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Abstract 

Knowledge acquisition comprises various processes. Each of those has its dedicated 

research domain. Two examples are the relations between knowledge types and the influences 

of person-related variables. Furthermore, the transfer of knowledge is another crucial domain 

in educational research. I investigated these three processes through secondary analyses in this 

dissertation. Secondary analyses comply with the broadness of each field and yield the 

possibility of more general interpretations. The dissertation includes three meta-analyses: The 

first meta-analysis reports findings on the predictive relations between conceptual and 

procedural knowledge in mathematics in a cross-lagged panel model. The second meta-analysis 

focuses on the mediating effects of motivational constructs on the relationship between prior 

knowledge and knowledge after learning. The third meta-analysis deals with the effect of 

instructional methods in transfer interventions on knowledge transfer in school students. These 

three studies provide insights into the determinants and processes of knowledge acquisition and 

transfer. Knowledge types are interrelated; motivation mediates the relation between prior and 

later knowledge, and interventions influence knowledge transfer. The results are discussed by 

examining six key insights that build upon the three studies. Additionally, practical 

implications, as well as methodological and content-related ideas for further research, are 

provided. 
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1 Introduction 

Knowledge is a widely researched construct but lacks a clear definition (e.g., 

Pritchard, 2013). However, researchers and practitioners across many domains agree on its 

importance for success in education and beyond (e.g., knowledge-is-power hypothesis; Greve 

et al., 2019; Möhring et al., 2018). Different processes belonging to the construct of knowledge 

are inspected in several research areas. Some examples are the relations between different 

knowledge types (e.g., Rittle-Johnson & Alibali, 1999), motivational factors influencing 

knowledge acquisition (e.g., Vu et al., 2022), and interventions to foster knowledge transfer to 

other contexts or tasks (e.g., Kaminske et al., 2020). A broad range of past and current research 

exists for these exemplary fields. 

Questions about knowledge have concerned researchers since the beginning of 

philosophy. Starting with epistemology as the study of knowledge and knowing, issues about 

the nature and form of human knowledge have been proposed (Buehl & Alexander, 2001). 

Additionally, Plato tried to explore these elements through dialogues (e.g., Gulley, 2013), and 

Kant (1958) studied additional parameters by differentiating rational and empirical reasoning. 

The investigations took a psychological turn in the twentieth century regarding the relationship 

between knowledge and education (e.g., Dewey, 1916; Whitehead, 1967). Up to this point, the 

general importance of knowledge remains clear. However, none of the proposed definitions are 

widely acknowledged in all research domains.  

Not only researchers are interested in the topic of knowledge. Also, the public 

demands insight into the concept of knowledge, mainly in the setting of education. The PISA 

studies are one famous example in which the school students’ knowledge is assessed and 

compared across countries in different domains. The results are essential not only for 

researchers but likewise for practitioners, parents, and institutions. In PISA 2015, Germany 

scored 509 points in the STEM domains, which is a result significantly above the average 
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(Schiepe-Tiska, Rönnebeck, et al., 2015). The PISA studies did not only capture aspects of 

knowledge: Motivation and attitudes were assessed in addition to conceptual, procedural, and 

epistemic knowledge (Schiepe-Tiska, Simm, et al., 2015). This underlines the further 

importance of other personal factors in combination with success in knowledge acquisition. 

The current dissertation gives an overview of three facets of processes associated with 

knowledge in the form of three meta-analyses. These are the longitudinal relations between 

knowledge types, the mediation of the relationship between prior knowledge and knowledge 

after learning, as well as instructional influences on knowledge transfer. The dissertation is 

divided into three main parts: It starts with the theoretical background of knowledge acquisition 

and transfer (Chapters 2 to 4), then presents three studies as the core section (Chapters 5 to 7). 

The three studies offer insights into the predictive relations between conceptual and procedural 

knowledge in mathematics (Study 1 in Chapter 5), the relevance of motivational mediators on 

the relationship between prior knowledge and knowledge after learning (Study 2 in Chapter 6), 

and the impact of instructional methods in interventions on knowledge transfer in school 

students (Study 3 in Chapter 7). Finally, the dissertation closes with a general discussion and 

conclusion (Chapter 8). 
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2 Knowledge 

Knowledge plays a central role in the research on learning and education (de Jong & 

Ferguson-Hessler, 1996). Despite its essential part in past and current investigations, there is 

no clear definition of the construct knowledge. An issue of defining knowledge is the question 

of where to start: One could begin by looking at individual cases and their similarities, but if 

one does not already know what knowledge is or how it is defined, how can it be correctly 

identified through single cases (Pritchard, 2013)? Early traditional philosophers like Plato and 

Aristotle developed epistemology as a theory of knowledge by trying to define it (Buehl & 

Alexander, 2001). Today, however, their responses are not generally accepted (Neta & 

Pritchard, 2009; Russell, 1972). 

Definitions of knowledge differ in their level of analysis (Phye, 1997). From a 

reductionist view, knowledge can be investigated at the level of the central nervous system 

using neurological and biopsychological explanations (e.g., Brown & Smith, 2003; Sayer, 

2010). The other extreme includes explaining knowledge on the dimension of metaphysics 

through philosophical thoughts about reality (e.g., Hossack, 2007; Phye, 1997; Simon, 2020).  

Another possible distinction is the differentiation between rationalism and empiricism 

(Bolisani & Bratianu, 2018; Longworth, 2009). In rationalism, knowledge results from a 

reasoning process called rational reasoning (e.g., Descartes, 1997; Gorham, 2002). Empiricism 

is the opposite perspective, including the connection of ideas and sensory information. 

According to this, knowledge is created through sensory interfaces with the world (Bolisani & 

Bratianu, 2018; Keil et al., 1998).  

Knowledge is seen as a “justified true belief” (Nonaka & Takeuchi, 1995, p. 87) in the 

field of epistemology. It incorporates three basic conditions: The truth, the belief, and the 

justification condition. The truth condition states that the proposition a person knows needs to 

be true, which differentiates an opinion from knowledge. Second, the person must believe in 
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the proposition, called the belief condition. Last, the justification condition proposes that 

knowledge needs a practical way of justifying the proposition’s truth (Ayer, 2009; Bolisani & 

Bratianu, 2018; Gettier, 2009; Neta & Pritchard, 2009). 

Spelke and Kinzler (2007) present a more biological view of knowledge: They believe 

all humans have several separable core knowledge systems. Studies on knowledge’s 

ontogenetic and phylogenetic origins concentrated on four of these core systems (Spelke, 

2004): objects, actions, numbers, and places. The most extensively studied of these is the 

system of object representation (Spelke & Kinzler, 2007). Knowledge in this system enables 

human infants to perceive object boundaries and movements (e.g., Valenza et al., 2006). New 

systems, consisting of new skills or beliefs, are built on these foundations. 

These philosophical and biological dimensions of knowledge above are helpful in 

theoretical discourses but do not provide information for instructors or teachers when 

collaborating with their students. To reach this goal, a definition of knowledge should imply 

some correspondence with the learner and their perspective. This fits the cognitive point of 

view: According to cognitive researchers, knowledge includes “an individual’s personal stock 

of information, skills, experiences, beliefs, and memories” (Alexander et al., 1991, p. 317). 

Thus, knowledge represents a person’s learning history and must not be verified as valid.  

There is no general definition of the broad concept of knowledge. In the research area 

of educational psychology, the cognitive definition yields the most advantages. It incorporates 

the student’s learning history and possible correspondences between instructors and learners. 

Hence, this definition will be used as a basis for this dissertation.  

Moreover, knowledge can be distinguished based on several aspects. First, knowledge 

usually is divided into different knowledge domains. A knowledge domain includes a subset 

of knowledge in a specific content area (Alexander et al., 1991). This knowledge is restricted 

to a specific field or thought (e.g., Voss et al., 1986). The classification of knowledge in 



Knowledge Acquisition and Transfer  5 

knowledge domains allows more thorough investigations in that research area. Furthermore, it 

is possible to differentiate between knowledge types (see Chapter 2.1). 

2.1 Knowledge Types 

Knowledge can be categorized into several knowledge types and qualities (de Jong & 

Ferguson-Hessler, 1996). Types of knowledge focus on specific characteristics in which 

knowledge differs. The quality of knowledge encompasses the associated properties 

knowledge can have. Considering these two concepts, it is feasible to create a matrix that 

structures general topics, for example, learning goals (de Jong & Ferguson-Hessler, 1996). This 

chapter focuses on three types of knowledge proposed by several theoretical perspectives (e.g., 

de Jong & Ferguson-Hessler, 1996; Rittle-Johnson et al., 2001): declarative knowledge, 

conceptual knowledge, and procedural knowledge. 

2.1.1 Declarative Knowledge 

Declarative knowledge, or propositional knowledge (Pritchard, 2013), contains 

information on a person’s environment, for example, what learners can see or hear, and lets 

them recall past events (Ten Berge & Hezwijk, 1999). Declarative knowledge also includes 

concepts, ideas, principles, and theories (Ohlsson, 1994, 1996). One possible distinction within 

declarative knowledge is the difference between semantic and episodic memory. This 

distinguishes the memory of general knowledge of the world independent of life experiences 

from such life experiences (Bauer, 2006; Broadbent, 1989; Tulving, 1993). Using words like 

remembering, which points to episodic events, and knowing about semantic facts, illustrates 

this distinction. To sum up, declarative knowledge entails information about events and facts 

(e.g., Kump et al., 2015; Ten Berge & Van Hezewijk, 1999) that can be verbalized instantly 

(Neely, 1989).  

The structure of declarative knowledge can be represented as a semantic network (Chi 

& Ohlsson, 2005). This network consists of nodes and links that depict concepts and their 
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relations (Chi & Ohlsson, 2005; Hartley & Barnden, 1997). These connections are grouped by 

domain so that similar pieces of knowledge cluster together (Sowa, 1984, 2014). It is possible 

to explore such networks through computer simulations (Abelson, 1973; Quillian, 1968; Rips 

& Medin, 2005).  

2.1.2 Conceptual Knowledge 

Knowledge about concepts is called conceptual knowledge. There are different views 

on whether this knowledge type is a part of declarative knowledge (e.g., Schneider & Stern, 

2010) or an individual knowledge type (e.g., Hiebert & Lefevre, 1986). Conceptual knowledge 

includes static knowledge about facts, concepts, and principles that apply within a knowledge 

domain (de Jong & Ferguson-Hessler, 1996). Several definitions of conceptual knowledge 

exist, depending on the knowledge domain. In the following, some of them are reviewed for 

the knowledge domain of mathematics (Crooks & Alibali, 2014). In this domain, conceptual 

knowledge is described as knowledge of connections (e.g., Hiebert & Lefevre, 1986), 

knowledge of general principles (e.g., de Jong & Ferguson-Hessler, 1996), knowledge of 

underlying principles (e.g., Baroody et al., 2007), knowledge of organizing categories (e.g., 

Byrnes, 1992), knowledge of symbol meanings (e.g., Ploger & Hecht, 2009), or knowledge of 

domain structures (e.g., Robinson & Dube, 2009). 

Conceptual knowledge is also assumed to be stored mentally in relational 

representations (Schneider & Stern, 2010). Punctate and holographic models are examples of 

more precise models of this representation in the human brain and the neural connections 

between concepts (e.g., Feldman, 1986). Punctate models purport that each concept is 

represented by one neuron (Barlow, 1972) and that a category-based memory network depicts 

their interrelations (Shastri, 1985). On the other hand, holographic models represent concepts 

and interrelations in the form of a linear threshold matrix (Feldman, 1986). 
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2.1.3 Procedural Knowledge 

Procedural knowledge is defined as the knowledge of procedures or simply as knowing 

how (Byrnes & Wasik, 1991; Rittle-Johnson et al., 2001). A procedure includes actions that 

are carried out to accomplish a goal. Subsequently, procedural knowledge differs from other 

forms of knowledge because of procedures’ innate sequential and goal-directed nature (Hiebert 

& Lefevre, 1986). Procedural knowledge can furthermore be described as the knowledge of 

operators and the conditions under which these operators are applied to reach an intention 

(Anderson, 1993; Baroody, 2003; Rittle-Johnson et al., 2001; Schneider & Stern, 2010). It 

involves a combination of physical and mental activities, ranging from simple to complex 

actions (Ormrod, 2012). Such complex procedures are acquired slowly over some time (e.g., 

Ericsson, 2003).  

Based on prominent definitions (e.g., Hiebert & Lefevre, 1986), procedural knowledge 

is characterized as superficial and poor in connections (Star, 2005). These definitions miss the 

variety of procedures and their different qualities of connections (Anderson, 1982). Therefore, 

Star (2005) reconceptualized procedural knowledge into superficial and deep procedural 

knowledge. Superficial procedural knowledge corresponds to the common usage of procedural 

knowledge, whereas deep procedural knowledge is associated with comprehension, flexibility, 

and critical judgment (Star, 2005). This deep procedural knowledge can be measured by letting 

learners explain the steps in a procedure to achieve the goal (Star, 2007).  

2.1.4 Interrelations Between Knowledge Types 

The knowledge types are difficult to measure separately because of their interrelations 

(Baroody et al., 2007; Star & Stylianidis, 2013). Additionally, there are no established 

standards for measuring single knowledge types. Recent evidence showed that conceptual and 

procedural fraction knowledge are empirically separable when using appropriate measures 

(Bempeni et al., 2018; Lenz et al., 2020). However, most studies do not use such exclusively 

developed instruments. This makes it difficult to measure knowledge types validly and 
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independently from each other (Schneider & Stern, 2010). 

There are several theoretical views on the relations between conceptual and procedural 

knowledge. Four theoretical viewpoints on these longitudinal relations are traditionally 

mentioned (see Figure 1): The Inactivation View (Haapasalo & Kadjievich, 2000) states that 

the two knowledge types develop independently from each other (e.g., Nesher, 1986; Resnick 

& Omansun, 1987). Concept-first Theories predicate that learners develop conceptual 

knowledge first. Subsequently, procedural knowledge derives from it through unidirectional 

construction and evaluation of problem-solving processes (e.g., Donlan et al., 2007; Geary, 

1994; Gelman, 1993; Gelman & Williams, 1998). However, Procedures-first Theories 

(Weaver et al., 2018) state that learners develop procedural knowledge first and then build 

conceptual knowledge on this basis through unidirectional abstraction processes (e.g., Baroody 

& Gannon, 1984; Baroody & Ginsburg, 1986; Briars & Siegler, 1984; Kerslake, 1986; Siegler 

& Stern, 1998). The fourth theoretical viewpoint is called the Iterative Model (Rittle-Johnson 

et al., 2001). According to this viewpoint, the causal relations between conceptual and 

procedural knowledge are bidirectional. Therefore, the increase in one of them leads to a 

subsequent increase in the other (e.g., Canobi, 2009; Hecht & Vagi, 2012; Rittle-Johnson & 

Koedinger, 2009; Schneider et al., 2011). 

2.2 Determinants of Knowledge Acquisition 

Knowledge acquisition, often synonymously called learning, is one of the most crucial 

goals in educational settings. There are several theories of knowledge acquisition (Renkl, 

2009). To study the aspects and characteristics of knowledge, it is essential to look at how 

learners acquire knowledge. For example, the learner’s prior knowledge determines later 

knowledge acquisition (Chapter 2.2.1), and motivational factors can further affect it (Chapter 

2.2.2).  
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Figure 1 

Four Theoretical Viewpoints on Longitudinal Relations Between Conceptual and Procedural 

Knowledge 

 
(a) Inactivation View 

 
(b) Concepts-first Theories 

 

 
(c) Procedures-first Theories 

 
(d) Iterative Model 

 

Note. The four models a, b, c, and d show the proposed influences of conceptual knowledge (C1) and 

procedural knowledge (P1) at measurement point one on both knowledge types at a later measurement 

point (C2, P2). 

 

2.2.1 Prior Knowledge 

Learners can only connect new information if they already have gained knowledge 

about the learning contents (Ormrod, 2012). This prior knowledge influences a learner’s ability 

to encode all kinds of information. Prior knowledge is defined as the sum of knowledge an 

individual already possesses (Alexander et al., 1991). Learners always build on prior 

knowledge to learn new content (Schwartz et al., 2007). Hence, learners with a large body of 

information in long-term memory can generate more ideas relating to their new experiences 

(Ormrod, 2012). Learners with insufficient relevant knowledge use inefficient rote-learning 

strategies instead. Several overlapping theories propose processes in which prior knowledge 

affects learning (Dochy, 1994). Example key processes are the elaboration of redundant 

retrieval paths or the greater availability of information during the learning process (Dochy, 

1994). Another two common approaches include the role of prior knowledge with a conceptual 
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versus a procedural point of view (Schwartz et al., 2007): From the conceptual point of view, 

the impact of prior knowledge builds upon students’ intuitions and experiences. Focusing on 

procedural prior knowledge, the effect builds upon the mastery of component skills and their 

combinations (Schwartz et al., 2007).  

Numerous studies have illustrated the influence of prior knowledge (e.g., Anderson, 

1981; Hall, 1989; Ormrod et al., 1988; Schneider, 1993). It is the most important factor for 

long-term memory storage (Haskell, 2001). Prior declarative and predominantly procedural 

knowledge from previous courses influenced pharmacy students’ later achievement (Hailikari 

et al., 2008). Pazzani (1991) found effects of prior knowledge on concept acquisition. 

Additionally, a recent meta-analysis inspected the relationship between prior knowledge and 

knowledge acquisition based on 8776 effect sizes (Simonsmeier et al., 2022): The meta-

analysis showed that relative differences in knowledge between individuals were highly stable 

from before to after learning. This makes prior knowledge a suitable predictor for later 

knowledge. However, the included primary studies differed strongly in their effect sizes, 

resulting in a broad prediction interval around zero. Based on this result, the discussion about 

the impact of prior knowledge on knowledge acquisition must resume. 

Recently, in the domain of text comprehension, prior knowledge was described as 

having four dimensions: amount, accuracy, specificity, and coherence (McCarthy & 

McNamara, 2021). This implies that the influence of prior knowledge depends on more than 

just the amount a learner possesses (Brod, 2021). One example is the activation of relevant 

prior knowledge congruent with new information (e.g., Bein et al., 2015; Bransford & Johnson, 

1972; Brod & Shing, 2019; McWeeny et al., 1987). On the other hand, the activation of 

irrelevant and incongruent prior knowledge hinders further learning (Castel et al., 2007; Chi, 

2008). 

Besides correct information, prior knowledge can include errors or misconceptions as 
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well. According to diSessa (2006), misconceptions are students’ persistent false beliefs despite 

being contradicted by established evidence (Bensley & Lilienfeld, 2017). These 

misconceptions often arise from everyday sources. Several studies have proven misconceptions 

problematic (e.g., Eaton et al., 1984; Kendeou & van den Broek, 2005). If learners use 

inaccurate knowledge to encode new information that is inconsistent with their existing 

knowledge, they might either ignore the new information or distort it to make it consistent 

(Ormrod, 2012). Therefore, misconceptions might be more detrimental than knowing nothing 

about a topic. Prior knowledge is mostly stable in terms of misconceptions (e.g., Carey, 1986). 

However, it is not entirely resistant to change. It is possible to alter misconceptions through 

explicit activation and confronting with contrary evidence (Bensley & Lilienfeld, 2017; 

Kowalski & Taylor, 2009). On the other hand, new misinformation can also negatively 

influence correct prior knowledge (Fazio et al., 2013). 

Prior knowledge is among the most influential predictors of knowledge acquisition. 

However, there is no clear evidence of how strong prior knowledge affects learning and 

whether there are other determinants. For example, motivational factors in a learner might 

additionally play a role in the relationship between prior knowledge and learning outcomes. 

2.2.2 Motivation 

Motivation is often researched in educational psychology (Koenka, 2020; Urhahne & 

Wijnia, 2023), focusing on its influence on behavior, learning, and performance (Schunk et al., 

2014). A general model of the relationship between motivation and achievement is presented 

by Vu and colleagues (2022), namely the Motivation-Achievement Cycle (see Figure 2). In this 

model, motivation and achievement affect each other through behavioral intermediaries and 

achievement-related constructs with the inclusion of outside influences. Achievement is 

operationalized through the acquisition of knowledge or skill. Motivation is mainly used as an 

umbrella term for several unique constructs, each with its own theoretical and empirical basis. 
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Urhahne and Wijnia (2023) integrated the essential theories into a basic model of motivation 

in education, including the process from the interaction between the situation and the self to 

the consequences of their actions. To illustrate the variety, the constructs of interest, self-

concept, self-efficacy, and intrinsic as well as extrinsic motivation are described in the 

following.  

 

Figure 2 

Motivation-Achievement Cycle (Vu et al., 2022) 

 

Note. The Motivation-Achievement Cycle (Vu et al., 2022) includes motivation-achievement 

interactions. In the circle on the left are motivation constructs. The right circle and the arrows from right 

to left are achievement constructs. The arrows from left to right include behavioral intermediaries. Light 

gray arrows denote outside influences (own representation, based on Vu et al., 2022, p. 41). 
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2.2.2.1 Interest. Interest is a content-specific motivational construct that includes 

intrinsic feelings- and value-related valences (Schiefele, 1991). It contains affective and 

cognitive components (Hidi & Renninger, 2006). Additionally, interest can be described as the 

outcome of the interaction between a person and a specific content (Krapp, 2000). Researchers 

further distinguish between situational and individual interest. The former refers to the attention 

and affective reaction in the situation triggered by environmental stimuli (Hidi, 1990). 

Individual interest describes a person’s enduring predisposition to reengage with a specific 

content over time (Krapp & Fink, 1992). It can be conceptualized as a disposition or a current 

state (Krapp et al., 1992). Dispositional interests are enduring and general orientations, whereas 

current interests are concrete and based on interactions between internal and external 

conditions (Hidi & Baird, 1986).  

Interest influences several learning-related aspects. Examples are attention (e.g., Ainley 

et al., 2002; Hidi, 1995; Hidi et al., 2004), goals (e.g., Harackiewicz et al., 2000; Pintrich & 

Zusho, 2002; Sansone & Smith, 2000) and the level of learning (e.g., Alexander & Murphy, 

1998; Harackiewicz et al., 2002; Renninger & Hidi, 2002). There is also empirical evidence 

for the relationship between interest and prior knowledge (e.g., Baldwin et al., 1985; Tobias, 

1994). 

2.2.2.2 Self-Concept. Self-concept is a multidimensional and hierarchical construct 

with one global self-concept and several subordinate specific facets (e.g., Marsh et al., 1988; 

Shavelson et al., 1976). Self-concept is characterized by its evaluative character. There are 

investigations on the distinction between self-concept and self-esteem. However, recent 

research often treats these two global concepts as synonymous (Marsh & Martin, 2011). A 

positive self-concept is a desirable outcome in several psychological disciplines as well as 

education (Marsh, 2014; Marsh & Craven, 2006). In the latter domain, self-concept affects 
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academic behaviors, choices, and achievement in and beyond school (Marsh, 2007, 2014; 

Marsh et al., 2006).  

One specific facet of self-concept in education is the academic self-concept (e.g., Byrne, 

1996). This self-perception is formed through experiences in educational environments (Guay 

et al., 2010; Craven & Marsh, 1997). Reciprocal effects between academic self-concept and 

achievement have been proposed by Marsh and Yeung (1998) and empirically tested (e.g., 

Guay et al., 2003; Marsh et al., 2005). 

2.2.2.3 Self-Efficacy. Self-efficacy describes the judgment of one’s belief of personal 

efficacy in the capability of executing cognitive, social, and behavioral actions and skills. 

(Bandura, 1977, 1986a, 1986b, 1997). Therefore, self-efficacy is related to specific situations 

and tasks. In contrast to self-concept, self-efficacy solely includes cognitive components 

(Peiffer et al., 2020). Bandura (1995) purported four sources of self-efficacy: earlier 

performance accomplishments, vicarious experience through observation of others, verbal 

persuasions, and evaluation of physiological and emotional information. Earlier performance 

accomplishments are the most essential sources (Bandura, 1981), but there is empirical 

evidence for the unique contributions of each of the four (e.g., Matsui et al., 1990). Moreover, 

external factors, for example, expectations of others (Bandura, 1986a), as well as internal and 

external cues (Gist & Mitchell, 1992), impinge one’s self-efficacy. There is meta-analytic 

evidence of the importance of self-efficacy, specifically academic self-efficacy, for academic 

performance (r = .33, Honicke & Broadbent, 2016). It influences several aspects of learner 

behavior in educational settings, for example, the choice of activities and the level of 

performance or engagement (Linnenbrink & Pintrich, 2003; Schunk, 1985; Schunk & Pajares, 

2002).  

Academic self-efficacy primarily indicates one’s perceived confidence to successfully 

perform a particular academic task (Bong & Skaalvik, 2003; Ferla et al., 2009). Besides the 
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four sources of general self-efficacy, goal setting and attributional feedback play a role in 

connection with academic self-efficacy (Hodges, 2008). Each of the sources mentioned above 

is present in classrooms making the educational setting per se an essential factor for self-

efficacy (Schunk, 1985).  

2.2.2.4 Intrinsic and Extrinsic Motivation. People vary not only in their level of 

motivation but also in the orientation of that motivation (Ryan & Deci, 2000a). Based on the 

Self-Determination Theory (Deci & Ryan, 1985), it is possible to differentiate motivation into 

intrinsic and extrinsic.  

Intrinsic motivation includes doing something because it is inherently interesting 

(Locke & Schattke, 2019). It is defined differently depending on the underlying theoretical 

model: Whereas the operant theory points to the reward in the activity itself (Skinner, 1953), 

learning theory and Self-Determination Theory focus on satisfying innate psychological needs 

(Hull, 1943; Ryan & Deci, 2000a). Meta-analytical evidence shows that intrinsic motivation 

plays a significant role in school achievement (Taylor et al., 2014).  

Extrinsic motivation refers to doing something because of a separable outcome (Ryan 

& Deci, 2000a). Extrinsic motivation contrasts with intrinsic motivation by focusing on the 

instrumental value of the behavior. It can be defined as a means-end relationship in which doing 

something results in future value outside the task (Locke & Schattke, 2019).  

A lot of educational activities are not inherently intrinsically interesting. Additionally, 

offering extrinsic rewards, for example, school grades, is proposed to inhibit students’ will to 

learn intrinsically motivated (Covington & Müeller, 2001; Kruglanski, 1978). However, trying 

to encourage intrinsic values may also be discouraging. This is called the overjustification 

effect (Lepper et al., 1973). Students are more likely to value their task if there are task-oriented 

reasons for learning and when they are interested in the content (Covington, 2000).  
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Intrinsic and extrinsic motivation are differently connected to academic achievement. 

Lin and colleagues (2003) found that a high level of intrinsic motivation was positively related 

to grades for college students and that a moderate level of extrinsic motivation was better than 

a high level. This implied the possibility of a curvilinear relationship (Lin et al., 2003). There 

is similar evidence for elementary school students: Intrinsic motivation was associated with 

greater achievement, whereas extrinsic motivation showed a negative relationship (Lemos & 

Veríssimo, 2014). According to the Self-Determination Theory, internalizing and integrating 

values and behavioral regulations, the processes of taking them in and transforming them into 

one’s own, answer how to motivate students to value activities (Deci & Ryan, 1985). This 

process leads to better persistence and self-perceptions (Ryan & Deci, 2000a). 

By acknowledging motivational factors in learners and their relation to knowledge 

acquisition, more insight can be gained from mediating or moderating processes. Learners 

cannot be examined apart from their motivation concerning the learning process. 

2.3 Knowledge Transfer 

Knowledge transfer, or short transfer, is the ability to apply knowledge to new situations 

and contexts (Schwartz et al., 2008). Knowledge transfer enables learners to use the knowledge 

acquired in a specific context in other contexts to solve similar or dissimilar problems. This 

transfer includes transmitting knowledge to new content areas and physical, temporal, or 

functional contexts (Barnett & Ceci, 2002). It can also be described as the impact of learning 

in one context on learning and performance in other contexts (Perkins & Salomon, 1992) or 

the result of how learning in one task or situation influences the response in another task or 

situation (Adams, 1987). 

Thus, the more learners transfer their knowledge, the broader the range of new problems 

they can solve in different contexts. This is an essential factor at school as well as in 

professional trainings. Accordingly, fostering transfer is among the central goals of education. 
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There are several fundamental distinctions (Chapter 2.3.1) and theoretical viewpoints (Chapter 

2.3.2) of knowledge transfer. Additionally, a theoretical model of the impact of cognitive 

engagement in trainings on knowledge transfer is presented in Chapter 2.3.3. 

2.3.1 Differentiations of Knowledge Transfer 

Royer (1979) proposed at least four possible classifications of knowledge transfer that 

each contain two categories: First, lateral transfer includes a generalization of knowledge over 

a broad set of situations, whereas, in vertical transfer, the learned skill contributes only to a 

superordinate skill. Second, specific transfer with an apparent similarity between the learning 

and application situation can be differentiated from nonspecific transfer, in which no obvious 

stimulus elements are shared between both situations. The third distinction discerns literal 

transfer from figural transfer. The former describes the transfer of an intact skill, whereas the 

skill does not have to be intact for the latter. Last, the differentiation between near and far 

transfer depends on the similarity between the learning and the application situation.  

This distinction between near and far transfer is further explained in the following: Near 

transfer describes cases when knowledge is transferred to a mainly similar context. Empirical 

studies often found this type of transfer (Perkins & Salomon, 1992). Far transfer, in which 

knowledge is transferred to a dissimilar context, is rarely discovered (Haskell, 2001). The 

Taxonomy for Far Transfer (Barnett & Ceci, 2002) offers the possibility to distinguish these 

two types of transfer depending on the similarity of the learning and application contexts. It 

provides two overall transfer factors: the content, including what is transferred, and the context, 

meaning where it is transferred to (Barnett & Ceci, 2002). This model further differentiates six 

context factors (Barnett & Ceci, 2002): Knowledge Domain, Physical Context, Temporal 

Context, Functional Context, Social Context, and Modality. 
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2.3.2 Theoretical Views on Knowledge Transfer 

Knowledge transfer has a long history of research. Theories on transfer are very diverse 

in their foci and approaches. However, they can be distinguished into three broad schools of 

thought (see Figure 3): These are behavioristic theories (Chapter 2.3.2.1), cognitive theories 

(Chapter 2.3.2.2), and sociocultural theories (Chapter 2.3.2.3). The three schools of thought 

and exemplary theories belonging to them are presented in the following.  

 

Figure 3 

Overview of Transfer Theories 

 
Note. Overview of transfer theories, each with a reference example (own representation). 
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2.3.2.1 Behavioristic Theories. Traditionally, the discussion about knowledge transfer 

starts with the conflict between Thorndike and Judd and their rival theories. On the one side, 

Thorndike (1924; Woodworth & Thorndike, 1901) postulated that the crucial cognitive process 

in transferring knowledge is identifying identical elements in the source and the target domain. 

This theory is called the identical elements theory. After identifying such identical elements, 

knowledge acquired in one domain can be applied in a second domain (Thorndike, 1924). 

Identical elements are stimulus features that both tasks and situations share (Royer, 1979) or 

environmental as well as mental events and objects that differ in any respect between those 

situations (Butterfield & Nelson, 1989). Therefore, transfer is more likely between two similar 

tasks (Marton, 2006).  

The theory of identical elements was further elaborated by Osgood (1949) and Ellis 

(1965), who described boundary conditions of most situations, resulting in restricting the 

theory to mostly near transfer. For example, Osgood (1949) separated the similarity of 

responses from stimuli similarities, resolving the paradox of identical elements. He formulated 

a three-dimensional theoretical surface (Butterfield & Nelson, 1989). According to this surface, 

positive transfer depends on the similarity of stimuli and responses, whereas there is no transfer 

when the stimuli are unrelated. Furthermore, negative transfer is described as similar stimuli 

but not responses (Butterfield & Nelson, 1989). The theory of knowledge generalization 

describes possible extensions to the theory of identical elements regarding far transfer (Royer, 

1979). It postulates the possibility of far transfer when a class of problems is defined to which 

a particular skill can be applied and when it is possible to isolate such a set of defining features 

for this class (Royer, 1979). 

On the other side, Judd (1908) purported that transfer is not only a function of similar 

features of two situations but also of how the learner deals with the learning situation (Marton, 

2006). Transfer occurs due to teaching general rules in a domain, which then generalize to other 
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domains (Lehman & Nisbett, 1990). In cases where a guiding principle is present, transfer is 

dependent on the extent a learner is accustomed to this principle (Brown & Kane, 1988). 

According to this, learning in formal demanding domains should enhance the quality of 

thinking in general (Inglis & Attridge, 2016). This theoretical view, initially developed by 

Plato, is called the theory of formal discipline (Lehman & Nisbett, 1990). There is empirical 

evidence for this theory (e.g., Fong et al., 1986; Lehman et al., 1988; Nisbett et al., 1987). 

However, most of the current transfer theories do not support the theory of formal discipline. 

Up to this point, behavioristic theories dominated the research field of knowledge 

transfer. The most critical step in these theories is recognizing that one situation shares common 

environmental elements with another (Royer, 1979). They are limited to situations with clear 

and known relations between the initial stimuli and the transfer tasks (Kintsch, 1970; Royer, 

1979). 

2.3.2.3 Cognitive Theories. Cognitive theories concentrate on information processing 

in learning (Royer, 1979). These theories see the learner’s memory as a highly structured 

system in which information is stored and retrieved systematically. Therefore, comprehension 

of contents is necessary, but not sufficient, for transfer (Royer, 1979). The likelihood of transfer 

is determined by the probability of retrieving relevant prior knowledge during the search 

process (Royer, 1979).  

During the cognitive shift in psychological research, Singley and Anderson (1989) 

further enhanced the theory of identical elements. They formulated the ACT* Theory 

(Anderson, 1983a, 1987a) and the ACT-R Theory (Anderson, 1993). In these theories, the focus 

lies on cognitive skills that are composed of production rules in a system. This production 

system has several critical features (Anderson, 1993): Production rules are abstract modular 

pieces of knowledge characterized by their condition-action-asymmetry and strung together by 

the learner’s goal-setting. These production rules can be used as a “modified elements theory 
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of transfer” (Anderson & Singley, 1993, p. 184). Instead of stimulus-response bonds between 

the learning and application situation, transfer is described as a function of how the learner 

represents knowledge in the form of knowledge chunks and productions (Anderson & Singley, 

1993). This makes transfer more likely when the same production rules apply in the learning 

as in the transfer context.  

Salomon and Perkins (1989) distinguished two distinct but related knowledge transfer 

mechanisms. High-road transfer includes deliberate reflective processing and mindful 

abstractions from the initial learning context (Perkins & Salomon, 1992). It consists of an 

intentional search for connections. Low-road transfer depends on pattern recognition and the 

reflexive triggering of semi-automatic processes (Perkins & Salomon, 2012). This mechanism 

occurs when the conditions of the application setting are similar to those in the learning 

situation (Perkins & Salomon, 1992). Three processes can support both roads (Perkins & 

Salomon, 2012): detecting, electing, and connecting. The process of detecting discerns the 

possibility of a connection between the learning and application situation that the learner needs 

to elect to pursue further. Connecting describes the process of identifying relevant relations 

between the two situations. This is supported by high surface similarity (Day & Goldstone, 

2012). Failures in transfer are explained by missing an adequately deep understanding of the 

contents (Chi & VanLehn, 2012). Furthermore, another prerequisite for these processes is the 

successful reconstruction of schemas of the source (Perkins & Salomon, 2012). 

Analogical transfer is based on the importance of analogical problem-solving (Gysin & 

Brovelli, 2021). It is premised on transmitting knowledge features from one problem to another 

with similar structural links by drawing on previous encounters (Gary et al., 2012). Analogies 

include matching relevant parallels between the problem and the situational structures by the 

learner (Blanchette & Dunbar, 2000; Gentner et al., 2001). They can be drawn between and 

within knowledge domains. Learning to solve one problem enhances the solving process of 
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another problem depending on the similarities of the learner’s mental representations of the 

two problems (Marton, 2006). Transfer due to analogies between the learning and application 

situation has been investigated through well-defined puzzle problems that are either 

homomorphic or isomorphic (Hayes & Simon, 1977; Reed et al., 1974). There are three main 

classes of theories on analogical transfer (Reeves & Weisberg, 1994). These are the pragmatic 

schema model (Holland et al., 1986; Holyoak, 1985; Holyoak & Thagard, 1989), the structure-

mapping theory (Gentner, 1983, 1989; Gentner & Gentner, 1983), and exemplar theories (e.g., 

multiple-trace model, Hintzman, 1986, 1988). Research on analogical thinking grounded on 

the pragmatic schema theory in ill-defined complex problem-solving tasks. This was done by 

Gick and Holyoak (1980) with the radiation problem. It led to the conclusion that problem-

solving is possible based on one analog. However, developing an adequate schema was most 

important for successful transfer (Reeves & Weisberg, 1994). Analogical transfer, predicated 

on the structure-mapping theory, includes several processes: retrieval, mapping, evaluation, 

abstraction, and re-representation (Gentner & Colhoun, 2010). Calling an analogous case from 

memory based on the confrontation with a new case is called retrieval (Keane et al., 1994). The 

most central process, mapping (Gentner, 1983; Gentner & Colhoun, 2010), entails the 

structural alignment between two cases and their implications. During this process, aspects that 

align are searched, clustered, and mapped when found (Gentner & Colhoun, 2010; Keane et 

al., 1994). The result is a set of correspondences between matches of both cases. The found 

analogy is evaluated (e.g., Forbus et al., 1997; Holyoak & Thagard, 1989; Keane, 1996) and 

often abstracted from the cases’ structures. In the process of re-representation, one or both cases 

are adapted to better fit the analogy (Gentner & Colhoun, 2010; Gentner et al., 2003). Last, the 

third class of theories discerns from the other by focusing on concrete problems and 

experiences (Reeves & Weisberg, 1994). One example of such exemplar theories is the 

multiple-trace model (Hintzman, 1986). This model presumes that each event includes its own 
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memory trace. Therefore, repetition of previously learned content does not strengthen the prior 

representation but produces a new coexisting trace (Hintzman, 1976, 1986; Hintzman & Block, 

1971). Transfer enhances by providing prototypes of old exemplars (Hintzman, 1986; Rosch 

et al., 1976) and increasing the number of training exemplars (Homa et al., 1973; Homa et al., 

1981). For this, learners encode the learning task’s surface, structural details, and contextual 

information (Reeves & Weisberg, 1994).  

Learners can also compare two cases that are neither well understood. This technique is 

called analogical encoding (Gentner et al., 2003) or analogical bootstrapping (Kurtz et al., 

2001). This comparison helps to understand the underlying structure of both cases 

(Loewenstein et al., 1999) by drawing attention to common principles and schemas (Gick & 

Holyoak, 1983). Promoting the abstraction of existing schemas facilitates solving problems in 

different contexts (Gentner et al., 2003). Likewise, such between-domain analogies can be 

based on identifying salient similarity, the similarity of the learner’s underlying representations 

(Vosniadou & Ortony, 1989). 

Focusing on the shift from abstract and high-level conceptualization processes to 

perception-action processes, Day & Goldstone (2012) provided an overview of the connection 

between perceptual learning processes and knowledge representation. In traditional cognitive 

theories, analogical encoding is an active and deliberate process. However, perceptions are fast 

and automatic and include a combination of perceptual and conceptual content (Day & 

Goldstone, 2012). They are influenced by prior knowledge and show parallels to aspects of 

procedural knowledge (Gauthier et al., 2010; Shiffrin & Schneider, 1977). These perceptions 

are stored as mental models that are simplified spatial and mechanical representations of 

situations. They allow reasoning about relations between situations (e.g., Dreistadt, 1969; 

Johnson-Laird, 2006). These perceptual mental representations are essential in transferring 

cases that appear dissimilar on the surface but are represented similarly (Day & Goldstone, 
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2011, 2012). Therefore, perceptions provide a basis for the linking of situations. These effects 

are not restricted to visual representations. Indeed, the relationship between physical actions 

and thought is incorporated (e.g., embodied cognition, Barsalou, 1999; Goldin-Meadow, 2005; 

Wilson, 2002). The authors also purported the importance of prior knowledge in recognizing 

and taking advantage of the deep structural content in cases where the learner does not 

recognize the deep structure (Day & Goldstone, 2012).  

Building on the beforementioned cognitive theories, Nokes (2009) presented three 

profiles of processes that can be triggered in knowledge transfer. They depend on the type and 

the representation of the knowledge to be transferred. The processes are analogical transfer, 

knowledge compilation, and constraint violation. Analogical transfer, as explained above, 

includes the retrieval of prior exemplars and the creation of mappings between these and the 

current problem (Catrambone, 2002; Holyoak & Koh, 1987). It is facilitated by surface and 

structural similarities (Catrambone & Holyoak, 1989; Gentner & Gentner, 1983; Gick & 

Holyoak, 1983). The inferences drawn by this process are typically assumed to be declarative 

representations (Nokes, 2009). Novices apply this process to near-transfer problems that look 

similar on the surface. The second process, knowledge compilation, entails translating prior 

declarative knowledge into procedures to solve new problems (Nokes, 2009). The generation 

of production rules includes step-by-step interpretations of declarative knowledge 

representations (Anderson, 1982, 1983b, 1987b). These rules are widely applicable but require 

a complicated and lengthy application process (Taatgen & Anderson, 2002). Therefore, the 

process is only triggered when no accessible exemplar knowledge or extensive adaptation is 

required. Third, constraint violation contains different sets of cognitive processes to realize 

knowledge transfer from declarative to procedural knowledge (Ohlsson, 1996; Ohlsson et al., 

1992). Constraint violation consists of the repeated processes generate, evaluate, and revise 

(Nokes, 2009). The learner uses prior knowledge of domain constraints to evaluate and correct 
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task performances. Transfer is the process in which the learner uses prior constraint knowledge 

to identify errors generated in the performance of a new task. This process requires multiple 

iterations of the repeated processes and is only triggered when the learner has no accessible 

exemplars and tactical knowledge (Nokes, 2009). 

Behavioristic, as well as cognitive theories, have both strengths and weaknesses. 

Whereas behavioristic theories are better suited in their predictive specificity, their structure is 

relatively rigid. They provide guidelines for developing and sequencing instructional events 

but not for transfer from school-learned material to real-world events (Royer, 1979). Cognitive 

theories are broader and yield explanations for knowledge transfer in various situations for both 

near and far transfer. 

2.3.2.4 Sociocultural Theories. In the late 1980s, critique started on the classic 

behavioristic and cognitive transfer theories (Marton, 2006). This critique mainly targeted the 

researcher’s role in defining learned content and transfer tasks (Lave, 1988). For example, the 

traditional two-problem transfer experiment disregards other possible relations to situations 

(Marton, 2006). Up to this point, research on knowledge transfer was based on a functionalist 

view with the image of knowledge as tools stored in memory (Marton, 2006). However, later 

theories focused more on the situational aspects of knowledge and transfer (Day & Goldstone, 

2012; Roorda et al., 2015). Knowledge is seen as situated and dependent on the context (Boaler, 

2002; Lave, 1988). Sociocultural theories, including the community of practice (Chaiklin & 

Lave, 1993; Frade et al., 2009; Lave, 1988; Wenger, 1998; Wenger et al., 2002), cognitive 

apprenticeship (Brown et al., 1989; Greeno et al., 1993), and situated cognition (Choi & 

Hannafin, 1995; Hennessy, 1993; Suchman, 1987) developed from Lave’s (1988) initial 

critique. 

Knowledge transfer, also framed as the generality of knowing (Greeno, 1997), is based 

on one’s ability to participate in activities in different situations that provide affordances 
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(Greeno et al., 1993). Affordances (Gibson, 1977) are features of the environment that make 

particular activities, for example, knowledge transfer, possible (Day & Goldstone, 2012; 

Marton, 2006). Affordances are non-dualistic; this means they presuppose both an actor and an 

acted upon (Marton, 2006). Greeno et al. (1993) presented a view of transfer as a conjunction 

between affordances in the learning and the transfer situation. Transfer is constituted by the 

person in the situation and the situation for the person (Greeno, 1997). Therefore, learning and 

transfer are situated and depend on the social context.  

Adding to the situational dependency of knowledge and its transfer, Engle and 

colleagues (2012) purported the importance of framing the social context. Engle (2006) argued 

that learners need not only to possess relevant knowledge but also to choose to use their 

knowledge to transfer. This choice can be influenced by social framing (Engle, 2006). To 

enable transfer, an expansive social framing of the context is needed to create intercontextuality 

between the learning and transfer contexts (Bloome et al., 2005; Engle, 2006; Leander, 2001). 

This is possible by connecting prior and future settings and emphasizing the student’s 

authorship of their knowledge (Engle, 2006; Engle et al., 2012; Engle et al., 2011; Hammer et 

al., 2005). 

Broadening the theoretical conceptualization of transfer, the learner’s preparation for 

future learning was included as an essential aspect of knowledge transfer (Bransford & 

Schwartz, 1999). It incorporates assessing the ability to learn successfully in new environments 

(Schwartz et al., 2005; Schwartz & Martin, 2005). Furthermore, it answers how knowledge 

acquired in one situation transfers in and enables learners to learn from new unknown resources 

(Belenky & Nokes-Malach, 2012; Nokes-Malach & Mestre, 2013). This focus allows 

researchers to notice evidence of positive transfer that might otherwise be hidden in the 

traditional researcher-oriented view of knowledge transfer. Bransford and Schwartz (1999) 

recommended assessing transfer by directly exploring learners’ abilities to learn new 
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information while connecting them to prior learning. This focus on transfer has also been 

discussed before but not this explicitly (e.g., Bereiter, 1990; Greeno et al., 1993). The 

assessment of transfer regarding the preparation for future learning demands specific 

experimental designs. One way is the double-transfer paradigm (Belenky & Nokes-Malach, 

2012; Stratton, 2020). In this paradigm, students receive one of two instructions, and half of 

these students then receive additional learning resources afterward, often operationalized as 

inventing versus tell-and-practice (Schwartz & Martin, 2005). Following, all of them complete 

a transfer problem. The preparation for future learning approach can be closely connected with 

motivational factors. For example, by looking at achievement goals, the mastery-approach 

orientation is connected with better preparation for future learning (Belenky & Nokes-Malach, 

2012). 

Another sociocultural concept of knowledge transfer is the actor-oriented transfer 

(Lobato 2003, 2008, 2012). It also criticizes the traditional two-problem transfer paradigm 

(Lobato, 2003). In this, the researchers, as experts, look for improved performance between 

learning and transfer tasks (Reed, 2012). Hence, classical studies include a privileged 

perspective of observers and rely on models of expert performance (Lobato, 2006). Traditional 

transfer paradigms do not account for structuring sociocultural environments or material 

artifacts (e.g., Guberman & Greenfield, 1991; Lobato, 2012). However, from the actor-oriented 

transfer point of view, knowledge transfer is inspected from the learner’s perspective (Lobato 

et al., 2012). Researchers look for the impacts of prior activities on the current activity and how 

actors construe situations as similar. Therefore, knowledge transfer is the generalization of 

learning or the effect of learners’ prior activities on other activities in novel situations (Lobato, 

2003). In this theory, knowledge transfer is typically examined qualitatively with ethnographic 

methods by scrutinizing given activities to indicate influences of prior activities (Lobato, 2006; 

Lobato & Siebert, 2002). 
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A further advancement of the actor-oriented transfer was made by combining this 

concept with a taxonomy for generalization (Ellis, 2007a). Generalization has previously been 

described as identifying commonalities (Dreyfus, 1991; Ellis, 2007b) and shares features with 

the classical definition of lateral transfer (e.g., Anderson et al., 1995; Ellis, 2007b). Ellis 

(2007a) identified cognitive actions during generalizing (Ellis, 2011): The resulting student-

centered generalization taxonomy extends the actor-oriented transfer perspective to different 

types of generalizations. These are generalizing actions and reflection generalizations (Ellis, 

2007a). Generalizing actions are mental acts based on learners’ activities. Reflection 

generalizations are public statements explicitly stating common properties or relations. They 

are linked to the learners’ generalizing actions (Ellis, 2007a). 

The beforementioned theoretical views on knowledge transfer show a variety of foci, 

experimental designs as well as measurements of transfer. Three main schools of thought arise 

from behavioristic, cognitive, and sociocultural theories. However, it becomes clear that there 

are differences between and within the three schools of thought. This makes it difficult to 

determine an overall definition of knowledge transfer that can be used in research.  

2.3.3 Interventions and Trainings to Foster Transfer 

Similar to the concepts presented so far, various possible definitions of intervention or 

training exist. In this dissertation, we concentrate on pedagogical trainings with three key 

characteristics (Fries & Souvignier, 2009): First, there must be some self-managed or guided 

repetitive practice. Second, the content of the training includes the acquisition of knowledge to 

enhance knowledge or skills. The last feature covers the structure. The organized and temporal 

limited knowledge acquisition phase characterizes a training. In this context, a training is a 

structured and temporal limited intervention in which knowledge is acquired through practice 

(Fries & Souvignier, 2009). 

There are several frameworks on the implication of instructional methods on knowledge 
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acquisition. However, models that also include knowledge transfer are scarce. A recent model, 

the Interactive-Constructive-Active-Passive framework (ICAP framework, Chi, 2009; Chi & 

Wylie, 2014), includes learners’ cognitive engagement activities, operationalized as overt 

student behavior, in answer to instructional methods. This behavior is divided into four 

hierarchical modes of cognitive engagement. Chi and Wylie (2014) proposed that the first 

mode describes an overtly passive learning situation without students showing any behavior 

related to their learning (Henderson, 2019). The expected cognitive outcome of this passive 

mode is the recall of learned content without application. The active mode, as the second 

category, contains overt motoric actions by students that are confined to the provided 

information, for example, pointing to what they are reading or underlining a text (Alibali & 

DiRusso, 1999; Chi & Wylie, 2014; Katayama et al., 2005). This mode enables students to 

apply their knowledge to non-identical but similar contexts. Third, generating additional 

externalized outputs, e.g., asking questions (Graesser & Person, 1994) or taking notes (Trafton 

& Trickett, 2001), are part of the constructive mode (Henderson, 2019). As a result, learners 

can transfer knowledge to novel contexts or distant problems. The highest mode of the 

hierarchy is the interactive mode. It contains working constructively in dialogues with partners, 

including defending a position (Schwarz et al., 2000), asking questions (Webb, 1989), or 

correcting others (Hogan et al., 1999). The cognitive outcome of this mode is the co-creation 

of new ideas that go beyond the capacities of one sole learner. Knowledge transfer can be 

anticipated as a cognitive outcome in the active, constructive, and interactive mode.  

The four modes of cognitive engagement in the ICAP framework are independent of 

the used instructions themselves. This means various engagement activities can occur while 

learning, regardless of the applied methods (Chi & Wylie, 2014). Nevertheless, instructional 

methods can be assigned to the four modes based on the expected learner’s reaction. The ICAP 
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framework allows the connection between instructional methods used in trainings and their 

cognitive outcomes in the form of knowledge transfer.  

3 Methodological Approaches 

In this chapter, I describe the methodological approaches used in this dissertation. First, 

the general scope of literature reviews is explained in Chapter 3.1. Following, the aspects and 

the process of a meta-analysis as an additional quantitative approach are described in Chapter 

3.2. Information on the used models in the meta-analyses of this dissertation, the cross-lagged 

panel model and the mediation model, are outlined in Chapters 3.3 and 3.4, respectively. 

3.1 Literature Review 

There are several definitions of literature reviews (e.g., Siddaway et al., 2019). A 

connecting feature of all these definitions is that they use publications containing preliminary 

information to code and synthesize them (Cooper et al., 2018). There are several characteristics 

in which literature reviews can differ. Examples are the focus, the goal, and the perspective 

(Cooper et al., 2018). However, the main reason for a literature review is the same: They 

include an overall impression of the existing evidence for a research question (Siddaway et al., 

2019).  

The main distinctions can be made on two levels: the research process and the 

methodology. The first distinction is placed on the level of the research process, differentiating 

between a narrative review and a systematic review. A systematic review is characterized by 

providing explicit information on the search and inclusion process through documented search 

phrases and inclusion as well as exclusion criteria (Siddaway et al., 2019). With this 

information, the systematic review is reproducible and can be replicated. Narrative reviews, on 

the other hand, profit from a broader focus and more comprehensive coverage (Collins & 

Fauser, 2005). The second distinction regards the methodological approach of synthesizing 



Knowledge Acquisition and Transfer  31 

data. It is possible to conduct a review solely qualitatively or include quantitative measures. 

Both the systematic and the narrative reviews are qualitative literature reviews.  

3.2 Meta-Analysis 

A quantitative review, also called meta-analysis, is indicated when the review aims to 

synthesize studies that empirically test the same hypotheses. In this case, information about 

empirical evidence, the effect sizes, is synthesized and statistically analyzed (Borenstein et al., 

2009; Schmidt & Hunter, 2015). 

The purposes of a meta-analysis are diverse (Bulpitt, 1988; Fagard et al., 1996; Hedges, 

1992; Sacks et al., 1987; Thompson & Pocock, 1991). One example is the increase of statistical 

power based on the increase in observations. Furthermore, included effects are weighed by 

their precision (Cheung & Vijayakumar, 2016). This enables researchers to examine 

variabilities between studies, resolve uncertainties, and perform subgroup analyses.  

There are different statistical models of meta-analyses (Cheung, 2015b). For example, 

it is possible to differentiate between the Fixed-Effects-Model and the Random-Effects-Model. 

The Fixed-Effects-Model assumes that the effects from the included primary studies come from 

the same homogeneous population (Schwarzer et al., 2015). The Random-Effects-Model, on 

the other hand, does not involve this restriction. Therefore, it additionally accounts for 

differences between included studies (Cooper et al., 2018). Moreover, models can encompass 

statistically independent or dependent effect sizes in their primary studies. Dependent effect 

sizes result from reporting several measurements or measurement points of the same 

population. Including such effect sizes violates a central assumption of meta-analyses (Cheung, 

2019; Cheung & Chan, 2005). Several possible solutions exist, such as structural equation 

models (e.g., Cheung, 2015b) and robust variance estimation (e.g., Hedges et al., 2010; Tanner-

Smith et al., 2016). To compute a main effect over studies, there is a need for corresponding 

effect sizes that include the defined relationship of interest (Cooper, 2015). It is crucial only to 
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examine effect sizes that represent the same relation. Otherwise, the results will not be 

trustworthy.  

3.2.1 Conducting a Meta-Analysis 

The conduction of a meta-analysis follows a pre-set procedure from the systematic 

search in databases to the statistical analysis. One can follow several guidelines in the process 

(e.g., PRISMA Reporting Guidelines; Arya et al., 2021; Page et al., 2021). The main steps in 

the process of a meta-analysis, after the problem or research questions are stated, are the 

systematic and exploratory search, the screening of titles, abstracts, and full texts, the coding 

of information, and the statistical analysis (Cooper, 2015).  

The steps of a meta-analysis are outlined in the following: The first step in conducting 

a meta-analysis, after formulating a problem statement, is the systematic search in databases 

and the exploratory search in additional sources. The main goal of this step is the coverage of 

“all the research conducted on the topic of interest.” (Cooper et al., 2018, p. 12). A combination 

of search words is formed and used in several databases to conduct the systematic search. For 

the screening procedure, inclusion criteria are formulated and documented. These criteria 

specify the aspects the primary studies need to contain to be included in the meta-analysis 

(Field & Gillett, 2010). Such aspects are the empirical relation, the design and methods, the 

features of the sample, and the required statistical data to compute the effect size. After 

inclusion, the systematic coding of information takes place. This coding is based on a coding 

protocol with a clear delineation of the critical information. Information entails the 

identification of the included report, the setting and the sample, the methodology and dependent 

measures, and the effect size information. Last, statistical analysis is applied (Cheung & 

Vijayakumar, 2016). This analysis depends on the predefined model, the effect sizes, and the 

main and moderator hypotheses (Field & Gillett, 2010).  
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3.2.2 Advantages and Disadvantages of Meta-Analyses 

There are several advantages based on the method of meta-analyses. The information 

gained is spanned over a broader range by integrating primary studies. Therefore, the results of 

meta-analyses provide better estimates of the relations in the population than single studies 

(Schmidt & Hunter, 2015). In addition, the precision and accuracy of estimates can be 

improved. This is premised on the increased data used in a meta-analysis that provides more 

statistical power to detect effects than separate independent studies (Schmidt & Hunter, 2015). 

Meta-analyses also help researchers resolve inconsistencies in research findings and enable 

them to identify moderating or mediating variables that may explain the reasons for these 

discrepancies (Walker et al., 2008). Last, the systematic procedure ensures replicability (Aytug 

et al., 2012; Cheung & Vijayakumar, 2016). 

However, the results of meta-analyses must be interpreted with some caution regarding 

several common problems. First, the conduction can be problematic if the selection of studies 

is biased by not identifying all possible studies (Greco et al., 2013). Further, the validity and 

quality of the included studies influence the results of the meta-analysis. This effect is called 

garbage-in-garbage-out (Sackett et al., 1986). The next problem is the publication bias or file 

drawer problem (e.g., Walker et al., 2008). This means published records are more likely to 

include significant or confirming results. Non-significant or contradictory results are published 

less often (e.g., Easterbrook et al., 1991; Francis, 2013; Song et al., 2010). The journals’ or 

authors’ prestige might also affect the inclusion of studies. Furthermore, primary studies often 

lack internal, construct, and external validity (Bobko & Stone-Romero, 1998). Studies with a 

small sample size bear an additional risk: They typically have low statistical power and large 

standard errors (Bobko & Stone-Romero, 1998). Last, it is possible that the heterogeneity 

between the methods used in primary studies and their data analyses cause misleading 

inferences about the relationship between variables (Greco et al., 2013; Murphy, 2017). As a 

result, a meta-analysis based on these studies can produce very heterogeneous effect sizes, and 
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the findings may lead to erroneous inferences. Thus, methodologists argued that researchers 

should conduct sensitivity analyses to examine the heterogeneity in effect sizes of studies 

included in the analysis (Cooper et al., 2018).  

3.2.3 Meta-analytic Structural Equation Models 

Most meta-analyses investigate data via univariate models. Recently, the possibility of 

analyzing multivariate models in the form of structural equation models was developed. In the 

Meta-analytic Structural Equation Model (MASEM), structural equation models (SEM) are 

fitted to meta-analytic data (Jak et al., 2021). With this, a MASEM combines the strengths of 

both meta-analyses and SEM (Cheung, 2015b). Typically, a MASEM consists of two stages 

(Cheung, 2015b): In the first stage, the correlation matrices from primary studies are all 

combined into one pooled correlation matrix. This matrix is then fitted by a SEM in the second 

stage (Jak & Cheung, 2020). In contrast, in a one-stage MASEM, the SEM is directly fitted to 

the correlations from primary studies. Therefore, it can be classified as an extension of the 

random-effects meta-analysis of correlation matrices in the first stage of the traditional two-

stage MASEM (Cheung, 2014). Additionally, it enables testing moderator hypotheses with 

categorical and continuous moderators (Cheung, 2014). 

Meta-analyses allow for the integration of several results from primary studies that 

provide a more profound insight into research questions. This leads to more trustworthy results 

(e.g., Schmidt & Hunter, 1996). However, problems can occur when meta-analyses are not 

conducted properly. This includes the use of inappropriate primary studies, methods, or 

approaches. Nevertheless, meta-analyses help provide answers with a profound data basis. 

3.3 Cross-Lagged Panel Model 

In several research areas, cross-lagged panel models (CLPM, Hamaker et al., 2015) are 

widely used because of the possibility of investigating cross-lagged effects while controlling 

for autoregressive effects of at least two variables (Kenny, 2005; Newsom, 2015; Rosel & 
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Plewis, 2008; Selig & Little, 2012). The CLPM provides information on autoregressive 

relations and time-lagged regressions of two variables (see Figure 4, Berry & Willoughby, 

2017). Autoregressive relations contain information on rank-order stability (Mund & Nestler, 

2019), and such models additionally control for the stability of the included constructs 

(Hamaker et al., 2015). On the other hand, time-lagged regressions can be interpreted as 

predictive relations over time between both variables (Berry & Willoughby, 2017). These are 

typically used as evidence of lead-lag or bidirectional relations (Berry & Willoughby, 2017).  

 

Figure 4 

Schematic Representation of a Cross-Lagged Panel Model 

 

Note. Cross-lagged panel model with the cross-sectional (rC1P1 and rC2P), auto-regressive (βC1C2 and 

βP1P2), and cross-lagged paths between two variables at two measurement points (βC1P2 and βP1C2). 

 

Many studies in educational psychology use the CLPM approach for practical reasons 

(Usami et al., 2019). In contrast to other more advanced models, two waves of data are enough 

for a CLPM (Kenny, 2005). This makes it a helpful approach from a practical perspective 

(Hamaker et al., 2015). Additionally, from the statistical point of view, CLPMs are more suited 

to evaluate possible causal relations than simple cross-lagged correlations or multiple 

regressions (Hertzog & Nesselroade, 2003). This advantage is premised on the autoregressive 
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effects of the two variables in a CLPM. The inclusion of these effects controls for their 

influence on the estimates of the cross-lagged paths (Orth et al., 2021).  

Nonetheless, the CLPM makes some assumptions that can be criticized in applied 

contexts (Mund & Nestler, 2019): The CLPM does not include any measurement-error variance 

for indicators (Lucas, 2023; Lüdtke & Robitzsch, 2022). It also assumes that all participants 

vary across one group mean without stable between-person differences (Mund & Nestler. 

2019). This can be problematic because a CLPM does not distinguish within- and between-

person variance (Berry & Willoughby, 2017; Lucas, 2023). Therefore, they may be conflated 

(Mund & Nestler, 2019). Additionally, the CLPM does not capture mean-level changes in the 

observed constructs over time and whether there are differences in this change between persons 

(Mund & Nestler, 2019; Usami et al., 2019). 

3.4 Mediation Analysis 

In its simplest form, mediation represents the addition of a third variable to the relation 

between two variables. In this relation, the independent variable causes the mediator, and the 

mediator causes the dependent variable (Igartua & Hayes, 2021). Therefore, “a mediator is a 

variable that is in a causal sequence between two variables” (MacKinnon et al., 2007, p. 595). 

Researchers testing for mediation paths usually make causal statements about these 

relationships (Huber, 2020; Iacobucci, 2008; Lee et al., 2019). Figure 5 displays a schematic 

representation of a simple mediation model. In such a model, three effects are essential (Agler 

& De Boeck, 2017): The total effect c of X on Y is displayed in Figure 5 a). This total effect is 

then partitioned into the direct effect c’ of X on Y and the indirect effect transmitted through 

the mediator, paths b1 and b2, as seen in Figure 5 b) (Fritz et al., 2012).  
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Figure 5 

Schematic Representations of a Simple Mediation Model 

 

Note. a) model with a total effect c of X on Y. b) mediation model with direct effect c’ and indirect 

effects b1 and b2. X – independent variable, Y – dependent variable, M – moderator variable. 

 

There are several approaches to determine whether the mediator yields a significant 

effect (Agler & De Boeck, 2017; VanderWeele, 2016). The traditional approach was first 

introduced by Baron and Kenny (1986). They examined whether a direct effect is significantly 

reduced or becomes nonsignificant when subtracting the indirect effect from the former total 

effect in a model. This method has been criticized (e.g., Fritz & MacKinnon, 2007). The Sobel 

test (Sobel, 1982) is another method to test for mediation effects. This test is conducted by 

calculating the ratio of the point estimate to its standard error and determining the p-value under 

the null hypothesis of no indirect effect (Igartua & Hayes, 2021). It also has been criticized for 

its assumption of a normal sampling distribution (e.g., Hayes, 2009). Some alternatives have 

been proposed, including Bayesian methods (Yuan & MacKinnon, 2009) or the percentile 

bootstrap confidence interval using the PROCESS procedure (Hayes, 2022). 

Researchers generally distinguish between complete and partial mediations. A 

significant path coefficient c’ in combination with a significant indirect effect speaks for partial 

mediation (MacKinnon et al., 2007). Others purported up to five possible outcomes of 

mediation analyses (Zhao et al., 2010): The complementary mediation in which the indirect 

and direct effects point in the same direction. Second, if the direct and indirect effects point in 

opposite directions, it speaks for a competitive mediation. Third, indirect-only mediation entails 
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only an indirect effect but no direct effect. Fourth, if only the direct effect exists, it is called a 

direct-only nonmediation. Last, the no-effect nonmediation includes neither direct nor indirect 

effects. 

4 This Dissertation 

This dissertation investigates three different aspects of knowledge. Starting with 

predictive relations between two knowledge types, this dissertation also covers mediation 

effects on learning outcomes and the impact of interventions on knowledge transfer. All these 

processes are part of the construct of knowledge but simultaneously encompass goals in 

educational settings that each are pursued individually. However, the beforementioned 

processes are challenging to examine in primary research because of their broadness. 

Therefore, in this dissertation, I investigated them through three separate meta-analyses. 

Study 1 focuses on the predictive relations between prior and later conceptual and 

procedural knowledge in the knowledge domain of mathematics. This study used a one-stage 

MASEM as a cross-lagged panel model. We were interested in the path coefficients of the 

cross-lagged paths. According to the Iterative Model (Rittle-Johnson et al., 2001), we expected 

positive, bidirectional relations between both knowledge types. Several moderators, e.g., the 

mean age and school level, were investigated for their influences on the main effect. 

Study 2 examines motivational mediators between prior knowledge and later knowledge 

after learning. We answer to what degree knowledge scores remain stable over time within 

groups of learners and whether motivational variables mediate this relation. It was 

hypothesized that prior knowledge as a predictor is positively associated with motivation. 

Motivation is expected to be a mediator variable explaining stable interindividual differences 

in knowledge scores after learning. Moderator variables were the level of specificity of 

motivation and the knowledge types, for example. 
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Study 3 presents a meta-analysis of the effectiveness of transfer interventions on 

knowledge transfer compared to control interventions. We investigated the advantage of 

instructional methods in transfer interventions for school students compared to control groups 

and groups that received fewer instructional methods. It was hypothesized that instructional 

transfer interventions foster transfer better than control interventions, with a medium-sized 

effect. We formed a theoretical matrix based on the learners’ cognitive engagement (Chi & 

Wylie, 2014) and two cognitive transfer processes to assess moderator effects. The transfer 

distance based on the Taxonomy for Far Transfer (Barnett & Ceci, 2002) was also used as a 

potential moderator. Moreover, other exploratory moderators were investigated. 
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5 Study 1: The Predictive Relations Between Conceptual and Procedural 

Knowledge in Mathematics: A Research Synthesis Using Meta-Analytic 

Structural Equation Modelling 

5.1 Abstract 

Mathematical knowledge demonstrably is a strong predictor of success in several 

periods of life. Researchers in this domain often differentiate between conceptual and 

procedural knowledge. There are at least four theoretical views on the predictive relations 

between conceptual and procedural knowledge: The Inactivation View, the Concepts-first 

Theories, the Procedures-first Theories, and the Iterative Model. This meta-analysis analyzes 

the predictive relations between the two knowledge types to determine which of these 

theoretical views is the most appropriate in mathematics. Using the one-stage meta-analytic 

structural equation model approach, we meta-analyzed 51 independent correlation matrices 

from 34 studies (N = 7253) in a cross-lagged panel model. The included studies reported 

quantitative standardized effect sizes of the predictive relations at two or more measurement 

points in the knowledge domain of mathematics. Additionally, we conducted several moderator 

analyses to test the generalizability of our findings, e.g., concerning age and subdomains. We 

found significant and almost symmetrical predictive relations between conceptual and 

procedural knowledge (βC1P2 = .270, 95% CI [.221, .318], βP1C2 = .220, 95% CI [.172, .268]). 

This finding supports the Iterative Model. The results are stable across the examined 

moderators. There are several limitations; for example, the decision to use a cross-lagged panel 

model. Concluding, the findings of this meta-analysis offer insights into possible implications 

for mathematics education and future research. 
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5.2 Introduction 

“The relationship between conceptual understanding and computational skill is one of 

the oldest concerns in the field of psychology of mathematics” (Resnick & Ford, 1981, p. 246). 

Over the last decades, the importance of the relation between conceptual and procedural 

knowledge has been highlighted across many strands of research and practical settings: 

Cognitive scientists have devised conceptual and procedural knowledge as two different 

knowledge types (e.g., Hiebert & Lefevre, 1986). Developmental psychologists investigated 

the naturally occurring developmental patterns of conceptual and procedural knowledge (e.g., 

Karmiloff-Smith, 1992). Educational psychologists analyzed how conceptual and procedural 

knowledge can be taught to facilitate further learning (e.g., Klahr et al., 2007; Rittle-Johnson et 

al., 2015). In the practical field of education, enhancing conceptual and procedural knowledge 

is a central learning goal throughout educational levels and domains. So, current guidelines for 

effective instruction in science education recommend teaching both knowledge types (National 

Research Council, 2012; Zoupidis et al., 2016). 

Despite the great effort to understand conceptual and procedural knowledge 

development during the past years, the longitudinal associations are still under debate. The 

general predictive relation between domain-specific prior knowledge and knowledge after 

learning has been meta-analytically tested (Simonsmeier et al., 2022). According to 

Simonsmeier and colleagues (2021), there is evidence for the predictive relation between prior 

knowledge and later knowledge after learning. However, up to this point, it lacks meta-

analytical evidence for the differentiation in conceptual and procedural knowledge in this 

relation. Therefore, this meta-analysis answers how strong the predictive relations between 

conceptual and procedural knowledge are. We aim to fill this gap by summarizing existing 

evidence with meta-analytic structural equation modeling. 

Generally, it has been shown that mathematical knowledge strongly predicts 

achievement in various areas. For example, mathematical knowledge in preschool is associated 
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with later achievement in mathematics and other domains (Claessens & Engel, 2013). Further, 

mathematical knowledge in early childhood is positively connected with socio-economic status 

and the evaluation of risks or benefits associated with choice options in adulthood (Reyna et 

al., 2009; Ritchie & Bates, 2013), which is an essential factor for many health and non-health 

related decisions (e.g., Dieckmann et al., 2009; Nelson et al., 2008; Reyna et al., 2015; Weinfurt 

et al., 2003). Enhancing mathematical knowledge, including conceptual and procedural 

knowledge, is an important educational goal that implies subsequent improvements in various 

outcomes across the lifespan. 

5.2.1 Characteristics of Conceptual and Procedural Knowledge 

Conceptual knowledge can be described as the “implicit or explicit understanding of the 

principles that govern a domain” (Rittle-Johnson et al., 2001, p. 346). It consists of the core 

concepts (Byrnes & Wasik, 1991) and their interrelations in a knowledge domain. The 

knowledge is mentally stored as relational representations (e.g., schemas or semantic nets, 

Hiebert & Lefevre, 1986). Conceptual knowledge can be explicit as well as implicit and, 

therefore, not always verbalizable (Goldin-Meadow et al., 1993). It develops through the 

construction of relations between acquired information (Hiebert & Lefevre, 1986), and it often 

requires knowledge of other concepts from the same or other knowledge domains. This makes 

conceptual knowledge a multi-dimensional construct (Rittle-Johnson & Schneider, 2014) with 

rich connections. However, empirical evidence also supports the broader conception of 

knowledge of concepts (Rittle-Johnson & Schneider, 2014). In this definition, the connections 

between concepts are features of the learners’ growing expertise (Schneider & Stern, 2009). 

Procedural knowledge is defined as the knowledge of procedures or simply as knowing 

how (Byrnes & Wasik, 1991; Rittle-Johnson et al., 2001). A procedure includes actions that are 

carried out to accomplish a goal. Subsequently, procedural knowledge differs from other forms 

of knowledge due to its sequential and goal-directed nature (Hiebert & Lefevre, 1986). 

Procedural knowledge can be automatized, depending on the extent of the learner’s problem-
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solving practice (Schneider & Stern, 2010). Strongly automatized knowledge is tied to problem 

types and more difficult to transform (Rittle-Johnson & Schneider, 2014). Further constraints 

to this definition are bound to the specific knowledge domain. In mathematics, procedural 

knowledge also includes knowledge about how to carry out procedures (Star, 2005) or to 

complete tasks (Baroody et al., 2007). 

Measures of conceptual and procedural knowledge differ in the domain of mathematics. 

Researchers implicitly or explicitly assess conceptual knowledge through various tasks, for 

example, by evaluating examples or providing definitions (Rittle-Johnson & Schneider, 2014). 

Measures of procedural knowledge are less diverse. In mathematics, problem-solving accuracy 

on familiar or similar problems is often used (Rittle-Johnson & Schneider, 2014). 

One must develop conceptual and procedural knowledge to learn successfully in a 

domain (e.g., Hurrell, 2021). However, the distinction between these two types of knowledge 

is complicated by their interlinked nature (Baroody et al., 2007). The dependency between 

conceptual and procedural knowledge hinders their sole measurement (Rittle-Johnson & 

Schneider, 2014). On the one hand, problem-solving always requires some procedural 

knowledge (Rittle-Johnson et al., 2001). On the other hand, when there is only weak procedural 

knowledge, learners use conceptual knowledge to solve routine problems instead (Braithwaite 

& Sprague, 2021). Therefore, conceptual and procedural knowledge can hardly be measured 

entirely independently. 

5.2.2 Predictive Relations Between Conceptual and Procedural Knowledge 

At least four theoretical viewpoints exist on the longitudinal relations between 

conceptual and procedural knowledge (e.g., Schneider et al., 2011; Schneider & Stern, 2010). 

(1) The Inactivation View (Haapasalo & Kadjievich, 2000) states that the two knowledge types 

develop independently from each other (e.g., Nesher, 1986; Resnick & Omansun, 1987). (2) 

Concept-First Theories predicate that conceptual knowledge develops before procedural 

knowledge in a domain. Subsequently, learners derive procedural knowledge unidirectionally 
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from their concepts through the construction and evaluation of problem-solving processes 

(e.g., Donlan et al., 2007; Geary, 1994; Gelman, 1993; Gelman & Williams, 1998). (3) 

Procedures-First Theories (Weaver et al., 2018) state that one develops procedural knowledge 

first and then builds conceptual knowledge on this basis through unidirectional abstraction 

processes (e.g., Baroody & Gannon, 1984; Baroody & Ginsburg, 1986; Briars & Siegler, 1984; 

Kerslake, 1986; Siegler & Stern, 1998). (4) The Iterative Model (Rittle-Johnson et al., 2001) 

describes the causal relations between conceptual and procedural knowledge as bidirectional. 

Therefore, an increase in one of them leads to a subsequent increase in the other (see Figure 6, 

e.g., Canobi, 2009; Hecht & Vagi, 2012; Rittle-Johnson & Koedinger, 2009; Schneider et al., 

2011). According to the Iterative Model, several mechanisms influence the iterative relations 

between conceptual and procedural knowledge (Rittle-Johnson et al., 2001). First, improved 

problem representations (Rittle-Johnson et al., 2001), improved choices among alternative 

procedures (e.g., Crowley et al., 1997), and adaptations of procedures to new problems (e.g., 

Siegler & Crowley, 1994) are possible explanations of the influence of conceptual on 

procedural knowledge (Rittle-Johnson et al., 2001). On the other side, also improved problem 

representations (e.g., Rittle-Johnson & Alibali, 1999), attentional resources (e.g., Geary, 1995), 

the revealing of misconceptions (e.g., Hiebert, 1992), and reflections on the cause of successful 

procedures (e.g., Chi et al., 1989) are potential mechanisms of the influence of procedural on 

conceptual knowledge (Rittle-Johnson et al., 2001). 

Previous findings on the predictive relations are inconsistent. All four views on the 

development of conceptual and procedural knowledge have been supported by empirical 

evidence. Some studies purported a more substantial influence of conceptual knowledge on 

procedural knowledge (e.g., Hecht & Vagi, 2010). For example, the National Council of 

Teachers of Mathematics (NCTM, 2014) explicitly asserted a unidirectional conceptual-to-

procedural perspective in their principle. Others found symmetrical relations between both 

knowledge types (e.g., Schneider et al., 2011). 
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Figure 6 

The Iterative Model for the Development of Conceptual and Procedural Knowledge 

 

Note. Development of conceptual and procedural knowledge according to the Iterative Model with 

proposed examples of influential mechanisms in dotted boxes (based on Rittle-Johnson et al., 2001, p. 

37). 

 

The theoretical views do not contradict each other. However, the Iterative Model is the 

most accepted and empirically supported view to explain the development of procedural and 

conceptual knowledge (e.g., Rittle-Johnson et al., 2015). For example, longitudinal studies have 

shown that equal bidirectional relations accommodate gradual improvements in both 

knowledge types (Schneider & Stern, 2010) and are still present years later (Cowan et al., 2011). 

Causal evidence from randomized controlled trials manipulating at least one of the knowledge 

types also confirmed the Iterative Model (e.g., Canobi, 2009; McNeil et al., 2015; Rittle-

Johnson & Alibali, 1999). Further, bidirectional relations generalize across several age groups 

and subdomains of mathematics (Rittle-Johnson & Schneider, 2014). Despite the large body of 

studies available to date, it is still open to understanding the symmetrical nature of the 

bidirectional relations between conceptual and procedural knowledge since results differ across 

studies.  

5.2.3 Moderators of the Relation Between Conceptual and Procedural Knowledge 

The influence of moderator variables is one explanation of the four views’ coexistence 

on the relation between procedural and conceptual knowledge and the corresponding empirical 
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variations. Previous literature discussed the learner’s age and educational level, the 

mathematical subdomain, and whether an intervention occurred or not as common moderators. 

The strength of the predictive relations between conceptual and procedural knowledge 

might depend on the age and the attended school level of the learners. There is consensus that 

conceptual and procedural knowledge are connected across different age groups and 

educational levels (LeFevre et al., 2006; Jordan et al., 2013; Canobi et al., 2003; Hecht & Vagi, 

2012). However, whether these bidirectional predictive relations are symmetrical is still 

unclear. Previous studies indicated that young learners likely develop procedural knowledge 

first, facilitating later conceptual understanding (Karmiloff-Smith, 1992; Siegler & Stern, 

1998). For example, young children typically learn counting procedures before understanding 

the underlying concepts (e.g., Frye et al., 1989; LeFevre et al., 2006). On the other side, there 

exists broad evidence that for older learners, conceptual knowledge is one of the most critical 

factors for subsequent learning, including the acquisition of procedural knowledge (Hecht et 

al., 2003; Gelman & Williams, 1998; Halford, 1993; Hiebert & Lefevre, 1986; Schneider et al., 

2009). It is argued that conceptual knowledge can be applied to familiar and novel problems. 

In contrast, procedural knowledge is more tied to a routine (Rittle-Johnson et al., 2001), 

explaining the prominent role of conceptual knowledge for older (i.e., more knowledgeable) 

students. The symmetry of the iterative relationship between conceptual and procedural 

knowledge is likely different due to the learner’s age. Once a learner has initial knowledge of a 

topic, the predictive relations could be more assertive. This meta-analysis investigates whether 

the predictive relations are symmetrical depending on the learners’ age.  

Also, this meta-analysis inspects whether the predictive relations get stronger the higher 

the attended school levels. A reason could be that prior conceptual and procedural knowledge 

are better developed for children with more expertise. This then functions as a more pronounced 

starting point for further iterative development. A systematic investigation of the relationship 

between conceptual and procedural knowledge across age and educational levels is still 
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outstanding. 

The bidirectional relationship between conceptual and procedural knowledge may differ 

in strength due to the subdomains of mathematics. For example, in the subdomain of rational 

numbers, more precisely for fractions, procedural knowledge is found to be dependent on 

existing conceptual knowledge (Byrnes & Wasik, 1991). In the subdomain of algebra, prior 

procedural knowledge is a prerequisite for conceptual knowledge about functions (Lauritzen, 

2012). These two examples show that differences in conceptual and procedural knowledge 

relations between the subdomains of mathematics are possible. While these potential 

differences have been addressed in previous reviews (Rittle-Johnson & Schneider, 2014; Rittle-

Johnson & Siegler, 1998), a synthesis of the quantitative evidence in the form of a meta-analysis 

is still lacking. 

Carrying out an intervention might moderate the predictive relations between 

conceptual and procedural knowledge. The development of both knowledge types can be 

experimentally enhanced through instructional interventions promoting one or both (e.g., Blöte 

et al., 2001; Canobi, 2009; Hiebert & Wearne, 1996; McNeil et al., 2012). Based on the Iterative 

Model, interventions that address only one of the knowledge types lead to subsequent 

improvements in the other as well (Rittle-Johnson & Alibali, 1999). Therefore, the predictive 

relations between conceptual and procedural knowledge might be more assertive when an 

intervention takes place; regardless of whether it aims to enhance one or both knowledge types. 

Other exploratory moderators have not yet been examined in depth in previous research. 

Therefore, this meta-analysis investigates the possible influences of time lags between 

measurements as well as the broad and specific task types of the assessment of conceptual 

knowledge. 

Time lags between measurements influence the investigated effects. They are an 

essential aspect of its understanding (Gollob & Reichardt, 1987) and should be determined by 

the change process of the observed constructs (Little, 2013). According to this, the strength of 
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the predictive relations should decrease when the time lags increase. However, the 

bidirectionality of the predictive relations between conceptual and procedural knowledge 

should not differ in dependence on time lags. 

Additionally, the task types of the assessment of conceptual knowledge might influence 

the predictive relations between conceptual and procedural knowledge. Rittle-Johnson and 

Schneider (2015) differentiated between two broad task types and 13 specific task types for the 

assessment of conceptual knowledge. According to them, conceptual knowledge can be 

measured implicitly, for example, by qualitatively evaluating or rating answers given by others. 

Explicit measures, on the other side, include explanations or generating definitions, among 

other tasks. The broad as well as specific task types might influence the predictive relations 

between conceptual and procedural knowledge. The more reliable a task captures conceptual 

knowledge, the better conceptual and procedural knowledge can be differentiated. Because 

procedural knowledge usually is measured by the accuracy of responses, we did not 

differentiate task types for it. 

5.2.4 Investigating Predictive Relationships: The Use of Cross-Lagged Panel Models 

In the research on conceptual and procedural knowledge, cross-lagged panel models 

(CLPM) are widely used because of the possibility of investigating the cross-lagged effects 

while controlling for the stability of the included constructs (Hamaker et al., 2015). A CLPM 

provides information on rank-order stability and how prior scores of one variable relate to 

changes in the other variable (Mund & Nestler, 2019). The latter can be interpreted as predictive 

relations over time between both variables (Berry & Willoughby, 2017).  

Many primary studies use the approach of CLPM because of practical reasons, although 

the CLPM makes some assumptions that can be criticized in applied contexts (Hamaker et al., 

2015; Lucas, 2023; Mund & Nestler, 2019): For example, the conjecture that all participants 

vary across one group mean without between-person differences in the variables is problematic 

(Mund & Nestler. 2019). Second, between- and within-person relations are not distinguishable 
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in the parameters of a CLPM (Berry & Willoughby, 2017; Mund & Nestler, 2019) and may 

therefore be conflated (Lucas, 2023). Third, the CLPM does not capture mean-level changes in 

the observed constructs over time and whether persons differ in this change (Mund & Nestler, 

2019).  

However, CLPM is still the standard for examining predictive relations between two 

variables. In contrast to other more advanced models, two waves of data are enough for a CLPM 

(Kenny, 2005). This makes it a useful approach from a practical perspective (Hamaker et al., 

2015). Additionally, from the statistical point of view, CLPMs are more suited to evaluate 

possible causal relations than simple cross-lagged correlations or multiple regressions (Hertzog 

& Nesselroade, 2003). This advantage is premised on the autoregressive effects of the two 

variables in a CLPM which enable controlling for their influence on the cross-lagged paths 

(Orth et al., 2021).  

We examined the predictive relations between conceptual and procedural knowledge 

with a CLPM for two reasons: First, most of the primary studies up to this point provided data 

that could be included in a CLPM. Second, when investigating the predictive relations between 

conceptual and procedural knowledge, all four theoretical views on the pattern of relationships 

can be explored using a CLPM (see Figure 7). According to the Inactivation View, we would 

assume that the cross-lagged paths βC1P2 and βP1C2 are nonsignificant. A more substantial effect 

of βC1P2 and a nonsignificant effect of βP1C2 would support the Concepts-First Theories. 

Conversely, a significant βP1C2 and a nonsignificant βC1P2 would underpin the Procedures-First 

Theories. Last, the Iterative Model expects both cross-lagged paths (βC1P2 and βP1C2) to be 

significant and symmetrical in the CLPM. 

5.3 The Current Study 

The current meta-analysis aims to shed light on the predictive relations between 

conceptual and procedural knowledge considering the four theoretical views and several 

moderator variables discussed in the literature. While previous studies provided empirical 
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Figure 7 

Cross-Lagged Panel Model of Conceptual and Procedural Knowledge at Two Measurement Points 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths (βC1P2 and βP1C2) between the four variables. 

 

evidence for each of the four viewpoints on the relationship between conceptual and procedural 

knowledge, it is still open how this relation is moderated by third variables such as learner 

characteristics, characteristics of the knowledge domain, or whether an intervention took place. 

To comprehensively understand the longitudinal relationship between conceptual and 

procedural knowledge, we specified a CLPM as a meta-analytic structural equation model 

(MASEM) to examine the predictive relations between both knowledge types. Using a 

MASEM, the structural equation model with all its path coefficients can be inspected 

simultaneously in the meta-analysis. We propose the following five hypotheses: 

(1) The predictive relations between conceptual and procedural knowledge are bidirectional 

and symmetrical. Following the Iterative Model, we expect significant medium positive 

predictive relations between conceptual knowledge at measurement point one (T1) and 

procedural knowledge at measurement point two (T2) and vice versa. This means the 
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path coefficients βC1P2 and βP1C2 are significant, medium strong, and symmetrical in the 

CLPM. 

(2) The learners’ age moderates the predictive relations between conceptual and procedural 

knowledge. We expect that age has an impact on the symmetry of the iterative 

relationship so that procedural knowledge at T1 is more strongly associated with 

conceptual knowledge at T2 (βC1P2 < βP1C2) for young learners and that conceptual 

knowledge at T1 is a better predictor of procedural knowledge at T2 for older, more 

knowledgeable learners (βC1P2 > βP1C2). Including age as a moderator adds information 

on individual differences that are not fully represented when only including the 

individual school level since formal schooling can start at different ages across countries. 

Further, as a continuous moderator, considering the learners’ mean age makes 

examinations of linear trends feasible. 

(3) The predictive relations between conceptual and procedural knowledge depend on the 

individual’s school level. We expect that learners at lower school levels have not yet 

fully developed both types of knowledge and differ in their knowledge profiles (Hallett 

et al., 2010; Hecht & Vagi, 2012). Additionally, higher school-level students might 

already possess more prior conceptual and procedural knowledge. They are better suited 

to further improve both knowledge types on that basis. We assume the higher the school 

level, the stronger the predictive relations between conceptual and procedural knowledge 

(βC1P2 and βP1C2). With the school level as a categorical moderator, it is possible to 

examine nonlinear trends. 

(4) The predictive relations between conceptual and procedural knowledge differ between 

subdomains of mathematics. There are different findings on whether conceptual 

knowledge predicts procedural knowledge (Byrnes & Wasik, 1991) or vice versa 

(Lauritzen, 2012) in dependence on the subdomain of mathematics. Therefore, we 
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exploratorily analyze differences in the relations (βC1P2 and βP1C2) due to the broad 

subdomains of mathematics. 

(5) The predictive relations between conceptual and procedural knowledge are stronger in 

studies where an intervention occurred than in those without an intervention. 

Interventions can strengthen conceptual as well as procedural knowledge (e.g., Canobi, 

2009; McNeil et al., 2012) and their relations (Blöte et al., 2001; Hiebert & Wearne, 

1996). As such, we expect stronger predictive relations between conceptual and 

procedural knowledge (βC1P2 and βP1C2) for intervention studies than those without any 

instruction. 

In addition, we conducted several exploratory moderator analyses. These moderators 

were the time lag between measurements and the broad and specific task types of conceptual 

knowledge. An overview of the included moderators is provided in Table 1. 

 

Table 1 

Description of the Included Moderators (Study 1) 

Moderator Description 

Knowledge characteristics  

Subdomain of 

mathematics 

To test whether the relation between conceptual and procedural knowledge at 

T1 and T2 differs between studies analyzing knowledge in different subdomains 

of mathematics, we coded five subdomains: Counting and Whole-Number 

Arithmetic, Rational Numbers, Algebra, Other, and Several.  

Sample characteristics  

Mean age We coded the sample mean age of the learners (in years) at T1.  

School level We distinguished between different school levels. We coded the following 

levels: Kindergarten and Preschool, Primary School, Secondary School, Higher 

Education, Continued Education, and Several.  

Study characteristics  

Time lag between 

measurements 

The time lag between measurements might moderate the relation between 

conceptual and procedural knowledge at T1 and T2. We coded the time lag in 

days.  
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Table 1 (continued) 

Moderator Description 

Intervention To test whether the relation between conceptual and procedural knowledge at 

T1 and T2 differs between studies with and without interventions, we coded the 

two levels, Intervention and No Intervention. 

Methodological 

characteristics 

 

Broad task of 

conceptual knowledge 

We differentiated between Explicit and Implicit broad task types for the 

assessment of conceptual knowledge as well as Both task types. 

Specific task of 

conceptual knowledge 

As specific task types of the assessment of conceptual knowledge, we coded 13 

levels: Evaluate Unfamiliar Procedures, Evaluate Examples of Concept, 

Evaluate Quality of Answers Given by Others, Translate Quantities Between 

Representational Systems, Compare Quantities, Invent Principle-Based 

Shortcut Procedures, Encode Key Features, Sort Examples Into Categories, 

Explain Judgments, Generate or Select Definitions of Concepts, Explain Why 

Procedures Work, Draw Concept Maps, and Several. 

Note. Description of included moderators and moderator levels. 

 

5.4 Method 

5.4.1 Literature Search 

We conducted a standardized literature search in PsycINFO and ERIC on 21 October 

2020, as well as an exploratory literature search in Google Scholar and reference lists (Rittle-

Johnson & Schneider, 2014; Rittle-Johnson et al., 2015; Simonsmeier et al., 2022). The search 

string in PsycINFO was (concept* or principle*) and (procedur* or skill*) in abstract and title 

with the limits set to human, non-disordered population, English language, and longitudinal 

study. Because of fewer available limits in ERIC, the search string contained more 

specifications: (((concept* or principle*) and (procedur* or skill*) and (develop* or 

longitudinal* or predict* or iterativ*) and (empiric* or measure* or data* or tested*) and 

knowledge*) NOT review*) in abstract and title. Here, the limits were set to journal articles or 

dissertations/theses - doctoral dissertations. The standardized literature search provided 2292 

studies in total. The exploratory search returned 59 additional studies. Figure 8 summarizes the 

literature search process in a PRISMA flow diagram (Page, McKenzie, et al., 2021). 
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5.4.2 Inclusion of Studies 

The first inclusion criterion for studies was (a) the study included two or more 

measurement points with assessments of learners’ conceptual and procedural knowledge in 

STEM domains. We included studies with correlation matrices that provided at least one 

measurement point with measurements of both knowledge types and a second measurement 

point with at least one of the types. The measurements had to be objective quantitative measures 

of domain-specific knowledge. Combined scores of conceptual and procedural knowledge as 

well as measures of meta-cognitive knowledge, intelligence, achievement, basic cognitive 

functions, self-assessments, and other domains than STEM domains were excluded. We only 

included studies in which conceptual and procedural knowledge were measured in the same 

domain. Further inclusion criteria were (b) the study included assessments of the longitudinal 

bivariate correlations between conceptual and procedural knowledge and (c) the study provided 

the information necessary to compute standardized effect sizes, which could be converted into 

correlations. 

We excluded studies that used measurements with time limits (e.g., Bailey et al., 2012) 

because time limits might restrict the potential knowledge shown in assessments. We also 

excluded studies with solution time as a measure (e.g., Paul et al., 2019) and those with 

measurements that were not clearly assignable to either conceptual or procedural knowledge 

(e.g., Matthews & Fuchs, 2020). 

We determined study eligibility in two steps: First, the first author screened titles and 

abstracts of the search hits, and the studies were either excluded with reasons or retained for 

inspection of the full texts. A research assistant double-coded 100 abstracts independently after 

receiving coder training with the first author. The agreement was 82%, and disagreements were 

resolved by discussion. In the second step, the full texts were screened and excluded if they 

failed to meet the inclusion criteria. After a coder training, the first author and a co-author 

independently coded 100 studies for eligibility. The mean interrater agreement for this step was 
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98%. Overall, 22 studies could not be included because the relevant information was neither 

provided in the study nor by the authors upon email request. We received one additional 

manuscript under review at the time of inclusion (Gunderson & Hildebrand, 2021).  

In the study selection process, a restriction occurred in the availability of studies within 

the STEM domains other than mathematics. Only two studies with enough information 

available to be included in the meta-analysis were outside of the domain of mathematics. Hence, 

we decided to limit the analysis to the knowledge domain of mathematics. A final number of 

552 predominantly dependent correlation matrices, called effect sizes in the following, from 36 

studies were aggregated to 60 independent effect sizes on sample level and included in this 

meta-analysis at this point. 

 

5.4.3 Data Coding 

Data coding was based on a coding manual. This manual was used for coder training 

and coding of the articles. The following information was gathered for all included studies: We 

coded study characteristics, such as the authors, the publication year, if the article was peer-

reviewed, the literature type, the sample size, the study design, the total number of measurement 

points, and which of these measurement points were used for this meta-analysis. We only coded 

each study’s first and last possible measurement point to minimize the number of dependent 

effect sizes in the meta-analysis. Additionally, we coded the setting of the study, the time lag 

between used measurement points, if there was an intervention between measurements, the 

group size of the instruction, and the group size of the knowledge assessments. Coded 

information about the knowledge domain was the subdomain in mathematics. Sample 

characteristics were the school level at T1, the school level at T2, the class at T1, the class at 

T2, the gender of the participants, the age group at T1, the age group at T2 as well as the mean 

age at T1 and the mean age at T2. Also, the country and the continent of the primary study were 

coded. The conceptual and procedural knowledge measures at T1 and T2 included whether the 

measurement was self-constructed, the broad and specific task type for conceptual knowledge, 
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the name of the used test or scale, the measure type, and the reliability. As effect sizes, we 

coded all six bivariate correlations between the two types of knowledge measured at two 

measurement points: Conceptual and procedural knowledge at T1 (C1P1), conceptual 

knowledge at T1 and T2 (C1C2), conceptual knowledge at T1 and procedural knowledge at T2 

(C1P2), procedural knowledge at T1 and conceptual knowledge at T2 (P1C2), procedural 

knowledge at T1 and T2 (P1P2), and conceptual and procedural knowledge at T2 (C2P2). Of 

the six possible correlations, all studies reported at least three. Missing and unclear information 

was coded as missing. 

In the third step, the first author and a co-author coded the study characteristics for the 

64 effect sizes that were available at that time. The mean interrater agreement was 95%. The 

agreement ranged from 83% to 100% for the coded variables, except for the specific type of 

conceptual knowledge at T1. For this variable, the agreement was 40%, mainly because the two 

raters disagreed on one study with several effect sizes (without this study, the agreement would 

have reached 76%). Therefore, we retained this variable. Additionally, the corresponding 

authors of 41 studies with missing or unclear information were contacted to request additional 

data. Ten authors provided the requested data (response rate: 33,33%). The first author coded 

the studies with additional information. Also, we conducted a Risk of Bias assessment for all 

included primary studies. This Risk of Bias assessment was based on RoB2 (Sterne et al., 2019) 

and modified for our purposes (see Tables 18 and 19 in Appendix E). 

5.4.4 Preparation of Effect Sizes 

We used Pearson correlation (r) as the effect size of the meta-analysis. All included 

studies reported correlations, so none of the effect sizes had to be converted. For each study, 

we put the up to six correlations in a correlation matrix. We visualized the coded effect sizes 

using forest plots. By interpreting these forest plots, one must consider the differences between 

the altitude of the single effect sizes and the path coefficients of the CLPM. This difference 
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results from the feature of CLPM to control for the stability of the included constructs (Hamaker 

et al., 2015).  

We tested for outliers by inspecting Cook’s values (Cook & Weisberg, 1982) using the 

metafor package (Viechtbauer & Viechtbauer, 2015). Cook’s values, also called Cook’s 

distance, measure the influence of each effect size in the model on the main result. This is done 

by removing each effect size from the model and summarizing the change this makes in the 

resulting model (Viechtbauer & Cheung, 2010). Through this process, outliers that excessively 

influence the model and need further inspection can be identified. Rules of thumb promote 

several possible cut-off points. We removed effect sizes with a Cook’s distance greater than 

four divided by the total number of effect sizes. This applied to nine independent correlation 

matrices from six studies (Cowan et al., 2011; Ngu & Phan, 2016; Rittle-Johnson & Koedinger, 

2009; Rittle-Johnson et al., 2016; Schneider et al., 2011; Wasiu & Abiola, 2019). 

5.4.5 Statistical Analysis 

5.4.5.1 Publication Bias. We visually and statistically tested for publication bias using 

funnel plots and Egger regressions (Egger et al., 1997). These tests were conducted using the 

metafor package (Viechtbauer & Viechtbauer, 2015) in R (R Core Team, 2022) for each of the 

six bivariate correlations. 

5.4.5.2 Meta-Analytic Integration. We used a one-stage meta-analytic structural 

equation model (OSMASEM) for the analysis. This model allowed us to meta-analyze all cross-

lagged panel paths in a single model. Additionally, it enabled us to test moderator hypotheses 

with categorical and continuous moderators (Cheung, 2014). In a MASEM, structural equation 

models (SEM) are fitted to meta-analytic data (Jak et al., 2021). With this, a MASEM combines 

the strengths of both meta-analyses and SEM (Cheung, 2015b). Typically, a MASEM consists 

of two stages (Cheung & Chan, 2005): In the first stage, the correlation matrices from primary 

studies are all combined into one pooled correlation matrix. This matrix is then fitted by a SEM 
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in the second stage (Jak & Cheung, 2020). In contrast, in an OSMASEM, the SEM is directly 

fitted to the set of correlation matrixes of the primary studies. We conducted the analyses using 

the metaSEM package (Cheung, 2015a) and the semPlot package (Epskamp, 2019) in R (R Core 

Team, 2022). Heterogeneity, in the form of between-studies variance, was determined by 

extracting the heterogeneity variance-covariance matrix with the metaSEM package (Cheung, 

2015a). The data and statistical code used in this meta-analysis are available upon request. 

Most of the included studies reported several effect sizes for the same sample; for 

example, for various measures of conceptual and procedural knowledge. These effect sizes are 

statistically dependent, violating classic meta-analytical models’ central assumption (e.g., 

Cheung, 2019). So far, it is impossible to account for dependent effect sizes in OSMASEM. 

Therefore, we averaged the effect sizes on sample level. Five primary studies used the same 

sample for their analyses (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan 

et al., 2013; Ye et al., 2016). We aggregated the effect sizes from these studies to one mean 

effect size for each of the six bivariate correlations.  

5.4.5.3 Moderators. One advantage of OSMASEM is the possibility of examining both 

categorical and continuous moderators (Jak & Cheung, 2020). These moderator analyses are 

based on Bauer’s (2017) method to model SEM parameters as a function of a moderator 

variable (Jak & Cheung, 2020). The effect sizes were averaged on moderator level within the 

samples. The moderators School Level, Subdomains Mathematics, Intervention, Broad Task 

Type, and Specific Task Type were specified as categorical moderators. A comparison of more 

than two levels of a categorical moderator is impossible in OSMASEM. Therefore, we used 

pairwise comparisons. The continuous moderators Mean Age at measurement point one and the 

Time Lag between the measurements were z-standardized to facilitate the interpretation of the 

results (Jak et al., 2021). An overview of subgroup results for the moderator levels can be found 

in Table 17 in Appendix B. 



Knowledge Acquisition and Transfer  60 

 
 

5.5 Results 

5.5.1 Publication Bias 

Figures 35 to 40 in Appendix C display the funnel plots for each of the six correlations 

in the cross-lagged panel model. The plots show no indication of a publication bias. In line with 

this, the Egger regressions did not reach significance for any of the six correlations. This means 

there is no underrepresentation of effect sizes close to zero in the included data. 

5.5.2 Study Characteristics 

 The analyzed data comprised 51 independent correlation matrices from 34 studies with 

a total of 7253 participants. The median sample size for the correlation matrices was 62, and 

the sample mean age ranged from 3.85 to 16.33. At the first measurement point, the participants 

were in kindergarten or preschool in seven studies, in primary school in 14 studies, in secondary 

school in nine studies, and in several school levels in two studies. Twenty-three studies were 

conducted in North America, followed by eight from Europe and three from Asia.  

 The investigated subdomain was counting and whole-number arithmetic in 11, algebra 

in 10, and rational numbers in four studies. One study was conducted in another subdomain 

(proportional reasoning, Noche et al., 2019), and nine used contents from several subdomains. 

Eighteen studies did not have an intervention, and interventions were conducted in the other 14 

studies. The results of a Risk of Bias assessment of all included studies can be found in 

Appendix E (Tables 20 and 21). Table 2 presents an overview of the included studies (for the 

list of included studies, see Appendix A). 
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5.5.3 Main Meta-Analytic Results 

5.5.3.1 Predictive Relations Between Conceptual and Procedural Knowledge. As 

expected, all standardized path coefficients in the CLPM were positive (Figure 9). The cross-

lagged paths (βC1P2 and βP1C2) carry information on the predictive relations between conceptual 

and procedural knowledge. These standardized path coefficients show the influence of one 

knowledge type at T1 on the change of the other from T1 to T2. Simultaneously, the 

autoregressive effects of each knowledge type on itself are controlled for.  

 

Figure 9 

Cross-Lagged Panel Model of Overall Results 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 41 to 47 for the six bivariate correlations. 

 

The predictive relation of conceptual knowledge at T1 to procedural knowledge at T2 

was statistically significant (βC1P2 = .270, 95% CI [.221, .318]). This relation describes the 

prediction of individual differences in conceptual knowledge at T1 on the change in individual 

differences in procedural knowledge from T1 to T2. The predictive relation of procedural 

knowledge at T1 with conceptual knowledge at T2 was slightly less strong but statistically 
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significant (βP1C2 = .220, 95% CI [.172, .268]). This path coefficient indicates how well 

individual differences in procedural knowledge at T1 predict the change in individual 

differences in conceptual knowledge from T1 to T2. According to Orth and colleagues (2022), 

both cross-lagged effects are large. The forest plots for each of the six bivariate correlations 

can be found in Appendix D (Figures 41 to 46). 

This finding confirms the main hypothesis H1 that there are similar significant positive 

predictive relations in the cross-lagged paths between conceptual knowledge at T1 and 

procedural knowledge at T2 and vice versa. 

5.5.3.2 Heterogeneity.  The between-studies variance (τ²) is identified by extracting the 

variance-covariance matrix of the random effects of the overall model. It ranged from .005 to 

.129. The between-studies variance indicated that heterogeneity existed in this meta-analysis 

and that there might be influences of moderator variables.  

 

Table 3 

Between-study Variance of Cross-lagged Panel Model 

τ²1 τ²2 τ²3 τ²4 τ²5 τ²6 

.015 .013 .007 .007 .005 .129 

Note. τ²1 to τ²6 - Heterogeneity index in the form of between-study variance for each of the six path 

coefficients. 

 

5.5.4 Moderator Analyses 

5.5.4.1 Age. To test hypothesis H2, the mean age influences the symmetry of the 

iterative relationship; we conducted a moderator analysis of the continuous moderator Mean 

Age at measurement point one. We expected procedural knowledge at T1 to be more strongly 

associated with conceptual knowledge at T2 (βC1P2 < βP1C2) for young learners and conceptual 

knowledge at T1 to be a better predictor of procedural knowledge at T2 for older learners (βC1P2 
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> βP1C2). The results of this analysis must be interpreted with caution because the Hessian was 

not convex, and the information matrix was not positive definite for this model. The predictive 

relation from conceptual to procedural knowledge changed by βC1P2 = .010 (95% CI [-; -]) and 

from procedural to conceptual knowledge by βP1C2 = -.003 (95% CI [-; -]) when the mean age 

increased. Both path coefficients did not show significant changes. We did not find a 

moderating effect of the mean age, and hypothesis H2 was not confirmed. 

5.5.4.2 School Level. The categorical moderator School Level initially contained six 

levels. In the following moderator analysis, only three levels, Kindergarten / Preschool, 

Primary School, and Secondary School, are compared. We did not examine the levels Higher 

Education, Continued Education, and Several because they each only included two or fewer 

independent correlation matrices. According to hypothesis H3, we tested whether the predictive 

relations between conceptual and procedural knowledge (βC1P2 and βP1C2) were stronger for 

higher school levels than for lower. 

The CLPMs for the three moderator levels are presented in Figures 10 to 12. The path 

coefficients βC1P2 and βP1C2 were statistically significant for all moderator levels. The path 

coefficient βC1P2 was descriptively weaker than the path coefficient βP1C2 for the level 

Kindergarten / Preschool. Contrary, for the other two moderator levels, the predictive relation 

from conceptual to procedural knowledge (βC1P2) was descriptively stronger than vice versa. 

The results of the model Kindergarten / Preschool must be interpreted with caution because 

the Hessian at the solution was not convex and the information matrix was not positive definite. 

The levels Kindergarten / Preschool, Primary School, and Secondary School were 

compared pairwise in separate moderator analyses. No significant differences could be found 

between these levels in the predictive relations between conceptual and procedural knowledge. 

The changes in the path coefficients for comparing the models are presented in Table 4. 

Hypothesis H3 was not confirmed. 
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Figure 10 

Cross-lagged Panel Model of Moderator Level Kindergarten / Preschool 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution; 95% Confidence 

intervals estimated by setting variances without SEs at 0; k = 4 to 9 for the six bivariate correlations. 

 

Figure 11 

Cross-lagged Panel Model of Moderator Level Primary School 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 14 to 18 for the six bivariate correlations. 
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Figure 12 

Cross-Lagged Panel Model of Moderator Level Secondary School 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 17 to 19 for the six bivariate correlations. 

 

Table 4 

Moderator Analysis School Level 

Level 
Comparison 

level 
k 

Change in 

βC1P2 
95% CI 

Change in 

βP1C2 
95% CI 

Kindergarten / 

Preschool 

Primary school 14 - 18 .228 - -.130 - 

Secondary 

school 
23 - 27 .076 - .019 - 

Primary school 
Secondary 

school 
33 - 35 -.054 

[-.160; 

.053] 
.048 

[-.056; 

.152] 

Note. Overview of moderator analysis of categorical moderator School Level. Level - Moderator level, 

Comparison level - Moderator level that is compared to the level in the column Level, k - Number of 

effect sizes for each bivariate correlation, Change in βC1P2 - Change in path coefficient βC1P2 from Level 

to Comparison Level; 95% CI - 95% Confidence interval, Change in βP1C2 - Change in path coefficient 

βP1C2 from Level to Comparison Level. Missings are indicated as -. These confidence Intervals could 

not be estimated due to convergence problems. 

 

5.5.4.3 Subdomain Mathematics. We compared the moderator levels of Subdomain 

Mathematics to test hypothesis H4; the predictive relations between conceptual and procedural 
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knowledge differ between the subdomains of mathematics. This categorical moderator initially 

included five levels. The levels Other and Several were left out of the analyses because they 

only contained three and four effect sizes, respectively. Therefore, we inspected three levels: 

Counting and Whole-Number Arithmetic, Rational Numbers, and Algebra. The standardized 

path coefficients of the three included moderator levels are visualized in Figures 13 to 15. The 

model on Rational Numbers must be interpreted with caution because the Hessian was not 

convex and the information matrix was not positive definite.  

The predictive relations between conceptual and procedural knowledge differed 

descriptively in strength and symmetry between the levels: The predictive relation from 

procedural to conceptual knowledge (βP1C2) was more substantial in the subdomain Counting 

and Whole-Number Arithmetic. In contrast, the predictive relation from conceptual to 

procedural knowledge (βC1P2) was stronger in the subdomain of Rational Numbers. In the 

subdomain of Algebra, both relations (βC1P2 and βP1C2) were equally strong.  

 

Figure 13 

Cross-Lagged Panel Model of Moderator Level Counting and Whole-Number Arithmetic 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 8 to 14 for the six bivariate correlations. 
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Figure 14 

Cross-Lagged Panel Model of Moderator Level Rational Numbers 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution. Missings are 

indicated as -. Confidence intervals could not be estimated due to convergence problems; k = 11 for the 

six bivariate correlations. 

 

Figure 15 

Cross-Lagged Panel Model of Moderator Level Algebra 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 15 to 19 for the six bivariate correlations. 
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The levels Counting and Whole-Number Arithmetic, Rational Numbers, and Algebra 

were compared in pairs in three separate analyses. Again, the Hessian was not convex, and the 

information matrix was not positive definitive for the moderator model of Rational Numbers. 

These results must be interpreted with caution. There were no significant differences in the 

predictive relations between conceptual and procedural knowledge in each comparison of the 

three levels (see Table 5). Concluding the analyses, hypothesis H4 was not confirmed. 

 

Table 5 

Moderator Analysis Subdomain of Mathematics 

Level 
Comparison 

Level 
k 

Change in 

βC1P2 
95% CI 

Change in 

βP1C2 
95% CI 

Counting and 

Whole-Number 

Arithmetic 

Rational 

Numbers 
19 - 25 .120 - -.244 - 

Algebra 25 - 31 .138 - -.092 - 

Rational Numbers Algebra 27 - 30 -.003 - .151 - 

Note. Overview of moderator analysis of categorical moderator Subdomain of Mathematics. Level - 

Moderator level, Comparison Level - Moderator level that is compared to the level in the column Level, 

k - Number of effect sizes for each bivariate correlation, Change in βC1P2 - Change in path coefficient 

βC1P2 from Level to Comparison Level; 95% CI - 95% Confidence interval, Change in βP1C2 - Change 

in path coefficient βP1C2 from Level to Comparison Level. Missings are indicated as -. These confidence 

intervals could not be estimated due to convergence problems. 

 

5.5.4.4 Intervention. The categorical moderator included two levels, Intervention and 

No Intervention. We analyzed this moderator to test hypothesis H5; the predictive relations 

between conceptual and procedural knowledge are stronger in studies in which an intervention 

took place than in those without an intervention. The results of the level No Intervention model 

must be interpreted with caution; the Hessian was not convex, and the information matrix was 

not positive definite. For both models, the path coefficients from conceptual to procedural 

knowledge (βC1P2) were slightly more substantial than those from procedural to conceptual 

knowledge (βP1C2, see Figures 16 and 17).  
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Figure 16 

Cross-Lagged Panel Model of Moderator Level Intervention 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 25 to 27 for the six bivariate correlations.  

 

Figure 17 

Cross-Lagged Panel Model of Moderator Level No Intervention 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution. Missings are 

indicated as -. Confidence intervals could not be estimated due to convergence problems; k = 14 to 22 

for the six bivariate correlations. 
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To test for moderating influences, we compared the two levels of the moderator. The 

results of this analysis should be interpreted with caution because, again, the Hessian was not 

convex and the information matrix was not positive definite. For the studies with an 

intervention, the predictive relations from conceptual to procedural knowledge changed by 

βC1P2 = .046 (95% CI [-; -]) compared to studies without an intervention. The relations from 

procedural to conceptual knowledge decreased by βP1C2 = -.082 (95% CI [-; -]) in this 

comparison. There were no significant differences between the models with and without 

intervention, and we rejected hypothesis H5.  

5.5.5 Exploratory Analyses 

5.5.5.1 Time Lag. The time between the measurements at T1 and T2 might moderate 

the predictive relations. To answer this, we analyzed the continuous moderator Time Lag. The 

Hessian was not convex and the information matrix was not positive definite for the moderation 

model. Therefore, the results must be interpreted with caution. According to the model, no 

moderating effect existed on the predictive relations between conceptual and procedural 

knowledge. The path coefficients did not change significantly when the time lag between 

measurements increased (βC1P2 = -.009, 95% CI [-; -]; βP1C2 = .049, 95% CI [-; -]).  

5.5.5.2 Broad Task Type of Conceptual Knowledge. The moderator Broad Task Type 

of Conceptual Knowledge included three levels. These were Implicit Task Type, Explicit Task 

Type, and Both. The results of the Explicit Task Type and Both models must be interpreted 

cautiously because the Hessian was not convex and the information matrix was not positive 

definite for these models. For all three levels, the predictive relation from conceptual to 

procedural knowledge (βC1P2) was descriptively stronger than vice versa (βP1C2, see Figure 18 

to 20).  
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Figure 18 

Cross-Lagged Panel Model of Moderator Level Implicit Task Type 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 25 to 32 for the six bivariate correlations. 

 

Figure 19 

Cross-Lagged Panel Model of Moderator Level Explicit Task Type 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution. Missings are 

indicated as -. Confidence intervals could not be estimated due to convergence problems; k = 7 for the 

six bivariate correlations. 
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Figure 20 

Cross-Lagged Panel Model of Moderator Level Both Task Types 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution. Missings are 

indicated as -. Confidence intervals could not be estimated due to convergence problems; k = 6 to 9 for 

the six bivariate correlations. 

 

We compared the three moderator levels in separate pairwise analyses regarding the predictive 

relations between conceptual and procedural knowledge. None of the levels differed 

significantly in the cross-lagged path coefficients βC1P2 and βP1C2. The results of the comparison 

of Implicit Task Type and Both must be interpreted with caution because the Hessian of the 

model was not convex and the information matrix was not positive definite. The three inspected 

moderator levels had no moderating influence on the predictive relations between conceptual 

and procedural knowledge (see Table 6). 

5.5.5.3 Specific Task Type of Conceptual Knowledge. The moderator Specific Task 

Type of Conceptual Knowledge initially included 13 levels. Four of these 13 levels were found 

in the data: Translate Quantities Between Representational Systems, Compare Quantities, 

Evaluate Unfamiliar Procedures, Explain Judgments, and Several. The results of the models  
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Table 6 

Moderator Analysis Broad Task Type of Conceptual Knowledge 

Level 
Comparison 

Level 
k 

Change in 

βC1P2 
95% CI 

Change in 

βP1C2 
95% CI 

Implicit 

Explicit 32 – 39 .052 
[-.071; 

.174] 
.035 

[-.066; 

.135] 

Both 32 – 40 .030 
[-.119; 

.178] 
.019 

[-.113; 

.150] 

Implicit Both 13 – 16 .156 - .110 - 

Note. Overview of moderator analysis of categorical moderator Broad Task Type of Conceptual 

Knowledge. Level - Moderator level, Comparison Level - Moderator level that is compared to the level 

in the column Level, k - Number of effect sizes for each bivariate correlation, Change in βC1P2 - Change 

in path coefficient βC1P2 from Level to Comparison Level; 95% CI - 95% Confidence interval, Change 

in βP1C2 - Change in path coefficient βP1C2 from Level to Comparison Level. Missings are indicated as 

 -. These confidence intervals could not be estimated due to convergence problems. 

 

Evaluate Unfamiliar Procedures and Explain Judgments must be interpreted with caution 

because the Hessian of both models was not convex and the information matrix was not positive 

definite. The predictive relation from conceptual to procedural knowledge (βC1P2) was 

descriptively stronger than the relation from procedural to conceptual knowledge (βP1C2) in all 

inspected models (see Figures 21 to 25). 

None of the levels differed in their predictive relations between conceptual and 

procedural knowledge compared to the other levels (see Table 7). Therefore, the specific task 

type of conceptual knowledge did not moderate the predictive relations between conceptual 

and procedural knowledge. 
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Figure 21 

Cross-Lagged Panel Model of Moderator Level Translate Quantities Between Representational 

Systems 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 15 to 24 for the six bivariate correlations. 

 

Figure 22 

Cross-Lagged Panel Model of Moderator Level Compare Quantities 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 6 to 9 for the six bivariate correlations. 
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Figure 23 

Cross-Lagged Panel Model of Moderator Level Evaluate Unfamiliar Procedures 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution; Missings are 

indicated as -. Confidence intervals could not be estimated due to convergence problems; k = 4 to 7 for 

the six bivariate correlations. 

 

Figure 24 

Cross-Lagged Panel Model of Moderator Level Explain Judgments 

 
Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2). 

The Hessian of this model was not convex - results must be interpreted with caution; Missings are 

indicated as -; Confidence intervals could not be estimated due to convergence problems; k = 7 for the 

six bivariate correlations. 



Knowledge Acquisition and Transfer  80 

 
 

Figure 25 

Cross-Lagged Panel Model of Moderator Level Several Tasks 

 

Note. Cross-lagged panel model of conceptual knowledge at measurement point one (C1), procedural 

knowledge at measurement point one (P1), conceptual knowledge at measurement point two (C2), 

procedural knowledge at measurement point two (P2) as well as the cross-sectional (rC1P1 and rC2P), 

auto-regressive (βC1C2 and βP1P2) and cross-lagged paths between the four variables (βC1P2 and βP1C2); 

k = 12 to 16 for the six bivariate correlations. 

 

Table 7 

Moderator Analysis Specific Task Type of Conceptual Knowledge 

Level Comp. Level k 
Change 

in βC1P2 
95% CI 

Change 

in βP1C2 
95% CI 

Translate Quantities 

Compare Quantities 22 - 33 -.021 [-.125; .103] .046 [-.078; .170] 

Evaluate Unfamiliar 

Procedures 
22 - 28 -.044 [-.190; .102] -.003 [-.174; .107] 

Explain Judgments 22 - 31 .054 [-.067; .175] .064 [-.052; .180] 

Several 30 - 37 .061 - .058 - 

Compare Quantities 

Evaluate Unfamiliar 

Procedures 
11 - 16 -.031 [-.185; .123] -.088 [-.271; .096] 

Explain Judgments 14 - 16 .065 [-.065; .195] .024 [-.123; .171] 

Several 19 - 25 .060 [-.064; .184] -.003 [-.145; .139] 

Evaluate Unfamiliar 

Procedures 

Explain Judgments 11 - 14 .078 - .074 - 

Several 16 - 23 .088 [-.056; .232] .046 [-.095; .187] 

Explain Judgments Several 19 - 23 .002 [-.127; .130] -.029 [-.140; .083] 

Note. Overview of moderator analysis of categorical moderator Specific Task Type of Conceptual 

Knowledge. Level - Moderator level, Comp. Level - Moderator level that is compared to the level in 

the column Level, k - Number of effect sizes for each bivariate correlation, Change in βC1P2 - Change in 

path coefficient βC1P2 from Level to Comparison Level; 95% CI - 95% Confidence interval, Change in 

βP1C2 - Change in path coefficient βP1C2 from Level to Comparison Level. Missings are indicated as -. 

These confidence intervals could not be estimated due to convergence problems. 
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5.6 Discussion 

5.6.1 Main Findings 

This meta-analysis examined the predictive relations between conceptual and 

procedural knowledge in mathematics as path coefficients in a cross-lagged panel model. The 

model was used to answer the questions of how strong the predictive relations between the two 

knowledge types are and whether these relations are bidirectional and symmetrical. 

Bidirectional predictive relations indicate that conceptual and procedural knowledge develop 

iteratively (Rittle-Johnson, 2017).  

Conceptual knowledge predicted changes in procedural knowledge (βC1P2 = .270) and 

simultaneously, procedural knowledge also predicted changes in conceptual knowledge (βP1C2 

= .220). These two relations were similarly strong with large cross-lagged effects (Orth et al., 

2022). In addition, they were bidirectional and almost symmetrical. The main hypothesis H1 

was confirmed. The results support the Iterative Model with gradual bidirectional 

improvements in both knowledge types (Rittle-Johnson et al., 2001). Moreover, these 

significant predictive relations between knowledge types over time are consistent with the 

predictive relations found in the cross-lagged panel model by Schneider and colleagues (2011), 

which were also bidirectional and symmetrical. 

There are several possible reasons why the predictive relations in the model seem 

relatively weak compared to previous findings (e.g., Hecht & Vagi, 2010). First, compared to 

bivariate correlations, cross-lagged effects are controlled for prior levels of the predicted 

variable and concurrent correlations at measurement point one (Orth et al., 2022). Therefore, 

cross-lagged effects are generally smaller than effects of bivariate correlations. Another reason 

might be that in the overall model, characteristics of the sample and subdomains balanced out 

the predictive relations: While younger children depend more on their procedural knowledge 

(e.g., Frye et al., 1989; LeFevre et al., 2006), conceptual knowledge seems more important for 

older learners (Gelman & Williams, 1998; Halford, 1993; Hecht et al., 2003; Hiebert & 
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Lefevre, 1986; Schneider et al., 2009). Also, the strength of the predictive relations might differ 

between subdomains of mathematics (e.g., Rittle-Johnson & Sielger, 1998).  

Findings from our analysis make a valuable contribution on both a theoretical and 

practical level. Theoretically, the results help to understand developmental patterns of 

conceptual and procedural knowledge providing valuable implications on the validity of 

existing viewpoints on the relationship. On a practical level, the results help educators to decide 

the order of teaching conceptual or procedural knowledge and to adjust it due to naturally 

occurring developmental patterns of the student’s knowledge acquisition.  

5.6.2 Moderator Variables 

The predictive relations were stable across all four moderators. We investigated to what 

extent the learners’ age, school level, the subdomain of mathematics, and the presence of an 

intervention moderated the predictive relations between conceptual and procedural knowledge.  

The mean age of the learners did not influence the predictive relations between 

conceptual and procedural knowledge. Hypothesis H2 must be rejected. One explanation for 

this finding is that the differences in the predictive relations in the data were not linear. This 

was inspected by plotting the effect sizes in dependence on the mean age. Therefore, they 

cannot be portrayed by the learners’ age as a continuous moderator. 

The predictive relations between conceptual and procedural knowledge did not differ 

depending on the school level. Of the six levels, only three (kindergarten/preschool, primary 

school, and secondary school) could be compared. There was no statistically significant 

difference in the relation from procedural knowledge to conceptual knowledge and vice versa 

between kindergarten/preschool, primary, and secondary school. Hence, hypothesis H3 was 

not confirmed for these three school levels. The results of the comparison between 

kindergarten/preschool and each of the two school levels must be interpreted with caution 

because the moderation models did not converge successfully. It is conceivable that the 
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predictive relations between the two knowledge types differ less between the levels after 

starting school than between kindergarten and school. Regular school instructions might 

support conceptual as well as procedural knowledge. These are contained in all school levels 

and reduce the differences in the predictive relations between students. The descriptive results 

of the comparison models are consistent with these assertions. Children in kindergarten or 

preschool descriptively showed stronger influences of procedural on conceptual knowledge, 

whereas for children in primary and secondary school, both relations were more similar. 

The subdomains of mathematics did not influence the predictive relations between 

conceptual and procedural knowledge. Previous findings purported differences in the 

predictive relations between subdomains (e.g., Rittle-Johnson & Siegler, 1998). In the domain 

of rational numbers, conceptual knowledge was found to have a stronger influence on 

procedural knowledge (Byrnes & Wasik, 1991). On the other hand, findings in the subdomain 

of algebra supported the greater impact of procedural knowledge on subsequent conceptual 

knowledge (Lauritzen, 2012). We did not find statistically significant differences between the 

subdomains of mathematics, and hypothesis H4 must be rejected. However, the descriptive 

results of our comparison models again align with the assumptions of our hypothesis H4. The 

model on counting and whole-number arithmetic included stronger influences of procedural on 

conceptual knowledge. The opposite was present for the model of rational numbers. Last, the 

model of algebra showed a symmetrical impact on the knowledge types. At least two possible 

conclusions can be drawn from this result. First, contrary to our descriptive results, the 

predictive relations are mostly stable across the subdomains of mathematics and, therefore, did 

not differ significantly in the analysis. This assumption implies that the previous findings (e.g., 

Byrnes & Wasik, 1991; Lauritzen, 2012) only partly displayed the relations between 

knowledge types. The other assumption contains the restriction that the categories in this meta-

analysis were too broad. Consequently, the predictive relations differed in parts of the 
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subdomains (e.g., Rittle-Johnson & Siegler, 1998) within the categories and compensated for 

possible differences. 

Whether an intervention was carried out did not influence the strength of both predictive 

relations. We hypothesized that the predictive relations between conceptual and procedural 

knowledge would be stronger for the studies in which an intervention was carried out. Evidence 

shows that interventions can increase knowledge types (Canobi, 2009) and their relations 

(Blöte et al., 2001; Hiebert & Wearne, 1996). This analysis did not confirm this result, and 

hypothesis H5 must also be rejected. An alternate explanation for this finding could be that the 

interventions in the included studies differed in their goals and methods and that possible 

effects of interventions counterbalanced each other. 

The predictive relations between conceptual and procedural knowledge were stable 

across the exploratory moderators. We conducted exploratory analyses on the time lag between 

measurements and the broad as well as specific task types of the assessment of conceptual 

knowledge. None of these moderators showed influences on the predictive relations between 

conceptual and procedural knowledge. 

5.6.3 Limitations  

Some methodological aspects of this meta-analysis restrict the generalizability of the 

results. First, there is the question about the validity of the measurements of conceptual and 

procedural knowledge. There are no widely used standardized approaches up to this point. 

Recent findings show that conceptual and procedural fraction knowledge are empirically 

separable when using appropriate measures (Lenz et al., 2020). However, most included studies 

did not use such exclusively developed instruments. This makes it difficult to attribute test 

results to only one of the two knowledge types (Rittle-Johnson & Schneider, 2014). For 

example, when participants solve given routine problems, both knowledge types are involved 

in the process (Braithwaite & Sprague, 2021). This meta-analysis’s cross-sectional correlations 
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between conceptual and procedural knowledge at T1 and T2 are medium-sized. Consequently, 

the measurements’ inaccuracy regarding the knowledge types’ assessments may have only 

slightly overestimated the results. 

Second, the aggregation of the dependent effect sizes by averaging them on the sample 

level yields some disadvantages: Averaging effect sizes ignores possible within-study 

variability (López-López et al., 2018). This loss of information limits the possibility of 

examining characteristics to evaluate effect size variability (Wilson et al., 2016). Also, the 

resulting number of independent effect sizes was relatively small but sufficiently high to 

conclude that the OSMASEM works well under the assumption of missing data at random (Jak 

& Cheung, 2020).  

Third, effect sizes could be missing at random or systematically (Jak & Cheung, 2020). 

The probability of effect sizes missing systematically is reduced by the inclusion of peer-

reviewed articles as well as grey literature in which the bivariate correlations on conceptual 

and procedural knowledge were not the main aspects of the research. Also, the funnel plots and 

Egger’s regressions did not indicate the presence of a publication bias. Therefore, this 

limitation might only slightly influence the main results. 

The last limitation concerns the decision to use a CLPM. Several model assumptions can 

be criticized in applied contexts (Hamaker et al., 2015; Lucas, 2023; Mund & Nestler, 2019). 

However, most of the included primary studies contained either CLPM or were studies with 

only two waves of data. In this case, using a CLPM had more advantages than other advanced 

approaches, which would have needed a different database with more waves of data.  

5.6.4 Implications 

5.6.4.1 Implications for Mathematics Education. The finding of bidirectional 

predictive relations between conceptual and procedural knowledge yields several implications 

for mathematics education. Researchers, as well as practitioners, can use the results of this 
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meta-analysis to improve mathematics education.  

Starting in kindergarten or preschool, a solid knowledge base can be promoted to enable 

subsequent improvements in both knowledge types. Building on the bidirectional and 

symmetrical predictive relations we found, we agree that there might not be an optimal 

instruction ordering (Rittle-Johnson et al., 2015). Adding to this, mathematics education can 

better support children in their learning process at school by acknowledging that they differ in 

their initial knowledge (Rittle-Johnson et al., 2001) and in their knowledge profiles (Hecht & 

Vagi, 2012). Educators should avoid a generally predetermined order of knowledge acquisition 

in school syllabuses. This allows more flexibility for schools and teachers to adjust the 

curriculum to the students’ individual needs.  

Furthermore, although the moderator analyses did not show significant differences 

between the moderator levels, it might be beneficial for teachers and instructors to pay attention 

to the conditions of the learners and content. Previous research concluded a stronger influence 

of procedural knowledge on young children’s conceptual knowledge (e.g., LeFevre et al., 

2006). However, for older learners, conceptual knowledge seemed more important (e.g., 

Schneider et al., 2009). We descriptively confirmed these assumptions based on school levels. 

Furthermore, relations were previously found to differ between subdomains (e.g., Rittle-

Johnson & Siegler, 1998). Again, our descriptive results pointed in the same direction. 

Concluding, it might be conducive to success in mathematics education to adjust the focus of 

instructions to relevant aspects of content and learners besides their knowledge profiles. With 

this, differences between subgroups in the predictive relations can be used to promote both 

knowledge types best. 

5.6.4.2 Future Studies. This meta-analysis showed that there are bidirectional 

predictive relations between conceptual and procedural knowledge. These relations remained 

stable across all examined moderators. Future studies are essential to investigate the possible 
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influences of other variables in other knowledge domains.  

We limited the analysis to the knowledge domain of mathematics because of missing 

primary studies in other STEM domains. We excluded studies that measured conceptual and 

procedural knowledge with time limits (e.g., Bailey et al., 2012) or used solution time as an 

outcome (e.g., Paul et al., 2019). These decisions limit the generalizability of the results, but 

they also improve the congruity of the analysis by providing similar definitions and 

measurements. Future studies should focus on other knowledge domains to answer whether 

conceptual and procedural knowledge can be differentiated in these; and, if they are, how they 

are interrelated. 

Moreover, there might be moderating influences that this meta-analysis did not capture. 

On the one hand, some of the examined moderators could be inspected more closely. For 

example, whether an intervention was carried out was examined dichotomously. Instead, a 

distinction between types and goals of interventions might give further insights. On the other 

hand, including other moderators would be essential. The regular school instruction itself might 

influence the relations. Instructions could differ according to the national guidelines (e.g., 

NCTM, 2014) in starting with either conceptual or procedural knowledge. This moderator 

would affect the initial learners’ knowledge base and yield further insights into their knowledge 

profile development. 

The OSMASEM, an approach to fit correlation matrices to a structural equation model 

in meta-analyses, is still under development. Some analyses cannot be conducted in this model 

up to this point. Examples are corrections for dependent effect sizes or moderator analyses with 

categorical moderators with more than two levels. Future meta-analyses might help 

reinvestigate the predictive relations when these features are available. 

Adding to this, it could be valuable to consider other models than a CLPM to examine 

the predictive relations between conceptual and procedural knowledge in the future. Advanced 
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models have some benefits compared to the CLPM. One is that these models differentiate 

between-person and within-person variance. This can help to interpret cross-lagged effects, but 

it also contains other possible problems (Orth et al., 2021). However, advanced models like the 

Random-Intercept Cross-Lagged Panel Model have the prerequisite that at least three 

measurement points are available in primary studies (Mund & Nestler, 2019). Future studies in 

this research area should include at least three measurement points to provide appropriate data. 

Last, most previous studies focused on correlational data and less on longitudinal data. 

Experiments are even more scarcely found. More randomized controlled trials would be 

necessary to examine possible causal effects between conceptual and procedural knowledge. 

Systematic variation of the amount of conceptual and procedural knowledge at T1 enables more 

insight into the predictive relations depending on the learner’s initial knowledge. In addition, 

instructional interventions could be systematically employed to foster predictive relations. 

5.6.5 Conclusion 

This meta-analysis showed positive bidirectional and almost symmetrical predictive 

relations between conceptual and procedural knowledge in the domain of mathematics. At least 

four different theoretical viewpoints on the predictive relations were purported by previous 

research. Our finding aligns with the main statement of the Iterative Model (Rittle-Johnson et 

al., 2001). The standardized path coefficients for the predictive relations in our cross-lagged 

panel model were large and significant. The predictive relations were stable across the 

inspected moderators.  To better understand the possible impact of moderators, future studies 

should be carried out using the developing advantages of the OSMASEM (Jak et al., 2021). 

Concluding, this meta-analysis confirmed the theoretical view of the Iterative Model on the 

predictive relations between conceptual and procedural knowledge in the domain of 

mathematics. 
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6 Study 2: How Strongly Do Motivational Constructs Mediate the 

Influence of Prior Knowledge on Posttest Knowledge? A Meta-Analytic 

Investigation of Moderated Mediation Effects 

6.1 Abstract 

A recent meta-analysis (Simonsmeier et al., 2022) averaged over 8000 effect sizes 

indicating the effect of prior knowledge on learning. They found that the stability of individual 

differences in knowledge from before to after learning was high (rP
+ = .534), even though the 

predictive power of prior knowledge for knowledge gains was low (rNG
+ = -.059). This raises 

the question of why individual differences in knowledge are stable over time, a finding that 

remained even after controlling for intelligence. One possible explanation is that prior 

knowledge might improve motivation and related constructs leading to increased new 

knowledge. We conducted a meta-analysis to test this hypothesis. We examined how strongly 

motivational constructs (interest, self-concept, self-efficacy, intrinsic motivation, extrinsic 

motivation) mediate the effect of prior knowledge on knowledge after learning and what other 

variables (e.g., specificity level of motivation) moderate the strength of this mediation effect. 

The literature search provided 55 studies reporting 714 effect sizes. Significant mediation paths 

were found for all motivational constructs and had effect sizes ranging from rMED = .046 (95% 

CI [.037, .056]) for extrinsic motivation to rMED = .199 (95% CI [.027, .373]) for interest. 

Moderation analyses revealed that heterogeneity in effect sizes could be explained by the 

specificity level of motivation and the types of knowledge and interest. The results of this meta-

analysis explain interindividual stability in knowledge and stress the role of motivation as an 

underlying mechanism. Low learner motivation can sometimes be improved by increasing 

prior knowledge, and low knowledge can sometimes be improved by increasing motivation. 
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6.2 Introduction 

Prior domain-specific knowledge is assumed to be the strongest predictor of 

achievement and performance (Greve et al., 2019; Thompson & Zamboanga, 2003), yet 

identifying the processes responsible for this association remains an objective of current 

educational psychology research. In a systematic review of meta-analyses, Schneider and 

Preckel (2017) identified over 100 variables related to achievement in higher education, among 

which prior achievement was one of the strongest predictors. High-achieving students maintain 

their level, whereas low-achieving students do not seem to catch up with their more successful 

peers. What helps the former students, and why do the latter seem not to overcome their 

difficulties? These questions address the interindividual stability of knowledge within groups 

of learners over time and the underlying mechanisms. While some cognitive explanations have 

been uncovered for this phenomenon, such as the increased processing of information through 

chunking (Gobet, 2005) and optimized attention allocation (Gegenfurtner et al., 2011), there 

has been scattered research on non-cognitive explanations so far. Motivational research, which 

plays a vital role in educational psychology, could contribute to answering this question based 

on its large body of research (Murphy & Alexander, 2000). However, it provides only isolated 

explanations for the relation between prior knowledge and learning achievement, which remain 

to be synthesized. 

Uncovering mechanisms of prior knowledge on learning outcomes is pivotal: The 

promotion of knowledge is the essential target of education and leads to several desirable 

outcomes associated with a fulfilling life, such as occupational success (Judge et al., 1995), 

well-being (Bücker et al., 2018), and health outcomes (Hahn & Truman, 2015; Simonsmeier 

et al., 2022). In instructional contexts, referring to students' prior knowledge is an effective 

method (Amadieu et al., 2015), but it could be used more purposefully if its mechanisms were 

better understood. 
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6.2.1 Knowledge 

Researchers have tried to conceptualize knowledge and its utilization in different ways 

(Anderson & Krathwohl, 2001; Bloom, 1956; de Jong & Ferguson-Hessler, 1996). Perhaps the 

best-known attempt to describe knowledge comes from de Jong and Ferguson-Hessler (1996), 

with their distinction between types and qualities. They specify four types of knowledge that 

learners can use in problem-solving, namely situational, conceptual, procedural, and strategic 

knowledge. Situational knowledge contains knowledge about the relevant features of a 

situation, which can include aspects of conceptual or procedural knowledge. Conceptual 

knowledge refers to knowledge about facts, concepts, and principles that apply in a particular 

domain and provide information for solving a problem. The actions or manipulations required 

for the solution characterize procedural knowledge. Knowledge about the organization of 

phases in the problem-solving process, i.e., a general plan of action, is referred to as strategic 

knowledge.  

Besides the types of knowledge, de Jong and Ferguson-Hessler (1996) suggest five 

different qualities of knowledge in use. Some directly particularize the knowledge types, others 

define the interrelationships between knowledge types, and sometimes the boundaries may 

overlap. First, knowledge level refers to the degree to which a knowledge type is thoroughly 

organized, elaborated, and well-understood in problem-solving. Superficial knowledge is 

associated with pure memorization and is less amenable to critical judgment and abstraction 

than deep knowledge. Second, the structure of knowledge describes whether the knowledge 

components within a domain are well or poorly connected. Structured knowledge can be 

achieved through efficient chunking and is observable in the knowledge of experts (Gobet, 

2005). Third, the use of knowledge in problem-solving can also be more or less automated. 

Whereas novices perform their actions slowly and consciously, experts rely on automatic 

routines that allow them to interpret situations as a whole. Fourth, the modality of knowledge 

regards whether knowledge is stored in memory as a series of abstract sentences or images 
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containing perceptual details. Depending on the situation, one may be more appropriate than 

the other. Last, the generality of knowledge describes the scope of the content. Domain-specific 

knowledge applies to specific situations and can hardly be transferred to other situations. 

Domain-general knowledge includes heuristics or strategies that learners can apply to multiple 

situations. 

In a recent approach to conceptualize prior knowledge in the reading domain, McCarthy 

and McNamara (2021) proposed the Multidimensional Knowledge in Text Comprehension 

framework, which can easily be adapted for prior knowledge research in general. Their 

framework comprises four dimensions: amount, accuracy, specificity, and coherence, with 

each dimension affecting how information during learning is processed. The amount of 

knowledge refers to the quantity of information relevant to the subject matter. Learners with 

more prior knowledge are better at lower-level word processing (Priebe et al., 2012), making 

inferences (Kintsch, 1998), activating relevant information, and ignoring irrelevant information 

(McNamara & McDaniel, 2004). They also tend to use more sophisticated strategies than 

subjects with less prior knowledge (Cromley & Azevedo, 2007). The dimension of accuracy 

describes whether the knowledge is more or less accurate. While it is easy to identify some 

pieces of knowledge as misconceptions or as truly correct, other pieces of knowledge are harder 

to categorize, for example, when the correctness of information depends on its context. 

Incorrect prior knowledge poses a threat to correct knowledge acquisition because it is resistant 

to change (Smith III. et al., 1993), leads to the overconfidence of subjects in their responses in 

knowledge tests (Li et al., 2004), and remains a misconception when previously or later 

acquired correct knowledge cannot be used for knowledge integration (Clark & Linn, 2013). 

The specificity dimension refers to the subject matter of knowledge and is related to the 

generality knowledge quality by de Jong and Ferguson-Hessler (1996). The authors suggest a 

taxonomy in which the domain-specificity of the content is organized into seven levels, from 
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general knowledge to knowledge of certain topics (McCarthy & McNamara, 2021). Knowledge 

in the form of general knowledge refers to academic or personal domains and is the most 

comprehensive. Instruments such as the Woodcock-Johnson Academic Knowledge test 

(Wendling et al., 2009) capture the knowledge of academic domains such as science, social 

studies, and humanities. These domains (e.g., science) can be subdivided into sub-domains 

(e.g., life science and physical science), which in turn include subjects (e.g., physics), sub-

subjects (e.g., mechanics), and, at the most specific level, certain topics (e.g., momentum). The 

fourth dimension coherence describes the relations between the knowledge elements, which 

may be more interconnected and embedded in an overarching structure or somewhat 

fragmented and isolated.  

 For the present study, we define knowledge as information stored in memory, which 

includes declarative knowledge about facts and concepts as well as procedures. We consider 

knowledge at the specificity level of domain knowledge and below (McCarthy & McNamara, 

2021) and encompass both correct and incorrect knowledge as our object of investigation. We 

define prior knowledge as the knowledge present in a person's long-term memory at the onset 

of learning (Dochy & Alexander, 1995). We mainly focus on the amount of prior and later 

knowledge instead of the quality. We do not consider the coherence of knowledge elements for 

this meta-analysis, as it would be necessary to analyze the wording of the knowledge 

instrumentation and the instructional material used in the primary studies, which are often not 

accessible in the articles. 

6.2.2 The Impact of Prior Knowledge on Learning Outcomes 

Simonsmeier et al. (2021) empirically tested the predictive power of prior knowledge 

on learning achievement in a meta-analysis of 493 studies. In detail, they conducted a literature 

search to capture study designs with knowledge assessments at two measurement points. They 

retrieved the correlations between the knowledge pre-test and the knowledge post-test scores 
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to compute a pooled effect size and found a high correlation between pre-test and post-test 

knowledge, indicating that prior knowledge is a powerful predictor for subsequent knowledge 

and learning achievement. This could additionally be demonstrated in randomized controlled 

studies suggesting that the underlying relation is causal. Controlling for the influence of 

intelligence did not lead to significant decreases in the effect size. However, the large 

heterogeneity of effect sizes suggested other influences as well. 

It is important to stress that the relation between pre-test and post-test knowledge does 

not reflect the relation between prior knowledge and learning of new material. Instead, it tells 

how the interindividual differences among groups of learners remain stable over time. Consider 

a sample of 100 participants taking a knowledge test on two occasions. Some of them do very 

well on the knowledge test, others make some mistakes, and some can barely answer a question 

correctly. This results in two rank orders of test scores, one for the pre-test and one for the post-

test. Correlating the participants’ pre-test and post-test scores shows how the test scores’ rank 

orders remain stable. In a case where the correlation coefficient is 1, the rank order in the post-

test scores is the same as in the pre-test. If the correlation coefficient were -1, the ranking in 

the post-test would be exactly the opposite of the ranking in the pre-test, with the person with 

the lowest test score in the prior knowledge test having the highest test score in the subsequent 

test and the best-performing person the prior knowledge test performing worst in the post-test. 

Note that the correlation coefficient also does not indicate whether the participants’ 

performance improved or worsened over time. Thus, positive correlations between prior 

knowledge and post-test knowledge reflect the stability of individual differences in learners’ 

knowledge but not how prior knowledge affects learning or how much was learned. 

Simonsmeier et al. (2021) suggested that prior knowledge affects learning processes, 

which in turn influence learning outcomes. Therefore, these learning processes act as mediators 

between prior knowledge and learning outcomes. We hypothesize that motivational constructs 
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may also function as mediators because they can both be predicted by prior knowledge and be 

predictors of learning outcomes, as we will describe in the following section. 

6.2.3 Key Constructs of Motivation 

Vu et al. (2022) provided a framework for how achievement affects motivation and vice 

versa. The authors suggested the possibility that motivation influences achievement via two 

routes: The first route is through the number of academic behaviors, such as increased effort 

and persistence. The second route includes increased quality of academic behaviors, such as 

effective learning and metacognitive strategies. Similarly, achievement may affect motivation 

via two routes. Past achievement leads to perceptions of self-efficacy and control, thus affecting 

future expectations and the intrinsic value assigned to learning activities. Then, if a high value 

is attached to academic behaviors, it can create a rewarding experience of flow. Note that Vu 

et al. (2022) focused on prior achievement, including objective knowledge tests and grades and 

subjective assessments of teachers or learners. Such subjective assessments tend to inflate the 

effects associated with motivational constructs (Howard et al., 2021). 

Motivation is an umbrella term for different motivational constructs with unique 

research traditions. Urhahne and Wijnia (2023) integrated theories of motivation in education 

in an integrative framework, including expectancy-value theory, social cognitive theory, self-

determination theory, interest theory, achievement goal theory, and attribution theory. This 

model contains “the determinants and course of motivated action” (Urhahne & Wijnia, 2023, 

p.45) and grounds on the general model of motivation (Heckhausen & Heckhausen, 2018). 

Figure 26 outlines the fundamental aspects of the model with the main motivational constructs 

of this meta-analysis sorted into it. We focus on a selection of motivational constructs with the 

largest bodies of research, namely interest, self-concept, self-efficacy, intrinsic motivation, and 

extrinsic motivation. In the following section, we provide short descriptions of these constructs 

and outline how they both can affect and be affected by knowledge.  
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Figure 26 

Integrative Framework of Theories of Motivation in Education 

 

Note. Integrative framework of theories of motivation with relevant constructs sorted into the basic 

model based on interest theory, social cognitive theory, and self-determination theory (own 

representation, adapted from Urhahne & Wijnia, 2023, pp. 3, 10, 12, 15). 

 

6.2.3.1 Interest. Interest has several characteristics: It is content or object-specific, 

involves a person-environment-interaction, has both cognitive and affective components, may 

be temporarily unconscious, and has a physiological and neurological basis (Renninger & Hidi, 

2011). Models of interest development distinguish between situational and individual interest 

(Hidi & Renninger, 2006; Krapp, 2007). Situational interest is triggered by environmental 

characteristics that catch an individual’s attention. Over time, if situational interest is 

maintained, it can transform into individual interest. This motivational disposition leads to self-

initiated engagement with the task. Although being two separate constructs, knowledge and 

interest are highly related (Tobias, 1994). In the model of domain learning, Alexander et al. 

(1995) outlined the interplay between forms of interest and knowledge in the development of 

expertise. During the early stages of expertise development, when individual interest and 

knowledge in the domain are relatively low, situational interest is mainly responsible for the 

engagement with a certain task. As learners acquire more knowledge in the domain, their 

individual interest grows, and the influence of situational interest on engagement weakens.  

Evidence suggests that knowledge and interest are related bidirectionally (Rotgans & 

Schmidt, 2017). Knowledge as a cause of interest, however, is rarely investigated. For example, 
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in a longitudinal study, Zhang et al. (2016) used growth curve analyses to find that prior 

knowledge affected the development of interest in learning declarative and procedural 

knowledge about physical activity. Interest as a predictor of learning outcomes has been studied 

more frequently. In a meta-analysis, Schiefele et al. (1992) found that interest predicted 

achievement well in multiple subject areas. 

6.2.3.2 Self-concept. In general, self-concept refers to an individual’s perception of 

themselves as shaped by experiences with the environment (Shavelson et al., 1976). In 

academic contexts, self-concept refers to a “mental representation of one’s academic abilities 

in general and in different academic domains” (Arens et al., 2021, p. 2). In addition to the 

cognitive self-evaluation, it has an affective component resulting from comparing one’s 

attributes and competence to standard (Arens & Hasselhorn, 2015; Bong & Clark, 1999). 

Typical measures of academic self-concept refer to how well students do in a particular subject 

or how quickly they learn the material (e.g., Marsh et al., 2014). Although different structures 

of academic self-concept exist, most researchers agree on its multidimensional and hierarchical 

structure (Arens et al., 2021).  

Due to the nature of academic self-concept being a self-evaluation of achievement, it is 

closely related to knowledge. Both grades and objective achievement tests affect later measures 

of self-concept, with grades having a slightly greater impact (Helmke & Van Aken, 1995). In 

some cases, academic self-concept is as powerful as intelligence in predicting test performance 

(Lauermann et al., 2020). In turn, self-concept predicts later academic achievement, especially 

when the assessments of self-concept are formulated more specifically: There are stronger 

effects for task-specific self-concept than for academic and general self-concept (Choi, 2005), 

especially when they refer to the same subject area (Valentine et al., 2004). A meta-analysis of 

the longitudinal relation between academic self-concept and achievement found evidence for 

small reciprocal effects (Wu et al., 2021). 
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6.2.3.3 Self-efficacy. Self-efficacy refers to an individual’s belief in his or her 

capability to perform certain actions (Bandura, 1977). Like self-concept, it can be referenced 

to contexts with varying degrees of specificity (general, academic, or task-specific; Choi, 

2005). Academic self-efficacy refers to judgments of the capability to accomplish certain 

academic tasks at a certain level (Schunk, 1991). Academic self-efficacy and academic self-

concept share many similarities. Some researchers investigated whether they represent 

different constructs (Bong & Skaalvik, 2003): Both are based on a self-assessment of one's 

competence; they are domain-specific and multi-dimensional. Additionally, they have similar 

predictive power for different outcomes. However, self-efficacy does not include an affective 

component and pertains to the achievement of specified future goals, thus being less stable over 

time than self-concept.  

From a theoretical perspective, it seems plausible that prior knowledge and achievement 

in a domain are sources of academic self-efficacy. However, few studies examined the impact 

of prior knowledge on self-efficacy (Honicke & Broadbent, 2016). However, it appears safe to 

assume that past performance in academic contexts affects self-efficacy (Brown et al., 2008). 

On the other side, the effects of self-efficacy on learning and achievement are better 

documented. Self-efficacy for learning and achievement predicts grade point average and 

course grades (Crede & Philips, 2011) and shows the second-largest impact on achievement in 

higher education in a review of meta-analyses (Schneider & Preckel, 2017). Possible 

explanations for this relation are the increased use of sophisticated monitoring strategies, effort, 

and adequate goal setting with high levels of self-efficacy (Cheng & Chiou, 2010; Kassab et 

al., 2015; Moos & Azevedo, 2009). The mediation hypothesis for the prior knowledge-

knowledge relationship holds true, at least for high school and college GPAs (Brown et al., 

2008). 

6.2.3.4 Intrinsic Motivation. Intrinsic motivation is defined as the desire to perform a 
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certain action because the action itself is perceived as interesting, challenging, or otherwise 

enjoyable (Ryan & Deci, 2000b). According to self-determination theory, intrinsic motivation 

is based on three basic needs of experiencing (competence, autonomy, and relatedness) that 

determine motivation and behavior (Deci & Ryan, 2000). Over time, actions that were 

originally initiated because of an external reward or punishment (e.g., receiving an ice cream 

for completing homework or being scolded for not doing so) may become internalized so that 

the performance of the action is consistent with one’s mastery goals and personal values that 

are identified as part of one’s self (e.g., doing homework because it is enjoyable; Ryan et al., 

2021).  

It seems plausible to assume that prior knowledge can be a source of experiencing 

competence and therefore affects intrinsic motivation. However, only one record investigated 

this relation (Achmetli et al., 2019). In this study, both conceptual and procedural knowledge 

led to experiences of competence in a mathematical multiple-solution task. Experiences of 

competence then predicted conceptual and procedural knowledge at the post-test. The effects 

of intrinsic motivation on academic performance have been investigated more thoroughly. A 

meta-analysis by Cerasoli et al. (2014) found a moderate correlation between intrinsic 

motivation and performance. The proportion of variance explained was larger when the quality 

of performance (e.g., creativity) rather than quantity (e.g., points in a test) was considered.  

6.2.3.5 Extrinsic Motivation. Extrinsic motivation is characterized by the desire to 

perform a certain action to receive an expected reward or to prevent a negative consequence, 

making it a rather instrumental behavior (Ryan et al., 2021). Several forms of extrinsic 

motivation exist with different degrees of internalization ranging from complete external 

regulation to the involvement of personal goals. They can co-exist within learners (Ratelle et 

al., 2007), leading to different academic outcomes. Extrinsic motivation is related to 

performance goals in goal-setting frameworks and to the surface processing of information 
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(Elliot et al., 1999).  

Prior knowledge may affect the forming of extrinsic motivation via increased 

expectations of success elicited by previous experiences of success and achievement (Eccles 

& Wigfield, 2020). This relation, however, was rarely addressed. Liu and Hou (2017) found 

that prior math achievement predicted test-taking motivation, the motivation to perform well 

on a given test in mathematics. Again, the impact on learning outcomes was investigated more 

often. The meta-analysis by Cerasoli et al. (2014) found that extrinsically motivated behavior 

was related to performance with higher proportions of variance explained for quantitative 

outcomes than qualitative outcomes.  

6.2.4 Influences of Potential Moderators 

 Due to the broad field of motivational research, we expect high heterogeneity among 

the effect sizes reflecting associations between prior knowledge, motivation, and learning 

outcomes. Heterogeneity can emerge from features of the primary studies, such as different 

instrumentations, knowledge domains, or features of learning phases. Moderator analyses 

identify such influences of third variables and explain to which degree the results are affected 

by these. They are based on theoretical assumptions as well as on exploratory examinations.  

6.2.5 Aims of the Current Study 

 Although motivational research has significantly contributed to predicting learning 

outcomes, it has not yet been identified as a process variable mediating the relation between 

prior knowledge and learning outcomes using meta-analytic methods. Research syntheses such 

as meta-analyses can provide insights into research questions, although they have never been 

explicitly addressed in primary studies. In particular, the effects of prior knowledge on later 

assessments of motivation were rarely the focus of primary studies. However, they are 

frequently reported as side results and can be used to determine an overall effect size across 

studies. Combining the effects of prior knowledge on motivation and the effects of motivation 
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on learning outcomes allows the investigation of mediation effects. 

 In addition, if these mediation effects can be demonstrated, we test for moderating 

influences of third variables. As described in the motivation section (Chapter 6.2.3), we expect 

larger effect sizes on the task-specific level of motivation than for motivation referring to the 

general and academic levels (Choi, 2005). Furthermore, we conduct exploratory analyses on 

moderating influences of knowledge type (declarative vs. procedural) and interest type 

(situational vs. individual). We formulate three hypotheses: 

1) Hypothesis 1: Prior knowledge is a predictor of future interest, self-concept, self-

efficacy, intrinsic motivation, and extrinsic motivation. 

2) Hypothesis 2: The motivational constructs considered in Hypothesis 1 act as 

mediator variables for the relation between prior knowledge and learning 

outcomes. 

3) Hypothesis 3: The indirect effects are moderated by the specificity levels of 

motivation. Task-specific motivation shows larger effect sizes than motivation on 

the general or academic level. 

6.3 Method 

6.3.1 Literature Search 

The literature search was conducted in the databases PsycINFO and ERIC in September 

2020. For the search, the default settings of the databases were used, which, among other 

components, include title, abstract, and keywords of potentially relevant articles. The search 

string was: (((("pre-test" or "post-test" or "pretest" or "posttest" or "pre test" or "post test" or 

"longitudinal" or "repeated measure*" or "measurement point*") and knowledge) or "prior 

knowledge" or "knowledge change" or "knowledge gain*") and ("motivation*" or "self-

efficacy" or "self-concept" or "interest" or "confidence")). This search string was intended to 

not only capture studies that explicitly focused on the role of prior knowledge and motivation 
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in learning as such. Rather, the search string should also capture designs that assessed 

knowledge at two measurement points and motivation at at least one measurement point. (e.g., 

pre-post educational interventions aiming at the acquisition of knowledge and skills, including 

motivation as a predictor).  

Search results were limited to studies in English in PsycINFO and ERIC. Additionally, 

in PsycINFO, the results were restricted to quantitative studies with human non-disordered 

participants. Unpublished documents were included to reduce the probability of publication 

bias (Dickersin, 1990). After the removal of duplicates, the search results comprised 2857 

research articles. Additionally, 19 articles from manual searches and other research projects 

were considered potentially relevant. A summary of the literature search process and the 

inclusion criteria is depicted in Figure 27.  

6.3.2 Inclusion Criteria 

Based on the meta-analysis by Simonsmeier et al. (2021), studies that met the following 

four criteria were included in the meta-analysis: (1) The study included an assessment of the 

amount of learners’ domain-specific prior knowledge. Only objective quantitative measures of 

domain-specific prior knowledge were included. Self-assessments, composite scores from 

more than one domain, and measures of crystallized intelligence, abilities, achievement, or 

meta-cognitive knowledge were excluded. (2) The study included a measure of knowledge or 

achievement after learning. We excluded learners’ self-ratings of their learning outcomes and 

knowledge of a different domain than the prior knowledge domain. (3) The study included a 

self-reported measure of one of the key motivational constructs, namely interest, self-concept, 

self-efficacy, and intrinsic or extrinsic motivation. (4) The study provided the information 

necessary to compute standardized effect sizes for the mediation analyses. This required 

information on all three relations between prior knowledge, post-test knowledge, and a 

motivational construct. 
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Figure 27 

Flow Chart for the Literature Search and Inclusion Process (Study 2) 
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The 2857 articles from the literature search were screened to determine if they met the 

inclusion criteria. After a coder training, the first and third authors screened 100 titles and 

abstracts for inclusion. The intercoder agreement for this subset of articles was 81%. 

Disagreements were resolved by discussion. The first author screened the remaining titles for 

inclusion in the next step. In sum, 278 articles were obtained for further examination. In the 

next step, the first and second authors checked whether the first 100 articles fitted the meta-

analysis following the inclusion criteria. The agreement for this step was 91%. After that, the 

first author screened the remaining articles for inclusion. In sum, 223 articles were excluded 

resulting in 55 studies included in the meta-analysis. 

6.3.3 Data Coding 

 Study information was coded using predefined coding rules for coder training and the 

final extraction of study information with a standardized coding instrument. Table 8 lists the 

study and effect size characteristics considered for data extraction. The first author and the 

second author independently coded a random selection of 50 effect-size triplets consisting of 

the correlations between prior knowledge, the motivational measure, and post-test knowledge, 

as well as their corresponding characteristics from the full texts. The inter-rater agreement for 

the moderator variables ranged from 64% to 100%. The mean agreement across all moderators 

was 89%. Disagreements were resolved through discussion. After that, the first author coded 

the remaining effect size triplets. If a study included multiple measurement points with unique 

intermediary learning phases, all possible relations between the constructs were coded (e.g., 

T1 knowledge with T2 knowledge and T2 motivation as well as T1 knowledge with T2 

motivation and T3 knowledge). However, correlations with a measure of motivation outside 

the knowledge pre-test and post-test time window were not coded (e.g., T1 motivation with T2 

knowledge and T3 knowledge). 
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Table 8 

Description of the Included Information (Study 2) 

Moderator Description 

Knowledge characteristics (for 

both measurement points) 

 

Broad content domain The mediation might differ based on the broad content domain of the 

assessment. We coded five broad content domains: STEM, language, 

social sciences, health sciences, and other.  

Content domain To test whether the mediation differs between studies analyzing different 

content domains, we coded seven content domains: Mathematics, L1, 

biology, physics, chemistry, social sciences, and other. 

Specific content We coded the specific content.  

General knowledge type We distinguished between declarative and procedural knowledge as 

general knowledge types. 

Specific knowledge type Four specific knowledge types were coded: Facts, concepts, cognitive 

skills, and mixed. 

Number of items We coded the mean number of items. 

Response format Three levels were distinguished in the response format: Multiple choice, 

open, and mixed. 

Reliability We coded the reliability of the knowledge assessment. 

Knowledge characteristics at 

measurement point two 

 

Achievement Whether the knowledge assessment at measurement point two was 

measured via achievement or a knowledge test was coded.  

Feedback We coded yes when feedback was given and no when no feedback was 

provided. 

Grading To assess whether grading influenced the mediation, we coded yes when 

students received grades and no when they did not. 

Same Test T1-T2 We coded whether the same test was given at both measure points with 

yes or no. 

Mediator characteristics  

Motivational construct We coded six levels of motivational constructs: Confidence, self-efficacy, 

self-concept, intrinsic motivation, extrinsic motivation, and interest. 

Type of interest We differentiated between personal interest and situational interest. 

Specificity We coded the specificity of the corresponding motivational construct as 

general, academic, and specific. 

Mediator time The measurement point of motivation could influence the mediation. 

Therefore, we coded six time points of assessment: Before T1, At T1, 

Between T1 and T2, At T2, After T2, and no information. 

Reliability We coded the reliability of the motivation assessment. 
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Table 8 (continued) 

Sample characteristics  

Country To test influences of the country, we coded the country of the primary 

study or, if not stated, of the first author. 

Age group We distinguished between different age groups. We coded the following 

levels: Kindergarten / Preschool, Primary education, Secondary 

education, Higher education, and Other. 

N of the sample We coded the total N of the sample. 

Age We coded the sample mean age of the learners (in years).  

Methodological study characteristics 

Grey literature We coded whether the primary study is grey literature with yes or no.  

Study design We coded whether the primary study was an experiment, quasi-

experimental, or longitudinal. 

Prior knowledge type We distinguished between preexisting prior knowledge or manipulation 

with two levels: Preexisting and Randomization. 

Motivation manipulation We coded whether motivation was manipulated (Yes) or not (No). 

Mean days between intervention 

and transfer test 

We coded the mean number of days between the two measurement points. 

Intervention To test whether lessons or learning environments influence the mediation, 

we coded two levels: yes and no. 

Mean number of sessions We coded the mean number of sessions.  

Mean duration of sessions We coded the mean duration in minutes of sessions. 

Note. Overview of included moderators and the coded categories. STEM - Science, technology, engineering, and 

mathematics; L1 – First language. 

 

6.3.4 Requests for Missing Information in the Articles 

Some of the included full texts formally met all inclusion criteria except for reporting 

the effect sizes necessary for the computations of the meta-analysis. For this reason, we sent 

87 emails to the authors of those articles asking them to provide the missing correlations or the 

data so the effect sizes could be calculated. This procedure obtained 280 additional effect sizes 

from 13 studies. 

6.3.5 Statistical Analyses 

6.3.5.1 Meta-Analytic Integration. To determine the pooled effect sizes for the unique 

paths in the mediation model, we followed the product-of-coefficients strategy by Baron and 
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Kenny (1986). The path pointing from prior knowledge to motivation is called b1, and the path 

pointing from motivation to learning outcomes is called b2. The correlation between prior 

knowledge and post-test knowledge represents the total effect in the mediation model. The 

indirect effect in the mediation model reflecting the mediation was calculated by multiplying 

b1 with b2 for each study. Subtracting the indirect effect from the total effect yields the 

remaining direct effect of prior knowledge on post-test knowledge controlled for motivation. 

To investigate Hypothesis 1, only the b1 paths were considered in which motivation was 

assessed between T1 and T2 or at T2. For Hypothesis 2, we examined the indirect effect of 

each motivational mediator. The effect sizes were inverted whenever low scores represented 

high motivation to reflect the actual relations adequately.  

We applied a random-effects model using the metafor package (Viechtbauer, 2010) in 

R (R Core Team, 2022). Most studies reported more than one relevant effect size because 

multiple measurement points or samples provided valuable information. These effect sizes are 

statistically dependent. For this reason, we employed robust variance estimation (Hedges et al., 

2010) to ensure that dependent effect sizes did not affect the validity of the meta-analytic 

results. In addition, we corrected for imperfect measurements of the knowledge and motivation 

instruments using the formula from Schmidt and Hunter (2015, p. 144) and the reliability 

coefficients stated in the articles. If the reliability of the measures was not stated in the articles, 

no correction was made. 

6.3.5.2 Moderator Analyses. We calculated the mean effect sizes separately for each 

level within a moderator category and determined their confidence intervals and indicators. For 

moderator levels with less than four degrees of freedom, we reported only the mean estimates 

but not the confidence intervals because the test of significance is impaired by the small number 

of observations (Tanner-Smith et al., 2016). Each moderator level was dummy-coded to be 

entered as a predictor in the mixed-effect models. One moderator level served as a reference 
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category in each analysis. It was compared with the other moderator levels to identify 

significant differences. In addition, we computed the amount of explained variance R² for each 

regression model.  

6.3.5.3 Publication Bias. Results from meta-analyses can be compromised by 

publication bias. Large significant effect sizes tend to be published more than insignificant or 

small effect sizes. Therefore, we visually and statistically checked for publication bias using 

funnel plots and Egger regression (Egger et al., 1997) with the metafor package (Viechtbauer, 

2010).  

6.4 Results 

6.4.1 Characteristics of Included Studies and Effect Sizes 

The 55 included studies provided 714 effect size triplets (for the list of included studies, 

see Appendix F). All effect sizes were bivariate correlations. The correlations between prior 

knowledge and learning outcomes ranged from r = -.09 to r = .92, whereas the correlations 

between prior knowledge and motivation ranged from r = -.22 to r = .90, and the correlations 

between motivation and learning outcomes ranged from r = -.16 to r = .94. The primary studies 

have been published between 1994 and 2019 with a median of 2014. Seven of the 55 studies 

were grey literature (13%). The dataset comprised 56382 participants from 80 different samples 

and 14 different countries. The mean age of the samples ranged from 4.35 years to 44.2 years, 

with a median of 14.7, indicating that most of the participants were school students. 

The sample sizes ranged from 22 to 16110 participants, suggesting that small local and 

large national studies were included in the dataset. The time between the measurement of prior 

knowledge and learning outcomes ranged from seven to 2920 days, with a median of 180 days. 

Subdivided by motivational constructs, there were 31 articles for interest, eight for self-

concept, 21 for self-efficacy, 15 for intrinsic motivation, and six for extrinsic motivation. The 
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number of effect size triplets was 310 for interest, 97 for self-concept, 208 for self-efficacy, 74 

for intrinsic motivation, and 25 for extrinsic motivation.  

6.4.2 Main Meta-Analytic Results 

6.4.2.1 Hypothesis 1: Effects of Prior Knowledge on Motivation. Prior knowledge 

significantly predicted motivation at a later measurement point across all the motivational 

constructs considered (rb1). Prior knowledge most strongly predicted interest with rb1 = .409 

(95% CI [.382; .436]) followed by self-concept with rb1 = .306 (95% CI [.268; .344]). The 

correlation between prior knowledge and extrinsic motivation was smaller (rb1 = .176, 95% CI 

[.117; .234]), similar to intrinsic motivation (rb1 = .168, 95% CI [.110; .225]) and self-efficacy 

(rb1 = .139, 95% CI [.105; .172]). For all the pooled correlations, the heterogeneity Index I² 

was high (> 90%, Higgins et al., 2003), indicating that a large proportion of variance in the 

effect sizes was due to influences of moderator variables (Borenstein et al., 2017).  

6.4.2.2 Hypothesis 2: Analyses of Mediation Effects. As shown in Table 9, all paths 

considered in the mediation model were significant, including the indirect mediation paths. The 

estimates of the indirect path coefficients (rMED) were small but significant. The largest estimate 

was for interest as a mediator with rMED = .199 (95% CI [.027; .373]), followed by self-concept 

with rMED = .142 (95% CI [.051; .234]). The indirect effects of self-efficacy with rMED = .077 

(95% CI [.063; .091]), intrinsic motivation with rMED = .050 (95% CI [.024; .076]), and 

extrinsic motivation with rMED = .046 (95% CI [.037; .056]) were slightly smaller. 

The pooled correlation between prior knowledge and learning outcomes, the total path 

(rTOT), across all studies was rTOT = .53 (95% CI [.514; .555]), which is following the results 

from Simonsmeier et al. (2021) concerning the stability of individual differences. 

Heterogeneity among the effect sizes was high, with I² = 99.96%. Depending on the subset of 

effect sizes for each motivational construct, the total effect ranged from rTOT = .287 
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(self-efficacy) to rTOT = .727 (self-concept). All direct paths were significant, implying that none 

of the motivational constructs fully accounted for the association between prior knowledge and 

learning outcomes. 

6.4.3 Moderator Analyses 

6.4.3.1 Hypothesis 3: Specificity Level of Motivation. A moderator analysis of the 

indirect effects averaged over all motivational constructs revealed no significant differences 

between the academic-level and the task-level of specificity (p = .23). There was only one case 

of general specificity and in another case, the level of specificity could not be determined from 

the article. However, considering individual motivational constructs, some mediator levels 

resulted in significant differences: When the instrument measuring interest was formulated on 

the academic level, the estimate was rMED = .025 (95% CI [-.025; .071]), whereas the estimate 

of the indirect effect for task-specific formulations of interest was rMED = .229 (95% CI [.210; 

.248]). This difference was significant (p < .001). The indirect effect for self-concept was also 

significantly stronger when the instrument referred to (task-)specific contexts (rMED = .281, 95% 

CI [.083; .219] for specific; rMED = .129, 95% CI [-.112; .081] for academic, p < .001). However, 

this finding must be interpreted cautiously as fewer than four studies had reported specific self-

concept. No significant differences between the levels of self-efficacy were found despite 

having sufficient different articles for a moderator analysis (p = .513). Not enough articles were 

available for the other motivational constructs to compute reliable results. 

6.4.3.2 Exploratory Moderator Analyses. Averaged over the indirect effects of all 

motivational constructs, the estimate was significantly larger for declarative knowledge (rMED 

= .140, 95% CI [.128; .153]) than for procedural knowledge (rMED = .112, 95% CI [.087, .137], 

p < .001). Taking the subsets of mediators into account, significant differences also emerged 

for interest (rMED = .210, 95% CI [.194; .233] for declarative knowledge; rMED = .030, 95% CI 

[-.040; .100] for procedural knowledge, p < .05) and for self-concept (rMED = .086, 95% CI 
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[.050; .127] for declarative knowledge; rMED = .180, 95% CI [.147; .213] for procedural 

knowledge, p < .001). However, only two studies reported self-concept in connection with 

declarative knowledge, so these results cannot be fully trusted. There were no statistically 

significant differences between declarative and procedural knowledge in the indirect effects of 

self-efficacy. The same finding applies to intrinsic and extrinsic motivation, although there 

were not enough studies to fully confirm these relations.  

The comparison of interest types revealed a significant difference between the indirect 

effects of individual interest and situational interest. On average, the indirect effect for 

individual interest was significantly stronger (rMED = .208, 95% CI [.188; .227]) than for 

situational interest (rMED = .107, 95% CI [.043; .171], p < .01). Twenty-seven studies reported 

effect size triplets for individual interest whereas eight studies reported situational interest, 

allowing this finding to be considered trustworthy. 

6.4.4 Publication Bias 

 The funnel plots on each of the paths are depicted in Appendix G. The examination of 

the funnel plots and the Egger regression test pointed towards an asymmetry of the overall 

correlation between prior knowledge and learning outcomes, thus implying that large 

significant effect sizes were more likely to be published than small or not significant effect 

sizes. For interest, although the Egger test for asymmetry was significant for the b1-path and 

the b2-path, the visual inspection of the funnel plots does not imply that the results were biased 

towards larger effect sizes. Both the visual impression and the Egger tests for intrinsic 

motivation did not indicate a publication bias. However, the effect sizes for self-concept, self-

efficacy, and extrinsic motivation might be affected by publication bias, as supported by 

significant results of Egger regressions. 
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6.5 Discussion 

6.5.1 Main Findings 

The aims of the current meta-analysis were (1) to investigate the predictive power of 

prior knowledge on selected motivational constructs, (2) to test the mediating influence of 

motivation on the relation between prior knowledge and learning outcomes, and (3) to identify 

moderating influences on this mediation. As a first important finding, prior knowledge 

significantly predicted all motivational constructs considered, namely interest, self-concept, 

self-efficacy, intrinsic motivation, and extrinsic motivation (rb1 = .139 for self-efficacy to rb1 = 

.409 for interest). All relations were positive, indicating that prior knowledge poses a resource 

for learners’ motivation. This finding aligns with the framework proposed by Vu et al. (2022). 

The average effect sizes, however, varied depending on the motivational construct. Whereas 

the highest relations were found for interest and self-concept, the predictive quality of prior 

knowledge for later intrinsic and extrinsic motivation and self-efficacy was lower. To our 

knowledge, the current meta-analysis is the first to address the impact of objective prior 

knowledge as assessed with knowledge tests on later motivation. Previous studies focused on 

prior achievement, which is related, but not equal to prior knowledge because achievement also 

includes course grades and teachers’ subjective assessments or learners’ self-evaluations. 

A second important finding of this meta-analysis was that motivation partly mediated 

the relation between prior knowledge and learning outcomes. Thus, successful students that 

scored high on a previous knowledge test before the actual learning phase performed better than 

their peers, partly because they were more motivated by the knowledge they already possessed. 

The strength of the mediating influence depended on the type of motivation being considered. 

Interindividual stability in knowledge test scores could be explained best by interest (rMED = 

.199, 95% CI [.027; .373]) and self-concept (rMED = .142, 95% CI [.051; .234]). The significant 

mediations of interest and self-concept are in line with two prior studies in which domain-

specific curiosity, a construct closely related to interest, and mathematical self-concept 
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mediated the relation between prior knowledge and achievement as well as learning outcomes 

(Watts et al., 2015; Witherby & Carpenter, 2021). The large confidence intervals for the indirect 

effects of interest and self-efficacy imply that the mediating influences could be considerably 

stronger or weaker. Nonetheless, self-efficacy, intrinsic motivation, and extrinsic motivation 

can also explain this issue. Due to the significant remaining direct paths controlled for the 

impact of motivation, the inspected motivational variables alone do not account entirely for the 

shared variance between prior knowledge and learning outcomes. 

The insights from the moderator analyses show that heterogeneity among the mediation 

paths is partly due to methodological differences and construct-related features. Considering all 

motivational constructs, there was no moderating effect of the specificity level of motivation 

on the mediation path. However, an examination of the individual motivational constructs 

revealed that high specificity accompanies larger effect sizes for interest and probably for self-

concept, too. For self-efficacy, no impact of specificity on the strength of mediation was found. 

Considering the findings from Choi (2005) that pointed towards increasing effect sizes with 

increasing levels of specificity for self-efficacy, the impact of specificity does not seem to be 

strong enough to affect the mediating role of self-efficacy. However, the low number of studies 

involved in the moderator analysis might have also affected this outcome. Additionally, the 

type of knowledge (declarative vs. procedural) affected the mediating role of motivation, albeit 

minimally, when considering all motivational constructs at once. The difference became 

considerably larger when only interest was examined. In addition, interindividual differences 

between learners could be better explained by individual interest than situational interest. 

6.5.2 Limitations 

We caution against making causal statements about the influence of prior knowledge on 

motivation and learning using the results of our meta-analysis. First, all effect sizes considered 

in our dataset reflected longitudinal relationships between the variables. The mediation paths 

in our results were significant, meaning there is a significant amount of shared variance between 
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motivation and the two knowledge assessments at two measurement points, and multiplying the 

correlation coefficients b1 and b2 still leads to significant results. However, the question of 

whether the underlying explanation is causal or if motivation acts as a third variable explaining 

variance in both prior knowledge and learning outcomes cannot be answered with our 

methodology. We additionally coded effect sizes in which motivation was assessed with prior 

knowledge or learning outcomes at the same measurement point. From a theoretical perspective 

and with the support of the current results, we conclude that causal effects are plausible, but 

experimental designs would be needed for definite conclusions.  

Second, our results suggest an explanation for why the rank orders of learners’ test 

scores in a sequence of knowledge tests remain stable but do not provide evidence for the 

learning new information. In other words, the results from our study explain why successful 

students in prior knowledge tests are also more successful than their peers in a knowledge test 

after learning, but they do not explain that students with high prior knowledge learn more than 

their less knowledgeable peers because they are more motivated to do so. To make statements 

about learning gains, the analysis of correlations with learning gains would be necessary, but 

for mediation analyses on a meta-analytical level, there are still too few effect sizes. Note that 

neither correlations between prior knowledge and learning outcomes nor correlations between 

prior knowledge and learning gains allow for statements about how much knowledge learners 

acquire. 

6.5.3 Theoretical Implications 

Different forms of motivation partly accounted for the relation between prior knowledge 

and learning outcomes. Our meta-analysis supports the motivation-achievement cycle, as Vu et 

al. (2022) suggested. Motivational constructs related to both expectancy appraisals (such as 

self-efficacy) and value appraisals (such as interest) show significant mediating effects. Framed 

differently, the results suggest a rich-get-richer effect because high-achieving students can rely 

on their motivation formed by prior successes, whereas low-achieving students have to find 
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other sources of motivation. Moreover, it seems complicated to close gaps between learners 

with much and little prior knowledge by promoting interest. Since situational interest is a 

mediator of comparatively little importance, sufficient prior knowledge would be necessary to 

develop a strong individual interest. Researchers interested in the magnitude of effects of prior 

knowledge on motivational constructs should therefore be careful when considering high or 

low degrees of prior knowledge in the sample.  

Eccles and Wigfield (2020) demanded more research on the development of values 

assigned to tasks and the expectancy of success when engaging in these tasks. It is not yet well 

understood from which sources individuals draw their information to form task values and 

expectancies. Although our results do not provide causal explanations, they represent an 

essential first step to considering objective prior knowledge as one of such possible sources.  

6.5.4 Practical Implications 

Our results imply that the most successful students in a group of learners continue to be 

the most successful due to increased experiences of interest, self-concept, self-efficacy, as well 

as intrinsic and extrinsic motivation. Influential motivational theories such as the situated 

expectancy-value theory (Eccles & Wigfield, 2020) and self-determination theory (Ryan & 

Deci, 2002) suggest that one's experience of competence is essential in the emergence of 

motivation. Accordingly, low-performing students may not have acquired sufficient experience 

to develop these forms of motivation. In fact, low-achievers show different motivational 

patterns than high-achievers (McCoach & Siegle, 2001). For this reason, interventions 

supporting students’ sense of competence to raise their expectations may help them catch up in 

their performance. One possible method in such interventions could be a form of feedback that 

emphasizes what knowledge and skills the learner already possesses. Even if the feedback is 

negative, it is possible to prevent lowering the learners’ motivation (Fong et al., 2019). In a 

recent meta-analysis, Wisniewski et al. (2020) found that high-information feedback is more 

effective than simple forms of reinforcement and punishment. However, they also found that 
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feedback has lower effects on motivational outcomes than on cognitive outcomes. If the 

information on learners’ current state of knowledge was included, this would perhaps lead to 

increased effects on motivational outcomes of feedback. 

6.5.5 Implications for Future Research 

 With the results of our study, we wish to stimulate future research on prior knowledge 

in knowledge acquisition processes. Therefore, we propose three suggestions. First, although 

there is a plethora of studies investigating knowledge as a dependent variable, there is much 

less research considering knowledge as an independent variable triggering non-cognitive 

learning processes. The field of motivational research in educational contexts is immense, but 

only a small proportion has considered assessing prior knowledge, motivation, and learning 

outcomes. For example, the construct academic self-concept stimulates lots of research, but 

only eight studies could be included in our meta-analysis, providing correlations between prior 

knowledge, self-concept, and learning outcomes. Despite sufficient studies assessing 

knowledge on two occasions and motivation, only a few studies explicitly addressed mediation 

processes. We consider it fruitful to address the mediation hypothesis concerning motivational 

constructs in further studies. 

 Second, as noted in the limitations, the results of the current study do not provide causal 

explanations. Although longitudinal study designs provide valuable insights into the role of 

prior knowledge on knowledge acquisition processes, we encourage researchers to conduct 

experiments in which prior knowledge is manipulated to investigate the causal effects of prior 

knowledge on knowledge acquisition. These experiments require a pre-learning intervention 

given to the experimental group to form randomized high and low prior knowledge groups. 

Existing designs use naturally occurring differences in prior knowledge to form groups, which 

makes these studies quasi-experimental studies, often influenced by confounding variables.  

 As the third impulse for future research, we want to address additional mediating 

processes not covered in the present study. There may be other non-cognitive mediators 
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explaining the relation between prior knowledge and learning outcomes. For example, learners 

with high prior knowledge and sophisticated epistemic beliefs provided arguments of better 

quantity, quality, and diversity on socioscientific issues (Baytelman et al., 2020). Furthermore, 

we did not analyze models with parallel mediators. It seems reasonable to assume that the 

motivational constructs we considered are also intercorrelated. This raises the question of how 

much of the explained variance is unique to a specific type of motivation. Cheung (2021) 

discusses methods to conduct meta-analyses with multiple mediators simultaneously. 

Additionally, motivation may be part of a series of mediators. In models of self-regulated 

learning, motivation only provides the impetus for behavior that ultimately leads to storing 

information in long-term memory, such as learning strategies (Panadero, 2017). Therefore, 

other factors might mediate the relation between motivation and learning outcomes. 

6.6 Conclusion 

This study is the first meta-analysis to investigate explanations for interindividual 

stability in knowledge scores focusing on the role of motivation. We considered popular 

motivational constructs for our analyses: interest, self-concept, self-efficacy, intrinsic 

motivation, and extrinsic motivation. Prior knowledge assessed via objective knowledge tests 

was found to significantly predict each type of motivation at a later measurement point. We 

replicated the finding from Simonsmeier et al. (2021) regarding interindividual stability in 

knowledge scores and found that motivation partially accounts for it. However, the effects were 

highly heterogeneous, which hampers the prediction of future studies. Our moderator analyses 

revealed that the magnitude of effect sizes depended on methodological aspects and features of 

knowledge and motivation. The current meta-analysis proposed starting points for future 

research of great potential. The effects of prior knowledge on other non-cognitive variables are 

not yet studied carefully enough. Moreover, there may be more process variables explaining 

the relations between prior knowledge and learning outcomes as well as learning gains. 
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7 Study 3: Interventions to Foster Knowledge Transfer in School 

Students: A Meta-Analysis  

7.1 Abstract 

School students would ideally apply their acquired knowledge to new situations and 

problems. However, such knowledge transfer rarely occurs. Researchers have developed 

instructional interventions to promote transfer in students; but it is unknown to what extent and 

with which types of instructional methods transfer can be fostered best. This meta-analysis 

synthesizes studies evaluating how strongly instructional methods in transfer interventions 

foster knowledge transfer compared to control interventions. Herefore, we categorized 

instructional methods according to the learner’s cognitive engagement and transfer processes. 

Additionally, we included information on the transfer distance based on the Taxonomy for Far 

Transfer (Barnett & Ceci, 2002). This meta-analysis used Hedges’ g as effect size to evaluate 

the effect of transfer interventions on knowledge transfer in a random-effects meta-analysis 

with robust variance estimation. We predicted a medium total effect compared to control 

interventions as the main hypothesis. Aspects of the instructional methods and the transfer 

distance were included as moderators. Exploratory moderators were other characteristics of the 

intervention and the samples. The main hypothesis was confirmed: Transfer interventions were 

more successful in promoting knowledge transfer than control interventions across the included 

studies (g+ = 0.285). All instructional methods were equally effective. However, transfer 

interventions were more effective for younger students and lower school levels. Also, the 

intervention setting in the field and successful implementation checks positively influenced the 

results. Besides several limitations and strengths, the results of this meta-analysis have 

important implications for educational research and practice.   
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7.2 Introduction 

7.2.1 Knowledge Transfer 

Knowledge transfer, or short transfer, is the learner’s ability to apply learned content to 

similar or dissimilar tasks in new situations or contexts (Schwartz et al., 2008). It answers how 

learning in one task or situation impacts the responses in other tasks or situations (Adams, 1987; 

Anderson, 1983b; McGeoch, 1942; Perkins & Salomon, 1992). These responses include 

changes in performance because of prior performance in a different task (Gick & Holyoak, 

1987). In other words, transfer contains the transmission of knowledge to new content areas as 

well as new physical, temporal, or functional contexts (Barnett & Ceci, 2002).  

Thus, the more learners transfer their knowledge, the broader the range of new problems 

they can solve. Traditionally, this is a crucial goal at school. Besides the school context, transfer 

of trainings for adults at the workplace has been researched often (e.g., Blume et al., 2010; 

Cheng & Hampson, 2008; Ford & Weissbein, 1997). Studies in this research area answer 

questions on the causes of successful transfer in work contexts (Baldwin & Ford, 1988; Blume 

et al., 2010; Velada et al., 2007), factors that facilitate the transfer process (Grossman & Salas, 

2011; Tannenbaum & Yukl, 1992) or who is most responsible for maximizing transfer in 

trainings (Liu et al., 2008; Subedi, 2004). Accordingly, fostering transfer has been one of the 

central goals of education in the last centuries (Butterfield & Nelson, 1989). In contrast to the 

research area of adult education, trainings to facilitate knowledge and their impact on transfer 

are less explicitly and broadly researched for school students. 

Although knowledge transfer is a central goal of education, simultaneously, it has been 

one of the biggest challenges in the research of learning and teaching (Ormrod, 2012). Transfer 

occurs less than researchers expect, and learners hope (Haskell, 2001). Learners show little 

transfer because of inert knowledge, sole context-specific activation of knowledge, and the 

focus on the situations’ surface characteristics (e.g., Chi & VanLehn, 2012). Teachers often 

must revise content because students do not recognize concepts and principles from their 
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previously learned material (Kaminske et al., 2020).  

Previous meta-analyses only partly assessed the field of knowledge transfer in terms of 

knowledge domains (e.g., Rittle-Johnson et al., 2017; Scherer et al., 2019) or instructional 

methods (e.g., Pai et al., 2015; Pan & Rickard, 2018). Rittle-Johnson and colleagues (2017) 

examined the influence of self-explanations on learning and transfer in mathematics. They 

formulated several guidelines for mathematics educators, including, for example, the design of 

explanations. As a second example, learning computer programming positively transferred to 

mathematical skills (Scherer et al., 2019). Both meta-analyses provide insights into the 

effectiveness of instructional methods in specific knowledge domains. On the other hand, the 

effectiveness of specific methods has also been meta-analytically aggregated. Examples are the 

influence of small-group learning (Pai et al., 2015) and test-enhanced learning (Pan & Rickard, 

2018) on knowledge transfer. These studies provide first insights into the possible influences 

of specific instructional methods on knowledge transfer. However, these meta-analyses only 

comprised aspects of the broad domain of knowledge transfer. 

7.2.1.1 Transfer Theories. There have been many theories on knowledge transfer in 

the last century. Reviews on these transfer theories usually start with the distinction between 

the theory of identical elements (Thorndike, 1924; Woodworth & Thorndike, 1901) and formal 

discipline (Judd, 1908; Marton, 2006; Royer, 1979). In particular, the two theories differ in the 

importance of similar features of the learning and transfer situation. Later theories concentrated 

more on cognitive features, for example, the similarity of productions (ACT* theory; Anderson, 

1993), the importance of analogies (analogical transfer; Gentner & Colhoun, 2010), the 

differentiation between high and low road transfer (Salomon & Perkins, 1989), and perception-

action processes (Day & Goldstone, 2012). On the other hand, theories that purported the 

importance of social and situational aspects are based on Lave (1988) and her critique of 

behavioral transfer theories. These sociocultural theories focused on affordances in situations 
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(Greeno et al., 1993), the framing of contexts (Engle et al., 2012), transfer as the preparation 

for future learning (Bransford & Schwartz, 1999), and the concentration on the learner’s 

perspective (actor-oriented transfer; Lobato, 2003), among other aspects. 

 While researchers agree with the general existence of knowledge transfer, the theoretical 

and practical foundations differ considerably between theories. This makes it difficult to 

operationalize transfer and attribute success in empirical research to exact theoretical 

viewpoints. For this meta-analysis, we tried to systematize existing transfer theories based on 

two underlying cognitive processes in transfer, Abstraction and Concretization. 

7.2.1.2 Abstraction and Concretization. Several theories on knowledge transfer focus 

on cognitive processes. They base on the assumption that the probability of retrieving relevant 

prior learning during search processes in memory determines successful knowledge transfer 

(Royer, 1979). Numerous cognitive mechanisms influence knowledge transfer in this search, 

for example, the encoding of representations of current situations or general prior learning 

(Butterfield & Nelson, 1989). Two other opposing cognitive processes are particularly relevant 

to examine transfer: the Abstraction and the Concretization of knowledge.  

Abstraction describes the process of reducing details to subsume concrete examples 

under broad categories to generate less situation-specific knowledge (e.g., Goldstone & 

Sakamoto, 2003; Kaminski et al., 2008). Presenting content in an abstract and generic form 

facilitates knowledge transfer (Sloutsky et al., 2005) by not referencing concrete objects or 

contexts (Schalk et al., 2016). Central theories on transfer purport the importance of cognitive 

processes that can be associated with Abstraction: One of them is identifying identical elements 

in the source and the target domain so that knowledge acquired in one domain can be applied 

in a second domain (Thorndike, 1924). These identical elements were said to be stimulus-

response pairs (Thorndike & Woodworth, 1901) or, later, shared productions (Singley & 

Anderson, 1989). Another relevant process connected to Abstraction is called analogical 
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reasoning. Analogical reasoning aids learners in mapping systems of relations between 

knowledge elements (Mayer & Wittrock, 1996; Singley & Anderson, 1989; Vosniadou & 

Ortony, 1989). Through invoking analogies, learners can identify similar features and 

relationships between cases (Alfieri et al., 2013).  

The Abstraction of learned contents from the original learning context is a crucial 

process in transferring knowledge. Hence, instructors should focus on abstracting contents, for 

example, by teaching knowledge of intermediate generality (Thomas et al., 1992). Also, 

reducing concrete topics improves a person’s knowledge transfer to dissimilar situations (Day 

& Goldstone, 2012). Especially for young children, teaching more abstract tasks instead of 

concrete ones seems to be beneficial (DeLoache, 1991, 1995). 

On the other side, the importance of Concretization is purported by sociocultural 

theories. These theories focus on the social and physical aspects of the learning situation (e.g., 

Suchman, 1987). According to this, learning is situated and cannot be separated from the social 

context (e.g., Greeno et al., 1993; Guberman & Greenfield, 1991; Roth & Jornet, 2013). Starting 

in the late 1980ies, Lave (1988) criticized that cognitive processes of transfer are described 

without their realistic context in previous transfer theories. Therefore, the theory of situated 

learning includes learning and cognition as situated processes based on activities in social 

contexts (Greeno et al., 1993). Moreover, learning is generally seen as a “process of 

enculturation or individual participation in socially organised practices” (Hennessy, 1993, p. 

2). Transfer is realized through peripheral participation, the procedure of taking over behavioral 

and cognitive patterns (Brown et al., 1989; Lave & Wenger, 1991). Therefore, problem-solving 

and its transfer are bound to social practice (Crook, 1991) and the learning context. Other 

theories have been brought forth in this area: The perspectives include transfer as a preparation 

for future learning (e.g., Belenky & Nokes-Malach, 2012; Bransford & Schwartz, 1999; 

Schwartz & Martin, 2004; Stratton, 2020) and the concept of actor-oriented transfer (e.g., 
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Lobato, 2003, 2006, 2012; Lobato & Siebert, 2002). Both criticize the traditional framing of 

transfer as the result of a transfer assessment determined by experts.  

By focusing instructions on the Concretization of knowledge, transfer is enhanced. The 

use of concrete materials promotes the comprehensibility of tasks (Bruner, 1966). Learners 

concentrate on concrete examples rather than abstract verbal instructions (LeFevre & Dixon, 

1986). Additionally, students who learned with concrete physical bills were less likely to make 

conceptual errors in mathematical operations (McNeil et al., 2009). 

Instructional methods in interventions differ in their promotion of either the process of 

Abstraction or Concretization of knowledge while learning. Therefore, most instructional 

methods in interventions can be assigned to either of these two categories. This makes it 

possible to investigate the relative importance of each of the proposed processes for knowledge 

transfer based on the methods in an intervention. 

7.2.2 Instructional Methods 

 Research on the effectiveness of instructional methods has its roots in the domain of 

instructional-design (e.g., An, 2021; Gagné, 1965; Glaser, 1962; Reiser, 2018). Theories on 

instructional-design generally contain guiding principles on how to help learners learn 

(Reigeluth, 1999; Reigeluth & An, 2020). More specifically, these theories focus on the design 

and methods of instructional interventions in varying detail (e.g., Cronbach & Suppes, 1969; 

Perkins, 1992; Reigeluth, 1983; Reigeluth & Merrill, 1979). 

 Instructional methods are “anything that is done purposely to facilitate learning or 

human development” (Reigeluth & Carr-Chellman, 2009, p. 21). They are componential and 

probabilistic (Reigeluth, 1999). Componential means that instructional methods can be defined 

on several levels. Each level contains components that may differ depending on the application 

criteria in interventions. Instructional methods are also probabilistic because applying methods 

does not guarantee the intended outcome; they only increase the probability of it (Reigeluth, 

1999). This probability of success depends on the used method components (Reigeluth, 1999; 
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Reigeluth & An, 2020) as well as on the situation, which comprises aspects of the learner, the 

content, and the context (Honebein, 2022; Honebein & Reigeluth, 2020). 

 There are many instructional methods (e.g., Honebein & Reigeluth, 2020; Reigeluth, 

1999; Treaugust, 2014) that differ in several aspects, for example, the scope or the generality 

(Reigeluth & An, 2020; Reigeluth & Carr-Chellman, 2009). Also, descriptions of instructional 

methods vary in their broadness. Reigeluth and Merrill (1979) proposed three classes of 

instructional variables. According to this, in this meta-analysis, we concentrate on methods that 

were classified as delivery strategy variables: These are methods for conveying the instruction 

to the learners (Reigeluth, 1983) and that are used to carry out the instructional process 

(Reigeluth & Merrill, 1979). Such instructional methods can further be distinguished in their 

fidelity of representation, interactiveness, special capabilities, motivational effects, and cost 

(Reigeluth & Merrill, 1979). Other differentiations include the amount of control instructors 

have (e.g., Treaugust, 2014) or the student’s cognitive processing (e.g., Sternberg, 1981; 

Tobias, 1982). From the perspective of the instructional-design theory, it is plausible that 

instructional methods differ in their promotion of knowledge transfer (e.g., Clark & Voogel, 

1985; Fries et al., 2021; Van Merriënboer & Kirschner, 2017). 

7.2.2.1 Categorization of Instructional Methods. There are several frameworks with 

categorizations for instructional methods that can be used in the context of learning. However, 

most of these frameworks do not explicitly focus on the impact of instructional methods on 

knowledge transfer. The ICAP framework (Interactive-Constructive-Active-Passive 

framework; Chi, 2009; Chi & Wylie, 2014) incorporates students’ overt learning behaviors as 

the basis of their cognitive engagement as reactions to instructional methods and their relations 

to knowledge transfer as a cognitive outcome. It incorporates a taxonomy with four hierarchical 

modes of students’ cognitive engagement. The modes of passive, active, constructive, and 

interactive cognitive engagement have different predicted cognitive outcomes. Whereas passive 
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instructional methods only foster the recall of learned material, the other three modes promote 

the application as well as the transfer of knowledge to new contexts.  

The four modes are independent of the instruction itself. This means that various modes 

of cognitive engagement can occur while learning, regardless of the methods used (Chi & 

Wylie, 2014). Nevertheless, instructional methods can be assigned to the four modes based on 

the expected typical learner’s cognitive engagement. The ICAP framework, initially proposed 

as a theory for interpreting learning research findings (Chi, 2009), has been applied to 

instructional designs in several studies (e.g., Roscoe et al., 2014). Therefore, it is well suited to 

categorize the instructional methods of interventions to foster knowledge transfer in school 

students (Wiggins et al., 2017). Instructional methods that elicit active, constructive, or 

interactive cognitive engagement in students should enable them to transfer learned content. 

7.2.2.2 Combining Cognitive Engagement with Abstraction and Concretization. To 

structure instructional methods, we combined methods according to the learner’s cognitive 

engagement from the ICAP framework (Chi & Wylie, 2014) and the cognitive processes of 

Abstraction and Concretization to form a theoretical matrix (see Table 10). Some moderating 

influences can be expected: We anticipated interactive instructional methods to be the most 

effective, followed by constructive, active, and passive methods, respectively. Additionally, we 

assumed that instructional methods fostering the Abstraction of knowledge promote transfer 

better than methods fostering Concretization. To assess interactions between the two theoretical 

models, the combination of concrete passive and active methods as well as the combination of 

abstract constructive and interactive methods, were expected to be more effective in promoting 

transfer than their counterparts, concrete constructive and interactive methods, as well as 

abstract passive and active methods. 

 

 

 



Knowledge Acquisition and Transfer  128 

 
 

Table 10 

Schematic Representation of the Theoretical Matrix for Instructional Methods 

 Abstraction Concretization 

Passive   

Active   

Constructive   

Interactive   

Note. Matrix of ICAP framework’s modes of cognitive engagement (Passive, Active, Constructive, and 

Interactive) and the cognitive processes Abstraction and Concretization. 

 

7.2.3 Moderators of the Relation Between Interventions and Knowledge Transfer 

 Moderators might influence the relation between interventions and transfer. Previous 

findings purported the importance of the learner’s cognitive engagement (e.g., Chi & Wylie, 

2014) and cognitive processes (e.g., Day & Goldstone, 2012). Furthermore, transfer 

assessments depended on the transfer distance in prior research (e.g., Perkins & Salomon, 

1992). Additionally, we included several exploratory moderators in our analyses that have not 

yet been inspected closely in this context. 

First, we expect that the promotion of interventions on transfer differs according to the 

instructional methods in the beforementioned theoretical matrix with modes of cognitive 

engagement and transfer processes. Interactive methods should foster transfer best, followed 

by constructive, active, and passive methods. Adding to this, we anticipate methods that include 

the process of Abstraction to promote transfer better than methods of Concretization. 

Knowledge transfer also differs based on the assessed type of transfer. Researchers 

distinguish several types of transfer (e.g., Royer, 1979), for example, near and far transfer (e.g., 

Ormrod, 2012). Transfer is called near when knowledge is transferred to a primarily similar 

context. This type of transfer is found relatively often in empirical studies (Perkins & Salomon, 

1992). Far transfer, in which knowledge is transferred to a dissimilar context, is rarer (Haskell, 

2001). To further examine the transfer distance measured in the primary studies, we used the 
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Taxonomy for Far Transfer (Barnett & Ceci, 2002): The taxonomy allows categorizing the 

transfer distance depending on the similarity of the learning and application contexts. Context 

similarity is divided into six context factors: Knowledge Domain, Physical Context, Temporal 

Context, Functional Context, Social Context, and Modality (Barnett & Ceci, 2002). We expect 

that interventions better promote near transfer than far transfer and that the effectiveness of 

instructional methods differs along the six context dimensions. 

 Other factors can be expected to influence the effectiveness of transfer interventions. 

Examples are different subpopulations, for example, the age and school level, and 

characteristics of the interventions. Additionally, differences between knowledge types and 

methodological characteristics could be substantial. These factors were inspected exploratively.  

7.2.4 The Current Study 

In this meta-analysis, we investigated the average effect of interventions (transfer 

interventions) on knowledge transfer in school students compared to control groups and 

comparison interventions (control interventions). Knowledge transfer is a broad field of 

research. Other meta-analyses only partly assessed this field in terms of restrictions on 

knowledge domains (e.g., Rittle-Johnson et al., 2017; Scherer et al., 2019), or on included 

instructional methods (e.g., Pai et al., 2015; Pan & Rickard, 2018). These narrower meta-

analyses leave a research gap open, which currently hinders further insights into this research 

domain. The current meta-analysis closes this gap by including primary studies from various 

knowledge domains and instructional methods on different transfer distances. This leads to the 

question: How effective are transfer interventions generally in promoting knowledge transfer 

compared to control interventions? To answer this question, we formulated the main hypothesis 

(H1): Instructional transfer interventions have a medium effect on knowledge transfer averaged 

over studies and instructional methods compared to control interventions. 

Primary studies seldom used operationalizations provided by transfer theories. 

Therefore, we used empirical evidence from classical transfer studies and intervention studies 
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focusing on knowledge acquisition in educational contexts that assessed knowledge transfer as 

a side result.  

Other variables might influence the effectiveness of interventions on knowledge 

transfer. To examine this heterogeneity, several moderators are considered: First, a theoretical 

matrix comprising the modes of cognitive engagement from the ICAP framework (Chi & 

Wylie, 2014) as well as the cognitive processes Abstraction and Concretization were used to 

categorize instructional methods. Adding to this, we incorporated the differentiation in near and 

far transfer on the six context factors of the Taxonomy for Far Transfer (Barnett & Ceci, 2002) 

as moderators. Several additional exploratory moderators were also included in this meta-

analysis. 

The meta-analysis investigates how instructional methods influence the effectiveness of 

interventions on knowledge transfer. We formulated a theoretical two-dimensional matrix to 

sort the instructional methods: It combined the cognitive processes, Abstraction and 

Concretization of knowledge, and the four modes of cognitive engagement. The allocation to 

this categorization was based on the typical application of the instructional methods in primary 

studies. We formulated three moderator hypotheses based on this model: (H2) Interactive 

instructional methods are most effective, followed by constructive, active, and passive methods. 

(H3) Instructional methods that foster the Abstraction of knowledge promote transfer better 

than methods that foster Concretization. (H4) The combination of concrete passive and active 

methods as well as the combination of abstract constructive and interactive methods are more 

effective in fostering transfer than their counterparts in the theoretical matrix. 

In which way does the transfer distance impact the effectiveness of interventions on 

knowledge transfer? To answer this question, we examined the transfer distance measured in 

the primary studies with the Taxonomy for Far Transfer (Barnett & Ceci, 2002). So, we could 

inspect which intervention fostered near or far transfer on which dimension of the six context 

factors. To assess this moderator, we formulated two hypotheses: (H5a) Interventions better 
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promote near transfer than far transfer, and (H5b) the effectiveness of instructional methods 

differs along the six transfer dimensions. To test hypothesis H5a, we compared interventions 

based on the transfer distance of each of the six context factors. H5b is tested by inspecting the 

interaction between instructional methods and the six context factors. 

We further examined several exploratory moderators to determine the generalizability 

of the advantage of transfer interventions compared to control interventions. We also analyzed 

sample characteristics as well as characteristics of the intervention and the methodology.  

7.3 Methods 

7.3.1 Preregistration 

 This meta-analysis was preregistered (DOI:  http://dx.doi.org/10.23668/psycharchives 

.10015). Since then, the following changes occurred: We concretized the main hypothesis in its 

wording regarding the comparison of experimental and control groups. Additionally, we 

conducted a latent class analysis to reduce the number of instructional methods that would have 

been inspected as individual moderators. Therefore, we also included latent classes in the 

moderator analysis besides analyzing particular instructional methods. 

7.3.2 Literature Search 

Figure 28 summarizes the search and inclusion process for this meta-analysis. Data 

collection included a systematic search conducted in April 2022 in two databases (PsycINFO 

and ERIC) with the following search terms: (knowledge* or concept* or principle* or 

procedure* or skill*) and transfer and (train* or instruct* or facilitat* or interven* or lesson* 

or learning environment*). This search string covers terms for knowledge, transfer, and 

synonyms for interventions. Additionally, the search limits were set to non-disordered 

population and childhood as well as adolescence. This literature search yielded 1663 results in 

PsycINFO. Due to search restrictions in ERIC, other operationalizations of the limitations were 

used: The limit was set to educational settings from early childhood education to secondary 

education (early childhood education or elementary education or secondary education or grade 
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1 or grade 2 or grade 3 or grade 4 or grade 5 or grade 6 or grade 7 or grade 8 or grade 9 or grade 

10 or grade 11 or grade 12 or high school equivalency programs or high schools or intermediate 

grades or junior high schools or kindergarten or middle schools or preschool education or 

primary education or secondary education). This search yielded 1560 results. After the deletion 

of duplicates, 2984 search results remained. An additional explorative search based on cited 

literature in primary studies, reviews, and Google Scholar produced 122 results. 

7.3.3 Inclusion of Studies 

We used the following inclusion criteria to screen titles, abstracts, and full texts: (a) The 

study included at least one measurement point after an instructional intervention that provided 

learning of domain-specific knowledge. (b) The knowledge measured after the instructional 

intervention must be identifiable as transfer of the initially learned contents. It comprised only 

objective quantitative measures of domain-specific knowledge. Measures of meta-cognitive 

knowledge, executive functions, intelligence, basic skills, and self-assessments were excluded. 

(c) The study included an instructional intervention with an experimental or a quasi-

experimental design and at least one group that could be identified as a control or comparison 

group. Both groups learned the same content in the intervention. (d) The study included 

participants whose mean age was 18 or younger. (e) The study provided the information 

necessary to compute standardized effect sizes. Studies that did not fit these inclusion criteria 

were excluded. 

Further exclusion of studies was conducted for the following reasons: We excluded 

studies in which instructional methods did not differ between groups (e.g., Schneider et al., 

2015) and studies that did not provide sufficient descriptions of the interventions (e.g., Toll & 

Van Luit, 2014) or transfer measurements (e.g., Peled & Segalis, 2005).  

We determined study eligibility based on the inclusion criteria in two steps: First, the 

first author and four research assistants screened titles and abstracts of the search hits. The  
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studies were either excluded with reasons or retained to examine the full texts. The research 

assistants double-coded 100 abstracts independently after receiving coder training with the first 

author. The individual agreements were between 80% and 84%. Disagreements were resolved 

by discussion. Two research assistants independently screened each remaining abstract, and 

the first author solved disagreements. In the second step, the full texts were screened and 

excluded if they failed to meet the inclusion criteria. Based on coder training, the first author 

and a research assistant independently coded 50 studies for eligibility. The mean interrater 

agreement for this step was 86%, and disagreements were again resolved by discussion. The 

first author then screened the remaining full texts. 

After contacting authors of articles that did not provide the relevant information, data 

from nine studies was provided via mail. Forty-nine studies could not be included because the 

relevant information was not provided in the study and by the authors. At this point, 811 effect 

sizes from 146 articles were included in this meta-analysis. 

7.3.4 Data Coding 

Data coding was based on a coding manual that entailed predefined coding rules. This 

manual was used for coder training and coding of the articles. The following information was 

gathered for all included studies (see Table 11): We coded several study characteristics, such 

as the authors, the year of publication, and whether the study has been published in a peer-

reviewed journal or as grey literature. Also, we coded whether the instructional intervention 

was explicitly based on a theory of knowledge transfer. Additionally, the total N of both groups 

in the study, the study design and assignment of the participants to groups, the setting, as well 

as the country and the continent were coded. We included the number and duration of sessions 

and the days between the last session and the transfer assessment for each group.  

Characteristics of the sample were coded for the experimental and the comparison 

group. These are the N of the group, the school level, the class, the gender of participants, the 

age group, and the mean age. For cases when the intervention involved more than one class 
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level, we used the mean of the class levels if these were in a maximum range of three classes. 

Otherwise, the class was coded as missing information. The intervention characteristics 

included the group size of the intervention, information about the trainer person and sessions 

(e.g., use of technology), as well as information on implementation checks.  

 

Table 11 

Description of the Included Moderators (Study 3) 

Moderator Description 

Intervention characteristics  

Setting To test whether the influence of interventions on knowledge transfer 

differs between studies using different settings, we coded two settings: 

field and lab.  

Mean number of sessions We coded the mean number of sessions for the experimental and 

comparison groups.  

Mean duration of sessions We coded the mean duration in minutes of sessions for the 

experimental and comparison groups. 

Mean days between 

intervention and transfer test 

We coded the mean number of days between the intervention and the 

transfer test for the experimental and comparison groups. 

Broad content domain The effectiveness of interventions on knowledge transfer might differ 

based on the broad content domain of the training. We coded seven 

broad content domains: STEM, language, social sciences, health 

sciences, humanities, movement, and other.  

Content domain To test whether the influence of interventions on knowledge transfer 

differs between studies analyzing interventions in different content 

domains, we coded 13 content domains: Mathematics, physics, 

chemistry, biology, geosciences, engineering, first language, foreign 

language, history, sports, motion, other, and several. 

Group size of intervention We coded the group size of the intervention as four levels: single, 

small group, whole class, and several.  

Trainer person We distinguished between interventions with different trainer persons: 

researcher, teacher, other, and mixed.  

Technology-enhanced 

learning 

To test whether the influence of interventions on knowledge transfer 

differs between studies with and without technology-enhanced 

learning, we coded the levels yes and no. 

Intelligent tutor To test whether the influence of interventions on knowledge transfer 

differs between studies with and without an intelligent tutor, we coded 

the levels as yes and no. 

Intention to transfer To test whether the influence of interventions on knowledge transfer 

differs between studies with and without the intention to transfer, we 

coded the levels yes and no. 

 



Knowledge Acquisition and Transfer  136 

 
 

Table 11 (continued) 

Moderator Description 

Instructional methods  

Instructional methods We coded 27 instructional methods with yes or no: advance organizer, 

annotated examples, collaborative learning, comparison of annotated 

examples, comparison of concepts, concrete models, concreteness 

fading, demonstration, drill, examples of concepts, explanation, 

feedback, generate drawings, imitation, interleaved practice, 

mnemonic systems, movement, multiple representations, para-

phrasing, problem posing, realistic problems, rehearsal, scaffolding, 

self-explanation, variability of practice and tasks, verbal or written 

instruction, and visualizations. 

Sample characteristics  

Age We coded the sample mean age of the learners (in years) for the 

experimental and comparison group.  

Age group We distinguished between different age groups for the experimental 

and comparison group. We coded the following levels: under 6 years, 

6 to 11 years, 12 to 18 years, and several. 

School level To test whether the influence of interventions on knowledge transfer 

differs between studies including different school levels for the 

experimental and comparison group, we coded the levels kindergarten 

and preschool, primary school, secondary school, and several.  

Class We coded the sample mean class of the learners for the experimental 

and comparison group. 

Gender We distinguished three levels for the experimental and comparison 

group: mixed, female, and male. 

Transfer characteristics  

Knowledge domain We coded the context factor knowledge domain as near or far. 

Physical context We coded the context factor physical context as near or far. 

Temporal context We coded the context factor temporal context as near or far. 

Functional context We coded the context factor functional context as near or far. 

Social context We coded the context factor social context as near or far. 

Modality We coded the context factor modality as near or far. 

Methodological study characteristics 

Grey literature We coded whether the primary study is grey literature with yes or no.  

Study design We coded whether the primary study was a randomized controlled 

trial or quasi-experimental. 

Setting pre-test We distinguished between the different settings of the pre-test with 

two levels: lab and field. 

Setting post-test We coded the setting of the post-test with two levels: lab and field. 

Number of items We coded the mean number of items in the transfer measurement. 

Knowledge type To test whether the transferred knowledge type influences the relation 

between interventions and knowledge transfer, we coded three levels: 

declarative, procedural, and mixed. 
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Table 11 (continued) 

Moderator Description 

Specific knowledge type To test whether the specific transferred knowledge type influences the 

relation between intervention and knowledge transfer, we coded five 

levels: facts, concepts, cognitive skill, motor skill, and mixed. 

Response format To test whether the response format of the transfer assessment 

influences the relation between interventions and knowledge transfer, 

we coded three levels: open, multiple-choice, and mixed. 

Implementation check We coded three levels for the implementation check: yes & successful, 

yes & not successful, and no. 

Continent We coded the continent on which the primary study took place. 

Note. Overview of included moderators and the coded moderator levels. STEM – Science, technology, 

engineering, mathematics. 

 

Additionally, we coded instructional methods that were present in the primary studies. 

We included 25 pre-defined instructional methods based on previous research on knowledge 

transfer (e.g., Jelsma et al., 1990). These were Advance Organizer, Annotated Examples, 

Collaborative Learning, Comparison of Annotated Examples, Comparison of Concepts, 

Concrete Models, Demonstration, Drill, Explanations, Feedback, Generate Drawings, 

Imitation, Interleaved Practice, Mnemonic Systems, Multiple Representations, Paraphrasing, 

Problem Posing, Realistic Problems, Rehearsal, Scaffolding, Self-Explanations, Variability of 

Practice, Verbal or Written Instructions and Visualizations. In the coding process, we added 

the instructional methods Concreteness Fading and Movement based on primary studies. Other 

methods, coded in the category Other, were left out for further analyses because of the scarcity 

of those methods and the variability of this category. Each instructional method was coded 

based on definitions provided by earlier research (see Table 12). We only coded instructional 

methods that the experimental group received but not the comparison group. Instructional 

methods used in both the treatment and the comparison group were omitted.  
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Table 12 

Overview of Instructional Methods 

Instructional Method Description 

Advance Organizer “In all cases I define advance organizers as introductory material at a higher level of 
abstraction, generality, and inclusiveness than the learning passage itself, and an 

overview as a summary presentation of the principal ideas in a passage that is not 

necessarily written at a higher level of abstraction, generality, and inclusiveness, but 

achieves its effect largely by the simple omission of specific detail (Ausubel, 1963, 

1968)” (Ausubel, 1978, p. 252). 

Annotated Examples “As instructional devices, they [worked examples] typically include a problem statement 

and a procedure for solving the problem; together, these are meant to show how other 

similar problems might be solved. In a sense, they provide an expert’s problem-solving 

model for the learner to study and emulate” (Atkinson et al., 2000, pp. 181-182). 

Collaborative Learning “CL [Collaborative learning] is an educational approach to teaching and learning that 
involves groups of learners working together to solve a problem, complete a task, or 

create a product” (Laal & Laal, 2012, p. 491). 

Comparison of 

Annotated Examples 

“Comparison is a general learning process that can promote deep relational learning and 
the development of theory-level explanations (Forbus, 2001; Gentner, 1983, 2003). 

According to structure-mapping theory, comparison acts to highlight commonalities, 

particularly relational commonalities that may not have been noticed prior to comparison 

(Gentner, 1983, 2003)” (Gentner, 2005, p. 251). 

Comparison of 

Concepts 

“Comparison is a general learning process that can promote deep relational learning and 

the development of theory-level explanations (Forbus, 2001; Gentner, 1983, 2003). 

According to structure-mapping theory, comparison acts to highlight commonalities, 

particularly relational commonalities that may not have been noticed prior to comparison 

(Gentner, 1983, 2003)” (Gentner, 2005, p. 251). 

Concrete Models “A concrete model represents a mathematical idea by means of three-dimensional 

objects” (Fennema, 1972, p. 635). 
“Concrete materials, which include physical, virtual, and pictorial objects, are widely 
used in Western classrooms (Bryan et al. 2007), and this practice has support in both 

psychology and education (e.g., Bruner 1966; Piaget 1970)” (Fyfe et al., 2014, p. 10). 

Concreteness Fading “Specifically, we argue for an approach that begins with concrete materials and gradually 
and explicitly fades toward more abstract ones. This concreteness fading technique 

exploits the continuum from concreteness to abstractness and allows learners to initially 

benefit from the grounded, concrete context while still encouraging them to generalize 

beyond it” (Fyfe et al., 2014, p. 10). 

Demonstration “This [demonstration] involves intentionally showing somebody else how to perform a 
task or how to solve a problem” (Gärdenfors, 2017, p. 2). 

Drill “Drill, then, means the ‘formation of habits through regular practice of stereotyped 

exercises’” (Schofield, 2013, p. 45). 

Examples of Concepts “Concerning instruction of declarative concepts, a common feature of textbooks and of 

lectures is to introduce a declarative concept by presenting the definition and then to 

elaborate further by describing concrete examples of how that concept can be applied in 

one or more real-world situations (hereafter referred to as illustrative examples)” 
(Rawson et al., 2015, p. 484). 
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Table 12 (continued) 

Instructional Method Description 

Explanations “Explanations refer to how or why a phenomenon occurs (Chin & Brown, 2000)” 
(McNeill & Krajcik, 2008, p. 54). 

“An “explanation” in science should make sense of a phenomenon, based on other 
scientific facts, and establish the relationships, based on evidence and logical reasoning 

(Berland and Reiser 2008; Osborne and Patterson 2011)” (Yang & Wang, 2014, p. 533). 

Feedback “[…] feedback is conceptualized as information provided by an agent (e.g., teacher, peer, 
book, parent, self, experience) regarding aspects of one’s performance or understanding” 
(Hattie & Timperley, 2007, p. 81). 

“Feedback is a key element in formative assessment, and is usually defined in terms of 

information about how successfully something has been or is being done” (Sadler, 1989, 

p. 120). 

Generate Drawings “In sum, the learner-generated drawings […] are defined as pictorial representations (a) 
that are intentionally constructed to meet a learning goal, (b) that are meant to depict 

represented objects accurately and, (c) for which the learner is primarily responsible for 

construction and/or final appearance” (Van Meter & Garner, 2005, p. 290). 

Imitation “Tomasello (1999) distinguishes between learning by emulation […] and learning by 
imitation, where the learner observes the sequence of the model’s actions and tries to 
perform the same actions (process-oriented learning) (see also Zentall, 2001; Tehrani 

and Riede, 2008)” (Gärdenfors, 2017, p. 2). 

Interleaved Practice “If multiple kinds of skills must be learned, the opportunities to practice each skill may 
be ordered in two very different ways: blocked by type (e.g., aaabbbccc) or interleaved 

(e.g., abcbcacab)” (Rohrer & Pashler, 2010, p. 409). 

Mnemonic Systems “In this discussion a mnemonic device is considered to be a strategy for organizing 

and/or encoding information with the sole purpose of making it more memorable” 
(Bellezza, 1981, p.252). 

Movement “[…] non-verbal behavior - that is, any movement or position of the face and/or the body 

[…]” (Ekman & Friesen, 1969, p. 49). 
→ Non-verbal behavior by the participants that is prompted by instructors (e.g., tracing, 

gesturing, movements in sports) 

Multiple 

Representations 

“Early research on learning with MERs [multiple external representations] concentrated 

on the ways that presenting pictures alongside text could improve readers’ memory for 
text comprehension (e.g., Levin, Anglin, & Carney, 1987). In the last two decades, the 

explosive increase in multi-media learning environments have widened the debate to 

include combinations of representations such as diagrams, equations, tables, text, graphs, 

animations, sound, video, and dynamic simulations” (Ainsworth, 2006, p. 187). 

Paraphrasing “[…] reiterating the information presented in the text in their own words such that no 

new information was added to the material in the form of an explanation” (Ainsworth & 

Burcham, 2007, p. 293). 

Problem Posing “Problem posing refers to both the generation of new problems and the re-formulation, 

of given problems. Thus, posing can occur before, during, or after the solution of a 

problem” (Silver, 1994, p. 19). 

Realistic Problems “[…] most real-world problems are ill defined. […] Ill-defined problems often require 

an individual to search outside sources to find relevant and potentially helpful 

information (Simon, 1978)” (Ormrod, 2012, pp. 423 - 424). 
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Table 12 (continued) 

Instructional Method Description 

Rehearsal “Rehearsal strategies emphasize repetition in various forms ranging from simply 

repeating the names of colors in the spectrum to underlining notes. In general, rehearsal 

strategies are designed to facilitate verbatim recall” (Weinstein, 1987, p. 592). 

Scaffolding “The first key feature that distinguishes scaffolding from other forms of instructional 

support is that it is temporary support that is provided as students are engaging with 

problems (Belland, 2014; Collins et al., 1989; Wood et al., 1976)” (Belland, 2017, p. 
18). 

“Next, scaffolding needs to lead to skill gain such that students can function 
independently in the future (Belland, 2014; Pea, 2004; Wood et al., 1976)” (Belland, 
2017, p. 18). 

Self-Explanations “Self-explanation is an instructional method in which learners are prompted to explain 

to themselves (either orally or in writing) as they study a lesson (such as a textbook 

chapter or a multimedia lesson)” (Johnson & Mayer, 2010, p. 1246).  

Variability of Practice “[…] the confrontation with a highly varied sequence of problems and/or solutions to 

those problems […]” (van Merriënboer, 2012, p.3390). 
“[…] Battig has expanded his earlier interpretation of intratask interference (Battig, 
1972) to represent more general "contextual interference" including factors extraneous, 

as well as intrinsic, to the task being learned” (Shea & Morgan, 1979, p. 179). 

Verbal or Written 

Instructions 

Verbal instructions are “[…] explicit instructions [that] provide precise technical step-

by-step instructions […]” (Meier et al., 2020, p. 2). 

A written instruction is “[…] a written description of the task […]” (LeFevre & Dixon, 
1986, p. 1). 

Visualizations “Visualization is the ability, the process and the product of creation, interpretation, use 
of and reflection upon pictures, images, diagrams, in our minds, on paper or with 

technological tools, with the purpose of depicting and communicating information, 

thinking about and developing previously unknown ideas and advancing 

understandings” (Hershkowitz et al., 1989, p. 75). 

Note. Overview of instructional methods included in the meta-analysis with the respective theoretical 

definition for coding the information. 

 

We categorized the 27 instructional methods in the two-dimensional theoretical matrix 

(see Table 13). Eleven methods were identified as passive methods, whereas ten and five were 

classified as active and constructive, respectively. Only one method, Collaborative Learning, 

was inserted as an interactive method. Overall, we classified 11 methods as belonging to 

Abstraction and 16 methods as Concretization. 
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Table 13 

Assignment of Included Instructional Methods to Theoretical Matrix 

 Abstraction Concretization 

Passive Advance Organizer 

Explanations 

Multiple Representations 

Scaffolding 

Annotated Examples 

Concrete Models 

Demonstration 

Examples of Concepts 

Feedback 

Verbal or Written Instructions 

Visualizations 

Active Concreteness Fading 

Interleaved Practice 

Variability of Practice 

Drill 

Imitation 

Mnemonic Systems 

Movement 

Paraphrasing 

Realistic Problems 

Rehearsal 

Constructive Comparison of Annotated Examples 

Comparison of Examples 

Self-Explanations 

Generate Drawings 

Problem Posing 

Interactive Collaborative Learning  

Note. Matrix of ICAP framework’s modes of cognitive engagement (Passive, Active, Constructive, and 

Interactive) and the cognitive processes Abstraction as well as Concretization with the assignment of 

instructional methods to the categories based on their usual use in interventions. 

 

The coded characteristics of knowledge transfer comprised the differentiation in near 

and far transfer on the context factors Knowledge Domain, Physical Context, Temporal 

Context, Functional Context, Social Context, and Modality (Taxonomy for Far Transfer, 

Barnett & Ceci, 2002). The measurement characteristics contained the measurement of 

knowledge transfer at pre-test and post-test, each with the information about the broad content 

area, the more specific content area, the specific content, the knowledge type, the specific 

knowledge type, the number of items, the response format, the reliability of the measurement, 

and the group size of the assessment. The content of the instructional intervention was coded 

as the broad content area, the specific content area, and the specific content. Last, the means 
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and standard deviations of both groups at pre-test and post-test, other effect size information 

given (e.g., Cohen’s d) as well as the correlation between pre-test and post-test were coded as 

statistical information. 

For most studies, the study design differentiated experimental and comparison groups. 

However, some studies included groups without such a differentiation: For those studies that 

did not provide a classified control or comparison group (e.g., Day & Cordón, 1993), we 

defined the group that received fewer instructional methods as the comparison group. The same 

approach was used for studies that involved several groups without a defined control group 

(e.g., Johnson et al., 2014). 

In the third step, the first author and a research assistant double-coded the information 

of 50 effect sizes. We determined the agreement of categorical variables by percentage; the 

coding of continuous variables with interval scaling was correlated. The variables general and 

specific knowledge types were removed from the analyses because of poor agreement (60% 

for general knowledge type, 66% for specific knowledge type). This result can be attributed to 

the weak distinction between declarative and procedural knowledge in assessments outside the 

mathematics domain. The resulting mean interrater agreement for categorical variables was 

94%, ranging from 70% to 100%. The mean correlation for variables with interval scaling was 

r = .985, ranging from r = .856 to r = 1. Again, disagreements were solved through discussion.  

We contacted corresponding authors if the information required for the meta-analysis 

was not reported in a publication. Thirty-three authors were contacted to request additional 

information. Sixteen authors replied, of which eight supplied missing information (response 

rate: 68%). Moreover, a risk of bias assessment was conducted for all included primary studies. 

The questions for and interpretation of the Risk of Bias assessment were based on RoB2 (Sterne 

et al., 2019) and modified for our purposes (see Tables 22 and 23 in Appendix K).  
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7.3.5 Preparation of Effect Sizes 

We used Hedges’ g (g+) as effect size and converted the given statistical information 

into it. These were mainly means and standard deviations and, in some cases, F-values and 

Cohen’s d. For all studies that provided two measure points, we computed Hedges’ g as the 

mean difference between post-test and pre-test scores, divided by the pooled sample standard 

deviations of the treatment and the comparison group (Morris, 2008). We computed Hedges’ 

g based on the post-test score and the pooled sample standard deviations of the treatment and 

the comparison group for all studies with a post-test but no pre-test. We inspected the 

distribution of the effect sizes (e.g., skewness and kurtosis) before averaging them in the meta-

analysis. 

To correct measurement errors in the dependent variables, we used an attenuation 

correction based on the reliability provided in the studies. If no reliability was reported, we did 

not amend the effect size. The correction was done by dividing Cohen’s d by the root value of 

the reported measurement’s reliability (Schmidt & Hunter, 2015, p. 304; Wiernik et al., 2020). 

We tested for outliers by inspecting Cook’s values (Cook & Weisberg, 1982) using the 

metafor package (Viechtbauer, 2010). Cook’s values, also called Cook’s distance, measure the 

influence of effect sizes on the main result. This is done by removing each effect size from the 

model and summarizing the change this makes in the resulting model (Viechtbauer & Cheung, 

2010). Through this process, outliers that have an excessive influence on the model and need 

further inspection can be identified. Rules of thumb promote several possible cut-off points. 

We removed effect sizes with a Cook’s distance larger than four divided by the total number 

of effect sizes. This applied to 14 effect sizes from 13 studies (Britt & Aglinskas, 2002; Clarke 

et al., 1969; Durnin et al., 1997; Farkas, 2003; Kapur, 2010, 2012; Lamnina & Chase, 2021; 

McNeil et al., 2019; Ngu et al., 2009; Obiagu et al., 2020; Rau et al., 2015; Wagensveld et al., 

2015; Williams & Carnine, 1981). These effect sizes were removed before the following 

analyses. 
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7.3.6 Statistical Analysis 

7.3.6.1 Publication Bias. We tested for publication bias visually as well as statistically. 

For this, we used funnel plots and Egger regressions (Egger et al., 1997). These tests were 

performed using the metafor package (Viechtbauer, 2010) in R (R Core Team, 2022).  

7.3.6.2 Meta-Analytic Integration. We expected heterogeneity in the included 

primary studies. Therefore, we conducted a random-effects meta-analysis (Cooper et al., 2018). 

To inspect differences between groups, we used Hedges’ g as the effect size to evaluate the 

effect of transfer interventions on knowledge transfer compared to control interventions. We 

carried out the analysis with the metafor package (Viechtbauer, 2010) in R (R Core Team, 

2022).  

Most of the primary studies provided several effect sizes. These effect sizes were 

statistically dependent. Therefore, they violated a central assumption of meta-analytical models 

(e.g., Cheung, 2019). To handle these dependent effect sizes, we used robust variance 

estimation (Hedges et al., 2010) provided by the clubSandwich package (Pustejovsky & 

Pustejovsky, 2020) in R (R Core Team, 2022). 

7.3.6.3 Moderator Analyses. We used meta-regressions with robust variance 

estimation to analyze the differences between moderator levels. These are provided by the 

metafor package (Viechtbauer, 2010) and the clubSandwich package (Pustejovsky & 

Pustejovsky, 2020). The mean effect size was computed for every level of each moderator 

variable. The categorical moderators were dummy-coded and entered as predictors in 

regression models. To avoid multicollinearity, we investigated each moderator in a separate 

analysis unless stated otherwise. There were several moderator levels with effect sizes from 

less than five studies per level. These moderators were not further inspected because the results 

could not be trustworthy. 

We included continuous as well as categorical moderators in our analyses. Continuous 
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moderators were square-root-transformed to obtain distributions closer to normal distributions 

(Fidell & Tabachnick, 2003, p. 135). The level with the fewest observations was used as the 

reference level for the categorical moderators. The levels of the categorical moderators, 

inserted as the predictors in the regressions, indicated whether they significantly differed from 

the reference level. We computed the overall significance of the moderator by using the Welch-

Test of Moderators and tested for the remaining residual heterogeneity with the Q-test. 

We coded 27 instructional methods. Compared to the total number of effect sizes, most 

methods provided only a few effect sizes and occurred in different combinations. So, analyzing 

each instructional method as a moderator would have produced less reliable results and enabled 

less clear interpretations. We first conducted a latent class analysis to test for influences of the 

instructional methods. With this analysis, subgroups within the database could be identified. 

We then tested the effectiveness of interventions in each latent class of instructional methods. 

Additionally, we examined our theoretical matrix in which the instructional methods were 

assigned. The effects of the instructional methods at each level were aggregated to determine 

potential differences.  

7.4 Results 

7.4.1 Publication Bias 

Figure 29 shows the funnel plot of the included effect sizes. A publication bias in the 

data would indicate an underrepresentation of effect sizes close to zero. No evidence for a 

publication bias was found in the funnel plot. However, the result of the Egger regressions 

indicated such an underrepresentation of small effect sizes. This should be kept in mind when 

interpreting the results of this meta-analysis. 

7.4.2 Study Characteristics 

 Findings from 151 studies nested in 138 articles with 797 effect sizes in total were meta-

analytically aggregated (overall N = 16589; for the list of included studies, see Appendix H). 

The median sample size for the studies was 43, and the sample mean age ranged from 4.17 to 
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17.45 years. There were 13 studies with children in kindergarten or preschool. Children in 

primary school participated in 51 studies. Additionally, we included 80 studies from secondary 

school and four with participants from several school levels. Seventy-five studies were 

conducted in North America, followed by 40 from Europe, 25 from Asia, and eight from 

Australia. Two studies came from South America and one from Africa.  

 

Figure 29 

Funnel Plot of the 797 Included Effect Sizes (Study 3) 

 

Note. Funnel Plot of included effect sizes. The standard error on the y-axis and the standardized mean 

difference (Hedges’ g) on the x-axis. White-colored area – 90% pseudo confidence interval region; dark 

grey colored – 95% pseudo confidence interval region; light gray colored area – 99% pseudo confidence 

interval region. 

 

 Seventy studies carried out interventions in the knowledge domain of mathematics. 

Twenty, 17, and 10 had been conducted in physics, biology, and first language, respectively. 

Other domains were sports (seven studies), geosciences (six studies), chemistry (four studies), 

engineering (four studies), and foreign language (three studies). Six and two studies could be 

assigned to the levels other and several. 
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 The mean number of sessions in a transfer intervention was 6.98, and their mean 

duration was 47.9 minutes per session. Between the end of the transfer intervention and the 

transfer test was a mean time lag of 3.333 days, ranging from zero to 16.7. Thirty-eight studies 

provided information on interventions that were carried out for single participants. Ninety-six 

interventions included groups, and four studies several group sizes. 

 In 27 studies, a theoretical foundation was explicitly stated. Situated Learning Theory 

was mentioned five times. Abstraction, Identical Elements, and Analogical Transfer followed 

closely with four mentions each. Formal Discipline and Preparation for Future Learning each 

occurred in one study. Six studies were based on several theories. 

 To assess whether there is a risk of bias present in the primary studies, we inspected 

each study based on several questions based on RoB2 (Sterne et al., 2019). The results of the 

Risk of Bias assessment are displayed in Tables 25 and 26 in Appendix K. 

7.4.3 Effect Size Characteristics 

 We examined the included 797 effect sizes on their distribution compared to the normal 

distribution (see Figure 30). These effect sizes ranged from g = -6.874 to g = 8.409, with a 

median of g = 0.239 and a mean of g = 0.292. The skewness of the distribution was 0.927. This 

means that the tail on the right side of the distribution extends towards more positive values. 

Therefore, the distribution was not perfectly symmetrical. The kurtosis was 16.369, which 

means that the distribution was leptokurtic. Therefore, it is more likely to produce outliers than 

a distribution with a smaller kurtosis. In conclusion, the distribution of the effect sizes did not 

fit perfectly into the normal distribution. 

7.4.4 Main Meta-Analytic Results 

7.4.4.1 Knowledge Transfer After Interventions. As expected, the meta-analytic 

mean Hedges’ g was positive. It had a value of g+ = 0.285 (p < .001, 95% CI [.175; .395]), 

which indicated that students were 0.285 standard deviations more successful in transfer 
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measures after transfer interventions than after control interventions. However, the effect found 

is smaller than expected. This finding confirmed the main hypothesis H1 that instructional 

transfer interventions are more effective in promoting knowledge transfer than control 

interventions averaged over studies and instructional methods with the restriction of a small 

instead of a medium effect found (Cohen, 1988). 

 

Figure 30 

Distribution of the Included Effect Sizes (Study 3) 

 
Note. Distribution of included effect sizes (k = 797) in comparison to the normal distribution. Density 

– Density of distribution, Counts – Number of effect sizes. 

 

7.4.4.2 Heterogeneity. The heterogeneity in this meta-analysis comprised two variance 

components. These were the within-study and the between-study variance (Assink & 

Wibbelink, 2016). In our model, the within-study variance was σ1 = .386, and the between-

study variance σ2 = .301. Approximately 8.95% of the total variance could be attributed to 

sampling variance, whereas 51.15% was attributed to differences between effect sizes within 

studies (within-study variance). The remaining 39.90% of the total variance resulted from 
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differences between studies (between-study variance). According to Hunter and Schmidt 

(1990), if the proportion of sampling variance comprises less than 75%, there are potential 

moderating effects because of the substantial variation between effect sizes (Assink & 

Wibbelink, 2016). The significant Q-test for heterogeneity (Q = 6639.022, df = 796, p < .001) 

and the high I² index (I² = 91.05) also indicated a substantial heterogeneity of the effect sizes. 

This might be due to the influences of moderator variables (Higgins et al., 2003). 

7.4.5 Moderator Analyses 

 In the following, we describe the results of the moderator analyses. We inspected each 

moderator in a separate analysis unless stated otherwise. Details on subgroup and moderator 

analyses for each moderator level can be found in Table 22 in Appendix J. 

7.4.5.1 Instructional Methods. There were enough effect sizes for 20 of the initial 27 

instructional methods in the primary studies to conduct moderator analyses. This means that at 

least five studies provided information on that instructional method. So, the moderator analyses 

did not further inspect the methods of Advance Organizer, Generate Drawings, Interleaved 

Practice, Mnemonic Systems, Paraphrasing, Problem Posing, and Rehearsal. 

 The instructional methods differed descriptively in their effectiveness on knowledge 

transfer. The effect sizes for the instructional methods as subgroups ranged from g+ = 0.032 for 

Verbal or Written Instructions (95% CI [-.602; .665]) to g+ = 0.567 for Examples of Concepts 

(95% CI [.088; 1.046]). We also inspected the instructional methods simultaneously in a meta-

regression. All instructional methods were equally effective compared to the reference level 

Verbal or Written Instructions. Additionally, the number of methods had no significant effect 

on knowledge transfer (g+ = 0.055, p = .063). 

7.4.5.2 Cognitive Engagement, Abstraction, and Concretization. We tested whether 

the predictions of the modes of cognitive engagement from the ICAP framework applied to the 

mean effect of instructional methods on knowledge transfer. Table 14 provides an overview of 
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these mean effects in the matrix. In total, 69 studies were categorized as containing only passive 

methods, whereas 40, 17, and seven studies were categorized as solely including active, 

constructive, and interactive methods, respectively. Moreover, we allocated 48 studies with 

methods that included exclusively the cognitive process of Abstraction and 57 with only 

Concretization to the matrix. The ICAP framework and our second hypothesis H2 predicted 

that interactive instructional methods should be most effective, followed by constructive, 

active, and passive methods. However, the analysis indicated no significant differences in the 

effects between the four levels. Descriptively, active methods showed the highest effectiveness 

with Hedges’ g+
MEAN of 0.305 (95% CI [.086; .524]), followed by interactive methods (g+

MEAN 

= 0.289, 95% CI [-.040; .617]) and constructive methods (g+
MEAN = 0.285, 95% CI [.126; 

.445]). Passive methods were the least effective, with a g+
MEAN of 0.269 (95% CI [.140; .398]). 

Hypothesis H2 was not confirmed.  

We also examined the third hypothesis H3; instructional methods that foster Abstraction 

of knowledge promote transfer better than methods that foster Concretization. This hypothesis 

must be rejected as well. Instructional methods that foster Abstraction (g+
MEAN = 0.288, 95% 

CI [.159; .417]) were similarly effective as instructional methods that foster Concretization 

(g+
MEAN = 0.306, 95% CI [.165; .447]). 

Last, we tested whether the combination of concrete passive and active methods as well 

as the combination of abstract constructive and interactive methods were more effective in 

fostering transfer than their counterparts (Hypothesis H4). For this, we combined the mean 

effectiveness of the matrix into four categories: First, concrete passive and active instructional 

methods; second, concrete constructive and interactive methods; third, abstract passive and 

active methods; and fourth, abstract constructive and interactive methods. Abstract 

constructive and interactive instructional methods were less effective (g+
MEAN = 0.261, 95% CI 

[.125; .340]) than abstract passive and active methods (g+
MEAN = 0.299, 95% CI [.128; .469]). 

The other comparison was impossible because there were no methods with enough 
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effect sizes to compute the group of concrete constructive and instructional methods. 

Hypothesis H4 must be rejected. 

7.4.5.3 Latent Class Analysis. Based on the investigation of the instructional methods, 

two conclusions can be drawn beforehand: First, several instructional methods were not found 

often enough in studies to conduct moderator analyses. Second, none of the included 

instructional methods differed from the reference level Verbal or Written Instructions in the 

total moderator analysis. 

Most of the instructional methods were used in combination with at least one other 

instructional method in the interventions. Some instructional methods were combined 

particularly often: Explanations and Multiple Representations were each found in combination 

with 21 other instructional methods. Examples of Concepts, Demonstration, and Variability of 

Practice occurred with 19 other methods. In 56 effect sizes, Demonstration and Explanations 

were used together in interventions. Following closely, Explanations and Examples of 

Concepts were combined in 55 effect sizes. The collective use of Multiple Representations and 

Visualizations was found in 30 effect sizes.  

 Latent classes usually determine subgroups based on participants’ characteristics. 

Instead, we used latent classes to form subgroups of included studies based on the applied 

instructional methods coded dichotomously as yes or no. Each latent class contained multiple 

studies with several instructional methods. We then compared the classes as moderator levels. 

 The estimation of the model was conducted several times, each with a different number 

of specified classes. The number of classes ranged from one to 10 for this estimation. For each 

model, the best log-likelihood value was replicated multiple times with the initial specification 

of 30 random starts and a maximum of 3000 iterations. Table 15 presents the model fit indices 

for the estimated models with one to five classes; the fit indices for the models with more than 

five classes indicated a worse fit. The models with two, three, and four classes had entropies 
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above .80, which is considered high (Clark & Muthén, 2009).  

The BIC (Bayesian Information Criterion), regarded as the most reliable indicator of 

model fit (Nylund et al., 2007; Vermunt, 2002; Weller et al., 2020), was lowest for the model 

with four classes, whereas the sample-size adjusted BIC was lowest for the model with five 

classes. The consistent AIC (Akaike Information Criterion) was lowest for the model with three 

classes. The entropy was highest for the model with four classes with .915. Thus, we chose the 

model with four classes. It fitted the data approximately well. 

 

Table 15 

Fit Indices for The Latent Transitions Model With One to Five Latent Classes 

 
One class Two classes 

Three 
classes 

Four classes Five classes 

Loglikelihood -4904 -4641 -4487 -4391 -4324 

resid. df 771 744 717 690 663 

BIC 9982 9637 9509 9497 9581 

Sample-size 
adjusted BIC 

9900 9469 9255 9158 9155 

cAIC 10008 9690 9589 9604 9715 

Entropy - .804 .851 .915 NaN 

Note. resid. df – residual degrees of freedom; BIC – Bayesian Information Criterion; cAIC – consistent 

Akaike Information Criterion. 

 

The first latent class included 530 effect sizes from 99 studies (e.g., Mullins et al., 

2011). Effect sizes in this class were from transfer interventions with a broad range of 

instructional methods (see Figure 31). Most interventions used Multiple Representations (k = 

171) and Variability of Practice (k = 141) as instructional methods. Therefore, this class was 

labeled Complex Interventions with Multiple Representations and Practice Tasks. The mean 

effect of transfer interventions compared to control interventions in this class was g+ = 0.214 

(p = .001, 95% CI [.084; .343]). The second class contained effect sizes from transfer 

interventions with diverse instructional methods and predominantly Demonstration (k = 77) 

and Explanations (k = 58) (see Figure 32, e.g., Katzlberger, 2005). Eighty-six effect sizes from 

25 studies were assigned to this class, Complex Interventions with Demonstrations and 
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Explanations. It yielded a mean effect of g+ = 0.448 (p = .016, 95% CI [.083; .814]). Effect 

sizes from transfer interventions that mostly relied on the method Self-Explanations were 

assigned to the third class, Self-Explanation (see Figure 33). This resulted in 115 effect sizes 

from 31 studies (e.g., Rittle-Johnson, 2006). Here, the mean effect size was g+ = 0.315 (p < 

.001, 95% CI [.157; .472]). Last, the fourth class included 66 effect sizes from transfer 

interventions that mainly relied on Examples of Concepts (k = 59) and Explanations (k = 53), 

resulting in the latent class Explanations and Examples of Concepts (see Figure 34, e.g., Kyun 

& Lee, 2009). The mean effect for these 66 effect sizes was g+ = 0.315 (p < .001, 95% CI [.157; 

.472]). 

 

Figure 31 

Overview Latent Class 1 (Complex Interventions With Multiple Representations and Practice Tasks) 

 

Note. Overview of class 1 (Complex Interventions with Multiple Representations and Practice Tasks) 

of the four latent classes. The height of the bars and the number above each bar represents the number 

of effect sizes in this class for the respective instructional methods. 
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Figure 32 

Overview Latent Class 2 (Complex Interventions With Demonstrations and Explanations) 

 

Note. Overview of class 2 (Complex Interventions with Demonstrations and Explanations) of the four 

latent classes. The height of the bars and the number above each bar represents the number of effect 

sizes in this class for the respective instructional methods. 

 

Figure 33 

Overview Latent Class 3 (Self-Explanation) 

 
Note. Overview of class 3 (Self-Explanation) of the four latent classes. The height of the bars and the 

number above each bar represents the number of effect sizes in this class for the respective instructional 

methods. 
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Figure 34 

Overview Latent Class 4 (Explanations and Examples of Concepts) 

 

Note. Overview of class 4 (Explanations and Examples of Concepts) of the four latent classes. The 

height of the bars and the number above each bar represents the number of effect sizes in this class for 

the respective instructional methods. 

 

The determination of latent classes is based on the probability of the estimated effect 

sizes’ class membership. This percentage describes the probability of an effect size being 

assigned to one of the four classes. The estimated class membership was 66.50% in Complex 

Interventions with Multiple Representations and Practice Tasks. This means that an effect size 

had a probability of 66.50% to be assigned to the first class. The membership was 10.79% in 

Complex Interventions with Demonstrations and Explanations, 14.43% in Self-Explanation, 

and 8.28% in Explanations and Examples of Concepts. With this distribution of cases, the latent 

class analysis complied with two general requirements (Weller et al., 2020): Each latent class 

of the analysis included more than 50 effect sizes (Muthén & Muthén, 2000) and more than 

5% of the sample (Shanahan et al., 2013).  

The four latent classes did not differ in their results regarding the effectiveness of 

interventions. Compared to the class Explanations and Examples of Concepts (g+
MOD

 = 0.233) 
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as the reference level, the other classes were descriptively more effective but statistically 

nonsignificant. Complex Interventions with Multiple Representations and Practice Tasks 

yielded slightly larger effects (g+
MOD

 = 0.260). Complex Interventions with Demonstrations and 

Explanations (g+
MOD

 = 0.373) and Self-Explanation (g+
MOD

 = 0.327) showed even more 

substantial, but not statistically significant, effects. Information on effect sizes and covariates 

of the four latent classes is presented in Table 16. 

 

Table 16 

Mean Effect Sizes and Covariates for the Four Latent Classes 

 j k g+ p 
95% 
CI 

Num. Dur. 
Time 
betw. 

Total 
N 

Age 
exp. 

Age 
comp. 

Class 1: 
Complex Interventions 

with Multiple 

Representations and 

Practice Tasks 
 

99 530 0.214 ** 
[.084; 
.343] 

7.59 47.79 9.92 67.40 10.64 10.64 

Class 2: 
Complex Interventions 

with Demonstrations 

and Explanations 

25 86 0.448 * 
[.083; 
.814] 

12.74 44.03 9.22 60.45 9.93 10.03 

Class 3: 
Self-Explanation 

31 115 0.315 *** 
[.156; 
.472] 

5.00 42.00 6.01 56.64 13.05 13.06 

Class 4: 
Explanations and 

Examples of Concepts 

12 66 0.258 ns 
[-.014; 
.529] 

3.65 39.13 2.14 62.52 14.98 14.97 

Note. Overview of latent classes; j – Number of studies; k – Number of effect sizes; g – mean Hedges’ 

g; p – p-value (* = p < .05, ** = p < .01, *** p < .001); 95% CI – Confidence Interval; Num. – Mean 

number of sessions in the level; Dur. – Mean duration of intervention sessions in minutes; Time betw. 

– Number of days between last session and transfer assessment; Total N – Mean total N of participants; 

Age exp. – Mean age of participants in experimental group; Age comp. – Mean age of participants in 

comparison group. 

 

7.4.5.1 Near and Far Transfer. We examined to what extent the transfer distance 

moderated the effectiveness of transfer interventions compared to control interventions. For 

this, we used the Taxonomy for Far Transfer (Barnett & Ceci, 2002). In this moderator analysis, 

we analyzed the influence of the transfer distance operationalized as six context factors: 
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Knowledge Domain, Physical Context, Temporal Context, Functional Context, Social Context, 

and Modality. Most of the included studies assessed only near transfer. The context factor with 

the most assessments on far transfer was Modality (k = 290), followed by Temporal Context (k 

= 146), Knowledge Domain (k = 44), and Social Context (k = 43). Physical Context and 

Functional Context were assessed the least as far transfer with k = 13 and k = 7 from four and 

two studies, respectively. Therefore, the following moderator analyses did not inspect these 

context factors.  

There were no statistically significant differences between near and far transfer 

assessments as moderator levels in the effectiveness of interventions. The mean effect of near 

transfer assessments ranged from g+
MOD = 0.221 for Modality to g+

MOD = 0.283 for Knowledge 

Domain. Assessments of far transfer yielded slightly stronger but nonsignificant effects in 

general compared to the near transfer assessments (g+
MOD = 0.261 for Knowledge Domain to 

g+
MOD = 0.419 for Social Context). Therefore, hypothesis H5a must be rejected.  

We also investigated the differences between the six context factors concerning the 

effectiveness of the interventions. We included the four context factors (Knowledge Domain, 

Temporal Context, Social Context, and Modality) as predictors in a meta-regression. This 

moderator analysis did not yield significant results (Test of Moderators, F (df1 = 4, df2 = 473) 

= 1.073, p = .369). There were no differences between the dimensions and hypothesis H5b, the 

effectiveness of interventions differs along the six transfer dimensions, must be rejected. 

7.4.6 Exploratory Moderators 

 In the following, we present the results of the exploratory research questions. First, we 

analyzed the interactions between the four latent classes of instructional methods and the six 

context factors of the transfer distance. Furthermore, the other exploratory moderators that we 

inspected are described in short. These are sample characteristics, intervention characteristics 

as well as characteristics of the method. 
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7.4.6.1 Interaction Between Latent Classes and Transfer Distance. The four latent 

classes did not differ significantly in their effect on near knowledge transfer. This applied to 

all six context factors (see Figure 48 in Appendix I). However, there were descriptive 

differences between the latent classes in the assessments of far knowledge transfer: For the 

context factor Knowledge Domain, the class Complex Interventions with Multiple 

Representations and Practice Tasks yielded negative results on far transfer. For this class, 

transfer interventions promoted far transfer less than control interventions. In the other three 

classes, transfer interventions were more effective than control interventions, and there were 

no or only minor differences between near and far transfer. The class Explanations and 

Examples of Concepts discerned from the other classes for the context factor Temporal Context, 

providing more positive results on far than near transfer assessments. The remaining three 

classes promoted near transfer slightly more than far transfer. All transfer interventions were 

more effective than control interventions. For the context factor Social Context, the class 

Complex Interventions with Demonstrations and Explanations yielded negative results for far 

transfer compared to control interventions. Furthermore, the class Explanations and Examples 

of Concepts promoted far transfer slightly more than near transfer. The other two classes 

fostered near and far transfer similarly more than control interventions. On the context factor 

Modality, the class Complex Interventions with Demonstrations and Explanations was more 

effective for far than near transfer. Conversely, for the class Explanations and Examples of 

Concepts, transfer interventions were less effective than control interventions for far transfer. 

The other two classes did not show differences in their promotion of near and far transfer. Both 

yielded positive results for the two transfer distances. Physical Context and Functional Context 

were comparable for all latent classes because of too few effect sizes for far transfer (k = 13 

and k = 7). In these, all latent classes promoted far transfer less than near transfer; but they 

were more effective than control interventions. 
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7.4.6.2 Other Exploratory Moderators. We investigated several characteristics of the 

sample, the intervention, and the methodology. The mean age of the experimental group 

showed no influence on the effectiveness of interventions. For the comparison group, the mean 

age yielded significant influences. The higher the mean age of the comparison groups, the 

smaller the mean advantage of transfer interventions compared to control interventions 

(g+
CHANGE = -0.168, p = .039, 95% CI [-.327; -.009]). The effects also differed significantly 

between the age groups of the experimental and control groups. Compared to children younger 

than six (g+
MOD = 0.635, for experimental; g+

MOD = 0.635, for control), the group of adolescents 

between 12 and 18 years showed weaker effects on knowledge transfer (g+
MOD = 0.152, p = 

.047, for experimental; g+
MOD = 0.149, p = .046, for control). 

For the experimental group, the school level primary school (g+
MOD = 0.152, p < .001) 

and secondary school (g+
MOD = 0.154, p < .001) differed significantly from the level 

kindergarten/preschool (g+
MOD = 0.919). The advantage of transfer interventions on knowledge 

transfer over control interventions was larger for children in kindergarten or preschool than for 

school students in the experimental conditions. Comparable results are found for the control 

groups: The mean effect for kindergarten/preschool (g+
MOD = 0.944) was significantly more 

potent than for primary (g+
MOD = 0.256, p < .001) and secondary school (g+

MOD = 0.202,  

p < .001). Transfer interventions were significantly more effective than control interventions 

in cases where the comparison group contained children in kindergarten or preschool. 

Consistent with this result, the mean advantage of transfer interventions over control 

interventions was smaller the higher the class level of the experimental and the comparison 

group was (g+
CHANGE = -0.134, p = .047, for experimental group; g+

CHANGE = -0.215, p = .002, 

for comparison group).  

As a characteristic of the intervention, the setting significantly influenced the 

interventions’ effectiveness. Interventions in the field (g+
MOD = 0.311) were more effective in 

fostering knowledge transfer than in laboratories (g+
MOD = -0.149, p = .034). It must be stated 
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here that the moderator level of interventions in laboratories contained only 27 effect sizes from 

seven studies, which limits the interpretation of the result. None of the other intervention 

characteristics yielded significant results.  

For the methodological characteristics, only the implementation check showed 

significant differences between the moderator levels. For cases in which a successful 

implementation check was reported (g+
MOD = 0.772), Hedges’ g was significantly stronger than 

in cases in which the implementation check was not successful (g+
MOD = 0.012, p < .001). The 

same applied to studies that did not include an implementation check (g+
MOD = 0.318, p < .001). 

Transfer interventions that successfully conveyed the intended knowledge were also more 

successful in promoting knowledge transfer than control interventions. 

7.5 Discussion 

7.5.1 Main Findings 

This meta-analysis investigated the effect of transfer interventions for school students 

on their knowledge transfer compared to control interventions. As expected in the first 

hypothesis H1, transfer interventions were more effective in promoting knowledge transfer 

than control interventions with a Hedges g+ of 0.285. This means that instructional methods in 

transfer interventions promoted knowledge transfer better than control interventions that did 

not include these methods. According to this, the experimental groups had a higher mean score 

in the assessment of knowledge transfer after interventions than the comparison groups. 

The main result is in line with previous findings on knowledge transfer, for example, in 

work contexts (e.g., Blume et al., 2009; Cheng & Hampson, 2008; Ford & Weissbein, 1997) 

or studies on specific knowledge domains (e.g., Kaminske et al., 2020; Rittle-Johnson et al., 

2017; Scherer et al., 2019). Kaminske and colleagues (2020) purported the importance of 

several instructional methods (e.g., multiple examples and interleaving) to foster knowledge 

transfer in biology. Also, the method of Self-Explanations in mathematics yielded an effect of 

g = 0.46 (k = 9, 95% CI [.16; .76]) for immediate and g = 0.32 (k = 6, 95% CI [.02; .63]) for 
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delayed transfer tests in a meta-analysis (Rittle-Johnson et al., 2017). Similar results are found 

for the impact of programming trainings on programming as near transfer (g = 0.75, 95% CI 

[0.39, 1.11]) and on mathematical skills as far transfer (g = 0.57, 95% CI [0.34, 0.80]) in school 

students (Scherer et al., 2019). Compared to these examples of prior research on knowledge 

transfer, our main result is similar but smaller. This was expected because of the broader range 

of included studies in several knowledge domains and with several instructional methods. 

Moreover, we included not only true control groups but also treated groups that learned with 

fewer instructional methods in an intervention. 

Concluding the first hypothesis, transfer interventions positively impacted school 

students’ knowledge transfer more than groups that did not learn with these methods. Our 

results are comparable to prior findings, underlining the trustworthiness. The finding speaks 

for the importance of additionally promoting knowledge transfer in school students by 

providing transfer interventions in several domains. 

7.5.2 Moderator Variables 

The moderator analyses showed that the meta-analytical results were stable for most of 

the inspected moderators. Transfer interventions were more effective in promoting knowledge 

transfer than control interventions across instructional methods and transfer distance. Only 

some of the exploratory moderators significantly influenced the effect of transfer interventions. 

We found no differences in the effectiveness of instructional methods based on the 

learners’ cognitive engagement and the cognitive processes of Abstraction and Concretization. 

The passive, active, constructive, and interactive methods did not differ in their promotion of 

knowledge transfer. The second hypothesis H2 must be rejected. Contrary to our third 

hypothesis H3, instructional methods that foster Abstraction (g+ = 0.288) were slightly less 

effective than those that foster Concretization (g+ = 0.306). Unlike our hypothesis, there were 

no advantages for methods that fostered the Abstraction of learned contents. Also, in contrast 

to our fourth hypothesis H4, abstract constructive and interactive instructional methods were 
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less effective (g+ = 0.261) than abstract passive and active methods (g+ = 0.299). All included 

categories of instructional methods were equally effective in fostering knowledge transfer. 

Therefore, our three moderator hypotheses H2, H3, and H4 were rejected.  These results imply 

that instructional methods from all theoretical categories positively affected knowledge 

transfer. Contrary to the prediction of the modes of cognitive engagement from the ICAP 

framework, not only the active, constructive, and interactive but all four modes promoted 

knowledge transfer. Our results show no advantage for the expected cognitive engagement 

based on the methods or the assumed cognitive transfer process. This speaks for the possibility 

of successfully fostering knowledge transfer in school students with various instructional 

methods. 

There were no significant differences between near and far transfer in the effectiveness 

of interventions on the context factors Knowledge Domain, Temporal Context, Social Context, 

and Modality. We inspected the possible influences of the transfer distance based on the 

Taxonomy for Far Transfer (Barnett & Ceci, 2002). Interventions were equally effective on 

near and far transfer assessments. However, most of the primary studies included only near 

transfer. In conclusion, the results of far transfer must be interpreted with caution. Previous 

studies showed higher effects for near than far transfer (e.g., Scherer et al., 2019). This is in 

alignment with the prediction in the theoretical differentiation of transfer that far transfer is 

only scarcely found (e.g., Perkins & Salomon, 1992). However, we did not find differences in 

near and far transfer. This result could be attributed to the fact that most interventions included 

only near transfer assessments. Moreover, we could not analyze the factors Physical Context 

and Functional Context because of the scarcity of effect sizes for far transfer. 

The influence of intervention characteristics on knowledge transfer was stable across 

most of the examined exploratory moderators. Only the following exploratory moderators 

impacted the effectiveness: For both groups, age, school level, and class were significant 

predictors. The higher the age group, the school level, and the class level, the lower the mean 
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effect of transfer interventions on knowledge transfer compared to control interventions. The 

mean age of the comparison groups was also a significant moderator, pointing in the same 

direction. This speaks for the necessity of early interventions to promote knowledge transfer 

more effectively. Furthermore, the setting of the intervention and the implementation check 

showed significant differences in the effectiveness of interventions. Interventions conducted in 

the field led to better results in transfer assessments. Also, when a successful implementation 

check was included in the study, the students had a higher mean knowledge transfer score 

afterward.  

The exploratory moderator analyses demonstrated that the characteristics of the sample 

and the setting must be considered when carrying out a transfer intervention. Lower school 

levels, classes, and ages of participants should be preferred. Transfer interventions seem to 

have more effect on knowledge transfer for younger students. Furthermore, conducting a 

transfer intervention in a realistic setting appears helpful. Interventions that included a positive 

implementation check successfully taught the intended knowledge; this resulted in better 

applications of this knowledge in transfer assessments.  

Regarding the moderator analyses, most of the inspected moderators did not show 

influences on the effectiveness of interventions. This leads to the assumption that transfer 

interventions are generally more effective than control interventions in promoting knowledge 

transfer. 

7.5.3 Limitations  

There are some methodological as well as content-related limitations in the included 

primary studies. Methodologically, two aspects must be mentioned: The first limitation refers 

to the control interventions. We included control groups that only received the same content 

but no instructional methods in addition to regular school instructions as well as comparison 

groups that participated in an intervention but learned with fewer instructional methods. The 

effect of transfer interventions compared to less extensive interventions is expected to be lower 
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than compared to true control groups (e.g., Scherer et al., 2019). Therefore, it is assumable that 

we underestimated the general advantage of transfer interventions. 

Second, most of the primary studies did not describe the details of their instructional 

interventions. This obstructs the assessment of the entirety of the used methods. Additionally, 

the absence of clear definitions and descriptions of instructional methods in the primary studies 

limits the generalizability. We coded the instructional methods based on definitions proven in 

past research. However, there are no unified definitions and classifications for instructional 

methods. This complicated the coding of primary studies and limits the generalizability of our 

results because different usages of instructional methods can lead to different cognitive 

engagement activities and outcomes (Chi & Wylie, 2014). 

Similarly, our first content-related limitation includes questions on the definition of 

transfer. As mentioned before, there are several definitions of knowledge transfer. This leads 

to different transfer assessments. Primary studies varied in the usage of the word transfer and 

its measurement. We coded assessments that fitted the definition of knowledge transfer 

presented above. These included measurements labeled as transfer in primary studies and 

measurements that carried other labels but fitted the definitions (e.g., application item, Kapur, 

2010). This approach yields the risk of missing single transfer assessments with other labels or 

including assessments labeled as transfer but not genuinely meeting the definition above. 

The second content-related limitation addresses the four modes of cognitive engagement. 

As mentioned earlier, the modes are independent of the instruction itself (Chi & Wylie, 2014). 

Therefore, the same instructional method can cause different cognitive engagement activities 

in students. We sorted the instructional methods based on the expected cognitive engagement. 

However, it is possible that these methods were used differently in primary studies without 

addressing it. This could have caused other modes of cognitive engagement than expected 

based on our theoretical matrix. For example, the presentation of Examples of Concepts is 

coded as passive in our matrix. However, in a primary study, this method could be combined 
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with underlining relevant parts of the example without addressing this in the article, making it 

an active method. Such other usages of the instructional methods would explain the similar 

effects of all four modes of cognitive engagement that we found in the moderator analysis. 

7.5.4 Implications 

7.5.4.1 Implications for Education. The findings provide several educational 

implications, especially for interventions that facilitate knowledge acquisition at school. The 

main result confirms the advantage of transfer interventions over control interventions in the 

promotion of knowledge transfer. This means that transfer interventions with instructional 

methods are generally more helpful in fostering knowledge transfer than control interventions. 

The setting of interventions was a significant moderator. Transfer interventions carried out in 

realistic school settings were more effective than in laboratories in promoting knowledge 

transfer. Additionally, the number and duration of sessions and the number of instructional 

methods used in interventions did not significantly influence the effectiveness of interventions 

on knowledge transfer. Short sessions and using single methods are comparably effective to 

using multiple methods in longer sessions. This aligns with the practical restrictions in school 

education: Knowledge transfer can be achieved by using few methods in short sessions. This 

speaks for the realization of short interventions that include only selected methods. Such 

interventions can be integrated into the regular school curriculum. 

Age, school level, and class were significant moderators. The higher the age, school 

level, and class, the smaller the effect of transfer interventions on knowledge transfer compared 

to control interventions. This finding underlines the importance of interventions for younger 

children in kindergarten or preschool. Furthermore, because of the more flexible curriculum in 

kindergarten and preschool, interventions that facilitate knowledge acquisition and transfer can 

more easily be conducted at that time. 

Additionally, there were no differences between the broad and narrow knowledge 
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domains. Interventions in STEM domains have been researched more often (k = 643) than in 

other broad content areas (e.g., Language, k = 49; Social Sciences, k = 4). Within the STEM 

domains, interventions were comparable in their effectiveness on knowledge transfer (e.g., 

biology, physics). Interventions to promote knowledge transfer could be applicated in a broad 

range of knowledge domains at school based on the results of prior research. Other domains, 

for example, language or social sciences, were researched less often. There is a need for more 

primary studies in these areas. 

The matrix of the four modes of cognitive engagement and the cognitive processes of 

Abstraction and Concretization provides a helpful structure for practitioners. Trainers can use 

this structure and the instructional methods to construct trainings that aim at knowledge 

transfer. The instructional methods generally promote knowledge transfer in interventions for 

school students. On the other hand, the number of methods in trainings had no significant 

influence on the effectiveness. Therefore, practitioners can choose individual methods for their 

training that are consistent with their needs. 

7.5.4.2 Implications for Future Research. This meta-analysis also yields several 

implications for future research in knowledge transfer. First, the matrix used in this meta-

analysis should be extended by other instructional methods that have not been included. To 

achieve this goal, additional research in defining instructional methods is needed. By providing 

explicit definitions of instructional methods, future studies can be more precise in their results. 

This will make it easier to aggregate results across primary studies. 

Further investigations on single instructional methods compared to others can provide 

insights into the relative importance of instructional methods for knowledge transfer. A more 

profound basis can be built by systematically comparing methods with each other. This might 

then be a solid starting point for broader guidance for practitioners as well as further studies in 

the research domain of knowledge transfer. 
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We used a latent class analysis to cluster effect sizes based on the interventions’ 

instructional methods. These latent classes were then used as moderator variables. This 

approach yielded the advantage that instead of 27 separate moderators, we only investigated 

four classes with enough effect sizes to report more reliable results. Other meta-analyses that 

include a broad range of moderators should further inspect this methodological approach. 

This meta-analysis inspected interventions for school students, but it might also be 

interesting to sum up the evidence in adult education, apart from the work context. Studies in 

higher or later education might also yield varying effects of interventions on knowledge 

transfer. The age, school level, and class of the groups significantly influenced the effectiveness 

of interventions. Each of these moderators pointed in the direction that interventions were more 

effective for younger students. Comparing this result to adult participants could provide further 

results on the best timing for interventions to foster knowledge transfer across the lifespan. 

7.5.5 Conclusion 

In this meta-analysis, we compared experimental groups that received instructional 

methods in interventions to comparison groups that learned with fewer methods in their 

knowledge transfer afterward. Altogether, transfer interventions showed an advantage in 

promoting knowledge transfer in school students (g+ = 0.285) compared to control 

interventions. These effects were stable across most moderator variables, such as the transfer 

distance. Additionally, the learners’ cognitive engagement and transfer processes did not yield 

significant differences regarding knowledge transfer. However, when conducting transfer 

interventions, the age and school level of the participants, as well as the setting and the 

successful learning of contents, should be kept in mind. These findings demonstrate the general 

advantage of transfer interventions in fostering knowledge transfer in school students compared 

to control interventions.  
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8 General Discussion 

This dissertation aimed to investigate three key processes associated with knowledge. 

These are the relations between knowledge types, motivational mediators between prior 

knowledge and knowledge after learning, and influences on knowledge transfer. More 

precisely, we investigated the following questions: How are conceptual and procedural 

knowledge longitudinally related in mathematics? Do motivational variables mediate between 

prior knowledge and knowledge after learning? How strongly do instructional methods foster 

knowledge transfer in interventions for school students? Three meta-analyses were conducted 

to answer these questions. Six key insights are drawn from the results of the studies in this 

dissertation. The discussion starts with presenting the key insights (Chapter 8.1). It is followed 

by practical implications for education (Chapter 8.2) and recommendations for future research 

(Chapter 8.3). Last, a short take-home message in the form of a conclusion complements the 

content of this general discussion (Chapter 8.4). 

8.1 Key Insights 

The results of the three studies can be broadly summarized in six general key insights. 

The first key insight consists of the finding that there are significant cross-sectional as well as 

longitudinal relations between conceptual and procedural knowledge in the domain of 

mathematics. Second, prior conceptual as well as procedural knowledge in mathematics 

predicts later knowledge in the same knowledge type. The third key insight shows that the 

mediation of the relation between prior knowledge and later knowledge by motivational 

variables differs based on the assessed knowledge type. A fourth key insight presents the 

advantages of promoting knowledge transfer in young learners. Fifth, the importance of near 

transfer compared to far transfer in school settings is discussed. By conducting a latent class 

analysis, it is possible to include classes of instructional methods as moderating variables in a 

meta-analysis, providing more profound results than individually analyzing each method. This 
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process is included as the sixth key insight of this dissertation. 

In the following, each of the six key insights are briefly explained. They build on the 

results of the three studies presented in this dissertation and yield further general outcomes. 

The first two key insights are based on Study 1, the third is drawn from Study 2, and the last 

three are results from Study 3. 

8.1.1 Key Insight 1: Relations Between Conceptual and Procedural Knowledge in 

Mathematics 

Study 1 demonstrated that conceptual and procedural knowledge in mathematics were 

connected via bidirectional predictive relations. These relations were strong (Orth et al., 2022) 

and similarly high (βC1P2 = .270, 95% CI [.221, .318]; βP1C2 = .220, 95% CI [.172, .268]). 

Additionally, conceptual and procedural knowledge showed significant cross-sectional 

relations at measurement points one (rC1P1 = .398, 95% CI [.354; .443]) and two (rC2P2 = .243, 

95% CI [.113; .354]). Both knowledge types were significantly interconnected cross-

sectionally as well as longitudinally.  

This finding contributes to the debate on whether conceptual and procedural knowledge 

can be measured as independent knowledge types or if they are too closely interconnected 

(Baroody et al., 2007; Faulkenberry, 2013; Lenz et al., 2020; Lenz & Wittmann, 2020). There 

is a significant cross-sectional relationship between the knowledge types. However, it is 

feasible to interpret the correlations as small to medium (Cohen, 1988). Based on the size of 

the correlations found in Study 1, the knowledge types can be measured as partially separate 

constructs.  

This aligns with the empirical findings by Lenz and colleagues (2020), who developed 

an instrument that differentiated between conceptual and procedural knowledge by only using 

tasks attributed to one of the knowledge types. By considering cognitive processes associated 

with conceptual and procedural knowledge, the authors adapted the taxonomy for learning, 

teaching, and assessing (Anderson & Krathwohl, 2001) and specified knowledge elements 
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decisive for each knowledge type in fraction addition and subtraction. They concluded that 

most previous tasks could be solved using conceptual as well as procedural knowledge and that 

they assessed only specific aspects of each knowledge type (Lenz et al., 2020). According to 

the authors, developing instruments in mathematics that successfully differentiate between 

conceptual and procedural knowledge is possible. 

Because of the statistically significant correlations between conceptual and procedural 

knowledge at measurement points one and two in Study 1, advancements in measurements of 

the individual knowledge types are essential for further research. Improving the accuracy of 

measurements makes more precise interpretations of the results and the relations between 

conceptual and procedural knowledge possible. These measurements should consider specific 

tasks for the knowledge types (Gabriel et al., 2013; Lenz et al., 2020). Additionally, 

Faulkenberry (2013) argues that not only the selection of tasks but also the strategies employed 

on them are important to consider. Students can employ different strategies on the same task 

based on conceptual or procedural knowledge. For example, the magnitude comparison task, 

in which two fractions are compared, is often considered a conceptual task (e.g., Hecht & Vagi, 

2012). Nonetheless, using rote strategies like comparing cross-products, the result could be 

interpreted as procedural knowledge (Boston et al., 2003; Faulkenberry, 2013; Faulkenberry & 

Pierce, 2011). Researchers must consider these differences in strategy use when constructing 

instruments that differentiate conceptual and procedural knowledge. 

The explanatory power of this finding is currently limited to the knowledge domain of 

mathematics. However, more insights are possible by improving definitions and measurements 

of conceptual and procedural knowledge in other knowledge domains. If knowledge can be 

differentiated into conceptual and procedural knowledge, it will also be related cross-

sectionally and longitudinally in other knowledge domains. 
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8.1.2 Key Insight 2: Conceptual and Procedural Knowledge Predict Themselves in 

Mathematics 

Study 1 showed that conceptual and procedural knowledge predicted themselves 

longitudinally. We found significant relations from conceptual knowledge at measurement 

point one to measurement point two (βC1C2 = .402, 95% CI [.346; .448]) and procedural 

knowledge at measurement point one to measurement point two (βP1P2 = .336, 95% CI [.291; 

.380]). The finding speaks for the medium stability of both knowledge types. Prior conceptual 

knowledge predicted later conceptual knowledge, and prior procedural knowledge predicted 

later procedural knowledge. This means that children with more prior knowledge showed more 

later achievement in the same knowledge type.  

This result is in alignment with previous findings (Bempeni & Vamvakoussi, 2014, 2015; 

Hallett et al., 2010; Hecht & Vagi, 2010, 2012; Lenz & Wittmann, 2020). For example, Hecht 

and Vagi (2010) identified four profiles of conceptual and procedural knowledge in fourth-

grade students: Lower concepts as expected, lower concepts and higher procedures as expected, 

higher concepts and lower procedures as expected, and higher concepts and higher procedures 

as expected (Hecht & Vagi, 2012). These knowledge profiles showed little stability from fourth 

to fifth grade. By improving conceptual and procedural knowledge, children with different 

knowledge profiles can profit from instructions and increase their knowledge (Gabriel et al., 

2013; Hallett et al., 2010, 2012).  

Lenz and Wittmann (2020) speak for the necessity of differentiated considerations of 

knowledge profiles to derive concrete support strategies. Children with lower procedural 

knowledge but sufficient conceptual knowledge can rely on the latter, whereas children with 

low procedural and conceptual knowledge need further support (Lenz & Wittmann, 2020). 

Individual differences in knowledge types also adhere to differences in teaching. Therefore, 

teachers should assess children’s prior conceptual and procedural knowledge to adjust their 

teaching to individual needs. 
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According to Study 1, conceptual and procedural knowledge predicted themselves 

longitudinally. This finding adds to the existing research on the influence of prior knowledge 

on learning outcomes (e.g., Simonsmeier et al., 2022). It is vital to foster conceptual and 

procedural knowledge in mathematics education because both knowledge types influence later 

achievement in the same knowledge type. 

Limiting the generalization, the relations in Study 1 are restricted by the reliability of the 

measurements. Both knowledge types tend to be interconnected, making it challenging to 

measure each of them without the influences of the other (Baroody et al., 2007). Nonetheless, 

the correlations between the knowledge types found in Study 1 are low to medium size (see 

Chapter 8.1.1). It is possible to conclude that the measurements sufficiently captured both 

knowledge types. 

More research is needed to answer whether this finding applies to other knowledge 

domains as well. The differentiation in conceptual and procedural knowledge is less researched 

outside of the domain of mathematics. Additionally, whether these knowledge types are 

separable and whether such differentiation is essential in other knowledge domains is mostly 

unknown.  

8.1.3 Key Insight 3: Mediation of Motivational Variables on the Relation Between Prior 

Knowledge and Learning Depends on the Knowledge Type 

Study 2 showed that the influence of motivational mediators differed based on the 

assessed knowledge type of the learned contents. The meta-analysis differentiated between 

declarative knowledge and procedural knowledge. For the mediator interest, the total effect 

was stronger for declarative knowledge (rMED = .210, 95% CI [.194; .233]) than for procedural 

(rMED = .030, 95% CI [-.040, .100]). The inverse was found for self-concept (rMED = .086, 95% 

CI [.050; .127] for declarative knowledge; rMED = .180, 95% CI [.147; .213] for procedural 

knowledge). However, only two studies provided information on interest in declarative 

knowledge. This limited the explanatory power of the result.  
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By considering the two knowledge types, interest seems to be a more crucial mediator 

for declarative knowledge, whereas self-concept yielded significantly more influence on 

procedural knowledge. Both results appear to be plausible: Interest helps in acquiring 

declarative knowledge, which includes facts and concepts. If learners find topics interesting, 

they spend more time on activities related to that field (Tobias, 1994) and acquire concepts and 

facts easier in that domain. Self-concept, on the other hand, benefits the execution of 

procedures. Learners with a strong self-concept have a positive image of themselves which 

predicts how the person performs procedures (Bong & Skaalvik, 2003; Rosenberg, 1979).  

In examining text comprehension, several studies inspected the impact of interest on 

declarative knowledge. Text comprehension can be categorized as declarative knowledge if 

operationalized as explicit content knowledge (McCarthy & McNamara, 2021). Schiefele 

(1990, 1992) examined the influence of interest-related topic knowledge on text 

comprehension. In these studies, interest yielded a significant effect on deeper comprehension. 

In a later study, interest affected the recall of total idea units and central ideas as well as the 

coherence of recall (Schiefele & Krapp, 1991). These findings were consistent with other 

studies (e.g., Alexander et al., 1994; Entin & Klare, 1985).  

Self-concept affects procedural knowledge positively. A stronger academic self-

concept was related to more positive motivation (Harter, 1986) and behavior in learning 

situations (Wigfield & Karpathian, 1991). One example is that learners with a higher self-

concept took more coursework (Marsh & Yeung, 1997). This led to better achievement 

outcomes (Marsh et al., 1999).  

However, there are limitations to this finding. The motivational constructs themselves 

are more innately connected to the knowledge types. Theories on the development of interest 

focus more on concepts and cognitive components which can be better constituted as 

declarative knowledge (e.g., Alexander et al., 1994, 1995). Self-concept describes the learner’s 

representation of themselves and their abilities (e.g., Beane & Lipka, 1984; Hattie, 2014; 
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Shavelson et al., 1976). The term ability is more closely connected to the theoretical 

representation of procedural knowledge. Therefore, by correlating measurements of interest 

and self-concept with declarative and procedural knowledge, it is assumable that there are 

stronger correlations for those constructs that are theoretically more similar. Additionally, 

according to Tobias (1992, 1994), affective constructs can only indirectly lead to learning by 

influencing its cognitive processes (Schiefele et al., 1992). This demands more thorough 

research in the future. 

Teachers or instructors should use the interactions found in Study 2 in educational 

settings by providing supportive offers for learners. Promoting learners’ interests and self-

concepts aids knowledge acquisition for both types of knowledge. Further research is needed 

to show how it is possible to apply these supportive offers best in the school curriculum. The 

instructional methods inspected in Study 3 might yield influences not only on knowledge 

acquisition and transfer but on motivational factors in students as well (e.g., feedback; 

Wisniewski et al., 2020). Those motivational factors might again play a role as mediators 

between prior knowledge and knowledge after learning. Further research is needed to test this 

idea. Drawing on the results of Study 1 and Study 2, further research could also examine 

motivational mediators on the cross-sectional and longitudinal relations between conceptual 

and procedural knowledge in mathematics.  

8.1.4 Key Insight 4: The Promotion of Knowledge Transfer Should Start at a Young Age 

The school students’ age significantly influenced the effectiveness of transfer 

interventions in Study 3. The younger the children, the more instructional methods in transfer 

interventions promoted knowledge transfer compared to control interventions. This speaks for 

the conduction of transfer interventions at kindergarten or preschool. Several theoretical and 

practical arguments for this add to the finding of Study 3. 

From a theoretical perspective, transfer interventions include the acquisition of 

knowledge that is transferred afterwards. Based on the differentiation in conceptual and 
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procedural knowledge, younger children were found to rely more on procedural knowledge 

than older children (Hecht et al., 2003; Gelman & Williams, 1998; Halford, 1993; Hiebert & 

Lefevre, 1986; Schneider et al., 2009). However, we did not find significant differences based 

on the students’ age in Study 1 in mathematics. Conceptual and procedural knowledge were 

bidirectionally related for both younger and older children. This speaks for the possibility of 

fostering knowledge as procedural or conceptual knowledge or as both types. Moreover, prior 

knowledge is among the most influential predictors of later knowledge (e.g., Simonsmeier et 

al., 2022). Thus, providing a solid knowledge base at a young age prepares children for later 

knowledge acquisition. These two arguments further underline the relevance of early 

instructional interventions. 

Practically speaking, applying instructional interventions at school is limited in time 

and resources. There is a curriculum that needs to be considered. However, transfer 

interventions at preschool or kindergarten are less bound to those restrictions because of a more 

flexible framework for the general time and content management. This enables teachers to 

incorporate transfer interventions more freely and target them according to the children’s 

needs. 

Several factors should be considered by providing transfer interventions for young 

children: Young children do not learn effectively through the planned teaching of subjects 

(Nutbrown, 2006). Instead, the exploration of and engagement with different situations as well 

as learning through playing are crucial (Nutbrown, 2006; Tizard & Hughes, 2008). 

Furthermore, it is conceivable that motivational factors mediate prior knowledge and 

knowledge after learning in young children. This motivation can be fostered, for example, by 

encouraging children to believe that they can succeed by supporting their autonomy in learning 

(Deci, Nezlek, et al., 1981; Deci, Schwartz et al., 1981; Koca, 2016; Vallerand et al., 1997).  

Some characteristics of young children might mediate the relation found. Gopnik and 

colleagues (2015) provided two reasons why young children were better at learning unusual 
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abstract causal principles than older ones and adults (Gopnik et al., 2015; Lucas et al., 2014; 

Seiver et al., 2013): Young children are more flexible in their learning, whereas older learners 

are more efficient (e.g., Buchsbaum et al., 2012; Chrysikou et al., 2013; Gopnik et al., 2017). 

This flexibility helps in learning new strategies and topics. Additionally, learning something 

new, instead of relying on previously inferred general principles, is more difficult for older 

learners because of their broader prior knowledge (Gopnik et al., 2015). Children have limited 

cognitive abilities, for example, reduced cognitive control. This aids in learning language, 

using probabilistic information, and solving causal-reasoning tasks (Thompson-Schill et al., 

2009). The faster developing procedural system (Gualtieri & Finn, 2022; Munaka et al., 2011), 

the increased neural plasticity (e.g., Lenneberg, 1967; Woolley, 2012), and the generally 

greater exploration (e.g., Gopnik, 2020; Nussenbaum & Hartley, 2019) are additional 

influential factors. 

Transfer interventions are more effective in promoting knowledge transfer for younger 

than older learners. This result can be used in practical settings by conducting transfer 

interventions in kindergarten or preschool. Also, the general framework at school, based on 

limitations in time and resources, speaks for incorporating interventions before entering school. 

Teachers must consider children’s characteristics in learning because there might be mediating 

influences, for example, the cognitive differences between young and older learners. 

8.1.5 Key Insight 5: Current Research Concentrates on Near Knowledge Transfer in 

School Students 

According to Study 3, most primary studies only provided information on near 

knowledge transfer. It is possible to differentiate knowledge transfer into near and far transfer 

depending on the similarity between the learning and the transfer situation. This transfer 

distance can be inspected on several context factors (Barnett & Ceci, 2002): knowledge 

domain, physical context, temporal context, functional context, social context, and modality. 

Intervention studies can be ranked on the six context factors, providing a profound basis for 
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inspections. However, the classification of near and far transfer does not imply a clear limit 

because of the fluent transition of both transfer types (Chi & Wylie, 2014). Therefore, in Study 

3, we differentiated near and far transfer based on prior research (Simonsmeier et al., 2022). 

Assessments of far transfer were mainly found for the factor modality, followed by temporal 

context. Far transfer was less often found in the context factors knowledge domain, social 

context, physical context, and functional context. 

This limited the results of Study 3 primarily to statements on near knowledge transfer 

in school students. This result is not surprising: It is assumable that near transfer is more 

important for learning at school than far transfer because of practical reasons. Students are 

pressured to learn much content in several school subjects that they need to transfer to related 

subjects to succeed immediately. A small transfer distance is typical for the knowledge domain 

(learning and tests on the same topic), physical context (learning and tests at school), functional 

context (learning and tests are clearly academic), and social context (learning and tests are 

mostly in class). One could assume that temporal context and modality are the factors that 

might vary the most in classical school assessments (learning and tests are several days apart; 

learning and tests differ in their modality). As described above, the number of effect sizes in 

Study 3 for far transfer in the six context factors confirmed this. 

Far transfer is not the focus of interest for the institution school for most of the inspected 

context factors. This makes the results of Study 3 more precise for interventions conducted at 

school. All examined instructional methods help promote near transfer compared to groups that 

learned with no or fewer instructional methods. However, the focus on near transfer might not 

apply to the teachers’ goals. They pursue the goal of enabling far transfer in students. 

Nevertheless, teachers need to adhere to the set framework in terms of restrictions on time and 

resources.  

Future research should investigate the differences between near and far transfer in 

school students after knowledge interventions. This can be realized by systematically varying 
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the transfer distance on the six context factors according to the Taxonomy of Far Transfer 

(Barnett & Ceci, 2002). This might yield insights into possible support for teachers and students 

to enable far knowledge transfer that can be realized at school. 

8.1.6 Key Insight 6: Moderator Analyses Can be Enriched with the Use of Latent Class 

Analyses 

Study 3 examined 27 instructional methods as potential moderator variables that might 

influence the relationship between interventions and knowledge transfer. Most of these 

methods occurred only sparsely and in varying combinations in the included interventions, 

making separate moderator analyses negligible. To avoid this problem, we conducted a latent 

class analysis of the instructional methods. This analysis produced four latent classes based on 

the responses to the 27 observed indicators (Nylund-Gibson & Choi, 2018). These classes 

represented unidentified subgroups (Weller et al., 2020) that shared outward characteristics 

(Hagenaars & McCutcheon, 2002). These class memberships were then used as moderator 

variables, each with enough effect sizes to constitute reliable results that allow further 

interpretations. The classes were Complex Interventions with Multiple Representations and 

Practice Tasks, Complex Interventions with Demonstrations and Explanations, Self-

Explanation, and Explanations and Examples of Concepts.  

In contrast to other possible approaches in which instructional methods may be grouped 

by content-related aspects, the latent class analysis yields several advantages. The process of 

identifying latent classes of instructional methods is systematic and transparent. The latent class 

analysis is a model-based approach (Hickendorff et al., 2018; Spurk et al., 2020). With this, it 

permits a mathematical evaluation of the representation of the included data in the proposed 

latent class model (Nylund-Gibson & Choi, 2018). The number of classes is systematically 

identified by class enumeration and fit indices (Muthén, 2003). Because the class level is a 

latent variable, class membership is based on probability and calculated as a function of its 
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manifest data and the model parameters (Bray et al., 2015; Lanza & Cooper, 2016; Lanza et 

al., 2013). 

There are prior meta-analyses that used latent class analysis in the form of hierarchical 

Bayesian latent class meta-analyses (e.g., Dendukuri et al., 2012) and latent classes in models 

of meta-analyses in medicine (e.g., Walter et al., 1999; Yin et al., 2012). However, this 

approach was seldom done to moderator variables (e.g., Cooper & Lanza, 2014). In this 

example, subgroups of children were identified by their comprehensive profiles across nine 

characteristics regarding the beneficial effect of the Head Start Program for these groups 

(Cooper & Lanza, 2014). The latent moderation approach uncovered variability within 

subgroups and extended the one-dimensional nature of traditional moderation analyses (e.g., 

Aiken & West, 1991). With this, more complex structures could be identified (Cooper & Lanza, 

2014; Lanza & Cooper, 2016). 

This approach makes it possible to simultaneously look at various moderators when 

there is insufficient evidence for every moderator. Using the four latent classes in Study 3, their 

differences in promoting knowledge transfer could be investigated. The latent classes varied 

descriptively, but not significantly, in their results regarding the effectiveness of transfer 

interventions. This speaks for the general advantage of transfer interventions compared to 

control interventions. However, a more precise description of included instructional methods 

would enhance the trustworthiness of latent classes based on these. Additionally, there is a need 

for further general research to compare single moderators with latent classes as moderating 

variables in meta-analyses. 

8.2 Practical Implications 

Several practical implications can be concluded from the results of the three studies. 

Study 1 showed positive bidirectional predictive relations between conceptual and procedural 

knowledge in mathematics. This supported the iterative model (Rittle-Johnson et al., 2001): 

Both knowledge types, conceptual and procedural knowledge, yielded further improvements 
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for the other type and themselves. Acknowledging the significant longitudinal relations found 

in Study 1, both knowledge types should be incorporated into mathematics education. 

However, it seems unnecessary to prescribe one of the knowledge types as a starting point 

because school students show different knowledge profiles (e.g., Hallett et al., 2010; Hecht & 

Vagi, 2010, 2012). These findings lead to the assumption that it is feasible for teachers to start 

the instruction with procedural or conceptual knowledge because they both positively influence 

each other and themselves. Further, combining both knowledge types in the beginning could 

be even more beneficial for improving knowledge for all knowledge types of school students. 

Nevertheless, teachers should also consider the characteristics of the sample and the subdomain 

of mathematics when constructing learning environments. 

Teachers need to pay attention to the students’ motivation. By increasing their interest 

and self-concept, teachers can support the success of their students’ learning of declarative and 

procedural knowledge. Educators generally agree on fostering motivation toward learning and 

school (Anderman & Midgley, 1998; Irvin, 1997). Nevertheless, motivating school students is 

challenging because of physiological and psychological changes based on developmental 

processes and learning environment characteristics (Midgley, 1993). Such characteristics 

include task structure, evaluation strategies, and the quality of teacher-student relationships 

(Eccles & Midgley, 1989). Teachers work with several heterogeneous groups of students in a 

short amount of time. This makes it challenging to maintain high motivation for every student. 

Teaching methods should be inspected regarding their influence on motivation. Such methods 

to increase motivation in school students reach from whole learning arrangements (e.g., 

inquiry-based learning; Cairns & Areepattamannil, 2019; Srisawasdi & Panjaburee, 2019) to 

individual methods in regular school settings, for example, incorporating the identification with 

academics to support the students’ self-concept (Osborne & Jones, 2011). Furthermore, 

multimedia learning settings are purported to influence motivational factors positively. 

Examples are augmenting reality game-based learning (Pellas et al., 2019) and immersive 
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virtual reality (Di Natale et al., 2020). By applying such methods, students can profit from the 

positive influence of motivational factors on their knowledge after learning. 

Transfer interventions for school students should incorporate characteristics of the 

sample and the setting. The age group, the school, and the class level of both groups as well as 

the mean age of the control groups affected this result. Transfer interventions were generally 

more effective for younger than older students compared to control interventions. As early as 

in kindergarten, instructional interventions promoting knowledge provide students with an 

accurate knowledge basis for further education. Besides other recent studies (e.g., Simonsmeier 

et al., 2022), Studies 1 and 2 also showed that prior knowledge affected later knowledge. These 

findings underline the importance of interventions for young students that equip them with 

accurate knowledge. Adding to this, the school level and the class of the experimental and 

comparison groups were significant moderators on the advantage of transfer interventions. The 

higher the school level and class, the smaller the effectiveness of interventions with 

instructional methods compared to control interventions. This complies with previous findings: 

Several meta-analyses found small-group reading interventions more effective for younger 

than older students (Hall & Burns, 2018; Scammacca et al., 2007, 2015). However, Suggate 

(2016) found similar effects for reading comprehension interventions pre- and at school. The 

setting of the intervention and the success of implementation checks were also essential 

moderators. Interventions conducted in realistic settings with successful implementation 

checks on the learned content positively influenced the advantage of transfer interventions. 

This contradicts findings on the generally stronger effects of laboratory research (e.g., Vanhove 

& Harms, 2015). However, it adds to previous results on transfer in the work context, in which 

trainings in the field and lab had similar effects on post-training knowledge (Blume et al., 

2010). The effects found in our meta-analysis were independent of the number of methods used 

and the number and duration of sessions. Short sessions with fewer instructional methods are 

as effective as longer sessions with more instructional methods. This underlines the possibility 
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of including transfer interventions in the school curriculum. Teachers and schools should 

conduct transfer interventions to equip their students with the knowledge they can later transfer 

to other topics and situations. 

8.3 Recommendations for Future Research 

The results of this dissertation yield several recommendations for future research. These 

recommendations can be categorized as methodological recommendations (Chapter 8.3.1) and 

content-related recommendations (Chapter 8.3.2). Methodological recommendations mainly 

concentrate on further developing the one-stage MASEM, using a MASEM in mediation 

analyses, more elaborate models than the cross-lagged panel model, and conducting latent 

classes as representational moderators. Content-related recommendations comprise the 

definition of conceptual and procedural knowledge in knowledge domains other than 

mathematics, the closer inspection of motivational variables as well as the inclusion of more 

person-related and environmental variables in the relationship between prior knowledge and 

learning, as well as the integration of definitions of knowledge transfer and instructional 

methods. 

8.3.1 Methodological Recommendations 

As mentioned earlier, including structural equation models in meta-analytic 

investigations in the form of Meta-Analytic Structural Equation Models (MASEM) comprises 

several advantages. However, there are still possible improvements to the method of the one-

stage MASEM. Two examples are described in the following: Up to this point, it is not possible 

to analyze dependent effect sizes except by choosing one of the dependent effect sizes 

randomly, choosing one justifiably, or averaging them on the sample level. There are methods 

for dealing with dependent effect sizes in other meta-analytical models (e.g., robust variance 

estimation, Hedges et al., 2010). Such methods are also conceivable for one-stage MASEM. 

Second, examining only two moderator levels simultaneously in categorical moderator 

analyses is possible. By examining more than two moderator levels in a moderator analysis, 
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the relative importance of each level can be inspected. These improvements are important to 

gain a better insight into the relations between conceptual and procedural knowledge. Future 

research should include re-analyzing the model of Study 1 concerning the number of dependent 

effect sizes and levels of the categorical moderators. 

Study 2 showed mediating influences of motivational factors on the relation between 

prior knowledge and knowledge after learning. Traditionally, this mediator model was 

examined by analyzing the correlations of all three relations according to the product-of-

coefficients strategy (Baron & Kenny, 1986). In future research, conducting a MASEM for this 

analysis could improve the insights the results provide. Constructing the model as a structural 

equation model makes it possible to control usual problems, such as missing correlations 

(Cheung & Cheung, 2016). Additionally, by conducting a MASEM, it is possible to analyze 

moderating effects on each path coefficient of the whole SEM instead of separate analyses of 

individual paths of the mediation model. Re-analyzing the model of Study 2 using a MASEM 

could yield more insights into the importance of motivational mediators and the possible impact 

of other moderator variables on this mediation. 

Another methodological recommendation refers to the use of cross-lagged panel 

models. As outlined in Study 1, other, more elaborate models yield several advantages (e.g., 

Random-Intercept Cross-lagged Panel Model; Mund & Nestler, 2019). One advantage is the 

possibility of distinguishing between-person and within-person variance (Orth et al., 2021). 

However, the restriction for using such advanced models in primary studies is the availability 

of at least three measurement points. Researchers in primary research should remember that 

they must use three or more measurement points to apply elaborate models to the data. 

In Study 3, instructional methods were aggregated to latent classes because of the 

scarcity of effect sizes for individual methods and varying combinations in the included 

primary studies. These latent classes were then used as moderator variables to produce more 

profound insights into the influence on the effectiveness of transfer interventions compared to 
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control interventions. This approach could yield advantages for other meta-analyses that 

include a broad range of moderators with few effect sizes. While there is evidence for the 

general usage of latent classes in meta-analyses (e.g., Dendukuri et al., 2012; Walter et al., 

1999; Yin et al., 2012), moderator variables have rarely been determined by this approach until 

now (e.g., Cooper & Lanza, 2014). Further research is needed to explain the differences 

between the influence of single moderators and latent classes as moderating variables. 

8.3.2 Content-related Recommendations 

In mathematics, researchers usually use the differentiation between conceptual and 

procedural knowledge and consider these two knowledge types in their studies. It is assumable 

that both knowledge types also occur in other knowledge domains, such as STEM or literacy. 

Sénéchal and colleagues (2001) and VanScoy (2019) proposed theoretical models of emergent 

literacy that incorporate conceptual and procedural knowledge, among other factors. Also, 

there have been mentions of conceptual and procedural knowledge, for example, in research 

on technology education (Jones, 1997; McCormick, 1997, 2009), physics (Hestenes, 1987; 

Taasoobshirazi & Carr, 2008), and biology (Lawson, 2001; Lawson et al., 2000). However, 

most measurements used in previous studies have no clear distinction between the knowledge 

types. Aspects of conceptual and procedural knowledge should be identified and classified in 

tasks and measurements to determine the importance and relations in the respective domain. 

This could be the basis for further research on longitudinal relations between knowledge types 

in domains other than mathematics. The results of this research would yield important 

information for researchers and teachers on the development of knowledge and educational 

approaches in knowledge domains outside of mathematics. 

Motivational factors affect the relation between prior knowledge and learning. This 

result was shown in Study 2. However, other person-related factors have not been included in 

this meta-analysis. By integrating 38 meta-analyses, Schneider and Preckel (2017) identified 

several student variables related to academic achievement. Next to intelligence, prior 
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achievement, and strategies, variables of motivation and personality were important. Besides 

the motivational factors described in Study 2, the personality factors conscientiousness and test 

anxiety yielded large effect sizes (Schneider & Preckel, 2017). Such personality variables 

should be considered as potential mediators when researching knowledge acquisition as well. 

The Motivation-Achievement Cycle (Vu et al., 2022) purports the additional impact of 

social factors. These social factors themselves are not part of the motivation-achievement 

interactions. However, they affect a person’s expectancies and values. Examples are culture or 

verbal persuasion (Vu et al., 2022). By influencing learners’ motivation, these factors could 

indirectly impact the relation between prior and later knowledge. Further research should 

include social factors as possible moderators on the mediating effects of motivation. 

Besides including other person-related and social factors, the inspected motivational 

variables could be examined more closely concerning knowledge types. As mentioned earlier, 

motivational variables, for example, interest and self-concept, are operationalized in 

measurements without respect to different knowledge types. Therefore, the finding that the 

construct of interest yielded more influence on declarative knowledge and self-concept on 

procedural knowledge could be partially attributed to the conceptualizations of the assessments 

used in the primary studies. Further research could concentrate on the development of 

measurements concerning the assessed knowledge type. 

As presented in Chapter 2.3, the theoretical background of knowledge transfer is diverse 

and contradictory. There are many theories with different opinions on the reasons for 

knowledge transfer developed in the last centuries. Researchers in the domain of knowledge 

transfer should put more effort into unitizing the field of transfer theories in future research. 

The diversity of transfer theories makes conducting studies in this research area difficult. By 

constructing an inclusive theory of knowledge transfer, the primary studies could also be better 

compared to the effectiveness of knowledge transfer. Acknowledging that this is an unrealistic 

plea, knowledge transfer should be more clearly defined and operationalized in future studies. 
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This would allow more profound secondary analyses that better capture the kind of transfer 

examined in the primary study. 

Last, Study 3 showed that instructional methods were not well-defined in the research 

domain of knowledge transfer. By defining these methods more precisely, comparing studies 

more efficiently with each other would be possible. With this, instructional methods and their 

impact on knowledge transfer can be better inspected. Several instructional methods from the 

primary studies were included in the meta-analysis. However, there are plenty more 

instructional methods that are even less well-defined. It would be essential to define and 

examine these methods in future studies. 

8.4 Conclusion 

The three studies in this dissertation encompass three critical processes in the research 

domains of knowledge acquisition and transfer. The results demonstrated bidirectional 

predictive relations between conceptual and procedural knowledge in mathematics. 

Furthermore, motivational factors, for example, interest and self-concept, partially mediated 

the relation between prior knowledge and knowledge after learning. Lastly, instructional 

methods in transfer interventions helped promote knowledge transfer in school students 

compared to control interventions. These results enhance the understanding of how knowledge 

types are interrelated and give insights into person-related and environmental variables that 

affect knowledge and transfer.  

Using secondary analyses did justice to the broadness of the inspected processes. Each 

of the three processes has its dedicated research area. By systematically including primary 

studies in these research areas, the informative values of the meta-analyses were more 

prominent than in ordinary primary studies. With this advantage, statements based on the 

results can be more general.  

The results of this dissertation demonstrate that knowledge types are bidirectionally 

interrelated and knowledge acquisition, as well as transfer, are influenced by third variables. 



Knowledge Acquisition and Transfer  188 

 
 

This underlines the dynamic processes that are affected by person-related and environmental 

factors. A better understanding of this dynamic is feasible by including these factors in the 

analysis of academic achievement to advance knowledge acquisition. 

This dissertation examined crucial knowledge and transfer processes by using meta-

analytical models. Each of the three meta-analyses yielded insights into an essential field of 

educational research. The results of the meta-analyses regarding knowledge acquisition and 

knowledge transfer are important not only for further research but for practitioners in 

educational settings as well. 
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Appendix B: Coded Moderator Variables (Study 1) 

 

Table 17 

Overview of Subgroup Analyses of Moderator Levels (Study 1) 

Moderator level j k 
Path  

coefficient 
95% CI τ² 

Overall model      

r+
C1-P1 30 47 .398 [.354; .443] .005 

βC1-C2 25 44 .402 [.346; .458] .015 

βC1-P2 27 42 .270 [.221; .318] .013 

βP1-C2 25 43 .220 [.172; .268] .007 

βP1-P2 25 44 .336 [.291; .380] .007 

r+
C2-P2 22 41 .243 [.113; .354] .129 

Moderator: school 

level 
     

Kindergarten / 

Preschool 
     

r+
C1-P1 8 9 .467 [.362; .571]a .001 

βC1-C2 5 6 .171 [.078; .264] a .002 

βC1-P2 6 7 .123 [.010; .236] a .000 

βP1-C2 5 6 .312 [.203; .421] a .002 

βP1-P2 6 7 .412 [.324; .571] a .005 

r+
C2-P2 3 4 .137 [.025; .248] a .003 

Primary 

school 
     

r+
C1-P1 13 17 .410 [.351; .470] .001 

βC1-C2 12 18 .421 [.311; .532] .009 

βC1-P2 11 17 .330 [.257; .403] .024 

βP1-C2 11 15 .186 [.120; .252] .005 

βP1-P2 10 14 .272 [.212; .331] .004 

r+
C2-P2 9 15 .346 [.228; .465] .069 

Secondary 

school 
     

r+
C1-P1 9 18 .386 [.317; .455] .012 

βC1-C2 8 17 .387 [.294; .480] .010 

βC1-P2 9 18 .275 [.196; .354] .016 

βP1-C2 9 18 .226 [.150; .303] .008 

βP1-P2 10 19 .350 [.267; .433] .009 

r+
C2-P2 9 18 .349 [.179; .520] .137 

Moderator: 

Subdomain 
    

Whole-

number 

operations 

     

r+
C1-P1 11 14 .435 [.349; .520] .000 
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Table 17 (continued) 

Moderator level j k 
Path  

coefficient 
95% CI τ² 

βC1-C2 6 9 .266 [.131; .402] .018 

βC1-P2 10 13 .158 [.064; .253] .013 

βP1-C2 6 9 .303 [.196; .410] .003 

βP1-P2 10 13 .404 [.342; .466] .010 

r+
C2-P2 5 8 .199 [.024; .374] .054 

Rational 

numbers 
     

r+
C1-P1 7 11 .407 -b .017 

βC1-C2 7 11 .448 - b .013 

βC1-P2 7 11 .221 - b .058 

βP1-C2 7 11 .072 - b .008 

βP1-P2 7 11 .349 - b .013 

r+
C2-P2 7 11 .300 - b .021 

Algebra      

r+
C1-P1 7 15 .327 [.259; .395] .000 

βC1-C2 8 18 .360 [.224; .496] .009 

βC1-P2 8 18 .268 [.198; .339] .054 

βP1-C2 8 16 .270 [.181; .359] .000 

βP1-P2 8 16 .302 [.256; .347] .011 

r+
C2-P2 9 19 .381 [.318; .443] .019 

Moderator: 

Intervention 
     

Studies with 

intervention 
     

r+
C1-P1 13 25 .364 [.305; .423] .012 

βC1-C2 14 26 .413 [.323; .502] .010 

βC1-P2 15 27 .280 [.215; .346] .026 

βP1-C2 14 25 .212 [.149; .274] .006 

βP1-P2 15 26 .337 [.267; .423] .005 

r+
C2-P2 15 27 .319 [.218; .420] .075 

Studies 

without 

intervention 

     

r+
C1-P1 19 22 .425 - b .001 

βC1-C2 15 18 .398 - b .012 

βC1-P2 16 19 .267 - b .012 

βP1-C2 14 17 .224 - b  .006 

βP1-P2 15 18 .332 - b .012 

r+
C2-P2 11 14 .159 - b .091 

Moderator: Broad 

Task Type 
    

Implicit      

r+
C1-P1 23 32 .406 [.352; .460] .005 
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Table 17 (continued) 

Moderator level j k 
Path  

coefficient 
95% CI τ² 

βC1-C2 18 29 .357 [.295; .420] .017 

βC1-P2 20 31 .269 [.208; .331] .007 

βP1-C2 17 26 .204 [.154; .255] .006 

βP1-P2 19 28 .325 [.270; .381] .003 

r+
C2-P2 14 25 .406 [.207; .404] .072 

Explicit      

r+
C1-P1 3 7 .291 - b .001 

βC1-C2 3 7 .310 - b .000 

βC1-P2 3 7 .323 - b .005 

βP1-C2 3 7 .244 - b .000 

βP1-P2 3 7 .308 - b .000 

r+
C2-P2 3 7 .240 - b .010 

Both      

r+
C1-P1 3 6 .453 - b .001 

βC1-C2 4 9 .590 - b .019 

βC1-P2 4 9 .279 - b .027 

βP1-C2 3 6 .212 - b .003 

βP1-P2 3 6 .265 - b .027 

r+
C2-P2 4 9 .284 - b .048 

Moderator: 

Specific Task 

Type 

    

Translate 

Quantities 
     

r+
C1-P1 18 24 .459 [.395; .524] .002 

βC1-C2 13 19 .404 [.333; .474] .019 

βC1-P2 14 20 .270 [.198; .342] .004 

βP1-C2 13 19 .177 [.100; .254] .005 

βP1-P2 14 20 .303 [.243; .364] .009 

r+
C2-P2 9 15 .247 [.131; .364] .058 

Compare 

Quantities 
     

r+
C1-P1 7 9 .365 [.250; .479] .001 

βC1-C2 7 9 .294 [.187; .400] .002 

βC1-P2 6 7 .253 [.161; .344] .010 

βP1-C2 6 7 .223 [.101; .345] .004 

βP1-P2 5 6 .267 [.178; .354] .010 

r+
C2-P2 5 6 .277 [.169; .386] .012 

Evaluate 

Unfamiliar 

Procedures 

     

r+
C1-P1 2 4 .301 - b .000 
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Table 17 (continued) 

Moderator level j k 
Path  

coefficient 
95% CI τ² 

βC1-C2 3 7 .241 - b .000 

βC1-P2 3 7 .238 - b .000 

βP1-C2 2 4 .156 - b .000 

βP1-P2 2 4 .202 - b .000 

r+
C2-P2 3 7 .323 - b .000 

Explain 

Judgments 
     

r+
C1-P1 3 7 .291 - b .001 

βC1-C2 3 7 .310 - b .000 

βC1-P2 3 7 .323 - b .004 

βP1-C2 3 7 .244 - b .000 

βP1-P2 3 7 .308 - b .000 

r+
C2-P2 3 7 .240 - b .010 

Several      

r+
C1-P1 7 13 .383 [.302; .463] .017 

βC1-C2 8 16 .481 [.372; .591] .012 

βC1-P2 7 13 .324 [.240; .407] .020 

βP1-C2 7 15 .211 [.128; .294] .004 

βP1-P2 6 12 .343 [.233; .463] .004 

r+
C2-P2 7 15 .236 [.129; .342] .042 

Note. Overview of included categorical moderator levels with their respective results in subgroup 

analyses; j - Number of studies, k - Number of independent correlation matrices, 95% CI - 95% 

confidence interval, τ² - Heterogeneity index. 

a = Confidence interval estimated by setting variances without SEs at 0. 

b = Estimation of confidence interval not possible. 
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Appendix C: Funnel Plots of Correlations (Study 1) 

 

Figure 35 

Funnel Plot of the Bivariate Correlations Between Conceptual and Procedural Knowledge at T1 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level. 

 

 

Figure 36 

Funnel Plot of the Bivariate Correlations Between Conceptual Knowledge at T1 and T2 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level. 
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Figure 37 

Funnel Plot of the Bivariate Correlations Between Conceptual Knowledge at T1 and Procedural 

Knowledge at T2 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level. 

 

 

Figure 38 

Funnel Plot of the Bivariate Correlations Between Procedural Knowledge at T1 and Conceptual 

Knowledge at T2 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level. 
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Figure 39 

Funnel Plot of the Bivariate Correlations Between Procedural Knowledge at T1 and T2 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level. 

 

 

Figure 40 

Funnel Plot of the Bivariate Correlations Between Conceptual and Procedural Knowledge at T2 

 

Note. Funnel Plot of the included aggregated bivariate correlations on sample level.
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Appendix D: Forest Plots of Included Studies for each Correlation (Study 1) 

 

Figure 41 

Forest Plot of the Bivariate Correlations Between Conceptual and Procedural Knowledge at T1 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - Aggregated effect size of studies 

using the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; 

Ye et al., 2016). 
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Figure 42 

Forest Plot of the Bivariate Correlations Between Conceptual Knowledge at T1 and T2 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - Aggregated effect size of studies 

using the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; 

Ye et al., 2016). 

  

l 
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Figure 43 

Forest Plot of the Bivariate Correlations Between Conceptual Knowledge at T1 and Procedural 

Knowledge at T2 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - aggregated effect size of studies using 

the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; Ye et 

al., 2016). 

 

l 
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Figure 44 

Forest Plot of the Bivariate Correlations Between Procedural Knowledge at T1 and Conceptual 

Knowledge at T2 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - aggregated effect size of studies using 

the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; Ye et 

al., 2016). 

  

l 
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Figure 45 

Forest Plot of the Bivariate Correlations Between Procedural Knowledge at T1 and T2 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - aggregated effect size of studies using 

the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; Ye et 

al., 2016). 

 

  

l 
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Figure 46 

Forest Plot of the Bivariate Correlations Between Conceptual and Procedural Knowledge at T2 

 
Note. Forest Plot of included aggregated bivariate correlations. The digits in the references indicate the 

subsample based on independent samples in the articles. Several - aggregated effect size of studies using 

the same sample (Bailey et al., 2017; Hansen et al., 2015; Hansen et al., 2017; Jordan et al., 2013; Ye et 

al., 2016). 

 

  

l 
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Appendix E: Risk of Bias Assessment of Included Studies (Study 1) 

Table 18 

Questions for Risk of Bias Assessment of Included Studies (Study 1) 

1 Baseline Confounding Yes No 
Not 

applicable 

1a Potential baseline confounding was addressed (e.g., by design or 

adjustments). 

   

 Rating: 

  

2 Sample selection bias Yes No 
Not 

applicable 

2a The drop-out rate is documented and presented.    

2b The drop-out rate is below 20%.    

2c Exact drop-out in numbers: 

 Rating: 

  

3 Bias in measurement Yes No 
Not 

applicable 

3a The method of measurement was appropriate.    

3b The reliability of all measurements is mentioned.    

3c The reported reliability is adequately high.    

 Rating: 

  

4 Selective reporting of outcomes Yes No 
Not 

applicable 

4a The numerical result is not likely to have been selected from multiple 

measurements. 

   

4b All six correlations of the four constructs are documented / were 

delivered. 

   

 Rating: 

  

5 Funding Yes No 
Not 

applicable 

5a The study was not externally and commercially funded.    

Note. Questions of Risk of Bias assessment based on RoB2 (Sterne et al., 2019). Questions are 

answered for each included study to determine the risk of bias by inclusion in the analysis.
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Table 19 

Interpretation of Risk of Bias Assessment of Included Studies (Study 1) 

Overall Risk of Bias 

judgement 

Interpretation Criterion 

Low risk of bias The study is comparable to a well-

performed randomized trial. 

The study is judged to be at low 

risk of bias for all domains for 

this result. 

Moderate risk of bias The study appears to provide sound 

evidence for a non-randomized study but 

cannot be considered comparable to a 

well-performed randomized trial. 

The study is judged to be at low 

or moderate risk of bias for all 

domains. 

Serious risk of bias The study has one or more critical 

problems. 

The study is judged to be at 

serious risk of bias in at least one 

domain, but not at critical risk of 

bias in any domain. 

Critical risk of bias The study is too problematic to provide 

any helpful evidence and should not be 

included in any synthesis. 

The study is judged to be at 

critical risk of bias in at least 

one domain. 

Note. Interpretation of the Risk of Bias assessment results for each included study following RoB2 

(Sterne et al., 2019). 
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Appendix I: Interaction Latent Classes and Transfer Distance (Study 3) 

 

Figure 48 

Interaction Latent Classes and Transfer Distance on Context Factors 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

e) 

 
 

 
Note. Interaction of the four latent classes and the transfer distance on the context factors a) knowledge domain, 

b) physical context, c) temporal context, d) functional context, e) social context, and f) modality. On the y-axis is 

the mean effect as standardized mean difference (Hedges’ g). 
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Appendix K: Risk of Bias Assessment of Included Studies (Study 3) 

 

Table 23 

Questions for Risk of Bias Assessment of Included Studies (Study 3) 

1 Baseline Confounding Yes No 
Not 

applicable 

1a Potential baseline confounding was addressed (e.g., by design 

or adjustments). 

   

 Rating: 

2 Sample selection bias Yes No 
Not 

applicable 

2a The drop-out rate is documented and presented.    

2b The drop-out rate is below 20%.    

2c Exact drop-out in numbers: 

 Rating: 

3 Bias in measurement Yes No 
Not 

applicable 

3a The method of measurement was appropriate.    

3b The reliability of all measurements is mentioned.    

3c The reported reliability is adequately high.    

 Rating: 

4 Selective reporting of outcomes Yes No 
Not 

applicable 

4a The numerical result is not likely to have been selected from 

multiple measurements. 

   

 Rating:    

5 Study design Yes No 
Not 

applicable 

5a The data includes pre- and post-measurements of knowledge 

transfer. 

   

 Rating: 

6 Funding Yes No 
Not 

applicable 

6a The study was not externally and commercially funded.    

Note. Questions of Risk of Bias assessment based on RoB2 (Sterne et al., 2019). Questions are answered 

for each included study to determine the risk of bias by inclusion in the analysis.
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Table 24 

Interpretation of Risk of Bias Assessment of Included Studies (Study 3) 

Overall Risk of Bias 

judgement 

Interpretation Criterion 

Low risk of bias The study is comparable to a well-

performed randomized trial. 

The study is judged to be at low risk of 

bias for all domains for this result. 

Moderate risk of bias The study appears to provide sound 

evidence for a non-randomized study 

but cannot be considered comparable to 

a well-performed randomized trial. 

The study is judged to be at low or 

moderate risk of bias for all domains. 

Serious risk of bias The study has one or more important 

problems. 

The study is judged to be at serious 

risk of bias in at least one domain, but 

not at critical risk of bias in any domain. 

Critical risk of bias The study is too problematic to provide 

any useful evidence and should not be 

included in any synthesis. 

The study is judged to be at critical 

risk of bias in at least one domain. 

Note. Interpretations following RoB2 (Sterne et al., 2019). 
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