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Datum der Disputation: 31.03.2023





Academic Career of the Author

08/2019 – 10/2022 Mitglied des Graduiertenkollegs
”
Algorithmic Optimization“

07/2019 Master of Science Angewandte Mathematik

10/2017 – 07/2019 Studium der Angewandten Mathematik
an der Universität Trier

09/2017 Bachelor of Science Mathematik

10/2014 – 09/2017 Studium der Mathematik
an der Georg-August-Universität Göttingen

04/2014 – 09/2014 Studium der Wirtschaftsmathematik
an der Philipps-Universität Marburg

06/2013 Abitur

08/2005 – 06/2013 Kaiserin-Friedrich-Gymnasium in Bad Homburg vor der Höhe





Summary

The publication of statistical databases is regulated by law, e.g. national statistical
offices are only allowed to publish data if the data cannot be attributed to individuals.
However, the information loss due to anonymization should be kept minimal. In this
thesis, we analyze the anonymization method used in the German census in 2011 and
we propose a new anonymization method for nominal data including integer program-
ming. The proposed method replaces data rows in a microdata set with representative
values, such that k-anonymity is satisfied, i.e. each data row is identical to at least
k − 1 other rows. This new method is particularly suited for nominal data because
it includes next to the overall dissimilarities of the data rows also errors in resulting
frequency tables, which are of high interest for nominal data in practice.

First, we study the anonymization method SAFE, which was used in the last Ger-
man census in 2011. The underlying SAFE-basic problem aims to minimize the max-
imum error in a subset of frequency tables. We prove that a fundamental variant
of the SAFE-basic problem is NP-hard already, which justifies the use of heuristic
approaches for larger data sets. Moreover, we find that SAFE takes additional criteria
into account like the mean error in frequency tables or the deviation from the original
microdata set, which are not addressed in the SAFE-basic problem. Therefore, we
propose a modification of the SAFE-basic problem. Our findings and the strength
of this proposed modification are underlined by our experimental results, in which
SAFE and the modified variant outperform the SAFE-basic problem with respect to
maximum absolute and relative errors and χ2-errors.

In the second part of this thesis, we propose a new method for microaggregation,
which is tailored to nominal data. This method follows a typical two-step structure of
first partitioning the data set in clusters with at least k elements, which are as similar
as possible to each other, and then replacing all cluster elements with representative
values to obtain k-anonymity. For the partitioning step, we point out that in con-
trast to numerical data, for nominal data, it is not sufficient to minimize distances
between cluster elements and potential representatives but the distances between each
pair of cluster elements have to be taken into account to find clusters with minimum
dissimilarities. The proposed method respects these findings and is based on an in-



teger program with variables for all clusters with k to 2k − 1 elements, which can be
formulated as

minx∈{0,1}C
∑
C∈C

wCxC

s.t.
∑
C∈C

aiCxC = 1 ∀i ∈ I,

where I is the index set of the data rows, C ⊂ 2I the set of possible clusters, wC the sum
of Hamming-distances between each pair of data points in cluster C and aiC ∈ {0, 1}
indicates whether data row i is contained in cluster C. The linear relaxation of this
problem is suitable for a column generation scheme and leads to a fractional solution.
Based on the dual information provided by a fractional solution, we construct an
integer solution to the partitioning problem above. The basic idea is to add clusters
iteratively until each data row is assigned to exactly one cluster. The added cluster is
chosen, such that it minimizes an auxiliary problem and contains only not yet assigned
data rows. This auxiliary problem is motivated by the minimization of the duality gap
and includes two parameters. The first parameter weights the dual information and the
second parameter rewards clusters of larger size. Our computational experiments show
that the inclusion of dual information for finding an integer solution is beneficial but
should not be overemphasized. Similarly, the size of the clusters should not dominate
the similarity of cluster elements. Furthermore, our experiments demonstrate that the
better the quality of a solution to the partitioning problem the lower the information
loss after anonymization.

For the aggregation step, we present a mixed-integer problem formulation to find
cluster representatives. To this end, we take errors in a subset of frequency tables into
account because frequency tables are of particular interest for nominal data in practice.
Since all clusters contribute jointly to the entries of the frequency tables, the selection
of a cluster representative depends on all clusters for nominal data, which differs from
microaggregation of numerical data. The objective of the proposed formulation is the
minimization of the sum of χ2-errors in frequency tables while staying as close as pos-
sible to the original microdata set. We only allow cluster elements as representatives
instead of artificial combinations to prevent unreasonable combinations. Furthermore,
we reformulate the problem to a minimum edge-weighted maximal clique problem in a
multipartite graph. With this reformulation, we allow for a different view angle, which
is useful to design heuristic approaches. We propose a greedy algorithm and a clique
heuristic based on the reformulation to approach the aggregation problem. While the
greedy algorithm requires shorter runtimes, the performance of the clique heuristic
shows its strength if the partitioning has a high quality. Moreover, we formulate a
mixed-integer program, which combines the partitioning and the aggregation step and
aims to minimize the sum of χ2-errors in frequency tables.

Our experimental study presents particularly strong results of the proposed method
with respect to relative criteria, the maximum relative error and the sum of χ2-errors,
in most cases. With respect to the maximum absolute error, the SAFE method shows



its strength. In regression analysis, SAFE and the proposed method are competitive
with the exact solving of the formulated mixed-integer program, which combines both
steps.

We conclude that the inclusion of integer programming in the context of data
anonymization is a promising direction to reduce the inevitable information loss through
anonymization particularly for nominal data.
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Chapter 1
Introduction

National statistical offices are required to protect privacy when publishing data. Typ-
ically, these confidentiality rules are regulated by law. For example, in Germany,
§16 ii BStatG states that data for federal statistics can only be released if they cannot
be attributed to individuals. The subject of dealing with data anonymization is called
Statistical Disclosure Control (SDC). Anonymization methods face two challenges. On
the one hand, they must ensure the confidentiality for individual data. On the other
hand, the information loss should be kept minimal to preserve data utility.

In general, anonymization is required for different types of data, e.g. dynamic data
sets and static data sets. Here, we focus on census data, which are collected once every
ten years and, thus, are static data. For a census, categorical data are of high interest
and, typically, frequency tables are published that count the number of individuals,
which meet certain properties.

This thesis addresses the question, how privacy-preserving data can be constructed
using Integer Optimization methods to minimize the information loss. The focus is on
nominal data and the resulting errors in frequency tables, which are of high interest
for the practical use of the data.

1.1. Mathematical Background and Notation

A microdata set is a collection of data records, which correspond to individual statis-
tical objects, e.g. people or households. These records are collected, for example, in
the census and contain various attributes. An attribute is a characteristic or feature,
e.g. ZIP code, which can take different values, e.g. 54296. Survey attributes can be
divided into identifiers, quasi-identifiers, confidential attributes and non-confidential
attributes. Identifiers uniquely identify an individual statistical object, e.g. personal
ID number. In a first step of anonymization, these identifiers are deleted from a mi-
crodata set. In consequence, we assume that the given microdata set does not contain
any identifiers. Quasi-identifiers are attributes, which can be used together to disclose
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1. Introduction

identity, e.g. ZIP code, date of birth, sex. Confidential attributes contain sensitive
information, e.g. medical diagnosis. Non-confidential attributes contain non-sensitive
information and are therefore considered to not need protection. This thesis focuses
on the handling of quasi-identifiers. To ensure privacy, it is necessary to ensure that
quasi-identifiers cannot be used for re-identification.

Alternatively, survey attributes can be divided into numerical (quantitative) and
categorical (qualitative) attributes. Categorical attributes are variables with a finite
set of values. They can be further divided into nominal and ordinal attributes. Nom-
inal data consist of unordered categories, while ordinal data include categories with
an intrinsic order or ranking. In our research, we focus on nominal attributes, which
do not have any natural order in contrast to ordinal attributes.

We denote the set of nominal attributes by J = {1, . . . , m}. Since categorical
attributes have a finite set of values, we can represent the values by natural numbers.
We denote by V (j) ⊂ N the domain of attribute j ∈ J , i.e. a finite set of unique
attribute values. We define V :=×j∈J V (j) = V (1)× · · · × V (m) to be the set of all
value combinations. Then, a data vector corresponding to a statistical object can be
represented as an m-tuple drawn from V . Later, we will often refer to a statistical
object by its value combinations and use the set notation to group objects. While
technical correctness would require the addition of unique identifiers to the tuples
for element distinctiveness, we choose to simplify the notation for better readability
by omitting these identifiers. We denote the set of statistical objects, e.g. people or
households, by I = {1, . . . , n}.

We will use two different data representations. First, we use the common form of a
microdata table. A microdata table Y 0 ∈ V n is a table, where each row corresponds to
a statistical object and each column corresponds to an attribute. An entry Y 0

ij ∈ V (j)
equals the value of statistical object i ∈ I for attribute j ∈ J . We denote the number
of unique combinations of attribute values by ñ = ∏

j∈J |V (j)|. Secondly, we also use
a frequency vector y0 ∈ Nñ

0 . A frequency vector shows the frequency of occurrence
of a combination of attribute values in the data. An entry y0

l equals the number
of occurrences of combination l = (v1, . . . , vm) ∈ V . The microdata set can also be
represented by a frequency vector only containing the non-zero entries of y0, if support
is specified.

In the following, we illustrate the notations with an example.

Example 1.1.1. We consider a survey, which asks n = 5 people about the attributes
J = {sex, citizenship, working status}. Let the domains of the attributes be V (sex) =
{female, male}, V (citizenship) = {Germany, Others}, and V (working status) = {em-
ployed, unemployed, inactive}. In Figure 1.1 we show an exemplary data set in the
described representations, a microdata table (1.1a), a frequency vector (1.1b) and
a frequency vector in abbreviated form (1.1c). The non-abbreviated frequency vec-
tor consists of ñ = 12 = 2 · 2 · 3 entries, which equals the number of unique value
combinations.
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1.1 Mathematical Background and Notation

Sex Citizenship Working status

female Germany employed
female Germany inactive
female Germany employed
male Others inactive
male Germany unemployed

(a) Microdata table Y 0.



2
0
1
0
0
0
0
1
0
0
0
1



female,Germany,employed

female,Germany,unemployed

female,Germany,inactive

female,Others,employed

female,Others,unemployed

female,Others,inactive

male,Germany,employed

male,Germany,unemployed

male,Germany,inactive

male,Others,employed

male,Others,unemployed

male,Others,inactive

(b) Frequency vector y0.

2
1
1
1

 f,G,e

f,G,i

m,G,u

m,O,i

(c) Abbre-
viated
frequency
vector.

Figure 1.1.: Forms of microdata presentation.

A commonly used concept to define anonymous data is given by k-anonymity, which
was proposed by Sweeney (2002). The basic idea is to prohibit rare or even unique data
rows and edit the microdata set such that each existing combination of attributes oc-
curs at least k times in the microdata set. Unique or very rare attribute combinations
are considered most at risk because they might be linked to individuals and therefore
violate privacy. The main advantage of k-anonymity is that these combinations are
prevented. The property of k-anonymity is defined as follows.

Definition 1.1.2 (k-Anonymity, Sweeney, 2002). A microdata table Y 0 is said to be
k-anonymous if each row Y 0

i∗ is identical to at least k − 1 other rows. A frequency
vector y0 is called k-anonymous if for each entry y0

l is either y0
l = 0 or y0

l ≥ k.

Note that a microdata set is not k-anonymous if there is at least one data record,
which does not fulfill the property described above. We call a data record, for which
the k-anonymity property does not hold, a confidentiality problem. With respect to Ex-
ample 1.1.1, for k = 2, the data records (female, Germany, inactive), (male, Germany,
unemployed) and (male, Others, inactive) are confidentiality problems. Figure 1.2
shows an example of a 2-anonymous microdata set represented as a microdata table
(1.2a) and a frequency vector (1.2b).

A very important tool for categorical data are frequency tables. A frequency table
displays the absolute or relative frequencies of combinations of specific attributes and
is of high interest especially for census data. In this thesis, we use frequency tables
with absolute frequencies.

Definition 1.1.3 (Frequency table). Let {j1, . . . , jd} ⊆ J be a set of categorical
attributes. A frequency table t, also called a contingency table, is a table consisting
of ∏d

h=1 |V (jh)| table cells, i.e. the number of unique value combinations with respect
to a subset of attributes. A table cell is defined by a combination of attribute values

3



1. Introduction

Sex Citizenship Working status

female Germany employed
male Germany inactive
female Germany employed
male Germany inactive
male Germany inactive

(a) A 2-anonymous microdata table.



2
0
0
0
0
0
0
3
0
0
0
0



female,Germany,employed

female,Germany,unemployed

female,Germany,inactive

female,others,employed

female,others,unemployed

female,others,inactive

male,Germany,employed

male,Germany,unemployed

male,Germany,inactive

male,others,employed

male,others,unemployed

male,others,inactive

(b) A 2-anonymous frequency vector.

Figure 1.2.: An illustrative 2-anonymous microdata set.

(v̄j1 , . . . , v̄jd
) ∈ V (j1) × · · · × V (jd) and shows the frequency of its occurrence in the

microdata set, which is as follows.

a) Given a microdata table Y 0, the entry for (v̄j1 , . . . , v̄jd
) is given by

|{i ∈ I : Y 0
ijh

= v̄jh
for all h = 1, . . . , d}|.

b) In the notation of a frequency vector y0, the entry equals the sum over all entries
y0

l with l = (v1, . . . , vm), such that vjh
= v̄jh

for all h = 1, . . . , d.

As described in the definition above, a frequency table is defined by a set of at-
tributes. The number of attributes defines the dimension of the frequency table.

Definition 1.1.4 (Dimension of a frequency table). Let {j1, . . . , jd} ⊆ J be the set
of attributes that describe a frequency table. Then, the frequency table is called
d-dimensional.

For illustration purposes, the following example shows frequency tables correspond-
ing to the microdata set from Example 1.1.1.

Example 1.1.5. The microdata set in Example 1.1.1 contains three attributes. There-
fore, three 1-dimensional frequency tables, three 2-dimensional frequency tables, and
one 3-dimensional frequency table exist. Figure 1.3 shows examples for frequency
tables.

In general, frequency tables are only useful for categorical data. In contrast to
nominal data, numerical attributes have many different values and, therefore, fre-
quency tables are in general not useful unless the data is grouped into ranges of val-
ues, i.e. transformed into categorical data. Next, we describe properties of frequency
tables. A frequency table is limited to a subset of attributes but includes all possible
combinations within this subset. Therefore, each data row is counted in exactly one

4



1.2 Literature Review

Sex Counts
female 3
male 2

(a) A 1-dimensional frequency table.

Working status

Sex employed unemployed inactive
female 2 0 1
male 0 1 1

(b) A 2-dimensional frequency table.

Figure 1.3.: Exemplary frequency tables corresponding to Example 1.1.1.

table cell. Thus, the sum over all cell entries equals the total number of statistical
objects n. Furthermore, an m-dimensional table includes all attributes and is there-
fore equivalent to the frequency vector y0, which was defined previously. Frequency
tables can also be defined to include marginal sums, which sum rows and columns,
respectively. However, this is equivalent to a corresponding lower dimensional table.
Therefore, we neglect marginal sums. For each subset of attributes, a corresponding
frequency table can be created. Therefore,

(m
d

)
frequency tables of dimension d can

be generated from a data set including m attributes. In total, ∑m
d=1

(m
d

)
= 2m − 1

frequency tables correspond to a microdata set.
Furthermore, we are working with the dissimilarity between data records. For nom-

inal data, there is no natural distance like the Euclidean distance for numerical data.
Instead of the Euclidean distance, we use the Hamming distance, which counts in-
equalities of two data rows. Let

δ(Y 0
ij , Y 0

lj) :=
{

1, if Y 0
ij ̸= Y 0

lj ,

0, if Y 0
ij = Y 0

lj .
(1.1.1)

Then, the Hamming-distance is defined as follows.

Definition 1.1.6 (Hamming-distance). The Hamming distance between two vectors
Y 0

i∗ and Y 0
l∗ is defined by

wil :=
∑
j∈J

δ(Y 0
ij , Y 0

lj).

We will work with clustering

1.2. Literature Review

1.2.1. Different Anonymization Approaches

The definition of anonymity is a central aspect when discussing anonymization ap-
proaches. In Section 1.1, we gave a definition of the common concept of k-anonymity,
which was introduced by Sweeney (2002). This approach ensures that there is no
unique or very rare data record in the published microdata set. A microdata set is
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1. Introduction

k-anonymous if each data record is identical to at least k − 1 other records. In recent
years, another approach to anonymity has also gained in interest, which is called differ-
ential privacy. The basic idea of differential privacy is that the conclusions, which can
be drawn from the analysis of a data set, should be independent of whether the data
of an individual are included in the data set or are not included. To this end, noise is
added to the data so that a response when an individual record is included in the data
set is almost as likely as the same response when the individual record is not included.
The first main contributions to this field come from Dinur and Nissim (2003), Dwork
and Nissim (2004) and Dwork et al. (2006). Dwork (2008) describe the development of
differential privacy from semantic security in cryptosystems (Goldwasser and Micali,
1984) to the usage in statistical disclosure control. However, Clifton and Tassa (2013)
point out that differential privacy cannot replace k-anonymity and vice versa. They
argue that k-anonymity is used to publish anonymized data regardless of the type of
analysis and queries, which are performed on the data by any users. In contrast to
that, differential privacy is originally devised for queries, which have to be known in
advance, and is therefore classically embedded in the field of data mining instead of
data publishing. Later, differential privacy was extended to the field of data publish-
ing, as summarized by Zhu et al. (2017). However, Zigomitros et al. (2020) expose that
there are still some challenges with respect to the efficiency of using differential pri-
vacy as privacy-preserving method to publish microdata sets. In this thesis, we focus
on k-anonymity because it is frequently used, e.g. in the German census in 2011, and
allows the publication of microdata sets for general purposes with reasonable benefit.

Next, we provide an overview of different approaches to anonymize data as described
by Hundepool et al. (2012), Willenborg and De Waal (2012) and Domingo-Ferrer et
al. (2016). Mainly, anonymization approaches can be divided into perturbative and
non-perturbative methods and into methods on the level of frequency tables and on
the level of microdata.

As discussed by di Vimercati et al. (2011), in the past, data were mostly published in
aggregated form, i.e. as macrodata. For categorical data, frequency tables are a typical
aggregated form. Later, however, anonymization on the level of microdata became
research focus, since it allows for more flexibility. Users can perform any analysis on
published microdata and are not restricted to the aggregated information, which is
provided by published macrodata. In this thesis, we focus on the anonymization on
microdata level.

Perturbative methods modify the original microdata set to ensure anonymity. In-
stead of the original microdata set the perturbed data are released. Typically, these
methods aim to ensure that statistics computed on the modified data are close to the
statistics computed on the original data. Contrarily, non-perturbative methods do not
alter data and, thus, whenever a value is published, it is consistent with the truth.
Here, anonymity is ensured by suppressing some of the information or by reducing the
detail of information.

For k-anonymity, the non-perturbative methods suppression and generalization were
first used as illustrated by Samarati and Sweeney (1998). Suppression methods hide

6



1.2 Literature Review

certain values. Intuitively, the fewer values are suppressed, the less information is lost.
Note that it is not sufficient to suppress only sensitive values to prevent recalculation
of the original values from the published entries. To find an optimal suppression on
frequency tables, several strategies exist, e.g. by Kelly et al. (1992), Cox (1995), and
Fischetti and Salazar (2001). In contrast to suppression methods, which lead to a
total information loss for certain values, generalization methods reduce the detail of
the published information. To this end, in generalization methods, values are replaced
by truthful but more general values. Note that generalizing (or recoding) to the most
general value is equivalent to suppression. The less generalized and the more specific
the published values, the less information is lost. There are several works on global
recoding, e.g. by Bayardo and Agrawal (2005) and Fung et al. (2005), and on local
recoding, e.g. by Sweeney (2002), LeFevre et al. (2005) and Xu et al. (2006). Moreover,
suppression and generalization can also be combined to reduce the information loss as
proposed by Samarati and Sweeney (1998) and Hurkens and Tiourine (1998).

Machanavajjhala et al. (2007) point out privacy issues, which can arise from ho-
mogeneity attacks (attribute disclosure) and background knowledge attacks, when
non-perturbative methods like generalization and suppression are used to obtain k-
anonymous data. In the first scenario, problems arise when all entities in the same
group are originally identical and, thus, even without re-identification of a person, the
true value can be revealed if a person can be clearly assigned to a group. Background
knowledge might be exploited to exclude some values and thus infer the true value.
To overcome these issues, Machanavajjhala et al. (2007) extend the concept of k-
anonymity to l-diversity, which requires at least l distinct “well-represented” sensitive
values in each equivalence class, and Li et al. (2007) propose t-closeness as a further
extension, which requires the distance between the distribution of sensitive values in
each equivalence class and in the whole data set to remain below threshold t. How-
ever, these problems can also be circumvented by using perturbative methods. When
perturbative methods are used, a user does not know which of the values are truthful
and therefore cannot draw any conclusions with certainty from k-anonymous data.
Therefore, in this work we focus on a perturbative method to obtain k-anonymity.

Another aspect for anonymization methods is the kind of data. Some methods,
which are suitable for numerical data, cannot be applied to categorical data and vice
versa. Domingo-Ferrer (2008) provides an overview over anonymization methods for
numerical and for categorical variables. The most common perturbative methods for
numerical variables are noise addition (Brand, 2002), microaggregation (Domingo-
Ferrer and Torra, 2005), rank swapping (Dalenius and Reiss, 1982), rounding (Cox &
Ernst, 1982), and resampling (Domingo-Ferrer and Mateo-Sanz, 1999 and Domingo-
Ferrer, 2008). For categorical variables, the most common perturbative methods are
rank swapping (Moore, 1996), PRAM (Post Randomization Method; Kooiman, 1997),
MASSC (Micro Agglomeration, Substitution, Subsampling and Calibration; Singh et
al., 2004), and microaggregation (Torra, 2004). In this thesis, we focus on a microag-
gregation procedure.
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1. Introduction

1.2.2. Clustering and Microaggregation

Microaggregation is a popular perturbative method to obtain k-anonymous microdata.
The main idea is to partition the microdata set into clusters of size greater than or
equal to k. Then, in each cluster, the individual data records are substituted by
the same values. By this substitution, all records in the cluster coincide with each
other and, therefore, k-anonymity holds. In this section, we first describe clustering
problems, which are related to the partitioning problem since they also aim to partition
the microdata set into clusters of similar data rows. Clustering problems were first
introduced for numerical data and only later, extensions on categorical data were
studied. Then, we highlight the differences between clustering and microaggregation.
Similar to clustering, microaggregation procedures were developed for numerical data
first and then extended to categorical data.

It is common to divide the microaggregation process into two steps, the partitioning
and the aggregation step. In the partitioning step, the aim is to assign the data
vectors, such that the clusters are homogeneous, i.e. contain similar data vectors.
The partitioning step is reminiscent of clustering problems such as the well-known
c-means clustering problem1 for numerical data. Both tasks consist of dividing a data
set into groups of similar elements. While the microaggregation procedure requires
clusters with a minimum size k, the cluster sizes do not matter in classical clustering
problems. Instead, the number of clusters is required to be c. In this section, we
recall the c-means clustering problem, show the differences between clustering and
microaggregation problems and discuss the problems, which arise when extending
approaches for numerical data to categorical data.

The c-means clustering problem deals with numerical data and goes back to Mac-
Queen et al. (1967). The goal is to partition a given data set I into c clusters of
similar data rows and to find cluster representatives for each cluster. The objective
is to minimize the sum of squared errors between the data vectors and the cluster
centroid of the cluster to which they are assigned. It can be formulated by using
binary variables ais to indicate whether a data vector Y 0

i∗ is assigned to cluster s, and
variables µs ∈ Rm for the cluster representatives. The problem can be formulated by

min
a,µ

c∑
s=1

∑
i∈I

ais · ∥Y 0
i∗ − µs∥2 (1.2.1)

s.t.
c∑

s=1
ais = 1 ∀i ∈ I, (1.2.2)

ais ∈ {0, 1} ∀i ∈ I, s = 1, . . . , c, (1.2.3)
µs ∈ Rm ∀s = 1, . . . , c (1.2.4)

1Usually, this problem is called the k-means clustering problem. Here, it is renamed to avoid confu-
sion with k-anonymity.
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1.2 Literature Review

for given data vectors Y 0
i∗ ∈ Rm. The objective function in (1.2.1) takes the distance

between data vector Y 0
i∗ and the representative of cluster s into account, if Y 0

i∗ is
assigned to cluster s. Constraints (1.2.2) ensure, that each data vector is assigned to
exactly one cluster.

The most popular approach is the algorithm by Lloyd (1982). The basic idea is
to alternately choose cluster representatives and assign the data rows to the best
matching representatives. As an initialization, c vectors µ1, . . . , µc are chosen ran-
domly as cluster representatives. Afterwards, each data vector is assigned to the
cluster with the closest cluster representative. So, a data row Y 0

i∗ is assigned to cluster
s̃ := arg mins=1,...,c∥Y 0

i∗ − µs∥2. After the assignment, each cluster representative µs is
updated to be the mean of the assigned data vectors. This procedure of alternately
assigning data vectors to clusters and updating cluster representatives is repeated un-
til there are no more changes. Since the method works with the Euclidean distance
and the mean of data vectors, it is only defined for numerical data, where these are
properly defined.

Huang (1998) proposes an adaption of Lloyd’s algorithm for categorical data, the
so-called c-modes algorithm2. Since neither the Euclidean distance nor the mean
are defined for categorical data, Huang (1998) proposes the following adaptions for
categorical data. The objective function is adapted to replace the Euclidean distance
with the Hamming-distance, which counts the number of mismatches between two
data vectors and the mean is replaced with the plurality mode, which is the vector
of most frequent values. Then, the proposed method follows the same procedure as
the algorithm by Lloyd (1982). Note that the resulting cluster representative is not
necessarily contained in the original microdata set. This is also the case for numerical
data, where the mean of vectors does not necessarily occur as a data vector in the
microdata set. Moreover, the plurality mode is ambiguous and San et al. (2004)
propose a c-representative algorithm to overcome the non-uniqueness of the mode
as cluster representative. They propose to choose data vectors with corresponding
frequencies in the cluster as representatives. The works by Chen and Wang (2013) and
Nguyen et al. (2019) go in the same direction and they propose to include probability
distributions in the cluster representations.

Clustering problems aim to analyze the data and underlying structures. These prob-
lems differ from the task of microaggregation procedures, which is to preserve privacy
by replacing individual data records with common representative values. To this end,
in the partitioning step of a microaggregation procedure, the size of the clusters is
relevant in contrast to the number of clusters. Each non-empty cluster must contain
at least k elements to obtain k-anonymous microdata via microaggregation. Based on
the formulation (1.2.1)–(1.2.4) of the clustering problem, the microaggregation prob-
lem can be formulated as follows. Since the problem enforces at least k elements in
each cluster, the maximum number of non-empty clusters is c := ⌊ |I|

k ⌋, which is known
in advance. Let d(·, ·) denote a distance function, which is defined according to the

2Usually, this problem is called k-modes problem.
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given data. Then, the partitioning problem in the microaggregation procedure is given
by

min
a,µ

c∑
s=1

∑
i∈I

ais · d(Y 0
i∗, µs) (1.2.5)

s.t.
c∑

s=1
ais = 1 ∀i ∈ I, (1.2.6)∑

l∈I\{i}
als ≥ (k − 1) · ais ∀i ∈ I, (1.2.7)

ais ∈ {0, 1} ∀i ∈ I, s = 1, . . . , c, (1.2.8)
µs ∈ Rm ∀s = 1, . . . , c. (1.2.9)

The objective function in (1.2.5) is analogous to the objective function in (1.2.1) and
takes into account the distance between a data record and the cluster representative
of the cluster, to which the record is assigned. Similar to the clustering problem,
Constraints (1.2.6) ensure that each data vector is assigned to exactly one cluster. The
lower bound on the cluster sizes, which is crucial for a microaggregation procedure,
is ensured by Constraints (1.2.7). Note that in a feasible solution, empty clusters
are allowed but each non-empty cluster is enforced to contain at least k elements.
Constraints (1.2.8) enforce the indicator variables ais to be binary. Constraints (1.2.9)
are substituted by µs ∈ Zm for categorical data.

The most-common heuristic approach for microaggregation on numerical data is the
MDAV algorithm, which was proposed by Domingo-Ferrer and Mateo-Sanz (2002).
The method is designed for fixed-size microaggregation, i.e. the resulting clusters have
a fixed size of k (possibly except for one cluster). The outline of the algorithm is as
follows. At first, all data records are marked as unassigned. The centroid Ŷ 0 over all
unassigned data vectors is computed. Vector Y 0

i∗ the most distant to Ŷ 0 is computed.
Then, vector Y 0

l∗ the most distant to Y 0
i∗ is computed. The k−1 closest data vectors to

Y 0
i∗ and Y 0

l∗ are clustered with Y 0
i∗ and Y 0

l∗, respectively, and marked as assigned. This
procedure is repeated with all unassigned data vectors until there remain less than
2k unassigned vectors or all data vectors are assigned to a cluster. If there remain at
least k data vectors, they build a new cluster. Otherwise, the remaining data vectors
are assigned to their closest, already existing cluster. However, specifying fixed cluster
sizes is a restriction, which Solanas et al. (2006) aim to overcome by their proposed
V-MDAV algorithm. The V-MDAV algorithm is based on the MDAV algorithm but
it allows for variable cluster sizes. A parameter is introduced in V-MDAV, which
decides about adding another element to a group, which already contains at least k
elements. Following the same goal, Soria-Comas et al. (2019) also propose a method,
which allows variable cluster sizes. However, their method is more closely aligned
with Lloyd’s algorithm and does not need a parameter for the cluster sizes. We depict
the idea of the algorithm. First, all elements are randomly assigned into clusters of
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at least k elements. Then, equivalently to Lloyd’s algorithm, the centroids of the
current clusters are computed and all elements are (re-)assigned to the cluster with
the nearest centroid, iteratively. To ensure k-anonymity, elements are considered for
reassignment only if the current cluster has more than k elements. In this way, the
minimum cluster size of k is respected in each iteration. A cluster of k elements can
also be dissolved and divided among the other clusters if this yields a lower group
heterogeneity overall. The mentioned approaches were all introduced for numerical
data. Later, microaggregation methods were extended for categorical data.

The first work on microaggregation for categorical data was done by Torra (2004).
The basic idea is to replace the Euclidean distance with the Hamming-distance for
nominal data and the number of categories separating two values for ordinal data. For
the computation of the centroid, he proposes to use the plurality mode for nominal
data and the (convex) median for ordinal data. Then, an algorithm for the c-modes
problem is performed. Afterwards, some elements are relocated such that the clusters
fulfill the minimum-size constraint, which is necessary for k-anonymity. In his article,
Torra (2004) does not specify the relocation of data records further. Also, Marés and
Torra (2012) describe a microaggregation procedure for categorical data. They also
first find a partitioning, which fits the c-modes problem. Then, the smallest clusters
are merged iteratively until all clusters have at least k elements. In both methods, the
data records in a cluster are replaced by the values of the cluster centroid. However,
there are multiple possibilities for the aggregation step, in which the microdata set
is changed based on the partitioning. For example, in the context of local recoding
each individual value is replaced with an interval for numerical data or a set of distinct
values for categorical data, which contains all values in the respective cluster. Aghdam
and Sonehara (2016) contribute to this field and come up with a greedy bottom-
up algorithm, which can be performed on mixed data, i.e. including numerical and
categorical variables.

The reported approaches all have in common that they focus on the distances be-
tween data rows and (potential) cluster representatives. For numerical data, this is
reasonable since the cluster representatives are classically the mean values and, hence,
the distance between a data row and a cluster representative also allows to draw
conclusions about the distances between this data row and the other data records,
which are assigned to the same cluster. However, for categorical data, this approach
is not sufficient. In general, data records, which are close to a representative, do not
necessarily have to be close to each other. We address this problem in Chapter 4.

However, there are also alternative approaches considering the overall dissimilarity
in each cluster instead. For example, Byun et al. (2007) define the so-called k-member
clustering problem as follows. The task is to find a set of clusters C∗ = {C1, . . . , Cc}
such that

1. Cs ∩ Ct = ∅ ∀s, t ∈ {1, . . . , c}, s ̸= t (disjoint clusters)

2. ⋃c
s=1 Cs = I (partitioning)
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3. |Cs| ≥ k ∀s = 1, . . . , c (k-anonymity)

4. ∑c
s=1 |Cs| ·maxY 0

i∗,Y 0
l∗∈Cs

d(Y 0
i∗, Y 0

l∗) is minimal (minimum information loss),

where d is a distance function. By using the maximum function, they determine the
quality of a cluster by its diameter. Their specific calculation of the information loss (4)
matches the generalization method, which they use for anonymization. In contrast
to the approaches mentioned earlier, their method does not only take the distances
between data records and a centroid into account but considers the overall dissimilarity
by using the cluster diameter. We contribute with this thesis in a similar direction and
propose a method, which takes an overall dissimilarity for each cluster into account.
However, our approach with overall dissimilarity differs from the reported approach
by Byun et al. (2007) since we propose a data-perturbative approach. Along the same
lines, Castro et al. (2022) interpret the partitioning problem in a microaggregation
procedure as a clustering problem with restriction on the cluster sizes. Their proposed
method aims to minimize cluster weights, which are defined as the sum of distances
between each pair of data records. By taking the cluster weights based on distances
between each two data records into account, they include an overall dissimilarity
instead of only taking the distances to a cluster centroid into account. They focus
on numerical data and present a heuristic based on microaggregation approaches for
numerical data and only mention that an extension to categorical data is possible. We
build on their idea and extend the work to nominal data. The main aspect in their
work is a formulation of the partitioning problem in a column-oriented way, which can
be used in a column generation procedure. Since column generation is crucial for their
work and our approach, we outline the column generation scheme in the next section.

1.2.3. Column Generation

In this section, we outline the so-called column generation procedure, which is part of
the proposed method. A column generation scheme is well suited for linear programs
with a very high number of variables and a comparatively small number of constraints.
The initial idea can be traced back to Ford Jr and Fulkerson (1958). We refer to
Lübbecke (2010) and Desrosiers and Lübbecke (2005) in this section and give a brief
introduction to the method.

Let a general linear program be given by

min
x

∑
C∈C

wCxC (1.2.10)

s.t.
∑
C∈C

aiCxC = 1 ∀i ∈ I, (1.2.11)

xC ≥ 0 ∀C ∈ C (1.2.12)

with given weights wC , parameters aiC and an index set C. In the context of column
generation, problem (1.2.10)–(1.2.12) is called the master problem. Column generation
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1.3 Scope of This Thesis

is usually used in cases, in which the number of variables |C| is exponential in the
number of constraints |I|. Due to the large number of variables, it is not practical
to consider all variables explicitly. However, in usual applications, in an optimal
solution only about |I| variables are non-zero. Column generation exploits the fact
that the linear program is easy to solve for a small variable set and adds variables
iteratively. The procedure starts with replacing the index set C with a smaller subset
C′ ⊂ C. The program obtained by this replacement is called the restricted master
problem (RMP). Iteratively, variables are added to the restricted master problem,
which might be included in an optimal solution. Whether a variable is added to the
RMP is decided based on the reduced costs. Let ui be dual variables corresponding
to Constraints (1.2.11) for all i ∈ I. The reduced costs for xC are defined as

wC −
∑
i∈I

uiaiC .

They state the amount by which the objective function coefficient according to xC

would have to decrease before it would be possible to assume a non-zero value for xC

in an optimal solution. Therefore, when the reduced costs are negative, the respective
variable is potentially included in an optimal solution. It is common to search for
variables with negative reduced costs implicitly by solving the pricing problem, which
is given by

min
C∈C

wC −
∑
i∈I

uiaiC .

A column generation scheme first solves the restricted master problem and derives dual
variables. With the current dual variables, variables with negative reduced costs are
computed. This procedure is repeated until the optimal objective value of the pricing
problem is non-negative, i.e. there are no more variables with negative reduced costs.
An optimal solution to the restricted master problem at this point also solves the
master problem optimally.

Usually, the pricing problem is rewritten to an implicit form, which typically is a
well-structured optimization problem. However, in general the pricing problem again
is not easy to solve optimally. It is therefore common to first apply heuristics and
only solve the pricing problem to optimality if no heuristic provides variables with
negative reduced costs. In the best case, the pricing problem only needs to be solved
to optimality once to prove that an optimal solution to the master problem is found.

1.3. Scope of This Thesis

This thesis contributes to the subject of microaggregation for nominal data. First,
we study the anonymization approach, which was used in the last German census
in 2011. To this end, we analyze the optimization problem, which is described by
Höhne (2015) and prove NP-hardness for a slightly modified version. This result
justifies the search for heuristic approaches. Moreover, we discuss the underlying
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optimization problem and find that the applied heuristic SAFE covers aspects, which
are not included in the optimization problem. Therefore, we propose a modification
of the optimization problem to also include the important aspect of remaining close
to the original frequency vector after anonymization.

Typically, a microaggregation procedure is divided into two steps, the partitioning
and the aggregation step. We follow this idea and propose methods for both, the
partitioning and the aggregation step, which respect the specific properties of nominal
data. Based on works by Castro et al. (2022) and Zhao et al. (2018), we propose a
column generation-based heuristic for the partitioning problem for nominal data. We
interpret the partitioning problem as a problem of finding weight-minimum cliques in a
complete graph with a lower bound on the clique size. Each data record corresponds to
a vertex and the Hamming-distance between two vertices is used as edge weights. We
use column generation to obtain a fractional solution, which provides dual information.
Building on the idea by Zhao et al. (2018), we use this dual information and an
auxiliary problem to construct an integer solution and present the formulation of the
auxiliary problem for the partitioning problem. A main advantage of this way of data
partitioning is that in each cluster not only the distance to potential representatives is
taken into account but also the dissimilarity between each data pair in the same clique.
This is beneficial because in contrast to numerical data, for categorical data it is not
clear if two data records, which are similar to the same representative are also similar to
each other. Next, we analyze the aggregation phase, in which representative values are
selected. Especially for nominal data, frequency tables are of high interest in practice.
Similar to the SAFE heuristic used in the German census 2011, we therefore take
resulting errors in a pre-selected set of frequency tables, the so-called control tables,
into account. Our approach differs from the idea of the SAFE heuristic because the
representatives are selected for previously constructed cliques. Moreover, we discuss
to include the χ2-error in table cells as an objective and we present a mathematical
formulation of the problem. Furthermore, we show that this optimization problem can
also be reformulated to a clique problem in a multipartite graph. This representation
can be useful to develop further heuristics and we present one possible heuristic based
on this graph problem.

Based on the optimization problem formulated by Höhne (2015) and our proposed
modification, we present a mathematical optimization problem, which combines the
two phases of a microaggregation procedure and aims to minimize the sum of χ2-
errors in the control tables. We use the exact solving of this optimization problem for
comparison on small instances in our computational experiments.

Finally, we study the performance of the individual steps of the proposed microag-
gregation procedure and compare the proposed methods with the SAFE heuristic
and optimal solutions to the presented optimization problems by computational ex-
periments. We analyze several aspects, including the parameter settings, different
analysis criteria for the comparison of different methods, the effects on a logistic re-
gression based on anonymized data, and runtime performances for increased instance
sizes.
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1.3 Scope of This Thesis

An overview of the method, which we present in this thesis, is outlined in Figure 1.4.

1. Partitioning Step

• Find a fractional clustering of the original microdata set with clusters of size
between k and 2k − 1.

• Use dual information provided by the fractional solution to find an integer clus-
tering.

2. Aggregation Step

• Find cluster representatives taking χ2-errors in resulting frequency tables into
account.

• In each cluster, replace individual data records by representative values to obtain
k-anonymity.

Figure 1.4.: Scheme of our proposed method.
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Chapter 2
SAFE Method

The SAFE method was used to anonymize the microdata from the German census
in 2011. We refer to the work by Höhne (2015), Höhne (2010) and Höhne (2003)
and outline the algorithm in this chapter. The SAFE method is a data-perturbative
method to generate a k-anonymous microdata set. To this end, a predefined set of
frequency tables is taken into account such that the maximum absolute error between
cell values before and after anonymization is minimized. We call the tables in the
predefined set control tables and denote the set of control table cells by T .

In Section 2.1, we describe the underlying optimization problem before outlining
the SAFE method in Section 2.2.

2.1. Problem Description and Formulation

The SAFE method is based on an optimization problem, which aims to minimize the
maximum absolute error in the control tables. To formulate this optimization problem,
the representation of microdata by a frequency vector is used, which we denote by y0.

We take a closer look at the calculation of frequency tables. As described in Sec-
tion 1.1, a frequency table cell equals the sum of the corresponding entries in a fre-
quency vector y0. Therefore, all table cells can be obtained by multiplying y0 with a
binary matrix A, which is a block matrix. Each block of matrix A corresponds to one
table and each row corresponds to a cell in the table. We therefore can write

A =


A1
...

AT

 ,

where T is the number of frequency tables. We examine the properties of each matrix
As corresponding to a d-dimensional table s. Let {j1, . . . , jd} ⊂ J be the attributes
defining table s. Assuming that the frequency vector y0 represents all possible unique
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combinations of attribute values, the matrix As fulfills the following properties, such
that Asy0 computes the table entries:

1. In each column there exists exactly one 1 as each element of the frequency vector
is counted in exactly one table cell for each table.

2. The rows of As must sum to the n-dimensional vector of ones. This is due to
the fact that each entry of the frequency vector y0 is counted in one of the cells
of table s.

3. In each row of the matrix the same number of ones must occur. Let (vj1 , . . . , vjd
)

be the combination of attribute values that defines a cell in table s. This com-
bination occurs in ∏

j∈J \{j1,...,jd} |V (j)| flavors. As this number of combinations
depends only on the attributes and not on the specific values of the cell, it is the
same for all table cells.

The SAFE method works with an abbreviated frequency vector, which only contains
all unique combinations that actually occur in the microdata set. We denote the
number of distinct occurring combinations, i.e. the length of the abbreviated frequency
vector, by na. In this case, property 1 and 2 remain the same. The last property does
not hold anymore because not all possible combinations occur in the frequency vector.
Thus, the number of combinations, which are counted in a table cell, can vary.

The following optimization problem for finding 3-anonymous microdata was the
basis for the SAFE-method.

min
y,b

max
t∈T
|bt| − gt (2.1.1)

s.t. Ay + b = Ay0, (2.1.2)
na∑
i=1

yi =
na∑
i=1

y0
i , (2.1.3)

yi ∈ N0 \ {1, 2} ∀i ∈ I, (2.1.4)
bt ∈ R ∀t ∈ T , (2.1.5)

where gt ≥ 0 is fixed. The purpose of value gt is to allow for some tolerance to errors
within the cell’s data. We call this problem the SAFE-basic problem. The objective
function in (2.1.1) is the maximum absolute error over all control table cells subtracted
by parameter gt, which is predefined for each cell t ∈ T . As the impact of a given
absolute error depends on the value of the affected table cells, Höhne (2015) proposes
to adjust the parameters gt on the corresponding value of table cell t with larger gt for
a larger value in t. The vector b is enforced to be the vector of all errors in the control
table cells by Constraint (2.1.2). As discussed above, the term Ay0 equals a vector of
all original cell values of the control tables. Analogously, the vector Ay contains the
cell values resulting from frequency vector y, which is a variable of the optimization
problem. Therefore, by Constraint (2.1.2), an entry bt is defined as the error between
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the cell values for t before and after anonymization. Furthermore, Constraint (2.1.3)
ensures that the number of data rows in the original microdata set equals the number
of data rows in the microdata set after anonymization. Moreover, Constraints (2.1.4)
ensure that y is a 3-anonymous frequency vector by excluding counts of 1 and 2.
Constraints (2.1.2) together with (2.1.4) enforce all entries of b to be integer, therefore
Constraints (2.1.5) suffice. Note that the absolute value in the objective function can
be linearized by introducing auxiliary variables.

2.2. Outline of the Algorithm

In this section, we report the SAFE method presented by Höhne (2015), which is
designed for 3-anonymity.

The SAFE method can be assigned to the microaggregation methods. It does not
divide the procedure into partitioning and aggregation but combines both steps in
one. The basic idea is to look at three entries of the frequency vector at a time and
group them, such that the maximum error in the control tables is minimized and
the constructed frequency vector is k-anonymous. The groups are found by testing
possible changes in the frequency vector for each three entries and selecting the best
one. First, the method tries to group only confidentiality problems together. If this
does not produce an acceptable solution with respect to the number of eliminated
confidentiality problems, also non-confidentiality problems are taken into account.

The algorithm SAFE runs through the original frequency vector y0 piecewise and
adopts its entries iteratively such that finally it returns a k-anonymous frequency
vector. We depict the single steps of the algorithm in the following. Before the
frequency vector y0 is given to the algorithm, the entries are sorted, such that the
represented attributes are sorted in ascending order based on the number of possible
values. For instance, the exemplary frequency vector illustrated in Figure 1.1b is
sorted in this way.

Description of Algorithm 1 The procedure of the SAFE method is depicted in
Algorithm 1. The SAFE method runs through the given frequency vector y0 step by
step. It divides the vector into smaller parts and runs through the parts iteratively. A
size of the parts is predefined and the next entries of the sorted frequency vector cor-
responding to this number are examined together. In each part, the method identifies
the confidentiality problems in the frequency vector. Sequentially, the algorithm runs
through each three indices of confidentiality problems and goes through Algorithm 2.
This algorithm returns a frequency vector, which is modified in the given indices by
testing possible changes, such that the number of confidentiality problems is decreased
and a predefined bound b+g on the absolute error between original and new cell entries
is respected. When the algorithm has iterated over all confidentiality problems in the
part, the proportion of eliminated confidentiality problems is computed. If this pro-
portion is accepted, the next part is added and again, all confidentiality problems are
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considered, including the ones remaining from the previous part. In each iteration, the
proportion of eliminated confidentiality problems is computed. If an adequate number
of confidentiality problems are eliminated with respect to the size of the analyzed part,
the procedure is repeated until all confidentiality problems are eliminated. If too few
confidentiality problems are eliminated in an iteration, the bounds b are increased and
the procedure is repeated. Higher bounds b allow more variability in Algorithm 2. If
the algorithm has iterated over all parts and the number of eliminated confidentiality
problems is accepted, there can still be confidentiality problems. If the proportion of
eliminated confidentiality problems in total is too low, then the procedure is repeated
by including the two nearest non-zero values next to the confidentiality problems. If
the proportion remains too low, then the confidentiality problems and their two near-
est values are taken into account. Finally, if confidentiality problems still occur and
the number of eliminated ones is too low, the procedure is repeated with all values
in the frequency vector - independent from their classification as confidentiality prob-
lems or zero. In each variant, the algorithm stops, if in the whole frequency vector all
confidentiality problems are eliminated as the incumbent frequency vector then fulfills
3-anonymity. Next, the resulting frequency vector y∗, which fulfills the property of
k-anonymity, is improved by applying Algorithm 3.

Description of Algorithm 2 Given the original and a current working frequency
vector as well as three indices to consider, the selection rule described in Algorithm 2
decides how to change the current working data in these entries such that the best
modified working data is returned. The set AC (“all candidates”) is initialized with
an empty set. Iteratively, all possible changes between 0 and ±3 are tried out. A
frequency vector c is added to the set AC if it contains only non-negative entries,
does not differ too much from the original frequency vector y0, and the absolute error
between original and resulting control cell values lies in the given bound bt + gt. The
allowed absolute error between original and modified frequency vector is determined
by parameter “allowed deviation”. The absolute error between changed and original
cell entries is computed by |(Ay0)t − (Ac)t| for candidate c and table cell t. If any
absolute error exceeds the given bound bt + gt, the candidate c is not included in the
set AC.

The set AC contains modified frequency vectors, which are potentially returned
by Algorithm 2. From this set, the best candidate is returned in regard of several
criteria. These criteria are reviewed by generating the following subsets. The set
C min problems contains all candidates in AC, which have the minimum number of
confidentiality problems. Next, the elements in C min problems minimizing a penalty
function s are included in the more restrictive subset C min penalty. Here, the penalty
function s penalizes frequency vectors, which generate tables cells with absolute errors
near to the bound bt + gt. These candidates allow less changes in further iterations in
the SAFE method. Let ft := |(Ay0)t − (Ac)t| denote the absolute error in table cell
t corresponding to candidate c. The penalty function s used in SAFE is defined by
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Input: sorted original frequency vector y0, k for k-anonymity, initial bound
b.

Output: k-anonymous frequency vector y∗.
1 Initialization: y∗ ← y0;
2 while there are confidentiality problems in y∗ do
3 Consider single parts of y∗;
4 for each part do
5 Find all indices of confidentiality problems [i1, . . . , iñ] in the current

and previously analyzed parts of y∗;
6 for each three consecutive indices [il, il+1, il+2] do
7 Run Algorithm 2 with the input y0, y∗, b and [il, il+1, il+2] and get

the possibly changed frequency vector y∗;
8 end
9 if there are no more confidentiality problems in y∗ then

10 break;
11 end
12 if #eliminated confidentiality problems in this part is proportionally

too low then
13 Increase bound b.
14 Go back to line 5;
15 end
16 end
17 if #eliminated confidentiality problems in y∗ is proportionally too low

then
18 Redo lines 3–16 replacing [il, il+1, il+2] with [il − s, il, il + s̃], for the

smallest s and s̃, such that the elements are non-zero (and not
necessarily confidentiality problems);

19 end
20 if #eliminated confidentiality problems in y∗ is still proportionally too low

then
21 Redo lines 3–16 with [il − 1, il, il + 1] instead of [il, il+1, il+2];
22 end
23 if #eliminated confidentiality problems in y∗ is still proportionally too low

then
24 Redo lines 3–16 with [i, i + 1, i + 2] for all i = 1, . . . , n− 2 instead of

[il, il+1, il+2];
25 end
26 end
27 Run algorithm 3 to improve the current solution and get an improved

k-anonymous frequency vector y∗;
28 return y∗

Algorithm 1: SAFE.
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2. SAFE Method

s := ∑
t∈T st, where

st :=


9, if ft = bt + gt,

4, if ft = bt + gt − 1,

1, if ft = bt + gt − 2,

0, else.

In the next step, the candidates in C min penalty are chosen, that minimize the sum
of absolute errors in the table cells. The sum of absolute errors is computed by∑

t∈T |(Ay0)t−(Ac)t|. All candidates in C min penalty with minimum sum of absolute
errors are included in the set C min sum error. If this set is non-empty, the algorithm
returns one of its elements. Otherwise, it returns the frequency vector that was given
as input without any change.

Input: original frequency vector y0, working frequency vector y, bound b,
extra error g, indices [i1, i2, i3], parameter allowed deviation, penalty
function s.

Output: new working frequency vector yz.
1 Initialization: AC ← ∅, c ← y, yz ← y;
2 Consider yi1 , yi2 and yi3 ;
3 for (h1, h2, h3) ∈ {−3,−2, . . . , 2, 3}3 do
4 cij ← yij + hj for j = 1, 2, 3;
5 if cij ≥ 0 and |cij − y0

ij
| ≤ allowed deviation for j = 1, 2, 3 then

6 if |(Ay0)t − (Ac)t| ≤ bt + gt for all t ∈ T then
7 AC ← AC ∪ {c};
8 end
9 end

10 end
11 C min problems ← {c in AC: #confidentiality problems in c is minimal};
12 C min penalty ← {c in C min problems: penalty function s(c) is minimal};
13 C min sum error ← {c in C min penalty: sum of absolute errors in control

tables is minimal};
14 if C min sum error ̸= ∅ then
15 yz ← first(C min sum error);
16 return yz

Algorithm 2: Selection rule.

Description of Algorithm 3 When the SAFE method has found a 3-anonymous
frequency vector y, it calls Algorithm 3 to improve the solution, such that the max-
imum error between original and new table cell entries is decreased to remain below
given target bounds b∗. The basic idea is to modify the 3-anonymous frequency vec-
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2.2 Outline of the Algorithm

tor, such that the maximum error in the resulting table cells does not exceed some
decreased bounds b̃. Initially, bound b̃ is set to b + g. They are decreased until
|(Ay0)t − (Ay∗)t| > b̃t for a certain number of table cells, which is defined by param-
eter max number exceedings. The reduction of the bounds depends on the current
allowed bounds but is simplified in this representation. Then, the algorithm runs
through the whole frequency vector and each three values are considered and modified
by Algorithm 4. Analogously to Algorithm 2, again all possible changes between 0 and
±3 are analyzed. In contrast to Algorithm 2, the property of 3-anonymity is preserved
during all modifications. The procedure is repeated until the target bounds b∗ are re-
spected by y∗, too many table cells exceed the decreased bounds or a maximum number
of iterations is reached, which is defined by parameter max number iterations.

Input: original frequency vector y0, 3-anonymous frequency vector y, target
bounds b∗, parameters max number exceedings,
max number iterations, max total number exceedings.

Output: 3-anonymous and improved frequency vector y∗.
1 Initialization: y∗ ← y, num iter = 0, current bounds b̃← b + g;
2 while there is an index t with b̃t > b∗

t and there are less than
max total number exceedings indices with |(Ay0)t − (Ay∗)t| > b̃t do

3 Decrease bounds b̃t by 1 until further decreasing would lead to
|(Ay0)t − (Ay∗)t| > b̃t for at least max number exceedings indices or
b̃t = b∗

t ;
4 for i = 1, . . . ,len(y∗)-2 do
5 Run Algorithm 4 with input y0, y∗, b̃ and [i, i + 1, i + 2] and get the

possibly changed frequency vector y∗;
6 end
7 num iter = num iter + 1;
8 if num iter = max number iterations then
9 break;

10 end
11 end
12 return y∗

Algorithm 3: Improvement of the solution.

Description of Algorithm 4 The selection procedure for the improvement of the
solution is similar to the procedure described in Algorithm 2. However, in the im-
provement selection procedure, candidates are only added to the set AC (“all candi-
dates”), if they fulfill the property of 3-anonymity. Thus, a new improved frequency
vector yz never contains values of 1 or 2, i.e. there are no confidentiality problems
in yz. Instead, to find the improved yz, the minimum number of table cells that ex-
ceed the new (decreased) bound b is taken into account. These are table cells where
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2. SAFE Method

ft = |(Ay0)t − (Ay)t| > bt. The set C min exceedings contains all elements in AC
with minimum number of table cells exceeding the given bound. Analogously to the
previous selection procedure, the set C min penalty is a subset of C min exceedings
containing the frequency vectors with minimal value for a penalty function s̃. In the
improvement step, another penalty function is used in the SAFE method, namely
s̃ := ∑

t∈T s̃t, where

s̃t =



500, if ft = bt,

9, if ft = bt − 1,

4, if ft = bt − 2,

1, if ft = bt − 3,

0, else.

With this penalty function, candidates with a maximum error equal to the allowed
bounds will be changed preferably. Again, from the elements with minimum penalty,
in the set C min sum error the frequency vectors with minimum sum of absolute errors
in the table cells are collected. If this set is non-empty, an arbitrary frequency vector in
this set is returned, otherwise the unmodified working frequency vector y is returned.

Input: original frequency vector y0, 3-anonymous frequency vector y, bound
b, indices [i1, i2, i3], penalty function s̃.

Output: (improved) 3-anonymous frequency vector yz.
1 Initialization: AC ← ∅, c ← y, yz ← y;
2 for (h1, h2, h3) ∈ {−3,−2, . . . , 2, 3}3 do
3 cij ← yij + hj for j = 1, 2, 3;
4 if cij ≥ 0 and |cij − y0

ij
| ≤ allowed deviation for j = 1, 2, 3 then

5 if cij /∈ {1, 2} for j = 1, 2, 3 then
6 AC ← AC ∪ {c};
7 end
8 end
9 end

10 C min exceedings ← {c in AC: #exceedings of bound b in the table cells
corresponding to c is minimal};

11 C min penalty ← {c in C min exceedings: penalty function s̃ is minimal};
12 C min sum error ← {c in C min penalty: sum of absolute errors in control

tables is minimal};
13 if C min sum error ̸= ∅ then
14 yz ← first(C min sum error);
15 return yz

Algorithm 4: Selection rule for improvement step.
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Chapter 3
Analysis of the SAFE Method

In the previous chapter, we have described the SAFE method, which was used as
anonymization algorithm in the German census in 2011. The underlying SAFE-basic
problem aims to minimize the maximum error in a set of frequency tables. In this
chapter, we investigate the complexity of this problem and analyze the SAFE method.
In Section 3.1, we prove that a slightly modified version of the SAFE-basic problem
is NP-hard. This result justifies heuristic approaches. In Section 3.2, we discuss
that the SAFE method includes several aspects, which are not part of the underlying
optimization program. Hence, we propose a modification of the SAFE-basic problem.

3.1. Complexity Analysis

In the following, we show that a slightly modified version of the SAFE-basic prob-
lem (2.1.1)–(2.1.5) is NP-hard. Therefore, it is reasonable to investigate and develop
heuristic approaches to find a k-anonymous microdata set.

Known complexity results for k-anonymity We first provide an overview of
known complexity results in this research area. Note that complexity results found
in literature correspond to different underlying optimization problems as different
approaches to find k-anonymous microdata are used. As discussed in Chapter 1.2,
the first approaches used data suppression. Meyerson and Williams (2004) show that
if the domain size of the attribute values is not restricted, i.e. |V (j)| > n is allowed
for all j ∈ J , it is NP-hard to find a k-anonymous microdata set by suppression.
The corresponding decision problem is as follows. Let Y 0 be a microdata set of n
data vectors. Let ⋆ be a fresh symbol not contained in any value set V (j). A function
s : V n →×j∈J (V (j)∪{⋆}) is called a suppressor, if s(Y 0)ij ∈ {Y 0

ij , ⋆} holds for all data
rows i ∈ I and all attributes j ∈ J . A value Y 0

ij is called suppressed if s(Y 0)ij = ⋆.
Given the microdata set Y 0 and a scalar K > 0, is there a suppressor s, such that
s(Y 0) is k-anonymous and the total number of vector coordinates suppressed by s is
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3. Analysis of the SAFE Method

at most K? Aggarwal et al. (2005) even show NP-hardness for the special case that
|V (j)| = 3 for all j ∈ J , which strengthens the previous complexity result.

In the literature, also achieving k-anonymity by generalization is a well-studied
field. For instance, Byun et al. (2007) prove that the decision problem to the k-
member clustering problem is NP-complete. In a generalization scheme, the data
records are replaced by more general values, i.e. intervals or sets of values that contain
the true value, such that at least k data rows are identical to each other. For data
suppression, the number of suppressed values is decisive for the information loss. For
data generalization, the degree of generalization determines the information loss. They
regard generalization as a clustering problem with minimum-size constraint for the
clusters. The degree of generalization depends on the decision which data records
are assigned to the same cluster. For each cluster, the generalized values are selected
as the smallest interval or set, such that all true values of the cluster are included.
The information loss is defined as the degree of generalization and depends on the
similarity between the cluster elements. We denote the information loss by IL(C)
for cluster C. The decision problem is as follows. Given n data records and a scalar
K > 0, is there a clustering C∗ = {C1, . . . , Cs}, such that |Ci| ≥ k for all i = 1, . . . , s,
and ∑s

i=1 IL(Ci) < K? It is noteworthy, that generalizing an attribute to the most
general form is equivalent to data suppression. In their proof, Byun et al. (2007)
build on the complexity results given by Aggarwal et al. (2005), and show that the
decision problem for data suppression is a special case of their decision problem for
data generalization.

In contrast to suppression- and generalization-based approaches, the optimization
problem (2.1.1)–(2.1.5) uses data perturbation to achieve k-anonymity. Moreover, the
information loss also takes the resulting errors in the frequency tables into account.
In the next section, we show that a slight modification of the SAFE-basic problem is
NP-hard.

Complexity of modified SAFE-basic problem We analyze the complexity of a
slight modification of optimization problem (2.1.1)–(2.1.5). We use the same notation
as before and prove that the following problem is NP-hard.

min
y,b

max
t∈T
|bt| − gt (3.1.1)

s.t. Ay + b = Ay0, (3.1.2)
na∑
i=1

yi = S, (3.1.3)

yi ∈ N0 \ {1, 2} ∀i ∈ I, (3.1.4)
bt ∈ Z ∀t ∈ T , (3.1.5)

where S ∈ N0. The modification lies in Constraint (3.1.3), where the right-hand
side equals a constant S instead of the sum over all entries of the original frequency
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3.1 Complexity Analysis

vector y0. By using S = ∑na
i=1 y0

i , we see that optimization problem (2.1.1)–(2.1.5)
is included in the more general variant. Note that in general, a subproblem of an
NP-hard problem does not have to be NP-hard itself.

For the proof of NP-hardness, we first need to define the underlying decision prob-
lem. We call the decision problem referring to problem (3.1.1)–(3.1.5) 3-ANONYM.
It is given by the following description.

3-ANONYM

Given: Matrix A ∈ {0, 1}|T |×na , vectors y0 ∈ Nna
0 , g ∈ Z|T |, and scalars S, K ∈ N0.

Question: Are there vectors y∗ ∈ (N0 \ {1, 2})na and b∗ ∈ Z|T |, such that Con-
straints (3.1.2)–(3.1.5) and maxt∈T |b∗

t | − gt ≤ K hold?

We reduce 3-ANONYM to the 3-bounded 3-dimensional matching problem. We
recall the underlying decision problem, which we call 3DM-3.

3DM-3

Given: Disjoint sets W, X, Y with |W | = |X| = |Y | =: q and a set M ⊂ W × X ×
Y, where each element of W, X and Y occurs in at most three triples of M ,
respectively.

Question: Is there a subset M ′ ⊂ M such that |M ′| = q and no two elements agree
in any coordinate?

It is shown by Garey and Johnson (1979) that the 3-dimensional matching is NP-
complete even in the 3-bounded case. We use this complexity result and show the
following theorem by reduction.

Theorem 3.1.1. 3-ANONYM is NP-complete.

Proof. Since a non-deterministic algorithm need only guess vectors y∗ and b∗ and check
in polynomial time whether all constraints and the inequality maxt∈T |b∗

t | − gt ≤ K
are fulfilled, 3-ANONYM is in NP.

Let W, X, Y and M ⊂ W ×X × Y be the sets of an arbitrary instance of 3DM-3
and q := |W | = |X| = |Y |. We construct a matrix A, vectors y0, g and scalars S, K,
such that Constraints (3.1.2)–(3.1.5) are fulfilled and maxt∈T |b∗

t | − gt ≤ K holds if
and only if M contains a feasible matching.

We construct a vector y0 ∈ Nq3

0 such that each element corresponds to a triple
in W × X × Y . We use the representation of data as a non-abbreviated frequency
vector, where also entries of zero are allowed. Define I := {1, . . . , q3} and let ϕ : W ×
X × Y → I be a bijection. We denote the index set corresponding to set M by
IM := {i ∈ I : ϕ−1(i) ∈ M} and its complement by IM̄ := I \ IM . In the end, a
solution y∗ corresponds to a matching, such that y∗

i = 3 whenever the triple ϕ−1(i) is
in the matching and y∗

i = 0 otherwise.
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3. Analysis of the SAFE Method

Set

y0
i =

{
1, if i ∈ IM ,

0, otherwise.

Next, we construct the control matrix A ∈ {0, 1}(3q+q3)×q3
, such that the matrix

corresponds to all one- and the three-dimensional table. So, the control matrix is a
block matrix

A =


A1
A2
A3

A4 = I

 ,

where A1, A2, A3 ∈ {0, 1}q×q3 generate the one-dimensional tables and I is the identity
matrix in Rq3×q3

, which generates the three-dimensional table. One can interpret the
sets W, X and Y as attributes, where the elements correspond to the attribute values.
Hence, control tables A1, A2, and A3 map the number of occurrences of elements
wi ∈ W, xi ∈ X, yi ∈ Y , respectively. Since we regard the 3-dimensional matching
problem in the 3-bounded variant, (Ay0)i ∈ {1, 2, 3} holds for all i = 1, . . . , 3q. For
cells in the 3-dimensional table (Ay0)i ∈ {0, 1} holds for all i = 3q + 1, . . . , 3q + q3

because they coincide with the vector y0 itself.
Now, for t = 1, . . . , 3q set

gt =


2, if (Ay0)t = 1,

1, if (Ay0)t = 2,

0, otherwise

and for i = 1, . . . , q3 set

g3q+i =
{

2, if i ∈ IM ,

0, otherwise.

Finally, set K = 0 and S = 3q.
Next, we show that the instance of 3-ANONYM constructed in this way is solvable

if and only if M contains a matching.
First, we show that if there is a feasible solution to the constructed instance, then

there exists a matching in M . For a solution (y∗, b∗), Equations (3.1.2) must hold. In
particular, it must hold

(A4y∗)i + b∗
ti

= (A4y0)i

⇔ (Iy∗)i + b∗
ti

= (Iy0)i

⇔ y∗
i + b∗

ti
= y0

i (3.1.6)

for all i ∈ I, where ti := 3q + i.
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3.2 Discussion of the SAFE Method

For all i ∈ IM̄ , which are indices not belonging to any triple in the set M , Equa-
tions (3.1.6) mean y∗

i + b∗
ti

= 0 by the definition of y0.
Since K = 0, and gti = 0 for all i ∈ IM̄ , a solution must also satisfy

max
i∈IM̄

|b∗
ti
| = max

i∈IM̄

|b∗
ti
| − gti ≤ max

t∈T
|b∗

t | − gt ≤ 0.

Therefore, b∗
ti

= 0 for all i ∈ IM̄ and a solution y∗ must fulfill y∗
i = 0 for all i ∈ IM̄ .

Now, we consider all indices belonging to triples in the set M . For all i ∈ IM ,
Equations (3.1.6) are equivalent to y∗

i + b∗
ti

= 1 by the definition of y0. So,

y∗
i = 1− b∗

ti

for all i ∈ IM must hold. Here, we get the inequalities

max
i∈IM

|b∗
ti
| − 2 ≤ 0 ⇔ −2 ≤ b∗

ti
≤ 2 ∀i ∈ IM .

Together with Constraint (3.1.4), it follows that y∗
i ∈ {0, 3} for all i ∈ IM .

Consider Equations (3.1.2) corresponding to the one-dimensional tables. As men-
tioned before, it must hold (Ay∗)t + b∗

t = (Ay0)t ∈ {1, 2, 3} for all t = 1, . . . , 3q. Since
y∗

i ∈ {0, 3} for all i ∈ I, we obtain (Ay∗)t ∈ {0, 3, 6, . . . } for all t = 1, . . . , 3q. By
construction, 0 ≤ gt ≤ 2, so −2 ≤ b∗

t ≤ 2 for all t = 1, . . . , 3q for a solution in order to
obey maxt |b∗

t |−gt ≤ 0. Therefore, we can strengthen the statement to (Ay∗)t ∈ {0, 3}.
Given that y∗

i = 0 for all i ∈ IM̄ and y∗
i ∈ {0, 3} for all i ∈ IM , we can conclude due

to Equation (3.1.3) with S = 3q that it must hold y∗
i = 3 for exactly q indices in IM .

Now assume, there are two indices i1, i2 ∈ IM such that y∗
i1 = y∗

i2 = 3 and the triples
ϕ−1(i1) and ϕ−1(i2) share at least one value zi. Then, there is a one-dimensional table
counting the occurrences of zi and thus, the corresponding table cell (Ay∗)i ≥ 6, which
is a contradiction to (Ay∗)t ∈ {0, 3} for all t = 1, . . . , 3q. In conclusion, there cannot
be two elements of the vector with value 3 corresponding to non-disjoint triples. As
there must be q selected elements, they correspond to a matching in M .

Now, we consider the other direction. If a matching M ′ is found, then setting to 3
all elements of the vector y∗ corresponding to included triples will give a solution of
the 3-ANONYM-instance choosing b∗ appropriately.

The result of NP-completeness for 3-ANONYM justifies that we focus on heuristic
approaches to the problem for larger instances.

3.2. Discussion of the SAFE Method

In this section, we discuss the SAFE method in comparison to the underlying SAFE-
basic problem. We report several observations and propose a modification of the
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3. Analysis of the SAFE Method

objective function. The benefit of the proposed modification is that the deviation
from the original frequency vector is included in the objective.

First, in contrast to the optimization problem, the SAFE algorithm does not ex-
actly follow the objective function. While the optimization problem minimizes the
maximum absolute error in the resulting frequency tables, the SAFE method also im-
plements selection rules that take other criteria into account. These criteria include
the deviation from the original frequency vector, the absolute errors, and the mean
errors in the tables. Since these criteria are relevant in practice, it is beneficial for the
performance of the algorithm to include these additional measurements but this is not
represented in the SAFE-basic problem.

Second, we inspect the choice of the objective function. The maximum error in the
control tables is to be minimized. However, this criterion does not ensure that the
resulting k-anonymous microdata is as similar as possible to the original microdata
set. Whenever there are different solutions with the same objective value, the k-
anonymous microdata set with the highest similarity to the original microdata set
should be chosen to minimize the information loss due to anonymization. The following
example illustrates problems caused by using exclusively the maximum error in the
objective function to determine the k-anonymous microdata set.

Example 3.2.1. Let the original microdata set be given as depicted in Table 3.1a.
Let all one-dimensional tables be the control tables that are taken into account in the
anonymization process. They are depicted in Table 3.1b.

Sex Citizenship

female Germany
female Germany
male Others
male Others

(a) Original microdata set.

Sex Counts
female 2
male 2

Citizenship Counts
Germany 2
Others 2

(b) Control tables from the original mi-
crodata set.

Figure 3.1.: An exemplary microdata set and corresponding frequency tables.

Assume, we want to publish a 2-anonymous microdata set from the given one. In
this case, the original microdata set already satisfies 2-anonymity and, thus, is an op-
timal solution to problem (2.1.1)–(2.1.5). However, also the 2-anonymous microdata
depicted in Figure 3.2a is optimal with respect to the maximum absolute error. The
control tables remain unchanged as depicted in Table 3.2b. Therefore, this micro-
data set could equally be chosen. However, since the original microdata set already
satisfies 2-anonymity, choosing an alternative optimal solution introduces unnecessary
information loss.

To avoid the described problem and minimize the information loss, we propose a
modification of the program to include a penalization for the differences between the

30



3.2 Discussion of the SAFE Method

Sex Citizenship

female Germany
female Germany
male Others
male Others

(a) 2-anonymized microdata set.

Sex Counts
female 2
male 2

Citizenship Counts
Germany 2
Others 2

(b) Control tables from the 2-anonymized
microdata set.

Figure 3.2.: An optimal solution to the SAFE-basic problem.

original and the new microdata set as additional term to find an optimal k-anonymous
microdata set. The objective function we propose is(

max
t∈T
|bt| − gt

)
+ w

na∑
i=1
|yi − y0

i |.

A parameter w > 0 is introduced to weight the terms, where a higher value for w
results in a larger weight of the absolute differences between original and new frequency
vector. However, the main focus should remain on the maximum error. To find a k-
anonymous microdata set with minimal maximum error while taking the deviations
between the frequency vectors into account, we choose w = 1∑na

i=1 y0
i

. The results of
this method are shown in Chapter 6.

Properties of a SAFE solution We observed that the SAFE heuristic does not
necessarily yield a feasible solution to the SAFE-basic problem due to Constraint (2.1.3).
This constraint ensures that the number of statistical objects does not change. The
SAFE heuristic emphasizes that a solution remains close to the original frequency
vector and also that the resulting frequency tables remain close to the original tables
but it does not ensure that the number of statistical objects remains the same. In the
computational experiments described in Section 6.2.7, we see instances, for which a
solution of SAFE does not preserve the original number of data rows. In this thesis,
we propose another heuristic approach to achieve k-anonymous microdata. Using this
method, the number of data rows is preserved, i.e Constraint (2.1.3) is satisfied.

Another interesting aspect is the handling of zeros in the frequency vector and in the
resulting frequency tables. Structural zeros occur in frequency tables, where the value
combination corresponding to the cell is unreasonable. By preserving structural zeros,
data plausibility is maintained. The SAFE method is based on a frequency vector
that contains all occurring attribute combinations and modifies this frequency vector
to obtain k-anonymous microdata. Therefore, a combination that does not exist in
the original microdata set will not be created during the SAFE algorithm. However,
after the anonymization process, some originally occurring attribute combinations are
changed to a frequency of zero. Thus, in the resulting k-anonymous microdata set it
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3. Analysis of the SAFE Method

is indistinguishable whether a zero is a structural zero or was introduced during the
anonymization process. Note that even though the SAFE method uses the abbreviated
frequency vector, which only contains occurring combinations, the frequency vector
after anonymization, which is published, contains all possible combinations.

3.3. Summary

In summary, we have proven NP-completeness for 3-ANONYM, which justifies heuris-
tic approaches to find k-anonymous microdata sets by data perturbation. We identi-
fied limitations in the well-known heuristic SAFE approach with respect to deviations
from the underlying SAFE-basic problem and preserving the number of statistical
objects, and in the SAFE-basic problem with respect to minimizing the information
loss. Therefore, we propose a different approach to the microaggregation problem for
nominal data, which is outlined in the following.
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Chapter 4
Partitioning Step

In this chapter, we describe a new approach to the first step of a microaggregation
process to obtain k-anonymity – the partitioning step. In the partitioning step, data
records are assigned to clusters, which are then used in the subsequent aggregation
step. During the microaggregation procedure, the microdata set to be anonymized is
changed cluster by cluster. In each cluster, the individual data records are replaced
such that they are identical to each other. To ensure k-anonymity, the clusters must
satisfy a minimum size of k. Since all individual records in the same cluster are changed
in the same way, information loss is reduced if similar data records are assigned to
the same cluster. To find such clusters with similar elements, published approaches
directly extend the problem from numerical to categorical data like the work by Torra
(2004) and Marés and Torra (2012). However, in contrast to that, Byun et al. (2007)
formulate a clustering-based problem to approach the partitioning step. We go in this
direction and present a novel method, which respects the similarity between all data
records that are potentially assigned to the same cluster.

The first part of this chapter builds on the work of Castro et al. (2022). They
focus on the microaggregation problem for numerical data and formulate an integer
program for the partitioning step, for which except for the integrality constraints the
constraints and the objective function are linear. This program has exponentially
many variables. Relaxing the problem into a linear program, the structure is suitable
for a column generation scheme. This method exploits the fact that only very few of
the variables are actually included in an optimal solution. In many practical applica-
tions, the column generation scheme can handle linear programs with a large number
of variables. To this end, the algorithm iteratively adds variables by using the dual
information arising from a solution to the restricted master problem, which includes a
subset of the variables. The general scheme of a column generation procedure is pre-
sented in Section 1.2.3. However, it is not clear how best to obtain an integer solution
to the original master problem. Castro et al. (2022) use two heuristics to obtain an
integer solution based on rounding. In each iteration of the column generation scheme,
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a current fractional solution is obtained. The two heuristics are used to construct an
integer solution from the current fractional solution. The first heuristic works with
simple rounding. Iteratively, an integer solution is constructed by rounding the values
of the variables with the largest value in the current fractional solution. In this process,
variables are neglected, which would lead to violations in the constraints when being
added to the current integer solutions. The second heuristic is also based on rounding
but computes the integer solution with respect to the edges. This heuristic starts with
a clustering of all singletons as clusters and iteratively merges clusters according to
the values in the fractional solution with respect to the edges. Their computational
results show that in most cases the second heuristic finds a better integer solution.
The computational results are done on numerical data. They compare their method
to two popular heuristics for numerical data, MDAV and V-MDAV. While the MDAV
algorithm only allows fixed size clusters, the V-MDAV heuristic extends MDAV and
also allows variable size clusters. The solutions of both methods are included as initial
solutions to the method proposed by Castro et al. (2022). Therefore, the returned
solution is at least as good as the solutions provided by the MDAV heuristic and the
V-MDAV heuristic. However, their computational results even show strong improve-
ments in the relative gap between the heuristically found objective value and optimal
value of the relaxed integer program. In conclusion, their work shows that it can be
beneficial to include a column generation scheme into the partitioning step in a mi-
croaggregation procedure. Thus, further research in this direction and, especially, the
extension to categorical data seem to be promising.

In general, variables that are included in fractional solutions do not have to be useful
in integer solutions. Therefore, our work not only extends the method from numerical
data to nominal data but also uses a different approach to obtain an integer solution
from the fractional solution. This approach replaces the rounding heuristics used by
Castro et al. (2022). The second part of this chapter describes our approach, which
builds on the work by Zhao et al. (2018). Instead of rounding the fractional solution,
the provided dual information is used as guidance to construct an integer solution.
For fractional programs it is well-known that the so-called duality gap between an
optimal solution to the linear program and an optimal solution to its dual problem
is zero. For integer programs, this is in general not the case. However, Larsson and
Patriksson (2006) show optimality results on integer programs, which are similar to
optimality results on linear programs but do not assume the duality gap to be zero. In
the following, we construct an integer solution by solving an auxiliary problem, which
is based on these optimality conditions. This problem includes the dual information.
A solution to the partitioning problem is constructed by iteratively adding clusters
that minimize this auxiliary problem.

This chapter is structured as follows. The fact that the partitioning problem was
initially considered for numerical data influenced later work on categorical data. We
motivate in Section 4.1 that for categorical data it is preferable to consider the dis-
tances between all data records in a potential cluster rather than only considering
distances to a representative of a cluster. Note that in this aspect, categorical data
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behave differently from numerical data. In Section 4.2 we show a problem formulation
for finding clusters for the partitioning step, which is suitable for a column genera-
tion scheme. We see the application of a column generation scheme, which leads to
a fractional solution in Section 4.3. For numerical data, Castro et al. (2022) further
considered this problem. We build on the idea by Zhao et al. (2018) to construct an
integer solution. We present a procedure that uses the derived dual information in
Section 4.4. In Section 4.5, we conclude this chapter with a summary.

4.1. Motivation for Clustering-based Partitioning

In this section, we examine a fundamental difference between numerical and categorical
data with respect to the similarity between data records, which is taken into account
when finding a suitable data set partitioning. For numerical data, it is common to use
the mean values of the cluster elements as representatives as discussed in Section 1.2.2.
Each data record is assigned to the cluster with the closest representative. Partitioning
all records into clusters such that distances between each individual data record and
the mean of the corresponding cluster are minimal also yields a solution that minimizes
the overall dissimilarity in each cluster. The first extensions to categorical data by
Huang (1998) adopted the procedure directly by replacing the mean with the plurality
mode for nominal data. The dissimilarity for nominal data is measured by using the
Hamming-distance. However, nominal data records can differ from each other even
though they are close to their representative (in terms of the Hamming-distance). The
following example illustrates this situation of high dissimilarity within a cluster even
though data records are close to the representative with respect to the Hamming-
distance.

Example 4.1.1. Let J = {sex, citizenship} be the set of attributes with values
V (sex) = {f, m} and V (citizenship) = {GER, OTH}, respectively. Let d denote the
Hamming-distance.

We consider a cluster C1 := {(f, GER), (f, OTH), (m, GER)}. Assume data record
(f, GER) is selected as representative. The sum over all Hamming-distances only to
the representative is 2. This case is depicted in Figure 4.1a by the solid lines. Let
C2 := {(f, GER), (f, OTH), (f, OTH)} and data record (f, GER) be the representative.
The sum over all Hamming-distances only to the representative is again 2. This case
is depicted in Figure 4.1b by the solid lines. However, when we consider the distances
between all data records the sum over all Hamming-distances is 4 for cluster C1 but
only 2 for cluster C2. This case is depicted in Figure 4.1 by solid and dashed lines.
Thus, cluster C2 would be preferable due to its homogeneity.

In consequence, it is necessary for nominal data to take the distances between all
data records, which are assigned to the same cluster, into account instead of only
considering the distances to a representative of the cluster, which is sufficient for
numerical data.
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(f, OTH)

(f, GER)

(m, GER)

1 1

2
(a) Hamming-distances in cluster C1.

(f, OTH)

(f, GER)

(f, OTH)

1 1

0
(b) Hamming-distances in cluster C2.

Figure 4.1.: Hamming-distances in two exemplary clusters with the same represen-
tative (f, GER).

4.2. Problem Formulation

In this section, we present an integer program for the partitioning problem in a mi-
croaggregation procedure, which takes the distances of all data records to be assigned
to the same cluster into account and which is the basis of the further work in this
thesis. The program formulates the problem of partitioning the given microdata set
into clusters of similar data records with minimum cluster size. Since we consider
nominal data, we choose the Hamming-distance to measure similarity, which counts
the number of mismatches between two data records and is defined in Section 1.1.

There are different names for the partitioning step. In the context of microaggre-
gation, it is common to use the term partitioning. However, in the context of data
analysis and graph theory one also encounters the term clustering. In this thesis, we
will use both terms synonymously.

As discussed before, for categorical data it is not sufficient to consider only the
distances between data rows and single cluster representatives because even though
data rows can be close to their representative, they still can significantly differ from
each other. Therefore, we propose an approach that takes the distances between all
data rows in a cluster into account. For that purpose, we interpret the microdata
set as a complete graph G = (I, E), where each vertex in the graph corresponds to
a data record in the microdata set. Each edge e = (i, l) is given a weight wil, which
equals the dissimilarity between the two incident data rows. Corresponding to the
data rows Y 0

i∗ and Y 0
l∗, the weight is given by wil = ∑

j∈J δ(Y 0
ij , Y 0

lj). We refer to the
definition of the Hamming-distance in Section 1.1 and denote the indicator showing
the mismatches by δ(·, ·). The aim is to partition the vertex set of the graph. Since
the graph is complete, each subset of vertices is a clique. A clique C ⊂ I is a subset
of vertices such that every two distinct vertices are adjacent. That is, the subgraph
induced by a clique C is complete. Let E(C) denote the edge set of the subgraph
induced by C ⊂ I. We define the weight of a clique C to be the sum of the weights
of all edges in E(C), i.e. wC := ∑

i,l∈C wil. In this view, the task of finding a suitable
partitioning of the microdata set is equivalent to finding a weight-minimum clustering
of a complete graph with a lower bound on the cluster sizes and the terms clique and
cluster can be used synonymously in this context.
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By the nature of the problem, the cluster sizes are restricted to a minimum of k to
obtain k-anonymity. Moreover, as already discussed by Domingo-Ferrer and Mateo-
Sanz (2002), the cluster sizes can also be bounded from above by 2k−1 because clusters
of a size greater than or equal to 2k can be split into smaller clusters with at least k
elements without increasing the weight of the clustering. Therefore, it is sufficient to
consider clusterings with clusters of size between k and 2k− 1. The set of all clusters
with size between k and 2k − 1 can be written as C := {C ⊂ I : k ≤ |C| ≤ 2k − 1}.
Without loss of generality, we assume an optimal clustering to be a subset C∗ ⊂ C.
The formulation we show in this section is written in a column-oriented form as done
by Castro et al. (2022), who focused on numerical data. In the problem formulation,
the difference between handling numerical and categorical data lies in the dissimilarity
measurement used, i.e. in the edge weights.

To describe a cluster C ∈ C let

aiC :=
{

1, if i ∈ C,

0, else

for each data row i ∈ I be binary indicators, which show whether data row i is
contained in cluster C. We use binary variables xC for all clusters C ∈ C, which will
indicate whether cluster C is contained in a solution C∗ or not.

The integer program underlying our approach to the partitioning step of the mi-
croaggregation procedure is given by

min
x

∑
C∈C

wCxC (4.2.1)

s.t.
∑
C∈C

aiCxC = 1 ∀i ∈ I, (4.2.2)

xC ∈ {0, 1} ∀C ∈ C. (4.2.3)

The objective function in (4.2.1) is the sum of weights of all clusters that are contained
in a solution. Thus, the goal of the problem is to minimize the weight of the resulting
clustering. Constraints (4.2.2) ensure that each data row is contained in exactly one
cluster.

Both the objective function and Constraints (4.2.2) are linear. Nevertheless, the
optimization problem also has exponentially many variables because there are as many
variables as elements in the set C. The set C consists of all clusters with a size between
k and 2k − 1 and, thus, has ∑2k−1

s=k

(n
s

)
many elements, where n := |I|. However,

the problem structure can be used in a column generation scheme when the linear
relaxation of the problem is considered. A column generation scheme has proven
useful for many very large linear problems in practice. Therefore, it seems to be a
promising approach to find a fractional solution to the linear relaxation. In the next
section, we outline the application of the column generation scheme.
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4.3. Finding a Fractional Solution

The optimization program (4.2.1)–(4.2.3) describes the problem of finding a weight-
minimum clustering such that each cluster has a size between k and 2k− 1. Since the
problem is an integer program with exponentially many variables, it is challenging to
solve. However, the problem structure allows the use of a column generation scheme
if the integrality constraints are neglected. We have described how column generation
addresses problems with such a structure in Section 1.1. In this section, we discuss the
linear relaxation of problem (4.2.1)–(4.2.3) and show a column generation approach to
obtain a fractional solution. In the linear relaxation, the integrality constraints (4.2.3)
are replaced by xC ∈ [0, 1] for all C ∈ C. The resulting optimization problem is a
linear program with an exponential number of variables.

In the context of column generation, the linear relaxation of problem (4.2.1)–(4.2.3)
is called the master problem. The idea of the method is to replace the variable set of
the master problem with a small subset such that the remaining linear program with
less variables is easily solved. The resulting problem is called the restricted master
problem (RMP). Then, variables are added to the restricted master problem until an
optimal solution to the master problem can be obtained.

In the restricted master problem, the variable set C is replaced by a small subset
C′ ⊂ C. The restricted master problem is written as

min
x

∑
C∈C′

wCxC (4.3.1)

s.t.
∑

C∈C′

aiCxC = 1 ∀i ∈ I, (4.3.2)

xC ≥ 0 ∀C ∈ C′. (4.3.3)

Instead of writing xC ∈ [0, 1], we can write xC ≥ 0 because of Constraints (4.3.2)
and aiC being defined to be binary.

The restricted variable set C′ can be initialized with any heuristic solution. However,
we decided to even choose a simpler initialization by starting with a singleton C′ = {C},
where C is defined by aiC = 1 for all i ∈ I. In other words, C is a cluster containing
all data records. Even though this initial restricted variable set is not a subset of the
original variable set, it has the advantage of being very simple and is a feasible solution
in terms of Constraints (4.3.2). Without loss of generality, this cluster is not included
in an optimal solution to the master problem since it can be split into clusters of size
between k and 2k − 1 without increasing the objective value.

In the column generation scheme, the variable set C′ is extended iteratively. Vari-
ables, i.e. clusters C ∈ C, that have a non-zero value in an optimal solution are added.
Whether a variable obtains a non-zero value can be seen from the reduced costs, which
are computed by using dual variables. The dual problem to the linear program above
aims at finding a maximum lower bound to the objective function (4.3.1). It con-
tains constraints for each variable corresponding to clusters C ∈ C′, and variables
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4.3 Finding a Fractional Solution

for each constraint in (4.3.2), i.e. for each data row i ∈ I. The dual program to
problem (4.3.1)–(4.3.3) can be written as

max
u

∑
i∈I

ui (4.3.4)

s.t.
∑
i∈I

aiCui ≤ wC ∀C ∈ C′, (4.3.5)

ui ≥ 0 ∀i ∈ I. (4.3.6)

The reduced costs are defined by wC −
∑

i∈I aiCui and can be seen as the amount by
which an objective coefficient wC would have to be increased until the corresponding
variable xC is non-zero in an optimal solution. Therefore, a variable with negative
reduced costs might be part of an optimal solution and is added to the variable set C′.

Instead of computing the reduced costs explicitly for exponentially many columns,
the pricing problem finds variables with negative reduced costs implicitly. We consider
the formulation of the pricing problem next. It can be written as

min
v,z

∑
e∈E

weze −
∑
i∈I

uivi (4.3.7)

s.t. zil ≥ vi + vl − 1 ∀(i, l) ∈ E, (4.3.8)
k ≤

∑
i∈I

vi ≤ 2k − 1, (4.3.9)

ze ≥ 0 ∀e ∈ E, (4.3.10)
vi ∈ {0, 1} ∀i ∈ I. (4.3.11)

In our application, a variable xC in the master problem (4.2.1)–(4.2.3) corresponds
to a cluster with a size between k and 2k − 1. The objective function in (4.3.7) is
the reduced costs of the cluster indicated by the vi-variables. They are computed
with the help of current dual variables ui, which are obtained by solving the current
restricted master problem (4.3.1)–(4.3.3). We use binary variables vi for all vertices
i ∈ I. They indicate whether a vertex i ∈ I is contained in an optimal cluster, i.e. a
cluster with minimum reduced costs. Additionally, the problem contains variables ze

to indicate whether an edge e ∈ E is contained in an optimal cluster or not. Even
though it is known that each set of vertices automatically is a clique because the
graph is complete, the edge variables are needed to compute the reduced costs. We
denote the edge variables by ze = zil for all e = (i, l) ∈ E. Constraints (4.3.8) ensure
that an edge is included if both its incident vertices are. Note that due to the non-
negativity of the edge weights, we do not have to explicitly consider the opposite
direction, which is that an edge is not included if at least one of its incident vertices
is not. Constraint (4.3.9) enforces the size of the resulting cluster to be between k
and 2k − 1. It suffices to enforce non-negativity in Constraint (4.3.10) instead of
ze ∈ {0, 1} because of the non-negativity of the edge weights and Constraints (4.3.8)
together with Constraints (4.3.11).
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Also the work by Ji and Mitchell (2007) deals with a column-oriented formulation of
the investigated partitioning problem. They focus on a branch-and-price scheme and
how cutting planes can be included in their algorithm. However, they do not exploit
that it is sufficient to limit clusters to those with a size less than or equal to 2k − 1.
Castro et al. (2022) showed a formulation of the problem using only edge variables.

As mentioned in Section 1.1, it is useful to apply heuristics for finding variables with
negative reduced costs. In case of multiple heuristics, it is reasonable to apply a fast
method first and only if it is not successful to apply further heuristics. Therefore, we
first apply a greedy heuristic. Only if it does not return suitable variables, we apply
a more costly enumeration heuristic.

The procedure of the greedy algorithm is depicted in Algorithm 5 and can be de-
scribed as follows. Given the original edge weights we and the current dual variables
ui, the algorithm iteratively constructs clusters C. It returns a set S of clusters with
negative reduced costs respecting the size-constraint, or the empty set. Returning
multiple clusters, i.e. variables of the master problem, with negative reduced costs
can speed up the algorithm since multiple variables are added to the restricted mas-
ter problem and less iterations of the column generation scheme might be needed.
However, it is also not required to add all variables with negative reduced costs. A
parameter nmax determines the maximal number of clusters that are added to the set
S. The set S is initialized to be the empty set. Iteratively, clusters with negative
reduced costs are added, if found. To ensure that clusters distinct from each other
are constructed, the added clusters are built only of vertices that are not assigned to
any previous cluster. To keep track of the vertices, a set N is initialized to be the set
of all data rows and will consist of all unassigned vertices. A cluster C to be added
to S is created by starting with an unassigned vertex i with maximum value of the
dual variable ui. Iteratively, vertices, which are not assigned yet, are added to C. The
criterion for the choice of the selected vertex is the increase of the cluster weight of
C, i.e., the reduced costs, resulting from the inclusion of the vertex. In the next step,
it is checked whether the reduced costs can be decreased by adding more elements to
the cluster. For this purpose, extensions of the cluster to clusters of at most 2k − 1
elements are considered. The cluster with minimum reduced costs is added to the
set S, if the reduced costs are negative. The procedure is repeated on the remaining
vertices until either the cluster has a non-negative weight, or fewer than k vertices
remain, or the algorithm has found nmax clusters. In this context, the notation δ(C)
denotes all edges that have one incident vertex in the set C.

If the greedy algorithm does not provide a solution, we run through an enumeration
heuristic, which we depict in Algorithm 6. The algorithm starts with a vertex i with
maximum dual value ui and finds a cluster with negative reduced costs by enumeration,
or returns the empty set. The 2k−2 closest vertices to i according to the edge weights
are taken into account. All clusters of size between k and 2k − 1 are enumerated and
the corresponding reduced costs are computed. The first found cluster with negative
reduced costs is returned.
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4.3 Finding a Fractional Solution

Input: Complete graph G = (I, E) with edge weights we for all e ∈ E and
dual variables ui for all i ∈ I, parameter nmax.

Output: A set S of at most nmax clusters of size between k and 2k − 1 with
negative reduced costs, or S = ∅.

1 Initialization: N = I, S = ∅;
2 while |N | > k and |S| < nmax: do
3 Find vertex i ∈ N such that ui ≥ ul for all l ∈ N ;
4 Set C = {i};
5 while |C| < k do
6 Find i ∈ arg minl∈N\C{

∑
e∈δ(C):l∈e we − ul};

7 Set C = C ∪ {i};
8 end
9 Set C ′ = copy(C);

10 while |C ′| < 2k − 1 do
11 Find i = arg minl∈N\C′{

∑
e∈δ(C′):l∈e we − ul};

12 Set C ′ = C ′ ∪ {i};
13 if reduced costs(C ′) < reduced costs(C) then
14 Set C = C ′;
15 end
16 end
17 if reduced costs(C) ≥ 0 then
18 return S;
19 end
20 Set S = S ∪ {C};
21 Set N = N \ C;
22 end
23 return S

Algorithm 5: Greedy heuristic for the pricing problem.

If both heuristics do not return any cluster with negative reduced costs, the pricing
problem can be solved exactly. If the optimal value is non-negative, there are no more
variables with negative reduced costs. Therefore, the procedure can be aborted and
an optimal solution to the restricted master problem also solves the master problem
optimally. However, since we are interested in finding an integer solution, it might
not be necessary to solve the fractional problem optimally. Therefore, we consider
both options, terminating the column generation algorithm whenever both heuristics
do not find any variables with negative reduced costs and solving the master problem
to optimality. The first case is of interest because of the faster runtimes and it also
provides a feasible fractional solution. We use the dual information from the obtained
fractional solution to get an integer clustering.
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Input: Complete graph G = (I, E) with edge weights we for all e ∈ E and
dual variables ui for all i ∈ I.

Output: A cluster C of size between k and 2k − 1 with negative reduced
costs, or ∅.

1 Find vertex i ∈ I such that ui ≥ ul for all l ∈ I;
2 Find 2k − 2 closest vertices N ⊂ I to i;
3 for each subset N ′ ⊂ N with k − 1 ≤ |N ′| ≤ 2k − 2 do
4 Compute reduced costs ∑

e∈E(N ′∪{i}) we − uv;
5 if reduced costs(N ′ ∪ {i}) < 0 then
6 return C = N ′ ∪ {i};
7 end
8 end
9 return ∅.

Algorithm 6: Enumeration heuristic for the pricing problem.

To give an overview of the column generation scheme that is used to find a fractional
solution to the partitioning problem of interest, we summarize the procedure as follows.

1. Set C′ = {C} with C being the cluster that contains all data rows i ∈ I.

2. Iterate
a) Solve RMP (4.3.1)–(4.3.3) with variable set C′ and obtain dual solutions ui.
b) Find variables with negative reduced costs:

(i) Run greedy algorithm.
(ii) If greedy algorithm was not successful: Run enumeration heuristic.
(iii) If enumeration heuristic was not successful: Solve pricing prob-

lem (4.3.7)–(4.3.11) to optimality.
c) If variables S with negative reduced costs are found, set C′ = C′ ∪ S.

Else: break.

4.4. Finding an Integer Solution

The problem of interest in this chapter is to find a partitioning of a microdata set
into clusters of size between k and 2k − 1. In the last section, we have seen how
to approach the linear relaxation of the program with a column generation scheme.
In this section, we analyze how the information provided by a fractional solution
can be used to heuristically find an integer solution to the original problem (4.2.1)–
(4.2.3). Next, we describe an approach, which exploits the dual information obtained
by a fractional solution and iteratively constructs an integer-feasible clustering of
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the microdata set. The method starts with an empty clustering and adds clusters
iteratively until all vertices are covered. We choose the clusters to be added by solving
an auxiliary problem following an idea by Zhao et al. (2018). To this end, we formulate
the auxiliary problem for the application to the partitioning problem.

4.4.1. Preliminaries

We first report optimality results by Larsson and Patriksson (2006) for integer pro-
grams. These results are the basis for the auxiliary problem, which we use to find a
cluster to be added. In general, for integer programs, the duality gap is expected to
be non-zero. However, Larsson and Patriksson (2006) have shown conditions for the
optimality of primal and dual solutions to integer programs regardless of the size of
the duality gap. Based on these results, the auxiliary problem introduced by Zhao
et al. (2018) aims to minimize the duality gap to find a near-optimal integer solution.

Consider the general discrete optimization problem

min
x

wT x (4.4.1)

s.t. Ax ≥ b, (4.4.2)
x ∈ X (4.4.3)

with X ̸= ∅ being a bounded discrete set.
Let

L(x, u) := bT u + (wT − uT A)x,

then, the Lagrangian dual function for the optimization problem above can be written
as

h(u) := min
x∈X

L(x, u) = min
x∈X

bT u + (wT − uT A)x.

and the Lagrangian dual problem is

max
u≥0

h(u). (4.4.4)

Let h∗ be an optimal objective value of the Lagrangian dual problem and z∗ be an
optimal objective value of the primal problem (4.4.1)–(4.4.3). Then, for integer pro-
grams, the duality gap Γ := z∗ − h∗ is non-zero in general. However, the following
optimality result by Larsson and Patriksson (2006) holds regardless of the size of the
duality gap.

Theorem 4.4.1 (Larsson and Patriksson, 2006, Theorem 3). Let x, u ∈ X × Rm
≥0.

Then, the following statements are equivalent:

1. The primal problem (4.4.1)–(4.4.3) is solved by x and the dual problem (4.4.4)
is solved by u.
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2. There exist (ϵ, δ), so that the pair (x, u) satisfies the following conditions:

a) Lagrangian ϵ-optimality: L(x, u) ≤ h(u) + ϵ

b) Primal feasibility: Ax ≥ b

c) δ-complementarity: uT (Ax− b) ≤ δ.

d) ϵ + δ ≤ Γ with Γ being the duality gap and ϵ, δ ≥ 0.

3. The pair (ϵ, δ) with ϵ, δ ≥ 0 satisfies ϵ + δ = Γ, and the pair (x, u) satisfies the
following saddle point like condition for the Lagrangian function

L(x, v)− δ ≤ L(x, u) ≤ L(y, u) + ϵ ∀(y, v) ∈ X × Rm
≥0.

The pair (ϵ, δ) depends on x and u, i.e. ϵ = ϵ(x, u) and δ = δ(x, u). However, for
simplicity, we chose the simpler notation in this case. The theorem shows a strong
relation between the duality gap Γ and the pair (ϵ, δ). Motivated by this, Zhao et al.
(2018) propose an approach that finds a solution x by minimizing a convex combination
of ϵ and δ when dual variables ũ are given. Constraints (4.4.2) are taken into account
with a penalization term in the auxiliary problem. The minimization problem is as
follows.

min
x∈X

αϵ(x, ũ) + (1− α)δ(x, ũ) + λ
∑
i∈I

max {0, bi − (Ax)i} , (4.4.5)

where α ∈ (0, 1] is a weighting parameter for the convex combination and λ > 0
is a penalty parameter. We assume α > 0 since otherwise it completely excludes
the original objective function (4.2.1), which is not reasonable. Zhao et al. (2018)
reformulate this problem. We show the rearrangement in more detail. We begin with
the convex combination of ϵ and δ. By the inequalities

ϵ ≥ L(x, ũ)− h(ũ) = bT ũ + (wT − ũT A)x− h(ũ)

and

δ ≥ ũT (Ax− b)

from Theorem 4.4.1, the convex combination of ϵ and δ is restricted by

αϵ(x, ũ) + (1− α)δ(x, ũ) ≥ α(bT ũ + wT x− ũT Ax− h(ũ)) + (1− α)(ũT Ax− ũT b)
= αwT x− 2αũT Ax + ũT Ax + α(bT ũ− h(ũ))− (1− α)(ũT b)
= αwT x− 2αũT Ax + ũT Ax + const(ũ).

Since ũ is given, the last part is a constant term. In the minimization problem,
this term therefore can be neglected. Instead of solving problem (4.4.5) directly, the

44



4.4 Finding an Integer Solution

following equivalent minimization problem is solved:

min
x∈X

αwT x− 2αũT Ax + ũT Ax + λ
∑
i∈I

max {0, bi − (Ax)i}

= min
x∈X

wT x− 2ũT Ax + 1
α

ũT Ax + λ
∑
i∈I

max {0, bi − (Ax)i}

= min
x∈X

(wT − γũT A)x + λ
∑
i∈I

max {0, bi − (Ax)i}

= min
x∈X

(wT − γũT
∑
C∈C

a∗C)xC + λ
∑
i∈I

max
{

0, bi − (
∑
C∈C

a∗CxC)i

}

where γ := (2− 1
α) ∈ (−∞, 1]. We replaced the term Ax by ∑

C∈C a∗CxC , where a∗C

denotes the C-th column of A, to emphasize a column-oriented formulation.
In a typical program, which is suitable for column generation, the set X is a high-

dimensional set. Also, the introduced minimization problem can not be solved ex-
plicitly in practice, for large instances. We therefore use an heuristic approach to the
problem. The method increments single variables xC iteratively. In each iteration, a
variable with the least contribution to the introduced objective function of the auxil-
iary problem is incremented. For this purpose, for a current vector x̃ we consider the
set of indices that can be potentially increased by one such that the resulting vector
is again contained in the feasible set X. We define such set by

CR(x̂) := {C ∈ C : (x̃1, . . . , x̃C + 1, . . . , x̃|C|)T ∈ X}.

Let x = (x̃1, . . . , x̃C̃ + 1, . . . , x̃|C|)T for a given x̃. Since both vectors only differ by
one in index C̃, we can write ∑

C∈C(a∗CxC)i = ∑
C∈C(a∗C x̃C)i + aiC̃ .

So, we are looking for an index C̃ minimizing

min
C∈CR(x̃)

wC − γũT a∗C + λ
∑
i∈I

max{0, b̃i − aiC} (4.4.6)

for given dual values ũ derived from a fractional solution and with defining b̃ :=
b−

∑
C∈C a∗C x̃C for the current vector x̃. We can interpret the value b̃ as by how much is

missing to satisfy Constraints (4.4.2) by the current solution x̃. Remember, that λ > 0
is a penalty parameter for Constraints (4.4.2) and parameter γ = (2 − 1

α) ∈ (−∞, 1]
replaces parameter α in the convex combination of ϵ and δ. Zhao et al. (2018) suggest
to exclude α ∈ (0, 1

2), which corresponds to γ < 0 as this is equivalent to changing
the signs of the dual variables ũ. Setting γ = 0, which means α = 1

2 , corresponds
to minimizing over the original costs wC and putting equal weights on ϵ and δ. The
setting γ = 1, which means α = 1, corresponds to minimizing over the reduced costs
wC − ũT a∗C . Therefore, parameter γ ∈ [0, 1] determines the range of the objective
function between the original and the reduced costs. Note that the value γ = 0
completely excludes the dual information from the fractional solution. Even though
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variables, which are useful in a fractional solution, are not necessarily useful for an
integer solution, we expect a value γ > 0 to return better results since then the
available information is included. In practice, similarly to the pricing problem in a
column generation scheme, the auxiliary problem is not solved explicitly. In the next
section we will see an implicit formulation of the minimization problem above applied
to the considered partitioning problem.

4.4.2. Application to the Partitioning Problem

We have seen a general form of the auxiliary problem proposed by Zhao et al. (2018)
in the previous section. The idea is to build an integer solution by exploiting dual
information from a fractional solution. In this section, we apply problem (4.4.6) to
find an integer solution to the partitioning problem formulated in Section 4.2. In
our application, the feasible set is X = {0, 1}|C| since we use binary variables for all
clusters with a size between k and 2k − 1. For a given vector x̃ ∈ X, the set of
incrementable indices is CR(x̃) = {C ∈ C : x̃C = 0}, which are all indicator variables
of clusters, which are not included in the current clustering. We denote by I ′(x̃) ⊂ I
the set of unassigned data rows under vector x̃, which is

I ′(x̃) := {i ∈ I : x̃C = 0 for all C ∈ C with i ∈ C}.

In this application, the vector b̃ = b −
∑

C∈C a∗C x̃C indicates, which data rows i ∈ I
are not in any cluster C with x̃C = 1. The vector b̃ is defined by

b̃i =
{

1, if i ∈ I ′(x̃),
0, if i ∈ I \ I ′(x̃).

Therefore, we can rewrite the sum in the last term in Problem (4.4.6) by∑
i∈I

max{0, b̃i − aiC} =
∑

i∈I′(x̃)
(1− aiC), (⋆)

which is the number of unassigned vertices under x̃ that remain unassigned when
including cluster C to the current solution. As mentioned before, we do not solve the
auxiliary problem 4.4.6 explicitly. Instead, we find an index C to be incremented by
adding constraints that enforce C ∈ CR(x̃) for a current vector x̃ ∈ X. This results in
an optimization problem very similar to the pricing problem in a column generation
scheme. We introduce variables vi for all data rows i ∈ I and edge variables ze for all
edges e = (i, l) ∈ E. These variables will indicate which vertices are contained in the
cluster to be added to the current solution. As before in the pricing problem, we need
constraints to ensure constructing a cluster in C = {C ⊂ I : k ≤ |C| ≤ 2k − 1}. Using
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(⋆), we can write the objective function in (4.4.6) as∑
e∈E

weze − γ
∑
i∈I

ũivi + λ
∑

i∈I′(x̃)
(1− vi) =

∑
e∈E

weze −
∑
i∈I

γũivi −
∑

i∈I′(x̃)
λvi +

∑
i∈I′(x̃)

λ.

Note that the constant term ∑
i∈I′(x̃) λ can be neglected in the minimization problem.

Since we want to ensure that each vertex in the data set I is not assigned to more
than one cluster, we restrict the auxiliary problem to variables vi for all yet unassigned
vertices, i.e. vertices i ∈ I ′(x̃). The problem we use to find an integer clustering is

min
v,z

∑
e∈E

weze −
∑

i∈I′(x̃)
(γui + λ) · vi (4.4.7)

s.t. zil ≥ vi + vl − 1 ∀i, l ∈ I ′(x̃), (4.4.8)
k ≤

∑
i∈I′(x̃)

vi ≤ 2k − 1, (4.4.9)

ze ≥ 0 ∀e ∈ E, (4.4.10)
vi ∈ {0, 1} ∀i ∈ I ′(x̃) (4.4.11)

with γ ∈ [0, 1] and λ > 0 as parameters, and I ′(x̃) ⊂ I the set of unassigned vertices
under x̃. Constraint (4.4.9) ensures that the cluster size is between k and 2k − 1. In
order to obtain a clique, an edge must be included if and only if both incident vertices
are included, which is ensured by Constraints (4.4.8). We do not need constraints for
the opposite direction as all edge weights we are non-negative. Also, we do not need
to enforce the variables ze to be binary because the vertex variables vi are binary and
the weights we are non-negative.

We now describe the proposed method, which is also depicted in Algorithm 7. The
method starts with an empty clustering, which corresponds to x̃C = 0 for all C ∈ C.
We simplify the notation to I ′(x̃) = I ′. The set I ′ is initialized to be the set of all
vertices I since there is no assigned vertex at first. Then, problem (4.4.7)–(4.4.11)
returns a cluster and, thus, an index C ∈ C to be incremented. Therefore, the cluster
C is added to the clustering C∗, which will be returned. All vertices included in the
found cluster are removed from set I ′. This procedure is repeated as long as there
are at least k unassigned vertices left. This procedure ensures that a solution to the
problem above always yields a new cluster. If there are less than k vertices unassigned,
each remaining vertex is assigned to the best fitting existing cluster. Due to this last
step, there could be clusters of size greater than 2k − 1. Therefore, all such clusters
are divided into smaller clusters of size between k and 2k− 1. To this end, we simply
divide the clusters by assigning the first k elements into one cluster and the remaining
vertices into another cluster.

Next, we review the meaning of parameter λ in Problem (4.4.7)–(4.4.11) for the
given application. The parameter was introduced as a penalty for violations of the
constraints. In this application, the constraints ensure that each vertex is contained
in exactly one cluster. However, the parameter can also be interpreted as follows. Due
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Input: Graph G = (I, E) with edge weights we for all e ∈ E and dual
variables ui for all i ∈ I, parameters γ ∈ [0, 1], λ > 0, and k for
k-anonymity.

Output: A partitioning C∗ of G into clusters of size between k and 2k − 1.
1 Initialization: Set I ′ = I, C∗ = ∅;
2 while |I ′| ≥ k do
3 Solve problem (4.4.7)–(4.4.11) to optimality with optimal solution (ṽ, z̃);
4 Set C = {i ∈ I ′ : ṽi = 1};
5 Set C∗ = C∗ ∪ {C}, I ′ = I ′ \ C;
6 end
7 for i ∈ I ′ do
8 Find cluster C ′ ∈ C∗ such that wC′∪{i} ≤ wC∪{i} for all C ∈ C∗;
9 Update C∗: Set C∗ = C∗ \ {C ′} ∪ {C ′ ∪ {i}} ;

10 end
11 for C ∈ C∗ do
12 if |C| ≥ 2k then
13 Separate the first k elements of C into a distinct cluster;
14 Update C∗ by replacing C ∈ C∗ with the smaller clusters;
15 end
16 end
17 return C∗.

Algorithm 7: Greedy heuristic for finding an integer partitioning.

to its non-negativity, λ provides a reward for each variable that is set to 1, i.e. for
each vertex that is included in the returned cluster. Clearly, by adding a vertex to a
cluster, the dissimilarity in the cluster can not decrease. However, it often is useful
to add a larger cluster to the solution with respect to the overall dissimilarity over all
clusters, which can be seen from the following case. Assume, we have given a data set
that includes k +1 data vectors that are highly similar to each other but not identical,
and highly dissimilar to the remaining data records. Assume, these vectors would be
assigned to the same cluster in an optimal clustering. The proposed method adds
clusters one by one. With λ = 0, a cluster with k of the k + 1 similar data records
would be preferred over a cluster of size k + 1 since the data vectors are not identical
to each other and in the worst case the remaining data row is assigned to a cluster
with more dissimilar records. If chosen correctly, the parameter λ > 0 can favor the
case to assign all k + 1 data vectors to the same cluster. Note that choosing a value
for parameter λ that is too high leads to more heterogeneous clusters as then, more
emphasis is placed on the larger size than on the cluster weight.
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4.5. Summary of the Proposed Partitioning Step

The basis of the method is the column-oriented formulation (4.2.1)–(4.2.3) and an
approximate or optimal fractional solution to the linear relaxation. Next, given dual
information provided by the fractional solution, an integer clustering is constructed
iteratively. We describe the two steps further.

1. A fractional solution to the linear relaxation of the partitioning problem is found
via column generation. In the pricing step two heuristics are applied: greedy
heuristic and enumeration of closest records. We consider two options:
Heuristic fractional solution: The column generation process is stopped if both

heuristics do not yield a variable with negative reduced costs. Therefore, a
feasible, not necessarily optimal, fractional solution is obtained.

Optimal fractional solution: If both heuristics do not yield a variable with neg-
ative reduced costs, the pricing problem is solved to optimality. This pro-
cedure leads to an optimal fractional solution.

2. Given the dual information by a fractional solution, clusters are iteratively added
to the returned clustering. In a greedy manner, the cluster to be added is built
only from yet unassigned vertices. In each step, a cluster minimizing prob-
lem (4.4.7)–(4.4.11) is chosen. The problem is motivated from minimizing the
duality gap. If less than k vertices remain, they are added to the best fitting
cluster, respectively. In the end, cluster of size greater than 2k − 1 are divided
into smaller clusters and the resulting clustering is returned.

This chapter covered the first step of a microaggregation procedure, which is to
find a suitable partitioning of the microdata set. In the next chapter, we discuss the
subsequent aggregation step. During aggregation, a representative is selected for each
cluster and all individual values are replaced by these representative values.
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Chapter 5
Aggregation Step

In this chapter, we discuss the second phase of a microaggregation method, the aggre-
gation step, in which representatives for each given cluster are identified. In the first
part of a microaggregation method, the partitioning step, we determine a clustering
C∗ of a microdata set such that the clusters are of size between k and 2k − 1, where
k is the parameter for k-anonymity. In the subsequent aggregation step, for each of
the clusters a representative is selected. All individual records in a cluster are then
replaced by the selected representative. The microdata set obtained by this proce-
dure satisfies the k-anonymity property. In this chapter, we show a mathematical
formulation of the problem to find suitable representatives and two heuristics to solve
it.

We discuss several aspects of the proposed aggregation method in Section 5.1. In
Section 5.2 we propose a mathematical formulation of the aggregation step. A graph-
theoretical point of view to this problem is assumed in Section 5.3. Based on both
formulations we present two heuristic approaches in Section 5.4. We conclude the
chapter with a summary in Section 5.5.

5.1. Introduction

In this section, we motivate our approach to the aggregation methods. First, we in-
clude frequency tables in the aggregation step because (especially low-dimensional)
frequency tables are of high interest for nominal data and consequently, the proposed
method minimizes the information loss in (a subset of) the frequency tables. Fur-
thermore, we motivate the use of a data-perturbative method, which can lead to
compensation effects and therefore have a positive impact on errors in frequency ta-
bles. Then, we discuss the difficulties encountered in extending methods for numerical
data to nominal data.

A special feature for nominal data compared to numerical data is the importance
of frequency tables. Using a perturbative method on the level of the frequency ta-
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bles, e.g. noise addition, can lead to inconsistencies between different tables. The
anonymization on the level of frequency tables using non-perturbative methods like
suppression is a well-studied field. However, anonymizing on the level of the microdata
set, a non-perturbative method can lead to severe information loss in frequency tables.
In contrast, using a perturbative method on the level of the microdata set can even
preserve some of the original frequencies. The following example illustrates that in
tables of lower dimensions frequencies can remain truthful even after the anonymiza-
tion process. Note that in practice, especially frequency tables of a low dimension are
of interest.

Example 5.1.1. Let the following original microdata set be given and consider a
2-anonymous microdata set corresponding to it.

Sex Citizenship

female Germany
female Others
male Germany
male Others

(a) Exemplary microdata set.

Sex Citizenship

female Germany
female Germany
male Others
male Others

(b) Exemplary 2-anonymous microdata set.

There are three frequency tables that can be generated from this microdata set. We
consider the entries belonging to the original microdata set and, in parentheses, those
belonging to the 2-anonymous microdata set depicted in Figure 5.2.

Sex Counts
female 2 (2)
male 2 (2)

Citizenship Counts
Germany 2 (2)
Others 2 (2)

Citizenship

Sex Germany Others
female 1 (2) 1 (0)
male 1 (0) 1 (2)

Figure 5.2.: Frequency tables corresponding to the exemplary (2-anonymous) micro-
data set.

In both one-dimensional frequency tables we see that even after anonymization the
original cell entries could be preserved. Only in the two-dimensional table, errors
occur due to the anonymization process.

Except for the trivial case, where the original microdata set already satisfies k-
anonymity, the frequency table of the highest possible dimension will always include
perturbed entries. This is due to the fact that this frequency table is just another rep-
resentation of the microdata set since it includes all possible combinations of attribute
values. In practice, frequency tables of lower dimensions are of higher interest.
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In the aggregation step, typically the cluster representative is chosen to be close
to the data records. For numerical data, this is achieved by using the mean values
as representatives. The first extensions of microaggregation to categorical data also
included the plurality mode, which is comparable to using the mean. In both cases,
only the respective cluster is considered regardless of the cluster representatives of
other clusters. However, taking the errors in resulting frequency tables into account,
we see that selecting the representative of a cluster should not be independent from
the representatives of the other clusters. The next minimal example shows this de-
pendencies.

Example 5.1.2. Let n = 9 persons be asked about the attributes J = {sex,
working status} with the value sets V (sex) = {f, m} and V (working status) = {empl,
unempl, inact}. Let the clustering of the microdata set be given by a set of three
clusters

C∗ = {{(f, empl), (f, empl), (m, empl)},
{(f, unempl), (f, unempl), (m, unempl)},
{(f, inact), (f, inact), (m, inact)}}

If the commonly used procedure for numerical data is adapted to nominal data by
replacing the mean with the plurality mode in all clusters, the individual values for
the attribute sex would be changed to f. We call this setting Scenario 1. However,
we show that changing the data set to Scenario 2, as given below, would lead to less
errors in the resulting frequency tables.

{{(f, empl), (f, empl), (f, empl)},
{(f, unempl), (f, unempl), (f, unempl)},
{(f, inact), (f, inact), (f, inact)}}

(a) Scenario 1 using plurality mode on one
cluster.

{{(f, empl), (f, empl), (f, empl)},
{(f, unempl), (f, unempl), (f, unempl)},
{(m, inact), (m, inact), (m, inact)}}

(b) Scenario 2 including effects from other
cluster representatives.

The entries of the one-dimensional frequency table displaying the attribute sex for
the original microdata set and the two scenarios for 3-anonymity are depicted in
Table 5.1. We see that the original cell entries can be preserved when the cluster
representatives are chosen well. To identify suitable cluster representatives, we take the
representatives of other clusters and the effects on the control tables into account. It is
easy to verify that the entries of the frequency table displaying attribute working status
remain unchanged in both scenarios. Note that errors occur in the two-dimensional
tables in both cases because the original microdata set was not already k-anonymous.
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Counts
Sex original value Scenario 1 Scenario 2
f 6 9 6
m 3 0 3

Table 5.1.: One-dimensional frequency table for the exemplary microdata set with
original values, values for Scenario 1 and Scenario 2.

In a table cell, the representatives of all clusters jointly affect the resulting errors.
Therefore, a cluster representative in the case of nominal data should also depend
on the representatives of other clusters. To this end, we take the resulting errors in
frequency tables into account. There are ∑m

d=1
(m

d

)
= 2m− 1 frequency tables, so that

the total number of frequency tables is exponential in the number of attributes. In
practice, frequency tables of higher dimensions are not as important as tables of lower
dimension. For this reason, the aggregation problem we analyze includes only the
errors in a subset of all possible frequency tables.

Next to preserving the information from frequency tables, a second requirement
for the cluster representative of nominal data is that the representative should have
a reasonable combination of entries. By using the attribute-wise mean values for
numerical data, the resulting cluster representative is a combination of attribute values
that might not occur in the original microdata set in general. The same can be the
case for nominal data when the plurality mode is used. For numerical data, this
does not need to be a problem. However, for categorical data this can result in
unreasonable combinations because logical connections or contradictions between the
attributes are not taken into account when using the plurality mode. The following
example illustrates this case.

Example 5.1.3. Let the data records of four persons be assigned to the same cluster
that is given by the following table. Using the plurality mode, the cluster representa-

Working status Job position

employed official
employed employee
inactive None
unemployed None

tive is given by (employed, None), which is an unreasonable combination.

To avoid generating unreasonable data records, one could prohibit the joint occur-
rence of attribute values that contradict each other. However, this approach requires
a lot of a priori information about the logical connections between different entries.
In contrast, our approach only allows data rows to be cluster representatives, which
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occur in the original microdata set. In consequence, unreasonable combinations can
not be created in the anonymization process.

5.2. Formulation of the Aggregation Problem

We formulate an optimization problem that aims to find cluster representatives for
each cluster. The program takes resulting errors in a subset of frequency tables into
account and only allows data records occurring in the original microdata set to be
selected as cluster representatives.

As described in Chapter 2, the SAFE-basic problem includes the maximum error in
the frequency tables. However, we have discussed that focusing on the maximum error
may lead to unnecessary errors in table cells. Moreover, it is reasonable to give more
weight to an error in a table cell with a small original entry than to the same absolute
error in a cell with a large original entry. This idea is also included in the SAFE-basic
problem by the extra allowed error by parameter g. However, we decided to take the
error between original values and cell values after the anonymization process relatively
to the original value into account by using the χ2-error in the objective function. The
χ2-error also penalizes larger errors more than smaller ones. Given the original value
n̄t > 0 of table cell t and some value nt, the χ2-error is given by

(nt − n̄t)2

n̄t
.

As the number of frequency tables is exponential, we can afford only to take a
subset of tables in the aggregation step into account, the control tables. The number
of control table cells directly increases the size of the problem and, therefore, the
runtime required to solve the problem. In practice, tables of a low dimension would
be included. We denote the set of all control table cells by T . Furthermore, let n̄t be
the original value of table cell t ∈ T .

All individual data records in a cluster are replaced by a cluster representative. To
prevent the problem of creating unreasonable combinations, we only consider existing
data records in each cluster as potential representatives. Remember that each data
row is assigned to exactly one cluster. In the problem formulation, we will use binary
variables zi for all data rows i ∈ I, which indicate whether data row i ∈ C is selected
as cluster representative of cluster C. Note that it is sufficient to only consider distinct
data records in each cluster, which might decrease the number of variables.

After replacing all individual data records with representative values, all data records
are counted in the same table cells after anonymization. Thus, the contribution of a
cluster to a table cell is fully defined by the size of the cluster and the representative.
We use an indicator to show whether a data row is counted in a table cell, which
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contains the cluster size. The indicator with multiplicity is defined as

fti :=
{
|C|, if i ∈ C is counted in table cell t,

0, else

for all table cells t ∈ T and data rows i ∈ C for all C ∈ C∗. It is used to compute the
value of table cell t after the anonymization process.

We formulate the aggregation problem as follows:

min
z

∑
t∈T :
n̄t>0

(fT
t∗z − n̄t)2

n̄t
(5.2.1)

s.t.
∑
i∈C

zi = 1 ∀C ∈ C∗, (5.2.2)

zi ∈ {0, 1} ∀i ∈ I. (5.2.3)

Since only data records of the original microdata set are potential representatives,
table cells with an original entry of zero will remain unchanged, i.e. the error in these
cells is zero. Hence, it is sufficient to only consider table cells with an original value
n̄t greater than zero. After the anonymization process, each cluster is either entirely
or not counted at all in a table cell. In other words, a cluster either contributes to
a table cell entry with the size of the cluster or it does not contribute to the cell. A
cluster is counted in a table cell if and only if the representative was originally counted
in the cell. Thus, the new entry of a table cell t ∈ T can be computed by using the
variables zi and the indicators fti. It is given by ∑n

i=1 ftizi = fT
t∗z and it is used in the

objective function. The objective function in (5.2.1) is the sum of χ2-errors between
all non-zero control table cells before and after anonymization. Constraints (5.2.2)
ensure that for each cluster exactly one of its elements is selected as representative.
Constraints (5.2.3) force the variables zi to be binary.

It is sufficient to only take distinct data records in each cluster into consideration.
Therefore, in a preprocessing step, all duplicates of data records in the same cluster can
be eliminated to reduce the number of variables in the program. In clusters with only
identical data rows, the representative is fixed by setting the variable zi, corresponding
to an arbitrary element of the cluster, to 1. In consequence, a partitioning of the
microdata set into homogeneous clusters leads to a smaller number of variables in the
aggregation step and, thus, to faster runtimes.

5.3. Reformulation to a Maximal Clique Problem in a
Multipartite Graph

We have seen a problem formulation for finding cluster representatives, which aims at
minimizing the sum of χ2-errors between control table cells before and after anonymiza-
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tion. In this section, we present a reformulation of problem (5.2.1)–(5.2.3). The integer
program can be interpreted as the task of finding a minimum-weighted maximal clique
in a graph. This representation allows a different approach to the problem and we will
use it to propose a graph-based heuristic to the aggregation problem. The basic idea
is to interpret each data row as a vertex in an appropriately structured graph. By in-
cluding the objective function as edge weights, the aggregation problem is equivalent
to finding a minimum edge-weighted maximal clique in a multipartite graph. This
problem is also described by Feremans et al. (2003) as generalized minimum clique
problem and Koster et al. (1998) show that it is NP-hard. However, the graph-based
reformulation allows for another viewing angle to the problem.

For the problem reformulation, we define graph Gaggr = (Iaggr, Eaggr) as follows. Let
the vertex set Iaggr ⊂ I correspond to a subset of the data rows, where all duplicates of
data rows assigned to the same cluster are eliminated. To find a set of representatives
according to the aggregation problem (5.2.1)–(5.2.3), we have to ensure that each
cluster is represented by exactly one vertex. To this end, we define the edge set Eaggr
as all edges between vertices that are assigned to different clusters. Edges between
vertices in the same cluster are not contained in Eaggr. By this definition, each clique
can contain at most one vertex from each cluster. To summarize, the considered graph
consists of |C∗| partitions corresponding to the given clusters where there is no edge
between any two vertices in the same partition and one edge between every pair of
vertices from different partitions. Thus, we use a complete multipartite graph where
each clique corresponds to a cluster. The following example illustrates the definition
of the graph Gaggr.

Example 5.3.1. Let I = {1, . . . , 7} be the index set for a microdata set that contains
7 data rows. Let a clustering of the microdata set be given by C∗ = {{1, 2}, {3, 4, 5},
{6, 7}}, which is suitable for 2-anonymity. Assume that the data rows in the clusters
are distinct from each other. Figure 5.4 illustrates the corresponding graph Gaggr.

1

2

3 4 5

6

7

Figure 5.4.: Exemplary graph Gaggr.

We assign weights to the edges and to the vertices such that finding representatives,
which are optimal in the sense of problem (5.2.1)–(5.2.3), is equivalent to finding a
maximal clique with minimum weight in graph Gaggr. As a first requirement, we
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obtain that the objective function can be split into a quadratic part, which will be
used in the edge weights, and a linear term, which can be used as vertex weights.
Next, we see that the vertex weights can also be represented as edge weights, such
that it is sufficient to only consider edge weights. The objective function (5.2.1) of the
aggregation problem can be reformulated as follows.

∑
t∈T

(fT
t∗z − n̄t)2

n̄t
=

∑
t∈T

(fT
t∗z)T (fT

t∗z)
n̄t

− 2
∑
t∈T

(fT
t∗z)n̄t

n̄t
+

∑
t∈T

n̄2
t

n̄t

=
∑
t∈T

1
n̄t

(fT
t∗z)T (fT

t∗z)− 2
∑
t∈T

fT
t∗z +

∑
t∈T

n̄t

=
∑
t∈T

1
n̄t

zT
(
ft∗fT

t∗

)
z − 2

∑
t∈T

fT
t∗z +

∑
t∈T

n̄t (5.3.1)

ft∗fT
t∗ is a symmetric matrix.

From the term zT ft∗fT
t∗z, we derive edge weights

w̃il = 2
∑
t∈T

1
n̄t

ftiftl

for all edges (i, l) ∈ Eaggr. From the diagonal entries in the matrix ft∗fT
t∗ and the

linear term in Equation (5.3.1), we obtain vertex weights. For all vertices i ∈ Iaggr,
we derive vertex weights

w̃i =
∑
t∈T

1
n̄t

f2
ti − 2

∑
t∈T

fti.

We first omit the constant term ∑
t∈T n̄t and then split the objective function into

weights on the edges and the vertices of the graph Gaggr as given above. Due to the
structure of the graph Gaggr, i.e. a multipartite complete graph, a maximal clique in
Gaggr consists of exactly one vertex per component. Using the edge and vertex weights
from above, minimizing the χ2-error in the frequency tables is equivalent to finding a
minimum weight maximal clique in this graph. The weight of a clique is the sum of
all weights of contained edges and vertices.

The graph Gaggr has the property that every pair of two vertices belonging to distinct
clusters is adjacent. Therefore, the size of a maximal clique is known to be |C∗|.
Moreover, it is known that for each vertex in a clique of |C∗| vertices, exactly |C∗| − 1
incident edges are contained in a maximal clique. Therefore, we can divide the vertex
weights among the edges. With the same explanation, we can also divide the constant
term in Equation (5.3.1) among the edges. Here, we exploit the well-known fact, that
a clique with |C∗| vertices includes 1

2 |C
∗| (|C∗| − 1) edges. Thus, we end up with a

complete multipartite graph with edge weights only. The edge weights equal

wil = w̃il + 1
|C∗| − 1 (w̃i + w̃l) + 2

|C∗|(|C∗| − 1)
∑
t∈T

n̄t
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for all edges (i, l) ∈ Eaggr.
This graphical representation allows another viewing angle.

5.4. Heuristic Approaches

In this section, we propose two heuristic approaches to the aggregation step for nom-
inal data, which we formulated in the last chapter. The first method is a greedy
algorithm based on the integer program, which is presented in Section 5.2. We de-
scribe this heuristic in Section 5.4.1. Moreover, we propose a second heuristic based
on the reformulation, which is described in Section 5.3. This approach is described in
Section 5.4.2.

We precede both heuristics with a preprocessing step. First, all duplicates of data
rows in the same cluster are eliminated to reduce the number of variables . In a second
preprocessing step, we further prescribe variables as follows. If all data rows in the
same cluster have the same value for an attribute, this value can be predefined for the
representative in advance. Hence, the contribution of this cluster to the table cells,
counting the fixed attributes, can be fixed before starting the aggregation procedure.
We show an illustrative example below.

Example 5.4.1. Let a microdata set be partitioned into C∗ = C1 ∪ C2 ∪ C3 with

C1 = {(f, GER), (f, GER), (f, GER)}
C2 = {(f, OTH), (f, OTH), (m, OTH)}
C3 = {(f, GER), (m, GER), (m, OTH)}

and let the control tables be all one-dimensional tables. Note that duplicated elements
belong to distinct statistical objects and unique identifiers are required for technical
correctness, but we omit them for better readability. After preprocessing, the data set
is reduced to

C1 = {(f, GER)}
C2 = {(f, OTH), (m, OTH)}
C3 = {(f, GER), (m, GER), (m, OTH)}

The cluster representative of C1 is set to (f, GER), since all cluster elements are
identical to each other. Even though the representative of cluster C2 cannot yet be
determined, the contribution to the one-dimensional frequency table showing attribute
citizenship is already predefined. In Cluster C3, no values are fixed in the preprocessing
step. In conclusion, the initial table cell entries are set as depicted in Figure 5.5.
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Sex Counts
f 3 (6)
m 0 (3)

Citizenship Counts
GER 3 (5)
OTH 3 (4)

Figure 5.5.: Initial (original) control table cells after preprocessing.

5.4.1. Greedy Algorithm

We propose a greedy algorithm to approach the aggregation problem. The method it-
erates over all clusters and for each cluster, a data row that contributes the least to the
objective function is selected as cluster representative. The procedure is depicted in
Algorithm 8. The initial new cell entries nt are given after preprocessing as described
above for all t ∈ T . In each iteration, a representative for one cluster is fixed by
choosing the data row, which causes the lowest increase with respect to the objective
function. Note that the contribution of individual cluster representatives to the objec-
tive function depends on the previously selected representatives. The new values nt

are updated in each iteration according to the selected representative. The procedure
terminates when it has iterated over all clusters and, thus, one representative for each
cluster is fixed.

Input: clustering C∗ of a microdata set, control table cells T , initial new cell
entries nt for all t ∈ T .

Output: A k-anonymous microdata set.
1 for C ∈ C∗ do
2 Find i ∈ C with minimum value for ∑

t∈T :
n̄t>0

(fti+nt)−n̄t

n̄t
;

3 Update nt = fti + nt for all t ∈ T ;
4 Replace all individual data rows in C by data row i;
5 end
6 return the modified microdata set.

Algorithm 8: Greedy heuristic for finding cluster representatives.

5.4.2. Graph-based Heuristic

In Section 5.3, we reformulated the problem of finding cluster representatives that
minimize the overall χ2-errors in the control table cells to a problem of finding a ma-
ximal clique with minimum edge-weights in a multipartite graph. The partitions of
the graph correspond one-to-one to the given clusters of the microdata set. In this
section, we present a heuristic approach to address this problem that can be considered
a top-down approach, in which the full graph is reduced iteratively until there is only
one vertex left for each partition, i.e. for each cluster. The remaining vertex is selected
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as cluster representative. For each vertex in a cluster, a lower bound for the weight of
a maximal clique with this vertex is computed. The vertex with the largest calculated
lower bound is deleted.

Since the graph is multipartite, a clique can contain at most one vertex per parti-
tion. The graph is complete, i.e. every pair of vertices from two distinct partitions is
adjacent. Therefore, a maximal clique contains exactly one vertex per partition. The
proposed heuristic approach is depicted in Algorithm 9 and works as follows. The
cluster representatives will be given in a set R. This set is initialized to be the full
graph partitioning C∗. In each iteration, the algorithm iterates over the clusters C ∈ R
and deletes a vertex in each cluster that has more than one element. The procedure
terminates when there is only one vertex left in each cluster. For each vertex i ∈ C, a
lower bound of the weight of a maximal clique that contains this vertex is computed.
As a maximal clique contains exactly one vertex from each cluster, if vertex i is con-
tained in the clique, then an edge from i to exactly one vertex in each other cluster
must be contained as well. A lower bound on the weight of an edge between i and
a vertex in a different cluster C ′ ̸= C is given by minl∈C′{we : i, l ∈ e}. Since this
holds for all clusters distinct from C, a lower bound for the weight of a maximal clique
containing vertex i can be computed by∑

C′∈C∗\C

min{we : i, l ∈ e, l ∈ C ′}.

When there is only one vertex left in a cluster, this vertex is set to be the cluster rep-
resentative. Thus, this cluster can be excluded from further iterations. The algorithm
iterates over all clusters and repeats this procedure until one cluster representative is
found for each cluster. In the end, the set R consists of singleton sets that contain the
computed cluster representatives.

Input: Multipartite Graph Gaggr = (Iaggr, Eaggr) with edge weights we for all
e ∈ Eaggr and clustering C∗ of Iaggr.

Output: A maximal clique in Gaggr.
1 Initialization: Set R = C∗;
2 while there is C ∈ R with |C| > 1 do
3 for C ∈ R with |C| > 1 do
4 Find vertex i ∈ C maximizing the term∑

C′∈R\C min{we : i, l ∈ e, l ∈ C ′};
5 Update R by replacing C with C \ {i};
6 end
7 end
8 return clique corresponding to R.
Algorithm 9: Graph-based heuristic for finding cluster representatives.
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5.5. Summary of the Proposed Aggregation Step

In the partitioning step of a microaggregation procedure, the microdata set to be
anonymized is partitioned into clusters of size between k and 2k−1. The topic of this
chapter is the second phase of the microaggregation method, the aggregation step.
In this step, the individual records in each cluster are replaced by a representative
to obtain k-anonymity. Due to the importance of frequency tables for nominal data,
the proposed method takes errors in a subset of frequency tables into account. We
have seen a mathematical formulation for the aggregation problem. Equivalently,
the problem can be formulated as a minimum-weight maximal clique problem in a
multipartite graph. Based on these different formulations, we have proposed two
heuristic approaches, a greedy algorithm and a graph-based heuristic.

The proposed aggregation method selects one data row in each cluster to be the clus-
ter representative. The resulting χ2-errors in a set of control frequency tables is deci-
sive for the selection of the representative. Note that all cluster representatives jointly
contribute to the errors in the frequency tables. Therefore, in the proposed meth-
ods, the representatives of other clusters are included in the selection process of the
representative of a cluster. Since the proposed methods work on the microdata level,
all frequency tables after anonymization are generated from the derived k-anonymous
microdata set and fulfill the following properties. First, only attribute combinations,
which occur in the original microdata set, are contained in the anonymized microdata
set. In consequence, structural zeros are preserved, i.e. table cell entries of zero re-
main zero after the anonymization process. However, entries that are zero after the
anonymization process need not have been zero originally. Second, since the frequency
tables are generated from a k-anonymous microdata set, they satisfy k-anonymity,
i.e. each cell entry is either 0 or at least k. This holds for any table, regardless of
whether it was used as a control table in the procedure. Additionally, all frequency
tables are consistent to each other. This means that the entries of one table do not
contradict any entry of another frequency table and, thus, no additional information
can be revealed by comparing the frequency tables.

5.6. Exact Method Combining Both Steps

In the previous chapters 4 and 5, we focused on the idea of dividing a microaggre-
gation procedure in two steps, the partitioning and the aggregation step. This idea
is widely used especially for numerical data. Naturally, the question arises how the
proposed method compares to a method that combines both steps. In this section, we
present a mathematical formulation of the microaggregation problem as one combined
optimization problem, which aims to minimize the χ2-error in the control tables.

The SAFE-basic problem, described in Chapter 2, combines partitioning and ag-
gregation steps. However, we have pointed out that it is beneficial to modify the
program. Instead of including only the maximum error, we proposed to include the
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resulting deviations between original and anonymized frequency vector. Moreover, we
have discussed the advantages of using the χ2-error. This measurement does not only
penalize larger errors more than smaller ones but it takes the original cell value into
account and penalizes errors more if there are originally only very few counts in the
cell. Building on these aspects, we now formulate an optimization problem that com-
bines both steps and aims at minimizing the χ2-error, which we also used as objective
function in the aggregation step.

Similarly to the modified optimization problem as described in Section 3.2, we
introduce the following formulation to minimize the sum of χ2-errors.

min
y,b

∑
t∈T

b2
t

(Ay0)t
+ w

n∑
i=1
|yi − y0

i | (5.6.1)

s.t. Ay + b = Ay0, (5.6.2)
na∑
i=1

yi =
na∑
i=1

y0
i , (5.6.3)

yi ∈ N0 \ {1, . . . , k − 1} ∀i = 1, . . . , n, (5.6.4)
bt ∈ R ∀t ∈ T . (5.6.5)

Again, the microdata set is written in the form of a frequency vector y0 ∈ Nna
0 , where

na is the number of distinct occurring combinations of attribute values, A is a binary
matrix such that Ay is the vector of control cell entries resulting from vector y, and
w > 0 is a weighting parameter. The original frequency vector is denoted by y0 and
the constraints are similar to (2.1.2)–(2.1.5). Constraint (5.6.2) defines variable b to
be the error between original and newly computed table cell entries. It is ensured by
Constraint (5.6.3) that the total number of data rows is preserved. Constraints (5.6.4)
enforce that the entries of the new frequency vector are not between 1 and k−1. Thus,
they ensure k-anonymity for a given parameter k. Due to this equality constraint and
the integrality of y that is enforced by Constraints (5.6.4), variables b are automatically
integral.

The optimization problem is an integer program, which will be challenging to solve
on large instances. However, we will use the presented exact method for comparison
on smaller instances and call the method of exact solving this problem Chi-ex.
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Chapter 6
Computational Experiments

The task to determine a k-anonymous microdata set to anonymize a given original
microdata can be approached in different ways. We have discussed the SAFE method
in Chapters 2 and 3, which was used in the last census in Germany in 2011. This
algorithm is controlled by many parameters, which have to be determined. In con-
trast to this, the proposed algorithm presented in Chapters 4 and 5 requires only
two parameters. In this chapter, we analyze the computational performance of the
proposed method. We study the parameter selection for it and evaluate the single
steps. We compare the proposed method to the SAFE heuristic and to exact meth-
ods, i.e. the SAFE-basic problem, the modified variant of the SAFE-basic problem
and the program, which is presented in Section 5.6 and aims to minimize the χ2-error.

In Section 6.1, we describe criteria, which we use to analyze the quality of solutions in
terms of the errors in resulting frequency tables. We show computational experiments
and results in Section 6.2. This section includes the description of the experiment
setup, technical details of the single steps of the proposed method, and the comparison
to other methods, i.e. SAFE and exact methods. To conclude, we summarize the
chapter in Section 6.3.

6.1. Analysis Criteria

For categorical data, errors in frequency tables are of high interest to analyze the
quality of a solution. However, there are several possibilities to interpret the resulting
errors in the tables. In this section, we introduce different criteria, which we then use
to analyze performance. As reported by Höhne (2015), in praxis, especially frequency
tables of lower dimensions are important for many data users. Therefore, in addition
to overall measurements, we also analyze results per dimension.

In the proposed method, we work with a subset of the table cells, the control table
cells. However, we also evaluate the effect of the anonymization process on tables,
which have not been selected as control tables. We use the notation T to denote the
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set of analyzed table cells. We will focus on the analysis of the set of control table
cells and the set of all table cells. Furthermore, let n̄t be the original value for table
cell t ∈ T and nt be the value after the anonymization process. For some criteria, it
is useful to distinguish the tables according to their dimension. Hence, we denote by
Td ⊆ T the subset of table cells that belong to d-dimensional tables.

Sum of χ2-errors: The total sum of χ2-errors between table cells before and after
anonymization is defined by ∑

t∈T

(nt − n̄t)2

n̄t

and can be evaluated for each dimension d by replacing T with Td. The χ2-error
is used in the objective function of the proposed aggregation step, therefore, on
the control table cells, the results should be particularly good.

Maximum absolute error of dimension d: The maximum absolute error for tables of
dimension d is

max
t∈Td

|nt − n̄t|.

The maximum absolute error is used in the objective function of the SAFE-basic
problem.

Maximum relative error of dimension d: The maximum relative error for tables of
dimension d is a maximum error weighted by the original value and is defined
by

max
t∈Td

|nt − n̄t|
n̄t

.

We will compare methods m ∈ M on one instance by a gap, which we define as
follows. For a method m ∈M, let wm denote the objective value achieved by m. Let
w∗ = minm∈M wm be the minimum objective value among all methods in M. We
assume w∗ > 0 and define the gap for method m by

gapm = wm − w∗

w∗ . (6.1.1)

By the assumption of w∗ > 0, this gap is non-negative. The smaller the gap, the closer
the objective value wm returned by method m is to the best found solution w∗.

6.2. Computational Experiments

In this section, we study the computational behavior of the proposed methods. First,
we analyze the effects of the parameter settings. We have presented several steps in the
proposed method, where we suggested to accelerate the algorithm by using heuristics.
We compare the performances of using heuristics and solving to optimality in the
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individual steps. Moreover, we compare the proposed method to other methods, the
SAFE heuristic and exact methods, which we have presented in previous chapters. We
start by describing the used data sets.

6.2.1. Data Collection

Some of the data sets used in our computer experiments are randomly drawn samples
from a U.S. census database and others are synthetically generated data. We create
the synthetic data by prescribing the proportion of confidentiality problems. This
approach allows us to compare the performances of the methods depending on the
number of confidentiality problems in the original microdata set. For each scenario,
we generate and evaluate 10 instances. In the following, we go into more detail about
the used data sets.

Random sampling from data set “Adult” The “Adult” data set is provided
by UCI Machine Learning Repository by Dua and Graff (2019), which is a database
extracted from the 1994 U.S. census. It consists of 14 attributes, 8 of which are
categorical. First, we sanitize the database by removing all data rows with missing
entries in any of the categorical variables. The data set includes 30162 data rows after
this adjustment.

Each attribute has a different set of values. We show the number of values per
attribute in Table 6.1. We have sorted the attributes in ascending order by the number
of values. The attributes are sex (1), race (2), relationship (3), marital-status (4),
working class (5), occupation (6), education (7) and native-country (8).

attribute j 1 2 3 4 5 6 7 8
number of values |V (j)| 2 5 6 7 8 14 16 42

Table 6.1.: Numbers of values per attribute in the “Adult” data set.

We draw 10 samples for each size. In the evaluations, we mainly focus on a size
of n = 200 data rows and the first five attributes. The size of the frequency vector
depends on the number of values per attribute, which occur in the data set. Table 6.2
shows the number of values per attribute, which actually occur in the 10 drawn samples
of size n = 200 on the first five attributes.

attribute j 1 2 3 4 5
range of |V (j)| [2] [4, 5] [6] [6, 7] [6]

Table 6.2.: Range of number of values, which actually occur in the 10 samples drawn
with n = 200.

67



6. Computational Experiments

We denote the scenario of 200 random data rows drawn from the “Adult” data set
containing attributes 1, . . . , 5 by adult200m5.

To gain insights into the data, we investigate the number of confidentiality problems
since this is crucial for anonymization. The higher the number of confidentiality prob-
lems, the more data rows need to be perturbed to achieve k-anonymity. Naturally,
the higher the number of considered attributes, the higher the number of confiden-
tiality problems since then, more value combinations are possible. Table 6.3 shows
the proportion of confidentiality problems for a k-anonymity parameter of k = 3. In
this case of k = 3, confidentiality problems are data rows, which are either unique or
identical to exactly one other data row. The table shows the proportion in the ad-
justed original data set, which consists of 30162 data rows, in the samples of n = 200
data rows and n = 500 data rows in dependency of the number of attributes. Note
that attributes are added according to their order in the sorted attribute list as above.
Due to the smaller number of data rows, the proportion of confidentiality problems in
drawn smaller samples is higher compared to the full microdata set.

Number of attributes
3 4 5 6 7 8

Drawn samples n = 200 (avg.) 0.075 0.164 0.293 0.664 0.897 0.902
Drawn samples n = 500 (avg.) 0.035 0.089 0.196 0.473 0.764 0.782
Adjusted “Adult” data set 0.000* 0.002 0.013 0.059 0.185 0.239
* 2 out of 30162 data rows are confidentiality problems.

Table 6.3.: (Averaged) proportion of confidentiality problems for k = 3 depending
on the number of attributes.

Synthetic data with a predefined number of confidentiality problems The
proportion of confidentiality problems in smaller samples significantly differs from the
proportion in the underlying database. To control the proportion of confidentiality
problems, we investigate synthetic data, for which we prescribe the proportion of con-
fidentiality problems in advance. In addition, this allows us to specifically investigate
the extreme cases with a very few or very high number of problems. The extreme
case of zero confidentiality problems can be neglected since this original microdata set
already fulfills k-anonymity.

Table 6.4 reports the number of values per attribute in the synthetic data.

attribute j 1 2 3 4 5
number of values |V (j)| 2 5 6 7 7

Table 6.4.: Numbers of values per attribute in the synthetic data set.
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The synthetic data is generated as follows. Let p ∈ [0, 1] be the proportion of confi-
dentiality problems, which should be included in the data set. We first construct the
microdata by generating the rows, which are not part of the confidentiality problems.
We then randomly generate a data row out of the possible values, which has not been
generated before. We draw a random number nr between k−1 and 0.15 ·n and dupli-
cate this data row nr times. The lower bound on the random number ensures that the
generated data row is no confidentiality problem. We introduced the upper bound on
the random number to ensure a reasonable distribution of different data rows in the
data set. We repeat this procedure until ⌊(1− p) · n⌋ data rows are generated. Then,
we add ⌈p · n⌉ confidentiality problems by randomly generating data rows, which do
not yet exist. We then either do not copy this entry or duplicate it maximal k − 2
times.

We focus on the following scenarios for n = 200 data rows: 200m5 2percent (p =
0.02), 200m5 20percent (p = 0.2), and 200m5 100percent (p = 1). For each scenario,
we create 10 instances.

6.2.2. Hard- and Software

All experiments are performed on a machine with an Intel Core i3-8100 and a random
access memory capacity of 16 GB. We implemented the methods in python 3. For
the column generation process, we used the non-commercial solver SCIP version 7.0.2
provided by Gamrath et al. (2020). We use Gurobi Optimizer version 9.1.2 for the
exact solving of the optimization programs including the pricing step in the column
generation scheme.

6.2.3. Parameter Settings in the Partitioning Step

In this section, we report technical insights concerning the parameters of the proposed
method. We use the gap, which is defined in (6.1.1), to compare different solutions to
the partitioning problem. The set of methods M includes only the methods, which
are shown in the respective figures. In the definition of the gap, the best objective
value w∗ is assumed to be positive. We can make this assumption without loss of
generality because the objective value is the weight of the clustering, which is the sum
of all cluster weights. Since every cluster weight is non-negative by definition, w∗ ≥ 0
holds. Moreover, an optimal objective value of w∗ = 0 means that each cluster in an
optimal clustering only contains identical data rows. This can only be the case if the
original microdata set already satisfies k-anonymity. Hence, we can assume w∗ > 0
without loss of generality.

The proposed partitioning method consists of two steps. First, the method obtains
a fractional solution to the partitioning problem by using column generation. With
the derived dual information, an integer clustering is constructed. We analyze the
experiments separately for using an optimal or heuristically found fractional solution.
The optimal fractional solution is obtained by running the column generation process
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until there are no more variables with negative reduced costs, i.e. the pricing problem
is solved exactly and returns a non-negative optimal value. The heuristically found
fractional solution is obtained by stopping the column generation when the introduced
heuristics in the pricing step do not return any variable with negative reduced costs.

The proposed partitioning method uses two parameters. These parameters occur
in the optimization problem for finding an integer solution. Parameter γ ∈ [0, 1]
weights the dual information, which is provided by the fractional solution. Param-
eter λ > 0 rewards the inclusion of more data rows in the same cluster and, thus,
influences cluster sizes. We evaluate the objective value in the partitioning step,
which is the weight of the integer clustering for different parameter settings. We com-
pare experiments on each combination of λ ∈ {0.001, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4} and
γ ∈ {0, 0.25, 0.5, 0.75, 1}.

We focus on Scenario 200m5 20percent. First, we study the parameters separately.
Figure 6.1 shows the gaps according to the weight of the integer clusterings for differ-
ent values of γ, given an optimal fractional solution (6.1a) and a heuristic fractional
solution (6.1b), respectively. The boxes show the median and the quartiles of the
data set. The whiskers extend to data points within 1.5 times the interquartile range,
which is the distance between the upper quartile and the lower quartile. Data points
outside this boundary are displayed as outliers. The figure includes all executions with
λ ∈ {0.001, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4} on 10 instances so that each boxplot contains
90 instances. The figure illustrates that the extremal value of γ = 1 performs worse
than the other values. The parameter γ acts as a weighting on the dual information.
The higher the value, the more weight is given to the dual variables. It is known that
the dual information corresponding to an optimal fractional solution does not neces-
sarily relate at all to an optimal integer solution. Therefore, it is reasonable that the
weight γ on the dual variables should not be chosen too high as higher weights γ favor
fractional solutions. Our calculations indicate that for a heuristic fractional solution
also a value of γ = 0.75 is not advisable. We see a tendency that for a heuristically
found fractional solution, a lower value of γ ∈ {0.25, 0.5} is preferable. It is reasonable
that the information provided by an optimal solution is more valuable to be taken into
account with a larger weight γ than the information provided by a heuristic solution.
Moreover, the extremal value of γ = 0 also performs worse than the interior values
of γ ∈ {0.25, 0.5} (and γ = 0.75 for an optimal fractional solution). The value γ = 0
corresponds to excluding the dual information provided by the fractional solution.
Thus, the inclusion of dual information with a low or medium weight improves the
search for an integer solution. The same qualitative behavior can be seen on Scenario
adult200m5, which is depicted in the appendix in Figure B.1. For this scenario, γ = 1
does not lead to best results for any instance. Moreover, the tendency to prefer lower
γ when using a heuristically found fractional solution, is even more pronounced.

We study the choice of parameter γ closer. Figure 6.2 depicts the direct comparison
of the interior values γ ∈ {0.25, 0.5, 0.75} using an optimal fractional solution. The
lines connect the values, which correspond to the same instance. The subfigures
include the same instances as Figure 6.1. However, the instances are divided among
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(a) Using an optimal fractional solution.
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(b) Using a heuristic fractional solution.

Figure 6.1.: Relative gaps according to the weight of the integer clustering for differ-
ent values of parameter γ on Scenario 200m5 20percent. Note that the
gaps in each plot are calculated relative to the best solution of the al-
gorithms considered in that plot, i.e. the gaps in between different plots
are not directly comparable.

the subfigures according to their behavior. Figure 6.2a includes the instances with a
monotone increasing behavior, i.e. for which increasing γ does not improve the results.
For these instances, γ = 0.25 leads to the best results. The figure includes 32 of 90
instances. For two of these instances, all three choices of γ lead to the same solution.
Figure 6.2b shows the contrary case, i.e. monotone decreasing behavior, and includes
22 out of 90 instances. Here, γ = 0.75 leads to the best results and lower γ does not
improve the solution. Note that the two instances with the same result for each choice
of γ are also included in this figure. Overall, a monotone behavior is encountered in
52 of 90 instances. However, there are also instances, where it is best to choose either
γ = 0.5 or γ ∈ {0.25, 0.75}. Figure 6.2c shows the instances, for which γ = 0.5 is the
best choice, and γ ∈ {0.25, 0.75} leads to worse results. This behavior is observed in
18 of 90 instances. Figure 6.2d shows the remaining 20 out of 90 instances, which show
neither monotonous behavior, nor have optimal values of γ = 0.5. Hence, in 38 of 90
instances the best choice shows nomonotonous behavior. Figure B.2 in the appendix is
analogously structured and shows similar observations based on a heuristically found
fractional solution. To conclude, the experiments show a benefit of the inclusion of the
dual information (γ > 0), unless the influence of the dual information is not weighted
too much (γ = 1). However, there is no clear recommendation, which inner value of
{0.25, 0.5, 0.75} to prefer.

The second parameter, λ, favors larger cluster sizes. Figure 6.3 shows the resulting
gaps for different values of λ, given an optimal fractional solution (6.3a) and a heuristic
fractional solution (6.3b), respectively. Since all values for γ ∈ {0, 0.25, 0.5, 0.75, 1}
and 10 distinct instances are depicted, each boxplot consists of 50 instances. The

71



6. Computational Experiments

0.25 0.5 0.75
Parameter 

0.00

0.05

0.10

0.15

0.20

0.25

0.30
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(b) 22 out of 90 instances.
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(c) 18 out of 90 instances.
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(d) 20 out of 90 instances.

Figure 6.2.: Relative gaps according to the weight of the integer clustering for se-
lected values for γ on Scenario 200m5 20percent given an optimal frac-
tional solution.
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best value for λ depends on the optimal sizes of the clusters, which are not known in
advance and can significantly vary between the instances. However, choosing a too
large value, i.e. λ = 4, leads to a larger gap and thus worse performance. This behavior
is seen even more pronounced in Scenario adult200m5, which we show in Figure B.3
in the appendix. For this scenario, also λ = 3 leads to worse results. The choice of a
large value for λ favors the inclusion of many data rows in the same cluster over the
assignment of similar data rows. Although a larger number of vertices in a cluster
never reduces the weight of the cluster, the inclusion of more vertices in the same
cluster may have a positive effect on the overall weight of the cluster, as discussed in
Section 4.4.2.
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(a) Using an optimal fractional solution.
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(b) Using a heuristic fractional solution.

Figure 6.3.: Relative gaps according to the weight of the integer clustering for dif-
ferent values of parameter λ on Scenario 200m5 20percent.

Finally, we compare the combinations of both parameters. The relative gap for
selected parameter combinations is shown in Figure 6.4. For clarity, the figures only
include combinations, which perform best for at least one instance. The boxplots are
sorted in ascending order according to the median. We use the parameter pair with
the lowest median, which is γ = 0.75, λ = 1.5 given an optimal and γ = 0.25, λ = 3
given a heuristic fractional solution for Scenario 200m5 20percent. We follow the same
procedure for Scenario adult200m5 and report the results in Figure B.4.

We repeat the same procedure for different scenarios to obtain the parameter pairs,
which result in a minimal relative gap, and report them in Table 6.5. The depicted
parameter pairs are used for all further experiments.

6.2.4. Quality of the Proposed Partitioning

In the proposed method, the returned clustering of the microdata set depends on the
fractional solution and the derived dual information. In this section, we investigate
how the quality of integer solutions is affected if the fractional solution is optimal or
only found heuristically. Moreover, we compare the objective values resulting from
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(a) Using an optimal fractional solution.
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(b) Using a heuristic fractional solution.

Figure 6.4.: Relative gaps according to the weight of the integer clustering for differ-
ent combinations of parameters λ and γ on Scenario 200m5 20percent.

fractional solution
Scenario optimal heuristic
adult200m5 (0.5, 1.5) (0.25, 0.5)
200m5 2percent (0.75, 3.0) (0.25, 0.25)
200m5 20percent (0.75, 1.5) (0.25, 3.0)
200m5 100percent (0.75, 1.5) (0.25, 1.5)

Table 6.5.: Selected parameter pairs (γ, λ) for different scenarios.
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solving the integer optimization problem to optimality in each iteration with solving
it heuristically.

Table 6.6 reports the fractional and the integer objective values averaged over 10
samples for each scenario. The objective value is the sum of cluster weights and, thus,
the smaller the better. First, in both steps, finding a fractional and finding an integer
solution, the heuristically found solution is not as good as the exact solution, which is
expected. In particular, solving the integer program to optimality performs better than
the heuristic approach to the problem. For instance, for Scenario 200m5 2percent, the
exact solving leads to a clustering with a weight of 20.6 whereas the heuristic approach
leads to a value of 48.6. However, the influence of using a heuristically found fractional
solution instead of an optimal is low on the resulting integer solution. For instance,
the objective value obtained by a heuristic fractional solution, 19.5, is even slightly
better than the objective value by an optimal solution, 20.6. Due to the time savings,
which a heuristic approach offers compared to solving to optimality, these observations
suggest working with fractional solutions found heuristically. Another trend is that
more confidentiality problems lead to higher objective values. Note that the proportion
of confidentiality problems in Scenario adult200m5 is 0.293 as shown in Table 6.3. In
case of many confidentiality problems, it is necessary to assign also non-identical data
rows to the same cluster. However, only elements that differ from each other but are
assigned to the same cluster increase the objective value. Thus, it is expected that
more confidentiality problems lead to higher objective values.

integer solution
Scenario fractional solution exact heuristic
adult200m5 optimal 68.7 79.5 111.4

heuristic 75.6 81.4 103.9
200m5 2percent optimal 10.6 20.6 48.6

heuristic 11.3 19.5 48.0
200m5 20percent optimal 60.2 76.9 111.3

heuristic 63.3 79.4 124.5
200m5 100percent optimal 172.4 201.2 234.4

heuristic 181.1 207.8 231.7

Table 6.6.: Fractional and integer objective values in the partitioning step averaged
over 10 instances.

Table 6.7 breaks down the runtimes of the individual steps. It is clearly visible
that by using heuristics in both steps, runtime can be remarkably decreased. In
particular, the heuristic approach to the integer program leads to a large reduction
of the required runtimes. The integer program iteratively determines clusters, which
are added to the clustering. Only data records are taken into account, which have not
been assigned yet. Hence, the integer program is called several times until all data
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records are assigned to some cluster. Approaching a solution heuristically can save a
large amount of runtime. The depicted values are the overall runtimes required for
all iterations in total. Moreover, the table indicates that the runtime is affected by
the number of confidentiality problems in the original microdata set. The higher the
number of confidentiality problems in the data set, the more time is required for the
partitioning step. Note that the proportion of confidentiality problems in Scenario
adult200m5 is 0.293 as shown in Table 6.3.

fractional solution integer solution
Scenario exact heuristic exact heuristic
adult200m5 165.11 19.00 69.58 0.47
200m5 2percent 16.16 10.55 29.04 0.40
200m5 20percent 64.48 13.91 54.66 0.44
200m5 100percent 368.02 23.55 117.06 0.55

Table 6.7.: Averaged runtimes [s] of the single phases in the partitioning step.

6.2.5. Quality of the Proposed Aggregation Methods

The task in the aggregation step of the microaggregation procedure is to find repre-
sentatives for each cluster. In this section, we compare the exact and the two heuristic
approaches to the aggregation problem, which are described in Chapter 5. The heuris-
tic approaches are a greedy algorithm and a graph-based heuristic. To compare the
quality, we use the χ2-error, which is part of the objective function in the aggregation
step. We name the proposed methods depending on the solution method in the frac-
tional partitioning problem (exact/heuristic), in the integer problem in each iteration
(exact/heuristic), and the used aggregation method (exact/greedy/clique heuristic).
The name is generated as

Own - fractional solution method - integer solution method - aggregation method

with

fractional solution method: e - exact, h - heuristic,
integer solution method: e - exact, h - heuristic,
aggregation method: e - exact, g - greedy, c - clique heuristic.

Figure 6.5 depicts the comparison between the different aggregation approaches.
The figures include all four combinations of solution methods in the partitioning step
(exact/heuristic fractional solution method followed by exact/heuristic integer solution
method), i.e. each boxplot contains 40 instances. The plots show the relative gap as
defined in (6.1.1) in terms of the sum of χ2-errors between table cells before and after
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anonymization for Scenario 200m5 20percent. All frequency tables up to dimension 3
serve as control tables and the respective result is shown in Figure 6.5a. Figure 6.5b
shows the overall sum of χ2-errors in all tables, which can be generated from the
microdata set. The performances of the methods in these two cases are similar to
each other. As expected, the exact solving of the aggregation problem leads to the
smallest gaps and thus best results. The two heuristics yield comparable results for
the majority of the instances. Figure B.5 in the appendix is analogously structured
and displays the results for Scenario adult200m5. Notably, the exact solving does not
necessarily lead to the best results in the sum of χ2-errors over all tables as shown
in Figure B.5b. This result does not contradict the optimality of the solution to
the aggregation problem because the optimization problem only takes a subset of the
frequency tables into account and aims to minimize the sum of χ2-errors on these
tables.
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0.6

0.8

(a) On control tables, i.e. dimension ≤ 3.

Own- g Own- c Own- e
0.0

0.2

0.4

0.6

0.8

(b) On all tables.

Figure 6.5.: Relative gaps according to the sum of χ2-errors between table cells be-
fore and after anonymization for Scenario 200m5 20percent.

We further investigate the two heuristics in a direct comparison in Figure 6.6. The
relative gap is computed by only taking these two heuristics into account, i.e. it can be
directly seen, which of these two returns the better solution. Section 6.2.4 points out
that methods Own-∗e∗, i.e. exact solving of the integer programs, lead to a clustering
of lower weight in the partitioning step compared to Own-∗h∗. Figure 6.6a shows
the methods Own-ee∗, i.e. exact solving of the fractional and the integer program,
and Figure 6.6b depicts the methods Own-hh∗, i.e. heuristically approaching both
programs. Figure 6.6a indicates that if the clustering found in the partitioning step
has a low weight and thus contains homogeneous clusters both greedy and clique
heuristic algorithms lead to the same results, so that the clique heuristic is competitive
to the greedy algorithm. Figure 6.6b shows that the greedy algorithm outperforms
the clique heuristic, when the used clustering is of a higher weight. However, there
are also instances, for which the clique heuristic outperforms the greedy algorithm,
which is seen by the non-zero data points for method Own-hhg. We report results
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for other scenarios in the appendix in Figure B.6. For Scenarios adult200m5 and
200m5 100percent, the clique heuristic outperforms the greedy algorithm, when the
partitioning is of good quality, i.e. methods Own-ee∗. For methods Own-hh∗, the
greedy algorithm outperforms the clique heuristic. In the extreme case of only 2%
confidentiality problems, which is Scenario 200m5 2percent, both heuristics lead to
the same results except for one outlier.

Own-eeg Own-eec
0.0

0.1

0.2

0.3

(a) Methods Own-ee∗.

Own-hhg Own-hhc
0.0

0.1

0.2

0.3

(b) Methods Own-hh∗.

Figure 6.6.: Direct comparison of heuristic aggregation methods on the control tables
on Scenario 200m5 20percent.

Next, we compare the impact of the quality of the used clustering in detail. To this
end, we analyze the resulting χ2-errors in the frequency tables due to anonymization
with respect to the approaches used in the partitioning step. Figure 6.7 shows the com-
parison between different methods in the partitioning step for the different aggregation
methods, i.e. the greedy algorithm (Figure 6.7a), the clique heuristic (Figure 6.7b), and
the exact aggregation method (Figure 6.7c). Again, we use the gap defined in (6.1.1)
according to the resulting χ2-errors in the control tables, which are all tables up to
dimension 3. For all three aggregation methods qualitatively similar results are ob-
served. The best results are mainly achieved by methods Own-ee∗, i.e. solving the
single steps in the partitioning step exactly. However, also the methods Own-he∗ are
competitive. On the other hand, approaching the integer program in the partitioning
step only heuristically leads to worse results in most instances regardless of the ag-
gregation method. These observations are consistent with the quality results for the
proposed partitioning step, which showed that the quality of the resulting clustering
highly depends on the approach to the integer program as discussed in Section 6.2.4.
These findings suggest that the better the clustering of the microdata set, i.e. the more
homogeneous the clusters, the less information is lost after the aggregation step. In
order to support the claim that the quality of the clustering highly affects the qual-
ity of the anonymized microdata set, we compare our approach to a randomly found
clustering in the next paragraph.
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Figure 6.7.: Relative gaps according to the sum of chi squared errors in the control
tables for Scenario 200m5 20percent.
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Using a randomly found clustering To verify that the quality of the clustering
is crucial for the performance of the aggregation methods, we compare the proposed
methods in the partitioning step to randomly found clusterings. This is an extreme
scenario, in which the similarity is not taken into account at all in the partitioning
step.

To find a random clustering of the microdata set we proceed as follows. We generate
a random list of entries between k and 2k−1 such that the sum of elements equals the
number of data rows in the microdata set. This list contains the cluster sizes. Then,
we sample the clusters by randomly drawing data rows without replacement according
to the random cluster sizes. We denote the aggregation based on a randomly found
clustering by rand-aggregation method.

Figure 6.8 indicates that for all instances, the aggregation based on a randomly
found clustering is not competitive to the proposed partitioning methods. This re-
inforces that finding a reasonable clustering of the microdata set, i.e. clusters with
similar data rows, in the first phase of the microaggregation procedure leads to better
results. Another observation is that the influence of the clustering quality is stronger
for heuristic approaches. In particular, the performance of the clique heuristic deteri-
orates when a randomly found clustering is used.

Runtimes for the aggregation step Table 6.8 breaks down the runtimes of the
different aggregation methods. We have seen that the aggregation depends on the clus-
tering quality, which itself depends strongly on the solution method (heuristic/exact)
to the integer problem in the partitioning step. Solving the problem exactly leads
to a clustering of a lower weight. Based on this, we grouped methods Own-hh∗ and
Own-eh∗ together as well as methods Own-he∗ and Own-ee∗. Then, we averaged the
runtimes for the aggregation step of all instances, which were solved within a time limit
of 5000 seconds. We see that given a clustering with a lower weight, i.e. Own-∗e∗,
the runtimes of the aggregation step are faster compared to a clustering with a larger
weight, i.e. Own-∗h∗. The same effect can be observed for Scenario 200m5 20percent,
where the runtimes for each method increase, when a randomly found clustering is
used. This behavior that the problem can be solved faster when the data rows in
the same cluster are more similar can be explained by the fact that attributes, for
which the data rows in the same cluster share the same value can be fixed to this
value. Therefore, the more similar the data rows the faster the problem can be solved
due to values that can be fixed. The reduced runtimes when values can be fixed
due to similarity between data rows also explains the observed increase in runtimes
with increasing number of confidentiality problems regardless of the used aggregation
method. We observed that on small instances, which can be solved exactly, the exact
method has faster runtimes than the heuristics because our implementation for the
heuristics in python is slower than the commercial solver Gurobi used for exact solv-
ing. However, for instances with a large number of confidentiality problems, solving
the problem to optimality becomes more challenging and using heuristics becomes
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(c) For exact aggregation.

Figure 6.8.: Relative gaps according to the sum of χ2-errors after anonymization
including a randomly found clustering for Scenario 200m5 20percent.
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justified. For Scenario 200m5 100percent, only a subset of instances could be solved
exactly within the time limit. After the time limit was reached for methods Own-∗h∗,
the averaged duality gap is 0.05 and for methods Own-∗e∗, the averaged gap is 0.02.
Moreover, we observe that the greedy algorithm scales better than the clique heuristic
when instances with more confidentiality problems or more data rows are considered,
e.g. on Scenario 200m5 100percent and 500m5 20percent.

Aggregation method
Scenario Method greedy clique heuristic exact
adult200m5 Own-∗h∗ 3.56 5.47 0.72

Own-∗e∗ 2.71 3.69 0.54
200m5 2percent Own-∗h∗ 1.45 0.89 0.30

Own-∗e∗ 0.98 0.59 0.29
200m5 20percent Own-∗h∗ 2.85 2.92 0.53

Own-∗e∗ 2.10 2.02 0.45
rand-∗ 9.56 20.88 3.84

200m5 100percent Own-∗h∗ 6.22 16.80 942.55*

Own-∗e∗ 5.56 14.46 492.82†

500m5 20percent Own-hh∗ 6.38 26.20 3.60
Own-he∗ 4.54 16.12 1.55

* Averaged over 8 solved instances out of 20.
† Averaged over 17 solved instances out of 20.

Table 6.8.: Averaged runtimes [s] for the aggregation step, all tables up to dimension
3 are control tables.

6.2.6. Effect of Control Tables

As part of the proposed anonymization procedure, a subset of frequency tables must
be designated as control tables. We show the effect of selecting frequency tables of
different dimensions as control tables. In practice, tables of lower dimensions are of
higher interest. Therefore, it is reasonable to determine a dimension and select all
tables up to the determined dimension as control tables.

Figure 6.9 shows results on Scenario 200m5 20percent using method Own-hhe. It
compares the χ2-errors obtained when all tables up to dimension 2 are used as control
tables, or when all tables up to dimension 3 are used. We then use the relative gap to
indicate which case leads to better results. The relative gap shows that taking all tables
only up to dimension 2 into account leads to less errors in the tables of dimensions 1
and 2. Consideration of all tables up to dimension 3 shows its advantages in higher
dimensions. Not only the errors in 3-dimensional tables but also in the 4- and 5-
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dimensional tables, which are not used as control tables, are reduced in the case of
using all tables up to dimension 3.
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Figure 6.9.: Relative gaps according to the sum of χ2-errors per table dimension for
different control tables dimensions on Scenario 200m5 20percent using
method Own-hee.

Figure 6.10 shows that the total χ2-error over all tables is lower when more frequency
tables are selected as control tables. These results emphasize that the selection of the
control tables can either lead to a focus on specific tables (e.g. of a very low dimension)
or a smaller overall error. Thus, the control tables should be selected depending on
the use case.
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Figure 6.10.: Relative gaps according to the sum of χ2-errors over all frequency
tables on Scenario 200m5 20percent using method Own-hee.

6.2.7. Comparison of Different Methods

In this section, we compare the proposed method to other methods to find k-anonymous
data. The methods, which we use for comparison, are the SAFE method and exact
methods, which we described in the previous chapters.

The SAFE heuristic was used in the last German census in 2011 and is described
in Chapter 2. The re-implementation of the SAFE heuristic was done in python and
to the best of our understanding. After contacting the author Höhne (2015), the
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parameters are selected according to his expertise and reported in Appendix A. Note
that the objectives of the SAFE heuristic differ from the objective of the proposed
method. While the proposed method targets the χ2-errors in resulting frequency
table, the SAFE method mainly aims at minimizing the maximum error. Moreover,
the SAFE heuristic also takes other measurements into account like the mean error and
the sum of errors. Besides the SAFE heuristic we compare the proposed method with
the presented exact methods, which is only possible for sufficiently small instances.
In Section 2.1, the SAFE-basic problem is described, which is the basis for the SAFE
method. We refer to solving this problem exactly as SAFE-ex (SAFE-exact). We
suggested a modification of the objective function to also include the deviation from
the resulting frequency vector to the original frequency vector in Section 3.2. We refer
to solving this modified optimization problem as mSAFE-ex (modified SAFE-exact).
We showed a problem formulation minimizing the sum of χ2-errors in Section 5.6 and
refer to solving it to optimality as Chi-ex (χ2-error-exact).

In the following, we focus on synthetic data. The results on the randomly drawn
samples, i.e. Scenario adult200m5, are shown in the Appendix B. They are similar to
the results on the synthetically generated Scenario 200m5 20percent and can be found
in Figures B.7, B.8 and B.9.

Method Comparison on Scenario 200m5 20percent

Figure 6.11 shows the comparison of the described methods according to the relative
gap defined in (6.1.1) with respect to the sum of the χ2-errors in the control tables
on Scenario 200m5 20percent. All tables up to dimension 3 are selected as control
tables. Figure 6.11a depicts the results on the control tables. Figure 6.11b shows the
evaluations on all tables, i.e. including tables, which are not selected as the control
tables. The results are comparable to each other. The exact method Chi-ex, which
combines both steps in one optimization problem, leads to the best results in both, the
set of control tables and the set of all tables. Note that the χ2-error is included in the
objective function of Chi-ex. In contrast, the exact methods SAFE-ex and mSAFE-
ex aim to minimize the maximum absolute error. Therefore, Chi-ex is expected to
outperform these two exact methods on this criterion. However, comparing SAFE-
ex and mSAFE-ex with each other, the proposed modified version mSAFE-ex shows
its benefits and clearly outperforms SAFE-ex. Moreover, the SAFE method also
outperforms SAFE-ex because the SAFE heuristic takes more criteria into account
than SAFE-ex. The two proposed methods Own-hee and Own-hhe are competitive to
mSAFE-ex and outperform the SAFE method in terms of the χ2-error. However, the
greedy algorithm in the aggregation step, i.e. Own-hhg, loses quality compared to the
exact aggregation method and the SAFE method slightly outperforms Own-hhg.

The χ2-error is part of the objective of the proposed method whereas the methods
SAFE, SAFE-ex, and mSAFE-ex focus on the minimization of the maximum absolute
error in the control tables. Therefore, we compare the resulting maximum absolute
errors in the frequency tables of different dimensions in Figure 6.12. All tables up to
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Figure 6.11.: Relative gaps according to the sum of χ2-errors for different methods
on Scenario 200m5 20percent.
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dimension 3 were selected as control tables. As described in Chapter 2, the SAFE
method puts emphasis on the one-dimensional tables. This is reflected in the results
as in the comparison to different methods, the SAFE method manages to generate
the smallest maximum error for one-dimensional tables. It seems surprising that the
exact method SAFE-ex does not outperform the SAFE method regarding the control
tables. However, the objective function does not only consist of the maximum absolute
error but also includes an allowed extra error gt for each table cell t ∈ T . In the
SAFE heuristic, whenever a solution is found, an improvement algorithm is started,
which potentially reduces the resulting maximum error. In the method SAFE-ex,
these additionally allowed errors are predetermined and fixed values, which are not
reduced during the process. Therefore, these results do not contradict the optimality
of the solution to SAFE-ex. In terms of the maximum absolute errors, the SAFE
method outperforms the proposed methods in most of the cases. However, in tables
of higher dimension the proposed methods lead to competitive results even though
these tables were not included in the control tables. Moreover, the maximum absolute
error decreases for larger table dimensions for all methods except for SAFE, which
emphasizes the one-dimensional tables. This can be explained by the fact that the
lower the dimension the larger the entries of the single table cell entries in general.
For methods SAFE-ex and mSAFE-ex, the additional error gt for each control table
cell t ∈ T is defined in dependence of the original cell entry and is larger for larger
original entries as described in Section 2.1. Therefore, for cells with a larger original
entry, a larger absolute error is allowed. Chi-ex and the proposed methods aim to
minimize the χ2-errors and allow therefore a larger absolute error for cell entries with
a larger original entry.
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Figure 6.12.: Maximum absolute error in the frequency tables per dimension on
200m5 20percent.

It can be argued that the maximum error is a reasonable measurement because it
gives a valid upper bound for the errors in all tables of a dimension. Usually, data
users are only interested in few tables. However, considering relative measurements is
instructive because an error in a table field with an original very low value is weighted
more heavily than the same error in a field with an original high value. Figure 6.13
depicts the relative gap according to the maximum relative error per table dimension.
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The proposed methods show competitive results compared to other methods in terms
of the maximum relative error also in the tables, which have not been selected as
control tables. Moreover, in contrast to the maximum absolute error, the maximum
relative error is lowest for one-dimensional tables. This behavior is expected as in
general lower table dimensions correlate with larger original table cell entries and for
larger original cell entries, similar absolute errors lead to smaller relative errors.
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Figure 6.13.: Maximum relative error in the frequency tables per dimension on
200m5 20percent.

Method Comparison on Scenario 200m5 2percent

Scenario 200m5 2percent is an extreme cases with a very low proportion of confiden-
tiality problems. In the following, we study the comparison of different methods on
Scenario 200m5 2percent.

Figure 6.14 shows the method comparison based on the relative gap with respect to
the sum of χ2-errors in the control tables (6.14a) and all tables (6.14b), respectively.
All tables up to dimension 3 are selected as control tables. In this scenario, the SAFE
method shows its strength and leads to best results except for single outliers in com-
parison to the other methods. In particular, it might be surprising that the SAFE
method outperforms Chi-ex. However, in contrast to Chi-ex, the SAFE method does
not ensure that the number of data rows is preserved, as discussed in Section 3.2.
Table 6.9 breaks down the number of data rows after anonymization by SAFE. Only
2 out of the 10 instances preserve the number of 200 data rows. Hence, 8 out of the 10
solutions found by SAFE are not feasible for Chi-ex due to Constraints (5.6.3). Pre-
serving the number of data rows ensures plausibility and consistency with the original
microdata set. In the case of a very small deviation from the original number, one
could argue for relaxing this constraint to increase the data quality. However, it is
reasonable that the number of data rows after anonymization should remain at least
close to the original number to ensure reasonableness. In conclusion, the good perfor-
mance of SAFE does not contradict the optimality of the solutions found by Chi-ex
with respect to the optimization problem (5.6.1)–(5.6.5). Moreover, the comparison
between SAFE-ex and mSAFE-ex underlines the benefits of the modification, as dis-
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cussed in the previous section. The proposed methods show a similar behavior as for
Scenario 200m5 20percent.
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(b) On all tables.

Figure 6.14.: Relative gaps according to the sum of χ2-errors for different methods
on 200m5 2percent.

nnew 199 200 201 202
Number of instances 4 2 2 2

Table 6.9.: Number of instances with nnew data rows after anonymization by SAFE
for Scenario 200m5 2percent.

Figure 6.15 depicts the maximum error per table dimension. Note that the maxi-
mum error is not taken into account in the proposed methods. Comparing the proposed
methods with each other, method Own-hhe and especially method Own-hee outper-
form method Own-hhg. In method Own-hhg, all steps of the proposed method are
approached heuristically. For Scenario 200m5 2percent, similar results are observed as
for Scenario 200m5 20percent described in the previous section. For all table dimen-
sions, Chi-ex, SAFE and mSAFE-ex lead to competitive results. Again, the proposed
methods lead to a smaller maximum absolute value for higher table dimensions. As
discussed for Scenario 200m5 20percent, the original entries in these tables are in gen-
eral smaller and, thus, errors are penalized more due to the definition of the χ2-error.

Figure 6.16 shows the maximum relative error in the frequency tables with respect
to the table dimensions. The different methods are similar to each other and the
lowest maximum relative error is observed for one-dimensional tables.

Method Comparison on Scenario 200m5 100percent

In the previous section we evaluated different methods on microdata sets with a
very low proportion of only 2% confidentiality problems. Now, we analyze Scenario
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Figure 6.15.: Maximum absolute error in the frequency tables per dimension on
200m5 2percent.
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Figure 6.16.: Maximum relative error in the frequency tables per dimension on
200m5 2percent.
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200m5 100percent, which is the other extreme case with microdata sets consisting only
of confidentiality problems.

Figure 6.17 displays the results with respect to the sum of χ2-errors for selected
methods. We set the time limit for all experiments to 5000s. For the method Chi-
ex, the time limit was reached for all instances and the duality gap at the time of
termination was on average 0.51. Nevertheless, method Chi-ex leads to the best results.
Note that the duality gap provides a score on how much the found solution could
theoretically be improved based on the best bounds found so far. Again, the benefits
of the modification mSAFE-ex compared to SAFE-ex are visible. In contrast to the
extreme scenario 200m5 2percent, the methods Own-hee and Own-hhe outperform the
SAFE method regarding the sum of χ2-errors in the control tables as well as in all
tables. However, the greedy algorithm for the aggregation problem, i.e. Own-hhg, loses
quality compared to the exact aggregation in Own-hhe. These results are comparable
to Scenario 200m5 20percent.
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(a) On the control tables.
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(b) On all tables.

Figure 6.17.: Relative gaps according to the sum of χ2-errors for different methods
on 200m5 100percent.

Figure 6.18 depicts the maximum absolute error for Scenario 200m5 100percent. The
results are comparable to Scenario 200m5 20percent. The SAFE method returns the
best results, in particular for low-dimensional tables. The larger the table dimension,
the lower the maximum absolute error and the more competitive the proposed methods
Own-hee, Own-hhe and mSAFE-ex.

The maximum relative error is depicted in Figure 6.19. The proposed methods are
competitive to the other methods Chi-ex, SAFE and SAFE-ex. In particular, the
proposed methods Own-hee and Own-hhe outperform the SAFE method for larger
table dimensions. Similar to the previously analyzed scenarios with less confidentiality
problems, also for Scenario 200m5 100percent the maximum relative error is lowest
for one-dimensional tables.
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Figure 6.18.: Maximum absolute error in the frequency tables per dimension on
200m5 100percent.
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Figure 6.19.: Maximum relative error in the frequency tables per dimension on Sce-
nario 200m5 100percent.
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Runtimes of Different Methods

Table 6.10 displays the averaged runtimes of the different methods for the experiments,
which are presented in the previous sections. For the average calculation, experiments,
which reached the time limit of 5000s, are excluded. For Scenario adult200m5, Chi-ex
reached the time limit for one instance with a duality gap of 0.12. Moreover, Chi-ex
reached the time limit for all instances of Scenario 200m5 100percent with an aver-
aged duality gap at the time of termination of 0.51. The exact methods SAFE-ex and
mSAFE-ex can solve the instances faster than Chi-ex. Note that all three optimiza-
tion problems are integer programs, which are in general not easy to solve. Since the
optimization problem for Chi-ex includes the χ2-error in the objective function, the
problem remains non-linear even when the integer constraints are relaxed to linear
constraints. Also the objective functions of SAFE-ex and mSAFE-ex contain a non-
linear function, which is the absolute value. However, it is known that the absolute
value can be linearized by introducing auxiliary variables. Therefore, it is not surpris-
ing that SAFE-ex and mSAFE-ex are faster than Chi-ex. A further aspect we observe
is that for Scenarios 200m5 2percent and 200m5 20percent, method Own-hhe, which
solves the aggregation problem exactly, is faster than Own-hhg, which uses the greedy
algorithm in the aggregation step. Note that the heuristics are implemented in python,
while the commercial solver Gurobi is used to solve the problems exactly. Therefore,
it is not surprising that for instances, which are not too challenging, the exact solving
can be faster. However, for Scenarios adult200m5 and 200m5 100percent, which have
a higher number of confidentiality problems, the heuristic approach to the aggregation
problem, i.e. Own-hhg, saves a large amount of time. From the table, it can be derived
that all methods require a longer runtime for instances with a larger number of con-
fidentiality problems. Note that the averaged proportion of confidentiality problems
for Scenario adult200m5 is 0.293.

Scenario Chi-ex Own-hee Own-hhe Own-hhg SAFE SAFE-ex mSAFE-ex

adult200m5 1330.17* 61.87 20.54 23.37 8.65 2.25 2.62
200m5 2percent 1.07 42.78 11.34 12.55 1.27 0.99 1.00
200m5 20percent 6.80 53.71 15.07 17.39 4.45 1.95 1.98
200m5 100percent –† 749.81‡ 987.54‡ 30.68 46.08 5.56 19.51
* Averaged over 9 solved instances out of 10.
† All instances reached the time limit of 5000s.
‡ Averaged over 8 and 17 solved instances out of 20, respectively, cf. Table 6.8.

Table 6.10.: Averaged runtimes [s] for the different methods (all tables up to dimen-
sion 3 are control tables).
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6.2.8. Logistic Regression

Another performance indicator of anonymization methods is the behavior of the anon-
ymized in comparison to the original microdata set in regression analysis. The logistic
regression model is used to predict the probability of a categorical variable to occur
depending on one or more independent variables. In this section, we examine the
effects of anonymization on a multinomial logistic regression.

We draw 100 random samples from the ‘Adult’ data set according to Scenario
adult200m5, i.e. 200 data rows and 5 attributes, and select one of the 5 attributes
as dependent variable. Note that a logistic regression model is not necessarily suitable
for each variable. To identify models of very low quality, we investigate the model
quality using the Pseudo-R2 value of the whole data set with 30162 data rows. In
case of a very low Pseudo-R2 value, i.e. a very low model quality, the comparison of
estimated probabilities between anonymized and original microdata sets remains in-
conclusive because the prerequisites for the logistic regression model are not fulfilled.
In all other cases, we do not interpret the Pseudo-R2 value on its own but focus on
the comparison between the estimations based on the microdata sets before and after
anonymization. We compare the anonymization methods SAFE, Own-hhe and Chi-ex
to each other.

Figure 6.20 shows the ℓ2-distances between the probability estimations calculated by
a multinomial logistic regression model before and after anonymization for attribute
3 as the dependent variable. For attribute 3, the Pseudo-R2 value with respect to
the full microdata set is 0.602. This attribute has six distinct values and each subplot
corresponds to one of these attribute values. The anonymization methods SAFE, Own-
hhe, and Chi-ex show comparable results, where the exact method Chi-ex performs
only slightly better than the two heuristic approaches. The figures include the averaged
frequency and of each value and its range in the drawn samples.

Figure B.10 in the appendix is analogous with attribute 1 as the dependent variable,
which has two distinct values. Again, the three methods SAFE, Own-hhe and Chi-ex
are competitive with each other.

We also report the results for attribute 5 as the dependent variable in Figure B.11 in
the appendix, where a supposedly surprising behavior can be observed that the exact
method Chi-ex performs remarkably worse than the heuristic approaches for value
Private. However, the respective Pseudo-R2 value of 0.032 is very low and suggests
that the multinomial logistic regression model does not fit even for the original data
set. Therefore, as mentioned above, this attribute with a very low Pseudo-R2 value
should be neglected.

The experiments on the two remaining attributes are as follow. Attribute 2 can be
neglected due to a very small Pseudo-R2 value of 0.042. Attribute 4 with a Pseudo-R2

value of 0.584 shows comparable results to attributes 1 and 5.
Overall, the two heuristic approaches SAFE and Own-hhe are competitive with

each other and also with the exact method Chi-ex in terms of multinomial logistic
regression.
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(e) Avg. frequency: 9.3, range [4, 17].
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(f) Avg. frequency: 5.5, range [0, 11].

Figure 6.20.: ℓ2-distances between estimated probabilities before and after
anonymization for different attribute values over 100 samples on Sce-
nario adult200m5 with attribute 3 as dependent variable, Pseudo-R2

= 0.602.
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6.2.9. Increasing the Size of the Instances

This section deals with the dependencies of the runtimes of the proposed methods
on different aspects of the instances, which include the number of data rows in the
microdata set, the parameter k for k-anonymity and the number of control tables. In
this section, we show the runtimes of method Own-hhg.

First, we inspect the dependencies of the runtimes on the number of data rows, which
are contained in the original microdata set. Analogously to Scenario 200m5 20percent,
we generated 10 instances for each size with 20% confidentiality problems with respect
to the number of data rows. Figure 6.21 illustrates the total runtimes of method Own-
hhg depending on the number of data rows. The more data rows in the microdata
set, the more runtime is required for anonymization. Moreover, we added a quadratic
curve fitted to the observed runtimes, which is illustrated by the orange line. The
figure implies that the method Own-hhg has at least quadratic runtime with respect
to the number of data rows.
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Figure 6.21.: Runtimes [s] of method Own-hhg with respect to different sizes of the
microdata set.

In order to get a deeper understanding of the runtime behavior, we present the
runtimes of the individual steps of the microaggregation procedure in Figure 6.22.
The runtime for the partitioning step is shown in Figure 6.22a. The curve is similar to
the total runtimes, which is expected as the partitioning step has the largest impact on
the runtimes (see Tables 6.7 and 6.8). The aggregation step is depicted in Figure 6.22b
and shows a linear behavior with increasing number of data rows.

Next, we study the effects on the runtimes for different choices for parameter k,
which defines k-anonymity. In the previous experiments we focused on k = 3 since
this value is also used in the anonymization of the German census in 2011. For the
comparison of different values for parameter k, we generated 10 instances analogously
to 200m5 20percent for each parameter choice, such that the data sets contain 20%
confidentiality problems with respect to parameter k. Figure 6.23 illustrates that
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(a) Partitioning step.
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(b) Aggregation step.

Figure 6.22.: Runtimes [s] of single phases of method Own-hhg with respect to dif-
ferent sizes of the microdata set.

parameter k has an opposite effect on the two steps of the microaggregation procedure.
While the runtime of the partitioning step increases, depicted in Figure 6.23a, the
runtime of the aggregation step decreases with increasing k. The increased runtime
for the partitioning step is expected because the variables of the optimization program
of the partitioning problem are all possible clusters, which have a size between k and
2k−1, as discussed in Chapter 4. The reduced runtime for the aggregation step is also
reasonable because for larger k, less clusters are built in the partitioning step and the
greedy algorithm in the aggregation step iterates over all clusters, so that the runtime
decreases with a lower number of clusters.
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(b) Aggregation step (g).

Figure 6.23.: Runtimes [s] of single phases of method Own-hhg depending on differ-
ent values for parameter k.
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Finally, we also investigate the choice of the control tables, which only affects the
aggregation step. Figure 6.24 shows the runtime of the aggregation step depending
on the dimension, up to which all frequency tables are selected as control tables for
Scenario 200m8 20percent. Note that for each dimension d there are

(8
d

)
frequency

tables. Thus, the highest increase in the runtime is observed, when the most tables
are added as control tables, i.e. when all tables up to dimension 4 are selected as control
tables. There is exactly one 8-dimensional table. Therefore, selecting all tables up to
dimension 7 and up to dimension 8 only differs in one table and the runtime is not
considerably affected.
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Figure 6.24.: Runtimes [s] of aggregation step in method Own-hhg with respect to
the control tables dimension.

6.3. Summary

In this chapter, we presented computational experiments for the evaluation of the
proposed methods. We used randomly drawn samples from census data as well as
synthetic data, for which the proportion of confidentiality problems is prescribed. We
focused on a proportion of 20% confidentiality problems but also included the extreme
cases of a very low (2%) and a very high (100%) proportion of confidentiality problems
in our experiments.

We analyzed the individual steps of the proposed microaggregation procedure. For
the partitioning step, we studied the effects of the parameter choice on the result qual-
ity using the weight of the clustering and found that to find an integer clustering, it
is beneficial to weight the dual information provided by an optimal fractional solution
more than the dual information provided by a heuristically found fractional solution.
However, in both cases, the inclusion of the dual information, i.e. γ > 0, is benefi-
cial. Furthermore, the quality of an integer clustering mainly depends on the solution
approach to the integer program. In some scenarios, a heuristically found fractional
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solution even leads to better integer clusterings than an optimal fractional solution.
The best choice for the second parameter λ, which is a weighting parameter for the
cluster sizes, highly depends on the different instances. In all cases, an excessively
high value for this parameter has adverse effects, as it favors a larger cluster size at
the expense of cluster homogeneity.

The heuristic approaches to the aggregation step are not as good as the exact
method. However, in the direct comparison of the heuristic approaches, we have seen
that there are instances, for which an approach outperforms the other approach, for
both heuristics. Both heuristics perform better, when the fractional clustering has a
lower weight, i.e. consists of clusters of more similar elements. However, this effect
is more pronounced for the clique heuristic. This observation that both heuristics
perform better on more homogeneous clusters was further supported by the comparison
with a random clustering. Using a random clustering deteriorates the performances
of all aggregation methods. However, the difference in performance is the highest for
the clique heuristic. Regarding the runtimes, we have seen that the runtimes of all
aggregation methods depend on the quality of the clustering of the microdata set.

Furthermore, we studied the effects of control tables and found that fewer selected
tables lead to smaller errors in control tables. However, selecting more frequency
tables as control tables can reduce the overall errors and the errors in tables of higher
dimension, which are not selected as control tables.

We compared the proposed methods Own-hee, Own-hhe and Own-hhg to the SAFE
heuristic and the exact methods Chi-ex, SAFE-ex and mSAFE-ex. In terms of the
relative gap to the best found solution, the proposed methods showed similar results for
the different scenarios with varying proportions of confidentiality problems. The exact
method Chi-ex mostly returned best results for relative measurements, i.e. the sum
of χ2-errors and the maximum relative error. In these measurements, the proposed
methods were competitive to or outperformed the SAFE heuristics. However, for
Scenario 200m5 2percent, the SAFE method returned the best results even compared
to Chi-ex. Note that the Chi-ex method ensures the preservation of the true number
of data rows while SAFE does not necessarily satisfy this constraint, so that the better
results of the SAFE heuristic do not contradict the optimality of the solutions found
by Chi-ex. Moreover, in all evaluations, mSAFE-ex outperformed SAFE-ex, which
shows the benefit of the modification proposed in Section 3.2. The SAFE method
outperformed the other methods in terms of the maximum absolute error per table
dimension, in particular, for one-dimensional tables.

Finally, we also analyzed the runtimes of the proposed method Own-hhg depend-
ing on the number of data rows, the anonymization parameter k and the number of
selected control tables. The runtime of the partitioning step on the one hand scales
at least quadratic in the number of data rows. Also increasing parameter k leads
to increasing runtimes in the partitioning step since the variables in the partitioning
problem are all clusters, which have a size between k and 2k − 1. The aggregation
step on the other hand shows a linear runtime in the number of data rows. With in-
creasing parameter k, the runtime of the greedy heuristic in the aggregation step even
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decreases because less clusters are built for larger k and, thus, the greedy algorithm
requires less iterations. Furthermore, the aggregation step requires a longer runtime,
when more tables are selected as control tables. However, the overall runtime of the
microaggregation procedure is dominated by the partitioning step.

Taken together, our experiments show that our modifications improve the result
quality of SAFE-ex. Furthermore, while solving the problem exactly outperforms
heuristic approaches for small data sets, heuristic approaches are necessary for larger
data sets. Moreover, we also experimentally compared the effect of different parame-
ters on the result quality and performance and found for example that cluster homo-
geneity is crucial for high quality and performance, higher proportion of confidentiality
problems decreases result quality and performance and that it is beneficial to include
dual information in the optimization problem.
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Chapter 7
Conclusion

In this research, an integer programming approach is proposed to generate a k-
anonymous microdata set with nominal data with the aim to lose as little information
as possible. We proposed a new method to achieve k-anonymity for nominal data,
which follows the classical procedure of microaggregation methods but is tailored to
nominal data.

In the first part of this thesis, we outlined the SAFE heuristic, which was used to
anonymize the last German census data from 2011 as described by Höhne (2015). The
author presents an optimization problem, which is the basis for the SAFE heuristic.
We analyzed the complexity of this SAFE-basic problem. Specifically, we proved
NP-hardness for a slightly modified variant of the SAFE-basic problem. Based on
this complexity result, we provided justification for using heuristic approaches for
larger data sets. Furthermore, we pointed out that the SAFE-basic problem does not
include the minimization of some criteria like the mean error in frequency tables or the
deviation from the original frequency vector, which are nevertheless addressed by the
SAFE heuristic. Based on these findings, we proposed a modification of the SAFE-
basic problem, which includes the deviation between the frequency vectors before
and after anonymization. In our computational experiments, the advantages of the
proposed modified optimization problem over the SAFE-basic problem with respect
to resulting errors in frequency tables were profound. Moreover, we discussed that the
SAFE heuristic does not ensure that the number of data rows is preserved, which is,
however, required for a solution to the SAFE-basic problem. On the one hand, this
requirement preserves consistency with the original microdata set. On the other hand,
we have seen cases, i.e. Scenario 200m5 2percent, where it might be worth considering
to relax the requirement in order to increase the quality of the anonymized data.
However, we find it useful to ensure that the number of data rows remains at least
close to the original number for data plausibility.

In the subsequent part of this thesis, we proposed a data-perturbative microaggrega-
tion method for nominal data. In the past, microaggregation methods were primarily
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developed for numerical data and only later, extensions to categorical data became
research focus. However, we pointed out crucial differences between numerical and
categorical data, which complicate direct extensions of approaches for numerical data
to nominal data. Specifically, common approaches for numerical data work with the
Euclidean distances between data records and cluster centroids. However, we discussed
that for nominal data, two data records, which are close to the same centroid with
respect to the Hamming-distance, are not necessarily close to each other. Therefore,
the dissimilarities between all data records in the same cluster need to be taken into
account for nominal data. Hence, we build our approach on the recent work by Castro
et al. (2022), who focus on numerical data and propose a method, which includes
the overall dissimilarity. To this end, they formulate the partitioning problem in the
first step of microaggregation, such that its linear relaxation is suitable for a column
generation scheme. Our work builds on their idea of using column generation and
the work by Zhao et al. (2018) to present a new method for k-anonymity on nominal
data. Zhao et al. (2018) propose a method to derive an integer solution based on
the dual information provided by a fractional solution, which is obtained by a column
generation scheme. This method iteratively constructs an integer solution with the
objective to minimize the duality gap. We showed the application to the partitioning
step of the microaggregation procedure. In contrast to the SAFE heuristic, which is
controlled by many parameters, the proposed method requires only two parameters to
be determined. The first parameter 0 ≤ γ ≤ 1 determines the weight given to the dual
information during the construction of an integer solution. We found empirically that
neither 0 nor 1 are recommendable, i.e. it is useful to include dual information but
it should not be overemphasized. The second parameter gives weight on the cluster
size. However, the size of the cluster should not outweigh the similarities of the cluster
elements, i.e. a large value of λ > 3 was not recommended for our experiments. Fur-
thermore, our experiments reveal that the better the quality of the clustering found in
this partitioning step, the lower the objective function of the subsequent aggregation
step, i.e. the better the quality of the resulting k-anonymous microdata set. These
findings suggest that particular importance should be attached to the partitioning
problem.

Moreover, we mathematically formulated the aggregation problem, which is the
second step of the microaggregation procedure. The task in the aggregation step is
to find cluster representatives to minimize the information loss, which results from
replacing individual data records in each cluster with the respective representative
record. For numerical data, typically, only the respective cluster is taken into account
in the selection of its representative. However, for nominal data, frequency tables
are crucial in practice and we, therefore, include a subset of frequency tables in the
anonymization process. Since all cluster representatives influence the frequency table
entries jointly, the selection of a cluster representative to minimize the error in fre-
quency tables also depends on the other cluster representatives. Moreover, we decided
to use the χ2-error between table cell entries before and after anonymization in the
objective function since it takes the error in frequency tables relatively to the original
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entry into account. Thus, it penalizes an error in a table cell with a small original
entry more than the same error in a cell with a large original entry. Based on these
insights, we presented a mixed-integer program minimizing the sum of χ2-errors in the
cells of control tables and proposed a greedy algorithm to approach a solution. Our
experimental results show that this greedy approach can save runtime, as expected,
but comes with a notable quality loss. Moreover, we reformulated this program as a
minimum-weighted maximal clique problem in a multipartite graph. Even though the
reformulation does not make the problem less challenging, it allows a different viewing
angle. Based on this interpretation, we proposed another heuristic approach to the
aggregation problem. This clique heuristic showed its strength, when the clustering,
which is found in the partitioning step, has a low weight, i.e. the clusters consist of
similar data rows. This representation of the problem also allows for further develop-
ments of heuristic approaches to the aggregation step involving the χ2-error in selected
frequency tables.

In both, SAFE and the proposed methods, a subset of frequency tables is selected
as control tables. As shown in our experiments, the selection of only a few tables can
lead to a lower information loss on these tables. Therefore, practitioners should select
the control tables depending on their use case to either focus on specific frequency
tables or to minimize the overall error of a larger set of frequency tables.

On the one hand, our computational experiments showed the strengths of the SAFE
method with respect to maximum absolute errors, evaluations on one-dimensional
frequency tables and a very low number of confidentiality problems in the data set.
On the other hand, our proposed methods Own-hee and Own-hhe outperformed the
SAFE method and SAFE-ex with respect to relative errors, i.e. sum of χ2-errors and
maximum relative error. In all experiments, the proposed methods Own-hee and Own-
hhe outperformed Own-hhg, which is the fastest method. However, on samples of a
real-world data set, also Own-hhg outperformed the SAFE method and SAFE-ex. In
regard of regression analysis, the heuristic approaches SAFE and Own-hhe revealed
to be competitive with the exact method Chi-ex.

Our experimental study showed that the runtime of our proposed method is domi-
nated by the runtime of the partitioning step, which depends on the number of data
rows and parameter k. We proposed accelerations of the method by heuristic ap-
proaches of the individual steps instead of exact solving. Further ideas for accelera-
tions could be possible preprocessing steps. For example, fixing clusters of identical
data rows or deleting edges between data rows that do not have any value in common.
However, this should be done carefully since, depending on the microdata set, it might
be beneficial to assign even identical data rows to different clusters or also to assign
completely different data rows to the same cluster.

To conclude, based on the insights into the properties of nominal data, e.g. the
importance of the overall dissimilarities in the clusters and of frequency tables, our
proposed methods reduce the information loss when generating k-anonymous micro-
data sets from microdata sets with nominal data. Overall, particularly for nominal
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7. Conclusion

data, the inclusion of integer programming to the field of Statistical Disclosure Control
is beneficial.
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Appendix A
Parameter Selection for the SAFE
Method

We use the following parameters for the SAFE method.

allowed bounds for one dim table errors = 2
allowed bounds for higher dim table errors = 3
max gap between bounds for one and for higher dim tables = 3
allowed deviation from original frequency vector = 3
size of first part to consider = 5000
size of parts = 500
size of slices = 3
stagnation parameter = 0.02
target bound for one dim tables = 2
target bound for higher dim tables = 3
maximum number iterations improvement steps = 20

allowed extra error on table cell t =



0, if n̄t < 10
1, if 10 ≤ n̄t < 20
2, if 20 ≤ n̄t < 50
3, if 50 ≤ n̄t < 100
4, if 100 ≤ n̄t < 200
5, if 200 ≤ n̄t < 1,000
6, if 1,000 ≤ n̄t < 10,000
7, if 10,000 ≤ n̄t < 100,000
8, if 100,000 ≤ n̄t < 1,000,000
9, if 1,000,000 ≤ n̄t
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Appendix B
Further Computational Results
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(a) Using an optimal fractional solution.
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(b) Using a heuristic fractional solution.

Figure B.1.: Relative gaps according to the weight of the clustering for different
values of parameter γ on Scenario adult200m5.
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(a) 28 out of 90 instances.
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(b) 18 out of 90 instances.
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(c) 32 out of 90 instances.
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(d) 16 out of 90 instances.

Figure B.2.: Relative gap for weight of integer clustering for selected values for γ
on Scenario 200m5 20percent given a heuristically found fractional so-
lution.
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(a) Using an optimal fractional solution.
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(b) Using a heuristic fractional solution.

Figure B.3.: Relative gaps according to the weight of the integer clustering for dif-
ferent values of parameter λ on Scenario adult200m5.
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(b) Using a heuristic fractional solution.

Figure B.4.: Relative gaps according to the weight of the integer clustering for dif-
ferent combinations of parameters λ and γ on Scenario adult200m5.
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(b) On all tables.

Figure B.5.: Relative gaps according to the sum of χ2-errors between table cells
before and after anonymization for Scenario adult200m5.
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Figure B.6.: Direct comparison of heuristic aggregation methods on the control ta-
bles on different scenarios.
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(a) On the control tables.
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(b) On all tables.

Figure B.7.: Relative gaps according to the sum of χ2-errors for different methods
on Scenario adult200m5.
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Figure B.8.: Maximum absolute error in the frequency tables per dimension on
adult200m5.
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Figure B.9.: Maximum relative error in the frequency tables per dimension on
adult200m5.
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(a) Avg. frequency: 134.7, range [117,
151].
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Figure B.10.: ℓ2-distances between estimated probabilities before and after
anonymization for different attribute values over 100 samples on Sce-
nario adult200m5 with attribute 1 as dependent variable, Pseudo-R2

= 0.438.
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Figure B.11.: ℓ2-distances between estimated probabilities before and after
anonymization for different attribute values over 100 samples on Sce-
nario adult200m5 with attribute 5 as dependent variable, Pseudo-R2

= 0.032.
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