
Semantic-Aware Coordinated Multiple
Views for the Interactive Analysis of

Neural Activity Data

Vom Fachbereich IV der Universität Trier zur Verleihung des akademischen
Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

von

Christian Nowke

Trier, 2024

Betreuer*in: Jun.-Prof. Dr. Benjamin Weyers
1. Berichterstatter*in: Jun.-Prof. Dr. Benjamin Weyers
2. Berichterstatter*in: Prof. Dr. Torsten W. Kuhlen
Datum der Disputation: 22.05.2023

Abstract

Visualizing brain simulation data is in many aspects a challenging task. For one, data used
in brain simulations and the resulting datasets is heterogeneous and insight is derived by
relating all different kinds of it. Second, the analysis process is rapidly changing while
creating hypotheses about the results. Third, the scale of data entities in these heteroge-
neous datasets is manifold, reaching from single neurons to brain areas interconnecting
millions. Fourth, the heterogeneous data consists of a variety of modalities, e.g.: from
time series data to connectivity data, from single parameters to a set of parameters span-
ning parameter spaces with multiple possible and biological meaningful solutions; from
geometrical data to hierarchies and textual descriptions, all on mostly different scales.
Fifth, visualizing includes finding suitable representations and providing real-time inter-
action while supporting varying analysis workflows. To this end, this thesis presents
a scalable and flexible software architecture for visualizing, integrating and interacting
with brain simulations data. The scalability and flexibility is achieved by interconnected
services forming in a series of Coordinated Multiple View (CMV) systems. Multiple use
cases are presented, introducing views leveraging this architecture, extending its ecosys-
tem and resulting in a Problem Solving Environment (PSE) from which custom-tailored
CMV systems can be build. The construction of such CMV system is assisted by semantic
reasoning hence the term semantic-aware CMVs.

Zusammenfassung

Das Visualisieren von Simulationsdaten des Gehirns ist eine Herausforderung. Zum einen
sind die zur Simulation herangezogenen Daten sowie die Simulationsergebnisse hetero-
gen, und Erkenntnis wird durch ein Verknüpfen der Daten gewonnen. Des Weiteren
unterliegt der Analyseprozess ständigen Veränderungen, während Hypothesen abgeleitet
werden. Auch sind die Skalen der in den Simulationsdatensätzen enthaltenen Entitäten
vielfältig: Vom einzelnen Neuron bis hin zu Gehirnarealen mit Millionen unter sich
verbundenen Neuronen. Ferner bestehen die Daten aus unterschiedlichen Modalitäten,
z.B.: Sie reichen von Zeitserien bis hin zu Konnektivitätsdaten, von einzelnen Parame-
tern zu einer Menge an Parametern, die einen Parameterraum aufspannen, der viele und
biologisch bedeutende Lösungen enthalten kann; von geometrischen Daten zu Hierar-
chien und textuellen Beschreibungen, alle zumeist in unterschiedlichen Skaleneinheiten.
Letztlich beinhaltet das Visualisieren auch das Finden geeigneter Repräsentationen und
das Bereitstellen von echtzeitfähigen Interaktionen, wobei auch unterschiedlichste Analyse-
abläufe unterstützt werden sollen. Daher präsentiert diese Doktorarbeit eine skalier-
bare und flexible Softwarearchitektur zur Visualisierung, Integration und Interaktion mit
Gehirnsimulationsdaten. Die Skalierbarkeit und Flexibilität wird durch miteinander ver-
bundene Diensten erreicht, die zusammen ein Coordinated Multiple View (CMV) System
bilden. Verschiedene Anwendungsfälle werden vorgestellt, die Ansichten bereitstellen
und diese Architektur nutzen sowie erweitern, sodass ein Ökosystem entsteht, welches
eine Problemlösungsumgebung schafft, aus der spezifische, auf die Bedürfnisse zugeschnit-
tene CMV Systeme abgeleitet werden. Die Konstruktion dieser CMV Systeme wird durch
computergestütztes semantisches Deduzieren assistiert, daher der Begriff semantisch be-
wusste CMVs.

Acknowledgments

A special thanks goes to Professor Dr. Benjamin Weyers. Your support and motivation
have helped me a lot throughout this journey. Thank you for your eager willingness to
proof read the manuscripts and your endless input on ideas, concepts, and suggestions
upon improving this work. It was much very appreciated!

I would also like to thank Professor Dr. Torsten W. Kuhlen, for his encouragement and
guidance throughout my time at the Virtual Reality Group. Thank you for this opportunity
and invaluable advice that made this thesis possible.

In addition, I would like to express my thanks to Dr. Bernd Hentschel for his witty
remarks, his emphasize to always remember that writing a thesis is a marathon and not
a sprint, and finally his background assistance so that we all could keep doing what we
love. And of course, to all my colleagues at the Virtual Reality Group for all the interesting
discussions and fond memories that will always remain with me.

Also, I want to express my deepest gratitude to my beloved wife. Dear Alexa, without
your endless support and care of almost all secular things that fill our daily life, this thesis
would not have been possible. Thank you so much!

Finally, I cannot thank enough my parents that always have been there for me. Back in the
days when life was so much simpler, as a young want-to-be-adult, you were never short of
advice, albeit often just ignored to eventually see its wisdom later on. I will never forget
how easy it was—without exception—to persuade my father buying the next cutting edge
overpriced book in computer science that I wanted to read. And to my mother, without
her I would definitely had starved to death over the course of studying. Thank you all so
much, I deeply love you all!

CONTENTS

1 Introduction 1
1.1 Motivation . 1
1.2 Requirements . 2
1.3 Contributions . 4
1.4 Outline . 5
1.5 Publications . 5

2 Semantic-Aware Coordinated Multiple Views 7
2.1 Motivation . 7
2.2 Related Work . 8

2.2.1 Information Visualization . 8
2.2.2 Coordinated Multiple Views . 9
2.2.3 Event-Driven Architectures . 15

2.3 Semantic-Aware Event-Driven Architecture 17
2.3.1 Services, Slots, and Events . 19
2.3.2 Communication Infrastructure 21
2.3.3 Semantic Modeling . 25
2.3.4 Semantic-Aware Architecture 28
2.3.5 Event-Flow Network . 33
2.3.6 Runtime System . 35
2.3.7 Coordination Model . 37
2.3.8 Extending the PSE . 39

3 Visualizing Neural Activity Data 41
3.1 Visualizing a Model of the Macaque Visual Cortex 42

3.1.1 Motivation . 42
3.1.2 Workflow Analysis . 44
3.1.3 Input Data Analysis . 46
3.1.4 Requirements Analysis . 48
3.1.5 Views and Services . 50
3.1.6 CMV System Construction . 58
3.1.7 Results . 63

Contents

3.2 Statistical Analysis of Spike Trains . 67
3.2.1 Motivation . 67
3.2.2 Workflow Analysis . 69
3.2.3 Input and Output Data Analysis 70
3.2.4 Requirements Analysis . 71
3.2.5 Views and Services . 72
3.2.6 CMV System Construction . 76
3.2.7 Results . 77

3.3 Visualizing and Steering Structural Plasticity Simulations 78
3.3.1 Motivation . 78
3.3.2 Workflow Analysis . 79
3.3.3 Requirements Analysis . 81
3.3.4 Views and Services . 82
3.3.5 CMV System Construction . 84
3.3.6 Results . 85

4 Discussion 93

5 Conclusion and Outlook 97

CHAPTER 1

INTRODUCTION

1.1 Motivation

The human brain is one of the most complex biological systems that is known to mankind.
Discovering the principles of its modus operandi is a research goal already spanning sev-
eral decades, deepening our understanding of its structure and functioning [Bassett &
Gazzaniga, 2011]. Large-scale research projects like the Human Brain Project1 or the
American Brain Initiative2 were initiated to focus and foster interdisciplinary research in
this area. The introduction of computer systems in the last century and their ever increas-
ing availability to a broad audience allows for the exploration of a fundamental question
already posed by Neumann [1958]: is it possible to mimic an information processing
system such as the brain by the means of computer simulations?

This question originated the field of computational neuroscience, a relatively new and
very active research discipline. Computational neuroscience aims to derive mathematical
models for the governing principles of the brain through observations of data from biol-
ogy and by application of these models as simulations on specific hardware platforms [Se-
jnowski et al., 1988]. The basic, underlying concept of any given neural simulation is a
model, formulated in mathematical terms, describing the time-varying dynamics of neu-
rons and their connections to other ones. A neuron is a small, however complex, biological
system processing information through electrical signals. Mathematical models, consist-
ing of large interconnected neurons, vary in degree of abstraction, precision, and approx-
imation of behavior [Hodgkin & Huxley, 1952; Izhikevich, 2004; Stein, 1967]. Based
on these, simulations are performed by computing the dynamics of neurons massively in
parallel. The overall goal of simulating large-scale neural networks is the development of
models that reproduce and therefore mimic certain functionality of the brain [Sejnowski
et al., 1988]. To only name a few possible application areas, this knowledge could poten-
tially lead to vast superior classes of autonomous systems, compared to today’s capabil-
ities, enabling systems that are fault tolerant to hardware defects or highly accurate data
classifiers running as out-of-the-box services [Frost, 2010; LeCun et al., 2015].

A significant advantage of simulating biological systems in comparison to in vivo exper-

1https://www.humanbrainproject.eu/
2https://www.braininitiative.nih.gov/

1

2 1.2. Requirements

iments, is the ability of observing the entire system at any given time. In vivo experi-
ments usually suffer from poor recording fidelity and are restricted by ethical constraints.
Yet, simulations introduce a different challenge: in order to converge neural models more
closely to their biological counterparts, the amount of data to investigate increases. To this
end, interactive exploratory data visualization and analysis is becoming increasingly im-
portant to gain further insight and convey findings to researchers [Keim et al., 2008]. In a
scientific workflow, the visualization of data plays a fundamental role in obtaining knowl-
edge by providing necessary working tools to explore, generate and verify hypotheses
about the data [Keim et al., 2008]. An interactive visual analysis facilitates a user-centric
approach, aiming at extracting insight from data by transforming it into visual representa-
tions while on top offering interaction [Shneiderman, 1996; Spence, 2001; Tufte, 1991].
The key idea is to leverage the distinct human capability for pattern recognition in visual
perception.

While modeling neural networks is a complex task, the conception of visualizations, of-
fering the aforementioned capabilities, includes finding suitable transformation of data
to visual representations and providing real-time interaction with these is a difficult en-
deavor on its own. To this end, this thesis will explore how interactive visualization using
CMVs enriched by a semantic model can aid in the process of interpreting and analyzing
neural network simulation results. Thus, I will present a scalable and flexible software
architecture for visualizing, integrating, and interacting with data resulting from simu-
lations. The scalability and flexibility will be achieved by loosely coupled independent
services that are interconnected according to the specific workflow needs. Whenever a
new workflow is encountered, new services can easily be added, and existing ones reused
by interconnecting them.

1.2 Requirements

Modeling neural networks and the simulation thereof produces heterogeneous, potentially
time-varying output, e.g., spike data from neurons, connectivity distributions among neu-
rons, derived statistical observables like mean activity rate and many more, which need
analysis in order to form an understanding of the dynamics exhibited by these networks.
Moreover, analysis cannot be performed in isolation by only considering one dataset at a
time. Researchers need the means to relate simulation output to reveal interesting features
hidden in the data.

To this end, data management is a central requirement for any visualization system. In
addition, the means to visually analyze simulation data requires finding appropriate visual
transformations and interactions. On top, supplemental data are derived and aggregated
from simulations, e.g., mean firing rate and connectivity for sets of neurons, etc., which
need to be visualized, accessed and stored.

To address these emerging heterogeneous datasets and the resulting scientific questions,
distinct visualization techniques are required to extract insight. However, the most appro-
priate visualization design depends on the specific research question. Thus, it is possible
that for even the same dataset, multiple visualization designs coexist emphasizing certain
features in the data best. Because researchers need to relate data, visualization designs
must be concurrently accessible and it must be possible to share interaction among them.
A standard visualization technique to handle such a requirement is termed CMVs [North

1.2. Requirements 3

& Shneiderman, 1997; Roberts, 2007; Wang Baldonado et al., 2000]. CMVs can com-
bine spatial and non-spatial data depictions into one visualization design space. However,
classical CMV systems are restricted to run on a single computer, limiting the choice of
display systems for the visual design space and by this restriction may neglect the best
way to convey insight. For instance, spatial data can benefit from immersive visualization
techniques which facilitate a user-centered projection to improve depth perception [Laha
et al., 2012; Raja et al., 2004; Ware & Franck, 1994]. Restricting the visual design space
to non-immersive display systems prohibits to leverage this benefit. But many data re-
sulting from neural simulations are not necessarily spatial: a function plot of the mean
activity for a set of neurons is inherently two dimensional. Here, a traditional 2D User
Interface (UI) is usually preferred. Ideally, a CMV system allows for distributing and link-
ing visualizations over system boundaries to use as many and as diverse display systems
as needed.

Moreover, exploratory data analysis can rapidly shift focus due to new hypotheses or a
discovery, resulting in new requirements for the analysis, exploration, and visualization.
This makes it hard to define standard workflows for analyzing neural network simula-
tions. Hence, a visualization system has to cope with changing workflows. To this end,
the extensibility of such a visualization system is a requirement, precluding a monolithic
software design. The extensibility is twofold: firstly, the system must make it easy to
add and link visualizations. Secondly, researchers need to define how visualizations for
a workflow are linked and coordinated, ideally in form of a scriptable Problem Solving
Environment (PSE). PSEs are a class of software systems that support algorithm de-
velopment, performance tuning, and application steering for scientific exploration and
visualization [Parker et al., 1998]. Hence, this PSE must allow for a distributed CMV
system to expose functionality, assist in the invocation of visualizations, and provide the
means to define coordination among views. To expose a coordinated view’s functionality
in a PSE and specify coordination, a semantic model is helpful. A CMV system enriched
by semantic model is termed a semantic-aware CMV system in context of this work.

A further requirement for a semantic-aware CMV system is the integration of existing
community tools. It should close the gap between experimental and computational neu-
roscience by leveraging existing statistical evaluation frameworks developed in both sub-
domains.

In summary, the requirements for such a system are:

1. integrate and manage heterogeneous datasets.

2. provide analysis capabilities by conceiving visualizations and interactions with the
depicted data.

3. visualize and manage supplemental data aggregated after the simulation concludes.

4. enable the development of a scalable, flexible, and extensible visualization system
applying CMVs.

5. support immersive and non-immersive display system for the design space of visu-
alizations.

6. describe functionality by a semantic model to assist in the composition of functional
units and the definition of coordination among views inside a PSE.

4 1.3. Contributions

7. provide the means to integrate existing tools from the neuroscience domain.

The next section will discuss the thesis’s contributions to develop this semantic-aware
CMV system.

1.3 Contributions

The central contribution of this thesis is the derivation, the development, and the imple-
mentation of an applicable semantic-aware CMV system. To this end, a CMV system,
based on a loosely coupled Event-Driven Architecture (EDA) that uses semantic reason-
ing to dynamically specify coordination is presented that integrates various visualizations.
Its applicability will be shown along three use cases in neuroscience that enable the ex-
ploration of neural activity data resulting from simulations. The first use case centers
around the investigation of neural activity data from a large-scale spiking neural network
and presents novel visualization techniques for the available data by introducing views
and coordination endpoints for a CMV system. The second use case focuses on the visu-
alization and integration of statistical analysis for spike trains. The final use case presents
an approach to visualize and steer a structural plasticity simulation utilizing the com-
munication infrastructure developed for the PSE. All use cases leverage the presented
architecture. Components developed as part of one use case are reused in different ones,
exploiting the benefits of a loosely coupled EDA.

The presented CMV systems ease the development of novel visualizations in Hybrid Vir-
tual Environments (HVEs) where users can dynamically coordinate views across display
devices to utilize one visual design space. In summary, the following contributions are
made:

• a communication infrastructure is developed, based on principles of EDAs, allow-
ing for simple event definitions.

• a semantic model for coupling CMV systems is presented to define workflows,
establish coordination among views, and model dependencies.

• a runtime system that manages the invocation of views and their coordination based
on workflows.

• several custom-tailored views forming specialized CMV systems for each presented
use cases.

The communication infrastructure will allow for the definition of EDA services and data
exchange via events. Its main focus is the extensibility to add new events to integrate
views for the CMV system. While principles of EDAs have already been explored, this
thesis extends the state of the art by utilizing concepts of the semantic web. These con-
cepts form a semantic model to realize the configuration of services for analysis work-
flows and specify the coordination among visualizations. The semantic model establishes
and enforces contracts between views that manage data dependencies and expectations
on event communication. A runtime system will be responsible for configuring the CMV
system for a workflow. Finally, all use cases will be presented introducing novel visual-
ization and interaction techniques for analyzing spiking network simulations.

1.4. Outline 5

1.4 Outline

The thesis is structured as follows: Chapter 1 outlines the motivation, requirements, and
contributions of this work, Chapter 2 presents related work in the field of information
visualization, CMVs, and EDAs. Following this, principles of semantic modeling and
reasoning are introduced and brought together to derive semantic-aware CMVs systems
that meet the requirements from Section 1.2. This enables the development of use case
driven visualization services, facilitating the exploration of neural activity data. Subse-
quently, Chapter 3 focuses on three uses cases that all specify a semantic-aware CMV
system for their analysis workflow. Chapter 4 discusses the benefits and limitations of the
suggested approach while finally, Chapter 5 presents a conclusion and outlook of possible
future work.

1.5 Publications

Parts of the here presented research has been published in peer-reviewed articles and jour-
nals. This section lists these and describes contributions by the author and co-authors.

Nowke et al. [2013] introduces visualizations for neuroscientific data based on a compu-
tational neural model of the macaque visual cortex. These visualizations form views in
Section 3.1. In contrast to the original paper, this thesis embeds these views as services
for a CMV system and introduces additional views. The author of this thesis designed,
developed, and implemented the method, evaluated and incorporated feedback on the
method’s design, and wrote the paper. Maximilian Schmidt, Sacha J. van Albada, and
Jochen M. Eppler developed the neural network, provided the simulation datasets, guided
on the conception of views and outlined what key metrics of the simulation data needs to
be visualized. Rembrandt Bakker provided the polygonal surface reconstruction via vox-
elization of the brain areas from the Scalable Brain Atlas. All co-authors, in particular,
Bernd Hentschel, Markus Diesmann, and Torsten Kuhlen provided guidance in writing
the publication.

Nowke et al. [2015] describes an early architecture and core principles which have been
extensively formalized in Chapter 2. The author of this thesis developed and implemented
the architecture, migrated existing views based on previous work to the architecture,
guided on extending the CMV system, and wrote the paper. Daniel Zielasko contributed
the LFP-View and wrote its description in the article. Benjamin Weyers, Bernd Hentschel,
and Daniel Zielasko revised the article and contributed to its ideas. Torsten Kuhlen re-
vised the article and presented valuable input while Alexander Peyser contributed to the
underlying spike streaming concept for NEST simulations.

Nowke et al. [2018] forms the foundation of a CMV system described in Section 3.3.
This thesis embeds the use case in PSE as a CMV system. Sandra Diaz-Pier contributed
equally to this paper. The author of this thesis developed the interactive steering tool,
designed the data flow for steering the main structural plasticity parameters, incorporated
the envisioned views into the CMV system architecture, wrote the corresponding content,
and coordinated further writing of this publication. Sandra Diaz-Pier, Alexander Peyser,
and Abigail Morrison defined the use cases while Sandra Diaz-Pier evaluated the results
and compared the process of parameter navigation with and without the steering tool.
Alexander Peyser contributed the high performance computing knowledge to port and

6 1.5. Publications

optimize the code for super-computing usage. Benjamin Weyers, Bernd Hentschel, and
Torsten Kuhlen provided scientific guidance. In addition, Abigail Morrison provided neu-
roscientific guidance and assessed the usability of the tool for generalized use cases. The
author of this thesis, Sandra Diaz-Pier, Abigail Morrison, and Alexander Peyser wrote the
paper.

CHAPTER 2

SEMANTIC-AWARE COORDINATED

MULTIPLE VIEWS

2.1 Motivation

This thesis presents a PSE which enables the visual assessment of neural activity data
resulting from neural network simulations. A PSE is an expert system and computing
environment used to investigate problems in a scientific domain. The investigation is
supported by providing a closed loop between the user, a computational steering process,
and the visualization of its results [Parker et al., 1998]. This PSE will enable distributed
visualizations which are semantically linked to create CMV systems. The PSE consists
of views, a communication infrastructure, a semantic model, a semantic reasoner, and a
runtime system which provides access to all its functionality as shown in Figure 2.1. The
purpose of the PSE is to create a CMV system based on a workflow that uses a subset of its
functionality to provide analysis capabilities. To create this PSE, the scientific workflow
plays a fundamental role in the analysis process. In context of the PSE, a workflow
defines services and describes how these are interlinked to create a CMV system providing
analysis capabilities. This workflow is described as part of the semantic model which
is stored in an ontology (see Figure 2.1). Based on this ontology, a semantic reasoner
is used to infer how services can be used for a workflow to form a CMV system. A
runtime system controls the semantic model and uses the communication infrastructure to
interconnect services. Then, required services are started and connected to form a CMV
system.

To realize a semantic-aware CMV system, six building blocks are required:

1. a domain description encoded in a semantic model.

2. a workflow described in this semantic model.

3. a semantic description of services available in the PSE.

4. a semantic reasoner.

5. a communication infrastructure for services to exchange data.

7

8 2.2. Related Work

Runtime System

Communication Infrastructure

CMV System

PSE

Service1

Ontology
Semantic Model

Semantic Reasoner

Workflow

Service2 ServicenService3

Servicea Serviceb

Communication Infrastructure

Figure 2.1: The PSE consists of all available services and the runtime system. The run-
time system embeds a semantic model and describes workflows in an ontology. A com-
munication infrastructure and a semantic reasoner are used to select and link services to
create a CMV system for a specified workflow.

6. a runtime system that uses the semantic model, utilizes a semantic reasoner, control
services, and allows to specify workflows.

To understand these building blocks for the development of a PSE, the following sections
will present related work and outline the construction of semantic-aware CMV systems
for the exploration of neural activity data. To this end, an introduction of information
visualization, concepts of CMV systems, and EDAs are presented, followed by concepts
of semantic modeling which will be used on top of an EDA.

To summarize, semantic-aware CMVs are realized as distributed loosely coupled appli-
cations termed services. To achieve loosely coupling and to form a PSE, services make
use of a EDA. The resulting PSE enables the construction of a specific CMV system for a
given workflow, and offers flexibility in adding or removing services to support a variety
of workflows.

2.2 Related Work

In this section, I will first briefly discuss the field of information visualization which is
the basis of interactive visualization. Next, I will outline CMVs which are a fundamen-
tal technique for relational data visualization. Subsequently, I will explain the design
principles of EDAs.

2.2.1 Information Visualization

Information visualization is the art of transforming data into visual representations. This
transformation leverages human perception abilities to extract insight from visual stimuli.
Using computer systems, interactive information visualization allows for visualization

2.2. Related Work 9

systems that enable interaction with the visual representations to explore the underlying
transformed data with the aim to find insight.

According to Yi et al. [2007], visualization systems can be divided into three integral
parts: the data component, the visual component, and the navigation component. For
each component, user intents can be asserted: on the data component, a user intents to
select data for investigation, then filter it according to a self-specified criteria, and finally
to abstract data, meaning to aggregate and create derivations of new properties based on
it. This idea follows the information seeking manta postulated by Shneiderman [1996].
To extract insight, the information seeking mantra states that users first intend get an
overview of the data, then want to zoom and filter to finally request details on demand.
For the visual component, as defined by Yi et al. [2007], user intents are summarized as
encoding, abstraction, elaboration, and reconfiguration. Encoding characterizes the as-
signment of visual representations to data attributes. Abstraction and elaboration specifies
to add or remove details in the visualization. Finally, a reconfiguration intent delineates
possibilities to gain different perspectives on the data, e.g., by re-aligning plot axes in a
time series. Users intents on the navigation component primarily concern the exploration
process. This usually includes any form of interaction in space or time in the data to shift
the focus of interest. The visualizations developed for the use cases presented in Chapter 3
follow this classification since each component can be identified.

Kalawsky [2009] emphasizes to incorporate the human cognition process into the design
of interactive visualization methods. Following the conceptual characterization of Yi et al.
[2007], CMVs construe a class of visualization systems that inherently adhere to this
classification.

User interaction in information visualization systems can be summarized into five dis-
tinct subtasks according to Bowman et al. [2004]: selection, navigation, manipulation,
symbolic input, and system control. One method of performing these subtasks in Vir-
tual Environments (VEs) are Extended PieMenus [Gebhardt et al., 2013]. Accordingly,
interaction tasks will be utilized in several views in Chapter 3.

2.2.2 Coordinated Multiple Views

CMVs is a visualization technique applied in visualization systems that uses two or more
distinct views to support the investigation of a single conceptual entity [North & Shnei-
derman, 1997; Roberts, 2007; Wang Baldonado et al., 2000]. A conceptual entity is
composed of a set of data and a specification to visually display it constitutes a view.
CMV is a visualization technique intended to support exploratory data analysis [Roberts,
2007]. Roberts [2007] defines CMV systems as any instance where data is represented
in multiple windows. This definition implies that contrasting representations are placed
in subsequent views and that interactions within these views are coordinated. The term
coordination refers to an interaction within a view which is linked in such a way that
the same conceptual entity in all other views is affected. The overall idea is to offer in-
teraction with a conceptual entity while emphasizing different details to understand the
data.

Wang Baldonado et al. [2000] defines views in such a way that they allow users to explore
a conceptual entity by presenting different aspects of information or by emphasizing its

10 2.2. Related Work

differences. Moreover, views can differ in the visual representation of the same concep-
tual entity. Both definitions are non-orthogonal.

According to [Wang Baldonado et al., 2000], CMV systems have generally three advan-
tages compared to single view systems:

• they improve user task performance while exploring conceptual entities.

• they facilitate the discovery of unforeseen relationships in the data.

• they offer unification of the workspace, i.e., on one desktop.

In contrast, CMV systems also impose associated costs [Wang Baldonado et al., 2000]:

• they increase cognitive overhead.

• they exhibit an increase in time and effort to learn the functionality of the system.

• they increase the load on the user’s working memory.

• they introduce elevated cognitive effort for comparison tasks and context switches.

Nevertheless, CMV systems have successfully been used to uncover complex relation-
ships, to relate datasets and scales, and to assist in context switches and comparative
tasks [Wang Baldonado et al., 2000]. To this end, CMV is an effective technique to ex-
tract insight from neuroscientific data.

To develop and leverage the potential of CMVs, Wang Baldonado et al. [2000] present
common guidelines for designing CMV systems:

• Rule of diversity: CMVs are justified when there is a diversity of attributes, mod-
els, user profiles, levels of abstraction, or genres. In the later presented use cases,
the available datasets consist of diverse attributes and levels of abstraction, indicat-
ing that the use of the CMV technique is justified.

• Rule of complementarity: the use of multiple views is amplified when they high-
light correlations or disparities in the data. The later presented use cases aim at
extracting insight about correlations and disparities in the data, suggesting that a
CMV system can assist in finding these.

• Rule of decomposition: partition complex data into multiple views to create man-
ageable chunks and to provide insight into the interaction among different dimen-
sions. The visualizations from Section 3.1, Section 3.2, and Section 3.3 all partition
the data in views, thus decomposing it into smaller manageable parts. To provide
interaction among dimensions, views are linked.

• Rule of space and time resource optimization: balance the spatial and temporal
costs of presenting multiple views with the spatial and temporal benefits of using
them. The PSE allows to select and use a subset of available views, deriving a
custom CMV system based on a workflow, thus enabling to concentrate on the
currently relevant analysis task.

• Rule of self-evidence: use perceptual cues to make relationships among multi-
ple views more apparent to users. Perceptual clues are realized by a global dis-
tributed coordination space which allows for linking conceptual entities throughout

2.2. Related Work 11

the CMV system. For example, perceptual clues are given in the form of highlight-
ing selections across multiple views displaying the same conceptual entity.

• Rule of consistency: UIs of multiple views should be consistent. While UIs are
implementation details, the provided views adhere to the same interaction principles
as far as the use the same display system. Consistent user interaction between
traditional UIs and Virtual Reality (VR)-based interaction is still an open research
question. However, views could potentially be expanded by a semantic description
of their interaction concepts. This would make it possible to infer which views
are using consistent interaction metaphors, therefore assisting in finding suitable
coordinations.

• Rule of attention management: ensure that user attention is in the right place at
the right time. While attention management is highly important, it is highly use
case related. Techniques to detect if a view is affected by coordination are possible,
but not in the focus of this work.

While these guidelines are useful considerations when developing CMV systems, these
class of systems accompany a substantial impact on system requirements and develop-
ing costs: firstly, they introduce additional computational costs for rendering multiple
views and synchronizing coordination. Secondly, an increase in display-real-estate costs
is present to display views concurrently. Finally, increased costs in resources to design, to
implement, and to maintain these systems are required due to their larger complexity.

To this end, the presented PSE will mitigate the complexity in the development and main-
tenance of views by utilizing fine-granular services that exclusively communicate via
events.

Conceptual Distinctions and Interactions in CMVs

Wang Baldonado et al. [2000] describe three conceptual distinctions on views in a CMV
system: the selection of views, their presentation, and interaction. The selection process
concerns the identification of coordinated views for an analysis task. Their presentation
can either be a sequential or simultaneous. Wang Baldonado et al. [2000] point out, when
presenting views sequentially, many possible configurations of views may exist. However,
the main benefit of CMV systems stems from interaction, in particular coordination. Here,
Wang Baldonado et al. [2000] distinguish three basic coordination techniques: firstly,
navigational slaving where navigation and selections in one view are simply propagated
to all other views. Secondly, linking which connects a conceptual entity in one view to all
occurrences in other views [Velleman & Velleman, 1988]. For instance, if a conceptual
entity is selected in one view, all other views displaying the same conceptual entity select
or highlight it. Both, navigational slaving and linking require a coupling function that
relates entities to their counterparts in other views. Navigational slaving and linking are
techniques mainly used in the views from Chapter 3. Lastly, brushing is a special form
of linking, where a user highlights attributes of a conceptual entity and corresponding
attributes of that entity are highlighted in all other views [Becker & Cleveland, 1987a;
Roberts, 2007]. Linking can also be spatial and temporal, e.g., views that show animated
sequences [Buja et al., 1991].

All coordination techniques require a mechanism to share interaction among views and

12 2.2. Related Work

linking and brushing require a relation between conceptual entities. To this end, the PSE
facilitates a global distributed coordination space for the propagation of interactions.

Implications of Utilizing CMV Techniques

Roberts [2007] iterates on six fundamental areas a CMV system has to cope with and
present universal implications designers have to face:

• Data processing and preparation: before any visualization, the underlying data
needs to be preprocessed, cleaned, fused and related to facilitate knowledge dis-
covery. The proposed PSE allows for decoupled data processing and preparation
by services accessible to views. This enables the implementation of efficient data
processing techniques without effecting visualization services.

• View generation and multiple views: view generation describes the conception
of visualizations. This includes how to visualize data by selecting appropriate vi-
sualization techniques and how to interact with it. The suggested PSE offers flex-
ibility to integrate novel visualizations by allowing to add or remove views and
share interaction. This enables rapid prototyping, the identification of appropriate
visualizations and interaction techniques.

• Exploration techniques: a main benefit of CMV systems is the ability to use a
visualization technique most suited to the data and to link it to views focusing on
other attributes; possibly utilizing a different visualization technique. This allows
to apply exploration techniques like direct [Shneiderman, 1994] or indirect manipu-
lation [Becker & Cleveland, 1987b]. In Chapter 3, examples of direct manipulation
are given for exploration tasks in several neuroscientific use cases.

• Infrastructure and tools: infrastructure refers to mechanisms and models to re-
alize coordination among views. Prominent examples are the constraint system
by McDonald et al. [1990], a data centric approach inspired by relational databases
[North & Shneiderman, 2000], or the coordination model by Boukhelifa & Rodgers
[2003] which mimics the model view controller pattern [Krasner & Pope, 1988].
The coordination principles used in this thesis resemble Boukhelifa & Rodgers
[2003] the most. An in-depth discussion is presented in the next section. As tools,
Roberts [2007] understands either exiting CMV systems that offer customization
features such as [North & Shneiderman, 2000; Weaver, 2004] or technology easing
the development of CMV systems.

• UIs: a CMV system presents multiple views, consuming more display-real-estate
in comparison to single view systems. Also, it offers interaction possibilities that
put additional strain on users’ mental load. To alleviate these effects, window-
and session management are commonly applied in CMV systems. While the CMV
systems derived here do not use window- or session management, both techniques
reflect important additions to the PSE as future work.

• Usability and perception: both aspects concern the effectiveness of CMV systems,
especially in comparison to single view systems. For instance, Ryu et al. [2003]
explore cognitive strategies in CMV systems and suggest that users benefit from
CMV systems if diverse attributes in the data are present, confirming the rule of
diversity [Wang Baldonado et al., 2000]. In addition, users benefit from orthogonal

2.2. Related Work 13

combinations of views because cognitive interference may occur if similar views are
presented simultaneously. However, Card et al. [1983] note that if two events occur
within 100 ms, users may perceive these as causally related, potentially leading
to misinterpretations. While usability and perception are undoubtedly important
issues for designing CMV systems, no studies on these effects have been performed
in this thesis.

In the following section, examples of CMV systems will be given.

Examples of CMV Systems

Selected examples of CMV systems can be found in [Keefe et al., 2009; Matkovic et al.,
2008a; North & Shneiderman, 2000; Weaver, 2004]. Weaver [2004] presents Improvise, a
system which allows to build CMVs interactively by the means of a shared-object model
for coordination. Improvise provides an expression-based visual abstraction language that
enables the definition of relationships in datasets and a fine-grained control over coordi-
nation. The visual abstraction language allows for flexibility in defining coordination by
the means of scripting. This is realized by live properties which use a symmetric update
and notification mechanism to coordinate views. Live properties model a data-flow that
is used for coordination. However, it lacks a method to identify loops build by users
that break the system [Weaver, 2004]. The mechanism of live properties is similar to the
global distributed coordination space where services share coordination events: when-
ever a conceptual entity is changed, linked services will be notified and can react to it.
Moreover, the PSE allows users to dynamically define participation in coordination while
the CMV system is running.

North & Shneiderman [2000] present Snaptogether, a tool which provides a UI for spec-
ifying a formal description of related datasets. This formal description empowers users
to define views without programming knowledge. Moreover, Snaptogether provides an
application programming interface to develop additional views. Thus, Snaptogether is
an example of one of Roberts [2007] fundamental areas of tools, geared to create CMV
systems. North & Shneiderman [2000] note, similar to Wang Baldonado et al. [2000],
that it is difficult to anticipate the need of users on how to link views, resulting in endless
possible combinations. In this thesis, defining coordinations is part of the CMV system
creation from within the PSE. While views encode the relationships to conceptual entities
as part of their service implementation, participation in the global distributed coordina-
tion space is user-controlled through either using a Graphical User Interface (GUI) or by
the means of scripting.

Boukhelifa & Rodgers [2003] describe a formal model for expressing coordination in
CViews. The generic model is designed without any bias toward requirements on data,
navigation concepts, or view synchronization paradigms. Its purpose is the synchroniza-
tion of views, the tracking of visual and non-visual information, the avoidance of view
explosion, and easing the multitasking demand for users. It is based on a data-flow model
to share view and visualization configurations and focuses on three aspects:

• the representation of a conceptual entity in one view is not necessarily the same in
another one. This makes the definition of how a manipulation of one conceptual
entity relates to other views difficult.

14 2.2. Related Work

Enhance RenderMap Transform

View1

View2

Event

Coordination Space

Visualization
Object1

Image1Subset1Data1

Visualization
Object2

Image2Subset2Data2

E C Subspace

Subset, Filter,
Enhance

M C Subspace

Mapping
Techniques

R C Subspace

Rendering
Algorithms

T C Subspace

GUI Controls

ƒE2 ƒE1 ƒM2 ƒM1 ƒR2 ƒR1 ƒT2 ƒT1

Figure 2.2: Events modify coordination objects within the coordination space. This trig-
gers a notification to views which are registered via coordination objects. The coordi-
nation space is populated by coordination objects which link parameters to views and
specify a translation function f for each subspace. The figure is modified from [Boukhe-
lifa & Rodgers, 2003].

• UIs and conceptual entities in views need a specification of how and where-from
they receive coordination.

• a CMV system should indicate which views and conceptual entities are coordinated.

As can be seen in Figure 2.2, this model spans a coordination space, subdivided into
four subspaces in which coordination objects are contained. A coordination object links
views and communicates coordination (shown as dashed-lines in Figure 2.2). Each coor-
dination object contains a translation function f . This function relates a view parameter,
expressed as the argument to f in Figure 2.2, for each subspace to a conceptual entity in a
view. Views are then register to coordination objects in order to receive notifications when
parameters are changed. A change in a coordination object, propagated via an event, is
triggered through UIs. In comparison, the coordination model used by the semantic-aware
CMV systems is conceptually similar. However, I slightly diverge from the definition of
a coordination object and its responsibilities. Also, the coordination space, termed global
distributed coordination space, is accessible to remotely connected views, e.g., a visu-
alization concurrently utilizing different display systems. The subspaces spanned in the
coordination space from Boukhelifa & Rodgers [2003] are modeled via concepts in an
ontology and are attached to coordination endpoints provided by views. In addition, the
translation functions are directly defined in views. A detailed description of the coordina-
tion model utilized in this thesis will be presented in Section 2.3.7.

CMVs and Immersive Visualization

HVEs are a category of display systems that use a VE in conjunction with traditional dis-
play devices like a monitor, tablet, or PowerWall to create a holistic user experience. The
term hybrid refers to the combination of immersive and non-immersive environments used
to display and interact with content. While VEs generally provide a more direct access
to the spatial data encountered in scientific visualization, non-immersive environments
are often better suited for traditional information visualization tasks, e.g., displaying and

2.2. Related Work 15

interacting with a function plot, a chart, or a diagram. VEs can enhance a visualization
tasks through immersive and intuitive UIs [Laha et al., 2012; Raja et al., 2004; Ware &
Franck, 1994].

To leverage the benefits of immersive visualization, one contribution of this thesis is to
enable seamless integration of views into visualization systems that utilize a wide variety
of display devices concurrently, effectively permitting the design of HVEs. To this end,
the featured PSE provides the means to distribute data, interaction, and coordination to
display systems interconnected via a network. However, the diversity of the display-,
input-, and output devices must be managed in such a way that the developed visualization
system has minimal dependencies on certain device setups [Badam et al., 2014], as for
example realized in the ViSTA software stack [Assenmacher & Kuhlen, 2008].

The diversity of display systems and interaction devices necessitates special interaction
techniques to provide a seamless user experience. To this end, Wang & Lindeman [2014]
present an interaction technique that combines a VE, displayed via a head mounted dis-
play and a tablet, to provide efficient interaction with a scenery showing diversities in
scale, perspective and dimension. Adding to this, Wang & Lindeman [2015] further ex-
plore diverse 3D interaction tasks, including object manipulation from different scales and
reference frames. Of particular interest are the coordination mechanism which reduce
transition gaps across 3D UIs and tasks. Hence, the authors propose four coordination
mechanisms for seamless interaction between devices which are termed interaction con-
texts. An evaluation of one the interaction contexts in a user study suggests that despite
the complexity in handling context switches, users tend to perform well.

While a CMV system was developed as part of a proof of concept for a use cases presented
in Chapter 3, more rigorous exploration of CMV systems utilizing HVEs is required as
potential future work.

2.2.3 Event-Driven Architectures

An EDA is a software design principle based on the generation, detection and consump-
tion of events among loosely coupled, distributed software components which are termed
services [McGovern et al., 2006; Newman, 2015]. Hence, an EDA is characterized as a
collection of distributed programs with defined functionality and interfaces that exchange
information via events. The paths events are distributed is termed an event-flow. This
concept is very similar to the fundamental working principles of a brain where a neuron
(service) exchanges information (events) via synapse (event-flow). Synapse are dynamic;
they can grow or recede from neurons; analogously, depending on a workflow, the event-
flow among services can change.

One benefit of EDAs is the loosely coupling among services which enables software sys-
tems to be flexible, scalable, and highly integrative. Flexibility allows for non-complex
service implementations while higher functionality is realized by sticking services to-
gether. Scalability is achieved by distributing services to multiple computing resources.
Integration enables applications, developed with different software frameworks such as
ViSTA [Assenmacher & Kuhlen, 2008] and NEST [Gewaltig & Diesmann, 2007], or
other programming languages, to be used within an ecosystem. This is possible because
applications retain independence by only sharing data via events over application bound-
aries. In context of data visualization, utilizing EDAs allows for using various display

16 2.2. Related Work

Event
Header

Body

Downstream
Activity

Execute
Functionality

Event Generators
Service1 Service2

Servicen

Event Processor

Publish

Notify

Invoke
Service

Capture

Generate
Event

Event Channel

Figure 2.3: Event-flow layers in an EDA: event generators create and emit events. An
event contains a header specifying its designator and a body to hold state information.
Event processors receive and process events over an event channel. Eventually, events
trigger the execution of functionality as part of a downstream activity. The figure is sim-
plified and adapted from [Michelson, 2006].

systems and therefore the development of HVEs.

As services in an EDA communicate via events, they are characterized by the ability to
emit, detect, and react to events. Event transport is realized by a communication infras-
tructure. A communication infrastructure delivers events over a network or other means
of inter-process communication, e.g., MPI1, RPC2, or CORBA3. However, EDAs em-
phasize loosely coupling which operates under the assumption that services only react to
events, without knowledge of where events are originating from. Thus, EDAs are push-
driven, do not enforce handshakes between services, and share data on a fire and forget
principle. Reaction to an event is part of a logical processing layer which characterizes an
event as a change of state that merits attention from the system.

Michelson [2006] distinguishes four event-flow layers as depicted in Figure 2.3. Any
event-flow starts with an event generator and may culminate with the execution of down-
stream activities. To this end, the first layer consists of event generators that create and
emit events. An event generator only transpires events and has no knowledge of any sub-
sequent processing. Events from an event generator can optionally be processed by an
event preprocessor for filtering and routing purposes before being passed to the second
layer. The second layer, termed event channel, uses a communication infrastructure to
pass events to all subsequent layers. An event consists of a header and a body [Michel-
son, 2006]. The header contains a designator that holds information about the event’s
content, e.g., its name, a time stamp, or the event generator it originates from. The event
header can be used by an event preprocessor to detect and route events to a designated
event processor. The event body encodes a state change. An event must encode the en-
tire state change because event processors cannot actively request additional states from
the event’s originator. By design, event generators and processors use stateless commu-

1http://mpi-forum.org
2https://tools.ietf.org/html/rfc5531
3http://www.omg.org/spec/CORBA/

2.3. Semantic-Aware Event-Driven Architecture 17

nication. The third layer contains all event processors. As shown in Figure 2.3, an event
processor observes events on the event channel, evaluates these against event process-
ing rules, and takes action according to its specification. Event processors might process
events independently or in a context sensitive manner. Hence, an event processor has the
following responsibilities when reacting:

• publish events to trigger downstream activities.

• notify system components.

• invoke services.

• capture events for recording.

• generate and emit events to the event channel.

The execution of downstream activity is the fourth and final layer and represents the direct
response from the EDA while not triggering any additional logical event processing.

Michelson [2006] suggests that EDAs are best used for asynchronous flows of information
and presents three possible event processing styles:

• Simple processing: when an event is detected, only downstream activities are trig-
gered.

• Stream event processing: an event processors monitors and filters events to only
trigger specific downstream activities.

• Complex event processing: a confluence of events is monitored for a time period,
containing events of different types, to determine event correlations. Event corre-
lation may be causal, temporal or spatial. This processing technique requires an
event interpreter which performs pattern recognition or other forms of correlation
detection techniques. Subsequently, new events are emitted to be processed by the
EDA.

In summary, EDAs are a software architecture design principle that enable extensibility,
scalability, and flexibility by decoupling complex system components into smaller execu-
tional parts that communicate via events. Besides flexibility and extensibility, EDAs scale
well in comparison to monolithic software applications and can exploit heterogeneous
computing platforms. However, the benefits also introduce complexity to the communi-
cation infrastructure, the invocation of services, event processing, and the composition of
services to form higher functionality out of the smaller executional parts. In the following
sections, I will present and apply techniques of semantic reasoning to mitigate some the
costs of utilizing EDAs.

2.3 Semantic-Aware Event-Driven Architecture

To develop a PSE that realizes the requirements outlined in Section 1.2 to create CMV
systems suited for various visual analysis workflows and a shifting focus in a scientific
analysis process, an EDA will be employed. Using an EDA allows for covering diverse
scientific workflows in the analysis tasks, the development and integration of additional
views, and reusing existing ones. Due to its flexibility, it enables the integration of hetero-
geneous data and concurrently running interactive immersive visualizations, coexisting on

18 2.3. Semantic-Aware Event-Driven Architecture

multiple systems. In principle, whenever a new visual analysis task arises, existing appli-
cable views should be reusable. The creation of additional views should only be required
if there are more appropriate visualization or interaction techniques. Moreover, existing
views, specialized to an analysis task, should coexist with new views without requiring
modification which facilitates a transition back to a previous analysis workflow.

To this end, this section focuses on three fundamental parts to realize the PSE as a
semantic-aware EDA:

1. the introduction and definition of the PSE components along with their conceptual
mapping to an EDA.

2. a communication infrastructure, serving as event channel, that enables inter-process
communication for services.

3. a semantic model that describes visual analysis tasks as workflows, enables user to
create a CMV system via the invocation of services and definition of view coordi-
nation.

Implementing the PSE as an EDA enables flexibility, extensibility, scalability, the defini-
tion of services, and the creation of views for CMV systems. However, utilizing an EDA
and its loosely coupling results in managing services for visual analysis tasks. To this
end, a semantic model in conjunction with semantic reasoning [Decker et al., 2000] is
used to assist and counteract the increased complexity in defining workflows, managing
services, establishing event communication, and guarantee valid event exchange based on
the requirements of services.

A communication infrastructure enables services to communicate via an event channel
based on the publish and subscribe paradigm. The overall system’s complexity can then
be divided into smaller parts, actualized by services realizing views. This enables the
definition of services and interfaces with clear functional responsibilities increasing the
system’s flexibility and maintainability. The communication infrastructure is also used to
realize the coordination of views. Since view coordination is transported over an event
channel, it allows views to utilize a variety of display systems most suitable to an vi-
sual analysis task. Moreover, it allows services to be developed in different programming
languages. This closes the gap between the requirements of highly interactive visualiza-
tion systems to leverage more hardware-oriented programming languages such as C++ to
achieve interactivity and community tools in neuroscience which usually utilize Python.
One advantage over existing CMV systems is the dynamic control over the coordination
of views which can be changed by the user at runtime.

A semantic model, used by a runtime system and stored in an ontology, describes work-
flows as set of services required for this task, how they can be invoked, and linked. The
runtime system provides a UI for the configuration of the PSE and enables to create and
restore CMV systems for workflows. Basically, a workflow describing an analysis task
enumerates on which services are required and how these are interconnected. As services
communicate via events, this interconnection is termed an event-flow network.

In the following sections, I will present a definition of services, outline the communi-
cation infrastructure, the semantic model, define the event-flow network, and introduce
the runtime system that make up the semantic-aware EDA. In addition, I will present a
formalization of the system to clarify each part’s function. Lastly, I will explain the coor-

2.3. Semantic-Aware Event-Driven Architecture 19

dination model realized within the proposed PSE and provide an example on how it can
be extended with new services.

2.3.1 Services, Slots, and Events

Services are the central part of an EDA to realize a functional system. In particular, any
CMV system created within the PSE for an analysis task consists of a set of invoked
services which are interconnected. Thus, a view in a CMV system is a service that deals
with any kind of conceptual entity to be displayed.

A service, as part of this thesis, is defined by the following properties:

• a service is an executable program.

• a service must be invoked to be used within the system.

• a service offers functionality by the means of slots which define its interface.

• a service communicates exclusively via events.

• a service is allowed to run concurrently by invoking it multiple times.

For instance, a service can be a view displaying a visualization, or a data provider that
loads data from a source and publishes the data via events.

In contrast to this definition, the World Wide Web Consortium (W3C) defines a web ser-
vice as a software system designed to support inter-operable machine-to-machine inter-
action over a network. It has an interface described in a machine-processable format such
as Web Services Description Language (WSDL)4 Other systems interact with a web ser-
vice in a manner prescribed by its description using SOAP-messages, typically conveyed
using HTTP with an XML serialization in conjunction with other web-related standards5

Notable differences between web services and services as defined here are a binary serial-
ization format to achieve performance suited for real-time visualization systems, a publish
and subscribe communication paradigm, and an interface description based on a semantic
model which allows semantic reasoning to be used in comparison to WSDL.

Issarny et al. [1998] place the following demands on services:

• the functionality offered by a service must match the one expected by a connecting
service.

• the connectors used for handling interactions among services must provide commu-
nication protocols that conform those expected by services.

• the overall architecture must provide the desired quality in terms of criteria as di-
verse as dependability, efficiency, scalability, security, timeliness, and usability.

The first demand is met by modeling functionality of services and its expectations on event
communication in an ontology as outlined in Section 2.3.3. The second demand is met
by guaranteeing that functionality, i.e., downstream activity, of services is only accessible
via service slots. Slots are tied to specific events and slot connections must have the same
semantic description, hence, slots of different events cannot connect. The runtime system

4https://www.w3.org/TR/wsdl
5https://www.w3.org/TR/ws-gloss

20 2.3. Semantic-Aware Event-Driven Architecture

will guarantee this property as part of the event-flow network construction, as outlined in
Section 2.3.5. The last demand is partly met by the conceptual idioms of utilizing EDAs,
e.g., scalability, while the rest are requirements on service implementation details.

To interface functionality of services, slots are used. Slots are the only means to com-
municate with other services. To this end, a slot is strongly tied to an event type and can
either send or receive events of this type. It acts as an unidirectional start- or endpoint for
event communication. Hence, services use slots to send or receive events over an event
channel. A slot is uniquely identifiable throughout all running services within the PSE.
Event communication requires two distinct type of slots:

• a subscribing slot, also termed in-slot, only receives events.

• a publishing slot, also termed out-slot, only emit events.

A subscribing slot can connect to multiple publishing ones, as long they send and receive
the same event type and have the same semantic description. However, events received
by subscribing slots cannot be traced to their point of origin. A publishing slot is con-
ceptually equivalent to an event generator; similarly, a set of subscribing slots, associated
with service logic triggering downstream activity within a service, is equal to an event
processor as defined by Michelson [2006].

Finally, an event is defined as follows and equivalent to [Michelson, 2006] definition:

• an event is the only means to transport data among services.

• an event is transported over an event channel.

• an event is encapsulated in a message, consisting of an event header and body.

Events used within the PSE can be mainly categorized into data events and coordination
events. Data events are produced and emitted from data provider services to transfer data
to services operating on these. Coordination events are emitted from views to share, e.g.,
selections of conceptual entities, or camera positioning to realize navigational slaving.

Figure 2.4 illustrates the relationship between services, events, slot types, the event chan-
nel, and downstream activities. In this example, Service1 emits an event consisting of
a header and a body via an event channel to Service2 and Service3, because in-slots of
Service2 and Service3 are both connected to the Service′1s out-slot. In addition, Service2
emits another event to Service3. Whenever an event is received by an in-slot, correspond-
ing downstream activity is triggered.

With this terminology, formalization of services, slots, and downstream activity is possi-
ble and will allow to combine an EDA with a semantic model later on:

Definition 2.3.1. Let an EDA E be defined as a 5-tuple E =(S,Ω,Ω∗,ω,τ) such that S is a
finite set of services, Ω is a finite set of operations (equivalent to downstream activities),
and Ω∗ is a finite set of instances of operations called slots. A function ω maps each
service s ∈ S to a subset of operations Ωs ⊆ Ω such that:

ω : S ∋ s → Ωs ⊆ Ω

A function τ maps each operation o ∈ Ω to a subset if slots (also denoted as instances of
this operation o) Ω∗

o ⊆ Ω∗ such that:

τ : Ω ∋ o → Ω
∗
o ⊆ Ω

∗

2.3. Semantic-Aware Event-Driven Architecture 21

Event
Header

Body

Service2

Out-SlotEventb

Downstream
Activity1

triggers

In-SlotEventa

Service3

Downstream
Activity2

triggers

In-SlotEventa

In-SlotEventb

triggers

Service1

Out-SlotEventa

Event Channel

Downstream
Activity3

Figure 2.4: An event channel transports events among services. Here, Service1 emits
an event to Service2 and Service3 via its out-slot. The in-slots of Service2 and Service3
receive Service′1s event and trigger downstream activity. Additionally, Service3 receives
an event from Service2.

The next section will introduce the communication infrastructure that provides the event
channel for event communication.

2.3.2 Communication Infrastructure

To share events among services, a communication infrastructure is required to realize an
event channel for an EDA. To this end, the nett messaging framework was developed as
part of this thesis. The communication infrastructure consists of three central components
as depicted in Figure 2.5:

1. the nett library which provides event-serialization through schema definitions and
network transport via slots.

2. the nett-python module which is build on top of nett and exposes the nett library’s
functionality to Python.

3. the nett-semantic module which augments the nett library’s functionality with se-
mantic descriptions about slots, grants control over these to connect or disconnect,
and realizes their central announcement.

In the following, each component will be presented in more detail.

nett

The nett library is an open source C++ network library6 to exchange messages across
applications. The library’s design is based on the publish and subscribe communication
idiom with the goal to enable flexible and loosely coupled systems. One of the library’s
design intentions is the automatic generation of serialization code for user-defined events

6https://devhub.vr.rwth-aachen.de/VR-Group/nett.git

22 2.3. Semantic-Aware Event-Driven Architecture

Event

Schema

nett

nett-python

Module Export

Slot

Out-SlotIn-Slot

nett-semantic

Remote Slot
Control

Semantic Slot
Description

Slot
Announcement

Module Export

Figure 2.5: The communication infrastructure consists of three parts: the first part,
termed nett, provides slots for sending and receiving events. Each event is defined and
generated via a schema. The second part, called nett-python, exposes the nett library’s
functionality to Python. The final part, nett-semantic, augments nett with semantic de-
scriptions for slots, provides control capabilities, and is responsible for the announcement
of service slots. In addition, this functionality is exposed via a module to Python.

and compatibility with various programming languages. To this end, the nett library ab-
stracts low-level network programming in a cross-platform library based on ZeroMQ7

and Google’s Protocol Buffers8. While ZeroMQ provides basic network communication,
Protocol Buffers adds highly flexible serialization capabilities with the focus to enable
distributed event-driven systems. To combine both feature sets, nett offers slots to service
developers as a means to transfer events among services. Slots exist in two flavors: firstly,
publishing slots, also termed out-slots, sending events. Secondly, subscribing slots, also
termed in-slots, which receive events from possibly multiple publishing slots.

To use slots, a service developer has to initialize the nett library with an endpoint, i.e., an
IP address. Subsequently, this allows to create either in-slots or out-slots. Whenever a
publishing slot is created, a slot tag consisting of an arbitrary string must be specified to
indicate the event’s designator. A subscribing slot can then connect to several publishing
slots as long as the event designator match. An event is comprised of the event’s data
and a header as introduced in Section 2.2.3. The header contains a routing designator for
its delivery termed a slot tag. The event’s data encodes the actual data to transport. To
define an event, an event schema is used which describes the event’s data as presented in
Listing 2.1.

Listing 2.1: An exemplary event definition schema: a map is defined with a string and a
vector of floating point values as a key-value-pair. Nested compositions of event defini-
tions are allowed.

message f l o a t v e c t o r m e s s a g e
{

r e p e a t e d f l o a t v a l u e = 1 ;
}

message m a p s t r i n g f l o a t v e c t o r m e s s a g e
{

s t r i n g name = 1 ;

7http://www.zeromq.org
8https://developers.google.com/protocol-buffers

2.3. Semantic-Aware Event-Driven Architecture 23

User
Service Network publisher Network subscriber Interprocess publisher Out-Slot In-Slot Interprocess subscriber

initialize

create

create

create

create

create

publish

send

create

connect

receive

send

publish

publish

receive

receive

send

Figure 2.6: A nett service only exposes one network publisher and network subscriber
allowing multiple slots to use one IP address and port. The delivery of events to their
designated in-slots is performed using a shared memory communication channel via an
inter-process publisher and subscriber. Events published by a service via an out-slot are
forwarded to the network publisher while all event received by a service first arrive at the
network subscriber and are then forwarded to their respective in-slot.

map<s t r i n g , f l o a t v e c t o r m e s s a g e > v a l u e = 2 ;
}

Once an event schema is provided, the event’s serialization code stub is created for a
target programming language and can subsequently be used within services to create slots
using the event. This allows event definitions to be shared among services, ensuring
binary compatibility and effectively building up a shared vocabulary. To finally send an
event, a publishing slot typed to the provided event definition is created. Consecutively,
an event is populated with data and published via the publishing slot. To receive the event,
a subscribing slot typed to the same event definition is required. Receiving an event is a
non-asynchronous call and access to the event’s data can only conclude once this call has
returned.

One of the library’s design goals is that a service only occupies one endpoint to send and
receive events necessitating slot tags. This has the advantage that the number of required
communication endpoints only scale with the number of services invoked, regardless of
the number of publishing slots offered by a service. To this end, the nett library ensures
that a service only creates one network publisher and one network subscriber visible on
the network layer. Event communication is entirely handled by these. As illustrated
in Figure 2.6, a service creates a network publisher, a network subscriber and an inter-
process publisher. Whenever an out-slot is requested to publish an event, the out-slot
forwards the event to the network publisher which pushes the event to the network. On
the other hand, when an in-slot is created, an inter-process subscriber is created which

24 2.3. Semantic-Aware Event-Driven Architecture

directly connects to the inter-process publisher. The inter-process subscriber will filter all
events received via the inter-process publisher and forwards the event to its corresponding
in-slot if its slot tag matches the event’s slot tag encoded in the event header. When an
event is received by a network subscriber, the event is unpacked and the slot tag examined.
The event body is then passed to the matching in-slot. Inter-process communication is
used in order to avoid additional network strain.

nett-python

The nett-python module is an open source library9 exposing the functionality of the nett
library such that services can be implemented directly using Python while still being
compatible to services written in C++. Because the Python programming language is
widely used in the field of neuroscience, nett-python enables neuroscientists to, e.g., con-
trol views via slots or extend the PSE with services to cover different workflows fostering
re-usability and extensibility.

The module is developed in such a way that previously defined event schemata can be
reused over language barriers. Thus, the nett-python module allows for rapid prototyp-
ing of views and UIs that benefit from the cross platform compatibility of Python. In
addition, the magnitude of available software packages like the Elephant, a package for
analysis of electrophysiology data10, allows for the integration of existing community
tools. Moreover, the module enables instrumentation of PyNEST [Eppler et al., 2009] and
CyNEST [Zaytsev & Morrison, 2014] simulation scripts for the neural simulator NEST as
presented in Section 3.3, demonstrating an in situ visualization and steering CMV system
based on nett-python.

nett-semantic

The nett-semantic library extends the nett library’s functionality with three essential fea-
tures to enable a semantic-aware PSE and exposes its features to Python as a module:

• a slot announcement mechanism for services.

• remote slot controlling for services.

• slot augmentation by a semantic description.

Slot announcement enables the management of slots for CMV systems by publishing
each service’s slot to the central management instance called runtime system. Whenever
slots are created, an announcement is send to the runtime system. Vice versa, when slots
are destroyed due to a service shutdown, the runtime system is notified. This allows for
controlling a slot by issuing a command in the runtime system to connect or disconnect
from out-slots. Also, this enables dynamic coordination in a CMV system at runtime
since coordination is realized via slot communication.

For slot announcement, nett-semantic adds a router pattern communication idiom on top
of nett. The router pattern allows for multiple connections from services to the runtime
system in order to announce slots. To manage slots, nett-semantics adds a communication

9https://devhub.vr.rwth-aachen.de/VR-Group/nett-python.git
10http://neuralensemble.org/elephant/

2.3. Semantic-Aware Event-Driven Architecture 25

channel termed control slot to each service which handles connection and disconnection
commands.

To semantically describe a slot, it is linked to a semantic model: a slot is required to
specify a semantic identifier next to its slot tag. This semantic identifier is used to extend
the semantic model when a slot announcement is received by the runtime system (see
Section 2.3.3). The semantic identifier in conjunction with its used endpoint and slot tag
identifies each slot uniquely in a CMV system.

Finally, nett-semantic exposes all of its functionality in a Python module. This allows
scripting the construction of a CMV system and its specific slot connections.

2.3.3 Semantic Modeling

One of the central contribution of this thesis is the use of semantic modeling and reason-
ing to construct workflow-sensitive CMV systems. The semantic model shares a com-
mon, machine deducible understanding of services and their interconnections to reflect an
analysis task by constructing a specialized CMV system fitting the workflow. It assists
users in the selection, invocation, and the interlinking of services by the means of seman-
tic reasoning. To utilize semantic reasoning, a knowledge base is required that encodes
workflows, relates services to workflows, defines how services must be linked to reflect
the workflow, and capture the current state of the system, e.g., what services are currently
running, which slots they offer, and how they are connected.

Semantic modeling is the process of creating and organizing knowledge bases. A seman-
tic model, encoded in an ontology, is a machine-readable knowledge base from which
relationships of described things can be inferred. Its primary purpose is the classification
of these things in terms of their semantic meaning. Ontologies are commonly used to for-
malize, share, and reuse knowledge bases. An ontology is formed from a set of concepts
and relations between concepts. In addition, instances, also called individuals, describe a
particular occurrence of a concept. A concept resembles a thing, an idea or a subcategory
of a domain and is described by properties through an attribute-value mechanism [Decker
et al., 2000; Wang et al., 2004]. A property describes an attribute of a concept and im-
posed restrictions. Hence, an ontology is a formal and explicit domain description of
concepts, relations to express hierarchies of concepts, and individuals.

On ontology can be formalized as follows:

Definition 2.3.2. An ontology is defined as a 5-tuple O= (C,HC,R,HR, I) where C repre-
sents a finite set of concepts. HC defines a subsumption hierarchy representing a hierarchy
of concepts as a relation:

HC ⊆C×C

HC(c2,c1) denotes that c2 is a subconcept of c1. R represents a set of relations that relate
concepts to one another:

R ⊆C×C

Similar to HC, HR, denotes a hierarchy of relations:

HR ⊆ R×R

26 2.3. Semantic-Aware Event-Driven Architecture

Subclass of

Subclass of

Subclass of

disconnect hasSlotTag

connect
(functional, inverse functional)

hasComponentName hasHash

hasCommandSlotIP

hasControlSlot

hasMessageType

string

string

SlotOutSlotInControlSlotIn

string string

string

Slot

Figure 2.7: Graphical representation of parts of the semantic PSE model: concepts are
depicted as blue circles. The Slot concept is parent to both subconcepts SlotIn and SlotOut.
Green boxes represent data properties attached to concepts while blue boxes represent
object properties relating concepts to one another.

Accordingly, HR(r2,r1) denotes that r2 is a subrelation of r1. Finally, I is a finite set of
instances of concepts in C, assigned by an instance relation Ri ∈ R:

Ri ⊆C×C

An ontology is primarily build up of concepts and subconcepts. A concept defines a clas-
sification of individuals, i.e, a group that shares common characteristics. Hence, if an
individual is a member of a concept it falls under the concept’s semantic classification.
Semantic reasoning operates on relations between concepts. To this end, an object prop-
erty ∈ R is a relation that links two concepts. For instance, an object property “connect”
can relate the two concepts “SlotIn” and “SlotOut” as depicted in Figure 2.7. Data type
properties, also known as attributes, relate instances of concepts to literal values as shown
in Figure 2.7 as green boxes.

To model ontologies, the Web Ontology Language (OWL)11 is used. OWL is a computa-
tional logic-based language designed to represent knowledge bases in the Semantic Web.
Ontologies described in OWL can be referenced from other OWL ontologies allowing
to separate and structure knowledge bases. This characteristic is utilized as described in
Section 2.3.4. OWL is build on top of two components: the Resource Description Frame-
work (RDF) and the Resource Description Framework Schema (RDFS) as illustrated in
Figure 2.8. RDF is a W3C recommendation to standardize the description of resources. In
context of OWL, RDF defines data types while RDFS models concepts using RDF. OWL
then adds the description and definition capabilities to relate concepts. RDF is based on
a labeled, directed graph. Its basic building block is a triple of “object-attribute-value”,
also expressed as A(V,O) defining a relation that an object O has an attribute A associ-
ated with a value V . To allow for semantic reasoning, an OWL model is transformed into
a description logic using triplets of the form “subject-predicate-object”. Based on this
description, SPARQL, a SQL-like query language, is used to inquire semantics and infer

11https://www.w3.org/OWL/

2.3. Semantic-Aware Event-Driven Architecture 27

OWL

RDF

Concepts
Classes

RDFS

Things
Relations

Datatype Definition
Language
SPARQL

Figure 2.8: OWL is build of RDF and RDFS. RDF provides data type definitions and
SPARQL, a query language for RDF graphs; RDFS defines concepts. OWL models rela-
tions.

logic. SPARQL contains capabilities for querying graph patterns along with their con-
junctions and disjunctions12. In addition, it supports aggregation, subqueries, negation,
expression creating values, extensible value testing, and can constrain queries by a source
RDF graph. Evaluating a SPARQL query yields result sets or RDF graphs. For example,
SPARQL allows to check whether an individual is an instance of a particular concept,
to find individuals of a given concept, or how concepts and their individuals are related
to each other. Concepts can also be matched against a set of object- or data properties.
Listing 2.2 demonstrates a simple SPARQL query that retrieves all individuals matching
the concept C.

Listing 2.2: Querying all individuals matching the concept C:

s e l e c t ? s where { ? s r d f : t y p e <C> }

Modeling an ontology consists of five elementary steps:

1. define concepts.

2. arrange these concepts in a taxonomic hierarchy.

3. describe properties, define allowed values for such, and attach them to concepts.

4. create instances of concepts and provide values for their properties.

5. iteratively refine the ontology.

Graphical tools such as protégé can assist in the modeling of ontologies. Protégé is a free,
open source ontology editor developed at the Stanford Center for Biomedical Informatics
Research at the Stanford University School of Medicine13. Advantages of protégé are
its W3C standard-conform output, its visual ontology creation, and refactoring capabili-
ties.

Semantic modeling forms the basis for the PSE that utilizes a semantic architecture. To
this end, the next section will introduce a semantic model in conjunction with an EDA.

12https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
13https://protege.stanford.edu

28 2.3. Semantic-Aware Event-Driven Architecture

2.3.4 Semantic-Aware Architecture

To realize a semantic-aware EDA, a semantic model is required which models services,
slots, and describes their functionality by the means of concepts, individuals, relations
and properties. This semantic model is based on two parts:

• a static knowledge base, termed persistent ontology.

• a dynamic knowledge base, termed runtime ontology.

The persistent ontology models the concept of services, their configurations, slots, and
corresponding individuals. The persistent ontology encodes information that typically
does not change while the PSE is in use. For example, configurations for services which
specify how services can be invoked, usually are immutable and therefore stored in the
persistent ontology. On the other hand, the runtime ontology keeps track of the current
system state of the PSE, i.e., which CMV is currently used, and extends the persistent
ontology by adding concrete individuals of concepts. Thus, depending on invoked ser-
vices, available slots, and established connection among services, the runtime ontology
changes. Both ontologies are managed by the runtime system which is a service monitor-
ing the invocation of services and will be presented in detail in Section 2.3.6.

The overall idea of the semantic model is to capture the state of the PSE and assist in
forming a CMV system depending on a workflow. To this end, services are associated
with concepts. Whenever a service is invoked, an individual of its associated concept
is created and added to the runtime ontology. Analogously, all slots of a service create
individuals of their corresponding slot concept. This requires that services and their slots
are augmented with a semantic identifier. The semantic identifier represent the associated
concept to be instantiated and must match against a concept defined in the persistent
ontology. The following definition formalizes this process:

Definition 2.3.3. Let O = (C,HC,R,HR, I) be a ontology and Σ be an alphabet containing
all alphanumeric characters. Let w denote an arbitrary semantic identifier:

Σ = {a, ...z,A, ...,Z,0, ...,9}

w ∈ Σ
∗ | w ̸= ε

The semantic identifier w is an element over the Kleene closure of Σ but must not be the
empty string ε . Let f be a function that accepts a w ∈ Σ∗ and a concept c ∈ C and maps
to an individual i ∈ I:

f : Σ
∗×C → I

An operation S adds this individual i ∈ I of f to the set I in O:

S := I ∪{i}

The function f will be evaluated for each service and its slots once invoked. Subsequently,
the operator S will add the created individuals to the ontology O.

As illustrated in Figure 2.9, services and slots are augmented with semantic identifiers
which are associated to concepts in the persistent ontology. Once a service is invoked, the
runtime system is notified of the service and its slots. Subsequently, the runtime system

2.3. Semantic-Aware Event-Driven Architecture 29

Ontology

Coordination

Out-Slot In-Slot

Persistent Dynamic

Runtime System

Service
Semantic
Identifier

Out-Slot Semantic
Identifier

In-Slot Semantic
Identifier

Slot

Selection
Individual

Coordination

VisTime
Individual

Coordination

announces manages uses

Figure 2.9: A service exposes slots to trigger downstream activity. The service and its
slots are augmented with semantic identifiers. When a service is invoked and creates its
slots, the semantic identifiers are announced to the runtime system. The runtime system
then matches the semantic identifiers against concepts in the persistent ontology and cre-
ates corresponding individuals in the runtime ontology. Then, semantic reasoning can be
used to create connections between in- and out-slots.

creates individuals of the matching concepts which are added to the runtime ontology.
Analogously, whenever a service is shutdown, the corresponding individuals are wiped.
Thus, the runtime ontology keeps track of the current system state, e.g., what services are
currently invoked and which slots are available and connected.

To allow for semantic reasoning, the persistent- and runtime ontology are combined. As
each ontology is encoded as a RDF graph, extending one ontology by another is per-
formed by inserting the RDF triplets into one unifying graph representing the union of
both ontologies. Following, the unified ontology is used to infer which slots can be con-
nected to reflect an analysis task and hen creating a CMV system. To infer which services
are needed, workflows for each analysis task are modeled in the persistent ontology. The
invoked services and their formed connections is termed event-flow network. Next to the
state management, the deduction of a valid event-flow network forming a CMV system is
the primary task of the semantic model.

Augmenting the EDAs with semantic modeling allows to reduce event explosion within
the PSE by linking slots to concepts while using the same slot tag enabling events to be
used in multiple contexts. Event explosion refers to the effect that when the event type is
used as a description of its content, new events are required whenever their content inter-
pretation is changed even though the encoded data stays the same. For example, consider
the case where a service in-slot expects a time series event, encoded as a vector of floating
point values, to visualize the event’s content in a plot. This implies that all services oper-
ating on a time series event interpret the event’s content the same. But are the values of the
time series encoded in seconds or milliseconds or any other unit? There is no way to sys-
tematically enforce the same interpretation of the time series data, except by convention,
making it prone to mistakes and hindering extensibility. Thus, whenever a new service is
developed interpreting a time series event in a different unit, a new event is introduced.
However, this new event still encodes a vector of floating point values, effectively dupli-
cating the event’s content. This approach does not scale well with an expanding service
ecosystem. To avoid this scenario, a slot carries the semantic description of the event’s
content, effectively separating content from interpretation. This enables services to share
event definition schemata, while specifying varying interpretations.

30 2.3. Semantic-Aware Event-Driven Architecture

To define a semantic-aware EDA, the following formalization is used:

Definition 2.3.4. Given an EDA E = (S,Ω,Ω∗,ω,τ), E is called semantic-aware if an
ontology O = (C,HC,R,HR, I) exists such that

∀ω
∗
i ∈ Ω

∗ : ∃C j ∈C : (oi ∈ Ω : C j)

The formalization states that for each instance ωi of an operation, a concept in C exists
that maps this operation to a the concept C j in O.

In the next section, key concepts defined in the ontology for the semantic model will be
presented.

Semantic Concepts

Key concepts for the PSE are modeled in the persistent ontology. Individuals of concepts
are stored in the runtime ontology and are created by the runtime system to keep track of
the current CMV system state. These individuals will not persist when the runtime system
is shutdown. Exceptions are individuals that specify service invocations, e.g., subcon-
cepts of Workplace or Workflow. These individuals describe the construction of specific
CMV systems for workflows already defined by users in the runtime system. Figure 2.10
provides an overview of key concepts in the ontology. In the following, these key con-
cepts are presented.

Service — The Service concept models all services of the PSE. Whenever a service is
invoked, an individual of this concept is created in the ontology. Because a service can be
invoked multiple times, its concept is associated with a Workplace and a StartService con-
cept. Both concepts describe how a concrete service individual can be invoked. A service
can be linked to multiple Workplace and StartService concepts to use different invocation
parameters. For instance, a data provider that publishes a dataset can be invoked multiple
times with invocation parameters pointing to different datasets. This way, services con-
necting to data providers are independent of the dataset’s location. In Section 3.1.6 this
property is used to compare two neural simulations using the same data provider service
implementation with different datasets.

Workplace — The Workplace concept defines a place or platform a Service individual
can be invoked. An object relation links a Service concept to the Workplace concept. In
addition, the Workplace concept is linked to the StartService concept to model service
invocation parameters.

StartService — The StartService concept models the starting procedure of a service.
It provides two data properties, hasStartCommand and hasCommandArguments defining
the invocation of a service. To run a service concurrently on the same Workplace, the
service must not use the same endpoint. Thus, the data property hasCommandArguments
points to a configuration file. Upon invoking a service, the runtime system passes the
specified configuration file to the service which specifies the nett endpoint initialization.
Individuals of the StartService concept are stored in the persistent ontology.

Workflow — The Workflow concept models a workflow. A workflow is described by
a set of services and their connections and models all concrete workflows. To this end,

2.3. Semantic-Aware Event-Driven Architecture 31

realizedBy

hasSourceSlot

using

connect

connects

disconnect

startsServices

hasTargetSlot

shares

transformsWithService

usesService

uses

hasName

hasCommandArguments

hasIP

hasServiceName

start

hasStartCommand

hasMessageType

usesConnection

provides

hasHash

hasCommandSlotIP

Connection

string string

Coordination

SlotIn

string

string

stringstring

string

Transformation

string

Workflow

C++Service

Workplace

stringstring

Service Slot
string

PythonService

StartDesktop

StartService

string

SlotOut

Figure 2.10: The semantic model used by the PSE consists of concepts and individuals.
Concepts are marked as blue circles while arrows between concepts represent relations.
A object property relation is indicated via a blue rectangular box. Data property relations
are indicated as green boxes. Dashed arrows visualize a subconcept relationship.

32 2.3. Semantic-Aware Event-Driven Architecture

the workflow concept enumerates on two distinct data properties: usesService and us-
esConnection. Thus, the concept models which services must be invoked and how they
need be connected for an analysis task. To reproduce a workflow, the runtime system first
iterates over all specified services of a workflow individual and starts these. Then, all
connections are traversed and services notified to form these connections. Workflow indi-
viduals can be created by users once a CMV system is detailed within the PSE. Since the
runtime system keeps track of services and their connections that form the current CMV
system, it is possible to save this configuration as a workflow. Hence, for each analysis
task a workflow individual can be created to avoid repetitive CMV system construction.
Accessing and saving workflows is provided in the runtime system via its GUI. Individu-
als of the Workflow concept are stored in the persistent ontology to allow for reproducing
the CMV system.

Connection — The Connection concept models a connection between slots. For each
connection, an individual is created that identifies a connection by storing the source and
target slot via its hasTargetSlot and hasSourceSlot data property. Since a slot is uniquely
identifiable in the PSE via a hash value build over its semantic identifier, endpoint, and
slot tag, both data properties relate to a string storing the hash value. A Connection is
associated to the Workflow concept enabling its recreation. Connection individuals reside
in the runtime ontology. Only if a connection individual is associated to a workflow, the
connection individual is placed into the persistent ontology.

Slot — The Slot concept is the parent concept of all slot types. Because services com-
municate via slots, an object property provides relates a service to slots. As slots exist in
two variants, this concept is subclassed by the concepts SlotIn and SlotOut. The slot con-
cept models access to the service name it belongs to via a data property hasServiceName
pointing to the service’s individual in the runtime ontology. The slot’s event type can be
retrieved via the data property hasMessageType. The slot’s semantic identifier is stored
for each slot individual by the data property hasName. Its hash value, current network
endpoint, and the service’s control slot are accessible by additional data properties shown
in Figure 2.10. Slot individuals are stored in the runtime ontology.

SlotOut — The SlotOut concept models publishing slots, also termed out-slots. Each
individual of the SlotOut concept represents an available out-slot in the PSE.

SlotIn — The SlotIn concept represents invoked subscribing slots, also termed in-slots,
in the PSE. For each in-slot of a service, an individual of the SlotIn concept is created
in the runtime ontology. Because in-slots connect to out-slots to communicate events,
this concept models two object properties, connect and disconnect. SlotIn individuals are
allowed to create multiple connections to publishing slots resulting in the creation of cor-
responding Connection individuals.

Coordination — The Coordination concept specifies Connection individuals that are
used to coordinate interaction among services that realize a CMV system. Since not all
individuals of the Connection concept are used to coordinate interaction, e.g., connections
to data providers, the Coordination concept allows to make this distinction. Individuals of
the Coordination concept are identified via special semantic identifiers provided by CMV
system services. Two examples of special semantic identifiers forming Coordination in-

2.3. Semantic-Aware Event-Driven Architecture 33

dividuals are:

• AreaSelection which shares the current selection in views that support the selection
of brain areas.

• CurrentSimulationTime coordinates the synchronization of simulation time in views
that allow to navigate in time.

Chapter 3 will introduce further Coordination individuals based on the presented CMV
systems.

Transformation — The Transformation concept allows to define services that can con-
vert events to match different semantic identifiers. To this end, the Transformation con-
cept defines a map of semantic identifiers and proxy services that can translate one se-
mantic identifier to another one. Thus, transformations can be used to extend the PSE
by proxy services that convert the output of out-slots of existing services to match input
expectations of in-slots. Semantic inference then allows to find services to match a re-
quired semantic interpretation of an event. An example of this capability is presented in
Section 2.3.5.

2.3.5 Event-Flow Network

An event-flow network is a graph consisting of all slots from invoked services and their
connections. It defines the paths services exchange events. The construction of an event-
flow network corresponds to the definition of a CMV system for a particular workflow
and is assisted by the semantic model which imposes construction rules via its concepts
and relations. The runtime system uses the semantic model to realize the construction of
the event-flow network.

An event-flow network is formally defined as:

Definition 2.3.5. Given a semantic-aware EDA E = (S,Ω,Ω∗,ω,τ) with an ontology
O = (C,HC,R,HR, I) as outlined in Definition 2.3.4, an event-flow network is a directed
graph G = (Ω∗,M) where edges M are a set of ordered pairs defined as

M = Ω
∗×Ω

∗

An event-flow network is dynamic because services can be invoked and add slots which
inserts new vertices to the graph G. Moreover, connections can be established or revoked
during runtime, thus changing the set M. A service itself does not correspond to a vertex
in G, only its operations mapped to slots. Thus, each slot of a service represents a node in
an event-flow network G.

Valid edges in G are defined by the following constraints:

Definition 2.3.6. For all ordered pairs (ω∗
i ,ω

∗
j) ∈ M, the pair is considered a valid edge

if:

ω
∗
i ̸= ω

∗
j (i)

ω
∗
i : SlotOut∧ω

∗
j : SlotIn (ii)

34 2.3. Semantic-Aware Event-Driven Architecture

sωj*

sωi*

Service1

In-Slot

Out-Slot

x

sωk*

Direct Edge

Indirect Edge

Servicepsωl* sωm*

Transformation

realizedBy

connectsusing

Coordination

Connection

Service2

Timesec Timemsec

TimemsecTimesec

Selection

Semantic Identifier

Figure 2.11: In this example, service1 exposes an out-slot sωi∗ and an in-slot sω j∗ , which
realizes a coordination with service2 through sωk

∗ . A self-loop and direct edge of sωi∗ to
itself is not permitted, because an out-slot cannot connect to itself. In addition, a direct
edge from sω j∗ to sωk

∗ is invalid because the slot’s semantic identifier do not match. How-
ever, the ontology defines a transformation so that a proxy slot sωl

∗ and sωm∗ of servicep
can be used to transform the event’s data and realize an indirect edge.

(ω∗
i ,ci) : using∧ (ω∗

j ,c j) : connects → ci ≡ c j, or (iii)

∃a : Transformation such that
∃c : Connection(a,c) : realizedBy∧ (ω∗

i ,ci) : using∧ (w∗
j ,c j) : connects (iv)

The first constraint states that no operation of a slot connects to itself. Thus, self-loops in
G are not allowed. The second constraint ensures that only operations of in-slots connect
to an operation mapped to a SlotOut concept. Constraint three requires that two operations
participating in a coordination must be compatible by concepts defining the relations using
and connects, i.e., in-slots and out-slots, as seen in Figure 2.10. Finally, the last constraint
enables the transformation of an event’s content into a different semantic interpretation
through a proxy service. An edge constructed through this constraint is termed an indirect
edge between two slots. To this end, there is a proxy service which transforms the output
from an out-slot through a proxy in-slot, emitting the transformation to its proxy out-slot
which is connected to the receiving in-slot. An example of an indirect edge is depicted in
Figure 2.11 as a dashed arrow for a connection between sω j∗ to sωk

∗ . All three constraints
are enforced by the runtime system.

For example, a transformation can be useful given a service which emits time series data
in milliseconds on its out-slot tp and a service visualizing time series data in seconds
from its in-slot tc. A direct connection between tp to tc is possible, neglecting semantic
constraints, because both slots exchange the same event type. However, the event’s data
interpretation is different, indicated by unrelated semantic identifiers. Nonetheless, using
a transformation in the ontology, it is possible to find a proxy service for slot tp that
transforms the millisecond output to seconds for connecting tc to tp, thus introducing an
indirect edge. If a connection of tp to tc is requested, the runtime system can infer that a
connection can be realized by invoking a proxy service to realize an indirect edge between
tp to tc. Transformations enable extensibility and flexibility for the PSE without the need
to change existing implementations.

2.3. Semantic-Aware Event-Driven Architecture 35

Figure 2.12: The runtime system shows all available services and slots via its GUI. By
clicking on an in-slot, a connection to an out-slot can be established. Compatible out-slots
are semantically inferred, ensuring that the connection is valid.

The construction of an event-flow network enforcing the semantic constraints is realized
by the runtime system which will be discussed next.

2.3.6 Runtime System

The runtime system is the starting point to create a custom-tailored CMV system for an
analysis workflow. It follows the idea that users select services depending on a workflow
and connect slots, assisted by the semantic model, to reflect the workflow. To this end, the
runtime system lists available services from the persistent ontology in a GUI for selection
(see Figure 2.12 (bottom)). Subsequently, the runtime system realizes the event-flow net-
work by connecting slots resembling the intended analysis workflow. Once an event-flow
network is realized, the configuration and workflow can be saved.

The process to create a CMV system consists of the following steps:

1. start the runtime system.

2. invoke relevant services depending on a workflow or specify a new workflow by
starting services.

3. construct an event-flow network by the means of semantic reasoning.

4. realize the event-flow network by connecting slots.

5. if the workflow of the user changes, repeat from step two.

6. when analysis concludes, shutdown services.

To allow for this, the runtime system provides two views: the first view, termed slot view,
provides a list of announced slots from running services. The second view, called service

36 2.3. Semantic-Aware Event-Driven Architecture

view, presents all available services from the persistent ontology. A drop down menu
gives access to already established workflows to recreate a CMV system.

The runtime system’s responsibilities are the invocation of services, the collecting of an-
nounced service slots, the creation and management of concept individuals, and the real-
ization of the event-flow network by connecting slots. In addition, it enforces the event-
flow network constraints by the means of semantic reasoning and enables the creation and
storing of new workflows.

The runtime system tracks running services and their connections in the runtime ontology.
To this end, the runtime system monitors the creation of slots and generates individuals
of the Slot concept. When a slot is announced, the runtime system matches the semantic
identifier associated with the slot to a concept. It then creates an individual in the runtime
ontology by evaluating f and the operator S from Definition 2.3.3. Analogously, when a
service is invoked a corresponding service individual is created. This enables querying of
individuals that meet specific semantic criteria using SPARQL. To create individuals of
the Slot concept, a service announces each of its slot via the nett-semantic library. This
announcement includes the slot’s service name, its semantic identifier, the event type it
operates on, and whether it is an in-slot or out-slot. Whenever a service is started, the
runtime system updates its GUI to show available slots as shown in Figure 2.12 (top)
based on the individuals in the runtime ontology.

The construction of the event-flow network is also tracked by the runtime system. When-
ever a connection between two slots is created, the runtime ontology is extended by an
individual of the Connection concept. On this basis, the runtime system is able to in-
fer which connections can be established and guides users in wiring services to form an
event-flow network reflecting the analysis workflow.

To create or revoke a connection between slots, a user selects an in-slot from the run-
time system’s slot view. Here, reconfiguration can be performed by issuing a connect or
disconnect command to compatible out-slots, hence the event-flow network can be dy-
namically changed at runtime. When an in-slot is selected, the runtime system retrieves
all compatible out-slots that adhere to Definition 2.3.6 by performing a SPARQL query.
Based on the query results, a context menu is populated listing all compatible out-slots,
allowing to establish or revoke a desired connection. Once an out-slot is selected, it is
checked whether a connection individual already exists in the runtime ontology. If so, the
connection can be revoked and the connection individual is removed from the ontology.
Otherwise, a new connection individual is created and a connect command emitted to the
selected service’s control slot. This functionality is provided by the nett-semantic library.
Moreover, this functionality also allows to script an event-flow network without using the
runtime system.

To store a new workflow, an individual of the Workflow concept is created and subse-
quently added to the persistent ontology. Then, running services and connections formed
by slots are attached to the individual as data properties. The runtime system populates its
workflow drop-down menu based on all individuals of the Workflow concept stored in the
persistent ontology.

A CMV system constructed through the PSE is formalized as:

Definition 2.3.7. Given a semantic-aware EDA E = (S,Ω,Ω∗,ω,τ), an ontology
O = (C,HC,R,HR, I), and an realized event-flow network G = (Ω∗,M), a CMV system

2.3. Semantic-Aware Event-Driven Architecture 37

of the PSE is defined as

PSEcmv = (E,O,G)

Thus, a stored workflow in the runtime system is an alias to a concrete PSEcmv.

The runtime system, implemented in Python, utilizes the nett-python and nett-semantic
module. The Qt library14 is used for the GUI while for parsing, updating, merging, and
semantic inference of ontologies rdflib15 is employed.

In summary, the runtime system allows for service invocation, the construction of event-
flow networks using semantic reasoning, and the management of analysis tasks as work-
flows. Examples of creating specific CMV systems within the runtime systems are out-
lined in Chapter 3.

2.3.7 Coordination Model

The coordination model used in the semantic-aware EDA uses the event channel to ex-
change coordination among services forming a global distributed coordination space.
The global distributed coordination space is composed of events used to synchronize a
service’s view. Services receive and transmit events in the global distributed coordination
space by coordination endpoints realized as slot connections. A coordination endpoint is
a slot with an associated semantic identifier that maps to a subconcept of the Coordination
concept from the semantic ontology as introduced in Section 2.3.4. A coordination of a
conceptual entity is then defined as a connection between to coordination endpoints which
are tracked as a Connection individual in the runtime ontology. Consequently, the seman-
tic model allows to identify events and connections which belong to the global distributed
coordination space.

Events exchanged in the global distributed coordination space are subdivided into five
categories:

• Data subspace: the data subspace consists of events that are used to retrieve data
from data providers. Events in this subspace facilitate a uniform and consistent way
for services to access data for visualization purposes.

• Selection subspace: the selection subspace comprises events used to coordinate
selection in views among services. Typical selection events are conceptual entities
currently in focus.

• Geometry subspace: the geometry subspace encompasses geometric properties
of conceptual entities shared among views. For example, global transformations
applied to spatial objects or a used-defined color schema.

• Parameter-subspace: this subspace categorizes events that define visualization
attributes that need to be synchronized among services to guarantee a consistent
visualization state. Examples of events in this subspace are thresholds applied for
conceptual entities, visibility, or data ranges.

14https://www.qt.io/
15https://github.com/RDFLib/rdflib

38 2.3. Semantic-Aware Event-Driven Architecture

Enhance RenderMap Transform

Service1

Service2

Event

Global Distributed Coordination Space

Visualization
Object1

View1Subset1Data1

Visualization
Object2

View2Subset2Data2

 Selection
Subspace

User Selections,
Commands

Geometry
Subspace

Positions, Colors

Navigation
Subspace

Camera, Time

ƒE

Parameter
Subspace

Thresholds, Ranges,

Scalars

Data
Subspace

Simulation Data,

Streams

ƒE

ƒE

ƒE

ƒE

ƒE

Figure 2.13: All coordination events form a global distributed coordination space. The
coordination space is subdivided into five categories indicating the event’s semantic inter-
pretation. Services provide views depicting visualization objects as conceptual entities.
User interaction publishes events to the coordination space. Once an event is received by
a service, a transformation f is applied to react to the event’s content.

• Navigation subspace: the navigation subspace covers events that coordinate visu-
alization aspects like camera positing or current visualization time.

A unique property of this coordination model is its dynamic reconfigurability. Coordina-
tion can be requested and revoked at runtime through connecting or disconnecting coor-
dination endpoints. This enables flexible scenarios where users can decide to coordinate
conceptual entities based on current workflow needs. In addition, by adding new views
to the PSE and extending the semantic vocabulary, new coordination mechanisms can be
implemented without changing the coordination model.

The coordination model for the semantic-aware EDA is shown in Figure 2.13. Similar
to the coordination model presented in Boukhelifa & Rodgers [2003] (see Figure 2.2),
this model is designed without a bias toward data management or navigation concepts. It
synchronizes views by utilizing the EDA’s event channel and is also based on a data-flow
model. However, while conceptually similar, several characteristics are special:

• a service embeds one or more views and provides basic communication facilities to
access the global distributed coordination space.

• access to raw data to create, display, and manage a conceptual entity, i.e., visualiza-
tion object, is defined as a coordination event between a data source and service.

• a coordination object, implemented via a coordination endpoint, facilitates the com-
munication of coordination via a network connection.

• a service registers itself to the global distributed coordination space to receive noti-
fication of parameter changes.

• coordination endpoints are established over a network, enabling cross-device visu-
alization systems and dynamic routing of events.

• coordination endpoints are modeled and managed in a semantic model. This allows
semantic reasoning about the coordination endpoints’ compatibility to establish co-

2.3. Semantic-Aware Event-Driven Architecture 39

ordination.

• a service encapsulates a conceptual entity’s translation function f to process an
events received via the coordination endpoint. This allows services to define the
interpretation of an event’s coordination content.

• the semantic model, especially its capability to define event transformation as intro-
duced in Section 2.3.4, allows for the extension of coordination concepts without
modifying existing services.

In summary, the coordination model utilizes the event channel provided by the semantic-
aware EDA. Coordination is realized by coordination endpoints connected to a global
distributed coordination space where services can dynamically and remotely subscribe
to. This enables CMV systems in HVEs. The global distributed coordination space is
divided into five categories which identifies the coordination endpoint’s purpose. Estab-
lishing connections between coordination endpoints is guided by a semantic model and
is reflected in the event-flow network. The runtime system is used to establish coordi-
nation between views. Examples of coordination mechanisms, e.g., navigational slaving
and linking, will be presented in Chapter 3.

2.3.8 Extending the PSE

This section presents, by way of example, how an additional service is added to the
PSE.

Extending the PSE consists of four elementary steps:

1. the service implementation exposing of a set of slots.

2. extending the persistent ontology by adding an individual of the Service concept.

3. configuring the invocation of the service in the runtime system.

4. defining additional Coordination individuals used by slots.

To exemplify the extensibility of the PSE, a new service is developed to control the play-
back of visualization time. To this end, a GUI displays a slider to modify the current
visualization time. To coordinate interaction with the slider, e.g., the user moves the
slider back and forth, an out-slot publishes the slider’s scalar value. To synchronize the
visualization time modified from within other views an in-slot is added. Both slots use
the same semantic identifier because they share the same semantic interpretation of the
slider’s value. In this example, the service is called TimeController while the semantic
identifier for both slots is termed VisualizationTime.

Once the service implementation is complete, the persistent ontology is extended:

1. a new individual of the concept Service is created and named TimeController.

2. to start the service in the runtime system, an individual of the concept StartService
is created.

3. the data property hasStartCommand for the new individual of StartService is set to
point to the service executable.

40 2.3. Semantic-Aware Event-Driven Architecture

4. the service individual TimeContoller is linked to the StartService individual to en-
able the runtime system to invoke the service.

5. because a slots is used to coordinate interaction, a VisualizationTime individual of
the Coordination concept is added to the persistent ontology. This semantically
differentiates a slot and indicates that its events participate in the global distributed
coordination space.

After extending the persistent ontology, the runtime system will display the new service
in the service view as TimeController. Once the TimeController is started, both of its
slots are listed in the slot view as VisualizationTime. Here, the service’s in-slot can be
connected to any out-slot of a Coordination concept individual VisualizationTime for ex-
ternal updates of the time slider. Vice versa, the TimeController’s out-slot is available to
any view interested in coordinating the concept VisualizationTime. Finally, the service
can be used in workflows requiring navigation in time.

CHAPTER 3

VISUALIZING NEURAL ACTIVITY DATA

The aim of computational neuroscience is to gain insight into the dynamics and func-
tionality of the nervous system by modeling and simulating such systems. To this end,
neuroscience leverages high performance computing to enable multi-scale simulations
which capture low-level neural activity and large-scale interactions among brain regions.
Higher-level brain functionality is based on the interaction of single neurons forming
neural networks. How to construct, interlink and efficiently simulate these networks on
a large-scale is a key research challenge in computational neuroscience [Plesser et al.,
2007]. The increase in computing power over the last decades originated efficient neural
simulators like NEST [Gewaltig & Diesmann, 2007] or NEURON [Hines & Carnevale,
1997]. NEST is a simulator for networks of point neurons or neurons with few electrical
compartments and runs on desktop computers, compute clusters, and large-scale super-
computers like the IBM Blue Gene/Q [Helias et al., 2012]. However, these simulations
produce a vast amount of output which needs to be analyzed to deduce the functionality
of the simulated neural networks. In addition, neural simulations produce a multitude of
data modalities, such as spike trains, connectivity data, and derived metrics on multiple
scales, e.g., power spectrum, mean firing rate, etc. To this end, successful visualiza-
tions have to integrate this output into a unifying visual analysis tool, i.e., a PSE. While
researchers validate findings by visualizing the simulation’s output as part of a larger
workflow, these visualizations are commonly non-interactive. However, state-of-the-art
visualization techniques tailored to the scientific analysis question, but sufficiently gen-
eral to accommodate different simulation models, enable such analyses to be performed
more efficiently. Yet, the resulting heterogeneous data from simulations makes it hard
to develop such visualization systems. Today’s analysis workflows comprise a variety of
different tools, ranging from standard shell commands to sophisticated analysis scripts,
from simple descriptive statistics to elaborate correlation analyses. The amount of data
combined with their complex inter-relationships demands a visualization system with a
focus on data integration: various pieces of information at different scales and levels of
abstraction have to be integrated into a holistic and configurable system that reflects the
analysis workflow. A PSE enables data integration while CMV techniques assist in the
analysis of the integrated data.

To demonstrate how the PSE from Chapter 2 is applied in this context, its applicability to
cover the data integration task and to provide a highly customizable visualization system

41

42 3.1. Visualizing a Model of the Macaque Visual Cortex

is presented here. To this end, this chapter introduces three use cases assisted by inter-
active visualizations: three CMVs systems are derived which extend the PSE by services
that provide visualizations.

The first use case will present views, conceived in close collaboration with domain ex-
perts, to analyze a neural network mimicking the visual cortex of a macaque. It focuses on
the exploration of neural activity data, inspecting connectivity of brain areas and popula-
tions, and visualizing activity flux across regions [Nowke et al., 2013, 2015]. The second
use case will focus on data integration by extending the PSE with statistical analysis ca-
pabilities for spike trains. In addition to commonly used visualizations for the analysis of
spike trains, this use case will demonstrate the flexibility of the PSE to integrate a commu-
nity tool from the neuroscience domain. Finally, the third use case will present views and
UIs to interactively steer a structural plasticity simulation. This allows for the interactive
exploration and tuning of the neural network to detect parameter spaces that achieve a
stable regime of neural activity [Nowke et al., 2018]. This use case demonstrates how the
PSE integrates data resulting from a running simulation and how users interact with it.

All use cases will extend the PSE by adding new services. Depending on the use case,
one or more CMV systems are constructed, demonstrating a configurable visualization
system that reuses services from other use cases.

3.1 Visualizing a Model of the Macaque Visual Cortex

3.1.1 Motivation

In this use case, several CMVs are presented for the simulation of a macaque visual cor-
tex model. The CMV system helps in the assessment of the neural model presented
in Schmidt et al. [2014] by visualizing its network dynamics. As part of the analysis pro-
cess, the simulation output is filtered, statistically evaluated, and partially transformed into
visual representations that encode network dynamics. Subsequently, these dynamics are
visualized to verify, among other things, if the simulation shows a realistic low-activity
state. To explore the simulation results, several views were conceived in close collab-
oration between neuroscientists and visualization experts. To relate the heterogeneous
data, coordination such as linking and navigational slaving are required. To this end, the
visualization system applies the CMV paradigm and is build on top of the semantic archi-
tecture. Services developed in this context will be reused, pronouncing the architecture’s
flexibility.

The development of this CMV system is motivated by four key elements:

• solutions to assist researchers in understanding the macaque visual cortex model
and its neural dynamics by means of visualization are lacking.

• the simulation produces heterogeneous data that needs to be related in order to
investigate the observed neural dynamics.

• the analysis process rapidly changes focus, requiring to switch to visualizations that
are more helpful.

• convey findings to a broader audience by producing animations for publications and
presentations of interesting network dynamics.

3.1. Visualizing a Model of the Macaque Visual Cortex 43

While both topmost elements were previously identified as requirements for the semantic-
aware architecture, some visualizations techniques exists in related literature. For exam-
ple, Schmitt & Eipert [2012] present neuroVIISAS, a platform for the integration of data
modalities for the analysis and simulation of biologically realistic neural systems. It pro-
vides data analysis capabilities to explore neural dynamics and allows to model network
descriptions which can be exported to the NEST simulator. However, neuroVIISAS does
not focus on a tight integration of analysis workflows and visualizations required for the
macaque visual cortex model nor does it enable users to define coordination among views
and lacks support for cross-device display systems. NeuroVIISAS focuses on integrating
pre-simulation data to identify biologically consistent network connectivity. A further
example is presented by Arsiwalla et al. [2015] who introduce BrainX3, a large-scale
simulation system for brain activity with real-time interaction capabilities. It builds upon
the iqr neural simulator and enables real-time visualization of network dynamics during
simulation. Moreover, it allows steering a simulation by inducing activity to network
nodes or disconnecting entire neuron populations. An interface to MATLAB for statis-
tical analysis is also provided. However, the visualization system is specifically tailored
to the authors’ use case and is not easily applicable to the macaque visual cortex model.
Sousa & Aguiar [2014] introduce the simulation environment NeuralSyns to build, sim-
ulate, and visualize large spiking neural networks. NeuralSyns provides a GUI called
NetBuilder for network development using visual programming to build and parameterize
complex networks without handcrafting models. NeuralSyns focuses on the development
and analysis of neural models but its visualizations are tailored to spiking neurons. How-
ever, the macaque visual cortex model requires visualizations of derived modalities, e.g.,
the exchange of activity among brain regions. Furthermore, coordination is required to
synchronize user selections and navigation in time while multiple views are displayed.

Focusing on visualization techniques, Hernando et al. [2012] explore real-time rendering
of large amounts of neurons based on reconstructing biologically correct morphologies.
For the macaque visual cortex model, a realistic representation of individual neurons is
not of interest. Instead, relating structure to dynamics at multiple scales, ranging from
single neurons to brain regions, and displaying averaged quantities is in focus. Especially
this characteristic motivates a visualization design that utilizes concepts from CMV. In
context of VR and cross-device display systems, von Kapri et al. [2011] present a 3D
visualization of cortical layers which displays neural activity by rendering spiking neurons
and plotting membrane potential. In contrast to the PSE, this single view system neglects
additional simulation data modalities, offers no flexibility to extend the visualization to
different analysis workflows, and does not provide coordination capabilities. However,
its visualization design was a starting point in the development of this use case’s CMV
system. The PSE’s flexibility easily allows for the integration of such a visualization as
an additional view.

A system with similar requirements as the PSE is presented in Kasiński et al. [2009]. The
authors introduce a CMV system for the analysis of dynamical processes in large spik-
ing neural networks focusing on a 3D network representation. Aspect and scale changes
are supported in conjunction with 3D navigation techniques. Furthermore, several visu-
alizations are tied together to form a consistent highly integrated interactive system. This
work addresses some of the needs for an interactive analysis tool assisting neuroscientists.
However, the macaque visual cortex use case focuses on a network representation at the
macroscopic scale, including connectivity and exchange of activity among brain regions.

44 3.1. Visualizing a Model of the Macaque Visual Cortex

Additionally, due to the large-scale connectivity data of neurons in the macaque visual
cortex model, a 3D network representation is unfeasible and too detailed.

Eichelbaum et al. [2010] present a framework to deal with changing analysis focus and
distinct visualization techniques to provide an intuitive brain visualization tool. OpenWal-
nut offers interactive visualization with an extensive set of features, e.g., tensor imaging,
fiber tracts and line integral convolution while preserving flexibility and expandability. In
contrast to our PSE which targets neural simulation data, OpenWalnut is tailored to neural
imaging techniques; nor does it focus on CMV or multiple display systems.

To convey findings to a broader audience, the macaque visual cortex model requires a
CMV system that is tailored to the simulation model’s data. To this end, readily avail-
able toolkits such as ParaView [Henderson, 2004] or VisIt [Childs et al., 2011] are not
applicable without heavy customization and lack CMV support.

In summary, while some visualization system do exist in the literature, non are easily
applicable to this use case. The overarching challenge consists in the integration of visu-
alizations in a holistic system that allows to select views for an analysis workflow. This
selection must then be configurable to specify how views are coordinated. The PSE solves
this issue by utilizing standalone views with the capability to synchronize data. A set of
connected views forms a CMV system.

The next section presents the neuroscientific workflow to analyze the macaque visual
cortex model in order to derive services to visualize the simulation data.

3.1.2 Workflow Analysis

To derive services that reflect the visual analysis tasks, the researchers’ modeling work-
flow is observed to deduce the resulting data modalities and relationships between the
data. A key observation is a rapidly shifting analysis workflow due to changing hypothe-
ses about the data. This requires flexibility from a visualization system. To derive re-
quirements for integrating visual analysis into these workflows, understanding the mod-
eling process is required. To this end, domain experts were asked to elaborate on their
research objectives and workflows when developing the macaque visual cortex model
which mimics biological realistic network dynamics [Nowke et al., 2013; Schmidt et al.,
2014; Schuecker et al., 2015]. However, the described objectives and workflows have
been formulated in a broader manner and thus share a wider applicability. A spiking neu-
ral network simulation is based on a mathematical formulation which forms the basis for
studying its behavior, structure, and size.

Five main objectives for the macaque visual cortex model have been identified [Nowke
et al., 2015]:

1. Formulate a consistent model definition (O1): derive a consistent model defini-
tion based on anatomical and electrophysiological data. This data is gathered from
publications and databases to achieve simulations in accordance to biological find-
ings, e.g., Stephan et al. [2001a], Binzegger et al. [2004], and Markov et al. [2011].

2. Systematical parameter study (O2): systematically study the impact of parame-
ters on the model dynamics and modify the connectivity within reasonable bounds
to reach a stable ground state close to biological findings [Schuecker et al., 2015].

3.1. Visualizing a Model of the Macaque Visual Cortex 45

Model Definition
W1

Analysis
W4

Simulation
W2

Post-Processing
W3

Figure 3.1: Depiction of the four elementary workflow steps: arrows indicate influence of
a workflow step to another one. After the model definition (W1) is concluded, a simula-
tion is performed (W2). Subsequently, the simulation output is post-processed (W3) and
used in the analysis step (W4). Analysis influences the post-processing step whenever a
new observable is derived. Analysis also effects the model definition, e.g., by changing
the model’s connectivity to converge to more biologically realistic activity patterns.

3. Investigate emergent behavior (O3): investigate the underlying mechanisms in
differences in firing rates across populations and oscillations emerging through in-
teractions between areas.

4. Integrating scales (O4): bridge the gap between large-scale models where each
area is represented by a simple dynamical system and detailed spiking models of
local cortical networks.

5. Research scaling behavior (O5): study the scaling effects by increasing the num-
ber of neurons up to realistic sizes of biological systems.

To incrementally improve the model, a workflow is established to systematically investi-
gate the research objectives O1-O5 (see Figure 3.1). This workflow consists of the defini-
tion of the simulation model (W1), its subsequent simulation (W2), a post-processing step
of the resulting output (W3), and the assessment of the model’s behavior by analyzing this
output (W4):

1. Model definition (W1): the simulation model is implemented as a NEST script
which can be developed in SLI, PyNEST [Eppler et al., 2009; Zaytsev & Morrison,
2014], or PyNN [Davison et al., 2009]. Configuration data is used to conduct pa-
rameter studies to produce changes in dynamics (O2). For instance, defining synap-
tic strengths, the relative strength of inhibitory compared to excitatory synapses,
the connectivity of neurons, and stimuli to induce activity. To record data, virtual
recording devices are assigned to neurons. Typical devices are spike detectors mon-
itoring spiking activity, or voltmeters recording voltage traces. The devices’ output
is the raw data for investigating the behavior of the neural system. It forms the input
for statistical analysis and visualizations (O3).

2. Simulation (W2): once the model definition has been completed, simulation is
performed. Depending on its computational complexity, it is simulated on worksta-
tions or compute clusters. Reproducibility is ensured by storing the model defini-

46 3.1. Visualizing a Model of the Macaque Visual Cortex

tion and configuration data, e.g., in Sumatra [Davison, 2012]. This task is limited
by computation time.

3. Post-processing simulation output (W3): when the simulation has been finished,
aggregation of data from recording devices begins. NEST simulation output is
scattered over multiple files. This requires merging simulation output to compute
observables quantifying network behavior. These observables are used for visual
parameter studies (O2) to converge to a consistent model definition (O1). the post-
processed data are dependent on the simulation model and research question. For
the multi-area macaque visual cortex model, connectivity data is included on multi-
ple scales. The model consists of brain areas composed of populations of neurons.
Computation of observables for areas and populations requires the model defini-
tion to investigate network dynamics (O3). In this use case, statistical observables
are the areas’ and populations’ mean firing rate , spike trains, additional activity
proxies, structural connectivity differences among populations, and correlations of
spiking neurons.

4. Analysis (W4): data analysis is performed to assess the model’s behavior (O1,
O4, O5). The data analysis is augmented with visual data analysis techniques, in
particular a CMV system to investigate O2 and O3. However, in Section 3.3, a
use case will be presented that targets W2 and W3 in conjunction with W4. As
emphasized, this step is rapidly shifting focus and is not performed in a specific
order. Hence, a flexible analysis framework based on the PSE is utilized.

Before utilizing interactive analysis, the typical workflow involved static figures to dis-
play observables. These figures were usually generated using several tools, e.g., Matlab
or Python, resulting in laborious tasks for large networks. Notably, depictions were not
linked, making it hard to relate information evident in one figure to aspects shown in an-
other. Moreover, the analysis task was delayed by creating these figures and changing
parameters required repeated executions. A CMV system overcomes these shortcomings
and enables the reuse of visualizations in a wide range of workflows. Thus, a CMV sys-
tem interactively and simultaneously displaying simulation output to reveal meaningful
relationships is the primary motivation to improve the analysis workflow.

In the following section, the heterogeneous data resulting from the simulation model are
discussed to derive visualization requirements.

3.1.3 Input Data Analysis

This section classifies the simulation data for the macaque visual cortex model result-
ing from the workflow steps W2 and W3. This heterogeneous data was, for the most
part, generated with NEST and forms the input data to the CMV system. The simulation
model is subdivided into 32 areas according to Felleman & Van Essen [1991]. Each area
contains eight neural populations, corresponding to excitatory and inhibitory neurons in
each of four cortical layers (see Figure 3.2). Population-specific connectivity was care-
fully compiled based on anatomical records [Markov et al., 2012; Stephan et al., 2001b]
and newly derived regularities. Intra-area connectivity is based on a model of the early
sensory cortex by Potjans & Diesmann [2012] and has been adjusted to the macaque. A
range of observables from population-level activity to inter-area interactions is computed
resulting in nine heterogeneous data elements, also summarized in Table 3.1:

3.1. Visualizing a Model of the Macaque Visual Cortex 47

23E

23I

4E

4I

5E

5I

6E

6I

brain area

population

Figure 3.2: Schematic view of the input data: the dataset consists of 32 brain areas. Each
area is a layered model of eight neuron populations. Connections exist at all levels, i.e.,
within the same population, across populations of the same area, and across areas.

1. Spiking events (D1): in experimental neuroscience, neural activity is obtained
through electrodes implanted into brain tissue and is recorded while a stimulus is
presented. In computational neuroscience, activity data is gathered by performing
simulations and is then used as a verification baseline to approximate results close
to its biological counterpart. The simulation yields spiking patterns of neurons over
the simulation period.

2. Mean firing rate (D2): time-varying firing rates are computed at the population
and area level by averaging spiking activity across neurons.

3. Polygonal geometry (D3): the geometry of the macaque visual areas was taken
from the Scalable Brain Atlas 1 to visualize mean firing rate and provide a selection
metaphor. It was reconstructed from volumetric data and relates activity data to
geometry.

4. Functional descriptions (D4): a short description for each brain area and its role
in visual function is provided. This places areas in a functional context.

5. Area and population connectivity (D5): connectivity information is stored at both
the area and population level. At each level, connectivity is represented in two ways:
as mean numbers of synapses impinging onto individual neurons (in-degrees), and
as mean numbers of synapses established by individual neurons (out-degrees).

6. Hierarchy of the visual cortex (D6): Felleman & Van Essen [1991] proposed a
visual cortical hierarchy. This is used as a layout for arranging areas.

7. Flux (D7): the simulation yields synaptic activity per unit time between areas
termed activity flux. The data contains 32× 32 fluxes for each time step, includ-
ing self-flux, i.e., activity exchanged within an area.

8. Area and population names (D8): a brain area consists of a set of population
representing neural layers whereby a population is formed of a set of neurons. Areas

1http://scalablebrainatlas.incf.org/

48 3.1. Visualizing a Model of the Macaque Visual Cortex

Table 3.1: Classification for the macaque visual cortex model data.
Data Scale Type Origin Label

Spike trains Microscopic Time-varying scalar W2 D1
Mean firing rate Macroscopic Time-varying scalar W3 D2
Polygonal geometry Macroscopic 3D geometry W4 D3
Functional description Macroscopic Literal W4 D4
Area names Macroscopic Literal list W4 D8
Area colors Macroscopic Color list W4 D9
Population names Mesoscopic Literal list W4 D8
Population colors Mesoscopic Color list W4 D9
Area connectivity Macroscopic Scalar W1 D5
Population connectivity Mesoscopic Scalar W1 D5
Hierarchy of areas Macroscopic Scalar W1 D6
Area flux Macroscopic Time-varying scalar W3 D7
Population flux Mesoscopic Time-varying scalar W3 D7

and populations are labeled with literals representing their names. These literals are
used to reference areas and populations more easily.

9. Area and population colors (D9): areas and populations are assigned consistent
colors across views to more easily relate these.

In the next section, I will derive requirements for services that allow for the visual in-
vestigation of the presented research objectives based on the workflow needs and the
heterogeneous data.

3.1.4 Requirements Analysis

In this section, functional requirements are presented based on Nowke et al. [2013, 2015]
and were gathered in regular monthly meetings with domain experts. These meetings
were used to assess development: identify, discuss, clarify, prioritize requirements, and
suggest improvements to established functionality.

A central requirement is the support for visual data analysis in the exploratory data anal-
ysis process (W4). To this end, a CMV system is developed assisting in the analysis
by displaying simulation data W2, including derived observables W3. Because of the
high variety of analysis tasks, this CMV system has to be flexible, particularly in the
analysis steps W3 and W4. This aligns with the principles of the semantic-aware EDA
to implement a custom-tailored CMV system populating the PSE. However, this results
in granular requirements for services. For example, simulation data (D1, D5, D6) and
derived observables (D2, D7) need to be accessible to views. Thus, access to data re-
sulting from W1, W2, and W3 is required in workflow step W4. Nonetheless, views
can also provide data, i.e., coordination endpoints such as user selections or time navi-
gation. Because of loose coupling between services, the configuration of the event-flow
network should be supported within the modeling environment used in W3. This results
in increased user acceptance and integrates into the model definition process (W1) and

3.1. Visualizing a Model of the Macaque Visual Cortex 49

post-processing (W3). The access to the runtime system’s capabilities to manage and
construct the event-flow network aims at a convenient way to setup views and modify
data resulting from W1-W3. Because the PSE only allows data exchange via slots, inter-
facing views adheres to a simple protocol and loading data does not require devising file
format specifications, thus limiting compatibility decay. This results in more flexibility,
e.g., when new observables are introduced in W1-W3.

One challenge in utilizing CMV systems is the coordination of views. CMV systems
often need coordinations that are hard to anticipate by visualization experts once the anal-
ysis tasks changes. Because view coordination depends on inter-related information, e.g.,
relations among conceptual entities displayed within one of the visual analysis task, the
proposed CMV system supports dynamic coordination. Dynamic coordination allows to
specify how a conceptual entity is linked to others at runtime in dependence on a work-
flow. Ideally, established coordinations are interchangeable while performing a visual
analysis task and adapt to a variety of user needs. This thesis’s key contribution enables
user to dynamically define, control, and manage coordination of views.

An effective CMV system should also allow for use of a variety of display systems, de-
pending on the visual analysis task and available input devices. For instance, when 3D
spatial data is displayed, views may utilize CAVE-like systems that enhance spatial data
representations [Laha et al., 2012; Raja et al., 2004] and make use of intuitive interaction
metaphors not available in desktop setups.

The semantic-aware EDA conceptually covers all requirements, enables dynamic coordi-
nation, utilization of a variety of display systems (see Chapter 4), and supports multiple
navigation techniques. Several views are based on the VR-enabled software stack ViSTA
which is a platform-independent VR framework [Assenmacher & Kuhlen, 2008] allowing
visualizations to seamlessly scale from desktop workstations to large CAVE-like VEs. VR
combines stereoscopic presentation with direct 3D interaction, offering intuitive interac-
tion with data. Previous collaborations in computational fluid dynamics have shown that
immersive visualizations were beneficial for understanding complex 3D data [Hentschel
et al., 2008]. Also, Laha et al. [2012] support this anecdotal evidence with a formal eval-
uation of VR-based volume data exploration. Thus, utilizing the semantic-aware EDA
combined with the ViSTA software stack can provide similar benefits in context of visu-
alizing brain simulation data.

Next, more detailed functional requirements for views are outlined:

1. Data storage (R1): an appropriate storage concept captures simulation output ag-
gregated from W2, model parameters, model-topology if available from step W1,
and further derived statistically observables computed from W3 to support O1, O2,
and O3. Ideally, simulation results are deposited to enable, e.g., parameter compari-
son of the neural systems’ behavior or investigation of the scaling behavior between
downsized neuron models and biologically realistic ones (O2, O4, and O5). In ad-
dition, the storage concept is flexible and not tied to a particular simulation model.
On top, it includes visualization specific data, e.g., geometry for rendering, color
tables, or settings for view management.

2. Data access (R2): data aggregated in R1 is accessible to services. Because views
can be displayed on different display- and computer systems as part of W4, network
access is required. Data access is restricted to slot communication.

50 3.1. Visualizing a Model of the Macaque Visual Cortex

3. Data modification (R3): modifications on data resulting from W1-W4 can be per-
formed by services, e.g., a running simulation, the modeling environment, or views,
via slot communication. When data changes, slot communication provides notifies
services to ensure consistent data distribution.

4. Integrating simulation output data (R4): simulation output, e.g., statistical ob-
servables derived from raw simulation data, are one of the key means to assess a
model’s behavior in W4. These observables constitute part of the heterogeneous
data to visualize. However, their investigation is dependent on the analysis needs
and are often computed on demand. To this end, a CMV system ideally supports
the computation of statistical observables by automating W3 and enabling flexible
integration of such.

5. Coordinating views (R5): views are specialized to operate on and visualize a sub-
set of heterogeneous data originating from all workflow steps W1-W4. To reveal
relationships among conceptual entities formed from the heterogeneous data, mul-
tiple views are used. To explore relationships, coordination between views is re-
quired. Coordinating interactions includes, e.g., user selections to synchronize the
display of statistical observables related to the selection, or navigation in space and
time. While performing visual analysis as part of (W4), coordination information
is generated in views and distributed in the global distributed coordination space.

6. Managing views (R6): managing views includes starting, configuring, and control-
ling slots of a view. Users can dynamically configure, control, and change views
via the runtime system, effectively influencing the event-flow network of the CMV
system. View setups can be saved as part of an workflow and restored later. Man-
aging views can also be performed in the modeling environment by by exposing the
runtime system’s capabilities. This enables users to modify data in W4, create new
data providers, and adapt views.

7. Applying techniques from the neuroscientists’ workflow (R7): visual designs
used in views shall utilize established neuroscientific analysis techniques to ease
the transition to an interactive visualization system. This includes displaying raster
plots, connectivity matrices, and plotting common observables such as mean firing
rates.

8. Visualizing simulation data (R8): visualize the data modalities presented in Sec-
tion 3.1.3. Conceptual entities formed from this data are to be related where pos-
sible. For instance, activity data of brain areas shall be related to a geometric rep-
resentation to intuitively assess active and non-active areas. Connectivity among
areas and populations should be visualized and simultaneously present activity ex-
change.

While core functionalities are already covered by the semantic-aware EDA, views and
services need to be developed and integrated into the PSE. To this end, the following
section details services to cover the functional requirements.

3.1.5 Views and Services

In this section, views for the analysis of neural activity data for the macaque visual cor-
tex are presented and linked to requirements. To address the central challenge of data

3.1. Visualizing a Model of the Macaque Visual Cortex 51

integration, the visualization system leverages CMV to present information in its relevant
context. The system consists of independent, reusable services which are also utilized in
later use cases. These services are divided into two categories:

• Data providers: data providers are services that aggregate data from data sources
and provide data access via slot communication by publishing it through out-slots.
Data sources store content generated in workflow steps W1, W2, and W3. In this
use case, data sources store the input data for the CMV system as described in
Section 3.1.3. A data provider, once started, forms an individual of the service
concept (cf. Section 2.3.4) in the runtime ontology. Analogously, a data provider’s
slots constructs individuals of the slot concept, describing each slot’s semantic, thus
enabling the runtime system to infer compatible slots to connect to. Data consumers
retrieve data from providers by connecting in-slots to the provider’s out-slots. Data
providers facilitate requirements R1 and R2 and supply the input data for any data
consumer. Multiple data consumers can retrieve data from the same data provider.

• Data consumers: data consumers are services, usually views, that transform data
from data providers into visual representations of a conceptual entities and offer in-
teraction with such, covering requirement R8. To access data (R2) data consumers
subscribe to data providers. Similar to data providers, data consumers relate to in-
dividuals of the service concept and create individuals of their slots. This extends
the runtime ontology (see Section 2.3). While data consumers can also produce and
publish data to the global distributed coordination space, this light-weight data is
used to realize requirements R3, R5, and R6 but is not considered a data provider.

A service is unaware of any other connecting services and all service communication re-
quires semantically described slots. As introduced in Section 2.3.6, the runtime system
interfaces services by connecting semantic compatible slots, effectively describing a dis-
tributed event-flow network [Abram & Treinish, 1995], resulting in in a highly-decoupled
and modular system. By connecting multiple subscribing slots to a publishing slot, mul-
tiple views are synchronized. To manage views as required by R6, each service exposes
a control slot to receive commands it then executes. Examples for typical commands are
to establish a connection to an coordination endpoint or to disconnect from it. When-
ever slots are connected, a connection individual of the connection concept is created and
stored in the runtime ontology to represent the current event-flow network.

In the following, views for the macaque visual cortex CMV system are presented:

Simulation Data Provider — This service aggregates simulation data (D1-D8) from a
file storing a simulation run of the macaque visual cortex model and is a data provider.
The file is an HDF5 [Folk et al., 1999] container assembled in workflow step W3 and is
loaded and published via slots (R1, R2, R3, R4, R5). The data contains the names of
brain areas, populations, the simulation duration, spike trains for populations, the mean
firing rates of areas and populations, flux, the connectivity and hierarchy used to simulate
this brain model.

Color Service — This service exposes user-defined colors for areas and populations (D9)
and acts as a data provider (R1, R2, R6). Colors are subsequently used to establish a uni-
fied color representation to relate areas and populations more easily. To retrieve colors,
views connect to this service’s slot.

52 3.1. Visualizing a Model of the Macaque Visual Cortex

(a) Area Selection View

(b) Area MFR View

(c) Geometry View

(d) Time Navigator

(e) Time Series View

(f) Image Viewer

Figure 3.3: Collection of views: (a) The Area Selection View consists of a GUI displaying
literal values as a list. User selections are published to synchronize selection events. (b)
The Area MFR View shows areas and indicates area activity by moving bars. Next to
each bar, the current activity level for the area is shown. (c) Geometry View showing
a semi-transparent rendering of vision-related areas of the macaque brain. Coloring of
brain areas is tied to their current activity. (d) VCR like interface to navigate through
time. The slider’s value is published and is used to coordinate time. (e) The Time Series
View shows averaged bundled neuronal activity over a period of time for neurons of an
area or population. (f) The Image Viewer allows to associate images to user selections.

Area Selection View — The Area Selection View provides a 2D GUI displaying brain
areas as literals (D8) (see Figure 3.3a). Whenever a selection is made, the view publishes
this selection. Multiple selections of brain areas are are allowed (R5). Moreover, the view
receives selection events from other services and highlights corresponding entries. This
view is used to select and filter brain areas and represents a data provider.

Time Navigator — The Time Navigator provides a 2D UI to navigate in time and is in-
spired by a VCR interface (see Figure 3.3d). The Time Navigator has a slider, a play and
pause button, and a replay-speed controller slider. It publishes current simulation time and
has a subscribing slot to synchronize time navigation events from different views (R5).
It acts as a data provider and consumer. This service extends the coordination concept
from Section 2.3.4 by creating a CurrentSimulationTime individual, thus semantically de-
scribing the coordination capabilities of this service.

Time Series View — The Time Series View provides the means to assess time series

3.1. Visualizing a Model of the Macaque Visual Cortex 53

data. It only consumes data and therefore is a data consumer. In this use case, it is used
to plot the mean firing rate for a set of neurons (D2) (see Figure 3.3e). The Time Series
View can superimpose a vertical line over the time series to indicate current simulation
time. It uses standard techniques from the neuroscientists’ workflow (R7) and integrates
this simulation output (R4).

Image Viewer — The Image Viewer is a service and data consumer that displays generic
images (see Figure 3.3f) related to user selections, e.g., from the Area Selection View. In
this use case, the Image Viewer shows the power spectrum and rate distribution for the
entire simulation run (R4).

Geometry View — The Geometry View, primarily a data consumer but also a data
provider, forms the central starting point for the assessment of neural activity data (R4,
R8). It provides access to user interactions that are subsequently used in other views, e.g.,
to allow for navigational slaving. The Geometry View displays 3D data representing the
brain areas (D3) as seen in Figure 3.3c. This allows to visually explore spatial neural ac-
tivity and their relationships. Activity data (D2) is projected onto each brain area similar
to fMRI (R7, R8). The mapping of activity to area geometry is achieved by color-coding
using a user-configurable lookup table. However, partial, mutual occlusion of brain ar-
eas and their complex shapes make it difficult to recognize individual areas depending on
perspective. To this end, an area’s activity level is also used to modify the area’s opacity
so that areas with lower activity do not overly occlude more active ones. To highlight
the complex geometrical structure of the brain, an angle-based transparency technique is
used similar to Hummel et al. [2010]. This illustrative approach modulates the α-value
based on local view direction v̂ and surface normal n̂. This results in increased trans-
parency of surface areas orthogonal to the direction of view, and decreased transparency
where the surface of the area curves away from the view direction. However, the original
approach provides no possibility to control opaqueness based on average spiking activity.
To this end, an α-modulation technique which combines aspects of angle-based trans-
parency and a mapping of activity data is used. let αbase denote the base transparency, and
a the average spiking activity which is normalized to the unit interval over all simulation
time steps. Then, the overall transparency αfinal is calculated by:

a =

{
αbase +a if (αbase +a)≤ 1,
1 otherwise

(3.1)

α2 = 1−∥n̂ · v̂∥ (3.2)

α1 = aebeca
(3.3)

αfinal =

{
α1 +α2 if α1 +α2 ≤ 1,
1 otherwise

(3.4)

In Equation 3.1, two transparency values are added and clamped to 1. Equation 3.3 is
given by the Gompertz function which incorporates the area’s activity level a from Equa-
tion 3.1. Parameters b and c define an x-axis displacement and a growth rate but are not
used to convey data values; they are empirically set to b = −7 and c = −5. The base
transparency αbase in Equation 3.1 can be interactively adjusted to enable the inspection
of currently invisible areas. Finally, both α-values are combined in Equation 3.4. For
visual depth cues and lighting, the Phong illumination model is applied. To assure correct

54 3.1. Visualizing a Model of the Macaque Visual Cortex

alpha blending, an order-independent transparency algorithm [Carpenter, 1984] is used.
This order-independent transparency algorithm builds a linked list of (r,g,b,a,z)-tuples
where z denotes the local depth value. After the rasterization pass, all fragments are sorted
in depth-order and blended as shown in Figure 3.3c. In contrast to traditionally used ac-
tivity plots, this depiction places the activity data in a geometric context assisting in the
analysis of cross-area interactions.

To aid navigation, each brain area is annotated by its anatomical designator (D8). Because
the view onto the scenery changes, annotation positions and their orientation are interac-
tively adapted [Pick et al., 2010]. The anatomical designators can be toggled to show the
function description of the area in context of the visual cortex (D4). To reveal activity
patterns in case of occluded areas, activity levels are also encoded via the connecting line
between annotation and area. Its width is modulated with the local activity and its color
chosen according to the activity color-coding. Moreover, the Geometry View allows to in-
tuitively select and focus on brain areas to inspect these in more detail and coordinate this
selection to subscribing views (R5). A selection is indicated by an outline of the area’s
bounding box. Users can freely position areas of interest with a dragging metaphor. The
area’s position are also exposed to coordinate areas’ positions among other views (R5).
To support temporal navigation in simulation time, e.g., starting or stopping the playback,
the Geometry View provides an in-view VCR controller. This VCR controller is also ex-
posed to allow for coordinating navigational time slaving (R5). Spatial navigation in the
Geometry View is realized with a SpaceMouse or 6-DOF head-tracking. The user’s posi-
tion and orientation is exposed via slots (R5) to enable navigational slaving with different
3D views like the Area Connectivity View or the Area Flux View. Through navigational
slaving as a linking technique, spatial context is preserved to relate visual entities that
encode different data.

Area MFR View — The Area MFR View is a data consumers and data provider. It
displays the mean firing rates (R4, R8), i.e., activity data (D2), of brain areas as moving
bar charts as seen in Figure 3.3b and assists in the comparison of area activity. The mov-
ing bars use the color scheme from the Color Service (R6). In this view selections can be
performed and coordinated with other views (R5) by hovering with a pointing device over
a moving bar. In addition, selections performed in other views are highlighted. The Area
MFR View requires coordination with the current simulation time to animate the moving
bars. To this end, it connects to the Time Navigator or the Geometry View’s in-view VCR
controller (R5).

Area Connectivity View — The Area Connectivity View visualizes long-range connec-
tivity (D5) among areas to assess structure and dynamics by displaying brain area con-
nectivity (R4, R8). It acts as a data provider and data consumer. It uses 3D navigation
techniques via a trackball metaphor utilizing a SpaceMouse, or 6-DOF head-tracking.
Connectivity data is visualized as a weighted directed graph where each brain area is a
node. A node is represented by a sphere and placed at the center of the area. This way, the
geometrical relations with the Geometry View and Area Flux View are preserved. Node
positions are coordinated among the Geometry View, and the Area Flux View. Whenever
an area’s position is moved, all coordinated views reflect the change (R5). A directed
weighted edge is shown for a connection between any two areas. To avoid occlusion and
clutter, the user selects an area for which all outgoing connections are displayed. The
display of connectivity can be masked by a threshold range based on the min/max con-

3.1. Visualizing a Model of the Macaque Visual Cortex 55

nection strength values and connections for specific areas can be turned off. Edges are
drawn as straight lines with arrows depicting direction. Line thickness shows logarith-
mically scaled connection strength. Similar to the Geometry View, annotations depict the
area’s anatomical designator to aid navigation. The view implements navigational slaving
(R5) by linking the user’s position and orientation from the Geometry View. Figure 3.4d
shows connections originating from area STPp. An extended pie menu [Gebhardt et al.,
2013] is used to control the view.

56 3.1. Visualizing a Model of the Macaque Visual Cortex

(a) Population
Hierarchy View

(b) Area Flux View

(c) Population MFR View

(d) Connectivity View

Figure 3.4: (a) The Population Hierarchy View shows activity and connectivity where
areas are arranged according to the visual cortical hierarchy proposed in Felleman &
Van Essen [1991]. (b) The Area Flux View reveals a transient increase of the transmission
from V1 to V2. (c) The Population MFR View visualizes the area’s activity via an ani-
mated moving bar for all its populations. (d) The Area Connection View shows anatomical
connections for a selected area. Thickness of edges encodes connection strength.

Area Flux View — The Area Flux View visualizes interactions between areas (R8). It
acts as a data provider and data consumer. In combination with the Area Connectivity
View, this visualization identifies large-scale communication patterns (D7). Interactions
among brain areas can be studied in terms of numbers of spikes transmitted per unit
time, a quantity called activity flux. Flux is represented as a graph where each node is
a brain area. An edge consists of a time-varying scalar denoting changing edge weight.
Translating activity flux into a visual representation is a four step process:

3.1. Visualizing a Model of the Macaque Visual Cortex 57

1. self-flux, i.e., activity within the same area, is obtained by extracting all edges with
the same origin and destination.

2. inter-area flux, i.e., flux between two distinct areas, corresponds to all edges that
are not self-flux.

3. both flux modalities are normalized to the unit interval.

4. flux is visualized as an animated graph (see Figure 3.4b) showing activity transfer.

Node positions are the areas’ geometrical center position, represented as spheres, and
coordinated among views to maintain context (R5). In addition, navigational slaving is
supported by coordinating the user’s view position and orientation from the Geometry
View or Area Connectivity View (R5). In contrast to the Area Connectivity View, self-flux
is mapped to an increase to the sphere’s radius. To ensure visibility of areas with no self-
flux, a minimum radius is defined. To avoid choppy animations in between time steps,
linear interpolation is applied. Inter-area flux between two areas Ai and A j is indicated
by two color-coded arrows for each direction. To avoid overlap if flux is simultaneously
exchanged, each arrow’s length is limited to 0.5 ·d(Ai,A j). Finally, flux is mapped to the
arrow’s thickness. To avoid visual clutter, flux can be masked by a min / max threshold
or by filtering areas not in focus. Moreover, this view can also visualize flux between
populations using predefined position for populations.

Population MFR View — The Population MFR View depicts each area as a panel and
shows its populations activity data (D2, R8) similar to the Area MFR View to compare
population activity. It requires coordination of selections from different views (R5) and
acts as a data consumer. The panel displays an animated bar for each population’s mean
firing rate (see Figure 3.4c).

Population Hierarchy View — The Population Hierarchy View visualizes the mean fir-
ing rate of the areas’ populations in conjunction with its hierarchy (R4, R8). It is a data
consumer and data provider. The areas of the visual cortex form a hierarchy defined by
laminar connection patterns identified in Felleman & Van Essen [1991] and are reflecting
successive processing steps. Activation patterns can potentially be identified by visual-
izing areas according to such a hierarchy. To this end, the Population Hierarchy View
provides an abstract hierarchical representation of all populations in each brain area (D6).
Activity for individual populations is displayed the same as in the Population MFR View.
The hierarchy layout resembles a small-multiples design (see Figure 3.4a). Each panel
can be positioned freely for closer inspection. Selection of an area panel are also used to
coordinate other views (R5). The coloring of bars uniquely identifies populations across
multiple panels to detect regularities across areas (R6). Bars are stacked to the actual
anatomical configuration of the layers (see Figure 3.2).

Population Connectivity View — The Population Connectivity View displays the con-
nectivity of populations within each area (R4, R8). It is a specialization of the Area Con-
nectivity View using the connectivity data of populations (D5) and is a data provider and
data consumer. The Population Connectivity View facilitates the inspection and compar-
ison of population-specific connection patterns influencing the dynamics of the network.
Navigation supports a SpaceMouse or 6-DOF-head-tracking. To avoid visual clutter, dy-
namic range queries are supported where a min / max range is specified and connectivity

58 3.1. Visualizing a Model of the Macaque Visual Cortex

not within the range is culled. The Population Connectivity View also features a 2D visual-
ization of population connectivity (D2). The visual design is influenced by the Population
MFR View and connectivity data displayed as logarithmically scaled arrows between the
population designators next to their moving bars (see Figure 3.5).

Figure 3.5: The Population Connectivity View shows connectivity of populations in an
area. Left: Population connectivity without restricting connection strength. Right: The
same connectivity with weak connections masked.

3.1.6 CMV System Construction

In this section, two workflows are presented to assess simulations of the macaque visual
cortex model [Nowke et al., 2013, 2015]. Each workflow requires a specialized CMV
systems utilizing the previously presented views. The first workflow focuses on the as-
sessment of one simulation run while the second workflow compares three simulation runs
in parallel where model parameters, in particular the connectivity among populations and
areas, were altered.

The CMV system construction includes the selection of services, their instantiation, and
the creation of the event-flow network to reflect the workflow which is all performed in
the runtime system. In semantic terms, both workflows are individuals of the Workflow
concept (see Section 2.3) stored in the persistent ontology which allow to recreate the two
CMV systems in the runtime system. In the following, creating the CMV systems for each
use case is demonstrated.

Workflow 1: Single Simulation

For this workflow, a CMV system is constructed for the assessment of a single simulation
run of the macaque visual cortex. Key research aspects for this task are:

1. RQ1: is a realistic low-activity network state present?

2. RQ2: are there interesting neural dynamics visible?

3. RQ3: is the model’s activity stable?

3.1. Visualizing a Model of the Macaque Visual Cortex 59

4. RQ4: are there any unrealistic high firing rates in certain populations?

5. RQ5: does brain activity follow certain distributions?

6. RQ6: how does the simulation output relate to the neural dynamics of the model?

7. RQ7: are there any meaningful visible relationships?

8. RQ8: are there firing patterns present in populations?

9. RQ9: are there structural and functional relationships?

10. RQ10: are there pathways visible through time dependent activation of areas?

To assess the simulation output and extract insight, the CMV system is constructed from
services. These services meet two functional criteria: basic functionalities and research
centric functionalities. Services providing basic functionalities are the Simulation Data
Provider to access the simulation data, the Color Service to retrieve a commonly-shared
color schema for views, the Area Selection View to select and filter brain areas, and the
Time Navigator to navigate in simulation time. The research centric functionalities are
provided by services where each is linked to one or more research questions:

1. the Geometry View relates neural activity to compare areas. This view focuses on
RQ1, RQ2, RQ3, RQ5, RQ6, and RQ10.

2. the Area MFR View showing accumulated area activity focusing on RQ2, RQ3,
RQ4, RQ5, RQ6, RQ8, and RQ10.

3. the Time Series View visualizes the mean firing rate of an area, assisting in RQ1,
RQ2, RQ4, RQ6, and RQ8.

4. the Raster Plot View2 shows the spiking behavior of neurons for an area to focus on
RQ1, RQ2, RQ4, and RQ8.

5. the Area Connectivity View visualizes connection strength among areas targeting
RQ7 and RQ9.

6. the Area Flux View displays activity exchange of areas, aiding in the assessment of
RQ1, RQ2, RQ3, RQ4, RQ5, RQ6, RQ9, and RQ10.

7. the Population MFR View displays population-specific activity of an area to assess
RQ1, RQ2, RQ4, RQ5, and RQ8.

8. the Population Hierarchy View identifies cascading activation patterns in focus for
RQ2, RQ4, RQ5, RQ9, and RQ10.

9. the Population Connectivity View shows the connectivity of populations in an area,
supporting RQ3, RQ4, RQ6, RQ8, and RQ9.

In particular research questions RQ2, RQ5, RQ6, RQ7, RQ9, RQ10 are ideal candidates
to utilize CMVs to reveal relationships.

The next phase of constructing the CMV system consists of starting all required services
and establishing the event-flow network. To this end, the runtime system is used to start all
services which in turn expose all their coordination endpoints by announcing their seman-
tic slots. The runtime system then allows to connect semantic compatible coordination

2outlined in Section 3.2.5

60 3.1. Visualizing a Model of the Macaque Visual Cortex

endpoints to realize the event-flow network. Once an event-flow network is established,
an individual of the Workflow concept stores this network in the persistent ontology to
recreate the CMV system concluding its construction.

Time Series
View

Raster Plot
View

Area Selec�on
View

Area Spikes

Area Selec�on

Geometry
View

Area Flux View

Area
Connec�vity

View

Time Navigator

Popula�on
Connec�vity

View

Popula�on
Hierarchy View

Popula�on
MFR View

Area MFR View
Area Geometry

Area List

MFR Data

Area Connec�vity

Simula�on Dura�on Area Flux

MFR Data

Popula�on Connec�vity

Popula�on Hierarchy

Area Spikes

Area Selec�on
Visualiza�on Time

Visualiza�on Time

Area Selec�on

MFR Data

Simula�on Data
Provider

Color Service

Area Connec�vity
Area Flux
Area List

MFR Data
Area Spikes

Simula�on Dura�on
Area Geometry

Color List

Area Selec�on

Figure 3.6: The event-flow network resulting from the coordination of views and services
for evaluating a single simulation: slot connections are formed as indicated by arrows
between services to communicate data. Communication via slots is unidirectional. Hence,
multiple connections to slots of a service are formed. Multiple views are synchronized,
e.g., the Area Selection to forward user interaction in views currently utilized by the user.

The event-flow network of the CMV system for this use case is depicted in Figure 3.6.
Here, the Simulation Data Provider and Color Service provide the basic input data for
the visualization services. These connect to the Simulation Data Provider and Color
Service. Once service connections have been established, coordination is realized via
receiving events. In this use case, the Area Selection View provides one mechanism to
focus on a brain area. However, the Geometry View also allows to perform area selection.
To this end, multiple services, e.g., the Raster Plot View, the Area Flux View, or the Time
Series View which all operate on area selections, connect to views providing area selection
capabilities. Analogously, visualization time is coordinated among services. The Time
Navigator retrieves the simulation duration from the Simulation Data Provider and then
computes visualization time to periodically publish it to its visualization time coordination
endpoint. Via a VCR interaction metaphor, visualization time can be controlled to slow
the playback or to seek to a specific point in the simulation. The Geometry View and Area
Flux View, among others, are connected to the visualization time coordination slot and are
synchronized with the Time Navigator.

This modular approach of EDAs allows to configure and scale the desired CMV system
to different use cases. Moreover, views can be deployed on a diversity of display systems
as shown in Figure 3.7.

While this CMV system is created to primarily assess a single simulation, the research ob-
jectives when comparing multiple simulation mostly stay the same where some research

3.1. Visualizing a Model of the Macaque Visual Cortex 61

Figure 3.7: A user in a CAVE inspects a simulation using the Geometry View. Annota-
tions tied to brain areas relate areas to geometry. Areas are color-coded with regards to
their current mean firing rate. 2D panels (background) show statistical measures. System
control is realized using extended pie menus [Gebhardt et al., 2013].

questions shift focus. To this end, the next section introduces the workflow and its result-
ing event-flow network for comparing three simulations with different parameter settings,
before an overall result discussion is presented.

Workflow 2: Comparing Simulations

In this use case, a CMV system is constructed to simultaneously compare three simula-
tions of the macaque visual cortex model with different parameter settings. Key research
aspects for this task are:

• RQ11: what is the basic influence of parameters between simulations?

• RQ12: what is the parameter impact on the network dynamics?

• RQ13: are specific activity distributions visible across areas?

• RQ14: can regimes in the cortical network be identified that show asynchronous
firing behavior?

• RQ15: are contrasting interactions on different time scales present in one or more
simulations?

• RQ16: is activity propagation present and are these similarly pronounced between
simulations?

To visually compare the simulation output, services from the PSE are selected. In com-
parison to the first use case, the selection of services focuses on activity levels in more

62 3.1. Visualizing a Model of the Macaque Visual Cortex

detail. To this end, same services are invoked multiple times to concurrently visualize
three simulation datasets. The resulting CMV system uses the following services:

1. the Geometry View is started three times to visualize the neural activity to assess
RQ11, RQ12, RQ13, RQ15 and RQ16.

2. the Area Selection View to select and filter brain areas across all views.

3. the Time Series View is invoked for each simulation to show mean firing rates of
selected areas.

4. the Image Viewer Service is used six times to depict each simulation’s firing distri-
bution and power spectrum (RQ13, RQ15).

5. the Population MFR View is started three times to assess population activity (RQ1,
RQ2, RQ4, RQ5, RQ8, RQ15 and RQ16).

6. the Raster Plot View is invoked for each simulation to assess RQ1, RQ2, RQ4,
RQ8, and RQ14.

7. the Time Navigator is used to navigate visualization time for all three simula-
tionsRQ15.

8. the Simulation Data Provider is started three times to access the simulation datasets.

9. the Color Service is used to retrieve the shared color-schema among all visualiza-
tions.

To compare the activity data of all simulations, a normalization of activity is required:
activity is scaled using the natural logarithm over the min / max mean firing rate values of
all simulations. This post-processing step is part of the workflow phase W3 as described
in Section 3.1.2.

The semantic-aware EDA provides the flexibility to concurrently use services with dis-
tinct configurations which makes it possible to link and coordinate views operating on
different datasets. Thus, to compare simulations, the idea is to build one event-flow net-
work consisting of three sub-event-flow networks which focus on the exploration of one
simulation. These sub-event-flow networks then coordinate user interaction among each
other to focus on the same visual entity using the different datasets from of each simula-
tion. Lastly, the entire event-flow network is constructed in runtime system and saved in
the ontology as an individual of the Workflow concept. The resulting event-flow network
containing the three sub-event-flow networks is depicted in Figure 3.8 and the CMV sys-
tem is shown in Figure 3.9. Similar to the first use case, each Simulation Data Provider
provides access to the simulation data. However, only one Color Service is required for
the a shared color-schema across all views. Analogously, only one Area Selection View
(see Figure 3.9, top left) is used to select areas across all views. However, all Geome-
try Views synchronize selections: area selection endpoints are connected to all Geometry
Views because an area selection can be performed at any time in one of the Geometry
Views and must be coordinated among all views operating on an area selection. This
pattern is applied multiple times: the Time Navigator connects to all visualization time
endpoints from each Geometry View to realize navigational slaving. Also, the Raster Plot
Views and Population MFR Views connect to the Area Selection View and to all Geometry
Views’ area selection endpoints. In similar fashion, area geometry positions and orienta-

3.1. Visualizing a Model of the Macaque Visual Cortex 63

tions are coordinated among the Geometry Views to synchronize when an area is dragged
closer for inspection.

This use case exemplifies the modular approach of EDAs to build, scale, and tailor a CMV
system. The complexity of developing a single CMV system is moved to the construction
of event-flow networks but enables the reuse of existing views, making it possible to cover
a vast amount of analysis tasks. In the following section, the CMV systems for both use
cases are used to asses the simulation output with respect to the posed research questions.

3.1.7 Results

This section demonstrates the CMV systems and presents results obtained by domain
scientists performing visual analysis.

After choosing the workflow in the runtime system from the stored individuals of the
Workflow concept and constructing the event-flow network, investigation of the simula-
tion can begin. In the first use case, an in-depth assessment of the neural behavior is
performed when a realistic low-activity network state is observed (RQ1) where an anal-
ysis of simulation parameters on large-scale activity is in focus since not all parameter
configurations yield realistic network behavior RQ2, RQ3, RQ4. This is partly due to
the fact that available biological data are not sufficiently restrictive to completely specify
the model and to some extent its inherent simplifications. Hence, to obtain realistic net-
work dynamics (RQ1) and to gain an understanding of the underlying mechanisms, it is
important to study the influence of parameter settings on the network dynamics. To this
end, the Geometry View is used for a rapid overview of the large-scale network dynam-
ics, including its stability (RQ3) and distribution of firing rates (RQ5). Especially for
the second use case, this rapid assessment facilitates an intuitive visual comparison of the
simulations. An example is presented in Figure 3.10 where external inputs and relative
inhibitory synaptic strengths were changed between simulation runs (RQ6) and found to
only yield realistic activity for one of the settings (RQ1).

Brain activity has a specific distribution (RQ5), not only across areas but also across
layers and populations [Potjans & Diesmann, 2012; Shinomoto et al., 2009]. For instance,
inhibitory populations usually have higher firing rates than excitatory ones. This can be
assessed with the Population MFR View which shows the impact of parameter settings
on population-specific activity (see Figure 3.11). Other types of unrealistic activity, such
as pathologically high firing rates (RQ4) or strongly oscillatory behavior (RQ8), can
also be quickly identified in this view. For both examples, the previous workflow forced
domain experts to manually generate these images; even the straightforward mapping of
activity data to area geometries would not have been a standard operation. Moreover, the
resulting stills would not have provided interactive access to the temporal evolution of the
underlying data.

Another important investigation is the assessment of detailed firing patterns of populations
within an area (RQ8). When modeling cortical networks, one usually aims to achieve a
regime where single neurons emit spikes irregularly and groups of neurons fire asyn-
chronously. To gain an overview of these detailed firing patterns, one can select these
in the Geometry View or the Area Selection View to coordinate the corresponding Raster

64 3.1. Visualizing a Model of the Macaque Visual Cortex

R
a

ste
r Plo

t
V

iew

A
re

a S
ele

ctio
n

V

iew

A
rea Spikes

A
rea Sele

ctio
n

G
e

o
m

etry

V
iew

Tim
e

 N
a

viga
to

r

A
re

a M
FR

 V
iew

A
rea G

e
om

etry

A
rea List

Sim
ulatio

n D
u

ration

A
rea Sele

ctio
n

V
isualiza

tion
 Tim

e

A
rea Sele

ctio
n

Sim
u

latio
n

 D
ata

P
ro

vid
er

A
rea Sele

ctio
n

R
a

ste
r Plo

t
V

iew
R

a
ste

r Plo
t

V
iew

G
e

o
m

etry

V
iew

G
e

o
m

etry

V
iew

A
re

a M
FR

 V
iew

A
rea Sele

ctio
n

A
re

a M
FR

 V
iew

A
rea Sele

ctio
n

Sim
u

latio
n

 D
ata

P
ro

vid
er

Sim
u

latio
n

 D
ata

P
ro

vid
er

A
rea Sele

ctio
n

A
rea Sele

ctio
n

A
rea Sele

ctio
n

A
rea Sele

ctio
n

A
rea Sele

ctio
n

A
rea Sele

ctio
n

A
rea G

e
om

etry

A
rea Spikes

A
rea Spikes

Im
ag

e V
ie

w
e

r
R

a
te

 D
istrib

u
tio

n
Im

ag
e V

ie
w

e
r

P
o

w
e

r Sp
e

ctru
m

Im
ag

e V
ie

w
e

r
R

a
te

 D
istrib

u
tio

n
Im

ag
e V

ie
w

e
r

P
o

w
e

r Sp
e

ctru
m

Im
ag

e V
ie

w
e

r
R

a
te

 D
istrib

u
tio

n
Im

ag
e V

ie
w

e
r

P
o

w
e

r Sp
e

ctru
m

A
rea G

e
om

etry

Figure
3.8:

T
he

event-flow
netw

ork
forcom

paring
three

sim
ulations:

slotconnections
are

form
ed

as
indicated

by
arrow

s.
M

ultiple
area

selection
endpoints

are
connected

betw
een

the
G

eom
etry

View
to

synchronize
user

interaction
in

the
C

M
V

system
.

T
he

visualization
tim

e
is

coordinated
am

ong
services

as
w

ellas
area

selections
from

the
A

rea
Selection

View
.

3.1. Visualizing a Model of the Macaque Visual Cortex 65

Figure 3.9: Comparing three simulations of the macaque visual cortex model yielding
different activity levels due to connection-strength differences among brain areas. The
Area Selection View is arranged to the top left and shows the selection of area V1. Next,
three Geometry Views show the mean firing rates for each simulation and the current selec-
tion is indicated by a bounding box around area V1. At the bottom, for each simulation,
two Image Viewers depict the firing distribution and power spectrum, followed by the
Raster Plot View showing V1’s dot plot. At the bottom corner, a single Time Navigator
coordinates the visualization time for all views.

Plot Views. Here, an advantage over with static depictions is that the animated geomet-
ric representation enables the quick identification of areas based on their overall activity
or co-activation with other ones (RQ7, RQ8, RQ10). Details can be accessed immedi-
ately, e.g., by focusing on the raster plot for an arbitrary area, no longer requires manual
intervention and provides immediate feedback.

A further analysis task is the comparison of structural and functional relationships (RQ9).
One aim of the visual cortex study is to understand the relationship between the cortical
structure and its dynamics. The comparison of structural connectivity and functional rela-
tionships is possible through the Area Connectivity View, and the Population Connectivity
View, and the Area Flux View. Comparing Figure 3.12 (left) and Figure 3.12 (center and
right), one can see how the activity follows the structural connectivity. Here, only the flux
via the strongest connection from area V1 to V2 is not masked by an threshold, filtering
low synaptic exchange. This interactive comparison of structural and dynamical relation-
ships between areas was previously not possible (RQ9). The functional interactions also
depend on population-specific connection patterns which are visualized in the Population
Connectivity View. It enables a direct comparison between detailed connectivity and the
population-level activity. For instance, Figure 3.5 shows fairly strong connectivity from
layer 4 to layer 2/3 as also seen in the connectivity matrix. The animated bar chart reveals
that layer 4 activation tends to be followed by an increase in layer 2/3 activity, an observa-
tion that was complicated to make without interactive visual analysis (RQ2). Moreover,
the control of visualization speed through the Time Navigator enables neuroscientists to
observe interactions on different time scales.

66 3.1. Visualizing a Model of the Macaque Visual Cortex

Figure 3.10: Comparison of two simulations using the Geometry View. In the simulation
on the left, a few areas are highly active while the rest is nearly silent. On the right, a
more realistic distribution of activity across areas is observed.

Figure 3.11: Comparison of two simulations using the Population MFR View. On the left,
the excitatory populations are silent despite reasonable activity on the area level. On the
right, both excitatory and inhibitory populations display activity conforming more closely
to the biology.

The analysis of pathways (RQ10) is important because the perception of visual stimuli
relies on time-dependent activation of areas [Lamme et al., 1998]. Studying the spread
of activity upon transient external stimulation is therefore important for understanding
visual cortical function. Area V1 is the main input station of the visual cortex activated
by the thalamus upon visual stimulation. Figure 3.12 (center and right) shows how the
transient activation of area V1 yields a temporary increase in its outgoing flux, particularly
to V2. Observing this activation in an interactive view aids studying these processes,
particularly in combination with the control of visualization speed. This propagation of
activity can also be followed in the Population Hierarchy View as seen in Figure 3.4a.
The resolution at the level of single populations allows activities to be related to modeled
population-specific connection patterns. For instance, projections from early stages of
visual processing, e.g., V1 to higher areas, preferentially originate in the upper layers and
terminate in layer 4 [Felleman & Van Essen, 1991]. Thus, the match between known
anatomy and patterns like upper layer activation in a lower-order area followed by layer 4
activation at the next hierarchical level can be investigated in this view.

The second use case does not assess the simulations in as much detailed as the first. The
CMV system for the comparison task focuses on the assessment of changing model pa-
rameters (RQ11), in particular the connectivity settings (RQ12). Because the visualiza-
tion time and perspective on the scene in all Geometry Views are coordinated, the activity
levels of areas can easily be compared (RQ12, RQ13). Also, when focusing on an area, all
raster plots for the three simulated areas are displayed in the Raster Plot View, allowing to
assess difference in firing patterns (RQ14) (see Figure 3.13). The Population MFR Views
and Time Series Views allow to compare the activity levels in all simulations at once. The
detailed view on population activity levels reveals activation patterns (RQ13) similar to

3.2. Statistical Analysis of Spike Trains 67

Figure 3.12: Left: Comparison of structural and functional connectivity for a simulation
with transient input to V1. A strong structural connection exists from area V1 to V2.
Center and Right: The flux view reveals a transient increase of the transmission from V1
to V2, in line with the anatomy. Fluxes are thresholded to enable focusing on the main
pathways.

the first use case. Overall, the CMV system is tailored to identify contrasting interactions
among areas (RQ15) and assess activity propagation (RQ16). To this end, the Geometry
Views and Population MFR Views connect to the Time Navigator to coordinate visualiza-
tion time. This ensures that displayed activity levels are in sync and allows to quickly
identify interactions on different time scales (RQ15). Whenever an in-depth assessment
of a simulation is required, the CMV system for the first use case can be started in parallel
by configuring the Simulation Data Provider to use the desired simulation dataset.

In summary, user feedback on the CMV systems was overall positive. The semantic-aware
CMVs allow domain scientists to identify areas of interest and interactively analyze neural
activity data in more detail. These capabilities directly address shortcomings in previous
non-interactive workflows. The CMV systems have been used to simultaneously visual-
ize 32 vision-related areas of the macaque visual cortex where visualization designs for
the presented views were developed in close collaboration with neuroscientists. Concepts
of EDA were applied to integrate a variety of data modalities, e.g. geometrical data,
raw simulation output, and derived information. The resulting CMV systems enable the
comparison of simulations by constructing suitable event-flow networks and allow for the
integration of further data modalities and visualization designs without changing existing
services. Domain scientists made several discoveries in the data because the CMVs al-
lowed them for the first time to interactively navigate and link data modalities in a readily
accessible form.

3.2 Statistical Analysis of Spike Trains

3.2.1 Motivation

In this section, a CMV system for the statistical analysis of spike data is introduced based
on activity data resulting from a neural network simulation.

Analysis of spike data can be roughly divided into two common approaches: statistical
methods for the identification of patterns in spike data and interactive exploratory methods
to facilitate humans’ abilities for pattern recognition. Ideally, both approaches comple-

68 3.2. Statistical Analysis of Spike Trains

Figure 3.13: A slight alteration of the view arrangement for the comparison use case.
Here, the Time Series View and Population MFR View replace the firing distribution and
power spectrum. Otherwise, the view arrangement is kept consistent with Figure 3.9.

ment each other. When studying the behavior of neural systems, the inner biochemical
processes of a neuron are often neglected and reduced to a spike event. A spike event
occurs when the action potential of a neuron exceeds a predefined threshold. This process
emits an electrical signal to interconnected neurons, resulting in information exchange.
Spike events of a neuron over time are termed a spike train and a set of neurons which are
organized as networks are referred to as assemblies. Features of interest in spike trains are
irregularities in spiking behavior, synchrony of neurons, i.e., neurons spiking at the same
time or within a consistent time interval, oscillations, and overall correlation patterns.

A key challenge in the visual analysis of spike train data is the multitude of spike events
imposing several visualization challenges:

• the amount of spike events produce visual clutter, especially for dense spike activity
where records of spike events last over longer periods than are representable in the
plot.

• spike events, when plotted, might overlap because of successive firings in a short
period of time.

• interaction with the data , e.g., zooming, selecting spike trains, etc. requires inter-
active rendering techniques. However, rendering large amounts of spike data is still
a performance bottleneck for GPUs.

• the integration of statistical methods, primarily originating from experimental neu-
roscience, is still lacking.

To this end, the PSE is extended by views that focus on the interaction with and interactive
rendering of spike trains resulting in a CMV system. This system replaces the static
depiction of spike activity with interactive, coordinated views, et al., spike distributions
and statistical measures such as ISI-distance. In addition, zooming and filtering, closely
following the information seeking mantra [Shneiderman, 1996] is supported to allow for

3.2. Statistical Analysis of Spike Trains 69

a closer inspection of features. The integration of statistical measures facilitates a CMV
system that links both analysis approaches.

3.2.2 Workflow Analysis

The investigation of spike data aims to assess the behavior of a neural system over time.
While obtaining spike data fundamentally differs in computational neuroscience to exper-
imental neuroscience, the analysis questions are similar: identification of key dynamics
on a broad range of time scales resulting from stimuli, network activity, and network inter-
action. Scatter plots, also termed raster plots in this context, and histograms are classical
visualization methods [Cleveland et al., 1985] used for this data. However, Spence [2001]
already emphasized the importance of interaction with the data to extract insight and sup-
port the decision making process. Also, Fekete & Plaisant [2002] point to the challenges
of depicting multitudes of data items in a single view which concerns aspects of percep-
tion, interaction, and visualization. An exploratory tool must support users in interacting
with the data: selecting, navigating, and zooming spike trains. Interaction metaphors in
scatter plots are presented in Ellis et al. [2005] where a sampling lens is introduced to
reveal hidden features in the data resulting from over-plotting caused by dense point dis-
tributions. Similar, we observe over-plotting with dense spike activity when rendering
raster plots. The sampling lens uses random sampling as a density reduction technique to
adjust its diameter and sampling rate.

Current research suggests that spike frequency is the principal means to carry informa-
tion. Thus, spike synchronization might be driving information processing [Borisyuk &
Borisyuk, 1997; Segev et al., 2004], making the investigation of synchrony patterns a
key feature to look for. To this end, Kreuz et al. [2015] introduce SPIKY, a GUI for
monitoring spike synchrony for simulation and experimental data. SPIKY provides a UI
for three statistical methods to detect spike train synchrony: ISI-distance [Kreuz et al.,
2007], SPIKE-distance [Kreuz et al., 2013], and event synchronization [Quiroga et al.,
2002]. The ISI-distance is a parameter free, time-scale independent measure based on
inter-spike intervals. The SPIKE-distance is a similar measure but can be estimated in
real-time, making it applicable for interactive visualization on continuous spike train
recordings. Event synchronization is a sophisticated coincidence detector which relies
on simultaneous appearing spikes. SPIKY provides visualizations of three measures by
plotting these next to the raster plot.

In a common analysis workflow, two spike distribution histograms often accompany the
raster plot to assist in the interpretation of data: one histogram (STH) shows the spike
activity distribution over time intervals (see Figure 3.14, left). The time domain is sub-
divided into intervals and spike activity subsequently binned. The STH is usually pa-
rameterized with a predefined bin size which can be estimated by minimizing the mean
integrated squared error [Grün & Rotter, 2010] but should ideally be varied according to
domain experts in an exploratory setting to discern underlying spike rates. The second
histogram (PSTH) shows the summed spike counts in groupings, i.e., populations or trials
(see Figure 3.14, right). While the overall identification of patterns is important, exper-
imentalists also focus on pair-wise correlations in spike trains using more sophisticated
statistical analysis measures such as the ISI-distance or event synchronization [Berger
et al., 2010; Grün & Rotter, 2010]. However, a severe drawback of the static depictions
is the lack interaction: whenever a representation is changed, e.g., the symbol or size for

70 3.2. Statistical Analysis of Spike Trains

Figure 3.14: The STH (left) shows binned spike activity. The user can modify the number
of bins used to slice time. Then, all spike events are plotted that fall into bins. The PSTH
(right) counts all spike activity for a grouping of neurons to assess the most active and
inactive groups in the data.

depicting a spike in the raster plot, a slow hand-crafted plot generation process has to be
carried out. To this end, the goal for the CMV system to assist in the workflow is:

1. to interactively render raster plots, allowing to zoom, pan, and to adjust symbol size
used for the representation of spike events.

2. to filter spike trains by their population or experiment to hide point distributions
which are not in focus during analysis [Connors & Gutnick, 1990; Gray & Mc-
Cormick, 1996; Izhikevich et al., 2003].

3. to indicate over-plotting by measuring spike distance in pixel space to enhance con-
trast of nearby spikes.

4. to provide an interactive STH- and PSTH histogram with adjustable parameters.

5. to plot the ISI-distance for a pair of spike trains next to the raster plot.

6. to show the covariance distribution for selected ISIs.

To realize this CMV system, the following section outlines the input- and output data.

3.2.3 Input and Output Data Analysis

For this use case, the CMV operates on the simulation data presented in Section 3.1.3.
Mainly, the following data is used and derived from the simulation :

1. Spike train: a spike train is condensed representation of a single neuron’s activity
over time. To condense, a target electrical activity is defined as a threshold barrier.
Once exceeding the threshold, the neuron has spiked. Thus, a spike train is a time
series recording denoting when a neuron has spiked. Spike trains form the input
data for this CMV system.

2. ISI-distance: the ISI-distance [Kreuz et al., 2007] is a spike synchrony measure
that compares two spike trains for similar activity patterns. The ISI-distance is a
measure computed by the system and visualized in a CMV.

3.2. Statistical Analysis of Spike Trains 71

3. STH histogram: the STH histogram shows the distribution of spike activity over
a time period. To this end, the time domain is subdivided into equidistant intervals
and spike activity is subsequently binned. The STH histogram is computed on the
basis of spike trains and is output data.

4. PSTH histogram: the PSTH histogram shows the summed spike count of groups
of neurons, i.e., populations or trials. The spike count for each group is depicted as
a bar in the histogram. The PSTH diagram is based on all spike trains of neuron
groupings and is output data.

5. Covariance Distribution of ISIs: the covariance distribution of ISI-distances de-
picts the covariance value for each spike train’s ISI-value in a histogram. This
measure is based on the two spike trains and is displayed in a CMV.

Based on the input and output data and the workflow, requirements for the CMV system
are presented in the next section.

3.2.4 Requirements Analysis

To derive requirements for the CMV system, a qualitative user study was conducted using
a minimalistic prototype. The prototype was projected to a big screen while a think aloud
experiment [Lewis et al., 1993] with 11 participants from experimental (4) and computa-
tional neuroscience (7) was performed. All neuroscientists had extensive knowledge on
working with raster plots. The prototype interactively rendered raster plots and showed
both STH and PSTH histograms. Neuroscientists were specifically asked to outline how
they would like to interact with the raster plot. Subsequently, feedback was categorized
into requirements to determine common features for experimentalists and computational
neuroscientists. While experimentalists usually analyze fewer neurons over many trials,
computational neuroscientists focus on a larger set of neurons in a manageable amount
of populations. Computational neuroscientists suggested to focus on displaying large
amounts of spike trains while experimentalists stressed that linking statistical measures
is important. All participants emphasized the visual design needs to enhance contrast,
to closely resemble the traditional approach for depicting raster plots, and should support
intuitive interaction to improve the evaluation process. In summary, the feedback revealed
the following observations resulting in requirements:

1. Enhance contrast (R1): enhance the contrast for all visual elements by minimizing
color usage.

2. Adjust symbol size (R2): to change the symbol size depicting spikes helps to
investigate dense raster plots. This change shall be instantaneous to not distract the
interpretation task.

3. Zoom and filter (R3): interactive zooming and filtering the activity data is useful
but needs to be responsive. While zooming the plot, visual fidelity is important.

4. Free aspect ratio (R4): freely changing the aspect ratio of a raster plot helps to
spot synchrony patterns.

5. Compare firing rates in specific time intervals (R5): comparing firing rates in
adjustable time intervals is useful. Allow to interactively parameterize time inter-
vals.

72 3.2. Statistical Analysis of Spike Trains

6. Compare firing rates between groups (R6): to compare firing rates between
groups of neurons is important. Allow to select groups and show comparison mea-
sures.

7. Link the data (R7): link interactions of different data representations to easily
orient in the dataset. A key challenge in the analysis is the vast toolbox of statis-
tical methods and rapidly changing questions about the data. To verify hypothe-
ses, the ability to show statistical measures next to the raster plot is beneficial. The
semantic-aware architecture provides flexibility to rapidly integrate statistical meth-
ods.

8. Use the raster plot for selections (R8): use the raster plot to select spike trains for
statistical analysis.

9. Interactively display large amount of spike trains (R9): when interacting with
large spike activity data, rendering performance is critical. When selecting spike
trains, visual feedback should be provided.

10. Avoid visual clutter (R10): the depiction of large amounts of spike activity is prone
to visual clutter. Indicate over-plotting in dense spike trains to avoid misleading
results and interpretation mistakes.

11. Stream spike activity from running simulations (R11): when streaming activity
data directly from a running stimulation, a dynamic mapping technique for spike
trains is required because the plot’s dimension to show all data are unknown. Also,
rendering performance is critical.

12. Integrate analysis techniques (R12): leverage statistical analysis techniques al-
ready developed in the neuroscience domain.

Based on these requirements, a CMV system is developed which mimics the original
static depictions. It adds interaction capabilities, utilizes interactive rendering, and offers
statistical analysis techniques by integrating the Elephant [Berger et al., 2010]. In the
following section, the resulting views will be presented.

3.2.5 Views and Services

The visual design derived from the prototype consists of eight coordinated views (R7):
the Raster Plot View, the Time Series View, the STH- and PSTH View, the Covariance
Distribution View, the Spike Train Comparison View, the Spike Train Selection View, and
finally the Area Selection View (see Figure 3.15). In the following, each view is presented
in more detail:

Raster Plot View — Raster plots or rastergrams are a specialization of scatter plots
commonly used to represent spike activity to assess (see “overview first” [Shneiderman,
1996]) a neural system’s behavior (see Table 3.1, D1) over a recording period. In raster
plots, the x-axis depicts time while on the y-axis a spike train is plotted. For each spike of
a neuron, a symbol is drawn along the x-axis as seen in Figure 3.16. The Raster Plot View
allows to zoom and pan to closer inspect spiking activity (R3), and to perform selections
of spike trains via a pointing device (R8) which are subsequently used in the statistical
views, e.g., the Covariance Distribution View (R7). As a simple means to encounter vi-
sual clutter, the symbol size of a spike is interactively adjustable (R2) by clicking on the

3.2. Statistical Analysis of Spike Trains 73

Figure 3.15: The Raster Plot View (top, left) shows spiking activity for a brain area
selected in the Area Selection View (top, right next). In the top middle, the Spike Train
Selection View displays the spike trains from the Raster Plot View. Here, two spike trains
can be selected for the Spike Train Comparison View to inspect synchrony. In the bottom
left corner, the covariance distribution of all selected spike trains is shown, followed by
a STH and PSTH diagram for the brain area. In the bottom right corner, the mean firing
rate for the area is plotted.

+ and − buttons as shown in Figure 3.16 (left). Depending on whether a neuron is con-
sidered inhibitory or excitatory, it is respectively grouped into populations. To minimize
color usage and enhance contrast (R1), inhibitory populations are colored in red while
excitatory ones are depicted in blue. Moreover, the raster plot’s aspect ratio is freely ad-
justable by stretching or squeezing (R4). This makes the assessment of synchrony easier
as vertical stripes will collapse to occupy less pixel space. The Raster Plot View uses a
tile-based off-screen rendering approach, exploiting that spike activity can only advance
in time. This enables the interactive plotting of spike activity from a running simulation
(R9, R11) via a spike activity data slot. To this end, spike activity is sliced into time inter-
vals and mapped to tiles. Subsequently, tiles are stitched together in a framebuffer object.
Whenever new spikes are rendered, they are either inserted into an existing tile or a new
tile is added. This way, plotting the entire spike activity is reduced to updating a tile,
drastically improving rendering performance. In addition, storing spike activity directly
on the GPU allows for the interactive adjustment of symbol size (R2) or recoloring spike
trains (R1). This rendering technique stores spike activity in a vertex buffer. A distance
function d and an energy term e is defined to detect and indicate over-plotting caused by
dense spike activity where distinct spike events are mapped to the same pixel-space (R9,
R10):

did,r(s,{x0, ...,xn}) = max(0,1−
n

∑
i=0

1− min(|s− xi|,r)
r

) (3.5)

e(id,s) =
n

∑
i=0

max(|s− spikei|,1) (3.6)

where id is the spike train, n its number of spikes, s the current position in time, spikei
the point in time when a spike occurs, and r the radius of the spike’s depiction symbol.

74 3.2. Statistical Analysis of Spike Trains

Figure 3.16: A raster plot showing spike activity: the x-axis depicts time while on the
y-axis neurons are assigned. For each spike of a neuron, a filled circle indicates a spike
event. Red circles show inhibitory neurons while blue ones depict excitatory ones. Verti-
cal stripes show synchrony in spike trains.

r

di

dn+2,r = x

y

Figure 3.17: Illustration of the process to determine dmin.

While rendering, the distance function and energy term are evaluated and stored in a two-
channel texture. Both functions are accumulated whenever new spikes are rendered. To
render spike trains, for each tile a quadrilateral is drawn which emits fragments. For each
fragment, a lookup in the distance field is performed which sweeps around the current
spike along the radius r to retrieve nearby spike distance values j. Then, the fragment
distance di at its position i to all nearby spikes is calculated by iterating over each distance
value around r where the distance di is given by the Pythagorean theorem. Then, the
minimum dmin of D = {d0, ...,d j} is obtained as illustrated in Figure 3.17. If |dmin| ≤ r, a
fragment for depicting the spike event is generated, otherwise it is discarded. The color of
the fragment is determined by multiplying the user-defined color for a spike with a factor
l, where l is:

l =
1−dmin

ei
(3.7)

and ei is the energy from Equation 3.6 at the position i in the distance field. The fragment’s

3.2. Statistical Analysis of Spike Trains 75

Figure 3.18: Over-plotting is indicated by a slight decrease in luminance which helps in
spotting dense spike activity.

α- value is determined by Hermite interpolation s:

α = s(r− ε,r+ ε,di) (3.8)

where ε is the gradient magnitude of two neighboring texels at the fragment’s position
in the quadrilateral. Finally, the fragment is blended with the α- value to indicate over-
plotting. This results in a color with darker luminance for spikes in close proximity,
indicating over-plotting as seen in Figure 3.18.

STH View — The STH View depicts the distribution of spike activity over time to assess
firing behavior (R5, R6). It supports zooming and panning while also interactively chang-
ing the numbers of bins. This allows to reveal details over the activity distribution. The
STH View can either be used to plot the activity distribution of the entire population data
or can be coordinated with the spike trains selected from the Raster Plot View to facilitate
R6. Additionally, a color table maps the number of spikes for each bin to a color to ease
the perception of change w.r.t. the height of a bin (cf. Figure 3.14 (a) and (b)).

PSTH View — The PSTH View depicts the firing behavior of populations in a histogram
for comparison tasks (R6). The histogram displays spikes for all neurons in a population
as a bar where the bar’s height encodes the total number of spikes. An example of this
view is shown in Figure 3.14 (b).

Covariance Distribution View — The Covariance Distribution View operates on a selec-
tion of spike trains and calculates their ISI-values which are subsequently used to compute
their covariance. The covariance is then displayed in a histogram (see Figure 3.15 first
view, second row). In addition, it calculates the Fano Factor [Kamil Rajdl, 2014] (R12) to
describe variability in both spike trains and displays it in the bottom left corner. The com-
putation of ISI-values and the Fano Factor are performed by the Elephant toolkit (R12).
Spike selection is coordinated from the Raster Plot View (R7, R8)

Spike Train Selection View — The Spike Train Selection View displays a list of neuron
IDs selected from different views, e.g., the Raster Plot View (R7). It acts as a clipboard
(R8) for spike train selections (R8) and shows total number of spikes next to the neuron
ID. It is used in conjunction with the Spike Train Comparison View to assess synchrony
in pairs of spike trains (R7). Figure 3.15 (third view, first row) shows a set of spike trains
that were selected in the Raster Plot View. The user can now filter and select a pair that is
passed over to the Spike Train Comparison View.

76 3.2. Statistical Analysis of Spike Trains

Spike Train Comparison View — The Spike Train Comparison View enables the assess-
ment of synchrony between two spike trains. To this end, it shows a pair of spike trains
to assess synchrony, i.e., correlation of spike events (R5). It receives a pair of spike trains
(R7) from the Spike Train Selection View and displays spike timings vertically aligned
as shown in Figure 3.15 (last view, first row). The view also calculates and plots the
ISI-distance for both spike trains using the Elephant toolkit (R12).

In summary, the Area Selection View is used to select a brain area of interest which is
coordinated with the Raster Plot View, the STH View, the PSTH View, and the Covari-
ance Distribution View. The Spike Train Selection View displays all selected spike trains
from within the Raster Plot View and allows to subselect a pair of spike trains which is
subsequently passed to the Spike Train Comparison View for comparisons tasks of spike
train synchrony. The next section outlines the event-flow network to construct this CMV
system.

3.2.6 CMV System Construction

Key research questions to analyze spike trains resulting from a simulation of the multi
area model presented in Section 3.1 are:

• RQ1: are there any synchronous activity patterns visible in the data?

• RQ2: are there similar activity patterns visible in different brain areas?

• RQ3: is there statistical significant synchrony between pairs of spike trains?

• RQ4: how is the spike activity distributed in a brain area?

• RQ5: how is the covariance of ISIs distributed between selections of spike trains?

• RQ6: how is firing behavior of populations in an area distributed?

• RQ7: is there activity in areas and how does the activity “look like”?

To assess these questions, the PSE is constructed using the following services to form a
CMV system:

1. the Simulation Data Provider to access the simulation datasets, i.e., spike data.

2. the Raster Plot View displays spike data for a brain area. It also allows to select
spike trains subsequently used in other views (RQ1, RQ2, RQ6, RQ7).

3. the Area Selection Service allows the selection of areas.

4. the Time Series View shows the activity data (MFR) (RQ7).

5. the STH View displays the spike activity distribution (RQ4, RQ6).

6. the PSTH View allows the assessment of spike activity between populations (RQ4,
RQ6).

7. the Covariance Distribution View shows the covariance distribution of a selection
of spike train ISIs (RQ5).

8. the Spike Train Selection View is used to select a pair of spike trains (RQ3) from
the Raster Plot View.

3.2. Statistical Analysis of Spike Trains 77

9. the Spike Train Comparison View enables the assessment of synchrony between two
spike trains (RQ1, RQ3).

Based on these services, the event-flow network is constructed to form a CMV system as
shown in Figure 3.19. The event-flow network and all used services are also stored in the
persistent ontology to start the CMV system directly from within the runtime system. In

Raster Plot
View

Area Selection
View

Area Spikes

Area Selection

Covariance
Distribution

View

Area List
Simulation Data

Provider

STH View PSTH View
Time Series

View

Spike Train
Selection View

Spike Train
Comparison

View

Area Selection

Area Selection Area Selection

Spike Trains

Spike Trains

MFR Data

Area Spikes

Figure 3.19: The event-flow network resulting from the coordination of services: the
Simulation Data Provider offers access to the spike activity data, list of brain areas, and
mean firing rates. The Raster Plot View receives spike data and displays the plot depend-
ing on the selection in the Area Selection View. The Time Series View, the STH View, and
PSTH View is updated whenever a selection is performed. The Covariance Distribution
View and Spike Train Selection View is coordinated with selections of spike trains from
the Raster Plot View. When a pair of spike trains is selected in the Spike Train Selection
View, the Spike Train Comparison View is updated to display the two spike trains.

the following section, this CMV system is used to assess activity data.

3.2.7 Results

The Area Selection View forms the starting point of the investigation. It lists all brain
areas from the simulation to select an area of interest which is subsequently shown in the
Raster Plot View (R7). The Raster Plot View interactively renders a large amount of spike
data (R9) to assess the data (RQ7). Users pointed out that the view’s aspect ratio should
not be fixed because synchronous activity appears as vertical stripes (R4). By stretching
and squeezing the view, users have control over how much pixel space stripes occupy,
making synchrony easier to spot (RQ1). Also, the view allows to adjust the symbol size of
spikes to reduce visual clutter (R2) and indicates over-plotting by coloring close proximity
spikes darker (R10). A tile-based rendering technique allows for plotting streamed spike
data from running simulations (R11). Due to the view’s interactive rendering capabilities,
responsive zooming and filtering is supported without aliasing artifacts (R3). Contrast is
enhanced by using only two distinct colors for inhibitory and exhibitory populations (R1).
Spike trains can be selected in the Raster Plot View and are then displayed in the Spike
Train Selection View which shows the selected spike train ID and its number of spikes.

78 3.3. Visualizing and Steering Structural Plasticity Simulations

Here, the user subselects pairs of spike trains for statistical analysis (R8, R12) in the Spike
Train Comparison View to investigate synchrony (RQ3). Pair-selections can be changed
interactively triggering an update of the Spike Train Comparison View.

To compare firing rates in time intervals (R5) and between groups (R6), both the STH-
View and PSTH View are used to assess RQ4 and RQ6. The Covariance Distribution View
(RQ5) and Spike Train Comparison View (RQ3) integrate statistical analysis techniques
from the Elephant3 toolkit. Thus, the semantic-aware CMV system allows to construct
and coordinate views utilizing analysis methods provided by community tools (R12).

To detect similar activity patterns among brain areas (RQ2), the user can switch between
different raster plots by selecting areas of interest in the Area Selection View. In addition,
the CMV system can be configured to show additional Raster Plot Views to isochronal
assess plots. Also, the Time Series View displays the mean firing rate for areas selected in
the Area Selection View to assess overall activity levels.

In summary, the CMV system is tailored to assess spike data resulting from either sim-
ulations or experiments. It presents a solution for the technical challenge of rendering
large amounts of spike data while also avoiding visual clutter. In addition, it allows for
interacting with the data and integrates statistical analysis techniques commonly applied
in the neuroscience community.

3.3 Visualizing and Steering Structural Plasticity
Simulations

3.3.1 Motivation

This use case presents a CMV system to visualize, steer, and explore structural plasticity
simulations in NEST by extending the PSE. This use case is based on [Nowke et al.,
2018].

Structural plasticity models the dynamic creation and deletion of synapses in a neural
network. However, modeling plasticity contains many degrees of freedom and interac-
tions among elements change over time. Also, biological data to specify a complete set of
parameters for such a model is incomplete and even if obtained, finding free parameters
for a simulation leading to results matching experimental data is NP hard [Cubitt et al.,
2012]. To this end, interactive visual exploration of the parameter space through simula-
tions to discover the system’s characteristic behaviors limits the search space [Sedlmair
et al., 2014]. Combined with interactive simulation steering, the time for obtaining po-
tentially “optimal” parameter space solutions is significantly reduced [Matkovic et al.,
2008b; Matković et al., 2014]. Roberts [2007] shows that the application of the CMV
paradigm supports exploratory data analysis through interactions with the data while em-
phasizing different details. In addition, Ryu et al. [2003] present CMV systems that have
been successfully utilized to uncover complex relationships by relating data modalities
and scales which assists researchers in context switches, comparative tasks, and supple-
mentary analysis techniques. Further CMV systems are presented by North & Shneider-
man [2000], Boukhelifa & Rodgers [2003], and Weaver [2004].

3http://neuralensemble.org/elephant/

3.3. Visualizing and Steering Structural Plasticity Simulations 79

The here presented CMV system focuses on finding suitable connectivity configurations
which reflects a complex parameter search problem. The generation of local connec-
tivity uses structural plasticity in NEST [Bos et al., 2015] following homeostatic rules
introduced in Butz & van Ooyen [2013]. The CMV system allows to steer structural plas-
ticity parameters during the simulation and interactively plots firing rates and connectivity
properties of populations.

The CMV system is applied to two use cases:

1. the first use case explores the generation of connectivity in a simple two population
network where connectivity is tuned to a desired level of average activity by taking
multiple trajectories with different biological significance.

2. the second use case considers a whole brain simulation [Deco et al., 2013] where
the exploration of non-unique connectivity solutions is explored.

Overall, observing the evolution of connectivity, especially where several biologically
paths lead to equivalent solutions, helps to form a deeper understanding of the brain’s
development, learning, and repair capabilities. The CMV system provides a basis for
developing new analytic and computational solutions to explore structural plasticity in
neuronal and neural mass networks and promotes rigorous analysis of complex network
models.

3.3.2 Workflow Analysis

Structural plasticity can be seen as a biological controller in a multi-objective optimiza-
tion problem. This controlling mechanism gradually creates and destroys connections
between neurons, or modifies the strength of existing synapses. Here, control signals re-
fer to the variations in the connectivity while states refer to the dynamics of the network.
The control history which satisfies the constraints of the system, i.e., experimental pa-
rameters of neurons and synapses, during a time interval is called an “admissible control”
while an “admissible trajectory” is a state trajectory which satisfies the constraints of all
state variables through the same time interval. Following, the final state of the system is
required to be in a specific region. By applying a control signal, the system evolves from
its initial state to a final state following some trajectory. The performance of this trajec-
tory is the difference between a desired and the obtained measure for a heuristic involving
the dynamics of the system. In this use case, the performance function is given by home-
ostatic rules. To reach a defined target activity regime, it is unknown whether an optimal
admissible control exists which sends the system through an admissible trajectory for a
given performance function. This optimization problem seeks a global minimum for one
or more admissible trajectories of the system. Since finding the exact control signals or
parameters for a simulation replicating experimental results is unachievable in polynomial
time, it may still be possible to confirm solutions in polynomial time.

The primary purpose of the workflow is to study the morphological transformations neu-
rons undergo in time leading to the creation and deletion of synapses. A secondary pur-
pose is the automatic generation of neuron to neuron synapses models to compensate for
gaps in experimental connectivity data as described in Diaz Pier et al. [2016]. Here, a
network autonomously generates synapses to achieve a stable profile of activity by pro-
gressively changing the connections and weights between neurons to find stable config-

80 3.3. Visualizing and Steering Structural Plasticity Simulations

�

Firing rate (Hz)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.00.0 15.0

�

 S
y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

�

Time (s)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.00.0 15.0

�

 S
y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

 �

Time (s)

12.0

10.0

8.0

6.0

4.0

 2.0

 0.0
5.0 10.00.0 15.0

F
ir

in
g
 r

a
te

 (
H

z
)

a) b) c)

Figure 3.20: (a) Example of growth rate curves determining the creation or deletion of
synaptic elements. The parameters defining the shape of the curve are the minimal firing
rate η for creating or deleting synaptic elements, the target firing rate ε , and the growth
rate ν which is the value of the curve in synaptic elements/s. The red, cyan and purple
curves have a negative value of ν which implies that synaptic elements are deleted when
the current firing rate is less than the target rate. Conversely, synaptic elements will be
created when the firing rate exceeds the target. The brown curve has a positive ν which
works in the opposite way. All curves display different values of η and have a target firing
rate ε of 8 Hz. (b) Firing rate imposed on sample systems with Gaussian growth curves
shown in (a); and c) the resulting evolution of synaptic growth rate through time due to
the firing rate changes depicted in (b).

urations. Neurons have synaptic elements formed of contact points which increase or
decrease in number according to homeostatic rules and are used to create new synapses.
If a contact point is eliminated, the synapses is destroyed. These homeostatic rules control
synaptic elements to steer the mean electrical activity to a desired state. Gaussian curves
as shown in Figure 3.20 are examples of homeostatic rules defining the growth rates of
connection points. The parameters defining the growth and decay of synapses are the
minimum firing rate η required to generate synaptic elements, the value ν of the growth
rate curve when the firing rate is (ε −η)/2, and the target firing rate ε . Modifying these
values alters connectivity in the network.

Using structural plasticity for a single population to reach a targeted activity level is fast
and insensitive to the choice of the parameters ν and η . However, challenges arise when
structural plasticity is involved on multiple interconnected populations with differing ac-
tivity levels because small changes in connectivity impact the activity of all populations
leading to a propagated destabilization. In addition, the update interval at which synapses
are modified has significant impact on stability. The delay between a control change and
the system’s response determines the capability of keeping the system stable.

In a previous workflow described in Diaz Pier et al. [2016], no simulation steering was
possible. Due to many control parameters and observables, brute-force parameter search
was insufficient to obtain stable systems. To this end, modifying the update interval and
the growth behavior (ν and η) during a simulation is crucial for finding a stable state for
multi-population networks. Thus, the parameter search workflow requires:

1. Observe variables (W1): the simultaneous analysis of several changing variables
by an expert.

3.3. Visualizing and Steering Structural Plasticity Simulations 81

2. Compare activity (W2): comparing the activity level of several populations simul-
taneously.

3. Change parameters (W3): changing simulation parameters in each population
while the simulation is running.

4. Store connectivity (W4): storing the connectivity state at a specific point in time.

5. Load connectivity (W5): loading a stored connectivity state.

This workflow requires a CMV system that enables the exploration and steering of plas-
ticity simulations while displaying population connectivity and activity.

3.3.3 Requirements Analysis

While steering the plasticity simulation, navigating and visualizing the parameter space
is required to rapidly reach stable configurations of connectivity in tightly connected pop-
ulations. To this end, the following requirements were established in close collaboration
with domain experts:

1. Display time series data (R1): display 2×N time series for (inhibitory and ex-
hibitory) activity and connectivity where N corresponds to populations in the sim-
ulation.

2. Plot firing rate (R2): plot the firing rate of populations.

3. Plot connection count (R3): plot the number of connections of populations.

4. Select multiple populations (R4): select multiple populations.

5. Avoid clutter (R5): avoid visual clutter to distinguish populations.

6. Control ν (R6): control each population’s growth rate ν .

7. Control η (R7): control each population’s minimum electrical activity η .

8. Control the update interval (R8): control the update interval.

9. Control the simulation loop (R9): allow to start or stop the simulation.

10. Load and save the network state (R10): load and save the network state, i.e.,
connections and control parameters.

11. Show multiple plots (R11): show multiple population plots in separate views for
comparison tasks.

Requirements R1-R5 target the parameter search workflow W1 and W2 while R6-R11
target W3-W5.

The development of the tool was organized into four stages:

1. the initial simulation script was modified to retrieve electrical activity and connec-
tivity values while the simulation is performed.

2. the views and UI were developed.

3. parameter synchronization between the UI and the simulation was added.

82 3.3. Visualizing and Steering Structural Plasticity Simulations

Figure 3.21: The firing rate of brain regions (upper left) and total connections (upper
right) is displayed while a simulation is performed. The Control View and Growth Rate
Manipulation View (bottom left and center) allow for parameter space exploration. The
Region Selection View (far right) allows to filter regions depicted in the plots.

4. the simulation script was optimized to run on supercomputers.

Steering the simulation requires bidirectional communication between the CMV system
and the simulator. For each simulation step, all firing rates of populations and total con-
nections are obtained from the simulation. Then, control parameters, i.e., η , ν of each
population, the update interval, and basic commands are sent to the simulator and applied
in the next simulation loop iteration. Bidirectional communication is realized via the slot
communication provided by the EDA.

The next section presents the developed views for the CMV system.

3.3.4 Views and Services

The CMV system consists of six services implementing requirements R1-R11 as can be
seen in Figure 3.21:

Control View — The Control View allows to start the simulation, the steering interfaces,
the Color Editor View and the Region Selection View. To control the update interval (R8)
and to pause or restart the simulation (R9) is also performed here. To reuse connectivity
in neighboring points of the parameter space, a save- and load functionality is provided
(R10). To this end, each population’s η and ν values, the update interval, and connections
between neurons are saved. To reuse a snapshot, synaptic elements with their associated
growth curves are reconstructed using the stored η and ν values. Then, synaptic elements
are registered in the structural plasticity framework and the update interval is set. Finally,

3.3. Visualizing and Steering Structural Plasticity Simulations 83

Figure 3.22: The Color Editor enables the customization of the firing rate and connec-
tivity curves in the plot. Here, a color for a region’s inhibitory (I) and excitatory (E)
population can be selected and line drawing style as well as thickness can be controlled.

all connections are recreated. In this way, a network with differing global parameters can
start from a partial solution and arrive at the target activity more quickly.

Region Selection View — The Region Selection View lists all regions (see Figure 3.21,
rightmost). It allows to select multiple regions, coordinated with all other views, to plot
their activity and connectivity (R4). Individual regions can be investigated by double
clicking on a region: this opens a standalone Activity Plot View and Connection Plot
View, useful for pairwise comparison tasks (R11).

Activity Plot View — The assessment of simulation results is based on the population
activities. To this end, the Activity Plot View plots firing rates of populations (R1) selected
in the Region Selection View (R4) and visualizes the trajectories of the network. The labels
e and i in the plot identify excitatory- and inhibitory populations. To retrieve the firing
rates (R2), it connects to the simulation. Interactive zooming and panning allow to focus
on details on demand facilitating the “information seeking” mantra [Shneiderman, 1996].
Axes can be independently scaled and the data range confined. The view also exports the
plot as a figure. To distinguish curves (R5) associated with a population, a color table
is used, defined via the Color Editor View in addition to numbers identifying regions.
Multiple Activity Plot Views can be opened in the Region Selection View (R11).

Connectivity Plot View — The Connectivity Plot View (see Figure 3.21, upper right)
displays the total number of connections in a population (R3). Because structural plas-
ticity changes a population’s connections depending on its firing rate, the view helps to
verify the structural plasticity model and shows the trajectories of the network. The label
r, displayed in the legend in the top left corner, and the population’s number identify the
connectivity values. The view is also coordinated with the Region Selection View (R4)
and the Color Editor View (R5). Like the Activity Plot View, it offers interactive zooming
and panning. Likewise, axes are automatically scaled such that all retrieved connectivity
values are depicted. The plots can also be exported as figures for the tracking of results
or publication purposes.

Color Editor View — The Color Editor View presents a GUI to define a color, the
line drawing style, and line thickness to distinguishably plot a population’s activity and

84 3.3. Visualizing and Steering Structural Plasticity Simulations

connectivity curve (R5). A color for a population’s inhibitory- and excitatory population
can be defined by clicking on the corresponding list entry. The Activity Plot View and
Connectivity Plot View are coordinated to synchronize its settings. The settings are also
saved to disk for later use.

ETA- and Growth Rate Manipulation View — Both, the ETA Manipulation View and
Growth Rate Manipulation View present GUIs to change η and ν parameters while the
simulation is running. They allow to conduct a parameter space exploration (R6 and R7)
by steering the control signals to take the system from its current state to a desired final
state. Both views are started within the Control View. Each view presents a slider for each
population to control either η or ν , respectively. The slider is named after the population
and shows the currently applied value. Whenever its value is changed, it is send to the
simulation and subsequently processed in the next simulation loop iteration.

In the next section, the construction of the event-flow network for this CMV system is
presented.

3.3.5 CMV System Construction

The CMV system is constructed to investigate the the following key research questions:

• RQ1: what trajectories lead to solutions?

• RQ2: which solutions are biologically meaningful?

• RQ3: how do solutions compare to each other?

• RQ4: what are the implications of different parameter setups in a network model?

• RQ5: can the model be validated?

• RQ6: can biologically meaningful populations for the simulation be defined?

• RQ7: can measures for future automatic or semi-automatic assessments of model
behavior be derived?

To allow for the assessment of these questions, the CMV system’s event-flow network is
established among the following views:

1. the Region Selection View is used to select brain regions.

2. the Activity Plot View to display activity levels.

3. the Connectivity Plot View to show the number of connections of selected regions.

4. the Color Editor View to define the coloring and line properties in the the Activity
Plot View and Connectivity Plot View.

5. the ETA Manipulation View to change electrical activity for regions to influence the
creation and destruction of connections.

6. the Growth Rate Manipulation View to define the rate of growth for each region’s
plasticity.

7. the Simulation which acts as a data provider to views and applies user interaction.

3.3. Visualizing and Steering Structural Plasticity Simulations 85

Color Editor
View

Region
Selection View

Activity Plot
View

Rank 0

Connection
Plot View

Growth Rate
Manipulation

View

ETA
Manipulation

View

Control View

Rank 1

Rank 2

Rank n

Steering Commands

Calcium Concentration

Total Connections

Region List

ETA Values Growth Rate Values

C
ol

or
 T

ab
le

Region Selection

Region Selection

Figure 3.23: Overview of the system architecture: boxes denote individual services.
Black arrows mark communication from the simulator to views. White arrows indicate
event-flow from views to the simulator. Ranks indicate MPI processes responsible for the
parallel computation of the neural network.

The resulting event-flow network is depicted in Figure 3.23. The simulation wraps MPI-
processes to compute the neural network in parallel. The rank 0 MPI-process has a steer-
ing slot to receive commands from views and gathers data from all other ranks. Finally, it
forwards gathered data to views.

In the next section, results obtained using this CMV system are presented.

3.3.6 Results

The CMV system was used to evaluate and obtain results for two use cases. For the first
use case, structural plasticity simulations before the CMV system was developed were re-
ported in Diaz Pier et al. [2016]. Due to the large number of curves, the inability to focus
on populations, and the lack of interactivity, static visualization made it very difficult to
identify the evolution of connectivity in relation to parameter changes. Moreover, a new
simulation run was required whenever any parameter is changed. Even when some popu-
lations had reached their target activity, it was challenging to identify suitable trajectories
that lead to stable solutions for all populations.

The simulated system is constrained by connectivity data and activity levels obtained
from experimental measurements but the constraints still allow to reach non-physiological
states. The system may have several trajectories to reach these states, indicating that the
system is under-constrained. However, there are many admissible trajectories which take

86 3.3. Visualizing and Steering Structural Plasticity Simulations

the system to biologically plausible states. At first glance, it is unclear how to explore
the parameter space as many parameters and long computation times make it unfeasible
to find stable populations with a brute force approach and no heuristic is available to
reduce the dimensionality. Without expert knowledge in a closed loop setup, admissible
trajectories are hard to find.

In the first use case, a model with two point neuron populations, one excitatory and one
inhibitory, is used. The network contains 1000 leaky integrate-and-fire neurons with ex-
ponential shaped post-synaptic currents of which 80% belong to the excitatory population
and the rest to the inhibitory one. All neurons receive independent background excitatory
Poisson noise with a rate of 10 kHz. At the beginning of the simulation, no connections
between neurons exist. The system is allowed to create both excitatory and inhibitory
connections through structural plasticity. The evolution of the firing rate and the growth
of connections is regulated by two homeostatic rules defined by Gaussian curves. The
target average activity of the inhibitory population is set to 20 Hz while the target average
activity in the excitatory population is 5 Hz. The evolution of connectivity is guided by
modifying the growth rate and the Gaussian curve.

The CMV system assists to observe the path to a solution (RQ1). It allows to assess how
a faster growth of inhibition triggers an overshoot in the generation of excitatory con-
nections which results in a rewiring of the system. By regulating the speed of creating
connections, the CMV system helps to explore different paths to a solution where the
relationship between excitation and inhibition changes over time. Figure 3.24 shows the
evolution of growth rate, firing rate, and connectivity for six examples of multiple trajec-
tories and connectivity. All examples start with a growth rate of 0.0001 synaptic elements
/ ms. Figure 3.24a shows a smooth growth where the control signals were modified by
reducing the growth rate to 0.00005 at iteration 8 (mark a.1) to regulate the overshoot
in the inhibitory population. Figure 3.24b shows a simulation where the control signals
for growth start very fast, producing a constant oscillatory behavior. This is achieved
by changing the growth rate from 0.0001 to 0.001 at iteration 38 (mark b.1) and then to
0.003 at iteration 80 (mark b.2). Following, the update interval in connectivity is changed
to 500 which produces a big oscillation triggering a rewiring of the network (mark b.3).
Finally, the growth rate is set to 0.00005 at update 161 (mark b.4) to settle the system at
a stable state. Figure 3.24c illustrates a very fast growth at the beginning by changing the
growth to 0.004 at iteration 46 (mark c.1). Then, a sharp change to slow growth when the
system is oscillating close to the target firing rate. The growth rate is changed to 0.0018 at
iteration 98 and further down to 0.0007 at iteration 103 (marks c.2 and c.3). Figure 3.24d
shows a case which seems stable in terms of activity but is unstable in terms of connectiv-
ity as it exhibits a constant race between excitation and inhibition to maintain the target
activity. Growth rate is set to 0.001, at iteration 24 (mark d.1) to 0.0056, at iteration 52
(mark d.2) and to 0.0020 at iteration 78 (mark d.3). Figure 3.24e shows a trajectory which
is not biologically meaningful, as we have built a network with only excitatory connec-
tions by modulating the growth of connections very carefully around the target activity.
Here, a growth curve is defined that does not allow for the creation of inhibitory connec-
tions unless the activity is above a desired firing rate. Finally, in Figure 3.24f, a trajectory
is shown which is not admissible in terms of biological meaningfulness because the net-
work is taken to very high firing rates before it settles back to its target. At iteration 17,
the growth rate is set to 0.002 (mark f.1) and then slowly down to 0.00056 at iteration 60,
to 0.0002 at iteration 80 and finally to 0.00005 at iteration 90 (marks f.2, f.3 and f.4). This

3.3. Visualizing and Steering Structural Plasticity Simulations 87

0 200100 300

0

2000

4000

6000

1000

3000

5000

7000

0 200100 300

0

20

40

10

30

50

0 20010020 40 60 80 120 140 160 180 220 240 260

0

2000

1000

200

400

600

800

1200

1400

1600

1800

2200

2400

0 20010020 40 60 80 120 140 160 180 220 240 260

0

20

10

2

4

6

8

12

14

16

18

0 10020 40 60 80 120 140 160

0

20

10

30

0 10020 40 60 80 120 140 160

0

2000

1000

200

400

600

800

1200

1400

1600

1800

2200

2400

2600

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

a) b) c)a.1 b.1
b.2

b.3 b.4 c.1 c.2
c.3

0 20010020 40 60 80 120 140 160 180 220 240 260

0

0.1

0.02

0.04

0.06

0.08

0

4.0

0.8

1.6

2.4

3.2

G
ro

w
th

 r
a
te

 (
e
/s

)

0 10020 40 60 80 120 140 160

0

200

400

600

800

100

300

500

700

900

0 10020 40 60 80 120 140 160

0

20

10

2

4

6

8

12

14

16

18

0 10020 40 60 80 120 140

0

20

40

60

10

30

50

0 10020 40 60 80 120 140

0

2000

4000

1000

3000

0 20010020 40 60 80 120 140 160 180 220

0 20010020 40 60 80 120 140 160 180 220

0

20

10

2

4

6

8

12

14

16

18

22

24

0 20010020 40 60 80 120 140 160 180 220

0

1000

200

400

600

800

1200

1400

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

Time (s)

To
ta

l
c
o
n
n
e
c
ti

o
n
s

F
ir

in
g
 r

a
te

 (
H

z
)

d) e) f)d.2d.1 d.3 f.1 f.2 f.3

f.4

0

20

4

8

12

16

0 10020 40 60 80 120 140

G
ro

w
th

 r
a
te

 (
e
/s

)

-0.2

0.3

-0.1

0

0.1

0.2

G
ro

w
th

 r
a
te

 (
e
/s

)

0 10020 40 60 80 120 140 160
0

7.5

1.5

3.0

4.5

6.0

G
ro

w
th

 r
a
te

 (
e
/s

)
G

ro
w

th
 r

a
te

 (
e
/s

)

0

3.0

0.6

1.2

1.8

2.4

G
ro

w
th

 r
a
te

 (
e
/s

)

0 200100 300 0 10020 40 60 80 120 140 160

Figure 3.24: Evolution of growth rate (top), firing rate (middle) and outgoing connec-
tions (bottom) for six different trajectories (a-f) for the two population model. Excitatory
neurons are marked in red and inhibitory neurons are blue. Vertical dashed lines corre-
spond to changes to the growth rate (top curves) or update interval (at b.3) while all other
parameters are held constant.

88 3.3. Visualizing and Steering Structural Plasticity Simulations

Figure 3.25: Use case 2 inspired by Deco et al. [2014] whole brain model: abstract repre-
sentation of a brain model including 68 regions. A subset of the regions is selected (pink
area). The zoom-in view depicts the model for each region consisting of two populations,
one excitatory in red and one inhibitory in blue. Inhibitory connections to excitatory neu-
rons in the same region (blue dashed arrow labeled J) are subject to structural plasticity.

shows how the network can traverse biologically inadmissible trajectories and still reach
the target activity and that several simulations using different dynamics lead to the same
target activity but different connectivity patterns. Using only target activity as a tuning
parameter without visualization and steering can lead to arbitrarily selecting states. The
network structure may be critically path-dependent, dependent upon parameters which
are stochastic sequences or even dependent upon numerically unstable parameter func-
tions.

Simple networks, as shown in this example, are frequently used but rarely with charac-
terization of the parameter space. In absence of analytical methods to identify alternative
solutions, steered visualization is a highly effective method for producing, observing,
comparing and cataloging network configurations (RQ2, RQ3).

The second use case, inspired by the previous study of Deco et al. [2014], consists of a
whole brain simulation using 68 interconnected brain regions each represented by a spik-
ing network containing 200 neurons as shown in Figure 3.25. Each region contains two
populations: one excitatory (80% of the total neurons in the region), and one inhibitory
(20%). Each neuron initially receives 160 excitatory connections from the local excita-
tory population and only inhibitory connections are created during the simulation. The
inter-regional connectivity (black lines between regions in Figure 3.25 is derived from
structural data obtained by DTI. Each connection between regions is made between a sin-
gle representative neuron in each excitatory population. Connections between regions are
only excitatory. Additionally, all neurons receive independent background input from a
Poisson generator producing spike trains with a rate of 11.9 kHz.

The CMV system is used with different inter-region global coupling factors G. By using
the CMV system, it is evident that as G grows it is more difficult to bring all regions to a
desired activity state and the standard deviation of the average firing rate increases. The
CMV system also reveals which regions are crucial for stability as they have a higher inter-
connectivity to other ones. Figure 3.26 shows a comparison of the evolution of the firing
rate and outgoing connections of four regions. Each peak shows an increment in the global
coupling value G of 0.5 starting from a base value of 0.5. Regions 25 and 63 show large
oscillations due to their high connectivity. Conversely, regions 0 and 10 rapidly reach a

3.3. Visualizing and Steering Structural Plasticity Simulations 89

0 20010020 40 60 80 120 140 160 180 220 240 260

0

2000

1000

200

400

600

800

1200

1400

1600

1800

2200

2400

2600

2800

Time (s)

To
ta

l c
o
n
n
e
ct

io
n
s

A B C D

Time (s)

Fi
ri
n
g
 r

a
te

 (
H

z)

0 20010020 40 60 80 120 140 160 180 220 240
0

2

4

6

8

1

3

5

7

A B C D

Figure 3.26: Number of connections (left) and firing rate (right) shown in comparison
of four regions (0,10,25,63). Vertical dashed lines separate partition the simulation with
differing values of G = A) 0.5; B) 1.0; C) 1.5; D) 2.0. Regions are numbered from 0-67.
Tags eX and iX identify excitatory and inhibitory populations while the number next to it
denotes the current average firing rate.

stable state even for high values of G. The CMV system’s capacity for detailed inspection
allows to verify that all regions reach the desired average activity during simulation and
drastically decreases turn-around times. In addition to the advantages in speed and use of
computational resources, steering allows to gain more insight into the simulation.

In the first use case, the primary finding was that multiple connectivity configurations can
result in the same activity profile. The second one identifies which regions are most criti-
cal for the overall network stability, as illustrated in Figure 3.26. In both cases, the CMV
system supports researchers in sensitivity analysis, understanding the driving parameters
of the model and assessing the relations between parameters and function.

To describe the typical workflow for both use cases, the first step is to determine which
regions have one or more of the following characteristics (R2-R5):

1. the electrical activity is far away from the target activity and there is no correction
tendency of the system, or the correction is too slow.

2. the electrical activity oscillates around the target activity and the oscillations are of
equal or higher amplitude in each cycle.

3. the number of connections does not converge even though electrical activity is
around the target activity.

Reaching the targeted stable state is indicated by all firing rate curves converging to the
target activities while the connection curves are flattening to horizontal lines. This allows
to effectively identify which regions are deviating from the target state and to correct the
structural parameters according to the following criteria:

1. if the actual electrical activity is far away from the target activity, the growth rate ν

for that region should be increased (R6).

2. if the actual electrical activity oscillates around the target activity, the growth rate ν

90 3.3. Visualizing and Steering Structural Plasticity Simulations

Δ
 T

im
e

/
Δ

 C
or

e
(s

/c
o
re

)

Δ Cores

Neurons per Simulation

Figure 3.27: Execution time as a function of the number of compute nodes for varying
numbers of neurons per population: 50, 100, 200, 400, 800, and 8,000. Dotted lines
indicate ideal scaling while solid lines represent experimental results. The left plot shows
the change in time per core added. Each point is the difference in execution time divided
by the difference in cores for consecutive points in the plot next to it; points are placed
at the midpoint between the measurements. The right plot depicts the execution time for
each simulation with 8,000 neurons per population as total cores are varied.

for that region should be decreased in small increments and the value of η should be
reduced to decrease the rate of change in the number of created and deleted synaptic
elements around the target point ε (R6-R7).

3. if the number of connections is not converging, the growth rate ν of highly intercon-
nected regions should be tuned down (R7). The update interval can be decreased to
fasten a response of the control changes in the connectivity (R8). A shorter update
interval allows smoother control but impacts the simulation’s performance.

The resulting network state can be saved and used as a starting point for other parameter
combinations, minimizing computations for similar values of G (R9-R10).

The CMV system scalability is dominated by the data gathering step at every update
interval. Because the CMV system is independent of the network, the communication
overhead can be neglected. However, to scale with increasing numbers of backend nodes,
a more sophisticated data flow network is required. To simulate a larger number of pop-
ulations with more neurons, the JURECA supercomputer at the Jülich Super Computing
Centre was utilized. JURECA has 260 compute nodes with Intel Xeon E5− 2680 v3
Haswell CPUs with 2× 12 cores per CPU, 128 GB of RAM per node. To assess the
speed-up obtained, measurements of the execution times for 50 updates of connectivity
with an update interval of 100 ms were taken. Using a full node on JURECA, a speed-up
of 2.94 was obtained compared to a workstation with 8 Intel Core i7− 4710MQ CPUs
@ 2.50 GHz and 16 GB of RAM. Figure 3.27 shows the strong scaling test. Scalability
increases with the number of neurons per population as the number of synapses quadrati-
cally increases. This is because of the network size and spike distribution overhead: larger
networks benefit more from increased compute-nodes [Jordan et al., 2018]. This speed-up
is achieved due to four factors:

1. it is not necessary to simulate the system for long times iteratively; instead, the
modifications are performed on demand.

2. partial solutions can be reused for different global parameter combinations, result-
ing in the reduction of total computational costs.

3.3. Visualizing and Steering Structural Plasticity Simulations 91

3. the user can visualize the behavior of the system’s observables with respect to in-
dividual parameters, allowing to isolate regions of interest and form a better under-
standing.

4. studying the transition points in the activity of the networks and interact with the
tuning algorithms by visualizing their impact.

The connectivity solutions and paths to solutions are not unique, making knowledgeable
exploration crucial. While the generation of connectivity based on empirical constraints,
or experimental data leads to non-unique and physiologically implausible solutions, the
ability to identify and explore subsets of the solution space is valuable to form an under-
standing of these systems. Using the CMV system, researchers can concentrate on only
configurations of interest. The CMV system allows to characterize the distribution of
representative models and enables a sensitivity analysis by visualizing the effect of con-
nectivity changes on the dynamics of the neural system. More informative conclusions
about the relationships between the control parameters and the resulting firing rate of each
population can be drawn. In addition, the CMV system provides insight into how differ-
ent types of synapses are created or modified to give rise to features in the dynamics. The
CMV system reduces the turn-around times of exploring different connectivity configura-
tions compared to simulating all possible parameter configurations and assess reasonable
configurations in a later phase. Thus, the interactive analysis process can accomplish the
following:

1. form an understanding of the implication of different parameter setups for each
network model.

2. validate the network models.

3. define biologically meaningful populations for the simulation.

4. derive measures for the automatic or semi-automatic assessment of the models’
behavior.

It is crucial to explore the distribution of paths to solutions instead of a possible solu-
tion satisfying a set of constraints. To form an understanding, interactive exploration of
dynamic systems is an important tool to develop intuition and deriving mathematically
robust descriptions. The presented CMV system is a way to move toward statistically
validated conclusions as it allows to interactively assess the system, and can lead to auto-
mated sampling.

CHAPTER 4

DISCUSSION

In this thesis, the motivational factors for developing semantic-aware CMV systems were
manifold. We started with visualizing neural activity data resulting from the simulation
of neural models. These simulations use and produce a vast amount of heterogeneous
data that need to be related to derive insight about the neural model’s behavior. To this
end, a useful visualization technique to relate these datasets is the utilization of CMVs.
However, one of the major challenges of developing CMV systems is the potential rapid
shift in the exploration process reflected in the scientist’s workflow. This motivates a
flexible software architecture adapting to the analysis needs.

The presented architecture solves this issue by defining services. Services encapsulate
well-defined, fine-granular, reusable functional components for different use case scenar-
ios by communicating via events. Events are send via inter-process communication or
over a network. This characteristic allows to derive further benefits for the software ar-
chitecture. Namely, service functionality can be used in different contexts or allow for
the integration of already existing functionality outside the current software ecosystem,
e.g., by aggregating statistical analysis capabilities as shown in the use case presented
in Section 3.2. Also, it offers the means to scale the system across a variety computing
resources and enables cross display system visualizations. Furthermore, the architecture
enables dynamic coordination of views to be defined at runtime by users. In addition, it
allows for a simple extensibility of additional views to a CMV system. This mechanism
offers the flexibility to cover rapid changing workflows and adjust the CMV system to
new user needs without modifying existing services. However, this flexibility requires
the management of complex event-flows among the system’s services which results from
the communication via events. To compensate for this increased complexity, the architec-
ture uses concepts from the semantic web: services’ slots were augmented with semantic
identifiers corresponding to individuals of semantic concepts defined in an ontology. The
ontology is used by the runtime system to match compatible slots to reflect an event-
flow network. This event-flow network resembles a workflow in the analysis process. In
addition, event-flow networks can be recreated to effectively switch between workflows
on demand. One of the main benefits of this approach is the mapping of coordination
principles to slots enabling dynamic coordination among views at runtime. Dynamic co-
ordination refers to the ability of establishing and revoking coordinations while services
are running.

93

94

Figure 4.1: A user navigates in time and selects brain areas from a tablet running the Time
Navigator and Area Selection View. The selection and time navigation is coordinated with
the Geometry View running on a projection system in the background.

Figure 4.2: An overview of all brain areas of the simulation model is shown in the right
pane. A progress bar at the bottom of each brain area’s hexagon shows its number of
active neurons. The current selection is hinted by a red circle encompassing the area in
focus. The left pane is coordinated with the selection and shows the area’s populations.
A progress bar under each population shows the distribution of active neurons.

Using an EDA that allows communication via events over a network, enables services to
run across multiple computing resources. In particular, this allows visualization services
to utilize different display systems and permits hybrid 2D/3D cross platform visualization
systems as seen in Figure 4.1. As previously discussed in Section 3.2, the nett framework
enables the development of services across different programming languages and allows
for a simple integration of existing tools to its ecosystem. To exemplify the applicability of
the architecture’s integration capabilities, NeuroScheme, introduced in Pastor et al. [2015]
and Galindo et al. [2016], was integrated as an additional means to select brain areas and
populations for the use case discussed in Section 3.1. Here, selections were coordinated
with NeuroScheme to visualize and show a detailed overview of the simulated populations
(see Figure 4.2). A key benefit of this semantic-aware CMV system is its extensibility.
To integrate external tools, e.g., statistical analysis methods, existing services require no
change. Merely new views are developed, started, and connected via slots according to
the workflow needs. On top, visualizations can run on remote systems, utilizing more
display-real-estate and computing resources.

95

The flexibility in adapting to different workflows resulting in the construction of a special-
ized CMV is realized by “wiring” services together to reflect the required functionality
for the workflow. The functionality to wire services is also accessible in the commonly
used modeling environment, i.e., Python. This simplifies assembling simulation output
data for visualization and avoids further interruptions in the analysis workflow. In addi-
tion, it allows for scripting analysis tasks, e.g., jumping to and looping over a specific
simulation time interval to closer inspect model behavior, study parameter influences in
different simulations, or convey hypotheses about the data. For all that, this character-
istic enables the development of fine-granular functionalities wrapped in services which
fosters service re-usability in the construction of a PSE. However, it also increases the
complexity of the event-flow network and its construction. On the other hand, develop-
ing services encapsulating a broader functionality spectrum, resulting in fewer slots and
more independence from other services, restricts a service’s re-usability. A decision on
granularity should thus be guided by the following considerations:

1. how likely is the functionality exposed via a slot to be reused in different contexts?

2. is the functionality’s computational complexity high enough that its distribution to
more computational resources is warranted?

3. is the overhead introduced by wrapping functionality in an independent service
small enough?

Since each service needs to be started, wired, and managed within the runtime system,
exposing fine-granular functionality bears costs. Also, event communication equals data
movement over a network, thus introducing additional latency to the system.

One limitation of the current architecture’s implementation is its restricted scope to han-
dle fault-tolerance. If a service crashes, the runtime system is unable to detect and react
to this, however, restarted services automatically reconnect to the event-flow network.
This limitation is overcome by introducing additional control structures within services
via a supplementary control slot. For one, a mechanism to ping a running service can
be used to detect if it is still operating. Secondly, services should announce that their
startup process is complete and all slot operations are now ready to be wired and used.
Thirdly, a mechanism to externally shutdown a service can be useful to cleanly switch
to another PSE that does not need all currently running services. Fourthly, for services
providing user interaction, a mechanism to detect which service currently holds user fo-
cus is useful to extend the system with collaboration features where multiple users can
interact with the system concurrently. This would allow for the development of mitiga-
tion strategies for conflicting inputs to views, i.e., a locking mechanism that provides an
exclusive interaction focus while neglecting input from users not holding a lock. This
could lead to visualization systems that support a collaborative analysis process using the
semantic-aware architecture. A further complexity is introduced by ontologies. While
ontologies characterize, describe and formulate domains, their modeling is non-trivial.
Multiple ways to express the same semantic concept exist and the principle to operate un-
der an “open-world“ assumption does not restrict the inference of facts known about the
system. Service developers must be familiar with the modeled ontology, its core concepts,
defined relations, entities, and their use within the system to extend the PSE. Restricting
OWL’s expressiveness by Domain-Specific Languages (DSLs) that in turn translate back
into an ontology to allow for the use of formal logic to infer compatibility of slots in the
system, might be a solution to provide a simpler, more direct access to the extensibility of

96

the system.

While the architecture’s applicability was only shown for the presented use cases center-
ing around neuroscientific data, it is not necessarily restricted in its scope to CMV sys-
tems in different visualization domains. The architecture’s core principles can be applied
in different visualization domains by developing and extending the system by custom-
tailored views. To this end, the architecture’s capabilities, namely, dynamic coordination,
cross display-system support, hybrid 2D/3D visualization interfaces, extensibility, and in-
tegration support across programming language barriers, can be leveraged in different
application domains.

CHAPTER 5

CONCLUSION AND OUTLOOK

In this thesis, I presented several visualization systems, using a common architecture,
for the analysis of neural activity data. To develop these systems, I presented the over-
all motivation and resulting requirements. Common key requirements for such systems
is extensibility to cope with heterogeneous data resulting from the simulation of neural
systems and flexibility to cover rapidly shifting workflows. In addition, to discover rela-
tionships in the heterogeneous data, CMVs are used as the main visualization technique.
To this end, an EDA was identified as a means to realize a PSE that enables extensibility
by loosely coupled software services. I presented key characteristics of EDAs, namely, a
common communication infrastructure and a mechanism to orchestrate services in order
to reflect analysis workflows. This orchestration uses semantic reasoning to ease the con-
struction of event-flow networks and is encapsulated in a service termed runtime system.
Utilizing semantic reasoning allows for the definition of workflows, identifying compati-
ble services for such, and establishing communication channels among services. Based on
this, implementation of this architecture was carried out, resulting in a PSE. Novel con-
tributions are the dynamic coordination capabilities and the possibility to add and remove
views on demand at runtime. To show the architecture’s applicability to cope with visu-
alization requirements derived from use cases in neuroscience, several views and services
were developed resulting in specific CMV systems constructed from the PSE: the first
use case permitted the visual analysis of neural activity data resulting from a large-scale
multi-area model of the macaque visual cortex. Here, I focused on the holistic coverage of
heterogeneous data that was used to construct the model and its subsequently simulation
by developing custom-tailored views. The second use case showcased the extensibility of
the architecture by adding statistical analysis for spike trains. Statistical analysis meth-
ods were leveraged from an existing community tool developed by domain experts and
demonstrated a practical approach to add interactive visualization methods, bridging the
expertise of neuroscientists and visualization experts. The resulting views focused on the
microscopic dataset resulting from the first use case, i.e., spike trains from the macaque
visual cortex simulation and showed that the PSE is extensible to cover more complex
analysis requirements. The last use case demonstrated how core functionality of EDAs
can be leveraged to enable computational steering of neural network simulations. Here,
I presented views to modify model parameters while a simulation is computed by utiliz-
ing the communication infrastructure developed in this thesis. In addition, views were

97

98

developed to visualize the model’s dynamics.

The architecture’s implementation covers all established requirements and provides the
following benefits:

1. the flexibility to extend the PSE to new analysis workflows.

2. the ability to utilize hybrid display system, in particular the possibility to use im-
mersive display systems in conjunction with traditional 2D UIs.

3. the semantically assisted dynamic coordination among views at runtime and the
ability to revoke coordination.

4. multiple instantiation of services, enabling comparative analysis of datasets with
synchronized user interaction.

5. the re-usability of services and views in different visualization tasks.

The presented architecture and its associated visualizations present a solution for CMV
systems that assists in visual analysis tasks for modeling neural networks.

Future work should cover additional use cases, extending the palette of views and re-
usable services. Furthermore, the runtime system can be extending with convenience
functionality to ease the construction of event-flow networks: a UI for sorting services
by slots or filtering slots per semantic identifier is a useful addition. Using a DSL for the
creation of CMV systems out of the PSE could ease the need for expert knowledge in
formulating ontologies. To this end, a DSL could be used to specify a workflow along
with needed services and its event-flow network. The DSL is then translated into an
ontology and subsequently passed to the runtime system to construct the CMV system.
Alternatively, an editor to visually create event-flow networks in the runtime system can
be developed for a more user-friendly and intuitive way to construct a CMV system: a
graph editor can be used to define a CMV system by selecting services which introduce
vertices corresponding to the slots of the selected service. Edges can then be constructed
between slots by selecting a vertex and highlighting or color-coding all compatible slots
(represented by vertices) and draw a connection. This visual description could then be
translated into an ontology and passed to the runtime system to realize the described event-
flow network.

The inclusion of provenance tracking in the PSE is also interesting for future work. Here,
services could be added recording all event-flow communication to track user interaction.
Additionally, whenever the analysis workflow changes, the event-flow network is altered
and the change in configuration stored in the ontology. A version control system can track
these changes to create a provenance trail, recording how insight in the analysis task was
established.

Developing methods to semantically describe interaction techniques utilized in views
could be used to reason about compatible interaction metaphors across multiple display
and input devices.

Finally, a powerful mechanism to extend the PSE is centered around modeling event trans-
formation in the ontology. Here, semantic concepts can be introduced that describe how
the event communication of one service via a slot can be transformed to a distinct concept
for a different service slot. Then, the runtime system could use the specified transfor-
mation to automatically build a service realizing the desired transformation. When an

99

event-flow network is constructed that has no compatible slots for a service, all available
transformations are checked to establish an event-flow to the required slot. This enables
the extension of the PSE without directly implementing services and allows to relate the
content of events to semantic concepts and relating concepts to each other, not only on a
semantic level but on a functional one too.

APPENDIX – SCIENTIFIC CURRICULUM

VITAE

Education

• 2022: PhD Candidate in CS at the University Trier

• 2011–17: PhD Candidate in CS at the RWTH Aachen University

• 2006–10: M.Sc. in CS at the Bonn-Rhein-Sieg University of Applied Sciences

• 2003–06: B.Sc. in CS at the Bonn-Rhein-Sieg University of Applied Sciences

• 2002: Abitur at Joliot-Curie Gymnasium in Görlitz, Saxony

Research Focus

• Interactive Visualization Techniques

• Visualization of Neuroscientific Data

• Scientific Visualization in Virtual Environments & Realtime Computer Graphics

• Interaction Techniques in Virtual Environments

• Service Oriented Architectures

• Simulation Steering

Research Initiatives and Teaching

• Member Human Brain Project

• Member JARA, Jülich Aachen Research Alliance

• Member Supercomputing and Modeling for the Human Brain, Heimholtz Joint Lab

• Lecturer Data Analysis and Visualization, RWTH Aachen

101

102

• Master Thesis Supervision: Evaluating Interactive Diagrams for the Analysis of
Neural Activity Data, Mohammadsobhan Moazemi Goodarzi, RWTH Aachen

• Bachelor Thesis Supervision: Darstellung von und Interaktion mit ergänzenden In-
formationen in Virtual Environments, Sven Horn, RWTH Aachen

• Seminar Supervision: Current Topics in Virtual Reality, RWTH Aachen

Awards and Invited Talks

• 2012: Honorable Mention, IEEE Visualization 2012 for the Abstract “VisNEST -
Interactive Analysis of Neural Activity Data”

• 2014: Donders Discussion at the Donders Institute for Brain, Cognition and Be-
haviour, Nijmegen

Publications

• Nowke, C., Diaz-Pier, S., Weyers, B., Hentschel, B., Morrison, A., Kuhlen, T.
W., Peyser, A. (2018), Toward rigorous parameterization of underconstrained neu-
ral network models through interactive visualization and steering of connectivity
generation, Frontiers in Neuroinformatics.

• Gebhardt, S., Petersen-Krau, T., Pick, S., Rausch, D., Nowke, C., Knott, T.,
Schmitz, P., Zielasko, D., Hentschel, B., Kuhlen, T. W. (2016), Vista Widgets: A
Framework for Designing 3D User Interfaces from Reusable Interaction Building
Blocks, VRST 2016, 251-260.

• Weyers, B., Nowke, C., Kuhlen T. W., Kousuke, M., Ogata, H. (2016), Web-based
Interactive and Visual Data Analysis for Ubiquitous Learning Analytics, First In-
ternational Workshop on Learning Analytics Across Physical and Digital Spaces,
65–69.

• Nowke, C., Zielasko, D., Weyers, B., Peyser, A., Hentschel, B., Kuhlen, T. W.
(2015), Integrating Visualizations into Modeling NEST Simulations, Frontiers in
Neuroinformatics, Vol. 9.

• Weyers, B., Nowke, C., Hänel, C. , Zielasko, D., Hentschel, B., Kuhlen, T. W.
(2014) The Human Brain Project - Chances and Challenges for Cognitive Systems,
Workshop Kognitive Systeme: Mensch, Teams, Systeme und Automaten.

• Van Albada S.J., Diesmann M., Eppler J. M., Hentschel B., Kuhlen T. W., Nowke
C., Reske M., Schmidt M. (2014), Modellierung und 3D-Visualisierung neuronaler
Netzwerke in der Größenordnung des Gehirns, RWTH Themen 2:52-57.

• Nowke, C., Hentschel, B., Kuhlen, T. W., Schmidt, M., van Albada, S. J., Eppler, J.
M., Diesmann, M. (2013), Interactive visualization of brain-scale spiking activity,
BMC Neuroscience, 14 (Suppl 1), P110.

• Nowke, C., Schmidt, M., Albada, S. J. V., Eppler, J. M., Bakker, R., Diesmann,
M., et al. (2013), VisNEST Interactive Analysis of Neural Activity Data, IEEE
Symposium on Biological Data Visualization, 65-72.

BIBLIOGRAPHY

Abram, Greg, & Treinish, Lloyd. 1995. An extended data-flow architecture for data anal-
ysis and visualization. Page 263 of: Proceedings of the 6th conference on Visualiza-
tion’95. IEEE Computer Society, Washington, DC, USA.

Arsiwalla, Xerxes D, Zucca, Riccardo, Betella, Alberto, Martinez, Enrique, Dalmazzo,
David, Omedas, Pedro, Deco, Gustavo, & Verschure, Paul FMJ. 2015. Network dy-
namics with BrainX3: a large-scale simulation of the human brain network with real-
time interaction. Frontiers in Neuroinformatics, 9.

Assenmacher, Ingo, & Kuhlen, Torsten. 2008. The ViSTA Virtual Reality Toolkit. Pages
23–28 of: Proceedings of the IEEE VR 2008 Workshop Software Engineering and Ar-
chitectures for Realtime Interactive Systems (SEARIS). Shaker Verlag.

Badam, Sriram Karthik, Fisher, Eli, & Elmqvist, Niklas. 2014. Munin: A Peer-to-Peer
Middleware for Ubiquitous Analytics and Visualization Spaces. IEEE Transactions on
Visualization and Computer Graphics, 1–1.

Bassett, Danielle S., & Gazzaniga, Michael S. 2011. Understanding complexity in the
human brain. Trends in Cognitive Sciences, 15(5), 200–209.

Becker, Richard A., & Cleveland, William S. 1987a. Brushing Scatterplots. Technomet-
rics, 29(2), 127–142.

Becker, Richard A, & Cleveland, William S. 1987b. Brushing scatterplots. Technometrics,
29(2), 127–142.

Berger, Denise, Borgelt, Christian, Louis, Sebastien, Morrison, Abigail, & Grün, Sonja.
2010. Efficient identification of assembly neurons within massively parallel spike
trains. Computational Intelligence and Neuroscience, 2010, 1.

Binzegger, Tom, Douglas, Rodney J, & Martin, Kevan A C. 2004. A quantitative map
of the circuit of cat primary visual cortex. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 24(39), 8441–53.

Borisyuk, Roman M., & Borisyuk, Galina N. 1997. Information coding on the basis of
synchronization of neuronal activity. Biosystems, 40(1-2), 3–10.

103

104 Bibliography

Bos, Hannah, Morrison, Abigail, Peyser, Alexander, Hahne, Jan, Helias, Moritz, Kunkel,
Susanne, Ippen, Tammo, Eppler, Jochen Martin, Schmidt, Maximilian, Seeholzer,
Alex, Djurfeldt, Mikael, Diaz, Sandra, Morén, Janne, Deepu, Rajalekshmi, Stocco,
Teo, Deger, Moritz, Michler, Frank, & Plesser, Hans Ekkehard. 2015 (dec). NEST
2.10.0.

Boukhelifa, Nadia, & Rodgers, Peter J. 2003. A model and software system for coordi-
nated and multiple views in exploratory visualization. Information Visualization, 2(4),
258–269.

Bowman, Doug A, Kruijff, Ernst, LaViola Jr, Joseph J, & Poupyrev, Ivan. 2004. 3D user
interfaces: theory and practice. Addison-Wesley.

Buja, A., McDonald, J. A., Michalak, J., & Stuetzle, W. 1991 (Oct). Interactive data
visualization using focusing and linking. Pages 156–163, 419 of: Visualization, 1991.
Visualization ’91, Proceedings., IEEE Conference on.

Butz, Markus, & van Ooyen, Arjen. 2013. A simple rule for dendritic spine and ax-
onal bouton formation can account for cortical reorganization after focal retinal lesions.
PLoS Comput Biol, 9(10), e1003259.

Card, Stuart K., Newell, Allen, & Moran, Thomas P. 1983. The Psychology of Human-
Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

Carpenter, Loren. 1984. The A-Buffer, An Antialiased Hidden Surface Method. Pages
103–108 of: Proceedings Siggraph.

Childs, Hank, Brugger, Eric, Whitlock, Brad, Meredith, Jeremy, Ahern, Sean, Bonnell,
Kathleen, Miller, Mark, Weber, Gunther H., Harrison, Cyrus, Fogal, Thomas, Garth,
Christoph, S, Allen, Bethel, E. Wes, Durant, Marc, Camp, David, Favre, Jean M.,
Rübel, Oliver, Navrátil, Paul, Wheeler, Matthew, Selby, Paul, & Vivodtzev, Fabien.
2011. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In: In
Proceedings of SciDAC.

Cleveland, William S, et al. 1985. The elements of graphing data. Wadsworth Advanced
Books and Software Monterey, CA.

Connors, Barry W, & Gutnick, Michael J. 1990. Intrinsic firing patterns of diverse neo-
cortical neurons. Trends in Neurosciences, 13(3), 99–104.

Cubitt, Toby S, Eisert, Jens, & Wolf, Michael M. 2012. Extracting dynamical equations
from experimental data is NP hard. Physical review letters, 108(12), 120503.

Davison, Andrew. 2012. Automated capture of experiment context for easier reproducibil-
ity in computational research. Computing in Science & Engineering, 14(4), 48–56.

Davison, Andrew P, Brüderle, Daniel, Eppler, Jochen M, Kremkow, Jens, Muller, Eilif,
Pecevski, Dejan, Perrinet, Laurent, & Yger, Pierre. 2009. PyNN: a common interface
for neuronal network simulators. Frontiers in Neuroinformatics, 2(11).

Decker, Stefan, Melnik, Sergey, Van Harmelen, Frank, Fensel, Dieter, Klein, Michel,
Broekstra, Jeen, Erdmann, Michael, & Horrocks, Ian. 2000. The semantic web: The
roles of XML and RDF. IEEE Internet computing, 4(5), 63–73.

Bibliography 105

Deco, Gustavo, Ponce-Alvarez, Adrián, Mantini, Dante, Romani, Gian Luca, Hagmann,
Patric, & Corbetta, Maurizio. 2013. Resting-state functional connectivity emerges from
structurally and dynamically shaped slow linear fluctuations. The Journal of Neuro-
science, 33(27), 11239–11252.

Deco, Gustavo, Ponce-Alvarez, Adrián, Hagmann, Patric, Romani, Gian Luca, Mantini,
Dante, & Corbetta, Maurizio. 2014. How local excitation–inhibition ratio impacts the
whole brain dynamics. The Journal of Neuroscience, 34(23), 7886–7898.

Diaz Pier, Sandra, Naveau, Mikael, Butz-Ostendorf, Markus, & Morrison, Abigail. 2016.
Automatic generation of connectivity for large-scale neuronal network models through
structural plasticity. Frontiers in Neuroanatomy, 10(57).

Eichelbaum, Sebastian, Hlawitschka, Mario, Wiebel, Alexander, & Scheuermann, Gerik.
2010. OpenWalnut–An open-source visualization system. Pages 67–78 of: Proceed-
ings of the 6th High-End Visualization Workshop.

Ellis, G., Dix, A., & Bertini, E. 2005. The Sampling Lens: making sense of saturated
visualisation. Proceedings of CHI’2005, ACM Press, 1351–1354.

Eppler, Jochen M, Helias, Moritz, Muller, Eilif, Diesmann, Markus, & Gewaltig, Marc-
Oliver. 2009. PyNEST: a convenient interface to the NEST simulator. Frontiers in
Neuroinformatics, 2(12).

Fekete, J.-D., & Plaisant, C. 2002. Interactive information visualization of a million items.
IEEE Symposium on Information Visualization.

Felleman, D. J., & Van Essen, D. C. 1991. Distributed Hierarchical Processing in the
Primate Cerebral Cortex. Cerebral Cortex, 1(1), 1–47.

Folk, M., Cheng, A., & Yates, K. 1999 (Nov.). HDF5: A file format and I/O library for
high performance computing applications. In: Proceedings of SC’99.

Frost, C. 2010. Challenges and opportunities for autonomous systems in space. In: Fron-
tiers of Engineering: Reports on Leading-Edge Engineering from the 2010 Symposium.

Galindo, Sergio E., Toharia, Pablo, Robles, Oscar D., & Pastor, Luis. 2016. ViSimpl:
Multi-View Visual Analysis of Brain Simulation Data. Frontiers in Neuroinformatics,
10, 44.

Gebhardt, Sascha, Pick, Sebastian, Leithold, Franziska, Hentschel, Bernd, & Kuhlen,
Torsten. 2013. Extended Pie Menus for Immersive Virtual Environments. IEEE Trans-
action on Visualization and Computer Graphics, 19(4), 644–51.

Gewaltig, Marc-Oliver, & Diesmann, Markus. 2007. NEST (NEural Simulation Tool).
Scholarpedia, 2(4), 1430.

Gray, Charles M, & McCormick, David A. 1996. Chattering cells: superficial pyramidal
neurons contributing to the generation of synchronous oscillations in the visual cortex.
Science, 274(5284), 109–113.

Grün, Sonja, & Rotter, Stefan. 2010. Analysis of parallel spike trains. Springer.

106 Bibliography

Helias, Moritz, Kunkel, Susanne, Masumoto, Gen, Igarashi, Jun, Eppler, Jochen Mar-
tin, Ishii, Shin, Fukai, Tomoki, Morrison, Abigail, & Diesmann, Markus. 2012. Su-
percomputers Ready for Use as Discovery Machines for Neuroscience. Frontiers in
Neuroinformatics, 6(26).

Henderson, Amy. 2004. The ParaView Guide: A Parallel Visualization Application. Kit-
ware.

Hentschel, Bernd, Tedjo, Irene, Probst, Markus, Wolter, Marc, Behr, Marek, Bischof,
Christian, & Kuhlen, Torsten. 2008. Interactive Blood Damage Analysis for Ventricular
Assist Devices. Transactions on Visulaization and Computer Graphics, 14(6), 1515–
1522.

Hernando, J.B., Schürmann, F., & Pastor, L. 2012. Towards Real-Time Visualization of
Detailed Neural Tissue Models: View Frustum Culling for Parallel Rendering. Pages
25–32 of: Proceedings of the IEEE Symposium on Biological Data Visualization (Bio-
Vis).

Hines, Michael L, & Carnevale, Nicholas T. 1997. The NEURON simulation environ-
ment. Neural computation, 9(6), 1179–1209.

Hodgkin, Alan L, & Huxley, Andrew F. 1952. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of physi-
ology, 117(4), 500–544.

Hummel, Mathias, Garth, Christoph, Hamann, Bernd, Hagen, Hans, & Joy, Kenneth I.
2010. IRIS: Illustrative Rendering for Integral Surfaces. Transactions on Visulaization
and Computer Graphics, 16(6), 1319–1328.

Issarny, Valérie, Saridakis, Titos, & Zarras, Apostolos. 1998. Multi-view Description
of Software Architectures. Pages 81–84 of: Proceedings of the Third International
Workshop on Software Architecture. ISAW ’98. New York, NY, USA: ACM.

Izhikevich, Eugene M. 2004. Which model to use for cortical spiking neurons? IEEE
transactions on neural networks, 15(5), 1063–1070.

Izhikevich, Eugene M, et al. 2003. Simple model of spiking neurons. IEEE Transactions
on Neural Networks, 14(6), 1569–1572.

Jordan, Jakob, Ippen, Tammo, Helias, Moritz, Kitayama, Itaru, Sato, Mitsuhisa, Igarashi,
Jun, Diesmann, Markus, & Kunkel, Susanne. 2018. Extremely Scalable Spiking Neu-
ronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in
Neuroinformatics, 12, 2.

Kalawsky, Roy S. 2009. Gaining greater insight through interactive visualization: A
human factors perspective. Pages 119–154 of: Trends in Interactive Visualization.
Springer.

Kamil Rajdl, Petr Lansky. 2014. Fano factor estimation. Mathematical Biosciences and
Engineering, 11(1551-0018-2014-1105), 105.

Bibliography 107

Kasiński, Andrzej, Pawlowski, Juliusz, & Ponulak, Filip. 2009. SNN3DViewer - 3D Visu-
alization Tool for Spiking Neural Network Analysis. Pages 469–476 of: Proceedings
of the International Conference on Computer Vision and Graphics: Revised Papers.
ICCVG 2008.

Keefe, Daniel F., Ewert, Marcus, Ribarsky, William, & Chang, Remco. 2009. Interac-
tive Coordinated Multiple-View Visualization of Biomechanical Motion Data. IEEE
Transactions on Visualization and Computer Graphics, 15(6), 1383–1390.

Keim, Daniel, Andrienko, Gennady, Fekete, Jean-Daniel, Görg, Carsten, Kohlhammer,
Jörn, & Melançon, Guy. 2008. Visual Analytics: Definition, Process, and Challenges.
Berlin, Heidelberg: Springer Berlin Heidelberg. Pages 154–175.

Krasner, Glenn E., & Pope, Stephen T. 1988. A Cookbook for Using the Model-view
Controller User Interface Paradigm in Smalltalk-80. J. Object Oriented Program., 1(3),
26–49.

Kreuz, Thomas, Haas, Julie S., Morelli, Alice, Abarbanel, Henry D I, & Politi, Antonio.
2007. Measuring spike train synchrony. Journal of Neuroscience Methods, 165, 151–
161.

Kreuz, Thomas, Chicharro, Daniel, Houghton, Conor, Andrzejak, Ralph G, & Mormann,
Florian. 2013. Monitoring spike train synchrony. Journal of Neurophysiology, 109(5),
1457–72.

Kreuz, Thomas, Mulansky, Mario, & Bozanic, Nebojsa. 2015. SPIKY: A graphical user
interface for monitoring spike train synchrony. Journal of Neurophysiology (Submit-
ted).

Laha, B., Sensharma, K., Schiffbauer, J. D., & Bowman, D. A. 2012. Effects of Immersion
on Visual Analysis of Volume Data. IEEE Transactions on Visualization and Computer
Graphics, 18(4), 597–606.

Lamme, Victor AF, Super, Hans, Spekreijse, Henk, et al. 1998. Feedforward, Horizontal,
and Feedback Processing in the Visual Cortex. Current opinion in neurobiology, 8(4),
529–535.

LeCun, Yann, Bengio, Yoshua, & Hinton, Geoffrey. 2015. Deep learning. Nature,
521(7553), 436–444.

Lewis, Clayton, Rieman, John, & Blustein, Amended J. 1993. Task-Centered User Inter-
face Design: A practical introduction.

Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L.,
Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M. A., Sallet, J., Gamanut,
R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay,
C., Toroczkai, Z., Knoblauch, K., Van Essen, D. C., & Kennedy, H. 2012. A Weighted
and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex. Cerebral
Cortex.

Markov, NT, Misery, P, Falchier, A, Lamy, C, Vezoli, J, Quilodran, R, Gariel, MA, Giroud,
P, Ercsey-Ravasz, M, Pilaz, LJ, et al. 2011. Weight consistency specifies regularities of
macaque cortical networks. Cerebral Cortex, 21(6), 1254–1272.

108 Bibliography

Matkovic, Kresimir, Freiler, Wolfgang, Gracanin, Denis, & Hauser, Helwig. 2008a (jul).
ComVis: a Coordinated Multiple Views System for Prototyping New Visualization
Technology. Pages – of: Proceedings of the 12th International Conference Information
Visualisation.

Matkovic, Kresimir, Gracanin, Denis, Jelovic, Mario, & Hauser, Helwig. 2008b. Interac-
tive visual steering-rapid visual prototyping of a common rail injection system. IEEE
Transactions on Visualization and Computer Graphics, 14(6), 1699–1706.

Matković, Kreŝimir, Gračanin, Denis, Splechtna, Rainer, Jelović, Mario, Stehno,
Benedikt, Hauser, Helwig, & Purgathofer, Werner. 2014. Visual analytics for complex
engineering systems: Hybrid visual steering of simulation ensembles. IEEE transac-
tions on visualization and computer graphics, 20(12), 1803–1812.

McDonald, John Alan, Stuetzle, Werner, & Buja, Andreas. 1990. Painting multiple views
of complex objects. Pages 245–257 of: ACM SIGPLAN Notices, vol. 25. ACM.

McGovern, James, Sims, Oliver, Jain, Ashish, & Little, Mark. 2006. Event-driven archi-
tecture. Enterprise Service Oriented Architectures: Concepts, Challenges, Recommen-
dations, 317–355.

Michelson, Brenda M. 2006. Event-driven architecture overview. Patricia Seybold Group,
2.

Neumann, John von. 1958. The Computer and the Brain. USA: Yale University Press.

Newman, Sam. 2015. Building Microservices: Designing Fine-Grained Systems. 1st edn.
O’Reilly Media.

North, Chris, & Shneiderman, Ben. 1997. A Taxonomy of Multiple Window Coordination.

North, Chris, & Shneiderman, Ben. 2000. Snap-together Visualization: A User Interface
for Coordinating Visualizations via Relational Schemata. Pages 128–135 of: Proceed-
ings of the Working Conference on Advanced Visual Interfaces. AVI ’00. New York,
NY, USA: ACM.

Nowke, Christian, Schmidt, Maximilian, Albada, Sacha J Van, Eppler, Jochen M., Bakker,
Rembrandt, Diesmann, Markus, Hentschel, Bernd, & Kuhlen, Torsten. 2013. VisNEST
– Interactive Analysis of Neural Activity Data. IEEE Symposium on Biological Data
Visualization (BioVis), 65–72.

Nowke, Christian, Zielasko, Daniel, Weyers, Benjamin, Hentschel, Bernd, Peyser,
Alexander, & Kuhlen, Torsten. 2015. Integrating Visualizations into Modeling NEST
Simulations. Frontiers in Neuroinformatics, 9(29).

Nowke, Christian, Diaz-Pier, Sandra, Weyers, Benjamin, Hentschel, Bernd, Morrison,
Abigail, Kuhlen, Torsten W., & Peyser, Alexander. 2018. Toward Rigorous Parameter-
ization of Underconstrained Neural Network Models Through Interactive Visualization
and Steering of Connectivity Generation. Frontiers in Neuroinformatics, 12, 32.

Parker, Steven G, Miller, Michelle, Hansen, Charles D, & Johnson, Christopher R. 1998.
An integrated problem solving environment: The SCIRun computational steering sys-
tem. Pages 147–156 of: PROCEEDINGS OF THE HAWAII INTERNATIONAL CON-
FERENCE ON SYSTEM SCIENCES, vol. 31. Citeseer.

Bibliography 109

Pastor, Luis, Mata, Susana, Toharia, Pablo, Bayona, Sofia, Brito, Juan P., & Garcia-
Cantero, Juan J. 2015. NeuroScheme: Efficient multiscale representation for the visual
exploration of morphological data in the human brain neocortex. Pages 117–125 of:
Proc. of Congreso Español de Informática Gráfica. Eurographics Association.

Pick, Sebastian, Hentschel, Bernd, Wolter, Marc, Tedjo-Palczynski, Irene, & Kuhlen,
Torsten. 2010. Automated Positioning of Annotations in Immersive Virtual Environ-
ments. Pages 1–8 of: Proceedings of the Joint Virtual Reality Conference of EuroVR -
EGVE - VEC.

Plesser, Hans E, Eppler, Jochen M, Morrison, Abigail, Diesmann, Markus, & Gewaltig,
Marc-Oliver. 2007. Efficient parallel simulation of large-scale neuronal networks on
clusters of multiprocessor computers. Pages 672–681 of: Euro-Par 2007 parallel pro-
cessing. Springer.

Potjans, Tobias C., & Diesmann, Markus. 2012. The Cell-Type Specific Cortical Mi-
crocircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model.
Cerebral Cortex. Online first.

Quiroga, R Quian, Kreuz, T, & Grassberger, Peter. 2002. Event synchronization: a simple
and fast method to measure synchronicity and time delay patterns. Physical Review E,
66(4), 041904.

Raja, Dheva, Bowman, Doug A, Lucas, John, & North, Chris. 2004. Exploring the Bene-
fits of Immersion in Abstract Information Visualization. Pages 61–69 of: Proceedings
of the 8th Immersive Projection Technology Workshop.

Roberts, Jonathan C. 2007. State of the Art: Coordinated & Multiple Views in Exploratory
Visualization. Fifth International Conference on Coordinated and Multiple Views in
Exploratory Visualization, July, 61–71.

Ryu, Y. S., Yost, B., Convertino, G., Chen, J., & North, C. 2003. Exploring Cognitive
Strategies for Integrating Multiple-View Visualizations. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 47(3), 591–595.

Schmidt, Maximilian, Bakker, Rembrandt, Diesmann, Markus, & van Albada, Sacha.
2014. A spiking multi-area network model of macaque visual cortex. In: Annual
meeting of the SfN. Computational and Systems Neuroscience, Osaka, Japan.

Schmitt, Oliver, & Eipert, Peter. 2012. neuroVIISAS: Approaching Multiscale Simulation
of the Rat Connectome. Neuroinformatics, 10, 243–267.

Schuecker, J., Schmidt, M., van Albada, S., Diesmann, M., & Helias, M. 2015. Funda-
mental activity constraints lead to specific interpretations of the connectome. ArXiv
e-prints 1509.03162, Sept.

Sedlmair, Michael, Heinzl, Christoph, Bruckner, Stefan, Piringer, Harald, & Möller,
Torsten. 2014. Visual parameter space analysis: A conceptual framework. IEEE trans-
actions on visualization and computer graphics, 20(12), 2161–2170.

Segev, Ronen, Baruchi, Itay, Hulata, Eyal, & Ben-Jacob, Eshel. 2004. Hidden Neuronal
Correlations in Cultured Networks. Phys. Rev. Lett., 92(Mar), 118102.

110 Bibliography

Sejnowski, Terrence Joseph, Koch, Christof, & Churchland, Patricia Smith. 1988. Com-
putational neuroscience. Science, 241(4871), 1299–1306.

Shinomoto, Shigeru, Kim, Hideaki, Shimokawa, Takeaki, Matsuno, Nanae, Funahashi,
Shintaro, Shima, Keisetsu, Fujita, Ichiro, Tamura, Hiroshi, Doi, Taijiro, Kawano, Kenji,
Inaba, Naoko, Fukushima, Kikuro, Kurkin, Sergei, Kurata, Kiyoshi, Taira, Masato,
Tsutsui, Ken-Ichiro, Komatsu, Hidehiko, Ogawa, Tadashi, Koida, Kowa, Tanji, Juna,
& Toyama, Keisuke. 2009. Relating Neuronal Firing Patterns to Functional Differenti-
ation of Cerebral Cortex. PLoS Computational Biology, 5(7), 1.

Shneiderman, B. 1996. The eyes have it: a task by data type taxonomy for information
visualizations. Proceedings 1996 IEEE Symposium on Visual Languages, 336–343.

Shneiderman, Ben. 1994. Dynamic queries for visual information seeking. IEEE soft-
ware, 11(6), 70–77.

Sousa, Mafalda, & Aguiar, Paulo. 2014. Building, simulating and visualizing large spik-
ing neural networks with NeuralSyns. Neurocomputing, 123(Jan.), 372–380.

Spence, Robert. 2001. Information visualization. Vol. 1. Springer.

Stein, RB. 1967. The frequency of nerve action potentials generated by applied currents.
Proceedings of the Royal Society of London B: Biological Sciences, 167(1006), 64–86.

Stephan, KE, Kamper, L., Bozkurt, A., Burns, G. A., Young, M. P., & Kotter, R. 2001a.
Advanced database methodology for the Collation of Connectivity data on the Macaque
brain (CoCoMac). Philosophical Transactions of the Royal Society of London B: Bio-
logical Sciences, 356(1412), 1159–86. 0962-8436 Journal Article.

Stephan, K.E., Kamper, L., Bozkurt, A., Burns, G.A.P.C., Young, M.P., & Kötter, R.
2001b. Advanced Database Methodology for the Collation of Connectivity Data on the
Macaque Brain (CoCoMac). Philosophical Transactions of the Royal Society London,
Series B, 356, 1159–1186.

Tufte, Edward R. 1991. Envisioning information. Optometry & Vision Science, 68(4),
322–324.

Velleman, Paul F, & Velleman, Agelia Y. 1988. The Datadesk Handbook. Odesta Corpo-
ration, 4048.

von Kapri, Anette, Potjans, Tobias C., Kuhlen, Torsten, & Diesmann, Markus. 2011. A
Virtual Reality Exploration Tool for Multi-Scale Data from Brain-Scale Simulations.
Frontiers in Neuroinformatics.

Wang, Jia, & Lindeman, Robert. 2014. Coordinated 3D Interaction in Tablet- and HMD-
based Hybrid Virtual Environments. Pages 70–79 of: Proceedings of the 2Nd ACM
Symposium on Spatial User Interaction. SUI ’14. New York, NY, USA: ACM.

Wang, Jia, & Lindeman, Robert. 2015. Coordinated hybrid virtual environments: Seam-
less interaction contexts for effective virtual reality. Computers & Graphics, 48, 71 –
83.

Bibliography 111

Wang, Xiao Hang, Zhang, Da Qing, Gu, Tao, & Pung, Hung Keng. 2004. Ontology based
context modeling and reasoning using OWL. Pages 18–22 of: Pervasive Computing
and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Con-
ference on. IEEE Computer Society, Washington, DC, USA.

Wang Baldonado, Michelle Q., Woodruff, Allison, & Kuchinsky, Allan. 2000. Guidelines
for Using Multiple Views in Information Visualization. Pages 110–119 of: Proceedings
of the Working Conference on Advanced Visual Interfaces. AVI ’00. New York, NY,
USA: ACM.

Ware, C., & Franck, G. 1994. Viewing a graph in a virtual reality display is three times as
good as a 2D diagram. Pages 182–183 of: Proceedings of 1994 IEEE Symposium on
Visual Languages. IEEE Comput. Soc. Press.

Weaver, Chris. 2004. Building highly-coordinated visualizations in Improvise. Pages
159–166 of: IEEE Symposium on Information Visualization, 2004. IEEE Computer
Society, Austin, TX, USA.

Yi, Ji Soo, ah Kang, Youn, Stasko, John T, & Jacko, Julie A. 2007. Toward a deeper
understanding of the role of interaction in information visualization. Visualization and
Computer Graphics, IEEE Transactions on, 13(6), 1224–1231.

Zaytsev, Yury V., & Morrison, Abigail. 2014. CyNEST: a maintainable Cython-based
interface for the NEST simulator. Frontiers in Neuroinformatics, 8(23).

