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Chapter 1

Introduction

1.1 Queues and dynamic control
Many real-life phenomena, such as computer systems, communication networks,
manufacturing systems, supermarket checkout lines as well as structural military
systems can be represented by means of queueing models. Queueing systems take
their origin in the study of design problems for automatic telephone exchange, and
were first analyzed by A.K. Erlang in the early 1900s. At that time, in designing
telephone systems one main problem with respect to performance criteria was to
determine how many lines had to be supplied in order to guarantee a certain grade
of service. Similar questions arise in many other cases, e.g. when asking for the
maximum number of terminals in a computer system that tolerates keeping the
message loss probability below a prespecified level, or when looking at the im-
pact of service speed on waiting lines, and so on. In order to satisfy the people’s
demands for quality of service (QoS) it is impossible, due to economic aspects, to
simply increase resources without limits. In essence, the question that queueing
theory faces in practice is how to find a balance between improvement of (QoS)
and acceptance economic overhead, i.e. to find the right trade-off between a gain
in quality, that is achievable by supplying more resources, and the corresponding
economic loss.
By studying mathematical models that reveal the probabilistic nature of real sys-
tems, queueing theory has succeeded to obtain many analytical and numerical
results for the key-quantities which characterize the performance behavior of sys-
tems. Such key quantities are, for example, queue length and waiting time distri-
butions, loss probabilities, mean values of sojourn times and throughput, etc.

1



2 CHAPTER 1. INTRODUCTION

In classical queueing theory, the corresponding models do not incorporate facil-
ities (controllers) that allow to pursue different strategies, possibly based upon
state depending decisions. This is in spite of the fact that man made real systems
usually have to be dynamically controlled during operation. Looking at queue-
ing models, a controller may considerably improve the system’s performance by
reducing queue lengths, or increasing the throughput, or diminishing the over-
head, whereas in the absence of a controller the system behavior may get quite
erratic, exhibiting periods of high load and long queues followed by periods, dur-
ing which the servers remain idle. Control is performed by adequate actions that
can be described in mathematical terms and can be subjected to the determination
of optimal control strategies. Thus, by incorporating such aspects into queueing
theory, its field is broadened and may be classified as a branch of optimization
theory. As such it forms the area of interest and the subject of the present thesis.
The theoretical foundations of controlled queueing systems are led in the theory of
Markov, semi-Markov and semi-regenerative decision processes [31, 39, 49, 57,
58, 61, 64, 70].

Figure 1.1

Bellman, in the early 1950s, was one of the first who investigated decision
processes and developed computational methods for analyzing sequential deci-
sion processes with finite planning horizon. His ideas have been generalized by
Howard (1960), who used elements from Markov chain theory and dynamic pro-
gramming to develop a policy-iteration algorithm that provides the solution of
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sequential probabilistic decision processes with infinite planning horizon.
A typical sequential decision making model can symbolically be represented

in Figure 1.1. At a specified point of time, which we refer to as present decision
epoch, a decision maker or controller observes the state of a system. Based on this
state, the controller chooses a control (performs a decision). The control choice
produces two results: the controller losses an immediate cost, and the system, ac-
cording to a probability distribution determined by the chosen control, evolves to
a new state at the subsequent point of time, termed the next decision epoch. At
the next decision epoch, the controller faces a similar situation. Different states, in
general, determine different sets of possible controls. As such a process evolves in
time, the controller incurs a sequence of costs or, as in sometimes said, a sequence
of negative rewards.
The key components of such a sequential decision model are the following

• A set of decision epochs

• A set E of system states

• A set A of available controls

• A set of state and control dependent immediate costs

• A set of state and control dependent transition probabilities

All these sets are assumed to be known to the controller at any decision epoch.

Definition 1.2 A strategy is a prescription telling the controller out of which
(state depending) set of controls a choice has to be made at any future time epoch.

Definition 1.3 A policy specifies the control to be chosen at a particular point in
time.

A policy may depend on the present state alone, or on that state and all previ-
ous states and controls. A strategy is a sequence of policies. Implementing a
strategy generates a sequence of incurred costs. Thus the control problem con-
sists in the task to choose, prior to the first decision epoch, an "optimal" strategy
that minimizes some certain function of the cost sequence. There are many func-
tions that may be considered suitable for classifying optimum system behaviour.
Most common examples are the expected total discounted cost function and the
long-run average cost function. In the present thesis we confine ourselves to the
optimality criterion of minimal long-run average cost per unit of time.
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Remark 1.4 The average cost represents an adequate criterion in case that only
long-run characteristics of the system are of interest and all short-term effects
caused by initial conditions can be neglected.

In parallel with discounting, computing average cost functions is a natural and
popular way of comparing strategies over an infinite horizon. While the aim of
discounting is to substitute divergent sequences of total expected costs over finite-
horizons for a convergent series, the concept of average cost function consists in
measuring and comparing the average speed of growth of those sequences. For
most applications of sequential decision models the latter criterion is believed to
be more appropriate than the alternative criterion of total expected discounted
costs. The average cost criterion is particularly appealing when investigating
systems with high transition rates, i.e. those where many state transitions occur
within a relatively short time intervals. This is typical, for example, in the case of
stochastic control problems in telecommunication applications.

The long-run average cost criterion will be specified in this thesis for controlled
queueing systems. Whereas the foundations of general probabilistic sequential
decision making process (also with respect to the average cost criterion) are well
known and available in literature [39, 58, 75, 76], controlled queueing systems
have been rarely treated and do not, in general, allow a complete mathematical
solution.
In this thesis analysis are based on the following assumptions:
1. The set of decision epochs is infinite (so called infinite planning horizon).
2. The system under consideration is observed at equidistant points in time.
3. The set E of system states is finite.
4. For each system state x ∈ E a finite set A(x) of controls or decisions is given.
The assumptions of a finite state space is not a strong restriction in case of light
traffic models and does not restrict generality at all for models with finite buffer
space, that will be considered here.
If the control policies at any state x ∈ E depend on the total history, the opti-
mization task usually becomes quite complicated. A simplification can consist
in trying to limit the search space of possible policies by showing that an opti-
mal policy always belongs to only a small subclass of certain structured policies.
Unfortunately, this can be proved rigorously under very restrictive model assump-
tion, only.
A main important goal in the theory of decision processes consist in establishing a
Markov property for optimal strategies, for this opens the possibility to construct
an optimal strategy using numerical methods. In case of an infinite planning hori-
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zon and history-independent policies it is natural to consider so-called stationary
policies:

A stationary policy δ is a rule that always prescribes the same single action
a ∈ A(x) whenever the system stays in state x at the decision epoch.
Optimal stationary policies have been investigated by Lippman [43], who achieved
most of the results available so far on the existence of optimal stationary policies
for fairly general systems.

Now we introduce a Markov decision model. Let the system is observed
continuously. To model the system behaviour consider the process {Z(t)} =
{X(t), U(t)}. The observed process {X(t)}t≥0 denotes the system state at time t.
As a controlling process consider the process {U(t)}t≥0, where U(t) is a decision
which should be taken at the nearest to t control time. Let A be the set of avail-
able controls and A(x) be the set of admissible controls when the system state is
x. Suppose at a certain instant t, the system state X(t) = x. Then the controller
chooses an admissible control U(t) = a ∈ A(x). For each state x ∈ E, a set
A(x) of decisions or actions is given. The state space E and the actions A(x) are
assumed to be finite. The controlled dynamic system is called a Markov decision
model when the following Markovian property is satisfied. If at a decision epoch
the action a is chosen in state x to go to the state y after the time period of duration
h, then regardless of the past history of the system, the following happens:
(a) An immediate cost c(x)h is incurred.
(b) At the next decision epoch the system will be in state y with probability

P{X(t+h) = y|X(t) = x, U(t) = a ∈ A(x)} =

{

1 + λxx(a)h + o(h), if y = x,

λxy(a)h + o(h), if y 6= x,

λxy(a) ≥ 0, (y 6= x), λxx(a) = −
∑

y∈E λxy(a). λxy(a) are the transition inten-
sities of the process {Z(t)}. Note that the costs c(x) and the transition intensities
λxy are assumed to be time homogeneous.
Often an optimization problem for controlled queueing systems is easier to handle
when formulated as a discrete time problem rather than a continuous time prob-
lem, since in that case recursive methods can be applied. In this case a continuous
time system is transformed to its discrete equivalent by sampling relevant data
— including all relevant arrivals and departures — according to a constant rate
Poisson process. The procedure of converting a continuous-time problem into a
discrete-time problem is well established and readily available in the literature,
see Lippman [42], Rosberg, Varaiya, Walrand [63] and Serfozo [71]. It has been
shown, that the corresponding discrete- and continuous-time problems are equiv-
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alent in so far as the resulting optimal policies for infinite-horizon cost criteria
coincide.

The controlled queueing systems presented in this thesis can be modelled as
Markov decision processes due to appropriate choices for the state spaces and con-
trol sets. We focus on the investigation of quantitative and qualitative properties
of optimal strategies, determining monotonicity conditions for optimal policies,
describing the structure of an optimal control rule, and elaborating algorithmic
aspects of numerical analysis.

1.2 Queueing system with heterogeneous servers.
The theory of controlled queueing systems have been developed for optimal con-
trol of admission, service, routing and scheduling of jobs in queues, and networks
of queues [35, 65, 73, 74, 76]. With respect to the number of servers and their
types, the controlled problems can be different. The notion of controlled queueing
system allows to discriminate between systems with different controlling mech-
anism, e.g. the systems with controlled service order, with controlled order of
server occupation, with controlled regime of server operation and so on.

In a single-server queueing system a control may consist in varying the service
modes (see [18, 56]); examples of corresponding admission control problems are
given in ([3, 19]). Controlled multi-server stations for the case of identical servers
are further considered in [14, 68].

Here we consider a number of queueing models that have been proved to be
useful for analyzing a wide variety of real systems. The discussion is restricted
to stations with several heterogeneous servers in front of one common queue, and
the control is applied exclusively to the scheduling scheme. Systems of that type
are composed of three components: the queue, several heterogeneous servers, and
the controller. The controller, at any decision epoch, allocates the customers to
the servers according to the observed optimality criterion. We provide a literature
review, from time to time, for any of the investigated queueing problems in the
relevant sections.

For the description of queueing systems we make use of Kendall’s original
notation in form of a four-tuple a/b/c/d: The first symbol, a, specifies the inter-
arrival time distribution, the second symbol, b, specifies the service-time distri-
bution, the third, c, gives the number of servers and the fourth, d, the number of
available buffer places. Jobs are assumed to arrive and to be served one by one.
Examples are (K ≤ B < ∞)
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1. M/M/K/B − K: Poisson (Markovian) input, exponential service-time
distribution, K servers and K + B buffer places.

2. M/PH/K/B − K: Same as above with the exception, that the service
time is phase-type distributed, i.e. represents a finite sum or a finite mixture of
exponentially distributed components, or a combination of both.

3. MAP/M/K/B − K: Markov additive arrival process, exponential ser-
vice time distribution, K servers and K + B buffer places.

4. MAP/PH/K/B − K: A combination of the previous two models.
In this thesis we consider system of types M/M/K/K+B or MAP/PH/K/K+

B and investigate some special cases.

Queueing systems with heterogeneous servers are of increasing importance in
many engineering areas, such as telecommunication and computer systems. Con-
sidering telecommunication systems, service facilities (e.g. transmission lines)
can be switched on and off, or may break down and have to be replaced. Asso-
ciated with operation of the servers are certain costs, which are determined by
the offered speed of service, the duration of holding times, and the number of
waiting jobs (messages). Since usually, based on dynamic routing algorithms
[30, 34], there exist different choices for alternative links (network paths), the net-
work providers are confronted with control problems of the type that is addressed
in this thesis.

The construction of an optimal control policy, even in the simplest case of
Markov model, usually requires a huge amount of work for the computing ma-
chinery. Thus, there is an increasing interest in disclosing qualitative properties
of control policies that offer the possibility to reduce computing investments and
overhead. Monotonicity properties of optimal control functions are characteristics
of that type that simpler algorithms to be developed.
In the following subsection we outline the necessary theoretical background for
describing monotonicity properties of optimal control policies.

1.3 Monotonicity properties of optimal solutions
In discrete optimization the investigation of monotonicity properties of a solution
can be based on the theory of submodular (supermodular) functions [2, 23, 77].
Recent results on that topic (including even more general models) have been pre-
sented by Glasserman and Yao [24], and — addressing controlled queueing sys-
tems — by Rykov, Stidham and Weber [66, 73, 74]. The special case of hysteretic
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optimal policies has been discussed in 1984 by Lu and Servozo [44] and in 1988
by Hipp and Holzbaur [26]. We refer to all these previous results when introduc-
ing below some notations and essential statements.

Consider a controlled queueing system with heterogeneous servers. The cor-
responding optimization problem consists in the task to find an optimal control
policy such that the state and control depending cost function b(x; a) is minimized
for all trajectories:

b(x; a) ⇒ min
a∈A(x)

for all trajectory values x ∈ E. (1.1)

b(x; a) is defined on a subset G of the direct product of the state and the control
space: G ⊂ E × A. x ∈ E and a ∈ A are discrete variables. The sets A(x) of
possible local controls may differ for different states x ∈ E. A(x) represents the
partial projection of G to x. The object function b(x; a), which shall be referred to
as the Bellman function, is defined according to the formulation of the problem,
the optimization criterion and other specific properties of the model under study.
By virtue of the non-uniqueness of the possible solutions, the problem of discrete
minimization consists in determining the family of all optimal control sets A∗(x),
x ∈ E, and any of the control functions f(x) ∈ A∗(x), defined by

A∗(x) = {a ∈ A(x) : b(x; a) = v(x)},

f(x) = argmin{b(x; a) : a ∈ A(x)} ∈ A∗(x),

where
v(x) = min{b(x; a) : a ∈ A(x)}.

v(x) is called the value function. In order to formulate conditions for monotonicity
of a solution f(x) it is necessary to endow the spaces E and A with a partial-order
structure. The following is well known.

Definition 1.5 A set E is called partially ordered iff there is a binary relation "≤"
(or "≥") that is

(a) reflexive: x ≤ x;
(b) antisymmetric: (x ≤ y ∧ y ≤ x) ⇒ x = y;
(c) transitive: (x ≤ y ∧ y ≤ z) ⇒ x ≤ z.

As usual, x < y is written for (x ≤ y∧x 6= y). Two elements x, y ∈ E are termed
unordered or non-comparable if neither x ≤ y nor y ≤ x. A partial-ordered set is
completely ordered if it does not contain any unordered pair of elements. The
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controlled queueing systems under consideration are characterized by the fact that
the state space E is multidimensional and partially ordered, whereas the finite set
A of controls is isomorphic to some subset NA of the set IN 0 of non-negative in-
tegers and, consequently, can be regarded as completely ordered. To be more pre-
cise, we define a bijection i : A → NA = {1, 2, ..., |A|}, and identify the order in
A with that of NA. A typical system state may be of the form x = (q, d1, . . . , dK),
where q is an integer describing the number of jobs waiting in the queue, and
dk ∈ {0, 1} indicates whether or not server k is occupied or free (k = 1, . . . , K).
In E, a partial ordering is induced with reference to reachability of states upon
performing a control action.

The system dynamics, in the majority of cases, can be described in terms of a
family of shift operators, denoted by {Sν}ν∈IN0 and Θ. At some decision epoch
Tn the operator Sν shifts a state x ∈ E to another state Sνx ∈ E under a control
a(x) ∈ A(x), where ν represents the number i(a(x)) of the control a(x). Θ oper-
ates on the set A and indicates the change of control actions according to a change
of policy.

The shift operators determine individual "directions" within a possible set of
paths in the tree structures defined by the ordering (see Figure 1.6).

Figure 1.6
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Their totality, therefore, constitutes what we call a cone of order in G.
Under these assumptions, the problem consists in finding conditions for the

function b(x; a) to be satisfied, and properties of its domain G, such that it is pos-
sible to determine some monotonic solution f : E → A (with value A∗(x) at
state x ∈ E) of the discrete minimization problem, where monotonicity may be
achievable in one or more directions.

In the majority of applications the order on the set of system states admits vari-
ations, too. As a consequence, the problem may be re-formulated in more general
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terms as follows: Determine ordering relationships on E and on A, such that the
optimal solution function is monotonic with respect to these orderings. 1

To provide a connection between the possible orderings in G = E × A and
monotonicity properties of the solutions, we make use of the notation of a mono-
tonic family of sets along some fixed direction S.

Definition 1.7 The family A of sets A(x), x ∈ E, is called a monotonic fam-
ily, increasing (decreasing) in the direction S (S-monotone family), iff for all
a′ ∈ A(x),a′′ ∈ A(Sx) the minimum a′ ∧ a′′ belongs to the set A(x) (A(Sx)), and
the maximum a′ ∨ a′′ belongs to the set A(Sx) (A(x)).

The function f(x) is called an S-monotone increasing (decreasing), if f(Sx) ≥
(≤)f(x) for all x ∈ E. The monotonicity of f(x) is termed strict, if the latter
condition holds for strict inequalities.
A rectangle in direction S (S-rectangle) is a family AS ⊂ A that does not vary
in direction S, i.e. AS = {A(Snx) : A(Snx) = A(x), n ∈ IN 0, x ∈ E}. Any
rectangle in direction S is both, S-monotonic increasing and decreasing.

Clearly, there are examples of (non-monotonic) families of sets that do not
admit the construction of a monotonic selector. on the other hand, if each of the
sets A(x) in an increasing (decreasing) family A contains only one element such
that the mapping x 7→ A∗(x) is single-valued, then a monotonic selector function
f(x) is automatically defined.

A monotonic choice (although possibly not optimal) is always possible if A =
{A(x) : x ∈ E} is monotonic. Indeed,

f ∗(x) = max{a : a ∈ A∗(x)} and f∗(x) = min{a : a ∈ A∗(x)}

represent monotonic functions in case of an increasing (decreasing) monotonic
family. As a consequence, the problem reduces to find those conditions related to
the Bellman function b(x; a) and its domain G, which provide monotonicity of the
family of sets A∗ = {A∗(x) : x ∈ E} according to the chosen controls. In what
follow we assume that the operators Si and Θ shift points in the positive direction,
i.e. Six ≥ x, Θa ≥ a.
Denote by bS(x; a), bΘ(x; a) and bSΘ(x; a) the following differences of first and

1In more general problem settings, ordering may be introduced separately in sets A(x), x ∈ E,
such that for an appropriate formulation of monotonicity it is necessary to define proper relation-
ships between sets A(x) in order to be able to discriminate with respect to monotonicity not only
between controls inside any A(x) but also between controls in different sets A(x1) and A(x2).
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second order:

bS(x; a) = b(Sx; a) − b(x; a), bΘ(x; a) = b(x, Θa) − b(x; a),

bSΘ(x; a) = b(Sx; Θa) − b(Sx; a) − b(x; Θa) + b(x; a).

Obviously, each the two conditions

bS(x; Θa) ≤ (≥)bS(x; a), bΘ(Sx; a) ≤ (≥)bΘ(x; a) (1.2)

is equivalent to
bSΘ(x; a) ≤ (≥)0. (1.3)

This allows to formulate, in short form, the monotonicity conditions for the so-
lutions in terms of monotonicity conditions for the increments of the Bellman
function. Let the boundary ∂G of G = E × A be defined as the set of those pairs
(x, a) for which no successor exists with respect to the ordering. The inner kernel
Go is then defined as G \ ∂G.

Theorem 1.8 Let the family of controls constitute an S-rectangle AS, i.e. A(Sx) =
A(x) for all x ∈ E. Then the following holds: Along any monotonic solution f(x)
in Go of the minimization problem b(x; a) → min, conditions (1.2) and (1.3) are
satisfied, either with sign "≤" for an increasing solution or with sign "≥" for a
decreasing solution.

Conversely, if any of the conditions (1.2) and (1.3) for the Bellman function is
satisfied everywhere on its domain G, then the family of sets {A∗(x) : x ∈ E},
determining the solutions of the minimization problem, is S-monotonic, i.e. in-
creasing, if the conditions are satisfied with sign "≤", or decreasing, if they are
satisfied with sign "≥".

A dual assertion exists for the maximization problem.

Proof: To prove necessity, consider the case where the solution of the minimiza-
tion problem increases: For f(x) = a ∈ A(x), f(Sx) = a′ ∈ A(Sx), and a ≤ a′.
The controls a ∈ A(Sx) and a′ ∈ A(x) exist by virtue of the invariance of A
under any shift operator S. Due to the complete order induced on A, there is a k
such that a′ = Θka > a. Thus, the inequalities

b(x; a) ≤ b(x; Θka) and b(Sx; Θka) ≤ b(Sx; a)

are valid, and

b(x; a) − b(x; Θka) + b(Sx; Θka) − b(Sx; a) ≤ 0.
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By virtue of monotonicity,

0 ≥ b(x; a) − b(x; Θka) + b(Sx; Θka) − b(Sx, a) =
∑

0≤i≤k−1

bSΘ(x; Θia),

and so, there exists a ∈ A in the neighbourhood of the optimal solution f(x) (i.e.
directly reachable under Θ) such that f(x) ≤ a ≤ f(Sx), and bSΘ(x; a) ≤ 0.

Sufficiency follows from Theorem 1.11 and Lemma 1.10 below.
�

On the boundary ∂G of G each shift operator Si can be defined as the identity op-
erator. We note that in this case conditions (1.2) and (1.3) turn out to be necessary
conditions for a minimum (maximum) to be attained on the boundary, but they do
not provide the monotonicity of the solution. Rather, for the latter to obtain, it is
necessary to impose additional constraints on the family of admissible controls.
We call G = E × A connected with respect to the set S of shifts S, if for any
pair (x, ax), (y, ay) ∈ G there exists a sequence of shifts Sν ∈ S, such that, when
starting in (x, ax), the successive application of the Sν , ν = 1, 2, . . . , k, finally
leads to (Skxk−1, ak) = (y, ay).
The above mentioned conditions (1.2) and (1.3) do not "work" if G is not con-
nected with respect to the set of shifts.

To provide monotonicity and connectivity conditions it is convenient to intro-
duce a somewhat more general notation of submodular (supermodular) functions,
which is equivalent to condition (1.2) and (1.3) for S-rectangles.

Definition 1.9 The function b(x; a) is called submodular in direction S (S -
submodular) on an increasing family A = {A(x) : x ∈ E} iff for any pair
a′ ∈ A(x), a′′ ∈ A(Sx) the inequality

bSΘ(x; a) = b(Sx; a′ ∨ a′′) − b(Sx; a′′) − b(x; a′) + b(x; a′ ∧ a′′) ≤ 0 (1.4)

is satisfied. b(x; a) is called supermodular in direction S (S-supermodular), if
(1.4) holds with "≤" replaced by "≥".

Lemma 1.10 If the family A forms an S-rectangle, then conditions (1.2), (1.3)
and (1.4) are equivalent.

Proof: Let any of conditions (1.2) or (1.3) be satisfied. Then, by virtue of the
complete ordering of A either a′ ≤ a′′ or a′ ≥ a′′. In the first case, condition (1.4)
is satisfied trivially with the sign "=". In the second case, due to the admissibility



1.3. MONOTONICITY PROPERTIES OF OPTIMAL SOLUTIONS 13

of all controls in any state, and due to A(Sx) = A(x), a′ = Θka′′ for some k.
Then inequality (1.4) follows from (1.3) by virtue of

b(Sx; Θk; a′′) − b(Sx; a′′) − b(x; Θka′′) + b(x; a′′) =
∑

1≤i≤k−1

bSΘ(x; Θia) ≤ 0.

To prove the opposite, it suffices to assume that a′ = Θa′′, which is possible
according to A(Sx) = A(x).
�

The monotonicity of the family A of control sets A(x) together with submod-
ularity of the Bellman function are sufficient conditions for existence of a mono-
tone optimal solution of the discrete minimization problem on G. Precisely, the
following theorem holds.

Theorem 1.11 Let the family A = {A(x) : x ∈ E} be monotonously increas-
ing (decreasing) in direction S, and let the function b(x; a) be S-submodular (S-
supermodular). Then the family A∗(x) = {A∗(x) : x ∈ E} of optimal control
sets is monotonously increasing (decreasing), too, in direction (shift S). In that
case a monotonic choice can be performed.
A dual statement holds for the maximization problem.

Proof: Let us consider the minimization problem on the increasing family A
of sets A(x). We have to show that, if the Bellman function b(x; a) is (S, Θ)-
submodular, then the family A∗ = {A∗(x) : x ∈ E} of optimal control sets
increases as well, implying that there exists a monotone increasing solution. Let
a′ ∈ A∗(x) ⊂ A(x) and a′′ ∈ A∗(Sx) ⊂ A(Sx). Then,

a′ ∧ a′′ ∈ A(x) and a′ ∨ a′′ ∈ A(Sx)

since the family A is increasing, and

b(x; a′) ≤ b(x; a′ ∧ a′′) and b(Sx; a′′) ≤ b(Sx; a′ ∨ a′′)

by virtue of optimal choice. Since

b(Sx; a′ ∨ a′′) − b(Sx; a′′) ≤ b(x; a′) − b(x; a′ ∧ a′′)

according to the (S, Θ)-submodularity of the Bellman function, we obtain from
the last three inequalities that

0 ≤ b(Sx; a′ ∨ a′′) − b(Sx; a′′) ≤ b(x; a′) − b(x; a′ ∧ a′′) ≤ 0,
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implying equality. Therefore,

a′ ∧ a′′ ∈ A∗(x), a′ ∨ a′′ ∈ A∗(Sx),

that is, the family A∗(x) increases, which offers the possibility of choosing the
monotone optimal solution.
�

Remark 1.12 The above theorems extend to the case of monotone conditions for
more than one direction (in case of all directions ) in the partially ordered set E of
states.

Often the Bellman function (1.1) turns out to be constant on the set of trajectory
values x, Sax, . . . , i.e. the Bellman function is representable in the form

b(x; a) = v(Sax), (1.5)

where v is the value function, and Sa denotes a monotonic shift in E upon choos-
ing the control a. In what follows we describe monotonicity conditions in terms
of the value function (or minimal cost function) v. Strictly speaking, such condi-
tions have to be expressed in terms of the increments of v, and so we re-formulate
Definition 1.9 as follows.

Definition 1.13 The function v(x) is called submodular in directions S and Sa

((S, Sa)-submodular) on an increasing family A = {A(x) : x ∈ E} iff for any
a′ ∈ A(x) and a′′ ∈ A(Sx) the inequality

v(SΘaSx)−v(SaSx)−v(SΘax)+v(Sax) = (1−S)(Sa −SΘa)v(x) ≤ 0, (1.6)

is satisfied. v(x) is called supermodular in directions S and Sa ((S, Sa)- super-
modular) if the opposite inequality holds.

Lemma 1.14 If the family A = {A(x) : x ∈ E} increases (decreases) S-
monotonously, the Bellman function of the model is representable as (1.5), and
the value function v(x) is (S, Sa)-submodular ((S, Sa)-supermodular) everywhere
on its domain, then the solution of the minimization problem (1.1) admits an S-
monotonously increasing (decreasing) choice

f(Sx) ≥ (≤)f(x).

Proof: The proof is obtained by substitution (1.5) in condition (1.3).
�
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1.4 Numerical methods

In some applications the best choice of design parameters can be determined by
simply comparing the results of different alternatives. This, clearly, is feasible
only if the number of alternatives is adequately limited. Otherwise, optimization
techniques are required to determine a good choice. In case that analytical results
are available, a standart deterministic optimization algorithm may suffice. How-
ever, for complex — and practically more relevant — cases one has to resort to
iterative methods of numerical analysis. This approach requires, at any decision
epoch, the calculation of relevant state parameters as, for instance, number of ac-
tive servers, speeds of the servers, or the number of waiting customers. Since the
number of different policies grows exponentially with the number of possible sys-
tem states, it is clear that simple enumeration procedures for finding an optimal
policy are inadequate.

A Markov decision model combines the aspects of a Markov model and a dy-
namic programming problem. The basic ingredients of dynamic programming are
states, optimality criteria and functional equations, and the dynamic programming
approach itself may be seen as some sort of a recursion procedure for the calcula-
tion of an optimum among the solutions of some functional equation. Recursion
for our minimization problem means, that, whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy again with
regard to the state resulting from the first transition.

In order to obtain optimal policies numerically for an infinite horizon problem,
the Howard policy iteration algorithm [27] can be applied. This algorithm solves
the average-cost optimality equation in a finite number of steps by generating a
sequence of step-by-step improved policies. Alternatively, a linear programming
formulation can be performed for the average cost case, with the advantage that
this way a powerful generally applicable method is at hand (for detailed descrip-
tions, see for example, [28, 46, 40, 79]). In particular, there are linear program-
ming codes available with additional options of sensitivity analysis. This is not
the case for the policy-iteration algorithm. On the other side, the number of iter-
ations required by the simplex method depends heavily on the specific problem
under consideration, whereas in most cases the policy-iteration algorithm only
needs a very small number of iterations, regardless of the problem size. Viewing
this trade-off between two distinct methods, it is interesting to note that the policy-
iteration algorithm may itself be interpreted as some modified linear-programming
algorithm [65, 75, 76].

Both formulations require to solve, in each iteration step, a system of linear
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equations of the size of the state space. As a consequence, for large state spaces,
there is a significant computational overhead to put up with.

A third approach, avoiding the solution of systems of equations, is a dynamic
programming method known as value iteration algorithm [58, 75, 76]. It com-
putes recursively a sequence of value functions approximating the minimal aver-
age cost per unit of time. The value functions provide lower and upper bounds on
the minimal average cost, and under a certain aperiodicity condition these bounds
approximate arbitrarily close the minimal cost rate. This value-iteration algorithm
represents quite a good computational method for solving large-scale Markov de-
cision problems. Nevertheless, there is a significant shortage to pay attention to:
The algorithm is not stable, and the number of necessary iterations, typically, is
problem dependent.
Besides the above mentioned methods also simulation-based policy-iteration sche-
mes as well as adaptive aggregation algorithms (as introduced in [25, 82]) can
successfully be applied to the analysis of average cost Markov decision processes.

Finally, an interesting and quite different approach for solving the optimization
problem is based on fuzzy logic [17]. Fuzzy logic, combined with the paradigm of
"computing with words", allows the use and manipulation of human knowledge
and reasoning in the modeling and control of dynamical systems. The application
of fuzzy logic to controlled queueing systems with heterogeneous servers is con-
sidered in [83].

In this thesis, based on Howard iteration algorithm, we use Markov decision
theory and dynamic programming to propose iteration algorithms, policy- and
value-iteration, which we adapt to the case of controlled queueing systems. One
of a modification of these algorithms consists in a transformation of multidimen-
sional into one-dimensional one arrays. This allows successfully solve optimiza-
tion problems for the systems with a large number of states.

1.5 Outline of the thesis
In this thesis, the essential work consists in designing controlled queueing mod-
els and investigation of their optimal control properties for the application in the
area of the modern telecommunication systems, which should satisfy the growing
demands for quality of service (QoS). The following new concepts and results are
included. First, for two types of optimization criterion (the model without penal-
ties and with set-up costs), a class of controlled queueing systems is defined. The
general case of the queue that forms this class is characterized by a Markov Addi-
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tive Arrival Process and heterogeneous Phase-Type service time distributions. We
show that for these queueing systems, which are the generalizations of a controlled
Markovian queue introduced by Rykov [67], the typical properties of optimal con-
trol policies, e.g. monotonicity properties and threshold structure, are preserved.
Moreover, we show that these systems possess specific properties, e.g. the depen-
dence of optimal policies on the arrival and service statistics.
The importance of these generalizations of simple Markovian queues lies in their
ability to be more effective and powerful traffic models, and in turn represent a
better approximation of physical systems.

The problem with additional penalties can be divided in subcases. In this the-
sis we have shown that in some cases an optimal policy has the same threshold
structure as for the model without costs. In other cases there exists another type
of threshold policy.

A further new result with respect to controlled queueing models presented in
this thesis consists in the derivation of explicit formulae for the optimal threshold
functions under light-traffic system operation. For the general case of phase-type
iterarrival and service time distribution the same threshold functions turn out to
be suboptimal control rules.

In order to practically use controlled stochastic models, it is necessary to obtain
a quick and an effective method to find optimal policies. We present the modified
iteration algorithms (based on Howard’s iteration algorithm [27]) which can be
successfully used to find an optimal solution in case of a large state space.

With increasing system complexity, the amount of attainable theoretical results
reduces. The only method to estimate the work of the controlled system is nu-
merical analysis. In this thesis we analyze numerically each mentioned type of
queueing systems. For the sake of feasibility we propose a novel approach for
observing the course of possible events by use of a representation in the form of
control tables and control diagrams.

In Chapter 2 we consider the system M/M/K/K +B with allocation control be-
tween K heterogeneous servers. At each arrival and service completion epoch the
controller can decide which server has to be switched on to serve an arriving or
waiting job, or to put an arriving job to the queue. We investigate the system with
and without additional penalties. Our goal is to find, for the model without penal-
ties, a scheduling strategy that minimizes the long-run average number of jobs in
the system (NJM–problem), and a strategy, for a model with set-up costs, that min-
imizes the long-run average processing cost of the system (PCM–problem). For
both types of optimization problems we formulate a Markov decision model and
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apply the modified Howard policy-iteration algorithm. Further, for some cases of
both, the NJM- and the PCM-problem, we prove the existence of some structured
allocation rule, called the threshold function, and investigate the behaviour of that
function under variation of the initial system parameters.

In case of the NJM–problem with the servers arranged in decreasing order of
service intensities the optimal policy consists in using the fastest available server
when a job has to be put to service. The decision whether to put a job into service
or to arrange it into the queue is determined according to an optimal threshold
policy that in turn is characterized by predetermined threshold levels q∗

j , j ∈ 1, K,
for the servers. In more detail, when the number of jobs in the queue has increased
above q∗j , while the optimal policy so far consisted in sending the job to the queue,
a switching on of server j is initiated and, subsequently, the controller continues
using server j as long as more than q∗j jobs are waiting in the queue. The thresh-
old levels are ordered such that q∗1 ≤ q∗2 ≤ · · · ≤ q∗K . The problem is to find an
optimal threshold level q∗j for each server j ∈ 1, K. These threshold levels have
weak impact on the state2 of slower servers.

The PCM–model is characterized by assigning costs to server usage (usage
costs CU ) and to the buffering of jobs in the queue (holding costs CQ). A mean
usage cost γk per server k is defined as the ratio CU (µk)

µk
=: ck

µk
of the assigned

usage cost CU(µk) = ck to the server’s intensity µk, and the numbering of servers
is done according to increasing mean usage costs:

c1

µ1

≤
c2

µ2

≤ . . . ≤
cK

µK

.

With respect to that there exist two possible versions of optimal policy structure.
In case of decreasing service intensities with respect to the numbering the opti-
mal policy has the same structure as for the NJM–problem, i. e. the above men-
tioned threshold sequence q∗1 ≤ q∗2 ≤ · · · ≤ q∗K determines the control actions,
and the optimal policy is of "threshold type" with threshold levels q∗

j , where the
controller always selects the server with the smallest value of mean usage cost
(fastest available server). In case that both, the service intensities and the us-
age costs, are increasing with respect to the above mentioned numbering, namely
µ1 < µ2 < . . . < µK , and CU(µ1) ≤ CU(µ2) ≤ . . . ≤ CU(µK), the optimal pol-
icy has a more difficult structure, being characterized by state depending threshold
levels q∗1(x) ≤ q∗2(x) ≤ · · · ≤ q∗K(x), x ∈ E. To be more precise, the rule in that

2A server either is in state "switched on" or in state "switched off", determining whether or not
a waiting customer can be put into service.
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case says, that server j, in a certain state x ∈ E, is switched on if and only if the
queue length q(x) in that state exceeds the threshold q∗j and stays between the two
queue length dependent threshold values q∗j (x) and q∗j+1(x):

q(x) > q∗j and q∗j (x) ≤ q(x) < q∗j+1(x).

If q∗j (x) = q∗j+1(x), then the faster of the servers j and j + 1 will be selected, and
if server j is the last one3 being not yet switched on, then it remains in usage also
for q(x) ≥ q∗j+1(x) (j = 1, . . . , K, where q∗K+1(x) is set to ∞ for every x ∈ E).

In Chapter 3 we consider queueing systems with more complex arrival streams as,
for instance, those with Erlangian and PH-type inter-arrival time distributions or,
more generally, with Markovian arrival process (MAP) in the sense of Neuts and
Lucantoni. For both problem classes, NJM and PCM, the optimization problem is
treated by investigating quantitative and qualitative properties of optimal control
rules. In particular, we show that for these systems the properties of optimal
control policies as proposed in Chapter 2 are characterized by the same threshold
structure as in case of Poisson arrival streams. The only difference is that now
the threshold levels depend also on the arrival phases. The determination of these
dependencies covers the main part of chapter 3.

In Chapter 4 we study queueing systems with phase-type service time distribu-
tions. The control problem in that case turns out to be much more complicated due
to the direct dependency between optimal decision making and server character-
istics. We consider Erlangian and PH-type service time distributions. A complete
theoretical solution of the control problem is not possible here. Therefore, along
with some theoretical results, we use plausible reasoning based on numerical test
values to formulate the following conjecture concerning an optimal control pol-
icy: The optimal policy again is of threshold type, where threshold levels depend
on the actual phases of service time.

Chapter 5 is devoted to queueing systems with phase depending inter-arrival time
and service time distributions. We consider several examples and propose nu-
merical algorithms to minimize the long-run average cost function, indicating
thereby that the optimal control policy once more exhibits a threshold structure
with threshold levels depending on the inter-arrival time and service time phases.

3That is, the server with highest number according to the chosen numbering.
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Chapter 2

Controlled M/M/K/B − K queue

This chapter considers a queueing system with Poisson input and K heterogeneous servers.
The service times of all servers have an exponential distribution with different parameters.
The motivation for studying such a system comes from problems of dynamic routing in
computer systems or communication networks, where jobs represent messages and the
servers represent communication lines with different transmission speeds. The controlled
queueing system is described by means of Markov decision process. Activating a server
is assumed either to be free of any charge, or to involve a fixed set-up charge (defining the
usage cost). Similarly, queueing either is free or does cause expenses (defining the hold-
ing costs for waiting jobs). In case that no costs are charged (no penalties) the problem to
minimize the long-run average number of jobs is called the "number of job minimization
–" or the NJM–problem. Otherwise, if usage and holding costs are charged, we consider
a "processing cost minimization–" or the PCM–problem (see previous chapter).
In both cases we can show that an optimal policy requires that the fastest server is perma-
nently switched on, whereas slower servers are used only when the queue length exceeds
certain levels (threshold values). The purpose of this chapter is to develop algorithms for
computing optimal threshold values.

2.1 Literature overview and chapter organization
A simplified version of a controlled queueing model without arrivals (but with K
heterogeneous servers) has been considered by Agrawala et al.[1], who showed
that an optimal policy requires that, whenever a job is to be assigned to an avail-
able server, the job assignment is always done to the fastest server, and further,
that the optimal policy is of threshold type. The problem with arrivals is much
more difficult. Under the assumption of Poisson input the problem of optimal job

21
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allocation to two different exponential servers was considered by Larsen in [36]
and [37], who also conjectured the optimality of threshold policies and provided
a detailed analysis of their performance. Based on dynamic programming argu-
ments, Lin and Kumar [41] considered a similar problem of determining a policy
for job allocation to two heterogeneous servers that minimizes the long-run aver-
age number of jobs in the system. Again the authors proved that a threshold policy
with "fastest server first" - rule is optimal, thereby expressing the conjecture that
a generalization of their result to K ≥ 3 servers would be difficult. Simple proofs
of corresponding results have later been given by Koole [33], Walrand [80] and
Weber [78]. Luh and Viniotis [45] have studied the problem using a so called
forward induction approach, that in turn was found to be impracticable for more
than two servers.

The threshold structure of an optimal policy minimizing the mean number of
jobs in a multi-server system has been established for the first time by Rykov
[67]. He also gave evidence for certain monotonicity properties of an optimal pol-
icy. Numerical computations for similar problems can be found in [20]. The case
of infinitely many servers was proposed by Shenker and Weinrib [72], where an
asymptotic analysis of large heterogeneous queueing systems is performed.

Control procedures for queueing systems with penalties (fixed costs) that aim
at the minimization of the long-run average total processing cost are notoriously
more difficult. Some progress have been made after the appearance of a review
paper written by Crabill et al.[16]. Nobel and Tijms [54, 55] studied a model with
set-up costs using a hysteretic control rule, thereby stressing the algorithmic as-
pects of the optimal control structure. The same system has been discussed by
Le Ny and Tuffin [38]. These authors proposed a direct method that provides a
closed-form expression for the stationary occupancy distribution.

This chapter is further organized as follows. In the following Section 2.2 the
M/M/K/B − K - model is shortly outlined, whereas in Section 2.3 we present
the abstract formulation of the Markov decision problem. As has been mentioned
above, for the case of an M/M/K/B − K - queueing model, it is formulated
in two different versions, named the NJM–problem and the PCM–problem. Sec-
tion 2.4 is completely devoted to the NJM–problem, and Section 2.5 addresses the
PCM–problem.

After defining the NJM–object functional in Section 2.4.1 we introduce, in
Section 2.4.2, the optimality equation that defines the value function with respect
to given criteria. This equation is transformed to a convenient form in Section
2.4.3. The transformed form can be used more easily to investigate the quantita-
tive properties of optimal policies. In Section 2.4.4 some monotonicity properties
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of the optimal solution are established, and in Sections 2.4.5-2.4.7 we discuss the
threshold property of an optimal policy for the NJM–problem.

Section 2.5 addresses the control problem with additional penalties. Precisely,
the goal of investigation in this section is to determine a control rule that mini-
mizes the long-run average cost per time unit subject to usage and holding costs
(PCM-problem). We start from an optimality equation (value function) that is
adjusted to allow for the specified cost structure. The object functional and the
optimality equation for the PCM-problem are defined in Sections 2.5.1 and 2.5.2.

It is obvious, that different initial system parameters may lead to different opti-
mal policy structures. We investigate the behavior of optimal policies for different
relationships between the order of service intensities µk and the order of usage
costs CU

k = ck in comparison with the numbering of servers (that is always done
according to increasing order of the ratios γk = ck/µk).

The case of decreasing order of service intensities combined with arbitrary or-
der of usage costs is discussed in Sections 2.5.4-2.5.7. In Subsections 2.5.4 - 2.5.5
we determine its optimal PCM–policy and investigate monotonicity properties,
whereas in Subsections 2.5.6 and 2.5.7 we elaborate the corresponding threshold
structure. The case of increasing order of service intensities together with increas-
ing order of usage costs is treated in Section 2.5.8.

For other order relationships that cannot be handled analytically the numerical
analysis seems to be the only way to determine an optimal policy. In Section 2.6
we provide adequate algorithms for the numerical treatment of the NJM– and the
PCM–problem with parameter settings that do not allow an analytical solution.

Section 2.7 is devoted to the discussion of numerical results. In particular,
in Section 2.7.1 the dependency between thresholds values and activity status of
low-intensity servers is considered, whereas in Sections 2.7.2, and 2.7.3 - 2.7.4, re-
spectively, we provide numerical examples for the NJM– and the PCM–problem.
The final Section 2.8 of this chapter contains some concluding remarks.

2.2 Model description
Consider an M/M/K/B − K (K ≤ B < ∞) queueing system with K hetero-
geneous servers of intensities µk (k = 1, K), B − K places in the buffer, and a
Poisson input of jobs with intensity λ. The queueing system considered is shown
in Figure 2.1.

The restriction to finite buffer sizes does not cause any loss of generality. It
is assumed in order to facilitate the numerical treatment. In fact, all equations
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and theoretical results remain valid also for an infinite buffer size, although in that
case the equilibrium condition

λ < M, where M = µ1 + · · ·+ µK.

has to be taken for granted. This shall be the fact throughout this chapter: ρ =
λ
M

< 1.

Figure 2.1 Queueing system

The control times are all arrival and service completion epochs. At an arrival
epoch the control consists in sending the arrived job to the queue (if it is not full)
or to one of the free servers. At service completion times, when the queue is not
empty, the control consists in assigning a waiting job to one of idle servers, or
leave the queue as it is. A job arriving to a full buffer is rejected only if i.e. always
the total capacity of B is used. Being sent to some server a job can not change it.

2.3 Problem formulation
The controlled queueing system is modelled by a stochastic process {Z(t)} =
{X(t), U(t)}, whose structure is depicted in Figure 2.2.
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Figure 2.2
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Set N = {0, 1, . . . , B − K}. The observed vector process {X(t)}t≥0 denotes
the system state at time t, {X(t)}=(queue length, list of active servers)∈ E =
N × {0, 1}K, with components D0(t), D1(t), . . . , DK(t). D0(t) = Q(t) is the r.
v. of queue length at time t, and Dk(t) for k > 0 describes the state of server k at
this time:

Dk(t) =

{

0, if the k-th server is idle at time t

1, otherwise
.

For each state x = (d0, d1, . . . , dK) ∈ E, where d0 =: q(x), let J0(x) and J1(x)
be the sets of labels assigned to idle and busy servers, respectively, in this state,
i.e.

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}.

Further, the summed server intensities for idle and busy servers are termed M0(x)
and M1(x), resulting in M = M0 + M1:

M0(x) =
∑

j∈J0

µj, and M1(x) =
∑

j∈J1

µj.

As a controlling process consider the process {U(t)}t≥0, where U(t) is a deci-
sion which should be taken at the nearest to t control time. Let A = {0, 1, . . . , K}
be the set of available controls and

A(x) =

{

J0(x) ∪ {0} for x with q(x) < B − K,
J0(x) for x with q(x) = B − K,

(2.1)

be the set of admissible controls when the system state is x. Soppose at a certain
instant t, the system state X(t) = x. Then the controller chooses an admissible
control U(t) = a ∈ A(x), where a = k ≥ 1 has the meaning "switch on server
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k", and a = 0 has the meaning "do not switch on any server".
As has been mentioned already, control actions are performed at arrival or

service completion epochs in dependence on the actual system state. To put that
in concrete terms, we have to stress the fact that a control action always uses the
information about the system state immediately before a decision epoch, that is
immediately before an arrival or immediately before a service completion.
Under the considered assumptions, the process {Z(t)} = {(X(t), U(t))} is a
Markov decision process with state space E = N × {0, 1}K and a control space
A(x) ⊂ A depended on the state x ∈ E.

Consider the shift operators S0, Sj on the state space E,

S0x = x + e01{q(x)<B−K}, Sjx = x + ej1{j∈J0(x)}, (2.2)

where we denote by ei = (0, . . .
︸ ︷︷ ︸

i

, 1, 0, . . . , 0
︸ ︷︷ ︸

K−i

) the K + 1-dimensional vector i-th

coordinate of which (beginning from 0-th) is one and all others are zeros, and by
S−1

j x, (j = 0, 1, . . . , K) the inverse operators for such points x ∈ E, for which
they exist and put S−1

j x = x in another cases, i.e.

S−1
0 x = x, if q(x) = 0, S−1

j x = x, if j ∈ J0(x).

Finally, the specification of the Markov decision process is completed by the def-
inition of the transition probabilities. Using the above notations we can represent
the transition intensities of the process {Z(t)} in the form

λxy(a) =







λ, for y = Sa0x,
µj, for y = Saj

Gjx, j ∈ J1(x),
0, otherwise,

where a = a0 ∈ A(x) denotes the control which has to be chosen in the case of
an arrival to the state x, a = aj ∈ A(S−1

j S−1
0 x) denotes the control in the case of

a service completion on the j-th server; Gj = S−1
0 S−1

j . It is taken into account as
well that y = Saj

Gjx = x for j ∈ J0(x).
In the case of arrivals to some state x = (q, d1, . . . , dK) with j-th idle server
dj(x) = 0, and in the case of service completion on the j-th server in some state
x = (q, d1, . . . , dK), dj(x) = 1, transitions are illustrated in the Figure 2.3 (a)
and (b), respectively,
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Figure 2.3
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Now we can formulate cost criterion which is used to solve optimization problem.
In the next section we consider a cost criterion with respect to minimizing the
mean number of jobs in the system.

2.4 Number of jobs minimization (NJM–problem)

2.4.1 Quantity functional
In the present section we consider the "mean number of jobs in the system mini-
mization problem" (NJM–problem). The total number of jobs in the system equals
the sum of jobs waiting in the queue and being under service. Thus, by Little’s
theorem [32], this problem is equivalent to minimizing the mean sojoint time of
customers in the system.

Denote by L(t) = D0(t) +
∑

1≤k≤K Dk(t) the random process of number of
jobs in the system, where D0(t) = Q(t).

For the NJM–problem, the quantity functional underlying the minimization
problem takes the form

Y (t) =

∫ t

0

L(u) du, (2.3)

or, using the definition of the process L(t)

Y (t) =

∫ t

0

(

Q(u) +
∑

1≤k≤K

Dk(u)

)

du.

Let
l(x) = q(x) +

∑

1≤k≤K

dk(x) (2.4)

denote the number of jobs in state x (which does not depend on the control a).
This number represents the sum of jobs in the queue plus the number of busy
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servers.
As is common in Markov decision theory (see [31, 58, 75]), we define a strat-

egy δ, and the probability distribution P
δ
x0

which is a measure on the set of the
trajectories (the sequence of states and controls during the observation period)
of the process {Z(t)}, given an initial state x0 and a strategy δ, the expectation
E

δ
x0

shall denote the expectation with respect to this distribution. Then the prob-
lem of minimizing the the long-run average number of jobs in the system can be
represented as follows: Minimize

g(x0; δ) = lim
t→∞

1

t
E

δ
x0

Y (t) (2.5)

with respect to all admissible strategies. g(x0; δ) is the object function.

2.4.2 Optimality equation
Our dynamic decision process is associated with a Markov process that operates
on one ergodic class. The rates and costs are assumed to be time homogeneous
and uniformly bounded in the states. From this fact it is known (e.g. [31, 61, 64])
that the following optimality principle is valid.
(i) the gain infδ g(x0; δ) exists and is independent of the initial ("starting") state
x0; that is, infδ g(x0; δ) = g;
(ii) there exists a function v : E → R, called the value function, that allows to
determine, at any state x ∈ E, an optimal decision a∗(x) ∈ A(x) with respect to
the total future development of the process, that is,

v(x) = min
a∈A(x)

b(x, a), x ∈ E;

(iii) an optimal strategy can be chosen as a stationary Markov strategy, i.e. it is
determined by the optimal policy f = {f(x) : x ∈ E} with

f(x) = argmin
a∈A(x)

b(x, a), x ∈ E,

minimizing the function b(x, a).
Thus the function b : E × A → R is a right hand side of optimality equation (in
fact, also depends on the function v(x)) and plays the role of the so called Bellman
function in Markov decision theory.

In [75] it has been proved that the average cost per unit time and the value
function can be calculated simultaneously by solving a system of linear equations.
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To specify this system, and represent the optimality equation for the model, let us
denote by

V (x, t) = inf
δ

E
δ
xY (t)

minimal total operating cost of the system during time t.
For some small time interval of length h the following equation can be obtained

according to common Markov process arguing:

V (x, t + h) = l(x) h + (1 − (λ + M1(x)) h) V (x, t) +

+ λ h min
a0∈A(x)

V (x + ea0 , t) +

+ 1{q(x)=0}

∑

j∈J1(x)

µj hV (x − ej, t) +

+ 1{q(x)>0}

∑

j∈J1(x)

µj h min
aj∈A(S−1

j S−1
0 x)

V ((x − ej − e0 + eaj
, t).

In this equation the first term in the right side represents the number of customers
resident in the system during a time interval of duration h, the second term rep-
resents the total processing cost of all customers being in the system during the
subsequent time interval of duration t in case that there are no arrivals and no de-
partures, and the remaining two terms, respectively, represent the total processing
cost of all customers being in the system during t in the case of an arrival before
the next service completion, and in the case of a departure before the next arrival.

After some elementary manipulation, and and passing to the limit when h → 0,
the above equations leads to

∂V (x, t, )

∂t
= − (λ + M1(x))V (x, t) + l(x) +

+ min
a

[

λV (Sa0x, t) +
∑

j∈J1(x)

µj V (Saj
S−1

j S−1
0 x, t)

]

.

This differential equation describes the behaviour of the minimal operating
cost of the system till the time t. The obvious relation is

lim
t→∞

1

t
V (x, t) = inf

δ
lim
t→∞

1

t
E

δ
xY (t) = g(δ∗) = g

for all x. This relation motivates the heuristic result concerning asymptotic be-
havior of V (x, t) for t → ∞ [75], with an assumption that values v(x), x ∈ E,
exist such that, for each x ∈ E,

V (x, t) ≈ tg + v(x) for large t. (2.6)
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The value function v(x) indicate the transient effect of the starting states on the
expected costs under the given strategy. Note that v(x)−v(y) ≈ V (x, t)−V (y, t)
for t large, so that v(x) − v(y) measures the difference in total expected costs
when starting in state x rather than in state y, given that the optimal strategy δ∗

is followed. Next by substituting the above asymptotic expansion in the recursion
equation, we find, after cancelling out common terms, that the average cost g and
the value function v(x), x ∈ E, satisfy a simultaneous system of linear equations,
which will refer to as an optimality equation

v(x) =
1

λ + M1(x)
min

a

[

l(x) − g + λv(Sa0x)+ (2.7)

1{q(x)>0}

∑

j∈J1(x)

µj v(Saj
S−1

j S−1
0 x) + 1{q(x)=0}

∑

j∈J1(x)

µj v(S−1
j x)

]

,

where a = a0 ∈ A(x) and a = aj ∈ A(S−1
j S−1

0 x). Based on (2.7) we shall
investigate the qualitative and quantitative properties of an optimal policy. It is
convenient to transform, for that purpose, equation (2.7) to some more feasible
form, which will be done in the next section.

2.4.3 Transformation of Optimality Equation
In order to simplify equation (2.7) we multiply it by λ + M1 and add to both of
sides the sum

∑

j∈J0(x) µjv(x) (putting v(Saj
S−1

j S−1
0 x) = v(x), for j ∈ J0(x),

and M =
∑

j µj for j ∈ J0(x) ∪ J1(x). By dividing both sides by (λ + M) one
obtains

v(x) =
1

λ + M
min

a

[

l(x) + λv(Sa0x) +
∑

j

µj v(Saj
S−1

j S−1
0 x) − g

]

(2.8)

Introducing the operators T0 and Tj by

T0v(x) = min[v(x + ek) : k ∈ A(x)], (2.9)

Tjv(x) =







T0v(x − ej − e0) for j ∈ J1(x), q(x) > 0,
v(x − ej) for j ∈ J1(x), q(x) = 0,
v(x) for j ∈ J0(x).

(2.8) can be rewritten as

v(x) =
1

λ + M

[

l(x) + λT0 v(x) +
∑

j

µjTj v(x) − g

]

= Bv(x), (2.10)



2.4. NUMBER OF JOBS MINIMIZATION (NJM–PROBLEM) 31

where B is termed the transformation operator.

Theorem 2.4 Equations (2.7), (2.8) and (2.10) are equivalent in so far as their
solutions and value functions coincide.

Proof: Let v̂ = {v̂(x), x ∈ E}, ĝ, â = {â(x), x ∈ E} solution of the equation
(2.7). Then for any a ∈ A

1

λ + M1(x)
[l(x) + λv̂(Sâ0x) +

∑

j∈J1(x)

µjv̂(Sâj
S−1

j S−1
0 x) − ĝ] ≤

≤
1

λ + M1(x)
[l(x) + λv(Sa0x) +

∑

j∈J1(x)

µjv(Saj
S−1

j S−1
0 x) − g].

Then, using the same steps as at the beginning of the present section, one obtains

[l(x) + λv̂(Sâ0x) +
∑

j

µjv̂(Sâj
S−1

j S−1
0 x) − ĝ] ≤

≤ [l(x) + λv(Sa0x) +
∑

j

µjv(Saj
S−1

j S−1
0 x) − g].

Thus v̂ = {v̂(x), x ∈ E}, ĝ, â = {â(x), x ∈ E} is a solution of (2.8). The
inverse proposition can be proofed analogously. The equivalence of the equations
(2.8) and (2.10) with respect to coincidence of value functions follows from the
independence of the chosen decisions at arrival and service completion epochs
(equation (2.8) is minimized over the same independent parameters aj , that leads
to the equation (2.10).
�

From the optimality equation (2.10), one can obtain some useful results, as is
shown below.

Theorem 2.5 Any optimal policy f = {fj(x) : j ∈ {0}∪J1(x), x ∈ E} has the
form

f0(x) = argmin{v(Skx) : k ∈ A(x)},

fj(x) = argmin{v(SkGjx) : k ∈ A(Gjx)} = f0(Gjx).

Proof: The statement of the theorem follows from the optimality principle and
the independence of the decisions at the arrival and the service completion points
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of time.
�

Theorem 2.5 shows that it is only necessary to investigate the component f0(.).
Additionally, the last assertion shows that the optimal policy is completely defined
by the function

b(x, k) = v(Skx), k ∈ A(x), (2.11)

which depends rather simply on the value function v(x) of the model and can be
used here as its Bellman function. Thus, the optimal policy f = {f(x) : x ∈ E}
with respect to b(x, k) takes the form

f(x) = argmin

[

b(x, a) : a ∈ A(x)

]

. (2.12)

and all qualitative properties of an optimal policy depend on the properties of the
value function of the model.

A similar transformation of the underlying optimality equation can be carried
out for many controlled queueing systems, where control consists in sending the
jobs to the queue or allocating jobs to servers upon state changes.

2.4.4 Monotonicity properties of optimal policies
In this section we apply the results of Section 1.3 to the system M/M/K/B −K
and represent results of Rykov in [67].

To study the monotonicity properties of optimal policies we exploit a partial
ordering of the state space E, and the complete ordering of the set A of controls.
For that purpose the servers are arranged in order of decreasing service intensities
(increasing mean service times)

0 ≤ µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K (2.13)

and the components of the vector d = (d1, . . . , dK) are numbered accordingly.
Assume, that the operators S0 and Si shift the points of E in positive direction,
that is,

S0x ≥ x and Six ≥ x, i ∈ J0(x). (2.14)

Then, these shifts determine a partial ordering "→" in E according to x → y
iff y = Sνx. Shifted points are ordered with respect to increasing mean service
times, i.e.

Six ≥ Sjx, iff i ≥ j, i, j ∈ J0(x) (that is µ−1
i ≥ µ−1

j ). (2.15)
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Points S0x and Sjx, (j 6= 0) are not comparable.
In the set A of controls a complete ordering is given according to the number-

ing 1 < 2 < · · · < K (with respect to servers 1, . . . , K). Clearly, this induces the
corresponding ordering in any subset A(x).

We are going to show that for the NJM–problem (2.3) the value function in-
creases monotonically relative to the introduced ordering. We need to prove a
general property of the operator Before considering the corresponding theorem
we need to proof a general property of the operator (2.9).

Lemma 2.6 The operator T0 retains the property of nondecreasing functions rel-
ative to the partial ordering of E.

Proof: Let the function v(x) be nondecreasing with respect to the introduced
ordering, namely

v(Six) ≥ v(x), i ∈ A(x); v(Six) ≥ v(Sjx), i, j ∈ J0(x), i ≥ j.

It has to be shown that T0v(x) does not decrease:

T0v(Six) ≥ T0v(x), i ∈ A(x), T0v(Six) ≥ T0v(Sjx), i, j ∈ J0(x), i ≥ j.

For the first inequality we have for i ∈ A(x)

T0v(Six) = min
k∈A(Six)

v(SkSix) ≥ min
k∈A(Six)

v(Skx) ≥ min
k∈A(x)

v(Skx) = T0v(x),

where the first item follows from assumption that the function v(x) is nondecreas-
ing and the second item follows from relation A(Six) ⊂ A(x) together with the
fact that the minimum does not increase upon expanding the minimization set.

Finally, we prove that upon passing from Sj to Si, i, j ∈ J0(x), i ≥ j, the
operator T0 preserves the property to be nondecreasing. Let i, j ∈ J0(x). Then
the set A(x) can be represented as A(x) = B(x) ∪ {i} ∪ {j} with some B(x) so
that A(Six) = B ∪ {j} , A(Sjx) = B(x) ∪ {i} and the relations

T0v(Six) = min
k∈A(Six)

v(SkSix) =

min

{

min
k∈B(x)

v(SkSix), v(SiSjx)

}

≥ min

{

min
k∈B(x)

v(SkSjx), v(SiSjx)

}

= T0v(Sjx)
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are valid by virtue of inequality v(Six) ≥ v(Sjx).
�

Due to the fact that the optimality equation holds only for the stable states, i.e.
v(x) = min

k
v(x−e0 +ek) = T0v(x−e0) and the definition of operators Tj by the

formula (2.9) they are also preserve the property of functions to be monotonically
nondecreasing. We only have to specify the inequality Tjv(Sjx) ≥ Tjv(x). The
function v(x) in equation (2.10) is defined after the decision that has been made
in state x. This means that this function satisfies the condition

v(x) = min
k∈A(x)

v(SkS
−1
0 x) = T0v(S−1

0 x).

Further according to this condition we get for j ∈ J0(x)

Tjv(Sjx) = T0v(S−1
0 x) = v(x) = Tjv(x).

2.4.5 Assignment to the fastest available server
By virtue of results from Lemma 2.6 the following statement holds.

Theorem 2.7 The value function v(x) increases monotonously relative to the or-
dering introduced in E.

Proof: By virtue of the monotonicity of l(x) with respect to the shift operators Si,
i ∈ A(x), and linearity of the operator B (defined by (2.10)), this operator B in
turn preserves monotonicity relative to these shifts.

Now we prove that it also retains monotonicity upon passing from Sjx to Six,
i, j ∈ J0(x), i ≥ j. Let the function v(x) be nondecreasing as in Lemma 2.6.
Then, for any i, j ∈ J0(x) such that i ≥ j we get

Bv(Six) − Bv(Sjx) = [l(Six) − l(Sjx)] + λ[T0v(Six) − T0v(Sjx)]+

+
∑

l 6=i,j

µl[Tlv(Six) − Tlv(Sjx)]

+ µj[Tjv(Six) − Tjv(Sjx)] − µi[Tiv(Sjx) − Tiv(Six)],

where the first three items in the right–hand side are nonnegative by virtue of the
constancy of the function l(x) upon passing from Sjx to Six, i, j ∈ J0(x), i ≥ j
and the fact that operators T0 and Tj retain the monotonicity of the functions.
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For the last two items by virtue of the operators Tj properties and definition
(2.9)

Tiv(Six) = v(x), q(x) = 0,

Tiv(Six) = T0v(S−1
0 x) = v(x), q(x) > 0,

Tiv(Sjx) = v(Sjx),

Tjv(Six) = v(Six),

we obtain

µj[Tjv(Six) − Tjv(Sjx)] − µi[Tiv(Sjx) − Tiv(Six)] =

µj[v(Six) − v(x)] − µi[v(Sjx) − v(x)] =

µiµj

[
v(Six) − v(x)

µi

−
v(Sjx) − v(x)

µj

]

≥ 0,

since
v(Six) − v(x) ≥ v(Sjx) − v(x) ≥ 0

and µi ≤ µj, owing to the monotonicity assumption.
Finally, in spite of the operator B not being a constraction operator for the long-
run average problem, if we put one of the values of the value function to zero, for
example v(0) = 0, the sequence {Bnl(0)}n∈N0 converges monotonously to the
gain g∗ of the model,

g∗ = lim
n→∞

Bnl(0),

as was shown in Howard [27] and Lippman [42]. But, for any given value of the
gain g∗, the operator B preserves inequalities in the sense that, if v1(.) ≥ v2(.),
then Bv1(.) ≥ Bv2(.), and so the assertion follows from

v(x) = lim
n→∞

Bnl(x)

and the fact, that the function l(x) is constant relative to shifts from Si to Sj .
�

Using Theorem 2.7 we immediately obtain the following statement.

Theorem 2.8 The optimal control policy consists in activating the available fastest
server, if necessary.
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Proof: The proof follows from the fact that owing to the monotonicity of the
model value function with respect to the shifts from the point Sjx to the point
Six, i, j ∈ J0(x), i ≥ j, the minimal value of the function v(Skx) of k is attained
for the minimal admissible value of k ∈ J0(x), that is, on a free maximal-intensity
server.
�

2.4.6 Submodularity of the value function
We note that since the points Skx (k ∈ J0(x)) and S0x are incomparable, this
assertion does not allow us to determine whether a server must be activated. Now
we show that an optimal policy features monotonicity relative to the queue length
increasing. Since for the shift S0 the family of controls does not vary, this suf-
fices to prove the monotonicity of the increments of the Bellman function every-
where on the domain. By virtue of the fact that the Bellman function satisfies
the condition b(x; a) = v(Sax), it suffices that the value function of the model
v = {v(x) : x ∈ E} has increments v(Skx) − v(S0x) that are monotone in S0

or feature the property of (S0, Sk)-submodularity (1.6), which assumes here the
form

(1 − S0)(S0 − Sk)v(x) ≤ 0. (2.16)

Theorem 2.9 The value function v(x) is submodular, i.e. it has monotone incre-
ments with respect to the partial order introduced in E.

Proof: According to Theorem 2.8 only two solutions are possible in each state
x: f0(x) = 0 (not to serve the job) or f0(x) = k (to use the fastest free server),
that is µk = max{µl : l ∈ J0(x)}, so that here the family A(x) of controls is
independent on the shift S0.

We set out to prove that the operator T0 retains the submodular nature (1.6)
of the functions. Thus it is necessary to check whether this property is satisfied
for the function v̂(x) = T0v(x) if it is satisfied for some function v(x), that is,
according to (2.16) we have to prove

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

min{v(SlS0x) : l ∈ J0(x)} − min{v(SlSkx) : l ∈ J0(Skx)}−

min{v(SlS
2
0x) : l ∈ J0(x)} + min{v(SlS0Skx) : l ∈ J0(Skx)} ≤ 0.

To prove this assertion for each point x ∈ E we divide it into several cases
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1. First we consider the case when the optimal solutions coincide at the points Skx
and S2

0x (where v̂(x) is involved in inequality with negative sign), and f(Skx) =
f(S2

0x) = f . Obviously, by replacing the optimal solution at the rest of the points
by f , we obtain that

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(SfSkx) − v(SfS
2
0x) + v̂(S0Skx) ≤

v(SfS0x) − v(SfSkx) − v(SfS
2
0x) + v(SfS0Skx) =

(1 − S0)(S0 − Sk)v(Sfx) ≤ 0.

2. The case of different optimal solutions at the points Skx and S2
0x (where v̂(x)

is involved in inequality with negative sign) should be divided into two subcases:
f0(S

2
0x) = 0, f0(Skx) = l 6= 0, where l is the index such that µl = max

j∈J0(Skx)
{µj},

and f0(S
2
0x) = k 6= 0, f0(Skx) = 0.

In the first subcase, by summing the inequalities (2.16) at the points Skx and S0x,
respectively,

v(S0Skx) − v(SlSkx) − v(S2
0Skx) + v(S0SlSkx) ≤ 0,

and
v(S2

0x) − v(S0Skx) − v(S3
0x) + v(S2

0Skx) ≤ 0,

we get the inequality

v(S2
0x) − v(SkSlx) − v(S3

0x) + v(SkSlS0x) ≤ 0,

which shows that the inequality (1 − S0)(S0 − Sk)v̂(x) ≤ 0 is satisfied for the
function v̂(x) at the point x by virtue of the inequality

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(SkS0x) =

v(S2
0x) − v(SkSlx) − v(S3

0x) + v(SkSlS0x) ≤ 0.

In the second subcase, the relation has the form

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S2
0x) − v(S0Skx) − v(SkS

2
0x) + v̂(S0Skx) ≤

v(SkS0x) − v(S0Skx) − v(SkS
2
0x) + v(S0S0Skx) = 0.
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For the boundary points q(x) = N , J0(x) = ∅, the inequality (1 − S0)(S0 −
Sk)v̂(x) ≤ 0 is also satisfied because the shift operators are defined by (2.2). Fi-
nally, the operators Tj also retain the (S0, Sk)-submodularity of the functions by
virtue of (2.9).

Now it is possible to prove that the value function v = {v(x) : x ∈ E}
is (S0, Sk)-submodular. This assertion follows from the fact that property of
(S0, Sk)-submodularity is retained for linear operations defining the operator B
as defined by (2.10), the function l(x) is (S0, Sk)-submodular and the successive
approximations Bnl(x) converge monotonously to the value function v(x).
�

By virtue of the properties of optimal policies we can consider the following reg-
ularity

f(Sjx) = k ⇒

{

f(x) = l, for all k, l ∈ J0(x) with l ≤ k;

f(Six) = l, for all k ∈ J0(Sjx), l ∈ J0(Six) with l ≤ k, j ≤ i;

f(Slx) = 0 ⇒

{

f(x) = 0, for all l ∈ J0(x);

f(Skx) = 0, for all k, l ∈ J0(x) with l ≤ k, µl ≤ µk.

It is possible to rewrite the last relations in accordance with the definition of an
optimal policy through (2.11) in the form

v(SlSix) ≤ v(SkSix) ⇒ v(Slx) ≤ v(Skx), l ≤ k;

v(SlSix) ≤ v(SkSix) ⇒ v(SlSjx) ≤ v(SkSjx), l ≤ k, j ≤ i;

v(S0Skx) ≤ v(SlSkx) ⇒ v(S0x) ≤ v(Slx);

v(S0Slx) ≤ v(SiSlx) ⇒ v(S0Skx) ≤ v(SiSkx), l ≤ k.

For these relations it is sufficient

v(Slx) − v(Skx) − v(SlSix) + v(SkSix) ≤ 0;

v(SlSjx) − v(SkSjx) − v(SlSix) + v(SkSix) ≤ 0;

v(S0x) − v(Slx) − v(S0Skx) + v(SlSkx) ≤ 0;

v(S0Skx) − v(SiSkx) − v(S0Slx) + v(SiSlx) ≤ 0.

The last inequalities can be expressed by means of the operators as follows

(1 − Si)(Sl − Sk)v(x) ≤ 0; (2.17)
(Sj − Si)(Sl − Sk)v(x) ≤ 0; (2.18)
(1 − Sk)(S0 − Sl)v(x) ≤ 0; (2.19)
(Sl − Sk)(S0 − Si)v(x) ≤ 0. (2.20)
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As before, the relations (2.17-2.20) mean that the value function of the model
v = {v(x) : x ∈ E} has monotone increments with respect to the partial order
in E. We show that the operator T0 preserves the properties (2.17-2.20) for all
functions defined on E.

Lemma 2.10 The operator T0 retains the properties (2.17-2.20) of the functions
to have the monotone increments.

Proof: The first two inequalities follow by virtue of monotonicity of the function
v̂(x) with respect to the shift from the point Six to x, from the point Six to Sjx
and from the point Skx to Slx, where µj ≥ µi and µl ≥ µk if i ≥ j and k ≥ l.
For the inequalities (2.19-2.20) the first case of the previous theorem is proved by
the same arguments as for the inequality (2.16).
For the inequality (2.19) in the first subcase we sum up the inequalities (2.19) for
the function v(x) in the points S0x and Slx to obtain

(1 − Si)(S0 − Sk)(S0 + Sl)v(x) =

(1 − Si)(S
2
0 − SkSl − SkS0 + S0Sl)v(x) ≤ 0.

Analogously by summing the inequalities (2.19) with the operator Sl instead of
the operator Sk, for function v(x) in the points S0x and Skx we get

(1 − Si)(S0 − Sl)(S0 + Sk)v(x) =

(1 − Si)(S
2
0 − SkSl + SkS0 − S0Sl)v(x) ≤ 0.

Now by summing the last two inequalities we obtain

(1 − Si)(S
2
0 − SkSl)v(x) ≤ 0.

Applying this inequality to (2.19) we have

(1 − Si)(S0 − Sk)v̂(x) =

v̂(S0x) − v(SlSkx) − v(SiS
2
0x) + v̂(SiSkx) ≥

S2
0(1 − Si)v(x) − SlSk(1 − Si)v(x) =

(1 − Si)(S
2
0 − SlSk)v(x) ≤ 0.

In the second subcase we get

(1 − Si)(S0 − Sk)v̂(x) =

v̂(S0x) − v(S0Skx) − v(S0SlSix) + v̂(SiSkx) ≤

v(S0Slx) − v(S0Skx) − v(S0SlSix) + v(S0SkSix) =

(1 − Si)(Sl − Sk)v(S0x) ≤ 0,
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by virtue of the inequality (2.17). For inequality (2.20) in the first subcase we
have

(Sl − Sk)(S0 − Si)v̂(x) =

v̂(SlS0x) − v(SjSlSix) − v(SkS
2
0x) + v̂(SkSix) ≤

v(SlS
2
0x) − v(SjSlSix) − v(SkS

2
0x) + v(SjSkSi) =

(S2
0 − SjSi)(Sl − Sk)v(x) ≤ 0,

where the last inequality is obtained by summing the inequalities

(Sl − Sk)(S0 − Si)(S0 + Sj)v(x) ≤ 0,

(Sl − Sk)(S0 − Sj)(S0 + Si)v(x) ≤ 0

exactly in the same way as before.
Finally for the inequality (2.20) in the second subcase we have

(Sl − Sk)(S0 − Si)v̂(x) =

v̂(SlS0x) − v(SjSlSix) − v(SkS
2
0x) + v̂(SkSix) ≤

v(SjSlS0x) − v(S0SlSix) − v(SjSkS0x) + v(S0SkSix) =

(Sj − Si)(Sl − Sk)v(S0x) ≤ 0,

by virtue of the inequality (2.18).
In the boundary states (with q(x) = N and without any idle servers) due to

the definition of the shift operators on the borders introduced inequalities hold as
equalities.
According to the properties of the operator B, the function l(x) and monotone
convergence to the value function v = {v(x) : x ∈ E}, we obtain necessary
result.
�

2.4.7 Threshold phenomenon of optimal policy. Threshold func-
tion for NJM–problem

From the previous section, (see Theorem 2.9) it follows that the optimal policy is
of a threshold type.

Theorem 2.11 The optimal policy for the queueing system M/M/K/B − K in
the NJM–problem is of a threshold type, i.e. for each state x, there exists some
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level of the queue length q∗(x) (depending on the collection of busy servers J1(x))
such that it is necessary to switch on the fastest j among the idle servers only if
q(x) > q∗j (x). If in some state x the optimal decision is to allocate a customer to
the queue, then this decision is optimal for all y with q(y) ≤ q(x) and the same
collection of busy servers J1(y) = J1(x)

Proof: The proof follows from the reasoning of the previous section.
�

The theorem states that the threshold depends on the state of the servers in such
manner that if it is not optimal to assign a job to processor j then it is not optimal
to make an assignment to processor j until such time as there is at least one more
arrival. That is, the state cannot change to one in which it becomes optimal to
assign a job to the server j simply by the departure of the jobs.
It is obvious that, if the buffer is nonempty and the first server with service inten-
sity µ1 = max

k∈J0(x)
{µk} is available (idle), then the idleness of the fastest server is

never optimal, i.e. the threshold level for the first server q∗1 = 0.
We note that for the NJM–problem the threshold level for the j-th server q∗

j (x)
depends on the state x, that is it can depend on the states of other slower servers.
Such influence arises only in the case of a large arrival intensity that will be inves-
tigated in Section 2.7.1. Further in this section we consider the special type of
the system operation, i.e. so called light traffic regime (λ < µK). We shall show
that in this case the threshold level for the j-th server is independent of the slower
servers and obtain the explicit form of the threshold functions. We will use the
denotation of the thresholds independently on the state x, that is, for j-th server
the threshold level is q∗j .

As it was shown in [62], the threshold policy which is optimal for the system
without future arrivals, i.e., λ = 0 is also optimal for small enough values of the
arrival rate λ. Thus, there exists some value λ0 > 0 with the property that ev-
ery optimal policy for the system with arrival rate λ in (0, λ0] is contained in this
class of simple threshold policies and every such threshold policy is optimal when
λ = 0. This light traffic result is established also independently by Reiman [59],
whose approach is based on the light traffic theory developed by Reiman and Si-
mon [60].

For the system under consideration it is clear that lim
λ→0

g(λ; δ) = 0. This state-

ment with respect to the formula (2.7) when λ = 0 leads to the optimality equation
determined by
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v(x) =
l(x)

M1

+
∑

j∈J1(x)

µj

M1

Tjv(x). (2.21)

Now using the equation (2.21) we just want to clear a system which already con-
tains some amount of customers. If the threshold levels for the servers 2, . . . j − 1
are q∗2, . . . , q

∗
j−1, respectively, then we can find the threshold q∗j for the j-th server,

recursively solving the optimality equation (2.21). The solution for the state
x = (0, . . . , 0)

v(x) = 0;

v(S1x) =
1

µ1
;

v(S0S1x) =
2

µ1
+ v(S1x);

v(S2
0S1x) =

3

µ1
+ v(S0S1x);

. . . . . . . . .

yield

v(S
q∗2−1
0 S1x) =

q∗2(q
∗
2 + 1)

2µ1
.

Let the number of the customers in the queue reaches the value q∗
2 , that is the

controller has to use the second server. Thus, for the state S
q∗2−1
0 S1S2x we have

v(S
q∗2−1
0 S1S2x) =

q∗2 + 1

µ1 + µ2

+
µ1

µ1 + µ2

v(S
q∗2−2
0 S1S2x) +

µ2

µ1 + µ2

v(S
q∗2−1
0 S1x),

or recursively we get
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v(S
q∗2−1
0 S1S2x) =

q∗2−1
∑

i=0

q∗2 + 1 − i

(µ1 + µ2)i+1
+

(
µ1

µ1 + µ2

)q∗2 1

µ2
+

q∗2−1
∑

i=0

µ
q∗2−1−i

1 µ2

(µ1 + µ2)q∗2−i

i+1∑

j=1

i

µ1

=

1

µ2
+

q∗2(q
∗
2 + 1)

2µ1
=

1

µ2
+ v(S

q∗2−1
0 S1x).

Further we analogously obtain

v(S
q∗2
0 S1S2x) =

q∗2 + 2

µ1 + µ2
+ v(S

q∗2−1
0 S1S2x);

. . . . . . . . . . . .

v(S
q∗3−1
0 S1S2x) =

(q∗3 − q∗2)(q
∗
3 + q∗2 + 3)

2(µ1 + µ2)
+ v(S

q∗2−1
0 S1S2x).

Again using the threshold structure of an optimal policy we have

v(S
q∗3−1
0 S1S2S3x) =

1

µ3
+

(q∗3 − q∗2)(q
∗
3 + q∗2 + 3)

2(µ1 + µ2)
+ v(S

q∗2−1
0 S1S2x).

Under further increasing of the queue length, it is possible to obtain the value
function in state x, where q(x) = q∗j

v(S
q∗j−1

0 S1S2 . . . Sj−1x) =
(q∗j − q∗j−1)(q

∗
j + q∗j−1 + 2j − 3)

2
∑j−1

k=1 µk

+

v(S
q∗j−1−1

0 S1S2 . . . Sj−1x).

Analogously, when the total number of jobs in the queue is ≥ q∗
j − 1, then

v(S
q∗j−1

0 S1S2 . . . Sj−1Sjx) =
1

µj

+ v(S
q∗j−1−1

0 S1S2 . . . Sj−1x) =

1

µj

+
(q∗j − q∗j−1)(q

∗
j + q∗j−1 + 2j − 3)

2
∑j−1

k=1 µk

+ v(S
q∗j−1−1

0 S1S2 . . . Sj−1x).

Since q∗j is an optimal queue length to switch on the j-th server, it is necessary
to require the following condition: The value function in the state, in which the
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controller begins to use the j-th server, i.e. q(x) = q∗j , with respect to the opti-
mal policy must be less or equal to the value function in the state, in which the
controller does not use the server j, that is

1

µj

+
(q∗j − q∗j−1)(q

∗
j + q∗j−1 + 2j − 3)

2
∑j−1

k=1 µk

+ v(S
q∗j−1−1

0 S1S2 . . . Sj−1x) <

(q∗j − q∗j−1 + 1)(q∗j + q∗j−1 + 2j − 2)

2
∑j−1

k=1 µk

+ v(S
q∗j−1−1

0 S1S2 . . . Sj−1x).

Now the threshold level for the j-th server can be obtained by the formula which
will refer to as the NJM threshold formula

q∗j =
1

µj

j−1
∑

k=1

µk − (j − 1). (2.22)

This formula means the following. Let j be the fastest idle server when q jobs
are waiting in the queue. If q > q∗j , then one job from the queue is dispatched to
server j. If q = q∗j , then a customer may or may not be dispatched to server j. If
q < q∗j , then no jobs is dispatched to any of the idle servers.
The optimality of the policy determined by (2.22) will be proved in the next sec-
tion in Section 2.5.7 in analogous theorem for the PCM–problem. According
to the obtained result for the system without future arrival it follows that if for
some state x = (q, d1, . . . , dK) there exists some threshold q∗j for any idle server
dj, then no job waiting in x will be scheduled on any server di, i > j before dj

becomes busy. Thus, all the jobs waiting in x will be scheduled only on processors
di, i ≤ j. This states that the threshold function is an increasing function of j.

Corollary 2.12 Let x = (q, d1, . . . , dK) be an arbitrary state. A server di idle
in x is left idle while q(x) <= q∗i if q(x) = 0 or if i > j, where dj is the lowest
indexed idle processor in x. A waiting job in x is assigned to dj if inequality (2.22)
is true.

Proof: The proof is follows from above explanation.
�

As expected, if µ1 ≥ · · · ≥ µj ≥ · · · ≥ µK it implies the following Corollary

Corollary 2.13 The threshold function defining in (2.22) is an increasing function
of j.
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It follows from this observation that
Proof: Indeed, for j < i ≤ K according to (2.22) we have

µ1 + · · ·+ µi−1

µi

− (i − 1) ≥

µ1 + · · ·+ µj−1

µj

+
µj + · · ·+ µi−1

µi

− (i − 1) ≥

µ1 + · · ·+ µj−1

µj

+ (i − j) − (i − 1) =

µ1 + · · ·+ µj−1

µj

− (j − 1),

that is required.
�

Also it follows that in the problem without arrivals the value function for the state
x with respect to the threshold function on dj+1, . . . , dK are independent of those
on d1, . . . , dj and we can write

v(x) =
∑

k∈J1(x)
k>j

1

µk

+ v(y), (2.23)

where y has the same number of waiting jobs as x, but di is active in y only if
i ∈ J1(x) and i ≤ j.

The general problem (when an arrival intensity is large) is much more difficult,
especially in multi-server case, in order to obtain estimation for the thresholds
relatively to the arrival intensity λ. As it was shown by Larsen and Agrawala in
[37] for two-server system it is possible to consider probabilistic control policy
which will be suboptimal for NJM–problem with threshold for the second server

q∗2 =
µ1 − λ +

√

4µ2λ + (µ1 − λ)2

2µ2

In multi-server case we conjecture that the optimal threshold decreases when the
arrival intensity increases. Moreover, if there are future arrivals, they see a shorter
queue, thus there is an extra reduction in cost. Therefore, the upper bound on the
thresholds approximately can be applied to all λ. In the case of future arrival with
some arrival intensity the problem of optimal threshold behavior investigation can
be considered successfully in the framework of numerical analysis. Numerical
results will be proposed in the Sections 2.7.
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2.5 Processing cost minimization (PCM–problem)

2.5.1 Quantity functional
Unlike the NJM–problem, to analyze the problem of average processing cost of
the system minimization (PCM–problem) we introduce an additional cost struc-
ture. We define CQ(q) as the cost for q customers holding in the queue and CU(µk)
as the usage cost of the k-th server (with intensity µk) per unit of time.

The functions CQ(q) and CU(µk) are assumed to be non-decreasing while the
function CQ(q) assumed to be convex. In this section we consider the case of fixed
set-up costs, that is CQ(q) = c0q with waiting cost c0 ≥ 0 and CU(µk) = ck.

In accordance with the given cost structure, the quantity (cost) functional to be
minimized has the form

Y (t) =

∫ t

0

(

c0Q(u) +
∑

1≤k≤K

ckDk(u)

)

du. (2.24)

Let
c(x) = c0 q +

∑

j∈J1(x)

cj (2.25)

denote the loss rate at the state x (which does not depend on the control a).
We note that the NJM–problem is a particular case of the PCM–problem, i.e. one
has to put c(x) = l(x), where l(x) = q(x) + d(x) is the number of jobs in the
system, and d(x) =

∑

1≤k≤K dk is the number of busy servers.
Similar to the NJM–problem (2.5), the problem of minimizing the long-run

system average processing cost is presented as follows: Minimize

g(x0; δ) = lim
t→∞

1

t
E

δ
x0

Y (t)

with respect to all admissible strategies.

2.5.2 Optimality equation
Exactly as in previous case, for Markov decision problem with respect to the long-
run average criterion the optimality principle is valid. Moreover, with exception of
the first term in the right-hand side, the optimality equation has the same form as
for the NJM–problem. Therefore, the optimality equation for the PCM–problem
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is determined by

v(x) =
1

λ + M1
min

a

[

c(x)+λv(Sa0x)+
∑

j∈J1(x)

µj v(Saj
S−1

j S−1
0 x)−g

]

. (2.26)

To consider the monotonicity properties of an optimal solution in the representa-
tion of an optimality equation, it is more convenient to use the introduced in 2.9
operators T0 and Tk, and after the transformation we get

v(x) =
1

λ + M

[

c(x) + λT0 v(x) +
∑

1≤k≤K

µkTk v(x) − g

]

= Bv(x). (2.27)

We note that all the theorems and results with respect to the transformation of the
optimality equation and the definition of an optimal policy are also hold for this
type of optimization problem.

Numerical investigations lead to some conjectures about the structure of an
overall average cost optimality policy that will be the topic of the next sections.

2.5.3 Monotonicity properties of optimal policies. Two types of
optimal policy structure for PCM–problem

In this section we consider the monotonicity conditions of the PCM–problem.
For this problem we the servers will be arranged in order of their quotient value
γk increasing

γk =
server usage cost
server service rate

=
ck

µk

, (2.28)

such that
0 <

c1

µ1
≤

c2

µ2
≤ · · · ≤

cK

µK

. (2.29)

The value γk we call mean usage cost.
If all the costs c0, c1, c2, . . . , cK are equal to one, we obtain the NJM-rule (2.13),
that is the servers will be arranged in order their service rates decreasing.
The partial ordering of the state space E is determined by the inequalities (2.14)
and (2.15).

It is interesting to investigate the properties of an optimal policy for the PCM–
problem and estimate the influence of the initial parameters, in particular γk, on
the stamp of this policy. Numerical results for the PCM–problem motivated the
consideration of different groups of initial parameters, such as service intensi-
ties and usage costs. It turned out, that these parameters can be divided into
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two groups, and that to each of the group there corresponds a certain optimal
policy structure. In more detail, under the condition (2.29) we shall distinguish
two groups of mentioned parameters, the first group corresponding to expressions
(2.30) and (2.31) below, the second corresponding to expression (2.32):

• 0 ≤ µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K , c1 ≤ c2 ≤ · · · ≤ cK; (2.30)

• 0 ≤ µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K , c1 > c2 > · · · > cK; (2.31)

• 0 < µ−1
K < · · · < µ−1

2 < µ−1
1 , c1 ≤ c2 ≤ · · · ≤ cK . (2.32)

We note that the third case with c1 > c2 > · · · > cK is impossible with respect to
the introduced condition (2.29).

The PCM–problem under the conditions (2.29)-(2.31) is discussed in Sections
2.5.4-2.5.7. We expect that the optimal policy in these cases is of a threshold type
as for the NJM–problem and consists in using the server with smallest mean usage
cost or, with respect to introduced servers’ order, the fastest available server.

The PCM–problem under the conditions (2.29) and (2.32) we consider in Sec-
tion 2.5.8. An optimal policy for such values of system parameters has a more
complex structure than in previous cases, i.e. there exists two-level threshold op-
timal policy which implies the using of some server j according to some rule.
This server may not be necessary the fastest or the cheapest available, or even can
be with larger ratio γj, but this server is used by the controller only if the current
queue length is between two prespecified levels. Moreover, all other available is
some state servers are switched on in order of the servers’ index increasing (order
of the mean usage costs γk increasing).

2.5.4 Assignment to the server with the lowest mean usage cost
The numerical results motivate us to make the following conjecture about the
quantitative properties of an optimal control for the PCM–problem under the con-
ditions (2.29)-(2.31).

Conjecture 2.14 The optimal control policy consists in activating the available
server with the lowest mean usage cost (fastest server), if necessary.

There is, at least, one thing that can be proved for the PCM–problem. It is the part
of Conjecture 2.14, as can be reasserted in the following theorem.

Theorem 2.15 The value function of the model v = {v(x) :, x ∈ E} increases
monotonously relative to the order introduced in E if conditions (2.29) and (2.30)
hold.
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Proof: According to the condition (2.30) the function c(x) is nondecreasing with
respect to the shifts from the point Sjx to Six, i, j ∈ J0(x), i ≥ j (ci ≥ cj),
i.e. c(Six) − c(Sjx) = ci + q(x)c0 − cj − q(x)c0 = ci − cj ≥ 0. Now using the
same steps as in Theorem 2.7, taking into account that µi ≤ µj, we obtain that for
some nondecreasing function v(x) the operator B, introduced in (2.27), retains
the monotonicity property.

Now the theorem follows from the fact that the value function of the model
v = {v(x) : x ∈ E} is a fixed point of the operator B, i.e.

lim
n→∞

Bnc(Six) − Bnc(Sjx) = v(Six) − v(Sjx) ≥ 0,

where c(Six) ≥ c(Sjx) for any state x ∈ E and i, j ∈ J0(x), i ≥ j.
�

For the PCM–problem under the conditions (2.29) and (2.31) the statement above
is confirmed by the numerical results. We note that for simplified system in the
case without arrivals, when only two servers present in the system, theoretical
results are fully carried over the problem with condition (2.31). Indeed, in this
case we have

v(Six) − v(Sjx) =

[
ci

µi

−
cj

µj

]

+ c0q(x)

[
1

µi

−
1

µj

]

≥ 0,

for any q(x) ≥ 0.

2.5.5 Submodularity of the value function
As before, in order to determine whether a server must be activated, we have to
show that the optimal policy features monotonicity property with respect to the
queue length increasing. Using the statement of Conjecture 2.14, the following
theorem can be formulated.

Theorem 2.16 The inequalities (2.16)-(2.20) for the monotone increments with
respect to the partial ordering of E hold for the PCM–problem under the condi-
tions (2.29)-(2.32)

Proof: To prove the statement it is necessary to show that the operator T0 pre-
serves the properties (2.16)-(2.20) of the functions to have the monotone incre-
ments. This theorem can be proved using the same arguments as for the NJM–
problem in Theorem 2.9 and Lemma 2.10 of Section 2.4.6.
�
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The results for the NJM–problem can be generalized for the PCM–problem with
the convex function CQ(q).

Theorem 2.17 If the function CQ(q) is convex, and service intensities µk with
usage costs ck satisfy the conditions (2.29) and (2.30), then the value function of
the model v = {v(x) : x ∈ E} has the monotone increments (2.16)-(2.20).

Proof: The proof follows from the successive approximation method because the
value function of the model is a fixed point of the operator B, determined by
(2.10), if it preserves the properties (2.16)-(2.20). Indeed, the convexity of the
function CQ(q) implies

(I − S0)(S0 − Sk)c(x) = c(S0x) − c(S2
0x) − c(Skx) + c(SkS0x) =

[CQ(q(x) + 1) +
∑

j∈J1(x)

CU(µj)]−

[CQ(q(x) + 2) +
∑

j∈J1(x)

CU(µj)]−

[CQ(q(x) +
∑

j∈J1(x)

CU(µj) + CU(µk)]+

[CQ(q(x) + 1) +
∑

j∈J1(x)

CU(µj) + CU(µk)] =

− [CQ(q + 2) − 2CQ(q + 1) + CQ(q)] ≤ 0.

The inequality (2.16)-(2.20) keep the linear operations. Therefore, the statement
of the theorem follows from the fact that the operators T0 and Tj preserve the
properties given in Theorem 2.9 and Lemma 2.10.
�

2.5.6 Threshold function for PCM–problem
From the previous section it follows that the optimal policy is of threshold type.

Theorem 2.18 The optimal policy in the PCM–problem with additional condi-
tion (2.30) and (2.31) (for the last condition we require Conjecture 2.14) is of
threshold type, i.e. for each server j, there exists some level of the queue length
q∗j (depending on the collection of busy servers J1(x) with smaller indexes) such
that it is necessary to switch on the server with lowest mean usage cost γj (or the
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fastest) among the idle servers only if q > q∗j .
If in some state x the optimal decision is allocate a customer to the queue, then
this decision is optimal for all y with q(y) ≤ q(x) and the same collection of busy
servers J1(y) = J1(x)

Proof: The proof follows from the reasoning of the previous section.
�

It is evident, that the idleness of the fastest server is never optimal, i.e. q∗
1 = 0.

As for the previous model we consider the case without future arrivals (light
traffic regime), when we want to clear a system which already contains the cus-
tomers. Taking into account that in this case λ = g = 0 the optimality equation
can be written as follows

v(x) =
c(x)

M1
+

∑

j∈J1(x)

µjTj(x)

M1
, (2.33)

where according to the definitions M1 is a total intensity of busy servers in the
state x M1 =

∑

j∈J1
µj and operator Tj(x) = T0(S

−1
0 S−1

j x).
We obtain the form of threshold function in similar way as it was done for the
NJM–problem. With respect to our assumption about threshold structure of the
optimal policy recursively solving the optimality equation (2.33) using thresholds
q∗2, . . . , q

∗
j−1 we obtain the threshold q∗j . For the state x = (0, . . . , 0) we have

v(x) = 0

v(S1x) =
c1

µ1
,

v(S0S1x) =
c0 + c1

µ1
+ v(S1x),

v(S2
0S1x) =

c1 + 2c0

µ1
+ v(S0S1x)

. . . . . . . . .

v(S
q∗2−1
0 S1x) =

q∗2(q
∗
2 − 1)c0

2µ1
+

q∗2c1

µ1
.

When the queue length has reached the threshold level for the second server q∗
2 ,

the controller has to use this server. Then using the equation (2.33) we have

v(S
q∗2−1
0 S1S2x) =

c2

µ2
+

q∗2(q
∗
2 − 1)c0

2µ1
+

q∗2c1

µ1
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Repeating the procedure up to the threshold for the j-th server q∗
j one can obtain

v(S
q∗j−1

0 S1S2 . . . Sj−1x) =
(q∗j − q∗j−1)

∑j−1
k=1 ck

∑j−1
k=1 µk

+
(q∗j − q∗j−1)(q

∗
j−1 + q∗j − 1)c0

2
∑j−1

k=1 µk

.

Again, since q∗j is optimal threshold the condition

v(S
q∗j−1

0 S1S2 . . . Sj−1Sjx) =
cj

µj

+v(S
q∗j−1

0 S1S2 . . . Sj−1x) < v(S
q∗j
0 S1S2 . . . Sj−1x)

implies

cj

µj

+
(q∗j − q∗j−1)

∑j−1
k=1 ck

∑j−1
k=1 µk

+
(q∗j − q∗j−1)(q

∗
j−1 + q∗j − 1)c0

2
∑j−1

k=1 µk

<

(q∗j − q∗j−1 + 1)
∑j−1

k=1 ck
∑j−1

k=1 µk

+
(q∗j − q∗j−1 + 1)(q∗j−1 + q∗j )c0

2
∑j−1

k=1 µk

.

From the last inequality we get the PCM threshold formula

q∗j =
1

c0

[
cj

µj

j−1
∑

k=1

µk −

j−1
∑

k=1

ck

]

. (2.34)

The last equation defines the threshold scheduling function. The server dj which
is idle in x is left idle in S

q∗j−1

0 x. A waiting job in x is assigned to dj if and only if
the inequality (2.34) holds.

We note that ci

µi
≥

cj

µj
with i ≥ j implies the following corollary.

Corollary 2.19 The threshold function defining by (2.34) is an increasing func-
tion of server’s index j.

Proof: Indeed, if c1
µ1

≤ · · · ≤
cj

µj
≤ · · · ≤ cK

µK
for j < i ≤ K we have

1

c0

[

(µ1 + · · ·+ µi−1)
ci

µi

− (c1 + · · ·+ ci−1)

]

≥

1

c0

[

(µ1 + · · ·+ µj−1)
cj

µj

+ (µj + · · ·+ µi−1)
ci

µi

− (c1 + · · ·+ ci−1)

]

≥

1

c0

[

(µ1 + · · ·+ µj−1)
cj

µj

+ (cj + · · · + ci−1) − (c1 + · · · + ci−1)

]

=

1

c0

[

(µ1 + · · ·+ µj−1)
cj

µj

− (c1 + · · ·+ cj−1)

]

.
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�

It follows that if

q(x) ≤ q∗j+1 =
1

c0

[
cj+1

µj+1

j
∑

k=1

µk −

j
∑

k=1

ck

]

for some state x = (q, d1, . . . , dK), then no job waiting in x will be scheduled on
any server di, i > j. Similar to the NJM–problem, since every subsequent state
will have at most q∗j waiting jobs, all jobs waiting in x will be scheduled only on
processors di, i ≤ j. It follows, that the value function for the state x with respect
to the threshold function on dj+1, . . . , dK are independent of those on d1, . . . , dj

and we can write
v(x) =

∑

k∈J1(x)
k>j

ck

µk

+ v(y), (2.35)

where y has the same number of waiting jobs as x, but di is active in y only if
i ∈ J1(x) and i ≤ j. This equation will be used for the next theorem.

2.5.7 Optimality of threshold function
In this section we generalize the result obtained first by Agrawala et al. [1] for the
minimization of expected total flow time, and it will be shown that the introduced
threshold policy (2.34) for the PCM–problem is optimal.

Theorem 2.20 The threshold policy introduced in (2.34) for PCM–problem in the
case without arrivals and with conditions (2.29) and (2.30) is optimal.

Proof: Let the number of servers is K with ordered ration of the type c1
µ1

≤ c2
µ2

≤
· · · ≤ cK

µK
. As it was denoted in Section 2.3 any system state x belongs to the

E, which is a set of possible system states with partial order introduced on it in
(2.14) and (2.15). According to the definition of optimal policy (2.34) we con-
sider two types of optimal policies (2.12), namely f(x) is arbitrary scheduling
policy and t(x) is proposed by (2.34) threshold policy. Without loss of general-
ity we may restrict attention to f(x) that satisfy the property, that for any state
x = (q, d1, . . . , dK) either f(x) = 0 or f(x) = k, where k is an idle server with
lowest index. In other words, we assume that f(x) represents the optimal server
in increasing order of index (increasing order of the ratio γk).
quad We will prove the theorem by means of induction with respect to the states
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x = (q, d1 . . . dK) and will show that vt(x) ≤ vf(x) that is the value function with
using of threshold policy is less or equal to one with arbitrary scheduling.
We have the desired result for any state x with q(x) = 0, because there are no wait-
ing jobs and as consequence there no scheduling decisions to be made. Therefore,
x = 0 provides the basis for induction. Soppose, that the results holds for all states
x where q(x) ≤ I . With induction we add one more assumption, that f(x) = t(x)
for all states x where q(x) < I . In order to show that vt(x) ≤ vf(x) we divide the
problem into cases.
1. Let after service completion in state x on the k-th server f(S−1

0 S−1
k x) = 0 and

t(S−1
0 S−1

k x) = 0, that is the optimal control for both of cases is to keep a job in
the queue. In this case by the inductive hypothesis f and t are identical for any
state obtained from a job completion on some server which is active in x. Thus,
vf(x) = vt(x).
2. Let f(S−1

0 S−1
k x) = i and t(S−1

0 S−1
k x) = j. If i = j then the equality

vf(x) = vt(x) follows from the previous case. Therefore, we suppose that i 6= j.
According to the property (2.34) of threshold policy t which assigns the job to
the server with the least ratio γk with lowest indexed server, it is necessary, that
j < i. By virtue of the assumption about policy f(x), any newly activated server
in f(S−2

0 S−1
l S−1

k Six) = m must have an index exceeding m > i > j. Therefore,
the server dj must be idle in S−2

0 S−1
l S−1

k SiSmx. But since the state S−1
0 S−1

k Six
has less waiting jobs than x the inductive hypothesis implies that f and t is iden-
tical at the state S−1

0 S−1
k Six. Thus, since dj is idle in S−1

0 S−1
k Six, the policies

f and t cannot activate the server with index greater than j. It follows, that
f(S−2

0 S−1
l S−1

k Six) = t(S−2
0 S−1

l S−1
k Six) = 0.

Since t(S−2
0 S−1

l S−1
k Six) = 0 and the server dj is idle in this state, the definition

of the threshold policy implies

q∗j − 1 ≤
1

c0

[
cj

µj

(µ1 + · · · + µj−1) − (c1 + · · · + cj−1)

]

.

But if r > j according to the property of the threshold policy we have

1

c0

[
cr

µr

(µ1 + · · ·+ µr−1) − (c1 + · · · + cr−1)

]

≥

1

c0

[
cj

µj

(µ1 + · · · + µj−1) − (c1 + · · · + cj−1)

]

.

Thus, no idle servers dr, r > j, can be newly activated by t in S−1
0 S−1

k Sjx. There-
fore, t(S−2

0 S−1
l S−1

k Sjx) = 0.
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Consequently, both of scheduling policies f and t allocate between the servers
only one job in state x. Since all subsequent states in either case have at most
q∗j − 1 waiting jobs, the threshold policy t and policy f will schedule waiting jobs
only on servers in the set {d1, . . . , dj−1}.

Now consider the states y = {q∗j−1, d1, . . . , dK} with active servers d1, . . . , dj−1

and idle servers dj, . . . , dK. Since none of the q∗j − 1 waiting jobs will be allocate
between the servers dj, . . . , dK using t or f we can write as in (2.35)

vt(x) = vt(S−1
0 S−1

k Sjx) =
∑

r∈J1(S−1
0

S
−1
k

Sjx)

r≥j

cr

µr

+ vt(y),

and hence
vt(x) =

cj

µj

+
∑

r∈J1(x)
r≥j

cr

µr

+ vt(y).

For the policy f(x) we have

vf(x) =
ci

µi

+
∑

r∈J1(x)
r≥j

cr

µr

+ vf(y).

Note, that the states y have less number of jobs waiting in the queue, thus by
virtue of inductive hypothesis vf (x) = vt(x). After the subtraction of the previous
expressions we get

vt(x) − vf(x) =
cj

µj

−
ci

µi

≤ 0,

because of cj

µj
≤ ci

µi
for j ≤ i.

3. If f(S−1
0 S−1

k x) = i 6= 0 and t(S−1
0 S−1

k x) = 0. If l is the largest index satisfying

ql >

∑l−1
k=1 µk

µl

− (l − 1).

It follows that all jobs waiting in x have to be subsequently sent to servers in the
set {d1, . . . , dl}. But t(S−1

0 S−1
k x) = 0, therefore all of the servers {d1, . . . , dl}

must be occupied in x. Now we can write as before

vt(x) =
∑

r∈J1(x)
r>l

cr

µr

+ vt(y),
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where y = {ql, d1, . . . , dK} with active servers dk = 1 if k = 1, l. According to
the definition (2.33) of the value function v(x) we have

vt(x) =
∑

r∈J1(x)
r>l

cr

µr

+
c(y)

∑l
k=1 µk

+

∑l

k=1 µkT0v
t(S−1

0 S−1
k y)

∑l
k=1 µk

.

But with respect to the condition for the threshold policy t(S−1
0 S−1

k y) = 0, k =
1, l, that is after service completions in the state y controller has to send a new job
to a server dk, k ≤ l. Now expressing c(y) as c(y) = c0ql +

∑l

k=1 ck we can write

vt(x) =
∑

r∈J1(x)
r>l

cr

µr

+
c0ql +

∑l

k=1 ck
∑l

k=1 µk

+ vt(S−1
0 y). (2.36)

Let us consider vf (x). For the case under consideration we assumed that f(S−1
0 S−1

k x) =
i 6= 0. With respect to the above choice l, we have i > l. By the definition of l
and the inductive hypothesis f(S−2

0 S−1
l S−1

k Six) = t(S−2
0 S−1

l S−1
k Six) = 0. Thus

no job waiting in S−1
0 S−1

k Six will be scheduled by policy f on a server with index
exceeding l and we get

vf (x) = vf(S−1
0 S−1

k Six) =
∑

r∈J1(S−1
0

S
−1
k

Six)

r>l

cr

µr

+ vf(S−1
0 y).

By virtue of the fact that the states x and S−1
0 S−1

k Six is differ only through the
active server di, we have

vf (x) =
ci

µi

+
∑

r∈J1(x)
r>l

cr

µr

+ vf(S−1
0 y). (2.37)

Now by subtracting the last expression (2.37) for the functions vt(x) from expres-
sion for vf(x) (2.36) we get

vt(x) − vf(x) =

∑l

k=1 ck + c0ql
∑l

k=1 µk

−
ci

µi

≤

c0ql +
∑l

k=1 ck
∑l

k=1 µk

−
cl+1

µl+1
,
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by virtue of the fact that i ≥ l + 1 and cl+1

µl+1
≤ ci

µi
. The threshold for the l-th server

has the form

ql ≤
1

c0

[
cl+1

µl+1

l∑

k=1

µk −
l∑

k=1

ck

]

and after some transformations

c0ql +
∑l

k=1 ck
∑l

k=1 µk

≤
cl+1

µl+1

.

From this the required result vt(x) ≤ vf(x) follows.
4. If f(S−1

0 S−1
k x) = 0 and t(S−1

0 S−1
k x) = j. For the policy f(x) due to the

inductive hypothesis and (2.33) we can write

vf (x) =
c(x)

∑

k∈J1(x) µk

+

∑

k∈J1(x) µkT0v
f(S−1

0 S−1
k x)

∑

k∈J1(x) µk

, (2.38)

where T0v
f(S−1

0 S−1
k x) = vf (S−1

k x) under condition of this case. We assume that
under the threshold policy t controller assigns m ≥ 1 waiting jobs to idle servers
in x and the system moves to the state z. Let us assume that l is the largest index
which satisfies

ql − m >
1

c0

[
cl

µl

l−1∑

k=1

µk −
l−1∑

k=1

ck

]

.

Thus, policy t subsequently schedules jobs waiting in z only on the servers in the
set {d1, . . . , dl}. Here, two subcases are possible, based on the largest index i such
that di is idle in x but active in z.
In the first subcase j ≤ l. By the choice of l we can write as before

vt(x) = vt(z) =
∑

r∈J1(z)
r>l

cr

µr

+ vt(S−m
0 x), (2.39)

where the state S−m
0 x in which the servers dk, k = 1, l are busy.As in previous

case we can get for vt(S−m
0 x),

vt(x) =
∑

r∈J1(z)
r>l

cr

µr

+
c(S−m

0 x)
∑l

k=1 µk

+ vt(Sk−m−1
0 x). (2.40)

Now consider the state S−1
k z under assumption j ≤ l. In the state S−1

k z m jobs
waiting in S−1

k x will be assigned by t and f to those servers newly activated in z.
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One more will be assigned to the server dk only if k ≤ l. Therefore, with respect
to the inductive hypothesis

vf(S−1
k x) = vf(S−1

k z) = vt(S−1
k z) =

∑

r∈J1(S−1
k

z)

r>l

cr

µr

+ vt(S−m
0 x), k > l.

Taking into account that the states z and S−1
k z differ only in the server dk which

is busy in z and idle in S−1
k z if k > l, we get

vf(S−1
k x) =

∑

r∈J1(z)
r>l

cr

µr

−
ck

µk

+ vt(S−m
0 x), k > l. (2.41)

But if k ≤ l then m + 1 waiting jobs are assigned and

vf(S−1
k x) =

∑

r∈J1(S−1
k

z)

r>l

cr

µr

+ vt(Sk−m−1
0 x), k ≤ l.

By virtue of the equality J1(S
−1
k z) = J1(z) if k ≤ l, we have

vf(S−1
k x) =

∑

r∈J1(z)
r>l

cr

µr

+ vt(Sk−m−1
0 x), k ≤ l. (2.42)

Substituting into (2.41) and (2.42) for vt(S−m
0 x) and vt(Sk−m−1

0 x) from (2.39)
and (2.40), respectively, we obtain

vf(S−1
k x) =

{
vt(x) − ck

µk
, k > l

vt(x) −
c(S−m

0 x)
Pl

i=1 µi
, k ≤ l

Now substitute these expressions into (2.38)

vf(x) =
c(x)

∑

i∈J1(x) µi

+
∑

k∈J1(x)
k≤l

[

vt(x) −
c(S−m

0 x)
∑l

i=1 µi

]
µk

∑

i∈J1(x) µi

+

∑

k∈J1(x)
k>l

[

vt(x) −
ck

µk

]
µk

∑

i∈J1(x) µi

,
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by means of which one can get

vf(x) − vt(x) =
1

∑

i∈J1(x) µi

[

c(x) −
∑

k∈J1(x)
k>l

ck −
c(S−m

0 x)
∑l

i=1 µi

∑

k∈J1(x)
k≤l

µk

]

.

Since j ≤ l there are m servers among {d1, . . . , dl} which are idle in x but active
in S−m

0 x. But since no server with index higher than l is active in S−m
0 x we can

obtain
∑

k∈J1(x)
k>l

ck = c(x) − c(S−m
0 x), or

vf(x) − vt(x) =
c(S−m

0 x)
∑

i∈J1(x) µi

[

1 −
1

∑l
i=1 µi

∑

k∈J1(x)
k≤l

µk

]

.

But
∑l

i=1 µi ≥
∑

k∈J1(x)
k≤l

µk, and hence we obtain the required result vt(x) ≤

vf(x).
In the second subcase j > l. Analogously to (2.39) we have

vt(x) =
∑

r∈J1(z)
r>j

cr

µr

+ vt(S−m
0 y), (2.43)

where the state y = {ql−m, d1, . . . , dK} with active servers from the set {d1, . . . , dj}.
For the function vf (S−1

k x) = vt(S−1
k x) = vt(S−1

k z) we consider the case k > j.
In this case no job is assigned to the server dk by f and t in the state S−1

k x. But m
waiting jobs are assigned to the servers which are newly activated in z.
Therefore,

vf(S−1
k x) = vt(S−1

k z) =
∑

r∈J1(S−1
k

z)

r>j

cr

µr

+ vt(S−m
0 y), k > j.

From (2.43) by virtue of the fact that the state S−1
k z and z are the same with

exception of the server k which is active in z we get

vf(S−1
k x) =

∑

r∈J1(x)
r>j

cr

µr

−
ck

µk

+ vt(S−m
0 y), k > j. (2.44)

The equality k = j is impossible since dj(x) = 0. But if 1 ≤ k < j, then there
will be exactly m + 1 idle servers in the set {d1, d2, . . . , dl} in state S−1

k x, that is
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m servers in z and one more newly idled server dk. Since j > l and dj is idle
in S−1

k x and S−1
k z the policies f and t will assign waiting jobs in this states to

the same m servers as in z, except that dk will be busy and dj will be left idle.
Therefore,

vf(S−1
k x) =

∑

r∈J1(S−1
k

z)

r>j

cr

µr

+ vt(S−m
0 y‘), 1 ≤ k < j

where S−m
0 y‘ represents the state with active servers {d1, . . . , dj − 1}. But since

j > l no job waiting in S−m
0 y will subsequently be scheduled by t on dj and

vt(S−m
0 y) = vt(S−m

0 y‘)+
cj

µj
. Thus, since S−1

k z and z are the same with exception
that dj is active in z but not in S−1

k z we have from (2.43)

vf(S−1
k x) =

∑

r∈J1(S−1
k

z)

r>j

cr

µr

+ vt(S−m
0 y) −

cj

µj

= vt(x) −
cj

µj

, 1 ≤ k < j.

(2.45)

Substituting (2.44) and (2.45) into (2.38) we get

vf(x) =
c(x)

∑

i∈J1(x) µi

+
∑

k∈J1(x)
k<j

[

vt(x) −
cj

µj

]
µk

∑

i∈J1(x) µi

+

∑

k∈J1(x)
k>j

[

vt(x) −
ck

µk

]
µk

∑

i∈J1(x) µi

,

which can be simplified to the following

vf(x) − vt(x) =
1

∑

i∈J1(x) µi

[

c(x) −
∑

k∈J1(x)
k>j

ck −
cj

µj

∑

k∈J1(x)
k<j

µk

]

,

where c(x) = c0q(x) +
∑

k∈J1(x) ck. By virtue of the threshold function definition

q(x) >
1

c0

[
cj

µj

∑

k∈J1(x)
k<j

µk −
∑

k∈J1(x)
k<j

ck

]
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we can get the following sequence of inequalities

c0q(x) +
∑

k∈J1(x)

ck −
∑

k∈J1(x)
k>j

ck −
cj

µj

∑

k∈J1(x)
k<j

µk ≥

cj

µj

∑

k∈J1(x)
k<j

µk −
∑

k∈J1(x)
k<j

ck +
∑

k∈J1(x)

ck −
∑

k∈J1(x)
k>j

ck −
cj

µj

∑

k∈J1(x)
k<j

µk = cj > 0.

Thus, vf(x) − vt(x) ≥ 0.
We have that in all cases vt(x) ≤ vf(x) for all states x and hence the threshold
rule t is optimal.
�

2.5.8 Two-level threshold function for PCM–problem

If additionally to the usage and holding costs some fixed switching cost for chang-
ing the servers will be introduced, we receive the model (see, [55]) for which the
class of two-level hysteretic (q∗, q∗) optimal control rules exists, where 0 ≤ q∗ <
q∗. Under these rules the slower server is switched on only when at an arrival
epoch the number of jobs present in the system increases up to or above q∗ and
the slower server is switched off when at a service completion epoch of the slower
server the number of jobs left behind in the system is smaller or equal to q∗. But
while the first steps in the numerical analysis of hysteretic optimal control rules
have been done and despite the empirical evidence of the optimality of such rules,
theoretical proof of this optimality is still lacking. Mentioned above hysteretic
control rules are very similar to that we want to consider in this section for the
PCM–problem without switching cost but with conditions (2.29) and (2.32). In
view of the fixed set-up costs and these conditions, we can no longer restrict our-
selves to the threshold policies with a single threshold level for the turning the
slower server on, as in previous model.

As we have already mentioned numerical investigation lead to conjecture that if
the servers are arranged as in (2.29) and condition (2.32) holds, the optimal control
rule is characterized by threshold sequence depending on the system state x. With
respect to this rule some server is used only if the current queue length is between
the low and upper bounds. Moreover, it is not optimal at all to use always the
fastest available server, i.e. Theorem (2.15) does not hold for the PCM–problem
under condition (2.32). This can be easily shown by means of a simple system
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without arrivals (λ = 0) and with two servers i, j, i > j, where

ci

µi

>
cj

µj

, ci ≥ cj and µi > µj.

For the value function v(x) in the points Six and Sjx we get

v(Six) − v(Sjx) =

[
ci

µi

−
cj

µj

]

+ c0q(x)

[
1

µi

−
1

µj

]

.

the last expression is nonnegative only if the queue length satisfies an inequality

q(x) ≤
1

c0

[
1

µj

−
1

µi

]−1[
ci

µi

−
cj

µj

]

,

where the expression in the right–hand side is greater than zero.
It is still an open problem to prove the theoretical optimality of this control rule.
Nevertheless, the proposed numerical analysis confirms the assumptions which
can be formulated as a following conjecture.

Conjecture 2.21 An optimal policy in the PCM–problem for the system with servers
arrangement (2.29) under condition (2.32) has such a structure, that at any state
for idle server there exists two–level threshold switching rule that turns the faster
but more expensive server on when the number of jobs in the system exceeds some
prespecified upper level and turns such a server off when upon service completion
by this server the number of jobs is below some prespecified lower level. Thus,
some available in state x server j is used if q∗j (x) ≤ q(x) < q∗j+1.

We can rewrite Conjecture 2.21 in terms of the value function, i.e. we expect

v(S0Sjx) ≤ v(S0Six) ⇒ v(Sjx) ≤ v(Six) for all j, i ∈ J0(x) , j ≤ i

or using the representation by means of the operators

(1 − S0)(Sj − Si)v(x) ≤ 0 for all i, j ∈ J0(x), j ≤ i. (2.46)

Now we have to determine whether a server must be activated, that is we have to
check the inequality (2.16). According to the optimal policy when the values of
initial system parameters satisfy the conditions (2.29) and (2.32), the controller
may use any of available server in some state, i.e. there exist no common rule to
choose a server in each state as it was in previous cases. Therefore, the inequality
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(2.16) we can prove successfully only for the system with two servers and gen-
eralization mainly follows from intuitive assumptions and numerical results. As
before, it is necessary to show that if some function v(x) satisfies the condition
(2.16) then the operator T0 preserves this property.

Lemma 2.22 In the system with two servers the operator T0 preserves the prop-
erty (2.16) of the monotonicity increments of the function.

Proof: To prove that the operator T0 preserves the property (2.16) we have to
prove that if this property holds for some function v(x) it holds also for the func-
tion v̂(x) = T0v(x).
Note, that for each point x it is possible to make only two decisions, namely, to
send a job to the queue or to switch on some server. The last action depends on
the queue length.

Using the definition (2.9) of the operator T0 it is necessary to check the in-
equality

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

min{v(SlS0x) : l ∈ J0(x)} − min{v(SlSkx) : l ∈ J0(Skx)}−

min{v(SlS
2
0x) : l ∈ J0(x)} + min{v(SlS0Skx) : l ∈ J0(Skx)} ≤ 0,

where for the system with two servers k = {1, 2}. As usual, we prove the result
for any point x ∈ E and divide it into several cases.
1. For the case when the optimal policies at the points Skx and S2

0x (where v̂(x)
is involved with the negative sign) are equal, i.e. f(Skx) = f(S2

0x) = f we have

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(SfSkx) − v(SfS
2
0x) + v̂(S0Skx) ≤

v(SfS0x) − v(SfSkx) − v(SfS
2
0x) + v(SfS0Skx) =

(1 − S0)(S0 − Sk)v(Sfx) ≤ 0.

2. For the case, when f(Skx) = 0 and f(S2
0x) = k we get the inequality

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(S0Skx) − v(S2
0Skx) + v̂(S0Skx) ≤

v(S0Skx) − v(S0Skx) − v(S2
0Skx) + v(S2

0Skx) = 0.
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3. If f(Skx) = 0 and f(S2
0x) = l 6= k, the chain of relations is the following

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(S0Skx) − v(S2
0Slx) + v̂(S0Skx) ≤

v(S0Slx) − v(S0Skx) − v(S2
0Slx) + v(S2

0Skx) =

(1 − S0)(Sl − Sk)v(S0x) ≤ 0,

by virtue of the property (2.46).
4. If f(Skx) = l 6= 0 and f(S2

0x) = 0, the result will be the following

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(SlSkx) − v(S3
0x) + v̂(S0Skx).

To determine the sign of the last expression we take the operator under consider-
ation at the points Skx and S0x, that is

(1 − S0)(S0 − Sl)v(Skx) = v(S0Skx) − v(SlSkx) − v(S2
0Skx) + v(S0SkSlx) ≤ 0,

(1 − S0)(S0 − Sk)v(S0x) = v(S2
0x) − v(S0Skx) − v(S3

0x) + v(S2
0Skx) ≤ 0,

respectively. Now summing these inequalities we get

v(S2
0x) − v(SlSkx) − v(S3

0x) + v(S0SkSlx) ≤ 0.

Using the last inequality we can prove the statement for this case, namely,

v̂(S0x) − v(SlSkx) − v(S3
0x) + v̂(S0Skx) ≤

v(S2
0x) − v(SlSkx) − v(S3

0x) + v(S0SkSlx) ≤ 0.

5. Finally in the case when f(Skx) = l 6= 0 and f(S2
0x) = k we have

(1 − S0)(S0 − Sk)v̂(x) = v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(SlSkx) − v(S2
0Skx) + v̂(S0Skx) ≤

v(S0Skx) − v(SkSlx) − v(S2
0Skx) + v(S0SkSlx) = (1 − S0)(S0 − Sl)v(Skx) ≤ 0.

For the boundary points q(x) = N and J0(x) = ∅, the inequality (2.16) is also
satisfied because the shift operators do not drive the point x outside the admissible
set of states. Finally, the operators Tj also retain the (S0, Sk)-submodularity of the
functions by virtue of the fact that they are defined by (2.9).

Now we can prove that the value function of the model v = {v(x) : x ∈ E}
is (S0, Sk)-submodular. This assertion follows from the fact that the property of
(S0, Sk)-submodularity is retained for linear operations defining the operator B
as in (2.5.2), the function c(x) is (S0, Sk)-submodular and successive approxima-
tions Bnc(x) converge monotonously to the value function v(x).
�
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2.6 Algorithm
In this section we propose an algorithm and a routine for the optimal policies
calculating. The following algorithm is based on Howard policy-iteration [27]
and value-iteration [75] algorithms but with modifications according to specific
properties of the problem. The algorithm consists of two general steps: Policy
Evaluation, and Policy Improvement. At the first step the optimality equation for
given policy is solved. It is necessary to remind that only relative value function
v = {v(x) : x ∈ E} can be found from the optimality equation, that means
that one of v(x) has to be fixed as zero, for example. In the algorithm bellow
we put v(0) = 0. At the second step a new improved policy have to be found,
which minimizes the Bellman function of the model (2.12). Because of the high
dimensionality of the problem in the first step of the algorithm we also use an
iterative method to solve the equations with the given accuracy ε. The algorithm
stops when two successive approximations of policies coincide. The algorithm is
represented below.

The realization of this algorithm with respect to the multidimensional system
states is quite complex and require a lot of processing time to obtain the results.
Therefore, for description of system states changing at the control epochs we con-
sider the one-to-one correspondence between the multidimensional representation
of the system state x and the index of such a state. Namely,

#(x) = q(x) · 2K +
K∑

j=1

dj(x)2j−1 ≡ x, x = 0, I − 1 (2.47)

with I = (N − K) · 2K . Here, the first item represents the queue length in state
x, and the second one represents the binary number depending on the number of
busy servers in the sate x.
Now, if Sjx is the state after possible transition from the j-th coordinate it can be
obtained with respect to the introduced formula (2.47)

Sjx = x +
(dj − dj(x))2K

1{j 6=0}2K−j+1
,

where d0(x) = q(x).
Thus, in one-dimensional case we have
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S0x = x + 2K,

S−1
0 x = x − 2K,

Sjx = x + dj2
j−1,

S−1
j x = x − dj(x)2j−1.

2.6.1 Policy-iteration algorithm description
Step 0. Begin.

Enter the initial date:

Integer: N, K;

Real: λ, µk, ck, (k = 1, K), ε;

For the NJM–problem all the values ck = 1.

Define variables:

Real: g, v = {v(x) : x = 0, I − 1};

Integer: f = {f(x) : x = 0, I − 1};

For the NJM–problem arrange the servers in order of the increasing mean
service times µ−1

k

µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K

For the PCM–problem arrange the servers in order to increasing of the value
γk

c1

µ1

≤
c2

µ2

≤ · · · ≤
cK

µK

.

Put: n = 0, f0(x) = min{k : dk(x) = 0}, and v0(x) = c(x) for all
x = 0, I − 1. Here, and troughout this section, for the NJM–problem the
function c(x) = l(x) is introduced in (2.4) and denotes the number of jobs in
the state x and for the PCM–problem the function c(x) is a loss rate (2.25).

Step 1. Policy Evaluation.

For given policy f = fn = {fn(x) : x = 0, I − 1} beginning from n = 0
solve with given accuracy ε the equation (2.8) or (2.26) for NJM– and PCM–
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problems, respectively,

vn(x) =
1

λ + M

[

c(x) + λvn(Sfn(x)x) + M0(x)vn(x) +

+ 1{q(x)=0}

∑

j∈J1(x)

µj v(S−1
j x) +

+ 1{q(x)>0}

∑

j∈J1(x)

µj v(Sfn(x)S
−1
j S−1

0 x) − gn

]

for all x = 0, I − 1 under condition vn(0) = 0.
To do that the successive approximation method in the following sub algo-
rithm is used

Sub Algorithm.

Step 1.0. Begin. Beginning from m = 0, {v
(m)
n (x) = vn(x), x = 0, I − 1}

Step 1.1. Calculation of the successive approximation.
Calculate

g(m+1)
n =

1

λ + M

[

λv(m)
n (Sfn(0)0) − g(m)

n

]

,

v(m+1)
n (x) =

1

λ + M

[

c(x) + λv(m)
n (Sfn(x)x) + M0(x) v(m)

n (x) +

+ 1{q(x)=0}

∑

j∈J1(x)

µjv
(m)
n (S−1

j x) +

+ 1{q(x)>0}

∑

j∈J1(x)

µjv
(m)
n (Sfn(x)S

−1
j S−1

0 x) − g(m+1)
n

]

.

Step 1.2. Calculation of the accuracy.
Find

ε1 = max

[

max
{over all x}

|v(m+1)
n (x) − v(m+1)

n (x)|, |g(m+1)
n − g(m)

n |

]

.

Step 1.3. Testing of the accuracy.
Test: if ε1 < ε, remember vn = v

(m)
n , go to step 2; if not, change m

by m + 1, v
(m)
n (x) by v

(m+1)
n (x) go to step 1.1.
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Step 2. Policy Improvement.
For given solution vn = {vn(x) : x = 0, I − 1} find new policy fn+1 =
{fn+1(x) : x = 0, I − 1}, which minimize Bellman function of the model
(2.12),

fn+1(x) = argmin
k∈A0(x)

vn(x + ek) (2.48)

Step 3. Test.
Test: if fn+1(x) = fn(x) for all x go to step 4; if not, change n by n + 1
and fn by fn+1, then go to step 1.

Step 4. End.
Print results g = gn, v = vn = {vn(x) : x = 1, I − 1}, f = fn =
{fn(x) : x = 1, I − 1}. Stop.

2.6.2 Value-iteration algorithm description
In some cases it is better to use value-iteration algorithm mentioned in Section
1.4. The value-iteration algorithm computes recursively the value function v(x)
from

v(x) =
1

λ + M1(x)
min

a

[

c(x) + λv(Sa0x) +
∑

j∈J1(x)

µj v(Saj
S−1

j S−1
0 x)

]

(2.49)

starting with an arbitrary chosen function v0(x), x ∈ E. Here the quantity v(x)
can be interpreted as the minimal total expected costs per unit of time when the
current state is x. This interpretation suggests that for large time period t → ∞
the difference vn(x) − vn−1(x) on the neighbor iterations will come very close
to the minimal average cost per unit time, while the stationary policy minimizes
the right side of (2.49) for all x will be very close in costs to the minimal average
costs (for a proof see Tijms [75]). Thus, if we introduce the bounds

Mn = max
x∈E

{vn(x) − vn−1(x)},

mn = min
x∈E

{vn(x) − vn−1(x)},

in [75] it was proved, that
mn ≤ g ≤ Mn.

Now we can present the main elements of this algorithm.
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Step 0. Begin. Initialization of system parameters.

This part is the same as in previous algorithm with exception of value g.

Step 1. Policy Evaluation.

For given policy f = fn = {fn(x) : x = 0, I − 1} beginning from n = 0
solve with given accuracy ε the equation (2.49),

vn(x) =
1

λ + M

[

c(x) + λvn(Sfn(x)x) + M0(x)vn(x) +

+ 1{q(x)=0}

∑

j∈J1(x)

µj v(S−1
j x) +

+ 1{q(x)>0}

∑

j∈J1(x)

µj v(Sfn(x)S
−1
j S−1

0 x)

]

for all x = 0, I − 1 under condition vn(0) = 0.

Sub Algorithm.

Step 1.0. Begin. Beginning from m = 0, {v
(m)
n (x) = vn(x), x = 0, I − 1}

Step 1.1. Calculation of the successive approximation.
Calculate

v(m+1)
n (x) =

1

λ + M

[

c(x) + λv(m)
n (Sfn(x)x) + M0(x) v(m)

n (x) +

+ 1{q(x)=0}

∑

j∈J1(x)

µjv
(m)
n (S−1

j x) +

+ 1{q(x)>0}

∑

j∈J1(x)

µjv
(m)
n (Sfn(x)S

−1
j S−1

0 x) − g(m+1)
n

]

.

Step 1.2. Compute the bounds.

Mn = max
x∈E

{vn(x) − vn−1(x)},

mn = min
x∈E

{vn(x) − vn−1(x)},
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Step 1.3. Calculation of the accuracy.
Find

ε1 ≥
Mn − mn

mn

.

Step 1.4. Testing of the accuracy.
Test: if ε1 < ε, remember vn = v

(m)
n , go to step 2; if not, change m

by m + 1, v
(m)
n (x) by v

(m+1)
n (x) go to step 1.1.

Steps 2-4 are the same as in previous algorithm.

The finite convergence of the policy-iteration and value iteration algorithms was
discussed by Puterman in [58] and Tijms in [75].

2.6.3 Routine
The computer program was written in C++ with using objective oriented tools. It
was often used dynamic data structure for the program members description. The
program was created as standard application for Windows and has quite friendly
interface, so it is very simple to use it by any user which has not much experience
in programming. This program was adapted for Linux operational system as well.
The charts were constructed by means of the programs Advanced Grapher and
Gnuplot. The program has several regimes to obtain the results which should be
chosen from the main menu. One of them allows to obtain unit result for fixed
initial parameters, while another one deals with varied parameters and allows to
obtain series of results which can be used to build the diagrams.

Input information consists of the number of servers K, buffer size B − K, as
well as initial parameters, such as arrival λ and service µk (k = 1, K) intensities,
waiting c0 and using ck (k = 1, K) costs, and accuracy ε. The values of these
parameters can be entered from keyboard or from some file. As output the pro-
gram gives the optimal policy in form of a table for unit result regime, or in form
of diagrams for multiple results regime.

The convergence rate is strongly associate with the values of initial parameters
but the policy-iteration algorithm requires typically quite small number of itera-
tions regardless of the problem size. For the most examples to achieve accuracy
to four decimal places, policy improvement requires 3 iterations (on average) and
policy evaluation requires 200, 50 and 10 iterations (on average) for each policy
improvement, consequently. The processing time of the program strongly depends
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on values of initial system parameters but for most of examples is negligible: e.g.
if the number of states is about 10000, the pure processing time does not exceed
in average the value 2.325 seconds for processor Pentium II 500 MHz. Therefore,
the number of states in the system has to be restricted only in the case of operating
storage lack.
The value iteration algorithm has less iterations for small number of system states
but it depends strongly on the specific problem, in particular, on the number of
system states.

2.7 Numerical analysis
Numerical analysis is based on the series of experiments. The queueing systems
are assumed to be with K=5 or K=3 servers and the buffer size is quite large
B=100 in order to simulate the system with infinite buffer. The optimal con-
trol policies can be represented by means of control tables and control diagrams.
While in the control tables we obtain the optimal control rule for each system
state when the values of system parameters are fixed, the control diagrams allow
to estimate the behavior of optimal policies when the values of system parameters
are varied. In the present section we use the both of optimal control policies rep-
resentations.

By means of experiments we confirm the theoretical results and conjectures,
and also provide the investigation of threshold function behavior with varied sys-
tem parameters. The numerical examples in this section organized as follows.

In Section 2.7.1 we investigate the influence of the slower server on the be-
havior of thresholds. For most values of system parameters, the optimal threshold
does not depend on the states of slower servers. But it is interesting to consider the
reasons of its appearance. In Section 2.7.2 the NJM–problem without penalties for
waiting in queue and server usage costs. In Section 2.7.3 and 2.7.4 experiments
for the PCM–problem with set-up penalties for waiting in the queue and server
usage costs are discussed. In Section 2.7.3 we investigate the optimal policy for
the system with condition for initial parameters (2.30) and (2.31). In Section 2.7.4
we discuss the PCM–problem under condition (2.32).

2.7.1 Dependence of thresholds on the state of slow servers
In this section we consider some numerical examples for the M/M/K/B − K
queueing system with K = 3 servers. The aim of this example consists in the
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following: With respect to the system states x = (q, 1, 0, 0) and y = (q, 1, 0, 1)
the assignment to the second server can depend not only on the number of jobs in
the queue, but also on the state of the third server. In this example it is optimal
to make an assignment in state x but not in state y. Without loss of generality we
consider such system parameters that λ + M0 + M1 = λ + M = 1, where M as
before is a total service intensity of all servers. We solve optimality equation for
the NJM–problem with the following parameters:

• λ = 0.238 , µ1 = 0.621 , µ2 = 0.071 and µ3 = 0.070,

• λ = 0.477 , µ1 = 0.356 , µ2 = 0.096 and µ3 = 0.070.

The results of optimal solution for the first and second group of system parameters
are represented in control Table 2.23 and control Table 2.24, respectively.

Table 2.23 Optimal control for any system state

System State x Queue length q(x)
(d1 , d2, d3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

(0,0,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,0) 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,1,0) 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,1) 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.24
System State x Queue length q(x)
(d1 , d2, d3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

(0,0,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,0) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,1,0) 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We notice that for most parameter values the optimal decision can be made in-
dependently of the states of the slower servers. But it is interesting to consider
the reasons of such possible dependence. It is evident that in the NJM–problem
setting with arrivals, the optimal policy assigns a job to the fastest free server in
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states for which this would not be optimal if there were no arrivals. This is be-
cause the system should be ready for possible arrivals, which, if they occur, will
wish to see a less congested system.

Consider the system with three servers in the states S0S1x and S1S2x, where
x = (0, . . . , 0). Let us consider the case of potential service completion at the
second server, taking into account a large number q of accompanied arrivals. Be-
cause of large q it is optimal to occupy all accessible idle servers. The men-
tioned above states become Sq−1

0 S1S2S3x and Sq−2
0 S1S2S3x. Thus, the differ-

ence v(Sq−1
0 S1S2S3x)−v(Sq−2

0 S1S2S3x) measures the advantage that will be ob-
tained in the case if the assignment to the second processor S0S1x → S1S2x. The
events of service completion on the second server provide the incentive to make
an assignment to the second server. But, if the two initial states are S0S1S3x and
S1S2S3x, the measure of advantage if service completion takes place is v(Sq

0S1S2S3x)−
v(Sq−1

0 S1S2S3x). Because we expect that the value function v(Sq
0S1S2S3x) is

convex in q, it is plausible that the incentive to make an assignment to the second
server is greater in state S0S1S3x than in S0S1x. Numerical examples proposed
in Table 2.25 confirm our expectations.

Table 2.25 Value function for system states

System State x value function v(x)
(q, d1, d2, d3) example 1 example 2

(0,0,0,0) 0 0
(0,1,0,0) 2.6034 19.4480
(0,0,1,0) 14.0865 28.3810
(0,0,0,1) 14.2872 33.7009
(1,1,0,0) 7.7979 51.3142
(0,1,1,0) 16.6905 51.4444
(0,1,0,1) 16.8910 55.9981
(0,0,1,1) 28.3747 65.9866
(2,1,0,0) 15.5520 96.1454
(1,1,1,0) 21.8874 90.3521
(1,1,0,1) 22.0873 93.2714
(0,1,1,1) 30.9798 93.2581
(3,1,0,0) 25.7823 154.6580
(2,1,1,0) 29.6487 142.7630
(2,1,0,1) 29.8469 145.4230
(1,1,1,1) 36.1809 140.4050

. . . . . . -
(6,1,0,0) 68.3382 -
(5,1,1,0) 66.8622 -
(5,1,0,1) 66.9946 -
(4,1,1,1) 66.9830 -
(7,1,0,0) 85.9322 -
(6,1,1,0) 82.9672 -
(6,1,0,1) 83.0730 -
(5,1,1,1) 81.9234 -
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Numerical examples show that the threshold levels have a weak dependence of
slower servers’ states. According to our observations, the optimal threshold may
vary by at most 1 when the state of a slower server changes.

2.7.2 Numerical examples. NJM–problem. Threshold func-
tion

In this section we consider some numerical examples for the NJM–problem. Val-
ues of service intensities µi for the system with K=5 servers are presented in
Tables 2.26. The optimal control policies if the input intensity λ=0.01 are given
in control Table 2.27.

Table 2.26 Values of initial system parameters for M/M/5/100 queue

i 1 2 3 4 5
µi 1.90 0.63 0.52 0.45 0.30

Table 2.27 Optimal control in each system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5
(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The optimal control rules which show the first using of the slower servers are
underlined. The results given in this control table verify the theoretical results
about the threshold structure of an optimal control rule. While the fastest server is
always activated, each slower server has threshold which prescribes the switching
on these servers. Therefore, the optimal control rule can be described by means
of threshold sequence

0 = q∗1 ≤ q∗2 ≤ · · · ≤ q∗K ,

and the slower server s = 1, . . . , l are used when the number of jobs in the queue
is between the levels q∗l and q∗l+1 with q∗K+1 = ∞. The theoretical optimality of
this control rule is discussed in Section 2.4.

Now the aim is to investigate the behavior of optimal control policies when
input intensity λ and service intensities µk are varied.
With respect to the formula (2.22) for the system in light traffic, that is λ

M1
→ 0,
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it is possible analytically obtain optimal thresholds. But in the case of an ordinary
traffic, by means of the formula (2.22) we can obtain only the upper bound of
the possible thresholds, that will be the main goal of a discussion in the present
section.
In Table 2.28 some results of optimal threshold levels using the computer program
and the NJM threshold formula for the system with varied values of initial system
parameters are shown. In these examples one of the parameters is being changed
while all others are fixed.

Table 2.28 Optimal thresholds behavior

System parameters
λ µ1 µ2 µ3

0.1 0.40 0.10 0.05

Varied par. Threshold levels
comp. program

Threshold levels
formula

q∗1 q∗2 q∗3 q∗1 q∗2 q∗3

λ = 0.01 0 2 7 0 2 7
λ = 0.26 0 1 4 0 2 7
λ = 0.51 0 1 2 0 2 7

µ1 = 0.400 0 2 6 0 2 7
µ1 = 1.000 0 8 18 0 8 19
µ1 = 1.500 0 13 28 0 13 29

µ2 = 0.100 0 2 6 0 2 7
µ2 = 0.200 0 0 8 0 0 9
µ2 = 0.300 0 0 10 0 0 11

µ3 = 0.050 0 2 6 0 2 7
µ3 = 0.070 0 2 4 0 2 5
µ3 = 0.090 0 2 2 0 2 3

Some results of the optimal policies calculations for the NJM–problem are sum-
marized in control diagrams shown in Figures 1.1-1.6 in Appendix 2.9.1. The
input intensities are varied over the figures:

• λ = 0.51 in Figures 1.1, 1.4 ,

• λ = 0.26 in Figures 1.2, 1.5 ,

• λ = 0.01 in Figures 1.3, 1.6 .

In diagrams presented in Figures 1.1–1.3 the changing of threshold levels q∗
2 for

the second (pictures labeled by letter "a") and q∗3 for the third (pictures labeled by
letter "b") servers as functions of first service intensity µ1 for different values of
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the second service intensity µ2, are shown.
One can see that in the pictures "b" the server with largest service intensity much
more influences the thresholds of the slowest server than the second server does.
These diagrams show that the curves have a stepped structure that demonstrates
threshold phenomenon of the optimal policies for the model under consideration.
The threshold functions depend on the service intensities in such a manner that the
threshold levels monotonously increase when the first and the second service in-
tensities increase. Moreover, they increase also whenthe input intensity decreases.
Thus, the value obtained by the NJM threshold formula (2.22) calculates the upper
bound for using the fastest available in state x server.

The diagrams, presented in Figures 1.4–1.6, illustrate the threshold levels q∗
3 as

the function of the sum µ1 +µ2 (pictures labeled by letter "a") for some fixed third
service intensity, and (pictures labeled by letter "b") for different values of µ3. The
arrival intensities λ were varied over the figures as before. From these diagrams
one can see that the threshold for the third server depends on the sum µ1 + µ2 as
in the formula (2.22), also if λ 6= 0. The threshold function for the second server
has a weak dependence on the arrival rate λ and can be approximately obtained
by (2.22)

q∗2 =
µ1

µ2
− 1.

The threshold function for the third server is more sensitive to the increasing of λ,
therefore by virtue of (2.22)

q∗3 =
µ1 + µ2

µ3
− 2

one can obtain the upper level for possible thresholds.

2.7.3 Numerical examples. PCM–problem. Threshold func-
tion

In this section we consider some numerical examples for the PCM–problem un-
der the conditions (2.29) and (2.32), that is when the usage costs of the servers
decrease slower than the corresponding service intensities. The service intensities
(K=5) are presented in Table 2.29. The results of optimal policy calculation for
the system with input intensity λ=0.1 are given in control Table 2.30.
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Table 2.29 Values of initial system parameters for M/M/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66

Table 2.30 Optimal control for any system state
System State x Queue length q(x)

(d1 , d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5
(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It is possible to see that the optimal control rule as in previous case can be repre-
sented by the following threshold sequence

0 = q∗1 ≤ q∗2 ≤ · · · ≤ q∗K .

As we have mentioned above, the members of this control sequence have quite
a weak dependence of the system states, i.e. the weak dependence of slower
servers state, see Section 2.7.1. Therefore we omit the argument of the system
state x. With respect to this control rule the server with the lowest mean usage
cost γ1 = min

j∈J0(x)
{γj} is always activated and provides the service with the largest

service intensity µ1 = max
j∈J0(x)

{µj}. The slower servers s = 1, . . . , l are used

when the number of jobs in the system is between the levels q∗l and q∗l+1 where
q∗K+1 = ∞. Thus, this numerical results verify the theoretical optimality of this
control rule, discussed in Section 2.5.

In Table 2.31 we show some results of the optimal threshold levels calculation
by means of the program and the PCM threshold formula (2.34) in case of light–
traffic operation. In these examples one of the parameters is being changed while
all others are fixed.

Table 2.31 Optimal thresholds behavior

System parameters
λ c0 c1 µ1 c2 µ2 c3 µ3

0.1 1.00 2.00 0.40 1.50 0.10 1.00 0.05
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Varied par. Threshold levels
comp. program

Threshold levels
formula

q∗1 q∗2 q∗3 q∗1 q∗2 q∗3

λ = 0.01 0 3 6 0 3 6
λ = 0.26 0 2 3 0 3 6
λ = 0.51 0 1 2 0 3 6

c0 = 0.20 0 15 25 0 19 31
c0 = 0.50 0 6 10 0 7 12
c0 = 1.00 0 3 5 0 3 6

µ1 = 0.400 0 3 5 0 3 6
µ1 = 1.000 0 11 16 0 12 18
µ1 = 1.500 0 19 26 0 20 28

c1 = 2.00 0 3 5 0 3 6
c1 = 4.00 0 1 3 0 1 4
c1 = 5.50 0 0 2 0 0 2

µ2 = 0.10 0 3 5 0 3 6
µ2 = 0.20 0 0 7 0 0 8
µ2 = 0.30 0 0 9 0 0 10

c2 = 1.50 0 3 5 0 3 6
c2 = 1.70 0 3 4 0 4 6
c2 = 1.90 0 4 4 0 5 5

µ3 = 0.02 0 3 17 0 3 21
µ3 = 0.05 0 3 5 0 3 6
µ3 = 0.06 0 3 3 0 3 4

c3 = 0.80 0 3 3 0 3 4
c3 = 1.00 0 3 5 0 3 6
c3 = 1.40 0 3 8 0 3 10

Another possible way of numerical investigation is a control diagram. Some
results of the optimal policies calculation for the PCM–problem with servers’ ar-
rangement (2.29) under conditions (2.30) and (2.31) are summarized in the control
diagrams shown in Figures 2.1, 2.2 and 3.1–3.9 in Appendices 2.9.2 and 2.9.3,
respectively. Because of the numerous parameters which influence the decision
choice, we need three–dimensional diagrams. Such diagrams are represented in
Figure 2.1 and 2.2 of Appendix 2.9.2.
The vertical axis denotes the queue length q for a optimal threshold level, the
horizontal axis denotes the values of the first service intensity µ1 and the third
one denotes the values of the usage cost for the first server c1. In these pictures
the threshold levels q∗2 for the second server (Figure 1) and the threshold levels
q∗3 for the third server (Figure 2) represent the threshold function under variation
of the following values: The input intensity (λ = 1.0 on the picture labeled by
letter "a" and λ = 0.5 on the picture labeled by letter "b"), the first and second
service intensities (µ1 and µ2), usage costs (c1 and c2). Curves of different types
are used for different service intensities of the second server, and several curves



2.7. NUMERICAL ANALYSIS 79

of the same group have different shades 1 corresponding to different values of the
second server usage costs.
Keep in mind that in these figures the servers are arranged according to the rule
(2.29) in order of their mean usage costs increasing, i.e.

c1

µ1
≤

c2

µ2
≤

c3

µ3
,

and the rule (2.30). Notice that if all costs c0, c1, c2, c3 are equal to one, the
problem turns into the problem of minimizing the mean number of jobs in the
system.
The values of the service intensities and the usage costs were chosen according to
the introduced inequalities. The waiting cost c0 as well as the parameters of the
third server were fixed at c0 = c3 = 1.0 , µ3 = 0.1 which gives γ3 = 10.0. Other
parameters were varied in the following way:

• The curves labeled with the number 1 correspond to the case when µ2 =
0.1, c2 = 1.0 with γ2 = 10.0;

• The curves labeled with the number 2 correspond to the case when µ2 =
0.3, and according to the above condition we consider different possible
values of the usage cost c2 = {1.0; 2.0; 3.0}, thus γ2 = {3.3; 6.6; 10.0},
respectively;

• The curves labeled with the number 3 represent the case when µ2 = 0.5,
and as before, we consider different possible values of the usage cost c2 =
{1.0; 2.0; 3.0; 4.0; 5.0} with γ2 = {2.0; 4.0; 6.0; 8.0; 10.0}.

The highest curve of the same shade on these diagrams corresponds to the highest
usage cost of the second server. Each associated bottom curve of the same shade
corresponds to the (decreasing) values of the usage cost c2.
These figures provide the following conclusions:
The optimal policies for the PCM–problem as well as for the NJM–problem are
of threshold type. The behavior of the threshold levels depends not only on the
values of arrival and service intensities but also depends on the usage costs of
the servers. The optimal control which specifies which of the server should be
switched on depends strongly on the values of γk.
One can see from the diagrams that the optimal threshold levels monotonously
increase in the following cases:

1In the screen these curves have given with different colors, which looks in the figures like
curves of different shades.
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1. The service intensity of the first server increases and/or the appropriate us-
age cost decreases.

2. The service intensity of the second server decreases and/or the appropriate
usage cost increases.

3. Input intensity decreases.

These results justify the theoretical results obtained in previous sections for the
system with imposed arrangement (2.29) under conditions (2.30) and (2.31).

Now we shall consider the threshold function behavior and estimate the in-
fluence of the parameter γk on the optimal control. To analyze the results of a
program we also considered two-dimensional diagrams for the threshold levels
behavior. In Figures 3.1–3.3 in Appendix 2.9.3 we give the results which repre-
sent the threshold functions q∗2 for the second (pictures labeled by letter "a") and
q∗3 for the third (pictures labeled by letter "b") servers The input intensities are
varied over the figures:

• λ = 0.51 in Figure 3.1,

• λ = 0.26 in Figure 3.2,

• λ = 0.01 in Figure 3.3.

In all of these examples the value of waiting cost was fixed c0=1. In the tables
below the values of system parameters for the function q∗2 and q∗3 are given.

Table 2.32 Values of system parameters for the function q∗2 (a)

Figure a: γ2 = c2
µ2

=30.00, γ3 = c3
µ3

= 40.00

c1 µ1 c2 µ2 c3 µ3

3.1 1.00 0.45 1.50 0.05 0.40 0.01
λ=0.51 3.00 0.46 3.00 0.10 0.80 0.02

3.2 5.00 0.47 4.50 0.15 1.20 0.03
λ=0.26 8.00 0.48 6.00 0.20 1.60 0.04

3.3 12.00 0.49 7.50 0.25 2.00 0.05
λ =0.01 . . .
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Table 2.33 Values of system parameters for the functions q∗3 (b)

Figure b: γ3 = c3
µ3

= 40.00

c1 µ1 c2 µ2 c3 µ3 c1 + c2 µ1 + µ2

3.1 1.00 0.45 1.50 0.05 0.40 0.01 2.50 0.50
λ=0.51 1.50 0.46 1.00 0.10 0.80 0.02 4.50 . . .

1.00 0.47 3.50 0.15 1.20 0.03 6.50 0.55
3.2 2.50 0.48 2.00 0.20 1.60 0.04 9.50 . . .

λ=0.26 2.00 0.49 4.50 0.25 2.00 0.05 13.50 0.60
4.00 . . . 2.50 . . .

3.3 4.00 5.50 0.65
λ =0.01 6.00 3.50 . . .

7.50 6.00 0.70
8.50 5.00 . . .

The curves q∗2 represent the threshold function under variation of arguments µ1

and c1. The values c2 and µ2 as well as c3 and µ3 are chosen in such a way that
γ2 = c2

µ2
=30.00 and γ3 = c3

µ3
=40.00. The threshold function for the second server

for the fixed parameters c0, γ2 and γ3 depends mainly on the values of c1 and µ1.
The word "mainly" means that only in some cases of normal and heavy traffic
we have small fluctuations of the curves because of different values of c2 and
µ2. With small decreasing of the traffic capacity, these fluctuations also decrease
and vanish. One more evident result is that the threshold levels for the second
server have weak dependence of the arrival intensity λ. Therefore, assuming an
independence on the input intensity, to obtain the optimal threshold levels q∗

2 for
the second server it is possible to use the formula (2.34)

q∗2 ≈
µ1

c0

[

γ2 − γ1

]

.

The curves q∗3 is presented as a function of arguments µ1 + µ2 and c1 + c2. In the
case of large input intensity λ in Figures 3.1 (b) and 3.2 (b) the threshold func-
tions have small dependence of the different values of c1, c2 and µ1, µ2. While
the input intensity λ is getting smaller, e.g. in the Figure 3.3 (b), the thresholds
levels depend only on the sums µ1 + µ2 and c1 + c2. The arrival intensity strongly
influences the threshold functions for the third server, i.e. if the input intensity in-
creases threshold levels decreases. This conjecture seems quite reasonable, since
if arrival intensity is getting higher, there is a need to be ready for possible future
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arrivals, therefore, the controller uses the sever with smaller ratio γk more often,
that is when the queue length is smaller. In this case the formula (2.34)

q∗3 ≤
µ1 + µ2

c0

[

γ3 −
c1 + c2

µ1 + µ2

]

represents only the upper bound for possible threshold levels for the switching on
the third server.

In Figures 3.4–3.6 and 3.7–3.9 in Appendix 2.9.3 the diagrams for the threshold
levels behavior depending on the parameters γ1, γ2 and c1+c2

µ1+µ2
,γ3 for the second q∗2

and the third q∗3 servers are shown, respectively. They represent the changing of
the threshold levels for the second server as a function under variation of the γ1,
γ2. For the third server the curves represent a threshold function under variation
of the ratio c1+c2

µ1+µ2
, γ3 with input intensity λ = 0.51.

The curves in these pictures correspond to the same value of γ2 and γ3, but with
different values of c2, µ2 and c3, µ3 marked directly on the figures.
The values of system parameters are given below.

Table 2.34 Values of system parameters for the function q∗2

Figure a, γ2 = c2
µ2

= 6.67 b, γ2 = c2
µ2

= 9.70 γ3 = c3
µ3

= 10.00

3.4 γ2 = 2.00
0.30

γ2 = 2.91
0.30

γ3 = 1.00
0.10

3.5 γ2 = 3.33
0.50

γ2 = 4.85
0.50

γ3 = 1.00
0.10

3.6 γ2 = 5.33
0.80

γ2 = 7.76
0.80

γ3 = 1.00
0.10

Table 2.35 Values of system parameters for the function q∗3

Figure a, γ2 = c2
µ2

= 6.67 b, γ2 = c2
µ2

= 9.70 γ3 = c3
µ3

= 10.00

3.7 γ2 = 3.33
0.50

γ2 = 4.85
0.50

γ3 = 1.00
0.10

3.8 γ2 = 3.33
0.50

γ2 = 4.85
0.50

γ3 = 3.00
0.30

3.9 γ2 = 3.33
0.50

γ2 = 4.85
0.50

γ3 = 4.00
0.40

It is possible to see that the appropriate curves have the analogous structure. Thus
we obtain the numerical evidence of a conjecture that the optimal threshold levels
for the second server essentially depends on the values of the first service inten-
sity µ1 and the appropriate usage cost c1. Nevertheless, the appropriate curves for
different values of γ2 have the analogous structure, and it shows that the thresh-
old level of the second server mainly depends on the parameter γ2. The optimal
threshold levels for the third server essentially depends on the values of the sum
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µ1 + µ2 and c1 + c2. Similar to the second server, the appropriate curves for dif-
ferent values of γ3 have also the analogous structure and show that threshold level
for the third server mainly depends on the parameter γ3.
The threshold level for the second server monotonously increases when γ1 de-
creases and γ2 increases. For the third server the thresholds monotonously in-
crease when γ1, γ2 decreases and the ration c1+c2

µ1+µ2
increases. Moreover, thresh-

olds for the second server exist only if γ1 < γ2 and in turn, the thresholds for the
third server exist only if γ2 < γ3, according to the introduced order of the servers.
Therefore, if γ1 = γ2, both of the servers are used under the same condition. If
γ1 > γ2, the first and the second servers are interchanged and the thresholds ap-
pear for the first server. Finally, if the value of γ1 becomes greater then γ3 the first
server becomes the third one.
In all these examples with a fixed value of the waiting cost c0 = 1, the first server
with smallest γ1 is used immediately after an arrival, without putting the customer
into the buffer. In other words, there the threshold level for the first server q∗

1 = 0.

2.7.4 Numerical examples. PCM–problem. Two-level function
In this section we give some numerical results of an optimal policy calculation for
the PCM–problem under the conditions (2.29) and (2.32), that is when the usage
costs of the servers increase faster than the corresponding service intensities. The
structure of an optimal control rule for this type of model for the system with K=5
servers, for input intensity λ=0.1 and with parameters in Table 2.36 is presented in
control Table 2.37. The optimal control policies for each system state are proposed
in Table 2.37 where threshold levels are marked by bold font and underlined. In
this example, if the queue length q(x) > 90 for any servers state, the optimal
control rule consists in using the server with the largest mean usage cost (the
fastest and the most expensive). Thus, for each state the optimal control rule is
characterized by a threshold sequence for any available server in that state

0 ≤ q∗j (x) ≤ q∗j+1(x) · · · ≤ q∗i−1 ≤ q∗i (x) < q∗i+1(x) = ∞,

where j, j + 1, i ∈ J0(x), j ≤ i with i = max{j : j ∈ J0(x)}. With respect
to this switching rule, j-th server is used only if the current queue length satisfies
the condition 0 ≤ q∗j (x) ≤ q(x) < q∗j+1(x), j + 1-st server is used if q∗j+1(x) ≤
q(x) < q∗j+2(x) and so on. The last available in state x server with i = max

k
γk

has to be switched on only if q(x) ≥ q∗i (x) and q∗K+1 = ∞.
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Table 2.36 Values of initial system parameters for M/M/5/100 queue

i 0 1 2 3 4 5
ci 0.20 1.00 1.70 2.30 3.50 7.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 3.33 3.78 4.42 5.56 7.78

Table 2.37 Optimal control for any system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 . . . 10 11 12 . . . 19 20 21 . . . 23 24 . . .

(0,0,0,0,0) 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5
(1,0,0,0,0) 0 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
(0,1,0,0,0) 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3
(1,1,0,0,0) 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1,0,0) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,0,1,0,0) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1,0,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1,0,0) 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(0,0,0,1,0) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3
(1,0,0,1,0) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0,1,0) 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
(1,1,0,1,0) 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1,1,0) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,0,1,1,0) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1,1,0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0,0,0,0,1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3
(1,0,0,0,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0,0,1) 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3
(1,1,0,0,1) 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1,0,1) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
(1,0,1,0,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1,0,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1,0,1) 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(0,0,0,1,1) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
(1,0,0,1,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,0,1,1) 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
(1,1,0,1,1) 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(0,0,1,1,1) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
(1,0,1,1,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,1,1,1,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

To analyze the behavior of the threshold sequences in each state when the values
of system parameters are varied we consider the system with K=3 servers and a
large buffer B=100.
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Table 2.38 Optimal thresholds behavior for each system state

System parameters
λ c0 c1 µ1 c2 µ2 c3 µ3

0.010 0.200 1.000 0.020 5.000 0.050 50.00 0.450

(d1, d2, d3) (0,0,0) (0,0,1) (1,0,0) (1,0,1) (1,1,0) (0,1,0)
Varied par. q∗1 q∗2 q∗3 q∗1 q∗2 q∗2 q∗3 q∗2 q∗3 q∗1 q∗3

λ = 0.005 0,5,11 0,10,- -,2,15 -,2,- -,-,12 0,-,15
λ = 0.050 0,3,8 0,4,- -,0,10 -,0,- -,-,5 0,-,8
λ = 0.150 0,1,6 0,1,- -,0,8 -,0,- -,-,2 0,-,6

c0 = 0.200 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
c0 = 0.500 0,2,5 0,4,- -,0,6 -,0,- -,-,4 0,-,6
c0 = 1.000 0,1,2 0,3,- -,0,3 -,0,- -,-,2 0,-,3

µ1 = 0.020 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
µ1 = 0.023 0,8,12 0,13,- -,2,16 -,2,- -,-,13 0,-,15
µ1 = 0.025 0,11,12 0,17,- -,3,17 -,3,- -,-,14 0,-,17

c1 = 0.500 0,9,12 0,15,- -,3,16 -,3,- -,-,13 0,-,16
c1 = 1.000 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
c1 = 1.500 0,2,11 0,3,- -,0,13 -,0,- -,-,10 0,-,12

µ2 = 0.050 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
µ2 = 0.080 0,2,27 0,4,- -,0,34 -,0,- -,-,22 0,-,25
µ2 = 0.100 0,0,46 0,0,- -,0,66 -,0,- -,-,33 0,-,36

c2 = 4.000 0,3,18 0,5,- -,1,21 -,1,- -,-,16 0,-,19
c2 = 5.000 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
c2 = 5.500 0,6,7 0,11,- -,2,11 -,2,- -,-,9 0,-,11

µ3 = 0.350 0,5,27 0,9,- -,2,33 -,2,- -,-,22 0,-,26
µ3 = 0.400 0,5,18 0,9,- -,2,21 -,2,- -,-,16 0,-,19
µ3 = 0.450 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14

c3 = 45.00 0,5,6 0,9,- -,2,10 -,2,- -,-,7 0,-,10
c3 = 50.00 0,5,12 0,9,- -,2,14 -,2,- -,-,11 0,-,14
c3 = 60.00 0,5,22 0,9,- -,2,24 -,2,- -,-,19 0,-,22

In Table 2.38 the results of optimal threshold levels are proposed for each sys-
tem state where they exist. On the top of the table the values of initial system
parameters are given. Then one of them is varied while all others are fixed. Now
we give some explanations to proposed results. The optimal values of thresholds
q∗j (x) depend strongly on the specific value of system parameters. With increasing
arrival intensity λ threshold levels decrease, that is the faster but more expensive
server is getting more preferable. The same behavior takes place in the case when
the waiting cost c0 increases. If the service intensity µ1 of the cheapest server
grows, the thresholds for using the faster but more expensive servers increase. If
the service intensity µ2 increases then the threshold level for the second server
decreases, but for the third server the threshold increases. If the third service in-
tensity µ3 increases, then only the thresholds for the third server change, namely,
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they decrease. Finally, if we increase the values of the usage costs c1, c2 and c3,
the contrary to the corresponding service intensities effect takes place.

The numerical results show that if no arrivals taking into account the controller
at the beginning of the queue length growth has to use available server with the
fewest ratio γk, that is, the server with smallest index k. Also it is true in the case
of light traffic λ ≈ 0. Otherwise, the first server which is used by controller may
not be necessary with the fewest γk.

In the case of light traffic the threshold levels for the servers in the state
(0, 0, 0) can be obtained directly, that is in this state the threshold sequence is
0 = q∗1(x) ≤ q∗2(x) ≤ q∗3(x) ≤ q∗4(x) = ∞ where

q∗1(x) = 0,

q∗2(x) =
1

c0

[
1

µ1

−
1

µ2

]−1[

γ2 − γ1

]

,

q∗3(x) =
1

c0

[
1

µ2

−
1

µ3

]−1[

γ3 − γ2

]

,

q∗4(x) = ∞,

and j-th server is used only if q∗j (x) ≤ q(x) < q∗j+1(x). Also this formula can
be successfully applied to the system with two servers. For multi-server case
threshold levels q∗j for each server strongly depend on which other servers are
busy. Therefore, it is necessary to use for the functions q∗j (x) the argument x and
the above formulas can not be used to calculate thresholds in the states where
some other servers are busy.
Threshold levels for the first exploitable server can be obtained as before by

q∗2 =
1

c0

[
1

µ1

]−1[

γ2 − γ1

]

,

q∗3 =
1

c0

[
1

µ1 + µ2

]−1[

γ3 −
c1 + c2

µ1 + µ2

]

and independ on the states of servers with larger mean usage costs.
The examples of dynamic behavior of threshold levels when the values of the

initial system parameters are varied are proposed in control diagrams shown in
Figures 4.1–4.5 of Appendix 2.9.4. As mentioned above for this type of the PCM–
problem the values of the initial system parameters satisfy the conditions (2.29)
and (2.32).
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The dynamic behavior of two-level threshold functions and thresholds between
queue and server are proposed for each state of the system under consideration as
follows

• x = (0, 0, 0), two-level thresholds [q∗1(x), q∗2(x)), [q∗2(x), q∗3(x)), [q∗3(x), q∗4(x)),
in Figure 4.1 λ = 0.01 and
in Figure 4.2 λ = 0.1;

• x = (0, 0, 1), two-level thresholds [q∗1(x), q∗2(x)), [q∗2(x), q∗4(x))
in Figure 4.1 λ = 0.01 and
in Figure 4.2 λ = 0.1;

• x = (1, 0, 0), two-level thresholds [q∗2(x), q∗3(x)), [q∗3(x), q∗4(x)), thresholds
between queue and second server q∗2 = q∗2(x),
in Figure 4.3 λ = 0.01 and
in Figure 4.4 λ = 0.1;

• x = (1, 0, 1), thresholds between queue and second server q∗
2 ,

in Figure 4.3 λ = 0.01 and
in Figure 4.4 λ = 0.1;

• x = (1, 1, 0), threshold between queue and third server q∗3 ,
in Figure 4.3 λ = 0.01 and
in Figure 4.4 λ = 0.1;

• x = (0, 0, 0), two-level thresholds [q∗1(x), q∗3(x)), [q∗3(x), q∗4(x)),
in Figure 4.5 (a) λ = 0.01 and
in Figure 4.5 (b) λ = 0.1;

• x = (0, 1, 0), two-level thresholds [q∗1(x), q∗3(x)), [q∗3(x), q∗4(x)),
in Figure 4.5 (a) λ = 0.01 and
in Figure 4.5 (b),(c) λ = 0.1;

In all these examples q∗1 = q∗1(x) = 0 and q∗4(x) = ∞. In the diagrams presented
the changing of the two-level thresholds are shown as the threshold functions un-
der variation of the first service intensity µ1, first usage cost c1, second µ2 and
third µ3 service intensities. The values of the initial system parameters are varied
over the figures as follows:

• γ2 = c2
µ2

= 5 .00
0.05

=100.00,
γ3 = c3

µ3
= 50.00

0.45
=111.11,
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Figures 4.1–4.4, pictures labeled by letter "a", Figure 4.5, pictures labeled
by letter "a" and "b";

• γ2 = c2
µ2

= 5 .00
0.10

=50.00,
γ3 = c3

µ3
= 50.00

0.40
=125.00,

Figures 4.1–4.4, pictures labeled by letter "b", Figure 4.5, picture labeled
by letter "c";

• γ2 = c2
µ2

= 5 .00
0.15

=33.33,
γ3 = c3

µ3
= 50.00

0.35
=142.86,

Figures 4.1–4.4, pictures labeled by letter "c".

The first usage cost takes its values c1 = {1, 2, 3, 4}. The curves of the specified
shades correspond to the case c1 = 1. All other similar curves represent the cases
c1 = {2, 3, 4}, respectively.

Proposed control diagrams allow us to make some conclusions about the behav-
ior of the two-level thresholds when the values of system parameters are varied.
With respect to observation when the service intensity of the cheaper servers in-
creases or/and when the usage cost of the slower servers decreases, the incentive
to make an assignment to the servers with the lower mean usage cost is getting
higher Otherwise, the incentive to make an assignment decreases. All the servers
which are used by controller in a certain state have the order of mean usage cost
increasing with respect to the growth of the queue length. But it is not necessary
at all that controller uses all available servers in some state. Under some values
of system parameters with respect to the optimal control rule the controller can
miss some available servers and at once switch on the server with the larger mean
usage cost. This case is proposed in control diagrams shown in Figure 4.5 when
in the state x = (0, 0, 0) the controller at first uses the first server and then it turns
on the third one missing the second server.

Numerical examples show that in each state there exist a threshold sequence
which includes two threshold levels for available servers. If the queue length is
greater some level q(x) > q∗, then in any system state x the optimal control rule
consists in using the server with the largest mean usage cost. Therefore, if the
queue length is quite small then the main characteristic which is used by con-
troller to choose an optimal server is server’s usage cost. While the queue length
increases more important becomes the information about the service intensity.
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2.8 Conclusions
In this chapter we have considered the problem of controlling a multi-server queue-
ing system like M/M/K/B−K. We presented a novel use of iteration procedures
for queueing systems which constitutes the combination of dynamic programming
and probabilistic arguments. We have shown that an optimal policy of job alloca-
tion for such a system with respect to minimization the mean number of jobs in
the system is of threshold type, and the decision maker has to activate the server
with highest intensity, if necessary. In some cases the exact or approximate value
of the optimal threshold can be obtained analytically.

The problem of total processing cost minimization includes also usage costs
for servers and the problem is divided into two subcases with respect to different
system parameters, such as the usage cost ck and the service intensity µk. In the
first subcase, when the usage costs of the servers decrease slower than the service
intensities, we have shown and numerically verified that the optimal policy is also
of threshold type and the decision maker should use the server with minimal value
of mean usage cost γk. In the second subcase, when the usage costs of the servers
increase faster than the service intensities, the optimal policy has more difficult
structure, i.e. the optimal allocation rule represents a threshold sequence and any
available in the certain state server can be switched on but only if the current queue
length is between some low and some upper levels. Thus, for each server there
exists two–level threshold policy which depend on the states of all busy servers.
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2.9 Appendices

2.9.1 Threshold functions for NJM–problem.

Figure 1.1 (a) (b)
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Figure 1.4 (a) (b)
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Figure 1.5 (a) (b)
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Figure 1.6 (a) (b)
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2.9.2 3–dimensional diagrams of threshold function for PCM–
problem.

(a)

(b)

Fig. 2.1. The threshold level functions for input intensity (a) λ=1.0 and (b) λ=0.5.
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(a)

(b)

Fig. 2.2. The threshold level functions for input intensity (a) λ=1.0 and (b) λ=0.5.
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2.9.3 2–dimensional diagrams of threshold function for PCM–
problem.

Figure 3.1 (a) (b)
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Figure 3.4 (a) (b)
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Figure 3.7 (a) (b)
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2.9.4 Two-level threshold function for PCM–problem.

Figure 4.1 (a) Figure 4.2 (a)
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Figure 4.3 (a) Figure 4.4 (a)
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Figure 4.5 (a)
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Chapter 3

Arrivals with modulating phases

This chapter extends the model of the preceding chapter in that now more general arrival
streams with modulating arrival phases allowed. We analyze such arrival streams as Er-
lang (E) and Phase-type (PH), as well as Markov modulated Poisson process (MMPP)
and Markov additive arrival process (MAP). Again we consider NJM and PCM optimiza-
tion problems, and demonstrate that the optimal control policy is of threshold type, with
threshold levels depending on the arrival modulating state.

3.1 Introduction.
In the system with m-phase (stage) Erlangian arrival a job arrival is assumed com-
plete (and thus the customer can be forwarded for service) if all m phases of arrival
have been completed. The times spending by a job on the phases are independent
and equally distributed according to the exponential low with some parameter.

The PH-type arrival process is more complex since the distribution of times
between events is expressed as the distribution of the first exit time from a set of
states of continuous time Markov chain, as described by Neuts in [52].

Markovian additive arrival process (MAP), introduced by Neuts [53], is a gen-
eralization of the PH-type distribution. A MAP is associated with a finite ab-
sorbing Markov chain but instead of having only one initial probability vector,
it requires as many as the number of transient states in the underlying Markov
chain, i.e. one initial probability vector per transient state. This means that once
the Markov chain has entered the absorbing state and a single MAP random vari-
able is generated, the process restarts from the transient part again for the next
random variable “remembering” the last transient state that reached absorption.

101
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Therefore, the MAP is formally represented by two matrices (Λ, N ) rather than a
matrix and a vector as in the PH-distribution case and is in general a non-renewal
process. The most popular case of a MAP is known as Markov Modulated Pois-
son Process (MMPP) where the matrix Λ has all entries zero except the diagonal
ones. Even a Poisson process is a MAP with only one single transient state in the
underlying Markov chain.

The importance of arrivals with modulating phases lies in their ability to be
more effective and powerful traffic models, that in its turn can be a better approx-
imation of physical systems than the simple Poisson process. The systems with
Erlangian arrivals in a communication network could be the case when the job,
or a message, arrives in parts, for example m packets, in a network node and is
served as a whole when all parts have arrived. Such a system with two heteroge-
neous servers has been investigated by Viniotis and Ephremides [81], who give
a threshold policy definition for this model. The queueing systems with MAP
are useful extention since for many interesting applications, especially in B-ISDN
networks with very bursty arrival streams and with significant correlation between
successive interarrival times, it has been shown that this burstiness has a signifi-
cant impact on the behaviour of the system (see e.g. [15]). A method to derive the
stationary waiting time distribution for a single-server system with MMPP was
demonstrated in [48] and in a multi-server case in [10].

This chapter is organized as follows. In the next Section 3.3 the system with
Erlangian arrivals is introduced. The systems with PH-type interarrival time dis-
tribution and MAP are discussed in Sections 3.4 and 3.5, respectively. For each
queue we obtain the optimality equations and investigate a typical properties of
corresponding optimal policies.

The great attention in this chapter is payed to numerical analysis of optimal
policy structure when the values of initial system parameters vary. We note that
for numerical analysis of different queueing systems in order to compare the re-
sults we use such initial system parameters that the average characteristics, namely
mean arrival rates, are equal.
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3.2 Problem description
Consider queueing system with K heterogeneous servers of intensities µk (k =
1, K), B − K places in the buffer (K ≤ B < ∞), which can be symbolically
represented in Figure 3.1

Figure 3.1 Queueing system

In this picture DK+1(t) is a modulating process for arrival stream that will be dis-
cussed below and specified for each particular case.

The formulation and notations of the optimization problem with respect to
this type of queueing system are analogous to the previous (Markovian) case.
But now the modulating phase at a decision epoch is a part of the system state.
Therefore, the controlled queueing system is modelled by the stochastic Markov
decision process {Z(t)} = {X(t), U(t)}. Here, the observed process {X(t)}t≥0

with state space E = N × {0, 1}K × {1, ..., m} includes one additional com-
ponent DK+1(t), which denotes irreducible finite state modulating process with
state space {1, . . . , m}. Thus, for each state x = (d0, d1, . . . , dK, dK+1), dK+1(x)
denotes the state of the arrival process in the system state x, i.e. dK+1: 1 → 2 →
· · · → m. The value m − dK+1(x) denotes the residual interarrival time in the
certain state x.

Denote by ei = (0, . . . , 0
︸ ︷︷ ︸

i

, 1, 0, . . . , 0
︸ ︷︷ ︸

K+1−i

) the K +2 - dimensional vector for which

the i-th component is one and all others are zeros. Consider the same shift oper-
ators S0, Sj and S−1

0 , S−1
j on the state space E introduced in (2.2), when arrivals

and service completions take place in the queue. Additionally, one needs one
more shift operator for modulating phase changing. Let dK+1(y) = α is a new
state of the modulating process after phase changing in a current state x. Now,
the operator Sα

K+1 can be introduced for changing the K + 1-st coordinate of the
vector x = (d0, d1, . . . , dK, dK+1),

Sα
K+1x = x + [α − dK+1(x)]edK+1

. (3.1)
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We note, that with respect to different modulating phases α 6= β the following
equalities hold

J0(S
α
K+1x) = J0(S

β
K+1x), J1(S

α
K+1x) = J1(S

β
K+1x),

M0(S
α
K+1x) = M0(S

β
K+1x), M1(S

α
K+1x) = M1(S

β
K+1x),

l(Sα
K+1x) = l(Sβ

K+1x), c(Sα
K+1x) = c(Sβ

K+1x).

Below the long-run average cost optimization problem is specified for queueing
systems with different interarrival time distributions.

3.3 Controlled E/M/K/B − K queue
In this section we consider the queueing system with m-stage Erlangian arrival
process which is symbolically shown in Figure 3.2

Figure 3.2 Arrival process

Each job arrives to the system in m-stages, m ≥ 1. When m = 1, this model
reduces to the M/M/K/B − K model studied in Chapter 2. The overall arrival
rate is λ = λ

m
, where λ is a rate per stage.

The equilibrium condition for an infinite buffer size

λ =
λ

m
<

K∑

k=1

µk. (3.2)

We note that if the current Erlangian phase dK+1(x) < m, in the state x only
service completions take place, and if dK+1(x) = m, then a new arrival and the
service completions can be considered as the decision epochs.

To introduce optimality equation we have to represent the transition intensi-
ties of the process {Z(t)}. Using the notations of shift operators for vector state
x = {q, d1 . . . , dK, dK+1} and properties of Erlang distribution the transition in-
tensities λxy(a) to go from state x to state y when action a is selected, can be
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represented in the form

λxy(a) =







λ, y = Sα+1
K+1x, dK+1(x) = α < m, dK+1(y) = α + 1,

λ, y = Sa0S
1
K+1x, dK+1(x) = m, dK+1(y) = 1,

µj, y = Saj
Gjx, j ∈ J1(x),

−(λ +
∑

j∈J1(x) µj), y = x,

0, otherwise,

where a = a0 ∈ A(x) denotes the control which has to be chosen in the case of
an arrival to the state x, a = aj ∈ A(S−1

j S−1
0 x) denotes the control in the case of

a service completion on the j-th server.
In this matrix:

• the first case corresponds to phase changing without arrivals;

• the second case corresponds to the phase changing with new job arrival if
the final modulating phase is completed;

• the third case corresponds to the service completion.

The fourth line represents diagonal elements of transition intensity matrix.
The possible transitions from the state x just after arrival and service com-

pletion epochs can be illustrated by the graph shown in Figure 3.3 (a) and (b),
respectively

Figure 3.3
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a = 0
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3.3.1 Optimality equation
To represent the optimality equation, consider the function V (x, t) = inf

δ
E

δ
xY (t),

that denotes the minimal total operating cost of the system during time t. For
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some small interval h the following equation can be obtained

V (x, t + h) = c(x)h + (1 − [λ + M1]h)V (x, t)(x)+

1{dK+1(x)=m}λh min
a0∈A(x)

V (x + ea0 + [m − 1]eK+1, t)+

1{dK+1(x)=i<m}λh V (x + eK+1)+

1{q(x)=0}

∑

j∈J1(x)

µjh V (x − ej, t)+

1{q(x)>0}

∑

j∈J1(x)

µjh min
aj∈A(S−1

j S−1
0 x)

V (x − ej − e0 + eaj
, t).

In this equation the first member in the right–hand side represents the loss of the
system up to time h, the second one represents the total loss of the system during
the following time t in the case that no modulating phase changes and service
completions occur in the system, the next one denotes the total loss of the system
during time t in the case that a new customer arrives before the service completion.
The next item is a modulating phase changing without arrival. The following
member represents the loss of the system in the case of service completion with
non-empty queue before new customer arrival, the last member deals with the total
loss of the system in the case that one of the served customers leaves the system
with empty queue before some customer arrives.

After some transformations taking into account the asymptotic behavior (2.6)
of the function V (x, t) when t → ∞ and passing to the limit h → 0, the previous
equation assumes the form

v(x) =
1

λ + M1

[

c(x) + λ

(

1{dK+1(x)=m}T0v(S1
K+1x)+ (3.3)

1{dK+1(x)=i<m}v(Si+1
K+1x)

)

+

∑

j∈J1(x)

µjTjv(x) − g

]

= Bv(x),

where operators T0 and Tj given by formula (2.9) and Bv(x) denotes (see Section
2.4) the transform operator for the value function v(x).

The optimal policy f = {f(x) : x ∈ E} is determined by the definitions (2.11)
and (2.12).
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3.3.2 Monotonicity properties. Dependence on modulating phases
In this section we extend the monotonicity results obtained in Chapter 2 for the
system with Erlangian arrivals. The form of optimality equation (3.3) shows that
the formulation of monotonicity properties is analogous to the previous model
since the introduced in the previous chapter inequalities for the value function do
not depend on the arrival statistics.

For this model the modulating phase (stage) or the residual interarrival time
at a decision epoch is a part of the system state. Therefore we exploit a partial
ordering (2.14) and (2.15) of the state space E, and the order with respect to the
different Erlangian phases α and β

Sβ
K+1x ≥ Sα

K+1x, α ≤ β. (3.4)

This order is also partial. Now assuming that an optimal policy exists and is
unique we can conclude that the optimal policy is of threshold type.

Theorem 3.4 The optimal policy for the NJM– and the PCM–problems for the
system with Erlangian arrivals is of threshold type with finite thresholds q∗

k(dK+1)
for each phase.

Proof: Let us consider the states Sα
K+1x and Sβ

K+1x with different Erlangian
phases α and β. As we have mentioned above, the different states of arrival pro-
cess do not change a threshold nature of optimal control rule. Thus, the value
function v(x) is submodular that can be proved in similar way as in Section 2.4.6.
Therefore, for each phase holds the inequality

(1 − S0)(S0 − Sk)v(Sα
K+1x) ≤ 0,

(1 − S0)(S0 − Sk)v(Sβ
K+1x) ≤ 0

and the optimal policy is of threshold type with finite threshold levels for k-th
server q∗k(α) and q∗k(β) which depend on modulating phases (residual interarrival
time).
�

Thus, for the NJM–problem the optimal policy is of threshold type with thresh-
old values for j-th server q∗j (dK+1) which are independ on the states of slower
servers (in light traffic case, i.e. λ

m
< µK) or have weak dependence (in heavy

traffic, i.e. λ
m

≈ M0 +M1) and are decreasing in Erlangian phase dK+1. The opti-
mal control in this case consists in using the fastest available server, if necessary.
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For the PCM–problem with servers arrangement (2.29) under conditions (2.30)
and (2.31), i.e. the usage costs decrease slower than the service intensities, the
optimal policy is also of threshold type with levels q∗j (dK+1) for j-th server de-
pending on Erlangian phase dK+1 as for the NJM–problem. The controller uses
the server with fewest mean usage cost, if necessary.

For the PCM–problem under condition (2.32), i.e. the usage costs increase
faster than the service intensities, there exist two-level threshold policy [q∗

j (x), q∗j+1(x))
which depend on the state x. The controller in this case can use any of available
servers in increasing oder of the mean usage costs when the queue length in-
creases. Moreover, starting from some queue level q∗ the optimal control in any
state consists in using the server with largest mean usage cost.

As for the system M/M/K, in the case of light traffic when λ < /muK ,
the threshold levels can be determined by (2.22) and (2.34). Otherwise, we use
numerical analysis, see Section 3.3.4 and while the value of arrival intensity per
stage λ increases, the threshold levels q∗j (λ, dK+1) is also decreasing when λ in-
creases.

Now consider a two-state modulating process. With respect to introduced par-
tial order in our special case we show that the threshold levels q∗k(α) and q∗k(β)
may be different, moreover q∗k(α) ≥ q∗k(β), when α ≤ β.

Theorem 3.5 Assume the bounded, nondecreasing function v(x) has the follow-
ing property

v(Sβ
K+1x) ≥ v(Sα

K+1x), α ≤ β,

or for residual interarrival time m−α ≥ m−β. Then the operator B introduced
in (3.3) also retains this property for the value function of the model,

Bv(Sβ
K+1x) ≥ Bv(Sα

K+1x), α ≤ β.

Proof: At first, for operator T0 we have

T0v(Sα
K+1x) = min

k∈A(Sα
K+1x)

v(SkS
α
K+1x) ≥ v(Sα

K+1x),

T0v(Sβ
K+1x) = min

k∈A(Sβ
K+1x)

v(SkS
β
K+1x) ≥ min

k∈A(Sα
K+1x)

v(SkS
α
K+1x) = T0v(Sα

K+1x),

by virtue of assumption about nondecreasing property of the value function v(SkS
α
K+1x) ≥

v(x) and v(Sβ
K+1x) ≥ v(Sα

K+1x) when α ≤ β and the fact that set of controls does
not vary in directions Sα

K+1 and Sβ
K+1, that is A(Sα

K+1x) = A(Sβ
K+1x). Operator

Tj also retains the latter property according to the definition (2.9).
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Without loss of generality, we assume that 2λ +
∑

j∈J1(x) µj = 1. Now for opera-
tor B and α ≤ β we get

Bv(Sβ
K+1x) − Bv(Sα

K+1x) = [c(Sβ
K+1x) − c(Sα

K+1x)]+

λ[T0v(Sα
K+1x) + v(Sβ

K+1x)] − λ[v(Sβ
K+1x)] + v(Sα

K+1x)]+
∑

j∈J1(x)

µj[Tjv(Sβ
K+1x) − Tjv(Sα

K+1x)] ≥ 0,

by virtue of the property that c(x) is constant with respect to the shifts Sα
K+1 and

Sβ
K+1; and the properties of operators T0, Tj.

Now the statement of the theorem follows from the fact that the value function
of the model v = {v(x) : x ∈ E} is a fixed point of operator B.
�

Remark 3.6 We have not been able to prove successfully Theorem 3.5 for any
number of the phases m, nevertheless the statement of the theorem is confirmed
by the numerical results.

Using the last theorem we expect that with decreasing of the residual interarrival
time the incentive to make an assignment to the slower servers is getting higher.
That means that for some server k the threshold levels for different modulating
phases satisfy q∗k(α) ≥ q∗k(β), when α ≤ β. For this, it is sufficiently, that

f(Sβ
K+1x) = 0 ⇒ f(Sα

K+1x) = 0.

It is possible to rewrite the last statement in accordance with the definition of
optimal policy in the form

v(S0S
β
K+1x) ≤ v(SkS

β
K+1x) ⇒ v(S0S

α
K+1x) ≤ v(SkS

α
K+1x).

For the last inequalities we get

v(S0S
α
K+1x) − v(SkS

α
K+1x) − v(S0S

β
K+1x) + v(SkS

β
K+1x) ≤ 0,

or in operator form

(S0 − Sk)(S
α
K+1 − Sβ

K+1)v(x) ≤ 0 for all k ∈ J0(x), α ≤ β. (3.5)
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3.3.3 Algorithm
To analyze numerically the behavior of optimal strategies the servers will be ar-
ranged for the NJM–problem in order (2.13) of their service intensities decreasing
and for the PCM–problem in order (2.29) of their mean usage costs increasing
under conditions (2.30)–(2.32).

The algorithm as before consists of two basic steps
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve up to an
accuracy ε by a successive approximation method the equation

• if dK+1(x) = i < m then

vn(x) =
1

λ + M1

[

c(x) + λvn(Si+1
K+1x)+

∑

j∈J1(x)

µjvn(Sfn(S−1
j S−1

0 x)S
−1
j S−1

0 x) − gn

]

• if dK+1(x) = m

vn(x) =
1

λ + M1

[

c(x) + λvn(Sfn(S1
K+1x)S

1
K+1x)+

∑

j∈J1(x)

µjvn(Sfn(S−1
j S−1

0 x)S
−1
j S−1

0 x) − gn

]

for all x ∈ E under the condition v(0) = 0.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (2.11)
of the model:

fn+1(x) = argmin
k∈A(x)

vn(x + ek), k = 0, K.

We note, that in the case of new arrival, that is dK+1(x) = m, the optimal control
is associated with the state S1

K+1x after phase changing.
The algorithm stops when two successive iterations yield the same policy.

The realization of this algorithm with respect to the multidimensional system
states is quite complex and requires a lot of processing time to obtain the results.
Therefore, for description of system state changing at the control epochs we con-
sider the one-to-one correspondence between the multidimensional representation
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of the system state x and the index of such a state. Namely,

#(x) = 2K(d0(x)mK+1 + dK+1(x) − 1) +
K∑

j=1

2j−1dj(x)1{j>1} ≡ x (3.6)

and the number of system states is 2Km(B − K + 1).
Now, if yj is the state after possible transition from the j-th coordinate it can

be obtained with respect to introduced formula

yj = x +
(dj − dj(x))2K

1{j=0}mK+1

1{1≤j≤K}2K−j+1
. (3.7)

Thus, in one-dimensional case we have

S0x = x + m2K, (3.8)

S−1
0 x = x − m2K,

Sjx = x + 2j−1,

S−1
j x = x − 2j−1,

Si
K+1 = x + (i − dK+1(x))2K.

3.3.4 Numerical analysis
In this section we consider some numerical examples of optimal policy structure
for the system with Erlangian arrivals. At first, we consider examples for the
NJM–problem. For the system E5/M/5/100, if number of phases m = 5, arrival
intensity per stage λ = 0.05, the mean arrival rate λ = λ

m
= 0.01 and values of

service intensities µi given in Table 3.7 are presented in control Table 3.8.

Table 3.7 Values of initial system parameters for E5/M/5/100 queue

i 1 2 3 4 5
µi 1.90 0.63 0.52 0.45 0.30

Table 3.8 Optimal control for any system state
System State x Queue length q(x)

(d1 , d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,5) 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0,1) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(1,1,1,1,0,5) 0 0 0 0 0 0 5 5 5 5 5 5 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The optimal control rule, in accordance with threshold policy, are underlined in
this control table. The results of this table show that the optimal policy for the
system with Erlangian arrivals has threshold property. The fastest server is always
activated. But now, the threshold sequence is depend not only on the queue length,
but also can depend on the current stage of arrival process. Threshold levels take
their values:

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 2, d6 = 1, 4;

q∗2(d6) = 1, d6 = 5;

q∗3(d6) = 2, d6 = 1, m;

q∗4(d6) = 3, d6 = 1, m;

q∗5(d6) = 7, d6 = 1, 4;

q∗5(d6) = 6, d6 = 5.

Thus, the threshold sequence has the following form

0 = q∗1 ≤ q∗2(β) ≤ q∗2(α) ≤ · · · ≤ q∗K(β) ≤ q∗K(α) < q∗K+1 = ∞,

where α and β are the current arrival modulating phases and α ≤ β. The last in-
equality means that if the residual interarrival time decreases, the value of thresh-
old level for the slower servers also decreases. And vice versa, as the residual
interarrival time increases, the threshold level also increases. The numerical ex-
amples allow us to suspect that the optimal threshold may vary at most 1 for the
states with different arrival modulating phase, that is, q∗k(β) ≤ q∗k(α) ≤ q∗k(β) + 1
if α ≤ β. In all examples it was mentioned, that the optimal threshold can changes
only if the residual time for a new arrival is less than the time which the job has
already spent on the modulating phase.

To investigate the dynamics of optimal threshold levels behavior for the NJM–
problem we consider the system E5/M/3/100 with m=5 modulating phases (stages)
and K = 3 heterogeneous servers. The results of calculation are shown in Figures
1.1–1.6 in Appendix 3.7.1. To compare the results of the optimal policies calcu-
lation for different queues we take the same varied values of service intensities
as for the system with Poisson arrivals, and the arrival rate per stage satisfies the
condition λ = λ

m
, where λ is Poisson arrival rate for M/M/K system. Therefore,

the arrival intensity per stage λ is varied over the Figures 1.1–1.3 as follows

• λ=2.55, λ = λ
m

=0.51, in Figure 1.1,
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• λ=1.30, λ = λ
m

=0.26, in Figure 1.2,

• λ=0.05, λ = λ
m

=0.01, in Figure 1.3.

In these diagrams the changing of threshold levels q∗2(d4) for the second server
(pictures labeled by letter "a") and q∗3(d4) for the third server (pictures labeled by
letter "b") as the threshold function with arguments of first service intensity µ1,
for different values of the second service intensity µ2, depending on the Erlangian
phase d4 are shown.

From the pictures one can see that the threshold functions have the same struc-
ture as for the model with Poisson arrivals, but now to each value of second server
service intensity corresponds the family of curves which consists of the threshold
functions for each value of Erlangian arrival phase. This shows possible difference
of threshold levels for different modulating phases. In all examples the incentive
to make an assignment to the second server is greater in state x = (1, 0, ∗, β) than
in state x = (1, 0, ∗, α), and to the third server is greater in state x = (1, 1, 0, β)
than in state x = (1, 1, 0, α), if α ≤ β, or for the residual interarrival time
m − α ≥ m − β. The legend for the diagrams represents the upper and low
bounds for each family of curves. The upper bound denotes the thresholds when
a new customer starts its generation, that is dK+1 = 1, and the low bound denotes
— the thresholds, when dK+1 = m = 5. All other curves of the family correspond
to the cases when dK+1 = 2, 4. In the case of small arrival intensity per stage, the
upper and low bounds tend to coincide.

The influence of the number of modulating phases on the form of threshold
diagrams is shown on the Figures 1.4–1.6, where λ = 1.30, λ = 0.26 (pictures
labeled by letter "a") and λ = 0.05, λ = 0.01 (pictures labeled by letter "b"). The
number of modulating phases is changed over the figures, so

• m=5 in Figure 1.4,

• m=10 in Figure 1.5,

• m=20 in Figure 1.6.

In these diagrams the curve family structure remains the same but the number of
the curves between two bounds increases as increases the number of modulating
Erlangian phases.

For the PCM–problem we propose only control tables since the pictures for
optimal threshold policy are the same as for M/M/K queue but depending now
on Erlangian phases in similar way as before.
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For arrangement of the servers (2.29) and in the case of µ1 ≥ µ2 ≥ · · · ≥ µ5

for the parameters in Table 3.9 the results are illustrated in control Table 3.10.

Table 3.9 Values of initial system parameters for E5/M/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66

Table 3.10 Optimal control for any system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 0 0 0 0 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,5) 0 0 0 0 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(1,1,1,0,*,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 0 0 0 0 0 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case of the PCM–problem the optimal control is of threshold type and has
the same structure as for the NJM–problem. In this example threshold sequence
consists of the following elements

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 5, d6 = 1, 4;

q∗2(d6) = 4, d6 = 5;

q∗3(d6) = 6, d6 = 1, m;

q∗4(d6) = 7, d6 = 1, m;

q∗5(d6) = 12, d6 = 1, m.

Now consider the case for server arrangement (2.29) and parameters µ1 ≤
µ2 ≤ · · · ≤ µ5 and c1 ≤ c2 ≤ · · · ≤ c5. The control table has quite complex
structure since for such group of initial system parameters the optimal control rule
represents threshold sequences which are different for different system states. In
the table Table 3.12 we consider system states with modulating phases dK+1 =
{1, 2, 3, 4, 5}. The optimal control policies are presented as threshold sequences
q∗1(x), q∗2(x), . . . , q∗K(x).

From the Table 3.12 one can see that when the queue length q ≥ q∗ = 96
the controller in all system states always uses the server with largest mean usage
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cost, which is the fastest and the most expensive one. Otherwise, the slower but
cheaper servers can be used by controller. Taking into account future arrivals the
controller prefers cheaper but slower servers while the residual interarrival time
decreases.

Table 3.11 Values of initial system parameters for E5/M/5/100 queue

i 0 1 2 3 4 5
ci 0.20 1.00 1.70 2.30 3.50 7.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 3.33 3.78 4.42 5.56 7.78

Table 3.12 Optimal control for any system state
System State x Modulating phase d6

(d1, d2, d3, d4, d5) 1 2 3 4 5

(0,0,0,0,0) 0,2,11,17,24 0,2,11,18,25 0,2,12,18,26 0,3,12,20,30 0,3,15,26,37
(1,0,0,0,0) -,0,21,33,46 -,0,21,33,46 -,0,22,34,48 -,0,22,36,51 -,0,24,41,58
(0,1,0,0,0) 0,-,10,34,46 0,-,10,34,47 0,-,10,35,48 0,-,10,37,52 0,-,10,41,59
(1,1,0,0,0) -,-,3,49,68 -,-,3,50,68 -,-,3,50,69 -,-,3,51,72 -,-,2,55,78
(0,0,1,0,0) 0,5,-,30,47 0,5,-,30,47 0,5,-,30,49 0,5,-,32,52 0,4,-,35,58
(1,0,1,0,0) -,0,-,42,68 -,0,-,42,68 -,0,-,43,69 -,0,-,44,72 -,0,-,47,78
(0,1,1,0,0) 0,-,-,25,69 0,-,-,25,69 0,-,-,25,70 0,-,-,25,73 0,-,-,26,79
(1,1,1,0,0) -,-,-,10,89 -,-,-,10,89 -,-,-,10,90 -,-,-,10,91 -,-,-,9,96
(0,0,0,1,0) 0,5,22,-,43 0,5,22,-,44 0,5,22,-,45 0,5,23,-,48 0,5,25,-,54
(1,0,0,1,0) -,0,31,-,62 -,0,31,-,63 -,0,31,-,63 -,0,31,-,66 -,0,33,-,71
(0,1,0,1,0) 0,-,14,-,63 0,-,14,-,63 0,-,14,-,64 0,-,13,-,66 0,-,13,-,72
(1,1,0,1,0) -,-,3,-,81 -,-,3,-,81 -,-,3,-,82 -,-,3,-,83 -,-,2,-,88
(0,0,1,1,0) 0,5,-,-,59 0,5,-,-,59 0,5,-,-,59 0,5,-,-,61 0,5,-,-,66
(1,0,1,1,0) -,0,-,-,74 -,0,-,-,74 -,0,-,-,74 -,0,-,-,76 -,0,-,-,80
(0,1,1,1,0) 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,56
(1,1,1,1,0) -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,30
(0,0,0,0,1) 0,5,22,35,- 0,5,23,35,- 0,5,23,35,- 0,5,23,37,- 0,5,25,42,-
(1,0,0,0,1) -,0,31,50,- -,0,31,50,- -,0,31,51,- -,0,31,52,- -,0,33,56,-
(0,1,0,0,1) 0,-,14,50,- 0,-,14,50,- 0,-,14,51,- 0,-,14,53,- 0,-,13,56,-
(1,1,0,0,1) -,-,3,63,- -,-,3,63,- -,-,3,63,- -,-,3,63,- -,-,2,67,-
(0,0,1,0,1) 0,6,-,44,- 0,6,-,44,- 0,6,-,44,- 0,5,-,45,- 0,5,-,48,-
(1,0,1,0,1) -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,55,-
(0,1,1,0,1) 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,30,-
(1,1,1,0,1) -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,9,-
(0,0,0,1,1) 0,6,32,-,- 0,6,32,-,- 0,6,32,-,- 0,6,32,-,- 0,5,34,- ,-
(1,0,0,1,1) -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,- ,-
(0,1,0,1,1) 0,-,15,-,- 0,-,15,-,- 0,-,15,-,- 0,-,15,-,- 0,-,14,- ,-
(1,1,0,1,1) -,-,3,-,- -,-,3,-,- -,-,3,-,- -,-,3,-,- -,-,2,-,-
(0,0,1,1,1) 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,5,-,-,-
(1,0,1,1,1) -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,-
(0,1,1,1,1) 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,-



116 CHAPTER 3. ARRIVALS WITH MODULATING PHASES

3.4 Controlled PH/M/K/B − K queue
In this section we consider the queueing system PH/M/K/B − K in which
Phase-type interarrival time distribution has a representation (η, Λ). The vector
η = (η1, . . . , ηm) of dimension m is an initial modulating phase distribution and
matrix Λ = [λi j], m × m — transition intensities of PH-distribution. PH-type
arrival process symbolically can be represented in Figure 3.13

Figure 3.13 Arrival process

The equilibrium condition in this case

λ = (−ηT Λ−1~1)−1 <
K∑

k=1

µk. (3.9)

The decision times in any state consists of arrivals and service completions epochs.
The transition intensities of the process {Z(t)} are the following

λxy(a) =







λα β, y = Sβ
K+1x, dK+1(x) = α, dK+1(y) = β,

ηβλα, y = Sa0S
β
K+1x, dK+1(x) = α, dK+1(y) = β,

µj, y = Saj
Gjx, j ∈ J1(x),

λα α −
∑

j∈J1(x) µj, y = x, dK+1(x) = α,

0, otherwise,

where λj = −Λ~1. As before, a = a0 ∈ A(x) denotes the control which has to be
chosen in the case of an arrival to the state x, a = aj ∈ A(S−1

j S−1
0 x) denotes the

control in the case of a service completion on the j-th server.
In this matrix:
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• the first case corresponds to phase changing without arrivals;

• the second case corresponds to the phase changing with new job arrival;

• the third case corresponds to the service completion.

The diagonal elements of this matrix (the fourth line) equal to the sum of its ele-
ments along the row with negative sign.

The possible transitions after the arrival or service completion can be illustrated
by means of the graph shown in Figure 3.14 (a) and (b), respectively

Figure 3.14
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(q + 1, d1, ., 0, ., dK , β) (q, d1, ., 1, ., dK , β) (q, d1, ., 0, ., dK , dK+1) (q − 1, d1, ., 1, ., dK , dK+1)

(a) (b)

λαηβ

a = 0
λαηβ

a = j
µj

a = 0
µj

a = j

3.4.1 Optimality equation
As usual, for the function V (x, t) and small interval h we have

V (x, t + h) = c(x)h + (1 + [λdK+1(x) dK+1(x) − M1]h)V (x, t)(x)+

λdK+1(x)

m∑

i=1

ηih min
a0∈A(x)

V (x + ea0 + [i − dK+1(x)]eK+1, t)+

∑

i6=
dK+1(x)

λdK+1(x) ih V (x + [i − dK+1(x)]eK+1)+

1{q(x)=0}

∑

j∈J1(x)

µjh V (x − ej, t)+

1{q(x)>0}

∑

j∈J1(x)

µjh min
aj∈A(S−1

j S−1
0 x)

V (x − ej − e0 + eaj
, t),

In this equation, the first member on the right–hand side represents the loss of the
system up to time h, the second one represents the total loss of the system during
the following time t in the case that no modulating phase changes and service
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completions occur in the system, the next one represents the total loss of the sys-
tem during the following time t in the case that a new customer arrives before the
service completion. The next item denotes the modulating phase changing with-
out arrival. The last two members represent the total loss of the system in the case
that one of the served customers leaves the system with empty queue before some
customer arrives and the loss of the system in the case of service completion with
non-empty queue before new customer arrival.

Due to the asymptotic behavior of the function V (x, t) (2.6) for h → ∞ the
optimality equation can be written in the form

v(x) =
1

λx

[

c(x) + C1(x) + C2(x) − g+ (3.10)

λdK+1(x)

m∑

i=1

ηiT0v(Si
K+1x) +

∑

j∈J1(x)

µjTjv(x)

]

= Bv(x).

In this representation

λx = −

(

λdK+1(x)dK+1(x) −
∑

j∈J1(x)

µj

)

is intensity of state x changing;

C1(x) =
∑

i6=dK+1(x)

λdK+1(x)iv(Si
K+1x)

is loss rate due to phase changing without decision making;

C2(x) =
∑

j∈J1(x)
d0(x)=0

µjv(S−1
j x)

is loss rate due to service completion with empty queue;
Operators T0 and Tj given by formula (2.9) denote minimal loss in the case of a

new job arrival and minimal loss in the case of service completion and appropriate
decision making.

The optimal policy f = {f(x) : x ∈ E} as before is determined by the
definitions (2.11) and (2.12).
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3.4.2 Monotonicity properties. Dependence on modulating phases
Let the arrival phases are arranged in such a way that for any two phases α and β,
λα ≥ λβ when α ≤ β. Let

Sα
K+1x ≥ Sβ

K+1x, λα ≥ λβ (3.11)

be the introduced order for different phases. Thus, the inequalities (2.14), (2.15)
and (3.11) form the partial order on the state space E. Similar to the system with
Erlangian arrivals we investigate some monotonicity properties of optimal control
rule in the case of PH-type interarrival time distribution.

Using the same arguments as in previous section one can state that the value
function of the model v(x) is submodular, that is

Theorem 3.15 The optimal policy for the NJM– and the PCM–problems for the
system with PH-type interarrival time distribution is of threshold type with finite
thresholds q∗k(dK+1) for each phase.

In the case of light traffic denote by λ the maximal rate of transitions occur-
ring in state i, that is λ = max{λi +

∑

j 6=i λij}. As it was discussed in [60] this
parameter λ is not really the rate of the PH renewal process since there are less
than λ renewals per unit time. It is better to interpret λ as a scale that is propor-
tional to the rate, i.e. if there are n transitions, on the average, between visits to
instantaneous state m + 1, then the true rate is λ/n. Thus, when λ ≈ 0 the PH
renewal process is in light traffic. For the system under consideration in this case
we require λ < µK and the formulas (2.22) and (2.34) can be applied for this
model.

Consider now two-state arrival process. Below we show that if λα ≥ λβ then
the threshold levels for the k-th server satisfy q∗k(α) ≤ q∗k(β).

Theorem 3.16 Assume the bounded, nondecreasing function v(x) has the follow-
ing property

v(Sα
K+1x) ≥ v(Sβ

K+1x), λα ≥ λβ.

Then the operator B introduced in (3.10), also retains the property of nondecreas-
ing function for the value function of the model

Bv(Sα
K+1x) ≥ Bv(Sβ

K+1x), λα ≥ λβ.
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Proof: As before, for the operators T0 and Tj we have

T0v(Sα
K+1x) ≥ v(Sα

K+1x),

T0v(Sα
K+1x) ≥ T0v(Sβ

K+1x),

Tjv(Sα
K+1x) ≥ Tjv(Sβ

K+1x).

Without loss of generality, we assume that λα + λβ +
∑

j∈J1(x) µj = 1.
Now, for operator B we obtain

Bv(Sα
K+1x) − Bv(Sβ

K+1x) = [c(Sα
K+1x) − c(Sβ

K+1x)]+
∑

j=J1(x)

µj[Tjv(Sα
K+1x) − Tjv(Sβ

K+1x)]+

λα[ηαT0v(Sα
K+1x) + ηβT0v(Sβ

K+1x) − (ηα + ηβ)v(Sβ
K+1x)]−

λβ[ηαT0v(Sα
K+1x) + ηβT0v(Sβ

K+1x) − (ηα + ηβ)v(Sα
K+1x)].

The first two items of the latter expression is nonnegative by virtue of the proper-
ties for the function c(x) and operator Tj. For the last two items we get

λα[ηα[T0v(Sα
K+1x) − v(Sβ

K+1x)] + ηβ[T0v(Sβ
K+1x) − v(Sβ

K+1x)]]−

λβ[ηα[T0v(Sα
K+1x) − v(Sα

K+1x)] + ηβ[T0v(Sβ
K+1x) − v(Sα

K+1x)]] ≥

λα[ηα[T0v(Sα
K+1x) − v(Sα

K+1x)] + ηβ[T0v(Sβ
K+1x) − v(Sβ

K+1x)]]−

λβ[ηα[T0v(Sα
K+1x) − v(Sα

K+1x)] + ηβ[T0v(Sβ
K+1x) − v(Sβ

K+1x)]] ≥ 0,

when λα ≥ λβ.
Now using the fact that the value function of the model v = {v(x) : x ∈ E} is

a fixed point of the operator B we obtain the necessary result.
�

Here we expect, that as the arrival rate λα increases, the slow server will be used
more often in optimal control law, since the chance is then higher that the reduc-
tion of the queue length will indeed be translated in a shorter waiting time or fewer
processing cost for a future arrival. Therefore, it is sufficiently, that

(S0 − Sk)(S
β
K+1 − Sα

K+1)v(x) ≤ 0, k ∈ J1(x), λα ≥ λβ.

3.4.3 Algorithm
To analyze numerically the behavior of optimal strategies the servers will be ar-
ranged in order (2.13) for the NJM–problem and in order (2.29) for the PCM–
problem under conditions (2.30)–(2.32).
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The steps of algorithm are the same as before and differ only by the form of
optimality equation.
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve up to an
accuracy ε by a successive approximation method the equation

vn(x) =
1

λx

[

c(x) + C1(x) + C2(x) − gn+

λdK+1(x)

m∑

i=1

ηivn(Sfn(x)S
i
K+1x) +

∑

j∈J1(x)

µjvn(Sfn(S−1
j

S−1
0 x)S

−1
j S−1

0 x)

]

for all x ∈ E under the condition v(0) = 0.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (2.11)
of the model:

fn+1(x) = argmin
k∈A(x)

vn(x + ek), k = 0, K.

The algorithm stops when two successive iterations yield the same policy.

The description of system states changing at the control epochs by means of one
dimensional representation was introduced in previous section by (3.6)-(3.8)

3.4.4 Numerical analysis
In this section we consider some numerical examples of optimal policy structure
for the system with PH-type arrivals. This type of model is quite difficult for
numerical investigation because of large number of different elements which can
influence on optimal policy behavior. Therefore, we consider some selective typ-
ical examples.

As before, we consider examples for the NJM–problem. Optimal controls for
the system PH/M/5/100, if number of phases m = 5 are presented in control
Table 3.18. The mean arrival rate λ = 0.01, initial modulating phases distribution
η, arrival transition intensities matrix Λ, arrival intensities from the phases λi as
well as values of service intensities µi are given below.

Λ = λi j =









−0.130 0.010 0.020 0.030 0.040
0.040 −0.120 0.030 0.020 0.010
0.020 0.030 −0.110 0.040 0.010
0.030 0.040 0.010 −0.105 0.020
0.010 0.030 0.040 0.020 −0.101








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λi = −Λ1̄ =









0.030
0.020
0.010
0.005
0.001









, η = [ηk] =









0.010
0.020
0.050
0.170
0.750









and arrival intensity from the phases

Table 3.17 Values of initial system parameters for PH/M/5/100 queue

i 1 2 3 4 5
µi 1.90 0.63 0.52 0.45 0.30

Table 3.18 Optimal control for any system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,3) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The results show that the optimal policy for the system with PH-type interarrival
time distribution has threshold property. The fastest server is always activated.
The threshold sequence depends not only on the queue length but also can depend
on the phase of new arrival. Threshold levels take their value:

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 1, d6 = 1, 2;

q∗2(d6) = 2, d6 = 3, 5;

q∗3(d6) = 2, d6 = 1, m;

q∗4(d6) = 3, d6 = 1, m;

q∗5(d6) = 7, d6 = 1, m.

In this example the incentive to make an assignment to the slower servers is greater
in the states with less index of arrival phases where, the arrival intensity from such
phases is larger.

Thus, in this case, the threshold sequence has the following form

0 = q∗1 ≤ q∗2(α) ≤ q∗2(β) ≤ · · · ≤ q∗K(α) ≤ q∗K(β),



3.4. CONTROLLED PH/M/K/B − K QUEUE 123

where α and β is current arrival modulating phases and λα ≥ λβ.
The numerical examples allow us to suspect that the optimal threshold may

vary at most 1 for the states with different arrival modulating phase, that is q∗
k(α) ≤

q∗k(β) ≤ q∗k(α) + 1 if λα ≥ λβ.
To investigate the dynamics of optimal threshold levels behavior for the NJM–

problem we consider the system PH/M/3/100 with m = 2 arrival phases and
K = 3 heterogeneous servers. The results of calculation are gathered in Figures
2.1–2.6 in Appendix 3.7.2. The transition arrival intensities matrix Λ, arrival in-
tensities from the phases λi and initial modulating phases distribution η are varied
over the figures as follows

• Λ =

(
−1.30 0.60
0.01 −0.46

)

, λi =

(
0.70
0.45

)

, η =

(
0.60
0.40

)

in Figure 2.1,

• Λ =

(
−0.45 0.10
0.04 −0.24

)

, λi =

(
0.35
0.20

)

, η =

(
0.60
0.40

)

in Figure 2.2,

• Λ =

(
−0.68 0.65
0.02 −0.03

)

, λi =

(
0.03
0.01

)

, η =

(
0.60
0.40

)

in Figure 2.3,

• Λ =

(
−1.60 0.60
0.11 −0.55

)

, λi =

(
1.00
0.44

)

, η =

(
0.20
0.80

)

in Figure 2.4,

• Λ =

(
−0.81 0.50
0.10 −0.35

)

, λi =

(
0.31
0.25

)

, η =

(
0.20
0.80

)

in Figure 2.5,

• Λ =

(
−0.02 0.01
0.01 −0.02

)

, λi =

(
0.01
0.01

)

, η =

(
0.20
0.80

)

in Figure 2.6.

According to given values of parameters the average arrival rates λ = (−ηT Λ−1~1)−1

are follows

• λ=0.51 in Figures 2.1 and 2.4,

• λ=0.26 in Figures 2.2 and 2.5,

• λ=0.01 in Figures 2.3 and 2.6.

As usual, in theses diagrams the changing of threshold levels q∗
2(d4) for the sec-

ond server (pictures labeled by letter "a") and q∗3(d4) for the third server (pictures
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labeled by letter "b") as the threshold function with arguments of first service in-
tensity µ1 for different values of the second service intensity µ2 depending on
arrival phases d4 are shown.

As we can see from proposed control diagrams the incentive to make an as-
signment to the second server is greater in state x = (1, 0, ∗, α) than in state
x = (1, 0, ∗, β), and to the third server is greater in state x = (1, 1, 0, α) than in
state x = (1, 1, 0, β) if λα ≥ λβ and in this case α ≤ β. Therefore, the upper
curve of each family denotes thresholds for the states with dK+1 = 2 and the low
for the states with dK+1 = 1. Thus we can conclude, that the main characteristic
which influences on the decision making with respect to different arrival phases is
arrival intensity from the certain phase.

For the PCM–problem when arrangement of the servers (2.29) and in the case
of µ1 ≥ µ2 ≥ · · · ≥ µ5, for the parameters in Table 3.19 we have

Table 3.19 Values of initial system parameters for PH/M/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66

Table 3.20 Optimal control for any system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 0 0 0 2 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,5) 0 0 0 0 0 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(1,1,1,0,*,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 0 0 0 0 0 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case of the PCM–problem the optimal control is of threshold type and has
the same structure as for the NJM–problem with following threshold sequence

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 4, d6 = 1, 4;

q∗2(d6) = 5, d6 = 5;

q∗3(d6) = 6, d6 = 1, m;

q∗4(d6) = 7, d6 = 1, m;

q∗5(d6) = 12, d6 = 1, m.
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Now we discuss the case for arrangement of the servers (2.29) and parameters
µ1 ≤ µ2 ≤ · · · ≤ µ5 and c1 ≤ c2 ≤ · · · ≤ c5. In the Table 3.22 we consider
system states with modulating phases dK+1 = {1, 2, 3, 4, 5}. The optimal control
policies are presented as threshold sequences q∗1(x), q∗2(x), . . . , q∗K(x).

For introduced values of initial system parameters with increasing of modu-
lating phase index dK+1 more expensive but faster servers are more preferable by
controller. In this example if the queue length q ≥ 92 the controller uses only the
fastest available servers.

From this control table one can see that the incentive to make an assignment to
the servers with larger mean usage costs is larger in states x with greater value of
arrival intensity λdK+1(x).

Table 3.21 Values of initial system parameters for PH/M/5/100 queue

i 0 1 2 3 4 5
ci 0.20 1.00 1.70 2.30 3.50 7.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 3.33 3.78 4.42 5.56 7.78
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Table 3.22 Optimal control for any system state
System State x Modulating phase d6

(d1, d2, d3, d4, d5) 1 2 3 4 5

(0,0,0,0,0) 0,3,12,21,29 0,3,12,20,29 0,3,12,19,28 0,3,12,19,27 0,3,12,19,27
(1,0,0,0,0) -,0,23,36,51 -,0,22,36,51 -,0,22,35,49 -,0,22,35,49 -,0,22,35,48
(0,1,0,0,0) 0,-,10,37,52 0,-,10,37,52 0,-,10,36,50 0,-,10,36,50 0,-,10,35,49
(1,1,0,0,0) -,-,2,52,73 -,-,2,52,72 -,-,3,51,71 -,-,3,51,71 -,-,3,50,70
(0,0,1,0,0) 0,5,-,32,52 0,5,-,32,52 0,5,-,31,50 0,5,-,31,50 0,5,-,31,49
(1,0,1,0,0) -,0,-,44,73 -,0,-,44,72 -,0,-,44,71 -,0,-,43,71 -,0,-,43,70
(0,1,1,0,0) 0,-,-,25,73 0,-,-,25,73 0,-,-,25,72 0,-,-,25,72 0,-,- ,25,71
(1,1,1,0,0) -,-,-,10,92 -,-,-,10,92 -,-,-,10,91 -,-,-,10,91 -,-,-,10,90
(0,0,0,1,0) 0,5,23,-,48 0,5,23,-,48 0,5,23,-,47 0,5,23,-,46 0,5,23,-,46
(1,0,0,1,0) -,0,32,-,66 -,0,32,-,66 -,0,31,-,65 -,0,31,-,65 -,0,31,-,64
(0,1,0,1,0) 0,-,13,-,67 0,-,13,-,66 0,-,13,-,66 0,-,13,-,65 0,-,14,-,65
(1,1,0,1,0) -,-,2,-,84 -,-,2,-,84 -,-,3,-,83 -,-,3,-,83 -,-,3,-,82
(0,0,1,1,0) 0,5,-,-,61 0,5,-,-,61 0,5,-,-,61 0,5,-,-,60 0,5,-,-,60
(1,0,1,1,0) -,0,-,-,76 -,0,-,-,76 -,0,-,-,75 -,0,-,-,75 -,0,-,-,75
(0,1,1,1,0) 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55
(1,1,1,1,0) -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31
(0,0,0,0,1) 0,5,24,38,- 0,5,24,37,- 0,5,23,37,- 0,5,23,36,- 0,5,23,36,-
(1,0,0,0,1) -,0,32,52,- -,0,32,52,- -,0,31,52,- -,0,31,51,- -,0,31,51,-
(0,1,0,0,1) 0,-,14,53,- 0,-,14,53,- 0,-,14,52,- 0,-,14,52,- 0,-,14,52,-
(1,1,0,0,1) -,-,2,64,- -,-,2,64,- -,-,3,64,- -,-,3,63,- -,-,3,63,-
(0,0,1,0,1) 0,5,-,45,- 0,5,-,45,- 0,5,-,45,- 0,5,-,45,- 0,6,-,44,-
(1,0,1,0,1) -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,54,-
(0,1,1,0,1) 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,-
(1,1,1,0,1) -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,-
(0,0,0,1,1) 0,6,33,-,- 0,6,33,-,- 0,6,32,-,- 0,6,32,-,- 0,6,32,-,-
(1,0,0,1,1) -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,-,-
(0,1,0,1,1) 0,-,14,-,- 0,-,15,-,- 0,-,15,-,- 0,-,15,-,- 0,-,15,-,-
(1,1,0,1,1) -,-,2,-,- -,-,2,-,- -,-,3,-,- -,-,3,-,- -,-,3,-,-
(0,0,1,1,1) 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,-
(1,0,1,1,1) -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,-
(0,1,1,1,1) 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,-

3.5 Controlled MAP/M/K/B − K queue
Consider a MAP/M/K/B −K queueing system. As we have mentioned above,
the Markovian arrival process parameterized by rate matrices Λ = [λij] which
specifies intensities of phase transition without arrivals and N = [νij] specifies
intensities of phase transition accompanied by arrivals, whose sum Λ + N is an
irreducible infinitesimal generator of order m. The particular case of MAP is a
Markov modulated Poisson process which is determined only by matrix N .

The equilibrium condition in this case

λ =
m∑

i=1

m∑

j=1

πDK+1
(i)νij <

K∑

k=1

µk, (3.12)
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where πDK+1
is the equilibrium distribution of the process DK+1(t) which satisfies

πT
DK+1

(Λ + N) = 0, πT
DK+1

~1 = 1.

The elements λxy(a) of transition intensities matrix for the Markov decision pro-
cess {Z(t)} have the form

λxy(a) =







λαβ, y = Sβ
K+1x, dK+1(x) = α, dK+1(y) = β,

ναβ, y = Sa0S
β
K+1x, dK+1(x) = α, dK+1(y) = β,

µj, y = Saj
Gjx, j ∈ J1(x),

λαα −
∑

j∈J1(x) µj, y = x, dK+1(x) = α,
0, otherwise,

where a = a0 ∈ A(x) denotes the control which has to be chosen in the case of
an arrival to the state x, a = aj ∈ A(S−1

j S−1
0 x) denotes the control in the case of

a service completion on the j-th server.

In this matrix:

• the first case corresponds to the MAP phase changing without new job
arrival;

• the second case corresponds to an arrival of a new job in the system and
sending it to the queue or to some server in accordance with the decision
rule;

• the third case corresponds to the service completion

The diagonal elements of this matrix equal to the sum of its elements along the
row with negative sign.

The arrival and service completion transitions are illustrated by the graph
shown in Figure 3.23 (a) and (b), respectively

Figure 3.23
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3.5.1 Optimality equation
As usual, for the function V (x, h) and small interval h we have

V (x, t + h) = l(x)h +

(

1 +

[

λdK+1(x)dK+1(x) +
∑

j∈J1(x)

µj

]

h

)

V (x, t)(x)+

+
m∑

i=1

νdK+1(x)ih min
a0∈A(x)

V (x + ea0 , t)

+ 1{q(x)=0}

∑

j∈J1(x)

µjhV (x − ej, t)+

+ 1{q(x)>0}

∑

j∈J1(x)

µjh min
aj∈A(S−1

j S−1
0 x)

V (x − ej − e0 + eaj
, t)+

∑

i6=
dK+1(x)

λdK+1(x)ihV (Si
K+1x, t).

In this equation, the first member of the right–hand side represents the loss of the
system up to time h, the second one represents the total loss of the system during
the following time t in the case that no phase changes occur in the system, the next
one represents the total loss of the system during the following time t in the case
that a new customer arrives before the service completion. The following member
represents the loss of the system in the case of service completion with non-empty
queue before new customer arrival, the next two members deal with the total loss
of the system in the case that one of the served customers leaves the system with
empty queue before some customer arrives and phase changes without arrivals.

For the system under consideration, taking into account the asymptotic behav-
ior of the function V (x, t) the previous equation assumes the form

v(x) =
1

λx

[

l(x) + C1(x) + C2(x) − g + (3.13)

+
m∑

i=1

νdK+1(x)iT0v(Si
K+1x) +

∑

j∈J1(x)

µjTjv(x)

]

= Bv(x).

In this representation

λx = −

(

λdK+1(x)dK+1(x) −
∑

j∈J1(x)

µj

)
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is intensity of state x changing;

C1(x) =
∑

dK+1 6=dK+1(x)

λdK+1(x)dK+1
v(S

dK+1

K+1 x)

is loss rate due to MAP phase changing without decision making;

C2(x) =
∑

j∈J1(x)
q(x)=0

µjv(S−1
j x)

is loss rate due to service completion with empty queue. Operators T0 and Tj are
given by formula (2.9).

The optimal policy f = {f(x) : x ∈ E} as before is determined by the
definitions (2.11) and (2.12).

3.5.2 Monotonicity properties. Dependence on modulating phases
For two phases α and β we introduce the order

Sα
K+1x ≥ Sβ

K+1x, να ≥ νβ, α ≤ β,

where for two-state arrival process να = ναα + ναβ and νβ = νββ + νβα.
Analogously, for this system the value function v(x) is submodular and the

optimal control policy is of threshold type.

Theorem 3.24 The optimal policy for the NJM– and the PCM–problems for the
system with MAP is of threshold type with finite thresholds q∗k(dK+1) for each
modulating phase.

The light traffic results, see [60], obtained in Chapter 2 holds for this system if

λ = max
i

{
m∑

j=1

νi j +

m∑

j=1
j 6=i

λi j} < µK.

Now we show, that for two-state arrival process, if να ≥ νβ, the threshold
levels satisfy q∗k(α) ≤ q∗k(β).

Theorem 3.25 Assume the bounded, nondecreasing function v(x) has the follow-
ing property

v(Sα
K+1x) ≥ v(Sβ

K+1x), να ≥ νβ.
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Then, the operator B introduced in (3.13), also retains this property of nonde-
creasing function for the value function of the model,

Bv(Sα
K+1x) ≥ Bv(Sβ

K+1x), να ≥ νβ.

Proof: For the operators T0 and Tj with respect to shifts Sα
K+1 and Sβ

K+1 we have

T0v(Sα
K+1x) ≥ v(Sα

K+1x),

T0v(Sα
K+1x) ≥ T0v(Sβ

K+1x),

Tjv(Sα
K+1x) ≥ Tjv(Sβ

K+1x).

Now by virtue of definition (3.13) of operator B we have

Bv(Sα
K+1x) − Bv(Sβ

K+1x) =

c(Sα
K+1x) − c(Sβ

K+1x) +
∑

j∈J1(x)

µj[Tjv(Sα
K+1x) − Tjv(Sβ

K+1x)]+

να αT0v(Sα
K+1x) + να βT0v(Sβ

K+1x) + νβ βT0v(Sα
K+1x) + νβ αT0v(Sα

K+1x)+

λα βv(Sβ
K+1x) + λβ αv(Sα

K+1x)−

νβ βT0v(Sβ
K+1x) − νβ αT0v(Sα

K+1x) − να αT0v(Sβ
K+1x) − να βT0v(Sβ

K+1x)−

λβ αv(Sα
K+1x) − λα βv(Sβ

K+1x).

In this expression the first two items is nonnegative since c(Sα
K+1x)−c(Sβ

K+1x) =

0 and
∑

j∈J1(x) µj[Tjv(Sα
K+1x)− Tjv(Sβ

K+1x)] ≥ 0 by virtue of the properties for
function v(x) and operators Tj .

We note that for two state (α, β) MAP the expression does not depend on
phase changing rates without arrivals. In this case we get

να α[T0v(Sα
K+1x) − v(Sβ

K+1x)] − νβ β[T0v(Sβ
K+1x) − v(Sα

K+1x)]+

να β[T0v(Sβ
K+1x) − v(Sβ

K+1x)] − νβ α[T0v(Sα
K+1x) − v(Sα

K+1x)] ≥

να α[T0v(Sα
K+1x) − v(Sα

K+1x)] − νβ β[T0v(Sβ
K+1x) − v(Sα

K+1x)]+

να β[T0v(Sβ
K+1x) − v(Sα

K+1x)] − νβ α[T0v(Sα
K+1x) − v(Sα

K+1x)] =

(να α − νβ α)[T0v(Sα
K+1x) − v(Sα

K+1x)] − (νβ β − να β)[T0v(Sβ
K+1x) − v(Sα

K+1x)] ≥ 0,

by virtue of inequalities v(Sα
K+1x) ≥ v(Sβ

K+1x), T0v(Sα
K+1x) ≥ T0v(Sβ

K+1x) and
the condition

να α − νβ α ≥ νβ β − να β
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that follows from inequality να ≥ νβ .
The statement of the theorem for the value function of the model v = {v(x) :

x ∈ E} follows from the fact that it is a fixed point of operator B.
�

For the system under consideration again we expect that as the arrival rate να in-
creases, the incentive to make an assignment to the slower server is getting higher.
Thus, we can require, that

(S0 − Sk)(S
β
K+1 − Sα

K+1)v(x) ≤ 0, k ∈ J0(x), να ≥ νβ.

3.5.3 Algorithm
To analyze numerically the behavior of optimal strategies the servers will be ar-
ranged in order (2.13) of their service intensities decreasing for the NJM–problem
and in order (2.29) of their mean usage cost increasing for the PCM–problem
under conditions (2.30)–(2.32).
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve up to an
accuracy ε by a successive approximation method the equation

vn(x) =
1

λx

[

c(x) + C1(x) + C2(x) − gn+

m∑

i=1

νdK+1(x)ivn(Sfn(x)S
i
K+1x) +

∑

j∈J1(x)

µjvn(Sfn(S−1
j

S−1
0 x)S

−1
j S−1

0 x)

]

for all x ∈ E under the condition v(0) = 0.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (2.11)
of the model:

fn+1(x) = argmin
k∈A(x)

vn(x + ek), k = 0, K.

The algorithm stops when two successive iterations yield the same policy.

The description of system states changing at the control epochs by means of one
dimensional representation was introduced in previous section by (3.6)-(3.8)

3.5.4 Numerical analysis
This type of model is very close to the previous one, therefore numerical results
should be very close. At first we consider examples for the NJM–problem. Opti-
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mal controls of the system MAP/M/5/100 if number of phases m = 5 are given
in control Table 3.26. The elements of the matrix Λ = [λi j] are the same as in
analogous example for the PH-type arrivals. The elements of the matrix N can
be found by N = ~ληT , where ~λ denotes the vector of arrival intensities from the
phases for the PH-type arrivals, see previous system. Therefore, the total arrival
intensity from the phases satisfy the property να ≥ νβ when α ≤ β.

Table 3.26 Values of initial system parameters for MAP/M/5/100 queue

i 1 2 3 4 5
µi 1.90 0.63 0.52 0.45 0.30

Table 3.27 Optimal control for any system state
System State x Queue length q(x)

(d1, d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,3) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,*,*,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This control table shows the same results as for the previous system. The fastest
server is always activated. The threshold sequence is depend on the queue length
and the phase of new arrival. Threshold levels take their value:

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 1, d6 = 1, 2;

q∗2(d6) = 2, d6 = 3, 5;

q∗3(d6) = 2, d6 = 1, m;

q∗4(d6) = 3, d6 = 1, m;

q∗5(d6) = 7, d6 = 1, m.

Thus, in this case the threshold sequence has the following form

0 = q∗1 ≤ q∗2(α) ≤ q∗2(β) ≤ · · · ≤ q∗K(α) ≤ q∗K(β) < q∗K+1 = ∞,

where α and β is current arrival modulating phases and να ≤ νβ, α ≤ β.
The numerical examples allow us to suspect that the optimal threshold may

vary at most 1 for the states with different arrival modulating phase, that is q∗
k(α) ≤
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q∗k(β) ≤ q∗k(α) + 1 if να ≥ νβ.
As before the dynamic behavior of optimal threshold levels for the NJM–

problem can be represented by means of the control-diagrams. We propose the
diagrams for the systems with MMPP and MAP arrival streams.
MMPP/M/K/B − K queue

Figures 3.1–3.6 in Appendix 3.7.3 illustrate threshold curves for the system MMPP/M/3/100
which is the particular case of the system with MAP . The average arrival rates
λ = {0.51, 0.26, 0.01} are varied over the figures in the following way

• N =

(
0.500 0.100
0.200 0.130

)

in Figure 3.1,

• N =

(
0.300 0.100
0.090 0.050

)

in Figure 3.2,

• N =

(
0.050 0.005
0.001 0.001

)

in Figure 3.3.

The results of optimal threshold calculation with different values of arrival intensi-
ties from the phases for the second and third servers are shown in Figures 3.4–3.6
(a,b). The average arrival intensity in these examples λ = 0.51 but the elements
of the matrix N are changed

• N =

(
0.000 0.340
1.000 0.000

)

in Figure 3.4,

• N =

(
0.000 0.810
0.300 0.100

)

in Figure 3.5,

• N =

(
0.300 0.330
0.300 0.100

)

in Figure 3.6.

In all these examples one can see that the incentive to use the slower server as op-
timal control is greater in states with larger arrival intensity and respective curves
are always below the others.
MAP/M/K/B − K queue
Similar examples are introduced for MAP streams. For this system the results
of optimal policies calculation are summarized in the diagrams shown in Fig-
ures 4.1–4.6 (a,b) in Appendix 3.7.4. Parameters for arrivals with average λ =
{0.51, 0.26, 0.01} take the following values
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• N =

(
0.500 0.400
0.100 0.240

)

, Λ =

(
−1.900 1.000
0.500 −0.840

)

in Figure 4.1,

• N =

(
0.350 0.180
0.100 0.010

)

, Λ =

(
−1.430 0.900
0.500 −0.610

)

in Figure 4.2,

• N =

(
0.030 0.010
0.010 0.001

)

, Λ =

(
−1.040 1.000
0.010 −0.021

)

in Figure 4.3.

For the same average λ = 0.51 but for different values of the elements in the
matrices N and Λ, the results are shown in Figures 4.4–4.6 (a,b), so

• N =

(
0.000 0.200
1.000 0.000

)

, Λ =

(
−0.630 0.430
0.000 −1.000

)

in Figure 4.4,

• N =

(
0.000 1.500
0.440 0.000

)

, Λ =

(
−6.500 5.000
0.000 −0.440

)

in Figure 4.5,

• N =

(
0.500 0.340
0.100 0.000

)

, Λ =

(
−1.840 1.000
1.550 −1.650

)

in Figure 4.6.

As usual, in theses diagrams the changing of threshold levels q∗
2(d4) for the sec-

ond server (pictures labeled by letter "a") and q∗3(d4) for the third server (pictures
labeled by letter "b") as the threshold function with arguments of first service in-
tensity µ1 for different values of the second service intensity µ2 and depending on
arrival phases d4 are shown.

In these examples the incentive to make an assignment to the second servers is
greater in the state x = (1, 0, ∗, α) than in state x = (1, 0, ∗, β) and to the third
server is greater in state x = (1, 1, 0, α) than in state x = (1, 1, 0, β) if να ≥ νβ

and in our case α ≤ β. Therefore, each family of curves for different arrival
phases has the low and upper bound. The low and upper bounds always corre-
spond to the states with largest and fewest arrival rates νi, respectively.

For the PCM–problem when arrangement of the servers (2.29) and in the case
of µ1 ≥ µ2 ≥ · · · ≥ µ5, for the parameters in Table 3.28 we have

Table 3.28 Values of initial system parameters for MAP/M/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66
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Table 3.29 Optimal control for any system state
System State x Queue length q(x)

(d1 , d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,1) 0 0 0 0 2 2 2 2 2 2 2 2 2 2
(1,0,*,*,*,3) 0 0 0 0 0 0 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(1,1,1,0,*,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 0 0 0 0 0 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case of the PCM–problem the optimal control is of threshold type with the
following threshold sequence

q∗1(d6) = 0, d6 = 1, m;

q∗2(d6) = 4, d6 = 1, 4;

q∗2(d6) = 5, d6 = 5;

q∗3(d6) = 6, d6 = 1, m;

q∗4(d6) = 7, d6 = 1, m;

q∗5(d6) = 12, d6 = 1, m.

In this case of the PCM–problem the optimal policy has the same structure as for
the NJM–problem.

Below we discuss the case for arrangement of the servers (2.29) and parame-
ters µ1 ≤ µ2 ≤ · · · ≤ µ5 and c1 ≤ c2 ≤ · · · ≤ c5. In Table 3.31 we consider
system states with modulating phases dK+1 = {1, 2, 3, 4, 5}. The optimal control
policies are presented as threshold sequences q∗1(x), q∗2(x), . . . , q∗K(x).

For introduced values of initial system parameters with increasing of modu-
lating phase index dK+1 more expensive but faster servers are more preferable by
controller. In this example if the queue length q ≥ 92 the controller uses only the
fastest available servers.

Table 3.30 Values of initial system parameters for MAP/M/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 1.58 4.44 5.00 5.53 6.66
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Table 3.31 Optimal control for any system state
System State x Modulating phase d6

(d1, d2, d3, d4, d5) 1 2 3 4 5

(0,0,0,0,0) 0,3,12,21,29 0,3,12,20,29 0,3,12,19,28 0,3,12,19,27 0,3,12,19,27
(1,0,0,0,0) -,0,23,36,51 -,0,22,36,51 -,0,22,35,49 -,0,22,35,49 -,0,22,35,48
(0,1,0,0,0) 0,-,10,37,52 0,-,10,37,52 0,-,10,36,50 0,-,10,36,50 0,-,10,35,49
(1,1,0,0,0) -,-,2,52,73 -,-,2,52,72 -,-,3,51,71 -,-,3,51,71 -,-,3,50,70
(0,0,1,0,0) 0,5,-,32,52 0,5,-,32,52 0,5,-,31,50 0,5,-,31,50 0,5,-,31,49
(1,0,1,0,0) -,0,-,44,73 -,0,-,44,72 -,0,-,44,71 -,0,-,43,71 -,0,-,43,70
(0,1,1,0,0) 0,-,-,25,73 0,-,-,25,73 0,-,-,25,72 0,-,-,25,72 0,-,- ,25,71
(1,1,1,0,0) -,-,-,10,92 -,-,-,10,92 -,-,-,10,91 -,-,-,10,91 -,-,-,10,90
(0,0,0,1,0) 0,5,23,-,48 0,5,23,-,48 0,5,23,-,47 0,5,23,-,46 0,5,23,-,46
(1,0,0,1,0) -,0,32,-,66 -,0,32,-,66 -,0,31,-,65 -,0,31,-,65 -,0,31,-,64
(0,1,0,1,0) 0,-,13,-,67 0,-,13,-,66 0,-,13,-,66 0,-,13,-,65 0,-,14,-,65
(1,1,0,1,0) -,-,2,-,84 -,-,2,-,84 -,-,3,-,83 -,-,3,-,83 -,-,3,-,82
(0,0,1,1,0) 0,5,-,-,61 0,5,-,-,61 0,5,-,-,61 0,5,-,-,60 0,5,-,-,60
(1,0,1,1,0) -,0,-,-,76 -,0,-,-,76 -,0,-,-,75 -,0,-,-,75 -,0,-,-,75
(0,1,1,1,0) 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55
(1,1,1,1,0) -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31
(0,0,0,0,1) 0,5,24,38,- 0,5,24,37,- 0,5,23,37,- 0,5,23,36,- 0,5,23,36,-
(1,0,0,0,1) -,0,32,52,- -,0,32,52,- -,0,31,52,- -,0,31,51,- -,0,31,51,-
(0,1,0,0,1) 0,-,14,53,- 0,-,14,53,- 0,-,14,52,- 0,-,14,52,- 0,-,14,52,-
(1,1,0,0,1) -,-,2,64,- -,-,2,64,- -,-,3,64,- -,-,3,63,- -,-,3,63,-
(0,0,1,0,1) 0,5,-,45,- 0,5,-,45,- 0,5,-,45,- 0,5,-,45,- 0,6,-,44,-
(1,0,1,0,1) -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,54,- -,0,-,54,-
(0,1,1,0,1) 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,-
(1,1,1,0,1) -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,-
(0,0,0,1,1) 0,6,33,-,- 0,6,33,-,- 0,6,32,-,- 0,6,32,-,- 0,6,32,-,-
(1,0,0,1,1) -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,-,- -,0,40,-,-
(0,1,0,1,1) 0,-,14,-,- 0,-,15,-,- 0,-,15,-,- 0,-,15,-,- 0,-,15,-,-
(1,1,0,1,1) -,-,2,-,- -,-,2,-,- -,-,3,-,- -,-,3,-,- -,-,3,-,-
(0,0,1,1,1) 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,-
(1,0,1,1,1) -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,-
(0,1,1,1,1) 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,-

3.6 Conclusions
In this chapter we considered the controlled queueing systems with different inter-
arrival time distributions. We investigated quantitative and qualitative properties
of optimal control policies and presented iteration procedures for successful ob-
taining of the optimal controls. We have shown that different arrival statistics
do not change the nature of optimal policy. Thus, we can speak about thresh-
old phenomenon of optimal control policy also for these type of queues. For the
NJM–problem the controller uses the fastest available server and for each server
corresponds m threshold levels for each arrival phase.

For the PCM–problem two possible optimal rules exist depending on the val-
ues of initial system parameters. In one case the server with minimal mean usage
cost should be turned on and as for the NJM–problem m threshold levels for each
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server exist. In other case the controller in each state can use different servers in
increasing order of their mean usage costs. Thus, each available server can have
several thresholds for different states of servers and in this case there exist such
queue length that for all states the optimal control consists in using server with
largest mean usage cost which is the fastest and the most expensive in such states.

The presence of the arrival phases information as a part of the system state
influences on the threshold levels and for different values of these phases for the
same states of the servers there can exist different threshold levels.

For different interarrival time distributions there exist different characteristics
which influence on optimal thresholds. The threshold levels increases in the case
of Erlangian arrivals when the residual interarrival time increases, in the case of
PH-type distribution and MAP when the total arrival intensity from the phase de-
creases. Also it was noticed that the optimal threshold may vary by at most 1 for
different arrival phases.
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3.7 Appendices

3.7.1 Em/M/K/B − K

Figure 1.1 (a) (b)
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Figure 1.4 (a) (b)
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3.7.2 PH/M/K/B − K

Figure 2.1 (a) (b)
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Figure 2.4 (a) (b)
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3.7.3 MMPP/M/K/B − K

Figure 3.1 (a) (b)
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Figure 3.4 (a) (b)
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3.7.4 MAP/M/K/B − K

Figure 4.1 (a) (b)
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Figure 4.4 (a) (b)
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Chapter 4

Service with phases

In this chapter we consider the system with Poisson arrivals and service rates depending on
a modulating Markov process. We consider m-stage Erlangian (Em) and Phase-type (PH)
service time distributions. We extend the validity of some existing results on the optimal
control of multi-server queueing systems with phase-type service time distributions. It
will be shown that the optimal policy of such queueing systems is also of a threshold
type, with threshold levels depending on the service phases. Finally, some quantitative
properties as well as numerical description of the optimal policies are presented.

4.1 Introduction.
Queueing systems with service phases allow a considerable extension of the clas-
sical controlled queueing systems. The Erlangian service-time models represents
the case of general consecutive service phases (stages), with the restriction that a
customer cannot enter the first phase of service until the preceding one completes
the last phase. In a distributed database system, this could be the case if the job,
i.e. a transaction, requests and locks either 1 or m resources. This can help when
the system operates in a two phase commitment protocol to achieve atomicity of
transactions. It is useful to study such a model also because an arbitrary service
distribution can be approximated by a mixture of Erlangian ones, choosing appro-
priately the number of stages.

Phase-type service time distributions are more complex and can be used to an-
alyze a system with superpositions of of a large number of data connections in
ATM heterogeneous links with burst durations.

The main goal of this chapter is to investigate the influence of service phases
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on the process of decision making and analyze the dynamic behavior of optimal
policies when initial system paremeters are varied. As before we consider the
NJM–problem and also discuss the PCM–problem for the mentioned systems.
For each controlled queueing system we give a description and obtain optimality
equation. Based on this equation an algorithm will be proposed to calculate opti-
mal policies.

In Section 4.3 we give analysis of the queueing model with Erlangian service
phases. Section 4.4 extends the previous model in that now a more general PH-
type service time distribution is allowed. We note that heterogeneous servers in
these systems mean unequal averages of service times.

4.2 Problem description
We consider a family of queueing systems with Poisson arrivals which symboli-
cally can be represented in Figure 4.1.

Figure 4.1 Queueing system

The control times are all arrival and service completion times. The task of con-
trol as before is to to put the customers to the queue or send them to one of free
servers with the aim of minimizing the mean number of jobs in the system (NJM–
problem) or the total processing cost (PCM–problem).

To solve the problem we introduce the Markov decision controllable process
{Z(t)} = {X(t), U(t)}. The observed process {X(t)}t≥0 with state space E =
N×

∏K
k=1{0, . . . , mk} is a vector process with components D0(t), D1(t), . . . , DK(t),

where, as before, D0(t) = Q(t) is a queue length at time t, and Dk(t) for k > 0
describes the state of the service process of the server k at this time:

Dk(t) =

{

0, if the k-th server is idle at time t and
dk = 1, mk, if the k-th server is in phase dk.
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For each state x = (d0, d1, . . . , dK), where d0 := q(x), let J0(x) and J1(x) be the
sets of labels assigned to idle and busy servers, respectively, in this state, i.e.

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) 6= 0}.

Denote also by L(t) = D0(t)+
∑K

k=1 1{Dk(t)>0} the random process of number of
jobs in the system.

The controlling process {U(t)}t≥0 with decision sets A(x) has the same de-
scription as for the previous models, see e.g. Section 2.3. The transition intensi-
ties for the process {Z(t)} will be specified for each queue separately.

In our further investigation we will need shift operators for the state space.
Therefore, denote by ei = (0, . . . , 0

︸ ︷︷ ︸

i

, 1, 0, . . . , 0
︸ ︷︷ ︸

K−i

) the K + 1 - dimensional vector

for which the i-th component is one and all others are zeros. Consider the shift
operators S0, S

dj

j when arrivals of new customers take place in the queue

S0x = x + e01{q(x)<B−K}, (4.1)

S
dj

j x = x + djej1{j∈J0(x)},

otherwise S0x = S
dj

j x = x. The same operator Sj is used to represent a phase
change without service completion:

S
dj

j x = x + [dj − dj(x)]ej, j ∈ J1(x).

When a service completion takes place one considers the inverse shift operators
S−1

0 and S
−dj

j , respectively, that is

S−1
0 x = x − e0, if q(x) > 0,

S
−dj

j x = x − djej, if j ∈ J1(x).

As before, two types of the optimization problem can be considered, the NJM–
problem and the the PCM–problem with additional penalties. Therefore, in accor-
dance with the given cost structure, the quantity functional to be minimized has
the form

Y (t) =

∫ t

0

(

c0Q(u) +
∑

j:Dj(u)6=0

cj

)

du.

For this functional the adjusted loss per unit of time is independent of the decision.
For the NJM–problem the loss rate in the state x has the form

c(x) = q(x) +

K∑

k=1

1{dk(x)>0} = l(x),
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and for the PCM–problem

c(x) = q(x)c0 +
∑

j∈J1(x)

cj.

The problem consists in minimizing the mean loss per unit of time, that is

g(x; δ) = lim
t→∞

1

t
E

δ
x0

Y (t).

4.3 Controlled M/E/K/B − K queue
Denote by mk the number of phases (stages) and by µk the different rates per stage
for each server k = 1, K. The service process is illustrated in Figure 4.2

Figure 4.2 Service process

The equilibrium condition in infinite buffer case

λ <

K∑

k=1

µk

mk

, (4.2)

where µk

mk
is a mean service rate of the k-th server.

For this system we have to take into account that a departure from some stage
dj(x) < mj , j ∈ J1(x) engenders the transition to the next stage dj(x)+ 1, while
a departure from stage dj(x) = mj signifies the service completion of the job.

Using the shift notations introduced above, we represent the transition intensi-
ties λxy(a) of the process {Z(t)} by

λxy(a) =







λ, y = S1
a0

x, a0 6= 0, y = S0x, a0 = 0,

µj1{dj(x)=mj}[1{q(x)=0}+

1{q(x)>0,aj=0}], y = S
−mj

j x, j ∈ J1(x)

µj1{dj(x)=mj ,q(x)>0,a>0}, y = S1
aj

S
−mj

j S−1
0 x, j ∈ J1(x),

µj, y = S
dj(x)+1
j x, j ∈ J1(x) ∩ J1(y),

−(λ +
∑

j∈J1(x) µj), y = x,

0, otherwise,
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where a = a0 ∈ A(x) denotes the control which has to be chosen in the case of
an arrival to the state x, a = aj ∈ A(S

−mj

j S−1
0 x) denotes the control in the case

of a service completion on the j-th server.
In this matrix:

• the first case corresponds to arrivals;

• the second case corresponds to a service completion with an empty queue
or with control aj = 0 when the last service phase is completed;

• the third case corresponds to a service completion and the decision to send
one of the jobs from the queue to one of the available servers;

• the fifth case corresponds to a change of the service phase, for which a
transition is possible only to the next service phase.

The diagonal elements of this matrix equal the negative sum of all the entries in
the same row.

The transitions after an arrival and service phase completion are illustrated by
the graph in Figure 4.3 (a) and (b), respectively

Figure 4.3
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4.3.1 Optimality equation
As usual, to obtain the optimality equation we obtain for the function V (x, t) and
a small interval of length h

V (x, t + h) =c(x)h +

(

1 −

[

λ +
∑

j∈J1(x)

µj

]

h

)

V (x, t)+

λh min
a0∈A(x)

V (x + ek, t)+

∑

j∈J1(x)
q(x)>0

1{dj(x)=mj}µjh min
aj∈A(S

−mj
j S−1

0 x)

V (x − mjej − e0 + eak
, t)+

∑

j∈J1(x)
q(x)=0

1{dj(x)=mj}µjhV (x − mjej, t) +
∑

j∈J1(x)

1{dj(x)<mj}µjh V (x + ej, t).

The asymptotic behavior of the function V (x, t) and the long-run problem (2.6)
implies the following form of the optimality equation:

v(x) =
1

λx

[

c(x) + C1(x) + C2(x) − g + (4.3)

+ λT0v(x) +
∑

j∈J1(x)
q(x)>0

dj (x)=mj

µjTjv(x)

]

= Bv(x).

In this representation
λx = λ +

∑

j∈J1(x)

µj

is the intensity of a transition from state x,

C1(x) =
∑

j∈J1(x)
dj(x)<mj

µjv(S
dj(x)+1
j x)

is the loss rate due to a change of the service phase without decision making,

C2(x) =
∑

j∈J1(x)
q(x)=0

dj (x)=mj

µjv(S
−mj

j x)
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is the loss rate due to a service completion with an empty queue,

T0v(x) = min

{

v(S0x), v(S1
kx) : k = 1, K

}

(4.4)

is the minimal loss in case of a new job arrival,

Tjv(x) = T0v(S−1
0 S

−mj

j x)1{q(x)>0} (4.5)

is the minimal loss in case of a service completion and the appropriate decision
making.

It is possible to see from this system of equations that the optimal policy

f = {f(x) : x ∈ E}

minimizes the function b = {b(x, a) : x ∈ E, a ∈ A} with

b(x, a) = 1{a=0}v(Sax) + 1{a=k}v(S1
ax) (4.6)

and has the form
f(x) = argmin[b(x, a) : a ∈ A(x)]. (4.7)

This means that it is also determined by the value function

v = {v(x) : x ∈ E}

of the model, which is a solution of the optimality equation (4.3).

4.3.2 Monotonicity properties. Dependence on service phases
Let the servers be arranged for the NJM–problem in decreasing order of their
mean service intensities

µ1

m1

≥
µ2

m2

≥ · · · ≥
µK

mK

(4.8)

and for the PCM–problem in increasing order of their mean usage cost

c1m1

µ1
≤

c2m2

µ2
≤ · · · ≤

cKmK

µK

(4.9)
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with different possible values of initial parameters, e.g.

• 0 ≤ m1µ
−1
1 ≤ m2µ

−1
2 ≤ · · · ≤ mKµ−1

K , c1 ≤ c2 ≤ · · · ≤ cK; (4.10)
• 0 ≤ m1µ

−1
1 ≤ m2µ

−1
2 ≤ · · · ≤ mKµ−1

K , c1 > c2 > · · · > cK ; (4.11)
• 0 < mKµ−1

K < · · · < m2µ
−1
2 < m1µ

−1
1 , c1 ≤ c2 ≤ · · · ≤ cK; (4.12)

The system under consideration with Phase-type service time distributions is much
more difficult than the Markovian queue. Based on the numerical results we ex-
pect that this system must have the similar monotonicity properties. These prop-
erties can be formalized as the following conjectures

Conjecture 4.4 An optimal policy in the NJM–problem has the property that
whenever it assigns a job to an available server it makes the assignment to an
available server with minimal mean service time (4.8). In the PCM–problem, if
the values of initial system parameters satisfy the conditions (4.9)-(4.11), the con-
troller always assigns a job to the server with minimal mean usage cost. Under
the conditions (4.9) and (4.12), the controller can use any of available servers but
while the queue length increases, more expensive but faster server can be used.

Conjecture 4.5 The optimal control policy is of threshold type with one finite
threshold for each service phase of each server in the NJM- and the PCM–problem
under the conditions (4.9)-(4.11). The optimal control policy is of threshold type
with different finite thresholds for each service phase of each server in the PCM–
problem under the conditions (4.9) and (4.12).

We note that only some of the statements in the Conjectures 4.4 and 4.5 can be
proved. The other assertions remains unproven, nevertheless we confirm them
numerically.

Below we introduce a partial order on the state space E in by means of the
shift operators S0 and Sdi

i . This shall be defined by

S0x ≥ x, Sdi

i x ≥ x, i ∈ J0(x), di = 1, mi,

Sα
i x ≥ Sβ

i x, i ∈ J0(x), α ≤ β.

S1
i x ≥ S1

j x, i, j ∈ J0(x), i ≥ j.

Now the following statement can be formulated for the system under consideration
concerning the introduced order
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Theorem 4.6 Assume the bounded, nondecreasing function v(x) has the following
property

1. v(S0x) ≥ v(x), v(Sdi

i x) ≥ v(x), di = 1, mi;

2. v(Sα
i x) ≥ v(Sβ

i x), i ∈ J0(x), α ≤ β;

Then the operator B retains this property for the value function of the model.

Proof: First we consider the behavior of the operator T0 with respect to the intro-
duced order on E. For the inequality 1 we have

T0v(S0x) = min
k∈A(S0x)

{v(S2
0x, v(S1

kS0x))} ≥ min
k∈A(S0x)

{v(S0x, v(S1
kx))} ≥

min
k∈A(x)

{v(S0x, v(Skx))} = T0v(x),

that follows from assumption on the function v(x) and the relation A(S0x) =
A(x). The same argument applies for the inequality T0v(Sdi

i x) ≥ T0v(x) taking
into account that A(Sdi

i x) ⊂ A(x).
For the inequality 2 we get

T0v(Sα
i x) = min

k∈A(Sα
i

x)
{v(S0S

α
i x), v(S1

kS
α
i x)} ≥

min
k∈A(Sβ

i x)

{v(S0S
β
i x), v(S1

kS
β
i x)} = T0v(Sβ

i x)

by virtue of the monotonicity assumption on the function v(x) and the equality
A(Sα

i x) = A(Sβ
i x).

The same is true also for the operators Ti due to the definition (4.5). It is obvious
that the operator B preserves the inequalities 1 for nondecreasing function v(x)
due to the properties of operators T0 and Tj .
Without loss of generality, we assume that λ + 2µi +

∑

j∈J1(S
di
i x)

µj = 1. Further
we consider the two-state service process on the server i. Then for the inequality
2 and the operator B we have

Bv(Sα
i x) − Bv(Sβ

i x) = [c(Sα
i x) − c(Sβ

i x)]+

λ[T0v(Sα
i x) − T0v(Sβ

i x)]+
∑

j∈J1(S
di
i x)

µj(1{dj<mj}[v(Sα
i x) − v(Sβ

i x)] + 1{dj=mj}[Tjv(Sα
i x) − Tjv(Sβ

i x)])+

µi[v(Sβ
i x) + v(Sα

i x)] − µi[Tiv(Sβ
i x) − v(Sβ

i x)].
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In this expression the first three items are non-negative since the function c(x) is
constant upon passing from Sα

i x to Sβ
i x for the phases α and β. For the last item

we obtain according to the definitions of the operators Ti

µi[v(Sβ
i x) + v(Sα

i x)] − µi[Tiv(Sβ
i x) − v(Sβ

i x)] =

µi[v(Sα
i x) − T0v(S−1

0 x)] = µi[v(Sα
i x) − v(x)] ≥ 0,

Further, because the function c(x) is nonnegative relative to the shifts from
Sα

i x to Sβ
i x, from S0x to x and from Sdi

i x to x, and the value function v = {v(x) :
x ∈ E} is a fixed point of operator B, we obtain the inequality 1 and 2 of the
theorem.
�

Taking into account the inequality 2 we can expect that as the residual service
time increases the slow server will be used more often i.e.

v(S0S
β
i x) ≤ v(SkS

β
i x) ⇒ v(S0S

α
i x) ≤ v(SkS

α
i x), i, k ∈ J0(x), α ≤ β.

The last inequalities can be rewritten in terms of the value function in the follow-
ing operators form

(S0 − S1
k)(S

β
i − Sα

i )v(x) ≤ 0, i, k ∈ J0(x), α ≤ β.

Thus, if the optimal policy is of threshold type for the service phases α ≤ β there
exist threshold levels q∗k for the k-th server such that q∗k(α) ≤ q∗k(β).

Now we investigate the question, which of the available servers should be used
by the controller. For the Markovian queue the Conjecture 4.4 and 4.5 was proved
at least for NJM- and the PCM–problem under the conditions (4.9) and We have
not been able to analyze successfully the system M/Emj

, M/K or the more gen-
eral model M/Emj

, Emi
/K, i.e. to show which of these two types of servers has

to be switched on. In the first case the faster server j is Erlangian and another one
i is exponential. In the second system, the both of servers i and j are Erlangian
with arrangements (4.8) and(4.9) for any i > j.

In a theoretical manner we will investigate only the model M/M, Emi
/K

where we can compare two kinds of servers, the fastest of which j are exponential
with rate µj and the slower i are Erlangian with mi stages and rate µi per stage,
satisfying µj ≥ µi for the NJM–problem, and cj

µj
≤ ci

µi
for the PCM–problem.
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Theorem 4.7 Assume the bounded, nondecreasing function v(x) has the following
properties

3. v(S1
i x) ≥ v(S1

j x), i, j ∈ J0(x), i ≥ j,
cj

µj

≤
ci

µi

.

Then the operator B retains these properties for the value function of the model.

Proof: First we consider the behavior of the operator T0 with respect to the in-
troduced order on E. Introduce the action set B(x) such that A(S1

j x) = B(x) ∪
{0} ∪ {j} and A(S1

i x) = B(x) ∪ {0} ∪ {i}. Now for the inequality 3 we get

T0v(S1
i x) = min{v(S1

j S
1
i x), min

k∈B(x)
{v(S0S

1
i x), v(S1

kS
1
i x)}} ≥

min{v(S1
i S

1
j x), min

k∈B(x)
{v(S0S

1
j x), v(S1

kS
1
j x)}} = T0v(S1

j x).

Due to definition (4.5) of the operators Tj the property 3 is preserved, too. We
only have to specify the inequality Tjv(S1

j x) ≥ Tjv(x). We note that the function
v(x) is defined after the decision that has been made in state x. Therefore, this
function satisfies the condition v(x) = min

k∈A(x)
{v(S−1

0 S1
kx)} = T0v(S−1

0 x). This

implies for the state Smi

i x after service completion Tiv(Smi

i x) = T0v(S−1
0 x) =

v(x) = Tiv(x).
Without loss of generality assume that λ + µi + µj +

∑

k∈J(S1
i S1

j x) µk = 1. For
the NJM– and the PCM–problem under conditions (2.30) taking into account the
inequality 3 we have

Bv(S1
i x) − Bv(S1

j x) = [c(S1
i x) − c(S1

j x)]+

λ[T0v(S1
i x) − T0v(S1

j x)] +
∑

r∈J1(S1
i S1

j x)

µr[Trv(S1
i x) − Trv(S1

j x)]+

∑

l∈J1(S1
i S1

j x)

µl(1{dl<ml}[v(S1
i x) − v(S1

j x)] + 1{dl=ml}[Tlv(S1
i x) − Tlv(S1

j x)])+

µiµj

[
v(S1

i x) − Tjv(S1
j x)

µi

−
v(S1

j x) − v(S2
i x)

µj

]

.

In this expression the items with index r denote exponential servers and the items
with index l denote the Erlangian servers.
The first three items of this expression are non-negative according to the property
of the functions c(x) and v(x) upon passing from S1

i x to S1
j x.
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The last item is non-negative because of the following argument. If q(x) = 0,
then

µiµj

[
v(S1

i x) − Tjv(S1
j x)

µi

−
v(S1

j x) − v(S2
i x)

µj

]

=

µiµj

[
v(S1

i x) − v(x)

µi

−
v(S1

j x) − v(S2
i x)

µj

]

≥ 0,

due to the monotonicity assumption on the function v(x), v(S1
i x) − v(x) ≥

v(S1
j x)−v(S2

i x) ≥ 0 and µi ≤ µj. The same we obtain for states x with q(x) > 0.
Indeed, in this case we have Tjv(S1

j x) = T0v(S−1
0 x) = v(x).

Now, since the operator B retains inequalities in the sense that Bv1(x) ≥
Bv2(x) for v1(x) ≥ v2(x) and the fact that the function c(x) is non-negative rela-
tive to the shifts from S1

i x to S1
j x (according to the monotone convergence of the

sequence Bnc(x) w.r.t the value function of the model v = {v(x) : x ∈ E}), we
obtain the inequality 3 of the theorem.
�

A direct consequence of Theorem 4.7 is that for the system under consideration
an optimal control requires to switch on the fastest available server if the system
parameters satisfy the condition (2.30). In the case of inequalities (2.31) the state-
ment of the theorem can be confirmed only by means of the numerical results. At
last, the inequality 3 does not hold for all states x if the values of initial system
parameters satisfy (2.32). To show this it is sufficient to consider the function v(x)
in the state x = (q, 0, . . . , 0) when λ = 0, that is no future arrivals occur. In this
case for the value function v(x) we obtain recursively

v(S1
i x) − v(S1

j x) =

[
mici

µi

−
cj

µj

]

+ c0q(x)

[
mi

µi

−
1

µj

]

.

The last expression is nonnegative only if q(x) ≤ 1
c0

[

1
µj
− mi

µi

]−1[

mici

µi
−

cj

µj

]

≥ 0.

By virtue of the same arguments as in Theorem 2.9 for the system M/M, Em2/2
with two heterogeneous servers, the value function v = {v(x) : x ∈ E} of the
model is (S0, S2)-submodular, i.e. satisfies condition (2.16)

(1 − S0)(S0 − S2)v(x) ≤ 0.

The last inequality means that the optimal policy for this system is of a threshold
type. That means that a server in the NJM– and the PCM–problem has to be
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switched on only if the queue length exceeds some prespecified threshold level.
For the multi-server queue numerical analysis shows that the inequality

(1 − S0)(S0 − S1
k)v(x) ≤ 0, k ∈ J0(x)

holds for any system M/Emk
/K that was examined, regardless which of the

server, Erlangian or exponential, is the faster or with fewer mean usage cost.
In light traffic case λ < µk

mk
, thresholds for switching on the exponential servers

can be obtained by (2.22) and (2.34). For Erlangian servers the threshold levels
can be obtained using the same approach as in Section 2.4.7 and 2.5.6. Recur-
sively solving the equation

v(x) =
c(x)

M1
+

∑

j∈J1(x)

1{dj<mj}v(S
dj+1
j x) + 1{dj=mj}Tjv(x)

M1

up to q(x) = q∗2 and taking into account that the first server, with parameters de-
pending on the problem (NJM or PCM), is always used, we get for x = (0, . . . , 0)
and the phase d1 = 1, m1 of the first server

v(S
q∗2
0 Sd1

1 x) =
(m1 − d1 + 1)(c1 + q∗2c0)

µ1

+
q∗2m1c1

µ1

+
m1q

∗
2(q

∗
2 − 1)c0

2µ1

.

Once a queue length reaches in some state the threshold q∗2 for using the second
server, the value function at this state must be less than the value function in the
point where the controller does not use the second server. We omit the calculation
of the value v(S

q∗2−1
0 Sd1

1 S1
2x) and finally get

v(S
q∗2−1
0 Sd1

1 S1
2x) =

m2c2

µ2
+ v(S

q∗2−1
0 Sd1

1 x) ≤ v(S
q∗2
0 Sd1

1 x),

m2

µ2
+

(m1 − d1 + 1)(c1 + (q∗2 − 1)c0)

µ1
+ v(S

q∗2−2
0 S1

1x) ≤

(m1 − d1 + 1)(c1 + q∗2c0)

µ1
+

m1c1

µ1
+

m1(q
∗
2 − 1)

µ1
+ v(S

q∗2−2
0 S1

1x).

This implies the threshold level for the second server in the state Sd1
1 x

q(Sd1
1 x) ≥ q∗2(d1) =

µ1

m1c0

[
m2c2

µ2
−

m1c1

µ1

]

+
d1 − 1

m1
.
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It is possible to see that with increasing of the value d1 = 1, m1, i.e. with de-
creasing of the residual service time, the threshold levels for the slower server
increases. The threshold expressions for the third and other servers are more com-
plicated since they depend on service phases of all servers q∗

j (d1, d2, . . . , dj−1)

with less indexes. For the states S1
1S

1
2 . . . S1

j−1x the threshold level q∗j for the j-th
server in the NJM–problem can be calculated by

q∗j =
mj

µj

j−1
∑

i=1

µi

mi

− (j − 1) (4.13)

and for the PCM–problem by

q∗j =
1

c0

[
mjcj

µj

j−1
∑

i=1

µi

mi

−

j−1
∑

i=1

ci

]

. (4.14)

We did not obtain here the threshold levels for any other states of the servers
Sd1

1 Sd2
2 . . . S

dj−1

j−1 x because they would require a quite complicated recursive solu-
tion, but the extension is possible in principle.

4.3.3 Algorithm
To analyze numerically the behavior of optimal strategies, the servers will be ar-
ranged in order given by (4.8) for the NJM–problem, and in the order (4.8) under
conditions (4.10)–(4.12) for the PCM–problem.
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve the
equation

vn(x) =
1

λx

(

c(x) + C1(x) + C2(x) − gn

)

+

1

λx

λ

(

1{fn(x)=0}vn(S0x) + 1{fn(x)=k}vn(S1
fn(x)x)

)

+

1

λx

∑

j∈J1(x)
q(x)>0

dj (x)=mj

µj

(

1{fn(x)=0}vn(S0S
−mj

j S−1
0 x)+

1{fn(x)=k}vn(S1

fn(S
−mj
j S−1

0 x)
S
−mj

j S−1
0 x)

)
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for all x ∈ E under the condition v(0) = 0. This can be done by successive
approximation up to an accuracy ε.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (4.6)
of the model:

fn+1(x) = argmin
k∈A(x)

{

vn(x + ek), k = 1, K

vn(x + e0), k = 0

The algorithm stops when two successive iterations yield the same policy.
For a description of the system states transitions at control epochs we consider the
one-to-one correspondence between the multidimensional representation of the
system state x and the index of such a state. Namely,

#(x) =
K∏

i=1

(mi + 1)d0(x) +
K∑

j=1

dj(x)1{j>1}

j−1
∏

i=1

(mi + 1) ≡ x (4.15)

The number of system states is
∏K

i=1(mi + 1)(B − K + 1).
Now, if yj is the state after possible transition from the j-th coordinate, it can be
obtained with respect to introduced formula by

yj = x +
(dj − dj(x))

∏K

i=1(mi + 1)

1{1≤j≤K}

∏K
i=j(mi + 1)

. (4.16)

Thus, in the one-dimensional case we have

S0x = x +

K∏

i=1

(mi + 1), (4.17)

S−1
0 x = x −

K∏

i=1

(mi + 1),

S
dj

j x = x + dj

j−1
∏

i=1

(mi + 1), j ∈ J0(x),

S
dj

j x = x + [dj − dj(x)]

j−1
∏

i=1

(mi + 1), j ∈ J1(x),

S
−dj

j x = x − dj(x)

j−1
∏

i=1

(mi + 1), j ∈ J1(x).
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4.3.4 Numerical analysis

In this section we propose numerical results of the introduced iteration algorithm.
An example of the NJM–problem for the system M/E5/5/100 with mk = 5,
k = 1, 5, and arrival intensity λ = 0.01 is given in the control Table 4.9. The
Erlangian service intensities per stage are given in Table 4.8.

Table 4.8 Values of initial system parameters for M/E5/5/100 queue

i 1 2 3 4 5
µi 1.90m1 0.63m2 0.52m3 0.45m4 0.30m5

Table 4.9 Optimal control for some system states
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(2,4,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(5,5,0,*,*) 0 0 0 0 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(4,3,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4
(5,5,4,0,*) 0 0 0 0 0 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 5 5 5 5 5 5 5 5
(3,2,1,1,0) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(4,5,2,1,0) 0 0 0 0 0 0 0 0 5 5 5 5 5 5

Because of the large of state space only selective states are shown in this table.
Here we can see the threshold structure of optimal control policies. The fastest
server is always activated and all other servers have a number of thresholds. The
threshold levels for each slower server depends also on the current phases of the
busy servers which are faster. In these examples, the selected threshold levels
assume the values:

q∗1 = 0;

q∗2(d1) = 2, d1 = 1;

q∗3(d1, d2) = 2, d1 = 1, d2 = 1;

q∗3(d1, d2) = 3, d1 = 2, d2 = 4;

q∗3(d1, d2) = 4, d1 = 5, d2 = 5;
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q∗4(d1, d2, d3) = 3, d1 = 1, d2 = 1, d3 = 1;

q∗4(d1, d2, d3) = 4, d1 = 4, d2 = 3, d3 = 1;

q∗4(d1, d2, d3) = 5, d1 = 5, d2 = 5, d3 = 4;

q∗5(d1, d2, d3, d4) = 6, d1 = 1, d2 = 1, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 7, d1 = 3, d2 = 2, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 8, d1 = 4, d2 = 5, d3 = 2, d4 = 1;

Thus for some fixed phases (d1, d2, . . . , dK−1) the threshold sequence looks like

0 = q∗1 ≤ q∗2(d1) ≤ q∗3(d1, d2) ≤ · · · ≤ q∗K(d1, d2, . . . , dK−1).

Moreover, with respect to decreasing residual service times, the threshold levels
satisfy the condition

q∗2(1) ≤ q∗2(2) ≤ · · · ≤ q∗2(m1);

q∗3(1, 1) ≤ q∗3(2, 1) ≤ · · · ≤ q∗2(m1, 1);

. . . . . . . . .

q∗K(1, d2, d3, . . . , dK−1) ≤ q∗K(2, d2, d3, . . . , dK−1) ≤ . . .

≤ q∗K(m1, d2, d3, . . . , dK−1)

and analogously, when increasing any other coordinate dk while all others are
fixed.

The results of dynamic behavior of threshold levels when the initial system
paremeters are varied for the system M/E5/3/100 with K = 3 heterogeneous
servers are summarized in the diagrams shown in Figures 1.1–1.6 in Appendix
4.6.1. As before, the Poisson arrival rate λ is varied over the Figures 1.1–1.3 as
follows

• λ=0.51, in Figure 1.1,

• λ=0.26, in Figure 1.2,

• λ=0.01, in Figure 1.3.

In these diagrams the changing of threshold levels q∗2(d1) for the second server
(pictures labeled by letter "a") and q∗3(d1, d2) for the third server (pictures labeled
by letter "b") represents the threshold function under variation of the first ser-
vice intensity, second service intensity and Erlangian service phases. The stepped
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curves in these diagrams show that when the residual service time of the faster
service decreases, then the incentive to make an assignment to the second slower
server is greater in state x = (α1, 0, ∗) than in state x = (β1, 0, ∗), and to the third
slower server is greater in state x = (α1, α2, 0) than in state x = (β1, β2, 0) if
αk ≤ βk, k = {1, 2}.

The influence of the number of phases on the threshold curves is presented in
Figures 1.4–1.6, where λ = 0.51 (pictures labeled by letter "a") and λ = 0.01
(pictures labeled by letter "b"). Here we can see that the low and upper bounds
always correspond to the states with the largest residual service time and the small-
est residual service time, respectively. The curves for all other possible residual
service times lie between these two bounds.

For the PCM–problem the control tables are given below. In the case of the
servers arranged by (4.9) with condition (4.11) and with values of initial system
parameters given in Table 4.10, the results of optimal policy calculation are given
in control Table 4.11. Similar results were obtained for condition (4.10).

Table 4.10 Values of initial system parameters for M/E/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66

Table 4.11 Optimal control for some system states
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 0 0 0 2 2 2 2 2 2 2 2 2
(4,0,*,*,*) 0 0 0 0 0 0 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(2,4,0,*,*) 0 0 0 0 0 0 0 3 3 3 3 3 3 3
(5,5,0,*,*) 0 0 0 0 0 0 0 0 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(4,3,1,0,*) 0 0 0 0 0 0 0 0 4 4 4 4 4 4
(5,5,4,0,*) 0 0 0 0 0 0 0 0 0 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 5 5 5
(3,2,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 5 5
(4,5,2,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Similar to the NJM–problem, in this case the optimal policy has a threshold type
with one threshold for each service phase of the certain server. As above the
fastest server is always switched on whenever it is idle. The threshold sequence is
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the same as for NJM–problem with the following elements

q∗1 = 0;

q∗2(d1) = 5, d1 = 1;

q∗2(d1) = 6, d1 = 4;

q∗3(d1, d2) = 6, d1 = 1, d2 = 1;

q∗3(d1, d2) = 7, d1 = 2, d2 = 4;

q∗3(d1, d2) = 8, d1 = 5, d2 = 5;

q∗4(d1, d2, d3) = 7, d1 = 1, d2 = 1, d3 = 1;

q∗4(d1, d2, d3) = 8, d1 = 4, d2 = 3, d3 = 1;

q∗4(d1, d2, d3) = 9, d1 = 5, d2 = 5, d3 = 4;

q∗5(d1, d2, d3, d4) = 11, d1 = 1, d2 = 1, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 12, d1 = 3, d2 = 2, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 13, d1 = 4, d2 = 5, d3 = 2, d4 = 1;

For the PCM–problem with the servers arranged by (4.9) and condition (4.11),
the optimal control policies are presented in control Table 4.13 with initial sys-
tem parameters given in Table 4.12. As before, because of the large number of
system states, (e.g. 1562980 states in this example) we consider only some se-
lected states. The optimal control policies are presented as the threshold sequences
q∗1(x), q∗2(x), . . . , q∗5(x), where x = (d1, d2, . . . , d5), when one of the coordinates
dk is varied while all others are fixed.
This control table shows that as the residual service time of some server decreases
the controller prefers more cheaper but the slower server for subsequent decision.

Table 4.12 Values of initial system parameters for M/E/5/200 queue

i 0 1 2 3 4 5
ci 0.20 1.00 1.70 2.30 3.50 7.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 3.33 3.78 4.42 5.56 7.78
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Table 4.13 Optimal control for some system states
System State x Service phase dj , j ∈ 1,K

(d1 , d2, d3, d4, d5) 1 2 3 4 5

(-,0,0,0,0) -,0,22,35,49 -,0,22,35,49 -,1,22,35,49 -,1,23,36,50 -,1,23,36,50
(0,-,0,0,0) 0,-,9,35,49 0,-,9,36,50 0,-,10,36,50 0,-,10,36,50 0,-,10,36,50
(-,1,0,0,0) -,-,2,51,70 -,-,2,51,70 -,-,3,51,71 -,-,3,51,71 -,-,3,51,71
(0,0,-,0,0) 0,4,-,30,50 0,4,-,30,50 0,5,-,31,50 0,5,-,31,50 0,5,-,31,50
(-,0,1,0,0) -,0,-,43,70 -,0,-,43,71 -,1,-,43,71 -,1,-,44,71 -,0,-,44,72
(0,-,1,0,0) 0,-,-,24,71 0,-,-,24,71 0,-,-,24,71 0,-,-,24,72 0,-,- ,25,72
(-,1,1,0,0) -,-,-,9,90 -,-,-,9,90 -,-,-,9,91 -,-,-,9,91 -,-,-,10,91
(0,0,0,-,0) 0,4,23,-,45 0,5,23,-,45 0,5,23,-,46 0,5,23,-,46 0,5,23,-,46
(-,0,0,1,0) -,0,31,-,64 -,0,31,-,64 -,1,31,-,65 -,1,32,-,65 -,0,32,-,65
(0,-,0,1,0) 0,-,13,-,64 0,-,13,-,65 0,-,13,-,65 0,-,13,-,65 0,-,14,-,65
(-,1,0,1,0) -,-,2,-,82 -,-,2,-,83 -,-,3,-,83 -,-,3,-,83 -,-,3,-,83
(0,0,-,1,0) 0,5,-,-,59 0,5,-,-,59 0,5,-,-,59 0,5,-,-,59 0,5,-,-,60
(-,0,1,1,0) -,0,-,-,74 -,0,-,-,75 -,1,-,-,75 -,1,-,-,76 -,1,-,-,76
(0,-,1,1,0) 0,-,-,-,53 0,-,-,-,53 0,-,-,-,53 0,-,-,-,54 0,-,-,-,54
(-,1,1,1,0) -,-,-,-,29 -,-,-,-,30 -,-,-,-,30 -,-,-,-,30 -,-,-,-,30
(0,0,0,0,-) 0,5,23,36,- 0,5,23,36,- 0,5,23,36,- 0,5,23,36,- 0,5,23,36,-
(-,0,0,0,1) -,0,31,51,- -,0,31,51,- -,1,32,51,- -,1,32,52,- -,1,32,52,-
(0,-,0,0,1) 0,-,13,51,- 0,-,13,52,- 0,-,13,52,- 0,-,13,52,- 0,-,14,52,-
(-,1,0,0,1) -,-,2,63,- -,-,2,63,- -,-,3,64,- -,-,3,64,- -,-,3,65,-
(0,0,-,0,1) 0,5,-,44,- 0,5,-,44,- 0,5,-,44,- 0,5,-,44,- 0,5,-,45,-
(-,0,1,0,1) -,0,-,53,- -,1,-,53,- -,1,-,53,- -,1,-,53,- -,1,-,53,-
(0,-,1,0,1) 0,-,-,30,- 0,-,-,30,- 0,-,-,30,- 0,-,-,30,- 0,-,-,30,-
(-,1,1,0,1) -,-,-,9,- -,-,-,9,- -,-,-,9,- -,-,-,9,- -,-,-,10,-
(0,0,0,-,1) 0,5,32,-,- 0,5,32,-,- 0,5,32,-,- 0,5,32,-,- 0,5,32,-,-
(-,0,0,1,1) -,0,39,-,- -,0,39,-,- -,1,39,-,- -,1,39,-,- -,1,39,-,-
(0,-,0,1,1) 0,-,14,-,- 0,-,14,-,- 0,-,14,-,- 0,-,14,-,- 0,-,15,-,-
(-,1,0,1,1) -,-,2,-,- -,-,2,-,- -,-,3,-,- -,-,3,-,- -,-,3,-,-
(0,0,-,1,1) 0,5,-,-,- 0,5,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,-
(-,0,1,1,1) -,0,-,-,- -,0,-,-,- -,1,-,-,- -,1,-,-,- -,1,-,-,-
(0,-,1,1,1) 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,-
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4.4 Controlled M/PH/K/B − K queue
In this section we consider a queue M/PHhet/K/B − K with phase-type ser-
vice time distribution having representations (ηk, Mk). The dimension of the PH-
distribution for the k-th server is denoted by mk. The vectors ηk = (η1

k, η
2
k, . . . , η

mk

k )
are initial service phase distributions and the matrices Mk = [µi j

k ] contain the tran-
sition intensities of the PH distribution. The service process is illustrated in Figure
4.14

Figure 4.14 Service process

For the existence of a stationary regime when the buffer has infinite capacity the
equilibrium condition is determined by

λ <
K∑

k=1

(−ηT
k M−1

k
~1)−1. (4.18)

Using the shift notation, we represent the transition intensities λxy(a) of the pro-
cess {Z(t)} by

λxy(a) =







λ[1{a0=0}

+η
da0(y)
a0 1{a0 6=0}], y = S0x, a0 = 0, y = S

da0(y)
a0 x, a0 6= 0,

µj(dj(x))[1{d0(x)=0}

+1{d0(x)>0,aj=0}], y = S
−dj

j x, j ∈ J1(x),

µ
dj(x)
j η

daj
(y)

aj

1{d0(x)>0,aj 6=0}, y = S
daj
aj S

−dj

j S−1
0 x, j ∈ J1(x),

µ
dj(x) dj(y)
j , y = S

dj(y)
j x, j ∈ J1(x) ∩ J1(y),

−λ+
∑

j∈J1(x) µ
dj(x) dj(x)
j , y = x,

0, otherwise,
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where µ
dj(x)
j are the components of the vector ~µj = −Mj

~1. Here a = a0 ∈ A(x)
denotes the control which has to be chosen in the case of an arrival to the state x,
a = aj ∈ A(S

−dj

j S−1
0 x) denotes the control in the case of a service completion on

the j-th server.
In this matrix:

• the first case corresponds to an arrival of a new job in the system and sending
it to the queue or to some server in accordance with the decision rule;

• the second case corresponds to a service completion with an empty queue
or with control aj = 0;

• the third case corresponds to a service completion and sending one of the
jobs from the queue to one of available servers in accordance with the deci-
sion rule;

• the forth case corresponds to a transition of the service phases.

The diagonal elements of this matrix (the last case) equal the negative sum of all
elements along the same row.

Transitions in the cases of arrivals and service completions are illustrated by
the graph shown in Figure 4.15 (a) and (b), respectively

Figure 4.15

�
�

�	

@
@

@R

(q, d1, . . . , 0, . . . , dK)

�
�

�	

@
@

@R

(q, d1, . . . , dj , . . . , dK)
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λ
a = 0

λη
dj

j

a = j
µ

dj

j

a = 0
µ

dj

j η
dj

j

a = j

Now we obtain the optimality equation.
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4.4.1 Optimality equation

For the function V (x, t) and a small interval of length h we have

V (x, t + h)(x) = c(x)h +

(

1 −

[

λ −
∑

j∈J1(x)

µ
dj(x) dj(x)
j

]

h

)

V (x, t)+

+ λh min
a0∈A(x)

{

V (S0x, t),

ma0∑

da0=1

η
da0
a0 V (Sdk

a0
x, t)

}

+
∑

j∈J1(x)
q(x)>0

µ
dj(x)
j h min

aj∈A(S
−dj
j S−1

0 x)

{

V (x, t),

maj∑

daj
=1

η
daj
aj V (S

daj
aj S−1

0 x, t)

}

+

+
∑

j∈J1(x)

∑

dj 6=dj(x)

µ
dj(x) dj

j h V (S
dj

j x, t)+

+
∑

j∈J1(x)
q(x)=0

µ
dj(x)
j h V (S

−dj

j x, t).

In this equation, the first member of the right–hand side represents the loss of the
system up to time h, the second one represents the total loss of the system during
the following time t in the case that no phase changes occur in the system, the
next one represents the total loss of the system during the following time t in the
case that a new customer arrives before the service completion. The following
member represents the loss of the system in the case of service completion with
a non-empty queue before a new customer arrives, the next two members deal
with the total loss of the system in the case of phase changes without arrivals or
service completion, and the last one represents the total loss of the system during
the following time t in the case that one of the served customers leaves the system
with an empty queue before some customer arrives.

For the system under consideration, taking into account the asymptotic behav-
ior (2.6) of the function V (x, t) and passing to the limit h → 0, the previous
equation assumes the form

v(x) =
1

λx

[

c(x) + C1(x) + C2(x) − g + (4.19)

+ λT0v(x) +
∑

j∈J1(x)

µ
dj(x)
j Tjv(x)

]

= Bv(x)
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where Bv(x) denotes the transform operator for the function v(x).
In this representation

λx =

(

λ −
∑

j∈J1(x)

µ
dj(x) dj(x)
j

)

is the total intensity of a transition from state x,

C1(x) =
∑

j∈J1(x)

∑

dj 6=dj(x)

µ
dj(x) dj

j v(S
dj

j x)

is the loss rate due to a transition of the service phase without decision making,

C2(x) =
∑

j∈J1(x)
q(x)=0

µdj(x)v(S
−dj

j x)

is the loss rate due to a service completion with an empty queue,

T0v(x) = min

{

v(S0x),

mk∑

dk=1

ηdk

k v(Sdk

k x) : k = 1, K

}

(4.20)

is the minimal loss in case of a new job arrival,

Tjv(x) = T0v(S
−dj

j S−1
0 x)1{q(x)>0} (4.21)

is the minimal loss in case of a service completion and the appropriate decision
making.

It is possible to see from this system of equations that the optimal policy

f = {f(x) : x ∈ E}

minimizes the function b = {b(x, a) : x ∈ E, a ∈ A(x)} with

b(x, a) = 1{a=0}v(x + e0) +
∑

1≤k≤K

1{a=k}

∑

1≤dk≤mk

ηdk

k v(Sdk

k x) (4.22)

and has the form
f(x) = argmin[b(x, a) : a ∈ A(x)]. (4.23)

This means that it is determined by the value function of the model

v = {v(x) : x ∈ E},

which is a solution of the optimality equation (4.19).
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4.4.2 Monotonicity properties. Dependence on service phases
We arrange the servers for the NJM–problem in order of their mean service times
increasing (or their mean service intensities decreasing), i.e.

0 < µ1
−1 ≤ µ2

−1 ≤ · · · ≤ µK
−1

which is the same as

0 < −ηT
1 M−1

1
~1 ≤ −ηT

2 M−1
2

~1 ≤ · · · ≤ −ηT
KM−1

K
~1. (4.24)

For the PCM–problem let the servers be arranged in increasing order of their mean
usage cost γk = −ckη

T
k M−1

k
~1, i.e.

0 < −c1η
T
1 M−1

1
~1 ≤ −c2η

T
2 M−1

2
~1 ≤ · · · ≤ −cKηT

KM−1
K

~1 (4.25)

with different groups of parameters

• 0 ≤ −ηT
1 M−1

1
~1 ≤ −ηT

2 M−1
2

~1 ≤ · · · ≤ −ηT
KM−1

K
~1, (4.26)

c1 ≤ c2 ≤ · · · ≤ cK;

• 0 ≤ −ηT
1 M−1

1
~1 ≤ −ηT

2 M−1
2

~1 ≤ · · · ≤ −ηT
KM−1

K
~1, (4.27)

c1 > c2 > · · · > cK ;

• 0 < −ηT
KM−1

K
~1 < · · · < −ηT

2 M−1
2

~1 < −ηT
1 M−1

1
~1, (4.28)

c1 ≤ c2 ≤ · · · ≤ cK;

The numerical results and our assumptions allow us to formulate the basic quan-
titative properties of optimal control policy for the system under study by means
of the Conjectures 4.4 and 4.5, introduced for the queue with Erlangian service.

Now we introduce a partial order in E with respect to shift operators S0 and
Sdi

i by

S0x ≥ x, Sdi

i x ≥ x, i ∈ J0(x), di = 1, mi;

Sβ
i x ≥ Sα

i x, i ∈ J1(x), µα
i ≥ µβ

i , α ≤ β.

The states Sdi

i x and S
dj

j x for different servers i, j ∈ J0(x), where di = 1, mi and
dj = 1, mj, can have different possible orders but with some condition that will
be discussed later.
Similar to Theorem 4.7 of the previously analyzed queue with Erlangian service
consider the following statement:
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Theorem 4.16 Assume that the bounded, nondecreasing function v(x) has the
following properties with respect to introduced in E partial order

1. v(S0x) ≥ v(x), v(Sdi

i x) ≥ v(x), di = 1, mi;

2. v(Sβ
i x) ≥ v(Sα

i x), i ∈ J0(x), µα
i ≥ µβ

i .

Then the operator B introduced in (4.19) retains these properties for the value
function of the model.

Proof: At first consider the operator T0. For the inequality 1 we have

T0v(S0x) = min
k∈A0(S0x)

{v(S2
0x),

mk∑

dk=1

ηdk

k v(Sdk

k S0x)} ≥

min
k∈A0(S0x)

{v(S0x),

mk∑

dk=1

ηdk

k v(Sdk

k x)} ≥

min
k∈A0(x)

{v(S0x),

mk∑

dk=1

ηdk

k v(Sdk

k x)} ≥ T0v(x),

where the first inequality follows from the assumption that the function v(x) is
nondecreasing and the second one follows from the relation A(S0x) = A(x). The
same sequence of relations is used to prove the inequality T0v(Sdi

i x) ≥ T0v(x),
where A(Sdi

i x) ⊂ A(x).
For the inequality 2 we get

T0v(Sβ
i x) = min

k∈A(Sβ
i x)

{v(S0S
β
i x),

mk∑

dk=1

ηdk

k v(Sdk

k Sβ
i x)} ≥

min
k∈A(Sα

i x)
{v(S0S

α
i x),

mk∑

dk=1

ηdk

k v(Sdk

k Sα
i x)} = T0v(Sα

i x),

taking into account the assumptions that the function v(x) is nondecreasing with
respect to shift operators Sα

i x and Sβ
i x when µα

i ≥ µβ
i , α ≤ β, and A(Sα

i x) =
A(Sβ

i x). The operators Tj preserves the mentioned properties due to the definition
(4.21).
It is obvious that the operator B satisfies the inequality 1 by virtue of the properties
of the function v(x) and the operators T0, Tj .
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For the inequality 2 and two-state service process we have

Bv(Sβ
i x) − Bv(Sα

i x) = [c(Sβ
i x) − c(Sα

i x)] + λ[T0v(Sβ
i x) − T0v(Sα

i x)]+

∑

j∈J1(x)

µ
dj

j [Tjv(Sβ
i x) − Tjv(Sα

i )x] +
∑

j∈J1(x)

mj∑

r=1
r 6=dj(x)

µ
dj r

j [v(Sr
j S

β
i x) − v(Sr

j S
α
i x)]+

[µβ
i Tiv(Sβ

i x) + µβ α
i v(Sα

i x) + (µα
i + µα β

i )v(Sβ
i x)]−

[µα
i Tiv(Sα

i x) + µα β
i v(Sβ

i x) + (µβ
i + µβ α

i )v(Sα
i x)].

The first four items on the right–hand side of this expression are nonnegative.
Indeed,

c(Sβ
i x) − c(Sα

i x) = ci + c(x) − ci − c(x) = 0,

therefore the function c(x) is constant with respect to the shifts Sβ
i and Sα

i .
For last two items we have

[µβ
i Tiv(Sβ

i x) + µβ α
i v(Sα

i x) + (µα
i + µα β

i )v(Sβ
i x)]−

[µα
i Tiv(Sα

i x) + µα β
i v(Sβ

i x) + (µβ
i + µβ α

i )v(Sα
i x)] =

µα
i [v(Sβ

i x) − Tiv(Sα
i x)] − µβ

i [v(Sα
i x) − Tiv(Sβ

i x)] =

µα
i [v(Sβ

i x) − v(x)] − µβ
i [v(Sα

i x) − v(x)] ≥ 0.

The last expression is nonnegative by virtue of the property Tiv(Sα
i x) = Tiv(Sβ

i x) =
T0v(S−1

0 x) = v(x) and µα
i ≥ µβ

i .
Finally, the theorem follows from the fact that the value function of the model

v = {v(x) : x ∈ E} is a fixed point of operator B.
�

According to condition v(Sβ
k x) ≥ v(Sα

k x) we expect that with decreasing service
rate µβ

k the less productive server will be used more often, since then the chance
is higher that the future arrivals see a shorter queue or a smaller processing cost.
Therefore we can require that

f(Sβ
k x) = 0 ⇒ f(Sα

k x) = 0, α ≤ β;

It is possible to rewrite the last relations in accordance with the definition of opti-
mal policy through condition (4.23)

v(S0S
β
k x) ≤

ml∑

dl=1

ηdl

l v(Sdl

l Sβ
k x) ⇒ v(S0S

α
k x) ≤

ml∑

dl=1

ηdl

l v(Sdl

l Sα
k x);
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The last inequalities can be expressed in terms of the operators as follows

(S0 −
mk∑

dk=1

ηdk

k Sdk

k )(Sα
i − Sβ

i )v(x) ≤ 0, α ≤ β; (4.29)

(4.30)

Thus, if the optimal policy has threshold type then there exist finite thresholds for
each service phase.

Now consider the property of the value function v(x) with respect to an optimal
decision which of the available servers should be used by the controller. We have
not been able to successfully analyze even the simplified system M/M, PHmi

/K
where the fastest server is exponential with service intensity µj and the slower
one has a PH service time distribution with representation (ηi, Mi) of dimen-
sion mi, nor the system M/PHmj

, M/K with a faster PH server, nor the some-
what more general M/PHmi

, PHmj
/2 system with the condition (ηT

j M−1
j

~1)−1 ≥

(−ηT
i M−1

i
~1)−1. For such queue with PH heterogeneous servers only method

which can be applied to investigate the optimal policy structure is the numerical
analysis (see Section 4.4.4) The numerical results allow us to expect, additionally
to the inequalities in Theorem 4.16, the following property:

Conjecture 4.17 If for some order of the points Sdi

i x and S
dj

j x, where di = 1, mi

and dj = 1, mj, some bounded positive function v(x) satisfies the conditions

3.

mi∑

di=1

ηdiv(Sdi

i x) ≥

mj∑

dj=1

ηdjv(S
dj

j x), i ≥ j, di = 1, mi, dj = 1, mj,

− cjη
T
j M−1

j
~1 ≤ −ciη

T
i M−1

i
~1,

then the operator B retains this property for the value function of the model.

Thus, we first expect and numerically confirm that the optimal control for the
NJM– and the PCM–problem under conditions (4.26) and (4.27) consists in using
the fastest available (NJM–problem) server with respect to arrangement (4.24) and
the server with minimal mean usage cost (PCM–problem) according to arrange-
ment (4.25). This result does not hold for the system under conditions (4.25) and
(4.28). And further, an optimal policy requires to switch on the servers only if nec-
essary, that is the optimal control is of a threshold type. Regarding the switching
rule of some servers we can show that under Conjecture 4.17 the value function



4.4. CONTROLLED M/PH/K/B − K QUEUE 175

v = {v(x) : x ∈ E} has increments
∑mi

di=1 ηdi

i v(Sdi

i x) − v(S0x) that are mono-
tone in S0 that assumes the inequality

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )v(x) ≤ 0, k ∈ J0(x). (4.31)

Theorem 4.18 The value function of the model v = {v(x) : x ∈ E} satisfies the
property (4.31) under Conjecture 4.17.

Proof: According to Conjecture 4.17, i.e. if the optimal control consists in activat-
ing the maximal mean intensity server (the NJM–problem) or the minimal mean
usage cost server (the PCM–problem) if necessary, then only two solutions are
possible in each state x: f(x) = 0 (not to service the job) or f(x) = k, i.e. to use
the fastest server available in the state x (the NJM–problem) or the server with the
lowest mean usage cost (the PCM–problem)). Here k obeys for the NJM–problem

µk = (−ηT
k M−1

k 1)−1 = max{(−ηT
l M−1

l 1)−1 : l ∈ J0(x)}

and for the PCM–problem

ck

µk

= −ckη
T
k M−1

k 1 = min{−clη
T
l M−1

l 1 : l ∈ J0(x)}.

The set A(x) of controls is independent of the shift S0 (for the PCM–problem it
is only in the cases (4.26) and (4.27)).

Below we show that the operator T0 defined by (4.20) retains property (4.31).
Therefore, it is necessary to check whether these properties are satisfied for the
function T0v(x) = min{v(S0x),

∑mk

dk=1 ηk(dk)v(Sdk

k x)} if it is satisfied for some
function v(x). We have to prove the following inequality

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k x)T0v(x) ≤ 0,

or in detail
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min{v(S2
0x),

mk∑

dk=1

ηdk

k v(S0S
dk

k x)}− (4.32)

mk∑

dk=1

ηdk

k min{v(S0S
dk

k x),

ml∑

dl=1

ηdl

l v(Sdl

l Sdk

k x)}−

min{v(S3
0x),

mk∑

dk=1

v(S2
0S

dk

k x)}+

mk∑

dk=1

ηk(dk) min{v(S2
0S

1
kx),

ml∑

dl=1

ηdl

l v(S0S
dl

l Sdk

k x)} ≤ 0.

To prove this assertion for each point x ∈ E we decompose it in several cases.
1. First we consider the case when the optimal control in the second and third
items of (4.32) consists in sending the job to the queue, that is f(Sdk

k x) = f(S2
0x) =

0, dk = 1, mk. For this case we have

(1 − S0)(S0 −

mk∑

dk=1

ηdk

k Sdk

k )T0v(x) =

T0v(S0x) −
mk∑

dk=1

ηdk

k v(S0S
dk

k x) − v(S3
0x) +

mk∑

dk=1

ηdk

k v(S2
0S

dk

k x) =

(1 − S0)(S0 −

mk∑

dk=1

ηdk

k Sdk

k )v(S0x) ≤ 0.

2. Now consider the case when the optimal control for the second and third items
of (4.32) coincide and consists in sending the job to some idle server, that is
f(Sdk

k x) = f(S2
0x) = f 6= 0, dk = 1, mk. In this case we have
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(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )T0v(x) =

T0v(S0x) −
mk∑

dk=1

mf∑

df=1

ηdk

k η
df

f v(Sdk

k S
df

f x)−

mk∑

dk=1

η
df

f v(S2
0S

df

f x) +

mk∑

dk=1

ηdk

k T0v(S0S
dk

k x) ≤

mf∑

df=1

η
df

f v(S0S
df

f x) −
mk∑

dk=1

mf∑

df=1

ηdk

k η
df

f v(Sdk

k S
df

f x)−

mk∑

dk=1

η
df

f v(S2
0S

df

f x) +

mk∑

dk=1

mf∑

df=1

ηdk

k η
df

f v(S0S
dk

k S
df

f x) =

mf∑

df=1

η
df

f (1 − S0)(S0 −

mk∑

dk=1

ηdk

k Sdk

k )v(S
df

f x) ≤ 0

by virtue of inequalities

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )v(S
df

f x) ≤ 0,

which form the sum of negative values.
3. Let the optimal control in third item be f(S2

0x) = 0 and in second item be
f(Sdk

k x) = l 6= 0, dk = 1, mk.
By summing inequalities (4.31) for the function v(x) at the points Sdk

k , dk = 1, mk

and S0x, respectively, i.e.
mk∑

dk=1

ηdk

k v(S0S
dk

k x) −

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(Sdk

k Sdl

l x)−

mk∑

dk=1

ηdk

k v(S2
0S

dk

k x) +

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(S0S
dk

k Sdl

l x) ≤ 0,

and

v(S2
0x) −

mk∑

dk=1

ηdk

k v(S0S
dk

k x) − v(S3
0x) +

mk∑

dk=1

ηdk

k v(S2
0S

dk

k x) ≤ 0
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we get the inequality

v(S2
0x) −

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(Sdk

k Sdl

l x) − v(S3
0x) +

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(S0S
dk

k Sdl

l x) ≤ 0.

Finally we obtain

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )T0v(x) =

T0v(S0x) −

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(Sdk

k Sdl

l x) − v(S3
0x) +

mk∑

dk=1

ηdk

k T0v(S0S
dk

k x) ≤

v(S2
0x) −

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(Sdk

k Sdl

l x) − v(S3
0x) +

mk∑

dk=1

ml∑

dl=1

ηdk

k ηdl

l v(S0S
dk

k Sdl

l x) ≤ 0.

4. Now consider the second item of inequality (4.32)
mk∑

dk=1

ηdk

k min{v(S0S
dk

k x),

ml∑

dl=1

ηdl

l v(Sdl

l Sdk

k x)}.

Taking into account the inequalities (4.29) we have

v(S0S
β
k x) ≤

ml∑

dl=1

ηdl

l v(Sdl

l Sβ
k x) ⇒ v(S0S

α
k x) ≤

ml∑

dl=1

ηdl

l v(Sdl

l Sα
k x),

v(S0S
α
k x) ≥

ml∑

dl=1

ηdl

l v(Sdl

l Sα
k x) ⇒ v(S0S

β
k x) ≥

ml∑

dl=1

ηdl

l v(Sdl

l Sβ
k x)

if µα
k ≥ µβ

k .
Therefore, we have to consider two more cases, namely when for the second item
of (4.32) it is optimal to use the queue as the optimal decision for a phase in α on
the k-th server and to use the idle server if the phases is in β, taking into account
that µα

k ≥ µβ
k , α ∪ β = 1, mk

In this case we have
mk∑

dk=1

ηdk

k min{v(S0S
dk

k x),

ml∑

dl=1

ηdl

l v(Sdl

l Sdk

k x)} =

∑

α

ml∑

dl=1

ηα
k v(Sα

k Sdl

l x) +
∑

β

v(S0S
β
k x).
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For the third item of (4.32) there exist two subcases, namely f(S2
0x) = k and

f(S2
0x) = 0. Therefore, in the first subcase for the inequality (4.32) we have

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )T0v(x) =

T0v(S0x) −
∑

α

ml∑

dl=1

ηα
k ηdl

l v(Sα
k Sdl

l x) −
∑

β

ηβ
k v(S0S

β
k x)−

mk∑

dk=1

ηdk

k v(S2
0S

dk

k x) +

mk∑

dk=1

ηdk

k T0v(S0S
dk

k x) ≤

∑

α

ηα
k v(S0S

α
k x) −

∑

α

ml∑

dl=1

ηα
k ηdl

l v(Sα
k Sdl

l x)−

∑

α

ηα
k v(S2

0S
α
k x) +

∑

α

ml∑

dl=1

ηα
k ηdl

l v(S0S
α
k Sdl

l x) =

∑

α

ηα
k (1 − S0)(S0 −

ml∑

dl=1

ηdl

l Sdl

l )v(Sdk

k x) ≤ 0,

by virtue of the inequality (4.31).
In the second subcase, when f(S2

0x) = 0, we consider the sum of inequalities

∑

α

ηα
k v(S0S

α
k x) −

∑

α

ml∑

dl=1

ηα
k ηdl

l v(Sα
k Sdl

l x)−

∑

α

ηα
k v(S2

0S
α
k x) +

∑

α

ml∑

dl=1

ηα
k ηdl

l v(S0S
α
k Sdl

l x) ≤ 0

and

v(S2
0x) −

mk∑

dk=1

ηdk

k v(S0S
dk

k x) − v(S3
0x) +

mk∑

dk=1

ηdk

k v(S2
0S

dk

k x) ≤ 0.

As a result of the sum we obtain the following inequality
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v(S2
0x) −

∑

α

ml∑

dl=1

ηα
k ηdl

l −
∑

β

ηβ
k v(S0S

α
k x)−

v(S3
0x) +

∑

α

ml∑

dl=1

ηα
k ηdl

l v(S0S
α
k Sdl

l x) +
∑

β

ηβ
k v(S2

0S
β
k x) ≤ 0.

Using the last expression we get

(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )T0v(x) =

T0v(S0x) −
∑

α

ml∑

dl=1

ηα
k ηdl

k v(Sα
k Sdl

l x) −
∑

β

ηβ
kv(S0S

β
k x)−

v(S3
0x) +

mk∑

dk=1

ηdk

k T0v(S0S
dk

k x) ≤

v(S2
0x) −

∑

α

ml∑

dl=1

ηα
k ηdl

l −
∑

β

ηβ
k v(S0S

α
k x)−

v(S3
0x) +

∑

α

ml∑

dl=1

ηα
k ηdl

l v(S0S
α
k Sdl

l x) +
∑

β

ηβ
k v(S2

0S
β
k x) ≤ 0,

taking into account that α ∪ β = 1, mk.
For the boundary points q(x) = N , J0(x) = ∅, the inequality (4.32) is also
satisfied since the shift operators are defined by (4.1). Finally, the operators Tj

retain the property (4.31) by virtue of the definition (4.21).
Now, we can prove that under Conjecture (4.17) the value function of the model

v = {v(x) : x ∈ E} satisfies the property (4.31). This assertion follows from the
fact that the property (4.31) is retained for linear operations defining the operator
B given by (4.19). The function c(x) satisfies the condition (4.31)
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(1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )c(x) =

c(S0x) −

mk∑

dk=1

ηdk

k c(Sdk

k x) − c(S2
0) +

mk∑

dk=1

ηdk

k c(S0S
dk

k x) =

c0 + c(x) − [ck + c(x)]

mk∑

dk=1

ηdk

k − 2c0 − c(x) + [c0 + ck + c(x)]

mk∑

dk=1

ηdk

k = 0.

From monotone convergence
mk∑

dk=1

ηdk

k lim
n→∞

Bnc(Sdk

k x) =

mk∑

dk=1

ηdk

k v(Sdk

k x)

we obtain necessary result.
�

We note that this result can be proved analogously for the PCM–problem under
condition (4.28) but only if the number of servers K = 2. Otherwise we use
numerical analysis which confirmed the assertion for multi-server queue.

By virtue of Theorem 4.18 under Conjecture 4.17 in the case of light traffic
λ < µK using iteratively the optimality equation (4.19) for the second server if
the state x = (0, 0, . . . , 0) we get











v(S
q∗2−1
0 S1

1x)

v(S
q∗2−1
0 S2

1x)
.
.
.

v(S
q∗2−1
0 Sm1

1 x)












= −M−1
1

~1(c1 − (q∗2 − 1)c0) + ~1

[
(q∗2 − 1)c1

µ1

+
c0(q

∗
2 − 2)(q∗2 − 1)

2µ1

]

.

If q∗2 is a threshold for using the second server the following inequality holds
m2∑

d2=1

ηd2
2 v(S

q∗2−1
0 Sd1

1 Sd2
2 x) ≤ v(S

q∗2
0 Sd1

1 x)

For the last inequality we have
m2∑

d2=1

ηd2
2 v(S

q∗2−1
0 Sd1

1 Sd2
2 x) = ~1

c2

µ2

+ v(S
q∗2−1
0 Sd1

1 x) ≤ v(S
q∗2
0 Sd1

1 x)
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and now we obtain the vector of thresholds for the second server for each service
phase











q2(1)
q2(2)

.

.

.
q2(m1)











≤











q∗2(1)
q∗2(2)

.

.

.
q∗2(m1)











= ~1
µ1

c0

[
c2

µ2

−
c1

µ1

]

− M−1
1

~1µ1 + ~1.

For the value of "mean" threshold we have
m1∑

d1=1

ηd1
1 q∗2(d1) = q∗2 =

µ1

c0

[
c2

µ2

−
c1

µ1

]

.

In general case q∗j = q∗j (d1, d2, . . . , dj−1) and the "mean" threshold formula has
the following form

q∗j =
1

c0

[

cjη
T
j M−1

j
~1

j−1
∑

i=1

(ηT
i M−1

i
~1)−1 −

j−1
∑

i=1

ci

]

,

4.4.3 Algorithm
To analyze the behavior of optimal strategies for the NJM–problem the servers
will be arranged in order (4.24) and for the PCM–problem in order (4.25) under
conditions (4.26)–(4.28).
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve the
equation

vn(x) =
1

λx

(

c(x) + C1(x) + C2(x) − gn

)

+
1

λx

λ

(

1{fn(x)=0}vn(S0x) + 1{fn(x)=k}

mk∑

dk=1

ηdk

k vn(Sdk

k x)

)

+

+
1

λx

∑

j∈J1(x)
q(x)>0

µ
dj(x)
j

(

1
{fn(S−1

0 S
−dj
j x)=0}

vn(S
−dj

j x) + 1
{fn(S−1

0 S
−dj
j x)=k}

mk∑

dk=1

ηdk

k vn(Sdk

k S
−dj

j S−1
0 )

)
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for all x ∈ E under the condition v(0) = 0. This can be done up to an accuracy ε
by successive approximation.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (4.22)
of the model:

fn+1(x) = argmin
k∈A(x)

{∑mk

dk=1 ηdk

k vn(x + dkek), k = 1, K

vn(x + e0), k = 0

The algorithm stops when two successive iterations yield the same policy.
For a description of system state transitions by virtue of a one-dimensional repre-
sentation we use the formulas (4.15)-(4.17).

4.4.4 Numerical analysis
Consider the system M/PHhet/5/100 with five states for each PH server. The
control table for an arrival intensity λ = 0.01 is presented in Table 4.20. The
matrices Mk = [µi j

k ] as well as service intensities from the phases µi
k and the

initial service phase distributions ηk, k = 1, 5 are given below. We note that for
all servers we keep the elements µi j

k , i 6= j of matrices Mk and ηdi

k of vectors
ηk constant. We change only the service intensities µi

k. Therefore, a detailed
representation of the matrix Mk is given only for the first server. For the other
servers we present only the service intensities µi

k.

M1 =









−2.14 0.01 0.05 0.03 0.04
0.05 −2.09 0.01 0.02 0.03
0.04 0.02 −1.96 0.02 0.01
0.03 0.01 0.01 −1.85 0.02
0.02 0.02 0.02 −0.01 −1.80









, η1 =









0.30
0.25
0.20
0.15
0.10









µ1 =









2.01
1.98
1.87
1.78
1.73









, µ2 =









0.75
0.72
0.61
0.52
0.47









, µ3 =









0.65
0.62
0.51
0.42
0.37









, µ4 =









0.58
0.55
0.44
0.35
0.30









, µ5 =









0.44
0.41
0.30
0.21
0.16









.

The mean service intensities of the PH-type servers are given in Table 4.19.
In this control table only selected states are given because of the large number of
system states. One can see that similar to the previous model the optimal control
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is of a threshold type and depends on the service phases and the fastest available
server, in the sense of the largest mean service intensity, has to be switched on if
necessary.

Table 4.19 Values of initial system parameters for M/PH/5/100 queue

i 1 2 3 4 5
µi 1.90 0.63 0.52 0.45 0.30

Table 4.20 Optimal control for some system states
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(5,0,*,*,*) 0 2 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(2,4,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(5,5,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(4,3,1,0,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(5,5,4,0,*) 0 0 0 4 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 5 5 5 5 5 5
(3,2,1,1,0) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(4,5,2,1,0) 0 0 0 0 0 0 0 5 5 5 5 5 5 5

The fastest server is always activated. All other servers have different thresholds
for different service phases. Thus, now the threshold levels for using a slower
server depends also on the service phases of the busy servers with lower indexes.
We note that in this example we chose such service intensities that the larger
intensity corresponds to a smaller service phase, that is

µ1
k ≥ µ2

k ≥ · · · ≥ µ5
k.

From the table the selective threshold levels take their values as

q∗1 = 0;

q∗2(d1) = 2, d1 = 1;

q∗2(d1) = 1, d1 = 1;

q∗3(d1, d2) = 2, d1 = 1, d2 = 1;

q∗3(d1, d2) = 2, d1 = 2, d2 = 4;

q∗3(d1, d2) = 2, d1 = 5, d2 = 5;
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q∗4(d1, d2, d3) = 3, d1 = 1, d2 = 1, d3 = 1;

q∗4(d1, d2, d3) = 3, d1 = 4, d2 = 3, d3 = 1;

q∗4(d1, d2, d3) = 3, d1 = 5, d2 = 5, d3 = 4;

q∗5(d1, d2, d3, d4) = 8, d1 = 1, d2 = 1, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 7, d1 = 3, d2 = 2, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 7, d1 = 4, d2 = 5, d3 = 2, d4 = 1;

Therefore, for some fixed phases (d1, d2, . . . , dK−1) threshold sequence looks like

0 = q∗1 ≤ q∗2(d1) ≤ q∗3(d1, d2) ≤ · · · ≤ q∗K(d1, d2, . . . , dK−1).

Moreover, with respect to increasing of service phase indices, threshold levels
satisfy the condition

q∗2(m1) ≤ q∗2(4) ≤ · · · ≤ q∗2(1);

q∗3(m1, 1) ≤ q∗3(m1 − 1, 1) ≤ · · · ≤ q∗2(1, 1);

. . . . . . . . .

q∗K(m1, d2, d3, . . . , dK−1) ≤ q∗K(m1 − 1, d2, d3, . . . , dK−1) ≤ . . .

≤ q∗K(1, d2, d3, . . . , dK−1).

The analogous condition shall hold when the value of any other coordinate dk de-
creases.

The results of dynamic behavior of threshold levels when initial system pareme-
ters are varied for the system M/PHhet/3/100 with K = 3 heterogeneous servers
are summarized in the diagrams shown in Figures 2.1–2.3. in Appendix 4.6.2. As
before, the Poisson arrival rate λ is varied over the Figures 2.1–2.3 as follows

• λ=0.51, in Figure 2.1,

• λ=0.26, in Figure 2.2,

• λ=0.01, in Figure 2.3.

In these diagrams the changing of threshold levels q∗2(d1) for the second server
(pictures labeled by letter "a") and q∗3(d1, d2) for the third server (pictures labeled
by letter "b") represents the threshold function under variation of the first average
service intensity, second average service intensity and service phases.
The results show that the incentive to make an assignment to the second server
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is greater in state x = (β1, 0, ∗) than in state x = (α1, 0, ∗), and to the third
server is greater in state x = (β1, β2, 0) than in state x = (α1, α2, 0) if µαk

≥
µβk

, k = {1, 2}. The stepped curves in these diagrams show that the low bound
of each curve family corresponds to the states of faster server where it has the
smallest service intensity from this phase, i.e. dk = 5 and vice versa, for the upper
bound when dk = 1. Even in the case of different values of initial service phase
distributions, the main criterion which is used by controller to make a decision
with respect to different service phases of the same server is the value of service
intensity from this phase.
For the PCM–problem with the servers arranged by (2.29) and condition (2.31),
and with initial parameters given in Table 4.21, the optimal control policies are
given in control Table 4.22.

Table 4.21 Values of initial system parameters for M/PH/5/100 queue

i 0 1 2 3 4 5
ci 1.00 3.00 2.80 2.60 2.40 2.00
µi - 1.90 0.63 0.52 0.45 0.30
γi - 1.58 4.44 5.00 5.53 6.66

Table 4.22 Optimal control for some system states
System State x Queue length q(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 0 0 0 2 2 2 2 2 2 2 2 2
(4,0,*,*,*) 0 0 0 0 0 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(2,4,0,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(5,5,0,*,*) 0 0 0 0 0 0 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 0 0 0 0 4 4 4 4 4 4
(4,3,1,0,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(2,2,2,0,*) 0 0 0 0 0 0 0 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 5
(3,2,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 5 5
(4,5,2,1,0) 0 0 0 0 0 0 0 0 0 0 0 0 5 5

Similar to the NJM–problem, in this case the optima policy is of threshold type
and taking into account that

µ1
k ≥ µ2

k ≥ · · · ≥ µ5
k,
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the elements of control sequence are

q∗1 = 0;

q∗2(d1) = 5, d1 = 1;

q∗2(d1) = 5, d1 = 1;

q∗3(d1, d2) = 6, d1 = 1, d2 = 1;

q∗3(d1, d2) = 6, d1 = 2, d2 = 4;

q∗3(d1, d2) = 6 d1 = 5, d2 = 5;

q∗4(d1, d2, d3) = 8, d1 = 1, d2 = 1, d3 = 1;

q∗4(d1, d2, d3) = 7, d1 = 4, d2 = 3, d3 = 1;

q∗4(d1, d2, d3) = 7, d1 = 5, d2 = 5, d3 = 4;

q∗5(d1, d2, d3, d4) = 13, d1 = 1, d2 = 1, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 12, d1 = 3, d2 = 2, d3 = 1, d4 = 1;

q∗5(d1, d2, d3, d4) = 12, d1 = 4, d2 = 5, d3 = 2, d4 = 1;

For condition (2.30) we have the same results, that is each server has several
thresholds depending on the service phases but independent on the states of servers
with greater mean usage costs.

For the PCM–problem under condition (2.32) the optimal control policies are
calculated in control Table 4.24 with initial system parameters given in Table 4.23
and by

M1 =









−0.57 0.01 0.05 0.03 0.04
0.05 −0.52 0.01 0.02 0.03
0.04 0.02 −0.39 0.02 0.01
0.03 0.01 0.01 −0.28 0.02
0.02 0.02 0.02 −0.01 −0.23









, η1 =









0.30
0.25
0.20
0.15
0.10









µ1 =









0.44
0.41
0.30
0.21
0.16









, µ2 =









0.58
0.55
0.44
0.35
0.30









, µ3 =









0.65
0.62
0.51
0.42
0.37









, µ4 =









0.75
0.72
0.61
0.52
0.47









, µ5 =









1.02
0.99
0.88
0.79
0.74









.

In this table the optimal control sequences q∗1(x), q∗2(x), . . . , q∗5(x) are given for
some selective states x, where one of the coordinates dk is varied while all other
are fixed. For this case of the PCM–problem, the thresholds depend on all ele-
ments of the system state and while the service intensity µdk

k of some slower but
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cheaper server decreases, the incentive to use more expensive and faster server
becomes larger.

Table 4.23 Values of initial system parameters for M/PH/5/100 queue

i 0 1 2 3 4 5
ci 0.20 1.00 1.70 2.30 3.50 7.00
µi - 0.30 0.45 0.52 0.63 0.90
γi - 3.33 3.78 4.42 5.56 7.78

Table 4.24 Optimal control for some system states
System State x Service phase dj , j ∈ 1,K

(d1 , d2, d3, d4, d5) 1 2 3 4 5

(-,0,0,0,0) -,0,20,39,47 -,0,20,39,47 -,0,20,39,47 -,0,20,38,46 -,0,19,38,46
(0,-,0,0,0) 0,-,10,40,48 0,-,10,40,48 0,-,10,40,47 0,-,9,39,47 0,-,9,39,47
(-,1,0,0,0) -,-,3,57,68 -,-,3,57,68 -,-,3,57,68 -,-,2,56,67 -,-,2,56,66
(0,0,-,0,0) 0,5,-,32,48 0,5,-,32,48 0,5,-,32,48 0,4,-,32,47 0,4,-,32,47
(-,0,1,0,0) -,0,-,45,68 -,0,-,45,68 -,0,-,45,68 -,0,-,44,67 -,0,-,44,66
(0,-,1,0,0) 0,-,-,26,69 0,-,-,26,69 0,-,-,26,68 0,-,-,26,68 0,-,- ,26,68
(-,1,1,0,0) -,-,-,10,88 -,-,-,10,88 -,-,-,10,87 -,-,-,10,87 -,-,-,10,86
(0,0,0,-,0) 0,5,21,-,46 0,5,21,-,46 0,5,21,-,46 0,5,21,-,46 0,5,21,-,46
(-,0,0,1,0) -,0,28,-,65 -,0,28,-,65 -,0,28,-,65 -,0,28,-,64 -,0,28,-,64
(0,-,0,1,0) 0,-,13,-,66 0,-,13,-,66 0,-,13,-,65 0,-,13,-,65 0,-,13,-,65
(-,1,0,1,0) -,-,3,-,84 -,-,3,-,84 -,-,3,-,84 -,-,2,-,83 -,-,2,-,82
(0,0,-,1,0) 0,6,-,-,60 0,6,-,-,60 0,5,-,-,60 0,5,-,-,59 0,5,-,-,59
(-,0,1,1,0) -,0,-,-,75 -,0,-,-,75 -,0,-,-,75 -,0,-,-,74 -,0,-,-,73
(0,-,1,1,0) 0,-,-,-,55 0,-,-,-,55 0,-,-,-,55 0,-,-,-,54 0,-,-,-,54
(-,1,1,1,0) -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,31 -,-,-,-,30
(0,0,0,0,-) 0,5,21,41,- 0,5,21,41,- 0,5,21,40,- 0,5,21,40,- 0,5,21,40,-
(-,0,0,0,1) -,0,29,57,- -,0,29,57,- -,0,28,57,- -,0,28,57,- -,0,28,56,-
(0,-,0,0,1) 0,-,13,58,- 0,-,13,58,- 0,-,13,58,- 0,-,13,57,- 0,-,13,57,-
(-,1,0,0,1) -,-,3,73,- -,-,3,73,- -,-,3,72,- -,-,2,72,- -,-,2,71,-
(0,0,-,0,1) 0,6,-,46,- 0,6,-,46,- 0,6,-,46,- 0,6,-,46,- 0,6,-,46,-
(-,0,1,0,1) -,0,-,56,- -,0,-,56,- -,0,-,56,- -,0,-,55,- -,0,-,55,-
(0,-,1,0,1) 0,-,-,32,- 0,-,-,32,- 0,-,-,31,- 0,-,-,31,- 0,-,-,31,-
(-,1,1,0,1) -,-,-,11,- -,-,-,10,- -,-,-,10,- -,-,-,10,- -,-,-,10,-
(0,0,0,-,1) 0,6,29,-,- 0,6,29,-,- 0,6,29,-,- 0,6,29,-,- 0,6,29,-,-
(-,0,0,1,1) -,0,36,-,- -,0,36,-,- -,0,36,-,- -,0,36,-,- -,0,35,-,-
(0,-,0,1,1) 0,-,14,-,- 0,-,14,-,- 0,-,14,-,- 0,-,14,-,- 0,-,14,-,-
(-,1,0,1,1) -,-,3,-,- -,-,3,-,- -,-,3,-,- -,-,2,-,- -,-,2,-,-
(0,0,-,1,1) 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,- 0,6,-,-,-
(-,0,1,1,1) -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,- -,0,-,-,-
(0,-,1,1,1) 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,- 0,-,-,-,-

4.5 Conclusions
In this chapter we discussed controlled queueing systems with heterogeneous
servers and service phases. We have proposed some quantitative properties of
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optimal policies for this type of queues. But while the systems become more
complex, theoretical results are difficult to obtain. Therefore, a numerical analy-
sis has been used in order to obtain the qualitative properties of optimal control
that in turn allow to estimate possible theoretical results. We have proposed an
algorithm for computing the average cost control rule for this type of systems.
We have shown that an optimal policy of job allocation for such systems is of
threshold type and the service phases are the arguments of the threshold function.

With respect to the NJM–problem the decision maker or controller has to ac-
tivate the server with the largest mean service rate µk and each server has several
thresholds, one for each service phase, which are independent of the slower slower
servers. In the case of Erlangian service time distributions the threshold function
is increasing with decreasing residual service time of the faster server. In the case
of PH service, this threshold function is increasing in service rate from the phase.

The same picture we observed in the PCM–problem under service arrangement
(2.29) and initial system parameters conditions (2.30) and (2.31). In this case it
is optimal to switch on the available server with lowest mean usage cost and each
server has a group of thresholds independing on the states of servers with larger
mean usage cost. The behavior of threshold function according to different ser-
vice phases is the same as for the NJM–problem.
For the PCM–problem under the same servers arrangement (2.29) and condition
(2.32), the optimal policy is also of threshold type but with a more complex struc-
ture. Namely, for each state there exists an own threshold sequence, thus in some
states the controller can use different available servers, depending on the queue
length. Moreover, while the queue length increases, the use of faster but more
expensive servers becomes more preferable for the controller. For the system
with Erlangian service, the controller prefers more cheaper servers for decreasing
residual service times. In case of PH service, the incentive to use more expensive
and faster server becomes larger when the service intensity from some slower but
cheaper server decreases.
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4.6 Appendices

4.6.1 M/Emk
/K/B − K

Figure 1.1 (a) (b)
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Figure 1.4 (a) (b)
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4.6.2 M/PHhet/K/B − K

Figure 2.1 (a) (b)
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Chapter 5

Controlled MAP/PH/K/B − K
queue

In this chapter an optimal control of queueing system MAP/PHhet/K with Markovian
arrival process, phase–type service time distribution is considered. This type of queue
represents the general case for all previous queues. To provide the numerical analysis
an optimal control algorithm will be derived. It was implemented similar to the previous
chapters by application of the Markov decision theory and dynamic programming to the
present queueing system. In this chapter we consider two optimality criteria introduced
in the Chapter 2, i.e. the mean number of jobs in the system minimization (the NJM–
problem) and the mean total processing cost minimization (the PCM–problem). We will
show that the optimal control policy for this system is of a threshold type and the threshold
levels depend now on the arrival modulating and the service phases.

5.1 Introduction.
The development of matrix–analytical methods in queueing theory have led to
substantial improvements in the field of stochastic modeling. Phase–type distri-
butions (PH, see [52]) and Markovian arrival processes (MAPs, see [47]and [51])
have greatly enhanced the classes of tractable service time distributions and arrival
processes for queueing systems. While they still allow a Markovian analysis of
their respective queueing processes (see [52, 53]), they can approach any general
service time distribution and arrival process with arbitrarily small error (see [69],
pp.30ff, and [4]). Examinations of MAP/PH/K queues are readily available
(e.g. [11, 13, 50]), as well as some steady state characteristics for the system with
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homogeneous and heterogeneous servers (e.g. [6]) and statistical model fitting
for MAP s and PH distributions (see [5] and [12]). In further research on the
continuity of queues (cf. [29]) it will be seen how good an approximation can be
expected from Markovian queues.

While the first steps in the analysis of a stochastic model are statistical model
fitting (yielding parameters from the real world) and a descriptive examination
of the system (expressing the relevant distributions in terms of initial parameters)
have been done for MAP/PH/K queues, a missing link to an applicability of
these models is the examination of optimal control procedures.

As a topic of the present chapter we consider the Markov sequential decision
model introduced in Chapter 2 which can be applied to the controlled queueing
systems under consideration.

5.2 Problem description
Consider a MAP/PHhet/K/B−K queuing system with K heterogeneous servers
(in the sense of their different mean service times) represented in Figure 5.1.

Figure 5.1 Queueing system

The arrival process is described by a Markov process on the phase space {1, . . . , m0}
with intensity matrix Λ + N where as before Λ contains the intensities for state
changes without arrivals and the elements of N are intensities for state changes
accompanied by an arrival. The diagonal elements of N yield intensities for ar-
rivals without phase change. The service time distributions are of phase-type with
representations (ηk, Mk) where ηk is an mk-dimensional vector of initial service
phase distribution and Mk is an (mk ×mk)-transition intensity matrix. The arrival
and service distributions were discussed in Sections 3 and 4.
The equilibrium condition when B = ∞ is determined by

λ =
m∑

i=1

m∑

j=1

πDK+1
(i)νij <

K∑

k=1

µk =
K∑

k=1

−ηT
k M−1

k
~1−1, (5.1)
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where πDK+1
is the equilibrium distribution of the process DK+1(t).

The definitions and notations of the optimization problem are exactly the same
as before. We only mention that now we consider the observed vector process
{X(t)} with state space E = N ×

∏K
k=1{0, . . . , mk} × {1, . . . , m0}. Its com-

ponents {D0(t), D1(t), . . . , DK(t), DK+1(t)} have the same meanings as for the
systems with MAP and PH service, discussed in previous chapters.
The transition intensities λxy(a) of the process {Z(t)} have the following form

λxy(a) =







λdK+1(x)dK+1(y), y = S
dK+1(y)
K+1 x,

νdK+1(x)dK+1(y)[1{a0=0}

+η
da0 (y)
a0 1{a0 6=0}], y = S

da0
a0 S

dK+1(y)
K+1 x,

µ
dj(x)
j [1{q(x)=0}

+1{q(x)>0,aj=0}], y = S
−dj

j x, j ∈ J1(x),

µ
dj(x)
j η

daj
(y)

aj

1{q(x)>0,aj 6=0}, y = S
daj
aj S

−dj

j S−1
0 x, j ∈ J1(x),

µ
dj(x) dj(y)
j , y = S

dj(y)
j x,

j ∈ J1(x) ∩ J1(y),
λdK+1(x)dK+1(x)

+
∑

j∈J1(x) µ
dj(x) dj(x)
j , y = x,

0, otherwise,

where µ
dj(x)
j are the components of the vector µ̄j = −Mj 1̄. Here a = a0 ∈ A(x)

denotes the control which has to be chosen in the case of an arrival to the state x,
a = aj ∈ A(S

−dj

j S−1
0 x) denotes the control in the case of a service completion on

the j-th server.
In this matrix:

• the first case corresponds to a transition of an arrival phase without a new
job arrival;

• the second case corresponds to an arrival of a new job in the system and
sending it to the queue or to some server in accordance with the decision
rule;

• the third case corresponds to the service completion with empty queue or
with control aj = 0;
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• the forth case corresponds to the service completion and sending one of
the jobs from the queue to one of the available servers in accordance with
decision rule;

• the fifth case corresponds to a transition of the service phases.

The diagonal elements of this matrix (the last case) equal the negative sum of all
elements along the same row.
For this system the arrival and service completion transitions are illustrated by the
graph shown in Figure 5.2 (a) and (b), respectively

Figure 5.2
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dj
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dj

j η
dj
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a = j

5.3 Optimality equation
For the function V (x, t), which represents the minimal total loss in the system
up to time t, and a small time interval of length h, the following equation can be
obtained by a Markov process argument:

V (x, t + h) = c(x)h +

(

1 +

[

λdK+1(x)dK+1(x) +
∑

j∈J1(x)

µ
dj(x) dj(x)
j

]

h

)

V (x, t)+

∑

dK+1

νdK+1(x)dK+1
h min

a0∈A(x)

{

V (S0S
dK+1

K+1 x, t),

ma0∑

da0=1

η
da0
a0 V (S

da0
a0 S

dK+1

K+1 x, t)

}

+
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∑

j∈J1(x)
q(x)>0

µ
dj(x)
j h, min

aj∈A(S
−dk
k

S−1
0 x)

{

V (x, t),

maj∑

daj
=1

η
daj
aj V (S

daj
aj S−1

0 x, t)

}

+

∑

dK+1 6=

dK+1(x)

λdK+1(x)dK+1
h V (S

dK+1

K+1 x, t) +
∑

j∈J1(x)

∑

dj 6=dj(x)

µ
dj(x) dj

j h V (S
dj

j x, t)+

∑

j∈J1(x)
q(x)=0

µ
dj(x)
j h V (S

−dj

j x, t).

In this equation, the first member of the right–hand side represents the loss of the
system up to time h, the second one represents the total loss of the system during
the following time t in the case that no phase changes occur in the system, the next
one represents the total loss of the system during the following time t in the case
that a new customer arrives before the service completion. The following member
represents the loss of the system in the case of service completion with non-empty
queue before new customer arrival, the next two members deal with the total loss
of the system in the case of phase changes without arrivals or service completion,
and the last one represents the total loss of the system during the following time t
in the case that one of the served customers leaves the system with empty queue
before some customer arrives.

For the system under consideration after some transformations, taking into
account the asymptotic behavior (2.6) of the function V (x, t) and passing to the
limit h → 0, the previous equation assumes the form

v(x) =
1

λx

[

c(x) + C1(x) + C2(x) − g + (5.2)

+
m0∑

dK+1=1

νdK+1(x)dK+1
T0v(S

dK+1

K+1 x) +
∑

j∈J1(x)

µ
dj(x)
j Tjv(x)

]

= Bv(x),

where Bv(x) denotes the transform operator for the function v(x).
In this representation

λx = −

(

λdK+1(x)dK+1(x) +
∑

j∈J1(x)

µ
dj(x) dj(x)
j

)

is the total intensity of a transition from state x,

C1(x) =
∑

dK+1 6=dK+1(x)

λdK+1(x)dK+1
v(S

dK+1

K+1 x) +
∑

j∈J1(x)

∑

dj 6=dj(x)

µ
dj(x) dj

j v(S
dj

j x)
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is the loss rate due to a transition of the MAP or the service phase without decision
making,

C2(x) =
∑

j∈J1(x)
q(x)=0

µdj(x)v(S
−dj

j x)

is the loss rate due to a service completion with an empty queue,

T0v(x) = min

{

v(S0x),

mk∑

dk=1

ηdk

k v(Sdk

k x) : k = 1, K

}

is the minimal loss in case of a new job arrival,

Tjv(x) = T0v(S−1
0 S

dj

j x)1{q(x)>0}

is the minimal loss in case of service completion and appropriate decision making.
The optimal policy

f = {f(x) : x ∈ E}

minimizes the function b = {b(x, a) : x ∈ E, a ∈ A(x)} determined by (4.22).

5.4 Monotonicity properties

For the PH-type heterogeneous servers in the case of the NJM–problem the ar-
rangement is determined by the inequality (4.24) and for the PCM–problem by
the inequality (4.25) with conditions (4.26)–(4.28). All the systems which have
been already discussed in previous chapters are the particular cases of this system
with MAP and PH-type service time distribution. And all the results obtained
above also hold for this system. Below we formulate the general statements for
this queue based on obtained theoretical and numerical results. But by the reason
of the fact that these assertions can only be partially proved, they are formulated
as conjectures.

Conjecture 5.3 The value function of the model v = {v(x) : x ∈ E} has the
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following properties

1. v(S0x) ≥ v(x),

mi∑

di=1

ηdi

i v(Sdi

i x) ≥ v(x), i ∈ J0(x);

2.

mj∑

dj=1

η
dj

j v(S
dj

j x) ≤
mi∑

di=1

ηdi

i v(Sdi

i x), i, j ∈ J0(x), j ≤ i;

3.

m1∑

d1=1

ηd1
1 v(Sd1

1 x) ≤ v(S0x);

4. v(Sα
K+1x) ≤ v(Sβ

K+1x), να ≤ νβ;

5. v(Sα
i x) ≤ v(Sβ

i x), µα
i ≥ µβ

i , i ∈ J0(x).

Based on the properties of the value function v(x) the following strengthened
conjecture can be formulated

Conjecture 5.4 Under conditions of Conjecture 5.3 the value function v = {v(x) :
x ∈ E} of the model satisfy monotonicity properties which can be expressed in
the operators form as follows

1. (1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )v(Sα
i x) ≤ 0, k ∈ J0(x), i = 1, K + 1;

2. (1 − S0)(S0 −
mk∑

dk=1

ηdk

k Sdk

k )v(Sβ
i x) ≤ 0, k ∈ J0(x), i = 1, K + 1;

3. (S0 −

mk∑

dk=1

ηdk

k Sdk

k )(Sα
K+1 − Sβ

K+1)v(x) ≤ 0, να ≤ νβ, k ∈ J0(x);

4. (S0 −
mk∑

dk=1

ηdk

k Sdk

k )(Sα
i − Sβ

i )v(x) ≤ 0, µα
i ≥ µβ

i , k ∈ J0(x).

Thus we expect that that the optimal policy is of threshold type, as stated below

Corollary 5.5 The optimal policy for the system MAP/PHhet/K is of thresh-
old type with finite thresholds for each arrival and service phase, i.e. for the
NJM–problem and the PCM–problem for each server j there exist

∏j−1
i={0}∪J1(x) mi

levels of the queue length q∗j (d1, d2, . . . , dj−1, dK+1) which depends both on ar-
rival and service phases of servers with smaller index with respect to arrange-
ments (4.24) and (4.25) and it is necessary to switch on some server only if
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q(x) ≥ q∗j (d1(x), d2(x), . . . , dj−1(x), dK+1(x)). In the case of the NJM–problem
the decision maker has to use the fastest available server, for the PCM–problem
under conditions (4.26) and (4.27) the optimal is the server with fewest mean us-
age cost. In the case of the PCM–problem under condition (4.28) in each state
x for each idle server there exist two-level threshold policy with levels q∗

j (x) and
q∗j+1(x) which depend on the system state, i.e. the controller may use some avail-
able in the state x server, if q∗j (x) ≤ q(x) < q∗j+1(x).

5.5 Algorithm
To analyze the behavior of optimal strategies the servers for the NJM–problem
will be arranged in order (4.24) and for the PCM–problem in order (4.25) with
conditions (4.26)–(4.28).
Strategy estimation. For a given policy f = {fn(x) : x = 1, I} solve the
equation

vn(x) =
1

λx

(

c(x) + C1(x) + C2(x) − gn

)

+
1

λx

m0∑

dK+1=1

νdK+1(x)dK+1

(

1
{fn(S

dK+1
K+1 x)=0}

vn(S0S
dK+1

K+1 x) + 1
{fn(S

dK+1
K+1 x)=k}

mk∑

dk=1

ηdk

k vn(Sdk

k S
dK+1

K+1 x)

)

+

1

λx

∑

j∈J1(x)
q(x)>0

µ
dj(x)
j

(

1
{fn(S−1

0 S
−dj
j x)=0}

vn(S
−dj

j x) + 1
{fn(S−1

0 S
−dj
j x)=k}

mk∑

dk=1

ηdk

k vn(Sdk

k S
−dj

j S−1
0 x)

)

for all x ∈ E under the condition v(0) = 0. This can be done up to an accuracy ε
by successive approximation.
Strategy improvement. For a given solution vn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E}, which minimizes the Bellman function (4.22)
of the model:

fn+1(x) = argmin
k∈A(x)

{∑mk

dk=1 ηdk

k vn(x + dkek), k = 1, K

vn(x + e0), k = 0
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The algorithm stops when two successive iterations yield the same policy.
For description of the system states changing we use one-dimensional representa-
tion of the system states, namely

#(x) =

K∏

i=1

(mi +1)(d0(x)m0 +dK+1(x)−1)+

K∑

j=1

dj(x)1{j>1}

j−1
∏

i=1

(mi +1) ≡ x

and the number of states is
∏K

i=1(mi + 1)mK+1(B − K + 1).
Now, if yj is the state after possible transition from the j-th coordinate it can be
obtained with respect to introduced formula

yj = x +
(dj − dj(x))

∏K

i=1(mi + 1)1{j=0}m0

1{1≤j≤K}

∏K

i=j(mi + 1)
.

Now for the shift operators the formulas (3.6)-(3.6) and (4.15)-(4.17) can be used
for algorithm realization.

5.6 Numerical analysis.
Since the dynamic behavior for the PCM–problem requires to vary a large number
of system parameters we omit the examples of control-diagrams. Also we omit
presentation of control-tables because the structure of optimal control policies for
this model is a combination of results obtained for the systems MAP/M/K and
M/PH/K.
In this section we investigate the threshold levels behaviour for the NJM–problem
in the following systems

• Em0/Emk
/K/K + B, Section 5.6.1

• MAP/Emk
/K/K + B, Section 5.6.2

• PH/PHhet/K/B − K, Section 5.6.3

• MAP/PHhet/K/B − K, Section 5.6.4

by virtue of control diagrams presented in appendices in Section 5.8.
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5.6.1 Em0
/Emk

/K/B − K queue.
For the system E5/E5/3/100 with K = 3 servers and mk = 5 number of arrival
and service phases (stages), k = 0, K, the numerical results of the optimal thresh-
old calculation are summarized in the control diagrams shown in Figures 1.1–1.6
in Appendix 5.8.1. The arrival rate per stage λ is varied over the figures 1.1–1.3
as follows

• λ = 2.55, λ = λ
m0

= 0.51, in Figure 1.1,

• λ = 1.30, λ = λ
m0

= 0.26, in Figure 1.2,

• λ = 0.05, λ = λ
m0

= 0.01, in Figure 1.3.

In these diagrams the changing of threshold levels q∗2(d1, d4) for the second server
(pictures labeled by letter "a") and q∗3(d1, d2, d4) for the third server (pictures la-
beled by letter "b") represents the threshold function with under the variation of
the first mean service intensity, second mean service intensity as well as Erlangian
arrival and service phases.
The stepped curves in these diagrams show that when the residual interarrival
time decreases and the residual service time increases the incentive to make an
assignment to the second server is greater in state x = (α1, 0, ∗, α4) than in state
x = (β1, 0, ∗, β4), and for the third server is greater in state x = (α1, α2, 0, α4)
than in state x = (β1, β2, 0, β4) if αk ≤ βk, k = {1, 2} and α4 ≥ β4.

The influence of the number of phases on the threshold curves is presented in
control diagrams shown in Figures 1.4–1.6 where λ = 0.51 (pictures labeled by
letter "a") and λ = 0.01 (pictures labeled by letter "b") and the number of arrival
phases is varied over the figures

• m0=5, Figure 1.4,

• m0=10, Figure 1.5,

• m0=20, Figure 1.6.

From these pictures one can see that the low bounds of each curves family cor-
responds to the state with smallest residual interarrival time and largest residual
service time. The upper bound represents the state with largest residual interar-
rival time and smallest residual service time. The curves for all other possible
residual interarrival and service times lie between these two bounds.
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5.6.2 MAP/Emk
/K/B − K queue.

In this section we investigate the system MAP/Emk
/3/100 with K = 3 servers,

mk = 5 Erlangian service phases, k = 1, K and MAP is characterized by ma-
trices Λ and N of dimension m0 × m0, m0 = 2. The results of threshold levels
dynamic behavior for this system are summarized in control diagrams shown in
Figures 2.1–2.6 in Appendix 5.8.2. Parameters for arrivals with average λ =
{0.51, 0.26, 0.01} take the following values

• N =

(
0.500 0.400
0.100 0.240

)

, Λ =

(
−1.900 1.000
0.500 −0.840

)

in Figure 2.1,

• N =

(
0.350 0.180
0.100 0.010

)

, Λ =

(
−1.430 0.900
0.500 −0.610

)

in Figure 2.2,

• N =

(
0.030 0.010
0.010 0.001

)

, Λ =

(
−1.040 1.000
0.010 −0.021

)

in Figure 2.3.

These control diagrams shows threshold functions q∗2(d1, d4) for the second server
(pictures labeled by letter "a") and q∗3(d1, d2, d4) for the third server (pictures la-
beled by letter "b") depending on first and second mean service intensities as well
as on arrival and service phases. The pictures show that the incentive to make an
assignment to the second server is greater in state x = (α1, 0, ∗, α4) than in state
x = (β1, 0, ∗, β4), and to the third is greater in state x = (α1, α2, 0, α4) than in
state x = (β1, β2, 0, β4) if αk ≤ βk, k = {1, 2} and να4 ≥ νβ4 , that is in the case
of residual service time and arrival intensity increasing.
The control diagrams on the Figures 2.4–2.6

• N =

(
0.000 0.200
1.000 0.000

)

, Λ =

(
−0.630 0.430
0.000 −1.000

)

pictures labeled by

letter "a",

• N =

(
0.030 0.010
0.010 0.001

)

, Λ =

(
−1.040 1.000
0.010 −0.021

)

pictures labeled by

letter "b"

represent the dependence on the number of service phases which are varied over
the figures

• m1=5, in Figure 2.4,

• m1=10, in Figure 2.5,
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• m1=20, in Figure 2.6.

The low bound of the curves family represents the state with largest residual ser-
vice time on the first server and arrival intensity from the phase. Otherwise there is
an upper bound. All other threshold curves are located between these two bounds.

5.6.3 PH/PHhet/K/B − K queue.
For the system with PH arrivals having representation (η0, Λ) of dimension m0=5
and heterogeneous PH service time distributions (ηk, Mk), of dimensions mk=5,
k = 1, K and K = 3 servers the behavior of optimal control policies is presented
in control-diagrams shown in Figures 3.1–3.3 in Appendix 5.8.3. As usual, the
mean arrival rate λ = (−ηT

0 Λ−1~1)−1 is varied over the figures as λ = {0.51, 0.26, 0.01}
and for Λ, η0 and λdK+1 we have the following values, respectively

•









−2.27 0.10 0.20 0.30 0.40
0.10 −1.27 0.20 0.10 0.10
0.10 0.15 −0.97 0.05 0.10
0.01 0.05 0.10 −0.87 0.20
0.01 0.01 0.02 0.05 −0.57









,









0.01
0.02
0.05
0.17
0.75









,









1.27
0.77
0.57
0.51
0.48









,

in Figure 3.1,

•









−2.02 0.10 0.20 0.30 0.40
0.10 −1.02 0.20 0.10 0.10
0.10 0.15 −0.72 0.05 0.10
0.01 0.05 0.10 −0.62 0.20
0.01 0.01 0.02 0.05 −0.32









,









0.01
0.02
0.05
0.17
0.75









,









1.02
0.52
0.32
0.26
0.23









,

in Figure 3.2,

•









−0.13 0.01 0.02 0.03 0.04
0.04 −0.12 0.03 0.02 0.01
0.02 0.03 −0.11 0.04 0.01
0.03 0.04 0.01 −0.105 0.02
0.01 0.03 0.04 0.02 −0.101









,









0.01
0.02
0.05
0.17
0.75









,









0.03
0.02
0.01
0.005
0.001









,

in Figure 3.3.

In these diagrams the changing of threshold levels q∗2(d1, d4) for the second server
(pictures labeled by letter "a") and q∗3(d1, d2, d4) for the third server (pictures la-
beled by letter "b") represents the threshold function with under the variation of
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the first mean service intensity, second mean service intensity as well as arrival
and service phases.
Because of a large number of values for representations (ηk, Mk), k = 1, K
we omit them only giving in the diagrams the mean values of service intensities
µk = (−ηT Mk

~1)−1. These values are calculated using the inverse matrix pro-
gram. We note that for all servers the values of service intensity from the phase
µdk

k satisfy µα
k ≥ µβ

k when α ≤ β, k = 1, K.
As we can see from proposed control diagrams the incentive to make an as-
signment to the second server is greater in state x = (α1, 0, ∗, α4) than in state
x = (β1, 0, ∗, β4), and to the third server is greater in state x = (α1, α2, 0, α4)
than in state x = (β1, β2, 0, β) if λα4 ≥ λβ4 and µαk

k ≤ µβk

k , k = {1, 2}.

5.6.4 MAP/PHhet/K/B − K queue.
In this section we investigate the system MAP/PHhet/3/100 with K = 3 servers,
PH-type service distribution with representations (ηk, Mk) of dimension mk = 5,
k = 1, K and MAP is characterized by matrices Λ and N of dimension m0 ×m0,
m0 = 2. The results of threshold levels dynamic behavior for this system are
summarized in control diagrams shown in Figures 4.1–4.3 in Appendix 5.8.4. As
before, the parameters for arrivals with average λ = {0.51, 0.26, 0.01} take the
following values

• N =

(
0.000 0.200
1.000 0.000

)

, Λ =

(
−0.630 0.430
0.000 −1.000

)

in Figure 4.1,

• N =

(
0.350 0.180
0.100 0.010

)

, Λ =

(
−1.430 0.900
0.500 −0.610

)

in Figure 4.2,

• N =

(
0.030 0.010
0.010 0.001

)

, Λ =

(
−1.040 1.000
0.010 −0.021

)

in Figure 4.3.

As before, in these diagrams the changing of threshold levels q∗
2(d1, d4) for the

second server (pictures labeled by letter "a") and q∗3(d1, d2, d4) for the third server
(pictures labeled by letter "b") represents the threshold function with under the
variation of the first mean service intensity, second mean service intensity as well
as Erlangian arrival and service phases.
These pictures confirm the results that the incentive to make an assignment to
the second server is greater in the state state x = (α1, 0, ∗, α4) than in state x =
(β1, 0, ∗, β4), and to the third server is greater in state x = (α1, α2, 0, α4) than in
state x = (β1, β2, 0, β) if να4 ≥ νβ4 and µαk

k ≤ µβk

k , k = {1, 2}.
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5.7 Conclusions
In this chapter we investigate the queue with arrival modulating and service phases,
i.e. the general case of all previous systems and accumulate together all previous
results. The optimal control policy for such a system obeys the low of thresh-
old nature and threshold function has arrival and service phases as arguments.
Threshold function has the same monotone properties as in previous systems with
Markovian arrival process and PH-type service time distribution.
Obtained optimality equation and proposed algorithm represent the general de-
scription of the family of queues which are the particular case of this one. Nu-
merical analysis permits successfully investigate an optimal control nature, since
the value of the optimal threshold is very difficult to compute explicitly. The nu-
merical results for each queueing system investigated in this thesis show that the
threshold level for using the server in the NJM–problem and the PCM–problem
has a weak dependence on the condition of the slower servers. And the optimal
control may vary by at most 1 when conditions of these servers change. It was
shown as well that the optimal threshold level depends on the arrival and service
phases. Moreover, the threshold curves lie along the threshold curve for Marko-
vian queue with mean iterarrival and service time characteristics of the system
with phases. And again the optimal thresholds for different arrival or service
phases varied by at most 1. Therefore, we suspect that in practice the threshold
levels for Markovian queues with mean arrival and service rates of the systems
with phases can be quite a good approximation for optimal thresholds of such
systems.
The investigation of the optimal policy structure and threshold properties can fa-
cilitate implementation of these policies. For each new arriving job, a decision
maker only has to maintain the information about the queue length to use the op-
timal server. The decision to perform a switching to another server can be made
via a table lookup.
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5.8 Appendices

5.8.1 Em0
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5.8.2 MAP/Emk
/K/B − K

Figure 2.1 (a) (b)
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Figure 2.4 (a) (b)
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5.8.3 PH/PHhet/K/B − K

Figure 3.1 (a) (b)
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