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Introduction

A continuous linear operator T on a topological vector space E is called hy-
percyclic if it has a hypercyclic vector x ∈ E, i.e. there is a vector x in E
such that orb(T, x) := {Tnx; n ∈ N0} is dense in E. Using Baire’s Category
theorem, it can be shown that an operator T on a separable Banach space is
hypercyclic if and only if it is topologically transitive, i.e. if and only if for every
two open, non-empty subsets U, V of E there is a natural number n such that
U ∩ Tn(V ) 6= ∅ (see remark 1.10 iii) below).

The first example of a hypercyclic operator on a Banach space was given by
Rolewicz [52] in 1969, whereas the very first examples of hypercyclic operators
are due to Birkhoff [9] and MacLane [38], who showed that the translation
operator and the differentiation operator are hypercyclic on the space of entire
functions endowed with the compact open topology.

During the last two decades there has been an extensive study of hypercyclic
operators, not only on Banach spaces but also on F -spaces, see for example [2],
[8], [10], [11], [26], [27], [29], [47], [55], or [60]. As a survey on this subject we
recommend [28], [30].

The notion of hypercyclic operator appeared for the first time in Read’s
famous paper dealing with the invariant subspace problem [51], although he
called an operator T hypercyclic if for every non-zero vector x in E the set
orb(T, x) is dense. Obviously, this is a much stronger property than is meant by
hypercyclicity nowadays. The terminology stems from the notion of cyclicity in
operator theory. Recall that x is a cyclic vector for T if the span of orb(T, x) is
dense. Clearly, if every non-zero vector of E is a cyclic vector of T then T has
no non-trivial invariant subspace, and if every non-zero vector of E has a dense
orbit under T , then clearly T has no non-trivial invariant closed subset.

Analogously to the single operator case one defines hypercyclicity for C0-
semigroups T on Banach spaces, i.e. T is called hypercyclic if there is a vector
x in E such that orb(T, x) := {T (t)x; t ≥ 0} is dense in E.

As in the single operator case, the first example of a hypercyclic C0-semigroup
was given by Rolewicz [52] in 1969. A systematic study of hypercyclic C0-
semigroups was initiated by Desch et al. [19] in 1997 and various articles dealing
with this subject followed, see e.g. [5], [6], [13], [15], [21], or [23].

The present work is mainly devoted to the study of hypercyclic C0-semigroups
on Banach spaces. In the first chapter we introduce some notations and termi-
nology and state some basic properties of hypercyclic C0-semigroups which will
be used in the chapters 2-7.

The most commonly used condition for proving hypercyclicity of a C0-
semigroup T on a separable Banach space E is the so called Hypercyclicity
Criterion. We present it and some new equivalent forms in chapter 2 and tackle
the problem, if every hypercyclic C0-semigroup has to satisfy the Criterion. In
the single operator case, this question was asked by León, Montes [34], Bès,
Peris [8] in 1999 and still remains the great open problem in hypercyclicity (cf.
[30]). This question might seem artificial at first sight, but it was shown by Bès
and Peris [8] that an operator T satisfies the Criterion if and only if T is weakly
mixing, so that the great open problem is in fact equivalent to the question
posed by Herrero in 1992 (cf. [31, Problem 1]), if every hypercyclic operator is
weakly mixing. This equivalence is also true for C0-semigroups. Although we



do not solve the problem in general, we show that every hypercyclic C0-semi-
group for which the orbit of sufficiently many vectors is ”nice” satisfies the
Criterion.

If the generator A of the C0-semigroup T is an unbounded operator, its
domain D(A) is of first category in the sense of Baire. So, one cannot use the
usual Baire argument to show the existence of a hypercyclic vector x in D(A).
Nevertheless, we prove in chapter 3 that for a hypercyclic C0-semigroup T there
are even hypercyclic vectors belonging to D(A∞) and that the set of this special
hypercyclic vectors is dense in E.

Chapter 4 is devoted to the study of chaotic C0-semigroups. Despite the
deep result that every operator T (t), t > 0, of a hypercyclic C0-semigroup is
hypercyclic itself, which was only very recently shown by Conejero, Müller and
Peris [14], it remains an open problem if the analogue statement is true for
chaotic C0-semigroups, i.e. if every (or even only one) operator T (t), t > 0, of
a chaotic C0-semigroup is chaotic itself. We show that under the chaoticity
condition introduced by Desch et al. [19] which is the most commonly used con-
dition for showing chaoticity of concrete C0-semigroups (see e.g. [41], [40], [58])
it in fact holds true that every T (t), t > 0, is a chaotic operator. Furthermore,
we prove that under some weak conditions chaoticity of T is equivalent to the
existence of a single periodic point of T . Moreover, we show in chapter 4 that a
C0-semigroup T cannot be hypercyclic if the imbedding of (D(A), ‖ · ‖A) into E
is compact and the spectrum of its generator is not empty. We use this result
to show that C0-semigroups on Lp(Ω) generated by strongly elliptic differential
operators are not chaotic if the boundary of the bounded set Ω is smooth.

In chapter 5 we thoroughly investigate transitivity and mixingness of families
of weighted composition operators on spaces of integrable functions and spaces
continuous functions, respectively. We completely characterise this properties
for a large class of families of weighted composition operators and show that
transitivity is equivalent to weak mixing. In particular, this implies that a
weighted composition operator is hypercyclic if and only if it satisfies the Hy-
percyclicity Criterion.

In chapter 6 we use the results of the previous chapter to characterise when
C0-semigroups on spaces of integrable and continuous functions generated by
first order partial differential operators are hypercyclic and mixing, respectively,
and we show that in this framework hypercyclicity is again equivalent to weak
mixing, i.e. in this setting a C0-semigroup is hypercyclic if and only if it satisfies
the Hypercyclicity Criterion. The results of this chapter and chapter 7, which
deals with chaoticity of the same kind of C0-semigroups, generalise to a large
extend the results about semigroups generated by certain ordinary first order
differential operators obtained by Desch et al. [19], Bermúdez et al. [6], Matsui
et al. [41, 42], Matsui and Takeo [40], Myjak and Rudnicki [43] and Takeo [58].
In the last part of chapter 6 we also characterise hypercyclicity of evolution
families generated by non-autonomous first order partial differential operators.
We present an example which shows that, contrary to the autonomous case, in
the non-autonomous case not every operator of the hypercyclic evolution family
has to be hypercyclic itself.

In appendix A we collect, for the reader’s convenience, some of the well-
known results about C0-semigroups which are used throughout this thesis, while
appendix B contains four theorems concerning weighted composition operators
which are of importance in chapter 5. Finally, in appendix C we proof two



propositions which are of interest in the context of C0-semigroups generated by
first order partial differential operators.
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Terminology, notions, and some basic facts 5

1 Terminology, notions, and some basic facts

In this first chapter we give an introduction to hypercyclic C0-semigroups and
state some of their properties. We use standard notation from functional anal-
ysis and semigroup theory, as may be found in [24], [46], [54], or [62]. Our
main reference for C0-semigroups is [24]. For topics related to Baire category
we refer to [45]. In appendix A we have collected some well known results about
C0-semigroups which will be used throughout the text.

The vector spaces we consider are always spaces over K ∈ {R,C}. If not
otherwise specified, by the term ”operator” we mean a bounded linear opera-
tor. We denote the space of all operators on a Banach space E by L(E).

Analogously to the single operator case one defines hypercyclicity, topologi-
cal transitivity, weak mixing, and mixing for C0-semigroups.

Definition 1.1 Let T be a C0-semigroup on a Banach space E.

i) A vector x in E is called hypercyclic (for T ) if its orbit under T , i.e. the
set orb(T, x) := {T (t)x; t ≥ 0}, is dense in E. T is called hypercyclic if it
exhibits a hypercyclic vector. We denote the set of all hypercyclic vectors
of T by HC(T ).

ii) T is called topologically transitive, or simply transitive if for every pair of
open, non-empty subsets U, V of E there is t > 0 such that T (t)(U)∩V 6=
∅.

iii) T is called weakly mixing if the C0-semigroup T⊕T is transitive on E×E,
where T ⊕ T (t)(x, y) := (T (t)x, T (t)y).

iv) T is called mixing if for every pair of open, non-empty subsets U, V of E
there is t > 0 such that T (s)(U) ∩ V 6= ∅ for all s ≥ t.

Remark 1.2 i) Clearly the above notions make perfect sense for arbitrary fam-
ilies (Tι)ι∈I of operators, and we will use them in the sequel.

ii) If T is a C0-semigroup on E and x belongs to E, it follows from the strong
continuity of the mapping t 7→ T (t) that orb(T, x) is dense in E if and only if
{T (t)x; t ≥ 0, t ∈ Q} is dense in E, so that E has to be separable in order to
support a hypercyclic C0-semigroup.

Using the strong continuity of T again one easily sees that {T (t)x; t ≥ t0}
is dense in E for every t0 > 0 if orb(T, x) is dense in E. From the semigroup
property it therefore follows that orb(T, x) is a subset of HC(T ) whenever x ∈
HC(T ).

iii) As in the single operator case, a C0-semigroup T on a separable Banach
space E is hypercyclic if and only if it is transitive. The proof uses the same
arguments as in the single operator case (cf. [26, theorem 1.2]). Note that every
separable Banach space E is second countable as topological space. Let (Uk)k∈N
be an open base of its topology such that Uk 6= ∅ for every k ∈ N. Since obviously
x is a hypercyclic vector for T if and only if for each k ∈ N there is t ≥ 0 such that
T (t)x ∈ Uk, i.e. x ∈ T (t)−1(Uk) (here and in what follows T (t)−1(Uk) denotes
the pre-image of Uk under T (t)) we have

⋂
k∈N

⋃
t≥0 T (t)−1(Uk) = HC(T ).

Thus, HC(T ) is always a Gδ-set.
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If T is hypercyclic and x ∈ HC(T ), we have already seen that orb(T, x) ⊂
HC(T ), so that HC(T ) is a dense Gδ-subset of E. Now, if U, V are open non-
empty subsets of E there is y ∈ HC(T )∩U and t > 0 such that T (t)y ∈ V , i.e.
T is transitive.

If on the other hand T is transitive, it follows that
⋃
t≥0 T (t)−1(Uk) is an

open and dense subset of E for every k ∈ N. Using Baire’s Category theorem we
see that

⋂
k∈N

⋃
t≥0 T (t)−1(Uk) is a dense Gδ-set, in particular it is not empty,

so that T is hypercyclic.
Note that for a C0-semigroup T we have shown that HC(T ) is either empty

or a dense Gδ-subset of E.
Additionally, observe that the same proof is valid to show that for arbi-

trary families of commuting operators (Tι)ι∈I with dense images hypercyclicity
is equivalent to transitivity and that the same arguments work not only for
separable Banach spaces but also for separable F -spaces.

iv) No C0-semigroup on a finite dimensional Banach space E can be hyper-
cyclic, because if E is finite dimensional, the generator A of T is a bounded
operator. Let e1, . . . , en be a basis of E with respect to which A has Jordan
normal form and let f1, . . . , fn be the corresponding dual basis. Then, there is
λ ∈ K such that for every x ∈ E and t ≥ 0 we have 〈fn, T (t)x〉 = etλ〈fn, x〉.
This shows that for all x in E the closure of the set Ax := {〈fn, T (t)x〉; t ≥ 0}
is either bounded or does not contain 0. Since fn is continuous and surjective,
it follows that orb(T, x) cannot be dense in E for any x.

On the other hand, Bermúdez et al. showed in [5] that on every separable
infinite dimensional Banach space E there is a hypercyclic C0-semigroup. In
fact they even showed the existence of a uniformly continuous semigroup which
is hypercyclic. Their result was later strengthened by A. Conejero in [12].

v) Obviously, every mixing C0-semigroup on a separable Banach space is
transitive, hence hypercyclic.

Example 1.3 The first example of a hypercyclic C0-semigroup on a Banach
space was given by Rolewicz [52] in 1969. Let ma be the Borel measure on R
with Lebesgue density ρa(x) = a−|x| where a > 1. It is not hard to see that
via T (t)f := f(· − t) one obtains a C0-semigroup on Lp(ma) for all 1 ≤ p <∞.
Rolewicz showed that this C0-semigroup is hypercyclic on Lp(ma) for every
1 ≤ p <∞.

This semigroup is a very special case of a composition semigroup which we
will thoroughly investigate in chapter 6 and 7. Further examples of hypercyclic
C0-semigroups will be given there.

A useful tool to get new hypercyclic, respectively mixing, C0-semigroups
from old ones is the following so-called Comparison Principle. It is a direct
adaption from the single operator case, which is due to Shapiro [56]. We include
the short proof for the reader’s convenience.

Lemma 1.4 Let T and S be C0-semigroups on E resp. F and Φ : E → F be
a continuous mapping with dense range such that S(t) ◦ Φ = Φ ◦ T (t) for all
t ≥ 0. If T is hypercyclic, respectively weakly mixing, respectively mixing, so is
S. Moreover, if x ∈ HC(T ) then Φ(x) ∈ HC(S).

Proof: Let x be a hypercyclic vector for T . From the continuity of Φ, the
denseness of {T (t)x; t ≥ 0} in E and the fact that S(t)◦Φ = Φ◦T (t) for all t ≥ 0,
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it follows that Φ({T (t)x; t ≥ 0}) = {Φ(T (t)x); t ≥ 0} = {S(t)(Φ(x)); t ≥ 0} is
dense in F , i.e. Φ(x) ∈ HC(S).

Now assume that T is weakly mixing. Let Ui, Vi, i = 1, 2, be non-empty,
open subsets of F . Because Φ is continuous and has dense range, there are non-
empty, open subsets Ũi, Ṽi of E such that Φ(Ũi) ⊂ Ui and Φ(Ṽi) ⊂ Vi. Since T
is weakly mixing, there is t > 0 such that T (t)(Ũi) ∩ Ṽi 6= ∅ for i = 1, 2, so that

∅ 6= Φ(T (t)(Ũi) ∩ Ṽi) ⊂ S(t)(Φ(Ũi)) ∩ Φ(Ṽi) ⊂ S(t)(Ui) ∩ Vi

for i = 1, 2 showing that S is weakly mixing.
Now, let T be mixing and U, V be a pair of non-empty, open subsets of F .

Because Φ is continuous and has dense range, there are non-empty, open subsets
Ũ , Ṽ of E such that Φ(Ũ) ⊂ U and Φ(Ṽ ) ⊂ V . Since T is mixing, there is t > 0
such that T (s)(Ũ) ∩ Ṽ 6= ∅ for every s ≥ t, so that

∅ 6= Φ(T (s)(Ũ) ∩ Ṽ ) ⊂ S(s)(Φ(Ũ)) ∩ Φ(Ṽ ) ⊂ S(s)(U) ∩ V

for all s ≥ t. �

Before we give another example of a hypercyclic C0-semigroup we make the
following definition.

Definition 1.5 Let E be a Banach space and B ∈ L(E). B is called a gener-
alised backward shift if there is a sequence (en)n∈N in E whose span is dense in
E such that Be1 = 0 and Ben+1 = en for every n ∈ N.

A different proof of the following theorem can be found in [6, theorem 4.4].

Theorem 1.6 Let E be a separable Banach space and B ∈ L(E) a generalised
backward shift. Then, the C0-semigroup generated by B is mixing, in particular
hypercyclic.

Proof: Since B is an operator on E the C0-semigroup T generated by B is
given by T (t) = exp(tB), t ≥ 0, where exp(tB) :=

∑∞
k=0

(tB)k

k! . We first prove
that exp(B)− id =

∑∞
k=1

Bk

k! again is a generalised backward shift.
Let (en)n∈N be such that its span is dense in E, Be1 = 0 and Ben+1 = en

for every n ∈ N. Obviously
∑∞
k=1

Bk

k! e1 = 0 and
∑∞
k=1

Bk

k! e2 = e1. For n ≥ 3
let αl, 2 ≤ l ≤ n− 1, be arbitrary scalars. It follows that

∞∑
k=1

Bk

k!
(en +

n−1∑
l=2

αlel) = en−1 +
n−2∑
l=1

(
1

(n− l)!

+ (0, . . . , 0, 1
l
, 0, . . . , 0)



1 1
2! . . . . . . . 1

(n−2)!

0
. . . . . .

...
...

. . . . . .
...

...
. . .

...
0 . . . . . . . 0 1


 α2

...
αn−1

)el.

Since the above matrix is invertible for n ≥ 3, we therefore find inductively
αn,l, 1 ≤ l ≤ n−1 such that

∑∞
k=1

Bk

k! (en+
∑n−1
l=1 αn,lel) = en−1+

∑n−2
l=1 αn−1,lel.
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Defining ẽ1 := e1, ẽ2 := e2 and ẽn := en +
∑n−1
l=1 αn,lel for n ≥ 3, we get a

sequence (ẽn)n∈N such that exp(B)ẽ1 − ẽ1 = 0 and exp(B)ẽn − ẽn = ẽn−1 for
all n ≥ 2. Since obviously span{en; n ∈ N} = span{ẽn; n ∈ N} we see that
exp(B)− id indeed is a generalised backward shift.

If we can show that id+C is mixing whenever C is a generalised backward
shift, it follows that T (1) = exp(B) = id + (exp(B) − id) is mixing. This
was shown in [6, theorem 4.5]. However, we include the proof for the reader’s
convenience.

So, let C be an arbitrary generalised backward shift on E with sequence
(fn)n∈N. Without loss of generality we can assume that fn 6= 0 for all n ∈ N.
We define

Φ : `1 → E, (xn)n∈N 7→
∞∑
n=1

xn
‖fn‖

fn.

Then Φ is a well-defined operator with dense range.
Since C is continuous it follows that supn∈N ‖fn‖/‖fn+1‖ ≤ ‖C‖ < ∞ so

that the weighted backward shift with weights wn := ‖fn‖/‖fn+1‖

Cw : `1 → `1, (xn)n∈N 7→ (
‖fn‖
‖fn+1‖

xn+1)n∈N

is continuous.
For (xn)n∈N in `1 we have

Φ ◦ Cw((xn)n∈N) =
∞∑
n=1

‖fn‖xn+1

‖fn+1‖‖fn‖
fn =

∞∑
n=1

xn+1

‖fn+1‖
fn = C ◦ Φ((xn)n∈N),

so that Φ ◦ (id+ Cw) = (id+ C) ◦ Φ.
Since id+Cw is a mixing operator on `1 (cf. [27, lemma 2.3]), it now follows

from lemma 1.4, that id+ C is a mixing operator on E.
In particular it follows that T (1) = exp(B) = id+ (exp(B)− id) is a mixing

operator on E. To show that the C0-semigroup T is mixing, let U1, U2 be
two non-empty open subsets of E. There are non-empty open subsets Vj of
Uj , j = 1, 2, and ε > 0 such that Vj + B(0, ε) ⊂ Uj , where B(0, ε) denotes the
open ball with center 0 and radius ε. From the local equicontinuity of T (see
corollary A.2) it follows that there is δ > 0 such that T (t)(B(0, δ)) ⊂ B(0, ε)
for all 0 ≤ t ≤ 1.

Since T (1) is mixing, there is N ∈ N such that for all m ≥ N we have
T (m)(V1)∩B(0, δ) 6= ∅ and T (m)(B(0, δ))∩V2 6= ∅. Now, let t > N . There are
n ≥ N and s1, s2 ∈ [0, 1) such that t = n + s1 = n + 1 − s2. So, we can find
v1 ∈ V1 and w ∈ B(0, δ) such that T (n)v1 ∈ B(0, δ) and T (n+ 1)w ∈ V2. From
this we obtain

T (t)(v1 + T (s2)w) = T (s1)T (n)v1 + T (n+ 1− s2)(T (s2)w)
∈ T (s1)(B(0, δ)) + V2 ⊂ B(0, ε) + V2 ⊂ U2.

Since v1 + T (s2)w ∈ V1 + B(0, ε) ⊂ U1 this gives T (t)(U1) ∩ U2 6= ∅. Because
t > N was arbitrary the theorem follows. �

Remark 1.7 Note that the last part of the above proof shows that the C0-
semigroup T is mixing if T (1) is a mixing operator. Obviously, every operator
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T (t), t > 0, of a mixing C0-semigroup T is mixing as is the rescaled C0-semigroup
S = (T (at))t≥0, where a > 0. With these observations we obtain the equivalence
of

i) The C0-semigroup T is mixing.

ii) For every t > 0 the operator T (t) is mixing.

iii) There is t > 0 such that T (t) is mixing.

Example 1.8 For 1 ≤ p < ∞ and a sequence of strictly positive numbers
a = (an)n∈N such that supn∈N an/an+1 < ∞ we consider `p(a) := {(xn)n∈N ∈
KN;

∑
n∈N |xn|pan <∞}. Then, the backward shift

B : `p(a) → `p(a), (xn)n∈N → (xn+1)n∈N

is a well-defined operator. Clearly, B is a generalised backward shift, so that
the C0-semigroup generated by B is mixing on `p(a) by theorem 1.6.

It was already shown by Desch et al. in [19, theorem 5.2] that the C0-
semigroup generated by B is hypercyclic on `1(a). Actually, a careful inspection
of their proof shows that by their arguments the semigroup is mixing.

Example 1.9 Let Ω be a bounded open subset of C. We consider the Bergman
space A2(Ω), i.e. the space of holomorphic functions on Ω which are square
integrable with respect to two-dimensional Lebesgue measure. It is well known
that A2(Ω) is a closed subspace of L2(Ω), so that it is a Hilbert space when
equipped with the L2-norm.

If φ is a bounded holomorphic function on Ω the mapping

Mφ : A2(Ω) → A2(Ω), f 7→ φf

defines an operator on A2(Ω). It was shown by Godefroy and Shapiro [26,
proposition 3.1] that in the case of φ(z) = z − α with α ∈ Ω the Hilbert space
adjoint of Mφ is a generalised backward shift. So, by theorem 1.6 it generates
a hypercyclic C0-semigroup on A2(Ω). (Note that our definition of generalised
backward shift is slightly more general than the one used by Godefroy and
Shapiro, see [26, Section 3, proposition 3.3].)

Little is known about the properties of the generator of a hypercyclic C0-
semigroup. The following theorem gives a necessary condition on the residual
spectrum of the generator of a hypercyclic C0-semigroup. It is due to Desch et
al. [19, theorem 3.3].

Theorem 1.10 (cf. [19, theorem 3.3]) Let T be a hypercyclic C0-semigroup
on a separable Banach space E with generator (A,D(A)). Then the residual
spectrum σr(A) of A is empty.

Proof: Assume that there is λ in σr(A). It follows from the spectral
mapping theorem (see appendix A.7) for the residual spectrum that there is
φ ∈ E′\{0} such that 〈φ, T (t)x〉 = etλ〈φ, x〉 for all x in E and t ≥ 0. From this
it follows that {〈φ, T (t)x〉; t ≥ 0} is either a bounded subset of K (in case of
Reλ ≤ 0) or its closure does not contain 0 (in case of Reλ > 0) for all x ∈ E.
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Since φ is different from 0 it must be surjective. Now, if x was a hypercyclic
vector for T we could conclude that K coincides with the image of the closure
of orb(T, x) under φ, contradicting the above. So HC(T ) must be empty which
is a contradiction to the hypothesis. �

As a corollary of this we obtain the following result.

Corollary 1.11 Let T be a hypercyclic C0-semigroup on E, 0 ≤ t1 < t2 and
(α1, α2) ∈ K2\{(0, 0)}.

i) α1T (t1) + α2T (t2) has dense range.

ii) If x ∈ HC(T ) then α1T (t1)x+ α2T (t2)x ∈ HC(T ).

Proof: It is not hard to see that T (t) has dense image for all t ≥ 0 due to
the hypercyclicity of T . By the spectral mapping theorem (see appendix A.7)
and theorem 1.10 it follows that σr(T (t)) = ∅ for all t ≥ 0. If α2 6= 0 we have
α1T (t1) + α2T (t2) = −α2T (t2)[−α1

α2
id− T (t2 − t1)], so that α1T (t1) + α2T (t2)

is the composition of two operators with dense ranges and therefore has dense
range itself. If α2 = 0 we have α1 6= 0 and a similar decomposition shows that
α1T (t1) + α2T (t2) has dense range, which gives i).

Now, if {T (t)x; t ≥ 0} is dense in E it follows from i) that the same is true
for [α1T (t1) + α2T (t2)]({T (t)x; t ≥ 0}) = {T (t)[α1T (t1) + α2T (t2)]x; t ≥ 0},
which proves ii). �
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2 The Hypercyclicity Criterion and some of its
consequences

The most commonly used condition for proving hypercyclicity of a C0-semigroup
T on a separable Banach space E is the following theorem which is essentially
due to Desch, Schappacher and Webb (cf. [19, theorem 2.3]) and which is a direct
modification of the so-called Hypercyclicity Criterion for a single operator. In
the single operator case, it was first formulated by Kitai [33] and its hypotheses
were later considerably weakened by Gethner and Shapiro [25] in order to give
a much more general criterion.

Theorem 2.1 (Hypercyclicity Criterion for C0-semigroups) Let E be a
separable Banach space and T a C0-semigroup on E. Let Y, Z ⊂ E be dense
subspaces of E, (tk)k∈N a sequence of positive numbers, and St : Z → E, t ≥ 0,
a family of (not necessarily continuous) linear mappings such that

a) limk→∞ T (tk)y = 0 for all y ∈ Y

b) limk→∞ Stkz = 0 for all z ∈ Z

c) T (t)Stz = z for every t ≥ 0 and all z ∈ Z.

Then, T is hypercyclic.

We include the short proof for the sake of completeness.

Proof: We will show that under the conditions of the theorem the C0-
semigroup T is transitive, hence hypercyclic by remark 1.2 iii). So, let U, V be
a pair of non-empty open subsets of E. We find y ∈ U ∩ Y and z ∈ V ∩ Z
such that limk→∞ T (tk)y = 0 and T (t)Stz = z for all t ≥ 0. By setting
yk := y + Stkz we obtain a sequence (yk)k∈N which converges to y and for
which limk→∞ T (tk)yk = z, proving that T (tk)(U)∩ V 6= ∅ for sufficiently large
k. �

If for a C0-semigroup T on a Banach space E we can find dense subspaces
Y and Z of E, a sequence of positive numbers (tk)k∈N, and a family of linear
mappings St : Z → E, t ≥ 0, satisfying conditions a), b), and c) of theorem 2.1,
we say that T satisfies the Hypercyclicity Criterion.

Remark 2.2 The proof shows that if T satisfies the Hypercyclicity Criterion
there is a sequence (tk)k∈N such that for all open and non-empty subsets U and
V of E we can find n ∈ N such that T (tk)(U) ∩ V 6= ∅ for all k ≥ n.

The Hypercyclicity Criterion for the single operator case reads as follows.
Let us note that it is valid not only for separable Banach spaces but for arbitrary
separable F -spaces (see [48]).

Theorem 2.3 (Hypercyclicity Criterion for single operators) Let E be
a separable Banach space and T an operator on E. Let Y, Z ⊂ E be dense
subspaces of E, (nk)k∈N a sequence of positive integers, and S : Z → Z a (not
necessarily continuous) linear mapping such that
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a) limk→∞ Tnky = 0 for every y ∈ Y

b) limk→∞ Skz = 0 for all z ∈ Z

c) TSz = z for all z ∈ Z.

Then, T is hypercyclic.

It is an open problem if every hypercyclic C0-semigroup T satisfies the Hy-
percyclicity Criterion. This question is more interesting as one may think, since
the Criterion is not only an easy to check condition for proving hypercyclicity
but it is equivalent to T ⊕ T being hypercyclic.

The following theorem can be found in Conejero, Peris [13, theorem 2.1] or
in El-Mourchid [21, theorem 2.5]. Again, it is a direct adaption of the result for
the single operator case, which is due to Bès and Peris [8, theorem 2.3].

Theorem 2.4 (cf. [13, theorem 2.1], [21, theorem 2.5]) Let E be a sepa-
rable Banach space and T be a C0-semigroup on E. Then, the following are
equivalent.

i) T satisfies the Hypercyclicity Criterion.

ii) T ⊕ T is hypercyclic.

There are many equivalent formulations of the Hypercyclicity Criterion.
Some of them are given below. Apart from the equivalence of i) and ii), which
is due to Conejero and Peris [13, theorem 2.1], these results are new for C0-
semigroups. For the single operator case the corresponding equivalence of i)
and iii) was independently shown by Bernal and Grosse-Erdmann [7, remark
3.5] and León [36], while the corresponding equivalences of i), iv) and v) are due
to Grivaux [27, theorem 3.2]. The single operator analogue of the equivalence
of i) and vi) was shown by Peris and Saldivia [49, theorem 2.3].

Theorem 2.5 Let T be a C0-semigroup on a separable Banach space E. Then,
the following are equivalent.

i) T satisfies the Hypercyclicity Criterion.

ii) There are dense subsets Y, Z of E, a sequence (tk)k∈N of positive real
numbers such that

a) limk→∞ T (tk)y = 0 for every y ∈ Y
b) For every z ∈ Z there is a sequence (wk)k∈N in E converging to 0

such that limk→∞ T (tk)wk = z.

iii) For every pair of non-empty open subsets U, V of E and every zeroneigh-
bourhood W in E there is t > 0 such that T (t)(U)∩W 6= ∅ and T (t)(W )∩
V 6= ∅.

iv) For every pair of non-empty open subsets U, V of E there is t > 0 such
that T (t)(U) ∩ V 6= ∅ and T (t+ 1)(U) ∩ V 6= ∅.

v) There is α > 0 such that for every pair of non-empty open subsets U, V of
E there is t > 0 satisfying T (t)(U) ∩ V 6= ∅ and T (t+ α)(U) ∩ V 6= ∅.
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vi) If I ⊂ [0,∞) is syndetic (that is there exists K > 0 such that [t, t+K]∩I 6=
∅ for all t ≥ 0) then {T (t); t ∈ I} is weakly mixing.

vii) There is K > 0 such that for every I ⊂ [0,∞) satisfying [t, t+K]∩ I 6= ∅
for all t ≥ 0 the set {T (t); t ∈ I} is weakly mixing.

Proof: That i) implies ii) is obvious by setting wk := Stkz.
To show that ii) implies iii) choose a pair of non-empty open subsets U and

V and a zeroneighbourhood W in E. Let y ∈ U ∩ Y and z ∈ V ∩ Z. Since
(T (tk)wk)k∈N converges to z and (T (tk)y)k∈N as well as (wk)k∈N converge to 0,
we have T (tk)y ∈ W , wk ∈ W and T (tk)wk ∈ V , i.e. T (tk)(U) ∩W 6= ∅ and
T (tk)(W ) ∩ V 6= ∅ for sufficiently large k.

In order to show that iii) implies iv) we note that for U, V ⊂ E open and not
empty and for a zeroneighbourhood W there is t > 0 with T (t)(U)∩W 6= ∅ and
T (t)(W )∩V 6= ∅. In particular, T (t)−1(V ) is not empty. Since W ∩T (t)−1(W )
is a zeroneighbourhood, we can use iii) again to find s > 0 satisfying T (s)(U)∩
(W ∩ T (t)−1(W )) 6= ∅ and T (s)(W ∩ T (t)−1(W )) ∩ T (t)−1(V ) 6= ∅. Using the
semigroup law, this yields T (t+s)(U)∩W 6= ∅ and T (t+s)(W )∩V 6= ∅, so that
N(U, V,W ) := {r ≥ 0;T (r)(U) ∩W 6= ∅ and T (r)(W ) ∩ V 6= ∅} is unbounded.

Using this, we find t > 1 such that ∅ 6= T (t − 1)(W ) ∩ T (1)−1(V ). Since V
was an arbitrary non-empty open subset of E this implies that T (1) has dense
range.

Now, let x ∈ U and y ∈ V . Since T (1) has dense range, we find v ∈ E and
k0 ∈ N such that T (1)(B(v, 2/k)) ⊂ V for all k ∈ N, k ≥ k0 (here and in the
sequel we denote the open ball with center c and radius r by B(c, r)). Now iii)
ensures that there is a sequence of positive numbers (tk)k∈N such that T (tk)(U)∩
[B(0, 1/k)∩ T (1)−1(B(0, 1/k))] 6= ∅ and T (tk)[B(0, 1/k)∩ T (1)−1(B(0, 1/k))]∩
B(v, 1/k) 6= ∅.

This last expression implies that T (tk)(T (1)−1(B(0, 1/k)))∩T (1)−1(V ) 6= ∅,
i.e. T (1)−1(B(0, 1/k) ∩ T (tk)−1(V )) 6= ∅ for k ≥ k0, so that we can find a
sequence (wk)k∈N in E converging to 0 such that T (tk)wk ∈ V for all k ≥
k0. Additionally, there is a sequence (w̃k)k∈N converging to 0 in E for which
‖T (tk)w̃k − v‖ < 1/k.

From T (tk)(U)∩[B(0, 1/k)∩T (1)−1(B(0, 1/k))] 6= ∅ we conclude that there is
a sequence (xk)k∈N in U such that ‖T (tk)xk‖ < 1/k. If we set uk := xk+wk and
ũk := xk + w̃k, k ∈ N, we see that uk, ũk ∈ U for large k and that T (tk)uk ∈ V
and T (tk + 1)ũk = T (1)T (tk)ũk ∈ T (1)(B(v, 2/k)) ⊂ V for sufficiently large k,
i.e. T (tk)(U) ∩ V 6= ∅ and T (tk + 1)(U) ∩ V 6= ∅ for large k.

That iv) implies v) is obvious.
It was shown by S. Grivaux in [27, theorem 3.2] that in the single operator

case the analogue of v) implies i). This proof can be directly adapted to the
C0-semigroup case. We include it for the reader’s convenience.

We will show that v) implies that T is weakly mixing, so that i) follows from
theorem 2.4. Let ∅ 6= Ui, Vi ⊂ E be open (i = 1, 2). Obviously, v) implies that
T is transitive, hence hypercyclic.

Let v1 ∈ HC(T ) ∩ V1. There is r1 > 0 such that u1 := T (r1)v1 ∈ U1. Since
T (r1) has dense range, there is w2 ∈ E such that u2 := T (r1)w2 ∈ U2. Let
v2 ∈ V2 and δ > 0 be such that B(v2, δ) ⊂ V2 and B(u2, δ) ⊂ U2. By corollary
1.11 it follows that (T (α)− I)v1 ∈ HC(T ). Let M > 0 and ω ∈ R be such that
‖T (t)‖ ≤ Metω for every t ≥ 0 (see appendix A.1). We can find q1, p1 > 0 for
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which

‖T (q1)(T (α)− I)v1 − (w2 − v2)‖ <
δ

2Mer1ω
,

‖T (p1)v1 − (v2 − T (q1)v1)‖ <
δ

2Mer1ω
.

Now, by setting z2 := T (p1)u1 + T (q1 +α)u1 = T (p1 + r1)v1 + T (q1 +α+ r1)v1
we obtain

‖z2 − u2‖ = ‖T (r1)[T (p1)v1 + T (q1 + α)v1 − w2]‖
≤ Mer1ω[‖T (p1)v1 − (v2 − T (q1)v1)‖

+‖v2 − T (q1)v1 + T (q1 + α)v1 − w2‖]
< δ,

that is z2 ∈ B(u2, δ) ⊂ U2. Analogously, one shows that y2 := T (p1)v1 +
T (q1)v1 ∈ V2.

We define Ũk := B(u1, 2−k) and Ṽk := B(v1, 2−k), k ∈ N, and use v) to
obtain sequences (uk)k∈N and (ũk)k∈N converging to u1 and a sequence (tk)k∈N ∈
[0,∞)N such that (T (tk)uk)k∈N and (T (tk + α)ũk)k∈N converge to v1.

It follows that limk→∞ T (tk)[T (p1)uk +T (q1 +α)ũk] = T (p1)v1 +T (q1)v1 =
y2 ∈ V2, i.e. T (tk)(U2) ∩ V2 6= ∅ for large k. Because of limk→∞ uk = u1 ∈ U1

and limk→∞ T (tk)uk = v1 ∈ V1, we also have T (tk)(U1)∩ V1 6= ∅ for sufficiently
large k, so that T is weakly mixing.

In order to show that i) implies vi) we first note that the Hypercyclicity
Criterion implies that the C0-semigroup T ⊕ · · · ⊕ T consisting of n copies
of T acting on En satisfies the criterion, too. Just take Y n, Zn, (tk)k∈N and
St ⊕ · · · ⊕ St : Zn → En. So, T ⊕ . . .⊕ T is in particular hypercyclic.

Now, let I ⊂ [0,∞) be syndetic and K > 0 such that [t, t + K] ∩ I 6= ∅
for all t ≥ 0. Let Ui, Vi, i = 1, 2, be non-empty open subsets of E. Since T is
locally equicontinuous (see appendix A.2) we find δ > 0 and non-empty open
sets Ũi ⊂ Ui, i = 1, 2, such that T (s)(Ũi) ⊂ Ui for all 0 ≤ s ≤ δ. Choose
m ∈ N satisfying mδ > K. Taking 2(m+ 1) factors we have that T ⊕ · · · ⊕ T is
hypercyclic, so there is t > 0 for which

T ⊕ · · · ⊕ T (t)(Ũ1 × · · · × Ũ1 × Ũ2 × · · · × Ũ2)
∩(V1 × T (δ)−1(V1)× · · · × T (mδ)−1(V1)

×V2 × T (δ)−1(V2)× · · · × T (mδ)−1(V2)) 6= ∅,

i.e. there is t > 0 such that for every 0 ≤ j ≤ m we have

T (t+ jδ)(Ũi) ∩ Vi 6= ∅, i = 1, 2.

Because I is syndetic and mδ > K there is s ∈ [t, t + mδ) ∩ I, so we can find
1 ≤ j0 ≤ m such that s ∈ [t + (j0 − 1)δ, t + j0δ) ∩ I. For i = 1, 2 we then get
from 0 ≤ t+ j0δ − s < δ and the definition of Ũi that

∅ 6= T (t+ j0δ)(Ũi) ∩ Vi = T (s)T (t+ j0δ − s)(Ũi) ∩ Vi ⊂ T (s)(Ui) ∩ Vi.

Since s ∈ I, this shows the transitivity of {T ⊕ T (s); s ∈ I}, i.e. vi).
Clearly, vi) implies vii).
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Next, we show that vii) implies v). Assume that v) is not true, which implies
the existence of U, V ⊂ E open and not empty such that T (t+K)(U) ∩ V = ∅
whenever T (t)(U)∩V 6= ∅ and T (t)(U)∩V = ∅ whenever T (t+K)(U)∩V 6= ∅.
Let I := {t ≥ 0; T (t)(U)∩V = ∅}. It follows that t+K ∈ I for all t /∈ I so that
in particular [t, t+K]∩I 6= ∅ for every t ≥ 0. By vii) we have that {T (t); t ∈ I}
is weakly mixing, in particular there is t ∈ I such that T (t)(U) ∩ V 6= ∅. But
this means that t /∈ I giving a contradiction. �

Although we are not able to answer the question whether every hypercyclic
C0-semigroup satisfies the Criterion in general, we now show that this is in fact
the case under some additional ”regularity condition” on T .

In order to do so we need the following theorem, which was inspired by [28,
theorem 2].

Theorem 2.6 Let T be a C0-semigroup on a separable Banach space E. Sup-
pose there are dense subsets Y, Z of E, a sequence of positive numbers (tk)k∈N
and mappings Rk : Z → E such that

a) For every y ∈ Y the set {T (tk)y; k ∈ N} is relatively compact.

b) For every z ∈ Z we have that (Rkz)k∈N converges to 0.

c) For every z ∈ Z the sequence (T (tk)Rkz)k∈N converges to z.

Then, T satisfies the Hypercyclicity Criterion.

By theorem 2.5 ii), every C0-semigroup T satisfying the Hypercyclicity Cri-
terion satisfies the conditions of the above theorem, so that theorem 2.6 is still
another equivalent formulation of the Criterion.

Proof of theorem 2.6: We first show that {T (tk); k ∈ N} is a hypercyclic
family of operators. Let U, V ⊂ E be open and not empty. Take u from
U ∩ Y and (tkj

)j∈N such that a := limj→∞ T (tkj
)u exists. Now, let v be in

V ∩ (Z + a). Then, (Rk(v − a))k∈N converges to 0 so that (u + Rk(v − a))k∈N
converges to u. On the other hand, (T (tkj

)(u+Rkj
(v − a)))j∈N converges to v

so that T (tkj )(U) ∩ V 6= ∅ for sufficiently large j. This shows that (T (tk))k∈N
is transitive, hence hypercyclic by remark 1.2 iii).

Let x ∈ HC(T (tk); k ∈ N) and let (tkl
)l∈N be a such that liml→∞ T (tkl

)x =
0. Then, Ỹ := {T (tk)x; k ∈ N} is dense in E and for all y = T (tk0)x ∈ Ỹ we
have liml→∞ T (tkl

)y = liml→∞ T (tk0)T (tkl
)x = 0.

Clearly the family (T (tkl
))l∈N satisfies conditions a), b), and c) of the the-

orem, too, so that it is transitive, hence hypercyclic by the first part of the
proof.

Let u ∈ HC(T (tkl
); l ∈ N) and Z̃ := {T (tkl

)u; l ∈ N}. Then, Z̃ is
dense in E. Furthermore, there is a subsequence (sl)l∈N of (tkl

)l∈N such that
T (sl)(B(0, 1/l)) ∩ B(u, 1/l) 6= ∅, i.e. there is (w̃l)l∈N converging to 0 such that
(T (sl)w̃l)l∈N converges to u.

If we define for z = T (tkl
)u ∈ Z̃ the sequence (wn)n∈N by wn := T (tkl

)w̃n
we see that limn→∞ wn = 0. Additionally, we have for z = T (tkl

)u ∈ Z̃ that
T (sn)wn = T (tkl

)(T (sn)w̃n) so that the sequence (T (sn)wn)l∈N converges to
T (tkn

)u = z. This shows that for every z ∈ Z̃ there is a sequence (wn)n∈N
converging to 0 such that limn→∞ T (sn)wn = z.
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Since (sl)l∈N is a subsequence of (tkl
)l∈N, it also holds that liml→∞ T (sl)y =

0 for all y ∈ Ỹ . This gives that T satisfies condition ii) of theorem 2.5. �

We are now able to prove the following theorem saying that a hypercyclic
C0-semigroup T satisfies the Criterion if some additional condition is satisfied.

Theorem 2.7 Let T be a hypercyclic C0-semigroup on a separable Banach space
E and let C := {y ∈ E; orb(T, y) is relatively compact}.

If C is dense in E, then T satisfies the Criterion.

Proof: Let x ∈ HC(T ), (tk)k∈N be a sequence of positive numbers and
(wk)k∈N be a sequence converging to 0 such that limk→∞ T (tk)wk = x.

Then, Z := orb(T, x) is dense in E and Rk : Z → E, T (t)x 7→ T (t)wk, k ∈ N,
is a well-defined mapping such that (Rkz)k∈N converges to 0 for all z ∈ Z. Fur-
thermore, T (tk)Rkz = T (t)T (tk)wk for z = T (t)x ∈ Z, so that (T (tk)Rkz)k∈N
converges to z for every z ∈ Z.

By hypothesis, Y := C is dense in E and trivially for all y ∈ Y there is a
subsequence (tkj

)j∈N such that (T (tkj
)y)j∈N converges.

This shows that all the hypotheses of theorem 2.6 are fulfilled, so that T
satisfies the Hypercyclicity Criterion. �

The analogue of the following corollary in the single operator case is due to
J. Wengenroth [61] who gave a direct proof.

Corollary 2.8 Let T be a hypercyclic C0-semigroup on a separable Banach
space E such that E0 := {x ∈ E; limt→∞ T (t)x = 0} is dense in E.

Then T satisfies the Hypercyclicity Criterion.

Proof: This is a direct consequence of theorem 2.7. �

The following theorem was pointed out to us by A. Peris [50]. We give two
different proofs here:

Theorem 2.9 Let T be a C0-semigroup on a separable Banach space E. Then,
the following are equivalent.

i) T satisfies the Hypercyclicity Criterion.

ii) The operator T (t0) satisfies the Hypercyclicity Criterion for all t0 > 0.

iii) There is t0 > 0 such that the operator T (t0) satisfies the Hypercyclicity
Criterion.

Proof: Having in mind theorem 2.5 ii), all we have to show is that i) implies
ii). So, let t0 > 0. If we define I := {nt0; n ∈ N}, then I is a syndetic set so that
ii) follows from theorem 2.5 and the fact that an operator on a separable Banach
space is weakly mixing if and only if it satisfies the Hypercyclicity Criterion for
operators (cf. [8, theorem 2.3]).

Alternative proof of i) ⇒ ii): Let Y,Z and (tk)k∈K be as in theorem 2.5 ii)
and let t0 > 0. For every k ∈ N there are exactly one sk ∈ [0, t0) and nk ∈ N0

such that tk = nkt0 + sk.
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For every y ∈ Y we have that limk→∞ T (tk)y = 0. Using the equicontinuity
of the family (T (t))0≤t≤t0 this yields

lim
k→∞

T (nkt0)T (t0)y = lim
k→∞

T (nkt0 + sk)T (t0 − sk)y

= lim
k→∞

T (t0 − sk)T (tk)y = 0

for every y ∈ Y . This shows that limk→∞ T (nkt0)y = 0 for all y from the subset
Ỹ := T (t0)(Y ) which is dense since Y is dense and T (t0) has dense range by
corollary 1.11.

Now, let z ∈ Z and (wk)k∈N be a sequence converging to 0 in E such that
(T (tk)wk)k∈N converges to z. From the equicontinuity of the family (T (t))0≤t≤t0
it follows that (T (sk)wk)k∈N converges to 0 in E. Since T (nkt0)T (sk)wk =
T (tk)wk it follows that (T (nkt0)T (sk)wk)k∈N converges to z.

Using [13, theorem 1.5], this shows that T (t0) satisfies the Hypercyclicity
Criterion for single operators with Ỹ , Z and (nk)k∈N. �

It was shown by Oxtoby and Ulam in [44, theorem 6] that ”almost every”
operator from a topologically transitive flow in a separable metric space is topo-
logically transitive.

A slight modification of their proof shows that if x ∈ HC(T ) then there is
a dense Gδ-set Ix ⊂ [0,∞) such that x ∈ HC(T (t)) for every t ∈ Ix. This was
independently shown by A. Conejero in [12] and can even be strengthened to
the following.

Theorem 2.10 Let T be a hypercyclic C0-semigroup on E, x ∈ HC(T ), t0 > 0,
and (nk)k∈N be a strictly increasing sequence of positive integers which satisfies
supk∈N(nk+1 − nk) <∞. Furthermore, let B ⊂ (0, t0) be open.

Then, there is a dense Gδ-subset Ix of [0,∞) such that {T (nkt)x; k ∈ N} is
dense in E for every t ∈ Ix, and t0 = t1 + t2, where t1 ∈ B ∩ Ix and t2 ∈ Ix.

In particular, every operator T (t), t > 0, from T is the composition of two
hypercyclic operators from T which share a prescribed hypercyclic vector.

Proof: Let (Um)m∈N be an open base of the topology of E such that Um 6= ∅
for all m ∈ N. We define Im := {t ≥ 0; ∃ l ∈ N : T (nlt)x ∈ Um}. From the
strong continuity of T it follows immediately that Im is open in [0,∞). It is
also dense, as will be shown now.

Let (a, b) ⊂ [0,∞) and M := supk∈N(nk+1 − nk). Since (nk)k∈N is strictly
increasing there is K such that nk(b− a) > Ma for all k ≥ K, that is

nkb− nk+1a = nk(b− a) + (nk − nk+1)a ≥ nk(b− a)−Ma > 0

for all k ≥ K. This implies that
⋃
k≥K(nka, nkb) is connected, so that there is

L > 0 such that [L,∞) ⊂
⋃
k∈N(nka, nkb).

Now, since x ∈ HC(T ) we have that {T (t)x; t ≥ L} is dense in E. Therefore
we can find t ≥ L such that Um 3 T (t)x = T (t/nl)nlx, where nl is chosen in
such a way that t/nl ∈ (a, b), which is possible by [L,∞) ⊂

⋃
k∈N(nka, nkb).

This proves t/nl ∈ Im ∩ (a, b).
Using Baire’s Category theorem, we obtain that Ix :=

⋂
m∈N Im is a dense

Gδ-subset of [0,∞). Obviously, for every t ∈ Ix the set {T (nkt)x; k ∈ N} is
dense in E.
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Let us denote for a subset C of [0,∞) the set {t0 − t; t ∈ C} by t0 − C. It
follows from the density of Ix in [0,∞) that Ix∩ (t0−B) as well as t0− (Ix∩B)
are dense Gδ-subsets of t0 − B. Applying Baire’s theorem again, we see that
∅ 6= [Ix ∩ (t0 − B)] ∩ [t0 − (Ix ∩ B)], i.e. there are t1 ∈ B ∩ Ix and t2 ∈ Ix such
that t0 = t1 + t2.

From this it follows that x ∈ HC(T (t1)) ∩HC(T (t2)) and T (t0) = T (t1) ◦
T (t2). �

Using theorem 2.10 and a theorem due to S. Grivaux we can now give a
strengthened version of theorem 2.7.

Theorem 2.11 Let T be a hypercyclic C0-semigroup on a separable Banach
space E and let B := {y ∈ E; orb(T, y) is bounded}.

If B is dense in E, then T satisfies the Hypercyclicity Criterion.

Proof: It follows immediately from the hypothesis that for every t > 0
the set B(t) := {y ∈ E; orb(T (t), y) is bounded} is dense in E. From theorem
2.10 it follows in particular that there is t0 > 0 such that T (t0) is a hypercyclic
operator on E. Using the denseness of B(t0) it follows from [27, theorem 4.4]
that T (t0) satisfies the Hypercyclicity Criterion for single operators. Now the
theorem follows from theorem 2.9. �

Having in mind theorem 2.10 one might ask if every operator T (t), t > 0,
from a hypercyclic C0-semigroup T is hypercyclic. This deep question was posed
by Bermúdez et al. in [5]. It was only very recently solved by Conejero, Müller
and Peris using sophisticated arguments from homotopy theory. They did not
only answer the problem in [5] in the affirmative, but they also proved that
x ∈ HC(T ) if and only if x ∈

⋂
t>0HC(T (t)).

Theorem 2.12 (cf. [14, theorem 2.3]) Let T be a hypercyclic C0-semigroup
and x ∈ HC(T ). Then x ∈ HC(T (t0)) for all t0 > 0.

Before we close this section we come back to theorem 2.4. It characterises
when a C0-semigroup on a separable Banach space E is weakly mixing. In the
following theorem we give a characterisation of when a C0-semigroup is weakly
mixing on an arbitrary, not necessarily separable Banach space.

Theorem 2.13 Let T be a C0-semigroup on a Banach space E. Then, the
following are equivalent.

i) T is weakly mixing.

ii) For every open and non-empty subsets U, V1, V2 of E there is t > 0 such
that T (t)(U) ∩ V1 6= ∅ and T (t)(U) ∩ V2 6= ∅.

Proof: It is clear that i) implies ii). To show the converse, let Ui, Vi ⊂
E, i = 1, 2, be open and not empty. From ii) it follows that there is s > 0
such that T (s)(U1) ∩ U2 6= ∅ and T (s)(U1) ∩ V2 6= ∅. From this we conclude
T (s)−1(V2) 6= ∅ and using the continuity of T (s) we find Ũ1 ⊂ U1 open and
non-empty such that T (s)(Ũ1) ⊂ U2.
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Now we use ii) again to find t > 0 such that T (t)(Ũ1)∩V1 6= ∅ and T (t)(Ũ1)∩
T (s)−1(V2) 6= ∅. This yields

∅ 6= T (t)(Ũ1) ∩ V1 ⊂ T (t)(U1) ∩ V1

and
∅ 6= T (t)(T (s)(Ũ1)) ∩ V2 ⊂ T (t)(U2) ∩ V2,

so that T is weakly mixing. �

Remark 2.14 i) If in the above theorem E is separable, it follows from theorem
2.4 that condition ii) is still another equivalent formulation of the Hypercyclicity
Criterion.

ii) Note that the above proof works exactly in the same way in a more
general setting. Let I be a set and T : I → L(E) a mapping such that T (ι) ◦
T (κ) = T (κ) ◦ T (ι) for every ι, κ ∈ I. Then, T is weakly mixing if and only if
for every open and non-empty subsets U, V1, V2 of E there is ι ∈ I such that
T (ι)(U) ∩ V1 6= ∅ and T (ι)(U) ∩ V2 6= ∅.
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3 Infinitely regular hypercyclic vectors

When the generator A of a hypercyclic C0-semigroup T is an unbounded opera-
tor, it follows from the non-emptiness of its resolvent set and the Open-Mapping
theorem, that D(A) is of first category in E. So, we cannot use the Baire argu-
ment to show the existence of a hypercyclic vector x in D(A).

Nevertheless, we will show in this short chapter that for a hypercyclic C0-
semigroup even D(A∞) ∩HC(T ) is dense in E.

We first show that HC(T ) ∩ D(An) 6= ∅ for every n ∈ N whenever T is
hypercyclic.

This chapter will be published in Proceedings of the American Mathemat-
ical Society under the title ”On chaotic C0-semigroups and infinitely regular
hypercyclic vectors”.

Lemma 3.1 Let T be a hypercyclic C0-semigroup on E and let (A,D(A)) be
its generator. For n ∈ N we consider the graph norm ‖x‖n :=

∑n
j=0 ‖Ajx‖ on

D(An), and we set Tn := (Tn(t))t≥0 := (T (t)|D(An)
)t≥0.

Then, Tn is a hypercyclic C0-semigroup on (D(An), ‖ · ‖n) with HC(Tn) ⊆
HC(T ) and HC(Tn) is dense in E. In particular HC(T ) ∩D(An) 6= ∅.

Proof: That (D(An), ‖ · ‖n) is a Banach space and Tn is a C0-semigroup
on (D(An), ‖ · ‖n) is a well known result (see e.g. [24, chapter II.5]).

Now let λ be in the resolvent set of A and R(λ,A) the resolvent operator of
A in λ. Then R(λ,A)n : (E, ‖ ·‖) → (D(An), ‖ ·‖n) is a continuous isomorphism
and obviously Tn(t) ◦ R(λ,A)n = R(λ,A)n ◦ T (t) for every t ≥ 0, so that Tn is
a hypercyclic C0-semigroup by lemma 1.4 and HC(Tn) is a dense Gδ-subset of
(D(An), ‖ · ‖n).

Since the continuous inclusion ι : (D(An), ‖ · ‖n) ↪→ E has dense range and
T (t) ◦ ι = ι ◦ Tn(t), t ≥ 0, we see that HC(Tn) ⊆ HC(T ) and that HC(Tn) is
dense in E. �

We equip D(A∞) =
⋂
n∈N D(An) with the locally convex topology induced

by the increasing family of seminorms (‖ · ‖n)n∈N0 , where as above ‖x‖n =∑n
j=0 ‖Ajx‖. Then (D(A∞), (‖ · ‖n)n∈N0) is a Fréchet space and we obtain the

following result.

Theorem 3.2 Let T be a hypercyclic C0-semigroup on E and let (A,D(A))
be its generator. Then T∞ := (T∞(t))t≥0 := (T (t)|D(A∞)

)t≥0 is a hypercyclic
semigroup on (D(A∞), (‖ · ‖n)n∈N0) (where hypercyclicity of a semigroup on
a Fréchet space is defined in an obvious way) with HC(T∞) ⊂ HC(T ) and
HC(T∞) is dense in E. In particular D(A∞) ∩HC(T ) 6= ∅.

Proof: Since (D(A∞), (‖ · ‖n)n∈N0) is the projective limit of the countable
family of Banach spaces (D(An), ‖ · ‖n) and since each of the Banach spaces
(D(An), ‖ · ‖n) is separable (because (D(An), ‖ · ‖n) is isomorphic to a closed
subspace of E(n+1)), (D(A∞), (‖ · ‖n)n∈N0) is a separable Fréchet space, hence
second countable as topological space.

That T∞ is a semigroup of continuous operators on (D(A∞), (‖ · ‖n)n∈N0) is
well known.

We will show that T∞ is topologically transitive on (D(A∞), (‖·‖n)n∈N0) and
therefore hypercyclic. To do so, we choose x, y ∈ D(A∞) and a neighbourhood
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W of zero in (D(A∞), (‖ · ‖n)n∈N0). Then there are ε > 0 and m0 ∈ N0

such that {z ∈ D(A∞); ‖z‖m0 < ε} ⊆ W . Since x, y ∈ D(A∞) ⊂ D(Am0)
and Tm0 is hypercyclic, hence topologically transitive, there is t0 such that
U := (x + V ) ∩ Tm0(t0)

−1(y + V ) 6= ∅, where V := {z ∈ D(Am0); ‖z‖m0 < ε}.
Since U is open in (D(Am0), ‖ · ‖m0) and D(A∞) is dense in (D(Am0), ‖ · ‖m0),
there is z ∈ D(A∞) with ‖x − z‖m0 < ε, ‖y − Tm0(t0)(z)‖m0 < ε, that is
z − x ∈ W, T∞(t0)(z) − y = Tm0(t0)(z) − y ∈ W which shows (x + W ) ∩
T∞(t0)−1(y +W ) 6= ∅, i.e. the topological transitivity of T∞.

Because the inclusion ι : (D(A∞), (‖·‖n)n∈N0) ↪→ E is continuous, has dense
range, and ι ◦ T∞ = T ◦ ι we have HC(T∞) ⊆ HC(T ) and HC(T∞) is dense in
E. �

Remark 3.3 In a more general setting, it can be shown that given a strongly
reduced projective spectrum X = (Xα)α∈I and a topological transitive semi-
group (T (t)α)t≥0 on each of the components, the induced semigroup on the
projective limit of X is topologically transitive again, cf. [10, proposition 2.1].

With the same kind of arguments we used to prove theorem 3.2 we can prove
the following result.

Theorem 3.4 Let A be the generator of a C0-semigroup T on a Banach space
E. Let λ ∈ ρ(A) and R(λ,A) the resolvent operator of A in λ. Then, the
following are equivalent.

i) R(λ,A) is hypercyclic on E.

ii) (λ−A) is hypercyclic on (D(A∞), (‖ · ‖n)n∈N0).

Proof: First, note that

R(λ,A) : (D(A∞), (‖ · ‖n)n∈N0) → (D(A∞), (‖ · ‖n)n∈N0)

is well defined and continuous, since it commutes with A and R(λ,A)◦(λ−A) =
(λ−A) ◦R(λ,A) = idD(A∞).

In order to show that i) implies ii) observe that

R(λ,A)n : E → (D(An), ‖ · ‖n)

is a continuous isomorphism for every n ∈ N and that the following diagram
commutes.

E
R(λ,A) - E

(D(An), ‖ · ‖n)

R(λ,A)n

? R(λ,A)- (D(An), ‖ · ‖n)

R(λ,A)n

?

From the single operator analogue of lemma 1.4 (see e.g. [39, lemma 2.1]) it
follows that R(λ,A) is hypercyclic on (D(An), ‖ · ‖n) for all n ∈ N.

Let x, y ∈ D(A∞) and W a neighbourhood of zero in (D(A∞), (‖ · ‖n)n∈N0).
Then there are ε > 0 and m0 ∈ N0 such that {z ∈ D(A∞); ‖z‖m0 < ε} ⊆ W .
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Since x, y ∈ D(A∞) ⊂ D(Am0) and R(λ,A) is hypercyclic, hence topologically
transitive, on (D(Am0), ‖ · ‖m0) there is k ∈ N such that U := (x + V ) ∩
R(λ,A)−k(y + V ) 6= ∅, where V := {z ∈ D(Am0); ‖z‖m0 < ε}. Since U is open
in (D(Am0), ‖·‖m0) andD(A∞) is dense in (D(Am0), ‖·‖m0), there is z ∈ D(A∞)
with ‖x−z‖m0 < ε, ‖y−R(λ,A)k(z)‖m0 < ε, that is z−x ∈W, R(λ,A)kz−y ∈
W which shows (x + W ) ∩ R(λ,A)−k 6= ∅, i.e. the topological transitivity of
R(λ,A) on (D(A∞), (‖·‖n)n∈N0). From the bijectivity of R(λ,A) on (D(A∞), (‖·
‖n)n∈N0) it immediately follows that its inverse (λ − A) is transitive, too. As
already observed in the proof of theorem 3.2, (D(A∞), (‖ · ‖n)n∈N0) is separable
so that (λ−A) is hypercyclic by remark 1.2 iii).

In order to show that ii) implies i), note that by ii) R(λ,A) is hypercyclic
on (D(A∞), (‖ · ‖n)n∈N0). Since the inclusion ι : (D(A∞), (‖ · ‖n)n∈N0) ↪→ E is
continuous, has dense range and makes the diagram

(D(A∞), (‖ · ‖n)n∈N0)
R(λ,A)- (D(A∞), (‖ · ‖n)n∈N0)

E

ι

? R(λ,A) - E

ι

?

commutative, i) follows again from the single operator analogue of lemma 1.4
(cf. [39, lemma 2.1]).

�
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4 Chaotic C0-semigroups

In this chapter we turn our attention to chaotic C0-semigroups. Parts of it will
be published in Proceedings of the American Mathematical Society under the
title ”On chaotic C0-semigroups and infinitely regular hypercyclic vectors”.

There are many notions of chaos for a (discrete) dynamical system, that is
for a continuous mapping f : X → X on a metric space (X, d). We recall that a
continuous mapping f : X → X is called topologically transitive if for every pair
of non-empty open subsets U, V of X there is n ∈ N such that fn(U) ∩ V 6= ∅.

f is said to have sensitive dependence on initial data if there is δ > 0 such
that for every x ∈ X and every neighbourhood U of x there is y ∈ U and n ∈ N
such that d(fn(x), fn(y)) > δ.

Recall that the set of periodic points of f is defined as per(f) := {x ∈
X; ∃n ∈ N : fn(x) = x}.

Definition 4.1 Let f be a continuous mapping on the metric space (X, d).
Then f is called chaotic in sense of Devaney if f is topologically transitive, has
sensitive dependence on initial data and if the set per(f) is dense in X.

On the other hand, f is called chaotic in the sense of Auslander and Yorke
if f has sensitive dependence on initial data and if there is a point x ∈ X such
that the orbit of x under f , i.e. orb(f, x) := {fn(x); n ∈ N0} is dense in (X, d).

It was shown by Banks et al. in [4] that a transitive mapping f on a metric
space with a dense set of periodic points already has sensitive dependence on
initial data. So f is chaotic in the sense of Devaney if and only if it is transitive
and has a dense set of periodic points.

Now, if E is a separable Banach space and T is an operator on it, we see that
the notion of chaos in the sense of Auslander and Yorke for T is very close to hy-
percyclicity. In fact, Godefroy and Shapiro showed in [26, proposition 6.1] that
every hypercyclic operator T has sensitive dependence on initial data in a very
dramatic way. Since the proof for the analogous result for C0-semigroups works
with exactly the same arguments, we include it for the reader’s convenience.

Proposition 4.2 (cf. [26, proposition 6.1.]) Let E be a Banach space and
T a hypercyclic operator, respectively a hypercyclic C0-semigroup, on E.

Then, for every x ∈ E there is a dense Gδ-set S(x) ⊂ E, such that the set
of orbit-differences {Tnx−Tny;n ∈ N0}, resp. {T (t)x−T (t)y; t ≥ 0}, is dense
in E for every y ∈ S(x).

Proof: Since by remark 1.2 HC(T ) is a dense Gδ-subset of E, the same is
true for the set S(x) := x−HC(T ). Obviously, x−y ∈ HC(T ) for all y ∈ S(x),
so that the desired property of y follows from the linearity of T , resp. T (t). �

Remark 4.3 Note that the above proposition is true in the single operator case
not only for Banach spaces but more general for F -spaces.

In view of this proposition, every hypercyclic operator T on a Banach space
E is chaotic in the sense of Auslander and Yorke. Because of this, one usually
means ”chaotic in the sense of Devaney” when speaking of a chaotic operator
on a Banach space E.

We make the same convention for C0-semigroups.
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Definition 4.4 A C0-semigroup T on a separable Banach space E is called
chaotic if it is hypercyclic and if the set of periodic points per(T ) := {x ∈
E;∃ t > 0 : T (t)x = x} is dense in E.

There is a number of articles devoted to chaotic C0-semigroups. As for
hypercyclic C0-semigroups the first article dealing systematically with chaotic
semigroups is the one by Desch et al. [19]. See also [5], [6], [18], [41], [42], [40],
[58], or [59].

As a first result about chaotic C0-semigroups we present the following inter-
esting theorem.

Theorem 4.5 Let T be a chaotic C0-semigroup on a Banach space E. Then,
T satisfies the Hypercyclicity Criterion and is therefore weakly mixing.

Proof: The theorem follows directly from the denseness of per(T ) and
theorem 2.7. �

Remark 4.6 The analogue of theorem 4.5 in the single operator case is due to
Bès, Peris [8, proposition 2.14]. Their proof uses the deep result of Ansari [2,
theorem 1] stating that T k is a hypercyclic operator whenever T is.

Combining the above theorem and theorem 2.9 yields the following result.

Corollary 4.7 Let T be a chaotic C0-semigroup on E. Then, for every t > 0
the operator T (t) is weakly mixing.

In particular, the above corollary yields that all operators T (t), t > 0, of
a chaotic C0-semigroup T are hypercyclic. Despite this fact, it is not known
whether a chaotic C0-semigroup has to contain a single chaotic operator.

The most commonly used condition for proving that a given C0-semigroup
on a complex Banach space is chaotic is due to Desch, Schappacher and Webb
(see e.g. [41], [40], [58], or [59]). They gave the following sufficient condition on
the spectrum of the generator (A,D(A)) for the semigroup to be chaotic:

(DSW)

For some open and connected subset U of the point spectrum σp(A) ⊆
C of A intersecting the imaginary axis there exist eigenvectors xλ cor-
responding to λ ∈ U such that for each φ ∈ E′\{0} the mapping
Fφ(λ) = φ(xλ) is holomorphic on U and does not vanish identically.

Theorem 4.8 (cf. [19, theorem 3.1]) A C0-semigroup T on a separable com-
plex Banach space E is chaotic whenever its generator (A,D(A)) satisfies (DSW).

We will now show that condition (DSW) actually implies the chaoticity of
each T (t), t > 0. Its proof uses an argument of [26].

Theorem 4.9 Let E be a separable complex Banach space and let A be the gen-
erator of the C0-semigroup T on E. Suppose that condition (DSW) is fulfilled.

Then, for every t0 > 0 the operator T (t0) is chaotic.

Proof: Let t0 > 0. One could use corollary 4.7 to obtain that T (t0) is
hypercyclic, but we prefer to give a direct proof here.
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We define the sets Ω1 := {z ∈ U ; Re z > 0} and Ω2 := {z ∈ U ; Re z < 0}
which are non-empty, open subsets of U by hypothesis and therefore contain
accumulation points in U . Since U is open and intersects the imaginary axis,
the set Ω3 := {z ∈ U ; Re z = 0, t0Im z ∈ 2πQ} contains accumulation points in
U , as well.

We set Vj := span{xλ; λ ∈ Ωj}, j = 1, 2, 3 and observe that Vj is a dense
subspace of E: If φ ∈ E′ is such that 0 = φ(xλ) = Fφ(λ) for every λ ∈ Ωj
it follows that the holomorphic function Fφ vanishes identically on U , since Ωj
have accumulation points in U . By hypothesis this implies φ = 0 so that from
the Hahn-Banach theorem we obtain the density of Vj in E.

Using the spectral mapping theorem for the point spectrum of C0-semigroups
(see appendix A.7), i.e. σp(T (t))\{0} = etσp(A), t ≥ 0, we get for

∑m
k=1 αkxλk

∈
V2 and n ∈ N : T (t0)n(

∑m
k=1 αkxλk

) =
∑m
k=1 αke

nt0λkxλk
which converges to

zero as n tends to infinity since |et0λk | < 1.
If we set S : V1 → V1,

∑m
k=1 αkxλk

7→
∑m
k=1 αke

−t0λkxλk
(note that S

is well-defined because of the linear independence of {xλ; λ ∈ U}) we obtain
T (t0) ◦ S = id

V1
once again from the spectral mapping theorem. Because of

|et0λk | > 1 for λk ∈ Ω1 we see that Snx tends to zero as n tends to infinity for
all x ∈ V1. We have proved that T (t0) satisfies the Hypercyclicity Criterion for
single operators (see theorem 2.3), so it is hypercyclic.

It remains to show that the dense subspace V3 consists of periodic points of

T (t0). To do so we take p =
∑m
k=1 αkxλk

∈ V3 with λk ∈ Ω3 and et0λk = e
2πi

jk
nk

(with jk, nk being integers). For M :=
∏m
k=1 nk we then obtain by apply-

ing the spectral mapping theorem again T (t0)M (p) = T (t0)M (
∑m
k=1 αkxλk

) =∑m
k=1 αkxλk

= p, i.e. the set of periodic vectors of T (t0) is dense in E. �

We can use the above theorem to show that under suitable assumptions on
the point spectrum of its generator every operator of a C0-semigroup is chaotic
as soon as it has a non-trivial periodic point.

Corollary 4.10 Let A be the generator of a C0-semigroup T on a separable
complex Banach space. Assume that σp(A) is an open, connected, non-empty
subset of C and that for every λ ∈ σp(A) there is a corresponding eigenvector
xλ such that for each φ ∈ E′\{0} the mapping Fφ(λ) = φ(xλ) is holomorphic
on σp(A) and does not vanish identically. Then, the following are equivalent.

i) T (t) is a chaotic operator for every t > 0.

ii) T is chaotic.

iii) T has a non-trivial periodic point.

iv) σp(A) intersects the imaginary axis.

Proof: In view of theorem 4.9 it clearly suffices to show that iii) implies
iv). That T has a non-trivial periodic point x 6= 0 means there is s > 0 such
that T (s)x = x, i.e. 1 ∈ σp(T (s)). By the spectral mapping theorem for the
point spectrum (see appendix A.7) this means that there is λ ∈ σp(A) such that
1 = esλ. In particular, λ ∈ iR so that σp(A) intersects the imaginary axis. �
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Example 4.11 a) In [19, example 4.12] Desch et al. showed that the solution
semigroup T on L2([0,∞),C) of the partial differential equation

ut(x, t) = auxx(x, t) + bux(x, t) + cu(x, t)
u(0, t) = 0 for t ≥ 0
u(x, 0) = f(x) for x ≥ 0 with some f ∈ L2([0,∞),C)

satisfies condition (DSW) if a, b, c > 0 and c < b2/(2a) < 1. So, by theorem
4.9, each of the operators T (t), t > 0, is chaotic. The unboundedness of [0,∞)
herein is essential, as will be seen in 4.15.

b) Let ρ : [0,∞) → (0,∞) be a Lebesgue-measurable function satisfying the
growth condition sups≥0 ρ(s)/ρ(s + t) < Meωt for some M > 1, ω ∈ R and all
t ≥ 0, and let p ≥ 1. We consider the weighted Lebesgue space Lpρ([0,∞),C)
of measurable complex valued functions with its natural norm, i.e. ‖u‖p :=∫∞
0
|u(t)|pρ(t)dt. Then (Lpρ([0,∞),C), ‖ · ‖) is a Banach space on which by

(T (t)u)(s) := u(t+s), t, s ≥ 0 we have defined a strongly continuous semigroup.
It is a well-known fact that the domain of the generator of T is given by D(A) =
{u ∈ Lpρ([0,∞),C);u is absolutely continuous and u′ ∈ Lpρ([0,∞),C)} and that
Au = u′.

For the special case ρ(t) = e−αt we see that for λ ∈ C with Reλ < α the
function xλ(t) := eλt belongs to Lpρ([0,∞),C), so that λ belongs to the point
spectrum of (A,D(A)). For every g ∈ Lqρ([0,∞),C), where 1/p + 1/q = 1, we
have that {λ ∈ C; Reλ < α} → C, λ 7→

∫∞
0
eλtg(t)ρ(t)dt is holomorphic (the

integrand is locally bounded in λ by an integrable function, so that one can
interchange the integral and the derivative, see e.g. [20, theorem 13.8.6]). Since
the considered function is a Laplace transform, the condition (DSW) is fulfilled
whenever α > 0.

It should be noted that in this particular example condition (DSW) is equiv-
alent to the chaoticity of the translation semigroup T (cf. [18, theorem 4.6], or
corollary 4.10).

c) Let

C0,ρ := {f : R → C; f continuous, lim
x→∞

|f(x)|ρ(x) = lim
x→−∞

|f(x)|ρ(x) = 0}

be equipped with ‖f‖ := supx∈R |f(x)|ρ(x), where ρ : R → R, x 7→ min{1, 1/|x|}.
According to [41, theorem 4], the translation semigroup T = (T (t))t≥0 with
T (t)f := f(· + t) is chaotic since limt→∞ ρ(t) = limt→−∞ ρ(t) = 0. It is easy
to verify that the point spectrum of the generator A coincides with the imagi-
nary axis, and that every T (t), t > 0, is chaotic, so that the ”spectral part” of
condition (DSW) is not necessary for the chaoticity of every T (t) of a chaotic
semigroup.

Next, we show that a C0-semigroup T whose generator A has the property
that (D(A), ‖ · ‖A) ↪→ E is compact, can never be chaotic. We first give a
condition ensuring non-hypercyclicity.

Theorem 4.12 Let T be a C0-semigroup on a Banach space E with generator A
such that σ(A) 6= ∅. Let ‖ · ‖A denote the graphnorm on D(A). If the imbedding
(D(A), ‖ · ‖A) ↪→ E is compact, then T is not hypercyclic.
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Proof: Since the resolvent set ρ(A) is not empty, we can choose λ ∈ ρ(A).
By compactness of (D(A), ‖ · ‖A) ↪→ E it follows that the resolvent R(λ,A) :
E → E is compact. Because of σ(R(λ,A))\{0} = 1

λ−σ(A) and σ(A) 6= ∅ there
is µ0 ∈ σ(R(λ,A))\{0}, which has to be an eigenvalue by the compactness of
R(λ,A). So µ0 is an eigenvalue of the adjoint R(λ,A)∗ = R(λ,A∗), too. Let φ
be a corresponding eigenvector. Then R(λ,A∗)φ = µ0φ, so that φ ∈ D(A∗) and
A∗φ = (λ − 1

µ0
)φ, i.e. A∗ has an eigenvalue, or equivalently σr(A) 6= ∅. Using

theorem 1.10 we see that T cannot be hypercyclic. �

Corollary 4.13 Let T be a C0-semigroup with generator A on a Banach space
E. If the imbedding (D(A), ‖ · ‖A) ↪→ E is compact, then T is not chaotic.

Proof: We assume that T is chaotic. In particular, there are t > 0 and
x ∈ E\{0} such that T (t)x = x. Using the spectral mapping theorem for the
point spectrum, we see that σ(A) 6= ∅. So, by the above theorem, T cannot be
hypercyclic which is a contradiction to the assumed chaoticity of T . �

We now apply our results to C0-semigroups on Lp(Ω) generated by strongly
elliptic partial differential operators, where Ω is bounded.

Let Ω ⊂ Rd be open and bounded, 1 < p < ∞. By Wm,p(Ω) we denote as
usual the Sobolev space of order m and p, i.e. Wm,p(Ω) is the completion of
the space

{u ∈ Cm(Ω);
∫

Ω

∑
|α|≤m

|Dαu|p dλd <∞}

endowed with the norm

‖u‖m,p := (
∫

Ω

∑
|α|≤m

|Dαu|p dλd)1/p,

where Dα := Dα1
1 . . . Dαd

d for α ∈ Nd0 with Dj := ∂
∂xj

, and λd denotes d-
dimensional Lebesgue measure. Furthermore, let Wm,p

0 (Ω) be the completion
of Cm0 (Ω) := {f ∈ Cm(Ω); supp f compact in Ω} equipped with ‖ · ‖m,p.

If ∂Ω is of class C1, it follows from Sobolev’s imbedding theorem (cf. [1,
theorem 6.3]) that the inclusion (Wm,p(Ω), ‖ · ‖m,p) ↪→ Lp(Ω) is compact for
every m ≥ 1.

Let m ∈ N and aα ∈ C∞(Ω) ∩C(Ω̄) for |α| ≤ 2m. For 1 < p <∞ we define

D(Ap) := W 2m,p(Ω) ∩Wm,p
0 (Ω)

and
Ap : D(Ap) → Lp(Ω), f 7→

∑
|α|≤2m

aαD
αf,

where all the derivatives are understood in the weak sense. Note that
(D(Ap), ‖ · ‖2m,p) is a Banach space for all 1 < p <∞.

Now, for 1 < p < ∞ the operator (Ap, D(Ap)) is called strongly elliptic if
there is a constant C > 0 such that for every x ∈ Ω̄ and every ξ ∈ Rd we have

Re [(−1)m
∑

|α|=2m

aα(x)ξα] ≥ C|ξ|2m.

Note that this definition is independent of p. For the proof of the following
theorem see e.g. [46, theorem 7.3.5].
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Theorem 4.14 Let ∂Ω be C∞ and 1 < p < ∞. If (Ap, D(Ap)) is strongly
elliptic, then (−Ap, D(Ap)) generates an (analytic) C0-semigroup on Lp(Ω).

If (Ap, D(Ap)) is strongly elliptic it follows from the above theorem that
(Ap, D(Ap)) is closed, i.e. D(Ap) equipped with the graph norm ‖ · ‖Ap is
a Banach space. Furthermore, it follows from the above, that the inclusion
(D(Ap), ‖ · ‖2m,p) ↪→ Lp(Ω) is compact for all 1 < p <∞. In order to show the
compactness of (D(Ap), ‖ · ‖Ap

) ↪→ Lp(Ω) it is therefore sufficient to show the
continuity of the inclusion (D(Ap), ‖ · ‖Ap

) ↪→ (D(Ap), ‖ · ‖n,p).
Since Ω is bounded and the coefficients aα of Ap belong to C(Ω̄) it follows

that the inclusion (D(Ap), ‖ · ‖2m,p) ↪→ (D(Ap), ‖ · ‖Ap) is continuous. Since the
last spaces are Banach spaces, the Open-Mapping theorem yields the continuity
of (D(Ap), ‖ · ‖Ap

) ↪→ (D(Ap), ‖ · ‖2m,p).

Corollary 4.15 Let ∂Ω be C∞ and (Ap, D(Ap)) be strongly elliptic, 1 < p <
∞.

The C0-semigroup Tp on Lp(Ω) generated by (−Ap, D(Ap)) is not chaotic.
Furthermore, if σ(Ap) 6= ∅ then Tp is not hypercyclic.

Proof: This is an immediate consequence of corollary 4.13, respectively
theorem 4.12, and the compactness of (D(Ap), ‖ · ‖Ap

) ↪→ Lp(Ω). �
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5 Transitive and mixing families of weighted com-
position operators

In this chapter we investigate when families of weighted composition opera-
tors on spaces of integrable functions and spaces of continuous functions are
transitive or mixing, respectively. Parts of this chapter will be published in
Ergodic Theory and Dynamical Systems under the title ”Hypercyclic, mixing,
and chaotic C0-semigroups induced by semiflows”.

Recall that a sequence of operators (Tn)n∈N on a Banach space E is called
transitive if for every pair of non-empty open subsets U, V of E there is some n ∈
N such that Tn(U)∩V 6= ∅, and that (Tn)n∈N is called mixing if Tn(U)∩V 6= ∅
for all sufficiently large n ∈ N. Generalising these notions we make the following
definition.

Definition 5.1 Let E be a Banach space and I 6= ∅ a set. A mapping T : I →
L(E) is called

i) hypercyclic if there is a vector x in E whose orbit orb(T, x) := {T (ι)x; ι ∈
I} is dense in E.

ii) transitive if for every pair of non-empty open subsets U, V of E there is
some ι ∈ I such that T (ι)(U) ∩ V 6= ∅.

iii) weakly mixing if T ⊕ T is transitive.

Furthermore, if I is a topological space and T is strongly continuous, we call
T mixing if for every pair of non-empty open subsets U, V of E there is some
compact subset J of I such that T (ι)(U) ∩ V 6= ∅ for all ι ∈ Jc.

Clearly, every weakly mixing T is transitive. The following proposition shows
that every mixing T is weakly mixing.

Proposition 5.2 Let E be a Banach space, I a topological space and T : I →
L(E) be strongly continuous. If T is mixing, then T is weakly mixing.

Proof: Observe first that for any compact subset J of I the strong conti-
nuity of T together with the Banach Steinhaus theorem yield sup{‖T (ι)‖; ι ∈
J} < ∞. This implies that I cannot be compact, because if it was compact
we would have T (ι)(B(0, 1)) ∩ {x ∈ E; ‖x‖ > M} = ∅ for all ι ∈ I, where
M := sup{‖T (ι)‖; ι ∈ I} <∞, contradicting the fact that T is mixing.

Now, let Ui, Vi ⊂ E be open and not empty, i = 1, 2. There are compact
subsets Ji, i = 1, 2, of I such that T (ι)(Ui)∩Vi 6= ∅ for all ι ∈ Jci . Since I is not
compact we have I\(J1∪J2) 6= ∅ and obviously T⊕T (ι)(U1×U2)∩(V1×V2) 6= ∅
for all ι ∈ I\(J1 ∪ J2). �

Remark 5.3 If E is separable it follows exactly as in remark 1.2 iii) that for
every transitive T the set of hypercyclic vectors HC(T ) is a dense Gδ-subset of
E.

On the other hand, if E is arbitrary and T is such that its set of hypercyclic
vectors is dense, then T is obviously transitive. A sufficient condition for a
hypercyclic T to have a dense set of hypercyclic vectors is for example that all



Families of weighted composition operators 30

the operators of T commute and have dense range. If this is the case one easily
checks that T (ι)(HC(T )) ⊂ HC(T ), which immediately yields that HC(T ) is
dense in E.

We now state our general hypotheses for the rest of this chapter. From now
on, unless stated explicitly otherwise, let X be a locally compact Hausdorff
space, I 6= ∅ a set and let ϕ : I × X → X be a mapping such that ϕ(ι, ·) is
injective and continuous for all ι ∈ I.

Furthermore, let ρ : X → (0,∞) be upper semicontinuous. We will consider
spaces of continuous functions C0,ρ(X,C) and C0,ρ(X,R), where C0,ρ(X,K) :=
{f : X → K continuous;∀ε > 0 : {x ∈ X; |f(x)|ρ(x) ≥ ε} is compact} is
equipped with the norm ‖f‖ := supx∈X |f(x)|ρ(x).

Moreover, we will consider spaces of p-integrable functions. In this context
we will always assume that X not only is locally compact and Hausdorff but
also σ-compact. Let µ be a (positive) locally finite Borel-measure on X. In
particular, µ is σ-finite since now we assume X to be σ-compact. (For the case
of general σ-finite measure spaces see section 5.3. We choose to start with the
case of X being a topological space because it will be of importance in chap-
ter 6.) For 1 ≤ p < ∞ let Lp(µ,R), Lp(µ,C) be as usual equipped with the
norm ‖f‖ := (

∫
X
|f |p dµ)1/p. Since in most occasions it will not matter whether

the considered functions are real or complex valued, we will write Lp(µ) and
C0,ρ(X) respectively for brevity. Since µ is locally finite, the set of compactly
supported, continuous functions Cc(X) is dense in Lp(µ) (cf. [53, theorem 3.14]),
and obviously Cc(X) is dense in C0,ρ(X), too.

We want to define a family of operators on Lp(µ) and C0,ρ(X) via ϕ by
setting Tϕ(ι)f := f ◦ ϕ(ι, ·) and want to characterise when it is transitive or
even mixing.

First, let us recall the following well known theorem characterising when
composition operators on Lp-spaces are continuous. For a proof see appendix
B.1.

Theorem 5.4 For an arbitrary σ-finite measure space (X,µ) and a measurable
function ψ : X → X the composition operator

Tψ : (Lp(µ), ‖ · ‖) → (Lp(µ), ‖ · ‖), f 7→ f ◦ ψ

is well-defined and continuous if and only if the image measure µψ of µ under
ψ is absolutely continuous with respect to µ and the µ-density fψ of µψ is µ-a.e.
bounded.

If Tψ is continuous, then ‖Tψ‖ = ‖fψ‖1/p∞ .

Note, that in the context of the above theorem Tψ is continuous on Lp(µ)
either for all 1 ≤ p <∞ or for none.

The corresponding theorem in the case of continuous functions reads as
follows. For a proof see appendix B.2.

Theorem 5.5 Let ψ : X → X be continuous. Then, the following are equiva-
lent:

i) The mapping Tψ : C0,ρ(X) → C0,ρ(X), f 7→ f ◦ ψ is well-defined and
continuous.
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ii) a) There is a constant C > 0 such that ρ(x) ≤ Cρ(ψ(x)) for all x ∈ X.

b) For every compact subset K of X and every δ > 0 the set ψ−1(K) ∩
{x ∈ X; ρ(x) ≥ δ} is compact.

Moreover, if Tψ is a continuous operator on C0,ρ(X) then we have ‖Tψ‖ =
inf{C > 0; C satisfies condition ii) a)}.

Example 5.6 i) We consider I = N and let X ∈ {N,Z} be equipped with
the discrete topology, µ = β dκ where κ is the counting measure on X and
β(l) =: βl > 0 for all l ∈ X. In this case, we write `pX(β) instead of Lp(µ). Let
ϕ(n, ·) = ψn = ψ ◦ . . . ◦ ψ with ψ(l) = l + 1. Then it follows that Tϕ(n) = Bn

with B being the backward shift.
Using theorem 5.4 we see that B is an operator on `pX(β) if and only if

supl∈X βl/βl+1 < ∞. Using Salas’ result [55] characterising hypercyclicity of
weighted backward shifts and the single operator analogue of lemma 1.4 one gets
that Tϕ is hypercyclic if and only if for every l ∈ X there is a sequence (nk)k∈N
such that limk→∞ βl+nk

= 0 for X = N, or limk→∞ βl+nk
= limk→∞ βl−nk

= 0
for X = Z respectively. A new proof of this will be obtained with corollary 5.10.

ii) Let I = [0,∞) andX ∈ {[0,∞),R} and let the measure µ have a Lebesgue
density ρ which is strictly positive. If ϕ(t, x) = t + x theorem 5.4 gives that
Tϕ(t) is continuous if and only if supx∈X ρ(x)/ρ(t+ x) <∞.

In the special case that Tϕ is a C0-semigroup on Lp(µ) (the so called left
translation semigroup) it was shown by Desch et al. in [19] that Tϕ is hypercyclic
if and only if for every x in X there is a sequence (tk)k∈N such that limk→∞ ρ(x+
tk) = 0 in case of X = [0,∞), respectively limk→∞ ρ(x + tk) = limk→∞ ρ(x −
tk) = 0 in case of X = R. Also, it was shown by Bermúdez et al. [6] that the
C0-semigroup Tϕ is mixing if and only if limx→∞ ρ(x) = 0 if X = [0,∞), or
limx→∞ ρ(x) = limx→∞ ρ(−x) = 0 if X = R respectively. These results will be
obtained as special cases in chapter 6.

5.1 Characterising transitivity and weak mixing

For the rest of this section we assume that the Borel measure µ and the upper
semicontinuous function ρ are always such that Tϕ defines a family of operators
on Lp(µ) and Cρ(X) respectively.

Instead of µϕ(ι,·) we write µι for the image measure of µ under ϕ(ι, ·). Before
we characterise topological transitivity of Tϕ on Lp(µ) in terms of µ, we make
some observations.

Since ϕ(ι, ·) is one-to-one for every ι ∈ I it has an inverse mapping from
ϕ(ι,X) to X which is denoted by ϕ(−ι, ·). In case of (I,+) being a group we
want to emphasis that in general ϕ(−ι, ·) is different from ϕ(κ, ·) for κ being the
additive inverse of ι in (I,+). Nevertheless, in the most important case when
ϕ(ι1 + ι2, ·) = ϕ(ι1, ·) ◦ ϕ(ι2, ·) for all ι1, ι2 ∈ I and ϕ(e, ·) = idX with e being
the unit in (I,+) (see chapter 6), we have ϕ(−ι, ·) = ϕ(κ, ·).

Apart form the measures (µι)ι∈I , we will need a second family of Borel
measures on X. From the σ-compactness of X and the continuity of ϕ(ι, ·) it
follows that for each closed subset C of X the image ϕ(ι, C) is an Fσ-set, and in
particular, Borel measurable. Since the closed subsets of X generate the Borel
σ-algebra over X, the injectivity of ϕ(ι, ·) now implies that ϕ(ι, B) is a Borel
subset of X whenever B is. So by setting µ−ι(B) := µ(ϕ(ι, B)) for ι ∈ I we get
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indeed a well-defined Borel measure on X. Again, note that in this context the
notion −ι has nothing to do in general with a possibly existing additive inverse
of ι in case of I being a group.

Remark 5.7 One should note that µ−ι(B) = µ(ϕ(ι, B)) = µ(ϕ(−ι, ·)−1(B) ∩
ϕ(ι,X)) = (µ|ϕ(ι,X))ϕ(−ι,·)(B), where µ|ϕ(ι,X) := µ( · ∩ ϕ(ι,X)). In particular,
this shows that for a Borel subset B with B ⊆ ϕ(ι,X) the equation µ(B) =
(µ−ι)ϕ(ι,·)(B) holds.

We are now able to formulate our theorem.

Theorem 5.8 Under the general assumptions, the following are equivalent.

i) Tϕ is weakly mixing on Lp(µ).

ii) Tϕ is topologically transitive on Lp(µ).

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Ln)n∈N of K and a sequence (ιn)n∈N in I such that

lim
n→∞

µ(K\Ln) = 0

and
lim
n→∞

µιn(Ln) = lim
n→∞

µ−ιn(Ln) = 0.

Proof: That i) implies ii) is obviuous. To prove that ii) implies iii) let
K ⊂ X be a fixed compact subset and let ε ∈ (0, 1/2p) be arbitrary. Since Tϕ
is transitive, there are ι ∈ I and v in Lp(µ) such that ‖v−χK‖p < ε2 as well as
‖Tϕ(ι)v + χK‖p < ε2.

By the continuity of the mapping Lp(µ,C) → Lp(µ,R), f 7→ Ref and the
fact that Tϕ commutes with it, we can assume without loss of generality that v
is real-valued.

Furthermore, for measurable subsets B ⊆ X we have ‖Tϕ(κ)(fχB)‖ ≤
‖Tϕ(κ)f‖ for arbitrary κ ∈ I and all f ∈ Lp(µ) and since the mapping Lp(µ,R) →
Lp(µ,R), f 7→ f+, where f+ := max{0, f}, satisfies ‖(f + g)+‖ ≤ ‖f+ + g+‖
and commutes with Tϕ we get

‖Tϕ(ι)(v+χB)‖ ≤ ‖(Tϕ(ι)v)+‖ = ‖(Tϕ(ι)v − (−χK) + (−χK))+‖
≤ ‖(Tϕ(ι)v − (−χK))+‖+ ‖(−χK)+‖
= ‖(Tϕ(ι)v − (−χK))+‖ ≤ ‖Tϕ(ι)v + χK‖ < ε2/p

and ‖v − χK‖p < ε2 implies

‖v−χB‖ ≤ ‖v−‖ = ‖(−v)+‖ = ‖(χK − v − χK)+‖
≤ ‖χK − v‖+ ‖(−χK)+‖ = ‖χK − v‖ < ε2/p,

where v− := max{0,−v}.
Additionally, we have

ε2 >

∫
K

|1− v|p dµ ≥
∫
K∩{|1−v|p>ε}

|1− v|p dµ ≥ ε µ(K ∩ {|1− v|p > ε}),
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that is µ(K ∩ {|1 − v|p > ε}) < ε. Using a similar argument we also obtain
µ(K ∩ {|1 + Tϕ(ι)v|p > ε}) < ε.

If we set L := K ∩{|1− v|p ≤ ε}∩{|1+Tϕ(ι)v|p ≤ ε}, we get µ(K\L) < 2ε,
and v|L ≥ 1− ε1/p > 0 a.e. as well as (Tϕ(ι)v)|L ≤ ε1/p − 1 < 0 a.e..

Using ϕ(−ι, ·)(ϕ(ι,K)) = K and µ|ϕ(−ι,X)
= (µ−ι)ϕ(ι,·) (cf. remark 5.7) we

conclude from all this and ε < 1/2p

ε2 > ‖v−χϕ(ι,K)‖p =
∫
ϕ(ι,K)

|v−|p dµ =
∫
ϕ(ι,K)

|v−|p d(µ|ϕ(ι,X)
)

=
∫
ϕ(ι,K)

|v−|p d(µ−ι)ϕ(ι,·) =
∫
ϕ(−ι,·)(ϕ(ι,K))

|v−(ϕ(ι, ·))|p dµ−ι

≥
∫
L

|(Tϕ(ι)v)−|p dµ−ι ≥ (1− ε1/p)pµ−ι(L) ≥ 1/2p µ−ι(L),

and

ε2 > ‖Tϕ(ι)(v+χL)‖p =
∫
|(v+(ϕ(ι, ·)))(χL(ϕ(ι, ·)))|p dµ

=
∫
ϕ(ι,·)−1(L)

|v+(ϕ(ι, ·))|p dµ =
∫
L

|v+|p dµι ≥ (1− ε1/p)pµι(L)

≥ 1/2p µι(L).

So we have found L ⊂ K measurable and ι ∈ I with µ(K\L) < 2ε, µι(L) < 2pε2

and µ−ι(L) < 2pε2. Since ε was arbitrarily small this shows ii).
In order to show that iii) implies i) let Ui, Vi, i = 1, 2, be non-empty open

subsets of Lp(µ). Let fi, gi be in Cc(X) with fi ∈ Ui and gi ∈ Vi, i = 1, 2.
We choose a compact subset K ⊂ X containing supp fi and supp gi and take
(Ln)n∈N and (ιn)n∈N as in ii) for K. Define for n ∈ N

vn := f1χLn + g1(ϕ(−ιn, ·))χϕ(ιn,Ln)

and
ṽn := f2χLn + g2(ϕ(−ιn, ·))χϕ(ιn,Ln)

which are measurable, bounded, and different from 0 at most on a subset of the
compact set K ∪ ϕ(ιn,K), hence belongs to Lp(µ).

Obviously,

‖vn − f1‖p ≤ ‖f1‖p∞µ(K\Ln) + ‖g1‖p∞µ−ιn(Ln)

and
‖Tϕ(ιn)vn − g1‖p ≤ ‖f1‖p∞µιn(Ln) + ‖g1‖p∞µ(K\Ln)

so that (vn)n∈N converges to f1 and (Tϕ(ιn)vn)n∈N converges to g1.
The same arguments show that (ṽn)n∈N converges to f2 and (Tϕ(ιn)ṽn)n∈N

converges to g2.
Thus, for n sufficiently large Tϕ(ιn)(Ui) ∩ Vi 6= ∅ for i = 1, 2, proving i). �

The question arises immediately, if in the above theorem Ln can always be
chosen to be K. In general, this is not the case, as will be shown in example
6.21.
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Remark 5.9 One should note that by theorem 5.8 Tϕ is transitive on Lp(µ)
either for all 1 ≤ p <∞ or for none.

Theorem 5.8 immediately yields a characterisation of transitivity for a single
composition operator Tψ on Lp(µ) by setting ϕ(n, ·) := ψ ◦ . . . ◦ ψ = ψn. In
particular, Tψ is transitive if and only if it is weakly mixing. Recall that on
separable Banach spaces topological transitivity is equivalent to hypercyclicity.
So if Lp(µ) is separable, the above theorem characterises hypercyclicity of Tψ.
Moreover, recall that Lp(µ) is separable for example when the Borel σ-algebra
is countably generated, which in turn is the case if X is a second countable
topological space.

Corollary 5.10 Let X be a locally compact, σ-compact, second countable Haus-
dorff space, µ a locally finite Borel measure on X and ψ : X → X continuous
and injective. If the induced composition operator Tψ on Lp(µ) is well-defined
and continuous, the following are equivalent.

i) Tψ is hypercyclic on Lp(µ).

ii) Tψ ⊕ Tψ is hypercyclic on Lp(µ)× Lp(µ).

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Lk)k∈N of K and a sequence of positive integers (nk)k∈N such that
limk→∞ µ(K\Lk) = 0 and limk→∞ µ(ψnk(Lk)) = limk→∞ µ(ψ−nk(Lk)) =
0.

Proof: This follows immediately from theorem 5.8 for I = N and ϕ(n, ·) :=
ψ ◦ . . . ◦ ψ (n factors). �

Example 5.11 Let X ∈ {N,Z} be equipped with the discrete topology, let
ψ : X → X be injective and µ({l}) =: βl > 0. Instead of Lp(µ) we write
`pN(β) or `pZ(β) respectively, and one checks easily that Tψ is well-defined and
continuous if and only if supl∈X βl/βψ(l) <∞.

In this special case, the compact subsets K of X are the finite ones, and the
sequence (µ(K\Ln))n∈N tends to 0 if and only if K = Ln for all but finitely
many n. Furthermore, one has µn(K) =

∑
l∈K∩ψn(X) βψ−n(l) and µ−n(K) =∑

l∈K βψn(l).
Going back to example 5.6, that is the special case ψ(l) := l+1, one usually

refers to Tψ as the unilateral shift in case of X = N, and in the case of X = Z
the standard name of Tψ is bilateral shift. So, in both cases, one has µ−n(K) =∑
l∈K βl+n for finite subsets K, and in the unilateral case one has µn(K) = 0

for n > maxK for every finite set K, whereas µn(K) =
∑
l∈K βl−n for finite K

in the bilateral case.
If K = {l1, . . . , lm} with l1 < . . . < lm we get using supl∈X βl/βl+1 =:

M <∞ that µ−n(K) =
∑
l∈K βl+n ≤ mM lm−l1βlm+n and in the bilateral case

µn(K) =
∑
l∈K βl−n ≤ mM lm−l1βlm−n

Using these inequalities and the separability of `pN(β) and `pZ(β), one im-
mediately gets a new proof of the following, well known characterisation of
hypercyclicity of weighted backward shifts due to Salas already mentioned in
example 5.6 (see [55, theorem 2.1]).
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Theorem 5.12 i) The bilateral shift on lpZ(β) is hypercyclic if and only if for
every l ∈ Z there is a strictly increasing sequence of positive integers (nk)k∈N
such that limk→∞ βl+nk

= limk→∞ βl−nk
= 0.

The bilateral shift is hypercyclic if and only if it is weakly mixing.
ii) The unilateral shift on lpN(β) is hypercyclic if and only if lim infn→∞ βn =

0.
The unilateral shift is hypercyclic if and only if it is weakly mixing.

Clearly, the set of locally finite Borel measures on X for which Tϕ defines
a family of operators on Lp(µ) is convex, so that one may ask whether this is
also true for the set of measures such that Tϕ is transitive. This is in general
not the case, as the following example shows.

Example 5.13 Consider X = N and ψ(l) := l + 1. For l = 2j + k with j ∈ N0

and k ∈ {0, . . . , 2j − 1} we define

βl :=
2j − k

2j

and

γl :=


2j−1−k

2j , 0 ≤ k ≤ 2j−1 − 1

3·2j−1−k
2j , 2j−1 ≤ k ≤ 2j − 1.

For l = 2j + k we then have

βl
βl+1

=


2j−k

2j−(k+1) = 1 + 1
2j−k−1 ≤ 2 , 0 ≤ k < 2j−1 − 1

2j−(2j−1)
2j = 1

2j ≤ 2 , k = 2j − 1,

and

γl
γl+1

=



2j−1−k
2j−1−(k+1) = 1 + 1

2j−1−k−1 ≤ 2 , 0 ≤ k ≤ 2j−1 − 2

2j−1−(2j−1−1)
3·2j−1−2j−1 = 1

2j ≤ 2 , k = 2j−1 − 1

3·2j−1−k
3·2j−1−(k+1) = 1 + 1

3·2j−1−k−1 ≤ 2 , 2j−1 ≤ k ≤ 2j − 2

3·2j−1−(2j−1)
2j = 3

2 − 1 + 1
2j ≤ 2 , k = 2j − 1,

so that the unilateral backwardshift B is well-defined on `pN(β) and `pN(γ), hence
on `pN(λβ+(1−λ)γ) for all λ ∈ [0, 1], where (λβ+(1−λ)γ)l := λβl+(1−λ)γl, l ∈
N.

Because
lim inf
l→∞

βl = lim
j→∞

β2j+1−1 = lim
j→∞

2−j = 0

and
lim inf
l→∞

γl = lim
j→∞

γ2j−1−1 = lim
j→∞

2−j = 0,

it follows from theorem 5.12 that B is hypercyclic on `pN(β) and `pN(γ).
On the other hand, for every λ ∈ (0, 1) we have for l = 2j + k

λβl+(1−λ)γl =

 λ 2j−k
2j + (1− λ) 2j−1−k

2j ≥ λ/2 , 0 ≤ k ≤ 2j−1 − 1

λ 2j−k
2j + (1− λ) 3·2j−1−k

2j ≥ (1− λ)/2 , 2j−1 ≤ k ≤ 2j − 1
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so that lim inf l→∞ λβl + (1− λ)γl ≥ min{λ, 1− λ}/2 > 0.
Together with the above, theorem 5.12 now yields that B is hypercyclic on

`pN(λβ + (1− λ)γ) if and only if λ ∈ {0, 1}.

Now, we turn to the spaces C0,ρ(X). Remember that in this context we
only assume X to be locally compact and Hausdorff. Before we formulate our
theorem we make the following convention. We set sup ∅ = 0 in the context of
sets of positive numbers.

Theorem 5.14 Additionally to the general hypotheses assume that for all com-
pact subsets K of X we have infx∈K ρ(x) > 0. Then, among the following, i)
implies ii) and ii) implies iii).

i) Tϕ is weakly mixing on C0,ρ(X).

ii) Tϕ is topologically transitive on C0,ρ(X).

iii) For every compact subset K of X we can find a sequence (ιn)n∈N in I such
that

lim
n→∞

sup
x∈ϕ(ιn,K)

ρ(x) = lim
n→∞

sup
x∈ϕ(ιn,·)−1(K)

ρ(x) = 0.

Furthermore, if ϕ(ι, ·) : X → X is an open mapping for all ι ∈ I, then the above
are equivalent.

Proof: Obviously, i) implies ii). Now, assume that ii) holds, i.e. Tϕ is transi-
tive. Let K be a compact subset of X and ε ∈ (0, infx∈K ρ(x)/2). Furthermore,
let f ∈ Cc(X) be positive with f|K ≡ 1. From the topological transitivity of
Tϕ it follows that there are ι and v ∈ C0,ρ(X) such that ‖v − f‖ < ε and
‖Tϕ(ι)v + f‖ < ε and by the same kind of argument as in the proof of theorem
5.8 we can assume without loss of generality that v is real valued.

From the positivity of f it follows again that

‖Tϕ(ι)v+‖ < ε

as well as
‖v−‖ < ε.

Moreover, from ‖Tϕ(ι)v + f‖ < ε we obtain v(ϕ(ι, x)) < ε/ρ(x)− 1 < −1/2 for
every x ∈ K, and ‖v−f‖ < ε implies v(x) > 1− ε/ρ(x) > 1/2 whenever x ∈ K.

Using this, we obtain

ε > ‖Tϕ(ι)v+‖ ≥ sup
x∈ϕ(ι,·)−1(K)

v+(ϕ(ι, x))ρ(x) > 1/2 sup
x∈ϕ(ι,·)−1(K)

ρ(x)

and

ε > ‖v−‖ ≥ sup
x∈ϕ(ι,K)

|v−(x)|ρ(x) = sup
x∈ϕ(ι,K)

v−(x)ρ(x) ≥ 1/2 sup
x∈ϕ(ι,K)

ρ(x)

which proves iii).
Now assume that ϕ(ι, ·) : X → X is an open mapping for all ι ∈ I. It follows

that ϕ(ι,X) is open and ϕ(−ι, ·) : ϕ(ι,X) → X is continuous for all ι ∈ I.
Let Ui, Vi be non-empty open subsets of C0,ρ(X), i = 1, 2. Choose fi, gi ∈

Cc(X) such that fi ∈ Ui, gi ∈ Vi, i = 1, 2, and let K be a compact subset
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of X containing supp fi and supp gi, i = 1, 2. It follows that the mappings
gi ◦ ϕ(−ι, ·) : ϕ(ι,X) → K are continuous and their supports are contained
in the compact set ϕ(ι,K) so that gi ◦ ϕ(−ι, ·) ∈ Cc(ϕ(ι,X)). Since now by
hypothesis ϕ(ι,X) is an open subset of X, we can extend gi ◦ ϕ(−ι, ·) to a
compactly supported continuous function g̃i,ι on X by setting it equal to 0
outside ϕ(ι,X). Clearly, Tϕ(ι)g̃i,ι = gi.

Let (ιn)n∈N be as in iii) for the compact set K. Then, by the above con-
sideration, the functions vi,n := g̃i,ιn belong to Cc(X), hence to C0,ρ(X). One
has

‖vi,n‖ = sup
x∈ϕ(ιn,K)

|gi(ϕ(−ιn, x))|ρ(x) ≤ ‖gi‖sup sup
x∈ϕ(ιn,K)

ρ(x)

so that limn→∞(fi + vi,n) = fi.
On the other hand

‖Tϕ(ιn)fi‖ = sup
x∈ϕ(ιn,·)−1(K)

|fi(ϕ(ιn, x))|ρ(x) ≤ ‖fi‖sup sup
x∈ϕ(ιn,·)−1(K)

ρ(x)

so that limn→∞ Tϕ(ιn)fi = 0. Thus, limn→∞ Tϕ(ιn)(fi + vi,n) = gi so that
Tϕ(ιn)(Ui) ∩ Vi 6= ∅, i = 1, 2, proving i). �

In the case when X = Ω ⊂ Rd is open, we can use the following deep result
from real analysis to obtain a corollary. For a proof of an even more general
statement see for example [16, theorem I.4.3].

Theorem 5.15 (Brouwer’s theorem) Let Ω ⊂ Rd be open and ψ : Ω → Rd
be continuous and injective. Then ψ(Ω) is an open subset of Rd.

Corollary 5.16 Let Ω be an open subset of Rd and ρ a positive, upper semi-
continuous function on Ω satisfying infx∈K ρ(x) > 0 for every compact subset
K of Ω.

Then, the following are equivalent.

i) The family Tϕ is transitive on C0,ρ(Ω).

ii) For every compact subset K of Ω there exists a sequence (ιn)n∈N in I such
that

lim
n→∞

sup
x∈ϕ(ιn,K)

ρ(x) = lim
n→∞

sup
x∈ϕ(ιn,·)−1(K)

ρ(x) = 0.

iii) Tϕ is weakly mixing on C0,ρ(Ω).

Proof: This follows immediately from Brouwer’s theorem and theorem
5.14. �

Remark 5.17 Note that if the mappings ϕ(ι, ·), ι ∈ I, have a common fixed
point x0 ∈ Ω then Tϕ obviously cannot be transitive on C0,ρ(Ω) because of
ρ(x0) > 0. This is completely different in the Lp(µ) setting, as example 6.21
will show.

As in the Lp(µ) case we obtain the following result for a single composition
operator Tψ on C0,ρ(X) which we want to state explicitly.
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Corollary 5.18 Let ρ be a positive, upper semicontinuous function on X sat-
isfying infx∈K ρ(x) > 0 for every compact subset K of X, and ψ : X → X
injective and continuous such that Tψ is a well defined operator on C0,ρ(X).

Then, among the following i) implies ii) and ii) implies iii).

i) Tψ is weakly mixing on C0,ρ(X).

ii) Tψ is transitive on C0,ρ(X).

iii) For every compact subset K of X there exists a sequence of positive inte-
gers (nk)k∈N such that

lim
k→∞

sup
x∈ψnk (K)

ρ(x) = lim
k→∞

sup
x∈ψ−nk (K)

ρ(x) = 0.

Furthermore, if ψ : X → X is an open mapping then the above are equivalent.

Proof: This follows immediately from theorem 5.16 for I = N and ϕ(n, ·) :=
ψ ◦ . . . ◦ ψ (n factors). �

Example 5.19 Again, we equip X ∈ {N,Z} with the discrete topology. Let
ψ : X → X,n ∈ N, be injective and ρ := (ρl)l∈X be a sequence of positive
numbers. Instead of C0,ρ(X) we write c0,ρ(X). Because now the pre-image
of every finite set is finite it follows from theorem 5.5 that the composition
operator c0,ρ(X) → c0,ρ(X), (xl)l∈X 7→ (xψ(l))l∈X is continuous if and only if
supl∈X ρl/ρψ(l) <∞.

By using the separability of c0,ρ(X) and supl∈X ρl/ρl+1 < ∞ we again ob-
tain for the special case of ψ(l) = l + 1 the following theorem characterising
hypercyclicity of the backwardshift on c0,ρ(X).

Theorem 5.20 Let X ∈ {N,Z} and let (ρl)l∈X be such that supl∈X ρl/ρl+1 <
∞. For the backwardshift operator B on c0,ρ(X) we have the following.

i) The unilateral shift on c0,ρ(N) is hypercyclic if and only if it is weakly
mixing if and only if lim inf l→∞ ρl = 0.

ii) The bilateral shift on c0,ρ(Z) is hypercyclic if and only if it is weakly mixing
if and only if for every l ∈ Z there is a sequence of natural numbers (nk)k∈N
such that limk→∞ ρl−nk

= limk→∞ ρl+nk
= 0.

In the rest of this section we will study families of weighted composition
operators. From now one we do not assume any longer that µ respectively ρ are
such that Tϕ defines a family of operators on Lp(µ), respectively C0,ρ(X).

Let w : I × X → (0,∞) be such that for every ι ∈ I we have 1/w(ι, ·) ∈
L∞loc(µ). For the rest of this chapter we assume that for ι ∈ I the map-
ping Tw,ϕ(ι) : Lp(µ) → Lp(µ), f 7→ w(ι, ·)f(ϕ(ι, ·)) is a well-defined operator
on Lp(µ) and if all w(ι, ·) are continuous that the same is true for Tw,ϕ(ι) :
C0,ρ(X) → C0,ρ(X), f 7→ w(ι, ·)f(ϕ(ι, ·)). Tw,ϕ(ι) is called a weighted composi-
tion operator.

Before we continue, let us present two theorems characterising when weighted
composition operators are well-defined and continuous. For their proofs, see
appendix B. Note, that in the Lp(µ) case we now no longer have continuity on
all the spaces Lp(µ), 1 ≤ p <∞ in general.
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Theorem 5.21 Let (X,µ) be an arbitrary σ-finite measure space and let w :
X → (0,∞), ψ : X → X be a measurable functions. The weighted composition
operator Tw,ψ : (Lp(µ), ‖·‖) → (Lp(µ), ‖·‖), f 7→ w(·) f(ψ(·)) is well-defined and
continuous if and only if the measure µwp,ψ is absolutely continuous with respect
to µ and the µ-density fwp,ψ of µwp,ψ is µ-a.e. bounded, where µwp,ψ(A) =∫
ψ−1(A)

wp dµ.

If Tw,ψ is continuous, then ‖Tw,ψ‖ = ‖fwp,ψ‖1/p∞ .

Theorem 5.22 Let X be a locally compact Hausdorff topological space and let
w : X → (0,∞), ψ : X → X be continuous. For a strictly positive, upper
semicontinuous function ρ the following are equivalent.

i) The mapping Tw,ψ : C0,ρ(X) → C0,ρ(X), f 7→ w(·) f(ψ(·)) is well-defined
and continuous.

ii) a) There is a constant C > 0 such that w(x)ρ(x) ≤ Cρ(ψ(x)) for all
x ∈ X.

b) For every compact subset K of X and every δ > 0 the set ψ−1(K) ∩
{x ∈ X;w(x)ρ(x) ≥ δ} is compact.

Moreover, if Tw,ψ defines an operator on C0,ρ(X) we have ‖Tw,ψ‖ = inf{C >
0; C satisfies condition ii) a)}.

In order to formulate our next results conveniently we introduce the following
notation. For p ∈ [1,∞) and ι ∈ I we define the following measures

νp,ι(B) :=
∫
ϕ(ι,·)−1(B)

w(ι, ·)p dµ

and
νp,−ι(B) :=

∫
ϕ(ι,B)

1/w(ι, ϕ(−ι, ·))p dµ.

Note that ϕ(ι, B) is a Borel measurable subset of X whenever B is, as
mentioned at the beginning of this section. So it follows that νp,−ι is a well
defined Borel measure on X. The same is obviously true for νp,ι.

By standard arguments one shows that for positive, measurable functions f
on X we have ∫

f dνp,ι =
∫
w(ι, ·)pf(ϕ(ι, ·)) dµ

and ∫
f dνp,−ι =

∫
χϕ(ι,X)f(ϕ(−ι, ·))/w(ι, ϕ(−ι, ·))p dµ.

Observe that in the case w(ι, ·) ≡ 1 for all ι ∈ I we have νp,ι = µι and
νp,−ι = µ−ι for all p ≥ 1, ι ∈ I.

Now we will characterise when Tw,ϕ is transitive on Lp(µ) or C0,ρ(X), respec-
tively, where as before X is a locally compact Hausdorff space when considering
C0,ρ(X), respectively X is a locally compact, σ-compact Hausdorff space when
considering Lp(µ).
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Theorem 5.23 Under the general assumptions, the following are equivalent.

i) Tw,ϕ is weakly mixing on Lp(µ).

ii) Tw,ϕ is transitive on Lp(µ).

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Ln)n∈N of K and a sequence (ιn)n∈N in I such that

lim
n→∞

µ(K\Ln) = 0

as well as
lim
n→∞

νp,ιn(Ln) = lim
n→∞

νp,−ιn(Ln) = 0.

Proof: We will write T instead of Tw,ϕ for brevity.
Clearly, i) implies ii). To prove that ii) implies iii) let K be a compact subset

of X and ε ∈ (0, 1/2). From the transitivity of T it follows that there are ι in I
and v in Lp(µ) such that ‖v − χK‖p < ε2 as well as ‖T (ι)v + χK‖p < ε2. Since
w(ι, ·) is a positive function, we conclude as in the proof of theorem 5.8, that
without loss of generality, v can be chosen to be real-valued.

Using the positivity of w(ι, ·) again one shows in the same way as in the
proof of theorem 5.8 that for measurable subsets B ⊂ X

‖T (ι)(v+χB)‖p < ε2,

and
‖v−χB‖p < ε2.

Again as in the proof of theorem 5.8 this implies µ(K∩{|1−v| > ε}) < ε, and
µ(K∩{|1+T (ι)v| > ε}) < ε. Setting L := K∪{|1−v|p ≤ ε}∪{|1+T (ι)v|p ≤ ε})
we again get µ(K\L) < 2ε, and v|L ≥ 1− ε1/p as well as (T (ι)v)|L ≤ ε1/p − 1.

With this and
∫
f dνp,−ι =

∫
χϕ(ι,X)f(ϕ(−ι, ·))/w(ι, ϕ(−ι, ·))p dµ we obtain

ε2 >

∫
ϕ(ι,K)

|v−|p dµ =
∫
ϕ(ι,K)

w(ι, ϕ(−ι, ·))p

w(ι, ϕ(−ι, ·))p
|v−|p dµ

=
∫
w(ι, ϕ(−ι, ·))p

w(ι, ϕ(−ι, ·))p
|v−(ϕ(ι, ϕ(−ι, ·)))|pχK(ϕ(−ι, ·)) dµ

=
∫
|T (ι)v−|pχK dνp,−ι ≥

∫
L

|T (ι)v−|p dνp,−ι

≥ (1− ε1/p)pνp,−ι(L).

Using
∫
f dνp,ι =

∫
w(ι, ·)pf(ϕ(ι, ·)) dµ we get

ε2 > ‖T (ι)(v+χL)‖p =
∫
w(ι, ·)p|v+ ◦ ϕ(ι, ·)|pχL ◦ ϕ(ι, ·) dµ

=
∫
L

(v+)p dνp,ι ≥ (1− ε1/p)pνp,ι(L).

So, we have found a measurabel subset L of K and ι ∈ I for which µ(K\L) < 2ε
and νp,ι(L) < 2pε2 as well as νp,−ι(L) < 2pε2.

Note that for this implication we did not need w(ι, ·)−1 ∈ L∞loc(µ).
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In order to show that iii) implies i), let Ui, Vi, i = 1, 2, be non-empty open
subsets of Lp(µ) and fi, gi ∈ Cc(X) be such that fi ∈ U, gi ∈ V, i = 1, 2. We
choose K ⊂ X containing supp fi and supp gi and let (Ln)n∈N and (ιn)n∈N be
as in iii) for K.

For n ∈ N we set

vn := (
g1(ϕ(−ιn, ·))

w(ιn, (ϕ(−ιn, ·)))
)χϕ(ιn,Ln)

and

ṽn := (
g2(ϕ(−ιn, ·))

w(ιn, (ϕ(−ιn, ·)))
)χϕ(ιn,Ln)

which are measurable and because of 1/w(ι, ·) ∈ L∞loc(µ) in Lp(µ). Then,

‖vn‖p ≤ ‖g1‖p∞νp,−ιn(Ln)

so that (f1χLn
+ vn)n∈N converges to f1. Furthermore

‖T (ιn)(f1χLn
)‖p ≤ ‖f1‖p∞νp,ιn(Ln),

so that (T (ιn)(f1χLn
))n∈N converges to 0. Since T (ιn)vn − g1 = −g1χK\Ln

we
see that (T (ιn)(f1χLn

+ vn))n∈N converges to g1. The same arguments yield
that (f2χLn + ṽn)n∈N converges to f2 and (T (ιn)(f2χLn + ṽn))n∈N converges
to g2. Thus, T (ιn)(Ui) ∩ Vi 6= ∅, i = 1, 2, for sufficiently large n, so that iii)
follows. �

Corollary 5.24 Let X be a locally compact, σ-compact, second countable Haus-
dorff space, µ a locally finite Borel measure on X, α ∈ K\{0} and ψ : X → X
injective and continuous such that the corresponding composition operator Tψ is
a well-defined operator on Lp(µ). Then, the following are equivalent.

i) αTψ is weakly mixing on Lp(µ).

ii) αTψ is hypercyclic on Lp(µ).

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Lk)k∈N of K and a sequence of natural numbers (nk)k∈N such that
limk→∞ µ(K\Lk) = 0 and

lim
n→∞

αpnkµnk
(Lk) = lim

k→∞
α−pnkµ−nk

(Lk) = 0.

Proof: That i) implies ii) is obvious. In order to show that ii) implies
iii) we need a result due to Leòn-Saavedra and Müller stating that an operator
T is hypercyclic if and only if λT is hypercyclic for all |λ| = 1 (cf. [37]). Let
|λ| = 1 be such that λα > 0. Then it follows from the hypercyclicity of λαT
and theorem 5.23 that for every compact subset K of X there are a sequence of
measurable subsets (Lk)k∈N of K and a sequence of natural numbers (nk)k∈N
such that limk→∞ µ(K\Lk) = 0 and

lim
n→∞

(λα)pnkµnk
(Lk) = lim

k→∞
(λα)−pnkµ−nk

(Lk) = 0.

From the fact that |λ| = 1 follows iii).
To show that iii) implies i) let again |λ| = 1 be such that λα > 0. Then

theorem 5.23 and the single operator analogue of theorem 2.4 imply that λαT
satisfies the Hypercyclicity Criterion. Now, because of |λ| = 1 it follows easily
that αT satisfies the Hypercyclicity Criterion so that αT is weakly mixing. �
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Example 5.25 Let X be N equipped with the discrete topology and the count-
ing measure κ. Let βl := 1 for all l ∈ N. Then the unilateral backward shift
B is well-defined on `p := `pN(β) and clearly is not hypercyclic because it is a
contraction.

Let (γn)n∈N0 be a sequence of positive numbers. We want to know when the
family {γnBn; n ∈ N0} is hypercyclic on `p. Let K be a compact, i.e. finite, sub-
set of N. Then a sequence (Ln)n∈N of subsets of K satisfies limn→∞ κ(K\Ln) =
0 if and only if Ln = K for all but finitely many n ∈ N.

Clearly, νp,−n(K) =
∫
K
γ−pn dµ−n = γ−pn

∑
l∈K βl+n and for sufficiently large

n we have νp,n(K) =
∫
K
χψn(N)γ

p
n dµn = 0. Now, theorem 5.23 combined with

the arguments from example 5.11 implies that {γnBn; n ∈ N0} is hypercyclic
on `p if and only if {γnBn; n ∈ N0} is weakly mixing on `p if and only if
lim infn→∞ γ−pn βn = 0.

By corollary 5.24, λB, where λ 6= 0, is a hypercyclic operator on `p if and
only if |λ| > 1. This was already shown by Rolewicz in [52].

Remark 5.26 Leòn-Saavedra introduced in [35] the notion of Cesàro-hypercyc-
licity. Let T be an operator on the Banach space E and define for n ∈ N the
operator Mn := 1

n

∑n−1
i=0 T

n. Then T is called Cesàro-hypercyclic if there is
x ∈ E such that {Mn(T )x; n ∈ N} is dense in E. Leòn-Saavedra proved (cf. [35,
theorem 2.4]) that T is Cesàro-hypercyclic if and only if the family { 1

nT
n; n ∈ N}

is hypercyclic. This, together with theorem 5.23 for w(n, ·) ≡ 1/n, ϕ(n, ·) = ψn

and the fact that νp,n(K) = n−pµn(K) and νp,−n(K) = npµ−n(K) immediately
yields the following result.

Corollary 5.27 Let X be a locally compact, σ-compact, second countable Haus-
dorff space, µ a locally finite Borel measure on X and ψ : X → X continuous
and injective. If the induced composition operator Tψ on Lp(µ) is well-defined
and continuous, the following are equivalent.

i) Tψ is Cesàro-hypercyclic on Lp(µ).

ii) For every compact subset K of X there are a sequence (Lk)k∈N of mea-
surable subsets of K and a sequence of natural numbers (nk)k∈N such that
limk→∞ µ(K\Lk) = 0 and

lim
k→∞

n−pk µnk
(Lk) = lim

k→∞
npkµ−nk

(Lk) = 0.

We now turn to the C0,ρ(X) case. Recall that in this context X is only
assumed to be a locally compact Hausdorff space.

Theorem 5.28 Under the general hypotheses and the additional assumption
that for all compact subsets K of X we have infx∈K ρ(x) > 0, among the fol-
lowing, i) implies ii) and ii) implies iii).

i) Tw,ϕ is weakly mixing on C0,ρ(X).

ii) Tw,ϕ is topologically transitive on C0,ρ(X)
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iii) For every compact subset K of X we can find a sequence (ιn)n∈N in I such
that

lim
n→∞

sup
x∈ϕ(ιn,·)−1(K)

w(ιn, x)ρ(x) = lim
n→∞

sup
x∈ϕ(ιn,K)

ρ(x)
w(ιn, ϕ(−ιn, x))

= 0.

Moreover, if ϕ(ι, ·) : X → X is an open mapping for all ι ∈ I then the above
are equivalent.

Proof: We write T instead of Tw,ϕ for brevity. Assume that ii) holds. Let
K be a compact subset of X, ε ∈ (0, infx∈K ρ(x)/2), and f ∈ Cc(X) positive
with f|K ≡ 1. Since T is transitive we find ι ∈ I and v ∈ C0,ρ(X) such that
‖v − f‖ < ε and ‖T (ι)v + f‖ < ε. Using the same arguments as in the proof of
theorem 5.8 we can assume without loss of generality that v is real valued.

Again, the positivity of f yields ‖T (ι)v+‖ < ε and ‖v−‖ < ε. Furthermore,
‖T (ι)v+ f‖ < ε implies w(ι, x)v(ϕ(ι, x)) < ε/ρ(x)− 1 < −1/2 for every x ∈ K,
and ‖v − f‖ < ε gives v(x) > 1− ε/ρ(x) > 1/2 for all x ∈ K.

From this we get

ε > ‖T (ι)v+‖ ≥ sup
x∈ϕ(ι,·)−1(K)

w(ι, x)v+(ϕ(ι, x))ρ(x)

> 1/2 sup
x∈ϕ(ι,·)−1(K)

w(ι, x)ρ(x)

as well as

ε > ‖v−‖ ≥ sup
x∈ϕ(ι,K)

v−(x)ρ(x) = sup
x∈ϕ(ι,K)

w(ι, ϕ(−ι, x))v−(x)
ρ(x)

w(ι, ϕ(−ι, x))

> 1/2 sup
x∈ϕ(ι,K)

ρ(x)
w(ι, ϕ(−ι, x))

which proves iii).
The rest of the proof is done by similar arguments as the proof of theorem

5.14. Now, one only has to define vi,n := gi(ϕ(−ιn,·))
w(ιn,ϕ(−ιn,·)) . �

Using Brouwer’s theorem, we again obtain the following result for X = Ω ⊂
Rd open.

Corollary 5.29 Let Ω be an open subset of Rd and ρ a positive, upper semi-
continuous function on Ω satisfying infx∈K ρ(x) > 0 for every compact subset
K of Ω.

Then, the following are equivalent.

i) Tw,ϕ is weakly mixing on C0,ρ(Ω).

ii) Tw,ϕ is transitive on C0,ρ(Ω).

iii) For every compact subset K of Ω we can find a sequence (ιn)n∈N in I such
that

lim
n→∞

sup
x∈ϕ(ιn,·)−1(K)

w(ιn, x)ρ(x) = lim
n→∞

sup
x∈ϕ(ιn,K)

ρ(x)
w(ιn, ϕ(−ιn, x))

= 0.
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Remark 5.30 As mentioned in remark 5.26, using [35, theorem 2.4] and the-
orem 5.28, respectively corollary 5.29, one gets a characterisation of Cesàro-
hypercyclicity for a single continuous composition operator on c0,β(X), X ∈
{N,Z}, respectively C0,ρ(Ω).

5.2 Characterising mixing

We now turn our attention to mixing families of weighted composition oper-
ators. From now on we will therefore assume that I is a topological space
and that the mapping I → L(E), ι 7→ Tw,ϕ(ι) is strongly continuous, where
E ∈ {Lp(µ), C0,ρ(X)}. Remember that w is strictly positive and that in the
case E = Lp(µ) we assume that 1/w(ι, ·) ∈ L∞loc(µ) and that for E = C0,ρ(X)
we assume w(ι, ·) ∈ C(X) for all ι ∈ I.

Recall that
νp,ι(B) :=

∫
ϕ(ι,·)−1(B)

w(ι, ·)p dµ

and
νp,−ι(B) :=

∫
ϕ(ι,B)

1/w(ι, ϕ(−ι, ·))p dµ.

In the Lp(µ)-setting we have the following theorem.

Theorem 5.31 Under the general hypotheses, the following are equivalent.

i) The family Tw,ϕ is mixing on Lp(µ).

ii) For every compact subset K of X and every ε > 0 there is a compact
subset J ⊂ I, J 6= I such that for all ι in the complement of J there is
a measurable subset Lι of K satisfying µ(K\Lι) < ε, νp,−ι(Lι) < ε and
νp,ι(Lι) < ε.

Proof: We write T instead of Tw,ϕ for brevity. To show that i) implies ii)
let K be a compact subset of X and ε > 0. Since T is mixing, we find a compact
subset J of I (which is different from I as shown in the proof of proposition
5.2) such that T (ι)(B(χK , ε))∩B(−χK , ε) 6= ∅ for every ι from Jc, i.e. for every
ι ∈ Jc there is vι in B(χK , ε) such that T (ι)vι ∈ B(−χK , ε).

As in the proof of theorem 5.8 we can without loss of generality assume that
vι is real valued so that again ‖T (ι)(v+

ι χB)‖p < εp, and ‖v−ι χB‖p < εp for every
ι ∈ Jc and every measurable subset B of X.

Because of

εp >

∫
K

|1− vι|p dµ ≥ µ(K ∩ {|1− vι| > 1/2})/2p

and
εp >

∫
K

|1 + T (ι)vι|p dµ ≥ µ(K ∩ {|1 + T (ι)vι| > 1/2})/2p

it follows for Lι := K ∩ {|1− vι| ≤ 1/2} ∩ {|1 + T (ι)vι| ≤ 1/2} that µ(K\Lι) <
2p+1εp for ι ∈ Jc.

From the definition of Lι we have T (ι)vι|Lι ≤ −1/2 as well as vι|Lι ≥ 1/2 µ-
a.e., so that as in the proof of theorem 5.23 for ι ∈ Jc

εp ≥ ‖v−ι χϕ(ι,Lι)‖
p ≥ νp,−ι(Lι)/2p
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as well as
εp > ‖T (ι)(v+

ι χLι
)‖p ≥ νp,ι(Lι)/2p.

So for every ι ∈ Jc we have found a measurable subsets Lι of K such that
νp,−ι(Lι) < 2pεp, νp,ι < 2pεp, and µ(K\Lι) < 2p+1εp which shows ii). Note
that we did not need 1/w(ι, ·) ∈ Lploc(µ) for this implication.

Now to prove that ii) implies i), let f, g ∈ Cc(X), let K be a compact subset
of X containing supp f and supp g and let ε > 0. Moreover, let J and (Lι)ι∈Jc

be as in ii) for K and ε.
For ι ∈ Jc we define

vι := fχLι
+ (

g(ϕ(−ι, ·))
w(ι, (ϕ(−ι, ·)))

)χϕ(ι,Lι),

which is measurable and because of 1/w(ι, ·) ∈ L∞loc(µ) in Lp(µ). Then we have

vι − f = (
g(ϕ(−ι, ·))

w(ι, (ϕ(−ι, ·)))
)χϕ(ι,Lι) − fχK\Lι

and
T (ι)vι − g = w(ι, ·)f(ϕ(ι, ·))χϕ(ι,·)−1(Lι) − gχK\Lι

.

Thus,

‖ g(ϕ(−ι, ·))
w(ι, (ϕ(−ι, ·)))

)χϕ(ι,Lι)‖
p ≤ ‖g‖p∞νp,−ι(Lι)

and
‖w(ι, ·)f(ϕ(ι, ·))χϕ(ι,·)−1(Lι)‖

p ≤ ‖f‖p∞νp,ι(Lι).

Since µ(K\Lι) < ε for ι ∈ Jc, it follows that ‖vι − f‖p < ε(‖g‖p∞ + ‖f‖p∞)
and ‖T (ι)vι − g‖p < ε(‖f‖p∞ + ‖g‖p∞). The density of Cc(X) now implies that
T is mixing on Lp(µ). �

Example 5.32 Let T be the unilateral or bilateral shift on `pβ(N) or `pβ(Z)
respectively. Combining our considerations form Example 5.11 with the above
theorem for w(n, ·) ≡ 1 gives that T is mixing if and only if limn→∞ βn = 0 or
limn→∞ βn = limn→−∞ βn = 0, respectively.

The characterisation for Tw,ϕ to be mixing on C0,ρ(X) reads as follows.

Theorem 5.33 Under the general hypotheses and the additional assumption
that for all compact subsets K of X we have infx∈K ρ(x) > 0, among the fol-
lowing, i) implies ii).

i) Tw,ϕ is mixing on C0,ρ(X).

ii) For every compact subset K of X and every ε > 0 we can find a compact
subset J of I different from I such that for all ι ∈ Jc we have

sup
x∈ϕ(ι,·)−1(K)

w(ι, x)ρ(x) < ε and sup
x∈ϕ(ι,K)

ρ(x)
w(ι, ϕ(−ι, x))

< ε.

Moreover, if ϕ(ι, ·) : X → X is an open mapping for all ι ∈ I then ii) also
implies i).
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Proof: Again, we write T instead of Tw,ϕ for brevity. Assume that T is
mixing. Let K be a compact subset of X, ε ∈ (0, infx∈K ρ(x)/2), and f ∈ Cc(X)
positive with f|K ≡ 1. Since T is mixing there is a compact subset J of I different
form I such that for all ι ∈ Jc we have vι ∈ C0,ρ(X) satisfying ‖vι− f‖ < ε and
‖T (ι)vι + f‖ < ε. Using the same arguments as in the proof of theorem 5.8 we
can assume without loss of generality that vι is real valued. This in turn again
shows ‖T (ι)v+

ι ‖ < ε and ‖v−ι ‖ < ε.
Moreover, ‖T (ι)vι + f‖ < ε implies w(ι, x)vι(ϕ(ι, x)) < ε/ρ(x) − 1 < −1/2

for every x ∈ K, and ‖vι − f‖ < ε gives vι(x) > 1− ε/ρ(x) > 1/2 for all x ∈ K.
From this we get

ε > ‖T (ι)v+
ι ‖ ≥ sup

x∈ϕ(ι,·)−1(K)

w(ι, x)v+
ι (ϕ(ι, x))ρ(x)

> 1/2 sup
x∈ϕ(ι,·)−1(K)

w(ι, x)ρ(x)

as well as

ε > ‖v−ι ‖ ≥ sup
x∈ϕ(ι,K)

v−ι (x)ρ(x) = sup
x∈ϕ(ι,K)

w(ι, ϕ(−ι, x))v−ι (x)
ρ(x)

w(ι, ϕ(−ι, x))

> 1/2 sup
x∈ϕ(ι,K)

ρ(x)
w(ι, ϕ(−ι, x))

for all ι ∈ Jc which proves ii).
Now we assume that ϕ(ι, ·) : X → X is an open mapping for all ι ∈ I.

Let U, V be non-empty open subsets of C0,ρ(X). Choose f, g ∈ Cc(X) and
ε > 0 such that B(f, ε) ⊂ U,B(g, ε) ⊂ V and let K be a compact subset of X
containing supp f and supp g. Let J be as in ii) forK and ε/(‖f‖sup+‖g‖sup+1).

It follows from the additional hypotheses that g(ϕ(−ι, ·))/w(ι, ϕ(−ι, ·)) :
ϕ(ι,X) → K is continuous for all ι ∈ Jc. Because ϕ(ι,X) is open, we can
extend it as usual to a compactly supported continuous function gι on X for
which T (ι)gι = gι.

Additionally we have

‖gι‖ = sup
x∈ϕ(ι,K)

| g(ϕ(−ι, x))
w(ι, ϕ(−ι, x))

|ρ(x) ≤ ‖g‖sup sup
x∈ϕ(ι,K)

ρ(x)
w(ι, ϕ(−ι, x))

< ε

and

‖T (ι)f‖ = sup
x∈ϕ(ι,·)−1(K)

|w(ι, x)f(ϕ(ι, x))|ρ(x)

≤ ‖f‖sup sup
x∈ϕ(ι,·)−1(K)

w(ι, x)ρ(x)

< ε.

This shows that f + gι ∈ B(f, ε) ⊂ U and T (ι)(f + gι) ∈ B(g, ε) ⊂ V for all
ι ∈ Jc so that T is mixing. �

In chapter 6 we will apply the results of this chapter to characterise hy-
percyclic and mixing C0-semigroups generated by first order partial differential
operators.
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5.3 Weighted composition operators on arbitrary σ-finite
measure spaces

Up to now, we have chosen X to be a locally compact, σ-compact Hausdorff
topological space equipped with a locally finite Borel measure µ. We did this
because of applications we had in mind which will be dealt with in the next
chapter. Still it is possible to derive analogous characterisations for families of
weighted composition operators on spaces of p-integrable functions over arbi-
trary σ-finite measure spaces. We will do this now for the sake of completeness.

Let (X,A, µ) be an arbitrary σ-finite measure space, I a non-empty set,
w : I ×X → (0,∞) a mapping such that w(ι, ·) is a measurable and 1/w(ι, ·) ∈
L∞loc(µ) (i.e. χA/w(ι, ·) ∈ L∞(µ) for every A ∈ A with µ(A) <∞) for every ι in
I, and let ϕ : I ×X → X be a mapping such that ϕ(ι, ·) is bimeasurable on X
for every ι ∈ I, (that is ϕ(ι, ·) is bijective, measurable and ϕ(−ι, ·) := ϕ(ι, ·)−1

is measurable, too) such that Tw,ϕ(ι) : Lp(µ) → Lp(µ), f 7→ w(ι, ·)f(ϕ(ι, ·)) is a
well-defined operator for all ι ∈ I.

Again, let

νp,ι(B) :=
∫
ϕ(ι,·)−1(B)

w(ι, ·)p dµ

and
νp,−ι(B) :=

∫
ϕ(ι,B)

1/w(ι, ϕ(−ι, ·))p dµ.

Theorem 5.34 Under the above hypotheses, the following are equivalent.

i) Tw,ϕ is weakly mixing on Lp(µ).

ii) Tw,ϕ is transitive on Lp(µ).

iii) For every A ∈ A with µ(A) <∞ there are a sequence of measurable subsets
(An)n∈N of A and a sequence (ιn)n∈N in I such that limn→∞ µ(A\An) = 0
as well as

lim
n→∞

νp,ιn(A) = lim
n→∞

νp,−ιn(A) = 0.

Proof: The proof that ii) implies iii) is almost verbatim the same as the
proof of the corresponding implication of theorem 5.23 when replacing K by A
and taking into account that now ϕ(ι,X) = X for all ι.

In order to show that ii) implies i), let U, V be non-empty open subsets of
Lp(µ). Let f ∈ U, g ∈ V be simple functions, that is f =

∑n
i=1 βiχBi

and
g =

∑k
j=1 γjχCj

with (Bi)1≤i≤n and (Cj)1≤j≤k pairwise disjoint, respectively,
and µ(

⋃
1≤i≤nBi ∪

⋃
1≤j≤k Cj) < ∞. Let A :=

⋃
1≤i≤nBi ∪

⋃
1≤j≤k Cj and

chose (An)n∈N and (ιn)n∈N be as in ii) for A.
Now the proof is exactly the same as the corresponding implication of the-

orem 5.23 with the now obvious modifications. �

If I is a topological space we again have a characterisation of when Tw,ϕ is
mixing.

Theorem 5.35 Under the above hypotheses, the following are equivalent for
the family of operators (Tw,ϕ(ι) : Lp(µ) → Lp(µ), f 7→ w(ι, ·)f(ϕ(ι, ·)))ι∈I .
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i) The family Tw,ϕ is mixing on Lp(µ).

ii) For every A ∈ A with µ(A) < ∞ and every ε > 0 there is a compact
subset J ⊂ I, J 6= I such that for all ι in the complement of J there is
a measurable subset Aι of A satisfying µ(A\Aι) < ε, νp,−ι(A) < ε and
νp,ι(A) < ε.

Proof: The proof is an obvious modification of the proof of theorem 5.31
as the proof of theorem 5.34 is of theorem 5.23. �

Remark 5.36 As mentioned in remark 5.26, using [35, theorem 2.4] and theo-
rem 5.34 one gets a characterisation of Cesàro-hypercyclicity for a single weighted
composition operator Lp(µ).
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6 Hypercyclic and mixing C0-semigroups gener-
ated by first order partial differential opera-
tors

In [19] Desch et al. considered the so called left translation semigroup T (t)f =
f(·+t) on Lpρ(R), Lpρ([0,∞)) and C0,ρ(R), C0,ρ([0,∞)) which is generated by the
first order ordinary differential operator f 7→ d

dxf (here, ρ is a weight function).
They showed that the translation semigroup is hypercyclic if and only if for
every x ∈ R, respectively x ∈ [0,∞), there is a strictly increasing sequence
(tn)n∈N of positive numbers tending to infinity such that limn→∞ ρ(x + tn) =
limn→∞ ρ(x− tn) = 0, respectively limn→∞ ρ(x+ tn) = 0.

Chaoticity of this semigroup on the same spaces was characterised by Matsui
et al. in [41, 42], whereas Bermúdez et al. [6, theorem 4.3] characterised when
the translation semigroup is mixing.

Sufficient conditions for hypercyclicity and chaoticity of C0-semigroups on
spaces of continuous functions and spaces of integrable functions generated by
other first order ordinary differential operators were given by Matsui and Takeo
[40], Myjak and Rudnicki [43] and Takeo [58].

In this chapter we will use the results from chapter 5 to characterise system-
atically when C0-semigroups generated by first order partial differential opera-
tors are hypercyclic or mixing on spaces of integrable and spaces of continuous
functions, whereas chaoticity is postponed to the next chapter. Parts of this
chapter will appear in Ergodic Theory and Dynamical Systems under the title
”Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows”.

6.1 Hypercyclic and mixing C0-semigroups generated by
gradient operators

In what follows Ω is an open subset of Rd. We call a continuous function
ϕ : [0,∞)×Ω → Ω a semiflow if ϕ(0, ·) = idΩ, ϕ(t, ·) ◦ϕ(s, ·) = ϕ(t+ s, ·) for all
t, s ≥ 0 and if ϕ(t, ·) is injective for all t ≥ 0. Typically, ϕ will be the solution
semiflow of the initial value problem

ẋ = F (x), x(0) = x0

on Ω, where F is a locally Lipschitz continuous vector field over Ω. Furthermore,
let µ be a locally finite Borel measure and ρ a positive, upper semicontinuous
function on Ω. We adopt the notation of chapter 5, that is we write µt for
the image measure of µ under ϕ(t, ·) etc. Remember that by theorem 5.4 the
mapping Tϕ(t) : Lp(µ) → Lp(µ), f 7→ f(ϕ(t, ·)), 1 ≤ p < ∞ is well-defined and
an operator if and only if µt is absolutely continuous with respect to µ and its
µ-density ft is µ-a.e. bounded.

Before we give a theorem characterising when Tϕ is a C0-semigroup on Lp(µ)
we need some properties of semiflows.

Proposition 6.1 Let ϕ be a semiflow on Ω. Then the following hold.

i) For every s ≥ 0 we have limt→s ϕ(t, ·) = ϕ(s, ·) locally uniformly.
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ii) For every compact subset K of Ω and every δ > 0 satisfying K+B(0, δ) :=
{x+y; x ∈ K, y ∈ B(0, δ)} ⊂ Ω there is n ∈ N such that for every t < 1/n
we have K ∩ ϕ(t, (K +B(0, δ))c) = ∅.

Proof: i) Let s ≥ 0 and K be a compact subset of Ω. From the continuity
of ϕ it follows that ϕ : [0, s+ 1]×K → Ω is uniformly continuous. This implies
in particular that limt→s ϕ(t, x) = ϕ(s, x) uniformly for all x ∈ K.

ii) Again, let K be a compact subset of Ω and δ > 0 as in ii). We assume to
the contrary that for every n ∈ N there are yn ∈ (K+B(0, δ))c and tn ∈ (0, 1/n)
such that ϕ(tn, yn) ∈ K. Without loss of generality we can assume (tn)n∈N to
be strictly decreasing and (ϕ(tn, yn))n∈N to be convergent to some z ∈ K.

The continuity of ϕ implies that (ϕ(t1 − tn, ·))n∈N is equicontinuous. Using
this and limn→∞ ϕ(tn, yn) = z we immediately get that limn→∞ ϕ(t1, yn) =
limn→∞ ϕ(t1− tn, ϕ(tn, yn)) = ϕ(t1, z). By Brouwer’s theorem ϕ(t1, ·)−1 is con-
tinuous, thus limn→∞ yn = z ∈ K, contradicting yn ∈ (K +B(0, δ))c. �

The next theorem states when Tϕ is a C0-semigroup on Lp(µ).

Theorem 6.2 The following are equivalent.

i) The family of mappings Tϕ = (Tϕ(t))t≥0 defined by Tϕ(t) : (Lp(µ), ‖·‖) →
(Lp(µ), ‖ · ‖), f 7→ f ◦ ϕ(t, ·) is well-defined and a C0-semigroup.

ii) µt has an µ-density ft ∈ L∞(µ) and there are constants M ≥ 1, ω ∈ R
such that ‖ft‖∞ ≤Metω for all t ≥ 0.

Proof: That i) implies ii) follows immediately from theorem 5.4 and ap-
pendix A.1. To show that ii) implies i) let f ∈ Cc(Ω) and K := suppf . Let
δ > 0 be such that K + Bδ := K + B(0, δ) ⊂ Ω. Using proposition 6.1 ii) we
obtain for sufficiently small t ≥ 0∫

|f(ϕ(t, x))− f(x)|p dµ(x) =
∫
K+Bδ

|f(ϕ(t, x))− f(x)|p dµ(x).

Thus, from the local finiteness of µ and Lebesgue’s dominated convergence the-
orem we get limt→∞ ‖T (t)f − f‖ = 0. Since Cc(Ω) is dense in Lp(µ) it follows
from ii) that (Tϕ(t))t≥0 is a C0-semigroup on Lp(µ). �

Definition 6.3 Let ϕ be a semiflow on Ω. A Borel measure µ on Ω is called
(Lp-)admissible (for ϕ) if it is locally finite and satisfies condition ii) of the above
theorem. Then, the C0-semigroup Tϕ from the above theorem will be referred
to as the one induced by ϕ and we will sometimes write T instead of Tϕ when
it is clear from the context, which semiflow ϕ we consider.

The following theorem describes when Tϕ is a C0-semigroup on C0,ρ(Ω).

Theorem 6.4 Under the general assumptions the following are equivalent.

i) The family of operators Tϕ(t) : C0,ρ(Ω) → C0,ρ(Ω), f 7→ f(ϕ(t, ·)), t ≥ 0,
is well-defined and forms a C0-semigroup Tϕ.

ii) a) There are constants M ≥ 1, ω ∈ R such that ρ(x) ≤ Metωρ(ϕ(t, x))
for all x ∈ Ω and t ≥ 0.
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b) For every compact subset K of Ω and every δ > 0 the set ϕ(t, ·)−1(K)∩
{x ∈ X; ρ(x) ≥ δ} is compact for every t ≥ 0.

Proof: Having in mind that the norms of the operators from a C0-semigroup
grow exponentially (see appendix A.1), theorem 5.5 immediately shows that i)
implies ii).

Now, if ii) holds it follows from theorem 5.5 that Tϕ is a mapping form [0,∞)
into the space of operators on C0,ρ(Ω) satisfying ‖Tϕ(t)‖ ≤Metω.

Let f ∈ Cc(Ω) and K := suppf . Let δ > 0 be such that K + Bδ := K +
B(0, δ) ⊂ Ω. Proposition 6.1 ii) gives the existence of n ∈ N such that ϕ(t, y) /∈
K for every y ∈ (K + Bδ)c and 0 ≤ t < 1/n. We set L := supz∈K+Bδ

ρ(z) + 1
which is positive and finite since ρ is positive and upper semicontinuous.

Let ε > 0. By the uniform continuity of f there is η > 0 such that |f(x) −
f(y)| < ε/L for all |x− y| < η. Proposition 6.1 i) implies that there is t0 < 1/n
such that |ϕ(t, x)−x| < η for all x ∈ K+Bδ and 0 ≤ t ≤ t0 so that |f(ϕ(t, x))−
f(x)|ρ(x) < ε for all x ∈ K + Bδ and 0 ≤ t ≤ t0. Since f(ϕ(t, x)) = f(x) = 0
for every x ∈ (K + Bδ)c and 0 ≤ t ≤ t0 this implies ‖T (t)f − f‖ ≤ ε whenever
0 ≤ t ≤ t0.

Because Cc(Ω) is dense in C0,ρ(Ω) it follows from ‖T (t)‖ ≤Metω that Tϕ is
a C0-semigroup on C0,ρ(Ω). �

As in the case of Lp(µ)-spaces we make the following definition.

Definition 6.5 A positive-valued, upper semicontinuous function ρ on Ω is
called a (C0-)admissible weight function (for the semiflow ϕ) if it satisfies con-
ditions a) and b) of theorem 6.4 ii). Then the C0-semigroup Tϕ from the above
theorem will be referred to as the one induced by ϕ and we will sometimes write
T instead of Tϕ.

To proceed, let F : Ω → Rd be a locally Lipschitz continuous vector field such
that the unique solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) = x0

exists for all t ≥ 0 and all x0 ∈ Ω. Clearly, ϕ then is a semiflow and induces a
C0-semigroup Tϕ on Lp(µ) or C0,ρ(Ω) if µ or ρ are admissible.

The following proposition contains sufficient conditions when ϕ(·, x0) exists
for all t ≥ 0 and all x0 ∈ Ω. Its proof will be given in appendix C.

Proposition 6.6 Let Ω be an open, star-like subset of Rd and F : Ω → Rd
be a differentiable vector field such that supx∈Ω |DF (x)| < ∞ and F ∈ C(Ω̄).
Furthermore assume that ∂Ω = ∂Ω̄ is C1 and that 〈F (y), n(y)〉 < 0 for all
y ∈ ∂Ω where n(y) denotes the outer normal in y.

Then, for each x0 ∈ Ω the solution of the initial value problem ẋ = F (x), x(0) =
x0 exists for all t ≥ 0.

We are interested in the dynamical behaviour of solutions of the following
Cauchy problem

∀ (t, x) ∈ [0,∞)× Ω :
∂

∂t
u(t, x) =

d∑
i=1

Fi(x)
∂

∂xi
u(t, x)

u(0, ·) = f0
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on E ∈ {Lp(µ), C0,ρ(Ω)}, where f0 ∈ E is given.
The connection between this Cauchy problem and the C0-semigroup Tϕ in-

duced by ϕ is given in the following theorem.

Theorem 6.7 Let F be a locally Lipschitz continuous vector field on Ω such
that the unique solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) = x0

exists for all t ≥ 0 and all x0 ∈ Ω. Let E ∈ {Lp(µ), C0,ρ(Ω)} where µ and ρ are
admissible for ϕ.

Then the generator (A,D(A)) of the C0-semigroup Tϕ is an extension of the
operator B : D → E, f 7→ 〈F,∇f〉, where D := {f ∈ C1(Ω) ∩ E; 〈F,∇f〉 ∈ E}.

We therefore call Tϕ the solution semigroup of the Cauchy problem

∀ (t, x) ∈ [0,∞)× Ω :
∂

∂t
u(t, x) =

d∑
i=1

Fi(x)
∂

∂xi
u(t, x), u(0, ·) = f0.

Proof: Let (A,D(A)) be the generator of Tϕ. For sufficiently large λ ∈ R
and f ∈ D it follows from the resolvent representation (see appendix A.6) and
integration by parts:

R(λ,A)(λf −Bf) =
∫ ∞

0

e−λtTϕ(t)(λf −Bf) dt

=
∫ ∞

0

e−λt(λf ◦ ϕ(t, ·)− 〈F (ϕ(t, ·)), (∇f) ◦ ϕ(t, ·)〉) dt

= λ

∫ ∞

0

e−λtTϕ(t)f dt

−
∫ ∞

0

e−λt〈∂tϕ(t, ·), (∇f) ◦ ϕ(t, ·)〉 dt

= −e−λtTϕ(t)f |∞0 +
∫ ∞

0

e−λt
d

dt
[f ◦ ϕ(t, ·)] dt

−
∫ ∞

0

e−λt〈∂tϕ(t, ·), (∇f) ◦ ϕ(t, ·)〉 dt = f,

which shows B ⊂ A. �

The next proposition gives sufficient conditions under which the generator
of Tϕ is the closure of an explicitly known operator. Its proof will be given in
appendix C.

Proposition 6.8 Let F be a locally Lipschitz continuous vector field on Ω such
that the solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) = x0 exists
for all t ≥ 0 and all x0 ∈ Ω. Let E ∈ {Lp(µ), C0,ρ(Ω)} where µ and ρ are
admissible for ϕ. Then the following holds.

i) If F is bounded, continuously differentiable and satisfies supx∈Ω |DF (x)| <
∞ then the generator (A,D(A)) of Tϕ is given by the closure of the oper-
ator B : D → E, f 7→ 〈F,∇f〉, where D := {f ∈ C1(Ω) ∩ E; |∇f | ∈ E}.

ii) If F is continuously differentiable and such that the unique solution ϕ(·, x0)
of the initial value problem ẋ = F (x), x(0) = x0 exists not only for all
t ≥ 0 but for all t ∈ R then the generator (A,D(A)) of Tϕ is given by the
closure of the operator B : C1

c (Ω) → E, f 7→ 〈F,∇f〉.
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Before we continue we fix some notation. If the semiflow ϕ is such that for
all t ≥ 0 the mapping ϕ(t, ·) is continuously differentiable we call ϕ continuously
differentiable and denote by Dϕ(t, ·) the Jacobian of ϕ(t, ·). We define Ct :=
{x ∈ Ω; detDϕ(t, ·) = 0}. Obviously, Ωt := Ω\Ct is an open subset of Rd.

We now want to characterise when µ is admissible for ϕ if it has a Lebesgue
density ρ. To do so, we need the following result. Note that there will be no
danger of confusing a Lebesgue density with a C0-admissible weight function.

Proposition 6.9 Let µ be an admissible Borel measure with Lebesgue density
ρ and let ϕ be a continuously differentiable semiflow. Then a µ-density of µt is
given by χϕ(t,Ωt)ρ(ϕ(−t, ·))|detDϕ(−t, ·)|/ρ, and a µ-density of µ−t is given by
ρ(ϕ(t, ·))|detDϕ(t, ·)|/ρ.

Proof: By the fact that ϕ(t, ·) is one-to-one, ψ : Ωt → ϕ(t,Ωt), x 7→ ϕ(t, x)
is a C1-diffeomorphism and Sard’s theorem (cf. [22, theorem V.4.8]) states that
λd(ϕ(t, Ct)) = 0, where λd denotes d-dimensional Lebesgue measure.

Since µ is admissible, µt has a µ-density ft, so that µt is absolutely continu-
ous with respect to λd, in particular µt(B ∩ϕ(t, Ct)) = 0 for every Borel-subset
B of Ω. Using that ϕ(t,Ωt) = ψ(Ωt) is open we get from this for every open
subset B of Ω and t > 0

µt(B) = µt(B ∩ ϕ(t,Ωt)) = µt(B ∩ ψ(Ωt)) =
∫
ψ−1(B∩ψ(Ωt))

ρ dλd

=
∫
B∩ψ(Ωt)

ρ ◦ ψ−1|detD(ψ−1)| dλd

=
∫
B

χϕ(t,Ωt)
ρ(ϕ(−t, ·))|detDϕ(−t, ·)|

ρ
dµ,

where we used substitution in Rd (see e.g. [53, theorem 7.26]) for the mapping
ψ−1 : ψ(Ωt) → Ω in the fourth equality. Because the open subsets of Ω generate
the Borel σ-algebra, we conclude that χϕ(t,Ωt)ρ(ϕ(−t, ·))|detDϕ(−t, ·)|/ρ is a
µ-density of µt.

Furthermore, for open subsets B of Ω we have

µ−t(B) = µ(ϕ(t, B)) =
∫
ϕ(t,B)

ρ dλd =
∫
B

ρ(ϕ(t, ·))|detDϕ(t, ·)|
ρ

dµ,

where we used substitution in Rd once more. Again, this implies that µ−t has
a µ-density which is given by ρ(ϕ(t, ·))|detDϕ(t, ·)|/ρ. �

Proposition 6.10 Let ρ : Ω → (0,∞) be Borel measurable such that µ := ρ dλd

is locally finite and let the semiflow ϕ be continuously differentiable. Then, the
following are equivalent.

i) µ is admissible for ϕ.

ii) There are M ≥ 1, ω ∈ R such that for every t > 0 the inequality

ρ ≤Metωρ(ϕ(t, ·))|detDϕ(t, ·)|

holds λd-a.e..
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Proof: Because ρ is strictly positive µ is equivalent to λd.
i) ⇒ ii): From theorem 6.2 and proposition 6.9 it follows that the admissi-

bility of µ is equivalent to χϕ(t,Ωt)ρ(ϕ(−t, ·))|detDϕ(−t, ·)|/ρ ≤ Metω λd-a.e.
for some M ≥ 1 and ω ∈ R, which is equivalent to

χϕ(t,Ωt)ρ(ϕ(−t, ·)) ≤ χϕ(t,Ωt)Metωρ|det[(Dϕ(t, ·)) ◦ ϕ(−t, ·)]| λd-a.e..

So, there is a Borel subset N of Ω such that λd(N) = 0 and

χϕ(t,Ωt)(x)ρ(ϕ(−t, x)) ≤ χϕ(t,Ωt)(x)Metωρ(x)|detDϕ(t, ϕ(−t, x))|

for every x ∈ N c, i.e.

χϕ(t,Ωt)(ϕ(t, y))ρ(y) ≤ χϕ(t,Ωt)(ϕ(t, y))Metωρ(ϕ(t, y))|detDϕ(t, y)|

for every y ∈ ϕ(−t,N c).
Because λd(ϕ(t, Ct)) = 0, we have λd(N ∪ ϕ(t, Ct)) = 0, so that 0 =

µt(N ∪ ϕ(t, Ct)) = µ(ϕ(t, ·)−1(N ∪ ϕ(t, Ct)) since µt � λd. Now, because
of the equivalence of µ and λd we get λd(ϕ(t, ·)−1(N ∪ ϕ(t, Ct))) = 0 and for
every y ∈ ϕ(t, ·)−1((N ∪ ϕ(t, Ct))c) = ϕ(−t,N c) ∩ Ωt we have

ρ(y) = χϕ(t,Ωt)(ϕ(t, y))ρ(y) ≤Metωρ(ϕ(t, y))|detDϕ(t, y)|,

that is ρ ≤Metωρ(ϕ(t, ·))|detDϕ(t, ·)| λd-a.e.. This shows that i) implies ii).
Using substitution in Rd it follows immediately that ii) implies i). �

Definition 6.11 Let ϕ be a differentiable semiflow. A Borel measurable func-
tion ρ : Ω → (0,∞) is called an (Lp-)admissible weight function (for the semiflow
ϕ) if it satisfies condition ii) of the preceeding theorem and µ := ρ dλd is locally
finite. We write Lpρ(Ω) instead of Lp(µ).

Using our results from chapter 5 we will now characterise when Tϕ is hyper-
cyclic or mixing.

Theorem 6.12 Let ϕ be a continuously differentiable semiflow and ρ an Lp-
admissible weight function. Then, the following are equivalent.

i) The C0-semigroup Tϕ induced by ϕ on Lpρ(Ω) is hypercyclic.

ii) The C0-semigroup Tϕ induced by ϕ on Lpρ(Ω) is weakly mixing.

iii) For every compact subset K of Ω there are a sequence of measurable sub-
sets (Ln)n∈N of K and a sequence of positive numbers (tn)n∈N such that
limn→∞

∫
K\Ln

ρ dλd = 0,

lim
n→∞

∫
Ln

χϕ(tn,Ωtn )ρ(ϕ(−tn, ·))|detDϕ(−tn, ·)| dλd = 0

and
lim
n→∞

∫
Ln

ρ(ϕ(tn, ·))|detDϕ(tn, ·)| dλd = 0.

Proof: This is a direct consequence of the separability of Lpρ(Ω), proposition
6.9 and theorem 5.8. �
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Theorem 6.13 Let ϕ be a continuously differentiable semiflow and ρ an Lp-
admissible weight function. Then, the following are equivalent.

i) The C0-semigroup Tϕ induced by ϕ on Lpρ(Ω) is mixing.

ii) For every compact subset K of Ω we can find a family of measurable subsets
(Lt)t≥0 of K such that limt→∞

∫
K\Lt

ρ dλd = 0,

lim
t→∞

∫
Lt

χϕ(t,Ωt)ρ(ϕ(−t, ·))|detDϕ(−t, ·)| dλd = 0

and
lim
t→∞

∫
Lt

ρ(ϕ(t, ·))|detDϕ(t, ·)| dλd = 0.

Proof: The theorem follows immediately from proposition 6.9 and theorem
5.31. �

For the case of continuous functions we have the following theorems.

Theorem 6.14 Let ϕ be a semiflow and ρ a C0-admissible weight function on
Ω such that infx∈K ρ(x) > 0 for all compact subsets K of Ω. Then, the following
are equivalent.

i) The C0-semigroup Tϕ induced by ϕ on C0,ρ(Ω) is hypercyclic.

ii) The C0-semigroup Tϕ induced by ϕ on C0,ρ(Ω) is weakly mixing.

iii) For every compact subset K of Ω we can find a sequence (tn)n∈N of positive
numbers such that

lim
n→∞

sup
x∈ϕ(tn,·)−1(K)

ρ(x) = lim
n→∞

sup
x∈ϕ(tn,K)

ρ(x) = 0.

Proof: The theorem follows directly from the separability of C0,ρ(Ω) and
corollary 5.16. �.

Theorem 6.15 Let ϕ be a semiflow and ρ a C0-admissible weight function on
Ω such that infx∈K ρ(x) > 0 for all compact subsets K of Ω. Then, the following
are equivalent.

i) The C0-semigroup Tϕ induced by ϕ on C0,ρ(Ω) is mixing.

ii) For every compact subset K of Ω we have

lim
t→∞

sup
x∈ϕ(t,·)−1(K)

ρ(x) = lim
t→∞

sup
x∈ϕ(t,K)

ρ(x) = 0.

Proof: This is a direct consequence of theorem 5.33. �
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Example 6.16 Let Ω be one of the sets R or (0,∞) and ϕ : [0,∞) × Ω →
Ω, (t, x) 7→ t + x. Then we have Dϕ(t, ·) ≡ 1, so that Ωt = Ω for every t > 0.
By proposition 6.10 a measurable weight function ρ is Lp-admissible if and only
if there are M ≥ 1 and ω ∈ R such that ρ(x) ≤ Metωρ(t+ x) a.e.. One should
note that in this special context T (t)f = f(· + t) defines a C0-semigroup on
C0,ρ(R) if and only if ρ(x) ≤ Meωtρ(x + t) for some M ≥ 1 and ω ∈ R even if
ρ is not upper semicontinuous.

In both cases we call the induced C0-semigroup T left translation semigroup.
By theorem 6.7 its generator is given by the ordinary differential operator f 7→
d
dxf defined on a suitable domain.

Desch et al. [19] investigated the left translation semigroup on Lpρ([0,∞)),
C0,ρ([0,∞)), Lpρ(R) and C0,ρ(R). Obviously, there is no difference in considering
Lpρ((0,∞)) or Lpρ([0,∞)). But when dealing with weighted spaces of continu-
ous functions on the positive real axis, it is important to distinguish between
C0,ρ([0,∞)) and C0,ρ((0,∞)). Again, T (t)f = f(· + t) defines a C0-semigroup
on C0,ρ([0,∞)) if and only if ρ(x) ≤ Meωtρ(x+ t) for some M ≥ 1 and ω ∈ R
even if ρ is not upper semicontinuous.

We will now show that (when considering hypercyclicity, respectively mixing,
of the left translation semigroup) C0,ρ([0,∞)) is a special case of C0,ρ((0,∞)).
To do so, let ρ : [0,∞) → (0,∞) be a fixed measurable function such that
ρ(x) ≤Meωtρ(x+ t) for some M ≥ 1 and ω ∈ R. We define

ρ̃ : (0,∞) → (0,∞), x 7→

{
ρ(x− 1) , x ≥ 1

x ρ(0) , 0 < x < 1.

It is not hard to see that ρ̃(x) ≤ M̃eωtρ̃(x+ t) for some M̃ ≥ 1. From this it
follows that for all t > 0 and f ∈ C0,ρ̃((0,∞)) we have

lim
x→∞

|f(x+ t)|ρ̃(x) ≤ M̃eωt lim
x→∞

|f(x+ t)|ρ̃(x+ t) = 0

as well as
lim
x→0

|f(x+ t)|ρ̃(x) = |f(t)| lim
x→0

ρ̃(x) = 0,

so that T (t)f ∈ C0,ρ̃((0,∞)), showing that T (t) is a well-defined operator on
C0,ρ̃((0,∞)) satisfying ‖T (t)‖ ≤ M̃eωt.

Moreover, using ρ̃(x) ≤ M̃eωtρ̃(x+ t) it is not hard to see that ρ̃ is bounded
above on compact intervals of (0,∞). From this it follows immediately that
for f ∈ Cc((0,∞)) we have limt→0 ‖T (t)f − f‖ = 0. Using ‖T (t)‖ ≤ M̃eωt we
finally get that the left translation semigroup is a well-defined C0-semigroup on
C0,ρ̃((0,∞)).

Now let Φ1 : C0,ρ([0,∞)) → C0,ρ̃((0,∞)), f 7→ f and Φ2 : C0,ρ̃((0,∞)) →
C0,ρ([0,∞)), f 7→ f(· + 1). For i = 1, 2, Φi is continuous, linear, has a dense
image and satisfies T (t) ◦Φi = Φi ◦ T (t) for all t ≥ 0. So, by lemma 1.4 the left
translation semigroup is hypercyclic, respectively weakly mixing, respectively
mixing, on C0,ρ([0,∞)) if and only if it is on C0,ρ̃((0,∞)).

Note that contrary to the case Ω = R, for Ω = (0,∞) it is not sufficient to
only have ρ(x) ≤Meωtρ(x+t) for some M ≥ 1 and ω ∈ R for the left translation
semigroup to be well-defined on C0,ρ((0,∞)). Take for example ρ ≡ 1. Then
T (t)f ∈ C0,ρ((0,∞)) for all t ≥ 0 if and only if f ≡ 0. However, it is not
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necessary that ρ is upper semicontinuous for the left translation semigroup to
be well defined on C0,ρ((0,∞)) as long as ρ satisfies a) and b) of theorem 6.4.

Desch et al. showed in [19, Theorems 4.7 and 4.8] that T is hypercyclic on
Lpρ([0,∞)), respectively C0,ρ([0,∞)), if and only if lim infx→∞ ρ(x) = 0, and
that T is hypercyclic on Lpρ(R), respectively C0,ρ(R), if and only if for every
x ∈ R there is a sequence (tn)n∈N of positive numbers such that limn→∞ ρ(x+
tn) = limn→∞ ρ(x− tn) = 0.

Furthermore, Bermúdez et al. showed in [6, theorem 4.3] that T is mix-
ing on Lpρ(R) or C0,ρ(R), respectively Lpρ([0,∞)) or C0,ρ([0,∞)), if and only if
limt→±∞ ρ(t) = 0, respectively limt→∞ ρ(t) = 0.

We will now derive these results from theorems 6.12, 6.13, 6.14 and 6.15.
Let I ∈ {R, [0,∞)} and let ρ : I → (0,∞) be measurable such that there are
M ≥ 1, ω ∈ R for which ρ(x) ≤Meωtρ(x+ t) a.e. for all t ≥ 0 and x ∈ I. These
functions are called admissible by Desch, Schappacher and Webb in [19]. In [19]
they showed the following lemma.

Lemma 6.17 (cf. [19, lemma 4.2]) Let ρ : I → (0,∞) be measurable such
that there are M ≥ 1, ω ∈ R satisfying ρ(x) ≤Meωtρ(x+ t) a.e. for all t ≥ 0.

Then for each l > 0 there are constants 0 < cl < Cl such that for each x ∈ I
and each z ∈ [x, x+ l] we have clρ(x) ≤ ρ(z) ≤ Clρ(x+ l).

In particular, the above lemma shows that the measure µ := ρ dλd is locally
finite. Hence, admissible weight functions in the sense of Desch, Schappacher
and Webb are Lp-admissible for the semiflow ϕ(t, x) = t+x by proposition 6.10.
Furthermore, we already noted above that the left translation semigroup is a
well-defined C0-semigroup on C0,ρ(R), respectively C0,ρ([0,∞)) if ρ is admissible
in the sense of Desch, Schappacher and Webb.

Corollary 6.18 (cf. [19, Theorems 4.7 and 4.8], [6, theorem 4.3]) Let ρ
be admissible in the sense of Desch, Schappacher and Webb on I ∈ {R, [0,∞)}.

a) The following are equivalent.

i) The left translation semigroup is weakly mixing on Lpρ(I), respectively
C0,ρ(I).

ii) The left translation semigroup is hypercyclic on Lpρ(I), respectively
C0,ρ(I).

iii) For every x ∈ I there is a sequence (tn)n∈N of positive numbers
such that limn→∞ ρ(x + tn) = limn→∞ ρ(x − tn) = 0 if I = R, or
limn→∞ ρ(x+ tn) = 0 if I = [0,∞) respectively.

b) The following are equivalent.

i) The left translation semigroup is mixing on Lpρ(I), respectively C0,ρ(I).

ii) limx→∞ ρ(x) = limx→∞ ρ(−x) = 0 if I = R, or limx→∞ ρ(x) = 0 if
I = [0,∞) respectively.

Proof: We first consider the spaces Lpρ(I). Recall that in this situation it
does not matter if we consider Lpρ([0,∞)) or Lpρ((0,∞)) since the spaces are the
same. So we can use theorems 6.12 and 6.13 although [0,∞) is not open.
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Let x be in I. The above lemma gives the existence of constants c1, C1 such
that (∗) c1ρ(z + t) ≤ ρ(y + t) ≤ C1ρ(z + t + 1) for all z ∈ I, y ∈ [z, z + 1] and
t ∈ R for which z + t ∈ I. For all t ≥ 0 and every measurable subset L of
[x, x+ 1] it follows that∫

L

ρ(y + t)
ρ(y)

dµ(y) ≥ µ(L)
c1ρ(x+ t)
C1ρ(x+ 1)

.

If I = R we can apply the above inequality (*) to z = x− t with t ≥ 0 to obtain∫
L

ρ(y − t)
ρ(y)

dµ(y) ≥ µ(L)
c1ρ(x− t)
C1ρ(x+ 1)

again for every measurable subset L of [x, x+ 1].
Now, if T is hypercyclic, respectively mixing, on Lpρ(I) let (tn)n∈N and

(Ln)n∈N be as in theorem 6.12, respectively (Lt)t≥0 be as in theorem 6.13,
for K = [x, x+ 1].

In case of I = [0,∞) it follows from the first of the above inequalities ap-
plied to tn and Ln, respectively Lt, that limn→∞ ρ(x + tn) = 0, respectively
limt→∞ ρ(x+ t) = 0.

If I = R we have that ϕ(t, ·) is a mapping onto I, so that χϕ(t,I) = 1 for all
t ≥ 0. It follows from the second of the above inequalities applied to tn and Ln,
respectively Lt, that limn→∞ ρ(x − tn) = 0, respectively limt→∞ ρ(x − t) = 0.
This shows that a) ii) implies a) iii) and b) i) implies b) ii) in the Lpρ(I)-case.

To show that a) iii) implies a) i) and b) ii) implies b) i) in the Lpρ(I)-case letK
be a non-empty compact subset of I. Let a, b ∈ I such that K ⊂ [a, b]. Using the
above lemma we find constants cb, Cb such that cbρ(a+t) ≤ ρ(y+t) ≤ Cbρ(b+t)
for all y ∈ [a, b] and t ∈ R for which a+ t ∈ I.

By the hypothesis there is a sequence (tn)n∈N of positive numbers such that
limn→∞ ρ(b+ tn) = 0 and if I = R such that additionally limn→∞ ρ(b− tn) = 0,
respectively limt→∞ ρ(b+ t) = 0 and if I = R additionally limt→∞ ρ(b− t) = 0.

Now if I = [0,∞) clearly K ∩ (I + t) = ∅ for every compact subset K
of I and t > maxK, so that µt(K) = 0 for all t > maxK. In particular
limn→∞ µtn(K) = 0 and limt→∞ µt(K) = 0.

If I = R the mapping ϕ(t, ·) is surjective for all t ≥ 0, so that χϕ(t,I) = 1. It
follows that

µt(K) =
∫
K

ρ(y − t)
ρ(y)

dµ(y) ≤ µ(K)
Cbρ(b− t)
cbρ(a)

,

for all t ≥ 0 so that limn→∞ µtn(K) = 0, respectively limt→∞ µt(K) = 0.
Moreover, from

µ−t(K) =
∫
K

ρ(y + t)
ρ(y)

dµ(y) ≤ µ(K)
Cbρ(b+ t)
cbρ(a)

for all t ≥ 0 we also get limn→∞ µ−tn(K) = 0, respectively limt→∞ µ−t(K) = 0.
So, for both cases I ∈ {[0,∞),R} we have

lim
n→∞

µtn(K) = lim
n→∞

µ−tn(K) = 0,

respectively
lim
t→∞

µt(K) = lim
n→∞

µ−t(K) = 0,
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so that a) i), respectively b) i), follows from theorem 6.12, respectively 6.13.

To treat the C0,ρ(I) case we distinguish between I = R and I = [0,∞). We
first consider I = R. Let x ∈ R. If T is hypercyclic, respectively mixing, it
follows from theorem 6.14, respectively theorem 6.15, that for the compact set
{x} there is a sequence of positive numbers (tn)n∈N such that limn→∞ ρ(x+tn) =
limn→∞ ρ(x − tn) = 0, respectively limt→∞ ρ(x + t) = limt→∞ ρ(x − t) = 0, so
that a) ii) implies a) iii) and b) i) implies b) ii) for C0,ρ(R).

Now, assume that a) iii), respectively b) ii) holds for C0,ρ(R). Let K be a
non-empty compact subset of R. Let a, b ∈ R be such that K ⊂ [a, b]. There
is a sequence (tn)n∈N of positive numbers such that limn→∞ ρ(b + tn) = 0 and
limn→∞ ρ(b− tn) = 0, respectively limt→∞ ρ(b+ t) = 0 and limt→∞ ρ(b− t) = 0.
Using the above lemma we find constants cb, Cb such that cbρ(a+t) ≤ ρ(y+t) ≤
Cbρ(b+ t) for all y ∈ [a, b] and t ∈ R.

Therefore,

lim
n→∞

sup
y∈K

ρ(y + tn) ≤ Cb lim
n→∞

ρ(b+ tn) = 0

and
lim
n→∞

sup
y∈K

ρ(y − tn) ≤ Cb lim
n→∞

ρ(b− tn) = 0,

respectively
lim
t→∞

sup
y∈K

ρ(y + t) ≤ Cb lim
t→∞

ρ(b+ t) = 0

and
lim
t→∞

sup
y∈K

ρ(y − t) ≤ Cb lim
t→∞

ρ(b− t) = 0,

so that by theorem 6.14, respectively theorem 6.15, a) iii) implies a) i) and b)
ii) implies b) i).

Finally, let I = [0,∞). Define ρ̃ as at the beginning of this example. We
have already seen that the left translation semigroup T is a well-defined C0-
semigroup on C0,ρ̃((0,∞)) and that it is hypercyclic, weakly mixing, respectively
mixing, on C0,ρ([0,∞)) if and only if it is on C0,ρ̃((0,∞)). Taking into account
that K ∩ ((0,∞) + t) = ∅ for compact subsets K of (0,∞) and sufficiently
large t ≥ 0, one shows by similar arguments as for the case I = R that T is
hypercyclic, respectively mixing, on C0,ρ̃((0,∞)) if and only if for all x ∈ (0,∞)
there is a sequence of positive numbers (tn)n∈N such that limn→∞ ρ̃(x+ tn) = 0,
respectively limt→∞ ρ̃(x + t) = 0 and that hypercyclicity is equivalent to weak
mixing. Recalling that ρ̃(y) = ρ(y − 1) for y ≥ 1 the above are equivalent to
limn→∞ ρ(x + tn) = 0, respectively limt→∞ ρ(x + t) = 0, which finally proves
the corollary. �

Let us note that the dynamical behaviour of the left translation semigroup
is the same on spaces of continuous and p-integrable functions for all p ≥ 1.

We now give a more ”calculable” criterion for hypercyclicity or mixing of T ,
provided that ϕ is ”nice” and the admissible weight function ρ behaves tamely
in a certain sense.

Theorem 6.19 Let ϕ be a continuously differentiable semiflow on the open
subset Ω of Rd that satisfies one of the following conditions.
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A) For every t > 0 we have ϕ(t,Ω) = Ω and Ωt = Ω.

B) For every compact subset K of Ω there is tK > 0 such that K∩ϕ(t,Ωt) = ∅
whenever t > tK .

Furthermore, let ρ be an Lp-admissible weight function such that for every com-
pact subset K of Ω there is ε > 0 with

(∗) ε <
ρ(ϕ(t, x))|detDϕ(t, x)|
ρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε,

for all x, y ∈ K and t ∈ I, where I = R in case of A), or I = [0,∞) in case of
B), respectively.

a) The following are equivalent.

i) Tϕ is weakly mixing on Lpρ(Ω).
ii) Tϕ is hypercyclic on Lpρ(Ω).
iii) For every x ∈ Ω there is a sequence of positive numbers (tn)n∈N such

that
lim
n→∞

ρ(ϕ(tn, x)) detDϕ(tn, x) = 0

and if A) holds

lim
n→∞

ρ(ϕ(−tn, x)) detDϕ(−tn, x) = 0,

too.

b) The following are equivalent.

i) Tϕ is mixing on Lpρ(Ω).
ii) For every x ∈ Ω we have

lim
t→∞

ρ(ϕ(t, x)) detDϕ(t, x) = 0

and if A) holds

lim
t→∞

ρ(ϕ(−t, x)) detDϕ(−t, x) = 0,

too.

Proof: We only prove part a). The proof of part b) is done similarly.
Obviously, i) implies ii). To prove that ii) implies iii) let x ∈ Ω and set K :=
d∏
j=1

[xj , xj + δ], where δ > 0 is so that K ⊂ Ω. Let ε > 0 be as in (∗). We find

(Ln)n∈N and (tn)n∈N for K according to iii) of theorem 6.12 and observe that

µ−tn(Ln) =
∫
Ln

ρ(ϕ(tn, z))|detDϕ(tn, z)|
ρ(z)

dµ(z)

=
∫
Ln

ρ(ϕ(tn, z))|detDϕ(tn, z)|
ρ(ϕ(tn, x))|detDϕ(tn, x)|

ρ(x)
ρ(z)

dµ(z) ·

· ρ(ϕ(tn, x))|detDϕ(tn, x)|
ρ(x)

≥ ε2µ(Ln)
ρ(ϕ(tn, x))|detDϕ(tn, x)|

ρ(x)
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where we used ϕ(0, y) = y. Because limn→∞ µ(Ln) = µ(K) and ρ > 0, this
shows limn→∞ ρ(ϕ(tn, x)) detDϕ(tn, x) = 0.

Now, assume that condition A) is satisfied. Then ϕ(tn, Ctn) = ∅, hence
1 ≡ χϕ(tn,Ω) = χϕ(tn,Ωtn ). Thus,

µtn(Ln) =
∫
Ln

χϕ(tn,Ωtn )
ρ(ϕ(−tn, z))|detDϕ(−tn, z)|

ρ(z)
dµ(z)

=
∫
Ln

ρ(ϕ(−tn, z))|detDϕ(−tn, z)|
ρ(ϕ(−tn, x))|detDϕ(−tn, x)|

ρ(x)
ρ(z)

dµ(z) ·

· ρ(ϕ(−tn, x))|detDϕ(−tn, x)|
ρ(x)

≥ ε2µ(Ln)
ρ(ϕ(−tn, x))|detDϕ(−tn, x)|

ρ(x)
,

so that limn→∞ ρ(ϕ(−tn, x)) detDϕ(−tn, x) = 0, too, proving iii).
To show that iii) implies i) let K ⊂ Ω be compact and non-empty and ε > 0

as in (∗). Let x ∈ K and if (tn)n∈N is taken as under iii) for x, we have

µ−tn(K) =
∫
K

ρ(ϕ(tn, z))|detDϕ(tn, z)|
ρ(z)

dµ(z)

=
∫
K

ρ(ϕ(tn, z))|detDϕ(tn, z)|
ρ(ϕ(tn, x))|detDϕ(tn, x)|

ρ(x)
ρ(z)

dµ(z) ·

· ρ(ϕ(tn, x))|detDϕ(tn, x)|
ρ(x)

≤ ε2µ(K)
ρ(ϕ(tn, x))|detDϕ(tn, x)|

ρ(x)
,

which shows limn→∞ µ−tn(K) = 0.
Under condition A), we have

µtn(K) =
∫
K

χϕ(tn,Ωtn )
ρ(ϕ(−tn, z))|detDϕ(−tn, z)|

ρ(z)
dµ(z)

=
∫
K

ρ(ϕ(−tn, z))|detDϕ(−tn, z)|
ρ(ϕ(−tn, x))|detDϕ(−tn, x)|

ρ(x)
ρ(z)

dµ(z) ·

· ρ(ϕ(−tn, x))|detDϕ(−tn, x)|
ρ(x)

≤ ε2µ(K)
ρ(ϕ(−tn, x))|detDϕ(−tn, x)|

ρ(x)
,

so that limn→∞ µtn(K) = 0, too.
If condition B) holds, then

µt(K) =
∫
χK∩ϕ(t,Ωt)

ρ(ϕ(−t, z))|detDϕ(−t, z)|
ρ(z)

dµ(z) = 0

for every t > tK , so that limn→∞ µtn(K) = 0. Now, theorem 6.12 shows that T
is weakly mixing on Lpρ(Ω). �

For the C0,ρ(Ω) case we have an analogous result. Its proof is so similar to
that of theorem 6.19 that we omit it.
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Theorem 6.20 Let ϕ be a continuously differentiable semiflow on the open
subset Ω of Rd that satisfies one of the following conditions.

A) For every t > 0 we have ϕ(t,Ω) = Ω.

B) For every compact subset K of Ω there is tK > 0 such that K∩ϕ(t,Ω) = ∅
whenever t > tK .

Furthermore, let ρ be a C0-admissible weight function such that for every com-
pact subset K of Ω we have infx∈K ρ(x) > 0 and there is C <∞ with

ρ(ϕ(t, x))
ρ(ϕ(t, y))

< C,

for all x, y ∈ K and t ∈ I, where I = R in case of A), or I = [0,∞) in case of
B), respectively.

a) The following are equivalent.

i) Tϕ is weakly mixing on C0,ρ(Ω).

ii) Tϕ is hypercyclic on C0,ρ(Ω).

iii) For every x ∈ Ω there is a sequence of positive numbers (tn)n∈N such
that

lim
n→∞

ρ(ϕ(tn, x)) = 0

and if A) holds
lim
n→∞

ρ(ϕ(−tn, x)) = 0,

too.

b) The following are equivalent.

i) Tϕ is mixing on C0,ρ(Ω).

ii) For every x ∈ Ω we have

lim
t→∞

ρ(ϕ(t, x)) = 0

and if A) holds
lim
t→∞

ρ(ϕ(−t, x)) = 0,

too.

Clearly, the set of Lp-admissible weight functions for ϕ is convex, so one
might ask if this is also true for the admissible weight functions with respect
to which ϕ induces a hypercyclic C0-semigroup. As in the discrete case (see
example 5.13), this is not true in general. Take for example the left translation
semigroup on Lpρi

(0,∞), i = 1, 2, with the piecewise defined weight functions

ρ1(x) :=
1− 2j+1

22j+1
x+

2j+2 − 1
2j+1

, x ∈ [2j , 2j+1), j ∈ N0

and

ρ2(x) :=

{
1−2j−1

22j−1 x+ 3·2j−2−1
2j−1 , x ∈ [2j , 3 · 2j−1) (j ∈ N0)

5
2 −

1
2j x , x ∈ [3 · 2j−1, 2j+1)
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As in Example 5.13 one shows that ρi are Lp-admissible weight functions for
ϕ(t, x) = x+ t.

We have limx→2j+1− ρ1(x) = 1
2j+1 and limx→3·2j−1− ρ2(x) = 1

2j , so that
lim infx→∞ ρi(x) = 0 for i = 1, 2, which means by corollary 6.18 that the left
translation semigroup is hypercyclic on both Lpρ1(0,∞) and Lpρ2(0,∞).

On the other hand, for x ∈ [2j , 3 · 2j−1), j ∈ N0, we have

ρ1(x) ≥
1− 2j+1

22j+1
3 · 2j−1 +

2j+2 − 1
2j+1

≥ 1
2

and for x ∈ [3 · 2j−1, 2j+1), j ∈ N0, we have

ρ2(x) ≥
5
2
− 1

2j
2j+1 =

1
2
,

so that for all λ ∈ (0, 1) and x > 0 we have

lim inf
x→∞

[λρ1(x) + (1− λ)ρ2(x)] ≥ min{λ, 1− λ}/2 > 0.

From corollary 6.18 it therefore follows that for λ ∈ [0, 1] the left translation
semigroup is hypercyclic on Lpλρ1+(1−λ)ρ2

(0,∞) if and only if λ ∈ {0, 1}.

Example 6.21 We consider the semiflow ϕ : [0,∞) × Rd → Rd, (t, x) 7→ etx.
Then detDϕ(t, ·) ≡ et so that Ωt = Ω for all t > 0. It follows that a weight
function ρ is Lp-admissible if and only if there is M ≥ 1 and ω ∈ R such that
ρ(x) ≤Metωρ(etx) a.e..

For example, ρ : Rd → (0,∞), x 7→ 1
1+|x|2 is admissible, because

ρ(etx) =
1

1 + e2t|x|2
≥ e−2t

1 + |x|2
= e−2tρ(x).

So, one may take M = 1 and ω = 2.
If K ⊂ Rd is compact, then for t > 0 we have

µt(K) = e−t
∫
K

ρ(e−tx) dλd(x) ≤ e−tλd(K),

which tends to 0 as t tends to infinity. On the other hand, if K does not contain
0, we have minx∈K |x|2 =: δ > 0 so that

µ−t(K) = et
∫
K

ρ(etx) dλd(x) ≤ et

1 + e2tδ
λd(K).

This last expression tends to 0 as t tends to infinity.
Since for every compact subset K of Rd and every ε > 0 we can find a com-

pact subset 0 /∈ L ⊂ K such that
∫
K\L ρ dλ

d < ε, we get:

Theorem 6.22 The solution C0-semigroup of the Cauchy problem

∂

∂t
u(t, x) =

d∑
i=1

xi
∂

∂xi
u(t, x), u(0, x) = f0(x)

in Lpρ(Rd) is mixing, where ρ : Rd → (0,∞), x 7→ 1
1+|x|2 .
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One should note that for compact subsets K with 0 ∈
◦
K it follows from the

monotone convergence theorem, that limt→∞ µ−t(K) = lim
t→∞

∫
etK

ρ(x) dλd(x) =∫
Rd ρ dλ

d ≥ π
4σd, where σd is the surface of the d-dimensional unit sphere. This

shows that in general the measurable subsets (Ln)n∈N of K in theorem 5.8 are
different from K.

Clearly, ρ(x) = (1+ |x|2)−1 is C0-admissible, too. But because of ϕ(t, 0) = 0
for all t ≥ 0 we see that Tϕ is not hypercyclic on C0,ρ(Rd). This stands in
complete contrast to the left translation semigroup as observed above.

Note, that one could have used theorem 6.19 in order to derive the results
of this example as well, since Lpρ(Rd) = Lpρ(Rd\{0}).

In the preceding examples ρ ≡ 1 is an admissible weight function for the
considered semiflows ϕ, but the induced C0-semigroups are not hypercyclic. In
the latter example, this follows from µt(B) = etλd(B). We now present an
example, where ρ ≡ 1 yields an hypercyclic semigroup.

Example 6.23 Let Ω = (0, 1) and

ϕ : [0,∞)× (0, 1) → (0, 1), (t, x) 7→ x

(x+ (1− x)e−t)
.

One checks that ϕ is well-defined and the solution (semi)flow of the ordinary
differential equation ẋ = x(1− x).

It follows that Dϕ(t, x) = e−t(x + (1 − x)e−t)−2, so that Ωt = Ω for each
t > 0 and one easily shows that ϕ(t,Ω) = Ω for all t > 0.

Obviously, a weight function ρ is admissible for ϕ only if

ρ(x)et(x+ (1− x)e−t)2 ≤Metωρ(
x

(x+ (1− x)e−t)
) a.e.

for some M ≥ 1, ω ∈ R and every t > 0. Since for all t > 0, x ∈ (0, 1) always
0 < (x+ (1− x)e−t)2 < 1 holds, we see that ρ ≡ 1 is admissible for ϕ.

Moreover, for every 0 < a ≤ x ≤ y ≤ b < 1 and t ∈ R we have

Dϕ(t, x)
Dϕ(t, y)

= (
y + (1− y)e−t

x+ (1− x)e−t
)2 ≤ (

b+ (1− a)e−t

a+ (1− b)e−t
)2.

This last expression is bounded in t ∈ R, since it converges for t to infinity to
(b/a)2 and for t to minus infinity to (1− a)2/(1− b)2.

Furthermore,
Dϕ(t, x)
Dϕ(t, y)

≥ (
a+ (1− b)e−t

b+ (1− a)e−t
)2

and the last expression is a monoton function in t, so that Dϕ(t, x)/Dϕ(t, y) ≥
min{a2/b2, (1− b)2/(1− a)2}.

So for all t ∈ R we have

min{a2/b2, (1−b)2/(1−a)2} ≤ Dϕ(t, x)/Dϕ(t, y) ≤ max{b2/a2, (1−a)2/(1−b)2}

which shows that the hypotheses of theorem 6.19 are satisfied, so that Tϕ is
hypercyclic on Lpρ(0, 1) if and only if for each x ∈ (0, 1) there is a strictly
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increasing sequence of positive numbers (tn)n∈N tending to infinity such that
limn→∞Dϕ(±tn, x) = 0. Since

lim
t→±∞

Dϕ(t, x) = lim
t→±∞

e−t

(x+ (1− x)e−t)2
= 0,

theorem 6.19 even yields

Theorem 6.24 The solution C0-semigroup of the Cauchy problem

∂

∂t
u(t, x) = x(1− x)

∂

∂x
u(t, x), u(0, x) = f0(x)

is mixing on Lp(0, 1).

One should note that the semiflow considered in this example does not in-
duce a hypercyclic C0-semigroup on C0(0, 1), because all operators T (t) are
contractions.

We conclude this section with two more examples.

Example 6.25 On Ω := {x ∈ Rd; |x|2 < 1} we consider the solution (semi)flow
of the ordinary differential equation ẋ = (1− |x|2)x which is given by

ϕ : R× Ω → Ω, (t, x) 7→ 1√
(|x|2 + (1− |x|2)e−2t)

x.

One easily checks that ϕ is well-defined and obviously injective and one calcu-
lates

detDϕ(t, x) =
e−2t

(|x|2 + (1− |x|2)e−2t)d/2+1
≥ 0.

We consider the weight function ρ : Ω → (0,∞), x 7→ 1 − |x|2. Then,
µ := ρ dλd is locally finite and we will show that ρ is admissible.

Indeed, we have for |x| < 1 and t ∈ R that

(|x|2 + (1− |x|2)e−2t)d/2+1 ≤ (1 + e−2t)d/2+1,

so that
|detDϕ(t, x)| ≥ e−2t(1 + e−2t)−d/2−1 ≥ e−2t2−d/2−1

for t ≥ 0. Since

ρ(ϕ(t, x)) = (1−|x|2)e−2t(|x|2+(1−|x|2)e−2t)−1 = ρ(x)e−2t(|x|2+(1−|x|2)e−2t)−1,

this implies for t > 0 and x ∈ Ω

ρ(x) ≤ 2d/2+1e2t|detDϕ(t, x)|ρ(x)
= 2d/2+1e2t|detDϕ(t, x)|ρ(ϕ(t, x))(|x|2 + (1− |x|2)e−2t)e2t

≤ 2d/2+1e4tρ(ϕ(t, x))|detDϕ(t, x)|,

showing the admissibility of ρ for ϕ.
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Now, let K 6= ∅ be a compact subset of Ω with 0 /∈ K. We set r :=
minx∈K |x| > 0 and R := maxx∈K |x| < 1 and observe that for all t ∈ R we have

ρ(ϕ(t, x))
ρ(x)

|detDϕ(t, x)| =
e−4t

(|x|2 + (1− |x|2)e−2t)d/2+2

≤ e−4t

(r2 + (1−R2)e−2t)d/2+2
,

so that

lim
t→±∞

sup
x∈K

ρ(ϕ(t, x))
ρ(x)

|detDϕ(t, x)| ≤ lim
t→±∞

e−4t

(r2 + (1−R2)e−2t)d/2+2
= 0.

In particular, we have limt→±∞ µt(K) = 0. Since for every compact subset K
of Ω and for every ε > 0 we can find a compact subset L of K not containing 0
such that µ(K\L) < ε, we obtain:

Theorem 6.26 If ρ(x) = 1− |x|2 on Ω = {x ∈ Rd; |x|2 < 1} then the solution
semigroup to the Cauchy problem

∂

∂t
u(t, x) = (1− |x|2)

d∑
i=1

xi
∂

∂xi
u(t, x), u(0, x) = f0(x)

is mixing on Lpρ(Ω).

Example 6.27 Let Ω = (0,∞) × (−1, 1) and ϕ : [0,∞) × Ω → Ω, (t, x, y) 7→
(x + t, y). Then, |detDϕ(t, x, y)| = 1 and if we choose ρ(x, y) = exp(−|y|x)
we conclude from ρ(ϕ(t, x, y)) = ρ(x, y) exp(−|y|t) that ρ is Lp-admissible for ϕ
(M = 1, ω = 1).

If K is a compact subset of Ω and C := min(x,y)∈K |y| we calculate

µ−t(K) =
∫
K

exp(−|y|t)d(x, y) ≤ e−tCλ2(K).

For t large enough we have ϕ(t, ·)−1(K) = ∅ so that µt(K) = 0. It follows from
theorem 6.12 that Tϕ is hypercyclic on Lpρ(Ω).

Clearly, for every x ∈ (0,∞) we have ρ(ϕ(t, x, 0)) = 1, so that a1) iii) of
theorem 6.19 does not hold, hence the hypotheses of theorem 6.19 a) cannot be
satisfied.

6.2 Generators with non-vanishing zero order terms

In the previous section we essentially considered C0-semigroups generated by
gradient operators. In order to consider C0-semigroups generated by first order
partial differential operators with a non-vanishing zero order term, we have to
perturb the generator of our C0-semigroups by a multiplication operator.

Let ϕ again be a continuous semiflow on an open subset Ω of Rd and h :
Ω → R be continuous. Let E ∈ {Lp(µ), C0,ρ(Ω)}, where µ is a locally finite
Borel measure on Ω and ρ a positive upper semicontinuous function. Then,
B : D(B) := {f ∈ E; hf ∈ E} → E, f 7→ hf is a linear operator whose domain
contains Cc(Ω), hence is densely defined.
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If we set ht : Ω → R, x 7→ exp(
∫ t
0
h(ϕ(r, x)) dr) for t ≥ 0, then hs+t(x) =

hs(x)ht(ϕ(s, x)) and ht as well as 1/ht are continuous, hence in L∞loc(µ), and
positive for every t ≥ 0. As in section 5.1 we need the following Borel measures
on Ω

νp,t(B) :=
∫
ϕ(t,·)−1(B)

hpt dµ

and
νp,−t(B) :=

∫
ϕ(t,B)

1/ht(ϕ(−t, ·))p dµ.

Note that νp,t and µt are equivalent measures because of ht > 0. Recall that
for measurable f : Ω → [0,∞) we have∫

f dνp,t =
∫
ht(·)pf(ϕ(t, ·)) dµ

and ∫
f dνp,−t =

∫
χϕ(t,Ω)f(ϕ(−t, ·))/ht(ϕ(−t, ·))p dµ.

We assume that S(t) : E → E, f 7→ ht(·) f(ϕ(t, ·)) is a well-defined operator
for t ≥ 0 and that S = (S(t))t≥0 is a C0-semigroup on E. The proof of the
following theorem is done by the same arguments as the one of theorem 6.2
using theorem 5.21 instead of theorem 5.4, so that we omit it.

Theorem 6.28 Under the general assumptions the following are equivalent.

i) The family of mappings S(t) : Lp(µ) → Lp(µ), f 7→ ht(·) f(ϕ(t, ·)), t ≥ 0
is well-defined and a C0-semigroup.

ii) νp,t has a µ-density fp,t ∈ L∞(µ) and there are constants M ≥ 1, ω ∈ R
such that ‖fp,t‖∞ ≤Metω for all t ≥ 0.

One should note that the property of S being a C0-semigroup on Lp(µ)
now depends on p in general. In the C0,ρ(Ω) case the corresponding theorem is
proved in the same way as theorem 6.4.

Theorem 6.29 Under the general assumptions the following are equivalent.

i) The family of mappings S(t) : C0,ρ(X) → C0,ρ(X), f 7→ ht(·) f(ϕ(t, ·)) is
well-defined and a C0-semigroup.

ii) a) There are constants M ≥ 1, ω ∈ R such that ht(x)ρ(x) ≤Metωρ(ϕ(t, x))
for all x ∈ Ω and t ≥ 0.

b) For every compact subset K of X and every δ > 0 the set ϕ(t, ·)−1(K)∩
{x ∈ X;ht(x)ρ(x) ≥ δ} is compact for every t ≥ 0.

Note that as a direct consequence of the above two theorems S always is a
C0-semigroup if µ, respectively ρ, are admissible for the semiflow ϕ and if h is
bounded above.

Definition 6.30 i) The locally finite Borel measure µ on Ω is called Lp-
admissible for ϕ and h if the measures (νp,t)t≥0 satisfy condition ii) of
theorem 6.28.
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ii) ρ is called C0-admissible for ϕ and h if it satisfies condition ii) of theorem
6.29.

Again, if ϕ is the solution semiflow of the ordinary differential equation
ẋ = F (x) one shows as in theorem 6.7 that the generator (A,D(A)) of the
C0-semigroup S is an extension of the densely defined operator B : C1

c (Ω) →
E, f 7→ 〈F,∇f〉 + hf , where E ∈ {Lp(µ), C0,ρ(Ω)}. As in the case h ≡ 0 the
following proposition gives sufficient conditions under which the generator of S
is the closure of an explicitly known operator. Its proof will be given in appendix
C.

Proposition 6.31 Let F be a locally Lipschitz continuous vector field on Ω
such that the solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) = x0

exists for all t ≥ 0 and all x0 ∈ Ω. Let h : Ω → R be continuous and E ∈
{Lp(µ), C0,ρ(Ω)} where µ and ρ are admissible for ϕ and h. Then the following
holds.

i) Assume F and h are both bounded, continuously differentiable and sat-
isfy supx∈Ω |DF (x)| < ∞ and supx∈Ω |∇h(x)| < ∞. Then the generator
(A,D(A)) of S is given by the closure of the operator B : D → E, f 7→
〈F,∇f〉+ hf , where D := {f ∈ C1(Ω) ∩ E; |∇f | ∈ E}.

ii) If F is continuously differentiable and such that the unique solution ϕ(·, x0)
of the initial value problem ẋ = F (x), x(0) = x0 exists not only for all t ≥
0 but for all t ∈ R and if h is continuously differentiable then the generator
(A,D(A)) of S is given by the closure of the operator B : C1

c (Ω) → E, f 7→
〈F,∇f〉+ hf .

If one of the conditions of the above proposition is satisfied we call S the
solution semigroup of the Cauchy problem

∀ t ≥ 0, x ∈ Ω :
∂

∂ t
u(t, x) = 〈F (x),∇xu(t, x)〉+ h(x)u(t, x),

u(0, x) = f0(x), f0 ∈ E.

As in the case of h ≡ 0 treated in section 6.1, one shows the following
proposition by the same kind of arguments as propositions 6.9 and 6.10, where
one has to use that νp,t and µt are equivalent for all t ≥ 0 to show that i) implies
ii) in part b).

Proposition 6.32 a) Let µ be Lp-admissible for ϕ and h. Assume that ϕ
is continuously differentiable and that µ has a Lebesgue density ρ. Then,
a µ-density of νp,t, respectively νp,−t, is given by

χϕ(t,Ωt)
hpt (ϕ(−t, ·))ρ(ϕ(−t, ·))|detDϕ(−t, ·)|

ρ
,

respectively
ρ(ϕ(t, ·))|detDϕ(t, ·)|

hpt (·)ρ
.

b) Let ρ : Ω → (0,∞) be Borel measurable such that µ := ρ dλd is locally
finite. If ϕ is continuously differentiable, the following are equivalent.
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i) µ is admissible for ϕ and h.

ii) There are M ≥ 1 and ω ∈ R such that for every t ≥ 0 the inequality

hpt ρ ≤Metωρ(ϕ(t, ·))|detDϕ(t, ·)|

holds λd-a.e..

Using the results of section 5.1 and the separability of Lp(µ) we obtain a
characterisation of when S is hypercyclic.

Theorem 6.33 Under the general assumptions the following are equivalent.

i) The C0-semigroup S is weakly mixing on Lp(µ).

ii) The C0-semigroup S is hypercyclic on Lp(µ).

iii) For every compact subset K of Ω there are a sequence of measurable sub-
sets (Ln)n∈N of K and a sequence of positive numbers (tn)n∈N such that
limn→∞ µ(K\Ln) = 0 as well as

lim
n→∞

νp,tn(Ln) = lim
n→∞

νp,−tn(Ln) = 0.

Proof: The theorem follows directly from theorem 5.23 for I = [0,∞) and
w(t, ·) = ht. �

If µ has a λd-density ρ and ϕ is such that ϕ(t, ·) is continuously differentiable
on Ω the above theorem together with proposition 6.32 immediately yield:

Corollary 6.34 The C0-semigroup S is hypercyclic on Lpρ(Ω) if and only if for
every compact subset K of Ω there are a sequence of measurable subsets (Ln)n∈N
of K and a sequence of positive numbers (tn)n∈N satisfying limn→∞ µ(K\Ln) =
0,

lim
n→∞

∫
Ln

χϕ(tn,Ωtn )(x)h
p
tn(ϕ(−tn, x))ρ(ϕ(−tn, x))|detDϕ(−tn, x)| dx = 0

and
lim
n→∞

∫
Ln

h−ptn (x)ρ(ϕ(tn, x))|detDϕ(tn, x)| dx = 0.

Up to now we have seen that C0-semigroups generated by gradient opera-
tors are hypercyclic either on all the spaces Lp(µ), (1 ≤ p < ∞) or on none.
This breaks down if we allow perturbations by multiplication operators, as the
following example shows.

Example 6.35 Consider on Ω = R the semiflow ϕ(t, x) := t+x and the weight
function ρ(x) := exχ(−∞,0)(x) + χ[0,∞)(x). Clearly, ρ is Lp-admissible and
the C0-semigroup T induced by ϕ is a semigroup of contractions on Lpρ(R), in
particular, it is not hypercyclic.

Now, we perturb its generator by h ≡ c, where c ∈ R. The resulting op-
erators form a C0-semigroup on Lpρ(R) for every 1 ≤ p < ∞ according to the
remark following theorem 6.29.
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We have ht ≡ etc and for every compact subset K of R and every measurable
subset L of K we have

∫
L
etncpρ(x − tn)dx = etn(cp−1)

∫
L
exdx for sufficiently

large tn. Now, provided that λ(L) > 0, this expression tends to 0 as tn tends
to infinity if and only if c < 1/p

On the other hand, for every compact subset K of R and every measurable
subset L of K we have

∫
L
e−tncpρ(x+ tn)dx = e−tncpλ(L) for sufficiently large

tn. In the case of λ(L) > 0, this converges to 0 as tn tends to infinity if and
only if c > 0. Corollary 6.34 yields:

Theorem 6.36 The solution C0-semigroup of the Cauchy problem

∂

∂t
u(t, x) =

∂

∂x
u(t, x) + cu(t, x), u(0, x) = f0(x)

is hypercyclic on Lpρ(R) for ρ(x) := exχ(−∞,0)(x) + χ[0,∞)(x) if and only if
c ∈ (0, 1/p).

Note that this example is interesting for another reason apart from the above
theorem. As already noted, the unperturbed semigroup T generated by f 7→ f ′

is not hypercyclic on Lpρ(R). The same is true for the C0-semigroup generated
by the bounded operator f 7→ cf . But the semigroup generated by f 7→ f ′ + cf
is hypercyclic. It is even mixing and chaotic, as will be seen in example 6.39
and at the end of example 7.5, respectively.

Theorem 6.37 Let ρ be such that infx∈K ρ(x) > 0 for every compact subset K
of Ω. Then, under the general assumptions, the following are equivalent.

i) The C0-semigroup S is weakly mixing on C0,ρ(Ω).

ii) The C0-semigroup S is hypercyclic on C0,ρ(Ω).

iii) For every compact subset K of Ω there exists a sequence (tn)n∈N of positive
numbers such that

lim
n→∞

sup
x∈ϕ(tn,·)−1(K)

htn(x)ρ(x) = lim
n→∞

sup
x∈ϕ(tn,K)

ρ(x)
htn(ϕ(−tn, x))

= 0.

Proof: The theorem follows immediately from corollary 5.29. �

Theorem 6.38 a) Under the general assumptions the following are equiva-
lent.

i) The C0-semigroup S on Lp(µ) is mixing.

ii) For every compact subset K of Ω there exists a family of measurable
subsets (Lt)t≥0 of K such that limt→∞ νp,t(Lt) = limt→∞ νp,−t(Lt) =
0 and lim

t→∞
µ(K\Lt) = 0.

b) Let ρ be such that infx∈K ρ(x) > 0. Then, under the general hypotheses
the following are equivalent.

i) The C0-semigroup S is mixing on C0,ρ(Ω).
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ii) For every compact subset K of Ω we have

lim
t→∞

sup
x∈ϕ(t,·)−1(K)

ht(x)ρ(x) = lim
t→∞

sup
x∈ϕ(t,K)

ρ(x)
ht(ϕ(−t, x))

= 0.

Proof: The theorem follows immediately from theorem 5.31 and theorem
5.33. �

Example 6.39 Consider on Ω = R again the semiflow ϕ(t, x) := t+ x and the
weight function ρ(x) := exχ(−∞,0)(x)+χ[0,∞)(x). In example 6.35 we have seen
that for h ≡ c, where c ∈ (0, 1/p), the resulting C0-semigroup is hypercyclic on
Lpρ(R).

Moreover, for every compact subset K of R and every measurable subset L
of K we have

∫
L
etcpρ(x − t)dx = et(cp−1)

∫
L
exdx for sufficiently large t. Now,

provided that λ(L) > 0, this expression tends to 0 as t tends to infinity since
c < 1/p.

On the other hand, for every compact subset K of R and every measurable
subset L of K we have

∫
L
e−tcpρ(x + t)dx = e−tcpλ(L) for sufficiently large t.

In the case of λ(L) > 0, this converges to 0 as t tends to infinity since c > 0.
From theorem 6.38 it follows that the C0-semigroup is mixing on Lpρ(R).

Remark 6.40 Again, the above conditions characterising hypercyclicity and
mixing of S become more convenient if ϕ and h are nice and ρ behaves tamely.

For Lpρ(Ω), if in theorem 6.19 one replaces

ε <
ρ(ϕ(t, x))|detDϕ(t, x)|
ρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε

by

ε <
ht(x)−pρ(ϕ(t, x))|detDϕ(t, x)|
ht(y)−pρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε,

respectively

ε <
ht(x)−pρ(ϕ(t, x))|detDϕ(t, x)|
ht(y)−pρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε

and

ε <
hpt (ϕ(−t, x))ρ(ϕ(−t, x))|detDϕ(−t, x)|
hpt (ϕ(−t, y))ρ(ϕ(−t, y))|detDϕ(−t, y)|

< 1/ε,

then one can show by the same kind of arguments used in the proof of theorem
6.19 that the following are equivalent.

i) S is weakly mixing on Lpρ(Ω).

ii) S is hypercyclic on Lpρ(Ω).

iii) For every x ∈ Ω there is a strictly increasing sequence of positive numbers
(tn)n∈N such that

lim
n→∞

htn(x)−pρ(ϕ(tn, x)) detDϕ(tn, x) = 0,

respectively

lim
n→∞

htn(x)−pρ(ϕ(tn, x)) detDϕ(tn, x) = 0
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and
lim
n→∞

htn(ϕ(−tn, x))pρ(ϕ(−tn, x)) detDϕ(−tn, x) = 0.

For C0,ρ(Ω) one has to replace

ρ(ϕ(t, x))
ρ(ϕ(t, y))

< C

in theorem 6.20 by
ρ(ϕ(t, x))ht(y)
ht(x)ρ(ϕ(t, y))

< C,

respectively

ρ(ϕ(t, x))ht(y)
ht(x)ρ(ϕ(t, y))

< C and
ρ(ϕ(−t, x))ht(ϕ(−t, y))
ht(ϕ(−t, x))ρ(ϕ(−t, y))

< C,

to obtain the equivalence of:

i) S is weakly mixing on C0,ρ(Ω).

ii) S is hypercyclic on C0,ρ(Ω).

iii) For every x ∈ Ω there is a strictly increasing sequence of positive numbers
(tn)n∈N such that

lim
n→∞

ρ(ϕ(tn, x))
htn(x)

= 0,

respectively

lim
n→∞

ρ(ϕ(tn, x))
htn(x)

= lim
n→∞

htn(ϕ(−tn, x))ρ(ϕ(−tn, x)) = 0.

Moreover, analogous characterisations to the ones of theorems 6.19 and 6.20
of when S is mixing are true.

It follows from theorem 2.9 and theorems 6.33 or 6.37, respectively, that the
C0-semigroup S is hypercyclic on E ∈ {Lp(µ), C0,ρ(Ω)} if and only if for each
t0 > 0 the operator S(t0) is weakly mixing. This can also be done directly, as
we want to show now. In order to do so, we need the following result.

Lemma 6.41 Let µ be such that S is a C0-semigroup on Lp(µ). Then there
are constants M ≥ 1, ω ∈ R such that for every Borel measurable subset B of a
compact subset K of Ω one has

νp,t(B) ≤Me(t−r)ωνp,r(B)

for all 0 ≤ r ≤ t and

νp,−t(B) ≤Mesωνp,−(t+s)(B)

for all 0 ≤ s, t.
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Proof: Since S is a C0-semigroup on Lp(µ) there are constants M ≥ 1, ω′ ∈
R such that ‖S(t)‖ ≤ Metω

′
for all t ≥ 0 (see appendix A.1). Let K be a

compact subset of Ω, B a Borel measurable subset of K and 0 ≤ r ≤ t. Then
we have χB ∈ Lp(µ) and

νp,t(B) = ‖S(t)χB‖p = ‖S(t− r)S(r)χB‖p ≤Me(t−r)pω
′
‖S(r)χB‖p

= Me(t−r)pω
′
νp,r(B).

Furthermore, for 0 ≤ s, t we have χϕ(t+s,B)/ht+s(ϕ(−(t + s), ·)) ∈ Lp(µ)
because B is a subset of a compact set and ϕ(t + s, ·) is continuous. Using
ht+s(x) = ht(x)hs(ϕ(t, x)) we get

νp,−t(B) =
∫
ϕ(t,B)

1
hpt (ϕ(−t, ·))

dµ =
∫
ϕ(s,·)−1(ϕ(t+s,B))

(
hs

ht(ϕ(−t, ·))hs
)p dµ

=
∫
ϕ(s,·)−1(ϕ(t+s,B))

(
hs

ht+s(ϕ(−t, ·))
)p dµ

=
∫
hps(x)(χϕ(t+s,B)(ϕ(s, x))

1
ht+s(ϕ(−(t+ s), ϕ(s, x)))

)p dµ

= ‖S(s)(χϕ(t+s,B)
1

ht+s(ϕ(−(t+ s), ·))
)‖p

≤ Mespω
′
‖χϕ(t+s,B)

1
ht+s(ϕ(−(t+ s), ·))

‖p

= Mespω
′
∫
ϕ(t+s,B)

1
hpt+s(ϕ(−(t+ s), ·))

dµ = Mespω
′
νp,−(t+s)(B).

Setting ω := pω′ gives the desired result. �

Theorem 6.42 Under the general assumptions the following are equivalent.

i) S is a hypercyclic C0-semigroup on Lp(µ)

ii) S(t) is a weakly mixing operator on Lp(µ) for every t > 0

iii) There is t0 > 0 such that S(t0) is a weakly mixing operator on Lp(µ).

Proof: i) ⇒ ii) : Let t > 0 and K be a compact subset of X. Since ϕ(t/2, ·)
is continuous ϕ(t/2,K) is compact so that from the hypercyclicity of S we get
from theorem 6.33 a sequence of measurable subsets (L̃n)n∈N of ϕ(t/2,K) and
a sequence of positive numbers (tn)n∈N such that limn→∞ µ(ϕ(t/2,K)\L̃n) = 0
and limn→∞ νp,tn(L̃n) = νp,−tn(L̃n) = 0.

From the injectivity of ϕ(t/2, ·) we get that Ln := ϕ(t/2, ·)−1(L̃n) is a mea-
surable subset of K satisfying

lim
n→∞

µ(K\Ln) = lim
n→∞

∫
K\Ln

hpt/2/h
p
t/2 dµ ≤ lim

n→∞
C

∫
K\Ln

hpt/2 dµ

= lim
n→∞

C

∫
ϕ(t/2,·)−1(ϕ(t/2,K)\L̃n)

hpt/2 dµ

= lim
n→∞

Cνp,t/2(ϕ(t/2,K)\L̃n)

= lim
n→∞

C

∫
ϕ(t/2,·)−1(ϕ(t/2,K)\L̃n)

fp,t/2 dµ

≤ lim
n→∞

C‖fp,t/2‖∞µ(ϕ(t/2,K)\L̃n) = 0,
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where we used that 1/ht/2 ∈ L∞loc(µ).
Let M and ω be as in lemma 6.41. Now, for every n ∈ N there is a (unique)

jn ∈ {k − 1/2; k ∈ N0} such that jnt < tn ≤ (jn + 1)t. In particular, ln :=
jn+1/2 belongs to N0. Note that from the injectivity of ϕ(lnt, ·) and the fact that
h−pt/2 is bounded by some constantDt onK we have ht/2(ϕ(−lnt, ·))−pχϕ(lnt,K) ≤
Dt. From this and hjnt+t/2(x) = ht/2(x)hjnt(ϕ(t/2, x)) we get using L̃n ⊆
ϕ(t/2,K), ln = jn + 1/2 and Ln = ϕ(t/2, ·)−1(L̃n)

νp,−lnt(Ln) =
∫
ϕ(lnt,Ln)

hlnt(ϕ(−lnt, ·))−p dµ

=
∫
ϕ(jnt,L̃n)

ht/2(ϕ(−lnt, ·))−phjnt(ϕ(−lnt, ϕ(t/2, ·)))−p dµ

=
∫
ϕ(jnt,L̃n)

χϕ(jnt,ϕ(t/2,K))ht/2(ϕ(−lnt, ·))−phjnt(ϕ(−jnt, ·))−p dµ

=
∫
ϕ(jnt,L̃n)

χϕ(lnt,K)ht/2(ϕ(−lnt, ·))−phjnt(ϕ(−jnt, ·))−p dµ

≤ Dt

∫
ϕ(jnt,L̃n)

hjnt(ϕ(−jnt, ·))−p dµ

= Dtνp,−jnt(L̃n) ≤ DtMetωνp,−tn(L̃n),

where we used the second inequality of lemma 6.41 and tn − jnt < t in the last
step. This shows that limn→∞ νp,−lnt(Ln) = 0.

Again, from the injectivity of ϕ(lnt, ·) and the fact that h−pt/2 is bounded
by Dt on K it follows that χϕ(lnt,·)−1(K)(x)ht/2(ϕ(lnt, x))−p ≤ Dt. Using this,
h(jn+1)t(x) = hlnt(x)ht/2(ϕ(lnt, x)), Ln = ϕ(t/2, ·)−1(L̃n) and Ln ⊂ K we get

νp,lnt(Ln) =
∫
ϕ(lnt,·)−1(Ln)

hplnt dµ =
∫
ϕ(lnt,·)−1(Ln)

χϕ(lnt,·)−1(K)h
p
lnt
dµ

=
∫
ϕ((jn+1)t,·)−1(L̃n)

χϕ(lnt,·)−1(K)(x)
ht/2(ϕ(lnt, x))p

hp(jn+1)t(x) dµ(x)

≤ Dt

∫
ϕ((jn+1)t,·)−1(L̃n)

hp(jn+1)t dµ = Dtνp,(jn+1)t(L̃n)

≤ DtMeωtνp,tn(Ln),

where we used the first inequality of lemma 6.41 and (jn + 1)t − tn < t in the
last step. This shows limn→∞ νp,tn(Ln) = 0, too. So, by theorem 5.23 it follows
that S(t) is a weakly mixing operator on Lp(µ).

Clearly, ii) implies iii) and iii) implies i), so that the theorem holds true. �

Theorem 6.43 Let ρ be a C0-admissible weight function such that infx∈K ρ(x) >
0 for every compact subset K of Ω. Under the general assumptions, the following
are equivalent.

i) S is a hypercyclic C0-semigroup on C0,ρ(Ω)

ii) S(t) is a weakly mixing operator on C0,ρ(Ω) for every t > 0

iii) There is t0 > 0 such that S(t0) is a weakly mixing operator on C0,ρ(Ω).
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Proof: Clearly, all we have to show is that i) implies ii). So let t > 0
and K be a compact subset of Ω. Then, K ∪ ϕ(t,K) is compact so that by
the hypercyclicity of S it follows from theorem 6.37 that there is a sequence of
positive numbers (tn)n∈N such that

lim
n→∞

sup
x∈ϕ(tn,K∪ϕ(t,K))

ρ(x)
htn(ϕ(−tn, x))

= lim
n→∞

sup
x∈ϕ(tn,·)−1(K∪ϕ(t,K))

htn(x)ρ(x) = 0.

For all n ∈ N let jn ∈ N be such that jnt ≤ tn < (jn + 1)t. Since S is
a C0-semigroup on C0,ρ(Ω) it follows from theorem 6.32 that there are M ≥
1, ω ∈ R such that hr(x)ρ(x) ≤ Merωρ(ϕ(r, x)) for all r ≥ 0, x ∈ Ω. Since S is
hypercyclic it follows that ω > 0. Applying this for r = tn − jnt ≤ t we obtain

htn−jnt(ϕ((jn + 1)t, x))ρ(ϕ((jn + 1)t, x)) ≤Metωρ(ϕ(tn, ϕ(t, x)))

for all x ∈ Ω and n ∈ N.
This inequality together with hr+s(x) = hr(x)hs(ϕ(r, x)) implies

ρ(ϕ((jn + 1)t, x))
h(jn+1)t(x)

≤ Metωρ(ϕ(tn, ϕ(t, x)))
h(jn+1)t(x)htn−jnt(ϕ((jn + 1)t, x))

=
Metωρ(ϕ(tn, ϕ(t, x)))

htn+t(x)

=
Metωρ(ϕ(tn, ϕ(t, x)))
ht(x)htn(ϕ(t, x))

for every x ∈ Ω and n ∈ N. Since ht is continuous and positive it follows that
there is Ct < ∞ such that 1/ht in bounded above by Ct on K. From all this
follows

sup
x∈K

ρ(ϕ((jn + 1)t, x))
h(jn+1)t(x)

≤ Metω sup
x∈K

ρ(ϕ(tn, ϕ(t, x)))
ht(x)htn(ϕ(t, x))

≤ CtMetω sup
x∈K

ρ(ϕ(tn, ϕ(t, x)))
htn(ϕ(t, x))

= CtMetω sup
x∈ϕ(t,K)

ρ(ϕ(tn, x))
htn(x)

≤ CtMetω sup
x∈K∪ϕ(t,K)

ρ(ϕ(tn, x))
htn(x)

= CtMetω sup
x∈ϕ(tn,K∪ϕ(t,K))

ρ(x)
htn(ϕ(−tn, x))

.

The last term in the above inequality tends to 0 as n tends to infinity, so that

lim
n→∞

sup
x∈ϕ((jn+1)t,K)

ρ(x)
h(jn+1)t(ϕ(−(jn + 1)t, x))

= 0.

On the other hand, for y = ϕ(−(jn + 1)t, x) ∈ ϕ((jn + 1)t, ·)−1(K) we
have using hr+s(z) = hr(z)hs(ϕ(r, z)) for r = tn, s = (jn + 1)t − tn and z =
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ϕ(−(jn + 1)t, x)

h(jn+1)t(ϕ(−(jn + 1)t, x)ρ(ϕ(−(jn + 1)t, x)))
= htn(ϕ(−tn, x))h(jn+1)t−tn(ϕ(−(jn + 1)t, x))ρ(ϕ(−(jn + 1)t, x))

≤ htn(ϕ(−tn, x))Me((jn+1)t−tn)ωρ(ϕ(−(jn + 1)t, ϕ((jn + 1)t− tn, x)))
≤ Metωhtn(ϕ(−tn, x))ρ(ϕ(−tn, x)).

This inequality finally yields

sup
y∈ϕ((jn+1)t,·)−1(K)

h(jn+1)t(y)ρ(y) ≤ sup
x∈K∩ϕ(tn,Ω)

Metωhtn(ϕ(−tn, x))ρ(ϕ(−tn, x))

≤ sup
x∈(K∪ϕ(t,K))∩ϕ(tn,Ω)

Metωhtn(ϕ(−tn, x))ρ(ϕ(−tn, x))

= sup
y∈ϕ(tn,·)−1(K∪ϕ(t,K))

Metωhtn(y)ρ(y).

The right hand side of the above inequality tends to 0 as n tends to infinity so
that

lim
n→∞

sup
y∈ϕ((jn+1)t,·)−1(K)

h(jn+1)t(y)ρ(y) = 0.

Since K was an arbitrary compact subset of Ω and ((jn + 1))n∈N is a sequence
of positive integers it follows from corollary 5.29 applied to the single weighted
composition operator S(t) that S(t) is weakly mixing. �

6.3 Non-autonomous Cauchy problems

The results of chapter 5 can also be used to characterise when the evolution
family U = (U(t, s))s∈R,t≥s of non-autonomous Cauchy problems of the form

∂

∂t
u(t, s, x) = 〈F (t, x),∇xu(t, s, x)〉+ h(t, x)u(t, s, x), t ≥ s, x ∈ Ω

u(s, s, x) = us(x), s ∈ R,

is hypercyclic, where again Ω ⊂ Rd is open, F : R× Ω → Ω is locally Lipschitz
continuous with respect to x and h : R× Ω → R is continuous.

Recall, that a mapping U : {(t, s) ∈ R2; t ≥ s} → E, where E is again a
Banach space, is called an evolution family, if it satisfies

i) U(s, s) = idE for all s ∈ R

ii) U(t, r) ◦ U(r, s) = U(t, s) for all s ≤ r ≤ t

iii) U is continuous when we equip L(E) with the strong operator topology.

Furthermore, let D(A(t)) ⊂ E be dense subspaces and A(t) : D(A(t)) → E
be linear mappings, t ∈ R. The evolution family U is said to solve the non-
autonomous Cauchy problem

(nCP)
d

dt
u(t) = A(t)u(t)

u(s) = x, x ∈ E, t ≥ s
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(on the spaces Et) if there are dense subspaces (Et)t∈R of E such that U(t, s)Es ⊂
Et ⊂ D(A(t)), t ≥ s, and the function t 7→ U(t, s)x solves (nCP) for fixed
s ≥ 0, x ∈ Es (cf. [24, Chapter VI.9]).

Now, let Ω again be an open subset of Rd and let F : R×Ω → Ω be locally
Lipschitz continuous with respect to x and such that for every s ∈ R and every
x0 ∈ Ω the unique solution ϕ(·, s, x0) of the initial value problem

ẋ(t) = F (t, x(t)), x(s) = x0

exists on all R.
The uniqueness of the solution implies that ϕ(t, s, ·) is a bijective mapping

on Ω and that its inverse mapping in given by ϕ(s, t, ·).
Again, we call ϕ continuously differentiable if ϕ(t, s, ·) is continuously differ-

entiable for all t ≥ s, s ∈ R.
Furthermore, let h : R × Ω → R be a continuous function. We define

ht,s(x) := exp(
∫ t
s
h(r, ϕ(r, s, x)) dr), t ≥ s, and observe that ht,s is measurable,

real-valued and satisfies 1/ht,s ∈ L∞loc(µ).
Let µ again be a locally finite Borel measure on Ω. We assume that the

mapping U(t, s)f := ht,s(·)f(ϕ(t, s, ·)), t ≥ s, is a well-defined linear operator
on Lp(µ) for all s ∈ R and t ≥ s. It is obvious, that U(s, s)f = f for all
s ∈ R and that U(t, r)(U(r, s)f) = U(t, s)f for all s ≤ r ≤ t, so that U is an
evolution family if and only if the mapping (t, s) 7→ U(t, s)f is continuous for
every f ∈ Lp(µ).

For s ∈ R and t ≥ s we define the Borel measures

νp,(t,s)(A) :=
∫
ϕ(s,t,A)

hpt,s dµ

and
νp,−(t,s)(A) :=

∫
ϕ(t,s,A)

1/hpt,s(ϕ(s, t, ·)) dµ.

Theorem 6.44 a) Under the general assumptions, the following are equiv-
alent.

i) U is hypercyclic on Lp(µ).

ii) For every compact subset K of Ω there are a sequence of measur-
able subsets (Ln)n∈N of K and a sequence ((tn, sn))n∈N in {(u, v) ∈
R2;u ≥ v} such that limn→∞ µ(K\Ln) = 0 as well as

lim
n→∞

νp,(tn,sn)(Ln) = lim
n→∞

νp,−(tn,sn)(Ln) = 0.

b) Under the general hypotheses, the following are equivalent for fixed s ∈ R.

i) {U(t, s); t ≥ s} is hypercyclic on Lp(µ).

ii) For every compact subset K of Ω there are a sequence of measurable
subsets (Ln)n∈N of K and a sequence (tn)n∈N in [s,∞) such that
limn→∞ µ(K\Ln) = 0 as well as

lim
n→∞

νp,(tn,s)(Ln) = lim
n→∞

νp,−(tn,s)(Ln) = 0.
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Proof: Having in mind that ϕ(t, s,Ω) = Ω and ϕ(t, s, ·)−1 = ϕ(s, t, ·) for
all t, s ∈ R the theorem is a direct consequence of theorem 5.23. �

If ρ is a strictly positive, upper semicontinuous function such that U(t, s)f :=
ht,s(·)f(ϕ(t, s, ·)) defines an evolution family on C0,ρ(Ω), the characterisation of
when U is hypercyclic on C0,ρ(Ω) can be handled analogously.

Theorem 6.45 a) Under the general assumptions, the following are equiv-
alent:

i) U is hypercyclic on C0,ρ(Ω).

ii) For every compact subset K of Ω there are a sequence ((tn, sn))n∈N
in {(u, v) ∈ R2;u ≥ v} such that

lim
n→∞

sup
x∈ϕ(tn,sn,K)

ρ(x)
htn,sn(ϕ(sn, tn, x))

= lim
n→∞

sup
x∈ϕ(sn,tn,K)

htn,sn(x)ρ(x) = 0.

b) Under the general hypotheses, the following are equivalent for s ∈ R:

i) {U(t, s); t ≥ s} is hypercyclic on C0,ρ(Ω).

ii) For every compact subset K of Ω there is a sequence (tn)n∈N in [s,∞)
such that

lim
n→∞

sup
x∈ϕ(s,tn,K)

htn,s(x)ρ(x) = lim
n→∞

sup
x∈ϕ(tn,s,K)

ρ(x)
htn,s(ϕ(s, tn, x))

= 0.

Having in mind theorem 6.7 the following theorem is no surprise.

Theorem 6.46 Let E ∈ {Lp(µ), C0,ρ(Ω)}. Additionally to the general hypothe-
ses, assume that U is an evolution family on E and that ϕ is continuously
differentiable.

For t ∈ R let D(A(t)) := {f ∈ E; 〈F (t, ·),∇xf〉 + h(t, ·)f ∈ E} and A(t) :
D(A(t)) → E, f 7→ 〈F (t, ·),∇xf〉 + h(t, ·)f , where ∇xf is to be understood in
the weak sense. Then U solves the non-autonomous Cauchy problem

d

dt
u(t) = A(t)u(t), t ≥ s,

u(s) = f0

on the spaces Et := C1
c (Ω), t ∈ R, in Lp(µ).

Proof: We only prove the Lp(µ)-case. The case E = C0,ρ(Ω) is dealt with
in an analogous way. Since µ is locally finite C1

c (Ω) is dense in Lp(µ). From
the fact that ϕ(t, s, ·) is continuously differentiable it follows that it is a C1-
diffeomorphism of Ω onto itself so that U(t, s)(C1

c (Ω)) ⊂ C1
c (Ω) ⊂ D(A(t)) for

all t ∈ R.
So, all that remains to be shown is that for every f ∈ C1

c (Ω) and fixed s ∈ R
the mapping u(t) := U(t, s)f, t ≥ s, is differentiable and satisfies d

dt u(t) =
A(t)u(t). Let f ∈ C1

c (Ω).
Then

U(t, s)(A(t)f) = ht,s〈F (t, ϕ(t, s, ·)), (∇f)(ϕ(t, s, ·))〉+ht,sh(t, ϕ(t, s, ·))f(ϕ(t, s, ·)).



Semigroups generated by first order differential operators 79

Since f has compact support we can use Lebesgue’s theorem to conclude that

lim
r→0

∫
Ω

|1/r(U(t+ r, s)f − U(t, s)f)− U(t, s)(A(t)f)|p dµ

=
∫

Ω

lim
r→0

|1/r(ht+r,s(x)f(ϕ(t+ r, s, x))− ht,s(x)f(ϕ(t, s, x)))

−ht,s(x)〈F (t, ϕ(t, s, x)), (∇f)(ϕ(t, s, x))〉 − ht,s(x)h(t, ϕ(t, s, x))f(ϕ(t, s, x))|p dµ(x)

=
∫

Ω

ht,s(x)f(ϕ(t, s, x))h(t, ϕ(t, s, x)) + ht,s(x)〈(∇f)(ϕ(t, s, x)), F (t, ϕ(t, s, x))〉

−ht,s(x)〈F (t, ϕ(t, s, x), (∇f)(ϕ(t, s, x)〉 − ht,s(x)h(t, ϕ(t, s, x))f(ϕ(t, s, x))|p dµ(x)
= 0,

so that u : [s,∞) → Lp(µ) is indeed differentiable with u′(t) = U(t, s)(A(t)f).
Now, since U(t, s)f ∈ C1

c (Ω) it follows that for fixed t ≥ s the function

v : [t,∞) → Lp(µ), r 7→ U(r, t)(U(t, s)f)

is differentiable, too, and that its derivative at t is given by

v′(t) = U(t, t)(A(t)U(t, s)f) = A(t)(U(t, s)f).

Since v(r) = u(r) for all r ≥ t this finally yields u′(t) = v′(t) = A(t)(U(t, s)f) =
A(t)u(t). �

Example 6.47 Let Ω = R, F ≡ 1, h(t, x) := 2ct where c ∈ R and ρ(x) :=
e−|x|. Then ϕ(t, s, x) = x + (t − s), ht,s(x) = exp(c(t2 − s2)) and obviously
U(t, s)f := ht,sf(ϕ(t, s, ·) defines an evolution family. νp,(t,s) has Lebesgue den-
sity exp(pc(t2−s2)−|·−(t−s)|) and νp,−(t,s) has Lebesgue density exp(−pc(t2−
s2)− | ·+(t− s)|) for all s ∈ R, t ≥ s.

For a bounded, measurable subset B of R with λ(B) > 0 and a sequence
(tn)n∈N in [s,∞) we have limn→∞ νp,(tn,s)(B) = 0 if and only if (tn)n∈N con-
verges to infinity and pc ≤ 0 because for sufficiently large tn

νp,(tn,s)(B) = exp(pc(t2n − s2)− (tn − s))
∫
B

exp(x) dx.

Furthermore, we have limn→∞ νp,−(tn,s)(B) = 0 if and only if (tn)n∈N con-
verges to infinity and pc ≥ 0 because for sufficiently large tn

νp,−(tn,s)(B) = exp(−pc(t2n − s2)− (tn − s))
∫
B

exp(−x) dx.

From this and theorem 6.44 b) it follows that for fixed s ∈ R the family of
operators (U(t, s))t≥s is hypercyclic on Lpρ(R) if and only if c = 0.

On the other hand, if t > 0 is sufficiently large and s := −t we clearly get

νp,(t,−t)(B) = exp(−2t)
∫
B

exp(x) dx

and
νp,−(t,−t)(B) = exp(−2t)

∫
B

exp(−x) dx,
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which both converge to 0 when t tends to infinity, so that by theorem 6.44 a)
the family (U(t, s))s∈R,t≥s is hypercyclic on Lp(µ) for all values of c.

Now, let (t, s) ∈ {(u, v) ∈ R2; u > v} be fixed. It is easily verified that
U(t, s)nf = exp(cn(t2 − s2))f(· + n(t − s)). Setting hn := exp(cn(t2 − s2))
and ϕ(n, x) = x+ n(t− s) and adapting the notation from section 5 we get for
sufficiently large n

νp,n(B) = exp(n(cp(t2 − s2)− (t− s)))
∫
B

exp(x) dx,

and
νp,−n(B) = exp(−n(cp(t2 − s2) + (t− s)))

∫
B

exp(−x) dx

so that for a sequence (nk)k∈N of natural numbers both νp,nk
(B) and νp,−nk

(B)
converge to 0 as k tends to infinity if and only if (nk)k∈N converges to infinity
and cp(t2 − s2)− (t− s) < 0 and cp(t2 − s2) + (t− s) > 0. From theorem 5.23
if follows that U(t, s) is therefore a hypercyclic operator on Lpρ(R) if and only if
|c(t+ s)| < 1/p.

So by fixing c = 1 this gives an example of an evolution family (U(t, s))s∈R,t≥s
on Lpρ(R) which is hypercyclic but for which none of the families (U(t, s))t≥s, s ∈
R is hypercyclic and for which a single operator U(t, s), t > s, is hypercyclic on
Lpρ(R) if and only if |t+ s| < 1/p.
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7 Chaotic C0-semigroups generated by first or-
der partial differential operators

In this chapter we investigate chaoticity of C0-semigroups generated by first
order partial differential operators. Recall that a C0-semigroup T , respectively
an operator T , on a Banach space E is chaotic if it is transitive and if the set of
periodic points, i.e. the set per(T ) := {x ∈ E; ∃ t > 0 : T (t)x = x}, respectively
per(T ) := {x ∈ E; ∃n ∈ N : Tnx = x}, is dense in E.

Parts of this chapter will be published in Ergodic Theory and Dynamical
Systems under the title ”Hypercyclic, mixing, and chaotic C0-semigroups in-
duced by semiflows”.

We adapt the notions and notation from chapter 5. In particular X is a
locally compact Hausdorff topological space and ρ an upper semicontinuous,
positive valued function on X. Again, if we are considering Lp(µ) spaces, where
µ is a locally finite Borel measure on X, we additionally assume X to be σ-
compact. The only difference to chapter 5 is that instead of I being an arbitrary
set we now always assume I ∈ {[0,∞),N}. Moreover, we assume that for all
t, s ∈ I we have ϕ(t+s, ·) = ϕ(t, ϕ(s, ·)). Apart from these differences, we again
assume ϕ(t, ·) to be injective and continuous for all t ∈ I.

Furthermore, let w : I×X → (0,∞) be as in chapter 5, that is w is continu-
ous when considering C0,ρ(X), or such that 1/w(t, ·) ∈ L∞loc(µ) for all t ∈ I when
dealing with Lp(µ), respectively. We assume that w(t+s, ·) = w(t, ·)w(s, ϕ(t, ·))
for all t, s ∈ I and that the family of weighted composition operators Tw,ϕ de-
fined as in chapter 5 is a well-defined family of operators on Lp(µ) or C0,ρ(X),
respectively. In particular, we have Tw,ϕ(t+s) = Tw,ϕ(t)◦Tw,ϕ(s) for all t, s ∈ I.

Remark 7.1 Note that if Tv,ψ is a single weighted composition operator and
if one defines for n ∈ N ϕ(n, ·) := ψ ◦ · · · ◦ ψ with n factors and w(n, ·) :=∏n−1
j=0 v(ψ

j(·)) that then trivially ϕ(n+m, ·) = ϕ(n, (ϕ(m, ·)) and w(n+m, ·) =
w(n, ·)w(m,ϕ(n, ·)) for all n,m ∈ N. So, the above conditions are satisfied by
Tw,ϕ and obviously Tw,ϕ(n) = Tnv,ψ for all n ∈ N.

Taking into account the characterisations of chaoticity for the left translation
semigroup on Lpρ(R) given in [41, 42], and the characterisation of chaoticity for
weighted shifts given in [29] one might guess that a summability condition will
enter. The next theorem shows that this is indeed the case, but we have to
impose an extra condition on the mapping ϕ.

Recall that for t ∈ I

νp,t(B) =
∫
ϕ(t,·)−1(B)

w(t, ·)p dµ

and
νp,−t(B) =

∫
ϕ(t,B)

1/w(ι, ϕ(−t, ·))p dµ.

Furthermore, we have ∫
f dνp,t =

∫
w(t, ·)pf(ϕ(t, ·)) dµ
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and ∫
f dνp,−t =

∫
χϕ(t,X)f(ϕ(−t, ·))/w(t, ϕ(ι, ·))p dµ

for positive, measurable functions f on X.

Theorem 7.2 Additional to the general assumptions, let ϕ be such that for
every compact subset K of X there is tK > 0 such that ϕ(t,K) ∩ K = ∅ for
every t > tK . Then, the following are equivalent.

i) Tw,ϕ is chaotic on Lp(µ).

ii) per(Tw,ϕ) is dense in Lp(µ)

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Ln)n∈N of K and a strictly increasing sequence of positive num-
bers (tn)n∈N tending to infinity such that limn→∞ µ(K\Ln) = 0, and
limn→∞ sn = 0, where

sn :=
∞∑
l=1

νp,ltn(Ln) +
∞∑
l=1

νp,−ltn(Ln).

Proof: Instead of Tw,ϕ we simply write T . It is clear from the definition that
i) implies ii). To show that ii) implies iii) let K be a compact subset of X. Since
per(T ) is dense, we can find a sequence (vn)n∈N of periodic points of T satisfying
‖χK − vn‖ < 1/4n. Let (tn)n∈N ∈ (0,∞)N be such that T (tn)vn = vn, where we
can assume without loss of generality that tn+1 > tn and ϕ(rtn,K)∩ϕ(stn,K) =
∅ for all n ∈ N and r, s ∈ Z, r 6= s.

From ‖χK − vn‖ < 1/4n it follows that for Ln := K ∩ {|1− vn| ≤ 1/2n} we
have µ(K\Ln) ≤ 1/2np, so that limn→∞ µ(K\Ln) = 0. Since T (tn)vn = vn we
obtain

1/4np > ‖χK − vn‖p =
∫
|χK − vn|p dµ ≥

∫
X\K

|vn|p dµ

≥
∞∑
l=1

∫
ϕ(−ltn,K)

|vn|p dµ+
∞∑
l=1

∫
ϕ(ltn,K)

|vn|p dµ

=
∞∑
l=1

∫
ϕ(−ltn,K)

|T (ltn)vn|p dµ

+
∞∑
l=1

∫
ϕ(ltn,K)

|w(ltn, ϕ(−ltn, ·))
w(ltn, ϕ(−ltn, ·))

vn(ϕ(ltn, ϕ(−ltn, ·))|p dµ

=
∞∑
l=1

∫
w(ltn, ·)p|vn(ϕ(ltn, ·)|pχK(ϕ(ltn, ·)) dµ

+
∞∑
l=1

∫
|w(ltn, ϕ(−ltn, ·))vn(ϕ(ltn, ϕ(−ltn, ·)))

w(ltn, ϕ(−ltn, ·))
|pχK(ϕ(−ltn, ·)) dµ

=
∞∑
l=1

∫
|vn|pχK dνp,ltn +

∞∑
l=1

∫
|w(ltn, ·)vn(ϕ(ltn, ·))|pχK dνp,−ltn

≥
∞∑
l=1

∫
Ln

|vn|pχK dνp,ltn +
∞∑
l=1

∫
Ln

|T (tn)vn|p dνp,−ltn
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≥ (1− 1/2n)p
∞∑
l=1

νp,ltn(Ln) + (1− 1/2n)p
∞∑
l=1

νp,−ltn(Ln),

where we used in the last inequality that 1/2n ≥ |1− vn| on Ln, that is |vn| ≥
vn ≥ 1− 1/2n, so that iii) follows.

To show that iii) implies i) note that it follows from theorem 5.23 that T is
topologically transitive, so it remains to prove that per(T ) is dense in Lp(µ). To
this end, we choose f ∈ Cc(X) and a compact subset K of X containing supp f .
Let (Ln)n∈N and (tn)n∈N be as in iii) for K, where we can assume without loss
of generality, that t1 > tK .

Thus, (f(ϕ(ltn, ·))χϕ(−ltn,Ln))l∈Z is a locally finite sequence of functions, so
that

fn := fχLn
+

∞∑
l=1

w(ltn, ·)f(ϕ(ltn, ·))χϕ(−ltn,Ln)

+
∞∑
l=1

1
w(ltn, ϕ(−ltn, ·))

f(ϕ(−ltn, ·))χϕ(ltn,Ln)

is well-defined and measurable.
From

‖f‖p∞νp,ltn(Ln) ≥
∫
|f |pχLn dνp,ltn

=
∫
w(ltn, ·)|f(ϕ(ltn, ·))|pχLn

(ϕ(ltn, ·)) dµ

and

‖f‖p∞νp,−ltn(Ln) ≥
∫
Ln

|f |p dνp,−ltn

=
∫
ϕ(ltn,Ln)

|f(ϕ(−ltn, ·))|p(ϕ(−ltn, ·))/w(ltn, ϕ(−ltn, ·))p dµ

it follows using the properties of (Ln)n∈N and (tn)n∈N that fn ∈ Lp(µ) and
limn→∞ fn = f .

It remains to show that fn ∈ per(T ). Because of w(t+s, ·) = w(t, ·)w(s, ϕ(t, ·))
for every s, t ∈ I, it is a straight forward calculation to show that T (tn)fn = fn.�

As a direct consequence we obtain for the ”unweighted” family Tϕ induced
by ϕ the following result.

Corollary 7.3 Additionally to the general assumptions, let ϕ be such that for
every compact subset K of X there is tK > 0 such that ϕ(t,K) ∩ K = ∅ for
every t > tK . Then, the following are equivalent.

i) Tϕ is chaotic on Lp(µ).

ii) per(Tϕ) is dense in Lp(µ).

iii) For every compact subset K of X there are a sequence of measurable sub-
sets (Ln)n∈N of K and a strictly increasing sequence of positive numbers
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(tn)n∈N tending to infinity such that limn→∞ µ(K\Ln) = 0 as well as
limn→∞ sn = 0, where sn :=

∑∞
l∈Z\{0} µltn(Ln) and µltn is defined as in

section 5.1.

Remark 7.4 i) If N is a closed subset of X with ϕ(t,N) = N for every t ∈ I,
and µ(N) = 0 then clearly Lp(X,µ) = Lp(X\N,µ). So, we can weaken the extra
condition ϕ(t,K)∩K = ∅ for every compact subset K of X and sufficiently large
t in theorem 7.2 to: there is a closed µ-zero set N with ϕ(t,N) = N for every
t > 0 such that for every compact subset K of X\N and sufficiently large t
ϕ(t,K) ∩K = ∅.

ii) In case of the C0-semigroup S on Lp(µ) from section 6.2, that is

S(t)f := exp(
∫ t

0

h(ϕ(r, ·)) dr)f(ϕ(t, ·)), t ≥ 0,

the above theorem characterises chaoticity of S provided that for every compact
subset K of Ω there is tK > 0 such that ϕ(t,K) ∩K = ∅ for every t > tK .

Example 7.5 In example 6.25 we have seen that the C0-semigroup T induced
by the semiflow

ϕ : [0,∞)× Ω → Ω, (t, x) 7→ 1√
|x|2 + (1− |x|2)e−2t

x

on Ω := {x ∈ Rd; |x|2 < 1} is hypercyclic in Lpρ(Ω) where ρ(x) := 1 − |x|2. We
also showed in 6.25 that

ρ(ϕ(t, x))
ρ(x)

|detDϕ(t, x)| ≤ e−4t

(r2 + (1−R2)e−2t)
d
2 +2

for all 0 < r < |x| < R and t ∈ R.
Thus, it follows that for every compact subset K of Ω\{0} there is a constant

CK such that for a := min{4, d} both

sup
x∈K

ρ(ϕ(t, x))
ρ(x)

|detDϕ(t, x)|

and

sup
x∈K

ρ(ϕ(−t, x))
ρ(x)

|detDϕ(−t, x)|

are bounded by CKe−at for all t > 0.
From this and proposition 6.9 we conclude that µt(K) ≤ CKe

−at and
µ−t(K) ≤ CKe

−at for all t > 0. Choosing Ln := K and tn := n, we find
that

sn :=
∑

l∈Z\{0}

µln(K) ≤ 2CK
e−2an

1− e−2an

which converges to zero as n tends to infinity. Now, since for every x ∈ Ω\{0}
we have limt→∞ |ϕ(t, x)| = 1, it follows that ϕ(t,K) ∩ K = ∅ for sufficiently
large t. From corollary 7.3 and remark 7.4 i) we conclude that T is a chaotic
C0-semigroup on Lpρ(Ω).

A similar argument shows the chaoticity of the examples 6.21, 6.23 and 6.35.
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In order to give a characterisation of chaoticity of Tw,ϕ on C0,ρ(X), we have
to provide the following lemma.

Lemma 7.6 Let ϕ be such that for every compact subset K of X there is a
positive number sK satisfying ϕ(t,K) ∩K = ∅ for every t > tK .

Then, for every compact subset K of X and every f ∈ C0,ρ(X) we have

lim
t→∞

sup
x∈ϕ(t,K)

|f(x)|ρ(x) = lim
t→∞

sup
x∈ϕ(t,·)−1(K∩ϕ(t,X))

|f(x)|ρ(x) = 0.

Proof: Let K be a compact subset of X, f ∈ C0,ρ(X), and let ε > 0.
Then, the set Kε := {x ∈ X; |f(x)|ρ(x) ≥ ε} is compact, as is K ∪Kε. By the
hypotheses, there is a positive number tε such that ϕ(t,K∪Kε)∩ (K∪Kε) = ∅,
which is equivalent to ϕ(t, ·)−1(K ∪ Kε) ∩ (K ∪ Kε) = ∅, for every t > tε. In
particular, for every x ∈ ϕ(t,K)∪ϕ(t, ·)−1(K) we have x /∈ Kε whenever t > tε,
that is |f(x)|ρ(x) < ε. �

Theorem 7.7 Additionally to the general assumptions let ρ satisfy infx∈K ρ(x) >
0 for every compact subset K of X. Furthermore, assume that for every com-
pact subset K of X there is a positive number tK satisfying ϕ(t,K)∩K = ∅ for
every t > tK .

Then, among the following, i) implies ii) and ii) implies iii).

i) Tw,ϕ is chaotic on C0,ρ(X).

ii) per(Tw,ϕ) is dense in C0,ρ(X).

iii) For every compact subset K of X there is p > 0 such that

lim
n→∞

sup
x∈ϕ(np,K)

ρ(x)
w(np, ϕ(−np, x))

= lim
n→∞

sup
x∈ϕ(np,·)−1(K)

w(np, x)ρ(x) = 0.

Moreover, if ϕ(t, ·) is an open mapping for every t ∈ I, the above are equivalent.

Proof: For brevity we write T instead of Tw,ϕ. Obviously i) implies
ii). To show that ii) implies iii) let K be a compact subset of X and ε ∈
(0, infx∈K ρ(x)/2). Let UK be a relatively compact, open neighbourhood of K
and tK be such that ϕ(t, UK) ∩ UK = ∅ for t ≥ tK . Let f ∈ Cc(X) be positive
with f|K ≡ 1 and f|Ω\UK

≡ 0.
Since per(Tw,ϕ) is dense in C0,ρ(X) it follows that there are v ∈ C0,ρ(X)

and p > 0 such that T (p)v = v and ε > ‖f − v‖, where we can assume without
loss of generality that p > tK .

Because of ε > ‖f − v‖ and ε ∈ (0, infx∈K ρ(x)/2) it follows that v(x) ≥ 1/2
for all x ∈ K. Using T (np)v = w(np, ·)v(ϕ(np, ·)) = v this implies

∀n ∈ N, x ∈ ϕ(np,K) : 1/2 ≤ w(np, ϕ(−np, x))v(x)

∀n ∈ N, x ∈ ϕ(np, ·)−1(K) : 1/2 ≤ v(ϕ(np, x)) =
v(x)

w(np, x)
.

Thus, we have for every n ∈ N

sup
x∈ϕ(np,·)−1(UK)

|v(x)|ρ(x) ≥ sup
x∈ϕ(np,·)−1(K)

|v(x)|ρ(x)
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= sup
x∈ϕ(np,·)−1(K)

hnp(x)|
v(x)
hnp(x)

|ρ(x)

≥ 1/2 sup
x∈ϕ(np,·)−1(K)

hnp(x)ρ(x)

and

sup
x∈ϕ(np,UK)

|v(x)|ρ(x) ≥ sup
x∈ϕ(np,K)

|v(x)|ρ(x)

= sup
x∈ϕ(np,K)

hnp(ϕ(−np, x))|v(x)| ρ(x)
hnp(ϕ(−np, x))

≥ 1/2 sup
x∈ϕ(np,K)

ρ(x)
hnp(ϕ(−np, x))

.

Lemma 7.6 applied to UK now yields

lim
n→∞

sup
x∈ϕ(np,·)−1(K)

w(np, x)ρ(x) = 0

as well as

lim
n→∞

sup
x∈ϕ(np,K)

ρ(x)
w(np, ϕ(−np, x))

= 0

so that iii) follows.
To show that under the additional assumption iii) implies i), note that by

theorem 6.37 T is transitive. To show that per(T ) is dense in C0,ρ(X) let
f ∈ Cc(X) and K := supp f . Let p be as in iii) for K where without loss
of generality we can assume p > tK . As in the proof of theorem 5.16 we can
understand f(ϕ(−np, ·)) as an element of Cc(X) for every n ∈ N0 so that by
p > tK the family (f(ϕ(np, ·)))n∈Z is in particular locally finite and in C(X).
Therefore,

vm := f +
∞∑
l=1

w(lmp, ·)f(ϕ(lmp, ·)) +
∞∑
l=1

f(ϕ(−lmp, ·))
w(lmp, ϕ(−lmp, ·))

is a continuous function on X and using w(t + s, ·) = w(t, ·)w(s, ϕ(t, ·) one
calculates T (mp)vm = vm.

Because of ϕ(lmp,K) ∩ ϕ(lnp,K) = ∅ for every n,m ∈ Z, n 6= m we have

sup
x∈X

|f(x)− vm(x)|ρ(x)

= sup
x∈X

|
∞∑
l=1

w(lmp, x)f(ϕ(lmp, x)) +
∞∑
l=1

f(ϕ(−lmp, x))
w(lmp, x)(ϕ(−lmp, x))

|ρ(x)

= max{sup
l∈N

sup
x∈ϕ(lmp,·)−1(K)

|w(lmp, x)f(ϕ(lmp, x))|ρ(x),

sup
l∈N

sup
x∈ϕ(lmp,K)

| f(ϕ(−lmp, x))
w(lmp, ϕ(−lmp, x))

|ρ(x)}

≤ ‖f‖∞{sup
l∈N

sup
x∈ϕ(lmp,·)−1(K)

w(lmp, ·)ρ(x)

+ sup
l∈N

sup
x∈ϕ(lmp,K)

ρ(x)
w(lmp, ϕ(−lmp, x))

}
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which converges to 0 as m tends to infinity by our hypothesis iii).
So, all that remains to be shown is that vm belongs to C0,ρ(X). Note that

for all l ∈ N we have

f(ϕ(−lmp, ·))/(w(lmp, ϕ(−lmp, ·))) ∈ Cc(X)

and
w(lmp, ·)f(ϕ(lmp, ·)) = T (lmp)f,

i.e. all summands in the series defining vm belong to C0,ρ(X). We will show
that the series converges in C0,ρ(X) which then implies vm ∈ C0,ρ(X).

As above, we have

sup
x∈X

|
∞∑
l=N

w(lmp, x)f(ϕ(lmp, x)) +
∞∑
l=N

f(ϕ(−lmp, x))
w(lmp, ϕ(−lmp, x))

|ρ(x)

≤ ‖f‖∞(sup
l≥N

sup
x∈ϕ(lmp,·)−1(K)

w(lmp, x)ρ(x)

+ sup
l≥N

sup
x∈ϕ(lmp,K)

ρ(x)
w(lmp, ϕ(−lmp, x))

),

which tends to 0 as N tends to infinity by iii) showing that

vm = lim
N→∞

f +
N∑
l=1

w(lmp, ·)f(ϕ(lmp, ·))

+
N∑
l=1

f(ϕ(−lmp, ·))/(w(lmp, ϕ(−lmp, ·)))

in C0,ρ(X). �

Remark 7.8 Using Brouwer’s theorem in case of the C0-semigroup S on C0,ρ(Ω)
from section 6.2, that is

S(t)f := exp(
∫ t

0

h(ϕ(r, ·)) dr)f(ϕ(t, ·)), t ≥ 0,

the above theorem characterises chaoticity of S provided that for every compact
subset K of Ω there is an open subset UK of Ω containing K and a positive
number tK satisfying ϕ(t, UK) ∩ UK = ∅ for every t > tK .

Remark 7.9 In the situation of section 6.2, that is X = Ω ⊂ Rd open, the
Borel measure µ has a Lebesgue density ρ and one considers the C0-semigroup
S defined via

S(t)f = exp(
∫ t

0

h(ϕ(r, ·)))f(ϕ(t, ·)), t ≥ 0,

on Lpρ(Ω) or C0,ρ(Ω) the above theorems characterising chaoticity of S under
suitable additional conditions again can be formulated more conveniently, if the
semiflow ϕ is continuously differentiable and ρ behaves tamely.

For Lpρ(Ω), if in theorem 6.19 one replaces

ε <
ρ(ϕ(t, x))|detDϕ(t, x)|
ρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε
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by

ε <
ht(x)−pρ(ϕ(t, x))|detDϕ(t, x)|
ht(y)−pρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε,

respectively

ε <
ht(x)−pρ(ϕ(t, x))|detDϕ(t, x)|
ht(y)−pρ(ϕ(t, y))|detDϕ(t, y)|

< 1/ε

and

ε <
hpt (ϕ(−t, x))ρ(ϕ(−t, x))|detDϕ(−t, x)|
hpt (ϕ(−t, y))ρ(ϕ(−t, y))|detDϕ(−t, y)|

< 1/ε,

for every x, y in a compact set K then one can show by the same kind of
arguments used in the proof of theorem 6.19 that the following are equivalent.

i) S is chaotic on Lpρ(Ω).

ii) per(S) is dense in Lpρ(Ω).

iii) For every x ∈ Ω there is a strictly increasing sequence of positive numbers
(tn)n∈N such that for all n ∈ N

sn :=
∑
l∈N

hlt(x)−pρ(ϕ(lt, x)) detDϕ(lt, x) <∞ and lim
n→∞

sn = 0

respectively

sn :=
∑
l∈N

hltn(x)−pρ(ϕ(ltn, x)) detDϕ(ltn, x)

+
∑
l∈N

hltn(ϕ(ltn, x))pρ(ϕ(−ltn, x)) detDϕ(−ltn, x) <∞

and lim
n→∞

sn = 0.

For C0,ρ(Ω) one has to replace

ρ(ϕ(t, x))
ρ(ϕ(t, y))

< C

in theorem 6.20 by
ρ(ϕ(t, x))ht(y)
ht(x)ρ(ϕ(t, y))

< C,

respectively

ρ(ϕ(t, x))ht(y)
ht(x)ρ(ϕ(t, y))

< C and
ρ(ϕ(−t, x))ht(ϕ(−t, y))
ht(ϕ(−t, x))ρ(ϕ(−t, y))

< C,

to obtain the equivalence of:

i) S is chaotic on C0,ρ(Ω).

ii) per(S) is dense in C0,ρ(Ω).
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iii) For every x ∈ Ω there is t > 0 such that

lim
n→∞

ρ(ϕ(nt, x))
hnt(x)

= 0,

respectively

lim
n→∞

ρ(ϕ(nt, x))
hnt(x)

= lim
n→∞

hnt(ϕ(−nt, x))ρ(ϕ(−nt, x)) = 0.

Example 7.10 Let Ω := (0,∞), ρ(x) := 1/x and ϕ(t, x) := x + t. Then,
it follows from proposition 6.10 and theorem 6.4 that ρ is both Lp-admissible
and C0-admissible for ϕ. Obviously, Ωt = Ω and K ∩ ϕ(t,Ω) = ∅ for every
compact subsetK of Ω and sufficiently large t. Moreover, ρ(ϕ(t, x))/ρ(ϕ(t, y)) =
(y + t)/(x + t) is bounded above and bounded away from 0 for all x, y from a
compact subset of Ω and t ≥ 0, which shows that all requirements of the above
remark are satisfied.

Since for all x > 0 we have limn→∞ ρ(x + n) = 0 it follows from remark
7.9 that the C0-semigroup induced by ϕ, i.e. the left translation semigroup, is
chaotic on C0,ρ(0,∞).

On the other hand, if t > 0 we have
∑∞
l=1 ρ(1 + lt) >

∑∞
l=1 1/lt = ∞, so

that the left translation semigroup is not chaotic on Lpρ(0,∞). But it is mixing
on Lpρ(0,∞) by theorem 6.19 b) because of limt→∞ ρ(x+ t) = 0 for every x > 0.

Again, as in section 5.3 it is possible to prove an analogue of theorem 7.2 in
the context of an arbitrary σ-finite measure space (X,A, µ).

Let ϕ : I × X → X be such that ϕ(t, ·) is bimeasurable for all t ∈ I and
w : I × X → R is such that 1/w(t, ·) ∈ Lploc(µ) for all t ∈ I. Assume that
ϕ(t + s, ·) = ϕ(t, ϕ(s, ·)) and w(t + s, ·) = w(t, ·)w(s, ϕ(t, ·)) for all t, s ∈ I.
Moreover, assume that the mappings Tw,ϕ(t), t ∈ I, defined in the usual way,
are well-defined operators on Lp(µ). Then we have the following theorem, whose
proof is done by the same arguments as the ones of theorem 7.2 and theorem
5.34 so that we omit it.

Theorem 7.11 Additionally to the above hypotheses, assume that for every
measurable subset A of X with µ(A) <∞ there is tA > 0 such that µ(ϕ(t, A) ∩
A) = 0 for every t > tA. Then, the following are equivalent.

i) Tw,ϕ is chaotic on Lp(µ).

ii) per(Tw,ϕ) is dense in Lp(µ)

iii) For measurable subset A of X with µ(A) < ∞ there is a sequence of
measurable subsets (An)n∈N of A and a strictly increasing sequence of
positive numbers (tn)n∈N tending to infinity such that limn→∞ µ(A\An) =
0, and limn→∞ sn = 0, where

sn :=
∞∑
l=1

νp,ltn(Ln) +
∞∑
l=1

νp,−ltn(Ln).
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A C0-semigroups

In this appendix we present some of the results about C0-semigroups used
throughout the text. Let E be a Banach space. A family T = (T (t))t≥0 of
continuous linear operators on E is called a C0-semigroup on E if the following
three properties hold.

i) T (0) = id

ii) T (t+ s) = T (t) ◦ T (s) for all t, s ≥ 0

iii) For all x ∈ E the mapping [0,∞) → E, t 7→ T (t)x is continuous.

For example, if A is a continuous linear operator on E, then T (t) : E →
E, x 7→ etAx forms a C0-semigroup on E, where etA :=

∑∞
n=0

(tA)n

n! .
One important property of C0-semigroups is their exponential growth.

Theorem A.1 (cf. [24, proposition I.5.5]) Let T be a C0-semigroup on E.
Then, there are constants M ≥ 1 and ω ∈ R such that ‖T (t)‖ ≤Metω.

A direct consequence of the above theorem is the following.

Corollary A.2 Every C0-semigroup T is locally equicontinuous, i.e. for every
ε > 0 and every t > 0 there is δ > 0 such that T (s)(B(0, δ)) ⊂ B(0, ε) for all
s ∈ [0, t], where B(x, r) denotes the open ball with center x and radius r.

Related to a C0-semigroup T is its generator.

Definition A.3 The generator (A,D(A)) of a C0-semigroup T is defined as

A : D(A) → E, x 7→ lim
h↓0

1
h

(T (h)x− x)

on its domain D(A) := {x ∈ E; limh↓0
1
h (T (h)x− x) exists in E}.

Obviously, D(A) is a subspace of E and A is linear. Furthermore we have
the following important theorem.

Theorem A.4 (cf. [24, theorem II.1.4]) The generator of a C0-semigroup
is a closed and densely defined linear operator that determines the semigroup
uniquely, i.e. if T and S are two C0-semigroups on E with the same generator
(A,D(A)) then T (t) = S(t) for all t ≥ 0.

The famous Hille Yosida theorem characterises which operators are genera-
tors of C0-semigroups.

Hille Yosida generation theorem A.5 cf. [24, theorem II.3.8] Let A :
D(A) ⊂ E → E be a linear mapping defined on a subspace D(A) of E and let
M ≥ 1, ω ∈ R. Then the following are equivalent.

i) (A,D(A)) generates a C0-semigroup T satisfying

‖T (t)‖ ≤Metω for t ≥ 0.
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ii) (A,D(A)) is closed, densely defined and for every λ ∈ C with Reλ > ω
one has λ ∈ ρ(A), i.e. λ belongs to the resolvent set of (A,D(A)), and

‖R(λ,A)n‖ < M

(Reλ− ω)n
for all n ∈ N,

where R(λ,A) denotes the resolvent operator of A in λ, i.e. R(λ,A) =
(λ−A)−1.

Sometimes it is useful to have an explicit representation of the resolvent
operators R(λ,A) of the generator (A,D(A)) of a C0-semigroup T . The next
theorem says that they are given by the Laplace transform of T , provided the
real part of λ is large enough.

Theorem A.6 (cf. [24, theorem I.1.10]) Let (A,D(A)) be the generator of
the C0-semigroup T , which satisfies ‖T (t)‖ ≤ Metω for all t ≥ 0. For λ ∈ C
with Reλ > ω, the resolvent R(λ,A) of A in λ is given by

R(λ,A)x =
∫ ∞

0

e−λtT (t)x dt for all x ∈ E.

Another important theorem concerning the relation between the spectra of
the generator A and the semigroup operators T (t) is stated in the next theorem.
Herein, σp(A) and σr(A) denote the point spectrum and the residual spectrum
respectively, i.e. σp(A) := {λ ∈ K; (λ − A) : D(A) → E is not injective} and
σr(A) := {λ ∈ K; (λ−A) : D(A) → E has no dense range}.

Spectral mapping theorem for point and residual spectrum A.7 (cf.
[24, theorems IV.3.7, 3.8]) For the generator (A,D(A)) of a strongly con-
tinuous C0-semigroup T , we have the identities

σp(T (t))\{0} = etσp(A) for all t ≥ 0

and
σr(T (t))\{0} = etσr(A) for all t ≥ 0.

Moreover, for µ ∈ C we have

ker(µ−A) =
⋂
t≥0

ker(eµt − T (t)).

In order to underline the importance of C0-semigroups with respect to evo-
lution problems, we make the following definition.

Definition A.8 i) Let A : D(A) ⊂ E → E be a linear mapping defined on a
subspace D(A) of E. The initial value problem

(CP)
d

dt
u(t) = Au(t) for t ≥ 0

u(0) = u0, u0 ∈ E
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is called the abstract Cauchy problem associated to (A,D(A)) and the initial
value u0.

ii) A function u : [0,∞) → E is called a (classical) solution of (CP) if u is
continuously differentiable, u(t) ∈ D(A) for all t ≥ 0 and (CP) holds.

Theorem A.9 (cf. [24, proposition II.6.2, theorem II.6.7]) Let D(A) be
a subspace of E and A : D(A) ⊂ E → E a closed linear mapping. For the
abstract Cauchy problem

(CP )

{
d
dtu(t) = Au(t) , t ≥ 0

u(0) = u0

we consider the following existence and uniqueness condition:

(EU) For every u0 ∈ D(A), there exists a unique solution u(·, u0) of (CP).

Then the following are equivalent.

i) (A,D(A)) is the generator of a C0-semigroup T .

ii) (A,D(A)) satisfies (EU) and ρ(A) 6= ∅.

iii) (A,D(A)) satisfies (EU), has dense domain, and for every sequence (xn)n∈N
in D(A) satisfying limn→∞ xn = 0, one has limn→∞ u(t, xn) = 0 uni-
formly on compact intervals [0, t0].

If one of the conditions is satisfied the unique solution of (CP) for u0 ∈ D(A)
is given by u(t, u0) = T (t)u0.

Property iii) of the previous theorem expresses what one may call a ”well-
posed” problem: there exists a unique solution which depends continuously on
the initial data.
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B Composition Operators

In chapter 5 we investigate the dynamical behavior of families of composition
operators on spaces of integrable functions and spaces of continuous functions,
respectively. For the reader’s convenience, we present in this appendix the proofs
of theorems 5.4 and 5.5.

Theorem B.1 (cf. [57, theorem 2.1.1]) Let (X,µ) be an arbitrary σ-finite
measure space and let ψ : X → X be a measurable function. The composition
operator Tψ : (Lp(µ), ‖ · ‖) → (Lp(µ), ‖ · ‖), f 7→ f ◦ ψ is well-defined and
continuous if and only if the image measure µψ of µ under ψ is absolutely
continuous with respect to µ and the µ-density fψ of µψ is µ-a.e. bounded.

If Tψ is continuous, then ‖Tψ‖ = ‖fψ‖1/p∞ .

Proof: The condition is sufficient, because if it holds, we have that ‖Tψf‖p =∫
|f ◦ ψ|p dµ =

∫
|f |p dµψ ≤ ‖fψ‖∞‖f‖p for every f ∈ Lp(µ).

The condition is necessary as well, because from the continuity of Tψ it
follows that there is C > 0 such that µψ(A) = ‖TψχA‖p ≤ C‖χA‖p = C µ(A)
for every measurable subset A of X with µ(A) < ∞. Since this inequality is
trivially satisfied for measurable subsets A of X with µ(A) = ∞ we obtain that
µψ is absolutely continuous with respect to µ. Hence, from the Radon Nikodym
theorem we get an µ-density fψ of µψ which is in L∞(µ) and is less than C
µ-a.e..

It is not hard to show that in the case of continuity the estimate for ‖Tψ‖
holds. �

Theorem B.2 (cf. [57, theorem 4.2.4]) Let X be a locally compact Haus-
dorff topological space and let ψ : X → X be continuous. For a strictly positive,
upper semicontinuous function ρ let C0,ρ(X) be as in chapter 5. Then, the
following are equivalent.

i) The mapping Tψ : C0,ρ(X) → C0,ρ(X), f 7→ f ◦ ψ is well-defined and
continuous.

ii) a) There is a constant C > 0 such that ρ(x) ≤ Cρ(ψ(x)) for all x ∈ X.

b) For every compact subset K of X and every δ > 0 the set ψ−1(K) ∩
{x ∈ X; ρ(x) ≥ δ} is compact.

Moreover, if Tψ is an operator on C0,ρ(X) then we have ‖Tψ‖ = inf{C >
0; C satisfies condition ii) a)}.

Proof: i) ⇒ ii) : Fix x in X and let U := {y ∈ X; ρ(y) < 2ρ(ψ(x))}.
Because ρ is upper semicontinuous U is an open neighbourhood of ψ(x) and since
X is locally compact, we can find g ∈ Cc(X) such that 0 ≤ g ≤ 1, g(ψ(x)) = 1
and g|X\U ≡ 0. Let f := 1

2ρ(ψ(x))g. Then f obviously belongs to Cc(X), 0 ≤ f

and ‖f‖ ≤ 1. Because g(ψ(x)) = 1 we have ρ(x)/2ρ(ψ(x)) ≤ ‖Tψf‖ ≤ ‖Tψ‖,
which shows ii) a).

Now, to show ii) b) let K be a compact subset of X and δ > 0. Because X is
locally compact, there is fK ∈ Cc(X) with 0 ≤ fK ≤ 1 and fK|K ≡ 1. Because
of i) we have TψfK ∈ C0,ρ(X), so that by the positivity of fK the set F := {x ∈
X; fK(ψ(x))ρ(x) ≥ δ} is compact. Obviously, ψ−1(K) ∩ {x ∈ X; ρ(x) ≥ δ} is
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a subset of F and because of the continuity of ψ and the upper semicontinuity
of ρ it is closed, hence compact, showing ii) b).

ii) ⇒ i) : We first show that Tψ is well-defined. Let f be in C0,ρ(X) and
ε > 0. Because of ii) a) we have

{x ∈ X; |f(ψ(x))|ρ(x) ≥ ε} ⊂ {x ∈ X; |f(ψ(x))|ρ(ψ(x)) ≥ ε/C}
= ψ−1({x ∈ X; |f(x)|ρ(x) ≥ ε/C}).

Since f ∈ C0,ρ(X) the set K := {x ∈ X; |f(x)|ρ(x) ≥ ε/C} is compact so that
M := supx∈K |f | < ∞. Therefore, if x0 ∈ {x ∈ X; |f(ψ(x))|ρ(x) ≥ ε} we have
x0 ∈ ψ−1(K) as well as x0 ∈ {x ∈ X; ρ(x) ≥ ε/(M + 1)}, that is

{x ∈ X; |f(ψ(x))|ρ(x) ≥ ε} ⊂ ψ−1(K) ∩ {x ∈ X; ρ(x) ≥ ε

M + 1
}.

The right hand side of this is a compact subset of X because of ii) b).
Now, by the upper semicontinuity of |f(ψ(·))|ρ(·) we see that the set {x ∈

X; |f(ψ(x))|ρ(x) ≥ ε} is a closed subset of a compact set, hence compact. This
shows Tψf ∈ C0,ρ(X).

Clearly, the continuity of Tψ now follows from ii) a), showing i).
An inspection of the proof so far yields the equality concerning ‖Tψ‖. �

The proofs of the corresponding theorems for weighted composition opera-
tors are done by the same kind of arguments. For the Lp(µ) case, note that by a
standard argument we have

∫
|f | dµwp,ψ =

∫
wp|f ◦ ψ| dµ for Borel measurable

f : X → K, where µwp,ψ(A) =
∫
ψ−1(A)

wp dµ. For the C0,ρ(X) case one has to
replace the set F in the proof of theorem B.2 by {x ∈ X; w(x)fK(ψ(x))ρ(x) ≥ δ}
and {x ∈ X; ρ(x) ≥ ε/(M + 1)} has to be replaced by {x ∈ X; w(x)ρ(x) ≥
ε/(M + 1)}.

Theorem B.3 Let (X,µ) be an arbitrary σ-finite measure space and let w :
X → (0,∞), ψ : X → X be measurable functions. The weighted composition
operator Tw,ψ : (Lp(µ), ‖ · ‖) → (Lp(µ), ‖ · ‖), f 7→ w(·) f(ψ(·)) is well-defined
and continuous if and only if the measure µwp,ψ is absolutely continuous with
respect to µ and the µ-density fwp,ψ of µwp,ψ is µ-a.e. bounded.

If Tψ is continuous, then ‖Tψ‖ = ‖fwp,ψ‖1/p∞ .

Theorem B.4 Let X be a locally compact Hausdorff topological space and let
w : X → (0,∞), ψ : X → X be continuous. For a strictly positive, upper
semicontinuous function ρ the following are equivalent.

i) The mapping Tw,ψ : C0,ρ(X) → C0,ρ(X), f 7→ w(·) f(ψ(·)) is well-defined
and continuous.

ii) a) There is a constant C > 0 such that w(x)ρ(x) ≤ Cρ(ψ(x)) for all
x ∈ X.

b) For every compact subset K of X and every δ > 0 the set ψ−1(K) ∩
{x ∈ X;w(x)ρ(x) ≥ δ} is compact.

Moreover, if Tw,ψ is an operator on C0,ρ(X) then we have ‖Tw,ψ‖ = inf{C >
0; C satisfies condition ii) a)}.
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C Miscellanea

In this short appendix we present the proofs of proposition 6.6 and 6.8.

Proposition C.1 Let Ω be an open, star-like subset of Rd and F : Ω → Rd
be a differentiable vector field such that supx∈Ω |DF (x)| < ∞ and F ∈ C(Ω̄).
Furthermore assume that ∂Ω = ∂Ω̄ is C1 and that 〈F (y), n(y)〉 < 0 for all
y ∈ ∂Ω where n(y) denotes the outer normal in y.

Then, for each x0 ∈ Ω the solution of the initial value problem

ẋ = F (x), x(0) = x0

exists for all t ≥ 0.

Proof: Let x0 ∈ Ω and ϕ : (a, b) → Ω be the maximal solution of the
initial value problem ẋ = F (x), x(0) = x0. Assume that b < ∞. Then, either
{ϕ(t); t ∈ [0, b)} is unbounded or limt→b dist(ϕ(t), ∂Ω) = 0 (cf. [3, Satz 2.5.1]).
We will show that in both cases we get a contradiction.

Assume that {ϕ(t); t ∈ [0, b)} is unbounded. If z ∈ Ω is such that Ω is
star-like with respect to z we obtain with C := supx∈Ω |DF (x)|

|ϕ(t)| ≤ |x0|+
∫ t

0

|F (ϕ(s))| ds

≤ |x0|+
∫ t

0

|F (ϕ(s))− F (z)| ds+ t|F (z)|

≤ |x0|+ b|F (z)|+ bC|z|+ C

∫ t

0

|ϕ(s)| ds.

Setting A := |x0|+ b|F (z)|+ bC|z| Gronwall’s lemma now ensures |ϕ(t)| ≤ AetC

for all t ∈ [0, b) contradicting the unboundedness of {ϕ(t); t ∈ [0, b)}.
On the other hand, if we assume that the set {ϕ(t); t ∈ [0, b)} is bounded

then we have limt→b dist(ϕ(t), ∂Ω) = 0. From the boundedness of {ϕ(t); t ∈
[0, b)} and F ∈ C(Ω̄) it follows that there is M < ∞ such that |F (ϕ(t))| < M
for all t ∈ [0, b). For 0 ≤ s < t < b we therefore have

|ϕ(t)− ϕ(s)| ≤
∫ t

s

|F (ϕ(r))| dr ≤M(t− s).

Combining this with limt→b dist(ϕ(t), ∂Ω) = 0 we see that there is y ∈ ∂Ω with
limt→b ϕ(t) = y.

Since ∂Ω is C1 there is an open subset U of Rd containing y and a continu-
ously differentiable g : U → R such that

U ∩ Ω = {g < 0}, U ∩ ∂Ω = {g = 0}, U ∩ Ω̄c = {g > 0}, and ∇g(y) 6= 0.

It follows that |∇g(y)|n(y) = ∇g(y), so that by hypothesis 〈F (y),∇g(y)〉 < 0.
Without loss of generality we can assume that 〈F (x),∇g(x)〉 < 0 for all x ∈
U ∩ Ω̄.

Because of limt→b ϕ(t) = y there is t0 such that ϕ(t) ∈ U∩Ω for all t ∈ [t0, b),
so that Φ : [t0, b) → R, t 7→ g(ϕ(t)) is well-defined. Obviously Φ(t) < 0 and

Φ′(t) = 〈∇g(ϕ(t)), ϕ′(t)〉 = 〈F (ϕ(t)),∇g(ϕ(t))〉 < 0
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for all t ∈ [t0, b), so that Φ is strictly decreasing. Finally, g(y) = limt→b Φ(t) <
Φ(t0) < 0 contradicting g(y) = 0. �

Proposition C.2 Let F be a locally Lipschitz continuous vector field on Ω such
that the solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) = x0

exists for all t ≥ 0 and all x0 ∈ Ω. Let h : Ω → R be continuous and
E ∈ {Lp(µ), C0,ρ(Ω)} where µ and ρ are admissible for ϕ and h. Then the
following holds.

i) Assume F and h are both bounded, continuously differentiable and sat-
isfy supx∈Ω |DF (x)| < ∞ and supx∈Ω |∇h(x)| < ∞. Then the generator
(A,D(A)) of S is given by the closure of the operator B : D → E, f 7→
〈F,∇f〉+ hf , where D := {f ∈ C1(Ω) ∩ E; |∇f | ∈ E}.

ii) If F is continuously differentiable and such that the unique solution ϕ(·, x0)
of the initial value problem ẋ = F (x), x(0) = x0 exists not only for all t ≥
0 but for all t ∈ R and if h is continuously differentiable then the generator
(A,D(A)) of S is given by the closure of the operator B : C1

c (Ω) → E, f 7→
〈F,∇f〉+ hf .

Proof: i) Since F is bounded it follows that B is well-defined. Now, be-
cause F is continuously differentiable it follows that ϕ(t, ·) is continuously dif-
ferentiable and that d

dtDϕ(t, x) = DF (ϕ(t, x)) ·Dϕ(t, x) with Dϕ(0, x) = id (cf.
[32, p. 300]). We therefore have

|Dϕ(t, x)| ≤ 1 +
∫ t

0

|DF (ϕ(s, x))| |Dϕ(s, x)|ds ≤ 1 + C

∫ t

0

|Dϕ(s, x)|ds

for suitable C > 0. Thus, Gronwall’s inequality gives |Dϕ(t, x)| ≤ etC .
Now, if f ∈ D it follows from the differentiability of ϕ(t, ·) and h that S(t)f

is differentiable, so that S(t)f ∈ C1(Ω) ∩ E. Furthermore, we have

∇(S(t)f) = ∇(ht(·)f(ϕ(t, ·))) = (∇h)(·)S(t)f + ht(·)(∇f)(ϕ(t, ·))Dϕ(t, ·),

so that

|∇(S(t)f)| ≤ |∇h||S(t)f |+ etC |ht (∇f)(ϕ(t, ·))| = |∇h||S(t)f |+ etCS(t)(|∇f |).

Since supx∈Ω |∇h(x)| < ∞ and f ∈ E the right hand side of this inequality
belongs to E, implying |∇(S(t)f)| ∈ E for all t ≥ 0. Because h is bounded
this yields that D is S-invariant. Since C1

c (Ω) ⊂ D it follows that D is a dense
subspace of E. Being dense and S-invariant [24, proposition II.1.7] gives that
D is a core for the generator of S. As in the proof of theorem 6.7 one shows
that B ⊂ A so that i) follows.

ii) Obviously, B is well-defined. From the continuous differentiability of F it
again follows that ϕ(t, ·) is continuously differentiable. Because h is continuously
differentable it follows that S(t)f ∈ C1(Ω) for every f ∈ C1

c (Ω). Since now we
assume that the solution ϕ(·, x0) of the initial value problem ẋ = F (x), x(0) =
x0 exists for all t ∈ R it follows from the flow equation ϕ(s+ t, ·) = ϕ(s, ϕ(t, ·))
for all s, t ∈ R and ϕ(0, ·) = id that the pre-image of compact subsets of Ω
under ϕ(t, ·), t ≥ 0 is again compact, so that S(t)f ∈ Cc(Ω) for all t ≥ 0 and
f ∈ Cc(Ω). Therefore, C1

c (Ω) is S-invariant and obviously dense in E so that
it is a core for the generator of Tϕ by [24, proposition II.1.7]. Again as in the
proof of theorem 6.7 one shows that B ⊂ A so that ii) follows. �
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[7] L. Bernal-González, K. G. Grosse-Erdmann, The hypercyclicity criterion
for sequences of operators, Studia Math. 157 (2003), 17-32

[8] J. Bès, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167
(1999), 94-112

[9] G. D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions
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Note added in proof: During the revision of this thesis we were informed
that M. De La Rosa and C. Read answered in the negative the ”great open
problem in hypercyclicity” for the single operator case, i.e. they showed that
there are hypercyclic operators T on a Banach space E such that T ⊕ T is not
hypercyclic (cf. [17]).


