
Hybrid AI for Process Management

Improving Similarity Assessment in
Process-Oriented Case-Based Reasoning via Deep

Learning

Vom Fachbereich IV der Universität Trier zur Verleihung des akademischen
Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

von

Maximilian Hoffmann

Trier, 2025

Betreuer: Prof. Dr. Ralph Bergmann
1. Berichterstatter: Prof. Dr. Ralph Bergmann
2. Berichterstatter: Prof. Dr. David B. Leake
Datum der Disputation: 26.05.2025

Abstract

Case-Based Reasoning (CBR) is a symbolic Artificial Intelligence (AI) approach that has been
successfully applied across various domains, including medical diagnosis, product configuration,
and customer support, to solve problems based on experiential knowledge and analogy. A key
aspect of CBR is its problem-solving procedure, where new solutions are created by referencing
similar experiences, which makes CBR explainable and effective even with small amounts of
data. However, one of the most significant challenges in CBR lies in defining and computing
meaningful similarities between new and past problems, which heavily relies on domain-specific
knowledge. This knowledge, typically only available through human experts, must be manually
acquired, leading to what is commonly known as the knowledge-acquisition bottleneck. One way
to mitigate the knowledge-acquisition bottleneck is through a hybrid approach that combines the
symbolic reasoning strengths of CBR with the learning capabilities of Deep Learning (DL), a sub-
symbolic AI method. DL, which utilizes deep neural networks, has gained immense popularity
due to its ability to automatically learn from raw data to solve complex AI problems such as object
detection, question answering, and machine translation. While DL minimizes manual knowledge
acquisition by automatically training models from data, it comes with its own limitations, such
as requiring large datasets, and being difficult to explain, often functioning as a ”black box”. By
bringing together the symbolic nature of CBR and the data-driven learning abilities of DL, a
neuro-symbolic, hybrid AI approach can potentially overcome the limitations of both methods,
resulting in systems that are both explainable and capable of learning from data.

The focus of this thesis is on integrating DL into the core task of similarity assessment within
CBR, specifically in the domain of process management. Processes are fundamental to numerous
industries and sectors, with process management techniques, particularly Business Process Man-
agement (BPM), being widely applied to optimize organizational workflows. Process-Oriented
Case-Based Reasoning (POCBR) extends traditional CBR to handle procedural data, enabling
applications such as adaptive manufacturing, where past processes are analyzed to find alterna-
tive solutions when problems arise. However, applying CBR to process management introduces
additional complexity, as procedural cases are typically represented as semantically annotated
graphs, increasing the knowledge-acquisition effort for both case modeling and similarity assess-
ment. The key contributions of this thesis are as follows: It presents a method for preparing
procedural cases, represented as semantic graphs, to be used as input for neural networks. Han-
dling such complex, structured data represents a significant challenge, particularly given the
scarcity of available process data in most organizations. To overcome the issue of data scarcity,
the thesis proposes data augmentation techniques to artificially expand the process datasets, en-
abling more effective training of DL models. Moreover, it explores several deep learning architec-
tures and training setups for learning similarity measures between procedural cases in POCBR
applications. This includes the use of experience-based Hyperparameter Optimization (HPO)
methods to fine-tune the deep learning models. Additionally, the thesis addresses the computa-
tional challenges posed by graph-based similarity assessments in CBR. The traditional method
of determining similarity through subgraph isomorphism checks, which compare nodes and edges
across graphs, is computationally expensive. To alleviate this issue, the hybrid approach seeks
to use DL models to approximate these similarity calculations more efficiently, thus reducing the
computational complexity involved in graph matching.

The experimental evaluations of the corresponding contributions provide consistent results
that indicate the benefits of using DL-based similarity measures and case retrieval methods in
POCBR applications. The comparison with existing methods, e. g., based on subgraph isomor-
phism, shows several advantages but also some disadvantages of the compared methods. In
summary, the methods and contributions outlined in this work enable more efficient and robust

applications of hybrid CBR and DL in process management applications.

Keywords: Process-Oriented Case-Based Reasoning · Similarity Learning · Graph Neural Net-
works · Transfer Learning · Hyperparameter Optimization · Learning to Rank · Augmentation

iii

Acknowledgements

Productive research is all about collaboration, sharing experiences and supporting each other.
As my journey as a PhD student slowly reaches its end, I want to thank those people who have
supported me throughout the work on this thesis.

Ralph and David are the supervisors of this thesis and helped me a lot with their constructive
feedback and guidance. I have been working together with Ralph for almost eight years now.
Starting as a research student assistant in his group under the supervision of Christian and
Gilbert, I took my first steps into the research world. While finishing my Master’s studies, Ralph
offered me my current position, probably the most important reason why I decided on starting
as a PhD student. Throughout the last years, he continuously supported me with feedback,
discussions, and other resources. I know David from participating at various ICCBR conferences
in the last few years. Due to his reputation in the community and our shared interest in deep
learning and case-based reasoning, I decided he is a great fit as my second supervisor. Gladly,
he agreed and provided valuable feedback for this thesis. I want to thank both a lot.

My colleagues at the Department of Artificial Intelligence and Intelligent Information Systems
also deserve to be mentioned here. We work together daily, and I am happy to be part of the
group. I always felt support, not only during working hours but also afterward. Likewise, I am
also a member of the ProCAKE core development team that steers the development of ProCAKE.
I want to thank Lisa, Lukas, Lukas, Alexander, and Christian for the collaboration. Additionally,
I would like to thank Nicolas, who supported me as a student research assistant. I wish him
all the best for his own professional career. Special thanks also go to the people who provided
feedback on the first draft of the thesis or helped with proofreading: Mirko, Maik, and Johanna.

Every endeavor that spans over a longer period of time, such as a PhD thesis, is not possible
without supportive friends and family. I want to thank my friends and family very much. Par-
ticularly, I thank my wonderful girlfriend Denise. She supported me from the beginning to the
end, had to go without me when I was working longer, and sometimes even had to bear with me
talking about the contents of my work.

Maximilian Hoffmann
University of Trier
January 2025

Contents

List of Figures ix

List of Tables x

List of Abbreviations xi

I Preamble 1

1 Introduction 2

2 Scientific Landscape 5
2.1 Case-Based Reasoning . 5

2.1.1 CBR Cycle and Knowledge Containers . 5
2.1.2 Similarities and Retrieval . 6
2.1.3 Process-Oriented Case-Based Reasoning 7
2.1.4 Software Libraries . 8

2.2 Deep Learning . 9
2.2.1 Training Deep Neural Networks . 9
2.2.2 Deep Neural Network Architectures for Sequential and Grid-Structured Data 11
2.2.3 Graph Neural Networks . 12
2.2.4 Hyperparameter Optimization . 14

2.3 Hybrid Approaches of Case-Based Reasoning and Deep Learning 14
2.4 Deep-Learning-Based Approaches for Process and Workflow Management 15

2.4.1 Deep Learning Methods in Process-Oriented Case-Based Reasoning Appli-
cations . 15

2.5 Similarity Learning and Deep Learning in Business Process Management 16

3 Contributions 18
3.1 Research Questions . 18
3.2 Research Methodology and Overview . 19
3.3 Artifact 1: Data Preparation . 23

3.3.1 Data Encoding . 23
3.3.2 Augmentation . 24

3.4 Artifact 2: Model Architecture and Training . 26
3.4.1 Extended Architecture of the Graph Neural Networks 26
3.4.2 Extended Training Procedures of the Graph Neural Networks 27

3.5 Artifact 3: Hyperparameter Optimization and Configuration 30
3.6 Software Implementation of the Artifacts . 31

v

3.7 Experimental Evaluations . 32
3.7.1 General Evaluation Setup . 33
3.7.2 Specific Evaluation of Each Artifact . 33

4 Conclusion and Future Work 36
4.1 Discussion . 36
4.2 Limitations . 37
4.3 Future Work . 38

Bibliography 41

II Publications 57

5 Using Graph Embedding Techniques in Process-Oriented Case-Based Reasoning 58
5.1 Introduction . 59
5.2 Foundations and Related Work . 60

5.2.1 Semantic Graph Representation . 60
5.2.2 Similarity Assessment of Semantic Graphs 62
5.2.3 Similarity-Based Retrieval of Semantic Graphs 63
5.2.4 Related Work . 64

5.3 Neural Networks for Graph Embedding . 64
5.3.1 General Neural Network Structure . 65
5.3.2 Embedder . 66
5.3.3 Propagation Layer . 66
5.3.4 Aggregator and Graph Similarity . 67

5.4 Neural-Network-Based Semantic Graph Similarity Measure 68
5.4.1 Encoding Semantic Graphs . 68
5.4.2 Adapted Neural Network Structure . 71

5.5 Application of Semantic Graph Embedding Model and Semantic Graph Matching
Network in Similarity-Based Retrieval . 74
5.5.1 Offline Training . 74
5.5.2 Retrieval . 75

5.6 Experimental Evaluation . 76
5.6.1 Experimental Setup . 77
5.6.2 Experimental Results . 78
5.6.3 Discussion . 80

5.7 Conclusions and Future Work . 81
References . 82

6 Augmentation of Semantic Processes for Deep Learning Applications 88
6.1 Introduction . 89
6.2 Foundations and Related Work . 90

6.2.1 Semantic Workflow Representation and Domain 90
6.2.2 Domain Model . 92
6.2.3 Semantic Workflow Similarity . 93
6.2.4 Graph Embedding . 94
6.2.5 Data Augmentation . 95

6.3 Synthesis and Augmentation of Process Models 97
6.3.1 Key Criteria for the Proposed Augmentation Methods 97

vi

6.3.2 Notion of Correctness . 98
6.3.3 Augmentation Without Correctness Guarantees (Cat. 1) 100
6.3.4 Syntactically Correct Augmentation (Cat. 2) 101
6.3.5 Semantically Correct Augmentation (Cat. 3) 103
6.3.6 Unsupervised Transfer Learning with Augmented Processes 104

6.4 Experimental Evaluation . 106
6.4.1 Hypotheses . 107
6.4.2 Datasets . 107
6.4.3 Augmentation Strategies . 107
6.4.4 Model Training and Metrics . 110
6.4.5 Experimental Results . 110
6.4.6 Discussion . 112

6.5 Limitations and Transferability to Other Domains 113
6.6 Conclusion and Future Work . 115
References . 116
6.7 Appendix: Statistics . 123

7 Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning Using Graph
Neural Networks and Transfer Learning 124
7.1 Introduction . 125
7.2 Foundations and Related Work . 126

7.2.1 Semantic Workflow Representation . 126
7.2.2 Similarity Assessment . 126
7.2.3 Neural Networks for Semantic Graph Embedding 127
7.2.4 Related Work . 128

7.3 Transfer Learning for Improving Semantic Graph Embedding Models 129
7.3.1 Pretraining . 129
7.3.2 Adaptation . 130

7.4 Experimental Evaluation . 130
7.4.1 Experimental Setup . 131
7.4.2 Experimental Results . 132

7.5 Conclusion and Future Work . 133
References . 134

8 Ranking-Based Case Retrieval with Graph Neural Networks in Process-Oriented Case-
Based Reasoning 138
8.1 Introduction . 139
8.2 Foundations and Related Work . 140

8.2.1 Semantic Workflow Representation and Similarity Assessment 140
8.2.2 Learning to Rank . 141
8.2.3 Related Work . 141

8.3 Similarity-Based Retrieval by Using Learning to Rank Methods 142
8.3.1 Pointwise Ranking with GNNs . 142
8.3.2 Predicting Preferences with GNNs . 143

8.4 Experimental Evaluation . 145
8.4.1 Experimental Setup . 145
8.4.2 Experimental Results . 146

8.5 Conclusion and Future Work . 147
References . 148

vii

9 Improving Automated Hyperparameter Optimization with Case-Based Reasoning 152
9.1 Introduction . 153
9.2 Automated Hyperparameter Optimization of Deep Learning Models 153

9.2.1 Formal Definition . 154
9.2.2 Hyperparameter Search Spaces . 154
9.2.3 Random Search . 155
9.2.4 Related Work . 155

9.3 Automated Hyperparameter Optimization with Case-Based Reasoning 156
9.3.1 Experience-Based Retrieval: Case Representation and Similarity Definition 157
9.3.2 Making a Decision for New Trials . 158

9.4 Experimental Evaluation . 159
9.4.1 Experimental Setup . 160
9.4.2 Experimental Results . 161
9.4.3 Discussion . 162

9.5 Conclusion and Future Work . 162
References . 163

IIIAppendix 166

A Curriculum Vitae 167

B Complete List of Publications 169

viii

List of Figures

2.1 4R Cycle and Knowledge Containers of Case-Based Reasoning. 6
2.2 Exemplary Cooking Recipe Represented as a Semantically-Annotated Graph. 8
2.3 Basic Architecture of a Deep Neural Network. 9
2.4 Graph Embedding Model and Graph Matching Network. 13

3.1 Design Science Research Methodology. 20
3.2 Overview of the Proposed Approach. 21
3.3 Encoding of Composite Types. 24
3.4 Overview of the Categories of Augmentation Methods. 25
3.5 Pretraining and Adaptation Phases of Deep Transfer Similarity Learning. 28
3.6 Architecture for Semi-Supervised Transfer Learning. 29
3.7 Architecture of the CBR system, the HPO method, and HypOCBR. 30
3.8 Implementation of the Artifacts. 32

5.1 Exemplary cooking recipe represented as a NEST graph. 61
5.2 Mapping procedure of nodes with illegal mappings. 62
5.3 Graph Embedding Model and Graph Matching Network. 65
5.4 Encoding of composite types: (a) Tree encoding (b) Sequence encoding 69
5.5 Retrieval by using a neural-network-based similarity measure. 75

6.1 A NEST Graph Representing a Sheet Metal Manufacturing Process. 90
6.2 The Graph Embedding Model. 94
6.3 Overview of the Categories of Augmentation Methods. 99
6.4 Exemplary Syntactically Incorrect Process. 100
6.5 Exemplary Semantically Incorrect Process Model. 101
6.6 Architecture for Semi-Supervised Transfer Learning With Its Three Main Steps. . . 105
6.7 Unsupervised Triplet Graph Embedding using an Anchor, a Positive, and a Negative. 106

7.1 Exemplary Cooking Recipe represented as a NEST Graph. 127
7.2 Graph Embedding Model and Graph Matching Network. 127
7.3 Pretraining and Adaptation Phases of Deep Transfer Similarity Learning. 129

8.1 Exemplary Cooking Recipe represented as NEST Graph. 140
8.2 Graph Embedding Model and Graph Matching Network. 142

9.1 Example Hyperparameter Search Space. 154
9.2 Architecture of the CBR system, the HPO method, and HypOCBR. 157

ix

List of Tables

3.1 Overview of Publications. 22

5.1 Evaluation results of the MAC/FAC experiment. 78
5.2 Evaluation results of the A* approximation experiment. 80

6.1 Augmentation Strategies in the Experiments. 108
6.2 Evaluation Results. 111
6.3 Statistics on Amounts of Nodes and Edges of the Datasets in the Experiments. . . . 123
6.4 Kolmogorov-Smirnov-Statistics of the Average Number of Nodes and Edges of the

Datasets in the Experiments. 123

7.1 Evaluation Results of the Pretraining Phase. 132
7.2 Evaluation Results of the Adaptation Phase. 132

8.1 Evaluation Results. 147

9.1 Meta-Parameters of HypOCBR. 159
9.2 Evaluation Results for S - I. 161
9.3 Evaluation Results for S - II. 162

x

List of Abbreviations

AI Artificial Intelligence

BPM Business Process Management

CBR Case-Based Reasoning

CNN Convolutional Neural Network

DGL Deep Graph Library

DL Deep Learning

DSR Design Science Research

GAN Generative Adversarial Network

GEM Graph Embedding Model

GMN Graph Matching Network

GNN Graph Neural Network

GRU Gated Recurrent Unit

HPO Hyperparameter Optimization

IML Informed Machine Learning

IoT Internet of Things

LLM Large Language Model

LSTM Long Short-Term Memory

LTR Learning To Rank

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

MPNN Message Passing Neural Network

MSE Mean Squared Error

NLP Natural Language Processing

PAIS Process-Aware Information System

POCBR Process-Oriented Case-Based
Reasoning

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

sGEM Semantic Graph Embedding Model

sGMN Semantic Graph Matching
Network

SNN Siamese Neural Network

TL Transfer Learning

XAI eXplainable Artificial Intelligence

xi

Part I

Preamble

Chapter 1

Introduction

Case-Based Reasoning (CBR) [1, 14, 129] is a symbolic Artificial Intelligence (AI) method [51]
that was first discussed at the end of the 1980s [85]. Over the years, it has been applied to
many different domains and use cases such as medical diagnosis [72], product configuration [149],
and customer support [6]. CBR has proven to be a successful methodology for problem-solving
based on experiential knowledge and analogy. The way problems in CBR are solved is closely
inspired by the human behavior of solving problems, which is, by comparing them to already
experienced situations and applying successful solutions from the past to the current situation.
Central to this procedure is the concept of experiences, so-called cases, and their management
[14]. Each individual case in CBR contains knowledge about a specific problem-solving situation,
usually described by a problem and a solution. When a new problem is encountered, the solution
for the new situation is derived from the solutions of useful, experienced cases. This has the
advantage of a straightforward explainability, as the new solution can directly be explained
with the case it is derived from [139]. Additionally, the method usually works well with small
amounts of data since there is no need to generalize the cases into a more generic model like
in most Machine Learning (ML) methods. However, an important challenge of CBR systems
arises when taking a closer look at how experienced and new problems are compared, i. e., by
computing pairwise similarities. The notion of similarity is central in CBR applications, and
their main usage is the approximation of utility for the problem-solving procedure [14, 128]. The
principle that the solution of one problem is likely to be useful for solving other problems if
these problems are similar, is followed. Concrete similarity values are determined by similarity
measures. The definition of these measures can be very challenging, as they need to consider
domain-specific semantic knowledge to provide similarities that actually approximate the utility
of an experienced case for solving the current problem. The required knowledge is usually only
available from human experts, and it has to be manually acquired in a resource-intensive process,
leading to a knowledge-acquisition bottleneck [58]. This bottleneck is also present in other parts
of CBR applications, such as the modeling of the cases, where experiences are commonly not
formalized and accessible but rather only exist as part of the experience of human experts.
Consequently, solutions for reducing the knowledge-acquisition bottleneck are of high interest in
the CBR community.

One solution approach is the integration of automatic learning capabilities of research disci-
plines such as Deep Learning (DL) [92]. DL is a sub-symbolic AI method [51] from the category
of ML, characterized by the usage of deep neural network models (see [3] for an introduction).
While the first concepts of neural networks as structural models of human brains date back to
the 1940s, their current rise in popularity has started in the late 2000s due to significant ad-
vances in computation capabilities. With growing amounts of storage capacity and data as well

2

as powerful computation hardware, DL models achieved state-of-the-art results in many ML and
AI problems such as object detection [175], question answering [20], and machine translation [9].
DL applications mostly prevent the knowledge-acquisition bottleneck by utilizing models that
are automatically learned from raw data for predicting solutions to problems. Therefore, neural
networks are fed with pairs of input data (problem) and output data (solution) in a training
procedure. The neural network automatically learns to adjust its trainable parameters such that
the inputs lead to the correct outputs. Once the model is trained, it can be used to compute
outputs for new, unseen input data, thus enabling problem-solving. Nevertheless, DL methods
also come with their own challenges: They require large, high-quality datasets to train effectively
and to generalize well to unseen data. Collecting and labeling such datasets is time-consuming
and costly in most domains. Additionally, DL models often operate as “black boxes”, making
their decision-making processes difficult to interpret. This lack of explainability is problematic in
critical applications where understanding a model’s predictions is essential for trust and regula-
tory compliance. Furthermore, there is a multitude of available model architectures and training
methods, thus, complicating model selection and configuration. This complexity demands signif-
icant expertise and experimentation, leading to a trial-and-error approach that consumes plenty
of resources.

Bringing together symbolic and sub-symbolic AI methods in a hybrid setup is a prominent
topic in the research community. Referred to as neuro-symbolic AI1 [51, 138], the core idea is
to combine the strengths of each of the fields to overcome the respective weaknesses. The main
premise is to combine the neural ability to train robust, expressive, and performant DL mod-
els from raw data with the explainability, correctness, and focus on structured human expert
knowledge of symbolic approaches. This thesis investigates one example of such a hybrid ap-
proach, i. e., the combination of DL and CBR [87, 88], with the main goal of diminishing existing
knowledge-acquisition bottlenecks of CBR applications. The hybrid approach specifically focuses
on the central CBR task of similarity assessment.

The examined use case and domain of the thesis is process management, as processes are in
widespread use with a large impact throughout society, businesses, and academia. This impact
is noticeable due to prominent research disciplines like Business Process Management (BPM)
[38] that solely focus on methods for improving the processes within all kinds of organizations.
BPM covers different aspects, such as process discovery [153] and redesign [127], and manages
processes along their lifecycle [38, pp. 16-27]. Typical BPM tasks range from more traditional
ones such as supply chain management [150] and customer relationship management [118] to
more modern ones such as smart homes [145] and adaptive manufacturing [103]. The field of
CBR is also concerned with research on BPM as part of Process-Oriented Case-Based Reason-
ing (POCBR) [15, 112]. POCBR applications use the CBR methodology [159] to solve problems
involving procedural data. For instance, a POCBR application could be used to provide adap-
tive and flexible manufacturing [102]. If some kind of problem is detected with the executed
manufacturing process, e. g., a machine failure, the current process can be used to find simi-
lar manufacturing processes with the same goal but without using the defective machine. To
implement such applications, existing CBR approaches can only rarely be used out-of-the-box.
Instead, the focus on procedural data requires specific considerations. These considerations ul-
timately increase the involved complexity and exacerbate the knowledge-acquisition bottleneck,
making the aforementioned hybrid approaches even more worthwhile.

Conceptualizing and implementing a hybrid approach of DL and POCBR methods poses
several challenges: Procedural cases in POCBR are commonly represented as semantically an-
notated graphs [15], with types and semantic annotations for each node and each edge and a

1 Often used interchangeably with the terms hybrid AI, Informed Machine Learning (IML) [133], and System 1
and System 2 DL [13].

3

complex topology. This poses a challenge for the knowledge-acquisition procedure. An analo-
gous challenge is present for the specification of similarity knowledge and the associated measures
that operate on the process data. The effort for knowledge-acquisition is commonly high for such
measures, as their definition has to be based on some ground-truth that is usually determined by
human domain experts [58]. Further, most similarity measures for semantic graphs rely on some
form of subgraph isomorphism check. This means that the similarity value is determined w. r. t.
the number of nodes and edges with a one-to-one correspondence in both graphs. Checking this
is computationally expensive, usually with polynomial or exponential complexity [15, 21, 120].
There are also challenges for the DL side: The complex information of POCBR cases has to be
processed by neural networks, which requires a specialized setup of input data preparation, neu-
ral network architecture, and training method. A particular challenge is the general requirement
of large amounts of data to train DL models that is conflicting with the small amounts of training
data of CBR applications. POCBR data is usually even more scarce, as processes are commonly
modeled manually and are not available in large quantities from organizations. In addition, the
general challenge of adequate configuration and parameterization of the used DL setup is also
present when using DL for process data. Due to the specialization of the setup, the importance
of useful configurations and hyperparameters is increased.

This thesis addresses the aforementioned challenges with the following contributions:

• Comprehensive preparation method of procedural cases represented as semantic graphs to
be used in neural network training

• Several DL architectures, training setups, and an experience-based Hyperparameter Opti-
mization (HPO) method for learning similarity measures between procedural cases to be
used in POCBR applications

• Data augmentation methods for enlarging the existing number of cases of POCBR appli-
cations to conduct effective neural network training

The thesis is a compilation thesis and follows the principles of Design Science Research (DSR)
[62, 63, 123]. This means that the contributions are structured in three artifacts with separate
research questions and contributing publications. The general outline of the thesis is structured
into three parts, i. e., the preamble in Part I, the individual publications in Part II, and the
appendix in Part III. The preamble introduces, summarizes, and puts the published papers into
their outer and inner context. Thereby, the scientific landscape presents foundations and related
approaches that are important to embed the contributions of this thesis in the scientific context
(see Ch. 2). In Ch. 3, the research questions are raised and the contributions of the thesis,
consolidated into three artifacts, are explained. The chapter also focuses on the relations among
the original publications and the artifacts as part of the proposed approach. Eventually, the
preamble is completed by concluding the key findings of the thesis w. r. t. the research questions
and presenting directions for future research in Ch. 4. Part II is composed of a collection of the
five published papers (see Ch. 5 to 9) that are part of this compilation thesis. The appendix
contains additional information, i. e., a CV of the author of this thesis (see App. A) and a
complete list of his publications (see App. B).

4

Chapter 2

Scientific Landscape

This thesis examines the combination of methods and technologies from POCBR and DL in
a hybrid approach. More specifically, the essential CBR task of similarity assessment between
procedural cases is addressed. The main research fields and related work within the scientific
landscape surrounding this topic are introduced in this chapter.

2.1 Case-Based Reasoning

CBR [1, 14, 129] is a problem-solving methodology, originating in the 1980s, that leverages ex-
periences and domain knowledge in the problem-solving procedure. The approach is an example
of a symbolic AI method [51] and has many successful applications in practice and academia,
e. g., customer support [6], manufacturing [103], argumentation [93], aquaculture [110], and many
more.

2.1.1 CBR Cycle and Knowledge Containers

At the core of CBR applications is a four-phased cycle, called 4R cycle [1], that provides a
common interface for problem-solving (see Fig. 2.1a): In the retrieve phase, a case base of
experienced problem-solution-pairs, called cases, is queried with the current problem to find
similar problems with a potential solution. The retrieved cases are then reused with the goal of
solving the current problem with the found solutions. Reusing these cases often goes along with
modifications to the retrieved solutions (called case adaptation [57]), as the solutions often do
not fit well enough to solve the current problem sufficiently. If a solution to the current problem
is proposed, it is evaluated and revised if needed, e. g., by a human expert or in a simulation.
The fourth (and last) phase is the retain phase, where it is decided for the newly created case of
current problem and revised solution whether it is added to the case base or not.

The phases of this cycle rely on several types of knowledge, that are commonly referred to
as knowledge containers, introduced by Richter and Weber [129] (see Fig. 2.1b). The vocabulary
contains information about the domain that the CBR application is used in and, thus, is essential
to model all kinds of knowledge in the system. The case base container consists of experiential
knowledge about the problem-solution-pairs that are modeled with the definitions and rules given
by the vocabulary. To determine similarities between these cases, similarity measures and all
related information such as value ranges, taxonomies, and enumerations are described by the
similarity container. The adaptation container holds information about adaptations of cases in
the problem-solving procedure, e. g., rules that modify case attributes according to the query
parameters.

5

2.1. Case-Based Reasoning 5
Aamodt and Plaza: Case-Based Reasoning AICOM Vol. 7 Nr. 1 March 1994

7

RETRIEVE

R
EU

SE

R
E

TA
IN

Problem

New
Case

Retrieved
Case

General
Knowledge

Previous
Cases

Suggested
Solution

Solved
Case

Learned
Case

REVISE

Tested/
Repaired
Case

Confirmed
Solution

New
Case

Fig. 1. The CBR Cycle

view to what is happening, a task oriented view is
suitable for describing the detailed mechanisms from
the perspective of the CBR reasoner itself. This is
coherent with a task-oriented view of knowledge level
modeling [73]. At the knowledge level, a system is
viewed as an agent which has goals, and means to
achieve its goals. A system de-scription can be made
from three perspectives: Tasks, methods and domain
knowledge models. Tasks are set up by the goals of the
system, and a task is performed by applying one or
more meth-ods. For a method to be able to accomplish
a task, it needs knowledge about the general
application do-main as well as information about the
current prob-lem and its context. Our framework and
analysis approach is strongly influenced by knowledge
level modeling methods, particularly the Components
of Expertise methodology [64.65].

The task-method structure we will refer to in
subsequent parts of the paper is shown in Fig. 2.
Tasks have node names in bold letters, while meth-ods
are written in italics. The links between task nodes
(plain lines) are task decompositions, i.e., part-of
relations, where the direction of the rela-tionship is
downwards. The top-level task is prob-lem solving

and learning from experience and the method to
accomplish the task is case-based rea-soning
(indicated in a special way by a stippled ar-row). This
splits the top-level task into the four major CBR tasks
corresponding to the four proc-esses of Fig.1, retrieve,
reuse, revise, and retain. All the four tasks are
necessary in order to perform the top-level task. The
retrieve task is, in turn, partitioned in the same manner
(by a retrieval method) into the tasks identify (relevant
descriptors), search (to find a set of past cases), initial
match (the relevant descriptors to past cases), and
select (the most similar case).

All task partitions in the figure are complete, i.e.
the set of subtasks of a task are intended to be suffi-
cient to accomplish the task, at this level of de-
scription. The figure does not show any control
structure over the subtasks, although a rough
sequencing of them is indicated by having put ear-lier
subtasks higher up on the page than those that follow
(for a particular set of subtasks). The actual control is
specified as part of the problem solving method. The
relation between tasks and methods (stippled lines)
identify alternative methods ap-plicable for solving a
task. A method specifies the algorithm that identifies
and controls the execution of subtasks, and accesses
and utilizes the knowl-edge and information needed to
do this. The meth-ods shown are high level method
classes, from which one or more specific methods
should be cho-sen. The method set as shown is
incomplete, i.e. one of the methods indicated may be
sufficient to solve the task, several methods may be
combined, or there may be other methods that can do
the job. The methods shown in the figure are task
decom-position and control methods. At the bottom
level of the task hierarchy (not shown), a task is solved
directly, i.e. by what may be referred to as task
execution methods.

 3.5. CBR Problem Areas

As for AI in general, there are no universal CBR
methods suitable for every domain of application. The
challenge in CBR as elsewhere is to come up with
methods that are suited for problem solving and
learning in particular subject domains and for par-
ticular application environments. In line with
the task model just shown, core problems addressed

Figure 2.1: Case-Based Reasoning Cycle (taken from [1])

3. Revise: After the creation of the solved case, the system has to evaluate this
case in order to check if the problem can be solved by the proposed solution.
If this is not the case, a repair of some kind has to take place. This can either
be done automatically or by means of human intervention. If a solution has
the quality to solve the given problem, then it can be saved for future usage.

4. Retain: The retain phase has the goal to integrate the found solution into
the system’s knowledge. As the first aspect, this involves extraction of the
relevant knowledge from the solution while preventing the storing of duplicate
or irrelevant information. The second aspect involves indexing of the case base
by taking the new solution into account. The indexing aims at optimizing the
search space as much as possible for future access. The last part of the retain
phase manipulates the knowledge base regarding the similarity assessment of
the new case. Here, the main focus is put on improving the similarity measure
by learning from the features of the new case and their impact on similar-
ity. Additionally, the system’s adaptation knowledge is also complemented
according to the new case.

The knowledge base (labeled as “General Knowledge”) that is used during every
phase does not only store the case base, but also domain-specific models that contain
information on the case representation (domain models), the similarity measures
(similarity models), and the adaptation methods. These models usually contain
additional information that, in combination with the case information, can be used
throughout the problem-solving process. To characterize all the different types of

(a) 4R Cycle. Source: [1]

2.1. Case-Based Reasoning 6

knowledge that have been described beforehand, Richter and Weber [70, pp. 34 - 37]
introduced the concept of knowledge containers in CBR.458 T.R. Roth-Berghofer and J. Cassens

Case base

Vocabulary

Similarity
measures

Adaptation
knowledge VocabularyV

oc
ab

ul
ar

y

Fig. 1. The four knowledge containers of a CBR system

models, inheritance (is-a) and decomposition (part-of) induce hierarchical order-
ings quite naturally. Additional ontological relations can further add hierarchical
information. Those hierarchies can be exploited for conceptual and (partly) for
purpose explanations (because the ordering often is inferred from specializa-
tion/generalization). Other easily available information is information on the
kind of attribute. Input attributes may be used to infer information for retrieval
attributes as well as for filling output attributes of a query or a case. For ex-
ample, imagine a CBR system for PC configuration in an electronic commerce
scenario. The request for a multimedia PC triggers completion rules for filling
such retrieval attributes as processor and graphic card accordingly. Not spec-
ified attributes of the query automatically become output attributes. The CBR
system now could use the information for cognitive explanations based on why
it filled the retrieval attributes etc.

The knowledge that determines how the most useful case is retrieved and by
what means the similarity is calculated, is held by the similarity measures con-
tainer, which can be further divided into the sub-containers for local similarity
measures and amalgamation functions. Each local measure compares values of
one attribute of a case. It contains domain knowledge, e.g., about different pro-
cessor speeds or graphic cards. Amalgamation functions are task oriented and
contain utility knowledge (relevances for the task, e.g., the importance of the
graphic card vs. the importance of the processor speed when selecting a multi-
media PC). The already mentioned completion rules provide knowledge about
dependencies between attributes.

The adaptation knowledge container covers the knowledge for translating a
prior solution to fit a given query and the case base stores the experience of
the CBR system, i.e., the cases. Knowledge about the types of cases used by

Figure 2.2: Knowledge Containers in Case-Based Reasoning (taken from [72])

There are four containers (see Figure 2.2), i.e., the Vocabulary container, the Simi-
larity Measures container, the Case Base container. and the Adaptation Knowledge
container:

Vocabulary The vocabulary container contains basic knowledge about the ele-
ments that are handled in the CBR system. Specifically, it defines which objects
can be described. The knowledge in this container is usually modeled by ontologies
that use inheritance, decomposition, and taxonomic structures [72]. As depicted in
Figure 2.2, the vocabulary is the basis for the other three container.

Similarity Measures The similarity container contains all knowledge that is
modeled to determine a similarity between cases. While this knowledge is essen-
tial for the retrieval phase (see Figure 2.1), it is, for instance, also used during
adaptation. The knowledge about similarity may range from very simple measures
that declare two cases as equal or not equal, to more complex measures in form of
rules or decision trees [72].

Case Base The case base container is the main source of knowledge in a CBR
system. It comprises cases that store experiential knowledge. Usually, this kind of
knowledge is constantly updated throughout the usage of the system in order to
store upcoming cases [72, 73, 80].

Adaptation Knowledge The adaptation container provides knowledge that can
be used to adapt cases in order to solve new problems. Thereby, the entirety of
adaptation knowledge is extended with any new case that is processed.

A careful design and acquisition of this knowledge is a challenging task and an
important aspect of a CBR system as it has great impact on the overall performance
[1]. Referred to as Knowledge Acquisition Bottleneck [33, 90], this problem mainly

(b) Knowledge Containers of Case-
Based Reasoning. Source: [132]

Figure 2.1: 4R Cycle and Knowledge Containers of Case-Based Reasoning.

2.1.2 Similarities and Retrieval

In all phases of the CBR cycle, as well as in the CBR methodology as a whole, similarities
and the similarity knowledge container play a crucial role. The main usage of similarities is the
approximation of utility [14, 128] in the sense that the solution of one problem is likely useful for
other problems if these problems are similar. This means that similarities are used to identify
experiences that are most likely to be useful for solving the current problem. Since these are
rather unspecific statements, there are various conceptualizations and concrete implementations
of similarity assessment in CBR applications for different types of cases, different types of re-
trieval algorithms, different kinds of domains, and so on (see Bergmann [14] for an overview).
Nevertheless, there are also methods that can be applied in arbitrary similarity assessment pro-
cedures. One is the local-global principle, introduced by Richter [128], that is also considered in
the contributions of this thesis. The principle states to break down the similarity computation
between two entities into multiple lower-level similarity computations of individual parts of these
entities. For instance, assume these entities to be cases, then the similarity between a pair of
cases could be the average similarity value of all individual similarities of the pairs of case at-
tributes. This allows specific similarity measures for parts of the case representation, ultimately,
resulting in more reasonable similarities. The local-global principle is intuitive and applicable to
many parts of similarity assessment in CBR.

Especially in the retrieve phase of the 4R cycle [1], similarity assessment plays a key role.
A retrieval procedure is used to find the most similar cases from a case base w. r. t. a given
query. These cases are determined by measuring the pairwise similarity between the query and
each case of the case base. The cases are then ranked in descending order given the computed
similarities. As the performance of a retrieval is determined by the used similarity measure
and the performance of the similarity measure mainly by the complexity of the underlying case
representation, performance bottlenecks can arise for complex domains and case representations
such as process-oriented cases [84, 120, 173]. One way to tackle these issues is the use of multi-
stage retrieval methods such as MAC/FAC (“Many are called, but few are chosen”), introduced
by Forbus, Gentner, and Law [46]. MAC/FAC uses two retrieval stages, where the first stage

6

(MAC) prefilters the case base with a performant, usually knowledge-light, similarity measure.
The remaining cases are then evaluated in the FAC retrieval stage with a possibly slower, usually
knowledge-intensive, similarity measure to determine the final retrieval results. The goal is to
use a MAC similarity measure that yields comparable results w. r. t. the FAC similarity measure,
but has a better performance. Consequently, the method usually introduces a trade-off between
performance and quality of the retrieval that is influenced by the selection of the MAC similarity
measure.

Similarities are not only used in the retrieve phase of CBR applications, but rather throughout
all phases of the CBR cycle. For instance, in the reuse phase, similarities play a key role in
learning and applying adaptation knowledge and validating its effects on the adapted case [115,
Sect. 2.4.5]. The goal, analogous to the retrieve phase, is to approximate the utility that a
retrieved and adapted case provides for solving the current problem situation. The retain phase
also uses the same principles as the aforementioned phases w. r. t. similarities [135]. That is,
similarities are used to assess the utility of a retrieved, adapted, and revised case as a new
member of the case base for efficient long-term problem-solving. A case could be a useful member
if, for instance, it contains knowledge that is currently not present in the case base. In terms of
similarities, this means that a possibly low similarity to the cases in the case base could indicate
a large information gain of adding the case to the case base, and vice versa.

The aforementioned scenarios are only examples where similarities can be and are used in CBR
applications. Anyway, they play a crucial role and highlight the importance of novel approaches
for optimizing similarity assessment. One example of solutions with an ever-growing popularity
use DL methods for similarity assessment [88]. An overview is given in Sect. 2.3.

2.1.3 Process-Oriented Case-Based Reasoning

Due to specific requirements, unique types of knowledge, and individual challenges, subfields
of CBR have emerged. One of these subfields is POCBR [15, 112] which is the application
context of this thesis. POCBR bridges the gap between CBR and process management. More
precisely, the CBR methodology [159] is applied to applications and problems involving process
and workflow data, so called Process-Aware Information Systems (PAISs) [38], with the goal of
optimizing them. The application of CBR to procedural data has been pursued since the early
days of CBR research, e. g., Hammond [55] who uses case-based planning for recipe generation.
But only since the 2010s it is common to refer to this branch of CBR as POCBR. Compared
to classical CBR, POCBR shows differences in the utilized case and domain representations and
the similarity assessment.

An example of a POCBR case is given in Fig. 2.2. The figure depicts an excerpt of a cooking
recipe represented as a semantically annotated graph [15], which is one possible and also the
most common case representation in POCBR. The graph has multiple types of nodes and edges
with interrelations that give the topological structure of the recipe, i. e., a baguette is first coated
with mayonnaise and then layered with a slice of Gouda cheese to form a sandwich dish. The
semantic information is annotated for all nodes and edges, with only one example shown for
the node of the task coat. The information states that the duration of this cooking step is two
minutes and that the list of auxiliaries contains a spoon and a knife.

The example shows that the effort for knowledge-acquisition is commonly high for such mea-
sures, as their definition has to be based on some ground-truth that is usually determined by
human domain experts [58]. For instance, a chef could be given several sandwich recipes to
decide on which pairs are similar to each other or which cooking steps or ingredients are suitable
replacements. But even after this effort and with this information, a concrete similarity measure
is challenging to define due to the needed transformation of the expert knowledge to similarities

7

mayonnaise

coat layer

sandwich
dish

task node data node control-flow dataflow

coat

Duration: 2 (Integer)

Auxiliaries: Spoon, Knife (List) baguette

Gouda

edge edge

Figure 2.2: Exemplary Cooking Recipe Represented as a Semantically-Annotated Graph. Source:
Adapted from [67]

between semantic annotations, similarities between different types of nodes and edges, similar-
ity assessments of the graph structure, and so on. The costs are even higher if, for instance,
experienced experts are not available or documented knowledge is outdated.

The second challenge is the computational performance of these measures. Most similarity
measures for semantic graphs rely on some form of subgraph isomorphism check. This means
that the similarity value is determined w. r. t. the number of nodes and edges with a one-to-
one correspondence in both graphs. There are different ways of finding these correspondences.
A widely used method is to use an A*-based search [15, 173] where pairs of nodes and edges
are mapped onto each with the goal of finding the maximum similarity for the entire set of
nodes and edges of both graphs. The algorithm is iterative, and pairs of nodes and edges are
mapped one by one until all nodes of one graph are mapped. There are different heuristics
[173] to guide the search process towards an optimal solution, with the common strategy of
selecting the next node pair as the one with the maximum pairwise similarity. An A* search or
other subgraph isomorphism checks usually have the advantage of a high explainability due to
the clear correspondences, i. e., mappings, that lead to the final similarity value. On the other
hand, these measures are computationally expensive, usually with polynomial or exponential
complexity [15, 21, 120] and can lead to performance problems.

Those two challenges are present in many POCBR applications. Improving in these regards
motivates approaches using DL in POCBR applications (see Sect. 2.4.1), as DL can generally pro-
vide self-learning with a reduced manual acquisition effort and increased performance (e. g., [67,
71]).

2.1.4 Software Libraries

The implementation of CBR approaches in software systems is usually done with libraries that
provide key functionalities of these approaches, such as data representations and retrieval algo-
rithms. In a recent paper, Schultheis, Zeyen, and Bergmann [144] give an overview and compare
CBR software libraries used in research and practice. The libraries are analyzed w. r. t. the sup-
ported knowledge containers, the phases of the CBR cycle, the provided interfaces, and other
specific features. It is concluded that no library covers all aspects of CBR applications, and most
of the compared libraries are specifically tailored towards certain use cases.

8

One of the compared frameworks is ProCAKE [16], which is developed at the University of
Trier1. ProCAKE focuses on creating structural and procedural CBR applications, making it
the de-facto standard library for POCBR. ProCAKE supports integrated process and knowledge
management by offering a domain-independent platform with several data types for knowledge
modeling, various syntactic and semantic similarity measures, and multiple retrieval algorithms
like k-NN and MAC/FAC [46]. ProCAKE is implemented in Java and configured via XML,
making it adaptable for diverse CBR applications.

2.2 Deep Learning

DL [92] is a subfield of ML and AI, characterized by the usage of deep neural network models.
Neural networks are not a new technology, and the first ideas date back to the 1940s in an effort to
model the structure of human brains. With growing amounts of storage capacity and data as well
as powerful computation hardware, DL models achieved state-of-the-art results in many ML and
AI problems such as object detection [175], question answering [20], and machine translation [9].
The main benefit of using DL approaches over symbolic AI methods is their automatic learning
capability [51, 92]. It allows training models to solve a specific problem only from data, with
little manual engineering effort. Further, the model can be improved by repeating the training
procedure if new data is available.

2.2.1 Training Deep Neural Networks

Deep neural networks learn representations of data with multiple levels of abstraction. These
levels are modeled by interconnected layers of neurons, each performing a simple numeric trans-
formation of input into output data. Starting with the input data to the network itself, e. g., a
sentence, the neural network transforms the input layer-wise into its final representation, e. g., the
translation of this sentence.

18 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

contains three layers. Note that the input layer is often not counted, because it simply
transmits the data and no computation is performed in that layer. If a neural network
contains p1 . . . pk units in each of its k layers, then the (column) vector representations of
these outputs, denoted by h1 . . . hk have dimensionalities p1 . . . pk. Therefore, the number
of units in each layer is referred to as the dimensionality of that layer.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

INPUT LAYER

HIDDEN LAYER

y
OUTPUT LAYER

+1 +1
BIAS

NEURONS

+1
BIAS

NEURON

x4

x3

x2

x1

x5

snoruensaibhtiW)b(snoruensaiboN)a(

y

x4

x3

x2

x1

x5

h11

h12

h13 h23

h22

h21

h1 h2

X SCALAR WEIGHTS ON CONNECTIONS

WEIGHT MATRICES ON CONNECTIONS

yX h1 h2X
5 X 3

MATRIX
3 X 3

MATRIX
3 X 1

MATRIX

Figure 1.11: The basic architecture of a feed-forward network with two hidden layers and
a single output layer. Even though each unit contains a single scalar variable, one often
represents all units within a single layer as a single vector unit. Vector units are often
represented as rectangles and have connection matrices between them.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

Figure 1.12: An example of an autoencoder with multiple outputs

Figure 2.3: Basic Architecture of a Deep Neural Network. Source: [3, p. 19]

This basic architecture of a so-called feed-forward neural network of input layer, hidden layers,
and output layer is depicted in Fig. 2.3 and is generally present in all neural networks. In this
example, the neural network is fed with five input features (x1 to x5) to predict a single output
value (y). The data flow starts at the input layer, goes through the hidden layers, and ends
in the output layer, with each neuron having connections to all neurons of the preceding layer
and all neurons of the following layer. The resulting topology of the neural network forms a

1 https://procake.uni-trier.de/

9

https://procake.uni-trier.de/

mathematical function with the inputs as the arguments and the outputs as the value of the
function. Each connection between neurons is a trainable weight and acts as a parameter of the
function. This means that these weights can be adjusted in a training procedure to compute
output values that match the distribution of the training examples.

The training of a neural network and the mathematical function it represents, respectively,
is performed by a combination of Stochastic Gradient Descent (SGD) and backpropagation.
Starting from a pair of input data and the corresponding label, the first step is to wrap the
function in a loss term. The loss term represents the error that is involved in the computation
of the neural network’s output values, i. e., predictions, w. r. t. to the label. A higher loss stands
for worse predictions, and vice versa. To steer the optimization, derivatives of the error function
are computed and then backpropagation is applied repeatedly from the output layer backward to
the input layer. Based on these derivatives for all layers and neurons in the neural network, the
model can be optimized by SGD. Doing multiple iterations of feeding the network with training
data, computing the loss term, and optimizing the network parameters based on the loss term
eventually leads to a trained model with sufficient prediction accuracy.

The setup of a robust and efficient training pipeline is a common challenge for DL applications,
especially regarding the amount of training data and the model complexity. On the one hand,
the training should be fast to minimize computation time for new versions of a model or during
experimentation. On the other hand, the training should be robust and lead to a well-trained
model with good validation results. This tradeoff is addressed with many different techniques
and approaches, such as regularization methods (e. g., [148]), monitoring of the training progress
(e. g., [113]), and advanced optimizers (e. g., [83]). Another common problem of DL training is
an insufficient amount of training data. A popular approach that addresses this problem is data
augmentation [40]. Training deep learning models effectively usually requires vast amounts of
data to capture the variability and complexity of real-world scenarios. However, acquiring such
extensive datasets can be challenging and expensive. Data augmentation helps mitigate this issue
by artificially expanding the size and diversity of the training data. Data augmentation techniques
are especially prominent for image processing models that apply rotations, translations, flips, and
color adjustments, to increase the amount of training data. The new, unique training examples
enhance the model’s ability to generalize and improve its performance on unseen data, ultimately
leading to more robust and accurate models.

Another method to handle problems regarding training data is Transfer Learning (TL) [86,
152] with the core idea of reusing existing trained (parts of) neural networks in subsequent
training procedures. In most cases of TL, an existing pretrained model is fine-tuned to per-
form another, usually related, task w. r. t. the original model. For instance, an existing model
that was trained on general text documents for the task of generating new text could be fine-
tuned with legal documents to generate more useful texts in legal application scenarios. Due
to the integration of an already trained neural network, the training complexity can be reduced
significantly. TL also allows models trained on large amounts of data to be more accessible to re-
searchers and companies with limited computation budgets, ultimately increasing expressiveness
and robustness.

To use concepts and ideas of new model architectures or training paradigms in practice,
several software libraries enable the definition and the training of neural networks. Erickson
et al. [41] list several libraries, of which the following text introduces the most widely used
ones: TensorFlow [2], developed by Google, provides a flexible and comprehensive ecosystem
around DL, supporting both research and production environments. PyTorch [121], created by
Facebook’s AI research lab, uses a dynamic computation graph and focuses on ease of use, making
it a popular choice among researchers. Keras [30], which can run on top of multiple computation
frameworks, provides a high-level API for quick prototyping and experimentation. Therefore,

10

it is likewise suited for both less-experienced and experienced users. Additionally, MXNet [24],
backed by Apache, is known for its scalability and efficiency, particularly in distributed computing
environments. All of these libraries share the goal of making the implementation and, thus, the
use of DL models in software systems as straightforward as possible.

2.2.2 Deep Neural Network Architectures for Sequential and Grid-Structured Data

An important consideration in practice and an active topic in research is the most suitable
neural network architecture for a specific application context and task. While there are many
important factors that influence this decision, it is common to differentiate between different
architecture classes based on the dependencies between the input values [3]. The neural networks
in these classes contain specific hidden layers that consider the dependencies between the input
values. The following text introduces Recurrent Neural Networks (RNNs) as an exemplary neural
network architecture for sequential data and Convolutional Neural Networks (CNNs) as a possible
neural network architecture for grid-structured data.

Recurrent Neural Networks

RNNs [3, ch. 7] are used to process data with sequential dependencies between input features.
Such dependencies occur in many kinds of data but, most notably, in time series data, e. g., se-
quences of sensor readings over time, and text data, e. g., sentences in news articles. RNNs
aim to directly reflect the sequential dependencies of the input data in the architecture of the
neural network, and especially, of the hidden layers. In contrast to standard feed-forward neural
networks (see an example in Fig. 2.3), RNNs implement information flow between neurons of
the same layer. This is achieved by “unrolling” the sequence in time and passing a state be-
tween features of the time series. This means that each feature of the time series is processed by
trainable neural network components and, in addition, the processed input feature is combined
with the state of the sequence that is passed from the preceding feature in the time series. The
result is either a new sequence of processed feature vectors, i. e., sequence-to-sequence model, or
a single vector of processed features, i. e., sequence-to-vector model, depending on the use case.
There are different types of RNNs with variations of how the time series is processed, e. g., the
Long Short-Term Memory (LSTM) [64] and the Gated Recurrent Unit (GRU) [29]. A common
drawback of RNNs are performance limitations due to the sequential processing order of the
data. As the state of the sequence is passed from one feature to the next, the features can only
be processed sequentially and not in parallel, which limits the capabilities of modern, parallelized
computing infrastructures for neural networks.

Convolutional Neural Networks

CNNs [3, ch. 8] are commonly used to process grid-structured input features with two-dimensional
dependencies. The most prominent examples are images that consist of individual pixels as input
features with strong relations between neighboring pixels. The name CNN comes from the convo-
lutions that are used to process the two-dimensional input features. Convolutions are operations
that multiply the color values of a small grid of neighboring pixels with a filter matrix of the same
size and then reduce the result to a single output value. In the context of neural networks, these
filter matrices are composed of trainable neurons to convolve images according to the training
goal. The convolutions exploit the two-dimensional dependencies between neighboring pixels and
combine their information, extracting features of the image layer-by-layer. The typical setup of a
CNN is to have a sequence of convolutional layers that gradually reduce the size of the input data
in the beginning, followed by a feed-forward neural network to produce the desired prediction.

11

There are numerous variants of CNNs with different strengths and weaknesses. A comprehensive
overview of different CNNs and the progress of neural image processing over the last few years
is evident from the annual ImageNet large-scale visual recognition challenge.2

2.2.3 Graph Neural Networks

Graph Neural Networks (GNNs) (see a comprehensive introduction in [11, 157, 166]) are a special
class of neural network architecture, as they are applied to graph-structured data and combine a
multitude of other architectures such as RNNs and CNNs. Similar to the aforementioned classes,
GNNs also deal with dependencies between input features. These dependencies arise from the
graph structure of nodes being connected by edges, where each node and edge is characterized
by features. In general, GNNs consider these dependencies by implementing an information flow
between nodes along the edges. This means that each node has a representation that is updated
iteratively via information propagation from other nodes that are connected via an edge.

Literature Surveys

There are several surveys that categorize GNN literature and the respective variants according
to several criteria. In the following, three of these surveys with different views on the comparison
of GNN literature are examined: Wu et al. [168] present a taxonomy of four classes of GNNs,
i. e., recurrent GNNs, convolutional GNNs, graph autoencoders, and spatio-temporal GNNs.
They analyze applications of these classes of GNNs based on the addressed task, i. e., whether it
is node-level, edge-level, or graph-level, and the used training procedure, i. e., semi-supervised,
supervised, or unsupervised. Besides the theory behind the individual approaches, available
open-source implementations as well as benchmark datasets are also discussed.

Zhou et al. [176] also discuss several methods of GNNs. They categorize the methods based
on the types of graphs the methods support, the used training method, and the method of
information propagation. Compared to Wu et al. [168], the comparison is on a more technical
level that is focused on the internal aspects of the GNN methods. In addition, application
scenarios of the approaches such as biology, chemistry, and Natural Language Processing (NLP)
are discussed.

At the heart of the survey of Waikhom and Patgiri [157] is the learning task of the com-
pared GNN methods. They comprehensibly distinguish between supervised, semi-supervised,
self-supervised, and few-shot learning. Additionally, they give extensive foundations on the topic
and also recommendations on how to approach future learning tasks with GNNs. Besides these
generic surveys about GNNs, there are also papers specific to one domain or use case, e. g., ex-
plainability [172], recommender systems [167], and traffic forecasting [77].

The Graph Embedding Model and the Graph Matching Network

Among the various GNN architectures discussed in the literature, the work by Li et al. [97]
serves as the foundational model for the used GNNs in this thesis. Their approach is particularly
relevant because they explicitly describe and assess it in the context of similarity-based search,
which closely aligns with similarity assessment and retrieval tasks in POCBR. The neural network
architecture follows the basic structure of a Message Passing Neural Network (MPNN) [54] and
consists of four key components, which are connected sequentially (as depicted in Figure 2.4).

These components are:

2 https://www.image-net.org/challenges/LSVRC/index.php

12

https://www.image-net.org/challenges/LSVRC/index.php

Embedder

Propagation
Layer

Aggregator

Figure 2.4: Graph Embedding Model (GEM; left) and Graph Matching Network (GMN; right).
Source: [142]

1. Embedder: The embedder transforms raw graph input data into an initial vector represen-
tation. It generates a single embedding vector for each node and edge in the graph.

2. Propagation Layer: During propagation, node information represented as vectors is itera-
tively merged based on the graph’s edge structure. Node embedding vectors are updated by
element-wise summations, incorporating information from incoming edges and connected
nodes. This process captures local neighborhood information for each node.

3. Aggregator: After multiple rounds of information propagation, the aggregator combines the
embeddings of all nodes within each graph. The result is a single whole-graph embedding.

4. Graph Similarity Component: This final component computes a scalar similarity value
using the embedding vectors of both graphs. It employs a vector similarity measure, such
as cosine similarity.

The key distinction between the Graph Embedding Model (GEM) and the Graph Matching
Network (GMN) lies in their propagation strategy. The GEM employs an isolated propagation
approach, propagating information only within a single graph. In contrast, the GMN incorporates
an attention-based cross-graph matching component, allowing information to propagate across
both graphs during the early stages of similarity assessment. Please note that the main purpose
of both models is to create embeddings of input graphs and both models can, thus, also be used
without the graph similarity component.

Software Libraries

Usually, research papers that propose new GNN architectures or training paradigms also come
with an open-source implementation of their approach. To reuse common components for GNN
implementations and to accelerate the development process, various ecosystems of software li-
braries exist: The Deep Graph Library (DGL) [158] is a Python library specifically designed for
DL with graphs and GNNs. It is agnostic of the underlying computation library, e. g., Tensor-
Flow [2] or PyTorch [121] and comes with various extensions. PyTorch Geometric [45] extends
the PyTorch ecosystem by graph learning functionality. Several research papers are already
implemented into the library to simplify their usage. TensorFlow GNN [43] was only recently
released and focuses on making the TensorFlow ecosystem more accessible for GNN tasks. The
library also has built-in implementations of research papers and reuses several concepts of the
older library graph nets [11].

13

2.2.4 Hyperparameter Optimization

The way of conceptualizing, implementing, and training a DL model involves numerous configu-
ration possibilities that influence the outcome, so-called hyperparameters. Most hyperparameters
are part of the training procedure or the model architecture, e. g., the learning rate of SGD, the
number of neurons in each hidden layer, and, on a higher level, even the selected neural network
architecture itself. Finding the right configuration is very challenging and, thus, it is common to
automatically optimize these hyperparameters [44] as part of the training procedure. The process
is built around a simple equation:

λ∗ = argmin
λ∈Λ

L(Aλ,D) (2.1)

The optimal hyperparameter vector λ∗ ∈ Λ is searched for by selecting hyperparameter vectors
λ ∈ Λ that minimize the loss L(Aλ,D). The loss value results from training Aλ and validating
its performance on the dataset D.

Different HPO methods provide different ways of finding the optimal hyperparameter vector
(argmin). This is necessary as the search space of all possible hyperparameter vectors grows
exponentially with the number of hyperparameters, making exhaustive search infeasible in prac-
tice. Besides basic strategies, such as randomly selecting different hyperparameter vectors [18],
there are also much more elaborate methods [42].

2.3 Hybrid Approaches of Case-Based Reasoning and Deep Learning

Using hybrid approaches of DL and CBR is a prominent research topic in the community with
many approaches, including the approach proposed in this thesis. These approaches utilize
DL methods to improve CBR applications and the complementary direction is pursued where
the CBR methodology is used to improve on DL shortcomings [87, 88]. Thereby, both research
directions aim to combine the strengths of each of the fields to overcome the respective weaknesses
based on the concept of neuro-symbolic AI [51, 138]. The resulting system should be robust and
expressive (DL properties) as well as explainable and correct (CBR properties). The challenge is
to achieve this while overcoming the respective challenges [88] of, for instance, the need for large
amounts of training data in DL and the knowledge-acquisition costs of CBR. The remainder
of this section discusses approaches from the intersection of CBR and DL research regarding,
among others, similarity learning, case adaptation, and explainability.

Several works [5, 6, 7] examine the combination of DL and CBR in NLP tasks. The main
artifact of the work is the Deep Knowledge Acquisition Framework (DeepKAF) that targets
similarity computation and retrieval of CBR applications. Specifically, the framework replaces
conventional similarity measures for textual data with automatically learned neural networks,
i. e., autoencoders, word embeddings, and Siamese Neural Networks (SNNs). The models are
also periodically retrained based on user feedback. Another branch of work [108, 109, 110] also
deals with the topic of similarity learning by neural networks to support CBR applications. The
domain these methods are applied to is decision support for aquaculture sites. The decision
support is based on SNNs that learn similarities between different aquaculture sites. Martin
et al. [107] employ convolutional SNNs to learn similarity measures for image data. The paper
thereby combines CNNs and SNNs to process image data effectively and to learn a similarity
measure from the data. These methods broadly fall into the category of feature extraction with
DL methods, which is also popular in POCBR research. Other examples of this category are
Wilkerson, Leake, and Crandall [163], who aim to improve on the retrieval of cases by not only

14

using manually engineered but also DL-extracted features, and Marie et al. [105], who use CNNs
for feature extraction in the medical domain.

Other approaches examine DL methods as a means for case adaptation. Liao, Liu, and Chao
[99] base their method on the case difference heuristic [57] that determines the difference of the
solution of two cases by the difference of the problem descriptions of these two cases. In their
approach, a DL model predicts the solution difference given the problem difference of a pair of
cases. The approach is evaluated on a regression task with rather simple numeric features. Other
groups of researchers [90, 91, 171] also use the case difference heuristic in combination with DL
to perform case adaptation. Leake, Ye, and Crandall [91] and Leake et al. [90] extend the work
of Liao, Liu, and Chao [99] by training a neural network not only on the problem difference but
also on the retrieved case to provide additional context. Ye, Leake, and Crandall [170] take a
very similar approach but tackle classification problems instead of regression problems.

eXplainable Artificial Intelligence (XAI) is another prominent branch of work at the inter-
section of CBR and DL. This time, CBR is used to improve DL applications that usually lack
explanations for their predictions (see, for instance, [10, 48, 52, 80] and several workshops at the
International Conference on CBR on this topic). For instance, Keane and Kenny [80] discuss twin
systems of neural networks and CBR methods that aim to improve the explainability of the neu-
ral networks with post-hoc explanations based on the CBR component. Another example is the
work of Barnett et al. [10], who present an interpretable classification method of mammography
images that uses CNNs to extract features from the images and a CBR component to interpret
these features in a way that experts can validate the predictions. They notice that explainability
is key in this domain, as the goal is to assist clinical experts in their decision-making process
of the patient’s treatment. It is also worth mentioning that the approach does not use specific
cases, but rather learned prototypes that resemble cases in their purpose.

2.4 Deep-Learning-Based Approaches for Process and Workflow Management

DL-based approaches for process- and workflow management are discussed for the research areas
of POCBR and BPM. Both disciplines deal with procedural data at their core but, apart from
that, most research is done independently.

2.4.1 Deep Learning Methods in Process-Oriented Case-Based Reasoning
Applications

The motivations of using DL methods in POCBR are largely the same as for CBR: trainable mod-
els combined with trustworthy, symbolic expert knowledge. The typical challenges of POCBR
applications that are addressed by DL methods, however, can be more “serious” compared to
those of CBR applications. For instance, DL models can be used for feature engineering or -
extraction (e. g., [90, 105, 137]) of cases from a case base. Since the complexity of typical POCBR
case representations in the form of semantically annotated graphs [15] is high, the motivation to
use automatic learning methods instead of human experts for engineering features is even higher
[67, 84]. The same observation can be made when learning similarity measures or adapting cases.
Despite large potential but because the number of POCBR researchers is limited, related work
that uses DL methods in POCBR applications is rather scarce. The discussed approaches aim
to improve retrieval, case adaptation, or similarity assessment by incorporating DL methods.

Leonardi, Montani, and Striani [95] investigate classification approaches for medical process
traces. They compare two metrics for similarity assessment, a semantic measure and one based
on a DL model. The DL approach uses an RNN to extract features from the process traces
and computes a vector space similarity between these feature vectors as a similarity value. The

15

approach treats the traces as sequences of activities and only uses the activity labels as features,
keeping the complexity low. Another use case of feature extraction for similarity assessment
is the work of Klein, Malburg, and Bergmann [84]. They employ a general-purpose embedding
framework called StarSpace [165] for unsupervised learning of vector representations used as case
features. The framework leverages the structural properties of semantic graphs, including the
relationships between task and data nodes. The approach is evaluated as a similarity measure
in retrieval scenarios and is well-suited for retrievals with multiple stages, such as MAC/FAC
[46, 82], where a fast but inaccurate retriever is paired with a slow but accurate one. Lenz et al.
[94] also use DL models, specifically NLP methods, to transform complex textual features into
embeddings in the domain of argumentation. The embeddings are used in similarity measures,
incorporating the specific characteristics and features of the underlying arguments.

DL methods are also discussed in the context of case adaptation, which is relevant to the
reuse phase of CBR applications [1]. One of the more recent publications in the domain of
argumentation [93] extends the initial approach and includes Large Language Models (LLMs) as
a means for the adaptation of argument graphs. Brand et al. [19] also investigate case adaptation
and present a conceptual approach for adapting semantic processes with a GNN that is used by
a Reinforcement Learning (RL) agent. Inspired by change patterns [160] for processes, the agent
learns to delete, insert, and replace parts of a process to contribute to increasing the query
fulfillment of a retrieved case. The approach can either be used to learn or create a base of
adaptation knowledge, or to adapt cases directly. Nevertheless, its effectiveness has yet to be
examined in an empirical evaluation.

2.5 Similarity Learning and Deep Learning in Business Process Management

Although the thesis is set in the context of the POCBR research field, related work is not limited
to POCBR and CBR approaches. As POCBR applies CBR methods to BPM, approaches from
BPM literature that use DL methods or deal with similarity learning are related to this thesis.

Similarity learning between processes is often denoted as business process matching [23, 162] in
this research community, i. e., finding correspondences between two processes to determine their
consistency. For further reading, a comprehensive overview of similarity measures for processes
is presented by Schoknecht et al. [140]. Sonntag et al. [147] introduce an ML approach for
NLP-based similarity measures between process models. In this method, the node labels of both
processes are matched, and each node consists of multiple tokenized words. Learning is done by
using a local search to find the optimal hyperparameter vector. The approach of Niesen et al.
[119] also uses methods from NLP in business process matching. Specifically, they match in
multiple stages: 1) Identical node labels are matched. 2) Identical lemmatized node labels are
matched. 3) The vector space model is used to extract statistics from the textual node labels to
form a vector representation of the process nodes, and close representations are matched.

Another discussed use case for business process matching is identifying merge possibilities
between multiple process models. Morrison et al. [114] aim to generalize processes where large
parts of multiple processes can be matched. Dijkman et al. [36] approach refactoring possibilities
in process repositories by matching processes onto each other. Rosa et al. [130] pursue a similar
goal and use graph edit distances [50] to determine which parts of the processes can be matched.
Kacimi, Tari, and Kheddouci [78] split up processes into multiple sequences of tasks, called paths.
These paths are transformed to a signature by encoding each unique node (XOR, AND, etc.)
and concatenating these encodings along the path. Similarities between these signatures based
on simple string similarity measures are then aggregated to similarities for the processes. More
modern approaches such as Sungkono et al. [151] also merge processes by computing textual
similarities with NLP transformers such as BERT [34].

16

There are other approaches that use DL in BPM research, e. g., for general-purpose represen-
tation learning [125], process mining [56], predictive process monitoring and prediction [117, 126],
and process generation [39]. However, their applicability to POCBR is limited due to numerous
assumptions on the complexity of the processes that mostly only consider simple labeled graphs.
GNNs are also in use for BPM tasks (e. g., [49, 59, 155]) but the limitations to simple processes
or graphs also apply there.

17

Chapter 3

Contributions

Building on the foundational concepts and existing literature discussed in the previous chapter,
this chapter contains the core of this thesis, i. e., the formulation of research questions and the
contributions that emerge from the thesis. There are three research questions, addressing the
goal of hybrid similarity assessment in POCBR applications, that are specifically derived from
three formulated challenges of hybrid DL and POCBR approaches (see Sect. 3.1). Following the
research questions is the presentation of the contributions of the thesis, with an introduction of
the research methodology and a presentation of an overview (see Sect. 3.2). Following is a more
detailed explanation of the three developed research artifacts (see Sect. 3.3 – 3.5). The chapter
is closed with a brief overview of the implemented software tools (see Sect. 3.6) and a summary
of all conducted experimental evaluations (see Sect. 3.7).

3.1 Research Questions

The presentation of the scientific landscape reveals challenges that arise for hybrid applications
with POCBR and DL components. The following three challenges are identified by the author
based on the presented literature and his personal experience of working with POCBR and DL
methods:

1. Data Complexity: The data required to operate a POCBR application is usually very
complex. The cases are represented as semantically annotated graphs [15] with a complex
topology of nodes and edges. The complex, procedural nature of the cases is also reflected
in other types of knowledge used in the application, such as the modeled domain knowledge
or the applied similarity measures. While this complexity with the associated knowledge-
acquisition bottleneck [58] is one of the motivations for using DL models to avoid problems
such as a computationally expensive similarity assessment (see Sect. 2.1.3), it also poses a
challenge for the DL models themselves to include this knowledge into the neural networks:
All POCBR data used as input or output data for the DL models has to be numerically
encoded to enable computations by the neural network. The architecture and training
method of the neural network also have to be capable of processing the complex input data
effectively. Both aspects refer to a general challenge of neuro-symbolic AI [133, 138], that
is, to transform, merge or consolidate symbolic and non-symbolic data and the associated
representations.

2. Data Scarcity: Another challenge is scarce data, which can be a problem in POCBR
applications. The reason for this is the focus on examples of processes as the main training

18

input: On the one hand, processes are usually manually modeled and, because of limited
resources, examples of processes are not available in large quantities. On the other hand,
process data is generally not as ubiquitous as data from other domains, such as natural
language or images, which further limits the amount of available data. For instance, when
looking at the experiments of all the papers presented in Sect. 2.4.1, there is an average of
1331 cases that serve as training data. This is a tiny amount compared to other well-known
datasets for training DL models, e. g., 60000 cases for MNIST1, 50000 for CIFAR-102 or
multiple terabytes of data for training LLMs [20]. An integration of DL methods in POCBR
needs to be capable of dealing with small amounts of data.

3. DL Design and Configuration: The main idea of this thesis is integrating DL methods in
POCBR applications, with a focus on improved similarity assessment and retrieval. As
stated in Sect. 2.2, the success of DL is dependent on designing a proper setup, including
model architecture, training method, and hyperparameter configuration. It is important
to optimize every aspect of this setup individually and to find an overall optimal setup
that considers trade-offs between different facets of the examined problem. One impor-
tant trade-off to consider is the relation between prediction quality of the model and its
inference runtime (see Sect. 2.1.3). Both properties are important for DL-based similarity
measures in POCBR applications because, on the one hand, the predicted similarities need
to be precise to replace manually modeled similarity measures and to ultimately reduce
knowledge-acquisition effort. On the other hand, the model inference time, i. e., the time
to predict a similarity, should be as short as possible to diminish performance bottlenecks
in POCBR applications existing at the current time. For a more detailed analysis and
quantification of these bottlenecks, the reader is referred to Ontañón [120] and Zeyen and
Bergmann [173].

The following research questions are investigated under consideration of the aforementioned
challenges:

RQ1 How can the complex symbolic data present in POCBR applications, i. e., the case base,
the domain knowledge, and the similarity knowledge, be numerically encoded to be used
for training DL models?

RQ2 Which DL setups (architectures, training procedures, configurations) are suitable for
training DL models for similarity assessment and case retrieval in POCBR?

RQ3 How can possible limitations caused by a limited number of labeled training cases in
POCBR be mitigated when training DL models?

3.2 Research Methodology and Overview

As stated in the introduction, the thesis follows the principles of DSR [62, 63] (see Fig. 3.1).
DSR is a research methodology that assumes knowledge can be produced by designing and
implementing artifacts that address practical problems. Such an artifact can be any construct,
model, method, or system that aims to solve an identified issue. The methodology is structured
around three interconnected cycles, i. e., the Relevance Cycle, the Rigor Cycle, and the Design
Cycle.

1 https://www.tensorflow.org/datasets/catalog/mnist
2 https://www.tensorflow.org/datasets/catalog/cifar10

19

https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/cifar10

Environment

Application Domain
Process Management and Process
Improvement
Case-Based Reasoning with Procedural
Data
Similarity-Based Search and Retrieval
of Processes

Problems and Challenges
Integration of Procedural Data into
Deep Learning Components
(Complexity, Scarcity)
Design of Deep Learning Components
Configuration Setup for the Use Case

Opportunities
More Accurate Similarity Assessment
Increased Efficiency for Retrieval and
Search of Processes
Reduced Knowledge-Acquisition
Effort

Design Science Research

Artifact 1

Build Design
Artifacts

Evaluate

Data Preparation

Artifact 2

Build Design
Artifacts

Evaluate

Model Architecture
and Training

Artifact 3

Build Design
Artifacts Evaluate

Hyperparameter Optimization
 and Configuration

Knowledge Base

Scientific Theories and Methods
Case-Based Reasoning, Process-
Oriented Case-Based Reasoning, and
Similarity Assessment
Deep Learning (Model Architectures,
Training Methods, Configurations)
Hybrid and Neuro-Symbolic AI
Business Process Management

Experience and Expertise
(Process-Oriented) Case-Based
Reasoning
Workflow- and Business Process
Management
Machine Learning and Deep Learning
Semantic Technologies and Data
Modeling
Ranking
Metric Learning and Similarity
AssessmentR

el
ev

an
ce

 C
yc

le

R
ig

or
 C

yc
le

R
eq

ui
re

m
en

ts
 a

nd
 C

as
e

St
ud

ie
s

G
ro

un
di

ng
 a

nd
 A

dd
iti

on
s t

o
K

no
w

le
dg

e
B

as
e

Figure 3.1: Design Science Research Methodology. Source: [62]

The Relevance Cycle focuses on the connection between the research and the real-world
context, i. e., the environment. It ensures that the problems addressed by the research and the
created artifacts are grounded in practical needs and applicable to real-world problems. The main
tasks of the Relevance Cycle can be divided into tasks that precede and prepare the development
of an artifact and tasks that apply and validate a developed artifact in the environment. Tasks
of the former category are concerned with problem identification and definition of requirements
to guide the artifact development. If an artifact is available, it is applied and evaluated in a
real-world context through pilot projects, case studies, or field trials to observe its effectiveness
and to gather feedback.

The Rigor Cycle ensures that the research is scientifically sound and contributes to the existing
body of knowledge, i. e., the knowledge base. It connects the research process to the established
theoretical foundations and defines methods for both designing and evaluating the artifact. It
ensures that the research not only contributes a practical solution but also advances theoretical
understanding. The key tasks of this cycle include the compilation of a knowledge base that
provides the foundation for understanding the problem, designing the artifact, and selecting the
evaluation methods, the selection of scientifically validated methods to ensure that the research
adheres to the scientific state-of-the-art, and the conceptualization of the artifact’s evaluation to
enable the validity and reliability of the artifact.

The Design Cycle is the core process within DSR, focusing on the actual development and
refinement of the artifact [123]. This cycle is iterative and, in each iteration, the researcher builds
an initial solution, tests it, gathers feedback, and improves the artifact further. By emphasizing
continuous iteration, the Design Cycle ensures that the artifact becomes increasingly effective and
adaptable to real-world scenarios. The iterations end if the artifact solves the initially identified
problems and meets the requirements. The Design Cycle acts as the connection between all
three cycles in DSR, thus bringing together the current state-of-the-art (Rigor Cycle) with the
real-world environments (Relevance Cycle).

As part of this thesis, three artifacts have been developed. These artifacts are interrelated
and embedded into a cohesive framework that can be used for hybrid POCBR applications with
DL-based similarity measures and retrieval functionality. Each of these artifacts consist of a
theoretical method such as an algorithm or a neural network architecture in combination with
the corresponding implementation. Each artifact has been developed according to the principles

20

Artifact 3:
Hyperparameter Optimization and Configuration

Augmentation

... via Syntactic
Methods

... via Semantic
Methods

... via Automated
Planning

Encoding

Graph Structure
(Nodes and Edges)

Semantic Annotations
(Tree/Sequence)

Node and
Edge Types

Architecture

Training

sGEM and sGMN Extended
Embedders

Mapping
Constraints

Semi-Supervised
Transfer Learning

Local-Global
Transfer Learning

Ranking-Based
Predictions

Similarity
ModelDomain Model

Similarity
Assessment

Artifact 1: Data Preparation

Artifact 2: Model Architecture and Training

Case Retrieval

POCBR Application

Case Base

Embedding
Model

Figure 3.2: Overview of the Proposed Approach.

and procedures of DSR, as introduced before. Further, each of the three artifacts has one or
more associated publications. Figure 3.2 visualizes this relationship. Table 3.1 gives an overview
of the individual publications that are part of the thesis, with their main contributions as well
as their associated artifacts.

Artifact 1 (see Sect. 3.3) consists of methods for training data encoding and semantic graph
augmentation alongside their respective implementations. Training data encoding refers to the
procedure of mapping training examples from an arbitrary data representation, i. e., semantic
graphs in this thesis, to a numerical multidimensional vector space. This procedure is necessary
since DL models can only operate on numeric data. The developed encoding scheme [67] handles
the key components of processes represented as semantic graphs, that is, the structure with nodes
and edges in between, the types of nodes and edges, and the semantic annotations. Especially
the semantic annotations are challenging to encode due to their inherent complexity, featuring
multiple types of data, tree-like compositions, and further information from the underlying do-
main. The second part of artifact 1 consists of augmentations of semantic graphs to enlarge the
training data set [70]. Data augmentation [40] (see Sect. 2.2.1) is popular in DL research to
mitigate issues with small training data sets, which is usually also a problem with POCBR data.
Different categories of augmentation methods are examined with different levels of correctness.
The level of correctness of an augmentation method increases if the augmented training example
preserves either the syntactic structure, the semantic structure, or both aspects of the original,
non-augmented case.

Given sufficiently large and numerically encoded training data, Artifact 2 (see Sect. 3.4)
consists of several GNN architectures paired with corresponding training procedures and im-
plementations for learning pairwise semantic graph similarities. During the research, several
architectures that provide, among other aspects, specific layers for embedding the semantic an-

21

Table 3.1: Overview of Publications.

Ref./
Ch. Title Main Contributions

Arti-
fact(s) RQ(s)

[67] / 5 Using Graph Embedding Tech-
niques in Process-Oriented
Case-Based Reasoning

• Comprehensive encoding
scheme of semantic
graphs

• sGEM and sGMN mod-
els for generating embed-
dings of semantic graphs

1, 2 1, 2

[70] / 6 Augmentation of Semantic
Processes for Deep Learning
Applications

• Process augmentation
methods for enlarging
the amount of training
cases

• Semi-supervised TL pro-
cedure with an unsuper-
vised pretraining phase
and a consecutive super-
vised training phase

1, 2 2, 3

[122] / 7 Similarity-Based Retrieval in
Process-Oriented Case-Based
Reasoning Using Graph Neural
Networks and Transfer Learn-
ing

• TL approach for learning
local and global similari-
ties

• Different variants of
node and edge em-
bedders, using RNNs,
MLPs, and attention-
based neural networks

2 2

[68] / 8 Ranking-Based Case Retrieval
with Graph Neural Networks
in Process-Oriented Case-
Based Reasoning

• Extension of the train-
ing procedure and the
architecture of sGEM
and sGMN for predicting
pairwise rankings

• Rank aggregation algo-
rithms to use pairwise
rankings in case retrieval

2 2

[66] / 9 Improving Automated Hyper-
parameter Optimization with
Case-Based Reasoning

• CBR-based decision-
making procedure for
extending existing state-
of-the-art HPO methods

• Continuous similarity as-
sessment and retrieval of
hyperparameter vectors

3 2

22

notations and types of semantic graphs [67] and an architecture for employing Learning To
Rank (LTR) functionality [68] have been examined. To make use of the model architectures, ar-
tifact 2 also consists of methods for model training. Several training procedures are proposed for
the use case of similarity learning between semantic graphs: TL for pretraining local similarity
models [122], semi-supervised TL for training with augmented, unlabeled data [70], and training
with ranking-based loss functions [68].

Artifact 3 (see Sect. 3.5) contains an algorithm and its implementation for doing HPO [31,
44] of the models resulting from the second artifact. This optimization is crucial to adapt the
hyperparameters of the training procedure and the model architecture to the CBR application
that the trained model is used in. The corresponding approach Hyperparameter Optimization
with Case-Based Reasoning (HypOCBR) [66] extends other state-of-the-art HPO methods by a
decision-making process, which aims to only consider hyperparameter vectors for an optimization
run if they appear promising. This decision is based on an underlying experience-based system
that compares the current hyperparameter vector to already seen hyperparameter vectors and
their optimization results. The similarity measures used to compare these vectors are defined
manually and incorporate the experience of DL practitioners about known-good hyperparameter
configurations.

In the following sections 3.3 - 3.5, the artifacts and the developed methods and algorithms
are described in more detail. Section 3.6 describes the implementation of all three artifacts in
the overall context and Sect. 3.7 discusses the evaluations.

3.3 Artifact 1: Data Preparation

The starting point to address RQ1 is the data provided by POCBR applications [128, 129]. This
data can be used in the process of training a DL-based similarity measure and is therefore of
importance. Common literature [128, 129] differentiates four main types of knowledge, i. e., the
vocabulary (domain knowledge), similarity knowledge, knowledge about the case base, and adap-
tation knowledge. The domain where the application is used is usually strictly specified by a
domain model (also known as vocabulary [128, 129]). The domain model can be very diverse, but
in POCBR, it usually defines the structure and content of the process-oriented cases, e. g., its
attributes, default values, node and edge types, etc. The similarity knowledge consists of all
information about how similarities between cases are determined. This knowledge ranges from
simple symbolic measures of equality or inequality to more complex measures such as weighted
similarities based on the local-global principle [128]. The case base represents knowledge about
experienced problem-solving situations. It is usually the main type of knowledge in CBR and
POCBR applications [129]. The cases can be represented in many ways, though this thesis fo-
cuses on the representation as semantic graphs [15], which is the most common in POCBR. The
adaptation knowledge is used in the adaptation process of cases for solving upcoming problems.
However, it is disregarded in the current approach as the main focus is on case retrieval.

3.3.1 Data Encoding

Encoding the data provided by POCBR applications is necessary to properly train a DL model.
Thereby, it is important to have a generic encoding approach, that can be used in arbitrary
application contexts and use cases without the need to manually define encodings of the specific
data of each domain. From the four types of data introduced before, the proposed encoding
scheme [67] predominantly utilizes the information on the case base but also information about
the domain and the similarity knowledge. More specific, the encoding scheme encodes the cases

23

in the case base by incorporating the case information as well as the information from the domain
and similarity knowledge.

Root: coat

Duration: 2 List:
Auxiliaries

Item: KnifeItem: Spoon

leaf node inner node child-of parent-of

(a) Tree Encoding

1

0
0

0

0

0
0
0

1

0
0

1

0
0

0

0

0
0
0

1/3

1
1/2

1

0
0

0

0

0
0
1

0

1
1

atom
ic data encodings

sequence of vectors

(b) Sequence Encoding

Figure 3.3: Encoding of Composite Types. Source: [67]

The encoding scheme transforms process-oriented cases, represented as semantic graphs, to a
numeric vector representation by encoding the nodes and edges that form the process structure.
These nodes and edges are characterized by a type and a semantic annotation. The node and
edge types are encoded as one-hot encodings since its number is limited and this type of encoding
is well-established for categorical data. Encoding the semantic annotations is more complex, as
they can vary greatly in different domains. For instance, the experiments in [68, 122] use a
recipe domain, a data mining domain, and a manufacturing domain with a distinct structure
and content of the semantic annotations but the same underlying encoding scheme.

Encoding the semantic annotations follows the idea of viewing them as a collection of atomic
data attributes, e. g., string, integer, and float, and composite data attributes that combine one or
many composite or atomic attributes, e. g., list and set. This structure can be considered a tree,
with inner nodes being the composite parts and leaf nodes being the atomic parts. Figure 3.3
depicts an exemplary semantic annotation that shows these parts. The encoding scheme conse-
quently encodes the nodes of this tree by a vector with two components, i. e., a type vector that
represents the data class of the type, e. g., string or integer, as a one-hot encoding and a value
vector that encodes the concrete value of the type, e. g., “Spoon”or “2” (see [67] for more details).
This tree encoding (see Fig. 3.3a) can also be transformed into a sequence encoding by lining up
all atomic vectors, i. e., leaf nodes of the tree structure, in a sequence (see Fig. 3.3b). These two
encoding variants enable the use of different types of neural network layers for processing and
increase the configuration options w. r. t. the model architecture of RQ2. This means that the
tree encoding can be processed with layers based on GNNs. Analogously, the sequence encoding
can be processed with layers designated for sequences, such as RNNs or transformer-based layers
(see [122] for more details).

3.3.2 Augmentation

A prerequisite for all applications involving DL methods is a solid set of training examples, as
neural networks usually need large amounts of data to train effectively. In the proposed approach,
the cases of the case base serve as training examples and large case bases can be difficult to
acquire in POCBR applications. Data augmentation methods [40] specifically address this issue
by artificially expanding training datasets. Various transformations of existing training examples

24

as well as synthetically generated training examples enlarge the existing amount of training data
with the goal of improving the generalization ability of the resulting models. This improved
generalization is achieved, as the model’s training procedure contains a wider range of variations
in the training data, thereby reducing overfitting and enhancing model performance on unseen
data.

This thesis proposes specific augmentation methods for semantic graphs to enlarge the avail-
able training sets [70]. Rather than only focusing on concrete augmentation methods, augmen-
tation in general is discussed for data represented as semantic graphs to be used for similarity
learning with GNNs. Therefore, several key criteria of the augmentation methods are discussed
first. These criteria comprise the importance of semantic annotations, i. e., semantic annotations
are an essential aspect of the similarity computation and respective augmentations can lead to
significant changes in the composition of the training set. Additionally, the importance of the
underlying control-flow and data-flow is highlighted, i. e., augmentations of the control-flow and
data-flow change the nature of the cases significantly. Furthermore, another criterion, denoted
as correctness, is described to define and select augmentation methods. The importance of the
correctness of the augmented data is motivated by the fact that the augmented data should be as
close to the original data as possible to ensure a high quality of the augmented data as DL train-
ing data. On the other hand, this criterion acts as a mechanism to allow augmentation methods
to manage the tradeoff between useful augmentation methods and their complexity and required
knowledge, as a higher quality also comes with a higher knowledge demand of the augmenting
methods.

Increasing Complexity and
Knowledge-Intensity

Cat. 1:
Augmentation

Without
Correctness
Guarantees

Cat. 2:
Syntactically-

Correct
Augmentation

Cat. 3:
Semantically-

Correct
Augmentation

Decreasing Correctness and
Quality

Figure 3.4: Overview of the Categories of Augmentation Methods. Source: [70]

The correctness is measured by two factors, that is, the syntactic and the semantic correct-
ness. Syntactic correctness addresses the structure of a semantic graph w. r. t. to its nodes and
the edges between them. A violation of the syntactic correctness is equal to a violation of the con-
straints given by the definition of the semantic graph representation [15] such as, for instance,
the removal of a part-of edge between a workflow node and a task node. While syntactically
correct augmented graphs can ensure a valid structure, it is unclear whether their semantic an-
notations are also valid. To ensure this, semantic correctness is introduced as the conformity of
an augmented process to the domain information given by the POCBR system. For instance,
an augmented recipe graph (see the example in Fig. 2.2) is not semantically correct if the ingre-
dient represented by a data node is not part of the taxonomy of ingredients of the underlying
domain knowledge. Figure 3.4 depicts the relations between syntactic and semantic correctness
and quality and knowledge intensity. The figure also distinguishes between three categories of
augmentation methods. Augmentation methods of Cat. 1 give no correctness guarantees for

25

the resulting augmented graphs. Methods of Cat. 2 are only syntactically but not semantically
correct and methods of Cat. 3 are syntactically and semantically correct. The central premise
of this distinction is that augmentation techniques that prioritize maintaining a higher level of
correctness tend to be more complex and with a higher knowledge demand. Consequently, aug-
mented data that exhibits a higher degree of correctness is typically a better reflection of the
underlying domain and it is assumed to be more valuable for learning the characteristics of cases
within that domain.

As part of the concept and to be used in the experiments [70], several concrete methods for
each of the three categories are presented. The methods of Cat. 1 are mainly based on deletions,
as they have rather low complexity, are easy to implement, and require no further knowledge apart
from the case to augment itself. The augmentation methods based on deletion consider deleting
nodes, edges, and (parts of) semantic annotations. For Cat. 2, methods based on replacements
are proposed, either replacements within one case or across multiple cases. These methods ensure
syntactic correctness because only syntactically correct cases are used as replacement candidates,
what also makes the augmented graph syntactically correct. The concrete methods used in the
experiments swap task nodes along the control-flow, data nodes along the data-flow, and parts
of the semantic annotations. Concrete methods for Cat. 3 are more complex than those of the
other two categories due to the need for semantic correctness, which requires an understanding
of the underlying domain knowledge and constraints. The approach proposes to use AI planning
[53, 60] for synthesizing new semantic graphs and transforming existing ones. Both variants build
on a planning domain description [104, 111] that models all relations and constraints existing in
the case data. Based on this description, an initial state and a goal state can be defined, and a
planner [61] is used to create a semantic graph with this information.

3.4 Artifact 2: Model Architecture and Training

Artifact 2 aims to answer RQ2 and consists of training procedures and model architectures to use
the augmented and encoded cases resulting from artifact 1 to learn a semantic graph similarity
measure. The variants presented as part of this artifact are extensions of two GNN models from
the literature, i. e., the GEM and the GMN introduced by Li et al. [97] (see the introduction in
Sect. 2.2.3). The architecture of both models is extended as part of artifact 2 (see Sect. 3.4.1).
The extended versions of the model are referred to as sGEM and sGMN. In addition, these
extended models are used in individual training procedures to specifically address RQ2 (see
Sect. 3.4.2).

3.4.1 Extended Architecture of the Graph Neural Networks

The architectural changes extending GEM to sGEM and GMN to sGMN involve specific methods
for processing the semantic annotations and the integration of mapping constraints into the
propagation layer.

Processing Semantic Annotations

One important architectural change of sGEM and sGMN compared to GEM and GMN is the
utilization of specific embedders. While Li et al. [97] assume all nodes and edges of the processed
graphs to be represented by simple feature vectors and to be processed by straightforward MLPs,
the complexity of the node and edge information of semantic graphs (see Sect. 3.3.1) requires
more elaborate implementations of the embedder. This especially refers to the sequence and tree
encodings of the semantic annotations that need to be handled by specific neural network layers.

26

The thesis proposes embedder implementations based on a GNN for the tree encoding [67], an
RNN [67], and an attention-based transformer layer (both for the sequence encoding) [122].

Semantic annotations that are encoded with the tree encoding method are treated as a graph
and processed by a GNN that can be considered a small-scale version of the GNN architecture
(see 2.2.3 for an overview) that also processes the entire semantic graph. The GNN consists of
several trainable components: a component that embeds composite nodes, a component that
embeds atomic nodes, a component that embeds edges, a component that performs message
propagation, and a component that aggregates the node information to a single graph represen-
tation vector (i. e., the embedded representation of the entire semantic annotation). This variant
of the embedder is highly configurable by hyperparameters such as the number of layers and
neurons per layer for each trainable component or the number of propagation iterations.

While these configuration possibilities allow for fine-grain control over the neural network,
they also add complexity. Processing semantic annotations that are encoded with the sequence
encoding method by an unrolled RNN (e. g., [29, 64]) reduces the complexity while simultaneously
also reducing the configuration possibilities. An RNN can handle sequences of inputs with
different lengths, as they are present in the encodings of semantic annotations. We use the output
state of the last step as the result of the unrolled RNN, which is a single embedding vector. One
downside of RNNs is the sequential, non-parallel computation through the sequences, which can
be a performance bottleneck, especially for large sequences.

This shortcoming is addressed by processing semantic annotations that are encoded with the
sequence encoding method by attention-based transformers [154]. Transformers use multi-layered
encoders and decoders that transform a sequence of inputs (i. e., atomic attributes of semantic
annotations) to a sequence of embedded outputs. A key feature of the approach is its attention
mechanism [9, 154] that allows to give more weight to certain elements of the sequence than
others. The output sequence can be aggregated to a single representation of the entire semantic
annotation by different aggregation mechanisms for neural networks, e. g., [98].

Mapping Constraints

The propagation layer of the GMN uses a cross-graph matching method between the nodes of
the two input graphs (see [97] for more information). Each node of one graph is compared with
each node of the other graph by their softmax-activated cosine vector similarity. The similarity
measure for semantic graphs [15], however, only allows nodes and edges of the same type to
be matched, thus constraining the matching process. These constraints are integrated into the
cross-graph matching component of the sGMN as a form of IML [133], since prior knowledge is
used within the ML setup (see previous work [65] for a discussion and an application scenario of
IML in POCBR). With the constraints, a cosine similarity greater than zero is only allowed for
nodes of the same type. When considering pairs of nodes with different types, a similarity score
of 0 is assigned, indicating maximum dissimilarity. Consequently, there is minimal information
propagation between nodes of distinct types.

3.4.2 Extended Training Procedures of the Graph Neural Networks

Besides architectural changes, sGEM and sGMN also encompass revised training procedures for
processing semantic graphs properly. The proposed training procedures use different variants of
TL, and ranking-based training is proposed.

27

Transfer Learning with Local and Global Similarities

An important aspect of similarity assessment between semantic graphs [15] is the local-global
principle [128]. It is used in the way that the global similarity between two semantic graphs is
composed of the local similarities between the nodes and edges of these graphs. The architectures
of GEM and GMN do not incorporate this information and rely solely on labels of the global
similarity. However, since the information about local similarities is available as a result of the
labeling procedure, it can be considered by sGEM and sGMN.

Therefore, a TL approach is proposed that pretrains a local similarity model that is afterward
used as part of the training phase of the global similarity model [122]. As Fig. 3.5 depicts, those
phases are called the pretraining and the adaptation3 phases, respectively.

fine tune same
model on target task

Feature ExtractionFine Tuning

Pr
et

ra
in

in
g

Embedder

Propagation

extract
features

A
da

pt
at

io
n

Aggregation

target task

input source task

Source Domain

Target Domain

Propagation

Aggregation

target task

Figure 3.5: Pretraining and Adaptation Phases of Deep Transfer Similarity Learning. Source:
[122]

During the pretraining phase, the embedder is trained to predict local similarities between
nodes and edges. This process involves two steps: First, the embedder creates embedding vectors
for nodes and edges based on their semantic descriptions and types. Next, it aggregates these
embedding vectors to pairwise similarities. The authors propose to train different embedders
for nodes and edges. This distinction is important because their semantic descriptions may
differ in structure. The architecture of the embedder depends on how the semantic annotations
are encoded (see Sect. 3.4.1). The embedder itself is an SNN, which is the de-facto standard
in metric learning tasks (see Chicco [28] for an overview). To compute the local similarity
between embedding vectors, an MLP is employed. The MLP is chosen for its expressiveness and
computational efficiency. The training is a regression-like problem, where any standard regression
loss function such as the Mean Squared Error (MSE) can be used.

In the adaptation phase of the TL approach, the pretrained embedder is integrated into sGEM
and sGMN by replacing the standard, untrained embedder. This adaptation to the task of the
target domain is primarily implemented in two ways in the literature [124], i. e., feature extraction
or fine-tuning. Feature extraction is similar to classical feature-based approaches. The trainable
parameters of the pretrained embedder are converted to constants (referred to as being “frozen”)
and the model will not be further trained during the training procedure of sGEM and sGMN.
Alternatively, in a fine-tuning setup, the weights and biases of the pretrained embedder are used

3 Please note that the term “adaptation” refers to its meaning in the context of TL in Sect. 3.4.2 and is not
referring to the reuse phase in CBR.

28

as non-random initializations [33]. These parameters are further trained (fine-tuned) to adapt
to the specific task.

Semi-Supervised Transfer Learning

All training procedures presented so far [67, 68, 122] are fully supervised. With the goal of
training a pairwise semantic graph similarity measure, this means that the acquisition of labels
(e. g., similarity values, case preferences [76], etc.) is necessary as a step before the training,
either by a ground-truth similarity measure such as Bergmann and Gil [15] or manually by
domain experts. However, this limits the applicability of the approaches in scenarios where, for
instance, label acquisition is computationally expensive or infeasible for numerous cases.

To overcome these limitations, a semi-supervised TL method [86, 152] with an unsupervised
and a supervised training phase is proposed. The first, unsupervised phase pretrains the GNNs
with a triplet learning procedure [141] and, thus, does not require labeled data. The second,
supervised training phase builds upon the pretrained model from the first phase and employs
the original supervised training procedure [67] as a fine-tuning step. The training procedure is
paired with the process augmentation approach (see Sect. 3.3.2) such that augmented, unlabeled
process data is used in the unsupervised training phase and the original, labeled cases of the case
base are used in the supervised training phase.

Pretraining

Augmented
Dataset

Labeled
Dataset

Similarity
Learning

Unsupervised
Learning

Data
Augmentation

Preprocessing Adaptation

Trained
Model

Pretrained
Model

1
2 3

Figure 3.6: Architecture for Semi-Supervised Transfer Learning. Source: [142]

Figure 3.6 gives an overview of all components of the approach. As the supervised training
phase is not significantly adjusted in this approach (see [70, 142] for the details), the unsupervised
training phase is explained in more detail. The unsupervised pretraining phase uses an SNN with a
triplet loss [141] for learning graph embeddings. The concrete model architecture can be reused
from sGEM or sGMN. The idea of the training procedure is to generate similar embeddings
for similar graphs and dissimilar embeddings for dissimilar graphs (in terms of vector space
similarity) without the use of label similarities to steer the embedding process. The triplets,
i. e., the training examples, consist of an anchor, a negative, and a positive and the goal is
to maximize the similarity for the pair of the anchor and the positive and to minimize the
similarity for the pair of the anchor and the negative. The proposed way to put together these
triplets is by selecting a case from the case base (anchor), augmenting this case with one of the
methods described in Sect. 3.3.2 (positive), and selecting another case randomly from the case
base (negative). Batches of triplets built this way are then used to train either the sGEM or the
sGMN (see [70, 142] for the details).

Ranking-Based Retrieval

Case retrieval in CBR and POCBR is commonly concerned with finding the most similar cases
w. r. t. a query. Using sGEM and sGMN as a similarity measure in this regard is possible and

29

matches their initial purpose [97]. While related work (see Sect. 2.3 and 2.4.1 for examples) also
pursues this idea, there are many applications where solely the ranking of the retrieval results
is important and not the specific similarities that determine this ranking. Predicting pairwise
preferences such as “case X is more relevant to the query than case Y ” appears more intuitive in
such situations. The integration of LTR [100] principles (also known as preference learning [47])
into sGEM and sGMN follows this goal [68].

A pairwise preference is computed between two pairs of graphs, i. e., the query graph and one
case graph per pair. The first change compared to GEM and GMN is the implementation of the
final layer where the embedded graphs are not transformed into a similarity value but a preference
value in [0,1], indicating a probability which of the cases is more relevant to the query. Training
sGEM and sGMN in this setup also differs from the original goal of predicting similarities.
Instead of computing a regression loss such as the MSE between predicted and label similarity,
the predicted preferences are evaluated by computing a binary cross-entropy loss [3, p. 118]. This
loss is suitable for classification tasks, which matches the setup of predicting pairwise preferences.
Note that this pairwise ranking approach can be trained directly using label preferences between
cases, which can be determined through direct user feedback. Unlike similarity-based models,
this approach allows for capturing real-world preferences more naturally. Human experts find it
easier to express a preference between two alternatives rather than assigning a similarity value
[76].

To transform the predicted pairwise preferences to an actual ranking which can, in turn, be
used as the retrieval result, it is necessary to perform a procedure known as rank aggregation
[4, 75]. Two different methods of rank aggregation are proposed [68], where one is a modified
version of Cohen, Schapire, and Singer [32] and the other one is a simpler and faster alternative
(see [68] for the details).

3.5 Artifact 3: Hyperparameter Optimization and Configuration

The methods developed in artifact 1 (see Sect. 3.3) and artifact 2 (see Sect. 3.4) reveal numerous
configuration and parameterization possibilities when using sGEM and sGMN in a POCBR
application context. Some of these parameters depend on each other, such as the GNN-based
embedder (see Sect. 3.4.1) requires tree-encoded semantic annotations (see Sect. 3.3.1), but most
of the parameterization can be done mix-and-match. This reveals the challenge of setting these
hyperparameters appropriately to allow for an optimal configuration of sGEM and sGMN in the
corresponding application context.

CBR System

Domain
Model

Similarity
Model

Retrieve/Reuse

HPO Method

Case Base

updates

Revise/Retain

Sampling

Training

Validation

Decision

Reporting

uses

uses uses

HypOCBR

Figure 3.7: Architecture of the CBR system, the HPO method, and HypOCBR. Source: [66]

The third artifact has been designed to address this challenge with an approach called

30

HypOCBR (Hyperparameter Optimization with Case-Based Reasoning) [66]. HypOCBR can
extend state-of-the-art HPO methods [31, 44, 101] with a CBR system that enables the integra-
tion of expert knowledge into the optimization process. The approach is based on the observation
that ML engineers usually have a lot of implicit expert knowledge, e. g., from development tests
or experiments in literature, but lack an option to include this experience in the configuration
of common HPO methods that are designed to be fully automatic. Thus, HypOCBR bridges
the gap between manual, experience-based and automatic, black box HPO. It also serves as an
example of how CBR can improve typical DL or ML tasks such as HPO, which is considered to
be a research topic with a lot of potential [88].

Figure 3.7 shows an architectural overview of the approach, consisting of the CBR system,
the HPO method, and HypOCBR as the connector. The HPO method performs an optimization
procedure by sampling hyperparameter vectors from the search space, conducting training, and
validating the model’s performance (see [44] for more information). The approach allows for the
use of any arbitrary HPOmethod, as their functionality does not need to be tailored specifically to
HypOCBR. In this context, the CBR system supports the optimization procedure by maintaining
a case base containing completed trials of hyperparameter vectors and their corresponding loss
values. The CBR system also includes domain and similarity models, thus, incorporating domain
expert knowledge. HypOCBR bridges the gap between the CBR system and the HPO method
using a lightweight implementation of the 4R cycle (as proposed by Aamodt and Plaza [1]):
During optimization, when a new hyperparameter vector is sampled, HypOCBR decides whether
to proceed with this vector or abort it early and sample another one. Each sampled vector serves
as a query to the CBR system, which searches the case base for similar hyperparameter vectors
and their corresponding loss values, i. e., retrieving trials. HypOCBR then reuses the most similar
trials and makes a decision based on their loss values. Over time, each optimization gradually
builds up a case base, starting with an empty one and retaining each completed trial. Note that
this approach does not explicitly revise cases but, instead, stores all reported validation results
from the HPO component in the case base.

At the core of HypOCBR is an algorithm that decides between proceeding with a sampled
hyperparameter vector or aborting the trial (see a description with more details in [66]). First,
the algorithm tries to fill a case base of hyperparameter vectors and their validation results
to avoid the knowledge gap, known as the cold start problem [136], after the initial start of
the system. The following steps are performed sequentially and only when reaching the final
step of the check, a hyperparameter vector might be aborted: 1) A retrieval with the built
case base and a query in the form of a hyperparameter vector is performed, resulting in the
k-most similar hyperparameter vectors to the query vector. 2) The similarities of the retrieved
cases are aggregated and the search proceeds with the query vector if the aggregated value
does not exceed a certain threshold. 3) The validation results, i. e., loss values, of the retrieved
cases are aggregated and compared to the distribution of the other cases in the case base by
computing a percentile value. If this percentile value denotes the retrieved cases among the
worst of the case base, ABORT is returned, as the query vector is likely to also perform poorly.
This algorithm balances the well-known principles of exploration and exploitation (e. g., [89]).
It can be parameterized by meta-parameters towards exploration, i. e., hyperparameter vectors
that are different from all previously encountered vectors or exploitation, i. e., hyperparameters
that are similar to known good hyperparameter vectors.

3.6 Software Implementation of the Artifacts

Each of the three artifacts also consists of an implementation. Since the author of this thesis
values the principles of open-source software and the accompanied possibilities of public use, the

31

implementations are openly available free of charge. The POCBR part of the implementations is
implemented in Java as an extension4 of the POCBR framework ProCAKE [16] (see Sect. 2.1.4).
The compatibility with ProCAKE ensures flexible usage of the approach for all kinds of POCBR
applications. Additionally, the DL part is concerned with all code related to the used DL models
and is implemented in Python with TensorFlow [2] as the main library5. Both parts of the

Data Preparation
• Data Augmentation (A1)
• Data Encoding (A1)

Model Training
• Architecture Selection (A2)
• Training Procedures (A2)
• Hyperparameter Optimization

(A3)

Model Deployment
• Export of Trained Model
• Serving of Trained Model

Embedding-Based Case
Retrieval
• Inference of Served Model
• Monitoring of Application

Figure 3.8: Implementation of the Artifacts.

implementation work in combination and fulfill certain tasks to achieve a flexible integration of
embedding-based similarity measures into POCBR applications. Figure 3.8 depicts the imple-
mentation in a form that is similar to the ML lifecycle [8]. The parts implemented by ProCAKE
are shown with a white background and the parts implemented by TensorFlow with a gray back-
ground. As ProCAKE holds all the data required to train the DL models, data preparation,
i. e., augmentation and encoding, is done at the side of ProCAKE (see Artifact 1, Sect. 3.3). The
data is then exported and transferred to the DL part, where the training procedure is initiated.
It involves all corresponding aspects that are outlined in the artifacts 2 and 3 (see Sect. 3.4 and
Sect. 3.5). Thus, the model architecture is defined, the training procedure is determined, and
all components are optimized. The result is the trained model that is served and available for
inference. The served model is then used by the POCBR part during similarity assessment and
case retrieval. The raw numeric predictions of the model are turned into retrieval results by
ProCAKE. This process can be repeated periodically or according to certain triggers, such as
changes in the case base.

3.7 Experimental Evaluations

To validate the developed methods and algorithms of each artifact, evaluations have been con-
ducted. This section introduces the general setup of these evaluations, including goals and hy-
potheses, metrics, and datasets (see Sect. 3.7.1), and gives an overview of the specific evaluation
for each artifact (see Sect. 3.7.2).

4 https://gitlab.rlp.net/procake-embedding/procake-embedding-core
https://gitlab.rlp.net/procake-embedding/procake-embedding-protobuf
https://gitlab.rlp.net/procake-embedding/procake-embedding-experiments

5 https://gitlab.rlp.net/procake-embedding/procake-embedding-python

32

https://gitlab.rlp.net/procake-embedding/procake-embedding-core
https://gitlab.rlp.net/procake-embedding/procake-embedding-protobuf
https://gitlab.rlp.net/procake-embedding/procake-embedding-experiments
https://gitlab.rlp.net/procake-embedding/procake-embedding-python

3.7.1 General Evaluation Setup

The general idea behind the evaluations of all three artifacts is to compare similarity measures
using sGEM and sGMN with other existing similarity measures, such as the A* measure (see
Sect. 2.1.3 and [15, 173] for an introduction). It is generally claimed that similarity measures
using sGEM and sGMN outperform the similarity measures compared against. As one part
of the comparison, it focuses on the quality of the computed similarities that is measured in
terms of prediction errors, ranking errors, and retrieval quality. The experiments capture the
prediction errors with metrics such as the Mean Absolute Error (MAE). These metrics express
the average difference between two similarity predictions, either two variants of an embedding-
based measure or the difference from a ground-truth measure. Correlated to the prediction errors
are the metrics measuring the ranking errors. One example of such a metric, the correctness [27],
describes the conformity of the ranking positions of the case pairs in the predicted retrieval results
according to the ground-truth retrieval results. While the raw prediction errors and the ranking
measures do not express the performance of a measure in a retrieval situation, the quality of
the retrieval results is also examined. One measure of this category is described by Müller and
Bergmann [116]. It quantifies the degree to which highly similar cases according to the ground-
truth retrieval results are present in the predicted retrieval results. If, for example, the predicted
results do not accurately contain a highly similar case in the top-k ranks, the quality will decrease.
The second part of the comparison is the performance that is also examined in the evaluations.
The performance is measured as the computation time of a certain task, e. g., the time different
measures take to compute the similarities for one retrieval run. This is an important metric as
it allows setting the measures into context. Specifically, the trade-off between expressiveness,
e. g., low prediction error, and the time needed to predict is of interest.

The evaluations are conducted with multiple datasets to investigate how the models behave,
given different amounts of data or data from different domains. Most of the publications, thereby,
investigated three domains, i. e., a cooking domain [71], a data mining domain [174], and a
manufacturing domain [103]. The cooking domain consists of manually modeled cooking recipes
with ingredients and cooking steps (see Müller [115] for more details). The workflows of the
data mining domain are built from sample processes that are delivered with the data analytics
platform RapidMiner (see Zeyen, Malburg, and Bergmann [174] for more details). Finally, the
manufacturing workflows stem from a smart manufacturing Internet of Things (IoT) environment
and represent sample production processes (see Malburg, Hoffmann, and Bergmann [103] for more
details). The three domains pose different challenges for the learning process of the models. For
instance, the data mining workflows typically have many nodes and edges and are composed of
complex semantic annotations, while the recipes have fewer nodes and edges with rather simple
semantic annotations.

3.7.2 Specific Evaluation of Each Artifact

The concrete evaluations of the three artifacts follow the common goal and setup described
before but are more specifically targeting the methods of the individual artifacts. Please see the
corresponding publications for additional information.

Evaluation of Artifact 1

The evaluation of artifact 1 examines the influence of different data preparation and augmentation
methods on the model quality and performance. In particular, the evaluation compares different
encoding schemes, i. e., tree and sequence encoding (see Sect. 3.3.1), and different augmentation
methods with different levels of correctness (see Sect. 3.3.2). While no specific hypotheses were

33

formulated for the comparison of the encoding schemes, the hypotheses for the comparison of the
augmentation methods claimed that model quality and performance increases with more data
and data of higher quality. This means that, first, an increase is expected when using datasets
with additional augmented data over the respective original datasets. Second, an increase is
also expected when using datasets augmented with methods with a higher level of correctness
compared to augmented datasets with a lower level of correctness.

The results are discussed separately regarding the encoding schemes and the augmentation
methods. The results of using different encoding schemes are mixed and their influence depends
on the domain and whether sGEM or sGMN is used. However, both schemes enable the usage
of POCBR data in neural networks and, thus, contribute to the general goal of this thesis. The
comparison of the augmentation methods only partly confirmed the hypotheses. First, the results
indicate that higher levels of correctness do not consistently lead to better results. The reason
for this could be the capability of the neural networks to filter the components of the training
examples such that a certain share of incorrect parts is negligible. Second, the results indicate
that there is a limit for the amount of training data that, when reached, gradually worsens the
quality of the trained model. The reason for this is probably a misalignment of the number of
trainable neural network parameters and the number of training examples.

Evaluation of Artifact 2

The evaluation of artifact 2 (see Sect. 3.4) compares different neural network architectures and
training procedures. This evaluation is twofold: on the one hand, the experiments compare the
DL methods among themselves, analyzing how different architectures and training approaches
perform. On the other hand, these DL models are compared to existing non-DL methods such
as a feature-based similarity measure [17] and a measure based on A* search [15] for the tasks
of similarity assessment and case retrieval. By comparing both types of methods, the evaluation
provides insights into the relative advantages and limitations of deep learning for these specific
tasks.

For the first aspect of the evaluation, the main hypothesis states that DL methods outperform
existing non-DL techniques in terms of accuracy and speed. The results consistently indicate
that DL approaches offer notable enhancements in both quality and performance. Specifically,
DL models tend to be faster when delivering comparable quality, or significantly more accurate
when operating under a similar time budget. The second part of the evaluation is conducted
across multiple publications (see Tab. 3.1), where each subsequent publication builds on the
previous one by comparing the latest methods with the new ones. The results highlight the
successive improvements achieved through new methods. For example, the introduction of TL
(see Sect. 3.4.2) improves both the quality of results and the speed of processing compared to
models that do not leverage pre-trained networks. Additionally, the evaluation indicates that no
single method performs best across all scenarios. Different architectures and training procedures
yield better results depending on the specific use case, domain, or objective. This suggests that
selecting the appropriate approach for each context is essential for maximizing efficiency and
effectiveness.

Evaluation of Artifact 3

The evaluation of artifact 3 (see Sect. 3.5) examines the influence of HypOCBR on model quality
and overall performance. This is done by conducting a series of HPO runs, comparing results
from two different approaches: one set of runs utilizes HypOCBR, while the other does not.
The key hypothesis for this evaluation is that the inclusion of HypOCBR leads to better model

34

quality, with an expectation that its impact is more significant in complex setups, such as those
involving longer HPO runs and a larger number of hyperparameters to optimize.

The experimental results largely confirm these hypotheses. Across almost all runs, mod-
els tuned with HypOCBR achieve higher quality than those without it, demonstrating that
HypOCBR consistently helps to find more optimal hyperparameter configurations. Further-
more, in more complex optimization setups, where the search space is larger or the optimization
run is more time-consuming, HypOCBR shows an improvement in performance. In summary, the
hypotheses are mostly confirmed, with HypOCBR indicating to be a valuable tool for enhanc-
ing both model quality and performance, especially in scenarios requiring longer, more complex
optimization runs.

35

Chapter 4

Conclusion and Future Work

This thesis presents a hybrid approach of DL and POCBR methods for similarity assessment and
retrieval of procedural cases. The approach investigates three research questions and yields three
artifacts (see Sect. 3.2). The artifacts address data preparation (Artifact 1), DL model architec-
ture and training (Artifact 2), and hyperparameter optimization and -configuration. (Artifact
3). The contributions to these artifacts are published in five accompanied papers (see Ch. 5 –
9). The remainder of this chapter discusses the proposed approach w. r. t. the research questions
(see Sect. 4.1), describes its limitations (see Sect. 4.2), and gives directions for future research
(see Sect. 4.3).

4.1 Discussion

The thesis aims to answer the three research questions RQ1 to RQ3 with the contributions of
the five associated publications.

RQ1 is addressed by a generic encoding scheme that transforms the contents of the cases in the
case base into a numeric vector representation. This transformation also considers information
apart from the case base, such as value ranges of attributes. The encoding scheme is designed to
be generic and can be used for arbitrary domains and, thus, a wide variety of POCBR application
contexts. The evaluations (see Sect. 3.7) are also performed with data encoded this way and
demonstrate a wide applicability in different workflow domains.

The contributions to RQ1 enable training DL models with procedural cases in the first place,
which is a requirement to tackle RQ2. RQ2 is concerned with investigating how this data can
be used to train DL models for similarity assessment and case retrieval in POCBR applications.
This thesis proposes several architectures and accompanying training procedures. They are all
based on the GEM and the GMN [97] and extend their functionality (then denoted as sGEM
and sGMN) according to specific characteristics and requirements of POCBR use cases. These
architectures and training procedures can mostly be considered alternatives that can be swapped
depending on the concrete domain and use case. However, there is a general trade-off between
the two base models that should be considered. The sGMN has a higher expressiveness and can
approximate similarities more effectively, but, in turn, it has an increased inference time. This is
mainly due to the computational complexity of the cross-graph matching component [97]. The
sGEM, on the other hand, is computationally more efficient but lacks expressiveness. These two
factors should be weighed up individually for each application. Combinations of both models
in one application can also be useful and are discussed in Hoffmann and Bergmann [67] as a
MAC/FAC retrieval [46, 82] approach. Dealing with the trade-off between sGEM and sGMN,
selecting different variants of these models, and choosing the right hyperparameters for the setup

36

is also addressed as part of RQ2, with the HPO approach HypOCBR. HypOCBR consolidates the
contributions to model architecture and training procedures by providing a way to optimize them.
The approach aims at using experience knowledge about known-good hyperparameter vectors
and their properties to guide the optimization procedure. For instance, sGEM and sGMN could
be configured this way by increasing or decreasing their expressiveness, e. g., by increasing or
decreasing the number of neurons in the layers.

The contributions to RQ3 provide a solution for data scarcity in POCBR (and sometimes
also CBR) applications. Process augmentation can be used to create new training examples from
existing cases in the case base. Thereby, multiple levels of correctness are considered for the
augmented cases that can be used according to the requirements of different use cases. However,
augmentation alone does not solve the problem of having too little labeled training data, as
the augmented data is generally unlabeled. This is addressed by the proposed semi-supervised
training procedure, where unlabeled data is used in an unsupervised pretraining phase and labeled
training data, e. g., the original case base, is used to fine tune the pretrained model in a supervised
training procedure.

All these contributions are part of the effort to create a hybrid, neuro-symbolic AI approach
for POCBR. As initially outlined in the introduction, the hybrid approach aims to combine
the strengths of both methods to avoid the respective weaknesses. The main targeted weak-
ness of CBR and POCBR approaches is the high knowledge-acquisition effort. It is addressed
by automatically learned DL models for similarity assessment and retrieval. Especially in the
unsupervised variants (see Sect. 3.4.2), these models reduce the knowledge-acquisition effort and
contribute to the initial goal.

4.2 Limitations

When looking at the conducted evaluations for each artifact and the corresponding publications
(see Sect. 3.7), it becomes apparent that reductions in knowledge-acquisition effort are not di-
rectly measured or evaluated as part of this thesis. On the one hand, it is difficult to measure this
objectively and, on the other hand, it is evident from the proposed automatic learning framework
that it can provide a trained model with no additional knowledge acquisition. The situation is
different for the other main goal, i. e., the quality and performance benefits, as most of the con-
ducted experiments aim towards measuring quality and performance (see Sect. 3.7). The results
show general potential of the embedding-based models regarding the quality of the predictions, as
well as the time needed to predict. When looking beyond performance and knowledge-acquisition
benefits, there are still several advantages, disadvantages, and limitations of hybrid approaches
using DL models compared to other existing similarity measures to consider. The following dis-
cussion uses the A*-based similarity measure by Bergmann and Gil [15] as a placeholder for all
existing POCBR similarity measures:

1. The inference runtime of the embedding-based approach remains consistent across different
runs, with only marginal variation based on the size of the input graphs. In contrast, the
runtime of the A*-based graph matching procedure can exhibit significant variability from
run to run due to its integrated search mechanism. On the downside, this also means that
the runtime budget of the embedding-based approach is only configurable by a few desig-
nated mechanisms based on the requirements of different use cases, e. g., general purpose
strategies such as integer quantization [164]. The graph matching approach allows config-
uration with a larger impact by restricting the number of solution candidates considered
during the search process [15].

37

2. While the embedding-based approach can benefit greatly from hardware accelerators for AI
workloads [25] and their expected popularity in the future, the graph matching approach
is mainly computed by the CPU, and, thus, harder to scale. There are also acceleration
possibilities for A* search, for instance on GPUs (e. g., [69, 177]), but they require custom
implementations and need to be adapted to the specific domain.

3. With the embedding-based approach of the sGEM, it is possible to generate and cache
embedding vectors. These vectors can then be utilized in their vector form for similarity
calculations. By caching all embedding vectors from a process model repository during
an offline phase, time can be saved during the online phase of an application, e. g., during
retrieval. Caching at this level is not feasible for the graph-matching-based approach.

4. The embedding-based approach lacks explainability compared to the A*-based approach.
While the A*-based approach can explain its outcomes with the composition of local sim-
ilarities that lead to the global similarity, the embedding-based approach only predicts a
global similarity. Li et al. [97] introduce a way to explain the model’s predictions with the
attention weights of GMN and sGMN, respectively, but it is not as powerful as the native
explainability provided by the A* method.

Whether explainability is of importance for the underlying application is strongly dependent
on the application context. For example, a human subjects study conducted by Gates,
Leake, and Wilkerson [52] found the presentation of the cases as the most effective method
for explaining retrieval results. Although the study featured a rather simple domain, it
might indicate that explaining the concrete similarity values is not always necessary, which
favors the use of the embedding-based approach.

This highlights that the choice between an embedding-based measure or a manually modeled
one is complex and strongly dependent on the use case. Nevertheless, a thorough comparison of
all different variants of sGEM and sGMN and different POCBR similarity measures would be
helpful and a good starting point for future work.

4.3 Future Work

Consolidating and extending the evaluations of sGEM and sGMN in different scenarios, domains,
and circumstances is straightforward for future work. Besides that, the approach proposed in
this thesis could be extended and pursued further in the following ways:

Dynamic Data Encoding and Embedding

The encoding scheme proposed as part of this thesis (see Sect. 3.3.1) is very generic by design
to allow its usage in arbitrary domains. This can result in an overhead regarding the size of the
encodings as well as the processing time. One opportunity to reduce this overhead in future work
could be a more dynamic and domain-specific encoding of the data. One idea for an improved
encoding scheme could be an automatic method that analyzes the domain at hand and creates
an encoding template specifically for this domain. Based on this template, the initial layers of
the DL-model, i. e., the embedder, can be configured accordingly. The overhead is likely reduced
as neither the encoding scheme nor the embedder needs to be set up for generic domain data. In
a subsequent evaluation, it is important to examine if the dynamic encoding scheme maintains
the quality of the generic scheme.

38

Generic Graph Neural Networks

The model architecture of sGEM and sGMN is derived from the architecture of GEM and GMN
[97]. Many other GNN approaches follow the same general architecture (see, e. g., [168, 176,
178]) but are currently not usable with the extensions proposed as part of this thesis, as their
implementation and possibly also aspects of the conceptualization are specific to GEM and
GMN. However, the proposed approach would benefit from a more generic conceptualization
and implementation to make the application of other baseline GNN architectures possible and to
be able to apply the proposed ideas to new state-of-the-art GNNs. This future research direction
should consequently be followed.

Case Reuse

The approach proposed in this thesis aims at similarity assessment and the retrieve phase of
POCBR applications [1]. Other tasks and phases are not considered but, nevertheless, important
in POCBR and CBR applications. Especially the reuse phase and the task of case adaptation
appears to be a promising candidate for using variants of the proposed DL models, as previous
work found [19]. This work builds on the concept of GNN-based embedding but describes a
different training procedure. In the training phase of the neural network, RL is used to iteratively
predict operations, e. g., delete, replace, and insert, that adapt the retrieved case to better suit
the query. The work only describes a concept and demonstrates it with a case study, but it lacks
an experimental evaluation. Further research in this direction could increase the applicability
of the proposed approach through all phases of POCBR applications. Furthermore, as it is a
combination of retrieval and case adaptation, adaptation-guided retrieval [146] is also a promising
use case for the presented DL-based models and should be investigated in future work.

eXplainable Artificial Intelligence

Using the proposed DL-based approach for retrieving cases lacks transparency compared to us-
ing a conventional retrieval approach, e. g., an A*-based approach [15, 120]. For instance, the
A*-based measure can explain its global similarity as the result of the amalgamation of the
computed local similarities. The DL-based retrieval only yields pairwise similarities between
processes without further information on the origin or composition of the final similarity predic-
tions. Improving the explainability of the proposed approach should be pursued in future work.
There is an entire research field called XAI [37] that investigates in this direction. XAI is also
an active research area among CBR researchers. Some approaches have the goal of using CBR
to explain black-box models such as neural networks (e. g., [80]) while others try to make the
explanations of similarities in CBR applications more accessible [143]. The approach proposed
in this thesis could benefit from the mentioned approaches or other ones from this research field
and integrate explanations into the prediction process.

Uncertainty in Similarity Learning

The predictions of the DL models used in this thesis are not always correct, hence their evaluation
by the prediction error such as the MAE. As the models only predict a pairwise similarity or
ranking preference, respectively, there is no information about the certainty that this prediction
comes with. Explicitly expressing this certainty or uncertainty could be a research topic for
future work. Based on DL literature on this topic (e. g., [73, 81]), the proposed DL-based retrieval
approach can benefit from specific uncertainty estimations for the predicted retrieval results to
know how trustworthy they are. The aspect of uncertainty (also known under the term “fuzzy”)

39

has been studied for CBR systems (e. g., [74, 169]). A combination of the findings of DL and
CBR literature about uncertainty appears to be a promising direction for future work.

Ensembling for Robust Predictions

Ensembling [35] is a common way to enhance the performance of an ML model by aggregating
the predictions of several models into a single one (called an ensemble). Future work should
investigate the potential of using ensembling for the proposed DL-based retrieval approach. For
instance, several sGEM models that are parameterized for a different behavior (e. g., fast infer-
ence, accurate results, consistent runtime etc.) could be trained on different subsets of the case
base and then combined into one ensemble. Ensembling is popular across many ML applications,
and the approach from this thesis could possibly benefit from increased robustness and prediction
quality.

Lifelong Learning and Case Base Maintenance

The presented approach for DL-based retrieval assumes that the case base of the POCBR appli-
cation is relatively static, as these cases are used as training examples for the DL model. This
assumption, however, is invalid for some application scenarios, e. g., user ticketing systems with
many requests [6]. Therefore, future work should investigate how frequent changes in the under-
lying data and, especially, dynamic case bases can be incorporated into the presented approach.
These considerations for ML models are commonly referred to as lifelong or continuous ML [26].
Similar ideas are discussed for the maintenance of CBR systems [131, 134] and a combination of
ideas from both research fields seems promising.

Large Language Models for Similarity Learning

The most noticeable progress in AI research can currently be observed in the field of generative
LLMs, such as the GPT models [20]. Due to the vast amounts of data that these models
are trained on, they are also useful outside classical NLP tasks. This indicates an interesting
direction for future work, i. e., to conceptualize similarity learning between semantic graphs with
LLMs and to compare the results with the approach of this thesis. A possible concept could
be a few-shot learning approach of three steps: First, the model is prompted with the context
of the task, including domain information and similarity information. Second, the model is
iteratively prompted with pairs of semantic graphs and the expected pairwise similarity. The
third step addresses the actual task and prompts the model with unseen semantic graphs, asking
for similarity predictions. Other promising methods in the field of LLMs could be chain-of-
thought prompting [161] to split the prediction problem into smaller subproblems, similar to
the local-global principle [128], and retrieval-augmented generation [96] to make a large amount
of structured knowledge available to the model. Since POCBR applications are usually rather
complex, it might be beneficial to examine simpler types of data in CBR applications beforehand,
or to build on existing approaches outside the scope of CBR (e. g., [106]). BPM researchers also
examine LLMs [12, 22, 79, 156], which is interesting due to the similarities between POCBR and
BPM.

40

Bibliography

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Commun. 7(1), 39–59 (1994). https://doi.org/10.3233
/AIC-1994-7104

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Ten-
sorFlow: A System for Large-Scale Machine Learning. In: Keeton, K., Roscoe, T. (eds.)
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pp. 265–283. USENIX Association (2016)

3. Aggarwal, C.C.: Neural Networks and Deep Learning - A Textbook. Springer (2018)

4. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing Multiclass to Binary: A Unifying Ap-
proach for Margin Classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

5. Amin, K., Kapetanakis, S., Althoff, K., Dengel, A., Petridis, M.: Answering with Cases:
A CBR Approach to Deep Learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) Case-
Based Reasoning Research and Development - 26th International Conference, ICCBR 2018,
Stockholm, Sweden, July 9-12, 2018, Proceedings. LNCS, vol. 11156, pp. 15–27. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-030-01081-2 2

6. Amin, K., Kapetanakis, S., Polatidis, N., Althoff, K., Dengel, A.: DeepKAF: A Heteroge-
neous CBR & Deep Learning Approach for NLP Prototyping. In: Ivanovic, M., Yildirim, T.,
Trajcevski, G., Badica, C., Bellatreche, L., Kotenko, I.V., Badica, A., Erkmen, B., Savic,
M. (eds.) International Conference on INnovations in Intelligent SysTems and Applications,
INISTA 2020, Novi Sad, Serbia, August 24-26, 2020, pp. 1–7. IEEE (2020). https://doi.or
g/10.1109/INISTA49547.2020.9194679

7. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K., Dengel, A., Petridis, M.: Advanced
Similarity Measures Using Word Embeddings and Siamese Networks in CBR. In: Bi, Y.,
Bhatia, R., Kapoor, S. (eds.) Intelligent Systems and Applications - Proceedings of the
2019 Intelligent Systems Conference, IntelliSys 2019, London, UK, September 5-6, 2019,
Volume 2. Advances in Intelligent Systems and Computing, pp. 449–462. Springer (2019).
https://doi.org/10.1007/978-3-030-29513-4 32

8. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the Machine Learning Lifecycle: Desider-
ata, Methods, and Challenges. ACM Comput. Surv. 54(5), 111:1–111:39 (2022). https://d
oi.org/10.1145/3453444

9. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learning to
Align and Translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015)

41

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1007/978-3-030-01081-2_2
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1007/978-3-030-29513-4_32
https://doi.org/10.1145/3453444
https://doi.org/10.1145/3453444

10. Barnett, A.J., Schwartz, F.R., Tao, C., Chen, C., Ren, Y., Lo, J.Y., Rudin, C.: A case-based
interpretable deep learning model for classification of mass lesions in digital mammography.
Nat. Mach. Intell. 3(12), 1061–1070 (2021). https://doi.org/10.1038/S42256-021-00423-X

11. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F., Mali-
nowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H.F.,
Ballard, A.J., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K.R., Nash, C., Langston, V.,
Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.M., Vinyals, O., Li, Y., Pascanu,
R.: Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261
(2018). arXiv: 1806.01261

12. Beheshti, A., Yang, J., Sheng, Q.Z., Benatallah, B., Casati, F., Dustdar, S., Motahari-
Nezhad, H.R., Zhang, X., Xue, S.: ProcessGPT: Transforming Business Process Manage-
ment with Generative Artificial Intelligence. In: Ardagna, C.A., Benatallah, B., Bian, H.,
Chang, C.K., Chang, R.N., Fan, J., Fox, G.C., Jin, Z., Liu, X., Ludwig, H., Sheng, M., Yang,
J. (eds.) IEEE International Conference on Web Services, ICWS 2023, Chicago, IL, USA,
July 2-8, 2023, pp. 731–739. IEEE (2023). https://doi.org/10.1109/ICWS60048.2023.00099

13. Bengio, Y.: From System 1 Deep Learning to System 2 Deep Learning: Posner Lecture,
Neurips, (2019). Available at: https://slideslive.com/38922304. Last accessed: 2024-07-05.

14. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Inter-
net-Based Applications. Springer (2002)

15. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (2014). https://doi.org/10.1016/J.IS.2012.07.005

16. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: A Process-Oriented Case-
Based Reasoning Framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceed-
ings for the Twenty-seventh International Conference on Case-Based Reasoning co-located
with the Twenty-seventh International Conference on Case-Based Reasoning (ICCBR 2019),
Otzenhausen, Germany, September 8-12, 2019. CEUR Workshop Proceedings, pp. 156–161.
CEUR-WS.org (2019)

17. Bergmann, R., Stromer, A.: MAC/FAC Retrieval of Semantic Workflows. In: Boonthum-
Denecke, C., Youngblood, G.M. (eds.) Proceedings of the Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2013, St. Pete Beach, Florida,
USA, May 22-24, 2013. AAAI Press (2013)

18. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. J. Mach.
Learn. Res. 13, 281–305 (2012). https://doi.org/10.5555/2503308.2188395

19. Brand, F., Lott, K., Malburg, L., Hoffmann, M., Bergmann, R.: Using Deep Reinforcement
Learning for the Adaptation of Semantic Workflows. In: Malburg, L., Verma, D. (eds.)
Proceedings of the Workshops at the 31st International Conference on Case-Based Reason-
ing (ICCBR-WS 2023) co-located with the 31st International Conference on Case-Based
Reasoning (ICCBR 2023), Aberdeen, Scotland, UK, July 17, 2023. CEUR Workshop Pro-
ceedings, pp. 55–70. CEUR-WS.org (2023)

20. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., Amodei, D.: Language Models are Few-Shot Learners. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Pro-

42

https://doi.org/10.1038/S42256-021-00423-X
https://arxiv.org/abs/1806.01261
https://doi.org/10.1109/ICWS60048.2023.00099
https://slideslive.com/38922304
https://doi.org/10.1016/J.IS.2012.07.005
https://doi.org/10.5555/2503308.2188395

cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual (2020)

21. Bunke, H.: Recent Developments in Graph Matching. In: 15th International Conference
on Pattern Recognition, ICPR’00, Barcelona, Spain, September 3-8, 2000, pp. 2117–2124.
IEEE Computer Society (2000). https://doi.org/10.1109/ICPR.2000.906030

22. Busch, K., Rochlitzer, A., Sola, D., Leopold, H.: Just Tell Me: Prompt Engineering in
Business Process Management. In: van der Aa, H., Bork, D., Proper, H.A., Schmidt, R.
(eds.) Enterprise, Business-Process and Information Systems Modeling - 24th International
Conference, BPMDS 2023, and 28th International Conference, EMMSAD 2023, Zaragoza,
Spain, June 12-13, 2023, Proceedings. LNBIP, vol. 479, pp. 3–11. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-34241-7 1

23. Çayoglu, U., Dijkman, R.M., Dumas, M., Fettke, P., Garćıa-Bañuelos, L., Hake, P., Klink-
müller, C., Leopold, H., Ludwig, A., Loos, P., Mendling, J., Oberweis, A., Schoknecht, A.,
Sheetrit, E., Thaler, T., Ullrich, M., Weber, I., Weidlich, M.: Report: The Process Model
Matching Contest 2013. In: Lohmann, N., Song, M., Wohed, P. (eds.) Business Process
Management Workshops - BPM 2013 International Workshops, Beijing, China, August 26,
2013, Revised Papers. LNBIP, vol. 171, pp. 442–463. Springer, Heidelberg (2013). https:
//doi.org/10.1007/978-3-319-06257-0 35

24. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
Zhang, Z.: MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. CoRR abs/1512.01274 (2015). arXiv: 1512.01274

25. Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T.: A Survey of Accelerator Architectures for
Deep Neural Networks. Engineering 6(3), 264–274 (2020). https://doi.org/10.1016/j.eng.2
020.01.007

26. Chen, Z., Liu, B.: Lifelong Machine Learning, Second Edition. Morgan & Claypool Pub-
lishers (2018)

27. Cheng, W., Rademaker, M., de Baets, B., Hüllermeier, E.: Predicting Partial Orders: Rank-
ing with Abstention. In: Cellular automata. Ed. by S. Bandini, S. Manzoni, H. Umeo, and
G. Vizzari, pp. 215–230. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15880
-3 20

28. Chicco, D.: Siamese Neural Networks: An Overview. In: Artificial Neural Networks - Third
Edition. Ed. by H.M. Cartwright, pp. 73–94. Springer (2021). https://doi.org/10.1007/978
-1-0716-0826-5 3

29. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pp. 1724–1734. ACL (2014). https://doi.org/10.3115/V1/D14-1179

30. Chollet, F. et al.: Keras, https://keras.io (2015).

31. Claesen, M., De Moor, B.L.R.: Hyperparameter Search in Machine Learning. CoRR abs/
1502.02127 (2015). arXiv: 1502.02127

32. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to Order Things. J. Artif. Intell. Res.
10, 243–270 (1999). https://doi.org/10.1613/JAIR.587

43

https://doi.org/10.1109/ICPR.2000.906030
https://doi.org/10.1007/978-3-031-34241-7_1
https://doi.org/10.1007/978-3-319-06257-0_35
https://doi.org/10.1007/978-3-319-06257-0_35
https://arxiv.org/abs/1512.01274
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.3115/V1/D14-1179
https://keras.io
https://arxiv.org/abs/1502.02127
https://doi.org/10.1613/JAIR.587

33. Dai, A.M., Le, Q.V.: Semi-supervised Sequence Learning. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 3079–3087 (2015)

34. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.)
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Min-
neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics (2019). https://doi.org/10.18653/V1/N19-1423

35. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Multiple classifier systems.
Ed. by J. Kittler, pp. 1–15. Springer (2000). https://doi.org/10.1007/3-540-45014-9 1

36. Dijkman, R.M., Gfeller, B., Küster, J.M., Völzer, H.: Identifying refactoring opportunities
in process model repositories. Inf. Softw. Technol. 53(9), 937–948 (2011). https://doi.org/1
0.1016/J.INFSOF.2011.04.001

37. Dosilovic, F.K., Brcic, M., Hlupic, N.: Explainable artificial intelligence: A survey. In: Skala,
K., Koricic, M., Grbac, T.G., Cicin-Sain, M., Sruk, V., Ribaric, S., Gros, S., Vrdoljak, B.,
Mauher, M., Tijan, E., Pale, P., Janjic, M. (eds.) 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics, MIPRO 2018,
Opatija, Croatia, May 21-25, 2018, pp. 210–215. IEEE (2018). https://doi.org/10.23919
/MIPRO.2018.8400040

38. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management, Second Edition. Springer (2018)

39. van Dun, C.G.J., Moder, L., Kratsch, W., Röglinger, M.: ProcessGAN: Supporting the
creation of business process improvement ideas through generative machine learning. Decis.
Support Syst. 165, 113880 (2023). https://doi.org/10.1016/J.DSS.2022.113880

40. van Dyk, D.A., Meng, X.-L.: The Art of Data Augmentation. Journal of Computational
and Graphical Statistics 10(1), 1–50 (2001)

41. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T., Philbrick, K.: Toolkits and Libraries for
Deep Learning. J. Digit. Imaging 30(4), 400–405 (2017). https://doi.org/10.1007/S10278-0
17-9965-6

42. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018. Proceedings of Machine Learning Research, pp. 1436–1445. PMLR (2018)

43. Ferludin, O., Eigenwillig, A., Blais, M., Zelle, D., Pfeifer, J., Sanchez-Gonzalez, A., Li,
W.L.S., Abu-El-Haija, S., Battaglia, P.W., Bulut, N., Halcrow, J., de Almeida, F.M.G.,
Lattanzi, S., Linhares, A., Mayer, B.A., Mirrokni, V.S., Palowitch, J., Paradkar, M., She,
J., Tsitsulin, A., Villela, K., Wang, L., Wong, D., Perozzi, B.: TF-GNN: Graph Neural
Networks in TensorFlow. CoRR abs/2207.03522 (2022). https://doi.org/10.48550/ARXIV.2
207.03522. arXiv: 2207.03522

44. Feurer, M., Hutter, F.: Hyperparameter Optimization. In: Automated Machine Learning -
Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren, pp. 3–33.
Springer (2019). https://doi.org/10.1007/978-3-030-05318-5 1

45. Fey, M., Lenssen, J.E.: Fast Graph Representation Learning with PyTorch Geometric. CoRR
abs/1903.02428 (2019). arXiv: 1903.02428

44

https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1016/J.INFSOF.2011.04.001
https://doi.org/10.1016/J.INFSOF.2011.04.001
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1016/J.DSS.2022.113880
https://doi.org/10.1007/S10278-017-9965-6
https://doi.org/10.1007/S10278-017-9965-6
https://doi.org/10.48550/ARXIV.2207.03522
https://doi.org/10.48550/ARXIV.2207.03522
https://arxiv.org/abs/2207.03522
https://doi.org/10.1007/978-3-030-05318-5_1
https://arxiv.org/abs/1903.02428

46. Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: A Model of Similarity-Based Retrieval.
Cogn. Sci. 19(2), 141–205 (1995). https://doi.org/10.1207/S15516709COG1902 1

47. Fürnkranz, J., Hüllermeier, E.: Preference Learning: An Introduction. In: Preference Learn-
ing. Ed. by J. Fürnkranz and E. Hüllermeier, pp. 1–17. Springer (2010). https://doi.org/1
0.1007/978-3-642-14125-6 1

48. Gabel, T., Godehardt, E.: Top-Down Induction of Similarity Measures Using Similarity
Clouds. In: Hüllermeier, E., Minor, M. (eds.) Case-Based Reasoning Research and De-
velopment - 23rd International Conference, ICCBR 2015, Frankfurt am Main, Germany,
September 28-30, 2015, Proceedings. LNCS, vol. 9343, pp. 149–164. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-319-24586-7 11

49. Galanti, R., de Leoni, M.: Predictive Analytics for Object-Centric Processes: Do Graph Neu-
ral Networks Really Help? In: Weerdt, J.D., Pufahl, L. (eds.) Business Process Management
Workshops - BPM 2023 International Workshops, Utrecht, The Netherlands, September
11-15, 2023, Revised Selected Papers. LNBIP, vol. 492, pp. 521–533. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-50974-2 39

50. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl.
13(1), 113–129 (2010). https://doi.org/10.1007/S10044-008-0141-Y

51. Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence:
representing objects and relations. Current Opinion in Behavioral Sciences 29, 17–23 (2019).
https://doi.org/10.1016/j.cobeha.2018.12.010

52. Gates, L., Leake, D., Wilkerson, K.: Cases Are King: A User Study of Case Presentation
to Explain CBR Decisions. In: Massie, S., Chakraborti, S. (eds.) Case-Based Reasoning
Research and Development - 31st International Conference, ICCBR 2023, Aberdeen, UK,
July 17-20, 2023, Proceedings. LNCS, vol. 14141, pp. 153–168. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-40177-0 10

53. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge Univer-
sity Press (2016)

54. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural Message Passing for
Quantum Chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, pp. 1263–1272. PMLR (2017)

55. Hammond, K.J.: CHEF: A Model of Case-Based Planning. In: Kehler, T. (ed.) Proceedings
of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August
11-15, 1986. Volume 1: Science, pp. 267–271. Morgan Kaufmann (1986)

56. Hanga, K.: A Deep Learning Approach to Business Process Mining. PhD thesis, Birmingham
City University, Birmingham (2023).

57. Hanney, K., Keane, M.T.: Learning Adaptation Rules from a Case-Base. In: Smith, I.F.C.,
Faltings, B. (eds.) Advances in Case-Based Reasoning, Third EuropeanWorkshop, EWCBR-
96, Lausanne, Switzerland, November 14-16, 1996, Proceedings. LNCS, vol. 1168, pp. 179–
192. Springer, Heidelberg (1996). https://doi.org/10.1007/BFB0020610

58. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In: Case-Based Reasoning Research and Development. Ed. by D.B. Leake and
E. Plaza, pp. 359–370. Springer, Berlin and Heidelberg (1997). https://doi.org/10.1007/3-
540-63233-6 506

45

https://doi.org/10.1207/S15516709COG1902_1
https://doi.org/10.1007/978-3-642-14125-6_1
https://doi.org/10.1007/978-3-642-14125-6_1
https://doi.org/10.1007/978-3-319-24586-7_11
https://doi.org/10.1007/978-3-031-50974-2_39
https://doi.org/10.1007/S10044-008-0141-Y
https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.1007/978-3-031-40177-0_10
https://doi.org/10.1007/BFB0020610
https://doi.org/10.1007/3-540-63233-6_506
https://doi.org/10.1007/3-540-63233-6_506

59. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business process
monitoring using gated graph neural networks. J. Decis. Syst. 29(Supplement), 312–327
(2020). https://doi.org/10.1080/12460125.2020.1780780

60. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the Planning
Domain Definition Language. Morgan & Claypool Publishers (2019)

61. Helmert, M.: The Fast Downward Planning System. CoRR abs/1109.6051 (2011). arXiv:
1109.6051

62. Hevner, A.R.: A three cycle view of design science research. Scandinavian Journal of Infor-
mation Systems 19(2), 4 (2007)

63. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-
search. MIS Q. 28(1), 75–105 (2004)

64. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8), 1735–
1780 (1997). https://doi.org/10.1162/NECO.1997.9.8.1735

65. Hoffmann, M., Bergmann, R.: Informed Machine Learning for Improved Similarity Assess-
ment in Process-Oriented Case-Based Reasoning. CoRR abs/2106.15931 (2021). arXiv: 21
06.15931

66. Hoffmann, M., Bergmann, R.: Improving Automated Hyperparameter Optimization with
Case-Based Reasoning. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Re-
search and Development - 30th International Conference, ICCBR 2022, Nancy, France,
September 12-15, 2022, Proceedings. LNCS, vol. 13405, pp. 273–288. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-14923-8 18

67. Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented
Case-Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

68. Hoffmann, M., Bergmann, R.: Ranking-Based Case Retrieval with Graph Neural Networks
in Process-Oriented Case-Based Reasoning. In: Franklin, M., Chun, S.A. (eds.) Proceedings
of the Thirty-Sixth International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI Press (2023). https:
//doi.org/10.32473/FLAIRS.36.133039

69. Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-Based Graph Matching for
Accelerating Similarity Assessment in Process-Oriented Case-Based Reasoning. In: Keane,
M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and Development - 30th Inter-
national Conference, ICCBR, Nancy, France, September 12-15, 2022, Proceedings. LNCS,
vol. 13405, pp. 240–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-1
4923-8 16

70. Hoffmann, M., Malburg, L., Bergmann, R.: Augmentation of Semantic Processes for Deep
Learning Applications. Applied Artificial Intelligence. Taylor and Francis. Submitted for
Publication. (2024)

71. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

72. Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-based reason-
ing. Knowl. Eng. Rev. 20(3), 289–292 (2005). https://doi.org/10.1017/S0269888906000622

46

https://doi.org/10.1080/12460125.2020.1780780
https://arxiv.org/abs/1109.6051
https://doi.org/10.1162/NECO.1997.9.8.1735
https://arxiv.org/abs/2106.15931
https://arxiv.org/abs/2106.15931
https://doi.org/10.1007/978-3-031-14923-8_18
https://doi.org/10.3390/A15020027
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1017/S0269888906000622

73. Huang, K., Jin, Y., Candès, E.J., Leskovec, J.: Uncertainty Quantification over Graph with
Conformalized Graph Neural Networks. In: Oh, A., Naumann, T., Globerson, A., Saenko,
K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023 (2023)

74. Hüllermeier, E.: Case-Based Approximate Reasoning. Springer (2007)

75. Hüllermeier, E., Fürnkranz, J.: Comparison of Ranking Procedures in Pairwise Preference
Learning. In: Bouchon-Meunier, B., Coletti, G., Yager, R. (eds.) Proceedings of the 10th
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU-04), Perugia, Italy (2004)

76. Hüllermeier, E., Schlegel, P.: Preference-Based CBR: First Steps toward a Methodological
Framework. In: Ram, A., Wiratunga, N. (eds.) Case-Based Reasoning Research and Devel-
opment - 19th International Conference on Case-Based Reasoning, ICCBR 2011, London,
UK, September 12-15, 2011. Proceedings. LNCS, vol. 6880, pp. 77–91. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23291-6 8

77. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: A survey. Expert Systems
with Applications 207, 117921 (2022). https://doi.org/10.1016/j.eswa.2022.117921

78. Kacimi, F., Tari, A., Kheddouci, H.: Business process graph matching based on vectorial
signatures. Int. J. Bus. Process. Integr. Manag. 9(2), 76–89 (2019). https://doi.org/10.150
4/IJBPIM.2019.099869

79. Kampik, T., Warmuth, C., Rebmann, A., Agam, R., Egger, L.N.P., Gerber, A., Hoffart, J.,
Kolk, J., Herzig, P., Decker, G., van der Aa, H., Polyvyanyy, A., Rinderle-Ma, S., Weber, I.,
Weidlich, M.: Large Process Models: Business Process Management in the Age of Generative
AI. CoRR abs/2309.00900 (2023). https://doi.org/10.48550/ARXIV.2309.00900. arXiv:
2309.00900

80. Keane, M.T., Kenny, E.M.: How Case-Based Reasoning Explains Neural Networks: A The-
oretical Analysis of XAI Using Post-Hoc Explanation-by-Example from a Survey of ANN-
CBR Twin-Systems. In: Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and
Development - 27th International Conference, ICCBR 2019, Otzenhausen, Germany, Septem-
ber 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 155–171. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-29249-2 11

81. Kendall, A., Gal, Y.: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R.,
Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pp. 5574–5584 (2017)

82. Kendall-Morwick, J., Leake, D.: A Study of Two-Phase Retrieval for Process-Oriented Case-
Based Reasoning. In: Successful Case-based Reasoning Applications-2, pp. 7–27. Springer
(2014)

83. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun,
Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

47

https://doi.org/10.1007/978-3-642-23291-6_8
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1504/IJBPIM.2019.099869
https://doi.org/10.1504/IJBPIM.2019.099869
https://doi.org/10.48550/ARXIV.2309.00900
https://arxiv.org/abs/2309.00900
https://doi.org/10.1007/978-3-030-29249-2_11

84. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve the
Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In:
Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development - 27th In-
ternational Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings. LNCS, vol. 11680, pp. 188–203. Springer, Heidelberg (2019). https://doi.org/10
.1007/978-3-030-29249-2 13

85. Kolodner, J.L.: Case-Based Reasoning: Proceedings of a Workshop on Case-Based Reason-
ing. Morgan Kaufmann Publishers, Holiday Inn, Clearwater Beach, Florida (1988)

86. Kudenko, D.: Special Issue on Transfer Learning. Künstliche Intelligenz 28(1), 5–6 (2014).
https://doi.org/10.1007/s13218-013-0289-5

87. Leake, D.: Bridging AI Paradigms with Cases and Networks. Computer Sciences & Math-
ematics Forum 8(1) (2023). https://doi.org/10.3390/cmsf2023008071

88. Leake, D., Crandall, D.J.: On Bringing Case-Based Reasoning Methodology to Deep Learn-
ing. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development -
28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings. LNCS, vol. 12311, pp. 343–348. Springer, Heidelberg (2020). https://doi.org/10.1007
/978-3-030-58342-2 22

89. Leake, D., Schack, B.: Exploration vs. Exploitation in Case-Base Maintenance: Leveraging
Competence-Based Deletion with Ghost Cases. In: Cox, M.T., Funk, P., Begum, S. (eds.)
Case-Based Reasoning Research and Development - 26th International Conference, ICCBR
2018, Stockholm, Sweden, July 9-12, 2018, Proceedings. LNCS, vol. 11156, pp. 202–218.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-01081-2 14

90. Leake, D., Wilkerson, Z., Ye, X., Crandall, D.J.: Enhancing Case-Based Reasoning with
Neural Networks. In: Compendium of Neurosymbolic Artificial Intelligence. Ed. by P. Hit-
zler, M.K. Sarker, and A. Eberhart, pp. 387–409. IOS Press (2023). https://doi.org/10.323
3/FAIA230150

91. Leake, D., Ye, X., Crandall, D.J.: Supporting Case-Based Reasoning with Neural Networks:
An Illustration for Case Adaptation. In: Martin, A., Hinkelmann, K., Fill, H., Gerber,
A., Lenat, D., Stolle, R., van Harmelen, F. (eds.) Proceedings of the AAAI 2021 Spring
Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE
2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021. CEURWorkshop
Proceedings. CEUR-WS.org (2021)

92. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). http
s://doi.org/10.1038/nature14539

93. Lenz, M., Bergmann, R.: Case-Based Adaptation of Argument Graphs with WordNet and
Large Language Models. In: Massie, S., Chakraborti, S. (eds.) Case-Based Reasoning Re-
search and Development - 31st International Conference, ICCBR 2023, Aberdeen, UK,
July 17-20, 2023, Proceedings. LNCS, vol. 14141, pp. 263–278. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-40177-0 17

94. Lenz, M., Ollinger, S., Sahitaj, P., Bergmann, R.: Semantic Textual Similarity Measures
for Case-Based Retrieval of Argument Graphs. In: Bach, K., Marling, C. (eds.) Case-
Based Reasoning Research and Development - 27th International Conference, ICCBR 2019,
Otzenhausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 219–234.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 15

48

https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/s13218-013-0289-5
https://doi.org/10.3390/cmsf2023008071
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-01081-2_14
https://doi.org/10.3233/FAIA230150
https://doi.org/10.3233/FAIA230150
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-031-40177-0_17
https://doi.org/10.1007/978-3-030-29249-2_15

95. Leonardi, G., Montani, S., Striani, M.: Process Trace Classification for Stroke Management
Quality Assessment. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research
and Development - 28th International Conference, ICCBR 2020, Salamanca, Spain, June
8-12, 2020, Proceedings. LNCS, vol. 12311, pp. 49–63. Springer, Heidelberg (2020). https:
//doi.org/10.1007/978-3-030-58342-2 4

96. Lewis, P.S.H., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., Kiela, D.: Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual (2020)

97. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph Matching Networks for Learning
the Similarity of Graph Structured Objects. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research,
pp. 3835–3845. PMLR (2019)

98. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated Graph Sequence Neural Networks.
In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016)

99. Liao, C., Liu, A., Chao, Y.: A Machine Learning Approach to Case Adaptation. In: First
IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE
2018, Laguna Hills, CA, USA, September 26-28, 2018, pp. 106–109. IEEE Computer Society
(2018). https://doi.org/10.1109/AIKE.2018.00023

100. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Berlin and Heidelberg
(2011)

101. Luo, G.: A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Netw. Model. Anal. Health Informatics Bioinform. 5(1), 18 (2016).
https://doi.org/10.1007/S13721-016-0125-6

102. Malburg, L., Brand, F., Bergmann, R.: Adaptive Management of Cyber-Physical Work-
flows by Means of Case-Based Reasoning and Automated Planning. In: Sales, T.P., Proper,
H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) Enterprise Design,
Operations, and Computing. EDOC 2022 Workshops - IDAMS, SoEA4EE, TEAR, EDOC
Forum, Demonstrations Track and Doctoral Consortium, Bozen-Bolzano, Italy, October 4-
7, 2022, Revised Selected Papers. LNBIP, vol. 466, pp. 79–95. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-26886-1 5

103. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for adaptive
workflow management in smart factories. J. Intell. Inf. Syst. 61(1), 83–111 (2023). https:
//doi.org/10.1007/S10844-022-00766-W

104. Malburg, L., Klein, P., Bergmann, R.: Converting semantic web services into formal planning
domain descriptions to enable manufacturing process planning and scheduling in industry
4.0. Eng. Appl. Artif. Intell. 126, 106727 (2023). https://doi.org/10.1016/J.ENGAPPAI.2
023.106727

105. Marie, F., Corbat, L., Chaussy, Y., Delavelle, T., Henriet, J., Lapayre, J.: Segmentation
of deformed kidneys and nephroblastoma using Case-Based Reasoning and Convolutional
Neural Network. Expert Syst. Appl. 127, 282–294 (2019). https://doi.org/10.1016/J.ESW
A.2019.03.010

49

https://doi.org/10.1007/978-3-030-58342-2_4
https://doi.org/10.1007/978-3-030-58342-2_4
https://doi.org/10.1109/AIKE.2018.00023
https://doi.org/10.1007/S13721-016-0125-6
https://doi.org/10.1007/978-3-031-26886-1_5
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1016/J.ENGAPPAI.2023.106727
https://doi.org/10.1016/J.ENGAPPAI.2023.106727
https://doi.org/10.1016/J.ESWA.2019.03.010
https://doi.org/10.1016/J.ESWA.2019.03.010

106. Marjieh, R., Sucholutsky, I., Sumers, T.R., Jacoby, N., Griffiths, T.: Predicting Human
Similarity Judgments Using Large Language Models. In: Culbertson, J., Rabagliati, H., Ra-
menzoni, V.C., Perfors, A. (eds.) Proceedings of the 44th Annual Meeting of the Cognitive
Science Society, CogSci 2022, Toronto, ON, Canada, July 27-30, 2022. cognitivesciencesoci-
ety.org (2022)

107. Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A Convolutional Siamese Net-
work for Developing Similarity Knowledge in the SelfBACK Dataset. In: Sánchez-Ruiz,
A.A., Kofod-Petersen, A. (eds.) Proceedings of ICCBR 2017 Workshops (CAW, CBRDL,
PO-CBR), Doctoral Consortium, and Competitions co-located with the 25th International
Conference on Case-Based Reasoning (ICCBR 2017), Trondheim, Norway, June 26-28, 2017.
CEUR Workshop Proceedings, pp. 85–94. CEUR-WS.org (2017)

108. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures from
data. Prog. Artif. Intell. 9(2), 129–143 (2020). https://doi.org/10.1007/S13748-019-00201-2

109. Mathisen, B.M., Aamodt, A., Langseth, H.: Data Driven Case Base Construction for Pre-
diction of Success of Marine Operations. In: Sánchez-Ruiz, A.A., Kofod-Petersen, A. (eds.)
Proceedings of ICCBR 2017 Workshops (CAW, CBRDL, PO-CBR), Doctoral Consortium,
and Competitions co-located with the 25th International Conference on Case-Based Reason-
ing (ICCBR 2017), Trondheim, Norway, June 26-28, 2017. CEUR Workshop Proceedings,
pp. 104–113. CEUR-WS.org (2017)

110. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision
support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org
/10.1007/S10489-021-02251-3

111. McDermott, D., Ghallab, M., Howe, A.E., Knoblock, C.A., Ram, A., Veloso, M.M., Weld,
D.S., Wilkins, D.E.: PDDL - The Planning Domain Definition Language: Technical Report
CVC TR-98-003/DCS TR-1165, (1998).

112. Minor, M., Montani, S., Recio-Garćıa, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014). https://doi.org/10.1016/J.IS.2013.06.004

113. Morgan, N., Bourlard, H.: Generalization and Parameter Estimation in Feedforward Netws:
Some Experiments. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing
Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30, 1989], pp. 630–637.
Morgan Kaufmann (1989)

114. Morrison, E.D., Menzies, A., Koliadis, G., Ghose, A.K.: Business Process Integration:
Method and Analysis. In: Kirchberg, M., Link, S. (eds.) Conceptual Modelling 2009, Sixth
Asia-Pacific Conference on Conceptual Modelling (APCCM 2009), Wellington, New Zealand,
January 20-23 2009. CRPIT, pp. 29–37. Australian Computer Society (2009)

115. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden
(2018)

116. Müller, G., Bergmann, R.: A Cluster-Based Approach to Improve Similarity-Based Retrieval
for Process-Oriented Case-Based Reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B.
(eds.) ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Frontiers in Artificial Intelligence and Applications, pp. 639–644. IOS Press (2014).
https://doi.org/10.3233/978-1-61499-419-0-639

117. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep
learning methods for process prediction. Artif. Intell. Rev. 55(2), 801–827 (2022). https://d
oi.org/10.1007/S10462-021-09960-8

50

https://doi.org/10.1007/S13748-019-00201-2
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1016/J.IS.2013.06.004
https://doi.org/10.3233/978-1-61499-419-0-639
https://doi.org/10.1007/S10462-021-09960-8
https://doi.org/10.1007/S10462-021-09960-8

118. Nguyen, B., Mutum, D.S.: A review of customer relationship management: successes, ad-
vances, pitfalls and futures. Bus. Process. Manag. J. 18(3), 400–419 (2012). https://doi.or
g/10.1108/14637151211232614

119. Niesen, T., Dadashnia, S., Fettke, P., Loos, P.: A Vector Space Approach to Process Model
Matching using Insights from Natural Language Processing. In: (2016)

120. Ontañón, S.: An Overview of Distance and Similarity Functions for Structured Data. CoRR
abs/2002.07420 (2020). arXiv: 2002.07420

121. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.M., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035
(2019)

122. Pauli, J., Hoffmann, M., Bergmann, R.: Similarity-Based Retrieval in Process-Oriented
Case-Based Reasoning Using Graph Neural Networks and Transfer Learning. In: Franklin,
M., Chun, S.A. (eds.) Proceedings of the Thirty-Sixth International Florida Artificial In-
telligence Research Society Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May
14-17, 2023. AAAI Press (2023). https://doi.org/10.32473/FLAIRS.36.133040

123. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. J. Manag. Inf. Syst. 24(3), 45–77 (2008).
https://doi.org/10.2753/MIS0742-1222240302

124. Peters, M.E., Ruder, S., Smith, N.A.: To Tune or Not to Tune? Adapting Pretrained Rep-
resentations to Diverse Tasks. In: Augenstein, I., Gella, S., Ruder, S., Kann, K., Can, B.,
Welbl, J., Conneau, A., Ren, X., Rei, M. (eds.) Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp. 7–
14. Association for Computational Linguistics (2019). https://doi.org/10.18653/V1/W19-
4302

125. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate Business Process Representation Learning
Utilizing Gramian Angular Fields and Convolutional Neural Networks. In: Polyvyanyy,
A., Wynn, M.T., Looy, A.V., Reichert, M. (eds.) Business Process Management - 19th
International Conference, BPM 2021, Rome, Italy, September 06-10, 2021, Proceedings.
LNCS, vol. 12875, pp. 327–344. Springer, Heidelberg (2021). https://doi.org/10.1007/978-
3-030-85469-0 21

126. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep Learning for Predictive Business Process
Monitoring: Review and Benchmark. IEEE Transactions on Services Computing 16(01),
739–756 (2023). https://doi.org/10.1109/TSC.2021.3139807

127. Reijers, H., Liman Mansar, S.: Best practices in business process redesign: an overview
and qualitative evaluation of successful redesign heuristics. Omega 33(4), 283–306 (2005).
https://doi.org/10.1016/j.omega.2004.04.012

128. Richter, M.M.: Foundations of Similarity and Utility. In: Wilson, D., Sutcliffe, G. (eds.)
Proceedings of the Twentieth International Florida Artificial Intelligence Research Society
Conference, May 7-9, 2007, Key West, Florida, USA, pp. 30–37. AAAI Press (2007)

129. Richter, M.M., Weber, R.O.: Case-Based Reasoning - A Textbook. Springer (2013)

51

https://doi.org/10.1108/14637151211232614
https://doi.org/10.1108/14637151211232614
https://arxiv.org/abs/2002.07420
https://doi.org/10.32473/FLAIRS.36.133040
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.18653/V1/W19-4302
https://doi.org/10.18653/V1/W19-4302
https://doi.org/10.1007/978-3-030-85469-0_21
https://doi.org/10.1007/978-3-030-85469-0_21
https://doi.org/10.1109/TSC.2021.3139807
https://doi.org/10.1016/j.omega.2004.04.012

130. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.M.: Business Process Model Merging: An
Approach to Business Process Consolidation. ACM Trans. Softw. Eng. Methodol. 22(2),
11:1–11:42 (2013). https://doi.org/10.1145/2430545.2430547

131. Roth-Berghofer, T.: Knowledge maintenance of case-based reasoning systems - the SIAM
methodology. PhD thesis, Kaiserslautern University of Technology, Germany (2003).

132. Roth-Berghofer, T., Cassens, J.: Mapping Goals and Kinds of Explanations to the Knowl-
edge Containers of Case-Based Reasoning Systems. In: Muñoz-Avila, H., Ricci, F. (eds.)
Case-Based Reasoning, Research and Development, 6th International Conference, on Case-
Based Reasoning, ICCBR 2005, Chicago, IL, USA, August 23-26, 2005, Proceedings. LNCS,
vol. 3620, pp. 451–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406 35

133. von Rüden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch,
B., Pfrommer, J., Pick, A., Ramamurthy, R., Walczak, M., Garcke, J., Bauckhage, C.,
Schuecker, J.: Informed Machine Learning - A Taxonomy and Survey of Integrating Prior
Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 35(1), 614–633 (2023).
https://doi.org/10.1109/TKDE.2021.3079836

134. Salamó, M., Golobardes, E.: Dynamic Case Base Maintenance for a Case-Based Reason-
ing System. In: Lemâıtre, C., Garćıa, C.A.R., González, J.A. (eds.) Advances in Artificial
Intelligence - IBERAMIA 2004, 9th Ibero-American Conference on AI, Puebla, Mexico,
November 22-26, 2004, Proceedings. LNCS, vol. 3315, pp. 93–103. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30498-2 10

135. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and forget-
ting strategies. Knowledge-Based Systems 24(2), 230–247 (2011). https://doi.org/10.1016
/j.knosys.2010.08.003

136. Sánchez, L.Q., Bridge, D.G., Dı́az-Agudo, B., Recio-Garćıa, J.A.: A Case-Based Solution to
the Cold-Start Problem in Group Recommenders. In: Rossi, F. (ed.) IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pp. 3042–3046. IJCAI/AAAI (2013)

137. Sani, S., Wiratunga, N., Massie, S.: Learning Deep Features for kNN-Based Human Activity
Recognition. In: Sánchez-Ruiz, A.A., Kofod-Petersen, A. (eds.) Proceedings of ICCBR 2017
Workshops (CAW, CBRDL, PO-CBR), Doctoral Consortium, and Competitions co-located
with the 25th International Conference on Case-Based Reasoning (ICCBR 2017), Trond-
heim, Norway, June 26-28, 2017. CEUR Workshop Proceedings, pp. 95–103. CEUR-WS.org
(2017)

138. Sarker, M.K., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelligence. AI
Commun. 34(3), 197–209 (2021). https://doi.org/10.3233/AIC-210084

139. Schoenborn, J.M., Weber, R.O., Aha, D.W., Cassens, J., Althoff, K.-D.: Explainable Case-
Based Reasoning: A Survey. In: Madumal, P., Tulli, S., Weber, R., Aha, D. (eds.) Proceed-
ings for the Explainable Agency in AI Workshop at the 35th AAAI Conference on Artificial
Intelligence, The Internet (2021)

140. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of Business Process
Models - A State-of-the-Art Analysis. ACM Comput. Surv. 50(4), 52:1–52:33 (2017). https
://doi.org/10.1145/3092694

141. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face recognition
and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 815–823. IEEE Computer Society (2015).
https://doi.org/10.1109/CVPR.2015.7298682

52

https://doi.org/10.1145/2430545.2430547
https://doi.org/10.1007/11536406_35
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1007/978-3-540-30498-2_10
https://doi.org/10.1016/j.knosys.2010.08.003
https://doi.org/10.1016/j.knosys.2010.08.003
https://doi.org/10.3233/AIC-210084
https://doi.org/10.1145/3092694
https://doi.org/10.1145/3092694
https://doi.org/10.1109/CVPR.2015.7298682

142. Schuler, N., Hoffmann, M., Beise, H., Bergmann, R.: Semi-supervised Similarity Learning in
Process-Oriented Case-Based Reasoning. In: Bramer, M., Stahl, F.T. (eds.) Artificial Intel-
ligence XL - 43rd SGAI International Conference on Artificial Intelligence, AI 2023, Cam-
bridge, UK, December 12-14, 2023, Proceedings. LNCS, vol. 14381, pp. 159–173. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-47994-6 12

143. Schultheis, A., Hoffmann, M., Malburg, L., Bergmann, R.: Explanation of Similarities in
Process-Oriented Case-Based Reasoning by Visualization. In: Massie, S., Chakraborti, S.
(eds.) Case-Based Reasoning Research and Development - 31st International Conference,
ICCBR 2023, Aberdeen, UK, July 17-20, 2023, Proceedings. LNCS, vol. 14141, pp. 53–68.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-40177-0 4

144. Schultheis, A., Zeyen, C., Bergmann, R.: An Overview and Comparison of Case-Based
Reasoning Frameworks. In: Case-Based Reasoning Research and Development - 31st In-
ternational Conference, ICCBR 2023, Aberdeen, Scotland, July 17-20, 2023, Proceedings.
LNCS, vol. 14141, pp. 327–343. Springer, Heidelberg (2023). https://doi.org/10.1007/978-
3-031-40177-0 21

145. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive work-
flows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2019). https://doi.o
rg/10.1007/S10270-017-0639-0

146. Smyth, B., Keane, M.T.: Adaptation-Guided Retrieval: Questioning the Similarity Assump-
tion in Reasoning. Artif. Intell. 102(2), 249–293 (1998). https://doi.org/10.1016/S0004-37
02(98)00059-9

147. Sonntag, A., Hake, P., Fettke, P., Loos, P.: An Approach for Semantic Business Process
Model Matching using Supervised Machine Learning. In: 24th European Conference on
Information Systems, ECIS 2016, Istanbul, Turkey, June 12-15, 2016, Research–in–Progress
Paper 47 (2016)

148. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–
1958 (2014). https://doi.org/10.5555/2627435.2670313

149. Stahl, A., Bergmann, R.: Applying Recursive CBR for the Customization of Structured
Products in an Electronic Shop. In: Blanzieri, E., Portinale, L. (eds.) Advances in Case-
Based Reasoning, pp. 297–308. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

150. Stewart, G.: Supply-chain operations reference model (SCOR): the first cross-industry
framework for integrated supply-chain management. Logistics Information Management
10(2), 62–67 (1997). https://doi.org/10.1108/09576059710815716

151. Sungkono, K.R., Sarno, R., Salsabila, M.C., Dewi, C.P.: A Graph-based Method for Merg-
ing Business Process Models by Considering Semantic Similarity. International Journal of
Intelligent Engineering and Systems 16(2), 166–175 (2023). https://doi.org/10.22266/ijies
2023.0430.14

152. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A Survey on Deep Transfer
Learning. In: Kurková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.S., Maglogiannis, I.
(eds.) Artificial Neural Networks and Machine Learning - ICANN 2018 - 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings,
Part III. LNCS, vol. 11141, pp. 270–279. Springer, Heidelberg (2018). https://doi.org/10.1
007/978-3-030-01424-7 27

153. van der Aalst, W., Carmona, J. (eds.): Process mining handbook. Springer, Cham (2022)

53

https://doi.org/10.1007/978-3-031-47994-6_12
https://doi.org/10.1007/978-3-031-40177-0_4
https://doi.org/10.1007/978-3-031-40177-0_21
https://doi.org/10.1007/978-3-031-40177-0_21
https://doi.org/10.1007/S10270-017-0639-0
https://doi.org/10.1007/S10270-017-0639-0
https://doi.org/10.1016/S0004-3702(98)00059-9
https://doi.org/10.1016/S0004-3702(98)00059-9
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1108/09576059710815716
https://doi.org/10.22266/ijies2023.0430.14
https://doi.org/10.22266/ijies2023.0430.14
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27

154. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is All you Need. In: Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

155. Venugopal, I., Töllich, J., Fairbank, M., Scherp, A.: A Comparison of Deep-Learning Meth-
ods for Analysing and Predicting Business Processes. In: International Joint Conference on
Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021, pp. 1–8. IEEE (2021).
https://doi.org/10.1109/IJCNN52387.2021.9533742

156. Vidgof, M., Bachhofner, S., Mendling, J.: Large Language Models for Business Process
Management: Opportunities and Challenges. In: Francescomarino, C.D., Burattin, A., Ja-
niesch, C., Sadiq, S.W. (eds.) Business Process Management Forum - BPM 2023 Forum,
Utrecht, The Netherlands, September 11-15, 2023, Proceedings. LNBIP, vol. 490, pp. 107–
123. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-41623-1 7

157. Waikhom, L., Patgiri, R.: A survey of graph neural networks in various learning paradigms:
methods, applications, and challenges. Artif. Intell. Rev. 56(7), 6295–6364 (2023). https:
//doi.org/10.1007/S10462-022-10321-2

158. Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y.,
Xiao, T., He, T., Karypis, G., Li, J., Zhang, Z.: Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks. CoRR abs/1909.01315 (2019).
arXiv: 1909.01315

159. Watson, I.D.: Case-based reasoning is a methodology not a technology. Knowl. Based Syst.
12(5-6), 303–308 (1999). https://doi.org/10.1016/S0950-7051(99)00020-9

160. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in
Process-Aware Information Systems. In: Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE. Ed. by J.A.B. Jr., J. Krogstie, O. Pastor, B. Pernici, C.
Rolland, and A. Sølvberg, pp. 381–395. Springer (2013). https://doi.org/10.1007/978-3-64
2-36926-1 31

161. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V.,
Zhou, D.: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In:
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022 (2022)

162. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of Corre-
spondences between Process Models. In: Pernici, B. (ed.) Advanced Information Systems
Engineering, 22nd International Conference, CAiSE 2010, Hammamet, Tunisia, June 7-9,
2010. Proceedings. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010). https://doi
.org/10.1007/978-3-642-13094-6 37

163. Wilkerson, Z., Leake, D., Crandall, D.J.: On Combining Knowledge-Engineered and Network-
Extracted Features for Retrieval. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) Case-Based
Reasoning Research and Development - 29th International Conference, ICCBR 2021, Sala-
manca, Spain, September 13-16, 2021, Proceedings. LNCS, vol. 12877, pp. 248–262. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-86957-1 17

54

https://doi.org/10.1109/IJCNN52387.2021.9533742
https://doi.org/10.1007/978-3-031-41623-1_7
https://doi.org/10.1007/S10462-022-10321-2
https://doi.org/10.1007/S10462-022-10321-2
https://arxiv.org/abs/1909.01315
https://doi.org/10.1016/S0950-7051(99)00020-9
https://doi.org/10.1007/978-3-642-36926-1_31
https://doi.org/10.1007/978-3-642-36926-1_31
https://doi.org/10.1007/978-3-642-13094-6_37
https://doi.org/10.1007/978-3-642-13094-6_37
https://doi.org/10.1007/978-3-030-86957-1_17

164. Wu, H., Judd, P., Zhang, X., Isaev, M., Micikevicius, P.: Integer Quantization for Deep
Learning Inference: Principles and Empirical Evaluation. CoRR abs/2004.09602 (2020).
arXiv: 2004.09602

165. Wu, L.Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: StarSpace: Embed All
The Things! In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 5569–5577. AAAI Press (2018). https://doi.org/10.1609/AAAI.V32I1.11996

166. Wu, L., Cui, P., Pei, J., Zhao, L. (eds.): Graph Neural Networks: Foundations, Frontiers,
and Applications. Springer Singapore, Singapore (2022)

167. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph Neural Networks in Recommender
Systems: A Survey. ACM Comput. Surv. 55(5), 97:1–97:37 (2023). https://doi.org/10.114
5/3535101

168. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A Comprehensive Survey on
Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021).
https://doi.org/10.1109/TNNLS.2020.2978386

169. Yager, R.R.: “A Unified View of Case Based Reasoning and Fuzzy Modeling.” In: Fuzzy
Logic Foundations and Industrial Applications. Ed. by D. Ruan. Boston, MA: Springer US,
1996, pp. 5–26. isbn: 978-1-4613-1441-7. https://doi.org/10.1007/978-1-4613-1441-7 1.

170. Ye, X., Leake, D., Crandall, D.: Case Adaptation with Neural Networks: Capabilities and
Limitations. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and
Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-
15, 2022, Proceedings. LNCS, vol. 13405, pp. 143–158. Springer, Heidelberg (2022). https:
//doi.org/10.1007/978-3-031-14923-8 10

171. Ye, X., Leake, D., Jalali, V., Crandall, D.J.: Learning Adaptations for Case-Based Classi-
fication: A Neural Network Approach. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) Case-
Based Reasoning Research and Development - 29th International Conference, ICCBR 2021,
Salamanca, Spain, September 13-16, 2021, Proceedings. LNCS, vol. 12877, pp. 279–293.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-86957-1 19

172. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in Graph Neural Networks: A Taxonomic
Survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5782–5799 (2023). https://doi.org
/10.1109/TPAMI.2022.3204236

173. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In: Watson,
I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Interna-
tional Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 17–32. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-583
42-2 2

174. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by Means of
Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds.) Case-Based Rea-
soning Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 388–403.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 26

175. Zhao, Z., Zheng, P., Xu, S., Wu, X.: Object Detection With Deep Learning: A Review.
IEEE Trans. Neural Networks Learn. Syst. 30(11), 3212–3232 (2019). https://doi.org/10.1
109/TNNLS.2018.2876865

55

https://arxiv.org/abs/2004.09602
https://doi.org/10.1609/AAAI.V32I1.11996
https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1007/978-1-4613-1441-7_1
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.1007/978-3-030-86957-1_19
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-29249-2_26
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

176. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph
neural networks: A review of methods and applications. AI Open 1, 57–81 (2020). https:
//doi.org/10.1016/J.AIOPEN.2021.01.001

177. Zhou, Y., Zeng, J.: Massively Parallel A* Search on a GPU. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pp. 1248–1255. AAAI Press (2015). https://doi.org/10.1609
/AAAI.V29I1.9367

178. Zhou, Y., Zheng, H., Huang, X.: Graph Neural Networks: Taxonomy, Advances and Trends.
CoRR abs/2012.08752 (2020). arXiv: 2012.08752

56

https://doi.org/10.1016/J.AIOPEN.2021.01.001
https://doi.org/10.1016/J.AIOPEN.2021.01.001
https://doi.org/10.1609/AAAI.V29I1.9367
https://doi.org/10.1609/AAAI.V29I1.9367
https://arxiv.org/abs/2012.08752

Part II

Publications

Chapter 5

Using Graph Embedding Techniques in
Process-Oriented Case-Based Reasoning

Bibliographic Information

Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented Case-
Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

Abstract

Similarity-based retrieval of semantic graphs is a core task of Process-Oriented Case-Based Rea-
soning (POCBR) with applications in real-world scenarios, e.g., in smart manufacturing. The
involved similarity computation is usually complex and time-consuming, as it requires some
kind of inexact graph matching. To tackle these problems, we present an approach to modeling
similarity measures based on embedding semantic graphs via Graph Neural Networks (GNNs).
Therefore, we first examine how arbitrary semantic graphs, including node and edge types and
their knowledge-rich semantic annotations, can be encoded in a numeric format that is usable by
GNNs. Given this, the architecture of two generic graph embedding models from the literature
is adapted to enable their usage as a similarity measure for similarity-based retrieval. Thereby,
one of the two models is more optimized towards fast similarity prediction, while the other
model is optimized towards knowledge-intensive, more expressive predictions. The evaluation
examines the quality and performance of these models in preselecting retrieval candidates and
in approximating the ground-truth similarities of a graph-matching-based similarity measure for
two semantic graph domains. The results show the great potential of the approach for use in
a retrieval scenario, either as a preselection model or as an approximation of a graph similarity
measure.

Keywords

Case-Based Reasoning · Process-Oriented Case-Based Reasoning · Graph Embedding · Sia-
mese Graph Neural Networks · Similarity-Based Retrieval · Neural Networks · Graph Encod-
ing · MAC/FAC Retrieval

58

https://doi.org/10.3390/A15020027

Copyright Notice

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (https://creativecommons.org/licenses/by/4.0/).

5.1 Introduction

Case-Based Reasoning (CBR) [1, 51] is used widely across different domains, e.g., for cooking
assistance [47], in smart manufacturing [41], and for data mining support [57]. CBR is a method-
ology for problem solving where problems and their respective solutions (bundled as cases in a
case base) are used to solve upcoming problems (queries). This process relies on similarity com-
putations that are harnessed to find the best-matching case with regard to a given query. It is
assumed that the solution of a case can be reused for the given query if the problem of the case
is similar to the problem in the query. These core principles are reflected in the CBR cycle [1],
which describes four phases of CBR applications: a case is retrieved from the case base according
to a given query, reused as a candidate solution, revised to check the fit for the current problem,
and retained to be used for further problems. A well-working similarity-based retrieval tool is
especially important because, as the first phase, it influences the results of the subsequent phases.
A subfield of CBR, which is called Process-Oriented Case-Based Reasoning (POCBR) [8, 10, 45],
focuses on the application of CBR methods and principles in process and workflow management.
POCBR particularly aims at managing procedural experiential knowledge, e.g., retrieving work-
flow models from large repositories [8]. The involved processes are usually represented as semantic
graphs [23, 41, 57], which adds complexity to all involved tasks. For instance, in similarity-based
retrieval, the main influential factor on performance is the definition of the similarity measures
and the underlying case representation. A simple case representation in the form of feature
vectors can be assessed in linear time, while most similarity measures between semantic graphs
rely on some form of subgraph isomorphism check, which is computationally expensive, usually
with polynomial or exponential complexity [8, 13, 49]. This example highlights the need for effi-
cient similarity measures between semantic graphs since similarity computations are ubiquitous
in POCBR.

One approach to tackle this problem is to reduce the complexity of the semantic graph
case representation and to compute similarities with a simplified representation, e.g., by using
similarity measures on constructed feature vectors of graphs [11]. However, this reveals a new
challenge of identifying important features of semantic graphs, at best, without the need for
manual modeling, since it results in increased knowledge acquisition effort [24]. To mitigate this
problem and to enable automatic representation learning for semantic graphs, Deep Learning
(DL) [35] can be used. A key factor of success for DL is the wide applicability to different
types of data, ranging from simple data in the form of one-dimensional feature vectors to more
complex data such as graph-structured objects [21, 53]. A popular DL method for processing
graph-structured data is referred to as graph embedding [14, 22]. Graph embedding models
are neural networks that learn to represent a graph or its elements in a low-dimensional latent
space. The resulting vector representation of embedded graphs enables downstream algorithms to
work more efficiently compared to being used on the complex graph structure. Therefore, graph
embedding methods are suitable to address the challenge of automatically learning a simplified
case representation in POCBR. Further, by adding a component to the neural networks that
transforms pairs of embedded graphs to a similarity value, these models can also be directly used
as similarity measures.

59

https://creativecommons.org/licenses/by/4.0/

As a first step towards this goal, our previous work [31] presents the use of an embedding
technique in POCBR that accelerates the retrieval process while maintaining almost the same
level of retrieval quality as other manually modeled approaches (e.g., [11, 48]). The approach uses
a general-purpose embedding framework that embeds graph nodes individually, based on graph
triplets of two nodes and an edge between them. Thereby, however, only the graph structure is
considered in the embedding process, with no integration of the semantic annotations of nodes
and edges. Due to this shortcoming, our subsequent approaches [26, 27] pursue the idea of
using Graph Neural Networks (GNNs) for embedding in POCBR, focusing on the embedding
of semantic annotations as well as the graph structure. These publications are extended in
this paper to describe graph embedding in POCBR in a broader context. The focus is on
integrating embedding methods of semantic graphs as similarity measures in case retrieval. Our
main contributions are:

• a comprehensive encoding scheme that enables the integration of semantic graphs with
their semantic annotations and structure to be used in GNNs;

• two specialized, adapted GNN architectures for learning similarities between semantic
graphs, based on GNNs from the literature [37];

• an evaluation of the GNNs in different retrieval scenarios with regard to performance and
quality.

The remainder of the paper is organized as follows: Section 5.2 presents the foundations of our
semantic graph format and the graph matching algorithm for similarity assessment between these
semantic graphs. In addition, two variants of similarity-based retrieval are introduced and related
work is discussed. In Section 5.3, we present the architecture of two GNNs, introduced by Li et al.
[37], that serve as the basis for our adapted GNNs. Section 5.4 then elaborates on the encoding
procedure for our semantic graph format that transforms the available semantic information
into numeric vector space encodings. Furthermore, we present how to adapt the GNNs from
Section 5.3 to be used for predicting pairwise graph similarities. Section 5.5 describes a system
architecture for integrating the GNN-based similarity measures into a POCBR framework and
the underlying process of case retrieval. Additionally, Section 5.6 evaluates the adapted GNNs
in the context of different similarity-based retrieval scenarios. Eventually, the conclusions of this
paper, together with future research directions, are given in Section 5.7.

5.2 Foundations and Related Work

The prerequisite for applying graph embedding techniques in POCBR is handling the underlying
data representation in the form of semantic graphs, which is introduced in Section 5.2.1. In
addition, we explain the similarity assessment procedure for pairs of these semantic graphs (see
Section 5.2.2), which plays a key role in similarity-based retrieval (see Section 5.2.3). Further,
related work is presented to highlight previous and current developments in the use of embedding
techniques in Case-Based Reasoning (CBR; see Section 5.2.4).

5.2.1 Semantic Graph Representation

POCBR applications are characterized by a high degree of modeled knowledge. Our semantic
graph format allows the integration of semantic knowledge within graph structures. The format
is mainly used to model processes and workflows in various domains (e.g., [23, 41, 47, 57]). We
represent all cases and queries as semantically annotated directed graphs referred to as NEST

60

graphs, introduced by Bergmann and Gil [8]. More specifically, a NEST graph is a quadruple
G = (N,E,S,T) that is composed of a set of nodes N and a set of edges E ⊆ N × N . Each
node and each edge has a specific type from T that is indicated by the function T : N ∪E → T .
Additionally, the function S : N ∪ E → S assigns a semantic description from S (semantic
metadata language, e.g., an ontology) to nodes and edges. Whereas nodes and edges are used
to build the structure of each graph, types and semantic descriptions are additionally used to
model semantic information. Hence, each node and each edge can have a semantic description.
We denote the number of nodes in a graph as |N | ∈ R and the number of edges as |E| ∈ R.

mayonnaise

coat layer

sandwich

dish

task node data node control-flow dataflow part-of

coat

Duration: 2 (Integer)

Auxiliaries: Spoon, Knife (List)
baguette

gouda

sandwich

recipe

workflow

node edge edge edge

Figure 5.1: Exemplary cooking recipe represented as a NEST graph.

Figure 5.1 shows a simple example of a NEST graph that represents a cooking recipe for
making a sandwich. The mayonnaise–gouda sandwich is prepared by executing the cooking
steps coat and layer (task nodes) with the ingredients mayonnaise, baguette, sandwich dish,
and gouda (data nodes). All components are linked by edges that indicate relations, e.g., may-
onnaise is consumed by coat. Semantic descriptions of task nodes and data nodes are used to
further specify semantic information belonging to the recipe components. Figure 5.1 shows an
example of the semantic description of the task node coat. The provided information is used to
describe the task more precisely. In this case, a spoon and a knife are needed to execute the task
(Auxiliaries) and the estimated time that the task takes is two minutes (Duration). The defi-
nition of NEST graphs [8] does not strictly specify the contents of the semantic descriptions in S.
To frame the scope of this work regarding semantic descriptions, we refer to the definitions of the
POCBR framework ProCAKE [9] since it is widely used in the POCBR literature (e.g., [26, 27,
31, 36, 57]). Entries of semantic descriptions in ProCAKE have a certain data type and a content
(or value). For instance, the attribute Duration within the semantic description of coat (see
Figure 5.1) has the content 2 and the data type Integer. The available semantic descriptions
can be divided into atomic and composite ones, denoted as Satom ⊂ S and Scomp ⊂ S. The
atomic descriptions comprise strings, numerics (integer and double), timestamps, and booleans
and represent simple base data. Composite descriptions are more complex and define a structure
(or relations) over other composite or atomic data. The composite data comprise attribute–value
pairs (dictionaries), lists, and sets. For instance, the semantic description in our example is it-
self a list of attribute–value pairs, where the attribute Duration is an integer (atomic) and the
attribute Auxiliaries is a list (composite). This complexity and flexibility in representation
is not easy to handle for DL models (see [6, 27, 32] for more details) and requires specific data
encoding methods that will be discussed in our approach.

61

5.2.2 Similarity Assessment of Semantic Graphs

Determining the similarity between two NEST graphs, i.e., a query graph QG and a case graph
CG, requires a similarity measure that assesses the structure of nodes and edges as well as
the semantic descriptions and types of these components. Bergmann and Gil [8] propose a
semantic similarity measure that determines a similarity based on the local–global principle [50].
A global similarity, i.e., the similarity between two graphs, is composed of local similarities, i.e.,
the pairwise similarities of nodes and edges. The similarity between two nodes with identical
types is defined as the similarity of the semantic descriptions of these nodes. The similarity
value between two edges with identical types is not only composed of the similarity between the
semantic descriptions of these edges, but, in addition, the similarity of the connected nodes is
taken into account. For instance, the similarity between the data node baguette from Figure 5.1
and an arbitrary node from another graph is determined by first checking if their node types are
equal. If this is the case, the similarity between both nodes is defined as the similarity between
the semantic descriptions of both nodes. The similarity of the node baguette is also part of the
similarity assessment of all connected edges, e.g., the dataflow edge to the task node coat. The
local–global principle [50] is also harnessed to compute similarities between semantic descriptions
of nodes and edges. This means that the global similarity between two semantic descriptions
is composed of the local similarities according to the structure of atomic and composite data
of these semantic descriptions. When considering the task node coat from Figure 5.1 as an
example, the global similarity between coat and another arbitrary task node with the same
structure is composed of the local similarities between the values of Duration and Auxiliaries.
The similarity of Auxiliaries is, in turn, dependent on the similarities of individual list items.
To make use of the local–global principle for similarity assessment, similarity measures for all
components of the semantic descriptions are part of the similarity knowledge associated with the
domain. This knowledge usually stems from domain experts and specifically takes into account
the type of data [7], e.g., Levenshtein distance for strings and Mean Absolute Error (MAE) for
numerics. A common domain model is also required for all graphs and their elements in order
to allow the definition of similarity measures between objects that have a comparable structure.
The global similarity of the two graphs sim(QG,CG) is finally calculated by finding an injective
partial mapping that maximizes the aggregated local similarities of all pairs of mapped nodes
and edges.

baguette
coat layer

ciabatta
cut bake

Query

Case

Figure 5.2: Mapping procedure of nodes with illegal mappings.

The possible node mappings between an excerpt of the graph from Figure 5.1 and another
arbitrary graph are visualized in Figure 5.2. It highlights the algorithm’s property that nodes
and edges with different types are not allowed to be mapped (depicted with bold crosses). That
is, the mapping process is constrained according to the types of nodes and edges. Additionally,

62

the figure points out the increase in complexity that comes with the number of nodes and edges,
as every node and edge can be mapped onto many other nodes and edges. The complexity
of finding a mapping that maximizes the global similarity between a query QG and a single
case CG is tackled by utilizing an A* search algorithm, also introduced by Bergmann and Gil [8].
However, A* search is usually time-consuming and can lead to long retrieval times [27, 31, 49, 56].
Therefore, the algorithm features an adjustable parameter for setting the maximum number of
partially mapped solutions (called MaxPMS). Adjusting MaxPMS serves as a trade-off between
the optimality of the mappings and the time required for finding them, i.e., reducing MaxPMS
results in solutions that are not optimal at a lower computation time and vice versa. In most
practical applications of the A* search, the search space is very large, which makes it unfeasible
to search for a solution to the mapping problem if MaxPMS is unlimited.

5.2.3 Similarity-Based Retrieval of Semantic Graphs

While the similarity assessment that is shown in Section 5.2.2 can be used to determine a single
similarity between two semantic graphs, it is more common to use it in the retrieve phase of
CBR. A retrieval aims to find the most similar cases from a case base CB for a given query
QG. The most similar cases are determined by computing the pairwise similarity between the
query and each case from the case base, before ranking the cases in descending order according
to the computed similarities. Many CBR applications only consider the k-most similar cases as
result of the retrieval, which is similar to the well-known k-nearest neighbors (kNN) algorithm.
Although the retrieval algorithm itself has a computational complexity of O(|CB |), the retrieval
time is usually dominated by the similarity measure that is used to compare the cases. For
instance, measures that perform any kind of inexact subgraph matching (such as the similarity
measure introduced in Section 5.2.2) belong to the class of NP-complete algorithms [8, 13, 49] and
thus have a great impact on performance. To overcome possible performance issues in retrieval
situations, the approach of MAC/FAC (“Many are called but few are chosen”), introduced by
Forbus, Gentner, and Law [19], can be used. MAC/FAC is a two-staged retrieval approach
that aims to decrease the computation time by pre-filtering the case base in the MAC phase
to reduce the number of cases that have to be evaluated by a (potentially) computationally
complex similarity measure in the subsequent FAC phase. The MAC phase is parameterized by
giving a specific similarity measure and a filter size. The approximating similarity measure of the
MAC phase usually has low computational complexity and is knowledge-poor, thus introducing
the trade-off between quality and performance of the similarity assessment. The filter size is
a parameter of the MAC/FAC algorithm that can be used to control how many of the most
similar cases according to the MAC similarity measure are transferred to the FAC phase. In
general, the results from the MAC stage can be seen as candidates that might be part of the
most similar cases regarding the query. With the pre-filtered cases as an input, the FAC phase
applies the computationally intensive similarity measure on these candidates. The result is a list
of the same length as the filter size that is not guaranteed to contain the most similar cases of the
case base according to the query graph. Further truncation to the k-most similar cases can be
performed analogously to the standard retrieval. Eventually, MAC/FAC is a trade-off between
retrieval quality and retrieval time. The (possibly) decreased quality results from the pre-filtering
that might not return the same graphs that a standard retrieval would have returned. The
decreased retrieval time is due to a smaller amount of graph pairs that have to be evaluated by the
computationally complex, knowledge-intensive similarity measure in the FAC phase. This points
out the importance of a well-designed and well-integrated MAC phase as it significantly influences
the results of using a MAC/FAC implementation [19, 29]. Related MAC/FAC approaches in the
context of POCBR use similarity measures that are defined on clustered representations of the

63

case base [48], manually modeled graph features [11], and embeddings of graph triplets [31].

5.2.4 Related Work

Several approaches have been proposed in CBR research that use DL methods as a key compo-
nent. There is also strong interest in the combination of DL and CBR methods in the commu-
nity [32]. To the best of our knowledge, only the work of Klein, Malburg, and Bergmann [31]
utilizes a DL-based embedding procedure in the subfield of POCBR. They use a general-purpose
embedding framework to learn vector representations in an unsupervised manner, based on the
structural properties of semantic graphs, such as the relation between task and data nodes. The
approach is evaluated as a similarity measure in retrieval scenarios, where it outperforms other
automatically learned approaches and achieves comparable performance to other approaches that
are manually modeled. Our approaches in this paper and previous work [26, 27] differ from the
work of Klein, Malburg, and Bergmann [31] as we not only consider structural graph information
for the embedding procedure but also the semantic information of nodes and edges. Outside of
POCBR, Mathisen, Bach, and Aamodt [43] and Amin et al. [3] use embedding techniques and
Siamese neural networks in CBR retrieval. The approaches train neural networks to learn similar-
ity measures that are applied in the domains of aquaculture and customer support management,
respectively.

The following approaches are related to our work in the broader sense due to their integration
of DL components into CBR or vice versa. Most of the approaches automatically learn a similarity
measure, similar to our approach. Corchado and Lees [17] integrate a neural network into CBR
retrieval and reuse phases, where the network is dynamically retrained during runtime with regard
to the current query. The application is used to predict water temperatures along a sea route.
Dieterle and Bergmann [18] use neural networks for several tasks within their CBR application
that predicts prices of domain names, e.g., for the feature weighting of case attributes. Mathisen
et al. [42] investigate methods for learning similarity measures from data. They propose two
different strategies with different levels of required manual effort, where the measure with minimal
manual modeling outperforms other methods. The application of DL methods in case adaptation
is discussed by several other approaches, e.g., [34, 39]. These two exemplary approaches pursue
the idea of using neural networks for case adaptation by learning to transfer differences between
case problems to the respective case solutions. Leake and Ye [33] advance this idea by taking into
account that retrieval knowledge and adaptation knowledge are related in CBR. Therefore, they
use a specific algorithm to optimize according to both aspects when training neural networks.
Furthermore, several papers, such as Gabel and Godehardt [20] and Keane and Kenny [28],
tackle a major drawback of DL applications when compared to CBR applications: the reduced
explainability. The former approach addresses the problem by projecting DL predictions onto
real cases before using them. The latter approach tries to explain the predictions of DL methods
with CBR components in a twin-systems approach.

5.3 Neural Networks for Graph Embedding

For embedding semantic graphs, we rely on GNNs that process graph nodes and edges to represent
the graph in a low-dimensional latent space. The specific GNN architecture that our approach
is based on is presented by Li et al. [37]. Although there are several different GNN architectures
presented in the literature (see [6] for an overview of some approaches), that of Li et al. is chosen
as a foundation, since they specifically describe and evaluate their approach for the task of
similarity-based search, which is closely related to our domain. They describe two GNN variants
that are called Graph Embedding Model (GEM) and Graph Matching Network (GMN). Both

64

neural networks work with message-passing between nodes and their features along the edge
structure [21, 53] as core learning mechanisms. In addition, both neural networks have a Siamese
architecture [5, 12] that is used to embed two graphs with shared weights and apply a vector
similarity measure on the embedding vectors of both graphs. In the following, we introduce the
general structure of GEM and GMN (see Section 5.3.1) and explain the specific components in
more detail (see Sections 5.3.2–5.3.4).

5.3.1 General Neural Network Structure

The general setup of the neural networks is composed of four main components that are put
together in successive order (see Figure 5.3).

Aggregator

Propagation

Layer

Embedder

Graph

Similarity 0.65

OR

G1 G2

G1 G2

Figure 5.3: Graph Embedding Model (GEM; left branch) and Graph Matching Network (GMN;
right branch) (derived from [37]).

These components are the embedder, the propagation layer, the aggregator, and the graph sim-
ilarity. The embedder transforms the raw graph input data into an initial vector representation,
resulting in a single embedding vector for each node and edge, respectively. During propaga-
tion, the vector-based node information is iteratively merged according to the edge structure
of the graphs. Thereby, the node embedding vectors are updated via element-wise summations
according to the information of all incoming edges and the nodes that are connected via these
edges. This captures information about the local neighborhood of each node in its embedding
vector. After propagating information for a certain number of rounds, the aggregator combines
the embeddings of all nodes from each graph to form a single whole-graph embedding. The final
component computes a single scalar similarity value with the embedding vectors of both graphs
by utilizing a vector similarity measure such as the cosine similarity. The difference between
both models comes from a different propagation strategy. The GEM uses an isolated propa-
gation strategy that only propagates information within a single graph. In contrast, the GMN
uses an attention-based cross-graph matching component that propagates information across
both graphs in an early state of similarity assessment. In the following, all four components are
described more formally and in more detail. The inputs of each neural network are two graph
structures G1 = (N1,E1) and G2 = (N2,E2), although a general graph G = (N,E) with nodes N
and edges E ⊆ N ×N is used as a placeholder for components in the Siamese architecture that
operate on a single graph.

65

5.3.2 Embedder

The embedder computes an initial embedding for all nodes v, w ∈ N and edges (v, w) ∈ E
to be used in the propagation phase. It is assumed that all nodes and edges have a numeric
feature vector that expresses the contained information of a node or an edge. The functions
featnode : N → Rln and featedge : E → Rle map nodes and edges to their vector encoding in
the ln-dimensional and le-dimensional real space, respectively. For instance, when dealing with
NEST graphs, these functions should encode the type and the semantic description of a node or
an edge. We discuss the implementation of these functions for our case in Section 5.4.1 and stick
to the generic definition at this point. The embedding procedure can be defined as follows:

h
(0)
v = MLPnode(featnode(v)), ∀v ∈ N

hv,w = MLPedge(featedge(v,w)), ∀(v, w) ∈ E
(5.1)

Each node v is mapped to an embedding vector h
(0)
v ∈ RlnEmb that is part of an

lnEmb-dimensional vector space. This embedding vector has the value of transformation step
0 (i.e., the initial embedding), which is depicted by the superscript 0. The mapping is performed
by a Multi-Layer Perceptron (MLP) that can be configured in terms of the number of layers,
number of hidden neurons, and so on. The edges are mapped in the same fashion. The feature
vector of each edge is embedded into hv,w ∈ RleEmb by a separate MLP. The resulting edge
embedding is located in the leEmb-dimensional vector space. In contrast to node embeddings,
edge embeddings do not have an associated transformation step (i.e., superscript 0), because
edge representations remain unchanged after the embedding by the embedder. The embeddings
of node features are simultaneously used as the initial representation for nodes in the following
propagation component (see Section 5.3.3). They are constantly updated by the neural network,

which is indicated by the assigned transformation step, e.g., h
(1)
v after the first update and h

(5)
v

after the fifth update. Furthermore, the values of lnEmb and leEmb (referred to as embedding size)
can be used to parameterize the MLPs. The larger the embedding size, the more information
can be stored in the particular embedding vector but the more time it takes to compute these
vectors.

5.3.3 Propagation Layer

With the initial embeddings of all nodes and edges, the propagation layer can be applied. This
layer differs significantly for GEM and GMN. Therefore, the propagation concept of the GEM
will be explained first, and the propagation concept of the GMN afterwards. The propagation
layer of the GEM uses edges between nodes to iteratively update the representation of these
nodes. In a single one of the K propagation steps, the representation of each node is updated.

mw,v = NNmessage([h
(k)
v , h(k)

w , hv,w]), ∀(v,w) ∈ E (5.2)

mw,v is the representation of a single message between nodes. It is composed of the con-
catenated inputs of the node representation of v, w, and the representation of the edge ev,w,
transformed by the neural network layer NNmessage. The type of this layer can be freely chosen
but an MLP is recommended by Li et al. [37]. As follows, the message representation mw,v is

used to update all node representations from the current state h
(k)
v to the next state h

(k+1)
v :

h(k+1)
v = NNnode

[h(k)
v ,

∑
(w,v)∈E

mw,v

] , ∀v ∈ N (5.3)

66

The neural network layer NNnode from Equation (5.3) takes as inputs a concatenation of the

current node state of node v, i.e., h
(k)
v , and an aggregation of the message representations of

all incoming edges of node v (see Equation (5.2)). This aggregation can be any commutative
element-wise vector operator, e.g., sum, mean, maximum, or minimum. The layer NNnode can
either be an MLP or a recurrent layer core such as a Gated Recurrent Unit (GRU) [16] and a Long
Short-Term Memory (LSTM) [25]. The GMN approaches propagation from a different point of
view to the GEM. Whereas the GEM only considers messages (in the form of edges) within
a single graph, the GMN matches nodes from both graphs at an early stage of the similarity
assessment.

att(h(k)
v , h(k)

w) =
evsim(h(k)

v ,h(k)
w)∑

w′∈N :N∋w

evsim(h(k)
v ,h

(k)

w′)
(5.4)

Equation (5.4) shows the computation of the function att that computes attention weights
using a softmax attention (see [4, 55] for a comprehensive explanation of attention in neural
networks). In this case, the softmax function can be interpreted as the indication of relevance

that the node representation h
(k)
w has for matching with the node representation h

(k)
v . The

function vsim can be any vector similarity measure, e.g., cosine similarity, that yields a scalar
value. To indicate the attention weights of a node from one graph to all nodes of another graph,
the descriptor attmat is used. For instance, attmat(v ∈ G1) represents a matrix where each row
contains the pairwise attention weights (as computed by the function att) of the node v from
graph G1 to other nodes from graph G2.

h(k+1)
v = NNnode

[h(k)
v ,

∑
(w,v)∈E1

(mw,v), h
(k)
v ⊖

∑
w′∈N2

attmat(v) · h(k)
w′

] (5.5)

These attention weights are then used in the process of constructing node representations

for the next transformation step, i.e., h
(k+1)
v , by extending the update process of the GEM (see

Equation (5.5)). The extended function NNnode of the GMN takes a third parameter that adds
a cross-graph matching component. The cross-graph matching component is made up of the
attention weights introduced by Equation (5.4). The matrix of attention weights of node v,
i.e., attmat(v) is multiplied with the representation vector of all nodes from G2, i.e., attmat(v) ·
h
(k)
w′ . The resulting vectors are finally aggregated and subtracted element-wise from the node

representation of node v. Taking the difference in this case intuitively expresses the distance
between node v and the closest neighbor in the other graph [37].

5.3.4 Aggregator and Graph Similarity

The next step after the propagation layer is the aggregator. The aggregator aggregates all node
representations from graph G that result from the K-th iteration of propagation to form a single
whole-graph representation hG.

hG = MLPG

(∑
v∈N

(
σ
(
MLPgate(h

(K)
v)

)
⊙MLPstate(h

(K)
v)

))
(5.6)

The aggregation approach in Equation (5.6) originates from Li et al. [38]. It describes a
weighted sum that uses gating vectors as a method to differentiate relevant from irrelevant node

67

representations. At the single node level, the function MLPgate transforms the node represen-

tation h
(K)
v to a gating vector. This gating vector is then activated with the softmax function

σ (similar to Equation (5.4)). MLPstate transforms the node representation into a new vector
that can then be used in an element-wise multiplication (indicated by the symbol ⊙), resulting
in the final single-node representation. The representations of all individual nodes are afterwards
combined by an element-wise sum (indicated by the sum symbol Σ) to form a single vector. This
single vector finally acts as an input for MLPG, leading to the whole-graph representation hG.
hG is an element of Rlg , whereas the vector length lg can be parameterized and contributes to a
trade-off between representation quality (i.e., increased lg) and computation time (i.e., decreased
lg).

To obtain a single scalar from the whole-graph representation of the two graphs, represented
as the final similarity fsim(hG1 , hG2), it is necessary to apply a vector similarity measure on the
graph vectors (see Equation (5.7)).

fsim(hG1
, hG2

) = vsim(hG1
, hG2

) (5.7)

Li et al. [37] do not specify the type of vector similarity measure. Common candidates
are cosine similarity, dot product, and Euclidean distance. To have a similarity value that is
bounded between [0,1], it is recommended to use the cosine similarity in combination with a
ReLU activation of MLPG.

5.4 Neural-Network-Based Semantic Graph Similarity Measure

To apply the GEM and the GMN (introduced in Section 5.3) as a similarity measure in a retrieval
scenario, the neural networks have to be suitable for handling the involved data, i.e., pairs of
semantic graphs as input data and a similarity value as output data. To establish a proper
integration, we first define an encoding scheme for our semantic graphs that involves encoding
the semantic descriptions and types (see Section 5.4.1). The GEM and the GMN are then adapted
to process the encoded semantic graphs and be used as a similarity measure in similarity-based
retrieval (see Section 5.4.2).

5.4.1 Encoding Semantic Graphs

An arbitrary NEST graph [8] to encode G has the following four components: the nodes N , the
edges E, the semantic descriptions S, and the types T . When looking at the introduced neural
networks in Section 5.3, it is apparent that they are capable of handling the structure of nodes
and edges but are not designed to process the rich semantic information and the types of nodes
and edges. Li et al. [37] assume nodes and edges to be represented by a feature vector, which is
expressed by the functions featnode : N → Rln and featedge : E → Rle . Since they do not specify
how this feature vector is generated, our approach describes specific encoding methods for the
types T (see Section 5.4.1) and the semantic descriptions S (see Section 5.4.1) in the following.
Together with the graph structure that is natively integrated into both GNNs, this makes it
possible to process our semantic graph format.

Encoding Node and Edge Types

The types of nodes and edges (see Section 5.2.1) are encoded as they are an integral part of
semantic graphs. This is also crucial because the types are used to distinguish nodes and edges
in terms of similarity. Only nodes and edges with identical types are mapped during similarity

68

computation (see Section 5.2.2). Each node and each edge has exactly one type, whereas the
amount of possible different types, for both nodes and edges, is small. Hence, the types are
encoded in the form of one-hot encodings, which is represented by the function enctype : T →
Rltype . According to the NEST definition (see Section 5.2.1 and [8]), there are, in total, nine
different node and edge types, which leads to ltype = 9. The exemplary graph contains six of
these nine different type encodings that are specified by all types in the legend of Figure 5.1.
Nodes or edges with the same type always have the same type of encoding.

Encoding Semantic Descriptions

When encoding semantic descriptions, it is important to describe the underlying structure of
these data. As introduced in Section 5.2.1 and illustrated by the task node coat from Figure 5.1,
semantic descriptions are composed of atomic and composite data with a data type and the
respective data content. The possible arrangement of composite types holding atomic types, other
nested composite types holding more nested types, and so on can be visualized as a hierarchical
tree structure.

Figure 5.4a shows our semantic description used as a running example in tree form. The
depiction distinguishes between leaf nodes (ovals) and inner nodes (rectangles), as well as child-
of (dashed lines) and parent-of (dotted lines) relations. The relations between these nodes are
defined according to the hierarchical structure of the semantic description, e.g., the item Spoon

is a child of the list of Auxiliaries. More formally, the tree representation of the semantic
description can be redefined as a graph Gsem = (Ncomp ⊆ Scomp, Natom ⊆ Satom, Esem ⊆ (Ncomp∪
Natom)× (Ncomp ∪Natom)) with two sets of nodes and edges between these nodes. The encoding
procedure covers the encoding data type and content of entries within the semantic description.
This enables the neural network to learn to distinguish different semantic information with regard
to both aspects. For instance, in the semantic description of coat, the integer 2 is used as a
Duration of type integer. The same number could also be used in a different context (e.g., as the
required skill of this task on a 0 to 5 scale), which makes encoding the data type in combination
with the content crucial.

Root: coat

Duration: 2 List:
Auxiliaries

Item: KnifeItem: Spoon

leaf node inner node child-of parent-of

1

0
0

0

0

0
0
0

1

0
0

1

0
0

0

0

0
0
0

1/3

1
1/2

1

0
0

0

0

0
0
1

0

1
1

atom
ic data encodings (latom + lsem

Type)

matrix of vectors with (lcomp)

(a) (b)

Figure 5.4: Encoding of composite types: (a) Tree encoding (b) Sequence encoding

We encode the data type as a one-hot vector with the function encsemType : S → RlsemType .
Given a total of five atomic types and three composite types, all vectors have a common vector

69

length of lsemType = 8 elements. Please note that we are referring to the number of data types
of the POCBR framework ProCAKE [8] with these numbers. In general, the approach is generic
and it allows the use of any other framework, as well. This encoding procedure can be extended
in certain ways: First, it is possible to encode other atomic or composite data types in the same
way. If the atomic types are extended by a data type for timestamps, for instance, it is possible
to add a new one-hot encoding for this extension. Second, only encoding the base types, i.e.,
string, float, list, etc., can be insufficient in certain scenarios where the domain model is very
complex (see [41, 57] for examples of such domains). The proposed approach can be extended in
these cases to use individual one-hot encodings for specific data types in the domain model. For
instance, the string entries in the list of Auxiliaries might be defined in a taxonomy, which
motivates the use of an individual one-hot vector instead of the generic type vector that is used
for all strings.

The second part of encoding semantic descriptions deals with their content. Due to the
variety of different types of data, it is difficult to encode these data into a common vector space.
This requirement also hinders the use of established existing methods out of the box, e.g., one-
hot encoding for string vocabularies [44] or a single scalar value for numerics. We propose to
encode the content of one atomic data entry as a single vector with a common vector length
latom by the function encatom : Satom → Rlatom . The elements of this vector are set by a specific
encoding method for each data type. Due to space restrictions in this paper, the specific encoding
methods cannot be presented in detail. In total, our implementation contains the following
specific encoding methods for atomic types: strings that are defined by an enumeration, strings
that are defined by a taxonomy, integers, doubles, booleans, and timestamps. Please note that
the length of the vector latom has to be equal for all encoding procedures to maintain a tensor
structure and to allow processing by a neural network.

Encoding composite data mainly focuses on encoding the structure of the atomic data. To
be more flexible with defining the architecture of our GNNs, we present two means of encoding
composite data that vary in their complexity and require different neural networks for processing:
tree encoding to be processed by a GNN and sequence encoding to be processed by a Recurrent
Neural Network (RNN; e.g., a LSTM [25] or a GRU [16]). The tree encoding method preserves the
hierarchical structure of the semantic descriptions as modeled in Gsem = (Ncomp, Natom, Esem).
This means that we encode the information provided by both types of nodes, as well as the
information provided by the edges. Regarding the nodes from Natom, we can reuse the functions
encsemType and encatom for encoding the data type and the content of the respective node.
The content of the nodes of Ncomp is usually characterized by the atomic vectors that they
are composed of. For instance, the list of Auxiliaries is described by the items in this list.
Nevertheless, it can be useful to consider content encodings for composite types in case there is
specific information to encode, e.g., the number of list items or their order. We still omit encoding
the content and, thus, elements of Ncomp are only encoded with the function encsemType. The
encoding of relations between nodes (Esem) represents the type of relation, i.e., parent-of or
child-of. Consequently, it is encoded as a one-hot encoding of length two, given by the function
encedge : Esem → R2.

The tree encoding method aims at preserving as much semantic and structural information
from the semantic descriptions and the underlying domain model as possible. The drawbacks
of its usage are the complex encoding procedure and the need for processing the semantic de-
scriptions with complex GNNs. To mitigate these drawbacks, we provide an alternative encoding
method where Gsem is encoded as a sequence of atomic types that can be processed by RNNs.
The function encseq : Ncomp → Rlcomp×latom+lsemType is used for this purpose. Each vector in this
sequence of atomic data is a concatenation of the data type and the content. Figure 5.4b shows
the encoded sequence of our running example. It contains three atomic encoding vectors that

70

represent the three atomic types of the semantic description given by Natom. Since the sequence
encoding does not explicitly model the structure of the semantic description, it is represented by
the order of the atomic encoding vectors in the sequence. Therefore, it is necessary to define an
ordering scheme for the sequence of each composite type. The only requirement for this ordering
scheme is that the atomic vectors are always ordered deterministically. This is important to pro-
duce the same encodings for the same semantic descriptions when randomness is present, e.g.,
for atomic types of an unordered set type. In total, our implementation contains the following
specific encoding methods for composite types: attribute–value pairs, lists, and sets.

5.4.2 Adapted Neural Network Structure

We adjust the architecture of GEM and GMN by Li et al. [37] (see Section 5.3) for our purpose
of similarity-based retrieval in POCBR. The adjusted models are further denoted as Semantic
Graph Embedding Model (sGEM) and Semantic Graph Matching Network (sGMN). Resulting
from the specific encoding scheme of semantic graphs (see Section 5.4.1), we present an adjusted
embedder (see Section 5.4.2). In addition, the propagation layer (see Section 5.4.2) and the final
graph similarity of the GMN (see Section 5.4.2) are also adapted to create a more guided learning
process that closely resembles the similarity assessment between semantic graphs. Eventually,
we present the loss function that is used for training the neural networks to predict similarities
(see Section 5.4.2).

Adapted Embedder

Introduced in Section 5.3.2, the embedder creates initial embeddings for nodes and edges. Li et
al. [37] assume nodes and edges to be represented by a simple feature vector, which is expressed
by the functions featnode : N → Rln and featedge : E → Rle . The challenge for processing our
semantic graph format with sGEM and sGMN is how to bridge the gap between our more com-
plex encoded information, i.e., one-hot encoded types and tree- or sequence-encoded semantic
descriptions, to the simple one-dimensional feature vector. To achieve this, the adapted embed-
der embeds the information of semantic descriptions and types separated from each other and
concatenates both vectors to form a single feature vector for a node or an edge.

featnode(v) = h
(0)
v =

[
htype
v , hsem

v

]
, ∀v ∈ N

featedge(v,w) = hv,w =
[
htype
v,w , hsem

v,w

]
, ∀(v, w) ∈ E

(5.8)

Equation (5.8) shows how the embeddings of types, i.e., htype
v and htype

v,w , and semantic de-
scriptions, i.e., hsem

v and hsem
v,w , are combined for each node and edge. This shows how the features

of nodes and edges are put together from the available information. In the following, the em-
bedding of types and semantic descriptions is described. The types are embedded as shown in
Equation (5.9):

htype
v = MLPnType(enctype(T (v))), ∀v ∈ N

htype
v,w = MLPeType(enctype(T (v, w))), ∀(v, w) ∈ E

(5.9)

The equation shows the process of embedding node types (htype
v) and edge types (htype

v,w).
Nodes and edges utilize separate MLPs in this process, i.e., MLPnType for node types and
MLPeType for edge types, which are applied to the one-hot encoded type vectors. The sec-
ond part of the combined feature vectors deals with embedding the semantic description of a

71

node or an edge. Since we propose two different encoding methods for semantic descriptions,
i.e., a sequence encoding and a tree encoding (see Section 5.4.1), these two encodings are also
handled differently.

hsem
v = RNNnSem(encseq(S(v))), ∀v ∈ N

hsem
v,w = RNNeSem(encseq(S(v,w))), ∀(v, w) ∈ E

(5.10)

Equation (5.10) shows the embedding of semantic descriptions of nodes (hsem
v) and edges

(hsem
v,w) that are encoded as a sequence. The sequence structure of the semantic description’s

encodings is processed by an unrolled RNN (e.g., [16, 25]). An RNN can handle sequences of
inputs with different lengths, as they are present in the encodings of semantic descriptions. We
use the output state of the last step as the result of the unrolled RNN, which is a single vector.
Please note that the sequence contains concatenations of content and data type of semantic
description entries (see Section 5.4.1) such that the respective embedding vector captures this
information.

When using semantic descriptions that are encoded with the tree encoding method, the
embedding step is not implemented with RNNs. Instead, the graph Gsem = (Ncomp, Natom, Esem)
(introduced in Section 5.4.1) is processed by utilizing a simple GNN that is similar to the GNN
architecture that also processes the entire semantic graph. Therefore, the reader can consult
the explanations in Section 5.3 for more details on certain steps. The GNN consists of several
trainable components: a component that embeds composite nodes from Ncomp, i.e., NNcomp, a
component that embeds atomic nodes from Natom, i.e., NNatom, a component that embeds edges
from Esem, i.e., NNedge, a component that performs message propagation, i.e., NNprop, and a
component that aggregates the node information to a single graph representation vector, i.e.,
NNagg. The embedding process is defined as follows:

htree(0)v = NNcomp(encsemType(S(v))), ∀v ∈ Ncomp

htree(0)v = NNatom([encsemType(S(v)), encatom(S(v))]), ∀v ∈ Natom

htreev,w = NNedge(encedge(v,w)), ∀(v, w) ∈ Esem

(5.11)

In the first step (see Equation (5.11)), all nodes and edges are embedded, which results in

the initial embedding vectors htree(0)v for each node v ∈ Natom ∪ Ncomp and htreev,w for each
edge (v, w) ∈ Esem. Thereby, we use the data type and content for embedding nodes from Natom

and only the data type for embedding nodes from Ncomp. Embedding vectors of edges from
Esem capture the encoded information of the edge representing a child-of or a parent-of relation.
The propagation component passes messages between the nodes and updates their state vector
accordingly.

mtreew,v =[htree(k)v , htree(k)w , htreev,w], ∀(v,w) ∈ Esem

htree(k+1)
v =NNprop

[htree(k)v ,
∑

(w,v)∈Esem

mtreew,v

] , ∀v ∈ Ncomp ∪Natom

(5.12)

Equation (5.12) shows the propagation process, where an updated state vector htree(k+1)
v is

computed for each node v ∈ Ncomp ∪ Natom in each propagation step k ≤ Ktree. This speci-
fies the message-passing step of the GNN, where node information is shared across the edges
within the graph. We propose to set the maximum number of propagation steps to 5 based on

72

recommendations from the literature [21, 37], i.e., Ktree = 5.

htreeG = NNagg

 ∑
v∈Ncomp∪Natom

h(Ktree)
v

 (5.13)

The final step of the GNN is the aggregation of all node vectors to a single embedding
vector that represents the embedded information of the semantic description, i.e., htreeG. Equa-
tion (5.13) shows the aggregation where the state vectors of all nodes after the final propagation
step Ktree are summed up with a commutative element-wise vector function (e.g., sum, mean,
etc.) to a single vector. This vector is eventually passed through the neural network NNagg.
Please note that the embedding procedure of semantic descriptions in the tree encoding repre-
sentation is identical for the semantic descriptions of nodes and edges. Thus, the explanations of
Equations (5.11) to (5.13) hold for nodes as well as edges and htreeG is a representative for hsem

v

and hsem
v,w . Together with the embedded nodes, this completes h

(0)
v and hv,w from Equation (5.8).

Constrained Propagation in the Semantic Graph Matching Network

The propagation layer of the GMN uses a cross-graph matching method between the nodes of
the two graphs G1 and G2 (see Section 5.3.3). Each node of G1 is compared with each node of
G2 through their softmax-activated cosine vector similarity (ranging between 0 and 1). In this
way, information is propagated between the nodes of the two graphs with regard to their pairwise
attention. According to the definition of the used graph matching algorithm (see Section 5.2.2
and [8]), only nodes and edges with the same type are allowed to be matched. That is, the
matching process is constrained according to the types of nodes and edges. These constraints
can be integrated as an alternative means of message-passing into the cross-graph propagation
component of sGMN by only allowing a cosine similarity greater than zero for nodes of the
same type. All pairs of nodes with different types are assigned a similarity of 0, representing
maximum dissimilarity. Thus, their attention is close to 0, which leads to almost no information
propagation between nodes of different types. This extension of GMN’s original cross-graph
propagation component can be seen as a form of informed machine learning [52], where prior
knowledge is used within a machine learning setup such as our sGMN. See our previous work [26]
for a discussion and an application scenario of informed machine learning in POCBR.

Trainable Graph Similarity of Semantic Graph Matching Network

In the definition of GEM and GMN, a vector similarity measure being applied on the vector
representations of two graphs G1 and G2, i.e., vsim(hG1 , hG2), computes the final similarity
value. Such a vector similarity measure is purely syntactic and not trainable regarding patterns
in these vectors. Therefore, an MLP-based approach is used to compute the pairwise similarity
of two graphs in the sGMN. This emphasizes the nature of the sGMN as a more knowledge-
intensive measure (compared to the sGEM) [37] and trades a higher computation time for a
better-quality similarity assessment.

fsimsGMN(hG1
, hG2

) = σ(MLPfsim([hG1
, hG2

])) (5.14)

The approach (see Equation (5.14)) applies an MLP on the concatenated vector represen-
tations of the two graphs. The result of this transformation is lastly activated by a logistic
function (σ) to keep the final similarity in the range of [0,1]. It is important to note that this
MLP-based pairwise graph similarity is not symmetrical, which means that, for most graph pairs,

73

fsimsGMN(hG1 , hG2) ̸= fsimsGMN(hG2 , hG1). This is also a property of the graph matching al-
gorithm (see Section 5.2.2) and other similarity measures in POCBR [7] that is only reflected
by this MLP-based graph similarity and not by the cosine vector similarity measure used in the
sGEM.

Training and Optimization

Whereas Li et al. [37] assume their training examples to be pairs of graphs that are labeled
as similar or dissimilar for training, our training examples are graph pairs with ground-truth
similarity values. Hence, each of our training graph pairs is labeled with the ground-truth
similarity value, in the range of [0,1]. This yields a regression-like problem where the neural
network aims to predict similarities that are close to the ground-truth similarities. For this
regression problem, the use of a Mean Squared Error (MSE) loss is suitable. When given a batch
B of graph pairs (G1, G2) ∈ B, the ground-truth similarity of each graph pair sim(G1, G2) ∈ [0,1],
and the predicted similarity from one of our models for each graph pair fsim(hG1 , hG2), the MSE
loss Lmse is computed as follows:

Lmse =

∑
(G1,G2)∈B

(sim(G1,G2)− fsim(hG1
, hG2

))2

|B|
(5.15)

The MSE sums up all squared differences in predicted similarity fsim(hG1
, hG2

) and labeled
similarity sim(G1,G2), and then divides this value by the number of all batched training examples
to obtain the average deviation. As originally proposed by Li et al. [37], sGEM and sGMN also
use the Adam optimizer [30] to optimize the networks’ weights according to the MSE loss value.

5.5 Application of Semantic Graph Embedding Model and Semantic Graph
Matching Network in Similarity-Based Retrieval

The sGEM and the sGMN are designed to be used as trainable similarity measures—that is,
learning how to predict the similarities of pairs of NEST graphs. The possible application sce-
narios of sGEM and sGMN in POCBR are widespread since similarity measures are used in
several different tasks, e.g., for retrieving, adapting, or retaining cases [1, 51]. We restrict our-
selves to the application of the embedding models for retrieving the k-most similar cases according
to a query (case retrieval) in this work. Thereby, the integration of the neural networks into a
standard retrieval scenario and a MAC/FAC retrieval scenario is examined (see Section 5.2.3 for
an introduction to retrieval and [27, 31] for previous work on MAC/FAC in POCBR). Figure 5.5
shows the retrieval process, which makes use of two frameworks, i.e., a POCBR framework (e.g.,
ProCAKE [9]), and a DL framework (e.g., TensorFlow [2]). These two frameworks interact while
training the neural network in an offline phase (see Section 5.5.1) and predicting pairwise graph
similarities in a retrieval with the neural network. A MAC/FAC retrieval, additionally, per-
forms a subsequent similarity computation with a knowledge-intensive similarity measure (see
Section 5.5.2).

5.5.1 Offline Training

The offline training phase has the goal of making the neural network learn how to predict similar-
ities between graphs. The phase is initiated by the POCBR framework that encodes the training
data and exports them to be used for training. The training data are composed of a case base

74

of semantic graphs, encoded according to the procedure in Section 5.4.1, and the ground-truth
pairwise similarities of these cases. The encoded graphs act as the input data to the neural
network and the ground-truth similarities are used as training targets. These target values can
be taken from various sources, e.g., computed by the graph similarity measure (see Section 5.2.2)
as in previous work [26, 27], or determined by human expert experience. The generated training
data are further exported and made available for the training session in the DL framework. The
DL framework imports the training data, trains a neural network model (sGEM or sGMN), and
exports the trained model. The exported model can be used to resume training at a later point
in time, which is helpful to reduce training time in scenarios where dynamic case bases are used
(e.g., [54, 57]). There are several factors to consider for the training session, e.g., training time
and network configuration. Depending on the use case, these settings influence the training suc-
cess and, eventually, the retrieval quality. Consequently, hyperparameter optimization should be
performed for the training process with each case domain. When preparing the trained model
to be used in the POCBR framework, it is possible to cache embeddings for all cases of the
case base. However, this is only possible with the sGEM since the sGMN has to compute the
cross-graph matching component for every pair of the query and the cases (see Section 5.3.3).

5.5.2 Retrieval

The data that are utilized during retrieval comprise the case base of NEST graphs, the query
NEST graph, and the trained neural network. All cases as well as the query have to be encoded
in order to be used with the neural network. Given the encoded graphs, the DL framework
is used to predict the similarity of each pair of the query and the cases from the case base.
The cached graph representation of each case can be utilized to calculate these similarities if
applicable. In this way, only the query graph has to be embedded by the neural network. Hence,
the result of the prediction is a list of pairwise similarities that can further be used to determine
the nearest neighbors of the query in the case base. A standard retrieval is finished after the k-
nearest neighbors are determined. However, sGEM and sGMN are also applicable in a MAC/FAC
retrieval (see Section 5.2.3). The main difference between a standard retrieval and a MAC/FAC
retrieval is the use of two consecutive retrieval phases (MAC and FAC phase), where different

Training Data
Generation and

Export

Training

Data

Training Data
Import and

Model Training

Model Export

Trained
Model

D
L

Fr

am
ew

or
k St

ar
t T

ra
in

in
g

Ph
as

e

PO
C

B
R

Fr

am
ew

or
k

En
d

Tr
ai

ni
ng

 P
ha

se
 /

St
ar

t R
et

rie
va

l P
ha

se

Case

Base

Preparation of
Retrieval Request

Input Data and
Model Loading

Retrieval

Request

Trained
Model

Prediction of
Similarities

En
d

R
et

rie
va

l P
ha

se

Retrieval
Preparation

Similarity
Predictions

k-Nearest
Neighbor

ComputationQueryCase

Base

Similarity

Knowledge

Figure 5.5: Retrieval by using a neural-network-based similarity measure.

75

similarity measures are used. Neural-network-based similarity measures such as the sGEM and
the sGMN can be used in both phases, as other approaches demonstrate [27, 31]. However,
applying a neural network in the MAC phase is usually more reasonable, since the predicted
similarities are only an approximation of the true similarities. This can lead to problems with
the candidate set, which, on the one hand, might contain cases whose true similarity is lower
than the fs-threshold or, on the other hand, might not contain cases whose true similarity is
higher than the fs-threshold. The cases from the possibly wrong set of candidates are then used
to compute the final similarity values according to the query. The FAC similarity measure is
usually one that is guaranteed to compute the true similarities, e.g., our A* graph matching
algorithm (see Section 5.2.2), since the final similarities directly specify the k-most similar cases,
which are returned to the user.

5.6 Experimental Evaluation

We evaluate the sGEM and the sGMN by applying them as similarity measures in standard
retrieval and MAC/FAC retrieval scenarios. Thereby, we compare different variants of the em-
bedding models and different retrieval scenarios. The variants are marked with subscripts in our
terminology, with a total of six different variants:

sGEM sGEM used with sequence encoding;

sGEMtree sGEM used with tree encoding;

sGMN sGMN used with sequence encoding;

sGMNtree sGMN used with tree encoding;

sGMNconst sGMN used with matching constraints;

sGMNtree,const sGMN used with tree encoding and matching constraints.

As ground-truth similarities for training the neural networks and comparing their predictions,
we use similarities computed by the A*-similarity measure by Bergmann and Gil [8] (A*M; see
Section 5.2.2). The ground-truth similarities are computed with a configuration of the measure
that uses a very high parameter value for MaxPMS, to allow a good solution to be found in
the mapping process. Additionally, we also use this measure with a lower value of MaxPMS in
the evaluation to measure the deviations from the ground-truth similarities. This allows us to
see how much the computed similarities of A*M deviate from the ground-truth similarities if
MaxPMS is reduced. Another evaluated measure is the feature-based measure by Bergmann and
Stromer [11] (FBM), which uses a manually modeled feature representation of NEST graphs,
specifically designed to be used in combination with a lightweight similarity measure in MAC/-
FAC retrieval situations. It is included in order to achieve a comparison between automatically
learned measures and manually modeled ones, but comparison with this measure is not the main
focus. Furthermore, the embedding-based measure of Klein, Malburg, and Bergmann [31] (EBM)
is evaluated. It is also designed for MAC/FAC retrieval and utilizes learned graph embeddings
and a vector-based similarity (see Section 5.2.4 for more details). EBM will be the main measure
to compare sGEM and sGMN against since it is also automatically learned and embedding-based.
We investigate the following hypotheses in two experiments:

Hypothesis 1 (H1) Using the sGEM variants as MAC similarity measures of a MAC/FAC re-
trieval leads to improved retrieval results compared to using EBM as a MAC similarity
measure;

76

Hypothesis 2 (H2) The sGMN variants can approximate the ground-truth graph similarities bet-
ter than A*M, considering a reduced MaxPMS value such that the retrieval time of both
retrievers is comparable.

Each hypothesis refers to a dedicated experiment. The first experiment examines the mea-
sures in a MAC/FAC setup, where the focus is placed on the suitability of sGEM as a MAC
similarity measure. We focus on evaluating sGEM against the other automatically learned sim-
ilarity measure, EBM, in H1 as it is, by design, more optimized for performance, which fits the
requirements of a MAC similarity measure (see Section 5.5.2). The second experiment examines
the degree to which sGMN is capable of approximating the ground-truth A* similarities. As
introduced before, A*M can be configured (by adjusting the MaxPMS parameter) to compute
solutions faster with lower quality in return. H2 aims at comparing sGMN to a configuration of
A*M with a reduced value of MaxPMS where the deviations from the ground-truth similarities
are comparable.

5.6.1 Experimental Setup

We perform our experiments with an implementation of the presented approach in the POCBR
framework ProCAKE [9] and the DL framework TensorFlow [2]. The source code and all sup-
plementary data can be retrieved with the instructions given in the Data Availability Statement
on page 81. The neural networks are trained with the help of TensorFlow and the similarity
assessment is performed in ProCAKE. Our experiments examine two case bases from different
domains that are both represented as semantic NEST graphs. The cooking processes (CB-I)
contain 800 sandwich recipes with ingredients and cooking steps [47], split into 660 training
cases, 60 validation cases, and 80 test cases. The processes of the data mining domain (CB-II)
are built from sample processes that are delivered with RapidMiner (see [57] for more details),
split into 509 training cases, 40 validation cases, and 60 test cases. A single training instance
is a pair of graphs with the associated similarity value to learn, leading to 6602 = 435,600
and 5092 = 259,081 training instances, respectively. Thereby, the training case base is used as
training input for the neural networks, while the validation case base is used to monitor the
training process and to optimize hyperparameter values. Hyperparameter tuning is performed
individually per domain with the two base models of sGEM and sGMN. The model variants
then use the same hyperparameter settings as the associated base model, e.g., sGEMtree uses the
same hyperparameter configuration as sGEM in the same domain. The training of all models is
stopped as soon as the validation loss does not further decrease for two epochs (early stopping).

The metrics that are used to evaluate our approach cover performance and quality. The
performance is measured by taking the retrieval time, which is the entire retrieval time including
pre-processing of the data if necessary. Since all variants of sGEM and EBM allow for caching
of embedding vectors for the case base in an offline phase, these measures only embed the query
during the experiments and do not include the caching time in the results. The quality of the
results to evaluate RLeval is measured by comparing them to the ground-truth retrieval results
RLtrue in terms of MAE, correctness (see [15, 27] for more details), and k-NN quality (see [27, 31,
48] for more details). The MAE (ranging between 0 and 1) expresses the average similarity error
between all pairs of query graph and case graph in RLtrue and the same pairs in RLeval. The
correctness (ranging between −1 and 1) describes the conformity of the ranking positions of the
graph pairs in RLeval according to RLtrue. Given two arbitrary graph pairs GP1 = (QG ,CG1)
and GP2 = (QG ,CG2), the correctness is decreased if GP1 is ranked before GP2 in RLeval

although GP2 is ranked before GP1 in RLtrue or vice versa. The k-NN quality (ranging between
0 and 1; see Equation (5.16)) quantifies the degree to which highly similar cases according to

77

RLtrue are present in RLeval.

quality(QG ,RLtrue ,RLeval) = 1− 1

|RLtrue |
·

∑
CG∈RLtrue \RLeval

sim(QG ,CG) (5.16)

Therefore, the cases from RLtrue are compared with RLeval. Each case from RLtrue that is
missing in RLeval decreases the quality, with highly relevant cases affecting the quality more
strongly than less relevant cases.

The machine that is used for training and testing computations is a PC with an Intel i7 6700
CPU (4 cores, 8 threads), an NVIDIA GTX 3070 GPU, and 48 GB of RAM, running Windows
10. The measures (EBM, all sGEM variants, and all sGMN variants) that require an offline
training phase are trained on the GPU with the two training case bases, resulting in two models
per measure, i.e., one for each domain. The complete list of training and model parameters can
be found in the published source code. To summarize, the models are parameterized such that
the GMN models have larger embedding sizes (nodes, edges, graph) than the GEM models and
the models for CB-II have larger embedding sizes than the models for CB-I. The average training
time is approx. 24 h for the sGMN variants and 8 h for the sGEM variants on average. The
inference of all measures is performed only by using the CPU in order to allow a fair comparison.
A retrieval is always conducted with a query from the testing case base and with the cases from
the training case base. To produce meaningful performance and quality values, the results of the
retrieval runs of all query cases from a single domain are averaged.

5.6.2 Experimental Results

The first experiment aims to answer hypothesis H1 and evaluates the variants of sGEM and sGMN
as MAC similarity measures in a scenario of MAC/FAC retrieval. Different combinations of fs,
i.e., the number of candidates cases of the MAC phase, and k, i.e., the number of retrieval results
from the FAC phase, are examined. These values are chosen to be similar to the experiments
in previous work [31]. The FAC similarity measure is an A* measure that is used in the same
configuration in every retrieval. Table 5.1 shows the evaluation results, which include the metrics
k-NN quality and retrieval time (in milliseconds). Besides the variants of the neural network
models, we also evaluate FBM and EBM since these two measures are specifically designed for
MAC/FAC applications. The highlighted values represent the maximum quality and minimum
time, respectively, for each combination of fs and k.

Table 5.1: Evaluation results of the MAC/FAC experiment.

fs k Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time
5 5 0.508 16 0.511 14 0.489 1051 0.490 2067 0.489 1074 0.489 2169 0.557 510 0.499 17
50 5 0.613 100 0.600 95 0.522 1137 0.523 2156 0.511 1165 0.505 2263 0.836 611 0.562 100
10 10 0.520 24 0.536 22 0.502 1061 0.503 2077 0.500 1085 0.505 2180 0.585 522 0.516 25
80 10 0.623 155 0.609 151 0.581 1195 0.576 2225 0.548 1224 0.575 2330 0.862 671 0.613 158
25 25 0.545 50 0.567 48 0.534 1088 0.536 2106 0.518 1113 0.534 2208 0.652 554 0.549 53
100 25 0.606 192 0.593 187 0.646 1240 0.678 2268 0.607 1266 0.676 2373 0.833 714 0.642 195
5 5 0.392 66 0.394 84 0.381 2811 0.449 3539 0.399 2729 0.463 3666 0.646 457 0.329 57
50 5 0.557 866 0.563 895 0.629 3150 0.757 3833 0.671 3016 0.767 3928 0.922 619 0.385 295
10 10 0.432 113 0.448 123 0.467 2825 0.516 3572 0.457 2785 0.508 3690 0.667 477 0.362 84
80 10 0.625 1146 0.637 1158 0.745 3406 0.837 4064 0.749 3372 0.853 4197 0.939 744 0.444 430
25 25 0.506 281 0.511 628 0.550 3004 0.623 3683 0.547 2856 0.628 3793 0.694 533 0.416 198
100 25 0.683 1371 0.697 1303 0.799 3597 0.872 4234 0.797 3537 0.881 4320 0.907 866 0.500 518

sGMNconst sGMNtree,const FBM EBMsGMNtree

C
B

-I
I

sGEMtreesGEM sGMN

C
B

-I

The results for CB-I show that the two variants of sGEM perform similarly, with similar
quality values and retrieval times. The same applies to the quality values of the sGMN variants.

78

The retrieval times of the sGMN variants reveal a negative influence of the variants that use
tree encoding, which is likely caused by the more complex embedding process. The sGMN
variants and the sGEM variants perform similarly in terms of quality, despite the more expressive
embedding process of sGMN. EBM shows quality values that are on par with the values of the
sGEM variants. FBM shows the highest quality values across all combinations of fs and k. The
retrieval times are higher than those of the sGEM variants and EBM but lower than those of
the sGMN variants. The results for CB-II present a similar picture. FBM still outperforms all
other measures with regard to quality. However, some sGMN variants, such as sGMNtree,const,
are performing in a similar range. It is also important to note that the sGMN variants with tree
encoding are still the slowest measures but outperform all other automatically learned measures
for CB-II. The sGMN variants also outperform the sGEM variants for almost all combinations
of fs and k, which shows that the variants of sGMN favor retrieval situations with more complex
semantic descriptions of task and data nodes, as present in CB-II. The performance of the
sGEM and sGMN measures for retrieving graphs from a rather simple domain, such as in CB-I,
is respectable but does not consistently surpass the currently available, automatically learned
approach of EBM. When only looking at the automatically learned measures in the results of
CB-II, i.e., the variants of sGEM, the variants of sGMN, and EBM, sGEM variants are the most
suitable for a MAC/FAC scenario since they show a good combination of very low retrieval times
and high quality values. The FBM, with its manually modeled similarity measure, still performs
best for both case bases, taking into account the combination of quality and time. However,
under conditions of strict time requirements, sGEM or EBM can become better suited than
FBM. Due to their speed, the measures allow for the performance of a MAC phase with high
values of fs, which, in turn, produce better overall quality results for the MAC/FAC retrieval.
For instance, sGEM can filter with fs = 80 in less time and with higher ultimate quality than
FBM can filter with fs = 10 to obtain the results for k = 10. Overall, H1 is partly confirmed due
to the similar results of the comparison between sGEM and EBM. None of the different measures
clearly outperforms the other. However, sGEM can improve the overall retrieval results under
certain conditions (fs, k, variant, etc.), which have to be tested for the given scenario.

The second experiment aims to answer hypothesis H2 and examines the degree to which
the variants of sGEM and sGMN as well as EBM and FBM can approximate the ground-truth
graph similarities (see Table 5.2). We also include a configuration of A*M with an adjusted
parameter value of MaxPMS (see Section 5.2.2) in the experiment. The value for MaxPMS is
chosen in such a way that the retrieval time of A*M is similar to that of the sGMN variants.
Aligning the retrieval times of A*M and sGMN enables a fair comparison of the resulting MAE
and correctness. All reported times are measured in milliseconds.

For CB-I, sGMNconst has the lowest MAE value and A*M has the highest correctness value.
The sGEM variants report relatively high MAE values and relatively low values of correctness.
The MAE and the correctness values of all sGMN variants are in a similar range, while all
outperform the MAE of A*M but are outperformed by A*M in terms of correctness. FBM
achieves a high level of correctness but lags in terms of MAE. EBM shows high values of MAE
and low values of correctness. When comparing the results of CB-I and CB-II, it becomes
apparent that sGMNtree,const has the lowest MAE and A*M again has the highest value of
correctness. The results of the other measures are similar to the results for CB-I. However,
it is noticeable that the gap between the sGMN variants and A*M in terms of correctness is
smaller. This leads to the assumption that the suitability of sGMN increases with more complex
cases. The fact that the variants of sGMN outperform A*M in terms of MAE is even more
remarkable when considering that the neural network learns to assess the similarity of graphs
without knowing the original algorithmic context, e.g., similarities of semantic descriptions or
node and edge mappings. Additionally, this experiment shows that FBM and EBM are not

79

Table 5.2: Evaluation results of the A* approximation experiment.

Domain
Retriever MAE Correctness Time MAE Correctness Time

sGEM 0.158 0.017 1.3 0.337 0.331 1.1
sGEMtree 0.219 0.053 0.9 0.323 0.310 0.9
sGMN 0.033 0.287 1025.5 0.034 0.583 2697.8

sGMNtree 0.039 0.322 2115.1 0.026 0.724 3508.1
sGMNconst 0.029 0.330 1051.9 0.033 0.583 2643.7

sGMNtree,const 0.037 0.327 2118.3 0.024 0.732 3403.8
FBM 0.193 0.598 482.7 0.199 0.584 335.4
EBM 0.380 0.224 1.2 0.397 0.006 1.1
A*M 0.062 0.669 1265.5 0.041 0.824 3801.8

CB-I CB-II

suitable for generating similarities that are close to the ground-truth similarities. The reason
for this could be the inadequate processing of semantic annotations and the workflow structure.
Thus, we partly accept H2 since the sGMN variants consistently outperform the MAE values of
A*M but do not report higher values of correctness.

5.6.3 Discussion

The two experiments show the suitability of sGEM and sGMN and their different variants in
similarity-based retrieval. We would like to discuss some points in particular. First, sGEM
and sGMN present inconsistency in the effects that different variants have on different domains.
Compared to the base models, these effects can lead to completely different results in different
domains. For instance, in the second experiment, sGEMtree shows a lower MAE than the base
model for CB-II but a significantly higher MAE for CB-I. This leads to the need for individual
testing of different methods and subsequent hyperparameter tuning. Since the hyperparameters
of the models in our experiments are only tuned for the base models, this can certainly lead
to further performance improvements. The performance of the sGEM and sGMN variants can
further be improved by performing inference on the GPU instead of the CPU (as done in these
experiments). Since computations on the GPU are not possible for all other measures, this
is a unique characteristic of the neural-network-based models. Furthermore, it is shown that
the additional integration of the semantic information of sGEM and sGMN and the usage of
GNNs can outperform the simple, structural measure, EBM. This confirms the assumption that
partly motivated this paper. The effect might be amplified by domains that are even more
complex than CB-II, such as argumentation [36] or flexible manufacturing [41]. Additionally, it
is shown that sGEM and sGMN, although integrating rich semantic information, are not able
to consistently outperform FBM in MAC/FAC retrieval tasks. The usage of manually modeled
features and the integration of expert knowledge seems to be superior to automatic learning.
Nevertheless, automatically learned measures such as sGEM, sGMN, and EBM still have the
advantage of greatly reduced effort when adapting to changes in the similarity definition or the
underlying domain models. The overall effort of knowledge acquisition is greatly reduced when
using an automatically learned measure. Automatic learning is also helpful when dealing with
user-labeled data, since users are usually not capable of labeling cases with concrete similarity
values but rather with binary indications, e.g., similar or not similar. The neural networks can
learn similarity functions based on these labels with a modified loss function [37, 42]. In contrast,
this is not straightforward for A*M and FBM as it involves manual configuration effort.

80

5.7 Conclusions and Future Work

This paper examines the potential of using two Siamese Graph Neural Networks (GNNs) as sim-
ilarity measures for retrieving semantic graphs in POCBR. The two presented neural networks,
i.e., the sGEM and the sGMN, can be used in a similarity-based retrieval by predicting the sim-
ilarities of graph pairs. Therefore, a novel encoding scheme is presented that covers the graph
structure, the types of nodes and edges, and their semantic annotations. Given this encoding
scheme, sGEM and sGMN are constructed by adapting two neural networks from the literature
to fully process pairs of semantic graphs to predict a pairwise similarity value. Setting up the
retrieval process with these neural networks in a POCBR framework and a DL framework is dis-
cussed as well. The experimental evaluation investigates how differently configured variants of
sGEM and sGMN perform in similarity-based retrieval. The evaluation covers two domains with
different properties, nine different similarity measures, and two different retrieval approaches.
The results show the suitability of sGEM and sGMN in the evaluated scenarios. Thereby, sGEM
is suitable for a MAC/FAC setup, due to its fast similarity computation and reasonable retrieval
quality. Furthermore, sGMN shows great potential in approximating the ground-truth graph
similarities.

A focus of future research should be on optimizing the presented approach of a GNN-based
retrieval. This optimization ranges from aspects of parameterization to adjustments of the data
encoding scheme and the usage of different neural network structures. The neural network
structures could be optimized to better process other graph domains, e.g., argument graphs [36],
or even other types of complex similarity measures [46]. A structural change could be, for
instance, using a differentiable ranking loss function that optimizes according to the ground-
truth ordering of the retrieval results (e.g., [40]). Furthermore, the approaches from this paper
should be applied to other POCBR tasks, such as case adaptation (e.g., [34]). Since adaptation is
usually a knowledge-intensive process, our approaches can help by providing expressive learning
capabilities combined with possibilities for domain knowledge integration. Additionally, the
neural networks that are used in this work are black boxes and, thus, are not capable of explaining
the results they produce. In current research (and also in the CBR community, e.g., [28]), this
lack of explainability is tackled in the context of Explainable Artificial Intelligence (XAI). Future
research should address this issue by investigating which methods are suitable for increasing the
explainability of the presented neural networks.

Author Contributions

Conceptualization, M.H. and R.B.; methodology, M.H.; software, M.H.; validation, M.H.; formal
analysis, R.B.; resources, M.H., R.B.; data curation, M.H.; writing—original draft preparation,
M.H.; writing—review and editing, M.H. and R.B.; visualization, M.H.; supervision, R.B. All
authors have read and agreed to the published version of the manuscript.

Funding

The publication was funded by the Open Access Fund of the University of Trier and the German
Research Foundation (DFG) within the Open Access Publishing funding programme.

Data Availability Statement

The source code, the training data, the training parameters, the trained models, and all other
supplementary resources are available online at https://gitlab.rlp.net/procake-embedding/p
rocake-embedding-experiments. To set up the workspace and repeat the experiments, follow

81

https://gitlab.rlp.net/procake-embedding/procake-embedding-experiments
https://gitlab.rlp.net/procake-embedding/procake-embedding-experiments

the instructions in the corresponding ReadMe file. Please use the code version with the tag
name “MDPI Algorithms Graph Embedding Applications”. The data was last accessed on 13
December 2021.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Commun. 7(1), 39–59 (1994). https://doi.org/10.3233
/AIC-1994-7104

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Ten-
sorFlow: A System for Large-Scale Machine Learning. In: Keeton, K., Roscoe, T. (eds.)
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pp. 265–283. USENIX Association (2016)

3. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K., Dengel, A., Petridis, M.: Advanced
Similarity Measures Using Word Embeddings and Siamese Networks in CBR. In: Bi, Y.,
Bhatia, R., Kapoor, S. (eds.) Intelligent Systems and Applications - Proceedings of the
2019 Intelligent Systems Conference, IntelliSys 2019, London, UK, September 5-6, 2019,
Volume 2. Advances in Intelligent Systems and Computing, pp. 449–462. Springer (2019).
https://doi.org/10.1007/978-3-030-29513-4 32

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learning to
Align and Translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015)

5. Baldi, P., Chauvin, Y.: Neural Networks for Fingerprint Recognition. Neural Comput. 5(3),
402–418 (1993). https://doi.org/10.1162/NECO.1993.5.3.402

6. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F., Mali-
nowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H.F.,
Ballard, A.J., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K.R., Nash, C., Langston, V.,
Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.M., Vinyals, O., Li, Y., Pascanu,
R.: Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261
(2018). arXiv: 1806.01261

7. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Inter-
net-Based Applications. Springer (2002)

8. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (2014). https://doi.org/10.1016/J.IS.2012.07.005

9. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: A Process-Oriented Case-
Based Reasoning Framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceed-
ings for the Twenty-seventh International Conference on Case-Based Reasoning co-located
with the Twenty-seventh International Conference on Case-Based Reasoning (ICCBR 2019),
Otzenhausen, Germany, September 8-12, 2019. CEUR Workshop Proceedings, pp. 156–161.
CEUR-WS.org (2019)

82

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1007/978-3-030-29513-4_32
https://doi.org/10.1162/NECO.1993.5.3.402
https://arxiv.org/abs/1806.01261
https://doi.org/10.1016/J.IS.2012.07.005

10. Bergmann, R., Müller, G.: Similarity-Based Retrieval and Automatic Adaptation of Seman-
tic Workflows. In: Synergies Between Knowledge Engineering and Software Engineering. Ed.
by G.J. Nalepa and J. Baumeister, pp. 31–54. Springer (2018). https://doi.org/10.1007/97
8-3-319-64161-4 2

11. Bergmann, R., Stromer, A.: MAC/FAC Retrieval of Semantic Workflows. In: Boonthum-
Denecke, C., Youngblood, G.M. (eds.) Proceedings of the Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2013, St. Pete Beach, Florida,
USA, May 22-24, 2013. AAAI Press (2013)

12. Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., Shah,
R.: Signature Verification Using A ”Siamese” Time Delay Neural Network. Int. J. Pattern
Recognit. Artif. Intell. 7(4), 669–688 (1993). https://doi.org/10.1142/S0218001493000339

13. Bunke, H.: Recent Developments in Graph Matching. In: 15th International Conference
on Pattern Recognition, ICPR’00, Barcelona, Spain, September 3-8, 2000, pp. 2117–2124.
IEEE Computer Society (2000). https://doi.org/10.1109/ICPR.2000.906030

14. Cai, H., Zheng, V.W., Chang, K.C.: A Comprehensive Survey of Graph Embedding: Prob-
lems, Techniques and Applications. CoRR abs/1709.07604 (2017). arXiv: 1709.07604

15. Cheng, W., Rademaker, M., de Baets, B., Hüllermeier, E.: Predicting Partial Orders: Rank-
ing with Abstention. In: Cellular automata. Ed. by S. Bandini, S. Manzoni, H. Umeo, and
G. Vizzari, pp. 215–230. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15880
-3 20

16. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pp. 1724–1734. ACL (2014). https://doi.org/10.3115/V1/D14-1179

17. Corchado, J.M., Lees, B.: Adaptation of Cases for Case Based Forecasting with Neural
Network Support. In: Soft Computing in Case Based Reasoning. Ed. by S.K. Pal, T.S.
Dillon, and D.S. Yeung, pp. 293–319. Springer (2001). https://doi.org/10.1007/978-1-4471
-0687-6 13

18. Dieterle, S., Bergmann, R.: A Hybrid CBR-ANN Approach to the Appraisal of Internet
Domain Names. In: Lamontagne, L., Plaza, E. (eds.) Case-Based Reasoning Research and
Development - 22nd International Conference, ICCBR 2014, Cork, Ireland, September 29,
2014 - October 1, 2014. Proceedings. LNCS, vol. 8765, pp. 95–109. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-11209-1 8

19. Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: A Model of Similarity-Based Retrieval.
Cogn. Sci. 19(2), 141–205 (1995). https://doi.org/10.1207/S15516709COG1902 1

20. Gabel, T., Godehardt, E.: Top-Down Induction of Similarity Measures Using Similarity
Clouds. In: Hüllermeier, E., Minor, M. (eds.) Case-Based Reasoning Research and De-
velopment - 23rd International Conference, ICCBR 2015, Frankfurt am Main, Germany,
September 28-30, 2015, Proceedings. LNCS, vol. 9343, pp. 149–164. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-319-24586-7 11

21. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural Message Passing for
Quantum Chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, pp. 1263–1272. PMLR (2017)

83

https://doi.org/10.1007/978-3-319-64161-4_2
https://doi.org/10.1007/978-3-319-64161-4_2
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/ICPR.2000.906030
https://arxiv.org/abs/1709.07604
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.3115/V1/D14-1179
https://doi.org/10.1007/978-1-4471-0687-6_13
https://doi.org/10.1007/978-1-4471-0687-6_13
https://doi.org/10.1007/978-3-319-11209-1_8
https://doi.org/10.1207/S15516709COG1902_1
https://doi.org/10.1007/978-3-319-24586-7_11

22. Goyal, P., Ferrara, E.: Graph Embedding Techniques, Applications, and Performance: A
Survey. CoRR abs/1705.02801 (2017). arXiv: 1705.02801

23. Grumbach, L., Bergmann, R.: Using Constraint Satisfaction Problem Solving to Enable
Workflow Flexibility by Deviation (Best Technical Paper). In: Bramer, M., Petridis, M.
(eds.) Artificial Intelligence XXXIV - 37th SGAI International Conference on Artificial In-
telligence, AI 2017, Cambridge, UK, December 12-14, 2017, Proceedings. LNCS, vol. 10630,
pp. 3–17. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-71078-5 1

24. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In: Case-Based Reasoning Research and Development. Ed. by D.B. Leake and
E. Plaza, pp. 359–370. Springer, Berlin and Heidelberg (1997). https://doi.org/10.1007/3-
540-63233-6 506

25. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8), 1735–
1780 (1997). https://doi.org/10.1162/NECO.1997.9.8.1735

26. Hoffmann, M., Bergmann, R.: Informed Machine Learning for Improved Similarity Assess-
ment in Process-Oriented Case-Based Reasoning. CoRR abs/2106.15931 (2021). arXiv: 21
06.15931

27. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

28. Keane, M.T., Kenny, E.M.: How Case-Based Reasoning Explains Neural Networks: A The-
oretical Analysis of XAI Using Post-Hoc Explanation-by-Example from a Survey of ANN-
CBR Twin-Systems. In: Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and
Development - 27th International Conference, ICCBR 2019, Otzenhausen, Germany, Septem-
ber 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 155–171. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-29249-2 11

29. Kendall-Morwick, J., Leake, D.: A Study of Two-Phase Retrieval for Process-Oriented Case-
Based Reasoning. In: Successful Case-based Reasoning Applications-2, pp. 7–27. Springer
(2014)

30. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun,
Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

31. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve the
Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In:
Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development - 27th In-
ternational Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings. LNCS, vol. 11680, pp. 188–203. Springer, Heidelberg (2019). https://doi.org/10
.1007/978-3-030-29249-2 13

32. Leake, D., Crandall, D.J.: On Bringing Case-Based Reasoning Methodology to Deep Learn-
ing. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development -
28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings. LNCS, vol. 12311, pp. 343–348. Springer, Heidelberg (2020). https://doi.org/10.1007
/978-3-030-58342-2 22

84

https://arxiv.org/abs/1705.02801
https://doi.org/10.1007/978-3-319-71078-5_1
https://doi.org/10.1007/3-540-63233-6_506
https://doi.org/10.1007/3-540-63233-6_506
https://doi.org/10.1162/NECO.1997.9.8.1735
https://arxiv.org/abs/2106.15931
https://arxiv.org/abs/2106.15931
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-29249-2_11
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-58342-2_22

33. Leake, D., Ye, X.: Harmonizing Case Retrieval and Adaptation with Alternating Opti-
mization. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) Case-Based Reasoning Research and
Development - 29th International Conference, ICCBR 2021, Salamanca, Spain, Septem-
ber 13-16, 2021, Proceedings. LNCS, vol. 12877, pp. 125–139. Springer, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-86957-1 9

34. Leake, D., Ye, X., Crandall, D.J.: Supporting Case-Based Reasoning with Neural Networks:
An Illustration for Case Adaptation. In: Martin, A., Hinkelmann, K., Fill, H., Gerber,
A., Lenat, D., Stolle, R., van Harmelen, F. (eds.) Proceedings of the AAAI 2021 Spring
Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE
2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021. CEURWorkshop
Proceedings. CEUR-WS.org (2021)

35. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). http
s://doi.org/10.1038/nature14539

36. Lenz, M., Ollinger, S., Sahitaj, P., Bergmann, R.: Semantic Textual Similarity Measures
for Case-Based Retrieval of Argument Graphs. In: Bach, K., Marling, C. (eds.) Case-
Based Reasoning Research and Development - 27th International Conference, ICCBR 2019,
Otzenhausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 219–234.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 15

37. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph Matching Networks for Learning
the Similarity of Graph Structured Objects. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research,
pp. 3835–3845. PMLR (2019)

38. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated Graph Sequence Neural Networks.
In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016)

39. Liao, C., Liu, A., Chao, Y.: A Machine Learning Approach to Case Adaptation. In: First
IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE
2018, Laguna Hills, CA, USA, September 26-28, 2018, pp. 106–109. IEEE Computer Society
(2018). https://doi.org/10.1109/AIKE.2018.00023

40. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Berlin and Heidelberg
(2011)

41. Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using Physical Factory Simulation Mod-
els for Business Process Management Research. In: del-Ŕıo-Ortega, A., Leopold, H., Santoro,
F.M. (eds.) Business Process Management Workshops - BPM 2020 International Workshops,
Seville, Spain, September 13-18, 2020, Revised Selected Papers. LNBIP, vol. 397, pp. 95–
107. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-66498-5 8

42. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures from
data. Prog. Artif. Intell. 9(2), 129–143 (2020). https://doi.org/10.1007/S13748-019-00201-2

43. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision
support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org
/10.1007/S10489-021-02251-3

44. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations
in Vector Space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings (2013)

85

https://doi.org/10.1007/978-3-030-86957-1_9
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-030-29249-2_15
https://doi.org/10.1109/AIKE.2018.00023
https://doi.org/10.1007/978-3-030-66498-5_8
https://doi.org/10.1007/S13748-019-00201-2
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/S10489-021-02251-3

45. Minor, M., Montani, S., Recio-Garćıa, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014). https://doi.org/10.1016/J.IS.2013.06.004

46. Mougouie, B., Bergmann, R.: Similarity Assessment for Generalized Cases by Optimization
Methods. In: Advances in Case-Based Reasoning. Ed. by S. Craw and A. Preece, pp. 249–
263. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1 19

47. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden
(2018)

48. Müller, G., Bergmann, R.: A Cluster-Based Approach to Improve Similarity-Based Retrieval
for Process-Oriented Case-Based Reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B.
(eds.) ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Frontiers in Artificial Intelligence and Applications, pp. 639–644. IOS Press (2014).
https://doi.org/10.3233/978-1-61499-419-0-639

49. Ontañón, S.: An Overview of Distance and Similarity Functions for Structured Data. CoRR
abs/2002.07420 (2020). arXiv: 2002.07420

50. Richter, M.M.: Foundations of Similarity and Utility. In: Wilson, D., Sutcliffe, G. (eds.)
Proceedings of the Twentieth International Florida Artificial Intelligence Research Society
Conference, May 7-9, 2007, Key West, Florida, USA, pp. 30–37. AAAI Press (2007)

51. Richter, M.M., Weber, R.O.: Case-Based Reasoning - A Textbook. Springer (2013)

52. von Rüden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch,
B., Pfrommer, J., Pick, A., Ramamurthy, R., Walczak, M., Garcke, J., Bauckhage, C.,
Schuecker, J.: Informed Machine Learning - A Taxonomy and Survey of Integrating Prior
Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 35(1), 614–633 (2023).
https://doi.org/10.1109/TKDE.2021.3079836

53. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural
Network Model. IEEE Trans. Neural Networks 20(1), 61–80 (2009). https://doi.org/10.11
09/TNN.2008.2005605

54. Stram, R., Reuss, P., Althoff, K.: Dynamic Case Bases and the Asymmetrical Weighted One-
Mode Projection. In: Cox, M.T., Funk, P., Begum, S. (eds.) Case-Based Reasoning Research
and Development - 26th International Conference, ICCBR 2018, Stockholm, Sweden, July
9-12, 2018, Proceedings. LNCS, vol. 11156, pp. 385–398. Springer, Heidelberg (2018). http
s://doi.org/10.1007/978-3-030-01081-2 26

55. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is All you Need. In: Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

56. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In: Watson,
I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Interna-
tional Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 17–32. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-583
42-2 2

86

https://doi.org/10.1016/J.IS.2013.06.004
https://doi.org/10.1007/3-540-46119-1_19
https://doi.org/10.3233/978-1-61499-419-0-639
https://arxiv.org/abs/2002.07420
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/978-3-030-01081-2_26
https://doi.org/10.1007/978-3-030-01081-2_26
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-58342-2_2

57. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by Means of
Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds.) Case-Based Rea-
soning Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 388–403.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 26

87

https://doi.org/10.1007/978-3-030-29249-2_26

Chapter 6

Augmentation of Semantic Processes for
Deep Learning Applications

Bibliographic Information

Hoffmann, M., Malburg, L., Bergmann, R.: Augmentation of Semantic Processes for Deep Learn-
ing Applications. Applied Artificial Intelligence. Taylor and Francis. Submitted for Publication.
(2024)

Abstract

The popularity of Deep Learning (DL) methods used in business process management research
and practice is constantly increasing. One important factor that hinders the adoption of DL in
certain areas is the availability of sufficiently large training datasets, particularly affecting do-
mains where process models are mainly defined manually with a high knowledge-acquisition ef-
fort. In this paper, we examine process model augmentation in combination with semi-supervised
transfer learning to enlarge existing datasets and train DL models effectively. The use case of
similarity learning between manufacturing process models is discussed. Based on a literature
study of existing augmentation techniques, a concept is presented with different categories of
augmentation from knowledge-light approaches to knowledge-intensive ones, e. g., based on au-
tomated planning. Specifically, the impacts of augmentation approaches on the syntactic and
semantic correctness of the augmented process models are considered. The concept also proposes
a semi-supervised transfer learning approach to integrate augmented and non-augmented pro-
cess model datasets in a two-phased training procedure. The experimental evaluation investigates
augmented process model datasets regarding their quality for model training in the context of
similarity learning between manufacturing process models. The results indicate a large potential
with a reduction of the prediction error of up to 53%.

Keywords

Data Augmentation · Business Process Management · Graph Neural Networks · Similarity Learn-
ing · AI Planning

88

Copyright Notice

© 2025 Maximilian Hoffmann, Lukas Malburg, Ralph Bergmann.

6.1 Introduction

Data-driven Artificial Intelligence (AI) methods such as Deep Learning (DL) have recently gained
significant importance in practice and research. One of these research areas for the use of DL
techniques is Business Process Management (BPM) [e. g., 11, 52, 55, 56]. However, to fully
utilize the DL techniques and their generalization capabilities, a rich set of training data with
meaningful training examples is needed, which leads to considerable effort for data acquisition
[23, 62]. As this effort is not always manageable and sometimes training data is inaccessible, DL
methods can be combined with other AI techniques in an approach commonly known as informed
machine learning or hybrid AI [59]. There, the disadvantage of not enough or imbalanced data is
compensated by symbolic knowledge. A more common technique to mitigate these data issues in
practice and research is data augmentation [10, 50, 77, 78]. Data augmentation aims to increase
the amount of available training data to make the DL models trained on it more accurate and
robust. Popular augmentation methods originate in the domains of image processing and Natural
Language Processing (NLP) [e. g., 6], where elementary transformational augmentations, e. g., the
rotation of an image or the replacement of words with synonyms, are widely used. Augmentations
can also be based on synthesis, which is usually more complex, e. g., a Generative Adversarial
Network (GAN) trained on the original training data creates new examples. In BPM, however,
there are only a few augmentation techniques available, which are currently very domain specific
and are only concerned with event logs [e. g., 29, 30, 34, 68]. The combination of a high demand
for DL-based applications in BPM and a largely unexplored field of augmentations for process
models, motivates this work.

The goal of this paper is to discuss approaches of process model augmentation as well as
an effective training method of DL models with augmented and non-augmented process models.
The contributions of the paper are the following: 1) we present a literature study on process
augmentation techniques that are currently available to be used in DL contexts, 2) we discuss
three categories of augmentation from knowledge-light approaches, i. e., deleting and replacing
nodes and edges, to knowledge-intensive ones based on automated planning [41, 47], 3) we present
a training procedure based on semi-supervised transfer learning [32, 66, 70] to train DL models
effectively with augmented and non-augmented data, 4) we conduct an extensive evaluation in
which we determine the suitability of different augmentation methods for improving the training
procedure of DL models based on our previous work [26, 62]. Throughout the paper, we examine
the task of learning similarities between process models from a manufacturing domain [38, 39,
64] as the main use case.

The paper is structured as follows: In Sect. 6.2, we describe the foundations that consist of
the process model representation and the application domain applied in this work, the semantic
similarity assessment between process models, and the basics of using graph neural networks for
graph embedding. In addition, we present and discuss related augmentation approaches. Based
on these foundations and the identified research gaps, a concept is presented to augment process
models and use them to train DL models (see Sect. 6.3). To assess the utility of the concept
for the addressed problems, an experimental evaluation is conducted by using several training
data configurations for Graph Neural Networks (GNNs) based on the discussed augmentation
techniques (see Sect. 6.4). In this context, we use several well-known metrics to evaluate the
quality of the trained models for process model similarity learning. Finally, a conclusion is given,
and future work is discussed in Sect. 6.6.

89

6.2 Foundations and Related Work

In this section, we introduce the foundations of the semantic process model representation and the
manufacturing domain with its underlying domain model that serves as an application scenario
(see Sect. 6.2.1 and Sect. 6.2.2). Since the focus of the work is using DL models for similarity
learning, Sect. 6.2.3 introduces how similarities are computed between workflows and Sect. 6.2.4
follows with GNNs that are trained for this task. Finally, the proposed approach is embedded into
a broader literature context with a focus on generic graph augmentation methods (see Sect. 6.2.5)
and more specific approaches from BPM literature (see Sect. 6.2.5).

6.2.1 Semantic Workflow Representation and Domain

All process models in this work are represented as semantically annotated directed graphs, re-
ferred to as NEST graphs [4]. NEST graphs are used as the process model representation since
their strength is on modeling semantic information with an underlying domain model, and they
are well-integrated in our previous work [37]. To ensure compatibility with other more common
process model representation formats such as Business Process Model and Notation (BPMN),
we employ a converter from BPMN to NEST and back. The converter is available as part of the
ProCAKE framework1 [5]. All process models used in the experiments are represented in NEST
and BPMN, created with this converter. See Sect. 6.4 and the statement on data availability at
the end of the article for more information.

Figure 6.1: A NEST Graph Representing a Sheet Metal Manufacturing Process [Based on: 36].

Each NEST graph is a quadruple G = (N,E,S,T), defined by a set of nodes N , a set of edges
E ⊆ N ×N , a function T : N ∪E → T , assigning a type to each node and edge2, and a function
S : N ∪ E → S, assigning a semantic description from a semantic metadata language (e. g., an
ontology) to nodes and edges. While nodes and edges build the structure of each graph, types
and semantic descriptions are employed to further capture semantic information. As a result,
both nodes and edges always have a type and usually also have a semantic description.

The definition of NEST graphs is rather generic to allow their usage in diverse domains,
e. g., to represent cooking recipes [49], to solve constraint satisfaction problems [15], to model
scientific workflows [76], to represent manufacturing processes [40], or to define argumentation
graphs [33]. As the process models addressed in this work are characterized by certain rules on
top of the generic NEST graph definition, we introduce the concept of a sequential NEST process
model :

1 available at https://gitlab.rlp.net/procake/procake-framework
2 The defined node types comprise task, data, control-flow, and workflow nodes. The defined edge types comprise

control-flow, data-flow, part-of, and constraint edges.

90

https://gitlab.rlp.net/procake/procake-framework

A sequential NEST process model is a NEST graph with a sequential control-flow, a sequential
data-flow, and without missing semantic annotations.

By a sequential control-flow, we mean that every task node in the process is connected to
exactly one preceding task node and one following task node by a control-flow edge. There are
two exceptions to this rule, i. e., the start task with only one outgoing control-flow edge and
the end task with only one ingoing control-flow edge. The second important extension of NEST
graphs towards sequential NEST process models is their sequential data-flow. This property is
similar to the sequential control-flow but refers to data nodes: Each data node has to be produced
by exactly one task and consumed by exactly one task. There is also the exception of two data
nodes, i. e., at the beginning of the sequence and at the end, which are consumed or produced
only, respectively. A sequential NEST process model with a sequential data-flow prohibits that,
for instance, a task consumes or produces multiple data nodes. The third property of sequential
NEST process models is about the semantic annotations of nodes and edges that must not be
missing. This restriction contributes to the completeness of the process’ semantic knowledge and
aims to prevent processes with nodes or edges that lack any form of semantic annotation and
can only be characterized by their type.

The manufacturing application scenario that we utilize for this work is an example of a
domain of sequential NEST process models. The scenario is based on process models that
are executed in a smart factory3 [38, 39, 64]. These processes are considered as cyber-physical
workflows [43, 63] because they are executed by actuators and are driven by sensors capturing
the production environment. Figure 6.1 illustrates an exemplary manufacturing process as a
sequential NEST process model, representing the production steps for producing sheet metals.
The illustrated process is a typical example of the processes used in this work. Task nodes
represent concrete activities during production that are executed by actuators, i. e., machines, in
the smart factory by a corresponding service. The state of the product produced is captured by
the data nodes. Each data node represents the current production state of the sheet metal. The
semantic descriptions of task and data nodes are used to describe the properties of these nodes.
For example, the semantic description of Transport from Warehouse to Oven contains relevant
parameters for configuring the machine that executes it, e. g., the start and end position of the
transport. Similarly, the semantic description of the first Sheet Metal data node is composed
of the concrete position of the product, i. e., ov 1, and its characteristics, e. g., the size and
thickness.

This example shows that the semantic annotations are a key aspect of the information a
process holds. In particular, it shows the tight coupling of the syntactic information that is
given by the representation as a sequential NEST process model, e. g., node and edge types and
graph structure, and the semantic information that is expressed by the annotations of nodes and
edges, e. g., the position of a workpiece. However, a process such as the one shown in Fig. 6.1
that is consistent with all constraints of sequential NEST process models and has well-formed
semantic annotations according to the respective semantic metadata language is not guaranteed
to be executable in the smart factory, i. e., the manufacturing environment. The reason for this
is the inability of the semantic metadata language to describe the behavior of the process tasks
in the environment during execution. For example, the task Burn in Fig. 6.1 is parameterized
by its semantic annotation to produce a middle-sized thick sheet metal. After being burned, the
sheet metal is transported to the first High-Bay Warehouse (HBW) to be stored there. While
the semantic annotations of all the tasks involved are within the definitions of the semantic
metadata language, there is still room for errors. It might be possible that the first Vacuum
Gripper Robot (VGR) is only capable of moving small-sized workpieces, or that the shop floor

3 More information on the used smart factory can be found at: https://iot.uni-trier.de.

91

https://iot.uni-trier.de

layout could prevent the first VGR from reaching the designated storage buckets in the first
HBW. Both problems could be solved by using the second VGR that transports the workpiece
to the second HBW.

6.2.2 Domain Model

An additional knowledge representation, called domain model, is utilized to check if a sequential
NEST process model is executable in its designated manufacturing environment. The domain
model also allows interoperability of a process with other systems of the application context,
e. g., Enterprise Resource Planning (ERP) systems, Manufacturing Execution Systems (MESs),
or Workflow Management Systems (WfMSs) [64]. The complexity and completeness of the
information provided by the domain model can vary greatly and depend on the respective domain.
While rather simple domains might have simpler domain models, more complex domains might
also have more complex domain models. The model used in this work is given as a comprehensive
planning domain description based on the Planning Domain Definition Language (PDDL) [47].
The planning domain model consists of the available actions of the smart factory enhanced with
semantic information about the preconditions that must be satisfied for execution and the effects
that hold after a successful execution. We use a semantic service-based architecture for the smart
factory [see 38, 64] and, based on this architecture, a domain expert creates the planning actions
contained in the domain description.

Listing 6.1: Planning Action for the Burn Service.

1 (:action ov_1_burn

2 :parameters (?resource - oven ?size - sheet_size ?thickness -

sheet_thickness ?processID - processID)

3 :precondition

4 (and

5 (at ?processID ov_1_pos) (hasPosition ?resource ov_1_pos)

6 (not (isInactive ?resource))

7 (isReady ?resource)

8 (isSteelSlab ?processID) (not (isSheetMetal ?processID)))

9 :effect

10 (and (isSheetMetal ?processID)

11 (isSheetMetalWithSize ?size ?processID)

12 (isSheetMetalWithThickness ?thickness ?processID)

13 (not (isSteelSlab ?processID))

14 (increase (total-cost) (Service_OV_Burn_With_Resource_OV_1

_With_Size_Parameter_With_Thickness _Parameter_Cost ?size

?thickness))))

15)

Listing 6.1 illustrated a planning action created by the domain expert for the Burn service.
A planning action in PDDL consists of an action name (Line 1), parameters for configuring the
action (Line 2), preconditions that need to be satisfied for execution (Lines 3–8), and effects
that represent the state transition after successful execution (Lines 9–14). Each task executed
by a service in the smart factory has several parameters to be configured (see Sect. 6.2.1). For
the illustrated Burn task, the executing resource, the size of the burned sheet metal, and the
thickness must be specified. In this context, it is important to note that the process ID is a
reference to the corresponding process from the smart factory. The preconditions specify the
world state in which the action can be executed. For the Burn service, the workpiece must

92

be at the location of the oven (Line 5). In addition, the oven must be ready and not inactive
(Lines 6–7) as well as the workpiece must be a steel slab, i. e., it must not be burned already
(Line 8). After executing the action, the state of the product changes: the workpiece is no steel
slab anymore but a sheet metal with a certain size and thickness (Lines 9–13). To capture the
costs for executing an action with certain parameters, the total cost function is increased by a
predefined value for the service executed (Line 14).

The information in the domain model allows us to check whether a process model can be
executed successfully by considering the defined preconditions and effects. It also allows the
generation of process models by using automated planning [12, 17], which is applied for process
model augmentation in this paper.

6.2.3 Semantic Workflow Similarity

The combination of syntax and semantics of sequential NEST process models shows the com-
plexity that is involved with all applications working with this data. One task that arises in
these applications is the comparison of process models, e. g., for finding a replacement in case the
execution of a different process model fails [36, 37]. To compare different process models, similar-
ities are a common measurement. We also use similarity computation as a demonstrator in the
experiments of the paper, as it is widely used in different fields of AI. One example is Case-Based
Reasoning (CBR): In the problem-solving methodology of CBR, similarities are widely used to
determine which process models are alike and can help to solve emerging problems. Thereby, a
repository of process models is queried with a different process model to find the best-matching
process models of the repository. This is useful since the found process models might be better
suited to solve the problem at hand, e. g., a sudden failure of a machine, than the currently
executed process model.

There are various methods for calculating similarities between process models. These methods
are sometimes consolidated under the term business process matching [69]. Schoknecht et al. [60]
categorize different methods based on seven characteristics, e. g., objective and implementation,
and, thus, provide a comprehensive overview of the available literature. We use the semantic
similarity measure proposed by Bergmann and Gil [4] as it is specifically tailored for NEST
graphs and focuses on semantic similarity measures on a node-level, which fits our use case.

To compute the similarity between two NEST graphs, the similarity measure evaluates the
structure of nodes and edges, as well as the semantic descriptions and types of these components.
The final similarity at the graph level is determined by the similarities between the nodes and
edges of both graphs [57]. Therefore, a global similarity, denoting the similarity between two
graphs, consists of local similarities, i. e., the pairwise similarities of nodes and edges. The simi-
larity between two identical types of nodes is defined as the similarity of the semantic descriptions
of these nodes. The similarity value between two edges of the same type includes not only the
similarity between the respective semantic descriptions but also the similarity of the connected
nodes. The similarities of the semantic descriptions are computed based on the underlying do-
main model. For instance, in the given exemplary process model illustrated in Fig. 6.1, the
similarity between two task nodes would include further similarities between their parameters.
This procedure requires the definition of similarity measures for all components of the semantic
descriptions as part of the domain’s similarity knowledge. These metrics are usually designed
with the input of experts in the field and consider the particular data types in use. For example,
they could utilize word embeddings [48] for textual data or the Mean Absolute Error (MAE) for
numerical values [3].

To determine the global similarity between a pair of graphs from the local similarities of the
nodes and edges, an injective partial mapping is computed. The objective of this mapping is

93

to maximize the aggregated local similarities between all mapped pairs of corresponding nodes
and edges. Nonetheless, as the number of nodes and edges gets larger, the complexity of finding
this mapping increases substantially, given that each node and edge can potentially be mapped
to multiple counterparts. To address this complexity, Bergmann and Gil [4] propose using an
A* search algorithm. A* search is faster than exhaustive search but typically still requires a
considerable amount of time and, thus, can result in a slow similarity computation [23, 25, 26,
31, 53, 75].

6.2.4 Graph Embedding

Previous work by Hoffmann and Bergmann [23] tackles the problem of slow similarity computa-
tions by using an automatically learned similarity measure based on a Siamese GNN, denoted as
the Graph Embedding Model (GEM). The basic idea is to learn to predict the pairwise similarities
of workflows with the GEM for faster and sometimes even more accurate similarity computa-
tions [23]. Therefore, the GEM transforms the graph structure and the semantic annotations
and types of all nodes and edges into a whole-graph latent vector representation. These vectors
are then combined to calculate a similarity value. An overview of the used GNN architecture is
illustrated in Fig. 6.2.

Embedder

Propagation
Layer

Aggregator

Figure 6.2: The Graph Embedding Model [Source: 26].

The GEM follows a general architecture composed of four parts: First, the embedder starts
by transforming the node and edge features into initial embeddings within a vector space. These
features encompass semantic annotations and types, and they undergo a specialized encoding and
processing procedure tailored for semantic graphs [for more details, see 23]. Next, the propagation
layer collects information for each node from its local surroundings by transmitting messages,
as described by Gilmer et al. [13]. In detail, the vector representation of a node is continuously
updated by incorporating the vectors of neighboring nodes linked through incoming edges. This
iterative process is repeated multiple times. Following that, the aggregator combines the node
embeddings at this stage to generate a vector representation of the entire graph. Eventually,
the similarity between two graphs is calculated by vector similarity measures, such as cosine
similarity, based on the respective graph representations within the vector space.

The trainable parameters of the GEM are modeled as part of the embedder, the propagation
layer, and the aggregator. They are trained and adjusted according to a comparison of pairs of
predicted similarities and ground-truth similarities by a Mean Squared Error (MSE) loss func-

94

tion. After being trained, the neural network can be used as a replacement for the conventional
similarity measure based on graph matching (see Sect. 6.2.3).

Overall, the following advantages and disadvantages of both methods are observed:

• The inference runtime of the embedding-based approach is consistent across different runs
and only marginally varies based on the size of the input graphs. The runtime of the A*-
based graph matching procedure can vary greatly from run to run, due to the integrated
search. On the downside, this also means that there are only a few designated mechanisms
to configure the runtime budget of the embedding-based approach based on the require-
ments of different use cases, e. g., general purpose strategies such as integer quantization
[72]. The graph matching approach can be precisely configured by restricting the number
of solution candidates to consider during search [for more details, see 4].

• The embedding-based approach can benefit greatly from modern hardware accelerators for
AI workloads [7]. The graph matching approach is mainly carried out by the CPU and
acceleration on, for instance, GPUs requires custom implementations [e. g., 25, 79].

• It is possible to create and cache embedding vectors with the embedding-based approach
and use them in their vector form for similarity computations. When caching all embedding
vectors of a process model repository in an offline phase, time is saved during the online
phase of an application, e. g., for process model similarity assessment. Caching at this level
is not possible for the graph-matching-based approach.

6.2.5 Data Augmentation

Another advantage of the embedding-based approach is a result of its self-learning capabilities,
and directly motivates this paper: Larger amounts of training data are expected to improve
the accuracy of the predictions. Therefore, this paper investigates data augmentation methods
[10, 50, 77, 78] to enlarge the available amount of training data and, ultimately, to increase the
robustness and quality of the DL models trained on it.

Mumuni and Mumuni [50] distinguish between methods based on transformation, where an
original training example is transformed into an augmented one, and synthesis, where new train-
ing examples are generated according to the characteristics of the original training set. Both of
these categories are covered for the domain of sequential NEST process models in the proposed
approach. The remainder of this section discusses specific augmentation methods for graph data
(see Sect. 6.2.5) and for process data within the research field of BPM (see Sect. 6.2.5). While
specific augmentation methods for processes are more relevant to this contribution, generic graph
augmentation methods are universally applicable and useful as a baseline.

Graph Augmentation

There are several recent surveys on generic graph augmentation that summarize and categorize
existing methods:

Ding et al. [9] present different methods for graph augmentation based on a taxonomy of two
main use cases: 1) reliable graph learning for enhancing model quality and training data utility,
and 2) low-resource graph learning for enlarging the labeled training data. For all augmenta-
tion methods, node-level, edge-level, and graph-level tasks are considered. The integration of
augmentation in an existing training pipeline is also discussed, with one option being a separate
augmentation phase before starting the training, and another option being augmentation as part
of model training (with trainable augmenters).

95

Zhao et al. [77] structure the presented graph augmentation methods according to three
perspectives, i. e., operated data (structure, features, labels), downstream task (node-level, edge-
level, graph-level), and whether the augmentations are rule-based or learnable. The methods
within these categories are further separated into groups, e. g., methods based on feature removal,
addition, and manipulation.

The discussion of augmentation methods by Adjeisah et al. [1] is less focused on covering
as many different methods as possible but rather on experiments with a selection of popular
methods. Therefore, the authors examine eight state-of-the-art methods that augment on either
the topology-level or the feature-level and do a mathematical analysis. The methods are also
applied to three different widely used GNN architectures to test their effectiveness.

Zhou et al. [78] present four taxonomies of graph augmentation methods with a focus for the
graph that is augmented, the addressed target task, whether the augmenter is learnable, and the
augmentation mechanism. In addition, suitable evaluation metrics for augmentation methods
and possible applications are thoroughly discussed.

Marrium and Mahmood [44] categorize augmentation methods based on the addressed task,
the augmentation technique, and the learning objective. They also provide benchmarks of sev-
eral methods and a collection of their implementations. This work has a strict focus on the
downstream task that augmentation is used in, e. g., node classification, graph classification, and
link prediction.

Yu et al. [74] specifically analyze learnable augmentation methods, framed by the term“Graph
Augmentation Learning”. The strategies are structured as node-, edge-, subgraph-, and graph-
level and application scenarios w. r. t. data-specific, model-specific, and hybrid are described. The
authors also provide an experimental guideline for choosing a suitable augmentation strategy
regarding the application context.

A key takeaway of these surveys is the magnitude of different generic graph augmentation
methods available in the literature. Two important factors for distinguishing these methods in
our context are the downstream task and the data that is operated on. The downstream task
is similarity learning, which is a graph-level task and, thus, makes methods suitable that take
a graph as input and a graph as output. The data that is operated on can be any part of the
graph, e. g., features and topology, and these aspects should be considered.

Augmentation Methods From Business Process Management Literature

The presented surveys do not discuss specific augmentation methods for processes or semantic
graphs. These augmentation methods come from the research field of BPM and are closely
related to this work, but only a few approaches can be found. The approaches can, for example,
be used for predictive process monitoring with DL methods [for an overview, see 56]. Although
the augmentation methods in this work operate on process models, augmentation of event logs
and process instances is also discussed, as literature about augmentation in BPM is scarce.

Leoni, Aalst, and Dees [34] enrich event logs by adding data to them. Although, their
approach is not named augmentation, and it is not set in a deep learning context, the methods
could probably be used for this purpose.

Venkateswaran et al. [68] examine data augmentation methods for facilitating robust deep
learning applications in predictive process monitoring. However, concrete augmentation methods
are not part of the proposed approach, as simple generic methods are used only in the experiment
to test the robustness to changes.

Käppel, Schönig, and Jablonski [30] present an application of small sample learning [65] in
BPM applications for dealing with insufficient amounts of event log training data. While this is
not directly an augmentation method, the described concept and integration are still very close.

96

Käppel and Jablonski [29] present augmentation methods for event logs for the task of pre-
dictive process monitoring [56]. They present a total of nine augmentation methods, mostly
generic methods adapted to event log data. All methods are explained in detail with the inten-
tions behind them. The used augmentation pipeline also discusses the integration of the data
augmentation methods into the existing learning procedure.

The presented approaches show that augmentation methods specifically for process models
are largely unexplored. The work of Käppel and Jablonski [29] is the one closest to our approach,
but still has a different application context, i. e., process event logs. This makes it challenging
to reuse due to the differences between event logs and process models as input data to the
augmentation methods. Please note that there is also a branch of work in BPM research that is
concerned with the generation of (synthetic) event logs. Grüger et al. [14] discuss and summarize
this branch in more detail and find that most approaches are insufficient to consider semantic
data apart from the control-flow.

6.3 Synthesis and Augmentation of Process Models

This section discusses three categories of augmentation approaches and their ability to create
useful augmented process models. To derive the augmentation approaches, we first discuss key
criteria (see Sect. 6.3.1). These key criteria, especially the importance of semantic information
for the use case of this paper, reveal another aspect to consider for the definition of augmenta-
tion methods: the so-called correctness (see Section 6.3.2). The notion of correctness is based on
the observation that arbitrary augmentation of an input process model might lead to an output
process model that is either syntactically or semantically incorrect, and, thus, violating rules of
the process model structure and the underlying domain model, respectively. Given the definition
and characteristics of correctness, three categories of augmentation that differ in the level of cor-
rectness they can guarantee are presented in Sect. 6.3.3, 6.3.4, and 6.3.5. Possible augmentation
methods as well as properties of the resulting augmented process models are discussed for each
category. As the augmented process models are to be used for training DL models, Sect. 6.3.6
establishes this connection and proposes an approach based on semi-supervised transfer learning.
The idea here is to pair an unsupervised training procedure that uses only augmented data with
a supervised training procedure that uses only original, non-augmented data, with no need for
potentially costly label acquisition for the augmented data.

6.3.1 Key Criteria for the Proposed Augmentation Methods

The discussion of the related work (see Sect. 6.2.5) and the introduction of the process model
representation and the domain (see Sect. 6.2.1 and 6.2.2) reveal a discrepancy between existing
approaches and the needs of the process models considered in this work. Therefore, several key
criteria for the usage of augmentation in the current application context are presented. Please
note that these criteria should not be interpreted as requirements but more as guidance for the
augmentation of sequential NEST process models.

Focus on semantic information

Semantic annotations are one of the most important parts of sequential NEST process models,
which should also be reflected in augmentation methods that operate on the semantic annotations.
Thereby, the semantic information is given by the process model, or more precisely its nodes
and edges, and the underlying domain model. The semantic annotations can be very complex
and heavily customized for the domain, making it difficult for generic augmentation methods
to properly handle them. Semantic annotations are also an important part of the similarity

97

computation, i. e., the main learning goal of our use case. Therefore, it should be noted that
changes in the semantic annotations by augmentation might have a large impact on the use of
the augmented process model as a training example.

Focus on control-flow and data-flow

The process model representation of the manufacturing processes to augment is sequential in its
nature and by its definition (see Sect. 6.2.1), with the control-flow as one part and the data-flow
as the other part [36, 37]. This is an important property to consider for augmentation methods,
and it is also one property that is not considered by generic graph augmentation methods (see
Sect. 6.2.5). Although not dealing with process models, Käppel and Jablonski [29] are also
confronted with the sequential nature of process event logs but, generally, only consider control-
flow and face an overall lower complexity of the used data with semantics playing a small role. It
is important to note that the manufacturing processes in this paper (see Fig. 6.1) are an example
of processes that rely mainly on their data-flow. The control-flow is, in these cases, indirectly
determined by the data nodes connected via data-flow edges to the corresponding task nodes.
There are other types of processes in which the control-flow perspective defined by the task nodes
is the main factor, i. e., business processes [49].

Small changes may have large effects

Augmentation methods are generally designed to transform some kind of input data into a similar
kind of output data, e. g., an image is rotated but still expresses the same content. This property
is also desirable for the augmentation methods of the process models used in this work, and the
extent of the change should be configurable for the methods. This offers the advantage that the
methods can be fine-tuned to each domain or the specific training set, ultimately increasing the
applicability.

6.3.2 Notion of Correctness

The definitions of the sequential NEST process model and the corresponding domain model (see
Sect. 6.2.1) lead to a challenge for augmentation methods to include this syntactical and se-
mantic knowledge into their algorithms. Because the basic assumption of all data augmentation
approaches [10] is also applicable here: The augmented data should be as close to the original
data as possible to ensure a high quality of the augmented data as DL training data. This
“closeness”, however, is hard to measure and strongly depends on the domain. One way could be
the computation of the similarity (see Sect. 6.2.3) between the original process model and the
augmented process model, where a high similarity value is desired. However, the associated com-
putation procedure is infeasible for large-scale augmentation due to the involved computational
complexity, and it requires augmented process models that are valid in terms of all constraints
by the definition of sequential NEST process models and the corresponding domain model. Es-
pecially the fulfillment of the latter requirement can make augmentation methods very complex
and vastly increase the knowledge acquisition effort for their implementation. For this reason,
we introduce the notion of correctness, on the one hand, as an approximation of the quality of
an augmented process model and, on the other hand, as a mechanism to allow augmentation
methods to steer the tradeoff between useful augmentation methods and their complexity and
required knowledge. The correctness could also be considered a key criterion in addition to those
described in Sect. 6.3.1, but it is described separately, as it serves the important purpose of
structuring the different augmentation approaches. The correctness of an augmented process
model, in the sense that we use it for the remainder of the paper, is further divided into syntactic
correctness and semantic correctness:

98

A syntactically correct process model is a valid sequential NEST process model (as defined in
Sect. 6.2.1) and, thus, follows the representation of a NEST graph as well as features a sequential
data-flow and control-flow without missing semantic descriptions.

Syntactic correctness addresses the structure of a process model w. r. t. to its nodes and the
edges between them. A violation of the syntactic correctness is equal to a violation of the con-
straints given by the definition of the NEST graph [4] and the additional rules of sequential
NEST process models. For instance, a simple violation of syntactic correctness would be the
removal of a control-flow edge between two tasks, which, in turn, breaks the control-flow within
the process model. With the property of being syntactically correct, only the structural confor-
mity of a process model is guaranteed, without any validity checks of the semantic annotations
regarding the domain model. Because semantic information is a key aspect of sequential NEST
process models in general and manufacturing process models in particular, semantic correctness
is defined as follows:

A semantically correct process model is syntactically correct and consistent with the definitions
and constraints of the PDDL domain model, thus executable in the manufacturing context (see
Sect. 6.2.2).

Semantic correctness completes the aspects of syntactic correctness by incorporating crucial
information from the domain model. For example, a manufacturing process model is syntactically
but not semantically correct if it is a valid sequential NEST process model, but the workpiece
is processed by machines in the wrong order. The underlying factor for determining semantic
correctness is the domain model, as it holds the information that describes the proper content
and relations of all semantic information of a process model.

Increasing Complexity and
Knowledge-Intensity

Cat. 1:
Augmentation

Without
Correctness
Guarantees

Cat. 2:
Syntactically-

Correct
Augmentation

Cat. 3:
Semantically-

Correct
Augmentation

Decreasing Correctness and
Quality

Figure 6.3: Overview of the Categories of Augmentation Methods.

These two definitions lead to three levels of correctness that can be determined for an aug-
mented process model: 1) A process model can be neither syntactically nor semantically correct,
2) a process model can be syntactically but not semantically correct, and 3) a process model can
be semantically correct, and, thus, the process model is also syntactically correct. The follow-
ing sections discuss augmentation approaches that are divided into three categories according
to the level of correctness that they can guarantee for the resulting augmented process models.
Figure 6.3 depicts these three categories.

We state that augmentation methods that preserve a higher level of correctness of the aug-
mented process models are generally more complex and require more knowledge, i. e., are rather
more knowledge-intensive. In turn, augmented process models with a higher level of correctness
are typically more representative of their native process domain, and, thus, we assume them to
be more useful for learning the properties of these processes. As a more accurate DL model also
leads to better results when being applied as a similarity measure, the level of correctness is an

99

important indication of the tradeoff between the quality of the augmented process models and
the complexity and knowledge requirements of the respective augmentation techniques.

6.3.3 Augmentation Without Correctness Guarantees (Cat. 1)

Augmentation methods from this category are the least complex but hopefully still suitable for
creating a large amount of augmented process models, representing the basic properties of the
process domain. We propose to focus on augmentation based on deletion for this category. There
are several reasons for this: These methods fit well to the main characteristics of this category,
regarding complexity and ease-of-use. Another important factor refers to the knowledge required
to implement methods based on deletion. Usually, these methods only require the original process
model for the implementation, and no further information, such as data from other process models
from a repository, in-depth knowledge about the process model representation or an in-depth
understanding of the domain model. In the remainder of the section, we discuss the deletion of
nodes, edges, and (parts of) semantic descriptions in more depth and examine the application of
these methods for an example.

Randomly deleting nodes from the graph structure representing the process model is a
well-known method from generic graph augmentation (see Sect. 6.2.5). The implementation
is straightforward, but it might result in augmented process models that are not syntactically
correct, mainly due to a broken sequential data-flow or control-flow (see Sect. 6.3.2). Similar to
node deletion, process models can also be augmented by deleting edges. This method is also well-
known from existing literature (see Sect. 6.2.5) and it is easy to understand and to implement. It
is worth discussing nodes and edges separately, as their augmentations also have a different effect
on the training procedure of the GEM (see Sect. 6.2.4). After the initial embedding of the nodes
and edges in the embedder, the node information is propagated along the edge connections. This
means that deleting a node removes the information from the propagation procedure and, ulti-
mately, from the graph embedding. Deleting an edge changes the embedding by restricting the
flow of information in the propagation layer of the GEM, which can have a significant influence
on the resulting embedding.

Unload from
Warehouse

parameters: {slot:slot_1,
res.:hbw_1}

Unprocessed
Steel Slab

position:
hbw_1_slot_1

Transport from
Warehouse to

Oven

parameters: {start:hbw_1,
end:ov_1,res.:vgr_1}

Unprocessed
Steel Slab

Unprocessed
Steel Slab

position: ov_1

Burn

parameters: {size:middle,
thickness:thick,res.:ov_1}

Sheet Metal

position: ov_1
size: middle

thickness: thick
position:
hbw_1

Transport from
Oven to Warehouse

parameters: {start:ov_1,
end:hbw_1,res.:vgr_1}

Sheet Metal

position: hbw_1
size: middle

thickness: thick

Store in
Warehouse

parameters:
{slot:slot_1,res.:hbw_1}

Sheet Metal

position: hbw_1_slot_1
size: middle

thickness: thick

Figure 6.4: Exemplary Syntactically Incorrect Process (based on Fig. 6.1).

Apart from the structural components, i. e., nodes and edges, the semantic descriptions are
another integral part of the process model representation, which can also be addressed during
augmentation. Thereby, the entire semantic description (or parts) of the semantic description
of certain nodes or edges can be deleted. The resulting augmented process models are not
syntactically correct, due to missing semantic descriptions (see Sect. 6.3.2). Although a node or
an edge is mainly characterized by its semantic description in a sequential NEST process model,
there are differences between deleting only the semantic description or the entire node or edge:
On the one hand, the information on the type of node or edge is preserved and still part of
the graph embedding procedure, which influences the resulting embedding. On the other hand,

100

there is a node without semantic information, which will lead to a different behavior of the GNN
during embedding and propagation. Therefore, it is useful to discuss both aspects separately.

An example of the application of three augmentation methods based on deletion is shown in
Fig. 6.4. Thereby, the following three augmentations are applied successively to the exemplary
process model shown in Fig. 6.1:

1. Random deletion of one data node

2. Random deletion of two data-flow edges

3. Random deletion of the semantic description of one data node

The changes made to the original process model are highlighted with hatched nodes and
semantic descriptions, respectively, and edges in bright gray. The augmented process model no
longer follows the sequential NEST process model definition (see Sect. 6.2.1) due to the broken
sequential data-flow in three parts of the process model and a missing semantic description of
the first unprocessed steel slab. It is also important to note that the state of the workpiece in
the process model is lost due to the deleted data node and the semantic descriptions.

6.3.4 Syntactically Correct Augmentation (Cat. 2)

For this category of augmentation, we propose to focus on augmentation approaches that involve
some kind of replacement. The main reason for this is the ability to reuse existing syntactically
and semantically correct parts of the original process models to create augmented process models.
Thus, it is possible to replace parts of a process model, e. g., a task node, with an equivalent
part of the same or a different process model. Syntactic correctness is automatically ensured,
since the structure of the augmented process model does not change compared to the respective
original. The augmented process model differs from the original process model only on a semantic
level. Existing generic graph augmentation methods from the literature can usually only hardly
be reused in this regard (see Sect. 6.2.5) since they cannot specifically handle process models
and, in particular, sequential NEST process models. The remainder of the section discusses
replacements of task and data nodes, control-flow and data-flow edges, and (parts of) semantic
descriptions in more depth, and examines the application of these methods for an example. We
also discuss swapping as a special form of replacing, where the part to replace, e. g., a task node,
and the replacement come from the same process model.

Unload from
Warehouse

parameters: {slot:slot_1,
res.:hbw_1}

Unprocessed
Steel Slab

position:
hbw_1_slot_1

Burn

parameters: {size:middle,
thickness:thick,res.:ov_1}

Unprocessed
Steel Slab

Unprocessed
Steel Slab

Transport from
Warehouse to

Oven

parameters: {start:hbw_1,
end:ov_1,res.:vgr_1}

Sheet Metal

position: ov_1
size: middle

thickness: thick

Transport from
Oven to Warehouse

parameters: {start:ov_1,
end:hbw_1,res.:vgr_1}

Sheet Metal

Store in
Warehouse

parameters:
{slot:slot_1,res.:hbw_1}

Sheet Metal

position: hbw_1_slot_1
size: middle

thickness: thick

position: hbw_1
size: middle

thickness: thickposition: ov_1
position:
hbw_2

Figure 6.5: Exemplary Semantically Incorrect Process Model (based on Fig. 6.1).

The control-flow within a process model is given by the control-flow edges between the task
nodes in the process model. It determines the order in which tasks are carried out on the
data elements, e. g., a metal sheet is drilled. Augmentation can be aimed at the control-flow by
replacing task nodes of the original process model with other task nodes, including their semantic
description. Therefore, the replaced node receives all ingoing and outgoing edges of the former

101

node after replacement (see tasks Burn and Transport from Warehouse to Oven in Fig. 6.5).
Analogous to the control-flow, the data-flow within a process model, i. e., the data nodes that are
consumed or produced along the control-flow, can also be targeted by augmentation similarly.
In the manufacturing use case, this manipulates the input goods and the resulting goods of each
manufacturing task in the process model. Such an augmentation replaces data nodes along the
data-flow with other data nodes and their semantic descriptions, coming from the same or a
different process model. As with the replaced task nodes, the connected edges are disconnected
before replacing and then connected to the new nodes after the replacement.

Edges can also be replaced as a form of augmentation. The two most important types of
edges to be augmented are control-flow edges and data-flow edges, due to the important NEST
process model characteristics of sequential control-flow and data-flow (see Sect. 6.2.1).

The semantic descriptions of nodes and edges are also useful for replacements. Replacing the
entire semantic description of a node or an edge (given the replacement node or edge has the
same type) is equivalent to replacing the node or edge itself, as it is characterized and represented
by its semantic description. Parts of semantic descriptions can also be replaced with values from
other semantic descriptions of nodes or edges of the same type. Since the replaced parts of
the semantic descriptions are from the same or other original process models and, therefore,
semantically correct, the resulting process models might not be semantically correct due to the
new context that the replaced node is now integrated in.

The influence of these augmentations on the training of the GEM is different from the dele-
tions previously discussed (see Sect. 6.3.3). When comparing the original process model with
one augmented by replacing nodes, edges, or parts of semantic descriptions, the structure of the
process model remains unchanged, while the embedding procedure nonetheless changes. New
information might be part of the process model if data from different process models of the
repository is used for the replacement. If data from the same process model is used (i. e., swap-
ping), then the augmented process model is handled differently by the GNN in the propagation
and aggregation layers compared to the original one. This consideration between swapping and
replacements from different process models might influence the quality of the resulting process
models. On the one hand, swapping usually creates augmented process models that are rela-
tively close to the original, since information within the process model is only moved along the
control-flow or data-flow. Replacements with information from different process models, on the
other hand, might increase the diversity of the training data with new, unseen process models.

An example of the application of three replacement-based augmentation methods is shown in
Fig. 6.5. Thereby, the following three augmentations are applied successively to the exemplary
process model shown in Fig. 6.1:

1. One random swap of two neighboring task nodes

2. One random swap of two neighboring data nodes

3. One random replacement of the item position in the semantic description of one data node

The changes made to the original process model are highlighted with cross-hatched nodes and
semantic descriptions. The resulting augmented process model is still a valid sequential NEST
process model (see Sect. 6.2.1) but it is not semantically correct. For instance, it is not valid
to burn the workpiece before it was brought to the oven, as shown by the augmented process
model.

102

6.3.5 Semantically Correct Augmentation (Cat. 3)

To create semantically correct augmented process models, it is important to do augmentation
that fulfills the constraints given by the sequential NEST process model representation (see
Sect. 6.2.1) and the domain model (see Sect. 6.2.2). For example, assume a manufacturing process
with a wrong order of machines or wrong parameter settings for these machines. Training a DL
model with these processes could lead to incorrect generalizations and, ultimately, poor model
performance. To guarantee semantically correct augmented process models, automated planning
techniques in combination with a planning domain description (see Sect. 6.2.2) are suitable.

Listing 6.2: Exemplary Planning Problem for Generating a Manufacturing Workflow.

1 (define (problem factory-problem) (:domain factory)

2 (:objects workflow_1 - processID)

3 (:init

4 ...

5
6 (isReady vgr_1) (isReady vgr_2)

7 (isReady hbw_1) (isReady hbw_2)

8 (isReady ov_1) (isReady ov_2)

9 (isReady mm_1) (isReady mm_2)

10 (isReady wt_1) (isReady wt_2)

11 (isReady sm_1) (isReady sm_2)

12 (isReady pm_1) (isReady dm_2)

13 (isReady hw_1)

14
15 ; workflow_1 initial state

16 (bucketAt hbw_1_slot_1_pos)

17 (isSteelSlab workflow_1)

18 (at workflow_1 hbw_1_slot_1_pos)

19
20 (=(total-cost) 0)

21
22)

23 (:goal (and (at workflow_1 hbw_1_slot_1_pos)

24 (isSheetMetal workflow_1)

25 (isSheetMetalWithSize middle workflow_1)

26 (isSheetMetalWithThickness thick workflow_1))

27
28 (:metric minimize (total-cost))

29)

Automated planning [12, 17] is a technique from artificial intelligence and, thus, is often also
called AI planning. AI planning can be used as a generative problem solver and is based on
the concept of representing a planning problem as an initial state, a goal state that should be
reached, and a set of actions that are used for state transitions. The goal of solving the planning
problem is to find a sequence of actions so that the goal state is reached based on the facts given
in the initial state. In this context, a sequence of actions is rather similar to a sequence of tasks
in a process. For this reason, AI planning has also gained considerable interest in the BPM area
in recent research works [36, 37, 39, 42, 43, 45, 58]. In Marrella [41], it has been examined in
which phases of the BPM lifecycle, AI planning can be utilized. One use case for AI planning
in BPM is the generation of process models in the Design phase. In this work, we generate new

103

process models and transform existing process models to increase the set of semantically correct
process models in the context of data augmentation.

To augment process models, a comprehensive planning domain model consisting of the avail-
able planning actions and a planning problem comprised of the initial state and the goal state
that should be reached is required. For the manufacturing application scenario used in this work,
we use a semantic service-based architecture for the smart factory [38, 64]. Based on this ar-
chitecture, a domain expert creates a comprehensive planning domain description based on the
PDDL [47] for the application scenario, as introduced in Sect. 6.2.2. With the planning domain,
process models can be either augmented by synthesis, i. e., generated from scratch solely based on
the planning domain and a randomly generated planning problem, or transformation, i. e., based
on an original process model [for more information on this distinction, see 50].

In addition to the planning domain, a corresponding planning problem is required to generate
process models for data augmentation. These planning problems can be created automatically
and randomly in the context of the manufacturing application scenario. Given the problems,
it is possible to solve them by a corresponding planner. Listing 6.2 represents a part of the
planning problem to generate the workflow illustrated in Fig. 6.1. The random planning problem
generator assumes that all machines are available in the smart factory (Lines 6–13) and specifies
an object representing the workflow to be planned (Line 2). Subsequently, the initial state of
the planning problem is specified by randomly choosing possible initial states (Lines 16–18).
Furthermore, the total cost function is initialized (Line 20). To define the goal of the workflow,
the goal state of the planning problem needs to be specified. For this purpose, the random
planning problem generator determines for each possible property of the workpiece whether it
should be included, e. g., drilled or not drilled, and, if so, in which concrete form, e. g., number
and size of the holes. In this context, it is important to know that all properties, desired or not,
are part of the planning problem. However, please note that Listing 6.2 only contains the desired
ones due to space restrictions (Lines 23–26)4.

Transformational augmentation is possible with AI planning similarly. Instead of directly
manipulating the process models (as discussed in Sect. 6.3.3 and 6.3.4), the native planning
problems or the configuration of the planner are augmented. In the first case, it is possible to
create the initial state and the goal state of the origin process model and then augment the
initial state, e. g., a change of the position of the workpiece, the goal state, e. g., a change in the
thickness of the workpiece, or the final metric, e. g., a minimization of the number of tasks instead
of the total cost. These changes are then processed by the planner and an augmented process
model is created. A different way of creating augmented process models with AI planning is an
augmentation of the planner configuration. By changing the heuristic or the configuration of the
heuristic that the planner uses to solve the planning problem, it is also possible to create different
resulting process models. The augmented process model and the original one are most likely
similar for both variants, since they use a similar planning problem and planner configuration. In
addition, the proposed approach can also be used for planning parts of process models, e. g., gaps
in the control-flow between two activities or alternative routes for certain parts. This offers the
advantage that the resulting process models are even more similar as only parts change, and they
could be more effective as training examples.

6.3.6 Unsupervised Transfer Learning with Augmented Processes

Augmented process models pose a challenge in handling them in the training process of a su-
pervised embedding model such as the GEM (introduced in Sect. 6.2.4) due to the required

4 All PDDL files created for the paper are publicly available. See the statement on data availability at the end
of the article for more information.

104

ground-truth similarities. On the one hand, it is unclear if the underlying ground-truth similar-
ity measure can deal with syntactically or semantically incorrect process models. On the other
hand, the procedure for computing the ground-truth similarities is usually computationally ex-
pensive and, when using measures based on A*, often entirely infeasible for large amounts of
data (see Sect. 6.2.3 and Schuler et al. [62] for more information). Therefore, we propose to
use augmentation in combination with a semi-supervised two-phase training approach, featuring
an unsupervised pretraining phase and a supervised graph similarity learning phase [62]. This
provides the advantage that the augmented process models are used in an unsupervised training
procedure without the need for label acquisition, i. e., the computation of ground-truth similari-
ties. The original, non-augmented process models are used in the supervised training procedure,
where the model learns to predict the ground-truth similarities (see Sect. 6.2.4). Due to this
separation, the augmented process models are still used to train the graph embedding model,
but label acquisition is greatly reduced, compared to a fully supervised training setup.

Pretraining

Augmented
Dataset

Labeled
Dataset

Similarity
Learning

Unsupervised
Learning

Data
Augmentation

Preprocessing Adaptation

Trained
Model

Pretrained
Model

1
2 3

Figure 6.6: Architecture for Semi-Supervised Transfer Learning With Its Three Main Steps
[Source: 62].

The unsupervised and the supervised training phases are unified by transfer learning (see
Fig. 6.6 for an overview of the components and the main steps). The fundamental concept
behind transfer learning is that the knowledge acquired during the pretraining phase from a
source domain (see step 2) can be applied in the adaptation phase within a target domain
(see step 3), as outlined in Kudenko [32] and Tan et al. [66]. In our specific context, a graph
embedding model serves as this knowledge, transitioning from the unsupervised pretraining phase
to the supervised adaptation phase.

The underlying assumption here is that the augmented training data is sufficient for the
unsupervised pretraining to learn the characteristics of the process domain and, thus, to diminish
the necessity for an extensive amount of labeled data during the subsequent supervised training.
The existing literature [e. g., 70] supports this strategy.

Unsupervised Triplet Learning

During the pretraining phase, a Siamese Neural Network (SNN) with a triplet loss [20, 54, 61] is
used to learn unsupervised graph embeddings (see Fig. 6.7). The specific graph embedding model
is the GEM (introduced in Sect. 6.2.4). The concept revolves around creating embeddings that
are alike for graphs with similarities, and distinct for graphs that differ significantly (in terms of
vector space similarity). Given the absence of computed ground-truth similarities for the graphs
within the training dataset, the loss function operates on graph triplets comprising an anchor,
a negative, and a positive. Thereby, the similarity for the pair of the anchor and the positive
is maximized, and the similarity for the pair of the anchor and the negative is minimized. The
formal definition of this triplet loss is given in Eq. 6.1: Let T = (xa, xp, xn) be a triplet consisting
of one input vector for anchor xa, positive xp, and negative xn, and let f(xi) = mi ∈ Rn represent
the embedding of an input vector xi as the n-dimensional embedding mi. The loss function L is

105

minimized with α as a margin hyperparameter and N as the cardinality of a batch of triplets to
train a model [61].

L =

N∑
j

max{0, ∥ma
j −mp

j∥
2 − ∥ma

j −mn
j ∥2 + α} (6.1)

The main challenge for this training method in an unsupervised context is the composition of
the triplets, as the aforementioned assumptions regarding the relationships of anchor and positive
and anchor and negative should be satisfied. With a given anchor process model, the negative is
selected randomly from the training set, which is straightforward. The positive is selected as an
augmentation of the anchor process model, since the augmentation methods generally produce
augmented process models that are similar to the original ones. Please note the special case
when composing triplets of augmented process models generated by AI planning via synthesis
(see Sect. 6.3.5). Since there is no original process model for each augmented one, it is possible
to use the augmented process model as the anchor and the positive.

E
m

b
e
d

d
in

g

Triplet Loss{ }
Embedded Graph Vectors

A P N

Random Selection

Data Augmentation

A

P

N

Figure 6.7: Unsupervised Triplet Graph Embedding using an Anchor (A), a Positive (P), and a
Negative (N) [Source: 62].

Graph Embedding with the GEM

The GEM, as described in Sect. 6.2.4, serves a dual role in both the pretraining and adaptation
phases. In the adaptation phase, its function aligns with its original purpose [see previous
work in 23], involving the supervised embedding of graph pairs. Nevertheless, the pretraining
phase, which employs the triplet learning method, necessitates specific adjustments to the model.
Contrary to its original use with pairs of graphs, the GEM is trained with graph triplets. Each
graph in the triplet is embedded using shared parameters. As the GEM supports processing
tuples of graphs independent of their number out of the box, this change is more focused on the
implementation. These refinements to the GEM enable the successful execution of unsupervised
pretraining and the subsequent supervised adaptation of the model within the transfer learning
framework.

6.4 Experimental Evaluation

The experimental evaluation aims to examine the effects of process model augmentation on
similarity learning with the GEM. Therefore, the GEM is trained with different augmented
training sets and is compared to the GEM trained with non-augmented data. The comparison
between different GEMs is done according to several quality metrics, measuring the similarity
prediction errors. The augmented training sets are created with different combinations and
configurations of the three categories of augmentation, introduced in Sect. 6.3.

106

6.4.1 Hypotheses

We investigate the following hypotheses:

H1 Training the GEM on augmented process models increases the quality compared to the
GEM being trained on non-augmented process models.

H2 Training the GEM on augmented process models of Cat. 2 (see Sect. 6.3.4) increases quality
compared to the GEM being trained on augmented process models of Cat. 1 (see Sect. 6.3.3).

H3 Training the GEM on augmented process models of Cat. 3 (see Sect. 6.3.5) increases the
quality compared to the GEM being trained on augmented process models of Cat. 1 or 2
(see Sect. 6.3.3 and 6.3.4).

H4 Training the GEM on process models augmented with methods from several categories
increases quality compared to the GEM being trained on process models, augmented with
the respective methods from the individual categories.

The hypotheses show the expectations of the authors regarding the experimental results. As
a baseline, it is expected that using augmented data for training leads to a better model than the
original (non-augmented) data. We additionally claim that the level of correctness influences the
quality of the model, i. e., higher levels of correctness lead to better models. The final hypothesis
addresses the combination of augmentation methods with different levels of correctness that are
expected to show an increased quality compared to the respective individual methods.

6.4.2 Datasets

The main dataset (denoted as D100) used throughout the experiments comprises workflows orig-
inating from a smart manufacturing IoT environment, representing sample production process
models (see Sect. 6.2.1 or previous work in Malburg, Hoffmann, and Bergmann [37] for more de-
tails). The dataset contains 100 training cases, 20 validation cases, and 20 test cases. To measure
the effects of augmentation on differently sized datasets, we also use D50 with 50 training, 10
validation, and 10 test cases, D200 with 200 training, 30 validation, and 30 test cases, and D300

with 300 training, 35 validation, and 35 test cases. For the cases contained in these datasets,
D50 ⊂ D100 ⊂ D200 ⊂ D300 holds. These datasets are created using the planning approach by
synthesis introduced in Sect. 6.3.5 to reduce the manual effort to create a data set of process
models. In a real-world scenario, a manually modeled dataset of process models would probably
exist and could be used instead.

6.4.3 Augmentation Strategies

To examine the effects of augmentation on the quality of the GEM, the aforementioned datasets
are augmented. The resulting datasets are presented in Tab. 6.1. Each dataset is augmented with
different strategies: 1) methods without correctness guarantees (as introduced in Sect. 6.3.3), 2)
syntactically correct methods (as introduced in Sect. 6.3.4), 3) semantically correct methods (as
introduced in Sect. 6.3.5), 4) the combination of the strategies 1 and 2, and 5) the combination of
the Strat. 1–3. Since Strat. 3 and Strat. 5 involve AI planning, we also investigate the differences
between synthesis and transformational augmentation. Consequently, Strat. 3.1 and Strat. 5.1
use synthesis while Strat. 3.2 and Strat. 5.2 use transformations. The augmentation methods
that are involved in each strategy are applied in parallel, that is, each augmentation method
augments the original process model. The result is one original process model that leads to one

107

Strategy Category
Methods

Factor Sizes (D100, D50,
D200, D300)

1 1 Deletion of two control-flow edges; Deletion of
one data node; Deletion of one item of the se-
mantic description of two task nodes

4 400, 200, 800,
1200

2 2 Swap of two pairs of neighboring data nodes (in
terms of data-flow); Swap of two pairs of neigh-
boring task nodes (in terms of control-flow);
Swap of one item of the semantic descriptions
of three task nodes

4 400, 200, 800,
1200

3.1 &
3.2

3 Synthesis (3.1) and transformation augmenta-
tion (3.2) of process models via AI planning

4 400, 200, 800,
1200

4 1 and 2 Augmentation according to Strat. 1 and Strat.
2

7 700, 350, 1400,
2100

5.1 &
5.2

1, 2,
and 3

Augmentation according to Strat. 1, Strat. 2,
and Strat. 3.1 or Strat. 3.2

10 1000, 500, 2000,
3000

Table 6.1: Augmentation Strategies in the Experiments.

additional augmented process model. Given n ∈ N as the number of original non-augmented
process models and m ∈ N as the number of augmentation methods, the number of process
models after augmenting a dataset with one strategy equals n + n ·m. Therefore, the original
process models as well as one augmented dataset for each augmentation method are part of the
final augmented dataset of the strategy, leading to a factor of m+1 for the multiplication of the
training data.

We use three deletion-based augmentation methods for Strat. 1, 4, and 5, three augmentation
methods based on replacements for Strat. 2, 4, and 5, and two augmentation methods based on
AI planning for Strat. 3 and 5. All of these augmentation methods contain random aspects that
can be seeded to allow reproducibility. The deletion-based methods work as follows:

Edge Deletion

This method randomly deletes edges, including their semantic description, in the original process
model. The parameterization possibilities of the method comprise the number of edges to delete
and the types of edges to delete. The method is configured to delete two control-flow edges in
the experiments.

Node Deletion

This method randomly deletes nodes including their semantic description in the original process
model. The method can be parameterized by the number of nodes to delete, the types of nodes
to delete, and whether the connected edges should also be deleted. The configuration of the
method in the experiments deletes one data node without deleting the connected edges.

Deletion Within Semantic Descriptions

Randomly deleting items from semantic descriptions is the core of this augmentation method.
Therefore, an attribute of the semantic descriptions of a certain type of node or edge is selected
first and then deleted for several nodes. The method can be parameterized by the number of

108

nodes or edges to target and the respective type of node or edge. The method is configured to
delete one item in the semantic descriptions of two task nodes in the experiments.

In addition to the methods based on deletion, the experiments also use methods based on
replacements. These methods are implemented as follows:

Task Order Swapping

This method swaps pairs of task nodes that are neighbors according to the control-flow, i. e., task
nodes that are directly connected by a control-flow edge. The swapped nodes keep their original
semantic descriptions but replace the former node in all edge connections. The method can be
configured by the number of swaps to perform, which is two in the experiments.

Data Order Swapping

Analogous to swapping the task order, this method swaps neighboring data nodes along the
data-flow. Two data nodes are neighbors if one of those nodes is consumed and the other one is
produced by the same task node. The number of swaps to perform can be set as a parameter,
and this value is two in the experiments.

Swapping Within Semantic Descriptions

This augmentation method processes the semantic descriptions of nodes or edges and swaps
contained items. Pairs of nodes or edges of the same type are first identified, an item of their
semantic descriptions to swap is selected, and then this item is swapped. The method can be
parameterized by the number of nodes or edges to target and the respective type of node or edge.
The method is configured to swap one item in the semantic descriptions of three task nodes in
the experiments.

For the augmentation methods of Strat. 3 and Strat. 5, we distinguish between synthesis
(Strat. 3.1 and 5.1) and transformational augmentation (Strat. 3.2 and 5.2):

Synthesis

This method generates new process models by using the PDDL domain model and randomly
setting an initial state and a goal state (see Sect. 6.3.5 for more information) for the search
procedure of a planner. In our experiments, we generate the same number of process models
as the augmentation methods of the other strategies to keep the size of the resulting datasets
comparable. This means that a dataset augmented with Strat. 3.1 contains three times the
number of generated process models compared to the original process models.

Transformation

Transformational augmentation via AI planning (see Sect. 6.3.5 for more information) in the
experiments is conducted by using different planner heuristics for solving the planning problem
of the original process model. Instead of utilizing A* search with the landmark-cut heuristic
(lmcut) [18] that creates the original process models based on their planning problems, the
augmented process models are created with three different variants of a lazy greedy best-first
search: The first used heuristic is the context-enhanced additive heuristic (hcea) [19] and the
second heuristic is fast-forward (hff) [21]. Both heuristics are also used in combination as a third
variant (hff-hcea).

Tables 6.3 and 6.4 in the appendix give a statistical comparison of the original datasets and
the respective augmented ones. The tables are concerned with the number of nodes and edges

109

of all graphs in the respective datasets. In detail, we present the average, the minimum, and the
maximum numbers. While Fig. 6.3 shows the absolute values, Fig. 6.4 gives a comparison of the
average of these numbers w. r. t. the Kolmogorov-Smirnov (KS) statistic. The displayed value
is the complement of the statistic, and it measures how well the values of two samples align.
Thereby, a value of 1 indicates perfect alignment, meaning that both samples most likely come
from the same distribution, and a value of 0 means the worst alignment.

6.4.4 Model Training and Metrics

The training procedure for each variant of the GEM is two-phased, following the proposed transfer
learning approach (see Sect. 6.3.6). For each augmented dataset, a pretraining is carried out with
the triplet learning approach. The resulting model is then used as the base model for adaptation.
Each pretrained model is fine-tuned with the data of the respective base dataset. For example,
the dataset D100 is augmented with Strat. 1, resulting in the augmented dataset D′. The data
of D′ is then used for pretraining, and the pretrained model is trained with the data of D100 in
the adaptation phase. We use the same hyperparameters for all pretraining runs and adaptation
runs, respectively, which improves their comparability. These hyperparameters are determined
by hyperparameter tuning [22] that is done once for the pretraining of D100 augmented with
Strat. 1 and the adaptation of the resulting model. All trainings run for a fixed number of 40
epochs, and the best model is selected afterward according to the validation results of each epoch
(similar to early stopping). Each of the adaptation training runs is done three times, and the
evaluation results for these three models are averaged to get more consistent results.

Different variants of the GEM are compared by using them as a similarity measure for the
scenario of a search in a process model repository. Given a single query process model from
the test set, similar process models are searched based on the pairwise similarity between the
query process model and all process models in the repository. The repository thereby contains
all process models from the training set. This setup reflects real-world scenarios where a certain
repository exists and new, unknown process models are used as queries. The inspected metrics
for the comparison of different variants of the GEM are the MSE, the MAE, and the Root Mean
Squared Error (RMSE). All three metrics measure the error between the predicted similarity and
the ground-truth similarity. While the predicted similarity stems from the corresponding GEM
variant, we use ground-truth similarities that are computed by an A* graph matching algorithm
(see Sect. 6.2.3 and Bergmann and Gil [4]). The MSE computes the error as the average squared
error of the difference between the predicted and the ground-truth similarity. The MAE does
not use the square of these differences, but rather their absolute value. The RMSE is the square
root of the MSE. Lower values of all three metrics are generally better.

6.4.5 Experimental Results

The results of the experiments are presented in Tab. 6.2. Two tables are provided with the
absolute values of the error metrics in Tab. 6.2a and the relative differences in Tab. 6.2b. The
tables cover the computed metrics of the different variants of the GEM for all datasets. These
variants include the standard, non-augmented model and the models augmented with different
strategies, as introduced in Sect. 6.4.2–6.4.4. The tables also include a variant of the A* graph
matching similarity measure (see Sect. 6.2.3 and Bergmann and Gil [4]) that is also used to
compute the ground-truth similarities. This variant is included to connect the results of the
augmented models to previous work, where embedding-based similarity measures are compared
to measures based on A* graph matching (see Sect. 6.2.4 and Hoffmann and Bergmann [23] and
Hoffmann et al. [26] for more details). This A* measure differs from the one used to compute the

110

ground-truth similarities in the sense that it is restricted in the maximum number of solution
candidates to maintain during the search procedure. The value is chosen such that the average
computation time is approximately equal to that of the other measures to allow a fair comparison
with a similar time budget. The same strategy is also used in previous work [23, 26].

MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓
0.1772 0.1851 0.0384 0.1603 0.1690 0.0308 0.1087 0.1205 0.0157 0.1234 0.1326 0.0216

Strat. 1 0.1204 0.1311 0.0187 0.0746 0.0841 0.0083 0.0775 0.0908 0.0101 0.0984 0.1068 0.0139
Strat. 2 0.1031 0.1142 0.0146 0.0802 0.0904 0.0098 0.0747 0.0894 0.0091 0.1163 0.1229 0.0179
Strat. 3.1 0.0911 0.0996 0.0117 0.0917 0.1009 0.0125 0.0888 0.1039 0.0117 0.0972 0.1048 0.0139
Strat 3.2 0.2754 0.3162 0.1167 0.1253 0.1398 0.0243 0.3195 0.3344 0.1422 0.2439 0.2524 0.1051
Strat. 4 0.1118 0.1248 0.0173 0.1774 0.1963 0.0450 0.0863 0.1032 0.0130 0.1204 0.1310 0.0195
Strat 5.1 0.1769 0.1969 0.0438 0.1583 0.1706 0.0339 0.1378 0.1584 0.0281 0.1005 0.1118 0.0153
Strat. 5.2 0.1566 0.1732 0.0329 0.1363 0.1495 0.0264 0.1096 0.1258 0.0177 0.1729 0.1832 0.0664

0.1656 0.1709 0.0298 0.1764 0.1799 0.0329 0.1816 0.1844 0.0344 0.1560 0.1618 0.0270

Model

Au
gm

en
te

d

A* measure

300200100 50

Standard

(a) Absolute Errors.

MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓
0.1772 0.1851 0.0384 0.1603 0.1690 0.0308 0.1087 0.1205 0.0157 0.1234 0.1326 0.0216

Strat. 1 -32.1% -29.2% -51.3% -53.5% -50.2% -73.0% -28.7% -24.6% -35.7% -20.3% -19.5% -35.5%
Strat. 2 -41.8% -38.3% -62.0% -50.0% -46.5% -68.3% -31.3% -25.8% -41.8% -5.7% -7.3% -17.0%
Strat. 3.1 -48.6% -46.2% -69.4% -42.8% -40.3% -59.4% -18.3% -13.7% -25.3% -21.2% -20.9% -35.7%
Strat 3.2 55.4% 70.8% 204.3% -21.9% -17.2% -21.0% 194.0% 177.5% 805.7% 97.7% 90.4% 387.5%
Strat. 4 -36.9% -32.6% -55.0% 10.7% 16.2% 46.4% -20.6% -14.4% -17.2% -2.4% -1.2% -9.6%
Strat 5.1 -0.2% 6.4% 14.2% -1.3% 0.9% 10.2% 26.7% 31.5% 78.8% -18.6% -15.7% -28.9%
Strat. 5.2 -11.6% -6.4% -14.2% -15.0% -11.5% -14.3% 0.8% 4.4% 12.5% 40.1% 38.2% 207.7%

-6.6% -7.7% -22.3% 10.0% 6.5% 6.9% 67.1% 53.0% 119.1% 26.5% 22.1% 25.2%A* measure

Au
gm

en
te

d

Standard

Model 200 300100 50

(b) Relative Errors.

Table 6.2: Evaluation Results.

The first observation in the data is that all three metrics behave very similar when comparing
the same model, with only small deviations in some cases. Therefore, in the following, we do not
describe the data w. r. t. each metric individually but rather as a combination. It is apparent that
the best-performing model is never the non-augmented one but rather one of Strat. 1–3.1 for all
domains. While these models are generally better than the non-augmented model (indicated by
negative percentages in Tab. 6.2b) this is not the case for Strat. 3.2–5.2. There, we can observe
an increased error for some domains, e. g., Strat. 5 of D50. The metric values for the Strat. 1–3.1
are similar across all domains, and the observed variations do not follow a clear trend between
different domains. The data also shows that similar amounts of training data lead to models
of similar quality, regardless of the data quality. This becomes apparent, for instance, when
comparing the model augmented with Strat. 3.1 of domain D50 with the non-augmented model
of D200. Both are trained with 200 training process models and, with an MAE of approximately
0.1, the performance is very similar. However, training with more data does not necessarily lead
to better results, as shown by the models of Strat. 3.2 and 5 compared to the models of Strat.
1–3.1 of D200. The comparison between synthesis and transformational augmentation with AI
planning reveals mixed results. Strat. 3.2 seems to perform worse than Strat. 3.1, on average,
and Strat. 5.2 seems to generally outperform Strat. 5.1. It is noticeable that Strat. 3.2 performs
very poorly for all domains except D50. The measure based on A* is outperformed in almost all
comparisons with the embedding-based measures which is in line with the experimental results
of previous work [23, 26]. It also appears that the larger domains, i. e., more training data, favors
the embedding-based measure more.

When interpreting the results of the embedding-based measures, a great potential of the
process augmentation approach is revealed. The augmented datasets lead to a reduction of the

111

prediction error of up to 53% in terms of MAE. This effect weakens with larger datasets, but it is
still significant, i. e., a reduction of 21% for the largest domainD300. More original training data is
expected to reduce the need for augmented data, which is in line with our results. Furthermore,
the results indicate that the augmentation methods of the different categories do not lead to
trained models with different levels of performance. The observable differences between the
augmented models of the Strat. 1–3 follow no trend across the domains, and are most likely
variation. The error reductions appear to be possible with augmented process models of higher
and lower quality. Additionally, the results indicate that the highly augmented datasets, i. e., the
datasets augmented with Strat. 4 and 5, perform worse than the datasets of Strat. 1–3 on average.
This is contrary to the common expectation that more (augmented) training data improves the
performance of DL models. And while this expectation holds for the comparison between the
differently sized domains, the reason for the adverse effect of Strat. 4 and 5 might be a drift
between the original datasets and the highly augmented ones. This means that the augmented
data does not adequately represent the original data anymore. Furthermore, the different results
of synthesis and transformational augmentation via AI planning might be a result of the different
ways the augmented datasets are created. Tab. 6.4 indicates that most of the statistical numbers
point to a close alignment between the augmented datasets and the respective original ones,
except for Strat. 3.2 and 5.2. It appears that the applied method of augmenting process models
by using different heuristics to solve the same planning problem leads to large variations in the
resulting process models, thus the low values of the KS statistic. In contrast, Strat. 3.1 and 5.1
have much higher KS values that indicate an advantage of synthesis in this scenario.

To accept or reject the hypotheses, the experimental results are assessed statistically and
qualitatively. The statistical assessment is conducted by paired, two-sample, one-sided t-tests5

between the similarity predictions of two individual models to check for unequal mean values.
For instance, to get a statistical confidence for Hypothesis H1, the p-value of the t-tests of all
pairs of one augmented model and the standard model in all domains (28 in total) are checked
to see if the augmented models predict similarities that are different from the standard model.
As the t-tests only check for differences of the mean values, the hypotheses are also checked
qualitatively for better or worse predictions, given by Tab. 6.2. The following conclusions for the
hypotheses are drawn based on the statistical and qualitative results: Hypothesis H1 is accepted,
due to statistical significance (p < 0.05) and since we can see a strong positive influence of
the augmented datasets on the model performance compared to the original data. Although
some models perform worse than the baseline, a better performing model can still be found in
a simple model selection or hyperparameter tuning procedure. The Hypotheses H2 and H3 are
rejected, as there are no clear trends between models being trained on the augmented data of
different categories of augmentation methods. The statistical results for both hypotheses are
mostly statistically significant (p < 0.05) apart for the comparisons of Strat. 1 and 2 as well
as Strat. 2 and 3.1 for domain D50. The t-tests for Hypothesis H4 show statistical significance
(p < 0.05) except for the comparison between Strat. 5.1 and 2 in domain D300. The hypothesis
is still rejected due to the generally worse performance of the Strat. 4 and 5 compared to the
Strat. 1–3.

6.4.6 Discussion

One of the key outcomes of the experiments is the observation that DL models trained on aug-
mented process models with a guaranteed correctness do not consistently outperform DL models
trained on augmented process models without correctness guarantees. This appears to be con-

5 The detailed results of the statistical tests are part of the supplementary data, as referenced in the data
availability statement at the end of the paper.

112

trary to the common expectation that training data with a higher quality leads to trained models
of noticeably better quality. We think that this effect cannot be seen here due to the following
reason: There are enough augmented process models created such that the individual incorrect
parts do not lead to a lowered quality of the trained model, and the important characteristics
of the original process models are still represented by the majority of the augmented data. The
following example demonstrates this: An augmented process model where a control-flow node is
deleted does not allow the trained model to learn the control-flow as it should be. If the other
augmented process models of the training dataset are augmented differently, the trained model
can still learn the correct characteristics of the control-flow, as the combined characteristics of the
training examples represent all the needed information to learn. That is, the (hypothetical) aver-
age augmented training example represents the same distribution as the original non-augmented
training example. This could be the reason, the different categories of augmentation methods
perform similarly. While this is generally positive, there is a risk for small datasets as well as
datasets with very distinct individual examples because in these scenarios, each example is more
valuable to the training procedure and a significant amount of information might be lost during
augmentation by methods without correctness guarantees.

Another noticeable observation refers to the Strat. 4-5 that combine multiple augmentations
from the other strategies. The models trained on these augmented process models perform
mainly worse than the other augmented models. We interpret the data as an indication of a drift
between the non-augmented and augmented datasets due to the highly diverse training sets. It
might be the case that too much augmentation with different methods shows the opposite of the
effect that was discussed before, ultimately reducing the quality of the trained model. Another
factor that might play a role, especially in the training procedure with large amounts of training
data, is overfitting. Although the effects are mitigated by early stopping in every training run,
there are still hints of it when inspecting the validation loss in comparison to the training loss
in the training statistics. The decision to perform hyperparameter optimization only once and
reuse the results for all other training runs (see the details in Sect. 6.4.4) was made deliberately
to keep the experimental results between different models comparable. Nevertheless, there might
be room for improvement by performing an individual hyperparameter optimization for each
training procedure.

In summary of the experiments, we recommend utilizing augmentation to enlarge the data
available for the training procedure of a DL model. The ratio between original and augmented
data should be chosen carefully. Larger original training data sets appear to be more robust
to augmented data of low quality, but the gain expected by using this augmented data in the
training procedure appears to be lower. Analogously, smaller original training data sets might
have a higher risk of augmented data of low quality disrupting the training procedure, but the
potential gains by training with a larger data set are higher.

6.5 Limitations and Transferability to Other Domains

In this section, we discuss the limitations and main assumptions of the proposed approach and,
particularly, examine the transferability of the approach to other domains.

Sequential NEST Process Model Representation

One of the main assumptions of the approach is the restriction of the discussed categories of aug-
mentation methods to sequential NEST process models, without any rich control-flow elements
such as AND or XOR elements (see Sect. 6.3.2). This restriction enables this paper to have a
proper evaluation of different augmentation methods w. r. t. the correctness of the resulting aug-
mented process models and, thus, the influence of training data with a higher correctness on the

113

quality of the trained embedding models. Transferring the same principles onto other, arbitrary
domains seems challenging at first glance, but we still expect it to be possible. For example, it
is possible to split the whole process model into several smaller process models, e. g., one sub-
process before the control-flow element, one subprocess with the control-flow elements and their
branches, and one subprocess with the rest of the process model. The augmentation methods can
then recursively be executed on these (sequential) subprocesses to augment them. Thereafter,
the processes are put together in a single combined augmented process model.

Selection of Augmentation Methods and Planning Domain Definition

The presented augmentation categories and the augmentation methods from these categories are
selected to fit the assumptions on correctness and the described key criteria. However, we still
expect the described augmentation methods to be universally applicable to other domains, espe-
cially when correctness is not relevant. The main determining factor to deciding on the concrete
methods is most likely the effort that can be put into the implementation of the augmentation
and training procedures described in this work. As the evaluation shows no noticeable differ-
ences between the augmentation methods of the three categories, even simple augmentations can
perform well. But, we are not sure if this also applies to other domains and, therefore, encourage
not to disregard methods with correctness guarantees. The use of AI planning in particular can
be challenging, even though AI planning is already being used successfully in the BPM area [36,
37, 39, 42, 43, 45, 58] and in different lifecycle phases [41]. However, for using AI planning,
a comprehensive formal planning domain is required, which is difficult to achieve in real-world
application scenarios and practice [39, 51]. To remedy this problem, already available encoded
knowledge, e. g., in the form of an ontology, can be reused and converted to a formal planning
domain definition [39]. In addition, there exist approaches [for a comprehensive overview, see 28]
that try to remedy the efforts for creating a formal planning domain definition. For example, in
McCluskey et al. [46] and in Zhuo, Muñoz-Avila, and Yang [80] the authors use demonstrations
or traces, i. e., in our case available process models or event logs of executed process instances,
to automatically derive the planning domain. In addition, special developed user interfaces [e. g.,
71] or generative models such as ChatGPT can be used to remedy these efforts [e. g., 16, 35, 67].
However, and even if domain experts or already encoded and formal knowledge or demonstrations
and traces are available, it means a certain amount of effort that needs to be investigated. If this
effort is too high or there is no other formal knowledge available that can be used to create a
formal planning domain, augmentation methods of Cat. 1 and Cat. 2 should favorably be used,
as they are universally applicable independent of the concrete domain.

Similarity Learning Use Case

The presented approach and its evaluation is built around the use case of similarity predictions
between pairs of process models. This use case is chosen, as previous work of the authors [e. g.,
23] also deals with it, and it is relevant to BPM literature [e. g., 60]. However, the approach
is designed to be applicable to other use cases where DL models are utilized to improve BPM
applications. That is, the augmentations (see Sect. 6.3.3 to 6.3.5) are not dependent on the use
case of similarity prediction but can rather be used to enlarge the training data for arbitrary use
cases. Additionally, the transfer learning approach (see Sect. 6.3.6) is also rather generic and can
be applied to other DL models and training procedures as well. The core feature is the combina-
tion of the unsupervised and the supervised training procedures that is not specific to similarity
learning. In fact, previous work [62] experiments with a very similar transfer learning setup and
shows its suitability across multiple domains. Furthermore, the main contributions might also
be interesting to BPM applications that usually deal with process instances or process traces,
e. g., predictive business process monitoring [56]. The processes used there can be represented in

114

a graph form and also be augmented with the discussed methods, and training can be enhanced
with the proposed transfer learning approach.

6.6 Conclusion and Future Work

This paper presents an approach for using augmentation to enhance DL models in the context
of similarity learning between semantic processes. The approach is motivated by an analysis
of existing literature on process augmentation from BPM research, which shows that the topic
of augmentation is largely unexplored. The proposed augmentation methods are organized in
three categories that represent their properties regarding complexity and knowledge-intensity and
correctness and quality. Additionally, a semi-supervised transfer learning procedure is described
to combine training with augmented and non-augmented data. The experimental evaluation
compares graph embedding models that are trained on augmented data with models trained
on non-augmented data. The results indicate a large potential of the augmented datasets but
also strong variations, depending on the specific augmentation methods used and the size of the
augmented datasets.

In future work, we aim to extend and refine the proposed approach. Due to our focus on the
manufacturing domain in this work, it is not apparent how the approach performs for process
models of other domains (see Sect. 6.5). In this regard, the applicability of the approach in the
domain of event logs should also be examined. It could complement other literature, such as
Käppel and Jablonski [29] or Grüger et al. [14]. In this context, we also want to investigate
how Large Language Models (LLMs) can be combined and used with other AI methods such as
automated planning [e. g., 16, 35, 67] to support process augmentation further. Furthermore,
the usage of other GNNs than the GEM, e. g., the Graph Matching Network (GMN) [24, 26], is
part of future work. This provides insights on the effects of the proposed augmentation methods
for other DL models. In addition, these approaches can be used in combination with process
model adaptation approaches [36, 37, 49, 76], as self-learning process adaptation requires large
amounts of data. Finally, it is planned to apply the proposed approach in a greater comparison
with related work on process matching, e. g., other process similarity measures [2, 8, 27, 73].

Acknowledgements

We thank our colleague Martin Kuhn for his valuable feedback and his help with selecting the
statistical methods used in the paper.

Disclosure Statement

The authors report there are no competing interests to declare.

Data Availability Statement

The source code, the datasets, the trained models, and other supplementary resources are avail-
able online at https://gitlab.rlp.net/iot-lab-uni-trier/aai-journal-2024. The data was last
accessed on August 8th, 2024.

115

https://gitlab.rlp.net/iot-lab-uni-trier/aai-journal-2024

References

1. Adjeisah, M., Zhu, X., Xu, H., Ayall, T.A.: Towards data augmentation in graph neural
network: An overview and evaluation. Comput. Sci. Rev. 47, 100527 (2023). https://doi.or
g/10.1016/J.COSREV.2022.100527

2. Assy, N., van Dongen, B.F., van der Aalst, W.M.P.: Similarity resonance for improving
process model matching accuracy. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.)
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau,
France, April 09-13, 2018, pp. 86–93. ACM (2018). https://doi.org/10.1145/3167132.31671
38

3. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Inter-
net-Based Applications. Springer (2002)

4. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (2014). https://doi.org/10.1016/J.IS.2012.07.005

5. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: A Process-Oriented Case-
Based Reasoning Framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceed-
ings for the Twenty-seventh International Conference on Case-Based Reasoning co-located
with the Twenty-seventh International Conference on Case-Based Reasoning (ICCBR 2019),
Otzenhausen, Germany, September 8-12, 2019. CEUR Workshop Proceedings, pp. 156–161.
CEUR-WS.org (2019)

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A Simple Framework for Contrastive
Learning of Visual Representations. In: Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR (2020)

7. Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T.: A Survey of Accelerator Architectures for
Deep Neural Networks. Engineering 6(3), 264–274 (2020). https://doi.org/10.1016/j.eng.2
020.01.007

8. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011). https:
//doi.org/10.1016/J.IS.2010.09.006

9. Ding, K., Xu, Z., Tong, H., Liu, H.: Data Augmentation for Deep Graph Learning: A Survey.
SIGKDD Explor. 24(2), 61–77 (2022). https://doi.org/10.1145/3575637.3575646

10. van Dyk, D.A., Meng, X.-L.: The Art of Data Augmentation. Journal of Computational
and Graphical Statistics 10(1), 1–50 (2001)

11. Francescomarino, C.D., Ghidini, C.: Predictive Process Monitoring. In: Process Mining
Handbook. Ed. by W.M.P. van der Aalst and J. Carmona, pp. 320–346. Springer (2022).
https://doi.org/10.1007/978-3-031-08848-3 10

12. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge Univer-
sity Press (2016)

13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural Message Passing for
Quantum Chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, pp. 1263–1272. PMLR (2017)

116

https://doi.org/10.1016/J.COSREV.2022.100527
https://doi.org/10.1016/J.COSREV.2022.100527
https://doi.org/10.1145/3167132.3167138
https://doi.org/10.1145/3167132.3167138
https://doi.org/10.1016/J.IS.2012.07.005
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1016/J.IS.2010.09.006
https://doi.org/10.1016/J.IS.2010.09.006
https://doi.org/10.1145/3575637.3575646
https://doi.org/10.1007/978-3-031-08848-3_10

14. Grüger, J., Geyer, T., Jilg, D., Bergmann, R.: SAMPLE: A Semantic Approach for Multi-
perspective Event Log Generation. In: Montali, M., Senderovich, A., Weidlich, M. (eds.)
Process Mining Workshops - ICPM 2022 International Workshops, Bozen-Bolzano, Italy,
October 23-28, 2022, Revised Selected Papers. LNBIP, vol. 468, pp. 328–340. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-27815-0 24

15. Grumbach, L., Bergmann, R.: Using Constraint Satisfaction Problem Solving to Enable
Workflow Flexibility by Deviation (Best Technical Paper). In: Bramer, M., Petridis, M.
(eds.) Artificial Intelligence XXXIV - 37th SGAI International Conference on Artificial In-
telligence, AI 2017, Cambridge, UK, December 12-14, 2017, Proceedings. LNCS, vol. 10630,
pp. 3–17. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-71078-5 1

16. Guan, L., Valmeekam, K., Sreedharan, S., Kambhampati, S.: Leveraging Pre-trained Large
Language Models to Construct and Utilize World Models for Model-based Task Planning.
CoRR abs/2305.14909 (2023). https : / /doi . org / 10 . 48550 /ARXIV . 2305 . 14909. arXiv:
2305.14909

17. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the Planning
Domain Definition Language. Morgan & Claypool Publishers (2019)

18. Helmert, M., Domshlak, C.: Landmarks, Critical Paths and Abstractions: What’s the Dif-
ference Anyway? In: Gerevini, A., Howe, A.E., Cesta, A., Refanidis, I. (eds.) Proceedings
of the 19th International Conference on Automated Planning and Scheduling, ICAPS 2009,
Thessaloniki, Greece, September 19-23, 2009. AAAI (2009)

19. Helmert, M., Geffner, H.: Unifying the Causal Graph and Additive Heuristics. In: Rinta-
nen, J., Nebel, B., Beck, J.C., Hansen, E.A. (eds.) Proceedings of the Eighteenth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia,
September 14-18, 2008, pp. 140–147. AAAI (2008)

20. Hermans, A., Beyer, L., Leibe, B.: In Defense of the Triplet Loss for Person Re-Identification.
CoRR abs/1703.07737 (2017). arXiv: 1703.07737

21. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Mag. 22(3), 57–62 (2001). https
://doi.org/10.1609/AIMAG.V22I3.1572

22. Hoffmann, M., Bergmann, R.: Improving Automated Hyperparameter Optimization with
Case-Based Reasoning. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Re-
search and Development - 30th International Conference, ICCBR 2022, Nancy, France,
September 12-15, 2022, Proceedings. LNCS, vol. 13405, pp. 273–288. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-14923-8 18

23. Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented
Case-Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

24. Hoffmann, M., Bergmann, R.: Ranking-Based Case Retrieval with Graph Neural Networks
in Process-Oriented Case-Based Reasoning. In: Franklin, M., Chun, S.A. (eds.) Proceedings
of the Thirty-Sixth International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI Press (2023). https:
//doi.org/10.32473/FLAIRS.36.133039

25. Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-Based Graph Matching for
Accelerating Similarity Assessment in Process-Oriented Case-Based Reasoning. In: Keane,
M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and Development - 30th Inter-
national Conference, ICCBR, Nancy, France, September 12-15, 2022, Proceedings. LNCS,
vol. 13405, pp. 240–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-1
4923-8 16

117

https://doi.org/10.1007/978-3-031-27815-0_24
https://doi.org/10.1007/978-3-319-71078-5_1
https://doi.org/10.48550/ARXIV.2305.14909
https://arxiv.org/abs/2305.14909
https://arxiv.org/abs/1703.07737
https://doi.org/10.1609/AIMAG.V22I3.1572
https://doi.org/10.1609/AIMAG.V22I3.1572
https://doi.org/10.1007/978-3-031-14923-8_18
https://doi.org/10.3390/A15020027
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16

26. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

27. Jabeen, F., Leopold, H., Reijers, H.A.: How to Make Process Model Matching Work Better?
An Analysis of Current Similarity Measures. In: Abramowicz, W. (ed.) Business Information
Systems - 20th International Conference, BIS 2017, Poznan, Poland, June 28-30, 2017,
Proceedings. LNBIP, vol. 288, pp. 181–193. Springer, Heidelberg (2017). https://doi.org/1
0.1007/978-3-319-59336-4 13

28. Jilani, R.: “Automated Domain Model Learning Tools for Planning.” In: Knowledge Engi-
neering Tools and Techniques for AI Planning. Ed. by M. Vallati and D. Kitchin. Cham:
Springer International Publishing, 2020, pp. 21–46. isbn: 978-3-030-38561-3. https://doi.o
rg/10.1007/978-3-030-38561-3 2.

29. Käppel, M., Jablonski, S.: Model-Agnostic Event Log Augmentation for Predictive Process
Monitoring. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) Advanced
Information Systems Engineering - 35th International Conference, CAiSE 2023, Zaragoza,
Spain, June 12-16, 2023, Proceedings. LNCS, vol. 13901, pp. 381–397. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-34560-9 23

30. Käppel, M., Schönig, S., Jablonski, S.: Leveraging Small Sample Learning for Business
Process Management. Inf. Softw. Technol. 132, 106472 (2021). https://doi.org/10.1016
/J.INFSOF.2020.106472

31. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve the
Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In:
Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development - 27th In-
ternational Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings. LNCS, vol. 11680, pp. 188–203. Springer, Heidelberg (2019). https://doi.org/10
.1007/978-3-030-29249-2 13

32. Kudenko, D.: Special Issue on Transfer Learning. Künstliche Intelligenz 28(1), 5–6 (2014).
https://doi.org/10.1007/s13218-013-0289-5

33. Lenz, M., Ollinger, S., Sahitaj, P., Bergmann, R.: Semantic Textual Similarity Measures
for Case-Based Retrieval of Argument Graphs. In: Bach, K., Marling, C. (eds.) Case-
Based Reasoning Research and Development - 27th International Conference, ICCBR 2019,
Otzenhausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 219–234.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 15

34. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for
correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56,
235–257 (2016). https://doi.org/10.1016/J.IS.2015.07.003

35. Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., Stone, P.: LLM+P: Empowering
Large Language Models with Optimal Planning Proficiency. CoRR abs/2304.11477 (2023).
https://doi.org/10.48550/ARXIV.2304.11477. arXiv: 2304.11477

118

https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-319-59336-4_13
https://doi.org/10.1007/978-3-319-59336-4_13
https://doi.org/10.1007/978-3-030-38561-3_2
https://doi.org/10.1007/978-3-030-38561-3_2
https://doi.org/10.1007/978-3-031-34560-9_23
https://doi.org/10.1016/J.INFSOF.2020.106472
https://doi.org/10.1016/J.INFSOF.2020.106472
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/s13218-013-0289-5
https://doi.org/10.1007/978-3-030-29249-2_15
https://doi.org/10.1016/J.IS.2015.07.003
https://doi.org/10.48550/ARXIV.2304.11477
https://arxiv.org/abs/2304.11477

36. Malburg, L., Brand, F., Bergmann, R.: Adaptive Management of Cyber-Physical Work-
flows by Means of Case-Based Reasoning and Automated Planning. In: Sales, T.P., Proper,
H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) Enterprise Design,
Operations, and Computing. EDOC 2022 Workshops - IDAMS, SoEA4EE, TEAR, EDOC
Forum, Demonstrations Track and Doctoral Consortium, Bozen-Bolzano, Italy, October 4-
7, 2022, Revised Selected Papers. LNBIP, vol. 466, pp. 79–95. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-26886-1 5

37. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for adaptive
workflow management in smart factories. J. Intell. Inf. Syst. 61(1), 83–111 (2023). https:
//doi.org/10.1007/S10844-022-00766-W

38. Malburg, L., Klein, P., Bergmann, R.: Semantic Web Services for AI-Research with Physi-
cal Factory Simulation Models in Industry 4.0. In: Panetto, H., Madani, K., Smirnov, A.V.
(eds.) Proceedings of the International Conference on Innovative Intelligent Industrial Pro-
duction and Logistics, IN4PL 2020, Budapest, Hungary, November 2-4, 2020, pp. 32–43.
SCITEPRESS (2020)

39. Malburg, L., Klein, P., Bergmann, R.: Converting semantic web services into formal planning
domain descriptions to enable manufacturing process planning and scheduling in industry
4.0. Eng. Appl. Artif. Intell. 126, 106727 (2023). https://doi.org/10.1016/J.ENGAPPAI.2
023.106727

40. Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using Physical Factory Simulation Mod-
els for Business Process Management Research. In: del-Ŕıo-Ortega, A., Leopold, H., Santoro,
F.M. (eds.) Business Process Management Workshops - BPM 2020 International Workshops,
Seville, Spain, September 13-18, 2020, Revised Selected Papers. LNBIP, vol. 397, pp. 95–
107. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-66498-5 8

41. Marrella, A.: Automated Planning for Business Process Management. J. Data Semant. 8(2),
79–98 (2019). https://doi.org/10.1007/S13740-018-0096-0

42. Marrella, A., Mecella, M., Sardiña, S.: Intelligent Process Adaptation in the SmartPM
System. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2017). https://doi.org/10.114
5/2948071

43. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical processes
through action-based formalisms. AI Commun. 31(1), 47–74 (2018). https://doi.org/10.32
33/AIC-170748

44. Marrium, M., Mahmood, A.: Data Augmentation for Graph Data: Recent Advancements.
CoRR abs/2208.11973 (2022). https : / /doi . org / 10 . 48550 /ARXIV . 2208 . 11973. arXiv:
2208.11973

45. Masellis, R.D., Francescomarino, C.D., Ghidini, C., Tessaris, S.: Solving reachability prob-
lems on data-aware workflows. Expert Syst. Appl. 189, 116059 (2022). https://doi.org/10
.1016/J.ESWA.2021.116059

46. McCluskey, T.L., Cresswell, S., Richardson, N.E., West, M.M.: Automated Acquisition of
Action Knowledge. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) ICAART 2009 - Proceed-
ings of the International Conference on Agents and Artificial Intelligence, Porto, Portugal,
January 19 - 21, 2009, pp. 93–100. INSTICC Press (2009)

47. McDermott, D., Ghallab, M., Howe, A.E., Knoblock, C.A., Ram, A., Veloso, M.M., Weld,
D.S., Wilkins, D.E.: PDDL - The Planning Domain Definition Language: Technical Report
CVC TR-98-003/DCS TR-1165, (1998).

119

https://doi.org/10.1007/978-3-031-26886-1_5
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1016/J.ENGAPPAI.2023.106727
https://doi.org/10.1016/J.ENGAPPAI.2023.106727
https://doi.org/10.1007/978-3-030-66498-5_8
https://doi.org/10.1007/S13740-018-0096-0
https://doi.org/10.1145/2948071
https://doi.org/10.1145/2948071
https://doi.org/10.3233/AIC-170748
https://doi.org/10.3233/AIC-170748
https://doi.org/10.48550/ARXIV.2208.11973
https://arxiv.org/abs/2208.11973
https://doi.org/10.1016/J.ESWA.2021.116059
https://doi.org/10.1016/J.ESWA.2021.116059

48. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations
in Vector Space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings (2013)

49. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden
(2018)

50. Mumuni, A., Mumuni, F.: Data augmentation: A comprehensive survey of modern ap-
proaches. Array 16, 100258 (2022). https://doi.org/10.1016/J.ARRAY.2022.100258

51. Nguyen, T., Sreedharan, S., Kambhampati, S.: Robust planning with incomplete domain
models. Artif. Intell. 245, 134–161 (2017). https://doi.org/10.1016/J.ARTINT.2016.12.003

52. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies
using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018). https://doi.org/10.1007/S10
994-018-5702-8

53. Ontañón, S.: An Overview of Distance and Similarity Functions for Structured Data. CoRR
abs/2002.07420 (2020). arXiv: 2002.07420

54. Ott, F., Rügamer, D., Heublein, L., Bischl, B., Mutschler, C.: Cross-Modal Common Rep-
resentation Learning with Triplet Loss Functions. CoRR abs/2202.07901 (2022). arXiv:
2202.07901

55. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate Business Process Representation Learning
Utilizing Gramian Angular Fields and Convolutional Neural Networks. In: Polyvyanyy,
A., Wynn, M.T., Looy, A.V., Reichert, M. (eds.) Business Process Management - 19th
International Conference, BPM 2021, Rome, Italy, September 06-10, 2021, Proceedings.
LNCS, vol. 12875, pp. 327–344. Springer, Heidelberg (2021). https://doi.org/10.1007/978-
3-030-85469-0 21

56. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep Learning for Predictive Business Process
Monitoring: Review and Benchmark. IEEE Trans. Serv. Comput. 16(1), 739–756 (2023).
https://doi.org/10.1109/TSC.2021.3139807

57. Richter, M.M.: Foundations of Similarity and Utility. In: Wilson, D., Sutcliffe, G. (eds.)
Proceedings of the Twentieth International Florida Artificial Intelligence Research Society
Conference, May 7-9, 2007, Key West, Florida, USA, pp. 30–37. AAAI Press (2007)

58. Rodŕıguez-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and schedul-
ing in workflow domains. Expert Syst. Appl. 33(2), 389–406 (2007). https://doi.org/10.10
16/J.ESWA.2006.05.027

59. von Rüden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch,
B., Pfrommer, J., Pick, A., Ramamurthy, R., Walczak, M., Garcke, J., Bauckhage, C.,
Schuecker, J.: Informed Machine Learning - A Taxonomy and Survey of Integrating Prior
Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 35(1), 614–633 (2023).
https://doi.org/10.1109/TKDE.2021.3079836

60. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of Business Process
Models - A State-of-the-Art Analysis. ACM Comput. Surv. 50(4), 52:1–52:33 (2017). https
://doi.org/10.1145/3092694

61. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face recognition
and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 815–823. IEEE Computer Society (2015).
https://doi.org/10.1109/CVPR.2015.7298682

120

https://doi.org/10.1016/J.ARRAY.2022.100258
https://doi.org/10.1016/J.ARTINT.2016.12.003
https://doi.org/10.1007/S10994-018-5702-8
https://doi.org/10.1007/S10994-018-5702-8
https://arxiv.org/abs/2002.07420
https://arxiv.org/abs/2202.07901
https://doi.org/10.1007/978-3-030-85469-0_21
https://doi.org/10.1007/978-3-030-85469-0_21
https://doi.org/10.1109/TSC.2021.3139807
https://doi.org/10.1016/J.ESWA.2006.05.027
https://doi.org/10.1016/J.ESWA.2006.05.027
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1145/3092694
https://doi.org/10.1145/3092694
https://doi.org/10.1109/CVPR.2015.7298682

62. Schuler, N., Hoffmann, M., Beise, H., Bergmann, R.: Semi-supervised Similarity Learning in
Process-Oriented Case-Based Reasoning. In: Bramer, M., Stahl, F.T. (eds.) Artificial Intel-
ligence XL - 43rd SGAI International Conference on Artificial Intelligence, AI 2023, Cam-
bridge, UK, December 12-14, 2023, Proceedings. LNCS, vol. 14381, pp. 159–173. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-47994-6 12

63. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive work-
flows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2019). https://doi.o
rg/10.1007/S10270-017-0639-0

64. Seiger, R., Malburg, L., Weber, B., Bergmann, R.: Integrating process management and
event processing in smart factories: A systems architecture and use cases. Journal of Man-
ufacturing Systems 63, 575–592 (2022). https://doi.org/10.1016/j.jmsy.2022.05.012

65. Shu, J., Xu, Z., Meng, D.: Small Sample Learning in Big Data Era. CoRR abs/1808.04572
(2018). arXiv: 1808.04572

66. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A Survey on Deep Transfer
Learning. In: Kurková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.S., Maglogiannis, I.
(eds.) Artificial Neural Networks and Machine Learning - ICANN 2018 - 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings,
Part III. LNCS, vol. 11141, pp. 270–279. Springer, Heidelberg (2018). https://doi.org/10.1
007/978-3-030-01424-7 27

67. Valmeekam, K., Sreedharan, S., Marquez, M., Hernandez, A.O., Kambhampati, S.: On the
Planning Abilities of Large Language Models (A Critical Investigation with a Proposed
Benchmark). CoRR abs/2302.06706 (2023). https://doi.org/10.48550/ARXIV.2302.06706.
arXiv: 2302.06706

68. Venkateswaran, P., Muthusamy, V., Isahagian, V., Venkatasubramanian, N.: Robust and
Generalizable Predictive Models for Business Processes. In: Polyvyanyy, A., Wynn, M.T.,
Looy, A.V., Reichert, M. (eds.) Business Process Management - 19th International Con-
ference, BPM 2021, Rome, Italy, September 06-10, 2021, Proceedings. LNCS, vol. 12875,
pp. 105–122. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-85469-0 9

69. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of Corre-
spondences between Process Models. In: Pernici, B. (ed.) Advanced Information Systems
Engineering, 22nd International Conference, CAiSE 2010, Hammamet, Tunisia, June 7-9,
2010. Proceedings. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010). https://doi
.org/10.1007/978-3-642-13094-6 37

70. Weiss, K.R., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3,
9 (2016). https://doi.org/10.1186/S40537-016-0043-6

71. Wickler, G., Chrpa, L., McCluskey, T.L.: Ontological Support for Modelling Planning
Knowledge. In: Fred, A.L.N., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) Knowl-
edge Discovery, Knowledge Engineering and Knowledge Management - 6th International
Joint Conference, IC3K 2014, Rome, Italy, October 21-24, 2014, Revised Selected Papers.
Communications in Computer and Information Science, pp. 293–312. Springer (2014). htt
ps://doi.org/10.1007/978-3-319-25840-9 19

72. Wu, H., Judd, P., Zhang, X., Isaev, M., Micikevicius, P.: Integer Quantization for Deep
Learning Inference: Principles and Empirical Evaluation. CoRR abs/2004.09602 (2020).
arXiv: 2004.09602

121

https://doi.org/10.1007/978-3-031-47994-6_12
https://doi.org/10.1007/S10270-017-0639-0
https://doi.org/10.1007/S10270-017-0639-0
https://doi.org/10.1016/j.jmsy.2022.05.012
https://arxiv.org/abs/1808.04572
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.48550/ARXIV.2302.06706
https://arxiv.org/abs/2302.06706
https://doi.org/10.1007/978-3-030-85469-0_9
https://doi.org/10.1007/978-3-642-13094-6_37
https://doi.org/10.1007/978-3-642-13094-6_37
https://doi.org/10.1186/S40537-016-0043-6
https://doi.org/10.1007/978-3-319-25840-9_19
https://doi.org/10.1007/978-3-319-25840-9_19
https://arxiv.org/abs/2004.09602

73. Yan, Z., Dijkman, R.M., Grefen, P.W.P.J.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.)
On the Move to Meaningful Internet Systems: OTM 2010 - Confederated International
Conferences: CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, October 25-29,
2010, Proceedings, Part I. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010). https:
//doi.org/10.1007/978-3-642-16934-2 8

74. Yu, S., Huang, H., Dao, M.N., Xia, F.: Graph Augmentation Learning. In: Laforest, F.,
Troncy, R., Simperl, E., Agarwal, D., Gionis, A., Herman, I., Médini, L. (eds.) Companion
of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022, pp. 1063–
1072. ACM (2022). https://doi.org/10.1145/3487553.3524718

75. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In: Watson,
I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Interna-
tional Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 17–32. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-583
42-2 2

76. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by Means of
Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds.) Case-Based Rea-
soning Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 388–403.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 26

77. Zhao, T., Jin, W., Liu, Y., Wang, Y., Liu, G., Günnemann, S., Shah, N., Jiang, M.: Graph
Data Augmentation for Graph Machine Learning: A Survey. IEEE Data Eng. Bull. 46(2),
140–165 (2023)

78. Zhou, J., Xie, C., Wen, Z., Zhao, X., Xuan, Q.: Data Augmentation on Graphs: A Technical
Survey. CoRR abs/2212.09970 (2023). arXiv: 2212.09970

79. Zhou, Y., Zeng, J.: Massively Parallel A* Search on a GPU. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pp. 1248–1255. AAAI Press (2015). https://doi.org/10.1609
/AAAI.V29I1.9367

80. Zhuo, H.H., Muñoz-Avila, H., Yang, Q.: Learning hierarchical task network domains from
partially observed plan traces. Artif. Intell. 212, 134–157 (2014). https://doi.org/10.1016
/J.ARTINT.2014.04.003

122

https://doi.org/10.1007/978-3-642-16934-2_8
https://doi.org/10.1007/978-3-642-16934-2_8
https://doi.org/10.1145/3487553.3524718
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-29249-2_26
https://arxiv.org/abs/2212.09970
https://doi.org/10.1609/AAAI.V29I1.9367
https://doi.org/10.1609/AAAI.V29I1.9367
https://doi.org/10.1016/J.ARTINT.2014.04.003
https://doi.org/10.1016/J.ARTINT.2014.04.003

6.7 Appendix: Statistics

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.
Original 25.7 18.0 39.0 11.6 8.0 17.0 12.2 9.0 18.0 59.3 40.0 94.0 11.9 7.0 24.0 22.7 16.0 34.0
Strat. 1 25.4 17.0 39.0 11.6 8.0 17.0 12.0 8.0 18.0 58.1 37.0 94.0 11.4 5.0 24.0 22.2 14.0 34.0
Strat. 2 25.7 18.0 39.0 11.6 8.0 17.0 12.2 9.0 18.0 59.3 40.0 94.0 11.9 7.0 24.0 22.7 16.0 34.0
Strat. 3.1 25.6 12.0 39.0 11.7 5.0 18.0 12.3 6.0 18.0 58.9 25.0 94.0 11.6 4.0 24.0 22.7 10.0 34.0
Strat. 3.2 30.0 18.0 58.0 14.3 8.0 27.0 14.1 9.0 24.0 69.5 40.0 140.0 14.2 7.0 35.0 26.3 16.0 48.0
Strat. 4 25.5 17.0 39.0 11.6 8.0 17.0 12.1 8.0 18.0 58.6 37.0 94.0 11.6 5.0 24.0 22.4 14.0 34.0
Strat. 5.1 25.5 12.0 39.0 11.7 5.0 18.0 12.1 6.0 18.0 58.6 25.0 94.0 11.6 4.0 24.0 22.5 10.0 34.0
Strat. 5.2 27.3 17.0 58.0 12.7 8.0 27.0 12.8 8.0 24.0 62.9 37.0 140.0 12.6 5.0 35.0 24.0 14.0 48.0
Original 26.2 18.0 39.0 11.8 8.0 18.0 12.4 9.0 19.0 60.6 40.0 94.0 12.4 7.0 24.0 23.0 16.0 36.0
Strat. 1 26.0 17.0 39.0 11.8 8.0 18.0 12.1 8.0 19.0 59.4 37.0 94.0 11.9 5.0 24.0 22.6 14.0 36.0
Strat. 2 26.2 18.0 39.0 11.8 8.0 18.0 12.4 9.0 19.0 60.6 40.0 94.0 12.4 7.0 24.0 23.0 16.0 36.0
Strat. 3.1 26.2 12.0 39.0 11.9 5.0 18.0 12.4 6.0 19.0 60.4 25.0 94.0 12.1 4.0 24.0 23.1 10.0 36.0
Strat. 3.2 31.0 18.0 60.0 14.7 8.0 27.0 14.5 9.0 26.0 72.1 40.0 146.0 14.9 7.0 35.0 27.2 16.0 52.0
Strat. 4 26.1 17.0 39.0 11.8 8.0 18.0 12.2 8.0 19.0 59.9 37.0 94.0 12.1 5.0 24.0 22.8 14.0 36.0
Strat. 5.1 26.1 12.0 39.0 11.9 5.0 18.0 12.3 6.0 19.0 60.0 25.0 94.0 12.1 4.0 24.0 22.9 10.0 36.0
Strat. 5.2 28.0 17.0 60.0 13.0 8.0 27.0 13.1 8.0 26.0 64.7 37.0 146.0 13.2 5.0 35.0 24.5 14.0 52.0
Original 26.0 15.0 43.0 11.8 7.0 18.0 12.3 7.0 19.0 60.1 32.0 104.0 12.3 6.0 26.0 22.9 12.0 36.0
Strat. 1 25.8 14.0 43.0 11.8 7.0 18.0 12.0 6.0 19.0 58.9 29.0 104.0 11.8 4.0 26.0 22.4 10.0 36.0
Strat. 2 26.0 15.0 43.0 11.8 7.0 18.0 12.3 7.0 19.0 60.1 32.0 104.0 12.3 6.0 26.0 22.9 12.0 36.0
Strat. 3.1 26.3 12.0 43.0 12.0 5.0 18.0 12.5 6.0 19.0 60.8 25.0 104.0 12.2 4.0 26.0 23.3 10.0 36.0
Strat. 3.2 30.8 15.0 67.0 14.6 7.0 31.0 14.4 7.0 30.0 71.6 32.0 163.0 14.8 6.0 39.0 27.1 12.0 58.0
Strat. 4 25.9 14.0 43.0 11.8 7.0 18.0 12.1 6.0 19.0 59.5 29.0 104.0 12.0 4.0 26.0 22.6 10.0 36.0
Strat. 5.1 26.0 12.0 43.0 11.9 5.0 18.0 12.3 6.0 19.0 59.9 25.0 104.0 12.0 4.0 26.0 22.9 10.0 36.0
Strat. 5.2 27.8 14.0 67.0 12.9 7.0 31.0 13.0 6.0 30.0 64.2 29.0 163.0 13.1 4.0 39.0 24.4 10.0 58.0
Original 26.1 15.0 43.0 11.8 7.0 18.0 12.4 7.0 19.0 60.3 32.0 104.0 12.2 6.0 26.0 23.0 12.0 36.0
Strat. 1 25.8 14.0 43.0 11.8 7.0 18.0 12.1 6.0 19.0 59.1 29.0 104.0 11.7 4.0 26.0 22.6 10.0 36.0
Strat. 2 26.1 15.0 43.0 11.8 7.0 18.0 12.4 7.0 19.0 60.3 32.0 104.0 12.2 6.0 26.0 23.0 12.0 36.0
Strat. 3.1 26.3 12.0 43.0 12.0 5.0 18.0 12.5 6.0 19.0 60.9 25.0 104.0 12.2 4.0 26.0 23.3 10.0 36.0
Strat. 3.2 31.2 15.0 67.0 14.9 7.0 34.0 14.6 7.0 32.0 72.7 32.0 163.0 15.0 6.0 39.0 27.5 12.0 62.0
Strat. 4 25.9 14.0 43.0 11.8 7.0 18.0 12.2 6.0 19.0 59.6 29.0 104.0 11.9 4.0 26.0 22.8 10.0 36.0
Strat. 5.1 26.1 12.0 43.0 11.9 5.0 18.0 12.3 6.0 19.0 60.0 25.0 104.0 12.0 4.0 26.0 22.9 10.0 36.0
Strat. 5.2 28.0 14.0 67.0 13.1 7.0 34.0 13.2 6.0 32.0 64.7 29.0 163.0 13.1 4.0 39.0 24.6 10.0 62.0

50

100

200

300

Control-Flow DataflowDomain Dataset
Nodes Edges

All Task Data All

Table 6.3: Statistics on Amounts of Nodes and Edges of the Datasets in the Experiments.

1 2 3.1 3.2 4 5.1 5.2
No. Nodes (avg.) 0.970 1.000 0.940 0.725 0.983 0.976 0.896
No. Task Nodes (avg.) 1.000 1.000 0.940 0.000 1.000 0.976 0.008
No. Data Nodes (avg.) 0.945 1.000 0.955 0.020 0.969 0.970 0.020
No. Edges (avg.) 0.920 1.000 0.940 0.125 0.954 0.966 0.050
No. Control-Flow Edges (avg.) 0.925 1.000 0.940 0.140 0.957 0.968 0.140
No. Dataflow Edges (avg.) 0.950 1.000 0.955 0.585 0.971 0.978 0.698
No. Nodes (avg.) 0.970 1.000 0.943 0.745 0.983 0.968 0.899
No. Task Nodes (avg.) 1.000 1.000 0.943 0.010 1.000 0.977 0.017
No. Data Nodes (avg.) 0.943 1.000 0.958 0.020 0.967 0.970 0.020
No. Edges (avg.) 0.935 1.000 0.940 0.153 0.963 0.952 0.061
No. Control-Flow Edges (avg.) 0.920 1.000 0.943 0.170 0.954 0.966 0.177
No. Dataflow Edges (avg.) 0.955 1.000 0.958 0.565 0.974 0.972 0.703
No. Nodes (avg.) 0.978 1.000 0.936 0.738 0.987 0.979 0.895
No. Task Nodes (avg.) 1.000 1.000 0.936 0.014 1.000 0.975 0.023
No. Data Nodes (avg.) 0.946 1.000 0.941 0.019 0.969 0.983 0.024
No. Edges (avg.) 0.938 1.000 0.936 0.144 0.964 0.970 0.064
No. Control-Flow Edges (avg.) 0.923 1.000 0.936 0.169 0.956 0.977 0.174
No. Dataflow Edges (avg.) 0.958 1.000 0.944 0.556 0.976 0.978 0.706
No. Nodes (avg.) 0.975 1.000 0.941 0.715 0.986 0.982 0.887
No. Task Nodes (avg.) 1.000 1.000 0.941 0.018 1.000 0.976 0.027
No. Data Nodes (avg.) 0.950 1.000 0.948 0.025 0.971 0.982 0.028
No. Edges (avg.) 0.933 1.000 0.941 0.163 0.961 0.979 0.071
No. Control-Flow Edges (avg.) 0.923 1.000 0.941 0.152 0.956 0.977 0.161
No. Dataflow Edges (avg.) 0.958 1.000 0.950 0.550 0.976 0.984 0.697

300

Domain Attribute
Compared Strategy

50

100

200

Table 6.4: Kolmogorov-Smirnov-Statistics of the Average Number of Nodes and Edges of the
Datasets in the Experiments.

123

Chapter 7

Similarity-Based Retrieval in
Process-Oriented Case-Based Reasoning
Using Graph Neural Networks and Transfer
Learning

Bibliographic Information

Pauli, J., Hoffmann, M., Bergmann, R.: Similarity-Based Retrieval in Process-Oriented Case-
Based Reasoning Using Graph Neural Networks and Transfer Learning. In: Franklin, M., Chun,
S.A. (eds.) Proceedings of the Thirty-Sixth International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI Press
(2023). https://doi.org/10.32473/FLAIRS.36.133040

Abstract

Similarity-based retrieval of semantic graphs is a crucial task of Process-Oriented Case-Based
Reasoning (POCBR) that is usually complex and time-consuming, as it requires some kind of
inexact graph matching. Previous work tackles this problem by using Graph Neural Networks
(GNNs) to learn pairwise graph similarities. In this paper, we present a novel approach that
improves on the GNN-based case retrieval with a Transfer Learning (TL) setup, composed of
two phases: First, the pretraining phase trains a model for assessing the similarities between
graph nodes and edges and their semantic annotations. Second, the pretrained model is then
integrated into the GNN model by either using fine-tuning, i. e., the parameters of the pretrained
model are further trained, or feature extraction, i. e., the parameters of the pretrained model are
converted to constants. The experimental evaluation examines the quality and performance of
the models based on TL compared to the GNN models from previous work for three semantic
graph domains with various properties. The results show the great potential of the proposed
approach for reducing the similarity prediction error and the training time.

Keywords

Case-Based Reasoning · Deep Learning · Process-Oriented Case-Based Reasoning · Transfer
Learning

124

https://doi.org/10.32473/FLAIRS.36.133040

Copyright Notice

© 2023 Johannes Pauli, Maximilian Hoffmann, Ralph Bergmann. This work is licensed under
a Creative Commons Attribution-Non Commercial 4.0 International License (https://creativeco
mmons.org/licenses/by-nc/4.0/).

7.1 Introduction

Case-based reasoning (CBR) [1] is a problem-solving paradigm that solves a new problem (query)
by using specific knowledge from previously experienced, concrete problem situations (bundled
as cases in a case base). This procedure relies heavily on similarity computations between the
query and each case of the case base to find best-matching cases for the current problem sit-
uation (so-called case retrieval), based on the assumption that similar problems have similar
solutions. This paper focuses on the subdomain of Process-Oriented CBR (POCBR) [5, 27]
where the CBR methodology is applied to procedural knowledge in the form of workflows and
process descriptions. The cases in POCBR are commonly represented as semantic graphs [5] with
a relational structure of nodes and edges of different types and with individual semantic annota-
tions. When computing pairwise similarities between semantic graphs, a single global similarity
is computed from individual local similarities between nodes and edges of the graph and their
types and semantic annotations. The similarity measures to compute local similarities usually
involve manually-modeled similarity knowledge such as data types, value ranges, and ontologies,
and use functions such as weighted sums or set overlaps. The global similarity measures, on
the other hand, usually involve some kind of inexact graph matching to determine how well the
nodes and edges of the query graph fit the nodes and edges of the case graph. However, finding
an optimal mapping is an NP-complete problem [7, 12, 35, 36], which can result in long retrieval
times and have negative effects on the overall system performance and, ultimately, on the user
experience.

To mitigate these issues, several approaches have been proposed [6, 15, 29], with the most
recent one by Hoffmann and Bergmann [11] using embedding methods based on Graph Neural
Networks (GNNs). GNNs transform semantic graphs to low-dimensional vector representations
(so-called embeddings) that can be transformed to graph similarities with vector similarity mea-
sures orMulti-Layer Perceptrons (MLPs). The models are trained on the prediction error between
the predicted graph similarities and the labeled ground-truth similarities, aiming to approximate
the manually-modeled ground-truth graph similarity measure based on graph matching. How-
ever, the used GNNs are only trained to predict the labeled global graph similarity without any
explicit consideration of local similarities, despite this information being available as a result of
the labeling process anyway. This can be problematic, as current work is not capable of training
or applying local models separate from the global model. Enabling this might increase flexibility,
as local models and global models can be used in different application scenarios or a single local
model can be used in multiple global models. It might also improve performance, because the
local similarity labels can be used to reduce the prediction error and the training time.

This paper aims to address these issues by using Transfer Learning (TL) [18, 32] in a two-
phased approach: In the pretraining phase, a model is trained to predict the local similarities
between nodes and edges, and in the adaptation phase1, the pretrained model is integrated into
the training process of the graph embedding model to predict global pairwise graph similarities.
Therefore, the currently used graph embedding models [11] are broken up into two models, one

1 Please note that the term “adaptation” refers to its meaning in the context of TL in the remainder of the paper
and is not referring to the reuse phase in CBR.

125

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

for embedding nodes and edges and for computing local similarities, and another one for em-
bedding graphs and for computing graph similarities. The goal is to improve the currently used
GNNs [11] and ultimately increase the similarity prediction quality, reduce the overall training
time, and improve the flexibility of the training process. The paper is organized as follows: Sec-
tion 7.2 describes foundations on the used semantic graph representation, the graph similarity
computation as well as current graph embedding models and related work. Furthermore, our
approach to use TL for improving semantic graph embedding and similarity prediction is pre-
sented in Sect. 7.3. Section 7.4 evaluates the approach and compares it against existing models.
Finally, Section 5 summarizes the work and identifies areas for future work.

7.2 Foundations and Related Work

The foundations include the semantic workflow representation that is used in the concept and
the experiments, as well as the similarity assessment between pairs of these workflows. Further,
work on approximating pairwise graph similarities with GNNs and related work is presented.

7.2.1 Semantic Workflow Representation

We represent all workflows as semantically annotated directed graphs referred to as NEST graphs,
introduced by Bergmann and Gil [5]. More specifically, a NEST graph is a quadruple W =
(N,E,S,T) that is composed of a set of nodes N and a set of edges E ⊆ N × N . Each node
and each edge has a specific type from Ω that is indicated by the function T : N ∪ E → Ω.
Additionally, the function S : N ∪ E → Σ assigns a semantic description from Σ (semantic
metadata language, e. g., an ontology) to nodes and edges. Whereas nodes and edges are used
to build the structure of each workflow, types and semantic descriptions are additionally used
to model semantic information. Figure 7.1 shows an exemplary NEST graph that represents a
sandwich recipe. The mayo-gouda sandwich is prepared by executing the cooking steps coat

and layer (task nodes) with the ingredients mayo, baguette, sandwich dish, and gouda (data
nodes). All components are linked by edges that indicate relations, e. g., mayo is consumed by
coat. Semantic descriptions of task nodes and data nodes are used to further specify semantic
information belonging to the workflow components, e. g., the semantic description of the task node
coat states that a spoon and a baguette knife are needed to execute the task (Auxiliaries) and
the estimated time that the task takes is two minutes (Duration).

7.2.2 Similarity Assessment

Determining the similarity between two NEST graphs, i. e., a query workflow QG and a case
workflow CG, requires a similarity measure that assesses the link structure of nodes and edges as
well as their semantic descriptions and types. Bergmann and Gil [5] propose a semantic similarity
measure that determines a global similarity between two graphs based on local similarities,
i. e., the pairwise similarities of nodes and edges. The similarity between two nodes with identical
types is defined as the similarity of the semantic descriptions of these nodes. The similarity
between two edges with identical types does not only consider the similarity of the semantic
descriptions of the edges, but in addition, the similarity of the connected nodes as well. In
order to put together a global similarity by aggregating local similarities, the domain’s similarity
model has to define similarity measures for all components of the semantic description, i. e., simΣ :
Σ × Σ → [0,1]. The global similarity of the two workflows sim(QG,CG) is finally calculated by
finding an injective partial mapping m that maximizes simm(QG,CG).

sim(QG ,CG) = max{simm(QG ,CG) | admissible mapping m} (7.1)

126

mayo

coat layer

sandwich
dish

task	node data	node control-flow dataflow part-of

coat

Duration:	2	(Integer)

Auxiliaries:	Spoon,	Knife	(List)
baguette

gouda

Sandwich
Recipe

workflow
node edge edge edge

Figure 7.1: Exemplary Cooking Recipe represented as a NEST Graph

A mapping is admissible if all mapped nodes as well as all mapped edges with their source and
destination nodes are of the same type. The complex process of finding a mapping that maximizes
the global similarity between a query QG and a single case CG is tackled by utilizing an A* search
algorithm (see [5] for more details). However, A* search is usually time-consuming and can lead
to long retrieval times [12, 36] which motivates the use of automatic learning methods such as
GNNs [11].

7.2.3 Neural Networks for Semantic Graph Embedding

For the purpose of similarity-based retrieval in POCBR, Hoffmann and Bergmann [11] adapt two
Siamese GNNs, namely the Graph Embedding Model (GEM) and the Graph Matching Network
(GMN), which are shown in Fig. 7.2. Both models learn to predict pairwise graph similarities
by embedding the graph structure and the semantic annotations and types to a whole-graph
vector representation, before aggregating two of these vectors to compute a single similarity

Aggregator

Propagation

Layer

Embedder

Graph

Similarity 0.65

OR

G1 G2

G1 G2

Figure 7.2: GEM (left branch) and GMN (right branch) (taken from Hoffmann and Bergmann
[11])

127

value. Thereby, both models share the same general model architecture that consists of four
parts: The embedder maps the node and edge features to the initial node and edge vectors in
the vector space. The propagation layer then accumulates information for each node in its local
neighborhood via message passing. More specifically, the vector representation of a single node
is updated by merging the vector representation of this node with the vector representations of
the neighboring nodes, connected by an incoming edge. After multiple propagation iterations,
the aggregator converts the set of node representations into a whole-graph representation. The
graph similarity of two graphs can finally be computed based on their representations in the
vector space, e. g., with the help of a vector similarity measure such as cosine similarity. Both
models differ in the concrete realization of the propagation layer and the graph similarity. These
varieties induce a trade-off between expressiveness and performance, with the GMN being more
expressive than the GEM but also computationally more expensive (see Hoffmann and Bergmann
[11] for more details). A general shortcoming of both models, however, is the missing explicit
integration of local similarity knowledge, motivating this work for using GEM and GMN in a TL
setup to improve similarity predictions.

7.2.4 Related Work

We consider approaches as related that deal with TL in the environment of CBR and specifically
POCBR, or apply Deep Learning (DL) methods in the research field of CBR. Approaches using
TL in CBR are of limited number. The work of Klenk, Aha, and Molineaux [16] discusses the
perspective that solution reuse as part of the CBR cycle can be considered as TL, since it involves
the transfer of knowledge from previous cases to new problems. In this context, other methods
for case reuse, e. g., [28], can be seen as contributing to TL in this respect. Herold and Minor [10]
investigate the feasibility of using ontologies for TL in POCBR. They try to find an automated
ontology-based learning approach for knowledge transfer between two domains, while earlier work
[26] is based on the manual creation of ontologies. There are also approaches, e. g., [2], where
CBR methods are used to support or improve TL methods, which we want to mention for the
sake of completeness.

A greater research interest can be observed for the use of DL methods in CBR [19]. Mathisen,
Bach, and Aamodt [25] and Amin et al. [3] utilize Siamese neural networks in CBR retrieval to
learn similarity measures used in aquaculture and natural language processing tasks, respectively.
Leake, Ye, and Crandall [21], Liao, Liu, and Chao [22], and Ye, Leake, and Crandall [34] discuss
the application of DL methods in the reuse phase of CBR. Leake, Wilkerson, and Crandall
[20] use neural networks to learn features in CBR tasks. In a more narrow sense, regarding
the integration of DL methods in the retrieval of POCBR, the work of Klein, Malburg, and
Bergmann [15] and the work of Hoffmann and Bergmann [11], on which the present work builds,
are related. They have in common that they learn vector representations of semantic graphs and
evaluate the learned similarity function in a retrieval scenario. The approach of Klein, Malburg,
and Bergmann [15] only learns on structural properties of semantic graphs, while Hoffmann and
Bergmann [11] additionally consider the semantic information and types of nodes and edges. The
proposed approach differs from the aforementioned works in the sense that it is the first work to
combine the above topics. In particular, TL is used to improve the generalization capability of the
DL models developed by Hoffmann and Bergmann [11] to improve on the task of similarity-based
retrieval.

128

7.3 Transfer Learning for Improving Semantic Graph Embedding Models

The global similarity between two semantic graphs can be determined from the local similari-
ties, that is, their node and edge similarities. However, the computation of graph similarities
using GEM or GMN lacks the opportunity to take this teaching input into account, possibly
reducing the prediction quality. The approach proposed in this paper aims at integrating local
similarity knowledge into GEM and GMN by utilizing a network-based deep TL strategy [18, 30,
32]. Thereby, a neural network trained on the source task, i. e., to predict local similarities, is
transferred and adapted to the target task, i. e., to predict pairwise graph similarities with GEM
and GMN, to aim at improving prediction quality of the GNNs. While pairwise graph similarity
prediction consists of a single step with only one training procedure, our approach is composed
of two separate phases, i. e., pretraining and adaptation, that both perform a training step (see
Fig. 7.3). The knowledge transfer is conducted in the adaptation phase, where the neural net-

fine tune same
model on target task

Feature ExtractionFine Tuning

Pr
et

ra
in

in
g

Embedder

Propagation

extract
features

A
da

pt
at

io
n

Aggregation

target task

input source task

Source Domain

Target Domain

Propagation

Aggregation

target task

Figure 7.3: Pretraining and Adaptation Phases of Deep Transfer Similarity Learning.

work, which is pretrained to predict local similarities, becomes a part of GEM or GMN in the
target domain [31]. In this scenario, we extract the embedder from GEM and GMN and then
pretrain it to predict local similarities (see Fig. 7.2). The embedder is well-suited, as it is the only
part of the GNN architecture that processes semantic descriptions and types of nodes and edges,
which are used to compute the local similarities (see Sect. 7.2.2). As already mentioned in the
motivation, training the embedder individually has three key advantages: First, it can be used
standalone to predict local similarities in various scenarios, increasing flexibility. For instance,
it can be used with other similarity measures such as feature-based approaches [6] or to predict
local similarities in a matching algorithm [5]. Second, the trained embedder can be reused for
multiple model instances of GEM or GMN, thus, reducing the training effort for these models.
Third, the overall precision of the similarity predictions can be improved, as the embedder is
directly trained with labeled local similarities, instead of being indirectly trained as part of the
whole GNN via the labeled global similarity.

7.3.1 Pretraining

In the pretraining phase, the embedder is trained to predict local similarities of nodes and
edges by, first, embedding their semantic descriptions and types and, second, aggregating the
embedding vectors to pairwise similarities. The encoding methods of the semantic descriptions

129

and types can be reused from GEM and GMN (see Hoffmann and Bergmann [11] for more
details). We propose to train two separate embedders, one for nodes and one for edges, since
their semantic descriptions may be structured differently.

Analogous to GEM and GMN, the pretrained embedder is trained as a Siamese neural net-
work, which is the de-facto standard in metric learning tasks (see Chicco [8] for an overview).
This means that local similarities are learned by embedding two nodes or edges with identical
networks and aggregating the two embedding vectors to a single similarity value. The parameters
are shared between the two networks and trained by minimizing a loss function, which measures
the difference between the ground-truth local similarity and the predicted similarity in the vector
space. The embedding procedure can be performed with any kind of neural network architecture
and mainly depends on the domain of the semantic descriptions. In previous work [11], embed-
ders for sequence and graph-structured data in the form of Recurrent Neural Networks (RNNs)
and GNNs are presented, which are both applicable in this scenario. The final step of computing
a local similarity between the embedding vectors is conducted by an MLP, as also used in the
GMN, since it is expressive and easy to compute.

The training examples for pretraining are composed of pairs of semantic descriptions as well as
types of nodes and edges. Each training pair is thereby labeled with the ground-truth similarity
value in the range of [0,1], which is determined using local similarity measures (see Sect. 7.2.2).
Please note that these local similarities are already available from the process of generating
labeled data for GEM and GMN and, thus, result in no additional cost. The training is a
regression-like problem, where any standard regression loss function such as the Mean Squared
Error (MSE) can be used. To optimize the parameters of the neural network according to the
MSE loss value, any optimizer using stochastic gradient descent, e. g., the Adam optimizer [14],
can be used.

7.3.2 Adaptation

In the adaptation phase of the TL approach, the pretrained embedder is integrated into GEM
and GMN by replacing the standard, untrained embedder (see Sect. 7.2.3). This adaptation to
the task of the target domain is mainly implemented in two ways in the literature [31], either
by feature extraction or by fine-tuning. In feature extraction, similar to classical feature-based
approaches [17], the trainable parameters of the pretrained embedder are converted to constants
(“frozen”), and the model will not be further trained in the training procedure of GEM and GMN.
Alternatively in a fine-tuning setup, the parameters of the pretrained embedder are used as non-
random initializations [9] and are further trained, i. e., fine-tuned, during the training procedure
of GEM and GMN. On the one hand, the general advantage of using feature extraction over
fine-tuning is the reduced training effort of the graph embedding models, as the “frozen”weights
and biases do not have to be trained. On the other hand, there can be further potential for
improvement of prediction quality when fine-tuning the pretrained embedders w. r. t. the source
task. Either way, the adaptation is expected to reduce the training time due to a non-random
initialization of the neural network parameters. Since there are many factors that affect the
choice of the adaption method (see Peters, Ruder, and Smith [31] for more information), both
methods are further examined and evaluated in the remainder of this paper.

7.4 Experimental Evaluation

To evaluate the impact of integrating local similarities into GEM and GMN, the results of
the model training with and without the use of TL are compared. Therefore, we conduct an
experiment that consists of two parts: The first part is concerned with pretraining different

130

embedder variants to find the best-performing one. The best-performing variant is then used in
the second phase of the experiment, where it is adapted to GEM and GMN via TL. We examine
the quality of the predictions in terms of the MSE between the predicted similarities and the
ground-truth similarities. Furthermore, the training time is measured to quantify the impact of
TL on the performance of the training procedure, which is important across all DL scenarios.
The following hypotheses are investigated:

H1 The integration of local similarities into GEM and GMN based on TL generally improves
the prediction quality of the similarities.

H2 The integration of local similarities into GEM and GMN based on TL generally reduces
the training time.

7.4.1 Experimental Setup

The experiments are performed with three case bases from different domains, namely workflows
of a cooking domain CB-I [13], a data mining domain CB-II [37], and a manufacturing domain
CB-III [24]. CB-I consists of 40 manually modeled cooking recipes that are extended to 800
workflows by generalization and specialization of ingredients and cooking steps (see Müller [28]
for more details), resulting in 660 training cases, 60 validation cases, and 80 test cases. The
workflows of the data mining domain (CB-II) are built from sample processes that are delivered
with RapidMiner (see Zeyen, Malburg, and Bergmann [37] for more details), resulting in 509
training cases, 40 validation cases, and 60 test cases. CB-III contains workflows that stem from
a smart manufacturing IoT environment and represent sample production processes. The case
base consists of 75 training cases, nine validation cases, and nine test cases.

While the GNNs in the adaption phase use pairs of semantic graphs and their respective
ground-truth similarity as training input, the embedders are pretrained based on the semantic
annotations and the types of the nodes2 from each graph. The examples of the pretraining phase
sum up to 14259 training cases, 1439 test cases, and 1219 validation cases for CB-I, 8539 training
cases, 1032 test cases, and 670 validation cases for CB-II, and 2136 training cases, 242 test cases,
and 265 validation cases for CB-III. The number of graph pairs and node pairs used as examples
for training, testing, and validation is exactly the square of the respective numbers of graphs and
nodes given before, as there is a ground-truth similarity value calculated for each possible graph
and node pair, respectively.

The training examples are used as training input for the neural networks, while the validation
examples are used to monitor the training process. The models using TL use the same hyperpa-
rameter settings as the respective base models. The training of all models and for both phases,
i. e., pretraining and adaption, runs for 40 epochs, and a snapshot of the model is exported af-
ter each epoch. The models with the lowest validation error within these 40 exported models
are used as reference. The MSE determines the out-of-sample prediction accuracy of the GNNs
by computing the squared difference between the predicted values of the GNNs and the actual
similarity values for all pairs of graphs in the test data set. In addition, the training time is
determined as the time interval between the start of training and the time when the validation
loss permanently falls below a certain threshold ϵ. Measuring this time indicates how well a
model converges, and enables a comparison regarding training effort between different models.

We evaluate three different model architectures for the embedders, mainly based on related
work [11]: (1) A Recurrent Neural Network (RNN) processes the encoded node information as
sequence data. (2) An Attention Neural Network (ANN) [33] that uses attention mechanisms

2 We do not use the edges for pretraining, since they are not semantically annotated in the evaluated domains.
The approach, however, supports doing this.

131

to give more weight to certain elements of the node information than others (see Bahdanau,
Cho, and Bengio [4] and Vaswani et al. [33] for more details on attention). (3) A GNN that
processes the node information in a tree-based structure. All experiments are computed on a
single NVIDIA Tesla V100-SXM2 GPU with 32GB graphics RAM.

7.4.2 Experimental Results

Table 7.1 shows the validation loss w. r. t. the MSE of all evaluated, pretrained embedders for all
three case bases. The embedders with the lowest MSE values are highlighted in bold font and
are used within the adaptation phase for the respective domain. For both CB-I and CB-III, the
best MSE can be observed by the RNN while the GNN achieves the lowest MSE value for CB-II.
This shows variations between the embedder architectures for the different domains, which is
in-line with other experimental results, e. g., [11].

Table 7.1: Evaluation Results of the Pretraining Phase.

RNN ANN GNN
CB-I 0.0004 0.0215 0.0080
CB-II 0.0197 0.0645 0.0170
CB-III 0.0045 0.0183 0.0078

Table 7.2 shows the results of the experiments for the adaptation phase. The models using
TL are labeled with superscripts indicating the methods used to adapt the pretrained embedder
to the downstream task, namely feature extraction (FE) and fine-tuning (FT). The table shows
the loss on the test data w. r. t. the MSE and the time span (in seconds) to fall below a certain
threshold ϵ for all evaluated models and for all three case bases. The value of ϵ is set to be
the lowest validation loss that is reached by all compared models of the same domain. The
models are grouped according to their underlying model architecture. This results in a different
threshold for each model architecture and all domains. The lowest MSE and time span values
are highlighted in bold font, grouped by base model and domain.

Table 7.2: Evaluation Results of the Adaptation Phase.

GEM GEMFE GEMFT GMN GMNFE GMNFT

Training Time (s) 13273 12070 15078 123432 59523 137524
MSE 0.0767 0.0712 0.0661 0.0028 0.0017 0.0024

Training Time (s) 8970 6707 8306 81724 24012 73960
MSE 0.0882 0.0841 0.0709 0.0068 0.0054 0.0063

Training Time (s) 260 171 47 1452 598 745
MSE 0.2035 0.1867 0.1838 0.0237 0.0206 0.0193

C
B

-I
I

C
B

-I
II

GEM GMN

C
B

-I ϵ = 0.022 ϵ = 0.006

ϵ = 0.084

ϵ = 0.215

ϵ = 0.008

ϵ = 0.033

The qualities w. r. t. MSE show a significant influence of TL on the base models. Both for
GEM and GMN, the models using TL consistently outperform the base models, regardless of the
domain. Thereby, the two adaptation methods feature extraction and fine-tuning show different
effects for the three case bases. The use of fine-tuning in GEMs leads to an MSE decrease between
10% and 20%, while feature extraction decreases the MSE between 5% and 8%. The results of
the GMN variants are also promising: GMNFE has the best overall MSE values for CB-I and
CB-II with an MSE decrease over the base model of about 39% and 21%, respectively. GMNFT

132

decreases the MSE by about 14% for CB-I and 7% for CB-II. In terms of CB-III, fine-tuning
outperforms feature extraction with a 5% lower MSE.

The training times also show promising results of the TL models. Thereby, feature extraction
reduces the training time independent of the model architecture in all domains. GEMFE , for
instance, undercuts the threshold ϵ between 9% and 34% faster than the base models. GMNFE

follows this trend and undercuts ϵ between 52% and 71% faster than the base models. Fine-
tuning has a positive effect on training time only in CB-II and CB-III, whereas in CB-I it has a
negative effect. GEMFT shows a 7% and 82% and GMNFT a 10% and 49% decrease in training
time compared to the base models for CB-II and CB-III, respectively. Hence, for GMN, feature
extraction outperforms fine-tuning in terms of training time, while for GEM this is only true for
CB-I and CB-II.

In conclusion, the experiments indicate the potential of the proposed approach for reducing
the prediction error and the training time. The improved prediction error is likely caused by the
explicit use of additional label local similarities that are not used by the base models. In most
cases, fine tuning also outperforms feature extraction which suggests that GEM and GMN can
benefit from the additional training of parameters in the adaptation phase. Hypothesis H1 is
therefore accepted due to a positive effect of TL across all evaluated domains and base models.
The results regarding training time are overall very positive, except for GEMFT and GMNFT of
CB-I. It is not clear why these two cases lead to worse results when using TL. As a rule of thumb,
feature extraction should be preferred for minimizing training time. Thus, we only partly accept
H2 but report a high potential for a reduction of training time.

7.5 Conclusion and Future Work

This paper explores the potential of using TL to predict GNN-based similarities of semantic
graphs. The proposed approach splits two existing GNN architectures, that is the GEM and the
GMN, into two parts that are trained individually to predict local and global similarities. The
resulting models can be used in a similarity-based retrieval, in the context of POCBR, to predict
the similarities of pairs of semantic graphs. The models with and without TL are evaluated,
focusing on changes in retrieval quality and training time. The experimental results indicate
that the integration of local similarities can improve the similarity evaluation quality of both
models and reduce training times.

The evaluated implementation of the proposed approach pretrains separate models for each
domain, which can lead to a significant training effort for multi-domain setups or when frequently
changing the domain definition. Future work could investigate performing GNN model pretrain-
ing in the sense of unsupervised learning on a large collection of unlabeled graph data, deriving
generic, transferable, and domain-independent knowledge that encodes intrinsic graph proper-
ties. Further, analogous to Lu et al. [23], one can argue that there is a divergence between the
two steps of pretraining and adaptation due to different optimization goals targeting the source
domain and the target domain, respectively. The pretraining process might currently ignore the
need to quickly adapt to the downstream task with a few fine-tuning updates, which could be
further analyzed in future work. Additionally, future approaches could consider both node and
edge-level and graph-level tasks for pretraining since solely pretraining on nodes and edges may
be suboptimal for graph-level similarity assessment, as performed with GEM and GMN, where
capturing structural similarities of local neighborhoods may be more important than capturing
pairwise local similarities. In addition, a focus of future work should be to perform a more com-
prehensive evaluation of the proposed approach, and particularly the different embedder variants,
to measure the impact for a higher number of domains and DL setups.

133

Acknowledgements

This work is funded by the German Federal Ministry for Economic Affairs and Climate Action
under grant No. 22973 SPELL.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Commun. 7(1), 39–59 (1994). https://doi.org/10.3233
/AIC-1994-7104

2. Aha, D.W., Molineaux, M., Sukthankar, G.: Case-Based Reasoning in Transfer Learning.
In: McGinty, L., Wilson, D.C. (eds.) Case-Based Reasoning Research and Development,
8th International Conference on Case-Based Reasoning, ICCBR 2009, Seattle, WA, USA,
July 20-23, 2009, Proceedings. LNCS, vol. 5650, pp. 29–44. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02998-1 4

3. Amin, K., Kapetanakis, S., Polatidis, N., Althoff, K., Dengel, A.: DeepKAF: A Heteroge-
neous CBR & Deep Learning Approach for NLP Prototyping. In: Ivanovic, M., Yildirim, T.,
Trajcevski, G., Badica, C., Bellatreche, L., Kotenko, I.V., Badica, A., Erkmen, B., Savic,
M. (eds.) International Conference on INnovations in Intelligent SysTems and Applications,
INISTA 2020, Novi Sad, Serbia, August 24-26, 2020, pp. 1–7. IEEE (2020). https://doi.or
g/10.1109/INISTA49547.2020.9194679

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learning to
Align and Translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015)

5. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (2014). https://doi.org/10.1016/J.IS.2012.07.005

6. Bergmann, R., Stromer, A.: MAC/FAC Retrieval of Semantic Workflows. In: Boonthum-
Denecke, C., Youngblood, G.M. (eds.) Proceedings of the Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2013, St. Pete Beach, Florida,
USA, May 22-24, 2013. AAAI Press (2013)

7. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph.
Pattern Recognit. Lett. 19(3-4), 255–259 (1998). https://doi.org/10.1016/S0167-8655(97)0
0179-7

8. Chicco, D.: Siamese Neural Networks: An Overview. In: Artificial Neural Networks - Third
Edition. Ed. by H.M. Cartwright, pp. 73–94. Springer (2021). https://doi.org/10.1007/978
-1-0716-0826-5 3

9. Dai, A.M., Le, Q.V.: Semi-supervised Sequence Learning. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 3079–3087 (2015)

10. Herold, M., Minor, M.: Ontology-based Representation of Workflows for Transfer Learning.
In: Gemulla, R., Ponzetto, S.P., Bizer, C., Keuper, M., Stuckenschmidt, H. (eds.) Pro-
ceedings of the Conference ”Lernen, Wissen, Daten, Analysen”, LWDA 2018, Mannheim,
Germany, August 22-24, 2018. CEUR Workshop Proceedings, pp. 139–149. CEUR-WS.org
(2018)

134

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1007/978-3-642-02998-1_4
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1016/J.IS.2012.07.005
https://doi.org/10.1016/S0167-8655(97)00179-7
https://doi.org/10.1016/S0167-8655(97)00179-7
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3

11. Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented
Case-Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

12. Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-Based Graph Matching for
Accelerating Similarity Assessment in Process-Oriented Case-Based Reasoning. In: Keane,
M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and Development - 30th Inter-
national Conference, ICCBR, Nancy, France, September 12-15, 2022, Proceedings. LNCS,
vol. 13405, pp. 240–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-1
4923-8 16

13. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

14. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun,
Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

15. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve the
Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In:
Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development - 27th In-
ternational Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings. LNCS, vol. 11680, pp. 188–203. Springer, Heidelberg (2019). https://doi.org/10
.1007/978-3-030-29249-2 13

16. Klenk, M., Aha, D.W., Molineaux, M.: The Case for Case-Based Transfer Learning. AI
Mag. 32(1), 54–69 (2011). https://doi.org/10.1609/AIMAG.V32I1.2331

17. Koehn, P., Och, F.J., Marcu, D.: Statistical Phrase-Based Translation. In: Hearst, M.A., Os-
tendorf, M. (eds.) Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, HLT-NAACL 2003, Edmonton, Canada,
May 27 - June 1, 2003. The Association for Computational Linguistics (2003)

18. Kudenko, D.: Special Issue on Transfer Learning. Künstliche Intelligenz 28(1), 5–6 (2014).
https://doi.org/10.1007/s13218-013-0289-5

19. Leake, D., Crandall, D.J.: On Bringing Case-Based Reasoning Methodology to Deep Learn-
ing. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development -
28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings. LNCS, vol. 12311, pp. 343–348. Springer, Heidelberg (2020). https://doi.org/10.1007
/978-3-030-58342-2 22

20. Leake, D., Wilkerson, Z., Crandall, D.: Extracting Case Indices from Convolutional Neural
Networks: A Comparative Study. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Rea-
soning Research and Development - 30th International Conference, ICCBR 2022, Nancy,
France, September 12-15, 2022, Proceedings. LNCS, vol. 13405, pp. 81–95. Springer, Hei-
delberg (2022). https://doi.org/10.1007/978-3-031-14923-8 6

135

https://doi.org/10.3390/A15020027
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1609/AIMAG.V32I1.2331
https://doi.org/10.1007/s13218-013-0289-5
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-031-14923-8_6

21. Leake, D., Ye, X., Crandall, D.J.: Supporting Case-Based Reasoning with Neural Networks:
An Illustration for Case Adaptation. In: Martin, A., Hinkelmann, K., Fill, H., Gerber,
A., Lenat, D., Stolle, R., van Harmelen, F. (eds.) Proceedings of the AAAI 2021 Spring
Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE
2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021. CEURWorkshop
Proceedings. CEUR-WS.org (2021)

22. Liao, C., Liu, A., Chao, Y.: A Machine Learning Approach to Case Adaptation. In: First
IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE
2018, Laguna Hills, CA, USA, September 26-28, 2018, pp. 106–109. IEEE Computer Society
(2018). https://doi.org/10.1109/AIKE.2018.00023

23. Lu, Y., Jiang, X., Fang, Y., Shi, C.: Learning to Pre-train Graph Neural Networks. In:
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pp. 4276–4284. AAAI Press (2021). https://doi.org/10.1609/AAAI.V35I5.16552

24. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for adaptive
workflow management in smart factories. J. Intell. Inf. Syst. 61(1), 83–111 (2023). https:
//doi.org/10.1007/S10844-022-00766-W

25. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision
support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org
/10.1007/S10489-021-02251-3

26. Minor, M., Bergmann, R., Müller, J., Spät, A.: On the Transferability of Process-Oriented
Cases. In: Goel, A.K., Dı́az-Agudo, M.B., Roth-Berghofer, T. (eds.) Case-Based Reasoning
Research and Development - 24th International Conference, ICCBR 2016, Atlanta, GA,
USA, October 31 - November 2, 2016, Proceedings. LNCS, vol. 9969, pp. 281–294. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-319-47096-2 19

27. Minor, M., Montani, S., Recio-Garćıa, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014). https://doi.org/10.1016/J.IS.2013.06.004

28. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden
(2018)

29. Müller, G., Bergmann, R.: A Cluster-Based Approach to Improve Similarity-Based Retrieval
for Process-Oriented Case-Based Reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B.
(eds.) ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Frontiers in Artificial Intelligence and Applications, pp. 639–644. IOS Press (2014).
https://doi.org/10.3233/978-1-61499-419-0-639

30. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

31. Peters, M.E., Ruder, S., Smith, N.A.: To Tune or Not to Tune? Adapting Pretrained Rep-
resentations to Diverse Tasks. In: Augenstein, I., Gella, S., Ruder, S., Kann, K., Can, B.,
Welbl, J., Conneau, A., Ren, X., Rei, M. (eds.) Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019, pp. 7–
14. Association for Computational Linguistics (2019). https://doi.org/10.18653/V1/W19-
4302

136

https://doi.org/10.1109/AIKE.2018.00023
https://doi.org/10.1609/AAAI.V35I5.16552
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/978-3-319-47096-2_19
https://doi.org/10.1016/J.IS.2013.06.004
https://doi.org/10.3233/978-1-61499-419-0-639
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.18653/V1/W19-4302
https://doi.org/10.18653/V1/W19-4302

32. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A Survey on Deep Transfer
Learning. In: Kurková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.S., Maglogiannis, I.
(eds.) Artificial Neural Networks and Machine Learning - ICANN 2018 - 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings,
Part III. LNCS, vol. 11141, pp. 270–279. Springer, Heidelberg (2018). https://doi.org/10.1
007/978-3-030-01424-7 27

33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is All you Need. In: Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

34. Ye, X., Leake, D., Crandall, D.: Case Adaptation with Neural Networks: Capabilities and
Limitations. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and
Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-
15, 2022, Proceedings. LNCS, vol. 13405, pp. 143–158. Springer, Heidelberg (2022). https:
//doi.org/10.1007/978-3-031-14923-8 10

35. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing Stars: On Approximating
Graph Edit Distance. Proc. VLDB Endow. 2(1), 25–36 (2009). https://doi.org/10.14778/1
687627.1687631

36. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In: Watson,
I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Interna-
tional Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 17–32. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-583
42-2 2

37. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by Means of
Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds.) Case-Based Rea-
soning Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 388–403.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 26

137

https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-29249-2_26

Chapter 8

Ranking-Based Case Retrieval with Graph
Neural Networks in Process-Oriented
Case-Based Reasoning

Bibliographic Information

Hoffmann, M., Bergmann, R.: Ranking-Based Case Retrieval with Graph Neural Networks in
Process-Oriented Case-Based Reasoning. In: Franklin, M., Chun, S.A. (eds.) Proceedings of the
Thirty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS
2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI Press (2023). https://doi.org/10.32
473/FLAIRS.36.133039

Abstract

In Process-Oriented Case-Based Reasoning (POCBR), experiential knowledge from previous
problem-solving situations is retrieved from a case base to be reused for upcoming problems.
The task of retrieval is approached in previous work by using Graph Neural Networks (GNNs)
to learn workflow similarities which are, in turn, used to find similar workflows w.r.t. a query
workflow. This paper is motivated by the fact that these GNNs are mostly used for predicting the
similarity between two workflows (query and case), while the retrieval in CBR is only concerned
with the ranking of the most similar workflows from the case base w.r.t. the query. Thus, we
propose a novel approach to extend the GNN-based workflow retrieval by a Learning-to-Rank
(LTR) component where rankings instead of similarities between cases are predicted. The main
contribution of this paper addresses the changes to the GNNs from previous work, such that
their model architecture predicts pairwise preferences between cases w.r.t. a query and that
they can be trained using labeled preference data. In order to transform these preferences into
a case ranking, we also describe rank aggregation methods with different levels of computational
complexity. The experimental evaluation compares different models for predicting similarities
and rankings in case retrieval scenarios. The results indicate the potential of our ranking-based
approach in significantly improving retrieval quality with only small impacts on the performance.

138

https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.32473/FLAIRS.36.133039

Keywords

Case-Based Reasoning · Deep Learning · Process-Oriented Case-Based Reasoning · Learning-to-
Rank

Copyright Notice

© 2023 Maximilian Hoffmann, Ralph Bergmann. This work is licensed under a Creative Com-
mons Attribution-Non Commercial 4.0 International License (https://creativecommons.org/lice
nses/by-nc/4.0/).

8.1 Introduction

Hybrid approaches of Case-Based Reasoning (CBR) [1] and Deep Learning (DL) are becoming
more and more popular across many CBR research groups, e. g., [3, 14, 29]. The common goal
is to support or implement different parts of CBR applications with appropriate DL methods
[20]. Thereby, most of these efforts are focused on case retrieval, i. e., a case base of best-practice
problem-solution-pairs is queried to find solution candidates for a given problem based on the
similarity between the new problem and past problems. Supporting this task with DL methods
is commonly approached by automatically learning similarity measures, for instance, to predict
the similarity between the query and cases of the case base [3, 21, 25]. In this process, the
role of the similarity measure is to control the retrieval process by declaring the most similar
cases of the case base as the most useful solution candidates to the query. This leaves the
concrete similarity values mainly as a criterion for case ranking. Especially when using DL-based
similarity measures, predicting similarities instead of rankings might lead to imprecise retrieval
results, since small similarity prediction errors can have great effects on the final ranking of the
cases. A more intuitive approach in this scenario would be to bring the model predictions closer
to the underlying task by predicting pairwise preferences such as “case A is more relevant to
the query than case B”. This reformulation has two advantages: First, the number of training
examples increases as each pair of cases from the case base combined with a query case is one
training example. When predicting similarities, on the other hand, a training example consists
of the query and a single case, which effectively squares the number of training examples when
training with pairwise preferences. Second, it redefines the learning task as a binary classification
which utilizes different metrics, loss functions, and training parameters compared to a regression.
This enables a new way of training the models, which might lead to more accurate predictions
or shorter training times.

The described technique is part of the Learning to Rank (LTR) methodology [23] that is also
known as preference learning [11]. LTR deals with ranking items according to a given query
by means of machine learning methods. It covers crucial aspects of the ranking procedure,
such as suitable loss functions and training procedures. The use of LTR methods in CBR is
not thoroughly investigated, but its applicability is indicated by the shared goal of ranking
cases according to a query [6] as well as the way experts think about cases which much more
resembles preferences than similarity values [18]. Therefore, we investigate the potential of LTR
for similarity-based retrieval in this paper. We use the context of Process-Oriented Case-Based
Reasoning (POCBR) [26]. POCBR is a subfield of CBR that deals with procedural knowledge,
such as semantic graphs [5]. We discuss existing DL-based methods w. r. t. their contribution to
LTR and integrate new LTR principles into the Graph Neural Networks (GNNs) from literature
[14, 16] with the goal of improving the quality and performance of these models for the task of
case retrieval in POCBR. The remainder of the paper is structured as follows: Section 8.2 shows

139

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

foundations of the used semantic graph representation and gives an introduction to LTR before
presenting related work. Further, Sect. 8.3 presents the concept for integrating LTR principles
into GNNs for similarity assessment in POCBR. Section 8.4 presents the experimental evaluation
before Sect. 8.5 concludes the paper and shows directions of future work.

8.2 Foundations and Related Work

The foundations include the semantic workflow representation that is used in the concept and
the experiment evaluation, as well as the similarity assessment between pairs of these workflows.
Additionally, the basic strategies of LTR are introduced, and related work is examined.

8.2.1 Semantic Workflow Representation and Similarity Assessment

We represent all workflows as semantically annotated directed graphs referred to as NEST graphs,
introduced by Bergmann and Gil [5]. A NEST graph is defined as a quadruple W = (N,E,S,T)
that is composed of a set of nodes N and a set of edges E ⊆ N ×N . Each node and each edge
has a specific type from Ω that is indicated by the function T : N ∪ E → Ω. Additionally, the
function S : N ∪ E → Σ assigns a semantic description from Σ (semantic metadata language,
e. g., an ontology) to nodes and edges. Whereas nodes and edges represent the structure of each
workflow, types and semantic descriptions model additional semantic information. Figure 8.1
shows an exemplary NEST graph that represents a cooking recipe of a mayo-gouda sandwich.
The sandwich is prepared by executing the cooking steps coat and layer (represented as task
nodes) with the ingredients mayo, baguette, sandwich dish, and gouda (represented as data
nodes). All components are connected by edges indicating relations, e. g., coat consumes mayo.
Semantic information belonging to the workflow components is further specified by using semantic
annotations for nodes and edges. For instance, the semantic description of the task node coat

provides the information that a spoon and a baguette knife are needed to execute the task and
that the estimated time is two minutes.

mayo

coat layer

sandwich
dish

task	node data	node control-flow dataflow part-of

coat

Duration:	2	(Integer)

Auxiliaries:	Spoon,	Knife	(List)
baguette

gouda

Sandwich
Recipe

workflow
node edge edge edge

Figure 8.1: Exemplary Cooking Recipe represented as NEST Graph

Since NEST graphs are used in the context of POCBR, Bergmann and Gil [5] also propose
a semantic similarity measure between two NEST graphs, i. e., a query workflow QG and a
case workflow CG. The similarity is determined based on the local-global principle such that
a global similarity, i. e., the similarity between two graphs, is composed of local similarities,

140

i. e., the pairwise similarities of nodes and edges. Nodes with the same type can be mapped
onto each other, and their similarity corresponds to the similarity of their semantic descriptions.
The similarity between two edges with identical types does not only consider the similarity of
the semantic descriptions of the edges, but in addition, the similarity of the connected nodes, as
well. A mapping is, hence, admissible if all mapped nodes as well as all mapped edges with their
source and destination nodes are of the same type. When assuming that the domain defines
a similarity model with a similarity measure simΣ : Σ × Σ → [0,1] for all components of the
semantic description, the global similarity of the two workflows sim(QG,CG) is calculated by
finding an injective partial mapping m that maximizes simm(QG,CG).

sim(QG ,CG) = max{simm(QG ,CG) | admissible mapping m}

The complex process of finding a mapping that maximizes the global similarity between a query
QG and a single case CG is tackled by an A* search algorithm (see Bergmann and Gil [5] for
more details). However, A* search is usually time-consuming and can lead to long retrieval times
[15, 19, 30] which motivates using automatic learning methods for the task of case retrieval.

8.2.2 Learning to Rank

In LTR, a ranked list of items is determined based on the relevance of these items w. r. t. a query
[23]. A well-known application scenario is information retrieval, where the most relevant docu-
ments regarding some query are ranked and returned to a user. LTR approaches are commonly
divided into three categories based on the way rankings are determined, i. e., pointwise, pair-
wise, listwise LTR [23]: Pointwise LTR approaches use existing metrics to compute a relevance
score for each item. For instance, retrieving similar cases based on a query in a case retrieval in
CBR could be associated to this category. These methods have the advantage that they can be
developed and implemented rather quickly due to the metrics already existing, but the quality
might not be sufficient, since the used metrics were probably not intended to be used in an LTR
context. Furthermore, pairwise LTR or label ranking [11] approaches determine the ranked list
of items by evaluating preferences between pairs of items w. r. t. the query. A preference in this
sense states whether one or the other item of a pair is more relevant to the query. To get a
ranked list of items, rank aggregation is used and transforms the pairwise preferences. Pairwise
methods are, compared to pointwise approaches, harder to conceptualize and implement due to
the two involved components, but could probably lead to better overall results due to their focus
on predicting actual rankings. Although the proposed approach only covers pointwise and pair-
wise methods, listwise LTR, also known as object ranking [11], is still explained for the sake of
completeness. This category of approaches is the most straightforward, as it returns a complete
ranked list of items according to the query. There is no need to derive the ranked list of items
from different metrics as in the other categories. Thus, listwise LTR methods promise better
results than other methods due to their direct prediction of ranked lists but, in turn, are also
generally harder to implement and train.

8.2.3 Related Work

Related work in the context of CBR or POCBR dealing with rankings or preferences explicitly
is rather scarce. One of the earliest approaches in this regard is proposed by Avesani, Ferrari,
and Susi [4]. They describe an interactive approach where users set preferences to help a system
configure a model to answer queries based on the user’s preferences. Brinker and Hüllermeier
[7] discuss pairwise ranking in the CBR context conceptually. They mainly focus on implement-
ing a case retrieval when given preferences as labels. Hüllermeier and Schlegel [18] extend this

141

concept and propose a methodological framework for problem-solving in CBR with preferences.
It describes the representation of experiential knowledge in the form of pairwise preferences be-
tween cases and case retrieval in this setup. While the aforementioned approaches are primarily
concerned with a conceptualization of rankings in the CBR methodology, there are also ap-
proaches that use rankings in more application-oriented scenarios. For instance, Li and Sun [22]
use rankings and CBR to compute similarities between cases in finance applications. Glöckner
and Weis [12] determine case rankings with a combination of machine learning and CBR for
question answering. Bichindaritz [6] combines CBR and information retrieval for scenarios from
biomedicine. Our approach is novel regarding related work as it is a combination of the POCBR
context, domain independence, and the use of DL methods to predict preferences.

8.3 Similarity-Based Retrieval by Using Learning to Rank Methods

Case retrieval with GNNs in POCBR applications returns the most similar cases according to the
similarity predictions of the used neural networks. We propose an alternative approach to case
retrieval that predicts preferences of cases with GNNs to form the retrieval result. The following
sections, first, place GNN-based retrieval in the context of pointwise LTR and, second, describe
the approach of retrieval by predicting pairwise case preferences.

8.3.1 Pointwise Ranking with GNNs

For the purpose of similarity-based retrieval in POCBR, Hoffmann et al. [16] adapt two Siamese
GNNs which are calledGraph Embedding Model (GEM) and theGraph Matching Network (GMN)
(see Fig. 8.2). Both models learn embeddings of semantic graphs by processing the nodes and
the edges between those nodes, incl. their types and semantic annotations. These embeddings
are then further aggregated to a single pairwise similarity value by using cosine vector similarity
or a Multi-Layer Perceptron (MLP). Thereby, both models have the same fundamental archi-

Aggregator

Propagation

Layer

Embedder

Graph

Similarity 0.65

OR

G1 G2

G1 G2

Figure 8.2: GEM (left branch) and GMN (right branch) (taken from Hoffmann and Bergmann
[14])

tecture that consists of four parts that the data passes through in succession: the embedder,
the propagation layer, the aggregator, and the graph similarity. The embedder maps the types

142

and semantic annotations of nodes and edges to their initial representations in the vector space.
The propagation layer then propagates information about each node in its local neighborhood
via message passing, where the vector representation of a single node is updated by merging it
with the vector representations of all nodes that are connected by an incoming edge. The GEM
computes the graph representations for each graph independently, and the node-level informa-
tion is propagated exclusively in the respective graph. In contrast, the GMN uses a cross-graph
matching mechanism that propagates information between two graphs based on node attentions.
After multiple propagation iterations, the aggregator joins representations of all nodes to a sin-
gle graph representation. The graph similarity of two graphs can finally be computed with their
respective representations in the vector space, by using a cosine vector similarity in GEM and an
MLP in GMN. The architectural differences between GEM and GMN induce a trade-off between
expressiveness and performance, with the GMN being more expressive than the GEM but also
computationally more expensive.

According to the categorization in Sect. 8.2.2, this approach is a pointwise ranking measure.
The most relevant cases of the case base w. r. t. a query are retrieved by predicting pairwise
similarities with GEM or GMN and sorting the cases according to their similarity. Thus, the
GNN-based similarity measure can be used interchangeably with other similarity measures in
POCBR applications. However, it might be too strict in retrieval-only applications, where only
the case ranks are of interest and not the concrete similarity values.

8.3.2 Predicting Preferences with GNNs

In order to realize a case retrieval, we propose to adjust the similarity-predicting GNNs to
predict pairwise preferences of case pairs. Let Gq, G1, G2 ∈ G be a query and two semantic
case graphs from a graph space G, we want to define a function p : ((G,G), (G,G)) −→ [0,1]
that determines a probabilistic preference between the pairs (Gq, G1) and (Gq, G2). A result of
p((Gq, G1), (Gq, G2)) ≥ 0.5 means that G1 is more relevant to the query than G2, and vice versa.
The architectural changes to use GEM and GMN in this context address the part about the graph
similarity that is replaced with a preference function. The embedder, the propagation layer, and
the aggregator can be reused to embed the graphs into a latent space vector representation.
Let GNN : (G,G) −→ (Rn,Rn) be a function that uses either GEM or GMN to embed two
graphs to their n-dimensional vector representations, (vq, v1) = GNN(Gq, G1), and (vq, v2) =
GNN(Gq, G2), then p((Gq, G1), (Gq, G2)) is defined as follows:

p((Gq, G1), (Gq, G2)) = σ(MLPp([vq − v1, vq − v2]))

The pairwise preference between these two graph pairs is computed by element-wise subtracting
the vectors v1 and v2 from vq, concatenating the results, processing the results by MLPp, and
activating the final value with a sigmoid activation. MLPp can be an arbitrary MLP with the
constraint that it has to have a single output neuron in the last layer in order to have a single
preference value. Training GEM and GMN in this setup also differs from the original goal of
predicting similarities. Instead of training on batches of graph pairs, the models are trained on
batches of pairs of graph pairs, as function p also suggests. Instead of computing a Mean Squared
Error (MSE) loss between predicted and label similarity, the predicted preferences are evaluated
by computing a binary cross-entropy loss between the predictions and the labels. Please note
that the proposed pairwise ranking approach can also be directly trained on label preferences
between cases, for instance determined by direct user feedback. This is not possible with the
pointwise models, but useful in the real world, since it is more natural for human experts to
determine a preference between two alternatives than a similarity value [18].

143

Algorithm 1 Greedy Rank Aggregation

Data: case base CB; query workflow QG; GNN-based preference function p(·,·)
Result: ranked list of cases

1: V ←− CB; result←− empty list
2: for each v ∈ V do
3: s1(v)←−

∑
u∈V p(v, u)−

∑
u∈V p((QG, v), (QG, u))

4: end for
5: while |V | > 0 do
6: vpot ←− argmaxu∈V s1(u)
7: add vpot to the end of result
8: V = V \ {vpot}
9: for each v ∈ V do

10: s1(v)←− s1(v) + p((QG, vpot), (QG, v))− p(v, vpot)
11: end for
12: end while
13: return result

In order to transform the predicted pairwise preferences to actual ranks which can, in turn,
be used as the retrieval result, it is necessary to perform rank aggregation (as introduced in
Sect. 8.2.2). There are overviews of rank aggregators available in the literature [2, 17], where
most of the methods can be used in this approach. For our use case, we want to present a slightly
modified variant of the approach by Cohen, Schapire, and Singer [10] (see Alg. 1) and another
algorithm that is simpler and faster to compute (see Alg. 2).

Algorithm 1 is provided with the case base CB, the query QG, and the preference function
p(·,·) introduced before. The rank aggregation starts by creating a temporary set of cases V ,
where each case is initialized with its potential ranking score, denoted by the function s1(·) (see
lines 2 – 4). The value of this function for any case v is initialized as the number of comparisons
where v is preferred over some other case u, minus the number of opposed comparisons. The
result of the algorithm is a ranked result list of the cases in descending order of relevance (see
lines 5 – 12). The result list is put together in a loop, where the case vpot with the highest value
of s1(v) is extracted from V and added to the end of the list. Afterward, the values of function
s1 are updated for each case in V according to the comparisons with the extracted case vpot.
The algorithm resembles a greedy search through the graph of pairwise preferences. It has a
quadratic computational complexity and is therefore faster than optimal search algorithms such
as A*. Cohen, Schapire, and Singer [10] also prove that the algorithm’s agreement is at least
half the agreement of the optimal ranking order.

Algorithm 2 is derived from Alg. 1 and simplifies two aspects to reduce computation time.
First, the computation of the potential ranking score function s2(v) only includes the preferences
where v is preferred over another case u. The opposed preference relations where u is preferred
over another case v are not counted, hence the naming as positive rank aggregation. Second,
the creation of the result list is also done in a loop, but the values of s2 are not continuously
updated. This means that the preferences of cases extracted from V are not removed from the
scores of the cases still in V . This rank aggregation algorithm also has a quadratic computational
complexity, but requires less computation steps than the greedy one. The performance of both
methods is evaluated in the experimental evaluation.

144

Algorithm 2 Positive Rank Aggregation

Data: case base CB; query workflow QG; GNN-based preference function p(·,·)
Result: ranked list of cases

1: V ←− CB; result←− empty list
2: for each v ∈ V do
3: s2(v)←−

∑
u∈V p((QG, v), (QG, u))

4: end for
5: while |V | > 0 do
6: vpot ←− argmaxu∈V s2(u)
7: add vpot to the end of result
8: V = V \ {vpot}
9: end while

10: return result

8.4 Experimental Evaluation

We conduct retrievals to compare pairwise ranking and pointwise ranking with GEM and GMN
(see Sect. 8.3.1). All different GNN variants also include a version with sequence embedding and
one with tree embedding to examine the effects of these semantic annotation embedding tech-
niques, introduced by Hoffmann and Bergmann [14]. The models based on pairwise ranking also
compare the results of the different rank aggregators, i. e., the greedy and the positive approach.
This gives a total of twelve evaluated retrievers (see Tab. 8.1 for the entire enumeration). We
measure the quality of several retrieval runs by comparing the order of the results, as predicted
by the pointwise and pairwise ranking models, with the ground-truth ordering. In addition, we
look at a comparison between the different retrievers regarding retrieval time. The following
hypotheses are investigated:

H1 The retrievers based on pairwise ranking generally outperform the retrievers based on
pointwise ranking w. r. t. the retrieval quality.

H2 The retrievers based on pairwise ranking generally show reduced retrieval times compared
to the retrievers based on pointwise ranking.

8.4.1 Experimental Setup

The experiments are performed with three case bases from different domains, that is of a recipe
domain CB-I [16], a data mining domain CB-II [31], and a manufacturing domain CB-III [24].
CB-I consists of 40 manually modeled cooking recipes that are extended to 800 workflows by
adaptation techniques described in Müller [27], resulting in 660 training cases, 60 validation
cases, and 80 test cases. The workflows of the data mining domain CB-II are built from processes
stemming from RapidMiner (see Zeyen, Malburg, and Bergmann [31] for more details), resulting
in 509 training cases, 40 validation cases, and 60 test cases. CB-III contains workflows that
represent production processes which are used in a smart manufacturing environment. The case
base is composed of 75 training cases, nine validation cases, and nine test cases.

When training the neural networks with the data of these three case bases, all semantic
graphs are encoded in a numeric vector format (see Hoffmann and Bergmann [14] for more
information). The pointwise ranking models, i. e., the base models, are trained to predict pairwise

145

graph similarities. The number of pairwise graph similarities for training, testing, and validation
is precisely the square of the numbers given before, as there is a ground-truth similarity value
calculated for each possible case pair. The pairwise ranking models, i. e., the proposed approach,
are trained on preferences between graph pairs, computed based on the ground-truth graph
similarities. A single training iteration uses a batch of pairs of graph pairs, and the preferences
are predicted between each possible pair of graph pairs. This way, the number of different
preferences to train the pairwise ranking models is much higher than the number of pairwise
graph similarities to train the pointwise ranking models.

The training cases are used as training input for the neural networks, while the validation
cases are used to monitor the training process. The proposed models using pairwise ranking
use the same hyperparameter settings as the respective base models using pointwise ranking.
The training of all models using the GEM architecture runs for 20 epochs, and the training
of all models using the GMN architecture runs for 40 epochs. These settings were identified
as the approximate points of convergence in pretests. A snapshot of the model is exported
after each training epoch and the models with the lowest validation error within these 20 or
40 exported models, respectively, are used in the experiments. The examined metrics cover
retrieval quality and performance: Quality is measured in terms of correctness (see Cheng et al.
[9] for more details), retrieval hits, and k-NN quality (see Müller and Bergmann [28] for more
details). The correctness (ranged between -1 and 1) describes the conformity of the ranking
positions in the predicted ranking to the ground-truth ranking. Given two arbitrary workflow
pairs GP1 = (QG ,CG1) and GP2 = (QG ,CG2), the correctness is decreased if GP1 is ranked
before GP2 in the predicted ranking although GP2 is ranked before GP1 in the ground-truth
ranking or vice versa. The retrieval hits measure the number of cases that are within the top-25
retrieved results in the predicted rankings and the ground-truth rankings. The k -NN quality
(ranged between 0 and 1) extends the retrieval hits by considering what the similarity of the
cases within the top-25 retrieval results is. Therefore, the 25 most similar cases from the ground-
truth rankings are compared with the predicted rankings. Each case from the most similar
cases that is missing in the predicted rankings decreases the quality, with highly relevant cases
affecting the quality more than less relevant cases. In addition, the retrieval time in milliseconds is
determined to compare the performance of the individual models. All experiments are computed
on a machine, running Ubuntu 22.04, an AMD Ryzen 5700x, an NVIDIA RTX 3070 with 8GB
graphics RAM and 64GB system RAM. Please note that a comparison between retrievers using
A* search and retrievers using GNNs is presented by Hoffmann and Bergmann [14] and, thus,
not included in these experiments.

8.4.2 Experimental Results

Table 8.1 shows the results of the experimental evaluation for all models on all domains regarding
the metrics introduced before. The evaluated models are grouped regarding the used embedder,
i. e., a tree embedder or a sequence embedder. The values highlighted in bold font mark the
best metric values among all models for each domain. The results w. r. t. training time show
a clear dominance of the pointwise GEM models, since they can cache embedding vectors due
to their parallel model architecture (see Hoffmann and Bergmann [14] for more details). There
is a general time advantage of GEM as opposed to GMN, which can be seen for pointwise as
well as pairwise variants. When directly comparing the pointwise variants with the pairwise
variants, it is apparent that the pairwise variants in most cases have longer execution times
with an advance between 154 and 1600 times for the GEM variants and 0.92 and 3.36 times for
the GMN variants. The GMNs of CB-III do not follow this trend, since they are consistently
faster than their respective base models. Additionally, the results also show that most of the

146

pairwise GEMs retrieve faster than the pointwise GMNs, which indicates that the comparison of
retrieval time should be done with similarly performing models in terms of quality. Comparing
the two rank aggregators, it can be seen that positive rank aggregation is almost always faster
than greedy rank aggregation, which is to be expected given the different levels of computational
complexity.

Table 8.1: Evaluation Results.

Time (ms) Corr. Hits Quality Time (ms) Corr. Hits Quality Time (ms) Corr. Hits Quality
GEM Pointwise 0.63 0.035 0.225 0.476 0.53 0.330 2.867 0.439 0.13 0.197 10.333 0.543
GMN Pointwise 462.11 0.444 0.963 0.490 811.77 0.571 7.033 0.539 171.95 0.584 16.556 0.731

GEM Pairwise (Positive) 695.63 0.490 3.688 0.546 394.78 0.507 3.567 0.449 20.50 0.470 15.222 0.682
GEM Pairwise (Greedy) 799.49 0.478 4.050 0.555 431.98 0.506 3.650 0.451 20.27 0.478 15.333 0.687
GMN Pairwise (Positive) 1473.28 0.550 2.150 0.519 1348.08 0.616 6.550 0.524 161.04 0.628 17.333 0.760
GMN Pairwise (Greedy) 1570.79 0.551 2.150 0.519 1391.45 0.615 6.283 0.515 165.19 0.629 17.333 0.759

GEM Pointwise 0.48 0.055 0.013 0.471 0.44 0.357 6.150 0.522 0.08 0.389 11.778 0.600
GMN Pointwise 741.83 0.340 0.225 0.476 1110.58 0.615 6.933 0.532 297.90 0.600 15.889 0.710

GEM Pairwise (Positive) 698.21 0.398 2.125 0.515 398.52 0.524 4.300 0.468 18.32 0.488 15.111 0.678
GEM Pairwise (Greedy) 797.86 0.385 2.175 0.516 437.91 0.522 4.100 0.463 19.08 0.495 15.111 0.679
GMN Pairwise (Positive) 1747.54 0.493 2.825 0.535 1674.35 0.737 9.600 0.601 284.88 0.555 14.444 0.674
GMN Pairwise (Greedy) 1841.79 0.491 2.738 0.533 1712.71 0.736 9.650 0.602 285.98 0.563 14.556 0.677Se

qu
en

ce
 E

m
b.

CB-I CB-II CB-IIIRetriever

Tr
ee

 E
m

b.

The results regarding the quality metrics show that there is a general trend of pairwise models
having a higher correctness and k -NN quality and a higher number of hits compared to pointwise
models. Except for CB-I, the data also shows a superior quality of the GMN-based models over
the GEM-based models. For instance, the differences in correctness between the pairwise models
and the respective pointwise model are between 1.2 and 13.9 times for CB-I, 1.07 and 1.53 times
for CB-II, and 0.92 and 2.41 times for CB-III. As with training time, some pairwise GMNs do
not follow this trend and achieve worse quality values than the respective pointwise models. A
comparison among the quality metrics for individual models shows an agreement on average
with variations in some cases, e. g., a comparison of the pairwise GEM and GMN with greedy
aggregation and tree embedding in CB-I shows a lower correctness of the GEM but, in turn, a
higher k -NN quality. When comparing the average results of the two rank aggregators, it can be
seen that greedy rank aggregation is usually on-par with positive rank aggregation, with small
differences in favor of one or the other approach in some comparisons.

Overall, the results show consistent improvements in quality when using pairwise compared
to pointwise ranking approaches. However, these improvements mostly come at the cost of
higher retrieval times of pairwise ranking approaches. It leads to a trade-off between these two
aspects that should be considered regarding the use case. There are still noteworthy examples
where a pairwise GEM model outperforms a pointwise GMN model in terms of quality and
performance, leading to a great potential for future use. The performance and the quality results
are statistically significant according to a paired two-sample t-test (p < 0.01) and we accept
hypothesis H1 and reject hypothesis H2.

8.5 Conclusion and Future Work

The proposed approach deals with case retrieval by using GNN-based predictions of case rankings
in POCBR. Previous work on similarity-based case retrieval with GNNs is extended to use the
neural networks for predicting pairwise preferences between cases and the query. To transform
multiple preferences to a case ranking, two rank aggregation methods are discussed. The ex-
perimental evaluation indicates that the ranking-based models significantly increase the quality

147

of the predicted rankings with a small increase in retrieval time compared to similarity-based
models.

Future research for the proposed approach should examine concepts of listwise ranking meth-
ods [8] for similarity-based retrieval in POCBR, since it is, in general, more powerful than point-
wise and pairwise ranking [23]. Furthermore, the proposed approach could be used with a wider
variety of rank aggregators, which could include more complex or even simpler rank aggregators
for different domains or retrieval scenarios [2, 17]. Additionally, the approach could be extended
to factor in uncertainty, e. g., by not only predicting a pairwise preference, but also the degree of
uncertainty for this prediction. Existing methods such as Guiver and Snelson [13] could then be
used to do rank aggregation and determine the final ranking.

Acknowledgements

This work is funded by the German Federal Ministry for Economic Affairs and Climate Action
under grant No. 22973 SPELL.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Commun. 7(1), 39–59 (1994). https://doi.org/10.3233
/AIC-1994-7104

2. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing Multiclass to Binary: A Unifying Ap-
proach for Margin Classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

3. Amin, K., Kapetanakis, S., Polatidis, N., Althoff, K., Dengel, A.: DeepKAF: A Heteroge-
neous CBR & Deep Learning Approach for NLP Prototyping. In: Ivanovic, M., Yildirim, T.,
Trajcevski, G., Badica, C., Bellatreche, L., Kotenko, I.V., Badica, A., Erkmen, B., Savic,
M. (eds.) International Conference on INnovations in Intelligent SysTems and Applications,
INISTA 2020, Novi Sad, Serbia, August 24-26, 2020, pp. 1–7. IEEE (2020). https://doi.or
g/10.1109/INISTA49547.2020.9194679

4. Avesani, P., Ferrari, S., Susi, A.: Case-Based Ranking for Decision Support Systems. In:
Ashley, K.D., Bridge, D.G. (eds.) Case-Based Reasoning Research and Development, 5th
International Conference on Case-Based Reasoning, ICCBR 2003, Trondheim, Norway, June
23-26, 2003, Proceedings. LNCS, vol. 2689, pp. 35–49. Springer, Heidelberg (2003). https:
//doi.org/10.1007/3-540-45006-8 6

5. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (2014). https://doi.org/10.1016/J.IS.2012.07.005

6. Bichindaritz, I.: Memory Organization as the Missing Link between Case Based Reason-
ing and Information Retrieval in Biomedicine. In: Brüninghaus, S. (ed.) 6th International
Conference on Case-Based Reasoning, ICCBR 2005, Chicago, IL, USA, August 23-26, 2005,
Workshop Proceedings, pp. 18–31 (2005)

7. Brinker, K., Hüllermeier, E.: Label Ranking in Case-Based Reasoning. In: Weber, R.,
Richter, M.M. (eds.) Case-Based Reasoning Research and Development, 7th International
Conference on Case-Based Reasoning, ICCBR 2007, Belfast, Northern Ireland, UK, Au-
gust 13-16, 2007, Proceedings. LNCS, vol. 4626, pp. 77–91. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74141-1 6

148

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1109/INISTA49547.2020.9194679
https://doi.org/10.1007/3-540-45006-8_6
https://doi.org/10.1007/3-540-45006-8_6
https://doi.org/10.1016/J.IS.2012.07.005
https://doi.org/10.1007/978-3-540-74141-1_6

8. Cao, Z., Qin, T., Liu, T., Tsai, M., Li, H.: Learning to rank: from pairwise approach to
listwise approach. In: Ghahramani, Z. (ed.) Machine Learning, Proceedings of the Twenty-
Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007.
ACM International Conference Proceeding Series, pp. 129–136. ACM (2007). https://doi.o
rg/10.1145/1273496.1273513

9. Cheng, W., Rademaker, M., de Baets, B., Hüllermeier, E.: Predicting Partial Orders: Rank-
ing with Abstention. In: Cellular automata. Ed. by S. Bandini, S. Manzoni, H. Umeo, and
G. Vizzari, pp. 215–230. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15880
-3 20

10. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to Order Things. J. Artif. Intell. Res.
10, 243–270 (1999). https://doi.org/10.1613/JAIR.587

11. Fürnkranz, J., Hüllermeier, E.: Preference Learning: An Introduction. In: Preference Learn-
ing. Ed. by J. Fürnkranz and E. Hüllermeier, pp. 1–17. Springer (2010). https://doi.org/1
0.1007/978-3-642-14125-6 1

12. Glöckner, I., Weis, K.: An Integrated Machine Learning and Case-Based Reasoning Ap-
proach to Answer Validation. In: 11th International Conference on Machine Learning and
Applications, ICMLA, Boca Raton, FL, USA, December 12-15, 2012. Volume 1, pp. 494–
499. IEEE (2012). https://doi.org/10.1109/ICMLA.2012.90

13. Guiver, J., Snelson, E.L.: Learning to rank with SoftRank and Gaussian processes. In:
Myaeng, S., Oard, D.W., Sebastiani, F., Chua, T., Leong, M. (eds.) Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pp. 259–266. ACM (2008). https://doi
.org/10.1145/1390334.1390380

14. Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented
Case-Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

15. Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-Based Graph Matching for
Accelerating Similarity Assessment in Process-Oriented Case-Based Reasoning. In: Keane,
M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and Development - 30th Inter-
national Conference, ICCBR, Nancy, France, September 12-15, 2022, Proceedings. LNCS,
vol. 13405, pp. 240–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-1
4923-8 16

16. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

17. Hüllermeier, E., Fürnkranz, J.: Comparison of Ranking Procedures in Pairwise Preference
Learning. In: Bouchon-Meunier, B., Coletti, G., Yager, R. (eds.) Proceedings of the 10th
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU-04), Perugia, Italy (2004)

18. Hüllermeier, E., Schlegel, P.: Preference-Based CBR: First Steps toward a Methodological
Framework. In: Ram, A., Wiratunga, N. (eds.) Case-Based Reasoning Research and Devel-
opment - 19th International Conference on Case-Based Reasoning, ICCBR 2011, London,
UK, September 12-15, 2011. Proceedings. LNCS, vol. 6880, pp. 77–91. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23291-6 8

149

https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1613/JAIR.587
https://doi.org/10.1007/978-3-642-14125-6_1
https://doi.org/10.1007/978-3-642-14125-6_1
https://doi.org/10.1109/ICMLA.2012.90
https://doi.org/10.1145/1390334.1390380
https://doi.org/10.1145/1390334.1390380
https://doi.org/10.3390/A15020027
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-642-23291-6_8

19. Klein, P., Malburg, L., Bergmann, R.: Learning Workflow Embeddings to Improve the
Performance of Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning. In:
Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development - 27th In-
ternational Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings. LNCS, vol. 11680, pp. 188–203. Springer, Heidelberg (2019). https://doi.org/10
.1007/978-3-030-29249-2 13

20. Leake, D., Crandall, D.J.: On Bringing Case-Based Reasoning Methodology to Deep Learn-
ing. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development -
28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings. LNCS, vol. 12311, pp. 343–348. Springer, Heidelberg (2020). https://doi.org/10.1007
/978-3-030-58342-2 22

21. Leake, D., Ye, X.: Harmonizing Case Retrieval and Adaptation with Alternating Opti-
mization. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) Case-Based Reasoning Research and
Development - 29th International Conference, ICCBR 2021, Salamanca, Spain, Septem-
ber 13-16, 2021, Proceedings. LNCS, vol. 12877, pp. 125–139. Springer, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-86957-1 9

22. Li, H., Sun, J.: Predicting business failure using forward ranking-order case-based reasoning.
Expert Syst. Appl. 38(4), 3075–3084 (2011). https://doi.org/10.1016/J.ESWA.2010.08.098

23. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Berlin and Heidelberg
(2011)

24. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for adaptive
workflow management in smart factories. J. Intell. Inf. Syst. 61(1), 83–111 (2023). https:
//doi.org/10.1007/S10844-022-00766-W

25. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision
support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org
/10.1007/S10489-021-02251-3

26. Minor, M., Montani, S., Recio-Garćıa, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014). https://doi.org/10.1016/J.IS.2013.06.004

27. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden
(2018)

28. Müller, G., Bergmann, R.: A Cluster-Based Approach to Improve Similarity-Based Retrieval
for Process-Oriented Case-Based Reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B.
(eds.) ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Frontiers in Artificial Intelligence and Applications, pp. 639–644. IOS Press (2014).
https://doi.org/10.3233/978-1-61499-419-0-639

29. Ye, X., Leake, D., Crandall, D.: Case Adaptation with Neural Networks: Capabilities and
Limitations. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and
Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-
15, 2022, Proceedings. LNCS, vol. 13405, pp. 143–158. Springer, Heidelberg (2022). https:
//doi.org/10.1007/978-3-031-14923-8 10

30. Zeyen, C., Bergmann, R.: A*-Based Similarity Assessment of Semantic Graphs. In: Watson,
I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Interna-
tional Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 17–32. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-583
42-2 2

150

https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-29249-2_13
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-86957-1_9
https://doi.org/10.1016/J.ESWA.2010.08.098
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1016/J.IS.2013.06.004
https://doi.org/10.3233/978-1-61499-419-0-639
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.1007/978-3-031-14923-8_10
https://doi.org/10.1007/978-3-030-58342-2_2
https://doi.org/10.1007/978-3-030-58342-2_2

31. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of Scientific Workflows by Means of
Process-Oriented Case-Based Reasoning. In: Bach, K., Marling, C. (eds.) Case-Based Rea-
soning Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. LNCS, vol. 11680, pp. 388–403.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29249-2 26

151

https://doi.org/10.1007/978-3-030-29249-2_26

Chapter 9

Improving Automated Hyperparameter
Optimization with Case-Based Reasoning

Bibliographic Information

Hoffmann, M., Bergmann, R.: Improving Automated Hyperparameter Optimization with Case-
Based Reasoning. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and
Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-15,
2022, Proceedings. LNCS,. Vol. 13405, pp. 273–288. Springer, Heidelberg (2022). https://doi.o
rg/10.1007/978-3-031-14923-8 18

Abstract

The hyperparameter configuration of machine learning models has a great influence on their
performance. These hyperparameters are often set either manually w. r. t. to the experience of an
expert or by an Automated Hyperparameter Optimization (HPO) method. However, integrating
experience knowledge into HPO methods is challenging. Therefore, we propose the approach
HypOCBR (Hyperparameter Optimization with Case-Based Reasoning) that uses Case-Based
Reasoning (CBR) to improve the optimization of hyperparameters. HypOCBR is used as an
addition to HPO methods and builds up a case base of sampled hyperparameter vectors with
their loss values. The case base is then used to retrieve hyperparameter vectors given a query
vector and to make decisions whether to proceed trialing with this query or abort and sample
another vector. The experimental evaluation investigates the suitability of HypOCBR for two
deep learning setups of varying complexity. It shows its potential to improve the optimization
results, especially in complex scenarios with limited optimization time.

Keywords

Case-Based Reasoning · Automated Hyperparameter Optimization · Machine Learning · Deep
Learning

Copyright Notice

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG. Reproduced
with permission from Springer Nature.

152

https://doi.org/10.1007/978-3-031-14923-8_18
https://doi.org/10.1007/978-3-031-14923-8_18

9.1 Introduction

In recent years, machine learning and especially Deep Learning (DL) models have been used
as a method of choice for solving various tasks, e. g., in decision support systems [18] and in
helpdesk scenarios [2]. An important part of these models are the hyperparameters that are
used to configure the model architecture or the learning process such as the number of layers
or the learning rate. Hyperparameters are numerous in modern DL setups and there is an on-
going trend towards even more complex models, making it increasingly difficult to find suitable
configurations for the large number of hyperparameters. Despite the existence of Automated
Hyperparameter Optimization (HPO) methods [7, 9, 16], it is still common practice to tune these
hyperparameters manually based on user experience. This task is, on the one hand, challenging
since it requires in-depth knowledge of the underlying task and DL setup to set hyperparameter
values appropriately. On the other hand, it is time-consuming as the process involves manu-
ally triggered iterations of selecting a hyperparameter configuration, training the parameterized
model, and validating its performance. Whereas the latter aspect can be automated even by the
simplest HPO methods, expert knowledge of the DL setup to be tuned can be hardly considered
in current HPO methods (e. g., [8, 12, 15]). For instance, there might be knowledge in the form
of a statement such as this: The second convolutional layer has a great influence on the overall
results. To use this knowledge in current HPO approaches, it would be necessary to transform
it into meta-parameters of the HPO method, such as the number of sampled hyperparameter
vectors. However, this transformation is not trivial and requires in-depth knowledge of the HPO
method, which the neural network modeler might be lacking.

To address these shortcomings, we propose an approach called HypOCBR (Hyperparameter
Optimization with Case-Based Reasoning) for combining HPO methods with a Case-Based Rea-
soning (CBR) [1] system that allows an explicit integration of expert knowledge into optimization
procedures. The main assumption is that similar hyperparameter vectors lead to similar opti-
mization results. Based on this assumption and modeled domain and similarity knowledge that
expresses an expert’s experience knowledge, HypOCBR uses a CBR system to filter sampled
hyperparameter vectors from an HPO method and make decisions to proceed training with them
or abort them. The proposed approach is designed to be used as an extension of existing HPO
methods without required modifications to their core functionality. The remainder of the paper is
structured as follows: Section 9.2 describes the fundamentals of HPO, including the hyperparam-
eters of an example DL model and random search as a popular HPO method. Additionally, this
section discusses related work about HPO in CBR research. Section 9.3 describes our approach
by introducing the proposed system architecture and the used retrieval and decision-making pro-
cess. The presented approach is evaluated in Sect. 9.4 where optimization procedures with and
without CBR methods are compared on two DL setups of varying complexity. Finally, Sect. 9.5
concludes the paper and examines future research directions.

9.2 Automated Hyperparameter Optimization of Deep Learning Models

Our approach aims at optimizing Deep Learning (DL) models with the help of Case-Based Rea-
soning (CBR) methods that are built on top of existing Automated Hyperparameter Optimization
(HPO) methods. In this section, we introduce the formal concepts and terminology of HPO (see
Sect. 9.2.1). Additionally, different types of hyperparameters (see Sect. 9.2.2) are examined and
random search, a popular HPO method (see Sect. 9.2.3), is presented. We further discuss related
work in Sect. 9.2.4.

153

9.2.1 Formal Definition

Hyperparameter optimization involves two basic components in its simplest form, i. e., a training
setup of a DL model including its hyperparameters and training data, and a search procedure for
selecting a hyperparameter vector from the hyperparameter search space. Our introduction and
notation of these components follows Feurer and Hutter [9]: A DL model A is parameterized by
a set of hyperparameters N , where each hyperparameter n ∈ N is defined by its domain Λn. The
overall hyperparameter search space is given by Λ = Λ1 × Λ2 × . . .× Λn. We denote λ ∈ Λ as a
hyperparameter vector that represents a distinct sample from the hyperparameter search space.
Instantiating the model A with this sample is denoted as Aλ. The optimization procedure is
defined as follows:

λ∗ = argmin
λ∈Λ

L(Aλ,D) (9.1)

Thereby, the optimal hyperparameter vector λ∗ ∈ Λ is determined by selecting a hyperparameter
vector λ ∈ Λ that minimizes the loss function L(Aλ,D). The loss value is the result of training
Aλ and validating its performance on the dataset D. Therefore, D is usually split up into a
training dataset for training Aλ and a validation dataset for computing the loss value. We
refer to the training, validation, and loss computation with a single hyperparameter vector by
the term trial. Please note that instead of loss values, which are always minimized, also other
metrics, e. g., classification accuracy, can be used for optimization according to Eq. 9.1. The only
necessary change is to compute argmax(·) instead of argmin(·) in some cases. When referring to
loss values in this paper, we mean both types, i. e., metrics to minimize and to maximize.

9.2.2 Hyperparameter Search Spaces

The computational effort of an optimization as shown in Eq. 9.1 is mainly determined by the
number of possible hyperparameter vectors |Λ| and the time needed to perform trials with the
parameterized models. But, even if the training time is small and it is a simple DL setup, Λ
can become very large and the whole optimization process very slow. Consider the following

Hyperparameters

Model

Convolution1

Channels: int(20, 40)

KernelWidth: int(2, 4)

PoolWidth: int(2, 3)

Convolution2

Channels: int(40, 80)

KernelWidth: int(2, 4)

PoolWidth: int(2, 3)

FullyConnected

Layers: int(2, 5)

Neurons: int(40, 80)

UseDropout: categorical(true, false)

Training

LearningRate: float(0.001, 0.1)

Optimizer: categorical(Adam, SGD)

Epochs: int(10, 20)

Figure 9.1: Example Hyperparameter Search Space

example1: A DL setup for image classification is made up of two consecutive layers of con-
volution followed by pooling. The convoluted images are then flattened, i. e., reshaped to a
one-dimensional vector, and fed into several fully-connected layers. The final output is a vector
of ten elements that represents the probabilities for the individual classes of a classification task.
The model is trained by processing batches of images and applying stochastic gradient descent

1 The example is derived from an introduction on convolutional neural networks, accessible at https://www.te
nsorflow.org/tutorials/images/cnn.

154

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn

according to the computed loss. A possible hyperparameter search space for this example setup
is illustrated in Fig. 9.1. The hyperparameters are structured hierarchically, with model and
training hyperparameters forming the main groups. Each hyperparameter belongs to a certain
type of search space (Λn) and is constrained to certain values. For instance, the number of
channels in the first convolution is an integer value between 20 and 40 and the learning rate is a
float value between 0.001 and 0.1. These types of search spaces influence the number of possible
values of each hyperparameter. For instance, categorical and integer hyperparameters such as
the optimizer or the number of channels represent a definitive set of possible values. Continuous
search space types such as the learning rate, in turn, have an infinite number of theoretically
possible values, assuming an infinitely small step size. This makes it infeasible to trial with every
possible hyperparameter vector to compute argmin(·) and to find λ∗ [6].

9.2.3 Random Search

Therefore, most search algorithms only examine a small subset of Λ that does not guarantee
finding the optimal hyperparameter vector [9]. Random search (see Alg. 3 and cf. [6] for more
information) is a simple example of these algorithms. The algorithm is an approximation of the

Algorithm 3 Random Search

1: λ← selectFrom(Λ)
2: λ+ ← λ
3: while not isOptimized(λ+,L) do
4: λ← selectFrom(Λ)
5: if L(Aλ,D) < L(A+

λ ,D) then
6: λ+ ← λ
7: end if
8: end while
9: return λ+

function argmin(·) from Eq. 9.1 and works in the following way: Random hyperparameter vectors
λ are selected from Λ by the function selectFrom(·) and trialed. If the loss of the selected sample
is smaller than the loss of the current best hyperparameter vector λ+, λ will be assigned to λ+.
This loop repeats until the search is finished (function isOptimized(·, ·)) and the best selected
sample λ+ is returned. The used termination criterion is dependent on the underlying scenario
and can be, for instance, the maximum search time, the maximum number of selected samples, or
a threshold of the loss value. If random search has an unlimited budget, it will converge towards
λ+ being equal to the optimal hyperparameter vector λ∗.

9.2.4 Related Work

We discuss related work that covers popular HPO methods and CBR approaches in the field of
HPO. Literature from the former category is discussed in detail in several survey publications
(e. g., [9, 16, 26]), which is why we only want to highlight two popular example approaches:
Multi-fidelity optimization aims at approximating the actual loss value of a setup by conducting
low-fidelity and high-fidelity optimizations with a specific budget allocation, e. g., a maximum
number of training iterations. Hyperband [15] uses an iterative process where the budget for each
trial is determined based on the results of this run in the last iteration. Well-performing runs
are allocated more resources and poorly-performing runs are terminated, until only the best-
performing optimization is left. Model-based black box optimization methods aim to improve on

155

other methods, e. g., Hyperband, that usually sample random hyperparameter vectors. Instead,
promising hyperparameter vectors are chosen based on a surrogate model that is built during
the optimization to copy the hyperparameter distribution of the black box method to optimize,
e. g., a DL model. Bayesian optimization [24] methods use a surrogate model that is based on
probabilistic methods, e. g., Gaussian processes. Our approach is compatible with both categories
of HPO methods and, additionally, provides the opportunity of expert knowledge integration into
the optimization process. Expert knowledge is directly integrated as CBR domain and similarity
knowledge instead of being indirectly modeled in existing HPO methods.

The joint applications of CBR and HPO methods in literature are mostly concerned with
hyperparameter tuning of CBR algorithms, e. g., feature weighting [25]. The opposite relation
of CBR used for HPO is, to the best of our knowledge, not commonly discussed. We highlight
some selected approaches: Pavón et al. [20] use CBR to enable automatic selection of Bayesian
model configurations for individual problem instances. Their application builds up a case base of
configurations, which is used to find the best-matching configuration for an upcoming problem
instance. This idea is further pursued by Yeguas et al. [27] and applied to the task of tuning
parameters of evolutionary optimization algorithms. Auslander, Apker, and Aha [3] explore a
case-based approach of setting parameter values in the scenario of multi-agent planning. They re-
trieve parameter settings from a case base to parameterize upcoming planning problems. Molina
et al. [19] use a set of past decision tree executions to predict suitable parameters for the appli-
cation of the decision tree on new datasets. The parameter settings are retrieved based on the
characteristics of the datasets. In contrast to the approach in this paper, most of the presented
approaches can be classified as AutoML methods [13] that are used as a replacement for hyper-
parameter optimization. These methods automatically select a model configuration according to
the training data or the learning task instead of tuning parameters from scratch. Our approach
is novel in the sense that it aims to integrate CBR within the optimization procedure to make
expert knowledge about the hyperparameter search space available and guide the optimization
by eliminating unpromising hyperparameter vectors.

9.3 Automated Hyperparameter Optimization with
Case-Based Reasoning

This section introduces our approach HypOCBR (Hyperparameter Optimization with Case-
Based Reasoning) that aims at improving Automated Hyperparameter Optimization (HPO) of
Deep Learning (DL) hyperparameters with Case-Based Reasoning (CBR) methods. Our goal is
to accelerate the optimization process by utilizing HypOCBR as a filter for the hyperparameter
vectors that classifies whether a vector should be considered for trialing or not. Thereby, the
strategy is to disregard hyperparameter vectors in situations where they are highly similar to
known low-performing examples that are collected in a case base throughout the optimization
procedure. Figure 9.2 shows an architectural overview of the three involved components, i. e., the
CBR system, the HPO method, and HypOCBR. The HPO method carries out the optimization
procedure by sampling hyperparameter vectors from the search space, performing training, and
validating the model’s performance (see Sect. 9.2.3). The architecture, in this regard, allows
using arbitrary HPO methods, since their functionality does not have to be fitted to HypOCBR.
The CBR system supports the optimization procedure by maintaining a case base with completed
trials of hyperparameter vectors and their corresponding loss values as well as domain and sim-
ilarity models to include domain expert knowledge. HypOCBR connects the CBR system and
the HPO method by making use of a lightweight implementation of the 4R cycle [1]: After a
new hyperparameter vector is sampled during the optimization, HypOCBR makes a decision to
proceed with this vector or abort it early and sample another vector. Each sampled vector serves

156

CBR System

Domain
Model

Similarity
Model

Retrieve/Reuse

HPO Method

Case Base

updates

Revise/Retain

Sampling

Training

Validation

Decision

Reporting

uses

uses uses

HypOCBR

Figure 9.2: Architecture of the CBR system, the HPO method, and HypOCBR

as a query to the CBR system based on which the case base is searched for similar hyperparam-
eter vectors and their corresponding loss values, i. e., retrieving trials. HypOCBR then reuses
the most similar trials and makes the decision based on their loss values. Please note that the
retrieved hyperparameters are not adapted but their loss values are used to assess the potential
of the queried hyperparameter vector. Each optimization gradually builds up a case base to use
by starting with an empty case base and retaining each completed trial therein. Thereby, we do
not consider an explicit revision of cases in the approach but rather store all reported validation
results from the HPO component. Please note that this can lead to large case bases in long
optimization runs, such that methods for speeding up retrieval (e. g., [17]) or decreasing the size
of the case base (e. g., [21]) can be necessary but are not further discussed in this work. In the
following, we will examine how a retrieval in the CBR system is performed by inspecting the
case representation as well as the similarity definitions (see Sect. 9.3.1). The retrieval is part of
the decision-making process of HypOCBR that is explained in Sect. 9.3.2.

9.3.1 Experience-Based Retrieval: Case Representation and Similarity Definition

The case representation models trials as pairs of their hyperparameter vector and the respective
loss value. The case base, in this regard, stores information on the quality of hyperparameter
vectors that were sampled during the optimization. The hyperparameter vectors are represented
as object-oriented cases, as shown by the example in Fig. 9.1. The domain model describing these
vectors is one point to integrate expert knowledge. The concrete form is highly dependent on the
structure of the modeled hyperparameter vectors. For instance, simple knowledge about the data
types, value ranges, and expected distributions of individual hyperparameters (see Sect. 9.2.2)
can build the baseline. It can be extended by knowledge about the structure of individual
hyperparameters (e. g., taxonomies of optimizer types) or the constraints among hyperparameters
(e. g., the width of the kernel has to be less than the image width and height). Even more complex
knowledge such as ontologies can be used to model the cases. The loss value that is also part
of each case, usually is a single numeric value, e. g., accuracy, but can also be represented as a
more complex object, e. g., a list of accuracy values from each epoch of training.

During retrieval, similarities are computed between the hyperparameter vectors of the cases
and the hyperparameter vector that is given as the query by HypOCBR. We do not specify the
similarity measures to use, but rather allow them to be customized regarding the use case and
the available expert knowledge. Thereby a global object-oriented similarity between two hyper-

157

parameter vectors is usually put together from multiple local similarities between the individual
hyperparameters, e. g., numeric measures for integer and float search spaces, binary measures
for boolean search spaces, and tables or taxonomies for categorical values (cf. [4, pp. 93f.] for
more information). This enables a precise customization of the global pairwise similarity based
on the expert’s experience: For instance, the weights of all hyperparameters from the training
category (see Fig. 9.1) can be increased to focus more on this part of the hyperparameter vectors
for similarity assessment.

9.3.2 Making a Decision for New Trials

The decision task of HypOCBR applies an algorithm to make a decision between proceeding with
a sampled hyperparameter vector or aborting the trial. The used approach is conceptualized in
Alg. 4 and can be parameterized according to the well-known principles of exploration and ex-
ploitation (see, for instance, Leake and Schack [14] for more information). This means that it can
be configured towards favoring hyperparameter vectors that are different from all previously en-
countered vectors (exploration) or similar to known good hyperparameter vectors (exploitation).
The meta-parameters to influence the behavior of the algorithm are given in Tab. 9.1.

The algorithm’s first step is to check if the case base has reached a certain size (lines 1 –
3) which is given as the meta-parameter θ1. This check is necessary as a case base is built
up throughout the optimization to improve the quality of upcoming decisions. The case base,
however, suffers from the cold start problem [23] which can cause undesired behavior in CBR
systems with little or no data at the launch of the application (e. g., [22]). If the case base has
reached the desired size, it can be used for retrieving r (line 4) with the query λq, the case
base CB, and the similarity measure for case pairs sim. The retrieval incorporates the meta-
parameter θ4 that defines the number of nearest neighbors to retrieve. Larger values of θ4 help

Algorithm 4 Decision-Making for New Trials

Input: case base CB, similarity function sim(·, ·), query λq

Output: PROCEED or ABORT
Meta-Parameters: θ1, θ2, θ3, θ4

1: if |CB | < θ1 then
2: return PROCEED ▷ Minimum size of case base not reached
3: end if
4: r ← retrieve(CB, sim, λq, θ4)
5: s← aggregateSimilarities(r)
6: if s ≥ θ2 then
7: l← aggregateLosses(r)
8: p← percentile(l,CB, θ3)
9: if p = true then

10: return PROCEED ▷ Exploitation
11: else
12: return ABORT ▷ Similar to underperforming cases
13: end if
14: else
15: return PROCEED ▷ Exploration
16: end if

158

to prevent overfitting and make the retrieved cases more robust to outliers. These cases are then
used to compute an aggregate similarity value s that measures how similar λq is to the retrieved
cases from the case base r (line 5). The aggregated similarity is computed to ensure that the
retrieved cases are sufficiently similar to make a decision. The retrieval is also the main part of
the algorithm where expert knowledge is used. It determines the computed similarities, which
direct the algorithm to the hyperparameter vectors and their loss values that, in turn, best match
the queried vector. As the retrieved cases are the basis of the decision, the knowledge directly
influences the measured potential of the query vector. If s does not exceed θ2 (line 6) then the
exploration strategy is followed and PROCEED is returned (see line 15). Otherwise, the retrieved
cases are further inspected in lines 7 – 13. The loss values of the retrieved cases are aggregated to
l (line 7) to get an average loss of the cases that are similar to the query. Given l, the case base
CB, and the meta-parameter θ3 as parameters, the function percentile(·, ·, ·) in line 8 returns a
boolean value that expresses if the average loss value l is in the percentile range given by θ3. For
instance, setting θ3 to a value of 55 expresses that p is true if l is among the best 45% of the
loss values in the case base. This gives a hint towards the potential quality of λq which is based
on the average quality of cases similar to λq (retrieved cases r) w. r. t. to all cases in the case
base CB. Eventually, PROCEED is returned if p is true (exploitation strategy; line 9) and ABORT is
returned if p is false. The algorithm only aborts in one particular scenario, which highlights the
main goal of the filter process, i. e., to abort trials if they are expected to lead to bad results.

Table 9.1: Meta-Parameters of HypOCBR

Meta-
Parameter Description Constraints

θ1 Minimum number of cases in the case base to avoid cold start θ1 > 0
θ2 Minimum similarity threshold of aggregated retrieved cases θ2 ∈ [0,1]
θ3 Minimum percentile of aggregated metric of retrieved cases θ3 ∈ [0,100]
θ4 Number of cases to retrieve θ4 <= θ1

Furthermore, the meta-parameters (see Tab. 9.1) provide a straightforward way of configuring
the behavior of the algorithm w. r. t. certain goals. For instance, it can be configured towards
exploration by increasing θ2 which requires a higher similarity of retrieved cases. A parameteriza-
tion towards an ABORT decision is also possible by decreasing θ2 and increasing θ3. Additionally,
pretests of an implementation of Alg. 4 with standard similarity measures of the process-oriented
CBR framework ProCAKE [5] have shown that the performance is adequate, enabling working
with case bases containing hundreds or thousands of trials within a few milliseconds.

9.4 Experimental Evaluation

The experimental evaluation compares the results and procedure of hyperparameter optimization
with and without the usage of the proposed Case-based Reasoning (CBR) component HypOCBR.
To include optimization tasks with different levels of complexity, we evaluate a rather simple
baseline setup of an image classification task and a much more complex similarity learning task
based on Graph Neural Networks (GNNs). The goal is to analyze the influence of HypOCBR
on the number of sampled hyperparameter vectors and the loss values of the trialed cases. The
following hypotheses are examined:

H1 The computation overhead introduced by HypOCBR is negligible.

159

H2 The usage of HypOCBR in an optimization procedure leads to better results compared to
an identical optimization without it.

H3 The benefit of integrating HypOCBR in an optimization procedure increases with the
complexity, i. e., longer running trials with less overall optimization budget, of the setup
to optimize.

Hypothesis H1 addresses the computation overhead introduced by the CBR system, which is
expected to not influence the completed number of trials compared to HPO without HypOCBR.
Hypothesis H2 examines the potential of the presented approach to conduct better trials w. r. t.
their loss values. Hypothesis H3 aims at investigating the influence of the setup complexity on
the benefit of HypOCBR.

9.4.1 Experimental Setup

The experiments feature two Deep Learning (DL) setups. The baseline setup (S - I) is a convolu-
tional neural network classifying CIFAR10 images (derived from the example in Sect. 9.2.2). The
model is fully trained for ten epochs within one optimization run with the goal of maximizing the
percentage of correctly classified images (accuracy). The hyperparameter vectors of the model
contain 11 parameters with only integer search spaces. The number of possible hyperparameter
combinations, i. e., the number of unique hyperparameter vectors, is approx. 3 · 107. Addition-
ally, we also want to look at a more complex problem by incorporating a second setup (S - II)
that uses GNNs. S - II is based on our previous work on using graph embeddings for similarity
learning [10, 11]. Due to the required time for a full training run being approx. 12 – 18 hours, the
iterations in each epoch are limited and the model is only trained for ten epochs in trials. Each
hyperparameter vector contains 26 hyperparameters, i. e., 18 integer hyperparameters, five float
hyperparameters, and 3 categorical hyperparameters. This results in a total number of approx.
2 · 1037 possible hyperparameter vectors. The target metric is the Mean Absolute Error (MAE)
between the predicted similarities and the label similarities that should be minimized (see more
details in [10, 11]). Both setups are validated on a part of the dataset that is disjoint from the
data that is used for training. We use simple domain models for both setups that include the
data types and value ranges of all hyperparameters as well as an object-oriented structure of
the vectors. The similarity model is also simple with linear numeric measures for integers and
floats and binary measures for categorical hyperparameters. The similarity between two hyper-
parameter vectors is computed by a weight-adjusted average of the object-oriented structure of
the hyperparameters.

The HPO method used in the experiments is random search (see Sect. 9.2.3) as it is a baseline
method that is often used and performs reasonably well among other state-of-the-art optimization
methods [9]. This way, we can focus on the effects of HypOCBR without the need for factoring in
differently parameterized HPOmethods which might be required, e. g., if using Bayesian methods.
Each optimization procedure is conducted twice, with the only difference being that HypOCBR
is just used in one procedure. All other factors are kept identical, which includes the dataset, the
training procedure, and the HPO procedure. Randomized parts, e. g., the initial model weights
and biases or the sampled hyperparameter vectors, are made deterministic by using random seed
values. This means that it is possible to perform an optimization run with the same results if the
same random seed is used. The used meta-parameters of HypOCBR are set according to results
of pretests. For S - I, that is θ1 = 20, θ2 = 0.81, θ3 = 50, θ4 = 15 and for S - II that is θ1 = 15,
θ2 = 0.7, θ3 = 45, θ4 = 10.

The termination criterion for each optimization with and without HypOCBR is the maximum
elapsed time. A value of one hour is set for all optimizations of S - I and four hours for all opti-

160

mizations of S - II. These values reflect the different complexities of both setups, where training
and validation takes longer for S - II. After the optimization process is terminated, the trained and
validated hyperparameter vectors are analyzed. We assume a scenario where an expert reviews
the best hyperparameter vectors to make the final decision. Therefore, the validation results,
i. e., the accuracy or MAE, of all trials and the ten best trials are compared among optimization
procedures with and without HypOCBR. The implementation is realized as an extension of the
open-source process-oriented CBR framework ProCAKE2 [5]. All experiments are conducted on
a computer with an Intel Xeon Gold 6138 CPU and an NVIDIA Tesla V100 SXM2, running
Ubuntu 18.04 LTS.

9.4.2 Experimental Results

The results of the conducted experiments are depicted in Tab. 9.2 for S - I and in Tab. 9.3 for
S - II. The information in both tables is structured analogously: The lines show ten optimiza-
tion procedures, once conducted with and without HypOCBR under the same circumstances,
i. e., with the same random seed. We give information on the number of trials that were evalu-
ated (two leftmost columns), which is further split up into the trials with a proceed and an abort
decision for the optimizations with HypOCBR. The loss values of the individual optimizations
are percentage differences between optimizations with and without HypOCBR. A negative value
corresponds to a negative impact of HypOCBR and vice versa. The table shows best, mean, and
median values aggregated from all trials (left) and the ten best trials (right) of the individual
optimizations. All presented differences are statistically significant (p < 0.01).

Table 9.2: Evaluation Results for S - I

(Proceed, Abort) Best Mean Median Mean Median
161 620 (155, 465) 0.00% 0.50% 1.10% 0.70% 0.81%
152 609 (149, 460) -0.44% 1.85% 1.60% 0.87% 0.99%
141 646 (143, 503) 0.00% 1.64% 1.50% 0.49% 0.66%
149 728 (141, 587) 1.37% 1.18% 1.29% 0.74% 0.55%
153 640 (149, 491) 2.33% 1.02% 0.72% 0.76% 0.57%
158 613 (158, 455) -0.10% 0.90% 0.49% 0.29% 0.37%
161 456 (157, 299) 0.00% 1.49% 1.10% 1.00% 1.17%
164 413 (160, 253) -0.43% 2.00% 1.94% 0.30% 0.41%
163 863 (159, 704) -0.34% 1.96% 2.21% 0.52% 0.69%
159 690 (158, 532) 0.77% 1.13% 0.71% 0.37% 0.43%

Loss (Top)Trials Loss (All)

The results for S - I (see Tab. 9.2) show that the HypOCBR approach aborts many trials
and only proceeds with a small share. The number of trials that are not aborted is in a similar
range as the number of trials when HypOCBR is not used. However, the optimizations that
use HypOCBR are capable of pre-filtering a larger number of trials (increase between 251% and
529%) which provides a better coverage of the search space. The aggregated accuracies (higher
values are better) show better results of the mean and median values for HypOCBR on average,
while the approach without found a better vector in four optimizations. All in all, the differences
between both variants are small, ranging from 0.29% to 2% for the mean and median accuracies
and from -0.44% to 2.33% for the best accuracy.

The results for S - II (see Tab. 9.3) show that the number of proceeded trials for optimiza-
tions with HypOCBR is approximately equal to the number of trials for optimizations without
HypOCBR while pre-selecting numerous trials (increase from 144% to 854%). The aggregated

2 http://procake.uni-trier.de

161

http://procake.uni-trier.de

Table 9.3: Evaluation Results for S - II

(Proceed, Abort) Best Mean Median Mean Median
105 685 (110, 575) -0.19% 17.15% 16.21% 22.95% 22.00%
108 923 (103, 820) 2.97% 16.17% 34.29% 17.13% 27.17%
113 671 (111, 560) 0.38% 16.97% 17.47% 14.13% 11.70%
113 865 (103, 762) 0.00% 16.52% 12.31% 20.13% 17.71%
107 155 (116, 39) 0.00% 7.01% 21.39% 18.11% 19.73%
112 169 (118, 51) 2.75% 4.33% 21.23% 8.62% 14.06%
115 750 (112, 638) 22.60% 16.07% 14.66% 26.00% 49.14%
113 876 (105, 771) 0.00% 11.80% 9.76% 14.57% 4.52%
114 716 (114, 602) -0.03% 15.58% 19.27% -0.70% 3.48%
113 171 (110, 61) 0.00% 6.53% 22.57% 0.07% 0.00%

Trials Loss (All) Loss (Top)

MAE values (lower values are better) generally show improvements when using HypOCBR: The
best MAE values show decreases between -0.19% and 22.6%. The mean and median MAE values
mostly show large decreases of up to 49.14%.

9.4.3 Discussion

The overall results of the optimization procedures that use HypOCBR are promising. Regard-
ing Hypothesis H1, HypOCBR optimizations manage to train and validate approx. the same
number of trials as the corresponding optimizations without HypOCBR. The small deviations
of the results follow no trend and are most likely caused by computational variations of the un-
derlying hardware. Thus, the introduced performance overhead is negligible and H1 is accepted.
When analyzing the MAE and accuracy values, HypOCBR improves the optimization results
in most cases with a few exceptions that stem largely from the best trials. The overall small
improvements for S - I might be due to the full training run that is conducted during trialing.
Thereby, the optimizer has the complete dataset to train the model and, thus, might be able
to find suitable model weights even for inferior hyperparameters. The results for S - II show
much clearer improvements than for S - I. With median MAEs being decreased by up to 49%,
HypOCBR significantly improves the optimization procedures. This especially reveals potential
in scenarios with a limited time budget for optimization where only a small amount of trials is
possible, e. g., in prototyping. There, the CBR component allows sampling more hyperparameter
vectors that can be assessed for trialing. Although some of these trials might be misclassified by
HypOCBR, it still improves the overall results of the optimization. The consistently improved
mean and median results of all trials also hints at a success of eliminating bad trials. Therefore,
we conclude that Hypothesis H2 is only partly accepted, since the integration of HypOCBR does
not improve the optimization results in every case. The results are consistent with Hypothesis
H3 due to the noticeably improved optimization for the more complex setup S - II compared to
S - I. However, additional tests are needed to solidify the results.

9.5 Conclusion and Future Work

This paper introduced our approach called HypOCBR for enabling the use of Case-Based Rea-
soning (CBR) to improve Automated Hyperparameter Optimization (HPO). HypOCBR acts as
a filter for sampled hyperparameter vectors, deciding whether a vector should be considered for
training and validation or not. The decision is based on a case base of hyperparameter vectors
that were already trained and validated during optimization and on expert-modeled domain and

162

similarity knowledge. These components are utilized in the following decision-making process:
retrieve similar hyperparameter vectors given a query vector, aggregate their loss values, com-
pare the aggregated loss value to the distribution of loss values, proceed training and validation
with the query if it is similar to well-performing hyperparameter vectors. When evaluated for
two Deep Learning (DL) setups of varying complexity, optimization procedures with HypOCBR
show great potential: Due to the filtering function, more hyperparameter vectors can be analyzed,
which leads to better optimization results for both setups.

A focus of future research should be on further optimizing, extending, and evaluating the
approach. For instance, the approach might benefit from self-learning capabilities for the decision-
making process that enable automatic tuning of the meta-parameters during optimization and
easier application of the approach to new data. Further, the role of the case base can be extended
to reuse existing case bases during startup and export the case base after the optimization
procedure. It could also be beneficial to investigate more advanced methods for the reuse and
revise phases of the described lightweight CBR cycle, which might, for instance, include methods
for case adaptation or managing the growth of the case base (e. g., [21]). Additionally, HypOCBR
could be evaluated on a larger scale by covering other HPO methods (e. g., [8, 15]), other DL
setups (see [10, 11] for more examples), and the influence of differently modeled domain and
similarity knowledge.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Commun. 7(1), 39–59 (1994). https://doi.org/10.3233
/AIC-1994-7104

2. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K., Dengel, A., Petridis, M.: Advanced
Similarity Measures Using Word Embeddings and Siamese Networks in CBR. In: Bi, Y.,
Bhatia, R., Kapoor, S. (eds.) Intelligent Systems and Applications - Proceedings of the
2019 Intelligent Systems Conference, IntelliSys 2019, London, UK, September 5-6, 2019,
Volume 2. Advances in Intelligent Systems and Computing, pp. 449–462. Springer (2019).
https://doi.org/10.1007/978-3-030-29513-4 32

3. Auslander, B., Apker, T., Aha, D.W.: Case-Based Parameter Selection for Plans: Coordinat-
ing Autonomous Vehicle Teams. In: Lamontagne, L., Plaza, E. (eds.) Case-Based Reasoning
Research and Development - 22nd International Conference, ICCBR 2014, Cork, Ireland,
September 29, 2014 - October 1, 2014. Proceedings. LNCS, vol. 8765, pp. 32–47. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-11209-1 4

4. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Inter-
net-Based Applications. Springer (2002)

5. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: A Process-Oriented Case-
Based Reasoning Framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceed-
ings for the Twenty-seventh International Conference on Case-Based Reasoning co-located
with the Twenty-seventh International Conference on Case-Based Reasoning (ICCBR 2019),
Otzenhausen, Germany, September 8-12, 2019. CEUR Workshop Proceedings, pp. 156–161.
CEUR-WS.org (2019)

6. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. J. Mach.
Learn. Res. 13, 281–305 (2012). https://doi.org/10.5555/2503308.2188395

7. Claesen, M., De Moor, B.L.R.: Hyperparameter Search in Machine Learning. CoRR abs/
1502.02127 (2015). arXiv: 1502.02127

163

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1007/978-3-030-29513-4_32
https://doi.org/10.1007/978-3-319-11209-1_4
https://doi.org/10.5555/2503308.2188395
https://arxiv.org/abs/1502.02127

8. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018. Proceedings of Machine Learning Research, pp. 1436–1445. PMLR (2018)

9. Feurer, M., Hutter, F.: Hyperparameter Optimization. In: Automated Machine Learning -
Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren, pp. 3–33.
Springer (2019). https://doi.org/10.1007/978-3-030-05318-5 1

10. Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented
Case-Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

11. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Net-
works for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Wat-
son, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th Inter-
national Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,
vol. 12311, pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-5
8342-2 15

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International
Conference on Neural Networks (ICNN’95), Perth, WA, Australia, November 27 - December
1, 1995, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968

13. Leake, D., Crandall, D.J.: On Bringing Case-Based Reasoning Methodology to Deep Learn-
ing. In: Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development -
28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceed-
ings. LNCS, vol. 12311, pp. 343–348. Springer, Heidelberg (2020). https://doi.org/10.1007
/978-3-030-58342-2 22

14. Leake, D., Schack, B.: Exploration vs. Exploitation in Case-Base Maintenance: Leveraging
Competence-Based Deletion with Ghost Cases. In: Cox, M.T., Funk, P., Begum, S. (eds.)
Case-Based Reasoning Research and Development - 26th International Conference, ICCBR
2018, Stockholm, Sweden, July 9-12, 2018, Proceedings. LNCS, vol. 11156, pp. 202–218.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-01081-2 14

15. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 18, 185:1–
185:52 (2017)

16. Luo, G.: A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Netw. Model. Anal. Health Informatics Bioinform. 5(1), 18 (2016).
https://doi.org/10.1007/S13721-016-0125-6

17. Malburg, L., Hoffmann, M., Trumm, S., Bergmann, R.: Improving Similarity-Based Re-
trieval Efficiency by Using Graphic Processing Units in Case-Based Reasoning. In: Bell, E.,
Keshtkar, F. (eds.) Proceedings of the Thirty-Fourth International Florida Artificial Intel-
ligence Research Society Conference, North Miami Beach, Florida, USA, May 17-19, 2021
(2021). https://doi.org/10.32473/FLAIRS.V34I1.128345

18. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision
support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org
/10.1007/S10489-021-02251-3

164

https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.3390/A15020027
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-58342-2_22
https://doi.org/10.1007/978-3-030-01081-2_14
https://doi.org/10.1007/S13721-016-0125-6
https://doi.org/10.32473/FLAIRS.V34I1.128345
https://doi.org/10.1007/S10489-021-02251-3
https://doi.org/10.1007/S10489-021-02251-3

19. Molina, M.D.M., Romero, C., Ventura, S., Luna, J.M.: Meta-learning Approach for Auto-
matic Parameter Tuning: A case of study with educational datasets. In: Yacef, K., Zäıane,
O.R., Hershkovitz, A., Yudelson, M., Stamper, J.C. (eds.) Proceedings of the 5th Interna-
tional Conference on Educational Data Mining, Chania, Greece, June 19-21, 2012, pp. 180–
183. www.educationaldatamining.org (2012)

20. Pavón, R., Dı́az, F., Laza, R., Luzón, M.V.: Automatic parameter tuning with a Bayesian
case-based reasoning system. A case of study. Expert Syst. Appl. 36(2), 3407–3420 (2009).
https://doi.org/10.1016/J.ESWA.2008.02.044

21. Roth-Berghofer, T.: Knowledge maintenance of case-based reasoning systems - the SIAM
methodology. PhD thesis, Kaiserslautern University of Technology, Germany (2003).

22. Sánchez, L.Q., Bridge, D.G., Dı́az-Agudo, B., Recio-Garćıa, J.A.: A Case-Based Solution to
the Cold-Start Problem in Group Recommenders. In: Rossi, F. (ed.) IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pp. 3042–3046. IJCAI/AAAI (2013)

23. Schafer, J.B., Frankowski, D., Herlocker, J.L., Sen, S.: Collaborative Filtering Recommender
Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, Methods
and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72079-9 9

24. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Machine Learn-
ing Algorithms. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States, pp. 2960–2968 (2012)

25. Wettschereck, D., Aha, D.W.: Weighting Features. In: Veloso, M.M., Aamodt, A. (eds.)
Case-Based Reasoning Research and Development, First International Conference, ICCBR-
95, Sesimbra, Portugal, October 23-26, 1995, Proceedings. LNCS, vol. 1010, pp. 347–358.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3 31

26. Yang, L., Shami, A.: On Hyperparameter Optimization of Machine Learning Algorithms:
Theory and Practice. CoRR abs/2007.15745 (2020). arXiv: 2007.15745

27. Yeguas, E., Luzón, M.V., Pavón, R., Laza, R., Arroyo, G., Dı́az, F.: Automatic parameter
tuning for Evolutionary Algorithms using a Bayesian Case-Based Reasoning system. Appl.
Soft Comput. 18, 185–195 (2014). https://doi.org/10.1016/J.ASOC.2014.01.032

165

https://doi.org/10.1016/J.ESWA.2008.02.044
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/3-540-60598-3_31
https://arxiv.org/abs/2007.15745
https://doi.org/10.1016/J.ASOC.2014.01.032

Part III

Appendix

Appendix A

Curriculum Vitae (as of Jan. 2025)

Name Maximilian Hoffmann

E-mail hoffmannm@uni-trier.de

ORCID 0000-0002-7932-5822

Education Ph.D. (Doctorate of Natural Sciences) 03/2020 – today
University of Trier
First reviewer and supervisor: Prof. Dr. Ralph Bergmann
Second reviewer: Prof. Dr. David B. Leake
Dissertation: Hybrid AI for Process Management - Improving Similarity
Assessment in Process-Oriented Case-Based Reasoning via Deep Learning

M.Sc. Business Information Systems 10/2018 – 02/2020
University of Trier
Final grade: 1,5

B.Sc. Business Information Systems 10/2014 – 01/2019
University of Trier
Final grade: 1,6

Professional
Career

Researcher 05/2021 – today
German Research Center of Artificial Intelligence (DFKI)
Branch University of Trier (Experience-Based Learning Systems)
Prof. Dr. Ralph Bergmann

Researcher 03/2020 –today
University of Trier
Department of Artificial Intelligence and Intelligent Information Systems
Prof. Dr. Ralph Bergmann

Student Researcher 02/2017 – 02/2020
University of Trier
Department of Artificial Intelligence and Intelligent Information Systems
Prof. Dr. Ralph Bergmann

Reviewing International Conference on Case-Based Reasoning 2020-2024

167

mailto:hoffmannm@uni-trier.de
https://orcid.org/0000-0002-7932-5822

KI Conference 2020, 2021, 2023

AAAI-MAKE Symposium 2021, 2022

FLAIRS Conference 2023

KnoSys Journal 2021

LWDA Conference 2020

IJCAI Workshop on DeepCBR 2021

Awards Best Student Paper Award, FLAIRS Conference 2021

168

Appendix B

Complete List of Publications

Journals/Collections

Guldner, A., Hoffmann, M., Lohr, C., Machhamer, R., Malburg, L., Morgen, M., Rodermund,
S.C., Schäfer, F., Schaupeter, L., Schneider, J., Theusch, F., Bergmann, R., Dartmann, G.,
Kuhn, N., Naumann, S., Timm, I.J., Vette-Steinkamp, M., Weyers, B.: A framework for AI-
based self-adaptive cyber-physical process systems. it Inf. Technol. 65(3), 113–128 (2023).
https://doi.org/10.1515/ITIT-2023-0001

Hoffmann, M., Bergmann, R.: Using Graph Embedding Techniques in Process-Oriented Case-
Based Reasoning. Algorithms 15(2), 27 (2022). https://doi.org/10.3390/A15020027

Hoffmann, M., Malburg, L., Bergmann, R.: Augmentation of Semantic Processes for Deep
Learning Applications. Applied Artificial Intelligence. Taylor and Francis. Submitted for
Publication. (2024)

Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for adaptive
workflow management in smart factories. J. Intell. Inf. Syst. 61(1), 83–111 (2023). https://d
oi.org/10.1007/S10844-022-00766-W

Conference Proceedings

Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using Siamese Graph Neural Networks
for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Watson, I.,
Weber, R.O. (eds.) Case-Based Reasoning Research and Development - 28th International
Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020, Proceedings. LNCS,. Vol. 12311,
pp. 229–244. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58342-2 15

Hoffmann, M., Bergmann, R.: Improving Automated Hyperparameter Optimization with
Case-Based Reasoning. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research
and Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-
15, 2022, Proceedings. LNCS,. Vol. 13405, pp. 273–288. Springer, Heidelberg (2022). https:
//doi.org/10.1007/978-3-031-14923-8 18

Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-Based Graph Matching for Accel-
erating Similarity Assessment in Process-Oriented Case-Based Reasoning. In: Keane, M.T.,
Wiratunga, N. (eds.) Case-Based Reasoning Research and Development - 30th International

169

https://doi.org/10.1515/ITIT-2023-0001
https://doi.org/10.3390/A15020027
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/S10844-022-00766-W
https://doi.org/10.1007/978-3-030-58342-2_15
https://doi.org/10.1007/978-3-031-14923-8_18
https://doi.org/10.1007/978-3-031-14923-8_18

Conference, ICCBR, Nancy, France, September 12-15, 2022, Proceedings. LNCS,. Vol. 13405,
pp. 240–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-14923-8 16

Hoffmann, M., Bergmann, R.: Ranking-Based Case Retrieval with Graph Neural Networks
in Process-Oriented Case-Based Reasoning. In: Franklin, M., Chun, S.A. (eds.) Proceedings
of the Thirty-Sixth International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI Press (2023). https://do
i.org/10.32473/FLAIRS.36.133039

Kumar, R., Schultheis, A., Malburg, L., Hoffmann, M., Bergmann, R.: Considering Inter-Case
Dependencies During Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning.
In: Barták, R., Keshtkar, F., Franklin, M. (eds.) Proceedings of the Thirty-Fifth International
Florida Artificial Intelligence Research Society Conference, FLAIRS 2022, Hutchinson Island,
Jensen Beach, Florida, USA, May 15-18, 2022 (2022). https://doi.org/10.32473/FLAIRS.V35
I.130680

Malburg, L., Hoffmann, M., Trumm, S., Bergmann, R.: Improving Similarity-Based Retrieval
Efficiency by Using Graphic Processing Units in Case-Based Reasoning. In: Bell, E., Keshtkar,
F. (eds.) Proceedings of the Thirty-Fourth International Florida Artificial Intelligence Research
Society Conference, North Miami Beach, Florida, USA, May 17-19, 2021 (2021). https://doi
.org/10.32473/FLAIRS.V34I1.128345

Pauli, J., Hoffmann, M., Bergmann, R.: Similarity-Based Retrieval in Process-Oriented Case-
Based Reasoning Using Graph Neural Networks and Transfer Learning. In: Franklin, M.,
Chun, S.A. (eds.) Proceedings of the Thirty-Sixth International Florida Artificial Intelligence
Research Society Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023.
AAAI Press (2023). https://doi.org/10.32473/FLAIRS.36.133040

Schuler, N., Hoffmann, M., Beise, H., Bergmann, R.: Semi-supervised Similarity Learning in
Process-Oriented Case-Based Reasoning. In: Bramer, M., Stahl, F.T. (eds.) Artificial Intelli-
gence XL - 43rd SGAI International Conference on Artificial Intelligence, AI 2023, Cambridge,
UK, December 12-14, 2023, Proceedings. LNCS,. Vol. 14381, pp. 159–173. Springer, Heidel-
berg (2023). https://doi.org/10.1007/978-3-031-47994-6 12

Schultheis, A., Hoffmann, M., Malburg, L., Bergmann, R.: Explanation of Similarities in
Process-Oriented Case-Based Reasoning by Visualization. In: Massie, S., Chakraborti, S. (eds.)
Case-Based Reasoning Research and Development - 31st International Conference, ICCBR
2023, Aberdeen, UK, July 17-20, 2023, Proceedings. LNCS,. Vol. 14141, pp. 53–68. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-40177-0 4

Zeyen, C., Hoffmann, M., Müller, G., Bergmann, R.: Considering Nutrients During the Gener-
ation of Recipes by Process-Oriented Case-Based Reasoning. In: Cox, M.T., Funk, P., Begum,
S. (eds.) Case-Based Reasoning Research and Development - 26th International Conference,
ICCBR 2018, Stockholm, Sweden, July 9-12, 2018, Proceedings. LNCS,. Vol. 11156, pp. 464–
479. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-01081-2 31

Workshop Proceedings

Brand, F., Lott, K., Malburg, L., Hoffmann, M., Bergmann, R.: Using Deep Reinforcement
Learning for the Adaptation of Semantic Workflows. In: Malburg, L., Verma, D. (eds.) Pro-
ceedings of the Workshops at the 31st International Conference on Case-Based Reasoning

170

https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.32473/FLAIRS.36.133039
https://doi.org/10.32473/FLAIRS.V35I.130680
https://doi.org/10.32473/FLAIRS.V35I.130680
https://doi.org/10.32473/FLAIRS.V34I1.128345
https://doi.org/10.32473/FLAIRS.V34I1.128345
https://doi.org/10.32473/FLAIRS.36.133040
https://doi.org/10.1007/978-3-031-47994-6_12
https://doi.org/10.1007/978-3-031-40177-0_4
https://doi.org/10.1007/978-3-030-01081-2_31

(ICCBR-WS 2023) co-located with the 31st International Conference on Case-Based Reason-
ing (ICCBR 2023), Aberdeen, Scotland, UK, July 17, 2023. CEUR Workshop Proceedings,
pp. 55–70. CEUR-WS.org (2023)

Hoffmann, M., Bergmann, R.: Informed Machine Learning for Improved Similarity Assessment
in Process-Oriented Case-Based Reasoning. CoRR abs/2106.15931 (2021). arXiv: 2106.15931

Hoffmann, M., Malburg, L., Bergmann, R.: ProGAN: Toward a Framework for Process Mon-
itoring and Flexibility by Change via Generative Adversarial Networks. In: Marrella, A.,
Weber, B. (eds.) Business Process Management Workshops - BPM 2021 International Work-
shops, Rome, Italy, September 6-10, 2021, Revised Selected Papers. LNBIP,. Vol. 436, pp. 43–
55. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-94343-1 4

171

https://arxiv.org/abs/2106.15931
https://doi.org/10.1007/978-3-030-94343-1_4

	List of Figures
	List of Tables
	List of Abbreviations
	I Preamble
	1 Introduction
	2 Scientific Landscape
	2.1 Case-Based Reasoning
	2.1.1 CBR Cycle and Knowledge Containers
	2.1.2 Similarities and Retrieval
	2.1.3 Process-Oriented Case-Based Reasoning
	2.1.4 Software Libraries

	2.2 Deep Learning
	2.2.1 Training Deep Neural Networks
	2.2.2 Deep Neural Network Architectures for Sequential and Grid-Structured Data
	2.2.3 Graph Neural Networks
	2.2.4 Hyperparameter Optimization

	2.3 Hybrid Approaches of Case-Based Reasoning and Deep Learning
	2.4 Deep-Learning-Based Approaches for Process and Workflow Management
	2.4.1 Deep Learning Methods in Process-Oriented Case-Based Reasoning Applications

	2.5 Similarity Learning and Deep Learning in Business Process Management

	3 Contributions
	3.1 Research Questions
	3.2 Research Methodology and Overview
	3.3 Artifact 1: Data Preparation
	3.3.1 Data Encoding
	3.3.2 Augmentation

	3.4 Artifact 2: Model Architecture and Training
	3.4.1 Extended Architecture of the Graph Neural Networks
	3.4.2 Extended Training Procedures of the Graph Neural Networks

	3.5 Artifact 3: Hyperparameter Optimization and Configuration
	3.6 Software Implementation of the Artifacts
	3.7 Experimental Evaluations
	3.7.1 General Evaluation Setup
	3.7.2 Specific Evaluation of Each Artifact

	4 Conclusion and Future Work
	4.1 Discussion
	4.2 Limitations
	4.3 Future Work

	Bibliography

	II Publications
	5 Using Graph Embedding Techniques in Process-Oriented Case-Based Reasoning
	5.1 Introduction
	5.2 Foundations and Related Work
	5.2.1 Semantic Graph Representation
	5.2.2 Similarity Assessment of Semantic Graphs
	5.2.3 Similarity-Based Retrieval of Semantic Graphs
	5.2.4 Related Work

	5.3 Neural Networks for Graph Embedding
	5.3.1 General Neural Network Structure
	5.3.2 Embedder
	5.3.3 Propagation Layer
	5.3.4 Aggregator and Graph Similarity

	5.4 Neural-Network-Based Semantic Graph Similarity Measure
	5.4.1 Encoding Semantic Graphs
	5.4.2 Adapted Neural Network Structure

	5.5 Application of Semantic Graph Embedding Model and Semantic Graph Matching Network in Similarity-Based Retrieval
	5.5.1 Offline Training
	5.5.2 Retrieval

	5.6 Experimental Evaluation
	5.6.1 Experimental Setup
	5.6.2 Experimental Results
	5.6.3 Discussion

	5.7 Conclusions and Future Work
	References

	6 Augmentation of Semantic Processes for Deep Learning Applications
	6.1 Introduction
	6.2 Foundations and Related Work
	6.2.1 Semantic Workflow Representation and Domain
	6.2.2 Domain Model
	6.2.3 Semantic Workflow Similarity
	6.2.4 Graph Embedding
	6.2.5 Data Augmentation

	6.3 Synthesis and Augmentation of Process Models
	6.3.1 Key Criteria for the Proposed Augmentation Methods
	6.3.2 Notion of Correctness
	6.3.3 Augmentation Without Correctness Guarantees (Cat. 1)
	6.3.4 Syntactically Correct Augmentation (Cat. 2)
	6.3.5 Semantically Correct Augmentation (Cat. 3)
	6.3.6 Unsupervised Transfer Learning with Augmented Processes

	6.4 Experimental Evaluation
	6.4.1 Hypotheses
	6.4.2 Datasets
	6.4.3 Augmentation Strategies
	6.4.4 Model Training and Metrics
	6.4.5 Experimental Results
	6.4.6 Discussion

	6.5 Limitations and Transferability to Other Domains
	6.6 Conclusion and Future Work
	References
	6.7 Appendix: Statistics

	7 Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning Using Graph Neural Networks and Transfer Learning
	7.1 Introduction
	7.2 Foundations and Related Work
	7.2.1 Semantic Workflow Representation
	7.2.2 Similarity Assessment
	7.2.3 Neural Networks for Semantic Graph Embedding
	7.2.4 Related Work

	7.3 Transfer Learning for Improving Semantic Graph Embedding Models
	7.3.1 Pretraining
	7.3.2 Adaptation

	7.4 Experimental Evaluation
	7.4.1 Experimental Setup
	7.4.2 Experimental Results

	7.5 Conclusion and Future Work
	References

	8 Ranking-Based Case Retrieval with Graph Neural Networks in Process-Oriented Case-Based Reasoning
	8.1 Introduction
	8.2 Foundations and Related Work
	8.2.1 Semantic Workflow Representation and Similarity Assessment
	8.2.2 Learning to Rank
	8.2.3 Related Work

	8.3 Similarity-Based Retrieval by Using Learning to Rank Methods
	8.3.1 Pointwise Ranking with GNNs
	8.3.2 Predicting Preferences with GNNs

	8.4 Experimental Evaluation
	8.4.1 Experimental Setup
	8.4.2 Experimental Results

	8.5 Conclusion and Future Work
	References

	9 Improving Automated Hyperparameter Optimization with Case-Based Reasoning
	9.1 Introduction
	9.2 Automated Hyperparameter Optimization of Deep Learning Models
	9.2.1 Formal Definition
	9.2.2 Hyperparameter Search Spaces
	9.2.3 Random Search
	9.2.4 Related Work

	9.3 Automated Hyperparameter Optimization with Case-Based Reasoning
	9.3.1 Experience-Based Retrieval: Case Representation and Similarity Definition
	9.3.2 Making a Decision for New Trials

	9.4 Experimental Evaluation
	9.4.1 Experimental Setup
	9.4.2 Experimental Results
	9.4.3 Discussion

	9.5 Conclusion and Future Work
	References

	III Appendix
	A Curriculum Vitae
	B Complete List of Publications

