C) Kokaly & Clark, 
1999 

Chl Maize 
Synthetic 

F, C (S) BLR R ratios Slopes of near-IR / red vs. near-
IR / green 

Daughtry et al., 
2000 

Chl Synthetic C (S) BLR REIP No further specifications Demarez & 
Gastellu-
Etchegorry, 
2000 

Chl, L, 
N, C, P, 
W 

Pine D MSR BDN 1496, 680, 648, 2352, 2172 (N);  
648, 478, 1124, 1486, 2318 (L) 

Curran et al., 
2001 

N, L Chaparral 
vegetation 

C (A) MSR R’ Nit : 1609, 1748, 480 Serrano et al., 
2002 

N Grass C (A) ANN BDN, 
REIP 

R2=0.60, rmse=0.13, relative rmse of 
mean=8.3% 

Mutanga & 
Skidmore, 2004 

Chl Pine C (A) IRM R R2=0.4, rmse=8.1 µg cm-2 Zarco-Tejada et 
al., 2004 

Chl Olive trees C (A) BLR Various 
VI  

R2>0.6 Zarco-Tejada et 
al., 2004a 
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retrieve any of the single biochemical compounds within dry leaves; total amount of dry 
matter per unit leaf area was the only variable to be accurately retrieved.  

Fresh leaf level 

To bridge the gap between established laboratory methods and remote sensing, controlled 
experiments on fresh whole leaves have been undertaken by various researchers. However, 
the influence of water is strong throughout the near infrared region where most of the sought 
biochemicals have their absorption features. Consequently, leaf water can obscure absorption 
features related to foliar chemicals, such as protein, lignin, and cellulose in green leaf 
materials with considerable consequences for their estimation from reflectance spectra. For 
instance, Kokaly & Clark (1999) concluded that their method and those using log(1/R) 
derivatives would be sensitive to variations in leaf reflectance that may be solely caused by 
changes in leaf water content. Elvidge (1990) draws the conclusion, that remote sensing 
techniques for estimating canopy protein or canopy nitrogen content have to be based on 
indirect rather than direct measurements. Curran et al. (1992a) found good relationships 
between estimated and measured chemical concentrations for water, chlorophyll and starch 
(all R2>0.80). A study undertaken by Fourty & Baret (1998) showed that the detailed 
biochemistry (protein, lignin, cellulose) was not accessible in an accurate way when 
observing a large range of species; they recommended working on a limited set of species. 
Grossman et al. (1996) found stepwise multiple regression relating chemistry data and 
derivative reflectance spectra to give relatively large coefficients of determination even for 
randomised data sets. The bands selected in their study lacked correspondence to those 
reported in other studies. Inversion of a reflectance model (PROSPECT) on the basis of fresh 
leaves worked out rather poor for cellulose and lignin, but reasonable for chlorophyll 
(Jacquemoud et al., 1996).  

Canopy level 

In the transition from the leaf to the canopy level, strong disturbing effects are introduced, 
such as canopy architecture (leaf area index, leaf angle distribution) and influence of soil 
background. Compared to controlled laboratory conditions, airborne or spaceborne studies 
bring in further disturbances, such as variable solar illumination and atmospheric conditions, 
along with instrument characteristics (signal-to-noise ratio, spectral bandwidth, geometric 
field of view). Together, these factors cause a number of problems in the usage of remote 
sensing data to the determination of foliar biochemistry. Despite these problems it has been 
attempted to derive chemical attributes related to forest canopies from the analysis of imaging 
spectrometry data (Peterson et al., 1988; Wessman et al., 1988, 1994a; Johnson et al., 1994; 
Gastellu-Etchegorry et al., 1995). Results suggested that spectroradiometric measurements of 
plant canopies can be correlated with variations in canopy chemistry, involving lignin, 
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nitrogen and cellulose concentrations. However, wavebands selected by multiple linear 
regression were often not consistent with the absorption features of the chemicals within the 
leaves. Furthermore, relationships from one forest site showed poor predictive performances 
when applied to another site (Grossman et al., 1996). Estimation of chlorophyll from remotely 
sensed imagery can generally be achieved more reliably than the other chemicals, as the 
prominent chlorophyll absorption feature is not masked by leaf water. For instance, Jago et al. 
(1999) related the red edge inflection point derived from hyperspectral image data to the mean 
chlorophyll concentration of grassland and winter wheat sites with moderate success. Various 
authors successfully estimated chlorophyll from leaf reflectance spectra (Curran et al., 1992a; 
Penuelas et al., 1994; Jacquemoud et al., 1996; Datt, 1998; Atzberger & Werner, 1998; 
Daughtry et al., 2000; Schlerf et al., 2003a) and canopy reflectance spectra (Jacquemoud & 
Baret, 1993; Blackburn, 1998; Demarez & Gastellu-Etchegorry, 2000) using different 
approaches. Since a large amount of leaf nitrogen is contained in chlorophyll molecules, 
attempts were made to estimate LNC from reflectances in the chlorophyll absorption feature 
or the red edge inflection point (Lilienthal et al., 2000; Lamb et al., 2002). 

There are many other examples, where data acquired by imaging spectrometers have been 
related to foliar chemicals, with varying success (e.g., Kupiec, 1994; Kupiec & Curran, 1995; 
Gholz et al., 1996; Lucas et al., 2000; Zarco-Tejada et al., 2001; 2004). However, there is still 
a long way to go before canopy chemical concentration can be estimated reliably to drive 
ecosystem simulation models (Curran, 1994a; Wessman, 1994).  

One important limiting factor to reliably estimate foliar chemicals is the signal-to-noise ratio 
of imaging spectrometry data. Of all the applications of imaging spectroscopy in recent years, 
the estimation of foliar chemical concentration has proved to be one of the most demanding in 
terms of signal-to-noise ratio (Peterson and Hubbard, 1992). Specifications given in the 
literature on required SNRs for chemical estimates vary considerably. Gholz et al. (1996) 
compared minimum SNRs from a laboratory study (Nitrogen 37:1, Cellulose 65:1) with the 
approximate SNRs at vegetation reflectance given by the Jet Propulsion Laboratory and 
assessed data provided by the AVIRIS sensor to be sufficient for the estimation of foliar 
chemical concentrations. The minimum required SNR for this purpose has also been 
estimated by Smith and Curran (1996). From modeling the SNR, they showed that the 
required SNRs at nitrogen absorption features were always the smallest due to close 
relationships of spectral reflectance to protein and nitrogen concentrations. They suggest that 
out of three chemicals studied (nitrogen, lignin and cellulose) nitrogen could be estimated 
most successfully with remotely sensed data. Inflight SNR for the AVIRIS sensor was also 
determined by Smith and Curran (1996). They concluded that at the beginning of the 1993 
flight season the AVIRIS was close to the threshold SNR required to estimate accurately the 
concentration of foliar chemicals in vegetation canopies (from 1995 SNR was set to double) 
but conceded that the use of more than one waveband when converting reflectance to 
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chemical concentration might reduce the SNR requirement slightly. Nonetheless, the former 
statement questions the validity of results obtained from early studies using AVIRIS data for 
estimation of foliar biochemistry (e.g., Peterson et al., 1988; Wessman et al., 1988). 
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Chapter 3 Material 

Remote sensing in the geosciences is dealing with many kinds of material such as study sites, 
sensors, field and laboratory data, and imagery. These aspects are described in this chapter 
including the radiometric and geometric correction of the HyMap data.  

3.1 Study sites 
The fieldwork for this research was conducted at two sites, Idarwald and Gerolstein, both 
located in south-western Germany (Figure 3.1). HyMap images were acquired at both test 
sites at points in time close to the field data acquisition. The study on the determination of 
forest cover type and structural attributes was carried out at Idarwald. The research on the 
estimation of foliar chemicals was conducted at Gerolstein test site. The reason for this split 
was, that Idarwald offers a great number of homogenous spruce stands with a wide range of 
age classes and structural attributes but a rather limited variability in foliar chemicals due to 
its spatially invariable underlying geology. The Gerolstein area, on the other hand, hosts 
spruce forest standing on soils from very poor to very rich in nutrient availability which gives 
reasons to expect a relatively large variability in foliar chemicals. 

3.1.1 Idarwald 

The Idarwald forest (49°45’N, 7°10’E) is located on the north-western slopes of the Hunsrück 
mountain ridge. It covers an area of about 7,500 ha. Climatically the area is dominated by 
oceanic influences with primarily westerly winds. Luv effects at the west side of the ridges 
cause a relatively high mean annual precipitation of about 800-1000 mm. Low stratus above 
the mountain ridges give rise to additional precipitation during the winter term. The mean 
annual air temperature is 6.5°C with a summer maximum in July and the minimum 
temperatures occurring in January. In the winter months frost and snowfall are frequent 
(Arbeitskreis Standortkartierung, 1985). Topographically the area is characterised by 
remnants of peneplains, and quartzite ridges reaching a height of up to 770 m above mean sea 
level. Geologically the area is underlain by Devonian quartzite (Taunusquartzit) and 
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Devonian shale (Hunsrückschiefer). Taunusquarzit consists to 98 percent of quartzitic sand 
grains cemented by silicic acid and is characterised by an enormous weathering resistance. 
Weathering products of Taunusquarzit are almost pure sands while the Hunsrückschiefer 
weathers to sandy loam. Loess sedimentation and solifluction during the Pleistocene had a 
major influence on the soil formation. The predominant soil types are rankers, podzols, and 
dystric cambisols (podsolige Braunerde). The soils range from well to poorly drained. They 
are generally low in nutrient status and are partially acidified (Reichert & Stets, 1980; 
Arbeitskreis Standortkartierung, 1985). 

The dominant forest species are Norway spruce (Picea abies L. Karst.), beech (Fagus 
sylvatica), oak (Quercus petraea) and Douglas fir (Pseudotsuga menziesii). They cover 53, 
18, 11, and 5 percent of the forested area, respectively. The predominant natural forest 
community in the area is Luzulo-Fagetum typicum, but afforestation starting at the end of the 
18th century lead to a wide spreading of Norway spruce (Vohland, 1997; Arbeitskreis 
Standortkartierung, 1985).  

 
Figure 3.1: Location of study sites. Data sources: ATKIS-Geobasisdaten 
(Landesvermessungsamt Rheinland-Pflalz), ESRI data (U.S. Geological Survey). 
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Besides natural factores forest stand structure is largely determined by actual management 
practices. The timber forest or high forest (“Hochwald”) is a forest with trees that have 
evolved from seeds. There are two management types of high forest: forest with cutting areas, 
and single-tree selection forest (“Plenterwald”). Timber forest with cutting areas denotes a 
forested area that is subdivided into cutting areas (stands, divisions), in which the composition 
of the tree stock is rather uniform, especially in terms of age. Silvicultural measures comprise 
regeneration, tending, and thinning. Thinning is the extraction of some of the young trees in a 
forest so that the remainder grow and develop fully. The aim is to remove as much timber as 
possible while maintaining output to maximise the profitability of a site. Thinning has an, 
major influence on the temporal LAI dynamic. At Idarwald, after a maximum LAI value at an 
age of 20-30 years is reached, stands of Norway spruce are usually thinned at an age of 30-50. 
After 60-70 years an increase in LAI may take place up to an age of 100 where logging can 

Table 3.1: Soil substrates occurring at the Gerolstein test site (from Schwind & Schüler, 2001 
and Schwind, personal communication). German denominations appear in brackets. For 
definition of the term “Soil substrate” refer to text. 

Abbreviation Soil substrate Underlying 
geology (epoch) 

Typical soil type (FAO 
classification) 

Base 
saturation  

VLdu Loam formed from quartzite, 
sandstone and shale 
(Verwitterungslehme 
unterdev. Quarzit-Sandstein-
Tonschiefer Böden) 

Lower Devonian 
(Unterdevon) 

Eutric Cambisole 
(Skelettreiche Braunerde) 

low-medium 

wDLT Wet loam cover above clay 
loam 
(Staunasse Decklehme über 
Tonlehm) 

Lower Devonian 
(Unterdevon) 
 

Planosole-Eutric 
Cambisole  
(Pseudogley-Braunerde) 

medium 

KVLdm Loam formed from 
limestone and dolomite 
(Kalk- und Dolomit-
verwitterungslehme) 

Mid- and Upper 
Devonian 
(Mittel- und 
Oberdevon) 

Calcaric Cambisole, 
Rendzina  
(Kalkbraunerde, 
Rendzina) 

very high 

Ssm Sands 
(Sande des Mittleren 
Buntsandsteins) 

Mid-
Buntsandstein 
(Mittlerer 
Bundsandstein) 

Podzol 
(Podsol) 

very low 

DLsm Loam cover above sandstone
(Decklehme über Sanden des 
Mittleren Bundsandsteins) 

Mid-
Buntsandstein 
(Mittlerer 
Buntsandstein) 

Podzolic Cambisole 
(Podsol-Braunerde) 

low 

BVL Loam formed from basalt 
(Basaltverwitterungslehme) 

Tertiary-
Quaternary 
(Tertiär-Quartär) 

Eutric Cambisole 
(Braunerde) 

high 

DLB Loam cover above basalt 
(Decklehme über Basalt) 

Tertiary-
Quaternary 
(Tertiär-Quartär) 

Eutric Cambisole 
(Braunerde) 

high 

Kol+ Colluvium 
(Kolluvium) 

Quaternary 
(Quartär) 

Gleysole-Cambisole 
(Gley-Braunerde) 

high 



CHAPTER 3 MATERIAL 49 

lead to gaps in the canopy cover. Depending on the application of thinning measures, 
maximum variation of LAI can be expected at age 30-70 (personal communication Wagner, 
Womelsdorf; cited from Vohland, 1997).  

Another method of regeneration is the clear cutting system, which involves clearing an entire 
area and then replanting it in a uniform and homogeneous fashion. Nowadays, clear cutting 
measures are restricted by law requiring special permission by the forest authority of the 
respective federal state if they exceed a certain size. By forest management in cutting areas, 
the vast majority of the forests in Germany (approximately 97%) have been converted into 
one-age-cohort plantations. This particular form of management is now considered outdated, 
but still largely shape the present-day appearance of our forests due to long time-lags (Häusler 
& Scherer-Lorenzen, 2001). 

Soils formed over the quartzite ridges typically show a low buffer capacity as a consequence 
of the low nutrient availability. As a consequence, soil acidification has become a major 
problem in the study area during the 80s and early 90s of the last century. At the beginning of 
the 1990s, measurements in the upper soil layer revealed pH values as low as 3.8, indicating 
that protons are buffered under release of aluminium ions out of clay minerals (Block et al., 
1991). Free Al3+-ions cause damage to plants’ fine roots and the mykorrizha. High soil acidity 
may initiate additional processes: i) release of heavy metal ions, further increasing aluminium 
toxicity; ii) wash out of cation bases, such as Ca2+, Mg2+, K+ and Na+ resulting in a low cation 
exchange capacity. From the latter process, a limitation of the plant nutrient supply can be 
expected (Block, 1993). 

Nutrient concentrations from chemical analyses of foliage samples can give evidence towards 
restricted nutrient supply. Insufficient supply with magnesium (Mg), indicated by yellowing 
of leaves or needles as a consequence of chlorophyll decomposition has been observed 
particularly at the mountain ridges of the Idarwald during the 1980s. From 1990 onwards, 
intensive fertilization measures (3-6 tons of dolomite per hectare) have been carried out at 
several forest stands in order to increase their Mg-supply and neutralize acids present in the 

Table 3.2: Soil chemical indicators for three typical soil profiles occurring at the Gerolstein 
test site. CECeff: effective cation exchange capacity. BS: Base saturation. N: concentration of 
Nitrogen in the soil. C/N: carbon-to-nitrogen ratio (from Schwind & Schüler, 2001). 

Soil substrate Soil profile CECeff  
[mmol kg-1] 

BS [%] N [mg kg-1] C/N of Ah 

Vldu Ah-Bv-Cv 138-52-39 27-5-4 4310-700-380 24 

KVLdm Ah-BvCv-
IICv 

109-307-482 75-97-98 3480-1300-
650 

12 

Ssm Aeh-Bv1-
Bv2-Cv 

105-83-26-6 8-3-8-27 2320-1230-
200-100 

26 
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soil. As a result, the portion of yellowed trees decreased from 40 percent in 1980 to just 2 
percent in 1995 (Ministerium für Umwelt und Forsten Rheinland-Pfalz, 1995). Therefore, 
yellowing is not anymore considered as a major problem at Idarwald.  

Due to the limited spatial variability in soil nutrient availability as a consequence of the 
relatively uniform substrate characteristics at the Idarwald test site, spatial variability is also 
low in leaf chemical concentrations. However, remote sensing of foliar biochemistry requires 
a location where forest grows on both rich and poor sites. Therefore, another test site was 
established which is characterised by a great small-scale variability in lithology. 

3.1.2 Gerolstein 

The Gerolstein test site (50°15’N, 6°40’E) is located in the central part of the Eifel mountain. 
The mean annual precipitation is about 800-900 mm; the mean annual air temperature is 7°C.  

The manifold soil types are a product of the extreme diversity of bedrock types that occur in 
the area. Geologically the area is underlain by lower Devonian quartzite-sandstone-schist 
formations; middle Devonian limestones (calcite and dolomite), Triassic sandstones, as well 
as Tertiary and Quaternary basalts. In parts of the area the underlying bedrock was mixed 
with Pleistocene loess cover or periglacial layers. Small river valleys are covered by colluvial 
material that has been washed off the slopes and deposited at the foot slopes during the 
Holocene (Schwind & Schüler, 2001). To classify the complexity of the soil types, the 
concept of “soil substrates” is used in Germany by the Federal Research Centre for Forestry 
and Forest Products. The term “soil substrate” (german: Bodensubstrat) describes in a 
combined manner the grain-size distribution of the soil material, the type of bedrock and the 
stratification. Eight different soil substrates were identified at the study site (Table 3.1). 
Despite the extreme range in nutrient availability (Table 3.2), stands of Norway spruce forest 
are found on all eight substrate types. 

3.2 Field and laboratory data 

3.2.1 Field data 

One way to determine certain characteristics of an entire forest is to measure every single tree 
in it. For practical reasons, measurements made of some individual trees in the forest are 
scaled up to estimate what is available from the whole forest. This process of ‘scaling up’ 
involves two steps. Firstly, measurements of individual trees are made in stands. A stand 
refers to a more or less homogenous group of trees in a forest. Stand measurements are 
usually performed on a per unit ground area basis, for instance the number of stems per 
hectare. Stand measurements can also be recorded as an average for the stand, for example,  
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the average of tree stem diameters. The second step in scaling up means that many stands 
scattered throughout the forest are measured to estimate the total amount or the distribution of 
an attribute across the entire forest (West, 2004).  

 
Figure 3.2: General map of Idarwald test site with stand boundaries and locations of test plots. 
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Idarwald test site 

In 2000, 42 relatively homogenous Norway spruce stands were identified at the Idarwald 
study area (Figure 3.2). Dolomite had been added to 25 of the stands between 1986 and 1995. 
Within each stand, a square 0.09 ha plot was established. The central location of each ground 
plot was determined with an accuracy of about ±5 m using a differential global positioning 
system (GPS). Signal distortion within the forest stands did not give as high accuracies as 
specified by the manufacturer. From a total of 42 stands, one was not covered by the HyMap 
imagery, and another one was thinned in the period between ground data collection and the 
HyMap overpass. These two stands were excluded from the analysis reducing the dataset to 
40 stands.  

At each plot, measurements of forest structural attributes were carried out. Attributes that 
have been measured include leaf area index (LAI), stem density (SD), canopy cover (CO), 
perimeter-at-breast-height (PBH), stand height (H) and crown diameter (CD). LAI was 
estimated using a Li-Cor LAI-2000 Plant Canopy Analyser. The LAI-2000 estimates effective 
LAI using measurements of diffuse solar radiation above and below the forest canopy. Several 
factors such as sky conditions, topography, foliage clumping, woody materials, and plant 
phenology all affect LAI estimates (Fournier et al., 2003). The LAI-2000 was only operated 
under overcast sky conditions during 10-16 hours daytime. A 270-degree view restrictor was 
used on the sensor. Within each plot, below canopy measurements were taken at 10 regularly 
spaced points from which the average was calculated. As no second device was available to 
operate the LAI-2000 in a two-sensor mode, above the canopy measurements were taken in a 
nearby open field before entering the plots. It was carefully paid attention to stable sky 
conditions between the open field and plot measurements. None of the outer rings were 
eliminated in the gap-fraction inversion. Despite the non-random distribution of leaves, no 
corrections for shoot level clumping and stand level clumping were applied. Also no 
contributions of woody surfaces were subtracted as the influence of woody components on the 
measurements is difficult to assess. It was assumed that the underestimation of LAI due to 
clumping effects was somehow compensated by the overestimation of LAI through woody 
structures (Fournier et al., 2003). As no corrections were applied, the retrieved LAI-2000 
measurements represent an effective plant area index instead of the real leaf area index (see 
section 3.2.1). In the following sections these measurements are named effective leaf area 
index and abbreviated as LAI. Stem density (SD) or stocking density, the number of tree 
stems per unit area, was obtained by counting the number of trees in a plot and dividing the 
number by the plot area measured in hectare. Canopy cover (CO) or fraction of canopy 
closure, was  
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visually estimated in steps of 5 percent. Perimeter-at-breast-height (PBH) is defined as the 
trunk perimeter at 1.3 m above the forest floor. It is equivalent to diameter-at-breast height 

 
Figure 3.3: General map of Gerolstein test site with stand boundaries, locations of field plots 
and locations of targets used for radiometric calibration. 
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 (DBH) which is often used instead. PBH was measured for 10 randomly selected trees within 
each plot and the stand average was calculated. Stand height (H) was calculated from the 
mean height of three dominant trees that were randomly selected within each plot. The height 
of each tree (from the ground to the top) was determined from angular measurements. As 
forest stands at Idarwald consist of trees of the same age, dominant trees within a stand have 
similar heights. Hence, the selection of three trees to represent H was considered to be 
appropriate. Crown diameter (CD) was determined as the mean of maximum and minimum 
crown diameters. From five representive trees per plot the average was calculated. CD was 
only measured in forest stands older than sixty years (n = 28).  

Assuming that the volume of a single stem can be approximated by a cone, a new variable 
stem biomass (SBM, unit: t ha-1) was calculated from PBH, H, and SD: 
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where δWOOD is the density of fresh wood (for Norway spruce: 0.47g/cm³ at 12-15% moisture 
content; Sedlmayer, 2004).  

 
Figure 3.4: Woodman climbing a tree at Idarwald test site (March, 2000). 
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Gerolstein test site 

In August 2003, 13 relatively homogenous Norway spruce stands were identified at the 
Gerolstein test site (Figure 3.3). Three trees were randomly selected within each stand. Skilled 
woodsmen climbed the trunks up to the treetop and cut off three branches from the outer part 
of each crown (Figure 3.4). Foliage from the sampled branches was removed separately by 
age class (1st and 3rd year) according to their position on the branch, bagged, labelled and 
placed in cold boxes in the field. As freezing and thawing are known to change the spectral 
properties of leaves and needles, the foliage samples were stored in refrigerators at +5°C after 
the transport to the geosciences laboratory of the University of Trier. In total, 78 samples were 
obtained (13 stands x 3 trees x 2 age classes). From these samples sub-samples were 
randomly selected and subjected to standard wet chemical analysis to obtain measures of the 
concentration of chlorophyll a and b, water, nitrogen, and other chemical elements (section 
3.2.2). Additional sub-samples were randomly selected for reflectance measurements (section 
3.2.3). To validate predictive models developed on the data obtained at Gerolstein (section 
7.4.4) foliar samples from Idarwald were used. At Idarwald test site samples had been 
collected during March 2000 in a same fashion as previously described for the Gerolstein 
area. In total, 30 samples were obtained (5 stands x 3 trees x 2 age classes). Chemical and 
spectrometric measurements and pre-processing steps were identical for both sets of data. 

3.2.2 Chemical laboratory analysis 

To determine leaf water concentration (CW), approximately 5 g of fresh sample were 
weighted, dried in an oven at 105 °C to constant weight (24 hrs), and were then re-weighted. 
Leaf water concentration was calculated as (fresh weight [g] – dry weight [g]) / dry weight [g] 
x 100. 

Chlorophyll concentration (CAB) of the foliage was determined as described by Lichtenthaler 
(1987). Approximately 0.5 g of fresh sample were weighted and ground by hand in acetone 
with aid of quartz sand until no green colour was left in the residual material. After the 
chlorophyll solution was decanted off the residue, filled up to a volume of 50 ml with acetone, 
centrifuged for 30 minutes, it was measured in a laboratory spectrophotometer. Chlorophyll a 
was measured at its absorption maximum of 663 nm and chlorophyll b at 646 nm. 
Concentration of chlorophyll a+b (CAB) was converted from unit “grams per litre” to 
“milligrams per gram of dry weight”: CAB [mg g-1] = CAB [g l-1] x volume [l] x 1000 / dry 
sample weight [g]. The extraction of chlorophyll was carried out under cool and totally dark 
conditions as leaf pigments tend to decompose when exposed to light. 
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Total nitrogen concentration (CN) of the foliage was determined through CHN elementary 
analysis (Wilson, 1990). The samples are broken down into its atomic components and are 
then separated. To break the sample down it is combusted in an oxygen atmosphere at 980°C. 
At this temperature all of the elements to be detected react with oxygen to form CO2, H2O, 
and NxOy. The gas is then led over copper granulate material where the nitrogen oxides are 
reduced to N2. Next, the gases are carried via a He-stream to a detector. The detector reports a 
value to the computer which compares it to the known value of a standard. These values are 
calculated based on the sample weight. Results are reported in percent element by weight.  

3.2.3 Spectral reflectance measurements 

The directional-hemispherical spectral reflectance and transmittance of plant leaves are 
typically measured by laboratory spectroradiometers equipped with an integrating sphere to 
average the signal reflected or transmitted in all directions. Problems typically occur with 
needles as their size is generally shorter than the diameter of the sample port of integrating 
spheres. As a consequence, alternative techniques consist of measuring the reflectance of a 
mat of needles arranged side-by-side into a single layer or measuring the reflectance of an 
infinite number of needles, e.g. a layer stack (Despan & Jacquemoud, 2004). 

Reflectance spectra were measured using a Field-Spec-II spectroradiometer under laboratory 
conditions. The target was illuminated by a 1000 W halogen light source at a zenith angle of 
45° and a distance of approximately 60 cm. The optical head of the Field-Spec-II was 
positioned at nadir (0° viewing angle) at a distance of 10 cm above the target. It was made 
sure that the instrument’s field of view lay well within the target’s perimeter. The target 
consisted of needles arranged in an optical dense layer of about 1 cm thickness over a matt 
black background. Relative spectral radiances between 350 and 2500 nm were recorded at 

 
Figure 3.5: Signal-to-noise ratio measured while viewing a 50% reflectance target at a solar 
zenith angle of 30 degrees; the pixel integration time was equivalent to operation at 14 lines 
per second (from Cocks et al., 1998). 
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1 nm steps in 2151 spectral wavebands. Each sample measurement comprised 50 single 
measurements of the target and was repeated four times thereby rotating the target to average 
out any possible directional effects. The reference panel (Spectralon) was measured before 
and after the target measurements. The absolute spectral reflectance (ρtarget) for each 
waveband was calculated from the radiance counts of measurements of the target (DNtarget) 
and the reference (DNreference) and the reflectance of the reference (ρreference) as 
ρtarget = DNtarget / DNreference * ρreference. The 5 spectra recorded for each sample were averaged 
to produce a single spectrum. The resulting spectra were smoothed using a 31 nm wide 
moving Savitzky-Golay filter to reduce instrument noise. 

3.3 HyMap image data 

The estimation of quantitative forest properties from remote sensing data requires acquisition 
and preprocessing of image data. This section outlines the design and operation of the 
Hyperspectral Mapper (HyMap) and describes the radiometric and geometric correction that 
has been applied to the HyMap data. 

3.3.1 The HyMap sensor 

HyMap was designed and built by Integrated Spectronics, Australia, and operated by 
HyVista. It has become operational for scientific and commercial tasks in 1998. The spatial 
configuration is as follows: The instrument collects data in across-track direction by 
mechanical scanning and in along-track direction by movement of the airborne platform. Its 
instantaneous field of view (IFOV) is 2.5 mrad along-track and 2.0 mrad across-track and the 
field of view (FOV) is 60 degrees (512 pixels). Typically, the sensor is flown aboard a light, 
twin engined aircraft at altitudes of 2000-5000 m above ground level. The swath width at 
these altitudes is 2.3 to 4.6 km and the ground resolution 5 to 10 m (along-track) (Cocks et al, 
1998).  

Table 3.3: Spectral configuration of the HyMap sensor (from Cocks et al., 1998) 

Module Spectral range Bandwidth across 
module 

Average spectral 
sampling interval 

Visible 0.45–0.89 μm 15–16 nm 15 nm 

near-IR 0.89–1.35 μm 15–16 nm 15 nm 

SWIR1 1.40–1.80 μm 15–16 nm 13 nm 

SWIR2 1.95–2.48 μm 18–20 nm 17 nm 
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The spectral configuration of HyMap provides contiguous sampling across the spectral range 
of 0.45–2.48 μm except for gaps in the strong atmospheric water absorption bands near 
1.4 μm and 1.9 μm. Additionally, it collects broadband information in the thermal infrared 
domain. A complete spectrum over the range of 0.45–2.48 μm is recorded in a sampling 
interval of 13–17 nm by 4 spectrographic modules (Table 3.3). The visible module includes a 
silicon (Si) detector array operated at ambient temperatures and the near-IR, SWIR1, and 
SWIR2 modules incorporate indium-antimony (InSb) arrays cooled by liquid nitrogen. Each 
spectrographic module provides 32 spectral channels giving a total of 128 spectral 
measurements for each image pixel (Cocks et al, 1998). 

Airborne imaging spectrometers have to cope with a relatively weak illumination source (the 
sun) compared to laboratory illumination sources, sensor-to-object distances of several 
kilometres, and very short dwell times. Together, these factors suggest that imaging 
spectrometers generally have a low signal-to-noise ratio (SNR) (Curran & Dungan, cited from 
Kupiec, 1994). To meet the requirements for the detection of subtle variations in the spectral 
properties of image objects, sensor technology has been driven to achieve higher SNRs. 
Ground measurements by Cocks et al. (1998) have shown that in the spectral regions of the 
atmospheric windows, the HyMap sensor achieves SNRs approaching 1000:1 or better 
(Figure 3.5). These ground based measurements of SNR are a very good indicator of the 
sensor’s in-flight performance.  

 
Figure 3.6: Raw (left) and cross-track illumination corrected (right) HyMap image profiles 
(upper part) and corresponding portions of the HyMap scene (lower part) at Idarwald. The 
yellow lines in the images indicate the course of the profiles. Profiles are shown for the red 
(Bd. 15), near-IR (Bd. 34), and mid-IR (Bd. 83) domains. Images are displayed at band 
combination 34-83-15 (RGB). 
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3.3.2 The HyMap data sets 

HyMap was flown over Idarwald test site at 17th July 1999. The data were recorded at 
13:00 hrs CET at an average flying height of 1980 m above ground level. The resulting 
ground resolution was about 5 m with a full scene covering approximately 3 km x 10 km. The 
flight line was run in a NE–SW direction parallel to the mountain ridge. The acquired single 
scene was free of cloud cover. A number of 14 HyMap spectral channels with high noise were 
identified as bad bands and removed from the dataset. After removing these channels, a total 
of 114 wavebands remained out of the original 128. All subsequent data analyses were carried 
out on the 114-band dataset. 

HyMap was flown over Gerolstein test site at 14th July 2003. The data were recorded at 12:40 
hrs CET at an average flying height of 3400 m above ground level. The resulting ground 
resolution was about 7 m with a full scene covering about 4 km x 13 km. The flight line was 
run in almost N-S direction. The acquired scene was free of cloud cover. A number of 16 
HyMap spectral channels with high noise were identified as bad bands and removed from the 
dataset. After removing these channels, a total of 110 wavebands remained out of the original 
126. All subsequent data analyses were carried out on the 110-band dataset. 

3.3.3 Radiometric correction  

Radiometric correction of image data is exceptionally important to remote sensing of 
coniferous forests, as the small reflectance signal generated by conifer canopies is strongly 
influenced by terrain and atmospheric effects (Peterson & Running, 1989). When quantitative 
attributes are to be estimated from remote sensing data, surface reflectance is the preferred or 
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Figure 3.7: Schematic representation of the sensor recalibration. 
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required data type (Peddle et al., 2003). Radiometric correction of the HyMap data set 
acquired over both test sites consisted of i) an across-track illumination correction and ii) 
additional radiometric correction involving atmospheric correction, correction for illumination 
effects caused by topography, and in-flight calibration of the HyMap sensor system. The 
vicarious calibration of the instrument implies the computation of updated calibration 
coefficients (illustrated in Figure 3.7). From reflectance measurements collected at several 
reference targets on the ground, at-sensor radiance is modelled using a radiative transfer code. 
Modelled radiance is then related to measured image radiance through a linear regression to 
obtain a set of updated in-flight calibration coefficients.  

Atmospheric correction of the HyMap data sets was achieved with an in-house developed 
software package (AtCPro 3.01) which is originally based on the formulation of radiative 
transfer in 5S and 6S (e.g., Tanré et al., 1990) (section 2.1.2). This code has been modified to 
account for atmospheric extinction processes as a function of sensor and terrain altitude (Hill 
& Sturm, 1991). It has been further extended for the ability to estimate the aerosol optical 
thickness directly from dark objects in the satellite image (Hill, 1993). A topographic 
correction module has been integrated where targets are assumed to have Lambertian 
reflectance characteristics (Hill et al., 1995). Recently, the method has been extended to cope 
with specific requirements of airborne hyperspectral image data by adding a module that 
produces spatially distributed maps of atmospheric water vapour to be included into the 
atmospheric correction (Hill & Mehl, 2003).  

 
Figure 3.8: Atmospherically corrected HyMap reflectance spectra from various forested and 
non-forested areas at Idarwald study site (from Hill, 2002). 
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HyMap at Idarwald test site 

Across-track illumination correction was applied to correct for the effects of change in sensor 
view angle that typically affect sensors with a large total field of view (Kennedy et al., 1997). 
To determine the magnitude of these effects, values of digital numbers (DN) representing 
conifer forest were plotted against image pixel number in the across scan direction. A 
systematic increase in values of DNs with view angle in the down-Sun viewing direction and 
a decrease in the opposite-Sun viewing direction was observed (Figure 3.6). This well known 
trend can be attributed to the effect of anisotropy and canopy shadow. As most vegetation 
canopies show a backward scattering characteristic the opposite-Sun side of the scanned 
image receives less reflected energy than the down-Sun side (Hildebrandt, 1996; section 
2.2.4). To correct this view angle effect an across track illumination correction was applied to 
each spectral band independently (ENVI 3.4, Research Systems). For this purpose, a second-
order polynomial was fitted to the data. Based on the fitted polynomials, a normalization 
procedure was applied. 

The atmospheric correction of the HyMap data set used additional field data collected for a 
specific calibration flight performed during the same day in a different area only 30 km away 
from the Idarwald study site. There, measurements of atmospheric beam transmittance were 
conducted with a CIMEL photometer during the time of both flights. Their evaluation yielded 
an aerosol optical depth of τa = 0.33 at λ = 0.55 µm representing a horizontal visibility of 
approximately 15 km. Contemporarily, bi-directional reflectances of several reference targets 
with different surface characteristics (gravel, asphalt, grass and water) were measured at the 
ground with an ASD Field-Spec-II instrument. From these ground measurements, together 
with the derived aerosol optical depth and a water vapour concentration of 3.8 g cm-2 that was 
obtained from an iterative approximation based on several MODTRAN runs, the at-sensor 
radiance was modelled. Modelled radiance and measured digital numbers from the image 
were then related through a linear regression to obtain a set of updated HyMap in-flight 
calibration coefficients. It turned out that, except for single noisy bands with limited 
radiometric performance, the resulting adjustments remained within ± 15 % of the HyMap 
pre-flight calibration values. Using these updated calibration coefficients together with 
estimates of the water vapour concentration it was possible to reconstruct a spatially 
differentiated water vapour map for the HyMap scene of Idarwald. Water vapour 
concentration for each image pixel was estimated from the depth of the water absorption 
features at 0.94 μm and 1.14 μm. In a final run, the water vapour map was integrated into the 
atmospheric correction processing of this image. This correction also included a correction for 
terrain induced illumination effects, for which specific DEM-derivates (slope, aspect, and the 
proportion of the visible hemispherical sky at each pixel) had been transferred to the geometry 
of the original HyMap image using the parametric image processing software PARGE 
developed by Schläpfer et al.(1998). The obtained reflectance spectra (Figure 3.8) point 
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towards a good data quality and indicate that a sound foundation has been laid for subsequent 
quantitative data exploration using empirical or physical based methods (Hill, 2002). 

HyMap at Gerolstein test site 

The radiometric correction procedure of HyMap imagery acquired over Gerolstein test site 
was similar to the procedure applied to the Idarwald image that was described in the previous 
section. Just a few aspects are mentioned where the procedure differs from the one applied to 
the Idarwald image.  

To correct for across track illumination effects, a first order polynomial was fitted to the data 
followed by a normalisation procedure. The aerosol optical depth was derived from estimates 
of the horizontal visibility that was provided by three meteorological stations located in the 
region (mean horizontal visibility: 35 km). At the day of the overflight, several reference 
targets were measured at the ground with an ASD Field-Spec-II spectroradiometer. The 
targets covered a wide range of surface characteristics and included short grass (football 
ground), long grass (pasture), cereals (grain field), asphalt (parking lot), calcareous material 
(mining dump) and water (pond). From these ground measurements, together with the derived 
aerosol optical depth and the iteratively derived water vapour concentration the at-sensor 
radiance was modelled. Modelled radiance and measured digital numbers from the image 
were then related through a linear regression (Figure 3.9) to obtain a set of updated HyMap 
in-flight calibration coefficients. The relations between measured and modelled radiances lie 
close to the 1:1 lines and have values of r2 between 0.91 and 0.98 with best relations in visible 
and near-IR wavebands. The resulting adjustments remained within ± 10 % of the HyMap 
pre-flight calibration values except for single noisy bands. The obtained reflectance spectra 
exhibited an excellent data quality which is an important pre-requisite for mapping of foliar 
chemicals. 
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Figure 3.9: Modelled against measured radiance in six wavebands based on ten reference 
targets at Gerolstein test site. 
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3.3.4 Geometric correction 

The image data were geometrically corrected to the local coordinate system (Gauss Krüger, 
Zone 2, Ellipsoid: Bessel 1841, Datum: Potsdam) using the parametric geocoding software 
PARGE (Schläpfer et al., 1998). For this purpose, the required DEM with an original pixel 
size of 20 m was resampled to the image pixel size (Idarwald: 5 m; Gerolstein: 7 m) using 
bilinear interpolation. In the case of the Idarwald image, 30 ground control points (GCPs) 
measured in the field by differential GPS were used to calibrate the in-flight auxiliary data. 
For the Gerolstein image, 53 GCPs were obtained from an orthophoto mosaic. Image 
resampling was performed using triangulation coding from centre pixels (Schläpfer et al., 
1998). The root mean squared error of the geometric correction was 4.3 m in x-direction and 
4.8 m in y-direction (Idarwald image) and 4.9 m in x-direction and 5.6 m in y-direction 
(Gerolstein image). With an image pixels size of 5 m and 7 m, respectively, the geometric 
correction of both data sets was accurate to within a pixel. 

 
Figure 3.10: Extraction of spectra for various radii. Circle segments were obtained through 
buffering around the GPS-measured central plot position and subsequent masking using the 
conifer forest mask. Image pixels representing shaded spruce crown appear in a very dark 
green tone, sunlit spruce crowns appear in dark green, beech in bright green and road in 
purple tones.  
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3.3.5 Extraction of reflectance spectra from HyMap imagery 

Idarwald image 

Reflectance spectra have been extracted from the image data for all 40 forest stands under 
investigation. To collect representative image spectra in each plot, average reflectance spectra 
were computed from image pixels within certain radii around the central plot position. 
Average spectra were derived from radii of 7 m, 12 m, 17 m, 22 m, 32 m, 42 m, and 52 m. 
Pixels not representing spruce forest were cut out from the circles through a GIS operation 
resulting in circle segments (Figure 3.10). Mean and standard deviation of spectral reflectance 
were extracted. Mean reflectance was plotted against wavelengths for a typical forest stand 
for the near-IR wavelength region (Figure 3.11A) and the visible wavelength region (Figure 
3.11B). It is evident that a critical value of reflectance is reached with increasing radius and 
stabilisation occurs. The plateau where reflectance remains constant lasts from a radius of 
32 m until 52 m in both the visible and the near-infrared wavelength region. Therefore, the 
central position of the plateau at a radius of 42 m was considered to be the critical size from 
where local heterogeneity is not further increasing. The other forest stands essentially show 
similar patterns. Sometimes, values of reflectance plateau already at a smaller radius, but 

 
Figure 3.11: (A) Change of reflectance with increasing circle radius across the visible region 
(HyMap-bands 4-12) and (B) the near-infrared region (HyMap-bands 20-32). (C) Change of 
the coefficient of variation with increasing circle radius across the visible region (HyMap-
bands 4-12) and (D) the near-infrared region (HyMap-bands 20-32). 
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never a decrease in reflectance with increasing circle size is observed. A sharp decrease of 
reflectance in the near-IR region would indicate that the boundary of the stand is crossed, 
incorporating gaps in the forest cover. A sharp increase of reflectance in the near-IR region 
would indicate incorporation of broad-leaf forest which shows a considerably higher 
reflectance at the near-IR plateau (Figure 3.10).  

In a similar fashion, the coefficient of variation (standard deviation of spectral reflectance 
divided by the mean spectral reflectance) was plotted against wavelength for the visible 
(Figure 3.11C) and the near-infrared (Figure 3.11D) region. As can be seen, the lowest 
variation occurs at radii of 42 m for both wavelengths regions.  

Gerolstein image 

As many of the investigated forest stands at Gerolstein test site were relatively small in 
relation to the image pixel size, a systematic investigation of the number of extracted pixels 
was not feasible. Instead, reflectance spectra were extracted from the image using the region 
growing tool under the image processing software ENVI (version 4.0). At each field plot in 
the image, four pixels were defined as a “region of interest” (ROI). Growing of ROIs was 
done in 4 directions (neighbours) with a standard deviation multiplier of 1 resulting in ROIs 
of 8 to 31 image pixels. From the selected image pixels mean reflectance spectra were 
computed and used for further analysis. 

3.4 Forest Geographic Information System 
A Forest Geographic Information System (FoGIS) was available for Idarwald test site. It 
contained the current forest inventory information (cutoff date: 01.10.1994) as had been made 
available by the regional forest authority (Forstdirektion Koblenz). The forest inventory data 
listed for each forest type present in a particular forest stand information about tree species, 
age, form of mixing, productivity, etc. This information was aggregated into a stand average 
in order to link attribute data to geographic data (stand polygons) by a 1:1 relation (Vohland, 
1997). With the help of FoGIS it was possible to find suitable training and validation areas for 
image classification (Chapter 5) and to identify useful plots for field data sampling (section 
3.2.1). 
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Chapter 4  Statistical and physical methods 

4.1 Overview 
Generally, it can be distinguished between empirical-statistical and analytical techniques for 
the derivation of leaf and canopy properties from reflectance data. The following main 
approaches exist for the utilization of remotely sensed spectral information to identify and 
characterize plant canopies (Ustin et al., 1999; Baret & Jacquemoud, 1994): 

 Data analysis to determine the spatial extent of cover types based on their spectral 
response. Mapping of cover types is typically achieved through image classification. In 
classification, a statistically based decision rule is applied to categorize all pixels in an 
image to one of several cover classes (Lillesand & Kiefer, 2000). Image classification 
techniques (section 4.2) were used to map tree species and age classes. 

 Empirical models that relate the spectral measurement through regression analysis to 
the variable of interest. Regression techniques comprise bivariate regression, multiple 
stepwise regression, partial least squares regression, and others. The spectral 
measurement is often manipulated in such a way, that it can be related to a given 
canopy property (Verstraete & Pinty, 1996). These so-called vegetation indices (VIs) 
include band ratios, spectral derivatives, spectral shifts, and others. One objective of 
using VIs is to enhance spectral features while minimizing confounding factors, such 
as soil optical properties or atmospheric effects (Demetriades-Shah et al., 1990). 
Empirical techniques are described in section 4.3. 

 Analytical models. Radiative transfer models describe the interaction of radiation with 
leaves and vegetation canopies based on physical principles. Such a leaf or canopy 
reflectance model relates the spectral information via a complex mathematical function 
to leaf and canopy variables (Goel, 1988). A good model will simulate a realistic 
spectral signature from a given set of variables. Once a model is developed, estimates 
of these variables can be retrieved from reflectance spectra through inversion (Goel, 
1989). One of the main problems with model inversion is the so-called ill-posed 
problem. It states that a given reflectance signal could be generated by more than one 
set of combinations of variable values, because different variables may affect the 
canopy reflectance in the same way. Consequently, a unique set of parameter 
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combination would not exist (Combal et al., 2000). Physically-based techniques are 
described in section 4.4. 

 Spectral mixture analysis can be considered a simple reflectance model. In spectral 
mixture analysis, the reflectance spectrum of a given target is considered as composed 
of a small number of elementary objects called end-members. The (linear) combination 
of single end-member spectra is determined that describes best the observed spectrum. 
It provides an estimate of the relative coverage of the elementary surface types (e.g., 
vegetation) in the observed pixels. However, this approach assumes that radiative 
transfer processes involved are additive which is not valid for dense vegetation 
canopies (Smith et al., 1994). Therefore, spectral mixture analysis was not used in this 
research work. 

The structural and chemical properties of a vegetation canopy control its spectral signature 
(section 2.2) and can in general be derived from remote sensing (section 2.3). The reflectance 
(ρλ) of a vegetation canopy at wavelength λ is determined by the vegetation parameters (V) 
plus more or less variable side conditions (S): 

),,,( 1 SVVf nK=λρ
 

4.1

To find the function f that relates the parameters of interest to the recorded signal is the 
fundamental goal in quantitative remote sensing (Verstraete et al., 1996). However, the side 
conditions comprise a number of variables that describe the atmosphere, illumination and 
viewing geometry, environmental conditions, etc. that are very difficult to measure. 
Therefore, finding f is not trivial. It is the overall objective of this research to compare 
different methods that can find transfer functions that relate remote sensing data of certain 
spectral properties to various forest attributes in order to enable their reliable estimation from 
operational sensors in the future. 

The following sections describe general aspects of the methodology that were used in this 
research work. Information on how the methods were implemented in detail are given in 
Chapter 5, Chapter 6 and Chapter 7 as processing strategies and results are often strongly 
interrelated. 

4.2 Image classification 

4.2.1 Introduction 

Classification has been an important tool in digital image analysis for land resources 
applications since early Landsat missions when multispectral image data was regarded as a 
composition of multivariate measurement vectors for each image pixel. In classification, the 
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thousands or millions of such vectors that form an image are treated as class descriptors, and 
the spectral bands as explanatory variables related to these classes. The underlying 
assumption is that each class exhibits a unique multi- or hyperspectral signature. In the 
classification process, image pixels with similar signatures are grouped into classes which are 
pre-defined in supervised classification approaches. The result is a simplified image where 
pixels are labelled with their appropriate class type (Franklin et al., 2003). 

Therefore, classification is the most logical approach for the prediction of the class 
membership of an image pixel when categorical attributes (e.g. forest type, tree species) are 
mapped. Yet, classification can also be used to map continuous forest attributes, such as 
cover, biomass or stand age, when those attributes are divided into ordinal categories 
(Franklin et al., 2003). For instance, the attribute ‘stand age’ with unit years can be divided 
into distinct age classes. 

4.2.2 Spectral Angle Mapper 

A number of classification methods exist that have been used in forest mapping from remote 
sensing data (Franklin et al., 2003). Most often described in the literature and implemented 
into imaging processing software packages are Minimum Distance, Box or Parallelepiped and 
Maximum Likelihood Classifier. These classifiers were all designed to cope with data of 
multispectral type. Other, more advanced classifiers, include Artificial Neural Networks and 
Decision Tree Classifiers. The availability of hyperspectral data has led to the development of 
new classifiers that could better handle large numbers of wavebands. For instance, the 
Spectral Angle Mapper (SAM) determines the spectral similarity between two spectra by 
calculating the angle between the spectra, treating them as vectors in a space with 
dimensionality equal to the number of bands. SAM compares the angle between the spectrum 
vector of the known class and each pixel vector (unknown class) in n-dimensional space. In 
the classification stage, the class with the smallest angle is assigned to the corresponding 
image pixel. Because this method uses only the direction and not the length of the vector, it is 
insensitive to illumination (Kruse et al, 1993). The angle α between the test spectrum t and the 
reference spectrum r is calculated as 
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where n is the number of spectral bands. 
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4.3 Statistical methods 
Empirical quantitative analysis in spectroscopy and in other scientific fields is based on the 
assumption that the amounts or concentrations of the constituents of interest in the samples 
are in some way related to the spectral measurement of those samples. The aim is to find a 
calibration equation that can be applied to data of unknown samples in order to predict their 
amounts of the constituents. Calculation of these equations requires a set of samples that span 
the expected range of amounts in the unknown samples. Calibration (known) and unknown 
samples have to be measured under exactly the same conditions using the same measurement 
technique. The measurements of the calibration samples, together with their amounts or 
concentrations, form the calibration data set from which the calibration equation (the model) 
is calculated. The model can then be applied to the unknown samples (validation data set) in 
order to predict their amounts or concentrations or to test the model’s validity (Duckworth, 
1998). 

4.3.1 Correlation analysis 

The correlation coefficient (product-moment correlation coefficient or Pearson’s correlation 
coefficient) is a measurement of the strength of a relationship between two variables. It is 
defined as the covariance of the two variables divided by the product of their standard 
deviations; hence it may be thought of as a measure of standardised covariance. It is 
symbolized by r, and it ranges from 1.00 for perfect positive correlation, through zero for 
uncorrelated variables, to -1.00 for perfect negative correlation. Correlation coefficients may 
also be calculated for multiple regressions. Then it is an index of how well a dependent 
variable can be predicted from a linear combination of independent variables. It ranges from 0 
(zero multiple correlation) to 1 (perfect multiple correlation) (Colman, 2001). When one 
variable is being used to predict another, the coefficient of determination (R2) indicates the 
proportion of variance in one variable that is explained by the other (given certain linear 
assumptions), or the proportion of variance shared by the two variables: if r = 0.50, then 
R2 = 0.25, indicating that 25 per cent of the variance in one of the variables is explained by 
the other, or that 25 per cent of the variance is shared by the two variables. It is measure of the 
goodness of fit of a set of scores to a linear model and can range in value from 0 to 1, with 1 
indicating perfect fit (Colman, 2001). 
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4.3.2 Regression analysis 

Bivariate linear regression 

Bivariate linear regression (BLR) is the analysis of the relationship between a predictor 
variable (also called independent variable), such as a vegetation index and a dependent 
variable, e.g. a forest canopy attribute. The relationship is usually expressed as a linear model 
in which the value of the dependent variable is equal to a weighted value of the independent 
variable plus a constant:  

XbbY 10 +=
 

4.3

When more than one predictor variable is involved, it is called multiple regression.  

Multiple linear regression 

The spectrum of a sample measured by a spectrometer has many spectral data points that can 
be used to generate the calibration model. The problem is to find those wavebands that have a 
relationship to the concentration of the constituents of interest. Mostly multivariate models 
are used to find the best relation between the independent variables (spectral reflectances or 
absorbances) and the dependent data (concentrations or contents). A technique called least 
squares regression is employed to solve for the model equation; it calculates the coefficients 
of a given equation such that the differences between the known spectral responses and the 
predicted spectral responses are minimized. The classical least squares model (CLS) 
calculates reflectance at a single wavelength as an additive function of the constituent 
concentrations. The main drawback of CLS is that it can be only applied to systems in which 
the concentration of every constituent in the sample is known. The inverse least squares 
model (ILS) or multiple linear regression (MLR) assumes that the concentration of a 
constituent is a function of the reflectances at a series of given wavelengths. The advantage of 
the MLR is that it can accurately build models for complex mixtures when only some of the 
constituent concentrations are known; the only requirement is selecting wavelengths that 
correspond to the reflectances of the desired constituents (Duckworth, 1998). 

Multiple linear regression (MLR) is a statistical method for analysing the joint and separate 
influences of two or more predictor variables on a dependent variable, usually through a linear 
model. The form of a multiple regression equation for k independent variables is a weighted 
sum:  

kk XbXbXbbY ++++= K22110
 

4.4

where Y is the estimated value of the dependent variable, b0 is the Y intercept, X1 is the value 
of the first independent variable, X2 the value of the second independent variable, b1 the slope 
associated with X1, and b2 the slope associated with X2. The slope is a standardised regression 



CHAPTER 4 STATISTICAL AND PHYSICAL METHODS 72 

coefficient indicating the relative importance of the corresponding independent variable in 
determining the predicted value of the dependent variable (Colman, 2001). In this research 
and typically in spectroscopy or imaging spectrometry, spectra of a leaf or canopy target 
recorded at a large number of wavebands serve as the independent variables and are used to 
predict structural and chemical variables of that target. 

Stepwise multiple linear regression 

Stepwise multiple linear regression (SMR) is a technique for choosing wavebands to include 
into a regression model. An important underlying assumption is that only some, but not all 
wavebands do have an important explanatory effect on the leaf chemistry. Forward SMR 
starts with no variables in the regression equation; at each step, the most statistically 
significant variable is added, as specified by the entry criteria (highest F-value or lowest p-
value); at the same time the procedure computes the removal statistic for each variable and 
removes variables if possible (as determined by the removal criteria). Stepping is terminated 
when neither entry nor removal of variables can be performed (StatSoft, Inc., 2002). 

Statistical significance is a property of the results of an empirical investigation suggesting that 
they are not due to chance alone. The 5 per cent level of significance has become 
conventional in the empirical sciences; this means that results are normally considered to be 
statistically significant if statistical tests show that the probability of obtaining, by chance 
alone, results at least as extreme as those obtained is less than 5 percent, usually written 
p < 0.05. If the significance test indicates that the probability is sufficiently small, the 
investigator is justified in rejecting the null hypothesis and therefore also in accepting its 
logical negation, namely the alternative hypothesis. If the probability is not sufficiently small, 
then the correct interpretation is that there is no evidence of an effect, not that there is 
evidence of no effect (Colman, 2001).  

SMR, although very useful to estimate leaf chemicals from foliar spectra, can be criticised in 
three points (Curran, 1989): I) Overfitting of wavebands in the calibration equation can occur 
when the number of samples is smaller than the number of wavebands. When the number of 
wavebands increases in the calibration model, the chance that unknown samples will vary in 
exactly the same way decreases, because the model starts to include the spectral noise unique 
to the training data set. Therefore, only those wavebands that have a causal relationship with 
the chemical of interest should be included in the calibration equation. II) Intercorrelation of 
chemicals may result in the selection of a waveband in the calibration model that is not related 
to a chemical bond of the constituent A but to the chemical bond of another constituent B that 
is highly correlated with A. III) It is difficult to explain why a particular waveband was 
included into the model while another waveband equally suited in terms of its relationship to 
chemical bonds was omitted. 
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Multiple regression is based on four main assumptions that can be easily violated when 
adapting the approach to remote sensing (Curran, 1989): I) The assumption that the 
relationships between reflectance and chemical concentration are near-linear is reasonable. II) 
The assumption that we can extract the vegetation spectra of interest from imaging 
spectrometry data is reasonable if continuous vegetation stands are studied. III) The 
assumption that the relationship between spectra and foliar chemicals is not disturbed by 
canopy geometry or phenology is reasonable if stands of a single species of vegetation are 
studied. IV) The assumption of accuracy in the measurements of chemical concentrations in 
the vegetation canopy is difficult to fulfil. It consists of two additional assumptions: i) the 
chemical composition of a canopy does not vary within a given volume; ii) the concentrations 
of a chemical measured in the laboratory does not differ from its concentration in the field due 
to a) transformation of the chemicals during the isolation process, b) the occurrence of many 
different forms of one single chemical, e.g. lignin, and c) the method chosen to measure the 
chemical. 

4.3.3 Artificial neural networks 

Neural networks are very sophisticated modeling techniques capable of modeling extremely 
complex, nonlinear functions. For many years linear modeling has been the commonly used 
technique for most modeling tasks, but where the linear approximation was not valid the 
models suffered accordingly. 

Multilayer Perceptrons (MLP) (or multi layer feed forward networks) are perhaps the most 
popular network architecture in use today. In MLP, signals flow from inputs, forward through 
any hidden units and reach the output units. The units (or neurons) each perform a biased 
weighted sum of their inputs and pass this activation level through a transfer function to 
produce their output. The hidden and output layer neurons are each connected to all of the 
units in the preceding layer. The network has a simple interpretation as a form of input-output 
model, with the weights and biases the free parameters of the model. Such networks can 
model functions of almost arbitrary complexity, with the number of layers, and the number of 
units in each layer, determining the function complexity (Haykin, 1994; Bishop, 1995). 

In supervised learning, the network learns to infer the relationship between the examples of 
inputs together with the corresponding outputs. Training data is usually taken from historical 
records or from simulations. The neural network is then trained using one of the supervised 
learning algorithms (e.g. back propagation), which uses the data to adjust the network's 
weights and thresholds in such a way that the error in its predictions on the training set is 
minimised. If the network is properly trained, it has then learned to model the (unknown) 
function that relates the input variables to the output variables, and can subsequently be used 
to make predictions where the output is not known (StatSoft, Inc., 2002). 
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The best-known example of a neural network training algorithm is back propagation 
(Rumelhart et. al., 1986). In back propagation, the gradient vector of the error surface is 
calculated. This vector points along the line of steepest descent from the current point. A 
sequence of moves in the direction of the vector will eventually find a minimum. The step 
size is proportional to the slope and to a special constant, the learning rate. The correct setting 
for the learning rate is application-dependent, and is typically chosen by experiment. The 
algorithm progresses iteratively, through a number of epochs. On each epoch, the training 
cases are each submitted in turn to the network, and target and actual outputs compared and 
the error calculated. This error, together with the error surface gradient, is used to adjust the 
weights, and then the process repeats. The initial network configuration is random and 
training stops when a given number of epochs elapses or when the error reaches an acceptable 
level (StatSoft, Inc., 2002). 

The training data set includes a number of cases, each containing values for a range of input 
and output variables. Gathering cases and selecting input variables are critical issues of neural 
network design. The number of cases required for neural network training is related to the 
(unknown) complexity of the underlying function which the network is trying to model. For 
most practical applications, the number of cases required will be hundreds or thousands. As 
the number of variables increases, the number of cases required increases nonlinearly. 
(StatSoft, Inc., 2002). Problems of over-learning (or over-fitting) and selection of input 
variables are discussed in section 6.3.6.  

4.3.4 Ratio-based and orthogonal vegetation indices 

Broadband vegetation indices are based on discrete bands, usually located in red and near-IR 
wavelengths (Table 4.1). They are generally divided into ratio-based indices (RVI, NDVI, 
MVI, RSR) and orthogonal indices (PVI, SAVI, TSAVI). Ratio-based indices are calculated 
independently of soil reflectance properties, whereas orthogonal indices include parameters 
referring to the soil line. Ratio-based VIs tend to minimize the effects of illumination 
conditions while enhancing the contrast between vegetation and soil (Baret & Guyot, 1991). 
Orthogonal VIs aim to compensate for soil and background effects. 

Most of the VIs are based on the reflectance in the red and near-IR part of the spectrum. With 
hyperspectral data, VIs can generally be calculated for all possible two-band combinations: 
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It is then assumed that the soil line concept, originally defined for the red–near-IR feature 
space, can be transferred into other spectral domains (Thenkabail et al., 2000). Hence, it is 
supposed that soil lines exist between all wavebands.  

4.3.5 The red edge inflection point 

As the red edge inflection point (REIP) is defined as the point of maximum slope in the 
reflectance spectrum it may be determined using the first derivative of the reflectance. This 
approach will yield precise calculations of the REIP on data acquired by field-spectrometers 
which collect spectra with a spectral resolution of about 1 nm. However, in the case of 
imaging spectrometer data with a spectral resolution of usually about 10 to 20 nm, the subtle 
shifts of the REIP may not be recognized as the vegetation spectrum is sampled in a limited 
number of points. Therefore, a function has to be fitted through the measured data points of 
the reflectance spectrum. Several methods have been developed for interpolation in the 

Table 4.1: Broadband vegetation indices investigated in this study. ρ=reflectance, 
TM=Thematic Mapper 

Name Abbrev-
iation 

Equation Reference 

Ratio vegetation 
index RVI 

3

4

TM

TM

ρ
ρ  Pearson & Miller, 

1972 

Normalised 
difference 
vegetation index 

NDVI 
34

34

TMTM

TMTM

ρρ
ρρ

+
−

 Rouse et al., 1974 

Perpendicular 
vegetation index PVI 2

34

1 a

ba TMTM

+

−− ρρ
 

a = 0.9, b = 0.1 

Richardson & 
Wiegand, 1977 

Transformed soil-
adjusted vegetation 
index 

TSAVI aba
baa

TMTM

TMTM

−+
−−

34

34 )(
ρρ
ρρ

 

a = 0.9, b = 0.1 
Baret et al., 1989 

Mid-infrared 
vegetation index MVI 

5

4

TM

TM

ρ
ρ  Fassnacht et al., 

1997 

Greeness vegetation 
index GVI 

75

43

21

1800.00840.0
7243.05436.0
2435.02848.0

TMTM

TMTM

TMTM

ρρ
ρρ
ρρ

−+
+−
−−

 Christ and Cicone, 
1984 

Reduced simple 
ratio RSR ⎥

⎦

⎤
⎢
⎣

⎡
−

−
−⋅

55

55

minmax
min

1
TMTM

TMTMRVI
ρρ

ρρ
 Brown et al., 2000 
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wavelength region of the red edge. An approach suggested by Guyot et al. (1992) calculates in 
a first step the reflectance at the red edge inflection point by linear interpolation. More 
sophisticated approaches are the inverted Gaussian model (IGM) and the La Grange 
interpolation (LGI) technique. 

Inverted Gaussian model 

The inverted Gauss model (IGM) (Bonham-Carter, 1988) fits a Gaussian normal function to 
the reflectance at the red edge 

2

2
0

2
)(

0 )()( σ
λλ

λ ⋅
−

−
⋅−−= eRRRR ssest

 
4.7

where Rest is the estimated reflectance at wavelength λ, Rs is the reflectance maximum 
(“shoulder” reflectance), usually at approximately 780-800 nm; R0 is the reflectance 
minimum, usually at about 670-690 nm; λ0 is the wavelength of the reflectance minimum; σ is 
the Gaussian shape parameter with unit nm. The estimated IGMREIP  is then the midpoint on 
the ascending part of the modelled curve: 

σλ += 0IGMREIP
 

4.8

The function is fitted through the measured reflectance data points Rmes(λ) by adjusting the 
values of Rs, R0, λ0 and σ in such a way that the root mean square error (rmse) is minimized 
according to: 
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where N is the number of data points recorded in the N corresponding wavebands.  

Lagrangian model 

Another approach, the Lagrangian interpolation (LGI), has been proposed by Dawson & 
Curran (1998). The technique is applied to the approximate first-derivative of the reflectance 
spectrum, which is computed as follows: 
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where Dmes(λj+Δλ) is the measured first-derivative transformation at the midpoint with 
wavelength λj+Δλ between the wavebands j-1 and j; R(λj-1) and R(λj) are the reflectances at the 
bands j-1 and j, respectively. A second order polynomial is fitted directly to three bands of the 
first-order derivative spectrum: 
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where Dest(λ) is the first derivative estimated by the LGI model at any wavelength λ; λi is the 
band having the maximum first derivative; λi-1 and λi+1 are the bands on the left and right side 
of λi, respectively; Dmes(λi), Dmes(λi-1) and Dmes(λi+1) are the measured first derivative values. 
The REIP is located at the wavelength LGIREIP  were Dest(λ) is maximum; to determine this 
position (and thus, the position of maximum slope of reflectance), the first derivation on 
Dest(λ) 4.11 is performed, representing the second derivative of the reflectance. The equation 
is resolved, for when the first derivative of Dest(λ) is zero, giving: 
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The characteristics of both methods for the calculation of the red edge inflection point were 
compared by Dawson & Curran (1998): In the case of the linear and the inverted Gaussian 
model, certain parameters such as Rs and R0 have to be predefined. These parameters depend, 
apart from the leaf optical properties, on canopy optical properties which are unknown. The 
Lagrangian model, on the other hand, does not need a priori knowledge of the spectrum and 
is therefore better suited to be used on canopy spectra than the other approaches. Furthermore, 
it forces the interpolation curve through the measured data points, thus taking into account the 
curvature of the function, whereas the IGM ignores the curvature as it fits a normal curve. The 
drawback of the Lagrangian method is the higher sensitivity to spectral noise as it is 
calculating the REIP from the derivative spectra.  

4.3.6 Derivative spectra 

The derivative of a spectrum is the rate of change of reflectance with respect to wavelength. 
The approximate first-order derivatives can be calculated according to  
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where D(λj+Δλ) is the first-derivative transformation at the midpoint with wavelength λj+Δλ 
between the wavebands j-1 and j; R(λj-1) and R(λj) are the reflectances at the bands j-1 and j, 
respectively. Derivative spectra have been widely used in spectroscopy and remote sensing. 
Reflectance spectra may suffer from background signals and albedo effects. In contrast, 
derivatives were shown to be less sensitive to variations of soil background, illumination, and 
surface albedo (Demetriades-Shah et al., 1990). The main disadvantage of derivatives is their 
sensitivity to sensor noise. The decrease in the signal-to-noise ratio (SNR) with increasing 
derivative order often limits the usage of higher order derivatives. 

4.3.7 Continuum-removal and band-depth normalisation 

Absorptions in a spectrum are composed of the continuum and individual features, where the 
continuum is the background absorption onto which other absorption features are placed over. 
The continuum is simply an estimate of the other absorptions present in the spectrum, not 
including the one of interest (Clark & Roush, 1984). In practice, linear segments can be used 
to approximate the continuum line. Once this line is established, the continuum removed 
spectra (CR) are calculated by dividing the original reflectance values (ρor) by the values of 
the continuum line (ρcl) at the corresponding wavelength (Kokaly & Clark, 1999) as 
CR=ρor/ρcl. As non-linear multiplicative effects shape reflectance spectra, the continuum 

 
Figure 4.1: Continuum-removal for chlorophyll absorption in vegetation (from Clark, 1999). 
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should be removed by division and only by subtraction when working with absorption 
coefficients (Clark, 1999). The removal of the continuum isolates spectral features and makes 
them comparable. Continuum removal, for instance, for the chlorophyll feature of green 
vegetation (Figure 4.1) may reveal detailed spectral variations of absorption that are not 
obvious in the original reflectance spectra (Clark, 1999). 

Continuum-removed absorption features can be compared by scaling them to the same depth 
at the band centre. The band depth (ρD) at each wavelength in the absorption feature is 
computed from the continuum-removed reflectance (ρCR) as ρD = 1-ρCR. The normalized band 
depths (ρDN) are calculated by dividing the band depth of each waveband (ρD) by the band-
depth at the band centre (ρDc) as ρDN = ρD/ρDc (Kokaly & Clark, 1999). The main purpose of 
continuum-removal and band-depth-normalization is the minimization of effects that 
extraneous factors may have on reflectance spectra to highlight shape differences of 
absorption features. Shape differences are then correlated with variations in foliar 
biochemistry through multiple stepwise linear regression. 

4.3.8 Non-linear least-squares spectral matching 

Gao & Goetz (1994, 1995) developed the non-linear least squares spectrum-matching 
technique to determine whether reflectance spectra of green leaves in the 1.0-2.5 μm region 
contain only liquid water absorption features or contain both the absorption features of liquid 
water and that of other leaf compounds. This method attempts to calculate a fresh leaf 
spectrum as a non-linear combination of a measured leaf water spectrum and a measured dry 
leaf spectrum. The leaf water spectrum was obtained by measuring reflectances of glass beads 
mixed with liquid water. The dry leaf spectrum was obtained by measuring reflectances of 
dried ground leaves. Approximate absorption coefficients (kλ) of liquid water and of dry 
leaves were calculated from reflectance Rλ as kλ = -log(Rλ). The authors found that besides 
water, dry leaf components, such as lignin and cellulose, control the reflectance spectra of 
green vegetation (oak and cotton leaves) in that spectral domain.  

The approach by Gao & Goetz (1994) was modified to estimate protein concentration in 
Norway spruce needles. Absorption coefficients of leaf water and protein were obtained from 
Dawson et al. (1998). The spectral reflectance of fresh needles RFmod(λ) was modeled from the 
spectral absorption coefficients of liquid water kW(λ) and protein kP(λ) as  
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where CW and CP represent concentrations of water and protein, respectively, and the term 
(A+Bλ) represents the background level of the calculated spectrum. A, B, CW  and CP were 
iteratively adjusted in such a way that the sum of the squared differences between the 
measured reflectance RFmes(λ) and the modeled reflectance RFmod(λ) for each given waveband 
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was minimized. The spectral reflectance of water RWmod(λ) was calculated by setting the 
parameter CP(λ) to zero in equation 4.15), giving: 
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4.4 Physically-based reflectance modeling 

4.4.1 Canopy reflectance models 

Starting from the 1970’s a number of radiative transfer models, so-called canopy reflectance 
(CR) models have been developed. There are four broad categories of CR models (Goel, 
1988; Roberts, 2001; Atzberger, 2003): Geometrical models (e.g., Li & Strahler, 1985) 
describe the vegetation canopy using opaque geometric shapes (cones or cylinders), which 
cast shadows on the ground; crown transparency is not considered. They are used to describe 
forests or shrublands, where shadowing plays an important role. Turbid medium or analytical 
models (e.g. Suits, 1972; Verhoef, 1984) describe the canopy as a horizontally homogenous 
and transparent layer that contain small vegetation elements which are treated as absorbing 
and scattering particles of a given geometry and density. These models are better suited to 
describe dense leafy canopies such as crops, but shadowing is not taken into account. Hybrid 
models are combinations of geometrical and turbid medium models. The geometric shapes 
representing, for instance, tree crowns, are not considered as being opaque but are treated as a 
turbid medium. This model type is often more complex but also closer to reality. FLIM 

 
Figure 4.2: Schematic view of the link between LIBERTY, SAIL, and FLIM models showing 
the input variables used for the simulation. Modified after Zarco-Tejada et al. (2004a). 
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(Rosema et al, 1992) can be considered a very simple hybrid model, whereas INFORM 
(Atzberger, 2000) is of more sophisticated nature. Ray-tracing or computer simulation models 
(e.g., Gastellu-Etchegorry et al., 1996) compute the path of each photon through the canopy 
using random numbers to determine the direction of the incident rays, the location of the 
vegetation elements, the direction of scattering, and so on. Due to the complex structure and 
the large number of input parameters required, these models are difficult to invert (Goel, 
1988; Roberts, 2001; Atzberger, 2003).  

4.4.2 The Invertible Forest Reflectance Model 

The Invertible Forest Reflectance Model (INFORM) (Atzberger, 2000) simulates the bi-
directional reflectance of forest stands between 400 and 2500 nm. INFORM is essentially a 
combination of FLIM (Rosema et al., 1992), SAIL (Verhoef, 1984), and PROSPECT 
(Jacquemoud & Baret, 1990) or LIBERTY (Dawson et al., 1998). A schematic view of the 
link between the models is given in Figure 4.2. 

The Forest Light Interaction Model (FLIM) takes into account both, the effects of shadowing 
and crown transmittance (Rosema et al., 1992). In this model, the forest is considered as a 
discontinuous canopy layer with tree crowns and gaps. The underlying assumption is that 
canopy reflectance is primarily controlled by coverage and crown transmittance (computed 
from LAI), and that background characteristics, spatial distribution of trees, and stand 
structure are of secondary importance (Gemmell & Varjo, 1999). FLIM calculates stand 
reflectance R in a given spectral band as 

GRCRR GC ⋅+⋅=
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where RC is the crown reflectance at infinite crown depth and RG is the background 
reflectance. C is the “crown factor”: 

osos ccTTC ⋅⋅⋅−= )1(
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where Ts is the average crown transmittance in sun direction and To is the average crown 
transmittance in observation direction; both Ts and To are exponentially related to LAI; co is 
the ground coverage by crowns in observation direction; cs is the ground coverage by shadow 
in sun direction. 

G is the “ground factor”: 

dscobosa FTFTFTTFG +⋅+⋅+⋅⋅=
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where Fx are ground surface fractions; Fa represents tree crowns with shadowed background, 
Fb tree crowns with sunlit background, Fc shadowed open space, and Fd sunlit open space. 
The fractions in equation 4.19 are calculated from co and cs and additionally take into account 
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the correlation between co and cs which is in turn calculated from geometrical considerations 
using the tree height (H) and the crown diameter (Rosema et al., 1992). 

The observed ground coverage by crowns co under an observation zenith angle θo is given by 
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where SD is the tree or stem density [ha-1] and k is a constant representing the average tree 
crown horizontal area [ha]. Similarly to the observed ground coverage by crowns, the ground 
coverage by shadow cs under a solar zenith angle θs is defined as 
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The constant k representing the average horizontal area of a single tree crown [ha] can be 
derived from 
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where CD is the crown diameter [m]. 

In FLIM, crown transmittance terms (Ts and To) are assumed to be exponentially related to 
LAI; this neglects the effects of leaf geometry and leaf optical properties on the transmittance. 
Therefore in INFORM crown transmittance is calculated by the SAIL model (Verhoef, 1984). 
To compute crown transmittance for observation To and sun direction Ts (for a given leaf 
transmittance τ and leaf reflectance ρ), leaf area index (LAI), average leaf inclination angle 
(ALA), observation angle (θo), sun angle (θs), the relative azimuth angle between sun and 
sensor (ψ) and the fraction of diffuse radiation (skyl) have to be specified: 

),,,,,,( skylALALAIfT oSAILo ψθρτ=
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),,,,,,( skylALALAIfT sSAILs ψθρτ=
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The original version of INFORM accounted for the reduction of transmittance by woody 
components within the canopy; the transmittance calculated by the SAIL model was reduced 
by a wood factor that represented the shadow cast on the ground by woody parts in a leafless 
crown (Atzberger, 2000). The correction for woody components was not applied in the 
present research as their influence is difficult to quantify. 

In the FLIM model, the crown reflectance at infinite crown depth RC and the background 
reflectance RG (equation 1) are both derived empirically from the image data itself. INFORM, 
conversely, computes both terms using the SAIL model. For a given illumination and 
observation geometry, RG is derived as 
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where LAIU and ALAU are the LAI and the ALA, respectively, of the understorey vegetation 
and ρsoil is the soil reflectance. A soil reflectance spectrum must be provided from 
measurements. For a given illumination and observation geometry, RC is computed as 

),,,,,,,,( inf skylALALAIfR sosoilSAILC ψθθρρτ=
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where LAIinf is the LAI at infinite crown depth.  

In the initial version of INFORM (Atzberger, 2000), leaf spectral reflectance and 
transmittance were computed by the PROSPECT model (Jacquemoud & Baret, 1990) since 
only deciduous forests were considered. However, PROSPECT does not very well represent 
the optical properties of needle shaped leaves of conifer forest stands. Consequently, the 
LIBERTY model (Dawson et al, 1998) has been used as a replacement for PROSPECT. 
LIBERTY (Leaf Incorporating Biochemistry Exhibiting Reflectance and Transmittance 
Yields) is a general purpose radiative transfer model for simulating the reflectance and 
transmittance spectra of a conifer needle, or a stacked layer of needles between 400 and 
2500 nm. It treats a needle as an aggregation of cells and calculates multiple scattering 
between cells. In LIBERTY, needle transmittance (τ) and reflectance (ρ) are computed as a 
function of three structural parameters (cell diameter (d), intercellular air space (i), leaf 
thickness (t)) and the combined absorption coefficients of leaf chemicals (chlorophyll (cAB), 
water (cW), lignin and cellulose (cL), and protein (cP)): 
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In a summary, INFORM calculates forest reflectance R as a function of internal canopy 
parameters, internal leaf parameters and external parameters: 

),,,,,,,,,,
,,,,,,,,,( inf

skylcccctid
ALALAILAIALALAIHCDSDfR

soPLwAB

soilUUINFORM

ψθθ
ρ=

 
4.29

4.4.3 Inversion of reflectance models 

In the forward mode the CR model computes the spectral reflectance for a certain set of leaf 
or canopy parameters. Forward modeling provides an efficient way to investigate the effects 
of forest canopy attributes on reflectance signatures and may improve the understanding of 
how the canopy structure influences the radiation field. For the retrieval of those canopy 
variables from measured signals it is necessary to invert the model. Few studies exist, where 
CR models were inverted to estimate forest characteristics from remote sensing observations 
(section 2.3.3).  
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Due to the complex character of a CR model, an analytical solution is not possible and 
numerical approaches have been developed to successfully invert CR models. Traditional 
inversion of reflectance models employs an optimisation technique to estimate the model 
parameters by minimising a merit function (Goel, 1989). An iterative process is necessary to 
find the optimal estimates of these parameters. The main drawbacks of this method are 
i) difficulty in achieving globally optimal and stable results, ii) difficulty in retrieving more 
than 2 parameters simultaneously  and iii) requirement of substantial computation time (Gong 
et al., 1999). 

Recently, Artificial Neural Networks (ANN) have been employed for reflectance model 
inversion (Gong et al., 1999; Udelhoven et al., 2000; Kimes et al., 2002) in order to overcome 
the above mentioned limitations. To invert a reflectance model using an ANN the following 
steps have to be carried out (Gong et al., 1999): A) Determination of the structure of the 
ANN, in particular the number of nodes in the input, hidden, and output layer; each spectral 
band to be used corresponds to a node in the input layer; the number of parameters to be 
retrieved is the same as the number of nodes in the output layer. B) Simulation of the 
reflectance spectra from known parameter sets using the reflectance model. C) Presentation of 
known parameter sets and their corresponding reflectance spectra to the ANN; during the 
training step an algorithm is used to adjust weights and biases of the ANN in such a way that 
the root mean squared error (rmse) between estimated and true parameters is minimal. 
D) Input of measured reflectance spectra to the previously trained ANN and comparison of 
parameters estimated by the ANN to measured ones. 

4.5 Validation 
Cross-validation is a method of assessing the accuracy and validity of a calibration model. 
From the available data set one sample is selected and its spectrum and the corresponding 
attribute data are removed. The remaining training set samples are used to perform the 
calibration calculations. The calibration model is then used to predict the attribute of interest 
(e.g. concentration) of the removed sample. The previously left out sample is placed back into 
the training data set and a different sample is selected. Each sample is left out once and 
predicted by the training samples. Because the predicted samples are not the same as the 
samples used to build the model the cross-validated root mean squared error (rmse) is a good 
indicator of the accuracy of the model in predicting unknown samples (Duckworth, 1998). 
The rmse is the square root of the mean squared error; it is calculated from the differences 
between estimated values (Yest) and measured (Ymes) values and has the same units as the 
original data: 
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Another advantage of cross-validation is its ability to detect outliers. If the predicted 
concentration for a single sample is far off the measured concentration, the sample is probably 
an outlier (Duckworth, 1998). 

Validation set prediction tests the predictive model on a validation data set. The validation set 
can come either from a new set of samples measured under the same conditions as the 
calibration samples or a large set of training data can be split into two groups: a set of 
calibration data and a set of validation data, where the split could be 80/20, 50/50, etc. 
depending on the total number of samples. The main advantage of this validation technique is 
the ability to test the model’s performance with a completely different and independent data 
set which is most important to determine the model’s long term stability (Duckworth, 1998). 
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Chapter 5 Mapping forest cover type through image 
classification 

5.1 Introduction 
Despite the large amount of spectral bands in data collected from imaging spectrometers, it 
has frequently been found, that the forest categorical variables considered do not have unique 
spectral signatures that allow forest classes to be distinguished without confusion. From this 
point of view it is still an open issue if hyperspectral data contain more information relevant 
to the classification of forest cover than broadband multispectral data. It is also not clear if a 
large spatial resolution of a few meters allow a better forest mapping compared to a pixel size 
of a few tens of meters typical to most earth observation satellite system, such as Landsat TM. 

Forest types as defined by species composition and age class have spectral reflectance 
characteristics that may be strongly influenced by variations in the structural attributes of the 
forest stand (Franklin et al., 2003). For instance, variations in a stand structural attribute, such 
as stem density (the number of trees or stems per hectare) may have a greater effect on forest 
reflectance than tree species composition. Therefore, other mapped environmental variables 
that control forest vegetation distributions, such as terrain variables or geology, or structural 
attributes, can be combined with image data in the classification process to aid discrimination 
of forest type.  

Classification should be applied to remotely sensed data of the appropriate spatial, spectral 
and temporal resolution for the required forest attribute information. Until recently, the choice 
of remote sensing data to map forests was limited to available operational sensor types. With 
airborne imaging spectrometers that were successfully operated in recent years, data with high 
spatial and high spectral resolution has become available. This data type offers the 
opportunity to systematically investigate the selection of optimal remote sensing data for 
forest mapping. 

Based on the previous outline, the objectives of this study were to (i) compare the 
classification performance of four different remote sensing datasets of different spectral and 
spatial resolution (Figure 5.1) to map forest species and age classes and (ii) to investigate if 
additional information on stem density can improve the classification results. 



CHAPTER 5 MAPPING FOREST COVER TYPE 87 

5.2 Implementation of additional information 
Information about forest parameters that have an influence on the signal recorded from the 
forest canopy by a sensor can support the estimation of other (unknown) parameters. The aim 
was to use spatial information on an important structural attribute, stem density (number of 
stems per hectare) as an ancillary layer in the classification process of the HyMap data in 
order to better distinguish between certain classes of forest cover type. Stem density 
information was derived from black/white aerial orthophotos by an approach described in 
Atzberger & Schlerf (2002). The procedure was based on thresholds of the digital numbers in 
the image data followed by morphological operations (erosion and dilation) and tree crown 
identification using a moving window. The method proofed to be capable of estimating stem 
density with an accuracy of approximately 63 trees per hectare for stem densities varying 
between 200 and 800 stems per hectare (Figure 5.2). Stem density was estimated for the entire 
area of the Idarwald test site. On a stand basis, the mean stem density and the standard 
deviation were calculated. The resulting image of the Idarwald test site (25 m x 25 m ground 
resolution) is shown in Figure 5.3a). From this image, per-field mean and standard deviation 
of the reference stem densities have been calculated (Figure 5.3b, c) and integrated into the 
FoGIS of Idarwald. 

 
Figure 5.1: Four datasets of varying spectral and spatial resolution. Upper left: TM, 30m; 
upper right: TM, 5m; lower left: HyMap, 30m; lower right: HyMap, 5m. 
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Figure 5.2: Estimated against field-measured stem density (cross-validated) at Idarwald test 
site. From Atzberger & Schlerf (2002). 

 
Figure 5.3: Stem density (unit: ha-1) at the Idarwald obtained from black/white orthophotos. 
(a) pixel resolution, (b) per-stand mean, (c) per-stand standard deviation. Stand borders are 
shown for clarity. From Atzberger & Schlerf (2002). 
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5.3 Image classification 
Since the classification was restricted to conifers, deciduous forest was masked out using a 
forest mask, which had been generated through an unsupervised classification of the HyMap 
data using the isodata algorithm. All subsequent processing steps are restricted to coniferous 
forest. 

5.3.1 Data preprocessing 

From the available wavebands, usually a best minimum subset is selected for classification. 
This holds in particular for hyperspectral data as classification algorithms may suffer from 
redundancy (e.g. highly correlated wavebands). Two different types of spectral preprocessing 
were carried out, generation of multispectral data and compression of hyperspectral data. To 
generate synthetic, multispectral broadband data, the radiometrically and geometrically 
corrected HyMap image was spectrally resampled to Landsat TM wavebands using the 
appropriate sensor function. Hyperspectral data was compressed because an important re-
quirement for a successful classification is the reduction of the spectral dimensions of the data 
without loosing information. In the present study, the minimum noise fraction (MNF) trans-
formation was used to achieve the data compression. The MNF transformation is similar to 
the Principal Component Analysis (PCA), but orders the data according to decreasing signal-
to-noise ratio instead of decreasing variance (Green et al., 1988; Lee et al., 1990). The MNF 
transformation was used to partition the data space into two parts: one associated with large 
eigenvalues containing a large amount of information and a second with low eigenvalues and 
a large amount of noise. By using only the first portion of the data, the noise is separated from 
the data, thus reducing the number of bands and improving spectral processing results (Kruse, 
1999). The first 19 MNF fractions were separated from the remaining fractions and used for 
further analysis.  

Table 5.1: Training data used in the forest classification 

Forest class Number of stands used for training 

Spruce, >80 yrs 11 

Spruce, 50-80 yrs 16 

Spruce, 30-50 yrs 11 

Spruce, 10-30 yrs 10 

Douglas fir, 30-50 yrs  5 

Douglas fir, 10-30 yrs 5 
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Spatial degradation of the high spatial resolution data (5 m) was done by calculating the mean 
pixel value within a 30 m x 30 m array for each waveband. 

5.3.2 Training 

Discrimination of forest types from classification of remote sensing imagery requires that 
each category (forest types) has unique reflectance properties that are different from the other 
categories (Franklin et al., 2003). While this concept of unique spectral signatures has been 
successfully applied in hyperspectral applications for mineral mapping, it has been less 
successful in forest applications due to the similar spectral response of vegetation canopies. 
Despite expected difficulties, it was attempted within this research to separate different forest 
types as defined by tree species and stand age. 

A number of multivariate classification techniques (also called pattern recognition) have been 
successfully used in the remote sensing of forests. In supervised (opposed to unsupervised) 
classification, the predefined classes (e.g. forest types) are described from observations of the 
independent variables (reflectances and ancillary data), and then an algorithm is used to 
assign new observations (e.g. pixel of unknown forest type) to classes. This process assumes 
that the distribution of forest types to be mapped is known beforehand, at least for some part 
of the area of interest. This information is typically derived from field sampling or from 
ancillary data, such as a Geographic Information System. 

 
Figure 5.4: Reflectance spectra of forest types considered in the classification process. Note: 
point measurements of reflectance at discrete waveband positions were connected with lines 
for clarity. 
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The available FoGIS of Idarwald (section 3.4) was used to collect training data. The aim of 
the training stage is to collect a set of statistics that describe the spectral response pattern for 
each forest class. It was decided to consider only forest types in the classification that were 
represented by a minimum of three forest stands. Each of the six forest types that were 
considered represented a unique combination of a tree species (Norway spruce or Douglas fir) 
with an age class (Table 5.1). Other conifer tree species, such as fir and pine were very scarce 
in the study area and could not be considered in forest mapping. Age classes represent the 
stand development of Norway spruce that is observed at Idarwald test site and were defined 
by Womelsdorf, the local forest manager (personal communication, cited from Vohland, 
1997). For Douglas fir, no definition of age classes was available and the lower and upper 
boundaries used to define age classes of Norway spruce were applied. The polygons in the 
FoGIS representing the forest stands were used to extract spectral signatures for each class. 
Within each forest type class, subclasses were defined. Each forest stand (polygon) that was 
available in the FoGIS was considered as a subclass. The generation of training data involved 
collecting 5-15 polygons per class, each polygon consisting of 100-1000 pixels. In total, 44 
subclasses and 52.844 pixels were obtained. Training data were divided randomly into three 
sets of pixels: 10 percent were used for training (training pixels), 25 percent for validation of 
the classification result (validation pixels) and the remaining 65 percent pixels were not used. 
The training setup was designed this way to reflect the small amount of ground truth 
commonly available in reality. A visual interpretation of the collected spectra revealed 
considerable overlap of reflectance values for certain classes. Figure 5.4 shows the mean 
spectra of the considered forest types computed from all training pixels available.  

5.3.3 Classification 

Only Spectral Angle Mapper (SAM) algorithm (section 4.2.2) was employed for supervised 
classification as the focus of the study was on the information content of various types of data 
rather than the performance of different classifiers. After the classification, the 44 subclasses 
obtained were condensed into the 6 main classes. Then post-classification smoothing was 
performed to remove single isolated image pixels (sieve and clump). 

Table 5.2: Summary of accuracies 

Dataset Overall Accuracy Kappa Coefficient 

A: HyMap 5m 81.4 0.78 

B: HyMap 30m 95.0 0.94 

C: TM 5 m 55.9 0.47 

D: TM 30 m 69.5 0.64 

E: HyMap 5 m + Stem density 83.5 0.81 
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5.3.4 Validation 

To assess the accuracy the validation pixels were used. A confusion matrix was generated 
from the validation pixels for each classification. Two measures of classification accuracy are 
reported. Overall accuracy (OAA) quantifies the percentage of cases correctly classified: 
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where nkk is the number of correctly classified validation pixels (confusion matrix diagonals), 
q is the number of classes, and n is the total number of validation pixels used. The kappa 
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where nk+ is the sum of the validation pixels in a class and n+k is the sum of the classified 
pixels in that class. 

5.4 Results and discussion 
Table 5.2 lists overall accuracies and kappa coefficients obtained from classifying each of the 
5 sets of data (2 types of spectral resolution x 2 types of spatial resolution plus 1 type high 
spectral and high spatial resolution combined with stem density). Table 5.3 lists detailed 
confusion matrices for all datasets.  

The overall accuracy (OAA) and Kappa coefficient using the HyMap datasets (A and C) were 
considerable larger than using the TM datasets (B and D). These results confirm that 
hyperspectral data contain more information relevant to the mapping of forest type than 
broadband multispectral data. Contrary to broadband data analysis techniques, hyperspectral 
data offer the use of full-spectrum analysis techniques that exploit all the inherent 
information. As an example, it has already been shown that the estimation of canopy LAI 
using hyperspectral imagery can be achieved with accuracy greater than with a broadband 
sensor (Gong et al, 1992, see also Chapter 6). 
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The OAA using the dataset A (HyMap, 5 m) was 81 percent. This increased to 95 percent 
using HyMap degraded to 30 m spatial resolution (dataset B). Essentially the same tendency 
was obtained in classifying TM 5 m (dataset C) and TM 30 m (dataset D). Obviously, an 
increase in image variance due to higher spatial resolution led to problems in the classification 
process. This finding is supported by classification results obtained by Martin & Howarth 
(1989) who found that an increase in spatial resolution did not result in higher classification 
accuracies. In the case of forest cover, each tree crown which is distinguishable in the high 
resolution imagery will have a sunlit and shaded portion with a highly variable spectral 
response. Moreover, relatively small gaps in the forest cover where understorey vegetation or 
bare soil become visible might be resolved in the image. Presumably, these effects are largely 
smoothed out in the low resolution dataset with the effect of a lower spatial variance (Leckie 

Table 5.3: Confusion matrices for 5 different datasets: A: hyperspectral, 5 m; B: multispectral, 
5 m; C: hyperspectral, 30 m; D: multispectral 30 m, E: hyperspectral 5 m and orthophoto 
derived stem density; Spr. =  Norway spruce, Dou. = Douglas fir; numbers indicate stand age. 

A) Ground Truth (Percent) 
Class Spr. >80 Spr. 50-80 Spr. 30-50 Spr. 10-30 Dou. 30-50 Dou. 10-30 Total
Unclassified 4.2 4.1 8.1 1.2 2.8 1.7 4.4
Spr. >80 84.1 6.8 3.8 0.2 0.1 0.0 16.4
Spr. 50-80 10.3 86.7 29.2 0.0 3.8 0.2 32.6
Spr. 30-50 1.1 2.2 58.1 0.7 2.0 0.4 15.1
Spr. 10-30 0.3 0.2 0.6 97.9 1.0 2.4 9.1
Dou. 30-50 0.0 0.0 0.1 0.0 89.5 0.8 14.5
Dou. 10-30 0.0 0.0 0.0 0.0 0.7 94.5 7.8
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
  
B) Ground Truth (Percent) 
Class Spr. >80 Spr. 50-80 Spr. 30-50 Spr. 10-30 Dou. 30-50 Dou. 10-30 Total
Unclassified 2.8 3.9 1.3 3.0 1.1 2.2 2.4
Spr. >80 95.4 0.0 0.1 0.0 0.0 1.8 17.7
Spr. 50-80 1.6 92.3 4.5 0.0 0.0 0.0 25.5
Spr. 30-50 0.2 3.7 94.0 0.0 0.1 0.0 22.6
Spr. 10-30 0.0 0.0 0.0 97.0 0.0 0.1 6.2
Dou. 30-50 0.0 0.0 0.0 0.0 98.8 0.0 15.9
Dou. 10-30 0.0 0.0 0.0 0.0 0.0 95.9 9.6
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
  
C) Ground Truth (Percent) 
Class Spr. >80 Spr. 50-80 Spr. 30-50 Spr. 10-30 Dou. 30-50 Dou. 10-30 Total
Unclassified 3.7 1.8 7.0 0.6 20.0 4.4 6.5
Spr. >80 32.1 15.1 2.3 0.0 0.5 0.0 10.4
Spr. 50-80 63.3 81.6 48.3 0.0 22.0 0.4 47.6
Spr. 30-50 0.0 0.1 38.3 14.3 3.8 0.6 10.4
Spr. 10-30 1.0 1.3 4.0 84.2 0.6 4.9 7.4
Dou. 30-50 0.0 0.0 0.0 0.0 46.7 20.3 9.5
Dou. 10-30 0.0 0.0 0.2 1.0 6.4 69.4 8.1
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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1990; Schlerf et al., 2003). Foody (2002) claimed that accuracies larger than 85 percent are 
required from remote sensing image classification. The requirement is not fulfilled by most of 
the datasets except the hyperspectral data low spatial resolution data which can be explained 
by the fact, that the classification problem encountered is not trivial. Forest classes, such as 
clearings have spectral reflectance characteristics that differ very much from the closed 
canopy stands considered in the study and are relatively easy to discriminate from the other 
forest types. Including such forest classes probably would have increased the accuracy of the 
classification. 

The type of post-classification smoothing applied to the classified image considerably 
influenced the classification accuracy. Also the design of the validation procedure controlled 
the classification results to a certain amount. Buddenbaum (2004) used a modified validation 
approach. In this approach the forest stands were divided into spatially separated training and 
validation areas. The received accuracies were somewhat lower.  

The OAA using the full set of HyMap 5 m data and stem density information (dataset E) was 
83 percent and thus 2 percent larger than the OAA using HyMap 5 m (dataset A) alone. This 
result confirms that the classification of forest cover may be improved through addition of 
orthophoto derived stem densities into the classification process. However, the increase in 
classification accuracy was rather limited. Various other types of ancillary information have 
already been utilized in multispectral classification of vegetation cover: Wulder (1998), for 
instance, used texture and Franklin (1994) used digital elevation models as additional 

Table 5.3 (continued) 

D) Ground Truth (Percent) 
Class Spr. >80 Spr. 50-80 Spr. 30-50 Spr. 10-30 Dou. 30-50 Dou. 10-30 Total
Unclassified 8.0 6.4 10.8 17.8 4.8 3.3 7.9
Spr. >80 44.1 10.6 1.1 0.0 0.0 0.5 11.2
Spr. 50-80 41.9 83.0 41.1 0.0 0.0 0.0 38.9
Spr. 30-50 6.0 0.0 45.7 5.0 0.0 0.0 11.9
Spr. 10-30 0.0 0.0 1.3 77.2 0.2 3.2 5.6
Dou. 30-50 0.0 0.0 0.0 0.0 94.3 2.3 15.4
Dou. 10-30 0.0 0.0 0.0 0.0 0.7 90.8 9.2
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
  
E) Ground Truth (Percent) 
Class Spr. >80 Spr. 50-80 Spr. 30-50 Spr. 10-30 Dou. 30-50 Dou. 10-30 Total
Unclassified 3.5 3.6 5.5 0.5 2.1 1.5 3.3
Spr. >80 90.0 10.3 4.1 0.0 0.4 0.0 18.4
Spr. 50-80 5.6 84.3 25.4 0.1 3.4 0.1 30.2
Spr. 30-50 0.6 1.7 64.3 0.1 2.8 0.4 16.5
Spr. 10-30 0.4 0.1 0.6 99.3 0.5 2.4 9.1
Dou. 30-50 0.0 0.0 0.1 0.0 89.9 0.7 14.6
Dou. 10-30 0.0 0.0 0.1 0.0 0.9 94.9 7.9
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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information and observed an increase of overall classification accuracy compared to using 
remote sensing data on a pixel basis alone. Buddenbaum (2004) computed texture parameters 
from hyperspectral image data by means of geostatistics and used both, hyperspectral 
wavebands and texture channels together for mapping conifer forest. The results pointed 
towards an increase in classification accuracy. 

In contrast to difficulties reported in the literature (Niemann, 1995; Vohland, 1997; Köhl & 
Lautner, 2001), discrimination of medium aged to old stands was feasible using the outlined 
classification strategy. Identifcation of old forest stands that hold large amounts of biomass is 
of particular interest to forest authorities to determine the time of harvest. The resulting forest 
type map is presented in Figure 5.5. 
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Figure 5.5: Map of forest type at Idarwald. 
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Chapter 6  Determination of forest structural 
attributes  

6.1 Introduction 
Estimation of structural and chemical forest characteristics from remotely sensed data can be 
generally achieved by empirical or physical approaches (Asner et al., 2003; Chapter 4). 
Empirical models relate a measure of reflectance (e.g., a vegetation index, VI) to the variable 
of interest through a regression equation. In a physically based approach, a forest reflectance 
model is inverted to estimate the structural characteristics of a forest canopy. Both approaches 
do have certain advantages and disadvantages. For instance, reflectance models can take into 
account effects of shadowing and multiple scattering while those effects represent major 
challenges to vegetation indices. On the other hand, empirical models though they need costly 
field work data are easy to apply.  

The main objective of this chapter was to compare empirical and physically-based approaches 
in terms of their capability to determine forest structural attributes from hyperspectral remote 
sensing imagery. Another commonly used concept, spectral unmixing, was not implemented 
within this study, as spectral mixture models can be considered as simple reflectance models 
which are better suited for sparse vegetation canopies than for dense forests. 

Table 6.1: Resulting subsets after stratification according to forest stand age 

Subset Designation Abbreviation Age n 

1 total  
(pooled dataset) t 10-148 40 

2 medium to old mo 30-148 35 

3 old o 80-148 17 

4 medium m 30-79 18 

5 young y 10-29 5 
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6.2 Developing predictive models 

6.2.1 Introduction 

The overall aim of this part of the study was to develop linear predictive models between 
vegetation indices and forest structural variables. More specific objectives were (i) to identify 
useful stand variables out of the measured ones or generate new stand variables that could be 
correlated with reflectance measured by the HyMap sensor, (ii) to determine spectral 
vegetation indices that are best suited for characterising those stand variables, and (iii) to 
compare and contrast traditional broad-band and hyperspectral VIs in terms of basic statistical 
characteristics of the predicted stand variables relative to the observed stand variables. 

To improve LAI mapping it has been suggested to derive land cover specific VI-LAI 

Table 6.2: Summary statistics for forest stand attributes (n=40) 

Stand variable Mean Standard 
deviation Maximum Minimum Range Coefficient 

of variation 

Perimeter-at-breast 
height (PBH) [m] 1.09 0.32 1.63 0.27 1.36 0.294 

Stem density  
(SD) [ha-1] 640 458 2444 244 2200 0.716 

Canopy cover  
(CO) [%] 48 11 70 30 40 0.229 

Canopy height  
(H) [m] 25.1 7.9 39.1 5.0 34.1 0.315 

Leaf area index  
(LAI) [m2 m-2] 3.24 0.97 5.47 1.66 3.81 0.299 

Stem biomass  
(SBM) [m3 ha-1] 201 109 654 11 643 0.540 

Table 6.3: Linear correlation between forest stand variables (n=40); ** correlation coefficient 
significant at P<0.01. 

Stand variable PBH SD CO H LAI SBM 

PBH  1.00      

SD -0.87**  1.00     

CO -0.55**  0.72**  1.00    

H  0.88** -0.86** -0.58**  1.00   

LAI -0.72**  0.70**  0.68** -0.70**  1.00  

SBM  0.81** -0.59** -0.20  0.80** -0.48**  1.00 

AGE  0.85** -0.72** -0.49**  0.82** -0.66**  0.77** 
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relationships using land cover maps (Franklin et al., 1997; Chen et al., 2002; Cohen et al., 
2003). This statistical stratification process is usually based on the species type. As in the 
present study just one single species is considered, it was decided to stratify the dataset 
according to stand age (Table 6.1). Information about stand age was provided by a Forest 
Geographic Information System (FoGIS) that had been compiled for the Idarwald (section 
3.4). 

6.2.2 Computation of vegetation indices 

Both, hyperspectral and broadband VIs (section 4.3.4) were computed from the 
radiometrically and geometrically corrected HyMap spectra after reflectance spectra had been 
extracted from the HyMap imagery (section 3.3). Ratio-based and orthogonal broadband VIs 
(Table 4.1) were calculated after the HyMap data had been resampled to Landsat TM spectral 
bands involving the appropriate Landsat TM filter functions; the ratio-based VIs were RVI 
and NDVI; the orthogonal VIs were PVI and TSAVI; additional VIs were MVI and GVI. 
Narrowband RVI and PVI (section 4.3.4) were systematically calculated for all possible 
114×114=12,996 band combinations. PVI requires site-specific soil line slopes (a) and 
intercepts (b). As no soil spectral data was available, standard values (a=0.9; b=0.1) were 
used. Additionally, the REIP was calculated using two different methods, the IGM and the 
LGI (section 4.3.5). Bivariate linear regression (section 4.3.2) was employed to evaluate the 
relationships between structural stand attributes and VIs. A cross-validation (leave one out) 
procedure (section 4.5) was used to validate the regression models. 

6.2.3 Analysis of forest stand variables 

From the summary statistics (Table 6.2) it can be seen that the attributes perimeter-at-breast 
height (PBH), canopy height (H), and leaf area index (LAI) have a similar variability, whereas 
canopy cover (CO) is less variable and stem density (SD) and stem biomass (SBM) are more 
variable. The large variability of SD can be attributed to the extraordinary large density values 
of young forest stands. 

Table 6.3 lists linear correlation coefficients between forest stand attributes. Strong 
relationships between stand attributes were found for perimeter-at-breast height, stem density, 
and canopy height. These variables are closely related to stand age; with increasing age trees 
grow in height and diameter and perimeter-at-breast height and canopy height increase, while 
stem density is reduced due to thinning. An inverse relationship can be observed between LAI 
and age. The inverse relation between LAI and stand age seems to be related to the fact that 
during stand development, crowns of individual trees expand and increase utilization of 
available growing space. The point at which crowns of different trees begin to interact is 
considered as being the peak LAI after which a rapid decrease takes place due to competition 
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between the individual trees (Vose et al., 1994). It has been shown that stands of slow 
growing species (Pinus contora) reached its maximum LAI at age 40 and that it lasted for 
about 30 years (Long & Smith, 1992; cited from Vose et al., 1994). 

Prevalent forestry practices in Germany aim to maximise the profitability of a site. Thinning, 
the extraction of some of the young trees in a forest so that the remainder grow and develop 
fully, has an additional, major influence on the temporal LAI dynamic. At Idarwald, after a 
maximum LAI value at an age of 20-30 years is reached, stands of Norway spruce are usually 
thinned at an age of 30-50. Therefore, relatively low LAI values can be expected. After 60-70 
years an increase in LAI may take place up to an age of 100 where logging can lead to gaps in 

 
Figure 6.1: LAI as a function of stand age for Norway spruce stands at Idarwald test site 
(n=40). 

Table 6.4: Linear correlation between forest stand attributes and HyMap reflectance 
resampled to TM spectral bands (n=40); ** correlation coefficient significant at P<0.01, * 
correlation coefficient significant at P<0.05 

Stand variable TM3 TM4 TM5 

Perimeter-at-breast height -0.60** -0.80** -0.55** 

Stem density  0.72**  0.86**  0.66** 

Canopy cover  0.41**  0.69**  0.38* 

Canopy height -0.57** -0.84** -0.57** 

Leaf area index  0.36*  0.76**  0.33* 

Stem biomass -0.50** -0.64** -0.51** 
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the canopy cover. Depending on the application of thinning measures, maximum variation of 
LAI can be expected at age 30-70 (personal communication Wagner, Womelsdorf; cited from 
Vohland, 1997).  

In Figure 6.1, LAI is plotted against stand age for the probed Norway spruce stands of 
Idarwald test site. Here, a peak LAI can be assumed at an age of 20. From an age of 20 
onwards, a gradual decline in LAI from up to age 150 is evident. Maximum variation of LAI 
occurs at age 60-70. Obviously, some stands have been thinned lately whereas others have 
been thinned long time ago. After an increase of LAI up to age 100 a decrease of LAI is 
caused by gaps related to logging measures. It can be concluded that the observed age course 
of Norway spruce based on the probed sample is a result of both natural circumstances and 
actual management practices. Concurrently, regeneration of leaf area index subsequent to 
thinning measures is also determined by the water and nutrient supply of a particular site. It is 
also clear from Figure 6.1, that LAI can vary considerably within a single age class and thus, 
information on LAI can not simply be derived from an age class map.  

At first, relationships between the forest stand attributes and single band reflectance were 
examined (Table 6.4). The stand attributes were most strongly correlated with TM4 and less 
correlated with TM3 and TM5. Correlations were positive for stem density (SD), canopy 
cover (CO), and LAI and negative for perimeter-at-breast height (PBH), canopy height (H) 
and stem biomass (SBM). PBH, SD, and H were more strongly correlated with reflectance 
whereas CO, LAI, and SBM were less correlated with reflectance. Attributes related to 
canopy cover (LAI, CO) are usually expected to have negative correlations with red 
reflectance. At Idarwald, we found weak positive correlations between LAI and red 
reflectance (TM3). However, red reflectance varied only between 2.7 and 3.0 percent and 
possibly, saturation in the red has already occurred at low LAI values. Another explanation 
could be, that green leaves and the underlying soil and litter have similar reflectances in the 
red and that an increase in LAI or CO would not have an influence on red reflectance. Finally, 
effects of shading could be responsible that old stands of relatively low LAI also have low 
reflectances in the red domain. One could also expect negative correlations between LAI and 
reflectance in the mid-IR (TM5) (Brown et al., 2000). Although we found such negative 
correlations for wavebands located in the water absorption features, we observed positive 
correlations for wavebands located at the reflectance maximum between the 1.4 µm and 
1.9 µm water absorption features. Again, shading could be a possible explanation for these 
findings. 
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The correlation coefficients (r) between structural attributes and both reflectance and first 
derivative reflectance spectra are presented as correlograms (Figure 6.2). The strength of the 
relation generally decreased from near infrared (near-IR) to mid infrared (mid-IR) wavebands 
and was greater for first derivative reflectance spectra in opposition to reflectance spectra. 
The decreasing r values with increasing wavelength from the near-IR to the mid-IR reflected 
the decrease in signal-to-noise ratio of the data. In this respect the correlograms were similar 
to those reported in other studies (e.g., Curran et al., 2001). Correlations were positive 
throughout all wavelength regions for stem density, canopy cover, and LAI and negative for 
stem perimeter (PBH), canopy height, and stem biomass. The near-IR region of reflectance 
spectra revealed strongest correlations followed by the green peak, the mid-IR region, and the 
chlorophyll absorption features in the red and blue wavebands. For the correlation between 

 
Figure 6.2: Correlograms for six stand attributes and both reflectances (left) and first 
derivative reflectance spectra (right) (n=40). Data points in first derivative reflectance 
correlograms are plotted as lines for clarity. 
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reflectance and LAI, similar curves were obtained in other studies (Thenkabail et al., 2000). 
However, one major difference was the positive correlation between LAI and reflectance in 
the red which has been already discussed in the previous paragraph. 

From the strong intercorrelations between the stand attributes (Table 6.3) it is evident that no 
single variable could be regarded as causal to the reflectance in the TM bands. Therefore, the 
principal components (PC) were computed on the forest stand variables in order to reduce the 
data and generate new variables that could be correlated with reflectance. The input variables 
were standardized to zero mean and unit standard deviation. From the five original variables 
(all variables except SBM) five PC were derived. The first 3 PC explained more than 95 
percent of the variability of the original dataset (not shown). The eigenvectors are vectors 
which define the principal component axes in terms of the original coordinate axes (Richards, 
1993). The eigenvectors of PC1 revealed moderately large positive loadings on PBH and H 
and a moderately large negative loading on SD (not shown). While principal components 
analysis is often preferred as a method for data reduction, principal factors analysis is often 
chosen when the goal of the analysis is to detect structure. In principal components analysis 
we assume that all variability in a stand variable should be used in the analysis. In principal 
factors analysis we only use the variability in a stand variable that it has in common with the 
other stand variables. The goal of the various existing rotational strategies is to obtain a clear 
pattern of loadings, explicitly, factors that are clearly marked by high loadings for some 
variables and low loadings for others (Stat Soft, Inc., 2004; Harman, 1976). 

Table 6.5: Statistics of the first component factor of the varimax rotation (CF1) compared to 
the Eigenvector of the first principal component PC1 (n=40) 

Stand variable Specific variance CF1 Loading CF1 Loading PC1 

Perimeter-at-breast height 0.1268 -0.9345  0.4638 

Stem density 0.1275  0.9341 -0.4757 

Canopy cover 0.5400  0.6782 -0.3972 

Canopy height 0.1417 -0.9265  0.4633 

Leaf area index 0.4107  0.7677 -0.4315 

Table 6.6: Linear correlation between principal components and HyMap reflectance 
resampled to TM spectral bands (n=40); ** correlation coefficient significant at P<0.01 

Component TM3 TM4 TM5 

CF1  0.65**  0.88**  0.61** 

PC1 -0.61** -0.89** -0.57** 

PC2 -0.18 -0.02 -0.19 

PC3 -0.29 -0.02 -0.28 
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The factor analysis was computed using the varimax rotation. Again, the input variables were 
standardized to zero mean and unit variance. After standardisation, one common factor (CF) 

 
Figure 6.3: Crown volume (VOL) as a function of stand age for Norway spruce stands at 
Idarwald test site (n=40). A low value of CF1 corresponds to a large crown volume. 

 
Figure 6.4: Stem biomass (SBM) as a function of stand age for Norway spruce stands at 
Idarwald test site (n=40). 
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was computed from the five original stand attributes (Table 6.5). The p-value of 0.08 failed to 
reject the null hypothesis of one common factor suggesting that this model provides a 
satisfactory explanation of the covariation in these data. A specific variance of 1 would 
indicate that there is no common factor component in that attribute while a specific variance 
of 0 would indicate that the attribute is entirely determined by common factors. The estimated 
specific variances indicated that the stand attributes PBH, SD, and H are determined by the 
common factor. However, the common factor did not clearly represent the attributes LAI and 
CO. For interpretation of the common factor, its loading has to be examined (Table 6.5). CF1 
has very high loadings on the variables PBH, SD, and H, but only moderately high loadings 
on LAI and CO. The loadings obtained by CF1 reveal a much clearer pattern than those 
obtained by PC1. According to the loadings of CF1, old stands consisting of large trees at low 
density would have low scores on CF1. It was obvious, to interpret CF1 as a variable that is 
inversely related to stand age. The correlation between CF1 and stem biomass was moderately 
strong (r = –0.74). Following an interpretation by Danson & Curran (1993), CF1 was 
regarded as a variable inversely related to crown volume (VOL). 

In a next step, the common factor and the principal components were correlated with the 
reflectance data in the TM bands (Table 6.6). Statistically significant positive relationships 
were found between VOL and TM reflectance. This indicated, that stands for which a high 
reflectance was recorded had a high score on CF1 and thus, a low canopy volume. Also PC1 
showed a close relationship to TM reflectance. No correlations were observed between PC of 
higher order and reflectance. From Figure 6.3 it is evident, that VOL is closely related to 
stand age. While up to stand age 60 a linear relationship can be observed, saturation starts at 
higher age.  

A similar increase with stand age has also been observed for total biomass in boreal spruce 
(Picea abies) forests (Kazimirov & Morozova, 1973; cited from Schultz, 2000) but saturation 
did not occur before age 120. This relationship between stand age and total biomass was 
compared to the relationship between stand age and stem biomass (SBM). When SBM is 
plotted against stand age, apart from two extreme observations a curvilinear relationship is 
observed, but even at high age no saturation occurs (Figure 6.4). The outlier in the upper part 
of the plot is the oldest of all sampled stands (age = 148 years). In this stands very large 
values of canopy height and PBH and moderately large values of stem density were measured 
resulting in very large values of SBM. Despite a relatively large correlation coefficient 
between crown volume (VOL) and SBM of -0.74, VOL and SBM were considered as 
dissimilar variables in the subsequent analysis mainly due to their different dependence on 
stand age. 
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6.2.4 Relationships between vegetation indices and forest variables 

Most of the linear regression models indicated that the best relationships were obtained using 
LAI or VOL; the regression with perimeter-at-breast height, canopy height, and stem density 
also provided several good relations but were not considered due to their strong 
intercorrelation; canopy cover was not further considered due to the strong relation to LAI. 
Thus, the results presented restrict to LAI, VOL, and SBM. 

Narrowband VIs 

To determine optimal narrowband VIs, coefficients of determination (R2) between all possible 
two-band VIs and forest stand variables were computed. The results are illustrated in 2D-

 
Figure 6.5: 2D-correlation plot that shows the correlation (R2) between LAI and narrow band 
RVI values (subset m). The matrix is symmetrical, therefore just values above the diagonal 
are displayed. Below the diagonal, band combinations are marked in red where R2>0.75. The 
displayed average reflectance spectrum of all measured forest plots eases the interpretation of 
the 2D-correlation plot. 
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correlation plots (Figure 6.5). Each point at position (band 1, band 2) in the upper triangle of 
Figure 6.5 represents the R2 value between LAI and the RVI calculated from the reflectance 
values in that two wavebands. The lower triangle highlights band combinations where R2 was 
larger than 0.75. Similar correlation plots to the one in Figure 6.5 were computed for the other 
biophysical variables. Based on the R2 values in the 2D-correlation plots band combinations 
that form the best indices were determined for LAI, VOL, and SBM. These were considered 
as optimal indices and were named RVI_opt and PVI_opt. Up to three best performing 
indices were considered when they occurred in different wavelength regions. For example, in 
Figure 6.5, the indices that have highest correlation with LAI were extracted from the 2D-
correlation plot range above 0.75; the three most dominant indices occur in the regions around 
1346nm/1207nm, 1134nm/920nm, and 1802nm/1163nm. The band positions were then 
tabulated in Table 6.7. For the best performing narrow band index, cross-validated R2 and 
rmse were computed (Table 6.8). 

Broadband VIs 

The first step in the analysis of broadband VIs was to compare ratio to soil-adjusted VIs and 

Table 6.7: Best narrow band RVI and PVI derived from 2D-correlation plots for different 
subsets. Subset y was excluded from the analysis due to the small number of samples 

Pooled dataset (t) 
(10-148 years) 

Medium-old (mo) 
(30-148 years) 

Old (o) 
(80-148 years) 

Medium (m) 
(30-79 years)   

λ [nm] R2 λ [nm] R2 λ [nm] R2 λ [nm] R2 

RVI_opt 
918/965 
850/680 
1165/750 

.65 

.55 

.60 

896/965 
1802/1043 
1346/1119 

.68 

.65 

.65 
747/807 .60 

1346/1207 
1134/920 
1802/1163 

.85 

.85 

.80 
LAI 

PVI_opt 
1088/1148 
1148/807 

.70 

.70 
895/1134 .64 1445/2060 .56 

918/1134 
1320/1220 
2220/457 

.83 

.82 

.72 

RVI_opt 
 
472/1119 
 

.31 933/747 .31 2354/2337 .50 1279/1264 .53 

SBM 

PVI_opt 
 
777/900 
 

.46 933/747 .32 2337/2354 .41 948/747 .46 

RVI_opt 
 
671/702 
 

.74 996/1058 .60 2385/2042 .51 1011/1028 .74 

VOL 

PVI_opt 

981/1058 
1417/1070 
948/885 
747/457 

.82 

.82 

.82 

.82 

1073/981 .60 2320/2449 .41 1073/996 .69 
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to compare VIs based on visible and near-IR reflectance to those based on mid-IR and near-IR 
reflectance. Broadband ratio VIs (RVI and NDVI) generally showed relatively low values of 
R2 and relatively high values of rmse for all subsets. The soil-adjusted broadband models 
(PVI and TSAVI) performed significantly better for the pooled data set; obviously, 
background effects related to soil and litter were reduced. Whereas younger stands revealed a 
denser canopy with little background contribution to the signal, in older stands with gaps and 
a more open canopy the background may have a larger influence on reflectance. Hence, when 
the total age dynamic is considered, TSAVI and PVI performed better than RVI or NDVI but 
when age classes are considered separately no performance increase was observed. The 
findings of Brown et al. (2000), that soil-adjusted VIs compared to the RVI have a decreased 
sensitivity to forest LAI, could not be confirmed. 

Broadband MVI was closer related to LAI and VOL than broadband RVI and NDVI (subset 
m and mo). The mid-IR band in combination with the near-IR band seemed to contain more 
information relevant to the characterisation of forest canopies than the combination of red and 
near-IR bands. Recently, a closer relation of forest-LAI to radiation in the mid-IR than to 
radiation in the visible was found by Boyd et al. (2000) for tropical vegetation; the authors put 
forward that this could be the case also with boreal forests. The results found in the present 
study also support the suggestion by Fassnacht et al. (1997) that mid-IR bands may improve 
LAI estimation, particularly in more open forest stands. Recently, Lee et al. (2004) stretched 
the importance of spectral channels in the red-edge and mid-IR regions in predicting LAI of 
different biomes. 

Broadband versus hyperspectral VIs 

In the second step of the analysis, the broadband VIs were compared to the hyperspectral VIs 
to see if hyperspectral indices improve the prediction accuracy. All best narrowband RVI 
(RVI_opt) and PVI (PVI_opt) performed better than the corresponding broadband VIs. 
Values of rmse of about 1 m2 m-2 or larger for regression models between broadband RVI and 
LAI (medium-old (mo), old (o), and medium (m) aged stands) decreased to values as low as 
0.5 m2 m-2 for the optimal narrowband RVI. The improvement of the narrowband models 
compared to the broadband models was not that distinct in the case of the PVI. Regression 
between PVI and VOL over all age classes (pooled dataset) revealed almost similar results for 
broadband and narrowband indices. The reason that some of the broadband results were high 
could be from having a very high signal-to-noise ratio (SNR). However, this does not mean 
that sensors like Thematic Mapper could be able to reproduce these results as they would have 
a much lower SNR. 
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Comparing narrowband orthogonal VIs with ratio VIs revealed that PVI_opt performed better 
than RVI_opt (pooled dataset); for subsets mo, m, and o, however, RVI_opt showed lower 
rmse values than PVI_opt for LAI and VOL. No correlation was observed between the red 
edge inflection point (REIP) computed from Lagrange interpolation (LGI) or inverted Gauss 
model (IGM) and LAI over the total age dynamic, but for subset m, LGI showed an rmse 
value of less than 0.5 m2 m-2. This value is comparable to the rmse value obtained between 
RVI_opt and LAI. These findings were partly supported by results obtained from other 
studies. Danson & Plummer (1995) found a strong non-linear correlation between plot LAI 
and the REIP for Sitka spruce (Picea sitchensis) using helicopter-borne spectroradiometer 
data. For the same tree species, forest LAI was recently related to the canopy REIP computed 

Table 6.8: Cross-validated R2 (first line) and cross-validated rmse (second line) for linear 
regression between broadband and hyperspectral (narrowband VIs and REIP) indices and 
forest stand variables LAI and VOL. The best broadband and hyperspectral VIs are typed in 
bold. Relations with SBM were generally poor and are not listed. Subset y was excluded from 
the analysis due to the small number of samples 

  LAI VOL 

 Subset t mo  m o t mo m o 

 n 40 35 17 18 40 35 17 18 

.40 .42 .40 .17 .23 .38 .35 .26 
RVI 

1.23 .92 1.05 1.67 1.9 1.7 2.9 1.9 

.43 .44 .44 .17 .24 .34 .31 .25 
NDVI 

1.13 .86 .95 1.72 1.8 1.7 2.8 1.9 

.57 .29 .23 .22 .76 .35 .35 .10 
PVI 

.87 1.29 1.7 1.7 .58 2.2 4.9 3.1 

.61 .36 .30 .24 .68 .37 .36 .07 
TSAVI 

.80 1.06 1.35 1.55 .69 1.8 3.6 3.9 

.38 .54 .58 .35 .19 .51 .45 .15 
MVI 

1.3 .71 .71 1.83 2.3 1.1 1.3 85.5 

.58 .31 .24 .24 .75 .36 .35 .07 

B
ro

ad
ba

nd
 V

I 

GVI 
.85 1.2 1.62 1.55 .59 2.1 4.7 3.8 

.62 .64 .77 .57 .70 .59 .70 .45 RVI 
_opt .78 .58 .45 .57 .68 .91 .65 1.1 

.67 .45 .41 .52 .79 .58 .64 .38 PVI 
_opt .69 .86 1.02 .58 .52 .98 .78 1.4 

.01 .58 .75 .44 .26 .46 .33 .05 
LGI 

400 .64 .49 .66 5.8 1.1 1.6 16.2 

.00 .58 .72 .47 .27 .43 .27 .00 

H
yp

er
sp

ec
tra

l V
I 

IGM 
45 .65 .53 .66 4.0 1.2 1.8 8.7 
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from imaging spectrometer data (CASI) with success (Lucas et al., 2000). Attempts to relate 
the chlorophyll content of canopies to the REIP were successful for grass canopies (Pinar & 
Curran, 1996), but only partially successful for forest canopies (Curran et al., 1991). 
Blackburn (2002) found no relation between REIP and LAI for coniferous stands using CASI 
data. 

In a summary, it was concluded that the best relationships between remotely sensed 
reflectance and forest stand variables were found using LAI and crown volume (VOL). In a 
study on agricultural crops, Thenkabail et al. (2000) also found the closest relations between 
hyperspectral VIs and LAI or biomass, whereas relationships with crop height, and canopy 
cover were generally not as good. The major result of the present study was that the 
hyperspectral dataset contained more information relevant to the estimation of the forest stand 
variables LAI and VOL than multispectral data. Lee et al. (2004) came to the conclusion that 
regression models using AVIRIS channels performed better to predict LAI than those based 
on broadband data. However, the advantage of hyperspectral over multispectral data does not 
always seem to be the case: For instance, Broge & Mortensen (2002) came to the conclusion, 
that hyperspectral VIs derived from field spectral measurements were not better at estimating 
green crop area index (a variable related to LAI) than traditional broadband VIs. Then again, 
these authors found that the prediction of canopy chlorophyll density was improved using 
narrow bands across the red edge. Results of the present study concerning old stands show, 

 
Figure 6.6: Linear regression between best narrow band PVI and LAI. Values of R2 and rmse 
are cross-validated. When the outlier at position 4.1/-0.104 is removed, cross-validated R2 
increases to 0.77 and rmse decreases to 0.54 m2 m-2. 
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that relatively poor relationships were found in particularly for the broadband VIs. Also other 
studies reported problems with old stands that have been ascribed to shadow effects and a 
relatively dark background in the near-IR (Spanner et al., 1990a). 

In the scatter plot between PVI_opt and LAI (Figure 6.6), even at high values of LAI no 
saturation is evident. A closer look reveals an outlier at position 4.1/-0.104. The 
corresponding forest stand of age 34 was identified in the image data. Whereas the 1999 
image showed no abnormality in reflectance, in recently acquired HyMap data of 2003, a 
striped pattern was detected. From the spectral reflectance properties, the image pixels 
representing stripes could be identified as a mixture between tree crowns and forest litter. The 
striping pattern was caused by open strips that had been cut into the forest between the image 
acquisition and field measurements. Open strips allowed for the employment of harvesters in 
order to remove trees that had been exposed to game bite (Womelsdorf, G., personal 
communication). 

Also the relationship between PVI_opt and VOL (Figure 6.7) is linear. In contrast to Figure 
6.6, two main clusters of data points can be identified. Those data points with a value of VOL 
larger than 1 refer to forest stands of an age less than 40 years. 

 
Figure 6.7: Linear regression between best narrow band PVI and crown volume. Values of R2 
and rmse are cross-validated. A high value of VOL corresponds to a low crown volume and 
vice versa. 
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6.2.5 Absorption features related to leaf area index and crown volume 

The best relations between both LAI and VOL and the optimal narrowband VIs used PVIs 
based on wavelength positions related to water absorption features. One of the two wavebands 
forming PVI_opt typically lay at the shoulder of the absorption feature, the other waveband at 
the absorption minimum (Figure 6.8). Obviously, PVI_opt based on such wavebands is a 
measure of the total amount of canopy water (MH20) seen by the sensor. MH20 (unit: kg water 
per m2 ground area) depends on both leaf water content (LWC; unit: mg water per cm2 leaf 
area) and leaf area index (LAI): 

LAILWCM OH ⋅=
2  

6.1 

When LWC does not vary between forest stands, PVI_opt reflects spatial patterns of LAI 
(Schlerf et al., 2005). 

6.2.6 Maps of forest attributes 

The best regression models that have been found for the estimation of LAI (Figure 6.9) and 
VOL (Figure 6.10) were applied to the HyMap image. Only image pixels representing conifer 
forest were considered. Estimated values of LAI were generally in a reasonable range. LAI 
values were classified into five classes for cartographic reasons. Although most of the forest 
stands in the LAI map appear rather homogenous, certain variation within the stands can be 
observed. This reflects the fact that even in highly managed forests stands do not develop 
evenly in space. From the interpretation of the spatial patterns prevalent in both parameter 
maps it can be seen that the values of the crown volume map are in general inversely related 
to the values of the LAI map. Young stands with low crown volume have not undergone 
clearing measures and reveal large LAI values. Old stands with relatively low values of LAI 
have built up large tree crowns. Medium old stands show the largest variability depending on 
to what extent clearing measures have been carried out. 

From the resulting LAI map and the Forest Geographic Information System, average values 

 
Figure 6.8: Wavelength position of selected optimal narrowband VIs for LAI (left) and VOL 
(right). Wavebands are associated with typical water absorption features. 
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of LAI were computed for 156 forest stands (Figure 6.11). Stand average LAI was 
summarised into four age classes (Table 6.9). Mean LAI is generally decreasing with 
increasing stand age. All forest stands in the map support the age course of LAI observed for 
the 40 stands that have been used to calibrate the regression model (Figure 6.1) and that were 
then used to compute the map. Standard deviation of LAI is particularly large for the age class 
of 31-50 year old stands. This class also shows low minimum and large maximum values. The 
reason for the large variability of the 31-50 year old stands is that some stands of this age may 
be subjected to thinning measures while others may remain undisturbed and thinned at a later 
stage (Section 6.2.3).  

The LAI map is a valuable resource. It was integrated into the local Forest-GIS of Idarwald. 
Stand LAI may serve to parameterise coarse scale ecological models (e.g., Biome-BGC) that 
are used to simulate net primary production and carbon, nutrient, and water cycling. The 
crown volume map may help to assess the amount of standing biomass in support of forest 
inventory procedures. Although remote sensing methods rarely play a role in operational 
inventory procedures, it may overcome certain limitations of traditional inventory practices. 

6.2.7 Conclusions 

This research intended to explore whether hyperspectral data may improve estimation of 
forest attributes compared to multispectral data using empirical statistical approaches. Several 
narrowband and broadband vegetation indices were compared. The following conclusions 
were drawn from this study: 

 Forest leaf area index (LAI) and crown volume (VOL) were estimated with good 
accuracy from hyperspectral remote sensing data; stembiomass did not show relations 
with any vegetation index 

 Orthogonal compared to ratio VIs were better suited to characterise forest LAI and 
crown volume 

 Hyperspectral data contains more information relevant to the estimation of the forest 
stand attributes than multispectral data 

Table 6.9: Summary statistics for leaf area index in five age classes 

Leaf area index [m2 m-2] 
Stand age  
[years] n Mean 

Standard 
deviation Minimum Maximum 

11-30 24 5.2 0.7 3.3 6.8 

31-50 46 3.7 0.9 1.9 6.7 

51-80 41 3.1 0.6 2.2 4.6 

≥ 81 45 2.6 0.4 1.7 3.9 



CHAPTER 6 DETERMINATION OF FOREST STRUCTURAL ATTRIBUTES 114 

 Best hyperspectral VIs in relation with LAI were typically based on wavebands related 
to prominent water absorption features. However, more investigations are necessary to 
confirm this result. 
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Figure 6.9: Map of effective leaf area index at Idarwald obtained from an empirically derived 
predictive equation. 
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Figure 6.10: Map of crown volume at Idarwald obtained from an empirically derived 
predictive equation. 
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Figure 6.11: Map of stand mean leaf area index at Idarwald. 
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6.3 Inversion of a forest reflectance model 

6.3.1 Introduction 

The literature review (section 2.3.3) reveals that neural network approaches for the inversion 
of forest reflectance models using satellite or airborne remote sensing data that include a 
validation with ground truth data, are non-existing or rare. This investigation attempts to 
estimate forest structural characteristics from HyMap data through inversion of the hybrid-
type reflectance model INFORM (Atzberger, 2000). The objectives were to i) assess if the 
reflectance signatures simulated by the model are consistent with the remotely sensed canopy 
spectra, ii) assess if the model can be inverted to provide reasonable estimates of forest leaf 
area index (LAI), crown cover and stem density, iii) identify the most suitable spectral bands 
for use in the neural network inversion procedure, and iv) and to compare inversion 
accuracies obtained with HyMap reflectances to those retrieved with HyMap data that had 
been resampled to Landsat TM wavebands. 

6.3.2 Parameterisation of the forest reflectance model 

A fundamental prerequisite to reflectance model inversion is a valid model that is capable of 
representing radiative transfer within the complex forest structure. To make sure that the 
model outputs were realistic, modelled reflectance was compared to reflectance measured by 
the HyMap sensor. Spectra were compared for canopy LAI (LAIc) classes of 1.5, 2.5, 3.5, 4.5, 
5.5, and 6.5. The LAI map developed in section 6.2.6 was used to extract mean reflectance 
spectra from the HyMap imagery for a certain LAIc class value ± 0.5. For instance, for LAIc 
of 1.5, all pixels where the map showed LAI values from 1.0 to 2.0 were averaged to form a 
single reflectance spectrum. The LAI map had been previously derived through linear 
regression between a perpendicular vegetation index and field measured LAI at 40 plots; LAI 
had been estimated with a cross-validated R2 of 0.77 (n = 39) and a cross-validated rmse of 
0.54 m2 m -2 (17 percent of the mean) between estimated and measured LAI. The INFORM 
model requires the provision of a soil spectrum (ρsoil). For that purpose a soil spectrum 
representing the forest floor (soil and litter, no understorey vegetation) was extracted from the 
HyMap dataset where the LAI map showed values around zero. The contribution of 
understorey vegetation is modelled by INFORM. A spectrum of infinite canopy depth was 
extracted from image pixels with LAI values above 10 according to the aforementioned LAI 
map. It well agreed with the modelled spectrum of infinite canopy depth.  

In INFORM LAI is a single tree LAI (LAIs). Canopy LAI (LAIc) can be expressed as the 
product of LAIs and canopy cover (CO). CO was denoted “observed ground coverage by 
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crowns (co)” in section 4.4.2 (Equation 4.20) and is now simply refered to as “canopy cover”. 
CO is calculated as a function of stem density (SD) and crown diameter (CD) (Equations 4.20 
and 4.22). To model forest reflectance of a certain LAIc, the values of LAIs, SD, and CD and 
also the canopy height (H) had to be defined. Site specific information was used to 
parameterise the model correctly and to model corresponding forest reflectance spectra. Field 
plot data (section 3.2.1) was used to establish relationships between LAIc and attributes SD, 
CO and H (Table 6.10). Regression equations were used to compute values of SD, H and CO 
for the six LAIc classes (Table 6.11). Single tree leaf area index (LAIs) was computed as 
LAIs = LAIc / CO. 

CD was measured only in forest stands older than 60 years (n = 28) and from this data no 
relationship could be found with LAIc. Typical values of CD ranged between 4 m for 60-80 
year old trees up to 6.5 m for 80-100 year old trees. Generally, the size of tree crowns 
increases with increasing age and, due to the negative relationship between age and LAIc 
found at Idarwald (section 6.2), it decreases with increasing LAIc. To represent this 
relationship and to extent it to forest stands younger than 60 years, values of CD ranging from 
3.5 m to 6.5 m in steps of 0.6 m were assigned to the six LAIc classes. All attribute values 
used to model canopy reflectance that were directly or indirectly derived from field work are 
listed in Table 6.11. 

The remaining external, leaf and canopy parameters were kept constant for all simulations. 

Table 6.10: Relationships between canopy leaf area index and the attributes canopy cover, 
stem density and canopy height 

Forest attribute Regression equation R2 n 

SD [ha-1] 140.76*exp(0.4127*LAIc) 0.58 40 

CO 0.0778*LAIc+0.2259 0.46 40 

H [m] -5.7413*LAIc+43.847 0.49 40 

Table 6.11: Inputs to the INFORM model used to compare modelled with measured 
reflectance spectra derived from field data and modelled values of CO and LAIc 

LAIc LAIs SD [ha-1] CO CD [m] H [m] Modelled 
CO 

Modelled 
LAIc 

1.5 4.4 261 0.34 6.5 35.2 0.41 1.78 

2.5 5.9 395 0.42 5.9 29.5 0.48 2.81 

3.5 7.0 597 0.50 5.3 23.8 0.55 3.82 

4.5 7.8 902 0.58 4.7 18.0 0.61 4.75 

5.5 8.4 1362 0.65 4.1 12.3 0.66 5.54 

6.5 8.9 2058 0.73 3.5 6.5 0.70 6.19 
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Leaf variables as input to LIBERTY were set to default values as proposed by Dawson et al. 
(1998). Average leaf angle and variables related to the understorey were set to values as 
suggested by Atzberger (2000). The most important parameters are listed in Table 6.12. 

Six forest reflectance spectra were simulated in 128 spectral HyMap wavebands using the 
INFORM model. As can be seen from Table 6.11, the modelled values of CO differed to a 
certain extent from those that were derived from field data through regression equations. If the 
field values of CO were taken as an absolute reference, the model overestimated small CO 
values and slightly underestimated large CO values. However, field values of CO were 
visually estimated and a relative, but no absolute accuracy could be expected. There was also 
a slight difference between modelled and field measured canopy LAI but it was generally 
smaller than for CO. 

Table 6.12: Important parameters that were kept constant during all model simulations. Type 
of variable: E = External, C = Canopy, L = Leaf 

Type of 
variable Variable Designation Unit Value 

E Sun zenith angle  θs deg 30 

E Observation zenith angle  θo deg 0 

E Azimuth angle ψ deg 0 

E Fraction of diffuse radiation skyl fraction 0.1 

C Average leaf angle of tree canopy ALA deg 55 

C Leaf area index of understorey LAIU m2 m-2 0.1 

C Average leaf angle of understorey ALAU deg 45 

L Cell diameter d µm 40 

L Intercellular air space i arbitrary 0.045 

L Leaf thickness t arbitrary 1.6 

L Baseline absorption b arbitrary 0.0006 

L Albino absorption a arbitrary 2 

L Chlorophyll content cAB g m-2 200 

L Water content cW g m-2 100 

L Lignin and cellulose content cL g m-2 40 

L Nitrogen content cP g m-2 1 
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Modelled and measured reflectance spectra are generally in good agreement (Figure 6.12). In 
the near-IR region both types of spectra show an increase in reflectance with increasing LAIc. 
Differences between modelled and measured spectra occur along the shoulder of the near-IR 
plateau, in the visible domain at large LAIc-values and in the mid-IR wavebands at low values 
of canopy LAI. In the near-IR, both modelled and measured reflectances linearly increase 
with increasing LAIc and no saturation effect can be observed (Figure 6.13, centre). Positive 
relationships between near-IR reflectance or NDVI and forest LAI or canopy cover were also 

 
Figure 6.12: Measured (red) and modelled (blue) forest canopy reflectance for certain values 
of canopy LAI.  

 

 
Figure 6.13: Measured (red) and modelled (blue) forest canopy reflectance against canopy 
LAI. 
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found in other studies that used forward reflectance modeling (Asner, 1998; McDonald et al., 
1998; Eklundh et al., 2001). In the red, a decrease of reflectance with increasing LAI is 
expected from theoretical considerations which are confirmed by the modelled spectra (Figure 
6.13, left). Here, saturation occurs at an LAI of about 4. Measured reflectance, in contrast, 
increases with increasing values of LAIc in a linear fashion. The reason for this behaviour of 
the measured reflectances is that an increase of LAI comes along with a decrease of stand age 
and thus, less shadowing takes place. For the same reason, measured reflectance increases 
with increasing LAI in the mid-IR for values of LAI larger than 2 (Figure 6.13, right).  

Up to an LAI of 4, modelled reflectance decreases with increasing LAI as expected but then 
increases for larger LAI values. Positive relationships between near-IR reflectance or NDVI 
and forest LAI or canopy cover were also found in other studies that used forward reflectance 
modeling (Asner, 1998; McDonald et al., 1998; Eklundh et al., 2001). For instance, model 
results using the Kuusk-Nilson model indicated that for dense forest stands, reflectance in the 
red decrease and in the near-IR increase with increasing LAI (Eklundh et al., 2001), but 
relations to measured reflectance were rather weak in all TM channels. However, in another 
study using the same model, negative relations between LAI and spectral reflectances in the 
red, near-IR and mid-IR were found (Rautiainen et al., 2004). 

 
Figure 6.14: Modelled versus measured forest canopy reflectance for certain values of canopy 
LAI in different wavebands. The one-to-one line is shown for orientation. 
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Modelled were compared to measured reflectances in certain wavebands (Figure 6.14). The 
closest relation between modelled and measured reflectances occurred in the near-IR, 
followed by mid-IR and visible wavebands. Wavebands with best relationships were selected 
and used in the inversion process (section 6.3.7). 

6.3.3 Overview of the inversion procedure 

The general procedure for the estimation of forest attributes from remote sensing data through 
inversion of the reflectance model consisted of four major steps (Figure 6.15): Forward 
modeling to generate synthetic canopy spectra (a), training of the Artificial Neural Network 
(ANN) using the modelled data (b), application of the trained ANN to measured HyMap 
spectra to estimate forest canopy attributes (c), and the application of the ANN to the whole 
image to generate parameter maps (d). Details of the procedure are given in the following 
sections. 

6.3.4 Forward reflectance modeling 

Sets of input variables had to be generated to simulate forest reflectance spectra with 
INFORM. External parameters, leaf parameters and certain canopy parameters were assigned 
fixed standard values as defined in Table 6.12. Values of the canopy variables LAIs, SD, CD, 

 
Figure 6.15: General procedure for estimating canopy attributes from remote sensing data 
through inversion of a forest reflectance model. See text for details. 
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and H were chosen randomly within the range of values observed at the study site. Their 
statistics are given in Table 6.13. 5000 sets of input variables were generated and the 
corresponding forest reflectance spectra were modelled in 128 HyMap wavebands. 

6.3.5 Spectral sampling 

Given a multi- or hyperspectral remote sensing data set, a selection of the bands to be used in 
the inversion process is recommended because those bands with larger model and 
measurement uncertainties would bias the retrieval (Meroni et al., 2004). However, an 
optimal spectral sampling is a very complex problem and is still an open issue for the remote 
sensing community. Recently, Genetic Algorithms have been used to find the optimal set of 
spectral variables to include into a model. 

To compare the suitability of broadband multispectral and narrowband hyperspectral data in 
model inversion, simulated and measured HyMap reflectances were spectrally resampled to 
Landsat TM wavebands using the appropriate sensor functions. We tested all two-band and 
three-band combinations in TM wavebands. More than three wavebands were not considered 
to avoid usage of highly correlated data. It turned out that two wavebands were sufficient to 
invert the model. To save computation time, in HyMap wavebands just all two-band 
combinations were assessed, which meant to 114x113/2 times invert the model.  

6.3.6 Network architecture and training 

The Neural Network approach was realised within the Matlab software environment 
(www.mathworks.com). Training of the network was done by presenting modelled spectra 
and canopy variables to the ANN. During the training process, the values of the weights and 
biases in the network are iteratively adjusted in such a way that the error between the network 
outputs and the target outputs (the canopy variables) is minimised. Before the modelled 
canopy variables and spectra could be presented as training data to the ANN, two 
preprocessing steps were performed: Band selection and data normalisation.  

Table 6.13: Statistics of canopy variables used to simulate forest reflectance 

Variable Mean Std. dev. Min. Max. 

LAIs 6.49 1.42 4 9 

SD 1217 576 200 2200 

CD 5.01 0.57 4 6 

H 20.42 9.26 5 37 
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To ensure that the training data was consistent with the real data, wavebands were selected 
where measured and modelled reflectances agreed best (Figure 6.14). Selection of input bands 
involved testing all 2-band combinations of wavebands at 899.6 nm, 1073.5 nm, 1278.7 nm, 
and 1669.4 nm on how well the network performed on the validation data (section 6.3.7). 
From the available wavebands, two were selected: one in the near-IR at 1073.5 nm and 
another one in the mid-IR at 1669.4 nm. More than two wavebands were not considered to 
avoid usage of highly correlated data. Spectra and canopy variables were normalised by a 
forward z-transformation. Statistical parameters of the z-transformation (mean and standard 
deviation) were later used to normalise the measured data in exactly the same way. 

The 5000 sets of reflectance data in the selected wavebands together with the corresponding 
input variables were divided into a training dataset and a test dataset. The measured HyMap 
spectra and the field-measured canopy variables were used as validation dataset. All following 
assessments concerning the performance of the ANN are based on the results obtained with 
the validation set. Details of the validation procedure are given in section 6.3.7. The structure 
of the used ANN was relatively simple (Figure 6.16). It had two input neurons (equal to the 
number of used wavebands), one neuron in the hidden layer, and three output neurons (one for 

 
Figure 6.16: Structure of the Artificial Neural Network used to invert the INFORM model. 
The employed three layer feed-forward backpropagation network had two input neurons, one 
neuron in the hidden layer, and three output neurons. A tan-sigmoidal transfer function in the 
hidden layer and a linear transfer function in the output layer was used. See text for further 
details. 
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each variable to be estimated). A three layer feed-forward backpropagation network with a 
tan-sigmoidal transfer function in the hidden layer and a linear transfer function in the output 
layer was employed. The layer with the nonlinear transfer function allowed the network to 
learn nonlinear and linear relationships between input and output vectors. The linear output 
layer enabled the network to generate values outside the range -1 to 1. The employed network 
type can approximate any function, given sufficient neurons in the hidden layer (Demuth & 
Beale, 2003).  

For training the resilient backpropagation algorithm was applied. The purpose of this training 
algorithm is to eliminate harmful effects of the magnitudes of the partial derivatives that may 
be caused when using steepest descent to train a multilayer network with sigmoid functions. 
Only the sign of the derivative is used to determine the direction of the weight changes; the 
magnitude of the derivative has no effect on the weight changes (Demuth & Beale, 2003). 
Other faster training algorithms, the Levenberg-Marquardt backpropagation and the scaled 
conjugate gradient backpropagation algorithm were also tested but not further considered, as 
the resilient backpropagation algorithm produced the best results on the validation data. 

One of the main problems that typically occur during ANN training is overfitting. This 
phenomenon describes the situation that the error on the training data is driven to a very small 
value, but when new data is presented to the network the error is large (Demuth & Beale, 
2003). This lack of generalisation can be avoided by using a network that is just large enough 
to provide an adequate fit. The complexity of a network is mainly determined by the number 
of neurons in the hidden layer. To find the appropriate dimension of the hidden layer, the 
performance of the algorithm was systematically investigated with the number of neurons in 
the hidden layer varying between 1 and 10; it turned out that one neuron in the hidden layer 
was sufficient to approximate the function between input and output vectors of the validation 
data.  

To further improve generalisation of the network the early stopping technique (Demuth & 
Beale, 2003) was applied. The patterns generated with INFORM were divided into two 
subsets. 2500 datasets were used for training, and 2500 were used as a test dataset to prevent 

 
Figure 6.17: Modelled against measured forest canopy variables (n = 39). 
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overfitting. The training set was used for computing the gradient and updating the weights 
and biases. The error on the test set was monitored during the training process. During the 
initial training phase, both, training and test set error decreased. When the network began to 
overfit the data, the test set error started to rise. At this point the training was stopped and the 
actual weights at the minimum of the test error were returned. These weights and biases were 
then used to estimate the independent variables of the validation dataset.  

6.3.7 Validation of inversion results and modification of network architecture 

Only data from 39 plots were used for validation since one of the originally 40 plots had been 
thinned between the image acquisition and field measurements (section 6.2.4). The validation 
data (i.e. the HyMap spectra and the structural attribute data) was preprocessed in exactly the 
same way as the training set. That means the same wavebands were selected from the 
measured HyMap spectra. Both reflectances and attribute data were normalised with the same 
statistical parameters that had been previously used for the z-transformation of the training 
data. After the HyMap spectra were sent through the network, the resulting network outputs 
were subjected to an inverse z-transformation and from the estimated values of LAIs, SD, and 
CD, estimated values of CO and LAIc were computed using equations 4.20 and 4.22 (Figure 
6.16). The coefficient of determination and the root mean squared error between estimated 
and field-measured forest canopy variables were calculated. Both parameters served as a 
measure of accuracy of the model inversion. The number of hidden neurons and input bands 
were systematically analysed (section 6.3.6). To generate biophysical parameter maps the 
trained ANN yielding the highest overall accuracy was finally applied to the radiometrically 
and geometrically corrected HyMap image.  

Using two HyMap wavebands at 837 nm and 1148 nm, model estimated and ground LAI 
show relatively good agreement as indicated by the close position of most data points along 
1:1 line (Figure 6.17). Low values of ground LAI are slightly overestimated whereas 
relatively large values of ground LAI are somewhat underestimated. The obtained accuracy of 
the LAI map amounts to an rmse of 0.58 (relative rmse 18 % of mean) and a coefficient of 
determination (R2) of 0.73. As expected, canopy cover and stem density (both considerably 
determine canopy LAI in the INFORM model) behave similar with LAI with respect to the 
1:1 line. Canopy cover was estimated with reasonable accuracy (rmse 17.5 % of mean). 
However, model outputs of stem density considerably underestimate the ground 
measurements for large values (rmse 55 % of mean). With HyMap data resampled to Landsat 
TM spectral bands and using two bands at 840 nm and 1650 nm, rmse was 0.66 and relative 
rmse 21 % against ground measured LAI. 
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Figure 6.18: Map of effective leaf area index at Idarwald obtained through inversion of a 
forest reflectance model. 



CHAPTER 6 DETERMINATION OF FOREST STRUCTURAL ATTRIBUTES 129 

 
Figure 6.19: Map of stem density at Idarwald obtained through inversion of a forest 
reflectance model. 
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The main result of this research is that forest leaf area index could be estimated through 
inversion of a reflectance model with accuracy comparable to that of VI based approaches. 
These findings are supported by other studies. For instance, LAI of different vegetation types 
was estimated with fair accuracy (rmse = 0.70) by inversion of the Kuusk reflectance model, 
better than that obtained with an empirical LAI-VI relation (Bicheron & Leroy, 1999). In 
another work, inversion of the hybrid-type Kuusk-Nilson model performed better than NDVI 
when estimating forest cover from TM data, though accurate estimates on a per-stand basis 
were not possible (Gemmell et al., 2002). Whereas empirical approaches rely on a calibration 
function between a certain vegetation index and a ground measured forest variable, calibration 
of the reflectance model is based on synthetic data and the ground truth serves as an 
independent validation base. In opposition to empirically derived prediction functions that are 
generally limited to the local conditions at a certain point in time and to a specified sensor 
type, the calibrated reflectance model can be applied more easily to different optical remote 
sensing data acquired at landscape to regional scales (Schlerf & Atzberger, 2006). 

6.3.8 Maps of forest attributes 

The final neural network was applied to the entire HyMap image. Again, only image pixels 
representing conifer forest were considered. Estimated values of LAI were generally in a 
reasonable range (Figure 6.18). LAI values were classified into five classes for cartographic 
reasons. Stem density is presented in values ranging from low to high as estimated absolute 
values did not well agree with those that had been measured in the field (Figure 6.19). 

6.3.9 Conclusions 

If correctly parameterized, the INFORM model simulates forest reflectance spectra 
comparable to those measured by an imaging spectrometer (HyMap). There is a good 
agreement between modelled and measured spectral reflectance in the near-IR wavebands and 
an acceptable agreement in the mid-IR. In the visible, however, model outputs and HyMap 
reflectances disagree and the model has to be further improved. Our results further show that 
INFORM can be inverted with a neural network approach to give estimates of important 
structural forest characteristics. Relatively simple network architecture with just one hidden 
neuron proofed to be suitable to solve the inversion problem. By systematically evaluating all 
2-band combinations of HyMap spectral bands, the optimum band combination could be 
identified. Estimates of forest LAI and percent coverage show relative good agreement with 
ground truth data (n = 39). In contrast, the spectrally much less important stem density could 
only be estimated with fair quality. Using HyMap reflectances resampled to Landsat TM 
spectral bands it could be shown, that two spectral bands were sufficient to properly invert the 
model; usage of more spectral bands did not further improve the inversion. Compared to the 
results using the HyMap data, Landsat TM performed less well. 
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Chapter 7  Estimation of forest chemical attributes  

7.1 Introduction 
This chapter focuses on the estimation of foliar concentrations of chlorophyll, nitrogen and 
water from high spectral resolution data. The research systematically compared predictive 
models between different types of spectral data and foliar chemical concentrations. It is based 
on the spectral reflectance measurements (section 3.2.3) and chemical analyses (section 3.2.2) 
of Norway spruce needles collected at Gerolstein and Idarwald test sites (section 3.2.1) and 
the HyMap image acquired over the Gerolstein area in 2003 (section 3.3.2). Whereas 
chemical data from Gerolstein was used to develop predictive models, chemical data from 
Idarwald was used to test the predictive models. In a first step, the approach was tested on 
needle spectra (layer stack) measured in the laboratory and afterwards applied to forest 
canopy spectra measured by the HyMap sensor. 

The overall aim of the work was to evaluate the information content of hyperspectral remote 
sensing data for the estimation of foliar chemical concentrations in forests. More specific 
objectives were (i) to find predictive models by stepwise multiple linear regression technique 
(section 4.3.2) using characteristic absorption features to estimate chemical concentrations, 
(ii) to systematically compare different types of derivatives of spectral reflectance regarding 
the accuracy of the predictive models and (iii) to examine the effects of sensor bandwidth and 
sensor noise on the estimations of chemical concentrations from laboratory reflectance data to 
assess the transferability of the techniques to remote sensing data. 

Different types of derivatives of spectral reflectance have been used in combination with 
stepwise multiple regression (SMR) to estimate foliar chemical concentrations, such as first-
derivative of reflectance (section 4.3.6), continuum-removed (CR) spectra and band-depth 
normalised (BDN) spectra (section 4.3.7) among others. Most of these derivatives aim to 
enhance the absorption feature present in vegetation spectra in the first step and SMR in the 
second step tries to find wavebands located in these absorption features that are related to the 
investigated chemicals. CR and BDN spectra were most often applied to reflectance spectra of 
dry leaf samples or to absorption features that are not masked by water (section 2.3.4), for 
instance the chlorophyll features. A technique that explicitly attempts to remove the influence 
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of leaf water from a fresh vegetation reflectance spectrum is least-squares spectral matching 
(LSM). LSM was modified (section 4.3.8) and combined with SMR to investigate if it allows 
for a better estimation of leaf nitrogen than the other derivatives mentioned before. The 
following types of derivative of reflectance were compared: 

 Spectral reflectance (RFL) 

 First-difference of spectral reflectance (DRFL) 

 Continuum-removed spectra (CR) 

 Band-depth normalised spectra (BDN) 

 First-difference of water removed spectra (DWRS) 

The following leaf chemical concentrations were investigated: 

 Chlorophyll a+b concentration (CAB) 

 Nitrogen concentration (CN) 

 Water concentration (CW) 

The next section briefly explains the general procedure of developing predictive models, that 
is, how the absorption features relevant to the determination of the chemicals were extracted 
and how the SMR method and the validation procedure were implemented. The third section 
shows the results obtained with the modified LSM technique to derive an additional 
derivative of reflectance and how it was coupled with SMR. The fourth section shows the 
results obtained with the laboratory spectra and the fifth section shows the results achieved 
with the HyMap image. The chapter ends with the conclusion drawn from this study. 

Table 7.1: Summary of data for three chemicals at two sites. CAB = Chlorophyll a+b 
concentration, CN = Nitrogen concentration, CW = Water concentration 

Training data, Gerolstein test site  
August 2002, n=78 

Validation data, Idarwald test site  
March 2000, n=30 

Chemical Mean 
Std. 
dev. Min. Max. 

Var. 
coef. Mean 

Std. 
dev. Min. Max. 

Var. 
coef. 

CAB  
[mg g-1 dry 
matter] 

3.21 0.64 1.80 4.94 0.20 1.96 0.48 1.12 3.43 0.24 

CN [% dry 
matter] 1.19 0.11 0.88 1.46 0.09 1.21 0.12 1.01 1.43 0.10 

CW [% dry 
matter] 136.5 17.0 107.9 170.8 0.12 101.8 9.3 87.6 135.0 0.09 
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Summary statistics of chemical data from both test sites are listed in Table 7.1. From the 
summary statistics, it can be seen that CAB has a larger variability than CN and CW at both test 
sites. Mean values of CAB and CW were significantly larger at Gerolstein than at Idarwald 
whereas mean CN showed no marked difference. First year needles have higher water and 
concentrations but lower chlorophyll a+b concentrations then third year needles. Nitrogen 
concentration does not show a marked difference between first and third year needles. 

A complete list of the chemical analysis data is given in Appendix B. Linear correlation 
coefficients between CAB and CW (n =78) indicate a low negative relation (r = -0.39) and 
between CAB and CN a moderate positive relation (r = 0.58). The closest relation is found 
between CN and CW (r = 0.73). To examine the potential of the method at the fresh leaf level 
to cope with remote sensing measurements of forest canopies, the influence of sensor 
bandwidth and sensor noise were considered. To do so, two additional sets of reflectance were 
computed from the reflectance measured by the Field-Spec-II device (F-data). Reflectance 
spectra of 1 nm spectral resolution were degraded to HyMap spectral bands using the 
appropriate sensor function (FH-data). To the degraded spectra a normally distributed noise 
component (σ=0.002) was added (FHN-data). 

 
Figure 7.1: Location of absorption features related to total chlorophyll (a), water (b), and 
protein (c, d, e) used in the regression analysis. 

Table 7.2: Five absorption features used in the regression analysis. 

Denotation of 
absorption feature 
(nm) 

Relation to 
chemical 

Start [nm] Centre [nm] End [nm] 

670 Chlorophyll a+b 548 669 760 

1200 Water 1080 1201 1270 

1800 Protein 1680 1790 1820 

2100 Protein 2100 2145 2200 

2300 Protein 2240 2308 2370 
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7.2 Developing predictive models 

7.2.1 Selection of absorption features 

Kokaly & Clark (1999) used three absorption features located around 1730 nm, 2100 nm, and 
2300 nm to estimate nitrogen, lignin, and cellulose concentrations. Curran et al. (2001) 
increased the number of chemicals under investigation and included additional absorption 
features into their analysis. Following both approaches, the chlorophyll absorption feature at 
670 nm and the water absorption feature at 1200 nm, and three absorption features related to 
protein at 1800 nm, 2100 nm, and 2300 nm were included into the regression analysis in order 
to estimate concentrations of nitrogen, chlorophyll and water (Table 7.2, Figure 7.1). 
Calculation of the derivatives involved either computation of the derivative followed by an 
extraction of the features (RFL, DRFL) or extraction of the features followed by the 
computation of the derivative (CR, BDN). The five features of a single type of derivative 
were then re-combined into one single data set, normalised band wise to mean of zero and 
standard deviation of one, and subjected to regression analysis. SMR was run separately for 
1st year, 3rd year, and both 1st and 3rd year needle samples. The idea was that each data set 
contained all information necessary to estimate all of the three chemical substances and to see 
if the appropriate wavebands were selected from the available bands. 

7.2.2 Developing regression equations 

Forward SMR was used to develop relationships between chemical concentration and a 

 
Figure 7.2: Cross-validated rmse against number of wavebands selected by stepwise multiple 
regression for the Field-Spec-II data resampled to HyMap spectral bands (DWRS data set). 
Some number of bands did not occur as a consequence of the used enter and removal criteria. 
DWRS refers to first-difference of water removed spectra (see section 7.3). 
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measure of reflectance for certain wavebands. Cross-validation was employed to assess the 
accuracy and validity of the regression models. This required for each regression variant to 
develop n (n = sample number) separate models, each time with data from n-1 observations. 
The calibration model was then used to predict the observation that was left out. Cross-
validated coefficient of determination (R2) and cross-validated root mean squared error (rmse) 
as well as relative rmse (rmse divided by the mean) provide performance measures for each 
chemical. Forward SMR was run repetitively with multiple pairs of p-values to enter (pin) and 
remove (pout) on the spectral data and the chemical data. Larger p-values often resulted in a 
larger number of wavebands included into the regression models. With increasing number of 
wavebands in the regression model, overfitting of the model can occur (Curran, 1989). If 
overfitting occurs, SMR may find false patterns in the data. For instance, Grossman et al. 
(1996) found SMR relating chemistry data and derivative reflectance spectra to give relatively 
large coefficients of determination even for randomised data sets. To avoid overfitting of the 
models, two control measures were implemented: i) cross validated values of rmse were 
plotted against the number of bands selected (Figure 7.2). Optimal numbers of bands were 
determined visually by only including a maximum number of bands where the rmse values 
were above the break in slope. For instance, for the estimation of CW from DWRS data (year 
1 needles), three wavebands were considered to be appropriate. An increase in the number of 
selected bands would not have noticeably decreased rmse. Entry and removal criteria were 
modified in such a way that the optimal number of bands that had been previously determined 
was included into the model. ii) Control runs were done with chemical data that had been 
brought into random order. When a control run for a particular model achieved values of R2 
larger than zero, p-values for entry and removal were decreased in such a way, that no 
correlation between spectral data and randomized chemical data was observed any longer. 
These criteria were then used in the actual model run. After taking into account both control 
measures, models typically included between 2 and 7 wavebands in case of the needle spectra 
(n=78 for 1st and 3rd year samples) and between 1 and 3 wavebands in case of the canopy 
spectra (n=13). 
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7.3 Removing water from absorption features in the mid infrared 

7.3.1 Testing the modified least squares spectral matching approach 

In reliably estimating leaf nitrogen concentration from fresh vegetation spectra, as main 
limiting factors have to be considered the leaf water that obscures absorption features related 
to protein and other chemical substances. If a refined methodology was developed to remove 
the disturbing effects of leaf water on the estimation of protein from reflectance data then it 
would have potential to better estimate leaf nitrogen concentration. Such a technique, least-
squares spectral matching (LSM), was published by Gao & Goetz (1994, 1995, section 4.3.8). 

 
Figure 7.3: A) Matching of fresh needle (stack layer) spectrum in the 1500-1780 nm region 
with the water spectrum and with a combination of the water and the protein spectrum, B) 
residual spectra between the measured and the modeled spectra. 
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To test the LSM technique on the measured laboratory spectra, the matching was made over a 
narrow spectral range between 1.50 µm and 1.78 µm located between the major atmospheric 
water absorption bands as suggested by Gao & Goetz (1994). To compare the goodness of the 
matching, the residual spectrum (Residual of Spectral Matching, RSM) was calculated which 
is defined as the difference between the measured fresh needle spectrum RFmes and the 
modelled spectrum RFmod or RWmod divided by the measured spectrum RFmes (Figure 7.3). The 
dashed line shows the matching of the measured spectrum of fresh spruce needles with the 
leaf water spectrum RWmod. Obvious differences between both spectra occur near 1570 nm, 
1650 nm, and 1725 nm. The dotted line in Figure 7.3 shows the match of the measured fresh 
needle spectrum RFmes with a combination of the leaf water and the protein spectrum RFmod. 
The values of RSM at 1650 nm and 1725 nm are considerably decreased for the fresh needle 
spectrum compared to the water spectrum. Obviously, the reflectance spectra of spruce 
needles or green vegetation in general in the 1.50 µm to 1.78 µm region are both controlled by 
leaf water and protein. The remaining differences between the modelled fresh needle 
spectrum and the measured spectrum can probably be attributed to other chemicals, such as 
lignin and cellulose, as they also influence the reflectance spectra in that spectral region (Gao 
& Goetz, 1994). It could be followed that the residual of the matching of the fresh needle 
spectrum with the leaf water spectrum in the 1.50-1.78 µm spectral region contains 
information about the needle’s protein concentration. As many protein absorption features are 
located in the 2.1-2.3 µm spectral region it was assumed that the residual in the 2.1-2.3 µm 
spectral region could also contain relevant information about protein. In a next step the RSM 
spectra were subjected to a stepwise regression procedure. 

Table 7.3: The cross-validated coefficient of determination (R2) and the cross-validated rmse 
between two sets of spectral data (features at 1800 nm, 2100 nm, and 2300 nm) and nitrogen 
and water for 1st year needle reflectance spectra resampled to HyMap spectral bands (n=39); 
bands: number of wavebands selected by SMR (pin = 0.10, pout = 0.15); units of rmse: % dry 
matter 

Spectral data Leaf chemical R2 rmse  Bands 

CN 0.29 0.10 2 DRFL 

CW 0.53 7.37 3 

CN 0.54 0.08 5 DWRS 

CW 0.06 10.49 2 
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7.3.2 Coupling least squares spectral matching with stepwise multiple 
regression 

LSM was run on the investigated absorption features at 1800 nm, 2100 nm, and 2300 nm 
using equation 4.16 to produce water removed spectra (WRS). To examine if LSM could 
remove the influence of water on reflectance spectra in this wavebands, SMR was run on the 
first difference of WRS (DWRS) and the first difference of reflectance (DRFL) data and 
concentrations of nitrogen and water. First difference of reflectance approximates the slope of 
reflectance (first derivative) which has a closer relation to absorption features than absolute 
values of reflectance (Dixit & Ram, 1985). Results of the analysis (Table 7.3) showed that for 
1st year needles the R2 between DRFL and water was larger than between DRFL and nitrogen. 
However, after the application of LSM to the spectra, the R2 between DWRS and nitrogen 
was larger than between DWRS and water. The R2 between spectral data and nitrogen 
increased from 0.29 with DRFL data to 0.54 with DWRS data. For 3rd year needles the 
difference between DRFL and DWRS in estimating nitrogen was less pronounced. 
Nevertheless, it was concluded that LSM can remove the influence of leaf water on the 
reflectance in relevant wavebands of the mid-IR region. At the same time, LSM may enhance 
absorption features related to nitrogen containing leaf constituents such as protein. 

Table 7.4: The cross-validated coefficient of determination (R2) and the cross-validated rmse 
between spectral data (DWRS) and concentrations of chlorophyll, nitrogen and water (year 1: 
n=39, year 3: n=39, year 1+3: n=78); bands: number of wavebands selected by SMR; units of 
rmse: % dry matter (CW, CN), mg g-1 dm (CAB) 

Field-Spec-II data 
(F-data) 
 
 
 
707 wavebands 

Field-Spec-II data 
resampled to HyMap 
spectral bands  
(FH-data) 
 
49 wavebands 

Field-Spec-II data 
resampled to HyMap 
spectral bands plus 
noise (FHN-data) 
 
49 wavebands 

 

R2 rmse Bands R2 rmse Bands R2 rmse Bands

CAB 0.82 0.19 3 0.81 0.20 3 0.69 0.24 3 

CW 0.74 5.5 6 0.60 6.8 3 0.32 8.9 3 Year 
1 

CN 0.76 0.059 6 0.63 0.074 6 0.44 0.089 3 

CAB 0.68 0.32 3 0.63 0.34 3 0.66 0.33 3 

CW 0.73 5.2 7 0.63 6.1 7 0.26 8.56 2 Year 
3 

CN 0.82 0.043 7 0.72 0.053 5 0.54 0.068 2 

CAB 0.83 0.26 3 0.81 0.28 3 0.75 0.32 3 

CW 0.78 8.0 3 0.77 8.1 3 0.57 11.1 2 Year 
1+3 

CN 0.56 0.076 4 0.52 0.080 4 0.47 0.083 2 
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To compare DWRS with the other derivatives spectral data representing the chlorophyll and 
the water absorption features had to be used. However, for these two features water removal 
did not make sense (as no water effect is present in the chlorophyll absorption feature at 
670 nm and water influence was not to be removed from the main water feature at 1200 nm). 
Thus, for the chlorophyll and water absorption features, first derivative of reflectance (DRFL) 
and for the protein absorption features, first derivative of water removed spectra (DWRS) 
were used and combined into a single data set. The dataset was denoted DWRS. By this, all 
spectral datasets consisted of the same number of bands (F-data: 707 wavebands, FH-data and 
FHN-data: 49 wavebands). 

 
Figure 7.4: Positions of wavebands that have been selected by SMR between DWRS spectral 
data (resampled to HyMap wavebands) and three leaf chemicals. 
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7.4 Estimating leaf chemicals from laboratory reflectance data 

7.4.1 Effects of sensor bandwidth and sensor noise 

The first part of the analysis exemplarily used DWRS spectra to compare the performance of 
laboratory data (F-data), laboratory data resampled to HyMap spectral bands (FH-data), and 
noisy resample laboratory data (FHN-data) (see introduction in section 7.1) in estimating 
foliar chemicals. Cross-validated coefficients of determination (R2) for all samples (Year 1+3) 
were generally largest between F-data and total chlorophyll (CAB), second largest between F-
data and water (CW) and lowest for F-data and nitrogen (CN) (Table 7.4). R2 were generally 
largest between F-data and chemical concentrations and lowest for FHN-data and chemical 
attributes. Inversely, cross-validated values of rmse were generally lower between F-data and 

Table 7.5: Wavebands that have been selected by SMR between DWRS spectral data 
(resampled to HyMap wavebands) and three leaf chemicals; bold: wavebands directly related 
to known absorption features of the chemical of interest; italic: wavebands related to known 
absorption features of a chemical with which the chemical of interest was correlated 
(indirectly related); Interpretation consists of the related absorption feature (if present) and its 
location (in nm) or describes the spectral region where the selected waveband is located; 
Wavebands appear in the order of selection by SMR 

Leaf 
chemical Year Selected wavebands [nm] and interpretation 

1 648.5: Chlorophyll b at 640, 739: Red edge, 1126.5: Lignin at 1120 

3 723.5: Red edge, 739: Red edge, 1141: Lignin at 1120 Chlorophyll 
a+b 1+3 601.5: Edge of chlorophyll absorption feature, 739: Red edge, 

1155.5: Edge of water absorption band 

1 1126.5: Lignin at 1120, 1229: Water at 1200, 1737: Protein at 1730 

3 571.5: Edge of chlorophyll absorption feature, 601.5: Edge of 
chlorophyll absorption feature, 648.5: Chlorophyll b at 640, 663.5: 
Chlorophyll a at 660 
1199.5: Water at 1200, 1712.5: Protein at 1730, 761: none 

Water 

1+3 1155.5: Edge of water absorption band, 1229: Water at 1200, 
2210.5: Protein at 2240  

1 556: Green peak, 648.5: Chlorophyll b at 640, 739 nm: Red edge, 
1700: Protein at 1690, 1725: Protein at 1730, 2362: Protein at 2350 

3 632.5: Chlorophyll b at 640, 739: Red edge, 1126.5: Lignin at 
1120, 2192.5: Protein at 2180, 2262.5: Protein at 2240 Nitrogen 

1+3 648.5: Chlorophyll b at 640, 739: Red edge, 1214.5: Water, 
Cellulose, Starch, Lignin at 1200, 2262.5: Protein at 2240  
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foliar chemicals and largest for FHN-data and leaf constituents. However, the effects of 
spectral resolution and noise were not the same for all chemical attributes. A decrease of 
spectral resolution had a minor influence on the estimation of both CAB and CW. Adding noise 
to the data, on the other side, strongly decreased the accuracy for the estimation of CW, but 
only slightly decreased the accuracy for the estimation of CAB.  

Estimation accuracy for nitrogen (CN) decreased from F-data over FH-data to FHN-data for 
Year 1 and Year 3 needles but remained almost constant for Year 1+3 samples. The number 
of bands included into the models was only slightly lower for FH-data than for F-data, but 
considerably lower for FHN-data. Whereas models to estimate CAB always included 3 
wavebands, the number of bands included into a model considerably decreased after adding 
noise to the data in the case of CW and CN. In a summary, when looking on all samples 
(n=78), CAB was well estimated and just slightly affected by a decrease of the spectral 
resolution or adding of noise, CN was moderately well estimated and just slightly affected by 
a decrease of the spectral resolution or adding of noise and CW was well estimated with F-data 
and FH-data but strongly affected by noise addition. For subsequent analyses, only FH-data 
were considered. 

7.4.2 Selected wavebands by stepwise multiple regression 

The wavebands selected by stepwise multiple regression (SMR) between FH-data (DWRS 
spectra) and concentration of foliar chemicals are presented in Table 7.5 and Figure 7.4. Of 
the wavebands selected to estimate CAB, only one was directly related, only two were 
indirectly related, and six were not related to known absorption features listed in Table 2.1. 
Wavebands located in the red edge region and along the edge of the chlorophyll absorption 
feature played an important role in the estimation of CAB concentration from spectral data. 
This result is in agreement with a general understanding that the maximum correlations occur 
on the edge of absorption features as the central wavelengths become saturated (O’Neill et al., 
2002; Curran, 1989). Of the wavebands selected to estimate CW, three were directly related, 
six were indirectly related, and four were not related to known absorption features (Table 7.5). 
Regression models to estimate CW often employed wavebands related to CAB (year 3) or other 
chemicals (year 1) or made use of wavebands located at the edge of water absorption features 
(year 1+3). Of the wavebands selected to estimate CN, nine were directly, two indirectly, and 
four not related to known absorption features. The first waveband selected in a regression 
model was often related to the chlorophyll absorption feature and the second was always 
located in the red edge region, reflecting the fact that chlorophyll is a major nitrogen bearing 
leaf constituent. The wavebands selected afterwards were often directly related to known 
protein absorption features as protein is the second most abundant constituent containing 
nitrogen. 
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The results demonstrate that nitrogen concentration can be moderately well estimated from 
reflectance spectra using wavebands related to chlorophyll and protein absorption features. 
Previous studies have also used statistical methods to link reflectance in certain wavebands to 
changes in nitrogen, protein or chlorophyll concentration. Table 7.6 presents the selection of 
wavebands in previous studies. Wavelengths close to protein features at 1730 nm, 2180 nm, 
and 2350 nm that have been repeatedly selected in these studies were also selected in the 
present work (Table 7.5). As in the present work, a combined selection of both, wavebands 
related to chlorophyll and protein absorption features in one model to estimate nitrogen 
concentration, had also occured in previous studies (Johnson et al., 1994; Curran et al., 2001; 
Serrano et al., 2002). 

Table 7.6: Wavelengths correlated with nitrogen (Nit), protein (Pro), total chlorophyll (Chl) 
and water (Wat) by multivariate statistical measures; Level: D = Dried, ground leaves, 
F = Fresh, whole leaves, CA = Canopy measured from airborne sensor; Spectral Variable: 
RFL = Reflectance, DRFL = First derivative of reflectance, NBA = Normalised to band area; 
bold: wavebands directly related to known absorption features of the chemical of interest; 
italic: wavebands related to known absorption features of a chemical with which the chemical 
of interest was correlated (indirectly related) 

Authors Species Level Spectral 
Variable 

Wavelengths [nm]  

Card et al., 1988 Various tree 
species D Log (1/RFL) 

Pro: 2220, 2110, 1730, 1460, 1740, 
2170 
Chl: 680, 2110 

Wessman et al., 
1989 Deciduous CA DRFL Nit: 1265, 1555  

Curran et al., 1992a Amaranthus F DRFL 
Pro: 2322 
Chl:: 724 
Wat: 1752, 1268, 550, 2148, 1172 

Johnson et al., 
1994 

Various 
conifer species CA DRFL Nit: 552, 1184, 2164 

Chl: 1069, 1683, 858 

Curran et al., 1997 Slash pine CA DRFL Nit: 1031, 925, 1223, 2341, 916 

Kokaly & Clark, 
1999 

Various tree 
species D NBA Nit: 2036, 2050, 2078, 2152, 2180 

Curran et al., 2001 Pine D DRFL 

Nit: 1496, 680, 648, 2352, 2172 
Pro: 1496, 1008, 1800, 2352, 1308 
Chl: 622, 2172, 1496, 418, 2352 
Wat: 1936, 1216, 2172, 1182, 1920 

Serrano et al., 2002 Mediterranean 
vegetation CA DRFL Nit: 1609, 1748, 480 
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Table 7.7: The cross-validated coefficient of determination (R2) and the cross-validated rmse 
between three types of spectral data (resampled to HyMap wavebands) and three leaf 
chemicals (year 1: n=39, year 3: n=39, year 1+3: n=78); DWRS: first-difference of 
reflectance for chlorophyll and water absorption features and first-difference of water 
removed spectra for protein absorption features; RFL: reflectance for all absorption features; 
BDN: band-depth normalized reflectance spectra for all absorption features; bands: number of 
wavebands selected by SMR; unit of relative rmse: % of mean 

DWRS RFL BDN  

R2 rel. 
rmse 

Bands R2 rel. 
rmse 

Bands R2 rel. 
rmse 

Bands

CAB 0.81 7.1 3 0.83 6.4 3 0.81 7.1 4 

CW 0.60 4.5 3 0.53 4.9 6 0.59 4.6 4 Year 
1 

CN 0.63 6.1 6 0.54 6.6 3 0.50 7.0 4 

CAB 0.63 9.7 3 0.58 10.3 3 0.39 11.1 4 

CW 0.63 5.1 7 0.39 6.5 3 0.54 5.6 2 Year 
3 

CN 0.72 4.7 5 0.64 5.2 4 0.53 6.1 2 

CAB 0.81 8.7 3 0.80 9.0 3 0.76 9.6 6 

CW 0.77 5.9 3 0.75 6.2 5 0.79 5.7 3 Year 
1+3 

CN 0.52 6.7 4 0.49 6.8 5 0.52 6.6 4 

Table 7.8: Wavebands selected by SMR using three sets of spectral data (resampled to 
HyMap wavebands) and three leaf chemicals. DWRS: first-difference of reflectance for 
chlorophyll and water absorption features and first-difference of water removed spectra for 
protein absorption features; RFL: reflectance for all absorption features; BDN: band-depth 
normalized reflectance spectra for all absorption features; Directly related: ± 30 nm of the 
chemical of interest; Indirectly related: ± 30 nm of a chemical with which the chemical of 
interest was correlated (approach adapted from Curran et al., 2001) 

Number of wavebands (percent of total in brackets) 

Spectral 
data 

Leaf 
chemical 

Total number 
of wavebands 
selected 

Directly 
related  

Indirectly 
related  Unattributed  

CAB 9 (100) 1 (11) 2 (22) 6 (67) 

CW 13 (100) 3 (23) 6 (46) 4 (31) DWRS 

CN 15 (100) 9 (60) 2 (13) 4 (27) 

CAB 9 (100) 1 (11) 1 (11) 7 (78) 

CW 14 (100) 0 (0) 8 (57) 6 (43) RFL 

CN 12 (100) 0 (0) 0 (0) 12 (100) 

CAB 14 (100) 2 (14) 1 (7) 11 (79) 

CW 9 (100) 0 (0) 1 (11) 8 (89) BDN 

CN 10 (100) 5 (50) 0 (0) 5 (50) 
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7.4.3 Comparing different sets of spectral data 

Three methods were compared on laboratory reflectance data. All three methodologies used 
SMR to develop relationships between chemical concentrations and a measure of reflectance 
in HyMap bands. The methods differed only in the spectral data used: First derivative of 
water removed spectra (DWRS), reflectance spectra (RFL), and band-depth normalised 
spectra (BDN). The spectra had been generated from the same five absorption features 
previously described. Between three and seven wavebands were selected with no marked 
differences in the accuracy of estimating chemical concentrations between the three data sets 
(Table 7.7). For year 1+3 samples, R2 were uniformly high (>0.75) between all three forms of 
data and CAB and CW. R2 were moderate (about 0.50) between all three forms of data and CN 
for year 1+3 samples, but considerably larger between DWRS data and CN than between RFL 
data or BDN data and CN for year 1 and year 3 samples. There was a considerable difference 
between the three spectral data sets in the relevance of the selected wavebands with respect to 
known absorption features (Table 7.8). The total number of wavebands within ± 30 nm of the 
absorption feature of a chemical of interest (directly related) was largest for DWRS spectra 
and lowest for RFL spectra. For CN, 73 percent of the selected wavebands were directly or 
indirectly related with DWRS data, but only 50 percent with BDN data and zero percent with 
RFL data. For CAB, between 21 percent and 33 percent of the selected wavebands were 
directly or indirectly related with the three data sets. For CW, the number of directly or 
indirectly related wavebands was 69 percent, 57 percent, and 11 percent for DWRS data, RFL 
data, and BDN data, respectively. The proportion of directly related wavelengths selected was 
considerably higher and the number of unattributed wavelengths selected was noticeably 
lower for DWRS data than for both other types of spectra.  

7.4.4 Application of regression models to an independent data set 

To determine the stability of the models, their performance with a completely different and 
independent validation data set than the calibration data (Gerolstein data set) was tested. The 
validation set (Idarwald data set) was a new set of samples measured under the same 
conditions as the calibration samples, however, from a different geographical site and date. To 
do so, relationships developed on the Gerolstein data set (n=78) were applied to the spectra of 
the Idarwald data set (n=30). The results were generally disappointing (Table 7.9). 
Coefficients of determination (R2) between estimated and measured CAB reached 0.70 with F-
data and did not considerably decrease with FH-data and FHN-data. However, the relative 
rmse between measured and estimated CAB values amounted from 25 percent up to 50 percent 
of the mean. For the other chemical attributes, though the values of relative rmse were 
comparatively low, values of R2 were generally very low. A possible explanation for the large 
errors could be the time of sample collection. Samples used for calibration were collected in 
summer whereas collection of samples used for validation took place in spring. 
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7.5 Estimating chemical forest attributes from HyMap reflectance 
data 

7.5.1 Scaling-up from leaf level to canopy level 

Predictions of chlorophyll or other biochemical attributes from airborne or satellite canopy 
reflectance can be achieved through four different methodologies (Zarco-Tejada et al., 2001): 

1. Establishing directly a statistical relationship between ground-measured chemical data 
and canopy-measured reflectance 

2. Applying a leaf-level relationship derived between spectral indices and the chemical 
concentration to canopy-measured reflectance 

3. Scaling up the leaf-level relationships based on spectral indices related to chemical 
attributes through models of canopy reflectance 

4. Inverting the observed canopy reflectance through a canopy reflectance model coupled 
with a leaf model to estimate the chemical content 

Table 7.9: The performance of regression equations developed from the calibration dataset 
(Gerolstein) that were afterwards applied to the validation data set (Idarwald) for estimation 
of chemicals. Spectral data used: DWRS resampled to HyMap wavebands; units of rmse: 
% dry matter (CW, CN), mg g-1 dm (CAB); unit of relative rmse: % of mean 

Field-Spec-II data 
(F-data) 

Field-Spec-II data 
resampled to HyMap 
spectral bands 
(FH-data) 

Field-Spec-II data 
resampled to HyMap 
spectral bands plus 
noise (FHN-data) 

 

R2 Rmse Rel. 
rmse 

R2 Rmse Rel. 
rmse 

R2 Rmse Rel. 
rmse 

CAB 0.67 0.78 45 0.67 0.47 27 0.54 0.98 57 

CW 0.03 59.2 56 0.31 20.6 19 0.00 46.0 43 Year 
1 

CN 0.04 0.16 13 0.18 0.54 44 0.43 0.44 35 

CAB 0.63 1.18 54 0.46 0.63 29 0.70 0.43 20 

CW 0.34 19.0 20 0.23 25.9 27 0.00 17.7 18 Year 
3 

CN 0.23 0.13 11 0.22 0.12 10 0.31 0.24 20 

CAB 0.70 0.92 47 0.67 0.49 25 0.65 0.76 39 

CW 0.48 15.4 15 0.51 9.0 9 0.16 11.6 11 Year 
1+3 

CN 0.08 0.31 26 0.18 0.37 31 0.16 0.40 33 
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Methods 3 and 4 were not considered for estimating foliar chemicals in this work because the 
available forest reflectance model (INFORM), although it well simulated the variation of 
forest reflectance with changing canopy structure (section 6.3), did not proof to be very 
confident in modeling subtle changes of reflectance with change in chemical content in the 
visible domain and in parts of the mid-IR domain. Method 2 was not further considered as the 
application of leaf-level relationships developed on one site already showed relatively poor 
results when applied on another site and no improvement was expected when applying it to 
the canopy-level. Consequently, it was decided to choose method 1 for predicting chlorophyll, 
nitrogen and water concentrations from HyMap reflectance data. 

To correlate chemical data with reflectances measured by the HyMap imaging spectrometer, 
chemical data that had been obtained on a leaf level had to be aggregated to stand level. Three 
different types of aggregation were performed: a) stand mean of year 1 needles, b) stand mean 
of year 3 needles, and c) stand mean of year 1 and year 3 needles. Canopy reflectance spectra 
extracted from the HyMap imagery (section 3.3.5) were processed in exactly the same way as 
the leaf reflectance data as described in section 7.2.1.  

7.5.2 Comparing different sets of spectral data 

Five methods were compared to develop relationships between chemical concentrations and 
HyMap reflectance (Table 7.10). Most often, one to three wavebands were selected. 
Relatively often, no regression model could be established. Differences in the accuracy of 
estimating attributes between the five types of derivatives were more pronounced than with 
laboratory data. None of the methods was capable in finding reasonable predictive equations 
to determine water concentration. Chlorophyll concentration (CAB) for year 1+3 sample sets 
was well estimated by all methods except reflectance spectra (RFL). The best predictive 
model to estimate CAB was achieved by band-depth normalisation (BDN) with a cross-
validated coefficient of determination (R2) of 0.90 and a cross-validated relative rmse of 
2.8 percent. Continuum-removed spectra (CR) performed less accurate (relative rmse: 
4 percent), but used only 2 instead of 3 wavebands in the model. Nitrogen concentration was 
moderately well estimated by first-difference of water removed spectra (DWRS), CR and 
first-difference of reflectance spectra (DRFL) using three wavebands with a relative rmse 
below 5 percent. For year 1 and year 3 just one or two techniques showed good results while 
the other techniques performed poorly. The results are comparable to accuracies obtained in 
other studies. For instance, Mutanga & Skidmore (2004) mapped nitrogen concentrations in 
savanna grass with an rms error of 8.3 percent of the mean observed nitrogen concentration 
using continuum-removal. 
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Table 7.10: The cross-validated coefficient of determination (R2) and the cross-validated rmse between five types of spectral data (HyMap 
imagery) and three leaf chemicals (n=13); relative rmse: % of mean; bands: number of wavebands selected by SMR; ***: pin=0.05, pout=0.10; **: 
pin=0.10, pout=0.15; *: pin=0.15, pout=0.20; units of rmse: % dry matter (CW, CN), mg g-1 dm (CAB); unit of relative rmse: % of mean 

DWRS RFL BDN CR DRFL  

R2 

Rmse 
(Rel. 
rmse) Bands R2 

Rmse 
(Rel. 
rmse) Bands R2 

Rmse 
(Rel. 
rmse) Bands R2 

Rmse 
(Rel. 
rmse) Bands R2 

Rmse 
(Rel. 
rmse) Bands 

CAB 0.67 
*** 

0.18 
(6.4) 

3 0.88 
** 

0.10 
(3.5) 

4 0.44 
*** 

0.22 
(7.8) 

1 0.49 
*** 

0.21 
(7.4) 

1 0.46 
** 

0.22 
(7.8) 

2 

CW 0.17 
*** 

7.6 
(5.1) 

1 - - - - - - - - - - - - Year 
1 

CN - - - - - - 0.35 
*** 

0.073 
(6.0) 

1 0.60 
*** 

0.068 
(5.6) 

2 0.71 
*** 

0.054 
(4.4) 

4 

CAB - - - - - - 0.37 
*** 

0.30 
(8.3) 

1 0.75 
*** 

0.19 
(5.3) 

3 - - - 

CW 0.47 
*** 

6.2 
(5.0) 

1 0.49 
** 

6.7 
(5.4) 

3 - - - 0.22 
** 

7.6 
(6.2) 

1 0.38 
*** 

6.77 
(5.5) 

2 Year 
3 

CN - - - - - - - - - 0.19 
*** 

0.069 
(5.9) 

1 - - - 

CAB 0.72 
*** 

0.15 
(4.7) 

3 0.46 
** 

0.22 
(6.9) 

3 0.90 
*** 

0.09 
(2.8) 

3 0.80 
*** 

0.13 
(4.0) 

2 0.79 
*** 

0.13 
(4.0) 

3 

CW - - - 0.45 
* 

6.7 
(4.9) 

3 - - - - - - - - - Year 
1+3 

CN 0.52 
*** 

0.058 
(4.9) 

3 - - - 0.34 
*** 

0.065 
(5.5) 

1 0.56 
** 

0.058 
(4.9) 

3 0.57 
*** 

0.055 
(4.6) 

3 
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The analysis of the selected wavebands (Table 7.11) revealed that a smaller number of bands 
could be directly related to known absorption features compared to laboratory reflectance data 
(Table 7.8). The largest portion of directly related wavebands for estimating nitrogen 
concentration again showed DWRS (67 percent) followed by DRFL (57 percent) and CR (33 
percent). The wavebands chosen by stepwise multiple regression to determine the other leaf 
chemicals could not be directly related to known absorption features. However, selected 
wavebands, although not attributable to known features, were often located in spectral regions 
that are known to be important to detect chlorophyll (Table 7.12). For instance, the predictive 
model to estimate total chlorophyll concentration found with CR spectra was based on 
wavebands located along the red edge and along the edge of the green peak. This was also the 
case with the regression models developed on leaf spectra. Again, maximum correlations 

Table 7.11: Wavebands selected by SMR using five sets of spectral data (HyMap imagery) 
and three leaf chemicals. DRFL-DWRS: first derivative of reflectance for chlorophyll and 
water absorption features and first derivative of water removed spectra for protein absorption 
features; RFL: reflectance; BDN: band-depth normalized reflectance spectra; CR: continuum-
removed spectra; DRFL: first derivative of reflectance; Directly related: ± 30 nm of the 
chemical of interest; Indirectly related: ± 30 nm of a chemical with which the chemical of 
interest was correlated (approach adapted from Curran et al., 2001) 

Number of wavebands (percent of total in brackets) 

Spectral 
data 

Chemical 
attribute 

Total number 
of wavebands 
selected 

Directly 
related  

Indirectly 
related  Unattributed  

CAB 6 (100) 0 (0) 2 (33) 4 (67) 

CW 2 (100) 0 (0) 1 (50) 1 (50) DWRS 

CN 3 (100) 2 (67) 0 (0) 1 (33) 

CAB 7 (100) 0 (0) 0 (0) 7 (100) 

CW 6 (100) 0 (0) 4 (67) 2 (33) RFL 

CN 0 (100) 0 (0) 0 (0) 0 (0) 

CAB 5 (100) 0 (0) 0 (0) 5 (100) 

CW 0 (100) 0 (0) 0 (0) 0 (0) BDN 

CN 2 (100) 0 (0) 0 (0) 2 (100) 

CAB 6 (100) 0 (0) 1 (17) 5 (83) 

CW 1 (100) 0 (0) 1 (100) 0 (0) CR 

CN 6 (100) 2 (33) 0 (0) 4 (67) 

CAB 5 (100) 0 (0) 1 (20) 4 (80) 

CW 2 (100) 0 (0) 1 (50) 1 (50) DRFL 

CN 7 (100) 4 (57) 1 (14) 2 (29) 
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occurred on the edge of absorption features. These findings are in full agreement with the 
results of other studies where differences in reflectance between healthy and stressed 
vegetation due to changes in pigment levels have been detected in the green peak and along 
the red edge (Rock et al., 1988; Gitelson & Merzlyak, 1996; Haboudane et al., 2002). 

7.5.3 Maps of leaf chlorophyll concentration and leaf nitrogen concentration 

Predictive models developed using CR spectra were applied on the HyMap image to compute 
maps of CAB and CN. Only image pixels representing conifer forests were considered. The 
following predictive models between continuum-removed spectra (CR) and leaf chlorophyll 
concentration and leaf nitrogen concentration were applied to the HyMap image to derive the 
respective maps of foliar concentrations: 

3041.335392.167813.41 585738 +⋅+⋅−= CRCRCabest
 

7.1 

where Cabest is the estimated chlorophyll a+b concentration and CRwavelength denotes the 
continuum-removed value of reflectance in the specified waveband (in nm). 

724.129829.87992.23535.5 23731157738 +⋅−⋅+⋅−= CRCRCRCnest
 

7.2 

where Cnest is the estimated nitrogen concentration. 

Table 7.12: Wavebands that have been selected by SMR between CR spectral data (HyMap 
imagery) and three leaf chemicals; bold: wavebands directly related to known absorption 
features of the chemical of interest; italic: wavebands related to known absorption features of 
a leaf chemical with which the chemical of interest was correlated (indirectly related); 
Interpretation consists of the related absorption feature (if present) and its location (in nm) or 
describes the spectral region where the selected waveband is located; Wavebands appear in 
the order of selection by SMR 

Leaf 
chemical Year Selected wavebands [nm] and interpretation 

1 1157: Edge of water absorption band 

3 738: Red edge, 753: Red edge, 2357: Protein at 2350 Chlorophyll 
a+b 

1+3 738: Red edge, 585: Edge of chlorophyll absorption feature 

1 - 

3 2341: Protein at 2350 Water 

1+3 - 

1 738: Red edge, 2373: Protein at 2350 

3 738: Red edge Nitrogen 
1+3 738: Red edge, 1157: Edge of water absorption band,  

2373: Protein at 2350 
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The scatter plots (Figure 7.5) show linear relationships between measured and estimated 
values of CAB and measured and estimated values of CN. The points in the scatter diagrams 
are close to the 1:1 line over the entire range of values indicating that no systematic 
underestimation or over estimation of the chemical concentrations occur. 

In the chlorophyll map (Figure 7.6) and the nitrogen map (Figure 7.7), the observed values are 
in a reasonable range. CAB values range from 1 mg/g to 6 mg/g and CN values range from 1 % 
to 1.7 %. Most of the forest stands in both maps appear rather homogenous but also certain 
variations within the stands can be observed. From the interpretation of spatial patterns in 
both maps it can be noticed that CAB and CN are on the one hand interrelated to a certain 
extent but that on the other hand individual patterns exist.  

7.5.4 Relations of foliar chemicals with other parameters 

The maps of chemical forest attributes were integrated into the local Forest-GIS of Gerolstein. 
The Forest-GIS contained information about the tree species and the age structure on a stand 
base as well as the underlying geology. Statistical measures of chemicals were computed for 
zones of stand development phase and zones of geological epochs (Figure 7.8). Stand 
development phase is strongly related to stand age. Geological epoch stands for the rock types 
and the associated soil types that occur in the Gerolstein area and can be regarded as a 
measure of base saturation (Table 3.1) Mean values of chlorophyll concentration (CAB) 
slightly increase from qualification towards maturation, but the large standard deviations 
indicate a substantial overlap between those classes. The same holds for zones of geological 
 

 
Figure 7.5: Estimated against measured leaf total chlorophyll concentration (CAB) (left) and 
estimated against measured leaf nitrogen concentration (CN) (right). 
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epochs. At Gerolstein area, each epoch is roughly represented by a single rock type (section 
3.1.2). Substrates from the Holocene and Pleistocene with high base saturation showed the 
largest mean chlorophyll concentrations. Again, large standard deviations pointed towards 
substantial overlap between the classes. To receive more distinct patterns, the chemical 
parameter maps were reclassified into three classes of low (class 1), medium (class 2) and 
high (class 3) concentration. For CAB, the class limits were: <2.8 (class 1), 2.8-3.4 (class 2),  
 

 
Figure 7.6: Map of leaf chlorophyll concentration at Gerolstein test site. 
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>3.4 (class 3). For nitrogen concentration, the class limits were: <1.15 (class 1), 1.15-1.25 
(class 2), >1.25 (class 3). The reclassified parameter maps were then majority filtered using a 
3x3 kernel. For each zone, the class majority (the class number that occurred most often) was 
computed. As can be seen from Figure 7.8, CAB class 3 is the most frequent class over 
substrates with large base saturation whereas class 1 occurs most often over poorly base 
saturated soils over rocks from Buntsandstein (sands). For Lower Devonian and Mid 

 
Figure 7.7: Map of leaf nitrogen concentration at Gerolstein test site. 
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Devonian substrates, no relation between base saturation and CAB is evident. No relations 
were observed between nitrogen concentration and zones of stand development phase or 
zones of geological epoch.  

An assessment concept for nitrogen and other biochemicals classifies values of nitrogen 
concentration in spruce needles (Picea abies) into five distinct classes (Hüttl, 1992): very low 
(< 1.3% dm), low (1.3-1.4% dm), medium (1.4-1.5% dm), high (1.5-1.7% dm), very high 
(> 1.7% dm). At Gerolstein test site, observed minimum nitrogen concentration (stand mean) 
is 1.08% of dry matter and the observed maximum is 1.31% dm. According to the 
classification scheme, 12 out of 13 stands have very low nitrogen concentrations. It is 
concluded that the large variation in base saturation present in the soils at Gerolstein area does 
is not equalled by corresponding variations in leaf nitrogen concentrations. 

7.5.5 Accuracy requirements for ecological applications 

Variations in foliar nitrogen occur between and within ecosystems. Foliar nitrogen in forests 
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Figure 7.8: Statistical measures for three main phases and five main geological epochs that 
occur in the study area. Ordinate titles solely refer to mean and standard deviation.  
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across North America spans a range from 1 to 2.5 percent, as shown by Yin (1993, cited from 
Schimel, 1995), with foliar nitrogen being broadly correlated with summertime temperatures. 
Within ecosystems, seasonal variability in leaf nitrogen concentration can be very high; a 
change from early season nitrogen contents approaching 3 percent to late summer values of 
0.8 percent in a tallgrass prairie was reported (Hobbs et al., 1991, cited from Schimel, 1995).  

According to Schimel (1995), the following accuracies are required from remote sensing in 
order to map large scale variations in foliar nitrogen and lignin: Accuracy of 0.5% (absolute) 
nitrogen is necessary to distinguish between ecosystems with differences in nitrogen large 
enough to affect photosynthesis. Accuracy of 5% lignin concentration is needed to detect 
between-system gradients. Higher resolution, 1% lignin, is required to detect changes within a 
single forest type in order to map changes relevant to decomposition and nutrient cycling. 
These requirements are based on spatial gradients in nitrogen of 1-3.5 percent that occur 
between ecosystems. Spatial variations in spruce forest at Gerolstein site are considerably 
smaller: Stand mean values of CN (appendix A2) range from 1.08 percent to 1.31 percent. This 
range of CN (0.23 percent nitrogen) covers just about one tenth of what has been observed 
between ecosystems (2.5 percent nitrogen). From the low variation of nitrogen concentration 
present in Norway spruce needle at Gerolstein area no statement about the spatial variation of 
photosynthesis can be made. To increase variation in foliar nitrogen, the study has to be 
extended towards other ecosystems, such as beech forest or grassland. 

Kokaly & Clark (1999) specified the required signal-to-noise ratio (SNR) to meet the 
accuracy requirements of Schimel (1995) as follows: A high SNR of approximately 700 is 
required to achieve an rmse of 0.5% absolute nitrogen. For RMS error of 5% absolute lignin 
concentration, the S/N must be only 100. However, the required SNR calculated from the dry 
leaves measured in the laboratory, with an average reflectance level of 40%, must raise by a 
factor of 8 for AVIRIS data over vegetation canopies, resulting in requirements for SNR of 
800, 4400 and 5600 for lignin, cellulose, and nitrogen, respectively. They observed AVIRIS 
signal-to-noise ratios of about 360 at 2.10 μm. Their results show further, that it is possible to 
average two or more channels (bandpasses up to 78 nm) of the AVIRIS data, helping to 
compensate the lower SNR of the imaging spectrometer relative to laboratory measurements. 

The SNR of the HyMap sensor, as specified by Cocks et al. (1998) based on ground 
measurement of a target with 50 percent reflectance, amount to 1600 at 0.55 µm, 1500 at 
0.80 µm, and 900 at 2.10 µm. For a conifer forest target, the obtained SNR add up to 160, 
600, and 90 at 0.55 µm (5 percent reflectance), 0.80 µm (20 percent reflectance), and 2.10 µm 
(5 percent reflectance), respectively. It is obvious, that the requirements as specified by 
Kokaly & Clark are not fulfilled by the HyMap sensor. Nonetheless, with an error of about 
0.06 percent nitrogen (of dry matter) it was shown in the present research that an accurate 
determination of CN is possible. This can be attributed to the fact, that the required SNR, as 
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specified by Kokaly & Clark (1999) are based on absorption features in the mid-IR domain 
whereas the most important wavebands used in equation 7.2 are located in the red edge. 
Detection of variations in chlorophyll and thus, nitrogen along the red edge requires much 
lower SNRs. 
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Chapter 8  Conclusions and future perspectives 

Research overview 

It has been the overall aim of this research work to assess the potential of hyperspectral 
remote sensing data for the determination of forest attributes relevant to forest ecosystem 
simulation modeling and forest inventory purposes. The research contributes to the 
fundamental concern of remote sensing; that is, to evaluate to what extent remotely sensed 
radiation can in fact provide useful information for a specific application and to develop the 
appropriate retrieval techniques (Verstraete et al., 1996). 

The logic applied to the research followed three distinct phases: 
1. Attributes that describe the properties of the forest canopy and that are potentially 

open to remote sensing were identified, appropriate methods for their retrieval were 
implemented and field, laboratory and image data were acquired over a number of 
forest plots.  

2. The forest plots served as calibration and validation base for deriving relationships 
between forest attributes and remotely sensed data using image classification 
techniques, empirical-statistical approaches and physically-based methods.  

3. The remotely sensed data were used to extrapolate plot estimates of forest attributes 
over the entire study area to produce parameter maps; the resulting spatial patterns 
were analysed with respect to other environmental factors; finally, the accuracies to 
predict the attributes were compared to those needed for applications in forestry. 

Selection of forest attributes 

Among the variety of attributes that characterise forest canopies, three requirements were 
identified to select suitable forest attributes:  

i) the attribute has to be of interest to ecological or economical applications  
ii) the attribute must directly or indirectly affect the transfer of radiation to allow the 

retrieval of reliable quantitative information on that attribute by remote sensing 
iii) ground measurement of the attribute has to be feasible using widely accepted and 

operational methods in the field and laboratory. The attributes selected in this research 
work that affect ecological processes are leaf area index (LAI), leaf chlorophyll a+b 
concentration (CAB), and leaf nitrogen concentration (CN). Attributes that are of 
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concern to forest inventory and management are stem biomass (SBM), crown volume 
(VOL) and stand age. 

Retrieval of forest attributes from hyperspectral data 

A number of approaches for the determination of structural and chemical attributes from 
hyperspectral remote sensing have been applied to the collected data sets. Many of the 
methods to be found in the literature were  

a) applied to broadband multispectral data 
b) applied to vegetation canopies other than forests 
c) reported to work on the leaf level or with modelled data 
d) not validated with ground truth data or 
e) not systematically compared to other methods.  

Mapping of forest type  

Age structure and species composition of forest stands are routinely collected in forest 
inventories every 10 years or longer to assess timber store and to optimise harvesting. Data of 
many spectral and spatial resolutions can be used for mapping forest type. In this study, the 
goal is to investigate whether tree species and age classes can be reliably derived from 
hyperspectral remote sensing data through image classification and to compare the overall 
information content of fine to broad spectral resolution and small to large spatial resolution 
data. The results of the image classification show that the overall accuracy and kappa 
coefficient using hyperspectral data are substantially larger than with multispectral data. 
These results indicate that hyperspectral data contain more information relevant to the 
mapping of forest type than broadband data. Remarkably, degradation of the high spatial 
resolution to coarser image pixels considerably increased the classification accuracies. In 
hyperspatial data individual trees comprise several pixels, each pixel may represent one of 
several classes (shadow or sunlit, young foliage or old), and the lager class variance may 
reduce class discrimination.  

For mapping of forest types in Germany where currently the vast majority of the forests are 
one-age-cohort plantations, a moderate spatial resolution (30 m) optical sensor would be 
preferable. One-age-cohort management is not sustainable from an ecological point of view 
and has been abandoned by the forest administrations of all German federal states (Häusler & 
Scherer-Lorenzen, 2001). It is currently being replaced by alternative management strategies 
that in the future will increasingly produce forest stands with rather heterogeneous species 
composition and age structure. From a remote sensing perspective, under these conditions a 
hyperspatial sensor would be preferable that could detect such small scale variations to avoid 
the problem of mixed pixels. A hyperspectral would be preferred over a multispectral system 
to make use of narrow spectral features for discriminating different forest types.  
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Required classification accuracies from remote sensing, as claimed by Foody (2002), are not 
fulfilled by most of the datasets except hyperspectral data with low spatial resolution. One 
possible explanation would be that the classification problem encountered in this study is not 
trivial. Forest classes, such as clearings have spectral reflectance characteristics that differ 
very much from the closed canopy stands studied here. Those clearcuts are relatively easy to 
discriminate from the other forest types and including them in this study would probably have 
increased the classification accuracy.  

Improvement of forest type mapping is often attempted by adding ancillary data into the 
classification process. The influence of stem density information proves to have a limited 
effect on classification accuracy. The major disadvantage of this approach is the restricted 
availability of these data. Other methods overcome traditional pixel-based image analysis and 
make use of textural information. Using geostatistical parameters derived from the image data 
itself as demonstrated by Buddenbaum et al. (2005) is another innovative approach to 
improve classification results. 

Determination of leaf area index 

Leaf area index (LAI) plays an important role in the quantification of ecosystem process, e.g. 
absorption of photosynthetically active radiation, canopy conductance and interception of 
precipitation. LAI, as other attributes related to canopy cover, affects the remotely sensed 
signal in sparse to medium dense canopies significantly. The goal is to compare empirical and 
physical approaches to determine LAI and to identify the most suitable hyperspectral and 
multispectral bands for both methods. The main results obtained from the research are 
summarised in Table 8.1. Determination of LAI through linear regression between remotely 
sensed vegetation indices (VIs) and ground measured LAI can be performed best with a 
narrowband perpendicular vegetation index (PVI) based on wavebands at 1088 nm and 
1148 nm (R2 = 0.77, rmse = 0.54 m2 m-2). LAI determination with NDVI and other broadband 
ratio vegetation indices based data resampled to Landsat TM wavebands is less successful due 
to saturation effects, influence of background and understorey vegetation. These effects are 
partly compensated when soil-line related broadband VIs (e.g. PVI) are used (R2 = 0.59, 
rmse = 0.84 m2 m-2). However, problems with old stands are still present that can be ascribed 
to shadow effects and a relatively dark background in the near-IR. 

The physical approach inverts a forest reflectance model using a neural network approach. 
With wavebands at 837 nm and 1148 nm the obtained accuracy of the retrieved LAI map 
amounts to an rmse of 0.58 m2 m-2. With HyMap data resampled to Landsat TM spectral 
bands and using two bands at 840 nm and 1650 nm, an rmse of 0.66 (relative rmse = 20 % of 
the mean) is achieved. Comparing the performance of both, empirical and physically-based 
approaches for LAI estimation from hyperspectral data it is concluded that both methods work 
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equally well. When broadband multispectral data is used, LAI is more accurately predicted by 
the reflectance model inversion. This is a clear advantage of the physically-based approach 
over the empirical models. The physical approach explicitly takes into account canopy 
architecture, multiple scattering and signal contributions of the background and understorey 
vegetation. Quite different from empirical prediction functions that are generally limited to 
the local conditions at a certain point of time and a specific sensor type, the calibrated 
reflectance model can be applied more easily to different optical remote sensing data acquired 
at landscape to regional scales.  

Analysis of the relations between best narrowband PVIs and LAI reveals that the wavebands 
forming the vegetation indices are either located at the shoulder of a water absorption feature 
(1088 nm) or at the absorption minimum (1148 nm). The same waveband (1148 nm) is 
employed to invert the reflectance model and the other waveband is situated on the near-IR 
plateau (837 nm). Obviously, in both, the empirical and the physical approach, the total 
amount of canopy water is mapped by the 1148 nm waveband. As the leaf water content is 
considered to be relatively constant in the study area, variations in LAI are retrieved. 

Attributes related to aboveground biomass can not be accurately retrieved by both empirical 
and physically-based approaches. Poor relations are found between various vegetation indices 
and stem biomass. However, a synthetic variable is derived from measured structural 
(biomass related) attributes (stem density, stem diameter, canopy height) through factor 
analysis. This variable is interpreted as measure of crown volume (VOL) and it is linearly 
related to a PVI based on wavebands at 885 and 948 nm (R2 = 0.79, rmse = 0.52 m2 m-2). 
Reflectance model inversion considerably underestimates stem density compared to ground 
data for dense forest stands (rmse 55 % of mean). To retrieve attributes related to 
aboveground biomass different remote sensing data and techniques have to be employed. For 
instance, lidar systems can very accurately measure the height of tree canopies and allow 
determining timber store. 

Table 8.1: Determination of leaf area index (n = 39) using different methods and data. From 
the original number of 40 stands, one stand subjected to clearing measures has been removed 
from the analysis (section 6.2). 

Method Data/Index (wavebands) R2 Rmse  
[m2 m-2] 

Relative rmse 
[% of mean] 

Hyperspectral PVI (1088 nm, 1148 nm) 0.77 0.54 17 

Broadband PVI (670 nm, 840 nm) 0.59 0.84 26 Empirical 

Broadband NDVI (670 nm, 840 nm) 0.47 1.06 33 

Hyperspectral (837 nm, 1148 nm) 0.73 0.58 18 

Broadband (670 nm, 840 nm) 0.69 0.85 26 Physically-
based 

Broadband (840 nm, 1650 nm) 0.73 0.66 21 
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Determination of chlorophyll, water and nitrogen concentration 

The study on chemical forest attributes evaluated the information content of HyMap data for 
the estimation of chlorophyll (CAB) water (CW) and nitrogen (CN) concentration. The aims 
were to find predictive models to estimate chemical concentrations and to systematically 
compare different types of derivatives of spectral reflectance regarding the accuracy of 
prediction. The results of the analysis (Table 8.2) show that CAB can be well estimated from 
laboratory and canopy reflectance data. The best predictive model to estimate CAB at the 
laboratory level yielded a cross-validated R2 of 0.81 and a relative rmse of 8.7 % (n =78). The 
best model to estimate CAB at the canopy level was achieved using band depth normalised 
spectra with a cross-validated R2 of 0.90 and a relative rmse of 2.8 %. However, the small 
sample size at the canopy level (n = 13) is critical. The promising results that are obtained for 
chlorophyll may be explained by two reasons. First, chlorophyll is a strong absorber of 
radiation and variations of concentration have a large influence on reflectance. Second, 
chlorophyll concentration shows the largest variation of all chemicals which may explain the 
strong statistical correlation between chlorophyll concentration and reflectances. The same 
factors operating conversely may explain the weaker relations between reflectance and the 
concentration of nitrogen (R2 = 0.57, rel. rmse = 4.6 %). Protein, one of the main nitrogen 
bearing leaf constituents, is a weak absorber of radiation and had a low variation between 
samples. Water concentration is well estimated from laboratory reflectance data, but not from 
noisy laboratory spectra and canopy spectra. This seems to be surprising as leaf water is a 
strong absorber of radiation. However, the low variation between samples could be the reason 
for the weak correlation between water concentration and noisy or canopy reflectance data. 

The analysis of the selected wavebands reveals that for canopy spectra a smaller number of 
bands can be directly related to known absorption features compared to laboratory reflectance 

Table 8.2: Determination of chemical forest attributes using laboratory and HyMap data and 
three types of spectral derivatives; relative rmse: % of mean; percentage of attributable bands: 
directly or indirectly related to the variable of interest 

DWRS RFL BDN 

Data Chemical R2 
Rel. 
rmse 

Perc. of 
attribut. 
bands R2 

Rel. 
rmse 

Perc. of 
attribut. 
bands R2 

Rel. 
rmse 

Perc. of 
attribut. 
bands 

CAB 0.81 8.7 33 0.80 9.0 22 0.76 9.6 21 

CW 0.77 5.9 69 0.75 6.2 57 0.79 5.7 11 

Laboratory 
resampled 
to HyMap 
(n=78) CN 0.52 6.7 73 0.49 6.8 0 0.52 6.6 50 

CAB 0.72 4.7 33 0.46 6.9 0 0.90 2.8 0 

CW - - 50 0.45 6.7 67 - - 0 
HyMap  
image 
(n=13) 

CN 0.52 4.9 67 - - 0 0.34 5.5 0 
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data. The wavebands selected to estimate CAB with laboratory and HyMap spectra are 
typically located in the red edge region and along the edge of the chlorophyll absorption 
feature. This result coincides with a general understanding that the maximum correlations 
occur on the edge of absorption features as the central wavelengths become saturated. For CN, 
the wavebands selected in the regression models with laboratory data are often related to the 
chlorophyll absorption feature, the red edge region and to known protein absorption features. 
However, the portion of selected wavebands attributable to known substance absorption 
features strongly depends on the type of derivative spectra used. A method called “derivative 
of water removed spectra” (DWRS) produces the largest percentage of wavebands directly or 
indirectly related to known absorption features with laboratory and canopy spectra. Using 
band depth normalised spectra (BDN) the portion of wavebands attributable to known 
absorption features was relatively large with laboratory data but very low with HyMap 
spectra. Possibly, DWRS better than BDN preserves its ability to enhance absorption features 
during the upscaling from leaf to canopy spectra.  

Wavelengths close to protein features at 1730 nm, 2180 nm, and 2350 nm that have often 
been selected in the literature are also selected in this research. As in the present work, a 
combined selection of wavebands related to both chlorophyll and protein absorption features 
in a single model to estimate nitrogen concentration is also reported from other studies. 

The ability to estimate chemical concentrations from reflectance spectra using a model 
derived from an independent sample set is fundamental for extrapolating results over large 
sample sets and for determining of the model’s long term stability. Here, two independent 
data sets of Norway spruce samples were used. Estimations of all chemicals had large errors 
and low R2 values except chlorophyll which showed values of R2 above 0.65 for noisy 
laboratory spectra. 

A limited data quality was reported for early AVIRIS campaigns (Kupiec, 1994; Niemann & 
Goodenough, 2003) which did not allow an accurate mapping of foliar chemicals. Contrary, 
the results of this research indicate that the detection and mapping of variations in chlorophyll 
and nitrogen concentrations is possible through the use of HyMap data. Obviously, the signal-
to-noise ratio of the HyMap sensor is large enough to allow detection of small reflectance 
variations. Apart from the quality of the raw data, a sound radiometrically calibration to 
retrieve surface reflectances is an essential requirement for successful mapping of quantitative 
forest attributes. It can be concluded that the radiometric processing applied to the data fulfils 
the requirements to allow an accurate mapping of structural and chemical forest attributes.  

Reflectance modeling 

An essential requirement for model inversion is to ascertain that the reflectance signatures 
simulated by the model are consistent with the remotely sensed canopy spectra. If correctly 
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parameterised, the INFORM model simulates forest reflectance spectra comparable to those 
measured by an imaging spectrometer (HyMap). There is a good agreement between 
modelled and measured spectral reflectance in the near-IR wavebands and an acceptable 
agreement in the mid-IR. In the visible, however, model outputs and HyMap reflectances 
disagree. The disagreement in the visible domain can be explained by the used leaf reflectance 
model. A possible solution for the problem in this spectral domain could be to replace the 
LIBERTY by the PROSPECT model which was shown in other studies to work also with 
conifer needles. Perhaps better agreement between simulated and HyMap spectra in the 
visible could be obtained if chlorophyll content was changed within the typical range of 
variation. Also the performance of INFORM in the mid-IR region has to be further improved. 
The difference between simulated HyMap spectra in the mid-IR could be the reason for the 
poor estimation of stem density. Future studies will continue to clarify the relative importance 
of structural factors influencing the remote sensing measurements collected over forests. 

A central question of the research on physically-based models was to study a new method to 
invert the model based on neural networks. The applied network with two input neurons and 
only one neuron in the hidden layer is of a very simple structure. Presumably, the two input 
neurons together establish a linear combination of two wavebands, similar to PVI. Next, the 
hidden neuron transforms the intermediate result in non-linear way, after which three output 
neurons compute the output to approximate the requested output variables. Finally from three 
output variables canopy LAI is computed. The assumption that the neural network approach 
works in comparable manner to PVI is supported by the fact that similar wavebands are used 
in both, PVI-based and neural network based approaches and that equal accuracies are 
retrieved by both methods. 

Spatial patterns of parameter maps 

After the best empirical model was applied to the HyMap image to derive estimates of LAI 
for each pixel, pixel-based LAI was aggregated to mean stand values. After a peak LAI at an 
age of 20, mean LAI is decreasing with increasing stand age. The observed age course is a 
result of both natural circumstances and actual management practices. Concurrently, 
regeneration of leaf area index subsequent to thinning measures is also determined by the 
water and nutrient supply of a particular site. Standard deviation of stand LAI is particularly 
large for the age class of 31-50 year old stands. The reason for the large variability of the 31-
50 year old stands is that some stands of this age may be subjected to thinning measures while 
others may remain undisturbed and thinned at a later stage. LAI can vary considerably within 
a single age class and thus, information on LAI can not simply be derived from an age class 
map. 

Predictive models were applied on the HyMap image to compute maps of chlorophyll 
concentration and nitrogen concentration. Results of map overlay operations revealed 
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coherence between CAB and zones of stand development stage and between CAB and zones of 
soil type. Larger values of CAB occurred over soils with large base saturation (formed of 
basalt and colluvium) whereas poorly base saturated soils over sandstone showed lower CAB 
values. However, the large variation in base saturation present in the soils at Gerolstein area is 
not equalled by corresponding variations in leaf nitrogen concentrations. From the low 
variation of nitrogen concentration present in Norway spruce needle at Gerolstein area no 
statement about the spatial variation of photosynthesis can be made. To increase variation in 
foliar nitrogen, the study has to be extended towards other ecosystems, such as decidous 
forest, vine yards and orchards or grassland. 

Future perspectives 

Based on the results attained in present investigation, diverse perspectives for improved 
remote sensing of forests emerge: 

The methods developed to determine structural forest attributes have evolved considerably in 
the past few decades. Vegetation indices which are by far the most widely used method are 
computationally efficient, but difficult to interpret. Both field and modeling studies show that 
vegetation indices are difficult to interpret with respect to a single structural forest attribute. 
Vegetation indices will continue to play an important role in remote sensing of forests and 
their improvement over time is warranted (Asner et al., 2003). 

The use of canopy reflectance models to retrieve forest attributes from remote sensing data is 
still at its beginning. Most studies so far focused on evaluating model performance. Many of 
the newest 3-D models can accurately simulate the spectral and angular reflectance properties 
of forests. Future forward modeling studies will improve the understanding of how structural 
and chemical attributes govern the reflectance of forest canopies (Asner et al., 2003). On the 
other hand, little research has been done to invert models with remotely sensed data and 
validate the retrieved forest attributes with ground truth data.  

To improve mapping of forest attributes through inverse modeling, future efforts should focus 
on developing new inversion techniques and making use of additional data dimensions. 
Improved inversion strategies could, for instance, combine an optimal spectral sampling with 
algorithms to find powerful predictive models. Lately, genetic algorithms have been identified 
as a powerful tool for finding optimal set of spectral variables to be included into a model. 
The utilisation of multi-view angle data is considered a prime option for advanced 
quantitative analysis of forested areas. Currently, the CHRIS sensor on the PROBA platform 
provides hyperspectral data with 17-34 m spatial resolution collected in five different view 
angles. Using such data could probably improve mapping of forest structural attributes.  

In the future, the users of remote sensing products will ask for a growing selection of higher-
level and value-added products that are consistent in quality, reliably available and easy to 
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use. This requires that validation and quality considerations of data products will have to 
receive much more attention than in the past (Peddle et al., 2003). 
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Summary 

Forest ecosystems cover large parts of the Earth’s surface and play an important role in the 
global carbon budget. An understanding of their function requires determining their properties 
in space and time. The ability to remotely sense forest canopy properties would offer great 
potential for applications at regional to global scales such as environmental change 
assessment, forest inventory and management, and monitoring of forest fire and disease. A 
relatively new concept, hyperspectral remote sensing, may provide more information about 
the properties of forest canopies than conventional broadband sensor types, such as Landsat or 
SPOT. 
Previous research studies in remote sensing attempted to estimate forest attributes with 
varying success. A lot of research has been done on the estimation of forest structural 
attributes, in particular leaf area index (LAI) from remote sensing data within about the last 
15 years. Most of the studies on forests used broadband multispectral data, but very recently a 
few authors used hyperspectral remote sensing data to assess forest LAI. Few studies have 
reported on the application of multi- and hyperspectral data in mapping forest species and 
forest age classes. Laboratory studies on dry and ground leaves showed strong relations 
between leaf reflectance and foliar chemicals, but results on fresh whole leaves were 
generally poorer. From intensive research activities during the last decade it was concluded 
that a reliable estimation of canopy chemical concentrations from remote sensors needs an 
improvement of data quality and analysing techniques. 
The aim of this research was to investigate the use of hyperspectral remote sensing data to 
determine important forest attributes. The work was conducted in forest plots (Picea abies L. 
Karst.) in Eifel and Hunsrück mountains, Germany. It focused on three broad types of forest 
attributes: cover type, structural attributes and chemical attributes. As such information is not 
explicitly recorded by a sensor it has to be extracted from remote sensing data for which a 
number of methodological approaches are generally available. The main focus of this work 
was to use and modify existing methods and to develop new approaches to successfully 
determine the forest attributes of interest. Major attention was paid to systematically compare 
different methods and data types. 
The study on forest cover type compared the classification performance of four different 
remote sensing datasets of different spectral and spatial resolution to map forest species and 
age classes. To generate synthetic, multispectral broadband data, the HyMap image was 
spectrally resampled to Landsat TM wavebands and spatially degraded to 30 meter pixels. 
The results of the image classification showed that the overall accuracy and Kappa coefficient 
using the HyMap datasets were substantially larger than using the TM datasets. These results 
confirm that hyperspectral data contain more information relevant to the mapping of forest 
type than broadband multispectral data. Interestingly, degradation of the high spatial 
resolution to coarser image pixels considerably increased the classification accuracies. 
The study on structural attributes compared empirical and physically-based approaches. In the 
empirical section linear predictive models between vegetation indices (VIs) derived from 
HyMap data and field measurements of structural forest stand attributes (n=39) were 
systematically evaluated. Ratio-based and soil-line related broadband VIs were calculated 
after HyMap reflectance had been spectrally resampled to Landsat TM channels. 
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Hyperspectral VIs involved all possible types of 2-band combinations of ratio VIs (RVI) and 
perpendicular VIs (PVI) and the red-edge inflection point (REIP) computed from two 
techniques. A PVI based on wavebands at 1088 nm and 1148 nm was linearly related to leaf 
area index (R2=0.77, rmse=0.54 m2m-2 (17% of mean)). A similar index was linearly related 
to the crown volume that had been derived from measured structural attributes through factor 
analysis. The study demonstrates that for hyperspectral image data, linear regression models 
can be applied to quantify LAI and VOL with good accuracy. For broadband multispectral 
data, the accuracy was generally lower. Best hyperspectral VIs in relation with LAI were 
typically based on wavebands related to prominent water absorption features. 
The physically-based approach used the invertible forest reflectance model (INFORM), a 
combination of well established sub-models FLIM, SAIL and LIBERTY. The model was 
inverted with HyMap data using a neural network approach. To identify the optimum 2-band 
spectral subset to be used in the inversion process, all 2-band combinations were 
systematically evaluated for model inversion. LAI field measurements from 39 forest stands 
were used to validate the LAI maps produced from HyMap imagery. Using two HyMap 
wavebands at 837 nm and 1148 nm the obtained accuracy of the LAI map amounts to an rmse 
of 0.58 m2m-2 (18% of mean). The approach could be shown to potentially work also on 
operational multispectral sensors. With HyMap data resampled to Landsat TM spectral bands 
and using two bands at 840 nm and 1650 nm, the rmse was 0.66 and relative rmse amounted 
to 21 %. In comparison to the empirical approach, it could be shown that the reflectance 
model inversion works equally well. In opposition to empirically derived prediction functions 
that are generally limited to the local conditions at a certain point in time and to a specified 
sensor type, the calibrated reflectance model can be applied more easily to different optical 
remote sensing data acquired over central European forests. 
The study on chemical forest attributes evaluated the information content of HyMap data for 
the estimation of nitrogen, chlorophyll and water concentration. A number of needle samples 
(n=78) of Norway spruce were analysed for their total chlorophyll (CAB), nitrogen (CN) and 
water (CW) concentrations. The research was divided into two areas: needle spectra measured 
in the laboratory and canopy spectra measured by the HyMap sensor. The objective was to 
find empirical models by stepwise multiple linear regression (SMR) analysis using certain 
absorption features to determine foliar chemicals.  
Laboratory reflectance measurements were made for layer stacks of whole green needles. To 
test the transferability of the approach from the leaf to the canopy level, the effects of sensor 
bandwidth and sensor noise on the estimation of the chemical concentrations was 
investigated. SMR analysis showed that CAB was well estimated and just slightly affected by a 
decrease of the spectral resolution or adding of noise, CN was moderately well estimated and 
just slightly affected by a decrease of the spectral resolution or adding of noise and CW was 
well estimated but strongly affected by noise addition. The wavebands selected to estimate 
CAB were typically located in the red edge region and along the edge of the chlorophyll 
absorption feature. For CN, the wavebands selected in the regression models were often 
related to the chlorophyll absorption feature, the red edge region and to known protein 
absorption features. Regression models to estimate CW often employed wavebands related to 
CAB or wavebands located at the edge of water absorption features.  
Scaling up from leaf to canopy level was achieved through directly establishing statistical 
relationships between ground-measured chemical data and canopy-measured reflectances. 
Five different types of derivatives of reflectance were compared in estimating foliar 
chemicals: reflectance, first-difference of reflectance, continuum-removed spectra, band-
depth normalised spectra (BDN) and water removed spectra. The best predictive model to 
estimate CAB was achieved by BDN wit a cross-validated R2 of 0.90 and a relative rmse of 2.8 
percent (n=13). CN was moderately well estimated (relative rmse below 5 percent). Selected 
wavebands, although most often not attributable to known absorption features, were often 
located in spectral regions that are known to be important for chlorophyll detection (red edge, 
green peak). Predictive models were applied on the HyMap image to compute maps of 
chlorophyll concentration and nitrogen concentration. Results of map overlay operations 
revealed coherence between CAB and zones of stand development stage and between CAB and 
zones of soil type. Larger values of CAB occurred over soils with large base saturation (formed 
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of basalt and colluvium) whereas poorly base saturated soils over sandstone showed lower 
CAB values. 
Finally, it can be stated that the hyperspectral remote sensing data generally contains more 
information relevant to the estimation of the forest attributes compared to multispectral data. 
Structural forest attributes can be determined with good accuracy from a hyperspectral sensor 
type like HyMap. Among the chemical attributes, chlorophyll concentration can be 
determined with good accuracy and nitrogen concentration with moderate accuracy. For 
future research, additional dimensions have to be taken into account, for instance through 
exploitation of multi-view angle data. 
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Zusammenfassung 

Die fernerkundliche Erfassung struktureller und chemischer Forstattribute ist in der aktuellen 
Ökosystemforschung, der Entwicklung zukünftiger Inventarisierungsverfahren und für das 
Umweltmonitoring von hoher Relevanz. Bisherige Untersuchungen zur Quantifizierung von 
Forstattributen aus Fernerkundungsdaten, die zumeist auf der Auswertung multispektraler 
Satellitenbilder basierten, verliefen mit unterschiedlichem Erfolg.  

Das Ziel dieser Forschungsarbeit liegt in der Bewertung der Möglichkeiten, strukturelle und 
chemische Forstattribute mit hyperspektralen Fernerkundungsdaten bestimmen zu können. 
Untersucht werden Fichtenforsten in Eifel und Hunsrück. Die Gemeine Fichte (Picea abies L. 
Karst.) ist aufgrund ihrer starken Verbreitung in den Untersuchungsgebieten und ihrer 
geringen jahreszeitlichen Dynamik gut für eine fernerkundliche Charakterisierung geeignet. 
Die entsprechenden Forstgrößen werden jedoch nicht explizit vom Sensor erfasst, sondern 
müssen zunächst aus den fernerkundlichen Rohdaten über eine Reihe von Prozessierungs- und 
Analyseschritte abgeleitet werden. Ein maßgeblicher Aspekt der Untersuchungen stellt die 
Nutzung und Modifizierung bestehender sowie die Entwicklung neuer Methodenansätze zur 
erfolgreichen Bestimmung der Zielgrößen dar. Besonderes Gewicht liegt auf dem Vergleich 
unterschiedlicher Methoden und Datentypen. Die dazu benötigten Referenzdaten wurden im 
Rahmen von Gelände- und Laborarbeiten erhoben oder standen bereits in Form eines 
Forstlichen Geographischen Informationssystems zur Verfügung. Bildspektrometerdaten 
(HyMap-Sensor) wurden 1999 und 2003 akquiriert und radiometrisch und geometrisch 
korrigiert. Es werden drei Attributklassen untersucht: i) Forsttyp, ii) strukturelle Forstattribute 
und iii) chemische Forstattribute.  

Zur fernerkundlichen Kartierung von Forsttypen, das heißt von Forstbeständen einer 
bestimmten Baumart und Altersklasse, werden aus den HyMap-Daten synthetische Bilder 
unterschiedlicher spektraler und geometrischer Auflösung erzeugt und hinsichtlich ihrer 
Klassifikationsgenauigkeiten miteinander verglichen. Die Datensätze wurden mit dem so 
genannten „Spectral Angle Mapper“ klassifiziert. Die Ergebnisse zeigen, dass 
Hyperspektraldaten mit einer deutlich höheren Genauigkeit klassifiziert werden können als 
Multispektraldaten. Eine Reduzierung der geometrischen Auflösung führt auf den relativ 
großflächigen, homogenen Fichtenbeständen zu einer Verbesserung der 
Gesamtklassifikationsgenauigkeit, was mit einer geringeren Bildvarianz erklärt werden kann. 
Insgesamt kann mit dem hyperspektralen Datensatz geringer Pixelgröße eine gute bis sehr 
gute Differenzierung der Alterklassen Dickung, Stangenholz, Baumholz und Altholz erzielt 
werden.  

Für die Bestimmung der strukturellen Forstattribute wurden empirisch-statistische und 
physikalisch-basierte Verfahren implementiert. Im empirischen Teil der Studie wird der 
Zusammenhang zwischen Vegetationsindizes, die aus HyMap-Daten berechneten wurden, 
und im Gelände gemessenen Bestandsvariabeln analysiert. Die Geländeerhebungen umfassen 
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die standardisierte Bestimmung wichtiger Strukturgrößen in 42 Fichtenbeständen, darunter 
Blattflächenindex, Bestockungsdichte, Kronenschlussgrad, Brusthöhendurchmesser und 
Bestandeshöhe. Der effektive Blattflächenindex (LAI) wurde über ein optisches Verfahren 
(LI-COR LAI-2000) bestimmt. Es werden unterschiedliche breit- und schmalbandige sowie 
„ratio“- und „soil line“-basierte Vegetationsindizes und darüber hinaus Verfahren zur 
Bestimmung des Inflexionspunktes systematisch untersucht. Die ausgewählten breitbandigen 
Vegetationsindizes (SR, NDVI, PVI, SAVI, TSAVI, u. a.) wurden zwar schon in 
Einzelstudien angewendet, bisher aber noch nicht einem systematischen Vergleich auf 
Wäldern unterzogen. Die schmalbandigen VIs umfassen sämtliche 2-Band Kombinationen 
hyperspektraler „Ratio“-VIs (RVI) und „Perpendicular“-VIs (PVI). Als Gütemaß zur 
Bewertung der unterschiedlichen Indizes dienen kreuzvalidiertes Bestimmungsmaß (R2) und 
kreuzvalidierter rms Fehler („root mean squared error“). Bester Index ist ein hyperspektraler 
PVI basierend auf Spektralbändern bei 1088 nm und 1148 nm, der linear zum LAI in 
Beziehung gesetzt wird (R2 = 0,77, rmse = 0,54 m2 m-2 (17 % des Mittelwertes)). Ein 
ähnlicher Index zeigt einen engen Zusammenhang zum Kronenvolumen, das zuvor aus den im 
Gelände erhobenen Attributen mittels Faktorenanalyse bestimmt worden ist. Breitband VIs 
erzielen generell geringere Genauigkeiten. Zur Stammbiomasse konnten keine Beziehungen 
gefunden werden. Die Positionen der in den Indizes verwendeten Spektralbänder befinden 
sich in der Nähe prominenter Wasserabsorptionsbanden – ein Beweis dafür, dass der 
Differenzierung nach LAI maßgeblich der Bestandswassergehalt zu Grunde liegt. Die 
Bedeutung der Spektralbänder im mittleren Infrarot für die Charakterisierung von Wäldern ist 
auch durch andere Untersuchungen bestätigt worden. Ferner spiegelt die festgestellte 
Veränderung des LAI mit dem Bestandsalter deutlich die waldbaulichen Maßnahmen wider. 
Die Studie demonstriert, dass Hyperspektraldaten gut zur Quantifizierung wichtiger 
Forstattribute wie LAI und Kronenvolumen, aber nicht biomassebezogener Größen geeignet 
sind.  

Der physikalisch-basierte Ansatz verwendet das Invertierbare Forstreflexionsmodell 
(INFORM), eine Kombination aus etablierten Untermodellen FLIM, SAIL und LIBERTY. 
Nachdem das Modell mit Attributdaten aus Geländeerhebungen parametrisiert worden ist, 
wird es auf HyMap-Daten mittels Künstlicher Neuronaler Netze (KNN) invertiert. Zur 
Identifizierung geeigneter Spektralkanäle werden bei der Invertierung alle 2-Band 
Kombinationen systematisch untersucht. Die aus der Modellinversion resultierenden 
Parameterkarten werden mit den Geländedaten validiert. Mit zwei Spektralbändern bei 837 
nm und 1148 nm kann für LAI eine Fehlergenauigkeit von 0.58 m2 m-2 (18% vom 
Mittelwert) erzielt werden. Auf spektral reduzierten Daten (Landsat TM) ergibt sich unter 
Verwendung der Spektralbänder bei 840 nm und 1650 nm ein Fehler von 0.66 m2 m-2. Die 
Genauigkeit, die mit dem physikalisch-basierten Ansatz erzielt wird, ist mit den Fehlerwerten 
empirischer Verfahren vergleichbar. Kalibrierte Reflexionsmodelle haben jedoch den Vorteil, 
dass sie generell auf unterschiedliche Sensortypen und unter wechselnden 
Rahmenbedingungen anwendbar sind. 

Die Untersuchung chemischer Forstattribute hat zum Ziel, den Informationsgehalt von 
Bildspektrometerdaten hinsichtlich der Bestimmung von Stoffkonzentrationen in 
Fichtennadeln zu bewerten. Empirisch-statistische Modelle werden mittels Schrittweiser 
Multipler Regression zunächst auf Laborspektren entwickelt und anschließend auf 
Bestandsebene übertragen. Das Potential unterschiedlicher Reflexionsderivate 
(Reflexionsspektren, Ableitungsspekren, kontinuum-bereinigte Spektren, bandtiefen-
normalisierte Spektren und wasserbereinigte Spektren) zur spektrometrischen Bestimmung 
wird systematisch untersucht. Die im Gelände in 13 Fichtenbeständen standardisiert 
entnommenen Nadelproben (n=78) sind in frischem Zustand im Labor mit einem 
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Spekroradiometer (Field-Spec-II) gemessen und anschließend auf ihre Stoffkonzentrationen 
von Chlorophyll, Stickstoff, Wasser hin analysiert worden. Um die Übertragbarkeit auf 
Bilddaten abschätzen zu können, wird der Einfluss von spektraler Bandbreite und 
Sensorrauschen auf die Genauigkeit der statistischen Modelle untersucht. Die erzielten 
Ergebnisse zeigen, dass die Genauigkeit bei der Bestimmung der Blattinhaltsstoffe aus 
Laborspektren nur in geringem Maße durch eine verminderte spektrale Auflösung oder durch 
Sensorrauschen reduziert wird. Zum Hochskalieren von Blatt- auf Bestandsebene werden 
direkte Beziehung zwischen Blattanalysen und Bestandsspektren erstellt. Die Chlorophyll-
konzentration wird von allen Verfahren, jedoch mit unterschiedlicher, aber guter Genauigkeit 
bestimmt (kreuzvalidierter relativer rmse 2.8-6.9 % des Mittelwerts; kreuzvalidiertes 
R2 = 0.90-0.46). Die Bestimmung der Stickstoffkonzentration kann nur von drei Verfahren 
(wasserbereinigte Spektren, kontinuum-bereinigte Spektren und Ableitungsspekren) mit 
mäßiger Genauigkeit (rmse = 4.6-4.9 % des Mittelwerts; R2 = 0.52-0.57) geleistet werden. Für 
den Blattwassergehalt können hingegen keine signifikanten Beziehungen gefunden werden. 
Selektierte Wellenlängen zur Schätzung von Chlorophyll befinden sich typischerweise im 
„red edge“ und im Randbereich der Chlorophyllabsorptionsbanden. Regressionsmodelle zur 
Schätzung von Stickstoff haben meist einen deutlichen Bezug zu den Absorptionsbanden von 
Chlorophyll oder Protein oder zum „red edge“. Die Verwendung der genannten 
Absorptionsbanden wird auch durch vergleichbare Untersuchungen anderer Vegetationstypen 
bestätigt. Die räumliche Verteilung der Blattchlorophyllkonzentration im Untersuchungs-
gebiet spiegelt die Nährstoffversorgung der Böden wider. So werden über basenreichen 
Basaltverwitterungslehmen im Mittel deutlich höhere Chlorophyllkonzentrationen beobachtet 
als auf den basenarmen Sanden des Mittleren Buntsandsteins. 

Im Rahmen der vorliegenden Arbeit wurden Bildspektrometerdaten verwendet, um 
quantitative Bestandsattribute in Fichtenforsten fernerkundlich abzuleiten. Die abgeleiteten 
Parameterkarten können als wichtiger Beitrag zur Entwicklung fortgeschrittener 
Inventarisierungsstrategien und zur Parametrisierung von Stoff- und Energieflussmodellen 
angesehen werden. Zukünftige Strategien sollten weitere Dimensionen, wie z. B. multi-
direktionelle Beobachtungen, in den Auswerteprozess miteinbeziehen, um eine verbesserte 
Bestimmung wichtiger Oberflächenparameter zu erzielen. Zudem ist eine weitere 
Verbesserung bestehender Bestandsreflexionsmodelle anzustreben. 
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Appendix A: Field data 

A1: Plots at Idarwald test site 

Plot-ID Stand 
number E N Stand age 

[yrs] PBH [m] SD [/ha] CO LAI H [m] CD [m] Comment 

38 171a 2586713 5524702 46 0.92 622 0.45 3.81  18.0 - ok 
59 155a 2587195 5524101 20 0.48 1489 0.65 5.47  9.3 - ok 
65 165 2586664 5523910 68 1.15 511 0.40 3.31  29.3 4.9 ok 
81 148b 2587394 5523645 18 0.49 1333 0.60 4.94  6.2 - ok 
82 157a 2586433 5523369 135 1.57 278 0.50 2.48  30.6 7.2 ok 
83 156a 2587024 5523430 10 0.27 2444 0.70 4.23  5.0 - ok 
85 149a 2587282 5523455 49 0.81 800 0.50 2.63  23.0 - recent thinning 
100 158a 2586294 5523166 57 0.91 467 0.35 2.88  23.8 - ok 
110 150b1 2586687 5522995 119 1.24 478 0.35 2.97  30.1 4.1 ok 
111 144a 2587696 5523082 95 1.55 244 0.30 1.66  26.9 6.5 ok 
115 158a 2586477 5522942 148 1.62 511 0.60 2.90  39.1 7.0 ok 
118 125a1 2585601 5522574 48 1.36 267 0.40 2.66  33.7 6.8 ok 
125 145 2587196 5522843 104 1.27 367 0.45 3.31  26.9 6.3 ok 
129 150a2 2586913 5522671 119 1.38 378 0.40 2.24  27.3 6.1 ok 
137 142a 2587548 5522577 34 0.81 955 0.55 4.08  13.0 - ok 
138 126a 2585435 5522317 62 0.90 611 0.35 2.98  27.1 3.8 ok 
144 111a 2586099 5522455 108 1.33 367 0.35 2.12  30.8 - ok 
151 112a 2585852 5522190 111 1.09 578 0.60 2.42  26.6 5.6 ok 
157 146a 2587324 5522264 70 1.15 600 0.55 5.07  26.3 4.5 ok 
169 104 2586216 5521758 81 1.17 367 0.45 2.60  35.4 4.6 ok 
187 125a2 2585752 5522695 64 1.06 422 0.30 2.52  26.0 4.5 ok 
191 95a 2586627 5522094 80 1.63 411 0.55 2.70  30.3 6.3 ok 
195 149a3 2587387 5523456 93 1.29 356 0.35 2.36  26.3 4.8 ok 
208 162a 2587563 5525251 69 1.09 456 0.40 2.53  31.9 5.0 ok 
218 113b 2585104 5521825 53 1.07 433 0.50 3.27  21.4 - ok 
219 128b 2584541 5521843 68 1.12 589 0.55 1.86  26.7 6.1 ok 
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A1: Plots at Idarwald test site (continued) 

Plot-ID Stand 
number E N Stand age 

[yrs] PBH [m] SD [/ha] CO LAI H [m] CD [m] Comment 

220 118a2 2583737 5520076 87 0.91 722 0.35 2.71  25.0 3.9 ok 
223 101c 2584336 5519335 106 1.21 433 0.35 2.28  27.5 3.9 outside HyMap stripe 
252 106a 2585225 5520983 68 1.07 522 0.55 3.20  25.9 5.5 ok 
254 115a 2584710 5520838 70 1.09 567 0.55 2.28  26.0 5.7 ok 
263 116b 2584361 5520543 10 0.40 2044 0.70 5.22  6.5 - ok 
271 107c 2585159 5520472 90 1.27 389 0.40 2.66  28.2 5.5 ok 
283 69b 2583502 5519911 47 0.98 533 0.55 3.66  23.0 - ok 
292 58a 2583839 5519562 64 1.19 411 0.40 3.35  25.1 5.1 ok 
298 55a2 2583833 5519305 99 1.19 444 0.50 4.01  30.4 5.1 ok 
301 55a3 2583717 5519228 120 1.28 344 0.40 3.06  35.1 6.1 ok 
308 71a 2582893 5519122 20 0.57 1378 0.70 5.16  14.0 - ok 
335 73a 2581995 5518293 44 0.82 955 0.65 4.67  22.2 - ok 
345 73c 2581881 5517925 126 1.49 278 0.40 2.23  36.6 6.3 ok 
361 63a2 2581768 5517253 68 1.10 611 0.50 4.11  25.0 4.5 ok 
389 108b 2584646 5520290 91 1.21 411 0.40 2.76  28.0 6.2 ok 
391 110as 2584138 5519371 100 1.30 378 0.45 3.52  28.6 5.8 ok 
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A2: Plots at Gerolstein test site 

Plot-ID E N Owner Stand  
number 

Stand age  
[yrs] 

Type of  
substrate 

Base  
saturation 

CAB 
[mg/g dry matter] 

CW 
[% dry matter] 

CN 
[% dry matter] 

GS2 2548432 5568600 Rockeskyll 4d 51 BVL high 3.32 132.8 1.16 
GS3 2549121 5568205 Rockeskyll 4b 44 DLB high 3.46 133.2 1.25 
GS4 2548350 5568119 Rockeskyll 4e 55 Kol+ high 3.40 127.3 1.13 
GS8 2550398 5566541 Pelm 20b 48 BVL high 3.62 137.1 1.31 
GS9 2548329 5566132 Pelm 23a 132 KVL very high 2.99 139.5 1.18 
GS10b 2548684 5565191 Pelm 19a 135 KVL very high 3.23 139.5 1.29 
GS16 2549466 5562358 State 307a 99 Vldu low-medium 3.20 148.2 1.23 
GS17 2550294 5563632 Pelm 9b 52 wDLT medium 2.79 140.7 1.08 
GS18 2550071 5563813 Pelm 11a 70 wDLT medium 3.56 144.1 1.26 
GS19 2548682 5564080 Pelm 17d 46 Ssm very low 2.71 122.5 1.08 
GS21 2549041 5564175 Pelm 16b 105 Ssm very low 2.82 125.9 1.08 
GS24 2549699 5563585 Pelm 9c 48 DLsm low 3.20 149.0 1.25 
GS25 2547944 5564210 Private Fam. Moss 50 DLsm low 3.42 134.7 1.22 
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Appendix B: Chemical analysis data 

B1: Needle samples 

Sample CA  
[mg/g dry matter] 

CB  
[mg/g dry matter] 

CAB  
[mg/g dry matter] 

CW 
[% dry matter] 

CN 
[% dry matter] 

GS2-1.1 3.09 1.73 4.82 145.6 1.20 
GS2-1.3 3.74 2.15 5.89 120.7 1.22 
GS2-2.1 2.31 1.46 3.77 145.8 1.15 
GS2-2.3 3.19 2.03 5.22 109.6 1.15 
GS2-3.1 2.72 1.68 4.40 156.5 1.18 
GS2-3.3 3.25 1.96 5.21 118.4 1.06 
GS3-1.1 2.23 0.58 2.81 147.5 1.26 
GS3-1.3 2.63 0.82 3.46 120.4 1.21 
GS3-2.1 2.51 0.61 3.12 161.6 1.29 
GS3-2.3 0.96 1.52 2.49 122.5 1.22 
GS3-3.1 2.43 0.63 3.06 138.4 1.31 
GS3-3.3 2.38 0.68 3.06 108.7 1.19 
GS4-1.1 2.25 0.57 2.82 143.1 1.22 
GS4-1.3 3.41 1.30 4.71 108.5 1.11 
GS4-2.1 2.33 1.32 3.65 143.2 1.01 
GS4-2.3 3.25 1.87 5.12 112.7 1.06 
GS4-3.1 2.45 1.07 3.51 138.6 1.25 
GS4-3.3 3.20 1.65 4.85 117.8 1.13 
GS8-1.1 2.16 0.52 2.68 159.1 1.34 
GS8-1.3 3.32 0.97 4.29 131.5 1.27 
GS8-2.1 2.59 0.69 3.27 155.0 1.40 
GS8-2.3 2.43 0.72 3.15 114.6 1.23 
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B1: Needle samples (continued) 

Sample CA  
[mg/g dry matter] 

CB  
[mg/g dry matter] 

CAB  
[mg/g dry matter] 

CW 
[% dry matter] 

CN 
[% dry matter] 

GS8-3.1 2.37 0.59 2.97 147.4 1.46 
GS8-3.3 2.68 0.79 3.47 114.9 1.16 
GS9-1.1 1.96 0.47 2.43 158.4 1.27 
GS9-1.3 2.38 0.62 2.99 127.8 1.24 
GS9-2.1 1.57 0.39 1.97 151.8 1.00 
GS9-2.3 2.11 0.61 2.72 127.5 1.05 
GS9-3.1 1.90 0.48 2.39 153.0 1.19 
GS9-3.3 2.80 0.86 3.66 118.3 1.30 
GS10b-1.1 1.94 0.51 2.44 146.2 1.31 
GS10b-1.3 2.94 0.96 3.90 113.3 1.34 
GS10b-2.1 1.85 0.46 2.31 156.9 1.33 
GS10b-2.3 2.54 0.76 3.30 129.6 NaN 
GS10b-3.1 1.73 0.42 2.16 166.3 1.26 
GS10b-3.3 2.57 0.74 3.31 124.6 1.22 
GS16-1.1 1.92 0.60 2.52 161.3 1.23 
GS16-1.3 2.26 0.82 3.08 128.2 1.09 
GS16-2.1 1.92 0.51 2.43 153.7 1.19 
GS16-2.3 2.90 1.27 4.17 138.8 1.16 
GS16-3.1 2.19 0.58 2.76 166.7 1.31 
GS16-3.3 2.83 0.91 3.74 140.4 1.37 
GS17-1.1 1.64 0.39 2.03 148.8 1.16 
GS17-1.3 2.24 0.64 2.88 123.5 1.10 
GS17-2.1 1.31 0.40 1.71 136.1 0.91 
GS17-2.3 1.58 0.55 2.13 133.5 0.88 
GS17-3.1 2.70 0.71 3.41 164.2 1.30 
GS17-3.3 2.61 0.90 3.51 138.2 1.11 
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B1: Needle samples (continued) 

Sample CA  
[mg/g dry matter] 

CB  
[mg/g dry matter] 

CAB  
[mg/g dry matter] 

CW 
[% dry matter] 

CN 
[% dry matter] 

GS18-1.1 2.10 0.54 2.64 155.0 1.18 
GS18-1.3 2.64 0.81 3.45 128.7 1.13 
GS18-2.1 2.28 0.62 2.91 169.2 1.40 
GS18-2.3 3.11 0.95 4.06 127.5 1.28 
GS18-3.1 2.50 0.70 3.20 146.2 1.32 
GS18-3.3 2.83 0.85 3.68 138.0 1.24 
GS19-1.1 1.62 0.40 2.02 126.2 0.98 
GS19-1.3 2.06 0.61 2.66 113.7 1.07 
GS19-2.1 1.99 0.51 2.50 141.2 1.16 
GS19-2.3 2.13 0.61 2.74 112.7 1.06 
GS19-3.1 1.75 0.45 2.19 130.6 1.12 
GS19-3.3 2.22 0.66 2.88 110.4 1.06 
GS21-1.1 2.16 0.54 2.70 137.4 1.17 
GS21-1.3 2.70 0.80 3.50 112.5 1.09 
GS21-2.1 1.76 0.45 2.21 142.4 1.09 
GS21-2.3 2.11 0.64 2.74 107.9 1.06 
GS21-3.1 1.66 0.48 2.14 138.7 1.07 
GS21-3.3 1.76 0.53 2.29 116.6 0.99 
GS24-1.1 1.90 0.45 2.36 163.2 1.29 
GS24-1.3 2.39 0.74 3.13 129.0 1.19 
GS24-2.1 2.35 0.62 2.97 150.4 1.32 
GS24-2.3 2.46 0.69 3.15 141.8 1.22 
GS24-3.1 2.20 0.57 2.76 170.8 1.28 
GS24-3.3 2.51 0.74 3.24 138.6 1.18 
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Appendix C: Matlab code 

C1: INFORM model 
% _____________________________________________________________________________________________________________ 
 
function [r_forest,r_soil,r_understorey,r_c_inf,co,C,G,r_needle,t_needle,t_s,t_o]= ... 
    inform_liberty(PARA_LIBERTY,PARA_INFORM,teta_o,teta_s,phi,skyl,r_soil,r_wood,data,liberty_data_hymap); 
 
% INFORM_LIBERTY - The INvertible FOrest Reflectance Model coupled with LIBERTY 
 
% INFORM (Atzberger, 2000; Schlerf&Atzberger, 2005) simulates the bi-directional reflectance  
% of forest stands between 400 and 2500 nm. INFORM is essentially an innovative combination of  
% FLIM (Rosema et al., 1992), SAIL (Verhoef, 1984), and PROSPECT (Jacquemoud & Baret, 1990) or  
% LIBERTY (Dawson et al., 1998). 
 
% Atzberger, C. 2000: Development of an invertible forest reflectance model: The INFORM-Model.  
% In: Buchroithner (Ed.): A decade of trans-european remote sensing cooperation. Proceedings  
% of the 20th EARSeL Symposium Dresden, Germany, 14.-16. June 2000: 39-44. 
 
% Schlerf, M. & Atzberger, C. (2005): Inversion of a forest reflectance model to estimate biophysical  
% canopy variables from hyperspectral remote sensing data. Submitted to Remote Sensing of Environment. 
 
% Rosema, A., Verhoef, W., Noorbergen, H. 1992: A new forest light interaction model in support of forest  
% monitoring. Remote Sensing of Environment, 42: 23-41. 
 
% Jacquemoud, F. & Baret, F. 1990: PROSPECT: A model of leaf optical properties spectra. Remote Sensing of  
% Environment, 34: 75-91. 
 
% Dawson, T. P., Curran, P. J., Plummer, S. E. 1998: LIBERTY - Modeling the effects of leaf biochemical  
% concentration on reflectance spectra. Remote Sensing of Environment, 65: 50-60. 
 
% Verhoef, W. 1984: Light scattering by leaf layers with application to canopy reflectance modeling: The  
% SAIL model. Remote Sensing of Environment, 16: 125-141. 
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C1: INFORM model (continued) 
% Basic version of INFORM: Clement Atzberger, 1999 
% Implementation of LIBERTY: Sebastian Mader, 2002 
% INFORM modifications and validation: Martin Schlerf, 2004 
% _____________________________________________________________________________________________________________% SUBROUTINES 
%  
% M-File                    Function 
% sail_background.m         SAIL-PROSPECT-SOIL to compute background reflectance          
% sail_inf.m                SAIL-PROSPECT-SOIL to compute infinite crown reflectance 
% sail_t_s.m                SAIL-PROSPECT-SOIL to compute crown transmittance for sun direction 
% sail_t_o.m                SAIL-PROSPECT-SOIL to compute crown transmittance for observation direction    
% liberty.m                 Needle reflectance model LIBERTY 
% prospect.m                Learf reflecance model PROSPECT (to compute understorey leaf reflectance) 
% S13AAF.M                  Integral 
% TAV.M                     Refraction index 
% _____________________________________________________________________________________________________________ 
 
% INPUT VARIABLES 
 
% PARA_LIBERTY: Needle Input Parameters 
 
% Variable Designation Unit Default value 
% Cell diameter d µm 40 
% Intercellular air space i arbitrary 0.045 
% Leaf thickness t arbitrary 1.6 
% Baseline absorption b arbitrary 0.0006 
% Albino absorption a arbitrary 2 
% Chlorophyll content cab mg m-2 200 
% Water content cw g m-2 100 
% Lignin and cellulose content cl g m-2 40 
% Nitrogen content cp g m-2 1 
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C1: INFORM model (continued) 
% PARA_INFORM: Canopy Input Parameters 
 
% Variable Designation Unit Default value 
% Single tree leaf area index lai m2 m-2 7 
% Leaf area index of understorey laiu m2 m-2 0.1 
% PROSPECT parameter vaiprosu arbitrary 2 
% Stem density sd ha-1 650 
% Tree height h m 20 
% Crown diameter cd m 4.5 
% Average leaf angle of tree canopy ala deg 55 
% Scale factor for soil reflectance scale fraction 1 
 
% External Input Parameters 
 
% Variable Designation Unit Default value 
% Sun zenith angle  teta_s deg 30 
% Observation zenith angle  teta_o deg 0 
% Azimuth angle phi deg 0 
% Fraction of diffuse radiation skyl fraction 0.1 
 
% Other Input Data 
 
% Variable Designation 
% r_soil Soil spectrum 
% data  PROSPECT coefficients resampled to HyMap wavebands 
% liberty_data_hymap  LIBERTY coefficients resampled to HyMap wavebands 
% _____________________________________________________________________________________________________________ 
 
% OUTPUT VARIABLES 
 
% Variable                           Designation 
% Forest reflectance                    r_forest 
% Soil reflectance                      r_soil                                 
% Understorey reflectance               r_understorey 
% Infinite canopy reflectance           r_c_inf 
% Canopy cover                         co 
% Crown factor                          C 
% Ground factor                         G



APPENDIX C  198 

C1: INFORM model (continued) 
% Needle reflectance                    r_needle 
% Needle transmittance                  t_needle 
% Crown transmittance for teta_s        t_s 
% Crown transmittance for teta_o        t_o 
% _____________________________________________________________________________________________________________ 
 
lai=PARA_INFORM(1); 
laiu=PARA_INFORM(2); 
vaiprosu=PARA_INFORM(4); 
sd=PARA_INFORM(6); 
h=PARA_INFORM(7); 
cd=PARA_INFORM(8); 
ala=PARA_INFORM(9); 
scale=PARA_INFORM(10); 
 
% _____________________________________________________________________________________________________________ 
 
% Computation of spectral components (SAIL, PROSPECT, LIBERTY models) 
 
% Scaling of soil spectrum (to account for effects due to shadow and soil moisture) 
r_soil=scale*r_soil; 
    
% Computation of understorey reflectance for dicotyledoneae (ala=45, hot=0, cab=30, cw=0.05, N=2.5) 
r_understorey=sail_background(laiu,45,0,30,0.05,vaiprosu,teta_o,teta_s,phi,skyl,r_soil,data); 
 
% Computation of needle reflecance and transmittance for HyMap wavebands by LIBERTY 
% [r_needle,t_needle]=liberty(PARA_LIBERTY', liberty_data_hymap); 
[rt]=prospect(1.2,40,0.015,data); r_needle=rt(:,1); t_needle=rt(:,2); 
 
% Computation of infinitive crown reflectance for a very dense forest canopy with LAI=15 (hot=0, N=1.5)  
r_c_inf=sail_inf(15,ala,0,teta_o,teta_s,phi,skyl,r_understorey,r_needle,t_needle); 
% _____________________________________________________________________________________________________________ 
 
% Ground coverage (FLIM model) 
 
% Computation of the average horizontal area of a single tree crown in hectare (k) corrected by the factor 'adapt'.
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C1: INFORM model (continued) 
% 'adapt' was adjusted in such a way, that modelled values of 'co'agreed with measured values of 'co' for a given  
% stand structure (as defined by 'cd' and 'sd'). To compare measured with modelled stands for certain values of canopy  
% lai (lai_c), an empirical relation between 'lai_c' and 'co' was derived from field data at Idarwald site 
% (co=0.078*lai_c+0.23, n=40). 
 
% adapt=1; % no correction 
adapt=0.6; 
 
k=adapt*(pi*(cd/2).^2)/10000; 
 
% angles (degree) to angles (radian) 
teta_o=teta_o*pi/180; 
teta_s=teta_s*pi/180; 
phi=phi*pi/180; 
 
% Observed ground coverage  by crowns (co) under observation zenith angle teta_o 
co=1-exp(-k*sd/cos(teta_o)); 
 
% Ground coverage by shadow (cs) under a solar zenith angle teta_s  
cs=1-exp(-k*sd/cos(teta_s)); 
 
% Geometrical factor (g) depending on the illumination and viewing geometry 
g=((tan(teta_o)).^2+(tan(teta_s)).^2-2*tan(teta_o)*tan(teta_s)*cos(phi)).^(0.5); 
 
% Correlation coefficient (p) 
p=exp(-g*h/cd); 
 
% _____________________________________________________________________________________________________________ 
 
% Ground surface fractions (FLIM model) 
 
% Tree crowns with shadowed background (Fcd) 
Fcd=co*cs+p*(co*(1-co)*cs*(1-cs)).^(0.5); 
 
% Tree crowns with sunlit background (Fcs) 
Fcs=co*(1-cs)-p*(co*(1-co)*cs*(1-cs)).^(0.5) 
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C1: INFORM model (continued) 
 
% Shadowed open space (Fod) 
Fod=(1-co)*cs-p*(co*(1-co)*cs*(1-cs)).^(0.5); 
         
% Sunlit open space (Fos) 
Fos=(1-co)*(1-cs)+p*(co*(1-co)*cs*(1-cs)).^(0.5); 
 
% _____________________________________________________________________________________________________________ 
 
% Crown transmittance (SAIL model) 
 
% Angles (radian) to angles (degree) 
teta_s=teta_s*180/pi; 
teta_o=teta_o*180/pi; 
% Crown transmittance in sun direction (t_s) 
t_s=sail_t_s(lai,ala,0,teta_s,skyl,r_understorey,teta_o,phi,r_needle,t_needle); 
 
% Crown transmittance in observation direction (t_o) 
t_o=sail_t_o(lai,ala,0,teta_o,skyl,r_understorey,teta_s,phi,r_needle,t_needle); 
 
% _____________________________________________________________________________________________________________ 
 
% Forest reflectance (FLIM model) 
 
% Ground factor (G); that is ground contribution to scene reflectance 
G=Fcd.*t_s.*t_o+Fcs.*t_o+Fod.*t_s+Fos; 
 
% Crown factor (C); that is crown contribution to scene reflectance 
C=(1-t_s.*t_o)*cs*co;  % Original formula 
 
% Forest reflectance 
r_forest=r_c_inf.*C+r_understorey.*G; 
% _____________________________________________________________________________________________________________ 
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C2: Inversion routine 
% _____________________________________________________________________________________________________________ 
 
% NN_INFORM 
% Matlab Neural Network Toolbox 4, page 5-66 - 5-70 
% 24.08.04 
% Martin Schlerf 
 
% Load calibration data 
% PARA_INFORM: Simulated INFORM parameters 
% R_FOREST: Simulated forest canopy reflectances 
% lambda: HyMap wavebands 
load data_cal 
 
% Load validation parameters (LAI_val, CO_val, SD_val) and 
% HyMap spectra (r) 
load data_val 
 
% Position of varying parameters 
Par=[1 6 8]; 
 
% Define target 
t=PARA_INFORM(:,Par)'; 
 
% Pre-standardise target 
[tn,meant,stdt]=prestd(t); 
 
%Divide target into training and test subsets 
Q=length(tn); 
iitr=[1:4:Q 3:4:Q]; 
iite=[2:4:Q 4:4:Q]; 
ttr=tn(:,iitr); 
test.T=tn(:,iite); 
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C2: Inversion routine (continued) 
% Define wavebands 
wl=[837.2 1148.4]; 
 
for K=1:length(wl) 
    pos(K)=find(lambda==wl(K)); 
end 
 
% Define input vector 
p=R_FOREST(pos,:); 
 
% Pre-standardise input 
[pn,meanp,stdp]=prestd(p); 
 
%Divide input into training and test subsets 
test.P=pn(:,iite); 
ptr=pn(:,iitr);  
% _____________________________________________________________________________________________________________ 
 
% Network architecture: 2-layer network, tan-sigmoidal transfer 
% function in the hidden layer, linear transfer function in the  
% output layer, 1 neurons in the hidden layer, 3 output neurons 
% (3 parameters to be estimated), resilient backpropagation algorithm 
% (RPROP) for training. 
net=newff(minmax(ptr),[1 3],{'tansig' 'purelin'},'trainrp'); 
 
% Definition of additional training specifications 
net.trainParam.show=5; 
net.trainParam.epochs=5000; 
 
% Train network 
[net,tr]=train(net,ptr,ttr,[],[],test,[]); 
 
% Pre-standardise HyMap reflectances 
[rn]=trastd(r(pos,:),meanp,stdp); 
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C2: Inversion routine (continued) 
% Estimation of parameters 
an=sim(net,rn); 
 
% Unnormalise estimated parameters 
[a]=poststd(an,meant,stdt); 
% _____________________________________________________________________________________________________________ 
 
% Compute CO (crown cover) from SD (stem density) and CD (crown diameter) 
adapt=0.6; 
teta_o=0; teta_o=teta_o*pi/180; 
teta_s=30; teta_s=teta_s*pi/180; 
phi=0; 
CD_est=a(3,:); 
k=adapt*(pi*(CD_est/2).^2)/10000; 
SD_est=a(2,:); 
CO_est=1-exp(-k*SD_est/cos(teta_o)); 
LAI_est=a(1,:).*CO; 
% _____________________________________________________________________________________________________________ 
 
% Compute validation statistics 
r2_LAI=corrcoef(LAI_est,LAI_val).^2;r2_LAI=r2_LAI(1,2); 
rmse_LAI=(mean((LAI_est-LAI_val).^2))^0.5; 
r2_CO=corrcoef(CO_est,CO_val).^2;r2_CO=r2_CO(1,2); 
rmse_CO=(mean((CO_est-CO_val).^2))^0.5; 
r2_SD=corrcoef(SD_est,SD_val).^2;r2_SD=r2_SD(1,2); 
rmse_SD=(mean((SD_est-SD_val).^2))^0.5; 
% _____________________________________________________________________________________________________________ 
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