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Chapter 1

Introduction

1.1 Motivation

Control and optimization of systems or processes in industry is a challenging �eld, since

appropriate mathematical modelling often leads to optimization problems where the gov-

erning equations are partial di�erential equations. Accordingly, optimization problem

formulations in all areas of engineering sciences (e.g. geo sciences, chemical processing,

aerospace industry) usually involve partial di�erential equations that describe complex

phenomena. If so, standard discretization schemes for the spatial discretization lead to

sparse but very large-scale, and in general, nonlinear systems of ordinary di�erential equa-

tions. These serve to describe the solution of the state equation and are characterized by

a high computational complexity while being solved. For this reason, these large-scale

systems are often not suited to be used during the application of an optimization method,

where they have to be solved repeatedly.

A prime example for this kind of computational di�culties is 
ow control of the time-

dependent Navier-Stokes equations, which is an active research area. For a comprehensive

survey of applications and 
ow control concepts in aerodynamics, hydrodynamics and

other disciplines, we refer to Gunzburger [43], Gad-el-Hak et al. [32] or Sritharan [104].

Although many important theoretical questions on 
ow control (existence of optimal

controls, optimality conditions etc.) have been investigated in, e.g., Abergel/Temam [1],

Fattorini/Sritharan [35, 36] or Fursikov et al. [38], the numerical solution of many of these

control problems is still intractable. They only come into reach for being solved due to

increasing computer capacity, but with excessive computing times.

On the one hand, accurate �nite element or �nite di�erence discretizations should be

used to resolve 
ow patterns su�ciently. Especially for either three-dimensional 
ows on

complex domains and turbulent 
ows these discretization techniques lead to such high-

dimensional systems of ordinary di�erential equations mentioned above. Finite element

meshes with more than 108 grid points are common in many real-life applications, cf.

1



2 1 Introduction

Bewley et al. [15]. On the other hand, the computation of a control problem solution

with such highly resolved state equations, in general, is not practicable because of limited

computing power.

In order to overcome this problem, there is a demand to use reduced order models

that serve as low-dimensional approximation models to the large-scale discretized state

equations. While standard spatial discretization approaches, based on �nite elements or

�nite di�erences, employ standardized discretization schemes (e.g., linear or quadratic

local shape functions, 5-point stencils) that are suitable for large classes of problems,

reduced order modelling approaches typically use a more problem speci�c discretization.

In this case, detailed information on the underlying problem is employed in order to achieve

a dimension reduction. This, of course, requires suitable input data.

Usually, a reduced order model for the Navier{Stokes equations is constructed for a

speci�c 
ow con�guration, e.g., for an uncontrolled 
ow, such that it is a suitable model

for representing the corresponding 
ow dynamics. If the reduced order modelling idea

is applied to a 
ow control setting, it remains an open question whether a once derived

reduced order model will provide useful approximations to 
ow dynamics altered by a

control. This potential insu�ciency is one of the main problems in the application of

reduced order modelling techniques to control problems. As a matter of fact, working

with a low-dimensional model during the computation of a control problem solution has

to face the problem that these models are possibly unreliable models if they are not or

not correctly updated during the optimization process.

Consequently, some sort of iterative technique is required, in which the construction

of reduced order models is coupled with the progression of the optimization process, cf.

Bewley et al. [15]. Such an approach leads to the use of reduced order models, that

adequately represent the 
ow dynamics as altered by the control. Crucial at this point

is to decide whether or not a reduced order model has to be adapted to a new 
ow

con�guration.

A trust-region approach to manage this problem is the method of choice. Since we are

interested in solving an optimal control problem with a speci�ed cost functional, we can

monitor the reduced order model's quality by comparing the performance of a reduced

order solution to the performance of the original large-scale solution with regard to the

optimization goal. In using a trust-region method, the range of validity of a reduced order

model is automatically restricted and the required update decision for the reduced order

models can be made by employing information that is obtained during the control problem

solution. By means of this approach, we can bene�t from the use of reduced order models

with respect to an e�cient computation of an approximate solution of the state equations,

while the uncertain reliability of such reduced order solutions is eliminated.

From this point of view, this thesis is concerned with the investigation of trust-region

methods in the context of reduced order modelling for the solution of 
ow control prob-
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lems governed by the Navier{Stokes equations. Here, we introduce the proper orthogonal

decomposition (POD) as reduced order modelling technique. As far as we know, it is the

�rst time that POD based reduced order modelling for 
ow control is analyzed using a

trust-region framework.

1.2 Outline

An outline of the contents of the present work with references to related literature is given

in the following.

In Chapter 2 we start with the Dirichlet boundary control problem for 
uid 
ows

governed by the Navier-Stokes equations for viscous, incompressible 
ows

Minimize J(y; u)

subject to

@
@ty � ��y + (y �r) y +rp = f in 
� (0; T )

div y = 0 in 
� (0; T )

with appropriate initial and boundary conditions, y(0)=y0 on 
, y=g(u) on @
� (0; T ),

where y denotes the unknown velocity �eld and p the unknown pressure �eld. Here, our

main focus is on boundary control. Consequently, the control variable u enters in the

boundary conditions of the Navier{Stokes equations.

In order to give a problem formulation that makes use of the concept of weak solutions,

we �rst review an appropriate functional framework for the Navier{Stokes equations. This

leads to variational formulations according to Temam [108, 109] and Girault/Raviart [40].

Also, classical results concerning the existence and uniqueness of a weak solution of the

Navier{Stokes equations are introduced.

Eventually, we de�ne a variational formulation for the Navier{Stokes equations with

boundary control, present cost functionals that are typically employed for 
ow control and

give the �nal control problem formulation. We close this theoretical part on 
ow control

with results from Fattorini/Sritharan [35] concerning the existence and uniqueness of a

weak solution of the Navier{Stokes equations with boundary control and the existence of

an optimal control.

Since the driven cavity problem serves as model problem for an illustration of numerical

results throughout this work, we introduce this model problem in the last section of the

second chapter.

Based on the presented variational formulations, the discretization of the Navier{Stokes

equations can be considered where we are interested in employing a reduced order mod-

elling technique.
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Hence, a detailed introduction to the proper orthogonal decomposition for reduced

order modelling of the Navier{Stokes equations is given in Chapter 3.

A �nite element discretization of a variational formulation of the Navier{Stokes equa-

tions with a �ne mesh to resolve 
ow patterns su�ciently yields a system of ordinary

di�erential equations, which is often prohibitive large to be used in an optimization con-

text. A remedy for this di�culty are reduced order models. Here, the goal is to �nd a

simpli�ed model that describes the state equations approximately while it also guarantees

a fast and e�cient computation of a reduced order solution. For this purpose, we employ a

variant of the proper orthogonal decomposition that is based on snapshots of the governing

equation.

The snapshot proper orthogonal decomposition takes 
ow solutions at �xed time in-

stances as input data and leads to the computation of a, with respect to the order of the

�nite element discretization, small number of POD basis functions. Consequently, a dis-

cretization of the variational formulation of the Navier{Stokes equations with these POD

basis functions yields a low-dimensional system of ordinary di�erential equations (the re-

duced order model) for describing the 
ow behaviour. In this context, the POD basis

functions can be seen as global basis functions. Contrasting �nite element basis functions

(which are local basis functions), they are related to the 
ow behaviour on the whole 
ow

domain.

In the third chapter, we start with a short introduction to the proper orthogonal

decomposition as it can be found in the literature in the context of turbulent 
ows, cf.

Sirovich [101] or Berkooz et al. [14].

Afterwards, we review the close relationship between the proper orthogonal decom-

position and the singular value decomposition as a main tool for data analysis, cf. Ku-

nisch/Volkwein [72] or Atwell/King [10]. Here, we derive a problem formulation for the

computation of the POD basis functions that exploits these similarities. As a consequence,

the POD basis can be computed by means of a truncated singular value decomposition of

the data matrix that accumulates the snapshot information.

Furthermore, we give a review of the essential properties of the POD basis functions,

in order to illustrate their attractiveness for reduced order modelling, especially for the

Navier{Stokes equations. It is important to note, that the POD basis functions, in some

sense, provide an optimal basis for the representation of the 
ow dynamics under consider-

ation. Additionally, properties like incompressibility or no-slip boundary conditions pass

from the input snapshots to the POD basis. We also give some comments on the choice

of the dimension of the POD basis.

Besides that, we �nally give a detailed derivation of the POD based reduced order mod-

els for the Navier-Stokes equations with and without boundary control, and summarize the

steps that lead to the computation of a reduced order solution. For this purpose, we have

to discretize the variational formulation for the Navier{Stokes equations using the POD
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basis functions. Here, our approach to the reduced order model with Dirichlet boundary

control follows the techniques presented in Tang et al. [107]. Similar approaches for 
ow

control have been investigated in Ito/Ravindran [56], Ravindran [95] or Hinze/Kunisch

[51].

After having computed a reduced order model corresponding to a speci�c 
ow control

con�guration, it can be expected that the same reduced order model is also a suitable model

for other similar control forcings. Yet, the range of its validity is not clearly determined.

Thus, this approach is of particular interest for optimization purposes. It allows for a fast

and e�cient evaluation of the state equations during the run of an optimization algorithm

for the solution of a control problem. We close this chapter with numerical examples for

the simulation of 
uid 
ows. These examples serve to present typical features of the POD

based model reduction technique. Here, we compare, e.g., the error between a POD based

reduced order solution and the original input snapshots. Eventually, the limited reliability

of a once derived reduced order model is also illustrated.

As pointed out above, the POD basis functions can be computed by a truncated sin-

gular value decomposition of a snapshot data matrix. Since in many applications an

appropriate spatial discretization of the Navier{Stokes equations leads to large-scale data

matrices, an e�cient procedure for the computation of a truncated singular value de-

composition is required. Having the e�ciency of Krylov subspace methods in mind, we

therefore propose to use a Lanczos method for the POD basis computations and analyze

this technique in the subsequent chapter.

In Chapter 4 we present a Lanczos method for the computation of the POD basis

functions.

For this purpose, we review the basic ideas and properties of the Lanczos iteration fol-

lowing Parlett [87], Cullum/Willoughby [24], and especially concentrate on its convergence

behaviour based on results of Saad [97].

Eventually, a Lanczos-type algorithm is presented, tailored to speci�c aspects of the

POD basis computation. Furthermore, we compare its e�ciency to other approaches for

the computation of POD basis functions. We show that this POD tailored Lanczos method

is numerically e�cient as long as large-scale snapshot data matrices are involved and the

number of wanted POD basis functions remains small.

We close this chapter by giving some numerical examples that con�rm our theoretical

considerations.

Starting from the considerations in the preceding chapters, we may come then to the

main part of this thesis. Here, we are concerned with the application of POD based

reduced order modelling for 
ow control in the context of trust-region frameworks.

Since the presented reduced order models are based on a small number of POD basis

functions extracted from a speci�c input ensemble, the expansion of a 
ow solution in this
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basis provides a small number of degrees of freedom only. Consequently, a single POD

based reduced order model is especially suited for representing the input 
ow and 
ows

that are of similar dynamics. In general, a single reduced order model is not suited to

represent a 
ow behaviour with essentially di�erent dynamics. This property obviously

contradicts the requirement of working with a reduced order model producing reliable


ow solutions corresponding to a variety of possible controls during the control problem

solution. As a consequence, it is inevitable to update the POD based reduced order models

during the optimization process. For this reason, we give a comprehensive description how

trust-region methods can be used to manage the required update decision successfully.

In Chapter 5, we introduce trust-region methods for the solution of unconstrained

optimization problems.

Such a trust-region approach provides a tool for working with approximate objective

functions, the model functions, during the iterative solution of an unconstrained optimiza-

tion problem of the type

min
u2IRn

f(u)

by means of solving appropriate subproblems successively. Here, the model function mk

at a given current iterate uk 2 IRn is chosen such that the trust-region subproblem

min
s2IRn

mk(uk+s); ksk � �k;

for �k > 0, is easier to solve than the original problem. As long as the optimization of

the model function, mk, subject to the trust-region constraint, ksk � �k, provides steps

sk that yield progress towards the optimization goal described by f , we trust the model

function to model the true objective appropriately. In this case, we accept the predicted

steps sk. But, if the model function predicts a step sk that provides no su�cient reduction

in the original objective, we reject this step. During the optimization process, the model

functions are updated such that good local approximation properties with respect to the

actual objective are preserved. Moreover, the trust-region constraint can be modi�ed after

each iteration in order to characterize the range of validity of the next model function. A

comprehensive survey of trust-region methods can be found in the recent monograph by

Conn et al. [23].

In the �fth chapter, we start with a presentation of the standard trust-region approach

based on quadratic model functions,

mk(uk+s) = f(uk) +rf(uk)T s+ 1
2s
THks;

for the true objective f . Here, we give a review on the essential ideas and properties of

a corresponding trust-region algorithm based on the work of Powell [89], Mor�e [80] and

Dennis/Schnabel [27]. At this point, it is important to note that the global convergence

result for this algorithm,

lim
k!1

krf(uk)k = 0;
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can be derived by means of the concept of Cauchy decrease, where it is essential that a

quadratic model function for f is employed.

We also introduce an extension of the standard trust-region method with quadratic

model functions. Instead of the true gradient, rf(uk), of the actual objective function, it
is possible to employ approximate derivative information, gk, to build a quadratic model

for f :

mk(uk+s) = f(uk) + gTk s+
1
2s
THks:

This idea has been studied, e.g., in Carter [20, 21].

An important aspect in this context is the error control in the gradient approximation.

If this error behaves well, the theoretical results for the standard trust-region approach

based on quadratic model functions can be transferred to the case where only inexact

gradient information is available. In this context, we also present and discuss several error

conditions on the gradient error that can be found in the literature.

Finally, we introduce a trust-region approach where general model functions for f

can be used. Following the work of Toint [111], no assumptions on the nonlinearity of

mk(uk+s) are imposed. Merely, the solution of the trust-region subproblem with a general

model function mk requires some special treatment. As in the described quadratic model

function case, it is necessary to use a solution method that generates steps satisfying

a fraction of Cauchy decrease condition. Therefore, we present the step determination

algorithm proposed in Toint [111] for the solution of the trust-region subproblem that

meets this criterion. Furthermore, we review its essential properties in order to apply

these results in the convergence proofs of the main algorithm in the following chapter.

In Chapter 6, we consider a trust-region framework for 
ow control that combines the

POD based reduced order modelling technique with the trust-region philosophy.

By this means, we can employ reduced order models for the computation of an ap-

proximate solution of the Navier{Stokes equations, while the reliability of these reduced

order solutions is guaranteed. At this point, it is crucial to note that the accuracy of the

reduced order solution is not the most important aspect in the 
ow control context. In

fact, employing a reduced order model it is more important to obtain some information

on how the control should be altered in order to get closer to the optimization goal. Since

the optimization goal is expressed in the cost functional, its obvious to reconsider reduced

order modelling in the trust-region context. By de�ning a model function (based on the

reduced order solution) for the cost functional, we are able to compare the performance

of a reduced order solution to the performance of the full order solution.

This requires a reformulation of the 
ow control problem as an unconstrained opti-

mization problem. In this case, we view the solution of the state equation as an implicitly

de�ned function of the (discretized) control, u 2 IRn. Supposing that a high-order �-

nite element solution is denoted by yN (u), the reduced order solution by yM (u) and the
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discretized cost functional by f̂ , we may de�ne

f(u) = f̂(yN (u); u)

and

mk(uk+s) = f̂(yM (uk+s); uk+s)

for a given current control iterate uk 2 IRn. In that the state equation, i.e. the Navier{

Stokes equations, is approximated by a POD based reduced order model with a certain

approximation error, an error in the objective function occurs. Then, we can interpret

the evaluation of the true objective function with an approximate state equation solution

as the evaluation of a model function for the actual objective. Consequently, employing

a trust-region algorithm with model functions, mk, as given above also provides us with

a mechanism for deciding whether or not a POD based reduced order model should be

updated during the course of the optimization. Because, an update of the model function

mk also implies an update of the POD based reduced order model.

This philosophy of combining trust-region methods with general modelling issues is a

well-known technique in multidisciplinary design optimization, see Alexandrov/Hussaini

[5], also known as surrogate optimization, see Booker et al. [16], Sera�ni [99] or Alexandrov

et al. [6]. For this reason, we give an introduction to surrogate optimization and review

speci�c approaches to the solution of trust-region subproblems in the surrogate optimiza-

tion context. This review particularly serves to mark the similarities and the di�erences

between the approach presented in this thesis and approaches that can be found in the

multidisciplinary design optimization literature. While surrogate optimization bases ei-

ther on derivative-free direct search methods or once more on quadratic model functions,

we adapt the approach of Toint [111] for general, nonlinear model functions.

The main part of Chapter 6 serves to present an algorithm that implements the com-

bination of POD based reduced order modelling and trust-region methods, the TRPOD

algorithm. Typically, the gradients of the POD based model functions are computed via

an adjoint equation or sensitivity equations approach for the reduced order models. This

implies that a POD based model function also provides only approximate gradient infor-

mation, gk =rmk(uk), to the true gradient, rf(uk). Thus, as in the quadratic model

function case with inexact gradients, a gradient error condition is required in order to

derive a convergence theory for the TRPOD algorithm. For this purpose, we choose the

error condition krf(uk)� gkk
kgkk � �;

for � 2 (0; 1), given in Carter [20]. By combining results of both Carter [20] and Toint

[111], we are �nally able to prove the convergence result

lim
k!1

krf(uk)k = 0
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for the TRPOD algorithm. In order to achieve this, the above error condition has to

be satis�ed, where the parameter � is coupled with some quantities in the trust-region

algorithm. We close the basic TRPOD algorithm section by discussing some further

modi�cations of the algorithm that can lead to an improved performance.

Since it is, in general, questionable whether the gradient error condition can be satis-

�ed, we also present a modi�cation of the basic TRPOD algorithm that does not depend

on an error condition. This modi�cation bene�ts from results presented in Chang et al. [22]

and Alexandrov et al. [6]. The key to this problem is to replace the model function mk

by a second model function ak. This model function ak can be derived as a scaled version

of the model function mk, provided that the gradient of f itself is available. Obviously,

a TRPOD implementation with scaled model functions requires an additional numerical

e�ort for the computation of the true gradient, rf . Therefore, we close this section with

the discussion of a hybrid algorithm that combines the basic TRPOD algorithm and the

TRPOD algorithm with scaled model functions. As long as the basic TRPOD algorithm

provides su�ciently accurate gradients, this approach should be used. In case the perfor-

mance of the basic TRPOD algorithm indicates a deterioration of the gradient information,

a switch-over to the TRPOD algorithm with scaled model functions should be made.

To round the contents of this chapter we also supply numerical results for the TRPOD

algorithm applied to the control of cavity 
ows. In addition, we also present a comparison

of the performance of the basic TRPOD algorithm with the hybrid TRPOD algorithm

(with scaled model functions) when applied to a control problem governed by heat transfer.

In Chapter 7 we outline a trust-region proper orthogonal decomposition modelling

concept for industrial application in food processing. Here, we consider the in-container

sterilization of food products by thermal processing in an autoclave, cf. Kleis [69], Justen

[61], Kleis/Sachs [70].

Presenting an optimal control problem that models the goals of the food sterilization

process, an appropriate heat transfer model is required that can be used to represent the

evolution of the temperature inside the container.

We introduce di�erent approaches of various complexity for modelling the heat trans-

fer inside the food container which are used in practice and which can be found in the

literature. Starting from a simple empirical model (the Ball-Formula), we illustrate that

suitable partial di�erential equations provide more accurate methods for modelling the

heat transfer for food sterilization purposes. Depending on the type of food product that

is to be heated in the autoclave, we obtain heat transfer models that involve the nonlinear

heat equation or even the Navier-Stokes equations.

But, with increasing complexity of the heat transfer model also the computational

complexity for the solution of the corresponding control problem increases. Here, we

discuss a reduced order modelling idea that can be applied in case the heat transfer model

consists of the Navier{Stokes equations coupled with a convection-di�usion equation. For
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this type of problem it is attractive to replace the 
uid 
ow part in the heat transfer model

by a POD based reduced order model according to the previous discussion.

Closing this work, we �nally give a brief summary of the most essential aspects concern-

ing the application of trust-region methods involving POD based reduced order modelling

for control problems.

Appendix A contains an outline of the solution concepts of the �nite element 
ow

solver FEATFLOW.

Since the presented POD based reduced order modelling approach requires appropriate

input data for the computation of the POD basis functions, we employ the 
ow solver

FEATFLOW [113, 115] for the numerical simulation of the Navier{Stokes equations in

order to obtain snapshots of a speci�c 
ow con�guration.

In the appendix we consider several techniques that have been used for the implemen-

tation of FEATFLOW and that can be seen as typical ingredients of a �nite element 
ow

solver. Our presentation includes the spatial discretization via �nite elements, the time

discretization scheme, the decoupling of velocity and pressure variables and the solution

procedures for systems of linear and nonlinear equations.

The description of these solution concepts also illustrates that solving the Navier-Stokes

equations itself is a di�cult task that requires sophisticated techniques and computing

power.



Chapter 2

Formulation of the Control

Problem

2.1 Introduction

In this chapter we introduce the Dirichlet boundary control problem for 
uid 
ows gov-

erned by the Navier-Stokes equations for viscous, incompressible 
ows that shall be inves-

tigated in a reduced order modelling approach.

A description of the state equations of the control problem is given in Section 2.2.1 and

the functional framework that is necessary to derive variational formulations of the Navier-

Stokes equations is described in Section 2.2.2. In Section 2.3 we present cost functionals

that have proven to be useful in a 
ow control setting. Based on this material we are

able to formulate the optimal control problem that represents the starting point for the

research results of the present work. We introduce the driven cavity problem serving as

model problem for the illustration of numerical results in this thesis in Section 2.4.

Related literature on optimal control problems for the Navier-Stokes equations covers a

broad spectrum of topics, see Gunzburger [43], Sritharan [104], Gad-el-Hak et al. [32]. Flow

control problems in an optimal control theory context can be found in, e.g., Desai/Ito [29],

Heinkenschloss [47], Hou et al. [53, 54], where boundary control problems for the stationary

Navier-Stokes equations are investigated. The evolutionary Navier-Stokes equations with

distributed control and/or boundary controls are addressed in, e.g., Abergel/Temam [1],

Fursikov et al. [38], Gunzburger/Manservisi [45], Fattorini/Sritharan [35], and numerical

results related to such approaches are documented in, e.g., Berggren [13], Hinze/Kunisch

[50] or Bewley et al. [15].

11
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2.2 The State Equation

2.2.1 The Navier-Stokes Equations

Let 
�IR2. We consider the time-dependent Navier-Stokes equations (NSE) for a viscous,

incompressible 
uid 
ow in two dimensions

@
@ty(x; t)� ��y(x; t) + (y(x; t) �r) y(x; t) +rp(x; t) = f(x; t) (2.1)

div y(x; t) = 0 (2.2)

for all x2
; t2(0; T ), with initial condition

y(x; 0) = y0(x); x 2 
; y0 given (2.3)

and Dirichlet boundary conditions

y(x; t) = g(x; t;u(t)); x 2 �; t 2 (0; T ) (2.4)

that include the control input, u. We assume that 
 is an open bounded domain with

su�ciently smooth boundary �=@
 and (0; T ) with T > 0 is the time interval of interest.

The two-dimensional velocity �eld is denoted by y and p is the scalar pressure �eld.

Furthermore, f denotes body forces and the parameter �>0 denotes the reciprocal value

of the Reynolds number � = 1=Re, which is a measure for the 
uids viscosity.

Here, the pressure �eld, p, and the velocity �eld, y, in the momentum equation (2.1)

are coupled through the incompressibility constraint (or mass equation) (2.2), where

div y = @
@x1

y1 +
@
@x2

y2 = 0 in 
� (0; T )

describes the conservation of mass. The convective part, (y � ry) y, in (2.1) is de�ned by

(y �r) y =
0
@ y1

@
@x1

y1 + y2
@
@x2

y1

y1
@
@x1

y2 + y2
@
@x2

y2

1
A :

The equations of mass and momentum for the 
uid 
ow are complemented by the

initial condition (2.3) and boundary conditions, y(x; t) = g(x; t;u(t)) for x2�; t2 (0; T ),
where we assume that a control, u(t) for t2(0; T ), acts on the boundary and thus in
uences
the 
ow behaviour inside the domain, 
.

Concerning the boundary conditions, we assume that the boundary of the domain,

�, can be split into two parts such that �c denotes that part of the boundary where the

control is applied and � n �c is the part of the boundary where the boundary data is not

controlled. To be more precise, we assume that the boundary conditions can be written

as

g(x; t;u(t)) =

8<
:
u(t)b(x); x 2 �c; t 2 (0; T )

c(x); x 2 � n �c; t 2 (0; T )
(2.5)
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i.e., we consider boundary conditions on the control boundary, �c, where the temporal

dependence and the spatial dependence are separated. We interpret b(x); x 2 �c, as a

prescribed control action such that by the choice of u(t); t2 (0; T ), a temporal variation

of the control action can be described.

A typical example for such a setting is 
ow control by blowing and suction along a

portion of the boundary, cf. e.g. Fattorini/Sritharan [35], Joslin et al. [59], Berggren [13].

2.2.2 Function Spaces and Variational Formulations

For the presentation of a variational formulation for the Navier-Stokes equations we �rst

restrict ourselves to the special case

g(x; t) = 0; x 2 �; t 2 (0; T ) (2.6)

and adapt the notation of Temam [108, 109] and Girault-Raviart [40]. This requires the

introduction of some function spaces, see Adams [2]. We denote by L2(
)d the space of

square integrable functions from 
 into IRd,

L2(
)d = f� : 
! IRd j
dX
i=1

Z


�2i (x) dx <1g;

and set

H1(
)d = f� 2 L2(
)d j @
@xi
� 2 L2(
)d for i = 1; : : : ; dg;

H1
0 (
)

d = f� 2 H1(
)d j � = 0 on �g;

L2
0(
) = f� 2 L2(
)1 j

Z


�(x) dx = 0g;

H = f� 2 L2(
)d j div � = 0; (� � n)j� = 0g;

V = f� 2 H1
0 (
)

d j div � = 0g;

L2(0; T ;X) = fw : (0; T )! X j
Z T

0
kwk2X dt <1g;

where n denotes the unit outward normal on �. L2(
)d endowed with the usual inner

product and norm

( ; �)L2 =
dX
i=1

Z


 i(x)�i(x) dx; k�kL2 = (�; �)

1=2
L2 (2.7)

is a Hilbert Space. In the context of the Navier-Stokes equations it denotes the space of

�nite kinetic energy velocity �elds on 
. The Sobolev space H1(
)d which consists of

square integrable vector functions with square integrable gradients (in the sense of weak
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derivatives), is a Hilbert space for the inner product and norm

( ; �)H1 = ( ; �)L2 +
dX
i=1

dX
j=1

Z



@
@xi
 j(x)

@
@xi

�j(x) dx; k�kH1 = (�; �)
1=2
H1 : (2.8)

The spaces L2
0; H; V are also Hilbert spaces with respect to the inner product and norm

in (2.7) and (2.8), respectively. Finally, we endow L2(0; T ;X) with the inner product and

norm

(v; w)L2(0;T ;X) =

Z T

0
(v; w)X dt; kwkL2(0;T ;X) = (w;w)

1=2
L2(0;T ;X)

such that L2(0; T ;X) is also a Hilbert space, if X is a Hilbert space.

On the basis of these function spaces it is possible to obtain variational formulations

of the Navier-Stokes equations. In what follows we concentrate on the case d = 2 and

therefore we drop the corresponding index in the notation of the function spaces.

We de�ne the standard bilinear and trilinear forms

a( ; �) =
2X
i=1

2X
j=1

Z



@
@xi
 j(x)

@
@xi
�j(x) dx for all  ; � 2 H1(
);

c( ; �; ') =
2X
i=1

2X
j=1

Z


 i(x)

@
@xi
�j(x)'j(x) dx for all  ; �; ' 2 H1(
):

The following variational formulation is obtained by multiplication of (2.1){(2.3), (2.6) by

a test function �2V and integration over 
, where the function t 7! y(t) takes its values

in V, see Temam [109].

Problem 2.1 (Variational formulation (I))

For given data f; y0, �nd y2L2(0; T ;V) that satis�es

@
@t(y; �)L2 + � a(y; �) + c(y; y; �) = (f; �)L2 (2.9)

y(0) = y0 (2.10)

for all � 2 V.

It is important to note that in the variational formulation (I) the pressure drops out.

Since we embedded the incompressibility constraint into the test function space, integra-

tion by parts leads to

(r p; �)L2 = �( p; div �)L2 = 0 for all � 2 V: (2.11)

De�nition 2.2 (Weak Solution)

Let us consider the variational formulation (I) for given f; y0. A function y2L2(0; T ;V)

that satis�es (2.9), (2.10) is called a weak solution of (2.1), (2.2), (2.3) and (2.6).
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According to Temam [109], we have the following result on the existence and uniqueness

of a weak solution for the Navier-Stokes equations with homogeneous Dirichlet boundary

conditions. Using stronger regularity assumptions on the data involved, yields even more

regular solutions, see Temam [108, 109].

Theorem 2.3 (Temam [109], Th. 3.1)

Let V0 denote the dual space of V. Let f 2L2(0; T ;V0) and y02H be given.

Then, there exists a unique weak solution y 2 L2(0; T ;V) of (2.1), (2.2), (2.3) and

(2.6), and y2C([0; T ];H).

From a practical point of view variational formulation (I) includes some di�culties.

Since we embedded the incompressibility condition into the function space V, a dis-

cretization of the variational formulation (I) requires to use solenoidal �nite element test

functions. In order to avoid this, the following alternative variational formulation given

in Problem 2.4 allows to treat the incompressibility constraint separately, cf. e.g. Gi-

rault/Raviart [40] or Gunzburger/Manservisi [45].

For this purpose, we additionally de�ne the bilinear form, cf. (2.11),

b(�;  ) = �
Z


 (x) div �(x) dx for all � 2 H1(
);  2 L2(
): (2.12)

Problem 2.4 (Variational formulation (II))

For given data f; y0, �nd a pair (y; p) 2 L2(0; T ;H1
0 (
))� L2(0; T ;L2

0(
)) that satis�es

@
@t(y; �)L2 + � a(y; �) + c(y; y; �) + b(�; p) = (f; �)L2 (2.13)

b(y;  ) = 0 (2.14)

y(0) = y0 (2.15)

for all � 2 H1
0 (
);  2 L2

0(
).

Since the Navier-Stokes system (2.1), (2.2), (2.3) and (2.6) lacks any initial or boundary

conditions for the pressure, usually p is only determined up to an additive constant.

The variational formulation (II) yields a unique pressure p 2 L2(0; T ;L2
0(
)) due to the

additional requirement
R

  (x) dx=0 for all functions  2 L2

0(
).

2.3 The Control Problem

A variational formulation of the Navier-Stokes equations with nonhomogeneous Dirichlet

boundary conditions according to (2.1){(2.3), (2.5) can be derived similar to the manner

described so far.

This requires to specify the state space Y for the 
ow �elds and the control space

U for the control u and to impose appropriate assumptions on the spatial control action
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b(x); x 2 �c, and c(x); x 2 �n�c, cf. (2.5). According to Theorem 2.3 and following

Abergel/Temam [1], Fattorini/Sritharan [35], we set

Y = L2(0; T ;H1(
)); U = H1(0; T ) and b 2 H3=2
0 (�c); c 2 H3=2

0 (� n �c):

Here, the trace spaceH3=2(�) denotes the restriction of functions inH2(
) to the boundary

�. Note that we use b2H3=2
0 (�c) instead of b2H3=2(�c) in order to ensure compatibility

of the boundary data on adjacent boundary parts, cf. e.g. Abergel/Temam [1], Berggren

[13] or Heinkenschloss [47].

Similar to Problem 2.1, a variational formulation for the Navier-Stokes equations (2.1){

(2.3) with Dirichlet boundary control (2.5) can be de�ned as follows, cf. Girault/Raviart

[40] and Desai/Ito [29].

Problem 2.5 (Variational formulation with Dirichlet Boundary Control)

For given data f; y0; b; c; u, �nd y2L2(0; T ;H1(
)) that satis�es

@
@t(y; �)L2 + � a(y; �) + c(y; y; �) = (f; �)L2 for all � 2 V (2.16)

y(0) = y0 (2.17)

and

div y = 0 in 
� (0; T )

y(x; t) = u(t)b(x); x 2 �c; t 2 (0; T )

y(x; t) = c(x); x 2 � n �c; t 2 (0; T ):

According to De�nition 2.2 we call a function y 2L2(0; T ;H1(
)) with div y=0 and

satisfying the variational formulation in Problem 2.5 a weak solution of (2.1){(2.3), (2.5).

In Gunzburger [44] and Bewley et al. [15] several objectives for 
ow control are dis-

cussed and corresponding cost functionals are presented. Certainly, a suitable cost func-

tional that measures some properties of the state and control variables, depends on the

state space Y and the control space U. Furthermore, often it is necessary to obtain an

optimal behaviour in some certain subregions of the 
ow domain. This can be modelled

by choosing 
obs � 
 appropriately. Among the most commonly used cost functionals in

the literature on 
ow control are the ones presented below.

If a prescribed, desired 
ow �eld yd(x; t) is available, we can formulate a tracking-type

objective

(Flow tracking) J(y; u) = 1
2ky � ydk2L2(0;T ;L2(
obs))

+ 

2kuk2U (2.18)

such that (2.18) models the intention to drive the 
ow close to a desired state. The

reduction of vortices in a 
ow can be modelled using

(Vorticity reduction) J(y; u) = 1
2

Z T

0

Z

obs

jcurl(y(x; t))j2 dx dt+ 

2kuk2U : (2.19)
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The vorticity of a two-dimensional 
ow �eld, as a measure of its `turbulence', is given by

curl(y(x; t)) = @
@x1

y2(x; t) � @
@x2

y1(x; t):

The above cost functionals are characterized by the fact that the pressure solution does

not appear explicitly. Nevertheless, the pressure is a state variable that is coupled with

the velocity �eld. Therefore, there are also objectives where the pressure occurs explicitly,

if, e.g., stresses are included in the optimization objective, cf. Joslin et al. [59] where it is

attempted to track desired stresses at parts of the boundary.

The second part in the cost functional, 

2kuk2U ; 
 > 0, is introduced to achieve a

regularization for the control problem and can be interpreted as balancing the control

costs against the actual control objective.

Based on the variational formulation given in Problem 2.5 and the above cost func-

tionals, we are now in a situation to formulate the optimal control problem that is to be

solved.

Problem 2.6 (The Control Problem)

Let J : Y �U ! IR be given by (2.18) or (2.19). The control problem to be solved is

given by:

Minimize J(y; u)

where u2U and y2Y is a weak solution of (2.1), (2.2), (2.3) and (2.5).

We close this section by giving an existence and uniqueness result of a weak solution

for a 
ow con�guration that �ts into the framework (2.2)-(2.5) and that can be applied

to the model problem to be presented in the next section. We also sketch its proof, since

similar techniques appear in the reduced order modelling context in Chapter 3.

Theorem 2.7 (Fattorini/Sritharan [35], Th. 4)

Let f=0; �c=�, b2H3=2(�) and y02H be given. Assume thatZ
�
b(x) � n dx = 0 (2.20)

holds. Furthermore, let u2H1(0; T ) be given.

Then, there exists a unique weak solution y2L2(0; T ;H1(
)) of (2.1), (2.2), (2.3) that

satis�es y(x; t)=u(t) b(x); x2�; t2(0; T ), and y2C([0; T ];H).

Sketch of proof (see Fattorini/Sritharan [35]): If the boundary data satis�es the com-

patibility condition (2.20), by employing Hopf's Lemma [40] we can construct a 
ow �eld

that lifts the boundary forcing into the domain. For any arbitrary �>0 there exists a 
ow

�eld w�2H2(
) that satis�es

div w� = 0 in 
; w�(x) = b(x) for x 2 � (2.21)
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and

jc(�;w� ; �)j � � k�k2H1 for all � 2 V:
Thus, we can set y(x; t) = ~y(x; t) + u(t)w�(x) and derive a Navier-Stokes-like system

with homogeneous Dirichlet boundary conditions

@
@t ~y � ��~y + (~y �r) ~y +rp = � u�w� � u2 (w� �r)w� � @

@t uw�

� u [(~y �r)w� + (w� �r) ~y] in 
� (0; T ) (2.22)

div ~y = 0 in 
� (0; T ) (2.23)

~y(x; 0) = y0(x)� u(0)w�(x); x 2 
 (2.24)

~y = 0 on �� (0; T ): (2.25)

Due to the homogeneous boundary conditions this yields a variational formulation simi-

lar to (2.9), (2.10), such that existence and uniqueness of a weak solution can be shown. 2

Furthermore, since the cost functionals (2.18), (2.19) are bounded from below and

weakly lower semicontinuous, also the existence of an optimal control follows, cf. e.g.

Abergel/Temam [1].

Theorem 2.8 (Fattorini/Sritharan [35], Th. 1)

Under the assumptions of Theorem 2.7 there exists a solution (y?; u?) 2 Y � U of the

optimal control problem given in Problem 2.6.

2.4 A Model Problem: The Driven Cavity Flow

Since we employ the driven cavity problem as model problem for computations related

to the proposed solution concepts throughout this work, we brie
y introduce this model

problem, here.

The driven cavity 
ow is a classical example for the analysis of simulation and control

concepts for 
uid 
ows and has also been used in, e.g., Peterson [88], Ito/Ravindran [57]

or Allan [7] for reduced order modelling of 
uid 
ows.

Figure 2.1 illustrates the domain 
=(0; 1)�(0; 1) and the boundary conditions for the

standard cavity problem. On the top wall of the cavity,

�top = f(x1; x2) 2 IR2 : x12 [ 0; 1 ] and x2 = 1g;
there is a prescribed horizontal boundary velocity, i.e. y = (1; 0)T ; x 2 �top; t 2 (0; T ).

The body forces for this problem are set to zero: f(x; t) = (0; 0)T ; x 2 
; t 2 (0; T ).

Consequently, driven by the wall velocity on �top, there evolves a vortex inside the cavity

which presents a steady-state solution for a su�ciently long time interval (0; T ).

For later use in the control context, we also de�ne the bottom wall of the cavity as

�bot = f(x1; x2) 2 IR2 : x12 [ 0; 1 ] and x2 = 0g:
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Figure 2.1: The Driven Cavity Problem
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Chapter 3

Reduced Order Modelling based

on POD

3.1 Introduction

Standard discretization schemes for the Navier-Stokes equations often lead to very large-

scale, and in general, nonlinear systems of ordinary di�erential equations (ODEs). These

are often too large to be used in an optimization context. Therefore, there is a demand

to use a reduced order model that serves as a low-dimensional approximation model to the

large-scale discretized state equations in order to get over this problem.

In recent years Krylov approximation methods based on the Lanczos or Arnoldi ap-

proach have been employed for reduced order modelling of partial di�erential equations

in general and also for 
uid 
ows, cf. Gallopoulos/Saad [39], Edwards et al. [31], Allan

[7]. Another reduced order modelling approach that has been applied to 
ow problems is

based on reduced basis methods as described, e.g., in Peterson [88], Ito/Ravindran [57] or

Ito/Schroeter [58].

In this thesis, we focus on the proper orthogonal decomposition (POD) as reduced order

modelling technique which is currently an active research �eld.

The proper orthogonal decomposition is also known as Karhunen-Lo�eve decomposition,

method of empirical eigenfunctions or principal component analysis. The POD approach

consists of computing a small set of orthonormal functions, the POD basis functions, that

can be e�ciently used to describe the 
ow behaviour of the speci�c 
ow con�guration

under consideration. In order to achieve this, the POD method, or more precisely the

method of snapshots, takes an ensemble of solutions of the time-dependent Navier-Stokes

equations and computes characteristic patterns of this input set. As a result, the obtained

POD basis functions represent these characteristic 
ow patterns. Here, the POD method

resembles techniques used in other disciplines, e.g. in data compression, signal processing

or pattern recognition. After those signi�cant structures have been identi�ed, the POD

21
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basis functions are used in a Galerkin projection of the governing equations onto the

subspace spanned by this basis. In this context, the POD basis can be interpreted as a

basis consisting of global basis elements. Each POD basis element is related to the 
ow

behavior on the whole domain. This is in contrast to the local character of, e.g., �nite

element basis functions.

The resulting low-dimensional model, the POD based reduced order model, permits an

e�cient approximate simulation of the state equations. Thus, this approach is of particular

interest for applications in an optimization context provided that a once derived POD

based reduced order model is a suitable model for a whole range of parameters.

The introduction of the proper orthogonal decomposition as a means to turbulence

analysis is accredited to Lumley [76], cf. also the monograph [52]. Since then, it has been

intensively used for computational studies of all di�erent kind of problems where partial

di�erential equations come into play: feedback control of the heat equation (Atwell/King

[9, 10]), simulation and control of the Burgers equation (Park/Lee [85], Kunisch/Volkwein

[73]), inverse problems (Banks et al. [12], Park/Lee [86]), simulation and control of the

Navier-Stokes equations (Sirovich et al. [102], Rajaee et al. [92], Tang et al. [107], Ravin-

dran [95], Hinze/Kunisch [51]), or chemical vapor deposition (Ly/Tran [78], Kepler et

al. [66]). We note that this list is by far not complete, and that there is a vast amount of

applications that have been investigated in other engineering areas.

In this chapter, we present the basic ideas of the proper orthogonal decomposition

and review its close relationship to the singular value decomposition that serves as a

major tool for data analysis, cf. Fukunaga [37], Moonen/De Moor [79], Hansen [46].

We give a review of the essential properties of the POD basis functions that make this

approach very attractive for reduced order modelling of time-dependent partial di�erential

equations. Having 
ow control applications in mind, we give a detailed derivation of the

POD based reduced order models for the Navier-Stokes equations subject to di�erent

boundary conditions. Numerical results are given for the cavity 
ow model problem in

order to illustrate characteristic properties of the proper orthogonal decomposition.

3.2 The Proper Orthogonal Decomposition

In this section, we introduce the proper orthogonal decomposition as presented in Berkooz

et al. [14] and Sirovich [101] for the identi�cation of coherent structures in turbulent 
ows,

and as it can be found in most of the literature on POD based reduced order modelling.

Coherent structures are organized characteristic spatial 
ow patterns that repeatedly

appear and undergo a typical temporal life cycle [14]. In this context the proper orthogonal

decomposition serves to study the 
ow behaviour itself and to analyze pattern formation.

We assume that an input ensemble Y = fy1; : : : ; yP g of d-dimensional 
ow �elds yi(x),

x2
, is given, where d=2; 3. In principal it is not important how this input ensemble
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will be derived for a speci�c application, say, by experimental studies or direct numerical

simulation (DNS). However, the POD technique provides a tool to analyze characteristic

features of this input ensemble by constructing an orthonormal basis for spanY.
Based on the input ensemble Y, in [14] a single 
ow �eld that contains most of the

energy of the input 
ow �elds in an average sense is sought by maximizing the expression

max
k k=1

1
P

PX
i=1

j(yi;  )j2 (3.1)

where (v; w) = (v; w)L2 denotes the L2-inner product on the 
ow domain 
 with corre-

sponding norm kvk=kvkL2 . The solution to (3.1) delivers the �rst POD basis element.

A reformulation of the objective in (3.1) leads to, cf. Ly/Tran [78],

1
P

PX
i=1

j(yi;  )j2 = 1
P

PX
i=1

�Z


yi(x)

T (x) dx

��Z


yi(z)

T (z) dz

�

=

Z


 (x)T

"Z



 
1
P

PX
i=1

yi(x)yi(z)
T

!
 (z) dz

#
dx

= ( ;R )

where

R =

Z



 
1
P

PX
i=1

yi(x)yi(z)
T

!
 (z) dz (3.2)

de�nes a linear, self-adjoint, nonnegative operator, often termed autocorrelation operator.

We state the following result which can be found in [14], [101].

Lemma 3.1

The solution to problem (3.1) is given by the (normed) eigenfunction of R that corresponds

to the largest eigenvalue of R.

Furthermore, we note that several POD basis elements can be computed simultaneously

by solving

max
 1;:::; M

MX
j=1

1
P

PX
i=1

j(yi;  j)j2 (3.3)

subject to the requirement that  1; : : : ;  M are mutually orthonormal. Here, the solution

to (3.3), whereM POD basis elements are sought, is given by the (normed) eigenfunctions

of R that correspond to the M largest eigenvalues of R.

De�nition 3.2 (POD Basis)

Let Y be given. We call a solution f 1; : : : ;  Mg to (3.3) a POD basis of order M and set

YPOD = f 1; : : : ;  Mg: (3.4)

Furthermore, we call spanYPOD the corresponding POD subspace of spanY.
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3.3 Relationships between the Proper Orthogonal Decom-

position and the Singular Value Decomposition

In this thesis, the input ensemble will always represent time snapshots of the governing

equations obtained by DNS using a �nite element method. In case of POD for the Navier-

Stokes equations, we consider 
ow �elds yNi (x) = yN (x; ti); x 2 
, at time instants

ti 2 (0; T ), i = 1; : : : ; P , where the superscript N denotes a high-order �nite element

discretization.

In what follows we discuss the close relationship between the proper orthogonal de-

composition and the singular value decomposition. For similar treatments we refer to

Kunisch/Volkwein [72, 116] and Atwell/King [10].

Since we are working with snapshots that result from DNS, by adapting the underlying

spatial discretization of the domain 
 of the �nite element solver we can reformulate

problem (3.3) in a �nite dimensional setting.

From now on, we assume that the input ensemble, Y, consists of linear independent
�nite element (FE) snapshots of the Navier-Stokes equations for d=2,

yNi (x) =

0
@

PN
j=1 y

N
j (ti)'j(x)PN

j=1 y
N
N+j(ti)'j(x)

1
A ; (3.5)

x 2 
; ti 2 (0; T ), where f'jgNj=1 denote �nite element basis functions.

De�nition 3.3 (Snapshot Data Matrix)

Let the input ensemble Y = fyNi gPi=1 be given. We call

Y =

0
BBBBBBBBBBB@

y
N
1 (t1) : : : y

N
1 (tP )

...
...

y
N
N
(t1) : : : y

N
N
(tP )

y
N
N+1(t1) : : : y

N
N+1(tP )

...
...

y
N
2N (t1) : : : y

N
2N (tP )

1
CCCCCCCCCCCA
2 IR2N�P (3.6)

the snapshot data matrix of Y.

We note that each column Y:;i 2 IR2N of the snapshot data matrix represents a single

snapshot yNi of the input ensemble Y, implying that the snapshot data matrix has full

column rank due to the linear independence assumption on the snapshots.

Since we aim at working with a discretized version of (3.3), we have to specify an

appropriate inner product and norm for the corresponding problem statement. In (3.1)

we employed the L2-inner product. Concerning the choice of other norms for the POD

basis computation, we refer to Kirby [68], Wu/Shi [117] or Iollo et al. [55].
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For the computation of POD basis functions based on FE snapshots of a two-dimensional


ow we de�ne the inner product for given

 (x) =

 PN
j=1  j 'j(x)PN

j=1  N+j 'j(x)

!
; �(x) =

 PN
j=1 �j 'j(x)PN

j=1 �N+j 'j(x)

!
;

x 2 
, by

( ; �)M= TM� (3.7)

whereM2IR2N�2N is the FE mass matrix and ;� 2 IR2N are FE coe�cient vectors. The

corresponding norm is given by k kM = ( ; )
1=2
M . Employing a Cholesky factorization,

M = M1=2(M1=2)T , of the (positive de�nite) mass matrix M, it is also possible to

transform the M-inner product (3.7) to the standard Euclidean inner product such that

k kM = k(M1=2)T k2 (3.8)

holds. From now on, we consider the problem of computing a POD basis of order M as

given by Problem 3.4 which is equivalent to a problem statement of the form (3.3).

Problem 3.4 (The POD Problem)

Let Y be given. Find orthonormal functions f jgMj=1 solving

min
PX
i=1

kyNi �
MX
j=1

(yNi ;  j)M  jk2M (3.9)

Based on (3.7), (3.8), we can reformulate Problem 3.4 in a matrix approximation

context. For this purpose, let (similar to (3.6)) 	2IR2N�M denote a matrix collecting the

FE coe�cients of the still unknown POD basis functions f jgMj=1.

Lemma 3.5

Let Y with snapshot data matrix Y be given and de�ne

A=(M1=2)TY 2 IR2N�P : (3.10)

Then, Problem 3.4 is equivalent to solving

min
Z2IR2N�M

kA� ZZTAk2F s:t: ZTZ = IM (3.11)

with Z = (M1=2)T	, where k � kF denotes the Frobenius norm and IM 2 IRM�M is the

identity matrix.

Proof: Problem (3.11) follows by applying the transformation (3.8) to (3.9) and using

the relation kAk2F =
PP
i=1 kA:;ik22, where A:;i denotes the i-th column of A. 2
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Similar to (3.9), (3.11) indicates that we are looking for a M -dimensional subspace

with orthonormal basis Z such that the projection of A onto the range of Z given by

X = ZZTA (3.12)

is a best approximation to A compared to all subspaces of dimensionM . Hence, Problem

(3.11) is a special problem of the more general form

min
X2IR2N�P

kA�Xk2F s:t: rank(X) =M: (3.13)

The computation of a matrix with given rank that is nearest to a given data matrix is

a classical problem whose solution is presented in Theorem 3.7. For this purpose and in

order to �x notation, we brie
y review the singular value decomposition of a matrix (cf.

e.g. Stewart/Sun [106]).

De�nition 3.6 (Singular Value Decomposition)

Let A2IRm�n; m�n, with rank(A)=r � n be given.

Then, there exist orthonormal matrices U 2IRm�m; V 2IRn�n such that

UT AV = �; � =

 
�r 0

0 0

!
(3.14)

where �r=diag(�1; : : : ; �r)2IRr�r with �1� : : :��r>0: The decomposition

A = U�V T (3.15)

is called the singular value decomposition (SVD) of A and the diagonal entries of �, (�)ii,

are called singular values. The columns of U and V are corresponding left and right

singular vectors of A.

Theorem 3.7 (Eckart and Young, cf. [49])

Let A 2 IRm�n, m � n, have SVD A = U�V T according to (3.15) and let k<r = rank(A).

Then,

min
rank(X)=k

kA�XkF = kA�AkkF =

vuut rX
j=k+1

�2j (3.16)

where

Ak = U

 
�k 0

0 0

!
V T :

Theorem 3.7 shows that the solution to the matrix approximation problem (3.13) is

given by a truncated singular value decomposition (TSVD). Thus, the computation of the

POD basis functions can be carried out using the relationship between the approximation

problem (3.13) and the SVD of A.
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Theorem 3.8 (Computation of the POD Basis)

Let Y = fyNi gPi=1 denote an input ensemble of FE snapshots. Let the corresponding data

matrix A2IR2N�P be given by (3.6) and (3.10) with SVD A=U�V T .

Then, a POD subspace for spanY is given by the POD basis YPOD=f igMi=1 of order

M�P de�ned by

 i(x) =

0
@

PN
j=1 	ji 'j(x)PN

j=1 	N+j;i 'j(x)

1
A ; i = 1; : : : ;M; (3.17)

x 2 
, where the matrix 	 2 IR2N�M , collecting the FE coe�cients of the POD basis

functions, solves

(M1=2)T	 = UM : (3.18)

Here, UM 2IR2N�M denotes the matrix consisting of the �rst M left singular vectors of A.

Proof: According to Theorem 3.7 the solution to problem (3.13) is given by a TSVD of

A of length M

AM = U

 
�M 0

0 0

!
V T = UM�MV

T
M (3.19)

where UM ; VM correspond to the �rstM columns of U; V , respectively. Comparing (3.19)

and the special form of X for the POD basis computation given by (3.12), and due to the

transformation (3.8), the FE coe�cients of the POD basis functions can be computed by

solving the linear system (3.18). 2

Remark 3.9

At this point, we remark that the POD basis functions can also be computed by solving

eigenproblems with, e.g., matrices AAT or ATA, instead of computing the SVD of A. In

this case, AAT represents a �nite-dimensional version of the autocorrelation operator in

(3.2). A more detailed discussion of this subject in connection with Lanczos methods for

POD basis computations is given in Chapter 4.

3.4 Properties of the POD Basis Functions

3.4.1 Orthonormality

We note that the POD basis functions are orthonormal with respect to the M{inner

product

( i;  j)M = 	T
:;iM	:;j = �ij

where 	:;i denotes the i-th column of the coe�cient matrix 	. Since A=(M1=2)TY and

	 is computed via (3.18) one might think that it is advantageous to compute 	 directly

via the SVD of Y . But this approach does not account for the appropriate orthonormality

condition with respect to the M{inner product.
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3.4.2 Incompressibility and Boundary Conditions

According to (3.5), (3.15) and (3.17) we have

 i(x) =

0
@

PN
j=1 	ji 'j(x)PN

j=1 	N+j;i 'j(x)

1
A

=

0
@

PN
j=1 (

1
�i

PP
k=1 Yjk Vki)'j(x)PN

j=1 (
1
�i

PP
k=1 YN+j;k Vki)'j(x)

1
A

=
1

�i

PX
k=1

Vki y
N
k (x); i = 1; : : : ;M (3.20)

for all x 2 
, i.e. the POD basis functions can be represented as linear combinations of

solutions of the Navier{Stokes equations. Therefore, certain properties of the snapshots

pass to the POD basis functions. The most important property in the context of POD for

the Navier{Stokes equations is incompressibility. Since the snapshots are divergence-free,

we obtain divergence-free POD basis functions, i.e.

div  i =
1

�i

PX
k=1

Vki div y
N
k = 0; i = 1; : : : ;M: (3.21)

Due to (3.20), we also obtain POD basis functions satisfying homogeneous boundary

conditions,

 i(x) =
1

�i

PX
k=1

Vki y
N
k (x) = 0; x 2 � = @
; i = 1; : : : ;M; (3.22)

if the snapshots themselves satisfy homogeneous Dirichlet boundary conditions.

3.4.3 Optimality

As a result of Theorem 3.7 the POD basis inherits an interesting optimality property.

Corollary 3.10 (Optimality of POD basis)

Let Y = fyNi gPi=1 denote a given input ensemble and let the corresponding data matrix

A 2 IR2N�P be given by (3.6) and (3.10) with SVD A=U�V T . Let f igPi=1 denote the

maximal POD basis for spanY.
Then,

PX
i=1

kyNi �
MX
j=1

(yNi ;  j)M  jk2M �
PX
i=1

kyNi �
MX
j=1

(yNi ; �j)M �jk2M (3.23)

for any other orthonormal basis f�igPi=1 of spanY and for all M � P .
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Moreover, the truncation error, "(M), of using M instead of P POD basis functions

in representing Y is given by

"(M) =
PX
i=1

kyNi �
MX
j=1

(yNi ;  j)M  jk2M =
PX

j=M+1

�2j (3.24)

where �j; j =M + 1; : : : ; P , denote the smallest (P�M) singular values of A.

Proof: Since (3.9) can be equivalently formulated as matrix approximation problem

(3.11), the optimality property (3.23) as well as the representation of the error "(M)

follow from Theorem 3.7. 2

The quantity "(M) measures the accumulated squared error in representing the input

snapshots, due to neglecting POD basis elements that correspond to small singular values.

Including an averaging operation as in (3.3),

�"(M) = 1
P

PX
i=1

kyNi �
MX
j=1

(yNi ;  j)M  jk2M; (3.25)

we obtain some kind of measure for the average error of each POD approximation to a

snapshot.

3.4.4 On the Choice of the POD Subspace Dimension

Following Corollary 3.10, by the choice of M a control of the magnitude of the truncation

error (3.24) is possible. Nevertheless, the choice of M is an important and critical task,

since it determines the interrelation between accuracy and dimension of the POD based

reduced order models that are going to be presented in Section 3.5. A commonly used

criterion for choosing M based on heuristic considerations is the energy criterion. For a

prede�ned `percentage of energy' ��> 0, the POD subspace dimension, M , is chosen such

that PM
j=1 �

2
jPP

j=1 �
2
j

� �� (3.26)

holds, see [101, 14, 77, 9, 60].

An additional criterion can be derived in the SVD context, see Hansen [46]. For this

purpose, let us assume that a matrix A 2 IRm�n; m � n, with rank(A) = r and SVD

A = U�V T is given. Then, the range of A is spanned by the �rst r left singular vectors

of A, i.e. R(A)=span Ur. For a given small threshold �>0, we say that A has numerical

�-rank, r�, if there is a well-determined gap between the singular values �r� and �r�+1 and

if � separates these singular values: �r� > � > �r�+1:

In this case, the singular values �j > 0 for j � r�+1 can be neglected from a practical

point of view, since span Ur� � span Ur.
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These considerations suggest that also a gap criterion concerning the singular values

should be used for the choice of M in the POD basis computations. Furthermore, a POD

subspace related to clearly separated singular values is well-conditioned and insensitive to

perturbations [42].

3.5 POD based Reduced Order Models

Once the POD basis functions have been computed, the reduced order model can be

derived by projecting the underlying partial di�erential equation onto the corresponding

POD subspace.

3.5.1 Homogeneous Boundary Conditions

For what follows, we consider the two-dimensional NSE subject to homogeneous Dirichlet

boundary conditions. In this case the POD basis functions inherit these boundary condi-

tions according to (3.22). Since they are also divergence-free the POD approach provides a

very useful discretization for the variational formulation (I) of the Navier{Stokes equations

given in Section 2.2.2.

In order to establish a POD based reduced order model for (2.1){(2.3) and (2.6), the

velocity �eld has to be expanded in terms of the POD basis

yM(x; t) =
MX
j=1

yMj (t) j(x) (3.27)

where the superscript M denotes the POD approximation. Then, a Galerkin projection

onto the POD subspace is performed, such that we obtain a nonlinear ODE system that

serves as an approximation model to the �nite element model of the NSE and that can be

used to determine the expansion coe�cients in (3.27).

Lemma 3.11 (POD based Reduced Order Model)

Let Y denote an ensemble of FE snapshots of (2.1){(2.3), (2.6) and let f jgMj=1 denote

corresponding POD basis functions.

Then, a POD based reduced order model for (2.1){(2.3), (2.6) is given by

_yM (t) + �AyM (t) +N (yM ;yM ) = F(t) for all t 2 (0; T ) (3.28)

yM (0) = yM0 (3.29)

where A 2 IRM�M with (A)ij = (r i;r j), F(t) 2 IRM with (F(t))j = (f(t);  j), and

(N (yM ;yM ))j=y
M (t)TQj y

M (t) with (Qj)ik=(( i � r) k ;  j) for all i; j; k = 1; : : : ;M .

Furthermore, yM0 2IRM is given by (yM0 )j=(yN (0);  j) for j=1; : : : ;M .
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Proof: According to (2.9), (2.10) a variational formulation for (2.1){(2.3), (2.6) is given

by

@
@t (y; �)L2 + � a(y; �) + c(y; y; �) = (f; �)L2 for all � 2 V

y(0) = y0:

Since we assumed that the snapshots satisfy homogeneous Dirichlet boundary conditions

and since the POD basis elements are divergence-free, we have span f 1; : : : ;  Mg �V.

Using (3.27), the Galerkin projection onto the POD subspace yields a M -dimensional

ODE system of the form (3.28). 2

Remark 3.12

For an implementation of the POD based reduced order model (3.28), (3.29), the FE

representation of the POD basis functions (3.17) can be exploited. For this purpose, let

	:;i denote the i-th column of 	.

Then, the POD sti�ness matrix A corresponds to the projected �nite element sti�ness

matrix (which we denote by S) such that (Aij) = 	T
:;i S 	:;j; i; j=1; : : : ;M: The nonlinear

part of (3.28) can be reformulated as (Qj)ik = 	T
:;iK (	:;j)	:;k for i; j; k=1; : : : ;M , where

K(	:;j) depends linearly on 	:;j and has the block structure

K(	:;j) =

 
K11(	:;j) K12(	:;j)

K21(	:;j) K22(	:;j)

!

with (K11(	:;j))kl =
PN
i=1	ij ('krx1'l; 'i); (K12(	:;j))kl =

PN
i=1	ij ('krx2'l; 'i),

(K21(	:;j))kl =
PN
i=1	N+i;j ('krx1'l; 'i); (K22(	:;j))kl =

PN
i=1	N+i;j ('krx2'l; 'i)

for k; l=1; : : : ; N . Analogously, a reduced order representation of the right hand side and

the initial condition can be derived.

3.5.2 Nonhomogeneous Boundary Conditions

In Subsection 3.5.1 we considered homogeneous boundary conditions such that the POD

basis elements also satis�ed these boundary conditions. Next, we consider the NSE with

nonhomogeneous Dirichlet boundary conditions according to (2.5).

Compared to the homogeneous boundary condition case, the following problem arises:

If the input ensemble consists of snapshots yNi that satisfy the required (nonhomogeneous)

boundary conditions, then the corresponding POD basis elements are no longer suitable

for a discretization of a variational formulation in the sense of Problem 2.5. Due to (3.20)

they do not satisfy homogeneous boundary conditions. The solution to this problem is

in the spirit of (2.23){(2.25), i.e. by transforming the actual problem to a problem with

homogeneous boundary conditions.
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In case g(x; t) does not depend on t, i.e., g(x; t) = c(x) for all x 2 �; t 2 (0; T ), a

possibility to overcome this di�culty is given by computing POD basis elements for the


uctuations around the mean 
ow �eld, see Sirovich [101].

Given P snapshots, the 
ow mean value �yN= 1
P

PP
i=1 y

N
i is computed, �rst. The POD

basis functions are computed using the modi�ed input ensemble fyN1 � �yN ; : : : ; yNP � �yNg,
then. Due to its construction, the mean 
ow �eld �yN is divergence-free and satis�es the

prescribed nonhomogeneous Dirichlet boundary conditions. Furthermore, each modi�ed

snapshot, yNi � �yN , is also divergence-free, but satis�es homogeneous Dirichlet boundary

conditions.

Therefore, in order to derive a reduced order model for this kind of problem we can

make use of the expansion

yM (x; t) = �yN (x) +
MX
j=1

yMj (t) j(x): (3.30)

The resulting reduced order model di�ers slightly from (3.28), (3.29). We obtain

_yM (t) + [�A+ �A ]yM (t) +N (yM ;yM ) = F(t) + �F for all t 2 (0; T )

yM (0) = yM0

where �A 2 IRM�M ; �F 2 IRM are given by

( �A)ji = (( i � r)�yN ;  j) + ((�yN � r) i;  j);

( �F)j = �
h
� (r�yN ;r j) + ((�yN � r)�yN ;  j)

i
for i; j = 1; : : : ;M .

Even more interesting for reduced order modelling of boundary control problems is the

case where the Dirichlet boundary condition on �c�� is a time-dependent one. For this

purpose, we return to boundary conditions of the type

g(x; t) =

8<
:
u(t)b(x); x 2 �c; t 2 (0; T )

c(x); x 2 � n �c; t 2 (0; T )
(3.31)

according to (2.5), where u 2 H1(0; T ) is assumed, see Section 2.3.

Let fyNi gPi=1 denote a snapshot set that corresponds to the boundary conditions in

(3.31). In order to match these boundary conditions with an appropriate reduced order

model, the velocity �eld has to be expanded in

yM (x; t) = �yN (x) + u(t) yNb (x) +
MX
j=1

yMj (t) j(x): (3.32)

To achieve this, we choose a reference 
ow �eld yNb (x); x 2 
, describing how the

control action u(t) b(x); x 2 �c; t 2 (0; T ), in
uences the 
uid 
ow and satisfying the
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boundary conditions

u(t)yNb (x) =

8<
:
u(t) bN (x); x 2 �c; t 2 (0; T )

0 ; x 2 � n �c; t 2 (0; T )
(3.33)

where bN (x) denotes the �nite element approximation to b(x); x2
.
Afterwards, similar to the technique presented in Tang et al. [107] or Ravindran [95],

a mean 
ow �eld �yN of the modi�ed snapshot set fyN1 � u(t1)y
N
b ; : : : ; y

N
P � u(tP )y

N
b g

is computed. Then, the POD basis computations are performed for the input ensemble

fyN1 � u(t1)y
N
b � �yN ; : : : ; yNP � u(tP )y

N
b � �yNg.

Since (yNi �u(ti)yNb )j�c = 0 and �yN matches all other nonhomogeneous boundary con-

ditions, we again get POD basis elements that satisfy homogeneous boundary conditions

on the whole boundary.

Using this approach, the following POD based reduced order model for the Navier{

Stokes equations with boundary control according to (2.1){(2.3), (2.5) is obtained, which

we call the POD based control model:

_yM (t)+[�A+ �A+u(t)Ab ]yM (t)+N (yM ;yM ) = F(t)+ �F+u(t) �Fb+u(t)2 Fdb+ _u(t)Fb
yM (0) = yM0

for all t2 (0; T ). The novel terms Ab 2 IRM�M and �Fb; Fdb; Fb 2 IRM in the POD based

control model are de�ned by

(Ab)ji = ((yNb � r) i;  j) + (( i � r) yNb ;  j);

( �Fb)j = �[� (ryNb ;r j) + ((�yN � r) yNb ;  j) + ((yNb � r) �yN ;  j)];

(Fdb)j = �((yNb � r) yNb ;  j);

(Fb)j = �(yNb ;  j)
for i; j = 1; : : : ;M .

Remark 3.13

We note that the term _u(t)Fb in the right hand side of the POD based control model is

di�cult to treat during the computation of a reduced order solution.

Setting ~yM (t) = yM (t)� u(t)Fb, allows to reformulate the POD based control model

such that an ODE system in the unknowns ~yM (t); t 2 (0; T ), is obtained. As a conse-

quence, this modi�ed reduced order control model does not depend on the time derivative

of u explicitly.

A similar transformation is applied in Ravindran [95]. De�ning ŷM (t) = (yM (t); u(t)),

reformulating the reduced order model accordingly and using the time derivative _u rather

than u itself as the control variable, also eliminates _u in the reduced order model, see also

Fattorini/Sritharan [35].



34 3 Reduced Order Modelling based on POD

3.5.3 Computing a Reduced Order Solution

Summing up, the procedure for deriving a POD based reduced order model and for comput-

ing a POD based reduced order solution of the Navier-Stokes equations can be formulated

as follows.

The POD Procedure

1. Compute snapshots fyNi gPi=1 of the Navier-Stokes equations (2.1){(2.3) with given

Dirichlet boundary conditions.

2. If necessary, modify the snapshot set in order to obtain an input ensemble Y in

which each 
ow �eld satis�es homogeneous boundary conditions, i.e.

(a) in case of homogeneous boundary conditions: Set Y = fyNi gPi=1,

(b) in case of time-independent (nonhomogeneous) boundary conditions: Compute

the mean 
ow �eld �yN of fyNi gPi=1 and Y = fyNi � �yNgPi=1;

(c) in case of time-dependent boundary conditions: Choose a reference 
ow �eld

yNb and compute ~Y = fyNi � u(ti)yNb gPi=1; compute the mean 
ow �eld �yN of ~Y
and set Y = fyNi � u(ti)y

N
b � �yNgPi=1:

3. Use the input ensemble Y for the computation of a POD basis YPOD = f jgMj=1.

4. Compute the reduced order model by projecting the Navier{Stokes equations onto

the POD subspace spanYPOD.

5. Solve the reduced order model for the expansion coe�cients yM and compute the

reduced order solution yM (x; t), i.e.

(a) in case of homogeneous boundary conditions: Set

yM (x; t) =
MX
j=1

yMj (t) j(x);

(b) in case of time-independent (nonhomogeneous) boundary conditions: Set

yM (x; t) = �yN (x) +
MX
j=1

yMj (t) j(x);

(c) in case of time-dependent boundary conditions: Set

yM(x; t) = �yN (x) + u(t)yNb (x) +
MX
j=1

yMj (t) j(x):
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3.6 Numerical Examples: Simulation of Cavity Flows

In this section we present numerical results that serve to illustrate some characteristic

features of POD based reduced order models. We focus on the two-dimensional driven

cavity 
ow as model problem, see Section 2.4, which has also been used in Peterson [88],

Ito/Ravindran [57] or Allan [7] for reduced order modelling of 
uid 
ows, but not in con-

nection with the proper orthogonal decomposition. The required snapshot computations

were carried out with the �nite element 
ow solver FEATFLOW, see Appendix A.

Example 1. For the simulation of the standard cavity 
ow we set T = 5; Re= 200

and y0(x) = 0; x2
. With a uniform time discretization of �t = 0:25 we �rst produced

P = 20 snapshots, where we used a uniform 33 � 33 grid for the spatial discretization.

Thus, we have N = 1089.

The �rst 8 singular values of the data matrix A according to (3.6) and (3.10) (and

corresponding to the input ensemble fyNi ��yNgPi=1) are

�1 = 0:2312; �2 = 0:0827; �3 = 0:0353; �4 = 0:0139;

�5 = 0:0055; �6 = 0:0021; �7 = 0:0007; �8 = 0:0003:

The resulting POD basis functions are illustrated in Figure 3.1. The vortex that evolves in

the cavity due to the horizontal top wall movement is clearly re
ected in the POD basis.

Furthermore, the POD basis functions represent higher frequency components when they

correspond to smaller singular values, cf. Hansen [46] in the SVD context.

For the comparison of the quality of a POD approximation yM to yN we use both the

theoretical measure given in (3.25) as well as the (average) reconstruction error

�"ROM (M) = 1
P

PX
i=1

kyNi � yMi k2M: (3.34)

While (3.25) is obtained by projecting the snapshots itself onto the POD subspace, (3.34)

is based on the simulation of the input 
ow by means of the corresponding POD based

reduced order model.

Table 3.1 compares the theoretical and practical error results for the POD based re-

duced order model for this input data based on (3.25), (3.34). Obviously, the order of

magnitude of �"ROM (M) does not decrease corresponding to �"(M), such that it is likely

that a kind of systematic error occurs.

Since it might be possible to improve the reduced order model's simulation capacity

by providing improved input data, we decided to increase the number of snapshots in the

input ensemble, P , in order to capture the 
ow behaviour in a better way.
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The results in Table 3.2 were computed in order to investigate how an enlargement

of the snapshot set a�ects the quality of the reduced order model with respect to the

agreement of theoretical and practical error between �nite element solution and reduced

order solution. As soon as we achieved a certain error level �"ROM (M) that could not be

improved by increasing M we stopped this analysis.

We recall that for the computation of �"(M); �"ROM (M) the squared errors between a

snapshot and its POD approximation have to be summed up. Therefore, in order to be

able to compare the errors of all the di�erent POD based reduced order models, we also

list

�"P=320(M
?
L) =

1
320

320X
i=1

kyNi � y
M?

L
i k2M

in Table 3.3. For this we used the putative best POD subspaces of orderM?
L corresponding

to L = jYj = 20; : : : ; 320 snapshots for the computation of approximate solutions to all

P =320 snapshots.

Table 3.3 illustrates that increasing the number of snapshots in the input ensemble

from 20 to 80 yields better POD based approximations to all snapshots in an average

sense. The error �"P=320(M
?
20) = 7:4674 � 10�5 is reduced to �"P=320(M

?
80) = 9:7879 � 10�6.

On the other hand the results for L=160; 320 are worse than for L=80. We assign this

to the nature of our model problem.

Since we analyze the evolving vortex due to the top wall movement starting at rest,

with a re�ned time discretization and thus a growing number of snapshots we emphasize

the vortex itself in the input ensemble. Consequently, the reduced order model is less

accurate in the starting phase of the simulation process, cf. Figure 3.2 where we plotted

kyNi � y
M?

L
i kM over time.

This demonstrates that already for the choice of the input ensemble care has to be

taken such that the snapshots are really representative for the 
ow behaviour that has to

be modelled.

Nevertheless, this relatively simple example illustrates the most important feature

of POD based reduced order modelling. Often, a few POD basis functions su�ce to

approximate a high-order �nite element solution up to a certain accuracy.

For this cavity 
ow example, we have been able to replace the �nite element system

for 2N = 2178 velocity unknowns by a corresponding low-dimensional model of order

M = 6 (for P = 80). Once the POD based reduced order model has been derived, the

computation of a reduced order solution can be performed at much lower computational

cost than working with the �nite element model.

While the computation of the �nite element snapshots with FEATFLOW takes about

1500 s CPU-time on a SUN SPARCstation 20, the computation of the POD based reduced
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order solution with the MATLAB ODE solver ode15s takes about 3.5 s CPU-time.

Since we intend to use the POD approach for 
ow control, we try to illustrate that a

POD based reduced order model that has been computed for a speci�c 
ow con�guration

can also be used for 
ow con�gurations with variied input parameters. But, there are also

limitations for the application of a speci�c POD based reduced order model.

In the sequel, we keep the POD based reduced order model for P = 80; M = 6, that

has been used for the simulation of the standard cavity 
ow with horizontal wall velocity

equal to 1 (Example 1) and try to simulate cavity 
ows that correspond to di�erent top

wall velocities (Examples 2-4).

Example 2. We assume that the new 
ow con�guration is characterized by the

boundary forcing g(x; t) = (1:5; 0)T on the top wall of the cavity. The direction of the

forcing is the same, but it is more intensive. Consequently, the evolving vortex will be

more distinct. In Figure 3.3 we compare a snapshot of this 
ow con�guration computed

by FEATFLOW with its approximation based on the POD reduced order model of Exam-

ple 1. The model is able to reproduce the 
ow dynamics, or at least its principal behaviour.

Example 3. We set g(x; t) = (0:1; 0)T and make the same comparison between snap-

shot and reduced order approximation as above, see Figure 3.4. Figure 3.4 points out that

the POD based reduced order model of Example 1 is also suitable for reproducing the

main dynamics for this 
ow con�guration.

Example 4. The situation changes signi�cantly, if we choose wall velocities that pro-

duce more di�erent 
ow �elds, see Figure 3.5. Here, we consider the boundary velocity

g(x; t) = (�1; 0)T , i.e. the direction of the forcing has been changed. The POD basis

elements corresponding to g(x; t) = (1; 0)T are not suitable for presenting these dynamics.

Based on the numerical results presented in Examples 1{4, we expect to be able to em-

ploy reduced order models in an optimal control setting. Obviously, reliable approximate


ow solutions can be obtained as long as we stay su�ciently close to the 
ow con�guration

that served to derive a speci�c POD based reduced order model.
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Figure 3.1: Example 1: POD Basis Functions  1 �  8
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M �"(M) �"ROM (M)

1 4.6150 E-4 4.7459 E-4

2 8.1850 E-5 9.8253 E-5

3 1.2687 E-5 3.5451 E-5

4 1.9699 E-6 3.5192 E-5

5 2.8756 E-7 3.4037 E-5

Table 3.1: Example 1: Comparison between Theoretical and Practical Error

P M �"(M) �"ROM (M) P M �"(M) �"ROM (M)

20 1 4.6150 E-4 4.7459 E-4 40 1 5.7538 E-4 5.7752 E-4

2 8.1850 E-5 9.8253 E-5 2 1.1975 E-4 1.2545 E-4

3 1.2687 E-5 3.5451 E-5 3 2.4232 E-5 3.1423 E-5

4 1.9699 E-6 3.5192 E-5 4 4.6565 E-6 1.6430 E-5

5 2.8756 E-7 3.4037 E-5 5 9.5004 E-7 1.3831 E-5

6 1.7193 E-7 1.3072 E-5

80 1 6.2842 E-4 6.3300 E-4 160 1 6.1518 E-4 6.2436 E-4

2 1.3968 E-4 1.4839 E-4 2 1.4164 E-4 1.5907 E-4

3 3.1121 E-5 3.8782 E-5 3 3.3239 E-5 5.0274 E-5

4 6.3274 E-6 1.5098 E-5 4 7.2048 E-6 2.1407 E-5

5 1.4053 E-6 9.6138 E-6

6 3.1051 E-7 8.3010 E-6

320 1 5.8931 E-4 5.9806 E-4

2 1.3427 E-4 1.4656 E-4

3 3.1254 E-5 4.3887 E-5

4 6.7632 E-6 1.7273 E-5

Table 3.2: Example 1: Comparison between Theoretical and Practical Error (Enlarged

Input Ensemble)

�"P=320(M
?
L)

L M?
L = 4 M?

L = 5 M?
L = 6

20 - 7.4674 E-5 -

40 - - 1.8853 E-5

80 - - 9.7879 E-6

160 2.1149 E-5 - -

320 1.7273 E-5 - -

Table 3.3: Example 1: Comparison of all Reduced Order Models
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Figure 3.3: Example 2: Snapshot (Left) and its POD Reduced Order Approximation

(Right) Based on Model of Example 1, t=4
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Figure 3.4: Example 3: Snapshot (Left) and its POD Reduced Order Approximation

(Right) Based on Model of Example 1, t=4
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Figure 3.5: Example 4: Snapshot (Left) and its POD Reduced Order Approximation

(Right), Based on Model of Example 1, t=4
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Chapter 4

Lanczos Methods for POD Basis

Computations

4.1 Introduction

The computation of POD basis functions by means of the singular value decomposition has

the drawback that a truncated SVD cannot be computed directly. Given a data matrix, it

is not possible to extract only the largest singular values and corresponding left singular

vectors without computing the whole SVD if one uses a standard QR{type algorithm,

cf. Golub/Van Loan [42]. This can lead to an overhead of computational work if only

the singular vectors associated to a few of the largest singular values of a large-scale data

matrix are wanted as it is often the case for POD basis computations. Two main classes

of algorithms are in use for the computation of an approximate TSVD

1. algorithms based on QR factorizations, and

2. Lanczos algorithms.

A comprehensive survey of QR-type algorithms can be found in Hansen [46]. Since we are

interested in large-scale applications and in view of the e�ciency of Lanczos methods, we

will concentrate on the second class of algorithms.

In principle, the Lanczos method is an iterative technique that can be used to solve

large, symmetric eigenvalue problems of the form

Bz = �z (4.1)

where information about the extremal eigenvalues of B tends to emerge long before all of

the eigenvalues have been computed [42]. It only uses matrix-vector operations and this

makes it attractive for large scale applications, especially if B is sparse.

Since we are interested in applying the Lanczos technique for the computation of

POD basis functions in a SVD context, we �rst review the relationships between the

43
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singular value decomposition and symmetric eigenvalue problems that form the basis for

the discussion in this chapter, cf. e.g. Cullum/Willoughby [25].

Lemma 4.1 (Relationships between SVD and Eigenvalue Problems)

Let A 2 IRm�n, m � n, with SVD A = U�V T , where fuigmi=1 form the columns of

U 2 IRm�m, �=diag(f�igni=1) 2 IRm�n and fvigni=1 form the columns of V 2 IRn�n:
Then, the following results hold:

1. The eigenvalues of the symmetric matrix B1 = ATA 2 IRn�n are �2i . The right

singular vectors vi are corresponding orthonormal eigenvectors.

2. The eigenvalues of the symmetric matrix B2 = AAT 2 IRm�m are �2i and m�n
zeros. The left singular vectors ui are corresponding orthonormal eigenvectors for

the eigenvalues �2i .

3. The eigenvalues of the symmetric matrix

B3 =

 
0 A

AT 0

!
2 IR(m+n)�(m+n)

are �i;��i and m�n zeros. The vectors 1p
2
(ui; vi)

T and 1p
2
(ui;�vi)T are corre-

sponding orthonormal eigenvectors for the eigenvalues �i;��i, respectively.

Lemma 4.1 shows that, at least from a theoretical point of view, the computation of sin-

gular values and singular vectors of a rectangular matrix is equivalent to the computation

of the eigenvalues and eigenvectors of several speci�c symmetric eigenproblems.

In Section 4.2 we review the ideas of the Lanczos method and point out some speci�c

features of this approach. Since we are interested in applying the Lanczos idea for the

computation of POD basis functions, we also present convergence results for the Lanczos

algorithm of Saad [97, 98]. In Section 4.3 we introduce a Lanczos algorithm that is tailored

to the POD approach and discuss its e�ciency with respect to other approaches for the

computation of the POD basis. Numerical examples con�rming our theoretical consider-

ations are given in Section 4.4. At this point, we also refer to [33] where a presentation of

these results can be found.

4.2 The Lanczos Algorithm

According to Lemma 4.1 it is possible to compute the TSVD of a given matrix by applying

the Lanczos method to an equivalent eigenvalue problem. In this section we review the

underlying ideas and properties of the Lanczos method for solving (4.1) with symmetric

B2 IRn�n whose implementation is based on the Rayleigh{Ritz procedure on a sequence

of Krylov subspaces.
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4.2.1 The Rayleigh-Ritz Approach

For symmetric matrices the Rayleigh quotient provides a useful approach to eigenvalue/-

vector computations.

De�nition 4.2 (Rayleigh Quotient)

Let B 2 IRn�n be symmetric. For any nonzero vector z 2 IRn we de�ne the Rayleigh

quotient by

r (z) =
zTBz

zT z
: (4.2)

We note that the gradient of r is given by

rr (z) = 2

zT z
[Bz � r (z)z ] (4.3)

such that each eigenvector of B denotes a stationary point of r (z) and according to the

Courant-Fischer Minimax Theorem (see [42], Th. 8.1.2) the maximization of the Rayleigh

quotient (4.2) yields

�max = r (z?) = max
z 6=0

r (z) (4.4)

where �max denotes the largest eigenvalue of B.

If the maximization of r (z) is restricted to a subspace with orthonormal basis fq1; : : : ; qjg
we can substitute z=Qjs with matrix Qj=[ q1 ; : : : ; qj ]2IRn�j in (4.4) and obtain

max
s6=0

r (Qjs) (4.5)

with s2IRj. For j=n, (4.5) equals (4.4) and delivers the exact eigenvalue/eigenvector pair
(�max; z

?). However, with the aid of (4.5) a good approximation to �max can be expected

if there is a stationary point s?j of r (Qjs) such that Qjs
?
j is a good approximation to

z?. Furthermore, if for given fq1; : : : ; qjg such an approximation is not satisfactory, we

should try to construct a vector qj+1 such that the corresponding Rayleigh quotient yields

r (Qjs
?
j) � r (Qj+1s

?
j+1) � �max; where s

?
j+1 denotes a stationary point for (4.5) with

enlarged basis matrix, Qj+1.

In order to achieve improved Rayleigh quotient values, it is possible to use �rst order

information of problem (4.5). By requiring rr (Qjs?j) 2 span fq1; : : : ; qj; qj+1g and since

(4.3) also implies rr (z) 2 span fz;Bzg; recursively this leads to the problem: Find qj+1

such that

span fq1; : : : ; qj ; qj+1g = span fq1; Bq1; : : : ; Bjq1g: (4.6)

We now introduce the notion of Krylov subspaces.

De�nition 4.3 (Krylov Subspace)

Let B2IRn�n be symmetric and q2IRn; q 6= 0. We call

Km(q;B) = span fq;Bq; : : : ; Bm�1qg
the (m-th) Krylov subspace (induced by B and q).
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Consequently, the relationship (4.6) indicates that we have to compute an orthonormal

basis of the Krylov subspace Kj+1(q1; B) where q1 denotes the starting vector of this

scheme.

4.2.2 The Basic Lanczos Iteration

The orthonormal basis of the Krylov subspace in (4.6) can be e�ciently derived by ex-

ploiting a tridiagonalization of B. For illustration of the idea, we assume that Q=Qn is

chosen such that

QTBQ = T with Qe1 = q1; e1 = (1; 0; : : : ; 0)T ; (4.7)

where

T =

0
BBBBBBBBB@

�1 �1 0 � � � 0

�1 �2
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . �n�1
0 � � � 0 �n�1 �n

1
CCCCCCCCCA
:

Hence, the orthonormal matrix Q tridiagonalizes B where its �rst column consists of

the starting vector q1. Using BQ = QT , (4.7) guarantees

[ q1 ; Bq1 ; : : : ; B
n�1q1] = Q [ e1 ; T e1 ; : : : ; T

n�1e1]: (4.8)

Thus, (4.8) shows that the columns ofQ form an orthonormal basis for the Krylov subspace

Kn(q1; B).
Moreover, the qj can be calculated iteratively. Using (4.7), and comparing the columns

of BQ=QT leads to the three-term recurrence

Bqj = �j�1qj�1 + �jqj + �jqj+1 (4.9)

with �0q0 � 0.

Based on the recurrence formula (4.9), the basic Lanczos iteration can be formulated

as shown in Algorithm 4.4. Obviously, (4.7) shows that each �j is given by �j=q
T
j Bqj for

known qj (Steps 1, 2 in Alg. 4.4). For given �j�1; �j and qj, (4.9) yields the relationship

�jqj+1 = Bqj � �j�1qj�1 � �jqj (4.10)

for the computation of qj+1 such that we can use �j for normalizing qj+1 (Steps 3, 4 in

Alg. 4.4).
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Algorithm 4.4 (Basic Lanczos Iteration)

Initialization: Choose �0 = 0; q0 = 0 and b 6= 0. Set q1 = b=kbk2.

For j = 1; 2; 3; : : : repeat

1. Compute v = Bqj

2. Compute �j = qTj v

3. Set v = v� �j�1qj�1 � �jqj and �j = kvk2

4. Set qj+1 = v=�j

Thus, starting with an arbitrary vector q1 of norm kq1k2=1, after k Lanczos iteration

steps Alg. 4.4 has produced a partial tridiagonalization, Tk 2 IRk�k, of the symmetric

matrix B. According to (4.7) and (4.10), Tk satis�es

BQk �QkTk = �kqk+1 e
T
k (4.11)

where ek denotes the k-th unit vector in IRk. This tridiagonal matrix Tk permits an

e�cient computation of its eigenvalues, �
(k)
i , and eigenvectors, v

(k)
i , such that

TkVk = Vk�k (4.12)

with �k=diag(�
(k)
i ) and Vk = [v

(k)
1 ; : : : ; v

(k)
k ] holds. Hence, (4.12) delivers approxima-

tions (�
(k)
i ; z

(k)
i ) to the sought eigenvalue/-vector pairs (�i; zi) of B through the relationship

(VkQk)
TBQkVk = �k and z

(k)
i = Qkv

(k)
i : (4.13)

Consequently, increasing the number of Lanczos iterations enlarges the subspace where

we are looking for approximations to the wanted eigenvectors belonging to the largest

eigenvalues of B.

Remark 4.5

Unfortunately, the basic form of the Lanczos iteration in Alg. 4.4 su�ers from numerical

instability. Typically, a loss of orthogonality between the Lanczos vectors qj can be ob-

served such that an additional reorthogonalization procedure is necessary to stabilize the

Lanczos algorithm. For a detailed description of this phenomenon we refer to Parlett [87].
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4.2.3 A Stopping Criterion

A stopping criterion for Algorithm 4.4 can be established based on the residual norm

kBz(k)i ��(k)i z
(k)
i k2 without computing this residual explicitly, cf. Parlett [87]. Since from

(4.13), (4.11) and kqk+1k2=1, we obtain

kBz(k)i � �
(k)
i z

(k)
i k2 = k(BQk � �

(k)
i Qk)v

(k)
i k2

= k(BQk �QkTk)v
(k)
i k2

= k�kqk+1e
T
k v

(k)
i k2

= �kj eTk v(k)i j; (4.14)

the pair (�
(k)
i ; z

(k)
i ) is su�ciently converged, if �kj eTk v(k)i j is smaller than some prede�ned

threshold value.

4.2.4 Convergence of the Lanczos Iteration

In [97] the convergence behaviour of the approximate eigenvalues/eigenvectors to the de-

sired eigenvalues/eigenvectors of B has been analyzed, where the absence of numerical

errors during the computation is assumed. We review the main results what requires

some additional de�nitions.

De�nition 4.6 (Angle between Vector and Subspace)

The acute angle �(z; Sm) between a nonzero vector z2IRn and a m-dimensional subspace

Sm is de�ned by

�(z; Sm) = arcsin

�kz �PSzk
kzk

�
; (4.15)

where PSz denotes the projection of z onto Sm.

De�nition 4.7 (Chebyshev Polynomial)

For t�1 we de�ne the Chebyshev polynomial of the �rst kind of degree j by

Cj(t) =
1

2

��
t+

p
t2 � 1

�j
+
�
t+

p
t2 � 1

��j�
: (4.16)

We emphasize that Cj(t) sharply increases for t > 1, if j is su�ciently large. The

Chebyshev polynomial (4.16) and also the de�nition of the angle between a vector and a

subspace (4.15) are useful to describe the convergence behaviour of the Lanczos iteration.

Theorem 4.8 (Saad [97, 98], Distance between Km and an Eigenvector)

Let �1 > �2 > : : : > �k be the largest k (<n) eigenvalues and �n the smallest eigenvalue of

the symmetric matrix B 2 IRn�n. Let �(zi;Km) denote the acute angle between the exact
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eigenvector zi associated with �i and the Krylov subspace Km for i<k. Let Cj(t); t � 1,

denote the Chebyshev polynomial of the �rst kind of degree j given by (4.16) and set

�1 = 1; �i =
i�1Y
j=1

�j � �n
�j � �i

; if i > 1 and 
i =
�i � �i+1

�i+1 � �n
:

Then, �(zi;Km) satis�es the inequality

tan(�(zi;Km)) � �i
Cm�i(1 + 2
i)

tan(�(q1; zi)): (4.17)

Theorem 4.8 illustrates that the angle between a wanted eigenvector zi and the Krylov

subspace Km depends on the angle between zi and the initial Lanczos vector q1, the gaps

between the successive eigenvalues �1; : : : ; �i+1 and �n and the dimension of the current

Krylov subspace. Here, especially the dimension of the Krylov subspace, m, the location of

the considered eigenvalue in the eigenvalue order, i, and the ratio, 
i, between �i��i+1 and

�i+1��n play an important role, since those values determine the value of the Chebyshev

polynomial in (4.17). Large m and small i imply that the value of Cm�i(1+2
i) is large for

su�ciently separated eigenvalues and thus dominates the estimate for the angle between

an eigenvector and the Krylov subspace.

The estimate for the acute angle between an eigenvector and the Krylov subspace (4.17)

as a measure of distance between both can be used to estimate the relationship between

an exact eigenvector and an eigenvector approximation based on a Lanczos procedure.

Theorem 4.9 (Saad [97, 98], Convergence of the Eigenvectors)

Let B 2 IRn�n be a symmetric matrix with i-th eigenvalue �i and corresponding eigenvector
zi. Let (�

(m)
i ; z

(m)
i ) be the approximate eigenvalue/eigenvector pair computed with the

Lanczos method on the Krylov subspace Km = spanfq1; Bq1; : : : ; Bm�1q1g and �m as

de�ned in Alg. 4.4. Let �(zi; z
(m)
i ) denote the acute angle between zi and spanfz(m)

i g,
�(zi;Km) the acute angle between zi and the Krylov subspace Km. Furthermore, we de�ne
�i;m= minj 6=i j�i � �

(m)
j j.

Then

sin(�(zi; z
(m)
i )) �

s
1 +

�2m
�2i;m

sin(�(zi;Km))

holds.

Thus, according to Theorem 4.9 the Lanczos method will deliver good eigenvector

approximations if the angle between the desired exact eigenvector and the subspace Km
is su�ciently small. This angle decreases rapidly to zero as shown in Theorem 4.8.
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4.3 An E�cient Method for POD Basis Computations

4.3.1 A POD Tailored Lanczos Method

We now turn to an e�cient method for the computation of POD basis functions by means

of a truncated singular value decomposition.

As pointed out before the computation of the TSVD by computing the whole SVD

and dropping undesired singular values and vectors includes unnecessary computational

work. A more e�cient method for an accurate approximate computation of the TSVD

should reduce the amount of work necessary for the computation of the SVD. Essentially

6mn2 +11n3 
oating point operations (
ops) are necessary to compute all singular values

and the related left singular vectors of A 2 IRm�n, adds and multiplications equally

weighted, see Golub/Van Loan [42]. Therefore, we turned to the Lanczos scheme, where

we expected less computational e�ort to compute only the required singular values and

singular vectors.

From a theoretical point of view all of the symmetric eigenproblem formulations given

in Lemma 4.1 are equivalent for computing the SVD. But, from a numerical point of view

the third approach o�ers the most stable way of computing the SVD via an equivalent

eigenproblem. Eigenproblems with matrices of the form B1; B2 as presented in Lemma

4.1 can su�er from ill-conditioning , see Cullum/Willoughby [24].

For this reason, we are going to apply the Lanczos scheme to the symmetric matrix

B =

 
0 A

AT 0

!
2 IR(m+n)�(m+n) (4.18)

in order to compute the POD basis functions according to Theorem 3.8. Then, with a

suitable starting vector, Algorithm 4.4 produces �j = 0; j = 1; 2; 3; : : :, and reduces to a

two{step scheme where the Lanczos vectors qj alternate between the forms (pj; 0)
T and

(0; rj)
T . In order to achieve this we have to split the Lanczos vectors qj into components pj

and rj corresponding to the blocks in B and to start Alg. 4.4 with q1=(p1; 0)
T . According

to the iteration scheme presented in Alg. 4.4 a basic Lanczos iteration step with input

qj�1=(0; rj�1)T ; qj=(pj ; 0)
T results in

v =
� 0 A

AT 0

�� pj
0

�
=
� 0

AT pj

�
;

�j = ( pTj ; 0)
� 0

AT pj

�
= 0;

v =
� 0

AT pj

�
� �j�1

� 0

rj�1

�
; �j = kvk2;

qj+1 = v=�j :
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Reversely, a Lanczos step with input qj�1=(pj�1; 0)T ; qj=(0; rj)
T yields

v =
� Arj

0

�
� �j�1(

pj�1
0

); �j = kvk2: (4.19)

and it has to be emphasized that this block structure of the Lanczos vectors qj is main-

tained during the iteration process. Since each �j vanishes, it is also possible to rewrite

this iteration scheme as a bidiagonalization scheme, cf. Paige [83].

But more important is the fact that if we substitute the normalization step with respect

to k � k2 by a normalization with respect to k � kM in (4.19) according to (3.8) then we

obtain an algorithm that allows to compute approximate POD basis coe�cient vectors

directly such that these are orthonormal with respect to the M-inner product.

The orthonormality condition for the POD basis functions requires 	TM	 = IM ,

see (3.17), (3.18). For ease of notation we now assume that the snapshot data matrix

according to (3.6) is given by Y 2 IRm�n; m>n, with rank(Y )=n, and that M=n POD

basis functions are wanted. The SVD of A = (M1=2)TY and (3.18) yield

A = (M1=2)TY = UM�MV
T = (M1=2)T	�MV

T :

Therefore, the orthonormality of UM with respect to k � k2 also gives the orthonormality

of 	 with respect to k � kM.

This implies that we neither have to compute the Cholesky factor of the FE mass matrix

M to build up A = (M1=2)TY nor do we have to solve linear systems of the type (3.18)

to get POD basis functions in their FE basis representation. TheM{orthonormality of 	

can be achieved by substituting each normalization in steps such as (4.19) (with respect

to k � k2) by a normalization with respect to k � kM. At this, we recall that it is the upper

part pj of qj that corresponds to the left singular vectors of A (cf. Lemma 4.1). Taking

this di�erent orthonormalization step into account we get the two-step iteration scheme

presented in Algorithm 4.10.

For the stabilization of this process we additionally have to employ, e.g., a Gram{

Schmidt procedure for the reorthogonalization. Often only a small number of POD basis

functions is sought such that this reorthogonalization strategy is acceptable if the number

of Lanczos steps, k, remains small.

After k iteration steps Algorithm 4.10 has computed scalars �j ; j=1; : : : ; 2k+1, such

that the largest ` (�k) positive eigenvalues of

T2k+1 =

0
BBBBBBBBB@

0 �2 � � � 0

�2 0
. . .

...
. . .

. . .
. . .

...
. . .

. . . �2k+1

0 � � � �2k+1 0

1
CCCCCCCCCA

2 IR(2k+1)�(2k+1)
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Algorithm 4.10 (POD Lanczos Iteration)

Initialization: Choose �1 = 0 and p1 = b with kbkM = 1. Set r0 = 0.

For j = 1; 2; 3; : : : repeat

v
(r) = Y TMpj

v
(r) = v

(r) � �2j�1rj�1
�2j = kv(r)k2
rj = v

(r)=�2j

(lower block)

v
(p) = Y rj

v
(p) = v

(p) � �2jpj

�2j+1 = kv(p)kM
pj+1 = v

(p)=�2j+1

(upper block)

serve as approximations to the �rst ` singular values of A = (M1=2)TY 2 IRm�n. The

corresponding M (�`) POD basis functions can be computed from the upper part of the

matrix Z
(2k+1)
` = Q2k+1V

(2k+1)
` , where Q2k+1 2 IR(m+n)�(2k+1) denotes the matrix that

collects the Lanczos vectors ( 0; rj)
T ; ( pj+1; 0)

T and V
(2k+1)
` 2 IR(2k+1)�` consists of the

eigenvectors associated to the largest ` eigenvalues of T2k+1, see Lemma 4.1 and Subsection

4.2.2.

4.3.2 E�ciency Considerations

After having introduced the Lanczos scheme for the computation of the POD basis func-

tions it is worth to compare the amount of computational work that is necessary to obtain

the desired POD basis functions using Algorithm 4.10 to alternative computational ap-

proaches.

The performance of k POD Lanczos iteration steps according to Algorithm 4.10 re-

quires essentially 4kmn+2k(m+n) 
ops for the computation of the matrix-vector products

and the orthonormalization during the course of the iteration for computing rj ; pj+1. The

complete reorthogonalization scheme based on a Gram{Schmidt procedure additionally

requires approximately k2(m+n) 
ops, but this e�ort can be further reduced using, e.g.,

a selective reorthogonalization scheme. In comparison with this the computational work

for the solution of the eigenvalue problem with Tk is negligible. Therefore, Algorithm

4.10 requires less computational work (approximately 4kmn+(2k+k2)(m+n) 
ops) than

employing a standard SVD solver (essentially 6mn2+11n3 
ops), if the number of POD

Lanczos iteration steps, k, is su�ciently smaller than the number of columns, n, of A. At

this, we recall that in the context of POD based reduced order modelling n denotes the

number of snapshots in the input ensemble.
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For a rectangular matrix A 2 IRm�n where the relation n�m holds (in POD com-

putations the number of snapshots, typically, will be much smaller than the dimension

of the FE discretization) the reduction of a m�n SVD problem to a n�n symmetric

eigenproblem (cf. Lemma 4.1, (1)) seems to be attractive and is usually applied for POD

based reduced order modelling. But, if A is ill{conditioned, i.e. �2(A) = �1=�n is large,

then the condition number of ATA even increases, since �2(A
TA)=�21=�

2
n, where �1; �n

denote the largest and smallest singular values of A, respectively.

Furthermore, if we want to use a direct method for solving the equivalent eigenproblem

ATAz = �2z (4.20)

we �rst have to build ATA which can be computationally expensive itself.

It is possible to avoid computing ATA explicitly if (4.20) is also solved by an iterative

Lanczos scheme using only matrix-vector multiplications. Nevertheless, in this case we still

have to be aware of eventual ill-conditioning. The amount of computational work for this

approach is similar to the work necessary during the performance of Alg. 4.10. Again, this

requires essentially 4kmn 
ops for the matrix-vector products, merely the normalization

steps and a reorthogonalization can be performed at lower cost.

In addition, if we have computed an approximate eigenvalue/eigenvector pair to (�2i ; zi)

of ATA we also have to compute the corresponding left singular vector of A for the

computation of the POD basis function using the relationship (cf. 3.14)

ui =
1

�i
Azi: (4.21)

Therefore, in view of an eventual ill-conditioned matrix ATA the proposed POD Lanczos

scheme (Alg. 4.10) provides an e�cient and stable method for the computation of POD

basis functions.

4.4 Numerical Examples

In this section the properties of the Lanczos method are illustrated based on POD basis

function computations for the driven cavity problem presented in Section 2.4.

Example 1: Standard Driven Cavity. The data that has to be processed in the

�rst example is based on 
ow calculations for the standard driven cavity model problem

at Reynolds number Re=100. We used the software package FEATFLOW (see Appendix

A) to generate P =44 snapshots where a uniform spatial discretization with 33�33=1089

grid points has been used. Since we are considering a two-dimensional 
ow, we get a

snapshot data matrix Y 2IR2178�44:
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The �rst 10 singular values of A=(M1=2)TY (computed with the MATLAB solver svd

which uses the LINPACK routine ZSVDC) are

�1=1:0521497, �2=0:1252215, �3=0:0361298, �4=0:0118624, �5=0:0037027,

�6=0:0012489, �7=0:0003909, �8=0:0001249, �9=0:0000390, �10=0:0000116.

The fast decrease in the magnitude of the singular values is obvious and following the

energy criterion (3.26) we concentrate on the computation of the �rst 4 singular values

and corresponding POD basis functions (��=0:9999) using Algorithm 4.10.

Figure 4.1 illustrates how the approximated eigenvalues of B according to (4.18) (typ-

ically) evolve and converge during the Lanczos iteration. In the upper part of this �gure,

we monitor the largest four eigenvalues of the matrices Tk during the Lanczos iteration.

The fast convergence to the exact eigenvalues of B is obvious. In order to produce these

results we employed a complete reorthogonalization scheme based on a Gram-Schmidt

procedure. In Fig. 4.1 we also present the corresponding results if reorthogonalization is

not performed. Again, we monitor the largest four eigenvalues of the matrices Tk during

the Lanczos iteration. Due to the loss of orthogonality spurious eigenvalues appear (ghost

eigenvalues). In this example, an unwanted copy of the largest eigenvalue can be found at

iteration k = 6.

In Table 4.1 the exact singular values compared to its Lanczos approximations at each

Lanczos step are tabulated.

Table 4.2 lists the angles �i = �(ui; ~ui) in angular degrees between the correspond-

ing exact and approximate singular vectors according to (4.15) as a measure of distance

between both.

Since Algorithm 4.10 computes approximations ��(k)i , it provides approximations to

the �rst 4 singular values after at least 4 Lanczos steps. After 7 Lanczos steps all of the

wanted singular values/vectors have been computed to satisfactory accuracy. The residual

norm according to (4.14) is below 1:0�10�7.
In order to illustrate the e�ciency of Alg. 4.10 we give detailed 
op counts for the

alternative approaches for solving the underlying SVD problem discussed in Subsection

4.3.2 (see Table 4.3). The total amount of 
ops is calculated by adding the 
op counts for

all necessary subproblem solutions.

For the direct solution of the eigenvalue problem (EVP) with ATA we employed the

MATLAB routine eig (which is based on EISPACK routines). The SVD was performed

using the MATLAB routine svd where for A2IRm�n; m>n, only the �rst n left singular

vectors were computed (economy size version). According to the discussion in Subsection

4.3.2 the iterative Lanczos procedures are faster than the direct methods. Algorithm 4.10

requires only slightly more 
ops than the Lanczos method (Algorithm 4.4 plus Gram-

Schmidt Reorthogonalization) applied to ATA.
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Example 2: A Cavity Control Problem. The second example consists of data

for a cavity 
ow with varying boundary forcing at Re = 200. We employed a spatial

discretization with 65�65 grid points and generated P =182 snapshots, i.e. Y 2IR8450�182:
Based on the energy criterion (3.26) we decided to compute M =8 POD basis functions

which corresponds to ��=0:9999.

Tab. 4.4 shows the corresponding 
op count results for example 2.

The results of the Lanczos iteration concerning the angles, �i, between corresponding

exact and approximate singular vectors are given in Table 4.5, where '�' denotes a value

less than 1:0 � 10�12.
Again, the trend in the numerical results illustrates the discussion in Subsection 4.3.2.

The Lanczos technique is more e�cient than direct methods. The amount of work for

Alg. 4.10 is of the same order of magnitude as Alg. 4.4 applied to ATA.
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Figure 4.1: Example 1: Approximate Eigenvalues of B (with/without Gram-Schmidt

Reorthogonalization)
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Lanczos Iteration k �
(k)
1 �

(k)
2 �

(k)
3 �

(k)
4

1 1.05004753 - - -

2 1.05214957 0.10379310 - -

3 1.05214965 0.12520965 0.03503557 -

4 1.05214965 0.12522154 0.03612667 0.00831616

5 1.05214965 0.12522154 0.03612975 0.01185789

6 1.05214965 0.12522154 0.03612975 0.01186240

7 1.05214965 0.12522154 0.03612975 0.01186240

exact �'s 1.05214965 0.12522154 0.03612975 0.01186240

Table 4.1: Example 1: Convergence of Singular Values

Lanczos Iteration k �1 �2 �3 �4

1 0.3610 - - -

2 0.0017 11.4003 - -

3 < 1.0 E-7 0.0802 3.5856 -

4 < 1.0 E-11 0.0002 0.2042 18.8103

5 < 1.0 E-13 < 1.0 E-7 0.0001 0.2218

6 < 1.0 E-13 < 1.0 E-12 < 1.0 E-7 0.0004

7 < 2.0 E-13 < 1.0 E-13 < 1.0 E-12 < 1.0 E-7

Table 4.2: Example 1: Convergence of Singular Vectors

EVP with ATA SVD for A Alg. 4.4 with ATA Alg. 4.10

comp. A (3.10) - 6.51 E+6 - -

comp. ATA 5.61 E+6 - - -

solve (3.18) - 5.81 E+5 - -

solve (4.21) 7.67 E+5 - 7.67 E+5 -

main prob. sol. 6.26 E+5 4.48 E+7 3.29 E+6 4.22 E+6


ops (total) 7.01 E+6 5.19 E+7 4.06 E+6 4.22 E+6

Table 4.3: Example 1: Flop Counts

EVP with ATA SVD for A Alg. 4.4 with ATA Alg. 4.10

comp. A (3.10) - 2.80 E+8 - -

comp. ATA 2.72 E+8 - - -

solve (3.18) - 1.32 E+7 - -

solve (4.21) 2.27 E+7 - 2.27 E+7 -

main prob. sol. 3.28 E+7 2.47 E+9 1.20 E+8 1.30 E+8


ops (total) 3.27 E+8 2.76 E+9 1.43 E+8 1.30 E+8

Table 4.4: Example 2: Flop Counts
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Chapter 5

Trust-region Methods

5.1 Introduction

In this chapter we consider trust-region methods for the solution of the nonlinear uncon-

strained optimization problem

min
u2IRn

f(u) (5.1)

with a su�ciently smooth objective function f : IRn ! IR. These trust-region methods

follow the idea of solving a sequence of `simpler' subproblems where the objective function

f is replaced by model functions.

The material in this chapter serves to introduce the philosophy of trust-region methods

that later on can be adapted for using trust-region frameworks in the context of POD based

reduced order modelling for optimal control problems.

In Section 5.2 we give an introduction to classical trust-region algorithms with quadratic

model functions for the objective f . We present the basic ideas of the trust-region ap-

proach and give also a review of classical convergence results for this class of optimization

algorithms.

In Section 5.3 we discuss trust-region methods that are based on quadratic model

functions with approximate derivative information of the true objective. Since there are

many situations where the gradient of f is not available analytically, often rf has to be

approximated numerically. In such cases, the corresponding quadratic model functions in

a trust-region algorithm are built using inexact gradient information. Here, we discuss

several ways to take this gradient error into account in the convergence analysis of a

corresponding algorithm. Employing an error condition introduced by Carter [20, 21] we

obtain a trust-region algorithm based on approximate derivatives of f possessing the same

convergence properties as the classical trust-region algorithm.

In Section 5.4 we introduce a trust-region framework that enables us to use general

model functions for f that are not necessarily quadratic. In this case, also inexact gradient

information can be present. Here, we present an approach to the solution of the trust-

59
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region subproblems that is based on the work of Toint [111]. Furthermore, we give an

overview of several important properties of this approach that later on will be helpful for

deriving a convergence theory for a trust-region framework in the context of POD based

reduced order modelling.

5.2 Quadratic Model Functions: The Standard Approach

Usually, trust-region methods employ quadratic model functions for the iterative solution

of the unconstrained optimization problem (5.1) with f : IRn ! IR.

For a given current iterate uk2IRn a quadratic model

mquad

k (uk + s) = f(uk) +rf(uk)T s+ 1
2s
THks (5.2)

for the true objective f around uk is used during the optimization process. Here, rf :

IRn ! IRn denotes the gradient of f and the symmetric matrix Hk 2 IRn�n denotes the

Hessian of f at uk (or an approximation to it). Additionally, a trust-region constraint

ksk � �k (5.3)

with trust-region radius �k> 0 is employed to de�ne a region where the quadratic model

is trusted to adequately represent the true objective. We use ksk=ksk2, but remark that

it is also possible to use other norms.

According to the de�nition of the model function, we have mquad

k (uk)=f(uk), if s=0.

By adjusting the trust-region radius �k in (5.3) we adjust the region around uk where

the truncated Taylor expansion of f around uk given by (5.2) is supposed to model the

nonlinearity of f su�ciently. The combination of (5.2) and (5.3) leads to the classical

trust-region subproblem.

Problem 5.1 (Trust-region Subproblem (TRS))

For a given current iterate uk and trust-region radius �k>0, solve

min
s2IRn

mquad

k (uk + s); s:t: ksk � �k (5.4)

approximately, in order to obtain a step sk.

A priori there is no guarantee that the step computation via TRS leads to an acceptable

new point, uk+sk, in the sense that f(uk+sk)<f(uk). Therefore, a trust-region algorithm

incorporates a decision step whether uk+ sk leads to a su�cient decrease in the true

objective or not. For this purpose, it is necessary to evaluate the original objective, if a

new trial step sk is available.

Using f(uk+sk) it is possible to compare the actual reduction

aredk(sk) = f(uk)� f(uk + sk) (5.5)
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to the predicted reduction

predk(sk) = mquad

k (uk)�mquad

k (uk + sk) (5.6)

based on the current model mquad

k . Essentially, it is this comparison that gives a measure

for the current models prediction capability. Algorithm 5.2 sketches a basic trust-region

algorithm that implements these ideas, where we omitted a stopping criterion.

Algorithm 5.2 (Basic Trust-region Algorithm)

Initialization: Choose 0 < �1 < �2 < 1, 0 < 
1 � 
2 < 1 � 
3, an initial trust-region

radius �0 > 0 and an initial iterate u0. Set k = 0.

1. Build the model mquad

k (uk + s) and determine an approximate solution sk to

min
ksk��k

mquad

k (uk + s):

2. Compute f(uk + sk) and

�k =
aredk(sk)

predk(sk)
:

3. Update the trust-region radius:

� If �k � �2:

Set uk+1 = uk + sk and choose �k+1 2 [�k; 
3�k].

� If �1��k < �2:

Set uk+1 = uk + sk and choose �k+1 2 [
2�k; �k).

� If �k < �1:

Set uk+1 = uk and choose �k+1 2 [
1�k; 
2�k].

4. Set k = k + 1 and GOTO 1.

According to Alg. 5.2, we call an iteration successful if �k � �1, i.e., the actual reduc-

tion, aredk(sk), is large enough compared to the predicted reduction, predk(sk). In the

case �k < �1, we call the iteration unsuccessful.

For a successful iteration the trial step sk is accepted and the model is updated.

Furthermore, the trust-region radius �k can be increased (for 
3 > 1) if the achieved

decrease in f indicates a good behaviour of the model (�k � �2). If there is only a

restraining predicted decrease compared to the actual decrease (�1 � �k < �2) we have

the possibility to decrease the trust-region radius. This serves to restrict the region where

we believe the next model function to be reliable.

For unsuccessful iterations we do not accept the trial step sk, but decrease the trust-

region radius and start the step computation (based on the last successful iterate) via TRS
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again. With a contraction of the trust-region it is more likely to have a good approximation

to the true objective using a truncated Taylor expansion up to second order terms. This

implies, that decreasing the trust-region radius allows to improve the model.

However, when we adapt the trust-region according to information of the last step

computation, we express whether or not we are satis�ed with the performance of the last

trial step and if we trust the next model to be reliable in a larger region.

One of the attractive features of the basic trust-region algorithm (Algorithm 5.2) based

on quadratic model functions is that an approximate solution to TRS in Step 1 can be

computed e�ciently. Since the focus of this work is on the philosophy of trust-region

methods and its implications for reduced order modelling rather than on a speci�c imple-

mentation for a trust-region subproblem solution with quadratic model functions, we refer

to, e.g., Sorensen [103], Dennis/Schnabel [27], Steihaug [105] or Conn et al. [23] for more

information on this aspect of trust-region methods.

As suggested earlier, it is the comparison of actual reduction to predicted reduction

that allows to quantify the decrease in the true objective and that �nally is the basis for

a global convergence theory of trust-region methods. In what follows, we brie
y sketch

the important ideas for proving global convergence of the trust-region scheme based on

quadratic model functions of the type (5.2) since similar techniques can be applied to more

general trust-region frameworks.

Employing an iterative technique for the solution of (5.1), it is, of course, desirable

that an algorithm produces iterates uk+1=uk+sk such that

f(uk+1) < f(uk) (5.7)

holds. With regard to Algorithm 5.2 we obtain

aredk(sk) � �1 predk(sk) (5.8)

if the step sk in the k-th iteration is a successful step. Therefore, if it is possible to derive

a lower bound for the predicted decrease, predk(sk), such that

predk(sk) > 0 (5.9)

holds, the desired relation (5.7) follows.

The predicted decrease based on a quadratic model function can be analyzed using

the concept of Cauchy decrease, cf. Powell [89], Dennis [27], Conn et al. [23]. For this

purpose, we consider the quadratic model for f in steepest descent direction

mquad

k (uk � �rf(uk)) = f(uk)� �krf(uk)k2 + 1
2�

2rf(uk)THkrf(uk); (5.10)

for rf(uk) 6=0 and � � 0.
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The minimization of (5.10) within the trust-region

min
��0

mquad

k (uk � �rf(uk)); s:t: k�rf(uk)k � �k (5.11)

yields the Cauchy step sCk = ��Ckrf(uk) which is uniquely given by

�Ck =

8><
>:

krf(uk)k2
rf(uk)THkrf(uk) ; if krf(uk)k3

rf(uk)THkrf(uk) � �k and rf(uk)THkrf(uk) > 0;

�k
krf(uk)k ; otherwise,

as simple convexity arguments show. Accordingly, uCk+1=uk+s
C
k denotes the Cauchy point

of the trust-region subproblem (5.4).

Since sCk minimizes (5.10) within the trust-region, it is therefore natural to compare

the predicted decrease, predk(sk), to the model decrease related to the Cauchy step. In

fact, in view of (5.9) it su�ces that the predicted decrease satis�es a fraction of Cauchy

decrease condition

mquad

k (uk)�mquad

k (uk + sk) � cfcd [m
quad

k (uk)�mquad

k (uk + sCk )] (5.12)

for cfcd>0.

Powell [89], Th. 4, has shown that for the Cauchy decrease

mquad

k (uk)�mquad

k (uk + sCk ) � 1
2krf(uk)kminf�k;

krf(uk)k
kHkk g (5.13)

holds. Therefore, we can derive the su�cient decrease condition

f(uk)� f(uk + sk) � 1
2 �1 cfcd krf(uk)kminf�k;

krf(uk)k
kHkk g; (5.14)

or equivalently

f(uk + sk) � f(uk)� 1
2 �1 cfcd krf(uk)kminf�k;

krf(uk)k
kHkk g; (5.15)

that is met whenever a trust-region iteration produces a successful step sk that satis�es

the fraction of Cauchy decrease condition (5.12).

Based on the su�cient decrease condition (5.14) it is possible to prove convergence of

the trust-region algorithm with quadratic model functions given by (5.2).

Theorem 5.3 (Weak Global Convergence)

Let f : IRn ! IR be continuously di�erentiable and bounded below on the level set

fu 2 IRn : f(u) � f(u0)g. Let fukg be a sequence of iterates generated by Alg. 5.2 with

fHkg uniformly bounded and where the trial steps satisfy (5.12).

Then,

lim inf
k!1

krf(uk)k = 0 (5.16)

holds.
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For a proof of (5.16) under the assumptions of Theorem 5.3, we refer, e.g., to No-

cedal/Wright [82], cf. also Powell [89] or Mor�e [80].

We note that the weak assumptions on f do not allow to prove more than convergence

of a subsequence to a stationary point. But, since there are no restrictions on the choice

of u0, Theorem 5.3 provides us with a global convergence result. By strengthening the

assumptions on f we can also derive a stronger global convergence result.

Theorem 5.4 (Strong Global Convergence)

Let f : IRn ! IR be di�erentiable with Lipschitz continuous gradient and bounded below

on the level set fu 2 IRn : f(u) � f(u0)g. Let fukg be a sequence of iterates generated by

Alg. 5.2 with fHkg uniformly bounded and where the trial steps satisfy (5.12).

Then,

lim
k!1

krf(uk)k = 0 (5.17)

holds.

A proof for Theorem 5.4 can be found, e.g., in Nocedal/Wright [82], but we also refer

to Mor�e [80] where (5.17) follows under slightly di�erent assumptions.

5.3 Quadratic Model Functions with Inexact Gradient In-

formation

The quadratic model functions in the previous section were built using exact gradient

information, rf(uk), and eventually approximate second-order information, Hk. But, in

many practical applications where a trust-region method has to be applied in order to

solve (5.1) the gradient of f at uk is not given analytically, but can be approximated

numerically.

This leads to trust-region methods with quadratic model functions

miquad

k (uk + s) = f(uk) + gTk s+
1
2s
THks (5.18)

where gk denotes an approximation to the true gradient rf(uk), i.e. miquad

k (uk + s)

is a model based on inexact gradient information. It is worth noting that in this case

Hk denotes an approximation to the true Hessian, since it is unlikely that approximate

gradient but exact Hessian information is employed to build (5.18).

We emphasize that the quadratic model function (5.18) with inexact gradient informa-

tion possesses the same properties as the classical quadratic model function concerning,

e.g., the e�cient solution of the corresponding trust-region subproblem. Nevertheless, in

the convergence analysis of a corresponding trust-region algorithm the error between ex-

act and approximate gradient, ek = rf(uk) � gk, has to be taken into account. Several

authors have addressed this issue and have derived di�erent error conditions to achieve a

global convergence theory.
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The �rst error condition is due to Mor�e [80]. There, it is assumed that for a convergent

series fukg the approximate gradient, gk, has to satisfy

lim
k!1

krf(uk)� gkk = 0: (5.19)

The asymptotic consistency condition (5.19) is also discussed in Borggaard/Burns [17, 18]

for a sensitivity equation method for optimal design problems.

In Toint [111] the condition

krf(uk)� gkk � minfc1; c2�kg for all k (5.20)

for given constants c1; c2 > 0 is imposed on the gradient accuracy. In order to avoid that

the model miquad

k indicates a stationary point, i.e. gk=0, in cases of nonvanishing rf(uk),
in [111] an additional condition has to be imposed on (5.20). In this work, it is required

that the following critical point condition

kgkk=0 implies krf(uk)k=0 (5.21)

holds.

In Carter [20] the relative error condition

krf(uk)� gkk
kgkk � � (5.22)

for given �2 (0; 1) is proposed to handle the gradient error, as long as kgkk 6= 0. Conn et

al. also use condition (5.22) for the treatment of approximate derivatives in trust-region

algorithms in [23]. We note that according to Carter [21], condition (5.22) can also be

substituted by
j(rf(uk)� gk)

T gkj
kgkk2 � � (5.23)

for given �2(0; 1).
Summing up one can say that the above error conditions illustrate the need for su�-

ciently accurate approximate gradients if kgkk approaches 0. Moreover, during the itera-

tion process it is desirable to have some information on the necessary level of accuracy in

the gradient computation.

Although condition (5.20) provides some information about an admissible error level on

the computation of gk at every iteration, since �k is known at the start of this computation,

it has the disadvantage of having to ensure the above critical point condition (5.21).

The error condition (5.22) seems to be favourable if error estimates for the quantity

krf(uk) � gkk are available. The situation is similar for condition (5.23). In this case,

estimates for the error in the directional derivative jrf(uk)T gk � gTk gkj can be used to

evaluate (5.23). Both quantities allow to enforce the computation of su�ciently accurate

gradients whereas conditions (5.19) and (5.20) mainly serve as theoretical tools.
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Concerning a global convergence proof of a trust-region algorithm based on a quadratic

model functions with inexact gradient information in terms of Theorem 5.3 and Theorem

5.4, an analogous su�cient decrease condition to (5.14) is required. Similar to the presen-

tation in Section 5.2, the modi�ed su�cient decrease condition

f(uk)� f(uk + sk) � 1
2 �1 cfcd kgkkminf�k;

kgkk
kHkkg (5.24)

can be derived, see Mor�e [80]. Compared to the su�cient decrease condition (5.14) simply

the norm of the true gradient, krf(uk)k, has to be replaced by the norm of the approx-

imate gradient, kgkk. Again, condition (5.24) is based on a fraction of Cauchy decrease

condition. In this case, the Cauchy step is given by sCk = ��Ck gk.
Thus, based on the su�cient decrease condition (5.24) and an suitable error condition

for the error between exact gradient, rf(uk), and approximate gradient, gk, we obtain

the global convergence result limk!1 kgkk = 0.

At this place, we purposely renounce to state the proper assumptions for deriving

this convergence result precisely, since we discuss and analyze this topic in the context of

trust-region frameworks for reduced order modelling in the next chapter.

But, we also note that by employing the error condition (5.22), the convergence results

for gk carry over to rf(uk), see Carter [20].
Lemma 5.5

Let fukg be a sequence of iterates such that limk!1 kgkk=0, where gk and rf(uk) satisfy
the error condition (5.22) with 0 <�< 1 for all k.

Then

lim
k!1

krf(uk)k = 0

follows.

Proof: Using the error condition (5.22), the triangle inequality implies

krf(uk)k � kgkk � � kgkk: (5.25)

Reformulating (5.25), we obtain

krf(uk)k � (1 + �) kgkk
which proves the assertion. 2

Remark 5.6

It is possible to consider a further generalization of the quadratic model function in (5.18)

by also allowing inaccurately computed function values, fk, that approximate f(uk), if

the true function values are not available. As a matter of fact, a qualitative analysis of

the corresponding trust-region algorithm requires error bounds on absolute/relative errors

between f(uk); fk and rf(uk); gk, cf. Carter [21], Kelley/Sachs [64], Conn et al. [23].

This issue is not further pursued here.
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5.4 General Model Functions

Having introduced the basic ideas of trust-region methods with quadratic model functions,

this section deals with trust-region methods where a priori no speci�c assumptions on

the nonlinearity of the model function are made. Quadratic models (also with inexact

gradients) are included as a special case.

Based on the work of Toint [111] and Carter [20] we are going to derive a su�cient

decrease condition that later on can be used to prove convergence of a trust-region al-

gorithm that incorporates POD based reduced order modelling approaches for optimal

control problems. We note that the results in [111] are originally derived for constrained

optimization problems with convex closed bounded feasible sets. Accordingly, these results

are formulated for the unconstrained case, here.

We consider f : IRn ! IR. For given u0 2 IRn, let U be an open convex set containing

the level set of f at u0 de�ned by U0 = fu 2 IRn j f(u) � f(u0)g, U0 � U . Throughout

this section the following standard assumptions apply to f :

(F1) f is continuously di�erentiable on U ,

(F2) f is bounded below, and

(F3) rf is Lipschitz continuous with constant L on U .

Furthermore, following Toint [111] and Carter [20], it is assumed that each model

function, mnonlin

k (u), at the current iterate uk satis�es the conditions:

(M1) mnonlin

k is di�erentiable on an open convex set containing the trust-region

fu 2 IRn j ku�ukk � �kg for given trust-region radius �k > 0,

(M2) mnonlin

k (uk) = f(uk), and

(M3) gk = rmnonlin

k (uk) approximates rf(uk) such that

krf(uk)� gkk
kgkk � � (5.26)

for given �2(0; 1).

A trust-region algorithm that employs general model functions that are not necessarily

quadratic has the same structure as the basic trust-region algorithm (cf. Algorithm 5.2).

In this case, we obtain the following trust-region subproblem.

Problem 5.7

For a given current iterate uk and trust-region radius �k > 0, determine an approximate

solution sk to

min
s2IRn

mnonlin

k (uk + s); s:t: ksk � �k:
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As pointed out in the previous sections that dealt with quadratic model functions,

the convergence behaviour of the trust-region scheme was based on the su�cient decrease

conditions (5.14) or (5.24) and its linkage to the fraction of Cauchy decrease condition,

cf. (5.12). In Section 5.2 we introduced the Cauchy step as the unique minimizer of the

model function in steepest descent direction. Since we are treating more general model

functions in this section, the Cauchy step sCk in the sense of (5.11) is no longer given.

Nevertheless, it is possible to derive an analogous su�cient decrease condition using a

generalization of this concept. Obviously, in the case of general nonlinear model functions

one can expect to get the desired su�cient decrease condition, if the predicted decrease

for the trial step, mnonlin

k (uk)�mnonlin

k (uk+sk), can be related to the decrease in the model

in steepest descent direction, mnonlin

k (uk)�mnonlin

k (uk��gk), for a certain step size �k>0.

Toint [111] has proposed a step determination algorithm (SDA) that realizes the above

ideas and that can be used for approximately solving the trust-region subproblem with

general model functions. This SDA is outlined in Algorithm 5.8.

Algorithm 5.8 (Step Determination Algorithm (SDA))

Initialization: Choose

0 < � < � < 1; 0 < �1 < 1; �2 > 0; �3 > 0; 0 < � � 1: (5.27)

Phase 1: Find �Ak such that

mnonlin

k (uk � �Ak gk) � mnonlin

k (uk)� ��Ak kgkk2 (5.28)

k�Ak gkk � �k (5.29)

and

�Ak � minf�1 �k
kgkk ; �2g or �Ak � �Bk (5.30)

where �Bk > 0 (if required) has to satisfy

mnonlin

k (uk � �Bk gk) � mnonlin

k (uk)� ��Bk kgkk2 (5.31)

Phase 2: If �k � �3: Choose step sk such that

mnonlin

k (uk)�mnonlin

k (uk + sk) � � [mnonlin

k (uk)�mnonlin

k (uk � �Ak gk)] (5.32)

kskk � �k (5.33)

Phase 1 of Algorithm 5.8 requires the determination of a step sGCk = ��Ak gk in the

model's steepest descent direction that also satis�es the trust-region constraint (5.29). The

step size �Ak has to be chosen such that a certain decrease in the model mnonlin

k according
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to (5.28) is ensured. Additionally, it has to be guaranteed that the step size �Ak is bounded

away from zero. Therefore, either the �rst or the second part of condition (5.30) has to

be satis�ed. Essentially, Phase 1 can be interpreted as an inexact line search in steepest

descent direction on the trust-region that yields a generalized Cauchy step sGCk .

In Phase 2, for a su�ciently large trust-region radius it is possible to leave this steepest

descent direction. There, we can compute a step sk that has to maintain a fraction of the

generalized Cauchy decrease, see condition (5.32).

Algorithm 5.8 is well de�ned in the sense that it always provides a feasible step. For

completeness we also review the proof of this result.

Lemma 5.9 (Toint [111], Lemma 5)

Provided that (5.27) holds, there always exists a step sk satisfying conditions (5.28) -

(5.33).

Proof: Without loss of generality we assume that kgkk > 0 holds. Otherwise, the step

sk = 0 satis�es (5.28){(5.33). Additionally, the choice � � 1 enables us to restrict the

analysis of SDA to Phase 1. If �Ak > 0 is found that satis�es (5.28){(5.31), then sk = ��Ak gk
also satis�es (5.32){(5.33). For ease of notation, we drop the superscription and denote

mk(uk + s) = mnonlin

k (uk + s) throughout this proof.

Let us assume that there exists a step size �1 > 0 such that

mk(uk � �1gk) =mk(uk)� ��1kgkk2: (5.34)

Since 0 < � < �, equation (5.34) implies

mk(uk � �1gk) < mk(uk)� ��1kgkk2: (5.35)

In case we have �1kgkk < �k, we are able to choose " > 0 such that also

(�1 + ")kgkk � �k (5.36)

holds. Additionally, we can rewrite equation (5.34) to obtain

mk(uk � (�1+")gk) = mk(uk)� �(�1+")kgkk2 � (���)�1kgkk2 + �"kgkk2

+ [mk(uk � (�1+")gk)�mk(uk � �1gk)]: (5.37)

Furthermore, since � > �, we also have

�(���)�1kgkk2 < 0: (5.38)

Consequently, the continuity of the model function and (5.38) allow us to choose " in

inequality (5.36) small enough to ensure

�(���)�1kgkk2 + �"kgkk2 + [mk(uk � (�1+")gk)�mk(uk � �1gk)] < 0: (5.39)
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Equation (5.37) together with (5.39) leads to

mk(uk � (�1+")gk) � mk(uk)� �(�1+")kgkk2: (5.40)

Due to (5.35) and (5.40) we can choose �Ak 2 [�1; �1 + "] and �Bk = �1, in order to get a

step size that satis�es (5.28), (5.29), the second part of (5.30) and (5.31).

In case �1kgkk � �k we assume that �1 is the smallest positive number such that (5.34)

holds. Furthermore, we de�ne the auxiliary function

h(�) = mk(uk � �gk)�mk(uk) + ��kgkk2:

According to (5.34), we have h(0) = h(�1) = 0 such that the continuity of the model

function yields h(�) � 0 for all � 2 [0; �1]. Consequently, � < � leads to

mk(uk � �gk) � mk(uk)� ��kgkk2 (5.41)

for all � 2 [0; �1]. De�ning �2 = �1�k=kgkk with �1 < 1, we obtain a step size that satis�es

�2kgkk = �1�k < �k and �2 < �1. Therefore, we can conclude that there exists " > 0

such that for all �Ak 2 [�2; �2 + "] conditions (5.28), (5.29) and the �rst part of (5.30) are

satis�ed.

Finally, we have to consider the case that there exists no �1 > 0 such that equation

(5.34) holds. In this case we choose �1 to be the smallest positive number that satis�es

�1kgkk = �k. Since (5.41) holds for all � 2 [0; �1], anyway, we can conclude in the same

way as above to get the desired result of Lemma 5.9. 2

Next, we state a result that describes the asymptotic behaviour of step directions,

if the step determination algorithm SDA is applied for the solution of the trust-region

subproblem given in Problem 5.7.

Lemma 5.10 (Cf. Carter [20], Th. 2.1)

Let f�kg be the sequence of trust-region radii, fgkg the sequence of model gradients at uk

and fskg a sequence of steps computed by SDA. We de�ne the angle, �k, between sk and

�gk implicitly by

cos�k =
�sTk gk
kskk kgkk : (5.42)

If lim infk!1 kgkk > 0 and limk!1 �k = 0, then

lim
k!1

cos�k = 1 (5.43)

follows.

Proof: Let kgkk > " for su�ciently large k and for some " > 0. If �k ! 0; k !1, there

exists an iteration number k0 such that for all following iterations k � k0 the resulting
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step sk is determined according to Phase 1 in SDA, i.e. sk = ��Ak gk. In this case we have

cos�k = (�Ak g
T
k gk)=(�

A
k kgkk2) = 1 and the desired result follows. 2

Having introduced the step determination algorithm as a solution method for the trust-

region subproblem with general, nonlinear model functions according to [111], we now turn

to the required su�cient decrease condition.

We recall that for trust-region methods with quadratic model functions based on in-

exact gradients the su�cient decrease condition reads

f(uk)� f(uk + sk) � 1

2
c kgkkminf�k; kgkkkHkkg

for given c>0, where kHkk denotes the norm of the Hessian of the model function. Thus,

it represents a measure for the model's curvature at uk. In the general, nonlinear model

function case a similar curvature concept is necessary, see [111].

De�nition 5.11 (Curvature Measure)

Let f satisfy (F1). We de�ne a measure for the curvature of f along the step s; s 6= 0,

based at a point u by

!(f; u; s) =
2

ksk2 (f(u+ s)� f(u)�rf(u)T s): (5.44)

We note that De�nition 5.11 implies j!(mquad

k ; uk; s)j = jsTHks=(s
T s)j � kHkk2 for a

quadratic model function given by (5.2) with symmetric Hessian Hk.

Provided with the curvature measure (5.44) we can prove the following result, that

gives a lower bound for the predicted decrease in the model function, mnonlin

k , if the step

determination algorithm (Alg. 5.8) is used.

Theorem 5.12 (Toint [111], Th. 7)

Assume that kgkk 6= 0 and de�ne according to SDA and (5.44)

!k :=

(
0 if �Bk is unde�ned;

!(mnonlin

k ; uk;��Bk gk) if �Bk is de�ned:
(5.45)

Then

!k � 0 (5.46)

and there exists a constant cs > 0 such that SDA produces a step sk with

mnonlin

k (uk)�mnonlin

k (uk + sk) � cskgkk2minfkgkk2=(1 + !k); �kg: (5.47)

Proof: Based on the standard assumptions on f there exists a constant cf > 0 such that

krf(uk)k � cf . Moreover, error condition (5.26) implies that we can de�ne a constant

cg = cf=(1 � �) > 0 such that

kgkk � 1

1� �
krf(uk)k � cg: (5.48)
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Again, we drop the superscription and denote mk(uk+s) = mnonlin

k (uk+s) throughout

this proof.

According to (5.45) let us assume that �Bk is de�ned. With (5.31), (5.44) and �<1 we

obtain

!(mk; uk;��Bk gk) =
2

k�Bk gkk2
(mk(uk��Bk gk)�mk(uk) + �Bk kgkk2)

� 2

k�Bk gkk2
(1� �)�Bk kgkk2

� 2

�Bk c
2
g

(1� �)kgkk2 > 0: (5.49)

Thus, the de�nition of !k in (5.45) and (5.49) prove the assertion in (5.46).

For further use we reformulate (5.49) as

�Bk �
2(1� �)kgkk2

!(mk; uk;��Bk gk) c2g
: (5.50)

We also recall that due to (5.28) and (5.32) SDA produces steps, sk, that satisfy

mk(uk)�mk(uk + sk) � ���Ak kgkk2: (5.51)

In case �Ak satis�es the �rst part of condition (5.30), then (5.48) and (5.51) can be

used to show

mk(uk)�mk(uk + sk) � ��kgkk2minf�1 �k
kgkk ; �2g

� ��kgkk2minf�1 �k
cg
; �2g: (5.52)

Therefore, we can �nd a constant cA > 0 such that

mk(uk)�mk(uk + sk) � cA kgkk2 �k: (5.53)

Let us consider the case where �Ak is chosen according to the second part of condition

(5.30). Then, (5.51) together with the lower bound for �Bk given in (5.50) and (5.45) yield

mk(uk)�mk(uk + sk) � ���Bk kgkk2

� ��kgkk2 2(1� �)kgkk2
!(mk; uk;��Bk gk)c2g

= cB kgkk2 kgkk2
!(mk; uk;��Bk gk)

� cB kgkk2 kgkk
2

!k + 1
(5.54)
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where the constant cB > 0 is de�ned by cB =2��(1 � �)=c2g . Finally, with (5.53), (5.54)

and cs = minfcA; cBg the assertion in (5.47) follows. 2

Consequently, we obtain the following su�cient decrease condition, that describes the

decrease in the true objective function when the iteration is successful.

Corollary 5.13

Let the assumptions of Theorem 5.12 be satis�ed and assume that the k-th iteration was

successful.

Then

f(uk)� f(uk + sk) � �1cskgkk2minf kgkk
2

1 + !k
; �kg (5.55)

holds.

Proof: Since for successful iterations aredk(sk)� �1predk(sk) follows, we obtain the de-

sired su�cient decrease condition for f using Theorem 5.12. 2

We note that the su�cient decrease condition (5.55) for general, nonlinear model

functions is of the same type as the su�cient decrease condition (5.24) in the quadratic

model function case with inexact gradients. In both cases, the lower bound for the actual

reduction aredk(sk) = f(uk) � f(uk + sk) depends on the norm of the model gradient,

kgkk, and on the model curvature.

So far, with Lemma 5.10 and Corollary 5.13 we provided two important results for

a convergence proof of the main algorithm that combines the trust-region technique and

POD based reduced order modelling in the next chapter.
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Chapter 6

Trust-region Frameworks for POD

based Reduced Order Modelling

6.1 Introduction

In the previous chapter, the trust-region approach has been considered from a primarily

theoretical point of view. We provided a general framework that admits to make use of

approximations to the original objective function of the underlying optimization problem

(5.1) based on a variety of possible model functions, where the assumptions on the original

objective, f , and model functions, mk, are fairly weak.

Beyond this, the trust-region framework supplies an e�cient tool for the solution of

optimization problems of the type

min
u2IRn

f̂(y(u); u) (6.1)

where f̂(y; u) is a function with f̂ : IRm � IRn ! IR, which often arise in all areas of

practical applications. In problem (6.1), u2IRn denotes decision variables and the vector-

valued function y(u) from IRn to IRm denotes state variables (or system variables) that

describe a certain input/output-relation: y(u) is the system output for a given input u.

In many cases, the input/output-relation can be described by a known model, e.g., a

�nite element model of a partial di�erential equation that models some physical processes.

Thus, the evaluation of

f(u) = f̂(y(u); u) (6.2)

during the solution of (6.1) is computationally expensive, if an accurate computation of

y(u), i.e. the solution of the state equation, for given u is computationally expensive. In

such cases it is desirable to replace the objective function, f , by a model function that

can be evaluated at less computational expenses. This can be achieved by employing an

75
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approximation model for the state equation such that

f̂(y(u); u) is replaced by f̂(ymod(u); u) (6.3)

during the optimization process, where ymod(u) denotes a corresponding approximate state

equation solution for given u. Consequently, with regard to the trust-region methods

presented in Chapter 5,

mk(uk+s)= f̂(y
mod(uk+s); uk+s) (6.4)

provides a model function for

f(uk+s)= f̂(y(uk+s); uk+s) (6.5)

at a given current iterate uk. Thus, since we made no assumptions on the `nonlinearity'

of f̂ as well as on the nonlinearity of the mapping u 7! y(u), we obtain a general model

function, mk, that is not necessarily a quadratic function.

In general, the approximation model that delivers ymod(u) for given u is characterized

by lower accuracy (low-�delity model), but less computational expense, compared to the

original model for the computation of y(u) (high-�delity model), cf. Alexandrov et al. [4],

Rodriguez et al. [96]. In Conn et al. [23] the term composite model can be found for the

type of model function given in (6.4). Another popular term for using approximation

models for the state equations during the solution of (6.1) is surrogate optimization, see

e.g. Booker et al. [16].

In many engineering applications the use of approximation models is common prac-

tice. But, if approximate modelling is used as a stand-alone technique, it is di�cult to

make a statement about a problem's solution quality based on approximation models with

regard to the true solution of the problem. Even in cases where a surrogate approach,

i.e. solving the optimization problem (6.1) with the substitution suggested in (6.3), yields

a converged solution, it is necessary to relate this solution to the true solution that one

intends to compute. According to the material presented in Chapter 5, this can be ac-

complished by employing a trust-region framework, also known as model management or

surrogate management framework. This is a well-known technique in multidisciplinary de-

sign optimization (MDO). For a survey of applications of variable-�delity models in MDO

we refer to Alexandrov/Hussaini [5].

In the MDO literature, two approaches for the solution of trust-region subproblems

with general model functions based on approximation models for the state equation in the

sense of (6.4), (6.5) can be found.

If problem (6.1) is characterized by the fact that derivatives for f are not available

or cannot be computed except at an undesirable amount of computational cost, then,

derivative free methods are of great interest. In, e.g., Dennis/Torczon [28], Sera�ni [99] or
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Booker et al. [16], the trust-region approach is combined with the use of approximation

models according to (6.3), but without using derivative information during the solution

of the corresponding trust-region subproblems. In those cases, direct search methods that

merely use function values of f and that do not explicitly use gradient information can

be employed (see Kelley [63]). In the context of model management strategies especially

pattern search methods (as a subclass of direct search algorithms) have been applied for the

computation of putative iterates [28, 99, 16]. Pattern search methods are characterized by

operating only at a set of discrete points. A pattern consists of an ensemble of potential

steps such that the current iterate plus each step de�nes a possible trial iterate. During the

optimization process the patterns and an additional scale factor (or step length parameter)

are adapted to the current iterate. At each iteration, the next iterate uk+1 is chosen using

the pattern such that a simple decrease condition, f(uk+1) < f(uk); if uk+1 6= uk; is

satis�ed. The convergence results for model management frameworks that incorporate

pattern search algorithms are similar to Theorem 5.3 (cf. Sera�ni [99]) and re
ect the

convergence properties of pattern search methods itself (see Torczon [112], Lewis/Torczon

[75]).

If derivative information for (6.1) is available, we are led to the second class of surrogate

optimization approaches. Similar to the trust-region approach presented in Section 5.4,

the research results of Alexandrov et al. [4, 6] are based on general model functions. In

these works, a �rst-order consistency condition is assumed, i.e. the model functions have

to satisfy

mk(uk) = f(uk) and rmk(uk) = rf(uk) (6.6)

for all iterates uk. This consistency condition can be enforced by a scaling technique

that will be introduced in Section 6.3. In the trust-region frameworks presented in [4, 6],

again, a trust-region algorithm based on quadratic model functions is used for the solution

of the corresponding trust-region subproblems. Thus, this leads to solving trust-region

subproblems with an additional norm constraint on an admissible step which have been

analyzed in Heinkenschloss [48].

Having introduced the proper orthogonal decomposition for the Navier{Stokes equa-

tions in Chapter 3, a reduced order modelling approach for 
ow control based on POD

obviously provides a speci�c example for deriving an approximation model for the state

equation. Furthermore, to our knowledge, POD based reduced order modelling for op-

timization purposes has been used as a stand-alone technique so far. It is the goal of

this chapter to illustrate how the ideas of surrogate optimization and POD based reduced

order modelling can be combined. In so doing, a trust-region framework for implementing

an optimal control approach based on reduced order modelling can be achieved. Here,

trust-region methods with general nonlinear model functions as presented in Section 5.4

provide the necessary theoretical background for an analysis of this approach.

In Section 6.2 we present an algorithmic framework that implements the combination
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of POD based reduced order modelling and trust-region methods, the TRPOD algorithm,

cf. [8]. Based on the theoretical results for trust-region methods with general model

functions presented in Chapter 5, we are able to prove the convergence of the TRPOD

algorithm. We also discuss some additional modi�cations of the basic TRPOD algorithm

that can lead to an improved performance.

Since the convergence results are strongly in
uenced by the gradient accuracy of the

model functions during the optimization process, we therefore discuss this topic in Section

6.3 leading to the proposal of a modi�ed algorithm that incorporates gradient information

of the true objective function, f . In this context, we introduce a scaling technique that

provides model functions satisfying the �rst-order consistency condition according to (6.6).

Finally, we devote the last section of this chapter to the presentation of numerical

results that have been obtained by applying the proposed algorithms to optimal control

problems in 
uid 
ows and heating processes.

6.2 The Trust-region Proper Orthogonal Decomposition Ap-

proach

6.2.1 The TRPOD Algorithm

In Chapter 3 we gave a detailed description of the POD based reduced order modelling

technique based on an input ensemble of snapshots. Since these reduced order models are

based on the solution of the underlying partial di�erential equation, they are especially

suited for representing this input ensemble. In Subsection 3.6 we illustrated this behaviour

with some numerical results.

For example, if a POD based reduced order model has been set up that re
ects a

certain control in
uence on the system, the same reduced order model might deliver no

reliable information on the system behaviour under a completely di�erent control in
uence.

Consequently, such reduced order models might be poor models when the controller takes

the system from its current state towards the optimal state in cases where (unknown)

intermediate dynamics cannot be caught by the reduced order model. This is due to

the limited number of degrees of freedom in the reduced order model as prescribed by

the POD basis elements and constitutes its main weakness for optimal control purposes.

Therefore, there is no guarantee that an optimization approach with POD based reduced

order models will converge to a solution of the original system without any additional

mechanism.

In order to create a connection between the original optimal control problem and the

reduced order modelling approach we therefore propose a Trust-Region Proper Orthogonal

Decomposition (TRPOD) method in the spirit of surrogate optimization to overcome those

di�culties. By embedding the POD technique into the concept of trust-region frameworks
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with general, nonquadratic model functions and inexact gradient information it is possible

to provide a mechanism to decide when an update of the POD based control model is

necessary during the optimization process.

In the following, we describe the ideas of the trust-region proper orthogonal decompo-

sition approach for 
ow control. For this purpose we consider the control problem given

in Problem 2.6 as an unconstrained optimization problem

min
u2IRn

f̂(yN (u); u) (6.7)

where u 2 IRn denotes the discretized control due to a time discretization and yN (u)

denotes a �nite element approximation to the weak solution of (2.1), (2.2), (2.3) and (2.5)

for a given control. We emphasize that due to Theorem 2.7 for an appropriate problem

formulation, there always exists a unique weak solution to the Navier{Stokes equations

for a given control.

Since we are interested in applying a reduced order model based on POD for the

computation of an approximate solution to yN (u), according to the above discussion, we

have to be aware of possibly unreliable reduced order solutions. It is therefore natural to

adapt the POD based control model successively during the course of the optimization

by adapting the snapshot set that is used to generate the POD basis. The corresponding

TRPOD algorithm is given in Algorithm 6.1, where a stopping criterion should be added

in practice, cf. Algorithm 5.2.

Given a current trust-region radius, �k, and an iterate for the control, uk, we �rst

compute snapshots that correspond to the 
ow dynamics forced by uk by solving a �nite

element system for the Navier{Stokes equations. These snapshots form the input ensemble

Yk. Based on the �nite element solution, we can also evaluate the objective function

f(uk) = f̂(yN (uk); uk) at the current iterate.

Furthermore, we use the snapshot ensemble, Yk, to compute a POD basis, YPODk .

Then, based on the techniques presented in Section 3.5.2, we derive a POD based control

model at uk. This reduced order model can be employed for an optimization cycle.

For this purpose, according to (6.4), (6.5) we de�ne

mk(uk + s) = f̂(yM (uk + s); uk + s) (6.8)

as a model function for

f(uk + s) = f̂(yN (uk + s); uk + s): (6.9)

on the trust-region ksk � �k around uk. In the de�nition of the model function (6.8),

yM (uk + s) denotes the POD based reduced order solution at uk + s computed with the

reduced order model at uk. We recall that the superscript M indicates the number of

POD basis functions that have been used to build this reduced order model.
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Algorithm 6.1 (Basic TRPOD Algorithm)

Initialization: Choose 0 < �1 < �2 < 1, 0 < 
1 � 
2 < 1 � 
3, an initial trust-region

radius �0 > 0 and an initial iterate u0. Compute a snapshot set Y0 corresponding to

control u0 and compute f(u0) according to (6.9). Set k = 0.

1. Compute a POD basis YPODk and build a POD based control model.

2. Compute an approximate minimizer, sk, of the model function mk(uk+s) given by

(6.8) within the trust-region, ksk � �k, using SDA.

3. Compute a snapshot set Yk+ corresponding to control uk+sk and compute f(uk+sk)

according to (6.9). Set

�k =
aredk(sk)

predk(sk)
:

4. Update the trust-region radius:

� If �k � �2:

Set uk+1 = uk+sk; f(uk+1) = f(uk+sk); Yk+1 = Yk+ and choose �k+1 2 [�k; 
3�k].

Set k = k + 1 and GOTO 1.

� If �1��k < �2:

Set uk+1 = uk+sk; f(uk+1) = f(uk+sk); Yk+1 = Yk+ and choose �k+1 2 [
2�k; �k).

Set k = k + 1 and GOTO 1.

� If �k < �1:

Set uk+1 = uk and choose �k+1 2 [
1�k; 
2�k]. Set k = k + 1 and GOTO 2.

An exact solution of the corresponding trust-region subproblem

min
s2IRn

mk(uk + s); s:t: ksk � �k;

would deliver a solution that is optimal for the current surrogate problem. But, following

the trust-region philosophy it is su�cient to compute a trial step that achieves a certain

amount of decrease for the model function. Computing such a trial step via the step

determination algorithm (SDA) presented in Alg. 5.8, we denote this trial step by sk.

In order to estimate the quality of the putative next iterate uk+1 = uk + sk with

regard to the optimization goal, we compare the actual reduction in the true objective,

aredk(sk)=f(uk)�f(uk+sk), to the predicted reduction, predk(sk)=mk(uk)�mk(uk+sk).

This requires to compute a new �nite element solution, yN (uk+sk), in order to evaluate

f(uk+sk). If the trial step, sk yields a satisfactory decrease in the original objective, we

accept this step, and because of the last �nite element solution, a new snapshot ensemble

Yk+1 is available.
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Consequently, this new snapshot ensemble is adapted to 
ow dynamics as altered by the

control and the next POD based reduced order model incorporates these new dynamics.

6.2.2 Convergence Results

Before we turn to the convergence analysis of the TRPOD algorithm, we again emphasize

that, in general, the model function mk given by (6.8) is a nonquadratic model function

for f , since it depends on uk+s through the solution of the reduced order state equation.

Moreover, we made no assumptions on the nonlinearity of f .

According to Chapter 5, we denote the gradient of the model function mk at the

center point of the trust-region by gk =rmk(uk). Obviously, gk is an approximation to

the gradient, rf(uk), of the actual objective function since we compute this quantity on

reduced order information only. Consequently, a condition on the gradient error between

gk and rf(uk) is required. Based on the discussion in Section 5.3 we choose the error

condition (5.22) proposed in Carter [20].

Beside this, the trust-region proper orthogonal decomposition approach also includes

inexact model function values at the trust-region center point. Due to a POD approxima-

tion error in the reduced order model, we have mk(uk) 6= f(uk) which relaxes assumption

(M2) on the model function, see Section 5.4. Nevertheless, the results of Section 5.4 still

hold, since we considered questions particularly related to the model decrease whereas the

su�cient decrease condition (5.55) assumes that we meet a successful iteration.

We will now state under which assumptions Algorithm 6.1 will always �nd an accept-

able step. For the de�nition of various parameters that occur in the step determination

algorithm (Algorithm 5.8) and that are used in the statement of the following theorem

and its proof, we refer to Section 5.4.

Theorem 6.2

Let f satisfy the standard assumptions (F1){(F3) and consider a �xed iterate uk such

that mk satis�es (M1). Let gk denote a gradient approximation to rf(uk), where we

assume that gk 6= 0 and that the gradient error condition (5.26) in (M3) is satis�ed for

� 2 (0; 1��1). Furthermore, we suppose that Alg. 5.8 is used to compute a trial step sk,

where we also assume that j!(mk; uk; sk)j � c! holds, for some constant c! > 0.

Then, for su�ciently small �k we have �k > �1, such that iteration k is successful.

Proof: We refer to Carter [20] for a similar proof for quadratic model functions.

Since kgkk 6= 0 holds, Theorem 5.12 guarantees that Alg. 5.8 produces steps sk satis-

fying predk(sk) > 0. With the de�nition of the curvature measure, !(�), given in (5.44)

and cos�k = �sTk gk=(kskkkgkk) de�ned in (5.42) we have

1� �k = 1� aredk(sk)

predk(sk)
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=
mk(uk)�mk(uk + sk)� (f(uk)� f(uk + sk))

mk(uk)�mk(uk + sk)

� j(rf(uk)� gk)
T skj+ 1

2kskk2j!(f; uk; sk)� !(mk; uk; sk)j
�gTk sk � 1

2kskk2!(mk; uk; sk)
(6.10)

� krf(uk)� gkk kskk+ 1
2kskk2(j!(f; uk; sk)j+ j!(mk; uk; sk)j)

kgkk kskk cos �k � 1
2kskk2!(mk; uk; sk)

=

krf(uk)�gkk
kgkk + kskk

2kgkk(j!(f; uk; sk)j+ j!(mk; uk; sk)j)
cos�k � kskk

2kgkk!(mk; uk; sk)
: (6.11)

Furthermore, the assumptions on f imply

j!(f; uk; sk)j =
2

kskk2 jf(uk + sk)� f(uk)�rf(uk)T skj

=
2

kskk2 j
Z 1

0
rf(uk + �sk)

T sk d� �rf(uk)T skj

� 2

kskk2
Z 1

0
krf(uk + �sk)�rf(uk)k kskkd � � L (6.12)

where L is the Lipschitz constant of rf .
According to Alg. 5.8, we obtain cos�k = 1, if �k < �3 for given �3 > 0 (see Lemma

5.10). Thus, we assume �k < �3 for the rest of this proof.

Inserting (6.12), j!(mk; uk; sk)j � c! and krf(uk)� gkk=kgkk � � in (6.11) yields

1� �k �
� + �k

2kgkk (L+ c!)

1� kskk
2kgkk!(mk; uk; sk)

: (6.13)

Consequently, since kgkk > 0, we have

lim
�k!0

1
2 �k(L+ c!)=kgkk = 0 (6.14)

and

0 � lim
�k!0

1
2 kskk j!(mk; uk; sk)j=kgkk � lim

�k!0

1
2 �kc!=kgkk = 0: (6.15)

Thus, with (6.14), (6.15) follows

lim
�k!0

(1� �k) � � < 1� �1 (6.16)

proving the existence of a su�ciently small �k, that leads to the desired result �k>�1. 2

Theorem 6.2 leads to the �rst convergence result for the TRPOD algorithm which

is similar to Theorem 5.3, cf. Toint [111], Lemma 9 and Theorem 10, and Carter [20],

Theorem 3.3.
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Theorem 6.3 (Weak Global Convergence of the TRPOD Algorithm)

Let f satisfy the standard assumptions (F1){(F3). Assume that fukg is a sequence of

iterates generated by Alg. 6.1 with step determination according to Alg. 5.8. Let fskg
be the sequence of steps. Furthermore, we assume that each model function mk satis�es

(M1) and (M3) for some � 2 (0; 1��2). We de�ne

bk = 1 +maxfmaxf!i; j!(mi; ui; si)jg; i = 0; : : : ; kg (6.17)

according to (5.44), (5.45) and assume that there exists some constant cb>0 such that

bk � cb for all k: (6.18)

Then

lim inf
k!1

kgkk = 0

follows.

Proof: The proof follows by contradiction where we assume that

lim inf
k!1

kgkk � " (6.19)

for some ">0.

The �rst intermediate result can be derived using standard arguments and is based on

the su�cient decrease condition for general model functions, see Cor. 5.13. Using (6.18),

at each successful iteration for the actual reduction holds

f(uk)� f(uk + sk) � �1cskgkk2minfkgkk2=cb; �kg (6.20)

for cs > 0 and 0 < �1 < 1. At this point, we remark that Theorem 6.2 and the relation

0 < � < 1��2 < 1��1 guarantee that such successful iterations exist. Since f is bounded

below, (6.19), (6.20) yield
P
k2S �k < 1 where S denotes the set of indices of successful

iterations. But, since the trust-region radius is reduced for unsuccessful iterations anyway

we get
P1
k=0 �k <1 and thus �k ! 0 for k !1, cf. Mor�e [80].

Without loss of generality we assume that k is su�ciently large such that kgkk � "

holds. According to (6.11) and by combining (6.12), (6.17) and kskk � �k we obtain

1� �k �
krf(uk)� gkk+ 1

2�k(L+ bk)

kgkk cos �k � 1
2kskk!(mk; uk; sk)

: (6.21)

Similar to (6.16) we can now use (5.43), (M3), (6.18) and �k ! 0; k ! 1 to deduce

that

lim
k!1

(1� �k) � � < 1� �2: (6.22)

The result in (6.22) implies that there exists an iteration index k0 such that �k > �2

for all k � k0. Thus, the trust-region radius �k is not reduced for all k � k0 which leads

to a contradiction with �k ! 0 for k !1. 2
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Moreover, we can also prove strong global convergence of the TRPOD algorithm in

the sense of Theorem 5.4, cf. Carter [20] and Conn et al. [23]. Again, the speci�c choice

of the error condition (5.26) plays an important role in the proof of this result.

Theorem 6.4 (Strong Global Convergence of the TRPOD Algorithm)

Let the assumptions of Theorem 6.3 be satis�ed.

Then,

lim
k!1

kgkk = 0

follows.

Proof: We refer to Carter [20] for a similar proof for quadratic model functions, also cf.

Mor�e [80] and Nocedal/Wright [82].

Let us consider any iteration index l such that kglk 6= 0 and, for technical reasons, we

set

" = 1
2 (1� �)=(1 + �) (6.23)

such that the choice � 2 (0; 1��2) implies " 2 (0; 1). Theorem 6.3 guarantees that for any

" 2 (0; 1) there exists a second iteration index m � l such that

kgm+1k � "kglk (6.24)

and

kgkk > "kglk (6.25)

for all k = l; : : : ;m.

For the objective function values of successive iterates, we have

f(ul)� f(um+1) =
mX
k=l

f(uk)� f(uk+1)

=
mX
k=l
k2S

aredk(sk) (6.26)

where we restricted the sum to the indices of successful iterations, S, in fl; : : : ;mg such

that uk+1 6= uk. We remark that due to (6.24) the index set S \ fl; : : : ;mg is nonempty.
Since for any successful iteration the su�cient decrease condition (5.55) holds, (6.26) leads

to

f(ul)� f(um+1) �
mX
k=l
k2S

�1cskgkk2minfkgkk
2

cb
; �kg (6.27)

�
mX
k=l
k2S

�1cs"
2kglk2minf"

2kglk2
cb

; kskkg (6.28)
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where we also employed the curvature bound (6.18) to obtain (6.27), and (6.25) and

kskk � �k to obtain (6.28).

Furthermore, inequality (6.24) leads to

kglk � kgl � gm+1k+ kgm+1k

� kgl � gm+1k+ "kglk

which is equivalent to

(1� ")kglk � kgl � gm+1k: (6.29)

Using the gradient error de�nition, ek = rf(uk)� gk (see Section 5.3), we can bound the

right hand side of (6.29) by

kgl � gm+1k � krf(ul)�rf(um+1)k+ kel � em+1k

such that the Lipschitz continuity of rf , see (F3), and uk+1=uk+sk yields

kgl � gm+1k � L kul � um+1k+ kel � em+1k

� L
mX
k=l
k2S

kskk+ kel � em+1k: (6.30)

For the second term of the right hand side in (6.30), one obtains with (5.26) and (6.24)

kel � em+1k � kelk+ kem+1k

� �kglk+ �kgm+1k

� (1 + ")�kglk: (6.31)

Combining (6.29), (6.30) and (6.31) results in

(1� ")kglk � L
mX
k=l
k2S

kskk+ kel � em+1k

� L
mX
k=l
k2S

kskk+ (1 + ")�kglk

which is equivalent to

1
L [(1��)� "(1+�)]kglk �

mX
k=l
k2S

kskk: (6.32)

Thus, de�ning �" = ((1��)� "(1+�))=L, inequality (6.32) implies

mX
k=l
k2S

kskk � �"kglk (6.33)
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where �" > 0 due to the choice of " in (6.23).

If we return to (6.28) now, two cases can occur. If kskk � "2kglk2=cb for all successful
iterations k2fl; : : : ;mg, due to (6.33) we have

f(ul)� f(um+1) � �1cs"
2�"kglk3 (6.34)

which can be reformulated as

kglk3 � 1

�1cs"2�"
(f(ul)� f(um+1)): (6.35)

Since f is bounded below, see (F2), and the sequence ff(uk)g is nonincreasing, we have
that f(uk) # f? for some f? > �1. Thus, the right hand side of (6.35) converges to zero,

which implies that limk!1 kgkk = 0.

Otherwise, assuming there exists a successful iteration k0 2 fl; : : : ;mg such that

ksk0k>"2kglk2=cb, we obtain in (6.28)

f(ul)� f(um+1) � �1cs"
4

cb
kglk4; (6.36)

which allows to conclude as above that limk!1 kgkk = 0. 2

Finally, we obtain the following result. Its proof follows immediately with Lemma 5.5.

Corollary 6.5

Let the assumptions of Theorem 6.4 be satis�ed.

Then,

lim
k!1

krf(uk)k = 0

follows.

Remark 6.6

For the above convergence proofs we have to impose an error condition on the gradient

accuracy since gk only is an approximation to rf(uk). Here, we used the one proposed

in Carter [20]. As pointed out before, the assumption on the model function value at the

trust-region center point, (M2), is also violated. Nevertheless, in the convergence proofs

no explicit error condition on the approximation quality of mk(uk) compared to f(uk) is

necessary. This seems to be surprising at a �rst sight.

At this point, we recall that the model function quality at the base point uk solely

depends on the accuracy of the POD based reduced order solution compared to the �nite

element solution at uk. Therefore, the accuracy of the POD based reduced order model

enters implicitly into the gradient computation, e.g. via an adjoint equation or a sensitivity

equations approach. Thus, inaccurate reduced order solutions a�ect the gradient accuracy

and this is a quantity that is handled by (M3).
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Remark 6.7

It is also important to note that the bound on the gradient error, �, given by (5.26) is

coupled with the trust-region parameters, �1; �2, which implies that the choice of these

parameters in
uences the admissible error level. We remark that it is su�cient to satisfy

a gradient error condition of the type

j(rf(uk)� gk)
T skj

kgkk kskk � � (6.37)

for appropriately chosen � > 0, which is weaker than (5.26), in order to obtain the con-

vergence result in Theorem 6.3. For this purpose, we have to employ the error condition

(6.37) in inequality (6.10) which allows to proceed in the proofs of Theorem 6.2 and The-

orem 6.3 as before, cf. Carter [19], Theorem 3.3 and see also error condition (5.23) in

Section 5.3. Nevertheless, we decided to employ error condition (5.26) in the convergence

proofs, since in this case also the strong global convergence result in Theorem 6.4 can be

shown. For a general discussion and illustration of the gradient error conditions we refer

to Carter [19].

Remark 6.8

We further remark that since !(mk; uk; sk) is a measure for the model's curvature in

step direction, assumption (6.18) is an analogue to the standard assumption of uniform

boundedness of the model's Hessian in the quadratic model function case, see Th. 5.3.

We close this section with a reference to the recent monograph by Conn et al. [23] which

gives a comprehensive survey of trust-region methods for unconstrained and constrained

optimization. Presenting a convergence theory for general model functions where also

approximate derivatives may be used, in [23] many aspects of the presented convergence

theory for the TRPOD algorithm can be found again. However, the assumptions on the

problem data in [23] are di�erent from the assumptions used here. We therefore brie
y

address some of these di�erences next.

The convergence theory for model functions with inexact gradients in [23], Section 8.4,

is based, e.g., on the assumptions that the objective function, f , and each model function,

mk, are twice (continuously) di�erentiable and that mk(uk) = f(uk) at each trust-region

center point holds. The gradient accuracy is also handled with an error condition of

the type of error condition (5.26). Moreover, Conn et al. employ model functions with

mk(uk) 6= f(uk) in the context of conditional models, but do not use the gradient error

condition (5.26) for these cases, see [23], Section 9.1. As pointed out in the introduction

of this chapter, Conn et al. also treat composite problems and models in the sense of

surrogate optimization by considering objective functions of the type f̂(y(u); u). At this,

they assume that y(uk) and the approximation model for y(�) at uk as well as corresponding
derivatives coincide at the trust-region center point, see [23], Section 8.5.
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6.2.3 Additional Modi�cations of the TRPOD Algorithm

We note that the TRPOD algorithm given by Alg. 6.1 provides a lot of space for additional

modi�cations that can lead to interesting variants of the basic algorithm. Especially,

variants of the TRPOD algorithm that exploit characteristic properties of the POD based

reduced order modelling approach o�er the way to re�ned implementations. Here, we

brie
y discuss some of these options.

Reducing the Trust-region Radius

The �rst modi�cation of the basic TRPOD algorithm concerns a practical issue that should

be taken into account in an implementation. In the case of a rejection of the new trial

step in Algorithm 6.1 we can adapt the reduction of the trust-region radius to the step

length of the unsuccessful step. The modi�ed update rule for the trust-region radius then

reads

�k+1 2

8>>>><
>>>>:

[ �k; 
3 �k ]; if �k � �2

[ 
2 �k; �k ); if �1��k < �2

[ 
1kskk; 
2kskk ]; if �k < �1

: (6.38)

Eventually, this avoids a number of unnecessary intermediate TRS solutions that show no

e�ect in the computation of a new trial step.

Augmenting the POD Subspace

In a trust-region framework based on quadratic model functions the only way to improve

the reliability of the model function is to shrink the trust-region by decreasing the trust-

region radius, �k. In Algorithm 6.1 an insu�cient reduced order model as well as an

inappropriatly large trust-region radius can lead to the computation of an unsuccessful

step. Therefore, in the TRPOD framework the model function quality cannot only be

improved by a further restriction of the trust-region, but also if it is possible to use a POD

based reduced order model that produces more accurate reduced order state solutions and

model function gradients.

Following the discussion in Chapter 3, for the POD technique the number of POD

basis functions, M , provides a parameter that gives some control on this approximation

quality, if we assume that the input ensemble is left unchanged and cannot be improved

signi�cantly by adding snapshots. Increasing the number of POD basis functions, M ,

yields an augmentation of the corresponding POD subspace for the Galerkin projection.

The subtle point of deciding whether to manipulate the trust-region or to manipulate the

approximation model's �delity is discussed in Dennis/Torczon [28].

However, if the decision has been made that the POD subspace should be augmented,

the Lanczos method as presented in Chapter 4 is a useful tool for computing the POD
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basis elements as they are needed. For this purpose, it is necessary to save the (converged)

Lanczos vectors of the recent POD basis computation. If more POD basis functions are

needed for building the POD based reduced order model, the Lanczos procedure can be

restarted and the building blocks of the reduced order model have to be recomputed, cf.

Section 3.5.

Enriching the POD Subspace

In Algorithm 6.1 each POD based control model is based on snapshots related to the

current control, snapshots related to previous control iterates are neglected. It is possible

to enrich the POD subspace by adding some (or all) snapshots related to previous control

iterates to the snapshot set related to the current control, cf. Afanasiev/Hinze [3].

But, caution should be exercised in doing so, in order to avoid the inclusion of unsuit-

able snapshot information. For large steps, sk, it can happen that the combined input

ensemble of snapshots related to uk and snapshots related to uk + sk includes snapshots

of completely di�erent dynamics. Thus, the resulting POD basis elements will re
ect an

undesirable mixture of dynamics. Furthermore, enriching the input ensemble will always

lead to an increased POD based reduced order model dimension if some kind of energy

criterion is used to estimate the required POD subspace dimension that should be used

for the Galerkin projection, cf. Cor. 3.10 and the discussion afterwards.

Finally, we remark that by including previous snapshot information in the POD basis

one intends to include more global aspect of the POD based model function, mk, but

maybe at the price of weakening the local approximation properties. We also refer to

Conn et al. [23] for a discussion of model functions with memory in the context of trust-

region methods.

6.3 Enforcing Gradient Accuracy

6.3.1 Motivation

According to the convergence results presented in Theorem 6.3, Theorem 6.4 and Corollary

6.5, we emphasize the importance of su�ciently accurate model gradients in order to

achieve good performance of the TRPOD algorithm. But, we also remark that in the

context of POD based reduced order modelling the error condition

krf(uk)� gkk � � kgkk (6.39)

is hard to satisfy for � 2 (0; 1��2), especially when kgkk is small (cf. Kelley/Sachs [64]).
At this, it is worth noting that kgkk ! 0; k ! 1, implies the asymptotic consistency

condition krf(uk)� gkk ! 0; k !1.
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In the TRPOD approach presented so far, the POD basis functions are derived using

snapshot information of the state equation. Then, these basis functions are employed

for the discretization of the state equation. On the other hand, we have to compute

gradients of the model function mk during the solution of the trust-region subproblem. If

we compute the model gradient rmk using, e.g., an adjoint equation approach, then we

use the adjoint equation of the reduced order state equation for this computation. Hence,

this implies that we implicitly discretize the original adjoint equation using basis functions

that are especially suited for the discretization of the state equation.

Based on these considerations we therefore introduce an approach that takes derivative

information of the original problem into account.

6.3.2 The TRPOD Algorithm with Scaled Model Functions

In this subsection we are going to apply a modelling technique that has been proposed for

trust-region frameworks with variable-�delity models by Alexandrov et al. [4, 6] based on

an approach presented in Chang et al. [22]. In [22] this idea is introduced as sensitivity-

based scaling. Its most important property is that for a given current iterate uk a model

function ak for the objective function f is derived, such that the �rst-order consistency

conditions (6.6), i.e. ak(uk) = f(uk); rak(uk) =rf(uk), are enforced. In this case, the

trust-region method based on the model function ak operates with exact gradients.

For the de�nition of this �rst-order consistent model ak, let us consider an objective

function f and a corresponding model mk at uk where the �rst-order consistency condi-

tions (6.6) are not necessarily satis�ed. Furthermore, we assume that f : IRn ! IR is a

nonnegative function, i.e. f(u)� 0 for all u 2 IRn, and that this property carries over to

each model function, mk, for f . We note that this property is satis�ed, e.g., if f represents

a discretization of one of the cost functionals given in (2.18) or (2.19). Additionally, we

assume that the gradient rf is available.

De�nition 6.9 (Scaling Factor)

Consider a model function mk for f at the current iterate uk with kgkk 6= 0, where the

�rst-order consistency conditions (6.6) are not necessarily satis�ed. We de�ne the scaling

factor �k(u) by

�k(u) =
f(u)

mk(u)
(6.40)

and the linearized scaling factor ��k(u) for u=uk+s by

��k(uk + s) = �k(uk) +r�k(uk)T s: (6.41)

We remark that, if the scaling factor, �k(uk), at uk given by (6.40) is close to one, the

model function value mk(uk) is close to f(uk) and little scaling is required in the repre-

sentation f(uk) = �k(uk)mk(uk). In case the scaling factor is large, the model function

underestimates the actual function value, and vice versa.
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Furthermore, the scaling factor �k(u) for u=uk+s can be (locally) approximated by

the linearized scaling factor ��k(uk+s). Based on the linearized scaling factor (6.41) we

can derive a �rst-order consistent model function ak for f at uk.

Lemma 6.10

Consider a model function mk for f at the current iterate uk with kgkk 6= 0, where the

�rst-order consistency conditions (6.6) are not necessarily satis�ed. We de�ne ��k(u) as

in (6.41).

We then have that the model function ak for f at uk de�ned by

ak(uk+s) = ��k(uk+s) mk(uk+s) (6.42)

satis�es

ak(uk) = f(uk) and rak(uk) = rf(uk):

Proof: The choice s = 0 in (6.42), together with (6.41) and (6.40) yields

ak(uk) = ��k(uk)mk(uk) = �k(uk)mk(uk) = f(uk):

Furthermore, the components of the gradient rak 2 IRn are given by

(rak(u))i = (r��k(u))imk(u) + ��k(u) (rmk(u))i

= (r�k(uk))imk(u)+
h
�k(uk)+r�k(uk)T (u�uk)

i
(rmk(u))i (6.43)

for i=1; : : : ; n, where we employed (6.41) to obtain (6.43). By inserting

(r�k(uk))i = (rf(uk))i mk(uk)� f(uk) (rmk(uk))i
mk(uk)2

(6.44)

and u = uk in (6.43), we obtain rak(uk) = rf(uk). 2

Consequently, if the model functionmk is based on a reduced order modelling approach

as presented in Section 6.2, we can perform a correction of that model function such

that a new model function ak is obtained that is characterized by ak(uk) = f(uk) and

rak(uk)=rf(uk). The corresponding TRPOD algorithm with model function ak is given

in Algorithm 6.11.

We emphasize that, in order to obtain the scaled model function ak, it is important to

have the true gradient rf(uk). Compared to the basic TRPOD approach, this requires

an additional computational e�ort for the computation of rf(uk) after each successful

iteration. However, the convergence analysis of the corresponding TRPOD algorithm

where the model function mk given by (6.8) is replaced by a model function ak given

by (6.42) is independent of a gradient error condition in the sense of (6.39). Thus, the

convergence results of Section 6.2 are still valid.
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Algorithm 6.11 (TRPOD Algorithm with Scaled Model Functions)

Initialization: Choose 0 < �1 < �2 < 1, 0 < 
1 � 
2 < 1 � 
3, an initial trust-region

radius �0 > 0 and an initial iterate u0. Compute a snapshot set Y0 corresponding to

control u0, compute f(u0) and rf(u0). Set k = 0.

1. Compute a POD basis YPODk and build a POD based control model.

2. Compute an approximate minimizer, sk, of the model function ak(uk+s) given by

(6.42) within the trust-region, ksk � �k, using SDA.

3. Compute a snapshot set Yk+ corresponding to control uk+sk and compute f(uk+sk).

Set

�k =
aredk(sk)

predk(sk)
:

4. Update the trust-region radius:

� If �k � �2:

Set uk+1 = uk + sk; f(uk+1) = f(uk + sk); Yk+1 = Yk+.
Compute rf(uk+1) and choose �k+1 2 [�k; 
3�k]. Set k = k + 1 and GOTO 1.

� If �1��k < �2:

Set uk+1 = uk + sk; f(uk+1) = f(uk + sk); Yk+1 = Yk+.
Compute rf(uk+1) and choose �k+1 2 [
2�k; �k). Set k = k + 1 and GOTO 1.

� If �k < �1:

Set uk+1 = uk and choose �k+1 2 [
1�k; 
2�k]. Set k = k + 1 and GOTO 2.

A detailed presentation of rak 2 IRn reveals another important property of the model
function ak. The model gradient rak with components

(rak(uk + s))i =
�
(rf(uk))imk(uk)�f(uk)(rmk(uk))i

mk(uk)2

�
mk(uk + s)

+
�
f(uk)
mk(uk)

+
Pn
j=1

(rf(uk))jmk(uk)�f(uk)(rmk(uk))j
mk(uk)2

(s)j
�
(rmk(uk + s))i (6.45)

for i = 1; : : : ; n, only depends on f(uk); rf(uk); mk(uk+s) and rmk(uk+s). Thus,

once the true objective and its gradient at the current iterate have been computed, the

evaluation of the new model function ak(uk + s) for given s and its gradient only requires

computations with the model mk and no further evaluations of f or rf are necessary. We

recall that ak(uk + s); rak(uk + s) have to be evaluated, e.g., during Phase 2 of the step

determination algorithm (SDA).
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6.3.3 A Hybrid TRPOD Algorithm

Since we expected that it is hard to satisfy the gradient error condition (6.39) for the

TRPOD algorithm, especially for krgkk approaching zero, we introduced the TRPOD

algorithm with scaled model functions in the previous section.

On the other hand, the basic TRPOD algorithm does not require to compute the true

gradient of the objective function if a model update is necessary. Therefore, it is interesting

to derive an algorithm that combines both, the features of TRPODwith and without scaled

model functions. This can be accomplished by concatenating both algorithms.

Such a hybrid algorithm starts with a trust-region framework according to Algorithm

6.1, because in an early phase of the optimization process it is likely that the basic TRPOD

algorithm will reveal a good performance. When the TRPOD iterates start to exhibit a

convergent behaviour it may be preferable to switch to a TRPOD algorithm with scaled

model functions that uses exact gradient information. In this case, we can guarantee

accurate derivatives.

Crucial at this, is to decide whether to switch from TRPOD using only reduced order

information during the solution of the trust-region subproblems to the TRPOD algorithm

with scaled model functions. We are aware of the fact that it is not easy to �nd a criterion

that always guarantees that the TRPOD component (without scaling) is maintained as

long as possible, since it avoids the computation of rf .

6.4 Numerical Results

6.4.1 Results for the TRPOD Algorithm

In this section we present numerical results for the the TRPOD algorithm (Algorithm 6.1)

applied to the control of the driven cavity problem with objective functions of tracking-

type, cf. (2.18),

J(y; u) = 1
2ky � ydk2L2(0;T ;L2(
obs))

+ 

2kuk2U : (6.46)

All 
ow calculations were carried out with the 
ow solver FEATFLOW at Reynolds num-

ber Re = 200, on the time interval [0; T ] = [0; 5], using a uniform 33 � 33 grid for the

spatial discretization (see Appendix A), all other computations with MATLAB, on a SUN

SPARCstation 20. The parameters for the TRPOD algorithm are given in Table 6.1.

TR Framework Step Determination

�1; �2 0.25, 0.75 �; � 0.25, 0.75


1; 
2; 
3 0.5, 0.5, 2 �1; �2; �3; � 0.1, 0.1, 0.1 , 1

Table 6.1: TRPOD Parameters
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Example 1: In the �rst example we consider the control of the standard cavity 
ow,

where the control, u, is the horizontal velocity on the top wall, i.e.

y(x; t) = (u(t); 0)T ; x 2 �top; t 2 (0; T );

and

y(x; t) = (0; 0)T ; x 2 � n �top; t 2 (0; T ):

These boundary conditions can be represented by b(x) = (1; 0)T ; x2�top, c(x) = (0; 0)T ,

x 2 �n�top, with respect to the notation in Chapter 2.

Since we intend to check the assumptions of Theorem 6.3 for this example, we restrict

the number of (discrete) control variables using the expansion u(t) =
Pn
j=1 u

j'j(t) with

'1(t)� 1 and '2j(t) = cos(2j�t=T ); '2j+1(t) = sin(2j�t=T ); j = 1; 2; 3, for all t 2 [0; T ].
Thus, we obtain n=7 discrete control variables and the discretization of the cost functional

in (6.46) yields f : IR7 ! IR.

For this example, the desired state, yd, corresponds to a prescribed control given by

u d = (0:8; 0:1; �0:3; 0; 0:1; �0:3; 0)T 2 IR7:

Furthermore, we choose 
obs = ( 0:44; 0:56 ) � ( 0:44; 0:56 ) in the center of the domain


 = (0; 1) � (0; 1), initialized the TRPOD algorithm with u0(t)� 0:01 for all t 2 [0; T ],

�0=0:25, and set 
=0.

Table 6.2 lists the values of the objective function, f(uk), given by (6.9) and the model

function, mk(uk), given by (6.8) at the beginning of each iteration k, for given current

iterate uk 2 IR7. Furthermore, the trust region radius, �k, the step length, kskk, of the
trial step, the quotient of actual reduction to the predicted reduction, �k, and the number

of POD basis elements, M , for each TRPOD iteration are shown. Additionally, we give

the norm of the model gradient, kgkk, at the trust-region center point for each model

function.

k f(uk) mk(uk) �k kskk �k kgkk �
(1)
k �

(2)
k M

0 5.99658 E-4 5.960310 E-4 0.25 0.25 1.58 1.0017 E-5 0.88 0.54 4

1 3.16328 E-4 3.195711 E-4 0.5 0.46 1.51 1.3771 E-5 0.15 0.13 4

2 3.07127 E-5 3.768390 E-5 1 0.20 0.81 4.8561 E-6 0.17 0.13 4

3 2.60034 E-6 2.454936 E-6 2 0.22 0.97 2.8924 E-7 0.93 0.12 6

4 4.67446 E-7

Table 6.2: Example 1: TRPOD Results
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The dimensions of the POD reduced order models, M , are chosen according to the

energy criterion (with ��=0:999) combined with a singular value gap criterion, cf. Section

3.4. In each iteration, k=1; 2; 3, we employ P = 80 snapshots for the computation of the

POD basis functions. Merely, in the initial iteration, k=0, we choose P = 10, because for

u0 � 0:01 we get no signi�cant dynamics. For this example we also check if the gradient

error condition (5.26)

�
(1)
k =

krf(uk)� gkk
kgkk � �

or the error condition (6.37)

�
(2)
k =

j(rf(uk)� gk)
T skj

kgkkkskk � �

is satis�ed for � 2 ( 0; 1��2). For the computation of rf(uk) and rf(uk)T sk we use �nite
di�erence approximations to the derivatives, which is workable because of the small number

of discrete control variables. The results for �
(1)
k in Table 6.2 illustrate the discussion in

Section 6.3 concerning the model gradient accuracy. Nevertheless, we can realize that

�
(2)
k < 1��2 = 0:25 holds for k � 1. Based on the values of sk; mk(uk); mk(uk+sk) and

gk we also �nd that the bound on the model curvature given by (6.18) is satis�ed with

bk � cb=2.

Finally, we remark that we stopped the TRPOD algorithm after four iterations where

the objective function value is reduced from f(u0) = 5:99 � 10�4 to f(u4) = 4:67 � 10�7.

In Figure 6.1, the control iterates uk(t); k= 0; : : : ; 4, for all t 2 [0; T ] are presented.

This illustrates how the iterates approach u
d which de�nes the desired 
ow �eld, yd.

Figure 6.2 depicts ud; u4, which is referred to as uopt with TRPOD, and the solution

of the reduced order control problem without TRPOD mechanism. For the computation

of the latter, we take the POD based reduced order model corresponding to k = 0 and

perform the optimization without additional trust-region constraint, employing only this

single model. We denote the corresponding solution by uopt without TRPOD. Figure 6.3

shows the corresponding improvements in the objective function for this example, when

the control is applied to the full system, kyN (u) � ydkL2(
obs) for each t 2 [0; T ]. Again,

we compare uopt(t) with TRPOD to uopt(t) without TRPOD. Both �gures illustrate that

the trust-region framework with its update mechanism for the POD based reduced order

models improves the results signi�cantly.

For illustration purposes, we also give vector plots of the POD basis functions and

the reference 
ow �eld for the control, yNb , see (3.33). These plots, for the initial 
ow

con�guration (k=0) in Figure 6.4 and the �nal 
ow con�guration (k=4) in Figure 6.5,

visualize the changes in the POD bases for this example.
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Example 2. In the second example we consider the control of a cavity 
ow where the

control action is a horizontal bottom wall movement. As a result, there evolves a second

vortex counteracting the �rst vortex that is induced by the top wall movement. We set

y(x; t) = (1; 0)T ; x 2 �top; t 2 (0; T );

y(x; t) = (u(t); 0)T ; x 2 �bot; t 2 (0; T ); and

y(x; t) = (0; 0)T ; x 2 � n (�top [ �bot); t 2 (0; T );

which implies b(x) = (1; 0)T ; x 2 �bot, c(x) = (1; 0)T ; x 2 �top, and c(x) = (0; 0)T ,

x 2 � n (�top [ �bot) in the notation of Chapter 2. Thus, the control, u, is the time-

dependent boundary velocity at the bottom of the cavity.

The desired state, yd, corresponds to an (arbitrarily) prede�ned bottom wall velocity

u
d(t) = 1:2 + 0:5 cos((t�2:5)�=2:5) � 0:1 cos((t�1)�)

+ (0:1t�0:2) cos((t�0:5)�=0:5)

for all t 2 [0; T ]. Due to a time discretization of �t=0:03 we get n=167 (discrete) control

variables, u 2 IRn. We choose the observation domain to be the entire cavity, 
obs=
,

initialize the TRPOD algorithm with initial control u0(t) � 0:1 for all t 2 [0; T ], initial

trust-region radius �0=2, and set 
=0.

Table 6.3 lists the values of the objective function, f(uk), and the model function,

mk(uk), at the beginning of each iteration k, the trust region radius, �k, and the step

length, kskk, of the computed trial step. Furthermore, the norm of the model gradient,

kgkk, the quotient of actual reduction to the predicted reduction, �k, and the number of

POD basis elements, M , are given. We stopped the TRPOD algorithm after 5 iterations,

where the objective function value is reduced from f(u0) = 0:229239 to f(u5) = 0:000132.

Again, the dimensions of the POD reduced order models, M , are chosen according to the

energy criterion (with ��=0:999) combined with a singular value gap criterion.

k f(uk) mk(uk) �k kskk �k kgkk M

0 0.229239 0.188274 2 2.00 2.36 0.01815 5

1 0.149097 0.148143 4 4.00 1.27 0.01596 5

2 0.080427 0.080532 8 6.84 1.47 0.01374 5

3 0.006864 0.008835 16 2.87 0.93 0.00592 6

4 0.000246 0.000795 32 0.29 3.61 0.00041 8

5 0.000132

Table 6.3: Example 2: TRPOD Results
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In Figure 6.6, all control iterates of the optimization process are illustrated. It is shown

how these iterates approach u
d that de�nes the desired state.

Figure 6.7 compares ud; u5, which is referred to as uopt with TRPOD, and the solution

of the reduced order control problem without trust-region modi�cation. Again, we denote

the latter by uopt without TRPOD. Figure 6.8 illustrates the improvements in the objective

function when the control uopt with TRPOD is applied to the full system instead of the

control uopt without TRPOD.

Furthermore, Figure 6.9 depicts vector plots of the POD basis functions as well as �yN

and yNb corresponding to the initial control (k=0). For a de�nition of these 
ow �elds,

we refer to Section 3.5.2. Figure 6.10 depicts the corresponding vector plots for the �nal

control iterate of the TRPOD run (k = 5). Here, we only give the �rst 6 POD basis

functions although we employ 8 POD basis functions for the reduced order model in this

iteration. Again, these �gures illustrate the signi�cant change in the POD basis due to

the update mechanism inherent in the TRPOD algorithm. Here, the POD basis functions

at iteration k=0 scarcely exhibit the in
uence of the control action at the bottom wall.

But, the control action is clearly re
ected in the POD basis functions shown in Fig. 6.10.
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6.4.2 Results for the Hybrid TRPOD Algorithm

For the presentation of numerical results concerning the hybrid TRPOD algorithm, we

consider an optimal control problem involving the linear heat equation on 
=(0; 1):

Minimize f(u) = 1
2

Z T

0
(�(u; 0; t) � q(t))2 dt+ 


2

Z T

0
u(t)2 dt (6.47)

where �(x; t) = �(u;x; t) is the solution of

�t(x; t)� � �xx(x; t) = 0; 0 < x < 1; 0 < t < T (6.48)

�(x; 0) = �0(x); 0 < x < 1 (6.49)

with boundary conditions

� �x(1; t) = �(�(1; t) � u(t)); 0 < t < T (6.50)

� �x(0; t) = 0; 0 < t < T: (6.51)

In (6.47) { (6.51), �(x; t) denotes the temperature in x2
 at time t2(0; T ). Here, the
parameters � and � denote the heat conductivity and heat transfer coe�cient, respectively,

and 
 > 0 is a regularization parameter. The cost functional is of tracking-type, where

q(t); t2(0; T ) denotes a desired temperature pro�le at x=0. The control, u(t) for t2(0; T ),
is applied at x=1.

Following [65], the gradient of f is given by,

(rf(u))(t) = ���(1; t) + 
 u(t) (6.52)

where �(x; t) is the solution of the adjoint equation

��t(x; t)� ��xx(x; t) = 0; 0 < x < 1; 0 < t < T

�(x; T ) = 0; 0 < x < 1

with boundary conditions

��x(1; t) = ���(1; t); 0 < t < T

��x(0; t) = q(t)� y(0; t); 0 < t < T:

We choose Problem (6.47) for the illustration of the ideas of the hybrid TRPOD

algorithm, since the state equation as well as the adjoint equation can be solved easily.

For the computation of the following numerical results we use a �nite element dis-

cretization with piecewise linear basis functions for the spatial discretization and a back-

ward Euler method for the time discretization. We choose T =1, discretize with �t=0:01,

�x = 0:02 and set the parameter values: � = 0:3, � = 1 �10�3, 
 = 5 �10�3. The desired

temperature pro�le is given by q(t) = t, the initial control is u0 � 0:001. Furthermore,

we set �0 = 10. In the following, u 2 IRn; n= 101, denotes the discretized control and

f : IRn ! IR the discretized cost functional in (6.47).
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In Table 6.4{Table 6.6 we compare the performance of the basic TRPOD algorithm,

with the TRPOD algorithm based on scaled model functions and the hybrid TRPOD

algorithm for the solution of the control problem given in (6.47).

In all tables we present at each iteration, k, the objective function value, f(uk), the

current trust-region radius, �k, the norm of the computed trial step, kskk, the value of �k,
and the POD subspace dimension, M , based on an energy criterion (��=0:9999). We note

that we employed the trust-region update rule (6.38).

For the basic TRPOD algorithm we also give the model function value, mk(uk), and

the norm of the model gradient, kgkk. Furthermore, the value of �k = krf(uk)�gkk=kgkk
according to (5.26) is shown. For this purpose, we have to compute the gradient of f via

(6.52) in order to compute the quantity �k, but we do not use rf(uk) besides this.
In the case that scaled model functions are used, we renounce to give ak(uk) (since

it agrees with f(uk)), but we give the scaling factor �k(uk) instead. Here, we have to

compute the gradient of f in order to build the new model ak. Since rf(uk) and rak(uk)
coincide, we also present the norm of the true gradient, krf(uk)k.

The numerical results given in Tables 6.4{6.6 illustrate the previous discussion. The

basic TRPOD algorithm leads to good results. Although the gradient error condition,

�k� � < 1��2=0:25, is not satis�ed for k � 2, the trial steps computed with the models

mk lead to a certain decrease in the true objective. We achieve an objective function

value of f(u9)=0:003016. Furthermore, it is obvious that the gradient error deteriorates

as indicated by the value of �k, when kgkk approaches 0.
The TRPOD algorithm with scaled model functions leads to hardly better results.

Here, we obtain f(u6)=0:002945 at the �nal iterate.

The results for the hybrid TRPOD algorithm are similar. In this case we switch from

the TRPOD algorithm without scaling to scaled model functions as soon as the trust-

region radius is smaller than a prescribed value, �=0:2, and an unsuccessful iteration is

met (�k<� and �k<�1=0:25 at k=4). Nevertheless, the results for the hybrid algorithm

show that scaling of the POD based model function mk can lead to an improved model

ak. Here, we refer to the values of �k in iterations k=4; 5 in Table 6.6. While the model

mk at k=4 yields �k=0:06, the scaled model function ak at k=5 yields �k=1:03 where it

also uses the additional information rf(uk). In both cases the POD based reduced order

model is the same. The �nal objective function value for the hybrid TRPOD algorithm

approach is f(u8)=0:002938.

In Figure 6.11 we compare the controls computed with the basic TRPOD algorithm and

the hybrid TRPOD algorithm with the optimal control computed with the �nite element

model. The corresponding objective function value for this case is f(uopt)=0:002926.

In Figure 6.12, the corresponding optimal states at x=0 are compared to the desired

temperature pro�le, q.
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k f(uk) mk(uk) �k kskk �k kgkk �k M

0 0.173936 0.173936 10.00 9.56 1.00 0.037498 0.0255 3

1 0.003814 0.003836 20.00 1.66 1.08 0.000980 0.1961 3

2 0.003061 0.003160 40.00 0.53 0.18 0.000500 0.5534 3

3 0.003061 0.003160 0.27 0.26 0.49 0.000500 0.5534 3

4 0.003022 0.003087 0.13 0.13 0.06 0.000308 0.8402 3

5 0.003022 0.003087 0.06 0.06 0.27 0.000308 0.8402 3

6 0.003018 0.003074 0.03 0.03 0.24 0.000236 1.1060 3

7 0.003018 0.003074 0.01 0.01 0.25 0.000236 1.1060 3

8 0.003017 0.003072 0.01 0.01 0.26 0.000230 1.1352 3

9 0.003016

Table 6.4: Basic TRPOD

k f(uk) �k(uk) �k kskk �k krf(uk)k M

0 0.173936 1.0000 10.00 9.19 1.00 0.037463 3

1 0.005422 0.9624 20.00 2.13 0.99 0.001964 3

2 0.003294 0.9870 40.00 1.30 1.83 0.000636 3

3 0.003013 0.9705 80.00 0.32 0.61 0.000487 3

4 0.002974 0.9810 40.00 0.35 0.65 0.000319 3

5 0.002962 0.9831 20.00 0.10 13.93 0.000288 3

6 0.002945

Table 6.5: TRPOD with Scaled Model Functions

k f(uk) mk(uk) �k kskk �k kgkk �k M

0 0.173936 0.173936 10.00 9.56 1.00 0.037498 0.0255 3

1 0.003814 0.003836 20.00 1.66 1.08 0.000980 0.1961 3

2 0.003061 0.003160 40.00 0.53 0.18 0.000500 0.5534 3

3 0.003061 0.003160 0.27 0.26 0.49 0.000500 0.5534 3

4 0.003022 0.003087 0.13 0.13 0.06 0.000308 0.8402 3

Switch to Scaled Model Functions

k f(uk) �k(uk) �k kskk �k krf(uk)k M

5 0.003022 0.9789 0.13 0.13 1.03 0.000235 - 3

6 0.003004 0.9801 0.26 0.25 4.45 0.000219 - 3

7 0.002971 0.9734 0.52 0.49 2.96 0.000146 - 3

8 0.002938

Table 6.6: Hybrid TRPOD
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Chapter 7

An Application in Food Processing

7.1 Introduction

In the previous chapters we presented various aspects of POD based reduced order mod-

elling and the use of these reduced order models during an optimization process. Next,

we introduce and discuss an industrial application of this technique in the �eld of food

processing.

One of the important procedures for the sterilization of food products is thermal pro-

cessing in a batch retort (autoclave). The product is �lled into containers and these

containers are heated in the autoclave by steam or hot water in order to destroy harmful

microorganisms. However, not only the microorganisms are heat sensitive. Severe heat

treatment during in-container sterilization can produce substantial negative changes in

the nutritional and sensory quality of the food.

In practice, the sterilization process can be controlled through the temperature of

the autoclave during the processing time. Here, the autoclaves often work with constant

temperatures for the heating and cooling phase of the sterilization process. These heating

temperatures, and also the holding times at constant temperatures, are chosen empirically

such that the sterility requirements on the food product are satis�ed in any case. But,

this procedure often leads to an unwanted degradation of the quality of the food.

Therefore, research e�orts in food industry concentrate on using appropriate mathe-

matical models for this process, such that the competing goals of achieving a safe product

and retaining high quality can be optimized.

In the following section, we present an optimal control problem that models the goals

of the sterilization process. In order to solve the related optimization problem it is nec-

essary to use a heat transfer model to represent the evolution of the temperature inside

the container. In Section 7.3, we present di�erent approaches of various complexity for

modelling the heat transfer inside the container. Certainly, an appropriate heat transfer

model has to take into account the speci�c problem formulation under consideration.

109
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But, with increasing complexity of the heat transfer model also the computational

complexity for the solution of the corresponding control problem increases. Here, we

discuss reduced order modelling ideas that have the potential to be applied in the �eld of

food processing.

7.2 The Optimal Control Problem

In this section, we derive an optimal control problem that models the competing goals of

achieving a safe product while also striving for high nutritional quality of the food product.

We consider in-container sterilization where prepackaged food is heated in an autoclave,

in order to destroy existing microorganisms. In order to formulate an appropriate control

problem for the sterilization process, we �rst derive a condition that models the sterility

requirements presecribed by law. Furthermore, we present an objective function modelling

the retention of nutrients. We refer to Kleis [69], Kleis/Sachs [70] and Justen [61] where

mathematical modelling for the sterilization of prepackaged food and solution concepts for

the corresponding control problems are investigated.

In the following, let 
 � IR3 denote the domain of the container, e.g., a can or a glass

jar, of the food product, and � = @
 its boundary.

The concentration of microorganisms, C(x; t), inside the container can be decribed by

a linear di�erential equation

@

@t
C(x; t) = �K(�(x; t)) C(x; t); C(x; 0) = C0(x) (7.1)

where �(x; t) denotes the absolute temperature at point x2
 at time t, and C0(x) denotes

the initial concentration of microorganisms at x2
. In (7.1), the function K depends on

� and is given by Arrhenius' law (see Kessler [67])

K(�) = Kref exp

 
�Ea
R

 
1

�
� 1

�ref

!!
(7.2)

whereKref denotes the value of K at the reference temperature �ref , R is the universal gas

constant and Ea is the activation energy. Here, the values of Ea; �ref (and Kref ) depend

on the speci�c microorganisms that are considered to be most dangerous and that are to

be destroyed during the sterilization process.

A sterility condition for food products can be derived by means of the analytic solution

of (7.1). Provided that the temperature, � , is a continuous function, we obtain the solution

C(x; T ) = C0(x) exp

 
�
Z T

0
K(�(x; t)) dt

!
(7.3)

for x 2 
 at the �nal processing time, T .

Since (7.1) describes a reduction process that depends on the temperature distribution

inside the container, we note that at a given point �x 2 
, according to (7.2) the value of
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�K(�(�x; t)) in (7.3) decreases, if �(�x; t) increases at that location. Therefore, it is possible

to restrict the analysis of the reduction of microorganisms to a single point xc 2 
, if xc

represents a worst-case situation. We denote by xc the coldest point inside the container

which is often assumed to be located in the geometrical center of the container. For a

discussion of this assumption, we refer to Kleis [69].

Inserting K(�) given by (7.2) at xc in (7.3) and using the relation 10z = ez ln 10 (for

given z 2 IR) yields

C(xc; T ) = C0(xc) exp

 
�
Z T

0
K(�(xc; t)) dt

!

= C0(xc) exp

 
�
Z T

0
Kref10

� Ea
R ln 10

( 1
�(xc;t)

� 1
�ref

)
dt

!

= C0(xc) exp

 
�
Z T

0
Kref10

�(xc;t)��ref
z(�(xc;t)) dt

!
(7.4)

where z(�(xc; t)) is de�ned by, see [70],

z(�(xc; t)) =
R
Ea
�ref �(xc; t) ln 10: (7.5)

Equation (7.4) leads to the following de�nition of the sterility constraint which is con-

cerned with the bacteriological e�ect of the thermal processing. A product satis�es the

sterility requirements prescribed by law, if for the total processing time, T , the concen-

tration of microorganisms, C(xc; t), at the coldest point, xc, is reduced by a certain factor

with respect to the initial concentration (see Kessler [67])

C(xc; T )

C0(xc)
= exp

 
�
Z T

0
Kref10

�(xc;t)��ref
zref dt

!
� 10��law : (7.6)

Here, �law is a given reference value for the microorganisms under consideration. Further-

more, we note that z(�) according to (7.5) has been replaced by zref=(R=Ea)�
2
ref ln 10 in

(7.4) in order to obtain the sterility condition (7.6).

We note that in the food research literature, e.g., see Ball/Olson [11] or Kessler [67],

and in food industry, condition (7.6) is often reformulated in order to use the F-value

concept. By de�ning

F (�) =

Z T

0
10

�(xc;t)��ref
zref dt (7.7)

it is easy to see that (7.6) is equivalent to

F (�) � �law
Kref

ln 10: (7.8)

Since the di�erential equation in (7.1) describes a general temperature dependent re-

duction process, an expression similar to the left hand side of inequality (7.6) can be
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derived that describes the destruction of nutrients. Merely, suitable reference values for

the parameters in the Arrhenius equation (7.2) have to be chosen.

Therefore, if we aim at maximizing the concentration of nutrients, a suitable measure

for the nutritional quality of a food product is given by

~J(�) =

Z T

0
10

�(xb;t)��q
zq dt; (7.9)

where �q; zq denote reference values for the speci�c chemical e�ect of the thermal pro-

cessing. Here, for the analysis of the retention of nutrients we focus on a point xb at the

boundary of the container, because this is a�ected most during the heating phase.

According to the above discussion, for the computation of the bacteriological and

chemical e�ects it is necessary to know the temperature distribution inside the container.

If the temperature is known, the F-value (at xc) according to (7.7) as well as ~J(�) (at xb)

given by (7.9) can be computed.

Let u(t); t 2 (0; T ), denote the temperature of the autoclave, where the containers are

heated, during the thermal processing. Thus, with the cost functional

J(�; u) = ~J(�) +



2

Z T

0
u(t)2 dt

for some 
 > 0 we can formulate the optimal control problem

Minimize J(�; u) (7.10)

subject to the constraints

F (�) � �law
Kref

ln 10 (7.11)

and

umin � u(t) � umax(t) t 2 [0; T ]: (7.12)

Here, � = �(u) is the temperature distribution inside the container that corresponds to the

control u. The last term in the cost functional represents an energy term. The constraints

on the control u are physically given upper and lower bounds for the temperature of the

autoclave, see Kleis/Sachs [70].

So far, we did not specify a heat transfer model that serves to determine the tem-

perature evolution inside the food container corresponding to temperature changes of the

heating medium in the autoclave. This is the topic of the next section.

7.3 Modelling the Heat Transfer

As we have seen from the derivation of the optimal control problem, it is important to

have a reasonable model for describing the development of the temperature inside the food

container. In the following, we will give a review of some heat transfer models of various

complexity that can be used in the context of sterilization of prepackaged food.
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7.3.1 The Ball-Formula

In food engineering practice the Ball-Formula, originating from the 1960s, is still very

popular (see Ball/Olson [11]). Depending on two parameters only, it provides a simple

approach for modelling heat transfer in food products empirically.

Let u(t) = �u for all t 2 (0; T ) denote a constant and uniform autoclave temperature

and �0 an initial uniform temperature distribution of the product inside the container,

such that �(xc; t) = �0 and �u > �0 holds.

Considering the scaled temperature di�erence

~�(xc; t) =
�u� �(xc; t)

�u� �0
(7.13)

the Ball-Formula for determining ~�(xc; t) reads

~�(xc; t) = j e�(t=f) ln 10: (7.14)

For heating processes, the parameters j; f in (7.14) are strictly positive and depend, e.g.,

on the geometry of the food container and some other material constants of the container

and the product to be heated. According to (7.13) the absolute temperature, �(xc; t), is

given by

�(xc; t) = j (�0 � �u)e�(t=f) ln 10 + �u: (7.15)

Consequently, for given parameters j; f and an initial temperature di�erence between prod-

uct and autoclave temperature, �u� �0 > 0, the absolute temperature �(xc; t) approaches

the autoclave temperature exponentially from below.

In industrial practice, the parameters j; f are determined empirically, e.g., by �tting

measured data for a speci�c type of product. Based on these parameters, formula (7.14)

can be used for the calculation of the temperature development during the heating phase

at a given point xc for this speci�c type of product.

We remark, that the Ball-Formula according to (7.14) leads to reliable results for suf-

�ciently large time values t only, see Ball/Olson [11]. Furthermore, it neglects any spatial

e�ects which are important to be modelled in heat conduction processes. Therefore, (7.14)

cannot be used for modelling cooling processes, or in general, changes in the autoclave

temperature. The problem is an initial lag in the cooling curve, since the conductivity of

the process cannot be modelled. To compensate this lag portion, this part of the curve

has to be approximated by a hyperbola if cooling phases of the autoclave are consid-

ered. Therefore, the Ball-Formula approach does not seem to be suited for appropriately

modelling heat transfer in a control problem formulation of the food sterilization process.

At this point, we note that the Ball-Formula can be derived by truncating a Fourier

series representation of the solution of a conductive heat equation after the �rst term. This

approach has been analyzed in [34] and is currently under further investigations. Using

the Fourier series representation it seems to be possible to compensate the de�ciencies of

the Ball-Formula method by including additional terms of the series expansion.
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7.3.2 A Nonlinear Heat Equation

The heat transfer from the surrounding heating medium in the autoclave to a homogeneous

and solid food product can be generally modelled by a nonlinear heat equation

�c(�) @@t� �r � (k(�)r�) = 0 in 
� (0; T ) (7.16)

with initial condition

�( � ; 0) = �0( � ) in 
 (7.17)

and boundary condition

k(�) @@n� = �(u� �) on �� (0; T ): (7.18)

In (7.16){(7.18), � is the density, c(�) the heat capacity and k(�) the heat conductivity

of the product to be heated. The heat transfer coe�cient is denoted by �. We note

that, in general, the heat capacity, c, and the heat conductivity, k, are functions of the

temperature, � .

In order to derive the boundary condition (7.18) it is assumed that there is a uniform

temperature in the autoclave such that the heat 
ux into the food container is propor-

tional to the temperature di�erence between the container and the heating medium, see

Kleis/Sachs [70].

The advantage of (7.16){(7.18) for modelling the temperature development inside a

food container is that temperature dependent material constants can be included explic-

itly. Therefore, this model is another step into a more precise formulation for the food

sterilization problem.

The optimal control of sterilization of prepackaged food based on (7.16){(7.18) has been

analyzed and numerically solved in Kleis [69], Kleis/Sachs [70]. There, a �nite element

discretization has been employed for the discretization of the heat equation.

7.3.3 Heat Transfer Models involving the Navier{Stokes Equations

There are also more complex approaches for modelling the temperature inside a food

container.

For example, a heat transfer model for homogeneous, liquid food products is given

by a coupled system of the heat equation and the Navier{Stokes equations. In this case,

buoyancy e�ects due to temperature di�erences have to be included (Boussinesq approx-

imation). The following approach to the sterilization of liquid food products has been

analyzed in Justen [61]. We also refer to Abergel/Temam [1] where a similar problem

in the context of 
ow control by boundary temperature control for the driven cavity is

analyzed.
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In [61] a heat transfer model similar to (7.16){(7.18) is considered that also includes

temperature changes inside the container due to buoyancy e�ects

�c(�) @@t� �r � (k(�)r�) + �c(�)(y � r)� = 0 in 
� (0; T ); (7.19)

�( � ; 0) = �0( � ) in 
; (7.20)

k(�) @@n� = �(u� �) on �� (0; T ): (7.21)

The velocity �eld y in (7.19) is given by the Navier{Stokes equations

@
@ty � ��y + (y � r)y +rp = f be(�) in 
� (0; T ); (7.22)

div y = 0 in 
� (0; T ) (7.23)

with homogeneous Dirichlet boundary conditions, where f be(�) in (7.22) denotes body

forces due to buoyancy e�ects.

Furthermore, due to the speci�c application under consideration, Justen [61] considered

two simpli�cations of the coupled system (7.19){(7.21), (7.22){(7.23).

First, the nonlinear convection{di�usion equation (7.19) is substituted by a linear

convection{di�usion equation by assuming that the heat capacity and heat conductivity

are constant and do not depend on the temperature, � .

Second, the buoyancy e�ects in (7.22) are neglected due to the fact that the food

sterilization is performed in an autoclave with additional rotation of the food containers.

Following this idea we obtain the new system of partial di�erential equations (see

Justen [61])
@
@t� � ��� + (y � r)� = 0 in 
� (0; T ); (7.24)

�( � ; 0) = �0( � ) in 
; (7.25)

@
@n� = ~�(u� �) on �� (0; T ); (7.26)

@
@ty � ��y + (y � r)y +rp = f rot(r) in 
� (0; T ); (7.27)

div y = 0 in 
� (0; T ); (7.28)

y( � ; 0) = y0( � ) in 
; (7.29)

y = 0 on �� (0; T ): (7.30)

Due to the assumption that the heat capacity and heat conductivity are constant we

have �= k=(c�) and ~�= �=k in (7.24) and (7.26), cf. also (7.16){(7.18). In (7.27), the

body forces f rot represent centrifugal and gravitational forces depending on the rotational

speed, r2IR, that is usually measured in rotations per minute. The momentum equation

in the Navier{Stokes system is independent of the temperature � , since it is expected

that the e�ect of the rotation dominates the buoyancy e�ects. Furthermore, in [61] the
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rotational speed r is used as an additional control variable in an appropriate control

problem formulation in the sense of (7.10).

The new system (7.24){(7.26), (7.27){(7.30) has an important advantage compared

to the coupled system (7.19){(7.21), (7.22){(7.23), because it includes a decoupling in

the computation of y and � . First, it is possible to compute a 
ow �eld, y, for a given

rotational speed, r2 IR. Then, for a given 
ow �eld, y, the convection-di�usion equation

(7.24){(7.26) can be solved. Here, the control u, i.e. the temperature of the autoclave,

enters in the boundary conditions (7.26).

Finally, we note that the numerical computations for the sterilization of food products

in [61] are based on �nite element methods for the convection-di�usion equation (7.24){

(7.26) with prescribed 
ow �elds only. Incorporating a solution procedure for the Navier{

Stokes equations during the solution of the control problem was not workable, because of

computational complexity reasons.

7.4 Starting Points for Reduced Order Modelling

Based on the various heat transfer models presented in the previous section, we will outline

a POD based reduced order modelling approach in the context of food sterilization.

The corresponding reduced order models can be applied during the solution of the op-

timal control problem (7.10){(7.12). Consequently, according to the discussion in Chapter

6, a TRPOD-like algorithm should be applied for the solution of the corresponding opti-

mization problem.

According to the presentation in Section 7.3, an accurate �nite element discretization

of the nonlinear heat equation as well as the heat equation coupled with the Navier{

Stokes equations leads to large-scale discretized optimization problems, cf. Kleis/Sachs

[70]. In order to reduce the computational complexity for the solution of these optimization

problems, it is possible to employ reduced order modelling techniques based on POD.

At this point, we note that POD based reduced order models for the heat equation

have been investigated, e.g., in Atwell/King [9, 10] or Diwoky/Volkwein [30]. Similar

reduced order models can be employed for modelling the sterilization of solid food products

according to Subsection 7.3.2, see also [34].

Furthermore, POD based reduced order models for steady-state convection{di�usion

equations with prescribed 
ow �elds are considered in Park/Lee [86]. We also refer to

Park/Cho [84] and Ly/Tran [78] were POD methods for CVD reactors are studied. In

these papers, the 
ow �elds for a convection-di�usion equation are obtained by solving

the steady-state Navier{Stokes equations for compressible or incompressible 
ows, and

reduced order models for the temperature evolution are derived.

Since we primarily focussed on 
ow control involving reduced order models for the

time-dependent Navier{Stokes equations so far, we outline a POD based reduced order
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modelling approach for the sterilization of liquid food products according to the material

in Subsection 7.3.3. As pointed out there, in [61] it was not workable to solve the complex

heat transfer model with rotational forces because of the computational complexity of this

problem.

A remedy is given by substituting a �nite element model for the Navier{Stokes equa-

tions by a POD based reduced order model according to Section 3.5. In this case, it is

possible to solve the convection{di�usion equation

@
@t� � ��� + (y � r)� = 0 in 
� (0; T ); (7.31)

with initial condition (7.25) and boundary conditions (7.26) as it was done in [61]. But,

the 
ow �eld, y, is approximated by a reduced order solution, yM , instead of a �nite

element solution. The corresponding reduced order solution, yM , is given by solving a

POD based reduced order model of the type

_yM (t) + �AyM (t) +N (yM ;yM ) = F(r; t) for all t 2 (0; T )

yM (0) = yM0

for given control r2IR, such that

yM (x; t) =
MX
j=1

yMj (t) j(x): (7.32)

This approach allows an e�cient computation of an approximate 
ow �eld, if a corre-

sponding reduced order model is available.

Besides this, in a �nite element discretization of (7.31) the reduced order modelling

approach yields an additional simpli�cation. In order to illustrate this aspect, we consider

a �nite element discretization of the convection{di�usion equation (7.31)

M _�N (t) + �S�N (t) + C(yN )�N (t) = 0 (7.33)

for t 2 (0; T ), neglecting boundary and initial conditions. Here, M; S denote mass and

sti�ness matrix as usual, and C(yN )�N (t) corresponds to the term (y � r) � for a given


ow �eld yN (x; t); x2
; t2(0; T ), see Justen [61].

The computationally most expensive part during the solution of (7.33) is that terms

of the type C(yNi ) with yNi (x) = yN (x; ti) have to be recomputed at every time step ti.

By employing the representation (7.32) the corresponding term in (7.33) for a POD based

reduced order solution reads

C(yM ) =
MX
j=1

yMj (t) C( j): (7.34)

Thus, expression (7.34) can be easily evaluated at time ti, if the corresponding terms

C( j); j = 1; : : : ;M , have been computed and the reduced order solution yM (x; t) given

by (7.32) is available.
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For this reason, POD based reduced order modelling for the Navier{Stokes equations

in the heat transfer model (7.24){(7.26), (7.27){(7.30) for liquid food products, can lead

to heat transfer models of workable computational complexity. These can be used for the

computation of controls for the sterilization of prepackaged food in an autoclave.

We are aware of the fact that the numerical implementation of the proposed solution

concepts is not an easy task. It still requires a lot of research e�orts and has not been

completely done, yet. Some preliminary numerical results have been given in [34], see also

the TRPOD results for the heat equation in Section 6.4.2.

However, the numerical results concerning the control of the Navier{Stokes equations

in Chapter 6 indicate that POD based reduced order modelling provides an approach to

e�cient solution concepts for complex heat transfer models for optimal control problems

in food processing.



Conclusions

The discretization of optimal control problems governed by partial di�erential equations

typically leads to large-scale optimization problems. We consider 
ow control involving

the time-dependent Navier{Stokes equations as state equation which is stamped by exactly

this property.

In order to avoid the di�culties of dealing with large-scale (discretized) state equa-

tions during the optimization process, a reduction of the number of state variables can be

achieved by employing a reduced order modelling technique. Using the snapshot proper

orthogonal decomposition method, one obtains a low-dimensional model for the compu-

tation of an approximate solution to the state equation. In fact, often a small number of

POD basis functions su�ces to obtain a satisfactory level of accuracy in the reduced order

solution. However, the small number of degrees of freedom in a POD based reduced order

model also constitutes its main weakness for optimal control purposes. Since a single re-

duced order model is based on the solution of the Navier{Stokes equations for a speci�ed

control, it might be an inadequate model when the control (and consequently also the

actual corresponding 
ow behaviour) is altered, implying that the range of validity of a

reduced order model, in general, is limited. Thus, it is likely to meet unreliable reduced

order solutions during a control problem solution based on one single reduced order model.

In order to get out of this dilemma, we propose to use a trust-region proper orthogonal

decomposition (TRPOD) approach. By embedding the POD based reduced order mod-

elling technique into a trust-region framework with general model functions, we obtain a

mechanism for updating the reduced order models during the optimization process, en-

abling the reduced order models to represent the 
ow dynamics as altered by the control.

In fact, a rigorous convergence theory for the TRPOD method is obtained which justi�es

this procedure also from a theoretical point of view.

Bene�ting from the trust-region philosophy, the TRPOD method guarantees to save

a lot of computational work during the control problem solution, since the original state

equation only has to be solved if we intend to update our model function in the trust-

region framework. The optimization process itself is completely based on reduced order

information only.

119



120



Appendix A

The Flow Solver FEATFLOW

The starting point for the POD based reduced order modelling approach with snapshot

input data is the availability of a solver for the partial di�erential equation under consid-

eration.

Since we are interested in optimal control problems governed by the Navier-Stokes

equations an appropriate 
ow solver is required. The numerical results of this thesis are

based on 
ow computations with the �nite element software FEATFLOW1 [113]. This ap-

pendix serves to introduce some aspects of the solution techniques of the software package

that have been used for our applications, and that can be seen as typical ingredients of a

�nite element 
ow solver. We follow the description in Turek [113, 115] and the references

therein.

As pointed out in Chapter 2, for the solution of the Navier-Stokes equations special

attention has to be paid to the treatment of the nonlinearity in the momentum equation

@
@ty � ��y + (y � r) y +rp = f in 
� (0; T )

and the treatment of the incompressibility condition

div y = 0 in 
� (0; T )

where a coupling between the velocity �eld, y, and the pressure, p, is caused by the latter.

For the sake of simplicity, we consider homogeneous Dirichlet boundary conditions, i.e.

yj�=0 for all t 2 (0; T ), in the following, and we denote yjt=0=y0.

Our presentation of the solution concepts here addresses the spatial discretization via

�nite elements in Section A.1, the time discretization scheme in Section A.2 and the

decoupling of velocity and pressure variables in Section A.3. If these solution approaches

are applied to the Navier{Stokes equations it is �nally necessary to have e�cient solution

procedures for systems of linear and nonlinear equations. In Section A.4 and Section

A.5 we address the corresponding techniques that are implemented in the FEATFLOW

software.
1
Information on FEATFLOW can also be found under http://www.feat
ow.de.
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A.1 The Finite Element Discretization

Starting from the variational formulation (II) given in Problem 2.4, we consider a spatial

discretization of

@
@t (y; �)L2 + � a(y; �) + c(y; y; �) + b(�; p) = (f; �)L2 ;

b(y;  ) = 0;

y(0) = y0;

for � 2 H1
0 (
);  2 L2

0(
), by means of a �nite element approach. Here, we only address

the FEATFLOW speci�c choice of the �nite element discretization for this variational

formulation that di�ers from approaches that usually can be found in the literature, e.g.,

see Cuvelier et al. [26], Girault/Raviart [40] or Thomasset [110].

FEATFLOW employs quadrilateral elements with piecewise rotated bilinear shape

functions for the velocity approximation and piecewise constant shape functions for the

pressure approximation. This ~Q1/Q0{Element has been introduced and analyzed in Ran-

nacher/Turek [94].

The most characteristic property of the rotated bilinear shape function for the velocity

approximation is that a small number of degrees of freedom is retained while the shape

functions include aspects of quadratic shape functions. In order to illustrate this idea, we

consider a partition of the domain 
 into disjoint quadrilateral elements Q where each

Q is determined by its four vertices v1; v2; v3; v4. For computational purposes, each Q

is usually transformed to the unit square Q̂[0;1]= [0; 1]� [0; 1], that serves as a reference

element.

We recall that a bilinear function �(lin) on Q̂[0;1] is determined by the values of

�(lin)(x̂1; x̂2) = w0 + w1 x̂1 + w2 x̂2 +w3 x̂1 x̂2

at the nodal points at the four vertices v̂1 = (0; 0)T ; v̂2 = (1; 0)T ; v̂3 = (1; 1)T ; v̂4 = (0; 1)T

of the reference element for suitable weights wj ; j=0; : : : ; 3. Here, x̂1; x̂2 denote the local

coordinates for Q̂[0;1]. Similarly, a biquadratic function on Q̂[0;1]

�(quad)(x̂1; x̂2) = w0 + w1 x̂1 + w2 x̂2 + w3 x̂1 x̂2 +w4 x̂
2
1

+ w5 x̂
2
2 + w6 x̂

2
1 x̂2 + w7 x̂1 x̂

2
2 + w8 x̂

2
1 x̂

2
2

is determined by its values at 9 nodal points, i.e. the 4 vertices, the 4 midpoints of the

sides and the center of the reference element, for suitable weights wj ; j=0; : : : ; 8, cf. e.g.

Quarteroni/Valli [91].

The ~Q1/Q0{Element of Rannacher/Turek [94] uses 4 nodal points for the velocity

approximation like in the bilinear case. But, its reference element is Q̂[�1;1] = [�1; 1] �
[�1; 1]. The nodal points v̂1=(�1; 0)T ; v̂2=(0; 1)T ; v̂3=(1; 0)T ; v̂4=(0;�1)T are placed
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at the midpoints of the element sides. Nevertheless, we keep the notation v̂j although

the nodal points are no longer located in the vertices of the reference element Q̂[�1;1] (see
Figure A.1).

In general, the rotated bilinear shape functions on Q̂[�1;1] can be represented as

�(rot)(x̂1; x̂2) = w0 + w1 x̂1 + w2 x̂2 +w3 (x̂
2
1 � x̂22)

with suitable weights wj; j=0; : : : ; 3 and local coordinates x̂1; x̂2 for Q̂[�1;1]. Consequently,
these local shape function �(rot) also contain quadratic terms. Speci�cally, we obtain

�
(rot)
i (x̂1; x̂2) =

8>>>>>>>><
>>>>>>>>:

1
4 � 1

2 x̂1 +
1
4(x̂

2
1 � x̂22) for i = 1

1
4 +

1
2 x̂2 � 1

4(x̂
2
1 � x̂22) for i = 2

1
4 +

1
2 x̂1 +

1
4(x̂

2
1 � x̂22) for i = 3

1
4 � 1

2 x̂2 � 1
4(x̂

2
1 � x̂22) for i = 4

such that �
(rot)
i (v̂j) = �ij for i; j = 1; : : : ; 4 holds.

We �nally note that the transformation � : Q̂[�1;1] ! Q that maps the reference

element Q̂[�1;1] to Q is given by

�(x̂1; x̂2) = v1 +
1

2
(v2 + v4 � 2v1)(x̂1 + 1) +

1

2
(v2 � v4)x̂2:

Thus, we have �(v̂j) = vj ; j = 1; : : : ; 4.

As pointed out above, FEATFLOW employs piecewise constant shape functions with

one nodal point in the center of the element for the pressure approximation. The combi-

nation of piecewise rotated bilinear shape functions for the velocity and piecewise constant

shape functions for the pressure leads to a stable numerical approximation of the velocity

and pressure �elds, in the sense that this �nite element pair satis�es the Babuska-Brezzi

e
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e
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�
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v̂1 v̂3

v̂2

Figure A.1: Transformation from Q̂[�1;1] to Q
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condition (or inf-sup condition) with a mesh-independent constant which is not satis�ed

for other �rst-order elements (Q1/Q0, Q1=Q1).

Based on the �nite element discretization of the variational formulation (II) we obtain

a large-scale system of ordinary di�erential equations

M _yN (t) + �SyN (t) + C(yN (t))yN (t) + BpN (t) = F(t) (A.1)

BTyN (t) = 0 (A.2)

for all t2 (0; T ) with initial value yN (0) = yN0 , where M denotes the �nite element mass

matrix, and S the sti�ness matrix due to the discretization of the bilinear form a( � ; � ). The
term C( � ) corresponds to the discretization of the trilinear form c( � ; � ; � ), �BT denotes

the divergence matrix and F(t) the discretized body forces of the Navier{Stokes equations.
The bold face characters with superscript N denote the vectors of expansion coe�cients

of the velocity and pressure �eld solutions in the �nite element basis representation.

A.2 The Time Discretization Scheme

The FEATFLOW solution scheme that handles the numerical di�culties concerning the

nonlinearity and coupling of velocity and pressure variables is strongly linked with the

time discretization of the Navier{Stokes equations.

Let yi=y(ti); pi=p(ti) denote current solutions for the velocity and pressure, respec-

tively, at time ti according to (A.1) and (A.2). For ease of notation we again drop the

superscript N that indicates �nite element approximations.

The solutions yi+1; pi+1 at time ti+1= ti+ �t with time step �t can be computed using

a standard time stepping scheme. Omitting the boundary conditions, we then have

Myi+1+��t(� Syi+1+C(yi+1)yi+1+Bpi+1) = ��tFi+1+(1� �)�tFi+Myi

� (1��)�t (� Syi+C(yi)yi+Bpi)
BTyi+1 = 0

where � = 1 yields the Backward-Euler scheme and � = 0:5 the Crank-Nicolson scheme

which possess well-known accuracy and stability properties, see e.g. Lambert [74].

To combine both second order accuracy and favourable stability properties, a modi-

�cation of the above time stepping scheme is incorporated in the FEATFLOW software

package. The time step �t= ti+1�ti is treated as a macro time step and three time substeps
of di�erent length are de�ned that lead to similar subproblems but with di�erent weights

(fractional-step-�-method). Note that in Turek [114] the term fractional-step-�-method is

used to denote a mere time-stepping technique which is in contrast to operator splitting

approaches (see Section A.3) that are also connected with this term, cf. e.g. Glowinski

[41], Kloucek/Rys [71].
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For

� = 1�
p
2=2; �0 = 1� 2�; and ~� = ���t

with

� = (1� 2�)=(1� �); � = 1� �

the following three problems have to be solved successively where we set

N(yi)yi = � S yi + C(yi)yi

(for given yi) for notational convenience. The �rst problem to be solved for yi+�; pi+� is

[M+ ~�N(yi+�)]yi+� + ��tB pi+� = [M� ���tN(yi)]yi + ��tFi
BTyi+� = 0:

Second, the problem

[M+ ~�N(yi+1��)]yi+1�� + �0�tB pi+1�� = [M� ��0�tN(yi+�)]yi+� + �0�tFi+1��

BTyi+1�� = 0

has to be solved for yi+1��; pi+1��. Finally, the macro time step is completed by solving

[M+ ~�N(yi+1)]yi+1 + ��tBpi+1 = [M� ���tN(yi+1��)]yi+1�� + ��tFi+1��

BTyi+1 = 0

for yi+1; pi+1.

We note that in all cases the pressure is treated fully implicit and the body forces

either fully implicit or fully explicit. The parameters �; � describe weighting parameters

similar to � in the standard time stepping scheme. With time substeps �t1 = �t3 =

��t � 0:293�t; �t2 = �0�t � 0:414�t and � � 0:586; � � 0:414 a stable and second order

accurate time discretization scheme is obtained, see M�uller-Urbaniak [81], Rannacher [93].

FEATFLOW also employs an adaptive time step control for the determination of the next

macro time step.

Following the above approach, for a given velocity �eld, yi, time step size �t and

appropriate constants �1; �2; �3; �4 problems of the type

[M+ �1�tN(y)]y + �tB p = [M� �2�tN(yi)]yi + �3�tFi+1 + �4�tFi (A.3)

BTy = 0 (A.4)

have to be solved in order to compute y=yi+1; p=pi+1. At this, we note that

M+ �1�tN(�) =M+E (A.5)

can be interpreted as a perturbation,M+E, of the mass matrix,M, for su�ciently small

time steps �t.
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A.3 Decoupling of Velocity and Pressure Variables

In the representation (A.3), (A.4) the velocity and pressure variables are still coupled. In

order to resolve this di�culty FEATFLOW uses a discrete projection scheme similar to

Van Kan's scheme, cf. Van Kan [62], Shen [100], Prohl [90], which is an operator splitting

approach that decouples the computation of y and p.

Given current iterates yi; pi, �rst an intermediate velocity �eld, ~yi+1, is computed

where the incompressibility constraint is neglected, i.e.

[M+ �1�tN(~yi+1)]~yi+1 = [M� �2�tN(yi)]yi + �3�tFi+1 + �4�tFi � �tBpi (A.6)

has to be solved for ~yi+1.

Since we neglected the incompressibility constraint, the question arises how a correc-

tion, �pi+1, of the pressure variable and thus also a correction, �yi+1, of the intermediate

velocity �eld should be chosen, in order to account for that de�ciency. Obviously, the

correction, �yi+1, should satisfy

BT (~yi+1 + �yi+1) = 0: (A.7)

According to (A.5), FEATFLOW uses the inverse of the lumped mass matrix, Ml, as an

approximation to the inverse operator of the right hand side of (A.5) for small step sizes,

�t, such that

Ml ~yi+1 � [M� �2�tN(yi)]yi + �3�tFi+1 + �4�tFi � �tBpi
is assumed. Hence, �pi+1 has to be chosen such that (A.7) can be approximated by

BT [M�1
l ([M� �2�tN(yi)]yi + �3�tFi+1 + �4�tFi � �tBpi) + �yi+1]

= BT [M�1
l ([M� �2�tN(yi)]yi + �3�tFi+1 + �4�tFi � �tB(pi + �pi+1))]

= BT (~yi+1 � �tM�1
l B �pi+1) = 0:

Consequently, the desired pressure correction, �pi+1, can be computed by solving the

following discrete variant of a Pressure-Poisson problem

BTM�1
l B �pi+1 =

1
�tBT ~yi+1: (A.8)

The solution of the Pressure-Poisson problem is followed by an update step for the

velocity and pressure �eld to obtain new iterates at the next time level

pi+1 = pi + �pi+1; (A.9)

yi+1 = ~yi+1 � �tM�1
l B�pi+1: (A.10)

At this, steps (A.8), (A.9), (A.10) can be seen as a projection of the not necessarily

divergence-free velocity �eld, ~yi+1, onto a divergence-free subspace such that the new

iterate, yi+1, satis�es the (discrete) incompressibility constraint.
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A.4 Solution of Nonlinear Equations

Solving (A.6) requires the solution of a nonlinear equation for the velocity �eld. For

this purpose there is an adaptive �xed point defect correction method implemented in

FEATFLOW. This Newton-like method with additional step size determination serves to

solve systems of the type (A.6) and is outlined below.

For given yi; pi we de�ne the residual that depends on the unknown y as

R(y) = [M+ �1�tN(y)]y � [M� �2�tN(yi)]yi � �3�tFi+1 � �4�tFi + �tBpi (A.11)

such that R(~yi+1)=0 is equivalent to (A.6). Furthermore, we set y0 = yi.

Consequently, Newton's method for solving R(y) = 0 requires to solve linear systems

of the type

R0(yj) sj = �R(yj) (A.12)

for sj , with

R0(yj) sj = [M+ �1�tN(yj)] sj + �1�t C(sj)yj ; (A.13)

for the computation of a complete Newton step. Here, the superscript j indicates the

iteration index during the solution of the nonlinear equations. The Newton-like method

implemented in FEATFLOW discards the last part of the right hand side of (A.13) and

uses the linear system

[M+ �1�tN(yj)] sj = �R(yj) (A.14)

for the computation of a step sj .

Additionally, an exact step size selection is performed using the merit function

m(!) = 1
2 k �R(yj ; sj ; �!; !)k2 (A.15)

with

�R(yj ; sj ; �!; !) = [M+ �1�tN(yj + �! sj)] (yj + ! sj)

�[M� �2�tN(yi)]yi � �3�tFi+1 � �4�tFi + �tBpi: (A.16)

We note that �R given by (A.16) corresponds to a linearization of the residual (A.11) for

a given parameter �!, which is usually chosen as �! = !j�1 if j > 1. The step size !j that

minimizes the merit function in (A.15) is explicitly given by

!j =
� �R(yj ; sj ; �!; 0)T [M+ �1�tN(yj + �! sj)] sj

k[M+ �1�tN(yj + �! sj)] sjk2 : (A.17)

Thus, the next iterate yj+1 can be computed as

yj+1 = yj + !j sj : (A.18)
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Therefore, FEATFLOW performs the following sequence of steps in order to solve

nonlinear equations of the type (A.6). First, for given yj equation (A.14) is solved to

obtain sj. Then, a step size according to (A.17) is computed and the iterate yj is updated

according to (A.18). This is repeated until the residual is su�ciently small or a �xed

maximal number of iteration steps have been performed. Then, ~yi+1=y
j+1 is set and the

computations at the next time level can be started.

A.5 Solution of Linear Equations

According to the decoupling strategy for the velocity and pressure variables, and the

Newton-like method described in Section A.4, the solution of the discretized Navier-Stokes

equations reduces to solving linear systems. These arise either during the solution of

nonlinear equations or correspond to the Pressure-Poisson problem that has to be solved.

Consequently, we have to solve

[M+ �1�t(�S + C(y))] s = �R(y) (A.19)

in order to obtain s, or

BTM�1
l B p = 1

�tBTy (A.20)

has to be solved for p.

For the solution of the linear systems (A.19), (A.20), FEATFLOW employs multigrid

techniques that are adjusted to the special choice of the ~Q1/Q0{Element for the �nite

element discretization of the Navier{Stokes equations.
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